
(PRODUCT-SPECS.NOTE

PRODUCT SPECIFICATIONS

5:08pm Thursday, 5 July 1984]

by David Warren

%***
%
\ WARNING: The follo~ing is CONFIDENTIAL information proprietary to

Quintus Computer Systems, Inc. %
't
%
%

Copyright (C) 1984 by Quintus Computer Systems, Inc.
All rights reserved.

t***

This document contains the preliminary specification of the Mark 1
version of Quintus Prolog, that will be ported to the Sun, Megaframe,
and VAX, and that will constitute the final deliverable for the
Burroughs contract. The current goal of Engineering is to produce
software that precisely meets this specification, and nothing more~
However it is proposed to review the specifications on October 1 to
see whether any improvements are desirable and possible within
timescales agreed between Engineering and Marketing.

The specification of the Mark 1 Quintus Prolog product is that its
external behavior will be identical to Prolog-2~, as defined in the
Prolog-20 manual, with the following improvements, deletions, and
aspects still to be determined.

Improvements

The following improvements will be made. Each is fully described in a
separate document appended to this document (authors in parentheses):

(OW)

(WK)

(WK)

(WK)

(WK)

{LB)

(LB)

o Static and dynamic procedures.

o Floating point numbers.

o Text editor (EMACS) interface.

o Improved input-output predicates.

o Style warnings.

o Improved debugger.

o C interface.

'leletions

The following items will be deleted from Prolog-20. Predicates
marked with(**) will produce an aplogy message if called; predicates
marked with(*) will succeed but will have no effect.

o current_functor (**)

o LC, NOLC (**)

o Garbage collector: gc, nogc, gcguide (*)

o log, nolog (**)

o rename(**)

o revive(**)

o Mode declarations (will be ignored)

o Public declarations (will be ignored: effectively all user
predicates will be public)

To Be Defined

rhe following items have still to be defined. The person(s) chiefly
responsible for producing a definition are shown in parentheses where
knoun.

(~K,LB) o Variable names are (or may be) kept for debugging interpreted
clauses.

(WK,LB) o Error messages and error handling.

(Lr.,) o 'S t,Lst,is 1 prul,wb..

I 1,-v'~\ I Le.\ 0 I I l I I. I \ } n ') f &, ~, t IOI') pro lU\11\f'l.1

(MILESTONES.NOTE

MILESTONES

6:10pm Thursday, 5 July 1984]

by David Warren

%***
%
% WARNING:
%

The following is CONFIDENTIAL information proprietary to
Quintus Computer Systems, Inc.

%
%
%

Copyright (C) 1984 by Quintus Computer Systems, Inc.
All rights r~served.

Apr 1 Prototype achieves 5,000 lips on Sun-1.

May 1 Chat natural language demonstration program is running on Sun-2.

May 15 We achieve 13,500 lips on Sun-2 with preliminary indexing.

June 24 System ported to the Vax achieving 19,000+ lips on a 780.

Jul 6 System capable of being self-supporting for future development.

Aug

Sep

Oct

Nov

Nov

Dec

1985
Jan

Jan

Jul

1

1

1

1

15

1

1

15

1

Megaframe arrives.

Beta-test systems available on Sun and Vax.

Initial Megaframe system delivered to SOC (Burroughs).

Specifications for Mark 1 System frozen. Product Announcement.

Code for Mark 1 System frozen on Sun and Vax.

Prototype interface to Ingres (or other relational database) on Sun.

Release of Mark 1 Product on Sun and Vax.

Final Megatrame system delivered to SOC (Burroughs).

Release of ?I.ark 2 Product.

Jul 4 20:57 1984 schedules.txt Page 1

J;:=~~
LB
BK
FP
BK
FP
VP
DB&DW
LB
BK&VP
LB&DW
VP
BK
DB&DW
FP
LB&DW
BK&DW
LB
DB
ow
VP&BK

Engineering Roadmap through 31August

Finished

9J1.1l
9Jul

15Jul
15Jul
20Jul
22Jul
23Jul
23Jul
23Jul
30Jul
30Jul

2Aug
2Aug
3Aug
5Aug
6Aug
8Aug

12Aug
12Aug
12Aug
12Aug

Task

Sun and Vax systems brought in sync ~·'Ni
sir,gle-character ac · n mod , IO buffer flushing /"hOU &?)
fix read wr1te/to ~ug,s, preliminary tuning
er it i cal regions ~ trm(J ~ od··c' O")
name special-casing integers
grammar rules tuned
find_definition in Emacs interface and Prolog hook
fully working fast-assert, clause
fully functional 4-port interpreter/debugger
toplevel exactly as will be delivered
Interrupts
modifiable modeline from Emacs
dynamic procedure abstraction incorporated
retract reclaiming space
fully operational and tuned Chat demo
Implementation of critical regions
setof tuned
tuned interpreter/debugger
proposal for comprehensive shakedown of system (20-31 Aug)
ruggedization of compiler
Split-screen Emacs abstraction fully debugged

Continuing tasks

DB - system integration, source code management
BK internal training program
LB keeping Evan busy

13Aug - FEATURE FREEZE. No changes past this point except bug fixes.

