
SICStus Prolog User’s Manual

Mats Carlsson
Swedish Institute of Computer Science
PO Box 1263, S-16428 KISTA, Sweden

Draft version: 19 November 1991

SICStus Prolog User’s Manual

19 November 1991

This manual is based on DECsystem-10 Prolog User’s Manual by
D.L. Bowen, L. Byrd, F.C.N. Pereira,

L.M. Pereira, D.H.D. Warren

Modified for SICStus Prolog by
Mats Carlsson and Johan Widen

Swedish Institute of Computer Science
PO Box 1263

S-164 28 KISTA, Sweden

This manual corresponds to SICStus version 0.7 patch level #7.

i

Table of Contents

Introduction . 1

Notational Conventions . 3

1 How to run Prolog . 5
1.1 Getting Started . 5
1.2 Reading in Programs . 5
1.3 Inserting Clauses at the Terminal . 6
1.4 Directives: Queries and Commands . 6
1.5 Syntax Errors . 8
1.6 Undefined Predicates . 8
1.7 Program Execution And Interruption . 9
1.8 Exiting From The Interpreter . 9
1.9 Nested Executions—Break and Abort . 10
1.10 Saving and Restoring Program States . 10

2 Debugging . 13
2.1 The Procedure Box Control Flow Model . 13
2.2 Basic Debugging Predicates . 14
2.3 Tracing . 15
2.4 Spy-points . 16
2.5 Format of Debugging messages . 16
2.6 Options available during Debugging . 17
2.7 Consulting during Debugging . 20

3 Loading Programs . 21
3.1 Predicates which Load Code . 21
3.2 Declarations . 23
3.3 Pitfalls of File-To-File Compilation . 24
3.4 Indexing . 25
3.5 Tail Recursion Optimisation . 25

4 Built-In Predicates . 27
4.1 Input / Output . 27

4.1.1 Reading-in Programs . 28
4.1.2 Input and Output of Terms . 29
4.1.3 Character Input/Output . 34
4.1.4 Stream IO . 35
4.1.5 DEC-10 Prolog File IO . 37
4.1.6 An Example . 38

4.2 Arithmetic . 38

ii

4.3 Comparison of Terms . 39
4.4 Control . 41
4.5 Information about the State of the Program 43
4.6 Meta-Logical . 44
4.7 Modification of the Program . 46
4.8 Internal Database . 48
4.9 All Solutions . 49
4.10 Interface to Foreign Language Functions . 50
4.11 Debugging . 56
4.12 Execution Profiling . 56
4.13 Definite Clause Grammars . 58
4.14 Miscellaneous . 61

5 The Prolog Language . 69
5.1 Syntax, Terminology and Informal Semantics 69

5.1.1 Terms . 69
5.1.2 Programs . 71

5.2 Declarative Semantics . 73
5.3 Procedural Semantics . 74
5.4 Occurs Check . 76
5.5 The Cut Symbol . 77
5.6 Operators . 78
5.7 Syntax Restrictions . 80
5.8 Comments . 80
5.9 Full Prolog Syntax . 80

5.9.1 Notation . 81
5.9.2 Syntax of Sentences as Terms . 81
5.9.3 Syntax of Terms as Tokens . 82
5.9.4 Syntax of Tokens as Character Strings . 84
5.9.5 Notes . 86

6 Programming Examples . 87
6.1 Simple List Processing . 87
6.2 A Small Database . 87
6.3 Association list primitives . 88
6.4 Differentiation . 88
6.5 Representing sets as ordered lists without duplicates 89
6.6 Use of Meta-Predicates . 90
6.7 Prolog in Prolog . 90
6.8 Translating English Sentences into Logic Formulae 91

7 Installation Dependencies . 93

8 Summary of Built-In Predicates 95

9 Standard Operators . 105

iii

Predicate Index . 107

Concept Index . 111

1

Introduction

Prolog is a simple but powerful programming language developed at the University of Mar-
seilles (Prolog : Manuel de Reference et d’Utilisation by P. Roussel, Groupe d’Intelligence
Artificielle, Marseille-Luminy, 1975), as a practical tool for programming in logic (Logic
for Problem Solving by R.A. Kowalski, DCL Memo 75, Dept. of Artificial Intelligence,
University of Edinburgh, March, 1974). From a user’s point of view the major attraction
of the language is ease of programming. Clear, readable, concise programs can be written
quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult
The Art of Prolog by L. Sterling and E. Shapiro, The MIT Press, Cambridge MA, 1986.
However, for the benefit of those who do not have access to a copy of this book, and for
those who have some prior knowledge of logic programming, a summary of the language
is included. For a more general introduction to the field of Logic Programming see Artifi-
cial Intelligence: Logic for Problem Solving by R.A. Kowalski, North Holland, 1979. See
Chapter 5 [Prolog Intro], page 69.

This manual describes a Prolog system developed at the Swedish Institute of Computer
Science. The system consists of a WAM emulator written in C, a library and runtime
system written in C and Prolog and an interpreter and a compiler written in Prolog. The
Prolog engine is a Warren Abstract Machine (WAM) emulator defined by D.H.D. Warren
in An Abstract Prolog Instruction Set, Tech. Note 309, SRI International, Menlo Park, CA,
1983. Two modes of compilation are available: in-core i.e. incremental, and file-to-file.

When compiled, a predicate will run about 8 times faster and use store more econom-
ically. However, it is recommended that the new user should gain experience with the
interpreter before attempting to use the compiler. The interpreter facilitates the develop-
ment and testing of Prolog programs as it provides powerful debugging facilities. It is only
worthwhile compiling programs which are well-tested and are to be used extensively.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax and built-
in predicates, and is largely compatible with DECsystem-10 Prolog and Quintus Prolog
(Quintus Prolog Reference Manual version 10, Quintus Computer Systems, Inc, Mountain
View, 1987). It also contains primitives for data-driven and object-oriented programming.

Certain aspects of the Prolog system are unavoidably installation dependent. Whenever
there are differences, this manual describes the SICS installation which runs under Berkeley
UNIX. See Chapter 7 [Installation Intro], page 93.

This manual is based on the DECsystem-10 Prolog User’s Manual by D.L. Bowen (edi-
tor), L. Byrd, F.C.N. Pereira, L.M. Pereira, D.H.D. Warren.

Quintus and Quintus Prolog are trademarks of Quintus Computer Systems, Inc. UNIX
is a trademark of Bell Laboratories. DEC is a trademark of Digital Equipment Corporation.

3

Notational Conventions

Predicates in Prolog are distinguished by their name and their arity. The notation
name/arity is therefore used when it is necessary to refer to a predicate unambiguously;
e.g. concatenate/3 specifies the predicate which is named “concatenate” and which takes
3 arguments. We shall call name/arity a predicate spec.

When introducing a built-in predicate, we shall present its usage with a mode spec which
has the form name(arg, ..., arg) where each arg can be of one of the forms: +ArgName—
this argument should be instantiated in goals for the predicate. -ArgName—this argument
should not be instantiated in goals for the predicate. ?ArgName—this argument may or
may not be instantiated in goals for the predicate.

We adopt the following convention for delineating character strings in the text of this
manual: when a string is being used as a Prolog atom it is written thus: user or ’user’;
but in all other circumstances double quotes are used.

When referring to keyboard characters, printing characters are written thus: a, while
control characters are written like this: ^A. Thus ^C is the character you get by holding
down the CTL key while you type c. Finally, the special control characters carriage-return,
line-feed and space are often abbreviated to RET, LFD and SPC respectively.

5

1 How to run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incre-
mentally building programs, debugging programs by following their executions, and modi-
fying parts of programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using
one of the standard text editors. The Prolog interpreter can then be instructed to read
in programs from these files; this is called consulting the file. Alternatively, the Prolog
compiler can be used for compiling the file.

1.1 Getting Started

SICStus is typically started from one of the UNIX shells by entering the shell command
(see Chapter 7 [Installation Intro], page 93):

% prolog

The interpreter responds with a message of identification and the prompt ‘| ?- ’ as soon as
it is ready to accept input, thus:

SICStus 0.7 #0: Thu Jun 7 10:40:30 MET DST 1990

| ?-

During program development it is often convenient to run in a GNU Emacs Prolog
window, available by the Emacs command

M-x run-prolog

The GNU Emacs Prolog mode that comes with SICStus Prolog provides a host of commands
for incremental program development (see Chapter 7 [Installation Intro], page 93).

When SICStus is initialised it looks for a file ~/.sicstusrc and consults it, if it exists.

At this point the interpreter is expecting input of a directive, i.e. a query or command.
See Section 1.4 [Directives], page 6. You cannot type in clauses immediately (see Section 1.3
[Inserting Clauses], page 6). While typing in a directive, the prompt (on following lines)
becomes ‘ ’. That is, the ‘?-’ appears only for the first line of the directive, and subsequent
lines are indented.

1.2 Reading in Programs

A program is made up of a sequence of clauses, possibly interspersed with directives to
the interpreter. The clauses of a predicate do not have to be immediately consecutive, but
remember that their relative order may be important (see Section 5.3 [Procedural], page 74).

To input a program from a file file, just type the filename inside list brackets (followed
by full-stop and carriage-return), thus:

| ?- [file].

This instructs the interpreter to read in (consult) the program. Note that it may be neces-
sary to surround the file specification file with single quotes to make it a legal Prolog atom;
e.g.

| ?- [’myfile.pl’].

| ?- [’/usr/prolog/somefile’].

6 SICStus

The specified file is then read in. Clauses in the file are stored ready to be interpreted,
while any directives are obeyed as they are encountered. When the end of the file is found,
the interpreter displays on the terminal the time spent for read-in. This indicates the
completion of the directive.

Predicates that expect the name of a Prolog source file as an argument use absolute_

file_name/2 (see Section 4.1.4 [Stream Pred], page 35) to look up the file. This predicate
will first search for a file with the suffix ‘.pl’ added to the name given as an argument. If
this fails it will look for a file with no extra suffix added. There is also support for libraries.

In general, this directive can be any list of filenames, such as:

| ?- [myprog,extras,tests].

In this case all three files would be consulted.

The clauses for all the predicates in the consulted files will replace any existing clauses
for those predicates, i.e. any such previously existing clauses in the database will be deleted.

Note that consult/1 in SICStus Prolog behaves like reconsult/1 in DEC-10 Prolog.

1.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended
if the clauses will not be needed permanently, and are few in number. To enter clauses at
the terminal, you must give the special directive:

| ?- [user].

|

and the new prompt ‘| ’ shows that the interpreter is now in a state where it expects input
of clauses or directives. To return to interpreter top level, type ^D. The interpreter responds
thus:

{user consulted, 20 msec 200 bytes}

1.4 Directives: Queries and Commands

Directives are either queries or commands. Both are ways of directing the system to execute
some goal or goals.

In the following, suppose that list membership has been defined by:

member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

(Notice the use of anonymous variables written ‘_’.)

The full syntax of a query is ‘?-’ followed by a sequence of goals. E.g.

?- member(b, [a,b,c]).

At interpreter top level (signified by the initial prompt of ‘| ?- ’), a query may be
abbreviated by omitting the ‘?-’ which is already included in the prompt. Thus a query at
top level looks like this:

| ?- member(b, [a,b,c]).

Remember that Prolog terms must terminate with a full stop (. followed by whitespace),
and that therefore Prolog will not execute anything until you have typed the full stop (and
then RET, carriage-return) at the end of the query.

Chapter 1: How to run Prolog 7

If the goal(s) specified in a query can be satisfied, and if there are no variables as in this
example, then the system answers

yes

and execution of the query terminates.

If variables are included in the query, then the final value of each variable is displayed
(except for anonymous variables). Thus the query

| ?- member(X, [a,b,c]).

would be answered by

X = a

At this point the interpreter is waiting for input of either just a carriage-return (RET) or
else a ; followed by RET. Simply typing RET terminates the query; the interpreter responds
with ‘yes’. However, typing ; causes the system to backtrack (see Section 5.3 [Procedural],
page 74) looking for alternative solutions. If no further solutions can be found it outputs
‘no’.

The outcome of some queries is shown below, where a number preceded by _ is a system-
generated name for a variable.

| ?- member(X, [tom,dick,harry]).

X = tom ;

X = dick ;

X = harry ;

no

| ?- member(X, [a,b,f(Y,c)]), member(X, [f(b,Z),d]).

X = f(b,c),

Y = b,

Z = c

yes

| ?- member(X, [f(_),g]).

X = f(_52)

yes

| ?-

Commands are like queries except that

1. Variable bindings are not displayed if and when the command succeeds.

2. You are not given the chance to backtrack through other solutions.

Commands start with the symbol ‘:-’. (At top level this is simply written after the
prompted ‘| ?- ’ which is then effectively overridden.) Any required output must be pro-
grammed explicitly; e.g. the command:

:- member(3, [1,2,3]), write(ok).

8 SICStus

directs the system to check whether 3 belongs to the list [1,2,3]. Execution of a command
terminates when all the goals in the command have been successfully executed. Other
alternative solutions are not sought. If no solution can be found, the system gives:

{WARNING: goal failed: :- Goal}

as a warning.

The principal use for commands (as opposed to queries) is to allow files to contain
directives which call various predicates, but for which you do not want to have the answers
printed out. In such cases you only want to call the predicates for their effect, i.e. you don’t
want terminal interaction in the middle of consulting the file. A useful example would be
the use of a directive in a file which consults a whole list of other files, e.g.

:- [bits, bobs, main, tests, data, junk].

If a command like this were contained in the file myprog then typing the following at top-
level would be a quick way of reading in your entire program:

| ?- [myprog].

When simply interacting with the top-level of the Prolog interpreter this distinction
between queries and commands is not normally very important. At top-level you should
just type queries normally. In a file, if you wish to execute some goals then you should use
a command; i.e. a directive in a file must be preceded by ‘:-’, otherwise it would be treated
as a clause.

1.5 Syntax Errors

Syntax errors are detected during reading. Each clause, directive or in general any term
read in by the built-in predicate read/1 that fails to comply with syntax requirements is
displayed on the terminal as soon as it is read. A mark indicates the point in the string of
symbols where the parser has failed to continue analysis. e.g.

member(X, X:L).

gives:

** atom follows expression **

member (X , X

** here **

: L)

if : has not been declared as an infix operator.

Note that any comments in the faulty line are not displayed with the error message. If
you are in doubt about which clause was wrong you can use the listing/1 predicate to
list all the clauses which were successfully read-in, e.g.

| ?- listing(member).

1.6 Undefined Predicates

There is a difference between predicates that have no definition and predicates that have
no clauses. The latter case is meaningful e.g. for dynamic predicates (see Section 3.2
[Declarations], page 23) that clauses are being added to or removed from. There are good
reasons for treating calls to undefined predicates as errors, as such calls easily arise from
typing errors.

Chapter 1: How to run Prolog 9

The system can optionally catch calls to predicates that have no definition. The state
of the catching facility can be:

• trace, which causes calls to undefined predicates to be reported and the debugging
system to be entered at the earliest opportunity (the default state);

• fail, which causes calls to such predicates to fail.

Calls to predicates that have no clauses are not caught.

The built-in predicate unknown(?OldState, ?NewState) unifies OldState with the cur-
rent state and sets the state to NewState. It fails if the arguments are not appropriate. The
built-in predicate debugging/0 prints the value of this state along with its other informa-
tion.

1.7 Program Execution And Interruption

Execution of a program is started by giving the interpreter a directive which contains a call
to one of the program’s predicates.

Only when execution of one directive is complete does the interpreter become ready
for another directive. However, one may interrupt the normal execution of a directive by
typing ^C. This ^C interruption has the effect of suspending the execution, and the following
message is displayed:

Prolog interruption (h or ? for help) ?

At this point the interpreter accepts one-letter commands corresponding to certain actions.
To execute an action simply type the corresponding character (lower or upper case) followed
by RET. The possible commands are:

a abort the current computation.

b invoke the Prolog interpreter recursively.

c continue the execution.

d enable debugging. See Chapter 2 [Debug Intro], page 13.

e exit from SICStus, closing all files.

h

? list available commands.

t enable trace. See Section 2.3 [Trace], page 15.

If the standard input stream is not connected to the terminal, e.g. by redirecting stan-
dard input to a file or a UNIX pipe, the above ^C interrupt options are not available.
Instead, typing ^C causes SICStus to exit, and no terminal prompts are printed.

1.8 Exiting From The Interpreter

To exit from the interpreter and return to the shell either type ^D at interpreter top level, or
call the built-in predicate halt/0, or use the e (exit) command following a ^C interruption.

10 SICStus

1.9 Nested Executions—Break and Abort

The Prolog system provides a way to suspend the execution of your program and to enter
a new incarnation of the top level where you can issue directives to solve goals etc. This is
achieved by issuing the directive (see Section 1.7 [Execution], page 9):

| ?- break.

This causes a recursive call to the Prolog interpreter, indicated by the message:

{ Break level 1 }

You can now type queries just as if the interpreter were at top level.

If another call of break/0 is encountered, it moves up to level 2, and so on. To close the
break and resume the execution which was suspended, type ^D. The debugger state and
current input and output streams will be restored, and execution will be resumed at the
procedure call where it had been suspended after printing the message:

{ End break }

Alternatively, the suspended execution can be aborted by calling the built-in predicate
abort/0.

A suspended execution can be aborted by issuing the directive:

| ?- abort.

within a break. In this case no ^D is needed to close the break; all break levels are discarded
and the system returns right back to top-level. IO streams remain open, but the debugger
is switched off. abort/0 may also be called from within a program.

1.10 Saving and Restoring Program States

Once a program has been read, the interpreter will have available all the information nec-
essary for its execution. This information is called a program state.

The state of a program may be saved on disk for future execution. To save a program
into a file File, perform the directive:

| ?- save(File).

This predicate may be called at any time, for example it may be useful to call it in a break
in order to save an intermediate execution state. The file File becomes an executable file.
See Chapter 7 [Installation Intro], page 93.

Once a program has been saved into a file File, the following directive will restore the
interpreter to the saved state:

| ?- restore(File).

After execution of this directive, which may be given in the same session or at some future
date, the interpreter will be in exactly the same state as existed immediately prior to the
call to save/1. Thus if you saved a program as follows:

| ?- save(myprog), write(’myprog restored’).

then on restoring you will get the message ‘myprog restored’ printed out.

A partial program state, containing only the user defined predicates may also be saved
with the directive:

| ?- save_program(File).

Chapter 1: How to run Prolog 11

The file File becomes an executable file. See Chapter 7 [Installation Intro], page 93. After
restoring a partial program state, the interpreter will reinitialise itself.

Note that when a new version of the Prolog system is installed, all program files saved
with the old version become obsolete.

13

2 Debugging

This chapter describes the debugging facilities that are available in the Prolog interpreter.
The purpose of these facilities is to provide information concerning the control flow of your
program. The main features of the debugging package are as follows:

• The Procedure Box model of Prolog execution which provides a simple way of visualis-
ing control flow, especially during backtracking. Control flow is viewed at the predicate
level, rather than at the level of individual clauses.

• The ability to exhaustively trace your program or to selectively set spy-points. Spy-
points allow you to nominate interesting predicates at which the program is to pause
so that you can interact.

• The wide choice of control and information options available during debugging.

Much of the information in this chapter is also in Chapter eight of Programming in
Prolog by W.F. Clocksin and C.S. Mellish (Springer-Verlag, 1981) which is recommended
as an introduction.

2.1 The Procedure Box Control Flow Model

During debugging the interpreter prints out a sequence of goals in various states of instanti-
ation in order to show the state the program has reached in its execution. However, in order
to understand what is occurring it is necessary to understand when and why the interpreter
prints out goals. As in other programming languages, key points of interest are procedure
entry and return, but in Prolog there is the additional complexity of backtracking. One
of the major confusions that novice Prolog programmers have to face is the question of
what actually happens when a goal fails and the system suddenly starts backtracking. The
Procedure Box model of Prolog execution views program control flow in terms of movement
about the program text. This model provides a basis for the debugging mechanism in the
interpreter, and enables the user to view the behaviour of the program in a consistent way.

Let us look at an example Prolog procedure :

Call | | Exit

---------> + descendant(X,Y) :- offspring(X,Y). + --------->

| |

| descendant(X,Z) :- |

<--------- + offspring(X,Y), descendant(Y,Z). + <---------

Fail | | Redo

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Z is a descendant of X if Y is an offspring of X and if Z is a descendant
of Y. In the diagram a box has been drawn around the whole procedure and labelled arrows
indicate the control flow in and out of this box. There are four such arrows which we shall
look at in turn.

Call This arrow represents initial invocation of the procedure. When a goal of the
form descendant(X,Y) is required to be satisfied, control passes through the
Call port of the descendant box with the intention of matching a component
clause and then satisfying any subgoals in the body of that clause. Note that
this is independent of whether such a match is possible; i.e. first the box is

14 SICStus

called, and then the attempt to match takes place. Textually we can imagine
moving to the code for descendant when meeting a call to descendant in some
other part of the code.

Exit This arrow represents a successful return from the procedure. This occurs
when the initial goal has been unified with one of the component clauses and
any subgoals have been satisfied. Control now passes out of the Exit port of
the descendant box. Textually we stop following the code for descendant and
go back to the place we came from.

Redo This arrow indicates that a subsequent goal has failed and that the system is
backtracking in an attempt to find alternatives to previous solutions. Control
passes through the Redo port of the descendant box. An attempt will now be
made to resatisfy one of the component subgoals in the body of the clause that
last succeeded; or, if that fails, to completely rematch the original goal with an
alternative clause and then try to satisfy any subgoals in the body of this new
clause. Textually we follow the code backwards up the way we came looking
for new ways of succeeding, possibly dropping down on to another clause and
following that if necessary.

Fail This arrow represents a failure of the initial goal, which might occur if no
clause is matched, or if subgoals are never satisfied, or if any solution produced
is always rejected by later processing. Control now passes out of the Fail port
of the descendant box and the system continues to backtrack. Textually we
move back to the code which called this procedure and keep moving backwards
up the code looking for choice points.

In terms of this model, the information we get about the procedure box is only the
control flow through these four ports. This means that at this level we are not concerned
with which clause matches, and how any subgoals are satisfied, but rather we only wish to
know the initial goal and the final outcome. However, it can be seen that whenever we are
trying to satisfy subgoals, what we are actually doing is passing through the ports of their
respective boxes. If we were to follow this, then we would have complete information about
the control flow inside the procedure box.

Note that the box we have drawn round the procedure should really be seen as an invoca-
tion box. That is, there will be a different box for each different invocation of the procedure.
Obviously, with something like a recursive procedure, there will be many different Calls and
Exits in the control flow, but these will be for different invocations. Since this might get
confusing each invocation box is given a unique integer identifier.

2.2 Basic Debugging Predicates

The interpreter provides a range of built-in predicates for control of the debugging facilities.
The most basic predicates are as follows:

debug Switches the debugger on. (It is initially off.) In order for the full range of
control flow information to be available it is necessary to have this on from the
start. When it is off the system does not remember invocations that are being
executed. (This is because it is expensive and not required for normal running
of programs.) You can switch Debug Mode on in the middle of execution, either

Chapter 2: Debugging 15

from within your program or after a ^C (see trace below), but information prior
to this will just be unavailable.

nodebug Switches the debugger off. If there are any spy-points set then they will be kept
but disabled.

debugging

Prints onto the terminal information about the current debugging state. This
will show:

1. Whether undefined predicates are being trapped.

2. Whether the debugger is switched on.

3. What spy-points have been set (see below).

4. What mode of leashing is in force (see below).

5. What the interpreter maxdepth is (see below).

2.3 Tracing

The following built-in predicate may be used to commence an exhaustive trace of a program.

trace Switches the debugger on, if it is not on already, and ensures that the next
time control enters a procedure box, a message will be produced and you will
be asked to interact. The effect of trace can also be achieved by typing t after
a ^C interruption of a program.

