
AFFIRM

AFFIRM Reference Manual
David H. Thompsoriand Roddy W. Eric.kson,.Editors··

./ -~\
~ ;' ,----I

AFFIRM

Reference Manual

David H. Thompson and Roddy W. Erickson, Editors

Version 2.0· February 19,1981

Corresponds to AFFIRM Version 1.21

USC Information Sciences Institute

4676 Admiralty Way

Marina Del Rey, California 90291

(213) 822·1511 • ARPANET: AFFIRM@ISIF

Copyright @) 1981, USCllnformation Sciences Institute

The AFFIRM Reference Library

AFFIRM is an experimental interactive system for the specification and verification of abstract data
types and programs. It was developed by the Program Verification Project at the USC Information
Sciences Institute (lSI) for the Defense Advanced Research Projects Agency. The Reference Library
is composed of five documents:

Reference Manual
A detailed discussion of the major concepts behind AFFIRM presented in terms of the abstract
machines forming the system's structure as seen by the user.

Users Guide
A question-and-answer dialogue detailing the whys and wherefores of specifying and proving
using AFFIRM.

Type Library
A listing of several abstract data types developed and used by the lSI Program Verification
Project. The data type specifications are maintained in machine-readable form as an integral
part of the system.

Annotated Transcripts
A series of annotated transcripts displaying AFFIRM in action, to be used as a sort of workbook
along with the Users Guide and Reference Manual.

Collected Papers
A collection of articles authored by members of the lSI Program Verification Project (past and
present), as well as an annotated bibliography of recent papers relevant to our work.

Program Verification Project Members

The USC/Information Sciences Institute Program Verification Project is headed by Susan L. Gerhart,
with members Roddy W. Erickson, Stanley Lee, Lisa Moses, and David H. Thompson. Past proje('(
members include Raymond L. Bates, Ralph L. London, David R. Musser, David G. Taylor, and David S.
Wile.

Cover designs by Nelson Lucas.

Special dedication to Affirmed, the only race horse named after a verification system.

This research was supported by the Defense Advanced Research Projects Agency and the Rome Air '\
Defense Command. Views and conclusions are the authors'.

.. ~

Affirm Reference Manual Abstract

Abstract

Affirm is an experimental interactive system for the development of specifications and the
verification of abstract data types and aJgorithms. This document discusses the major concepts
behind Affirm. and explains the purpose and use of each of the abstract machines comprising the
structure of the system as seen by the user. . .

Acknowledgements

This manual was ~tten by D. A. Baker" R. L. Bates, R. W. Erickson. S. L. Gerhart,

M. L. Horowitz2• S. Lee, R. L. London. L. Moses. D. R. Musse~. D. G. Taylor, D. H. Thompson. and

D. S. Wile.

In addition, J. V. Guttag and D. S. Lankford heavily influenced the design and development of

Affirm. Numerous colleagues provided valuable feedback from system demonstrations.

AffirmED Sent to Stud

[NEW YORK/October 22, 1979] Harbor View Farm's Affirmed, the leading money winner
of all time in thoroughbred horse racing, has been retired effective immediately, trainer Laz
Barrera announced today. The 4-year-old colt will be sent to Spendthrift Farm in
Lexington. Ky .• for stud du!y .

Affirmed, who won the 1978 Triple Crown. recorded 22' victories--19 stakes--five
seconds and one third in 29 career starts.4

Clarke's Law of Research: Every revolutionary idea ... evokes three stages of reaction
in the listener:

- "It's completely impossible."

- "It's possible, but highly impractical."

- "I said it all along."

'Computer Science Department. University of Southern California, Los Angeles. CA 90007.

~esent address: Department of Computer Science. Carnegie-Mellon University. Pittsburgh. PA 15213.

3present address: Computer Science Branch. General Electric Research and Development Center. Schenectady, NY
12345.

4From the Los Angeles Times, October 22. 1979.

Suggestions about and criticisms of content. style. and organization of this manual should be addressed to one of the
editors. Information Sciences Institute, 4676 Admiralty Way, Marina Del Rey, California, USA 90291, ARPANET address
AHirm@ISIF.(213) 822-1511.

Table of Contents

Table of Contents
1. Introduction

1.1. Proving: Human vs. Machine
1.2. Organization of this Manual
1.3. Character Set Conventions Used in this Manual

1.3.1. Prose
1.3.2. Examples

2. System Structure: An Overview

2.1. The Executive
2.2. The Specification Machine
2.3. The Rewrite Rule Machine
2.4. The Logic Ma,hine
2.5. The Theorem Prover
2.6. The VC Generation Machine
2.7~ The Formula 1/0 Machine

3. The Executive

3.1. Basic Command Processing
3.2. Affirm-User Interactions

3.2.1. Edit Characters During Input
3.2.2. Basic System Actions
3.2.3. Responding to System Ouestions

3.3. Spelling Correction
3:4. The Event History and the Undo, Redo, and Fix Commands
3.5. Error Processing

3.5.1. Internal Code Errors
3.5.2, User Interrupts

3.5.2.1. control·E: Command Abort
3.5.2.2. control·o: Panic Abort
3.5.2.3. control·C, control·F, and control-T: Operating System Functions

3.5.3. Errors in User·Supplied Input
3.5.4. The Lower Executive

3.6. The Help System
3.7. The News Facility
3.8. The Gripe Facility
3.9. The Timing System
3.10. Miscellaneous Commands

3.10.1. The !!Qli Command
3.10.2. The transcript Command
3.10.3. When the screen gets full: the review command
3.10.4. The thaw command
3.10.5. The print Command
3.10.6. Operating System Interfacing Commands

3.11. The Profile Me,chanism
3.11.1. Direct Manipulation

1

1
2
2
2
2

3

3
4
4
4
4
4
4

5

5
5
5
6
6
6
8

10 (
10
11
11
11
12
12
13
13
14
14
15
15
15
15
15
16
16
18
18
19

:

- -----
---~~ --- ---------- ------ ------ -----~-~--

/~\

U

J

ii

3.11.2. Boolean-Valued Entries
3.12. The Auto Mechanism
3.13. Currently Defined Profile Entries

4. The Specification Machine

4.1. Introduction
4.2.l:ypes

4.2.1. Local Declarations
4.2.2. Interfaces
4.2.3. Rules

4.3. Scope Model
4.4. Sufficient Completeness
4.5. Type Management

. 4.5.1. Displaying, Saving, and Restoring Types
4.5.2. The Type Library

5. The Rewrite Rule Machine

5.1. Introduction
5.2. The Kn.uth-Bendix Convergence Test
5.3. User Interaction

5.3.1. Common Responses
5.3.2. Other Responses (Not Recommended)

5.4. Rewrite Rule Command

6. The Logic Machine

·6.1. Introduction
6.2. Propositions

6.2.1. If-Then-Else
6.2.2. Skolemization and Quantification

6.3. Simplification and Normalization
6.3.1. Simplification Rules for If-Then-Else
6.3.2. Normalization
6.3.3. Case Distribution

6.4. Evaluation
6.5. Instantiation and Unification
6.6. Chaining and Narrowing
6.7. Integer Simplification
6.B. Output

6.8.1. Translation of Internal Form to External Form
6.8.2. Printing Variant Forms of Propositions

7. The Theorem Prover Machine

7.1. Introduction
7.2. Key Data Structures in the Theorem Prover
7.3. Theorem Creation

7.3.1. A Note on Syntax
7.4. Proof by Several Subgoals

7.4.1. Lemma Application

Table of Contents

19
20
21

26

26
26
27
28
29
31
31
34
34
35

36

36
37
38
38
38
39

40

40
40
40
40
41
41
42
42
43
43
44
45
47
47
48

49

49
49
51
51
51
51

Table of Contents

7.4.1.1. apply [nodeName,] proposition;
7.4.1.2. use [nodeName,] proposition;

7.4.2. Case Analysis
7.4.2.1. augment proposition;
7.4.2.2. suppose'proposition;
7.4.2.3. employ schema(var);

7.5. Proposition Transformation
7.5.1. Instantiation
7.5.2. Other Transformation Commands

7.5.2.1. complete;
7.5.2.2. replace [expression1 [, ••• , expressionn]];

7.5.2.3. invoke rangedOP1 [, '"];
7.5.2.4. swap rangedExp 1 [, .••];

7.5.2.5:denote expression by variable;
7.6. Cursor Movement

7.6.1. Absolute Movement
7.6.1.1. try [nodeName,] proposition;
7.6.1.2. resume;
7.p.1.3. retry;
7.6.1.4. next ;

7.6.2. Relative Movement
, 7.6.2.1. up [integer];

7.6.2.2. down [Child];
7.6.2.3. arc arcLabeJ;

7;7. Printing
7.7.1. print status IwhatNodes];
7.7.2. print uses [whatNodes];
7.7.3. print assumptions;
7.7.4. print proof [list I nolist] [theorems I whatNodes];
7.7.5. print both [list I nolist] whatNodes;
7.7.6. print prop whatNodes;
7.7.7. print known nodes;
7.7.8. print next;
7.7.9. print status unproven;
7.7.10. Other forms of print

7.8. Node Sharing; Old Proof Attempts
7.9. Node Modification

7.9.1. assume [nodeName,] proposition;
7.9.2. name nodeName [, proposition];
7.9.3. annotate [nodeName,] Annotation;

7.10. Proof Tree Maintenance
7.10.1. clear proof;
7.10.2. discard theorem nodeName 1 [, ... , nodeName n];
7.10.3. discard disconnected;

iii

51
52
52
52
52
53
56
56
56
56
56
57
58
58
58
59
59
59
59
59
59
60
60
60
60
61
61
61
61
61
61
61
62
62
62
62
63
63
63
63
63
63
64
64

()

--- -----~-------------

iv

8. The VC Generation Machine

8.1. The Programming Language
8.2. Reading Programs: the ~ command
8.3. Generating Verification Conditions: the genvcs command
8.4. Verification Condition Generation: Overview and Elementary Statements

8.4.1. Procedures
8.4.2. Functions

8.5. A Formal Definition of Verification Condition Generation

9. The Formula 10 Machine

9.1. Introduction
9.2. The Transcript File and the transcript command

. 9.3. Proposition Usting
9.4. Type Specification Listing
9.5. The needs Command: A Primitive Type Database Facility
9.6. General File 10

Appendix I. The Syntax of User Commands

Appendix II. The Syntax of Extended Pascal

Appendix III. Affirm's Interactions with Interlisp

111.1. Obtaining Access to Interlisp
111.2. The Interlisp Editor
111.3. Subexpression Specification: The .@l Command
111.4. Errors and Breaks
lil.5. control· T: Finding Out What's Going On
1IJ.6. Control Character Definitions
111.7. Summary of Useful Control Characters

Appendix IV. Examples of Generated Verification Conditions

IV.1. The Assert Statement
IV.2. The Assume Statement
IV.3. The Assignment Statement
IV.4. The Case Statement
IV.5. The For Statement (Inductive Assertions)
IV.6. The For Statement (Subgoal Assertions)
IV.7. The Goto Statement
IV.8. The If Statement
IV.9. The Null Statement
IV.10. The Procedure Call Statement
IV.11. The Prove Statement
IV.12. The While Statement (Inductive Assertions)
IV.13. The While Statement (Subgoal Assertions)

Appendix V. Restrictions, Bugs, and "Curious Features"

Appendix VI. Overviews of the Operating System Executives

V1.1. Tops-20 Executive Summary

Table of Contents

65

65
66
67
68
68
69
69

73

73
73
74
74
74
75

77

84

89

89
89
90
92
92
93
94

96

96
96
96
96
97
98
99

100
100
100
101
101
102

104

105

105

Table of Contents

V1.2. Tenex Executive Summary

Appendix VII. Glossary of Terms

Appendix VIII. A Beginner's Subset of Affirm Commands

Appendix IX. Command Structure Diagrams

Appendix X. Command Synopses

x'1. Affirm Commands
X.2. Interlisp Commands: Useful Interpreter Commands
X.3. Interlisp Commands: Useful Editor Commands

Bibliography

index

v

106

108

110

114

116

116
129
129

132

134

(

\
)

Introduction 1

1. Int roduction .
Affirm is an interactive system for the specification and verification of abstract data types and

programs. It accepts algebraic specifications of data abstractions [Guttag 75, Guttag 78a] and

programs written in a variant of Pascal [Je~sen 75] extended with several features from Euclid

[Lampson 77, London 78]. The system contains a verification condition generator which supports

. iie standard inductive assertion method [Floyd 67] as well as the subgoal assertion method [Morris

l7]. Affirm also contains a natural deduction theorem prover for interactive proof of verification

conditions and properties of data abstractions. The system provides the rudimentary capabilities for

organizing large specifications and collections of axiomatic and derived properties in an online data

base for retrieval duftng subsequent program or data abstraction verification.

Affirm is implemented in Interlisp [Teitel man 78] and runs under the Tenex and Tops-20

operating systems. It is the successor to (and combines features of) two previous systems, the Xivus

System [Good 75] and Dtvs [Musser 77, Guttag 78b], the Data Type Verification System.

Affirm's theorem prover is based on the use of rewrite ~ [Musser 77, Musser 80]. Given a

statement to be proved, the rules "reduce" or "simplify" the expression as far as possible by

replacing instances of left hand sides of axioms of data types by the corresponding right hand sides.

This process requires that the axioms of each data type have an appropriate form in order to avoid

loops in rewriting. They must producethe same results independent of order of application, and must

. cover enough cases of reduction. Various methods, both informal and implemented, are used to

check and improve the rewriting behavior of a given. set of axioms.

1.1. Proving: Human vs. Machine
A mechanical proof looks very much like any mathematical proof. The user must state the

theorem, find and state lemmas, indicate how and when these lemmas enter the proof, establish

appropriate subgoals, reduce the complexity of intermediate steps by throwing away irrelevant

information, etc. The user may also state induction schemas, for example structural induction, by

which the system sets up the steps of an induction proof. Recording proof steps, undoing disastrous

steps, and redoing previous proof steps are all performed by the system. Functions may be

expressed recursively and then the definitions invoked explicitly during a proof. In short, the user

must find the right set of axioms, the theorems to be proved, and the lemma structure of a proof. A

great amount of planning must go into such a proof, since the system makes no effort to find proofs

for the user beyond applying the rules of the axioms (with the exception of algorithms for finding

equality chains and instantiations of lemmas).

The earlier view of a mechanical program verification system was more heavily oriented toward

programs and verification condition generation. In contrast, Affirm treats the verification condition

generator as a more subordinate component because there are numerous properties besides

verification conditions to prove. The system is evolving further to support organized bodies of

2 Introduction

knowledge about types, as well as a whole calculus of programs.

1.2. Organization of this Manual
Chapter 2 discusses the procedure for obtaining access to Affirm, describes the system

structure of Affirm as an interacting set of abstract machines, and provides abrief overview of each

abstract machine. Each of the remaining chapters deals with the details of one of the abstract

machines.

Appendix I contains a description of the syn~ of user commands. Appendix II contains the

grammar of the programming language currently processed by Affirm: Pascal with extensions.

Appendix III details some of Affirm's dependencies on Interlisp. Appendix IV contains examples of

" the verification conditions generated for most statement constructs in the accepted language.

Appendix V contains a compendium of restrictions, outright bugs, and "curious features"

(pronounced with a Transylvanian accent). Appendix VI contains brief summaries of some of the

available commands in the operating system executives under which Affirm runs (Tenex and Tops-

20). Appendix VII contains a glossary of terms. Appendix VIII contains a list of commands most

useful for users new to·the system. Appendix IX categorizes the commands according to function,

within each abstract machine. And finally, Appendix X contains the synopses of Affirm commands.

" "1".3'. Character Set Conventions Used in this Manual

1.3.1. Prose
Both underlining and italics are used for emphasis. Underlining is also used to distinguish

"Affirm command names (such as the .@!.iQm command) in running prose. Bold face is used to

demarcate control characters.

1.3.2. Examples
Examples are offset from the running text. Italics are used to display nonterminal symbols.

Both the normal font and a typewriter-l ike font are used to display language symbols and

keyw()rds. Square brackets D denote optionality of the enclosed items, and el6pses ... signify a

possibly empty list. As an example, the syntax of the Mi.Qm command is
I

axiom[s] equation , [, ... , equationn];

(j

,..-~

\)

o
System Structure: An Overview 3

2. System Structure: An Overview
The Affirm system can be viewed as a collection of abstract machines interacting with each

other in various ways. Figure 2-1 displays the overall structure of Affirm. Each of the following

sections briefly describes the workings of a particular abstract machine.

It should be emphasized that most Affirm commands affect more than one abstract machine,

even though i:;\;i;,. n".ain function places them in a particular machine. For example, the mtiQ.m

command is a specification machine transformation, and is described in Chapter 4. But the same

axiom command also has some effects on the Rewrite Rule machine, as is described in Chapter 5.

Executive

Specification VC Generation

Logic Theorem Prover

Rewrite Rule

Formula 10

Figu re 2·1: AFFIRM system structure

2.1. The Executive
Described in Chapter 3, the executive binds the various abstract machines into one huge

system. It performs the basic command recognition and parameter input processes, and contains

several small machines that provide services to the rest of Affirm, as well as to the user. These small

machines are the spelling corrector, the user profile mechanism, the help system, the monitor and

timing system, the gripe faCility, and the news facility. Each of these small machines is described in

the chapter discussing the executive.

The executive processes errors, whether they arise from internal code errors, user interrupts, or

user·supplied input. The executive also handles communication with the underlying operating

.. \ systems and with various text editors.

\J

4 System Structure: An Overview

2.2. The Specification Machine
Described in Chapter 4, this machine builds the abstract data type specifications and performs

type checking on all input to the system. Commands are provided for creating,. modifying, destroying,

re-creating, saving, reading, and printing type specifications. Most of these capabilities are also

provided for manipulating each of the objects comprising the structure within types.
•

2.3. The Rewrite Rule Machine
Described. in Chapter 5, this machine rewrites expressions based on the set of currently defined

rewrite rules. This powerful facility is used by many parts of the system for expression manipulation.

2.4. The Logic Machine
Described in Chapter 6, this machine provides the basic underlying propositional calculus

operations, as well as skolemization, normalization, unification, instantiation, and case analysis.

2.5. The Theorem Prover
Described in Chapter 7, this machine maintains the proof structure, which is a forest (really a

directed acyclic graph) of propositions. Many operations are provided for moving about within the

tre~ associated with each theorem., There are also quite a few commands which perform

,transformations of the tree -- adding, remoying, or modifying structure. 'It all adds up to a proofl (-

2.6. The VC Generation Machine
Described in Chapter 8, this machine oversees the generation of verification conditions from

programs that have been read and type-checked.

2.7. The Formula 110 Machine
Described in Chapter 9, this machine oversees the printing of complex propositions and

expressions and performs file 1/0 functions. The user has very little to say about the format of the

printed output at present. Parenthesization protocol and operator priorities are not modifiable by the

user. Such things as listing formats of the various components of a type specification are somewhat

controllable via user profile entries [§3.13].

The Executive 5

o 3. The Executive

3.1. Basic Command Processing
Interaction with Affirm is initiated through its command language. Each command is of the

form

commandName comm,;,ndPa:ametcl;; ;

where the form of the command parameters depends on the particular command name. Parameters

are expressed in a language similar to that of most programming languages in its conventions for

names, numeric constants, infix and prefix operators, operator priority, etc. Commands are used to

direct the system to accept new data type specifications; to read Pascal programs from a file; to direct

the theorem prover; and to perform general utility functions. All commands warn the user if any

excess parameters are supplied. Comments can be interspersed anywhere in the command line,

except inside other comments: nesting is not supported. Comments are enclosed in curly braces '{'

and '}'; they cannot contain a right curly brace.

All commands may either be typed in directly or may be prepared on a file and then read in

using the ~ command.

J 3.2. Affi rm-User Inte ractions

()

We have spent a fair amount of effort attempting to make Affirm more or less user-habitable

(whatever that means). To that end, input to the system is immediately correctable; the user can type

ahead; the system performs spelling correction on certain objects (e.g. type names and command

names); commands can be undone, fixed, and/or redone; etc. This section describes the various

flavors of user interaction with Affirm.

3.2.1. Edit Characters During Input
Several control characters are useful for editing a command and its parameters while typing.

Function Tops-20 Tenex

delete character DEL control·A
delete line control·U control Q

re·display line control·R control-R
immediate input

buffer delete control·Z DEL

6 The Executive

3.2.2. Basic System Actions
Affirm allows and encourages typeahead. However, there are several instances where the

system will query the user, where the user will not usually have anticipated that the interaction would

occur. In such cases, Affirm saves any information typed ahead, and proceeds to carry out the

"unexpected" interaction. It then restores the input buffer, and continues normally. During the

interaction, control·Z6 will not cause the saved input buffer to be flushed.

There are several instances where such an unexpected interaction may take place. The most

notable is during the execution of the algorithm that determines rewrite rule convergence, when rules

are generated by the algorithm in an attempt to restore unique termination in a set of rewrite rules

[Chapter 5].

This manual notes instances of unexpected interactions in the description of each command

that may cause the interaction.

3.2.3." Responding to System Questions
All of the interactive questions, whether unexpected or not, can be queried for a list of the

responses by typing a question mark 7. In addition, many of the questions require only a single letter,

or only enough letters of a particular response to make it distinct from all other choices. Affirm will

" then" pause and wait for user confirmation. The user confirms a response by typing a bfank or

carriage return. The user can type DEL7 at any time" before confirmation of one response in order to

reset the response protocol to the beginning. The user can then choose a different response.

3.3. Spelling Correction
Affirm keeps various lists of command names, type names, theorem names, etc., in order to

attempt to correct misspelled identifiers. This facility is quite useful because it greatly enhances

Affirm's flexibility in accepting input.

The Basic Interaction Protocol
The spelling corrector initially attempts to obtain a small set of possible respellinas of the

misspelled identifier, where each respelling looks like the misspelled identifier. The size of this set

and the closeness of the lookalikes are heuristic parameters that may change at any time.S

60EL under Tenex.

7 control· A under Tenex.

Brhe respelling set currently has a maximum size of 3; a word looks ~ another word if the first matches the second, letter
for letter, at least 40% of the time. The definition of "match letter for letter" is!!Q! exact. as simple letter transpositions count as
matching. The exact algorithm is Teitelman'$ [Teitel man 78;p.17.16). but the user can just use the intuitive definition of "looks
like" provided here. /

(

----------~-~~~~~~~-

o

(J

Spelling Correction 7

If the respelling set consists of exactly QM respelling, and the two words look very much a1ike,9

Affirm automatically corrects the misspelling to the respelling, and reports the correction to the

user.

If the system cannot make a good guess of the word that was meant, then the user is asked to

choose a word from a small list of possible respellings. The user can reject all of the list by typing a

slash, which in this context means "none of ~hes€ ,::hoices". At this point, the user is asked to correct

the misspelling using the entire spelling list of possible choices (which may not be small). This

normally suffices, but again the user may type a slash, in which case the context of the particular

misspelling determines further action on Affirm's part. For example, the default .command name

when the user refuses to correct a misspelled command is note, the comment command. In other

contexts, an error is generated, and control returns to the executive.

The default action taken upon user rejection of all choices in a particular context is discussed

in the appropriate portion of this manual.

In the example below, the user mis·typed a command word. The system computed a small set

of possible respellings ~ small: only two choices). The user typed a question mark to see the

choices, and decided to reject both by typing a slash. Affirm then gave the user the entire list of

possible command names to choose from. After perusing this list, the user again rejected all choices .

. The default action in this case was to choose the default command name, note. User-supplied input

is shown in a bigger font than system·typed output. .

91.e., they match letter for letter at least 6Q% of the time. This heuristic parameter is accessible to the user via the profile
entry DontAskJustTake.

8

pleutt;
what? Please correct pleutt using the list: let or put.
Please correct pleutt: ?
one of:
/ (Nonel), let, put,
Please correct pleutt: I (Nonel) [confirrri] (cret)

No, eh? Please retype pleutt: ?
one of:

I. (Nonel), ;, @, abort, adopt, Affirmed?, annotate, apply, arc,
assume, augment, axiom, cases, choose, clear, compile, complete,
declare, define, denote, discard, down, e, edit, employ, end,
enter, eval, exec, fix, forget, freeze, genvcs, gripe, help,
infix, interface, invoke, keep, let, lisp, load, name, needs,
next, normalize, normint, note, ok, print, profile, put, quit,
read, readp, redo, renumber, replace, resume, retry, review,
rulelemma, save, schema, search, set, split, stop, storage,
sufficient?, suppose, swap, thaw, theorem, transcript, try, type,
undo, up, use, axioms, interfaces, rulelemmas, schemas
Please retype pleutt: I (Nonel);
Using 'note'; skipping to semicolon ...

The Executive

user goofs
system responds
user asks for choices

User says "None"
system now asks the
user to retype the
mis-understood word
user asks for choices
system displays lots
of choices

user rejects all
system default action
for command names

3.4. The Event History and the Undo, Redo, and Fix Commands
Affirm utilizes the history mechanism provided by Interlisp to provide the user with a limited

undo capability. Almost all commands that modify system state can be undone, returning the system

to the state it was in before the command was processed. Affirm automatically undoes the partly·

completed effects of commands interrupted by errors. The effects of a certain number 10 of previous

commands are saved by the system in a history window; this structure can be thought of as a window

of the most recent events in the complete history of events performed by the system. When the user

types

un do event Number;

the effects of the command at eventNumber are undone, as long as the event associated with the

event number is still remembered in the history window. Unfortunately, undoing commands out of

strict reverse order of processing quickly leads to fatal (or at least highly curious) results. The user is

thus enjoined to only undo commands in strict reverse order of processing. Typing

undo;

without an explicit parameter defaults to the most recent event that completed without an error

10The number of previous events saved is the value of the user profile entry HfstoryWfndowSfze and thus can be set by the
user.

(\

o
The Event History and the Undo, Redo, and Fix Commands

(because erroneous events are automatically undone).

Any event still remembered in the history window can be redone simply by typing

redo eventNumber;

9

A b~dly garbled command can often be fixed via the fix command. The 'ix command places the

text of the command to be fixed into a text E'Ciitor deterr;1ined by the prJfile entry TextEditor [§3.13].

After the user is finished editing the command line, the command is read back in by Affirm and

processed. The user can abort the fix, so that the command will not be processed.

fix eventNumber;

proces~es the command at event eventNumber, while

fix;

with no explicit parameter defaults to the previous command.

The histQry mechanism consumes some amount of list space that may be required for proof

attempts during long sessions. If the space gets low, the history window can be undoably purged by

using the discard history command, and the size of the window can be adjusted by modifying the

value of the profile entry HistoryWindowSize. See the Users Guide for guidance.

The read command [§9.6], which reads a sequence of Affirm commands from a file, is

considered one event by the history mechanism. This means that the one event may be quite large,

thus consuming a great amount of list space. Again, the discard history command and the profile

entry HistoryWindowSize are useful here.

Affirm begins a new session with about 100 free pages of memory not allocated to a specific

function. As the user specifies types, proves theorems, etc., the free space is allocated to various

uses. Once the unallocated space is totally allocated, the system is in danger of running out of space,

when the Interlisp garbage collector tries to obtain more space for a specifIC use. At this pOint, the

system prints

STORAGE FULL
NIL

on the user's terminal, and then aborts the command currently being processed. Don't totally panic!

There is still enough space to save the appropriate data type specifications, print the proof trees, list

the propOSitions, etc. But there is not enough space to continue the specification or proof attempt.

Affirm will automatically warn the user when the number of free core pages not yet allocated

by the Interlisp garbage collector first drops below ten. The test is made at the beginning of each

command cycle, just before the "U:" prompt is printed. The user can still perform much useful work

~ the warning is printed. But if there is still lots to do, the point of the space warning is a good

place to perform a checkpoint. If space ~ a problem, the user should compile all stable types [§9.6],

reduce the size of the history window (using the profile entry HistoryWindowSize [§3.13]), and should

10 The Executive

use the storage command (as described below).

fix [eventNumber];
places the user in a text editor (determined by the profile entry TextEditor) with the text of the
command issued at event eventNumber. The default event when eventNumber is not explicitly
supplied is the previous event.

discard history;
purges the history .window. This command can be undone.

print history; .
prints the user-issued commands still resident in the history window_

storage degree;
Degree is one of {normal, severe, tight}. The storage command provides a smaliamount of
control over the page allocation mechanism of the Interlisp garbage collector. At present, we
only suggest its use when Affirm explicitly warns the user that space is low. The user should
then type

storage severe;

redo [eventNumber];
re-executes the command at event eventNumber.

undo [eventNumber];
undoes the effects of execution of the command at event eventNumber, if possible.

3.5. Error Processing
There are essentially three sources of errors detected by Affirm: internal code errors, user

interrupts and user-supplied input. Each is described in turn below.

3.5.1. Internal Code Errors
The subject of internal code errors is a rather difficult one to deal with in a reference manual.

First of all, we do not claim to detect all internal errors. The user will undoubtedly be hard-pressed to

determine whether an error message is coming from Affirm, or from the underlying Interlisp system.

Most messages from Affirm answer the obvious question "Is it safe to continue?" , either by explicitly

stating it, or by forcing a halt, or by continuing automatically, as the individual case dictates. Most

Interlisp errors cause the system to halt. Whether or not it is safe to continue (by typing 1', or

(Affi rmExec) -- see the Users Guide) becomes a moot point; no one will believe the proof anyhow.

f ,
\

User Interrupts "
,/~ 3.5.2. User Interrupts
(0 The Interlisp system underlying the ,implementation of Affirm provides a plethora of control

characters, each of which could conceivably be useful in a particular situation. For the most part,

however, only a small subset of the thirty· odd control characters are useful. This set includes tA, te,
1'D, tE, tF, 1'K, tN, to, tR, tT, tX, tZ, escape, and DEL. Unfortunately, the meaning of most of these

control characters is not consistent between Tops-20 and Tenex, the two operating systems under

which Affirm runs. Section 111.6 discusses the meaning of each Cvntrol character under each

operating system. For the most part, users should avoid typing most control characters. Exceptions

to this general rule are noted below.