13Aug-17Aug - Beta-release Documentation Week

Beta-test documentation (to go to Patti and Jonathan)

DB
BK
LB
DW
VP&PK

20Aug-31Aug

incompatibilities with DEC10 Prolog
Mark I features not included in beta-release
designed-in limits
known problems, bugs
brief description of editor interface

* System shakedown and debugging according to plan developed by DB
* Engineering planning for post-beta-release period

31Aug - Beta-release tape produced

STATIC-DYNAMIC.NOTE 5:07pm Thursday, 5 July 1984

SPECIFICATION FOR STATIC AND DYNAMIC PROCEDURRS

by David Warren

%***
%
t WARNING: The following is CONFIDENTIAL information proprietary to

Quintus Computer Systems, Inc. I
%
%
%

Copyright (C) 1984 by Quintus Computer Systems, Inc.
All rights reserved.

%***

Predicates can be declared to be either static or dynamic, eg:

:- static foo/3, baz/1.
:- dynamic toto/2.

If a procedure is static, the user is forbidden to modify or inspect
it using assert, retract, clause, or listing. Attempts to do so will
fail (giving an error message).

The default is static. However, if a declaration has not been given,
and no procedure currently exists, a (user) call to assert a clause
for that predicate ~ill be treated as an implicit dynamic declaration.

lrocedures can be created by consulting or compiling files. These are
the only ways to create static procedures. Compiling a file produces
faster code, but is slower and the code is not subject to the full
inspection and debugging facilities. If a procedure is dynamic, the
clauses will always simply be asserted, allowinq them to be
subsequently modified. Static procedures will be "compiled". [N.B.
If the file is consulted, all the clauses will actually be stored in
an interpreted form, which can be inspected by listing, etc. However,
the user will still only be allowed to modify the dynamic procedures.]

Both 'compile' and •consult' delete any previously defined procedures
which are redefined in the file. Thus 'compile' hehaves as on
Prolog-20, while ·consult' is *NOT* the same as on Prolog-20, but
instead behaves as Prolog-20's 'reconsult•. •reconsult' will be
defined as a synonym for ·consult· in a compatibility package.

Apart from the above, there is *NO* difference between the behavior of
static and dynamic procedures. They can call each other
interchangeably without any extra effort on the part of the user.

: Jul· 6 16:13 1984 float.txt Page 1

Quintus Prolog Floating point specification <Mark I>
Bill Kornfeld

Syntax:

(float): (mantissa> <E> <exponent> <integer). (integer)

(E>: e I E

<rnant issa>: + <mant issa1) I -<mant issa1) (mant i ssa 1 >

<mantissa!): <integer>. {integer>

(exponent> : +<integer) I - <integer> <integer>

Examples: 1.0 0.54 123.0e45 0.35E-27

Semantics:

o All arithmetic operations with the exception of I, given two integers as
arguments, behave exactly as they do in the DEC10 system.

c, I always returns a float.

o A new function, II, is defined to act as I does now.

o The following arithmetic operations fail (or fault) if given one or more
floating arguments:
I\, \I, \, < <, > > , mod

o The operations:+, -, and* behave as follows. If given two floating
arguments they return a float. If given one floating argument, and
one integer argument, the integer is coerced to float, the operation
performend, and a float returned.

o The comparison operations do coercion to float of integer arguments
if one is a float. Two floats are=:= each other iff they are the same
bit pattern.

o inside is: float<X> converts an integer to a float. integer<X> converts
a float to an integer by truncating digits after the decimal point.

o numberC+obJect>, and float(+obJect) are additional type-checking
predicates. <Presumably floats will be assigned their own tag).

o Two floats unify iff they have exactly the same bit pattern. Floats
never unify with any other type.

- Jul 6 16:13 1984 float.txt Page 2

o Writing floats obey the following rules:
o All significant digits are shown. Trailing zeros are deleted.
o Non-exponential notation is used unless printing would entail

three insignificant digits before the decimal point or three
insignificant digits after the decimal point.

o Non-exponential notation obeys the above grammar.
o Exponential notation expresses the mantissa as a number between

.1 and 1.

o name(Float,Chars) with Float instantiated to a float will succeed with
Chars instantiated to the list of characters that would have been
printed if the float had been printed.

----~------------~

· Jul 5 17:50 1984 emacs.txt Page 1

Quintus Prolog Emacs Interface (Mark I>

William Kornfeld

Running Prolog

M-X Split-Screen

Puts Emacs into a two-window state, with Prolog running in the upper
window and a text buffer in the lower window. All file operations
apply to the lower window regardless of which one is selected when
the operation is done. In other words, while in Split-Screen mode
the Prolog window stays fixed in the upper window.