At this point you have a number of options. See Section 2.6 [Debug Options],
page 17. In particular, you can just type RET (carriage-return) to creep (or
single-step) into your program. If you continue to creep through your program
you will see every entry and exit to/from every invocation box. You will notice
that the interpreter stops at all ports. However, if this is not what you want,
the following built-in predicate gives full control over the ports at which you
are prompted:

leash(+Mode)

Leashing Mode is set to Mode. Leashing Mode determines the ports of pro-
cedure boxes at which you are to be prompted when you Creep through your
program. At unleashed ports a tracing message is still output, but program
execution does not stop to allow user interaction. Note that the ports of spy-
points are always leashed (and cannot be unleashed). Mode can be a subset of
the following, specified as a list:

call Prompt on Call.

exit Prompt on Exit.

redo Prompt on Redo.

fail Prompt on Fail.

The initial value of Leashing Mode is [call,exit,redo,fail] (full leashing).

notrace Equivalent to nodebug.

16 SICStus

2.4 Spy-points

For programs of any size, it is clearly impractical to creep through the entire program.
Spy-points make it possible to stop the program whenever it gets to a particular predicate
which is of interest. Once there, one can set further spy-points in order to catch the control
flow a bit further on, or one can start creeping.

Setting a spy-point on a predicate indicates that you wish to see all control flow through
the various ports of its invocation boxes. When control passes through any port of a
procedure box with a spy-point set on it, a message is output and the user is asked to
interact. Note that the current mode of leashing does not affect spy-points: user interaction
is requested on every port.

Spy-points are set and removed by the following built-in predicates which are also stan-
dard operators:

spy +Spec Sets spy-points on all the predicates given by Spec. Spec is either an atom, a
predicate spec, or a list of such specifications. An atom is taken as meaning all
the predicates whose name is that atom. If you specify an atom but there is
no definition for this predicate (of any arity) then nothing will be done. You
cannot place a spy-point on an undefined predicate. If you set some spy-points
when the debugger is switched off then it will be automatically switched on.

nospy +Spec

This is similar to spy Spec except that all the predicates given by Spec will
have previously set spy-points removed from them.

nospyall This removes all the spy-points that have been set.

The options available when you arrive at a spy-point are described later. See Section 2.6
[Debug Options], page 17.

2.5 Format of Debugging messages

We shall now look at the exact format of the message output by the system at a port. All
trace messages are output to the terminal regardless of where the current output stream is
directed. (This allows you to trace programs while they are performing file IO.) The basic
format is as follows:

S 23 6 Call: T foo(hello,there,_123) ?

S is a spy-point indicator. It is printed as ‘+’, indicating that there is a spy-point on foo/3,
or ‘ ’, denoting no spy-point.

T is a subterm trace. This is used in conjunction with the ‘^’ command (set subterm),
described below. If a subterm has been selected, T is printed as the sequence of commands
used to select the subterm. Normally, however, T is printed as ‘ ’, indicating that no
subterm has been selected.

The first number is the unique invocation identifier. It is nondecreasing regardless of
whether or not you are actually seeing the invocations (provided that the debugger is
switched on). This number can be used to cross correlate the trace messages for the various
ports, since it is unique for every invocation. It will also give an indication of the number of
procedure calls made since the start of the execution. The invocation counter starts again

Chapter 2: Debugging 17

for every fresh execution of a command, and it is also reset when retries (see later) are
performed.

The number following this is the current depth; i.e. the number of direct ancestors this
goal has.

The next word specifies the particular port (Call, Exit, Redo or Fail).

The goal is then printed so that you can inspect its current instantiation state. This is
done using print/1 (see Section 4.1.2 [Term IO], page 29) so that all goals output by the
tracing mechanism can be pretty printed if the user desires.

The final ‘?’ is the prompt indicating that you should type in one of the option codes
allowed (see Section 2.6 [Debug Options], page 17). If this particular port is unleashed then
you will obviously not get this prompt since you have specified that you do not wish to
interact at this point.

Note that not all procedure calls are traced; there are a few basic predicates which have
been made invisible since it is more convenient not to trace them. These include debugging
directives and basic control structures, including trace/0, debug/0, notrace/0, nodebug/0,
spy/1, nospy/1, nospyall/0, leash/1, debugging, true/0, !/0, ’,’/2, ’->’/2, ;/2,
’\+’/1, and if/3. This means that you will never see messages concerning these predicates
during debugging.

There are two exceptions to the above debugger message format. A message

S - - Block: p(_133)

indicates that the debugger has encountered a blocked goal, i.e. one which is temporar-
ily suspended due to insufficiently instantiated arguments (see Section 5.3 [Procedural],
page 74). No interaction takes place at this point, and the debugger simply proceeds to the
next goal in the execution stream. The suspended goal will be eligible for execution once
the blocking condition ceases to exist, at which time a message

S - - Unblock: p(_133)

is printed.

2.6 Options available during Debugging

This section describes the particular options that are available when the system prompts
you after printing out a debugging message. All the options are one letter mnemonics, some
of which can be optionally followed by a decimal integer. They are read from the terminal
with any blanks being completely ignored up to the next terminator (carriage-return, line-
feed, or escape). Some options only actually require the terminator; e.g. the creep option,
as we have already seen, only requires RET.

The only option which you really have to remember is ‘h’ (followed by RET). This
provides help in the form of the following list of available options.

18 SICStus

RET creep c creep

l leap s skip

r retry r <i> retry i

f fail f <i> fail i

d display p print

w write

g ancestors g <n> ancestors n

& blocked goals & <n> nth blocked goal

n nodebug = debugging

+ spy this - nospy this

a abort b break

@ command u unify

< reset printdepth < <n> set printdepth

^ reset subterm ^ <n> set subterm

? help h help

c

RET creep causes the interpreter to single-step to the very next port and print a
message. Then if the port is leashed (see Section 2.3 [Trace], page 15), the
user is prompted for further interaction. Otherwise it continues creeping. If
leashing is off, creep is the same as leap (see below) except that a complete
trace is printed on the terminal.

l leap causes the interpreter to resume running your program, only stopping when
a spy-point is reached (or when the program terminates). Leaping can thus be
used to follow the execution at a higher level than exhaustive tracing. All you
need to do is to set spy-points on an evenly spread set of pertinent predicates,
and then follow the control flow through these by leaping from one to the other.

s skip is only valid for Call and Redo ports. It skips over the entire execution
of the predicate. That is, you will not see anything until control comes back
to this predicate (at either the Exit port or the Fail port). Skip is particularly
useful while creeping since it guarantees that control will be returned after
the (possibly complex) execution within the box. If you skip then no message
at all will appear until control returns. This includes calls to predicates with
spy-points set; they will be masked out during the skip. There is a way of
overriding this : the t option after a ^C interrupt will disable the masking.
Normally, however, this masking is just what is required!

r retry can be used at any of the four ports (although at the Call port it has no
effect). It transfers control back to the Call port of the box. This allows you
to restart an invocation when, for example, you find yourself leaving with some
weird result. The state of execution is exactly the same as when you originally
called, (unless you use side effects in your program; i.e. asserts etc. will not
be undone). When a retry is performed the invocation counter is reset so that
counting will continue from the current invocation number regardless of what
happened before the retry. This is in accord with the fact that you have, in
executional terms, returned to the state before anything else was called.

If you supply an integer after the retry command, then this is taken as specifying
an invocation number and the system tries to get you to the Call port, not of
the current box, but of the invocation box you have specified. It does this by
continuously failing until it reaches the right place. Unfortunately this process

Chapter 2: Debugging 19

cannot be guaranteed: it may be the case that the invocation you are looking
for has been cut out of the search space by cuts (!) in your program. In this
case the system fails to the latest surviving Call port before the correct one.

f fail can be used at any of the four ports (although at the Fail port it has no
effect). It transfers control to the Fail port of the box, forcing the invocation
to fail prematurely.

If you supply an integer after the command, then this is taken as specifying
an invocation number and the system tries to get you to the Fail port of the
invocation box you have specified. It does this by continuously failing until it
reaches the right place. Unfortunately this process cannot be guaranteed: it
may be the case that the invocation you are looking for has been cut out of the
search space by cuts (!) in your program. In this case the system fails to the
latest surviving Fail port before the correct one.

d display goal displays the current goal using display/1. See Write (below).

p print goal re-prints the current goal using print/1. Nested structures will be
printed to the specified printdepth (below).

w write goal writes the current goal on the terminal using write/1.

g Print ancestor goals provides you with a list of ancestors to the current goal, i.e.
all goals that are hierarchically above the current goal in the calling sequence. It
uses the ancestors/1 built-in predicate (see Section 4.5 [State Info], page 43).
You can always be sure of jumping to any goal in the ancestor list (by using
retry etc). If you supply an integer n, then only that number of ancestors will be
printed. That is to say, the last n ancestors will be printed counting back from
the current goal. The list is printed using print/1 and each entry is preceded
by the invocation number followed by the depth number (as would be given in
a trace message).

& Print blocked goals prints a list of the goals which are currently blocked in
the current debugging session together with the variable that each such goal is
suspended on. The goals are enumerated from 1 and up. If you supply an integer
n, then only that goal will be printed. The goals are printed using print/1.
and each entry is preceded by the goal number followed by the variable name.

n nodebug switches the debugger off. Note that this is the correct way to switch
debugging off at a trace point. You cannot use the @ or b options because they
always return to the debugger.

= debugging outputs information concerning the status of the debugging package.
See Section 4.11 [Debug Pred], page 56.

+ spy this. Set a spy-point on the current goal.

- nospy this. Remove spy-point from the current goal.

a abort causes an abort of the current execution. All the execution states built so
far are destroyed and you are put right back at the top level of the interpreter.
(This is the same as the built-in predicate abort/0.)

20 SICStus

b break calls the built-in predicate break/0, thus putting you at interpreter top
level with the execution so far sitting underneath you. When you end the break
(^D) you will be reprompted at the port at which you broke. The new execution
is completely separate from the suspended one; the invocation numbers will
start again from 1 during the break. The debugger is temporarily switched
off as you call the break and will be re-switched on when you finish the break
and go back to the old execution. However, any changes to the leashing or to
spy-points will remain in effect.

@ command gives you the ability to call arbitrary Prolog goals. It is effectively
a one-off break (see above). The initial message ‘| :- ’ will be output on your
terminal, and a command is then read from the terminal and executed as if you
were at top level.

u unify is available at the Call port and gives you the option of providing a
solution to the goal from the terminal rather than executing the goal. This is
convenient e.g. for providing a “stub” for a predicate that has not yet been
written. A prompt ‘|: ’ will be output on your terminal, and the solution is
then read from the terminal and unified with the goal.

< While in the debugger, a printdepth is in effect for limiting the subterm nesting
level when printing the current goal using print/1. When displaying or writing
the current goal, all nesting levels are shown. The limit is initially 10. This
command, without arguments, resets the limit to 10. With an argument of n,
the limit is set to n.

^ While at a particular port, a current subterm of the current goal is maintained.
It is the current subterm which is displayed, printed, or written when prompting
for a debugger command. Used in combination with the printdepth, this pro-
vides a means for navigating in the current goal for focusing on the part which
is of interest. The current subterm is set to the current goal when arriving at
a new port. This command, without arguments, resets the current subterm to
the current goal. With an argument of n (> 0), the current subterm is replaced
by its n:th subterm. With an argument of 0, the current subterm is replaced
by its parent term.

?

h help displays the table of options given above.

2.7 Consulting during Debugging

It is possible, and sometimes useful, to consult a file whilst in the middle of program
execution. Predicates, which have been successfully executed and are subsequently redefined
by a consult and are later reactivated by backtracking, will not notice the change of their
definitions. In other words, it is as if every predicate, when called, creates a virtual copy of
its definition for backtracking purposes.

21

3 Loading Programs

Programs can be loaded in three different ways: consulted or compiled from source files,
or loaded from object files. The latter is the fastest way of loading programs, but of
course requires that the programs have been compiled to object files first. Object files
may be handy when developing large applications consisting of many source files, but are
not strictly necessary since it is possible to save and restore entire execution states (see
Section 4.14 [Misc Pred], page 61).

Consulted, or interpreted, predicates are equivalent to, but slower than, compiled ones.
Although they use different representations, the two types of predicates can call each other
freely.

The SICStus Prolog compiler produces compact and efficient code, running about 8 times
faster than consulted code, and requiring much less runtime storage. Compiled Prolog
programs are comparable in efficiency with LISP programs for the same task. However,
against this, compilation itself takes about twice as long as consulting and some debugging
aids, such as tracing, are not applicable to compiled code. Spy-points can be placed on
compiled predicates, however.

The compiler operates in three different modes, controlled by the “Compilation mode”
flag (see prolog_flag/3). The possible states of the flag are:

compactcode

Compilation produces byte-coded abstract instructions (the default).

fastcode Compilation produces native machine instructions. Only available for Sun-3
computers. Native code runs about 3 times faster than byte code.

profiledcode

Compilation produces byte-coded abstract instructions instrumented to pro-
duce execution profiling data. See Section 4.12 [Profiling], page 56.

The compilation mode can be changed by issuing the directive:

| ?- prolog_flag(compiling, OldValue, NewValue).

A Prolog program consists of a sequence of sentences (see Section 5.9.2 [Sentence],
page 81). Commands and queries encountered among the sentences are executed immedi-
ately as they are encountered, unless they can be interpreted as declarations (see Section 3.2
[Declarations], page 23), which affect the treatment of forthcoming clauses. Clauses are
loaded as they are encountered.

A Prolog program may also contain a list of sentences (including the empty list). This
is treated as equivalent to those sentences occurring in place of the list. This feature makes
it possible to have term_expansion/2 (see Section 4.13 [Definite], page 58) "return" a list
of sentences, instead of a single sentence.

3.1 Predicates which Load Code

To consult a program, issue the directive:

| ?- consult(Files).

22 SICStus

where Files is either the name of a file (including the file user) or a list of filenames instructs
the interpreter to read-in the program which is in the files. For example:

| ?- consult([dbase,’extras.pl’,user]).

When a directive is read it is immediately executed. Any predicate defined in the files
erases any clauses for that predicate already present in the interpreter. If the old clauses
were loaded from a different file than the present one, the user will be queried first whether
(s)he really wants the new definition. However, for existing predicates which have been
declared as multifile (see below) new clauses will be added to the predicate, rather than
replacing the old clauses. If clauses for some predicate appear in more than one file, the
later set will effectively overwrite the earlier set. The division of the program into separate
files does not imply any module structure—any predicate can call any other.

consult/1, used in conjunction with save/1 and restore/1, makes it possible to amend
a program without having to restart from scratch and consult all the files which make up
the program. The consulted file is normally a temporary “patch” file containing only the
amended predicate(s). Note that it is possible to call consult(user) and then enter a patch
directly on the terminal (ending with ^D). This is only recommended for small, tentative
patches.

| ?- [File|Files].

This is a shorthand way of consulting a list of files. (The case where there is just one
filename in the list was described earlier (see Section 1.2 [Reading In], page 5).

To compile a program in-core, use the built-in predicate:

| ?- compile(Files).

where Files is specified just as for consult/1.

The effect of compile/1 is very much like that of consult, except all new predicates will
be stored in compiled rather than consulted form. However, predicates declared as dynamic
(see below) will be stored in consulted form, even though compile/1 is used.

To compile a program into an object file, use the built-in predicate:

| ?- fcompile(Files).

where Files is specified just as for consult/1. For each filename in the list, the compiler will
append the string ‘.pl’ to it and try to locate a source file with that name and compile it to
an object file. The object filename if formed by appending the string ‘.ql’ to the specified
name. The internal state of SICStus Prolog is not changed as result of the compilation.

To load a program from a set of object files, use the built-in predicate:

| ?- load(Files).

where Files is either a single object filename (specified without the trailing ‘.ql’) or a list
of filenames. For each filename in the list, this predicate will first search for a file with
the suffix ‘.ql’ added to the name given as an argument. If this fails it will look for a file
with no extra suffix added. This directive has the same effect as if the source files had been
compiled using compile/1 directly (but see see Section 3.3 [Pitfalls], page 24!).

Finally, to ensure that some files has been compiled or loaded, use the built-in predicate:

| ?- ensure_loaded(Files).

Chapter 3: Loading Programs 23

where Files is either a single filename or a list of filenames, similar to the arguments accepted
by the above predicates. The predicate takes the following action for each File in the list
of filenames:

1. If the File is user, compile(user) is performed;

2. If File cannot be found, not even with a ‘.pl’ or ‘.ql’ extension, an error is signalled;

3. If an object file is found which has not yet been loaded or which has been modified
since it was last loaded, the file is loaded;

4. If a source file is found which has not yet been loaded or which has been modified since
it was last loaded, the file is compiled;

5. If both a source file and an object file are found, item 3 or 4 applies depending on
which file was modified most recently;

6. Otherwise, no action is taken.

Note that ensure_loaded/1 does not cause object files to become recompiled.

3.2 Declarations

When a program is to be loaded, it is sometimes necessary to tell the system to treat some of
the predicates specially. This information is supplied by including declarations about such
predicates in the source file, preceding any clauses for the predicates which they concern.
A declaration is written just as a command, beginning with ‘:- ’. A declaration is effective
from its occurrence through the end of file.

Although declarations that affect more than one predicate may be collapsed into a single
declaration, the recommended style is to write the declarations for a predicate immediately
before its first clause.

The following two declarations are relevant both in Quintus Prolog and in SICStus
Prolog:

:- multifile PredSpec, ..., PredSpec.

causes the specified predicates to be multifile. This means that if more clauses are
subsequently loaded from other files for the same predicate, the new clauses will not replace
the old ones, but will be added at the end instead. The old clauses are erased only if the
predicate is reloaded from its “home file” (the one containing the multifile declaration), if
it is reloaded from a different file declaring the predicate as multifile (in which case the user
is queried first), or if it is explicitly abolished.

Furthermore the compilation mode of the “home file” determines the compilation mode
of any subsequently loaded clauses. For example, if the “home file” declares the predicate
as multifile and dynamic, any subsequent clauses will be stored in consulted form even
if loaded by compile/1. If the “home file” was compiled to native code, any subsequent
clauses will also be compiled to native code even if the compilation mode for the subsequent
file was compactcode.

Multifile declarations must precede any other declarations for the same predicate(s)!

:- dynamic PredSpec, ..., PredSpec.

where each PredSpec is a predicate spec, causes the specified predicates to become dynamic,
which means that other predicates may inspect and modify them, adding or deleting individ-
ual clauses. Dynamic predicates are always stored in consulted form even if a compilation is

24 SICStus

in progress. This declaration is meaningful even if the file contains no clauses for a specified
predicate—the effect is then to define a dynamic predicate with no clauses.

The following declaration is not normally relevant in any Prologs but SICStus Prolog:

:- wait PredSpec, ..., PredSpec.

introduces an exception to the rule that goals be run strictly from left to right within a
clause. Goals for the specified predicates are blocked if the first argument of the goal is
uninstantianted. The behaviour of blocking goals on the first argument cannot be switched
off, except by abolishing or redefining the predicate. See Section 5.3 [Procedural], page 74.

The following two declarations are sometimes relevant in other Prologs, but are ignored
by SICStus Prolog. They are however accepted for compatibility reasons:

:- public PredSpec, ..., PredSpec.

In some Prologs, this declaration is necessary for making compiled predicates visible for the
interpreter. In SICStus Prolog, any predicate may call any other, and all are visible.

:- mode ModeSpec, ..., ModeSpec.

where each ModeSpec is a mode spec. In some Prologs, this declaration helps reduce the
size of the compiled code for a predicate, and may speed up its execution. Unfortunately,
writing mode declarations can be error-prone, and since errors in mode declaration do not
show up while running the predicates interpretively, new bugs may show up when predicates
are compiled. SICStus Prolog ignores mode declarations. However, mode declarations may
be used as a commenting device, as they express the programmer’s intention of data flow in
predicates. If you do so, use only the atoms +, -, and ? as arguments in your mode specs,
as in

:- mode append(+, +, -).

3.3 Pitfalls of File-To-File Compilation

When loading clauses belonging to a multifile predicate from an object file different from the
predicate’s “home file”, the compilation mode used when the new clauses were compiled
must match that of the current clauses. Otherwise, the new clauses are ignored and a
warning message is issued.

When compiling to an object file, remember that directives occurring in the source
file are executed at run time, not at compile time. For instance, it does not work to
include directives that assert clauses of term_expansion/2 (q.v.) and rely on the new
transformations to be effective for subsequent clauses of the same file or subsequent files of
the same compilation. For a definition of term_expansion/2 to take effect, it should be
loaded as a separate file before being used in the compilation of another file.

Operator declarations (q.v.) are an exception to the above rule. If the compiler encoun-
ters a command

:- op(P, T, N).

that command will be executed at compile time as well as at run time.

Chapter 3: Loading Programs 25

3.4 Indexing

The clauses of any predicate are indexed according to the principal functor of the first
argument in the head of the clause. This means that the subset of clauses which match
a given goal, as far as the first step of unification is concerned, is found very quickly,
in practically constant time (i.e. in a time independent of the number of clauses of the
predicate). This can be very important where there is a large number of clauses for a
predicate. Indexing also improves the Prolog system’s ability to detect determinacy—
important for conserving working storage.

3.5 Tail Recursion Optimisation

The compiler incorporates tail recursion optimisation to improve the speed and space effi-
ciency of determinate predicates.

When execution reaches the last goal in a clause belonging to some predicate, and
provided there are no remaining backtrack points in the execution so far of that predicate, all
of the predicate’s local working storage is reclaimed before the final call, and any structures
it has created become eligible for garbage collection. This means that programs can now
recurse to arbitrary depths without necessarily exceeding core limits. For example:

cycle(State) :- transform(State, State1), cycle(State1).

where transform/2 is a determinate predicate, can continue executing indefinitely, provided
each individual structure, State, is not too large. The predicate cycle is equivalent to an
iterative loop in a conventional language.

To take advantage of tail recursion optimisation one must ensure that the Prolog system
can recognise that the predicate is determinate at the point where the recursive call takes
place. That is, the system must be able to detect that there are no other solutions to the
current goal to be found by subsequent backtracking. In general this involves reliance on
the Prolog compiler’s indexing and/or use of cut, see Section 5.5 [Cut], page 77.

27

4 Built-In Predicates

It is not possible to redefine built-in predicates. An attempt to do so will give an error
message. See Chapter 8 [Pred Summary], page 95.

SICStus Prolog provides a wide range of built-in predicates to perform the following
tasks:

Input / Output
Reading-in Programs
Input and Output of Terms
Character IO
Stream IO
Dec-10 Prolog File IO

Arithmetic
Comparison of Terms
Control
Information about the State of the Program
Meta-Logical
Modification of the Program
Internal Database
All Solutions
Interface to Foreign Language Functions
Debugging
Definite Clause Grammars
Miscellaneous

The following descriptions of the built-in predicates are grouped according to the above
categorisation of their tasks.

