
Affirm

Demo Handbook

USC Information Sciences Institute

David H. Thompson, Editor

Version 2.0 - May 8, 1981

Corresponds to Affirm Version 1.21 (March 23, 1981)

/

Table of Contents

1. Introduction
2. Type ElemType

2.1. Notes
2.2. Type Specification

Table of Contents

3. Type SequenceOfElemType
3.1. Notes
3.2. Intuitive Meaning of the Operators
3.3. Type Specification
3.4. Discussion
3.5. Notation
3.6. JlTheorems Jl

Appendix I. The Syntax of User Commands
Appendix ll. A Beginner's Subset of Affirm Commands
Appendix ill. Command Structure Diagrams
Appendix IV. Command Synopses

N.1. Affirm Commands
N.2. Interlisp Commands: Useful Interpreter Commands
N.3. Interlisp Commands: Useful Editor Commands

Index

1

1

3

3
4
5
5
6
8

10
10
12
13
21
25
27
27
46
46

51

Introduction 1

1. Introduction

This document is meant to be used in conjunction with demos by the PV group,

and does not attempt to explain all the basics of AFFIRM use; instead, it tries to draw

together in one handy place the pieces of the reference manual, type library, and other

documentation we've noticed that most users need, but couldn't quickly find. The

document contains a grammar of the command language, synopses of commands, listings

of the types you'll be dealing with in the lesson, and listings of

< < truncated> >

2 Introduction

Type ElemType 3

2. Type ElemType

2.1. Notes

This type specification is termed a minimal specification because it provides only

the most basic definition of the type. The name ElemType is declared to be a type

name, and the reflexive property of equality for elements of type ElemType is specified.

Nothing more is said, so that ElemType is quite general: no assumptions, no restrictions.

4

2.2. Type Specification

type ElemT7Ipe;

declare dummy: ElemType;

axiom dummy=dummy == TRUE;

end {ElemType} ;

Type ElemType

Type SequenceOfElemType 5

3. Type SequenceOfElemType

3.1. Notes

In contrast to the minimal specification provided for type ElemType, the

specification for type SequenceO JElemType is quite complex. The interface statements

provide the basic domain and range information for the operations of the type. The

infix statements tell the system to display certain operators in infix form on output; the

user IS always free to input expressions involving binary operators in infix, but the

system will only produce infix output for those operators so declared in the infix

command. The axioms detail the meaning of the operations, by specifying the effect the

operations have when applied to the constructors of the type. The constructors of a type·

are operations producing new values of the type, with the property that any value of the

type can be expressed in terms of their functional composition. For example, the two

constructors of this type are NewSequenceO JElemType, producing a null sequence, and

apr, II ~end right II , which adds an element to the right end of a sequence. It should be

obvious that all sequences can be expressed in terms of these two operations.

RuleLemmas are treated as axioms by the system. The difference is in how the

user views them. They are intended to be useful primitive facts about the operations

that the user wants included in the automatically-applied rewrite rules of the data type.

But they are not axiomatic. Rather, they can be proved from the axioms.

Define statements provide II macros II which will be expanded only upon user

request. This provides an expression encapsulation facility. Since axioms are turned into

rewrite rules that are always applied to an expression during a proof attempt, any axiom

that would cause infinite rewrites (such as a statement of operator commutativity) is not

allowed. Instead the user can provide the information using a definition.

Finally, schemas provide a means of case analysis or induction, usually structural

induction based on the constructors of the data type. We'll say more on this during the

demo.

6 Type SequenceOfElemType

3.2. Intuitive Meaning of the Operators

All operations always accept values and return values. The operands are not

variables in the programming-language sense; operations can't modify their parameters.

Operator Intuitive Meaning

N ewSequenceOfElemType

s apr z

i apl s

sl join s2

LessFirst(s)

LessLast(s)

dedup(s)

the empty (null) sequence.

append element i to the right end of sequence s.

append element i to the left end of sequence s.

concatenate the two sequences sl and s2.
rulelemmas specifying further details of join.

There are several

II Tail II ; all but the first element of the sequence s. The axioms don't
define the meaning of LessFirst(NewSequenceOfElemType). There's a
rulelemma for the ~ case.

all but the last element of
LessLast(N ewSequenceOfElemType)?
the ~ case.

the sequence s. What's
There's a rulelemma specifying

removes the duplicate elements from s. What do the aXIOms say
about preservation of order?

reverse(s) reverses the order of elements in the sequence s.

Rotate(s, k) rotates sequence s in a left-circular manner, k times. k is assumed to
be a non-negative integer. (Rotate is specified as a definition rather
than an axiom.)

Initial(s, k) the sequence consisting of the first k elements of s, if Length(s»k, or
the sequence s, otherwise. (Specified as a definition rather than an
axiom.)

LessInitial(s, k) the remainder of the sequence s, after removing the initial k elements.
(Specified as a definition rather than an axiom.)

deletepth(s, k) removes the kth element from the sequence s. What does the
definition say about the case k>Length(s)? Or the case k < O?

Intuitive Meaning of the Operators 7

isNewSequenceOfElemType(8)

81 subseq 82

. true if 8 = NewSequenceOfElemType, false otherwise.

is 81 a subsequence of 82? The definition of subsequence given in the
axioms does not require contiguity: <1, 3> is a subsequence of <1,
2,3>.

NormalForm(8) . provides a case analysis schema based on the constructors of the type.

Induction(8) provides a structural induction schema based on the constructors of
the type, NewSequenceOfElemType and apr.

FirstInduction(8) provides a structural induction schema based on

Z III 8

nodups(8)

disjoint(8, 81)

Length(8)

First(8)

Last(8)

pth(8,

NewSequenceOfElemType and apl. This schema must be justified.

is the element i present in the sequence 8? There's a rulelemma
covering the aploperation, besides the two axioms.

the predicate analogue to dedup(8). There's a rulelemma for the apl
case.

false if 8 and 81 have any elements in common, true otherwise.

the number of elements in the sequence 8.

the first element of the sequence 8. The axioms don't define
First(NewSequenceOfElemType). There's a rulelemma for the apl
case.

the last element of the sequence 8. The axioms don't specify
Last(NewSequenceOfElemType). There's a rulelemma for the apl
case.

