
-;,~.~Y·"'-··~··'·.~~··········-··
, "_;'i'

•
Be ALGOL Manual

October 1966'

Be-ALGOL

Universi1)iof California
Computer Center

Berkeley'

•

Computer Center
University of California
Room 201, Campbell Hall
Berk~ley, California 94720

BC ALGOL Manual Change Slip

Please send me changes and additions to the BC ALGOL Manual

until the close of the current semester. I understand that

chang~s will be sent to me at the address entered below unless
\

a change of address is submitted to the Computer Center, 201

Campbell Hall .

/

NAME

ADDRESS

Date __________________ __

(

\ .

o

•

B ,C A L G 0 L MANUAL

October 1966

University of California
Computer Center

Berkeley

o

o

•

Table of Contents

Introduc tion • 1/1

Chapter 1. The Relation Between BC-ALGOL and ALGOL 60 ... 1/1

1.1 Source Language. 1/1

1.2 . Use of Special BC-ALGOL Delimiters . 1/2

1.3 .Restrictions of BC-ALGOL . . 1/2

1.4 Interpretations of the ALGOL Report 1/3

1.5 Arithmetic Variables and Expressions. 1/7

1.6 Classes of Procedures •.•.... ~ . 0 1/8

1.7

1.8

1.9

Chapter 2.

2.1
;

2.2

Chapter 3.

3.1

3.2

Form of Source Card Deck • .

Size Limitations

Execution Times • • .. • •

Standard Functions and Timing Procedures ..

Standard Functions • eo •

Timing Procedures

1/9

1/10

1/11

2/1

2/2

2/3

Standard Input and Output Procedures • 3/1

Input • • • .. 3/1

Simple Output .. • 3/2

3.3 Printing Alphanumeric Information.

3.4 Punch Output

... 3/5

3/6

3/7 3.5 More Flexible Output.

3.6 Character Handling Procedures • 3/8

Chapter 4. Comment Control Options • • 4/1

Chapter 5.

5.1

Error Messages • . • .. • .. • • . • 5/1

Translator Messages • • .

5 .. 1.1 Excess of Capacity.

Errors in bracket-like structures ...

Other erors in delimiter structures ..

• 5/1

5.1.2

5.1.3

5.1.4 Operand errors

• • 5/1

5/2

5/2

.. 5/4 . ~
5.1.5 Errors in declarations or specifications .. 5/4

5.1.6 Type errors.. • • 5/6

5.1.7 Preprocessor loader diagnostics. 5/6

iii

o

o

•

7.5. 7 Use of INTERP, GETADD • •. 7/10

7.5.8 An Example of Using an Assembled Procedure 7/12

7.6 Methods of Linkage. 7/12

7.6.1 Code Procedures Loaded in Front of the ALGOL
Processor - Method 1 7/13

7.6.2 Code Procedures Loaded by the Preprocessor
Loader - Me thod 2 7/15

7.7 Specific Information About the Preprocessor:
Loader .. • . • . • . • • . • • • • 7/21

7.7.1 Declarations.

7.7.2 Restrictions ..

7.7.3 Error Diagnostics and Messages.

7.7.4 Printout •• ~ •••.• 0 ... "

7.7.5 General • • .. . •

7.7.6 The Assembly Tape.

7/21

.. • ','7/21

7/22

. 7/22

7/22

7/22

7.8 An Interface Routine for FORTRAN II Binary Decks .7/23

Chapter 8.

8.1

The Syllable String • • • . . • ..

Introduction .

8.1.1 Stack Addresses ••

8.1.2 Progr'am Addresses •

8.1.3 The Edited String ..

8~1 .. 4 Form of the Syllable String ...

.8/1

8/1

8/1

8/2

8/3

8/4

8.2 Syllable String Examples. • • " . 8/4

8.2.1 Declaration of Variables 8/4

Simple Variables .. •

Own Declarations _

8/4

8/5

8.2.1.1

8.2.1.2

8.2.1.3

8.2.1.4

Array Declarations • 8/5

Switch Declarations • • • # " 8/6

8.2.1.5 Procedure Declarations.

8.2.2 Assignment Statements

8.2.2.1 Assigning Constants

8.2.2.2 Assigning Variables.

8/7

8/8

• " • 8/8

• 8/8

8.2.2.3 Arithmetic Assignments.. • • .. • • 8/9

8.2.2.4 Array Assignments. • 8/9

8.2.2.5 Boolean Assignments.. 8/10

v

o

•

Chapter 10~ Library Tape Operations. 0 ~ ••• ' .10/1

10~1

10.2

10.3

10.4

Appendix

Appendix

Appendix

Appendix

Appendix

1

2

3

4

5

References

Introduction . • • 10/1

Input/Output Selection " 4 " • • • ~ .. • • .. • • 10/1

Scratch Storage " .10/2

Additional Facilities • .10/2

Report on the Algorithmic Language ALGOL 60. . .A/l

Capitalization Symbol ~ . ~ . . .' .. . ' 0 . A/2

Input and Output Using FORTRAN Format. . . .A/3

Tape Unit Correspondence Table A/4

Semicolon Trace " ~ A/5

... .. • • • • • • ~. ~ 1. 'f " • • ... •' • R/ 1

vii

o

o

•

Introduction

The present manual is the third revised and enlarged edition, and des­

cribes the BC-ALGOL System as developed by Ralph Love, Russell Briggs, Ken

Thompson, Ron Smith, Gary Anderson, Klaus Wirth, Gayne Winters, R. Sherman

man, John Mc~onnell and D~vid Redell. The revision was done b~ John

David Redell Chr. Gra~, and R. Sherman Lehman. This manual

covers all the earlier writeups on the Be-ALGOL System, the inpl:lt.' and output

procedures, the print' and re'ad procedures, the comment control options, the

revised diagnostics, the character and bit manipulation procedures, the use

of code procedures, and the syllable string. Furthermore, the manual includes

a description of tape handling procedures, the stack dump, library tape opera­

tions, new character handling facilities, and a run-~ime execution trace. The

notation used is that of the reference language (see Appendix 1).

This manual is not intended as a textbook in ALGOL Programming. It is,

rather, a reference manual describing the use of the BC-ALGOL System, and

thus assumes some degree of familiarity on the part of the reader with ALGOL

60. Beginning ALGOL programmers will find sections 1.1, 1.5 - 1.7, and

Chapters 2-5 most helpful. More advanced users will find the remaining sec­

tions of the manual useful in utiTiz"ing the more powerful features of the

system.

The BC-ALGOL System is a program running under the FORTRAN Monitor

System (FMS) on the coupled IBM 7040-7094 system at the Computer Center,

University of California, Berkeley. The program consists of: a translator

(or pre-processor), and an interpreter (or processor). The translator

accepts a BC-ALGOL program (on punched cards) as source language and trans­

lates it into a string of operators and operands (called the syllable string)

written in a modified Polish notation. The translator also performs a

partial syntactical check on the source program .

o

o

o

1/2

If no errors are found, the interpreter executes the ALGOL program by

processing the syllable string interpretively.

If any error is found, the execution phase is not entered, and when more

than 8 different syntactical errors are found, translating is discontinued

at that point.

o

0

•

1/1

1. The Relation Between BC-ALGOL and ALGOL 60

1. 1 Source:',Language

The BC-ALGOL source language is a punched card hardware representation

of ALGOL 60 as defined by the following transliteration table for the

basic symbols ~

'Transliteration Table

ALGOL 60 BC ALGOL ALGOL 60 BC ALGOL ALGOL 60

• 'DIV' a A -• own

b B t *i(value

go to 'GO TO' true

z Z begin 'BEGIN' false ---
* A eA ((if

B e B [. (then , , (, else
Z $ Z

$ end
:= =

'EQV')

::> 'IMP' comment 'COMMENT'

U 'OR' while 'WHILE'
,

n 'AND' for 'FOR'
-. 'NOT' step 'STEP'

< 'LSS' until 'UNTIL'

< 'LEQ' do 'DO'

= 'EQL' integer 'INTEGER'

> 'GEQ' real 'REAL'

> 'GTR Boolean 'BOOLEAN'

=4: 'NEQ' arral ' ARRAY'

+ + switch 'SWITCH'

procedure 'PROCEDURE'
)(* label 'LABEL'

/ / string 'STRING'

* See "Capitalization Symbol", Appendix 2.

BC ALGOL

'OWN'

'VALUE'

'TRUE'

'FALSE'

'IF'

'THEN'

'ELSE I

'END'

)

) .
') ,

'10'

e

o

o

1/2

1.2 ~ of Special BC-ALGOL Delimiters

BC-ALGOL includes the following four delimiters not mentioned in the

ALGOL 60 report:

Notation in Manual

assembly

binary

code

oct

BC-ALGOL

'ASSEMBLY'

'BINARY'

'CODE'

'OCT'

The delimiters binary and assembly are used to allow the use of machine­

coded procedures; see sectio~ 1.6, 1.7 and chapter 7.

The delimiter code allows the use of procedures precompiled and

included in the BC-ALGOL system; see section 1.6 and chapter 7.

The delimited oct is used to introduce constants written in octal rather

than the conventional decimal notation; integers preceded by oct will

be computed as base 8 rather than as base 10.

Furthermore the delimiter comment followed by a colon and one of several

special text strings is used as an instruction to the system causing a

special action at translation or execution time. (See Comment: Controls,

chapter 4.)

1.3 Restrictions of BC-ALGOL

Identifiers may have any length but only the first 18 characters (other

than blank spaces) are significant.

Integers may not be used as labels.

The subscript bounds for arrays declared own must be constants.

o

o

1/3

1.4 Interpretations of the ALGOL Report

We distinguish the interpretations given in this section from the res­

trictions stated previously. In the case of the restrictions, it is

recognized that the Be-ALGOL implementation does not implement ALGOL

60 fully as defined by the Revised Report. The interpretations, on

the other hand, represent choices of the implementers on difficult

questions where the exact meaning of the Report is not clear. The

user should be warned that other implementations of ALGOL are quite

likely to handle some of these questions differently. All references

in this section are to the Revised Report (see Appendix 1).

a. The order of evaluation of primaries in an expression and subscripts

of a subscripted variable is from left to right. (See Sections

3.1.4.2, 3.3~5.2~) The expressions occurring in array declarations

will be evaluated in the order of their occurrence in the block

head. (See Section 5.2.4.) The assignment of values to the

ac'tua1 parameters 'called by value occurs in the order in which they

occur in the actual parameter list. (See Section 4.7.3.10)

b. In addition to standard functions available without explicit

declarations (see Section 3.2.4) there are standard procedures

available without explicit declarations for example, input and

output procedures. An identifier used for a standard function

or procedure may, however, be either declared or used as a label.

In that case in the corresponding block the standard function or

procedure cannot be referred to since the rules of Section 4.1.3

apply.

c. Section 4.1.3 is interpreted as if the following addition were

made to the second paragraph: A program may be labelled. In this

context such a program should be considered as if it were enclosed

by begin and end and treated as a block.

o

o

*

o

1/4

d. Paragraph 4 of Section 4.5.3.2 is interpreted to mean: If none

of the Boolean expressions of the if clause is true, the effect

of the whole conditional statement will be equivalent to that of

a dummy statement except for possible side effects due to the

evaluation of the Boolean expressions.

e. The description of how the values assigned to the controlled

variable of a for s~~tement are obtained is interpreted literally

only when the for list elements are arithmetic expressions or

of the form E while F. For an element of the form A step B

until C it is assumed that the execution described in section

4.6.4.2 is not dependent upon the order of evaluation of Band

* C nor on whether B is evaluated more than once per step. If

the controlled variable is a subscripted variable, then it is

assumed that the effect of the execution corresponding to a step­

until element does not depend upon whether the subscripts of the

subscripted variable are eva1uat~d more:than once per,step.

Section 4.6.5 is interpreted as if the following sentence were

added: Upon exhaustion of each step-until element or while

element of a for list the value of the controlled variable is

undefined.

f. The values of own quantities are handled as if they were values

of quantities local to a block enclosing the entire program. The

scopes of the identifiers for own quantities are, however, deter­

mined by their declarations. (This treatment of own variables is

certainly the intended one for ~ variables not declared within

a procedure body. (See Section 5:.) For own variables local to a

procedure body, what the intended interpretation is, especially

when the procedure is called recursively, is highly controversial.)

At present Band C are evaluated, in this order, once per step.

o

o

•

g.

liS

A procedure whose declaration begins with a type declaration may

be called by means of a procedure statement. If the procedure

identifier occurs explicitly as a left part in an assignment

statement, then it will be treated as in Section 5.4.4 but upon

exit from the procedure body the value of the procedure identifier

will be lost.

h. A designational expression may be called by value if the corres­

ponding formal parameter is specified by the specifier label.

i.

(See Sections 4.7.3.1, 5.4.5.) In this case when the formal

parameters in the value list ~re assigned values before entering

the procedure body, the designational expression is evaluated and

the resulting label substituted for the formal parameter throughout

the procedure body. If the designational expression is undefined,

then the eff~ct of the procedure call is undefined.

Specifications of formal parameters called by name are ignored.

(See Section 5.4,5.)

j. Se:ctions: 4. 7 ~'4 and 5.4.3' are interpreted as requiring that the

formal parameter list oLa. pro.cedute heading may not contain'

two or more formal parameters .whLch .are identical.

k. The exact effect of a function designator is left implicit in

the ALGOL Report. We interpret it as if the following addition

to Section 4.7.3 were made:

A function designator also calls for the execution of a

procedure body. Where the procedure body is written in ALGOL,

the effect of this execution will be equivalent to the effect

of first performing the operations described in Sections 4 e 7.3.l

and 4.7.3.2 at the time of evaluation of the function designator.

The modified procedure body is then executed as if it were located

at the place where the function designator occurs, with conflicts

o

o

•

between identifiers handled as described in Section 4.7.3.3.

Statements and expressions within the procedure body containing

the procedure identifier are handled as prescribed in Section

5.4.4. If in the execution of the procedure body a go to state­

ment leads out of the procedure body, then evaluation of the

expression containing the function designator is discontinued

and the next statement executed is determined as in Section 4.3.3.

Otherwise, upon exit from the procedure body evaluation of the

expression in which the function designator occurs is continued.

If the function designator occurs in an array declaration, then

according to Section 5.2.4.4. ,the evaluation of the function desig­

nator must be completed.

The rules in Sections 4.7.4. and 4.7.5. are interpreted as

holding for function designators as well as procedure statements.

1. Section 4.3.5 is interpreted to mean the following: A switch

designator will be said to be out-of-bounds if its subscript

expression when evaluated according to Section 3.5.4. assumes a

value other than 1, 2, ••• , n where n is the number of entries

in the corresponding switch list. A go to statement with a desig­

national expressions which is an out-of-bound switch designator

is equivalent to a dummy statement, except for possible side

effects occurring in the process of evaluating the switch desig­

nator. If the designational expression is undefined for any

other reason, then the go to statement is undefined. (Note that

when the substitution for a formal parameter specified by label

is made, the resulting designational expression cannot be a

switch designator because it is surrounded by parentheses. See

Section 4.7.3.2.)

o
1.5

o

•

1/7

Arithmetic Variables and Expressions

Variables of type integer and real are represented by normal integer

and floating point numbers in the IBM 7094. Therefore the range for

integer is

abs (integer)< 34 359 738 368 = 2+35 .

and the range f.or non-zero rea1s is

2+(-128) < 2.910-39 < abs (real) < 1.61038 < 2+127.

