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N.B. This note is an interim document; the material it contains is not complete and some details may be 
inconsistent. 

This note describes an abstract Prolog machine, called •Prolog Engine•, suitable for software, firmware, 
or hardware implementation. The design calls for a large virtual }Demory, byte-addressable machine, and 
is particularly oriented towards V ~ architecture. Prolog run-time data· structures are encoded as 
sequences of 32-bit words. Prolog programs are represented as sequences of instructions, encoded as 
sequences of 8-bit bytes. Each instruction consists of a one-byte operation code (op-code), followed by a 
number of arguments (usually zero or one). An argument may be 1, 2, or 4 bytes long. 

The Engine implementation comprises a large number of small routines defining the different operations. 
Execution proceeds from one routine to the next by despatching on the op-code of the next instruction. 
Some instructions can be executed in two different modes (•read• mode or •write• mode), so there is a 
separate routine for each mode. 

The Engine is currently implemented in a Prolog-based macro language called Progol, which is expanded 
into VAX machine code. Approximations to the VAX machine code expansions of the main routine are 
included in this document. The Progol implementation should be fairly easy to transport to a variety or 
machines to give an efficient software implementation of the Engine. The primary intention, however, is 
that the Engine should be impleme~ted directly in microcode on· a suitable machine. 

1. Full Non-Structure-Sharing 
The present design differs from all existing Prolog implementations, that I know of, in that there is NO 

structure-sharing whatsoever. Not only are constructed terms (structures) represented explicitly, but goals 
are too. The goal stack contains an explicit representation of the list of goals remaining to be executed. 
This list is just the •resolvent• of traditional resolution theory. There is no need to store vectors of 
variable cells representing "binding environments•. This is in contrast to other •non-structure-sharing• 
implementations, such as those of Mellish and Bruynooghe, which still use structure-sharing for 
representing goals. 

Some advantages of full non.structure-sharing are: 

• Implementation simplicity. The implementation (ie. kernel code, microcode, or specialised 
hardware) should be smaller. 

• Garbage collection is more straightforward (and Bruynooghe's 1982 optimisation follows by 
default). 
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• Tail recursion optimisation is much simpler, and is applicable at EVERY procedure call
one simply discards the calling goal if it is later than the last choice point. 

• All variables in a clause are •temporaries•, and can correspond directly to hardware 
registers. (Nice!) 

• Once resolution with a clause is complete, there is no further reference to the code for that 
clause. This will tend to reduce paging in a virtual memory system. In contrast, structure
sharing (full or partial) tends to cause random accesses to the code area. 

• The code for the first goal in the body of a clause can be reduced to almost nothing 
provided variables are allocated to registers in the right way. For example the main 
'concatenate' clause can be represented by just 8 instructions, although it comprises some 
12 source symbols. Fewer instructions to decode means Caster execution. 

The main disadvantage of .full non-structure-sharing (and of partial non-structure-sharing too) is time 
wasted in unnecessary copying, particularly when a clause is entered and then fails early in the body. 
This disadvantage doesn't seem too severe, since: 

• Copying can be relatively fast, compared with other overheads. 

• Clauses can be preprocessed by the compiler (or by the user!) to mrn1m1se unnecessary 
copying by extracting parts of the code into auxiliary clauses accessed through extra 
predicates. In this way, one arrives at something very close to traditional structure
sharing. 

2. Steps Involved in One Resolution 
The main execution step or Prolog is called a •resolution•, and amounts to a single •logical inference•. 

A list of goals is transformed int~ a new list of goals by matching a selected goal against the head of a 
clause selected from the program. Putting in a bit more implementation detail, one resolution consists of 
the following steps: 

(0) Take the first goal in the list of outstanding goals as the current goal, and find the first clause which 
could potentially match. (Indexing of clauses generally ensures that only a few clauses have to be 
considered). 

(1) If there are other clauses which could potentially match, create (or retain) a choice point which 
preserves the current execution state. Backtracking may later return us to this point. 

(2) Unify the head of the clause against the goal, remembering all variable bindings which will need to be 
undone if we subsequently backtrack. 

(3) If there are no choice points later than the goal we have just matched, then discard that goal. N.B. 
We must make sure we don't leave •dangling references• into the discarded goal. 

(4) Copy any goals in the body of the clause onto the front of the list of outstanding goals, and then 
proceed with step (0). 
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3. Data Areas 
The main data areas are the code area, containing instructions (etc.) representing the program itself, 

and three areas operated as stacks, the (local) stack, the heap (or global stack), and the trail. These are 
laid out in memory as follows: 

code area I-> heap I-> I stack !-> I trail I-> <-lp.d.l.l 
_____ 1 ________ 1 __ 1 ____ 1 __ 1 ___ 1 __ 1 ___ 1 

low 
p HB H B CA TR 

high 
POL 

It turns out to be important that the stack and heap grow in the same direction, and that the stack 
grows away from the heap. (This simplifies the policing of certain restrictions on variable-variable 
bindings needed to prevent dangling references). 

Each resolution leads to the creation of three stack frames, one on each stack. Backtracking will 
eventually discard these stack frames. The local frame contains information that is needed only as long as 
the corresponding procedure is active, namely bookkeeping information (required mainly for backtracking) 
plus a representation of the body of the matching clause. The heap frame contains a representation of 
new structures (complex terms) created by the procedure invocation. The trail frame contains addresses 
of variable cells which have been bound during unification and which must be unbound on backtracking. 