4.1 Input / Output

There are two sets of file manipulation predicates in SICStus Prolog. One set is inherited
from DEC-10 Prolog. These predicates always refer to a file by name. The other set of
predicates is inherited from Quintus Prolog and refer to files as streams. Streams correpond
to the file pointers used at the operating system level.

A stream can be opened and connected to a filename or UNIX file descriptor for input
or output by calling the predicate open/3. open/3 will return a reference to a stream.
The stream may then be passed as an argument to various IO predicates. The predicate
close/1 is used for closing a stream. The predicate current_stream/3 is used for retrieving
information about a stream, and for finding the currently existing streams.

The possible formats of a stream are:

’$stream’(X,Y)

A stream connected to some file. X and Y are integers.

user_input

The standard input stream, i.e. the terminal, usually.

user_output

The standard output stream, i.e. the terminal, usually.

28 SICStus

user_error

The standard error stream.

The DEC-10 Prolog IO predicates manipulate streams implicitly, by maintaining the
notion of a current input stream and a current output stream. The current input and
output streams are set to the user_input and user_output initially and for every new
break (see Section 1.9 [Nested], page 10). The predicates see/1 and tell/1 can be used
for setting the current input and output streams (respectively) to newly opened streams
for particular files. The predicates seen/0 and told/0 close the current input and output
streams (respectively), and reset them to the standard input and output streams. The
predicates seeing/1 and telling/1 are used for retrieving the filename associated with
the current input and output streams (respectively).

The possible formats of a filename are:

user This “filename” stands for the standard input or output stream, depending on
context. Terminal output is only guaranteed to be displayed after a newline is
written or ttyflush/0 is called.

library(File)

where File is an atom, denotes a file File (with an optional ‘.pl’ suffix when
consulting or compiling or an optional ‘.ql’ suffix in load/1) sought in the
directory path(s) specified by the user defined predicate library_directory/1.

File where File is any atom other than user, denotes a file File (with optional
suffixes as above) sought in the current working directory.

Filename components beginning which with ‘~’ or ‘$’ are treated specially. For example,

’~/sample.pl’

is equivalent to ’/home/sics/al/sample.pl’, if /home/sics/al is the user’s
home directory. (This is also equivalent to ’$HOME/sample.pl’ as explained
below.)

’~clyde/sample.pl’

is equivalent to ’/home/sics/clyde/sample.pl’, if /home/sics/clyde is
Clyde’s home directory.

’$UTIL/sample.pl’

is equivalent to
’/usr/local/src/utilities/sample.pl’, if /usr/local/src/utilities is
the value of the environment variable UTIL, as defined by the shell command
setenv.

Failure to open a file normally causes an abort. This behaviour can be turned off and
on by of the built-in predicates nofileerrors/0 and fileerrors/0 decribed below.

4.1.1 Reading-in Programs

If the predicates discussed in this section are invoked in the scope of the interactive toplevel,
filenames are relative to the current working directory. If invoked recursively, i.e. in the
scope of another invocation of one of these predicates, filenames are relative to the directory

Chapter 4: Built-In Predicates 29

of the file being read in. See Chapter 3 [Load Intro], page 21, for an introduction to these
predicates.

consult(+Files)

reconsult(+Files)

[]

[+File|+Files]

Consults the source file or list of files specified by Files.

compile(+Files)

Compiles the source file or list of files specified by Files. The compiled code is
placed in-core, i.e. is added incrementally to the Prolog database.

fcompile(+Files)

Compiles the source file or list of files specified by Files. The suffix ‘.pl’ is
added to the given filenames to yield the real source filenames. The compiled
code is placed on the object file or list of files formed by adding the suffix ‘.ql’
to the given filenames.

load(+Files)

Loads the object file or list of files specified by Files.

ensure_loaded(+Files)

Compiles or loads the file or list of files specified by Files, comparing last mod-
ified times with the time that the file was last read in.

source_file(?File)

source_file(?Pred,?File)

The predicate Pred is defined in the file File.

4.1.2 Input and Output of Terms

Several IO predicates that use the current input or output stream available in an alternative
version where the stream is specified explicitly. The rule is that the stream is the first
argument, which defaults to the current input or output stream, depending on context.

read(?Term)

read(+Stream,?Term)

The next term, delimited by a full-stop (i.e. a . followed by either a space or a
control character), is read from Stream and is unified with Term. The syntax of
the term must agree with current operator declarations. If a call read(Stream,
Term) causes the end of Stream to be reached, Term is unified with the term
end_of_file. Further calls to read/2 for the same stream will then cause an
error failure, unless the stream is connected to the terminal.

write(?Term)

write(+Stream,?Term)

The term Term is written onto Stream according to current operator declara-
tions.

display(?Term)

The term Term is displayed onto the standard output stream (which is not nec-
essarily the current output stream) in standard parenthesised prefix notation.

30 SICStus

write_canonical(?Term)

write_canonical(+Stream,?Term)

Similar to write(Stream,Term). The term will be written according to the
standard syntax. The output from write_canonical/2 can be parsed by
read/2 even if the term contains special characters or if operator declarations
have changed.

writeq(?Term)

writeq(+Stream,?Term)

Similar to write(Stream,Term), but the names of atoms and functors are
quoted where necessary to make the result acceptable as input to read/2.

print(?Term)

print(+Stream,?Term)

Print Term onto Stream. This predicate provides a handle for user defined
pretty printing:

• If Term is a variable then it is output using write(Stream,Term).

• If Term is non-variable then a call is made to the user defined predicate
portray/1. If this succeeds then it is assumed that Term has been output.

• Otherwise print/2 is called recursively on the components of Term, unless
Term is atomic in which case it is written via write/2.

In particular, the debugging package prints the goals in the tracing messages,
and the interpreter top level prints the final values of variables. Thus you can
vary the forms of these messages if you wish.

Note that on lists ([_|_]), print/2 will first give the whole list to portray/1,
but if this fails it will only give each of the (top level) elements to portray/1.
That is, portray/1 will not be called on all the tails of the list.

portray(?Term)

A user defined predicate. This should either print the Term and succeed, or do
nothing and fail. In the latter case, the default printer (write/1) will print the
Term.

portray_clause(+Clause)

portray_clause(+Stream,+Clause)

This writes the clause Clause onto Stream exactly as listing/0-1 would have
written it, including a period at the end.

format(+Format,+Arguments)

format(+Stream,+Format,+Arguments)

Print Arguments onto Stream according to format Format. Format is a list of
formatting characters. If Format is an atom then name/2 (see Section 4.6 [Meta
Logic], page 44) will be used to translate it into a list of characters. Thus

| ?- format("Hello world!", []).

has the same effect as

| ?- format(’Hello world!’, []).

format/3 is a Prolog interface to the C stdio function printf(). It is due to
Quintus Prolog.

Chapter 4: Built-In Predicates 31

Arguments is a list of items to be printed. If there is only one item it may
be supplied as an atom. If there are no items then an empty list should be
supplied.

The default action on a format character is to print it. The character ~ intro-
duces a control sequence. To print a ~ repeat it:

| ?- format("Hello ~~world!", []).

will result in

Hello ~world!

A format may be spread over several lines. The control sequence \c followed
by a LFD will translate to the empty string:

| ?- format("Hello \c

world!", []).

will result in

Hello world!

The general format of a control sequence is ‘~NC’. The character C determines
the type of the control sequence. N is an optional numeric argument. An
alternative form of N is ‘*’. ‘*’ implies that the next argument in Arguments
should be used as a numeric argument in the control sequence. Example:

| ?- format("Hello~4cworld!", [0’x]).

and

| ?- format("Hello~*cworld!", [4,0’x]).

both produce

Helloxxxxworld!

The following control sequences are available.

‘~a’ The argument is an atom. The atom is printed without quoting.

‘~Nc’ (Print character.) The argument is a number that will be inter-
preted as an ASCII code. N defaults to one and is interpreted as
the number of times to print the character.

‘~Ne’
‘~NE’
‘~Nf’
‘~Ng’
‘~NG’ (Print float). The argument is a float. The float and N will be

passed to the C printf() function as

printf("%.Ne", Arg)

printf("%.NE", Arg)

printf("%.Nf", Arg)

printf("%.Ng", Arg)

printf("%.NG", Arg)

If N is not supplied the action defaults to

printf("%e", Arg)

printf("%E", Arg)

32 SICStus

printf("%f", Arg)

printf("%g", Arg)

printf("%G", Arg)

‘~Nd’ (Print decimal.) The argument is an integer. N is interpreted as
the number of digits after the decimal point. If N is 0 or missing,
no decimal point will be printed. Example:

| ?- format("Hello ~1d world!", [42]).

| ?- format("Hello ~d world!", [42]).

will print as

Hello 4.2 world!

Hello 42 world!

respectively.

‘~ND’ (Print decimal.) The argument is an integer. Identical to ‘~Nd’
except that ‘,’ will separate groups of three digits to the left of the
decimal point. Example:

| ?- format("Hello ~1D world!", [12345]).

will print as

Hello 1,234.5 world!

‘~Nr’ (Print radix.) The argument is an integer. N is interpreted as a
radix. N should be >= 2 and <= 36. If N is missing the radix
defaults to 8. The letters ‘a-z’ will denote digits larger than 9.
Example:

| ?- format("Hello ~2r world!", [15]).

| ?- format("Hello ~16r world!", [15]).

will print as

Hello 1111 world!

Hello f world!

respectively.

‘~NR’ (Print radix.) The argument is an integer. Identical to ‘~Nr’ except
that the letters ‘A-Z’ will denote digits larger than 9. Example:

| ?- format("Hello ~16R world!", [15]).

will print as

Hello F world!

‘~Ns’ (Print string.) The argument is a list of ASCII codes. Exactly N
characters will be printed. N defaults to the length of the string.
Example:

| ?- format("Hello ~4s ~4s!", ["new","world"]).

| ?- format("Hello ~s world!", ["new"]).

will print as

Hello new worl!

Hello new world!

respectively.

Chapter 4: Built-In Predicates 33

‘~i’ (Ignore argument.) The argument may be of any type. The argu-
ment will be ignored. Example:

| ?- format("Hello ~i~s world!", ["old","new"]).

will print as

Hello new world!

‘~k’ (Print canonical.) The argument may be of any type. The argu-
ment will be passed to write_canonical/2 (see Section 4.1.2 [Term
IO], page 29). Example:

| ?- format("Hello ~k world!", [[a,b,c]]).

will print as

Hello .(a,.(b,.(c,[]))) world!

‘~p’ (print.) The argument may be of any type. The argument will be
passed to print/2 (see Section 4.1.2 [Term IO], page 29). Example:

| ?- assert((portray([X|Y]) :- print(cons(X,Y)))).

| ?- format("Hello ~p world!", [[a,b,c]]).

will print as

Hello cons(a,cons(b,cons(c,[]))) world!

‘~q’ (Print quoted.) The argument may be of any type. The argument
will be passed to writeq/2 (see Section 4.1.2 [Term IO], page 29).
Example:

| ?- format("Hello ~q world!", [[’A’,’B’]]).

will print as

Hello [’A’,’B’] world!

‘~w’ (write.) The argument may be of any type. The argument will be
passed to write/2 (see Section 4.1.2 [Term IO], page 29). Example:

| ?- format("Hello ~w world!", [[’A’,’B’]]).

will print as

Hello [A,B] world!

‘~Nn’ (Print newline.) Print N newlines. N defaults to 1. Example:

| ?- format("Hello ~n world!", []).

will print as

Hello

world!

‘~N’ (Fresh line.) Print a newline, if not already at the beginning of a
line.

The following control sequences are also available for compatibility, but do not
perform any useful functions.

‘~N|’ (Set tab.) Set a tab stop at position N, where N defaults to the
current position, and advance the current position there.

34 SICStus

‘~N+’ (Advance tab.) Set a tab stop at N positions past the current
position, where N defaults to 8, and advance the current position
there.

‘~Nt’ (Set fill character.) Set the fill character to be used in the next
position movement to N, where N defaults to SPC.

4.1.3 Character Input/Output

There are two sets of character IO predicates. The first set uses the current input and
output streams, while the second set always uses the standard input and output streams.
The first set is available in an alternative version where the stream is specified explicitly.
The rule is that the stream is the first argument, which defaults to the current input or
output stream, depending on context.

nl

nl(+Stream)

A new line is started on Stream by printing a line feed (LFD). If Stream is the
terminal, its buffer is flushed.

get0(?N)

get0(+Stream,?N)

N is the ASCII code of the next character read from Stream.

get(?N)

get(+Stream,?N)

N is the ASCII code of the next non-blank non-layout character read from
Stream.

skip(+N)

skip(+Stream,+N)

Skips just past the next ASCII character code N from Stream. N may be an
arithmetic expression.

put(+N)

put(+Stream,+N)

ASCII character code N is output onto Stream. N may be an arithmetic ex-
pression.

tab(+N)

tab(+Stream,+N)

N spaces are output onto Stream. N may be an arithmetic expression.

The above predicates are the ones which are the most commonly used, as they can refer
to any streams. In most cases these predicates are sufficient, but there is one limitation: if
you are writing to the terminal, the output is not guaranteed to be visible until a newline
character is written. If this line by line output is inadequate, you have to use ttyflush/0

(see below).

The predicates which follow always refer to the terminal. They are convenient for writing
interactive programs which also perform file IO.

ttynl A new line is started on the standard output stream and its buffer is flushed.

Chapter 4: Built-In Predicates 35

ttyflush Flushes the standard output stream buffer. Output to the terminal normally
simply goes into an output buffer until such time as a newline is output. Calling
this predicate forces any characters in this buffer to be output immediately.

ttyget0(?N)

N is the ASCII code of the next character input from the standard input stream.

ttyget(?N)

N is the ASCII code of the next non-blank printable character from the standard
input stream.

ttyput(+N)

The ASCII character code N is output to the standard output stream. N may
be an arithmetic expression.

ttyskip(+N)

Skips to just past the next ASCII character code N from the standard input
stream. N may be an arithmetic expression.

ttytab(+N)

N spaces are output to the standard output stream. N may be an arithmetic
expression.

4.1.4 Stream IO

The following predicates manipulate streams. Character and line counts are maintained
per stream. All streams connected to the terminal, however, share the same set of counts.
For example, writing to user_output will advance the counts for user_input, if both are
connected to the terminal.

open(+FileName,+Mode,-Stream)

If FileName is a valid file name, the file is opened in mode Mode (invoking the
UNIX function fopen) and the resulting stream is unified with Stream. Mode
is one of:

read Open the file for input.

write Open the file for output. The file is created if it does not already
exist, the file will otherwise be truncated.

append Open the file for output. The file is created if it does not already
exist, the file will otherwise be appended to.

If FileName is an integer, it is assumed to be a file descriptor passed to Prolog
from a foreign function call. The file descriptor is connected to a Prolog stream
(invoking the UNIX function fdopen) which is unified with Stream.

close(+X)

If X is a stream the stream is closed. If X is the name of a file opened by see/1

or tell/1 the corresponding stream is closed.

absolute_file_name(+RelativeName,?AbsoluteName)

This predicate is used by all predicates that refer to filenames for resolving
these. The argument RelativeName is interpreted as a filename according to

36 SICStus

the filename syntax rules (see Section 4.1 [Input Output], page 27). If the
specified file is found (possibly with a ‘.pl’ or ‘.ql’ extension if consulting or
compiling source files or loading object files), AbsoluteName is unified with the
full path name of this file. If RelativeName is user, then AbsoluteName is
also unified with user; this “filename” stands for the standard input or output
stream, depending on context.

current_input(?Stream)

Unify Stream with the current input stream.

current_output(?Stream)

Unify Stream with the current output stream.

current_stream(?FileName,?Mode,?Stream)

Stream is a stream which was opened in mode Mode and which is connected
to the absolute file name Filename (an atom) or to the file descriptor Filename
(an integer). This predicate can be used for enumerating all currently open
streams through backtracking.

set_input(+Stream)

Set the current input stream to Stream.

set_output(+Stream)

Set the current output stream to Stream.

flush_output(+Stream)

Flush all internally buffered characters for Stream to the operating system.

library_directory(?Directory)

A user defined predicate. This predicate specifies a set of directories to be
searched when a file specification of the form library(Name) is used. The
directories are searched until a file with the name Name.Suffix or Name is
found (see Section 4.1 [Input Output], page 27), where Suffix is ‘ql’ when
loading object files and ‘pl’ otherwise.

Directories to be searched may be added by using asserta/1 or assertz/1 (see
Section 4.7 [Modify Prog], page 46), provided that library_directory/1 has
been declared to be dynamic:

| ?- assertz(library_directory(Directory)).

open_null_stream(-Stream)

Open an output stream to the null device. Everything written to this stream
will be thrown away.

character_count(?Stream,?Count)

Count characters have been read from or written to the stream Stream.

line_count(?Stream,?Count)

Count lines have been read from or written to the stream Stream.

line_position(?Stream,?Count)

Count characters have been read from or written to the current line of the
stream Stream.

Chapter 4: Built-In Predicates 37

stream_code(+Stream,?StreamCode)

stream_code(?Stream,+StreamCode)

StreamCode is the file descriptor (an integer) corresponding to the Prolog
stream Stream. This predicate is only useful when streams are passed be-
tween Prolog and C. A C function wishing to perform I/O on a stream may
compute the FILE * stream pointer as ‘stdin + fd’, where ‘fd’ is the file de-
scriptor passed from Prolog. Conversely, the file descriptor can be computed as
‘fileno(s)’ from the FILE * stream pointer ‘s’.

Warning: Mixing C I/O and Prolog I/O on the same stream is not recom-
mended practice. The problem is that the character and line counts for a
stream are only kept up to date for Prolog I/O (see character_count/2, line_
count/2, and line_position/2.

fileerrors

Undoes the effect of nofileerrors/0.

nofileerrors

After a call to this predicate, failure to locate or open a file will cause the
operation to fail instead of the default action, which is to type an error message
and then abort execution.

4.1.5 DEC-10 Prolog File IO

The following predicates manipulate files.

see(+File)

File File becomes the current input stream. File may be a stream previously
opened by see/1 or a filename. If it is a filename, the following action is taken:
If there is a stream opened by see/1 associated with the same file already, then
it becomes the current input stream. Otherwise, the file File is opened for input
and made the current input stream.

seeing(?FileName)

FileName is unified with the name of the current input file, if it was opened by
see/1, with the current input stream, if it is not user_input, otherwise with
user.

seen Closes the current input stream, and resets it to user_input.

tell(+File)

File File becomes the current output stream. File may be a stream previously
opened by tell/1 or a filename. If it is a filename, the following action is taken:
If there is a stream opened by tell/1 associated with the same file already,
then it becomes the current output stream. Otherwise, the file File is opened
for output and made the current output stream.

telling(?FileName)

FileName is unified with the name of the current output file, if it was opened
by tell/1, with the current output stream, if it is not user_output, otherwise
with user.

told Closes the current output stream, and resets it to user_output.

38 SICStus

4.1.6 An Example

Here is an example of a common form of file processing:

process_file(F) :-

seeing(OldInput),

see(F), % Open file F

repeat,

read(T), % Read a term

process_term(T), % Process it

T == end_of_file, % Loop back if not at end of file

!,

seen, % Close the file

see(OldInput).

The above is an example of a repeat loop. Nearly all sensible uses of repeat/0 follow
the above pattern. Note the use of a cut to terminate the loop.

4.2 Arithmetic

Arithmetic is performed by built-in predicates which take as arguments arithmetic expres-
sions and evaluate them. An arithmetic expression is a term built from numbers, variables,
and functors that represent arithmetic functions. At the time of evaluation, each variable
in an arithmetic expression must be bound to a non-variable expression. An expression
evaluates to a number, which may be an integer or a float.

The range of integers is [-2^2147483616, 2^2147483616). Thus for all practical pur-
poses, the range of integers can be considered infinite.

The range of floats is the one provided by the C double type, typically [4.9e-324,

1.8e+308] (plus or minus).

Only certain functors are permitted in an arithmetic expression. These are listed below,
together with an indication of the functions they represent. X and Y are assumed to be
arithmetic expressions. Unless stated otherwise, an expression evaluates to a float if any of
its arguments is a float, otherwise to an integer.

X+Y This evaluates to the sum of X and Y.

X-Y This evaluates to the difference of X and Y.

X*Y This evaluates to the product of X and Y.

X/Y This evaluates to the quotient of X and Y. The value is always a float.

X//Y This evaluates to the integer quotient of X and Y.

X mod Y This evaluates to the integer remainder after dividing X by Y.

-X This evaluates to the negative of X.

integer(X)

This evaluates to the nearest integer between X and 0, if X is a float, otherwise
to X itself.

float(X) This evaluates to the floating-point equivalent of X, if X is an integer, otherwise
to X itself.

Chapter 4: Built-In Predicates 39

X/\Y This evaluates to the bitwise conjunction of the integers X and Y.

X\/Y This evaluates to the bitwise disjunction of the integers X and Y.

X^Y This evaluates to the bitwise exclusive or of the integers X and Y.

\(X) This evaluates to the bitwise negation of the integer X.

X<<Y Bitwise left shift of X by Y places.

X>>Y Bitwise right shift of X by Y places.

[X] A list of just one element evaluates to X if X is a number. Since a quoted string
is just a list of integers, this allows a quoted character to be used in place of its
ASCII code; e.g. "A" behaves within arithmetic expressions as the integer 65.

Variables in an arithmetic expression which is to be evaluated may be bound to other
arithmetic expressions rather than just numbers, e.g.

evaluate(Expression, Answer) :- Answer is Expression.

| ?- evaluate(24*9, Ans).

Ans = 216 ?

yes

This works even for compiled code.

Arithmetic expressions, as described above, are just data structures. If you want one
evaluated you must pass it as an argument to one of the built-in predicates listed below.
Note that is/2 only evaluates one of its arguments, whereas the comparison predicates
evaluate both. In the following, X and Y stand for arithmetic expressions, and Z for some
term.

Z is X The arithmetic expression X is evaluated and the result is unified with Z. Fails
if X is not an arithmetic expression.

X =:= Y The numeric values of X and Y are equal.

X =\= Y The numeric values of X and Y are not equal.

X < Y The numeric value of X is less than the numeric value of Y.

X > Y The numeric value of X is greater than the numeric value of Y.

X =< Y The numeric value of X is less than or equal to the numeric value of Y.

X >= Y The numeric value of X is greater than or equal to the numeric value of Y.

4.3 Comparison of Terms

These built-in predicates are meta-logical. They treat uninstantiated variables as objects
with values which may be compared, and they never instantiate those variables. They
should not be used when what you really want is arithmetic comparison (see Section 4.2
[Arithmetic], page 38) or unification.

The predicates make reference to a standard total ordering of terms, which is as follows:

• Variables, in a standard order (roughly, oldest first—the order is not related to the
names of variables).

40 SICStus

• Integers, in numeric order (e.g. -1 is put before 1).

• Floats, in numeric order (e.g. -1.0 is put before 1.0).

• Atoms, in alphabetical (i.e. ASCII) order.

• Compound terms, ordered first by arity, then by the name of the principal functor, then
by the arguments (in left-to-right order). Recall that lists are equivalent to compound
terms with principal functor ./2.