The real variables are stored with 27 significant bits. Thus the last

bit of a real has a relative value between 7
10

-9 and 15
10

-9 •

Each arithmetic operation is rounded correctly after normalization of

the result; hence, the relative error in the result has an absolute

value of at ~o~t 7.510~9 •

o

o

o

1/8

1.6 Classes of Procedures

In keeping with the provisions of the Revised Report Sections 4.7.8,

5.4.1, and 5.4.6 (see Appendix 1), a procedure body may be either

an ALGOL statement or <code>. In BC-ALGOL, <code> refers to pro­

cedures in machine language, some of which are supplied by the sys­

tem, and others of which may be loaded with the user's program. The

classification is as follows:

procedures

body = ALGOL statement body .lcode>

must be
declared in
block 1 as

code

(see Chapter 5)

predefined in system included in user's program

I
predeclared

I
binary

,

I
(see Chapter 7)

~mbly
(see Chapter 7)

predeclared by
system

(see Chapter 2
and Appendix 3)

loaded by user
with own copy
of processor
(see Chapter 7)

o

•

','1/.9

1. 7 ~ of Source Card Deck

BC-ALGOL programs are run under the FORTRAN Monitor System (under the

DCS Monitor System) and require two standard monitor control cards before

and one after the source deck. After the last end of the ALGOL program,

'tl1ere': mus t fo llow" a: card' having" the:eharac te:r!, $:', in: c'olumu", 1 ;'thl:s :may

:be,.fo llowed hy', 'cards , wi~th 'data to ~h,e't'ead',:bY"·t:he ·"ALGOL .. pro'gram,;,"'l'he set­

lip: i-s ,(:se:e:!: ai~'d [: i'].) ~

a. One normal JOB card:

cols. 1-4:

co1s. 8-11:

cols. 16-36:

cols. 37 ... 60

$JOB

<job number>

<options~(time limit, page limit, card limit, rush,
'number 'bf.~co'p1.es)

<name :and "other::iaentification>

b. An FMS control card:

cols. 1-4:

co1s. 8-12:

:$FMS

ALGOL

c. The ALGOL source program (and binary decks, if any)

d. A card with $:-in column 1

e. Data cards, if any

f. A normal EOF card:

cols~ 1-4: :$EOF

Binary decks may be put anywhere in the ALGOL sourcepregram;: see

:chapter':7 :for :further details.

The ALGOL program must be punched in columns 1-72. The contents of

co1s. 73-80 are skipped by the translator (but are printed disjointly in

the listing of the progra~: and may be used for card identification pur­

poses.) Blanks and shifting to a new card have no significance except

that a $ (the transliteration of semicolon) should not appear in column

1 because of possible confusion with Monitor control cards .

o

o

•

1/10

1.8 Size Limitations

The finite sizes of available storage and of the tables used by the

translator impose some restrictions upon the size of a program.

a. Total Storage: The total storage available for the

translated program is approximately

15000 cells. In the stack, each simple

variable occupies 2 cells and each array

element 1 cell. The store required for

the program varies greatly with the pro­

gram's structure, but for estimation

purposes, it may be assumed that 100

statements occupy 400-500 cells.

b. Blocks and identifiers: The maximum number of statically nested

b1o'eks allowed in a program is 32. No

more than 63 identifiers may be declared

in any blockhead, and a maximum of 330

may be current at any time. No more than

800 identifiers total may be declared in

any program.

There are some further limitations which only very exceptional programs

will exceed. Nearly all such violations give rise to appropriate error

messages (see chapter 5) •

o

o

•

..1/11

1.9 Execution Times

The following table shows some selected execution times for the basic

operations (timings on the standard functions are found in the next

chapter). The times given are rough averages and may be used to make

a first estimate of the running time for a program.

assignment: a:= b

arithmetic operations, e.g., r1 := r2 + r3

Soolean operation, e.g.s, b1 := b2 b3

exponentiation: r1:= r2 t i where i = 1,2,3

r1 : = r2 t r3

transfer: go to L

if clause: if b then

for statement:

for il := i2 step i3 until i4 do initialization
each step

for il := i2, 13, ... do each list-element

procedure call:

no parameters: P;

one simple parameter: P{ 1) ;

block head

with simple variable: begin real rl;

with array: begin array A[1:2];

reference to subscripted variable

with one subscript A[i]

with two subscripts B[i,j]

mil1isec ..

0.2

0.3

0.25

0.5 - 0.6

0.8 - 0.9

0.2

0.1

0.8
0.3

0.6

0.4

0.7

0.15

0.4

0.1

0.2

e

0

0

2/1

2·. :Standard Functions and Timing Procedures

2.1 Standard Functions

The predeclared standard functions include all those recommended in

[2] and, in addition, the hyperbolic tangent and the decimal logarithm.

For each of them the code consists of some parameter linkage and,

(except for abs, entier, and sign) a call to the appropriate library

subroutine under the FMS Monitor. The following table shows for each

standard function 1) the library subrou tine used, 2) the length of the

code, 3) the average time used per call, and 4) the accuracy obtained.

Further details on the algorithms are found in the write-ups for the

subroutines, available from the Computer Center Library.

Standard FMS Sub- Number Execution
Function routine of'cel1s time per Comments,; :errors

used used call

abs(x) 10 0.15 millisec as described in [2]

en tier (x) 13 0.2 mi1lisec as described in [2]

sign (x) 10 0.2 mi11isec as described in [2]

sqrt(~) BC ROOT 82 0.3 mi1lisec calculates --V:iir and
terminates with a diag-
nostic if x < 0 .

cos(x) , BC SIN 182 0.4 millisec reI. error < 10 -8 except
sin(x) for very large arguments

arctan(x) BC ATAN ~,lO4 0.,4 mil1isec calculates the principal
value,
.. 1T'

< artan < 1\"
- 2" 2
reI. error < 10-8

exp(x) BC EXP 94 0.4 mil1isec if x > 880028, an over-
flow message ends execu-
tion. If x < -88.028,
the result is zero.
reI. error < 2i-27 where
i = number of integral bits
in x ..

tanh (x) BC TANH 114 0.4 millisec calculates the hyperbolic 8
tangent with reI. error <10-
except for x near .00034 or
.17 where the re1. error may
be near 3 X 10-8

0

o

•

2/2

Standard FMS Sub- Number Execution
Function routine of cells time per Comments, errors

used used call

In(x) BC LOG4 107 0.4 millisec if x < 0, a diagnostic
ends execution. rel.
error < 3 X 10- 7

log (x) BC LOG 4 107 0.4 millisec calculates 10g10 (x)
Errors and diagnostic
as above.

With the exception of en tier and sign they are all real procedures. The para­

meters may be of type real or integer.

o

o

•

2/3

2.2 Timing Procedures

Two timing procedures are available; they are predeclared and should not

be declared in the user's program. One is for setting a time limit for

the execution, and the other one is for obtaining the time left.

procedure settime(x);

causes execution to be interrupted x seconds later (unless a new call q~

settime is executed before that). When execution is interrupted the

message OVERTIME TRAP and a stack dump are printed.

real procedure get time;

causes the amount of time remaining until interruption to be returned

as the value of gettime. A call of settime must be executed previously.

The proc.edures use the automatic "clock" in cell 5 (and converts the

contents of it into seconds).

--- - ----------------------------------'

o

•

3/1

3. Standard Input and Output Procedures

The input-output procedures which are described in this chapter have been

designed so that they are procedures:'.in the sense of the ALGOL Report. Al­

though their procedure bodies must necessarily be in code because they deal

with input-output, their headings can be written in ALGOL. For this reason

procedures having a variable number of parameters have not been included.

All procedures described in this chapter are available as predeclared pro­

cedures.

1. Input

For input the procedure input with one actual parameter is used. The

parameter should be a: varLiib1ewhicli is: to .be assigned a value' o:btained

from a data card. The variable' may be of any type and can be either

a simple variable or a subscripted variableOl . .Numbers and logical values

can be punched on the data cards separated by commas. One or two con­

secutive blanks spaces within a number will be treated as insignificant,

but three or more blank spaces can be used in place of a comma for

separating numbers. Only columns 1-72 of the card will be read. A

number must not be split between two cards. The last number on a card

need not be followed by a comma.

Numbers on data cards which are ALGOL ;.nuinbers (see Section 2t5 of the

ALGOL Report) and satisfy the following additi.onal restrictions will be

handled properly:

(1) An integer must be less than 2 t 35 in absolute value.

(2) A number of type real may not have more than 2 digits in its

exponent part.

(3) A decimal number may not have more than ten digits before

the decimal point.

(4) A number of type real must be equal to 0 or have absolute

value in the range from ., a-38 1 to 1038 •
(5) Three or more consecutive blanks may not occur within a number.

(6) Either '10' or the letter E can be used as a transliteration

of 10'

o

o

•

3/2

An ALGOL number may not end with a decimal point. However, standard

output routines in local use produce such numbers as punched output.

Consequently, such numbers are accepted as data by . input with their

conventional meanings. If'a data item cannot be handled properly by

'input, the program will be terminated after the printing of an error

message.

A number is first read into the computer and then if the type of the

number differs from the type of the actual parameter, a conversion is

performed before assigning it as a value to the actual parameter. For

integers the number read in agrees exactly with the number represented

on the data card.

For numbers of type real the decimal number part of the number on the

card is truncated after 10 digits and the resulting number converted

to floating point form with a relative error which will not exceed

810- 9 .

Logical values may be represented on the data cards by 'TRUE' and

t·ir'ALSE t. (The alternate representations TRUE and FFALSE are

accepted, but their usage is strongly discouraged.)

procedure input (a);

comment Assigns to a as value the next number or logical value

represented on the data cards;

2. Simple output

For beginning use the procedures output, line , and page will be

sufficient for output. The procedure output has one parameter. The

actual parameter can have a value of anyone of the three types real,

integer, or Boolean. ;the p:r::t.n:te:r:used'.:.wfth:the 7094computer:

has available 131 printing positions on each line. If the procedure

output is used without calling the format setting procedures des­

cribed in Section 5, then each number or logical value will be printed

in a field occupying 20 printing positions. Each call of output will

cause an additional number to be printed on the same line as long as

o

o

•

3/3

space remains. If insufficient space on the line remains, then a new

line will be started automatically. Also, a new line can be started

at any time by calling the procedure line which has no parameter.

Blank lines can be obtained by additional calls of line. A new page

can be started by calling page, ~procedure '.wlth.:no parameters. i To

leave space between two successive fields on a line the procedure

spaces with one actual parameter can be called. The actual parameter

gives the number of blanks spaces to be left. Thus spaces (10) would

cause 10 blanks spaces to be left.

A number printed will be adjusted to the right in the field. If the

number printed is of type real, then it will be printed in floating

decimal point notation with one digit before the decimal point and

seven digits after the decimal point. For example, the number 12. 754

will be printed in the form 1.275400E 01 with seveh blank ~p~ces

before the first digit. A number of type integer will be printed as a

decimal integer. If the value of the actual parameter of output is

a logical value, then FALSE or TRUE will be printed right-adjusted

in the field.

A line of printing which has been begun by one or more calls of the

procedure output will always be finished and a new line beg~n when

one of the procedures title, print;) or printing format is called

or when a dump is made.

proc~dure output (x);

comment Gauses the value of x to be printed. A new line is not begun

if space remain~ on the previous line;

procedure line;

comment Starts a new line;

procedure nlcr;

comment litew line, car:J;lage return. This procedure is completely equi-
''''-''':~

valent to line;

o

•

3/4

procedure page;

comment Starts a new page;

procedure spaces (n); value n; integer n;

comment Causes n blank; spaces to be left in the line being printed

provided n > O. If there are less than n spaces remaining

in the line, the line will be filled with blanks and a new :

line will be started at the left margin. If n ~ 0 , the pro­

cedure has no effect;

Example 1. The following program will produce a table on each line

of which an integer will appear with its square root and cube root. Fifty

lines will appear on each page. The length of the table is determined by

a parameter read in as data.

begin integer i, n;

,i,n,p,ut, (n);

page;

for i:=l step 1 until n do

begin .ou. t,pu, t. (i);

end

end

2.utput. (sqrt (i»;

,output (i t (1/3»;

line;

if i = (i .. 50) x 50 then .page

Example 2. P:rocedures to print a given number of values on a line

can be constructed easily. The following declaration can be used to

define a procedure for printing three numbers on a line.

procedure print 3(a,b,c);

begin output (a); output (b); output (c); line end;

o

o

•

3/5

3. Printing alphanumeric information

The procedure tex~ is used to place a text in the line being currently

form for output. Thus it can be used to print titles, column headings,

and error messages. The procedure title can be used to print a title

which is read from data cards.

procedure text(s); string s;

comment Causes the text given by the string s to be placed in the line

being printed. If enough space does not remain on the line for

the entire text, then the text will be continued on subsequent

lines;

procedure title;

comment When this procedure is called, two new data cards are read and

the contents of columns 1-72 on the first card and 1-59 on the

second card are copied to form a printed line with 131 charac­

ters. The remainder of the second card is skipped;

Example 3. In Example 1 a title could be printed at the top of

the first page of output by inserting the following four statements

after the first call of page.

spaces (12);

text ('tableuof_square_roots_and~cube~roots~);

line; line;

Note that the string blank in the hardware representation is represented

by a blank space. Thus one writes

TEXT('('TABLE OF SQUARE ROOTS AND CUBE ROOTS') ')$

n

e

o 4.

•

3/6

Example 4. Suppose one wished to print three results, the values

of n, x, and y. This could be accomplished by the following statements:

text ('n · =') . · , output (n) ;

text ('x · ='). · , ou~put:(:~);
text ('y : =') ; output (y) ;

Example 5. The following

begin integer i;

page.;

spaces (10) ;

spaces (10) ;

spaces (10) ;

program draws

for i:= 0 step 1 until 50 do

a graph.

begin .spaces.(sin(6.283 X i/50) X 40 + 40);

te,xt,('. '); line

end

Punch output

The procedure punch when called has the effect that subsequent calls o~ the

standard output :',procedur.es" will 'cause numbers to :be'punched .'oi{···cards'·rather

than printed •. ,Tlli8 wfll:be: . .us.eful if-the nukbers are to: .be used. as data: for

som~ .'Q:tl;1er::progr:~m • .' ;It\ th~y .'&Il~ t;o.':1>e ~e,'.id.·':with·': inp.tit";~ i.t"will·~e ':necessary

to l~ave::~'ll:fJ:i,~,i;et;lt s:pace s:ot.h~.t~ n~m.pers.~i 11: 1;>e separated by .;tt: ~:e.ast

three blank spaces. For integers a field of width 15 is sufficient.