< <truncated> >

8 Type SequenceOfElemType

3.3. Type Specification

type Sequenee;

needs type Element;

declares, sl, s2, ss: Sequence;
declare i, iI, i2, ii, j, k: Element;

interfaces
Empty, s apr i, i apl s, seq(i), sl join s2, LessFirst(s), LessLast(s),
dedup(s), reverse(s): Sequence;

infix apI, apr, join;

interfaces
isNew(s), Firstlnduction(s), Induction(s), NormalForm(s),
i in s, nodups(s): Boolean;

infix in;

interfaces
First(s), Last(s): Element;

interface Length(s): Integer;

axwms
s=s== TRUE,
Empty = s apr i == FALSE,
s apr i = Empty == FALSE,
s apr i = sl apr i1 == ((s=sl) and (i=i1));

axwms
i apl Empty == Empty apr i,
i apl (s apr i1) == (i apl s) apr i1;

axiom seq(i) == Empty apr i;

axwms
Empty join s == s,
(s apr i) join sl == s join (i apl sl);

axiom LessFirst(s apr i) == if s = Empty
then Empty
else LessFirst(s) apr i;

axiom LessLast(s apr i) -:-= s;

axiom isNew(s) == (s= Empty);

Type Specification

axzoms
i in Empty == FALSE,
i in (s apr i1) == (i in s or (i=i1));

axiom First(s apr i) == if s - Empty
then i
else First(s);

axiom Last(s apr i) == i;

axzoms
Length(Empty) == 0,
Length(s apr i) == Length(s) + 1;

axzoms
dedup(Empty) == Empty,
dedup(s apr i) == if i in s

then dedup(s)
else dedup(s) apr i;

axzoms
reverse(Empty) == Empty,
reverse(s apr i) == i apl reverse(s);

axzoms
nodups(s apr i) == (nodups(s) and "-'(i in s)),
nodups(Empty) == TRUE;

rulelemmas
Empty = i apl s == FALSE,
iapl s = Empty == FALSE;

rulelemmas
s join (sl apr i) == (s join sl) apr i,
s join Empty == s,
(i apl sl) join s2 == i apl (sl join s2),
(s join (i apl sl)) join s2 == s join (i apl (sl join s2)),
s join (sl join s2) == (s join sl) join s2;

rulelemma LessFirst(i apl s) == s;

rulelemma LessLast(i apl s) == if s = Empty
then Empty
else i apl LessLast(s);

rulelemma i in (i1 apl s) == (iin s or (i=i1));

rulelemma First(i apl s) == i;

9

The axioms for dedup.

The axioms for reverse.

The axioms for nodups.

10

rule/emma Last(i apl s) == if s = Empty
then i
else Last(s);

schema
FirstIn d u ction(s)

== cases(Prop(Empty),
all ss, ii (llI(ss) imp Prop(ii apl ss))),

Induction(s)

3.4. Discussion

Type SequenceOfElemType

The lesson is accessed by the command II read lesson.setup; ", which loads the

needed types and notations and then reads the II theorems II which the learner is to prove.

These exercises are somewhat repetitive, but cover the basic set of commands and

provide a good feeling for AJJirm,'s data type induction capability.· The user is reminded

that not all the II theorems II may actually be such.

3.5. Notation

type LessonNotation;

needs types SequenceOfElemType, ElemType;

declare dummy: LessonNotation;
declare s, sl, s2: SequenceOfElemType;
declare i, j, k: ElemType;

interfaces
deleteNonp(s), dedup(s), reverse(s): SequenceOfElemType;

interfaces
nodups(s), sl subseq s2, p(i), allp(s): Boolean;

infix subseq;

axiom dummy=dummy == TRUE;

axwms
deleteNonp(NewSequenceOfElemType) == NewSequenceOfElemType,
deleteNonp(s apr i)

== if p(i)

Notation

axwms

then deleteNonp(s) apr i
else deleteNonp(s);

dedup(N ewSequenceOfElemType) == NewSequenceOfElemType,
dedup(s apr i)

== if i in s
then dedup(s)
else dedup(s) apr i;

axwms
reverse(N ewSequenceOfElemType) == N ewSequenceOfElemType,
reverse(s apr i) == i apl reverse(s);

axwms
nodups(s apr i) == (nodups(s) and ",,(i in s)),
nodups(NewSequenceOfElemType) == TRUE;

axwms
s subseq NewSequenceOfElemType == (s = NewSequenceOfElemType),
sl subseq (s apr i)

axwms

== ((sl = NewSequenceOfElemType) or sl subseq s
or LessLast(sl) subseq sand (Last(sl) = i));

allp(NewSequenceOfElemType) == TRUE,
allp(s apr i) ==(p(i) and allp(s));

end {LessonNotation} ;

11

12 Type SequenceOfElemType

3.6. "Theorems ll

The following propositions may not all be theorems; that's part of what
the lesson is teaching.

theorem AllpDeNonp, allp(deleteNonp(s));
theorem NodupsDedup, nodups(dedup(s));
theorem DeNonpSubseq, deleteNonp(s) sub seq s;
theorem DedupSubseq, dedup(s) subseq s;
theorem AllpDedup, allp(s) imp allp(dedup(s));
theorem NodupsDeNonp, nodups(s) imp nodups(deleteNonp(s));
theorem DeNonpJoin, deleteNonp(sl join s2)=

deleteNonp(sl) join deleteNonp(s2);
theorem AllpJoin, allp(sl join s2) eqv allp(sl) and allpO

< <truncated here> >

The Syntax of User Commands 13

Appendix I
The Syntax of User Commands

The grammatical presentation method used here was designed by David Wile

[Wile79a]. In this scheme, terminal symbols are prefixed with a single quote, and are

displayed in a typewriter-like font. Nonterminal symbols are simple identifiers, and

are displayed in italics. The form
symbol1 A symbol2

means
One or more occurrences of symbol1, separated by symbol2.

For example,
id A "

represents a list of identifiers separated by commas. The form

[symbolSequence]

means
Zero or one occurrences of symbolSequence.

The empty string is denoted by E, the Greek letter epsilon.

Commands most likely to be needed by an inexperienced user are marked in the

left margin with the symbol II ** II.

Other conventions should be obvious.

14 The Syntax of User Commands

A//irmCommand : = ';

**

**
**

**

**
**

**
**
**

**
**

**

**

**

I '0 [arbitmryTextExceplSemicolon] ';

'abort ';
'adopt. typeName ';
'annotate [nodeName'] arbitmryTextExceptSemicolon ';
'apply [nodeName '.] proposition ';
'arc arcLabel ';
'assume [nodeName '.] proposition ';
'augment proposition ';
, axiom rule ';
'axioms rule A , , .

'cases ';
, choose number A ,

'clear 'proof ';
'compile objects ';
'complete ';

..

'declare id A, ': typeName ';
'define r'ule A '. ';

'denote (expression 'by variable)
'discard objects ';
'down child ';

'e InterlispCommand
'edi t typeName ';

A ,

'employ schemaName '(allVariable ') ';
'end ';
J eva! express~on ';
'exec' ;

'fix [eventSpecification] ';
'freeze [fileName 1 ';

, genvcs procedureName
, gripe shortTitle ';

- ,

, infix inter faceName A, , ;

, .

, interface lhs ': typeName ';
'interfaces lhs A '. '. typeName ';
, invoke rangedExp A '. ';

'let instantiation
'lisp ';

A , , .

, .