For example, here is a list of terms in the standard order:

[X, -9, 1, -1.0, fie, foe, X = Y, foe(0,2), fie(1,1,1)]

These are the basic predicates for comparison of arbitrary terms:

Term1 == Term2

Tests if the terms currently instantiating Term1 and Term2 are literally iden-
tical (in particular, variables in equivalent positions in the two terms must be
identical). For example, the query

| ?- X == Y.

fails (answers ‘no’) because X and Y are distinct uninstantiated variables. How-
ever, the query

| ?- X = Y, X == Y.

succeeds because the first goal unifies the two variables (see Section 4.14 [Misc
Pred], page 61).

Term1 \== Term2

Tests if the terms currently instantiating Term1 and Term2 are not literally
identical.

Term1 @< Term2

Term Term1 is before term Term2 in the standard order.

Term1 @> Term2

Term Term1 is after term Term2 in the standard order.

Term1 @=< Term2

Term Term1 is not after term Term2 in the standard order.

Term1 @>= Term2

Term Term1 is not before term Term2 in the standard order.

Some further predicates involving comparison of terms are:

compare(?Op,?Term1,?Term2)

The result of comparing terms Term1 and Term2 is Op, where the possible
values for Op are:

= if Term1 is identical to Term2,

< if Term1 is before Term2 in the standard order,

> if Term1 is after Term2 in the standard order.

Thus compare(=,Term1,Term2) is equivalent to Term1 == Term2.

Chapter 4: Built-In Predicates 41

sort(+List1,?List2)

The elements of the list List1 are sorted into the standard order (see Section 4.3
[Term Compare], page 39) and any identical elements are merged, yielding the
list List2. (The time and space complexity of this operation is at worst O(N lg
N) where N is the length of List1.)

keysort(+List1,?List2)

The list List1 must consist of items of the form Key-Value. These items are
sorted into order according to the value of Key, yielding the list List2. No
merging takes place. This predicate is stable, i.e. if K-A occurs before K-B in
the input, then K-A will occur before K-B in the output. (The time and space
complexity of this operation is at worst O(N lg N) where N is the length of
List1.)

4.4 Control

P , Q P and Q.

P ; Q P or Q.

! See Section 5.5 [Cut], page 77.

\+ P If the goal P has a solution, fail, otherwise succeed. This is not real negation
(“P is false”), but a kind of pseudo-negation meaning “P is not provable”. It
is defined as if by

\+(P) :- P, !, fail.

\+(_).

No cuts are allowed in P.

Remember that with prefix operators such as this one it is necessary to be
careful about spaces if the argument starts with a (. For example:

| ?- \+ (P,Q).

is this operator applied to the conjunction of P and Q, but

| ?- \+(P,Q).

would require a predicate \+ /2 for its solution. The prefix operator can however
be written as a functor of one argument; thus

| ?- \+((P,Q)).

is also correct.

P -> Q ; R Analogous to

if P then Q else R

i.e. defined as if by

(P -> Q; R) :- P, !, Q.

(P -> Q; R) :- R.

No cuts are allowed in P.

Note that this form of if-then-else only explores the first solution to the goal P.

Note also that the ; is not read as a disjunction operator in this case; instead,
it is part of the if-then-else construction.

42 SICStus

The precedence of -> is less than that of ; (see Section 5.6 [Operators], page 78),
so the expression is read as

;(->(P,Q),R)

P -> Q When occurring as a goal, this construction is read as equivalent to

(P -> Q; fail)

if(P,Q,R)

Analogous to

if P then Q else R

but differs from P -> Q ; R in that if(P, Q, R) explores all solutions to the
goal P. There is a small time penalty for this—if P is known to have only one
solution of interest, the form P -> Q ; R should be preferred.

No cuts are allowed in P.

otherwise

true These always succeed. Use of otherwise/0 is discouraged, because it is not as
portable as true/0, and because the former may suggest a completely different
semantics than the latter.

false

fail These always fail. Use of false/0 is discouraged, because it is not as portable
as fail/0, and because the latter has a more procedural flavour to it.

repeat Generates an infinite sequence of backtracking choices. In sensible code,
repeat/0 is hardly ever used except in repeat loops. A repeat loop has the
structure

Head :-

...

save(OldState),

repeat,

generate(Datum),

action(Datum),

test(Datum),

!,

restore(OldState),

...

The purpose is to repeatedly perform some action on elements which are some-
how generated, e.g. by reading them from a stream, until some test becomes
true. Usually, generate, action, and test are all determinate. Repeat loops
cannot contribute to the logic of the program. They are only meaningful if the
action involves side-effects.

The only reason for using repeat loops instead of a more natural tail-recursive
formulation is efficiency: when the test fails back, the Prolog engine immedi-
ately reclaims any working storage consumed since the call to repeat/0.

freeze(+Goal)

The Goal is blocked until it is ground. This can be used e.g. for defining a
sound form of negation by:

Chapter 4: Built-In Predicates 43

not(Goal) :- freeze((\+ Goal)).

not/1 is not a built-in predicate.

freeze(?X,+Goal)

Block Goal until nonvar(X) (see Section 4.6 [Meta Logic], page 44) holds. This
is defined as if by:

:- wait freeze/2.

freeze(_, Goal) :- Goal.

frozen(-Var,?Goal)

If some goal is blocked on the variable Var, then that goal is unified with Goal.
Otherwise, Goal is unified with the atom true.

call(+Term)

incore(+Term)

+Term If Term is instantiated to a term which would be acceptable as the body of a
clause, then the goal call(Term) is executed exactly as if that term appeared
textually in its place, except that any cut (!) occurring in Term only cuts
alternatives in the execution of Term. Use of incore/1 is not recommended.

If Term is not instantiated as described above, an error message is printed and
the call fails.

call_residue(+Goal,?Vars)

The Goal is executed as if by call/1. If after the execution there are still some
subgoals of Goal that are blocked on some variables, then Vars is unified with
the list of such variables. Otherwise, Vars is unified with the empty list [].

4.5 Information about the State of the Program

listing Lists onto the current output stream all the clauses in the current interpreted
program. Clauses listed onto a file can be consulted back.

listing(+A)

If A is just an atom, then the interpreted predicates for all predicates of that
name are listed as for listing/0. The argument A may also be a predicate
spec in which case only the clauses for the specified predicate are listed. Finally,
it is possible for A to be a list of specifications of either type, e.g.

| ?- listing([concatenate/3, reverse, go/0]).

ancestors(?Goals)

Unifies Goals with a list of ancestor goals for the current clause. The list starts
with the parent goal and ends with the most recent ancestor coming from a call
in a compiled clause.

Only available when the debugger is switched on.

subgoal_of(?S)

Equivalent to the sequence of goals:

| ?- ancestors(Goals), member(S, Goals).

44 SICStus

where the predicate member/2 (not a built-in predicate) successively matches its
first argument with each of the elements of its second argument. See Section 1.4
[Directives], page 6.

Only available when the debugger is switched on.

current_atom(?Atom)

If Atom is instantiated then test if Atom is an Atom.

If Atom is unbound then generate (through backtracking) all currently known
atoms, and return each one as Atom.

current_predicate(?Name,?Head)

Name is the name of a user defined predicate, and Head is the most general goal
for that predicate. This predicate can be used to enumerate all user defined
predicates through backtracking.

predicate_property(?Head,?Property)

Head is the most general goal for an existing predicate, and Property is a
property of that predicate, where the possible properties are

• one of the atoms built_in (for built-in predicates) or compiled or
interpreted (for user defined predicates).

• zero or more of the atoms dynamic, multifile, and wait, for predicates
that have been declared to have these properties (see Section 3.2 [Decla-
rations], page 23). N.B. Since these atoms are all prefix operators with
precedence greater than 1000 (see Section 5.6 [Operators], page 78), they
have to be written inside parentheses when they occur as arguments of a
compound term, e.g.:

| ?- predicate_property(Head, (dynamic)).

This predicate can be used to enumerate all existing predicates and their prop-
erties through backtracking.

4.6 Meta-Logical

var(?X) Tests whether X is currently uninstantiated (var is short for variable). An
uninstantiated variable is one which has not been bound to anything, except
possibly another uninstantiated variable. Note that a structure with some com-
ponents which are uninstantiated is not itself considered to be uninstantiated.
Thus the directive

| ?- var(foo(X, Y)).

always fails, despite the fact that X and Y are uninstantiated.

nonvar(?X)

Tests whether X is currently instantiated. This is the opposite of var/1.

atom(?X) Checks that X is currently instantiated to an atom (i.e. a non-variable term of
arity 0, other than a number).

float(?X)

Checks that X is currently instantiated to a float.

Chapter 4: Built-In Predicates 45

integer(?X)

Checks that X is currently instantiated to an integer.

number(?X)

Checks that X is currently instantiated to a number.

atomic(?X)

Checks that X is currently instantiated to an atom or number.

functor(?Term,?Name,?Arity)

The principal functor of term Term has name Name and arity Arity, where
Name is either an atom or, provided Arity is 0, an integer. Initially, either Term
must be instantiated, or Name and Arity must be instantiated to, respectively,
either an atom and an integer in [0..256) or an atomic term and 0. If these
conditions are not satisfied, an error message is given. In the case where Term
is initially uninstantiated, the result of the call is to instantiate Term to the
most general term having the principal functor indicated.

arg(+ArgNo,+Term,?Arg)

Initially, ArgNo must be instantiated to a positive integer and Term to a com-
pound term. The result of the call is to unify Arg with the argument ArgNo
of term Term. (The arguments are numbered from 1 upwards.) If the initial
conditions are not satisfied or ArgNo is out of range, the call merely fails.

?Term =.. ?List

List is a list whose head is the atom corresponding to the principal functor of
Term, and whose tail is a list of the arguments of Term. E.g.

| ?- product(0, n, n-1) =.. L.

L = [product,0,n,n-1]

| ?- n-1 =.. L.

L = [-,n,1]

| ?- product =.. L.

L = [product]

If Term is uninstantiated, then List must be instantiated either to a list of
determinate length whose head is an atom, or to a list of length 1 whose head is a
number. Note that this predicate is not strictly necessary, since its functionality
can be provided by arg/3 and functor/3, and using the latter two is usually
more efficient.

name(?Const,?CharList)

If Const is an atom or number then CharList is a list of the ASCII codes of the
characters comprising the name of Const. E.g.

| ?- name(product, L).

L = [112,114,111,100,117,99,116]

46 SICStus

| ?- name(product, "product").

| ?- name(1976, L).

L = [49,57,55,54]

| ?- name(’1976’, L).

L = [49,57,55,54]

| ?- name((:-), L).

L = [58,45]

If Const is uninstantiated, CharList must be instantiated to a list of ASCII
character codes. If CharList can be interpreted as a number, Const is unified
with that number, otherwise with the atom whose name is CharList. The length
of CharList must be less than 512. E.g.

| ?- name(X, [58,45]).

X = :-

| ?- name(X, ":-").

X = :-

| ?- name(X, [49,50,51]).

X = 123

Note that there are atoms for which name(Const,CharList) is true, but which
will not be constructed if name/2 is called with Const uninstantiated. One such
atom is the atom ’1976’. It is recommended that new programs use atom_

chars/2 or number_chars/2, as these predicates do not have this inconsistency.

atom_chars(?Const,?CharList)

The same as name(Const,CharList), but Const is constrained to be an atom.

number_chars(?Const,?CharList)

The same as name(Const,CharList), but Const is constrained to be a number.

4.7 Modification of the Program

The predicates defined in this section allow modification of the program as it is actually
running. Clauses can be added to the program (asserted) or removed from the program
(retracted).

Chapter 4: Built-In Predicates 47

For these predicates, the argument Head must be instantiated to an atom or a compound
term. The argument Clause must be instantiated either to a term Head :- Body or, if the
body part is empty, to Head. An empty body part is represented as true.

Note that a term Head :- Body must be enclosed in parentheses when it occurs as an
argument of a compound term, as ‘:-’ is a standard infix operator with precedence greater
than 1000 (see Section 5.6 [Operators], page 78), e.g.:

| ?- assert((Head :- Body)).

Like recorded terms, the clauses of dynamic predicates also have unique implementation-
defined identifiers. Some of the predicates below have an additional argument which is this
identifier. This identifier makes it possible to access clauses directly instead of requiring
a normal database (hash-table) lookup. However it should be stressed that use of these
predicates requires some extra care.

assert(+Clause)

assert(+Clause,-Ref)

The current instance of Clause is interpreted as a clause and is added to
the current interpreted program. The predicate concerned must be currently
be dynamic or undefined and the position of the new clause within it is
implementation-defined. Ref is a unique identifier of the asserted clause. Any
uninstantiated variables in the Clause will be replaced by new private variables,
along with copies of any subgoals blocked on these variables.

asserta(+Clause)

asserta(+Clause,-Ref)

Like assert/2, except that the new clause becomes the first clause for the
predicate concerned.

assertz(+Clause)

assertz(+Clause,-Ref)

Like assert/2, except that the new clause becomes the last clause for the
predicate concerned.

clause(+Head,?Body)

clause(+Head,?Body,?Ref)

clause(?Head,?Body,+Ref)

The clause (Head :- Body) exists in the current interpreted program, and is
uniquely identified by Ref. The predicate concerned must currently be dynamic.
At the time of call, either Ref must be instantiated to a valid identifier, or Head
must be instantiated to an atom or a compound term. Thus clause/3 can have
two different modes of use.

retract(+Clause)

The first clause in the current interpreted program that matches Clause is
erased. The predicate concerned must currently be dynamic. retract/1 may
be used in a non-determinate fashion, i.e. it will successively retract clauses
matching the argument through backtracking. If reactivated by backtracking,
invocations of the predicate whose clauses are being retracted will proceed un-
affected by the retracts. This is also true for invocations of clause for the
same predicate. The space occupied by a retracted clause will be recovered
when instances of the clause are no longer in use.

48 SICStus

retractall(+Head)

Erase all clauses whose head matches Head, where Head must be instantiated
to an atom or a compound term. The predicate concerned must currently be
dynamic. The predicate definition is retained.

abolish(+Spec)

abolish(+Name,+Arity)

Erase all clauses of the predicate specified by the predicate spec Spec or
Name/Arity. Spec may also be a list of predicate specs. The predicate def-
inition and all associated information such as spy-points is also erased. The
predicates concerned must all be user defined.

4.8 Internal Database

The predicates described in this section were introduced in early implementations of Prolog
to provide efficient means of performing operations on large quantities of data. The intro-
duction of indexed dynamic predicates have rendered these predicates obsolete, and the sole
purpose of providing them is to support existing code. There is no reason whatsoever to
use them in new code.

These predicates store arbitrary terms in the database without interfering with the
clauses which make up the program. The terms which are stored in this way can subse-
quently be retrieved via the key on which they were stored. Many terms may be stored on
the same key, and they can be individually accessed by pattern matching. Alternatively,
access can be achieved via a special identifier which uniquely identifies each recorded term
and which is returned when the term is stored.

recorded(?Key,?Term,?Ref)

The internal database is searched for terms recorded under the key Key. These
terms are successively unified with Term in the order they occur in the database.
At the same time, Ref is unified with the implementation-defined identifier
uniquely identifying the recorded item. If the key is instantiated to a compound
term, only its principal functor is significant. If the key is uninstantiated, all
terms in the database are successively unified with Term in the order they occur.

recorda(+Key,?Term,-Ref)

The term Term is recorded in the internal database as the first item for the
key Key, where Ref is its implementation-defined identifier. The key must be
given, and only its principal functor is significant. Any uninstantiated variables
in the Term will be replaced by new private variables, along with copies of any
subgoals blocked on these variables.

recordz(+Key,?Term,-Ref)

Like recorda/3, except that the new term becomes the last item for the key
Key.

erase(+Ref)

The recorded item (or dynamic clause (see Section 4.8 [Database], page 48))
whose implementation-defined identifier is Ref is effectively erased from the
internal database or interpreted program.

Chapter 4: Built-In Predicates 49

instance(+Ref,?Term)

A (most general) instance of the recorded term or clause whose implementation-
defined identifier is Ref is unified with Term. Ref must be instantiated to a
legal identifier.

current_key(?KeyName,?KeyTerm)

KeyTerm is the most general form of the key for a currently recorded term, and
KeyName is the name of that key. This predicate can be used to enumerate in
undefined order all keys for currently recorded terms through backtracking.

4.9 All Solutions

When there are many solutions to a problem, and when all those solutions are required to be
collected together, this can be achieved by repeatedly backtracking and gradually building
up a list of the solutions. The following built-in predicates are provided to automate this
process.

setof(?Template,+Goal,?Set)

Read this as “Set is the set of all instances of Template such that Goal is
satisfied, where that set is non-empty”. The term Goal specifies a goal or goals
as in call(Goal) (see Section 4.4 [Control], page 41). Set is a set of terms
represented as a list of those terms, without duplicates, in the standard order
for terms (see Section 4.3 [Term Compare], page 39). If there are no instances
of Template such that Goal is satisfied then the predicate fails.

The variables appearing in the term Template should not appear anywhere else
in the clause except within the term Goal. Obviously, the set to be enumerated
should be finite, and should be enumerable by Prolog in finite time. It is possible
for the provable instances to contain variables, but in this case the list Set will
only provide an imperfect representation of what is in reality an infinite set.

If there are uninstantiated variables in Goal which do not also appear in
Template, then a call to this built-in predicate may backtrack, generating al-
ternative values for Set corresponding to different instantiations of the free
variables of Goal. (It is to cater for such usage that the set Set is constrained
to be non-empty.) Two instantiations are different iff no renaming of variables
can make them literally identical. For example, given the clauses:

likes(bill, cider).

likes(dick, beer).

likes(harry, beer).

likes(jan, cider).

likes(tom, beer).

likes(tom, cider).

the query

| ?- setof(X, likes(X,Y), S).

might produce two alternative solutions via backtracking:

Y = beer, S = [dick, harry, tom]

Y = cider, S = [bill, jan, tom]

50 SICStus

The query:

| ?- setof((Y,S), setof(X, likes(X,Y), S), SS).

would then produce:

SS = [(beer,[dick,harry,tom]), (cider,[bill,jan,tom])]

Variables occurring in Goal will not be treated as free if they are explicitly
bound within Goal by an existential quantifier. An existential quantification is
written:

Y^Q

meaning “there exists a Y such thatQ is true”, where Y is some Prolog variable.

For example:

| ?- setof(X, Y^(likes(X,Y)), S).

would produce the single result:

S = [bill, dick, harry, jan, tom]

in contrast to the earlier example.

bagof(?Template,+Goal,?Bag)

This is exactly the same as setof/3 except that the list (or alternative lists)
returned will not be ordered, and may contain duplicates. The effect of this
relaxation is to save a call to sort/2, which is invoked by setof/3 to return
an ordered list.

X^P The interpreter recognises this as meaning “there exists an X such that P is
true”, and treats it as equivalent to P (see Section 4.4 [Control], page 41).
The use of this explicit existential quantifier outside the setof/3 and bagof/3

constructs is superfluous and discouraged.

findall(?Template,+Goal,?Bag)

Bag is a list of instances of Template in all proofs of Goal found by Prolog. The
order of the list corresponds to the order in which the proofs are found. The list
may be empty and all variables are taken as being existentially quantified. This
means that each invocation of findall/3 succeeds exactly once, and that no
variables in Goal get bound. Avoiding the management of universally quantified
variables can save considerable time and space.

4.10 Interface to Foreign Language Functions

Functions written in the C language (or any other language that uses the same calling
conventions) may be called from Prolog. Foreign language modules may be linked in as
needed. However: once a module has been linked in to the Prolog load image it is not
possible to unlink the module. The foreign language function interface is due to Quintus
Prolog.

foreign_file(+ObjectFile,+Functions)

A user defined predicate. Specifies that a set of C language functions, to be
called from Prolog, are to be found in ObjectFile. Functions is a list of functions
exported by ObjectFile. Only functions that are to be called from Prolog should
be listed. For example

foreign_file(’terminal.o’, [scroll,pos_cursor,ask]).

Chapter 4: Built-In Predicates 51

specifies that functions scroll(), pos_cursor() and ask() are to be found in
object file terminal.o.

foreign(+CFunctionName, +Predicate)

foreign(+CFunctionName, +Language, +Predicate)

User defined predicates. They specify the Prolog interface to a C function.
Language is at present constrained to the atom c. CFunctionName is the name
of a C function. Predicate specifies the name of the Prolog predicate that will be
used to call CFunction(). Predicate also specifies how the predicate arguments
are to be translated into the corresponding C arguments.

foreign(pos_cursor, c, move_cursor(+integer, +integer)).

The above example says that the C function pos_cursor() has two integer
value arguments and that we will use the predicate move_cursor/2 to call this
function. A goal move_cursor(5, 23) would translate into the C call pos_
cursor(5,23);.

load_foreign_files(+ObjectFiles,+Libraries)

Load (link) ObjectFiles into the Prolog load image. ObjectFiles is a list of C
object files. Libraries is a list of libraries, the C library ’-lc’ will always be
used and need not be specified. Example:

| ?- load_foreign_files([’terminal.o’], []).

The third argument of the predicate foreign/3 specifies how to translate between Prolog
arguments and C arguments.

Prolog: +integer

C: long The argument should be instantiated to an integer or a float. The call will
otherwise fail.

Prolog: +float

C: double The argument should be instantiated to an integer or a float. The call will
otherwise fail.

Prolog: +atom

C: unsigned long

The argument should be instantiated to an atom. The call will otherwise fail.
Each atom in SICStus is associated with a unique integer. This integer is passed
as an unsigned long to the C function. Note that the mapping between atoms
and integers depends on the execution history.

Prolog: +string

C: char * The argument should be instantiated to an atom. The call will otherwise fail.
The C function will be passed the address of a text string containing the printed
representation of the atom. The C function should not overwrite the string.

Prolog: +string(N)

C: char * The argument should be instantiated to an atom. The call will otherwise fail.
The printable representation of the string will be copied into a newly allocated
buffer. The string will be truncated if it is longer than N characters. The
string will be blank padded on the right if it is shorter than N characters.

52 SICStus

The C function will be passed the address of the buffer. The C function may
overwrite the buffer.

Prolog: +address

C: char * The argument should be instantiated to an integer; the call will otherwise fail.
The argument should be either 0 or a pointer P previously passed from C to
Prolog. The value passed will be NULL or P, respectively, type converted to
(char *).

Prolog: +address(TypeName)

C: TypeName *

The argument should be instantiated to an integer. The call will otherwise fail.
The argument should be either 0 or a pointer P previously passed from C to
Prolog. The value passed will be NULL or P, respectively, type converted to
(TypeName *).

Prolog: -integer

C: long * The C function is passed a reference to an uninitialised long. The value re-
turned will be converted to a Prolog integer. The Prolog integer will be unified
with the Prolog argument.

Prolog: -float

C: double *

The C function is passed a reference to an uninitialised double. The value
returned will be converted to a Prolog float. The Prolog float will be unified
with the Prolog argument.

Prolog: -atom

C: unsigned long *

The C function is passed a reference to an uninitialised long. The value re-
turned should have been obtained earlier from a +atom type argument. Prolog
will attempt to associate an atom with the returned value. The atom will be
unified with the Prolog argument.

Prolog: -string

C: char **

The C function is passed the address of an uninitialised char *. The returned
string will be converted to a Prolog atom. The atom will be unified with the
Prolog argument. C may reuse or destroy the string buffer during later calls.

Prolog: -string(N)

C: char * The C function is passed a reference to a character buffer large enough to store
an N character string. The returned string will be stripped of trailing blanks
and converted to a Prolog atom. The atom will be unified with the Prolog
argument.

