#ATLRLOO

PROLOG USENYS MANUAL
Version 1%

Grant Roberts

I~
i
=)
&
=
“
ot
7

1 Introduction 2

2 The Language 3
2¢1 ITntroduction =—====—ecercer e cc e r e ——==]]
22 Flementary 3Syntax ———==------ - ————— ———————i
23 PEOLOS Ixecution and Backtracking ==========§
24 The Syntax in Petail —-<---w———-e-- ~———————-=18
2.5 Using Infinite Terms —--—=-=—=-==---==- —--—==--25

3 Built=-in Predicates 27
3¢l Tntroducticon ===m—cm-ec—eeee—--- —_—————— - 27
3.2 Structural Predicates ==—===—--==——-- - 28
Ze3 Input/Output Predicates —=—=======-= ———————— 30
Je¢e4 Arithmetic Predicates —-==—==-- —_———— e —————33
3.5 Database Predicates =-=---=--- sm==s-s-=m-==-==34
226 Fxecutiocn Control Predicates —-===-=-- ————————41
3¢7 ¥iscellaneous Predicates ==-=----==-=—-c—e--- -47

Appendix A I Runnming PKOLOG under VM/(CMS =—=e=memec—w-==49
Appendix B I The PROLOG EXEC file ===-emcececerececee-—==5]

Appendix C 3 Usipg PROLUG with uppercase input =-=---=5355
.4”."5 J i { f \.:/,.,u sy o s ";'; ‘j ’ v /‘";‘,«/‘. ‘:;

,[\v{.; FIE) £ e [T RS

1 Iatruduction

Research in artiticial intellizence has spurred
the develupment of nunerous prograaming languages
better orientel! to expressing and solving the problems
which arise in this fielde. One of these languages is
£ ROLOG, The acronym PROLOG is derived from PROgramming
in LOGic and eaplasizes the derivation of the language
from predicate Logicoe The development of PROLOG
represents the iiscovery of a means for using
resolution logic as a pbactical progranaing Language
for pronlem solvingze

The semantics of PROLOG are essentiality those of
first order resclution logics Consequently the language
is both well lJetftined and compact in definitiones More
important though, the language is a powerful tool for

problea solving, as ~ has been demonstrated in the
development 0oi several problea solving systems, among
them a geometry theorea prover, natural Language

understanding systems and a program for automatic plan
generatione

The W¥aterlouo implementation of PROLOG for the
VM/CMS system is intended to provide an efficient and
iriendly online interpreter which can be used for
educational purposes and program developmente

This manual provides an elementary introduction to
the P RCL.OG language and the Waterloo PROLOG
implementatione Section 2 of the manual describes the
languages Those readers who are familiar with a dialect
of the PROLOG language may wish to skip subsections 2.1
to 2.3 and read subsection 2.4 The Syntax 4in Detaile
"Subsection 2.5 Usipzg Ipnfinite Teprms descripes a special
iacility that is prgvtﬁgd ‘for manipulating infinite
teruse Section 3 isa a,tetereace €¢ctiun which dexines
in detail the builtin functions (szectxvelyj a
subroutine library) pravxded in the implementdtion.
Appendix A descfibes how to .age PROLOG uander; VN/QMS-
Appendix 3 ¢eScrib¢s the contents of * tue ,:yhudﬁrd
execytion txle used to invoke PROLOGs &ppenﬁix iC/
IaxpLalus new to invoke PROLOG . for use with :epmjnyls
that do not support lower ecase. Lettera.

2 The Language

2¢1 Introduction

¥
g4

The semantics of PQOLOG(EE) essentially that of
resolution lozice. But resolution logic itself does not

constitute a programming languages Statemnents in
resolution logzic are descriptives They have the form "x
is true®a In conventional programming languazes the
statements are imperatives They have the foram Y"perform
action x". Te derive a programmins language fron
resolution logic we add imperative stateaments of the
torm "prove that x is true'. A statement of this form
is called a goal statemente A PROLOG program consists

of a set cf goal statements and a set of axiomsSs The
axioms are descriptive, constituting a list of factss
Each zoal statement is imperative and rejuests that
axioms De used Iin an atteapt to prove a certain facte

To the passive lanzuage of axiomns we have a:idded
the notion of zoals to yield a languase ovf action, a
programaing languages This tanguage now allows us to
reguest the construction of a proofs But how will the
attempt at a »rcof proceed? The prooif procedure for
PROLOG uses respolution in a simple depth first, left to
right search strategyes This proof procedure is not
compiete. Because ovi the depth first strateayﬁa proof
may not be found even 1I one exists in the search
spaces The proovf procedure may follow an infinite
branch in the search tree and never examine another
branch which could yield a satisfactory proofs. However,
if the proot nrocedure terminates.we know that it has’
found the right answere. If it terminates with success
then a proof existse It it terainates with failure then
no proof exists in the search spaces

This simple search strategy may seem
unsatisfactory siace it yields an incomplete proof
procedures bat it has nuaerous aivantages over more
general strateglese. It can be implemented in a manner
which is more efficient in the use of space than
current breadth 1irst search methodss The simplicity of
the PROLOG search strate iy makes it easy for t he
programaer to understand and control the searche The
strict ordering of the search permits the use of built-
in predicates causing side offects{(esge read and write)
with the knowledge that the side effects will occur in
a prescribed orders The prospect of ocutput being

created In randem order does aot seem very pleasant?
Thus, it is evident that the simple search strategy
posSsesses several desirable_ch{;cteristicss* Ft—is—atse

pc‘ssm“““tv-&ag;},xhaww&t—iorr*@ofw ~search strategy— by
stating that if anyone wants ad zZeéneral theerem prover
then PHEOLOG is a gooed language in which to.program. itl.-

2.2 Elementary Syntax

This secticn introduces the syntax of PROLOG
axioms and gzoalse. A brief desciption of the basic
syntax is provided in preparation for the description
of PRDLOC execution in 2.3 Execution and Backtrackinge
A detailed description of all the syntax rules is then
provided in 21 The Syntax in Detail.

The bhasic syntactic unit in PROLOG is the terme A
tera may be:

{a) a conztant = a lower case letter followed by
any seqguence of letters and digits, or any
sequence of dizitss A constant may be an
intezer or an ato:me eszs aABCc and x29

(b) a variable - an asterisk or ap upper case
letterﬂfochwed by a sequence of letters and
digzitss ee2Ze * and Al

{c) a skeleton - a skeleton name and a list of one
or samore arzument terases The arsumnent terms
are separated by commas and the Llist is
enclosed in parentheseses s Ze t{x2,Y) and

g{Byayy1(3))e.

; D sy B L NP - Bk REVE s 5. is
' The syntax can bBe described in BNF notation:
KternX2:= {atom> |

Linteger> |
{variable> |
“skeleton> |
{infinite term> |
{ <term>)
atom>3::= {identifiaer>

<skeleton>::= <identifier> (<argument List)) |
term> <infix operator> <terwm> |
<{prefix operator> <term> {

<term> <suffix operator>
<infix operator?::= <identifier>
{prefix operator?::= <identifier> :

{suffix operator>::= {ideatifier>
1= {term> l

Carzument list>:
arzument list> , <term>
<variable>::1= %] {upper case letter> |
<variable> <letter> |

{variable”> <digit>
infirite term>::= ## <Jdigita> ##%
Kdigit>i:i= <digit> |

Cdigitw> <diugit>

The rules involving operators Jdescribe an_ﬁitgrda}ive
notation for skﬁgétons, ~to . be described*’in“g.ﬁ» The
Syntax -in Detail.’ k

PROLCG axlioms and Zoals are coaposed of lLiteralss
A literal may be a sKkeleton or a constants A predicate
is the name associated with a Literal. If the literal
is a skieleton then the predicate is the skeleton name.
Otherwise it is the constant associated with the
iliterale.

The eeneral fora of a PROLOG axiom is:

axiom bhead?> <- <axiom body”> e.—
The implicatioa arrow, <= j5 pead "is implied bDy".
The axiom head ls a4 single literals The axiom body is a
conjunction of literalse. A conjunction of literals may
be a single literal or two or more literals separated
by the Mand" symboill&). An example of an axiom is:?
a - b & c e__

The head is a, the body is b & ¢ and the axiom is read
Ha is implied by b and ¢ or "To prove a,first orove b»wi
then prove cha. An axiom may have a null body, in which
case the jmplication is omitted and the axiom has the
forms -

<axiom head> o .
An axiom with a null body is called a unit axioms An
example is:
i(m). .
This is read "f(m) is true.
The general form of a PROLOG goal is:
K~ Lgoal conjunction>.

The smoval conjunction is a single literal or a
congunction of literalse. Examples of goals are 3
(‘E‘)'

(-q(r):} f »
Goal statements wmay be regarded as abbreviations for
axioms of the form:

Mooal? <- <goal conjunction’>

where Haroal® is a distinguished literal which the
PROLOG theorem prover attempts to "prove',

From the user point of view the PEOLOG system
accepts axioms and goals {roa the terminale Axioms
which are entered are recorded for later use in proofs.
An attempt is made to prove a oal stateament as soon as
it is entered. In the following discussion, govals will
always be presented in the form <= <goal conjunction>.
When actually using the PROLOG system an (_abreviated =
goal format is available. Refer to Appendix A : Using
PROLDG wupder YM/CMS for further explanation before
using PROTOG at a terminal.

In axioms and teras all variables are assumed to
e universally gquantifiede That isy an axiom containing
variables is valid for any "values'" which the variables
may take ons A verbal version of the axiom "father(X,Y)
= son(YyX)" is YFor all values of X and Y, X is the
father of ¥ {if Y is the son of X%, The substituting of
"yalues" for variapnples will be discussed further in the
next sectiones

23 Fxecution and Backtracking

PROLOG execution is started by a goal statements. A
zoal statement is a reqguest for a proof. The execution
of a PROLOG program is essentially the actions of an
elemasntary theorem prover attempting a proof.

A series of diagrams may be used to describe the
progress of a PEOLOG proofe Each diazram, called an
implication tree describes the state of the proof at
a given point in time. An implication tree consists of
one or more labelled nodess At the top of the diagram
is a node labelled "gzoal®, Each of the other nodes is
labelled with a literal and is ,(joined to a parent node
immmediately above ite A node is called the ¢hild of
its parents A node may De in any one of three states:

{1) open: No attempt has been made to prove the
literal Labelling the node. The node has no
chilirene.