The Syntax of User Commands

**
**

**
**

**
**
**

**

**

**

**

**
**

**

**

'load [fileName] ';

'name nodeName ['. proposition] ';
'needs objects ';
'next ';
'normalize .';
'normint ';
'note arbitraryTextExceptSemicolon ';

"ok ";

I 'print printOptions ';
I 'profile [transaction
I 'put instantiation ~ •

'quit ';

'read· [fileName] ';
'readp [fileName] ';

~ ,] ';
, .

'redo [eventSpecification] ";
'replace [expression ~ ".] ";
'resume ';
"retry";
'review";
'rulelemma rule ';
'rulelemmas rule ~ "

'save obJects ';
'schema rule ';
'schemas rule ~ "
'search ';

, .
•

" .

"set variableName 'to expresswn ";
'stop ';
'storage (, normal I 'severe I 'tight) ";
'sufficient? [typeName] J;

J suppose [expression] J;

J swap rangedExp ~ J. J;

J thaw [fileName] ';
'theorem [nodeName '.] proposition ';
'transcript ['on I 'off I fileName] ';

** ' try [nodeName '.]. proposition ';
** 'type id ';

**'undo [eventSpecification] ';

15

16

'up [number] ';
'use [nodeName .,] proposition ';

undocumentedA//irmCommands

allVariable id

child : =

coord

arcLabel
nodeName
ordinallnteger

number
'- number
'ALL
'LAST
'FIRST

definedName : = id

elementName : = id

eventSpecification : =

expresswn

infixOp

number
A//irmCommandName

primary [infixOp expression]

J - J_

'< ,­
'> ,-
userDefinedOp

'! ,-

instantiation : = someVariable ,- expresswn

inter faceName id;

lhs :=
inter faceName ['(expression A, ')]
expresszon interfaceName expression

nodeName

The Syntax of User Commands

The Syntax of User Commands

id
number

objectName : =
'AffirmObjects
'Arcs
'Axioms
'Commands
'Definitions
'Directories
'Disconnected
'Files
'FileTypes
'Groups
'HelpTopics
'History
'Interfaces
'Lemmas
'Lhs
'Nodes
'PrintObjects
'ProfileEntries
'Schemas
'Theorems
, TypeParts
'Types
'Variables

objects : = objectName (elementName I lhs) A '. •

opOrExpression : =
expresszon
infixOp
prefixOp

prefixOp :='- I 'not

przmary

I userDefinedOp

prefixOp [, (expression
variable
number
prefixOp primary
, (expression ')

A , ')]

17

18 The Syntax of User Commands

"if expression "then expression ["else expression]
quantifier identifier" ", "(expression .) ;

printOptions : =
"1
"assumptions
" BadEquations
"both [printOptions2]
"file fileName
"history
"IH
'known objectName
"named
"names
"next
"original
"proof [printOptions2]
"prop [printOptions2]
"result
"status [printOptions2]
"type typeName [typeParts]
"unproven
"uses [printOptions2]
"variable
"variables ;

printOptions2 : = ["list I "nolist] ("T I "*
I "theorem I "unproved) nodeName

procedureName : = id ,

profileEntryName. id

proposition .­
expresswn
nodeName

quantifier -
"all
"some

range : = coord [". coord] ,

rangedExp - opOrExpression [rangeSpec]

The Syntax of User Commands

rangeSpec : = "I range A J. • I

rule : = lhs "= "= expression

schemaName : = id ;

some Variable : = id ;

transaction : = profileEntryName [("?

typeName : = id ;

typeParts :=
"axiom
"declare
"define
"interface
"needs
"rulelemma
"schema

"axioms

"defn.
"interfaces

"rulelemmas
"schemas

undocumentedAllirmCommands

«truncated here»

19

"- profileValue)]

20 A Beginner's Subset of Mfirm Commands

A Beginner's Subset of Affirm Commands 21

Appendix II
A Beginner's Subset of Affirm Commands

Not all commands are listed here. Rather, the most useful ones are enumerated,

using the gross categories Specification, System, and Theorem Prover.

System

abort; Returns from a lower executive, aborting the pending command (see the ok
command).

exec; Invokes the operating system as a lower forIe.

fix; Places the text of a command in a text editor, and re-executes the revised
command upon return from the editor.

freeze f£leName;
Saves the entire state of the current system in file fileName.

gripe file;
Asks for the text of a message and then sends the message (using the Arpanet)
to lSI.

load file;
Reads a file containing the internal form of a type specification previously
saved using the save command.

needs type typeNames;
Causes the system to find and read the type specification for each specified
type name.

note comment;
The comment facility.

ok; Returns from a lower executive, and then executes the pending command (see
the abort command).

print option furtherArguments;
Prints something. Common options are:

theorems names;
Lists the indicated theorems.

prop names;
Lists the indicated propositions (they do not have to be theorems).

22 A Beginner's Subset of Affirm Commands

type typeName;
Lists the specification of the type.

file fileName;
Lists the file.

III; Lists the current definition of the induction hypothesis III.

known objectName;
Lists the names currently associated with elements of the indicated
object class.

proof theorems;
Lists the proof trees of the indicated theorems.

profile;
Enters a profile dialogue, where each profile entry is displayed and you have
the option of providing a new value. The command can also take parameters:
see the description in the command synopses.

quit; Closes the transcript file and returns to the operating system.

read file;
Reads a file of commands, executing each. Quite useful for reading the text
form of type specifications.

readp file;
Reads a file containing Pascal programs, building the internal parsed form (see
the genvcs command).

reVIew;
Puts the text of the transcript in a text editor, so you can retrace your steps.

save type typeNames;
Saves the internal form of the type specifications, each in its own file. The
load command can be used to read the files.

undo event;
Undoes the effects of the indicated command.

Specification

adopt typeName;
Copies the declared variables from typeName into the current type. Useful for
establishing proof contexts.

A Beginner's Subset of Affirm Commands 23

axiom rule;
Makes a rewrite rule L -+ R out of the rule L == R, and adds it to the
system's rule set. All rules are applied to expressions during simplification,
after each theorem-prover command.

declare ids: typeName;
Declares the names to be variables of the indicated type.

define rule;
Makes a rewrite rule out of the equation. Definitions are not automatically
rewritten during simplification; you must explicitly request application using
the invoke command ..

edit typeName;
Opens a new type context for subsequent specification commands. See the
~ and end commands.

end; Ends the current type context and restores the prevIOUS one. Specification
commands affect only the current type.

interface op(params): typeName;
Defines the domain and range information for an operation. Params are
variable names, not·~ names.

rulelemma rule;
Treated just like an axiom.

schema rule;
Defines induction and case analysis schemas. See the description In the
command synopses.

type typeName;
Establishes a new context for subsequent specification commands.
typeName is already declared, it is totally redefined by this command.
you can always undo this command!)

Theorem Prover

apply name, expression;

If the
(But

Applies the expression as a lemma to the proposition currently being proven.

cases; Raises embedded IIIfs" by applying the special rule

f(if b then x else y) -+ if b then f(x) else f(y)

employ schemaName;
Uses the schema to perform induction or case analysis.

eval expression;
Applies the normalization and simplification process to the expression.

