
5. THE IMPLEMENTATION OF ALGOL W

The two preceding chapters outline the data and control structures which

appear with minor variations in most implementations of Algol-like languages,

and they suggest how mechanisms for providing debugging facilities can be

superimposed upon such structures. By emphasizing the generality of certain

ideas, however, those chapters obscure the many crucial and often nontrivial

problems of detail which must be solved for a particular language and

implementation. This and subsequent chapters describe the internal structure of

an implemented debugging system, which is based upon the Algol W language and

the IBM System/360, IBM System/370, or ICL System 4 hardware. Various

design problems are pinpointed and their solutions are described. Some of these

are of general interest; others are specific to Algol W or the System/360 and are

mentioned primarily to suggest the kinds of difficulties other designers should

anticipate.

This chapter sketches the underlying implementation of Algol W. It

illustrates the application of some of the ideas in Chapter 3 and provides

information necessary for understanding subsequent chapters. It also attempts to

demonstrate that many features of the Algol W language and System/360

hardware naturally lead to design decisions which, as subsequent chapters show,

simplify the implementation of useful debugging aids. The treatment of detail is

intentionally selective; very cursory attention is given to those features of the

compiler and object code which either are quite standard or are unrelated to the

provision of debugging tools. A more thorough, although rather obsolete,

description of the compiler is available elsewhere [Bauer 68].

The implementation of the Algol W system has been shaped by its

history. Despite the fact that Algol W is being used primarily for teaching and

research work in university environments, the organization of its compiler

resembles that of a "production" compiler (see, for example, [Cocke 70, pp. 13-18,

730-755]) much more than that of a "student" compiler such as WATFOR [Shantz

67]. The original goals of the Algol W implementation project were ~tated as

follows:

The evolving project should be conducted in a thorough and systematic

manner ... making use of the best available methods on compiler construction

known. The results should consist of a well-organized system whose structure

and principles are sound and precisely understood ... [Wirth 68a].

These goals suggested a rather ambitiously conceived multipass translation

scheme. Before the system was completed, it was redesigned for educational use

99

in a university setting. Such use demanded high compilation speed and minimum

system overhead. Experiments showed that acceptable performance could be

achieved by modifying the operating system interface without changing the basic

structure of the compiler. The resulting system has justifiably been criticized

for lacking balanced design emphasis [Wirth 68b], but the outcome was a happier

one than might have been expected under the circumstances.

Certain consequences of the project's history must be

evaluating the design and performance of the debugging system.

considered in

The emphasis

upon the quality of the object code in the original design has contributed to

showing that good debugging tools are compatible with acceptably efficient

program execution. Although the compiler makes no attempt to apply global

transformations which would improve the generated code, it does perform

considerable, albeit somewhat uneven, local optimization. With some significant

exceptions associated with parameters called by value, the important special cases

of most constructs are recognized and appropriately compiled. In addition, the

run-time system is carefully organized to minimize administrative overheads, and

calls of interpretive system subroutines are avoided wherever possible.

Note

There is no widely accepted standard for measuring compiler performance. In

an independent evaluation of Algol compilers, however, the efficiency of the

object code produced by the Algol W compiler was judged to equal or exceed

that of code produced by all of the nineteen other compilers investigated

[Wichmann 70, 72a]. The study included most of the ALGOL 60 compilers

supplied by the major computer manufacturers as well as several privately

developed ones. The sizes of the object programs produced by a number of

these compilers were also investigated; Algol W's object code was found to be

slightly more compact than the average [Wichmann 72b]. Unpublished

measurements made by the author suggest that Algol W object code compares

favorably with that generated by many FORTRAN and PL/I compilers, but

the best optimizing FORTRAN compilers [Cocke 70, pp. 242-273] produce code

which is two to four times faster.

Acceptable performance with student jobs is obtained by using main

storage for all of the compiler's intermediate output. Thus the organization of

the Algol W system implies a sacrifice of some space to gain speed, and

techniques for the efficient use of auxiliary storage to hold the data structures

required by the debugging system have not been investigated. Also bypassed have

been problems associated with the merging of independently compiled programs,

although it is clear that neither the compiled code nor the tables of debugging

information are inherently incompatible with a conventional linking loader.

100

5.1. System/360 Architecture

The organizations of both the code produced by the Algol W compiler

and the run-time environment have been influenced by the architecture of the

IBM System/360 [IBM 6x, Blaauw 64]. "System/360" is a generic name for a

family of computers based upon a set of processors (i.e., hard-wired or

microprogrammed interpreters) offering essentially identical instruction sets but a

range of cost and performance levels. The family is well known and widely used;

furthermore, it has influenced the design of many other computing systems.

Several American and European manufacturers have built compatible hardware,

while others have adopted basically similar machine organizations. In addition,

the instruction set of the System/370, IBM's more recent range of machines, is

identical. Thus the System/360 and System/370 are fair representatives of the

current generation of computers.

In its functional characteristics, the System/360 is an evolutionary

extension and refinement of earlier designs. The architecture reflects an attempt

to provide an integrated instruction set suitable for both scientific and

commercial data processing. That instruction set might be considered a

word- and accumulator-oriented one, inherited from "scientific" machines, which

has been extended to include the character- and -storage-oriented operations

typical of "commercial" computers. In addition, both the addressing structure and

the details of the available instructions facilitate the use of reentrant and easily

relocatable code.

The basic uni t of i nf orma tion storage and transfer is the byte (or

character), a sequence of eight bits. Sequences of four and eight bytes form

words and double words respectively. Standard representations and

transformations of certain common data types, such as integers, are provided.

Main memory cells store a single byte of information, but most instructions

reference a contiguous sequence of cells, e.g., a word. The address space of the

memory is the set of integers in the range [n
l

, n
2
], where 0:$ n

l
< n

2
< 224 •

Furthermore, addresses can be computed using standard integer arithmetic. The

System/360 provides two sets of central registers directly visible to the

programmer. There are sixteen general registers, denoted by RO, R1, ... , R15 ,

and four floating-point registers. Each general register contains a word of

information and can be used indiscriminately for accumulating integer or Boolean

quanti ties, for indexing, or for generating an address. The floating-point

registers hold double words and serve as floating-point accumulators. Small

These addresses are explicit in

A special register, called the

integers are used to address each set of registers.

each instruction; there is no hardware stack.

condi tion code, is set by comparisons and

interroga ted by condi tional branch instructions.

certain other operations; it is

101

-

With respect to the implementation of Algol W, the most notable feature

of the System/360 is the addressing structure. Absolute 24-bit addresses can be

formed and manipulated, but machine instructions which reference memory have

only 16-bit address fields. Such addresses are really pairs of the form (b, d);

the absolute address of the actual operand is given by

[contents(b) + d] mod 224 .

Here b is interpreted as the address of a general register, which is called a

base register in this context, and d is an absolute displacement.

Note

Some instructions allow specification of a second general register, called an

index register, in the absolute address calculation. Many useful instructions

do not allow this further level of indexing, however, and it is not used

extensively in Algol W object code.

Since all memory address fields of instructions contain such pairs, System/360

programs must arrange to keep appropriate base values in the general registers.

The displacement d is specified by 12 bits; thus an instruction reference to

memory location m requires that, for some register b J

contents(b) ~ m < contents(b) + 212 .

The code generated by the Algol W compiler makes extensive use of

instructions from the "scientific" subset; these have relatively systematic and

uniform formats which are easy to assemble and decode. In most arithmetic

operations, including address calculation, one operand is contained in an

accumulator and the second can come from an accumulator or from storage.

Instructions outside the scientific subset are more specialized and less systematic;

they are exploited by the administrative code which maintains the run-time

environment and are used extensively within the compiler and the supporting

run-time system.