(2) closed: The titeral labelling the node has
bDeen proven usianz a unit axiom for the
iiterals The node is marked with an "X" to
distinguish it from an open nodes A closed
node has no chitdrens.

(3) active: The literal labelling the node is

being proven {(or has been proven) using a
non-unit axioms The node is itabelled with the
Literal of the axiom heads The <children of
the node are labelled with the Lliterals of
the axiom bodys The left=-to-right order or
the literals in the axiom body is preserved
in the diagrame The original goal statement
is treated as an axiom of the form Ygoal <-
<goal conjunction?>”s. Thus the children of the
zoal node are labelled with the literals of
the gzoal conjunctions

Consider the following axioms and goal:

al=bZcCe
De
C<"da
de

<‘d0

The proof ¢f this goalil is represented by the following

implication tree:

This 1is

goal

o a —-—=0r

a completed implication 1Iree since all nodes

are elther active or closeds The nodes labelled b and d

have

been closed using axioms Hie M and AL PR

respectively. The node Labpelled a is active and has
been proven using the axiom "a<-pEceh.

Consider the followinz example of axioms and a

goal statement:

al=-bDSCa
b<=d5 fa
b(-ea Te
cl=z.
e<=y.
£<=h,
2

ha

The initial state of the proof is represented as3:

soal
|
a
The first axiom for a 1s selected, namely a<-buc
givinus:
Toal
|
a
/ N\
D [

The prover always works in a depth-first left-to-right
fashione Consequently the next literal to be proven is
bs The axiom bZ%-duf is selected:

zoal

The prover then atteumpts to prove de 3ut there are no
axjoms for d s0 the prover @must backtracks This
invoives backing up the »proof and trying other
alternativess. A choice point in the proof is a point
where an axiom was chosen to prove a Literal and more

axioms remain to be tried. Backtracking involves
backing up the proof to the wmost recent chnoice point
and making a different choices The order in which the

axioms are chosen is not arbitrarys. Axioms are always
selected in the order in which they appear in the
inputs In this example b<-duf will always be examined
nefore bl-ebrf,

The most recvent choice point in the current proof
is the point where the axiom b<~-dzZf was selected. The
proof is backet up to this »noint and the other axiom,
b<-esf, is selecteds. The proof continues as shown
below: '

9

a
/7 \
0 o]
/ \
e T
| |
2 h
X X
zoal
=> I
a
/ N\
D c
/ N\ \
e £ 2
|]
i h
X
JToa i
=> |
a
7 N\
D c
/ \ AN
e f Z
| | X
g h
X X
The final procuf is represanted by a completed
implication tree. Of course, if the proof fails then

the implication tree is never completed. O) in this
Cexaapley we omit the axiom c$=2 then the proof attempt
will faile Alternativeliy, if we include another axiom
d<-d then the prover will attempt to construct an
Hinfinite branch™ of the implication tree:

e L T

Eventually an error will occur when the proof stack
ovverflowse

In the previous exampies, none of the predicates
have arguamentse. For example, the predicate term
father(johnyfred) has two arguments, john and fred, and
can be used to represent the statement " john is the
father of frad®, PROLOG axioms can also contain
variabiess For example the axiom sonl X,¥Y)<-father({Y,X)
represents the statement "X is the son of y if y is the
father of x", Variables in PROLOG are assumed to be
universally gquantifieds That isyan axiom containing a
variable is considered to be ftrue for any "values"

the variable may takes Wwe wiil @make the idea of a
variable "taking a value!” more precises, In any axiom or
goal we can periorm a substitutions A substitution

replaces all occurrences of a wvariable by a terms The
replacing term may be a constant {such as abc or 32)y a
skeleton(such as i{a) or 2(X,Y)) or another variablee.
For example, if we substitute a for X in g{X,f(X)) then
the resulting term is glasf{a))e If we substitute f(Y)
for X in b(X,Y) then the result is hif(Y),Y)s When one
Oor more substitutions are applied to a term {(or axiom),
the result is called an jinstapnce of the term (or
axiom e For example, son{ fred, john)<-father(john,fred)
is an instance of son(X,Y)-father(Y,X) produced by
substituting fred for X and jonn for Y.
To illustrate substitution better, consider the

following.examples
—_— son{ ¥,Y)<-tather(¥Y,X).

father(johny fred)s.

father{ john,george).

father{alybert).

father(gzeorzejsal).

We wish to solve the goal "<-soan(Z,john)"s By "solving
a goal” we mean finding an instance of the zZoal which
we can prove. in this case wo will prove

- 11 -

N"son(fred, john)"s The proof will be iliustrated using
implication treess The initial tree is:

roal

i

son{Z, john)

Now we need to find an instance ¢f an axiom which we

can use in the proof of son(Zy john). The appropriate
instance is formed from sSon(X,Y)<-father{Y,X) by
substituting Z tor X and Jjohn for Y to give

son{Zy john)<~fattier(johnyZ)e The tree now is:

goal

|

son{ Z, john)

father{ john,?7)

Note that we found substitutions that made the head of
an axiom the same as the current subterms The zeneral
process of fTinding substitutions to amake two terms the
same is calied wupifications Next we want to find an
axiom whose head will upify with father(johnyZ)e The
first axiom for father matches if we substitute fred
for Zs This gives the completed implication tree:

goal

|

son{(fred, john)

|
father(john, tred)
X

As a further example we will attempt to solve the

gpoal <=father(john,X)&tfather(X,Y)s The proof proceeds
as follows:

goal

/ \

/ \
/ \
/ \
father(johnyX) father(X,Y)

father(john,y, fred) father{ fred,Y)
X

The attempt to scvlve the subgoal father(fred,Y) fails
since this term will not unify with any of the axiom
headss Backtracking occurs and the proof is backed up
tc the point where the father(johny fred) axicm was

activateds. This axiom is then deactivated and any
substitutions made when (or since) this axiom was
selected are "undonel. This restores the prosf to the
point:
goal
/ \
/ \
/ \
/ \
/ \
father(john,X) father{ X,Y)

The axiom father{ johnygeorge) is about to be selected

for unification with father(jonn,X)e. This unification
succeeds givingz?

aoal

/ \

/ A\
/ \
7/ \
father{ johnygeorze) father(george,Y)
X

The axioms for father are then selected in turn for
unificatlion wlth father{(georuesY s The unification
succeeds for the axiovom fathar(georgeyald, yielding the
completed implication tree?

father{ jobnygeorge) father{georgeyal)
X X

Tu iliustrate the operation of PROLOG further, the
following examples demonstrate the manipulation of more
complex @data structures. A set of elements {similar to

a LispP 1list) is represented by a term using a
constructor s and an end marker nil. For example, t he
set with elements ayb and ¢ is represented by

s{ays{nys{cynil))) or as a diagram?

=
/7 A\
c mnil
The empty set is represeanted by nils This notation is
completely arbitrary and is chosen for this example
onlys
A reasonable definition for the "element" relation
is:
element{ Xy,3{X,Y))
element(Xys(Yy2))<~eleaent(X,Z)s
Verbally these axioms amizht e stated as. %X is an
element of a set if it is the first eleament in the set
or if it is an element of the set of elements following
the Tirst elements™s The goal
{-element{cys{ays{b,s{cys{dynil)))))
yieilds the following completed implication tree:

goal

|
elementicys{a,s{bys{icys{dynil)))))

|
eleaenticys{bys(cys{dynil))))

|
element(cys{cys{dynil)))

X

This syntax for representinsg sets is clearly
cumbersomes To simplify this, infix notation may be
used(infix, prefix and suffix notation are explained
more fully in 2.4 Ihe Svyntax in Detail). If we use a
N," as the constructor and use infix notation then we
can denote the set with elements ayb and < by
aebascenile The axioms for element become?

element(XyXeY)e
element(XyYeZ)<=clement{ XyZ).

Suppose we want an axiom to write all the elements

of a sete The following axioms will sufficed
List{ XeY)<~write(X)slist{Y)s
List{nil)e

write is a built-in predicate which always
succeeds and has the side effect of displaying its
argzument term on the terminales The tera is written
foliowed by a period (the end of tera delimiter). The
goal statement <K-list{aebDescsnil) succeedss The
completed implication tree is:

goval

I

list(asbscenil)

/ \
7 \
write(a) list{becenil)
X / \
/ \
write(b) list{canil)
X / \
/ \
write(c) listinil)
X X

The output on the terminal is:

Ca»

Tne following axiom could also be used to list the

elements of a set on the terminal?

list(XeY)<-write(X)sFALD.

list(X.Y)<-list(Y). sd

list{nil).
The goal <K-list(asbecasnil) wiil list alli elements of
the Indicated set and then succeeds The completed
implicatiovn tree is:

goal

|
List(aenscaniil)

|
list(becenil)

|
List{cenil)

|
1ist(nil)

X

Suppose we wish to define axioms for a predicate
notel(X,Y) which succeeds if X is not an element of Y.
Keasonable axioms for this predicate might be:

notel(Xynil)e.
notel{X,YeZ) <~ pnotegi{XyY)snotel(XyZ).
Verbally these axioms mizht be stated:
X is not an element of the eapty set!",
"X is not an element of the set consisting of
Y and some other elements if X is
not equal to Y and X is not an
element of the set of other
elements®.
The axioms for noteq remain to be defined. The axioms
aresl
notegl{X,X)<- / 5 faile.
notegq{ X,Y)
These axioms make use of a special control feature, the

slash(/)e To iliustrate this feature we trace the
attempt to prove the goal <-notegl(ajya)e. Initially, we
have:

woal

I

noteq{ajya)

The first axiom is selected giving:
/

goal
|
noteg{a,a)
| \
/ fail

The slash predicate always succeedse It is used to
prevent certain alternatives from being considered in
the proofs in this case it prevents the second axiom
for noteqg froa being considereds The implication tree
Looks like:

SIS SNBSS

goai
|
notegi{ajya)
| \
/ fail
X

The fail predicate has no axioms and <consegquently it
failse Since tlie remaining axiom for noteg is not
considered, there are no remaining choice points and
the entire proof faiis.

Conversely the zocal <-noteg(a,b) succeeds.s The
nead of +the axliom noteq(X,X) <=/ & fail cannot be
unified with notegl{a,bdb) 50 the next axiom is selecteds.
The unification succeeds and the proof is complete.

