
Supplied by

Artificial Intelligence Limited

European Distributor of Quintus Prolog

Intelligence House

58-78 Merton Road

Watford

Hertfordshire WD1 7BY

England

Telephone Watford (0923) 47707

Telex 933883

Quintus Prolog User's Guide

Quintus Computer Systems, Inc.
2345 Yale St, Palo Alto, CA 94306

Written by Patti Kahn, with contributions from David Bowen,
Lawrence Byrd, Bill Kornfeld, Vince Pecora and Jennifer Zimmerman.

This manual corresponds to Quintus Prolog Release 1.0.
The information in this document is subject to change without notice and
should not be construed as a commitment by Quintus Computer Systems, Inc.
Every effort has been made to ensure the accuracy of this document, but
Quintus Computer Systems, Inc. assumes no responsibility for any errors
that may appear.

Copyright {C) 1985 Quintus Computer Systems, Inc.

UNIX is a trademark of Bell Laboratories.
Sun Workstation is a trademark of Sun Microsystems Incorporated.
DEC is a trademark of Digital Equipment Corporation.
VAX is a trademark of Digital Equipment Corporation.

Table of Contents

Table of Contents
Introduction

Symbols and Conventions
1. Getting Started

Using Prolog with the Emacs Editor
Entering Prolog and Emacs
Exiting Emacs

Using Prolog Without the Emacs Editor
Entering Prolog
Exiting Prolog

The Top-Level Prolog Prompt
How to Return to the Top Level Prolog Prompt

Using the On-line Help System
Requesting General Information
Requesting Information About a Specific Topic

2. Using the Emacs Editor
Creating a Fil~
Retrieving an Existing File
Saving Your Work
Moving the Cursor in an Emacs File
Inserting Text
Deleting Text
Copying Text
Moving Text
Finding Text

Correcting Typing Errors
Searching Backward Through a File

Replacing Text
Replacing All Occurrences of a Word
Replacing Selected Occurrences of a Word

Editing Several Files Simultaneously
Retrieving Additional Files
Moving the Cursor from Window to Window
Exchanging the Buffer Being Displayed in a Window
Enlarging the Current Window
Dividing a Window
Deleting a Text Window
Returning to One Editor Window
Obtaining a List of Files Currently Being Edited

Using the Emacs Help Function
3. Loading Programs into Prolog

Loading a File into Prolog
Loading Programs Through the Emacs Interface

Moving Between the Text and Prolog Windows
Loading Programs Without Emacs
Using Imbedded Consult Commands
Syntax Error Messages
Style Warnings
Compiling Programs Through the Emacs Interface
Compiling Programs Without Emacs
Defining Procedures Directly
Saving a Program State

i

3
3
3
4
5
5
6
6
7
7
7
9

11

11
11
12
12
13
14
14
15
15
16
17
17
17
17
18
19
19
19
20
20
20
21
21
21
23

23
23
25
25
26
26
27
29
29
30
31

ii

Restoring a Saved Program State at the Unix Level
Restoring a Saved Program State and Emacs
Restoring a Saved Program State and Its Source File
Restoring a Saved Program State from within Prolog

Saving a Prolog Session
Using an Initialization File

4. Running Programs
Asking Questions
Repeating a Question (Using Emacs)
Displaying Previous Input Using Emacs
Locating Procedures Using Emacs
Interrupting the Execution of a Program
Error Messages for Built-in Predicates
Undefined Procedures
Restarting Prolog (Under Emacs)
Executing Unix Commands from within Prolog
Creating Dynamic Predicates
Prompts

5. Debugging Your Programs
Background Information
Turning the Debugger On
Turning the Debugger Off
Tracing Every Step in the Execution of a Procedure
Debugging Only Selected Procedures

Setting Spypoints
Debugging a Procedure on Which Spypoints Have Been Set
Removing Spypoints

Requesting More or Less Detailed Debugging
Requesting More or Less Frequent ·Prompting
Obtaining Information about the Debugger and Spypoints
Debugging Example

Using System Warnings
Exhaustively Tracing the Execution of a Program
Using the Skip ~nd Retry Options
Using Spypoints

Format of Debugging Messages
Options Available During Debugging

Basic Control Options
Printing Options
Advanced Control Options
Environment Options
Help Options

Debugging Compiled Procedures
6. Programming Style

Program Layout
Normal Layout
Disjunction and Conditionals
Emacs-Related Restrictions

Where to Use "Cut"
Making Procedures Determinate
Terminating a Backtracking Loop

Indexing

Table of Contents

31
32
32
32
32
33
35
35
36
37
37
38
38
39
39
40
41
42
43
43
43
45
45
47
47
48
48
49
50
50
51
55
57
59
61
62
63
64
65
66
68
68
69
71

71
71
72
73
74
74
75
76

Table of Contents

Data Tables
Improved Determinacy Detection

Tail Recursion Optimization
A. Ways of Invoking Prolog from Unix
B. Porting Programs to Quintus Prolog

Floating Point
The Compiler/Interpreter Interface
Style Checking
Miscellaneous
Built-in Predicates
Running the Compatibility Checker

C. Emacs Summary
Important Keys
Cursor Movement
Inserting and Deleting
Globally Replacing
Moving Up and ~own the Buffer
Window Handling
File and Buffer Handling
Prolog-related commands
Keys Effective Only in the Prolog Window

D. Built-in Predicates
E. Built-in Operators
Index

iii

76
77
'77
79
81

81
81
32
82
83
84
87
87
87
87
87
88
88
88
88
88
89
93
95

INTRODUCTION

Quintus Prolog is a complete applications development system designed to
streamline and facilitate program development. To maximize programmer speed
and efficiency, Quintus Prolog provides

- a text editor interface

- a comprehensive debugger

- an on-line documentation and help facility

- a high degree of compatibility with DEC10 Prolog and Prolog-20

These features combine to produce a system that fully supports a
programmer's needs during application development.

This User's Guide explains how to use Quintus Prolog to run Prolog
programs. The guide includes information on entering and exiting Prolog,
using the Emacs/Prolog editor interface, loading and running programs,
debugging programs, and designing your programs for maximum readability,
reliability, and efficiency. The appendices include information on porting
programs written in DEC10 Prolog or Prolog-20, a summary of Emacs commands, a
list of built-in predicates, and a list of built-in operators.

This User's Guide is written for people with a working knowledge of Prolog.
For an introduction to Prolog, refer to Programming in Prolog (Clocksin and
Mellish, Springer-Verlag, 1981). For more detailed information on Quintus
Prolog, including information on syntax, built-in predicates, and notes on the
Emacs interface, refer to the Quintus Prolog Reference Manual.

SYMBOLS AND CONVENTIONS

Throughout this manual, certain symbols and conventions are used.

- Control characters are represented in text by the notation
Control x, where x represents the character you type while holding
down the Control key. In examples, control characters are
represented by the notation Ax.

- For many Emacs functions, you type a control character followed by
another character. If the second character is preceded by the word
Control, as in Control x Control v, continue to hold down the
Control key as you type. If the second character is not preceded by
the word Control, as in Control x o, you must release the Control
key before you type the character. If you don't, the system won't
recognize what you type.

Certain functions in Emacs require that you press the Escape key and
then type another character. These keys are represented by the

2 Introduction

notation Escape x in text and <esc>x in examples, where x represents
the character you type after pressing the Escape key and releasing
it. (On some keyboards, the Escape key is referred to as the Alt
key.) Some terminals have a "meta" key which can be used as an
alternative to Escape.

The symbol <ret> is used to represent a user-typed carriage return
in examples. This key is usually marked Return.

Boldface type is used to indicate user responses in examples that
show interactions between a user and Prolog. For instance, in the
example below, the system prompt is shown in regular type, and the
user response is shown in boldface.

: ?- consult('file1.pl').

- Underlined words in examples indicate the type of information that
should appear in a particular position. For instance, in the
example below, the term filename would be replaced by an actual file
name.

: ?- consult(filenane).

- Since the main Unix prompt varies from system to system, the symbol
<Unix prompt> is used to represent the main Unix prompt in examples.

- The Unix end-of-file character is represented as Control d, which is
the default end-of-file character at most Unix sites. The
end-of-file character for your site may be different.

SECTION 1

GETTING STARTED

Quintus Prolog offers a flexible development environment that can
accommodate the user's varying needs at different stages of the development
process. Prolog can be accessed within an editor interface, a feature which
greatly simplifies the editing and debugging phase, or Prolog can be accessed
independently. This section describes how to access Pro log with and without
the editor interface, what you'll see once you've entered Prolog, and how to
use the on-line help system.

USING PROLOG WITH THE EMACS EDITOR

The Emacs/Prolog interface is designed to enable you to create a Prolog
program and then to move back and forth easily between the file containing
that program and · the Prolog environment. Both the Prolog program and your
interaction with Pro log are preserved in edit buffers which can easily be
reviewed and modified. The Pro log source program appears in a "text window"
on the top half of the screen, and the Prolog environment appears in the
"Prolog window" on the bottom half of the screen.

In the Prolog window, Prolog programs can be run; and with Emacs,
previously entered Prolog commands can be edited and resubmitted. In the text
window, single procedures, groups of procedures, and entire programs can be
edited and quickly reloaded without suspending the Prolog process.
Additionally, any number of Prolog source files can be loaded into Prolog at
once; and then, if required, Emacs can be used to locate a specific procedure
in any one of those files.

Entering Prolog and Emacs

To enter Prolog and the Emacs editing environment simultaneously, type
prolog + at the main Unix prompt. Notice that there must be a space between
the word prolog and the+ sign.

<Unix prompt>prolog +

The system displays a message telling you it is loading the editor. It then
divides the screen into two windows, as shown below.

4 Getting Started

I I ,---1
: Buffer: ScratchPad.pl Fil€: ScratchPad.pl (Prolog) Top

:---~
Quintus Prolog Release 1.0
Copyright (C) 1985, Quintus Computer Systems, Inc.

: ?-

I ---, Quintus Prolog
I ---,

The upper window is the text window, and the lower window is the Prolog
environment. A mode line appears at the bottom of each window to identify the
window's contents. You can move back and forth between the windows by using
the Control x o command, as described on page 19.

The cursor is positioned to the right of the Prolog prompt l ?- in the
Prolog window, indicating that you are at the top level of the Prolog system.
Prolog commands may be executed from this point as described in the PROLOG
PROMPT section below.

Alternatively, you can enter the Emacs/Prolog environment and retrieve your
file in one step by typing prolog + filenane, where filename is the name of
the file you want to retrieve. For example, to enter the Emacs/Prolog
environment and retrieve the file myfile, you would type

<Unix prompt>prolog + myfile

Exiting Emacs

You can exit from the editor in one of two ways: you can stop the current
editor job and exit irreversibly, or you can temporarily suspend the current
editor job. If you are finished with your session, you will probably want to
exit irreversibly, as described below. If you want to temporarily halt your
session, return to the main Unix level, and then resume your session, you
should choose the second exit option discussed below.

To exit from the editor irreversibly, type Escape Control c. If you have
files that have been modified but not saved, Emacs displays the following

Getting Started 5

message at the bottom of the screen:

Modified buffers exist, do you really want to exit?

If you want to store the information you've modified in a file, use the
Control x Controls command (see page 12). If you want to exit without saving
the modified information, type y, and you will be returned to the main Unix
prompt.

If you try to exit when you have a Prolog session running, the system
displays the following message at the bottom of the screen:

Your Prolog process is still running, do you want it killed? (y/n)

To end the Prolog session, type y, and you will be returned to the main Unix
prompt. If you don't want to end the Prolog session, type n to abort the
exit. Prolog will continue running.

To exit from the editor by suspending the current editor session, type
Control x Control c. If you type Control x Control c, you will see the
message Stopped printed at the bottom of the screen and you will be returned
to the main Unix prompt. However, the Emacs/Prolog job is only suspended and
may be resumed by you at any time. To resume your Emacs/Prolog session, type
fg (for foreground) at the main Unix prompt.

NOTE: In Release 1. O, Control x Control c only works under the C shell on
Unix. Consult the Unix documentation for more information on the C shell.

USING PROLOG WITHOUT THE EMACS EDITOR

If you are not using the Emacs editor, you may enter Prolog independently
and subsequently load the file(s) containing your program.

Entering Prolog

To enter Prolog without the Emacs interface, type prolog at the main Unix
prompt:

<Unix prompt>prolog

The system responds by displaying a copyright message followed by the main
Prolog prompt, as shown below.

6

Quintus Prolog
Copyright (C) 1985, Quintus Computer Systems, Inc.

?-

The main Prolog prompt l ?- indicates that you are
Pro log system. At this point, you can direct the
contents of a previously-created file containing
described in Section 3, page 25.

Exiting Prolog

Getting Started

at the top level of the
system to read in the
a Prolog program, as

To exit from Prolog when you are not using the Emacs interface, type
Control d at the main Prolog prompt.

Prolog di~plays the message shown below and then returns you to the Unix
environment.

[End of Prolog execution]
<Unix prompt>

NOTE: As mentioned earlier, Control d is the standard Unix end-of-file
character. If Control d doesn't work at your site, type your system's
end-of-file character or type halt. to exit.

THE TOP-LEVEL PROLOG PROMPT

The prompt l ?- indicates that you are at the top level of the Prolog
system. Prolog is now waiting for a command or a question. For example, you
could type the write command as shown below; the system would execute the
command and then return to the top level Prolog prompt.

: ?- write(hello).
hello
yes

?-

Similarly, you could pose an arithmetical question.

?- Xis 2+2.

X = 4<ret>

?-

When your Prolog programs have been loaded (see Section 3, page 23),
questions and commands referring to your programs can also be given.

Getting Started 7

How to Return to the Top Level Prolog Prompt

It is always possible to interrupt any Prolog process and return to the top
level Prolog prompt. To do this, type Control c. The system then displays
the message

Prolog interruption (h for help)?

Type a (for abort). The system then returns an execution aborted message and
the top level Prolog prompt.

USING THE ON-LINE HELP SYSTEM

Quintus Prolog provides an on-line help system, which contains on-line
versions of this User's Guide and the Quintus Prolog Reference Manual. You
can obtain access to the on-line help system from within Pro log, whether or
not you are using _the Emacs interface.

Requesting General Information

If you are running Prolog under Emacs, the simplest way to ask for general
information is to type help. at the main Prolog prompt.

l ?- help.

When you type help., the system displays some basic information about running
Prolog and mentions that you can type help(Topi c). to get information about a
particular topic in which you are interested. For example, you might type

l ?- help(debug).

if you are interested in learning about using the debugger. In response to
this you will get a menu indicating all the parts of the User's Guide and the
Reference Manual which are concerned with debugging. Note that you can
abbreviate topics; if you type

l ?- help(deb).

you will get a menu referring to all topics beginning with the characters
"deb". Thus, the more you abbreviate, the larger the menu you ' are likely to
get.

Once you have a menu, you can select a topic. If you are running under
Emacs, the following line appears at the bottom of the screen to explain how
to select a topic:

<SPACE> to advance cursor, <RETURN> to select item, q to Quit,? for Help

To advance the cursor to the next item on the menu, press the spacebar. To
select a topic, position the cursor next to that topic and press the Return
key. To exit from the Help facility, type q. And for additional help, type a

8 Getting Started

question mark (?).

When you select a topic from the menu, the sytem displays either another
menu or text about the topic you selected. If the system displays text, you
can page forward through the text by pressing the spacebar and backward by
pressing the backspace key.

If you are not running under Emacs, type manual. at the main Prolog prompt
to gain access to the on-line help system. (Alternatively, you can type
manual(user). or manual(ref). at the main Prolog prompt, as described below.)
The system displays the following menu:

Quintus Prolog On-line Documentation System

1 - The User's Guide for Quintus Prolog
2 - The Reference Manual

{manual (user)}
{manual (ref)}

To see a menu or - topics for the User's Guide, type manualCuser). at the
main Pro log prompt. To see a menu of topics for the Reference Manual, type
manual (ref). at the main Pro log prompt. The system displays a list of major
topics, or chapters, in the indicated manual. To the right of each topic is
the code you type to view that topic. For example, the first topic in the
reference manual is listed as

1 - Intr:oduction {manual(ref-1)}

To select this topic, you would type the following at the main Prolog
prompt:

I ?- manual(ref-1).

Note that you omit the curly brackets when you select the topic.

In response, the system displays the appropriate section of the manual on
the screen.

NOTE: In the on-line help system, sections of the User's Guide are prefixed by
the word user, as in manual (user-4-5); sections of the Reference Manual are
prefixed by the word ref, as in manual(ref-6-7).

Occasionally, you will see cross references in the text. Cross references
look like this in the on-line manual:

see also {manual(ref-5-1-1)}

If you are running Prolog under Emacs and you want to look at the section
being cross-referenced, type x. The cursor will move to the _ line on the
current screen containing the cross-reference. Press the Return key, and the
system will display the section being cross-referenced.

If you are not running Prolog under Emacs and you want to look at the
section being cross-referenced, type manual followed by the section you want
to look at. For example, to look at the section being cross-referenced above,

Getting Started

you would type the following:

: ?- manual(ref-5-1-1).

Requesting Information About a Specific Topic

9

As mentioned above, if you type help(Topic)., the system displays a menu of
al 1 the sections in the on-line help system that contain information about
that topic. You can then select the entry you want to look at from that list.
However, if you already know what entry you want to look at, and you want to
go directly to that entry, you can instead type manual (Topic). at the main
Prolog prompt. The system then displays information about that topic.