Prolog: -address

C: char **

The C function is passed the address of an uninitialised char *. The returned
value, which must be NULL or a value created by malloc(), will be converted
to a Prolog integer and unified with the Prolog argument.

Chapter 4: Built-In Predicates 53

Prolog: -address(TypeName)

C: TypeName **

The C function is passed the address of an uninitialised TypeName *. The
returned value, which must be NULL or a value created by malloc(), will be
converted to a Prolog integer and unified with the Prolog argument.

Prolog: [-integer]

C: long F()

The C function should return a long. The value returned will be converted to
a Prolog integer. The Prolog integer will be unified with the Prolog argument.

Prolog: [-float]

C: double F()

The C function should return a double. The value returned will be converted
to a Prolog float. The Prolog float will be unified with the Prolog argument.

Prolog: [-atom]

C: unsigned long F()

The C function should return an unsigned long. The value returned should
have been obtained earlier from a +atom type argument. Prolog will attempt
to associate an atom with the returned value. The atom will be unified with
the Prolog argument.

Prolog: [-string]

C: char *F()

The C function should return a char *. The returned string will be converted
to a Prolog atom. The atom will be unified with the Prolog argument. C may
reuse or destroy the string buffer during later calls.

Prolog: [-string(N)]

C: char *F()

The C function should return a char *. The first N characters of the string will
be copied and the copied string will be stripped of trailing blanks. The stripped
string will be converted to a Prolog atom. The atom will be unified with the
Prolog argument. C may reuse or destroy the string buffer during later calls.

Prolog: [-address]

C: char *F()

The C function should return a char *. The returned value, which must be
NULL or a value created by malloc(), will be converted to a Prolog integer and
unified with the Prolog argument.

Prolog: [-address(TypeName)]

C: TypeName *F()

The C function should return a TypeName *. The returned value, which must
be NULL or a value created by malloc(), will be converted to a Prolog integer
and unified with the Prolog argument.

Consider, for example, a function which returns the square root of its argument after
checking that the argument is valid, defined in the file math.c:

#include <math.h>

54 SICStus

#include <stdio.h>

double sqrt_check(d)

double d;

{

if (d < 0.0)

d = 0.0,

fprintf(stderr, "can’t take square root of a negative number\n");

return sqrt(d);

}

The Prolog interface to this function is defined in a file math.pl. The function uses the
sqrt() library function, and so the math library ‘-lm’ has to be included:

foreign_file(’math.o’, [sqrt_check]).

foreign(sqrt_check, c, sqrt(+float, [-float])).

:- load_foreign_files([’math.o’], [’-lm’]).

A simple session using this function could be:

| ?- [math].

{consulting /home/sics/al/math.pl...}

{math consulted, 160 msec 597 bytes}

yes

| ?- sqrt(5.0, X).

X = 2.23606797749979 ?

yes

| ?- sqrt(-5.0, X).

can’t take square root of a negative number

X = 0.0 ?

yes

Unfortunately, the foreign function interface is the least portable part of SICStus Pro-
log. Therefore, we provide an alternative to the mechanism described above. Using the
alternative mechanism, the foreign code is statically linked with the emulator code and
with interface code. This interface code is created by first loading into SICStus Prolog
all foreign_file/2 and foreign/2-3 declarations that are going to be used by load_

foreign_files/2, and then calling the predicate:

Chapter 4: Built-In Predicates 55

prepare_foreign_files(+ObjectFiles)

where ObjectFiles is a list of all the object files that are going to be used by
load_foreign_files/2, generates the relevant interface code in flinkage.c

in the current working directory.

Once the interface code has been generated, the foreign code can be statically linked with
the emulator. The whole procedure is best illustrated by an example. We first exctract the
declarations into a file math2.pl:

foreign_file(’math.o’, [sqrt_check]).

foreign(sqrt_check, c, sqrt(+float, [-float])).

and use them as follows:

% prolog

SICStus 0.7 #0: Thu Jun 7 10:40:30 MET DST 1990

| ?- [math2], prepare_foreign_files([’math.o’]).

{consulting /home/sics/al/math2.pl...}

{math consulted, 20 msec 510 bytes}

{flinkage.c generated, 20 msec}

yes

| ?- ^D

{ End of SICStus execution, user time 0.100 }

% cc -c flinkage.c

% setenv SP_PATH /usr/local/lib/sicstus0.7

% cc $SP_PATH/Emulator/sp.o flinkage.o math.o -lm -o sp

% ./sp -f -b $SP_PATH/Library/boot.ql

booting SICStus...please wait

SICStus 0.7 #0: Thu Jun 7 10:40:30 MET DST 1990

| ?- [math].

{consulting /home/sics/al/math.pl...}

{math consulted, 20 msec 597 bytes}

yes

| ?- sqrt(5.0, X).

X = 2.23606797749979 ?

yes

At this time, save_program/1 can be called to create an executable saved state for quick
start-up. See Chapter 7 [Installation Intro], page 93. Notice that the semantics of load_
foreign_files/2 is somewhat different if user code is statically linked with the emulator:
no dynamic linking of object files takes place; instead, the relevant predicates and functions
are connected by searching the emulator’s internal symbol tables, and the second argument
is simply ignored.

56 SICStus

In general, to statically link the user code with the emulator, create the interface code
(flinkage.o) and issue a Shell command

% cc $SP_PATH/Emulator/sp.o flinkage.o OBJECTFILES LIBRARIES -o sp

where the environment variable SP_PATH should be defined as the name of the SICStus
source code directory (/usr/local/lib/sicstus0.7 in the example).

4.11 Debugging

unknown(?OldState,?NewState)

Unifies OldState with the current state of the “Action on unknown predicates”
flag, and sets the flag to NewState. This flag determines whether or not the
system is to catch calls to undefined predicates (see Section 1.6 [Undefined
Predicates], page 8). The possible states of the flag are:

trace Causes calls to undefined predicates to be reported and the debug-
ging system to be entered at the earliest opportunity (the default
state).

fail Causes calls to such predicates to fail.

debug The debugger is switched on with tracing disabled. See Section 2.2 [Basic],
page 14.

nodebug

notrace The debugger is switched off. See Section 2.2 [Basic], page 14. debugging.

trace The debugger is switched on with tracing enabled. See Section 2.3 [Trace],
page 15.

leash(+Mode)

Leashing Mode is set to Mode. See Section 2.3 [Trace], page 15.

spy +Spec Spy-points are placed on all the predicates given by Spec. See Section 2.4
[Spy-Point], page 16.

nospy +Spec

Spy-points are removed from all the predicates given by Spec. See Section 2.4
[Spy-Point], page 16.

nospyall This removes all the spy-points that have been set.

debugging

Displays information about the debugger. See Section 2.2 [Basic], page 14.

4.12 Execution Profiling

Execution profiling is a common aid for improving software performance. The SICStus
Prolog compiler has the capability of instrumenting compiled code with counters which
are initially zero and incremented whenever the flow of control passes a given point in the
compiled code. This way the number of calls, backtracks, choicepoints created, etc., can be
counted for the instrumented predicates, and an estimate of the time spent in individual
clauses and disjuncts can be calculated.

Chapter 4: Built-In Predicates 57

The profiling package was written by M.M. Gorlick and C.F. Kesselman at the Aerospace
Corporation (Timing Prolog Programs Without Clocks, Proc. Symposium on Logic Pro-
gramming, pp. 426–432, IEEE Computer Society, 1987).

Only compiled code can be instrumented. To get an execution profile of a program,
the compiler must first be told to produce instrumented code. This is done by issuing the
directive:

| ?- prolog_flag(compiling,_,profiledcode).

after which the program to be analyzed can be compiled as usual. Any new compiled code
will be instrumented while the compilation mode flag has the value profiledcode.

The profiling data is generated by simply running the program. The predicate profile_
data/4 (see below) makes available a selection of the data as a Prolog term. The predicate
profile_reset/1 zeroes the profiling counters for a selection of the currently instrumented
predicates.

profile_data(+Files,?Selection,?Resolution,-Data)

This unifies Data with profiling data collected from the predicates defined in
Files, which should be either a single filename or a list of filenames, similar to
the argument accepted by e.g. compile/1.

The Selection argument determines the kind of profiling data to be collected. If
uninstantiated, the predicate will backtrack over its possible values, which are:

calls All instances of entering a clause by a procedure call are counted.
This is equivalent to counting all procedure calls that have not been
determined to fail by indexing on the first argument.

backtracks

All instances of entering a clause by backtracking are counted.

choice_points

All instances of creating a choicepoint are counted. This occurs,
roughly, when the implementation determines that there are more
than one possibly matching clauses for a procedure call, and when
a disjunction is entered.

shallow_fails

All instances of backtracking “early” in a clause or disjunct when
there are outstanding alternatives for the current procedure call are
counted.

deep_fails

All instances of backtracking “late” in a clause or disjunct, or when
there are no outstanding alternatives for the current procedure call,
are counted. The reason for distinguishing shallow and deep failures
is that the former are considerably cheaper to execute than the
latter.

execution_time

The execution time for the selected predicates, clauses, or disjuncts
is estimated in artificial units.

58 SICStus

The Resolution argument determines the level of resolution of the profiling data
to be collected. If uninstantiated, the predicate will backtrack over its possible
values, which are:

predicate

Data is a list of PredName-Count, where Count is a sum of the
corresponding counts per clause.

clause Data is a list of ClauseName-Count, where Count includes counts
for any disjunctions occurring inside that clause. Note, however,
that the selections calls and backtracks do not include counts
for disjunctions.

all Data is a list of InternalName-Count. This is the finest resolution
level, counting individual clauses and disjuncts.

Above, PredName is a predicate spec, ClauseName is a compound term
PredName/ClauseNumber, and InternalName is either
ClauseName—corresponding to a clause, or
(ClauseName-DisjNo)/Arity/AltNo—corresponding to a disjunct.

profile_reset(+Files)

Zeroes all counters for predicates defined in Files, which should be either a single
filename or a list of filenames, similar to the argument accepted by profile_

data/4.

4.13 Definite Clause Grammars

Prolog’s grammar rules provide a convenient notation for expressing definite clause gram-
mars, see Les Grammaires de Metamorphos by A. Colmerauer, Technical Report, Groupe
d’Intelligence Artificielle, Marseille-Luminy, November, 1975, and Definite clause grammars
for language analysis—a survey of the formalism and a comparison with augmented transi-
tion networks by F.C.N. Pereira and D.H.D. Warren, in Artificial Intelligence 13:231-278,
1980.

Definite clause grammars are an extension of the well-known context-free grammars. A
grammar rule in Prolog takes the general form

head --> body.

meaning “a possible form for head is body”. Both body and head are sequences of one or
more items linked by the standard Prolog conjunction operator ‘,’.

Definite clause grammars extend context-free grammars in the following ways:

1. A non-terminal symbol may be any Prolog term (other than a variable or number).

2. A terminal symbol may be any Prolog term. To distinguish terminals from non-
terminals, a sequence of one or more terminal symbols is written within a grammar rule
as a Prolog list. An empty sequence is written as the empty list ‘[]’. If the terminal
symbols are ASCII character codes, such lists can be written (as elsewhere) as strings.
An empty sequence is written as the empty list, ‘[]’ or ‘""’.

3. Extra conditions, in the form of Prolog procedure calls, may be included in the right-
hand side of a grammar rule. Such procedure calls are written enclosed in ‘{}’ brackets.

Chapter 4: Built-In Predicates 59

4. The left-hand side of a grammar rule consists of a non-terminal, optionally followed by
a sequence of terminals (again written as a Prolog list).

5. Alternatives may be stated explicitly in the right-hand side of a grammar rule, using
the disjunction operator ‘;’ or ‘|’ as in Prolog.

6. The cut symbol may be included in the right-hand side of a grammar rule, as in a
Prolog clause. The cut symbol does not need to be enclosed in ‘{}’ brackets.

As an example, here is a simple grammar which parses an arithmetic expression (made
up of digits and operators) and computes its value.

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.

expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.

expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.

term(Z) --> number(X), "/", term(Y), {Z is X / Y}.

term(Z) --> number(Z).

number(C) --> "+", number(C).

number(C) --> "-", number(X), {C is -X}.

number(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.

In the last rule, C is the ASCII code of some digit.

The query

| ?- expr(Z, "-2+3*5+1", []).

will compute Z=14. The two extra arguments are explained below.

Now, in fact, grammar rules are merely a convenient “syntactic sugar” for ordinary
Prolog clauses. Each grammar rule takes an input string, analyses some initial portion,
and produces the remaining portion (possibly enlarged) as output for further analysis. The
arguments required for the input and output strings are not written explicitly in a grammar
rule, but the syntax implicitly defines them. We now show how to translate grammar rules
into ordinary clauses by making explicit the extra arguments.

A rule such as

p(X) --> q(X).

translates into

p(X, S0, S) :- q(X, S0, S).

If there is more than one non-terminal on the right-hand side, as in

p(X, Y) -->

q(X),

r(X, Y),

s(Y).

then corresponding input and output arguments are identified, as in

p(X, Y, S0, S) :-

q(X, S0, S1),

r(X, Y, S1, S2),

r(Y, S2, S).

60 SICStus

Terminals are translated using the built-in predicate ’C’(S1, X, S2), read as “point S1
is connected by terminal X to point S2”, and defined by the single clause

’C’([X|S], X, S).

(This predicate is not normally useful in itself; it has been given the name upper-case c
simply to avoid using up a more useful name.) Then, for instance

p(X) --> [go,to], q(X), [stop].

is translated by

p(X, S0, S) :-

’C’(S0, go, S1),

’C’(S1, to, S2),

q(X, S2, S3),

’C’(S3, stop, S).

Extra conditions expressed as explicit procedure calls naturally translate as themselves,
e.g.

p(X) --> [X], {integer(X), X>0}, q(X).

translates to

p(X, S0, S) :-

’C’(S0, X, S1),

integer(X),

X>0,

q(X, S1, S).

Similarly, a cut is translated literally.

Terminals on the left-hand side of a rule translate into an explicit list in the output
argument of the main non-terminal, e.g.

is(N), [not] --> [aint].

becomes

is(N, S0, [not|S]) :- ’C’(S0, aint, S).

Disjunction has a fairly obvious translation, e.g.

args(X, Y) -->

(dir(X), [to], indir(Y)

; indir(Y), dir(X)

).

translates to

args(X, Y, S0, S) :-

(dir(X, S0, S1),

’C’(S1, to, S2),

indir(Y, S2, S)

; indir(Y, S0, S1),

dir(X, S1, S)

).

The built-in predicates which are concerned with grammars are as follows.

Chapter 4: Built-In Predicates 61

expand_term(+Term1,?Term2)

When a program is read in, some of the terms read are transformed before
being stored as clauses. If Term1 is a term that can be transformed, Term2
is the result. Otherwise Term2 is just Term1 unchanged. This transforma-
tion takes place automatically when grammar rules are read in, but some-
times it is useful to be able to perform it explicitly. Grammar rule expan-
sion is not the only transformation available, the user may define clauses for
the predicate term_expansion/2 to perform other transformations. term_

expansion(Term1,Term2) is called first, and only if it fails is the standard
expansion used.

term_expansion(+Term1,?Term2)

A user defined predicate, which overrides the default grammar rule expansion
of clauses to be consulted or compiled.

phrase(+Phrase,?List)

phrase(+Phrase,?List,?Remainder)

The list List is a phrase of type Phrase (according to the current grammar
rules), where Phrase is either a non-terminal or more generally a grammar rule
body. Remainder is what remains of the list after a phrase has been found. If
called with 2 arguments, the remainder has to be the empty list.

’C’(?S1,?Terminal,?S2)

Not normally of direct use to the user, this built-in predicate is used in the
expansion of grammar rules (see above). It is defined as if by the clause
’C’([X|S], X, S).

4.14 Miscellaneous

X = Y Defined as if by the clause Z=Z.; i.e. X and Y are unified.

dif(X,Y) Constrains X and Y to represent different terms i.e. to be non unifiable. Calls
to dif/2 either succeed, fail, or are blocked depending on whether X and Y
are sufficiently instantiated. This predicate is due to Prolog II (see Prolog II:
Manuel de Reference et Modele Theorique, by A. Colmerauer, Groupe Intelli-
gence Artificielle, Universite Aix-Marseille II, 1982).

For example:

62 SICStus

| ?- dif(X,a).

X = _74,

dif(_74,a) ?

yes

| ?- dif(X,a), X=a.

no

| ?- dif([X|a],[b|Y]), X=a.

X = a,

Y = _154 ?

yes

length(?List,?Length)

If List is instantiated to a list of determinate length, then Length will be unified
with this length.

If List is of indeterminate length and Length is instantiated to an integer, then
List will be unified with a list of length Length. The list elements are unique
variables.

If Length is unbound then Length will be unified with all possible lengths of
List.

prolog_flag(+FlagName,?OldValue,?NewValue)

Unify OldValue with the value of the flag FlagName, then set the value of
FlagName to NewValue. The possible flag names and values are:

character_escapes

on or off. Enable or disable character escaping. Currently this has
no effect in SICStus Prolog.

compiling

Governs the mode in which compile/1 and fcompile/1 operate
(see Chapter 3 [Load Intro], page 21).

compactcode

Compilation produces byte-coded abstract instructions
(the default).

fastcode Compilation produces native machine instructions.
Only available for Sun-3 computers.

profiledcode

Compilation produces byte-coded abstract instructions
instrumented to produce execution profiling data.

Chapter 4: Built-In Predicates 63

debugging

Corresponds to the predicates debug/0, nodebug/0, trace/0,
notrace/0 (see Section 4.11 [Debug Pred], page 56).

trace Turn on trace mode.

debug Turn on the debugger.

off Turn off trace mode and the debugger (the default).

fileerrors

on or off. Turn aborting on file errors on or off. Equivalent to
fileerrors/0 and fileerrors/0, respectively (see Section 4.1.4
[Stream Pred], page 35). Initially on.

gc on or off. Turn garbage collection on or off. Initially on.

gc_margin

Margin: Number of kilobytes. If less than Margin kilobytes are re-
claimed in a garbage collection then the size of the garbage collected
area should be increased. Also, no garbage collection is attempted
unless the garbage collected area has at least Margin kilobytes.
Initially 500.

gc_trace Governs garbage collection trace messages.

verbose Turn on verbose tracing of garbage collection.

terse Turn on terse tracing of garbage collection.

off Turn off tracing of garbage collection (the default).

redefine_warnings

on or off. Enable or disable warning messages when a predicate
is being redefined from a different file than its previous definition.
Initially on.

single_var_warnings

on or off. Enable or disable warning messages when a clause con-
taining non-anonymous variables occurring once only is compiled
or consulted. Initially on.

unknown Corresponds to the predicate unknown/2 (see Section 4.11 [Debug
Pred], page 56).

trace Cause calls to undefined predicates to be reported and
the debugging system to be entered at the earliest op-
portunity (the default).

fail Cause calls to such predicates to fail.

prolog_flag(+FlagName,?OldValue)

This is a shorthand for

prolog_flag(FlagName,OldValue,OldValue)

64 SICStus

copy_term(?Term,?CopyOfTerm)

CopyOfTerm is an independent copy of Term, with new variables substituted
for all variables in Term. It is defined as if by

copy_term(X, Y) :-

assert(’copy of’(X)),

retract(’copy of’(Y)).

numbervars(?Term,+N,?M)

Unifies each of the variables in term Term with a special term, so that
write(Term) (or writeq(Term)) (see Section 4.1.2 [Term IO], page 29) prints
those variables as (A + (i mod 26))(i/26) where i ranges from N to M -1. N
must be instantiated to an integer. If it is 0 you get the variable names A,
B, . . . , Z, A1, B1, etc. This predicate is used by listing/0, listing/1 (see
Section 4.5 [State Info], page 43).

setarg(+ArgNo,+CompoundTerm,?NewArg)

Replace destructively argument ArgNo in CompoundTerm by NewArg. The
assignment is undone on backtracking. This operation is only safe if there is
no further use of the “old” value of the replaced argument. The use of this
predicate is discouraged, as the idea of destructive replacement is alien to logic
programming.

undo(+Term)

The goal call(Term) (see Section 4.4 [Control], page 41) is executed on back-
tracking.

halt Causes an irreversible exit from Prolog back to the shell.

op(+Precedence,+Type,+Name)

Declares the atom Name to be an operator of the stated Type and Precedence
(see Section 5.6 [Operators], page 78). Name may also be a list of atoms in
which case all of them are declared to be operators. If Precedence is 0 then the
operator properties of Name (if any) are cancelled.

current_op(?Precedence,?Type,?Op)

The atom Op is currently an operator of type Type and precedence Precedence.
Neither Op nor the other arguments need be instantiated at the time of the
call; i.e. this predicate can be used to generate as well as to test.

break Invokes the Prolog interpreter recursively. See Section 1.9 [Nested], page 10.

query_expansion(+RawQuery,?Query)

A user defined predicate, which may be used to transform queries entered at
the terminal in response to the ‘| ?-’ prompt. The Prolog interpreter will
call this for every top-level query RawQuery. If it succeeds, Query will be
executed instead of RawQuery, but the variable bindings will be printed as
usual upon completion. This feature is useful e.g. to implement a simple
command interpreter.

abort Aborts the current execution. See Section 1.9 [Nested], page 10.

Chapter 4: Built-In Predicates 65

save(+File)

The system saves the current state of the system into file File. When it is
restored, Prolog will resume execution that called save/1. See Section 1.10
[Saving], page 10.

save(+File,?Return)

Saves the current system state in File just as save(File), but in addition unifies
Return to 0 or 1 depending on whether the return from the call occurs in the
original incarnation of the state or through a call restore(File) (respectively).

save_program(+File)

The system saves the currently defined predicates into file File. When it is
restored, Prolog will reinitialise itself. See Section 1.10 [Saving], page 10.

restore(+File)

The system is returned to the system state previously saved to file File. See
Section 1.10 [Saving], page 10.

reinitialise

This predicate can be used to force the initialisation behaviour to take place
at any time. When SICStus is initialised it looks for a file ~/.sicstusrc and
consults it, if it exists.

maxdepth(+Depth)

The positive integer Depth specifies the maximum depth, i.e. the maximum
number of nested interpreted calls, beyond which the interpreter will trap to
the debugger. The top level has zero depth. This is useful for guarding against
loops in an untested program, or for curtailing infinite execution branches.
Note that calls to compiled predicates are not included in the computation of
the depth. The interpreter will check for maximum depth only if the debugger
is switched on.

depth(?Depth)

Unifies Depth with the current depth, i.e. the number of currently active inter-
preted procedure calls. Depth information is only available when the debugger
is switched on.

garbage_collect

Perform a garbage collection of the global stack immediately.

gc Enables garbage collection of the global stack (the default).

nogc Disables garbage collection of the global stack.

statistics

Display on the terminal statistics relating to memory usage, run time, garbage
collection of the global stack and stack shifts.

statistics(?Key,?Value)

This allows a program to gather various execution statistics. For each of the
possible keys Key, Value is unified with a list of values, as follows:

global_stack

[size used,free]

This refers to the global stack, where compound terms are stored.