24 A Beginner's Subset of Affirm Commands

genvcs PascalUnitNames;
Generates the verification conditions for the indicated Pascal procedures and
functions.

invoke definitionNames;
Expands the references to a particular set of operations by replacing the
reference with the definition.

name newName, oldName;
Name oldName to be newName. If oldName is omitted, then the proposition
currently being proven is given the new name.

next; Moves to the next unproved part of the proof tree associated with the current
theorem, in a fairly natural ordering.

normalize;
Simplifies the current proposition. It is not normally necessary to explicitly
invoke this command, because it is automatically performed after each
theorem-prover command.

put existentialVar = expression;
Instantiates existential quantifiers.

replace expression;
Performs equality substitutions.

search;
Attempts to find a set of instantiations of existential quantifiers that results in
reducing the proposition currently being proven to true.

suppose expresszon;
Breaks the proposition P currently being proven into two propositions:

expression => P

and
expression V P

try name, expression;
Attempts the proof of the named expression.

Command Structure Diagrams

Appendix III
Command Structure Diagrams

SPECIFICATION

0----------------------0----------------------0

Context
edit
end
type

Definition
a/Parts Status
aXIOm sufficient
(adopt; declare)
define
(infix; interface)
rulelemma
schema
discard

EXECUTIVE

25

0---------------0---------------0---------------0---------------0---------------0---------------0
I I
I I
I I Outside Executive User

Comments 10 State Affirm Levels History. In [ormation
note (load; read; compile e abort fix grIpe

readp) freeze exec ok forget help
needs save lisp quit redo profile
print stop renumber
transcript reVIew

storage
undo

26 Command Structure Diagrams

MISCELLANEOUS
0----------------------0---------------------- 0

Expression
Evaluation
eval

Rewrite
Rule
affirmed
complete

THEOREM PROVER

Veri Ii ca ti on
Condition
Generation
genvcs

0---------------------- 0---------------------- 0---------------------- 0---------------------- 0

Tree Creation
and Destruction
clear
theorem
try

Extension

Node
Movement Modi fication
(arc; retry) annotate
(down; up) assume
(resume; next) name

Miscellaneous
@

0---------------------- 0---------------------- 0---------------------- 0---------------------- 0

Lemma
Application

I
I
I
(apply;use)

Proposition
Internal
Tmns/ormation

I
I
I
cases
normalize

Instantiation

I
I
I
(put;let)
search;choose)

Substitution

invoke
replace

Case Analysis

I
I
I
(augment;split;
suppose)
employ

Command Synopses 27

Appendix IV
Command Synopses

This Appendix contains a synopsis of each Affirm command. For the most part,

this synopsis is identical to the description given in the appropriate chapter of the

reference manual. The descriptions are gathered here for convenience.

IV.I. Affirm Commands

@ [annotation };

abort;

adopt lypeName;

, Semicolon terminates most commands, except for sub commands in
the @ (Interlisp editor) and ~ (escape-to-Interlisp) commands. It may
also stand by itself, as a null command.

, ATCOMMAND Places the user in the Interlisp editor, editing
Current Proposition. The annotation is optional, and hopefully
documents the less-than-mnemonic Interlisp editor commands that
follow INTERLISPEDITOR, IV.3.

Returns the user to the next higher Affirm executive (if there is one),
and aborts the suspended command. The suspended command can
then be fixed, or just forgotten.

Sometimes it is necessary to prove theorems about operators that are
associated with types other than the current one. The operators of the
type will be referenceable, because the type is in TypeSet. However,
the variables of that type will not be referenceable in the current
context. Rather than enter the necessary variable declarations
manually, the adopt command provides a convenient way to copy all
the declarations of a type over to the current one. Should any name
conflicts occur, the variables being copied will be renamed by
appending dollar sign characters ($) to them.

adopt SequenceOfElemType;

annotate [proposition, } annotation;
Attaches a comment to proposition; this will appear whenever
proposition does. Annotation is arbitrary text, but cannot contain
any semicolons. This is useful for

28 Command Synopses

• documenting where and when an assumption was proven;

• noting what the user's plans are when the proof attempt returns
to this spot; and

• commenting a tricky place in a proof.

apply (nodeName, J proposition;

arc arcLabel;

This command adds proposition to Theorems, and adds it as a
hypothesis to the Current Proposition. The command records this
dependency by establishing the Uses relationship between the Current
Proposition and proposition. proposition may be assigned a name.
The expression corresponding to proposition will have its variables
renamed to avoid conflicts with variables in the Current Proposition;
the renamed form is printed on the terminal. The resultant Current
Proposition is not printed, l since no meaningful simplification will
occur until the user has performed instantiations. Typically, a put
command will follow an ~ command INSTANTIATION.

This command is used to move between cases. Somewhere above
Current Proposition is a node with a child labelled arcLabel. That
child becomes the new Current Proposition. For example, if an
induction has three cases (emp:, apr:, and apl:), the user might wish to
proceed in an unusual order, saying

arc apl:;

arc emp:;

arc apr:;

assume I nodeName, J proposition;
Marks proposition as assumed: it is as if this node were proven
(except that this special status is remembered). It may be given a
name; this is useful if a file lists assumed facts (such as integer
lemmas).

augment proposition;
Proposition is added as a hypothesis to the Current Proposition.
Separately, the user must show that proposition can be deduced from
the hypotheses already present. Any free variables in proposition are

IBut see the use command USECOMMAND.

Affirm Commands 29 .

identified with those in the Current Proposition, rather than being
renamed. Given a Current Proposition of the form

Himp C

this command spawns the two children:

• H imp proposition

• (H and proposition) imp C

These children are assigned the arc labels thesis:
respectively.

and mam:,

axiom rule [, ... , l'ule j;

cases;

choose path;

clear proof;

each rule must be an equation lhs == expo The rewrite rule lhs -t

exp is (normally) added to RuleSet. Variables appearing in exp must
appear in lhs. Affirm checks all proposed axioms to see how they
affect the unique termination of RuleSet. It may interactively simplify
the rule, reverse it, or add new rules KNUTH-BENDIX.

axioms LessLast(q apr x) == q,
LessLast(N ewSequenceOfElemType) == N ewSequenceOfE
Last(q apr x) == x;

Distributes functions over ifs in the Current Proposition.

Related to the search command, this command allows the user to pick
some sequence of instantiations tried by the search command. The
search command prints a small integer label to the left of each
instantiation it attempts. The sequence of numbers describing the
choice--path--is the parameter to the choose command. This command
is useful if search found lengthy instantiations, but was unable to
achieve a final proof.

Empties the Proof Forest and Theorems. Erases all proposition
names, annotations, and assumptions. Fortunately, this command is
undo-able.

compile type typeName [, ... , typeName j;
Writes a file containing a compiled version of the internal
representation of a data type specification (Interlisp code). All stable
types should be compiled, since this form of the type uses the least
space and runs the fastest. Any types still undergoing development

30

complete;

Command Synopses

should be saved, rather than compiled.