The trail is accessed only by pushing or popping the top item. The stack is also mainly accessed by 
pushes and pops, but there are a few random accesses too. The heap is in general randomly accessed, 
although it grows (by resolution) and contracts (by backtracking) as a stack. 

4. Registers 
The current state or a Prolog computation is defined by certain registers containing pointers into the 

main data areas. These registers (with their VAX realisations) are as follows: 

PDL top of push-down list (SP) 

p program pointer (to the code area) (R4) 

A argument pointer (to local stack) (R12) 
B backtrack pointer (to the local stack) (R11) 
C continuation pointer (to the local stack) (RO) 

TR top of trail · (R10) 
H top of heap (R9) 
HB heap backtrack pointer (R8) 
s structure pointer (to the heap) (R7) 
T teI'l!l/temporary register (RS) 
T1 teI'lll/temporary register (R5) 

X1, X2, X3 variables 1-3 (R1-R3) 

X4, X5, other variables main memory loca.tions 

(Why oh why does the VAX tie up so many of its registers!) 



3 

5. Prolog Machine State (between resolutions) 

I 
I 
I 
I 
I 

stack 

choice 
point 

(if any) 

I 
B' I 
P' I 
A' I 

TR' I 
H' I B ->I 

I 
I 
I 
I 
I 

-

other goals 

C ->I _____ _ 
I 
I goal 1 args 
I 

A ->I ------

C: continuation 

P: procedure 

I 

. . ................. 

hea.p 

HB->H' 

structures 

H -> 

OR (after resolution with a unit clause) 

stack 

C -> l. ______ 1 

I I 
I goal 1 a.rgs I 
I I 

A ->1. ______ I 
I => I 
I ............... I 
I => I 
I ............... 1 

I. _____ _ 

I 
I 
I 

choice 
point 

B ->I _____ _ 

C: continuation : 
. . ................. 

P: procedure 
. . .. - - ......... - .. . 

trail 

TR' I 
I 
I bound 
I variable 
I addresses 

TR ->I 
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6. Run-Time Structure Formats 
GOAL STRUCTURE (COMPLEX TERM) 

argument N 

argument 1 

next goal 

procedure 

CHOICE POINT 

prev. choice 

next clause 

arg. pointer 

trail point 

heap point 

(B') 

(P') 

functor 

argument 1 

argument N 

(A') {caller's continuation and arguments} 

(TR') 

(H') 

7. Procedure Formats 
This is the interim version which (a) is rather extravagant of storage and (b) lacks indexing (cf. later 

sections for description of the proposed indexing scheme). 

procedure 

, ______ I 
I clauses 1-------------->I next clause 

______ I +-------1 _____ _ 
I I I cla.use code 

I I 
I 
I 
+------>] 0 if last 

! _____ _ 



8. Data Formats (provisional) 
Value/ Address 

bit: 32 

reference address 

5 

structure (or box) address 

list address 

32 

I + I integer value 
I_I _______________ _ 

32 31 

atom or functor n1111ber 

32 

N.B. Key= Term<32:3> 

box 1 FRACTION1 

Tag 

2 0 

I o o I 
I -- I 

I o 1 I 
I __ I 

I 1 o I 
I -- I 
2 0 

I o 1 1 I 
I • I 
3 0 

I 1 1 1 I 
I I 
3 0 

1 1 1 

. _____ floating point number ________ _ 



9. Instruction Formats 
Op-Code Argument 

byte: 0 1 2 

var 

const 

struct functor no. 

3 

value 

pred predicate no. 

6 

4 6 
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10. Analysis of a Prolog Program into Basic Operations 
Ignoring certain optimisations for the time being, typical clauses such as: 

P :- IL R, S. P. 

translate into the following operations: 

pop___goal (P) 
succeed 
push __goal (S) 
push___goal (R) 
execute___goal (Q) 

where the the operations: 

pop_goal(P(T1,T2,T3)) 

are defined as follows: 

pop_a.rg(T1) 
pop_a.rg(T2) 
pop_a.rg(T3) 

pop___goal (P) 
proceed 

push_goal(P(T1,T2,T3)) execute_goal(P(T1,T2)) 

push_arg(T3) 
push_arg(T2) push_arg(T2) 
push_arg(T1) push_arg(T1) 
pusb_pred P execute P 

The generic operations 'pop_ arg(T)' and 'push_ arg(T)' translate into different basic operations, 
depending on the kind of term T and its state of instantiation (if it is a variable). Operations on 
structures, such as: 

pop_arg(F(T1,T2)) 

are translated as follows: 

pop_struct F 
unify_arg(T1) 
unify_arg(T2) 
resume head 

· push_a.rg(F(T1, T2)) 

push_struct· F 
unify_arg(T1) 
uni!y_arg (T2) 
resume_body 

unify_arg(F(T1,T2)) 

unify_struct F 
unify_arg(T1) 
unify_arg(T2) 
resume 

with the following optimisations if none of the arguments Tl, T2, etc is a structure: 

pop_easy_struct F 
unify_arg(T1) 
unify_arg(T2) 

Operations on a variable, such as: 

pop_arg(X) 

push_easy_11truct F 
unify_arg (Tl) 
unify_arg(T2) 
continue_body 

push_arg(X) unify_arg(X) 

are translated as follows. The variable X is allocated to a register, number N. Ir it is the first occurrence 
of the variable in the clause code, the translations are: 

pop_varN 

otherwise: 

pop_valN 

push_varN 

push_valN 

unify_varN 

unify_valN 

If a variable occurs both in the head and in the body, and it does not occur in a •unify• context in the 
head, then the last occurrence in the head must be translated by the appropriate one of: 

pop_perishable_varN 
pop_perishable_valN 

(This is to ensure that the perishable variables are properly preserved on the global stack). 

