
- ,

~ATLRLOO PROLO~ USE~ 1 S MANUAL
Version 1 • ,f

Gr.int Hobe rts

-----~--------✓

/._

1 lnt r oduc tlon 2

2 The La nvuage 3

2 .1 I n troduct ion -------------------- ------- --3 2.2 Flewentary Sy n ~ax --------------------------4
2 . 3 PROL01 Execution and Backtracking ----------6
2 . 4 The Synt a x in Deta i l ------------- - - --------1 8
2.5 Us i n4 In£inite Terms -----------------------25

3 Bui lt -i n P r edicates 27

3 . 1 Tntro<luction -------- -------------- - ---- ·-- 27 J.2 S t r u ctural P r edicates ----------------------28 ~.3 Input / Output Predicates --------------------JO 3.4 Arithmetic Predicstes ----------------------33 3.5 Database Predicates ------------------------34
3 . 6 Fxec utlon Control Predicates --------------- 4 1
3.7 Mi s c ellaneou s Predicates -------------------47

Appendi x A : Runnin g PROLOG under VM / CMS ------------49

Append ix R : The PROLOG EXEC file --------- ----------5 1

Append i x C : Using PRO LOG with u ppercase i nput ------55

4pper.d •1 [; ~
l I J /:

541>"',"<'1 •1 '"' L.•u.t -t• rr1'c1.-<'r..•JU

Aff-P(f) E sf(\ ➔ I) ., --4""1,,•"l\C/1,v

- 1 -

I

l
I

I
I

\

1 Int r2 Jue t 12.11.

Research in arti1icial intelll~ence has spurred

the de velopment of numerous progra~mln~ languages
better orJenteJ to expressing and solving the problems
which arise in this field. One 0£ these languages is
PROLOG. The acronym PROLOG is der ived 1rom PROgramming
in LOGic and eillphaslzes the rterivatlon of the language
.i"roo1 predicat E, logic . The development of PROLOG
repres~nts the dis covery of a means for using
resolution logic as a practical progra~ming language
for problem solving.

The semantics of PWOLOG are essentially those o~
Lirst order resolution logic. Consequently the language
is bo~h well ~e±ined and compact in de1 inition. More
important thoug h, the language is a power£ul tool ~or
problem solvin g , ~s has been demons trated in the
development o1 severdl proble~ so~vlng systems, amon g
1:hem ~ ~eometry theorem prover, natural language
understanding systems and a program £or automatic plan
g eneration .

The Waterloo
VM / CMS system is
:friendl.y online

implementation of PROLOG for the
intended to provide an e£ficient and
interpreter which can be used for

educational purposes and program development.
This manual provides an elemen~ary introduction to

1:he PROLOG language and the Waterloo PROLOG
implementation. Section 2 of tlie- m~ual describes the
lpng,ua~ e• Those readers who are :fa.mi 1,,ia.r with a d ialec"t
0£/ the PROLOG l6bgu~ge ay wish to skip subsections 2.1
to 2 • 3 au d re a. d s u.b s e c 1: i on 2 • 4 Ih~ ~~ .in Q._g_.!Jl.i.1. •

/ subsection 2.5 ~l.ng ~n.ite '.[~§. descri es a special
.tac ill ty that · i_ p r vitl d f or ma.nlpula. tin g in.f inl te
terillS• Sect io£ j ~s · re tei-,11.ce s?c t l or¥ which de:fioes

· Ln detail the ~biltin £unctions (efiectivelf a
subroutine library) provided in the implement•t on.

p.rnd},x 1des 7 i.!,es how to . t,i$e .P.RO. L-0<:: under VV. /
pend x B1 e"'orih~,s the <tontents o.f
f ,c,\Jit~op. , :til,e use,;d to invoke Pi<.OLOG.

~i>).; hs l trow tu invake PROLOO .for use
'_/' t,/ V

tha do not -support lower case , letters.
r

\
I
I

- I

- 2 -

I
M..{

2•.! Tntroduction i
The semantics o:f PROLOG~ essentially that of

resolution lo~lc. But resolution logic itsel£ does not
constitute a programming language. Statements in
resolution logic are descriptive. They have the :form "x
is true"• In conventional pro~ramming languages the
statements are imperative. They have the form "perform
action x"• To derive a programming language :from
resolution logic we add imperative statements of the
~orm "prove that xis true"• A statement of this £orm
ls ca~led a goal statement. A PROLOG program consists
o1 a set o1 goal atatements and a set of dXioms. The
axioms are descriptive , constituting a list o1 1acts.
Each goal statement is imperative and re~uests that
axioms be used In an attempt to prove a certain fact.

To the passi ve language or axioms we have added
the notion of goals to yield a language 01 action, a
pr.ogramming language. This language now allows us to
request the construction of a proo:f . But how will. the
attempt a~ a proo1 proceed? The prooL procedure £or
PROLOG uses reso1.ution in a siinpl.e depth first, lert to
right search strategy . This proo£ procedure is not
complete. Because oL the depth rirst strate~y,a proof
may not he 1ouud even 1~ one exists in the search
space. The proof procedure may follow an in~inite
branch ln the search tree and never examine another
branch which could yield a satisfactory proof . However~
i£ the proo~ procedure terillinates ~ we know that it has
found the right answer. If it terminates with success
then a proo~ exists . I± it terminates with failure then
no proo1 exists in the search space.

This simple search strategy may seem
unsatisfactory since it yields an incomplete proof
procedure y but it has nu~erous advantages over more
genera~ strategies. It can be implemented Jn a manner
which is more er1iclent in the use 0£ space than
current breadth ±irst search methods . The simplicity of
the PROLOG search strate~y makes it easy for the
programmer to understand and control the search. The
strict ordering o1 the search permits the use of built
in predicates causing side e1£ects(e.g. read and write)
with the knowledge that the side eL±ects will occur in
a prescribed order. The prospect of output being

- 3 -

l

createJ in randum order does not seem very pleasant!
Thus, it is evident that the simple search strategy
possesses severa~ desirable £hracteristics~ It is also
~Ete to~ .:the -Et~s-t-r - --~
stat.j,.n_g__ _ t.bai · a.nyon,e wants a general. "theorem prover
then-- PROLOG is a good language in whlcl1. t-.o p~ o g .i:.a..m- · t 1

This section introduces the syntax or PROLOG

axioms and goals . A brief desciption of the basic
syntax ls provided in oreparat ion for the description
of P;.{OLOG execution ln 2.3 Executj.on and Ba£.!&trgc.~ing.
A detailed description of all the syntax rules ls then
provided ln J•1 Ihg_ §~n.!.~~ .in Qg_tail.

The basic syntactic unit in PROLOG is the _ig_r.m• A

ter:m may be :
(a) a con~tant - a lower case letter ~~llowed by

any sequence 0£ letters and digits, or any
sequence of digits . A constant may be an
integer or an atom. e.g. a8c and x2~

(b) a vari able - an asterisk or 8" uoper case
letter1 followed by a sequence of letters and
digits. e.g.* and Al.

{ c) a skeleton - a skeleton name and a list o:f one
or more argument ter a1s-. The ar~ument terms
a .re separated by cumtuas and the list is
enclos~d in parentheses. e.g. 1{x2 1 Y) and
g (B ,a,:f(J)).

/
/

<integer>
<variable>
<skeleton>
<infinite term>
{ <ter a.1 >)

<atom>::= (identifier>
<skelt=>ton>: := (ictenti:fier> (<argument list))

<term> <infix o pe rator> <term>
(prefix operator> <term>
<ter m> <suf£ix operator>

<lnflw operator>::= (i dentif ier>
(prefix operator>::= <identifier>

- 4 - ______ _)'

I

I

I

I

<sul£lx operator>::= <identifier>
<argument list>::= <term> I

<argument list>, <term>
<variable>::=* I <u~per case letter>

<variable> <l etter>
<variable> <digit>

<infinite term>: := •• (digit•> HN
<digit>::= <digit> I

<digitM> <digit>

Tbe rul!es invo ving ope-rators ;,:lesc:I'il;>e an ~lter·nat.ive

nota.tJ_on1 fqr ,SkP~etol); , 'to .be described ~-·in 2.•1. :Ih~
, ~ ~

~.l:.!l ta~ ".ln -:12~1.1. .
PROLOG axloms and 1.;;oals are composed oi: 1..i:i!U:.!!.ls.

A literal may be a skeleton or a constant. A ~redl.£~:i~
is the name associated with a literal. IL the literal
is a skeleton then the predicate is the skeleton name.
Otherwise it is the constant associated with the
literal.

The f,'"enera l .form o.t a PROLOG axiom is:
<axl om head> <- <axi 0111 body) • .,.----

The implication arrow 1 H(- 11 is read "is implied by 11 •

The dXiom head ls a. single literal. The axiom body is a
conjunction of literals. A conjunction of literals may
De a single literal or two or more literals separated
by t he "and" symbol{&). An example of an axiom is:

a <- b & c ,. --The head is a, the body ls b ~ c and the axiom ls read I
"a is implied by band c" or "To prove a\first prove b•
then prove c"• An axiom may have a null body, in which
case the implication is omitted and the axiom has the
. .form: -<axio m head) ..:....-
An axiom with a null body is called a
example ls:

unit axiom.

:f(m).

This ls read 11~) is true 11 •

The gene r al £orm o:f a PROLOG goal is:
<- <goal conjunction>.

The go al conjunction is a single literal
conjunction of literals. Examples of godls dre:

<-p.
(-q(r) f; 1'. •

or

An

a

Goal statements may be re g arded as
axioms of the form:

abbreviations Io r

*'goaln <- (goal conjunction>

- 5

I
j

where "goal" ls a distinguished ~lteral which the
PROLOG theorem prover attempts to "prove"•

From the user point of view the PROLOG system
accepts axioms and goals from the terminal. Axioms
which are entered are recorded for later use in proofs.
An attempt is nade to prove a goal statefilent as soon as
it is entered. In the following discussion, ~oals will
always be presented in the ~orru <- <goal conjunction>.
\t' hen actually using the PROLOG system an (__a~e v iat- e =--"
g oat_ format is ava l la.ble. Re:fe r to ~f2pendi~ ~ ! Usi.ng
_RO~QQ yJ.l4~i: YML£M§ for -further explanation before
using PROLOG a.ta terminal.

In axioms and terms all variab~es are assumed to
he universally quanti:fied• That is, an axiom containing
variables is valid fo r any "values" which the variables
may take on. A verhal version o~ the axiom "£ather(X 1 Y)
<- son(Y,X)" ls uFor all values o.f X a.nd Y, X is the
father of Y if Y is the son of X"• The substituting o~
"values" for variables will be discussed further in the
next section.

goal
of a

PROLOG execution is started by a g oal statement. A
statement iH a request for a proof. The execution

PROLOG program is essentially the actions of an
elementary ~heorem prover attempting a proof.

A series of diagrams may be used to describe the
progress of a PROLOG proo1'. E4ch diagram, called an
.i.illllll£atl.Q.n. trg_~, describes the state o-f the p roo1' at
a g iven point in time. An implication tree consists oL

one or more labelled nodes. At the top of the diagram
ls a node labelled "goal"• Each of the other nodes is
labelled with a literal and ls Joined to a parent node

Z~lmmmedlatefy;-,above it. A node is called the £hild of
ils parent. A node may be in any one of three states:

(l) open: ·o attempt has been inade to prove the
litera~ labelling the node. The node has no
chi l -:tren •

(2) closed: The Literal. labelling the node

an
for

uxn

has
t hP.

to
been p roven using a. unit axio 01

literal. The node ls marked with
distlngulsh it from an open node.
node has no children.

