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1 Int r2 Jue t 12.11. 

Research in arti1icial intelll~ence has spurred 

the de velopment of numerous progra~mln~ languages 
better orJenteJ to expressing and solving the problems 
which arise in this field. One 0£ these languages is 
PROLOG. The acronym PROLOG is der ived 1rom PROgramming 
in LOGic and eillphaslzes the rterivatlon of the language 
.i"roo1 predicat E, logic . The development of PROLOG 
repres~nts the dis covery of a means for using 
resolution logic as a practical progra~ming language 
for problem solving. 

The semantics of PWOLOG are essentially those o~ 
Lirst order resolution logic. Consequently the language 
is bo~h well ~e±ined and compact in de1 inition. More 
important thoug h, the language is a power£ul tool ~or 
problem solvin g , ~s has been demons trated in the 
development o1 severdl proble~ so~vlng systems, amon g 
1:hem ~ ~eometry theorem prover, natural language 
understanding systems and a program £or automatic plan 
g eneration . 

The Waterloo 
VM / CMS system is 
:friendl.y online 

implementation of PROLOG for the 
intended to provide an e£ficient and 
interpreter which can be used for 

educational purposes and program development. 
This manual provides an elemen~ary introduction to 

1:he PROLOG language and the Waterloo PROLOG 
implementation. Section 2 of tlie- m~ual describes the 
lpng,ua~ e• Those readers who are :fa.mi 1,,ia.r with a d ialec"t 
0£/ the PROLOG l6bgu~ge ay wish to skip subsections 2.1 
to 2 • 3 au d re a. d s u.b s e c 1: i on 2 • 4 Ih~ ~~ .in Q._g_.!Jl.i.1. • 

/ subsection 2.5 ~l.ng ~n.ite '.[~§. descri es a special 
.tac ill ty that · i_ p r vitl d f or ma.nlpula. tin g in.f inl te 
terillS• Sect io£ j ~s · re tei-,11.ce s?c t l or¥ which de:fioes 

· Ln detail the ~biltin £unctions (efiectivelf a 
subroutine library) provided in the implement•t on. 

p.rnd},x 1des 7 i.!,es how to . t,i$e .P.RO. L-0<:: under VV. / 
pend x B1 e"'orih~,s the <tontents o.f 
f ,c,\Jit~op. , :til,e use,;d to invoke Pi<.OLOG. 

~i>).; hs l trow tu invake PROLOO .for use 
'_/' t,/ V 

tha do not -support lower case , letters. 
r 

\ 
I 
I 

- I 
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2•.! Tntroduction i 
The semantics o:f PROLOG~ essentially that of 

resolution lo~lc. But resolution logic itsel£ does not 
constitute a programming language. Statements in 
resolution logic are descriptive. They have the :form "x 
is true"• In conventional pro~ramming languages the 
statements are imperative. They have the form "perform 
action x"• To derive a programming language :from 
resolution logic we add imperative statements of the 
~orm "prove that xis true"• A statement of this £orm 
ls ca~led a goal statement. A PROLOG program consists 
o1 a set o1 goal atatements and a set of dXioms. The 
axioms are descriptive , constituting a list o1 1acts. 
Each goal statement is imperative and re~uests that 
axioms be used In an attempt to prove a certain fact. 

To the passi ve language or axioms we have added 
the notion of goals to yield a language 01 action, a 
pr.ogramming language. This language now allows us to 
request the construction of a proo:f . But how will. the 
attempt a~ a proo1 proceed? The prooL procedure £or 
PROLOG uses reso1.ution in a siinpl.e depth first, lert to 
right search strategy . This proo£ procedure is not 
complete. Because oL the depth rirst strate~y,a proof 
may not he 1ouud even 1~ one exists in the search 
space. The proof procedure may follow an in~inite 
branch ln the search tree and never examine another 
branch which could yield a satisfactory proof . However~ 
i£ the proo~ procedure terillinates ~ we know that it has 
found the right answer. If it terminates with success 
then a proo~ exists . I± it terminates with failure then 
no proo1 exists in the search space. 

This simple search strategy may seem 
unsatisfactory since it yields an incomplete proof 
procedure y but it has nu~erous advantages over more 
genera~ strategies. It can be implemented Jn a manner 
which is more er1iclent in the use 0£ space than 
current breadth ±irst search methods . The simplicity of 
the PROLOG search strate~y makes it easy for the 
programmer to understand and control the search. The 
strict ordering o1 the search permits the use of built
in predicates causing side e1£ects(e.g. read and write) 
with the knowledge that the side eL±ects will occur in 
a prescribed order. The prospect of output being 
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createJ in randum order does not seem very pleasant! 
Thus, it is evident that the simple search strategy 
possesses severa~ desirable £hracteristics~ It is also 
~Ete to~ .:the -Et~s-t-r - --~ 
stat.j,.n_g__ _ t.bai · a.nyon,e wants a general. "theorem prover 
then-- PROLOG is a good language in whlcl1. t-.o p~ o g .i:.a..m- · t 1 

This section introduces the syntax or PROLOG 

axioms and goals . A brief desciption of the basic 
syntax ls provided in oreparat ion for the description 
of P;.{OLOG execution ln 2.3 Executj.on and Ba£.!&trgc.~ing. 
A detailed description of all the syntax rules ls then 
provided ln J•1 Ihg_ §~n.!.~~ .in Qg_tail. 

The basic syntactic unit in PROLOG is the _ig_r.m• A 

ter:m may be : 
(a) a con~tant - a lower case letter ~~llowed by 

any sequence 0£ letters and digits, or any 
sequence of digits . A constant may be an 
integer or an atom. e.g. a8c and x2~ 

(b) a vari able - an asterisk or 8" uoper case 
letter1 followed by a sequence of letters and 
digits. e.g.* and Al. 

{ c) a skeleton - a skeleton name and a list o:f one 
or more argument ter a1s-. The ar~ument terms 
a .re separated by cumtuas and the list is 
enclos~d in parentheses. e.g. 1{x2 1 Y) and 
g ( B ,a,:f(J)). 

/ 
/ 

<integer> 
<variable> 
<skeleton> 
<infinite term> 
{ <ter a.1 > ) 

<atom>::= (identifier> 
<skelt=>ton>: := (ictenti:fier> ( <argument list)) 

<term> <infix o pe rator> <term> 
(prefix operator> <term> 
<ter m> <suf£ix operator> 

<lnflw operator>::= (i dentif ier> 
(prefix operator>::= <identifier> 

- 4 - ______ _)' 

I 

I 

I 



I 

<sul£lx operator>::= <identifier> 
<argument list>::= <term> I 

<argument list>, <term> 
<variable>::=* I <u~per case letter> 

<variable> <l etter> 
<variable> <digit> 

<infinite term>: := •• (digit•> HN 
<digit>::= <digit> I 

<digitM> <digit> 

Tbe rul!es invo ving ope-rators ;,:lesc:I'il;>e an ~lter·nat.ive 

nota.tJ_on1 fqr ,SkP~etol); , 'to .be described ~-·in 2.•1. :Ih~ 
, ~ ~ 

~.l:.!l ta~ ".ln -:12~1.1. . 
PROLOG axloms and 1.;;oals are composed oi: 1..i:i!U:.!!.ls. 

A literal may be a skeleton or a constant. A ~redl.£~:i~ 
is the name associated with a literal. IL the literal 
is a skeleton then the predicate is the skeleton name. 
Otherwise it is the constant associated with the 
literal. 

The f,'"enera l .form o.t a PROLOG axiom is: 
<axl om head> <- <axi 0111 body) • .,.----

The implication arrow 1 H(- 11 is read "is implied by 11 • 

The dXiom head ls a. single literal. The axiom body is a 
conjunction of literals. A conjunction of literals may 
De a single literal or two or more literals separated 
by t he "and" symbol{&). An example of an axiom is: 

a <- b & c ,. --The head is a, the body ls b ~ c and the axiom ls read I 
"a is implied by band c" or "To prove a\first prove b•
then prove c"• An axiom may have a null body, in which 
case the implication is omitted and the axiom has the 
. .form: -<axio m head) ..:....-
An axiom with a null body is called a 
example ls: 

unit axiom. 

:f(m). 

This ls read 11~) is true 11 • 

The gene r al £orm o:f a PROLOG goal is: 
<- <goal conjunction>. 

The go al conjunction is a single literal 
conjunction of literals. Examples of godls dre: 

<-p. 
(-q( r) f; 1'. • 

or 

An 

a 

Goal statements may be re g arded as 
axioms of the form: 

abbreviations Io r 

*'goaln <- (goal conjunction> 
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where "goal" ls a distinguished ~lteral which the 
PROLOG theorem prover attempts to "prove"• 

From the user point of view the PROLOG system 
accepts axioms and goals from the terminal. Axioms 
which are entered are recorded for later use in proofs. 
An attempt is nade to prove a goal statefilent as soon as 
it is entered. In the following discussion, ~oals will 
always be presented in the ~orru <- <goal conjunction>. 
\t' hen actually using the PROLOG system an (__a~e v iat- e =--" 
g oat_ format is ava l la.ble. Re:fe r to ~f2pendi~ ~ ! Usi.ng 
_RO~QQ yJ.l4~i: YML£M§ for -further explanation before 
using PROLOG a.ta terminal. 

In axioms and terms all variab~es are assumed to 
he universally quanti:fied• That is, an axiom containing 
variables is valid fo r any "values" which the variables 
may take on. A verhal version o~ the axiom "£ather(X 1 Y) 
<- son( Y,X )" ls uFor all values o.f X a.nd Y, X is the 
father of Y if Y is the son of X"• The substituting o~ 
"values" for variables will be discussed further in the 
next section. 

goal 
of a 

PROLOG execution is started by a g oal statement. A 
statement iH a request for a proof. The execution 

PROLOG program is essentially the actions of an 
elementary ~heorem prover attempting a proof. 

A series of diagrams may be used to describe the 
progress of a PROLOG proo1'. E4ch diagram, called an 
.i.illllll£atl.Q.n. trg_~, describes the state o-f the p roo1' at 
a g iven point in time. An implication tree consists oL 

one or more labelled nodes. At the top of the diagram 
ls a node labelled "goal"• Each of the other nodes is 
labelled with a literal and ls Joined to a parent node 

Z~lmmmedlatefy;-,above it. A node is called the £hild of 
ils parent. A node may be in any one of three states: 

( l) open: ·o attempt has been inade to prove the 
litera~ labelling the node. The node has no 
chi l -:tren • 

( 2 ) closed: The Literal. labelling the node 

an 
for 

uxn 

has 
t hP. 

to 
been p roven using a. unit axio 01 

literal. The node ls marked with 
distlngulsh it from an open node. 
node has no children. 

A closed 

( 3 ) active: The literal labelling the node is 
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being proven (or has been proven) usin g a 
non-unit axiom. The node ls labelled with the 
literal of the axiom head. The children 0£ 

the node are labelled with the literals of 
the axiom body. The left-to-ri g ht order o~ 
the literals in the axiom body is p reserved 
in the diag ram. The orl ~ inal goal statement 
is treated as an axiom 0£ the £orm "goal<
(goal conJunction>". Thus the children o~ the 
g oal node are labelled with the literals of 
the g oal conjunction• 

Consider the fol lowing axioms and goal! 

a<-bS c. 
b• 
c<-d. 
d. 
<-a. 

The proof of this g oal 

implication tree: 

This ls 

g oal 

I 
a 

I \ 
I \ 

b C 

X 
d 

X 

ls represented by the following 

tr~~ since all nodes 
are either active or closed. The nodes labelled band d 
have been closed usin ~ axioms "b•" and "d•" 
respectively. The node labelled a 1~ active and has 
been proven usin~ ~he axiom "a(-b&c.tt. 

Consider the 1ollowing example of 
g oal statement: 

a<-bS- c .. 
b<-dS f. 
b<-eGf. 
c<-g. 
e<- g . 
-r<-h. 