66 SICStus

local_stack

[size used,free]

This refers to the local stack, where recursive predicate environ-
ments are stored.

trail [size used,free]

This refers to the trail stack, where conditional variable bindings
are recorded.

choice [size used,free]

This refers to the choicepoint stack, where partial states are stored
for backtracking purposes.

core

memory [size used,0]

These refer to the amount of memory actually allocated by the
UNIX process.

heap

program [size used,0]

These refer to the amount of memory allocated for compiled and
interpreted clauses, symbol tables, and the like.

runtime [since start of Prolog,since previous statistics]

garbage_collection

[no. of GCs,bytes freed,time spent]

stack_shifts

[no. of local shifts,no. of trail shifts,time spent]

Times are in milliseconds, sizes of areas in bytes.

prompt(?Old,?New)

The sequence of characters (prompt) which indicates that the system is waiting
for user input is represented as an atom, and unified with Old; the atom bound
to New specifies the new prompt. In particular, the goal prompt(X, X) unifies
the current prompt with X, without changing it. Note that this predicate only
affects the prompt given when a user’s program is trying to read from the
terminal (e.g. by calling read/1). Note also that the prompt is reset to the
default ‘|: ’ on return to top-level.

version Displays the introductory messages for all the component parts of the current
system.

Prolog will display its own introductory message when initially run but not
normally at any time after this. If this message is required at some other time
it can be obtained using this predicate which displays a list of introductory
messages; initially this list comprises only one message (Prolog’s), but you can
add more messages using version/1.

version(+Message)

This takes a message, in the form of an atom, as its argument and appends it
to the end of the message list which is output by version/0.

Chapter 4: Built-In Predicates 67

The idea of this message list is that, as systems are constructed on top of
other systems, each can add its own identification to the message list. Thus
version/0 should always indicate which modules make up a particular package.
It is not possible to remove messages from the list.

help Displays basic information, or a user defined help message. It first calls user_
help/0, and only if that call fails is a default help message printed on the
current output stream.

user_help

A user defined predicate. This may be defined by the user to print a help
message on the current output stream.

unix(+Term)

plsys(+Term)

Allows certain interactions with the operating system. Under UNIX the possible
forms of Term are as follows:

access(+Path,+Mode)

The path name Path and the integer Mode are passed to the UNIX
C library function access(2). The call succeeds if access is granted.

argv(?Args)

Args is unified with a list of atoms representing the program argu-
ments supplied when the current SICStus process was started (see
Chapter 7 [Installation Intro], page 93). For example, if SICStus
were invoked with

% prolog hello world

then Args would be unified with [hello,world].

cd(+Path)

Change the current working directory to Path.

cd Change the current working directory to the home directory.

chmod(+Path,?Old,?New)

The path name Path and the integer New are passed to the UNIX
C library function chmod(2). Old is unified with the old file mode.
The call succeeds if access is granted.

exit(+Status)

The SICStus process is exited, returning the integer value Status.

mktemp(+Template,?Filename)

Filename is unified with a unique filename constructed from the
atom Template. This is an interface to the UNIX C library function
mktemp(3).

shell Start a new interactive UNIX shell. The control is returned to
Prolog upon termination of the shell.

shell(+Command)

Pass Command to a new UNIX shell for execution.

68 SICStus

shell(+Command,?Status)

Command is passed to a new UNIX shell for execution, and Status
is unified with the value returned by the shell.

system(+Command)

Pass Command to a new UNIX sh process for execution.

system(+Command,?Status)

Command is passed to a new UNIX sh process for execution, and
Status is unified with the value returned by the process.

umask(?Old,?New)

The integer New are passed to the UNIX C library function
umask(2). Old is unified with the old file mode creation mask.

69

5 The Prolog Language

This chapter provides a brief introduction to the syntax and semantics of a certain subset
of logic (definite clauses, also known as Horn clauses), and indicates how this subset forms
the basis of Prolog.

5.1 Syntax, Terminology and Informal Semantics

5.1.1 Terms

The data objects of the language are called terms. A term is either a constant, a variable
or a compound term.

The constants include integers such as

0 1 999 -512

Besides the usual decimal, or base 10, notation, integers may also be written in any base
from 2 to 36, of which base 2 (binary), 8 (octal), and 16 (hex) are probably the most useful.
Letters A through Z (upper or lower case) are used for bases greater than 10. E.g.

15 2’1111 8’17 16’F

all represent the integer fifteen.

There is also a special notation for character constants. E.g.

0’A

is equivalent to 65 (the numerical value of the ASCII code for A).

Constants also include floats such as

1.0 -3.141 4.5E7 -0.12e+8 12.0e-9

Note that there must be a decimal point in floats written with an exponent, and that
there must be at least one digit before and after the decimal point.

Constants also include atoms such as

a void = := ’Algol-68’ []

Constants are definite elementary objects, and correspond to proper nouns in natural
language. For reference purposes, here is a list of the possible forms which an atom may
take:

1. Any sequence of alphanumeric characters (including _), starting with a lower case letter.

2. Any sequence from the following set of characters:
+-*/\^<>=‘~:.?@#$&
This set can in fact be larger; see Section 5.9.4 [Token String], page 84, for a precise
definition.

3. Any sequence of characters delimited by single quotes. If the single quote character is
included in the sequence it must be written twice, e.g. ’can’’t’.

4. Any of: ! ; [] {}

Note that the bracket pairs are special: [] and {} are atoms but [,], {, and } are
not. However, when they are used as functors (see below) the form {X} is allowed as an
alternative to {}(X). The form [X] is the normal notation for lists, as an alternative
to .(X,[]).

70 SICStus

Variables may be written as any sequence of alphanumeric characters (including _) start-
ing with either a capital letter or _; e.g.

X Value A A1 _3 _RESULT

If a variable is only referred to once in a clause, it does not need to be named and may
be written as an anonymous variable, indicated by the underline character _. A clause may
contain several anonymous variables; they are all read and treated as distinct variables.

A variable should be thought of as standing for some definite but unidentified object.
This is analogous to the use of a pronoun in natural language. Note that a variable is
not simply a writeable storage location as in most programming languages; rather it is a
local name for some data object, cf. the variable of pure LISP and identity declarations in
Algol68.

The structured data objects of the language are the compound terms. A compound term
comprises a functor (called the principal functor of the term) and a sequence of one or more
terms called arguments. A functor is characterised by its name, which is an atom, and its
arity or number of arguments. For example the compound term whose functor is named
point of arity 3, with arguments X, Y and Z, is written

point(X, Y, Z)

Note that an atom is considered to be a functor of arity 0.

Functors are generally analogous to common nouns in natural language. One may think
of a functor as a record type and the arguments of a compound term as the fields of a
record. Compound terms are usefully pictured as trees. For example, the term

s(np(john),vp(v(likes),np(mary)))

would be pictured as the structure
s

/ \

np vp

| / \

john v np

| |

likes mary

Sometimes it is convenient to write certain functors as operators—2-ary functors may
be declared as infix operators and 1-ary functors as prefix or postfix operators. Thus it is
possible to write, e.g.

X+Y (P;Q) X<Y +X P;

as optional alternatives to

+(X,Y) ;(P,Q) <(X,Y) +(X) ;(P)

The use of operators is described fully below (see Section 5.6 [Operators], page 78).

Lists form an important class of data structures in Prolog. They are essentially the
same as the lists of LISP: a list either is the atom [] representing the empty list, or is a
compound term with functor . and two arguments which are respectively the head and tail
of the list. Thus a list of the first three natural numbers is the structure

.

/ \

1 .

/ \

Chapter 5: The Prolog Language 71

2 .

/ \

3 []

which could be written, using the standard syntax, as

.(1,.(2,.(3,[])))

but which is normally written, in a special list notation, as

[1,2,3]

The special list notation in the case when the tail of a list is a variable is exemplified by

[X|L] [a,b|L]

representing
. .

/ \ / \

X L a .

/ \

b L

respectively.

Note that this notation does not add any new power to the language; it simply makes it
more readable. e.g. the above examples could equally be written

.(X,L) .(a,.(b,L))

For convenience, a further notational variant is allowed for lists of integers which corre-
spond to ASCII character codes. Lists written in this notation are called strings. E.g.

"SICStus"

which represents exactly the same list as

[83,73,67,83,116,117,115]

5.1.2 Programs

A fundamental unit of a logic program is the goal or procedure call. E.g.

gives(tom, apple, teacher) reverse([1,2,3], L) X<Y

A goal is merely a special kind of term, distinguished only by the context in which it
appears in the program. The (principal) functor of a goal identifies what predicate the goal
is for. It corresponds roughly to a verb in natural language, or to a procedure name in a
conventional programming language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences of natural language. A sentence comprises a head and a body. The
head either consists of a single goal or is empty. The body consists of a sequence of zero or
more goals (i.e. it too may be empty). If the head is not empty, the sentence is called a
clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the
form

P.

where P is the head goal. We interpret this declaratively as

P is true.

and procedurally as

72 SICStus

Goal P is satisfied.

If the body of a clause is non-empty, the clause is called a non-unit clause, and is written
in the form

P :- Q, R, S.

where P is the head goal and Q, R and S are the goals which make up the body. We can
read such a clause either declaratively as

P is true if Q and R and S are true.

or procedurally as

To satisfy goal P, satisfy goals Q, R and S.

A sentence with an empty head is called a directive (see Section 1.4 [Directives], page 6),
of which the most important kind is called a query and is written in the form

?- P, Q.

where P and Q are the goals of the body. Such a query is read declaratively as

Are P and Q true?

and procedurally as

Satisfy goals P and Q.

Sentences generally contain variables. Note that variables in different sentences are
completely independent, even if they have the same name—i.e. the lexical scope of a variable
is limited to a single sentence. Each distinct variable in a sentence should be interpreted
as standing for an arbitrary entity, or value. To illustrate this, here are some examples of
sentences containing variables, with possible declarative and procedural readings:

1. employed(X) :- employs(Y,X).

“Any X is employed if any Y employs X.”

“To find whether a person X is employed, find whether any Y employs X.”

2. derivative(X,X,1).

“For any X, the derivative of X with respect to X is 1.”

“The goal of finding a derivative for the expression X with respect to X itself is satisfied
by the result 1.”

3. ?- ungulate(X), aquatic(X).

“Is it true, for any X, that X is an ungulate and X is aquatic?”

“Find an X which is both an ungulate and aquatic.”

In any program, the predicate for a particular (principal) functor is the sequence of
clauses in the program whose head goals have that principal functor. For example, the
predicate for a 3-ary functor concatenate/3 might well consist of the two clauses

concatenate([], L, L).

concatenate([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3).

where concatenate(L1,L2,L3) means “the list L1 concatenated with the list L2 is the list
L3”. Note that for predicates with clauses corresponding to a base case and a recursive
case, the preferred style is to write the base case clause first.

In Prolog, several predicates may have the same name but different arities. Therefore,
when it is important to specify a predicate unambiguously, the form name/arity is used;
e.g. concatenate/3.

Chapter 5: The Prolog Language 73

Certain predicates are predefined by built-in predicates supplied by the Prolog system.
Such predicates are called built-in predicates.

As we have seen, the goals in the body of a sentence are linked by the operator ‘,’ which
can be interpreted as conjunction (“and”). It is sometimes convenient to use an additional
operator ‘;’, standing for disjunction (“or”). (The precedence of ‘;’ is such that it dominates
‘,’ but is dominated by ‘:-’.) An example is the clause

grandfather(X, Z) :-

(mother(X, Y); father(X, Y)),

father(Y, Z).

which can be read as

For any X, Y and Z, X has Z as a grandfather if either the mother of X is Y
or the father of X is Y, and the father of Y is Z.

Such uses of disjunction can always be eliminated by defining an extra predicate—for
instance the previous example is equivalent to

grandfather(X,Z) :- parent(X,Y), father(Y,Z).

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).

—and so disjunction will not be mentioned further in the following, more formal, description
of the semantics of clauses.

The token ‘|’, when used outside a list, is an alias for ‘;’. The aliasing is performed
when terms are read in, so that

a :- b | c.

is read as if it were

a :- b ; c.

Note the double use of the ‘.’ character. On the one hand it is used as a sentence
terminator, while on the other it may be used in a string of symbols which make up an
atom (e.g. the list functor ./2). The rule used to disambiguate terms is that a ‘.’ followed
by a layout-char is regarded as a sentence terminator (see Section 5.9.4 [Token String],
page 84).

5.2 Declarative Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations
already given. However it is useful to have a precise definition. The declarative semantics
of definite clauses tells us which goals can be considered true according to a given program,
and is defined recursively as follows.

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause
(or term) is obtained by substituting, for each of zero or more of its variables,
a new term for all occurrences of the variable.

For example, if a program contains the preceding predicate for concatenate/3, then the
declarative semantics tells us that

?- concatenate([a], [b], [a,b]).

74 SICStus

is true, because this goal is the head of a certain instance of the first clause for
concatenate/3, namely,

concatenate([a], [b], [a,b]) :- concatenate([], [b], [b]).

and we know that the only goal in the body of this clause instance is true, since it is an
instance of the unit clause which is the second clause for concatenate/3.

5.3 Procedural Semantics

Note that the declarative semantics makes no reference to the sequencing of goals within
the body of a clause, nor to the sequencing of clauses within a program. This sequencing
information is, however, very relevant for the procedural semantics which Prolog gives to
definite clauses. The procedural semantics defines exactly how the Prolog system will exe-
cute a goal, and the sequencing information is the means by which the Prolog programmer
directs the system to execute the program in a sensible way. The effect of executing a goal
is to enumerate, one by one, its true instances. Here then is an informal definition of the
procedural semantics. We first illustrate the semantics by the simple query

?- concatenate(X, Y, [a,b]).

We find that it matches the head of the first clause for concatenate/3, with X instantiated
to [a|X1]. The new variable X1 is constrained by the new query produced, which contains
a single recursive procedure call:

?- concatenate(X1, Y, [b]).

Again this goal matches the first clause, instantiating X1 to [b|X2], and yielding the new
query:

?- concatenate(X2, Y, [])

Now the single goal will only match the second clause, instantiating both X2 and Y to [].
Since there are no further goals to be executed, we have a solution

X = [a,b]

Y = []

i.e. a true instance of the original goal is

concatenate([a,b], [], [a,b])

If this solution is rejected, backtracking will generate the further solutions

X = [a]

Y = [b]

X = []

Y = [a,b]

in that order, by re-matching, against the second clause for concatenate, goals already
solved once using the first clause.

Thus, in the procedural semantics, the set of clauses

H :- B1, ..., Bm.

H’ :- B1’, ..., Bm’.

...

are regarded as a procedure definition for some predicate H, and in a query

?- G1, ..., Gn.

Chapter 5: The Prolog Language 75

each Gi is regarded as a procedure call. To execute a query, the system selects by its
computation rule a goal, Gj say, and searches by its search rule a clause whose head matches
Gj. Matching is done by the unification algorithm (see A Machine-Oriented Logic Based on
the Resolution Principle by J.A. Robinson, Journal of the ACM 12:23-44, January 1965)
which computes the most general unifier, mgu, of Gj and H. The mgu is unique if it exists.
If a match is found, the current query is reduced to a new query

?- (G1, ..., Gj-1, B1, ..., Bm, Gj+1, ..., Gn)mgu.

and a new cycle is started. The execution terminates when the empty query has been
produced.

If there is no matching head for a goal, the execution backtracks to the most recent
successful match in an attempt to find an alternative match. If such a match is found, an
alternative new query is produced, and a new cycle is started.

In SICStus Prolog, as in other Prolog systems, the search rule is simple: “search forward
from the beginning of the program”.

The computation rule in most Prolog systems is simple too: “pick the leftmost goal of the
current query”. However, SICStus Prolog, Prolog II, NU-Prolog, and a few other systems
have a somewhat more complex computation rule “pick the leftmost unblocked goal of the
current query”. A goal is blocked on its first argument if that argument is uninstantiated and
its predicate definition is annotated with a wait declaration (see Section 3.2 [Declarations],
page 23). Goals of the built-in predicates freeze/1 and dif/2 (q.v.) may also be blocked
if their arguments are not instantiated enough. A goal can only be blocked on a single
uninstantiated variable, but a variable may block several goals.

Thus binding a variable can cause blocked goals to become unblocked, and backtracking
can cause currently unblocked goals to become blocked again. Moreover, if the current
query is

?- G1, ..., Gj-1, Gj, Gj+1, ..., Gn.

where Gj is the first unblocked goal, and matching Gj against a clause head causes several
blocked goals in G1, ..., Gj-1 to become unblocked, then these goals may become reordered.
The internal order of any two goals that were blocked on the same variable is retained,
however.

Another consequence is that a query may be derived consisting entirely of blocked goals.
Such a query is said to have floundered. The interpreter top-level checks for this condition.
If detected, the outstanding blocked subgoals are printed on the terminal along with the
answer substitution, to notify the user that the answer (s)he has got is really a speculative
one, since it is only valid if the blocked goals can be satisfied.

In compiled code, the computation rule is not completely obeyed, as calls to certain
built-in predicates compile to instructions. Such calls are executed even if a unification
just prior to the call causes a blocked goal to become unblocked. The following built-in
predicates do not compile to procedure calls in compiled code. Note also that there is an
implicit cut in the \+ and -> constructs:

’C’/3

arg/3

atom/1

atomic/1

76 SICStus

compare/3

float/1

functor/3

is/2

integer/1

nonvar/1

number/1

var/1

’==’/2 ’\==’/2 ’@<’/2 ’@>=’/2 ’@>’/2 ’@=<’/2

’=:=’/2 ’=\=’/2 ’<’/2 ’>=’/2 ’>’/2 ’=<’/2

’=..’/2 ’=’/2 ’,’/2 !/0

Sometimes, it is crucial that the blocked goal be executed before a call to one of the above
built-in predicates. Since most of the above are meta-logical primitives, their semantics can
depend on whether a variable is currently bound etc. Consider, for example, the clauses
and query

:- wait test/1.

test(2).

data(1).

data(2).

?- test(X), data(X), !, ...

thus the first match for data(X) causes the blocked goal test(X) to be unblocked, but since
the cut is selected before test(X), the system is committed to the first match for data(X),
and the query fails. However, inserting a dummy goal true enables the unblocked goal to
be selected before the cut:

?- test(X), data(X), true, !, ...

As test(1) fails, the system backtracks to the second clause for data(X), and the query
succeeds with the answer

X = 2

5.4 Occurs Check

It is possible, and sometimes useful, to write programs which unify a variable to a term
in which that variable occurs, thus creating a cyclic term. The usual mathematical theory
behind Logic Programming forbids the creation of cyclic terms, dictating that an occurs
check should be done each time a variable is unified with a term. Unfortunately, an occurs
check would be so expensive as to render Prolog impractical as a programming language.
Thus cyclic terms may be created and may cause loops trying to print them.

SICStus Prolog mitigates the problem by its ability to unify and compare (see Section 4.3
[Term Compare], page 39) cyclic terms without looping. Loops in the printer can be inter-
rupted by typing ^C.

Chapter 5: The Prolog Language 77

5.5 The Cut Symbol

Besides the sequencing of goals and clauses, Prolog provides one other very important
facility for specifying control information. This is the cut symbol, written !. It is inserted
in the program just like a goal, but is not to be regarded as part of the logic of the program
and should be ignored as far as the declarative semantics is concerned.

The effect of the cut symbol is as follows. When first encountered as a goal, cut succeeds
immediately. If backtracking should later return to the cut, the effect is to fail the parent
goal, i.e. that goal which matched the head of the clause containing the cut, and caused the
clause to be activated. In other words, the cut operation commits the system to all choices
made since the parent goal was invoked, and causes other alternatives to be discarded. The
goals thus rendered determinate are the parent goal itself, any goals occurring before the
cut in the clause containing the cut, and any subgoals which were executed during the
execution of those preceding goals.

e.g.

member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

This predicate can be used to test whether a given term is in a list. E.g.

| ?- member(b, [a,b,c]).

returns the answer ‘yes’. The predicate can also be used to extract elements from a list, as
in

| ?- member(X, [d,e,f]).

With backtracking this will successively return each element of the list. Now suppose that
the first clause had been written instead:

member(X, [X|_]) :- !.

In this case, the above call would extract only the first element of the list (d). On back-
tracking, the cut would immediately fail the whole predicate.

x :- p, !, q.

x :- r.

This is equivalent to

x := if p then q else r;

in an Algol-like language.

It should be noticed that a cut discards all the alternatives since the parent goal, even
when the cut appears within a disjunction. This means that the normal method for elim-
inating a disjunction by defining an extra predicate cannot be applied to a disjunction
containing a cut.

A proper use of the cut is usually a major difficulty for new Prolog programmers. The
usual mistakes are to over-use cut, and to let cuts destroy the logic. We would like to advise
all users to follow these general rules. Also see Chapter 6 [Example Intro], page 87.

• Write each clause as a self-contained logic rule which just defines the truth of goals
which match its head. Then add cuts to remove any fruitless alternative computation
paths that may tie up store.

• Cuts are usually placed right after the head, sometimes preceded by simple tests.

• Cuts are hardly ever needed in the last clause of a predicate.

78 SICStus

5.6 Operators

Operators in Prolog are simply a notational convenience. For example, the expression 2+1

could also be written +(2,1). This expression represents the data structure
+

/ \

2 1

and not the number 3. The addition would only be performed if the structure were passed
as an argument to an appropriate predicate such as is/2 (see Section 4.2 [Arithmetic],
page 38).

The Prolog syntax caters for operators of three main kinds—infix, prefix and postfix.
An infix operator appears between its two arguments, while a prefix operator precedes its
single argument and a postfix operator is written after its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The precedence
is used to disambiguate expressions where the structure of the term denoted is not made
explicit through the use of parentheses. The general rule is that it is the operator with the
highest precedence that is the principal functor. Thus if ‘+’ has a higher precedence than
‘/’, then

a+b/c a+(b/c)

are equivalent and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses, i.e.

(a+b)/c

If there are two operators in the subexpression having the same highest precedence, the
ambiguity must be resolved from the types of the operators. The possible types for an infix
operator are

xfx xfy yfx

Operators of type xfx are not associative: it is a requirement that both of the two
subexpressions which are the arguments of the operator must be of lower precedence than
the operator itself, i.e. their principal functors must be of lower precedence, unless the
subexpression is explicitly parenthesised (which gives it zero precedence).

Operators of type xfy are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type yfx) are the other way around.

A functor named name is declared as an operator of type Type and precedence Prece-
dence by the command

:- op(Precedence, Type, Name).

The argument name can also be a list of names of operators of the same type and
precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds, i.e. infix, prefix or postfix. An operator of any kind may be redefined by a
new declaration of the same kind. This applies equally to operators which are provided as
standard. Declarations of all the standard operators can be found elsewhere (see Chapter 9
[Standard Operators], page 105).

For example, the standard operators + and - are declared by

:- op(500, yfx, [+, -]).

Chapter 5: The Prolog Language 79

so that

a-b+c

is valid syntax, and means

(a-b)+c

i.e.
+

/ \

- c

/ \

a b

The list functor . is not a standard operator, but we could declare it thus:

:- op(900, xfy, .).

Then a.b.c would represent the structure
.

/ \

a .

/ \

b c

Contrasting this with the diagram above for a-b+c shows the difference betweeen yfx

operators where the tree grows to the left, and xfy operators where it grows to the right.
The tree cannot grow at all for xfx operators; it is simply illegal to combine xfx operators
having equal precedences in this way.

The possible types for a prefix operator are

fx fy

and for a postfix operator they are

xf yf

The meaning of the types should be clear by analogy with those for infix operators. As
an example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were fx, the preceding
expression would not be legal, although

not P

would still be a permissible form for not(P).

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.