M-X No-Split-Screen

Puts Emacs back into the normal mode.

M-X Run-Prolog

Starts a Prolog running in an Emacs buffer. All typein and typeout
happens through Emacs, making use of any text-editor commands desired.

Interrupting Prolog

M-X Send-Interrupt-Character (AXAC)

Sends a AC interrupt to the Prolog process.

Sends a AD end-of-file signal to the process.

Adding to the database from Prolog

M-X Compile-Region

Takes the text between point and mark in the currently selected buffer
and has Prolog compile it. Prolog will insert comments into its associated
buffer indicating which procedures it has Just compiled.

M-X Consult-Region

Jul 5 17:50 1984 emacs.txt Page 2

Takes the text between point and mark in the currently selected buffer
and has Prolog consult it. Prolog will insert comments into its associated
buffer indicating which procedures it has Just consulted.

M-X Compile-Procedure

M-X Consult-Procedure

Behave like the above, except that the text sent to Prolog consists of the
procedure that the cursor is currently sitting in. Emacs uses certain
heuristics to find the bounds of the current procedure which work pretty
well, but are not fool-proof due to the complexities of Prolog syntax.

Finding Definitions

M-X Find-Definition CM-.)

Takes the procedure whose name is next to the cursor, loads the
appropriate file into an Emacs buffer <or selects the buffer if already
loaded), and positions the cursor at the definition of the procedure.

Prolog Mode

When typing in the Prolog window, and in buffers containing Prolog source
files, certain help is provided with the syntax. Matching parentheses
and brackets will be shown as one types, also the following commands:

(tab)

Indents for Prolog. If after a
indents as per previous line.

<linefeed)

·-. '

Does a newline followed by (tab).

it indents three spaces.

Facilities available to system programmers

emacs_fi nd_def i nit ion (+fur-,ctor, +ari ty, +module).

Otherwise it

Switches to a buffer containing the source file for the specified procedure
and positions the procedure definition on the screen.

· Jul 5 17:50 1984 emacs.txt Page 3

emacs_display_message(+atom)

Causes Emacs to display the given message in the bottom line.

. Jul 6 16:14 1984 io.txt Page 1

Mark I I/0 enhancements

open(+Filename,+Type,-Stream)

Opens the given filename for the type of I/0 specified by Type
(which must be one of input, output, and append>. A stream
<atomic as far as the user is concerned) is returned.

The following predicates are upward compatible from the DEC10.
If given a file name they work the same way. If given a stream
argument they perform their operation on a stream, except that
see and tell do not (re)open the file, merely select it as standard
input or output: see, tell, seeing, telling, seen, told, close.

The I/0 predicates read, write, writeq, print, get, put, get0, and
nl have been extended to take an additional, optional, argument.
The extra argument is a stream to which the I/0 goes to instead
of the default stream.

llNlA-tt' °)~cl ~~ 1
{'r\JNJ ~-~~
~

- - ------ ---~- --------- -- -- ------------

·Jul 6 16:14 1984 warnings.txt Page 1

Style Warnings

Bill Kornfeld

Defaultly consult, reconsult, and compile will call the style warnings
facility. At the end of the outermost file operation the warnings, if any,
will be displayed. There are three classes of style warning:

(1) Single variable occurence: A named variable has been used only
c,r-,ce in a clause. (Variables begir-,nir-,g with 11 11 however are ignored
by this check).

(2) Undefined procedure: A procedure call is present for a procedure
that has no current definition, and is not defined in the file being
read.

(3) Multiply defined procedure: The same procedure has clauses in more
than ,::ine file.

User settable flags:

assert Cr,o_style_check Call>>.
Turns off all style checking.

assert(no_style_check(undefined)).
Turns off checking for undefined procedures.

assert (no_style_check (multiple)>.
Turns off checking for multiply-defined procedures.

assert (n,::i_style_check (single_var> >.
Turns off checking for single variable occurences

Jul• 5 13:57 1984 error.txt Page 1

Mark I Error handling

Mark I error handling will be in two areas, undefined procedure and
I /0 errors.

Undefined procedures:
There will be two modes, in the first mode, Prolog will print an
error message and throw the user into the debugger. In the second
mode, Prolog will fail.

I/0 errors:
When an I/0 error happens, the user will
as to course:

1. Retry I/0 operation::)~
2. Change the file name and retry.J\
3. fail ,. l

be given three choices

fh!> , f:eo ~kc~-fool

Jul 6 16:18 1984 debug.spec Page 1

Quintus Specification
Lawrence
July 3rd 1984
CONFIDENTIAL, Proprietary to Quintus Computer Systems, Inc.