Attempts to prove the Current Proposition by reductio ad absurdum
(proof by contradiction). It does this by negating the conclusion of
Current Proposition, forming a rewrite rule from it, and (temporarily)
adding it to RuleSet. Each hypothesis of Current Proposition is also
turned into a rewrite rule and (temporarily) added to RuleSet. The
algorithm then tries to generate a contradiction in RuleSet, by
performing the unique termination test. If the rule

true --t false

is generated, the Current Proposition is proved by contradiction.
Otherwise, the final set of rules is used to construct a new result,
which may be somewhat simpler than the Current Proposition. This
command is sometimes used specifically to rearrange the clauses of a
proposition in an inconvenient form.

declare id [, ~ .. , id j: typeName;
Each id is declared to be a variable of type typeName. typeName
must be a member of TypeSet. Each of the declarations is added to
the local declaration set of the current type.

declare q, ql: SequenceOfElemType;
declare x: ElemType;

define rule [, ... , rule j;
each rule is an equation lhs == expo Definitions are rewrite rules,
but these rules are only applied when specifically invoked by the user
with the invoke command. Definitions are generally used to simplify
notation: they are only invoked when needed, so that their contents
do not overly complicate propositions. Variables in exp must either be
bound quantifiers or must appear in the corresponding lhs, but not
both.

discard disconnected;

discard history;

Any nodes which are disconnected (not part of the proof tree of any
theorem) are destroyed. Their expressions, annotations, names, and
proofs go away. This can save a considerable amount of space. Since
the command is undoable, space is only reclaimed when this event is
forgotten.

Purges the history window. This command can be undone.

discard interface interfaceName [, ... , interfaceName j;

Affirm Commands 31

discard lhs lhs;

· Discards the indicated operations in the current type. Each operator
must be defined in the current type. Note that any references to the
discarded operations are inconsistent. The system does not check for
this condition. It is the user's responsibility to discard or redefine any
rules or propositions referencing the newly-discarded operations.

· Lhs must be the left hand side of some axiom, rulelemma, definition, .
or schema. The rule in RuleSet with left hand side identical to lhs is
removed from RuleSet. This may destroy the unique termination of
RuleSet; no check for this condition is performed.

discard theorem nodeName [, ... , nodeName j;
· Removes the designated nodes from Theorems. It thus no longer has
a proof state, and disappears from summaries of theorems. This is
useful when an incorrect lemma has been stated. It is not permissible
to discard a lemma which is applied in the proof of some other
theorem. If one of the nodeName. applies another as a lemma, that is z
okay. Affirm sorts the list first, and removes the uses relationship
when the using theorem is deleted. These nodes continue to exist, and
retain their proofs; they form part of the disconnected nodes in the
tree. The!!y command will reverse the effects of discard theorem.

discard variable variableName [, ... , variableName j;
, Discards the indicated variables from the current type. Note that
any ~ of the variables, such as in interface declarations or rules, is
now undefined, and may be inconsistent. The system does not
presently check for this condition. However, the user will certainly
feel the effects later! It is the user's responsibility to discard or
redefine interfaces and rules referencing the newly-discarded variables.

denote expression by variableName [, ... , expression by variableName j;

down f child j;

For each expression-variableName pair, this command replaces all
occurrences of expression with variableName, and adds to the
Current Proposition the hypothesis

expression = variableName

The Current Proposition must have children; this command descends
to one of them. Child may be:

• an arc label;

• the name of a child;

32 Command Synopses

• an ordinal number (between 1 and the number of children of
Current Proposition);

• a node number (if child > #children) (This option 2S not
particularly 1"ecommended); and

• omitted: the first untried child is picked. That failing, the first
child is picked.

e InterlispCommand] Note that the customary semicolon does not terminate this
command. The Interlisp interpreter is invoked with the one
command; after the interpreter prints its result, the user is returned to
the Affirm executive.

edit typeName;
TypeName must be a member of TypeSet. typeName is pushed onto
ContextStack, thus making the local declarations of typeName
available for referencing.

employ schemaName(var);
This command permits the use of induction, using any induction
schema defined in the relevant abstract data type. SchemaName
must have been defined (using the schema command) for objects of the
same data type as var. If the right hand side of the schema definition
is of the form

cases(C1, ... , Cn)

then the resulting propositions {C i} are set up as children of the

Current Proposition. The {C.} are expressed in terms of the special
!

predicates Prop(x) and ffi(x) which are defined as though the
commands

axiom Prop(var) == Current Proposition;
define lli(var) == Current Proposition;

had been given. For example, suppose that Current Proposition,
named SubExtends, is

sub(q, ql) imp sub(q, ql apr x)

If the command

employ induce(q);

is performed in the context of

schema induce(q) == cases(Prop(emp),
all qO, xO (lli(qO) imp Prop(qO apr xO)));

the following children would result (before simplification):

Affirm Commands 33

end;

eval expression;

exec;

1.

2.

sub(emp, q1) imp sub(emp, ql apr x)

IH(qO, 2 {SubExtends 2})

and sub(qO apr xO, ql)
imp sub(qO apr xO, ql apr x)

Quite often, the simplest cases, such as (1), above, normalize to true;
the user is notified of these instances. The cursor will automatically
be moved to the first nontrivial child.

The cases of an induction are given system-generated labels; these
derive from the primary operators underneath Prop in the schema.
For example, the above sample would have labels emp: and apr:.
Induction is subject to the soundness constraint that var must be
contained in the all list, and may have no Skolem dependencies upon
any variables in the some list SKOLEMIZATION.

Causes ContextS tack to be popped, ending the current type's
specification and returning to the previous context.

Simplifies expression, and prints the result. This is useful for testing

and demonstrating abstract data types.3 For more details on its use,
see the Users Guide.

Invokes the operating system executive as a subroutine. The user can
do anything that can be done at the original executive without
destroying the files and memory associated with Affirm. To continue
with the Affirm session, the user should type POP at the operating
system executive command level.

fix [eventNumber j;
Places the user in a text editor (determined by the profile entry
TextEditor) with the text of the command issued at event
eventNumber. The default event when eventNumber is not explicitly
supplied is the previous event.

2The two-parameter reference to IH IS explained on page @PageIHTWOPARAMETERS
ll-ITWOP ARAMETERS.

3The user profile entry ShowRules SHOWRULESPROFILEENTRY IS useful for observing the
application of axioms to sample expressions.

34 Command Synopses

freeze f fileName j;
Causes the entire system state4 to be written into file fileName; The
default freeze file name when none is provided in the command is
determined by the user profile entry FreezeFileName. The size of the
file written is on the order of 300 pages. This file can then be run at a
later time by simply typing the file name at the operating system
executive level. The user will then be back in Affirm at the
executive, as if the freeze had never happened (except that a new
transcript file will be opened, if necessary). This command is quite
useful for freezing a session in place, and then continuing it later.
Compare this with the save command, which does not save the entire
system, but just relatively small components of it.

genvcs procedureName {, ... J procedureName j;

gripe subject;

Each procedureName must be a Pascal procedure or function5 unit
previously parsed via the readp command. Verification conditions are
generated for each procedureName.