102

5.2. Segmentation

A segment of address space is the set of addresses within some interval

[n, n+d) , where d > o. Such an interval defines a segment of main memory (or

simply a segment), which is the collection of all cells with addresses in the given

interval. The integer n is the origin of the segment; its length is d. In the

Algol W run-time system, storage is divided into segments. Whenever a given

segment is directly accessible, some base register contains the origin of that

segment. Conversely, whenever the value of the corresponding origin is available,

the storage within a segment can be made accessible. Much of the administrative

code in compiled Algol W programs is concerned with the management of base

registers. The problem is considerably simplified by the fact that the structures

of Algol W programs and of the necessary run-time environment suggest a

natural segmentation.

In Algol W, as implemented for the System/360, the text associated with

each of the following entities requires the dynamic allocation of storage for local

variables or state information (cf. Section 3.4):

An explici t procedure declaration.

A "proper" block, i.e., the main program itself or any block which contains

declarations in its head but is not itself the body of a procedure declaration.

An actual parameter, except one which either is a constant or is an identifier

of a simple variable, an array, a procedure, or a formal parameter.

A record class declaration.

Execution of the corresponding text causes the creation of an activation record,

which is represented by a dynamically allocated data segment.

The program text is also segmented. For each procedure declaration and

proper block, the compiled code forms a program segment containing machine

instructions and constants. Space for such a segment is allocated and initialized

before execution begins. The code corresponding to an actual parameter is

usually quite short and is embedded within the program segment containing the

procedure call (see Section 5.5.2), while a record declaration is simply translated

into a table entry for later interpretation (see Section 5.3.3).

103

In the sequel, mention of proper blocks will often be omitted, for they

are treated exactly as nameless, parameterless procedures which are called at their

points of declaration.

5.2.1. Data Segments

Each data segment represents an activation record and provides storage

locations for any variables local to the corresponding procedure instance.

Identifiers are bound to storage locations representing the local variables by the

scheme presented in Section 3.6. Binding of an identifier I declared in the

text for congruence class Q is implemented as follows:

The fields of an activation record are represented by contiguous sequences of

cells wi thin the corresponding data segment; thus a field selector can be

characterized by an offset j' and a length 1'. The offset is the relative

address of the first byte of the field in any data segment representing an

activation record in the class Q, and the length is the number of bytes in

that field. The value of l' is determined by the declared type of I. The

mapping F Q is computed by the compiler, and F Q(I) = (j', 1') .

During execution, data segments are allocated from available storage as they

are required. If I is bound by the context to, x.F Q(I) ,where x E Q , and

if a is the origin of the data segment representing the record x, the

identifier is bound to the storage cell with absolute address a + j'. If base

register b contains the value a and if j' is suitably restricted, the

address field of a System/360 instruction referencing the storage cell can and

usually does have the form (b, j'). The length l' is implicitly encoded in

the operation code of the instruction.

A system organization which guarantees that any required segment origins are

immediately available in the general registers is the subject of the next several

sections. This organization provides particularly convenient and efficient access

to variables.

Note

If is the usual "ordinal number" determined by the position of the

declaration of the identifier I within its unit of textual scope (see, e.g.,

[Randell 64, Section 2.2]), the mapping from to j' is not linear for the

following reasons:

104

Sizes of Algol W storage cells are type-dependent.

Certain storage management routines require allocation of contiguous

storage for all reference variables within a segment (see Section 5.3.3).

Some distinct syntactic (i.e., lexical) scopes are combined for purposes of

storage allocation. A single data segment usually provides the storage

associated with both the formal parameters of a procedure and the local

variables of the outermost block of its body; also, a control identifier is

bound to a storage cell which is allocated as part of the storage for the

enclosing procedure or block.

The Algol W language maintains a clear distinction between those

activation records which necessarily have nested lifetimes and those which do not

ecf. Section 3.7.3). The latter are exactly the members of congruence classes

defined by Algol W record class declarations. The program texts associated with

such classes are always empty, and it is convenient to imagine that the

corresponding activation records are created, deleted from S, and made elements

of U - S as parts of single state transitions. In each well-defined state,

therefore, the only elements of S - {P} are the activation records in the

congruence classes defined by Algol W's procedure declarations, and the only

elements of U - S are the retained activation records in the classes defined by

record declarations.

The lifetimes of all elements of S - {P} are properly nested. Space

for the data segments representing these activation records is managed as a LIFO

stack. The implementation uses the convention that allocated space in the stack

grows "upward", i.e., if a
l

and a
2

are the origins of segments associated with

procedure instances Xl and x
2

respectively,

iff

The format of a typical data segment in the stack is illustrated by the following

diagram:

105

secondary

allocation

primary

allocation

origin ------~~

Array Space

Local Stack

Local Variables

Local Display

Descriptors

(DPDs)

Stack Mark

Stack Data Segment

The stack mark and the local display consist of control variables that store

some state information for the procedure instance. Their use is discussed in

Section 5.3.2.

The dynamic parameter descriptors (DPD's) define the actual parameters of

the activation (see Section 5.5.1); the procedure's formal parameter identifiers

are bound to these cells. These descriptors and the local variables are the

environment variables of the procedure instance.

The compiler is able to precompute the amount of storage required for

intermediate results that cannot remain in the general registers. Such

temporary storage is reserved in a "local stack" allocated wi thin each data

segment. All manipulation of indices in this "stack" is done by the compiler,

and the temporaries behave as anonymous local variables.

Array elements are stored in an extension of the data segment and are

accessed indirectly.

106

Note that the length of the primary allocation can be computed by the compiler,

but the lengths of the secondary allocation and thus of the data segment

generally depend upon dynamically evaluated array bounds.

Array storage presents some further complications. The number of

elements of an array cannot necessarily be precomputed; moreover, a mechanism

for mapping a multidimensional array into linearly addressed storage is necessary.

Algol W uses a well-known solution based upon sequential storage allocation and

a mapping function which is linear with respect to each subscript (see, for

example, [Sattley 61]). In the linearization of multidimensional arrays, the

subarrays defined by fixing the value of the final subscript occupy contiguous

storage locations, e.g., matrices are stored in column major order. Thus the

address of an array element with indices Xl' ••• , xn is given by

n

ao + ~ di (Xi - 1)
i=l

where

ao is the origin of the storage block containing the values of the array

elements.

For each Ii and u
i

are the declared array bounds and

1. ~ x. ~ u ..
1 1 1

d
l

is the size of each array element.

For 1 ~ i < n ,

This expression can be rewritten as

n

a~ + ~ di Xi

i=l

where a' o

n

ao - ~ di Ii

i=l

If the sequences of the coefficients d and of the indices ~ are viewed as

vectors, address calculation involves the evaluation of an ordinary inner product'

!!.~

107

In general, allocation of array storage and computation of the coefficients

must be deferred until actual block entry. Thus the storage cell to which an

array identifier is bound contains an array descriptor (sometimes called a "dope

vector") for that array. Space for the array elements is obtained from the stack

also and is contiguous with the other storage for that data segment containing

the array's descriptor. Unlike the other declarations of Algol W, array

declarations generate executable code. The effect of executing that code is to

extend the secondary allocation of the data segment and to fill the descriptor

with values of a~ and of Ii' u i ' and d i (1 ~ i ~ n). Subsequent reference

to an array element proceeds as follows: as the indices are evaluated, the value of

the inner product is accumulated in a general register b. The virtual origin of

the array a~ is then added; thus the appropriate address field for a

System/360 instruction is (b, 0). Subscript bounds are recorded in the

descriptor to allow the option of index validity checking.

If J is some subset of the set of subscript positions I, the address of

an element can be expressed as

[a~ + ~ d i x)
iEI-J

If the values of x.
1

are fixed for E I - J, this

accessing function for a projection of the original array.

used to construct subarray descriptors. The sequence d'

expression defines an

Such a projection is

of coefficients for the

subarray is some subsequence of the original ~; if dj = d i ' then for some

k ~ 1 •

dj+l d i+k fj (u i - 1. + 1) d i •
1

where

i+k-l

f. 11 (urn - I + 1) .
I m

m=i+l

108

Data segments representing elements of U - S are allocated from a

pool of storage which is managed using garbage collection techniques (see Section

5.3.3). Segments within the pool can be allocated and freed in an arbitrary

order. Those segments occupy fixed locations within the pool and are never

moved. The pool itself behaves as a stack of large data areas, called "pages",

which grows "downward" toward the stack used for allocation in S - {P} and

shrinks "upward" as entire pages become free.

