
Quintus Prolog Reference Manual

Quintus Computer Systems, Inc.
2345 Yale St, Palo Alto, CA 94306

Written by David Bowen, with contributions from Lawrence Byrd and Bill
Kornfeld, and some material from the original DEC10 Prolog manual by
Fernando Pereira, Luis Pereira and David Warren.

This manual corresponds to Quintus Prolog Release 1.0.

The information in this document is subject to change without notice and
should not be construed as a commitment by Quintus Computer Systems.
Every effort has been made to ensure the accuracy of this document, but
Quintus Computer Systems, Inc. assumes no responsibility for any errors
that may appear.

Copyright (C} 1985 Quintus Computer Systems, Inc.

Table of Contents

Table of Contents

1. Introduction

2.

1-1 Notation used in this Manual
1-2 Error Conditions
1-3 Invoking Prolog

Syntax
2-1 Terms

2-1-1 Integers
2-1-2 Floating Point Numbers
2-1-3 Atoms
2-1-4 Variables
2-1-5 Compound Terms
2-1-6 Lists

2-2 Operators
2-3 Built-in Predicates for Handling Operators

2-3-1 op(+Precedence,+Type,+Name)
2-3-2 current_op(?Precedence,?Type,?Op)

2-4 Syntax Restrictions
2-5 Comments
2-6 Formal Syntax

2-6-1 Notation
2-6-2 Syntax of Sentences as Terms
2-6-3 Syntax of Terms as Tokens
2-6-4 Syntax of Tokens as Character Strings
2-6-5 Notes

3. Semantics
3-1 Programs
3-2 Declarative and Procedural Semantics
3-3 Occur Check
3-4 The Cut

4. On-line Help
4-1 Help Files

4-1-1 Menu Files
4-1-2 Text Files

4-2 help
4-3 help(+Topic)
4-4 manual
4-5 manualC+X)
4-6 Emacs commands for using the Help System

4-6-1 Menu Commands
4-6-2 Text Commands

5. Loading Programs, Consulting and Compiling
5-1 consult(+File)
5-2 compile(+File)
5-3 Style Checking

5-3-1 style check(+X)
5-3-2 no_style_check(.;!!)

i

1

1
1
2

5
5
5
5
5
6
6
1
8

11
11
11
11
12
13
13
14
15
16
18
21
21
24
25
26
29
29
29
30
30
31
31
31
32
32
33
35
35
36
37
37
37

ii

6. Control
6-1 +P , +Q

6-2 +P +Q
6-3 -.
6-4 call (+X)
6-5 \+ +P-
6-6 +P =>" +Q +R
6-7 +P -> +Q
6-8 true -
6-9 otherwise
6-10 fail
6-11 false
6-12 repeat

7. Input and Output
7-1 Input and Output of Terms

7-1-1 read(-X)
7-1-2 write('?X)
7-1-3 display(?X)
7-1-4 writeq('?X)
7-1-5 print(?X)

7-2 Input and Output of Characters
7-2-1 getO(-N)
7-2-2 get(-ITT
7-2-3 skipT.;N)
7-2-4 put(+N)
7-2-5 nl -
7-2-6 tab(+N)

7-3 Stream Handling
7-3-1 Streams
7-3-2 open(+File,+Mode,-Stream)
7-3-3 open null stream(-Stream)
7-3-4 close(+Stream)
7-3-5 current stream(?File,?Mode,'?Stream)
7-3-6 nofileerrors
7-3-7 fileerrors
7-3-8 flush output(+Stream)
7-3-9 set input(+Stream)
7-3-10 set output(+Stream)
7-3-11 current input(-Stream)
7-3-12 current-output(-Stream)

7-4 Stream Based Input and Output of Terms
7-5 Stream Based Input and Output of Characters
7-6 Reading the State of Opened Streams

7-6-1 character count(+Stream,-N)
7-6-2 line count(+Stream,-N) -
7-6-3 lineyosition(+Stream,-N)

7-7 Prolog-20 Compatible File Handling
7-7-1 see(+X)
7-7-2 seeing(-S)
7-7-3 seen -
7-7-4 tell(+F)
7-7-5 telling(+S)
7-7-6 told -

Table of Contents

39
39
39
39
39
39
40
40
41
41
41
41
41
43
43
43
44
44
45
45
45
46
46
46
46
47
47
47
47
48
48
48
48
49
49
49
49
49
50
50
50
50
51
51
51
51
51
52
52
53
53 ~
53
53

Table of Contents

7-8 Prolog-20 Compatible Character I/0 to Terminal
7-8-1 ttygetO(-N)
7-8-2 ttyget(-N)
7-8-3 ttyskip"'fj:'N)
7-8-4 ttyput(+N)
7-8-5 ttynl
7-8-6 ttytab(+N)
7-8-7 ttyflush

8. Arithmetic
8-1 Arithmetic Expressions
8-2 -Xis +Expression
8-3 Arithmetic Comparison

8-3-1 +X =:= +Y
8-3-2 +X =\= +Y
8-3-3 +X < +Y-
8-3-4 +X > +Y
8-3-5 +X =<+Y
8-3-6 +X >= +Y

9. Looking at Terms
9-1 var(?X)
9-2 nonvar(?X)
9-3 atom(?X-)
9-4 integer(?X)
9-5 float (?X-)
9-6 number(?X)
9-7 atomic(?X)
9-8 functor(?Term,?Name,?Arity)
9-9 arg(+I,+T,-X)
9-10 ?X ;:-.?Y-
9-11 name(?X, ?L)

10. Comparison of Terms
10-1 Standard Order on Terms
10-2 ?T1 = = ?T2
10-3 ?T1. \:: ?T2
10-4 ?T1 @< ?~
10-5 ?T1 @> ?T2
10-6 ?T1 @:< ?T2
10-7 ?T1 @>= ?T2
10-8 compare(?Op,?T1,?T2)
10-9 sort(+L1,-L2)
10-10 keysort(+L1,-L2)

11. Looking at the Program State
11-1 listing
11-2 listing(+Predicate)
11-3 current atom(?Atom)
11-4 current:i>redicate(?Name,?Term)

iii

54
54
54
54
54
54
54
55
57
57
58
59
59
59
59
59
59
59
61
61
61
61
61
61
61
62
62
63
63
63
65
65
65
66
66
66
66
66
66
67
67
69
69
69
69
69

iv

12. Looking at and Controlling the Execution State
12-1 Control C interrupts
12-2 halt
12-3 break
12-4 abort
12-5 ancestors(-L)
12-6 subgoal_of(?S)
12-7 maxdepth(+D)
12-8 depth(-D)

13. Memory Use
13-1 trimcore
13-2 statistics
13-3 statistics(?Ke yword,-List)

14. Saving the Program or the Execution State
14-1 saveyrogram(+File)
14-2 save(+File)
14-3 save(+File,-Return)
14-4 restore(+File)
14-5 reinitialise

15. Debugging
15-1 debug
15-2 trace
15-3 nodebug
15-4 notrace
15-5 debugging
15-6 spy +X
15-7 nospy +X
15-8 nospyall
15-9 unknown(-OldAction,+NewAction)
15-10 leash(+Mode)

16. Modification of the Database
16-1 Dynamic and Static Procedures
16-2 assert(+Clause)
16-3 asserta(+Clause)
16-4 assertz(+Clause)
16-5 clause(+Head,?Body)
16-6 retract(+Clause)
16-7 abolish(+Name,+Arity)

17. Database References
17-1 Definition
17-2 assert(+Clause,-Ref)
17-3 asserta(+Clause,-Ref)
17-4 assertz(+Clause,-Ref)
17-5 clause(?Head,?Body,?Ref)
17-6 erase(+Ref)
17-7 instance(+Ref,-Term)

Table of Contents

71
71
71
71
72
72
72
72
72
75
75
75
76
77
77
77
78
78
79
81
81
81
81
82
82
82
83
83
83
84
85
85
86
87
87
87
88
88
89
89
89
89
89
89
90
90

Table of Contents

18. The Internal Database
18-1 recorda(+Key,?Term,-Ref)
18-2 recordz(+Key,?Term,-Ref)
18-3 recorded(+Key,?Term,?Ref)

19. Sets: Collecting All the Solutions to a Goal
19-1 setof(?Template,+Goal,-Set)
19-2 bagof(?Template,+Goal,-Bag)
19-3 ! "f.

20. Grammar Rules
20-1 Definite Clause Grammars
20-2 An Example
20-3 Translation of Grammar Rules into Prolog Clauses
20-4 Grammar-Related Built-in Predicates

20-4-1 expand term(+T1,-T2)
20-4-2 phrase(+Phrase'":-?List)
20-4-3 'C'(?S1,?Terminal,?S2)

21. Access to Unix
21-1 unix(cd(+Path))
21-2 unix(cd)
21-3 unix(shell(+Command))
21-4 unix(shell)

22. The Emacs Interface
22-1 Overview
22-2 Key Bindings
22-3 ~rolog Mode
22-4 Layout Restrictions
22-5 Emacs Customization Notes

22-5-1 Initialization Files
22-5-2 Rebinding Keys

23. Interface to C functions
23-1 Overview
23-2 load foreign files(+ListOfFiles,+ListOfLibraries)
23-3 Linking C functions to Prolog procedures
23-4 Specifying the argument passing interface
23-5 Access to Prolog atoms from C
23-6 Important Prolog assumptions

23-6-1 Storage management assumptions
23-6-2 Input/output assumptions

23-7 Debugging loaded C functions
24. Miscellaneous Built-in Predicates

24-1 numbervars{?X,+NO,-N1)
24-2 ?X = ?Y
24-3 length(?L,?N)
24-4 prompt(-Old,+New)

I. Comparison of Quintus Prolog and Prolog-20
I.1. The Emacs Editor Interface
I.2. The Help System
I.3. The C Interface
I.4. Floating Point
I.5. Improved Compiler/Interpreter Interface

V

91
91
91
91

93
93
·94
94
95
95
95
96
98
98
98
99

101

101
101
101
101
103
103
103
105
105
106
106
106
109
109
110
110
112
116
116
116
117
117
119
119
119
119
120
121
121
121
122
122
123

vi

I.6. Improved Debugger
I.7. Style Checking
I.8. Stream-Based Input and Output
I.9. Improved Handling of Database References
I.10. Runnable Saved States
I.11. Memory Management
I.12. Miscellaneous

II. Current Limits in Quintus Prolog
III. Built-in Predicates
IV. Built-in Operators
Index

Table of Contents

124
125
125
125
126
126
126
129
131
135
137

CHAPTER 1

INTRODUCTION

The purpose of this Reference Manual is to provide a complete description of
the Quintus Prolog system. You do not need to read all of this before
starting to use Quintus Prolog. On the contrary, it is organized so that you
should be able to dip into it quickly to find out whatever you need to know
about the system.

The syntax and semantics of Quintus Prolog are described in chapter 2 and
chapter 3. The remaining chapters describe all the built-in predicates.
These are divided up into chapters on the basis of the kinds of functions they
perform. Of particular interest, if you are reading this manual, is the
chapter on the on-line help system {chapter 4). This allows you to access the
manual directly from Prolog whenever you need to look something up.

1-1. Notation used in this Manual

Each built-in predicate definition is headed by a goal template such as

setof{?X,+Goal,-Set)

Here X and the others are meta-variables which name the arguments so that we
don't have to keep saying "1 ts first argument" and so on. The characters
which precede the meta-variables will seem familiar if you know the mode
declarations of Prolog-20; their significance is as follows:

+ This argument is an input. It should initially be instantiated.

This argument is an output. It is returned by the system. That is,
the output value is unified with any value which was supplied for this
argument. The predicate fails if this unification fails.

? This argument does not fall into either of the above categories. It
is not necessarily an input nor an output, and it need not be
instantiated.

1-2. Error Conditions

There are a number of different types of error conditions:

1. An instantiation fault arises when a built-in predicate is called
with insufficiently instantiated arguments. This can mean that an
uninstantiated variable was passed where an input value {+
argument) was expected. There are also predicates like name/2
which requires that at least one of its arguments be instantiated.

2. A type error arises when an argument to a built-in predicate is of
the wrong type, for example when a structure 1s supplied and an

2 Quintus Prolog Release 1.0

atom is expected.

3. There are various error conditions associated with input and
output. For example, trying to open a non-existent file causes an
error.

4. There are errors associated with breaching various restrictions
made by the system, such as trying to re-define a built-in
predicate or operator.

5. There are errors associated with breaching various limits of the
system, such as trying to compile a very large procedure.

6. There are errors associated with breaching various external limits,
such as running out of virtual space or running out of input/output
channels.

Error conditions normally arise only in the execution of built-in predicates.
The action taken varies: the predicate may simply fail, or it may give an
error message. After an giving an error message, predicates usually fail, but
sometimes they abort the program, and sometimes they succeed. In this manual,
the definition of each built-in predicate includes a description of its
behavior on errors.

Programs should not be made to depend on the fact that any specific built-in
predicate simply fails in the event of an instantiation fault or a type error.
This is an area which is likely to change in future releases.

1-3. Invoking Prolog

The general form of command for invoking Prolog from Unix is

prolog [saved-state] [+ [file-name]]
or

saved-state[+ [file-name]]

where the brackets signify that their contents are optional and

prolog is the name used at your site to re fer to the default Pro log
executable provided by Quintus.

saved-state is the name of a file containing a saved Prolog state. This saved
state must have been produced using save_program/1 (see section
14-1) or a similar predicate.

+

file-name

signifies that you want to run Prolog under the Emacs interface.

is the name of a file to be read into Emacs.

When Prolog is invoked it normally (but not necessarily, with your own saved
states) looks in your home directory for a file named 'prolog.ini', and if it
finds one it consults it. Note that it is not a limitation that the

Quintus Prolog Release 1.0 3

'prolog.ini' file is consulted rather than compiled. If there are procedures
that you want compiled you can put them in another file and put a directive
such as

:- compile(my_procs).

in your 'prolog.ini' file. Of course, if there are a lot of these procedures
you may want to create your own saved state to avoid spending time recompiling
them every time you enter Prolog.

CHAPTER 2

SYNTAX

This chapter describes the syntax of Quintus Prolog.

2-1. Terms

The data objects of the language are called terms.
constant, a variable or a compound term.

A term is either a

A constant is either a number (integer or floating point) or an atom.
Constants are definite elementary objects, and correspond to proper nouns in
natural language.

2-1-1. Integers

The printed form of an integer consists of a sequence of digits preceded
optionally by a + or -. These are normally interpreted as base 10 integers.
It i~ also possible to enter integers in other bases (1 through 36); this is
done by preceding the digit string by the base followed by an apostrophe. If
a base greater than 10 is used, the characters A-Z or a-z are used to stand
for digits greater than 9. Examples of valid integer representations are:

-2345 85923 8'777 16'3F4A

2-1-2. Floating Point Numbers

A floating point number (float) consists of a sequence of digits with an
embedded decimal point, optionally preceded ·by a sign and optionally followed
by an exponent consisting of upper- or lower-case E and a signed base 10
integer. Examples of floating point numbers are:

1. 0 -23.45

2-1-3. Atoms

Examples of atoms are:

a void =

187. 6E 12 -0.0234e15 12.0E-2

. -. - 'Anything in quotes' [J

An atom may take any of the following forms:

- Any sequence of alphanumeric characters (including '-'), starting
with a lower case letter.

- Any sequence from the following set of characters-:

6 Syntax

- Any sequence of characters delimited by single quotes. If the single
quote character is included in the sequence it must be written
twice, for example 'can''t'.

- Any of: ! ; [) {}
Note that the bracket pairs are special: '[]' is an atom but '[' is
not. However, when they are used as functors (see below) the forms
[!_) and {!_} are al lowed as alternatives to ' [) 1 {!_) and ' {}' (!_)
respectively.

Note: it is recommended that you do not invent atoms beginning with the
character '$', since it is just possible that such names can conflict with
atoms with special significance for certain built-in predicates. Currently,
the only atom which could conceivably cause a problem is '$VAR' which has
special significance for write (see section 7-1-2), but there may be others in
future.

2-1-4. Variables

Variables may be written as any sequence of alphanumeric characters (including
' ') starting with either a capital letter or '_', for example

X Value A A1 _3 RESULT

If a variable is only referred to once, it does not need to be named and may
be written as an anonymous variable, indicated by the underline character'-'·

2-1-5. Compound Terms

The structured data objects of the language are the compound terms. A
compound term comprises a functor (called the principal functor of the term)
and a sequence of one or roore terms called arguments. A functor is
characterized by its name, which is an atom, and its arity or number of
arguments. For example, the compound term whose functor is 'point' of arity 3
and the arguments X, Y and Z, is written

point(X,Y,Z)

Note that an atom is sometimes considered to be a functor of arity o.

Functors are generally analogous to common nouns in natural language. One may
think of a functor as a record type and the arguments of a compound term as
the fields of a record. Compound terms are usefully pictured as trees. For
example, the term

s(np(john),vp(v(likes),np(mary)))

would be pictured as the structure

Syntax 7

s
I \

np vp
I \

john V np
I
I

likes mary

Sometimes it is convenient to write certain functors as operators - binary
functors (that is, functors of two arguments) may be declared as infix
operators, and unary functors (that is, functors of one argument) may be
declared as either prefix or postfix operators. Thus it is possible to write

X+Y (P ;Q) X<Y +X P;

as optional alternatives to

+(X,Y) ;(P,Q) <(X,Y) +(X) ; (P)

The use of operators is described fully in section 2-2 below.

2-1-6. Lists

Lists form an important class of data structures in Prolog. They are
essentially the same as the lists of LISP: a list is either the atom

(]

representing the empty list, or else a compound term with functor 1 • 1 and two
arguments which are respectively the head and tail of the list, where the tail
of a list is another list. Thus a list of the first three natural numbers is
the structure

I \
1

I \
2

I \
3 []

which could be written, using the standard syntax, as

.(1,.(2,.(3,[])))

but which is normally written, in a special list notation, as

[1,2,3]

The special list notation used when the tail of a list is a variable is
exemplified by

8 Syntax

[XlL] [a,blL]

representing

I \ I \
X L a

I \
b L

respectively.

Note that the notation [XlL] does not add any new power to the language; it
simply makes it more readable. The above examples could be written equally
well as

.(X,L) .(a,.(b,L))

For convenience, a further notational variant is allowed for lists of integers
which correspond to ASCII character codes. Lists written in this notation are
called strings. For example

"Humpty-Dumpty"

represents exactly the same list as

[72,117,109,112,116,121,45,68,117,109,112,116,121]

2-2. Operators

Operators in Prolog are simply a notational convenience. For example, '+' is
an infix operator so tha~

2 + 1

is an alternative way of writing the term +(2,1). That is, 2+1 represents the
data structure

+
I \

2 1

and not the number 3. (The addition would only be performed if the structure
were passed as an argument to an appropriate procedure, such as is; see
section 8-2~)

Prolog syntax allows operators of three kinds - infix, prefix and postfix. An
infix operator appears between its two arguments, while a prefix operator
precedes its single argument and a postfix operator follows its single
argument.

Each operator has a precedence, which is a number from 1 to 1200. The

Syntax 9

precedence is used to disambiguate expressions where the structure of the term
denoted is not made explicit through the use of parentheses. The general rule
is that the operator with the highest precedence is the principal functor.
Thus if '+' has a higher precedence than 'I', then

a+b/c a+{b/c)

are equivalent and denote the term "+{a,/{b,c))". Note that the infix form of
the term 11/{+{a,b),c)" must be written with explicit parentheses:

(a+b)/c

If there are two operators in the subexpression having the same highest
precedence, the ambiguity must be resolved from the types of the operators.
The possible types for an infix operator are

xfx xfy yfx

Operators of type 'xfx' are not associative: it is a requirement that both of
the arguments of the operator must be subexpressions of lower precedence than
the operator itself; that is, their principal functors must be of lower
precedence, unless the subexpression is written in parentheses (which gives it
zero precedence).

Operators of type 'xfy' are right-associative: only the first (left-hand)
subexpression must be of lower precedence; the right-hand subexpression can be
of the same precedence as the main operator. Left-associative operators (type
'yfx') are the other way around.

A functor named Name is declared as an operator of type ~ and precedence
Precedence by the command

:-op(Precedence,~ 1 Name).

The argument ~ can also be a list of names of operators of the same type
and precedence.

It is possible to have more than one operator of the same name, so long as
they are of different kinds: infix, prefix or postfix. An operator of any
kind may be redefined by a new declaration of the same kind. This applies
equally to the operators which are built in to the system. Declarations for
all these built-in operators can be found in section IV.

For example, the built-in operators'+' and '-' are declared by

:-op(500, yfx, [+, -)).

so that

a-b+c

is valid syntax, and means

(a-b)+c

10

or, pictorially

+
I \

I \
a b

Syntax

C

The list functor'·' is not a standard operator, but we could declare it thus:

:-op(900, xfy, .).

Then

a.b.c

would represent the structure

a
I \

I \
b c

Contrasting this with the diagram above for a-b+c shows the difference between
'yfx' operators where the tree grows to the left, and 'xfy' operators where it
grows to the right. The tree cannot grow at all for 'xfx' operators; it is
simply illegal to combine 'xfx' operators having equal precedences in this
way.

The possible types for a prefix operator are

fx fy

and for a postfix operator they are

xf yf

The meaning of the types should be clear by analogy with those for infix
operators. As an example, if 'not' were declared as a prefix operator of type
'fy' , then

not not P

would be a permissible way to write "not(not(P))". If the type were 'fx', the
preceding expression would not be legal, although

not P

would still be a permissible form for "not(P)".

If these precedence and associativity rules seem rather complex, remember that
you can always use parentheses when in any doubt.

Syntax 11

2-3. Built-in Predicates for Handling Operators

2-3-1. op(+Precedence,+Type,+Name)

Declares the atom Name to be an operator of the stated ~ and Precedence
(refer to section 2-2). Name may also be a list of atoms in which case all of
them are declared to be operators. If Precedence is O, then the operator
properties of Name (if any) are cancelled.

An appropriate error message is given if any of the arguments is not of the
required form, but the goal always succeeds.

2-3-2. current_op(?Precedence,?Type,?Op)

The atom .QE. is currently an operator of type ~ and precedence Precedence.
Neither Qp_ nor the . other arguments need be instantiated at the time of the
call, that is, this predicate can be used to find the precedence or type of an
operator, or to backtrack through operators.

2-ll. Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove
potential ambiguity associated with prefix operators.

1. The arguments of a compound term written in standard syntax must be
expressions of precedence below 1000. Thus it is necessary to
write the expression "P:-Q" in parentheses.

assert((P:-Q))

because the precedence of the infix operator':-', and hence of the
expression "P:-Q", is 1200. Putting the expression in parentheses
reduces its precedence too.

2. In a term written in standard syntax, the principal functor and its
following ' (' must not be separated by any intervening spaces,
newlines etc. Thus --

PC?int (X,Y,Z)

is invalid syntax.

3. If the argument of a prefix operator starts with a '(', this '('
must be separated from the operator by at least one space or other
non-printable character. Thus

:-(p;q),r.

(where ':-' is the prefix operator) is invalid syntax. The system

12 Syntax

would try to interpret it as the structure:

I \
:- r

I \
p q

That is, it would take ':-' to be a functor of arity 1. However,
since the arguments of a functor are required to be expressions of
precedence below 1000, this interpretation would fail as soon as
the ';' (precedence 1100) was encountered.

In contrast, the term:

:- (p;q),r.

is valid syntax and represents the following structure.