The action of the slash predicate is described
more precisely: when the slash predicate is executed,
it removes all choice points in the proofy, from the
point when the axiom containing the slash was selected
t0o the current puint in the proof.

The slash predicate is utilized for two main
PUrpoOSeSs The first is to affect the meaning of an
axiomy often to handle nezgation as in noteg abovee The
second use is Yo iaprove the efficiency of a program by
preventing spuricus choices from being considereds For
example, consider the following axiom used to test it

- 17 -

two sets bhave one or more coanon elements:
intersect(A,3)<~element(Xy,A) & elenent(X,3).

If a call to the intersect predicate succeeds and then
packtracking returns to that point, then the element
axioms will cause other choices for X to be triede
Normally the attempt to find a different common element
is completely unnecessary since it has already been
proven that A and B intersects This extra search can be
eliminated by using the following axiom for intersect:
intersect{ A,B3)<-element(X,A) & element(X,B) & /e

2+4 The Syptax in Detail

, A PROLOCG prozram consists of a seguence of symbols
belonging to a symbol vocabulary. In this
implementation the EBCDIC character set is useds Any
vone byte value is a valid symbol, even though it may
not have an explicit EBCDIC graphic codes These symbols
are divided into four groups as follows: '

(a) Letters = The upper and lower case Lletters
from A to Z.

{(b) Digits - The digits from U to S.

{¢) Pupctuation Symbols - This group consists of
the Lett and right parentheses, t he
cummay the aposStrophey, the quote and the
end=of-term symbol(the period).

{d) The Underscore - This symbol <c¢an be used in
constants and variable naness

{e) Special Symbopls = This group consists of all
symabols not in aay of tne foar preceding
categoriess.

The fundamental syntactic construct in PROLOG is
the terms As stated earliery, a term may be a variable,
a constant or a skeletone N Mﬁf&iﬁ(ﬂ")

A variable is represented by averioblte names The
v apiabtenoeee—s f@ﬁupper case letter followed by L6 a

sequence of letters and digits. Thus X, A1B2C3, am8 ¥4

Abc are all variabless In addition a single asterisk(¥)
is a variable «f a special sorts It is called an
anonymous variable and has the special significance
that each occurrence is considered to represent a
distinct variables

A constant is a sequence of symbdols enclosed in

- {8 -

[N

B ol

apostrophesSs. The seguence repreasents the value of the
constante. Note that if the val ue contains an
apostrophe, then the apostrophe must be duplicateds
Examples of constants are:d ’
e 1 ABCY

137+A)°

1)ll’l

11
The value of the third constant shown above consists of
the three syamabols right parenthesis, apostrophe and

commay in that orderas The value of the last constant
consists of no symbolse The apostrophes enclosing a
constant are not always requireds They may be omitted

if any of the following conditions are satisfied:

=7 1] The value of the constant consists entirely of
sympols which are letters g = digits
underscores: and the initial symbol is not an
upper case letter.

2/ The value of the constant consists ci one
symbol which is not a punctuation symbole.

3/ The value of the constant consists of the
single period symbol and the constant is not
followed by a blanke

4/fThe value of the constant consists of up To

s ~ eigh* special <cnharacters’and there is an
T operatvr declaration for the value in the

data Lasee For a further explanation of
vperator declarations, see 3+5 Database
Predicates in conjunction with the O-P;bullt—

in predicates Note that underscores are not

. special symbolses
Integers are constants whose values satisfy certain
criteria. A constant is an iptezmer if and only if it
satisfies any of the following?

1/ Its value consists of one or more digitse

2/ Its value consists of the symbol "+" followed
by one or more dizitss

3/ Its value consists of the symbol "-" followed
by one or more diliazitse.

Integers wmay be u4used as argZuaents to several bullt-in
predicates which perform the fundamental operations of

integer arithmetices Two intezer constants are
. : - 19 -)] _) 7 fﬁ
2 ’, . , A 4
Jum o, - Fi ‘,\ Lo -r\’:ét 3 hf PR T N I i £ g P s i - . ; IK/:II,"‘ £
"

ST
i i

S

L,‘Y}j R

equal{ises indistinguishable) if their values are the
same after any "*" symbols and leading zeroes have been
droppeds Thuas 901, '+9001' and 1 are all egqual
integers. Note that signed integers must be enclosed in
apostrophese.

A constant which is not an integer 1is an atoms aby
tAB(Y, ' and ' are all atomas. A seguence of symbols
which satisfy the criteria for an atoan is called an
i dent i _iigg.

A skeleton consists of an identifier and one or
more argument termse Both predicates and fuanctions are
represented as skheletonse A skeleton has the following
format:

{identifier> (<argument list>)

The argument list consists of one or more terms
separated by commases Examples of skeletons are:

fact{1l)
g 1,X,f(1))
PA/ NV (X,Y)

Note that any of the arguament terms of a skeleton may
in turn be skeletonse

To permit a more convenieant representation for
skeletonsy identifiers can be declared as infixy prefix

or suffixe For example, if the identifier likes is
declared as infix then the sSkeleton represented as
likes(asb) can also be represented as a likes be
Similarly, if the identifier 1 is declared as suffix

then !{a) can be represented as als

An identifier used as the skeleton identifier in
infix, prefix or suffix form is called an operators.
The use o0f operator notation is provided in addition to
the Ybasic notation for sKeietons which was first

describeds The two forms may be mixed freelye. For
example, if likes is declared as infix then fla likes
bylikes(cyd)) 1is a perfectly acceptable forme A term
is represented in canonical form when it is represented
without using Infix,y, prefix, or suffix notations.

In any termy ‘subterms may be parenthesized to

indicate the term structures. For examples
at(b~-c) is eguivalent to +(ay=(byc))
but (atb)=c is equivalent to =(+{ayb)yc)e

- 20 -

Any term or subtera may be parenthesized. 1f likes is
intix then ({a)) tLikes (¢ 1likes{(d)) is a wvalid term
equivalent to likes(a,likes(cyd))e

An identifier can be declared as both prefix and

infix simultanecusly but an identifier which |is
declared as sufiix can not be declared as infix or
prefixe. An identifier is declared by adding an
operator declaration axiows , The format for give aetom
to be—adted T3 }_,,, dee o e e

op(<identitier>,<type>y<priority>).

{identifier”> is the identifier to be declareds
<type> specifies the declaration type and may be
any of: prefix, suiftix, 1lr, rl.
<priority> is a posi tive integer less than or
egqual to 1000
The declaration types of suffix and prefix have an
obvious interpretations The types ri and 1r are used
to declare operators as infix right-to-lLeft and left-
to=-right respectivelye For example, 1f ", jis declared
as ri then
asbesnil is eguivalent to as{benil)
and to a(a,.(b,ﬂil))

If "+M" jg declared as 1r then
atbte is equivalent to (ath)tc
and to ¥ +(a,bl,c)

The priority specified in the declarations gives
the vposition of the declarations in a priority
hierarchys The larger the numeric priority the
stronger the "bhinding" of the operator. The following
examples illustrate the function of the prioritye. For

these examples assume that the following feclarations
are in effect:

op{~yprefixy,40).
op{tysuffixy 7).
0{){:,!‘1;50):
oplt,1r,60).
Oopl=41r,60).

Then:
—a! is eguivalent to -~{al)
atb=cedtesf is equivalent to ((atb)-cle((dte)at)

—at+h?! is eguivalent to -(at+(b1))

The problem of resolving the case where two
identifiers have egqgual priorities Dbut different

declaration types has not yet been discusseds For
instance if the declarations in effect are?

013(""11"63)e

0p("y1’1y63) IS
then how is atb=¢ to be interpreted ?
The rule for resclving such conflicts is:3

Tf the rightumost operator is declared rl and the
lettanost operator is pretix{(or rl) then treat
the rightmost binding as the Strongests

Otherwise treat the leftmost bindinz as strongestes

The example atb=-c is equivalent to {(atb)=cs This detail
is confusing, and it is recommended that the user not

declare operators with the same priorities and
different types and hence avoid the condition
complietelya The above description is included solely

for the sake of completenesse.
The initial state of the PROLOG system includes
several operator declarationsy namely:

op(<“p Pl, 10)t

DP(<-,preiix, 10).
OP(' y!‘l, 20).
Op(ﬁr,l‘lg 30).

Oﬂ{ -,prefix, 44) e
Op(o,!‘ly 100).

Operator declarations cun be added and deleted by
adding and deleting axioas for the op predicate as
described in Js> Database Predicates.

An input term must be deliaited by an end-of-term
characters The period is useds To distinguish between
the use of the period as an operator and i1ts use as the
end of term charactery, the following rules are useds A
period that is not enclosed in apostrophes, double
gquotes or comment delimiters is treated as an end of
term delimiter ii:

(a) it is followed imaediately by one or more

blanks or
{b) it is the last character of an input lines (By
line we wmean either an input iine from
the terminal or an iaoput record from a
file)s
Blanks may be freely used in the input term,
subject to the following conditions:

&ég— 2 {a) Blanks may not be used internal to an unguoted
! o= jdentifier or constant (eesge ab is
e different from a b since ab is a single
e ‘identifier and a b represents two
/NAMWHQ; E identifersy namely a followed by b)e
w1 {b) Rlanks may be used in a guoted constant or
<« -. jdentifier but they are included in the

“walue of the constant{e.yg. '*A B' is not
7 - <77 the same constant as 'ABY),
CA - {c) One or more blanks must be used to separate
R the followingz:

(1) two gquoted identifiers or
constants(eesze 1AV 3Y prepresents a
constant with value A'3 whereas
1AV T g represents two constants
with values A and B8 respectively)s

(2) two ungquo ted identifiers or
constants where neither consists
~solely of special characters{cege
a3 is egquivalent to a 3 but al2 is

) -~ not equivalent to a 12)e.
{d) Blanks must not be used after a periocd except
where the period is an end-of-term
- delimiters
Whenever one or more blanks may be use:id, a comment may
be inserteds A comment has the form:

/%¥<{comment characters>%/

{comment charac ters”> may be any segquenca of characters
not including an asterisk followed immediately by a
slashe Note that this foraat for a comment implies
that if / is declared as a prefix or infix operator and
is used followed Dy a variavple then a vlank must appear
between the / and the ¥ of the variables To help detect
errors caused by an improperly clused comment a warning
message is issued if a /¥ is encountered in a commente.
Axiom and goal statements are special cases of
termss They are read and parsed using the operator

declarationsa —Tgus the axiom al-b&c could also have
been entered as <-=(a,5{byc))e. A zoal statement is a
term of the form:

K={<zoal conjunction”).
An axiom Is a term of the form?