A closed

(3) active: The literal labelling the node is

- 6 -

being proven (or has been proven) usin g a
non-unit axiom. The node ls labelled with the
literal of the axiom head. The children 0£

the node are labelled with the literals of
the axiom body. The left-to-ri g ht order o~
the literals in the axiom body is p reserved
in the diag ram. The orl ~ inal goal statement
is treated as an axiom 0£ the £orm "goal<
(goal conJunction>". Thus the children o~ the
g oal node are labelled with the literals of
the g oal conjunction•

Consider the fol lowing axioms and goal!

a<-bS c.
b•
c<-d.
d.
<-a.

The proof of this g oal

implication tree:

This ls

g oal

I
a

I \
I \

b C

X
d

X

ls represented by the following

tr~~ since all nodes
are either active or closed. The nodes labelled band d
have been closed usin ~ axioms "b•" and "d•"
respectively. The node labelled a 1~ active and has
been proven usin~ ~he axiom "a(-b&c.tt.

Consider the 1ollowing example of
g oal statement:

a<-bS- c ..
b<-dS f.
b<-eGf.
c<-g.
e<- g .
-r<-h.

- 7 -

axioms and a

The initlal state of the proof ls represented as:

g oal

a

The -firsi: axiom

glvin~:

g oal.

a

I \
b c

:tor a ls selec1'ed:, namely a<-b~c

The pro ve~ always works in a depth- ~lrst le 1 t-to-right
:fashion. Consequently the next literal to be pro ven is
b. The axiom b(-d~£ is selected:

goal

a

I \
b C

I \
d f'

The prover then attempts to prove d ■ But there are no

axioms for d so the prover must b•cktrack . This
involves backing up the proo1 and trying other
alternatives.. A £..!12..i.£.~ !!..Q.!.fil in the proo:f is a point
where an axlom was chosen to prove a literal and more
a.xioms remain to be tried. ~tr.ackj_n_g involves
backin~ up the proof to the most recent choice point
and making a di£1erent choice. The order in which the
axioms are chosen is not arbitrary. Axioms are always
selected in the order in which they appear in the
input. Io this example b(-d&f' will always be examined
be.fore b<-e&f'.

The most recent choice point in the current proo~
is the point where the axiom b<-dSf was selected. The
proo£ is backe~ up to this point and the other axiom,
b<-e&1 1 is selected. The proo£ continues as shown
below:

8 -

=>

=>

=>

=>

e

e

g

e

g

X

e

g oal

I
a

I \
b

I \
f

C

g oaL

I
a

I \
b

I \
f

C

g oal

a

I \
h

I \
:f

C

g oal

a

I \
h

I \
f

I

C

g h
X

- 9 -

g oal
=> 1

a
I \

0 C

I \
e f

I
g h
X X

g oal

=>
a

I \
b C

I \ \
e f g
j I
g h

t ~

g oal

=> l
a

I \
D C

I \ \

e f g

l X

g h
X X

proof The final ls represented by a completed
implication tree. Of course, if the proof fails then
the implication tree is never completed. lf, in this
example, we omit the axiom c<- g then the proo1 attempt
will ~ail. Alternatively, if we include another axiom
d<-d then the prover will attempt to construct an
"infinite branchtt of the lmplica ion tree:

- 10 -

d

I
d

I
d

I ... --
Even1:ual..ly an error will occur when the proo-f stack
overf ·tows •

In the previous examples, none o~ the predicates
have 4rguments. For example, the predicate term
father(John,.fred) has two arguments, John and fredt and
can be used to represent the statement "John is the
father o:f .fred11 • P.ROLOG .:l.Xioms ca.n also contain
variables. For example the axiom son(,Y)<--fat her{Y,X)
represents the statement "xis the son o.f y if y is the
.1'a ther of x". ·variables in t>ROLOG are assumed: to be
universally quantified. That ia,an axiom contdining a
variable is considered to be "true" for dOY "values"
the variable may take. We wilt make the idea of a
varidble "taking a. value" mo re precise. In any axiom or
goa.l we can per1:orm a §.!,!.QStLtutiQn• A §.Y:D,St.i_tutl.nn
replaces all occurrences of a variable by a term. The
replacing term may be a constan~ (such as abc or 32~ , a
sKeletun(such as f(a) or g(X,YJ) or another variable.
For example, lf we substitute a for X in g(X ,tiX)) then
the resulting term is g(a ,£(a)). If we substitute f(Y)
£or X in h(X,T) then the result is h(f(Y) ,Y). When one
or m,ore substitutions are applied to a term { or axiom),
the result is cal led an !..!lll tan.~ of the term (or
axiom}. Fo r example, son(fred,john)<-father(John,fred)
is an in~tance of son(X,Y)<-father(Y,X) produced by

substituting fred for X sod John for Y.
To illustrate substitution better, consider the

fol.tow~xample:
------ 'son(X,Y)(-father('i 1 X).

father(john,fred).
father{John,george).
Lather(al,bert).
father(george ,at).

We wish
a goa 1 11

we can

to sol..ve
we mean

prove.

the g oal 11 <-son(Z,john)If. By 11 solving
finding an Instance o~ the goat which

In thi3 case we will prove

11 -

The proo:f will be illustrated using nson(£red,Johnl".
implication tree&. The initial tree is:

fc!O al

son(Z 1 john)

Now we need to 1ind an inst~nce 0£ an axio m which we
can use in the proo:f or son(Z,John). The ap propriate
instance is ~ormed from son(X,Y)<-father(Y,X) by

substituting Z 1or X and John f or Y to g ive
son(Z, john)<-father(jo hn 1 Z). The tree now is:

~oal
l

son{ z, John)

J
:father{ John, 2)

Note that we :found substitutions that ade the head o:f
an axiom the same as the current subterm. The g eneral
process of ~ind lng substitutions to make two terms the
same ls called Yn.!.ficatiQ.ll• Next we want to .find an
axiom whose head will YnilY with rather{john,Z). The
~irst ~xiom :for :father matches if we substitute fred
:for z. This gives the compLeted implication tree:

~oal
)

son(:fre d , John)
l

£ather(john,fred)
X

As a further example we wi~l atte~pt to solve the
g oa1 <--father{John 1 X)S~ather(X,Y). The proo£ proceeds
as -follows:

goal

I \
I \

I
I

I
-fa.ther(John,X)

---------- -- -

\
\

\
-father(X, Y)

- 12 -

goal
I \

I \
I \

I \
I \

1ather(john,fred}
X

.father(:fred, Y)

The 1:1.ttempt

since this

to solve
term will

tne subgoal :father(fred 1 Y)

not unify with any o~ the

.fails
axiom

heaJs. Backtracking occurs and the proof is backed up
to the point where the father(John,fred) axiom was
activated. This axiom is then deactivated and any
substitutions made when (or since) this axiom was
se Lee ted are "uncione 11 • This res tores the proo:f to the
point:

g oal

I
I

I
I

I
.tather(John,X)

\
\

\
\

\
-fa the r(X, Y)

The axiom father{ john , g eorge) is about to be selected

for uni±icatlon with :father(John,XJ. This unification
succeeds ~iving :

I
I

I
I

I

goal

\
\

\
\

\
:father(john,georg e) ±ather(g eorg e,YJ

X

The axioms for 1~ther are then selected

unl.ficatlon ...-1th .father(g eorg e,,Y). The
succeeds for the axiom 1ather(george,dl),
completed implication tree:

13 -

in turn -for
uni:ficatlon

yielding the

goal
I \

I \
I \

I \
I \

£ather(John,george) £ather(georg e,al)
X X

To illustrate the operation or PROLOG fur~her, the

£olluwlng examples demonstrate the manipulation 0£ more
complex data structures ■ A set o1 elements (similar to
a LISP list) is represented by ~ term using a
constructors and an end marker nil. For example, the
set with elements a,b and c is represented by

s{a,s{b 1 s{c,nil))) or as a diagram:

s
I \

a s

I \
b s

I \
C nil

The empty set is represented by nil.
completely arbitrary and is chosen

This notation is
for this example

only.
A reasonable de~inition for the "element" relation

is:
element(X,s(X,Y)).
element(X,s(Y,Z))<-element(X,Z).

Verbal.Ly these axioms might be stated as. ux is an
element of a set if it is the first element in the set
or i1 it is an e~ement of the set o± elements following
the £1rst element•"• The goal

<-element(c,s(a,s(b,s(c,s(d,nil)))))
yields the rollowing completed implication tree:

- 14 -

i:.roal
j

e 1. e me n t{ c , s { a , s (b , s (c 1 s (d, n i l)))))

1
element(c,s(b,s(c~s(d 1 nil))))

I
element{c,s{c,s(d,nil)))

X

This syntax for representing sets is clearly

cumbersome. To simplify this, in£ix notation may be
used(infi~, prefix and suffix notation are explained
more :t'ully in 1.•:t I.h~ .§yu:!_A,K .in. Qetai!. >• J:f we use a
"•" as the constructor and use infix notation then we
can d~note the set with elements a 1 b and c by
a.b.c.nil. The axioms Lor element become:

element(x , x .Y).
element(X 1 Y.Z)<-element(X,Z).

Suppose we Wdnt an axiom to ~rite all the elements
o1 a set. The £allowing axioms will su£fice:

l i st{ X • Y) <- w r i t e { X)& l i s t (Y) •
list{nil).

write is a
succeeds and has

built -in
the side

predicate which always
ef£ect of displaying its

argument t-erm on the terminal. The term is written
1ollowed by a period (the end of term delimiter) . The
goa l statement <-list(a.b.c.nil) succeeds. The
completed implication tree ls:

f,!"o al

lis-t(a..b.c ■ nil)

I
I

write(a.)
X

\

' list(b.c .nl l)
I \

I \
write(b)

X
l ls t(c. nil)
I \

I \
write(c)

X

lisUnil)
X

The outpu~ on the terminal is:

a .•

- 1S -

The ~ollowing axiom could dlso be used to list the

elements o1 a set on the terminal:
list(X.Yl<-write(X)~.
llst(X.Y)<-llst(Y). A,J..
list{nil).

The goa.l <-list(a.h.c.nil) will list all elenents 0£
succeed. The completed the indlt"ated set and then

implication tree is:

~oal

list(ael':>.c.nil)

list(b.c.nil)

l ls-t(c. nil)
I

list:(nil)
X

Suppose we wish to define axioms ror d predicate
notel(X,Y) which succeeds lf Xis not an element or Y.
Reasonable axioms £or this predicate mi g ht be:

notel(X,nil).
notel(X,Y.Z) <- noteq(X,Y)6notel(X,Z).

Verbally these axioms might be stated:
"X ls not dO element of the empty set"•
"Xis not an element of the set consisting of

Y and so~e other elements lr Xis
not equal to Y and X is not an
element 0£ the set of other
elementsu.

The axioms for no~eq re ma in to be defined. The a :K ioms

are:
noteq(X,X)<- / & 1ail.
noteq{ X, Y).

These axioms ~ake use of a special control ~eature, the
slash(/). To illustr~te this feature we trace ~he
attempt to prove the g oal <-noteq(a,a). Initially, we
have:

16 -

e-oal
l

noteq(d. 1 a)

The xirst axiom ls selected giving:

goal

I
no+eq(a , a)

I \
/ :fail

The slash predicate always succeeds . It is used to
prevent certain alternatives £rom being considered in
the proo~~ In this case it prevents the second axiom
£o r noteq from being considered . The implication tree
looks lilce:

p>oal.