If a variable has previously occurred in a •unify• context, then 'unify_ valN' is optimised to: 
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unify_globa.l_valN 

As an example of clause encoding, here are the (not fully optimised) translations of the two 'concatenate' 
clauses: 

concatenate([XIL1),L2, [XIL3)) 

pop_easy_list 
unify_var4 
unify_var1 
pop_perishable_var2 
pop_easy_list 
unify_val4 
unify_var3 
succeed 
push_val3 
push_va.12 
push_vall 
execute concatenate 

11. Optimisations 

concatenate(Ll,L2,L3). 

concatenate([),L,L). 

pop_nil 
pop_var1 
pop_vall 
proceed 

Cetain sequences of basic operations are common, and can be replaced by •short-cut• operations. For 
example: 

invoke P = push_valN + ... + push_val1 + execute P 

instate P =succeed+ invoke P 
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12. Examples of Clause Encoding 
conca.tenate([XIL1],L2,[XIL3]) :- concatenate(L1,L2,L3). 

X1 
X2 
X3 

[------------
[---------

[ ---------] [---

pop_ea.sy_list 
unify_va.r3 
unify_va.r1 
pop_perishable_var2 
pop_easy_list 
unify__global_va.13 
unify_var3 
instate concatenate 

concatenate([].A,A). 

X1 [-] 

pop_nil 
pop_varl 
pop_va.11 
proceed 

[--------
[----

[--

qs ( [X I L] , RO, R) 

X1 [------
X2 [---- ---
X3 [---
X4 

split(L,X,L1,L2), qs(L1,RO,[XIR1]), qs(L2,R1,R). 

[----------------------------------------
[-------------------*------------------

[----------] [----------------------
[-------------------------] 

xs [-

pop_ea.sy_list 
imify_var2 
unify_varl 
pop_perishable_var3 
pop_perisha.ble_var6 
succeed 
push_va.15 
push_var5 
push_var4 
push_pred qsort 
push_easy_list 
unify_global_va.12 
unify_va.15 
continue_body 
push_va.13 
push_var3 
push_pred qsort 
invoke split 

qs([] ,R,R). 

X1 [-] 

[-----------] [--



pop_nil 
pop_vari 
pop_val1 
proceed 
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split([XIL],Y,[XIL1],L2) :- X < Y, !, split(L,X,L1,L2). 

X1 
X2 
X3 
X4 
X5 

[--------------------------
[-------*------------*-------

[------------------
[--------------

[-------------------] 

pop_easy_list 
unify_va.r2 
unify_varl 
pop_va.r6 
pop_easy_list 
unify_global_va.12 
unify_va.r3 
pop_perisha.ble_var4 
succeed 
push_va.12 
push_va.15 
do< 
cutsucceed 
invoke split 

split ( [] , Y, L, L) . 

X1 [-] 

pop_nil 
pop_void 
pop_va.r1 
pop_va.11 
proceed 

[--------
[-------

[---
[--
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13. Classification of Operations 
(Only the starred operations are strictly essential). 

HEAD 

* proceed 
* succeed 

instate P 

pop_void 
pop_va.rN 

* pop_valN 
* pop_perishable_varN 

pop_perishable_valN 

* pop_const C 
pop_list 
pop_struct F 
pop_easy_list 

* pop_easy_struct F 

UNIFY 

unify_void 
* unify_varN 
* unify_valN 

unify_global_valN 

* unify_const C 
unify_list 
unify_struct F 
unify_end_list 
unify_end_struct F 

resume_unify 
continue_hea.d 

BODY 

* execute P 
* pusb_pred P 

invoke P 

push_void 
* push_va.rN 
* push_va.lN 

* push_const C 
push list 
push_struct F 
pusb_ea.sy_list 

* push_ea.sy_struct F 

COPY 

copy_void 
* copy_varN 
* copy_valN 

copy_globa.l_va.lN 

* copy_const C 
copy_list 
copy_struct F 
copy_ end_list 
copy_end_struct F 

resume 
resul!le_hea.d 
resume_copy 
resume_body 

* continue_body 

NB. Corresponding unify and copy operations are represented by the same opcodes, since it is only at 
runtime that one can distinguish which operation is required (•read• mode versus •write• mode). To get 
"double mileage• out of the 256 available opcodes, body operation opcodes are allowed to overlap with 
the opcodes for other operations. ' 
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14. Description of Instructions and Basic Operations 

14.1. Control Instructions 

succeed This instruction precedes the body of a non-unit clause. It sets the argument pointer A 

to point to the last thing still needed on the stack, which will be either the continuation 

C or the backtrack point B. This has the effect of dicarding the goal that has just been 

matched if there are no backtrack points after it. Subsequent instructions will use A as 

the top of stack pointer for the purpose of pushing the body goals. 

push_pred N This instruction terminates a body goal, and is responsible for pushing the continuation 

C and a pointer to the procedure for predicate number N onto the stack. The 

continuation C is updated to point to the goal just formed. 

execute N This instruction terminates the final goal in the body of a clause. The program pointer 

proceed 

P is set to point to the procedure for predicate number N, and the alternatives pointer 

for the first clause is fetched. If the alternatives are non.empty, a backtrack point is 

created on the stack. 

This instruction terminates a unit clause. The argument pointer A is set to the 

continuation C, and top goal procedure pointer is popped from A, becoming the new 

program pointer P. The alternatives pointer for the first clause is fetched, and if 

nonempty a backtrack point is created. Finally, the new continuation is popped from 

A. 