<={<head>,<goal conjunction>).
or <heaudt>.,

<head> can be an atocm or a skeletons
es2des 8

af I,X)

TR:(%x)
<goal conJjunction”> can have the foram

goal literal>

or the form

€(<goal literal>,<goal conjunction’)
Cgoal literal> can be an atomyskeleton or a variablee
A variable goal literal is called a meta variable and
is described in Je6 Execution Control Predicatess

A list of terms 1is formed with the 1lis
constructor ", and the end-of-ijist marker nils
example the list with eleaents ay b and ¢
represented as asetdecenil or in canonical form as
e{lays(bys{lcynild))e. “Fhe eanty list is represented as
nils A string is a list of characters, or more
precisely, a list of constants each with a single
character values An abbreviated format is provided +to
represent stringsse The format is:

"<{characters>¥"

*
r
s

5|
= 0

For examples
M"abe" is eguivalent to aebDascenilas
() is egquivalent to "('s?')% .nil.,
An empty list may also be specified:
"N s equivalent to nile
uote that "ab" is equivalent to «(ajys{bynil)) only if
the period is declared as infix rignt-to-ieft.

25 Usipng Ipfipnite Leras

After you have become familiar with PROLODG, you
may ask what happens when a PROLOG proZraa attempts a
unification such as f(X) with X. One poussible approach
would be to have the unification fail, rather t han
construct a Yloop's It turns out that allowing this
sort of loor provides a useful capability for
manipulating 'infinite? teras. The term resulting from
unifylng F(X) and X is f(f{f(e22)))s

This PROLDOG implementation allows representations
of infinite terms to be read, written, unified or even
added to the databases A special notation is
introduced to simplify the representatione. The
notation iIs simple but not necessarily easy to reades
The best _notation for understanding these is a two
dimeusioujgraph style notatione Unfortunately, such a
notation is not well suited to conventional input and
output devices.

The notation chosen for this implementatloqi;
extends the standard term notationy) by allowing ah
tinfinite term specification' or '10oup specification?
to be used in place of any subtermns The loop
specification has the format RENER where n is the
length of the loops The term resultinz from the
unification of X and f£(X) would be represented as
fU##L#Z)a Similarly if we unify X and f(g(l1yXyh)) then
the result would be represented a: f{g(1l,##2##,nh)). Any
osoutput term, containing a Lloop, will be written using

this notatione Similarly, any term being read in may
contain subterms using this notatione If an input term
contains an invalid infinite term referencey for

example too large a loop lenzthy then an error message
will be printed and the term re jectede. For example the
tera Ti(g(##32%))' is invalide

Yhen a term is written, the loop length specified
is not necessarily minimal. For example, if the result
of unifyirng X anda £ (X)) is printed, the format will
be £{F(#E24#)), even thouizh tne format f(##1##) would
be more compacte.

Axiows containing infinite teram references may be
added to the data basees Howevery infinite conjunctions
on the rignt nand side of an axiom are not permitteds
For example, al({#41##)<-bp is valid but a(X) <= b & ##1¥#

- 25 -

is invalide.

d Built=jip Predicates

3+1 Introducticno

The implementation provides several built=-in

predicatess. These predicates provide facilities which

=AY, ¥ either impossible or inconvenient for the

programmer to implement directly in PROLOG. Many

built-in predicates have side effects, particularly

those associated with input and cutpute. The built-in

predicates can succeed or fail, exactiy as other

predicates does They can also terminate with an error
message 1If the arguments are inappropriatee.

In generals it is not possible to add axiocms for

built—-in predicates, since they have a fixed
definition. The op and trace predicates represent one
type of exception to this, in that axioms for these

predicates may be added or deleted but the presence of
trace or op axionS§in the database ha¥e side effectss The
other type of built-in predicate which allow addition
and deletion include error and attn predicates. Error
and attn are special interfaces provided to invoke user
axioms when exéeptionat conditions occure. porte-y

. . . -

a . y oy <. »
The built=-in predicates are divided into six
EroupsSe The groups and their members are:?
v J . J v -
Structural Predicates = atomy CcONsy xnt'nsk?}, string,
V@f’ argymentﬂ {ggﬁh’

v

Input/Output predicates - fileclose, newline, ready
readch, readenmpty, tab, write,
writech, writeqg

Arithmetic Predicates - diffy prody gquot,y, rem, sum)fmmdﬁw\

J J v
Database Predicates - addax, aXy, axn, control, delaxy

opy freeax_

Execution Control Predicates =- anceétor, retry, /y &y
|y faily repeaty error, at{n,
stopy meta variable, tracey
systrace_

Miscellaneous Predicates - digity, Ltetter, upshift,
systemy eqy geg &ty ley lty ne

- 27 -

The predicates of each of the apbove groups are
described in the tollowing sectionss

3+2 Structural Predicates

These predicates provide for altering and testing
the structure of teras. The predicates, are atom, int,
vary skely consy sStrinz, argumentgawu'%ﬂrf

atomy int, var, and skel eac have a single
arzuments. If the argument is of the type specified by
the predicate namey namely an atomy integer, variable
or skeleton rcespooeivedy, then the predicate succeedss

Otherwise . the predicate fails. In no case 1is any
substitution performed or are any error messages
produceds

Example:
test(X)K<-int(X)5testint(X).
testi{x)<-atvm(X)stestaton(X)a.
/¥ use testint to process an integer and testatom
tu process an atom ¥ &, .

Tl
& .

Suppose we wish to define an axiom which is passed
a skeleton and prints the skeleton namee. In order to do

this we need the cons predicates % is used to
deconpose a skeleton _into a 1list consisting of the
skeleton name foliou(bd by its arguaments. For example

the call <-cons{Xxja(b)) will cause X to be uniiied with
asbeniles cons may also be used to cunstruct a skeleton
term from a list consisting of the sSkeleton name

followed by its argumentse | For exaaplesg the call
K=cons{ feXelanil,Y) unifies Y with f{X,3)e cons treats
a constant as a skeleton of) arguments, as shown in

the examples belows If the second argument is not a
variable then a lList consisting of the skeleton name
iollowed by its arguments is unified with the first

argunente. If the second argument is a variable then a
skeleton is constructed from the first argument and
unified with the second arguments In this case the

first argument must be a list whose first element is a
constant and whose remaining elements are to be the
argumentse. If the first element of the list is an
integzer then there must be no more elements in the
iist, since an integer is not a valid skeleton namee.
Examples?

e

il

The followinug calls succeeds
{-cons{atomenilya tom)s.

<‘COFS(1’30nily1U I

-cons{aeb{c JedsXenilya(n(c)leydyeyX))e

The following axiom accepts a skeleton as a first
argument and returns in the second argument a skeleton
like the first Dbut with an initial argument of 0§
added s

expand{ Sk1,552)<~ cons{ NsArus,skl) &

cons{ N30 eArgs,y3k2)e

Suppose we wish to determine if a <constant
contains the letter a in 1ts values If the first
argument of the string predicate is a constant then the
second arpgument is unified with the list of characters
in the value of the constantes The following axioms
define a predicate constanta(X) which succeeds if X is
a constant containing an ae

constantal{ Con) <- string(Con,list) o

lista(List)e.
. listalasRest).
[1lsta(£irs+.Re=t) <= lista(Rest).

3pgé£s§6§y§ pred{f@t%

7 are two-pessinle. formats-for-a-eadito E¥tring:
{a) #&e first arguaent is a constanty iZ& constant

‘i&n%éd to peompeose -a

IF is decomposed to create a list whose
elements are the symbols in the
constant?!s valuee. This list is unified
with the second arguments

(b) first argument is a variab135 ilg'second
§ argument must he a list of zero or more
4 elenentsy susE Algh Esach element 4'%‘4* } y‘ ir

constant with a vaiue consisting of a
single symboles The first arzument is
unified with the constant whose value

'“\v~ consists of the symbols in the liste
Iﬁ“?hv*aﬂaunsa#q”3?%“vﬁher~mﬁhaﬂ”uSMpnaauan -3 c a5 a0 o

n eS8 ALS i gonaratede Examples:
The following calls succeeds
<-string("AEBC" ,"ABC").
{-string(*'ynil)e.
{-string(abcyasbecsnil)a
<-s’tring(“012, 1ea2emnil)s

- 29 -

s . . : Jm“~Ti S ALY TR

A

i

» TFhese-

1 i e R
;o . il b
dbra e fonce 0 £ gl

>, B

The following predicate accepts a constant as a
first argsument and produces the second arzgument by
prefixing the first with a s

append(In,Qut) <= striang{InysS) &

string{OutygsS)es

The argument predicate can be used to select the
arzgunent of a skeleton corresponding to an appropriate
indexs For exampley the goal:

<-argsument{1(1,8,27464)y3yCube)e.

will succeed and unify Cube with 27
Simiiarly the zoal:

<—ar§!ument(f{193927904)9X304)s

will unify X with 4, namely the index of the
arguaent which unifies with 64 The argument predicate

is always called with three parameterses The first
argument must be a skKelieton or atom or eise an error
will resulte. Tf the tirst argument is an atom it is

treated as a skeleton with zero arguments and the
predicate simply failse. The second argument may be an
integer or a free variables. An atteanpt is made to
unify the second argument with each successive index
from 1 to the arity of the skeletons. For each index the
third parameter is unified with the correspondingg
sKeleton arguments The arguaent predicate behaves as
thougzh it were defined by the following axioms:
argunent(Skeleton, IndexyArz) <~

cons{ NamesArglistySkeleton) &

atoa{ Name) &

list_index{ArgyArglist,Iindex).