Quintus Prolog Debugger
=======================
0) Contents

1) Overview
2) Caveat
3) Execution model
4) Global operations
5) Presentation and actions

1) Overview

The debugger has three aspects:

(A) The model it uses for presenting the execution of the Prolog program.
(B) The global operations which determine what the debugger will show and

when and how it will do it.
<C> The way information is presented and the actions that can be performed

during debugging.

Prolog-20 defines a solution to all of these. Restricted versions of the
Prolog-20 debugger are present in PDP-11 Prolog and in C-Prolog. The
description of debugging facilities in "Programming in Prolog" by Clocksin
& Mellish follows the structure established by the Prolog-20 debugger.
There is a published paper which specifies the execution model in more
detail <Lawrence Byrd, Debrecen workshop 1980).

The initial Quintus Prolog debugger follows the Prolog-20 debugger except
as described below.

2) Caveat

The user-ergonomics of the debugger are an important part of our product's
image. How the concepts are decribed and the names that are used <such as
"creep" and "leap") may need rethinking. I see the need for feedback from
our test sites, and for an active role by the documentation staff.
Difficulties in explaining the debugger or Prolog execution should force
improvements in the terminology and/or the facilities themselves.

3) Execution model <A>

The debugger is a 4-port debugger as in Prolog-20. The execution model (1)
will be improved by making the standard backtrack behaviour of the debugger

· Jul 6 16:18 1984 debug.spec Page 2

foliow the strategy used by the 'x' option in the Prolog-20 debugger. This
only shows 'Redo' and 'Fail's for invocations which really have a choice
point.

4) Global operations (B)

The global operations will be improved over Prolog-20 to make using the
debugger less confusing as follows:

* The debugger will be in one of three states: off, on and start creeping,
on and start leaping. Which state the debugger is in will be displayed to
the user. The debugger will stay in one of these states until it is
explicitly changed.

* Turning debugging off will not remove spypoints, although no infomation
will be shown abourt these spypoints while debugging is off. A new
predicate is provided:

nospyall remove all spypoints

5) Presentation and actions (C)

The information presentation (3) will look the same as Prolog-20 but the
options available will differ as follows:

* There will be additional options:

+ Place a spypoint on the procedure currently being looked at
Remove the spypoint on the procedure currently being looked at

= SHow the debugging state ('debugging')

· Jul 6 16:18 1984 cface.spec Page 1

Quintus Specification
Lawrer1ce
July 5th 1984
CONFIDENTIAL, Proprietary to Quintus Computer Systems, Inc.

Quintus Prolog C Interface under Unix
=====================================
0) Contents

1> Overview
2) Building a composite Prolog system
3) Calling C procedures from Prolog
4) Access to Prolog atoms from C
5> Changing start-up behaviour: redefining main<>
6) Prolog's storage management assumptions
7) Prolog's input/output assumptions
8) Debugging C procedures in composite systems

1) Overview

Quintus Prolog provides tools for integrating Prolog programs with programs
written in C. This may be desirable for several reasons:

1) To speed up certain critical operations by writing them in
the lower level language C.

2) To interface with the operating system and other libraries
and programs.

3) To integrate an already existing C program with Prolog so that
some of programming can be done in Prolog. An example here might
be the use of Prolog to write the user interface and reasoning
component of a design system in which graphics and numerical
algorithms are written in C.

C programs are integrated with Prolog by compiling them and then linking
these together with the supplied Prolog "obJect'' files to produce new
executable systems. This linking uses the standard Unix program 'ld'. C
procedures can be called directly from Prolog in such composite systems.
When building an integrated system the user specifies which C procedures
should be callable from Prolog and how their arguments should be passed.
The interface allows the passing and returning of Prolog's simple (atomic)
data types. Complex data structures, such as lists and trees, cannot be
passed directly between Prolog and C. However, complex data structures can
be passed by unpacking them in Prolog and passing their atomic components.

Quintus provides a default definition of the main() procedure. This can be
redefined by the user in which case the C program becomes responsible for
starting the Prolog system. Prolog automatically initializes when it is
first invoked.

Prolog manages its own working storage in sophisticated ways. It is
important to be aware of this when intregrating C programs with Prolog.

'Jul 6 16:18 1984 cface.spec Page 2

2) Building a composite Prolog system

Quintus supplies two Unix obJect files which are used when building
composite systems. These are:

prolog.o
qpmain.o

The Quintus Prolog system
Default definition of the main<> procedure

Composite Prolog and C programs are built by linking together these files
with the obJect files of the C program which have been generated by the C
compiler. The standard Unix link editor 'ld' is used for this. The source
code for qpmain.o is also provided. Section 5 describes how the user can
change this file.