:-

,
I \

r
I \

p q

4. If a prefix operator is written without an argument, as an ordinary
atom, the atom is treated as an expression of the same precedence
as the prefix operator, and must therefore be written in
parentheses where necessary. Thus the parentheses are necessary in

X = (?-)

since the precedence of'?-' is 1200.

2-5. Comments

Comments have no effect on the execution of a program, but they are very
useful for making programs more comprehensible. Two forms of comment are
allowed in Prolog:

1. The character 'S' followed by any sequence of characters up to the
end of the line.

2. The symbol 'I*' followed by any sequence of characters (including
new lines) up to '*!'.

Syntax 13

2-6. Formal Syntax

A Prolog program consists of a sequence of sentences. Each sentence is a
Prolog term. How terms are interpreted as sentences is defined in section
2-6-2 below. Note that a term representing a sentence may be written in any
of its equivalent syntactic forms. For example, the binary functor ':-' could
be written in standard prefix notation instead of as the usual infix operator.

Terms are written as sequences of tokens. Tokens are sequences of cnaracters
which are treated as separate symbols. Tokens include the symbols for
variables, constants and functors, as well as punctuation characters such as
parentheses and commas.

The interpretation of sequences of tokens as terms is defined in section 2-6-3
below. Each list of tokens which is read in (for interpretation as a term or
sentence) has to be terminated by a full-stop token. Two tokens must be
separated by a space token if they could otherwise be interpreted as a single
token. Both space tokens and comment tokens are ignored when interpreting the
token list as a term. A comment may appear at any point in a token list
(separated from other tokens by spaces where necessary).

The interpretation of sequences of characters as tokens is defined in section
2-6-4 below. But first section 2-6-1 describes the notation used in the
formal definition of Prolog syntax.

2-6-1. Notation

- Syntactic categories (or nonterminals) are printed in italics, for
example guestion. Depending on the section, a category may
represent a class of either terms, token lists, or character
strings.

- A syntactic rule takes the general form

f_ --> U I F2 I F3

which states that an entity of category C may take any of the
alternative forms .El, F2, F3, etc.

- Certain definitions and restrictions are given in ordinary English,
enclosed in 1. l brackets.

- A category written as f..:.:..:_ denotes a sequence of one or more fs.
~

- A category written as ?C denotes an optional f_.
denotes a sequence of zero or more fs.

Therefore ?C •••

- A few syntactic categories have names with arguments, and rules in
which they appear may contain meta-variables in the form of
italicized capital letters. The meaning of such rules should be
clear from analogy with the definite clause grammars described in
chapter 20.

14 Syntax

- In section 2-6-3, particular tokens of the category Name are written
as quoted atoms, while tokens which are individual punctuation
characters are written literally.

2-6-2. Syntax of Sentences as Terms

sentence -> clause : directive l grammar-rule

clause --> non-unit-clause : unit-clause

directive -> command : question : file-list

non-unit-clause --> (~:-goals)

unit-clause

command

question

·rue-list

goals

grammar-rule

gr-head

gr-body

nonterminal

terminals

gr-condition

-> head
{where head is not otherwise a sentence}

--> { :- goals)

--> {?-goals)

-> list

--> term
{where term is not a number or a variable}

--> {goals, goals)
{ goals goals)
goal

--> term
{where term is not a number and
is not otherwise a goals}

-> (gr-head-> gr-body)

--> nonterminal
(nonterminal, terminals)

--> (gr-body, gr-body)
(gr-body; gr-body)
nonterminal
terminals
gr-condition

-> term
{where term is not a number or variable
and is not otherwise a gr-body}

-> list : string

--> {goals}

Syntax

2-6-3. Syntax of Terms as Tokens

term-read-in

sub term (N)

terrn(N)

term(1000)

term(O)

op(N,T)

arguments

list

listexpr

constant

.number

--> subterm(1200) full-stop

-> term(M)

--> op(N,fx)
op(N 1 fy)
op(N,fx)

{where~ is less than or equal to!}

subterm(N-1)
{except the case'-' natural-number}
{if subterm starts with a'(',££_ must be
followed by a space}

op(N,fy) subterm(N)
{if subterm starts with a'(',££_ must be
followed by a space}

subterm(N-1) op(N,xfx) subterm(N-1)
subterm(N-1) op(N,xfy) subterm(N)
subterm(N) op(N,yfx) subterm(N-1)
subterm(N-1) op(N,xf)
subterm(N) op(N,yf)

-> subterm(999) , subterm(1000)

--> functor (arguments)
{provided there is no space between functor
and the'('}

(subterm(1200))
{ subterm(1200) }
list
string
constant
variable

--> functor
{where functor has been declared as an
operator of type!. and precedence!!)

-> subterm(999)
subterm(9 99)

--> []
[listexpr J

--> subterm(999)

arguments

subterm(999) , listexpr
subterm(999) 'I' subterm(999)

--> atom I number

-> integer I float

--> name
{where~ is not a prefix operator}

15

16

integer --> natural-number
- natural-number

float --> unsigned-float
- unsigned-float

functor --> name

2-6-4. Syntax of Tokens as Character Strings

token

name

quoted-name

quoted-item

--> name
natural-number
variable
string
punctuation-char
space
comment
full-stop

--> quoted-name
word
symbol
solo-char
[]
{}

->' quoted-item ••• '

--> char {other than '}

' '
word --> capital-letter ?al pha •••

{in the 'NOLC' convention only}

word --> small-letter ?al pha •••

symbol -> s ymbol-char •••
{except in the case of a full-sto p
or where the first 2 chars are 1•}

natural-number --> di git •••
base' al phanumeric •••

Syntax

{where each alphanumeric must be less than the
base, counting 'a' as 10, 'b' as 11, etc}

base --> di git •••
{must be in the range 1 •• 36}

unsi gned-float --> simple-float
simple-float~ exponent

simple-float -> di git ••• decimal- point di git •••

Syntax

decimal-point

E

exponent

variable

variable

string

string-item

-> .

--> E I e

--> digit •••
- digit •••
+ digit ...

--> underline ?alpha .••

--> capital-letter ?alpha ••
{in the 'LC' convention only}

-> " ?string-i tern ••• 11

--> char {other than"}

""
space --> layout-char •••

comment -->/*?char ••• */
{where ?char ••• must not contain•!}

S rest-of-line

rest-of-line --> newline
?not-end-of-line ••• newline

not-end-of-line --> {any character except newline}

newline

full-stop

char

--> {ASCII code 10}

-->. layout-char

--> layout-char
alpha
symbol-char
solo-char
punctuation-char
quote-char

layout-char -> {any ASCII character code up to 32,
includes <blank>, <er> and <lf>}

alpha --> alphanumeric I underline

alphanumeric --> letter I digit

letter -> capital-letter I small-letter

capital-letter --> {any character from the list
ABCDEFGHIJKLMNOPQRSTUVWXYZ}

small-letter --> {any character from the list
abcdefghijklmnopqrstuvwxyz}

17

18 Syntax

digit --> {any character from the list 012346789}

symbol-char -> {any character from the list +-*/\A<>='-:.?@#$&}

solo-char --> {any character from the list ; ! S}

eunctuation-char -> {any character from the list O[HJ,ll

guote-char --> {any character from the list I"}

underline -> {the character } -

2-6-5. Notes

1. The expression of precedence 1000 (that is, belonging to syntactic
category term(1000)) which is written

denotes the term

in standard syntax.

2. The bracketed expression (belonging to syntactic category term(0))

denotes simply the term X.

3. The curly-bracketed expression (belonging to syntactic category
term(0))

denotes the term

'{} '(,!_)

in standard syntax.

4. Note that, for example, "-3" denotes an integer whereas "-{3)"
denotes a compound term which has the unary functor '-' as its
principal functor.

5. The double quote character '"' within a string must be written
duplicated. That is,

n 1111 II

represents a string of one double quote character only. Similarly

Syntax 19

for the single quote character within a quoted atom.

CHAPTER 3

SEMANTICS

This chapter gives an informal description of the semantics of Quintus Prolog.

3-1. Programs

A fundamental unit of a logic program is the goal or procedure call:

gives(tom,apple,teacher) reverse([1,2,3J,L) X<Y

A goal is merely a special kind of term, distinguished only by the context in
which it appears in the program. The (principal) functor of a goal is called
a predicate. It corresponds roughly to a verb in natural language, or to a
procedure name in a conventional programming language.

A logic program consists simply of a sequence of statements called sentences,
which are analogous to sentences of natural language.

A sentence comprises a head and a body. The head either consists of a single
goal or is empty. The body consists of a sequence of zero or more goals (it
may be empty). If the head is not empty, the sentence is called a clause.

If the .body of a clause is empty, the clause is called a unit clause, and is
written in the form

P.

where Pis the head goal. We interpret this declaratively as

"!. is true."

and procedurally as

"Goal Pis satisfied."

If the body of a clause is non-empty, the clause is called a non-unit clause,
and is written in the form

where f. is the head goal and .Q_, ! and~ are the goals which make up the body.
We can read such a clause either declaratively as

"!. is true if .Q. and! and~ are true."

or procedurally as

"To satisfy goal f_, satisfy goals .Q., Rand S."

22 Semantics

A sentence with an empty head is called a directive, of which the most
important kind is called a question and is written in the form

where P and .Q. are the goals of the body.
declaratively as

"Are t and .Q. true?"

and procedurally as

"Satisfy goals! and .Q..""

Such a question is read

Sentences generally contain variables. A variable should be thought of as
standing for some definite but unidentified object. This is analogous to the
use of a pronoun in natural language. Note that a variable is not simply a
writeable storage location as in most programming languages; rather it is a
local name for some data object, like the variable of pure LISP. Note that
variables in different sentences are completely independent, even if they have
the same name -- the lexical scope of a variable is limited to a single
sentence. To illustrate this, here are some examples of sentences containing
variables, with possible declarative and procedural readings:

employed(X) :- employs(Y,X).

"Any Xis employed if any Y employs X."

"To find whether a person Xis employed,
find whether any Y employs X."

derivative(X,X,1).

"For any X, the derivative of X with respect to Xis 1."

"The goal of finding a derivative for the expression X with
respect to X itself is satisfied by the result 1."

?- ungulate(X), aquatic(X).

"Is it true, for any X, that Xis an ungulate and Xis
aquatic?"

"Find an X which is both an ungulate and aquatic."

In any program, the procedure for a particular predicate is the sequence of
clauses in the program whose head goals have that predicate as principal
functor. For example, the procedure for a predicate concatenate of three
arguments might well consist of the two clauses

concatenate([XIL1],L2,[XIL3]) :- concatenate(L1,L2,L3).
concatenate{[],L,L).

where concatenate(L1,L2,L3) means "the list L1 concatenated with the list L2

Semantics 23

is the list L3".

In Prolog, several predicates may have the same name but different ari ties.
Therefore, when it is important to specify a predicate unambiguously, the form
name/arity is used, for example concatenate/3.

Certain predicates are predefined by the Prolog system. Such predicates are
called built-in predicates.

As we have seen·, the goals in the body of a sentence are linked by the
operator ',' which can be interpreted as conjunction ("and"). It is sometimes
convenient to use an additional operator ';', standing for disjunction ("or").
(The precedence of ';' is such that 1 t dominates ', ' but is dominated by
':-'.) An example is the clause

grandfather(X,Z) :-
(mother(X,Y); father(X,Y)), father(Y,Z).

which can be read as

"For any X, Y and Z,
X has Z as a grandfather if
either the mother of Xis Y or the father of Xis Y,
and the father of Y is Z."

Such uses of disjunction can always be eliminated by defining an extra
predicate - for instance the previous example is equivalent to

grandfather(X,Z) :- parent(X,Y), father(Y,Z).
parent(X,Y) :- mother(X,Y).
parent(X,Y) :- father(X,Y).

- and so disjuncti _on will not be mentioned further in the following, more
formal, description of the semantics of clauses.

The token 'I', when used outside a list, is an alias for
performed wh_en terms are read in, so that

a :- b l c.

is read as if it were

a:-b; · c.

t • ' ' . The aliasing is

Note the double use of the '.' character. On the one hand it is used as a
sentence terminator, while on the other it may be used in a string of symbols
which make up an atom (for example, the list functor '. 1). The rule used to
disambiguate terms is that a '•' followed by a layout-character is regarded as
a sentence terminator, where a layout-character is defined to be any character
less than or equal to ASCII 32 (this includes space, tab, newline and all
control characters).

24 Semantics

3-2. Declarative and Procedural Semantics

The semantics of definite clauses · should be fairly clear from the informal
interpretations already given. However it is useful to have a precise
definition. The declarative semantics of definite clauses tells us which
goals can be considered true according to a given p~ogram, and is defined
recursively as follows.

A goal is true if it is the head of some clause instance and each of
the goals (if any) in the body of that clause instance is true, where
an instance of a clause (or term) is obtained by substituting, for
each of zero or more of its variables, a new term for all occurrences
of the variable.

For example, if a program contains the preceding procedure for concatenate,
then the declarative semantics tells us that

concatenate([a],[b],[a,b])

is true, because this goal is the head of a certain instance of the first
clause for concatenate, namely,

concatenate([a],[b],[a,b]) :- concatenate([),[b),[b)).

and we know that the only goal in the body of this clause instance is true,
since it is an instance of the unit clause which is the second clause for
concatenate.

Note that the declarative semantics makes no reference to the sequencing of
goals within the body of a clause, nor to the sequencing of clauses within a
program. This sequencing information is, however, very relevant for the
procedural semantics which Prolog gives to definite clauses. The procedural
semantics defines exactly how the Prolog system will execute a goal, and the
sequencing information is the means by which the Prolog programmer directs the
system to execute his program in a sensible way. The effect of executing a
goal is to enumerate, one by one, its true instances. Here then is an
informal definition of the procedural semantics.

To execute a goal, the system searches forwards from the beginning of
the program for the first clause whose head matches or unifies with
the goal. The unification process (see "A Machine-Oriented Logic
Based on the Resolution Principle" by J.A. Robinson, Journal of the
ACM 12:23-44, January 1965) finds the most general common instance of
the two terms, which is unique if it exists. If a match is found, the
matching clause instance is then activated by executing in turn, from
left to right, each of the goals (if any) in its body. If at any time
the system fails to find a match for a goal, it backtracks; that is,
it rejects the most recently activated clause, undoing any
substitutions made by the match with the head of the clause. Next it
reconsiders the original goal which activated the rejected clause, and
tries to find a subsequent clause which also matches the goal.

For example, if we execute the goal expres sed by the question

Semantics 25

?- concatenate(X,Y,[a,b]).

we find that it matches the head of the first clause for concatenate, with X
instantiated to [alX1]. The new variable X1 is constrained by the new goal
produced, which is the recursive procedure call

concatenate(X1,Y,[b])

Again this goal matches the first clause, instantiating X1 to [blX2], and
yielding the new goal

concatenate{X2,Y,[])

Now this goal will only match the second clause, instantiating both X2 and Y
to[]. Since there are no further goals to be executed, we have a solution

X = [a,b]
y = [J

That is, the following is a true instance of the original goal:

concatenate{[a,b],[J,[a,b])

If this solution is rejected, backtracking will generate the further solutions

X = [a]
y = [b]

X = [J
Y = [a,b]

in that order, by re-matching, against the second clause for concatenate,
goals already solved once using the first clause.

3-3. Occur Check

Prolog's unification does not have an occur check; that is, when unifying a
variable against a term the system does not check whether the variable occurs
in the term. When the variable occurs in the term, unification should fail,
but the absence of the check means that the unification succeeds, producing a
circular ~- Trying to print a circular term, or trying to unify two
circular terms, will cause a loop. (You can always get out of a loop by
typing AC followed by an 'a' for abort.)

The absence of the occur check is not a bug or design oversight, but a
conscious design decision. The reason for this decision is that unification
with the occur check is at best linear on the sum of the sizes of the terms
being unified, whereas unification without the occur check is linear on the
size of the smallest of the terms being unified. In any practical programming
language, basic operations are supposed to take constant time. Unification
against a variable should be thought of as the basic operation of Prolog, but
this can take constant time only if the occur check is omitted. Thus the

26 Semantics

absence of an occur check is essential to make Prolog into a practical
programming language. The inconvenience caused by this restriction seems in
practice to be very slight. Usually, the restriction is only felt in toy
programs.

3-4. The Cut

Besides the sequencing of goals and clauses, Prolog provides one other very
important facility for specifying control information. · This is the cut,
written'!'. It is inserted in the program just like a goal, but is not to be
regarded as part of the logic of the program and should be ignored as far as
the declarative semantics is concerned.

The effect of the cut is as follows. When first encountered as a goal, cut
succeeds immediately. If backtracking should later return to the cut, the
effect is to fail the parent goal, that goal which matched the head of the
clause containing the cut, and caused the clause to be activated. In other
words, the cut operation commits the system to all choices made since the
parent goal was invoked, and causes other alternatives to be discarded. The
goals thus rendered determinate are the parent goal itself, any goals
occurring before the cut in the clause containing the cut, and any subgoals
which were executed during the execution of those preceding goals.

For example, the procedure

member(X,[XIL]).
member(X,[YIL]) :- member(X,L).

can be used to test whether a given term is in a list:

?- member(b,[a 1 b,c]).

returns the answer 'yes'. The procedure can also be used to extract elements
from a list, as in

?- member(X,[d,e,f]).

With backtracking this will successively return each element of the list. Now
suppose that the first clause had been written instead:

member(X,[XIL]) :- !.

In this case, the above call would extract only the first element of the list
('d'). On backtracking, the cut would immediately fail the whole procedure.

Another example:

X :- p, ! t q.
X :- r.

This is analogous to "if p then q else r" in an Algol-like language.

Semantics 27

Note that a cut discards all the alternatives that are subsequent to the
parent goal, even when the cut appears within a disjunction. This means that
the normal method for eliminating a disjunction by defining an extra predicate
cannot be applied to a disjunction containing a cut.

CHAPTER 4

ON-LINE HELP

The documentation for Quintus Prolog comprises the User's Guide and this
Reference Manual. This material is available both in a printed form, and also
on-line using special built-in predicates which are described below. These
predicates view the Manual and the Guide as a single tree structure which can
be traversed by a user in order to find the information he or she needs. The
easier way to use this help system is through the Emacs interface, but it is
possible to do everything without it.

There are basically two ways of getting to information in the help system.
The first is via a series of menus which corresponds to the hierarchy of
chapters, sections and subsections. This method of access is analogous to
looking through the Contents _sections of the printed documents and is
described in section 4-4 and section 4-5. The second method is by key-word
search. This method is analogous to looking up the Index sections of the
printed manuals and is described in section 4-3 .

4-1. Help Files

The help system operates by reading help files into a special buffer if you
are running under Emacs, or by writing them to the terminal (using the Unix
"more" command) if you are not.

There are two types of help files: menu files and text files. If _ you are
using Emacs, restricted and specialized key bindings apply in each of these
types of window. For example, if you type a letter such as 'a' which would
normally be inserted into the buffer, nothing happens; this is because you are
not supposed to make changes to the help file. These key bindings are
summarized in section 4-6-1 and section 4-6-2; the most important key binding
is the question mark which will display the appropriate key-binding summary.
After typing a question mark, you will probably want to type a 'b' to get back
to where you were.

The organization and numbering of the help files corresponds directly to the
organization and numbering of the printed manual. The text files correspond
to "leaf" nodes of the manual tree, that is, to sections of the manual which
have no subdivisions. The menu fil~s correspond to the non-leaf nodes of the
tree.

4-1-1. Menu Files

A menu file is distinguished by having the string "{menu}" at the end,
although this is not displayed if you are viewing the file through Emacs. A
menu consists of a numbered sequence of choices. Each choice has the form

Number - Subject {manual(SectionNumber)}

30 On-line Help

If you are running Prolog without Emacs you can select a menu choice by typing

?- manual(SectionNumber).

where SectionNumber is exactly as shown in the menu. Section numbers are in
general of the form

Manual-Chapter-Section-Subsection

where Manual is either 'user', for the User's Guide, or 'ref' for the
Reference Manual, and Chapter, Section and Subsection are numbers which
correspond directly to a section in the printed Guide or Manual.

If you are running Prolog under Emacs then you will find that a special mode
is entered when you are looking at a menu file (see section 4-6-1,)

4-1-2. Text Files

Text files are just ordinary files of text which correspond directly to
sections or subsections in the printed manual. If you are running under
Emacs, a special mode is entered when you are looking at a text file as a part
of the help system (see section 4-6-2.) If you are not using Emacs you will
see the string "{text}" at the bottom of the file; this is used purely to
distinguish it from a menu file.

Occasionally you will see a cross reference in the text. Cross references
look like this in the printed manual:

••• see also section 1-2-3

and like this in the on-line manual

••• see also {manual(ref-1-2-3)}

If you are not using Emacs, then you should type the goal

: ?- manual{ref-1-2-3).

in order to follow this cross reference. Under Emacs there is a more
~onvenient way to do this: type 'x' followed by Return.

4-2. help

This simply gives basic information, such as how to start using the help
system and how to exit from Prolog.

A hook is provided so that users can add to or replace this information:
help/0 first calls user help/0 and if that succeeds it does nothing else.
Only if the call to user_}ielp fails does the standard information get output.

•

On-line Help 31

4-3. help(+Topic)

This is the basic help command. It tries hard to accept any argument you give
it as a topic for which help may exist in the manual. The argument is
converted into a character string, and all the index entries which start with
that string are combined into a menu which gives you a choice of entry points
into the manual hierarchy.

It is not necessary to type the whole of the word which is the Topic you want
information about. The fewer characters you type, the larger the menu is
likely to be, because more index entries will begin with that character
sequence. Thus

l ?- help(d).

will give you a menu of all index entries beginning with the letter 'd', and
you can even try

l ?- help (").

(the null atom) to get a menu of the entire index!

4-4. manual

This gives you a menu of the top layer of the manual hierarchy. This menu
gives you the choice between the User's Guide and the Reference Manual.
Whichever you select, you will then be shown a menu of chapter titles. When
you select a chapter you will see a menu of the section titles of that
chapter, and so on.

See section 4-1-1 for a description of menu files. Also see manual/1, section
4-5, for how to get directly to a specific point in the manual hierarchy.

4-5. manual(+X)

This predicate has two purposes. One way of using it is by the goal

?- manual(SectionNumber).

where SectionNumber is in one of the forms

Manual-Chapter-Section-Subsection
Manual-Chapter-Section
Manual-Chapter
Manual

and Manual is either 'user' or 'ref', and Chapter, Section and Subsection are
integers. This takes you directly to a particular point in the manual
hierarchy.

The other way of using this predicate is

32 On-line Help

: ?- manual(Topic).

This is useful when you know that the manual contains a section about a topic
and you want to get directly to it without any intervening menus. In
particular, all the built-in predicates can be looked up directly like this.
For example, manual(debug) will take you directly to the section of the manual
defining the built-in predicate debug/O, while help(debug) will give you a
menu referring to various sections of the manual which have something to do
with debugging.

It is not necessary to type the whole of the word which is the Topic you want
information about. You need only type enough characters to uniquely identify
the Topic from the list of all possible topics. If the abbreviation you type
is not unique, you ·will get a menu of the manual topics which start with the
characters you supplied. Notice that this menu is different from the one
produced by help/1; that menu would generally be larger since for any given
topic it can include mention of places which just touch on that topic as well
as the one place which covers that topic.

If there is no section in the manual which specifically covers Topic (or any
topic beginning with the letters in Topic), then help(Topic) is tried (see
section 4-3) in case there is some information somewhere on the Topic you have
specified.