I
noteq{ a,a)

I \
/ fail
X

The fail predicate has no axioms and consequently it
:fails. Since the remaining axiom for noteg is not
considered, ~here ~re no remaining choice points and
the entire proof falls.

Conversely the g oal <- noteq(a , b) succeeds . The
head o1 the axiom noteq(X 1 X) <- I S fail cannot be
unified with noteq{a 1 b) so the next axio m is selected.
The uni~ication succeeds and the proof is complete.

The action of the slash predicate is described
more precisely: When the slash predicate is execute~
it removes all choice points in the proo:f_.., :from the
point when the axiom containing the slash was selected
to the current point in the proof .

The slash predicate is utilized tor two main
purposes. The first ls to sffect the me~ning of an
axiom • of~en to handle negation dS in noteq above. The
second use is to improve the e~£lciency o~ a program by
preventing spuri~us choices from being considered. For
example, consider the 1ollowing axiom used to test if

- 1 7 -

two sets have one or more co~mon elements:
intersect(A, H)<-ele ment(X,A) 6 elenent(x,e).

I:f a call to the intersect predicate succeeds and then

backtracking returns to that point, then the element
axioms will cause other choices Lor X tu be tried.
Norrnal-ly the attempt to :find a di:f:£erent common element
ls completely unnecessary since it hdS already been
proven that A and R intersect. This extra search can be
eliminated by using the :following axio m :for intersect:

intersect(A,B)<-element(X,A) S element(X,B) S /.

A PROLOG p rogram consists of a sequence o1 symbols

belonging to a symbol vocabulary. ln this
implementation the EBCDIC character set is used. Any
one byte value is a valid symbol, even though it may
not have an expl icit EBCDIC graphic code .. These symbols
are divided into £our groups as follows:

(a) L,.et:t~!:.§. - The upp er and lower case

from A to z.
(b) ~~gi.1.§. - The digits from Oto 9 .

letters

(c) .~Yn&.tus!..1.i.2.ll S:ymho ls - Th is group consists of

{) .. '~ the Le-ft and right parentheses, the ., V

comma, the apostrophe, the quote and the
end-0£-term symbol(the period).

{d) Ih~ Uud~~£.2rst - This symbol can be used in
constan~s and variable na es.

(e) §.!!.sU;:ial ~~.1.§ - This g roup consists of' all
symbols not in any of the ~our preceding
catego ries.

The ~undamental syntactic construct ln PROLOG is
the term. As stated earlier 1 a term may be a variable,
a constan1: or a skeleton. tit ~(:k)

A variable is rep.resented by er +tu iabl.~Jn~ Ttre
vasr"ia-ble .. e: .. e k @uppe r case letter ~towed by , a . 1
sequence o .1'. l~tters and digits. Thus x, A1B2C3, ~ ~o.B1 ~
Abe are all variable~. In addition a single asterisk(*)
is a variable of a special sort. It is called an
anonymous variable and has the special significance
that each occurrence is considered to represent a
dis~inct variable.

A constant is a sequence oJ:' symbols enclosed in

18 -

- ------

apostrophes,.
constant.
a.po strophe,
Exa111ples of

The sequence represents the value of the
Note that i£ the value contains an
then the apostrophe must be duplicated.

cons tan ts are:
~ 'ABC'

~

1 37+ A)•
')'', ..
' '

The value of the third constant shown above consists of
the three symbols right parenthesis, apostrophe and
comma, In that order. The value o~ the last constant
consists of no symbols. The apostrophes enclosing a
constant are not always required. They may be omitted
if any o1 the followin g conditions are satis£ied:
--j> 1/

2/

3/

The value o~·the constant consists entirely 0£
sym.ools which are letters) e>- di g its q/1,4
underscores , and the initial symbol is not an
upper case letter.

The value of the constant consists o~
symbol which is not a punctuation sy1nbol.

one

Tt , e va. lue o:f the constan-t consis ·ts o:f the
single period symbol and the constant is not
1ollowed by a blank.

4/ The value of the cons td.n t consists oi' up ~
/ eight special. characters md "tb ere --rs-~

erator declaratlon ±or the va~ue In the
data base. For d £urther explanatlon 0£

operator cteclarations, see ~.§ ~gi!\hgag
Pregl.s_~~ in conjunction with the t>Pi bull t
in predicate. Note that underscor~re not

~ special symbols.
Integ ers are constants whose values satis1y certain
criteria. A constant is an .ia_teger if and only if it
satisfies any of the £ollowing:

1/ Its value consists 0£ one or more di g its.

2/ Its value consists of the symbol
by one or more di g its.

3 / Its value consists 0£ the symbol
by one or more digits.

n+n followed

ft _-tt ollowed

Integ ers may be use d as arg uillents to several built-in
predicates which per£orm the fundamental operations of
integer arithmetic. Two integ er constants are

CJ>
19·1f. .JJ i 41,J ~ v.rlwi {;Ji

I

equal(l.e. indistinguishable) if their values are the
same a~ter any«+« symbols and leading zeroes have been
dropped. Thus 001 1 • +-uoo1 • and 1 are all equal
integers. Note -thc1.t signed inte ·.sers must be enclosed in
apostrophes.
A constant- whlch ls not- an integer is an
'AH{'• •+• and'' c1.re all atoms . A sequence
which satisfy the crlteri4 for an ato• is
id~tl.i..f.ieJ:•

atom .. ab,
o:f symbols
called an

A skeleton consists of an identifier and one or
more arguwent terrus. Both predicates and functions are
repres~nted as skeletons. A skeleton has the following
:format:

<idevtifier> (<argument list>

Tbe a .rgument list consists of one or more terms

separated by commas.

:fact{ 1)
g{ 1,x, f(1))
1 A/.) 1 (X:,Y)

Examples of skeletons are:

Note that any o~ the arg u~ent terms of a. skeleton rnay

in turn he skeletons.

To permit a more convenient representation for

skeletons, identifiers can be declared as infix, preflx
~r suffix. For example, if the ldentiLier likes is
declared as in£ix then the skeleton represented as
likes(a 1 b) can also be represented as a likes b.
Similarly, if the identifier t is declared as suffix
then !(a) can be represented as a!.

An identifier used as the skeleton identifier in
infix, prefix or su.ffix form is called an Q.Q.!LC..M.Q.£.•

The use oj' operator notation ls provided in addition to
the basic notation for skeletons which was first
described. The two forms may be mi,ed £reety. For
example, i:f llkes is declared as infix -then f(a likes
b 7 likes(c 1 d)) is a pe .r.fectly acceptable form . A term
is represented. in £.~Q.nicat .f2.c.;n. when it is represented
without usin.1 infix, prefix, or su:f:fix notation.

In any term, subterrns
indicate the term structure .

a+(b-c) is equivalent to
but (a.+b)-c is equivalent to

- 20 -

may be p~renthesi~ed
For example:
+(a,-(b,c))
-(+(a,b),c).

to

I
I

Any term or subt~rm may be paren~hesized .
infiK then ((a.)) li k es {c ll k es(d)} is

Lf likes is
a valid term

equivalen~ to likes(a,ll k es(c,d)).
An identifier can be declared as both prefix and

inZix si~ultaneously but an identifier which is
declared as su~iix can not be declared as infix or
prefix. An identifier is d eclared by adding an
opera.tor d'ec1.aration axiom. , The form.at -:for j',liji'e ..aw-i:u":11

-~ 1//1'#~- ~--- ,.,1 ~: CV.,

op(<l.ctenti :f ier>,<type),<priority.>).

<identifier> is the identi£ier to be declared.
<type) speciLies the declaration type and may be

any o~: pre£ix, su~tJx, lr, rl.
(priority> is a positive inte g er less than or

equal to 1000 ..
The declaration types of su£rix and prefix have an

obvious interpretation• The types rl and lr are used
to declare operators as infix right-to-Left and left
to-right respectively. For example, if"•" is d eclared
as rl then

a.b.nil is equivalent to a.(b.nil)
and to .{a,.(b,nll))

I:f 11+ 11 is declared as tr then
a+b+c is equivalent to (a+b)+c

a nd to + (+ (a , b) , c)

The priority s p eci£1ed in the declarations g ives
the posi1-ion of the declarations in a p riority
hierarchy. The larger the numeric priority the
stronger the "binding" of the operator. The followin g
examples illustrate the function o1 the priority. For
these examples
a.re in e.f:fect:

assume that the

Then:

op(, 1 preflx,40).
op(t,su:fflx,70).
op(.. , rl, 50) •
op(+ , l r, 6 0) •
op(- , l r, 60) •

~a? is equivalent to ,(a!

following declarations

a+b-c.a+e.£ ls equivalent to ((a+b)-c).((;t+e) ,.:f)

- 21 -

~a+b! is equivalent to ,(a+(b!))

The problem or resolving the
identifiers have equal priori ti es
declaration types has not yet been
instance i .f the declarations in e.f:tect

op(+,lr,63).
,op (- , r l 7 6 ')) •

then how is a+b-c to be interpreted?

case where two
hu-t di t:ferent

discussed .. For
are:

The rule :for resolving such conflicts is:

If the rightmost oper~tor 1s declared rl and the
le1t~ost operator is prefix(or rl} then treat
the rightmost binding as the strongest.

Otherwise treat the leftmost binding as strongest.

The example a+b-c is equivalent to (a+ b)-c. This detail

is conrusing1 and lt is recommended that the ser not
declare operators with the same priorities and
di:f:ferent types and hence avoid the condition
completely. The above description is included solely
.for the sake of completeness.

The lnitial state o~ the PROLOG system includes
several operator declarations , namely:

op(<-, rl, 10).

op(<-, prefix, 10).
op(I ,rl, 20).
op(& , rl t 30) •
op(-.,prefix,40).
op(.,rt, 100) ..

Operator declarations Cdn De added

adding and deleting axioms ~or the
described in ~•2 Q~i~£!\§.g Pr~,ll£A1~•

and deleted by

op predicate as

An input term roust be deli~ited by an end-0£-term
£..Q!!:.£i!:.£.ll:£.• The period is usect. To distinguish between
the use of the period as an operator and Its use as the
end o~ term ch~racter, the ~allowing rules are used. \
period that ls not enclosed in apostrophes , double
quotes or comment delimiters i~ treated as an end 0£
term delimiter 11:

(a) it is ~allowed imillediately by one or more

- 22 -

- --~---- ----~---------------- -

blanks or
{b} lt is the ldst character oL an in p ut line. (B y

line we ean either an in p ut line from
the terminal or an input record 1rom a
:flte).

Blanks may be :freely used in the input term,
subJect to the following conditions:
~ {a) Rlanks may no-t be used lnterna.l to an unquoted

/ - identifier or constant (e. g . ab ls

""

<;: - dl:ff'erent from a b since ab is a sin g le
/ · l d en~l~ler and a b represen-ts two
"- - iden-tifers , namely a followed by b).

or (b) Blanks may be used in a quoted constant
~-- identifier but they d.re included in the

' . .;.

(C)

< - - value o:t: the constant(e . g .
.:::-- the sa.ne constant as • A.13 1) •

• A n• is not

One or ruore blanks ~ust be used
..::--- the -fol lowing:

to separate

----, 1) two quoted i d entifiers or

(2)

constants(e . g~ •~ 1 •s• represents a
constant with value A1 B whereas
1 A1 1 H 1 represents two constants
with values A and 8 respectively).

two unquoted
constants where

identi£iers or
neither consists

, i;;olely o.f special.
~ a; is equivalent to
- not equivalent to a

characters(e . g.
a ; but a12 is
12).

