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Abstract 

There exist several proposals for the treatment of clause indexing in a 

compiler for the W AM. These are discussed, and a particular proposal 

is advocated, which postpones as long as possible the creation of 

choicepoints. We then address some problems with implementing the 

cut operator. Finally, it is shown how indexing instructions can 

subsume certain body goals. 
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§ 1 Introduction 
We are considering the "New Engine", or WAM, for Prolog by D.H.D. Warren. In [Warren 83], 

an abstract machine is defined consisting of a memory model and about 40 instructions. We 

assume herein that the reader is familiar with the W AM. A very good exposition of the W AM is 

given in [Gabriel et.al. 84]. 

Warren's paper contains an account of clause indexing. Slightly different approaches have been 

taken by other groups. We will compare current approaches and present herein yet another one, and 

show certain compiler optimizations that are possible. 

Cut is not treated in [Warren 83] but has been subsequently added by other groups in slightly 

different ways. We will compare these and present our own. Finally, it is shown how cut under 

some circumstances can be compiled into indexing instructions. 

1.1 Preliminaries 
We assume familiarity with standard Prolog implementation terminology. In particular, we mean 

by the type of a term its meta-logical status as variable, constant, list, or structure. By the principal 

functor of a non-variable term T we mean the name and arity of the principal function symbol of 

T . A computation of a predicate is said to be determinate if no backtracking alternatives for the 

computation exist. 

We use the following abbreviations for the principal WAM registers: 

Al, A2, .. 
p 

CP 
E 

B 

TR 
H 

argument registers 

program pointer 

continuation program pointer 

current environment 

current choicepoint 

top of trail 

top of heap 

and denote the corresponding choicepoint fields by Ai' , P' , etc. 

1.2 Proposals for clause indexing 
An important part of Prolog implementations is clause indexing, i.e. to filter out, for given 

arguments, the set of clauses that potentially match those arguments. In W AM, as in most 

implementations of Prolog, only the principal functor of the first argument is used as index key. 

Indexing on multiple arguments has been proposed by several authors, and would arguably be of 

great value in several applications, but is not treated in this paper. 
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1.2.a The Warren Method 

Warren's indexing instructions consist of six instructions for managing choicepoints and three 

instructions for discriminating on the first argument. We give here a brief synopsis of his indexing 

instructions: 

try me else L 
- - Establish a choicepoint where the alternative program pointer P' = L. 

retry_me else L 
Set P' = L in the current choicepoint. 

trust me else fail 

try L 

Remove the current choicepoint. 

Establish a choicepoint where the alternative program pointer P' points at the next 
instruction. Proceed at L. 

retry L 
Set P' to point at the next instruction. Proceed at L. 

trust L 
Remove the current choicepoint. Proceed atL. 

switch on term Lv,Lc,Ll,Ls 
- Al is dereferenced, and a branch is taken depending on its type as variable (L v), 

constant (Le), list (Ll), or structure (Ls). 

switch on constant N, [Cl: Ll, C2: L2, ... Cn: Ln] 
- Tf there is an i such that Al = Ci , a branch to Li is taken, otherwise the engine 

backtracks. Al has already been dereferenced to a constant. 

switch on structure N, [Cl: Ll, C2: L2, ... Cn: Ln] 
- li there is an i such that the principal functor ofAl = Ci , a branch to Li is taken, 

otherwise the engine backtracks. Al has already been dereferenced to a structure. 

The indexing scheme is best explained by quoting from [Gabriel et.al. 86]: 

"Suppose that the clauses in a given procedure are C1 , C2 , ... Cn. These are broken into groups 

G 1 , G2 , .. . Gm . Each group is either a single clause with a variable occurring as the first 

argument of the head literal, or a set of clauses in which none of the clauses contains a variable as 

the first argument of the head literal. These groups result in the following generated code: 

try me else L2 

L2 

<code for Gl> 

retry me else 
<code-for G2> 

Lm trust me else fail 

L3 

3 18 december 1986 



M Carlsson Indexing and Cut 

<code for Gm> II 

The following picture displays a situation with a single clause with a variable as first head argument 

in preceded and followed by other clauses. The variable clause introduces an alternative in the 

toplevel choicepoint. 