4-6. Emacs commands for using the Help System

There are two modes provided for viewing help files, depending on whether the
file is a menu file or a text file. The commands available in each of these
modes are listed below.

4-6-1. Menu Commands

The keys available when viewing a menu file of the help system under Emacs
are:

<Space> Move to the next menu entry (wraps around).
<Backspace> Move to the previous menu entry (wraps around).
<Return> Select the current menu entry.

b
u
q

Control-v
<Escape>-v

Move Back to the previous help file viewed.
Move Up to the previous menu in the manual hierarchy.
Quit the help system.

Scroll the menu one page forward.
Scroll the menu one page backward.

NOTE: If you are viewing this under Emacs, type 'b' to return to where you
just were.

On-line Help 33

4-6-2. Text Commands

The keys available when viewing a text file of the help system under Emacs
are:

<Space> Scroll the text one page forward (same as Control-v).
<Backspace> Scroll the text one page backward (same as Escape-v).

b
u
q

X

<Return>

Move Back to the previous help file viewed.
Move Up to the previous menu in the manual hierarchy.
Quit the help system.

Move to the next cross-reference.
Follow a cross-reference (use after 'x').

NOTE: If you are viewing this under Emacs, type 'b' to return to where you
just were.

CHAPTER 5

LOADING PROGRAMS, CONSULTING AND COMPILING

There are two ways of loading programs into Prolog, consulting and compiling.
Consulted code is interpreted and has the advantages of greater flexibility in
debugging, and the fact that space is reclaimed when you re-consult a
procedure or file after making some modifications. The advantage of compiling
is that the program will run considerably faster and use much less space.

It is very easy to mix compiled and interpreted code, so that typically you
will want to compile code which is well tested, and consult new, untested code
which you are adding to it.

5-1. consult(+File)

consult(File) can also be written [File].

File should be an atom which is the name of a file of Prolog code, except that
a ".pl" suffix to a file name may be omitted. If File does not end with the
characters ".pl" then consult appends those characters before looking for the
file. If the file name so formed does not exist, then the file name is
searched for without the ".pl" suffix. If it still fails to find a file, an
error indication is given, regardless of the setting of the fileerrors flag,
and the goal succeeds without doing anything else.

Each procedure in the file is read in, and, after any previous version of that
procedure has been deleted, it is added to the Prolog database in a form
suitable for the interpreter.

In the event of an.error, such as a syntax error or an attempt to redefine a
built-in predicate, you will get an error indication and the clause causing
the error will be ignored. You should correct the error and consult the file
again.

There are a number of warnings which may appear when a file is consulted.
These are designed to help you catch simple errors in your program, but you
can turn some or all of them off if you wish: see section 5-3.

If there are any goals in the file being loaded, that is any terms with
principal functor 1 :- 1 /1 or 1 ?- 1 /1, then these are executed as they are
encountered. The most useful type of goal to have in a file is one that
consults artother file, such as

:- [other file J.

but you may have any goal you like. It should be noted that debugging will
not be on in the execution of such a goal, regardless of the top-level
debugging state, but you can always turn it on by an explicit call to debug/0
or trace/O; for example,

36 Loading Programs, Consulting and Compiling

:- trace, myprog.

File can also be the atom 'user' which means that procedures are to be typed
directly into Prolog from the terminal. If you are not running under the
Emacs interface, a special prompt, 'I ', is displayed on every new line while
consulting from the terminal.

File can be a list of file names in which case all the named files are
consulted.

If you are running under Emacs, you can consult a single procedure, a
specified part of an edit buffer, or the whole of an edit buffer, using the
Escape i command (see chapter 22).

5-2. compile(+File)

File should be an atom which is the name of a file of Prolog code, except that
a ".pl" suffix to a file name may be omitted. If File does not end with the
characters ".pl" then compile appends those characters before looking for the
file. If the file name so formed does not exist, then the file name is
searched for without the ".pl" suffix. If it still fails to find a file, an
error indication is given, regardless of the setting of the fileerrors flag,
and the goal succeeds without doing anything else.

Each procedure in the file is read in, and, after any previous version of that
procedure has been deleted, it is added to the Prolog database in a compiled
form.

Note that procedures which are declared to be dynamic (see section 16-1) are
actually stored in the database in the same way as consulted procedures even
if they are loaded via compile. This means that dynamic procedures lack the
speed and space efficiency of compiled code; on the other hand they share the
debugging flexibility of interpreted code.

In the event of an error, such as a syntax error or an attempt to redefine a
built-in predicate, you will get an error indication and the clause causing
the error will be ignored. You should correct the error and compile the file
again.

There are a number of warnings which may appear when a file is compiled.
These are designed to help you catch simple errors in your program, but you
can turn some or all of them off if you wish: see section 5-3.

If there are any goals in the file being loaded, that is any terms with
principal functor 1 :- 1 /1 or '?-'/1, then these are executed as they are
encountered. The most useful type of goal to have in a file is one that
compiles another file, such as

:- compile(otherfile).

but you may have any goal you like. It should be noted that debugging will
not be on in the execution of such a goal, regardless of the top-level

Loading Programs, Consulting and Compiling 37

debugging state, but you can always turn it on by an explicit call to debug/0
or trace/0; for example,

:- trace, myprog.

File can also be the atom 'user' which means that procedures are to be typed
directly into Prolog from the terminal. If you are not running under the
Emacs interface, a special prompt, 'l ', is displayed on every new line while
compiling from the terminal.

Finally, File can be a list of file names.

If you are running under Emacs, you can compile a single procedure, a
specified part of an edit buffer, or the whole of an edit buffer, using the
Escape k command (see chapter 22).

5-3. Style Checking

5-3-1. style_check(+X)

X should be one of the following atoms (or else the goal fails):

X = all Turn on all style checking.
X = single_var Turn on checking for clauses containing a single

instance of a named variable, where variables which
start with a' 'are considered not named.

X = discontiguous Turn on checking for procedures for which all the
clauses are not adjacent to one another in the file.

X = multiple Turn on checking for multiple definitions
for the same procedure in different files.

5-3-2. no_style_check(+X)

X should be one of the following atoms (or else the goal fails):

X = all
X = single_var

X = discontiguous

X = multiple

Turn off all style checking.
Turn off checking for clauses containing a single
instance of a named variable, where variables which
start with a' 1 are considered not named.
Turn off checking for procedures for which all the
clauses are not adjacent to one another in the file.
Turn off checking for multiple definitions
for the same procedure in different files.

CHAPTER 6

CONTROL

Conjunction: Cf, g) succeeds if f succeeds and then g succeeds. This is not
normally regarded as a built-in predicate, since it is part of the syntax of
the language. However, it is like a built-in predicate in that you can say
call((!, g)) to execute P and then g.

Disjunction: (f_ ; g) succeeds if ! succeeds or g succeeds.
normally regarded as part of the syntax of the language but is
predicate in that you can say call((f; g)}. The character "I"
an alternative to";".

6-3. r

Again, this is
like a built-in
can be used as

Cut. When first encountered as a goal, cut succeeds immediately. If
backtracking should later return to the cut, the effect is to cause the parent
goal to fail. (The parent goal is the one which matched the head of the clause
containing the cut.) See section 3-4.

6-4. call(+X}

If X is instantiated to an atom or compound term, then the goal call C!) is
executed exactly as if that term appeared textually in its place, except that
any cut{'!') occurring in! only cuts alternatives in the execution of!,

If X is not instantiated as described above, an error message is printed and
the call fails.

6-5. \+ +P

This fails if the goal P has a solution, and succeeds otherwise. This is _not
real negation ("!. is- false"), which is not possible in Prolog, but
negation-by-failure meaning "Pis not provable". It is defined as if by

\+{P) :- P, !, fail.
\+ (_).

Remember that with prefix operators such as this one it is necessary to be
careful about spaces if the argument starts with a'('. For example:

I ?- \+ Cf,g>.

40 Control

is this operator applied to the conjunction of P and~' but

would require a predicate\+ of arity 2 for its solution. The prefix operator
can, however, be w·ri t ten as a functor of one argument; thus

is also correct.

6-6. +P -> +Q; +R

The conditional statement

"if f then _g_ else!"

Note that if P succeeds and _g_ then fails, backtracking into f does not occur.
The -> acts like a cut except that its range is restricted to within the
disjunction: it cuts away! and any choice points within f.

This construct could have been implemented in Prolog thus:

(P -> Q
(P -> Q

R) :- call(P), !, call(Q).
; R) :- call{R).

Note that the operator precedences of the semicolon and-> are both greater
than 1000, so that they dominate commas. For example,

p, q -> r, s; t

is equivalent to

((p,q) -> (r,s)) ; t

When occurring other than as one of the alternatives of a disjunction, this is
equivalent to

P -> Q ; fail.

(For a definiton of f->~;.!!_ see section 6-6.) The -> cuts away any choice
points in the execution of P, and it may be thought of as a local cut. Note
that the operator precedence of -> is greater than 1000, so it dominates
commas. Thus in:

f :- p, q -> r, s.
f.

the-> cuts away any choices in p or in q but unlike cut('!') it does not cut

Control 41

away the alternative choice for f.

6-8. true

Always succeeds.
single clause

This could have been trivially defined in Prolog by the

true.

6-9. otherwise

Always succeeds (same as true). otherwise is useful for laying out
conditionals (see section 6-6) in a readable way.

(test1 ->
goal1

;test2 ->
goal2

;otherwise->
goal3

)

6-10. fail

Always fails.

6-11. false

Always fails (same as fail).

6-12. repeat

Succeeds immediately when called and whenever re-entered by backtracking. It
is usually used to simulate the looping constructs found in traditiona1
procedural languages. The general form of a repeat loop is the following:

repeat,
action1,
action2,
... '
action<n>,
test,

! '
••• rest of clause body •••

The effect of this is to execute action1 through action<n> in sequence. The
test is then executed. If it succeeds, the loop is (effectively) terminated

42 Control

by the cut (' ! ') (which cuts any choice points in the clause, including the
one created by the repeat). A failure of the test will cause backtracking
that will be caught by the repeat, which will succeed again and re-execute the
actions.

The roost common use of repeat loops has each of the actions always succeeding
determinately, that is, not creating choice points. It tends to be a bit
confusing if actions sometimes fail, so that backtracking starts before the
test is reached, or if actions create choice points so that backtracking does
not always go right back to the repeat.

The easiest way to understand the effect of repeat is to think of failures as
"bouncing" back off them causing re-execution of the later goals. Note that
the repeat loop can only be useful if one or more of the actions involves a
side-effect, either a change to the database (such as an assert) or an I/0
operation. Otherwise you would just be doing exactly the same thing each time
around the loop (which would never terminate).

Repeat loops are not often needed; usually recursive procedure calls will lead
to code that is easier to understand as well as being more efficient. There
are certain circumstances, however, where repeat will lead to greater
efficiency. An important property of Quintus Prolog is that any storage that
has been allocated during a proof of a goal is recovered on backtracking
through that goal. Thus, in the above example, any space allocated by any of
the actions is (efficiently) reclaimed. This is not true of iterations
implemented using recursion.

repeat could have been written in Prolog:

repeat.
repeat:- repeat.

CHAPTER 7

INPUT AND OUTPUT

Prolog provides two classes of predicates for input and output: those which
handle individual characters, and those which handle complete Prolog terms.

Input and output happens with respect to streams. A stream can refer to a
file or to the user's terminal. At any one time there is a current input
stream and a current output stream. Input and output predicates fall into
three categories:

1. those which use the current input or output stream;

2. those which use the standard input or output stream - these refer
to the user's terminal;

3. those which take an explicit stream argument.

Initially, the current input and output streams both refer to the user's
terminal, but there are predicates which allow you to change them when you
want to read from, or write to, a file.

Quintus Prolog differs from Prolog-20 and other Prolog systems in that the
Prolog top-level always refers to the standard input and output rather than
the current input and output. Thus if you set the current output to some file
and forget to close the file you don't suddenly find all your 'l ?- 'prompts
being sent to that file (and nothing to the terminal).

7-1. Input and Output of Terms

7-1-1. read(-X)

Reads the next term from the current input stream and unifies it with X. The
term must be followed by a period ('. ') followed by a space character (for
example, a space, tab or linefeed; actually any character with ASCII code less
than or equal to 32 may be used). The delimiting period and space character
are removed from the input stream but are not a part of the term which is
read.

The term is read with respect to current ope~ator declarations. See section
2-2 for a discussion of operators.

read does not do anything until the term delimiter (period and space
character) is encountered. Thus if you type at top level

I ?- read (X).

you will keep getting the prompt 'I: ' every time you type a carriage return
(except under Emacs where the prompt is not displayed) but nothing else will

44 Input and Output

happen, whatever you type, until you type a period.

When a syntax error is encountered, an error message is printed and then read
tries again, starting immediately after the term delimiter of the erroneous
"term". That is, read does not fail but perseveres until it eventually
manages to read a term.

If the end of the current input stream has been reached, then read(!) will
cause X to be unified with the atom end of file. If the end of the stream was
reached on a previous input command, then this call will give an error message
and abort the computation.

7-1-2. write(?X)

Writes the term! to the current output stream.

The term is written with respect to current operator declarations. See
section 2-2 for a discussion of operators.

Atoms output by write can not in general be read back using read. E.g.

?- write('a b').
-a b

If you want to be sure that the output can be read back by read you should use
writeq which puts quotes around atoms when necessary.

Note that write does not output a period after the term it outputs. So if you
want this term to be input by read you must mark the end of the term by
explicitly outputting a period after it.

write treats terms of the form 1 $VAR'(N) specially; it writes 'A' if N=O, 'B'
if N=1, ••• 'Z' if N=25, 'A1' if N:26, etc. Terms of this form are generated
by numbervars/3 (see section 24-1).

7-1-3. display(?X)

Displays the term ! on the standard output (normally this means the user's
terminal} which is not necessarily the current output stream. Also, display
ignores operator declarations and shows all compound terms in standard prefix
form. For example, the command

:- display(a+b).

produces the following:

+(a,b).

Note that display does not output a period after the term it outputs. So if
you want this term to be input by read you must mark the end of the term by
explicitly outputting a period after it.

Input and Output 45

7-1-4. writeq(?X)

Writes the term! to the current output stream. This is the same as write(X)
except that, when necessary, single quotes are put around atoms and functors
to make them acceptable as input to read.

Note that writeq does not output a period after the term it outputs. So if
you want this term to be input by read you must mark the end of the term by
explicitly outputting a period -after it.

writeq treats terms of the form 1 $VAR'(N) specially; it writes 'A' if N=O, 'B'
if N=1, ••• 'Z' if N:25, 'A1' if N:26, etc. Terms of this form are generated
by numbervars/3 (see section 24-1).

7-1-5. print(?X)

Prints X to the current output stream. By default, the effect of this
predicate is the same as write/1, but you can change its effect by providing
clauses for the predicate portray/1.

If X is a variable, then it is output using write(X). Otherwise a call is
made to the user-definable procedure portray(X). If-this succeeds, then it is
assumed that! has been ·output and print exits (succeeds).

If the ~all to portray fails, and if! is a compound term, then write is used
to write the principal functor of ! and print is called recursively on its
arguments. If! is atomic, it is written via write.

print treats lists ([_I_]) specially: it first gives the whole list to
portray, but if this fails, it will only give each of the top level elements
to portray. That is, portray is not called on all the tails of the sublists.

print/1 is called from within the system in two places:

1. to print the bindings of variables after a question has succeeded

2. to print a goal during debugging

7-2. Input and Output of Characters

This section describes built-in predicates that handle the input and output of
single characters using the current input and current output streams. See
also section 7-8 for input and output of characters specifically to the user's
terminal, and section 7-5 for input and output of characters to a specified
stream.

46 Input and Output

7-2-1. getO(-N)

Unifies N with the ASCII code of the next character from the current input
stream. If there are no more characters in the stream, N is unified with -1.
If the end of the stream was reached on a previous input command, then this
call will give an error message and abort the computation.

7-2-2. get(-N)

Unifies N with the ASCII code of the next non-space character from the current
input stream. Space characters are all those with ASCII codes less than or
equal to 32; this includes space, tab, linefeed and all control characters.
If there are no more non-space characters in the stream, N is unified with -1.
If the end of the stream was reached on a previous input command, then this
call will give an error message and abort the computation.

7-2-3. skip(+N)

Skips over characters from the current input stream to the first occurrence of
the character with ASCII code N. N may be an integer expression. The most
useful form of integer expression In this context is a single character in
double quotes, for example, "a" which evaluates to 97, the ASCII code for the
letter 'a', so that:

?- skip{"a").

skips over {ignores) all input until the next occurrence of the letter 'a'.

An error indication is given if! is not a valid arithmetic expression. If N
evaluates to a float, or an integer outside the range o •• 127, the call simply
fails.

7-2-4. put(+N)

Writes N to the current output stream. N should be a legal ASCII character
code; or it may be an integer expression. The most useful form of integer
expression in this context is a single character in double quotes, for
example, "a" which evaluates to 97, the ASCII code for the letter 'a', so
that:

?- put("a").
a
yes

An error indication is given if N is not a valid arithmetic expression. If N
evaluates to a float, the call simply fails, and if it evaluates to an integer
not in the range 0 •• 127 then that integer is reduced modulo 128 to a number in
the required range.

Input and Output

If the current output is the user's terminal, the character is not necessarily
output immediately; see ttyflush, section 7-8-7.

7-2-5. nl

Starts a new line on the current output stream. That is a linefeed character
(ASCII .10) is output, as if by

: ?- put(10).

7-2-6. tab(+N)

Writes! spaces to the current output stream. ! may be an integer expression.

An error indication is given if! is not a valid arithmetic expression. If N
evaluates to a negative integer the call simply succeeds without doing
anything. If it evaluates to a float, the call fails.

If the current output is the user's terminal, the spaces are not necessarily
output immediately; see ttyflush, section 7-8-7.

7-3. Stream Handling

7-3-1. Streams

Each input and output built-in predicate refers explicitly or implicitly to a
stream. Streams may refer to a file or to the user's terminal. Each stream
is either for input. or for output, not both.

There is a limit . of twenty input/output streams that can be open at any one
time. Three of these streams are reserved for standard input, standard output
and error output respectively. Standard input and output normally refer to
your terminal, but may be redirected using Unix facilities. The error stream
nearly always refers to the terminal, but can also •be redirected.

The reserved streams are identified by the atoms 'user input', 'user output'
and 'user error'. In cases where it is unambiguous, the atom 'user' may be
used in place of 'user input' or 'user output'. Other streams are identified
by terms of the form - -

'$stream'(.!_,~)

where .!. and ~ are positive integers. The structure of such terms is
irrelevant; it only matters that a term uniquely identifies a particular
stream. Stream identifiers are returned by the predicate open/3 and can be
passed as arguments to those procedures which need to use them.

If you try to perform input or output on a stream after it has been closed you

48 Input and Output

get an error indication.

7-3-2. open(+File,+Hode,-Strea■)

File is a filename. Mode is one of the atoms 'read', 'write' or 'append'.
The 'read' option is used for input. The 'write' and 'append' options are
used for output. The 'write' option causes a new file to be created for
output. The 'append' option opens an already existing file and adds output to
the end of it. If the open request was successful a stream object is unified
with Stream that can be subsequently used for input or output to the given
file.

The 'read' and 'append' options generate error conditions if the file does n~t
exist. These either cause an error indication followed by an abort (the
default) or else simply fail, depending on the state of the fileerrors flag.
See section 7-3-6.

7-3-3. open_null_stream(-Strea■)

An output stream is opened which is not connected to any file. Characters or
terms which are output to · this stream go nowhere. This predicate is useful
because various pieces of local state are kept for null streams: the
predicates character_count/2, line_count/2, and line_position/2 can be used on
these streams (see section 7-6).

7-3-4. close(+Stream)

The stream corresponding to Stream is closed. If Stream is a stream
identifier but does not represent a currently open stream, an error indication
is given and the call fails.

For Prolog-20 compatibility, this predicate also accepts an atom as its
argument. If there is a single open stream with this atom as its associated
file name, then this stream is closed. If there is more than one stream with
the same file name, then one of them is selected arbitrarily and closed. If
there is no stream corresponding to this file name then an error indication is
given and the call fails.

If Stream is not a stream identifier or an atom, or if the specified stream
cannot be closed, then an error indication will be given and execution
aborted, unless you hav• turned off file errors with nofileerrors (see section
7-3-6) in which case the call simply fails.

7-3-5. current_stream(?File,?Hode,?Stream)

Stream is a currently open stream on file File in mode Mode where Mode is
either 'read', 'write' or 'append'. None of the arguments need be initially
instantiated. This predicate is non-determinate and can be used to backtrack

Input and Output 49

through all open streams. It fails when there are no (further) matching open
streams.

The three special streams for the standard input, output and error channels
are ignored by this predicate.

7-3-6. nofileerrors

Changes the fileerrors flag, so that the predicates see/1, tell/1, open/3 and
close/1 simply fail, instead of producing an error message and then causing an
abort, if the specified file cannot be opened or closed.

The fileerrors flag is only reset by an explicit call to fileerrors/0.

7-3-7. fileerrors

Cancels the effect of nofileerrors. It resets the fileerrors flag to its
default state in which an error message is produced by see/1, tell/1, open/3
and close/1 if the specified file cannot be opened or closed. The error
l)lessage is followed by an abort, that is, execution of the program is
abandoned and the system returns to top level.

7-3-8. flush_output(+Stream)

Stream must be a stream open for output. Output to a stream does not
necessarily get sent immediately; it is buffered. This predicate flushes the
output buffer for the specified stream and thus ensures that everything that
has been written to the stream is actually sent at that point.

There is also a predicate ttyflush (section 7-8-7) which is equivalent to
flush_output(user).

7-3-9. set_input(+Strea■)

This makes Stream the current input stream. Subsequent input predicates such
as read/1 and get0/1 will henceforth use this stream.

7-3-10. set_output(+Stream)

This makes Stream the current output stream. Subsequent output predicates
such as write/1 and put/1 will henceforth use this stream.

50 Input and Output

7-3-11. current_input(-Stream)

Stream is unified with the current input stream.

7-3-12. current_output(-Stream)

Stream is unified with the current output stream.

7-4. Stream Based Input and Output of Terms

The following predicates are alternatives to the ones described in section
7-1. These predicates take an explicit stream argument rather than using the
current input and output streams. Opening files and associating them with
streams is described in section 7-3.

read(S,T} like read/1, section 7-1-1, except that input is taken from stream
S rather than from the current input stream.

write{S,T} like write/1, section 7-1-2, except that output is sent to stream
S rather than to the current output stream.

display(S,T}
like display/1, section 7-1-3, except that output is sent to
stream S rather than to the standard output stream (which normally
means the terminal).

writeq(S,T) like writeq/1, section 7-1-4, except that output is sent to stream
S rather than to the current output stream.

print(S,T) like print/1, section 7-1-5, except that output is sent to stream
S rather than to the current output stream.

7-5. Stream Based Input and Output of Characters

The following predicates are alternatives to the ones described in section
7-2. These predicates take an explicit stream argument rather than using the
current input and output streams. Opening files and associating them with
streams is described in section 7-3.

getO(S,C)

get(S,C)

skip(S,C)

put(S,C)

like get0/1, section 7-2-1, except that the character is input
from stream S rather than from the current input stream.

like get/1, section 7-2-2, except that input is taken from stream
S rather than from the current input stream.

like skip/1, section 7-2-3, except that input is taken from stream
S rather than from the current input stream.

like put/ 1, section 7-2-4, except the character is output on

Input and Output 51

stream S rather than on the current output stream.

nl (S) like nl/0, section 7-2-5, except that the linefeed is output on
stream S rather than on the current output stream.

tab(S,N) like tab/1, section 7-2-6, except that the spaces are output on
stream S rather than on the current output stream.