(d) Blanks must not be used after
where the period ls

a period except
an end-o :f-t erm

d elimiter .
Whenever one or more blanks may be used,

A coaim~n.1 has the -form:
a comment may

be inserted.

! *<comment characters>*/

<comment charact~rs> may be any sequence of characters
not including an asterisk £allowed immediately by a
slash . Note that ~his format for a comment implies
that if / is declared as a pre:fix or lnLlx operator and
ls used £ollowed Dy~ variable then a ola.nk must appear
between the / and the :(< o:f the var lab le. To he tp detect
errors caused by an improperly closed comment a warning
message i~ issued if a I * is encountered in a comment.

Axiom and goal statements are special cases of
terms• They are read and parsed using the opera~or

- 2.J -

declarations.
been entered a.s
term o f the for m:

thus the axiom a<-b&c could also have
<-(a.,&(b,c)). A g~!!J,_ tla~fil!!.fill~ is a

<-((g oal conjunction>).

An axl2_.m ls a term of the form:

or

<-{<head>,<goal conjunction>).

<head>.

<head> can be an atom or a skeleton.
e-.g .• a.

a(1, X)
'B:'(*)

<goat con June ti on> can have the form
<goal. literal>

o.r the form
&(<goal literal>,<goal conjunction>)

(goal literal> can be an atom,skeleton or a variable.
A variable goal literal is called a meta variable and
is described in~.~ fiKgcution QQn..1,rol £.c..g_g~~§__te~.

A lle.!. is 'formed with the

£.Q!Ui.l.J:.!.!tlQ.!: 11 ." and the end-of-List !!!.~.c_g_:r_ nil. For
exampLe ~he list with ele~ents a, b and c ls
represented as a.b .c.nit o.r in canonical ~orm as
.(a,.(b,.(c,ni l))). The emoty list is represented as
nil.. A .e..1£ing is a list of characters, or more
precisely, a litit of constants each with a single
character value . An abbreviated 1ormat is provided to
represent strin~s. The format is:

11<characters>u
For example:

"ahc 11 ls equivalent to a.b .. c.ni1..
"()ff is equivalent to ' (1 • 1 }' eni l.

An empty list may also be speci£ied:
tttt is equivalent to nil •

• ote that "ab" ls equivalent to .(a,.(h,nil))
the period is declared as ln~ix ri gh t-to-le£t4

- 24 -

onl.y i:f

After you have become familiar with PROLOG, you
may ask what happens when£ PROLOG progra~ attempts a
uni.fication such as -f(X) with x. One possible approach
would be to have the unification fail, rather than
construct a I loop' . It turns out that al lowing this
sort o1 loop provides a useLul cap~bility for
manipulating 1 1n±inite 1 terms. The term resulting from
unifying f{ X) and X is f(f(f(••• >)).

This PROLOG implementation allows representations
o-J: int'inite
ad<led to
introducecf
notation ls

terms to be read, written~ uni1ied or even
the database . A special notation is
to simplify the representation. The
simple but not necessarily easy to read.

T,,.be t>-e..S~otatlun for understanding these is a two
dimensi o;;J.~aph style notation• Unfortunately, such a
notation is not well suited to conventional input and
ou--tput devices.

The notation chosen :for this implement at lo~
extends the standard -term notatio~ by allowing al'\
1 in1inite term speci1ication1 or 1 Loop specification•
to be used in place o:f any subterm. The loop
speci1ication has the format NNn#• where n is the
length o~ the loop. The term resulting £rom the
uni£icatlon o~ X and f{X) would be represented as
f(~ill##). Similarly i:f we unify X and :f(g(l ,X, h)) then
the resul-t would be represented a , 1'(g(1 1 #N2.IIJ11 1 h)). Any
output term, containing a loop 1 wlLl be written using
this nota-tion. Sim ilarly, any term being read in may
contain subterms using this notation. I£ an input term
contains an Invalid ln£inlte term re1erence, for
example too large a loop length, then an error message
will be printed and the term rejected. For exdmple the
teraa 1 :f (g(,#113111.I))I is invalid•

When a term is written 1 the loop lengt,h specified
is not necessarily minimal . For example , i:f the result
o1 uni~ylng X and ~(:f{XJ) is printed , the rormat will
be £{f(N62##)) 1 even though the format f(#HIH#) would
be more compact.

Axlo~s containing in£inite term re£erences may be
added to the data base. However, infinite conjunctions
on the right hand side 0£ an axiom are not permitt~d .
For example, a(Ukl#N)(-b is valid but a(X) <- b ~ ##l##

- 25 -

is invalid.

- 26 -

~ Buil.!-.i.I!. Pre .:ticates

The implementation provides several built-in
predicates. fhese predicates provide fdcillties which

c:t'1.e -==-.....,, either impossible or inconvenien-t :for the
programmer to implement directly in PROLOG. Many
built-in predicates have side ef£ects 1 particularly
those associated with input and output. The built-In
predicates can succeed or fail, ex4ctly as other
predicates do. They can also terminate with an error
message if the arguments are inappropriate.

In general~ it is not possible to add axioms for
built-in predic5tes, since they have a fixed
definition. The op and tr4ce predicates represent one
type o~ exception to this 1 in that axioms for these
predicates may be added or deleted hut the presence of
trace or op axlomSin the dat<1.b<1.se ha'lileside e:ffects. The
other type o:f built-in predicate which allow addition
and d~letJon inc~ude error and attn predicates . Error
and attn are special inter1aces provided to invoke user
ax loms when exceptional conditions occur. btt il t •"i'tt"'
~ate~escrihefi. in 'i!,....S ~g;;i,qs§ I'Lli:OCttdtegf".•

The built-in predicates are divided into
groups. The groups and their members are:

six

Structural- Predicates -

Input/Output predicates

v
atom,

¥6:J'

.J j J
cons, int, skel,

fl -, arg ument .. -.1.1a1a A .'.i}-1'
V ' T- -✓

~ileclose , newline,
readch 1 readempty, tab,
writech, writeq

J
string,

readt
write,

Arithmetic Predi~dtes di t f, prod 1 quot, rem, sum'>~

Data.base Predicates -
J

addax,
J

ax, " a.xn,
op, -freeax_

control,

Execution Control. Predicates - ance~tor, retry,

I, -fall, repeat, error,
stop, meta variable,
systrace_

delax,

/, 8 ,
at~n,

trace,

Miscellaneous Predicates digit, Letter,
sy3tem 1 eq, ge 1 gt ,

upshi.ft ,
le, lt, ne

- 27 -

The predicates o1: ed.ch o:f the above groups are
described in the i-0llowing sections.

These predicd.tes provide for altering and testing

the s1:ruc½ure_ of terillS• The µredi. cate,,,~ar atom, int,
var, skel, cons, string, argument,~

atom, int, var, and skel eac · have a single
argument. If the argument is o:f the type specified by
the predicate name, namely an atom, integer, variable
or skeleton ~P'lk¼in::1.-,y,
Otherwise ~ the predicate
substitution performed

then the predicate succeeds.
fails. In no case is any

or are
produced,.
hxampl.e:

test(X)<-lnt(X)&testint(X).
test(~)<-atLm(X)Stestatom(X).

any error

I* use testint to process an integ er and
to process an atom *I

messages

testatom / {

~,l,J v,tjl JI' r JI::,,:,. b

Suppose we wish to def ine an axiom which is passed

a ske~eton and prints the skeleton name. In order to do '
this we need -the cons predica.te. ilJti '11 is used to
decompose a skeieton into a list consisting of the
skeleton name foll.owed by its ,;i.r gu.nen ts.. For example
the call <-cons{X 1 a(b)) will cause X to be uni£ied with
a.b.nil. cons may also be used to -construct a skeleton
term 1rom a list consisting 0£ the skeleton name
followed by its argument_s,.._ _ f'For example,- the call
<-constf-.--x.·:r.nl1..,Yf u.,;i.ties Y with f (X,3). cons treats
a constant as a skeleton oZ O arguments, as shown in
the examples below. If the second ar gumen t is not a
variable then a List consistrng of the skeleton name
followed by its arguments is unLfied with the :first
arguffient. If the second argument is a variable then a
skeleton ls constructed from the :first argument And
unified wlth the second argument. In this case the
first argument must be a list whose ~irst element is a
constant and whose remaining elements are to be the
arguments. If the :first element o:f the list is an
integer then there must be no more elements in the
list, since an integer is not a vali d skeleton name.
Examples:

28 -

flt

I

\

I
I
I

\
\

\

I

\

The following calls succeed.
<-cons(dtom.nil,atom).
<-cons(10.nil,10).
<-cons(a.b{c).d.X.nil,a(b(c),d,X)).

The following axiom acce ts a skeleton as a ±lrst
argument and returns in the second ar g ument a skeleton
like the ~irst but with an initial argument o± 99
added.

expand(Sk1 1 Sk2)<- cons{N.Arg s,Skl} 8
cons(N. 99 .Arg s,Sk2).

Suppose we wish to determine if a constant
contains the letter a in its value. If the first
argument o1 the string predicate is a constant ~hen ~he
second argument is unified with
in the value o! the constant.
de£ine a predicate constanta(X)
a constant containing an a.

the list or characters
The following axioms

which succeeds if Xis

-constant a(Con) <- str l ng(Con, List) S
list a(Llst).

l.ista(a.Rest).

-\
)

lista(F'irs+.Rest) <- li;;.ta(Rest). ------- ---- - jJ;,:,:;:.. r-rCi- I ,v

,tlr!~-..iu.a,;-~~,.•e '..,.~ct to-_
4 •

lii)rn1bo1 i;;; in l ts !o"t!lo4' w.e.. "'l't'l:e re -..

' _ - ri~~:
:first arg ument is a con.,;tan t-, ~ constant

ls decomposed to create a list whose
elements are the symbols in the
constant•s value. This list is unified
with 1:he second <1.r g u ment.

first ar g ument is a variable") -~ second
argument must he a list o:f zero or more I).._ J t?
elements• ~ E'ach element ~ a ··14.U tie a
constant with a value consisting of a
single symbol. The first arg ument is
unified with the constant whose value
consists of the symbo~s in the list.

!!!J::.,;i~hS.a.. ,..;i~!Wil•~ Examples :

,\,

The following calls succeed•
<-string(1 ABC 1 1 "AHC")•
<-st-ring('' ,nil).
<-string(abc ,a.b.c.nil).
<-string (1012,1.2.nil).

I
, I'

- 2 9 -

- ---- - - ----

I.

_,1,IJiel

The 1'oll.owiug
.:first araument and
pre1ixing the first

append(In,Out)

predicate accepts a constant as a
produces the second argument by

with a q.

<- string(In,S) S
string(Out,q.S).

The argument predicate can be used to select the
argu111ent 0£ a skeleton corresponding to a.n appropriate
index. For example, the goal:

<-are;umen t{ :f(l, 8, 27, 6 4), 3, Cube).

will succeed and uni.:fy Cube with 27.
Similarly the goal:

<-argument (:f(1 t 8, 27, 6 4) , X, 64).

will uni£y X with 4, namely the index of the
argu.,1ent which uni.fies with 64. The a.r gument predicate
is al.way~ called with three parameters. The first
argument must be a skeleton or atom or else an error
will resul.t. If the :first argument is an atom it is
~reated as a skeleton with zero arguments and the
predicate simply £aiLs~ The second argument may be an
integer or a free variable. An atte~pt is made to
uni£y , the second argument with each successive index
from 1 to the arity 0£ the skeleton. For each index the
third parameter is unified with the corresponding
sKeleton argumen~. The argu~ent predicate behaves as
though it were defined by the following axioms:

argument(Ske~eton,Index, rg) <
cons(Name.Arglist,SKeleton} 8
atom(Name) t:;

list_lndex(Arg,Arglist,Index).