1ist_index{ ArgjyArgsListyl).
tist_index{ Argz,*sListyN) <- list_index(Arg,List,M) &
sum{ My Ly N)

‘.\/—\7
3+3 Xnput/Dutput Predicates

Iunput/Output predicates are provided to allow a
PROLUG program access to external datas A file is
identified by a constant whose value is the file

identifieras A file identifier may consist of irom 1 to
8 characters, o1 which the first must be a letter and
the remainder must be digits or letterse. The file
identifier is converted tgwnguppercase by all
input/output predicates, since wmest file systems do not
allow lower case file naaeses The inovut/output
predicates each have an optional file identifier
arguaents It this argument is omitted the main
input/output stream is assumed (ie.ee. the terminal for
an interactive session)s The file identifier is
optional for all input/output predicates except the
fileclose predficate, for which it is manditorys
Severai of the input/output predicates may also have an
optional record number argument. This record number may
be a positive integer and is used to position to the
appropriate record in the file before perforaing the
indicated operatione.

- read is a predicate with oney two or three
argumentse. The second argument is the optional file
identifiers The third arzum2nt is an optional record

numbers It must be a positive integery indicating where
in the file the read is to starte The first record in
the file has a record number of le A term.is read from
the indicated file and unified with the first argumente.
The term must bDe delimited with the end of term
characteres If the end of the input file has been
reached the predicate failsos If backtracking returns
to the read ¢then a read o0f the next term will Dbe
attempteds If{ the term read cannot be unified with the
first argument or the format of the tera is invalid
then backtracking will cause a read of the next term to
be attemptede.

write is a predicate with one, two or three
argumentss. The second argumaent is the optional file
identifiers The third argument is an optional record
numbers The tera specified by the first arzument is
written on the indicated filee The tera is delimited by
the end of term charactere. The term is written using
prefixy infix and suifix notation where appropriate, as
indicated by the operator declarations at the time of
writinge .

writeg is & predicate with one,. two or three
argunentse. It functions in a manner very similar to
writes The only difference occurs in the format of the
written outpute. writeq encloses identifiers in
gquotes({ise apostrophes) as reguired, to ensure that the

written term can be read bach in by the read predicatee

Thus any identifiers containing blanks, punctuation
symbols, etce. will be written enclosed in apostrophesa.

readch is a predicate with one, two or three
argumentses The second argument is the optional file
identiiiers The third arguament is an opticnal record
numbers A single character is read from the given

files The constant whose value is the single character
is unified with the first arguments it the end of an
input line (or record) has been reached then the first
character of the next line {or record) is reads If the
end o©f the input file has been reached then the

predicate failse. 1f backtracking subseguently returns
to this point or if the unificatioan of the first
argusent and the character fails, then the next

character in the input file is read and the unification
reattempteds

The readempty predicate is provided for use in
con junction with the readch predicates It allows record
boundaries to be detected when reading a character at a
timee. readeapty is a predicate with one optional
argumnent - the file identifiers. The readewpty predieate
succeeds 1If the input puffer is eapty(Lb.84 the next
readch will cause a new physical record to be read).

writech is a predicate with one, two or three
argunentse The second arguaent is the opticnal file
identifier. The third argument is an optional record
numbers. The first argument specifies a term which is
formatted using the operator declarations {as for
write) and placed in the output buffer for the zZiven
files If the buffer is filled then it is written to
the given file (and emptied). If the Dbuffer |is
'partiaily filled then it is not written out. Note that
the readch and writech predicates are not sy&%?rfcat?
The writech predicate can be used to write a single
character but it is considerably more general than
readche

newline is a predicate with one optional argument.
The~argugent 45 the file identiiiegijf4 newdiae writes
the current output buffer to the given file and empties
the buffer. newline is used in conjunction with
writeche For exampley the gval statement:

-writech{ 'on ') & writech(one) &

writech(' lines?) & newlines

causes the following to be written on the terminal:

J

i
. { /
Qg J7 s en]
/ .

e

on one lines

Note that this output is identical to that produced by
the call

€-write('on one line?).
or by the call

{-writech{'on 6') & write{'ne line?).

fileclouse is a predicate with one argument - a
file identifiers fileclose may be used to logically
close a file so that it aay be reread from the
beginninge. Note that when a file is used for input
after ocutput, the ftile is automatically closed so that
the first input will be from the beginning of the files
In a similar manner, output after input will cause an
automatic closee. Qutput to an existing rfile will be
appended to the end of the files

tab is a predicate with one or two arcumentse. - The
second argument is the optional file identifier. The
first argumeant must be a non—-negative integers It
specifies the number of bDlanks to be written on the
output file.

3e4 Arithmetic Predicates

There are several predicates which are included to
provide the basic operations of integer arithmetices

Each predicate has three argumentse The first two are
the input parame ters and the last is t he result
parameters The tirst two argunents aust be integerss

The appropriate integer function of the first arguments
is unlified with the third argumente.
The srithmetic predicates are:
diff - difference (subtraction)
prod - product
acuot - guotient

rem - remainder
~
sum - sum
The following axionms define a predicate which
calculates the factorial function of its first

arguments
f&Ct(f),l)o
fact(Xl,Yi) &

pPOd(X, Yl, Y)e
The ftollowing calls succeed:?:
<‘d.iff(:2’2,1)0 -

<-pl‘0if(1*)’2‘3'20030 .8 ‘/;) («"() ar

<-quot(205, 10920)»

K=rem(265,10495)

(—sum(1;2\),.‘31)»)
o

3.5 Database Predicates

The database built-in predicates provide the
facility for updating the database (ise. the set of
axioms In the active workspace)s The oredicates

provided are addax, axey axny control, delaxy op and
freeaX_s»

The addax predicate is used to add an axiom to the
databases it has one or two arzumentse The first
argument must be a valid axiome i1t may be:

{a) a unit axioms In this case it is a skeleton or

an atome

{b) a non-unit axioins In this case it is of the

form Shead?<=<bhoidy~’e <head> must be a

skeleton or atoms
The axiom specified by the first arguaent is added to
the databases If a single argument is specified then
the axiom is alded after all other axioms with the same
predicate name aund number of arguments. If the second
argument is specified it must be an integer or a
variable. ¥e first explain the case of a call with two
arguments where the second is an integere. This integer
specifies where this axiom is to be added, as an index
in the list of all axioms for the same predicate name

and number of argzumentss Consider the following list
of axioms:?

a(l)e.

a(2)<"bo

a(X)<=c(X))o

af{ 4)0

1t the predicate call K-addax(a(m))s or

-addax({a{m)y53)e or <-addax(alwm),100)s were issued then
the new list would be:

al{ 1)

al(2)<=ba

B(X)<“C(X)o

a(4).

- 34 =

a{m)e
If the call <-~addax(al(g)yl)s were then issued the list
would become:

a()o

al)0

ail 2)<""bo

a(X)<-c(X).

af{ 4)o

al(m)e
The index specified gives the index in the list where
the axiom is +to pe added. ir the index is 1 or less
then the axiom is added before the first axiom in the
liste. Similarly if the index is greater than the index
of the last axiom then the new axiom is added at the
end of the list.

If addax is called with a second argument of a
variable, the axiom specified by the first argument is
added at the end o0f the list and its index is then
unified with the second arguaente.

The delax predicate is used to delete an axionm
from the databases It may be called with one or two
arguaentss The first argument is a term representing an
axiomes The first argument may be:

(a) a unit axioms In this case it is a skeleton or

atome

{b) a non=-unit axiovms In this case it is of the

form <head?><=<pody> e <head” must be a
skeleton or atoams

Thus the first arzument specifies the name and
nuaber of arguments for the axiom to be deleted, 1f
only ene argument is specified then an attempt is wmade
to unify the argument with eacn of the relevant axioms
in the databasce The axioms are selected in the order
in which they appear in the databasee. If no axiom is
found which is unifiable with the first argument then
the predicate failss. If the unification succeeds for an
axliom then the axiom is deleted and the predicate
succeeds. If backtracking subsequently returns to this
point then tne predicate wili fail, thus preventing
accidental deletion of further axiomsSs

If two arzuments are specified then the second
arzument is considered to be the axiom indexs. It may be
a variable or an integers The attempts to unify the
first argument with the database axioas, proceeds as in
the case of one argumentes If the /ﬁﬁithaf{Sﬁ?succeeds
for a given axlom then an attempt is made to unify the

- 35 =

axiom index with the second arsuments It the atteumpt
fails then the search through the axioms is resumeds. If
the attempt succeeds then the axiom is deleted and the
predicate succeedss 1t backtracking subseguently
returns to this point then the predicate will fails

The ax and axn predicates are used to retrieve
axioms from the databases The axn predicate retrieves
axioms using the predicate name and number of
argumentse. The ax predicate retrieves axioms using a
model axiom head.

Thne axn predicate has either of the two following
formats:

axn{ <name”;<nargs’,<axiom”>)
axn{ <name>,<nargs’,<axiom”>,<index>)

The wpredicate cali axn{cy 2yi) will cause A to be
unified with the first axiom for predicate c with 2
arguaentss If there 6 are no axioms for ¢ with two
arguments then tﬁisﬂto,ti wewtd fall. It the «call
succeeds and backtracking subsequently returns to this
point then an attempt will be made to unify A with the
next axiom for c with tweo arzuments, and so on» The
predicate call axn{icy2yA,y1) functions identically
excep?t that when the call succeeds, I is unitfied with
the index of the axiomwm unified with A Similarly the
cail axn{cy23A,2) will retrieve the third axiom for c

with two argaments, if one existse. The predicate call
axn{cyNyA) will wunify N with) and unify A with the
first axjiom for c with O argumentss If this

unification fails or bacxtracking returns to this point
then the next axiom for ¢ with O arguments is selectede.
when all axioms for c with 0 arguments are exhausted
then N is unified with 1 and the axioms for ¢ with 1
arguaent are retrieved in turne This process can
continue until all the axioms for ¢ have been examinede
The fourth index argument may be included and it
functions analogously to the previocus casee For example
the zZoal statement:

C=axnf{ fy¥kyA)ewrite(A)efails
lists all axioms for predicate f»

The goal statement:

<-axn{tyN,%,1)ewrite(N)Staile.

writes out the diiferent number of arguments for
which i has an axiome
The call axn(NameyNyA) can be used to exaaine the

axioms for each predicate name in turne First a
predicate naae is selected from the database and
unified with the first arguaente. Then each of the

axioms for this preaicate are examined ian turn as in
the previous exampless After the last axiom for the
given name is examined then the first argument will be
unified with another name in the database and the
search will continuee The order in which the predicate
names are examined is not readily pvredictable since it

depends on the hashing algorithm of this
implementatione. Conseqgquently this order should be
considered to Dbe arbitrarye. The tollowing goal

statement will cause all axioas in the database to be
listed:
K—axn(*,%,A)swrite(A)sfails