7-6. Reading the State of Opened Streams

7-6-1. character_count(+Stream,-N)

Stream is an open stream. N is unified with the total number of characters
either read or written. A freshly opened stream has a character count of o.

This predicate cannot be used on the standard input, output and error streams;
it fails if this is attempted

7-6-2. line_count(+Stream,-N)

Stream is an open stream. N is unified with the total number of lines either
read or written. A freshly opened stream has a line count of 1:

This predicate cannot be used on the standard input, output and error streams;
it fails if this is attempted.

7-6-3. line_position(+Stream,-N)

Stream is an open stream. N is unified with the total number of characters
either read or written on the current line. A fresh line has a line position
of o.

This predicate cannot be used on the standard input, output and error streams;
it fails if this is attempted.

7-7. Prolog-20 Compatible File Handling

The following predicates are supplied for Prolog-20 compatibility. They
specify an alternative, less powerful mechanism for dealing with files and
streams.

The predicates seeing/1 and telling/1 are not fully Prolog-20 compatible.
They are defined to be exactly the same as current_input/1 and
current output/1 respectively, that is they return a stream rather than a file
name. The reason for this is that many programs use a seeing(X) followed by a
see(~_); consider the following example of a typical form of file processing:

52 Input and Output

process_file(F) :-
seeing(Old), s Save current file
see(F), s Open file F
repeat,

read(T), s Read a term
process_term(T), s Process the term
T = end of file s Loop back if not at end of file

I s Cut the backtrack loop . '
seen, s Close the file
see(Old). s Restore old file

The seeing(Old) ••• see(Old) combination is intended to ensure that this clause
leaves the current input unchanged. However, with the introduction of
stream-based I/0, it is no longer the case that a file name uniquely
identifies a stream: you can have more than one stream open on the same file.
Thus if seeing returned a file name, then see(Old) could be ambiguous, and see
resolves any such ambiguity arbitrarily. This arbitrary behavior is obviously
undesirable, so seeing and telling now return streams which means that
examples like the above will continue to work properly.

7-7-1. see(+X)

If ! is a currently open input stream, then it is made the current input
stream. If! is a stream which is not currently open for input then an error
indication is given.

Otherwise, if Xis an atom, it is taken to be a file name, and

- if there is no input stream currently associated with a file named
X, then that file is opened for input and the new input stream thus
created is made the current input stream. If it is not possible to
open the file, an error indication may or may not occur depending on
the state of the fileerrors flag (see section 7-3-6);

- if there is a single open input stream currently associated with a
file of that name then it is made the current input stream;

- if there is more than one open input stream currently associated
with a file of that name then one of them is chosen arbitrarily.

If Xis not a stream or an atom, the predicate just fails.

It is important to remember to close streams when you have finished with them.
Use seen/0 or close/1.

7-7-2. seeing(-S)

~ is unified with the current input stream. This is exactly the same as
current_input(~).

Note that this is different from the Prolog-20 definition of seeing which

Input and Output 53

returned a file name. If you need the file name you can get to it from the
stream using current_stream/3 (section 7-3-5).

7-7-3. seen

Closes the current input stream. The current input stream is then set to be
user_input, that is, the user's terminal.

7- 7-4 • te 11 (+F)

If ! is a currently open output stream, then it is made the current output
stream. If Xis a stream which is not currently open for output then an error
indication is given.

Otherwise, if Xis an atom, it is taken to be a file name, and

- if there is no output stream currently associated with a file named
X, then that file is opened for output and the new output stream
thus created is made the current output stream. If it is not
possible to open the file, an error indication may or may not occur
depending on the state of the fileerrors flag (see section 7-3-6);

- if there is a single open output stream currently associated with a
file of that name then it is made the current output stream;

- if there is more than one open output stream currently associated
with a file of that name then one of them is chosen arbitrarily.

If Xis not a stream or an atom, the predicate just fails.

It is important to remember to close streams when you have finished with them.
Use told/0 or close/1.

7-7-5. telling(+S)

~ is unified with the current output stream.
current_output(~).

This is exactly the same as

Note that this is different from the Prolog-20 definition of telling which
returned a file name. If you need the file name you can get to it from the
stream using current_stream/3 (section 7-3-5).

7-7-6. told

Closes the current output stream. The current output stream is then set to be
user_output, that is, the user's terminal.

54 Input and Output

7-8. Prolog-20 Compatible Character I/0 to Terminal

The predicates listed below are similar to those described in section 7-2
except that they always use the standard input and output, which normally
refer to the user's terminal rather than to the current input or current
output stream.

Given stream-based input/output, these predicates are really redundant. For
example, you could write getO(user,.£) instead of ttygetO(.£).

7-8-1. ttygetO(.=!,)

Unifies N with the ASCII code of the next character input from the terminal.

7-8-2. ttyget(-N)

Unifies N with the ASCII code of the next non-space character from the current
input stream. Space characters are all those with ASCII codes less than or
equal to 32; this includes space, tab, linefeed and all control characters.

7-8-3. ttyskip(+N)

Skips over characters input from the terminal to the first occurrence of the
character with ASCII code!• The most useful form of integer expression in
this context is a single character in double quotes, for example, "a" which
evaluates to 97, the ASCII code for the letter 'a'.

7-8-4. ttyput(+N)

Displays the ASCII character code of! on the terminal. ! may be an integer
expression. The most useful form of integer expression in this context is a
single character in double quotes, for example, "a" which evaluates to 97, the
ASCII code for the letter 'a'. ·

Note that the character is not necessarily displayed immediately; see
ttyflush, section 7-8-7.

7-8-5. ttynl

Starts a new line on the terminal and flushes the terminal output buffer.

7-8-6.°ttytab(+N)

Writes ! spaces to the terminal. N may be an integer expression. It is an
error if N is uninstantiated or if it contains an uninstantiated variable.

Input and Output 55

Note that the spaces are not necessarily output immediately; see ttyflush,
section 7-8-7.

7-8-7. ttyflush

Flushes the terminal output buffer. Output to the terminal, using either
ttyput or put, normally goes into an output buffer until a newline is output,
Calling this predicate forces any characters in this buffer to be output
immediately.

For flushing output that is not directed to the terminal, see flush_output/1
in section 7-3-8.

CHAPTER 8

ARITHMETIC

In Prolog, arithmetic is performed by certain built-in predicates which take
arithmetic expressions as their arguments and evaluate them. Arithmetic
expressions can evaluate to integers or floating-point numbers (floats).

Integers and floats each have advantages and disadvantages. The advantage of
integers is that they precisely represent the numbers concerned. The
disadvantages of integers are that they cannot represent every number you
might wish to use (for example, integers cannot represent the number 3/2), and
they may have a dynamic range that is more limited than that required by your
application. Using floats eliminates these problems but does so at the
•xpense of no longer representing precise mathematical quantities; floats are
only approximations. As such, they should be used with caution.

Integers must be in the range -268435456 (-2A28) to 268435455
inclusive. At the present time, there is NO range checking.
arithmetic that yields numbers outside this range can be interpreted
2A29 in the above range.}

(2A28-1)
(Integer

as modulo

The exact range of floating point numbers is machine dependent. On all
machines, 28 bits are used to represent a Prolog float. On the Sun, for
example, this gives an approximate range of 1.0E-43 to 3.4E38, while on a VAX
the range is 0.29*10A-38 to 1.7*10A38. The behavior on floating point
overflow or underflow is also machine dependent.

8-1. Arithmetic Expressions

Arithmetic evaluation and testing is performed by predicates that take
arithmetic expressions as arguments. An arithmetic expression is a term built
from numbers, variables, and functors that represent arithmetic functions.
These expressions are evaluated to yield an arithmetic result which may be
either an integer or a float; the type is determined by the rules described
below.

At the time of evaluation, each variable in an arithmetic expression must be
bound to a number; if not, an error indication is given. In particular, note
that a variable in an arithmetic expression may NOT be bound to another
arithmetic expression.

The most common way to do arithmetic in Prolog is by using the built-in
predicate is/2 (section 8-2}.

Only certain functors are permitted in arithmetic expressions. These are
listed below, together with a description of their arithmetical meaning. In
the following,! and.!. are considered to be arithmetic expressions.

X+Y Results in the sum of! and.!.• If both operands are integers, the
result is an integer; otherwise, the result is a float.

58 Arithmetic

· X-Y Results in the difference of X and Y. If both operands are
integers, the result is an integer; otherwise, the result is a
float.

X*Y Results in the product of! and!• If both operands are integers,
the result is an integer; otherwise, the result is a float.

-X Results in the negative of!• The type of the result, integer or
float, is the same as the type of the operand.

X/Y Results in the quotient of X and Y. The resultant number is
always a float, regardless of the types of the operands! and!•

X//Y Results in the integer quotient of! and!• ,! and! must both be
integers. The result is truncated to the nearest integer that is
between it and O.

integer(_!) Results in X if it is an integer. Otherwise, if it is a float,
the result is the nearest integer that is between it and O.

float(X) Results in X if it is a float. Otherwise, if it is an integer,
the result is the floating point equivalent.

The following bit-vector operations apply to integer arguments only. The
operations will yield correct results on bit strings of 28 or fewer bits:

X/\Y

X\/Y

\ (X)

X « y

X » y

Results in the bitwise conjunction of X and Y.

Results in the bitwise disjunction of X and Y.

Results in the complement of the bits in X.

Xis logically left-shifted! places.

Xis logically right-shifted! places.

Results in! for numeric!• The reason for allowing this is that
character strings in double quotes are just lists of ASCII codes;
so that to use the ASCII code (97) for the letter "a" in an
expression, you can just write "a".

8-2. -Xis +Expression

Expression is evaluated as an arithmetic expression (see section 8-1), and the
resulting number is unified with !• If Expression is not an arithmetic
expression, or if it contains variables which are not bound to numbers, an
error indication is given and the goal fails.

Arithmetic 59

8-3. Arithmetic Comparison

Each of the following predicates evaluates both its arguments as arithmetic
expressions and then compares the results. If one argument evaluates to an
integer and the other to a float, then the integer is coerced to a float
before the comparison is made.

Note that two floating point numbers are equal if and only if they have the
same bit pattern.

8-3-1. +X =:= +Y

X and Y are each evaluated as arithmetic expressions. The goal succeeds if
the results are equal.

8-3-2. +X :\: +Y

! an_d Y are each evaluated as arithmetic expressions. The goal succeeds if
the results are not equal.

8-3-3. +X < +Y

! and !·are each evaluated as arithmetic expressions. The goal succeeds if
the result of evaluating! is strictly less than the result of evaluating!•

8-3-4. +X > +Y

X and Y are each evaluated as arithmetic expressions. The goal succeeds if
the result of evaluating! is strictly greater than the result of evaluating
!•

8-3-5. +X =< +Y

X and Y are each evaluated as arithmetic expressions. The goal succeeds if
the result of evaluating X is less than or equal to the result of evaluating
Y.

8-3-6. +X >= +Y

! and! are each evaluated as arithmetic expressions. The goal succeeds if
the result of evaluating X is greater than or equal to the result of
evaluating!•

CHAPTER 9

LOOKING AT TERMS

This chapter describes predicates which allow you to examine the current
instantiation state of a term.

9-1. var(.z!)

Succeeds if ! is currently uninstantiated ('var' is short for variable);
otherwise fails. An uninstantiated variable is one which has not been bound
to anything, except possibly another uninstantiated variable. Note that a
structure with some components which are uninstantiated is not itself
considered to be uninstantiated. Thus the command

:- var(foo(X,Y)).

always fails, despite the fact that X and Y are uninstantiated.

9-2. nonvar(?X)

Succeeds if X is currently instantiated; otherwise fails.
opposite of var.

9-3. atom(?X)

This is the

Succeeds if Xis currently instantiated to an atom; otherwise fails.

9-4. integer(?X)

Succeeds if Xis currently instantiated to an integer; otherwise fails.

9-5. float (?X)

s.ucceeds if X is currently instantiated to a float; otherwise fails.

9-6. number(?X)

Succeeds if X is currently instantiated to either an integer or a float;
otherwise fails.

62 Looking at Terms

9-7. atomic(?X)

Succeeds if Xis currently instantiated to an atom or number; otherwise fails.

9-8. functor(?Term,?Name,?Arity)

The principal functor of term Term has name Name and arity Arity.

There are two ways of using this predicate:

1. If Term is initially instantiated then

- if Term is a compound term, then ~ and Arity are unified
with the name and arity of its principal functor.

- if Term is atomic, then Name is unified with Term and Arity is
unified with O.

2. If Term is initially uninstantiated, Name and Arity must both be
instantiated, and

- if Ari ty is non-zero, then Name 111.lst be an atom and · Term
becomes instantiated to the most general term having the
specified Name and Ari ty, that is, a term with distinct
variables for all of its arguments.

- if Arity is O, then Name rust be an atom or a number and it is
unified with Term.

Some examples of calls to functor are:

?- functor(foo(a,b),N,A).

N = foo,
A = 2

?- functor(X,foo,2).

X = foo(_1 ,_2)

Note: "_1" and "_2" are variables. The term foo(_1,_2) is the "most general"
term that has name foo and arity 2.

?- functor(X,foo,O).

X = foo

functor does not give error indications; it just fails if its arguments are
inappropriate.

Looking at Terms 63

Initially, .! must be instantiated to a positive integer and .I to a compound
term. The result of the call is to unify! with the ,!th argument of term!•
(The arguments are numbered from 1 upwards.) If the initial conditions are not
satisfied or.! is out of rjnge, the call just fails; it does not give an error
indication.

9-10. ?X =•. ?Y

.!. is a list whose head is the atom corresponding to the principal functor of X
and whose tail is a list of the arguments of X. If Xis uninstantiated, then
.!. rust be instantiated either to a list of determinate length whose head is an
atom, or to a list of length 1 whose head is an integer. Some examples of its
use are:

?- foo(a,b) - •• X.

X = [foo,a,b]

?- X =·• [foo,a,b].

X = foo(a,b)

?- foo =·· X.

X = [foo]

- •• does not give any error indications; it just fails if its arguments are
inappropriate.

=•• is sometimes pronounced "univ", after a predicate of that name and similar
function in the original Marseilles implementation of Prolog.

9-11. name(?X,?L)

name(!,h) is a relation between an atomic object X and a list L which consists
of the ASCII character codes for the printed representation of X. Initially,
either X must be instantiated to an atomic object, or L must be instantiated
to a list of character codes (containing no variables). Otherwise the call
simply fails.

If Xis initially instantiated to an atom or number, L will get bound to the
list of character codes that make up its printed representation. Otherwise,
if Lis initially instantiated to a list of characters that corresponds to the
correct syntax of a number (either integer or float), then X will get bound to
that number; otherwise X will be instantiated to an atom containing exactly
those characters. If neither argument is bound, the goal fails.

64

Here are some examples of its use:

?- name(foo,L).

L = [102,111,111]

?- name('Foo' ,L).

L = [70, 111 , 111]

?- name (4 31 , L) •

L = [52,51,49]

?- name(X,[102,111,111]).

X = foo

?- name(X,[52,51,49]).

X = 431

?- name(X,"15.0e+12").

X = 1. 5e+13

Looking at Terms

CHAPTER 10

COMPARISON OF TERMS

The following predicates are used to compare and order terms, rather than to
evaluate or process them. For example, these predicates can be used to
compare variables; however, they never instantiate those variables. These
predicates should not be confused with arithmetic comparison (see section 8-3)
or unification.

10-1. Standard Order on Terms

These predicates use a standard total order when comparing terms. The
standard total order is: variables, numbers, atoms, complex terms. Within
these categories, ordering is as follows.

- Variables are themselves put in a standard order. (Roughly, the
oldest variable is put first; the order is not related to the names
of variables.)

Numbers are put in numeric order. Integers are considered to be
less than their floating point equivalents.

- Atoms are put in alphabetical (ASCII) order.

- Complex terms are ordered first by arity, then by the name of the
principal functor, then by the arguments (in left-to-right order).

For example, here is a list of terms in the standard order:

[X, -9, 1, fie, foe, furn, X = Y, fie(0,2), fie(1,1)]

The predicates for comparison of terms are described below.

10-2. ?T1 = = ?T2

Succeeds if the terms currently instantiating T1 and T2 are literally
identical (in ~articular, variables in equivalent positions in the two terms
must be identical). For example, the question

?- T1 == T2.

fails (answers "no") because T1 and T2 are distinct uninstantiated variables.
However, the question

l ?- T1 = T2, T1 -- T2.

succeeds because the first goal unifies the two variables.

66 Comparison of Terms

10-3. ?T1 \== ?T2

Succeeds if the terms currently instan~iating T1 and T2 are not literally
identical. For example, the question

l ?- T1 \= = T2.

succeeds because T1 and T2 are distinct uninstantiated variables. However,
the question

?- T1 = T2, T1 \== T2.

fails because the first goal unifies the two variables.

10-4. ?Tl@< ?T2

Succeeds if term T1 is before term T2 in the standard order.

10-5. ?Tl @> ?T2

Succeeds if term T1 is after term T2 in the standard order.

10-6. ?Tl@=< ?T2

Succeeds if term T1 is not after term T2 in the standard order.

Succeeds if term T1 is not before term T2 in the standard order.

10-8. compare(?Op,?Tl,?T2)

The result of comparing terms T1 and T2 is .QE_, where the possible values for
~ are:

'=' if T1 is identical to T2,
'<' if Tl is before T2 in the standard order,
'>' if Tl is after T2 in the standard order.

Thus "compare(=,Tl,T2)" is equivalent to "!1 == T2".

Comparison of Terms 67

The elements of the list L 1 are sorted into the standard order, and any
identical · (==) elements are merged, yielding the list L2. For example

?- sort([a,X,1,a(x),a,a(X)],L).
L = [X,1,a,a(X),a(x)]

(The time taken to do this is at worst order (!log!) where N is the length
of the list.)

10-10. keysort(+L1,-L2)

The list bl must consist of items of the form Key-Value. These items are
sorted into order according to the value of Key, yielding the list L2. No
merging takes place. For example

?- keysort([3-a,1-b,2-c,1-a,1-b],X).
X = (1-b,1-a,1-b,2-c,3-a]

(The time taken to do this is at worst order(! log!) where N is the length
of the list.)

CHAPTER 11

LOOKING AT THE PROGRAM STATE

11-1. listing

Lists in the current output stream all the procedures in the current
interpreted program. Procedures listed to a file can be consulted back. You
could list the entire interpreted program to a file by the command

?- tell(file), listing, told.

Note that listing/0 does not work on compiled procedures unless they are
declared to be dynamic.

11-2. listing{+Predicate)

If Predicate is just · an atom, then the interpreted procedures for all
predicates of that name are listed as for listing/0. The argument Predicate
may also be a predicate specification of the form Name/Ari ty in which case
only the clauses for the specified predicate are listed. Finally, it is
possible for Predicate to be a list of predicate specifications of either
type; for example,

?- listing([concatenate/3, reverse, go/0)).

Note that listing/1 does not work on compiled clauses unless they are declared
to be dynamic.

If you are running under Emacs there is a facility for finding the source code
definition for a specified compiled or interpreted procedure and reading it
into an edit buffer. This is likely to be more helpful than listing/1 in most
cases. See ""X • ", section 22-2.

11-3. current_atom{?Atom)

If Atom is initially uninstantiated,
backtracking) all currently known atoms.
Atom is an atom.

11-4. current_predicate(?Name,?Tera)

this predicate generates {through
Otherwise it succeeds if and only if

True if Name is the name of a user-defined predicate and Term is the most
general term corresponding to that predicate. For example, if you have a
foo/1 and a foo/3 in your program you might get:

70 Looking at the Program State

?- current_predicate(foo,T).

T = foo(_116)

T = foo(_116,_117,_118)

no

The goal

: ?- current_predicate(Name,Term).

can be used to backtrack through every predicate in your program.

CHAPTER 12

LOOKING AT AND CONTROLLING THE EXECUTION STATE

12-1. Control C interrupts

At any time, Prolog's execution can be interrupted by typing Ac. The
following prompt is then displayed:

Prolog interruption (h for help)?

If you then type 'h', followed by Return, you will get a list of the possible
responses to this prompt:

Prolog interrupt options:
C continue - do nothing
t trace - debugger will start creeping
d debug - debugger will start leaping
a abort - cause a Prolog abort
e exit - irreversible exit from Prolog
h help - this list

The 'trace' option will cause you to enter the debugger the next time control
passes to an interpreted procedure. (You can then use the 'g' option of the
debugger to see what Prolog is doing.) This will not help if you are stuck in
a loop in compiled code; in this case the 'd' option can be useful if you have
spypoints set in your compiled code and debugging is currently off.

12-2. halt

Causes an irreversible exit from Prolog.

· 12.;.3. break

Causes the current execution to be interrupted and the message"[Break (level
1)]" to be displayed, followed by a top level prompt (' I ?- '). The system
is then ready to accept input as though it were at top level. If another call
of break is encountered, it moves up to level 2, and so on. To close a break
level and resume the execution which was suspended, type the end-of-file
character AD (or AXAD if running under Emacs). Execution of the interrupted
program is then resumed with the call to break/0 succeeding. Alternatively,
the suspended execution can be abandoned by calling the built-in predicate
abort/O.

The break facility is often used via the debugging option 'b'.

72 Looking at and Controlling the Execution State

12-4. abort

Abandons (aborts) the current execution and returns to top level. All break
levels (suspended execution states created by break/0) are destroyed. This is
a fairly drastic predicate and is normally only used when some error condition
has occurred and there is no way of carrying on, or when debugging.

The abort facility is often used via the debugging option 'a' and also via the
~c interrupt option 'a'.

12-5. ancestors(-L)

Unifies L with a list of ancestor goals for the current clause. The list
starts with the parent goal and ends with a goal which was typed at top level.
If a goal has a succession of compiled (and not dynamic) ancestors, then only
one of these (the highest in the calling hierarchy) will appear in the list.

ancestors/1 is most often used in debugging via the debugger option 'g'.

12-6. subgoal_of(?S)

Equivalent to the sequence of goals:

ancestors(L), member(~,L).

where the predicate member (not a built-in predicate) successively matches its
first argument with each of the elements of its second argument. It may be
defined by

member(X,[XlL]).
member(X,[lL]) :- member(X,L).

12-7. maxdepth(+D)

Q. should be a positive integer which specifies the maximum number of nested
INTERPRETED procedure calls, beyond which the interpreter will cause a trap to
the debugger. The usual debugger options can be used when the interpreter
traps. Top level has depth zero. maxdepth is useful for guarding against
loops in untested programs. The default setting is maxdepth(100000).

NOTE: Calls to compiled procedures are not included in the depth and calls to
interpreted code from compiled code will start again from a depth of zero.

12-8. depth(-D)

Unifies D with the current depth, that is, the number of currently active
interpreted procedure calls.

Looking at and Controlling the Execution State 73

NOTE: This predicate is only applicable in interpreted procedures. Calls to
compiled procedures are not included in the depth and calls to interpreted
code from compiled code will start again from a depth of zero.

CHAPTER 13

MEMORY USE

Quintus Prolog uses three data areas: program space, local stack space and
global data space. Each of these areas is automatically expanded if it
overflows, with the other areas being shifted if necessary to allow this.

The program space contains compiled and interpreted code, recorded terms and
atoms. The space occupied by interpreted code and recorded terms is recovered
when it is no longer needed, but currently the space occupied by compiled code
and atoms is not recovered.