3.5.2.1. control-E: Command Abort
control-E aborts the command currently being processed, automatically undoing any effects it

may have had, and returns the user to the Affirm executive. If the user types several control-E's in a

row quickly when the system is heavily loaded, the undoing may itself be aborted. In this case, Affirm

tells the user. An explicit undo command should then be issued.

control-E can be hit anytime, with two exceptions:

~ While the user is typing the text of a ~ command [§3.8), control-E is treated like any normal
character (i.e., text); and

".J :,Inside some text editor called as a result of a fix [§3.4] or review command [§3.10.3], control-E
has whatever meaning assigned to it by that particular text editor.

In certain instances, control-E will not undo everything done since the last user· issued

command. In particular, the Auto Mechanism [§3.12] can be aborted, without undoing the command

that caused the Auto Mechanism to be invoked. The system prints a separate message if the user

types control·E when the Auto Mechanism is running. If the desired effect is to abort and undo the

command, the user should next issue the lmQQ command.

3.5.2.2. control-D: Panic Abort
control·O is an Interlisp abort which simply returns to the top·level Interlisp executive

(colloquially termed EvalQuotel. Once there, the user can get back into Affirm by typing

'(Affirm Exec)

The global data structures modified by commands issued before the control·O will not be reset.

Thus, everything done up to the command that was being processed when the control-O was typed,

will still be remembered. Unlike control-E, no automatic undo is performed when control-D is typed.

For the most part, control·E should tie sufficient. control-O should be used only in cases

where cont rol·E seems to have no effect. The only case we know of involves ~ing files containing (J Interlisp code (that should be loaded. instead [§9.6]).

12 The Executive

3.5.2.3. control-C, confrol-F, and control-T: Operating System Functions
control-C aborts Affirm, returning the user to the operating system executive.' Normally, a

continue command to the executive will return to Affirm with no ill effects (except that the input

buffer is cleared by the operating system).

cor:ttrol-F and Escape are useful when Affirm requests a file name. They have the same

meaning as in the operating system executives. In fact, when Affirm asks for a file name, it actually

uses the operating system to obtain it. Thus the normal file name protocol is in effect. Affirm has a

set of file name conventions; various commands have default file extension fields that will be used if

the user does not explicitly fill in the extension field. The file name conventions are documented in

Sectior.t 9.5.

control·T is intercepted by I nterlisp , which then prints a one· line summary of what functions

are currently running, along with the system load average. It may very well be the character hit most

often (perhaps. after carriage return and space). It has no effect on Affirm, but does soothe the

user's nervous system!

3.5.3. Errors in User-Supplied Input
There are several categories of error under the general classification of user-supplied input.

. These include syntax errors, spelling errors, type mismatches, and undeclared variable and operation (

. names.

- Syntax errors: The input parser of the system is a recursive descent parser employing backup.
This severely limits our ability to provide reasonable error messages, much less recover from
syntax errors. The user is generally forced to try again, although the fix command can be quite
useful [§3.4].

- Spelling~: Affirm automatically corrects misspelled identifiers in certain contexts. If it
cannot correct the niisspelling, Affirm usually assumes the identifier is an undeclared variable
or operation name .

• ~ mismatches: Type mismatches occur when one or more parameters to an operation are
not of the expected type. Affirm detects and reports the error. The user is generally forced to
re-type the command. Again, the fix command is quite useful in this context for editing the
command line.

- Undeclared references: The system recursively enters a lower executive, as is described
below.

o
The Lower Executive 13

3.5.4. The Lower Executive
Whenever Affirm processes a command line containing a variable or operation reference for

which a prior declaration does not exist, processing is temporarily suspended, and a lower executive

is entered. The user is then asked to declare the variable or provide the interface declaration for the

operation. The lower executive provides the'user with the full set of commands. Thus the user can

issue any command, not just the declaration commands. Further references to undeclar-ed variables

or operations drop the user into successively lower executives. The command pror',pl is enhanced

for each lower executive to provide the depth of nesting; an attempt is made to provide the user with a

feeling that he or she has truly suspended processing of one command. After the requisite

declarations have been typed, the user can type the Ql$. command to resume processing at the next

higher'executive.

If however the user wishes to abort the suspended processing altogether, the user can type the

abort command in place of the Q1 command. This command returns control to the next higher

executive. The user can then use the fix command (with an explicit parameter) to fix the errant

command line.

abort; returns the user to the next higher Affirm executive (if there is one), and aborts the suspended
command. The command ~an then be fixed, or forgotten.

ok; ,returns the user to the next higher Affirm executive (if there is one), and resumes processing
of the suspended command. If this command still has errors in it, the user may well be placed
into a lower executive once again. The abort command is useful here, too.

stop; returns the user to the command level from reading a file. Affirm next expects input from the
terminal. The §1QQ command should be the last command of a sequence of commands in a file.
It should also be used if the user wishes to abort reading from a file. If the read is interrupted
(either by detection of an error, or the user typing control·E), the user can type §!QQ to abort
the remainder of the file processing.

3.6. The Help System
The Help system is intended to provide an online reference manual which may be easily

queried. At present, we have only a rudimentary skeleton of what we hope to evolve. The user can

ask for information about the available commands.

The ~ command takes a subject as a parameter, where currently a subject is simply a

command name. A short paragraph is displayed which attempts to explain the syntax, semantics,

use, or meaning of the requested subject. Currently, lots of pointers back to the user's desk copy of

the Affirm reference manual are provided.

14 The Executive

help [Topic];
lists information about topic, if any information is available.

3.7. The News Facility
When a session first begins, Affirm automatically displays any news about the system that the

user has not yet seen. The news items are displayed only once, using the time of day that Affirm was

last run.in the user's login directory as the determining factor. Thus any system news added to the

.. database while the user is running Affirm will be seen the next time that user uses the system.

3.8. The Gripe Facility
The 9..!irut command provides a mechanism for sending suggestions or possible bugs to the

people maintaining Affirm. The Affirm system is very big, and as with most big systems there are

many problems. If a user is having a problem or has a suggestion, he or she should type

gripe subject;

where subject is a very short description of the problem or suggestion (it must be present, but must be

. less than 35 characters long). The user will then be ~ked to type a message explaining the problem

in greater detail (which can be any number of characters in length). The usual editing control

characters are available while typing the message, but control-E, the command abort character,

does D21 work. The message is ended by typing contro.-Z. The user is then given the chance of

either sending the message or aborting the command. The system will next ask H the user wants to

send the current transcript as another message. Normally the transcript is not required to fix the

error, but novice users should send the transcript.

All the mail for ~ goes to the message file in directory <PVREPORT> on ISIF; all users are

encouraged to look through the file to see what sorts of problems we are aware of. As we process

gripes, the documentation of the problem is moved into file (Affirm)KnownBugs.TXT, a message file

that users are encouraged to view using their favorite message system.

gripe subject;
creates a message to be sent via the ARPANET to Affirm maintenance personnel. The system
will ask the user to type the body of the message, which is terminated by cont ro.-Z. After the
message is completed, the user has the options of sending the message, or aborting the gripe.
The transcript [§9.2] can also be sent along as a separate message if it is pertinent to the
documentation of the problem or suggestion. (It is usually not necessary.)

(' '\
I

\ /

/' \

o

,].

The Timing System 15

3.9. The Timing System
This mechanism is quite simple, and. just prints out the number of CPU seconds used by each

command. It is activated by setting the profile entry Timer to Qn, and de-activated by setting Timer to

Off. The timer is smart enough to correctly deal with file reading, by providing the timings for each

command in the file, as well as the sum total of the CPU time of the read command.

3.10. Miscellaneous Commands
Several commands that do not neatly fit into any executive submachine are described here.

3.10.1. The note Command
The user can introduce comments into the transcript of the session via the ~ command.

note arbitraryTextExceptSemicolon;
The text is placed in the transcript. No other processing is performed ..

3.10.2. The transc riDt Command
A.ffirm automatically keeps a transcript file which is a nearly verbatim echo of all input and

output generated during a session. This file is named according to the profile entry

TranscriptFileName [§3.13]. The transcript command can be used to turn off the transcript, to turn it

back on, or to switch to a new transcript file. The command is fully explained in Section 9.2.

transcript;
causes the old transcript file to be closed and a new one opened. The name of the new file will
be the same as the old one (but will be in the connected directory. if there is one); the version
number will be incremented [§9.2].

3.10.3. When the screen gets full: the review command
The review command reminds the user of the name of the current transcript file and places the

user in an editor." Thus the transcript can be reviewed by using editor commands. This is quite

useful if, for example, the proposition being proven is so large that, using a CRT terminal, the whole

proposition will not fit on several screens. The HP2640A's at lSI have a memory that allows

(J '1The particular editor is determined by thE, profile entry TextEdltor (§3.13].

16 The Executive

approximately three screen·pages of 24 lines each to be scrolled through. But propositions larger

than that can prove too unwieldy to manipulate. To return to Affirm, perform the editor's mm
command. Affirm will continue the transcript in the same version of the same file.

review; .
places the user in a text editor determined by the profile entry TextEditor, with the transcript file.
The user can then use editor commands to review the events in the file. Each command begins
with "U:".

3.10.4. The thaw command
This command is the opposite of the ~ command. It takes one parameter, the name of a

file containing a session frozen by a ~ command.

Most users will not ever have a use for this command, since the frozen session can be started in

TOPS-20 or Tenex simply by typing the file name at the operating system executive level. The

command was added primarily for the MIT·Affirm group.

thaw fileName;
file fileName contains a previous Affirm session frozen by the freeze command. That session
is continued. Not needed by the normal user ..

3.10.5. The print Command
The print command displays data type specifications, proof status, individual proof steps, etc,

on the terminal. There are a large number of options to this command, most of which have to do with

printing types or propositions or proofs. The complete set is documented here, with pointers to the

appropriate sections of this document for explanations of the as·yet undefined terms.

print?;
displays a list of all the keywords that can follow the command word print. Equivalent to the
command

print known PrintObjects;

print assumptions;
prints the propositions used as lemmas in the proof attempt of the Current Theorem [§7.2]. l!
the lemma has a proof status [§7.2] of assumed.

print BadEquations;

The print Command 17

lists the rules that have been suppressed during the Knuth·Bendix [§5.2] convergence test. if
any.

print both;
Like minl J2!:QQf but lists all the propositions in the proof tree. Verbose and rarely useful.

print IH;
prints the definition of each of the inductive hypotheses [§7.4.2.3] in the Current Prooosition (if
any).

print file fileName;
FileName may contain escapes and control-Fs, which are interpreted by the operating system
in the normal manner, although the file name expansion does not occur as the file name is
typed. [§9.5] [§3.2.1]

print known ObjectName;
prints the names of all known elements of the object class. The object classes as of Version
1.21 are AffirmObject, arc, axiom, command, definition, directory, file, fileType, interface,
lemma, node, printObject, profileEntry, schema, type, typePart, and variable. Not all of these
make sense in the context of print known.

print [parts TypeParts] [types typeNames] Ihs expression;
This feature provides the rudimentary capability of listing those rules that match some pattern.
TypeParts is a list selected from the set {axiom, lemma, defn, schema}; the list may be empty, in
which case the default value axiom is supplied. TypeNames is a list of type names; the list may
be empty, in which case the keyword need not be typed. The default value is the list of All
currently defined types. Pattern is an" expression, restricted to one of two simple forms:
operator, or operator1 (operator2).

The search mechanism works as follows. ~ach rule in the requested set of types that is a
member of one of the requested parts is pattern· matched against the pattern; if it succeeds, the
rule is listed. If it fails, the rule is ignored. The pattern-match process is as follows. Only the
left· hand side of a rule is used. If the pattern is a simple operator, a match succeeds if the main
operator of the left·hand side is this operator. If the pattern is of the form operator1 (operator2),
then operator1 is the main operator, and operator2 is any internal operator. If the left· hand side
of a rule has operator1 as its main operator, and contains a reference to operat0r2 as an
internal operator, the" match succeeds.

For example, the command

print Ihs join(apr);

will list all the axioms whose left·hand·side main operator is join, and which also reference the
operator apr as an internal operator. (This example is useful for the type SequenceOfX, for
quite a few types X.)

print next;
lists the proposition that would become the Current Proposition if the user issued the next
command [§7.6.1.4].

print proof theoremNames;
lists the proof trees [§7.2] for the indicated theorems.

print proof theorems;
lists the proof tree [§7.2] for all theorems (named or not).

18 The Executive

print prop proposition Names;
lists the proposition associated with each of the indicated names.

print result;
simply re·lists the Current Proposition [§7.2]

print status;
lists the current status [§7.2] of each theorem.

print type typeName [typeParts];
lists the type typeName [§4.5.1].

print uses;
lists the dependencies of each theorem on any other it uses as a lemma [§7.4.1.1].

print variables; •
lists the universal and existential quantifiers of the Current Proposition [§6.2.2] [§7.2].

3.10.6. Operating' System Interfacing Commands

exec; invokes the operating system executive as a subroutine. The user can do anything that can be
done at the original executive without destroying the files and memory associated with Affirm .

. To continue with the Affirm session, the user should type POP at the operating system
.executive command level. .

quit; stops Affirm, returning to the operating system executive. The user can return to Affirm by
immediately typing CONTINUE at the operating system executive command level.

3.11. The Profile Mechanism
Associated with each user is a profile of about fifty separate entries, providing the user with

some control over various displays and their formats. This database of information is kept in the

user's directory in a file named" ··AffirmUserProfile··" .

:The initial values of the profile entries are established when the user begins a session by first

defaulting each entry [§3.13], and then reading the user's profile file. Any entries not in the profile file

thus keep their default values. The user can directly modify any entry, read and write other profile

files, and enter a query mode which displays each entry and accepts new values. There are twp main

modes of enquiry and modification of profile entries:

1. a profile dialogue, modelled after that of XE012 , in which the system displays each entry

12A local text editor.

(

---- - _._---------

The Profile Mechanism 19

(grouped by family), and prompts the user for a new value; and

2. direct manipulation, where the user provides a sequence of entry names, possibly followed by
desired new values, and the system processes each element of the sequence, interacting with
the user as necessary.

The best way to get a feeling for how the profile mechanism works is to try it out. Typing

profile;

causes the system to run through the dialogue. Each time the system asks a question, the user can

type a question mark to obtain the range of responses .

•

3.11.1. Direct Manipulation
The second mode of use of the mechanism, the direct manipulation mode, is employed by

providing a series of parameters to the profile command. The profile command's parameter list is

composed of a.~eries of transactions, separated by commas and/or thenoiseword imd,; the list is

terminated by the customary semicolon. A transaction consists of at least a profile entry name, in any

casing whatsoever. If that is all there is, then the transaction is termed a~, and the system will

simply display the current value of the entry. The entry name can also be followed by a question mark

to explicitly represent the fact that the current value of this entry has been requested. If the entry

name is followed by an equal sign and an identifier or integer, then it is taken to be the new value of ".\
\...J . the entry. This type of transaction is termed am., N~turally, error checking is performed on both the

entry ,names and the atoms representing new values.

Some examples of input (the user should try these to see the output)~

profile TerminalLineWidth = 98, and LessOutputDesired = On;

profile showrules = true and tERMINALIINEwlDTH1,
lessoutputdesired 1;

profile RuleLHSPercentage = 49 and ShowRTULES = no;

The user can also set several entries to be the same value via a multiple·assignment·like

statement:

profile LessOutputDesired = ExpertUser = ShowRules = Yes;

In this case, all three entries are turned On.

3.11.2. Boolean-Valued Entries
Most profile entries have Boolean values. For readability, we define the set of possible values of

Boolean·valued profile entries to be {On, Off,~, NQ,~, ~alse}, where On, Y,u, and ~ are

equivalent, and Qff, HQ, and ~ are equivalent. {This idea was unabashedly borrowed from

20 The Executive

SCRIBE.) 13 This set is often referred to as OnOffValues.

3.12. The Auto Mechanism
Commands quite often come in sequences: after a~, quite often the next command issued

is genvc~. After an employ, if the basis step is immediately proved, the first thing the user does is

invoke IH. If there is an embedded if-expression, and the system says "(The cases command is

applicable)", the usertypes~.

The mechanism in Affirm that oversees automatic performance of common command

sequences is called the Auto Mechanism. It is controlled by a series of profile entries. There are

presently 12 differen1-actions that can be "automated" in certain contexts. Each profile entry in the

Auto Mechanism family can take the values described below.

On,~,Yes
The normal On values.

Off, ~,!::!Q •
The normal Off values.

~ Equivalent to On, but an extra message is printed notifying the user something is about to
happen .

. A§is The system will stop and ·ask the user if the automatically. applied command should occur.
. Expected responses are y§ or No.

In the beginning, it is suggested the user set the values of desired members of this family to Tell, to

become familiar with their behavior. Then later set the value to On, Off, Tell, or Ask, as is appropriate.

The 12 profile entries are named AutoAnnotate, AutoCases, AutoFreeze, AutoGenvcs,

AutolnvokelH, AutoNext, AutoNormint, AutoPrintProof, AutoPrintProofTheorems, AutoReplace,

AutoSearch, and AutoSufficient. They are described in the section containing all the defined profile

entries.

We recommend arming (setting to On, Ask, or ~) profile entries AutoAnnotate, AutoCases,

AutoFreeze, AutoGenvcs, AutoNext, AutoNormint, AutoPrintProof, and AutoPrintProofTheorems. We

also recommend that AutoReplace be left Off for normal theorem-proving.

13SCRIBE is a document preparation system developed by the Computer Science Department at Carnegie-Mellon
University, and now distributed by UNILOGIC, Ltd., Pittsburgh.

I
I

o
Currently Defined Profile Entries 21

3.13. Cu rrently Defined 'Profile Entries
The current profile entries are listed in alphabetical order below. For each entry, we discuss its

purpose, its possible values, its default value, and possibly give some pointers to other parts of this

document.

A nnotating Transcript
Possible values: OnOffValues. Default value: 00. Causes user· typed commands to be
surrounded with SCRIBE commands, effectively putting user commands in a different font
when the transcript is run through SCRIBE. This mechanism is used to create the annotated
transcripts used as examples throughout the Users Guide and Annotated Transcripts Volumes
of the Reference Library. [§9.2]

AutoAnnotate
Possible values: {On, Off, Ask,~}. Default value: Off. This profile entry is applicable when
the proof of the current theorem is complete. If it is armed, then an annotation is written:
"Status by User using Affirm· Version on date in transcript transcriptFileName", where status is
either proven or assumed. [§7.9.3]

AutoCases
Possible values: {On, Off, Ask, Tell}. Default value: Off. This profile entry is applicable when
the Current Proposition contains embedded if·expressions. If it is armed, the ~ command
is performed. [§6.3.3]

AutoFreeze
Possible values: {On, Off, Ask, Tell}. Default value: Off. This profile entry is applicable when
the user quits a session. If it is armed, the freeze command is performed; the freeze file name
can be supplied as the parameter of the gYi1 command which invoked this auto·command. If no
file name is supplied with the Quit command, the system will stop and ask the user for a file
name. If the user types an escape, the default file name (from the profile entry FrozenFileName)
is used. [§9.6]

AutoGenvcs
Possible values: {On, Off, Ask, Tell}. Default value: Off. This profile entry is applicable
immediately after the ~ command. If it is armed, the genvcs command is performed, with
the list of newly parsed Pascal program unit names as its parameter. [§8.3]

AutolnvokelH
Possible values: {On, Off, Ask, Tell}. Default value: Off. This profile entry is applicable when
the Current Proposition contains references to IH. If it is armed, the invoke command is
performed, with parameter IH J.§!ll. [§7.5.2.3]

AutoNext
Possible values: {On, Off, Ask, Tell}. Default value: Off. This profile entry is applicable when
the proof of a branch is completed. If it is armed, the next command is performed. [§7.6.1.4]

AutoNormint
Possible values: {On, Off, Ask, Tell}. Default value: Off. This profile entry is applicable when
the Current Proposition contains arithmetic expressions. If it is armed, the normint command is
performed. [§6.7]

AutoPrintProof
~\ Possible values: {Qn, Off, Ask, ~}. Default value: Off. This profile entry is applicable when

!\J the proof of a theorem is complete. If it is armed, the print command is performed, with

22 The Executive

parameter J2!.Q,Qf. [§7.7.4]

AutoPrintProofTheorems .
Possible values: {Qa, Q!f, Ask, ~}. Default value: Qf!. This profile entry is applicable when
the user quits a session. If it is armed, the print comn:aand is performed, with parameters l2I:QQ!
theorems. [§7.7.4}

AutoReplace
Possible values: {On, Off, Ask, Tell}. Default value: Qf!. This profile entry is applicable when
the Current Proposition contains equalities. If it armed, the replace command is performed,
with no parameters. [§7.5.2.2]

AutoSearch
Possible values: {On, Off, Ask, Tell}. Default value: Off. This profile entry is applicable when

. the Current Proposition contains existential quantifiers. If it is armed, the search command is
performed. [§6.6]

AutoSufficient
Possible values: {On, Off, Ask, Tell}. Default value: Off. This profile entry is applicable after
the ~ command. If it is armed, the sufficient? command is performed, with the name of the
type just closed as its parameter. This determines whether or not the type is recognizably
sufficiently complete. [§4.4]

AxiomGrouping
. Possible values: OnOffValues. Default value: On. When listing a data type, should the axioms

of the type be grouped together, as in

axioms
null join s = s,
(s1 apr i) join s2 = s1 join (i apl s2);

or should they be listed individually, as in

axiom null join s = s;
axiom (s1 apr i) join s2 = s1 join (i apl s2);

The former may be prettier, but the latter is much safer when reading a data type definition from
a file. control·E, the command·abort symbol,.essentially causes a skip to semicolon; if one of
the first few axioms in a long list of axioms causes problems during the rewrite rule addition
process, when the user aborts the one axiom, the remaining list is forgotten, too. The best way
to avoid this is to keep the lists quite short. [§4.2.3]

BreakAccess
Possible values: On Off Values. Default value: Off, no breaks allowed. Should the user be put
into an Interlisp break if the system tries, or be kept in Affirm? [§III.4]

CautiousCompletion
Possible values: OnOffValues. Default Value: Qf!. If this entry's value is Qn, whenever a new
rule is added to RuleSet, whether by the user [Chapter 4] or by the unique termination algorithm
[Chapter 5], the user is asked for confirmation.

DefineGrouping
Possible values: . OnOffValues. Default value: Qn. Controls the listing format of definitions.
See AxiomGrouping. [§4.2.3]

DontAskJustTake
Possible values: any integer- between 0 and 100. Default value: 40 (percent). The value

C-)

Currently Defined Profile Entries 23

represents a percentage relative agreement value used by the Affirm spelling corrector. The
spelling corrector tries to match the misspelled word against a set of possibilities, by iteratively
computing closeness, and attempting to reduce the size of the set of close matches. This
iteration stops when the set of close matches gets below a specified size. If it turns out that
only ~ possible respelling remains, then the spelling'corrector must decide whether or not to
assume the misspelled word is meant to be the one possibility, or to ask the user to confirm it. If
the percentage closeness is greater than the value of the entry DontAskJustTai<e, then the user
is not queried; the respelling is assumed. Other,~ise, the user is asked to confirm the respelling.
[§3.3]

EnquireAfterFreeze
Possible values: OnOffValues. Default value: 00. Similar to Enquirelnitially, this entry
determines whether or not the user profile will be reinitialized upon startup of a system
previously savetl by the freeze command [§9.6]. If Off, the previous values of the profile will be
retained.

Enquirelnitial/y
Possible values: On Off Values. Default value: Off. Should the profile mechanism start the user
in a profile enquiry dialogue as soon as Affirm is entered? .

FreezeFileName
Possible values: any valid file name. Default value: directory = connected, name = Frozen·
Affirm, extension EXE on Tops-20 and SAV on Tenex. This entry provides the default file
name for the ~ command when the user does not explicitly provide one. [§9.6]

GarbageCollectionMessage
, Possible values: {Normal, None, Compact}. Default value: None. Allows more control over the
.format of the garbage collection message. Seethe Users Guide.

GarbageCollectionPages
Possible values: any positive integer. Default value: 40. If the number of free pages drops
below this number, the user gets a message extended with number pages left!", if
GarbageCollectionMessage is Normal or Compact.

HistoryWindowSize
Possible values: any integer greater than or equal to three. Default value: 30. The number of
events saved in the history, for the fix, redo, and undo commands. [§3.4]

InterfaceG rou ping
Possible values: OnOffValues. Default value: On. Controls the listing format of interface
declarations. See AxiomGrouping.

LemmaGrouping
Possible values: OnOffValues. Default value: On. Controls the listing format of rulelemmas.
See AxiomGrouping.

LessOutputDesired
Possible values: OnOffValues. Default value: Off. When this entry's value is On,
CurrentProposition will not be printed before normalization. [§6.3.2]

ReadAnotherProfileFile·
Possible values: OnOffValues. Default value: On. At system startup, th~ system automatically
reads the user's initial profile file. If that file says to read Mother one, it does. If that file says to
read yet another file, it does,... etc., This entry's value says whether or not to read another file,
and is used in conjunction with the profile entry UserProfileFileName, which contains the file to

24 The Executive

be read. Cycles are noticed and avoided. The default value of Qn may seem strange, but the
value of UserProfileFileName is set to the user's connected directory, and the initial. profile file is (
read from the user's.\.Q9iD. directory. Thus the default profile file is read from the login directory,
which defaults to another read from the connected directory. If the login directory is identical
to the connected directory, the profile mechanism notices the cycle and halts. If.Q!!.lx the login
directory's profile file is desired, the user should turn ReadAnotherProfileFile QU.

SaveOnly'ChangedEntries
Possible values: OnOffValues. Default value: On. When the profile is saved, should only those
entries that differ from their default values be saved, or should .mt entries be saved?

SchemaGrouping
Possible values: OnOffValues. Default value: On. Controls the listing format of schemas. See
AxiomGrouping .

ShowNormint
Possible values: On Off Values. Default value: Off. This profile entry, when On, traces the
actions of the normint command. Useful every once in a while when the normint command
performs a simplification the user cannot follow. Just Y..QQ.Q the normint event, turn the
ShowNo[mint profile entry On, ~ the normint event, and turn ShowNormint back Off. [§6.7]

ShowRules
Possible values: OnOffValues. Default value: Qf!. When this entry's value is On, each
application of any rewrite rule will be reported [Chapter 5]. This creates quite a lot of output,
but can be quite educational in understanding what Affirm does to a proposition during
normalization. [§6.3.2]

. ShowRuleSimplification
Possible values: OnOffValues. Default value: ~. The first step performed in the procedure
which adds new rewrite rules to the rewrite rule database is to simplify the new rule, using the
current rewrite rules. Should the system display the simplified rule? [§5.2]

TerminalLineWidth
Possible values: any number between 20 and 132. Default value: 79. Our CRT's are 79
characters wide. To nicely fill a printed page when annotating, the user is advised to set the
terminal line width to 88 (determined via much experimentation).

TextEditor
Possible values: {XED, SOS, TECO, EMACS, RMODE, TED, POET}. Default value: XED.
When the user issues the review or fix commands, what editor should be invoked?14

Timer Possible Values: OnOffValues. Default value: Off. This entry turns on or off the timing of each
command (in CPU seconds). [§3.9]

TranscriptFileName
Possible values: any valid file name. Default value: directory = login, name =
AffirmTranscript, extension = date in dd·mon·yy fo~mat. This entry provides the default name
of the session transcript both at the time the session begins, and in the transcript command
when the user does not explicitly provide a file name. [§9.2]

Types/nlnterfaces
Possible values: {Types, Variables}. Default value: Variables. When listing the interface

14 Affirm does!l2! support §Q§ line numbers

(
\

,J

Currently Defined Profile Entries 25

declarations of a data type, should the parameters be variable names, or type names?15

UserProfileFileName
Possible values: any file name, using the normal operating system conventions. Default value:
directory = connected, file name = ··AffirmUSERPROFILE··, extension = empty. This entry is
used in conjunction with the profile entry ReadAnotherProfileFile; this entry's value tells what
file ~o read. This entry is also used to determine the name of the output file for profile dumping
when the user responds to the "file name?" question of the profile enquiry with an escape.

UsingTed
PossibleValues: On Off Values. Default value: Off. This profile entry makes Affirm behave as
the ATED interface expects it to. This is not something most users should worry about: the
MIT·Affirm group needs it. Now new versions of Affirm can be used immediately with ATED,
and should nof require extra changes.

,~J 15 Affirm cannot currently read in a type specification where the interface declarations contain type names in the parameter
positions.

26 The Specification Machine

4. The Specification Machine

4.1. Introduction
The Affirm Specification machine builds data structures used by the Logic, VC Generation,

Rewrite Rule, and Theorem Prover machines. Internally the Specification machine maintains a

TypeSet,a LocalDeclarationSet, an InterfaceSet, a RuleSet, and a ContextStack. The objects in these

. data structures are as follows:

type a record structure with fields (type name, set of local declarations, set of interfaces, set of rutes)·

local declaration •
a record structure with fields (variable name, type name)

interface
a record structure with fields (function name, infix switch, domain type list, range type)

rule a record structure with fields (rule class, left expression, right expression)

context
a type name

4.2. Types
. A ~ is a four·tuple (type name, set of local declarations, set of interfaces, set of rules). The

set of.all type specifications is TypeSet. The system ·provides several predefined types, most notably

Integer and Boolean. Other elementary types are stored in files in the PVLlBRARY directory. The

user may specify new types by the command

type typeName;

which creates a new element of TypeSet with a declaration of a dummy variable in the local

declaration set, an equality operation in the interface set, and the reflexive axiom of equality in the

rule set. The command

edit typeName;

allows the user to modify an existing type specification. Any specification commands given after a

~ or mil command is performed in the context of this type. The end command ~thecurrent

type specification. The data structure keeping track of the Qrut!l types is the stack ContextStack. The

top element is the type currently being edited; the end command simply pops this stack, while the ~

and mil commands push a new element onto it.

type typeName;
specifies typeName as the name of an abstract type, whose specification will be given by
subseq~ent commands. The name type Name is added to the TypeSet and is pushed onto
ContextStack. If typeName is already a member of the TypeSet, its existing specification will be
discarded. Each new type is ~utomatically provided with one variable declaration (the name of ("

\

o
Types

-- --~ --~~~~-~--~~--~~~-~-~-- ------

27

which is controlled by the profile entry DummyVarName), a declaration of an equality operation,
and an axiom explicitly stating that the equality operation is reflexive. (The remaining
properties of an equality operation are assumed, and should be validated by the creator of the
type.)

edit typeName;
typeName must be a member of TyoeSet. typeName is pushed onto ContextStack,. thus making
the local declarations of type Name available for referencing.

end; causes ContextSt9.cl< to te popped, ending the current type's speCification and returning to the
previous context. (It this is the only entry in ContextStack, nothing happens.)

print known types;
displays the currently defined type names.