- 7 -
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The initlal state of the proof ls represented as: 

g oal 

a 

The -firsi: axiom 

glvin~: 

g oal. 

a 

I \ 
b c 

:tor a ls selec1'ed:, namely a<-b~c 

The pro ve~ always works in a depth- ~lrst le 1 t-to-right 
:fashion. Consequently the next literal to be pro ven is 
b. The axiom b(-d~£ is selected: 

goal 

a 

I \ 
b C 

I \ 
d f' 

The prover then attempts to prove d ■ But there are no 

axioms for d so the prover must b•cktrack . This 
involves backing up the proo1 and trying other 
alternatives.. A £..!12..i.£.~ !!..Q.!.fil in the proo:f is a point 
where an axlom was chosen to prove a literal and more 
a.xioms remain to be tried. ~tr.ackj_n_g involves 
backin~ up the proof to the most recent choice point 
and making a di£1erent choice. The order in which the 
axioms are chosen is not arbitrary. Axioms are always 
selected in the order in which they appear in the 
input. Io this example b(-d&f' will always be examined 
be.fore b<-e&f'. 

The most recent choice point in the current proo~ 
is the point where the axiom b<-dSf was selected. The 
proo£ is backe~ up to this point and the other axiom, 
b<-e&1 1 is selected. The proo£ continues as shown 
below: 
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=> 

=> 

=> 

=> 

e 

e 

g 

e 

g 

X 

e 

g oal 

I 
a 

I \ 
b 

I \ 
f 

C 

g oaL 

I 
a 

I \ 
b 

I \ 
f 

C 

g oal 

a 

I \ 
h 

I \ 
:f 

C 

g oal 

a 

I \ 
h 

I \ 
f 

I 

C 

g h 
X 
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g oal 
=> 1 

a 
I \ 

0 C 

I \ 
e f 

I 
g h 
X X 

g oal 

=> 
a 

I \ 
b C 

I \ \ 
e f g 
j I 
g h 

t ~ 

g oal 

=> l 
a 

I \ 
D C 

I \ \ 

e f g 

l X 

g h 
X X 

proof The final ls represented by a completed 
implication tree. Of course, if the proof fails then 
the implication tree is never completed. lf, in this 
example, we omit the axiom c<- g then the proo1 attempt 
will ~ail. Alternatively, if we include another axiom 
d<-d then the prover will attempt to construct an 
"infinite branchtt of the lmplica ion tree: 
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d 

I 
d 

I 
d 

I ... --
Even1:ual..ly an error will occur when the proo-f stack 
overf ·tows • 

In the previous examples, none o~ the predicates 
have 4rguments. For example, the predicate term 
father(John,.fred) has two arguments, John and fredt and 
can be used to represent the statement "John is the 
father o:f .fred11 • P.ROLOG .:l.Xioms ca.n also contain 
variables. For example the axiom son( ,Y)<--fat her{Y,X) 
represents the statement "xis the son o.f y if y is the 
.1'a ther of x". ·variables in t>ROLOG are assumed: to be 
universally quantified. That ia,an axiom contdining a 
variable is considered to be "true" for dOY "values" 
the variable may take. We wilt make the idea of a 
varidble "taking a. value" mo re precise. In any axiom or 
goa.l we can per1:orm a §.!,!.QStLtutiQn• A §.Y:D,St.i_tutl.nn 
replaces all occurrences of a variable by a term. The 
replacing term may be a constan~ (such as abc or 32~ , a 
sKeletun(such as f(a) or g(X,YJ) or another variable. 
For example, lf we substitute a for X in g(X ,tiX)) then 
the resulting term is g(a ,£(a)). If we substitute f(Y ) 
£or X in h(X,T) then the result is h(f(Y) ,Y). When one 
or m,ore substitutions are applied to a term { or axiom), 
the result is cal led an !..!lll tan.~ of the term ( or 
axiom}. Fo r example, son(fred,john)<-father(John,fred) 
is an in~tance of son(X,Y)<-father(Y,X) produced by 

substituting fred for X sod John for Y. 
To illustrate substitution better, consider the 

fol.tow~xample: 
------ 'son( X,Y )(-father( 'i 1 X ). 

father(john,fred). 
father{John,george). 
Lather(al,bert ). 
father(george ,at). 

We wish 
a goa 1 11 

we can 

to sol..ve 
we mean 

prove. 

the g oal 11 <-son( Z,john )If. By 11 solving 
finding an Instance o~ the goat which 

In thi3 case we will prove 
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The proo:f will be illustrated using nson(£red,Johnl". 
implication tree&. The initial tree is: 

fc!O al 

son( Z 1 john) 

Now we need to 1ind an inst~nce 0£ an axio m which we 
can use in the proo:f or son(Z,John). The ap propriate 
instance is ~ormed from son(X,Y)<-father(Y,X) by 

substituting Z 1or X and John f or Y to g ive 
son( Z, john )<-father( jo hn 1 Z ). The tree now is: 

~oal 
l 

son{ z, John) 

J 
:father{ John, 2) 

Note that we :found substitutions that ade the head o:f 
an axiom the same as the current subterm. The g eneral 
process of ~ind lng substitutions to make two terms the 
same ls called Yn.!.ficatiQ.ll• Next we want to .find an 
axiom whose head will YnilY with rather{john,Z). The 
~irst ~xiom :for :father matches if we substitute fred 
:for z. This gives the compLeted implication tree: 

~oal 
) 

son( :fre d , John) 
l 

£ather(john,fred) 
X 

As a further example we wi~l atte~pt to solve the 
g oa1 <--father{John 1 X)S~ather(X,Y). The proo£ proceeds 
as -follows: 

goal 

I \ 
I \ 

I 
I 

I 
-fa.ther(John,X) 

---------- -- -

\ 
\ 

\ 
-father( X, Y ) 
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goal 
I \ 

I \ 
I \ 

I \ 
I \ 

1ather(john,fred} 
X 

.father( :fred, Y) 

The 1:1.ttempt 

since this 

to solve 
term will 

tne subgoal :father(fred 1 Y) 

not unify with any o~ the 

.fails 
axiom 

heaJs. Backtracking occurs and the proof is backed up 
to the point where the father(John,fred) axiom was 
activated. This axiom is then deactivated and any 
substitutions made when (or since) this axiom was 
se Lee ted are "uncione 11 • This res tores the proo:f to the 
point: 

g oal 

I 
I 

I 
I 

I 
.tather(John,X) 

\ 
\ 

\ 
\ 

\ 
-fa the r( X, Y ) 

The axiom father{ john , g eorge) is about to be selected 

for uni±icatlon with :father(John,XJ. This unification 
succeeds ~iving : 

I 
I 

I 
I 

I 

goal 

\ 
\ 

\ 
\ 

\ 
:father(john,georg e) ±ather( g eorg e,YJ 

X 

The axioms for 1~ther are then selected 

unl.ficatlon ...-1th .father( g eorg e,,Y). The 
succeeds for the axiom 1ather(george,dl), 
completed implication tree: 

13 -
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goal 
I \ 

I \ 
I \ 

I \ 
I \ 

£ather(John,george) £ather(georg e,al) 
X X 

To illustrate the operation or PROLOG fur~her, the 

£olluwlng examples demonstrate the manipulation 0£ more 
complex data structures ■ A set o1 elements (similar to 
a LISP list) is represented by ~ term using a 
constructors and an end marker nil. For example, the 
set with elements a,b and c is represented by 

s{a,s{b 1 s{c,nil))) or as a diagram: 

s 
I \ 

a s 

I \ 
b s 

I \ 
C nil 

The empty set is represented by nil. 
completely arbitrary and is chosen 

This notation is 
for this example 

only. 
A reasonable de~inition for the "element" relation 

is: 
element(X,s(X,Y)). 
element(X,s(Y,Z))<-element(X,Z). 

Verbal.Ly these axioms might be stated as. ux is an 
element of a set if it is the first element in the set 
or i1 it is an e~ement of the set o± elements following 
the £1rst element•"• The goal 

<-element(c,s(a,s(b,s(c,s(d,nil))))) 
yields the rollowing completed implication tree: 
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i:.roal 
j 

e 1. e me n t{ c , s { a , s ( b , s ( c 1 s ( d, n i l ) ) ) ) ) 

1 
element(c,s(b,s(c~s(d 1 nil)))) 

I 
element{c,s{c,s(d,nil))) 

X 

This syntax for representing sets is clearly 

cumbersome. To simplify this, in£ix notation may be 
used( infi~, prefix and suffix notation are explained 
more :t'ully in 1.•:t I.h~ .§yu:!_A,K .in. Qetai!. >• J:f we use a 
"•" as the constructor and use infix notation then we 
can d~note the set with elements a 1 b and c by 
a.b.c.nil. The axioms Lor element become: 

element( x , x .Y ). 
element(X 1 Y.Z)<-element(X,Z). 

Suppose we Wdnt an axiom to ~rite all the elements 
o1 a set. The £allowing axioms will su£fice: 

l i st{ X • Y ) <- w r i t e { X )& l i s t ( Y ) • 
list{nil). 

write is a 
succeeds and has 

built -in 
the side 

predicate which always 
ef£ect of displaying its 

argument t-erm on the terminal. The term is written 
1ollowed by a period ( the end of term delimiter) . The 
goa l statement <-list(a.b.c.nil) succeeds. The 
completed implication tree ls: 

f,!"o al 

lis-t( a..b.c ■ nil) 

I 
I 

write(a.) 
X 

\ 

' list( b.c .nl l) 
I \ 

I \ 
write( b) 

X 
l ls t( c. nil ) 
I \ 

I \ 
write(c) 

X 

lisUnil) 
X 

The outpu~ on the terminal is: 

a .• 
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The ~ollowing axiom could dlso be used to list the 

elements o1 a set on the terminal: 
list(X.Yl<-write(X)~. 
llst(X.Y)<-llst(Y). A,J.. 
list{nil). 

The goa.l <-list(a.h.c.nil) will list all elenents 0£ 
succeed. The completed the indlt"ated set and then 

implication tree is: 

~oal 

list( ael':>.c.nil) 

list(b.c.nil) 

l ls-t( c. nil) 
I 

list:( nil) 
X 

Suppose we wish to define axioms ror d predicate 
notel(X,Y) which succeeds lf Xis not an element or Y. 
Reasonable axioms £or this predicate mi g ht be: 

notel(X,nil ). 
notel(X,Y.Z) <- noteq(X,Y)6notel(X,Z). 

Verbally these axioms might be stated: 
"X ls not dO element of the empty set"• 
"Xis not an element of the set consisting of 

Y and so~e other elements lr Xis 
not equal to Y and X is not an 
element 0£ the set of other 
elementsu. 

The axioms for no~eq re ma in to be defined. The a :K ioms 

are: 
noteq(X,X)<- / & 1ail. 
noteq{ X, Y ). 

These axioms ~ake use of a special control ~eature, the 
slash(/). To illustr~te this feature we trace ~he 
attempt to prove the g oal <-noteq(a,a). Initially, we 
have: 
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e-oal 
l 

noteq(d. 1 a) 

The xirst axiom ls selected giving: 

goal 

I 
no+eq( a , a ) 

I \ 
/ :fail 

The slash predicate always succeeds . It is used to 
prevent certain alternatives £rom being considered in 
the proo~~ In this case it prevents the second axiom 
£o r noteq from being considered . The implication tree 
looks lilce: 

p>oal. 

I 
noteq{ a,a) 

I \ 
/ fail 
X 

The fail predicate has no axioms and consequently it 
:fails. Since the remaining axiom for noteg is not 
considered, ~here ~re no remaining choice points and 
the entire proof falls. 

Conversely the g oal <- noteq(a , b) succeeds . The 
head o1 the axiom noteq(X 1 X) <- I S fail cannot be 
unified with noteq{a 1 b) so the next axio m is selected. 
The uni~ication succeeds and the proof is complete. 

The action of the slash predicate is described 
more precisely: When the slash predicate is execute~ 
it removes all choice points in the proo:f_.., :from the 
point when the axiom containing the slash was selected 
to the current point in the proof . 