Data segments within this storage pool have a simpler format than those

in the stack. Their typical structure is illustrated by the following diagram:

Local Variables

marking - -------rilll- -------------------
bits

Pool Data Segment

Because the corresponding program texts are null, the

normally recorded in an activation record is not required.

control information

Algol W imposes the

further restriction that only simple variables can be declared wi thin a record

class; thus there is no secondary allocation. Two Boolean control variables are,

however, reserved at the beginning of each data segment in the pool. These

"marking bits" are used by the garbage collector.

Note

Because of System/360 addressing and alignment restrictions, these two

Boolean variables effectively occupy at least 8 and often 32 bits.

5.2.2. Program Segments

Each program segment corresponds to the source text of a single

procedure declaration (and not a record declaration). It contains the machine

instructions and constants required to express that text in System/360 object code

as well as some additional descriptive information. The format of a typical

program segment is shown by the following diagram, where B designates an

uncondi tional branch instruction:

109

Constants

System/360 Instructions

Label Vector

Descriptors

(SFPDs)

Reference Information

B T
~ j

origin

Program Segment

The reference information consists of a pair of constants used by storage

management routines (see Section 5.3.3).

The static formal parameter descriptors (SFPDs) describe the fixed attributes

of any parameters required by the procedure. They are used to detect

mismatched parameter lists in the (relatively rare) cases in which this check

cannot be completed by the compiler.

There is a branch instruction in the label vector for every explicit label

appearing in the bo~y of the procedure; all transfers to such labels are made

indirectly through the branch instructions. This vector simplifies the

compilation of intersegment transfers, since an address, in the form of a

segment name and offset, can be assigned to each label before the details of

the final code are known.

None of the information in a program segment is modified during execution, and

recursion requires no special treatment. The code in a single program segment is

shared, via pointers, by all procedure instances in a congruence class ecf. Section

110

3.3); indeed, the sharing of program segments provides a convenient test for

congruence.

5.3. The Structure of Activation Records

An

programs by

execution environment P

the System/360 hardware

is

and

provided

some

for compiled Algol

supporting software.

W
As

discussed in the preceding section, every activation record in U - {P} is

represented by a data segment. Sequence control (SC) variables are not simple

pointers as suggested in Section 3.5 but are pairs similar to the pairs

representing label values (cf. Section 3.7.3). The pair consists of the origin of

the data segment corresponding to the dynamically enclosing procedure instance

and a "return address", which points to the next System/360 instruction to be

executed by that procedure instance. Thus the value of x.SC is a pair having

the same value as

[D(x), D(x).IA] ,

but activation records do not contain the IA fields introduced in Section 3.3.

Those fields are replaced by the second subfield of SC. Note, however, that

the instruction address for procedure instance x is recorded in the activation

record of D-1(x), not of x. In Algol W, D-
1

is a well defined function

(cf. Section 3.5.2), and thus the same information is encoded in the total set of

control variables.

Notes

This scheme was adopted because the System/360 instruction set slightly

favors storing the "return address" (using a "store multiple" instruction)

locally to a called procedure. In addition, the value of P.SC is

[D(P), D(P).IA] , which reflects the fact that D(P).IA is kept in a register

of the System/360 hardware, not the activation record of D(P)

Some investigators of Algol-like languages introduce labels as primitives in

their models of control structures (cf. [Johnston 71]). The alternative

formulation of SC variables introduced in this section is actually favored by

these investigators.

Each access control (AC) variable consists of a single component, which is the

origin of the data segment representing the textually enclosing procedure

instance. Since a display scheme is used, most operations that are performed to

maintain the correct accessing environment involve vectors of AC variables.

111

The close correspondence between procedure instances and activation

records has already been noted. In the Algol W implementation, every such

record (except the one for P) is represented throughout its lifetime by a unique

data segment which, in turn, can be identified by, and accessed through, its

origin. Sometimes it is awkward or unnecessary to distinguish among these

classes of objects. When the intended meaning is clear from context, the same

name will frequently be used to designate either a procedure instance, its

activation record, the corresponding data segment, or the origin of that segment.

5.3.1. The Processor P

The processor's central registers represent part of the activation record of

P. In any well-defined state of the computation, p.se designates the

procedure instance which is being executed. One component, the origin of the

corresponding data segment, is contained in a reserved memory cell MP, the

"mark pointer". The other component is the address in the matching program

segment of the next compiled instruction to be executed. It is usually contained

in the hardware's instruction address register IA; during the execution of

operations which are simulated by the supporting software, however, that address

is stored in a fixed general register or in a reserved memory cell.

A display is used in the implementation of Algol W for the System/360

(cf. Section 3.6.1). Thus P has an access control vector, and that vector is

maintained in the general registers. The display element d[i] , where is the

height of the designated activation record, is held in register 13 - i Every

Algol W program is considered to be declared and executed within a standard

environment Xo with height o. Register R13 contains a fixed value that

points to a data segment corresponding to Xo and containing the predeclared

variables as well as some constants and code sequences that are made available to

all compiled programs. If T(P) = P.AC = x and if the procedure instance x

has (adjusted) height n, then general registers 13-n through 13 serve as the

display, and Ti(P) is contained in register (12-n) + j. Note that register

13-n itself corresponds to P.AC and contains the same value as MP. The

display registers are used as base registers in the compiled code and allow direct

access to all variables in TO< (x). This accessing scheme is convenient (cf.

Section 5.1), relatively simple, and reasonably efficient as implemented for the

System/360.

General registers 2 through 12-n are available for expression

evaluation; in particular, any computed addresses of array elements or substrings

appear in these registers, as do the values of reference expressions. R14 and,

when required, R15 contain the base addresses for the program segment

containing the code being executed, i.e., the code for procedure instances in the

112

congruence class of x. Such base values are required for branch instructions

and for those instructions which access constants embedded within the program

segment. RO and Rl are reserved for system linkage and "scratch" use.

5.3.2. Records in S - {P}

The data segments representing activation records in S - {P}

fields which correspond to control variables and hold state information.

fields have a standard format. The SC component is represented

contents of the following two fields, which are parts of the stack mark:

include

Those

by the

DL, the "dynamic link", contains the origin of the data segment corresponding

to the dynamically enclosing procedure instance.

RETA, the "return address", holds the address of the next instruction to be

executed by P for the procedure instance designated by DL.

If x -+ y, then x.DL y and x.RETA is the address of an instruction

within the code for y.

vector

The
nsp

AC component of a data segment is expanded into a local display

If the (adjusted) height of a procedure instance y is n, with

n > 1 , and if

where x. Tn-i(y)
I

then the local display for y contains n-l elements, and these are the origins

of the data segments representing x
2

through xn ' Since there are System/3GO

instructions for loading and storinf, multiple general registers, copying a local

display vector to or from P's display vector is quite inexpensive.

Notes

The field nsp is arranged so that xn.nSP[i] contains x n-i+1
• For n > 2,

xn.DSP[2] contains xn_
1

' the origin of the data segment corresponding to

the textually enclosing procedure instance. Thus the subfield nSP[2]

corresponds to AC, the "static link", and it occupies a standard position

within each data segment.

In the execution of any particular program, the data segments at heights 0

and 1, representing the standard environment and the main program

respectively, are constant; the origins of these segments are therefore omitted

from the local displays.

113

There are a few other fields of interest that contain control

information; they are included in the following diagram, which also illustrates

the format of such fields.