4.2.1. Local Declarations
The loca~ declarations or variables of a type are Simply abstract values of the type. The

elements of the local declaration set of a type are pairs (variable name, type name). The variable

name is an identifier and the type name must be a member of TypeSet. The command

declare id: typeName;

where id is a variable name and typeName is a member of TypeSet. is used to add new elements to

- the local declaration set. During type specification o"ly the variable names of the type aarrently being

specified are available to the user. The command

adopt typeName;

enables the user to copy the variables of the local declaration set of the previously defined type

typeName into the CurrentContext. Primed variables of the adopt~ type, usually only generated by

Affirm [Chapter 6], are not copied. If a variable name of an adopted type is the same as a variable

name already declared in the current type and their respective range types are not identical, then the

adopted variable name is extended with a dollar sign character $.

Variable names and interface names (see below) in the same type must be distinct.

declare v1, ... , vn: typeName;
each of the v. is declared to be a variable of type typeName. typeName must be a member of

I
TypeSet. Each of the declarations is added to the local declaration set of the current type.
TypeName can also be the upper-case letter T, which denotes the current type (the entry on the
top of the ContextStack).

declare q, q1: SequenceOfElemType;
declare x: ElemType; .

adopt typeName;
sometimes it is necessary to prove theorems about operators which are associated with types
other than the current one. The operators of the type will be referenceable, because the type is

28 The Specification Machine

in TypeSet. However, the variables of that type may not be referenceable in the current context.
Rather than enter the necessary variable declarations manually, the Ad.s:ml command provides a
convenient way to copy all the non-primed declarations of a type over to the current one.
Should any name conflicts occur, the variables being copied will be renamed by appending
dollar sign characters ($) to them.

adopt SequenceOfElemType;

discard variable variableName1 [, ••• variableNamen];
discards the variables variableName,for i from 1 to n, from the current type. Note that any ~
of the variables, such as in interface declarations or rules, is now undefined, and may be
inconsistent. The system does not presently check for this condition. (However, the user will
certainly feel the effects laterl) It is the user's responsibility to discard or redefine interfaces
a.nd rules referencing the newly-discarded variables.

4.2.2. Interfaces
The interface command declares the domain and range informationuthe interfaceufor •

operations of the type being specified. Each interface entry is a four-tuple (function name, infix

switch, domain type list, range type). The elements of the domain type list and the range type are

members of TypeSet. Note that the domain type list of a constant functionis empty. The infix switch

.det~rmines whether expressions' invol.ving the· function should appear in prefix or infix form when

. printed by Affirm. New elements are added to the. interface set by the interface command. The

command

interface functionName(x1, x2): typeName;

adds an element to the interface set of the CurrentContext type of the form (functionName, prefix,

(x1.TYPE, x2.TYPE), typeName), where x1.TYPE and x2.TYPE are the type names in that variable's

local declaration and all the types specified are members of TypeSet. The command

infix functionName; .

changes a previously specified interface element to (functionName, infix, (x1.TYPE, K2.TYPE),

typeName) causing the Formula 10 machine to display functionName as an infix operator whenever it

is printed. The equality operation, automatically declared for all types, has the following interface:

(= ,infix, (typeName, typeName), Boolean)

Interface Set is the union of each individual interface set over all types in TypeSet.

interface[s] x1[, ••• , xn]: typeName;
just as declare establishes the types of variables, interface provides the necessary
characteristics of operators. All operators should be declared using the interface command
before they are referenCed in other Affirm commands. Each of the xI will be an expression of
the form operatorName(a1, ••• , am)' where each of the aj is a variable declared in the current
type. The interface declaration states that operatorName is a function of m arguments, with

,/ '\

types corresponding to those of the ~r The value returned by operatorName will be of type (--\
\
'.

o
Interfaces 29

typeName. In the case of an operator which takes no arguments, the parentheses may be
omitted. It is also permissible to use infix notation, such as q ap r x.

interface q apr x, apl(q, x): SequenceOfElemType;

infix operatorName1 [, ... , operatorNamen);
each operator operatorName is declared to be an infix operator.

discard iriterface[s] operatorName1 [, ... , operatorName n];
discards the operations of.,eratio;1Name; fori from 1 to n, in the current type. Each operator
must be defined in the current type. Note that any references to the discarded operations are
inconsistent. The system does not check for this condition. It is the user's responsibility to
discard or redefine any rules or propositions referencing the newly·discarded operations.

4.2.3. Rules
The specification machine makes use of the InterfaceSet to enforce static type checking of

expressions used in RuleSet. The elements of RuleSet are used as rewrite rules of the form Left -

Right by various parts of Affirm. The rule entries are three·tuples (rule class, left expression, right

expression). The rule class entry indicates whether this rule is to be automatically applied whenever

applicable or only under explicit user direction. The left expression and right expression entries are

~e left hand side and right hand side respectively of the proposed rewrite rule. These expressions

'are'tYpe·checked using th,e InterfaceSet. RuleSet is the union of each ,individual set of rules over all

types in TypeSet.

The automatically applied rules are added to the set of rules by the incremental Knuth·

Bendix convergence process to ensure that all previous rules and the proposed new rule maintain the

Church·Rosser property of unique termination [§5.2]. Any new rules generated by this process are

automatically added to the rule set of CurrentContext. The user·controlled rules pass through the

type·checking procedure' but not the incremental Knuth·Bendix convergence process. The

automatically applied rules are entered by the axiom and rulelemma commands. The axioms reflect

basic assumptions or definitions, while the rulelemmas are assumed to be provable from the axioms.

The commands

axiom Last(s apr i) = = i;
rulelemma Last(i apl s) = = if s = NewSequenceOfElemType

then i
else Last(s);

add a new axiom and a new rulelemma to the set of rules of the current type.

The user· controlled rules are entered by the define and schema commands. The define

command often contains recursive rewrite rules and definitional notation that the user may invoke

when necessary [§7.5.2.3]. The schema command specifies an induction schema that the user may

30 The Specification Machine

later employ [§7.4.2.3]. The commands

define Initial(s, k) = = if s = NewSequenceOfElemType
thens
else ifk = 0

then NewSequenceOfElemType
else First(s) apllnitial(LessFirst(s), k-1);

schema Induction(s) = = cases(Prop(NewSequenceOfElemType),
all ss(all ii(IH(ss) imp Prop(ss apr ii))));

add new rules to the set of rules of the current type.16

The discard ~ command enables the user to discard a rule. The command .
discard Ihs leftExpression;

discards the rewrite rule whose left hand side matches leftExpression.

axiom[s] a1 [, an];
each a, must be a rule, Ihs, = = exp.. The rewrite rule Ihs expo is (normally) added to , " BuieSet. Variables appearing in exp; must appear in Ihs;, Affirm checks all proposed axioms

. to see how they affect the unique termination of BuieSet. It may interactively simplify the rule,
reverse it, or add new rules [§5.2].

axioms LessLast(q apr x) = = q,
Last(q apr x) = = x;

rulelemma[s] a1[, ... , an];
As far as the system is concerned, the rulelemma command is a synonym for the ~
command .. The source of rulelemmas is intended to be different, however. Axioms are basic
assumptions or definitions of the data type; rulelemmas are useful primitive properties that
should be provable from the axioms.

definers] a1[, ... , an];
each aj is a rule Ihsj = = eXPr Definitions are rewrite rules, but these rules are only applied
when specifically invoked by the user with the invoi<.e command [§7.5.2.3]. Definitions are
generally used to simplify notation: they are only invoked when needed, so that their contents
do not overly complicate propositions. Variables in exp; must either be bound quantifiers or
must appear in Ihsl , but !1Q1. both.

schema[s] a1[, "'1 an];
each aj is a rule IhSI = = eXPr The soundness of schemas is not determined by Affirm; the
user must establish this property. It is in schema declarations that the restriction imposed on
rules is most often felt. The following declaration illustrates a very common error:

schema Induction(q) = =
cases(Prop(NewSequenceOfElemType),

aU q, x(IH(q) imp Prop(q apr x)));

Here the parameter q is the same identifier as the quantifier in the expression. A correct

16.rhese examples were taken from type S~quenceOfE'emType in the PVLIBRARY.

(\
/

.,]

Rules

schema declaration would be:

schema Induction(q) = =
cases(Prop(NewSequenceOfElem Typ~),

all qQ, x(IH(qQ) imp Prop(qQ apr x)));

discard Ihs Ihs;

31

Ihs must be the left hand side of some axiom, ruhle:nn:a, definition, or schema. The rule in
RuleSet with left hand side identical to Ihs is remov:.:d from RuleSet. (This may destroy the
unique termination of RuleSet; no check for this condition is performed.)

4.3. Scope Model
The Affirm system keeps track of the order in which a user opens and closes type

specifications with a ContextStack. The elements of the ContextStack are types. The ~ and ~

commands push an element onto the ContextStack; the ~ command closes the current type

specification, and pops the top element from the ContextStack. CurrentContext, the top element of

the ContextStack, is the type being specified. During specification and proof attempts, the local

declarations of the CurrentContext, all interfaces of all types, and all rules in RuleSet are available to

the user. Hence, the ContextStack need not contain all types used during a specification, but only the

. type eurrently being specified or used. Initially the ContextStack contains the element Basis, a type in

which' only the equality interface has been declared.

Affirm will stop and ask the user if it cannot determine the data type to which any given

function belongs. For example, if the user types

type foo;
interface Null: foo;
end;

type fum;
interface Null: fum;

then upon each reference to the interface Null the system will ask the user to clarify the ambiguity.

4.4. Sufficient Completeness
How does one write a specification of a data type, and, furthermore, how can one check that

the specification is, in some sense, completely specified? One idea of completeness of data types is

embodied in sufficient completeness, so named to distinguish it from notions of completeness in

logic, i.e., that every well· formed formula or its negation is provable.

A data type can be viewed as a heterogeneous algebra [V,'F] where V is the set of types, vi' and

F is the set of functions, called opera~ors, f;" [Guttag 75]. For an abstract type [V, Fl, the set of axioms,

32 The Specification Machine

or axiomatization, A is sufficiently complete if. for every word of the form f,(x1 ••••• xn). there is a

theorem fj (x1 ••••• xn) = u derivable from A where uEvj and Vj€V. Sufficient completeness is . (

undecidable. However. there is a set of conditions, sufficient to guarantee sufficient completeness.

which constitutes a semi·decision procedure for recognizable sufficient completeness. Intuitively,

sufficient completeness is a condition which. when satisfied, indicates that the axiomatization

captures the meanings of all the operators of the type being defined. These conditions, developed by

Guttag [Guttag 75, Guttag 78c]; and described below.

Before proceeding with the algorithm for sufficient completeness, some notation needs to be

developed, and some terms need to be defined.

• The data type Being defined by the axiomatization is called the type of interest or TOI.

• The set of operators F can be partitioned into two subsets called S and O. S is the set of
operators whose range is the type of interest. 0 is the set of operators whose range is other
than the type of interest. 0 is called the set of output (or selector) functions. Furthermore, the
set S can be partitioned into two subsets called C and E. C is the set of constructor functions
and E is'the set of extender (or modifier) functions. (Several such partitionings of S may be
possible.)

• C consists of the operators which produce new values of the TOL These constructors
have the property that all instances of the data type can be represented using only
operators in C. For the type SetOfElemType. for example, each set that has n>1 elements
can be represented by Insert(... Insert(EmptySet, i1), ... , i~) and each set that has n = 0
elements by EmptySet. This representation only in terms of members of C is called the
normal form.

• E consists of the operators which do .!lQ1 produce ~ values of the TOI. These operators
are not necessary in representing values of the type of interest.

· NEST(x) is the greatest depth to which operators contained in F are nested in the expression x.

• Each axiom is of the form f(s(x*), y*) = z, also referred to as Ihs = rhs, where x· and y. are
lists, possibly empty, of free variables.

• An axiom is conditional if its rhs has the form if b then z1 e/sez2•

• A function f is convertible if its range is TOI and, given an axiomatization A, for all assignments
to the free variables x·, there is a theorem f(x*) = z derivable from A where z contains no
occurrences of f.

The following is an algorithm for constructing a recognizably sufficiently complete data type

axiomatization. as presented by Guttag [Guttag 75] and Guttag and Horning [Guttag 78c].

1. Partition F into the three disjoint subsets C, E and O.

2. Build the set CTERMS = {f(x1, ... , xn) If E C and x1' ... , xn are free variables}.

/-"
U

Sufficient Completeness 33

3. Build the set CTERMS = {f(x1 xn) If € 0 and \lxl (x; is a free variable if xI f TOI; otherwise x,
E CTERMS)}.

4. Build the set ETERMS = {f(x1 xn) I f € E and \Ix; (xI is a free variable if XI f TOI; otherwise x,
E CTERMS)}.

5. Construct a set of axioms using the members of CTERMS as left hand sides such that the
resulting axiomatization of the type [V. F·El is sufficiently complete. To do so. right hand sides
should be built such that the resulting axioms satisfy the following conditions.

• If the axiom is not conditional, NEST(lhs) > NEST(rhs).

• If the axiom is conditional then each of the theorems Ihs = Z1 and Ihs = z2 must satisfy
these two conditions and either NEST(b) < NEST{lhs) or the range of f is Boolean and the
theorem Ihs = b satisfies these two conditions.

6. Construct a set of axioms using the members of ETERMS as left hand sides such that the
convertibility of each member of E is shown. To do so. right hand sides should be built such

. that the resulting axioms satisfy the following conditions.

· If the axiom is not conditional then there are no occurrences of fin rhs or, if f does occur.
then its first parameter is a free variable contained in x· and its other parameters are free
variables contained in y •.

• If the axiom is conditlonal.then each of the theorems Ihs = z1 and Ihs = Z2 must satisfy
these two conditions and either b must contain no operators in F or b must satisfy the
conditions in step 5.

From the algorithm for constructing recognizably sufficiently complete axiomatizations an

algorithm for discerning recognizably sufficiently complete axiomatizations, a sufficient completeness

checker. was derived. The checker is invoked with the following command:

sufficient? typeName;

The sufficient completeness checker determines from the axioms the constructors, extensions and

output functions and displays each set. It then examines the left hand sides of the axioms in

conjunction with the sets C. E and C to determine if exactly the correct left hand sides are present.

This corresponds to steps 3·4 of the algorithm. If any of the required axioms is missing. the user is

informed of the situation and the checker terminates. At this point, each axiom is analyzed with

respect to ttie conditions either in step 5 or step 6. as is appropriate. If each axiom satisfies the

criteria, the axiomatization is sufficiently complete, otherwise the checker cannot determine whether

it is sufficiently complete. In either case, the user is informed of the outcome.

The sufficient completeness checker is actually based on an extended version of the algorithm

described above. The extensions are presented separately to avoid a more difficult presentation of

the algorithm. The extensions are:

\J . The parameters of the type of interest need not occur first in the parameter list. Thus, for the

34 The Specification Machine

type SequenceOfElemType in the Type Library, there is the operation

apl: ElemType X SequenceOfElemType SequenceOfElemType.
(1'.'\$"

An operation may have more than ... parameter of the type of interest. Thus, for the type
SequenceOfElemType there is the operation

join: SequenceOfElemType X SequenceOfElemType
- SequenceOfElemType.

- Output functions may appear in axioms that have left hand sides different from those in
OTERMS. In steps 3 and 5 of the algorithm stated above for constructing data type
axiomatizations, each left hand side of an axio~ involving an output function, f, must be of the
form f(s(x*), y*) where sEC, the set of constructors. Stated simply, the set consisting of each
output function composed with each constructor is exactly the set of left hand sides that must
be present (for-output functions) to satisfy the algorithm. However, this can be relaxed. For a
given output function f, all axioms having left hand sides f(s(x·), y*), sEC can be replaced with
one axiom with left hand side f(x1, ... , xn) such that VXj (x; is a free variable). For example, for
the type SetOfElemType instead of the two axioms with left hand sides

IsErripty(NewSetOfElemType)

and

IsEmpty(add(s, x»

the following axiom suffices:

IsEmpty(s)= = (s = NewSetOfElemType)

sufficient? typeName;
typeName must be a member of TypeSet. A sufficient completeness check is performed.

4.5. Type Management

4.5.1. Displaying, Saving, and Restoring Types
Affirm provides the user with commands for displaying, saving and restoring types. The

comm'and

print type typeName [OptionList];

displays information stored in the type typeName depending on the OptionList selected. The

available options are declare, interface, A2tiQm, rulelemma, d.mn, and schema. Any number of the

options may be reques~ed with each print. The default when no OptionList is supplied, is to provide

all:

print type typeName declare, interface, axiom, rulelemma, defn, schema;

All the information stored in a type may be'saved in a file by the ~ command (§9.6]. At a later time r-·~
~ /

I

o

--

Displaying, Saving, and Restoring Types 35

the type may be loaded into Affirm by the ~ command [§9.6], restoring all the information

previously saved. The file name of the type is the uppercase version of the type name. Types can

also be compiled [§9.6], since the internal representation of a data type specification is simply

Interlisp code. Compiled forms of data types are more efficient to use in most cases than other forms.

The exception is when the data type is still undergoing development; then the ~ version is better.

----------------------------... , -~ -------
print type typeName;

typeName must be a member of TypeSet. The declarations, interfaces, infix operators, axioms,
definitions, and schemas of type typeName are printed on the terminal. Should only a subset of
these be desired, typeName may be followed with a list of options.

print type ElemType;
print type SequenceOfElemType decl schema;

4.5.2. The Type Library
The PVLIBRARY contains a number of data type specifications that may be of use to the user,

including sets, sequences, circles, binary trees, and of course, stacks and queues. The commands

that actually read these specifications into Affirm are read, load, and, more generally,~. These

") are all documented in Chapter 9. The data type specifications themselves are contained in the TYPE

'.J LIBRARY, Volume III of the Affirm Reference Library.

36 The Rewrite Rule Machine

5. The Rewrite Rule Machine

5.1. Introduction
Affirm encourages the use of equational specifications for data abstractions, since the

theorem prover is oriented toward performing deductions by making equational substitutions. The

theorem prover is able to make such deductions automatically by treating equations, whenever

possible, as rewrite rules. These are rules of the form

left - right

where left and right are expressions (possibly containing variables). The rules are used to rewrite

expressions by repl9:,cing with right all subexpressions matched by left. Rewrite rules are applied to

an expression until no further rewriting is possible; their order of application is immaterial. For

example, suppose we have the rules

1. Length(NewSequence) - 0
2. Length(s apr i) - Length(s) + 1

which define how to compute the length of a sequence. NewSequence is the empty sequence; apr,

~ppend right, builds a longer sequence from two parameters, a sequence s and an element i. Given

the expression

Length«NewSequence apr i) apr j)

simplification would occur as follows:

Length«NewSequence apr i) apr j)
Length(NewSequence apr i) + 1
Length(NewSequence) + 1 + 1
0+1 + 1
2

by rule 2
by rule 2
by rule 1
arithmetic

An essential property of a set of rewrite rules is finite termination: no infinite sequence of

rewrites is possible. Another extremely useful property is unique termination: any two terminating

sequences of rewrites starting from the same expression will have the same final expression (no

matter what choice is made of which subexpression to rewrite or which rule to apply first). A set of

rules with the finite and unique termination properties is said to be convergent. If a set of axiomatic

equations can be treated as rewrite rules, and these rules (or a finite set of rules derived from them)

are convergent, then one can decide when an equation is provable from the axioms just by rewriting

both sides to their final expressions and checking these for identity. Using rewrite rules to prove

equational properties is generally much more efficient than other techniques requiring heuristic

searching. Thus, the Affirm system attempts to form the equational parts of data type specifications

into rewrite rules with this convergence property.

At present, the system does not attempt to prove that the finite termination property is

maintained when a new rule is added to its data base, but rather assumes this property (although

(\

/

Introduction 37

/' ~\ some simple tests are applied that may reveal its absence, in which case the rule is not added),

~~
5.2. The Knuth-Bendix Convergence Test

The system checks for unique termination using an algorithm based on the Knuth-Bendix

method O<nuth 70, Huet 78], during the processing of the axiom, rulelemma, and complete

commands. The algorithm is able to generate additional rules that may rest,ore unique terminati ')n

when an added rule violates this property [Musser BO]. (Rules found to be redundant will bE

discarded.) The unique termination check is one of the places where the system may stop and ask

the user a question [93.2]. If a new rule must be generated to preserve unique termination, and the

rule's ~irection is o!)en to question, the user will be asked to decide.17 If the convergence process

finds a contradiction, it discards any rules it has added (including the rule the user was trying to add)

and restores any rules it has discarded.

As an illustration of the Knuth-Bendix convergence process, consider the type Group:

type Group;
declare x, y, z: Group;
interfaces

e, Inv(x), op(x, y}: Group;
infix op;
axioms
1. e op x = = x,
2. Inv(x) op x = = e,
3. (x op y) op z = = x op (y op z);
end {Group};

As each rule is entered, Affirm determines any interactions with existing rules. It seeks to unify

the left-hand side of one rule with some non-variable subexpression of the left-hand side of another

rule. For example, rules (1) and (3) can be unified to

(e op y) op z

Since both rules are now applicable, we ask whether they ultimately give us the same result. To do

this, we form a pair of expressions, according to which rule we apply first (we call this a critical pair).

We then full simplify the pair. In the above example, the pair is

<y op Z, e op (y op z»

which simplifies to

<y op z, y op z)

If the two halves of the critical pair are identical, then the rewriting behavior of the two original

rules conforms to the requirement that order of rule application be immaterial. Otherwise, we need to

generate a new rule. For example, rules 2 and 3 overlap to give us

17 The profile entry CautiousCompletion [§3.13j can be set to On to make the system ask about all attempted additions.

(inv(y) op y) op Z

which generates the critical pair (simplified ~y rule 1):

<Z, inv(y) op (y op z»

The Rewrite Rule Machine

We need to add this as a rewrite rule; since ~ appears freely on only one side, only one direction is

appropriate. Affirm generates the rule

inv(y) op (y op z) - Z

and proceeds.

5.3. User Interaction
When a rewrite rule is about to be added, Affirm checks it for validity and direction. Rules are

-subject to the following constraints:

1. All variables occuring freely on the right-hand side must be present on the left-hand side.

2. The rule ~ust never self-loop.18

If a rule does not meet these criteria, or if it was generated by the system and must be

confirmed, the user is asked what to do.

-5.3~1. Common Responses

? Lists the available options.

Reverse
•.. direction. Treat rule as RHS - LHS.

Treat ... as equation -~. The rule LHS = RHS - ~ is used, instead.

Yes Accepts the system's choice.

5.3.2. Other Responses (Not Recommended)

Accept
The system accepts another rewrite rule (or rules) trom the terminal, processes these rules, and
then processes the rule that caused this interaction in the first place.

Keep ... as is. In spite of Affirm's objections, the rule is forced into the system.

Suppress
Discards the rule, recording it on the list BadEguations. The set of rewrite rules may no longer
have the unique termination property. (No check is made of BadEguations.)

18A rewrite rule is forbidden if a nonvariable subexpression of the right ha~ side is left-unifiable with the left hand side.
Expression cr is left-unifiable with fl if ther~ are substitutions p, 6 such that p(8(cr» = 6({J). For example, unification
corresponds to the case where p = Identity, and pattern matching to 6 = Identity.

-------~

Other Responses (Not Recommended) 39

'\ Only some of these responses are available from anyone question. The particular set of

("'J choices can always be displayed by typing? The Users Guide contains advice on how to answer this

question.

5.4. Rew rite Rule Command
The complete command invokes the Knuth-Bendix process directly.

complete;
Attempts to prqve the Current Proposition by reductio ad absurdum (proof by contradiction). It
does this by negating the conclusion of Current Proposition, forming a rewrite rule from it, and
(temporarily) adding it to RuleSet. Each hypothesis of Current Proposition is also turned into a
rewrite rule and (temporarily) added to RuleSet. The algorithm then tries to generate a
contradiction in RuleSet, by performing the unique termination test. If the rule

true - false

is generated, the Current Proposition is proved by contradiction. Otherwise, the final set of
rules is used to construct a new result, which may be somewhat simpler than the Current
Proposition.

40 The Logic Machine

6. The Logic Machine

6.1. Introduction
The Logic Machine provides the basic underlying propOSitional calculus operations. as well as

skolemization, normalization, unification, instantiation, and case analysis. It is used by the Theorem

Prover and ,:ses the Rewrite Rule and Specification Machines.

6.2. Propositions
Propositions ar.e simply Boolean·valued expressions and have the form:

all x1' ... , xn~Y1' Ym: (P(x1, ... , xn' Y1, .•• , Ym»

The keywords all and some are the standard universal and existential quantifiers of logic.

6.2.1.lf-Then-Else
In Affirm, all logical connectives are translated into an internal H-Then·Else form. The

simplification rules associated with this form are sufficient to recognize any ground·state tautology.

The conventional operators are translated from external to internal form as follows:

not x - if x then ~ else true
x or y - if x then true else y
x and y - if x then y else false
x imp y - if x then y else true
x eqv y - if y then x else -x

For example, the proposition

(P and (A imp B» imp C

would translate to

if (if P then (if A then B
else true)

else false)
then C
else true

(This will then be simplified [§6.3.1].)

6.2.2. Skolemization and Quantification

(1)

The system retains only Skolemized propositions in prenex form, those with all quantifiers in

front and functions substituted for the quantified variables in the formula. The all and ~ lists

displayed with propositions by the theorem prover are lists of Skolem functions. The Skolem

functions arise from transforming a proposition~ in the prenex form ,

01x10 2x2 ... °kXkF

\

,J

Skolemization and Quantification 41

where for 1 <i<k the Q. are quantifiers, the x. are variables, and F is a quantifier-free logical formula,
-- I I

into an equivalent quantifier·free formula. Each universal quantifier and its associated variable Y.. are

deleted, and all occurrences of Y.. in F are replaced by

V(Y1' ... , Yj)

where Y1, •.• , Yj are the existentially quantified variables preceeding Y.. in the quantifier prefix_ After all

universal quantifiers have been deleted, the existential quantifiers are simply dropped. Those familiar

with the resolution method of theorem proving will notice that this is the dual of the Skolemization

method used there [Robinson 65]. The following example illustrates the Skolemized proposition form.

all x (some Y (all z (P(x, y, z)))) V x::J ~-'.) r/ 7:;.6) P (XI j : ~)

Instantiations of existential quantifiers by the m!! command [§6.5] must satisfy the Skolem

dependencies of the proposition. In the previous proposition ':i is permitted to depend on 2S,; thus,

instantiations such as y= x or Y= 0 (assuming ':i is an integer) are permitted. However, since ~

depends on ':i, the instantiation Y = z is forbidden.

6.3. Simplification and Normalization
These operations reduce all propositions to a standard form.

6.3.1. Simplification Rules for If· Then-Else
The internal If-Then-Else form is automatically simplified in a manner similar to that of

[McCarthy 63]. Consider a ternary function u(expr, assumed, denied) that simplifies ~ in the

context of assumed and denied (which are disjoint sets of predicates). Our procedure can be

described by the following five rewrite rules.

1. u(if x then Y else z, A, D) - u(y, A, D), if x E A

2. u(if x then y else z, A, D) - a(z, A, D), if xED

3, u(if x then y else z, A, D) - a(y, A, D), if Y and z are identical

4. u(if (if p then q else r) then y else z, A, D)
- a(if p then (if q then y else z) else (if r then y else z), A, D)

5. ·a(if x then y else z, A, D) - if x then a(y, AU{x}, D) else a(z, A, DU{x})
if rules 1-4 do not apply.

The simplifier also recognizes equality operators, which it treats specially. In rule 5, if the predicate 2S,

is of the form a = b. then b = a is also added to the assumed and denied sets, providing for the

commutativity of equality. Our earlier example. equation 1 [§6.2.1], would thus simplify to

42

ifP
then (if A

then (if B
then (if C

then~
else~

else~
else (if C

else~

then true
eJse~)

6.3.2. Normalization
The function Normalize: expressions - expressions can be defined as

Normalize(x) = a(Rewrite(x), {true}, {false})

The Logic Machine

Rewrite(x) applies all rules in the Rewrite Rule machine, and a simplifies the conditionals.

normalize;
. Causes the Current Proposition to be (again) normalized and printed. Since propositions are
normalized upon becoming current, this will normally have no effect, but may be necessary due
to the occasional incompleteness of the simplification process.

6.3.3. Case Distribution
The case analysis rules are schema: let g be a functio!:, symbol, and x1' ••• , x"' y, z be

expressions. The schematic rewrite rule

g(x1, ••• , (if Xi then y else z), , xn)-
if Xi then g(x1, ... , y, ... , xn) else g(x1, ••• , z, ... , xn)

~ embedded If-Then-Else expressions across function symbols to the outer level of expressions.

Such embedded conditionals arise from automatic application of rewrite rules or from (user)

controlled invocation of definitions. The case analysis rules are not applied automatically.19

Immediately after normalization, a message is printed to~h.t alert the user to the possibility of

applying the rules. However, further logical steps, e.g. replace or lemma application, may be applied

to reduce the branchiness of embedded conditional expressions. Case analysis may OQ! be applied

selectively to subexpressions, hence there is potential for exponential case explosion. However the

interaction between br;:inches via simplification usually considerably reduces the final number of

19The profile entry AutoCases [§3.13] will ~ause automatic application of the cases command.

c

(-\

o
Case Distribution 43

cases;
distributes functions over If-Then-Else's in the Current Proposition.