14.2. Push Instructions 

push_var_N This instruction represents a goal argument which is an unbound variable. The 

instruction pushes a new unbound variable onto the stack, and stores a reference to it 

in register N. 

push_ val _ N This instruction represents a goal argument which is a bound variable. The instruction 

simply pushes the value in register N onto the stack. 

push_ const X This instruction ·represents a goal argument which 1s a constant. The instruction 

simply pushes the constant X onto the stack. 

push_ easy_ struct N 

This instruction marks the beginning of a structure without substructures occurring as 

a goal argument. The instruction pushes the functor N for the structure onto the heap, 

and pushes a corresponding structure pointer onto the stack. 

continue_body This instrµction marks the end of a structure without substructures occurring as a goal 

argument. The only effect is to signal that the following instructions are to be executed 

as body instructions. It could be dispensed with if body instruction opcodes were 
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distinct from head instruction opcodes. 

14.3. Pop Instructions 

pop_var_N This instruction represents a head argument which is an unbound variable not needing 

special protection. The instruction simply pops a value off the stack into register N. 

pop _perishable_ var _ N 

pop_val_N 

This instruction represents a head argument which is an unbound variable needing 

special protection. The instruction pops a value off the stack into register N, and 

dereferences it. If the result is a reference to an unbound variable in the current stack 

frame, the variable is •globalised • onto the heap. The final result is left in register N. 

This instruction represents a. head argument which is a. bound variable not needing 

special protection. The instruction pops a value off the stack and unifies it with the 

contents of register N. The final result is left in register N. 

pop_perishable_ val_N 

pop const X 

Not implemented yet, search me! 

This instruction represents a head argument which is a constant. The instruction pops 

a value off the stack and dereferences it. If the result is a reference to a variable, that 

variable is bound to the constant C, and the binding is trailed if necessary. Otherwise, 

the result is compared with the constant C, and if the two values are not identical, 

backtracking occurs. 

pop_ easy_ struct N 

This instruction marks the beginning of a structure without substructures occurring as 

a head argument. The instruction pops a value off the stack and dereferences it. If the 

result is a reference to a variable, that variable is bound to a new structure pointer 

pointing at the top or the heap, functor N is pushed onto the heap, a!ld execution 

proceeds in •write• mode. Otherwise, if the result is a structure and its functor is 

identical to functor N, the pointer S is set to point to the arguments of the structure 

and execution proceeds in •read• mode. Otherwise, backtracking occurs. 

14.4. Unity Instructions · 

unify_ var _N This instruction represents a bead structure argument which is an unbound variable. If 

the instruction is executed in •read• mode, it simply gets the next argument from S 

and stores it to register N. If the instruction is executed in •write• mode, it pushes a 

new unbound variable onto the heap, and stores a reference to it to register N. 

unify _global_ val_N 

This instruction represents a head structure argument which is a variable bound to 
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some global value. If the instruction is executed in •read• mode, it gets the next 

argument from S, and unifies it with the value in register N, leaving the result in 

register N. If the instruction is executed in •write• mode, it pushes the value of register 

N onto the heap. 

This instruction represents a head structure argument which is a variable bound to a 

value that is not necessarily global. The effect is the same as 'unify _global_ val', 

except that in •write• mode it dereferences the value of register N and only pushes the 

result onto the heap if the result is not a reference to a variable on the stack. If the 

result is a reference to a variable on the stack, a new unbound variable is pushed onto 

the heap, the variable on the stack is bound to a reference to the new variable, the 

binding is trailed it necessary, and register N is set to point to the new variable. 

unify_ const X This instruction represents a head structure argument which is a constant. If the 

instruction is executed _in •read• mode, it gets· the next argument from S, and 

dereferences it. If the result is a reference to ~ variable, that variable is bound to the 

constant X, and the binding is trailed it necessary. If the result is a non-reference 

value, that value ~ compared with the constant C and backtracking occurs if the two 

values are not identical. If the instruction is executed in •write• mode, the constant X 

is pushed onto the heap. 

14.5. Other Basic Operations 

create_ choice_ point 

fail 

trail(R} 

This operation is performed when entering a Prolog procedure for which there is more 

than one potentially matching clause. The following values are pushed onto the stack: 

a pointer to the previous choice point, a pointer to the alternative clauses, a pointer to 

the caller's continuation and arguments, the current trail pointer, and the current heap 

pointer. HB is set to the current heap pointer, and B is set to point to the current top 

of stack. 

This operation is performed when a failure occurs during unification. It causes 

backtracking to the most recent choice point. Registers H, A, and C are restored to the 

values saved in the choice point. The program pointer P is set to the next alternative 

clause as recorded in the choice point. If there are other alternatives, a pointer to them 

is recorded in the choice point, and the choice point is retained; otherwise the choice 

point is discarded by restoring B to the previous value saved in the choice point. 

Finally, the trail is •unwound• as far as the choice point trail pointer, by popping 

references off the trail and resetting the variables they address to unbound. 

This operation is performed when a variable, whose reference is R, is bound during 

unification. If the variable is in the heap and is before the heap backtrack point HB, or 

the variable is in the stack and is before the stack backtrack point B, the reference R is 
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pushed onto the trail. Otherwise, no action is taken. 