Creates a message to be sent via the ARPANET to Affirm

maintenance personnel. The system will ask the user to type the body
of the message, which is terminated by control-Z. After the message
is completed, the user has the options of sending the message, or
aborting the gripe. The transcript command] can also be sent along as
a separate message if it is pertinent to the documentation of the
problem or suggestion.

infix operatorName [, ... J operatorName j;
. Each operatorName is declared to be an infix operator.

interface expression (, ... J expression j: typeName;
Just as declare establishes the types of variables, interface provides the
necessary characteristics of operators. All operators should be
declared using the interface command before they are referenced in
other Affirm commands. Each expression will be an expression of
the form operatorName(varl' ... , var m)' where each of the vari is a

variable declared in the current type. The interface declaration states
that operatorName is a function of m arguments, with argument types
corresponding to those of the var.. The value returned by z

4The freeze command does not save the state of any open files.

5 As of Affirm version 1.21 the verification condition generator did not process functions correctly.

A//inn Commands 35

operatorName will be of type typeName. In the case of an operator
taking no arguments, the parentheses may be omitted. infix notation,
such as q apr x, can also be used.

interface q apr x, apl(q, x): SequenceOfElemType;

invoke rangedOp [, ... , rangedOp j;
Each of the specified operators should occur in the Current
Proposition and have a definition. The definition is expanded. If an
operator appears in its own definition, the new occurrence will not be
expanded; thus the process will not loop. An ordinal range may be.
specified; if it is not, the first occurrence of each operator will be
expanded. Some examples:

invoke ill; invoke the first ill
invoke ill 121; second ill
invoke ill lalll; all IH's
invoke ill 1-21; next to last
invoke ill 12:41; second, third and fourth
invoke F(i,j)12:51, GI3,51;

second through fifth occurrences of F(i,j)
and the third and fifth occurrences of G

This command can be automatically invoked by the AutolnvokeIH
profile entry.

let var=exp [, ... , var=exp j;
This command has the same effect as the put command, except that
the new result is the disjunction of the unchanged and the
instantiated versions of Current Proposition. Thus, all variables in the
some list remain subject to further instantiation with the put or let
commands. This is useful if the user is not quite sure about an
instantiation, or wishes to perform multiple instantiations. It does,
however, double the size of the expression. If, for example, the
Current Proposition was

all x some y(x): P(x, y)

The command

put y=x;

would give (before simplification)

all x: P(x, x)

while the command

let y=x;
would yield (before simplification)

all x some y(x): P(x, y) or P(x, x)

36

lisp;

Command Synopses

. The Interlisp interpreter is invoked. The user can next perform any
Interlisp command. The OK command (without a semicolon after it)
returns the user to the Affirm executive.

load (fileName j;
Causes AfJirm to load file fileName. The file must have been
previously written using the save command. A data type specification
is the onlyAJfirm object that can be saved and then loaded. Note
that the file's contents are not normal text, and cannot be directly
modified by the user.

name nodeName, (proposition j;
Christens the proposition; the system will henceforth refer to it by the
name nodeName. If this name is already in use, the system displays
its old value.

needs type(sj typeName [, ... , typeName j;

next;

Should be used immediately after a ~ command, before any other
part of the type specification. This command ensures that each
typeName are either loaded or read, before any more of the
specification of the current type is processed. If the type is already
defined, no further processing occurs. If it is not yet defined, then the
most recent version of its specification is found. The algorithm which
finds the files containing the types to be defined searches a set of
directories for the most recent version of the specification of each type,
whether that version be in original source form or in the internal
saved form, or even in compiled form. For each type requiring such a
directory search, AJfirm first identifies the possible set of files
containing versions of the type specification; it then ranks the versions
(by using the file write date to determine which file was most recently
written). AJfirm will normally then proceed to load or read that file,
as is appropriate, unless the profile entry TypeNeeds is set to Ask.
The user will be asked to point out the correct type specification to be
input. The set of directories used as of Affirm version 1.21 is
{Connected, Login, PVLibrary, Affirm}.

Moves to the next task, according to a depth-first plan, uSIllg the
following hierarchy:

1. If the Current Theorem has leaves, move to the next one, III a
left-to-right ordering of the leaves of the proof tree.

2. If the Current Theorem uses an unproven lemma, try it.

Affirm Commands 37

norma.lize ;

3. If the Current Theorem is used as a lemma by an unproven
theorem, return to the theorem. This process extends to any
unproven ancestor.

4. If none of the above hold, then stay put and perform the
command

print unproven;

Within this hierarchy, the most-recently-attempted theorem IS

preferred. Where possible, resume.

Causes the Current Proposition to be (again) normalized and printed.
Since propositions are normalized upon becoming the Current
Proposition, this will normally have no effect, but may be necessary

. due to the occasional incompleteness of the simplification process.

note arbi traryTextExceptSemicolon;

ok;

print ?;

The text is placed in the transcript. No other processing is performed.

Returns the user to the next higher Affirm executive (if there is one),
and resumes processing of the suspended command. If this command
still has errors in it, the user may well be placed into a lower executive
once again. The abort command is useful here, too.

print 1;
displays a list of all the keywords that can follow the command word
print. Equivalent to the command

print known PrintObjects;

print assumptions;
Lists all the assumed propositions, and the theorems that depend on
them.

print BadEquations;
Lists the rules that have been suppressed during the various Knuth­
Bendix KNUTH-BENDIX convergence tests, if any.

print both [list I nolist J whatNodes;
Like print proof but lists all the propositions III the proof tree.
Verbose.

38 Command Synopses

print file fileName;

print history;

print IH;

Copies the contents of file fileName to the terminal, and also to the
transcript.

Prints the user-issued commands still resident in the history window.

Prints the definition of each of the inductive hypotheses IH In the
Current Proposition (if any).

print knownobJectName;
Enumerates the currently defined set of names in the object class
obJectName. The object names as of Affirm version 1.21 are

. MfirmObjects, Arcs, Axioms, Commands, Definitions, Directories,
Files, FileTypes,Interfaces, Lemmas, Nodes, PrintObjects,
ProfileEntries, Schemas, TypeParts, Types, and Variables.

print [parts typeParts j [types typeName [, ... , typeName j j lhs lhs [, ... , lhs j;

print next;

This command provides the rudimentary capability of listing those
rules that match some pattern. TypeParts is a list selected from the
set {axiom, lemma, defn, schema}; the list may be empty, in which
case the default value axiom is used. TypeNames is a list of type
names; the list may be empty, in which case the keyword need not be
typed. The default value is the list of all currently defined types.
Pattern is an expression, restricted to one of two simple forms:
operator, or operatorl(operator2). Each rule in the requested set of
types that is a member of one of the requested parts is pattern­
matched against the pattern; if it succeeds, the rule is listed. If it fails,
the rule is ignored. Only the left-hand side of a rule is used in the
pattern-matching process. If the pattern is a simple operator, a match
succeeds if the main operator of the left-hand side is this operator. If
the pattern is of the form operatorl(operator2), then operator1 is the
main operator, and operator2 is any internal operator. If the left­
hand side of a rule has operatorl as its main operator, and contains a
reference to operator2 as an internal operator, the match succeeds.
For example, the command

print Ihs join(apr);

will list all the axioms whose left-hand-side main operator is Join, and
which also reference the operator apr as an internal operator. This
example is useful for the type SequenceOfX, for quite a few types X.