Do not c'onfuse this command (distributing conditional expressions) with the case r expression

(expressing proof division in schemas) or with the suppose command that bifurcates the proof tree.

6.4. Evaluation
•

eval expression;
Simplifies expression. and prints the result. This is useful for testing and demonstrating
abstract data types.20 For more details on its use, see the Users Guide .

. set variable to expression;
variable no longer represents itself; it is assigned a value (which will replace it whenever an
expression is normalized]. (This effect is permanent until variable is explicitly given another
value.) This may be useful in conjunction with the eval command. Other than that, it is not
recommended.

6.5. Instantiation and Unification
These commands provide a means of assigning values to existentially-quantified variables.

put v1 = e1 [, vn = en]; .
Each of the vI must be a variable in the some list of the Current PropOSition. Each of the ej is an
expression upon which the corresponding vi can legally depend [§S.2.2]. The e, are substituted
for the corresponding vi'

let v1 = e1 [, vn = en];
Has the same effect as the put command. except that the new result is the disjunction of the
unchanged and the instantiated versions of Current PropOSition. Thus. all variables in the ~
list remain subject to further instantiation with the .QY1 or let commands. This is useful if the
user is not quite sure about an instantiation. or wishes to perform multiple instantiations. (It
does, however, double the size of the expression.) If, for example, the Current Proposition was

all x (some y (P(x, y)))

The command

puty = x;

20The profile entry ShowRules [§3.13) is useful for observing the application of axioms to sample expressions.

44

would give

all x (P(x, x»

while the command

lety = x;

wo~ld yield

all x (some y (P(x, y) or P(x, x)))

The Logic Machine

6.6. Chaining a~d Narrowing
The search command implements a procedure called chaining and narrowing [Lankford 78].

Chaining can be viewed as a generalization of Simplification Rule 4 that propagates assumptions and

denials through branches of conditional expressions. The generalization occurs in using the most

general unifier of subexpressions in the condition and branch expressions. For example.

if P(x) then Pea) else ~

can be chained to produce

if Pea) then true else true

. . Narrowing is the application of the usual simplification rules to the formulae resulting from

chaining. So the chaining and narrowing procedure is nothing more than determining unifiers,

applying them, and normalizing. The effect of the algorithm is the determination of whether a

quantifier-free first-order sentence (arising from Skolemization) in If-Then-Else form has a ground

instance.

In practice, this means that the algorithm simply tries all instantiations. normalizing each ,
instantiated formula, and stopping if an instantiation results in reducing the proposition to~. The

output of the algorithm may be any of the following:

1. Unsuccessful: no unifications can be found.

2. A list of labeled instantiations culminating in unsuccessful.

3. The above list of labeled instantiations followed by the effect of an automatically applied m!1 of
the effective instantiation, giving the result ~.

Search essentially consists of a possibly large number of evaluations, with the associated cost.

In the second case above, the auxiliary command choose permits selection of an instantiation

by its hierarchical labels, in effect a .ml1 of that instantiation. The list of instantiations is not

maintained but instead is re-generated up to the point of the specified choice. Hence, choose causes

little additional space consumption.

/
!

(,

Chaining and Narrowing 45

Search should be applied either where its success is not expected, but its instantiation list is

~~) desired, or where its success is fully expected in that an instantiation is probable, but perhaps lengthy

or tricky to enter. Search is not meant to be used in the connotation "go to work, algorithm, and see

what you can do for me."

search;
Uses the method of chaining and narrowing to attempt to automatically find the instantiations
sufficient to reduce Current Proposition to~. The command displays the sets of
instantiations it tries. These may be referenced by the user in the choose command.

choose path; •
Related to the search command, this command allows the user to pick some sequence of
instantiations tried by the search command. The search command prints a small integer label
to the left of each instantiation it attempts. The sequence of numbers descriJing the choice··
path .. is the parameter to the choose command. This command is useful if search found
lengthy instantiations, but was unable to achieve a final proof.

6.7. Intege r Simplification
Simplification of integer expressions contained in propositions occurs both automatically and

. at explicit user request.

The automatic simplification is part of the normalization process. For a very few integer

operations, the system essentially adds more information to the sets of Assumed and Denied

propositions at each application of the five If·Then·Else evaluation rewrite rules [§6.3.1]. For

example, suppose the current proposition under proof attempt, P, is

if i < j
then x
elsey

Then a(P, A, D) =
a(if i < j then x else y, A, D)

= if i<j
then a(x, A U {i<j} U {i<j}, D U {j<i, j<i, i = j})
erse cr(y, A U {j~i}, 0 U {i<j})

This incorporates the knowledge that j(j implies i:::;;j and j~i, and that i~j implies iSi.

Extra information is only added for the integer inequality and equality relations. as follows.

46

Operation
Then-Branch

Assumed Denied

= i=j, i<i, i<i i<i, j<i

< i<i, i<j j<i, j<i, i = j

i<j j(i

Extra Information
Else-Branch

Assumed Denied

i=j

j<i Kj

The Logic Machine

j(i,j<i i = j. j<i, i<j

The system adds these extra facts only temporarily, during the normalization process. These facts

~re not added permanently to the proposition. If the user needs to introduce a hypothesis that is

deducible from the hypotheses already present in the current proposition, the best approach is to use

the suppose command [§7.4.2.2], which will split the proposition up into two (simpler) propositions.

One of these two should be trivially ~.

More explicit integer simplification is provided by the normint command (normalize lD!egers).

This command !n an implementation of separation theory [Pratt 78], a theory complete over integer

constant addition. Separation theory basically keeps track of the minimum non-negative separation

between each pair of integer terms. A non-zero separation means one term is less than the other; a

zero separation means the two terms are equal. A directed graph structure is used to build up the

known separations between each pair of terms in the current propOSition. The transitive closure of

the graph with respect to this separates relation thus represents the complete known relationships

amof'!g the terms in the proposition. A cycle with non·zero separations indicates a contradiction, as is

displayed in the following example. Suppose the current proposition is

i(j
andj<k
andk<i
impC

The transitive property of the "<" operator and the first two hypotheses imply that i < k, which is

directly contradicted by the third hypothesis.

The directed graph structure representing the known separations between integer terms is built

up from the individual integer inequalities as follows.

f -'\
r

(''\
/

Integer Simplification

i < i (or i + 1 ~ j)

i < k (or j + 1 < k)

k < i (or k +' < i)

1
liI-/jl

1
li/- Iii

"'1
Ikl

1
li/-/jl

1 '" '" 1 Ikl

47

At this point, the graph contains a cycle with non·zero minimal separations, indicating a

contradiction. The hypothesis is tRere false, making the CurrentProposition true.

~
normint;

invokes the algorithm employing separation theory to simplify the current proposition using the
integer inequalities contained in it.

6.8. Output

6.8.1. Translation of Internal Form to External Form
Complicated logical expressions can take many interchangeable forms. Once the system has

converted propositions into the internal If· Then·Else form, it has no way of recalling how they should

be printed. (For example, does the user want to see "A imp B" or "not(A) or B"?) It uses a series of

heuristic rewrite rules to produce normal logical connectives from the internal form. Generally, the

system deals well with implications and conjunctions, but not quite as well with equivalences and

disjunctions. The following rewrite rules summarize the transformations from internal to external

form:

jiB - X
then X
else X

jitrue - X
then X
elseY

tt~ Y
then X

~Y

4{1

j!B -B
then~
g~

ifB --B
-~~
g~

j!B - BorY
~true
~Y

if B - (-B) and Y
-lbml~

elseY

j!B - BandX
then X
else~

j!B
then X
else true

j!B
then X
~-X

j!B1
~(ifB2

then X
gY)

~Y

j! B1
then X
~@B2

then X
else y)

j! B1
then@B2

lbmlX
elsey)

~X

j!B1
!!:l§n X
~@B2

thenY
aX)

-BimpX

- XeqvB

- j! (B1 and B2)
then X
elseY

- j! (B1 or B2)
then X
elseY

-j! (B1 and (-B2»
!!:l§n Y
else X

- j! «-B1) and B2)
then Y
else X

6.8.2. Printing Variant Forms of, Propositions

print result;
prints the Current Proposition [§7.2] in its normalized form.

print variables;
lists just the variables in the Current Proposition.

The Logic Machine

(

The Theorem Prover Machine 49

o 7. The Theorem Prover Machine

7.1. Introduction
Almost all Affirm users will have theorems to prove. These may simply be useful lemmas about

the data types, stated and proven in order to verify that the specification matches its intuitive

counterp-u"1 ':-:)e) may be significant theorems whose proof is the ultimate goal of the Affirm

session. Or they might be verification conditions for a program.

Whatever the origin of these propositions. they will be subjected to the theorem prover. Some

of its important charatteristics are:

· It automatically simplifies expressions by applying rewrite rules from the axiomatically· specified
data types [Chapter 5].

· The proof process is user·directed .. one effectively "walks the system through a proof". The
user makes all strategic decisions; the system carries them out and displays the results.

· A natural·deduction style is followed. in the sense that one sets up goals and repeatedly splits
each of them into (perhaps several) simpler subgoals. The objective is to generate a set of

" terminal subgoals, all of which are directly deducible from the axioms. The state of a proof· in·
progress is represented as a Proof Tree.

",J "'0 Subgoals are proved independently.21 An instantiation in one branch is completely
" independent of any instantiations done in parallel branches. When soundness does not permit
such independent proving, Affirm forbids the split.

· Incomplete steps and unproven lemmas are monitored in order to assure the integrity of the
proof process. Circular reasoning is not allowed.

The User's Guide contains "An Introductory session with Affirm"; the session introduces many of

the theorem prover commands. In addition, Appendix VIII contains a very brief synopsis of a subset of

the possible system commands.

7.2. Key Data Structures in the Theorem Prover
,Propositions are Boolean expressions to be proven [§6.2]. The system has a cursor, which

always rests on one of them (designated the Current ProPosition).22 This is the one upon which

theorem proving commands act, and is one's goal, out of which we seek to generate subgoals.

2101 course, lemmas may be shared among different parts of a proof.

22lnitially, the Current Proposition is the c;nstant true. which cannot be further proven.

50 The Theorem Prover Machine

Certain propositions are included in the set Theorems;23 one's primary task is to prove them, although

in the process they will probably be broken into easier subgoals. Verification conditions [§8.3] are

theorems, as are conjectures entered by the user.

Since proofs proceed by the generation of subgoals, a proof can be viewed as a tree (rooted in

the theorem). Nodes correspond to propositions, and arcs record the subgoaling relationships

between them. Associated with each node is the Affirm command (if any) by which its

demonstration has been attempted. Consequently, the state of the theorem prover can be

summarized by the Proof Forest, a collection of such trees. The theorem (if any) whose proof tree

includes the Current Proposition is called the Current Theorem.

Since lemmas are often used to partition a proof in order to reduce complexity, the proof tree of

a lemma is kept separate from those of any theorems which apply it. Instead, the logical dependency

established by lemma application is recorded in a separate graph, the uses relation. (Remember that

lemmas, since they are user·entered conjectures, are included in the set of Theorems.)

In order for a theorem to be proven, it must use only proven lemmas, and all leaves in its proof

tree must be reducible to!JJ.!§. Affirm monitors both of these conditions in order to notify the user as

progress is made and to provide help in identifying and selecting unfinished parts of a proof. We use

the term unfinished leaves to refer to the non·true propositions on a tree's frontier. Each theorem has

a proof status, which is one of the following:

"untried: no proof attempted

• tried: has a proof tree, but still has unfinished leaves

• awaiting lemma proof: proof tree is completed, but some of its lemmas are unproven

• proven: tree complete, all lemmas proven or assumed

· assumed: has been so designated by the assume command [§7.9.1].

Affirm announces as a theorem progresses from state to state; for example, it might say

theorem Main awaiting proof of lemmas SeqLarger and SeqFact.

Propositions may be named [§7.9.2], or annotated with an arbitrary comment [§7.9.3]. If the

user does not supply a name when stating a lemma, one is automatically generated. Unnamed

"positions within a tree are assigned a unique node number so the user can still refer to them. If a

'and generates more than one subgoal, each is identified by an arc label. For example, the

'nomenclature: we use the term theorem to refer to conjectures, whether proven or not. This is in the spirit
.,,; the user's job is to demonstrate that all the conjectures in the set Theorems are really theorems. Thus

'orems and unproven theorems. Sometimes, the unproven theorems are in fact found to be false and

/

(

Key Data Structures in the Theorem Prover 51

cases of an induction on sequences might be labeled with NewSequence: and apr:.24

7.3. Theorem Creation
Theorems are entered into Affirm by the commands theorem, ~ (§7.6.1.1], ~ (§7.4.1.2],

mm.!Y [§7,4.1.1], and genvcs [§8.3].

theorem [nodeName, j pre'position;
This command simply enters the proposition into Theorems, and creates a root in the f!:QQ!
~ that may later be attempted. It does not affect the Current Proposition. The user may
associate a name with the theorem. This command is espeCially useful for command files
containing lists of theorems . ..

7.3.1. A Note on Syntax
Several Affirm commands allow a target to be specified using the syntax

[nodeNqme,] proposition

This permits one to refer to a known proposition by name or expression, or to enter a new one. At the

same time, a name may be assigned, overwriting any previous one for this expression. Here are some

examples.

~ Easy1; {Easy1 is a/ready known to Affirm}
. ~ EasyVc, SortUpwards # 3; .{ rename a known propn while applying it}
theorem PandR, P(x) imp R(x, f(x»; {name something new}
~ P(f(x» imp P(x); {In case user r~members expression but not name. Uncommon.}

7.4. Proof by Several Subgoals
A crucial element of a proof strategy involves deciding how to divide a proof into subgoals

which can then be attacked independently. Properly done, this can be the key to a manageable proof

for a complex theorem.

7.4.1. Lemma Application
The user will often make use of lemmas. These are theorems in their own right: meaningful

statements about the data types, proven separately from the Current Theorem.

7.4.1.1. apply [nodeName, 1 proposition;

This command places proposition in Theorems, and adds it as a hypothesis to the Current
Proposition. The command records this dependency by establishing the Uses relationship
between the Current Proposition and proposition. The expression corresponding to

:\J 24By convention all arc labels end in a colon. so they can be distinguished from node names.

52 The Theorem Prover Machine

proposition will have its variables renamed to avoid conflicts; the renamed form is printed on
the terminal. The resultant Current Proposition is !lQ1 printed,25 since no. meaningful
simplification will occur until the user has performed instantiations. Typically, a J2U1 or search
command will follow mm.l:l (§6.5].

7.4.1.2 .. use [nodeName,] proposition;

Like~, but prints the new Current Proposition.

7.4.2. Case Analysis
When a proof applies a lemma, some generally meaningful fact simplifies an intermediate proof

step. Alternatively, one may ask that such an intermediate expression be subjected to case analysis,

yielding two or more pieces to be proven separately. (Because these proofs are independent, certain

constraints are enforced concerning §Q,.!!)§ variables.)

7.4.2.1. augment proposition;

proposition is added as a hypothesis to the Current Proposition. Separately, the user must
show that proposition can be deduced from the hypotheses already present. Any free variables
in proposition are identified with those in the Current Proposition, rather than being renamed.
Given a Current Proposition of t~e form

HimpC

this command spawns the two children:

- H imp proposition

- (H and proposition) imp C

These children are assigned the arc labels ~ and ~, respectively.

7.4.2.2. suppose proposition;

This command splits the Current Proposition into two (and sometimes more) cases:

• proposition imp Current Proposition

- proposition or Current Proposition

These children are labeled ~ and !lQl.

When proposition is omitted,26 the splitting predicate is automatically generated by Affirm using the

25Sutsee the~command [§7.4.1.2).

26The suppose command without a parameter replaces the obsolete mlll command.

/ '\
\

suppose proposition; 53

\ internal If-Then-Else form of Current Proposition. Basically, the predicate is chosen from the
~ first significant branch point. For example, if the Current Proposition is of the form

AimpB
and H

impC

the suppose command will yield

A

and

and B
and H

impC

(-A)
and H

impC

A detailed description follows, but it is usually best just to experiment. The children generated by the
suppose command are labeled first:, second:, etc. Usually there are only two.

If Current Proposition is of the form:

ifB then C, else C2

C, and C2 and ... and Ck

_H imp (C, and ... and Ck)

7.4.2.3. employ schema(va r);

The children are:

{B imp C" B or C2}

{Ck, C1 and ... and CIt_,}

-{H impC1,

(H and C1) imp C2,

(H and C1 and C2) imp C3,

•• 1,
(H and C1 and ... and CII_1) imp CIf}

{(H1 and H2 and C, and H3) imp C2,
- H, and (-H2) and H3 imp C2}

{H1 imp C1,

(-H,) and H2 imp C,}

This directs Affirm to set up a proof using a schema. Usually, a schema is used for data-type
induction or normal form arguments [§4.2.3). See the User's Guide for a description of how
schemas are defined, and what cases they produce.

Schema must have been defined for objects of var's abstract data type. The various cases are
set up as children of the Current Proposition; Affirm simplifies them and announces which
ones are immediately proven, and which remain to be attempted manually. If there is more than
one child, they are automatically given arc labels derived from the main operator of each case.

Employ can only be used when var is contained in the all list, and has no dependencies upon
any variables in the ~ list [§6.2.2]. For example, y may not be inducted upon in the

The Theorem Prover Machine

expression

~ x <All y (P(x, y»)

because otherwise one could give x conflicting instantiations in the different cases. If this
restriction were not enforced, one could incorrectly prove that

~ x <All y (x) 1 and remainder(y, x) = 0»

A Detailed Look at the Processing of an employ Command
IH is the inductive Dypothesis, and Prop is the .P[Q,Qosition to be proven. These expressions are
generated when the user issues the employ command, as follows. Suppose the induction
schema has the following definition:

schema Induction(s) = = cases(Prop(Zero),
all ss (IH(ss) imp Prop(Succ(ss)))); .

This is of course just the induction schema for non-negative integers. If the proposition to be
proved is P(i, j), for non-negative integers i, j, then when the user issues the command

employ Induction(i);

the following actions occur.

- IH and E.a;m are defined:

axiom Prop(i) = = all j (P(i, j»;

define IH(i) = = all j (P(i, j»;

That is, f.!lm is defined as an automatically-applied rewrite rule, and IH becomes a

/\
/

definition, to be explicitly invoked by the user. (~ '\

- After the above two rules are defined, each of the cases of the induction schema is
normalized. All of the rewrite rules in the system are used, as usual, in the simplification
and normalization process. This includes the axiom above defining Prop.

Prop(Zero)

becomes

all j (P(Zero, j))

by application of the axioms defining f!:.QQ; further application of other rewrite rules may
well simplify the propOSition even further. The induction step

allss (IH(ss) imp Prop(Succ(ss)))

becomes

all ss (IH(ss) imp (all j (P(ss, j»)))

when the axiom defining f.!lm is applied; the embedded quantifier(s) will 'bubble' to the
outer context during Skolemization, so that the whole propOSition becomes

all ss, j (IH(ss) imp P(ss, j»

and of course, further simplification will probably occur as a result of the application of
other rewrite rules.

- The two normalized propositions, corresponding to the two ~ in the schema

employ schema(var); 55

definition, are then· added to the proof tree of the Current Theorem by making them
children of the Current Proposition. Proof of both of these children is then. assumed to
validate the proposition trying to be proved. Notice that this assumes the schema itself is
a valid inference rule. Currently Affirm makes no attempt to validate this assumption.
When the user defines a schema Ind for a data type DT with cases A, B, C, intuitively the
user is filling in only the !QQ line of an inference rule, where the system has already filled
in the bottom line: given the command

schema Ind(6l~ = = cases(Prop(A), Prop(B), Prop(C»;

the system generates an inference rule as follows, with no further validation:

PropCA), PropCS). Prop(C)
all dt (Prop(dt» ..

In other words, the system always assumes the cases defined by the user ~ the entire
set of values of the data type. Therefore the system always generates an inference rule
with a consequent of the form

all s (Prop(s»

The Use of IH
Once the employ command has split up a proposition into a number of cases, each smaller and
hopefully simpler proposition is attempted on its own. Many will be of the form

all ss, j (IH(ss) imp P(ss, j))

where P is the propOSition that the user employed the induction schema upon in the first place.
IH is nothing more than an unexpanded P: .

IH(ss) = = all j (P(ss, j»

The main reason for the deferment of the expansion is to limit the large number of changes the
original proposition undergoes when a schema is employed. The deferment allows the
expansion to occur in several smaller steps, instead of one huge one. Given the above
proposition form, the user would probably expand the IH reference,

invoke IH;

and the proposition being proved would become

all ss, j ((all j (p(ss, j)))
impP(ss, j))

which after Skolemization would be

all ss, j (some j' (P(ss, j') imp P(ss, j»)

The reader can see that it is oft-times desirable to take these steps one at a time, rather than all
at once.

Another reason for deferring the expansion of IH is that a lemma may need to be applied, or a
definition other than IH may need to be invoked, that further simplifies the proposition before
adding the complexity of the detailed induction hypothesis.

The references to the induction hypothesis IH in schema definitions take exactly one
parameter, of the type being defined. However, when the references to IH appear in actual
propositions to be proven, they will have two parameters. The first is the usual value of the type
inducted upon; the second is a node number, the name of the node where the employ

56 The Theorem Prover Machine

command was issued. This is used to distinguish various IH's in different proof attempts (or
multiple IH's in the same proof attempt). The system attempts to be helpful, and map this
number into a user-defined name whenever possible. The user-defined name is displayed in
comment brackets to signify the fact that upon input of any expression involving a two
parameter reference to IH, the second parameter must be an integer node number, rather than
a user-defined theorem name.

7.5. Proposition Transformation
Obviously, one has to be able to do something with propOSitions other than fragment them; at

some point, the pieces have to be proven. They must be stepwise transformed, in a sound way, until

they r~ach true. Such transformations conveniently fall into two classes: instantiation, and

everything else. They all produce a single child, the new result.

7.5.1. Instantiation
The commands QY!, let, search, and choose assign values to variables in the ~ list of the

Current Proposition [§6.5].

7.5.2. Other Transformation Commands
The remaining commands all produce something .which is logically equivalent to Current

Proposition (in the context of the data type axioms). The result is presumably in a more workable

form.

7.5.2.1. complete;

Uses the Knuth-Bendix method to seek a proof by contradiction [§5.4].

7.5.2.2. replace [expression1 [, ••• , expressionn]];

replace reasons about equalities. This command can be automatically invoked by the
AutoReplace profile entry [§3.13].

If no argument is given, then hypotheses in the Current Proposition of the form L = R are used
to replace all other occurrences of L with R. If arguments {expression /} are given, each should
occur in an equality hypothesis of the form

expression I = RI

or

R. = expression.
I I

All other occurrences of expressionl are replaced with Ri' For example, if Current Proposition is

\

(
\

,J

replace [expression1 [, .••• expression n]];

fee(j, k)
and j = m
andn=k

imp fie(m. n)

replace; will yield

fee(m, k)
and j = m
and n = k

imp fie(m, k) .

while the command replace m, 0; will yield

fee(j, k)
and (= m
and n = k

imp fie(j, k)

57

Unfortunately, if a goal contains several equations replace may not work the first time. For
example, the proposition

fee(x, i)
and i = j
and j = k

imp fee(x, k)

would require two replaces to chain the equalities. Often, experimentation is useful; one may
. need to l.ffiQQ the replace and make it more specific and/or ~ some equalities. (See the
.user's Guide.)

7.5.2.3. invoke rangedOP1 [, ...];

Each of the specified operators should occur in the Current Proposition and have a definition [§
4.2.3]. The definition is expanded. (If an operator appears in its own definition, the new
occurrence will !1Q! be expanded; thus the process will not loop.) An ordinal range may be
specified; if it is not, the first occurrence of each operator will be expanded. Some examples:

invoke IH;
invoke IH 111;
invoke IH 121;
invoke IH lalll;
invoke IH Ilastl;

. invoke IH 1·11;
invoke IH 1·21;
invoke IH 12:41;
invoke F(i,DI2:51, G13,51;

invoke the first IH
"
secondlH
alllH's
invoke the very last IH

next to last
second, third and fourth
second through fifth occurrences of F(i,j)
and the third and fifth occurrences of G

This command ca.n be automatically invoked by the AutolnvokelH profile entry [§3.13].

The Theorem Prover Machine

7.5.2.4. swap rangedExP1 [, ...];

This command reverses equality hypotheses in the Current Proposition. Thus, it is often useful
in conjunction with the replace command [§7.5.2.2]. Each of the rangedExPf specifies one or
more equalities to be reversed. Such a specification may give one of the arguments to the
equality, or an ordinal range, or both. For example:

swap a;

swap 12\, 1·21;

swap a 1·11;

Swap all equations whose left hand side
(or right hand side) is the expression a.
Swap the second equation,
and the next·to·last equation.
Swap the last equation whose left· hand
or right· hand side is the expression a.

Note that "a - = b" is really "_(a = b)".

7.5.2.5. denote expression by variable;

Often the· same expression will appear in several places in a propOSition. If the common
subexpression is large, it can make the proposition confusing to read. In some other cases, it
would be useful to perform induction on the value of an expression; Affirm, however, only
allows this to be done for variables.

The solution to both of these problems lies in denote. It replaces all occurrences of expression
with variable, and adds the hypothesis

expression = variable

. to the proposition. Thus, if one wishes to expand these occurrences back out, one may issue
the commands27

swap variablel11;
replace variable;

Variable must not occur anywhere in expression. If the vadable is declared, it must be of the
proper type. If it is not declared, Affirm will do so automatically. The variable may also be
renamed to avoid name conflicts with any other variables bound in the proposition.

7.6. Cursor Movement
These commands all change the Current Proposition, but are nondestructive; they leave the

Proof .Forest unchanged.

271ntervening commands might cause otJ:!er equalities involving variable to precede this one, in which case the ordinal (
number 1 would not be appropriate for swap.

(\

Absolute Movement 59

7.6.1. Absolute Movement

7.6.1.1. try [nodeName,] proposition;

Makes proposition be the Current Proposition. If proposition is in Theorems, it becomes the
Current Theorem; otherwise, this designation is applied to its parent theorem. (If proposition is
new or an orphan, then it is added to Theorems.) proposition is normalil:r;d and r:-inted. This
command is used for

• random access in a proof tree; and

• starting gr resuming a proof (but see the description of resume [§7.6.1.2]).

7.6.1.2. resume;

The Current Theorem must be tried. The Current Proposition is restored to the value it had
when the. user was last proving this theorem, thus resuming a partially-completed proof. (This
command is usually preceded by a ~ command.)

7.6.1.3. retry;

Retries the Current Theorem.

7.6.1.4. next;

Moves to the next task, according to a depth-first plan, using the following hierarchy:

1. If the Current Theorem has unfinished leaves, move to the next one.

2. If the Current Theorem applies an unproven lemma, try it.

3. If the Current Theorem is applied as a lemma by an unproven theorem, return to it. (This
process extends to any unproven ancestor.)

4. If none of the above hold, then stay put and perform the command

print status unproven;

Within this hierarchy, we prefer the most-recently-attempted theorem. Where possible, resume.
This command can be automatically invoked by the AutoNext profile entry [§3.13).

7.6.2. Relative Movement
These commands all operate in terms of the Current Proposition's position in the proof tree.

60 The Theorem Prover Machine

7.6.2.1. up [integer];"

Moves the cursor up to its immediate parent in the tree. If the Current Proposition is already a
theorem, this cpmmand has no effect. The number of ascensions (default 1) may be provided.

7.6.2.2. down [Child];

The Current Proposition must have children; this command descends to one of them. Child
maybe:

• an arc label;

· the name of a child;

· an ordinal number (between 1 and the number of children of Current Proposition);

· a node number (if Child) # children) (This option is not particularly recommended); and

• omitted: the first untried child is picked. (That failing, the first child is picked.)

7.6.2.3. arc arcLabel;

Is used to move between cases. Somewhere above Current Proposition is a node with a child
labeled arc Label. That child "becomes the new Current Proposition. For example, if an
induction has three cases (Zero:, Plus:, and Difference:), the user might wish to proceed in an
unusual order, saying

arc Plus;

arc Difference;

arc Zero;

7.7. Printing
The print command takes a host of forms. In the following, whatNodes may be taken to be one

or more of

· • for Current Proposition

• T for Current Theorem

• theo rems for all the members of Theorems

• named for all the named propositions

· a proposition

print status [whatNodes]; 61

\ 7.7.1. print status [whatNodes];
"~

Tells whether the specified theorems are tried, untried, awaiting lemmas, proved, or assumed.
The default when whatNodes is omitted is theorems.

7.7.2. print uses [whatNodes];

Which lemmas are applied where? The default is theorems.

7.7.3. print asspmptions;

Lists all the assumed propositions, and which theorems depends on them.

7.7.4. print proof [list I nolist] [theorems I whatNodes];

Displays the proof tree of the selected theorems (the theo rems options selects all the members
of Theorems). The default is T: i.e., the Curremt Theorem. List causes any lemmas that are
applied to the proof of Current Theorem to be also listed. (Note that the target does not have to

. be a theorem, so the user can print a partial proof tree.) This command can be automatically
invoked when a proof is first completed by the AutoPrintProof profile entry [§3.13]. The
theorems option of print mQ.Qf can be automatically executed when the user types g.u11 via the

0. AutoPrintProofTheorems profile entry [§3.13]. .

7.7.5. print both [list I nolist] whatNodes;

Like print proof but lists all the propositions in the proof tree. Verbose and rarely useful.

7.7.6. print prop whatNodes;

Lists the propositions and their associated names. For example,

print prop T;

prints Current Theorem.

7.7.7. print known nodes;

Lists the set of known proposition names.

6? The Theorem Prover Machine

7.7.S. print next;

This command displays the proposition that the ~ command would make the Current
Proposition.

7.7.9. print status unproven;

Prints the status of ailunoroven theorems.

7.7.10. Other forms of print
. print ~ is u~ed to view a data-type specification [§4.5.1]. print variables, print ~, print

Original, and print IH print various pieces of the Current Proposition [§S.8.2].