14.6. Indexing Instructions 

try _generic [C'] 

This is the first instruction in a generic clause, i.e. a clause whose first argument is a 

variable. The next clause field in the current choice point is set to C', unless C' is zero, 

in which case the current choice point is discarded. 

try _big_index (C', C", Mask, Table] 

This instruction precedes a group of apeclftc clauses, i.e. clauses whose first arguments 

are not variables. The frrst argument on the stack is dereferenced. If the result is a 

variable, execution proceeds with the next clause, C'. Otherwise the next clause field in 

the current choice point is set to C" (the next generic clause), unless C" is zero, in 

which case the current choice point is discarded. A key is determined from the 

dereferenced first argument: if it is a constant,, the key is simply that constant; if it is 

a structure, the key is the principal functor of that structure, and the argument pointer 

S is set to point to its arguments. The value of the low-order bits of the key, as 

determined by the mask Mask, is used as an index into the table Table, yielding a chain 

of specific clauses. The key is compared with the key field of each of these clauses until 

one is found which has the identical key, in which case execution proceeds with that 

clause, skipping the first instruction. If the identical key is not found, execution 

proceeds to clause C", or, if C" is zero, backtracking occurs. 

try_ const [C', C", KJ 

This is the first instruction or a clause whose first argument is a constant K, where that 

clause is the only one in its group having the key K. The next clause field or the 

current choice point is set to C', unless C' is zero, in which case the current choice point 

is discarded. The first argument on the stack has already been dereferenced to a 

variable; that variable is now bound to the constant K and the binding is trailed if 

necessary. 

try _struct (C', C,,, K) 

This is the first instruction of a. clause whose first argument is a structure with 

principal functor K, where that clause is the only one in its group having the key 

K. The next clause field of the current choice point is set to C', unless C' is zero, in 

which case the current choice point is discarded. The first argument on the stack has 

already been dereferenced to a variable; that variable is now bound to a new structure 

pointer pointing at the top of the heap (with the binding being trailed if necessary), 

functor K is pushed on the heap, and execution proceeds in •write• mode. 

share_key (C', C", K] 

This is the second instruction of a dummy clause, which precedes the first of several 
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clauses in the same group having the same key; (the first instruction of the dummy 

clause is never executed). A create_ choice _point operation is performed, and 

execution then proceeds with the following clause C'. 

retry _const [C', C", K) 

This is the first instruction of a clause whose first argument is a constant K, where that 

clause is NOT the only one in its group having the key K. If the first argument on the 

stack has been dereferenced to a variable, the effect is the same as try_ const; 

otherwise the next clause field in the current choice point is set to C" (the next clause 

for key K), unless C" is zero, in which case the current choice point is discarded. 

retry _struct [C', C", K) 

This is the first instruction of a clause whose first argument is a structure with 

principal functor K, where that clause is NOT the only one in its group having the key 

K. If the first argument on the stack has been dereferenced to a variable, the effect is 

the same as try _struct; otherwise the next cl]iUSe field in the current choice point is 

set to C" (the next clause for key K), unless C" is zero, in which case the current choice 

point is discarded. 
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15. Clause Indexing 
Clause indexing reduces the set of candidate clauses that must be considered when executing a goal. It 

is important for minimising the amount of computation needed to find matching clauses, and for helping 
the system to recognise determinate choices in the absence of cuts. The version described here follows 
DEC~lO Prolog in providing for indexing only on the predicate and a single key which is the principal 
functor of the first argumen~. It should be fairly easy to extend things to permit the key to be any user 
defined function of the goal, which the user might optionally specify for each predicate. 

The ma.in idea is that the clauses for a predicate will be linked on two distinct (but partly coinciding) 
chains providing for access with a key, and access without a key (for use in the case that the key is not 
fully specified in the goal). The unkeyed access chain will be essentially just a list of the clauses in the 
order they were entered. The keyed access chain will link clauses with other nodes in a branching 
structure, so that only certain branches have to be considered for a given key. It will consist essentially of 
a list of generic clauses (first bead argument a variable), interspersed with Index nodes, which give access 
to groups of specific clauses (first head argument a nonvariable). 

[As a later optimisation, we will probably make a special case of a plain procedure, one having no 
generic clauses and no more than say 8 distinct keysJ. 

Each node commences with an entry instruction, which indicates the type of node. Preceding the entry 
instruction, there is usually a next node pointer, which indicates the next node for unkeyed access. The 
different nodes, with their names, formats, and (to be added shortly) roles, are as follows. 

generic clause 

_______ !. _______ _ 

next node I try I clause 
. _______ l_instr_l_code __ 

specific clause with a. unique key 

key I next key next node try I clause 
. _______ l_node ____________ l_instr_l_code __ 

shared key node 

____________________ I _____ _ 
key I next key I tirst cl1use l I share I 

_______ l_node _____ l_tor_this_ke1._l ___ l_ke1. __ I 

specific clause with a shared key 

.1 key I next clause I next node retry I clause 
l ______ l_for_this_keY._l ______ l_instr_l_code __ 

big-index node 

(small-index node will be a special case) 
______________ ! __________________ _ 
I next generic next node I index I keys I aask despatch table ... 
l_clause ___________ l_instr I count_l ___________ _ 
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procedure header node 

first node I la.st generic 4-way despatch table? 
_______ l_cla.use _________________ _ 

< <What follows has been partially superseded; see the description of the indexing instructions in the 
preceding section for the latest word>>. Entry instructions can be executed in one of three different 
modes: enter mode, traverse mode, and reenter mode. The different entry instructions, with their 
possible modes of execution, are as follows. 

enter tra.verse 
generic * index * 
constant * structure * list * 

The effect of the different actions is roughly as follows: 

enter(generic(C')) = create_choice(C'). 