Using manualCTopi c). can be particularly helpful if you want to obtain
information about built-in predicates, as the reference manual contains an
entry for each built-in predicate. For example, to request information about
the built-in pred~cate trace, you would type manual(trace)., as shown below:

?- manual(trace).

The difference between manual (Topic) and help(Topic) is just like the
difference between looking up something in a table of contents and looking it
up in an index. The help command is better when you are looking for general
information; the manual command is better when you want to go directly to the
portion of the manual that contains information about a particular topic.
With both commands, you can abbreviate Topic; but the menus you get when you
abbreviate are different for the two commands.

SECTION 2

USING THE EMACS EDITOR

This section explains how to use Emacs to create and edit a file. If you
are already familiar with Emacs. you may want to skip this section. A summary
listing of the Emacs functions and key bindings can be found in Appendix C.
Information on entering and exiting Emacs can be found in Section 1.

NOTE: If you are not using the Emacs editor interface, skip to Section 3.

CREATING A FILE

To create a new file, type Control x followed by Control v. The following
prompt appears at the bottom of the screen:

: • visit-file

Select a file name that complies with Unix file-naming conventions; end the
file name with a .pl extension. The .pl extension is essential for work with
Prolog. Type the file name and press the Return key.

NOTE: Any time the cursor is positioned at the bottom of the screen and the
system is waiting for your input, you can cancel the command that moved the
cursor to the bottom of the screen by typing Control g.

After you type the file name, the system displays a line like the following
at the bottom of the screen to let you know that a new file has been created:

New file: /yourdirectory/filename

The system also moves the cursor to the upper window so you can begin editing
the file. Note that while you are editing, you are actually working with a
buffer rather than the file itself. When you finish editing, you save the
contents of the buffer, as described below, in the file whose name you
specified.

RETRIEVING AN EXISTING FILE

To retrieve an existing file, type Control x followed by Control v. The
following prompt appears at the bottom of the screen:

: • visit-file

Type the name of the file you want to retrieve and press the Return key.

• visit-file filename

The system then copies the file into a buffer and displays it in the upper
window of the screen so you can begin editing it.

12 Using the Emacs Editor

If you cannot remember the name of the file you want to retrieve, type a
question mark (?) in response to the : • visit-file prompt. Emacs then
displays a list of your files. Type Control x Control v again, and when the
cursor moves to the bottom of the screen, type the name of the file you want
to retrieve.

NOTE: As a shortcut, you can type the first few letters of the file name and
then press the spacebar. When you press the spacebar, Emacs searches through
your file di rectory and at tempts to find a file n~me beginning with the
characters you've typed. If Emacs can match what you've typed with a file
name, it completes the file name when you press the spacebar and displays the
file in the text window. If Emacs cannot match the file name, or if it finds
more than one file name that begins with the characters you've typed, it
beeps. If that happens, type another letter or two and then press the
spacebar again.

SAVING YOUR WORK

If you want to save the contents of the buffer being edited in the upper
window, you can do so by positioning the cursor in that window and then typing
Control x Control s (for save-file). This will save the text in the file
whose name appears in the mode line at the bottom of the text window.

Occasionally you may want to save the text in a file under a different
name. You can do this by using the command Control x Control w (for write
named file) instead of Control x Controls. When you type Control x Control
v, you will see the prompt

: write-named-file

at the bottom of the screen. Type the name of the file you want to write to
and press the Return key.

HOVING THE CURSOR IN AN EMACS FILE

Emacs is a full-screen editor; so to make changes in a file, you first move
the cursor to the letter or word you want to change. The following table
shows the editing function keys that move the cursor within a file. (Recall
that the symbol .. represents the Control key, and that the symbol <esc>
represents the Escape key.)

Using the Emacs Editor

Function

Move right (forward) a character
Move right (forward) a word
Move right (to end of line)

Move left (backward) a character
Move left (backward) a word '
Move left (at beginning of line)

M9ve down a line (to next line)
Move up a line (to previous line)

Move to the end of the file
Move to the beginning of the file

Move forward a screen
Move backward a screen

"f
<esc>f

"e

"b
<esc>b

"a

"n
"p

<esc> >
<esc> <

V

<esc>v

13

If you are using a Sun workstation, you can also use the Mouse to move the
cursor around and to scroll the text.

- To move the cursor, move the Mouse until the arrow points to the
position you want to move the cursor to, and then click the middle
button.

- To scroll text upwards, move the Mouse until the arrow points to the
line you would like to be at the top of the window, and then click
the right-hand button.

- To scroll text downwards, move the Mouse until the arrow points to
the line you would like to be at the bottom of the window, and then
click the left-hand button.

INSERTING TEXT

To insert text in a new file, simply type the text the way you want it to
appear. To insert text at the end of an existing file, move the cursor to the
end of the file and type your text.

To insert a letter or a word into an existing line of text, move the cursor
to the letter that should come after the letter or word you want to add. Then
type the text you want to add.

To insert a new line of text into an existing file, move the cursor to the
beginning of the line that should follow the new line. To insert a blank
line, type Control o; then type your text. If you want to insert several
lines of text, type a carriage return at the end of the first line you type,

14 Using the Emacs Editor

and then type carriage returns at the end of each successive line you type
until you finish.

DELETING TEXT

To delete text, ·move the cursor to the text to be deleted. Then use the
appropriate editing function key to delete the text, as shown below.

Function

Delete character to the left
Delete word to the left

Delete character to the right
Delete word to the right

Delete (kill) all characters
from cursor to end of line

Del
<esc>Del

"'d
<esc>d

"'k

To delete a block of text, you first mark one end of the block by moving
the cursor there and typing Control @ (Control Shift 2 on many terminals).
Alternatively, you can set a mark by pressing the Control key and then
pressing the spacebar. After you set a mark, Emacs displays the following
message at the bottom of the screen:

Mark set

Move the cursor to the end of the text you want to delete. Then type
Control w {for wipe out). The block of text that was between the mark and the
cursor is removed from the screen and temporarily put in a buffer.

NOTE: If you delete a block of text and then decide you don't want to delete
it after all, you can put it back wher_e it was by typing Control y (for yank
back text).

You can set a marker at either the beginning or end of a block of text by
typing Control@. If you set a marker at the beginning of a block of text,
you mark the end of the block by simply moving the cursor there, as described
above. Conversely, if you set a marker at the end of a block of text, you
mark the beginning of the block by moving the cursor there.

Once you have marked a block of text, you can verify the block by typing
Control x Control x. Control x Control x moves the cursor from its current
location to the other end of the block of text. You can toggle the cursor
between the beginning and end of the blocked text by repeating the Control x
Control x command.

COPYING TEXT

To copy a line of text, delete the line, as described above, by positioning
the cursor at the beginning of the line and typing Control k. Type Control y

Using the Emacs Editor 15

to restore the text to its original position. Then move the cursor to the
location in the file where you want to copy the text, and type Control y
again. The system then copies the text into the new location. You can copy
the same line as many times as you like by moving the cursor to the location
where you want the text and typing Control y.

NOTE: Control y always yanks back the last thing you deleted, so be careful
not to delete anything while you are copying text.

To copy a block of text, mark the• beginning of the block as described above
in the section on DELETING TEXT. Move the cursor to the end of the block you
want to copy. Then type Escape w. The text between the mark and the cursor
remains on your screen, but it is also put into a buffer. Move the cursor to
the point in your file where you want to copy the text. Then type Control y
(for yank text back). The system then copies the text to the new location in
your file.

MOVING TEXT

To move a line of text, position the cursor at the beginning of the line
you want to move and then type Control k twice. The first time you type
Control k, the text is simultaneously removed from your screen and put into a
buffer; however, a blank line is left on the screen where the text used to be.
The second time you type Control k, the blank line is removed.

After you remove the text from the screen, you can empty the buffer
containing the text - that is, move its contents back onto the screen -- at
any place you choose. To move the deleted text from the buffer back onto the
screen, position the cursor where you want to move the text and then type
Control y (for yank text back). Emacs then moves the text to the new location
in your file.

To move a block of text, mark the block and delete it, as described above
in the section on DELETING TEXT. Move the cursor to the point in your file
where you want the text, and then type Control y (for yank text back). Emacs
then moves the block of text to the cursor's current location.

NOTE: Control y always yanks back the last thing you deleted, so be careful
not to delete anything while you are moving text.

FINDING TEXT

To locate text in your file, position the cursor at the beginning of the
region you want to search and type Controls (for search). Emacs displays the
following message at the bottom of the screen:

I-search:

I-search stands for incremental search. An incremental search begins as soon
as you type the first letter of the word or character string you want to
locate. When you type the first letter of the word, Emacs displays that

16 Using the Emacs Editor

letter at the bottom of the screen and searches through your file, beginning
at the cursor's current position, for the first occurrence of that letter.
When Emacs locates that letter, it moves the cursor to the letter immediately
following it.

For example, suppose you are searching for the word file. When you type f,
Emacs moves the cursor to the next occurrence in your file of the letter f.
If that happens to be in the word file, you can halt the search by pressing
the Escape key. However, that will usually not be the case, and you will want
to continue the search by typing the next letter in the string you are trying
to locate.

Each time you type another letter, Emacs adds that letter to the character
string displayed at the bottom of the screen. In addition, it moves the
cursor to the next occurrence in your file of the character string that is
displayed at the bottom of the screen.

For example, suppose you positioned the cursor at the top of the file and
then typed Controls -followed by f. The following line would be displayed at
the bottom of the screen.

I-search: f

In addition, the cursor would move to the first occurrence of the letter fin
your file. If you then typed 1, the line at the bottom of the screen would
look like this:

I-search: fi

The cursor would then move to the first occurrence of the letters fi. You
would continue spelling out the word you wanted to locate until Emacs located
the word and moved the cursor to it.

Once you have located the character string you are looking for, press the
Escape key to halt the search function. You can then make any necessary
editing changes. To cancel the search function and move the cursor back to
the point where it was when you started the search, type Control g.

Correcting Typing Errors

If you type a character string that does not match any character string in
your file, Emacs displays the following message at the bottom of the screen:

Failing I-search:

If you receive this message and want to halt the search function, type Control
g. However, if you made a typing error and want to continue the search, you
can delete the last character you typed by pressing the Delete key. When you
press the Delete key, the last character typed disappears from the character
string shown at the bottom of the screen, and the cursor moves backward a
character. You can then type the correct character and continue the search.

Using the Emacs Editor 17

Searching Backward Through a File

To search backward through your file, type Control r (for reverse), and
then type the character string you want to find. Emacs will search for the
character string, as described above, except that it will search backward,
rather than forward, from the cursor's current position.

REPLACING TEXT

You can replace an existing word or character string with another word in
two ways: you can either replace every occurrence of the word by issuing a
single command, or you can direct Emacs to ask you which occurrences of the
word you want to replace.

Replacing All Occurrences of a Word

To replace all occurrences of an existing word or character string, move
the cursor to the beginning of the file. Then type Escaper. Emacs moves the
cursor to the bottom of the screen and displays the prompt

Old string:

Type the word or character string you want to replace, and press the Return
key. Emacs then asks you to type the new string. Type the new word you want
to use and press the Return key. Emacs then replaces all occurr~nces of the
old word with the new word and displays a message telling you how many
occurrences it replaced.

The succession of prompts looks like this, except that in a real session,
each line would overwrite the preceding line at the bottom of the screen:

<esc>r
Old string: file<ret>
New string: program<ret>
Replaced 3 occurrences

NOTE: Use this command with caution. If you are not sure that you want to
replace all occurrences of a word, use the selective replace command
instead.

Replacing Selected Occurrences of a Word

To replace only selected occurrences of a word or character string, move
the cursor to the beginning of the file or the beginning of the region where
you want to replace text. Then type Escape q. Emacs moves the cursor to the
bottom of the screen and displays the prompt

Old string:

18 Using the Emacs Editor

Type the word or character string you want to replace, and press the Return
key. Emacs then asks you to specify the new character string to be used.
Type the new word and press the Return key. Emacs then displays the message

Query-Replace mode

and moves the cursor to the first occurrence of the string. Press the Return
key again. Emacs displays the following prompt at the bottom of the screen:

Options: ' ' ',';:)change; 'n';:)don't; '.';:)change, quit; '"G';:)quit

The succession of prompts looks like this, except that in a real session, each
line would overwrite the preceding line at the bottom of the screen:

<esc>q
Old string: contains<ret>
New string: refers_to<ret>
Query-Replace mode <ret>
Options: ' ' ', 1 ;:)change; 'n';:don't; '. ';:)change, quit; '"G';:>quit

To replace the first occurrence of the specified word, press the spacebar.
The spacebar is represented in the prompt by the first option, which is a pair
of single quotes surrounding a space (' '). When you press the space bar,
Emacs changes the existing word to the new word and then moves the cursor to
the next occurrence of the word in your file.

To change the word and not move the cursor to the next location of the
word, type a comma (,). Emacs then replaces the word. To move to the next
occurrence of the word, press the spacebar.

If you don't want to replace this occurrence of the word, type n. Emacs
does not replace the word; instead, it moves the cursor to the next occurrence
of the word.

To change the word and then halt the Replace function, type a period {.).
Emacs then replaces the word where the cursor is currently located, halts the
Replace function, and then displays a message at the bottom of the screen that
tells you how many occurrences of the word were replaced.

To exit from the Replace function at any time, type Control g.

NOTE: After you perform the first replacement, the prompt line disappears from
the bottom of the screen. However, unless you exit from the Replace facility,
you can continue to replace words by using the commands that were shown in the
prompt. To redisplay the prompt line, type a question mark(?).

EDITING SEVERAL FILES SIMULTANEOUSLY

From time to time, you might find it necessary or desirable to edit several
files at once. This section describes how to load several files into Emacs so

. you can edit them simultaneously, how to split the screen into multiple
windows so you can see several files at once, and how to move back and forth

Using the Emacs Editor 19

among the windows on the screen.

Retrieving Additional Files

To retrieve another file so you can edit it without leaving the file you're
currently editing, type Control x Control v. The system moves the cursor to
the bottom of the screen and displays the following prompt:

• visit-file

Type the name of the file you want to edit. (If you want to create a new
file, you can do so by typing a new file name.) Emacs then displays the
contents of the file in a buffer in the upper window. The file you were
originally editing is no longer displayed in the upper window, but it is still
within the editor and you can return to it at any time (see Exchanging the
Buffer Being Displayed in a Window below.)

You can use the Control I Control v command to retrieve as many files as
you wish.

Moving the Cursor from Window to Window

To move the cursor from one window to another, type Control x o (for other
window). The system then moves the cursor to the next window on the screen.

Exchanging the Buffer Being Displayed in a Window

If you want to exchange the buffer that is being displayed in a window for
a buffer containing another file that has already been loaded into Emacs, type
Control :x b (for change buffer). The system then displays the following
message at the bottom of the screen:

Buffer: [<RETURN> for buffer buffernane]

where buffername represents the buffer that was previously displayed in that
window. (Recall that when you load a file into Emacs, that file is copied
into a buffer that has the same name as the file itself.)

To request that buffer buffernane be displayed in that window, press the
Return key. To request that a different buffer be displayed in that window,
type the buffer name (the name will be displayed at the bottom of the screen
as you type it); then press the Return key. For example, if you want to
exchange the buffer containing the current file for a buffer containing a file
called File1, you would type File1 and press the Return key. The system would
then exchange File1 for the file that was being displayed in the window.

NOTE: If you want to look at a file that you have not yet put into a buffer,
you must type Control x Control v to retrieve the file. You can only use the
Control x b command on files that you have already read into Emacs.

20 Using the Emacs Editor

If you are not sure which buffer you want to display, type a question mark.
Emacs then displays a list of the names of the buffers you can currently see.
To display the contents of a buffer, type the name of the buffer, as described
above.

Enlarging the Current Window

When your screen is split into two windows, you can enlarge either one of
the windows if you wish. To enlarge a window, move the cursor to that window
by typing Control x o. Then type Escapee. The window that the cursor is in
expands to fill most of the screen; the other window is reduced to just one
line.

To return the windows to their original sizes, type Escapee again.

If you want to enlarge a window and leave more than one line in the other
winddw, you can tell:Emacs how many lines to leave in the smaller window. To
do that, move the cursor to the window you want to enlarge, type Control u
followed by the number of lines you want to leave in the smaller window, and
then type Escapee. For example, to enlarge one window and leave 5 lines in
the other window, you would move the cursor to the window to be enlarged and
then type

"'u5 <esc>e

Dividing a Window

If you want to divide a window into two windows, move the cursor to the
window and type Control x 2. Emacs then di vi des the window in half and
displays the file that was displayed in the original window in both the new
windows. You can then view different portions of the same file at the same
time. If you want to look at two files simultaneously, replace the file in
one of the windows with another file, as described above.

Once you have divided a window in half, you can divide it in half again by
typing Control x 2.

NOTE: This command works only on the text window; it · is not possible to divide
the Prolog window in half.

Deleting a Text Window

To delete a text window, position the cursor in that window and type
Control x d. The system then deletes that window. Note that one text window
must always be present; however, you can control the size of that window by
using the Escapee command discussed above.

Using the Emacs Editor 21

Returning to One Editor Window

To return the screen to a two-window display (with one text window on the
top and Prolog on the bottom), move the cursor to the text window you want to
keep. Then type Control x 1. Your screen then returns to the standard
Emacs/Prolog two-window display.

As before, even though the other buffers are no longer displayed on the
screen, they are still within the editor; you can gain access to them by
typing Control x b.