In addition to the obJect files supplied by Quintus, the program must also
include some linkage information that helps Prolog and C communicate. This
information describes which C procedures are to be accessible from Prolog,
and how their arguments are to be passed. The information is prepared as a
Prolog file which contains a list of facts describing the desired
interfaces. The format of these facts is described is Section 3. The
Prolog system predicate make_c_link(File) is then used to generate a C file
which is compiled and loaded with the new system. This file defines data
structures w~ich are used by Prolog to link Prolog predicates to C
procedures. Thus, the following files will be produced by the user:

qplink.o
abc.o
Jkl. o
pqr.o

Table used to link C procedures into Prolog
}

} The users compiled program (examples)
}

The following example shows how these should all be prepared and linked
together:

For this example we need to assume that some directory on
your system has been set aside for the Prolog library where
the supplied obJect files are kept. Let us set the csh
variable $q to be an example library directory.

~ set q = "/usr/lib/prolog"

Y. ls
abc.c

The user should already have produced some C files and also
the file which describes the C procedures that will be
accessible from Prolog. This is a Prolog file of a format
described later.

Jkl. c pqr.c qpl ink. pl

The first step is to run Prolog and generate a C file which
will handle the Prolog to C linkages. This is generated
from the Prolog specification in qplink.pl.

Y. prolog
I ?- make_c_l ink <qpl ink).

- Jul 6 16: 18 1984 cface. spec Page 3

Generated Prolog to Clink file: qplink.c

,,.
,,.
,,.
,,.

?- halt.

cc -o
cc -o
cc -o
cc -o

All of the users C files need to be compiled, and also the
qplink.c file. All of the following operations can be more
easily achieved using the Unix 'make' facility. Refer to
the make documentation for further details. This example
shows all the steps explicitly.

abc. ,::i

Jkl. o
abc.c
Jkl. C

pqr.o pqr.c
qplink.o qplink.c

The obJects files are now linked together to produce a
composite system.

¼ ld $q/prolog.o $q/qpmain.o qplink.o abc.o Jkl.o pqr.o
r. mv a.out newprolog

It is important that the supplied prolog.o file be the first file specified
in the 'ld' command. This is so that the Prolog system starts at as low
address as possible in the program's address space. This is necessary for
reasons internal to the Prolog implementation.

CC Missing from specification: the bootstrap process which gets the
constructed 'newprolog' up and running with all the Prolog system code
lc,aded. JJ

3) Calling C procedures from Prolog

C procedures are linked to Prolog predicates using facts which decribe the
procedures and their argument patterns. As described in the previous
section, these facts are pre-processed using the Prolog system predicate
make_c_link(File) to produce a C file which forms part of the composite
system.

The File used with make_c_link(File) sh,::iuld contain c_procedure fact for
each Prolog predicate that is to be attached to a C procedure. These are of
the form:

c_procedure(<Pattern}).
or c_procedure (<Pattern>, <CName> >.

where <Pattern> is:

<predicate name> ((arg spec>, {arg spec>, ••• >

and <CName> is, optionally, the name of the C procedure (an atom),

and (predicate name> is the name of the Prolog predicate (an atom>,

and there is an (arg spec> for each argument of the predicate,

Jul 6 16:18 1984 cface.spec Page 4

and <arg spec> is one of:

+integer
-integer
[-integer]

+atom
-atom

[-atom]

+string
-string

[-string]

[[See cproc.eg1 and cproc.eg2 for examples]]

The interface allows the simple Prolog data types, atoms and integers, to
be passed to C procedures and returned from C procedures. Prolog checks
the types of the arguments it passes to C and the call will fail if any
argument is not the right type. Prolog assumes that C will return results
of the specified type.

The interface is responsible for all the data conversions between Prolog's
internal representation and C's internal representation. The C program does
not need to know how Prolog represents atoms and integers in order to
interface with Prolog. This feature simplifies the integration of C and
Prolog, and allows for compatibility across later versions of Quintus
Prolog and versions of Quintus Prolog running on other hardware. In
particular, this feature make it easier to interface directly with already
written C procedures in libraries and so forth.

The (arg spec> specifications have the following meanings:

Prolog: +integer
C: long int

The argument must be instantiated to an integer. The Prolog integer is
converted to C integer and passed to the C procedure.

Prolog: +atom
C: long unsigned

The argument must be instantiated to an atom, otherwise the call fails.
A canonical representation of the Prolog atom is passed to the C
procedure as an unsigned integer.

Prolog: +string
C: char*

The argument must be instantiated to an atom, otherwise the call fails.
A pointer to a null terminated string of characters containing the
printed representation of the atom is passed to the C procedure. It is
essential that this string is NOT overwritten by C.

Prolog: -integer
C: long int*

A pointer to an integer is passed to the C procedure. It is assumed that
C will overwrite this integer with the result it wishes to return. When
the C procedure returns the pointed to integer is converted to a Prolog
integer and unified with the provided Prolog argument. The argument can
be of any type; if it cannot be unified with the returned integer then
the call will fail. If the C procedure does not overwrite the integer

- Jul 6 16:18 1984 cface.spec Page 5

then 0 will be returned. However, such uses should be considered an
error and this particular behaviour SHOULD NOT be relied upon by
programs.