The slash predicate is utilized tor two main 
purposes. The first ls to sffect the me~ning of an 
axiom • of~en to handle negation dS in noteq above. The 
second use is to improve the e~£lciency o~ a program by 
preventing spuri~us choices from being considered. For 
example, consider the 1ollowing axiom used to test if 
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two sets have one or more co~mon elements: 
intersect(A, H )<-ele ment(X,A) 6 elenent( x,e). 

I:f a call to the intersect predicate succeeds and then 

backtracking returns to that point, then the element 
axioms will cause other choices Lor X tu be tried. 
Norrnal-ly the attempt to :find a di:f:£erent common element 
ls completely unnecessary since it hdS already been 
proven that A and R intersect. This extra search can be 
eliminated by using the :following axio m :for intersect: 

intersect(A,B)<-element(X,A) S element(X,B) S /. 

A PROLOG p rogram consists of a sequence o1 symbols 

belonging to a symbol vocabulary. ln this 
implementation the EBCDIC character set is used. Any 
one byte value is a valid symbol, even though it may 
not have an expl icit EBCDIC graphic code .. These symbols 
are divided into £our groups as follows: 

(a) L,.et:t~!:.§. - The upp er and lower case 

from A to z. 
(b) ~~gi.1.§. - The digits from Oto 9 . 

letters 

( c ) .~Yn&.tus!..1.i.2.ll S:ymho ls - Th is group consists of 

{ ) .. '~ the Le-ft and right parentheses, the ., V 

comma, the apostrophe, the quote and the 
end-0£-term symbol(the period). 

{d) Ih~ Uud~~£.2rst - This symbol can be used in 
constan~s and variable na es. 

(e) §.!!.sU;:ial ~~.1.§ - This g roup consists of' all 
symbols not in any of the ~our preceding 
catego ries. 

The ~undamental syntactic construct ln PROLOG is 
the term. As stated earlier 1 a term may be a variable, 
a constan1: or a skeleton. tit ~(:k) 

A variable is rep.resented by er +tu iabl.~Jn~ Ttre
vasr"ia-ble .. e: .. e k @uppe r case letter ~towed by , a . 1 
sequence o .1'. l~tters and digits. Thus x, A1B2C3, ~ ~o.B1 ~ 
Abe are all variable~. In addition a single asterisk(*) 
is a variable of a special sort. It is called an 
anonymous variable and has the special significance 
that each occurrence is considered to represent a 
dis~inct variable. 

A constant is a sequence oJ:' symbols enclosed in 
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apostrophes,. 
constant. 
a.po strophe, 
Exa111ples of 

The sequence represents the value of the 
Note that i£ the value contains an 
then the apostrophe must be duplicated. 

cons tan ts are: 
~ 'ABC' 

~ 

1 37+ A)• 
')'', .. 
' ' 

The value of the third constant shown above consists of 
the three symbols right parenthesis, apostrophe and 
comma, In that order. The value o~ the last constant 
consists of no symbols. The apostrophes enclosing a 
constant are not always required. They may be omitted 
if any o1 the followin g conditions are satis£ied: 
--j> 1/ 

2/ 

3/ 

The value o~·the constant consists entirely 0£ 
sym.ools which are letters ) e>- di g its q/1,4 
underscores , and the initial symbol is not an 
upper case letter. 

The value of the constant consists o~ 
symbol which is not a punctuation sy1nbol. 

one 

Tt , e va. lue o:f the constan-t consis ·ts o:f the 
single period symbol and the constant is not 
1ollowed by a blank. 

4/ The value of the cons td.n t consists oi' up ~ 
/ eight special. characters md "tb ere --rs-~ 

erator declaratlon ±or the va~ue In the 
data base. For d £urther explanatlon 0£ 

operator cteclarations, see ~.§ ~gi!\hgag 
Pregl.s_~~ in conjunction with the t>Pi bull t
in predicate. Note that underscor~re not 

~ special symbols. 
Integ ers are constants whose values satis1y certain 
criteria. A constant is an .ia_teger if and only if it 
satisfies any of the £ollowing: 

1/ Its value consists 0£ one or more di g its. 

2/ Its value consists of the symbol 
by one or more di g its. 

3 / Its value consists 0£ the symbol 
by one or more digits. 

n+n followed 

ft _-tt ollowed 

Integ ers may be use d as arg uillents to several built-in 
predicates which per£orm the fundamental operations of 
integer arithmetic. Two integ er constants are 

CJ>
19·1f. .JJ i 41,J ~ v.rlwi {;Ji 
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equal(l.e. indistinguishable) if their values are the 
same a~ter any«+« symbols and leading zeroes have been 
dropped. Thus 001 1 • +-uoo1 • and 1 are all equal 
integers. Note -thc1.t signed inte ·.sers must be enclosed in 
apostrophes. 
A constant- whlch ls not- an integer is an 
'AH{'• •+• and'' c1.re all atoms . A sequence 
which satisfy the crlteri4 for an ato• is 
id~tl.i..f.ieJ:• 

atom .. ab, 
o:f symbols 
called an 

A skeleton consists of an identifier and one or 
more arguwent terrus. Both predicates and functions are 
repres~nted as skeletons. A skeleton has the following 
:format: 

<idevtifier> ( <argument list> 

Tbe a .rgument list consists of one or more terms 

separated by commas. 

:fact{ 1 ) 
g{ 1,x, f( 1)) 
1 A/. ) 1 (X:,Y) 

Examples of skeletons are: 

Note that any o~ the arg u~ent terms of a. skeleton rnay 

in turn he skeletons. 

To permit a more convenient representation for 

skeletons, identifiers can be declared as infix, preflx 
~r suffix. For example, if the ldentiLier likes is 
declared as in£ix then the skeleton represented as 
likes(a 1 b) can also be represented as a likes b. 
Similarly, if the identifier t is declared as suffix 
then !(a) can be represented as a!. 

An identifier used as the skeleton identifier in 
infix, prefix or su.ffix form is called an Q.Q.!LC..M.Q.£.• 

The use oj' operator notation ls provided in addition to 
the basic notation for skeletons which was first 
described. The two forms may be mi,ed £reety. For 
example, i:f llkes is declared as infix -then f( a likes 
b 7 likes(c 1 d)) is a pe .r.fectly acceptable form . A term 
is represented. in £.~Q.nicat .f2.c.;n. when it is represented 
without usin.1 infix, prefix, or su:f:fix notation. 

In any term, subterrns 
indicate the term structure . 

a+(b-c) is equivalent to 
but (a.+b)-c is equivalent to 
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For example: 
+(a,-(b,c)) 
-(+(a,b),c). 

to 
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Any term or subt~rm may be paren~hesized . 
infiK then ((a.)) li k es {c ll k es(d)} is 

Lf likes is 
a valid term 

equivalen~ to likes(a,ll k es(c,d)). 
An identifier can be declared as both prefix and 

inZix si~ultaneously but an identifier which is 
declared as su~iix can not be declared as infix or 
prefix. An identifier is d eclared by adding an 
opera.tor d'ec1.aration axiom. , The form.at -:for j',liji'e ..aw-i:u":11 

-~ 1//1'#~- ~--- ,.,1 ~: CV., 

op( <l.ctenti :f ier>,<type),<priority.> ). 

<identifier> is the identi£ier to be declared. 
<type) speciLies the declaration type and may be 

any o~: pre£ix, su~tJx, lr, rl. 
(priority> is a positive inte g er less than or 

equal to 1000 .. 
The declaration types of su£rix and prefix have an 

obvious interpretation• The types rl and lr are used 
to declare operators as infix right-to-Left and left
to-right respectively. For example, if"•" is d eclared 
as rl then 

a.b.nil is equivalent to a.(b.nil) 
and to .{a,.(b,nll)) 

I:f 11+ 11 is declared as tr then 
a+b+c is equivalent to (a+b)+c 

a nd to + ( + ( a , b ) , c ) 

The priority s p eci£1ed in the declarations g ives 
the posi1-ion of the declarations in a p riority 
hierarchy. The larger the numeric priority the 
stronger the "binding" of the operator. The followin g 
examples illustrate the function o1 the priority. For 
these examples 
a.re in e.f:fect: 

assume that the 

Then: 

op(, 1 preflx,40). 
op(t,su:fflx,70). 
op( .. , rl, 50 ) • 
op( + , l r, 6 0 ) • 
op( - , l r, 60 ) • 

~a? is equivalent to ,(a! 

following declarations 

a+b-c.a+e.£ ls equivalent to ((a+b)-c).(( ;t+e) ,.:f) 
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~a+b! is equivalent to ,(a+(b!)) 

The problem or resolving the 
identifiers have equal priori ti es 
declaration types has not yet been 
instance i .f the declarations in e.f:tect 

op(+,lr,63 ). 
,op ( - , r l 7 6 ') ) • 

then how is a+b-c to be interpreted? 

case where two 
hu-t di t:ferent 

discussed .. For 
are: 

The rule :for resolving such conflicts is: 

If the rightmost oper~tor 1s declared rl and the 
le1t~ost operator is prefix(or rl} then treat 
the rightmost binding as the strongest. 

Otherwise treat the leftmost binding as strongest. 

The example a+b-c is equivalent to (a+ b )-c. This detail 

is conrusing1 and lt is recommended that the ser not 
declare operators with the same priorities and 
di:f:ferent types and hence avoid the condition 
completely. The above description is included solely 
.for the sake of completeness. 

The lnitial state o~ the PROLOG system includes 
several operator declarations , namely: 

op(<-, rl, 10 ). 

op( <-, prefix, 10 ). 
op( I ,rl, 20 ). 
op( & , rl t 30) • 
op( -.,prefix,40 ). 
op( .,rt, 100 ) .. 

Operator declarations Cdn De added 

adding and deleting axioms ~or the 
described in ~•2 Q~i~£!\§.g Pr~,ll£A1~• 

and deleted by 

op predicate as 

An input term roust be deli~ited by an end-0£-term 
£..Q!!:.£i!:.£.ll:£.• The period is usect. To distinguish between 
the use of the period as an operator and Its use as the 
end o~ term ch~racter, the ~allowing rules are used. \ 
period that ls not enclosed in apostrophes , double 
quotes or comment delimiters i~ treated as an end 0£ 
term delimiter 11: 

(a) it is ~allowed imillediately by one or more 
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blanks or 
{b} lt is the ldst character oL an in p ut line. ( B y 

line we ean either an in p ut line from 
the terminal or an input record 1rom a 
:flte). 

Blanks may be :freely used in the input term, 
subJect to the following conditions: 
~ {a ) Rlanks may no-t be used lnterna.l to an unquoted 

/ - identifier or constant (e. g . ab ls 

"" 

<;: - dl:ff'erent from a b since ab is a sin g le 
/ · l d en~l~ler and a b represen-ts two 
"- - iden-tifers , namely a followed by b ). 

or (b) Blanks may be used in a quoted constant 
~-- identifier but they d.re included in the 

' . .;. 

( C) 

< - - value o:t: the constant( e . g . 
.:::-- the sa.ne constant as • A.13 1 ) • 

• A n• is not 

One or ruore blanks ~ust be used 
..::--- the -fol lowing: 

to separate 

----, 1) two quoted i d entifiers or 

( 2) 

constants(e . g~ •~ 1 •s• represents a 
constant with value A1 B whereas 
1 A1 1 H 1 represents two constants 
with values A and 8 respectively). 

two unquoted 
constants where 

identi£iers or 
neither consists 

, i;;olely o.f special. 
~ a; is equivalent to 
- not equivalent to a 

characters(e . g. 
a ; but a12 is 
12). 

(d) Blanks must not be used after 
where the period ls 

a period except 
an end-o :f-t erm 

d elimiter . 
Whenever one or more blanks may be used, 

A coaim~n.1 has the -form: 
a comment may 

be inserted. 

! *<comment characters>*/ 

<comment charact~rs> may be any sequence of characters 
not including an asterisk £allowed immediately by a 
slash . Note that ~his format for a comment implies 
that if / is declared as a pre:fix or lnLlx operator and 
ls used £ollowed Dy~ variable then a ola.nk must appear 
between the / and the :(< o:f the var lab le. To he tp detect 
errors caused by an improperly closed comment a warning 
message i~ issued if a I * is encountered in a comment. 