Obtaining a List of Files Currently Being Edited

If you are working with multiple windows and multiple files, you can
sometimes lose track of the files you are working on. To obtain a list of the
files that you are currently editing, type Control x Control b (for buffer).
Emacs then displays a list like the following:

Size
0

374
502

~
Ser

File
File

Buffer
Buffer list
file 1
file2

Mode
Normal
Prol og
Prolog

File

/ufs/clark/ fil e1
/ufs/clark/file2

The complete names of the files are listed under the heading File; the
names you call the files by while you' re editing them are listed under the
heading Buffer.

As explained above, you can request that the buffer currently being
displayed in a window be replaced with another buffer. To do that, you need.
to know the name of the buffer that should replace the current buffer. You
can get that name by referring to the buffer list, as shown above.

To return to the screen that was being displayed when you requested the
list of buffers, press the spacebar.

USING THE EMACS HELP FUNCTION

The Emacs commands described above are the basic commands you will use most
often. Emacs has a number of additional commands that are not described here
because they are not necessary for basic edi t~ng. However, Emacs has an
on-line help facility that lists information about most Emacs commands. To
obtain information about an Emacs command, type Escape ? (that is, Escape
question mark). Emacs responds with the message

• apropos:

Type the name of the function you want to obtain information about. For
example, if you want to obtain information about deletion commands, type the
word delete. Emacs would then display a list of all the commands whose names
included the word delete.

22 Using the Emacs Editor

To obtain information about a specific command, type Escape x followed by
the phrase describe-command and the command name. For example, to obtain
information about the delete-next-word command, you would type Escape x.
Emacs would respond by displaying the prompt-> as shown below. At the prompt
->, you would type the name of the command you wanted information about.

<esc>x
->describe-command delete-next-word

SECTION 3

LOADING PROGRAMS INTO PROLOG

This section explains how to load programs into Prolog. Included are a
description of the Quintus Prolog interpreter and compiler, an explanation of
how to load programs into Prolog through both the interpreter and the
compiler, how to load programs through Emacs, and how to load programs without
Emacs. The section also describes the features of Quintus Prolog that
automatically check your program for correctness of syntax and adherence to
style conventions.

LOADING A FILE INTO PROLOG

You can load a program into Prolog by using either the interpreter or the
compiler. Usually, you will use the interpreter. Interpreted code loads more
quickly than compiled code and is easier to debug. Compiled code runs more
quickly than interpreted code; but since it is harder to debug, you will
usually compile programs only after they are thoroughly debugged. You can
freely mix interpreted and compiled code, so you might often find it
convenient to compile portions of your programs that have been debugged and
interpret portions that you are still working on.

To use the interpreter, you use the consult predicate (see page 25); to
compile programs, you use the compile predicate (see page 29). However, if
you are using the Emacs/Prolog interface, you will often find it easier to
load programs through Emacs, as described below. By using Emacs, you can
invoke the interpreter or compiler from your Emacs text window and load as
much or as little of your program as you like.

LOADING PROGRAMS THROUGH THE EMACS INTERFACE

To use the interpreter to load a program from Emacs into Prolog, go into
the Emacs/Prolog interface by typing prolog + at the main Unix prompt. When
the Emacs/Prolog screen appears, type Control x Control v followed by the name
of the file that contains your program. (Alternatively, you can type prolog +

followed by the name of the file that contains your program; see page 3).
After you enter the Emacs/Prolog environment, move the cursor to the window
containing your file.

At this point, you have three options: you can load the entire buffer
containing your file, you can load a designated portion of the program in your
file, or you can load a single procedure.

Being able to load a designated portion of your program is very convenient
if you are running a program and discover that you need to make a few changes
to make the program work better. You can make your changes and then reload
just the changed portions, as described below, without reloading the entire
program. If you are just beginning a Prolog session, however, you will
probably want to load the entire buffer containing your program.

24 Loading Programs into Prolog

To load the entire buffer, type Escape i (for interpret).
displays the following prompt line at the bottom of the screen:

Prolog then

interpret prolog ••• enter p for procedure, r for region orb for buffer.

Type b (for buffer).

To load a portion of your program, mark the region you want to load. To do
that, move the cursor to the beginning of the first -line you want to load.
Then type Control @ (that is, Control Shift 2 on many terminals). Prolog
displays the message

Mark set

at the bottom of the screen. Move the cursor to the end of the portion of the
program you want to load. Then type Escape 1. When Prolog displays the
following line at the bottom of the screen, typer for region.

interpret prolog ••• enter p for procedure, r for region orb for buffer

NOTE: When you mark the region to be loaded by the Escape 1 r command, be sure
to include all the clauses for any procedures you are loading.

To load a single procedure, move the cursor to any portion of any line
within the procedure. Then type Escape 1. When Prolog displays the following
line at the bottom of the screen, type p (for procedure).

interpret prolog ••• enter p for procedure, r for region orb for buffer

NOTE: You can load an individual command of the form:- command into Prolog by
positioning the cursor on the line that contains the command and then typing
Escape i followed by p.

The Escape i p facility requires that you use certain syntactic and
structural conventions which are described in Section 6, page 73. If you are
not sure whether your procedures adhere to these conventions, you should use
the Escape i r facility instead, making sure your marked region encompasses
these procedures in their entirety.

After you indicate how much of your program to load, the cursor moves to
the Prolog window at the bottom of the screen, and Prolog displays a message
that tells you it is loading the program. When it finishes, Prolog displays a
message to let you know that the procedures have been successfully loaded.
For example, if your program consisted of the procedures parts of, assembly,
and inventory, Prolog would display the message -

/* Procedure parts_of/2 consulted•;
I* Procedure assembly/2 consulted*/
/* Procedure inventory/2 consulted*/

After it lists the procedures it has loaded, Prolog displays the message
"yes" followed by the main Prolog prompt, as shown below.

Loading Programs into Prolog

yes
?-

25

At this point, you can begin to run your program (see Section 4, page 35.)

NOTE: When you load procedures into Prolog, Prolog first removes any previous
versions of those procedures from its database.

Moving Between the Text and Prolog Windows

As mentioned earlier, you can easily move back and forth between the text
and Prolog windows, make changes to your program, and then reload the modified
portion of the program, as described above.

Recall that to move from the text window into Prolog, or vice versa, you
type Control x followed by o. The system then moves the cursor into the other
window on the screen, and you can immediately begin working in that
environment.

LOADING PROGRAMS WITHOUT EMACS

If you have created a Prolog program and stored it in a file, you load that
file into Prolog through the interpreter by directing Prolog to consult the
file.

When you consult a file, Prolog adds the procedures defined in the file to
the Prolog database, after first deleting any previous version of those
procedures from the database.

You can consult a file in two ways: you can type the name of the file
enclosed in square brackets at the main Prolog prompt, as shown in the example
below;

l ?- ['myfile.pl'].

or you can type consult followed by the name of the file containing the
program at the main Prolog prompt, as shown in the example below.

?- consult('myfile.pl').

Note that in either case, the command must be followed by a period. The
single quotes are necessary because the file name contains a non-alphanumeric
character (.). Usually, you can omit the .pl suffix. For example, you could
simply type

: ?- [myfile J.

or

l ?- consult(myfile).

26 Loading Programs into Prolog

Prolog would then look for a file called myfile.pl; if none existed, it would
look for one called myfile.

When Prolog finishes consulting a file, it displays a message which shows
the name of the file that was consulted and the length of time it took to
consult the file.

(myfile.pl consulted (2.354 sec 2346 bytes)]
: ?-

As shown above, the main Prolog prompt reappears after the system finishes
consulting a file. At this point, you can begin using your Prolog program, as
described on page 35.

If you want to consult several files at once, enclose the list of file
names within square brackets, and separate the file names by commas. For
example, to consult three files called file1, file2, and file3, you would type

?- [file1,file2,file3].

Alternatively, you could type

?- consult([file1,file2,file3]).

USING IMBEDDED CONSULT COMMANDS

Any Prolog file can contain imbedded commands which cause Prolog to consult
subsidiary source files whenever it consul ts the primary source file. To
direct Prolog to consult a subsidiary source file, you include the :­
consult(filename). command in your primary source file. For example, to
direct Prolog to consult a subsidiary file called myfile, you would include
the following line of text in your primary source file:

:- consult(myfile).

NOTE: The:- symbol is placed at the beginning of the line just as it appears
in the example above.

SYNTAX ERROR MESSAGES

When a file is read into Prolog, Prolog automatically checks the clauses in
the file for correctness of syntax. If a clause contains a syntax error,
Prolog tells you that a syntax error has been found and displays the clause
that contains the error.

For example, suppose you accidentally omitted a closing parenthesis in a
clause, as shown below.

member(X,[a,b,c,d].

When you directed Prolog to load the file c~ntaining that clause, Prolog would

Loading Programs into Prolog 27

load all the clauses that preceded the clause containing the error. When it
reached that clause, it would display the message

•• Syntax error: ••
member(X,[a,b,c,d)
**here••

to let you know that the syntax of the clause was incorrect. Prolog would
then ignore this clause and continue loading the rest of the file into the
database,

STYLE WARNINGS

In addition to checking for syntax errors, Quintus Prolog also has a style
checker, which displays warning messages whenever certain stylistic
conventions are violated in a program, Whereas syntax error messages indicate
clauses which can.not be read in to · Prolog, style warnings simply indicate
typing mistakes or program construction that doesn't follow Quintus Pro log
style conventions. The style conventions for Quintus Prolog are listed below.
By adhering to these conventions, you can use the style warnings to catch
simple errors very easily.

1. Define all clauses for a given procedure in one file. This is
essential; the consult and compile predicates do not allow the
definition of a procedure to be spread across more than one file.
If a procedure is defined in more than one file, and all the files
in which the procedure is defined are consulted or compiled, each
successive definition of the procedure wi l1 wipe out any clauses
for the procedure which were previously defined.

2. Make all clauses for a given procedure contiguous in the source
file. This does not mean that you shouldn't leave blank space or
put comments between clauses if you want to, but simply that
clauses for one procedure should not be interspersed with clauses
from another procedure.

3. If a variable appears only once in a clause, write that variable as
either the single character "_", or begin the variable name with
the character""

If any of these conditions are not met, you will be warned when the file
containing the clauses is consulted or compiled. For example, if condition 1
is violated, Prolog d1splays a message like the one -shown below before it
consul ts or compiles a procedure that has been defined in another file that
has already been consulted or compiled:

The procedure foo/2, previously defined in
/ufs/george/file1, is being redefined by /ufs/george/file2.
Do you really want to redefine it? (Y, N, P, or?)

If you type y, the definition in the file being currently consulted

28 Loading Programs into Prolog

replaces the existing definition for the predicate. If you type n, the
exi·sting definition remains intact, and the definition in the file being
currently consulted or compiled is ignored. If you type p, the definition in .
the file being currently consulted or compiled replaces the existing
definition; and furthermore, if yet another definition of that procedure is
encountered in another file, that definition will automatically replace the
existing definition and no warning message will be displayed. This option is
particularly useful if you have changed the name of a file, since it
suppresses the warnings you would otherwise get for every procedure in the
file.

If style convention 2 is violated, you will get a message of the form:

[Warning: Clauses for foo/1 are not together in the source file]

This indicates that in between some pair of clauses defining procedure
foo/1, there is a clause for some other procedure. If you followed the style
conventions in writing your code, this message would indicate that some clause
in your source file had either a mistyped name or the wrong arity, or that the
clause was defined more than once in the file. One other possible cause for
this message might be that a period was typed in place of a comma, as in

foo(X, Y) :-
goal 1 (X,Z),
goal2((Z).
goal3(X,Y).

If style convention 3 is violated, you will get a message of the form:

[Warning: Singleton variables, clause 1 of check_state/1: TheStayeJ

indicating that in the first clause of procedure check_state/1, there is only
one occurrence of the variable TheStaye. If that variable is a misspelling,
you should correct the source text and recompile or reconsult. If it was
really meant to be a single variable occurrence, replace it with the anonymous
variable " " or preface it with " " as in "_TheStaye", and you will no longer
get the style warning message. -

It is good programming practice to immediately respond to these warnings by
correcting the source text. By doing so, you will get the full benefit of the
style warning facility in finding many errors painlessly.

The following predicates can be typed at the main Prolog prompt to turn the
style warning facility on and off:

style_check(X)
X = all
X = single_v ar

X = discontiguous

X = multiple

no_style_check(X)

turns on all style checking (this is the default)
turns on checking for single variable
oca.irrences
turns on checking for discontiguous clauses for
procedures
turns on style checking for multiple definition of
same procedures (in different files)

Loading Programs into Prolog

X = all
X = single_var

X = discontiguous

X = multiple

turns off all style checking
turns off checking for single variable
occurrences
turns off checking for discontiguous clauses for
procedures
turns off style checking for multiple definition
of same procedures (in different files)

COMPILING PROGRAMS THROUGH THE EMACS INTERFACE

29

When your program is completely debugged and is in its final form, you may
want to compile it so it will run faster. You invoke the compiler from Emacs
almost the same way as you do the interpreter. The only difference is that
you type Escape k rather than Escape i.

If you want to compile an entire file, position the cursor anywhere within
the file. Then - type Escape k (for kompile). When Prolog displays the
following line at the bottom of the screen, type b (for buffer).

compile prolog ••• enter p for procedure, r for region orb for buffer

To compile a region, mark the region (see page 14). Then type Escape k r.

To compile a single procedure, position the cursor anywhere within the
procedure. Then type Escape k p.

After you indicate how much of the program to compile, Prolog compiles the
program, lists the procedures it has compiled, and then displays the main
Prolog prompt.

NOTE: When you compile procedures, Prolog first removes any previous versions
of those procedures from the database.

COMPILING PROGRAMS WITHOUT EMACS

To compile a program from within the Prolog environment, type compile
followed by the name of the file containing the program at the main Prolog
prompt, as shown in the example below.

: ?- compile(myfile).

Remember that the command must be followed by a period.

Prolog compiles the file and then displays a message like the following:

[myfile.pl compiled (4.918 sec 2346 bytes)]

yes
l ?-

30 Loading Programs into Prolog

At this point, you can begin using your Prolog program, as described on page
35.

If you want to compile several files at once, enclose the list of file
names within square brackets, and separate the file names by commas. For
example, to compile three files called file1, file2, and file3, you would type

: ?- compile([file1,file2,file3]).

NOTE: In any Pr·olog source files, you can imbed compile commands which direct
Prolog to automatically compile subsidiary source files whenenver the primary
source file is compiled. To do that, include the :-compile(filenane). command
in your primary source file. For example, to direct Prolog to automatically
compile a subsidiary file called myfile, you would include the following line
in your primary source file:

:- compile(myfile).

DEFINING PROCEDURES DIRECTLY

If you want to define Prolog procedures directly without first typing them
in a file, you can easily do so. Note, however, that this method of defining
procedures is usually only used if you want to enter just a few clauses. If
you are not using the editor interface, Prolog does not provide any editing
capability, so this method is not recommended for entering procedures of any
size.

To enter a procedure directly into the database through the interpreter,
type either [user]. or consult(user). at the main Prolog prompt.

I?- [user].

or

l ?- consult(user).

Note that in either case, the command must be followed by a period. Type all
the clauses for the procedures you want to enter. When you are finished, type
Control x · Control d to return to the main Prolog prompt. (If you are not
using the Emacs/Prolog interface, type Control d instead.) The system
displays a message telling you it has consulted your clauses and telling you
how long it took to consult the clauses. A sample session might look like
this:

: ?- consult(user).
parts of(transmission,gears).
parts-of(transmission,housing).
parts-of(transmission,shaft) •
.. x ... d -

[user consulted (0.100 sec 270 bytes)]

yes

Loading Programs into Prolog 31

?-

If you are using Prolog without the Emacs interface and you ty-pe
consult(user)., the system displays a : prompt at the beginning of each line
that follows the line on which you typed consult(user). When you finish
typing in your procedures and you type Control d, the main Prolog prompt : ?­
returns.

To enter a procedure directly into the database through the compiler, type
compile(user). at the main Prolog prompt.

: ?- compile(user).

As noted above, you must type a period after the command. Type the clauses
for the procedures you want to enter. When you finish, type Control x Control
d to return to the main Prolog prompt. (If you are not using the Emacs/Prolog
interface, type Control d instead.)

NOTE: When you define a procedure directly, the procedure replaces any
procedures of the same name that were previously defined in the database.

SAVING A PROGRAM STATE

Once a program has been consulted or compiled, its facts and rules are
resident in the Prolog database. It is possible to save the current state of
the database in its consulted or compiled form. This allows you to restore
the current database at a later time without having to reconsult or recompile
a Prolog source file.

To save a program state in a file, type the following at the main Prolog
prompt: save(filename). For example, to save a program state in a file called
myprog, you would type

?- save(myprog).

To restore, or retrieve, a saved program state from the Unix level, type
the name of the file containing the saved state at the main Unix prompt. For
example, to restore the program state stored in the file myprog, you could
type myprog .at the main Unix prompt, as shown below.

<Unix prompt>myprog

Restoring a Saved Program State at the Unix Level

To restore a saved program state at the Unix level, type the naf!1e of the
file containing the saved state at the main Unix prompt. For example, to
restore the program state stored in the file myprog, you could type myprog at
the main Unix prompt, as shown below.

<Unix prompt>myprog

32 Loading Programs into Prolog

Restoring a Saved Program State and Emacs

If you want to restore a program state under the Emacs interface, type the
name of the fiie containing the program state followed by a plus sign (+) at
the main Unix prompt. For example, to restore a program state stored in the
file myprog, you would type myprog + at the main Unix prompt, as shown below .