This command displays the proposition that the next command would

AJJir-m Commands 39

print original;

make the Current Proposition.

Prints the unnormalized form of the Current Proposition (not
particularly useful).

print proof [list I nolist j whatNodes;
Displays the proof tree. The default for whatNodes is T.List causes
any lemmas that are used in the proof of Current Theorem to be
listed. Note that whatNodes does not have to be a theorem, so the
user can print a partial proof tree.

print prop [list I nolist j whatNodes;
. Lists the propositions and their associated names. For example,

print result;

print prop T;
prints Current Theorem.

Prints the Current Proposition THEOREMPROVERSTRUCTURES
in its normalized form.

print status [list I nolist j [whatNodes j;
Tells whether the specified theorems are tried, untried, awaiting
lemmas, proved, or assumed. The default when whatNodes is omitted
is theorems.

print type typeName;

print unproven; .

TypeName must be a member of TypeSet. The declarations, needs,
interfaces, infix operators, axioms, rulelemmas, definitions, and
schemas of type typeName are printed on the terminal. Should only a
subset of these be desired, typeName may be followed with a list of
qualifiers.

print type ElemType;
print type SequenceOfElemType decl schema;

Prints the status of all unproven theorems.

print uses [whatNodes j;

print variables;

Which lemmas are used where? The default for whatNodes IS

theorems.

40 Command Synopses

Lists just the variables in the Current Proposition; this is useful if the
expression is too big to be conveniently displayed as a whole.

profile;
The profile enquiry dialogue is initiated with the user. The question
mark command 1 is quite useful here in order to determine what the
options are at each step.

profile profileEntryName [= value j [, ... , profileEntryName [= value j j;
Each referenced profile entry is either displayed with its current value
or modified, as is appropriate.

put var = exp [, ... , var = exp j;

quit;

Each var must be a variable in the some list of the Current
Proposition. Each exp is an expression upon which the corresponding
var can legally depend SKOLEMIZATION. The exp is substituted for
the corresponding var.

Stops Affirm, returning to the operating system executive. The user
can return to Affirm by typing CONTINUE at the operating system
executive command level.

read [fileName j;
Causes Affirm to read fileName. The file must contain Affirm
commands. The last command in the file must be the stop command.
FileName is a text file that the user presumably created using some
text editor.

readp [fileName j;
Causes Affirm to read fileName. The file must contain Pascal
programs. FileName is assumed to be a text file.

redo [eventNumber j;
Re-executes the command at event eventNumber.

replace [expression [, ... , expression j j;
. If no argument is given, then every hypothesis in Current Proposition

of the form L = R is used to replace all other occurrences of L with
R. Each expression should occur in an equality hypothesis (of the
form expression = R or R = expression). All other occurrences of
expression are replaced with R. For example, if Current Proposition
IS

(fee(j, k) and j = m and n = k) imp fie(m, n)

Affirm Commands 41

resume;

retry;

review;

replace; will yield

(fee(m, k) and j = m and n = k) imp fie(m, k)
while the command replace !!h !!i will yield

(fee(j, k) and j = m and n = k) imp fie(j, k)

The Current Theorem must be tried. The Current Proposition is
restored to the value it had when the user was last proving this
theorem, thus resuming a partially-completed proof. The resume
command is usually preceded by a !.IT. command.

This command is equivalent to the (otherwise unspeakable) command

try Current Theorem;

In other words, this command retries the current theorem.

Places the user in a text editor determined by the profile entry
TextEditor, with the transcript file. The user can then use editor
commands to review the events in the file. Each command begins
with "V:".

rulelemma rule [, ... , rule j;
The rulelemma command is a synonym for the axiom command.

save type typeName [, ... , typeName j;
Causes Affirm to write files containing the specifications of the
indicated types. The file name of each file is the upper-case version of
the corresponding type name. The save command can be used in
conjunction with the load command to remember data type
specifications across Affirm sessions. The file written by the save
command for each type is the internal form of the type specification
(Interlisp code). Thus little processing is required to load the type
back into Affirm, compared to the processing required when first
creating the specification. The file name of the file is obtained by
upper-casing the type name; thus type names may not differ only in
casing, due to the possible file name conflict.

schema rule [, ... , rule j;
Each rule is an equation lhs == expo The schema command
introduces induction rules. The soundness of schemas is not
determined by Affirm; the user must establish this property. It is in
schema declarations that the restriction imposed on equations is most

42

search;

Command Synopses

often felt. The following declaration illustrates a very common error:

schema Induction(q) ==
cases(Prop(N ewSequenceOfElemType),

all q, x(IH(q) imp Prop(q apr x))); (bad!)

Here the parameter is the same identifier as the quantifier in the
expression. A correct schema declaration would be:

schema Induction(q) ==

cases(Prop(N ewSequenceOfElemType),
all qO, x(IH(qO) imp Prop(qO apr x)));

Uses the method of chaining and naJTowing
CHAININGANDNARROWING to attempt to automatically find the
instantiations sufficient to reduce Current Proposition to true. The
command displays the sets of instantiations it tries. These may be
referenced by the user in the choose command.

set variable to expression;

stop;

storage degree;

Yariable no longer represents itself; it is assigned a value which will
replace it whenever an expression is normalized. This effect is
permanent until variable is explicitly given another value. This may
be useful in conjunction with the eval command. Other than that, it
is not recommended.

Should be used only in a file of Affirm commands, as the last
command. It avoids the usual end-of-file problems.