Axiom and goal statements are special cases of 
terms• They are read and parsed using the opera~or 
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declarations. 
been entered a.s 
term o f the for m: 

thus the axiom a<-b&c could also have 
<-(a.,&(b,c)). A g~!!J,_ tla~fil!!.fill~ is a 

<-(( g oal conjunction>). 

An axl2_.m ls a term of the form: 

or 

<-{<head>,<goal conjunction>). 

<head>. 

<head> can be an atom or a skeleton. 
e-.g .• a. 

a( 1, X ) 
'B:'(*) 

<goat con June ti on> can have the form 
<goal. literal> 

o.r the form 
&(<goal literal>,<goal conjunction>) 

(goal literal> can be an atom,skeleton or a variable. 
A variable goal literal is called a meta variable and 
is described in~.~ fiKgcution QQn..1,rol £.c..g_g~~§__te~. 

A lle.!. is 'formed with the 

£.Q!Ui.l.J:.!.!tlQ.!: 11 ." and the end-of-List !!!.~.c_g_:r_ nil. For 
exampLe ~he list with ele~ents a, b and c ls 
represented as a.b .c.nit o.r in canonical ~orm as 
.(a,.(b,.(c,ni l))). The emoty list is represented as 
nil.. A .e..1£ing is a list of characters, or more 
precisely, a litit of constants each with a single 
character value . An abbreviated 1ormat is provided to 
represent strin~s. The format is: 

11<characters>u 
For example: 

"ahc 11 ls equivalent to a.b .. c.ni1.. 
"( )ff is equivalent to ' ( 1 • 1 }' eni l. 

An empty list may also be speci£ied: 
tttt is equivalent to nil • 

• ote that "ab" ls equivalent to .(a,.(h,nil)) 
the period is declared as ln~ix ri gh t-to-le£t4 
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After you have become familiar with PROLOG, you 
may ask what happens when£ PROLOG progra~ attempts a 
uni.fication such as -f( X) with x. One possible approach 
would be to have the unification fail, rather than 
construct a I loop' . It turns out that al lowing this 
sort o1 loop provides a useLul cap~bility for 
manipulating 1 1n±inite 1 terms. The term resulting from 
unifying f{ X) and X is f( f( f( ••• >) ). 

This PROLOG implementation allows representations 
o-J: int'inite 
ad<led to 
introducecf 
notation ls 

terms to be read, written~ uni1ied or even 
the database . A special notation is 
to simplify the representation. The 
simple but not necessarily easy to read. 

T,,.be t>-e..S~otatlun for understanding these is a two 
dimensi o;;J.~aph style notation• Unfortunately, such a 
notation is not well suited to conventional input and 
ou--tput devices. 

The notation chosen :for this implement at lo~ 
extends the standard -term notatio~ by allowing al'\ 
1 in1inite term speci1ication1 or 1 Loop specification• 
to be used in place o:f any subterm. The loop 
speci1ication has the format NNn#• where n is the 
length o~ the loop. The term resulting £rom the 
uni£icatlon o~ X and f{X ) would be represented as 
f(~ill##). Similarly i:f we unify X and :f(g(l ,X, h )) then 
the resul-t would be represented a , 1'(g(1 1 #N2.IIJ11 1 h)). Any 
output term, containing a loop 1 wlLl be written using 
this nota-tion. Sim ilarly, any term being read in may 
contain subterms using this notation. I£ an input term 
contains an Invalid ln£inlte term re1erence, for 
example too large a loop length, then an error message 
will be printed and the term rejected. For exdmple the 
teraa 1 :f ( g( ,#113111.I) )I is invalid• 

When a term is written 1 the loop lengt,h specified 
is not necessarily minimal . For example , i:f the result 
o1 uni~ylng X and ~(:f{XJ) is printed , the rormat will 
be £{f(N62##)) 1 even though the format f(#HIH#) would 
be more compact. 

Axlo~s containing in£inite term re£erences may be 
added to the data base. However, infinite conjunctions 
on the right hand side 0£ an axiom are not permitt~d . 
For example, a(Ukl#N)(-b is valid but a(X) <- b ~ ##l## 
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is invalid. 
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~ Buil.!-.i.I!. Pre .:ticates 

The implementation provides several built-in 
predicates. fhese predicates provide fdcillties which 

c:t'1.e -==-.....,, either impossible or inconvenien-t :for the 
programmer to implement directly in PROLOG. Many 
built-in predicates have side ef£ects 1 particularly 
those associated with input and output. The built-In 
predicates can succeed or fail, ex4ctly as other 
predicates do. They can also terminate with an error 
message if the arguments are inappropriate. 

In general~ it is not possible to add axioms for 
built-in predic5tes, since they have a fixed 
definition. The op and tr4ce predicates represent one 
type o~ exception to this 1 in that axioms for these 
predicates may be added or deleted hut the presence of 
trace or op axlomSin the dat<1.b<1.se ha'lileside e:ffects. The 
other type o:f built-in predicate which allow addition 
and d~letJon inc~ude error and attn predicates . Error 
and attn are special inter1aces provided to invoke user 
ax loms when exceptional conditions occur. btt il t •"i'tt"' 
~ate~escrihefi. in 'i!,....S ~g;;i,qs§ I'Lli:OCttdtegf".• 

The built-in predicates are divided into 
groups. The groups and their members are: 

six 

Structural- Predicates -

Input/Output predicates 

v 
atom, 

¥6:J' 

.J j J 
cons, int, skel, 

fl -, arg ument .. -.1.1a1a A .'.i}-1' 
V ' T- -✓ 

~ileclose , newline, 
readch 1 readempty, tab, 
writech, writeq 

J 
string, 

readt 
write, 

Arithmetic Predi~dtes di t f, prod 1 quot, rem, sum'>~ 

Data.base Predicates -
J 

addax, 
J 

ax, " a.xn, 
op, -freeax_ 

control, 

Execution Control. Predicates - ance~tor, retry, 

I, -fall, repeat, error, 
stop, meta variable, 
systrace_ 

delax, 

/, 8 , 
at~n, 

trace, 

Miscellaneous Predicates digit, Letter, 
sy3tem 1 eq, ge 1 gt , 

upshi.ft , 
le, lt, ne 
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The predicates o1: ed.ch o:f the above groups are 
described in the i-0llowing sections. 

These predicd.tes provide for altering and testing 

the s1:ruc½ure_ of terillS• The µredi. cate,,,~ar atom, int, 
var, skel, cons, string, argument,~ 

atom, int, var, and skel eac · have a single 
argument. If the argument is o:f the type specified by 
the predicate name, namely an atom, integer, variable 
or skeleton ~P'lk¼in::1.-,y, 
Otherwise ~ the predicate 
substitution performed 

then the predicate succeeds. 
fails. In no case is any 

or are 
produced,. 
hxampl.e: 

test(X)<-lnt(X)&testint(X). 
test(~)<-atLm(X)Stestatom(X). 

any error 

I* use testint to process an integ er and 
to process an atom *I 

messages 

testatom / { 

~,l,J v,tjl JI' r JI::,,:,. b 

Suppose we wish to def ine an axiom which is passed 

a ske~eton and prints the skeleton name. In order to do ' 
this we need -the cons predica.te. ilJti '11 is used to 
decompose a skeieton into a list consisting of the 
skeleton name foll.owed by its ,;i.r gu.nen ts.. For example 
the call <-cons{X 1 a(b)) will cause X to be uni£ied with 
a.b.nil. cons may also be used to -construct a skeleton 
term 1rom a list consisting 0£ the skeleton name 
followed by its argument_s,.._ _ f'For example,- the call 
<-constf-.--x.·:r.nl1..,Yf u.,;i.ties Y with f (X,3). cons treats 
a constant as a skeleton oZ O arguments, as shown in 
the examples below. If the second ar gumen t is not a 
variable then a List consistrng of the skeleton name 
followed by its arguments is unLfied with the :first 
arguffient. If the second argument is a variable then a 
skeleton ls constructed from the :first argument And 
unified wlth the second argument. In this case the 
first argument must be a list whose ~irst element is a 
constant and whose remaining elements are to be the 
arguments. If the :first element o:f the list is an 
integer then there must be no more elements in the 
list, since an integer is not a vali d skeleton name. 
Examples: 
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flt 

I 

\ 

I 
I 
I 

\ 
\ 

\ 

I 

\ 

The following calls succeed. 
<-cons(dtom.nil,atom). 
<-cons( 10.nil,10). 
<-cons(a.b{c).d.X.nil,a(b(c),d,X)). 

The following axiom acce ts a skeleton as a ±lrst 
argument and returns in the second ar g ument a skeleton 
like the ~irst but with an initial argument o± 99 
added. 

expand(Sk1 1 Sk2)<- cons{N.Arg s,Skl} 8 
cons(N. 99 .Arg s,Sk2). 

Suppose we wish to determine if a constant 
contains the letter a in its value. If the first 
argument o1 the string predicate is a constant ~hen ~he 
second argument is unified with 
in the value o! the constant. 
de£ine a predicate constanta(X) 
a constant containing an a. 

the list or characters 
The following axioms 

which succeeds if Xis 

-constant a( Con ) <- str l ng( Con, List ) S 
list a( Llst ). 

l.ista( a.Rest). 

-\ 
) 

lista( F'irs+.Rest) <- li;;.ta( Rest). ------- ---- - jJ;,:,:;:.. r-rCi- I ,v 

,tlr!~-..iu.a,;-~~,.•e '..,.~ct to . ...-_ 
4 • 

lii)rn1bo1 i;;; in l ts !o"t!lo4' w.e.. "'l't'l:e re -.. 

' _ - ri~~: 
:first arg ument is a con.,;tan t-, ~ constant 

ls decomposed to create a list whose 
elements are the symbols in the 
constant•s value. This list is unified 
with 1:he second <1.r g u ment. 

first ar g ument is a variable") -~ second 
argument must he a list o:f zero or more I).._ J t? 
elements• ~ E'ach element ~ a ··14.U tie a 
constant with a value consisting of a 
single symbol. The first arg ument is 
unified with the constant whose value 
consists of the symbo~s in the list. 

!!!J::.,;i~hS.a.. ........ ,..;i~!Wil•~ Examples : 

,\, 

The following calls succeed• 
<-string( 1 ABC 1 1 "AHC" )• 
<-st-ring('' ,nil). 
<-string(abc ,a.b.c.nil). 
<-string ( 1012,1.2.nil). 

I 
, I' 
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The 1'oll.owiug 
.:first araument and 
pre1ixing the first 

append(In,Out) 

predicate accepts a constant as a 
produces the second argument by 

with a q. 

<- string( In,S) S 
string(Out,q.S). 

The argument predicate can be used to select the 
argu111ent 0£ a skeleton corresponding to a.n appropriate 
index. For example, the goal: 

<-are;umen t{ :f( l, 8, 27, 6 4), 3, Cube). 

will succeed and uni.:fy Cube with 27. 
Similarly the goal: 

<-argument ( :f( 1 t 8, 27, 6 4 ) , X, 64). 

will uni£y X with 4, namely the index of the 
argu.,1ent which uni.fies with 64. The a.r gument predicate 
is al.way~ called with three parameters. The first 
argument must be a skeleton or atom or else an error 
will resul.t. If the :first argument is an atom it is 
~reated as a skeleton with zero arguments and the 
predicate simply £aiLs~ The second argument may be an 
integer or a free variable. An atte~pt is made to 
uni£y , the second argument with each successive index 
from 1 to the arity 0£ the skeleton. For each index the 
third parameter is unified with the corresponding 
sKeleton argumen~. The argu~ent predicate behaves as 
though it were defined by the following axioms: 

argument(Ske~eton,Index, rg) <
cons(Name.Arglist,SKeleton} 8 
atom(Name) t:; 

list_lndex(Arg,Arglist,Index). 