7.S. Node Sharing; Old Proof Attempts
Nodes in. the Proof Forest correspond one-to-one with propositions. This means that a

particular subgoal can only have one proof at a time, even if the subgoal was generated from more

than one theorem.

Propositions, once generated by Affirm, are never forgotten unless they are explicitly

discarded [§7.10.3]. If a proof tree is changed so as to produce a different subgoal, the disconnected

subtree is still remembered, for it is associated with the old subgoal and its children_ If a subsequent

command causes that subgoal to be regenerated, its proof subtree will automatically reappear.

For example, suppose that some sequence property pes) is undergoing a proof attempt. The

command

employ Induction(s);

sets up subgoals

P(New)

and

IH(s1) imp P(s1 apr i)

But after working on both branches, the user decides to use a different approach. Using!!:y, J,!Q, or

fiill:x:, as is appropriate, the user goes back to the pOint of the old employ, and issues the new

command

employ Firstlnduction(s);

Now the subgoals are

P(New)

and

IH(s1) imp P(s1 apl i)

/

/

Node Sharing; Old Proof Attempts 63

Since the first subgoal is the same as before, its proof remains in the tree. The second, new subgoal
-"I

will have an empty tree (unless it has also been seen before). If the employ is later changed back to

its original value, both old subtrees will be reattached.

7.9. Node Modification
These commands do not move the cursor or transform any nodes, but instead attach

information to a specific node.

7.9.1. assume [nodeName,] proposition; .
Marks proposition as assumed: it is as if this node were proven (except that this special status
is remembered). It may (and should) be given a name; this is useful if a file lists assumed facts
(such as integer lemmas) .

.
7.9.2. name nodeName [, proposition);

Used to rename nodes [§7.3.1]. Merely notices the proposition if it is not already known; does
not put it into Theorems.

.j ."1.9.3. annotate [nodeName,) Annotation;

,)

Attaches a comment to proposition; this will appear whenever proposition does. Annotation is
arbitrary text, but cannot contain any semicolons. This is useful for

- documenting where and when an assumption was proven;

- noting what the user's plans are when the proof attempt returns to this spot; and

- commenting a tricky place in a proof.

This command can be automatically invoked by the AutoAnnotate profile entry [§3.13].

7.10. Proof Tree Maintenance
These commands clear away unwanted information from the theorem prover.

7.10.1. clear proof;

Empties the Proof Forest and Theorems. Erases all proposition names, annotations, and
assumptions. (Fortunately, this command is undo-able.)

64 The Theorem Prover Machine

7.10.2. discard theorem" nodeName1 [, ••• , nodeNamen];

Removes the designated nodes from Theorems. It thus no longer has a proof state, and
disappears from summaries of theorems. This is useful when an incorrect lemma has been
stated. It is not permissible to discard a lemma which is applied in the proof of some other
theorem. (If one of the nodeName; appiies another as a lemma, that is okay. Affirm sorts the
list first, and removes the uses relationship when the using theorem is deleted.)

These nodes continue to exist, and retain their proofs; they form part of the disconnected
nodes in the tree. The ~ command will reverse the effects of discard theorem.

7.10.3. discard disconnected;
" .

Any nodes which are disconnected (not part of the proof tree of any theorem) are destroyed.
Their expressions, annotations, names, and proofs go away. This can save a considerable
amount of space. Since the command is undoable, space is only reclaimed when this event is
forgotten [§3.4].

(\
\

/'\.
\)

The VC Generation Machine 65

,J 8. The VC Generation Machine

8.1. The Programming Language
The programming language accepted by Affirm is an extension of a subset of axiomatically

defined Pascal. The extensions include import lists as in Euclid, minor extensions to statement

syntax and semantics, and a more uniform treatment of expression syntax. Expressions (and in

particular, functions) may not have side effects. Statements may incrude embedded assertions

expressed in the predicate language subset of the specification language. The programmer may

introduce ~ and QQ.§! conditions on procedures and functions, invariant assertions and/or subgoal

assertions on while, mr, and repeat statements, and asserting clauses on 9.Q. 12 and !EY.m. statements.

The programmer may also introduce assertions at any point via the ~ statement.

The full grammar for the accepted language appears in Appendix II. Here are some examples

of the strictly non·Pascal constructs:

1. Expression precedence follows mathematical conventions. For unary and binary operators the
hierarchy is as follows:

unary not, unary minus (highest precedence)
user defined infix operators
expt
., div, mod
+, -
=, <, >, <, >, ':i:
and
or
imp
eqv (lowest precedence)

To illustrate, let in be a user-defined binary infix operator.

a. not; in x means (not i) in xwhichisdifferentfromnot(i in x)

b. i + j in x means; + (j in x) which will probably produce an interface error. The
intent is most likely (i + j) in x

2. Procedures and functions28 are declared as follows:

procedure peru x: Integer; y: Integer)
imports (z, w: Boolean; var v: Integer); ~ ...

function f(x: Integer; y: Boolean)
returns w: Integer imports (z: integer); ~ ...

28 As of Affirm version 1.21, the verificatio.n condition generator does not process functions correctly. The user is advised
to use only procedures.

The VC Generation Machine

These examples show the position of the optional import list. Functions may not have l@:

parameters, either formal or imported. The!Jill!.!:!l construct for functions should also be noted.
Assertions may be introduced at the beginning of a block by

12m assertion:
post assertion;

3. In actual procedure calls, there may be no aliases, which means that no two var parameters,
either formal or imported, may have the same actual parameters. The reason for this restriction
involves the substitution rules in use [§8.4].

4. Each statement is optional; a missing ~ or.~ condition is taken as the constant ~.
Assertions may be introduced where statements may appear via

~ a5$ertion;

5. Assertions may be added to loop statements as follows:

maintain assertion1
. while expression QQ statement
thu~ assertioni

~

repeat statement1; ... ; statementn until expression
tm!.2 assertion;

maintain assertion1
!Qr '" QQ statement
thus assertion2;

6 . .GQ!Q. and return statements may have asserting clauses as follows:

gQ to label asserting assertion;
return asserting assertion; {for procedures}
return (expression) asserting assertion; {for functions}

All labeled statements must be assert statements, i.e., there must be an assertion at every label.
The parentheses on the returned expression in functions are required. Return statements are
mandatory since the Pascal construct

functionName : = expression;

is not supported. All assertions are optional (although it may be difficult to verify programs
without them).

8.2. Reading Programs: the readp command
To read and parse a program from the file A.S use

readp A.S;

An alternative is to say .

readp;

to which the system asks
/

Reading Programs: the readp command 67

Input file:
\

.,---~ to obtain the file name. The names of the units of the program are printed and each of the units is

type·checked. The term unit means each of the procedures and functions, and the main program.

readp fileName;
file fileName should contain a Pascal program, conSisting of a series of procedure or function
definitions, and possibly a main program. The program units are read, parsed, and type
checked. Any Pascal programs, procedures, or functions read by previous readp commands
are forgotten.

8.3. Generating Verification Conditions: the genvcs command
To generate verification conditions for, say units R1 and 82, use

genvcs RJ , 82;

In general the command is genvcs, followed by a list of unit names separated by commas.29

Verification conditions may be generated or regenerated serially for one or more units.

However, a second readp will Cc;luse the unit names obtained from the first ~ to be lost, although

the verification conditions for these units are retained. Thus the user is advised to read the entire

,~ . program with a single ~ command.

genvcs PascalUnitNames;
The PascalUnitNames must be names of programs, procedures, or functions read in by the
most recent ~ command. The control paths of the Pascal units associated with each name
are determined, and for each path a verification condition (proposition) is generated. The set of
verification conditions for each unit constitute the children of a shallow proof tree with root
"verification(unitName) " . Each verification condition is given a theorem name
"unitName # number" [§7.3], where number is a small integer. The theorem names for a unit
named SimpleSend would be "8imple8end # 1 "J "8imple8end # 2" , etc. In addition, each
verification condition is also given an arc label "VCnumber" [§7.6.2.3].

-\ 29The Auto Mechanism provides the AutoGenvcs profile entry for automatically performing the ~ command after a
,~ readp command [§3.13}.

The VC Generation Machine

8.4. Verification Condition Generation: Overview and Elementary
Statements (".
The verification condition generator is a straightforward implementation of a set of axiomatic \ /

rules expressing the definition of the language in terms of a predicate transformer similar to Dijkstra's

weakest liberal precondition transformer [Dijkstra 76]. Assignment, compound, conditional, and

iteration statements are treated in standard ways. Thus, the assignment statement transformer is the

substitution of the right-handside -expression for the left-hand-side variable. The substitution rules

used in assignment statements preclude the presence of aliases since different formal or imported

parameters are assumed to be different variables by the substitution rules.

The compound statement transformer is the composition of the transforms of the constituent

statements. Conditional statements produce separate verification conditions for each possibility: if
tlJ.~n:~ produces two, one assuming the Boolean condition (i.e., the then choice) and the other

assuming the negation of the Boolean condition (i.e., the ~ choice); ~ produces a separate

verification condition for each explicit choice plus a final one for the ~ choice. Iteration statements

produce a verification condition for each path through the loop. For example, a while statement will

in general produce three verification conditions--one from the entry to the loop invariant, one around

the loop from the invariant back to the invariant, and one from the invariant to the loop exit.

·8.4.1. Procedu res
A procedure declaration produces verification conditions for the body of the procedure as well

as producing the computes-lemma. To explain the computes-lemma, suppose a procedure heading

is declared as follows:

procedure proc(var x: Integer; y: Integer)
mP(x,y);
~Q(x, x', y);

where x' denotes the initial value of x. The computes-lemma produced is

theorem computesproc,
all x, y, x1 (P(x, y) A computes(proc(x, y), result(x1» :::> Q(x1, x, y»

where x1 is a fresh variable. The computes-lemma records the procedure call in one hypothesis, the

precondition as another hypothesis, and the postcondition as the conclusion. The variables of the

precondition and postcondition are related via the computes-lemma. The computes-lemlJ'la need not

be proved; it is the expression of the effects of calling the procedure and may be assumed, provided ...
the body of the procedure is verified. When the procedureproc is called, say proc(z, w), the conjunct

computes(proc (z, w), result(z1»

where z1 is also a fresh variable, will be added as an hypothesis to the verification condition of the

program path containing this call of proc. To make use of the hypothesis containing the computes

lemma at the appropriate point in the proof of the verification condition, the computes-lemma is'

instantiated in the same manner as is any lemma. In particular, the proper instantiation of variables

,J

Procedures 69

[Chapter 6] will provide the means of associating the variables of the call with the result variables.

Finally, by discharging the precondition, one is able to use the postcondition in proving the

verification condition.

8.4.2. Functions
For functions,30 a similar idea of obtaining the result of a function call is used. Since no var

variables are permitted in functions, no variables are set by a function call, and hence no renaming

using fresh variables is necessary. There is one new idea, however. Since properties of a function

qan be stated and proved incrementally or by means of a collection of axioms about a whole set of

functions, it is nece~ary to prove consistency of the function's properties. Given the declaration

function func(x: Integer) returns y: Integer;
ore P(x);
post Q(x, y);

a verification condition of the form

'V x (3 y (P(x) :> Q(x, y)))

is produced. This verification condition expresses the fact that it is possible to produce a result y

from calling func(x).

B.S. A Formal Definition of Verification Condition Generation
'Examples of generated verification conditioris for most statement types are contained in

Appendix IV. The verification conditions for a procedure of the form

procedure name(var j: type1; k: type2) imports (var m: type3; n: type4);
~ PO, k, m, n);
~ Q(j, k, m, n, j1, m1);
declarations;
QggjnS end

are contained in the set of First Order Predicate Calculus wffs:

VCfassume P; S, Q) U {computes-lemma}31

!he functionality or interface of the verification condition generator is

VCfprogram with assertions, Boolean): set of verification conditions

where'VC is defined below. Any assertion in S (and Q) can contain primed variables, which refer to

the values held by the un primed variables at the start of the procedure.

30 As of Affirm version 1.21. the verification condition generator does not process functions correctly.

I,

31 The computes· lemma is immediately assumed. and is of the form

(PO. k. m. n) 1\ computes(nameO. k. m, n), resl,JltG1, m1))) ::> Q(j1. k, m1. n, j, m)

This lemma should be used whenever a call to name occurs, See the rule for procedure call.

70 The VC Generation Machine

Notation

a, b, i are enumerated type expressions which do not change variables.

8 refers to a 800lean expression in Pascal acceptable i~ the specification language. B does not
modify any variables.

ci refers to an element of a list of scalar constants.

C,lnv, P, 0
refer to logical assertions in the specification language.

E refers to a scalar expression in Pascal. E does not modify any variables.

Empty
refers to the nuU sequence of statements.

g is a label.

j, k, m, n, x
are lists of program variables.

j1, m1, x1 ,
are fresh lists of variables.

S, S1' ... , Sn
. refer to (modified) Pascal statement lists.

x' referenced only in the section on Complex Loops, this symbol denotes the initial values of the
. associated program variables x upon entry to the loop.

y·is a program variable.

Empty Statement and Semicolon

VC(Empty,O) = {O}

VC(S; ; ,0) = VC(S, 0)

Assignment Statement

VC(S; y: = E(y, x), O(y» = VC(S, O(E(y, x)))

Conditional Statements

VC(S; if 8 1bm S1 W S2' 0)
= VC(S; assume 8; S1' 0)
U VC(S; assume -8; S2' 0)

VC(S; ~ E m c1: S1;'" ; cn: Sn else Sn+1 end, 0)
= U1<i<n VC(S; assume E E c/; ~i' 0)

U VC{5; assume E (U1~i:~n cj ; Sn+1' 0)

(\

~\
()
, /

,-"

A Formal Definition of Verification Condition Generation 71

Asse rtion Statements

VC(S; ~ 8, Q) = VC(S, 8) U {B :::> Q}

VC(S; ~ B, Q) = VC(S, B) U VC(S, B :::> Q)

VC(S; assume 8, Q) = VC(S, 8 :::> Q)

G(j'~c..' Statement

VC(S; g.Q!Q g, Q) = VC(S, B) where 8 is the assertion at label g.

All labeled stat~ments must be ~ statements.

Procedure Call Statement Q ('J 1f"-1)
VC(S; nameO, k), Q) / J }

= VC(S; assume computes(nameO, k, m, n}, result01, m1», cfr

Simple Loop Statements

VC(S; maintain Inv(x) while 8(x) QQ S1 (x), Q(x»
= VC(S, Inv(x»
U VC(assume Inv(x) A 8(x); S1(X), Inv(x»
U VC(S, Inv(x1) A -8(x1) :::> Q(x1»

VC(S; maintain Inv(x, i) fQ!: i : = a!Q b QQ S1 (x, i), Q(x»
= VC(S; i : = a; maintain Inv(x, i) while i < b QQ ~

assume i > a;
S1(x, i);
i:= i+1end,

Q(x»

= VC(S,lnv(x, a»
U VC(assume Inv(x, i) A a < i < b; S1(x, i), Inv(x, i + 1»
U VC(S, Inv(x1, i) Ai> b :::> Q(x1»

Appropriate changes are necessary for other enumerated types.

VC(S; repeat S1(X) maintain Inv(x) until 8(x), Q(x»
= VC(S; S1(X); maintain Inv(x) while -B(x) Q.Q S1(x), Q(x»
= VC(S; S1 (x), Inv(x»
U VC(assume Inv(x) A -B(x); S1(x), Inv(x»
U VC(S; S1 (x), Inv(x1) A B(x1) :::> Q(x1» .

Complex Loop Statements

\

72

VC(S; maintain Inv(x', x) While B(x) QQ S1 (x) ~ C(x', x), Q(x»
= VC(S, Inv(x, x»
U VC(x':= x; assume Inv(x', x)" B(x); S1(x),

Inv(x', x)

" [-B(x1) " Inv(x, x1) " C(x, x1)
:J Inv(x', >(1) " C(x', x1)])

U {Inv(x, x) " -B(x) :J C(x, x)}
U VC(S, Inv(x, x1) " -B(x1) "C(x, x1) :J Q(x1»

VC(S; maintain Inv(x', x, i) fQr i : = a 1Q b QQ S1 (x, i) ~ C(x' , x, i),
Q(x» .

= VC(S; i : = a; maintain Inv(x', x, i)
while i < b QQ ~ assume i > a;

S1(x, i); i : = i + 1 end
1!:ll§ C(x', x, i), Q(x»

The VC Generation Machine

Appropriate changes are necessary for other enumerated types.

VC(S; repeat S1(x) maintain Inv(x', x) until B(x) thus C(x', x), Q(x»
= VC(S; S1(x); maintain Inv(x', x)

while -B(x) QQ Sex)
thus C(x', x), Q(x»

The Formula 10 Machine

.. " 9. The Formula 10 Machine
,~~

9.1. Introduction

73

The Formula 10 Machine contains the facilities necessary to read, list, and/or save Affirm

objects such as type specifications, command files, and Pascal programs. As of Affirm version 1.21,

this machine is ql'!te incoinplete, in that the user has little or no control over most portions of

input/output. In addition, there is no way of listing specific components of a complex object without

listing the entire object. There is nothing like writing a reference manual to determine what is missing

from a large system!

The following sections describe the commands which read, list, and save several of the objects

upon which Affirm works, in particular type specifications. At this point, the provided data base

facilities are quite limited. The load, save, compile, and freeze commands (all described below) are

quite useful for .s~ving and re·loading type specifications or saving the state of the entire system. The

~ command is quite useful for documenting the dependencies of one type on the other types it

uses. This command ensures that the types provided to it as its parameter are each loaded or read

before processing the remainder of the specification of the current type.

9.2. The Transc ript File and the transcript command
·Affirm automatically opens a transcript file when it begins. This transcript file contains a

nearly verbatim echo of all input and output, and acts as a history of the session. The transcript file

name is governed by the profile entry TranscriptFileName. The transcript command can be used to

open a different transcript, or to turn the transcript mechanism off.

transcript [fileName];
begins a (new) transcript file fileName. If there is no transcript file at the time the user issues
this command, then the file name of the new transcript, if not provided in the command, is
governed by the profile entry TranscriptFileName. If there ~ a transcript file at the time this
command is issued, then the new file name, if not provided in the command, is identical to the
old filename, with a new version number. The transcript file when the system first begins is
written into the user's login directory, rather than the connected directory. Later transcript
commands default to the connected directory.

transcript off;
turns off the transcript. Not recommended.

74 The Formula 10 Machine

9.3. Proposition Listing
The user has little control over the format of the proposition listed during theorem proving after

each normalization [§6.3.2].32 The user is cautioned against cutting upa transcript in some text editor

and then attempting to re-read a proposition. The main problem is the mechanism for showing the

precedence of binary infix operators. The printer often shows precedence imolicitty, via alignment

and spacing. The parser ignores formatting, and relies on explicit parenthese and assumed

precedence (as shown on page 65).33

9.4. Type Specification Listing
For the most part, Affirm can re-read the output generated by the print command with the ~

option, as for example in the command

print type SequenceOfElemType;

The user can edit the transcript file, and then read the type specification back in, with one major

exception:

• Operator precedence of binary infix operators is somewhat of a problem. User-defined binary
infix operators all have a specific priority, so the user is advised to add parentheses liberally.

9.5. The needs Command: A Primitive Type Database Facility
Data types are usually defined in terms of other data types. If these other types are not loaded,

Affirm will stop and ask the user to define them. The system also saves a list of the data types

needed by the one currently being defined, and automatically searches for the specifications of these

data types the next time the current type is loaded or read. This mechanism is explicitly available to

the user via the ~ command. A set of file name conventions is used to find the files containing

the data type specifications, as follows. A file name on Tops-20 and Tenex consists of three fields:

a name, an extension, and a version number. In our file naming conventions, the name field is simply

the type name (in upper case). The version field is not explicitly used, so that it retains its meaning to

the underlying file system: the greatest number is considered the most recently written file, etc. The

extension field is used to further describe the contents of the file, as follows.

AXIOMS
rhe source text of the data type specification, to be read by Affirm.

empty
The ~ version of the specification, to be ~ed by Affirm.

COM The compiled version of the specification, to be loaded by Affirm.

32There are several pertinent profile entries [§3.13] affording some contro}. These include TerminalLineW"ldth, NewPP,

r\.

AverageNameLength, and UseOrlnProps. ./ .

~he Users Guide provides some pointers' on how to avoid most of this sort of problem.

. ~

The ~ Command: A Primitive Type Database Facility 75

FANCY -AXIOMS
A version of the source text containing fonting commands for pretty output using SCRISE.34

This version can not be read or loaded by Affirm!

For example, the file named SETOFELEMTYPE.AXIOMS is assumed to contain the source text of the

data type specification for the type SetOfElemType· (or any type spelled with those characters, in

either casing).

The underlying Interlisp b},stem keeps track of objects that have a file associated with them

(such as data types in Affirm). Since each type has an associated file, and file names are upper

cased versions of the type name,

. Type namesiTlay not differ only in casing.

9.6. General File 10

read [fileName];
causes Affirm to read fileName. The file must contain Affirm commands. The last command
in the file must be the §lQQ. command. FileName is a normal text file that the user presumably
created using some text editor.

~eadp [fileName];
. causes Affirm to r~ad fileName. The file must contain Pascal programs [§8.2]. FileName is
assumed to be a normal text file.

load [fileName];
causes Affirm to load file fileName. The file must have been previously written using the ~
command. The only Affirm object which can be saved and then loaded is a data type
specification. Note that the file contents are not normal text, and cannot be directly modified by
the user.

save type typeName;
causes Affirm to write a file containing the specification of the type. The file name of the file is
the upper-case version of the type name. The ~ command can be used in conjunction with
the load command to remember data type specifications across Affirm sessions. The file
written by the save command for types contains the internal form of the type specification
(Interlisp code). Thus little processing is required to load the type back into Affirm, compared
to the processing required when first creating the specification.

compile type typeNames;
writes a file containing a compiled version of the internal representation of a data type
specification (Interlisp code). All stable types should be compiled, since this form of the type
uses the least space and runs the fastest. Any types still undergoing development should be
saved, rather than compiled .

34A document production system developed by the Computer Science Department of Carnegie-Mellon University, and now
distributed by UNILOGIC, Pittsburgh.

76 The Formula 10 Machine

print file [fileName];
causes Affirm to copy the contents of file fileName to the terminal (and transcript, if there is
one). This is useful for documentation purposes.

stop; should be used only in a file of Affirm commands, as the last command. It avoids the usual
end·of·file problems.

freeze [fileName];
causes the entire system state35 to be written into file fileName. The default freeze file name
when none is provided in the command is determined by the user profile entry FreezeFileName.
The size of the file written is on the order of 300 pages. This file can then be run at a later time
by simply typing the' file name at the operating system executive level. The user will then be
back in Affirm at the executive, as if the freeze had never happened (except that a new
t~anscript file will be opened, if necessary). This command is quite useful for freezing a session
in place, and tRen continuing it later. (Compare this with the ~ command, which does not
save the entire system, but just relatively small components of it.)

needs type[s] typeName1 [, ... , typeNamen];
should be used immediately after a ~ command, before any other part of the type
specification. This command ensures that all the types typeNamej for 1 <i<n are either loaded
or read, ~ any more of the specification of the current type is processed. If type typeName.

I

is already defined, it is !lQ1 re·defined. If typeNamej is not yet defined, then the most recent
version of its specification is found. The algorithm that finds the files containing the types to be
input searches a set of directories for the most recent version of the specification of each type,
whether that version be in original source form or in the internal ~d form, or even in

,compiled form. For each 'type ,requiring such a directory search, Affirm first identifies the
possible set of files containing versions of the type specification; it then ranks the versions (by
using the file write date to determine which file was most recently written). Affirm will then
proceed to load or read that file, as is appropriate. (The set of directories used as of Affirm
version 1.21 is {connected, login, PVLibrary, Affirm}.)

35The freeze command does not save the state of any open files.

(

/

The Syntax of User Commands n

Appendix I
The Syntax of User Commands

The grammatical presentation method used here was designed by David Wile [Wile 79]. In this

scheme, terminal symbols are prefixed with a single quote, and are displayed in a typewriter-l ike
font. Nonterminal symbols are simple identifiers, and are displayed in italics. The form

symbol11' symbol2

means

One or more occurrences of symbol1, separated by symbol2.

For example,

idt "

. represents a list of identifiers separated by commas. The form

[symbolSequence]

means

Zero or one occurrences of symbolSequence.

The empty string is denoted bye, the Greek letter epsilon .

. Commands most likely to be needed by an inexperienced user are marked in the left margin

with the symbol " •• " .

. Other conventions should be obvious.

78 The Syntax of User Commands

AffirmCommand : = ';

••

••
••

••

••
••

...
••
••

••
••

••

...
••

I '@ [arbitraryTextExceptSemicolon] ';

I 'abort';
I 'adopt typeName ';
I ' an notate [nodeName' •] arbitraryTextExceptSemicolon ';
I 'apply [nodeName'.] proposition';
I 'arc arcLabe/';
I ' as s ume [nodeNa me ' ,] proposition' ;
I ' augme nt proposition';
I'ax iom rule';
I'axiomsrulet', ';

I 'casis ';
I 'choose number t ' , ';
I 'clear 'proof ';
I 'comp i 1 e objects';
!'comp 1 ete ';

['decl are id t', ': typeName';
I'definerulet'. ';
I 'denote (expression 'by variable) t', ';
I 'di scard objects';
I 'down child' ;

I'e InterlispCommand
I 'edit typeName ';
I 'emp loy schema Name ' (allVariable ') , ;
I 'end';
I 'eval expression';
I 'exec';

I 'f i x [event Specification] , ;
I 'freeze [fileName]';

I 'genvcs procedureName t ' , ';
I 'gripe shortTitle';

I 'infix interfaceName t', ';
I 'interface Ihs': typeName';
I' i nte rfaces Ihs t ' • ': typeName ';
I'i nvoke rangedExp t ' , ';

I ' 1 et instantiation t ' , ';

I'lisp';
I" oad [fileName] , ;

The Syntax of User Commands 79

" , 'name nodeName [, • proposition] , ; ,j •• "needs objects';
•• "next';

, 'no rma 1 i ze ' ;
"normint ';

•• , 'note arbitraryTextExceptSemico/on ';

•• , 'ole';

•• , 'p r i nt printOptions ';
•• "profile [transaction t'.]';
•• , 'put instantiation t ' , ';

•• "quit';

•• "read [fileName]';
I 'readp [fileName] ';

-, 're do [eventSpecification] , ;
•• "repl ace [expression t'.]';

"resume' ;
"retry';
I 'review';

•• , ' ru 1 e 1 emma rule' ;

'\ I' ru 1 e 1 emmas rule t ' • ';

,J •• "save objects';
•• I 'schema rule';

"schemas rule t ' • ';
•• ,'search' ;

I 'set variableName 'to expression';
I 'stop';
I 'storage ('normal' 'severe' 'tight)';
I 'suff i cient? [typeName]';

•• I 'suppose [expression]';
, 'swap rangedExp t ' • ';

, 'thaw [fileName] ';
, 'theo rem [nodeName ' •] proposition';
,'transcript ['on, 'off' fileName]';

•• , 't ry [nodeName ' •] proposition';
•• I 'type id';

•• , 'undo [eventSpecification] ';
, 'up [number] ';
, 'use [nodeName ' •] proposition' ;

, undocumentedAffirmCommands
'\

'J

80

aI/Variable: = id;

child :=
arc Label

InodeName
I ordinaJlnteger ;

coord: =
number

I '- number
I 'ALL
I 'LAST
I 'FIRST;

defined Name : = id;

elementName : = id;

eventSpecification : =
number

I AffirmCommandName ;

expression: = primary [infi.xOp expression] ;

infixOp : =
'- '=

1'('=
I') '=

I'! ' =

I userDefinedOp ;

instantiation: = someVariab/e '= expression;

interfaceName : = id;

Ihs: =
interlaceName ['(expression l' ' • ')]

I expression interfaceName expression;

nodeName :=
id

I number;

The Syntax of User Commands

The Syntax of User Commands

objectName : =
'Affi rmObjects
'Arcs
'Ax ioms
'Commands
'Definitions
'Di rectories
'Di sconnected
'Files
'FileTypes
'Groups
'HelpTopics
'Hi sto ry
'Inte rfaces
'Lemmas
'Lhs

l'Nodes
I 'PrintObjects
I 'ProfileEntries
I'Schemas
I 'Theorems
I 'Type Parts
I'Types
,'Variables

objects: = objectName (elementName 'Ihs) t ' , ;

opOrExpression : =
expression

, infixOp
'prefixOp;

prefixOp : = '- , 'not
, userDefinedOp ;

primary:=
prefixOp ['(expression t ' , ')]

, variable
I number
'prefixOp primary
, '(expression')
"if expression 'then expression ['e1 se expression]
I quantifier identifier l' ' , '(expression') ;

81

82

printOptions : =
'1

I 'assumptions
'BadE quat ions
'both [printOptions2]
'f i 1 e fileName
'history
'IH
'known objectName
'named
'names
'ne~t
'original
'p roo f [printOptions2]
'p rop [printOptions2]
'resul t
'status [printOptions2]

·1 'type typeName [typeParts]
I'unproven
I'uses [printOptions2]
I'variable
I 'variables;

The Syntax of User Commands

. printOptions2:= ['1 ist I'nol ist] ('T I '*' 'theorem I 'unproved) nodeName;

. procedureName : = id;

profileEntryName : = id;

proposition: =
expression

, nodeName ;.

quantifier: =
'all

,'some;

range: = coord [': coord 1;

rangedExp : = opOrExpression [rangeSpec];

rangeSpec : = '\ range t ' , '\ ;

rule: = Ihs '= '= expression;

schemaName : = id;

some Variable: = id;

(

(\
/

The Syntax of User Commands

"') transaction: = profileEntryName [('? 1'= profile Value)] ;

typeName : = id ;

type Parts : =
'axiom

l'dec1 are
I'defi ne
I'interface
I'needs
l'ru1 e1 emma
I 'schema

I'ax ioms

I'defn.
I'interfaces

I'rulelemmas
I'schemas

undocumentedAffirmCommands : =
'batch ['on I'off]';

I'monitor && ';

l' renumbe r [eventSpecification] ';
I/nterlispCommand

userDefinedOp : = interfaceName;

variable: = id ;

83

84 The Syntax of Extended Pascal

. Appendix II
The Syntax of Extended Pascal

This appendix contains a grammar of the programming language processed by Affirm. The

grammatical presentation method was previously described in Appendix I.

program: = (procedureOrFunciionDeciaration I block) [';] [, .] ;

arrayType : = 'array '[simple Type t'. '] 'of type;

assertion: = e~pression ;

assertStatement : = 'as se rt assertion;

assignmentStatement : = variable': '= expression;

assumeStatement: = 'assume assertion;

block: = [('entry I 'p re) assertion';]
[('ex it I 'post) assertion';]
[declareopt t '; ';]

[compoundStatement] ;

bracketExprList : ='[[expression t ' ,] '] ;

caseElementList : = case Label t ' , ': [statement] ;

case Label : = constant;

caseStatement: = 'case expression 'of caseElementList t ';
['; ('el se I 'at he rwi se) statement] [';] 'end;

compoundStatement:= 'begin statementt '; 'end;

concurrentAssignmentStatement : = variable t ' , ': '= expression t ' , ;

constDefinition : = identifier '= expression;

decla;eopt : = ['xpub 1 i c I 'pub 1 i c] declareType ;

declareType : = '1 abe 1 label t ' , ';
I 'canst constDefinition t';
I'type typeDefinition t ';

I'var varDeclaration t ';
I procedureOrFunctionDeclaration ;

direction: = 'to
I 'downto ;

The Syntax of Extended Pascal

1
,,~ expression: = primary [infixOp expression] ;

.,
I

expressionSeq : = expression t ' , ;

fieldUst : = [recordSection t ';] ['; variantPart] [';] ;

fileType : = 'fi 1 e 'of type;

formalParameterSection : = [parameterKind] parameterGroup ;

forStatement : = ['rna; nta; n assertion]
'for identifier': '= expression direction expression
'do statement ['thus assertion] ;

functionDecl : = expression t ' • ': expression;

goToSta~ement : = ('gato I'go 'to) label ['asse rt; ng assertion] ;

greaterThanEqua/: = ') '= ;

. ifExpr : = '; f expression 'the n expression ['e 1 se expression] ;

if Statement : = 'i f expression 'then statement ['e 1 se statement] ;

,J .infixOp : = notEqual
!/essThanEqual
I greaterThanEqual
I normallnfixOp ;

label: = && ;

labe/Statement : = label': [simpleStatement] :

lessThanEqual : = '('= ;

normallnfixOp : = && ;

notEqua/: = '- '= I'! '= ;

packed: = 'packed;

parameterGroup : = identifier t ' , [': type] ;

parameterKind: = 'var
!'funct ion
!'procedure;

parenExpr : = '(expression') ;

85

8G

pointerType : = '1' identifier;

prefixExpr : = prefixOp '{ [expression l' ' • } ')

['imports '(identifier 1"; ')];

prefixOp : = && ;

primary: = prefixExpr
I variable
I number
I specialPrefixExpr
IparenExpr
I bracketExprList
I ifExpr
I quantifiedExpression ;

The Syntax of Extended Pascal

procedureOrFunctionDeclaration : = [. i n 1 i ne] unitKind identifier
['(formalParameterSection l' '; ')]
['retu rns] [identifier] [': type]
['imports '(formalParameterSection l' '; ')]
['a 1 te rs identifier l' ' •] '; block;

procedureStatement : = identifier ['(expression l' ' , ')]
['imports '(identifier 1"; ')]['al ters variable 1".];

. proveStatement : = 'p rove assertion;

quantifiedExpression : = quantifier identifier t ' • '(expression') ;

quantifier: = 'all
I'forall
I 'some
I'exists;

recordSection : = identifier t '. ': type;

recordType:= 'record fieldUst 'end;

·repeatStatement: = 'repeat statement l' '; 'unt i 1 expression
['thus assertion] ;

returnStatement: = 'return [' (expression ') H 'asse rt ing assertion] ;

scalarType : = '(identifier t ' • ') ;

setType : = 'set 'of simple Type ;

(
\.