11st index(Arg 1 Arg.Llst,1).
list_lndex{ Arg,*.List,N) <- list_iudex(Arg,List,M) 6

sum { M , 1 1 N) •

/ ~
/ J-:1 1.n.autl.Qu:h?.u t .Pre<llca t es

Input/Output predicates a re provided
PROLOG program
identi.f.led by

access to external data ■

a constant whose value

- 30 -

to allow a

A file ls
is the -file

ldentl~ier. A Xile identi1ier may consist oZ £rom 1 to
8 chdracters, o~ which the ~irst must be a letter and
the remainder must be digits or letters. The 1ile
identifier is converted t~_, pperca.se by all
input/out put pred icates, since~ file systems do not
allow lower case :file na ::aes. The input/output
predica tes each have an optiona~ £lle identl~ier
argument. l:f 1:hls argument is omit te<l the ma in
input/output stream is assumed (i.e. the terminal £or
an interactive session). The file identifier is
option~l £or all input/output predicdtes except the
:fileclose predicate, for which it is manditory.
Several of the input/output predicates may also have an
optional record number
be a posltive integer
appropriate record in
indicated operation.

argu~ent. This record number may
and is used to position to the
the .ii 'le be.t'ore per :form Log the

read is a predicate with
arguments; The second argument
identifier. The third argument

one,
is the

two or "three
optional :file

ls an optional record
number. It must Le a posit ive integer, indicating where
in the 1i~e the read is to start. The first record in
the file has a record number 0£ t. A term - is read :from
the indicated fi~e and uni£ied with the first argument.
The term must be delimited with the end of term
character. Tf the end of the input :file has been
reached the predicate 1aits. l:f backtracking returns
to the read then a read of the next term wi~l be
attempted. I£ the term read cannot be unified with the
:first arg ument or the format oL the term is invalid
then back+racking will cause a rea d of the next term to
be attempted.

write is a predicate with one, two or three
arguments. The second argument is the optional -file
ident1£ier. The third argument is an optional record
number. The term specified by the first argument is
written on the indicated file. The ter~ is delimited by
the end of term character. The term is written using
prefix 1 ln~lx and su±£ix notation where appropriate, as
indicated by the operator declarations at the time o1

writing. --·
wrfteq is a predic_ate with one-1 - tw-o or three ~

arguments. It .:functions in a manner ver;--- ~ i-;llar - to
write. fhe only di~1erence occurs in the for~at of the
written output• writeq encloses
quotes(i.e apostrophes) as required,

- 3 1 -

identii:iers in
to ensure that the

written term can he read back in by the read pred icate.
Thus any identl~iers containing blanks, punctuation
symbo~s, etc. will be written enclosed In apostrophes.

readch is a r,redica t e •i th. one, two or three .
arguments. The second argument is the optional -file
£dentiiler. The third argument is an optional record
number. A slngle character is read from the given
1ile. The constant whose value is the single character
is unified with the first argument. [~ the end o~ an
input line (or record) has been reached then the first
character of the next line (or record) ls read. I~ the
end ot the input £ile has been reached then the
predicate 1ails. 11 backtracKing subsequently returns
to this point or if the uni~ic4tion o:f the first
argUfllent and the character :fails, then the next
character in the input -file is read and the unification
reattempted.

The readempty p redicate ls provided for use in
conjunction with the readch predicate. It allows record
boundaries to he detected when reading a character at a
tillle• reade,11pty ls a predicate with o_ne opt_i'9'llal.
argum~nt - the file identi£ier. - ~'CHtp::ty ~

T-t- succ~eds lf' the i-nput bU1.'i'er is empty(~ the next
rea.dc h wl 11 cause a new physi ca l record to be read)•

~ritech ls a predicate with one 1 two or three
arguments. The second argu- ent is the optlona1 :f ile
identifier. The third argument is an optional record
number.. The .first argument speci:fies a term which is
formatted using the operator declarations {as :for
write) and placed in the output bu1:fer for the gi ven
file. If the b uffer is filled then it ls written to

/

the given file (and emptied). If the buffer is
p artially :filled -then it is not written out. Note that _ _/ ~ ~.
the readch an::I writech predicates are not s-,,u~ti•icat. ~.
The writech predicate can be used to write a single
character but i~ is consider~bly more g eneral than
readch.

ne-wllne is a predicate with one optional argument.
T~the file i denti __ Jj.~[f -ue.ti-ae writes
the current output bur--re1-~ --:i--o the given file and empties
the bu£fer. newline is used in conjunction with
wrltech. For example, the goal statement:

<-writech('on 1) -~ wrltech(one) ~
wrltech(' line.•) t; newline.

causes the following to be written on the terminal:

- 32 -

on one line.

Note ~nat this out p ut is
the cat l

ldentlcal to that produced by

<-write(1 on one llne 1).

or by the call
<-wrltech('on o 1) S write{ •• ne line•).

~ileclose is a predicate with one ar g ument a
file identi .:fier. i'ileclose may be used to logical ly ...,')
close a :fi le - -so that it rnay be. re1"ead :from the
beginning . Note that when a file ls used .for- input
a~ter output, the :file is automatica~ly closed so that
the first input will be :from the beg inning o~ the £Ile.
In a similar manner, output after Input will cause an
automatic close. Output to an existing ~ile wilt be
appended ~o the end 0£ the ~ile.

tab ls a predicate '!ith one or two arg '-!me.n...t:.s.-= The
second argument is the optional fi~e identifier. The
1irst ar~ument must be a non-neg ative integer. It
speci11es the number of blanks to be written on the
output J:i 1.e ..

Ther~ are several predicates which are included to
provide the basic operations 0£ inte g er arithmetic.
Each predicate has three ar g uments. The f irst two are
the input parameters and the last is the result
parameter. The ±irst two arguments Aust be integers.
The appropriate inte g er function of the 1irst arguments
is unl::fied with the third argurnent.

The arithmetic predicates are:
dif£ - difference (subtraction)
prod
ouot
rem
sum
w,,.J~ • ._

product
quotient
remainder
sum 1/"KC ott,

" I'

The following
calculates the

/lP .. . 1 ~

axioms derine a

.factorial function
arg ument.

fact(0, 1) •
fact(X 9 Y)<- di1'HX,1,Xl) &

fact(Xl, Yl) S

- 3J -

predicate
of its

which
first

/

prod(X , Yl-, Y).
The :follow-lug calls succeed:

< -dl ff (J, 2, 1) •
<-prod(l0,20,200).
<-quot(205 ,1 0 ,20).
<-rem(205 1 10, 5) •
<-sum(1,20,21).

C::---

database built-in predicates

for updating the database (i.e.

I
/),/!, ' 11) (V'

The

faci 1. lty
ax.ioms i fl the active wor.kspac e). The

provide the

the set o:f

oredicates
provided are addax, ax, axn, control., del ax, op and

freeax_.
The addax predicate is used to add an axiom to the

database. It has one or two arguments. The :first
argument must he a val.id axiom• It md.y be :

(a) a unit axiom . In this case it is a skeleton ·or
an atom•

(b) a non-unit axiom. In this case it is o:f the
form <heact><-<body). <head) must he a
skeleton or atom~

The dxiom specified by the :first argu~ent is added to
the database . If a single argument is specified then
the axiom is a~ded alter all other axioms with the same
p redicate name and number o~ arguments~ If the second
argument ls speci1ied it must be an integer or a
variable. We first explain the case of a call with two
arguments where the second is an integer. This integer
speci1ies where this axiom is to be added, as an index
in the list of all axioms Lor the same predicate name
and number 0£ arguments. Consider the following list
o-r axioms:

a(1) •
a(2)<-b.

a(X)<-c(x).

a(4) .•
If the predicate call <-addax(a(m)). or

<-addax(a{m),5). or <-addax(a(rn),100). were issued then
the new list wouLd be:

a{ 1) •

a(2)<-b.

a(X)(-c{ X).

a(4).

- .J4 -

a(m),.

~£ the call <-addax(a(q) 1 1).
would become:

a((I).
a({) •

a{ 2)<-b.
a(X)(-c{X).

a(4).
a(m).

were then issued the list

The index specified gi ves the index in the list where
the axiom is to be added.. If the index is 1 or less
then the axiom is added before the ~irst axiom in the
list. Similarly ir the index 13 grea ter than the Jndex
of the last axiom then the new axiom is added at the
end 0£ the list.

1£ addax is called with a second argu ent o1 a
variable, the axiom specl1led by the first argument ls
added at the end of the list and its index is then
unified with the second argument.

The delax predicate ls used to delete an axiom
from the database. It may be called with one or two
arguments. The Sirst argument ls a term representing an
axiom. The 1irst argument may be:

(a) a unit axiom. In this case it is a skeleton or
a"tom •

(b) a non-unit axiom. In this case it ls of the
:form <head><-<body). <head> must be a
skeleton or atom.

Thus the ~irst argument specifies the name and
number o:f argumeuts -for the .l.X.i om to be deleted. I :f

only one argument is specified then an attempt ls ~ade
to un l fy the a. r gumen t with ea.en o 1: the relevant axioms
in the database. The axioms are se1ected lo the order
in which they appear in the database. If no axiom is
£ound which ls unifiable with the fi rst argument then
the predicate falls. If the uni~lcatlon succeeds for an
axio• then the axiom ls deleted and the predicate
succeeds. [f backtracking subsequently returns to this
point then tne predicate will fail, thus preventing
accidental deletion of further axioms.

If two arguments are speci~ied then the second
argum.en t]s considere d to be the axiom index. It may be
a variable or an integer. The attempts to unl£y the
:first argument with the database axl0-ins roceeds as in
the case o.f one argument. I£ the ~ -at lo succeeds
for a gi ven axiom then an attempt is made to unlfy the

- :35 -

/

axiom index with the second ~r~ument. If the attempt
±ails then the search through the axioms i s resumed. If
the a~ tempt succeeds then the axiom is deleted and the
predica.te succeeds. I:f bacrttr acking suhsequentl.y
returns to this point then the predicate will ~alt.

The ax and axn predicates are used to retrieve
axioms from the database9 The axn predicate retrieves
axioms usin g the predi cate name and number of
arguments. The ax predicate retrieves axioms usin~ a
model axiom head.