Note that the arguments of a compound term written in standard syntax must be ex-
pressions of precedence below 1000. Thus it is necessary to parenthesise the expression P

:- Q in

?- assert((P :- Q)).

80 SICStus

5.7 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguity
associated with prefix operators.

1. In a term written in standard syntax, the principal functor and its following (must
not be separated by any intervening spaces, newlines etc. Thus

point (X,Y,Z)

is invalid syntax.

2. If the argument of a prefix operator starts with a (, this (must be separated from the
operator by at least one space or other non-printable character. Thus

:-(p;q),r.

(where ‘:-’ is the prefix operator) is invalid syntax. The system would try to interpret
it as the structure:

,

/ \

:- r

|

;

/ \

p q

That is, it would take ‘:-’ to be a functor of arity 1. However, since the arguments of
a functor are required to be expressions of precedence below 1000, this interpretation
would fail as soon as the ‘;’ (precedence 1100) was encountered.

In contrast, the term:

:- (p;q),r.

is valid syntax and represents the following structure.
:-

|

,

/ \

; r

/ \

p q

5.8 Comments

Comments have no effect on the execution of a program, but they are very useful for making
programs more readily comprehensible. Two forms of comment are allowed in Prolog:

1. The character % followed by any sequence of characters up to end of line.

2. The symbol /* followed by any sequence of characters (including new lines) up to */.

5.9 Full Prolog Syntax

A Prolog program consists of a sequence of sentences. Each sentence is a Prolog term. How
terms are interpreted as sentences is defined below (see Section 5.9.2 [Sentence], page 81).
Note that a term representing a sentence may be written in any of its equivalent syntactic
forms. For example, the 2-ary functor ‘:-’ could be written in standard prefix notation
instead of as the usual infix operator.

Chapter 5: The Prolog Language 81

Terms are written as sequences of tokens. Tokens are sequences of characters which
are treated as separate symbols. Tokens include the symbols for variables, constants and
functors, as well as punctuation characters such as brackets and commas.

We define below how lists of tokens are interpreted as terms (see Section 5.9.3 [Term
Token], page 82). Each list of tokens which is read in (for interpretation as a term or
sentence) has to be terminated by a full-stop token. Two tokens must be separated by a
space token if they could otherwise be interpreted as a single token. Both space tokens and
comment tokens are ignored when interpreting the token list as a term. A comment may
appear at any point in a token list (separated from other tokens by spaces where necessary).

We define below how tokens are represented as strings of characters (see Section 5.9.4
[Token String], page 84). But we start by describing the notation used in the formal
definition of Prolog syntax (see Section 5.9.1 [Syntax Notation], page 81).

5.9.1 Notation

1. Syntactic categories (or non-terminals) are written thus: item. Depending on the
section, a category may represent a class of either terms, token lists, or character
strings.

2. A syntactic rule takes the general form

C --> F1 | F2 | F3

which states that an entity of category C may take any of the alternative forms F1,
F2, F3, etc.

3. Certain definitions and restrictions are given in ordinary English, enclosed in { } brack-
ets.

4. A category written as C... denotes a sequence of one or more Cs.

5. A category written as ?C denotes an optional C. Therefore ?C... denotes a sequence
of zero or more Cs.

6. A few syntactic categories have names with arguments, and rules in which they appear
may contain meta-variables looking thus: X. The meaning of such rules should be clear
from analogy with the definite clause grammars (see Section 4.13 [Definite], page 58).

7. In the section describing the syntax of terms and tokens (see Section 5.9.3 [Term Token],
page 82) particular tokens of the category name are written thus: name, while tokens
which are individual punctuation characters are written literally.

5.9.2 Syntax of Sentences as Terms

sentence --> clause | directive | grammar-rule

clause --> non-unit-clause | unit-clause

directive --> command | query

non-unit-clause --> head :- goals

unit-clause --> head

{ where head is not otherwise a sentence }

82 SICStus

command --> :- goals

query --> ?- goals

head --> term

{ where term is not a number or variable }

goals --> goals , goals

| goals -> goals ; goals

| goals -> goals

| \+ goals

| goals ; goals

| goal

goal --> term

{ where term is not a number
and is not otherwise a goals }

grammar-rule --> gr-head --> gr-body

gr-head --> non-terminal

| non-terminal , terminals

gr-body --> gr-body , gr-body

| gr-body -> gr-body ; gr-body

| gr-body -> gr-body

| \+ gr-body

| gr-body ; gr-body

| non-terminal

| terminals

| gr-condition

non-terminal --> term

{ where term is not a number or variable
and is not otherwise a gr-body }

terminals --> list | string

gr-condition --> { goals }

5.9.3 Syntax of Terms as Tokens

term-read-in --> subterm(1200) full-stop

subterm(N) --> term(M)

{ where M is less than or equal to N }

Chapter 5: The Prolog Language 83

term(N) --> op(N,fx) subterm(N-1)

{ except the case - number }
{ if subterm starts with a (,

op must be followed by a space }
| op(N,fy) subterm(N)

{ if subterm starts with a (,
op must be followed by a space }

| subterm(N-1) op(N,xfx) subterm(N-1)

| subterm(N-1) op(N,xfy) subterm(N)

| subterm(N) op(N,yfx) subterm(N-1)

| subterm(N-1) op(N,xf)

| subterm(N) op(N,yf)

term(1000) --> subterm(999) , subterm(1000)

term(0) --> functor (arguments)

{ provided there is no space between
the functor and the (}

| (subterm(1200))

| { subterm(1200) }

| list

| string

| constant

| variable

op(N,T) --> name

{ where name has been declared as an
operator of type T and precedence N }

arguments --> subterm(999)

| subterm(999) , arguments

list --> []

| [listexpr]

listexpr --> subterm(999)

| subterm(999) , listexpr

| subterm(999) | subterm(999)

constant --> atom | number

number --> integer | float

atom --> name

integer --> natural-number

84 SICStus

| - natural-number

float --> unsigned-float

| - unsigned-float

functor --> name

5.9.4 Syntax of Tokens as Character Strings

By default, SICStus uses the ISO 8859/1 character set standard, but will alternatively
support the EUC (Extended UNIX Code) standard. This is governed by the value of the
environment variable LC_CTYPE (see Chapter 7 [Installation Intro], page 93).

The character categories used below are defined as follows in the two standards:

layout-char
In ISO 8859/1, these are ASCII codes 0..32 and 127..159. In EUC, these are
ASCII codes 0..32 and 127. The common subset includes characters such as
TAB, LFD, and SPC.

small-letter
In ISO 8859/1, these are ASCII codes 97..122, 223..246, and 248..255. In EUC,
these are ASCII codes 97..122 and 128..255. The common subset are the letters
a through z.

capital-letter
In ISO 8859/1, these are ASCII codes 65..90, 192..214, and 216..222. In EUC,
these are ASCII codes 65..90. The common subset are the letters A through Z.

digit In both standards, these are ASCII codes 48..57, i.e. the digits 0 through 9.

symbol-char
In ISO 8859/1, these are ASCII codes 35, 36, 38, 42, 43, 45..47, 58, 60..64, 92,
94, 96, 126, 160..191, 215, and 247. In EUC, these are ASCII codes 35, 36, 38,
42, 43, 45..47, 58, 60..64, 92, 94, 96, and 126. The common subset is
+-*/\^<>=‘~:.?@#$&.

solo-char In both standards, these are ASCII codes 33 and 59 i.e. the characters ! and
;.

punctuation-char
In both standards, these are ASCII codes 37, 40, 41, 44, 91, 93, and 123..125,
i.e. the characters %(),[]{|}.

quote-char
In both standards, these are ASCII codes 34 and 39 i.e. the characters " and
’.

underline In both standards, this is ASCII code 95 i.e. the character _.

token --> name

| natural-number

| unsigned-float

| variable

Chapter 5: The Prolog Language 85

| string

| punctuation-char

| space

| comment

| full-stop

name --> quoted-name

| word

| symbol

| solo-char

| [?layout-char...]

| { ?layout-char... }

quoted-name --> ’ ?quoted-item... ’

quoted-item --> char { other than ’ }
| ’’

word --> small-letter ?alpha...

symbol --> symbol-char...

{ except in the case of a full-stop
or where the first 2 chars are /* }

natural-number --> digit...

| base ’ alpha...

{ where each alpha must be less than the base,
treating a,b,... and A,B,... as 10,11,... }

| 0 ’ char

{ yielding the ASCII code for char }

base --> digit... { in the range [2..36] }

unsigned-float --> simple-float

| simple-float exp exponent

simple-float --> digit... . digit...

exp --> e | E

exponent --> digit... | - digit... | + digit...

variable --> underline ?alpha...

| capital-letter ?alpha...

string --> " ?string-item... "

86 SICStus

string-item --> char { other than " }
| ""

space --> layout-char...

comment --> /* ?char... */

{ where ?char... must not contain */ }
| % ?not-end-of-line... newline

not-end-of-line --> { any character except newline }

newline --> { LFD }

full-stop --> . layout-char

char --> { any ASCII character, i.e. }
layout-char

| alpha

| symbol-char

| solo-char

| punctuation-char

| quote-char

alpha --> capital-letter | small-

letter | digit | underline

5.9.5 Notes

1. The expression of precedence 1000 (i.e. belonging to syntactic category term(1000))
which is written

X,Y

denotes the term ’,’(X,Y) in standard syntax.

2. The parenthesised expression (belonging to syntactic category term(0))

(X)

denotes simply the term X.

3. The curly-bracketed expression (belonging to syntactic category term(0))

{X}

denotes the term {}(X) in standard syntax.

4. Note that, for example, -3 denotes a number whereas -(3) denotes a compound term
which has the 1-ary functor - as its principal functor.

5. The character " within a string must be written duplicated. Similarly for the character
’ within a quoted atom.

6. A name token declared to be a prefix operator will be treated as an atom only if no
term-read-in can be read by treating it as a prefix operator.

7. A name token declared to be both an infix and a postfix operator will be treated as a
postfix operator only if no term-read-in can be read by treating it as an infix operator.

87

6 Programming Examples

Some simple examples of Prolog programming are given below. They exemplify typical
applications of Prolog. We are trying to convey a flavour of Prolog programming style as
well, by following the simple rules:

• Base case before recursive cases.

• Input arguments before output arguments.

• Use cuts sparingly, and only at proper places (see Section 5.5 [Cut], page 77). A cut
should be placed at the exact point that it is known that the current choice is the
correct one: no sooner, no later.

• Use disjunctions sparingly, always put parentheses around them, never put parentheses
around the individual disjuncts, never put the ‘;’ at the end of a line.

The code herein was derived in part from shared code written by by R.A. O’Keefe.

6.1 Simple List Processing

The goal concatenate(L1,L2,L3) is true if list L3 consists of the elements of list L1
concatenated with the elements of list L2. The goal member(X,L) is true if X is one of the
elements of list L. The goal reverse(L1,L2) is true if list L2 consists of the elements of
list L1 in reverse order.

concatenate([], L, L).

concatenate([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3).

member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

reverse(L, L1) :- reverse_concatenate(L, [], L1).

reverse_concatenate([], L, L).

reverse_concatenate([X|L1], L2, L3) :-

reverse_concatenate(L1, [X|L2], L3).

6.2 A Small Database

The goal descendant(X,Y) is true if Y is a descendant of X.

descendant(X, Y) :- offspring(X, Y).

descendant(X, Z) :- offspring(X, Y), descendant(Y, Z).

offspring(abraham, ishmael).

offspring(abraham, isaac).

offspring(isaac, esau).

offspring(isaac, jacob).

If for example the query

| ?- descendant(abraham, X).

88 SICStus

is executed, Prolog’s backtracking results in different descendants of Abraham being re-
turned as successive instances of the variable X, i.e.

X = ishmael

X = isaac

X = esau

X = jacob

6.3 Association list primitives

These predicates implement “association list” primitives. They use a binary tree represen-
tation. Thus the time complexity for these predicates is O(lg N), where N is the number of
keys. These predicates also illustrate the use of compare/3 (see Section 4.3 [Term Compare],
page 39) for case analysis.

The goal get_assoc(Key, Assoc, Value) is true when Key is identical to one of the keys
in Assoc, and Value unifies with the associated value.

get_assoc(Key, t(K,V,L,R), Val) :-

compare(Rel, Key, K),

get_assoc(Rel, Key, V, L, R, Val).

get_assoc(=, _, Val, _, _, Val).

get_assoc(<, Key, _, Tree, _, Val) :-

get_assoc(Key, Tree, Val).

get_assoc(>, Key, _, _, Tree, Val) :-

get_assoc(Key, Tree, Val).

The goal put_assoc(Key, OldAssoc, Val, NewAssoc) is true when OldAssoc and NewAs-
soc define the same mapping for all keys other than Key, and get_assoc(Key, NewAssoc,

Val) is true.

put_assoc(Key, t, Val, Tree) :- !, Tree = t(Key,Val,t,t).

put_assoc(Key, t(K,V,L,R), Val, New) :-

compare(Rel, Key, K),

put_assoc(Rel, Key, K, V, L, R, Val, New).

put_assoc(=, Key, _, _, L, R, Val, t(Key,Val,L,R)).

put_assoc(<, Key, K, V, L, R, Val, t(K,V,Tree,R)) :-

put_assoc(Key, L, Val, Tree).

put_assoc(>, Key, K, V, L, R, Val, t(K,V,L,Tree)) :-

put_assoc(Key, R, Val, Tree).

6.4 Differentiation

The goal d(E1, X, E2) is true if expression E2 is a possible form for the derivative of
expression E1 with respect to X.

Chapter 6: Programming Examples 89

:- mode d(+, +, -).

:- op(300, xfy, **).

d(X, X, D) :- atomic(X), !, D = 1.

d(C, X, D) :- atomic(C), !, D = 0.

d(U+V, X, DU+DV) :- d(U, X, DU), d(V, X, DV).

d(U-V, X, DU-DV) :- d(U, X, DU), d(V, X, DV).

d(U*V, X, DU*V+U*DV) :- d(U, X, DU), d(V, X, DV).

d(U**N, X, N*U**N1*DU) :- integer(N), N1 is N-1, d(U, X, DU).

d(-U, X, -DU) :- d(U, X, DU).

6.5 Representing sets as ordered lists without duplicates

The goal list_to_ord_set(List, Set) is true when Set is the ordered representation of
the set represented by the unordered representation List. The only reason for giving it a
name at all is that you may not have realised that sort/2 (see Section 4.3 [Term Compare],
page 39) could be used this way.

list_to_ord_set(List, Set) :-

sort(List, Set).

The goal ord_union(Set1, Set2, Union) is true when Union is the union of Set1 and Set2.
Note that when something occurs in both sets, we want to retain only one copy.

ord_union(Set1, [], Set) :- !, Set = Set1.

ord_union([], Set2, Set) :- !, Set = Set2.

ord_union([Head1|Tail1], [Head2|Tail2], Union) :-

compare(Order, Head1, Head2),

ord_union(Order, Head1, Tail1, Head2, Tail2, Union).

ord_union(=, Head, Tail1, _, Tail2, [Head|Union]) :-

ord_union(Tail1, Tail2, Union).

ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :-

ord_union(Tail1, [Head2|Tail2], Union).

ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :-

ord_union([Head1|Tail1], Tail2, Union).

The goal ord_intersect(Set1, Set2, Intersection) is true when Intersection is the or-
dered representation of Set1 and Set2.

90 SICStus

ord_intersect(_, [], Set) :- !, Set = [].

ord_intersect([], _, Set) :- !, Set = [].

ord_intersect([Head1|Tail1], [Head2|Tail2], Intersection) :-

compare(Order, Head1, Head2),

ord_intersect(Order, Head1, Tail1, Head2, Tail2, Intersection).

ord_intersect(=, Head, Tail1, _, Tail2, [Head|Intersection]) :-

ord_intersect(Tail1, Tail2, Intersection).

ord_intersect(<, _, Tail1, Head2, Tail2, Intersection) :-

ord_intersect(Tail1, [Head2|Tail2], Intersection).

ord_intersect(>, Head1, Tail1, _, Tail2, Intersection) :-

ord_intersect([Head1|Tail1], Tail2, Intersection).

6.6 Use of Meta-Predicates

This example illustrates the use of the meta-predicates var/1, arg/3, and functor/3 (see
Section 4.6 [Meta Logic], page 44). The procedure call variables(Term, L, []) instanti-
ates variable L to a list of all the variable occurrences in the term Term. e.g.

?- variables(d(U*V, X, DU*V+U*DV), L, []).

L = [U,V,X,DU,V,U,DV]

variables(X, [X|L0], L) :- var(X), !, L = L0.

variables(T, L0, L) :-

functor(T, _, A),

variables(0, A, T, L0, L).

variables(A, A, _, L0, L) :- !, L = L0.

variables(A0, A, T, L0, L) :-

% A0<A,

A1 is A0+1,

arg(A1, T, X),

variables(X, L0, L1),

variables(A1, A, T, L1, L).

6.7 Prolog in Prolog

This example shows how simple it is to write a Prolog interpreter in Prolog, and illustrates
the use of a variable goal. In this mini-interpreter, goals and clauses are represented as
ordinary Prolog data structures (i.e. terms). Terms representing clauses are specified using
the predicate my_clause/1, e.g.

my_clause((grandparent(X, Z) :- parent(X, Y), parent(Y, Z))).

A unit clause will be represented by a term such as

my_clause((parent(john, mary) :- true)).

Chapter 6: Programming Examples 91

The mini-interpreter consists of three clauses:

execute((P,Q)) :- !, execute(P), execute(Q).

execute(P) :- predicate_property(P, built_in), !, P.

execute(P) :- my_clause((P :- Q)), execute(Q).

The second clause enables the mini-interpreter to cope with calls to ordinary Prolog
predicates, e.g. built-in predicates. The mini-interpreter needs to be extended to cope with
the other control structures, i.e. !, (P;Q), (P->Q), (P->Q;R), (\+ P), and if(P,Q,R).

6.8 Translating English Sentences into Logic Formulae

The following example of a definite clause grammar defines in a formal way the traditional
mapping of simple English sentences into formulae of classical logic. By way of illustration,
if the sentence

Every man that lives loves a woman.

is parsed as a sentence by the call

| ?- phrase(sentence(P), [every,man,that,lives,loves,a,woman]).

then P will get instantiated to

all(X):(man(X)&lives(X) => exists(Y):(woman(Y)&loves(X,Y)))

where :, & and => are infix operators defined by

:- op(900, xfx, =>).

:- op(800, xfy, &).

:- op(300, xfx, :).

The grammar follows:

92 SICStus

sentence(P) --> noun_phrase(X, P1, P), verb_phrase(X, P1).

noun_phrase(X, P1, P) -->

determiner(X, P2, P1, P), noun(X, P3), rel_clause(X, P3, P2).

noun_phrase(X, P, P) --> name(X).

verb_phrase(X, P) --> trans_verb(X, Y, P1), noun_phrase(Y, P1, P).

verb_phrase(X, P) --> intrans_verb(X, P).

rel_clause(X, P1, P1&P2) --> [that], verb_phrase(X, P2).

rel_clause(_, P, P) --> [].

determiner(X, P1, P2, all(X):(P1=>P2)) --> [every].

determiner(X, P1, P2, exists(X):(P1&P2)) --> [a].

noun(X, man(X)) --> [man].

noun(X, woman(X)) --> [woman].

name(john) --> [john].

trans_verb(X, Y, loves(X,Y)) --> [loves].

intrans_verb(X, lives(X)) --> [lives].

93

7 Installation Dependencies

To start SICStus issue the shell command:

% prolog [-f] [-i] arguments

where the arguments can be retrieved from SICStus by unix(argv(?Args)), which will
unify Args with arguments represented as a list of atoms. None of the arguments must
begin with a ‘-’ sign.

The flags have the following meaning:

-f Fast start. Don’t read the ~/.sicstusrc file on startup and on
reinitialise/1. If the flag is omitted, SICStus will consult this file on startup
and on reinitialise/1, if it exists.

-i Forced interactive. Prompt for user input, even if the standard input does not
appear to be a terminal.

To start SICStus from a saved state file, issue the shell command:

% file [-f] [-i] arguments

or the shell command:

% prolog -r file [-f] [-i] arguments

Assuming the GNU Emacs mode for SICStus has been installed, inserting the following
lines in your ~/.emacs will make Emacs use this mode automatically when editing files with
a ‘.pl’ extension:

(setq load-path (cons "/usr/local/lib/sicstus0.7" load-path))

(autoload ’run-prolog "prolog"

"Start a Prolog sub-process." t)

(autoload ’prolog-mode "prolog"

"Major mode for editing prolog programs" t)

where /usr/local/lib/sicstus0.7 should be replaced by the name of the SICStus source
code directory.

The Emacs mode will use the value of the environment variable EPROLOG as a shell
command to invoke SICStus. This value defaults to prolog. The Emacs mode provides the
following commands:

M-x run-prolog

Run an inferior Prolog process, input and output via the buffer *prolog*.

C-c K The entire buffer is compiled.

C-c k The current region is compiled.

C-c C-k The predicate around point is compiled. Empty lines are treated as predicate
boundaries.

C-c C The entire buffer is consulted.

C-c c The current region is consulted.

C-c C-c The predicate around point is consulted. Empty lines are treated as predicate
boundaries.

94 SICStus

The following environment variable can be set before starting SICStus. Some of these
override the default sizes of certain areas. The sizes are given in cells:

LC_CTYPE This selects the appropriate character set standard: The supported values are
ja_JP.EUC (for EUC) and iso_8859_1 (for ISO 8859/1). The latter is the
default. In fact, any value other than ja_JP.EUC will cause ISO 8859/1 to be
selected.

TMPDIR If set, indicates the pathname where temporary files should be created. Defaults
to /usr/tmp.

GLOBALSTKSIZE

Governs the initial size of the global stack.

LOCALSTKSIZE

Governs the initial size of the local stack.

CHOICESTKSIZE

Governs the initial size of the choicepoint stack.

TRAILSTKSIZE

Governs the initial size of the trail stack.

95

8 Summary of Built-In Predicates

! Commit to any choices taken in the current predicate.

(+P,+Q) P and Q.

(+P -> +Q ; +R)

If P then Q else R, using first solution of P only.

(+P -> +Q)

If P then Q else fail, using first solution of P only.

[]

[+File|+Files]

Update the program with interpreted clauses from File and Files.

(+P;+Q) P or Q.

?X = ?Y The terms X and Y are unified.

?Term =.. ?List

The functor and arguments of the term Term comprise the list List.

+X =:= +Y X is numerically equal to Y.

?Term1 == ?Term2

The terms Term1 and Term2 are strictly identical.

+X =\= +Y X is not numerically equal to Y.

+X =< +Y X is less than or equal to Y.

+X > +Y X is greater than Y.

+X >= +Y X is greater than or equal to Y.

?X ^ +P Execute the procedure call P.

\+ +P Goal P is not provable.

?Term1 \== ?Term2

The terms Term1 and Term2 are not strictly identical.

+X < +Y X is less than Y.

?Term1 @=< ?Term2

The term Term1 precedes or is identical to the term Term2 in the standard
order.

?Term1 @> ?Term2

The term Term1 follows the term Term2 in the standard order.

?Term1 @>= ?Term2

The term Term1 follows or is identical to the term Term2 in the standard order.

?Term1 @< ?Term2

The term Term1 precedes the term Term2 in the standard order.

abolish(+Preds)

Make the predicate(s) specified by Preds undefined.