<Unix prompt>myprog +

The system would then divide the screen into two windows with a text window in
the upper window and the program state myprog in the lower window.

Restoring a Saved Program State and Its Source File

If you want to restore a program state and load its source file into Emacs,
type the name of the file containing the program state, a plus sign (+), and

· the name of the sour~e file at the main Unix prompt. For example, if you had
a source file called mysource, and if you had stored its program state in a
file called myprog, you could load the source file and restore the program
state by typing the following at the main Unix prompt:

<Unix prompt>myprog + mysource

The system would then split the screen into two windows; the file my source
would be loaded through Emacs into the upper window, and the program state
stored in myprog would be loaded into Prolog in the lower window.

Restoring a Saved Program State from within Prolog

To retrieve a saved program state
restore(filenc111e). at the main Prolog prompt.
in the file myprog, you would type

?- restore(myprog).

from within Prolog, type
So to restore the state stored

When you restore a saved program, the program will be loaded into Prolog in
exactly the same state it was in when you saved it in the file. For example,
if you saved a program by giving Prolog the command

l ?- save(myprog), write('myprog restored').

the message myprog restored would be displayed on the screen when you directed
Prolog to r~store that file.

SAVING A PROLOG SESSION

If you are running Prolog under the Emacs interface, you can save your
current Prolog session in a file so you can review or print it.

Loading Programs into Prolog 33

The Prolog window is automatically associated with the file prolog.log in
your home directory when you start Prolog by typing prolog +. To save your
Pro log session, which is contained in an edit buffer, type Control x Control · s
in the Prolog window. The system then saves your session in the file
prolog. log.

NOTE: Saving a Prolog session is different than saving a Prolog program state.
A Prolog session saved in pro log. log can be displayed or printed, but it
cannot be restored or started up again. In contrast, a saved state can be
restored, and you can resume your Prolog session at the point where you left
off.

USING AN INITIALIZATION FILE

If you use certain customized features often, you might want to direct the
system to load them every time you start up Prolog. You can do that by using
the initializatio~ file prolog.ini.

To direct the system to automatically load the files containing your
customi ·zed features, put commands in prolog.ini to consult those files (see
page 26.) Since prolog. ini is consulted whenever you start up Prolog, any
commands contained in the file will be automatically executed.

NOTE: prolog.ini is resident in your home directory.

'l

SECTION II

RUNNING PROGRAMS

This section describes how to run a program once you've loaded it into
Prolog. The section also contains a discussion of certain features of Quintus
Prolog that you will find it helpful to know about when you run your programs.

ASKING QUESTIONS

Suppose your program contained the following clauses:

parts_of(transmission,gears).
parts of(transmission,housing).
parts=of(transmission,shaft).

You could ask the question "Are gears part of the transmission?" by
typing

l ?- parts_of(transmission,gears).

Prolog would attempt to satisfy this goal; and if it succeeded,
it would display the word yes and then redisplay the main
Prolog prompt, as shown below.

: ?- parts:...of(transmission,gears).

yes
?-

If Prolog had not found clauses to satisfy the goal, it would display the
word no and then redisplay the main Prolog prompt.

: ?- parts_of(transmission,brakes).

no
l ?-

NOTE: Like clauses and commands, questions must end with a period.

As with Prolog clauses, you can use variables in place of constants in your
questions. For example, to ask the question ''What are the parts of the
transmission?" you could type

?- parts_of(transmission,X).

X = gears

Prolog displays the first valid value it finds for X, as shown above.

36 Running Programs

If the first value is sufficient - that is, if you don't want Prolog to
continue searching for other answers - type a carriage return. Prolog then
returns you to the main Prolog prompt.

?- parts_of(transmission,gears).

X = gears <ret>

?-

If you want Prolog to continue searching for valid answers, type a
semicolon and a carriage return. (Recall that in Prolog, a semicolon means
or. So by _typing a semicolon, you direct Prolog to search for an alternative
answer.) For example, to see if the transmission contains any parts other
than gears, you would type a semicolon after Prolog displayed the first
answer.

?- parts_of(transmission,X).

X = gears ;

X = housing

You can request as many additional answers as you like by typing a
semicolon each time Prolog displays an answer. Prolog will continue to search
for additional answers until it reaches the last valid answer in your program.
If you type a semicolon and there are no more valid answers, Prolog simply
displays the word no and returns to the main Prolog prompt, as shown below.

?- parts_of(transmission,X).

X = gears ;

X =housing;

X = shaft ;

no
: ?-

REPEATING A QUESTION (USING EMACS)

Often during your Prolog sessions you might find it useful to submit a
question, edit it slightly, and then resubmit it. For example, if you make a
typing error in a question, you would want to correct the error and resubmit
the question.

Everything you type during a Prolog session goes into a buffer, so it is
easy to retrieve and copy lines you've already typed. To copy the last
question you typed so you can edit 1 t, type Control x Control e at the main
Prolog prompt, I ?-. Prolog then redisplays the question.

Running Programs 37

For example, suppose you made a typing error, as shown below. If you typed
Control x Control e, Prolog would duplicate the line. You could then correct
the typing error using Emacs editing commands and resubmit the question.

: ?- parts_of(transmissiom,X).

no

?- AxAe parts_of(transmissiom,X).

When you type Control x Control e, the last input string you typed is
displayed on the screen.

If you want to redisplay an earlier input string, move the cursor to the
line you want to copy and then type_Control x Control e.

DISPLAYING PREVIOijS INPUT USING EMACS

If you are running Pro log under the Emacs interface, you can scroll
backward through your Prolog session to see previous input by using the Emacs
scrolling commands (see page 13). Similarly, you can scroll forward to your
current step in your Prolog session by using Emacs scrolling commands.

LOCATING PROCEDURES USING EMACS

The Ernacs/Prolog interface also provides a facility that enables you to
quickly locate procedures in source files once the procedures have been
loaded. If you have loaded several files into Prolog at once, it can be
particularly helpful to be able to locate a procedure directly without having
to search through several files.

You can direct Prolog to locate a procedure in one of two ways. If you
have already typed the procedure as part of a question you submitted to
Prolog, move the cursor to the line containing the procedure. Then type
Control x • (that is, Control x period). Prolog will then locate the
procedure and display the portion of the file containing the procedure in the
text window at the top of the screen.

Alternatively, you can type Control x • (that is, Control x period) at the
main Prolog prompt. The cursor moves to the bottom of the screen, and the
system displays the message

name/ari ty =

Type the name of the predicate you want to locate followed by a slash and the
arity of the predicate. (Recall that the arity is the number of arguments the
predicate has). For example, to locate the predicate employee(smith,harold),
you would type employee/2, as shown below.

name/arity = employee/2

38 Running Programs

NOTE: You can type the predicate name without typing the arity, and the
system will still locate the predicate. If the predicate was defined for
more than one arity, the system will simply locate one of the definitions
of the predicate.

INTERRUPTING THE EXECUTION OF A PROGRAM

You can interrupt the execution of a Prolog program at any time by typing
Control c. For example, if you submit a question to Prolog and then decide
you want to stop (abort) the question, you would type Control c, and Prolog
would respond by displaying the message

Prolog interruption (h for help)?

At this point, you can either type h to see a list of the options available
to you, as shown below, or you can type the letter that corresponds to the
option you want to select.

If you type h, Prolog displays the following list of options:

Interrupt Options:

C continue - do nothing
t trace debugger will start creeping
d debug - debugger will start leaping
a abort - cause a Prolog abort
e exit - irreversible exit from Prolog
h help - this list

Prolog interruption (h for help)?

To select an option, type the letter that corresponds to that option and
press the Return key. For example, to stop the execution of the current
question, type a followed by a carriage return.

Typing c causes the current procedure to continue executing as if nothing
had happened. lyping t turns on the trace option of the debugger (see page
43). Typing d turns on the debug option of the debugger (see page 43).
Typing a causes the current question to be aborted and the main Prolog prompt
to be redisplayed. Typing e ends your Pro log session. (However, if you are
using Prolog through the Emacs interface, you must still type Escape Control c
to exit to the Unix level.)

ERROR MESSAGES FOR BUILT-IN PREDICATES

If your program uses a built-in predicate with arguments that are not
appropriate for that predicate, the system may display an error message.
After the message is displayed, one of three things happens, depending upon
the severity of the error. The predicate succeeds, it fails, or it causes the
program to be aborted. An example of each type of error message is shown
below. See the Quintus Prolog Reference Manual for more detailed information.

Running Programs 39

[Error 321: op(-1,xfx,foo) - illegal operator precedence)

This message would be displayed if your program called the go-al
op(-1,xfx,foo).; however, the goal would still succeed.

[Error 302: arithmetic expression contains a variable: _97)

If your program contained the goal X is Y, the goal would fail, and the
error message shown above would be displayed.

[Error 109: cannot create saved state (UNIX error foo))
[Execution aborted)

If the goal save(foo). was called and the file foo was protected, the
system would display the error message shown and abort the program.

UNDEFINED PROCEDURES

By default, if Prolog encounters a call to an undefined procedure, it
displays an error message, turns on the debugger, and begins tracing. (See
page 43 for more information about tracing.)

Once an error message has been displayed, you can take one of several
actions. You can turn the debugger off and continue the execution of the
program by typing n. If you do this, the undefined procedure will fail.
Alternatively, you can abort the execution of the program entirely by typing
a. If you think the procedure was called by mistake, type g to find out where
it was called from, and then correct the procedure that called it. If the
procedure should have been defined, find or write its definition and then
consult or compile it; then resubmit your original question or . command. If
the procedure should be undefined, make it a dynamic procedure (see page ~1),
or else define a clause for it with the body "fail."

NOTE: If you would prefer that calls to undefined procedures would simply
fail (rather than activating the debugger), use the built-in predicate
unknown to change the default action for calls to undefined procedures.
(See the Quintus Prolog Reference Manual for more information.)

RESTARTING PROLOG (UNDER EMACS)

If you are running Prolog under the Emacs interface, you may sometimes find
it convenient to halt the Pro log session that is currently running without
halting the Emacs session, and to restart Prolog by calling a Prolog saved
state. To halt the current Prolog session, type Control c followed bye.

To restart a Prolog session under Emacs, type Escape x. When the cursor
moves to the bottom of the screen, type restart-prolog, as shown below.

-> restart-prolog

The system then displays the following line at the bottom of the screen:

40 Running Programs

Prolog save state: [<RETURN> for previous save state]

To restart the Prolog program you just halted, press the Return key. To ·
run a different saved state, type the name of the file that contains that
program. In either case, the system responds by restarting Prolog in the
lower window.

EXECUTING UNIX COMMANDS FROM WITHIN PROLOG

For convenience, Quintus · Prolog provides two commands that enable you to
execute Unix functions from within the Pro log environment. These commands
enable you to gain access to the main level of Unix and to change your
directory.

To gain access to the main level of Unix from within Prolog, type
unix(shell). at the main Prolog prompt, as shown below:

: ?- unix(shell).

This command puts you at the main Unix shell, and you can execute
any commands you would normally execute at that level. To return
to the main Prolog prompt from this point, type Control x Control d.
(If you are using Prolog without the Emacs interface, type Control d.)

Alternatively, you can gain access to the Unix shell and execute a command
all at once. To do that, type the following at the main Prolog prompt:

: ?- unix(shell(Atom)).

\oilere Atom represents the command you want to execute. For
example, to obtain a listing of the files in your directory, you
would type

?- unix(shell(ls)).

To change your default directory, type unix(cd(Atom)). at the main Prolog
prompt, as shown

l ?- unix(cd(Atom)).

where Atom represents the directory you want to change to. For
example, to change to a directory named /ufs/albert, you would type

?- unix(cd('/ufs/albert')).

The directory name /ufs/albert/ is surrounded by single quotes because it
contains non-alphanumeric characters.

The system then displays a message at the bottom of the screen showing you
the directory it has changed to:

have now changed to directory /ufs/albert

Running Programs 41

It then redisplays the main Prolog prompt.

To change back to your default directory, you can either type
unix(cd(directoryname)). followed by the name of your directory, as described
above, or you can simply type unix(cd). at the main Prolog prompt. As before,
the system di splays a message at the bottom of the screen showing you the
directory it has changed to and then redisplays the main Prolog prompt.

NOTE: Alternatively, you can change your directory by typing Escape x; when
the cursor moves to the bottom of the screen, type ed. This method can be
easier to use if your file has a long name because with this method, you can
use Emacs file-name completion. See page 12 for more information on file-name
completion.

CREATING DYNAMIC PREDICATES

All predicate~ in Prolog fall into one of two categories: static or
dynamic. Dynamic predicates can be· modified when a program is running; in
contrast, static predicates can be modified only by using consult or compile.

If a predicate is first defined by being consulted or compiled, it is
static by default. Sometimes, however, it is necessary to add, remove, or
inspect clauses for a predicate while a program is running. In order to do
that, you must declare the predicate to be dynamic. A predicate can be made
dynamic only by specifically declaring it to be so, as described below, or by
using one of the assert predicates (see Appendix D for a list of the assert
predicates. For more information, refer to the Quintus Prolog Reference
Manual).

To make a predicate dynamic, you insert a line in the file containing the
predicate which declares the predicate to be dynamic. The line is in the
format

:- dynamic ~/arity

So, for example, to make the predicates exchange_rate/3,
spouse_of/2, and gravitational_constant/1 dynamic, you would type

:- dynamic exchange_rate/3, spouse_of/2, gravitational_constant/1.

Any number of predicate names may be specified, as long as they are
separated by commas. Note that the :- symbol must precede the line with the
dynamic declaration, as shown above.

NOTE: The line that declares a predicate to be dynamic must occur before the
definition of the predicate itself in the file.

Alternatively, you can declare a previously undefined predicate to be
dynamic by using one of the assert predicates listed in Appendix D.

NOTE: If you want to use one of the assert predicates to define a new clause
for an existing predicate, you must first make the predicate for that clause

42 Running Programs

dynamic. That is, you must add the dynamic declaration to the definition of
the procedure and consult or compile it again. If you don't, you will receive
an error message like the one shown in the following example:

?- assert((f(x):-g)).
[Error 330: attempting to assert clause for static procedure: f(x):-g]

PROMPTS

If you are using Prolog under the Emacs interface, the only Prolog prompt
you will see is the main Prolog prompt, : ?- • However, if you are using
Pro log without the Emacs interface, you wi 11 see other Pro log prompts, as
described below.

The prompt l: is displayed instead of the l ?- prompt if you type a command
or if your program contains a command that requires input from the terminal.
For information on changing the l: prompt, refer to the definition of prompt
in the Quintus Prolo g Reference Manual.

The prompt l is a modified version of the Prolog top level prompt. If
you are typing a question at the top level of Prolog, and your input is longer
than one line, the : prompt is displayed on all lines after the first one.
The l prompt is another modified version of the Prolog top level prompt which
is displayed at the beginning of lines when you type [user] or compile(user)
to enter procedures directly into Prolog.

SECTION 5

DEBUGGING YOUR PROGRAMS

This section explains the debugging facilities that are available in
Quintus Prolog. The debugging facilities provide you with information
concerning the control flow of your program so you can find problem areas.

With the debugger, you can exhaustively trace each step of your program:
or, if you want less detail, you can set spypoints on selected procedures and
monitor the execution of those procedures only. A wide range of control and
information options available during debugging enable you to further tailor
the debugging process to meet your needs.

BACKGROUND INFORMATION

The debugger can trace program execution at four key points:

procedure entry, when a solution to a goal is first looked for
procedure exit, when a solution to a goal is found
procedure re-entry, when an alternative solution is looked for, and
a proc~dure is reentered during backtracking
procedure failure, when no (more) solutions are to be found for a
goal, and the procedure is exited.

As the debugger proceeds through each step of the execution of a procedure,
it displays a message letting you know which of these four points it is
currently passing through. These entry and exit points are called ports, and
they are referred to by the debugger as follows:

Port Description

Call Look for a solution to the goal
Exit Exit because a solution has been found
Redo Look for alternative solutions (backtrack)
Fail Exit because there are no (more) solutions

TURNING THE DEBUGGER ON

To turn the debugger on, type either trace or debug at the main Pro log
prompt. If you type trace, Prolog will start by showing the step-by-step
execution of the procedure you specify. If you type debug, you set the
debugger up to start showing selected portions of the execution of the
procedures you specify. The option you select sets the "top-level" debugging
mode, but you can select more or less detailed debugging any time the debugger
stops and prompts you for interaction.

Once the debugger is on, a message is continually displayed to show which
option (trace or debug) you selected. Under Emacs, the debugger state is
displayed on the Prolog mode line at the bottom of the screen:

44 Debugging Your Programs

: ?-

Quintus Prolog trace

When you are not under Emacs, the debugger state is shown before each
top-level prompt, as shown below:

[trace]
: ?-

As shown in the example below, you can turn the debugger on by typing trace
or debug at the main Prolog prompt.

: ?- trace.
[The debugger will first creep - showing everything (trace)]

yes-
I ?-

or:

I ?- debug.
[The debugger will first leap -- showing spypoints (debug)]

yes
I ?-

Debugging Your Programs 45

TURNING THE DEBUGGER OFF

To turn the debugger off, type either nodebug or notrace. These predicat~s
have exactly the same effect.

: ?- nodebug.
[The debugger is now switched off]

yes
: ?-

or:

: ?- notrace.
[The debugger is now switched off]

yes
: ?-

TRACING EVERY STEP IN THE EXECUTION OF A PROCEDURE

Once you type trace. to turn on the debugger, you can begin tracing the
execution of a procedure by simply typing the procedure at the main Prolog
prompt. For example, to trace the execution of a procedure works_for(X,Y),
you would type that procedure at the main Prolog prompt, as shown below:

?- works_for(X,Y).