The axn predicate has either
:formats:

of the two following

axn(<name>,<nargs>,<axiom>)
axn(<naAe>,<nar gs> ,<axiom>, <index>

The pred1cate calt axn(c,2,A) will cause A to be
unified with the £lrst aKlom £or predicate c with 2
arguments. II there are nq11 axioms £or c with two

. t "" ' arguments then ~ 1 ~ ~·•ald fall. If 1:he call
succeeds and backtracking subsequently returns to this
point then an at-tempt will be made to unify A with th~
next axiom £or c ~ith two argumen~s, and so on. The
pre::iica te call axn(c, 2 , A, I) fun ct ions identically
excep~ that when the call succeeds, I is uni1ied with
the index 0£ the axiom unified with A. Similarly the
call axn(c,2,A,3) will retrieve the third axiom 1or c
with two arguments, if one exists. The predicdi:e call
axn(c,N,A• will unify~ with O and unify A with the
.iirst axiom .for c with O arguments. 11: this
uni£icatlon Lalls or bac~tracking returns to this point
then the next axiom for
When all axioms fur c
then N ls uni fied with
arg\lillent are retrieved

c with O arguments is selected.
with O argui:aent s al'e exhausted
1 and the axioms £or c with 1
in i:urn. This p rocess can

continue until a~l the axioms ror c have been examined.
The 1ourth index argument ~ay be included and it
£unctions analogously to the previous case ■ For example
the g o•l statement:

(-4xn(£,* 1 A)&write(A)&fail ■

lists alL axloms for predicate f ■

The goal statemeut:

36 -

/

<-axn{1 1 N,*,l)&write(N)&1ail.

writes out the di1ferent number of ar g uments for
which 1 has an axiom•

The call axn(Name,N,A) can be used to exa~ine the
axioms [or edch predicate name in turn. First a
predicata name is selected from the database and
unified with the first argument. Then each o1 the
axioms 1or thls preaicate are examined in turn as in
the previous examples . A:fter the last axiom -for the
given name is examined then the first argument will be
u .ni .:fied with another name in the database and the
search will continue. The order in which the predicate
names are examined ls not re£dily p redictable since lt
depends on the bashing algorithm 0£ this
implementation. Consequently thls order should be
considered to be arbitrary. The :following goal
statement will cause all axioms in the database to be
l lsted:

<-axn(*,*,A)&write(A)~fail.

The ax predicate .functions
similar to the axn predicate . Again
:formats:

ax(<heact>,<a xiom>).
ax(<head>,<axiom>,<index>).

in a manner
there are two

very
basic

<axiom> and <index> are treated exactly as ~or the axn
predicate. <head) is a model axiom head and may be a
skeleton, an atom or a variable. If <head> is not a
variable then it specifies a predicate name and number
of arguments impiicitly. The axioms for this name and
number o.-f arguments are examined ai;. £or axn. If <head>
is a variable then all axioms in the da~abase are
examined in turn as for axn(*,*,A). I£ an axiom
uni£ies with the specified dxiom then a model of the
axiom head is unified with the ~lrst arg ument. Hy a
model we mean a skeleton with anonymous variables for
all arguments. The Model idea is introduced so that a
~heorem p rover written in PROLOG may use ax to retrieve
the axioms relevant to a predicate term without
actually unl£ying the axiom head and the predicate
term.

The op
declarations.

predicate
Its use

is
was

used to manipulate operator

lnt .roduced in 2, .. 1,]:he ~ntaK

- 37 -

.in Qtlll!.• Ac!ding a unit axiom tor the op predicate
(with 3 arguments) is.equivalent to adding an operator
declaration. Similarly, deleting a unit op axiom
deletes the operator decldration represented. Thus one
can delete an o pe rator declaration with a call of the
:form:

de lax(op((operator>,<type>,<priority>)).
where:

<operator> is an atom identi1ying the operator.
<type> ls an atom specifying the declaration type and

may be any one o:f lr,r1 1 prefix or su:f~ix.
(priority> may be an integer or a variable.
If a matc~ing Jeclaration is ~ound it ls deleted.

A call to the op predicate may be used to retrieve
an operator d eclaration. For example, the call
op(.,rl,P) sacceeds if«." is declared as rl. In this
case P would be unified wi~h the priority. The call
op(.,T,P) succeeds if there is an operator declaration
Lor"•" The following g oal statement will list all
pre1ix operators:

<-op(Op 1 pre1ix,*)6write(Op)&~ail.
In this case bacKtrackin g to the op predicate call
causes each prefix declaration to be retrieved in turn.
Note that the order in which the declarations are
retrieved is pseudo-random and not the order in which
the original declarations were added. However, if an
operator is declared as both pre1ix and in1ix, the
prefix declaration ls always retrieved first. The
~allowing goat statement will list all operator
dee laratlons:

<-op(Op,T,P)&write(op(Op , T,P))6£ail.

The contro~ predic4te ls used to provide some
special plobal variable facilities. The control
predicate has two ar g uments, a }igl:'., and a ~fll!.l.!.• For
example , the call <-control(top,X) retrieves the result
corresponding to key top and uni£les this result with
x. The key and resul.t pairs are 111anlpulated In a
£ashion slmllar to operator declarations. To add a key
result pair , an axiom ~or control is added. Adding the
axiom control(top,3) records result 3 for the key top.
Only one pair can be recorded £or any ey value. 1£ a
pair exists with the same key ~s one being added, then
the previous pair is replaced. The keY must be an atom.
The result associated with the key must be an atom or
an integer. A key-result pair may be deleted by

- 38 -

deleting the appropriate axiom Lor the control
predicate. For example (-delax(control(top,*)) will
delete the key-result pair with key top. A subsequent
call 0£ the for~ <-control(top,*) would £ail since no
pair exist~. The call <-delax{control(top,99)) would
succeed only if the key-result pair 0£ top-99 ls
currently recorded. The key-result pdirs recorded in
the data base may be queried in a manner similar to
that used ±or operator declarations. For example:

<-control{ K ,R)Swrite(K . R)~:fail •
~lsts alt key-resu~t pairs in the data b~se.

<-control(K, 99)Swrite{K)&:fall .
lists all keys with d result o~ 99.

<-control(i,~)S U R,1, R2) &addax(con trol(i,R2)}.
increments the 5~sult intege r corresponding to key 1.

The control built-in predicate ls also used with

certain special keys to control system options. If the
key verbose has an associated result of on the~ the
system lists any goal stdtements which succeed. The
goal statement <-<goal conjunction> l s written in the
~orm < goal conjunction><-, displaying any
instdntia~ions made for variables in the proof. The
goal statement <-sum(2,2,*) causes sum(2,2 1 4)<- to be
written on the terminal ■ lf the key verbose does not
have result on., then a success1'ul goal st atement is no1:
listed ■

I£ the key noax has an
then the system Indicates each

associated result 0£ on
call to a predicate for

which there are no axioms (and no compiled routines).
F or each such call a message of the form "noax - xxxxx
nn" ls displayed ■ xxxxx ls
name and nn is replaced by

With -this 1'.eature, the goa.l

repldced oy the predicate
the number 0£ arguments.

<-sum(1 1 2.3)jprodq(J,4,12)
causes the £allowing messages to he displayed:

noax - sum 2
noax - prodq 3
?

This feature is initially enabled and illay be disabled
by deleting the control(noax,on) axiom or adding
control(noax,of~). To enhance the usability of this
:feature:, the :fail predicate {with no arguments) is
included as a built-in predicate which always fails ■

Thus spurious messages o~ the ~orm noax - :fail Oare
avoided ■

- 39 -

/

The key lower ls used ~o control the translation
o1 input from the main input stream. I£ lower ls set to
on t hen lower case let ters Zro& the terminal are input
as lower case~ Ir lower is not set to on then lower
case letters from the terminal are translAted to upper
case as they are input. _The initial setting of lower is
determined based on the mode or operation when PROLOG
ls inltlated. If single uppercase ~etters are assumed
to be varlables{the de1ault }, then lower is initially
set to on. J~ variables can be designated only by using
an asterisk1 then lower is initially set to o~f.

The key g oa~input can be used to control the input
format of goals versus axioms. If goalinput is set to
on then input terms are aSSUilled to speci1y goals . The
period character is declared as a prefix operator with
the single initial a.xio1n U(.(X) ><-addax(X) 11 • Thus wlth
goalinput set to on, axioms may be added to the data
base by entering them with a period pre~ix. With
goalinput set o:f:1', all input terms are assumed to be
axioms unless they have a unary •<-• as the main
skeleton. godlinput ls initially set to on. To make
the input 01 axioms a bit more flexible when goallnput
is on, the :tollowing axiom is provided in the initial
data base:

(X<-Y)(-add ax(X(-Y).
This odd looking axiom makes the initial period
optional for non-unit axioms. period(or ore formally
"unless the input term is an instance of a skeleton £or
• • • with one a.rgumentn). Ter.t11s preceded by the period
~ a.ssumect to be axioms.

,,,,-- ~ The xreeax_ predicate (yes it d oes end in an
underscore l) is normally o.f use only in very
specialized ins-tances, usually when writing second
level interpreters in PROLOG. When using a second level
interpreter which 'never .finishes•, certain anomalies
occur in the recovery o1 space 1rom deleted axio~s.
When an axiom is deleted in a proo1, the space 1or the
axiom is placed on a 1 deferred £ree list•. The space is
not freed directly since the axiom may still be used in
the prooL. Space on this deferred ~ree list is freed
when the proo£ is completed. Thus in a second level
interpreter which is continually adding and deleting
axioms, ~ large deferred free list may be built up and
the interpreter can run out of space. To provide ~or
this situation, the freeax_ predicate ls provided.
Invoking the freeax_ goal causes all space on the

- 40 -

de:ferred :tree list to be :freed .. [t is the
responsibility oi the pro~rammer to ensure that the
current proof does not contain any re£erences to freed
axioms~ Otherwise, disastrous results are likely!

;l.g ;Execution Control Predicates

The execution control predicates provide

Iacilitie5 £or testing dnd controlling the pro g ress of
a proo:t. The ancestor, retry, I, &, I, repeat, fail,
error, a~tn, stop and trace predicates a.re included and
the meta variable facility ls also provided ..

The I?a.C~!!.!. of a g iven literal in a proo:f is the
literal which invoked the axiom contdinlng the given
literal. In the implication tree describing the prooL 1

the parent literal labels the node above that labelled
with the ~iteral4 The ancestors of a literal include
~ts parent and its parent's ancestors.. The ancestor
predicate is used to examine the ancestors o~ the
literal which invoked the pre~icate. When ancestor is
used with one argument, the argument is unified with
the most recent ancestor ~or which this is possible. If
the ar g ument cannot be uniiied with any ancestor, the
predicate £ails. If the predicate succeeds and
subsequently backtracking returns to this point ln the
proo~, the argument is uniried with the next most
recent ancestor and so on. The 1ollowing axiom will
list all o± the ancestors o1 the ancestor literal and
then :fail.

listanc<-anLestor(A)~write(A)~£ail.
first ancestor listed will be listanc.

When the ance5tor predicdte is
arguments the first ar g u ,nent functions

Note that the

used with two
in the same way

as the single ar~ument above. The second arg ument is
the ~~iQ.C 1 ndex. For a given ll terat the .i.ncestor
index o:f its parent is 1 1 the ancestor index o:f its
parent's parent is 2, etc. The first ar g ument ls
uni£i~J with each ancestor in turn as above. I:f this
uni1icatlon ls success~ul then the second arg ument ls
uni£ied wlth the current ancestor index. The followin g
axiom will list the five most recent ancestors 0£ the
ancestor literal:

listanc2<-ancestor(A 9 N)~write(A)&eq(N,5).

The retry predicate is provided 1:0 :facilitate

41 -

recovery 1rom an error situation. After a correction
has neen made~ the prooX may he restarted ±rom some
point before the error. ~etry has one or two arguments
which control a search through the ancestors exactly as
Lor ances~or. The difference is the action taken upon
success. Ti an appropriate ancestor is iounrt, the proof
ls backed up to the point where the subproof £or the
ancestor literal began and th• p roo£ is re~tarted ~rom
~hat poin~. retry restorea the proof to the state it
had at a particular point in the past. Consequently
retry is only useful when some change has been made to
the axioms.