Prolog: -atom
C: long •Jnsigned *

A pointer to an unsigned integer is passed to the C procedure. It is
assumed that C will overwrite this unsigned integer with the result it
wishes to return. This result should be a canonical representation of
an atom already obtained by C from Prolog. Returning an arbitrary
integer will have undefined results. When the C procedure returns, the
atom represented by the pointed to unsigned integer is unified with the
provided Prolog argument. The argument can be of any type; if it cannot
be unified with the returned atom then the call will fail. If the C
procedure does not overwrite the unsigned integer then the atom
'bad_atom_from_c' will be returned. However, such uses should be
considered an error and this particular behaviour SHOULD NOT be relied
upon by programs.

Prolog: -string
C char**

A pointer to a character pointer is passed to the C procedure. It is
assumed that C will overwrite this character pointer with the result it
wishes to return. This result should be a pointer to a null terminated
string of characters. When the C procedure returns the atom which has
the printed representation specified by the string is unified with the
provided Prolog argument. The argument can be of any type; if it cannot
be unified with the returned atom then the call will fail. Prolog
copies the string if required, so that it is not necessary for C to
worry about retaining it. If the C procedure does not overwrite the
character pointer then the atom 'bad_atom_from_c' will be returned.
However, such uses should be considered an error and this particular
behaviour SHOULD NOT be relied upon by programs.

Prolog: [-integer]
C: return (long int)

No argument is passed to C. The return value from the C procedure is
assumed to be an integer. It is converted to a Prolog integer and unified
with the provided Prolog argument. The argument can be of any type; if
it cannot be unified with the returned integer then the call will fail.

Pro log: t-atoml
C: return (long unsigned>

No argument is passed to C. The return value from the C procedure is
assumed to be an unsigned integer which should be a canonical
representation of an atom already obtained by C from Prolog. Returning
an arbitrary integer will have undefined results. The atom represented
by the unsigned integer is unified with the provided Prolog argument.
The argument can be of any type; if it cannot be unified with the
returned atom then the call will fail.

Prolog: t-stringl

Jul 6 16:18 1984 cface.spec Page 6

C return <char*>

No argument is passed to C. The return value from the C procedure is
assumed to be an character pointer pointing to a null terminated string
of characters. The atom which has the printed representation specified
by the string is unified with the provided Prolog argument. The
argument can be of any type; if it cannot be unified with the returned
atom then the call will fail. Prolog copies the string if required, so
that it is not necessary for C to worry about retaining it.

Arguments are passed to C in the same order as they appear in the Prolog
call. Only one "return value" argument can be specified; that is, there can
be only one C-integerJ, C-atomJ or C-stringJ specification. There need not
be any "return value" argument in which case the value returned by the C
procedure is ignored. Note that both input and output arguments are passed
to C, except of course for the "return value" argument if present. Each
input argument is appropriately converted and passed, each output argument
is passed as a pointer through which C will send back the result.

Note that Prolog predicates attached to C procedures are always
determinate. They may fail if their input arguments are of the wrong type,
or if an output returned from C cannot be unified with the provided Prolog
argument.

Prolog integers have a different precision than C integers. In the current
Sun and Vax implementations Prolog integers are 29bit integers, whereas C
long ints are 32bit integers. When integers are returned to Prolog from
C they will be reduced to 29bit integers.

4) Access to Prolog atoms from C

The C interface allows Prolog atoms to be passed to C either in a canonical
form as unsigned integers, or as pointers to character strings.

C programs can store canonical atoms in data structures and pass them
around and back to Prolog, but they should not attempt to construct or
decompose them. For each atom there is a single canonical representation. C
programs can rely on this identity property. Note however, that the
canonical form of atoms are NOT necessarily identical across different
invocations of the program. This means that canonical atom representations
should not be used in files or inter-program communication. For these
purposes use strings.

Strings passed from Prolog to C should NOT be overwritten. Strings passed
back from C to Prolog are automatically copied by Prolog if necessary.
Thus the C program does not have to retain them and can reuse their storage
space as desired.

In addition to obtaining and returning atoms through the interface Prolog
provides two C procedures for converting back and forth between canonical
atoms and strings.

long unsigned GlP_StrAtom(string)

· Jul 6 16: 18 1984 cface. spec Page 7

char *string;

Returns the canonical representation of the atom whose printed
representation is string. The string is copied and the C routine
can reuse the string and it's space.

char* QP_AtomStr(atom>
long unsigned atom;

Returns the string of characters for the canonical atoms
printed representation. This string should NOT be overwritten
by C.