-----~-------------------------------

The Syntax of Extended Pascal

simpleStatement : = compoundStatement
if Statement
caseStatement
whileStatement
repeatStatement
forStatement
witl1Statement
go ToStatement
assertStatement
retu rnStatement
proveStatement
assumeStatement
assignmentStatement
concurrentAssignmentStatement
procedureStatement ;

simple Type : = scalarType
\ subr~ngeType
I typeldentifier ;

specialPrefixExpr : = specialPrefixOp primary;

specialPrefixOp : = && ;

statement: = assigrimentStatement
I/abe/Statement
\ simpleStatement
\ £ ;

structuredType : = [packed] unpackedStructuredType ;

subrangeType : = ('. \ expression)'. ' . ('. I expression) ;

type: = simple Type
\ structuredType
I pointerType ;

typeDefinition : = identifier '= type;

typeldentifier : = identifier;

unnK~d:= 'procedure
\'funct ion
\'program;

unpackedStructuredType : = arrayType
\ recordType
\ setType
\ fileType ;

87

88 The Syntax of Extended Pascal

varDeclaration : = varDeclarePart t '. ': type;

varDeclarePart : = identifier ['@ expression] [': '= expression] ;

variable: = identifier;

~'ariableDec/: = identifier t ' • ': expression;

variant: = [caseLabel t ' • ': '(fieldUst ')] ;

variantPart: = 'case [identifier I:] typeldentifier 'of variant t '; ;

whileStatemenf : = ['rna i n t a i n assertion] 'wh i 1 e expression' do statement
['thus assertion] ;

withStatement: = 'wi th variable t'. 'do statement;

------- ------

Affirm's Interactions with Interlisp 89

Appendix III
Affi rm 's Inte ractions with Interlisp

Affirm is implemented in Interlisp [Teitelman 78] and attempts to use the power of the provided

environment rather than completely re-creating features already present in Interlisp. For example, the

event history window is really Interlisp's history list. This appendix highlights the dependencies on

Interlisp of which the user (casual or otherwise) must currently be aware in using Affirm.

111.1. Obtaining Access to Interlisp
Affirm currently has two commands providing access to the Interlisp system. Provision of such

access is of course accompanied with the warning that soundness of any proof is highly questionable

. if, in the process of proving, the user has jumped into Interlisp and fiddled. Such access is provided

because the system is experimental.

The two c.ommands differ in that the first, ~, performs one Interlisp command, and then returns

to Affirm's executive, while the second, !i.§.Q, drops the user into the Interlisp system (at its command

interpreter), from which the user must explicitly return to the Affirm executive by typing OK to the

Interlisp command interpreter.

If you modify any of Affirm's data structures or functions, you'll get what you deserve, and .' J undoubtedly sooner than you expect.

111.2. The Interlisp Editor
Affirm uses the Interlisp editor in the implementation of the @ command [§1I1,3]. We don't

recommend it use, it was necessary in older version of Affirm. This section contains a short

summary of the Interlisp editor. The entire discussion can be found in [Teitelman 78;ch-9].

The Interlisp editor provides a convenient means of modifying list structures. It is a structure

editor: the user is moving around the expression as if it were a tree. The editor maintains a current

expression, or focus of attention within the expression that is being edited. We shall use these two

terms interchangeably. Initially, the focus of attention is the entire expression. Some of the

commands that are useful in moving about within the expression structure are:

n n is a positive integer. This command moves the focus of attention to the nth element of the
current expression. Caution: the command (n) deletes the nth element.

F pattern
The F command attempts to find pattern within the current expression. If this search is
successful then the focus of attention becomes the expression that matches pattern. Pattern
can be any atom, and can contain escapes (which the operating system indicates as $). Each
escape can match zero or more contiguous characters in an atom, e.g., VER$ matches
VERYLONGATOM. The command will print a message if it cannot find the pattern.

NX This command moves the focus of attention to the next sibling. For example, if the expression

90

being edited is

(PLUS (FOO 2) (FUM 3»

and the current expression is

(FOO 2)

then the NX command would focus upon

(FUM 3)

Affirm's Interactions with Interlisp

This command is very useful after the user uses the n command and then discovers that he or
she mis-counted.

BK This command modifies the current expression to be the previous sibling if possible.

10 This command Ll\odifies the focus of attention to be the parent of the current expression.

t This command resets the focus of attention to the entire initial expression_

P This command prints the current expression, showing the structure, (but not the contents) of
contained subexpressions, a few levels deep.

PP This comrpand pretty-prints the current expression.

111.3. Subexpression Specification: The @ Command
The @ command invokes the Interlisp editor with Current ProPosition as its argument.

Therefore, this command can be used in conjunction with the Interlisp editor commands [§1II.2] to

. deliniit subexpressions of the current proposition.

The @ command has a series of subcommands, consisting of a subset of top-level Affirm

commands and Interlisp editor commands.

The list structure containing Current Proposition is in prefix form. For example, the expression

IH(q) imp subseq(q, q apr x)

is stored internally as

(imp (IH q) (subseq q (apr q x»)

There are two important points we wish to emphasize:

1. There is no supervision by Affirm of what the user does in the editor. In order to preserve
soundness, the user is enjoined not to delete elements of the theorem. Only attention-changing
commands (such as F, 0, 2, NX, 10, and t) and those listed below should be used.

2. When using the editor, the names typed by the user are not automatically lengthened to their
internal form. Therefore, when performing an E (find) editor command. the user is advised to
end the pattern with an escape character.

The Interlisp editor commands useful to the user are documented in Section 111.2. The Affirm

\

,

Subexpression Specification: The.@. Command 91

subcommands are described here. The subcommands of the @ command are as follows:36

52

53

This is really just two instances of the n command [§1II.2], but is described here because the
two integers, 5 and 2, are dependent on the internal data structure containing the proposition.
This sequence of Interlisp editor commands modifies the focus of attention to be the sequence
of hypotheses of Current Proposition.' ,

As described above, this sequence of Interlisp commands modifies the focus of attention to the
conclusions of Current Proposition.

(invoke definedName)
The first instance of the definition with name definedName in the current expression is
expanded.

(delete'n)
The nth element of the current expression is deleted.

(delete n1 n2 n3)

The children at the listed positions are deleted. These indices are instantaneous, not one-at-a
time.

(extract n)
The current expression is replaced with its nth child. For example, if the current expression is
(AND el e2 e3)then

The command:

(del~te 2)
(delete 2 3)
(extract 2)

It is .!lQ1 sound to delete operators .

. Pa, PPa, (Pa --)

will result in:

(AND e3)
el

(AND e2 e3)

These are just like their Interlisp counterparts P and PP [§11I.2], except that they print names in
a nicer form.

infix The current expression is printed in infix form.

eval The current expression is evaluated.

ok The user is returned to the Affirm executive, and the modified expression becomes Current
Proposition.

stop The edit is aborted; no changes are made to Current Proposition, and the user is returned to the
Affirm executive.

J-- 36Note and beware! that the syntax given here differs markedly from the normal command syntax,

92 Affirm's Interactions with Interlisp

111.4. Errors and Breaks·
While it is not a common experience, it can happen that the user will stumble across one of the

'undocumented curious features' that cause Affirm to drop the user into the break package of

Interlisp, usually when the user is least expecting it. The user can prevent any unexpected access to

Interlisp by using the profile entry BreakAccess [§3.13]. The first questions to ask are "When am I

talking to Interlisp?" and "When I am talking to Affirm?" If the system prompts the user with

something like:

10·

where 10 could be any integer, then the user is communing with Interlisp and not with Affirm. The

colon prompt will arise from an Interlisp break, and the underbar prompt is displayed by the Interlisp

interpreter. The asterisk is displayed by the Interlisp editor.

Inside an Interlisp break, the safest thing to do is to type an up-arrow (1'). This will, hopefully,

return the user to the Affirm executive. The next best thing to do is type contro'·D (the panic

interrupt for Affirm). This will ei.ther return the user to the Affirm executive or leave the user at the

·Interlisp command interpreter with the underbar prompt (-). In the latter case, the user should then

type

(AffirmExec)

If the user somehow ends up in the Interlisp editor unexpectedly, he or she should then type

STOP

Whether or not Affirm is sound after the user returns to the executive is a function of whatever

caused the error. The best recourse would be to restart with a fresh Affirm. One thing to always

consider after a break is whether or not the transcript file [§9.2] has somehow been closed. The

Affirm executive will print a message warning the user if the transcript has somehow been closed.

111.5. control·T: Finding Out What's Going On
At any time, the user can type cont rol· T (in either Tops-20 or Tenex) to determine if the

system is still responding when it seems a little slow .. The control·T character is an Interlisp

immediate interrupt character, so it does not interfere with any other input: it is acted upon

immediately, and is never really seen by any of the normal input routines.

(

\. /

Control Character Definitions 93

111.6. Control Character Definitions
\, ~ The following characters have special meaning to Interlisp and should not be typed unless the

user wants the resulting action.

control·A
On Tops-20 it is used by the Interlisp editor and should not be typed by the user. On Tenex,
this backs up one character. If there are no more characters on the line, the bell is rung.

control·S
Affirm users should not type this character. Computation is stopped, the stack is backed up to
the last function call, and a ~ occurs.

control·C
Computation is stopped by the operating system when this character is typed. In order to
continue with no ill effects, the user should type the operating system command CONTINUE.
The point at which the control·C takes effect depends on the current state of Affirm and how
many control·C's are typed. Two control·C's will stop Affirm immediately. One control·C will
stop Affirm as soon as the control·C is read.

control·D
control·O immediately stops the computation and returns control to the command interpreter of
Interlisp or to the Affirm top· level executive, depending on the value of the profile entry
BreakAccess.

control·E
This aborts any Affirm command. An attempt is made to restore the state of the computation,

. just as if the command currently being executed had not occurred. This undoing works most of
.·the time, but under certain circumstances will not undo the last command and Affirm will be
left in an unsound state.

control·F
This is used by the operating system to recognize one field when typing in file names.

control·G
This rings the bell in the terminal.

control·H
Affirm users should not use this character. It causes an Interlisp break at the next function
call.

control·1
control· I is a tab character. Affirm treats it like a blank.

control·J
control·J is a linefeed. It is used by the Interlisp editor as a command.

control·K
This aborts the printing ·of expressions.

control·L
control·L is a formfeed. This is used by the Interlisp editor on Tops-20.

control·M
control·M is a carriage return.