The system would then begin to execute the procedure in the normal way
(variables would be instantiated, backtracking would occur when necessary,
etc.). But because the debugger is activated, the system also shows when each
procedure is called and whether or not it is successfully executed.

A sample trace is shown below for the procedure works_for(X,Y). The
procedure is defined as follows:

works_for(X,Y) :- works_directly_for(X,Y).
works_for(X,Z) :- works_directly_for(X,Y), works_for(Y,Z).

works directly for(john,mary).
works=directly=for(mary,george).

46 Debugging Your Programs

--
?- works for(X,Y).

(1) 0 Call: works for(93, 108)? <ret>
(2) 1 Call: works directly-for(93, 108) ? <ret>
(2) 1 Exit: works-directly-for(john-:-mary)
(1) 0 Exit: works=for(john-:-mary)

X = john,
Y = mary;

(1) 0 Redo: works for(john,mary) ? <ret>
(2) 1 Redo: works-directly for(john,mary)? <ret>
(2) 1 Exit: works-directly-for(mary,george)
(1) 0 Exit: works=for(mary-:-george) · ·

X = mary,
Y = george ;

(1) O Redo: works-for(mary,george) ? <ret>
(2) 1 Redo: works-directly for(mary,george)? <ret>
(2) 1 Fail: works-directly-for(93, 108)
(3) 1 Call: works-directly-for(-93,-228)? <ret>
(3) 1 Exit: works-directly-for(john-;mary)
(4) 1 Call: works-for(mary-:- 108)? <ret>
(5) 2 Call: works-directly for(mary, 108) ? <ret>
(5) 2 Exit: works-directly-for(mary,george)
(4) 1 Exit: works-for(mary~george)
(1) O Exit: works=for(john,george)

X = john,
Y = george <ret>

?-

As shown above, when you type a question, the system displays a message
telling you that it is calling the procedure you've specified.

?- (1) 0 Call: works_for(_107,_122)?

To direct the debugger to execute the call to the specified procedure and
to show the program step that immediately follows that call, press the Return
key. The system then executes the call to that procedure and displays the
next program step. You can direct the system to continue displaying each
successive step in the execution of the program by simply pressing the Return
key each time the system displays a procedure call followed by a question
mark.

If you want to see the final result of the question but you do not want the
debugger to continue displaying each step of the execution, type n in response
to the question mark. If you want to cancel the trace, type a (for abort) in
response to the question mark.

As the debugger displays the program's execution, check for instances where

Debugging Your Programs 47

procedures behave differently than you expect. Check especially for procedure
calls that fail and variables that aren't instantiated as you expect them to
be.

DEBUGGING ONLY SELECTED PROCEDURES

To debug only selected procedures in a program, type debug at the main
Pro log prompt. Then set a spypoint on each of the procedures you want to
debug. A spypoint is a type of marker. By setting a spypoint on a procedure,
you direct the debugger · to skip directly to that procedure and display
debugging information for that procedure only.

Setting Spypoints

To set a spypoint, type spy followed by the name and arity of the predicate
you want to examine, as shown in the example below. Note that parentheses are
not necessary (although they can be used if desired).

: ?- spy test/1 •
[The debugger will first leap -- showing spypoints (debug)]
[Spypoint placed on test/1]

yes
I ?-

NOTE: you can set a spypoi nt any time the debugger is on, whether it is in
trace or debug roode.

To set several spypoints at once, type a list of the names and arities of
the predicates you want to examine, as shown in the example below.

--
: ?- spy [transform/2, transform/3].
[Spypoint placed on transform/2]
[Spypoint placed on transform/3]

yes
: ?-

To set spypoints on ALL existing procedures of a given name, type spy followed
by the name of the predicate you want to examine, as shown in the example
below. This is~ quick way of placing spypoints on procedures, particularly
if you cannot remember their arities.

48 Debugging Your Programs

: ?- spy transform.
[Spypoint placed on transform/2]
[Spypoint placed on transform/3]

yes
: ?-

Debugging a Procedure on Which Spypoints Have Been Set

Once you have set spypoints, type the procedure you want to debug at the
main Prolog prompt. The system then begins showing you program execution at
the spypoints you've set. You can switch to more detailed debugging by
pressing the Return key any time the system prompts you with a question mark.

The example shown below uses the same procedure that was used in the
example on page 45. However, this time, a spypoint is placed on the procedure
works directly for/2; so the call to that procedure is the first one displayed
when you type -the goal works for(X, Y). Note also that in response to the
question mark prompt, the letter l is typed instead of a carriage return. The
1 stands for "leap", which means "leap" to the next spypoint. Leaping is
discussed in more detail in the next section.

l ?- spy works directly for/2.
[Spypoint placed on works directly for/2] - -
I ?- works for(X,Y).
•• (2) 1 Call: works directly for(41, 56) ? 1
•• (2) 1 Exit: works=directly=for(john~mary) ? 1

X = john,
Y = mary <ret>

?-

Removing Spypoints

To remove a spypoint, type nospy followed by the name and arity of the
predicate you want to remove the spypoint from. As with spy, you can type
nospy followed only by a predicate name if you want to remove spypoints from
all the predicates of that name.

Debugging Your Programs

l ?- nospy translate/3.
[Warning: You have no clauses for translate/3]
[Spypoint removed from translate/3]

yes
l ?- nospy transform.
[Spypoint removed from transform/2]
[Spypoint removed from transform/3]

yes
: ?- nospy [append/3,test/1].
[Spypoint removed from append/3]
[Spypoint removed from test/1]

yes
: ?-

To remove all the spypoints at once, type nospyall.

l ?- nospyall.
[All spypoints removed]

yes
I ?-

REQUESTING MORE OR LESS DETAILED DEBUGGING

49

By default, the debugger stops at every port and displays the procedure
being currently called followed by a question mark. The question mark is a
debugger prompt which asks you to to specify the next action the debugger
should take. Whenever the question mark is displayed,. you can specify the
degree of detail with which debugging should proceed. In other words, even if
you selected the debug option originally, you can direct the debugger to begin
debugging a procedure in detail any time the question mark is displayed.
Conversely, if you originally selected the trace option, you can direct the
debugger to begin displaying spypoints only.

To direct the debugger to proceed with detailed debugging or to begin
detailed debugging, press the Return key in response to the question mark.
Alternatively, you can type c, which stands for "creep;" "creeping" through a
program is the same as tracing it, or displaying it step by step.

To direct the debugger to show the program's execution
spypoint, type 1, which stands for "leap to the next spypoint."
each time the debugger prompts you with a question mark, the
display the program's execution at spypoints only.

at the next
If you type l
debugger will

50 Debugging Your Programs

To direct the debugger to skip over the execution ~fa procedure, types
for "skip." The debugger will not display anything during the execution of
the current procedure; it will begin displaying debugging information again at ·
the final Exit or Fail port of the current procedure. If any spypoints have
been set on procedures called by the current procedure, they will be ignored.

NOTE: In addition to the options discussed above, you can select several other
options when the debugger stops and prompts you. These options are discussed
on page 63.

REQUESTING MORE OR LESS FREQUENT PROMPTING

By default, the debugger stops at all four ports (Call, Exit, Redo, and
Fail) and prompts you to specify the next action that should be taken. The
ports at which the debugger stops are referred to as "leashed" ports.

If you want to change the leashed ports - that is, you want to request
that the debugger stop and prompt you at only some of the ports rather than
all of them -- you can easily do so by using the leash predicate. (See the
Quintus Prolog Reference Manual for more information.)

NOTE: Leashing does not affect procedures on which spypoints have been set;
the debugger always stops at all ports of procedures on which spypoints have
been set.

OBTAINING INFORMATION ABOUT THE DEBUGGER AND SPYPOINTS

At any time, you can obtain a description of the state of the debugger and
the spypoints that have been set by typing debugging. This also shows which
debugging ports are leashed (that is, which ports the debugger will stop at)
and the default action that will be taken if the system encounters an
undefined procedure.

: ?- debugging.
The debugger will first leap - showing spypoints (debug)
Using leashing stopping at [call,exit,redo,fail] ports
Undefined procedures will trap to the debugger ('trace' option)
Spypoints:

yes
I ?-

spypoint(test/1).
spypoint(append/3).

Debugging Your Programs 51

DEBUGGING EXAMPLE

Shown below is a sample program that contains a number of bugs. The
program is briefly described, and then an annotated debugging session is shown
to demonstrate in detail how the debugger is used to find the bugs.

The program is designed to find a day when people from different branch
offices of a company can meet together in a certain city (in this case,
Seattle). The program contains some basic information about which cities
airlines fly between, flight times, whether or not flights are nonstop, etc.
The program is based on two rules: ·

1) All the people who are attending the meeting have to travel on the same
day to the city in which the meeting is being held.

2) The only way (in this program) to travel anywhere is to fly there.

The predicates contained in the program are as follows:

could_meet(List,Place,Day). The people listed in the List can all meet in
a certain place on a certain day.

travel_ok(Day,City1,City2). It is possible to travel on the specified day
from City1 to City2.

one_step(Day,City1,City2,direct(Flight)). There is a nonstop flight on the
specified day from City1 to City2. (Flight represents the flight number.)

two step(Day,City1,City2,change(Flight1,Flight2)). There is a flight with
one-stopover on the specified day from City1 to City2. (Flight1 and Flight2
represent flight numbers.)

connects(Flight1,Flight2). It is possible to fly on Flight1 and connect to
Flight2.

meet_on(Day). It is possible for the meeting to be held on the specified
day.

Following are the program and the database of flight information it uses.
Note that this program is a relatively simple one, and that a more
sophisticated program (which would allow for different modes of
transportation, etc.) could easily be developed.

52 Debugging Your Programs

I*---
Database of flight information

--- *I

flight(monday, u100, los_angeles, san francisco).
flight(monday, u101, san_francisco, seattle).
flight(tuesday, u102, los_angeles, seattle).

flight_time(u100, 0800, 0900).
flight time(u101, 1000, 1200).
flight=time(u102, 1100, 1400).

I*---
Program for use by corporate planning officer to decide if a
meeting can be arranged at one of their offices between people
from a number of different offices. The principal predicate is:

could_meet(Offices,MeetingOffice,Day)

is true if people from the list of Offices could meet at
the MeetingOffice on the day Day.

-- *I

could meet([], ,).
could-meet([X:Rest],Place,Day) :-

- travel ok(Day,X,Place),
could_iiieet(Rest,Place,Day).

travel ok(Day,From,To) :- one step(Day,From,To,).
travel=ok(Day,From,To) :- two=step(Day,From,To,=).

one_step(Day,From,To,direct(Flight)) :- flight(Day,Flight,From,To).

two_step(Day,From,To,change(Flight1,Flight2)) :-
flight(Day,Flight1,From,Stopover),
flight(Day,Flight2,Stop0ver,To),
connects(Flight1,Flight2).

connects(Flight1,Flight2) :-
flight time(Flight1, ,End1),
flight-time(Flight2,Start2,),
Start2-< End1. -

I*--
User interface for a company with offices in san francisco,
los angeles and seattle wishing to arrange meetings in seattle.

--- *I

meet_on(Day) :­
could_meet([san_francisco,los_angeles,seattle],Day).

Debugging Your Programs 53

The program contains four bugs: the variable Stopover, which is used in the
procedure two step, is spelled two ways; the call to could meet in the rule
for meet on is missing an argument; the variable Start2 should be greater, npt
less, than End1; and the predicate travel ok is missing a rule (it cannot
cover the case of a person in Seattle who would not need to fly to ·attend a
meeting in Seattle.)

A sample debugging session for this program is shown on the next few pages.

Debugging Your Programs

Quintus Prolog Release 1.0 (Sun)
Copyright (C) 1985, Quintus Computer Systems, Inc.

: ?- [flightO].

[Warning: Singleton variables, clause 1 of two step/4: Stopover, Stopover]
[flight0.pl consulted (1.200 sec 328 bytes)]

yes
I ?- [Consulting procedure •••]
[Procedure two_step/4 consulted.]

yes
I ?- meet_on(When).

[Warning: The procedure could meet/2 is undefined]
[However, could meet/3 is defined]

(1) 1 Fail: could~meet([san_francisco,los_angeles,seattle],_50)? g

[Ancestors:]
(-) 0: meet_on(_50)

(1) 1 Fail: could_meet([san_francisco,los_angeles,seattle],_50) ? a
[Execution aborted]

?- [Consulting procedure •••]
[Procedure meet on/1 consulted.]

yes
: ?- meet_on(When).

no

Debugging Your Programs 55

Using System Warnings

The program is in a file called flightO. When it is first consulted, the
style checker catches a spelling error in the predicate two_step; (Stopover is
spelled two ways). The spelling of Stopover is corrected, and that procedure
is reloaded (using the Emacs command Escape i p.)

When the goal meet_on(When). is typed, another error is found: the
predicate could_meet/2 is undefined. To locate the error, g is typed to find
the procedure that called could_meet. The g option can be helpful in
pinpointing how a particular goal is called; it is discussed further on page
65.

Next, a is typed to abort the execution of the procedure, and the missing
argument (seattle) is added. The procedure is then reconsulted (through the
Emacs interface), and the goal meet~on(When) is tried again; the goal fails
again.

56 Debugging Your Programs

: ?- trace.
[The debugger will first creep - showing everything (trace)]

yes
?- meet_on(When).
(1) 0 Call: meet on(41)? <ret>
(2) 1 Call: could_meet([san_francisco,los_angeles,seattle],seattle,_41)?

<ret>
(3) 2 Call: travel ok(41,san francisco,seattle) ? <ret>
(4) 3 Call: one step(41,san francisco,seattle, 227)? <ret>
(5) 4 Call: flight(41, 261,san francisco,seattle) ? <ret>
(5) 4 Exit: flight(monday,u101,san francisco,seattle)? <ret>
(4) 3 Exit: one step(monday,san francisco,seattle,direct(u101)) ? <ret>
(3) 2 Exit: travel ok(monday,san francisco,seattle)? <ret>
(6) 2 Call: could meet([los angeles,seattle],seattle,monday) ? <ret>
(7) 3 Call: travel ok(monday,los angeles,seattle)? <ret>
(8) 4 Call: one step(monday,los angeles,seattle, 408) ? <ret>
(9) 5 Call: flight(monday, 442,los angeles,seattle)? <ret>
(9) 5 Fail: flight(monday,-442,los-angeles,seattle) ? <ret>
(8) 4 Fail: one step(monday,los angeles,seattle, 408)? <ret>
(10) 4 Call: two step(monday,los angeles,seattle~ 408) ? <ret>
(11) 5 Call: flight(monday,_442,los_angeles,_454)-? <ret>
(11) 5 Exit: flight(monday,u100,los angeles,san francisco) ? <ret>
(12) 5 Call: flight(monday, 443,san-francisco,seattle)? <ret>
(12) 5 Exit: flight(monday,u101,san-francisco,seattle) ? <ret>
(13) 5 Call: connects(u100,u101)? <ret>
(14) 6 C~ll: flight time(u100, 586, 587) ? <ret>
(14) 6 Exit: flight-time(u100,800,9O0)? <ret>
(15) 6 Call: flight-time(u101, 596, 597)? <ret>
(15) 6 Exit: flight-time(u101,1000,1200) ? <ret>
(16) 6 Call (system): 1000<900? <ret>
(16) 6 Fail (system): 1000<900? a

[Execution aborted J

Debugging Your Programs 57

Exhaustively Tracing the Execution of a Program

· A detailed trace is begun to follow the execution of the program. Ea.ch
time the system displays a procedure call followed by a question mark, the
Return key is pressed to direct the system to display the next step in the
execution of the program.

An error is found when the program checks to see if flight u100 could
connect to flight u101. In order for the flights to connect, flight u101 must
depart after flight u100 arrives; that is, the departure time (in hours) of
flight u101 must be greater than the arrival time of flight u100. In the
current program, the clause checks to see if the departure time of flight u101
is less than, rather than greater than, the arrival time of flight u100,

Once the error is found, a is typed to abort execution of the program.

Before correcting this error, we will look at another way of tracking down
this error.

58 Debugging Your Programs

?- meet_on(When).
(1) 0 Call: meet on(41)? <ret>
(2) Call: could_meet([san_francisco,los_angeles,seattle],seattle,_41)?