Canonical atoms are particularly useful as constants to be used in passing
back results from C procedures. The above routines can be used to initialize
tables of such constants.

5) Changing start-up behaviour: redifining main()

CC See the example file qpmain.c JJ

The supplied obJect file qpmain.o provides a default definition for the
program's main() procedure. The source code is also supplied in qpmain.c.
The definition of main() can thus be easily extended or replaced.

The default definition of main<> uses the following routines:

QP_CmdLine(argc,argv,env>
int argc;
char *argvtl;
char *envCl;

This is the Prolog command line parser. In its normal use it
parses the command line typed when Prolog is run. If the C
program that is being integrated with Prolog also wishes to
scan the command line then this action should be intercepted.
It is then up to the C program to call QP_CmdLine with its
required options, or options passed on from the users command
line. QP_CmdLine should also be passed the programs environment
table (env) so that this can be made available to Prolog.

QP _Pro log< goal>
char *goal;

This runs the Prolog system with an initial goal. goal should
be a pointer to a string of characters. The initial goal will
be the corresponding predicate with no arguments (arity of 0).
When the goal terminates, by either succeeding or failing, then
QP _Pro log() wi 11 return.

6) Prolog's storage management assumptions

--~

'Jul 6 16:18 1984 cfa.ce.spec Page a

The file qpmain.c also defines the variables:

QP_Strategy
QP_Spa.ce

storage management strategy flag
Default initial size of Prolog memory space

When QP_Prolog() is first called Prolog initializes itself and requests a
large block of storage from Unix using the sbrk<> system call. The initial
size of this block is determined by the value of QP_Space. Prolog provides
its own definition of the ma.lloc<> and related C library routines.
Different storage allocation behaviours are specified by the value of
QP_Strategy:

QP_Strategy == 1
Prolog allocates space when QP_Prolog() is first called.
Prolog will try and extend its space <with sbrk<>> when it needs to.
Space for malloc() is allocated from the Prolog storage area..

QP_Strategy == 2
Prolog allocates space when QP_Prolog() is first called.
Prolog does NOT extend its space. Overflows ca.use errors.
Space for ma.lloc() is allocated using sbrk() and is NOT taken
from the Prolog storage area.

Strategy 1 is the standard stategy in which Prolog assumes control of
memory allocation and is able to incrementally grow the a.mount of space it
uses. Under strategy 1 the user C program should not use the brk<> or
sbrk() system calls. Strategy 2 is useful for C programs which do wish to
make use of brk() or sbrk(), or programs which make considerable use of
malloc(). Under strategy 2 there are no overheads involving movement of
Prolog data areas which will be incurred by malloc() from time to time
under strategy 1. However under strategy 2 Prolog uses a fixed size data
area which cannot be expanded. This may be reasonable, given an adaqua.te
initial size, for composite systems which wish to assume control for
managing the rest of memory outside the area used by Prolog.

7) Prolog's input/output assumptions

Prolog uses the standard C I/0 library for input and output, except for
saving and restoring save states which use the Unix system calls open(2),
rea.d(2) and write(2) directly.

[[The Prolog I/0 routines are not available to the user. This facility
could be provided in later versions. ll

8) Debugging C procedures in composite systems

[[Documentation is required on how this is done. Some explanation of how
to avoid wading through bits of the Prolog system itself would be useful. I
am not currently sure if DBX will be usea.ble with composite systems. This
would be a loss if so. ll

· Jul 6 16:14 1984 qpmain.c Page 1

I* QPMAIN.C: Default definition of main() for composite systems

Author:
Date:
Version:

Lawrence Byrd
June 1984
1

Supplied by Quintus Computer Systems, Inc.

I*--
Setting the default size for the Prolog memory space

-- *I

£define K 1024

loY,g int QP_Strategy = 1;

long int QP_Space = 1024*K;

I* storage management flag *I

I* default size of Prolog memory space *I

'* --
Default main procedure for composite Prolog systems -- *'

main(argc,argv,env>
int argc;
char *argv[J;
char *env[J;
{

QP_CmdLine(argc,a.rgv,env>;

QP _Pro log< 11 prolog_top_level 11 > ;
)-

Jun 28 21:23 1984 cproc.egl Page 1

I* CPROC.EG1 : Some examples of C procedure interfaces

Author: Lawrence Byrd
Date: June 1984
Version: 1 -
Supplied by Quintus Computer Systems, Inc.

This is a set of examples to show the argument passing mechanism in the
Prolog to C interface. The examples shown do not perfrom any interesting
operations.

'* --
Pro log facts describing the interface -- *'

c_procedure(pl(+integer,-integer) >.
c_procedure(p2(+integer, [-integer]) >.
c_procedure< p3(+atom,+string,+integer,-atom,-string,-integer, C-stringJ> >.

c_procedure(p4(+integer,-integer>, 'FooBaz').