control·N

94 Affirm's Interactions with Interlisp

Affirm users should not type this character. On Tops-20, if typed in the middle of an
expression being typed in, control-N will cause the Interlisp editor to be called on the
expression when the expression is finished being typed in.

~~~ . 
This clears the output buffer. (Typically the output buffer is only about 20 characters.) 

control-P 
Affirm users should not type this character. It changes printlevel. 

control-Q 
On Tops-20 it is' used to resume frozen typeout, and on Tenex this is used to cancel the 
current line. 

control-R 
This causes Affirm to retype the current input line. 

control-S 
On Tops-20 it is used to freeze typeout (resume typeout with control-Q). This causes Interlisp 
to change MINFS on Tenex and should therefore not be typed by Affirm users. 

control-T 
This prints the status of Affirm. It is useful for determining whether or not the system is waiting 
for input. 

control-U 
On Tops-20 control-U is used to cancel the current line. On Tenex Affirm users should not 
type this character. If it is typed in the middle of an expression being input, it will cause the 

. editor to be called on the expression when it is finished being typed. 

control·V 
The operating systems use this character as the quoting character. Affirm does not recognize 
this character as the quoting character; instead, it uses the percent sign. 

control-W 
Affirm users should not type this character. 

control·X 
This is active only during application of the Knuth-Bendix algorithm testing convergence of the 
set of rewrite rules in the system; upon receipt of control-X, Affirm will drop into a lower 
executive. 

control·Y 
Affirm users should not type this character. It is a read macro for Interlisp. 

control·Z 
On Tops-20 this character clears the terminal input buffer. This is used by the Interlisp editor 
on Tenex. 

ESC control-[ is another way to type this character. It is used by the operating systems to recognize 
a command or file. It is normally echoed as $. 

DEL It is used by Tops-20 to back up one character. This is not really a control character. It clears 
the terminal input buffer on Tenex. Noise on a telephone line frequently sends out DELS. 

( 



Summary of Useful Control Characters 95 

III. 7. Summary of Useful' Control Characters 

Tops-20: 

Most Useful: 
C,E,R,S,T,U,DEL 

Sometimes Useft;l: 
D.F,K,X,Z,Escape 

Rarely Useful: 
A, B, G, H, I, J,L, M, N, 0, P, V, W, Y 

Tenex: 

Most Useful: 
A,C,E,R,T 

Sometimes Useful: 
D,F,K,Q,X,DEL,Escape 

Rarely Useful: 
B, G, H, I, J, L, M, N, 0, P, S, U, V, W, Y, Z 



96 Examples of Generated Verification Conditions 

. Appendix IV 
Examples of Generated Verification Conditions 

This Appendix contains a set of examples of verification conditions produced from program 

fragments. Each section below contains a program fragment and the verification conditions 

generated from it. Except for the use of fonts for display purposes, what is shown in each section is 

verbatim input and output. 

IV .1. The Asse rt Statement 
procedure testassert (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
begin 

assert S (i, j, r) 
end; 

There are 2 verification conditions for testassert: 

testassert # 1·· SCi, j, i') 
imp postc(i, j, i') 

testassert# 2·· prec(i, j) imp SCi, j, i) 

IV.2. The Assume Statement 
procedure testassume (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
begin 

assume S (i, j, i') 
end; 

There is 1 verification condition for testassume: 

testassume # 1 .. prec(i, j) and SCi, j, i) 
imp postc(i, j, i) 

IV.3. The Assignment Statement 
procedure testassign (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
begin· 

i: = 1 
end; 

There is 1 verification condition for testassign: 

testassign # 1 _. prec(i, j) imp postc(1, j, i) 

/ 



\ 
, I 

\J 

The Case Statement 

IV.4. The Case Statement 
procedure testcase (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
begin 

case j of 
1: i:= 3; 
2,3: :::0 <4: 
4: i:= 17; 
else i: = 12 

end 
end; 

There are 4 verification conditions for testcase: 

testcase # 1·· prec(i, j) and (j = 1) 
imp postc(3, j, i) 

testcase # 2 .. prec(i, j) and W = 2) or 0 = 3» 
imp postc(4, i, i) 

testcase # 3·· prec(i, j) and 0 = 4) 
imp postc(17, i, i) 

testcase # 4 .• prec(i, j) 
and not or (j = 1, 

j=2, 
j = 3, j = 4) 

imp postc(12, i, i) 

97 



98 Examples of Generated Verification Conditions 

IV.S. The For Statement (Inductive Assertions) 
procedure testfor 1 (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
var k: Integer; 
begin 

maintain II (i, j, i', k) 
for k : = 1 to 10 do 

i: = i + j 
end; 

There are 3 verification conditions for testfor1 : 

testfor1# 1 .. prec(i, j) 
and lI(i2, j, i, k1) 
and not (k1 Ie 10) 

imp postc(i2, j, i) 

testfor1 # 2 .. prec(i, j) imp lI(i, j, i, 1) 

testfor1 # 3·· 1I(i, j, i', k) 
and k Ie 10 
and 11e k 

imp lI(i + j, j, i', k+ 1) 
( \ 

/ 



The For Statement (Subgoal Assertions) 

IV.S. The For Statemenf(Subgoal Assertions) 
procedure test for 2 (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
var k: Integer; 
begin 

maintain IIF (i, j, i', k, ilnitial) 
for k : = 1 to 10 do 

i: = i + j 
thus FW (i, j, i', k, ilnitial) 

end; . 

There ar~ 4 verification conditions for testfor2: 

testfor2# 1 .• prec(i, j) 
and IIF(i2, j, i, k1, i) 
and not (k1 Ie 10) 
and FW(i2, j, i, k1 , i) 

imp postc(i2, j, i) 

testfor2 # 2 .• prec(i, j) 
imp IIF(i, j, i, 1, i) 

testfor2 # 3 .. IIF(i, j, i', k, i) 
and not (k Ie 10) 

imp FW(i, j, i', k, i) 

testfor2 # 4 .. IIF(i, j, i', k, i) 
and k Ie 10 
and 11e k 

imp IIF(i + j, 
;, i', k + 1, i) 

and not (k1 Ie 10) 
and IIF(i2, 

;, 
i', k1, i + j) 

and FW(i2, 
;, 
i', k1, i + j) 

imp IIF(i2, 
j, i', k1, i) 

and FW(i2, 
j, i', k1, i) 

99 



100 

IV. 7. The Goto Statement 
procedure test90to (var i: Integer; i: Integer); 
pre prec (i, j); 
post postc (i, it it); 
label 999; 
begin 

i·:= 1; 
go to 999; 
i:= 2; 

999: assert 8 (i, i, it); 
i:= 3 

end; 

Examples of Generated Verification Conditions 

There a':,e 2 verification conditions for testgoto: 

testgoto # 1 •• 8(i, i, it) imp postc(3, i, it) 

testgoto # 2 .. prec(i, j) imp 8(1, i, i) 

IV.8. The If Statement 
procedure testif (var i: Integer; i: Integer); 
pre prec (i, j); 
post postc (i, i, i'); 
begin 

if BB (i, j) then 
i:= 1 

else 
i:= 2 

end; 

There are 2 verification conditions for testif: 

testif # 1·· prec(i, j) and 88(i, j) 
imp postc(1, i, i) 

testif # 2 .. prec(i, j) and not 88(i, j) 
imp postc(2, i, i) 

IV.9. The Null Statement 
procedure testnull (var i: Integer; i: Integer); 
pre prec (i, j); 
post postc (i, i, i'); 
begin; end; 

There is 1 verification condition for testnull: 

testnull # 1 •• prec(i, j) imp postc(i, j, i) 

( \ 
/ 

( \ 
\ ) 



\J 

The Procedure Call Statement 

IV.1 O. The Procedu re Call Statement 
procedure testcall (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
begin 

testq (i, j) 
end; 

There is 1 vermeation condition fl.: testcall: 

testcall # 1 .~ pree(i, j) 
and computes(testQ(i, j), result(i2» 

i01P postc(i2, j, i) 

IV .11. The Prove Statement 
procedure testprove (var i: Integer; j: Integer); 
pre prec (i, j); 
post poste (i, j, i'); 
begin •. 

prove 8 (i, j, i') 
end; 

There are 2 verification conditions for testprove: 

testprove # 1 .. prec(i, j) imp 8(i, j, i) 

testprove # 2 .. prec(i, j) and 8(i, j, i} 
imp poste(i, j, i} 

101 



102 Examples of Generated Verification Conditions 

IV.12. The While Statement (Inductive Assertions) 
procedure test while 1 (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
begin 

maintain I (i, j, i') 
while BB (i, j) do 

i:= i + j 
end; 

There are 3 verification conditions for testwhile1: 

testwhile1 # 1 •• prec(i, j) 
and l(i2, j, i) 

• and not 88(i2, j) 
imp postc(i2, j, i) 

testwhile1 # 2·· prec(i, j) imp I(i, j, i) 

testwhile1 # 3 •. I(i, j, i') and 88(i, j) 
imp I(i + j, j, i') 

/\ ( . 

\ 



The While Statement (Subgoal Assertions) 

IV .13. The While Statement (Subgoal Assertions) 
procedure testwhile2 (var i: Integer; j: Integer); 
pre prec (i, j); 
post postc (i, j, i'); 
begin 

maintain IW (i, j, i', i1nitial) 
while BB (i, j) do 

i:= i + j 
thus CW (i, j, i', ilnitial) 

end; 

There are 4 verification conditioris for testwhile2: 

testwhile2 # 1 •• prec(i, j) 
and IW(i2, j, i, i) 
and not BB(i2, j) 
and CW(i2, j, i, i) 

imp postc(i2, j, i) 

testwhile2 # 2 .• prec(i, j) 
imp IW(i, j, i, i) 

testwhile2 # 3·· . IW(i, j, i', i) 
and not BB(i, j) 

imp CW(i, j, i', i) 

testwhile2 # 4 .• IW(i, j, j', i) 
and BB(i, j) 

imp IW(i + j, j, i', i) 
and not BB(i2, j) 

and IW(i2, 
j, i', i + j) 

and CW(i2, 
j, i', i + j) 

imp IW(i2, j, i', i) 
and CW(i2, j, i', i) 

103 



104 Restrictions, Bugs, and "Curious Features" 

Appendix V 
Restrictions, Bugs, and "Curious Features" 
The user is encouraged to study the message file (Affirm)KnownBugs.TXT from time to time; it 

contains the most up-to-date information on any problems the system is experiencing, as well as 

suggestions for avoiding or getting around these problems. 

1. The upper and lower case letters itT" and "t" cannot be used as the name of any Affirm 
object. 

2. Variables referenced on the left-hand-side of a rule definition may not be referenced on the 
right-hand-side. For example, the following is illegal: 

schema induction(q) = = cases(Prop(NewSequenceOfElemType), 
all q, i (IH(q) imp Prop(q apr i))); 

3. Affirm output is not always acceptable as Affirm input. In particular, the system uses 
indentatio.n to indicate precedence. It sometimes prints: 

as 

(a imp b) and c imp d 

aimpb 
and c 

impd 

4. Affirm knows precious little about the properties of integers [§6.7]. 

5. Undoing commands out of order is a quick way to reach a state where the user can take the rest 
of the day off. 

6. The print command lacks the ability to print most Affirm objects with any selectivity. It is either 
all or !1.QM.. 

7. Redeclaring variables, interfaces and discarding rules works, but old variables and old 
interfaces can appear in listing. 

8. Very few of the Affirm objects have all three of the operations name, rename, and unname. 

9. In expressions, operator precedence is not Pascal but is normal precedence. 

10. Sections of the proof tree can automatically reappear [§7.8]. 

11. Affirm needs work on the scope model it uses. 9nly the variables of the current type are 
available while all the interfaces in the system are known. Variables mentioned in a particular 
theorem are tied to a particular type. You may get into trouble if you use a theorem created in a 
different type [§4.3]. 

12. This list is incomplete; see the Users Guide for invaluable advice, other confessions, and 
curiosities. 



Overviews of the Operating System Executives 105 

~\ Appendix VI . 
\JI Overviews of the Operating System Executives 

This appendix contains brief summaries of the operating system executive commands available 

in the operating systems under which Affirm operates. (As· of Affirm version 1.21, these are Tops-

20 and Tenex.) This summary is in no way intended to replace or substitute lor the relevant manuals 

published by and available from the distributors of the operating systems. 

VI~1. Tops-20 Executive Summary 

Login 
1.Q.g DirectorvName Password)) 

Logout 
.bQgQ~ .,l 

Directory 
To see all the files in your directory: 

. Dir) 

Detach 
. ~~.,l 

Attach 
Att DirectorvName) Password) 

Connect 
To connect to another Directory: 
Conn~ DirectoryName) Password) 

control·C 

~: 
~ = Escape 

J = Carriage Return 

To return to Exec. This will abort a partially typed or partially executed command (sometimes 
you must type several control·C's). 

control·T 
To see the current load average of the system or the progress of a program. You may type this 
during most programs without stopping them. 

contr.ol·F . . 
This works like the Escape Key on file names, but only completes one part of the file name. 

Type To see a file on your terminal screen: 
IYQ~ FileName~.,l 

CopyTo copy a file from another directory on your machine: 
~~ <DirectorvName>FileName~~.,l 

Rename 
To rename a file: 
Ren~ OldFileName~ NewFileName))(no~) 



106 Overviews of the Operating System Executives 

Print To send a file to the Lineprinter: 
Print~ FileName~ J. 

Lineprinter and Penguin Queues 
To see the lineprinter and penguin queues: 

lQ) 

XPRESS 
To send a file to the Penguin: 
XPRESS FileName~ J. 

File Protection 
To see if a file is protected: 
Dir FileName~ ,J. 
@@E..!:.QJ...l Filename;P777752 (This number indicates an unprotected file.) Filename;777704 Q!: 
775200 (Either of these numbers indicate a protected file.) 

To change your file protection: 
Set File Pro~ FileName~ 777752) (for unprotected file) and 777704) or 775200) (for 
protected file) 

Change Password 
To change your password: 
Set~ Dir~ Pas~ DirectorvName)OldPassword) NewPassword) NewPassword) 

Vl.~. Tenex Executive Summary 

Login 
1&9. DirectoryName Password)) 

Logout 
Logo~) 

Directory 
To see all the files in your directory: 
Di) 

Detach 
Det~) 

Attach 
Att DirectoryName Password) 

Connect 
To connect to another Directory: Conn DirectoryName Password) 
To return to your Directory: Conn). 

control·C 
To return to Exec. This will abort a partially typed or partially executed command (sometimes 
you must type several control·C's). 

control·T 
To see the current load average of the system or the prog'ress of a program. You may type this 
during most programs without, stopping them. 

( 



Tenex Executive Summary 

control·F 
This works like the Escape Key on file names. but only completes one part of the file, name. 

Type & TCopy 
To see a file on your terminal screen: 
Typ~ FileName~ J or TC~ FileName~ J 

Copy To copy a file from another directory: 
Cop~ (OirectorvName)File Name~~ J 

Rename 
To rename a file: 
Ren~ OldFileName~ NewFileNameJJ(no~) 

List an,d LCopy 
To send a file to the Lineprinter: 
List~ FileName~ J (This method will give file information at the top of each page.) 
LC~ FileName~ ) (This method will create a clean listing.) 

LP To see the Lineprinter queue: 
LPJ 

XPRESS 
To send a file to the Penguin: 
COpy FileName~PNG:J 

PLP To see the Penguin print queue: 
, PLP) 

File Protection 
To see if a file is protected: 
Oi FileName~ .) 

107 

@@f.!:Q.JJ, Filename:P777752 (This number indicates an unprotected file.) Filename:777704 QJ: 
775200 (Either of these numbers indicate a protected file.) 

To change your file protection: 
Pro~ FileName~ 777752) (for unprotected file) and 777704) or 775200) (for protected file) 

Change Password 
To change your password: 
Cha~ Pas~ OirectorvName Old Password NewPassword NewPassword) (Notice that there are 
no ( ) around the directory name.) 

Archives 
To see your files in Archives. type: 
Int~~) 

After the list of files is displayed. you will be asked if you want the most recent file retrieved. If 
you answer yes. you will get 'a message from the ope~ator as soon as a copy of the file is in your 
directory. The original will remain in Archives. 

To put a file in Archives. type: 
Arch~ File~ FileName~) 



108 

axiom 

basis 

'. Appendix VII ' 
Glossary of Terms 

Glossary of Terms 

As in mathematics, a statement or property accepted without further proof. In 
Affirm, an axiom is an equation used to define the behavior of an abstract data type. 
Axioms are turned into automatically applied rewrite rules. 

1. The initial step of an induction proof. 

2. The 'name of the abstract data type in Affirm in which the user is initially 
placed. 

case analYSis A prd'of strategy which considers all the various possibilities separately; for example, x 
~ 0 and x < 0 might be two cases. 

definition A rewrite rule which will not be expanded automatically, but rather only upon explicit 
user request. Definitions are often used for notation. 

equation . Any expression of the form 

A=B 

where A and B are expressions of the same type. 

event ' Any command to Affirm. Every event is assigned an event number, and most may be 
undone, redone, or fixed. 

, event number The natural number associated with an event. The counter starts at one. 

§.!2!11i! list 

foral/list 

history 

infix 

A list of existentially quantified variables associated with a proposition. These may be 
instantiated in order to (attempt to) prove the associated proposition. 

A list of universally quantified variables associated with a proposition. Also referred 
to as the all list. 

A window of recent events, which remembers the command input and its side effects. 
Such events may be undone, redone, or fixed. As new events are added, old ones are 
forgotten. 

A binary operator which appears between its two operands rather than in front 
(prefix), e.g., 

aopb 

rather than 

op(a, b) 

Affirm uses the infix designation to format output; it accepts input in both prefix and 
infix forms for any (binary) operator, regardless of the output designation. 

instantiation The result of replacing an existentially quantified variable with a specific value. 

proof forest A directed acyclic graph which records the components of each theorem's proof. 

proposition 

Theorems are roots in the forest. 

A Boolean predicate to be proven. If the proposition contains any variables that are 
not explicitly quantified, they are assumed to be universally quantified, and are termed 

('\ 

(,.~\ 
/ 



Glossary of Terms 109 

proven 

rewrite rule 

All or forall variables. 

The state reached when a proof exists of a lemma or theorem using only axioms, 
proved propositions, or explicitly assumed propositions. 

A rule of the form LHS - RHS, where both sides are expressions. Any part of a 
proposition which matches LHS will be rewritten to look like the RHS. 

rewrite rule convergence algorithm 
That process which seeks to guarantee that a set of rewrite rules has the unique 
termination property. 

unique termination 
A set of rewrite rules has this propertY if, given an expression, the expression always 
rewrites to the same final result, regardless of the order in which rules are applied. 

finite termination 

unit 

variable 

A set of rules has this property if there exists no finite expression which will cause the 
rules to forever rewrite. Affirm assumes, in seeking unique termination, that the user 
has demonstrated finite termination of the set of rewrite rules . 

• he general term used to refer either to Pascal procedures, functions, or the main 
program. 

A symbol (such as x or s) which stands for some value of a data type. 

verification condition 
One of the logical formulae produced from a unit containing assertions by the 

. '" verification condition generator. Verification conditions contain no programming 
". ~ constructs except expressions. 



110 A Beginner's Subset of Affirm Commands 

Al?pendix VIII 
A Beginner's Subset of Affirm Commands 

Not all commands are listed here. Rather, the most useful ones are enumerated, using the 

gross categories Specification, System, and Theorem Prove;. 

System 

abort; Re:turns iLOm Fl./ower executive, aborting the pending command (see the ~ command). 

exec; Invokes the operating system as a lower fork . 

. fix; Places the text of a command in a text editor, and re-executes the revised command upon 
return from the editor. 

freeze fileName; 
Saves the entire state of the current system in file fileName. 

gripe file; 
Asks for the text of a message and then sends the message (using the Arpanet) to lSI. 

load file; 
. Reads a file containing the internal form of a type specification previously saved using the 

~command. 

n~eds type typeNames; 
Causes the system to find and read the type specification for each specified type name. 

note comment; 
The comment facility. 

ok; Returns from a lower executive, and then executes the pending command (see the ~ 
command). 

print option furtherArguments; 
Prints something. Common options are: 

theorems names; 
Lists the indicated theorems. 

prop names; 
Lists the indicated propositions (they do not have to be theorems). 

type typeName; 
Lists the specification of the type. 

file fileName; 
Lists·the file. 

IH; Lists the current definition of the induction hypothesis IH. 

known objectName; 



A Beginner's Subset of Affirm Commands 111 

Lists the names currently associated with elements of the indicated object class. 

proof theorems; 
Lists the proof trees of the indicated theorems. 

profile; Enters a profile dialogue, where each profile entry is displayed and you have the option of 
providing a new value. The command can also take parameters: see the description in the 

. command synopses. 

quit; Closes the transcript file and returns to the operating system. 

read file; 
Reads a file of commands, executing each. Quite useful for reading the text form of type 
specificatTons. 

readp file; 
Reads a file containing Pascal programs, building the internal parsed form (see the genvcs 
command). 

review; Puts the text of the transcript in a text editor, so you can retrace your steps. 

save type typeNames; 
Saves the internal form of the type speCifications, each in its own file. The load command 
can be used to read the files. 

undo event; 
Undoes the effects of the indicated command. 

Specifica tion 

adopt typeName; 
Copies the declared variables from typeName into the current type. Useful for establishing 
proof contexts. 

axiom rule; 
Makes a rewrite rule L - R out of the rule L = = R, and adds it to the system's rule set. All 
rules are applied to expressions during simplification, after each theorem-prover 
command. 

declare ids: typeName; 
Declares the names to be variables of the indicated type. 

define rule; 
Makes a rewrite rule out of the equation. Definitions are !lQ1 automatically rewritten during 
Simplification; you must explicitly request application using the invoke command. 

edit typeName; 
Opens a new type context for subsequent specification commands. See the ~ and §Ix! 
commands. 



112 A Beginner's Subset of Affirm Commands 

end; Ends the current type context and restores the previous one. Specification commands 
affect only the current type. 

interface op(params): typeName; 
Defines the domain and range information for an operation. Params are variable names, 
not~names. . 

rulelemma rule; 
Treated just like an axiom. 

schema rule; 
Defines induction and case analysis schemas. See the description in the command 
synopses. 

type typeName; 
Establishes a new context for subsequent specification commands. If the typeName is 
already declared, it is totally redefined by this command. (But you can always undo this 
command!) 

. 
Theorem Prover 

apply name, expression; 
Applies the expression as a lemma to the proposition currently being proven . 

. cases; Raises embedded "Ifs" by applying the special rule 

f(if b theri x else y) - if b then f(x) else f(y) 

employ schemaName; 
Uses the schema to perform induction or case analysis. 

eval expression; 
Applies the normalization and simplification process to the expression. 

genvcs PascalUnitNames; 
Generates the. verification conditions for the indicated Pascal procedures and functions. 

invoke definition Names; 
Expands the references to a particular set of operations by replacing the reference with 
the definition. 

name newName, oldName; . 
Name oldName to be newName. If oldName is omitted, then the proposition currently 
being proven is given the new name. 

next; Moves to the next unproved part of the proof tree associated with the current theorem, in a 
fairly natural ordering. 



A Beginner's Subset of Affirm Commands 113 

"'_) normalize; 
Simplifies the current proposition. It is not normally necessary to explicitly invoke this 
command, because it is automatically performed after each theorem-prover command. 

put ex;stentialVar = expression; 
Instantiates existential quantifiers. 

replace expression; 

search; 

Performs equality substitutions. 

Attempts to find a set of instantiations of existential quantifiers that resutts in reducing the 
proposition currently being proven to~. 

suppose expression; 
Breaks the proposition P currently being proven into two propositions: 

• expression :::> P 

and 
expression V P 

try name, expression; 
Attempts the proof of the named expression. 



114 Command StructUl"e Diagrams 

Appendix IX 
Command Structure Diagrams 

0-- - - - _S!,~~,!18~~/C:~ - - -- - - 0 
I I I 
I I I I be finition I 
Context Of Parts ~tatus 
edit axiom sufficient 
end (adopt; declare) 
type define 

(infix; interface) 
rulelemma 
schema 
discard 

EXECUTIVE 
.. 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - ~ -.- - - 0 - - - - - - - 0 - - - - - - - 0 
I· I I I I I I 
I I I I I I I I I I butside kxecutive I ~er 
Comments ~O ~tate Affirm Levels kistory Irdormation 
note (load; read; compile e abort fix gripe 

readp) freeze exec ok forget help 
needs save lisp quit redo profile 
print stop renumber 
transcript review 

storage 
undo 

/ 



,j 

\J 

Command Structure Diagrams 

MISCELLANEOUS 
0---------- 0---------- 0 
I I I 
I I I 
I I Verification 
~xpression ~ewrite Condition 
Evaluation Rule Generation 
eval affirmed genvcs 

complete 

THEOREM PROVER 
0---------- 0---------- 0---------- 0---------- 0 
I I I I I 
I I I I I 
hee Creation· I ~ode I I 
and Destruction I Movement Iwodification Iwiscellaneous 
clear I (arc; retry) annotate @ 
theorem (down; up) assume 
try I (resume; next) name 

. 0- - - - - - - - - - ~~e~~~n_ - - - - - 0 - - - - - ~ - - - - 0 - - - - - - - - - - 0 
I I I I I 
I I I I I 
I ~roPosition I I I 
lemma Internal I I I 
Application Transformation ~nstantiation ~ubstitution Case Analysis 
(apply; use) cases (put; let; invoke (augment; split; 

normalize search; choose) replace suppose) 
employ 

115 



116 

Appendix X 
Command Synopses 

Command Synopses 

This Appendix contains a synopsis of each Affirm command. For the most part, this synopsis 

is identical to the description given in the. appropriate chapter of the reference manual. The 

descriptions are gathered here for convenience. 

X.1. Affirm Commands 

Semicolon terminates most commands, except for subcommands in the @ (Interlisp editor) and 
~ (escape·to·lnterlisp) commands. It may also stand by itself, as a null command. 

@ [ annotation ]; 
[§1II.3] Places the user in the Interlisp editor, editing Current Proposition. The annotation is 
optional, and hopefully documents the less·than·mnemonic Interlisp editor commands that 
follow [§1i1.2], [§X.3]. 

abort ; 
[§3.5.4] Returns the user to the next higher Affirm executive (if there is one), and aborts the 
suspended command. The suspended command can then be fixed, or just forgotten. 

adopt typeName; 
[§4.2.1] Sometimes it is necessary to prove theorems about operators that are associated with 
types other than the current one. The operators of the type will be referenceable, because the 
type is in TypeSet. However, the variables of that type will not be referenceable in the current 
context. Rather than enter the necessary variable declarations manually, the ~ command 
provides a convenient way to copy all the dec!arations of a type over to the current one. Should 
any name conflicts occur, the variables being copied will be renamed by appending dollar sign 
characters ($) to them. 

adopt SequenceOfElemType; 

annotate [proposition,] annotation; 
[§7.9.3] Attaches a comment to proposition; this will appear whenever proposition does. 
Annotation is arbitrary text, but cannot contain any semicolons. This is useful for 

• documenting where and when an assumption was proven; 

• noting what the user's plans are when the proof attempt returns to this spot; and 

• commenting a tricky place in a proof. 

apply [ nodeName, ] proposition; 
[§7.4.1.1] This command adds proposition to Theorems, and adds it as a hypothesis to the 
Current Proposition. The command records this dependency by establishing the Uses 
relationship between the Current Proposition and proposition. proposition may be assigned a 
name. The expression corresponding to proposition will have its variables renamed to avoid 
conflicts with variables in the Current Proposition; the renamed form is printed on the terminal. 
The resultant Current Proposition is!lQ1 printed,37 since no meaningful simplification will occur 

37 But see the J.IU command [§7.4.1.2). 

i··" 
r 
\ 



Affirm Commands 117 

until the user has performed instantiations. Typically, a m.l! command will follow an ~ 
command [§6.5]. 

arc arc Label; 
[§7.6.2.3] This command is used to move betwe~n cases. Somewhere above Current 
Proposition is a node with a child labelled arcLabel. That child becomes the new Current 
Proposition. For example, if an induction has three cases ~, BOL, and mlj, the user might 
wish to proceed in an unusual order, saying 

arc apl:; 

arc emp:; 

arc apr:; • 

. assume [nodeName,] proposition; 
[§7.9.1] Marks proposition as assumed: it is as if this node were proven (except that this special 
status is remembered). It may be given a name; this is useful if a file lists assumed facts (such 
as integer lemmas). 

augment propoSition; 
[§7.4.2.1] Proposition is added as a hypothesis to the Current Proposition. Separately, the user 
must show that proposition can be deduced from the hypotheses already present. Any free 

. variables in proposition are identified with those in the Current Proposition, rather than being 
renamed. Given a Current Proposition of the form 

HimpC 

. ") .this command spawns the two children: 
'-.../ 

- H imp proposition 

- (H and proposition) imp C 

These children are assigned the arc labels thesis: and main:, respectivefty. 

axiom rule [, ... , rule ]; 
[§4.2.3] each rule must be an equation Ihs = = expo The rewrite rule Ihs -+ exp is (normally) 
added to RuleSet. Variables appearing in exp must appear in Ihs. Affirm checks all proposed 
axioms to see how they affect the unique termination of RuleSet. It may interactively simplify 
the rule, reverse it, or add new rules [§5.2]. 

axioms LessLast(q apr x) = = q, 

cases; 

LessLast(NewSequenceOfElemType) = = NewSequenceOfElemType, 
Last(q apr x) = = x; 

[§6.3.3] Distributes functions over ifs in the Current Proposition. 

choose path; 
[§6.6] Related to the search command, this command allows the user to pick some sequence of 
instantiations tried by the search command. The search command pt"ints a small integer label 
to the left of each instantiation it attempts. The sequenc~ of numbers describing the choice-
path .. is the parameter to the choose command. This command is useful if search found 

.~ lengthy instantiations, but was. unable to achieve a final proof. 



118 Command Synopses 

clear proof; 
[§7.10.1] Empties the Proof Forest and Theorems. Erases all proposition names. annotations. (\./ 
and assumptions. Fortunately. this command is undo· able. 

compile type typeName [ ..... typeName ]; . 
[§9.6] Writes a file containing a compiled version of the internal representation of a data type 
specification (Interlisp code). All stable types should be compiled. since this form of the type 
uses the least space and runs the fastest. Any types still undergoing development should be 
saved. rather than compiled. 

complete; 
[§5.4] Attempts to prove the Current PropOSition by reductio ad absurdum (proof by 
contradiction). It does this by negating the conclusion of Current Proposition. forming a rewrite 
rule from it. and (temporarily) adding it to RuleSet. Each hypothesis of Current Proposition is 
also turned into a rewrite rule and (temporarily) added to RuleSet. The algorithm then tries to 
generate a contradiction in BuleSet. by performing the unique termination test. If the rule 

~-false 

is generated. the Current Proposition is proved by contradiction. Otherwise. the final set of 
rules is I,Jsed to construct a new result. which may be somewhat simpler than the Current 
Proposition. This command is sometimes used specifically to rearrange the clauses of a 
proposition in an inconvenient form. 

declare id [ ..... id ]: type Name; 
[§4.2.1] Each id is declared to be a variable of type typeName. typeName must be a member of 
TypeSet. Each of the declarations is added to the local declaration set of the current type. 

declare q. q1: SequenceOfElemType; ( 
declare x: ElemType; 

define rule [. .... rule ]; 
[§4.2.3] each rule is an equation Ihs = = expo Definitions are rewrite rules. but these rules are 
2D.lv applied when specifically invoked by the user with the invoke command [§7.5.2.3]. 
Definitions are generally used to simplify notation: they are only invoked when needed. so that 
their contents do not overly complicate propositions. Variables in exp must either be bound 
quantifiers or must appear in the corresponding Ihs. but ClQ1. both. 

discard disconnected; 
[§7.10.3] Any nodes which are disconnected (not part of the proof tree of any theorem) are 
destroyed. Their expressions, annotations. names, and proofs go away. This can save a 
considerable amount of space. Since the command is undoable. space is only reclaimed when 
this event is forgotten [§3.4]. 

discard history; 
[§3.4] Purges the history window. This command can be undone. 

discard interface interlace Name [ ..... interlaceName ]; 
[§4.2.2] Discards the indicated operations in the current type. Each operator must be defined 
in the current type. Note that any references to the discarded operations are inconsistent. The 
system does not. check for this condition. It is the user's responsibility to discard or redefine 
any rules or propositions referencing the newly·discarded operations. 

discard ths Ihs; 
[§4.2.3] Lhs must be the left band side of some axiom. rutetemma. definition. or schema. The ( \ 

\ 



Affirm Commands 119 

rule in RuleSet with left hand side identical to Ihs is removed from RuleSet. This may destroy 
.... _j the unique termination of RuleSet; no check for this condition is performed. 

discard theorem nodeName [, ... , nodeName ]; 
[§7.10.2] Removes the designated nodes from Theorems. It thus no longer has a proof state, 
and disappears from summaries of theorems. This is useful when an incorrect lemma has been 
stated. It is not permissible to discard a lemma which is applied in the proof of some other 
theorem. If one of the nodeNamej applies another as a lemma, that is okay. Affirm sorts the 
list first, and removes the uses relationship when the using theorem is deleted. These nodes 
continue to exist, and retain their proofs; they form part of the disconnected nodes in the tree. 
The 1Cl command will reverse the effects of discard theorem. 

discard variable variableName [, ... , variableName ]; 
[§4.2.1] Discards the indicated variables from the current type. Note that any ~ of the 

. variables, such as in interface declarations or rules, is now undefined, and may be inconsistent. 
The system does not presently check for this condition. However, the user will certainly feel the 
effects later! It is the user's responsibility to discard or redefine interfaces and rules 
referencing the newly-discarded variables. 

denote expression by variableName [, ... , expression by variableName ]; 
[§7.5.2.5] For each expression-variableName pair, this command replaces all occurrences of 
expression with variableName, and adds to the Current Proposition the hypothesis 

expression = variableName 

down [ child ]; 
[§7.6.2.2] The Current Propositiqn must have children; this command descends to one of them . 

. Child may be: 

- an arc label; 

- the name of a child; 

- an ordinal number (between 1 and the number of children of Current Proposition); 

. a node number (if child> # children) (This option is not particularly recommended); and 

- omitted: the first untried child is picked. That failing, the first child is picked. 

e InterlispCommand 
[§1I1.1] Note that the customary semicolon does !lQ1 terminate this command. The Interlisp 
interpreter is invoked with the one command; after the interpreter prints its result, the user is 
returned to the Affirm executive. 

edit typeName; 
[§4.2] TypeName must be a member of TypeSet. typ~Name is pushed onto ContextStack, thus 
making the local declarations of typeName available for referencing. 

employ schemaName(var); 
[§7.4.2.3] This command permits the use of induction, using any induction schema defined in 
the relevant abstract data type. SchemaName must have been defined (using the schema 
command) for objects of the same data type as var. If the right hand side of the schema 
definition is of the form 



120 Command Synopses 

cases(C1, .•. , Cn) 

then the resulting propositions {C/} are set up as children of the Current Proposition. The {e/} 
are expressed in terms of the special predicates f!sm(x) and IH(x) which are defined as though 
the commands 

axiom Prop(var) = = Current Proposition; 
. define IH(var) = = Current Proposition; 

had been given. For example, suppose that Current PrQPosition, named SubExtends, is 

sub(q, q1) imp sub(q, q1 apr x) 

If the command 

employ induce(q); 
. . 

is performed in the context of 

schema induce(q) = = cases(Prop(emp), 
all qO, xO (IH(qO) imp Prop(qO apr xO))); 

the following children would result (before simplification): 

1. sub(emp, q1) imp sub(emp, q1 apr x) 

2. IH(qO, 2 {SubExtends38}) 
and sub(qO apr xO, q1) 

imp sub(qO apr xO, q1 apr x) 

, .. Quite often, the simplest cases, such as (1), above, normalize to l!:Y§.; the user is notified of 
these instances. The cursor will automatically be moved to the first nontrivial child. (\ 

/' 

The cases of an induction are given system-generated labels; these derive from the primary 
operators underneath f!:QQ in the schema. For example, the above sample would have labels 
~ and apr:. Induction is subject to the soundness constraint that var must be contained in 
the all list, and may have no Skolem dependencies upon any variables in the some list [§6.2.2). 

end; [§4.2] Causes CQntextStack to be popped, ending the current type's specification and returning 
to the previous context. 

eval expression; 
[§6.4} Simplifies expression, and prints the result. This is useful for testing and demonstrating 
abstract data types.39 For more details on its use, see the Users Guide. 

exec ;[§3.10.6] Invokes the operating system executive as a subroutine. The user can do anything 
that can be done at the original executive without destroying the files and memory associated 
with Affirm. To continue with the Affirm session, the user should type POP at the operating 
system' executive command level. 

fix [ eventNumber]; 
[§3.4] Places the user in a text editor (determined by the profile entry TextEditor) with the text of 
the command issued at event eventNumber. The default event when eventNumber is not 

38The two-parameter reference to IH is explained on page 55 (§7.4.2.3]. 