DSP I Local Display

DPDs

THUNK - I REFV
DL

RETA
FP
PB I Stack Mark

Origin~
State Information

The field PB, the "program base", stores the ongm of the program segment

containing the compiled code for the procedure instance. In the case of an

actual parameter, the code is properly embedded in the program segment.

The field FP, the "free storage pointer", records the next stack location not

allocated to the data segment. A data segment with origin x occupies the

interval of address space [x, x.FP). Requests for stack space always

reference MP.FP. Thus truncation of the dynamic link chain by resetting

MP automatically releases the storage allocated to all deleted data segments.

TRUNK is a Boolean field which is set if, and only if, the data segment

corresponds to a procedure instance associated with an actual parameter. The

storage management routines require this information as well as the

information stored in REFV about reference fields within the data segment

(see Section 5.3.3).

Note that the control variables described in this section use pointers to

impose a substantial amount of structure upon the set of program and data

segments. This structure is heavily exploited by the debugging system (see

Chapter 6).

114

MP Q

.. ..
C

j DSP[2J

~'DSP[lJ
j DL

RET A .-

- FP
PB c .. J II I lRlO ,- I .. "'1

- I .. II ~. .. P L: ..
D
:' DSP[2] I R14 I I IA) I
~'DSP[l]

-' DL
RETA c

j FP ,r
'I .J I .. PB c rl

'I ...
.. S2 ..

B
J DSpr 11
- DL

RETA 0:

::0 FP ,
.1

PB 0: ..J I lRl1 .- I .. "'1 I I ..
.. Sl ..

A
(0) DL

RETA c

FP - ~,

.1
.. PB c J I lR12 ,- I rl

'I J
(main) ,.

Stack Program Segments

Figure 5-1

Snapshot of Algol W Segments

115

Example

Figure 5-1 is a snapshot of the state of the computation described by the

following Algol W program when the label L is encountered:

begin real A;

SI: begin

L:

proced ure P;
begin real C;

A := B .- C := 3.14159;

end P;
real B;

S2: begin real D;

P

end

end

end

This figure illustrates most of the data structures described in this section

and the relations among them.

5.3.3. Records in U - S

An Algol W record class declaration is analogous to a declaration of a

parameterless procedure. A record creator "activates" the "procedure", which

returns the origin of (or a "reference" to) a data segment representing a record

of the congruence class described by the declaration. The identifiers introduced

within that declaration denote field selectors. They are known outside the body

of the declaration and can be used with any appropriate reference value to access

a variable within a data segment of the correct class. The offsets within such

segments are assigned by the compiler so that the variables containing reference

values occupy contiguous storage locations at the beginning of the segment. The

compiler also assigns to each congruence class a nonzero identifying number

which is unique over the set of record classes. Each page in the storage pool

contains records of a single class (cf. Section 5.2.1). The value of a reference

quantity consists of a pointer to a data segment and a prefix containing the

number that identifies the class of that data segment. The null reference has a

standard value and a unique prefix.

116

Ireference

marking fields

bits ~hl~-----------I-~

I·p-r-e-nf~ix-'I---p-o~i-n~t-e-r-~-.~~----~;'

reference value record

Record and Reference Formats

The execution environment P includes a global data structure called

the record table. For any particular Algol W program, the i-th entry in that

table contains information about record class i. Each entry consists of three

subfields. One contains the length of any record in the congruence class, and a

second contains the number of reference variables within each such record.

These two fields are constant and are initialized to values supplied by the

compiler. The final field is the header of a list of pointers to available records

in the class. A routine within P is called whenever a new record is required;

it removes a record from the head of the free list, initializes its reference fields

to the null value, and returns a properly prefixed pointer.

Whenever the free list for the desired record class is empty, a garbage

collection occurs. There are two phases. An initial marking phase systematically

inspects all elements of U and m<:.rks those records in U - S that must be

retained. An element of U is potentially required for subsequent use in the

computation only if it can be accessed by a chain of reference variables

beginning with a variable local to some xES. Two cases are distinguished.

If x = P, the reference chain begins with an intermediate result in a

general register or a local stack cell. The implementation guarantees that the

first record .in such a chain is "protected". This protection is provided by

one of the marking bits. That bit is set in the record designated by each

temporary prior to any operation, such as a procedure call, potentially causing

a garbage collection, and the bit is cleared before the temporary is discarded

or assigned to a variable.

117

Example

If R is a record class identifier, the first record allocated in the

evaluation of the (nonsensical but legal) form

if R = R then

must be protected prior to allocation of the second.

If xES - {P} , the root of the reference chain will be encountered in a

systematic scan of S - {P} Scanning begins with the record designated by

MP and proceeds by using the DL field to follow the dynamic link chain

(cf. Section 3.5.2). The data segments corresponding to records on that chain

are arranged so that all local reference variables (including value and result

parameters) occupy contiguous fields, as do the descriptors of all local

reference arrays. If x is such a segment, there are no local variables if

x.THUNK is set; otherwise, x.REFV and the reference information in the

program segment designated by x.PB contain respectively the number and

origin of the reference variables and arrays.

Note

The counts are maintained locally to each procedure instance so that

unini tialized data structures will not be inspected. For example, the call

of the procedure in a declaration of the form

reference (R) array Q{1::N, l::F(N))

might cause a garbage collection with Q's descriptor partially unini tialized.

All access paths rooted in the reference variables local to elements of S - {P}

or to protected elements of U - S are followed to locate and mark the records

to be retained. References can be used to link records in arbitrary ways, and an

adaptation of the Schorr/Waite/Deutsch marking algorithm [Schorr 67J is used to

explore the access paths systematically. Note that each reference value identifies

the class of the record that it designates, and the record table entry for that

class contains the information necessary to locate any embedded references.

In the second phase of the garbage collection, the entire storage pool is

scanned; unmarked records are returned to the appropriate free list, and the bits

used to mark accessible records are reset. If the free list for the desired class

remains empty after the garbage collection, a new page is initialized and added to

the pool, and a new free list is constructed.

118

5.4. Control Transfers

Control transfers in the System/360 implementation of Algol W occur

approximately as outlined in Section 3.7. The compiler does, however, perform an

analysis of the entire program so that the overhead associated with such

transfers can be somewhat reduced. It attempts to avoid allocating and

initializing variables that store closures and label values. In many cases, such

data structures are synthesized from display elements and from constants

embedded within program segments just when they are needed for control

transfers. Some effort is also made to minimize the bookkeeping instructions

required to maintain the display. The special cases that arise in this analysis do

not substantially affect the design of the debugging system, but some knowledge

of them is necessary for understanding a few of the implementation details

discussed in Chapter 7. Note that all transfers of interest in this section occur

between elements of S - {P} , i.e., between procedure instances represented by

data segments in the stack.

5.4.1. Classification of Procedures

For purposes of code generation, the Algol W compiler classifies all

procedures as open or closed. An open procedure can be thought of as one in

which the declarations in the formal parameter list are "open" for inspection by

every caller of the procedure; if those declarations can possibly be "hidden" from

any caller, the procedure is closed. More precisely, a call operation using the

closure c is open if it occurs within the scope of the declaration creating c

and if c is named by the identifier introduced in that declaration. Any other

call is closed. A congruence class of closures or, by extension, procedure

instances is open if no call operation using a closure in that class can possibly

be closed; otherwise, the class is closed. The distinction between open and closed

procedures is useful because closed procedures are rare and significantly better

code can be generated .·for open procedures, especially with respect to parameters

(see Section 5.5).

Note

"Open" is sometimes used to mean that the call is actually eliminated by

using the body of the procedure as a template for macro expansion. Only a

call that is open by the above definition can possibly be so expanded, but

such substitution is not used in the implementation of Algol W.

The only variables to which closures can be assigned in Algol Ware

those introduced by the declarations of certain formal parameter identifiers. If a

closure is not assigned to such a variable, it can be used only in open calls.

119

Conversely, the closed calls are exactly those in which the closure is specified by

a formal parameter identifier. Thus the classification algorithm is trivial. The

compiler marks a congruence class as closed if the corresponding procedure

identifier ever stands alone as an actual parameter. All other classes are open.