For a number of type real a field of width 17 is sufficient if the

number is punched in floating point form. When punching a card for use

with input only the first 72 columns of the card may be used for

punching information to be read. To change back to printing after

punching, a call of the procedure printer is made. After a call of

punch the procedure . line has the effect of starting a new card.

procedure punch;

comment Causes the card punch to be used for output r~;l'ther":~ ... '.

t~an the printer. All 80 columns of the card may be punched;

procedure printer;

comment Causes a return to the printer for output. The line length is

reset to be 131 print positions;

o

•

3/7

5. More flexible output

The procedures real format , integer format , and . boolean format are

used to change the formats according to which values of the corresponding

types are printed or punched. Each of these procedures sets a format

specification which remains in effect until the next call of the same

procedures or until the end of the program if there is no later call.

Thus, the statement integer format (5) has the effect that all numbers

output will be printed of type integer which are printed by means of

in fields of width five until the next call of integer format Note

that it is possible to give a new format specification with each cell

of output, but usually this will not be necessary.

procedure integer format (n); value n; integer n;

comment This procedure has the effect that number of type integer

printed or punched subsequently by output will appear right­

adjusted in fields of width n provided 1 < n < 72;

procedure boolean format (n); value n; integer n;

comment logical values printed or punched by output

of width n positions provided 5 < n < 72.

will occupy fields

Either TRUE fol-

lowed by a blank space or FALSE will be printed right-adjusted

in the field;

procedure real format (fixed n, d); value n,d;

Boolean fixed; integer n,d;

comment Numbers of type real will be printed or punched by output in

fields of width n with d digits after the decimal point pro­

vided 2 < n < 72 and 0 < d < 9. If the parameter fixed has

the value true, then the numbers will be printed in fixed point

notation without an exponent. If fixed has the value false, then

the number will be printed in floating decimal point notation with

an exponent and with one digit before the decimal point; A num-
27 (8) ber of type real having absolute value greater than 2 -1 1.3xlO

will be printed incorrectly if the parameter FIXED has the value

true. If real numbers this large are to be printed, then the para­

meter :.FIXED should have the value false;

o

••

3/8

The above procedures have restrictions for their parameters of type integer.

If an erroneous call is made with an actual parameter having a value out­

side the permitted range, then a return is' made to the standard format with

a field of width 20 for values of the corresponding type.

Example 5. If the number to be printed will not fit in the field spe­

cified for it, then the sign and most significant digits of the number will

be lost. As an example of how this can be avoided, consider the following

statements:

real format (abs(x) < 1000, 10, if abs(x) < 1000 then 5 ~ 3);

output (x);

which will assure that x can be fitted in a field of width 10.

Example 6. The output given for the example in Section 1.4 of A Guide

to ALGOL Programming by D. McCracken could be handled by the following

statements:

real format (true, 10, 3);

integer format (6);

output (a); output (b); output (c);

output (x 1 real); output (x 1 imag);

output (x 2 reai); output (x 2 imag);

output (roots); line

6. Character handling ~rocedures

The procedures described in this section can be used in connection with the

procedures input, output , and text for input or output of a single character.

procedure in characte! (c); integer c:

comment This procedure assigns to c as value the BCD representation of the

next character on the data cards. The BCD representation will be an

integer between 0 and 63 inclusive. If in character is called

immediately after column 72 of a data card is read by a previous call

of in character, then the value 58 representing an end of line

character will be assigned to' c. Another call of in character

will result in the first character on the next data card being read.

If in character is used after a call of input , the character

read will be the one immediately after a comma terminating the num­

ber, the first character after three successive blank spaces ter­

minating the number, or the fi rst character on the next data card;

o

o

•

3/9

procedure new input line;

comment This procedure causes the remainder of the current data card

to be skipped. A subsequent call of input or in character

will read data from the next data card;

procedure out character (c); value c; integer c;

comment This procedure places the character whose BCD representation

inteser

comment

is the integer c on the current output line. If the charac­

ter will not fit on the current line, then a new line is started;

procedure character (s); §tring S;

This procedure assigns to the function designator the BCD repre-

sentation of the first character in the BC-ALGOL hardware repre-

sentation of the first basic symbol in s after the initial left

string quote. The BCD representation is an integer between 0

and 63;

Example 7. The following program reads in arithmetic expressions

containing the variables x and y, the binary operators + and x

and parentheses. Each expression is supposed to be on a separate data

card and is terminated by the first blank space on the card. The pro­

gram transforms these expressions into Polish notation and prints out

the resulting Polish strings. The priority scheme used is similar to

that currently employed by the preprocessor in the Be-ALGOL system.

besin integer c, i, j, n;

start:

integer array stack [0:50];

integer procedure priority(c); value c; integer c;

priority := if c = character('(') then 0

else if c = character(')') then 1

else if c = character('+') then 2 ---
else if c = character('x') then 3 else -1;

input(n) ;

for j := 1 step 1 until n do

besin:. new input line; line; i := 0;

o

o

•

next:

check:

3/10

in character(c);

if c = character('x') U c = character('y') then

begin out character(c); go to next end;

if c = character('(') then go to put on stack;

if I. > 0 then

begin !i priority(c) ~ priority(stack[i]) then

begin out character(stack[i]); i := i - 1;

~ check

end

end;

if c~character(~)') then begin i:=i~l; go to next end;

if priority(c) ~ 0 then

put on stack: begin i := i+l; stack[i] := c; go to next end;

line

end

end

o

0

•

4/1

4. Comment Control Options

The use of the delimiter comment allows the programmer to add notation to

his program for easier understanding. The comment has no effect on the

processing of the program except as described in this chapter.

The following comments when inserted in the ALGOL source program will

perform the described control functions during the translating (pre-processing)

phase of computation of the ALGOL program. Comments may also appear outside

of the ALGOL source program. When comments follow the last end, a semicolon:.

must follow the delimiter end before the delimiter comment.

Comment Control Card

Listing Controls:

comment: page;

comment: title;

comment: stop print source;

comment: start print source;

comment: name list;

comment: print string;

comment: loader list;

comment: sts list;

Function

The listing of the ,sourC'e program will start
on a new page, with a heading specified by
the .tItle control card.

The next card in the source is the title to
be put on the top of a page when the page
control card is used.

This is used to delete printing of the
source program. The comment controls,
name list, page, and title are disabled
when this is used.

This is used to resume printing of the
source program.

The translator will print out the current
name list at the point where the control
card is located.

The Syllable String (see chapter 8) will
be printed after the source program has
been completely translated or at a ter­
minating diagnostic.

This is used to obtain the storage map,
entry points, transfer vector, and a
listing of the relocated object program
for each code procedure loaded by the
Pre-processor Loader.

This is used when operating in the STS
system to speed the printing of source
programs by the 1050 terminal. The
identification field is deleted.

o

o

•

Comment Control Card

Execution Time Options

comment: no array tests;

comment: skip array print;

comment: variable number of
parameters;

comment: no parameter tests;

comment: common;

comment: dump;

comment: dump number := c;

4/2

Function

This is used to delete the testing for
correctness of bounds and dimensions in
the pre-processor and in the proces$or.

This is used to delete the printing of
~irraY~whe!ri a :stacJk dump i's :made BY 'the
processor.

This is used to allow the next procedure
declared to be used with any number of
parameters.

When this is used the pre-processor
and the processor do not make any tests
as to correctness of the number of para­
meters in any procedure statement.

This is used to allow externally coded
procedures to use COMMON. This has the
disadvantage that the source program's
name list is destroyed and cannot be used
by the processor with the stack dumps.

This will cause the :pr'o-ce.sso~r,to:-:.g:lve

a stack dump at the point in the program
where the control card is placed. This
control card may not be put in the block­
head, or before the first begin.

This is used to obtain a stack dump ::c
locations past the accumulator pointer
at the time the dump is requested (where
c is a constant).

Semicolon Trace Option (see Appendix 5)

comment: semicolon trace; This informs the system that the semi-
or co10n,,' trace will be used.

comment: semicolon trace := c;

comment: on semicolon trace; Turns on the semicolon trace.

comment: off semicolon trace; Turns off the semicolon trace.

Library Tape Options (see Chapter 10)

COIIlIIlent: library A5; This will assign unit A5 as a library tape.

comment: library B5; This will assign unit B5 as a library tape.

comment: <filename>; This will insert the file named <filename>
at this point in the source program.

o
Comment Control Card

Input Tape Options (see Chapter 10)

comment: scratch tape;

comment: source tape;

o

•

4/3

Function

Causes cards to be read from unit A4
rather than from the source card deck.

Resets the system to resume reading cards
from the source card deck.

o

•

5/1

5. E~ror Messages

The system performs a nearly complete syntactical check of the source pro­

gram. Most of this is performed by the translator (pre-processor) and the

error messages from this phase will appear in the listing of the program

immediately after the statements causing the messages. Some syntactical

and some semantic check is performed at execution time (by the processor)

and an error messages from this phase will appear among the output from

the program.

During translation, the translator will continue working on the source

program until 8 different error types are recognized, but the execution

phase will never be entered when an error is found.

An error found at execution time results in a message and a dump, and

further execution is deleted.

5.1 Translator Messages

Below follows a list of the error messages from the translator. Many

of them are followed by a reference to [2], not shown here. In most

cases, a short explanation or an example of an ALGOL text which could

cause that particular message is given.

5 .. 1.1 Excess of Capacity

** THE MAXIMUM NUMBER OF DECLARATIONS HAS BEEN EXCEEDED IN THE PRESENT BLOCK.

The maximum number allowed is 63.

** THE MAXIMUM NUMBER OF FOR LIST ELEMENTS IN A FOR LIST HAS BEEN EXCEEDED.

The maximum number allowed in 100.

** OPERATOR STACK SIZE EXCEEDED.

An expression requires stacking of· more than 100 operators
(or parentheses) during translation.

** LENGTH OF NAME LIST EXCEEDED.

The maximum number of names allowed at once is 330 .

o

o

•

5/2

5.1.2 Errors in Bracket-like Structures

** THE END OF YOUR DECK WAS REACHED WHILE PROCESSING A STRING. THE
NUMBER OF MISSING RIGHT STRING QUOTES IS <integer>o THIS STRING
BEGAN AT WORD ADDRESS <integer>.

Ex: begin text ('UHA) end

** THE END OF YOUR DECK HAS BEEN REACHED. THERE ARE <integer> "' BEGIN'S"
FOR WHICH NO "'END'S" HAVE BEEN FOUND.

Ex: begin; begin; end

** A PROGRAM MUST BE A BLOCK OR A COMPOUND STATEMENTo

Ex: A program not enclosed between begin and end •

** THERE ARE <integer> MORE ")" THAN "(" IN THE LAST STATEMENT.

Ex: a: = (b-c) d + f) ;

** THERE ARE <integer> MORE "(" THAN ")" IN THE LAST STATEMENT.

** THERE ARE <integer> MORE). THAN . (IN THE LAST STATEMENT.

Ex: a: = M (i, j] + 2 ;

** THERE ARE <integer> MORE . (THAN). IN THE LAST STATEMENT.

5.1.3 Other Errors in Delimiter Structure

** THE NUMBER OF '" IF'S" AND "THEN'S" DOE S NOT BALANCE.

Ex: if a > b do x : = 0 ;

** AN "'ELSE'" OCCURS IN A CONDITIONAL STATEMENT WHICH CONTAINS NO "'THEN'''.

Ex: if (a > b) then a : = 0 else b : = 1 ;

** "'ELSE'" DOES NOT OCCUR IN A CONDITIONAL STATEMENT .. POSSIBLY THERE IS
AN UNWANTED "$" AFTER THEN '" THEN' " .

Ex: if a > b then a : = 0; else b : = 1

** THE CURRENT "'DO'" IS NOT IN A FOR STATEMENT.

Ex: for i := 1; do s := s + b ;

** A "'DO'" IS IN A FOR STATEMENT BUT HAS NOT BEEN PRECEDED BY AN "="
Ex: for a, b, c do s := s + t ;

** THE SEPARATOR "'WHILE'" IS NOT IN A FOR STATEMENT 0

Ex: for i := i + 1 ; while b < 0 do s := s + t

o

o

•

5/3

**', THE SEPARATOR" 'WHILE'" OR THE SEPARATOR" 'UNTIL'" IS NOT IN A FOR STATEMENT.

Ex: i:= 1 step 1 until 10 do s := s - N[i]

-/(* AN" 'EQL'" HAS BEEN USED AFTER A "'FOR' 11 WHERE AN "=" WAS EXPECTED.

Ex: for i = 1 do a := 0 ;

** AN "=" WAS EXPECTED AFTER THE LAST" 'FOR'" PERHAPS AN "'EQL'" WAS USED.

-/(* THE SEPARATOR "'UNTIL'" IS NOT PRECEDED BY A "'STEP'''.

Ex: for i := i + 1 until 10 do t := t M[i]

** THE SEPARATOR I.I,'STEP"'IS NOT·.IN .. A.FOR STATEMENT.

Ex: ::for i := 1; step 1 until 10 do s := s + M[i]

** ILLEGAL SYMBOL IN LAST FOR STATEMENT.

Ex: for i := 1 then x := 0 ;

** ILLEGAL DELIMITER USED IS "'<string> "' •.• POSSIBLY A MISSING t OR MIS­
SPELLED DELIMITER

**

Ex: begin ~ a, b ;

THE LAST COLON IS NOT PRECEDED BY A LABEL.

Ex: a.- b

x := 0

** A"," HAS OCCURRED IN AN ILLEGAL LOCATION. A "$" WAS EXPECTED HERE.

Ex: A:= B + C, B := C + D ;

** AN" =" HAS BEEN USED WHERE AN '" EQL ,,, WAS EXPECTED,

Ex: if a:= b then s := 0 ;

** ILLEGAL SYMBOL ORDER FOLLOWING '" BEGIN' " •

Ex: begin,

** ERROR IN SYNTAX IN THE LAST STATEMENT.

This may occur in different contexts.

** INCORRECT LEFT PART OF ASSIGNMENT TO FUNCTION DESIGNATOR.

Ex: real procedure x(a);

x(a) : = a t 2;

o

o

•

5/4

5.1.4 Operand Errors

** AN INTEGER LARGER THAN 2**35-1 IS NOT ALLOWED.

Ex: x:= 34359738368 ;

** A DECIMAL POINT MUST BE FOLLOWED BY A DIGIT.

Ex: y:= 4.

** A DECIMAL POINT OR LEFT BRACKET OCCURS ILLEGALLY.

Ex: z :=45 [B] ;

**.. AN EXPONENT PART IS IMPROPERLY FORMED.

** A NUMBER OUTSIDE THE RANGE OF FLOATING POINT NUMBERS IS NOT ALLOWED.

Ex: b:= 510200 ;

** A LETTER OF A "(" CANNOT LEGALLY FOLLOW A NUMBER.
IMPLICIT MULTIPLICATION IS NOT ALLOWED.

Ex: c:= 5A ;

Ex: d: = l6(B)

** SYSTEM OR MACHINE ERROR. PLEASE REPORT THIS TROUBLE.

See your instructor or a Oomputer Center consultant.

5.1.5 Errors in Declarations or Specifications

** THE PRESENT IDENTIFIERS <identifier> IS DOUBLY DEFINED. THE ALGOL
PREPROCESSOR ONLY RECOGNIZES THE FIRST 18 SIGNIFICANT CHARACTERS.