<ret>
(3) 2 Call: travel ok(41,san francisco,seattle) ? s

> (3) 2 Exit: travel-ok(monday,san francisco,seattle)? <ret>
(6) 2 Call: could iiieet([los angeles,seattlel,seattle,monday) ? <ret>
(7) 3 Call: travel_ok(monday,los_angeles,seattle)? s

> (7) 3 Fail: travel ok(monday,los angeles,seattle) ? r
[Debugger: retry goal] -

(7) 3 Call: travel ok(monday,los angeles,seattle) ? <ret>
(17) 4 Call: one step(monday,los-angeles,seattle, 408)? s

> (17) 4 Fail: one-step(monday,los-angeles,seattle,-408) ? <ret>
(19) 4 Call: two-step(monday,los-angeles,seattle,-408)? <ret>
(20) 5 Call: flight(monday, 442,los angeles, 454)-? <ret>
(20) 5 Exit: flight(monday,u100,los-angeles,san francisco)? <ret>
(21) 5 Call: flight(monday, 443,san-francisco,seattle) ? <ret>
(21) 5 Exit: flight(monday,u101,san-francisco,seattle)? <ret>
(22) 5 Call: connects(u100,u101) ? s

> (22) 5 Fail: connects(u100,u101)? r
[Debugger: retry goal]

(22) 5 Call: connects(u100,u101)? <ret>
(26) 6 Call: flight_time(u100,_586,_587)
(26) 6 Exit: flight_time(u100,800,900)?
(27) 6 Call: flight_time(u101,_596,_597)
(27) 6 Exit: flight_time(u101,1000,1200)
(28) 6 Call (system): 1000<900? a

[Execution aborted]

?- [Consulting procedure •••]
[Procedure connects/2 consulted.]
yes

l ?- meet_on(When).
no

? <ret>
<ret>
? <ret>
? <ret>

Debugging Your Programs 59

Using the Skip and Retry Options

This trace follows the execution of the same procedure as the one shown ~n
the preceding page; however, here a slightly different and more efficient
method of tracing was used. Rather than tracing every step in the execution
of the program, a skip was done at selected points. If the procedure
succeeded, we iooved on to the next step in the trace; however, if the
procedure failed, we did a retry of the procedure and then exhaustively traced
the execution of the procedure. This method of debugging can help save time
because it can help you quickly pinpoint .the procedures that are failing; you
can then trace those procedures in detail rather than exhaustively tracing all
the procedures in the execution of the program.

Note that the procedure call to one step failed (see the line beginning
with> (17)); this failure is legitimate, as there was no direct flight from
Los Angeles to Seattle on Monday. The symbol > at the beginning of the line
simply signifies the completion of a skip command.

After the error is found, a is typed to abort the execution of the program.
The error is then corrected (the last clause of connects(Flight1,Flight2) is
changed to Start2 > End1.), and the procedure connects is reloaded through the
Emacs interface. However, the program still doesn't work.

60

: ?- spy [travel_ok,connects].
[Spypoint placed on travel_ok/3]
[Spypoint placed on connects/2]

yes
: ?- debug.

Debugging Your Programs

[The debugger will first leap -- showing spypoints (debug)]

yes
: ?- debugging.
The debugger will first leap -- showing spypoints (debug)
Using leashing stopping at [call,exit,redo,fail] ports
Undefined procedures will trap to the debugger ('trace' option)
Spypoints:

yes

spypoint(travel ok/3).
spypoint(connects/2).

l ?- meet on(When). :
•• (3) 2 Call: travel ok(41,san francisco,seattle) ? 1
•• (3) 2 Exit: travel-ok(monday,san francisco,seattle)? 1
•• (7) 3 Call: travel-ok(monday,los-angeles,seattle) ? 1
•• (13) 5 Call: connects(u100,u101)-? <ret>

(14) 6 Call: flight time(u100, 586, 587)? <ret>
(14) 6 Exit: flight-time(u100,800,9O0) ? <ret>
(15) 6 Call: flight-time(u101, 596, 597)? <ret>
(15) 6 Exit: flight-time(u101,Tooo,T200)? <ret>
(16) 6 Call (system): 1000>900? <ret>
(16) 6 Exit (system): 1000>900? <ret>

•• (13) 5 Exit: connects(u100,u101) ? -
[Spypoint removed from connects/2]

(13) 5 Exit: connects(u100,u101) ? 1
•• (7) 3 Exit: travel ok(monday,los angeles,seattle) ? 1
•• (18) 4 Call: travel ok(monday,seattle,seattle) ? 1
•• (18) 4 Fail: travel-ok(monday,seattle,seattle)? a
[Execution aborted J -

l ?- [Consulting procedure •••]
[Procedure travel_ok/3 consulted.]

yes
l ?- meet on(When).
•• (3) 2 Call: travel_ok(_41,san_francisco,seattle) ? 1
** (3) 2 Exit: travel ok(monday,san francisco,seattle)? 1
•• (7) 3 Call: travel-ok(monday,los-angeles,seattle) ? 1
** (7) 3 Exit: travel-ok(monday,los-angeles,seattle)? 1
** (18) 4 Call: travel ok(monday,seattle,seattle) ? 1
•• (18) 4 Exit: travel=ok(monday,seattle,seattle) ? 1

When= monday

-

Debugging Your Programs 61

Using Spypoints

A spypoint is placed on connects to see if that procedure executes properly
now that it has been corrected. Because the program is still failing, we can
surmise that one of the people can't attend the meeting for some reason.
Therefore, a spypoint is also placed on travel ok. By placing a spypoint on
travel ok, we hope to. find out who can't attend the meeting; once we know
that, we can trace the procedure in detail to find out why that person can't
attend.

The debugger is then set to debug mode since we no longer want to trace
each procedure call, and debugging. is typed to obtain a list of the spypoints
that have been set. The goal is retyped; and when prompted for interaction
the first three times, we direct the debugger to leap (1) to the next
spypoint.

At the procedure connects, we begin a detailed trace again. The procedure
executes successfully, so we remove the spypoint from connects by typing a
minus (-) when the debugger prompts for interaction. We continue the
debugging process and find the last bug in the program: the procedure
travel ok, as it is currently defined, requires that people travel from one
city to another. Therefore, it cannot be valid for people who don't need to
travel because they 11 ve in the city where the meeting is to be held. A
clause is added to the program to take care of that condition:

travel_ok(_,City,City).

With the addition of this clause, it becomes possible for the goal
travel ok to be satisfied for people who live in the city where the meeting is
to be held.

The procedure travel ok is reconsulted, and the original goal is retyped;
and this time, it succeeds.

62 Debugging Your Programs

FORMAT OF DEBUGGING MESSAGES

As shown in the debugging examples earlier, the system displays a debugging ·
message on your terminal as it passes through each port of a procedure.

NOTE: All debugging messages are output to the terminal regardless of where
other Prolog output is going. This allows you to debug a program while
information is being read or written to files.

A sample debugging message and an explanation of its symbols are show!"l
below.

••

(23)

6

Call

•• (23) 6 Call: foo(hello,there,_123) ?

The first two characters indicate whether this is a spypoint and
whether this port is being entered after a skip. The possible
combinations are:

•• This is a spypoint.
*> This is a spypoint; you are returning from a skip.
> This is not a spypoint; you are returning from a skip.

This is not a spypoint. (For this condition, two
blank spaces are displayed at the left of the
message.)

The number in parentheses is the unique invocation identifier.
This number is incremented by one every time a call is made to this
procedure. The invocation counter starts again for every fresh
execution of a command, and it is also reset when retries (see
page 67) are performed.

This number represents the number of direct ancestors this goal has.
This is referred to as the "current depth." The depth increases as
procedures are called and decreases when procedures return. There
may be many goals at the same depth, which is why the unique
invocation number is also provided. The depth may be shown as
C, which indicates that this is a spypoint on a compiled
procedure and that no depth or ancestor information is available.
To display the ancestors for this goal, use the g debugging
option. See page 65 for more information.

This shows the current port: Call, Exit, Redo or Fail.

foo(hello,there,_123)

Debugging Your Programs

?

The goal is then printed so that its current instantiation state
can be seen.

The final? is a prompt indicating that you should type in
one of the option codes (see next section). If this port
is not leashed, there is no prompt and the debugger continues to
the next port.

63

NOTE: The debugger does not show the execution of built-in predicates when
they are called at the top level of Prolog. However, the execution of
built-in predicates is shown when the predicates are called from within a
program. Also, there are a few basic built-in predicates for which
information is not displayed because it is more convenient not to trace them.
These are: true, otherwise, false, fail, I, ;, and->.

OPTIONS AVAILABLE.DURING DEBUGGING

This section describes the options that you can select in response to the?
prompt, which the debugger displays at every leashed port. The options are
one letter mnemonics, some of which can be optionally followed by a decimal
integer. If you include blanks, they are ignored.

To see a list of the debugging options, type h (for help) in response to
the ? prompt. When you type h (followed by Return), the following list of
options is displayed:

Debugging options:

<er> creep p p-int r retry col!llland
C creEp w write r <i> retry i b break
1 leap d di splay f fail a abort
s skip g ancestors f <1> fail 1 h help
n nodebug g <n> n ancestors + spy this ? help
X backup < <n> set depth nospy this = debugging

find defn

These options provide a number of different functions which fall into the
following classes:

Basic control
Printing

Advanced control
Environment
Help

The basic ways of continuing with the execution
Showing the goal, or its ancestors, in various
ways
Affecting control flow and changing spypoints
Executing commands, breaking and aborting
Showing the debugger state and listing options

Each of the options is described below.

64 Debugging Your Programs

Basic Control Options

<er> (just the return key)

This is the same as the c (creep) option but is reduced to a
single keystroke for convenience.

Causes the debugger to single-step to the very next port and
display the goal. Then, if the port is leashed, you are prompted
for further interaction.· Otherwise, the debugger continues
creeping and showing goals until it reaches a leashed port. If
leashing has been turned off on all four ports, the debugger will
not stop at the next port but will instead display a complete
trace of all goals.

1 leap

Causes the debugger to resume running your program without stopping
until the next spypoint is reached. Spypoints are not affected by
leashing, so you will always be prompted for interaction when a
spypoint is reached. Leaping can be used to follow the program's
execution at a higher level than exhaustive tracing through creeping.
This is done by setting spypoints on ·an evenly spread set of pertinent
procedures, and then following the control flow through these by
leaping from one to the next.

s skip

At a Call or Redo port, this skips over the entire execution of
the procedure. That is, you will not see anything until control
comes back to this procedure (at either the Exit port or the
Fail port). At an Exit or Fail port, this is equivalent to the c
(creep) option. Skip is particularly useful while creeping since
it guarantees that control will be returned after the (possibly
complex) execution of the procedure. If you skip, then no message
at all will appear until control returns. This includes calls to
procedures with spypoints set; they will be masked out during
the skip.

n nodebug

Causes the debugger to be turned off for the rest of the
execution of the top-level goal. When the execution of this
goal is completed, the debugger returns to its current top­
level state (trace or debug). This option does NOT
change the top-level debugger state (that is, it does NOT turn
the debugger off; to turn the debugger off, you must type
nobdebug at the main Prolog prompt).

Debugging Your Programs

Printing Options

p print

Reprints the current goal using print and the current
debugger print depth limit, which determines how much is
printed. The depth limit can be changed with the< option
(see below).

w write

Writes the current goal on the terminal using write. This
may be useful if your "pretty print" routine (portray) is not
doing what you want. Write has no depth limit.

d display

Displays the current goal on the terminal using display.
This shows the goal in prefix notation. Display has no
depth limit.

g ancestors

Prints the list of ancestors to the current goal (that is,
all goals that are hierarchically above the current goal in
the calling sequence). This uses the ancestors built-in
predicate. Each ancestor goal is printed using print
with the current debugger depth limit. Goals shown in the
ancestor list are always accessible to invocations for the
r (retry) option unless they are marked"(-)". Ancestors
marked"(-)" were invoked before the debugger was turned on
and have not had debugging information retained for them.

65

66 Debugging Your Programs

g <n> n ancestors

Version of the g option which prints only <n> ancestors.
That is, the last <n> ancestors will be printed counting back
from the current goal.

< <n> set depth

The debugger print depth limit is set to <n>. This limit
determines the depth to which goals are printed when they are
shown by the debugger. The depth limit is also used when
showing the ancestor list. If <n> is 0, or is omitted, the
debugger will then use no limit when printing goals. The
initial limit is 10.

Advanced Control Options

x backup

Can be used at the Fail and Redo ports. When used at the Call
and Exit ports, causes the debugger to begin creeping.

Control is transferred back to the Call port located at the most
recent choice point. The transfer is summarized by listing the
ports of the shortest fail path from the original box to the target
box. The shortest path will consist of a string of Fail ports
ascending the search tree followed by a string of Redo ports
descending the search tree to the target box.

This allows you to quickly back up to the most recent choice point
without having to see (or stop at) irrelevant ports. This control
mechanism does not ~top at nor indicate spypoints. If the shortest
fail path contains any compiled procedures, the trace messages will
be erroneous; however, the control transfer is always completed
correctly.

r retry

Can be used at any of the four ports (although at the Call port
it has no effect). Control is transferred back to the Call port.
This allows you to restart an invocation when, for example, you
find yourself leaving with some incorrect result. The state of
execution is exactly the same as when you originally called
except that procedures that have been modified by assert,
retract, etc. will not be changed back to their original state.
When a retry is performed, the invocation counter is reset so that
counting will continue from the current invocation number
regardless of what happened before the retry. This is in accord with
the fact that execution has returned to the state at the time of the

Debugging Your Programs

original call. A message [Debugger: retry goal] is output to
indicate where this occurred in case you wish to follow these numbers
later.

r <i> retry previous invocation

If you supply an integer after the retry command, then this
is taken as specifying an invocation number and the system
tries to get you to the Call port, not of the current box,
but of the invocation box you have specified. Since the
invocation specified may no longer be accessible, the result
of this option will be either to return control to the
invocation specified, or to the first actually available
invocation before this point.

f fail

This is similar to Retry except that it transfe~s control to the
Fail port of the current box. This puts your execution in a
position where it is about to backtrack out of the current
invocation, having failed the goal.

f <1> fail previous invocation

This is similar tor <1> except that it transfers control to the
Fail port of the invocation specified, or to the first actually
available invocation before that point.

+ spy this

Places a spypoint on the procedure being currently shown.

nospy this

Removes any spypoints from the procedure being currently shown.

find definition

Find the place in the file where the predicate being called is defined.

67

68 Debugging Your Programs

Environment Options

@ command

Prompts for a single Prolog goal which is executed as a command
without any variable results being shown. The command is run as
a new execution, with the current execution suspended, but
without any debugging. This is particularly useful for quickly
changing debugging parameters without entering break.

b break

Calls the built-in predicate break, thus putting you at
a new break level with the execution so far being suspended.
A break level is like interpreter top-level except that when you end
the break (by typing Control x Control d), the suspended execution
will resume and you will be reprompted at the port which you left.
The new execution is separate from the suspended one, and invocation
numbers will start again from 1. During the break, the debugger
will be in the current top-level state (nodebug, debug, or trace)
unless this is changed. Changes to the debugger, to leashing, or to
spypoints will remain in effect after the break has finished.

a abort

Causes an abort of the current execution. All the execution
states built so far are destroyed, and execution restarts at
the top level of the interpreter.

Help Options

h help

Displays the table of options given above.

? help

Equivalent to the h option.

= debugging

Shows the current state of the debugger, the spypoints that have
been set, and so forth.

Debugging Your Programs 69

DEBUGGING COMPILED PROCEDURES

The Prolog debugger is normally used to debug interpreted procedure.s.
However, an interpreted program being debugged may have calls to procedures
which are compiled. The debugger will show the Calls to these procedures from
interpreted clauses and the corresponding Fails or Exits. However, the
debugger does not show any of the internal execution for such procedure calls.

Spypoints can be placed on both interpreted and compiled procedures.
Spypoints on compiled procedures allow these procedures to be debugged even
when they are called from other compiled procedures. The debugger only
retains depth and ancestor information when spypoints are called from
interpreted clauses. Spypoints on compiled procedures which have been called
from other compiled procedures do not retain this information (their depth is
shown as C). This means that the g option cannot show any ancestors, and the
rand f options are more restricted for such calls.

SECTION 6

PROGRAMMING STYLE

This section gives a number of tips on how to organize your programs for
increased clarity and efficiency. See page 27 for additional style
suggestions that can help you catch simple programming mistakes more easily.

PROGRAM LAYOUT

Because of its straightforward structure, Prolog is inherently more
readable than languages like Pascal and C. You can take full advantage of
Prolog's readability by following the style conventions described below when
you write your programs.

Normal Layout

Recommended layout conventions are:
"

1. Insert blank lines between procedures but not between clauses for
the same procedure.

2. Start the head of a clause at the left margin; indent goals a few
spa~~s, and write each goal on its own line.

3. Write a comment immediately above each procedure to detail any
assumptions that are made about the procedure's arguments and to
explain what the procedure is supposed to do. In the example
below, each procedure is preceded by a comment line in which a '+',
'-' or '?' prepedes each argument to indicate whether the variable
representing the argument is assumed to be an input, an output, or
either when the procedure is called.

4. To put a comment on a line of code, type J at the beginning of the
line; do not use the 1• •1 comment notation on lines of code.

5. When necessary, write single line (j) comments to the right of
goals in the body of the program.

6. Try to give variables meaningful names. A convention illustrated
in qsort below is to have a series of variable names such as RO,
R1, ••• , R where RO is initially given, R1 is derived from RO, R2
is derived from R1, and so on up to R, which is the final result.

The following example demonstrates the recommended layout conventions.

/* qsort(+List,-SortedList) sorts a list of numbers using Quicksort */

72 Programming Style

qsort(List,SortedList) :- qsort(List,[],SortedList).

/ 1 qsort(+List,+RO,-R). Sorts the List of numbers and concatenates
the result with RO to give R. This works by partitioning the
List into two sublists consisting of those elements ~f the list
less than the first element and those which are greater. Then
the two sublists are sorted by the recursive calls. 1 /

qsort([XlList],RO,R) :­
partition(List,X,Below,Above),
qsort(Above,RO,R1),
qsort(Below,[XlR1],R).

qsort([],R,R).

/ 1 partition(+List,+X,-Below,-Above) returns in Below all those
elements of List which are=< X, and in Above all those
elements which are> X. 1 /

partition([X:List],Y,[X:Below],Above) :-
X =< Y, !, S NB numbers only (else use@=<)
partition(List,Y,Below,Above).

partition([XlList],Y,Below,[XlAbove]) :-
X > y' :•
partition(List,Y,Below,Above).

partition([],_,[],[]).