} Toplevel chc 

} Filtering 

Inner choic 

11111 Clauses 

c non-variable clau~ 
11 variable clause choicepoint 
~ switch_on_constant 
.. switch_on_structure 

c:::::::J switch on term 

If there is just one group, the above scheme is simplified, since there is no need to establish a 

choicepoint. Groups that are not single clauses compile to code for filtering out using switch 

instructions the set of clauses that can possibly match a given first argument. For such sets that are 

not singletons, a choicepoint is established using try - retry - trust instructions such that the engine 

may backtrack over the possible matches. 

However, if this choicepoint belongs to a group other than the last one, the choicepoint will be 

redundant except for the P' field, since the try me else instruction already established a 

choicepoint. This is an undesirable phenomenon, particularly since it has been shown that 

choicepoint management is expensive compared to other operations of the W AM [Tick 86]. The 

redundancy has been recognized and an approach for storing only the non-redundant information is 

described in [Turk 86]. 

1.2.b The Berkeley Method 

In Van Roy's compiler [Van Roy 84], clauses are arranged into groups with the additional 

constraint that no two clauses in a group may have first arguments with the same principal functor. 

Thus he avoids ever creating two choicepoints before entering a clause, at the price of sometimes 

having more backtracking before a matching set of clauses, than in the Warren method. Thus the 

price of avoiding redundant choicepoints is a degradation of the overall efficiency of clause 
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indexing due to the extra constraint. 

1.2.c The Syracuse Method 

In [Bowen et.al. 86], the same indexing instructions are used as in the Warren method. A similar 

two-level indexing with the same kind of redundancy is used, however the clause group 

partitioning is governed by the type of the first argument, rather than the principal functor. The 

indexing scheme discriminates on the type of the first argument, and only creates an outer 

choicepoint if more than one group can match. For example, a predicate with five clause groups 

Gl: constant group 
G2: structure group 
G3: variable group 
G4: constant group 
GS: list group 

would compile to: 

switch on term Lcl,Lk,Ll,Ls 
Lk try Lgl % outer choice 

retry Lg3 
trust Lg4 

Ll try Lg3 % outer choice 
trust Lg5 

Ls try Lg2 % outer choice 
trust Lg3 

Lgl switch on constant .. . 
Lg2 switch-on-structure .. . 
Lg3 try .. -:- % innerchoice 
Lg4 switch on constant ... 
Lg 5 try .. -:- % outer choice immediately after a trust 
Lcl try me else Lc2 

<code for first clause> 

The following picture shows the Syracuse method applied to the same situation as before: 
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Thus the creation of outer choicepoints is postponed after the initial switch_on_term 

instruction. The price for this is slightly increased code size, since the outer try sequence has been 

"distributed out" to the different cases of type of the first argument. By taldng this process one step 

further, two-level indexing can be avoided and the redundancy problem eliminated. This leads us 

to our proposed method. 

1.2.d One-Level Indexing 

By discriminating first on the type of the first argument, and second, when appropriate, on its 

principal functor, one can filter out the set of potentially matching clauses. A choicepoint is then 

needed only for non-singleton sets. 

The instruction set needs a slight change to implement this scheme, since a principal functor which 

is not in the set of principal functors occurring in the source code as first head argument still 

matches clauses with a variable as first head argument. Thus, we use the modified instructions: 

switch_on_constant N,Table,DefaultLabel 
switch on structure N,Table,DefaultLabel 

in clause indexing, where DefaultLabel typically corresponds to all the clauses with a 

variable as first head argument, i.e. a try sequence, a single clause, or 'fail', if there is no 

such clause. For example, compiling 

yields 

p(a) 
p (X) 
p(b) 

switch on term Lcl,Lk,Lc2a,Lc2a 
Lk: switch=on-constant 2, [a: Lkl ,b: Lk2],Lc2a 
Lkl: try Lela 

trust Lc2a 
Lk2: try Lc2a 

trust Lc3a 
Lcl: 
Lela: 
Lc2: 
Lc2a: 
Lc3: 
Lc3a: 

try_me_else Lc2a 
<code for clause 1> 
retry_me_else Lc3a 
<code for clause 2> 
trust me else fail 
<code-for clause 3> 

The following picture shows our proposed method applied to the same situation as before. Dotted 

lines denote DefaultLabel references: 
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Again, the price is an increase in code size, since the number of indexing instructions is generally 

O(n2 ), where n is the number of clauses. There is a quadratic factor since the clauses referred to 

by DefaultLabel have to be included in every other clause set. However, the worst case 

situations seem quite rare, and it is our experience that the number of indexing instructions is 

normally "almost linear" in the number of clauses. The compiler could detect when the quadratic 

factor becomes a problem and then choose one of the other methods. 