The global stack space contains the global stack and the trail which grow
inward toward one another. The global stack contains all the data structures
constructed in an execution of the program, and the trail contains references
to all the variables which need to be reset when backtracking occurs. Both of
these areas grow with forwards execution and shrink on backtracking.

The local stack contains all the control information and variable bindings
needed in a Prolog execution. Space on the local stack is reclaimed on
determinate success of predicates and by tail recursion optimization, as well
as on backtracking.

13-1. trimcore

Reduces free space on all the working areas as much as possible and releases
space no longer needed. During a · computation, Prolog automatically expands
its working storage as needed, and it keeps the space it grabs until trimcore
is called. The interpreter automatically calls trimcore after each directive
at top-level.

13-2. statistics

Displays on the terminal statistics relating to memory usage and run time,
including information about which areas of memory have overflowed and how much
time has been spent expanding them.

The output from statistics/0 looks like this:

memory (total) 426712 bytes
program space 287280 bytes: 261848 in use,
global space 6664 bytes: 3036 in use,

global stack 3020 bytes
trail 16 bytes

25432 free
3628 free

local stack 5532 bytes: 1592 in use, 3940 free

0.0 sec. for 0 program, 0 global and 0 local space overflows
0.583 sec. runtime

76 Memory Use

Note the use of indentation to indicate sub-areas. That is, memory contains
the program space, global space and local stack, and the global space contains
the global stack and trail.

See section 13-3 for how to obtain individual statistics.

13-3. statistics(?Ke yword,-List)

statistics(Ke yword,List) is usually used with Keyword instantiated to a
keyword such as 'runtime' and List unbound. The predicate then binds List to
a list of statistics related~ the keyword. This predicate is used in
programs which depend on current runtime statistical information for their
control strategy, and in programs which choose to format and output their own
statistical summary.

The keys and values for statistics(Ke yword,List) are summarized below. The
keywords 'core' and 'heap' are included to retain compatibility with
Prolog-20. Times are given in milliseconds and sizes are given in bytes.

Keyword List

runtime cpu time used by Prolog, cpu time since last call
to statistics

memory total virtual memory (,0)
core (same as memory)
program program size (in use, free)
heap (same as program)
global_stack size of global stack (in use, free)
local stack size of local stack (in use, free)
trail size of trail (,0)
garbage_collection

number of GCs, freed bytes, time spent
stack shifts number of global stack area shifts, number of

· local stack area shifts, time spent shifting

For the keywords 'memory' and 'trail' the second element of the returned list
is always O. This is for Prolog-20 compatibility only, 0 being the most
appropriate value in this system for the quantities which would be returned
here in Prolog-20.

Currently, the garbage_collection keyword always returns a list of O's because
garbage collection of the global stack is not yet available.

To see an example of the use of each of these keywords, type

: ?- statistics(K,L).

and then repeatedly type I • t

'
to backtrack through all the possible keywords.

CHAPTER 1!1

SAVING THE PROGRAM OR THE EXECUTION STATE

1!1-1. save_program(+File)

Saves the current program state, that is, all compiled and interpreted
procedures, into the specified File. File should be an atom representing a
file name.

A saved program state can be activated either by running it directly from the
operating system or else by using the predicate restore/1 (section 1!1-!1). In
either case, after the reactivation of the program you will be at Prolog's top
level. The only difference is that when the saved state is run directly from
the operating system, a search is made in your home directory for a file named
'prolog.ini', and 1f one is found it is consulted. This does not happen after
a restore.

If File is not an atom, the goal simply fails. If it is not possible to
perform the save operation for some external reason, such as the file having
the wrong protection, an error indication is given.

1!1-2. save(+File)

Saves the current execution state, that is, all compiled and interpreted
procedures and all data areas, into the specified File. File should be an
atom representing a file name.

A saved execution state can be activated either by running it directly from
the operating system or else by using the predicate restore/1 (section 1!1-!1).
In either case, after the reactivation of the program, execution continues
exactly as if the save goal had just succeeded.

For example

: ?- save(foo), write(iFOO HERE').
[Prolog state saved into foo]
FOO HERE
yes
I ?- restore(foo).

Quintus Prolog Release 1.0
Copyright (C) 1985, Quintus Computer Systems, Inc.
FOO HERE
yes
: ?-

If File is not an atom, the save(File) simply fails. If it is not possible to
perform the save operation for some external reason, such as the file having
the wrong protection, an error indication is given.

78 Saving the Program or the Execution State

14-3. save(+File,-Return)

Saves the current execution state in File just as save(File), but in addition
unifies Return to O or 1 depending on whether the return from the call occurs
in the original save operation or through a reactivation of the saved state
(either by running the saved state as a program or else via restore/1; see
section 14-4).

For example

?- save(foo,X).
[Prolog state saved into foo J

X = 0

?- restore(foo) -.

Quintus Prolog Release 1.0
Copyright (C) 1985, Quintus Computer Systems, Inc.

X = 1

The purpose of this predicate is to allow you to specify different behavior
after a restore than after the save its elf. For example, if you have a
program which you want to run immediately when a saved state is reactivated,
but which you do not want to run when you create the saved state, then you
might type

?- save(prog,1}, go.

where go/0 is the entry point to your program. This will create the saved
state and then fail, without entering your program.

If File is not an atom, save(File,_) simply fails. If it is not possible to
perform the save operation for some external reason, such as the file having
the wrong protection, an error indication is given.

14-4. restore(+File)

This predicate is used to reactivate the saved state in the file named File
which must have been created by save_program/1 (section 14-1), save/1 (section
14-2} or save/2 (section 14-3). The effect of the restore depends on which of
these predicates was used to create the saved state; refer to the definitions
of those predicates for details.

The effect of a restore can also be achieved by running a saved state directly
from the operating system. One situation in which you might find restore
preferable is in debugging a program which uses asserts and retracts; the
combination of save and restore enables you to save interesting states of the
execution and then go back to exactly that state a bit later (without having

Saving the Program or the Execution State 79

to exit from Prolog).

If File is not an atom, restore(File) simply fails. If it is not possible to
perform the restore operation because the specified file is not a saved state,
or does not exist, or is protected, or for some similar reason, a fatal error
indication is given and an exit from Prolog occurs.

14-5. reinitialise

This predicate can be used at any time to force Prolog's normal initialization
behavior. It aborts any current computation (like abort/0, see section 12-4),
and then looks for a file called 'prolog.ini' in your home directory. If such
a file is found, it is consulted.

This predicate is not particularly useful now that there is save_program
(section 14-1). It is provided for Prolog-20 compatibility only. If you do
use it, note that it is spelled with an 's'.

CHAPTER 15

DEBUGGING

This chapter describes the built-in predicates which are ·concerned with
debugging. The debugger is more fully described in the Quintus Prolog User's
Guide.

15-1. debug

Turns the debugger on and sets the top-level state to 'debug'. Turning the
debugger on means that it will stop at the next spypoint encountered in the
current execution. Setting the top-level state to 'debug' means that
debugging will be on whenever you type a question. That is, the debugger will
start by not showing any goals and not stopping until it reaches a spypoint,
that is, it will "leap". Once you reach a spypoint jou will have a number of
options including those of "creeping" forwards, or "leaping" once again.

The effect of this predicate can also be achieved by typing the letter 'd'
after a AC interrupt (see section 12-1).

Note that the top-level state of the debugger is ignored if you precede a goal
with a ':-', and also for goals appearing in files being consulted or
compiled. In these cases debugging is (initially) off.

15-2. trace

Turns the debugger on and starts it "creeping", and sets the top-level state
to 'trace'. The debugger will start showing goals as soon as an interpreted
procedure is reached, and it will stop to allow you to interact as soon as it
reaches a leashed port (see leash/1, section 15-10). Setting the top-level
state to •trace' means that every time you type a question, the debugger will
start by creeping.

The effect of this predicate can also be achieved by typing the letter 't'
after a AC interrupt (see section 12-1).

Note that the top-level state of the debugger is ignored if you precede a goal
with a ':-', and also for goals appearing in files being consulted or
compiled. In these cases debugging is (initially) off.

15-3. nodebug

Turns the debugger off (nodebug and notrace are equivalent). Turning the
debugger off does NOT remove any spypoints. Spypoints will remain where they
were set, although they will have no effect while the debugger is off. When
the debugger is turned on again, the spypoints will again take effect. If you
want to remove all your spypoints, use nospyall (section 15-8).

82 Debugging

15-4. notrace

Turns the debugger off (nodebug and notrace are equivalent). Turning the
debugger off does NOT remove any spypoints. Spypoints will remain where they
were set, although they will have no effect while the debugger is off. When
the debugger is turned on again, the spypoints will again take effect. If you
want to remove all your spypoints, use nospyall (section 15-8).

15-5. debugging

Displays on the terminal information about the current debugging state. It
shows

- the top-level state of the debugger which is one of

debug

trace

off

The debugger is on but will not show anything or stop
for user interaction until a spypoint is reached.

The debugger is on and will show everything. As soon as
you type a goal, you will start seeing a debugging
trace. After printing each trace message, the debugger
may or may not stop for user interaction: this depends
on the type of leashing in force (see below).

The debugger is off.

The top-level state can be controlled by the predicates debug/0,
nodebug/0, trace/0 and notrace/0.

- the type of leashing in force; when the debugger prints a message
saying that it is passing through a particular port Cone of 'call',
'exit', 1 redo' and 'fail') of a particular procedure, it stops for
user interaction only if that port is leashed. The predicate
leash/1 can be used to select which of the four ports you want to be
leashed.

- the action to be taken on undefined predicates. This is either
'trace' which means that calling an undefined predicate traps to the
debugger, or 'fail' meaning that such calls just fail. This option
can be controlled using the predicate unknown/2.

- all the current spypoints. Spypoints are controlled by the
predicates spy/1, nospy/1 and nospyall/0.

15-6. spy +X

Sets spypoints on all the predicates represented by !, which is either a
single predicate specification, or a list of such specifications. A predicate
specification is eittier ot the form Name/Arity, (for example, member/2, foo/0,
hello/27); or it is of the form Name, (for example, member, foo, hello) which
represents all the currently defined predicates with the name Name (there may

Debugging 83

be several predicates with the same name but different arities).

If you use the form Name but there are no clauses for this predicate (of any
arity), then a warning message will be displayed and no spypoint will be set.
If you really want to place a spypoint on a currently undefined procedure,
then you must use the full form Name/Arity; you will still get a warning
message but the spypoint will be set in this case.

If debugging is off, calling spy/1 will set it to 'debug', so that the
debugger will stop as soon as it reaches a spypoint.

You can put spypoints on compiled procedures, as well as interpreted ones, but
there is a space and time penalty incurred. This penalty does not go away
when you simply turn off debugging (using nodebug); you have to remove the
spypoints explicitly (using nospy or nospyall).

15-7. nospy +X

Removes spypoints on all the predicates represented by X. The possible forms
for X are the same as for spy/1.

To remove all spypoints, see nospyall/0, section 15-8.

15.;.8. nospyall

All spypoints are removed. This is the only way to remove all your spypoints
at once, since turning off debugging with nodebug does NOT remove spypoints;
they remain in place and are reactivated if the debugger is turned back on
with trace or debug.

15-9. unknown(-OldAction,+NewAction)

Unifies OldAction with the current action on unknown procedures, and then sets
the current action to NewAction. This action determines whether or not the
interpreter will catch calls to undefined procedures and is one of:

trace
fail

Undefined procedures will trap to the debugger
Undefined procedures will just fail

The default action is 'trace'. Note that

l ?- unknown(Action,Action).

just returns the current Action without changing it.

Procedures which are known to be dynamic are never trapped by the debugger; it
is assumed that these procedures are meant to fail when there are no clauses
for them. For more information on dynamic procedures, see section 16-1.

84 Debugging

15-10. leash(+Mode)

Sets the leashing mode to Mode. The purpose of leash is to let you speed up
single-stepping (creeping) through a program by telling the debugger that it
does not always need to wait for user input after printing a trace message.

The leashing mode only applies to procedures which do" not have spypoints on
them, and it determines which ports of such procedures are leashed. By
default, all four ports are leashed. On arrival at a leashed port the
debugger will stop and allow you to look at the execution state and decide
what to do next. At unleashed ports, the goal is displayed but program
execution does not stop to allow user interaction.

Mode should either be the atom 'all', for leashing on all four ports, or else
a list containing zero or more of the atoms 'call', 'exit', 'redo' and 'fail'.
Thus, for example

?- leash ([]) •

turns off all leashing; now when you creep you will get an exhaustive trace
but no opportunity to interact with the debugger. And

: ?- leash([call,redo]).

puts leashing on the Call and Redo ports. When creeping, the debugger will
now stop at every Call and Redo port to allow you to interact.

In Prolog-20, a different form of argument was used for leash/1. This form is
also supported by Quintus Prolog, but it is not recommended.

CHAPTER 16

MODIFICATION OF THE DATABASE

The assert and retract family of predicates described below enable you to
modify a Prolog program by adding or deleting clauses while it is running.
These predicates should not be over-used. Often people who are experienced
with other programming languages have a tendency to think in terms of global
data structures, as opposed to data structures which are passed as procedure
arguments, and hence they make too much use of assert and retract. This leads
to less readable and less efficient programs.

An interesting question in Prolog is what happens if a procedure modifies
itself, by asserting or retracting a clause, and then fails. On backtracking,
do new clauses added to the bottom of the procedure get used or not?
Different Prolog implementations do different things. In Quintus Prolog, as
in the Prolog-20 interpreter, changes to a procedure take effect inunediately:
any clauses which you assertz (add to the end of the procedure) will be
encountered on backtracking, and any clauses which you retract will not be
seen on backtracking.

16-1. Dynamic and Static Procedures

All procedures in Prolog fall into one of two categories: static or dynamic.
Dynamic procedures . can be modified by adding or deleting individual clauses.
In contrast, static procedures can only be changed by completely redefining
them using consult or compile.

If a pro .cedure is first defined by being consulted or compiled, it is static
by default. If you need to be able to add, delete or inspect individual
clauses of a procedure you must make the procedure dynamic. There are two
ways of making a procedure dynamic:

- If the procedure is to be compiled or consulted, then its definition
must be preceded, in the same file or editor buffer, by a dynamic
declaration.

- If the procedure is to be created by assertions only, then the first
assert, retract or clause operation on the procedure will make it
dynamic.

A dynamic declaration is a goal clause of the form

:- dynamic fill.

appearing in a file to be consulted or compiled. Pred 111Jst be a predicate
specification of the form Name/Arity or else a sequence of such specifications
separated by commas. For example,

:- dynamic exchange_rate/3, spouse.,..of/2, gravitational_constant/1.

86 Modification of the Database

(dynamic is a built-in prefix operator.) Note that the ':-' preceding the
word 'dynamic' is essential; if it were omitted you would get an error because
it would appear that you were trying to define a clause for the predicate
dynamic/1. However, dynamic/1 is not really a built-in predicate, and it may
only be used in declarations.

When a dynamic declaration is encountered in a file being consulted or
compiled, it is considered to be a part of the redefinition of the predicates
in its argument. Thus if you consult a file containing only the following

:- dynamic hello/0.

the effect will be to remove any previous definition of hello/0 from the
database, as well as making the predicate dynamic.

Although you can simultaneously declare several procedures to be dynamic, as
shown above, it is recommended that you put a separate dynamic declaration for
each procedure immediately before the clauses for that procedure. This way,
if you use the editor interface to reconsult or recompile that procedure you
won't forget to include its dynamic declaration. (Reconsulting or recompiling
a procedure without its dynamic declaration would make it static.)

It is often useful to have a dynamic declaration for a procedure even if it is
to be created only by assertions. This helps another person to understand
your program, since it makes clear the fact that there are no pre-existing
clauses for this procedura, and it also avoids the possibility of Prolog
stopping to tell you there are no clauses for this procedure if you should
happen to call it before any clauses have been asserted. This is because
unknown procedure catching (see section 15-9) does not apply to dynamic
procedures; it is presumed that a call to a dynamic procedure should just fail
if there are no clauses for it.

Dynamic procedures are actually implemented by interpretation, even if they
are included in a file which is compiled. This means that they are executed
slower than if they were static, and also that they are visible to the
debugger and to listing/a.

16-2. assert(+Clause)

Adds the specified Clause to the database. The relative position of this
clause with respect to other clauses for the same predicate is arbitrary. If
you want to insert this clause in a particular position, use assert a or
assertz instead.

Clause must be instantiated to a non-numeric value. If it is of the form Head
:- Body then Head must also be instantiated to a non-numeric value. An error
indication is given if these conditions are not satisfied, or if there is a
static definition for the specified predicate.

Syntactic note: If you want to write a term of the form Head:- Body as the
argument to assert, you must put it in parentheses because the operator
precedence of the functor :- /2 is greater than 1000 (see section 2-4). For

Modification of the Database

example,

I ?- assert(foo:-bar).

will cause a syntax error; instead you should type

I ?- assert((foo:-bar)).

16-3. asserta(+Clause)

87

Adds the specified Clause to the database as the first clause of its
procedure.

Clause must be instantiated to a non-numeric value. If it is of the form Head
:- Body then Head must also be instantiated to a non-numeric value. An error
indicati.on is given if these conditions are not satisfied, or if there is a
static definition for the specified predicate.

16-4. assertz(+Clause)

Adds the specified Clause to the database as the last clause of its procedure.

Clause must be instantiated to a non-numeric value. If it is of the form Head
:- Body then Head nust also be instant~ated to a non-numeric value. An error
indication is given if these conditions are not satisfied, or if there is a
static definition for the specified predicate.

16-5. clause(+Head,?Body)

Searches the database for a clause whose head matches Head and whose body
matches Body. This predicate is non-determinate; it can be used to backtrack
through all the clauses matching a given Head and Body. It fails when there
are no (further) matching clauses in the database.

For the purpose of this matching, unit clauses (clauses with no body) are
treated as if they had a body consisting of the single goal true. For
example,

I ?- asserta(foo(a)).

yes
?- clause(foo(X),Body).

X = a,
Body= true

Head rust be instantiated to a term of which the principal functor is a
dynamic predicate. An error indication is given if the principal functor of
Head is a static predicate. If there are no clauses for the predicate, then

88 Modification of the Database

it is made dynamic and the goal fails.

16-6. retract(+Clause)

Erases the first clause in the database that matches Clause. Clause must be
instantiated to a term corresponding with a dynamic procedure. retract is
non-determinate. If control. backtracks into the call to retract, successive
clauses matching Clause are erased. If no clauses match, the call to retract
fails.

retract treats unit clauses as if they each had the single goal true as their
body. Thus

?- retract((foo(X) :- Body)), fail.

is guaranteed to retract all the clauses for foo/1, including any unit
clauses, providing of course that foo/1 is dynamic.

Since retract is non-determinate, it can be a good idea, if you only want to
retract a single clause, to use a cut to eliminate the choice point so
generated.

The space occupied by a clause which is retracted is reclaimed. The
reclamation does not necessarily happen immediately, but it is not delayed
until backtracking past the call of retract, as in some implementations.

16-7. abolish(+Name,+Arit y)

Removes the procedure specified by Name and Ari ty from the database. The
procedure may be either static or dynamic.

This predicate gives no error indications, and it always succeeds; it has no
effect when its arguments do not in fact specify an existing procedure in the
database.

Note that the space occupied by interpreted (and compiled dynamic) clauses is
reclaimed after the a~olish, but space occupied by static compiled clauses is
not reclaimed.

17-1. Definition

CHAPTER 17

DATABASE REFERENCES

A database reference is a term which uniquely identifies a clause or recorded
term (see chapter 18) in the database. The purpose of providing database
references is only to increase efficiency in programs which have to do a lot
of manipulation of the database. Using a database reference to a clause can
save repeated searches using clause/2.

The internal form of a database reference is irrelevant, but for the benefit
of the curious it is

'$ref'(Pointer,Counter)

where Pointer is a machine pointer to the clause representation and Counter is
a unique integer. This representation of database references may change in
the future; programs should not rely on it.

Consistency checking is done whenever a reference is used; any attempt to use
a reference to a clause which has been retracted will simply fail.

There is no restriction on the use of references. References may be included
in asserted clauses.

17-2. assert{+Clause,-Ref)

Equivalent to assert/1 but returns Ref which is the database reference which
uniquely identifies the newly asserted clause.

17-3. asserta(+Clause,=!!.[)

Equivalent to asserta/1 but returns Ref which is the database reference which
uniquely identifies the newly asserted clause.

17-4. assertz(+Clause,-Ref)

Equivalent to assertz/1 but returns Ref which is the database reference which
uniquely identifies the newly asserted clause.

17-5. clause(?Head,?Body,?Ref)

This predicate has two different modes of use, depending on whether or not the
database reference Ref of the clause is given. If Ref is specified, then
Head:-Body is unified with the clause identified by Ref-.-(If this clause is a

90 Database References

unit clause, Body is unified with true.)

If Ref is not given, then this is exactly like clause/2 except that the
database reference is returned.

17-6. erase(+Ref)

The dynamic clause (or recorded term - see chapter 18) which is referenced by
Ref is erased from the database. Any subsequent attempt to use the specified
reference will fail.

If Ref is not a database reference to an existing clause or recorded term,
then erase simply fails.

17-7. instance(+Ref,-Term)

A (most general) instance of the clause or recorded term indicated by the
database reference Ref is unified with Term. If the reference is to a unit
clause C then Term is unified with C:-true. -- -
If Ref is not a database reference to an existing clause or recorded term,
then instance simply fails.

CHAPTER 18

THE INTERNAL DATABASE

The following predicates are provided purely for efficiency. Their semantics
can be understood by imagining that they are defined by the following clauses:

recorda(Key,Term,Ref) :- asserta('$recorded'(Key,Term),Ref).
recordz(Key,Term,Ref) :- assertz('$recorded'(Key,Term),Ref).
recorded(Key,Term,Ref) :- clause('$recorded'(Key,Term),_,Ref).

The only reason that these predicates are not implemented in something like
the above manner is that recorded would have to do a linear search through all
the clauses for '$recorded' /2. In the actual implementation there is a fast
look-up using the Key.

18-1. recorda(+Key,?Ter■,-Ref)

The term Term is recorded in the internal database as the first item for the
key Key, and a database reference to the newly recorded term is returned as
Ref. The Key nust be instantiated (not to a float); otherwise the goal fails.
If Key is a compound term, only its principal functor is significant. That
is, foo{1) would be considered to represent the same Key as foo{n).

18-2. recordz{+Key,?Term,-Ref)

The term Term is recorded in the internal database as the last item for the
key Key, and a database reference to the newly recorded term is returned as
Ref. The Key nust be instantiated {not to a float); otherwise the goal fails.
If Key is a compound term, only its principal functor is significant. That
is, foo(1) would be considered to represent the same Key as foo(n).

18-3. recorded(+Key,?Term,?Ref)

The internal database is searched for a term recorded under the key Key which
unifies with Term and whose database reference . unifies with Ref.

This predicate is non-determinate, meaning that it can be used to backtrack
through all the matching terms recorded under the specified key. Thus, if you
only want to match a single term you should use a cut to prevent any of this
backtracking.

Key must be instantiated (not to a float); otherwise the call fails. If Key
is a compound term, only its principal functor is significant. That is,
foo(1) would be considered to represent the same Key as foo(n).

CHAPTER 19

SETS: COLLECTING ALL THE SOLUTIONS TO A GOAL

When there are many solutions to a goal, and when you want a list of all those
solutions, you can write a program which repeatedly backtracks into that goal
to get another solution. In order to collect all the solutions together, it
is necessary to use the database (via assert) to hold the solutions as they
are generated, because backtracking to redo the goal would undo any list
construction that had been done after satisfying the goal.