The ax predicate functions in a manner very
similar to the axn predicates. AzZain there are two basic
formats:

ax(<head>,{axiom>)»

ax{<bead>,<axiom>,<index>).

axiom> and <index> are treated exactly as for the axn
predicates <head” is a model axiom head and may be a
skeletony, an atom or a variables 1t <head”> is not a
variable then it specifies a predicate name and number
of argunments implicitlye. The axioms for this name and
nunber of arguments are exaained as for axne 1f <head>
is a variable then aill axioms in the database are

examined in turn as for axn(¥Xy3%,A). iIf an axiom
unifies with the specified axiom then a model of the
axiom head is unified with the first argument. By a

model we mean a skeleton with anonymous variables for
all argumentss The aodel idea is introduced so that a
theorem prover written in PKROLOG may use ax to retrieve
the axioms relevant to a predicate term without
actually unifyving the axivom head and the predicate
terms

The op predicate is used to maaipulate operator
declarationsa. ITts use was introduced in 2.4 The Syntax

- 37 -

in Detail. Afdinz a unit axiom for the op predicate
{with 3 arguments) is ,eguivalent to adding an operator
declarations Similarly, deleting a unit op axiom
deletes the operator declaration representede. Thus one
can delete an operator declaration with a call of the
form:

delax{ op{ Toperator)>,{type? {priority>)).

where:
<operator?> is an atom identifying the operator.
type> is an atom specifying the declaration type and

may be any one of lryrl,prefix or suffixes
<priority> may be an integer or a variable.
If a matching feciaration i8S found it is deleted.

A call to the op predicate may be used to retrieve
an operator declarations For exampley the call
opleyrl,P) succeeds if "." is declared as rl. In this
case P would be unified with the prioritye. The call
opl{ ey Ty P) succeeds if there is an operator declaration
for .0 The following zZoal statement will list all
preifix operators:

K-opl{Opyprefixy ¥ Jowrite{Op)l&faile.

In this ctase bacKtracking to the op predicate call
causes each prefix declaration to be retrieved in turns
Note that the order in which the declarations are
retrieved is pseudo=-random and not the order in which
the vriginal declarations were addeds However 9 if an

operator is declared as both prefix and infix, the
prefix declaration is always retrieved first. The
following goal statement will list all operator

declarations:
L=op(OpyTyPlowrite{op{OpyTyP)lofaila

The control predicate is used 10 provide some
special global variabie facilitiess The control
predicate has two arguments, a key and a resulte. For
example, the call <-control(topyX) retrieves the result
corresponding to Key top and unifies this result with
X The key and result pairs are wmanipulated in a
fashion similar to cperator declarationss. To add a key=-
result pairy, an axiom for control is addede. Adding the
axiom control(topyd) records result 3 for the key tope
Only ©one palr can be recorded for any key values iIf a
pair exists with the same key as one being added, then
the previous pair is replacede The key must be an atome
The result associated with the kKkey must be an atom or
an integers A Kkey=-result pair may be deleted by

- 38 -

deleting the appropriate axiom for the control
predicates For example <-delax{control(top,%*)) will
delete the key=-result pair with key topes A subseguent
call of the form <~control{ top,%*) would fail since no
pair exists. The call <-delax{control(top,99)) would
succeed only if the key=-result pair of top=-99 is
currently recordeds, The key=-result pairs recorded in
the data base may be gueried in a manner similar to
that used tor operator declarationss Ffor example:l

-control{ikyR)Swrite(Keti)sfaile
lists all key-result pairs in the data base.
K=control{X,93)8write(K)5tail.
lists all keys with a result of 99.
Kecontrol(i,r)..r R, 1,R2)5addax{control{ i,R2)).
increments the resuit integer corresponding to key i»

The <control built-in predicate is also used with
certain Special keys to control system optionse If the
key verbose has an associated result of on theh the
system lists any gcal statements which succeeds The
goal statement <-<goval conjunction”?> is written in the
form {goal conjunction><-, displaying any
instantiations made for variables in the proofe. The
goal statement <~sum(2,42,%) causes sum(2,2,4)X- to be
written on the terminale. lf the key verpose does not
have result ony then a successful goal statement is not
listede. ’

If the Kkey noax has an associated result of on
then the system indicates each call to a predicate for
which there are no axioms (and no compiled routines).
For each such call a messagze of the form "noax - XxXxxxx
nn"” is displayeds XXXxXx is replaced vy the predicate
name and nn is replaced by the number o©of argumentsSes
Witn this feature, the goal <=sum{1,2.3)]|prodg(3,4,12)
causes the following messages to be displayed:

noax - sum 2
necax = prodg 3

?
This feature is initially enabled and wmay be disavbled
by deleting the control(nocaxyon) axiocm or adding
control(noaxyoff). To enhance the usability of this

feature, t he fail predicate (with no arguments) is
included as a built=in predicate which always failse
Thus spuripcus messages of the form noax = fail 0 are
avoidede.

The key lower is used to control the translation
of input from the main input sStreame 1If lower is set to
on then lower case letters ifrom the terminal are input
as lower case. If lower is not set to on then lower
case letters from the terminal are translated to upper
case as they are inputs The initial setting of lower is
determined based on the mode of operation when PROLOG
is initiateds I1f single uppercase letters are assumed
to be variables(the default)y, ° then lower is initially
set to ons lf variables can be desiznated only by using
an asterisk,y, then lower is initially set to off.

The key goalinput can be used to control the input
format of goals versus axiomses If goalinput is set to
on then input terms are assuamed to specify goalse The
period character is declared as a prefix operator with
the single initial axiom "{ +{X))<~-addax{X)"s Thus with
goalinput set to on, axions may be added to the data

base by entering them with a period prefixe with
goalinput set ofy, all input terms are assumed to be
axioms uniess they have a uanary '<-' as the main
skeletons goalinput is initially set t0 One To make

the input of axicms a bit more flexible when goalinput
is ony the following axiom is provided in the initial
data base:
{(X<~y)<-addax{ X<=Y).
This odd looking axiom makes the initial period
optional for non-unit axiomss period{or more formally
Yunless the input term is an instance of a skeleton for
'e? with one argument"). Teras preceded by the period
re assumed to be axiomse

ﬁ?’ The freeax__ predicate (yes it does end in an
underscorel) is normally of use only in wvery
specialized instances, usually when writing second
level interpreters in PROLOG. %hen using a second level
interpreter which "never finishes?, certain anomalies
ovccur in the recovery of space froa deleted axiomnse
¥hen an axiom is deleted in a proof, the space for the
axiom is placed on a 'deferred free list'!, The space is
not freed directly since the axiom may still be used in
the proofe. Space on this deferred free list is freed
when the proof is completeds. Thus in a second level
interpreter which is continually adding and deleting
axioms, a large deferred free lList may be built up and

the interpreter can run out of spacees To provide for
this situvation, the freeax__ predicate is providede.
Invoking the freeax_ goal causes all space on the
1! L4 ; ;l Ed .‘ :_3 -

deferred free list to be freed, It is the
responsibility of the programmer to ensure that the
current proof does not contain any references to freed
axiowuss Otherwise, disastrous results are likely!

3«6 Execution Control Predicates

The execution control predicates provide
facilities for testing and controlling the progress of
a proofs The ancestory retryy /9y By |9 repeat, faily,
errory attn, stop and trace predicates are included and
the meta variable facility is also provideds

The parent of a given literal in a proof is the
Literal which invoked the axiom containing the given
Literatls In the implication tree describing the proof,
the parent literal labels the node above that labelled
with the literal. The ancestyrs of a literal include

its parent and its parent?s ancestorss The ancestor
predicate is used to examine the ancestors of the
iiteral which invoked the preficates %¥hen ancestor is

used with one argument, the arzgument is unified with
the most recent ancestor for which this is possibles If
the argument cannot e unidied with aay ancestor, the

predicate failse It the predicate succeeds and
subsequently backtracking returns to this point in the
proof, the argument is uniftfied with the next most
recent ancestor and SO One The following axiom will

list ail ox the ancestors 0f the ancestor literal and
then fails

listanc{~ancestor(A)gwrite(A)sfails. Note that the
first ancestor listed will bhe Listancs

Whnen the ancestor nredicate is used with two
argunents the TFirst arguament fuanctions in the same way
as the single argument abovas The second argument is
the ancestor ipndexe. For a Ziven literal the ancestor
index of its parent is 1, the ancestor index of its
parent?s pareant is 2y etce The first argument is
unified with each ancestor in ftTurn as aboves If this
unification is successful then the second arzument is
unified with the current ancestor indexs The following
axiom will list +the five most recent ancestors of the
ancestor 1iteral:

listanc2<{-ancestor{A,N)swrite(A)segiNy3).

The retry predicate is provided to facilitate

recovery from an 2rror situations Afrer a correction
has bpeen made, the proof may be restarted Ifrom some
point before the errore @etry nas one or twe argunents
which control a search through the ancestors exactly as
for ancestore. The ditference is the action taken upeon
successs Jf an appropriate ancestor is iound, the proof
is backed up to the point where tn2 subproof for the
ancestor literal began and the oroof is restarted from
that pointa. retry restores the proof to the state it
had a4t a particular point in the prasts Consequently
retry is only useful when sSome change has been made to
the axiomse

The slash predicate with no arguments was
described in 2.3 PROLOGC Execution and Backtrackinge

The slash predicate is alsoc orovided in a more general

forma with either one oOr two argumentss The arguments
control a search throuzh the ancestors exactly as for
ancestor and retrys If this search fails then the
predicate failss If the search succeeds then certain

available chouices are eliminated {froawm an existinz
portion of the proof. All choice points are removed in
the part of the proof Trom the pcocint of selection of
the given ancestor literal +to the current point in the
proofs Thus a call of the form /(%) has exactly the
same effect as the simple nuliary / calis. Consider the
following example:
" a<~bCcede.

b<’€’

c<~f8g.

S

feo

g<=/{(c)Enh.

<’&a

> 9 9

The implication tree has thne tollowing form when the
unary slash is called:

goal
|
a
/ 1\
/1 N\
/ | \
b [i 1
/ I\
/ (AN
e f 3
X ' [EEAN
A
/{c) n

All choice points from the seitection of c<-fz onward
are eliminated. Thus if h fails an alternate proocf for
e will be attempted {and the subprooi of ¢ will be
deleted).