1.3 Proposals for Cut 

Another important part of Prolog implementations is the cut operation, the operational semantics of 

which is yet to be laid down firmly [Moss 86]. Informally, the cut operation renders the predicate 

in which it occurs determinate. In terms of the memory model of the W AM, the cut excises 

backtracking information from the local stack and from the trail. 

1.3.a Berkeley Cut 

The Berkeley implementation [Van Roy 84] has chosen a different operational semantics for cuts 

inside disjunctions: such a cut commits the innermost disjunction in which it occurs, rather than 

committing the entire predicate in which it occurs. See [O'Keefe 85] for an enlightening discussion 

on this issue. 

For cuts outside disjunctions, the compiler ensures the presence of an environment containing a 

saved value of B and compiles cut into: 

cut 

The machine has a state bit telling whether the choicepoint pointed to by the environment should be 

7 18 december 1986 



M Carlsson Indexing and Cut 

deleted by the instruction or not. This bit is manipulated by several of the indexing and procedural 

instructions. 

For cuts inside disjunctions, the compiler knows where the machine would backtrack to, and 

compiles cut into: 

cut BacktrackLabel 

This instruction traverses the chain of choicepoints until one is found whose P' slot matches 

BacktrackLabel. This method however constrains each disjunct to contain only one cut and 

constrains the last disjunct to not contain any cut at all. 

1.3.b Syracuse Cut 
The Syracuse implementation [Bowen et.al. 86] has added a new machine register, cutpt , and 

instructions to manipulate it. The cutpt register is saved in every choicepoint and restored upon 

backtracking. The call and execute instructions copy the value of B into cutpt . . 

Now, cutpt contains the address of the last choicepoint created before entering a procedure. The 

cut operation is then done by copying this value back to the choicepoint register, having saved it in 

the environment first if the cut was preceded by a goal. Special-purpose instructions take care of 

the different cases. The trail is not mentioned in conjunction with these instructions, but we take 

for granted that it is tidied as well. 

We have two observations to make. First, the architecture has been extended by a new register, a 

new choicepoint field, and extra work in call and execute. The extensions cause some extra 

work even for predicates that do not use cut. Furthermore, the scheme requires all inferences to 

pass a call or execute instruction, ruling out the possibility of an indexing instruction 

referring to a predicate instead of a local label. Second, in the W AM memory model with the local 

stack containing both environments and choicepoints, the cut operation sometimes renders some of 

these inaccessible when they are not at the top of the stack. For example, in the predicate 

p(X,Z) 
p (X, Z) 

·- pl(X), !, ql(X,Y), r(Y,Z). 
· - q2 (X, Y) , r (Y, Z) . 

the first clause will create an environment which prevents the choicepoint storage from being 

reclaimed even though the cut makes it inaccessible. It will be reclaimed at the tail-recursive call to 

r / 2 only if q 1 / 2 succeeds determinately. The situation becomes worse for cuts inside 

disjunctions. Pathological examples can be made up where stack overflows are caused by 

backtracking information which is inaccessible after a cut but cannot be reclaimed. 
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1.3.c Belgian Cut 

With [Debray & Warren 86] and [Barklund & Millroth 86], we take an approach similar to the 

Syracuse method, with two changes. First, instead of copying at every inference the current value 

of B into a new register, we use the following scheme: An instruction 

choice An: An := B; 

where n is the number of the first free argument register, begins the code for predicates using cut. 

The rest of the code is as if the predicate had an extra argument to be used in a subsequent 

instruction 

cut Vn: B := Vn; tidy trail; 

This method is due to Venken [Venken 84] where the operations are called mark (L) and ! (L), 

therefore we call it Belgian Cut. 

Thus, the extra work incurred by the Syracuse method on predicates not using cut is avoided by 

separating out the choice operation and doing it only in predicates that use cut. Indexing 

instructions may now refer directly to predicates also. 