Instead of writing this backtracking loop yourself, it is convenient to use
one of the built-in predicates setof/3 and bagof/3 which are described below.
These provide a nice logical abstraction, whereas if you write the backtrack
loop yourself the need for explicit side-effects (asserts) destroys the
declarative interpretation of the code. ·

19-1. setof(?Template,+Goal,-Set)

Read this as "Set is the set of all instances of Template such that Goal is
provable, where that set is non-empty". The term Goal specifies a goal to be
called as if by call/1. Set is a set of terms represented as a list of those
terms, without duplicate;:--1.n the standard order for terms {see section 10).
If there are no instances of Template such that Goal is satisfied then the
predicate fails.

The variables appearing in the term Template should not appear anywhere else
in the clause except within the term Goal. Obviously, the set to be
enumerated should be finite, and should be enumerable by Prolog in finite
time. It is possible for the provable instances to contain variables, but in
this case the list Set will only provide an imperfect representation of what
is in reality an infinite set.

If there are uninstantiated variables in Goal which do not also appear in
Template, then setof can succeed non-determinately, generating alternative
values for Set corresponding to different instantiations of the free variables
of Goal. (Uis to allow for such usage that the set Set is constrained to be
non-empty.) For example, the call: --

?- setof(X, X likes Y, S).

might produce two alternative solutions via backtracking:

Y = beer,
Y = cider,

The call:

S = [dick, harry, tom)
S = [bill, jan, tom J

?- setof((Y,S), setof(X, X likes Y, S), SS).

would then produce:

94 Sets: Collecting All the Solutions to a Goal

SS = [{beer,[dick,harry,tom]), (cider,[bill,jan,tom])]

Variables occurring in Goal will not be treated as free if they are explicitly
bound within Goal by an existential quantifier. An existential quantification
is written:

meaning "there exists a Y such that g_ is true", where Y is some Prolog
variable. For example:

?- setof(X, YA(X likes Y), S).

would produce the single result:

X = [bill, dick, harry, jan, tom]

in contrast to the earlier example.

19-2. bagof(?Tem plate,+Goal,-Bag)

This is exactly the same as setof except that the list (or alternative lists)
returned will not be ordered, and may contain duplicates. The effect of this
relaxation is to save considerable time and space in execution.

19-3. !"f.

This is recognized as meaning "there exists an X such that Pis true", and is
treated as equivalent to simply calling f.. The use of this explicit
existential quantifier outside the setof and bagof constructs is superfluous.

20-1. Definite Clause Grammars

CHAPTER 20

GRAMMAR RULES

Prolog's grammar rules provide a convenient notation for expressing definite
clause grammars, which are useful for the analysis of both artificial and
natural languages.

Definite clause grammars are an extension of the well-known context-free
grammars. A grammar rule in Prolog takes the general form

meaning "a possible form for head is body". Both body and ~ are sequences
of one or more items linked by the standard Prolog conjunction operator ','.

Definite clause grammars extend context-free grammars in the following ways:

- A non-terminal symbol may be any Prolog term (other than a variable
or integer).

- A terminal symbol may be any Prolog term. To distinguish terminals
from non-terminals, a sequence of one or more terminal symbols is
written within a grammar rule as a Prolog list. An empty sequence
is written as the empty list '[]'. If the terminal symbols are ASCII
character codes, such lists can be written (as elsewhere) as
strings. An empty sequence is written as the empty list, ' (]' or

'""'
- Extra condi tio.ns, in the form of Prolog procedure calls, may be

included in the right-hand side of a grammar rule. Such procedure
calls are written enclosed in curly brackets('{' and'}').

- The left-hand side of a grammar rule consists of a non-terminal,
optionally followed by a sequence of terminals (again written as a
Prolog list).

- Alternatives may be stated explicitly in the right-hand side of a
grammar rule, using the disjunction operator ';' as in Prolog.

- The cut symbol may be included in the right-hand side of a grammar
rule, as in a Prolog clause. The cut symbol does not need to be
enclosed in curly brackets.

20-2. An Example

As an example, here is a simple grammar which parses an arithmetic expression
(made up of digits and operators) and computes its value.

96 Grammar Rules

expr(Z) --> term(X), "+"' expr(Y), {Z is X + Y}.
expr(Z) -> term(X), "-"' expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term (Z) --> number(X), "* II term(Y), {Z is X * Y}.
' term(Z) --> number(X), "I", term(Y), {Z is X / Y}.

term(Z) --> number(Z).

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) -> [CJ, {"0"=<C, C=<"9", Xis C - "0"}.

In the last rule, C is the ASCII code of some digit.

This grammar can now be used to parse and evaluate an expression by means of
the built-in predicate phrase/2. For example,

?- phrase(expr(Z),"-2+3*5+1").

Z = 14

20-3. Translation of Grammar Rules into Prolog Clauses

Now, in fact, grammar rules are merely a convenient abbreviation for ordinary
Prolog clauses. Each grammar rule is translated into a Prolog clause as it is
consulted or compiled. This translation is described below.

The procedural interpretation of a grammar rule is that it takes an input list
of symbols or character codes, analyzes some initial portion of that list, and
produces the remaining portion (possibly enlarged) as output for further
analysis. The arguments required for the input and output lists are not
written explicitly in a grammar rule, but are added when the rule is
translated into an ordinary Prolog clause. For example, a rule such as

p(X) -> q(X).

translates into

p(X,S0,S) :- q(X,S0,S).

If there is more than one non-terminal on the right-hand side, as in

p(X,Y) -> q(X), r(X,Y), s(Y).

then corresponding input and output arguments are identified, as in

p(X,Y,S0,S) :­
q(X,S0,S1),
r(X , Y , S 1 , S2) ,
s(Y,S2,S).

Terminals are translated using the built-in predicate 'C'(S1,X,S2), read as

Grammar Rules 97

"point S1 is connected by terminal X to point S2"t and defined by the single
clause

'CI ([X : s] 'X. s).

(This predicate is not normally useful in itself; it has been given the name
upper-case 'o' simply to avoid using up a more useful name.) Then, for
instance

p(X) --> [go,to], q(X), [stop].

is translated into

p(X,SO,S) :-
'C' {SO,go,S1),
'C ' { S 1 , to, S2) ,
q(X,S2,S3),
'C' {S3,stop,S).

Extra conditions expressed as explicit procedure calls naturally translate as
themselves. For example,

p(X) --> [X), {integer(X), X>O}, q(X).

translates to

p(X,SO,S) :-
'C' {SO,X,S1),
integer CX),
X>O,
q(X,S1,S).

Similarly, a out is translated literally.

Terminals on the left-hand side of a rule translate into 'C'/3 goals with the
first and third arguments reversed. For example,

becomes

is(N), [not)--> (aint].

is{N,SO,S) :-
'C' {SO,aint,S1),
'C' (S,not,S1).

Disjunction has a fairly obvious translation. For example,

args(X,Y) -->

translates to

dir(X), [to), indir(Y)
indir(Y), dir(X).

98

args(X,Y,SO,S) :-
(dir(X,SO,S1),

) .

'C'(S1,to,S2),
indir(Y,S2,S)
indir(Y,SO,S1),
dir(X,S 1, S)

20-4. Grammar-Related Built-in Predicates

20-4-1. expand_term(+T1,-T2)

Grammar Rules

When a program is compiled (or consulted), some of the terms read are
transformed before being compiled (or stored as interpreted clauses). This
transformation is done by calling expand_term/2. Thus expand_term is usually
called by the built-in predicates compile and consult and not directly by user
programs.

The normal use of expand_term(TI., T2) is to translate grammar rules into
ordinary Prolog clauses. If T1 is a grammar rule, then T2 is the
corresponding clause. Otherwise T2 is just!.!. unchanged. For example,

?- expand_term{(a-->b),T).

T = a(_154,_152):-b(_154,_152)

The user may define other transformations to be done by expand_term by
defining clauses for term_expansion/2. expand_term calls term_expansion
first; if it succeeds the grammar rule expansion is not tried.

20-4~2. phrase(+Phrase,?List)

This predicate is the normal way to commence execution of grammar rules.
Viewed declaratively, the list List is a phrase of type Phrase (according to
the current grammar rules), where Phrase is either a non-terminal or, more
generally, a grammar rule body.

Phrase nrust be non-variable. List may be bound to a list of symbols or
character codes, in which case this goal corresponds to using the grammar for
parsing. Or it may be unbound, in which case the grammar is being used for
generation. For example, suppose we have the following simple grammar.

s --> [J l [a], s.

Then we can generate phrases of type's' as follows.

Grammar Rules 99

?- phrase(s,L).

L = [] .
'

L = [a] ;

L = [a,a]

L = [a,a,a]

and so on indefinitely.

20-4-3. 'C'{?S1,?Terminal,?S2)

Not normally of direct use to the user, this built-in predicate is used in the
expansion of grammar rules (see above). It is defined by the clause:

'C' ([X :sJ,X,S).

CHAPTER 21

ACCESS TO UNIX

The predicate described here provides the most commonly needed access to Unix.
You can also extend the Prolog system with additional C code, including system
calls, using the C interface (see chapter 23).

The reason for channeling all the interaction with Unix through a single
built-in predicate, rather than having separate predicates for each function,
is simply to localize the system dependencies. Admittedly, this ma.kes for
more cumbersome commands, so you may wish to put some clauses such as

cd :-unix(cd).
cd(X) :- unix(cd(X)).

in your 'prolog.ini' file ('prolog.ini' files are discussed in section 1-3).

21-1. unix(cd(+Path))

Changes the working directory of Prolog (and Emacs if running under the editor
interface) to that specified by its argument which should be an atom
corresponding to a legal directory. If the argument is not of this form, the
goal just fails.

Note that the "Escape x cd Path" command under Emacs has the same effect as
this, except that Emacs allows a slightly more general form of Path in that it
accepts the,-, prefix (see csh(1) in the Unix manual).

21-2. unix(cd)

Changes the working directory of Prolog (and Emacs if running under the editor
interface) to your home directory.

Note that the "Escape x cd" command of Emacs is exactly the same as this.

21-3. unix(shell(+Comrnand))

Command 1111st be an atom and it is passed to a newly created shell process for
execution as a shell command. The goal fails if Command is not an atom, or if
the shell returns with a non-zero result.

21-4. unix(shell)

Starts up an interactive shell. The shell run depends on your SHELL
environment variable. You can exit from the shell by typing "D (your
end-of-file character) unless under Emacs in which case you should type "exit"

102 Access to Unix

if using the C shell (csh) or "kill -9 $$" if using the Bourne shell (sh).
(Under Emacs you should be able to simply type "X"D to exit from any shell,
but currently this does not work.) The call to shell/0 fails if a non-zero
result is returned by the shell.

CHAPTER 22

THE EMACS INTERFACE

22-1. Overview

This chapter presupposes some knowledge of the Emacs editor. An introduction
to the Emacs editor is included in the Quintus Prolog User's Guide. This
chapter summarizes the features which have been added to Emacs specifically to
support Quintus Prolog. The supplied version of Emacs was written by Unipress
Inc., and it is documented separately.

To run Prolog under the Emacs interface, type

prolog +
or

prolog + file-to-be-edited

at the Unix prompt. You
file-to-be-edited, if given,
running in the lower window.

then get Emacs running with two windows:
appears · in the upper window while Prolog is

You can talk to Prolog very much as you would without the editor interface.
The only difference is that control characters generally have their Emacs
meaning rather than any meaning they might have outside of Emacs. The reason
for this is that the Prolog window is still an edit buffer and you are free to
move up and down it using the full range of editing commands. Thus AD means
delete the next character, and "U may be used to specify an argument for the
next command.

The general philosophy of the Prolog/Emacs interface is that you should not be
able to lose your Prolog window, for example, by changing buffers. For this
reason, a few commands have been slightly amended in a way which, hopefully,
will seem very natural to you. There are also a number of extra key bindings
which are described in section 22-2.

Emacs is a customizable editor. You can use a language called MockLisp to
extend or change the way it behaves, and in fact this is the way that the
Prolog/Emacs interface has been built. If you want to make your own
extensions you may need to know something about the way this interface works;
some notes to assist you are provided in section 22-5.

22-2. Key Bindings

This section describes the key bindings connected with the Prolog/Emacs
interface. For a complete listing of all the key bindings applicable in a
particular window type Escape x describe-bindings.

The following apply only in the Prolog window, not in the upper window(s):

"X ""D sends an end-of-file to Prolog. Since AD (which is the default

. .

104

"'X "'E

The Emacs Interface

end-of-file character in Unix) is taken up by the editor you need
this in order to exit from a break or to exit from Prolog
altogether. Having exited from Prolog using this command you can
start up a new Prolog by typing Escape x followed by
"restart-prolog".

allows you to edit the previous question you typed to the Prolog
prompt and resubmit it. Effectively, it grabs the last question
and brings it down to the bottom of the buffer. There you can
edit it if necessary, then move your cursor to the end of the line
and type Return. You can also grab questions other than the most
recent one by specifying an argument to this command, 2 to get the
second last, 3 to get the third last, and so on. Another way of
doing this is to move the cursor back to the question you want and
type "X "E.

The following key bindings apply in any window:

<esc>"C

"X "'c

<esc> e

"X •

sends an interrupt to the Prolog process (exactly as if you were
not running under Emacs).

causes an irreversible exit from Emacs and Prolog. You will be
prompted to make sure (1) you don't want any buffers you have
~ailed to save, and (2) you don't mind your Prolog process being
killed.

stops the Emacs process and returns you to the Unix shell. If a
Prolog program is running it will continue to run but you will not
see any output from it. You can get your Emacs back by typing
"fg" - see the documentation for csh in the Unix manual for
further details.

(for enlarge ~indow) enlarges the current window as much as it can
without destroying the other window (the current window should be
either the Prolog window or the one above it). Typed a second
time, this command undoes what it did the first time. If an
argument is given, the other window is reduced only to the
specified number of lines.

Find the source code for a particular procedure. If the cursor is
positioned on or before the predicate name part of a goal, then
you don't need to type that name. Otherwise, in response to an
explanatory prompt, you should type the name of the procedure
optionally followed by a '/ 1 and its arity. The file containing
the specified procedure is then visited and the cursor is
positioned at the beginning of the procedure. There are some
layout conventions which must be followed for this facility to
work; see section 22-4. The facility is also available via the
'•' option to the debugger (see the Quintus Prolog User'~ Guide).

<esc> x restart-prolog
Restart Prolog, optionally using a different saved state. This is
useful if you have exited from Prolog for some reason (for
example, by typing "c followed by 'e') and want to start again, or

The Emacs Interface

if you want to run a different saved state.

<esc> x prolog-mode
Changes the current buffer to Prolog mode. See section 22-3.

The following key bindings apply except in the Prolog window:

105

<esc> i (for interpret) is for loading procedures from the edit buffer
into the interpreter (that is, consulting them). You then are
prompted to choose one of three options; you can consult

<esc> k

1. the procedure in which the cursor is currently
positioned (see section 22-4 for restrictions on
program layout necessary for this to work);

2. the region between the cursor and the mark;

3. the whole buffer.

(for kompile?) is for compiling procedures from the edit buffer,
and the options are the same as for <esc> i.

22-3. Prolog Mode

Prolog mode applies · automatically whenever you are editing a file which ends
with the characters '.pl'. It is useful when you are editing Prolog source
code. In Prolog mode:

- whenever you type a closing parenthesis or bracket the corresponding
opening one is flashed. This bracket matching attempts to be clever
about strings in quotes, because normally you would not want a
bracket written within quotes to count for matching purposes.
Unfortunately, _ this means that the bracket matching does not work
properly when radix notation (for example, 16 '100 is hexadecimal
100, or 256 decimal) is used.

- the definition of linefeed is modified: immediately after a ':-' it
is equivalent to a Return followed by 3 spaces. Otherwise it is
equivalent to a Return followed by enough tabs and spaces to put the
cursor underneath the first non-space character in the current line.

22-4. Layout Restrictions

There are some restrictions on program layout which are necessary for Escape i
p (consulting a procedure), Escape k p (compiling a procedure) and AX. (find
definition) to work properly. They are:

1. Group clauses of the same name and arity together.

2. Start the head of each clause at the beginning of a line, that is,
right up against the left-hand side of your window or screen.

106 The Emacs Interface

Indent any continuation lines for that clause.

3. If you use multi-line comments, indent all the continuation lines.

4. If you are defining clauses for a predicate which is an operator,
do not use the operator property of the predicate when writing the
head of the clause. For example, if you want to define clauses for
'+'/2, write the head of the clause in the form "+(A,B 11) and not "A
+ B".

22-5. Emacs Customization Notes

This section is only for those who wish to customize their Emacs environment.
Al l of the MockLisp code written by Quintus is supplied with the system. This
code can be found in /usr/local/quintus/ml, assuming that your system manager
has installed the quintus directory in /usr/local.

Please note that future releases of Quintus Prolog may not be compatible with
all modifications you may make.

22-5-1. Initialization Files

Your Emacs initialization file (.emacs_pro in your home directory), if you
have one, is loaded before the MockLisp files defining the editor interface.
It MUST NOT call argv or argc or the package will break. There are two "hook
functions" you may define to customize the various modes used by the system.

split-screen-mode-hook
If a function by this name is defined, it will be called after all
the initializations done on invoking Prolog through the editor
interface are completed, and before the screen is displayed.

prolog-mode-hook
If a function by this name is defined, it will be called every
time Prolog mode is entered. Prolog mode is entered every time
you load a file with a ".pl" extension.

22-5-2. Rebinding Keys

The file spli tscreen.ml holds many of the editor interface functions. The
function split-screen, defined inside . of split screen .ml, is always executed
upon startup. This function is responsible for setting up the customized
Emacs environment that is the Quintus Prolog editor interface. It creates key
bindings and sets up a number of variables. All key bindings are made in the
file keys. ml.

The Quintus Prolog editor interface environment is the result of rebinding the
keys of many of the most commonly used functions to analogous functions that
know about the Prolog window and automatically perform extra "housekeeping".

The Emacs Interface 107

The general naming scheme for these new functions is to add the prefix
"split-screen" to the old function name.

In addition to rebinding keys, the function meta-x-trap, also defined in the
file spli tscreen. ml, is used to catch any of the old function names that you
might explicitly invoke. It is bound to the key Escape x. meta-x-trap works
by "pushing" a string representing its substituted command sequence. For this
to work properly, the OLD Meta-x function, execute-extended-command, must be
bound to the key Escape ,._ (also known as \e\036). This key binding was
picked to be out of the way, and should NEVER be rebound, or meta-x-trap will
break.

If you reset variables, be particularly careful of any that affect the
handling of the window environment. Resetting some of these may break the
editor interface.

If you think you have found a bug with the Emacs interface, please check that
the bug occurs when you have no initialization file.

23-1. Overview

CHAPTER 23

INTERFACE TO C FUNCTIONS

Quintus Prolog provides tools for loading, and then calling, C programs from
within Prolog. This may be desirable for several reasons:

1. To speed up certain critical operations by writing them in the
lower level language C.

2. To interface with the operating system and other libraries and
programs.

3. To integrate already existing C programs to form a composite
system.

C functions are loaded directly into the running Prolog system using the
built-in predicate load_foreign_files/2 (see below). Prior to calling this
predicate, you need to prepare facts in the database which specify which C
functions should be callable from Prolog and how their arguments should be
passed. Using this information, the load_foreign_files command automatically
sets up the linkage from Prolog procedures to C functions.

The interface allows the passing and returning of Prolog's simple (atomic)
data types: integers, floats and atoms. When data is passed between Prolog and
C, it is automatically converted between its Prolog representation and its C
representation. In this way, your C program does not have to understand
Prolog's internal data structures, and thus is portable between different
releases of the Quintus Prolog system. Complex data structures, such as lists
and trees, cannot be passed directly between Prolog and C. However, such data
structures can be passed by unpacking them in Prolog and passing their atomic
components.

The Prolog system manages its own working storage in sophisticated ways. You
can allocate space for C programs either statically in the programs
themselves, or dynamically using the malloc() family of routines. C programs
CANNOT control the overall storage allocation (that is, at the brk(), sbrk()
level). You will get an error message if you try to do this.

For applications which involve integrating large and complex C programs with
Prolog programs, Quintus recommends investigating the possibility of running
the C and Prolog programs as separate Unix processes communicating through an
inter-process communication channel. In this approach, Prolog's C interface is
used to load C code to support the Pro log side of this communication. The
Prolog/Emacs interface is an example of a multi-process system.

Some examples of using the C interface are supplied with the Quintus Prolog
system. You should be able to find these in the "quintus" directory (by
default this is /usr/local/quintus).

110 Interface to C functions

23-2. load_foreign_files(+ListOfFiles,+ListOfLibraries)

Loads C functions directly into the running Prolog system. For example,

?- load_foreign_files{ ['math.o','other.o'], ['-lm']).

Each file in the ListOfFiles is a normal Unix object file. You need to
produce these files from your source files using the normal C compiler. This
will produce object files that can then be loaded into Prolog. The object
files will normally have names ending in '.o'. For example:

S cc -c math.c
S cc -c other.c

Any libraries that need to be searched when linking these object files
together are listed in ListOfLibraries. This is a list of atoms which will be
used to provide options to the Unix linker "ld". The load foreign files
command automatically generates a call to "ld" of the following -form {see the
Unix documentation for "ld" for more details):

ld -N -x -A?? -T ?? -o ?? LinkFile ListOfFiles ListOfLibraries -le

The ?? fields are filled in by Prolog. LinkFile will be an .internally
generated C file used by Prolog when loading the C program. The ListOfFiles
and ListOfLibraries fields are filled in from the corresponding lists passed
to load foreign files. Details of how libraries are searched are given in the
Unix documentation for "ld". In general, ListOfLibraries will contain special
'-1' options and/or names of library files. In many cases there may be no
additional libraries required, in which case ListOfLibraries = [].

The result of linking these object files and libraries is loaded into the
Prolog system, and C functions can then be called from Prolog. This loading
process may fail if:

- the facts in the database (see below), describing how to link C
functions to Prolog procedures, are incomplete;

- the C functions·specified have already been loaded;

- or the call to the Unix linker "ld" fails.

If the load does not complete successfully then no change is made to the
Prolog state. The load can be subsequently retried once the problem has been
corrected.

23-3. Linking C functions to Prolog procedures

When load_foreign_files/2 is called, the system looks in the database for
facts of the form:

foreign_file(FileName, [CFunction1, CFunction2, ••• , CFunctionN]).

Interface to C functions

foreign(CFunction1, PredicateSpecification1).
foreign(CFunction2, PredicateSpecification2).

foreign(CFunctionN, PredicateSpecificationN).

Example:

foreign_file('math.o', [sin, cos, tan)).

foreign(sin, sin(+float,[-float])).
foreign(cos, cos(+float,[-float])).
foreign(tan, tan(+float,[-float])).

111

Each foreign_file/2 fact lists the C functions that will be provided by each
object file. A fact of this form needs to be provided for every object file
listed in the ListOfFiles argument to load_foreign_files/2. The C functions
listed should only be the ones that are to be attached to Prolog procedures.
Supporting functions in the file, which are called by C and are not to be
directly attached, should not be listed.

Each foreign/2 fact describes how a C function is to be attached to a Prolog
procedure. The PredicateSpecification specifies the Prolog procedure and also
the argument passing interface (described below). A fact of this form needs to
be provided for every C function that is to be attached to a Prolog procedure.