11st index( Arg 1 Arg.Llst,1). 
list_lndex{ Arg,*.List,N) <- list_iudex(Arg,List,M) 6 

sum { M , 1 1 N ) • 

/ ~ 
/ J-:1 1.n.autl.Qu:h?.u t .Pre<llca t es 

Input/Output predicates a re provided 
PROLOG program 
identi.f.led by 

access to external data ■ 

a constant whose value 
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ldentl~ier. A Xile identi1ier may consist oZ £rom 1 to 
8 chdracters, o~ which the ~irst must be a letter and 
the remainder must be digits or letters. The 1ile 
identifier is converted t~_, pperca.se by all 
input/out put pred icates, since~ file systems do not 
allow lower case :file na ::aes. The input/output 
predica tes each have an optiona~ £lle identl~ier 
argument. l:f 1:hls argument is omit te<l the ma in 
input/output stream is assumed ( i.e. the terminal £or 
an interactive session). The file identifier is 
option~l £or all input/output predicdtes except the 
:fileclose predicate, for which it is manditory. 
Several of the input/output predicates may also have an 
optional record number 
be a posltive integer 
appropriate record in 
indicated operation. 

argu~ent. This record number may 
and is used to position to the 
the .ii 'le be.t'ore per :form Log the 

read is a predicate with 
arguments; The second argument 
identifier. The third argument 

one, 
is the 

two or "three 
optional :file 

ls an optional record 
number. It must Le a posit ive integer, indicating where 
in the 1i~e the read is to start. The first record in 
the file has a record number 0£ t. A term - is read :from 
the indicated fi~e and uni£ied with the first argument. 
The term must be delimited with the end of term 
character. Tf the end of the input :file has been 
reached the predicate 1aits. l:f backtracking returns 
to the read then a read of the next term wi~l be 
attempted. I£ the term read cannot be unified with the 
:first arg ument or the format oL the term is invalid 
then back+racking will cause a rea d of the next term to 
be attempted. 

write is a predicate with one, two or three 
arguments. The second argument is the optional -file 
ident1£ier. The third argument is an optional record 
number. The term specified by the first argument is 
written on the indicated file. The ter~ is delimited by 
the end of term character. The term is written using 
prefix 1 ln~lx and su±£ix notation where appropriate, as 
indicated by the operator declarations at the time o1 

writing. --· 
wrfteq is a predic_ate with one-1 - tw-o or three ~ 

arguments. It .:functions in a manner ver;--- ~ i-;llar - to 
write. fhe only di~1erence occurs in the for~at of the 
written output• writeq encloses 
quotes(i.e apostrophes) as required, 
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written term can he read back in by the read pred icate. 
Thus any identl~iers containing blanks, punctuation 
symbo~s, etc. will be written enclosed In apostrophes. 

readch is a r,redica t e •i th. one, two or three . 
arguments. The second argument is the optional -file 
£dentiiler. The third argument is an optional record 
number. A slngle character is read from the given 
1ile. The constant whose value is the single character 
is unified with the first argument. [~ the end o~ an 
input line (or record) has been reached then the first 
character of the next line (or record) ls read. I~ the 
end ot the input £ile has been reached then the 
predicate 1ails. 11 backtracKing subsequently returns 
to this point or if the uni~ic4tion o:f the first 
argUfllent and the character :fails, then the next 
character in the input -file is read and the unification 
reattempted. 

The readempty p redicate ls provided for use in 
conjunction with the readch predicate. It allows record 
boundaries to he detected when reading a character at a 
tillle• reade,11pty ls a predicate with o_ne opt_i'9'llal. 
argum~nt - the file identi£ier. - ~'CHtp::ty ~ 

T-t- succ~eds lf' the i-nput bU1.'i'er is empty(~ the next 
rea.dc h wl 11 cause a new physi ca l record to be read)• 

~ritech ls a predicate with one 1 two or three 
arguments. The second argu- ent is the optlona1 :f ile 
identifier. The third argument is an optional record 
number.. The .first argument speci:fies a term which is 
formatted using the operator declarations {as :for 
write) and placed in the output bu1:fer for the gi ven 
file. If the b uffer is filled then it ls written to 

/ 

the given file (and emptied). If the buffer is 
p artially :filled -then it is not written out. Note that _ _/ ~ ~. 
the readch an::I writech predicates are not s-,,u~ti•icat. ~. 
The writech predicate can be used to write a single 
character but i~ is consider~bly more g eneral than 
readch. 

ne-wllne is a predicate with one optional argument. 
T~the file i denti __ Jj.~[ f -ue.ti-ae writes 
the current output bur--re1-~ --:i--o the given file and empties 
the bu£fer. newline is used in conjunction with 
wrltech. For example, the goal statement: 

<-writech('on 1 ) -~ wrltech(one) ~ 
wrltech(' line.•) t; newline. 

causes the following to be written on the terminal: 
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on one line. 

Note ~nat this out p ut is 
the cat l 

ldentlcal to that produced by 

<-write( 1 on one llne 1 ). 

or by the call 
<-wrltech( 'on o 1 ) S write{ •• ne line•). 

~ileclose is a predicate with one ar g ument a 
file identi .:fier. i'ileclose may be used to logical ly ...,') 
close a :fi le - -so that it rnay be. re1"ead :from the 
beginning . Note that when a file ls used .for- input 
a~ter output, the :file is automatica~ly closed so that 
the first input will be :from the beg inning o~ the £Ile. 
In a similar manner, output after Input will cause an 
automatic close. Output to an existing ~ile wilt be 
appended ~o the end 0£ the ~ile. 

tab ls a predicate '!ith one or two arg '-!me.n...t:.s.-= The 
second argument is the optional fi~e identifier. The 
1irst ar~ument must be a non-neg ative integer. It 
speci11es the number of blanks to be written on the 
output J:i 1.e .. 

Ther~ are several predicates which are included to 
provide the basic operations 0£ inte g er arithmetic. 
Each predicate has three ar g uments. The f irst two are 
the input parameters and the last is the result 
parameter. The ±irst two arguments Aust be integers. 
The appropriate inte g er function of the 1irst arguments 
is unl::fied with the third argurnent. 

The arithmetic predicates are: 
dif£ - difference (subtraction) 
prod 
ouot 
rem 
sum 
w,,.J~ • ._ 

product 
quotient 
remainder 
sum 1/"KC ott, 

" I' 

The following 
calculates the 

/lP .. . 1 ~ 

axioms derine a 

.factorial function 
arg ument. 

fact( 0, 1 ) • 
fact(X 9 Y)<- di1'HX,1,Xl) & 

fact( Xl, Yl ) S 
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prod( X , Yl-, Y ). 
The :follow-lug calls succeed: 

< -dl ff ( J, 2, 1 ) • 
<-prod(l0,20,200). 
<-quot( 205 ,1 0 ,20). 
<-rem( 205 1 10, 5) • 
<-sum( 1,20,21 ). 

C::---

database built-in predicates 

for updating the database ( i.e. 

I 
/),/!, ' 11) (V' 

The 

faci 1. lty 
ax.ioms i fl the active wor.kspac e ). The 

provide the 

the set o:f 

oredicates 
provided are addax, ax, axn, control., del ax, op and 

freeax_. 
The addax predicate is used to add an axiom to the 

database. It has one or two arguments. The :first 
argument must he a val.id axiom• It md.y be : 

(a) a unit axiom . In this case it is a skeleton ·or 
an atom• 

(b) a non-unit axiom. In this case it is o:f the 
form <heact><-<body). <head) must he a 
skeleton or atom~ 

The dxiom specified by the :first argu~ent is added to 
the database . If a single argument is specified then 
the axiom is a~ded alter all other axioms with the same 
p redicate name and number o~ arguments~ If the second 
argument ls speci1ied it must be an integer or a 
variable. We first explain the case of a call with two 
arguments where the second is an integer. This integer 
speci1ies where this axiom is to be added, as an index 
in the list of all axioms Lor the same predicate name 
and number 0£ arguments. Consider the following list 
o-r axioms: 

a( 1 ) • 
a( 2 )<-b. 

a(X)<-c(x). 

a( 4 ) .• 
If the predicate call <-addax(a(m) ). or 

<-addax(a{m),5). or <-addax(a(rn),100). were issued then 
the new list wouLd be: 

a{ 1) • 

a(2)<-b. 

a(X )(-c{ X ). 

a( 4 ). 
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a( m ),. 

~£ the call <-addax(a(q) 1 1 ). 
would become: 

a( (I). 
a( {) • 

a{ 2 )<-b. 
a(X)(-c{X). 

a( 4). 
a( m ). 

were then issued the list 

The index specified gi ves the index in the list where 
the axiom is to be added.. If the index is 1 or less 
then the axiom is added before the ~irst axiom in the 
list. Similarly ir the index 13 grea ter than the Jndex 
of the last axiom then the new axiom is added at the 
end 0£ the list. 

1£ addax is called with a second argu ent o1 a 
variable, the axiom specl1led by the first argument ls 
added at the end of the list and its index is then 
unified with the second argument. 

The delax predicate ls used to delete an axiom 
from the database. It may be called with one or two 
arguments. The Sirst argument ls a term representing an 
axiom. The 1irst argument may be: 

(a) a unit axiom. In this case it is a skeleton or 
a"tom • 

( b) a non-unit axiom. In this case it ls of the 
:form <head><-<body). <head> must be a 
skeleton or atom. 

Thus the ~irst argument specifies the name and 
number o:f argumeuts -for the .l.X.i om to be deleted. I :f 

only one argument is specified then an attempt ls ~ade 
to un l fy the a. r gumen t with ea.en o 1: the relevant axioms 
in the database. The axioms are se1ected lo the order 
in which they appear in the database. If no axiom is 
£ound which ls unifiable with the fi rst argument then 
the predicate falls. If the uni~lcatlon succeeds for an 
axio• then the axiom ls deleted and the predicate 
succeeds. [f backtracking subsequently returns to this 
point then tne predicate will fail, thus preventing 
accidental deletion of further axioms. 

If two arguments are speci~ied then the second 
argum.en t ]s considere d to be the axiom index. It may be 
a variable or an integer. The attempts to unl£y the 
:first argument with the database axl0-ins roceeds as in 
the case o.f one argument. I£ the ~ -at lo succeeds 
for a gi ven axiom then an attempt is made to unlfy the 
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axiom index with the second ~r~ument. If the attempt 
±ails then the search through the axioms i s resumed. If 
the a~ tempt succeeds then the axiom is deleted and the 
predica.te succeeds. I:f bacrttr acking suhsequentl.y 
returns to this point then the predicate will ~alt. 

The ax and axn predicates are used to retrieve 
axioms from the database9 The axn predicate retrieves 
axioms usin g the predi cate name and number of 
arguments. The ax predicate retrieves axioms usin~ a 
model axiom head. 

The axn predicate has either 
:formats: 

of the two following 

axn( <name>,<nargs>,<axiom> ) 
axn( <naAe>,<nar gs> ,<axiom>, <index> 

The pred1cate calt axn(c,2,A) will cause A to be 
unified with the £lrst aKlom £or predicate c with 2 
arguments. II there are nq11 axioms £or c with two 

. t "" ' arguments then ~ 1 ~ ~·•ald fall. If 1:he call 
succeeds and backtracking subsequently returns to this 
point then an at-tempt will be made to unify A with th~ 
next axiom £or c ~ith two argumen~s, and so on. The 
pre::iica te call axn( c, 2 , A, I) fun ct ions identically 
excep~ that when the call succeeds, I is uni1ied with 
the index 0£ the axiom unified with A. Similarly the 
call axn(c,2,A,3) will retrieve the third axiom 1or c 
with two arguments, if one exists. The predicdi:e call 
axn(c,N,A• will unify~ with O and unify A with the 
.iirst axiom .for c with O arguments. 11: this 
uni£icatlon Lalls or bac~tracking returns to this point 
then the next axiom for 
When all axioms fur c 
then N ls uni fied with 
arg\lillent are retrieved 

c with O arguments is selected. 
with O argui:aent s al'e exhausted 
1 and the axioms £or c with 1 
in i:urn. This p rocess can 

continue until a~l the axioms ror c have been examined. 
The 1ourth index argument ~ay be included and it 
£unctions analogously to the previous case ■ For example 
the g o•l statement: 

(-4xn(£,* 1 A)&write(A)&fail ■ 

lists alL axloms for predicate f ■ 

The goal statemeut: 
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<-axn{1 1 N,*,l)&write(N)&1ail. 

writes out the di1ferent number of ar g uments for 
which 1 has an axiom• 

The call axn(Name,N,A) can be used to exa~ine the 
axioms [or edch predicate name in turn. First a 
predicata name is selected from the database and 
unified with the first argument. Then each o1 the 
axioms 1or thls preaicate are examined in turn as in 
the previous examples . A:fter the last axiom -for the 
given name is examined then the first argument will be 
u .ni .:fied with another name in the database and the 
search will continue. The order in which the predicate 
names are examined ls not re£dily p redictable since lt 
depends on the bashing algorithm 0£ this 
implementation. Consequently thls order should be 
considered to be arbitrary. The :following goal 
statement will cause all axioms in the database to be 
l lsted: 

<-axn(*,*,A)&write(A )~fail. 