Our second change addresses the problem of reclaiming stack space. This problem can be partially 

solved by splitting the local stack into an environment stack and a choicepoint stack . This rather 

drastic change in the memory model calls for a slight change in the choicepoint format: The B' 

slot can now be omitted, since it can be deduced from B and the arity of the choicepoint. 

However, to compute A , i.e. the effective top of the environment stack, it is no longer possible to 

compare B and E . Instead, we compute A by the formula 

A = max(A', E + env_size(CP)) 

where A' is a choicepoint slot containing the effective top of stack at the time the choicepoint was 

created. Similarly the trailing condition for a variable X that dereferences to the stack becomes 

Since this test now involves a memory reference, it may be worth while to have a shadow register 
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for A'. Warren suggests a shadow register for H' for the same reason. 

With split stacks, the cut operation always deletes a number of the most recent choicepoints i.e. 

from the top of the choicepoint stack, and so the storage is immediately reclaimed. However, in the 

case of cut inside disjunctions, there may still be some space on the environment stack that is not 

immediately reclaimed. For example, assume in 

p(X) ·- q(X), (r(X), !, s(X), sl(X); t(X)), u(X). 
p (X) · - v (X) . 

which our compiler transforms to 

p (X) . - $choice(Y), p' (X, Y) . 

p'(X,Y) . - q (X) ' p"(X,Y), u (X) . 
p' (X, ) ·- V (X) . 

p"(X,Y) . - r (X), $cut (Y) , s (X) , s1 (X) . 
p" (X, ) . - t (X) • 

that q/ 1 and r / 1 succeed non-determinately, i.e. that they have left choicepoints, 

environments, and trail information when we arrive at the cut operation. The cut deletes all of 

these, except the environments possibly left by q/ 1, since those environments are protected by the 

environment created by the first clause of p" / 2. The space is eventually reclaimed at the 

tail-recursive call to s1 / 1, provided that s/ 1 succeeds determinately. 

To reclaim the space immediately after cut would involve a more complicated "remote cut" 

instruction that would move environments, and such an operation would probably be too costly. 

Alternatively, disjunctions could be compiled more cleverly as suggested in [Van Roy 84] to avoid 

the extra environment, although that would seem to add significant complexity to the compiler. 

The implementation of [Barklund & Millroth 86] maintains A as a register, instead of computing it 

when needed. Two variants of the cut instruction are proposed: plain cut, used when a 

subsequent call or deallocate will update the A register, and a variant which combines 

the cut and trim operations, used before proceed or execute. This seems to be an 

attempt at reclaiming inaccessible environments, but would not help in the p / 1 example above. 

Barklund and Millroth also devise a method for reclaiming heap storage in conjunction with cut. 

Finally, we note that if-then-else constructs never run into these problems since the cut is always 

"local" there, and agree with O'Keefe [O'Keefe 85] that constructs with cuts inside disjunctions 

represent doubtful programming style. 
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§2 Compiler Optimizations 

There is a host of possible compiler optimizations involving indexing instructions. 

2.1 Indexing Subsuming Type Tests 

Meta-logical type tests on the first head argument can typically be incorporated into clause indexing. 

For example, 

p (X, Y) · - var (X) , q (X, Y) . 

p (X, Y) · - nonvar (X) , r (X, Y) . 

is compiled by our compiler to 

p/2: switch on term q/2,r/2,r/2,r/2 

This optimization is only done if the type test is the first goal, to cater for goals with side-effects. 

Note that the var (X) and non var (X) test must be done at run-time if the head arguments are 

not all distinct variables, to cater for cases like: 

:- q(X,1). 

q(X,X) 
q(X,X) 

· - var (X) , v (X) . 
·- nonvar(X), w(X). 

Other authors have proposed to generalize the switch_ on_ term instruction to any temporary 

or permanent variable, thus coding in-line all meta-logical type tests. Some implementations have 

made the instruction more fine-grained by separating between more basic types. 