The slash predicate •ith no arg uments was
described ln _g_.a _e_RQLOQ Execution and BacM!:_a&.k_ing.
The slash predicate ls also provided in a ~ore general
~orm with either one or two arguments. The arguments
control a search throug h the ancestors exactly as for
aoces~or and retry. If this search £ails then the
predicate :fails.. If 1:he search succeeds then certain
available choices are eliminated fro• an existlng
portion of -the proo:f. All choice points are removed in
the par~ of the proof £rom the polnt of selection of
the given ancestor literal to The current point in the
proof. Thus a call of the form/(*) has exactly the
sa~e effect as the simple nullary / call- Consider the
1ollowing example:

' a<-b&c&d.
h<-e.
c<-.f&g.
e.
f.
g(-/{ C)f;h .•

<-a.

The implication tree has the
unary slash ls called:

- 42 -

tot lowin g form when the

goal

I
a

I \
I \

I \
b C d

I \
I \

e .f g

X X \
\

/ (C) h

All choice polnts £ram the selection of c<-£6g onward
are eliminated. Thus if h ~alls an dlternate proo~ 1or
e will be attempted (dnd the subproo~ o~ c wilt be
deleted).

The meta variable facility allows a variable to be
used in place of a literal in a goal or in the body of
an axiom. When the variable ls encountered in a proof
i~ must be bound to a literal . The proo£ proceeds as if
this literal occurred instead o~ the variable. For
example, the £allowing axiom de1ines a predicate exec
which reads <l. term and "executes" it.

exec<-read{X)~X.

Axio~s are included 1or the 8{*,*)

predicates. The axioms ror I are:
l<X,Y><-x.
].(X 1 Y)(-Y.

and the l (* , *)

These axioms allow alternativas to be specified in an
axiom body or goal with the desired e£fect. The axiom
Lor & is:

S(X, Y) < -S (X , Y) •
This axiom may look a bit ridiculous but it is useLul ,
particularly when using the met~ variable facility . For
instance, if as input to the exec axio• above, aCb is
speci·fied, then this axiom for i:;; would be invoked and a
and then h would oe called .

The fail predicate (with no ar~uments) is p rovided
as a built-in predicate which always falls. This
predicate ls provided even though p rovidin g no axioms
£or 1ail woulJ yield a predicate which always £ails.

- 4J -

The reasons ~or providing such a predicate are:
{a) The fall predicate gi ves a standard name 1or a

predicate which d.lwa.ys fails. This imposes a
programming
reada.bl ti ty.

standard which may improve program
This standard predicate could also

make it easier for a compiler to per:for111 certain
optimizations.

(b) fhe provlslon o:f the built-in 1ail predicate makes
the NOax feature 01' the control feature more
use1ul. Reier to the description of the control
predlcate in ;I.S ;Qataba&@. Pre-dicates 1'or :further
details.
The EOtop predicate ls used to leave the PROLOG

system. The execution 0£ the stop predicate terminates
the PROLOG session and returnd to the operating system.
All axioms an1 operator declarations in the current
workspace are lost.

The repeat predicate can be used with zero to 1our
arg u ments to perform loopin~ in a proof. Repeat with no
arguments succecJs initially and al.ways succeeds on
bdcktrdcklng. Thus it cdn be used to loop indefinitely.
The loop Cdn be terminated only through use of the/ or
retry predicates . Repeat with one argument provides a
similar looping £ac ility but also maintains a loop
counter. The argument is first uni~ied with land then
to 2 on bdcktrack ing , etc. Again the loop can be
terminated through / or retry. The second, third and
fourth arvuments of repeat can be used to specify an
initial value, a stopping value and a step value,
respec tively. If any o± these arguments are specifi ed
then they ~ust be integers. The second parameter
specl1ies the ~irst value to be used ~o r the counter.
I.f this param.eter is omitted, then the starting value
is assumed to be 1, as described above. . The third
parameter is the sto p ing value. When the loop counter
exceeds this value, the repeat predicate Lails. The
fourth parameter specl£ies the increment or step value~
1£ it is omitted, then 1 is assumed. ~ negative step
value may be specified, in which case the loop
continues until the counter is less than the stopping
value. Note that comparison to the stopping value is
made on initial entry to repeat, so that the predicate
may £ail the first time 1£ the stopping value is less
than the initial value.

The error built-in predicate ~i£Lers from the
other predicates in the system in th~t it is not a

- 44 -

-

built-in predicate de1inition but a special lnter£ace
which can be used to call a user-de£ined p r edicate. The
error predicate (with no argu~ents) is called when
certGln non-disastrous errors occur in a proo£. A
message describing the error ls always printed before
invoking 1 error 1 • The user may provide any axioms
desired ~o list ancesto~s, allow axioms to be
corrected, or to simply g ive up. A useful set of axioms
:for error are included ln the standard s.et o.f axioms
loaded wi+h the PROLOG system. These axioms are de£ined
in M!l!SUllil.3 ft: The ~R.QbQQ llEC tile

The attn built-in predicate ls analo~ous to the
error predicate. The attn predicate is called when the
attention or break key ls pressed on the terminal.
User axioms may be added Lor attn to provide whatever
exception handling is desired. The standard set o:f
axioms ln the PROLOG EXEC £ile invoke the axioms ror
error when attn is called(i.e the axiom for attn is
1 attn <- t-rror').

The trace built-in predicate provides special
1eatures for debugging P~OLOG progrdms. It allows
execution tracing to be enabled or disabled on a
predicate by predicate basis. The trace predicate
xunctlons in a ~anner similar to the op predicate, in
that axioms £or trace can be ad ed, tested or deleted
and the presence o:f trace axioms ..I.. side e-.f:fects. If
the data base contains an
where P is the name o1
enabled £or all attempts
name P .

axiom oi the forra 1 trace{P) 1

a predicate 1 then tracing is
to prove goals with predicate

The actual tracing ~unctions to be performed can
be de1ined by user axioms . The standard PROLOG EXEC
1ile Includes axioms which write out t he 1 pos ition 1 and
the 1 goat• £or a traced predicate. Four 1 posi1:lons 1

are defined 1 namely •call' 'exit• 1 redo 1 and 1 fail 1 •

The 1 call' posltion occurs when the goal ls initially
attempted, before any unification has taken place. The
1 exit 1 position occurs after the goal has been
success:fully roven. At the exit point , the goal has
been unified with an axiom head and the axiom body has
been executed. The 1 red o 1 position occurs when
backtrackJng returns to the goal, berore the attempt
has been made to reprove the goal . The 11ail 1 o8ition
occurs after a final unsucces3ful atte~pt has been made
to prove the goa~ .

Enabling tracing :for the goal. 'Goal' causes

- 45 -

/

execu~ion to proceed as though t(Goal) became the goal 1

where t has the 1ollow ing axioms!

t(Goal) <- systrace_(call,Goal) ~
Goat S
(systrace_(exit,Goal)

systra.ce_(redo ,Goal)j.
t(Goal) <- systrace_(£ail,Goal).

These axioms will cause the systrace_ axiom to he

invoked at each of the four posltlons in proving the
g oat. Note that :for this to work correctly, the
systrace_ goal must succeed for positions call and exit
and must fall for positions re do and fail. The normal
axioms for systrace_ (which are included in the
standard PROLOG EXEC 1ile) are as 1o~Lows:

systrace_(Position,Goal) <
systrace{Position,Goal) &
-fail.

systrace_(call,Goal}.
systrace_(exit,Goal).

then define the systrace predicate to The user may
wrl te anything
direction. The
axiom:

desired or even rompt
PROLOG EXEC -:f.il..e contains

:for user
the single

systrace{Posltion,Goa.l) <- wri~echl Position) &

tab(1) t;

write(Goal>•

This axiom may be deleted or preceded by another user
axiom to modi~y the output £ormat. For exampte,i£ the
following axio m is added prior to the axiom above, then
the •call' position will be traced by a user trace
routine:

systrace(cal1.,Goal) <- / S trace_calllGoal).

In ge neral, the user may find
di1ferent axio~s Zor systrace,
should be left unchanged.

- 46 -

it use:ful to provide
but those £or systrace_

I

The miscel~~neous group includes predicates to
test the collating sequence of constants, to test if a
symbol is a letter or a digit, and tu convert a
character to or ~rom uppercase. In addition a system
p redicate ls provided to execute operating system
commands. A collating sequence is derined for the
values o f constants as 1ollows:

(a) Any atom is less than any integer.
(o) Integers are reldted by the conventional

ordering ~or integers.
(c) Atoms are ordered by the lexical ordering

imposed when the ordering of the symbols is
as de£ ined by the standard EBCDIC orderings.

Six built-in predica tes are provided to test the
relation between two constants. Each predicate has two
arguments, both or which 111ust be constants. The
relations which cause each predicate to succeed are
listed below.

lt - argument 1 is les3 than ar gument 2
Le - argument 1 is less than or equal to argument

2
,g t
ge

eq

ne

- argument 1
argument 1

argument 2
argument 1

- argument l

is g reater than argument 2
is greater than or equal

ls equal to argumen t 2
is not equal to argument 2

Examp~es: The fo~lowlng predicate calls succeed.
<-lt{a,37).
<-gt(3,'-2 1).

<-ge(a3 ,a)•
<-ne(abc,c).
<-eq(1 abc 1 1 abc).

<-eq(12, 1 +0012 1).

to

The predicates ~etter and digit each have one
argument. The argument illUSt be a constant. The
predicates test if the value of the constant is a
single symbol belonging to th• g iven class. I£ the
argument o:f letter is a constant consisting o f a single
letter then the call succeeds. 1£ the argument of digit
is an in~eger from O to 9 inclusive then the cait
succeeds. The upshift p redicate has two arguments, o:f
which at least one roust be a constant. I£ the first

- 47 -

------- -

argument is a single lowercase letter, then the second
argument ls un1£iect with the uppercase constant for the
same letter. If the first argument ls a skeleton or a
constant other than a lowercase letter, then the
predicate fails . In the remaining case(where the first
argument ls a free variable), the predicate will
succeed only lf the second argument is an uppercase
letter. In this case the first argument will be uni1ied
with the lowercase constant for the s~me letter.
Examples : The following predicate calls succeed

<-letter(z).
<-dlgi t(0) •
<-cti gi H • +oc,01 • >·
<- upsh if t(*, 1 A 1) •

<-upshift{ 1 a ·1 ,*).
<-up sh l :ft (1 z' , • Z 1) •

The system predicate allows CMS coromancts to be

executed from the PROLOG environment. It may be invoked
with one or two arguments. The first argument speci£ies
the command to be executed . The second argument is
optional . If present, it ls un11ied with the integer
return code from the CMS co~mand. If the second
argument is not present then ~he return code is
ignored. The command to be executed is speci1ied as a
list 0£ one or more constdnts. Each constant
corresponds to one token in t°he CMS command. Tokens may
be no more than eight characters ~ung. In order to
invo~e CP co~~ands 1 simp~y use an initial token o1 cp.
Note that all Lower case letters in tokens are
automatically shifted to uppercase. The left
par~nthesls p~eding the options is a separa·te token.
The £ollowing~alid calls to system:

<-system(prlnt.prolog.exec.nil).
<-system(l.'*'• prolog.nil , Returncode).
<-system(cp.q.users.nil).
<-system(t.prolog.maclib. 1 (1 .member.xxxxxx.nil),.

- 48 -

/

The Waterloo PHOLOG system is invoked from the
VM/CMS environment by typing the command PROLOG. This
command invokes the ?ROLOG EXEC Lile and subsequently
the PROLOG modu~e. The EXEC file supports several
options as well as de:fining numerous utility
predicates. The EXEC file is describeJ in detail in
Appendix H.