The ax predicate .functions 
similar to the axn predicate . Again 
:formats: 

ax(<heact>,<a xiom> ). 
ax(<head>,<axiom>,<index>). 

in a manner 
there are two 

very 
basic 

<axiom> and <index> are treated exactly as ~or the axn 
predicate. <head) is a model axiom head and may be a 
skeleton, an atom or a variable. If <head> is not a 
variable then it specifies a predicate name and number 
of arguments impiicitly. The axioms for this name and 
number o.-f arguments are examined ai;. £or axn. If <head> 
is a variable then all axioms in the da~abase are 
examined in turn as for axn(*,*,A). I£ an axiom 
uni£ies with the specified dxiom then a model of the 
axiom head is unified with the ~lrst arg ument. Hy a 
model we mean a skeleton with anonymous variables for 
all arguments. The Model idea is introduced so that a 
~heorem p rover written in PROLOG may use ax to retrieve 
the axioms relevant to a predicate term without 
actually unl£ying the axiom head and the predicate 
term. 

The op 
declarations. 

predicate 
Its use 

is 
was 

used to manipulate operator 

lnt .roduced in 2, .. 1, ]:he ~ntaK 
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.in Qtlll!.• Ac!ding a unit axiom tor the op predicate 
(with 3 arguments) is.equivalent to adding an operator 
declaration. Similarly, deleting a unit op axiom 
deletes the operator decldration represented. Thus one 
can delete an o pe rator declaration with a call of the 
:form: 

de lax( op( (operator>,<type>,<priority> )). 
where: 

<operator> is an atom identi1ying the operator. 
<type> ls an atom specifying the declaration type and 

may be any one o:f lr,r1 1 prefix or su:f~ix. 
(priority> may be an integer or a variable. 
If a matc~ing Jeclaration is ~ound it ls deleted. 

A call to the op predicate may be used to retrieve 
an operator d eclaration. For example, the call 
op(.,rl,P) sacceeds if«." is declared as rl. In this 
case P would be unified wi~h the priority. The call 
op(.,T,P) succeeds if there is an operator declaration 
Lor"•" The following g oal statement will list all 
pre1ix operators: 

<-op(Op 1 pre1ix,*)6write(Op)&~ail. 
In this case bacKtrackin g to the op predicate call 
causes each prefix declaration to be retrieved in turn. 
Note that the order in which the declarations are 
retrieved is pseudo-random and not the order in which 
the original declarations were added. However, if an 
operator is declared as both pre1ix and in1ix, the 
prefix declaration ls always retrieved first. The 
~allowing goat statement will list all operator 
dee laratlons: 

<-op(Op,T,P)&write(op(Op , T,P))6£ail. 

The contro~ predic4te ls used to provide some 
special plobal variable facilities. The control 
predicate has two ar g uments, a }igl:'., and a ~fll!.l.!.• For 
example , the call <-control(top,X) retrieves the result 
corresponding to key top and uni£les this result with 
x. The key and resul.t pairs are 111anlpulated In a 
£ashion slmllar to operator declarations. To add a key
result pair , an axiom ~or control is added. Adding the 
axiom control(top,3) records result 3 for the key top. 
Only one pair can be recorded £or any ey value. 1£ a 
pair exists with the same key ~s one being added, then 
the previous pair is replaced. The keY must be an atom. 
The result associated with the key must be an atom or 
an integer. A key-result pair may be deleted by 
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deleting the appropriate axiom Lor the control 
predicate. For example (-delax(control(top,*)) will 
delete the key-result pair with key top. A subsequent 
call 0£ the for~ <-control(top,*) would £ail since no 
pair exist~. The call <-delax{control( top,99)) would 
succeed only if the key-result pair 0£ top-99 ls 
currently recorded. The key-result pdirs recorded in 
the data base may be queried in a manner similar to 
that used ±or operator declarations. For example: 

<-control{ K ,R)Swrite(K . R )~:fail • 
~lsts alt key-resu~t pairs in the data b~se. 

<-control(K, 99)Swrite{K )&:fall . 
lists all keys with d result o~ 99. 

<-control(i,~)S U R,1, R2 ) &addax(con trol(i,R2)}. 
increments the 5~sult intege r corresponding to key 1. 

The control built-in predicate ls also used with 

certain special keys to control system options. If the 
key verbose has an associated result of on the~ the 
system lists any goal stdtements which succeed. The 
goal statement <-<goal conjunction> l s written in the 
~orm < goal conjunction><-, displaying any 
instdntia~ions made for variables in the proof. The 
goal statement <-sum(2,2,*) causes sum(2,2 1 4)<- to be 
written on the terminal ■ lf the key verbose does not 
have result on., then a success1'ul goal st atement is no1: 
listed ■ 

I£ the key noax has an 
then the system Indicates each 

associated result 0£ on 
call to a predicate for 

which there are no axioms (and no compiled routines). 
F or each such call a message of the form "noax - xxxxx 
nn" ls displayed ■ xxxxx ls 
name and nn is replaced by 

With -this 1'.eature, the goa.l 

repldced oy the predicate 
the number 0£ arguments. 

<-sum(1 1 2.3)jprodq(J,4,12) 
causes the £allowing messages to he displayed: 

noax - sum 2 
noax - prodq 3 
? 

This feature is initially enabled and illay be disabled 
by deleting the control(noax,on) axiom or adding 
control(noax,of~). To enhance the usability of this 
:feature:, the :fail predicate {with no arguments) is 
included as a built-in predicate which always fails ■ 

Thus spurious messages o~ the ~orm noax - :fail Oare 
avoided ■ 
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The key lower ls used ~o control the translation 
o1 input from the main input stream. I£ lower ls set to 
on t hen lower case let ters Zro& the terminal are input 
as lower case~ Ir lower is not set to on then lower 
case letters from the terminal are translAted to upper 
case as they are input. _The initial setting of lower is 
determined based on the mode or operation when PROLOG 
ls inltlated. If single uppercase ~etters are assumed 
to be varlables{the de1ault }, then lower is initially 
set to on. J~ variables can be designated only by using 
an asterisk1 then lower is initially set to o~f. 

The key g oa~input can be used to control the input 
format of goals versus axioms. If goalinput is set to 
on then input terms are aSSUilled to speci1y goals . The 
period character is declared as a prefix operator with 
the single initial a.xio1n U( .(X) ><-addax( X) 11 • Thus wlth 
goalinput set to on, axioms may be added to the data 
base by entering them with a period pre~ix. With 
goalinput set o:f:1', all input terms are assumed to be 
axioms unless they have a unary •<-• as the main 
skeleton. godlinput ls initially set to on. To make 
the input 01 axioms a bit more flexible when goallnput 
is on, the :tollowing axiom is provided in the initial 
data base: 

(X<-Y)(-add ax(X(-Y). 
This odd looking axiom makes the initial period 
optional for non-unit axioms. period(or ore formally 
"unless the input term is an instance of a skeleton £or 
• • • with one a.rgumentn ). Ter.t11s preceded by the period 
~ a.ssumect to be axioms. 

,,,,-- ~ The xreeax_ predicate (yes it d oes end in an 
underscore l ) is normally o.f use only in very 
specialized ins-tances, usually when writing second 
level interpreters in PROLOG. When using a second level 
interpreter which 'never .finishes•, certain anomalies 
occur in the recovery o1 space 1rom deleted axio~s. 
When an axiom is deleted in a proo1, the space 1or the 
axiom is placed on a 1 deferred £ree list•. The space is 
not freed directly since the axiom may still be used in 
the prooL. Space on this deferred ~ree list is freed 
when the proo£ is completed. Thus in a second level 
interpreter which is continually adding and deleting 
axioms, ~ large deferred free list may be built up and 
the interpreter can run out of space. To provide ~or 
this situation, the freeax_ predicate ls provided. 
Invoking the freeax_ goal causes all space on the 

- 40 -



de:ferred :tree list to be :freed .. [t is the 
responsibility oi the pro~rammer to ensure that the 
current proof does not contain any re£erences to freed 
axioms~ Otherwise, disastrous results are likely! 

;l.g ;Execution Control Predicates 

The execution control predicates provide 

Iacilitie5 £or testing dnd controlling the pro g ress of 
a proo:t. The ancestor, retry, I, &, I, repeat, fail, 
error, a~tn, stop and trace predicates a.re included and 
the meta variable facility ls also provided .. 

The I?a.C~!!.!. of a g iven literal in a proo:f is the 
literal which invoked the axiom contdinlng the given 
literal. In the implication tree describing the prooL 1 

the parent literal labels the node above that labelled 
with the ~iteral4 The ancestors of a literal include 
~ts parent and its parent's ancestors.. The ancestor 
predicate is used to examine the ancestors o~ the 
literal which invoked the pre~icate. When ancestor is 
used with one argument, the argument is unified with 
the most recent ancestor ~or which this is possible. If 
the ar g ument cannot be uniiied with any ancestor, the 
predicate £ails. If the predicate succeeds and 
subsequently backtracking returns to this point ln the 
proo~, the argument is uniried with the next most 
recent ancestor and so on. The 1ollowing axiom will 
list all o± the ancestors o1 the ancestor literal and 
then :fail. 

listanc<-anLestor(A)~write(A)~£ail. 
first ancestor listed will be listanc. 

When the ance5tor predicdte is 
arguments the first ar g u ,nent functions 

Note that the 

used with two 
in the same way 

as the single ar~ument above. The second arg ument is 
the ~~iQ.C 1 ndex. For a given ll terat the .i.ncestor 
index o:f its parent is 1 1 the ancestor index o:f its 
parent's parent is 2, etc. The first ar g ument ls 
uni£i~J with each ancestor in turn as above. I:f this 
uni1icatlon ls success~ul then the second arg ument ls 
uni£ied wlth the current ancestor index. The followin g 
axiom will list the five most recent ancestors 0£ the 
ancestor literal: 

listanc2<-ancestor(A 9 N)~write(A)&eq(N,5). 

The retry predicate is provided 1:0 :facilitate 
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recovery 1rom an error situation. After a correction 
has neen made~ the prooX may he restarted ±rom some 
point before the error. ~etry has one or two arguments 
which control a search through the ancestors exactly as 
Lor ances~or. The difference is the action taken upon 
success. Ti an appropriate ancestor is iounrt, the proof 
ls backed up to the point where the subproof £or the 
ancestor literal began and th• p roo£ is re~tarted ~rom 
~hat poin~. retry restorea the proof to the state it 
had at a particular point in the past. Consequently 
retry is only useful when some change has been made to 
the axioms. 

The slash predicate •ith no arg uments was 
described ln _g_.a _e_RQLOQ Execution and BacM!:_a&.k_ing. 
The slash predicate ls also provided in a ~ore general 
~orm with either one or two arguments. The arguments 
control a search throug h the ancestors exactly as for 
aoces~or and retry. If this search £ails then the 
predicate :fails.. If 1:he search succeeds then certain 
available choices are eliminated fro• an existlng 
portion of -the proo:f. All choice points are removed in 
the par~ of the proof £rom the polnt of selection of 
the given ancestor literal to The current point in the 
proof. Thus a call of the form/(*) has exactly the 
sa~e effect as the simple nullary / call- Consider the 
1ollowing example: 

' a<-b&c&d. 
h<-e. 
c<-.f&g. 
e. 
f. 
g(-/{ C )f;h .• 

<-a. 