39The user profile entry ShowRules (§3.13) is useful for observing the application of axioms to sample expressions. 



,) 

Affirm Commands 121 

explicitly supplied is the previous event. 

freeze [ fileName ]; . 
(§9.6] Causes the entire system state40 to be written into file fileName. The default freeze file 
name when none is provided in the command is. determined by the . user profile entry 
FreezeFileName. The size of the file written is on the order of 300 pages. This file can then be 
run at a later time by simply typing the file name at the operating system executive level. The 
user will then be back in Affirm at the executive, as if the freeze had never happened (except 
that a new transcript file will be opened, if necessary). This command is quite useful for 
freezing a session in place, and then continuing it later. Compare this with the ~ command, 
which does not save the entire system, but just relatively small components of it. 

genvcs procedureName [, ... , procedureName ]; 
. [§S.3] Each prOcedureName must be a Pascal procedure or function41 unit previously parsed 

via the ~ command. Verification conditions are generated for each procedureName. 

gripe subject; 
[§3.S] Creates a message to be sent via the ARPANET to Affirm maintenance personnel. The 
system will ask the user to type the body of the message, which is tenninated by control-Z. 
After the message is completed, the user has the options of sending the message, or aborting 
the gripe. The transcript [§9.2] can also be sent along as a separate message if it is pertinentto 
the documentation of the problem or suggestion. 

infix operatorName [, ... , operatorName ]; 
(§4.2.2] Each operatorName is declared to be an infix operator. 

interface expression [, ... , expression ]: typeName; 
. [§4.2.2] Just as declare establishes the types. of variables, interface provides the necessary 
.·characteristics of operators. All operators should be declared using the interface command 
before they are referenced in other Affirm commands. Each expression will be an expression 
of the form operatorName(var l' ... , var m)' where each of the var; is a variable declared in the 
current type. The interface declaration states that operatorName is a function of m arguments, 
with argument types corresponding to those of the var;- The value returned by operatorName 
will be of type typeName. In the case of an operator taking .D.Q arguments, the parentheses may 
be omitted. infix notation, such as q ap r x, can also be used. 

interface q apr x, apl(q, x}: SequenceOfElemType; 

invoke rangedOp [, ... , rangedOp ]; 
[§7.5.2.3] Each of the specified operators should occur in the Current PropOSition and have a 
definition [§4.2.3]. The definition is expanded. If an operator appears in its own definition, the 
new occurrence will not be expanded; thus the process will not loop. An ordinal range may be 
specified; if it is not, the first occurrence of each operator will be expanded. Some examples: 

40The ~ command does not save the state of any open files. 

41 As of Affirm version 1.21 the verification· condition generator did not process functions correctly. 



122 

invoke IH; invoke the first IH 
invoke IH \21; second IH 
invoke IH \alll; alllH's 
invoke IH \·21; next to last 
invoke IH 12:41; second, third and fourth 
invoke F(i,j)12:51, GI3,51; 

second through fifth occurrences of F(i,j) 
and the third and fifth occurrences of G 

Command Synopses 

This command can be automatically invoked by the AutolnvokelH profile entry (§3.13]. 

let var = exp [, ... , var = exp ]; 
(§6.5] This command has the same effect as the ru!1 command, except that the new result is the 
disjunction of the unchanged and the instantiated versions of Current Proposition. Thus, all 
variables in the some list remain subject to further instantiation with the m!1 or !§ commands. 
This is useful if the user is not quite sure about an instantiation, or wishes to perform multiple 
instantiations. It does, however, double the size of the expression. If, for example, the Current 
Proposition was 

all x some y(x): P(x, y) 
. 

The command 

put y= x; 

. would give (before simplification) 

all x: P(x, x) 

. while the command 

let y= x; 

would yield (before simplification) 

all x some y(x): P(x, y) or P(x, x) 

lisp; [§1I1.1] The Interlisp interpreter is invoked. The user can next perform any Interlisp command. 
The OK command (without a semicolon after it) returns the user to the Affirm executive. 

load [fileName ]; 
[§9.6] Causes Affirm to load file fileName. The file must have been previously written using the 
save command. A data type specification is the only Affirm object that can be saved and then 
loaded. Note that the file's contents are not normal text, and cannot be directly modified by the 
user. 

name nodeName, [proposition ]; 
1§7.9.2] Christens the proposition; the system will henceforth refer to it by the name nodeName. 
If this name is already in use, the system displays its old value. 

needs type[s] type Name [, ... , typeName ]; 
[§9.5] Should be used immediately after a ~ command, before any other part of the type 
specification. This command ensures that each typeName are either loaded or read, before any 
more of the specification of the current type is processed. If the type is already defined, no 
further processing occurs. If it is not yet defined, then the most recent version of its 
specification is found. The algorithm which finds the files containing the types to be defined 
searches a set of directories for the most recent version of the specification of each type, 
whether that version be in original source form orin the internal ~d form, or even in 

( \ 

( " ! 



Affirm Commands 123 

comoiled form. For each type requiring such a directory search, Affirm first identifies the 
possible set of files containing versions of the type specification; it then ranks the .versions (by 
using the file write date to determine which file was most recently written). Affirm will normally 
then proceed to ~ or read that file, as is appropriate, unless the profile entry TypeNeeds is 
set to Ask. The user will be asked to point out the correct type specification to be input. The 
set of directories used as of Affirm version 1.21 is {Connected, Login, PVLibrary, Affirm}. 

next; [§7:S.1.4] Moves to the next task, according to a depth·first plan, using the following hierarchy: 

1. If the Current Theorem has leaves, move to the next one, in a left·to·right ordering of the 
leaves of the proof tree. 

2. If the Current Theorem uses an unproven lemma, try it. . 
\- 3. If the Current Theorem is used as a lemma by an unproven theorem, return to the 

theorem. This process extends to any unproven.ancestor. 

4. If none of the above hold, then stay put and perform the command 

• print unproven; 

Within this hierarchy, the most·recently·attempted theorem is preferred. Where possible, 
resume. 

normalize; 
[§S.3.2] Causes the Current Proposition to be (again) normalized and printed. Since 
propositions are normalized upon becoming the Current Proposition, this will nonnally have no 
effect, but may be necessary due to the occasional incompleteness of the simplification 
process. 

note arbitraryTextExceptSemicolon; 
[§3.1 0.1] The text is placed in the transcript. No other processing is performed. 

ok; [§3.5.4] Returns the user to the next higher Affirm executive (if there is one), and resumes 
processing of the suspended command. If this command still has errors in it, the user may well 
be placed into a lower executive once again. The abort command is useful here, too. 

print ?; 
[§7.7.1] print?; 
displays a list of all the keywords that can follow the command word print. Equivalent to the 
command 

print known PrintObjects; 

print assumptions; 
[§7.7.1] Lists all the assumed propositions. and the theorems that depend on them. 

print BadEquations; 
[§7.7.1] Lists the rules that have been suppressed during the various Knuth·Bendix [§5.2] 
convergence tests, if any. 

print both [ list I nolist ] whatNodes; 
[§7.7.1] Like print mQQ! but lists all the propositions in the proof tree. Verbose. 

print file fileName; 
[§7.7.1] Copies the contents of file fileName to the terminal, and also to the transcript. 



124 Command Synopses 

print history; 
(§7.7.1] Prints the user· issued commands still resident in the history window. 

print IH; 
(§7.7.1] Prints the definition of each of the inductive hypotheses (§7.4.2.3] in the Current 
Proposition (if any). 

print known objectName; 
[§7.7.1] Enumerates the currently defined set of names in the object class objectName. The 
object names as of Affirm version 1.21 are AffirmObjects, Arcs, Axioms, Commands, 
Definitions, Directories, Files, FileTypes, Interfaces, Lemmas, Nodes, PrintObjects, 
ProfileEntries, Schemas, TypeParts, Types, and Variables. 

print [ parts typeParts ] [types typeName [, ... , typeName ] ] Ihs Ihs [, ••• , Ihs ]; 
[§ 7.7. ,] This "ommand provides the rudimentary capability of listing those rules that match 
some pattern. TypeParts is a list selected from the set {axiom, lemma, defn, schema}; the list 
may be empty, in which case the default value axiom is used. TypeNames is a list of type 
names; the list may be empty, in which case the keyword need not be typed. The default value 
is the list of a" currently defined types. Pattern is an expression, restricted to one of two simple 
forms: operator, or operator1 (operator2). Each rule in the requested set of types that is a 
member of one of the requested parts is pattern· matched against the pattern; if it succeeds, the 
rule is listed. If it fails, the rule is ignored. Only the left·hand side of a rule is used in the 
pattern·matching process. If the pattern is a Simple operator, a match succeeds if the main 
operator of the left· hand side is this operator. If the pattern is of the form operator1 (operator2), 
then operator1 is the main operator, and operator2 is any internal operator. If the left-hand side 
of a rule has operator1 as its main operator, and contains a reference to operator2 as an 
internal operator, the match succeeds. For example, the command 

print Ihs join(apr); 

will list all the axioms whose left·hand·side main operator is join, and which also reference the 
operator apr as an internal operator. This example is useful for the type SequenceOfX, for quite 
a few types X. 

print next; 
[§7.7.1] This command displays the proposition that the next command would make the Current 
Proposition. 

print original; 
[§ 7.7.1] Prints the un normalized form of the Current Proposition (not particularly useful). 

print proof [ list I nolist ] whatNodes; 
[§7.7.1] Displays the proof tree. The default for whatNodes is T. List causes any lemmas that 
are used in the proof of Current Theorem to be listed. Note that whatNodes does not have to be 
a theorem, so the user can print a partial proof tree. 

print prop [ list I nolist ] whatNodes; 
[§7.7.1] Lists the propositions and their associated names. For example, 

print prop T; 

prints Current Theorem. 

print result; 
[§7.7.1] Prints the Current Proposition [§7.2] in its normalized form. 

(~ 

, 

~-'\ ( . 
/ 



Affirm Commands 125 

\ print status [ list I nolist ] [ whatNodes ]; -
J [§7.7.1] Tells whether the specified theorems are tried, untried, awaiting lemmas, proved, or 

assumed. The default when whatNodes is omitted is theorems. 

print type typeName; , 
[§7.7.1] TypeName must be a member' of TypeSet. The declarations, needs, interfaces, infix 
operators, axioms, rulelemmas, definitions, and schemas of type typeName are printed on the 
terminal. Should only a subset of these be desired, typeName may be followed with a list of 
qualifiers. 

print type ElemType; 
print type SequenceOfElemType dec I schema; 

print unproven; 
, [§7.7.1] Prints tlie status of all unproven theorems. 

p'rint uses [ what Nodes ]; 
[§7.7.1] Which lemmas are used where? The default for whatNodes is theorems. 

print variables; 
[§7.7.1] Lists just the variables in the Current Proposition; this is useful if the expression is too 
big to be conveniently displayed as a whole. 

profile; 
, [§3.11] The profile enquiry dialogue is initiated with the user. The question mark command? is 
quite useful here in order to determine what the options are at each step. 

profile profileEntryName [ = value] [, ... , profileEntryName [ = value]]; 
\J " ' [§3.11] Each referenced profile entry is either c;lisplayed with its current value or modified, as is 

,-appropriate. 

put var = exp [, ... , var = exp]; 
[§6.5] Each var must be a variable in the §.Q!!')§ list of the Current Proposition. Each exp is an 
expression· upon which the corresponding var can legally depend [§6.2.2]. The exp is 
substituted for the corresponding var. 

quit; [§3.10.6] Stops Affirm, returning to the operating system executive. The user can return to 
Affirm by typing CONTINUE at the operating system executive command level. 

read [ fileName ]; 
[§9.6] Causes Affirm to read fileName. The file must contain Affirm commands. The last 
command in the file must be the §!QQ command. FileName is a text file that the user presumably 
created using some text editor. 

readp [ fileName ]; 
t§8.2] Causes Affirm to read fileName. The file must contain Pascal programs. FileName is 
assumed to be a text file. 

redo [ eventNumber ]; 
[§3.4] Re·executes the command at event eventNumber. 

replace [expression [, ... , expression] ]; 
[§7.5.2.2] If no argument is given, then 'every hypothesis in Current Proposition of the form L = 
R is used to replace all other occurrences of L with R. Each expression should occur in an 

, ') equality hypothesis (of the form expression = R or R = expression). All other occurrences of 
'~ expression are replaced with R. For example, if Current Proposition is 



126 

(fee(j, k) and j = m and n = k) imp fie(m, n) 

reolace; will yield 

(fee(m, k) and j = m and n = k) imp fie(m, k) 

while the command replace m, 0; will yield 

(fee(j, k) and j = m and n = k) imp fie{j, k) 

Command Synopses 

resume; 
[§7.6.1.2] The Current Theorem must be tried. The Current Proposition is restored to the value 
it had when the user was last proving this theorem, thus resuming a partially-completed proof. 
The resume command is usually preceded by a lli command. 

retry; [§ 7 .6.1.3] This command is equivalent to the (otherwise unspeakable) command . 
try Current Theorem; 

In other words, this command retries the current theorem. 

review; 
[§3.10.3] Places the user in a text editor determined by the profile entry TextEditor, with the 
transcript file. The user can then use editor commands to review the events in the file. Each 
command begins with "U:". 

rulelemma rule [, ... , rule ]; 
· [§4.2.3] The rulelemma command is a synonym for the ms.iQm command. 

save type typeName [, ... , typeName ]; 
· [§9.6] Causes Affirm to write files containing the specifications of the indicated types. The file 
.name of each file is the upper-case version of the corresponding type name. The save 
· command can be used in conjunction with the ~ command to remember data type 
specifications across Affirm sessions. The file written by the ~ command for each type is 
the internal form of the type specification (Interlisp code). Thus little processing is required to 
load the type back into Affirm, compared to the processing required when first creating the 
specification. The file name of the file is obtained by upper-casing the type name; thus type 
names may not differ only in casing, due to the possible file name conflict. 

schema rule [, ... , rule ]; 
[§4.2.3] Each rule is an equation Ihs = = expo The schema command introduces induction 
rules. The soundness of schemas is not determined by Affirm; the user must establish this 
property. It is in schema declarations that the restriction imposed on equations is most often 
felt. The following declaration illustrates a very common error: 

schema Induction(q) = = 
cases(Prop(NewSequenceOfElem Type), 

all q, x(IH(q) imp Prop(q apr x))); (bad!) 

Here the parameter is the same identifier as the quantifier in the expression. A correct schema 
declaration would be: 

search; 

schema Induction(q) = = 
cases(Prop(NewSequenceOfElem Type), 

all qO, x(IH(qO) imp Prop(qO apr x))); 

(\ 

[§6.6] Uses the method of chaining' and narrowing [§6.6] to attempt to automatically find the /\ 
\ ' \ J 



Affirm Commands 127 

instantiations sufficient to· reduce Current Proposition to~. The command displays the sets 
\~ of instantiations it tries. These may be referenced by the user in the choose command. 

set variable to expression; 
[§6.4) Variable no longer represents itself; it is assigned a value which will replace it whenever 
an expression is normalized. This effect is permanent until variable is explicitly given another 
value. This may be useful in conjunction with the ~ command. Other than that, it is not 
recommended. 

stop; [§3.5.4] Should be used only in a file of Affirm commands, as the last command. It avoids the 
usual end·of·file problems. 

storage degree; 
[§3.4) Degree is one of {normal, severe, tight}. 
. .. 

sufficient? [ typeName ]; 
[§4.4] TypeName must be a member of TyoeSet. A sufficient· completeness check is performed 
and the results displayed on the terminal. 

suppose [ proposition ]; 
[§7.4.2.2] This command splits the Current Proposition into two children: 

• proposition imp Current Proposition 

• proposition or Current Proposition 

These children are labelled· ~ and nQ.;.. If proposition is not supplied. the splitting predicate is 
"automatically generated by Affirm using the internal If· Then·Else fOl'JR of Current Proposition. 

Basically, the predicate is chosen from the first significant branch point. For example, if the 
Current Proposition is of the form 

«A imp B) and H) imp C 

the suppose command will yield the two children 

A and Band H imp C and (-A) and H imp C 

the children generated by the suppose command when no explicit proposition is supplied are 
labelled first:, second:, etc. It usually produces only two. Its detailed description follows, but it 
is usually best to experiment. 



128 

If Current Proposition 
is of the form: 

if B then C1 else C2 

C1 and C2 and •.. and Ck 

H imp (C1 and ... and Ck) 

(H1 and (H2 imp C1) and H3) imp C2 

The children are: 

{B imp C1, B or C2} 

. {Ck' C1 and ••. and CII_1} 

{H imp C1, 

(H and C1) imp C2, 

(H and C1 and C2) imp C3, 

... , 

Command Synopses 

(H and C1 and •.• and Ck•1) imp Ck} 

{(H1 and H2 and C1 and H3) imp C2, 
(H1 and (-H2) and H3) imp C2} 

split; (§7.4.2.2] A synonym for the suppose command with no parameter.42 

swap rangedExp [, .,,' rangedExp ]; 
(§7.5.2.4]. This command reverses equality hypotheses in the Current Proposition. Thus, it is 
often useful in conjunction with the replace command (§7.5.2.2]. Each rangedExp specifies 
one or more equalities to be reversed. Such a specification may give one of the arguments to 
the equality, or an ordinal range, or both. For example: 

swap a; 

swap 121,1·21; . 
swap a 1-11; 

thaw [ fileName ]; 

Swap all equations whose left hand side 
(or righ~ hand side) is the expression a. 
Swap the second equation, and the next-to-Iast equation. 
Swap the last equation whose left-hand 
or right-hand side is the expression a. 

[§3.10.4] This command is the opposite of the ~ command. It takes one parameter, the 
name of a file containing a session frozen by a ~ command. Most users will not ever have 
a use for this command, since the frozen session can be started in TOPS-20 or Tenex simply 
by typing the file name at the operating system executive level. 

theorem [nodeName,] proposition; 
[§7.3] This command simply enters the proposition into Theorems. It does not affect Current 
Proposition or Current Theorem. The command creates a root in the Proof Forest that may 
later be attempted. The user may associate a name with the theorem. This command is 
especially useful for command files containing lists of theorems to be attempted. 

transcript [ fileName ]; 
[§9.2] Begins a (new) transcript file fileName. If there is no transcript file at the time the user 
issues this command, then the file name of the new transcript, if not provided in the command, 
is governed by the profile entry TranscriptFileName; If there !§ a transcript file at the time this 
command is issued, then the new file name, if not provided in the command, is identical to the 
old file name, with a new version number. The transcript file when the system first begins is 
written into the user's !QQin directory, rather than the connected directory. Later transcript 
commands default to the connected directory. 

42The split command is an obsolete command; its function has been merged into the suppose command. 

I \ 

( 

J 



) 
---" 

\) 

Affirm Commands 129 

transcript toggle; 
[§9.2] Toggle is one of {off, on}. This command turns transcript processing either off or on. 
The file name is determined from the profile entry TranscriptFileName. 

try [ nodeName, ] proposition; " 
[§7.6.1.1] Makes proposition be the Current Proposition. If proposition is in Theorems, it 
becomes the Current Theorem; otherwise, this designation is applied to its parent theorem. If 
proposition is new, it is ad:led to Theorems. proposition is normalized and printed. This 
command is used for 

• random access in a proof tree; and 

• starting or resuming a proof (but see the description of the resume command (§7.6.1.2]). 

type type Name; 
[§4.2] Specifies typeName as the name Of an abstract type, whose specification will be given by 
subsequent commands. The name typeName is added to the TypeSet and is pushed onto 
ContextStack. If typeName is already a member of the TypeSet, its existing specification will be 
discarded. Each new type is automatically provided with one variable declaration (the name of 
which is ~ontrolled by the profile entry DummyVarName), a declaration of an equality operation, 
and an axiom explicitly stating that the equality operation is reflexive. The remaining properties 
of an equality operation are assumed, and should be validated by the creator of the type. 

undo"[ eventNumber]; 
[§3.4] Undoes the effects of execution of the command at event eventNumber, if possible . 

. up [integer]; 
"[§7.6.2.1] Moves the cursor up to a predecessor in the tree. If the Current Proposition is 
. already a theorem, this command has no effect. The number of ascensions defaults to 1. 

use [nodeName,] proposition; 
[§7.4.1.2] This command is exactly like the ~ command, but also prints the new Current 
Proposition. 

X.2.lnterlisp Commands: Useful Interpreter Commands 

DA Prints the time of day. This command is also an operating system executive command. 

EXEC Invokes the operating system executive as a subroutine. The user should type POP to 
return to Interlisp. 

X.3. Interlisp Commands: Useful Editor Commands 
These commands can be used only in the Interlisp editor as subcommands of the @ command 

[§11I.2], [§1I1.3]. 

10 Modifies the focus of attention to be. the parent of the current expression. 

t Resets the focus of attention to the entire initial expres~ion. 

t52 Modifies the focus of attention to be the sequence of hypotheses of Current Proposition. 



130 Command Synopses 

hyp Same as t 52. 

con 

1'53 

n 

Sameast53. 

Modifies the focus of attention to the conclusions of Current Proposition. 

n is a positive integer. This command moves the focus of attention to the nth element of the 
current expression. Caution: the command (n) deletes the nth element. 

BK Modifies the current expression to be the previous sibling if possible. 

(delete n) The nth element of the current expression is deleted. 

(delete n1 n2 n3) 

The children at the listed positions are deleted. These indices are instantaneous, not ~ 
at-a-time . 

. eval The current expression is evaluated. 

(extractn) 
The current expression is replaced with its nth child. For example, if the current expression 
is (ANI;) e1 e2 e3) then 

The command: 

(delete 2) 
(delete 2 3) 
(extract 2) 

It is not sound to delete operators. 

will result in: 

(AND e2 e3) 
(AND e3) 
e1 

·F pattern The F command attempts to find pattern within the current expression. If this search is 
successful then the focus of attention becomes the expression that matches pattern. 
Pattern can be any atom, and can contain escapes (which the operating system indicates as 
$). Each escape can match zero or more contiguous characters in an atom, e.g., VER$ 
matches VERYLONGA TOM. The command will print a message if it cannot find the pattern. 

infix The current expression is printed in infix form. 

(invoke definedName) 
The first instance of the definition with name definedName in the current expression is 
expanded. 

NX This command moves the focus of attention to the next sibling. For example, if the 
expression being edited is 

ok 

(PLUS (FOO 2) (FUM 3» 
and the current expression is 

(FOO2) 

then the NX command would focus upon 

(FUM 3) 

This command is very useful after the user uses the n.command and then discovers that he 
or she mis-counted. 

The user is returned to the Affirm exec~tive, and the modified expression becomes Current /\ 
/ 



Interlisp Commands: Useful Editor Commands 131 

. J Pa 

PPa 

stop 

Proposition . 

This command prints the current expression, showing the structure, (but not the contents) 
of contained subexpressions, a few levels deep. 

This command pretty-prints the current expression. 

The edit is aborted; no changes are made to Current Proposition, and the user is returned to 
the Affirm executive. 



132 Bibliography 

Bibliography 
[Dijkstra 76] Dijkstra, E. W., A Discipline of Programming, Prentice· Hall, 1976. 

[Floyd 67] Floyd, R. W., "Assigning meanings to programs," in J. T. Schwartz (ed.), Proceedings of 
Symposia in Applied Mathematics, pp. 19~32, American Mathematical Society, 1967. 

[Good 75] Good, D. I., R. L. London, and W. W. Bledsoe, "An interactive program verification 
system," IEEE Trar • .,2ctions On Software Engineering SE·1, (1), 1975. 59·67. 

[Guttag 75] Guttag, J. V., The Specification and Application to Programming of Abstract Data Types, 
Ph.D. thesis, University of Toronto, Department of Computer Science. October 1975. 

[Guttag 78a] Guttag, J. V., and J. J. Horning, "The algebraic specification of abstract data types," 
Acta Informatic3 10, 1978,27·52. 

[Guttag 78b] Guttag, J. V., E. Horowitz, and D. R. Musser, "The design of data type specifications," 
in R. T. Yeh (ed.), Current Trends in Programming Methodology. pp. 60·79, Prentice· Hall , 1978. 
(An expanded version of a paper which appeared in Proceedings of the Second International 
Conference on Software Engineering, October 1976.) 

[Guttag 78c] Guttag, J. V., E. Horowitz, and D. R. Musser, "Abstract data types and software 
validation," CACM 21, December 1978, 1048·1064. (Also USC/Information Sciences Institute 
RR·76·48, August 1976.) 

[Huet 78] Huet, G., Confluent Reductions: Abstract Properties and Applications to Term Rewriting 
Systems, IRIA· LABORIA, Technical Report LABORIA Report No. 250,1978. 

[Jensen 75] Jensen, K., and N. Wirth, Pascal User Manual and Report, Springer· Verlag, New York, 
1975. 

[Knuth 70] Knuth, D. E., and P. B. Bendix, "Simple word problems in universal algebras," in J. Leech 
(ed.), Computational Problems in Abstract Algebra, pp. 263·297, Pergamon Press, New York, 
1970. 

[Lampson 77] Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell, and G. J. Popek, "Report 
on the programming language Euclid," S/GPLAN Notices 12, (2), February 1977,1·79. 

[Lankford 78] Lankford, D. S., and D. R. Musser, On Semi·deciding First·Order Validity and Invalidity, 
1978. (unpublished manuscript) 

[London 78] 'London, R. L., J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and 
G. J. Popek, "Proof rules for the programming language Euclid," Acta Informatica 1 0, (1), 
January 1978,1·26. 

[McCarthy 63] McCarthy, J., "A basis for a mathematical theory of computation," in Braffort and 
Hirschberg (ed.), Computer Programming and Formal Systems, pp. 33·70, North·Holland, 1963. 

[Morris 77] Morris, J. H., Jr., and B. Wegbreit, "Subgoal induction," Communications of the ACM 20, 
(4), April 1977. 209·222. 



J 

Bibliography 133 

[Musser 77] Musser, D. R., "A data type verification system based on rewrite rules," in Proceedings 
of the Sixth Texas Conference on Computing Systems, pp. 1A22-1A31, Austin, Texas, November 
1977. 

[Musser SO] Musser, D. R., It Abstract data type specification in the Affirm system," IEEE 
Transactions on Software Engineering SE-6, (1), January 1980, 24·32. 

[Pratt 78] Pratt, V. R., Two Easy Theories whose Combination is Hard, 1978. (unpublished memo) 

[Robinson 65] Robinson, J. A., It A machine· oriented logic based on the resolution principle, It Journal 
of the ACM 12, (1), January 1965, 23-41. 

[Teitel man 78] Teitelman, W., interlisp Reference Manual, Xerox Palo Alto Research Center, Palo 
. Alto, California, 1978 . 

. "[Wile 79] Wile, D. S., POPART: Producer of Parsers and Related Tools, 1979. (USCllnformation 
Sciences Institute Technical Report, in preparation.) 



134 

Index 
@ (Affirm command) 90 
reductio ad absurdum 39 

undo 8 
redo 8 
fix 8 
discard history 9 
print history iO 
storage 10 
abort 13 
ok 13 
stop 13 

• help 14 

gripe 14 
note 15 
transcript 15 
review 15 
thaw 16 
print 16 
exec 18 
quit 18 
profile 18 
type 26 

edit 'Z7 
end 27 

print 27 
declare 27 
adopt 27 
discard variable 28 
interface 28 
infix· 29 
discard interface 29 
axiom 30 
rulelemma 30 
define 30 
schema 30 
discard 31 
sufficient? 34 
print 35 
complete 39 

normalize 42 
cases 43 
eval 43 
set 43 
put 43 
let 43 
search 45 
choose 45 
normint 47 
print 48 
theorem 51 
apply 51 
use 52 
augment 52 
suppose 52 
split 52 
employ 53 
complete 56 

replace 56 
invoke 57 
swap 58 
denote 58 
try 59 
resume 59 
retry 59 
next 59 
up 60 
down 60 
arc 60 
print 61,62 
assume 63 
name 63 
annotate 63 
clear 63 
discard theorem 64 
discard disconnected 64 
readp 66 
genvcs 67 
transcript 73 
read 75 
readp 75 
load 75 
save 75 
compile 75 
print file 75 
stop 76 
freeze 76 
e 89 
lisp 89 
@9O 

Affirm commands 
Affirm grammar 77 

discard Ihs 31 
print type 35 
print result 48 
print variables 48 
transcript off 73 
needs types 74 

Tenex Executive summary 105 
Tops-20 Executive summary 105 

Abort (Affirm command) 13 
Executive 5 
Specification Machine 26 

Rewrite Rule Machine 36 
Logic Machine 40 

Theorem Prover 49 
VC Generation Machine 65 
Formula 10 73 

Abstract Machines 
Adopt (Affirm command) 'Z7 
Aliases 66 
All 40 
Annotate (Affirm command) 63 
AnnotatingTranscript (profile entry) 21 
Apply (Affirm command) 51 

Index 



"-_/ 

Index 

Arc (Affirm command) 60 
Arc label 50 
Assume (Affirm command) 63 
Assumed 41 
Assumed (proof state) 63 
Assumed (proof status) 50 
Augment (Affirm command) 52 
AutoAnnotate (profile entry) 21 
AutoC8ses (profile entry) 21 
AutoFreeze (profile entry) 21 
AutoGenvcs (profile entry) 21 
AutolnvokelH (profile entry) 21 
AutoNext (profile entry) 21 
AutoNormint (profile entry) 21 
AutoPrintProof (profile entry) 21 
AutoPrintProofTheoremso(profile entry) 22 
AutoReplace (profile entry) 22 
AutoSearch (profile entry) 22 
AutoSufficient (profile entry) 22 
Awaiting lemma proof (proof status) 50 
Axiom 29 
Axiom (Affirm command) 30 
AxiomGrouping (profile entry) 22 

Basis 31 
Beginner's subset of commands 110 
BreakAccess (profile entry) 22 
Bugs 104 

·Case analysis rule 43 
Case Distribution 42, 43 
Cases (Affirm command) 43 
CautiousCompletion (profile entry) 22 
Chaining and Narrowing 44, 45 
Choose (Affirm command) 45 
Clear (Affirm command) 63 
Command structure diagrams 114 
Command Synopses 116 
Compile (Affirm command) 75 
Complete (Affirm command) 39, 56 
Computes-Lemma 68 
Conditional statements 68 
Constructor 32 
Context 26 
ContextStack 26, 31 
Contradiction 39 

Edit characters 5 
Control characters 5, 93 

Table of definitions 93 
Convergent 36 
Critical pair 37 
Curious Features 104 
Current Proposition 43, 49 
Current Restrictions 104 
Current Theorem 50 
CurrentContext 31 
Cursor 49 

Declare (Affirm command) 27 
Define 29 

Define (Affirm command) 30 
DefineGrouping (profile entry) 22 
Delete (editor command) 91 
Denied 41 
Denote (Affirm command) 58 
Discard (Affirm command) 31 
Discard disconnected (Affirm command) 64 
Discard history (Affirm command) 9 
Discard interface (Affirm command) 29 
Discard Ihs 30 
Discard theorem (Affirm command) 64 
Discard variable (Affirm command) 2B 
Disconnected nodes 62, 64 
DontAskJustTake (profile entry) 22 
Down (Affirm command) 60 

E (Affirm command) 89 
Edit (Affirm command) 27 
Employ (Affirm command) 53 
End (Affirm command) 27 
EnquireAfterFreeze (profile entry) 23 
Enquirelnitially (profile entry) 23 
Equality hypothesis 56 
Eval (Affirm command) 43 
Eval (editor command) 91 
Exec (Affirm command) 18 
Executive Machine 5 
Extender 32 
External Form 47 
Extract (editor command) 91 

Finite termination 36 
Fix (Affirm command) 8 
Formula 10 Machine 73 
Fragmentation 51 
Freeze (Affirm command) 76 
FreezeFileName (profile entry) 23 

GarbageCollectionMessage (profile et*y) 23 
GarbageCollectionPages (profile entry) 23 
Genvcs (Affirm command) 67 
Glossary 108 
Gripe (Affirm command) 14 

Help (Affirm command) 14 
History Mechanism 8 

Window 8 
undoing events 8 
redoing events 8 
fixing events 8 

HistoryWindowSize (profile entry) 23 

IH 55 
Import lists 65 
Induction 53 
Infix (Affirm command) 29 
Infix (editor command) 91 
Instantiation 41,49 
Interface 26, 28 
Interface (Affirm command). 28 

135 



136 

InterfaceGrouping (profile entry) 23 
InterfaceSet 26, 28 
Internal Form 47 
Internallf-Then-Else form 40 
Introduction 1 
Invoke (Affirm command) 57 
Invoke (editor command) 91 
Iteration statements 68 

Knuth-Bendix 29 
Knuth-Bendix Convergence Test 37 

Labels 66 
Leaves 50 
Left-unifiable 38 
LemmaGrouping (profile entry) 23 
Lemmas 50 
LessOutputDesired (profile entry) 23 
Let (Affirm command) 43 
Lisp (Affirm command) 89 
Load (Affirm command) 75 
Local declaration 26 
Local Declarations 27 
LocalDeclarationSel 26 
Logic Machine 40 

Mathematical induction 53 

Name (Affirm command) 63 
Next (Affirm command) 59 

. Node number 50 
Normalization 42 
Normalize (Affirm command) 42 
Normint (Affirm command) 47 
Note (Affirm command) 15 

Ok (Affirm command) 13 
Ok (editor command) 91 
Operating System Executives 105 

Tenex 105 
Tops-20 105 

Output 32 

Pa (editor command) 91 
Pascal 65 
Pascal functions 65, 69 
Pascal procedures 65, 68 
Pascal units 67 
PPa (editor command) 91 
Prenex form 40 
Print (Affirm command) 16,27,35,48, 61,62 
Print file (Affirm command) 75 
Print history (Affirm command) 10 
Printing propositions 48 
Profile (Affirm command) 18 
Profile Entries 21 

AnnotatingTranscript 21 
AutoAnnotate 21 
AutoCases 21 
AutoFreeze 21 

AutoGenvcs 21 
AutolnvokelH 21 
AutoNext 21 
AutoNormint 21 
AutoPrintProof 21 
AutoPrintProofTheorems 22 
AutoReplace 22 
AutoSearch 22 
AutoSufficient 22 
AxiomGrouping 22 
BreakAccess 22 
CautiousCompletion 22 
DefineGrouping 22 
DontAskJustTake 22 
EnquireAfterFreeze 23 
Enquirelnitially 23 
FreezeFileName 23 
GarbageCollectionMessage 23 
GarbageCollectionPages 23 
HistoryWindowSize 23 
InterfaceGrouping 23 
LemmaGrouping 23 
LessOutputDesired 23 
ReadAnotherProfileFile 23 
SaveOnlyChangedEntries 24 
SchemaGrouping 24 
ShowNormint 24 
ShowRules 24 
ShowRuleSimplification 24 
TerminalLineWidth 24 
TextEditor 24 
Timer 24 
TranscriptFileName 24 
Types/nlnterfaces 24 
UserProfileFileName 25 
Using Ted 25 

Proof Forest 50 
Proof status 50 
Proof Tree 49 
Propositions 40 
Proven (proof status) 50 
Put (Affirm command) 43 

Quantification 40 
Quit (Affirm command) 18 

Read (Affirm command) 75 
ReadAnotherProfileFile (profile entry) 23 
Readp (Affirm command) 66,75 
Redo (Affirm command) 8 
Replace (Affirm command) 56 
Resume (Affirm command) 59 
Retry (Affirm command) 59 
Return construct 66 
Review (Affirm command) 15 
Rewrite rule convergence 36 
Rewrite Rule Machine 36 
Rewrite rules 36 
Rule 26 
Rulelemma 29 

Index 



/ 

... -~~/ 

Index 

Rulelemma (Affirm command) 30 

Rules 29 
RuleSet 26, 29 

Save (Affirm command) 75 
SaveOnlyChangedEntries (profile entry) 24 

Schema 29, 53 
Schema (Affirm command) 30 
SchemaGrouping (profile entry) 24 
Search (Affirm command) 45 
Set (Affirm command) 43 
ShowNormint (profile entry) 24 
ShowRules (profile entry) 24 
ShowRuleSimplification (profile entry) 24 

Side effects 65 
Simplification 41 
Skolem dependencies 41 

. Skolemization 40 

Some 40 
Specification Machine 26 
Spelling Correction 6 
Split (Affirm command) 52 
Stop (Affirm command) 13,76 
Stop (editor command) 91 
Storage (Affirm command) 10 
Subgoals 50, 51 
Sufficient Completeness 31, 33 
Sufficient? (Affirm command) 34 
Suppose (Affirm command) 52 
.Swap (Affirm command) 58 
System Structure 3 

TerminalLineWidth (profile entry) 24 
TextEditor (profile entry) 24 
Thaw (Affirm command) 16 
Theorem (Affirm command) 51 
Theorem Prover Machine 49 
Theorems 49 
Timer (profile entry) 24 
TOI32 
Transcript (Affirm command) 15,73 
TranscriptFileName (profile entry) 24 
Tried (proof status) 50 
Try (Affirm command) 59 
Type 26 
Type {Affirm command} 26 
Type Library 35 
Type of. interest 32 
TypeSet 26 
Typeslnlnterfaces {profile entry} 24 

Undo (Affirm command) 8 
Unexpected interactions 6 
Unfinished leaves 50 
Unique termination 36 
Untried (proof status) 50 
Up (Affirm command) eo 
Use (Affirm command) 52 

.--\ UserProfileFileName (profile entry) 25 
) Uses 50 

UsingTed (profile entry) 25 

VC Generation Machine 65 
Verification condition examples 96 
Verification condition generation frT 

'ormal definition fI9 
examples 96 

Verification conditions 50 

Undoing events out of order 8 
~ is one event 9 
(PVReport>Mail.TXT 14 
<Affirm>KnownBugs.TXT 14 
g line numbers 24 
type names in interface parameter positions 24 
distinct variable and interface names 'Z1 
cases 43 
Schemas not validated 55 
readp forgets frT 
Pescalfunctions 69 
Reading what's printed 74 
type names and casing 75 
Interlisp editor 90 
names not lengthened to internal form 90 

Warnings 104 

137 


	Table of Contents
	1 Introduction
	2 System Structure: An Overview
	3 The Executive
	4 The Specification Machine
	5 The Rewrite Rule Machine
	6 The Logic Machine
	7 The Theorem Prover Machine
	8 The VC Generation Machine
	9 The Formula IO Machine
	Appendices
	I The Syntax of User Commands
	II The Syntax of Extended Pascal
	III Affirm's Interactions with Interlisp
	IV Examples of Generated Verification Conditions
	V Restrictions Bugs, and "Curious Features"
	VI Overviews of the Operating System Executives
	VII Glossary of Terms
	VIII A Beginner's Subset of Affirm Commands
	IX Command Structure Diagrams
	X Command Synopses

	Bibliography
	Index