Ex: begin real a,b, c;
a: b :'= 0;

Ex: procedure P(A, B, C, A) ;

** DECLARATIONS MUST OCCUR IN A BLOCKHEAD, NOT IN THE MIDDLE OF STATEMENTS.

Ex: begin real a; a := 0 ;
procedure P;

** <identifier> IS AN UNDEFINED NAME.

Ex: begin real al; a2 := 0

o

o

•

5/5

** THERE IS AN ILLEGAL DELIMITER IN THE ARRAY DECLARATION BOUNDED PAIR
LIST FOLLOWING ". (" OR "," .

Ex: begin array A[l = 10];

** THERE IS AN ILLEGAL DELIMITER IN THE ARRAY DECLARATION BOUND PAIR
LIST FOLLOWING " •. " .

Ex: begin array A[l:,l:lO] ;

** AN IDENTIFIER HAS BEEN CALLED BY VALUE BUT IS NOT IN THE PARAMETER LIST.

Ex: procedure P(a,b); value ab ;

** AN IDENTIFIER IN THE VALUE LIST HAS NOT BEEN SPECIFIED.

Ex: procedure P(a,b); value a; real b; b := 2 x a

** ILLEGAL SYMBOL IN VALUE LIST.

Ex: value a[l:lO] ;

** AN IDENTIFIER IN THE SPECIFICATION PART IS NOT IN THE FORMAL PARAMETER
LIST. THE CURRENT IDENTIFIER IS <identifier>.

Ex: procedure P(a,b); real ab;

** AN IDENTIFIER IN THE SPECIFICATION PART IS A GLOBAL VARIABLE. THE
CURRENT IDENTIFIER IS <identifier>.

Ex: procedure P(a,b); real a, P;

** AN IDENTIFIER IN THE SPECIFICATION PART HAS OCCURRED MORE THAN ONCE.
THE CURRENT IDENTIFIER IS <identifier>.

Ex: procedure P(a,b); real a,b; Boolean a;

** A.(CANNOT OCCUR IN THE SPECIFICATION PART.

Ex: procedure P(a,b); array a [1:10]

** A DELIMITER OTHER THAN "," OR "$" HAS OCCURRED IN THE SPECIFICATION PART.

Ex: procedure P(a,b); real a + b ;

** AN ACTUAL PARAMETER LIST OF A PROCEDURE STATEMENT DOES NOT HAVE THE
SAME NUMBER OF ENTRIES AS THE FORMAT PARAMETER LIST OF THE PROCEDURE
HEADING. THE PROCEDURE WAS DECLARED WITH <integer> PARAMETERS, AND
USED WITH <integer> PARAMETERS.

Ex: procedure P(a,b); a := b ;
P(x + y) ;

** THERE IS AN ERROR IN SYNTAX IN THE BLOCK HEAD .

o

o

•

5/6

5.1.6 Type Errors

** A FORMAL PARAMETER CORRESPONDING TO A PROCEDURE IDENTIFIER MAY NOT
BE USED AS A LEFT PART. THE CURRENT IDENTIFIER IS <identifier>.

Ex: procedure P(A); procedure A;
begin A := 1

** A PROCEDURE IDENTIFIER IS NOT FOLLOWED BY II (".

Ex: x:= sqrt x (a-b) ;

** THE IDENTIFIER PRECEDING THE CURRENT "(" HAS NOT BEEN SPECIFIED OR
DECLARED AS A PROCEDURE IDENTIFIER. THE CURRENT IDENTIFIER IS <identifier>.

Ex: real a,b,c; a := b(c + 1) ;

-k* THE IDENTIFIER PRECEDING THE CURRENT". (" HAS NOT BEEN DECLARED OR
SPECIFIED AS AN ARRAY OR SWITCH IDENTIFIER.

Ex: begin real r ; array rr[l:F]; r[l] := 0 ;

** AN ARRAY OR SWITCH IDENTIFIER IS NOT FOLLOWED BY ". (". THE CURRENT
IDENTIFIER IS <identifier>.

Ex: begin array M[1:110];
M : = 0 ;

** THE NUMBER OF SUBSCRIPTS OF A SUBSCRIPT LIST IS NOT EQUAL TO THE DIMEN­
SION OF THE ARRAY AS DECLARED. IT WAS DECLARED AS <integer> DIMENSIONAL
BUT USED WITH <integer> SUBSCRIPTS.

Ex: begin array A [1:2,1:5];
A[1,3,5]; = 0;

** INTEGER LABELS ARE NOT ALLOWED IN BC-ALGOL.

Ex: 502: X := 0 ;

** A LABEL IS BEING USED AS THE CONTROL VARIABLE IN A FOR STATEMENT.

Ex: for L := 1,2,3 do s := s + f ;
L : a := 0 ;

5.1.7 Pre-processor Loader Diagnostics

** PROCEDURE <identifier> WILL OVERFLOW COMMJN AND INTERFERE WITH THE
PROCESSOR.

Ex: The code procedure used too much common storage.

** PROCEDURE <identifier> REQUIRES MORE SPACE THAN ALLOTTED BY PROGRAM
CARD, POSSIBLY A MISSING PROGRAM CARD .

. . .i: .lJiJ U ik .!I :::SUJbS!.! tad

o

o

•

5/7

** LOADING OF CODE PROCEDURE <identifier> WILL EXCEED SYLLABLE STRING
SIZE.

Ex: The code procedure contains too many instructions and
will not fit into the syllable string.

** CODE PROCEDURE NOT FOUND <identifier>.

** LOWER LEVEL ROUTINES NOT FOUND <identifier>.

** CARD <integer> DOES NOT HAVE A 12 OR AN 11 PUNCH IN CARD COLUMN 1.

Ex: Trying to load a card which is not a binary card.

** THE FIRST BINARY DECK DOES NOT HAVE A PROGRAM CARD.

** PROCEDURE <identifier> CALLS FOR COMMON STORAGE WHICH IS UNDEFINED.

Ex: A code procedure using common was loaded without using
the control card comment: common;

** CHECKSUM ERROR ON CARD <integer>.

** CHECKSUM DELETED ON CARD <integer>.

'-1 - 2 lSU-A $ _J.li.I::' .11 i. d!&&iJUaa

o

o

•

5/8

5.2 Interpreter Diagnostics

The following diagnostics are detected and listed on the program out­

put during the interpretive phase of processing. Any of the diagnostics

will terminate the program.

5.2.1 Excess of Capacity

** THE ALGOL PROCESSOR STACK SIZE HAS BEEN EXCEEDED.

** AN OVERFLOW OCCURRED IN PERFORMING INTEGER ARITHMETIC. THE RESULT OF
AN OPERATION WHEN IT IS OF TYPE INTEGER MUST BE LESS THAN 2**35 IN
ABSOLUTE VALUE.

** THE ALGOL PROCESSOR PROGRAM ADDRESS STACK SIZE HAS BEEN EXCEEDED.

** AN OVERFLOW OCCURRED IN AN EXPONENTIATION OPERATION OF THE FORM A**B
WHERE A = <number>, B = <number> .

** AN OVERFLOW OCCURRED IN PERFORMING REAL ARITHMETIC. EITHER THE RESULT
OF AN OPERATION OR A NUMBER OBTAINED AT AN INTERMEDIATE STEP IS G'REATER
THAN OR EQUAL TO 2**127 IN ABSOLUTE VALUE.

5.2.2 Errors in bracket-like structures

** THE UPPER SUBSCRIPT BOUND OF BOUND PAIR NUMBER <integer>(,OF AN ARRAY
DECLARATION IS SMALLER THAN THAT OF THE CORRESPONDING LOWER BOUND.
SEE ALGOL 60 REPORT SECTION 5.2.4.3.

5.2.3 Errors in Input-Output

** ERROR IN A CALL OF AN INPUT OR OUTPUT PROCEDURE WHICH USES FORMATS.
NO FORMAT CORRESPONDS TO THE FIRST PARAMETER.

** ERROR MESSAGE BY EXEM, THE MONITOR'S ERROR SUBROUTINE.

** ERROR IN INPUT. AN INTEGER REPRESENTED ON A DATA CARD IS GREATER
THAN 2**35-1 IN ABSOLUTE VALUE. THE DATA CARD IS ...

** ERROR IN INPUT. A NUMBER OF TYPE 'REAL' REPRESENTED ON A DATA CARD
IS TOO LARGE IN ABSOLUTE VALUE. THE DATA CARD IS

** ERROR IN INPUT. THE INCORRECT DATA CARD IS ...

** A CALL TO SAVE HAS BEEN MADE WITHOUT A CORRESPONDING CALL TO PRINTING
FORMAT .

** A CALL TO READING INTEGER, READING REAL, OR READING BOOLEAN HAS BEEN
MADE WITHOUT A CORRESPONDING CALL TO READING FORMAT.

k___ ! - CZRla d iiJiii2i £!

o

o

•
Ii

5/9

5.2.4 Type Errors

** THE VALUE OF THE CONTROLLED VARIABLE OF A FOR STATEMENT IS UNDEFINED
DUE TO THE EXHAUSTION OF A FOR LIST ELEMENT. IT HAS NOT BEEN REINIT­
IALIZED BEFORE ITS USED IN AN EXPRESSION, SEE ALGOL 60 REPORT SECTIONS
4.6.5,AND 4.6.

Ex: for i := 1 step 1 until 100 do A := 1; b := A[i];

** THE ALGOL PROCESSOR DID NOT FIND A STACK ADDRESS TO STORE THE VALUE
OF THE ARITHMETIC OR BOOLEAN EXPRESSION. A VALUE OR INCORRECT QUANTITY
HAS BEEN USED AS A LEFT PART VARIABLE. SEEALGO~ 60 REPORT SECTION 4.2,
2.7, AND 2.B.

Ex: B + 1 := C;

** A SIMPLE VARIABLE HAS NOT BEEN INITIALIZED BEFORE IT IS USED IN AN
EXPRESSION. SEE ALGOL 60 REPORT SECTIONS 3.3.3, 3.4.3, 2.7, 3.1.1,
AND 3.1.3.

Ex: real C; A := C ;

** THE ALGOL PROCESSOR HAS EXECUTED AN ILLEGAL SYLLABLE. ILLEGAL SYLLABLE =
<letter> (OCT = <integer».

** A FORMAL PARAMETER WHICH IS CALLED BY VALUE CORRESPONDS TO A SWITCH
DESIGNATOR WITH AN UNDEFINED VALUE, .. SEE ALGOL 60 report SECTION 4.3.5.

** AN ILLEGAL ACTUAL PARAMETER WAS USED IN A PROCEDURE STATEMENT CALLING
A CODE PROCEDURE.

** BOOLEAN CONVERSION REQUESTED IN <identifier>.

5.2.5 Arithmetic Errors

** THE RESULT OF AN EXPONENTIATION OPERATION OF THE FORM A**B IS UNDEFINED
WHERE A = <number>, ·B = <number>, SEE ALGOL 60 REPORT SECTION 3.3.4.3.

** DIVISION BY 0 IS UNDEFINED.

5.2.6 System Diagnostics

** CODE PROCEDURE DID NOT EXIT CORRECTLY.

** SUBROUTINE <identifier> WAS CALLED WITH <integer> ARGUMENTS.

Ex: Erroneous call of standard functions such as a := In (b,c)

** OVERTIME TRAP .

** SUBROUTINE <identifier> NOT IN CODE LIST.

.. .: L Sd £Xi di2i2U2 a

o

o

•
4, i S!522i

6/1

6. Predefined Code Procedures

6.1 Code Procedures

Code procedures are allowed in ALGOL 60 as stated in section 4.7.8 of

the ALGOL 60 report. The predefined code procedures described in this

chapter are to 'allow greater flexibility in using BC-ALGOL.

~: Each of these procedures, if used, must be declared in the first

block of the program.

The parameters must be the same as the expected type; outside of this

restriction, they may be any general ALGOL parameter.

These procedure identifiers are not reserved for use unless they are

specifically declared. If the code procedure of a given name is not

declared, that identifier may be used in any manner desired.

6.2 Input-Output Code Procedures

&

The BC-ALGOL system contains some predefined code proc~dures for use

along with the standard'.input-output procedures described in Chapter 3.

For each of these procedures the declaration (which should~ppear in the

heading of the first block of the user's program if he wishes to use the

code procedure) is given below together with a comment explaining the

procedure. Many of these procedures occur naturally in pairs, with one

for input and one for output.

procedure set input line length(n); value n; integer n; code;

comment This procedure sets the length of subsequent input lines to

be n characters provided 1 ~ n ~ 132. All characters after

the first n are ignored. A call of this procedure automa­

tically causes a new line to be s\tarted;

procedure set output line length(n); value n; integer n; code;

comment This procedure sets the length of subsequent 6utp~t lines to

be n characters. It does not cause a new line to be started.

Thus the length of an output line can be adjusted depending on

the contents even after the line is partially constructed;'.:

o

o

• *

6/2

integer: procedure read position; code;

comment The function designator is assigned as value the number of

the next position to be read on the current input line. The

first position on a line is numbered 1;

integer procedure print position;, code;

comment The function designator is assigned as value the number of

the next position on the output line for which a character has

not been constructed. The first position on a line is numbered 1;

procedure in line (a); integer array a; code;

comment A new input line is always started when this procedure is called.

Then, if possible, an entire line of inp~t is read into the one­

dimensional array a with each element of a containing the

BCD representation of one character.

The representation of the first character of the line is placed

in the element of a with least subscript, the second in the

element of next higher subscript, etc. If the array contains

more elements than there are position on the input line, then

* the number 58 10 i~ stored in the element immediately following

the one containing the representation of the last character of

the line. The remaining elements of the array, if there are

any, are not assigned values. If the array is not long enough

to hold the entire line, then only enough characters are read

to fill the array~

procedure out line (a); integer array a; code;

comment A new output line is started. This procedure is essentially

the inverse of in line. It causes output of the line of

characters whose BCD representations are in a. Characters

are taken from a until the end-of-1ine character corres-

* ponding to the integer 5810 is reached or until the whole array

a is used. Additional characters may be placed on the end .. qf

the line by using out character , text ,or output if space

remains;

5810 = 728 = standard end-of-1ine character.

e

o

•

procedure

comment

6/3

octal format (n); value n; integer n; code;

This procedure has the effect that numbers of type.integer

printed or punched subsequently by output will appear right­

adjusted in fields of width n in octal notation provided

l < n < 72;

integer procedure bcd(s); string s; code;

comment This procedure assigns to the function designator the BCD repre­

sentation of the first 6 characters in the hardware representation

of the open string obtained by stripping off the outer string

quotes from s. If there are less than 6 characters in the open

string, then enough blanks are added at the end to make up a full

word of 6 BCD characters.

6.3 Tape Selection Procedures

procedure in unit (n); value n; integer n; code;

comment This procedure causes the logical tape unit from which data are

to be read by means of input, in character, etc. to be changed

to the unit with number n. This change is also effective for

the input procedures which use FORTRAN formats. A call of in

unit causes a new input line to be started;

procedure out unit (n); integer n; code;

comment This procedure causes the logical tape unit for output by means

of output, text, out character, etc; to be the unit with

number n. This procedure has no effect upon whether the out­

put will be suitable for punching on cards or listing on a line

printer. Thus it should be preceded by a call of punch or

printer which will determine whether a carriage control charac­

ter is included on each record or not. The change of output

unit is also effective for the output procedures which use FORTRAN

formats~ A new output line is started automatically;

e

o

•

6/4

6.4 Tape Handling Procedures

These procedures will handle all tapes except those used by the monitor;

these are the monit input tape A2, logical -1; the monitor punch tape B4,

logical -2; the monitor print tape A3, logical -3. In the following des­

criptions, the parameter log is the logical number of the tape unit, and

count, where used, determines the number of records or files to be skipped.