Classification is completed before any code is generated.

Example

Consider the following Algol W program:

begin integer M; real Z;

procedure P (real procedure F);

begin real X;

L1: X := F(M)

end P;

real procedure R (real value X); 1/X;

M := 10;
L2: Z := R(lO);

L3: peR)

end.

The procedure call labeled L1 is closed, the call at L2 is an open call of

the closed procedure R, and the call at L3 is an open call of the open

procedure P

Afterthought

The classification of a procedure as open or clo~ed affects the code generated

for both its body and any opeo calls of it. Although very few Algol W

programs use many closed procedures, it probably would have been worthwhile

to provide two entry points for each procedure text, one used by open calls

and the other used by closed calls. Of course, no code need be generated for

an entry point known to be unused.

5.4.2. Procedure Call and Entry

The instruction set of the System/360 requires that a call operation be

implemented as a sequence of simpler operations, much as suggested in Section

3.7.1. The initial part of that sequence is specified by inline instructions

generated for the call; the remainder, by instructions appearing in a prologue of

each procedure text, called the instantiation code of the procedure.

120

Suppose that procedure instance x executes a call operation in which

the argument is the closure c. It is always possible to identify a pair of

general registers r
l

and r
2

having the property that [c.tp, c.ac] = [r
l

, r
2

]

immediately prior to the call. The value of c. tp is an address wi thin a

program segment, and c.ac is represented by the origin of a data segment. In

the case of a closed call, an existing closure which is the value of a formal

parameter is simply copied into a standard pair of registers so that

c = [R3, R4]. To allow checking of the correspondence between formal and actual

parameters, the actual transfer in this case is done indirectly through a support

routine provided by software in the execution environment P. Details of such

indirect transfers are provided in Section 5.5.4.

In an open call, the closure is constructed dynamically. The value of

c.tp is the origin of a program segment, the identity of which is known. The

absolute address of that segment is treated as a literal (i.e., as a System/360

address constant) within the code for x. In preparation for the transfer, it is

loaded into the program base register R14. Since c.ac = Tm(x) for some

m ~ 0 in an open call, its value is available in a display register r. If c is

an element of a closed congruence class, the value of r is copied into a

standard register R4 so that c = [RI4, R4]. If c is open, however, c.ac

need not be moved to a standard location and c is represented rather implicitly

by [RI4, r]. The actual transfer is initiated in either case by a "branch and

link" instruction specifying c.tp (RI4) as the destination addre.ss.

The instantiation code entered by the branch instruction allocates a data

segment to represent a new procedure instance y and initializes the fields in

that segment's stack mark. The origin of the segment is copied into MP and

into display register 13 - h(y) ,where h(y) is the height of y. If y

belongs to a closed congruence class, the display is completed by copying the

h(y)-2 elements of R4.DSP, the local display of T(y) , into display registers

13 - (h(y)-1) through 11 (cf. Section 5.3). This is unnecessary for an open

procedure, since it is guaranteed that 'fey) = Tm(x) for some m ~ 0 and thus

that the two procedure instances share display elements (see Section 3.7.1). In

both cases, MP.DSP is initialized with the values of registers l3-h(y)

through 11. Prior to that initialization, the control variables of yare not

necessarily consistent; thus the instantiation code cannot strictly be considered a

part of y.

5.4.3. Procedure Exit and Return

Return operations must also be implemented as sequences of simpler

operations; again, these sequences follow the general pattern suggested in Section

3.7.1. If y -+ x, part of the code for the transfer forms an epilogue to the

121

text of y. That code copies y.DL the ongm of the data segment for x,

into MP and into a standard register R2 It then transfers by branching to

the location in the program text for x given by y.RETA Code at that

location uses R2.PB and R2.DSP to reload the program base register and any

necessary display registers. If the call operation that created y was open, then

T(y) = Tm(x) and only the m display registers corresponding to x, T(x) , ... ,

Tm-l(x) are restored. Note that resetting MP releases the storage used by the

data segment for y.

The code following a return from a function procedure must retrieve the

value computed by the procedure. The location of that value is determined by

the declared type of the procedure and the number of parameters. Function

procedures with at least one parameter return the value in a central register or

set of registers appropriate for the declared type, and the location depends only

upon that type. String procedures are exceptions; since there are no hardware

accumulators for strings, a pointer to the string is returned in a general register

(R3). All values of parameterless function procedures are also returned in a

main storage location addressed by R3, since permissable uses of such

procedures overlap those of name parameters, and the latter must return

addresses (see Section 5.5). Storage for the value designated by R3 can be part

of the data segment for y, which is released by the transfer operation;

therefore, code in x uses the value or copies it into a local variable prior to

any operation potentially requiring storage allocation.

5.4.4. Transfers to Labels

Algol W does not provide label variables, swi tches, or label parameters

(although the effect of the latter can be obtained by using goto-statements as

parameters). Thus transfer to a label from procedure instance x is possible

only if the label is declared in Tm(x) , m ~ O. If m) 0, the code

generated for the transfer resets MP to the value of th~ display register

containing the origin of Tm(x) , loads the program base register R14 from

MP.PB, and branches to a label vector entry in the program segment for

Tm(x). Note that the display need not be reset and that data segments removed

from S by the transfer are automatically deallocated by resetting MP; no

elaborate "go to interpreter" is required (cf. Section 3.7.2).

5.5. Parameters

Algol W has inherited from ALGOL 60 most of the subtleties of name

parameters that are demonstrated by the examples in Section 3.B. The problem

of type conversion is exacerbated by the relatively large number of

122

interconvertible types and the variety of parameter transmission mechanisms. In

an open call of an open procedure, all relevant attributes of the formal and

actual parameters can be deduced by the compiler; it can verify compatibility and

generate any code necessary for type conversion. In a closed call, however, the

compiler cannot always deduce the precise attributes of the formal parameter to

which a particular actual parameter corresponds. The allowable assignments

involving value parameters (upon procedure entry) and result parameters (upon

procedure exit) potentially require type conversions in which the types must be

determined dynamically. This situation, which arises nowhere else in Algol W,

requires that the representations of the actual parameters in a call of a closed

procedure include an encoding of their types.

Example

Consider the (closed) procedure call P(V). If the type of P's formal

parameter is, e.g., T value, then the actual parameter V can have any

type T' such that

domain(T') ~ domain(T)

Alternatively, the type of the variable V can be fixed; let it be some type

T. Then a valid (although unlikely) Algol W program, similar to the second

ALGOL 60 example in Section 3.8, can be written in which the code compiled

for the call must work correctly for actual procedures having formal

parameters with any of the following attributes:

T' value, for all T' with domain(T') ";d domain(T)

T

T procedure

T' result, for all T' with domain(T') ~ domain(T)

T' value result, for all T' with domain(T') = domain(T)

These problems are resolved approximately as described in Section 3.B.

Consider an actual parameter appearing in a call performed by procedure instance

x to create procedure instance y. In the general case, the value assigned to

y's formal parameter is a composite data structure. One component is a type

code; the other, a closure c constructed as the procedure value of the actual

parameter (see Section 3.4.2). The value of c.tp is a pointer to program text

constituting a thunk, and c.ac = x The thunk evaluates the parameter in the

123

context of x to obtain a pointer value. The type code indicates the type of the

value designated by the pointer. Each access to the parameter wi thin y thus

requires activation of a procedure. A pointer value is always returned; access to

the operand value of the parameter is through the pointer. Transmission of a

parameter by value or by result is completed by the entry or exit sequence of

the code for y; in effect, an assignment involving the actual parameter and an

implici tly declared local variable of y is inserted by the compiler at the

beginning or end of the procedure body (cf. [Wirth 66b, Section 5.3.2.2]). The

assignment is done semi-interpretively by supporting software which additionally

examines the type code of the actual parameter and pe,rforms any required

conversion. A similar mechanism is used for array parameters, which are

actually transmitted by copying the value of an array descriptor into local

storage. Thus a formal array is accessed by "descriptor value" rather than by

name.