The meta variable facility allows a wvariable to be
used in place of a literal in a goal or in the body of

an axioms When the variable is encountered in a oroof
it must be bound to a literals. The proof proceeds as if
~this literal occurred instead of the variable. For

example, the following axiom defines a predicate exec
which reads a term and "executes" it.
exec{-read{X)sX.

Axioms are included for the E(¥*,%) and the |[(%*,%)
predicatess The axioms for | are:

i{ X,Y)<-X.

J{X,Y)<=¥Y,

These axioms allow alternatives tc be specified in an
axiom body or goal with the desired effects The axiom
for & iss

E{ X,Y,‘('i’;(X,Y)O
This axiom may look a bit ridiculous put it is useful,
particularly wheu using the meta variable facility. For
instancey if as input to the exec axioa above, atb is
specifiedy, then this axiom for » would be invoked and a
and then b would ne called.

The fail predicate (with no arzguments) is provided
as a built-in predicate which always failse. This
predicate is pruvided even thougzh providing 1o axioms
for fail would yield a pradicate which always failss

The reasons for providing such a predicate arel
{a) The fail predicate zives a standard name for a

predicate which always failse. This imposes a

programamaing standard which may improve program

reafability. This standard predicate could also
make it easier for a coapiler to perform certain
optimizationses

{b) I'he provision of the built-in fail predicate makes
the NOax feature of the control feature more
usefule. Refer to the description of the control
predicate in 35 Database Predicates for further
details.

The stop predicate is used to leave the PROLOCG
systeme The execution of the stop predicate terminates
the PROLOG sessicn and returns to the operating systemes
All axioms an! operator declarations in the current
workspace are lLoste

The repeat predicate can be used with zero to four
arguments to perform looping in a proofs Repeat with no
arguments succeeds initially and always succeeds on
Lacktrackinge Thus it can bhe used to loop indefinitely.
The lowp can be terminated only throuzh use of the / or
retry predicates. Repeat with one ar zument provides a
similar looping facility »put also maintains a loop.
counter. The argument is first unified with 1 and then
to 2 on backtracking, etcs Agzain the loop can be
terminated through / or retrys. The secondy third and
fourth arguments 01 repeat can be used to specify an
initial wvalue, a sStopping value and a step value,
respectively. If any of these arguments are specified
then they =must be integerss The second parameter
specifies the first value to pe used for the counters
If this parameter is omitted, then the starting value
is assunmed to be 1, as described aboves The third
paraneter is the stopping valuee %¥hen the lLoop counter
exceeds this value, the repeat predicate failse The
fourth parameter svecifies the increment or step values
If it is omitted, then 1 is assumed. A negative step
value may bhe specifiedy, in which case the loop
continues until the counter is less than the stopping
valueas Note that comparison to the stopping wvalue is
made on initial entry to repeat, so that the predicate
may fail the first time 1f the stopping value is less
than the initial value.

The error buiilt-in predicate differs from the
other predicates in the system in that it is not a

puilt~-in predicate definition but a special interface
which can be used to call a user—defined predicates The
error predicate (with no arguaents) is called when
certain pnon-disastrous errors occur in a proofs. A
message describing the error is always printed before
invoxking ‘'error's The user wmay provide any axioms
desired +to list ancestors, allow axioms to he
correctedy or to simply zive ups A useful set of axioms
for error are included in the standard set of axioms
loaded with the PROLOG systems These axioms are defined
in Appendix B : The PROLOG EXEC file

The attn built=-in predicate is analogous to the
error predicate. The attn predicate is called when the
att’ention or break kKey is pressed on the terminals
User axiows may Dbe added for attn to provide whatever
exception handling is desireds The standard set of
axioms In the PKOLOG EXEC file invoke the axioms for
error when attn is called{i.e the axiom for attn is
tattn <- error?!).

The trace built-in predicate provides special

features for debugging PROLOG programnss It allows
execution tracing to be enabled or disabled on a
predicate by predicate basis. The trace predicate

functions in a manner similar to the op predicate, in
that axioms for trace can be addedy, tested or deleted
and the presence of trace axioms e side effectse. It
the data base contains an axiom 01 the form 'trace(P)?
where P is the name of a predicate, then tracing is
enabled for all attempts to prove goals with predicate
name P. ‘

The actual tracing functions to e performed can
be defined by user axiomse The standard PROLOG EXEC
file includes axioms which write out the 'position'! and
the ?goal? for a traced predicates Four 'Ypousitions?
are defined, namely fcall! Yexit?! 'redo! and *fail?.
The 'call' position occurs when the goval is initially
atteapted, before any unification has taken placee. The
taxit? position occurs after the 2Zoal has been
successfully provene At the exit point, the zoal has
been unified with an axiom head and the axiom body has
peen executeds The 'redol? position occurs when
backtracking returns to the gZoaly before the attempt
has been wade *o reprove the goales The 'fail!' position
occurs after a final unsuccessful attempt has been made
to prove the goals

Enabling tracing for the zoal *Goal? causes

execution to proceed as thouzh t(Goal) became the goal,
where t has the following axiowms:?

t{Goal) <- systrace_{(call,Goal) &
Soal &
{ systrace_(exityGoal) |
systrace_{redo,Goal)
t({Goal) <~ systrace_(faily,Goal).

These axioms will cause the systrace_ axiom to be
invoked at each of the four positions in proving the
coale Note that for this to work courrectly, the
systrace_ goal must succeed for positions call and exit
and must fail for positions redo and faile The normal
axioms for systrace_ (which are inctude:xd in the
standard PROLOZ EXEC file) are as follows:

systrace_(Position,yGoal) <-
systrace{ PositionyGoal) &
fails
systrace_(callyGoal)as

systrace_{(exityGoal)s

The user may then define the systrace predicate to

write anvthing desired or even proapt for user
directione The PROLOG EXEC file countains the single
axionm:

systrace(PositionyCval) <= writech{ Position) &
tab(1) &
write(Goal)s

This axlom may be deleted or preceded by another user
axiom to modify the output fornates For exampie,if the
folluwing axiom is added prior to the axiom above, then
the 'call?! position will be traced by a user trace
routine:

systraceicall,Goal) <= / & trace_calllGoal).

In general, the user may find it useful to provide
different axioas for systrace, but those for systrace_
should be left unchangeds

de7 Miscellaneous Predicates

The miscellanecous group includes predicates to
test the collating segquence of censtants, to test if a

symbol is a letter or a digit, and to convert a
character to or from uppercases In addition a system
predicate is provided to execute operating system
commandSs A collating seguence is defined for the

values of constants as follows:
(a) Any atom is less than any intezers
{p) ITntegers are related by the conventional
ordering for inteserss
{c) Atoms are ordered by the lexical ordering
imposed when the ordering of the symbols is
as defined by the standard EBCDIC orderingse.
Six built-in predicates are provided to test the
relation between two constantse. Each predicate has two
argunents, both of which must be constantse The
relations which cause each predicate to succeed are
listed below.
1t - argument 1 is less than arguaent 2
le = argument 1 is less than or equal to argument
2
gt = argument 1 is greater than arguament 2
ge = argument 1 is greater than or egual to
arguament 2
eq = argument 1 is equal to argument 2
ne = argument 1 is not equal to argument 2

Examples: The following predicate calls succeeds
<-1t(a,37).
<-gt{3'.—2' Je
{-ge{aldjya)d.
<{-ne{abcyc)e.
<-eqg{ 'abc'jyabc).
K=egq(12,'+020127%).

The predicates letter and dizit each have one

argumente The argument aust be a constantes The
predicates test if the value of the constant is a
single symbol belonging to the given classe. If the

argument of letter is a constant consisting of a single
letter then the call succeedss If the arguament of digit
is an integer from 0O to 3 inclusive then the call
succeedss The upshift predicate has two arguments, of
which at least one must be a constanta. If the first

argument is a single lowercase letter, then the second
argument Is unified with the uppercase constant for the
same letter. If the first argument is a skeleton or a

constant other than a lowercase letter, then the
predicate failse In the remaining case(where the first
argument is a free variable), the predicate will

succeed only if the second ar:zument is an uppercase
Letters In this case the first argument will be unified
with the lowercase constant for the same letters
Examples: The following predicate calls succeed

{-letter{z).

<-digit(J)e

{-digit(*+0001').

<-upshift(*1' A).

L=upshift{ Tal,¥*).

L-upshift{ 'z',%21),

The system predicate allows CMS5 commands to be
executed from the PROLCG environments It may be invoked
with one or two argumentss The first argument specifies
the command to be executedes The second argument is
optional. If present, it is wunifried with the integer
return code frow the CM3 coamands it the second
argument is not present then the return code is
ignoreds The command to be executed is specified as a
list of one cr more constantse. Fach constant
correspon:ds to one token in the CTMS commands.s Tokens may
be no more than eizht characters longe In order to
invogse CP cwoumaands, simply use an initial token of cps
Note that all lower case Letters in tokens are
automatically shifted to uppercases The left
parenthesis preceding the optiens is a separate token.
The followingfd;%alid calls to system:

{-gystem{ printeprologsexecenil)e.

{-system(le'*?',prolozsnilyReturncode).

{-system{cpsgsusersenil)e,

K-system(tsprologemaclibe? (! ememberexxxxxxsnild.

Appendix A : Rupnping PROLOG under VM/CMS

The Wwaterloo PROLOG systea is invoked from the
VM/CMS environment by typinzg the command PROLOG. This
command invokes the PROLOG EXEC file and subsequentily
the PROLDOG modules The EXEC file supports several
options as well as defining numerous utility
predicatess The EXEC file is described in detail ian
Appendix Be

A typical PKOLOG session involves executing goals
and addineg and deleting axiomse The format of entry for
axioms versus goals can be controlleds. The standard
system starts in what is called Vgoalinput” modes In
this mode, any term that is input is assumed to be a
goal, unless it is in the format Va{ees)', in which
case the term is assumed to he an axiom to add to the
databases In fact "," is treated as a predicate with
the single axiom " .(Goal)) <- addax{ Goal).".
Conseqguently 1in goalinput mode all input terms are
treated as goalse it goalinput mode is turned off then
goals must be entered in the format "<-(Goal)". This
mode of operation is more verbose if numerous goals are
being entered, SG the zoalinput anode is mnormally
preferrede The description of the control axiom In 35
Daxabase Predicates cutlines how to turn the goalinput
mode on and off. Note that in this manual, goals are
always described in the #<-(Goal)" syntax for clarity
of explanatione when axioms are stored in a filey they
are normally stored without the " " prefixe The consult

predicate (described in detail in Appendix B) can be
used to read the axioms from a file and add them to the
data bases In addition, the consult predicate will

treat any terms in the file in the format "<-(Goal)" as
goals and execute theme Note that when entering axioms
or goals ‘'in a tile or from the terminal, they must
always be terminated with a dot which is either the
iast character in the record or is followed by a blankes

The ted predicate can be used to update files of
axioms when errors are detecteds The axioms may then be
reloaded using the recounsult predicate.