Erocedure bksprecord (log, count); integer log, count; code;

comment The tape specified by log is backspaced count records;

procedure fdsprecord (log, count); integer log, count; code;

comment The tape specified by log is forward spaced count records.

NOTE: In bksprecord and fdsprecord, and end of file gap and mark is
considered to be the same as an end of record gap;

Erocedure bkspfile (log, count); integer log, :count; code;

comment The tape specified by 'log is backspaced count files;

procedure fdspfile (log, count); integer log, count; code;

comment The tape specified by log is forward spaced count files;

procedure endfile (log); integer log; code;

comment The tape specified by log has an end of file written on it;

procedure rewind (log); integer log; code;

comment The tape specified by log is rewound;

o

o

•

6/5

6.5 Rescan Procedure"

procedure rescan; code;

comment rescan causes the monitor to resume reading control cards at

the current location on the input tape (A2). Note that *nunit

cannot be used to assign this function to a unit other than A2;

Example Both of :the ALGOL programs in the following job will execute

because of the call to rescan:

$JOB ...
$FMS ALGOL
begin

procedure rescan; code;
integer i,j,k; real X;
i := 1; j := k := 2;
x := ilk; text ('program one~); ~ ~

end rescan '£ ~ ~

end
-$
$EOF

real y;
y := 5; output (y);
text (~program two')

6.6 ~ Manipulation Procedures

procedure getptw (full word, low bit number, high bit number, output); code;

comment getptw (get partword) extracts the binary bits between the word

including low bit number and high bit number. The type of all

parameters must be integer. Bits are numbered from 0 to 35 from

left to right;

012345 35

To take the high order octal character, which takes 3 bits, the

call would be

getptw (full, 0, 2, out);

o
6/6

To take the high order alphanumeric (BCD) character, the call

would be

getptw (full, 0, 5, syllable);

Output is type integer with the value right-adjusted and the

higher order bits zeroed.

procedure stoptw (input, full word, low bit number, high bit number); code;

comment stoptw (store partword) stores the rightmost high-low + 1 bits of

input into bits between and including low bit number and high bit

number of full word. The type of parameters must be integer;

To store the character "s" (octal 62) into the third character of

full word the call would be

stoptw (oct 62, full word, 12, 17);

procedure type shift (input, output); code;

comment type shift takes an input of either type integer or type real

4l) and changes the type to real or integer, r~spe~tively, without

changing the representation (that is, without floating or fixing

the input);

•

To take the real number 1.0 and store i~ in the integer array

stack, the call would be

type shift (1.0, stack [1]);

The integer number stored in stack would be (in octal) 201400000000,

which is the octal number which represents the floating point 1.0

in the 7094.

procedure convrt (number, exponent, output); code;

comment convrt takes the integers, number and exponent, and forms the

indicated real representation, which is returned through output

an integer. (Exponent is taken as a power of 10);

procedure shift (argument 1, argument 2, shift number, output); code;

connnent shift shifts the "double precision" integer words argument 1 and

argument 2 'shift number' bi ts to the left. The high order I shift

number' bits from argument 1 are returned to output (type integer)

right-adjusted with the extra bits zeroed;'

MfltJjE? - n-

o

o

•

6/7

6.7 Logical Arithmetic

procedure compl (in, out); integer in, out; code;

comment comp 1 takes the lIs complement of in and returns it in the

variable out. This is a bit-wise complementing procedure;

i.e., each bit of the word is complemented;

procedure comp2 (in, out); integer in, out; cOde;

comment comp 2 takes the 2's complement of the parameter in and returns

it in the parameter out. This is like the lIs complement with

an additional 1 added in bit number 35;

procedure: and (word 1, word 2, out); integer word 1, word 2, out; code;

comment and takes the Boolean product of word 1 and word 2 and returns

the result in out. This is a bit-wise Boolean product; each

corresponding bit of the two words is operated on by these rules:

if both are lIs, then a 1 is stored in that bit in out; otherwise,

a 0 is stpred there;

procedure or (word 1, word 2, out); integer word 1, word 2, out; code;

comment or performs a Boolean addition of word 1 and word 2 and returns

the result in out. This is again a bit by bit operation with

the following rule: if either bit is a 1, then a 1 is stored

in out; otherwise, a 0 is stored in out;

6.8 Random Number Generator

Two random number generators are available as predefined procedures. The

first, random, is a real procedure and generates floating point numbers

between 0 and 1 with a flat probability distribution. The second, lehmer,

is an integer procedure and generates integers between 1 and 235 - 1. The

procedure lehmer ~as the additional property that the bit pattern in the

word containing the generated inte~er is also random.

If used, they must be declared in the outermost block of the program as:

real procedure random; code;

and/or

integer procedure lehmer; code;

o

•

6/8

Of course the word "random" is used here in the sense of pseudo-random.
33 The sequences generated have extremely long periods -- random's is 2 ,

and that of lehmer is slightly less -- so large that a user would generate

only a small fraction of the possible numbers in any problem.

The numbers generated by lehmer are those relatively prime to the modulus

2
35

- 1 They are obtained as power residues: X + X * K(mod 235 -: 1).
n+~5 n

K and Xo are of course also relatively prime to 2 - 1

The numbers generated by random are obtained by considering the integers

obtained from Xn+l = Xn * K (mod 235) as binary fractions, i.e., with

the binary point at the extreme left. Here the X are odd integers
n

and K is of the form 8 * F + 3 (to ensure maximum period).

Additional procedures are available to change the constants K and Xo

in random:

procedure start random (~); integer N; code;
I

This procedure assigns to Xo the value of N. Hence following calls

of random create a sequence of numbers with N as "base ll
•

procedure lodrandom (K); integer K; code;

This procedure replaces the multiplier in random with the value of K.

procedure getrandom (N); integer N; code;

get random assigns to N the value of the last integer generated within

random.

Associated with 1ehmer are similar procedures, start1ehmer, getlehmer,

and lodlehmer which can be declared similarly. If the additional pro­

cedures are not used, they need not be declared.

It is recommended that if the multiplier K is changed in either routine,

it be of the order of the square root of the modulus, i.e., 217<. K < 218 .

The suitability of either generator to a particular problem should be tested

by the user •

e

o

•

6/9

6.9 Examples of ALGOL procedures using predefined ~ procedures

GET CHARACTER

This procedure: puts the next BCD character on the input ca.rds into the

parameter char, ,and keeps in filled with new characters. The code

procedures used are . shift , and 'bed pro.cedur:e ineard reads a card.

procedure get character (char);
begin integer temp, blank, nething; ~ integer

.2!!! integer array inbuffer [1 .. 12];
blank : = bcd (l.uuuuuJ);
shift (in, inbuffer[wc], 6, temp);
shift (temp, blank, 30, nothing);
char := temp;
if cc = 6 then - --begin cc := 1;

if wc = 12 then

cc, wc;

begin wc : = 1; fncard (!p.buffer) end
else wc := we + 1

end
else cc := cc + 1

end" --'

REAL NUMBER ROUTINE

This procedure takes numbers from cards (in BCD representation) and returns

them through out in real representation, but integer mode. The actual

parameter replacing out could be an element of an integer array. The

code procedures used are convrt and bcd, which are to be declared in

block 1.

A non-local integer array called alpha list is used which holds a code

number for each type of BCD symbol. (for example, 1 for number, 2 for ".:.

letters, etc.).

procedure real number (out); integer out;
begin integer char, number, exponent, add;

add := exponent := number := 0;
return 1:

get character (char);
if char = bcd ('u~) then go to return 1;
if alpha list [char] + number code then go to end;
if char r = bcd (4.') then

begin add := -l;-g;-to return 1;
end;

number : = number)(10 + char;
exponent := exponent + add;
go to return 1;

convrt (number, exponent, out);

o

o

•

6/10

REAL MULTIPLY

The following routine performs a "stack" type multiply operation. This

method is similar to that used in the Be-ALGOL processor.

procedure real mult (accumulator pointer, stack);
begin real real 1, real 2;

end' --'

type shift (stack [accumulator pointer], real 1);
type shift (stack. [accumulator pointer-l], real 2);
type shift (real 1 X real 2, stack [accumulator pointer-l]);
accumulator pointer := accumulator pointer-l;

•

o

•

7/1

7. Implementation and Use of Code Procedures

7.1 Introduction

The advant~ges of using Code Procedures in the BC-ALGOL System are (a)

speed of execution, and (b) availability of machine code.

A major problem in using Code Procedures is the transference of para­

meters from the ALGOL Proceeor!s Stack to the Code Procedure. There are

six routines to facilitate the transferring of parameters. These are

discussed in Section 2~ Two methods of returning from a Code Procedure

to the ALGOL processor are ~iscussed in Section 3. Routines to fix and

float numbers are discussed in Section 4. Examples of the use of the

routines discussed in Sections 2, 3, and 4, are found in Section 5.

Two : methods of linking a Code Procedure with the ALGOL source pro-

gram are discussed in Sections 6, 7, and 8~ The method discussed in

Section 8 is a new method o It utilizes a loader in the ALGOL:' pr'~proce~­

sor. A partial library is provided but a double transfer vector must

be used.

1
It is assumed that the reader is familiar with the Syllable String, the

1
Processor's Stack, and FAP~

7.2 Transferring of Parameters

The six routines to facilitate the transference of parameters are:

7.2 .. 1

I

INTERP

The call of INTERP from a code procedure causes the ALGOL Processor

to execute a syllable strin,g that is in the Code Procedure at loca­

tion -1, 4. Associated with INTERP is the Escape Syllable, 358 ,

which when executed by the processor causes:

See chapters 8 and 9~

o

o

•

7/2

2
a. The top of stack, i.e., STACK [AP] and STACK [AP + 1]

3 to be put in the MQ and AC , respectively;

b. The ALGOL processor to return control to the Code Procedure

by transferring to the word immediately preceding the word

containing the Escape Syllable8

7.2.2 LOADST

4 The call of LOADST will· place the MQ and AC on the top of the

stack at STACK [AP + 2] and STACK [AP + 3] and set AP := AP + 2.

7.2.3 FUNCTN

2

3

4 The transfer to FUNCTN places the AC and MQ in the last Program

Description (STACK [PP-l] and STACR [PP-2], respectively) generated

by the ALGOL Processor and returns control to the ALGOL Processor.

In this report STACK is considered as an add on stack, i.e., when an
entry is put on the top of STACK, it is placed in the first empty
location up from the bottom of STACK. Note that this is the reverse
of the order in the Stack dump (see Chapter 9).

example:

high addresses

• • •

· • • low addresses

The following

Vn
SAn =
PAn
PD
PL =
WSP =
AP
PP
AC =
MQ =

PD <--- AP <~-- top of stack
VALUE
VALUE

ide LINK <--- PP <--- bottom of stack

notations are used in this .chapter:

The value of the variable N
The Stack Address of N
The Program Address of N
Program Descriptor
Procedure Link
Working Space Pointer
Accumulator Pointer
Parameter Pointer
7090-7094 Accumulator
7090-7094 Multiplier-Quotient

4 When storing a valu~ in stack, the information word must be all zeros
except for the type (the tag).

o

o

•

7/3

7.2.4 FETCH

By using INTERP only the - top value in STAC~ may be brought

to a Code Procedure. The routine FETCH will bring a value from

any location in Stack to a Code Procedure. FETCH is used with

one full word integer parameter, for example, NUMBER. The call

FETCH(NUMBER) will bring STACK [AP-NUMBER] and STACK [AP=l-NUMBER]

to the MQ and AC, respectively.

7.2.5 REPLAC

By using LOADST (or FUNCTN) a Code Procedure places a value only

on the top of Stack (or in the last Program Descriptor). The

routine REPLAC is used with one full word integer parameter, e.g.,

NUMBER. The call REPLACE(NUMBER) places the MQ and AC into

STACK [AP-NUMBER] and STACK [AP+l-NUMBER], respectively.

7.2.6 GETADD

The call of GETADD will return the addresses of the ALGOL Processor's

variables:

in locations:

respectively .

STACK
ACCUMULATOR POINTER
PARAMETER POINTER
ARGUMENTS
SYLLABLE STRING
WORD ADDRESS
SYLLABLE COUNT

1,4
2,4
3,4
4,4
5,4
6 4 , ~
7,4

e

o

•

7.3 Returning from a Code Procedure

There are two logically equivalent methods to return from a Code

Procedure to the ALGOL Processor: 3

a. Transfer to $RETURN.

7/4

b. Use INTERP to have the ALGOL Processor execute. a period (=338),

7.4 Routines to Fix and Float Numbers

The following routines, which must be used via INTERP, will fix or float

(if it is not already integer or real) the value on the top of STACK,

i.e., STACK [AP+l], and leave it on the top of STACK.

7.4.1 To fix the value on the top of Stack, one must cause the

ALGOL Processor, via INTERP, to execute the syllables 57158 ,

7.4,,2

7,5 Examples

To float the value on the top of Stack, pne must cause the

ALGOL Processor, via INTERP, to execute the syllables 57168 ,

Consider two logically equivalent Code Procedures for computing the

square of an integer number:

7.5.1 Example 1. Use of INTERP and FUNCTN

ALGOL Source Program

begin
"

integer m,n;

procedure square (A); binary;

n := 2;

m := square(n);

5
Also see FUNCTN, Sec. 7.2.3 .

o

o

•

Code Procedure SQUARE written in FAP

SQUAR£

lNFO
N

COUNT
ENTRY
TRA
OCT
TSX
STQ
STO
XCA
MPY
XCA
LDQ
TRA
PZE
PZE
END

20
SQUARE
~(+3

650201350000
$INTERP,4
INFO
N

N

INFO
$FUNCTN

7/5

Note that the parameter is in block 2. This implies the procedure
square must be declared in block 1. The syllable 35

8
brings

STACK[AP], STACK[~~l] to the MQ and AC, respectively.

7.5,2 Example 2. Use of INTERP and LOADST

ALGOL Source Program

begin

integer m,n;

procedure square (a,b); binary;

n : = 2;

square (m,n);

Code Procedure SQUARE written in FAP

ENTRY SQUARE
COUNT 20
TRA ~(+3

OCT 650202350000
SQUARE TSX $INTERP,4

srQ INFO
STO N
TRA ~(+3

TRA ~'+3

OCT 210201350000
TSX $INTERP,4

o

o

•

LDQ
MPY
XCA
LDQ
tsx
TRA
BCI
TSX

INFO PZE
N PSE

END

Discussion of Example 1:

N
N

INFO
$LOADST,4
,1"+2
1, =$.
$INTERP,4

7/6

When the code procedure is entered, at SQUARE, the status of the Stack is:

SAn
PL
PD
SAm
PD
Vn
Vrn

id(LINK

<:-- WSP, AP
<:-- PP

The execution of 35
8

through the call of interp brings the value of N

to the AC and the associated information word to the MQ. The top

of Stack is now:

Vn(=2)
SAn
PL
PD
SAm
PD
Vn
Vm
LINK

<:-- AP
<:-- WSP
<:-- PP

The transfer to FUNCTN overlays the last program descriptor in STACK

with the AC and MQ (in STACK [PP-l] and STACK [PP-2], respectively),

and transfers control back to the ALGOL Processor. Stack is now:

o

o

•
2ut! ibM .UIU; MtJSUU!