96 SICStus

abolish(+Atom,+Arity)

Make the predicate specified by Atom/Arity undefined.

abort Abort execution of the current directive.

absolute_file_name(+RelativeName,?AbsoluteName)

AbsoluteName is the full pathname of RelativeName.

ancestors(?Goals)

The ancestor list of the current clause is Goals.

arg(+ArgNo,+Term,?Arg)

Argument ArgNo of the term Term is Arg.

assert(+Clause)

assert(+Clause,-Ref)

Assert clause Clause with unique identifier Ref.

asserta(+Clause)

asserta(+Clause,-Ref)

Assert Clause as first clause with unique identifier Ref.

assertz(+Clause)

assertz(+Clause,-Ref)

Assert Clause as last clause with unique identifier Ref.

atom(?X) X is currently instantiated to an atom.

atom_chars(?Atom,?CharList)

The name of the atom Atom is the list of characters CharList.

atomic(?X)

X is currently instantiated to an atom or a number.

bagof(?Template,+Goal,?Bag)

Bag is the bag of instances of Template such that Goal is satisfied (not just
provable).

break Invoke the Prolog interpreter.

’C’(?S1,?Terminal,?S2)

Grammar rules. S1 is connected by the terminal Terminal to S2.

call(+Term)

Execute the procedure call Term.

call_residue(+Term,?Vars)

SICStus specific. Execute the procedure call Term. Any remaining subgoals
are blocked on the variables in Vars.

character_count(?Stream,?Count)

Count characters have been read from or written to the stream Stream.

clause(+Head,?Body)

clause(?Head,?Body,?Ref)

There is an interpreted clause whose head is Head, whose body is Body, and
whose unique identifier is Ref.

Chapter 8: Summary of Built-In Predicates 97

close(+Stream)

Close stream Stream.

compare(?Op,?Term1,?Term2)

Op is the result of comparing the terms Term1 and Term2.

compile(+File)

Compile in-core the clauses in text file(s) File.

consult(+File)

Update the program with interpreted clauses from file(s) File.

copy_term(?Term,?CopyOfTerm)

CopyOfTerm is an independent copy of Term.

current_atom(?Atom)

One of the currently defined atoms is Atom.

current_input(?Stream)

Stream is the current input stream.

current_key(?KeyName,?KeyTerm)

There is a recorded item in the internal database whose key is KeyTerm, the
name of which is KeyName.

current_op(?Precedence,?Type,?Op)

Atom Op is an operator type Type precedence Precedence.

current_output(?Stream)

Stream is the current output stream.

current_predicate(?Name,?Head)

A user defined predicate is named Name, most general goal Head.

current_stream(?FileName,?Mode,?Stream)

There is a stream Stream associated with the file FileName and opened in mode
Mode.

debug Switch on debugging.

debugging

Display debugging status information.

depth(?Depth)

The current invocation depth is Depth.

dif(?X,?Y)

SICStus specific. The terms X and Y are different.

display(?Term)

Display the term Term on the standard output stream.

ensure_loaded(File)

Compile or load the file(s) File if need be.

erase(+Ref)

Erase the clause or record whose unique identifier is Ref.

98 SICStus

expand_term(+Term1,?Term2)

The term Term1 is a shorthand which expands to the term Term2.

fail

false Backtrack immediately.

fcompile(+File)

SICStus specific. Compile file-to-file the clauses in text file(s) File.

fileerrors

Enable reporting of file errors.

findall(?Template,+Goal,?Bag)

SICStus specific. Bag is the bag of instances of Template such that Goal is
provable (not satisfied).

float(?X)

X is currently instantiated to a float.

flush_output(+Stream)

Flush the buffers associated with Stream.

foreign(+CFunctionName, +Predicate)

foreign(+CFunctionName, +Language, +Predicate)

User defined, they tell Prolog how to define Predicate to invoke
CFunctionName.

foreign_file(+ObjectFile,+Functions)

User defined, tells Prolog that foreign functions Functions are in file ObjectFile.

format(+Format,+Arguments)

format(+Stream,+Format,+Arguments)

Write Arguments according to Format on the stream Stream or on the current
output stream.

freeze(+Goal)

SICStus specific. Block Goal until Goal is ground.

freeze(?Var,+Goal)

SICStus specific. Block Goal until nonvar(Var) holds.

frozen(-Var,?Goal)

SICStus specific. The goal Goal is blocked on the variable Var.

functor(?Term,?Name,?Arity)

The principal functor of the term Term has name Name and arity Arity.

garbage_collect

Perform a garbage collection.

gc Enable garbage collection.

get(?C)

get(+Stream,?C)

The next printing character from the stream Stream or from the current input
stream is C.

Chapter 8: Summary of Built-In Predicates 99

get0(?C)

get0(+Stream,?C)

The next character from the stream Stream or from the current input stream
is C.

halt Halt Prolog, exit to the invoking shell.

help Print a help message.

if(+P,+Q,+R)

SICStus specific. If P then Q else R, exploring all solutions of P.

incore(+Term)

Execute the procedure call Term.

instance(+Ref,?Term)

Term is a most general instance of the record or clause uniquely identified by
Ref.

integer(?X)

X is currently instantiated to an integer.

Y is X Y is the value of the arithmetic expression X.

keysort(+List1,?List2)

The list List1 sorted by key yields List2.

leash(+Mode)

Set leashing mode to Mode.

length(?List,?Length)

The length of list List is Length.

library_directory(?Directory)

User defined, Directory is a directory in the search path.

line_count(?Stream,?Count)

Count lines have been read from or written to the stream Stream.

line_position(?Stream,?Count)

Count characters have been read from or written to the current line of the
stream Stream.

listing

listing(+Preds)

List the interpreted predicate(s) specified by Preds or all interpreted predicates.

load(+File)

SICStus specific. Load compiled object file(s) File into Prolog.

load_foreign_files(+ObjectFiles,+Libraries)

Load (link) files ObjectFiles into Prolog.

maxdepth(+Depth)

Limit invocation depth to Depth.

name(?Const,?CharList)

The name of atom or number Const is string CharList.

100 SICStus

nl

nl(+Stream)

Output a new line on stream Stream or on the current output stream.

nodebug Switch off debugging.

nofileerrors

Disable reporting of file errors.

nogc Disable garbage collection.

nonvar(?X)

X is a non-variable.

nospy +Spec

Remove spy-points from the predicate(s) specified by Spec.

nospyall Remove all spy-points.

notrace Switch off debugging.

number(?X)

X is currently instantiated to a number.

number_chars(?Number,?CharList)

The name of the number Number is the list of characters CharList.

numbervars(?Term,+N,?M)

Number the variables in the term Term from N to M -1.

op(+Precedence,+Type,+Name)

Make atom(s) Name an operator of type Type precedence Precedence.

open(+FileName,+Mode,-Stream)

Open file FileName in mode Mode as stream Stream.

open_null_stream(-Stream)

Open an output stream to the null device.

otherwise

Succeed.

phrase(+Phrase,?List)

phrase(+Phrase,?List,?Remainder)

Grammar rules. The list List can be parsed as a phrase of type Phrase. The
rest of the list is Remainder or empty.

plsys(+Term)

Invoke operating system services.

portray(+Term)

User defined, tells print/1 what to do.

portray_clause(+Clause)

portray_clause(+Stream,+Clause)

Pretty print Clause on the stream Stream or on the current output stream.

Chapter 8: Summary of Built-In Predicates 101

predicate_property(?Head,?Prop)

Head is the most general goal of a currently defined predicate that has the
property Prop.

prepare_foreign_files(+ObjectFiles)

SICStus specific. Generate relevant interface code in flinkage.c for foreign
declarations for the files in ObjectFiles.

print(?Term)

print(+Stream,?Term)

Portray or else write the term Term on the stream Stream or on the current
output stream.

profile_data(+Files,?Selection,?Resolution,-Data)

Data is the profiling data collected from the instrumented predicates defined
in the files Files with selection and resolution Selection and Resolution respec-
tively.

profile_reset(+Files)

The profiling counters for the instrumented predicates in Files are zeroed.

prolog_flag(+FlagName,?Value)

Value is the current value of FlagName.

prolog_flag(+FlagName,?OldValue,?NewValue)

OldValue and NewValue are the old and new values of FlagName.

prompt(?Old,?New)

Change the prompt from Old to New.

put(+C)

put(+Stream,+C)

The next character sent to the stream Stream or to the current output stream
is C.

query_expansion(+RawQuery,?Query)

SICStus specific, user defined, transforms the interpreter top-level query Raw-
Query into Query to be executed.

read(?Term)

read(+Stream,?Term)

Read the term Term from the stream Stream or from the current input stream.

reconsult(+File)

Update the program with interpreted clauses from file(s) File.

recorda(+Key,?Term,-Ref)

Make the term Term the first record under key Key with unique identifier Ref.

recorded(?Key,?Term,?Ref)

The term Term is currently recorded under key Key with unique identifier Ref.

recordz(+Key,?Term,-Ref)

Make the term Term the last record under key Key with unique identifier Ref.

102 SICStus

reinitialise

Initialise Prolog, reconsulting ~/.sicstusrc if it exists.

repeat Succeed repeatedly.

restore(+File)

Restore the state saved in file File.

retract(+Clause)

Erase repeatedly the next interpreted clause of form Clause.

retractall(+Head)

Erase all clauses whose head matches Head.

save(+File)

save(+File,?Return)

Save the current state of Prolog in file File; Return is 0 after a save and 1 after
a restore.

save_program(+File)

Save the current state of the Prolog data base in file File.

see(+File)

Make file File the current input stream.

seeing(?File)

The current input stream is named File.

seen Close the current input stream.

set_input(+Stream)

Set the current input stream to Stream.

set_output(+Stream)

Set the current output stream to Stream.

setarg(+ArgNo,+CompoundTerm,?NewArg)

SICStus specific. Replace destructively argument ArgNo in CompoundTerm
with NewArg and undo on backtracking.

setof(?Template,+Goal,?Set)

Set is the set of instances of Template such that Goal is satisfied (not just
provable).

skip(+C)

skip(+Stream,+C)

Skip characters from Stream or from the current input stream until after char-
acter C.

sort(+List1,List2)

The list List1 sorted into order yields List2.

source_file(?File)

source_file(?Pred,?File)

The predicate Pred is defined in the file File.

spy +Spec Set spy-points on the predicate(s) specified by Spec.

Chapter 8: Summary of Built-In Predicates 103

statistics

Output various execution statistics.

statistics(?Key,?Value)

The execution statistic key Key has value Value.

stream_code(?Stream,?StreamCode)

StreamCode is a foreign language (C) version of Stream.

subgoal_of(?Goal)

An ancestor goal of the current clause is Goal.

tab(+N)

tab(+Stream,+N)

Send N spaces to the stream Stream or to the current output stream.

tell(+File)

Make file File the current output stream.

telling(?File)

The current output stream is named File.

term_expansion(+Term1,?Term2)

User defined, tells expand_term/2 what to do.

told Close the current output stream.

trace Switch on debugging and start tracing immediately.

true Succeed.

ttyflush Flush the standard output stream buffer.

ttyget(?C)

The next printing character input from the standard input stream is C.

ttyget0(?C)

The next character input from the standard input stream is C.

ttynl Output a new line on the standard output stream.

ttyput(+C)

The next character output to the standard output stream is C.

ttyskip(+C)

Skip characters from the standard input stream until after character C.

ttytab(+N)

Output N spaces to the standard output stream.

undo(+Term)

SICStus specific. The goal call(Term) is executed on backtracking.

unix(+Term)

Invoke operating system services.

unknown(?OldState,?NewState)

Change action on undefined predicates from OldState to NewState.

104 SICStus

user_help

User defined, tells help/0 what to do.

var(X) X is currently uninstantiated.

version Displays introductory and/or system identification messages.

version(+Message)

Adds the atom Message to the list of introductory messages.

write(?Term)

write(+Stream,?Term)

Write the term Term on the stream Stream or on the current output stream.

write_canonical(?Term)

write_canonical(+Stream,?Term)

Write Term on the stream Stream or on the current output stream so that it
may be read back.

writeq(?Term)

writeq(+Stream,?Term)

Write the term Term on the stream Stream or on the current output stream,
quoting names where necessary.

105

9 Standard Operators

:- op(1200, xfx, [:-, -->]).

:- op(1200, fx, [:-, ?-]).

:- op(1150, fx, [mode, public, dynamic, multifile, wait]).

:- op(1100, xfy, [;]).

:- op(1050, xfy, [->]).

:- op(1000, xfy, [’,’]). /* See note below */

:- op(900, fy, [\+, spy, nospy]).

:- op(700, xfx, [=, is, =.., ==, \==, @<, @>, @=<, @>=,

=:=, =\=, <, >, =<, >=]).

:- op(500, yfx, [+, -, /\, \/]).

:- op(500, fx, [+, -]).

:- op(400, yfx, [*, /, //, <<, >>]).

:- op(300, xfx, [mod]).

:- op(200, xfy, [^]).

Note that a comma written literally as a punctuation character can be used as though
it were an infix operator of precedence 1000 and type xfy, i.e.

X,Y ’,’(X,Y)

represent the same compound term.

107

Predicate Index

!
!/0, cut . 41, 77

*
*/2, multiplication . 38

+
+/2, addition . 38

,
,/2, conjunction . 41

–
-/1, unary minus . 38
-/2, subtraction . 38
-> /2 ;/2, if then else . 41
-> /2, if then . 42

.

./2, consult . 29

/
/ /2, floating division . 38
// /2, integer division . 38
/\ /2, bitwise conjunction 39

;
;/2, disjunction . 41

<
< /2, arithmetic less than 39
<< /2, left shift . 39

=
=.. /2, univ . 45
=/2, unification . 61
=:= /2, arithmetic equal . 39
=< /2, arithmetic less or equal 39
== /2, equality of terms . 40
=\= /2, arithmetic not equal 39

>
> /2, arithmetic greater than 39
>= /2, arithmetic greater or equal 39
>> /2, right shift . 39

[
[]/0, consult . 29

^
^/2, bitwise exclusive or . 39
^/2, existential quantifier 50

@
@< /2, term less than . 40
@=< /2, term less or equal . 40
@> /2, term greater than . 40
@>= /2, term greater or equal 40

\
\ /1, bitwise negation . 39
\+ /1, not provable . 41
\/ /2, bitwise disjunction 39
\== /2, inequality of terms 40

A
abolish/1 . 48
abolish/2 . 48
abort/0 . 10, 64
absolute_file_name/2 . 35
ancestors/1 . 43
arg/3 . 45
assert/1 . 47
assert/2 . 47
asserta/1 . 47
asserta/2 . 47
assertz/1 . 47
assertz/2 . 47
atom/1 . 44
atom_chars/2 . 46
atomic/1 . 45

B
bagof/3 . 50
break/0 . 10, 64

108 SICStus

C
C/3 . 61
call/1 . 43
call_residue/2 . 43
character_count/2 . 36
clause/2 . 47
clause/3 . 47
close/1 . 35
compare/3 . 40
compile/1 . 22, 29
consult/1 . 21, 29
copy_term/2 . 64
current_atom/1 . 44
current_input/1 . 36
current_key/2 . 49
current_op/3 . 64
current_output/1 . 36
current_predicate/2 . 44
current_stream/3 . 36

D
debug/0 . 14, 56
debugging/0 . 15, 56
depth/1 . 65
dif/2 . 61
display/1 . 29

E
ensure_loaded/1 . 29
erase/1 . 48
expand_term/2 . 61

F
fail/0 . 42
false/0 . 42
fcompile/1 . 22, 29
fileerrors/0 . 37
findall/3 . 50
float/1 . 44
float/1, coercion . 38
flush_output/1 . 36
foreign/2 . 51
foreign/3 . 51
foreign_file/2 . 50
format/2 . 30
format/3 . 30
freeze/1 . 42
freeze/2 . 43
frozen/2 . 43
functor/3 . 45

G
garbage_collect/0 . 65
gc/0 . 65
get/2 . 34
get0/1 . 34
get0/2 . 34

H
halt/0 . 64
help/0 . 67

I
if/3 . 42
incore/1 . 43
instance/2 . 49
integer/1 . 45
integer/1, coercion . 38
is/2 . 39

K
keysort/2 . 41

L
leash/1 . 15, 56
length/2 . 62
library_directory/1 . 36
line_count/2 . 36
line_position/2 . 36
listing/0 . 43
listing/1 . 43
load/1 . 22, 29
load_foreign_files/2 . 51

M
maxdepth/1 . 65
mod/2 . 38

N
name/2 . 45
nl/0 . 34
nl/1 . 34
nodebug/0 . 15, 56
nofileerrors/0 . 37
nogc/0 . 65
nonvar/1 . 44
nospy/1 . 16, 56
nospyall/0 . 16, 56
notrace/0 . 15, 56
number/1 . 45
number_chars/2 . 46
numbervars/3 . 64

Predicate Index 109

O
op/3 . 64, 78
open/3 . 35
open_null_stream/1 . 36
otherwise/0 . 42

P
phrase/2 . 61
phrase/3 . 61
plsys/1 . 67
portray/1 . 30
portray_clause/1 . 30
portray_clause/2 . 30
predicate_property/2 . 44
prepare_foreign_files/2 . 55
print/1 . 30
print/2 . 30
profile_data/4 . 57
profile_reset/1 . 58
prolog_flag/2 . 63
prolog_flag/3 . 62
prompt/2 . 66
put/1 . 34
put/2 . 34

Q
query_expansion/1 . 64

R
read/1 . 29
read/2 . 29
reconsult/1 . 29
recorda/3 . 48
recorded/3 . 48
recordz/3 . 48
reinitialise/0 . 65
repeat/0 . 42
restore/1 . 10, 65
retract/1 . 47
retractall/1 . 48

S
save/1 . 10, 65
save/2 . 65
save_program/1 . 10, 65
see/1 . 37
seeing/1 . 37
seen/0 . 37
set_input/1 . 36
set_output/1 . 36
setarg/3 . 64
setof/3 . 49
skip/1 . 34

skip/2 . 34
sort/2 . 41
source_file/1 . 29
source_file/2 . 29
spy/1 . 16, 56
statistics/0 . 65
statistics/2 . 65
stream_code/2 . 37
subgoal_of/1 . 43

T
tab/1 . 34
tab/2 . 34
tell/1 . 37
telling/1 . 37
term_expansion/2 . 61
told/0 . 37
trace/0 . 15, 56
true/0 . 42
ttyflush/0 . 35
ttyget/1 . 35
ttyget0/1 . 35
ttynl/0 . 34
ttyput/1 . 35
ttyskip/1 . 35
ttytab/1 . 35

U
undo/1 . 64
unix/1 . 67
unknown/2 . 8, 56
user_help/0 . 67

V
var/1 . 44
version/0 . 66
version/1 . 66

W
write/1 . 29
write/2 . 29
write_canonical/1 . 30
write_canonical/2 . 30
writeq/1 . 30
writeq/2 . 30

111

Concept Index

A
abort . 10, 19
all solutions . 49
ancestors . 17
anonymous variable . 70
arithmetic . 38
arity . 70
atom . 69

B
backtracking . 75
blocking . 24, 75
body . 71
break . 10, 20
built-in predicate . 72

C
char io . 34
clause . 71
command . 5, 20
comparing terms . 39
compilation . 29
compile . 22
compound term . 69
computation rule . 75
constant . 69
consulting . 5, 21, 29
counter . 56
creep . 18
current input stream . 28
current output stream . 28
cut . 77

D
database . 48
debug messages . 16
debug options . 17
debugging . 13
debugging predicates . 14
declaration . 23
declarative semantics . 73
defininte clause . 69
directive . 6
dynamic declaration . 23
dynamic predicate . 23

E
execution . 9
execution profiling . 56
exiting . 9

F
fail . 19
fcompile . 22
fcompile, pitfalls of . 24
file . 27
filename . 28
float . 69
floundering . 75
foreign . 50
functor . 70

G
goal . 71
grammars . 58

H
head . 71
Horn clause . 69

I
indexing . 25
input . 27
integer . 69
interruption . 9

K
keyboard . 3

L
leap . 18
load . 22
loading . 21, 29
logic programming . 1

M
meta-logical . 44
mode declaration . 24
mode spec . 3
multifile declaration . 23

N
nested execution . 10
non-unit clause . 72
nospy . 19
notation . 3
numbers, range of . 38

112 SICStus

O
occurs check . 76

operators . 78

output . 27

P
pitfalls of fcompile . 24

predicate . 71, 72

predicate spec . 3

predicate, dynamic . 23

printdepth . 20

procedural semantics . 74

procedure box . 13

procedure call . 75

procedure definition . 74

profiling, execution . 56

program . 71

program state . 10, 43

programming in logic . 1

public declaration . 24

Q
query . 5

R
range of numbers . 38

reading in . 5

reconsult . 6, 20

repeat loop . 38

restoring . 10

retry . 18

running . 5

S
saving . 10
search rule . 75
semantics . 73, 74
sentence . 71, 81
skip . 18
solutions, all . 49
spy . 19
spy-point . 16
standard order . 39
stream . 27
string . 71
subterm . 20
syntax errors . 8
syntax notation . 81
syntax of sentences . 81
syntax of terms . 82
syntax of tokens . 84
syntax restrictions . 80

T
tail recursion . 25
term . 69
term comparison . 39
term io . 29
top level . 5
tracing . 15

U
undefined predicate . 8
unification . 75
unify . 20
unit clause . 71
user . 6

V
variable . 69

W
wait declaration . 24
WAM . 1

	Table of Contents
	Introduction
	Notational Conventions
	1 How to run Prolog
	Getting Started
	Reading in Programs
	Inserting Clauses at the Terminal
	Directives: Queries and Commands
	Syntax Errors
	Undefined Predicates
	Program Execution And Interruption
	Exiting From The Interpreter
	Nested Executions---Break and Abort
	Saving and Restoring Program States

	2 Debugging
	The Procedure Box Control Flow Model
	Basic Debugging Predicates
	Tracing
	Spy-points
	Format of Debugging messages
	Options available during Debugging
	Consulting during Debugging

	3 Loading Programs
	Predicates which Load Code
	Declarations
	Pitfalls of File-To-File Compilation
	Indexing
	Tail Recursion Optimisation

	4 Built-In Predicates
	Input / Output
	Reading-in Programs
	Input and Output of Terms
	Character Input/Output
	Stream IO
	DEC-10 Prolog File IO
	An Example

	Arithmetic
	Comparison of Terms
	Control
	Information about the State of the Program
	Meta-Logical
	Modification of the Program
	Internal Database
	All Solutions
	Interface to Foreign Language Functions
	Debugging
	Execution Profiling
	Definite Clause Grammars
	Miscellaneous

	5 The Prolog Language
	Syntax, Terminology and Informal Semantics
	Terms
	Programs

	Declarative Semantics
	Procedural Semantics
	Occurs Check
	The Cut Symbol
	Operators
	Syntax Restrictions
	Comments
	Full Prolog Syntax
	Notation
	Syntax of Sentences as Terms
	Syntax of Terms as Tokens
	Syntax of Tokens as Character Strings
	Notes

	6 Programming Examples
	Simple List Processing
	A Small Database
	Association list primitives
	Differentiation
	Representing sets as ordered lists without duplicates
	Use of Meta-Predicates
	Prolog in Prolog
	Translating English Sentences into Logic Formulae

	7 Installation Dependencies
	8 Summary of Built-In Predicates
	9 Standard Operators
	Predicate Index
	Concept Index