To exit the PROLOG environment completelyy, use the
stop predicates Simply type 'stops.?ts. The attention or
break kKey on the terminal may be used to interrupt a
PROLOG programe It attention or break is signalled

during a proof or in response to a READ from a PROLOG
axiomy then three exclamations points are written on
the terminal and the attn axiom is called. Axioms for
attn may be defined by the usere. A standard set of
axioms for attn is described in Appendix B : Ihe PROLOG
EXEC file.

The PROLDG system also includes facilities for
tracing program executiony in ordier to aid in
debuggings This facility is 2nabled for predicate P by
adding an axiom 'Ytrace(P)?', Note that trace has a
singie argument nhich must be an atoms #hen trace is
enabled for a preaicatey in conjunction with the
standard EXEC file, the prouress of proving a goal for
the predicate will display the goal at each of four
positionss These positions, as well as the functioning
of trace are described in detail in J«& Executjon
Control Predicates in conjunction with the trace
predicates.

The PROLDG input/output predicates provide
facilities for reading and writing CMS files. All files
which are accessed are assuamed to have a tiletype of
PROLOG and to have fixed records with a length of 80
characterses ¥hen reading from files, a blank mode
letter is used s0 that the normal CMS search order |is
invokede. %hen updating files a mode letter of "A?! is
useds Conseguently, PROLOG programs can update files
on the A-disk onlye.

Appendix B : The PROLOG EXEC file

The Wwaterloo PROLOG system is invoked from the
VM/CMS environmen:t by typing the command PROLGG. This
command causes the PROLOG EXEC file to be executed and
the PROLOG MODULY te be invoked from the EXEC filees The
EXEC file allows several options when invoxking PROLOG.
The first option controis the size of the data area
acquired by PRCLOG for executione This area will be
used te contain all axioms as well as the execution
stacke The size vf the area is specified as the nuamber
of 1lU24 byte blocks of memory to be useds If no size is
specified, theun 100 is assumeds The 1foraat for
specifying the size is:

PROLOG nun

where nnn is the desired sizes

In addition, a list of file names separated by
blanks may be specified as an operands Axioms aand goals
will be read from each of these files in turn, using
the consult verb defined balowe For example the
command PROLOG DATAL DATA2 will invoke PROLOG and use
consult to loat!t axioms from file DATAL and then DATA2,
The workspace size operand may also pe used in
conjunction with the files list by specifying the size
parameter firsty,as in "PROLOG 2000 DATALl DATA2Y.

The PROLOJ LXEC file also contains a set of axioms
that are added to the initial PROLOG databases These
axioms provide various utility functions, including the
consult Ffunction described aboves Fach predicate
defined in the EXEC file is described belows

The consult predicate has a single operand which
is the name of a file of goals and axiomss. Each term in
the file is reade A term of the form "<=(ees)" is
executed as a goale All other terms are added to the
database as axiomss. ¥hen the end of the file is
reachedy the file is clused.

The reconsult predicate functions similarly to the
consult predica te except that it deletes any existing
axioms for the predicates which are read iny before
adding the axioms in the filee. Axioms for op and
control are treated differently, in that the existing
axioms for these predicates are not deleted.,

The 1list predicate is used to list axiom
definitions from the database. If it is wused with no
arguaents or with a single variable as an argument then

all axioms in the database are listeds The list
predicate may also be used with a predicate name as an
argument to List the axioms for that predicates For
exaaple, "list{(compute)” will 1list all axioms for

predicate compute, with any number of arzumentss

The delaxall predicate is used to delete all
axioms for a given predicates delaxall is invoked with
the predicate name as an arguments For example
Hdelaxalll{ coapute)" will delete all axiocms for
predicate computes.

The error predicate is "puilt-in" in the sense thq.
it is executed whenever certain errors oOCCures The
PROLOG system provides this error recovery interface to
allow the user to investigate the state of the proof
and take appropriate recovery actions The set of
predicates included for error handling in the exec file
provide the following functions:

- when the error predicate is iavoked, the ancestors of

the error predicate ara listed, in ascending
orders The number of ' ancestors 1listed is
controlled by adding the axiom

Ycontrol{ errordepthy,X)" where X is a positive
integers The EXEC file sets the initial errordepth
to 50

- after the ancestors are listed, the user is »nrompted
to enter a commande The command entered may be any
valid goals The goal is executed and the success
or failure ofi the goal is indicated by the '?? or
1~ respousSess The user is then prompted for
another commande The most common commands used at
this point are Hquit? +to terminate the proof,
Taddax" or "delax" to correct the database and
Upetry(X)" to retry goal X after a correction has
been mades

The error axioms also check for the condition of an
error within an error and do not print the ancestors in
this cases

The gquit predicate is used primarily in error
recoverys It terminates the proof and returns to PROLOG
command levele.

The attn predicate is a built=-in "hook" analogous
to the Terror" predicates. The attn predicate is
executed when the attention{or break) Key is pressed
during a PROLO3 proofe The axiom for attn defined in
the exec file simply invokes the error predicate to
provide exactly the same facilities as error for

recoveryes
The ted predicate can be used to invoke the CMS
transient editor irom the PROLOG environmente For

example M"ted(bloucks)" will edit the file blocks and
then return to PROLGG.

The -~ predicate definition is included to handle
negations The guval ~(Pred) will succeed if and only if
the goal "Pred” failse Note that when -~ succeeds it
doesn't bind any variablese.

The systrace predicate is invoked as part of the
tracing facilitye. It is described in more detail in
Je6 Execution Coentrol Predicates in conjunction with
the trace predicates

The axioms used to deftine these predicates in the
exec file are listed belowe All internal predicates end
in an underscore, to avoid conilicts with user axiomss

consult(File) <- read(AyFile) & consult_(A) &5 fail.
consult{File) <~ fileclose(File).
consult_{(<=Goal) <= / & Goal & /.
consuit_{Axiom) <- addax{Axiom)s
reconsul t{ *¥) <- delaxall(reconsulted_) &
addax{ reconsulted_(1)) & {fails
reconsult{File) <- read{A,File) &
reconsult_(A) & faile.
reconsult(File) <- fileclose(File) &
delaxall(reconsul ted_).
reconsult_(<-3cal) <= / & Goals
reconsult_(op({ X,Y,2)) <= / & addax(opl XyYyZ))s
reconsult_(control(X,Y)) <= / & addax{control(XyY))a.
reconsult_(Axiom) <= reconsult_name_(AxiomyName) E
reconsult_start_{ Name) &
addax{Axiom).
reconsult_name_{(Head<-Body,Name) <- / &

' cons{ Names ¥yHead).
reconsult_name_{ deady,Name) <~ cons{ Names*,Head)s
reconsult_start_{ Name) <~ reconsulted_{(Name) & /o
reconsult_start_(Name) <~ delaxall(Name) &

addax{ reconsulted_(Name)dy1l)e

list<~list(*).
list{(control) <- control(Id,Value)lt
writegq(control{ IdyValue)it
faile
list(op) <= op{GperatoryType,Priority)s
writegq{ op(Operatory, Typey Priority)ic
faile
list{Name) <- axn(Name,#*,Axlom) &
writeg{ Axiom) ¥
faile
llSt(*)o
control{errordepthy5)e.
error{=-ancestor{error,N)sat{Nyl)t /Serror_cad_.
error <= contrel{errordepthydepth) &
error_Llist_(Depth)sfail.
error K- error_cmd_e

error_cmd_ <= repeat & writech{'ENTER COMMAND:')

newline & error_exec_es
error_exec_ <- read(C) &
((C & error_succeed_(C)) |

{writech{?) & newline)) & / & fails
error_succeed_(C)<{-control{verboseyon)lswritech(C)Efail.,

error_succeed_(%*)<-writech('<-?)Snewlines

error_Llist_(Depth) <~ sum(Depthy2,Depth2) &
ancestor{ Ay Index) 5
gt(Indexy2) & writeg(A) &
eqg(IndexyDepth2) & /s

attn <= error.

quitl=/{pgoal)sfaile.

ted(File)X-system(tedetile.prologenil).

“Pred <= Pred & / & fail.

~“Preds.

systrace_{ Type,Goal) <~ systrace(TypeyGoal)&cfaile

systrace_{(cally¥*).
systrace_(exity¥k).
systracel Type,Goal) <= writech{ Type) & tabl 1)

delax(Axiom) & fails
delaxall{Name).

write(Goal)s
delaxall{Name) <- atom(Name) & axn{ Name,*,Axiom) &

Appendix € : Using PROLOG wjith uppercase input

The syntax cof PROLOG as described Iin this manual
involves both upper and lower case letterse If PROLOG
is being used with terminals which do not support lower
case, a slizhtly modified "uppercase only" syntax may
be invokedas In this mode of operation, the following
changes are made to the standard syntax:

- all variables must begin with an asterisks

- all symbols which begin with a letter are assumed to
be jdentifiers(ie.e 2ither predicate names or
constants e

- all input characters are automatically shifted to
upper case.

To invoke PKOLUG in the uppercase only mode, the
PROLOG module umust be invoked with the parameter
1L {cegze PROLOG L) If a workspace size is t0o be
specified, the parameter should be YLnnn?! where nnn is
the sizelesge PROLOG L256). The standard PROLOG EXEC
file does not support this mode of operations To create
an appropriate EXEC file, the standard EXEC can be
copied, all the axioms converted to uppercase syntax
and the 1lines invoking PROLOG changed to add the *'L?
prefix to the first parameters.

Ji