Once the ListOfFiles and ListOfLibraries have been successfuly linked together
and loaded into the Prolog state, then all the specified Prolog procedures are
abolished and have their definitions replaced by links to the C functions.
Calling the Prolog procedures will now result in the C functions being called.

You can link a Prolog predicate directly to a C library function. However,
note that the functions shown in the library documentation are sometimes
actually C macros (see the .h files). In this case, the simplest thing to do
is write a small C function which simply calls the macro, and then link to
that.

You may abolish or redefine (using consult/1 or compile/1) any procedure which
has been attached to a C function. If such a procedure is redefined, then it
ceases to be attached to the C function. The link is replaced by the new
definition. It is not possible to re-establish this link.

The foreign_file/2 and foreign/2 facts must be consistent whenever
load foreign files/2 is called. However, they are not used after this point
and they may-be abolished if you wish (perhaps to reclaim some space).

The command load_foreign_files/2 can be used any number of times in a Prolog
session to keep loading further C programs. All such loaded C programs are
saved in the Prolog saved state when save/1 is used, and will be available
after any subsequent use of restore/1 (or when the saved state is run directly
from Unix).

Note that, if you want to load more than one foreign module and thus have
foreign file and foreign facts in more than one file, then you need to call
load_foreign_files after consulting/compiling each one of these files. The

112 Interface to C functions

reason for this is that foreign_file and foreign are treated just like any
other predicates, so that each consult/compile throws away any previous
definition. In case you forget, you will get a "multiple definition" style
warning in this case; to avoid this warning, abolish all the facts after doing
the load_foreign_f~les.

Once a C program is loaded, it cannot be unloaded or replaced. If a load
operation duplicates any symbols from a previous load, it will NOT be
completed. If you wish to be able to return to a particular state, you should
use save/1 to create a saved state before loading any more C code. Then you
can use restore at any time to get back to that state.

23-4. Specifying the argument passing interface

C functions are linked to Prolog procedures when the load_foreign_files/2
command is called, according to the foreign/2 facts you have provided.

These are of the form:

foreign(CFunction, PredicateSpecification).

where CFunction is the name of the C function (an atom),

and PredicateSpecification is:

PredicateName(ArgSpec,ArgSpec, •••)

and PredicateName is the name of the Prolog predicate (an atom),

and there is an ArgSpec for each argument of the predicate,

and ArgSpec is one of:

Examples:

+integer
-integer
[-integer)

foreign(sin,
foreign(rename,
foreign(cxyz,

+float
-float

[-float)

+atom
-atom

[-atom)

+string
-string

[-string)

sin(+float,[-float])).
rename(+string,+string)).
foo(+integer,-integer,+atom,-atom)).

Note that the CFunction name does NOT have to be the same as the
PredicateName.

The interface allows the simple Prolog data types, atoms, integers and
floating point numbers, to be passed to C functions and returned from C
functions. Prolog checks the types of the arguments it passes to C, and the
call will fail if any argument is not the right type. Prolog assumes that C
will return results of the specified type.

Interface to C functions 113

The interface is responsible for all the data conversions between Prolog's
internal representation and C's internal representation. The C program does
not need to know how Prolog represents atoms, integers and floats in order to
interface with Prolog. This feature simplifies the integration of C and
Prolog, and allows for compatibility across later versions of Quintus Prolog
and versions of Quintus Prolog running on other hardware. In particular, this
feature makes it easier to interface directly with already written C functions
in libraries and other programs.

The ArgSpec specifications have the following meanings:

Prolog: +integer
C: long int

The argument must be instantiated to an integer. The Prolog integer is
converted to a C integer and passed to the C function.

Prolog: +float
C: float

The argument mst be instantiated to a float. The Prolog float is
converted to a C float and passed to the C function. The float is passed
following the C language convention that single precision floats are
passed as double precision. The C parameter declaration should still be
'float', however, to avoid confusion.

Prolog: +atom
C: long unsigned

The argument must be instantiated to an atom, otherwise the call fails.
A canonical representation (see below) of the Prolog atom is passed to
the C function as an unsigned integer.

Prolog: +string
C: char •

The argument must be instantiated to an atom, Qtherwise the call fails.
A pointer to a null terminated string of characters containing the
printed representation of the atom is passed to the C function. This
string must NOT be overwritten by C.

Prolog: -integer
C: long int•

A pointer to an integer is passed to the C function. It is · assumed that
C will overwrite this integer with the result it wishes to return. When
the C function returns, the pointed to integer is converted to a Prolog
integer and unifie~ with the corresponding argument of the Prolog call.
The argument can be of any type; if it cannot be unified with the
returned integer, the call will fail. If the C function does not
overwrite the integer, then the result is undefined.

Prolog: -float
C: float •

114 Interface to C functions

A pointer to a single precision float is passed to the C function. It is
assumed that C will overwrite this float with the result it wishes to
return. When the C function returns, the float is converted
to a Prolog float and unified with the corresponding argument of the
Prolog call. The argument can be of any type; if it cannot be unified
with the returned float then the call will fail. If the C function does
not overwrite the float then the result is undefined.

Prolog: -atom
C: long unsigned •

A pointer to an unsigned integer is passed to the C function. It is
assumed that C will overwrite this unsigned integer with the result it
wishes to return. This result should be a canonical representation of
an atom already obtained by C from Prolog. Returning an arbitrary
integer will have undefined results. When the C function returns, the
atom represented by the pointed to unsigned integer is unified with the
corresponding argument of the Prolog call. The argument can be of any
type; if it cannot be unified with the returned atom, then the call will
fail. If the C function does not overwrite the unsigned integer, then
the result is undefined.

Prolog: -string
C char••

A pointer to a character pointer is passed to the C function. It is
assumed that C will overwrite this character pointer with the result it
wishes to return. This result should be a pointer to a null terminated
string of characters. When the C function returns, the atom which has
the printed representation specified by the string is unified with the
corresponding argument of the Prolog call. The argument can be of any
type; if it cannot be unified with the returned atom, then the call will
fail. If the C function does not overwrite the character pointer, then
the result is undefined. Note: Prolog copies the string if required, so
that it is not necessary for the C program to worry about retaining it.

Prolog: [-integer]
C: .return (long int)

No argument is passed to C. The return value from the C function is
assumed to be an integer. It is converted to a Prolog integer and
unified with the corresponding argument of the Prolog call. The
argument can be of any type; if it cannot be unified with the returned
integer, then the call will fail.

Prolog: [-float]
C: return (float)

No argument is passed to c. The return value from the C function is
assumed to be a float. This returned value is assumed to follow the C
language convention that single precision floats are returned as double
precision. The result is converted to a Prolog float and unified with
the corresponding argument of the Prolog call. The argument can be of
any type; if it cannot be unified with the returned integer, then the

Interface to C functions

call will fail.

Pro log: [-atom J
C: return (long unsigned)

No argument is passed to C. The return value from the C function is
assumed to be an unsigned integer which should be a canonical
representation of an atom already obtained by C from Prolog. Returning
an arbitrary integer will have undefined results. The atom represented
by the unsigned integer is unified with the corresponding argument of
the Prolog call. The argument can be of any type; if it cannot be
unified with the returned atom, then the call will fail.

Prolog: [-stringJ
C return (char•)

No argument ·1s passed to C. The return value from the C function is
assumed to be a character pointer pointing to a null terminated string
of characters. The atom which has the printed representation specified
by the string is unified with the corresponding argument of the Prolog
call. The argument can be of any type; if it cannot be unified with the
returned atom then the call will fail. Prolog copies the string if
required, so that it is not necessary for the C program to worry about
retaining it.

115

Arguments are passed to C in the same order as they appear in the Prolog call.
Only one "return value" argument can be specified; that is, there can be only
one [~integer], [-float), [-atom] or [-string] specification. There need not
be any "return value" argument in which case the value returned by the C
function is ignored. Both input and output specifications cause data to be
passed to the C function (except of course for the "return value" argument, if
present). Each input argument is appropriately converted and passed, and each
output argument is passed as a pointer through which the C function will send
back the result.

Note that Prolog procedures attached to C functions are always determinate.
However, they will fail if their input arguments are of the wrong type, or if
an output returned from C cannot be unified with the corresponding argument of
the Prolog call.

Prolog integers have a different precision from C integers. In the current Sun
and VAX implementations, Prolog integers are 29-bit integers, whereas C long
ints are 32-bi t integers. When integers are returned to Prolog from C they
will be reduced modulo 2"29 to a number in the range -~"28 •• 2"28-1, that is,
the three most significant bits are lost.

Prolog floats also have a different precision from C (single precision)
floats. In the current Sun and VAX implementations, Prolog floats have a
20-bit signed mantissa, whereas C floats have a 24-bit signed mantissa. (Both
have an 8-bit exponent.) When floats are returned to Prolog from C, there
will be a corresponding loss in precision.

116 Interface to C functions

23-5. Access to Prolog atoms from C

The C interface allows Prolog atoms to be passed to C either in a canonical
form as unsigned integers, or as pointers to character strings.

For each Prolog atom there is a single canonical representation. C programs
can rely on the property that identical atoms have identical canonical
representations. Note, however, that the canonical form of an atoms is NOT
necessarily identical across different invocations of the program. This means
that canonical atom representations should not be used in files or
inter-program communication. For these purposes use strings. C programs can
store canonical atoms in data structures and pass them around and back to
Prolog, but they should not attempt to construct or decompose them.

Strings passed from Prolog to C should NOT be overwritten. Strings passed back
from C to Prolog are automatically copied by Prolog if necessary. Thus the C
program does not have to retain them and can reuse their storage space as
desired.

In addition to obtaining and returning atoms through the interface Prolog
provides two C functions for converting back and forth between canonical atoms
and strings.

long unsigned QP atom from string(string)
char •string;- -

Returns the canonical representation of the atom whose printed
representation is string. The string is copied and the C
routine can reuse the string and its space.

char• QP_string_from_atom(atom)
long unsigned atom;.

Returns the string of characters for the atom with canonical
representation atom. This string should NOT be overwritten
by C.

Canonical atoms are particularly useful as constants to be used in passing
back results from C functions. The above routines can be used to initialize
tables of such constants.

23-6. Important Prolog assumptions

23-6-1. Storage management assumptions

The Prolog system has a sophisticated storage management strategy. The system
automatically expands and contracts space, allocating from Unix and returning
space to Unix as required. The standard malloc family of library functions are
provided by the Prolog system and they allocate memory from the Prolog
codes pace. These can be used by a C program to allocate memory for its own
purposes. C programs CANNOT use brk() and sbrk(). The Prolog system provides

Interface to C functions 117

dummy versions of these which will cause a Prolog error if called.

Note that C programs reside in the same address space as the Prolog system. C
programs which mistakenly write to areas of memory used by the Prolog system
can cause unpredictable results.

23-6-2. Input/output assumptions

Prolog uses the standard C I/0 library for input and output, except for saving
and restoring saved states when the Unix system calls open(2), read(2) and
wri.te(2) are used directly.

C programs can use any of the standard C I/0 and/or Unix I/0 libraries.

23-7. Debugging loaded C functions

C programs should be independently tested before they are loaded into a
running Prolog program. No tools are currently provided for debugging C
programs once they have been loaded into Prolog.

CHAPTER 24

MISCELLANEOUS BUILT-IN PREDICATES

24-1. numbervars(?X,+NO,-N1)

Instantiates each of the variables in X to a term of the form '$VAR'(!!_). For
example,

: ?- Term=foo(A,A,B), numbervars(Term,22,_), display{Term).
foo{$VAR(22),$VAR(22),$VAR(23))

NO must be an integer. That integer is used as the value of! for the first
variable in! (starting from the left), as shown in the example above. The
second distinct variable in Xis given a value of N satisfying "N is N0+1";
the third distinct variable gets the value N0+2, and-so on. The last variable
in! has the value N1-1.

Notice that in the example above, display is used rather than write. This is
because write treats terms of the form $VAR(N) specially; it writes 'A' if
N=O, 'B' if N:1, ••• 'Z' if N:25, 'A1' if N:26, etc. That is why, if you type
the goal in the example above, you will get the variable bindings printed out
as follows.

Term= foo(W,W,X),
A = W,
B = X,

24-2. ?X = ?Y - -
Defined as if by the clause nz=Z."; that is, X and Y are unified.

24-3. length(?L,?N)

If Lis instantiated to a list of determinate length, this length is unified
with N. For example,

?- length([a,B,1,f(x)],N).

N = 4

Otherwise, if Lis uninstantiated and N is a non-negative integer, then L is
bound to a list of!! distinct variables. For example,

?- length(L,2).

L = [_117,_119)

If the arguments to length satisfy neither of these conditions, the call

120 Miscellaneous Built-in Predicates

simply fails.

24-4. prompt(-Old,+New)

The sequence of characters (prompt) which indicates that the system is waiting
for user input is represented as an atom, and unified with Old. New must be an
atom and specifies the prompt to be used henceforth. In particular, the goal

prompt(X,X)

matches the current prompt to X, without changing it.

Prompts are not shown when you are running under the Emacs interface, apart
from the top-level prompt "l ?- " which cannot be changed. This predicate
only affects the prompt given when a user's program is trying to read from the
terminal (for example, by calling read). Note also that the prompt is reset
to the default "l: "on return to top-level.

APPENDIX I

COMPARISON OF QUINTUS PROLOG AND PROLOG-2O

Quintus Prolog is very similar to Prolog-20, DEC10 Prolog and C-Prolog. The
purpose of this document is to describe the differences, and in doing so to
provide an introduction to Quintus Prolog for those who are familiar with one
of these systems. A guide to porting programs to Quintus Prolog is given in
the User's Guide.

I.1. The Emacs Editor Interface

Perhaps the most interesting new feature of Quintus Prolog is the interface to
the Emacs editor. You get this by typing

prolog +
or prolog + file-to-be-edited

to the Unix prompt. You then get Emacs running with two windows:
file-to-be-edited (if given} appears in the upper window while Prolog is
running in the lower window.

You can talk to Prolog very much as you would without the editor interface.
The only difference is that control characters generally have their Emacs
meaning rather than any meaning they might have outside of Emacs. The reason
for this is that the Prolog window is still an edit buffer and you are free to
move up and down it using the full range of editing commands. Thus AD means
delete the next character, and AU may be used to specify an argument for the
next command.

There is also an Emacs command which allows you to conveniently recall a
previous Prolog command so that you can then modify it and resubmit it to
Prolog.

It is possible to consult or compile Prolog code directly from an Emacs
buffer; you can choose between consulting or compiling the whole buffer, a
specified region of that buffer or just a single procedure.

See chapter 22 for a full description of the Emacs interface.

I.2. The Help System

Both the User's Guide to Quintus Prolog and this Reference Manual are
available on-line. The help system is most conveniently used in conjunction
with the Emacs interface, but can also be used without it.

The help system is menu-driven, with menus corresponding to the chapters
within a manual, the sections within a chapter and so on. There are also two
methods of topic-oriented access: help(Topic) is analogous to looking up a
Topic in an index, and manual(Topic) is analogous to looking it up in a table

122 Comparison of Quintus Prolog and Prolog-20

of contents. Topics can be abbreviated, and menus are generated in ambiguous
situations.

I.3. The C Interface

Quintus Prolog provides tools for loading, and then calling, C programs from
within Prolog. C functions are loaded directly into the running Prolog system
using the built-in predicate load foreign filesl2. Prior to calling this
predicate, the user prepares facts in the database which specify which C
functions should be callable from Prolog and how their arguments should be
passed. Using this information the load_foreign_files connnand automatically
sets up the linkage from Prolog procedures to C functions.

The interface allows the passing and returning of Prolog's simple (atomic)
data types: integers, floats and atoms. When data is passed between Prolog and
Cit is automatically converted between its Prolog representation and its C
representation. In this way the user's C program does not have to understand
Prolog's internal data structures, thus making the C code portable between
different releases of the Quintus Prolog system. Complex data structures,
such as lists and trees, cannot be passed directly between Prolog and
C. However, such data structures can be passed by unpacking them in Prolog and
passing their atomic components.

See chapter 23 for a full description of the C interface.

I.4. Floating Point

Quintus Prolog provides floating point numbers (floats).
acceptable syntax for floats are

o.o -1.0 0.54 1000.0 1. OE6 12.345678e-12

Examples of

A float has approximately 6 decimal digits of precision. Its magnitude, if
nonzero, must be in the approximate range of 0.29e-38 to 1.7e+38 on the VAX,
or 2.2e-44 to 3.4e+38 on the Sun.

In Quintus Prolog, the symbol 'I' is used for floating point division rather
than integer division, that is, its result is always a float. The symbol for
integer division (which truncates fractional part of the answer) is 'II'.
This is consistent with C-Prolog.

There are two new arithmetic functors for coercing integers to floating point
and vice versa. For example,

?- Xis 2.5, y is integer(X), z is float(Y).

X = 2.5,
y = 2,
z = 2.0

Note that the effect of the arithmetic functor integerl1 in an expression is

Comparison_ of Quintus Prolog and Prolog-20 123

to truncate its argument - the fractional part is thrown away. It should not
be confused with the predicate integer/1 which, as in Prolog-20, succeeds if
and only _ if its argument is instantiated to an integer. There are two new
similar predicates:

float(N) - true if N is instantiated to a floating point number
number(N) - true if N is instantiated to an integer or a float

I.5. Improved Compiler/Interpreter Interface

Like Prolog-20, Quintus Prolog provides both an interpreter and a compiler.
There are a number of important differences however:

- Compiled and interpreted code can be freely intermixed, with no need
for public declarations. The advantages of using the interpreter
are that there are more extensive debugging facilities, and· space is
reclaimed when procedures are redefined. The advantage of using the
compiler is that compiled code is very fast and space-efficient.

- consult has been changed to behave like reconsult in Prolog-20.
That is, the procedures defined in a consult op~ration replace
(rather than extend) any previous definitions for those procedures.
This makes consult much more like compile so that alternating
between consulting and compiling a piece of code is much simpler.
It also means that spreading the definition of a procedure across
more than one file will NO LONGER WORK. reconsult is just treated
as a synonym for consult.

- In Prolog-20 you can use assert, retract and clause on interpreted
code but not on compiled code. In Quintus Prolog you can use these
procedures only on DYNAMIC procedures. Regardless of whether a
procedure is compiled or consulted it may be preceded by a
declaration of the form

:- dynamic foo/1.

which makes foo/1 dynamic. (This declaration must appear in the
same file as the procedure itself.) Note that compiled dynamic
predicates are actually implemented like interpreted predicates;
that is, they are shown by listing and in debugging, and also they
are slow in comparison with non-dynamic compiled code.

You do not need to have a dynamic declaration for a procedure which
is only used by assert, retract and/or clause. However, it is
recommended that you do have one if the procedure is to be called
(for example, :- foo(x).) since if this happens before foo/1 is
known to be dynamic you may get an "unknown procedure" trap (see
unknown/2, section 15-9).

Comparison of Quintus Prolog and Prolog-20

I.6. Improved Debugger

There are a number of improvements to the debugger:

- trace/0 now sets a permanent state in which the debugger will start
creeping (single-stepping) on every goal typed at the top-level.
debug/0 sets the state so that the debugger starts leaping on every
goal typed at the top-level. notrace/0 is a new predicate identical
to nodebug/0 - which turns the debugger off. These changes
rationalize the top-level use of the debugger.

- Turning the debugger off does not remove spypoints, although no
information will be shown about these spypoints while debugging is
off. A new predicate, nospyall/0, is provided for removing all
spypoints.

- Spypoints can be set on compiled procedures, although ancestor and
depth information will not be available at such spypoints.

- Debugger messages now show if a procedure is compiled or is a
built-in procedure.

- The 'r' (retry) option is more robust; in Prolog-20 it sometimes
behaves strangely when interpreted and compiled code are mixed.

- By default the debugger only prints structures down to 10 levels
deep - you just get ' ••• ' in place of any deeper structure. This
makes it much easier to debug programs which manipulate large data
structures. The print depth limit can be reset or removed using the
'<' option.

- There are some additional debugging options:

+ put a spypoint on procedure currently being shown

remove any spypoint on procedure currently being shown

= show the current state of the debugger

- Unknown procedure catching {see unknown/2, section 15-9) works
consistently. (In Prolog-20 its behavior depends on whether or not
debugging is switched on, and it does not work for compiled code).
Also, there is no loss of efficiency incurred by using this
facility. It is on by default.

- leash/1 now takes a more convenient form of argument (as well as
continuing to support the Prolog-20 argument forms). You give it a
list of the ports you want leashed; for example,

: ?- leash([call,redo]).

will set leashing to its default under Prolog-20. The default under
Quintus Prolog is leashing on all four ports.

Comparison of Quintus Prolog and Prolog-20 125

1.7. Style Checking

By default, Quintus Prolog prints warnings, as it consults or compiles, about

1. single occurrences of a "named" variable in a clause, where "named"
in this context means that the variable name does not begin with an
underscore (' ') ;

2. procedures for which all the clauses are not adjacent (contiguous)
in the source file;

3. procedures for which clauses are encountered in more than one file
(multiple definitions). In Prolog-20 it is possible to spread the
definition of a procedure across more than one file if you use
consult, but not if you use compile or reconsult. This style
warning can be useful in catching any attempt to do this.

These warnings can be very helpful in catching typing mistakes, and it is
highly recommended that you adapt your programming style to make the best use
of them. Style checking can be fully controlled by the predicates
style_check/1 and no_style_check/1 which each take as argument any of the four
atoms below.

all
single_var
discontiguous
multiple

turn on/off all style checking
turn on/off checking for single variable occurrences
turn on/off checking for discontiguous procedures
turn on/off checking for multiple definitions

I.8. Stream-Based Input and Output

In addition to fully supporting the Prolog-20 I/0 predicates, Quintus Prolog
supports the more powerful concept of streams. A stream is a special Prolog
term, and there is a version of each of the Prolog-20 I/O predicates which
takes an extra stream argument.

A new predicate, open/3, opens a file in one of three modes, 'read', 1 write'
or 'append'.

Streams are described in section 7-3.

I.9. Improved Handling of Database References

When a clause is retracted (or erased), or when a recorded term is erased, the
clause (or term) disappears immediately from the database. Safety is
maintained in that any attempt to access it via a database reference (a
"dangling pointer") will just fail. Thus instance/2 and clause/3 cannot be
used to get at clauses or recorded terms which have been erased.

There is no restriction against asserting clauses containing database
references if you really want to.

126 Comparison of Quintus Prolog and Prolog-20

I.10. Runnable Saved States

A saved state produced by save/1, save/2 or save_program/1 (which is the same
as save/1 except that only the program and not the execution state is saved)
can be run directly from Unix by typing the name of the file into which it was
saved. You can also run it with the Emacs interface by typing, for example,

savedstate +
or savedstate + file-to-be-edited

I.11. Memory Management

The space occupied by interpreted code is reclaimed when clauses are retracted
or procedures abolished. This reclamation is not delayed until backtracking
as in Prolog-20. The space occupied by compiled code is not reclaimed.

A stack shifter is incorporated which expands data areas when necessary. The
memory space is contracted by the built-in predicate trimcore/0. This
predicate can be explicitly called by a user program, but it is automatically
called anyway on completion of every goal typed at the top-level.

There is currently no garbage collection of constructed terms. However, this
space is recovered on backtracking.

The predicate statistics/2 is fully upward compatible with Prolog-20. The
data areas in Quintus Pro log are slightly differently organized, but the
Prolog-20 statistics keywords (for example, ?- statistics(global_stack,X))
will still give meaningful results. See section 13-3 for further details.