A typical. Pl<OLOG session involves executing goats
and adding and deleting axioms. The 1ormat or entry :for
axioms versus goals can be control~ed. The standard
system starts in what is called "goalinput" mode. In
this mode, any term that is input ls assumed 1:o be a

goal, unless l t is in the :format 0 .(• ••) 11 1 in which
case the term is assumed t-0 be an axiom to add to the
da taba.se. In .fact 11 • n is treated as a predicate with
the single axiom "(.(Goal)) <- adda~Goal)•"•
Consequently in goalinput mode all input terms are
treated as goals. I£ goallnput mode is turaed off then
goals must be entered in the 1ormat "(-(Goal>"• This
mode of operation is more verbose if numerous goals are
being en~ered, so the goalinput ~ode is normally
preferred. The description of the control axiom in a.~
~tabti~ Pr!1_d1ca,i~§ outlines how to turn the goa "l input
mode on and off. Note that in this manual, goals are
a1wAys described in the "(-(Goal)" syntax £or clarity
o1 explanation. When axioms are stored in a file? they
are normally stored without the"•" pre£lx. The consult
predicate (described in detail in Appendix B) can be
used to read the axioms from a Lile and add them to the
data base. In addition, the consult predicate will
treat any terms in the fl le in the format 11 <-(Goal)" as
goals and execute them. Note that when entering axioms
or goals '1.n a file or from the termin<1l, they must
always be terminated with a dot which ls either ~he
lasi character in the record or is 1ollowed by a blank.

The ~ed predicate can be used to update £Iles o~
axio.u1s when errors are detected .. The axioms may then be
reloaded using the reconsult predicate.

To exlt the PROLOG environment completely, use the
stop predicate. Simply type •stop.•. The attention or
break key on the terminal may be used to interrupt a
PROLOG program. I~ attention or break ls signalled

- 49 -

durin~ a prooI or in response to a READ £rom a PROLOG
axiom, then three exclamations points are written on
the terminal and the attn axiom is called. Axioms for
attn may be defined by the user. A standard set o~
uxioms for attn is described in A.R~llgll ~: Thg PROLO~
liXEC :!ilg.

The PROLOG system also includes 1acillties for
tracing program execution , in order to aid in
debugging. This facility ls enabled for predicate P by
adding an axiom 1 trace(P) 1 • Note that trace has a
single arvument which must be an atom. When trace ls
enabled ~or a preuicate , in conjunction with the
standard EXEC file, the progress o1 proving a g oal for
the predicate will display the goal at each 0£ four
positions. These positions , as well as the £unctioning
of trace are described in detail in a.~ Executi2n
~.QllllQi Pr~dic~1~~ in conjunction with ~he trace
predicate.

The PROLOG input/output predicates provide
£acilitles ±or reading and writing CMS ±Iles. All files
which are accessed are assuaed to have a riletype o~
PROLOG and to have £lxed records with a length 0£ 80
characters. When reacting from files, a blank mode
letter is used so that the normal CMS search order is
invoked . When updating £iles a mode letter of 'A' is
used. Consequently, PROLOG programs can update files
on the A-disk only.

- 50 -

The Waterloo PROLOG system is invoked 1rom the
VM/CMS environment by typing the command PROLOG. This
command causes the PROLOG EXEC fl le to be executed and
the PROLOG MODULE to be invoked from the EXEC ~ile. The
EXEC ~lle allows several options when invoKing PWOLOG.
The :first option controls the size of the data area
acquired by PROLOG for execution. This area will be
used to contain all axioms as well as the execution
stack. The size of the area is speci£led as the number
of 1024 byte blocks o:f memory to be used.
speci~ied, then 100 is assu•ed. The
speci~yln~ the size is:

PROLOG nun

where nnn is the desired size.

In addition, a list o1 ~ile names

I:f no size is
.t:or;:na t .for

separated by

blanks may be specified as an operand. Axioms and goals
will be read from each o1 these files ln turn, usin g
the consult verb de£1ned below. For example the
command PROLOG DATAl 0ATA2 will invoke PROLOG and use
consult to Loa ~t axioms from file DAT.\.l and then DATA2.
The workspace size operand may also be used in
conjunction with the files List by specifying the size
parameter first I as in 11 .PROLOG 2000 DATA 1 DATA21f.

The PROLOG hXEC file also contains a set o~ axioms
tha·t are added to the inl t la l PRO LOG database. These
axioms provide various utility functions, including the
consult function described above. Each predicate
defined in the EXEC file is described below.

The consult predicate has a single operand which
is the name of a file of goals and axioms. Each term in
the file is react. A term or the form n(-(•••) 11 is
executed as a goat. All other terms are added to the
database as axioms. When the end o1 the ~Ile is
reached, the file is closed.

The reconsu~t predicate functions similarly to the
consult predicate except that it de~etes ~ny existing
axioms £or the predicates which are read in, before
addin~ the axioms in the file. Axioms for op and
control are treated dl1~erently, in that the existing
axioms 1or these predicates are not deleted.

- 51 -

The list predicate is
de1initions ~roil the database.

used to
II it is

list axiom
used with no

argu:,uents or with a single variable as an argument then
all axioms in the database are listed. The 11st
predicate may also be used with a predicate na~e as an
argument to list the axioms for that predicate. For
exa~~te, "list(compute)" will list all axioms for
predicate compute, with any number of ar~u~ents.

The delaxa1l predicate is used to dele te a"ll
axioms £or a given p redicate. delaxall is invoked with
the predJ cate name as an argument• For example
"delaxall{co~pute)« wil~ delete all axioms for
predicate compute.

The error predicate is "built-in" in the sense th._t
it is executed whenever certain errors occur. The
PROLOG system provides this error recovery inter1ace to
allow the user to investigate the state o~ the proo:f
and take appropriate recovery action.
predlcate5 included :for error handling ln
pro vide the following 1unctions :

The set of
the exec :fil.e

when the error p redicate
the error predicate
order. The number

is invoked, the ancestors o:f
are listed, in ascending
of ancestors 1isted ls

controlled by adding
"control(errordepth,X)" where
integer. ~he EXEC file sets the
-to 5 .

the
X is

initial
a

axiom
posl ti ve

errordepth

after the ancestors are listed, the user is prompted
to enter a command. The command entered may be any
valid goal. The goal is executed and the success
or failure oL the goal is indicated by the 1 ? 1 or
•<-' responses . The user is then prompted 1or
another command. The most common commands used at
this point are "quit" to terminate ~he proo~,
ttaddax" or "delaxtt to correct the database and
11 retry(X)" to retry g oal X after a correct ion has
been made.

The error axioms also check ~or the condition of an
error within an error and do not print the ancestors in
thls case.

The quit predicate ls used primdrily in error
recovery. It terminates the proo£ and returns to PROLOG
command level.

- 52 -

/

The attn predicate is a built-in "hook" analog ous
to the tterror" predicate. The attn predicate is
executed when the attention(or break) key is pressed
durin~ a PROLOG proo~. The axiom for attn defined in
the exec file si mply invok es the error predicate to
provide exactly the same facilities as error for
recovery.

The ted predicate can be used to invoke the CMS
transient editor lrom the PROLOG environment. For
exaniple 11 ted(blocks)" will edit the file blocks and
then return to PROLOG.

The, predicate definition is included to handle
negation. The goal -.(Pred) wi 11. succeed i.f and only i:f
the g oal ttPred" fails. Note that when , succeeds it
doesn't bind any variables.

The syst race predicate is invoked as part o.f the
tracing ~acillty. It ls described in more detail in
~ • !l &Xl.t£!!:!i..2n £2.n.:!.£.2.l .EI::.~ i c ~li.§. i n c on j u n c t i on w l t h
the trace predicate.

The axioms used
exec file are listed
in an underscore, to

to define
below. All

these predicates in the
internal predicates end

avoid con~licts with user axioms.

consult(File) <~ read(A,File) & consult_(A)
consult{File) <- ~ileclose(File>.
consult_t<-Goal) <- / & Goal & /.
consult_{Axiom) <- addax(Axiornt.
reconsultt*) <- delaxall(reconsulted_) &

& fail.

addax(reconsulted _(l)) S fail.
reconsult(File) <- read(A,File) S

reconsult_(A) 6 -fai 1.
reconsult(File) <- fileclose(File) S

delaxdll(reconsulted_).
reconsult_((-Goal) <- / S Goat.
reconsul1:_(op(X1 Y,Z)) <- / f; addax(op{ X,Y,Z)),.
reconsult_(control(X,Y)) <- / & addax(control(X,Y)) .•
reconsult_(Axiom) <- reconsult_name_(Axiom, Name) S

reconsult_start_(Name) ~

addax(Axiom).
reconsult_name_(Heuct<- Body 1 Name) <- / S

cons(Ndme•*,Head).
reconsult_name_(Head,Name) <- cons(Name.*, H ead).

reconsult_start_(Name) <- reconsul.ted_(Name) 6 /.
reconsult start_(Name) <- delaxall(Name) ~

- 53 -

addax(reconsulted_(Name),1).
List<-list(*).
list(con~rol) <- control(Id,Value)~

wrJteq(control(Id,Value))6
fall.

list(op) <- op(Operatof,Type1 Priority)~
writeq(op(Operator,Type,Priority})&
fall.

list{Name) <- axn{Name,*,Axlorn) &
writeq{Axiom) S
:fall.

list(* >•
control(errord e p th,5).
error<-ancestor(error, N)~g t(N,l) &/ &error_c~d_.
error <- control(errordepth,Oepth) S

error_list_(Depth)S fait.
error<- error_cmd_.
error_cmd_ <- re p eat & writech(1 E NTEH C OMM.>\.ND: 1) &

newline & error_exec_.
error_exec <- read(C) &

((CS error_succeed_(C))
(writech(?) S newline)) t;; / S :f a.it.

error_succeed_(C)(-con~rol(verbose,on} ~ writech(C)&fait.
error _succeed_(*)<-wri tee h(• <-•)Snewl i ne.
error_list_(Depth) <- sum(Depth,2, Depth2) S

ancestor(A,Index) S
g t (Ind e x , 2) f;; w r i t e q { A) S
eq(Index 1 Depth2) & /.

a.ttn <- error.
qui*<-/{~oal)S fai1.
ted(Flle)<-system(ted.File.prolog .nll).
,Pred <- Pred & / ~ £aiL.
-.P red.
systrace_(Typ_e, Goal) <- .systrace(Type, Goa.~) & fail.
sys~race_(caLl,*)•
systrace_(exit,*>•
sys-trace(Type, Goal) <- wri tech(Type) t;; tab(1) t: wrl 1:e(Goal}.
delaxall(Name) <- atom(Name) S ax~Na me,*,Axioru) 6

d elax(Axiom) & 1al1.
delaxall(Nau1e) .•

- 54 -

The syntax or PROLOG as described ln this manual
involves hoth u pver and lower case letters. II PROLOG
ls belng used with terminals which do not support lower
case , a slightly modified "uppercase only" syntax may
be invoked. In this mode of operation, the following
changes are made to the standard syntax:

all v ariables must begin with an asterisk.

all symbols which begin with a letter are
be identifiers(i.e either predicate
constants).

assu.med to

names or

all. lnput characters are
upper case.

automatically shifted to

To invoke PROLOG in the uppercase only mode, the
PROLOG module must be invoked with the parameter
•L• . (e . g. PROLOG L). If a workspace size is to be
speci1ied 1 the parameter should be 'Lnnn• where nnn ls
the slze(e.g. P ROLOG L256). The standard PROLOG EXEC
1ile does not support this mode of operation. To create
an appropria~e EXEC ~ile, the standard EXEC can be
copied , all the axioms converted to uppercase syntax
and the lines Invoking PROLOG changed to add the 1 L 1

pref i x to the first parameter .

- 55 -