The implication tree has the 
unary slash ls called: 
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goal 

I 
a 

I \ 
I \ 

I \ 
b C d 

I \ 
I \ 

e .f g 

X X \ 
\ 

/ ( C ) h 

All choice polnts £ram the selection of c<-£6g onward 
are eliminated. Thus if h ~alls an dlternate proo~ 1or 
e will be attempted (dnd the subproo~ o~ c wilt be 
deleted ). 

The meta variable facility allows a variable to be 
used in place of a literal in a goal or in the body of 
an axiom. When the variable ls encountered in a proof 
i~ must be bound to a literal . The proo£ proceeds as if 
this literal occurred instead o~ the variable. For 
example, the £allowing axiom de1ines a predicate exec 
which reads <l. term and "executes" it. 

exec<-read{X)~X. 

Axio~s are included 1or the 8{*,*) 

predicates. The axioms ror I are: 
l<X,Y><-x. 
].(X 1 Y)(-Y. 

and the l ( * , * ) 

These axioms allow alternativas to be specified in an 
axiom body or goal with the desired e£fect. The axiom 
Lor & is: 

S( X, Y ) < -S ( X , Y ) • 
This axiom may look a bit ridiculous but it is useLul , 
particularly when using the met~ variable facility . For 
instance, if as input to the exec axio• above, aCb is 
speci·fied, then this axiom for i:;; would be invoked and a 
and then h would oe called . 

The fail predicate (with no ar~uments) is p rovided 
as a built-in predicate which always falls. This 
predicate ls provided even though p rovidin g no axioms 
£or 1ail woulJ yield a predicate which always £ails. 
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The reasons ~or providing such a predicate are: 
{a) The fall predicate gi ves a standard name 1or a 

predicate which d.lwa.ys fails. This imposes a 
programming 
reada.bl ti ty. 

standard which may improve program 
This standard predicate could also 

make it easier for a compiler to per:for111 certain 
optimizations. 

(b) fhe provlslon o:f the built-in 1ail predicate makes 
the NOax feature 01' the control feature more 
use1ul. Reier to the description of the control 
predlcate in ;I.S ;Qataba&@. Pre-dicates 1'or :further 
details. 
The EOtop predicate ls used to leave the PROLOG 

system. The execution 0£ the stop predicate terminates 
the PROLOG session and returnd to the operating system. 
All axioms an1 operator declarations in the current 
workspace are lost. 

The repeat predicate can be used with zero to 1our 
arg u ments to perform loopin~ in a proof. Repeat with no 
arguments succecJs initially and al.ways succeeds on 
bdcktrdcklng. Thus it cdn be used to loop indefinitely. 
The loop Cdn be terminated only through use of the/ or 
retry predicates . Repeat with one argument provides a 
similar looping £ac ility but also maintains a loop 
counter. The argument is first uni~ied with land then 
to 2 on bdcktrack ing , etc. Again the loop can be 
terminated through / or retry. The second, third and 
fourth arvuments of repeat can be used to specify an 
initial value, a stopping value and a step value, 
respec tively. If any o± these arguments are specifi ed 
then they ~ust be integers. The second parameter 
specl1ies the ~irst value to be used ~o r the counter. 
I.f this param.eter is omitted, then the starting value 
is assumed to be 1, as described above. . The third 
parameter is the sto p ing value. When the loop counter 
exceeds this value, the repeat predicate Lails. The 
fourth parameter specl£ies the increment or step value~ 
1£ it is omitted, then 1 is assumed. ~ negative step 
value may be specified, in which case the loop 
continues until the counter is less than the stopping 
value. Note that comparison to the stopping value is 
made on initial entry to repeat, so that the predicate 
may £ail the first time 1£ the stopping value is less 
than the initial value. 

The error built-in predicate ~i£Lers from the 
other predicates in the system in th~t it is not a 
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built-in predicate de1inition but a special lnter£ace 
which can be used to call a user-de£ined p r edicate. The 
error predicate (with no argu~ents) is called when 
certGln non-disastrous errors occur in a proo£. A 
message describing the error ls always printed before 
invoking 1 error 1 • The user may provide any axioms 
desired ~o list ancesto~s, allow axioms to be 
corrected, or to simply g ive up. A useful set of axioms 
:for error are included ln the standard s.et o.f axioms 
loaded wi+h the PROLOG system. These axioms are de£ined 
in M!l!SUllil.3 ft: The ~R.QbQQ llEC tile 

The attn built-in predicate ls analo~ous to the 
error predicate. The attn predicate is called when the 
attention or break key ls pressed on the terminal. 
User axioms may be added Lor attn to provide whatever 
exception handling is desired. The standard set o:f 
axioms ln the PROLOG EXEC £ile invoke the axioms ror 
error when attn is called(i.e the axiom for attn is 
1 attn <- t-rror' ). 

The trace built-in predicate provides special 
1eatures for debugging P~OLOG progrdms. It allows 
execution tracing to be enabled or disabled on a 
predicate by predicate basis. The trace predicate 
xunctlons in a ~anner similar to the op predicate, in 
that axioms £or trace can be ad ed, tested or deleted 
and the presence o:f trace axioms ..I.. side e-.f:fects. If 
the data base contains an 
where P is the name o1 
enabled £or all attempts 
name P . 

axiom oi the forra 1 trace{P) 1 

a predicate 1 then tracing is 
to prove goals with predicate 

The actual tracing ~unctions to be performed can 
be de1ined by user axioms . The standard PROLOG EXEC 
1ile Includes axioms which write out t he 1 pos ition 1 and 
the 1 goat• £or a traced predicate. Four 1 posi1:lons 1 

are defined 1 namely •call' 'exit• 1 redo 1 and 1 fail 1 • 

The 1 call' posltion occurs when the goal ls initially 
attempted, before any unification has taken place. The 
1 exit 1 position occurs after the goal has been 
success:fully roven. At the exit point , the goal has 
been unified with an axiom head and the axiom body has 
been executed. The 1 red o 1 position occurs when 
backtrackJng returns to the goal, berore the attempt 
has been made to reprove the goal . The 11ail 1 o8ition 
occurs after a final unsucces3ful atte~pt has been made 
to prove the goa~ . 

Enabling tracing :for the goal. 'Goal' causes 
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execu~ion to proceed as though t(Goal) became the goal 1 

where t has the 1ollow ing axioms! 

t(Goal) <- systrace_(call,Goal) ~ 
Goat S 
( systrace_(exit,Goal) 

systra.ce_( redo ,Goal )j. 
t(Goal) <- systrace_(£ail,Goal). 

These axioms will cause the systrace_ axiom to he 

invoked at each of the four posltlons in proving the 
g oat. Note that :for this to work correctly, the 
systrace_ goal must succeed for positions call and exit 
and must fall for positions re do and fail. The normal 
axioms for systrace_ (which are included in the 
standard PROLOG EXEC 1ile) are as 1o~Lows: 

systrace_(Position,Goal) <
systrace{Position,Goal) & 
-fail. 

systrace_(call,Goal}. 
systrace_(exit,Goal). 

then define the systrace predicate to The user may 
wrl te anything 
direction. The 
axiom: 

desired or even rompt 
PROLOG EXEC -:f.il..e contains 

:for user 
the single 

systrace{Posltion,Goa.l) <- wri~echl Position) & 

tab( 1) t; 

write( Goal>• 

This axiom may be deleted or preceded by another user 
axiom to modi~y the output £ormat. For exampte,i£ the 
following axio m is added prior to the axiom above, then 
the •call' position will be traced by a user trace 
routine: 

systrace(cal1.,Goal) <- / S trace_calllGoal). 

In ge neral, the user may find 
di1ferent axio~s Zor systrace, 
should be left unchanged. 
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The miscel~~neous group includes predicates to 
test the collating sequence of constants, to test if a 
symbol is a letter or a digit, and tu convert a 
character to or ~rom uppercase. In addition a system 
p redicate ls provided to execute operating system 
commands. A collating sequence is derined for the 
values o f constants as 1ollows: 

(a) Any atom is less than any integer. 
(o) Integers are reldted by the conventional 

ordering ~or integers. 
(c) Atoms are ordered by the lexical ordering 

imposed when the ordering of the symbols is 
as de£ ined by the standard EBCDIC orderings. 

Six built-in predica tes are provided to test the 
relation between two constants. Each predicate has two 
arguments, both or which 111ust be constants. The 
relations which cause each predicate to succeed are 
listed below. 

lt - argument 1 is les3 than ar gument 2 
Le - argument 1 is less than or equal to argument 

2 
,g t 
ge 

eq 

ne 

- argument 1 
argument 1 

argument 2 
argument 1 

- argument l 

is g reater than argument 2 
is greater than or equal 

ls equal to argumen t 2 
is not equal to argument 2 

Examp~es: The fo~lowlng predicate calls succeed. 
<-lt{a,37). 
<-gt(3,'-2 1 ). 

<-ge( a3 ,a)• 
<-ne(abc,c). 
<-eq( 1 abc 1 1 abc ). 

<-eq( 12, 1 +0012 1 ). 

to 

The predicates ~etter and digit each have one 
argument. The argument illUSt be a constant. The 
predicates test if the value of the constant is a 
single symbol belonging to th• g iven class. I£ the 
argument o:f letter is a constant consisting o f a single 
letter then the call succeeds. 1£ the argument of digit 
is an in~eger from O to 9 inclusive then the cait 
succeeds. The upshift p redicate has two arguments, o:f 
which at least one roust be a constant. I£ the first 
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argument is a single lowercase letter, then the second 
argument ls un1£iect with the uppercase constant for the 
same letter. If the first argument ls a skeleton or a 
constant other than a lowercase letter, then the 
predicate fails . In the remaining case(where the first 
argument ls a free variable), the predicate will 
succeed only lf the second argument is an uppercase 
letter. In this case the first argument will be uni1ied 
with the lowercase constant for the s~me letter. 
Examples : The following predicate calls succeed 

<-letter( z ). 
<-dlgi t( 0) • 
<-cti gi H • +oc,01 • >· 
<- upsh if t( *, 1 A 1 ) • 

<-upshift{ 1 a ·1 ,* ). 
<-up sh l :ft ( 1 z' , • Z 1 ) • 

The system predicate allows CMS coromancts to be 

executed from the PROLOG environment. It may be invoked 
with one or two arguments. The first argument speci£ies 
the command to be executed . The second argument is 
optional . If present, it ls un11ied with the integer 
return code from the CMS co~mand. If the second 
argument is not present then ~he return code is 
ignored. The command to be executed is speci1ied as a 
list 0£ one or more constdnts. Each constant 
corresponds to one token in t°he CMS command. Tokens may 
be no more than eight characters ~ung. In order to 
invo~e CP co~~ands 1 simp~y use an initial token o1 cp. 
Note that all Lower case letters in tokens are 
automatically shifted to uppercase. The left 
par~nthesls p~eding the options is a separa·te token. 
The £ollowing~alid calls to system: 

<-system(prlnt.prolog.exec.nil). 
<-system(l.'*'• prolog.nil , Returncode). 
<-system(cp.q.users.nil). 
<-system(t.prolog.maclib. 1 ( 1 .member.xxxxxx.nil),. 
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The Waterloo PHOLOG system is invoked from the 
VM/CMS environment by typing the command PROLOG. This 
command invokes the ?ROLOG EXEC Lile and subsequently 
the PROLOG modu~e. The EXEC file supports several 
options as well as de:fining numerous utility 
predicates. The EXEC file is describeJ in detail in 
Appendix H. 