enter(index(C',C'',C)) = 
( keyed access-> create choice(C''), seek(C) 
I other-;ise -> crea.te_ch~ice, tra.verse(C') ). 

seek(specific(C' ,C' ',K)) = 
(key= K -> continue 
I otherwise-> seek(C'') ). 

reenter 

* 
* 
* 
* 
* 

do(share_key(C' ,C'')) = create_choice(C''), continue(C'). 

traverse(specific(C',C'',K)) = reta.in_choice(C'), emit(K), continue. 

reenter(specific(C',C"',K)) = 
( keyed_access -> reta.in_choice(C''), skip_over(K) 
I otherwise-> reta.in_choice(C'), continue(K) ). 

reenter(generic(C')) = retain_choice(C'). 

reenter(index(C',C'',C)) = 
( keyed a.ccess -> retain choice(C''), seek(C) 
I other-;ise -> tra.verse(C') ) . 

retain_choice(C) = 
( null(C) -> remove_choice 
I otherwise-> BC C ). 

create_choice(C) = 
( null(C) .-> continue 
I otherwise-> crea.te_choice, BC:= C ). 
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15,1. Example of Clause Indexing 
To illustrate the way indexing information is encoded, here is an example of a Prolog procedure followed 

by the corresponding code. 

call(X or Y) :- call(X). 
call(X or Y) :- call(Y). 
call(trace) :- trace. 
call(notrace) :- notrace. 
call (nl) : - nl. 
call(X) :- builtin(X). 
call(X) :- ext(X). 
call(call(X)) :- call(X). 
call (repea. t) . 
call(repeat) ·- repeat. 
call(true) 

call: 11, C7, ... ('?). 
11: C6, Cl, try_big_index, 4, 2'11000, Dl, C3, 0, C4. 
D1: 'or'/2, 0, Cl, no_op, share_key. 
Cl: 'or' /2, C2, C2, retr1. struct, .. . 
C2: 'or'/2, 0, C3, retry-;truct, .. . 
C3: 'trace', 0, C4, try_const, .. . 
C4: 'notrace', C5, C6, try_conet, 
C5: 'nl', 0, C6, try_const, 
C6: C7, try_generic, .. . 
C7: 12, try_generic, .. . 
12: o, C8, try_big_index, s. 2•1000, ea, D9. 
C8: 'call'/1, 0, C9, try_struct, ... 
D9: 'repeat', C11, C9, no_op, share_key. 
C9: 'repeat', C10, C10, retry_const, ... 
C10: 'repeat', 0, C11, retry_const. 
C11: 'true'. O, O, try_const, ... 



20 

16. Machine Definition (to a first approximation) 
Routine 

VAX implementation 

continue head: 
MOVZBL (P)+,I 
MOVL head_op[I],Q 
JMP (Q) 

continue_copy: 
MOVZBL (P)+,I 
MOVL copy_op[I],Q 
JMP (Q) 

continue_body: 
MOVZBL (P)+,I 
MOVL body_op[I],Q 
JMP (Q) 

head_op: 
bead_op(O): 

copy_op: 
copy_op (0) : 

body_op: 
body_op(O): 

succeed: 
CMPL B,C 

Definition Description 

{Decode the next instruction in •head• mode.} 
I<- next byte(P) 
Q <- hea.d-op(I) 
do Q 

{Decode the next instruction in •write• mode.} 
I<- next_byte(P) 
Q <- copy_op (I) 
do Q 

{Decode the next instruction in •body• mode.} 
I<- next byte(P) 
Q <- body=op (I) 
do Q 

{Table of •head• routines.} 

{Table of •write• routines.} 

{Table of "body• routines.} 

; {Tidy the local stack: A<- ma.ximumof(B,C) .} 
; B is_before C else succeed_provisionally 

BGEQ succeed_provisionally 
MOVL C,A A <- C 
BR continue head 

succeed_provisionally: 
MOVL B,A 
BR continue_head 

proceed: 
MOVL C,A 
MOVL -(A),P 
MOVL -(A),C 
BR choose 

execute: 
MOVZWL (P),I 
MOVL predicate[I],P 
BR choose 

continue_head 

A<- B 
continue_hea.d 

{Proceed to the next goal.} 
A<- C 
P <~ pop_item(A) 
C <- pop_item(A) 
choose 

{Execute the current goal.} 
I <- short (P) 
P <- predicate(!) 
choose 
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push_pred: {Push a predica.te.} 
MOVL C, (A)+ C -> push_item(A) 
MOVZWL (P)+,I I<- get_sbort(P) 
MOVL predica.te[I],(A)+; predicate(!)-> push_item(A) 
MOVL A,C C <- A 
BR continue_head 

instate: 
CMPL B,C 
BGEQ ... 
MOVL C,A 

invoke: 
MOVZWL (P)+,I 
MOVL procedure[I],P 
MOVZBL arity[I],I 
MOVL @call_op[I],Q 
JMP (Q) 

call2: 
MOVL X2, (A)+ 

ca.111: 
MOVL X1, (A)+ 

choose: 
MOVZWL (P)+,Pl 
BEQL continue_head 
MOVL B,B1 
CMPL B,A 
BGEQ ... 
MOVL A,B 
MOVL B1, (B) + 

MDVL P1,(B)+ 
MOVL A, (B) + 

MOVL TR, (B) + 

MOVL H, (B)+ 
BR continue head 

fail: 
MOVL -(B),H 
MOVL -(B),TRO 
MOVL -(B),A 
MOVL -(B),P 
MOVL -(A),C 

undo: 
CMPL TRO,TR 
BGEQ undone 
MOVL -(TR),T 
MOVL T, (T) 
BR undo 

undone: 
MOVL (P)+,P1 
BNEQ reta.in_choice 
MOVL -(B),B 

continue head 

{Tidy stack, sa.ve goal, a.nd execute it.} 
B is_before C else 

A<- C 
{Sa.ve goal and execute it.} 
I<- get short(P) 
P <- procedure(!) 