A scheme with this much generality is quite expensive. The Algol W

compiler therefore analyzes each call and each actual parameter to discover

special cases for which a more efficient mechanism can be used. The analysis is

moderately complex. Again, few of the details significantly affect the design of

the debugging system, but knowledge of some of them is required for

understanding parts of Section 7.5. The compiler attempts to exploit the

empirical observations that most calls are open and that most actual parameters

are simple in structure. The two primary optimizations are the following;

For any actual parameter with a certain syntactic form, the pointer value of

the parameter is a priori constant. Simple variables and constants are

examples of such forms. For such a parameter, call by name and call by

address are equivalent. The closure is therefore replaced by the pointer value

that it would return upon each invocation. The pointer value itself is

constructed by the calling sequence. A tag field is also added to the value of

each actual parameter so that closures and pointers can be distinguished.

In an open procedure call, code to convert each actu~l parameter passed by

value to the type of the corresponding formal parameter is generated by the

compiler as part of the calling sequence. All assignments to the implicitly

declared locals in an open procedure are therefore done by inline code which

performs no validity checking or conversion. Note, however, that assignments

involving parameters with the attribute result or value result must still be

done interpretively, since the conversion in these cases is part of the text of

the called procedure, not the calling sequence.

124

Afterthought

Even with these improvements, the transmission of a value parameter to an

open procedure can require a call of a thunk to obtain the initial value.

Since value parameters are known to be very common, it would be worthwhile

to perform the evaluation of the actual parameter as part of the calling

sequence whenever the call is open. Such preevaluation would be particularly

attractive in conjunction with separate entry points for open and closed calls

as suggested in Section 5.4. A call of y using the open entry point could

transmit any value parameters by directly assigning the operand values of the

actual parameters to the corresponding local variables of y.

5.5.1. Dynamic Parameter Descriptors

In the Algol W implementation, the value of a formal parameter is a

data structure called a dynamic parameter descriptor or DPD. Such a descriptor

has the following format:

I:: I

D5

D1

Dynamic Parameter Descriptor

Field DO is a tag field and contains three attribute bits, which are called the

P-, Q-, and X-bits. The P-bit governs the interpretation of the remaining fields.

If it is set, the DPD contains a closure which is the procedure value of the

actual parameter; otherwise, the DPD contains the address which is the pointer

value of that parameter. The other bits are used only for dynamic validity

checks. The Q-bit indicates whether the actual parameter is an updatable

variable. The X-bit is inspected only if the formal parameter is declared to be a

procedure, and it is set if the actual procedure itself requires parameters.

When the actual parameter is an explicit constant or is the identifier of

a simple variable (not requiring type conversion), an array, or a control variable,

the P-bit is not set. The actual parameter can be accessed by simple indirection;

its address is contained in field D1, and field D5 is unused. For all other

actual parameters, the P-bit is set and the DPD contains a closure c, with c.tp

in field D1 and c.ac in D5. Field D4 is used when necessary to encode the

type or (for a string) the length of the actual parameter so that any necessary

interpretive conversion can be performed (see Section 5.5.3).

125

5.5.2. Thunks

The code for a thunk (or "implicit subroutine") generated for an actual

parameter is embedded within the program segment containing the text for the

call. Each call is preceded in the object code by the sequence of thunks required

to describe its actual parameters; when the sequence is nonempty, a branch is

inserted to jump around its elements.

There are three classes of thunks, and they correspond to actual

parameters that are expressions, statements, and procedures. To simplify the

treatment of certain puns, a parameterless procedure standing as an actual

parameter is always classified as an expression or statement. Execution of a

thunk in one of the first two classes creates an activation record z in

S - {P}. The code therefore includes a prologue specifying operations

comparable to those performed by the instantiation code of an explicitly declared

procedure (see Section 5.4.2). Both the stack mark and local display are

initialized. In particular, the field z.THUNK is set. Note that z.PB contains

the origin of the program segment within which the thunk is embedded, not of

the thunk itself. The thunk is considered to be a closed procedure with respect

to display updating, but its initialization code can otherwise be simplified

somewhat because there are no parameters and no local variables.

The body of a thunk generated for a statement consists of the code for

that statement. A thunk generated for an expression returns a pointer value in

a standard register, R3 There are two cases.

If the expression is a variable, the pointer value of the variable is computed

by the body of the thunk, and the thunk returns that pointer value. The

variable is necessarily local to Tm(z) for some m) 0 and has a lifetime

at least equal to that of D(z) , the procedure instance which requires access

to that variable.

For any other expression form, code in the thunk assigns the value of the

expression to a location in the local stack of z. The value returned in R3

is then a pointer to a "variable" which is an artifact of the implementation

and has shorter lifetime than D(z). The Q-bit in the DPD for such a

thunk is set to indicate that the pointer can only be used to obtain an

operand value.

A thunk for either an expression or a statement terminates with a standard

epilogue; indeed, such thunks are designed to be used interchangably with

parameterless procedures (cf. Section 5.4.3).

126

A thunk generated for a procedure identifier does not create an element

of S - {P} ; instead, it uses the closure c created for itself and used to enter

the thunk to construct a closure c' for the actual procedure. It then transfers

to a system routine that checks parameter correspondence and invokes the actual

procedure using c' That procedure returns directly to the caller of the thunk.

Since c.ac points to the activation record for the procedure instance in which

the actual procedure identifier stands as a parameter, the closure c' can be

constructed using a constant embedded in the program text at c.ac.PB and an

entry from the local display c.ac.DSP (cf. Section 5.4.2).

5.5.3. Parameter Transmission

In preparation

construct a sequence of

for

DPDs

a call operation, procedure instance x must

describing the actual parameters. The facts that

data segments are contiguous and are allocated from a single stack are used to

simplify transmission of the DPDs to the new procedure instance. Since the

stack mark consists of a fixed number of components, the offset of the field in a

data segment corresponding to formal parameter depends only on the value of

i , not upon the congruence class of the data segment (cf. Section 5.3.2) or the

declared types of the formal parameters. Since the origin of the newly created

data segment will be x.FP, the DPDs are constructed in sequence and assigned

to storage cells with the correct offsets relative to x.FP. The instantiation

code for the new procedure leaves these cells unaltered; they become the fields

corresponding to the formal parameters in the new data segment and are correctly

ini tialized.

Note

This strategy is safe because construction of the sequence of DPDs never

requires allocation of additional storage on the stack. In general, the code

must include a test for stack overflow. Storage is arranged so that space for

a stack mark and at least 8 DPDs always remains at the top of the stack,

and the overflow test can almost always be deferred until entry into the

procedure's instantiation code.

If an actual parameter is itself a formal parameter identifier, an

existing DPD is simply copied. Otherwise, a DPD for each actual parameter

is synthesized in preparation for a call. The code for doing the synthesis

initializes the D1 field of the DPD with the absolute address of a variable or

constant if call by address is used, and to the entry address of a thunk if call by

procedure is indicated. In the latter case, the display register for x,

13 - hex) , is assigned to the D5 field. The assignment to D1 automatically

sets DO to the most common combination of PQX bits; other combinations are

127

set explicitly. The initialization of field D4 depends upon the attributes of

both the call and the called procedure. The compiler must guarantee that this

field is set correctly if there is any possibility that it will be used. A type code

for the actual parameter is assigned to D4 in the following circumstances (see

Section 5.5.5):

In an open call of an open procedure where the type of the formal parameter

(e.g., real result) forces interpretive conversion.

In an open call of a closed procedure where the type of the formal parameter

(e.g., real value) potentially requires interpretive conversion.

In a closed call for every actual parameter with a type (e.g., real) that is

assignment compatible with at least one other type.

The value of D4 cannot possibly be relevant in any other case.