7/7

4 <--- AP
SAm
PD <:--- WSP
Vn
Vm
LINK <:--- PP

The processor now completes the execution of the Syllable String which

puts the value of 4 into M and cleans up Stack, i.e., sets the AP equal

to the WSP.

Discussion of Example 2:

When the code procedure is entered, at SQUARE, the top of Stack is:

SAn <:~-- WSP <:-- AP
SAm
PL <: PP
PD
PD
Vn
Vm

"k"k LINK

The execution of 35
8

through the first call of interp brings the value

of N to the AC and the information word to the MQ. The top of Stack

is now:

Vn 1=2) <: AP
SAn <: WSP
SAm
PL <: PP
PD
PD
Vn
Vm
LINK

The execution of 35
8

through the second call of interp brings up the

Stack Address of M, i.e., STACK:

o

o

•

7/8

SAm <: AP
VN(=2)
SAn <: WSP
SAm
PL <:-- PP
PD
PD
Vn
Vm
LINK

2 The call of LOADST puts the value of N on the top of Stack:

4 AP
SAm
Vn(=2)
SAn <:-- WSP
SAm
PL <:-- PP
PD
PD
Vn
Vm
LINK

The third call of INTERP causes three things to happen:

7.5.3

I. =

2. $

3.

4 is stored in M.

The AP is set equal to the WSP.

This is the Return Syllable, execution of which returns
control to the ALGOL Processor.

Use of FETCH

If STACK is in the following configuration:

Vn <: AP ..
SAn <: WSP
SAm
PL <: PP
PD
Vm
Vn

in'(LINK

o

o

•

7/9

The following coding will suffice to bring the stack address of M,

i.e., STACK [AP-4] and STACK [AP-3], to the MQ and AC, respectively:

TSX $FETCH,4
PZE =4

Remember that every entry in Stack, except array elements and switch

program addresses, is two 7090-94 words.

7.5.4 Use of REPLAC

If STACK is in the following configuration:

Vm <-- AP
Vn
SAn <-- WSP
SAn
PL <-- PP
PD
SAn
PD
Vn
Vm
LINK

The following coding will suffice to overlay the last program descriptor

in STACK with the MQ and AC

TSX $REPLAC,4
PZE =10

The MQ would be put int STACK[AP-10], and the AC in STACK[AP-9] .

o

o

•

7.5.5 Use of GETADD

Suppose that th~ following coding exists in a code procedure:

TSX $GETADD,4
CLAi(2,4

after the execution of CLAi(, 2,4 the value of the Accumulator

Pointer will be ~n the AC.

7/10

7.5.6 'Use of GETADD

7.5.7

Suppose the following coding exists in a code procedure:

TSX
CLA

$GETADD,4
5,4

after the execution of CLA 5,4 the AC will contain the absolute

address of syllable string in the form

TSX Syllable String, a

Use of INTERP, GETADD

As an illustration of how INTERP and GETADD can be used to obtain

information from syllable string, consider:

ALGOL Source Program

begin

procedure online (s); binary;

online ('INFORMATION TO BE TRANSMITTED TO A CODE' PROCEDURE
BY USING INTERP AND GETADD');

o

o

•

After execution of the call of the procedure online , the

Stack looks like:

PD
PL
PD
PD

ide LINK

<-- WSP, AP
<-- PP

7/11

where the last PD contains the absolute word address of Syllable

String containing the character 758 which precedes the message

INFORMATION ... GETADD.

The code procedure to transmit this information from Syllable String

to the code procedure

ONLINE
SETUP

AGAIN

TRA
OCT
TSX
ANA
ARS
ADD
PAX
TSX
CLA
STA
AXT

-AXT
LDQ
STQ
TXl

SEWP
350000000000
$INTERP,4
=0001777740000
14
=1
Q,.l
$GETADD
5,4
,;'(+3
12,2
6,4
,;'<'1<,1
MESSE,2
'1<+1,1, 1

RETURN THE PROGRAM ADDRESS OF THE
MESSAGE TO THE AC (14-:> 30) IN BINARY

INDEX 1 CONTAINS THE SUBSCRIPT OF
SYLLABLE STRING
RETURNS ABSOLUTE ADDRESS OF
SYLLABLE STRING

Each time the LDQ **,1 command is executed, a word of the message,

INFORMATION ..• GETADD, is brought to the MQ from Syllable String .

o

o

•

7.5.8 An Example of Using an Assembled Procedure

Sample Deck:

Col. 1

*
*

SQUARE

INFO
N

Col. 1

end;

Col. 7

DECKS
FAP
ENTRY
TRA
OCT
TSX
STQ
STO
XCA
MPY
XCA
LDQ
PZE
PZE
END

Col. 7

USE (ALGOL)
DATA

SQUARE
*+3
650201350000
$INTERP,4
INTO
N

N

I~FO

~ Both cards are required

integer m,n;

procedure square(n); assembly;

n := 2;

m : = square (n) ;

$EOF

7.6 Methods of Linkage

7/12

There exist two methods of linking '!code procedures with ALGOL Programs;

one is advantageous to the systems programmer while the other is advan­

tageous to the general user .

e

o

•

7/13

Code Procedures Loaded in Front of the ALGOL Processor

7.6.1 Method 1

Method 1 is advantageous to the systems programmer but not to the user.

The method consists of

1. Loading the code procedure in FRONT of the ALGOL Processor;

2. Entering the entry point(s) in the subroutine XCODE.

XCODE is an ALGOL Processor subroutine that contains a list of all code

procedures linked by this method (plus other predefined I/O routines).

The ALGOL Processor searches the XCODE list when a code procedure, linked

by this method is to be executed. The entry in XCODE consists of the

first six non-blank characters to the ALGOL Source Declaration immediately

followed by a transfer to the appropriate entry point.

Code procedures. linked by this Method 1 must be declared as:

procedure <procedure identifier><formal parameter part>; <specifica­
tion part> code;

Example of the entry in XCODE: Consider the code procedure square dis­

cussed in Section 4.1. To link it by method 1, the declaration must be:

procedure square(n); code;

The entry in XCODE must be:

BCI 1, SQUARE
TRA $ SQUARE

e

o

•

7/14

These two names need not be the same; the name in the address field of

the BCI command is the name used in the ALGOL Source Program. The name

in the address field of the TRA command is the name of the entry point

in the code procedure. If the name in either of these cases contains

le~s than six (6) characters, it is to be left-adjusted and filled

with blanks.

Example

ALGOL Source Program

begin
procedure AAA(B,c); code;

end

Entry in XCODE

BCI
TM

1,AAA
$ZZZZ

WARNING
, , , ,

CODE PROCEDURES LINKED BY THIS METHOD WILL AFFECT THE LINKAGE OF CODE

PROCEDURE BY METHOD 2. SEE SECTION 7.7 FOR EXPLANATION.

1.

2.

3.

4.

4

Advantages of Method 1

The standard single transfer vector is used.

If an absolute core load of the processor is used, the code pro­
cedures only have to be relocated once.

. d f' d 4 Common LS e Lne .

Library is available.

If common is used, the ALGOL Source Program's name list, which is
used in a Stack dump, will be destroyed .

o

•

1.

2.

7/15

Disadvantages of Method 1

The code procedures always remain in core thereby limiting the
size of stack and string.

The user must have his own copy of the processor which takes
approximately twenty (20) seconds to load.

7.6.2 Code Procedures Loaded by the Preprocessor Loader

Method 2. Method 2 is advantageous to the general user. The method con­

sists of placing the binary deck(s) anywhere in the source program before

the last $.

Code procedures linked by this method must be declared as:

procedure'<procedure identifier> <formal parameter part>;
<specification part> binary;

Code procedures may also be loaded from the assembly tape. An *DECKS

card must be included as one of the monitor control cards. Code proce­

dures linked by this method must be declared as:

procedure <procedure identifier> <formal parameter part>;
<specification part> assembly;

Code procedures linked by Method 2, are loaded into syllable string by a

loader in the ALGOL Preprocessor (hereafter referred to as PP Loader)

at prepr'ocessing time. Code procedures may be linked to a partial

library. The loader does not know where the entry points to this library

are. To solve this problem a double transfer has been created. In core

locations 1448 to 2718 at execution time are the addresses of all entry

points in the partial library.

A partial library is available consisting of all the routines that the

processor requires. Other routines 'required must be provided. NOTE:

If a code procedure requires a lower level routine, for example routine

AA, and this entry point appears in the library and is also loaded, the

linkage will be set up with the routine that is loaded .

-0

0

•

7/16

The entry points provided in the partial library are:

ALOG ... 14 PDUMP ... 7 (EXIT) - 7 (SPH) ... 5
ALOGlO ... 14 REPLAC ... 1 (EXPF) ... 13 (SPHN) ... 5
ATAN ... 15 REWYND ... 9 (FIL) 3 (STC) - 2
ATAN2 - 15 RETURN ... 1 (lOB) ... 4 (STH) ... 5
COS ... 16 SDUMP ... 7 (IOH) ... 3 (STHD) ... 5
DATE ... 8 SIN ... 16 (lOS) ... 2 (STHM) ... 5
DUMP ... 7 SQRT ... 17 (IOU) ... 20 (TCO) ... 2
EMPTY ... 1 TANH ... 18 (LCH) ... 2 (TEF) ... 2
ENDFYL ... 9 TENLOG ... 14 (PRTN) ... 21 (T~S) ... 23
EXECUT ... 1 TIME ... 8 (RCH) ... 2 (TRC) ... 2
EXEMDP - 7 TlMEH ... 8 (RDC) ... 11 (TSB) - 10
EXIT ... 7 TIMREM ... 8 (RDS) ... 2 (TSH) ... 6
EXP ... 13 TSHGCY ... 6 (RER) ... 11 (TSHM) - 6
FETCH ... 1 TSHSET ... 6 (RERN) ... 7 (UNIT) ... 2
FUNCTN - 1 WRITE3 ... 255 (REW) ... 2 (WEF) ... 2
GETADD - 1 (BSF) ... 2 (RLR) ... 10 (WER) ... 12
INPUT ... 9 (BSR) ... 2 (RTN) - 3 (WRS) ... 2
INTERP - 1 (BUF) - 4 (RUN) - 2 (WTC) .. 12
LOADST - 1 (CSH) ... 6 (RWT) -. 22 (XeED) - 7
LOG - 14 (EFT) - 17 (SCH) - 5 (XCDE) ... 7
LOGlO ... 14 (ETT) ... 2 (SET) ... 4 (XCDT) ... 7
OUTPUT - 9 (EXB) ... 4

The number beside the entry point indicate~ with the table below, what

routine they are in:

1 ... ALGOL Processor 9 ... 19 BC lONE 17 - B4 BC ROOT
2 ... 19 BC lOS 10 ... 19 BC TSB 18 ... B2 BC TANH
3 ... M2 BC lOR 11 ... 19 BC RER 19 ... Q3 BC EFT
4 - II BC lOB 12 ... 19 _ BC WER 20 ... L2 BC IOU
5 ... 11 BC STH 13 ... B3 BC EXP 21 ... JO BC PRTN
6 ... 14 BC TSH 14 ... B3 BC LOG4 22 ... Q3 BC RWT
7 - P2 BC EXEM 15 ... Bl BC ATAN 23 ... 19 BC TES
8 ... ZO BC TIME 16 ... Bl BC SIN 24 ... L3 BC RERN

25 ... WRITE

The Double Transfer Vector

Code procedures loaded by Method 2 using routines in the partial library

go through a double transfer vector.

5 WRITE3 must be called once before the code procedure does any I/O
or calls EXIT.

o

o

•
,

Example

If one has the logical number of a tape unit, N, and wants to

use (IOU) to obtain the physical number, in the case of a single

transfer ~ector the following coding would be sufficient to

bring the physical number to the AC:

CLA $ (IOU)
ADD N
STA *+1
CLA ,;'d(

For a block diagram see Figure 7.1.

In the case of a double transfer vector an additional level of

indirect addressing is needed, i.e.,:

CLAi($ (IOU)
ADD N
STA '1(+1
CLA 'k*

For a block diagram see Figure 7.2.

Example

Consider the case in which one wishes to use (lOS) to test for

"an end~of-file on the tape that has just been read. In the case of

a single transfer vector, the following coding would suffice:

AXC EOFROU,4
XECi($ (TEF)

7/17

o

•
t, i .iu.t ..

1
~Transfer vector

TTR.$(IOU) of Code Procedure -------
CLA $ (IOU) r--

t
1:....-.-... ;.. (IOU) IOU

I----------------~ ---------~*~-----

Code Procedure
t

Syllable String

*
ALGOL Proc~ssor

Library Subroutines

777771~----------~--~--------------------------~----

Fig. 7. 1. ~ map .2! ~ showing ~ single transfer vector •

. # . n .J ltiiUU MUUlL b j: &i2!!sa:a::

7/18

0

o

•

0

144
TTR $(IOU) --

Pseudo Transfer

271 -. I . Vector List
i ... ::> ~

[

.... TTR $ (IOU) ~ Transfer vector
I- _ _ _ _ _ __ _ of Code Procedure

CLA $(IOU)
I----~~~------~

Code Procedure • •

Syllable String

~--------------~
____________ ~l __

ALGOL Processor

1------------------1 __ -----------------------,~--------------~·L~--

1 __ ---4 ··--~-----ri-

~---------------~

'----.... (IOU) IOU .. ______ t _____ -

< Library Subroutines

7777~//.----_>II _-----' __ --~j-

7/19

Fig. 7.2. ! map of 7094 ~ showing.ill double transfer vector
linkage between ~ procedures ~'external routines

o

o

•

In the ·case of a double transfer vector, an additional level

of indirect addressing is needed:

AXC EOFROU, 4
CLA'/'" $ (TEF)
STA . "'"+1
XEC"'" **

Note that this double transfer vector does not apply to any trans­

fers or lower level routines loaded by the PP Loader and linked

to code procedures.

7/20

WARNING ! " THE PP LOADER MUST KNOW THE ABSOLUTE ADDRESS OF SYLLABLE

STRING AT EXECUTION TIME. ANY CHANGES THAT CAUSE THIS ADDRESS TO CHANGE

NECESSITATE A RECOMPILATION OF THE PREPROCESSOR.

There are two types of changes that cause this address to change:

1. Any change in any of the subroutines loaded in FRONT of the ALGOL

Processor such that the load point of the ALGOL Processor is

changed, i.e., use of Method 1 for linking code procedures.

~. Any changes in the declaration list of the first flow chart

of the ALGOL Processor.

If the absolute address of Syllable String changes, the method to com­

pute the new address is:

10 Using the storage map find the location at which the ALGOL

Processor is loaded.