A typical. Pl<OLOG session involves executing goats 
and adding and deleting axioms. The 1ormat or entry :for 
axioms versus goals can be control~ed. The standard 
system starts in what is called "goalinput" mode. In 
this mode, any term that is input ls assumed 1:o be a 

goal, unless l t is in the :format 0 .( • •• ) 11 1 in which 
case the term is assumed t-0 be an axiom to add to the 
da taba.se. In .fact 11 • n is treated as a predicate with 
the single axiom "(.(Goal)) <- adda~Goal)•"• 
Consequently in goalinput mode all input terms are 
treated as goals. I£ goallnput mode is turaed off then 
goals must be entered in the 1ormat "(-(Goal>"• This 
mode of operation is more verbose if numerous goals are 
being en~ered, so the goalinput ~ode is normally 
preferred. The description of the control axiom in a.~ 
~tabti~ Pr!1_d1ca,i~§ outlines how to turn the goa "l input 
mode on and off. Note that in this manual, goals are 
a1wAys described in the "(-(Goal)" syntax £or clarity 
o1 explanation. When axioms are stored in a file? they 
are normally stored without the"•" pre£lx. The consult 
predicate (described in detail in Appendix B) can be 
used to read the axioms from a Lile and add them to the 
data base. In addition, the consult predicate will 
treat any terms in the fl le in the format 11 <-( Goal)" as 
goals and execute them. Note that when entering axioms 
or goals '1.n a file or from the termin<1l, they must 
always be terminated with a dot which ls either ~he 
lasi character in the record or is 1ollowed by a blank. 

The ~ed predicate can be used to update £Iles o~ 
axio.u1s when errors are detected .. The axioms may then be 
reloaded using the reconsult predicate. 

To exlt the PROLOG environment completely, use the 
stop predicate. Simply type •stop.•. The attention or 
break key on the terminal may be used to interrupt a 
PROLOG program. I~ attention or break ls signalled 
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durin~ a prooI or in response to a READ £rom a PROLOG 
axiom, then three exclamations points are written on 
the terminal and the attn axiom is called. Axioms for 
attn may be defined by the user. A standard set o~ 
uxioms for attn is described in A.R~llgll ~: Thg PROLO~ 
liXEC :!ilg. 

The PROLOG system also includes 1acillties for 
tracing program execution , in order to aid in 
debugging. This facility ls enabled for predicate P by 
adding an axiom 1 trace(P) 1 • Note that trace has a 
single arvument which must be an atom. When trace ls 
enabled ~or a preuicate , in conjunction with the 
standard EXEC file, the progress o1 proving a g oal for 
the predicate will display the goal at each 0£ four 
positions. These positions , as well as the £unctioning 
of trace are described in detail in a.~ Executi2n 
~.QllllQi Pr~dic~1~~ in conjunction with ~he trace 
predicate. 

The PROLOG input/output predicates provide 
£acilitles ±or reading and writing CMS ±Iles. All files 
which are accessed are assuaed to have a riletype o~ 
PROLOG and to have £lxed records with a length 0£ 80 
characters. When reacting from files, a blank mode 
letter is used so that the normal CMS search order is 
invoked . When updating £iles a mode letter of 'A' is 
used. Consequently, PROLOG programs can update files 
on the A-disk only. 
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The Waterloo PROLOG system is invoked 1rom the 
VM/CMS environment by typing the command PROLOG. This 
command causes the PROLOG EXEC fl le to be executed and 
the PROLOG MODULE to be invoked from the EXEC ~ile. The 
EXEC ~lle allows several options when invoKing PWOLOG. 
The :first option controls the size of the data area 
acquired by PROLOG for execution. This area will be 
used to contain all axioms as well as the execution 
stack. The size of the area is speci£led as the number 
of 1024 byte blocks o:f memory to be used. 
speci~ied, then 100 is assu•ed. The 
speci~yln~ the size is: 

PROLOG nun 

where nnn is the desired size. 

In addition, a list o1 ~ile names 

I:f no size is 
.t:or;:na t .for 

separated by 

blanks may be specified as an operand. Axioms and goals 
will be read from each o1 these files ln turn, usin g 
the consult verb de£1ned below. For example the 
command PROLOG DATAl 0ATA2 will invoke PROLOG and use 
consult to Loa ~t axioms from file DAT.\.l and then DATA2. 
The workspace size operand may also be used in 
conjunction with the files List by specifying the size 
parameter first I as in 11 .PROLOG 2000 DATA 1 DATA21f. 

The PROLOG hXEC file also contains a set o~ axioms 
tha·t are added to the inl t la l PRO LOG database. These 
axioms provide various utility functions, including the 
consult function described above. Each predicate 
defined in the EXEC file is described below. 

The consult predicate has a single operand which 
is the name of a file of goals and axioms. Each term in 
the file is react. A term or the form n(-( ••• ) 11 is 
executed as a goat. All other terms are added to the 
database as axioms. When the end o1 the ~Ile is 
reached, the file is closed. 

The reconsu~t predicate functions similarly to the 
consult predicate except that it de~etes ~ny existing 
axioms £or the predicates which are read in, before 
addin~ the axioms in the file. Axioms for op and 
control are treated dl1~erently, in that the existing 
axioms 1or these predicates are not deleted. 
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The list predicate is 
de1initions ~roil the database. 

used to 
II it is 

list axiom 
used with no 

argu:,uents or with a single variable as an argument then 
all axioms in the database are listed. The 11st 
predicate may also be used with a predicate na~e as an 
argument to list the axioms for that predicate. For 
exa~~te, "list(compute )" will list all axioms for 
predicate compute, with any number of ar~u~ents. 

The delaxa1l predicate is used to dele te a"ll 
axioms £or a given p redicate. delaxall is invoked with 
the predJ cate name as an argument• For example 
"delaxall{co~pute)« wil~ delete all axioms for 
predicate compute. 

The error predicate is "built-in" in the sense th._t 
it is executed whenever certain errors occur. The 
PROLOG system provides this error recovery inter1ace to 
allow the user to investigate the state o~ the proo:f 
and take appropriate recovery action. 
predlcate5 included :for error handling ln 
pro vide the following 1unctions : 

The set of 
the exec :fil.e 

when the error p redicate 
the error predicate 
order. The number 

is invoked, the ancestors o:f 
are listed, in ascending 
of ancestors 1isted ls 

controlled by adding 
"control(errordepth,X)" where 
integer. ~he EXEC file sets the 
-to 5 . 

the 
X is 

initial 
a 

axiom 
posl ti ve 

errordepth 

after the ancestors are listed, the user is prompted 
to enter a command. The command entered may be any 
valid goal. The goal is executed and the success 
or failure oL the goal is indicated by the 1 ? 1 or 
•<-' responses . The user is then prompted 1or 
another command. The most common commands used at 
this point are "quit" to terminate ~he proo~, 
ttaddax" or "delaxtt to correct the database and 
11 retry( X )" to retry g oal X after a correct ion has 
been made. 

The error axioms also check ~or the condition of an 
error within an error and do not print the ancestors in 
thls case. 

The quit predicate ls used primdrily in error 
recovery. It terminates the proo£ and returns to PROLOG 
command level. 
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The attn predicate is a built-in "hook" analog ous 
to the tterror" predicate. The attn predicate is 
executed when the attention(or break) key is pressed 
durin~ a PROLOG proo~. The axiom for attn defined in 
the exec file si mply invok es the error predicate to 
provide exactly the same facilities as error for 
recovery. 

The ted predicate can be used to invoke the CMS 
transient editor lrom the PROLOG environment. For 
exaniple 11 ted(blocks)" will edit the file blocks and 
then return to PROLOG. 

The, predicate definition is included to handle 
negation. The goal -.( Pred) wi 11. succeed i.f and only i:f 
the g oal ttPred" fails. Note that when , succeeds it 
doesn't bind any variables. 

The syst race predicate is invoked as part o.f the 
tracing ~acillty. It ls described in more detail in 
~ • !l &Xl.t£!!:!i..2n £2.n.:!.£.2.l .EI::.~ i c ~li.§. i n c on j u n c t i on w l t h 
the trace predicate. 

The axioms used 
exec file are listed 
in an underscore, to 

to define 
below. All 

these predicates in the 
internal predicates end 

avoid con~licts with user axioms. 

consult(File) <~ read(A,File) & consult_(A) 
consult{File) <- ~ileclose(File>. 
consult_t<-Goal) <- / & Goal & /. 
consult_{Axiom ) <- addax(Axiornt. 
reconsultt*) <- delaxall(reconsulted_) & 

& fail. 

addax(reconsulted _(l )) S fail. 
reconsult(File) <- read(A,File) S 

reconsult_( A) 6 -fai 1. 
reconsult(File) <- fileclose(File) S 

delaxdll( reconsulted_). 
reconsult_((-Goal) <- / S Goat. 
reconsul1:_( op( X1 Y,Z)) <- / f; addax( op{ X,Y,Z) ),. 
reconsult_(control(X,Y)) <- / & addax(control(X,Y)) .• 
reconsult_( Axiom) <- reconsult_name_( Axiom, Name) S 

reconsult_start_(Name) ~ 

addax(Axiom). 
reconsult_name_(Heuct<- Body 1 Name) <- / S 

cons(Ndme•*,Head). 
reconsult_name_( Head,Name) <- cons( Name.*, H ead). 

reconsult_start_(Name) <- reconsul.ted_(Name) 6 /. 
reconsult start_(Name) <- delaxall(Name) ~ 
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addax(reconsulted_(Name),1). 
List<-list( * ). 
list(con~rol) <- control( Id,Value)~ 

wrJteq(control( Id,Value))6 
fall. 

list(op) <- op( Operatof,Type1 Priority)~ 
writeq(op(Operator,Type,Priority})& 
fall. 

list{Name) <- axn{Name,*,Axlorn) & 
writeq{Axiom) S 
:fall. 

list(* >• 
control(errord e p th,5). 
error<-ancestor(error, N )~g t(N,l ) &/ &error_c~d_. 
error <- control( errordepth,Oepth) S 

error_list_(Depth)S fait. 
error<- error_cmd_. 
error_cmd_ <- re p eat & writech( 1 E NTEH C OMM.>\.ND: 1 ) & 

newline & error_exec_. 
error_exec <- read(C) & 

( (CS error_succeed_(C)) 
(writech(?) S newline) ) t;; / S :f a.it. 

error_succeed_(C)(-con~rol(verbose,on} ~ writech(C)&fait. 
error _succeed_(* )<-wri tee h( • <-• )Snewl i ne. 
error_list_(Depth) <- sum(Depth,2, Depth2) S 

ancestor(A,Index) S 
g t ( Ind e x , 2 ) f;; w r i t e q { A ) S 
eq( Index 1 Depth2) & /. 

a.ttn <- error. 
qui*<-/{~oal)S fai1. 
ted(Flle)<-system( ted.File.prolog .nll). 
,Pred <- Pred & / ~ £aiL. 
-.P red. 
systrace_( Typ_e, Goal) <- .systrace( Type, Goa.~) & fail. 
sys~race_(caLl,*)• 
systrace_(exit,*>• 
sys-trace( Type, Goal) <- wri tech( Type) t;; tab( 1) t: wrl 1:e( Goal}. 
delaxall(Name) <- atom(Name) S ax~Na me,*,Axioru ) 6 

d elax(Axiom) & 1al1. 
delaxall( Nau1e ) .• 

- 54 -



The syntax or PROLOG as described ln this manual 
involves hoth u pver and lower case letters. II PROLOG 
ls belng used with terminals which do not support lower 
case , a slightly modified "uppercase only" syntax may 
be invoked. In this mode of operation, the following 
changes are made to the standard syntax: 

all v ariables must begin with an asterisk. 

all symbols which begin with a letter are 
be identifiers( i.e either predicate 
constants). 

assu.med to 

names or 

all. lnput characters are 
upper case. 

automatically shifted to 

To invoke PROLOG in the uppercase only mode, the 
PROLOG module must be invoked with the parameter 
•L• . (e . g. PROLOG L). If a workspace size is to be 
speci1ied 1 the parameter should be 'Lnnn• where nnn ls 
the slze(e.g. P ROLOG L256). The standard PROLOG EXEC 
1ile does not support this mode of operation. To create 
an appropria~e EXEC ~ile, the standard EXEC can be 
copied , all the axioms converted to uppercase syntax 
and the lines Invoking PROLOG changed to add the 1 L 1 

pref i x to the first parameter . 
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