Example

The data strucures built in preparation for executing the procedure call

QCY, A(I)+Z, 3)

are summarized in Figure 5-2. Note that an actual parameter is updatable iff

the P- and Q-bits agree. The snapshot depicts an open call of an open

procedure. If the call were otherwise, each of the D4 fields would contain

a type code.

5.5.4. Access to Parameters

The code to access a parameter that is an expression copies the DPD

into a standard pair of registers, [R3, R4]. It then interrogates the P-bit. If

that bit is not set, R3 contains a pointer to the actual parameter. Otherwise,

the low-order bits in the register pair [R3, R4] are a closure; that closure is

activated, and its execution terminates with a pointer value loaded into R3. In

either case, the absolute address of a storage location is loaded into the standard

register R3, and the appropriate System/360 instruction field for referencing

the value of the actual parameter is (3, 0). A thunk for a statement is accessed

using the DPD as a closure in a similar way, but no value is returned.

128

PQX
I

-
010

~.
~

J
CDPDs)

110 ,-

-
000 C

I I
I I
I , , , , , , , , , L ___________ ,

.-
Q

! 1
y .. ,

.;; =~

thunk
I v

PB . II

IB 9 "A(J)+Z" Icall l' I 3 I I . "1 II
r

l l' l l'

I MP

Stack Program.Segments

Figure 5-2

Snapshot of Algol W Call Operation

129

Note

When relevant, the test of the P-bit is combined with a test of the Q-bit

using the System/360 "test under mask" instruction. The latter test detects

any attempt to assign to an expression that is not a variable.

If an actual parameter is accessed to obtain an operand value, that value

can be in storage which is released when the thunk terminates, and code

following the access must fetch the value immediately. Such immediate use is

not necessary if the pointer value is the address of a legitimate variable (see

Section 5.5.2).

A thunk for a procedure is accessed after the parameter list for the

actual procedure has been constructed in the usual way. A copy of the DPD is

loaded into [R3, R4] just as it would be for an expression. The "branch and

link" instruction that initiates the transfer through the thunk is followed by a

sequence of "static actual parameter descriptors" (SAPDs) describing the

attributes of the actual parameters. The system routine entered indirectly

through the thunk matches the SAPDs with the static formal parameter

descriptors (SFPDs) of the actual procedure (see Section 5.2.4). These descriptors

are located using the return address and the entry address

constructed by the thunk respectively. If the parameters'

compatible, the system routine completes ~\le transfer.

in the closure

attributes are

The following diagram illustrates the data structures involved in a closed call

of y from procedure instance x:

Data DPD

Segments

Program

Segments

I
I

SAPDs
..... 1- ca 11

x

1
~

address

constant
U thunk -

SFPDs

D(x) y

130

5.5.5. Value and Result Parameters

If a formal parameter of some procedure is declared with either of the

attributes value or result, the compiler introduces a local variable of that

procedure with the type of the formal parameter. Within the body of the

procedure, all references to the formal are to that local variable, not to the DPD

for the actual parameter. The attribute value causes the compiler to insert at

the beginning of the procedure's text an assignment of the actual parameter's

operand value to the local variable. The attribute result causes the compiler

to insert at the end of the text an assignment of the local variable's value to the

variable designated by the pointer value of the actual parameter. In both cases,

the actual parameter is accessed in the normal way through a DPD.

In any open procedure, the operand value can be assigned directly to the

local variable; no conversion is required. In a closed procedure, the assignment is

done by a semi-interpretive support routine. Code within the body of the

procedure obtains the pointer value of the actual parameter in the normal way.

The pointer is left in R3. Subsequent code inserts the type of that parameter,

obtained from the D4 field of the DPD, and the type of the formal parameter

into a standard pair of registers and calls the support routine. That routine

places the address of the converted value into R3 Finally, the assignment is

completed by inline code. Note that the value of R3 is often unchanged by

the support routine; this is always true when the instance of the closed procedure

was created by an open call.

Assignment of a result parameter is treated similarly, but interpretive

conversion is sometimes used even for an open procedure. In this case, the

pointer value of the actual parameter is saved, and the address of the local

variable is loaded into R3 prior to the call of the conversion routine. That

routine also supplies the length of the converted value so that an assignment

moving the correct number of bytes can be fabricated for inline execution (using

a System/360 "execute" instruction).

Afterthought

All interpretive conversions by open procedures could be avoided if each call

of such a procedure specified the location of a temporary for receiving any

result requiring conversion and if code following the call performed the final

conversion and assignment.

131

5.6. Other Features of the Object Code

Most of the details of the object code are conventional and not relevant

to the design or understanding of the debugging system. Outside of expressions,

most code sequences generated by the compiler are derived from standard code

templates.: A few such templates are associated with each syntactic construct of

the language; the compiler selects the most appropriate template on the basis of

any special cases it can detect. This section mentions some miscellaneous details

of interest.

5.6.1. Expressions and Assignments

The order of evaluation of operands in arithmetic expressions and in

assignments is chosen by the compiler to minimize· accumulator requirements.

The basic selection algorithm is well known (see, e.g., [Nakata 67]), but

modifications have been introduced to reflect asymmetries and anomalies in the

System/360 instruction set. The result is that the order in which variables are

mentioned and procedures are called in the object code is not necessarily the

order of appearance in the source code.

Logical (i.e., Boolean) expressions are evaluated from left to right, and

the evaluation of any operand not required to determine the value of the

expression is bypassed. These expressions are most frequently ~sed in clauses

which determine the flow of control. When they are so used, actual generation

of logical values is not required and is not implemented in the object code; the

result of evaluating a logical expression is to select between branch targets.

Evaluation of a string expression does not force the string value into a

hardware accumulator; such values are, however, formed in an anonymous area of

the local stack unless source and destination strings are guaranteed not to overlap

and no length conversion is required.

Record creation with initialized fields is implemented by generating code

to create an unini tialized record and then to perform a series of assignments to

the record fields.

5.6.2. Computed Addresses

In most cases, the operands of machine instructions are specified by

(b,d) addresses, where b contains the origin of a data segment and d is a

displacement. Absolute addresses of cells within data segments are generated for

certain constructs, however. In addition to array elements, certain function

132

procedures, and actual parameters as described in preceding sections, they are

computed in the following circumstances:

In the code for accessing substring variables, the substring offset is loaded

into an index register and then the absolute address of the first character of

the substring is generated using a System/360 "load address" instruction.

If the value of a reference expression is computed in preparation for a record

field access, there are certain unusual circumstances in which the absolute

address of that field is computed before the field is accessed.

In fetching operands, computed addresses are used immediately after they are

formed in the register. If the computed address is that of a variable on the left

of an assignment operator, however, it occasionally happens that the address must

be stored in the local stack and later reloaded.

5.6.3. Implicit Branching

Conditional and iterative statements are implemented by standard

techniques. The implied branch instructions have destinations wi thin the

compiled object code; they do not use label vector entries. Case clauses are

compiled into indexed branch instructions; the target of the indexed branch is a

second branch instruction which locates the appropriate case element.

5.7. The Algol W Compiler

The Algol W compiler accepts Algol W source text and converts it

directly to System/360 machine c0de. The structure of that code and the

environment in which it is executed have been described in the preceding

sections. This section is an abbreviated outline of the organization of the

compiler. Once again, details not relevant to the design of the debugging system

are omi tted.

The compilation algori thm uses three passes. The first pass is a scanner

which constructs a compact linear representation of the source program.

Declarations are also recognized, and information extracted from them is used to

build a set of symbol tables. The second pass parses the program string and

produces a tree-structured representation of the "abstract syntax" of the program.

The final pass generates reentrant System/360 machine code. The second and

third passes perform a number of local optimizations, but no global optimization

is attempted.