2. From the ALGOL Processor Name List find the location at which

the Syllable String is located.

3 . The new absolute address of Syllable String is the sum of (1)

and (2); (all three of these are octal numbers).

o

•

7/21

Initialize the variable BASE ADDRESS OF SYLLABLE STRING in the ALGOL

Preprocessor (located about card number 59000) and recompile the ALGOL

Preprocessor. The PP Loader also expects to find at OCT 144 the second

transfer vector list. The entries in this transfer vector list must be

in the same order as the entries in the PP Loader's variable: PSEUDO

TV LIST.

Advantages of Method 2:

1. Only the code procedures needed are loaded.

2. Binary decks are loaded with the source program or from the
6 assembly tape (Use the *DECKS card.)

Disadvantages of Method 2:

1. There is a need for double transfer vector.

2. The complete library is not available.

3. Common is undefined. 7

7.7 Specific Information About the Preprocessor Loader

7.7.1

7.7.2

6

7·

1.

Declarations

When binary deck(s) are included in the ALGOL source program use:

procedure <procedure identifier> <formal parameter part>;
<specification part> binary;

2. When the assembly tape is to be loaded use:

1.

2.

3 .

procedure <procedure identifier> <formal parameter part>;
<specification part> assembly;

(Also use *DECKS card.)

NOTE: Both can be used in the same program.

Restrictions

No more than 50 code procedures can be loaded.

No more than 500 entry points can be loaded.

Common is undefined.
7

See Section 7.2.

See chapter 4 on comment control.

---- ---- - ------.~----------------------------.:-

o

-0

•

7/22

7.7.3 Error Diagnostics and Messages

See chapter entitled "Error Messages".,

7.7.4 Printout

7.7.5

7.7.6

7.7.4.1 Printout from the PP Loader should only be used as a

debugging aid. To obtain the printout, use the comment

control card: comment: LOADER LIST;

7.7.4.2 The printout obtained by using the comment control card

LOADER LIST consists of:

1.

a. from where each code procedure was loaded;

b. a list of all the entry points in each code procedure
and their core location at execution time

c. the transfer vector for each code procedure

d. a comment that the checksum was deleted on any card

e. the location in core used by each code procedure both
absolute core locations and word addresses of Syllable
String

f. a listing of each relocated code procedure

General

The PP Loader loads all code procedures after all of the ALGOL

Source Program has been pre~processed.

2. The PP Loader refers to all code procedures that are loaded by

the first entry point in the code procedures.

3. The PP Loader card count is recycled to 1 when a program card

is encountered.

4. The PP Loader will accept overlays.

The Assembly Tape

To load code procedures from the assembly tape:

1. the assembly tape must be logical -2;

2 • the assembled decks on the tape must be preceeded by an end-of­
file mark;

3. the read/write heads must be positioned AFTER the assembled decks
when the PP Loader is called.

o

o

•

7/23

The above conditions are satisfied on the present BC Monitor System

at Berkeley. If the assembled decks are written on the assembly tape

starting from the ,load point, i. e., without a preceeding end-of-file

mark, the following changes must be made in the subroutine LDRIO:

1.' Replace Card

TJM01940

TJM01960

with:

with:

2. Merge the following cards:

SLQ RESETA+3

TRA SATRTN

TLOB .,'~

AXC "'~+2, 4

TRA REWB4+2

TJM0167l

TJMOl72l

TJM0195l

7.8 An Interface Routine for FORTRAN II Binary Decks

Introduction

The only requirement on the compiled subprogram which is to be linked to

the BC ALGOL system by this method is that it accept a standard FORTRAN

II calling sequence. This is the case for all SHARE subprograms not

designed to run under IBSYS.

The user must write a buffering subprogram in FORTRAN II whose name will

be used in the ALGOL program and which will call both the linking sub­

routine and the subprogram to be linked. For example, if the user

wishes to use a matrix inversion routine INVERT(A,N), his buffering

program would be:

SUBROUTINE INV(A,N)
CALL LINK
CALL INVERT(A,N)
CALL RETURN
RETURN
END

The subroutine LINK effects the parameter linkage; the subroutine RETURN

returns control to the ALGOL program; and the FORTRAN verbs RETURN and

END are present only because the FORTRAN II compiler requires them .

o

•

7/24

In the user's ALGOL program, it is the buffering routine which is declared

and used. In the above example, INV would be declared as a procedure.

begin
procedure INV(A,n); binary;

INV(B,n);

end

The binary decks for both the buffering routine and the linked routine

(in the above example INV and INVERT respectively) are loaded with the

ALGOL source.

The above example illustrates the method which is to be used in linking

external routines to an ALGOL main program. It must be remembered, how­

ever~ that the full power of the ALGOL procedure statement'is restricted

by the nature of the routine to be linked. In particular, the following

restrictions hold:

1. An expression or subscripted variable may not be called

by name.

2. A parameter may not be a designational expression (e.g.,

a label).

3. A parameter may not be a procedure or switch identifier.

4. An integer expression must be less than 217 in absolute

value.

If 2, 3 or 4 occur, processing will be halted and a diagnostic will be

given. An exce,ption to 3 is a function desighatbr' without parameters;

in which case the identifier is an expression itself.

Expressions and subs~ripted identifiers are handled according to the

following:

1. If the formal parameter corresponding to an expression or con­

stant appears in the value list of the buffering routine, then

it is evaluated and converted to the specified type. (This

occurs before the linking routine is called.) Linkage is made

to the storage cell which contains the value of the variable

created.

o

o

•

2. If the actual parameter is the identifier of a simple

variable then linkage is made to the storage cell which

contains the current value of the variable.

7/25

3. If the actual parameter is an array identifier, then linkage

is made to the first element of the array. (This corresponds

to FORTRAN II requirements.)

4. If the actual parameter is a string, then linkage is made as

in (3) to an integer array which contains the Hollerith

characters six to a word. (If the number of characters in.

the string is a multiple of six, then the first character of

the next word in the array will be an octal 75. If not, the

last character of the string will be an octal 75.) In no case

will trailing blanks be supplied.

5. If the actual parameter is an expression whose corresponding

formal parameter does not appear in the value list, then the

expression is evaluated, and linkage is made to the storage

cell. which contains the result. No type conversion is made.

BC ALGOL stores integers differently than FORTRAN II does.

The Boolean quantitites true and false are stored in BC ALGOL as the

the Hollerith TRUE-- and FALSE- and will be linked as if the quantities

were integers. It is ·sometimes useful to note that true is a negative

integer and false is a positive integer.

If the subprogram to be linked is a function, then the return part of

the buffering subprogram is slightly different. A call to FUNCT I,

FUNCT J, FUNCT R, or FUNCT B is made instead of a call to RETURN. For

example, if F(X,Y) is the function to be linked, then the buffering

would be

SUBROUTINE Fl(X,Y)
CALL LINK
CALL F(X,Y)
CALL FUNCTR
RETURN
END

7/26

• The corresponding ALGOL pro~ram:

begin
real procedure Fl(X,Y); binary;

Z := X + Y * Fl(X,Y);

end

To link INT~GER FUNCTIONS, use the subroutines FUNCTI and FUNCTJ
......

instead of FUNCTR. With FUNCTI, the storage readjustment of integers

is automatic; with FUNCTJ no storage adjustment is made.

FUNCTB is used to link Boolean fun~ti6ns~

o

•

o

o

•

8/1

8. The Syllable String

8,1 Introduction

The syllable string is the link between the two processing programs in

the BC-ALGOL system. Being the output of the pre-processor and the

commands for the processor, it contains information as to how the user's

ALGOL program is being processed. The syllable string represents the

logical processing pattern for the computational processes which the

ALGOL source describes. The string itself is composed of syllables

(six bit binary numbers - printed as BCD characters) which are inter­

preted by the processor as operations on the stack - the processor)s

tool for organizing and ordering the computations.

The string is written in modified Polish notation. This notation's main

advantage is that arithmetic and logical expressions can be written with­

out parentheses. This is achieved by placing the operator after the

variables instead of between them. For example X + Y is written XY+

and (X-Y)')''-Z becomes XY-Z')'(. All operations are thus strictly from left

to right.

8.1.1 Stack Addresses. Variables are identified in the stack by

the block in which they wer~ declared (block number) and by the

order in which they appear in that block (order number). For

example, the stach address 38 refers to the variable which was

declared eighth in the third block. An A or a V precedes

the stack address to indicate whether the address or the value

of the variable does onto the stack.
l

The string segment A12 V3l

tells the proce~sor to "stack" the address of the second variable

in the first Plock then to stack the value of the first variable

in the third block.

Statically nested blocks increase in block number; while parallel

blocks have the same block nu~ber. For example, a program may have

the following block structure:

1 The syllable for a formal parameter value call is W not V.

0

o

e·

8/2

BN :::: 1

BN ::: 2

I

EN :::: 3

BN = 2

The parameters of a procedure have a block number one higher than

the procedure itself. Variables local to the procedure have a

block number two higher than that of the procedure. Bloc~ zero

is reserved for predeclared procedures and ~ variables.

8.1.2 Program Addresses. As syllables are six bit binary numbers,

six syllables fit into a thirty-six bit computer word. In the

syllable string, these words are numbered sequentially from zero

as are the syllables in each word (left to right). A particular

syllable .in the string 'is located by its word address- the number

of the word in which it is contained - and by its syllable count -

the number of the syllable in the word. Together these two numbers

form a program address. When reading a stack dump or when referring

to a particular syllable or location in the string, one uses the

program address as an absolute reference. However, word addresses

appear relative to the position in which they occur in the string.

(The syllable count is always an absolute reference.) A word

address in the string can be thought of as the number of words one

must move from one syllable (present location) to another (designated

location) increasing word addresses. There is a simple rule which

one may use to compute program addresses for absolute references.

The program address in the string is comprised of four syllables.

The first is the syllable count; the next three are the word address.

Let W denote this word address. Add the decimal equivalent of W

. to the word address of the first syllable in W; the result, modulo

215 , is the new word address. There is an exception to this rule

o

o

•

8/3

however; if the syllable count (preceding W) is in a different

word than is the first syllable of W then 1 must be subtracted

from the above result. For example, consider the word address

3C+ in figure 2. Its decimal equivalent is 227, adding the word

address of the syllable.3, i.e. 10, yields 237 and this is correct

since the syllable count, 4, is in the same word.

o 0 + = 10

4 3 C +

Fig 2. Sample Word with Heading

8.1.3 The Edited String. As some syllables do not have a unique

printing character, the string is edited prior to printing so that

a syllable appears on the page as a BCD character or as a period

followed by a BCD character. Typical words might be:

2

+ $.F4 or .. F402.V

A period appearing in a word implies that it and the next charac­

ter combine to name the syllable. Table 1 gives a complete list

of how the edited syllables print.
2

To obtain the edited string, use the following comm~nt control:

comment: PRINT STRING;

Above each word of string, the word address appears both in a

BCD representation and decimal value. As an example:

045 = 306
[syllable string]

With the exception of .*, '., and .-, a period before a
character adds octal 10 to the BCD value of the character in the
internal representation .

o

o

•

8/4

8.1.4 Form of the syllable string. Where it is necessary for easier

comprehension of the structure of the syllable string, a diagram

will be included. Some symbols which will be used with be a circle

enclosing a letter - this designates an actual syllable in the

string; a rectangle represents a complex structure which will

explained in a later section.

8~2 Syllable String Examples

8.2.1 Declaration of Variables

8.2.1.1 Simple Variables

form: ® INO. TypE

where NUM total number declared
TYPE = the type of variable declared,

R = real, J = integer, H = Boolean, S = switch,
Y = array, P = procedure. For arrays and pro­
cedures numbers also specify types: 0 = real,
1 = integer, 2 = Boolean.

NO. TYPE = the number of that type declared

reference: begin real a,b,c,x,y,3; integer i; boolean good, bad, poor;

source: 'BEGIN' 'REAL' A,B,C,X,Y,Z $ 'INTEGER' I $ 'BOOLEAN I GOOD,
BAD, POOR $

string: 02T 179
B

02U = 180
#;R6JIH

02V
3$

181

comment: B
#;
R6
Jl
H3
$

begin syllable
10 variables declared in this block
6 are of type real
1 is of type integer
3 are of type boolean
end of declarations for this block
(NOTE - no other declarations are followed

by a $)

o

o

•

8/5

8.2.1.2 Own Declarations

form: - .--------------------------------------
[rest of program] (£) QD

t

where TOT = the total number of owns.

comment: Own variables are handled in the Be ALGOL system by
making it look like they have been declared. in block O.
This means that there will be no string generated at the
point where the variable was declared, but the string
will appear at the end of the program. The first .word
of every program is a transfer to the end to check to
see if there were any ~ declarations.

reference: ~ real r; ~ integer i;

source: .'OWN' 'REAL' R $ 'OWN' 'INTEGER I I $

string:

comment:

8.2.1.3

02T = 179
T300AB

034 = 196
BORIJI

T300A

B
.PB
o

RIJl
$
T57.X.0

[rest of ALGOL program] .•. 033 = 195
.P

035 = 197
$T57.X.0

transfer to end of the program to check
for own declarations
begin of ALGOL program
own begin
= 468 = 3810 , BCD representation of total
number of variables declared as own. This
includes the predefined procedures, 36 or (M)
+ those declared (2).
1 real, 1 integer declared
end of declarations
transfer to beginning of program

Array Declarations

~: ® ~ • •• o:;;E o
where TYPE

LB
UB

TOT

=
=
=
=

the type of the array
lower bound
upper bound
total number of arrays declared in this statement

•

o

•

8/6

reference: real array xyz[A:7, B:l];

source: 'REAL' 'ARRAY' XYZ. (A .. 7, B .• 1). $

string:

comment:

8.2.1.4

form:

02U = 180
YGV11C

Y
o
V11
C000007
.0
V12 ,.
1

02V = 181
000007

02W = '182
.0\712 '1

array declaration syllable
type is real
value of A, lower bound
integer constant 7, upper bound
integer constant 1, lower bound
value of B, upper bound
end of declaration
1 array declared with these bounds

Switch Declarations

m ... NEXT STATEMENT OR 1

t DECLARATION

1
where SEC = switch element count

CJ = a label structure explained in 8.2.4.1.

PPA = pseudo program address. This consists of 3
syllables instead of the usual 4. The left
most 3 bits of the left most syllable contain
the syllable count, the remaining 15 bits
contain the word address .

. example: P.X, 4777738
word address = 777738 -5
syllable address; 4

reference: switch s := iI, i2, 13, i4;

source: 'SWITCH'S = L1, L2, L3, L4 $

string: 035 = 197
S

036 = 198
000004

037 = 199
600500

038 = 200
OFL100

039 = 201
0.*.GL11

031 = 202
019.GLl

03 = 203
301. 7.GL

03' = 204 03.5
1301F.G G.X,

205 03.6 = 206 03.7 = 207

03+ = 208
• P .X,

.G.X, P.X,

o

o

.'

comment: switch declaration syllable
4 elements in this switch
PA which points to first PPA

8/7

S
000004
6005
OOO#:
LlOOOX
.G

PA which points to next declaration or statement
first label in switch
switch go to syllable

..• etc.
G.X, first PPA pointing to first label
... etc.