; I <- a.ri ty(I) 
; Q <- ca.ll_op(I) 
; do Q 

{Save argument 2.} 
X2 -> push_item(A) 
{Save argument 1.} 
Xl -> push_item(A) 
{Choose clause.} 
Pl <- get short(P) 
Pl \= 0 else continue_head 
B1 <- B 
B is_before A else 

B < - A 
B1 -> push_item(B) 
Pl -> push_itea(B) 
A-> push_itea(B) 
TR -> push_ite■ (B) 
H -> push_itea(B) 
continua_head 

{Restore the state of latest choice point.} 
H <- pop_itea(B) 
TRO <- pop_itea(B) 
A<- pop_item(B) 
P <- pop_item(B) 
c <- pop_item(A) 

TRO is_be!ore TR else undone 

T <- pop_item(TR) 
T -> deref (T) 
undo 

Pl <- get_long(P) 
Pl = 0 else reta.in_choice 
B <- pop_item(B) 



MOVL -l(B),HB 
BR continue head 

retain choice: 
MOVL P1,(B)+ 
ADDL 3,B 
BR continue head 

unify_var3: 
MOVL (S)+,X3 
BR continue head 

unify_const: 
MOVL (S)+,T 
BITB 2'11,T 

BEQL ... 
CMPL T, (P)+ 

BNEQ fail 
BR continue head 

pop_var3: 
MOVL -(A),X3 
BITB 2' 11,X3 

BEQL ... 
BR continue head 

pop_easy_struct: 
MOVL -(A),S 
BITB 2' 11, S 

BEQL ... 
BITE 2'10,S 

BNEQ fail 
BICB 2'11,S 
MOVZWL (P)+,I 
CMPL (S) +, (P) + 

BNEQ fail 
BR continue_head 

pop_easy_list: 
MOVL -(A),S 
BITB 2'11,S 
BEQL pop_list_ref 
BITB 2'01,S 
BNEQ fail 
BICE 2'11,S 
BR continue_head 

pop_list_ref: 
CMPL (S),S 
BNEQ ... 
MOVAL ~B10(H),(S) 
CMPL S,H 

BLSS ... 
CMPL S,HB 

BGEQ ... 

HB <- top_item(B) 
continue_hea.d 

P1 -> push_item(B) 
B <- 8+3 
continue head 

22 

{Unify with variable 3, which is unbound.} 
X3 <- next_term(S) 
con tinue_Jlead 

{Unify with a constant.} 
T <- next_term(S) 
non-ref(T) 

else ... 
T = next_term(P) 

else fa.il 
; continue_Jlea.d 

{Match with variable 3, which i~ unbound.} 
X3 <- pop_term(A) 
non-re!(X3) 

else ... 
continue_hea.d 

{Match with structure.} 
S <- pop-ter!ll(A) 
non-re!(S) 

else ... 
is _struct (S) 

else fa.il 
S <- unta.vtruct(S) 
I<- get short(P) 
get_!n(S) = functor(!) 

else fail 
continue bead 

{Match with a list.} 
S <- pop-tera(A) 
non-ref(S) else pop_list_ref 

is_list(S) else fail 

S <- untaLstruct(S) 
continue_bea.d 

S = deref(S) else ... 

taLlist(H) -> deref(S) 
is_globa.l (S) 

else ... 
S is_newer_than HB 

else ... 



BR continue_copy 

copy_var3: 
MOVAL (S)+,X3 
MOVL X3, (X3) 
BR continue_copy 

copy_val3: 
MOVL X3, (S) + 
BR continue_copy 

copy_const: 
MOVL (P) +, (S) + 

BR continue_copy 

push_var3: 
MOVL A,X3 
MOVL X3,(A)+ 
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continue_copy 

{Copy variable 3, which is unbound.} 
X3 <- ref_to_next_term(S) 
X3 -> deref(X3) 
continue_copy 

{Copy variable 3, which is bound.} 
X3 -> next_term(S) 
continue_copy 

{Copy constant.} 
next_term(P) -> next_term(S) 
continue_copy 

{Push variable 3, which is unbound.} 
X3 <- ref_to(A) 
X3 -> push_item(A) 
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17. Performance Benchmark 
conca.tenate([XIL1],L2, [XIL3]) :- concatenate(L1,L2,L3). 

pop_ea.sy_list MOVL -(A),S 
BITB AB11,S 

BEQL ... 
BITB AB01,S 
BNEQ ... 

(6) 

unify_var4 
(1) 

unify_va.r1 
(1) 

BICB AB11, S 

continue head 

MOVL (S)+,X4 
continue_head 

MOVL (S)+,X1 
continue head 

pop_perisha.ble_var2 IOVL -(A),X2 
BITB AB11,X2 
BEQL ... 

(3) continue_hea.d 

pop_ea.sy_list MOVL -(A),S 
BITB AB11,S 
BEQL --
CMPL (S).S 
BNEQ ... 