133

Communication among the passes is based upon shared tables, which are

accessed randomly, and upon intermediate encodings of the program, which are

written and read sequentially. The overall flow of information is shown by the

following diagram:

1
I
------------ Pass 1

I

1
I
I
I I

'"
symbol.------- .. Pass 2

tables

I
I

I
I

1
I,·----------~Pass 3

1

source text

program string

tree code

machine code

In the student-oriented version of the compiler, each of the shared data

structures remains in main storage from the time it is created until the time it

is discarded. All of the major structures are designed to be relocatable, and the

compiler includes a set of routines for reallocating and repacking working storage

when necessary.

5.7.1. Pass One

Syntactic analysis requires information about the attributes of identifiers

to make context-sensi ti ve parsing decisions and also uses such information to

perform related semantic actions, such as type computation. Since the use of an

identifier can precede its declaration, a preliminary scan is required. The main

function of the first pass is to perform this scan. It recognizes declarations and

extracts information from which a skeletal symbol table is constructed. This

pass must perform a detailed scan of the input text; therefore, it has also been

assigned the task of lexical analysis, the result of which is a compact and

convenient internal encoding of the source program.

The first pass is basically a scanner implemented as a finite state

automaton and augmented with a stack for recording information about the

nested block structure. The lexical scanner performs the usual functions of

removing blanks and comments, recognizing multi character representations of

basic symbols, and the like. It delimits and syntactically checks constants but

134

does not convert them to internal format.

of the syntactic class (identifier).

The scanner also recognizes members

Each textually distinct identifier

encountered is assigned a unique internal identifier number. The correspondence

between identifier numbers and character strings is recorded in a pair of tables,

the identifier directory and identifier list. The former is a vector indexed by

the identifier number; each entry is a pair consisting of the length of the

associated character string and its origin in the identifier list. The latter table

is just the concatenation of all distinct character strings used as identifiers.

Note that the identifier number, identifier directory, and identifier list (as well

as the hashing functions used by the scanner) are independent of the block

structure.

The lexical scanner also builds a linear program string representing the

original source program. Entries in this string have one of the following

formats:

Identifiers are represented by a distinguishing code followed by the identifier

number.

Constants are represented by a type code followed by the constant itself,

delimited by internal quotation conventions.

All other basic symbols of the Algol W language are replaced by

single-character (8 bit) internal codes.

The source coordinates can be computed as the program string is scanned; they

are not explicitly recorded.

Note

Various studies have indicated that single-character identifiers and constants

are especially common. The author's own measurements indicate that such

identifiers account for 30% to 75% of all identifier usage; other measurements

have given estimates of approximately 50% [Wichmann 70]. To save storage

space, single-character identifiers and single-digit numbers represent

themselves in the program string.

The declaration processor is activated by the recognition of certain basic

symbols. A new scope is introduced for each occurrence of the following

symbols:

begin, procedure, for.

135

Each scope is identified internally by a sequentially assigned block number.

When the scanner is in declaration mode, the number and declared type

attributes of each encountered identifier are entered onto a stack. When the

scope is closed by a matching delimiter, all stack entries for that scope are

moved to a name table, and the origin and length of the corresponding name

table segment are recorded in the block list, which is indexed by the block

number. The scanner does not attempt to record the nesting of scopes. The

following program fragment provides a simple example of the data structures

built by pass one.

Example

begin

real SX, SY, I; SX.- SY .- 0;

for I := 1 until N do

begin

SX := SX + X(I); SY .- SY + Y(I)

end

end

The corresponding tables are shown below.

Block Number

n + 2
n + 1

n

Block List

length origin

~

Name Table

attributes

I

real
I
I

real I

I

rea 1 :

index: -f--

ID Directory

length link

1

2

2 t "I"

"SY"
"SX"

Note that name table entries for any given scope are contiguous and retain

the order imposed by the source program.

136

5.7.2. Pass Two

The second pass parses the program string, computes and checks type

information, and builds a tree-based representation of the source program which

explicitly displays the syntactic structure. With the exception of some

context-sensitive restrictions upon the use of identifiers, valid sentences of Algol

W can be described by phrase structure grammars satisfying various sets of

restrictions that guarantee unambiguous and efficient parsing. Initially, a simple

precedence grammar and parser [Wirth 66a] were used. An SLR(1) grammar and

the parsing algorithm of Eve and Anderson [Anderson 73] were subsequently

adopted. The important features of both parsing algorithms are the following:

Parsing is "bottom-up"; reducible phrases are delimited by decision functions

based upon the state of the parser and the local context, and such phrases are

replaced by the corresponding nonterminal symbols as they are encountered.

The parse is completely unambiguous; local decisions are always correct and

backup is never required. Thus any necessary "semantic actions" can be

performed as soon as a phrase is recognized.

The tree is actually represented as a forest of binary trees. A separate

tree is generated for each procedure declaration, and the trees can be processed

independently. In general, each nonterminal node is labeled by the name of an

operator, and its subtrees represent the operands. Thus the tree associated with

the statement

is

for I := 1 step 1 until N do

X := X + A(I)*B

FORST

FOR(~.
/'\ /~

/\
STEPUNTIL ID(X) +

/~ /~
ID(I) 1 1 ID(N) ID(X) /*~

INDEX ID(B)

/ "'" ARRAYID(A) ID(I)

137

Terminal nodes of the tree normally contain pointers to table entries. Identifier

nodes contain the indices of name table entries. Construction of these nodes, as

well as type determination and checking, require that identifier numbers in the

program string be mapped into name table indices. Thus the second pass must

reconstruct the nesting of scopes, and it does this by maintaining an analog of

the run-time display. When a new scope, corresponding to a block, a parameter

list, or a for clause, is opened, the height of the compile time display is

increased by one, and the block list entry for the scope is added as a new display

entry. Closing a scope results in decrementing the height and deleting a display

entry. The display is used for selecting the name table segments to be searched

when an identifier is encountered. If the identifier is located in the segment

indicated by the i-th display entry, that occurrence of the identifier is said to

have a compile-time height of i.

The second pass computes the adjusted height (or run-time height) of

each congruence class, and it allocates a field wi thin the activation records of the

appropriate congruence class for every state variable and every explicitly declared

identifier. The latter assignments, which are entered into the name table,

establish the (b,d) addresses which will later be used in machine instructions.

Because some scopes are merged or eliminated in the run-time structure (see

Section 5.2.2), the compile-time height of an identifier is not necessarily

identical to the run-time height of the corresponding activation record.

An explicit link to the first son is retained in each nonterminal node in

the tree structure; the link to the second son is implicit. The advantage of the

explicit link is that either subtree can be traversed first in subsequent

processing. The second pass, in fact, places computed switch values in each

nonterminal node; these direct later traversal so that, for example, the number of

accumulators required for expression evaluation is minimized. In the example

above, switch settings are indicated by ticking the edges leading to the first

subtrees to be processed. The main consequence of these switches is that

left-to-right evaluation wi thin a flow unit cannot necessarily be assumed.

5.7.3. Pass Three

The third pass traverses the tree structure constructed by the preceding

pass and generates appropriate System/360 instructions. The algorithm for

traversing a (sub)tree is the following:

138

Exit if the root is a terminal node; otherwise, inspect the tree switch to

select the first subtree.

Traverse that subtree.

Visit the root to generate object code associated with the first operand (e.g.,

to load it into an accumulator) and to select the second subtree.

Traverse the second subtree.

Visit the root to generate object code associated with the second operand and

operator.

Information about any intermediate results is maintained in a separate operand

stack; there are also several auxiliary stacks and deques used for address fix-up

and register allocation information. Note that most of the work is done in this

pass as an operator inspects its operands, not as the operands themselves are

encountered in the tree traversal.

Note

The intention was to simplify the treatment of the special cases which often

arise in connection with terminal nodes, but any benefits of such a scheme

have proved rather elusive.

139

	5.1 System/360 Architecture

	5.2 Segmentation

	5.3 The Structure of Activation Records

	5.4 Control Transfers

	5.5 Parameters

	5.6 Other Features of the Object Code

	5.7 The Algol W Compiler