Degree is one of {normal, severe, tight}.

sufficient? (typeName);
TypeName must be a member of TypeSet. A sufficient-completeness
check is performed and the results displayed on the terminal.

suppose (proposition);
This command splits the Current Proposition into two children:

• proposition imp Current Proposition

• proposition or Current Proposition

These children are labelled yes: and no:. If proposition is not supplied,
the splitting predicate is automatically generated by Affirm using the

- ------------------~

Affirm Oommands 43

split;

internal If-Then-Else form of Ourrent Proposition. Basically, the
predicate is chosen from the first significant branch. point. For
example, if the Ourrent Proposition is of the form

((A imp B) and H) imp 0
. the suppose command will yield the two children

A and Band H imp 0 and (-..... ,A) and H imp 0

the children generated by the suppose command when no explicit
proposition is supplied are labelled first:, second:, etc. It usually
produces only two. Its detailed description follows, but it is usually
best to experiment.
If Ourrent Proposition

is of the form:

if B then 01 else 02

H imp (01 and ... and Ok)

The children are:

{B imp 01, B or 02}

{H imp 0 1,

(H and 0 1) imp O2,

(H and 0 1 and O2) imp 0 3,

· .. ,
(H and 0 1 and .. , and 0k_1) imp 0

(HI and (H2 imp 01) and H3) imp 02
(HI and (rvH2) and H3) imp 02}

, SUPPOSEOOMMAND A synonym for the suppose command with no
parameter.6

swap rangedExp [, ... , rangedExp j;
This command reverses equality hypotheses in the Ourrent
Proposition. Thus, it is often useful in conjunction with the replace
command REPLAOEOOMMAND. Each rangedExp specifies one or
more equalities to be reversed. Such a specification may give one of
the arguments to the equality, or an ordinal range, or both. For
example:

6The split command is an obsolete command; its function has been merged into the suppose command.

44

swap a;

swap 121, 1-21;
swap ai-II;

Command Synopses

Swap all equations whose left hand side
(or right hand side) is the expression a.
Swap the second equation, and the next-to-Iast
Swap the last equation whose left-hand
or right-hand side is the expression a.

thaw [fileName j;
This command is the opposite of the freeze command. It takes one
parameter, the name of a file containing a session frozen by a freeze
command. Most users will not ever have a use for this command,
since the frozen session can be started in TOPS-!JO or Tene:c simply by
typing the file name at the operating system executive level.

theorem [nodeName) j proposition;
This command simply enters the proposition into Theorems. It does
not affect Current Proposition or Current Theorem. The command
creates a root in the Proof Forest that may later be attempted. The
user may associate a name with the theorem. This command is
especially useful for command files containing lists of theorems to be
attempted.

transcript [fileName j;
Begins a (new) transcript file fileName. If there is no transcript file
at the time the user issues this command, then the file name of the
new transcript, if not provided in the command, is governed by the
profile entry TranscriptFileName. If there is a transcript file at the
time this command is issued, then the new file name, if not provided
in the command, is identical to the old file name, with a new version
number. The transcript file when the system first begins is written
into the user's login directory, rather than the connected directory.
Later transcript commands default to the connected directory.

transcript toggle;
Toggle is one of {off, on}. This command turns transcript processing
either off or on. The file name is determined from the profile entry
TranscriptFileName.

try [nodeName) j proposition;
Makes proposition be the Current Proposition. If proposition is in
Theorems, it becomes the Current Theorem; otherwise, this
designation is applied to its parent theorem. If proposition is new, it
is added to Theorems. proposition is normalized and printed. This
command is used for

• random access in a proof tree; and

Affirm Commands 45

type typeName;

• starting or resuming a proof (but see the description of the
resume command RESUMECOMMAND).

Specifies typeName as the name of an abstract type, whose
specification will be given by subsequent commands. The name
typeName is added to the TypeSet and is pushed onto· ContextStack.
If typeName is already a member of the TypeSet, its existing
specification will be discarded. Each neW type is automatically
provided with one variable declaration (the name of which is
controlled by the profile entry DummyVarName), a declaration of an
equality operation, and an axiom explicitly stating that the equality
operation is reflexive. The remaining properties of an equality
operation are assumed, and should be validated by the creator of the
type.

undo [eventNumber j;

up [integer j;

Undoes the effects of execution of the command at event
eventNumber, if possible.

Moves the cursor up to a predecessor in the tree. If the Current
Proposition is already a theorem, this command has no effect. The
number of ascensions defaults to 1.

use [nodeName, j proposition;
This command is exactly like the ~ command, but also prints the
new Current Proposition.

46 Command Synopses

IV.2. Interlisp Commands: Useful Interpreter Commands

DA Prints the time of day. This command is also an operating system executive
command.

EXEC Invokes the operating system executive as a subroutine. The user should type
POP to return to Interlisp.

IV.3. Interlisp Commands: Useful Editor Commands

These commands can be used only in the Interlisp editor as sub commands of the @

command INTERLISPEDITOR, ATCOMMAND.

!O Modifies the focus of attention to be the parent of the current expression.

Resets the focus of attention to the entire initial expression.

A 5 2 Modifies the focus of attention to be the sequence of hypotheses of Current
Proposition.

hyp Same as A 5 2.

con Same as A 5 3.

A 5 3 Modifies the focus of attention to the conclusions of Current Proposition.

n n is a positive integer. This command moves the focus of attention to the nth

element of the current expression. Caution: the command (n) deletes the nth

element.

BK Modifies the current expression to be the previous sibling if possible.

(delete n)
The nth element of the current expression is deleted.

(delete n 1 n2 n3)

The children at the listed positions are deleted.
instantaneous, not one-at-a-time.

eval The current expression is evaluated.

(extract n)

These indices are

Interlisp Commands: Useful Editor Commands 47

The current expression is replaced with its nth child. For example, if the
current expression is (AND el e2 e3) then

The command:

(delete 2)
(delete 2 3)
(extract 2)

It is not sound to delete operators.

F pattern

(AND e2 e3)
(AND e3)

el

will result in:

The F command attempts to find pattern within the current expression. If this
search is successful then the focus of attention becomes the expression that
matches pattern. Pattern can be any atom, and can contain escapes (which the
operating system indicates as $). Each escape can match zero or more
contiguous characters in an atom, e.g., VER$ matches VERYLONGATOM.
The command will print a message if it cannot find the pattern.

infix The current expression is printed in infix form.

(invoke definedName)
The first instance of the definition with name definedName III the current
expression is expanded.

NX This command moves the focus of attention to the next sibling. For example, if
the expression being edited is

(PLUS (FOO 2) (FUM 3))

and the current expression is

(FOO 2)

then the NX command would focus upon

(FUM 3)

This command is very useful after the user uses the n command and then
discovers that he or she mis-counted.

ok The user is returned to the Affirm executive, and the modified expreSSIOn
becomes Current Proposition.

Pa This command prints the current expression, showing the structure, (but not
the contents) of contained sub expressions, a few levels deep.

PPa This command pretty-prints the current expression.

48 Command Synopses

stop The edit is aborted; no changes are made to Current Proposition, and the user
is returned to the Affirm executive.

49

References

50 Index

Index

Index

Affirm grammar 13

Beginner's subset of commands 21

Command structure diagrams 25
Command Synopses 27

51

52 Table of Contents

	Table of Contents
	1 Introduction
	2 Type ElemType
	3 Type SequenceOfElemType
	Appendices
	I The Syntax of User Commands
	II A Beginner's Subset of Affirm Commands
	III Command Structure Diagrams
	IV Comman Synopses

	References
	Index