Disjunction and Conditionals

It is usually best to avoid using disjunctions in your programs, if
possible. However, if you find that you must use disjunctions, use a
consistent layout scheme to improve the readability of your program. For
example,

bank_open(Day,Time) :­
weekday(Day),
\+ bank holiday(Day),
1000 =<-Time,
(Time =< 1500,

\+ friday(Day)
Time =< 1800,
friday (Day)

) .

S The bank is open on weekdays
% except bank holidays
S from 10 a.m.
S until 3 p.m.
S Monday through Thursday
Sor 6 p.m.
S on Fridays

All the goals in the disjunction are indented, and the disjunction symbol l
is prominently placed directly below the opening parenthesis and above the
closing one. It is best to put the l symbol at the beginning of the 1i ne
containing the disjunction; if it is put at the end of the line preceding the
disjunction, it is easy to overlook. The indentation style shown in the
example above helps make the scope of the disjunction explicit •

.,

Programming Style 73

Conditionals that are part of a disjunction are written similarly. The
difference is that the test part of the conditional is started right after the
opening parenthesis or disjunction symbol which precedes it. This is shown 'in
the following example, which computes or tests the type of a character.

type_of_character(Ch,Type) :­
(Ch >= "a", Ch =< "z" ->

Type= lowercase
ICh >= "A", Ch=< "2" ->

Type= uppercase
lCh >= 11011

, Ch=< "9" ->
Type= digit

lotherwise ->
Type= other

) .

S if "a"=< Ch=< "z"
S then unify Type and 'lowercase'
% else if "A"=< Ch=< "2"
S then unify Type and 'uppercase'
S else if 11011 =< Ch =< "9"
% then unify Type and 'digit'
S else
S u,ify Type and 'other'

The built-in predicate otherwise is equivalent to true; that is, it simply
succeeds without 9oing anything. otherwise is provided solely for laying out
conditionals in this way.

NOTE: The standard disjunction symbol is the vertical bar (I), rut the
semicolon (;) can be used in place of the vertical bar, if desired. The
vertical bar should be used whenever possible because it makes your -program
layout clearer and easier to read. Note, however, that historically, the
semicolon has been used as the disjunction symbol; so even when you use the
vertical bar, the system automatically translates the symbol into a semicolon.
Therefore, any printouts of your programs will show semicolons, even if you
used vertical bars.

Emacs-Related Restrictions

If you want to use the Emacs commands for·consulting or compiling a single
procedure (<esc> 1 followed by p, or <esc> k followed by p), your program must
conform to certain layout restrictions, as described below. These layout
restrictions also apply to the Control x • command, which enables you to find
the procedure definition for a particular predicate.

The restrictions are

1. Group Prolog clauses of the same name and arity together.

2. Start the heads of all Prolog clauses in column 1; start any
continuing lines· for those clauses in some column other than column
1 •

3. If a comment continues onto another line, start the continuation of
the comment in some column other than column 1.

~. Do not create clause definitions that use operators for the heads
of the clauses. For example, if you want to define clauses for
1 + 1 /2, then write the head of the clause in the form "+(A,B)" and

74 Programming Style

not "A+ B".

WHERE TO USE "CUT"

One of the harder things to master when learning Prolog is the proper use
of the cut. Often, when beginners find unexpected backtracking occurring in
their programs, they try to prevent it by inserting cuts in a rather random
fashion. This makes the programs harder to understand and sometimes stops
them from working.

What you should do is consider each procedure in your program
independently, and decide whether or not it should be able to succeed more
than once. In rost applications, most of the procedures should only succeed
once; that is, they should be determinate. Having decided that a procedure
should be determinate, you need to verify that, in fact, it is.

Making Procedures Determinate

Consider the following procedure which calculates the factorial of a number

fac(0,1).
fac(N,X) :-

M is N-1,
fac(M,Y),
Xis N*Y.

You can find the factorial of 5 by typing

?- fac(5,X).

X = 120

However, if you backtrack into this procedure by typing a semicolon at this
point, you get an infinite loop because the system starts attempting to
satisfy the goals fac(-1,X), fac(-2,X), etc. The problem is that there are
two clauses which match the goal fac(O,F), and thus fac is not determinate.
There are two possible ways of fixing this.

1. Efficient solution: rewrite the first clause as

fac(0,1) :- !.

Adding the cut essentially makes the first solution the only one
for the factorial of O and hence solves the immediate problem.
This solution is space-efficient because as soon as Prolog
encounters the cut, it knows that the procedure is determinate.
Thus, it can throw away the information it would otherwise need in
order to backtrack to this point to try the second clause.

2. Robust solution: rewrite the second clause as

Programming Style

fac(N,X) :-
N > O,
M is N-1,
fac(M,Y),
Xis N*Y.

This also solves the problem, but it is a more robust solution
because this way, it is impossible to get an infinite loop. In the
first solution, :- fac(-1,X) would not terminate.

75

There is no reason why you can't adopt both of these solutions, and that is
the best thing to do in most cases. The space-efficiency point is more
important than it may at first seem; if fac is called from another determinate
procedure, and if the cut is omitted, Prolog cannot detect the fact that fac
is determinate. Therefore, it will not be able to detect · the fact that the
calling procedure is determinate, and space will be wasted for the calling
procedure as well as for fac itself. This argument applies again if the
calling procedure is itself called by a determinate procedure, and so on, so
that the cost of an omitted cut can be very high in certain circumstances.

You can help make programs more readable by placing cuts as early as
possible in clauses. For example, in the procedure

p :- a, b, ! , c, d.
p:-e,f.

it is reasonable to suppose that "b" is a test which determines which clause
of p applies; "a" may or may not be a test, but "c" and "d" are probably not
supposed to fail under any circumstances. If in fact "a" is the test and "b"
is not supposed to fail, then it would be much clearer to move the cut before
the call to "b."

Terminating a Backtracking Loop

Cut is also commonly used like this:

find solution(X) :-
- candidate solution(X),

test_solution(X),
! .

where candidate solution generates possible answers on backtracking, and
you want to stop generating candidates as soon as you find one which satisfies
test_solution. If the cut were omitted, a future failure could cause
backtracking into this clause and restart the generation of candidate
solutions. A similar example is shown below:

76

prooess_file(F) :-
. see(F),

repeat,

' . '

read (X),
process_and_fail(X),

seen.

process and fail(end of file) :- !.
process-and-fail(X) :- -

-process (X),
fail.

Programming Style

The cut in process_file is another example of terminating a
generate-and-test loop. In general, you always want to have a cut after a
repeat so that the backtracking loop is clearly terminated. If the cut were
omitted in this case, then Prolog might backtrack and try to read another term
after the end of the_file had been reached.

The cut in process_and_fail might be considered unnecessary because,
assuming there is only the one call of it shown, the cut in process file
ensures that backtracking into process_and_fail can never happen. While-this
is true, it is a good safeguard to also include a cut in process_and_fail
because someone may unwittingly change process_file in the future.

INDEXING

In Quintus Prolog, compiled procedures (except those which are declared to
be dynamic) have first argument indexing. This means that when a call is made
to a procedure with an instantiated first argument, a hash-table is used to
gain fast access to only those clauses which have a first argument with the
same principal functor as the one in the procedure. (If the first argument is
atomic, only clauses with a matching first argument are accessed.)

Keeping this feature in mind when you write your programs can help speed
the execution of your programs. Some hints for program structuring that will
best use the indexing facility are given below.

Data Tables

The major advantage of the indexing feature is that it provides fast access
to tables of data. For example, if you have a table of employee records, you
might represent it as shown below in order to gain fast access to the records
by employee name:

I employee(LastName,FirstNames,Department,Salary,DateOfBirth).

employee('Smith', ['John'], sales, 20000, 1-1-59).

If you also wanted fast access to the data via department, you could
organize the data a little differently. You could index the employee records

Programming Style 77

by some unique identifier, such as employee number, and create additional
tables to facilitate access of this table, as shown in the example below. For
example,

S employee(Id,LastName,FirstNames,Department,Salary,DateOfBirth).

employee(1000000,'Smith', ['John'], sales, 20000, 1-1-59).

S employee_name(LastName,Id)

employee_name('Smith',1000000).

S department(Department,Id)

department(sales,1000000).

Improved Determinacy Detection

The other advantage of indexing is that it often makes it possible for the
system to detect determinacy, even if cuts are not included in the program.
For exampl~, consider the following well-known procedure which joins two lists
together:

append([J ,L ,L).
append([XIL1],L2,[XlL3]) :- append(L1,L2,L3).

If this procedure is called with an instantiated first argument, Quintus
Prolog will recognize that only one of the two clauses can apply and thus that
the procedure is determinate. Thus there is no need to put a cut in the first
clause. By not adding a cut, you maintain greater flexibility: the procedure
can now be used in a non-determinate fashion as well, for example by

: ?- append(L1,L2,[a,b,c,d]).

which will generate all the possible partitions of [a,b,c,d] on backtracking.
If a cut had been used, this would not work.

TAIL RECURSION OPTIMIZATION

Another important efficiency feature of Quintus Prolog is tail recursion
optimization. This is a space and speed optimization technique which applies
when a static compiled procedure is determinate at the point where it is about
to call the last goal in the body of a clause. For example,

S for(I,Lower,Upper). Lower and Upper should be integers such that
S Lower=< Upper. I should be uninstantiated; it gets bound
S successively on backtracking to Lower, Lower+1, ••• Upper.

78

for (I, I, Upper).
for(I,Low~r,Upper) :-

Lower < Upper, .
Next is Lower+ 1,
for(I, Next, Upper).

Programming Style

This procedure is determinate at the point where the recursive call is
about to be made, since this is the last clause and the preceding goals ('<'/2
and is/2) are determinate. Thus tail recursion optimization is used, and
effectively what happens is that the stack space being used for the current
procedure call is reclaimed before the recursive call is made. This means
that this procedure uses only a constant amount of space, no matter how deep
the recursion.

To take best advantage of this feature, make sure that goals in recursive
procedures are determinate, and whenever possible, put recursive calls at the
end of procedures.

APPENDIX A

WAYS OF INVOKING PROLOG FROM UNIX

The following is a list of ways you can start Prolog from the main Unix
prompt.

prolog Starts Prolog without the editor interface.

prolog + Starts Prolog with the editor interface.

prolog + filename Starts Prolog with the editor interface.
Initializes the upper window to contain the
file filename.

filenane Runs the Quintus Prolog saved state stored in
filename.

filename + Runs the Quintus Prolog saved state stored in
filename under the editor interface.

filename1 + filenarne2
Runs the Quintus Prolog saved state stored in
filename1 under the editor interface. Also
displays filename2 in the editor window.

APPENDIX B

PORTING PROGRAMS TO QUINTUS PROLOG

Quintus Prolog is very similar to Prolog-20, DEC10 Prolog and C-Prolog.
Porting . programs from any of these systems to Quintus Prolog is
straightforward: a program ·is provided which examines programs written for
these other systems and identifies possible porting problems. For an
explanation of how to use this "compatibility checker" see page 84 below. The
rest of this appendix outlines the various areas where porting problems may
arise.

FLOATING POINT

Quintus Prolog, unlike DEC10 Prolog, provides floating point numbers. The
main problem this _ poses for porting is that the symbol 'I' is used in Quintus
Prolog for floating point di vision rather than integer di vision. The symbol
for integer division (which truncates fractional parts of the answer) is '// 1 •

This is consistent with C-Prolog. If you are moving a program from Prolog-20
to Quintus Prolog, the checker will spot all occurrences of 1 / 1 in expressions
to be evaluated (such as in the right hand argument of is/2) so that they can
be changed.

Another possible porting problem is the additional use of '·' in floating
point numbers. If '.' is declared to be an infix operator, then 1.2
represents a list cell in Prolog-20 and a floating point number in Quintus
Prolog.

THE COMPILER/INTERPRETER INTERFACE

Like Prolog-20, Quintus Prolog provides both an interpreter and a compiler.
There are a number of important differences however. Those relevant to
porting are:

1. Compiled and interpreted code
need for public declarations.
mode declarations are ignored
removed.

can be freely intermixed, with no
However, public declarations and

by Quintus Prolog and need not be

2. consult has been changed to behave like reconsult in Prolog-20.
That is, the procedures defined in a consult operation replace
(rather than extend) any previous definitions for those procedures.
This makes consult much more like compile so that alternating
between consul ting and compiling a piece of code is simpler. It
also means that spreading the .definition of a procedure across more
than one file will no longer work; a style warning will occur if
you try to do this.

3. In Prolog-20 you can use the assert, retract, and clause predicates -

82 Porting Programs to Quintus Prolog

on interpreted code but not on compiled code. In Quintus Prolog,
you can use these procedures only on DYNAMIC procedures.
Regardless of whether a procedure is compiled or consulted, it may
be made dynamic by preceding it with a declaration of the form

:- dynamic Name/Arity.

You do not need to have a dynamic declaration for
is only used by assert, retract or clause.
recommended that you have one if the procedure
since you may get an "unknown procedure" trap if
called before it is known to be dynamic.

a procedure which
However, it is

is to · be called
the procedure is

STYLE CHECKING

By default, Quintus Prolog gives certain warning messages as it compiles or
consults a program (see page 27). When developing new programs, this has been
found to be extremel -Y useful in catching editing mistakes, but the warnings
can be a nuisance when porting programs which have not been written with the
supported style conventions in mind. If this is the case, you may just want
to turn them all off with:

: ?- no_style_check(all).

However, it is recommended that you at least keep the checking for nrultiple
definitions of the same procedure, since this catches the case where the
definition of a procedure was spread over more than one file (and this will
not work under Quintus Prolog). To get this multiple definition checking
call:

: ?- style_check(multiple).

It can also be worth modifying the program to conform to all the style
conventions: longstanding bugs in existing programs have been found by using
the style warnings.

MISCELLANEOUS

The form [X, •• Y] is not accepted as an alternative notation for [XlY]. A
syntax error message will be displayed if this format is used.

The alternative bracket notations of SC and S) which were allowed as
alternatives to {and} are not allowed.

System operator precedences cannot be altered. An error message will be
given if this is attempted.

The end-of-file character was 26 (AZ) in Prolog-20. Quintus Prolog returns
-1 when an attempt is made to read a character at end-of-file. Also, the
character 31 was used for new-line in Prolog-20. In Quintus Prolog it is 10,
the normal ASCII linefeed. The checker will give you "suspicious number"

Porting Programs to Quintus Prolog 83

warnings whenever it encounters a 26 or a 31 in your program. Of course, it
has no way of knowing when a 26 is actually being used to stand for
end-of-file, nor when a 31 is actually being used for new-line. It simp_ly
warns you about every occurrence of these integers and you should check to see
if they really need to be changed.

BUILT-IN PREDICATES

A small number of built-in predicates have been left out of the system:

'LC'/0
'NOLC' /0
current functor/2
log/0 -
nolog/0
rename/2
revive/2
reconsult/1

obsolete
obsolete
not useful
obsolete
obsolete
obsolete
obsolete
obsolete

The checker will warn you about any calls to these procedures. If you do call
one of them, you will get an error message. One other obsolete predicate is
incore/1 which is now defined to be exactly the same as call/1.

The following built-in predicates succeed but currently have no effect as
there is no garbage collector for constructed terms (the space is reclaimed
only on backtracking).

gc/0
nogc/0
gcguide/3

There are some new built-in predicates:

number(X)
float(X)

dynamic/1

false/0
otherwise/0
notrace/0

help
help(T)
user_help
manual
manual (X)

style check(X)
no_style_check(X)

save_program(F)

.succeed if Xis an integer or float (also in C-Prolog)
succeed if X is a float

(not a predicate; used in declarations - see above)

(same as fail)
(same as true)
(same as nodebug)

print helpful information
give help on topic T
user defined; tells help what to do
access top-level of on-line manual
access specified manual section

turn on specified style checking
turn off specified style checking

like save, but execution state is not saved

84 Porting Programs to Quintus Prolog

foreign(F,P) (user defined) C function Fis attached to predicate P
foreign file(F,L) (user defined) file F defines C functions in list L
load foreign files(L1,L2)

- - load object files from list L1 using libraries L2

open(F,M,S)
open null stream(S)
set input Ts)
set-output(S)
current input(S)
current-output(S)
flush_output(S)

character_count(S,N)
line count(S,N)
line:position(S,N)

get(S,C)
getO(S,C)
skip(S,C)
put (S,C)
nl(S)
tab(S,N)
read(S,T)
write(S,T)
writeq(S,T)
print(S,T)

term_expansion(T,N)

unix (T)

file Fis opened in mode M returning stream S
create output stream S which goes nowhere
set S to be the current input stream
set S to be the current output stream
Sis the current input stream
Sis the current output stream
flush output buffer for stream S

N is number of characters read/written on stream S
N is number of lines read/written on stream S
N is number of characters read/written on current line
of S

-c is the next non-blank character input on stream S
C is the next character input on stream S
skip input on stream S until character C is found
output character Con strean S
output a newline on stream S
output N spaces on stream S
read term T from stream S
write term Ton stream S
write Ton S, quoting atoms where necessary
portray or else write term Ton stream S

(user defined) tells expand_term what to do (also in
C-Prolog)

gives access to Unix facilities

The checker warns you about uses of these procedures; in the event of a name
clash with a procedure in your program, this facilitates finding all the
occurrences so that you can change the name. If you try to define clauses for
a built-in predicate in Quintus Prolog, you will get an error message.