(10) 

MOVAL AB10(H),(S) 

CMPL S,H 
BGTR ... 
CMPL HB,S 
BGEQ ..• 
con tinue_copy 

copy_globa.l_va.14 MOVL X4, (H) + 

(1) continue_copy 

copy_va.r3 MOVL H,X3 
MOVL X3,(H)+ 

(2) continue_copy 

succeed CMPL B,C 
BGEQ ... 
MOVL C,A 

(3) continue_body 

push_val3 MOVL X3, (A) + 
(1) continue_body 

push_va.12 MOVL X2, (A) + 
(1) continue_body 

push,_va.11 MOVL X1 , (A) + 
(1) continue_body 

= 

= 

MOVZBL (P)+,I 
MOVL head_op[I],Q 
JMP (Q) 

IOVZBL (P)+,I 
KOVL copy_op[I],Q 

JMP (Q) 

= MOVZBL (P)+,I 
MDVL body_op[l],Q 
JMP (Q) 



execute 

(2) 

MOVZWL (P),I 
MOVL predicate[I],P 
continue_head 
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Total VAX instructions= 32 (actual execution) 
+ 36 (decoding 12 opcodes) 

68 [cf. 60 instructions on DEC-10 Prolog] 

18. Trace of Concatenate (as currently implemented) 
pop_easy_list 

MOVL -(AP) ,R6 
#03,R6 
001B385A 
R6,001B3857 
#02,R6,R7 

(5) 

BITL 
BEQL 
BLBS 
SUBL3 

unify_var3 
MOVL 

(1) 
(R7)+ ,R3 

unify_varl 
MOVL 

(1) 
(R7)+,R1 

pop_perishable_var2 
MOVL -(AP),R2 
BITL #03,R2 
BEQL 001B35EA 

(3) 

pop_ easy_list 

(10) 

MOVL -(AP),R6 
BITL #03,R6 
BEQL 0018385A 
CMPL (R6),R6 
BNEQ 001B387E 
ADDL3 #02,R9,(R6) 
CMPL R6,R9 
BLEQU 00183873 
CMPL R6,R8 
BGEQU 001B387B 

copy_global_val3 
MOVL R3,(R9)+ 

(1) 

copy_var3 
MOVL 
MOVL 

(2) 

R9,R3 
R3, (R9)+ 
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succeed 
CMPL RO ,R11 
BLEQU ENGINE+OA3 
MOVL R11,AP 

(3) 

push_val3 
MOVL R3, (AP)+ 

(1) 

push val2 
MOVL R2, (AP)-t-

(1) 

push_va11 
MOVL R1, (AP)+ 

(1) 

execute 
MOVL R11,LARMSGBL\. BLANK .-t-O4 
MOVZWL (R4)+,R6 
MOVL LAOO1B3ODC[R6],R4 
MOVL (R4)+,R6 
BEQL ENGINE+OF3 
MOVL RO, (AP)+ 
MOVL AP,R11 
MOVL LARMSGBL\. BLANK .+04,(R11)+ 
MOVL R5, (R11)+ 
MOVL AP, (R11)+ 
MOVL R1O, (RU)+ 
MOVL R9, (RU)+ 
MOVL R9,R8 
SUBL2 #O4,AP 

(14) 

pop_nil 
MOVL -(AP),R6 
BITL #O3,RB 
BEQL OO1B376B 
CMPL R6,#OF 
BNEQ OO1B3768 
BRW OO1B3663 

(6) 
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fail 
MOVL -(R11),R9 
MOVL -(R11),R7 
MOVL -(R11) ,AP 
MOVL -(R11) ,R4 
MOVL -(AP),RO 
MOVL (R4) + ,R5 
BNEQ 001B3571 
MOVL -(R11) ,R11 
MDVL B~OFC(R11) ,RB 
BRW 00183577 
CMPL R10,R7 
BLEQU 001B3585 

(12) 

Total = 61 (actual execution 
+ 52 (decoding 13 opcodes) 

113 

This current version has been clocked at 7,900 lips on the V AX-780. Some straightforward 
optimisations (primitive clause indexing, doing the instruction despatches in-line, coalescing the pushes 
with the execute instruction) will reduce the number of instructions executed from 113 to about 60. This 
should improve the speed by a factor of about 113/60, achieving of the order of 15,000 lips. 
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19. Engine Assembly Code Format 
Each line of an engine code file is either empty, or has one of the following three formats: 

<size><type><space><number> 
<space><byte-codes> 
F <number> <value> 
<other><comment> 

The first format consists or the character B, H, or W, indicating an item or size •Byte•, •Halfword•, or 
"Word", followed by the character space, C, P, F, or A, indicating an item or type •numeric• •Clause•, 
•Predicate•, "Functor•, or •Atom•, followed finally by a number (expressed in decimal) preceded by a 

space. 

The second format consists of a space character followed by a sequence of simple byte codes, expressed 
in decimal, and separated by spaces. 

The third format consists of the letter F followed by a space followed by a functor number followed by a 
space followed by the functor value. 

The fourth format, a line starting with any character other than F, space, B, H, or W, is simply a 
comment (to be ignored by the loader). 

Thus possible forms for a line include: 

F <functor-number> <functor-value> 
we <predicate-number> 
HP <predicate-number> 
HF <functor-number> 
WA <atom-value> 
W <code> 

<code> <code> <code> 
%<comment> 

For example, here are some clauses, and the corresponding code: 

flatten(void,S,S). 
flatten(pair(L.R).SO,S) flatten(L,SO,S1), flatten(R,S1,S). 

we 3 flatten 
16 

WA void 
4 12 0 

we 3 flatten 
18 

HF 2 pair 
22 25 9 10 2 8 4 9 1 

HP 3 flatten 
8 7 6 0 

HP 3 flatten 
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