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APPENDIX 6. Syntax Charts

The following charts show exactly which sequences of symbols from a le-
gal ALGOL 68 particular-program and.which do not. To see what you may
legally write, start where it says “particular-program” in the first chart below,
and follow the line. Where the line diverges, you have a choice. You may either
write an “ENCLOSED-clause”, or you may write a “label” followed by a “:”.
If you write a label, then you get back where you started so, following the
same lines again, you may now write an “ENCLOSED-clause’ or you may go
for another label. Eventually, you must write an ENCLOSED-clause in order |
to reach the outgoing arrow on the right, which signifies that your particular-
program is complete.

In order to write any construct enclosed in a rectangle (such as an
“ENCLOSED-clause”), you must find the start of that construct (usually on
another chart) and follow the line from there, writing such constructs as you
meet on the way, until you escape via an outgoing arrow. Then you have com-
pleted the construct in question and may continue following lines in the orig-
inal chart. If you encounter a circle (or an oval), simply write the symbol in-
side it. So, to write an ENCLOSED-clause, find the start on the ENCLOSED-
clauses chart. Immediately you are faced with a choice. Suppose you follow
the route marked “closed-clause”. Now you must write either ““begin” or
“(”, and after that a “serial-clause” (which is on yet another chart). When
your serial-clause is complete, you write “end” or *)”’, whereupon you reach
the outgoing arrow and your ENCLOSED-clause is complete. Although the
chart does not show it (it would have been just too complicated), if you write
“begin” (rather than (*”) before the serial-clause, then you must write “end”
(rather than “)”) after it, and vice-versa.

Every construct written inside a rectangle will thus be found as an entry
point somewhere in one of the charts. The only exceptions are some very sim-
ple ones such as “label”, “defining-identifier”, “field-selector”, “mode-indica-
tion”, “operator”, ““character” and “digit”. The first three of these are the
same as “applied-identifier”” (on the units chart). For mode-indications and
operators see 1.3.2 and 4.3.

Above some of the rectangles there appears an indication of the mode that
the construct inside is expected to yield, and the strength of its context
(5.1.0.2) or whether it may be balanced (5.2.0.1). The mode written under-
neath an outgoing arrow tells you the mode of the construct you have just
written. “MOID” stands for any mode including void, and “MODE” for any
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mode other than void. On any one pass through a particular chart, the
MODEs etc. encountered must, however, always stand for the same mode.

Generally speaking in ALGOL 68, comments and pragmats (1.3.2) may ap-
pear in between any two symbols, but there are some exceptions — notably in
identifiers, denotations and format-texts. In these charts, you may insert a
comment or a pragmat anywhere where you are following a continuous line,
but if your route between two symbols is entirely over dotted lines, then you
may not write comments or pragmats although blanks and newlines are still
permitted (but see 5.5.1.1 for the dangers of doing this in string-denotations
and see Appendix 5 for a commonly used solution to the problem).

In “collection-lists” in the format-texts chart, an indication is given of the
modes in the data list of gezf and putf which are compatible with the various
patterns. For example, the chart shows that for a real-pattern the mode in the
data list on output may be int or real, but than on input it may only be ref
real. See 7.6.1.3 for further details on this point.
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