RUNNING THE COMPATIBILITY CHECKER

The checker is most conveniently run under the editor interface so that you
can · peruse its output at your leisure rather than trying to read it as it is
written. Assuming that the quintus directory has been placed in /usr/local in
your computer, proceed as follows:

l ?- compile('/usr/local/quintus/checker').
yes
l ?- check(file1).

(warnings output here)

Porting Programs to Quintus Prolog

[file1 checked J
yes
: ?- oheck(file2).

(etc)

85

The argument to check may be a list of files, If a file has a '.pl' suffix,
this may be omitted,

It may be useful to direct output from the checker to a file. This can
easily be done by

: ?- tell(output-file), oheck(file), told.

APPENDIX C

EMACS SUMMARY

The following key bindings are in effect when running Prolog through the
Emacs interface. To obtain a complete listing of key bindings, type <esc> x
describe-bindings <ret>.

IMPORTANT KEYS

A g
"l
A ,..

X s
<esc> ,. ,..

X C ,..
C

A u ,..
X

A u

,.
C

Cancel any unfinished command - and ring bell
Redisplay the screen (if it got messed up somehow)
Save current file
Exit irreversibly from Emacs and Prolog (Save files first!)
Temporarily suspend the Emacs job; type "fg" to get it back
Send a Control-C interrupt to the Prolog process
Enter following digits as an argument to the next function
Undo previous Emacs commands (within reason)

CURSOR MOVEMENT

,.. b Hove the cursor backward one character
"'f Move the cursor forward one character ,..

p Hove the cursor to the previous line ,..
n Move the cursor to the next line ,..

Move the cursor to the beginning of the line a
"'e Move the cursor to the end of the line
<esc> b Move the cursor backward one word
<esc> f Move the cursor forward one word
<esc> ' Move the cursor to the top of the screen
<esc> • Move the cursor to the bottom of the screen
<esc> < Move the cursor to the beginning of the buffer
<esc> > Move the cursor to the end of the buffer

INSERTING AND DELETING

"d

<esc> d
""k
"o
,. q

"'t
"@

"'x "x
"w
<esc> w
"y

Delete the character under the cursor
Delete the character to the left of the cursor
Delete the word in front of the cursor (can be yanked back)
Delete from the cursor to the end of line (can be yanked back)
Open a new line before the current line
(Quote) enter the very next keystroke exactly as itself
Transpose the two characters to the left of the cursor
Set mark at the current cursor position
Swap positions of cursor and mark; repeat to undo
Delete region between cursor and mark (can be yanked back)
Copy region to the kill buffer (can be yanked back)
Yank back most recently deleted text

GLOBALLY REPLACING

<esc> q
<esc> r

Globally replace one string with another, querying each time
Globally Replace one string with another, without querying

'

88 Emacs Summary

MOVING UP AND DOWN THE BUFFER

"s Forward incremental search ,.
Reverse incremental search r ,.

V Move one page forward
<esc> v Move one page backward
"z Scroll the screen one line up
<esc> z Scroll the screen one line down

WINDOW HANDLING

"x 1 Delete all the other windows (except the Prolog window)
"x 2 Split the current window in half
"x d Delete the current window
"x n Move the cursor down to the next window
""x o Move the cursor to the other window (same as "X n)
"x p Move the cursor up to the previous window

FILE AND BUFFER HANDLING

"x "v
"x ""i
,. X "r
"x ""s
"x "w
"x b
""x "b

Visit the file that is prompted for, in its own new buffer
Insert the contents of the file that is prompted for
Replace buffer's contents with the file that is prompted for
Save buffer to current file
Write buffer to the file that is prompted for
fMitch the current window to showing a different buffer
List all the current buffers

PROLOG-RELATED COMMANDS

<esc> i Interpret a Prolog procedure, region, or buffer
<esc> k Compile a Prolog procedure, region, or buffer
<esc> e Enlarge or shrink the Prolog window; repeat to undo
Ax. Find the source code definition of a Prolog procedure
"c Send a Control c interrupt to the Prolog process
<esc> x restart-prolog

Start up a new Prolog saved state

KEYS EFFECTIVE ONLY IN THE PROLOG WINDOW

"x "d
""x "e

Send an end-of-file to the Prolog process
capture the previous line of Prolog input for execution

APPENDIX D

BUILT-IN PREDICATES

Following is a complete list of Quintus Prolog built-in predicates.

abolish(F,N) abolish the procedure named F arity N
abort abort execution of the program; return to toplevel
ancestors(L) the list of interpreted ancestors of the current clause is L
arg(N,T,A) the Nth argument of term Tis A
assert(C) clause C (dynamic predicate) is added to database
assert(C,R) clause C (dynamic predicate) is added to database: reference R
asserta(C) clause C (dynamic predicate) is added first in database.
asserta(C,R) clause C (dynamic) is added first in database: reference R
assertz(C) clause C (dynamic predicate) is added last in database
assertz(C,R) clause C (dynamic) is added last in database: reference R
atom(T) term Tis an atom
atomic(T) term T -'is an atom or number
bagof{X,P,B) the bag of instances of X such that Pis provable is B
break break at the next procedure call
'C'(S1,T,S2) (grammar rules) S1 is connected by the terminal T to S2
call(P) prove (execute) P
character count(S,N) N is number of chars read/written on stream S
clause(P,Q) there is a clause for dynamic predicate, head P, body Q
clause(P,Q,R) clause for dynamic predicate, head P, body Q, ref R
close(F) close file F
compare(C,X,Y) C is the result of comparing terms X and Y
compile(F) add compiled procedures from file F to the database
consult(F) add interpreted procedures from file F to the database
current atom(A) A is a currently available atom (nondeterminate)
current-input(S) Sis the current input stream
current-op(P,T,A) atom A is an operator type T precedence P
current-output(S) Sis the current output stream
currentyredicate(A,P) A is name of a predicate, m. g. goal P
current_stream(F,M,S) Sis a stream open on file Fin Mode M
debug switch on debugging
debugging output debugging status information
depth(D) the current interpreted invocation depth is D
display(T) write term T (prefix notation) to the user stream
erase(R) erase the clause or record, reference R
expand term(T,X) term Tis a shorthand which expands to term X
fail backtrack immediately
false {same as fail)
fileerrors enable reporting of file errors
float{N) N is a floating point number
flush output(S) flush output buffer for stream S
foreign(F,P) user defined; C function Fis attached to predicate P
foreign file(F,L) user defined; file F defines C functions in list L
functorTT,F,N) the principal functor of term T has name F, arity N
gc enable garbage collection (currently has no effect)
gcguide(F,O,N) change garbage collection parameter F from Oto N
get(C) C is the next non-blank character input on the current input
get(S,C) C is the ne~t non-blank character input on stream S

90

getO(C) C is the next character input on the current input
getO(S,C) C is the next character input on stream S
halt exit from Prolog
help display a help message
help(T) give help on topic T
incore(P) (same as call)

Built-in Predicates

instance(R,T) an instance of the clause or term referenced by R is T
integer(T) term Tis an integer
Y is X Y is the value of arithmetic expression X
keysort(L,S) the list L sorted by key yields S
leash(M) set the debugger's leashing mode to M
length(L,N) the length of list Lis N
line count(S,N) N is number of lines read/written on stream S
lineyosition(S,N) N is number of chars read/written on current line of S
listing list all interpreted procedures
listing(P) list the interpreted procedure(s) specified by P
load_foreign_files(F,L) load object files from list Fusing libraries L
manual access top-l~vel of on-line manual
manual(X) access specified manual section
maxdepth(D) limit invocation depth (interpreted code only) to D
name(A,L) the list of characters of atom or number A is L
nl output a new line to current output
nl(S) output a newline on stream S
nodebug switch off debugging
nofileerrors disable reporting of file errors
nogc disable garbage collection (currently has no effect)
nonvar(T) term Tis a non-variable
nospy(P) remove spy-points from the procedure(s) specified by P
nospyall remove all spypoints
no style check(A) turn off style checking of type A
notrace -switch off debugging (same as nodebug)
number(N) N is a number
numbervars(T,M,N) number the variables in term T from M to N-1
op(P,T,A) make atom A an operator of type T precedence P
open(F,M,S) file Fis opened in mode M returning stream S
open null stream(S) output stream S goes nowhere
otherwise- (same as true)
phrase(P,L) list L can be parsed as a phrase of type P
portray(T) user defined; tells print what to do
print(T) portray or else write the term Ton the current output
print(S,T) portray or else write term Ton stream S
prompt(A,B) change the prompt from A to B
put(C) output character Con current output
put(S,C) output character Con stream S
read(T) read term T from current input
read(S,T) read term T from stream S
recorda(K,T,R) make term T the first record under key K, reference R
recorded(K,T,R) term Tis recorded under key K, reference R
recordz(K,T,R) make term T the last record under key K, reference R
repeat succeed repeatedly
restore(S) restore the state saved in file S
retract(C) e_rase the first interpreted clause of form C
save(F) save the current state of Prolog in file F
save(F,R) as save(F) but R is O first time, 1 after a 'restore'

Built-in Predicates

saveyrogram(F) save the current static state of Prolog in file F
see(F) make file F the current input stream
seeing(F) the current input stream is named F
seen close the current input stream
set_input(S) set S to be the current input stream
set_output(S) set S to be the current output stream
setof(X,P,S) the set of instances of X such that Pis provable is S
skip(C) skip input on current input stream until after character C
skip(S,C) skip input on stream S until character C found
sort(L,S) the list L sorted into order yields S
spy(P) set spy-points on the procedure(s) specified by P
statistics output various execution statistics
statistics(K,V) the execution statistic key K has value V
style check(A) turn on style checking of type A
subgoal of(G) an interpreted ancestor goal of the current clause is G
tab(N) -output N spaces to current output
tab(S,N) output N spaces on stream S
tell(F) make file F the current output stream
telling(F) the current output stream is named F
term_expansion(T,N) user defined; tells expand_term what to do
told close the current output stream
trace switch on debugging and start tracing immediately
trimcore reduce free stack space to a minimum
true succeed
ttyflush transmit all outstanding terminal output
ttyget(C) the next non-blank character input from the terminal is C
ttygetO(C) the next character input from the terminal is C
ttynl output a new line on the terminal
ttyput{C) the next character output to the terminal is C
ttyskip{C) skip over terminal input until after character C
ttytab(N) output N spaces to the terminal
unix(T) gives access to Unix facilities
unknown(A,B) change action on unknown procedures from A to B
user help user defined; tells help what to do
var(T) term Tis a variable
version displays system identification messages
version(A) adds the atom A to the list of introductory messages
write{T) write the term Ton the current output
write(S,T) write term Ton stream S
writeq(T) write the term T, quoting names where necessary
writeq(S,T) write Ton S, quoting atoms where necessary
! cut any choices taken in the current procedure
\+ P goal Pis not provable
X AP there exists an X such that Pis provable
X < Y as integer values, Xis less than Y
X =< Y as integer values, Xis less than or equal to Y
X > Y as integer values, Xis greater than Y
X >= Y as integer values, Xis greater than or equal to Y
X = Y terms X and Y are equal (i.e. unified)
T =•• L the functor and arguments of term T comprise the list L
X == Y terms X and Y are strictly identical
X \== Y terms X and Y are not strictly identical
X @< Y term X precedes term Y
X @=< Y term X precedes or is identical to term Y

91

92 Built-in Predicates

X @> Y term X follows term Y
X @>= Y term X follows or is identical to term Y

APPENDIX E

BUILT-IN OPERATORS

:-op(1200, xfx, [:- t ->])
:-op(1200, fx, [:-, ?-])
:-op(1150, fx, [roode, public, dynamic])

:-op(1100, xfy, [.]) ,
:-op(1050, xfy, [->])

:-op(1000, xfy, [' ']) ,
:-op(900, fy, (\+, spy, nospy])
:-op(700, xfx, (=, is, = •• ' ==, \==, @<, @>, @=<, @>=,

-. - :\:. <, >, =<, >=]) -.-,
:-op(500, yfx, [+, -, /\, \I])
:-op(500, fx, [+, -))

:-op(400, yfx, [* I, «, »]) ,
:-op(300, xfx, [mod])
:-op(200, xfy, [

,.
])

INDEX

I ! I 63
'->' 63
I • I 63 ' I: I 68
I?' 68

@ command, debugging option 68

Abort 68
Ancestors 65

Backtracking loop, terminating 75
Backup 66
Break, debugging option 68
Buffer

exchanging display of in window 19
Buffers, listing 21
Built-in operators, list of 93
Built-in predicates

error messages for 38
Built-in predicates, list of 92

Cancelling an Emacs command 11
Compatibility checker 85
Compiled procedures, debugsing 69
·Compiler 23
Compiling a program

with Emacs 29
without Emacs 29

Compiling a subsidiary file 30
Consulting a file 25
Consulting ·a subsidiary file 26
Control characters 1
Control d 2
Control x Control d 2
Copying text 15
Creep 64
Cursor, moving from text to Prolog window 25
Cut 74

Debug 43
Debugger

format of messages 62
options for 63
state of 50
turning off 45
turning on 43
use with compiled procedures 69

Debugging options 63
Deleting a text window 20
Deleting text 14

96 Index

Disjunction 72
Display 65
Dynamic predicates 41

Edi tor
entering 3
exiting 4

Emacs
command, cancelling 11
commands, list of 88
cursor movement within 12, 19
editing multiple files within 19
entering 3
exiting 4
help function 21
style restrictions 73

End-of-file character 2
Entering Emacs editor 3
Entering Prolog without Emacs 5
Escape key 2
Exiting Emacs 4
Exiting Prolog 6

Fail 63, 67
Fail, debugging option 67
False 63
File name completion (under Emacs) 12
Files

creating 11
editing simultaneously 19
exchanging display of in windcw 19
listing of those in buffers 21
retrieving 11, 19
saving 12

Find definition 67
Finding text 16

Halt 6
Help system 7
Help, debugging option 68

Indexing 76
Initialization file 33
Inserting text 14
Interpreter 23
Interrupting program execution 38

Leap 64
Loading a program into Prolog

by procedure 24
by region 24
by file 24
with Emacs 23
without Emacs 25

Index

Locating procedures with Emacs

Marking a region 14
Moving between Emacs and Prolog
Moving cursor from text to Prolog
Moving text 15

Nodebug 45, 64
Nospy 48

debugging option 67
Nospyall 49
Notrace 45

On-line help system
Otherwise 63

Porting programs
Predicates, static
Print "65
Procedures

compiling 29

7

81
and dynamic

37

19
window

41

defining directly into Prolog 30
determinate 74
loading into Prolog 24
locating with Emacs 37

Program execution, interrupting 38
Program layout 71
Program state

restoring 31, 32
saving 31

Programs
compiling with Emacs 29
compiling without Emacs 29
loading into Prolog with Emacs 23
loading into Prolog without Emacs 25
running 35

Prolog
entering with Emacs 3
entering without Emacs 5
exiting 6
restarting under Emacs 39

Prolog commands 6
Prolog compiler 23
Prolog interpreter 23
Prolog prompts 42
Prolog session, saving 32
Prolog top-level prompt 6
Prolog without Emacs 5
Prompts 6, 42

Query
repeating with Emacs 36

Querying the database 35
Quintus Prolog style conventions 'Z7

97

25

98

Region
marking 14
verifying marking of 14

Removing spypoints 48
Repeating a query using Emacs 36
Replacing selected occurrences of text 17
Replacing text 17
Restarting Prolog under Emacs 39
Restoring a program state 32
Retrieving files 19
Retry 67
Running a program 35

Saved state, restoring 31
Saving a program state 31
Screen, splitting 20
Set depth 66
Skip 62, 64
Splitting a window 20
Spy this

debugging option 67
Spypoints

removing 48
setting 47

Static predicates 41
Style conventions 27
Style warning facility 27
Subsidiary file, compiling 30
Subsidiary file, consulting 26
Syntax errors 26

Tail recursion optimization 77
Text

15
14

16
14

copying
deleting
finding
inserting
moving 15
replacing 17

• replacing selected occurrences of
Top-level prompt 6
Trace 43
True 63

Undefined procedures
system response to 39

Unix, accessing from Prolog 40

Window
deleting 20
dividing 20
enlarging 20
exchanging display
moving cursor to

of file within
19

17

19

Index

Index 99

removing 21
Write 65

READER'S EVALUATION FORM

We are very much interested in your impressions of our documentation and in any
suggestions you might have for its improvement. We would be grateful if you
would take a few minutes to answer the questions below and mail this page back to
us.

1. Can you find the information you need quickly and easily? Is there any
information you need that you can't find?

2. Is the text clear and understandable? Please cite any paragraphs and pages
that are difficult to understand.

3. Are the documents logically organized? What changes, if any, do you
suggest?

4. Are there enough examples, and are the examples helpful?

5. Are there any inconsistencies between the documentation and the software?

6. How can the documents be improved? Please cite specific examples.

(optional) Name Company ----------- ----------

Please return to Peter Davies, Prolog Technical Support, Artificial Intelligence
Ltd., Intelligence House, 58-78 Merton Road, Watford, Hertfordshire, WDl 7BY.

	Title
	Contents
	Introduction
	1 Getting Started
	2 Using the Emacs Editor
	3 Loading Programs into Prolog
	4 Running Programs
	5 Debugging Your Program
	6 Programming Style
	Appendix A. Ways of Invoking Prolog from Unix
	Appendix B. Porting Programs to Quintus Prolog
	Appendix C. Emacs Summary
	Appendix D. Built-In Predicates
	Appendix E. Built-In Operators
	Index