2.2 Indexing Subsuming Cuts 

Sometimes the cut operation need not be translated into special instructions, but can be incorporated 

into clause indexing instead. For example, 

compiles to 

p/2: 

Lcl: 

p (X, Y) 
p ( 1, Y) 
p(2,Y) 
p(X,Y) 

· - var (X) , ! , q (X, Y) . 
·- !, pl(l,Y). 
· - p2 ( 2, Y) . 
·- r(X,Y). 

switch on term q/2,Lc,r/2,r/2 
switch-on-constant 2, [1: p/2, 2: Lcl],r/2 
try p2/2,2 
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trust r/2,2 

2.3 Overloaded Permanent Variables 

Permanent variables with disjoint lifespans could be allocated to the same environment slots if the 

code is determinate. Cut could act as a fence between lifespans in such cases. This optimization 

has not been added to our compiler, as the potential stack space savings seem rather marginal. 

2.4 Specialized Get Instructions 

The clause code can capitalize on the fact that clause indexing is performed. When a clause whose 

first head argument is a list, say, is entered, clause indexing guarantees that A1 is dereferenced 

and that its type is either variable or list. Whereas the clause code would normally start with 

get_list Al, we use the specialized get_list_al instruction which represents a much 

simpler operation than the general instruction. Our native code generator takes further advantage of 

the specialized instruction and generates different code streams for the two cases (variable or list). 

The other general get instructions (exceptget_variable and get_value) have similar 

counterparts. 

§3 Concluding Remarks 

We have discussed some approaches for clause indexing and have advocated one which postpones 

as long as possible the creation of choicepoints. We discussed implementations of cut and in 

particular addressed the problem of reclaiming stack storage. 

An issue not treated by Warren is the arity of choicepoints. Several implementations add the arity 

as an extra argument of try (_me_ else) and store it in the choicepoint. An alternative which 

uses less dynamic space but more static space is to add an arity argument to retry (_me_else) 

and trust (_me_else) also. The arity argument can then be accessed as an offset fromP'. 

We advocate this second approach. 

A final observation on the instruction set: The instructions try_me_else, retry_me_else, 

and trust me else are not strictly necessary since they can be replaced by 

try /retry /trust, but will optimize performance on pipelined hardware. 

Acknowledgements 

The author is indebted to Jonas Barklund, Lee Naish, Ross Overbeek, David Warren, and to his 

colleagues at SICS for discussing and refining the ideas reported herein. 

References 

12 18 december 1986 



M Carlsson Indexing and Cut 

[Barklund & Millroth 86] J. Barklund, H. Millroth, Garbage Cut for Garbage Collection of 

Iterative Logic Programs, Proc. IEEE Symposium on Logic Programming, Salt Lake City 1986. 

[Bowen et.al. 86] K.A. Bowen, K.A. Buettner, I. Cicekli, A.K. Turk, The design of a high-speed 

incremental portable Prolog compiler, Proc. 3ICLP, London, 1986. 

[Debray & Warren 86] S.K. Debray, D.S. Warren, Detection and Optimization of Functional 

Computations in Prolog, Proc. 3ICLP, London, 1986. 

[Gabriel et.al. 84] J. Gabriel, T. Lindholm, E.L. Lusk, R.A. Overbeek, Tutorial on the Warren 

Abstract Machine for Computational Logic, ANL-84-84, Argonne National Laboratory, Argonne 

IL, 1984. 

[Moss 86] C. Moss, CUT & PASTE - defining the impure primitives of Prolog, Proc. 3ICLP, 

London, 1986. 

[O'Keefe 85] R.A. O'Keefe, On the treatment of cuts in Prolog source-level tools, Proc. IEEE 

Symposium on Logic Programming, Boston, 1985. 

[Tick 86] E. Tick, Memory performance of Lisp and Prolog programs, Proc. 3ICLP, London, 

1986. 

[Turk 86] A.K. Turk, Compiler Optimizations for the WAM, Proc. 3ICLP, London, 1986. 

[Van Roy 84] P. Van Roy, A Prolog Compiler for the PLM, M.Sc. Thesis, Dept. of Computer 

Science, University of California, 1984. 

[Venken 84] R. Venken, A Prolog Meta-Interpreter for Partial Evaluation and its Application to 

Source-to-Source Transformation and Qurey Optimization , Proc. ECAI 84. 

[Warren 83] D.H.D. Warren, An Abstract Prolog Instruction Set, SRI International #309, 1983. 

13 18 december 1986 