'* --
Examples of how these procedures might be called from Prolog -- *'

7- p1(42,X).
7- p1 (42, 36). I* fails
?- p2(42,X).
?- p2 (42, 36). '* fails

?- pl<A,B>. '* fails
?- p2(hello,X>. '* fails

?- p3(england,John_brown,35,A,B,C,D>.

?- p4 (42, X>.

if 36 is not returned *'
if 36 is not returned *'

because A is not an integer *'
because 'hello' is not an integer*/

'* --
Some example C code
This is to show the argument types - the operations are arbitrary

-- *'
void pl <a, b)

long int a;
long int *b;
{

*b = a+a+a;
}

"Jun 28 21:23 1984 cproc.egl Page 2

ir,t p2(a)
long int a;
{

return a+a+a;
}

char *p3(atom,string,num,atomout,stringout,numout)
long unsigned atom;
char* string;
long int num;
long unsigned *atomout;
char* *stringout;
long int *numout
{

}

static long unsigned previous;
static char buffert123J;

*atomout = previous;
sprintf(buffer, "'t■ s for president",string);
*stringout = buffer;
*numout = num+num+num;

previous= atom;

ret 1.1rn "yes" ;

void FooBaz(a,b)
long int a;
long int *b;
{

*b = a+a+a;
}

I*--
Example of what the QPLINK.C file would look like given the
interface described above.

The exact details of this file are subJect to change and should not
concern the user anyway.

-- *I

/* Automatically generated Prolog to C linkage file (date> *I

long int QP_Count = 4;

char *QP_NametJ =
{

};

"pl",
II p2 II,
II p3"'
II p4"

. ..

Jun 28 21:23 1984 cproc.eg1 Page 3

long int QP_ArityCJ =
{

};

2,
,:::,
.... '
7,
2

char QP_Args[J =
{

};

7, 8,
7, 9,
1, 4, 7, 2, 5, 8, 6
7, a,

extern pl<>;
extern p2(>;
extern p3();
extern FooBaz();

(*(QP_ProcCJ> > () =
{

};

pl,
p2,
p3,
FooBaz

Jun 28 21:23 1984 cproc.eg2 Page 1

I* CPROC.EG2: Another example

Author: Lawrence Byrd
Date: June 1984
Version: 1

Supplied by Quintus Computer Systems, Inc.

*'
Imagine we have a list of pairs of numbers and names. We want to do some
complex calculation on the numbers and then sort the list according to the
the numbers from this calculation. The result we want is the list of names
in the order of this new list. Let us assume that the calculation is so
aweful that we must do it in C. To do this we move the data into a C array,
call a C procedure to do the work and sort this array, then we read the
data back out from the array to get a new Prolog structure.

This example shows a lot of data transfer. For many straight forward
interfaces from Prolog to general capabilities (e.g. Unix calls) there is
never that much data to transfer. Where there is, the user must determine
if the increased speed of Cover Prolog is worth the data transfer costs.

Interface:

c_procedure< store_data(+integer,+integer,+atom>).
c_procedure C fetch_data (+integer, -atom)) •
c_procedure(do_calculation_and_sort).

Example goal:

?- do_calculation(C data(4,bob>, data<S,Jane>, •••• J, Answer).

Answer= tJane,bob, ••• J

Prolog program:

C code:

do_calculation(InList,OutList) :­
store(InList,0,Count>,
do_calculation_and_sort,
fetch<0,Count,OutList).

store(CJ,N,N>.
store(tdata<Number,Name> IRestl,N,Count> :­

store_data<N,Number,Name>,
Nl is N+1,
store(Rest,N1,Count).

fetch(N,Count, tl> :- N >= Count, !.
fetch<N,Count, tNamelRestl) :­

fetch_data(N,Name>,
Nl is N+l,
fetch(N1,Count,Rest).

Jun 28 21:23 1984 cproc.eg2 Page 2

typedef long unsigned ATOM;

struct { int numfield; ATOM namefield; } arrayCSOMESIZEJ;

store_data <n, n•Jm, name)
int n, num; ATOM name;
{

arrayCnl->numfield = num;
arrayCnl-)namefield = name;

}

do calculation_and_sort()
{

}
I* Who knows? Sorts array[] though *I

fetch_data<n,name)
int n; ATOM *name;
{

*name= arrayCnl->namefield;
}

	Product Specifications (DW)
	Milestones (DW)
	Specification for Static and Dynamic Procedures (DW)
	Floating point specification (Mark I) (WK)
	Emacs Interface (Mark I) (WK)
	Mark I I/O enhancements
	Style Warnings (WK)
	Mark I Error handling
	Debugger (LB)
	C Interface under Unix (LB)
	QPMAIN.C: Default definition of main() for composite system (LB)
	CPROC.EG1: Some examples of C procedure interfaces (LB)
	CPROC.EG2: Another example (LB)