I.12. Miscellaneous

If a file name specified in a compile or consult command does not end with the
characters ".pl", Quintus Prolog adds a ".pl" extension to the file name
before searching for it. If there is no file with the extended name, it tries
again without the ".pl" extension. Thus you can type

?- [my file].

instead of

: ?- ['myfile.pl'].

The printing of answers to questions has been slightly enhanced: variables
which have been bound to the same value are grouped together, thus

?- X = 1, Y = 1.

X = Y = 1

Note that if a variable is bound to another uninstantiated variable then these
variables are grouped together too

Comparison of Quintus Prolog and Prolog-20

?- U:V, W=X.

U = V = 27,
W = X = -60

127

Also, when a named variable in a question occurs in a structure but remains
unbound, its name is printed in that structure rather than the arbitrary
identifier of the form _<integer> which is more normally used. For example,

?- X = f(Y).

X = f(Y),
Y = _51

APPENDIX II

CURRENT LIMITS IN QUINTUS PROLOG

Integers are in the range -2A28 to 2A28-1 (-268,435,456 to 268,435,455).

Floating point numbers are in the approximate range of 0.29e-38 to 1.7e+38 on
the VAX, or 2.2e-44 to 3.4e+38 on the Sun. Floats have an 8 bit (base 2)
exponent and a 19 + 1 sign bit mantissa giving a precision of approximately 6
decimal digits.

Atoms cannot have more than 512 characters.

Functors and predicates cannot have arities greater than 255.

There are no limits (apart from memory space) on the number of procedures and
clauses allowed.

The size of a compiled clause is limited to 2A15 (32,768) bytes of compiled
code.

There are various internal limits on the size of compiled clauses which are
difficult to relate to user-understandable properties. These are 255
"symbols" (variables, atoms, numbers or functors) per clause head or body
goal, 255 "temporary variables" (only occur in head or first goal), and 255
"permament variables" (non temporaries - which have occurrences in goals in
the body). The compiler will generate warnings if these limits are exceeded.

There are no restrictions on the size of dynamic or interpreted clauses.

Quintus Prolog's memory space is automatically expanded as necessary up to the
"datasize" limit for the process (this can be examined and set from the csh
using "limit" before Prolog is run). The memory space is contracted using the
built-in predicate trimcore/0. trimcore is automatically called on completion
of each goal typed at the top-level.

A maximum of 20 input/output streams can be open simultaneously. 3 of these
streams (for user input, user output and error output) are always open and
cannot be changed.

APPENDIX III

BUILT-IN PREDICATES

Following is a complete list of Quintus Prolog built-in predicates.

abolish(F,N) abolish the procedure named F arity N
abort abort execution of the program; return to toplevel
ancestors(L) the list of interpreted ancestors of the current clause is L
arg(N,T,A) the Nth argument of term Tis A
assert(C) clause C (dynamic predicate) is added to database
assert(C,R) clause C (dynamic predicate) is added to database: reference R
asserta(C) clause C (dynamic predicate) is added first in database.
asserta(C,R) clause C (dynamic) is added first in database: reference R
assertz(C) clause C (dynamic predicate) is added last in database
assertz(C,R) clause C (dynamic) is added last in database: reference R
atom(T} term Tis an atom
atomic(T) term Tis an atom or number
bagof(X,P,B) the bag of instances of X such that Pis provable is B
break break at the next procedure call
'C'(S1,T,S2) (grammar rules) S1 is connected by the terminal T to S2
call(P) prove (execute) P
character count{S,N) N is number of chars read/written on stream S
clause{P,Q) there is a clause for dynamic predicate, head P, body Q
clause{P,Q,R) clause for dynamic predicate, head P, body Q, ref R
close(F) _· close file F
compare(C,X,Y) C is the result of comparing terms X and Y
compile(F) add compiled procedures from file F to the database
consult(F) add interpreted procedures from file F to the database
current atom(A) A is a currently available atom (nondeterminate)
current-input(S) Sis the current input stream
current:op(P,T,A) ~tom A is an operator type T precedence P
current output(S) Sis the current output stream
currentyredicate{A,P) A is name of a predicate, m. g. goal P
current stream(F,M,S) Sis a stream open on file Fin Mode M
debug switch on debugging
debugging output debugging status information
depth(D) the current interpreted invocation depth is D
display(T) write term T (prefix notation) to the user stream
erase(R) erase the clause or record, reference R
expand_term(T,X) term Tis a shorthand which expands to term X
fail backtrack immediately
false (same as fail)
fileerrors enable reporting of file errors
float(N) N is a floating point number
flush output(S) flush output buffer for stream S
foreign(F,P) user defined; C function Fis attached to predicate P
foreign file(F,L) user defined; file F defines C functions in list L
functor(T,F,N) the principal functor of term T has name F, arity N
go enable garbage collection (currently has no effect)
gcguide(F,O,N) change garbage collection parameter F from Oto N
get{C) C is the next non-blank character input on the current input
get{S,C) C is the next non-blank character input on stream S

132

getO(C) C is the next character input on the current input
getO(S,C) C is the next character input on stream S
halt exit from Prolog
help display a help message
help(T) give help on topic T
in~ore(P) (same as call)

Built-in Predicates

instance(R,T) an instance of the clause or term referenced by R is T
integer(!) term Tis an integer
Y is X Y is the value of arithmetic expression X
keysort(L,S) the list L sorted by key yields S
leash(M) set the debugger's leashing mode to M
length(L,N) the length of list Lis N
line count(S,N) N is number of lines read/written on stream S
lineyosition(S,N) N is number of chars read/written on current line of S
listing list all interpreted procedures
listing(P) list the interpreted procedure(s) specified by P
load_foreign_files(F,L) load object files from list Fusing libraries L
manual access top-level of on-line manual
manual(X) access specified manual section
maxdepth(D) limit invocation depth (interpreted code only) to D
name(A,L) the list of characters of atom or number A is L
nl output a new line to current output
nl(S) output a newline on stream S
nodebug switch off debugging
nofileerrors disable reporting of file errors
nogc disable garbage collection (currently has no effect)
nonvar(T) term Tis a non-variable
nospy(P) remove spy-points from the procedure(s) specified by P
nospyall remove all spypoints
no style check(A) turn off style checking of type A
notrace -switch off debugging (same as nodebug)
number(N) N is a number
numbervars(T,M,N) number the variables in term T from H to N-1
op(P,T,A) make atom A an operator of type T precedence P
open(F,M,S) file Fis opened in mode H returning stream S
open null stream(S) output stream S goes nowhere
otherwise- (same as true)
phrase(P,L) list L can be parsed as a phrase of type P
portray(T) user defined; tells print what to do
print(T) portray or else write the term Ton the current output
print(S,T) portray or else write term Ton stream S
prompt(A,B) change the prompt from A to B
put(C) output character Con current output
put(S,C) output character Con stream S
read(T) read term T from current input
read(S,T) read term T from stream S
recorda(K,T,R) make term T the first record under key K, reference R
recorded(K,T,R) term Tis recorded under key K, reference R
recordz(K,T,R) make term T the last record under key K, reference R
repeat succeed repeatedly
restore(S) restore the state saved in file S
retract(C) erase the first interpreted clause of form C
save(F) save the current state of Prolog in file F
save(F,R} as save(F} but R is O first time, 1 after a 'restore'

Built-in Predicates

save_program(F) save the current static state of Prolog in file F
see(F) make file F the current input stream
seeing(F) the current input stream is named F
seen close the current input stream
set input(S) set S to be the current input stream
set:output(S) set S to be the current output stream
setof(X,P,S) the set of instances of X such that Pis provable is S
skip(C) skip input on current input stream until after character C
skip(S,C) skip input on stream S until character C found
sort(L,S) the list L sorted into order yields S
spy(P) set spy-points on the procedure(s) specified by P
statistics output various execution statistics
statistics(K,V) the execution statistic key K has value V
style check(A) turn on style checking of type A
subgoal of(G) an interpreted ancestor goal of the current clause is G
tab(N) -output N spaces to current output
tab(S,N) output N spaces on stream S
tell(F) make file F the current output stream
telling(F) the current output stream is named F
term expansion(T,N) user defined; tells expand term what to do
told- close the current output stream -
trace switch on debugging and start tracing immediately
trimcore reduce free stack space to a minimum
true succeed
ttyflush transmit all outstanding terminal output
ttyget(C) the next non-blank character input from the terminal is C
ttygetO(C) the next character input from the terminal is C
ttynl output a new line on the terminal
ttyput(C) the next character output to the terminal is C
ttyskip(C) skip over terminal input until after character C
ttytab(N) output N spaces to the terminal
unix(T) gives access to Unix facilities
unknown(A,B) change action on unknown procedures from A to B
user help user defined; tells help what to do
var(T) term Tis a variable
version displays system identification messages
version(A) adds the atom A to the list of introductory messages
write(T) write the term Ton the current output
write(S,T) write term Ton stream S
writeq(T) write the term T, quoting names where necessary
writeq(S,T) write Ton S, quoting atoms where necessary
I cut any choices taken in the current procedure
\+ P goal Pis not provable
X AP there exists an X such that Pis provable
X < Y as integer values, Xis less than Y
X =< Y as integer values, Xis less than or equal to Y
X > Y as integer values, Xis greater than Y
X >= Y as integer values, Xis greater than or equal to Y
X = Y terms X and Y are equal (i.e. unified)
T =•· L the functor and arguments of term T comprise the list L
X == Y terms X and Y are strictly identical
X \== Y terms X and Y are not strictly identical
X @< Y term X precedes term Y
X @=< Y term X precedes or is identical to term Y

133

134 Built-in Predicates

X @> Y term X follows term Y
X @>= Y term X follows or is identical to term Y

APPENDIX IV

BUILT-IN OPERATORS

:-op(1200, xfx, [:-, ->])
:-op(1200, fx, [:-, ?-])
:-op(1150, fx, [mode, public, dynamic J)
:-op(1100, xfy, [;])
:-op(1050, xfy, [->])
:-op(1000, xfy, [' ']) t

:-op(900, fy, [\+, spy, nospy])
:-op(700, xfx, [=, is, = •• t ==, \==, @<, @>, @=<, @>=,

-·- =\=, <, >, =<, >=]) -.-,
:-op(500, yfx, [+, -, /\, \I])
:-op(500, fx, [+, -])
:-op(400, yfx, [• I, «, »])

' :-op(300, xfx, [mod])

:-op(200, xfy, [
,.

))

INDEX

'!' - built-in predicate
•••, multiplication 58
'+', addition 57
',' -- built-in predicate
'-' 57, 58
'-->' 95
'->' -- built-in predicate
'->' followed by ';' 40
'•' - built-in predicate
'.' 23
'I', floating point division
'II', integer division 58
'I\', bitwise conjunction
';' - built-in predicate
'<<', left shift 58
'=' - built-in predicate
'=', explicit unification
'>>', right shift 58
'@<' -- built-in predicate
'@=<' - built-in predicate
'@>' - built-in predicate
'@>=' - built-in predicate
'==' - built-in predicate
' []' 7

26, 39

39

40

35

58

58
39, 40

119
119

66
66

66
66

65

'\', bitwise complement 58
'\+' - built-in predicate 39
'\I', bitwise disjunction 58
'\==' - built-in predicate 66
'l' 7, 23
'<' - built-in predicate 59
'=·•' - built-in predicate 63
'=:=' -- built-in predicate 59
·' =<' - built-in predicate 59
'=\=' -- built-in predicate 59
'>=' - built-in predicate 59
'>' -- built-in predicate 59
'A' - built-in predicate 94

[File], consulting a file ·35

abolishl2 - built-in predicate 88
abortl0 -- built-in predicate 72
Addition 57
ancestorsl1 -- built-in predicate 72
And 23, 39

bitwise 58
Anonymous variables 6
argl3 -- built-in predicate 63
Arguments 6
Arithmetic 57
Arity of a functor 6

138

assert/1 -- built-in predicate
assert/2 -- built-in predicate
asserta/1 - built-in predicate
asserta/2 -- built-in predicate
assertz/1 - built-in predicate
assertz/2 -- built-in predicate
Associativity of operators 9
atom/1 -- built-in predicate
atomic/1 - built-in predicate
Atoms 5

accessing from C code 116

Backtracking 24

86
89

87
89
87
89

61
62

bagof/3 -- built-in predicate 94
Body of a clause 21
break/0 -- built-in predicate 71
Built-in operators, list of 135
Built-in predicates, list of 131

C interface 109
C/3 - built-in predicate 97, 99
call/1 - built-in predicate 39
Cd - change working directory 101

unix(cd(Path)) 101
unix(cd)--101

character count/2 built-in predicate 51
Characters

ASCII code of 58
input and output of 45
strings of 8

Clause instance 24
clause/2 -- built-in predicate 87
clause/3 - built-in predicate 89
Clauses 21

database references to 89
close/1 built-in predicate 48
Closing an input or output file 48
Comma 39
Comments 12
compare/3 - built-in predicate 66
Comparison

of arbitrary terms 65
of numbers 59

compile/1 -- built-in predicate 36
Complement of an integer 58
Compound terms 6
Conditionals 40
Conjunction 23, 39

bitwise 58
Constants 5
consult/1 - built-in predicate 35
Control C interrupts 71
Cross-references in this manuai 30
current atom/1 -- built-in predicate 69

Index

Index 139

current_input/1 -- built-in predicate 50
current op/3 - built-in predicate 11
current=output/1 -- built-in predicate 50
current_predicate/2 - built-in predicate 69
current stream/3 -- built-in predicate 48
Cut 26

local cut(->) 40

debug/0 - built-in predicate 81
Debugging

built-in predicates for 81
leashing 84
removing spypoints 83
setting spypoints 82
trapping calls to undefined predicates 83

debugging/0 - built-in predicate 82
Declarative interpretation of clauses 24
Definite clause grammars 95
depth/1 - built-in predicate 72
Directives 21
Disjunction 23, 39

bitwise 58
display/1 built-in predicate 44
display/2 - built-in predicate 50
Division

floating point 58
integer 58

Dynamic procedures and declarations 85

Emacs 103
commands for help system 32
initialization file 106
key bindings 103

Equality
arithmetic 59
floating point 59
of terms 65
unification 119

erase/1 -- built-in predicate 90
Error conditions 1
expand_term/2 -- built-in predicate 98

fail/0 - built-in predicate 41
false/0 -- built-in predicate 41
fileerrors/0 - built-in predicate 49
Files

closing 48
opening 48

float/1 -- built-in predicate 61
Floats

coercion
equality
·range of
syntax of

of integers to
of 59

57
5

58

140 Index

flush_output/1 -- built-in predicate 49
foreign/2 - user-defined predicate 112
foreign_file/2 -- user-defined predicate 110
Formal syntax 13
Functor 6
functor/3 - built-in predicate 62

get/1 - built-in predicate 46
get/2 -- built-in predicate 50
get0/1 - built-in predicate 46
get0/2 -- built-in predicate 50
Goals 21
Grammars 95

halt/0 - built-in predicate 71
Head of a clause 21
Help 29

files 29
where to start 30

help/0 -- built-in predicate 30
help/1 - built-in predicate 31

If-then 40
If-then-else 40
Initialisation, prolog.ini files 2
Input and output 43

of characters 45
of terms 43
streams 47
with explicit stream argument 50

instance/2 - built-in predicate 90
Instantiated 61
integer/1 -- bu~lt-in predicate 61
Integers

coercion of floats to 58
range of 57
syntax of 5

Interrupting Prolog 71
is/2 -- built-in predicate 58
Iteration 41

Key bindings under the Emacs interface 103
keysort/2 -- built-in predicate 67

leash/1 - built-in predicate 84
length/2 - built-in predicate 119
line_count/2 - built-in predicate 51
line_position/2 -- built-in predicate 51
listing/0 built-in predicate 69
listing/1 -- built-in predicate 69
Lists 7
load_foreign_files/2 - built-in predicate 110
Loading programs, consulting and compiling 33
Local cut 40

Index 141

Loops 41

Manual
on-line access to 29

manual/0 - built-in predicate 31
manual/1 -- built-in predicate 31
maxdepth/1 - built-in predicate 72
Memory, Prolog's use of 75, 116
Menus

description of 29
Emacs commands for 32

Minus
subtraction 57
unary minus 58

Multiplication 58

Name of a functor 6
name/2 - built-in predicate 63
Negation

bitwise 58
by failure 39

nl/0 -- built-in predicate 47
nl/1 - built-in predicate 51
no style check/1 - built-in predicate 37
nodebug/O - built-in predicate 81
nofileerrors/0 -- built-in predicate 49
nonvar/1 - built-in predicate 61
nospy/1 - built-in predicate 83
nospyall/0 - built-in predicate 83
Not-provable(\+) 39
notrace/0 - built-in predicate 82
number/1 -- built-in predicate 61
numbervars/3 - built-in predicate 119

Occur check 25
On-line help 29
op/3 - built-in predicate 11
open/3 - built-in predicate 48
open_null_stream/1 - built-in predicate 48
Opening a file for input or output 48
Operators 8

associativity of 9
built-in predicates for handling 11
declaring 11
precedence of 8
type of 9

Or 23, 39
bitwise 58

otherwise/0 -- built-in predicate 41
Output 43

Period character('.') 23
phrase/2 -- built-in predicate 98
portray/1 - user-defined predicate 45

142 Index

Precedence of operators 8
Predicates 21
Principal functor of a term 6
print/1 -- built-in predicate 45
print/2 - built-in predicate 50
Procedural interpretation of clauses 24
Procedure calls 21
Procedures 22
Programs 21
Prolog.ini files 2, 79
prompt/2 - built-in predicate 120
put/1 built-in predicate 46
put/2 - built-in predicate 50

Questions 21

read/1 - built-in predicate 43
read/2 - built-in predicate 50
recorda/3 - built-in predicate 91
recorded/3 - built-in predicate 91
recordz/3 - built-in predicate 91
reinitialise/0 -- built-in predicate 79
repeat/0 - built-in predicate 41
restore/1 -- built-in predicate 78
retract/1 - built-in predicate 88

save/1 - built-in predicate 77
save/2 - built-in predicate 78
save_program/1 - built-in predicate 77
Saving the program state 77
Section numbering in the on-line help system 29
see/1 -- built-in predicate 52
seeing/1 - built-in predicate 52
seen/0 -- built-in predicate 53
Semicolon 39
Sentences, clauses and directives 21
set input/1 - built-in predicate 49
set=output/1 - built-in predicate 49
setof/3 - built-in predicate 93
Sets, collecting all the solutions to a goal 93
Shell

unix(shell(Command)) 101
unix(shell) 101

Shifting 58
skip/1 -- built-in predicate 46
skip/2 - built-in predicate 50
sort/2 -- built-in predicate 67
spy/1 - built-in predicate 82
Standard order on terms 65
Static procedures 85
statistics/0 built-in predicate 75
statistics/2 - built-in predicate 76
Streams 47

closing 48

Index

current input and output 43
finding out what streams are open 48
1/0 of characters on a specified stream 50
I/0 of terms on a specified stream 50
opening 48
reading the state of 51

Strings, lists of ASCII characters 8
Style checking, predicates for control of 37
style check/1 - built-in predicate 37
subgoal of/2 -- built-in predicate 72
Subtraction 57
Syntax

formal 13
of atoms 5
of compound terms 6
of floats 5
of integers 5
of lists 7
of variables 6
restrictions 11

tab/1 - built-in predicate 47
tab/2 -- built-in predicate 51
tell/1 - built-in predicate 53
telling/1 -- built-in predicate 53
term_expansion/2 - user-defined predicate
Terms 5

arguments of 63
comparison of 65
compound 6
input and output of 43
ordering on 65
predicates for looking at 61
principal functor of 62

told/0 - built-in predicate 53
trace/0 -- built-in predicate 81
trimcore/0 - built-in predicate 75

55
54

5ll
54

true/0 -- built-in predicate 41
ttyflush/0 - built-in predicate
ttyget/1 - built-in predicate
ttyget0/1 - built-in predicate
ttynl/0 -- built-in predicate
ttyput/1 ~ built-in predicate
ttyskip/1 -- built-in predicate
ttytab/1 - built-in predicate

Unary minus 58
Unification 24
Uninstantiated 61
Univ 63

54
54

5ll

Unix, access from Prolog 101
unknown/2 -- built-in predicate 83
user_help/0 - built-in predicate 30

98

143

144 Index

var/1 - built-in predicate 61
Variables 6

instantiation of 61
scope of 22

write/1 - built-in predicate 44
write/2 -- built-in predicate 50

· writeq/1 built-in predicate 45
writeq/2 -- built-in predicate 50

READER'S EVALUATION FORM

We are very much interested in your impressions of our documentation and in any
suggestions you might have for its improvement. We would be grateful if you
would take a few minutes to answer the questions below and mail this page back to
us.

1. Can you find the information you need quickly and easily? Is there any
information you need that you can't find?

2. Is the text clear and understandable? Please cite any paragraphs and pages
that are difficult to understand.

3. Are the documents logically organized? What changes, if any, do you
suggest?

4. Are there enough examples, and are the examples helpful?

5. Are there any inconsistencies between the documentation and the software?

6. How can the documents be improved? Please cite specific examples.

(optional) Name Company ----------- ----------

Please return to Peter Davies, Prolog Technical Support, Artificial Intelligence
Ltd., Intelligence House, 58-78 Merton Road, Watford, Hertfordshire, WDl 7BY.

QUINTUS PROLOG
SOFTWARE PROBLEM ACTION REQUEST FORM AIL No

DATE

CirdeOne • Problem Report

• Enhancement Request

• Documentation Error

Software Release

Hardware (Sun or VAX)

Operating System (Unix 4.2 or VAX VMS)

Problem Area or Feature

Customers Name

Submitted by

Location

Phone No

···-

Full Description (Use extra sheet if necessary. Give details leading to problem, and report any messages, that
relate to the problem in the order in which they occured.)

Impact (Circle One) • Fatal • Serious • Moderate • Annoying • Enhancement • Documentation

Frequency (Circle One) • Every Time • Intermittent • Once Only

Supporting Documentation ~UST Always Accompany An ACTION REQUEST (If there was no message etc then please say so)

• Code listings

• Log File

• Hardcopy of screen

•Sample Printouts or Tape containing Problem

• Any other information that will enable DUPLICATION OF ERROR

For AIL Use Only

• Date Received Screened By

Impact (Circle/One) 1 2 3 4 5 Status (CircleOne) • Open • Fixed • Closed • Superseded • Rejected

AR Date

PLEASE SEND THIS FORM TO Technical Support, AIL, 62-78 Merton Road, Watford, Herts, WD1 7BY .]

	Contents
	1 Introduction
	2 Syntax
	3 Semantics
	4 On-Line Help
	5 Loading Programs, Consulting and Compiling
	6 Control
	7 Input and Output
	8 Arithmetic
	9 Looking at Terms
	10 Comparison of Terms
	11 Looking at the Program State
	12 Looking at and Controlling the Execution State
	13 Memory Use
	14 Saving the Program or the Execution State
	15 Debugging
	16 Modification of the Database
	17 Database References
	18 The Internal Database
	19 Sets: Collecting all the Solutions to a Goal
	20 Grammar Rules
	21 Access to Unix
	22 The Emacs Interface
	23 Interface to C Functions
	24 Miscellaneous Built-In Functions
	Appendix I. Comparison of Quintus Prolog and Prolog-20
	Appendix II. Current Limits in Quintus Prolog
	Appendix III. Built-In Predicates
	Appendix IV. Built-In Operators
	Index