8.2.1.5 Procedure Declarations

~: ® [TYPE! .LPAI 0 (PARAMI jVA[UEI ISPECIFICATION\ [procedure body] 0
I IWIT-I PART I 1

where TYPE the type of the procedure declared
PARAM number of parameters

VALUE PART) as defined in ALGOL 60 report
SPECIFICATION PART)

reference: procedure sam (a,b,c,d,e); value a,b; real a; integer array b;
[procedure body]

source: 'PROCEDURE' SAM(A,B,C,D,E) $ 'VALUE' A,B, $ 'REAL' A $
'INTEGER' 'ARRAY' B $ [procedure body]

string: 046 = 262
POlOO

comment: P
0
1009
.N
5
U2l
0
.PG
U22
1

047 = 263
9.N5J2l

048 = 264 [procedure body] 04.7
0.PGU221

procedure declaration syllable
type real
PA pointing to next statement or declaration
check parameter count syllable
5 parameters
first parameter called by value
type is real
array called by value
second parameter called by value
type is integer

[procedure body]
procedure return syllable

271

•

o

•

8.2.2

8/8

Assignment Statements

8.2.2.1

form:

where

Assigning Constants

T = Type of Constant. If the constant is not a
special one, the constant occupie~ the next
full word. In this case C is the syllable
for an integer constant; D is for a real
constant. Special constants appear as any
other syllable would. These are 0 for integer;
.0 for integer 1; .W for boolean true; and .X
for boolean false.

number conversions

To convert a number in the string, first convert it to octal, then
to decimal. Conversion to octal merely requires replacing each
syllable by its octal equivalent; e.g., +.p ... 000 is 20 5713 00 00 00.
Note that .P represents one syllable. Note also that!!2 octal digits
replace on syllable. ---

An octal integer is easily converted. For example:

octal 4 2 1 7 1 = 4 .-l(84 + 2 -;'(83 + 1 -J(82 + 7 * 8 + 1 = 22529.

Floating point numbers are stored as 2n * M where n is an integer
and M is an octal fraction.

To obtain n: subtract 200 (octal arithmetic) from. the first three
octal digits.

To obtain M: divide each digit beginning with the fourth by increasing
powers of eight, and sum these.

Example: 205715000000 = 25 * (i + ~2 + ~3 + ...) = 30.0

8.2.2~2 Assigning Variables

reference: x := y;

source: X = Y $

string:

comment:

02X = 183
A14 V15"

02Y = 184
=$"

A14

V15

place the address of Xlon the top of the processor's
st.ack
place the value of Y on the top of the processor's
stack

= store the value on the top of the stack into the
next address, i. e. value of Y onto X

$ end of statement

" _1 -3 $4: i j £221£222&

••

o

•
51 aa,as:

8.2.2.3

reference:

source:

string:

Arithmetic Assisnments

x : = - (b - c t a)

x = - (B-C';'n'.-A) $

02.V = 189
AllVll

02.W = 190
V13Vll

8/9

02.X = 191

comment: All Stack the address of x
V12VI3VlI Stack the values of c, b, and at respectively

Raise the next-to-top value in the stack to

8.2.2.4

where

reference:

source:

string:

comment:

$

the power of the top value in the stack. Store
the result in the next-to-top location in the
stack, make this the top of the stack. (c t a).
Subtract the top value in the stack from the
next-to-top value and store in the next-to-top
location. Make this the new top of the stack.
(b - .c·t· a).
unary minus
store into x
end of statement

Array Assisments

SUB 1, SUB 2, ... , SUB n the subscripts of the
array

BN = block number
ON order number

D-l number of dimensions of the
array --I.

data [1,3] := a;

DATA .(1,3). = A $

04 = 294
.OC

.0
C000003
A13
1
VI2

$

04P 295
000003

04Q = 296
AI3l VI

04R = 297
2=$

integer constant 1, first subscript
integer constant 3, second subscript
stack the address of data
dimensions of data -1
stack the value of a
store a into data [1,3]
end of statement

o

8.2.3

o

•

8.2.2.5 Boolean Assigments

reference: good: = good V bad ::;) poor;

source: GOOD = GOOD 'OR' BAD 'IMP' POOR $

string:

comment:

041 = 257
A18V18

A18
V18,V19

3
VI;'
M

$

042= 258
V193Vl.

043 = 259
;'M=$

stack the address of good
stack the values of good and bad
logical or syllable
stack the value of poor
logical implication operation
store the result in good
end of statement

Conditional Statements

form: IBOO~I @ ~ IUNQQNI @ IUNCQNI
f

where BOOL = A Boolean Statement t UNCON = unconditional statement

reference:

source:

string:

commeJ;lt:

if

'IF'

041 ;;: 257
V11Vl.2

046 = 262
= $

,

V1l VI2
8

a> b then c := a else c := b

A 'GTR' B 'THEN' C = A 'ELSE' C = B $

042: ;;: 258 043 ;;: 259 044 ;;: 260
813003 A13Vll . =T4002

stack the values of A and B
Logical operator, greater than
If syllable

8/10

®

r

045 = 261
A13V12,

I
3003 PA which indicates transfer to be made if

statement is false
AI3 VII=

T 4002

A13 V12
$

C = A
transfer around the false statement to the
end of the conditional statement
C = B
end of statement

o

o

e'

8/11

8.2.4 Transfers

1

i.2!:!!! :

reference:

source:

stri,ng:

comment:

8.2.4.2

form:

Labels

© ® 1

here: c := a; [other statements] .ae. E.2. here;

HERE .. C = A $ [other statements] 'GO TO' HERE $

010 = 64 011 = 65 .•. [other statements]
A 13Vll

015 69
L2

016 = 70
57.X.SG$

A13 Vll= C = A, note no syllables are generated
at the labeled point

[other statements]
L2 label in block 2

57.X.5 PA which points to location of label in
the syllable string

G go to the location of the designational
expression just processed

$ end of statement

Switches

A switch~ proce~sed as a one-dimensional array of type label.

reference:

source:

string:

SUB = the subscript of the switch

BN)- the stack address of the switch ON)-
D-l = number of dimensions -1

.B.Q. to S [5] ;

I GO TO' S. (5) . $

02U = 180
C

02V = 181
000005

02W = 182
Z160G$

where BN = the block number of the label, this is used to maintain the
block structure of 'ALGOL after the transfer is made.

PA = the Program Address which points to the location of the
labeled point in the string.

0

•

8.2.5

8/12

comment: C000005 integer constant 5, the subscript of the
switch

Z switch transfer syllable
16 the stack address of switch S
o dimension -1 of switch S
G go to syllable
$ end of statement

FOR Statements

As there are different types of 'for' statements, different forms

will be shown. The type of for statement is specified as follows:

o = simple for, 1 = general for, 2 = for while, 3 = for list.

a. the for step until statement: e.g. for a := 1 step 3 until 22 do

® fPKJ STATE @) ® ~ [tWIT] rINCI IrIN1 I~ Q) ['ITE[I
[I MENT I j

where STATEMENT = the statement to be executed
VAR = the controlled variable
INIT the initial value of the variable

. .. ,

INC the value by which it is incremented each time
FIN = the final value the variable is to have
TYPE = the type of for statement; in this case I;

unless the comment control simple for has
been used, then it would be O.

b. the for list statement: e.g, for a := 1,2,3, ••• do ••. ;

Note 3 0= the type this time

VAR = the variable in the for statement
VALl' VAL 2 , etc. = the successive values taken on by the

variable

o

o

.'

j.'.]'~
V

8/13

c. the for while statement:' e.g. for a := 10 while b < 50 do

I . ,
I STATEMENT \ (]) ®
f

where BOOL = a Boolean statement such as b < 50

d. nested fors: e.g .. for a := 1,1.5,2 step 2 until 14, 17 do . .. ,
L 1,

(l) ~lls~~A_T_EME_NT_I_Q)_.5_®_IV_AR_1 _IVA_L_l_1 _~--,P Q)@®IYmfYID)jQ)@

where

IINGl IFINI PA Q) CD ® WARI IVAL3) ,kl Q)

VALl, VAL2 =1,1.5 values in a for list type = 3
INI'f)­
INC)
FIN)
VAL 3

the initial value, in~rement, and final
value for the for step until stement, type

17 value in a for list type = 3.

a would take the successive values, 1,1~5,2,4,6,8,19,12,14,17.

reference: for a := 1 step 1 until 10 do samra] := a;

source:

string:

comment:

'FOR' A=l 'STEP' 1 'UNTIL' 10 'DO' SAM .(A). = A $

02X = 183
T20

02(= 188
000001,'

T2003
VllA120Vll =

.5
F
VII
.0
.0

cooooOI
27.X,
)
1

02Y = 184
03VIlA

02.V = 189
27.X,)~

022 = 185
l20Vll-

02.5 = 186
=.5FVll

02, = 187
.O.DC .

transfer to the start of the for statement·
SAMra] := a the statement
end of statement
for syllable
value of a
integer constant 1, the initial value
the increment
integer constant 10, the final value
PA which points to the statement
end of for statement
type of for statement

JUt £ . ,2im Xl . . 5·,01,. ,MhiHilSS&2

1

o
8.2.6

o

•

8/14

Procedure Statements

Comment: A procedure statement is effected in the same manner as

a value call, i.e. getting a value to the top of the stack.

The parameter list, if not empty, follows the value call and

is enclosed within parentheses. A program address (which

points to the parameter list) follows the left parenthesis.

form: ® [ARAME TE.R .. S j
OR PA.

parameters = the string g~v~ng the parameters which compose
the procedure statement

reference: p(x,y,z);

source: P(X,Y,Z) $

string:

comment:

04+ = 272
VII(20

VII
(
2001

V12V13V14
)

04A = 273
0lVl2V

04B = 274
13VII)

04C
$

call of procedure p
parameter list follows

275

program address which points to the start
of the parameters
X,Y,Z = the parameters
end of the parameter list

Comment: vJhen a parameter is more complicated than an unsigned

number or a simple variable, the parameter is handled as

follows: The syllable string for this "complex" parameter

appears within the parentheses surrounding the parameter

list between the program address which points to the para­

meter list and the parameter list itself. A comma follows

this string. In place of the value call which would have

been generated for a "simple" parameter is a program address

which points back to the string generated for the complex

parameter. For example, the procedure statement P(A,X+Y,B)

has a string with the ~ollowing structure:

•

o

•

8.2.7

8/15

VII (r&; <&
V12 V13 +

1
V14 17 A.I V1S)

p X+Y A B

If a simple parameter is itself a formal parameter, a

procedure identifier, an array identifier, or a switch

identifier, then the W syllable is used instead of the

V syllable. Signed constants are treated as complex para­

meters while unsigned constants are simple parameters and

appear in the parameter list with the usual structure (C

syllable etc.). Labels are considered complex parameters

if they appear in the source program after their use as a

parameter; otherwise, they are treated as a simple para­

meter and appear in the parameter list. If the label is

a formal parameter, then the W syllable is used in the

parameter list; otherwise, the L structure (see 8.2.4.1.)

is ·used.

Handling of Strings

Comment: When strings are used as constants, they appear in

the string as any other constant would.* When used as a

parameter in a procedure, they have a special syllable.

source: TEXT(I(I ABC! I) I) $

string:

comment:

04t . = 316
VO.6(10·

VO.6
(
1002
.V
ABC.V
,
27.X.X
)$

04.V = 317
02.VABC

OLr.W = 318
.V,27.X.X

call of text
parameters follow

04.X
)$

319

program address which points to end of parameters
string quote
ABC string quote
end of string
program address which points to start of string
end of parameters

See chapter "6 orr character handling and bit manipulation routines.

o

o

•

8/16

8.2.8 The Continuation Syllable

To allow the processor to operate with 127 different syllables

instead of the 64 corresponding to the normal 64 BCD characters,

the syllable .P is used as a continuation syllable. This has

the effect that the syllable ~ollowing .P is interpreted as

shown in Table II instead of Tabl~ I (see below).

• (» o

TABLE I

DECIMAL PRINTING
BCD CODE (octa12 EgUIVALENT REPRESENTATION CARD CODE SYLLABLE STRING MEANING

00 00 0 0 fault
01 01 1 1 -, integer divide .
02 02 2 2 1\ logical Hand"
03 03 3 3 \I logical "or"
04 04 4 4 < less than
05 05 5 5 < less than or equal to
06 06 6 6 = equal to
07 07 7 7 > greater than or equal to
10 08 8 8 > greater than
11 09 9 9 = not equal to
12 10 f 2-8 transfer to word address + 1 for

entry into external procedure .
(E.g. code)

13 11 = 3-8 : =: store
14 12 4-8 end of array or switch declarations
15 13 .5 5-8 end of for body

-,'(16 14 .6 6-8 Mr.. LINE
17 15 .7 7-8 ML PAGE
20 16 + 12 add
21 17 A 12-1 address call

00
............ "iI,

I-' ML = machine language
'.../

• o o

TABLE I (continued2

DECIMAL PRINTING
BCD CODE ~Octa1} EgUIVALENT REPRESENTATION CARD CODE SYLLABLE STRING MEANING

22 18 B 12-2 begin
23 19 C 12-3 integer constant
24 20 D 12-4 floating point constant
25 21 E 12-5 end
26 22 F 12-6 for
27 23 G 12-7 go to
30 24" H 12-8 Boolean ---
31 25 I 12-9 if
32 26 ~* 12-0 t exponentiation
33 27 "12-3-8 procedure return
34 28) 12-4-8 ML OUTPUT
35 29 .E 12-5-8 escape character - used to return

to the- proc"essor from a code sub-
routine

36 30 .F 12-6-8 function identifier
37 31 .G 12-7-8 switch go to
40 32 11 subtract
41 33 J 11-1 .!nteger
42 34 K 11-2 .=. equivalent
43 35 L 11-3 label
44 36 M 11-4 ~ implies
45 37 N 11-5 , not

00
.......
J-'
(Xl

• o o
TABLE I (continued)

DECIMAL PRINTING
BCD CODE (Octal~ EQUIVALENT REPRESENTATION CARD CODE SYLLABLE STRING MEANING

46 38 0 11-6 integer constant 0
47 39 P 11-7 .Ero_~~_~_llr~
50 40 Q 11-8 Mt SPACES
51 41 R 11-9 real
52 42 11-0 unary minus
53 43 $ 11-3-8 semiC910n
54 44 * 11-4-8 multiply
55 45 .N 11-5-8 check parameter count
56 46 .. 0 11-6-8 integer constant 1
57 47 .P 11-7-8 continuation syllable (see Table II)
60 48 BLANK. BLANK. skip to next syllable
61 49 / 0-1 real divide
62 50 S 0-2 switch declaration
63 51 T 0-3 then or transfer
64 52 U 0-4 value
65 53 V 0-5 value call
66 54 w 0-6 value call, formal parameter
67 55 X 0-7 fault
70 56 Y 0-8 array
71 57 Z 0-9 switch t-ransfer

00
........
I-'
\.0

•
DECIMAL

BCD CODE ~Oc ta Q ~UIVALENT

72 58

73 59

74 60

75 61

76 62

77 63

o

TABLE I (continued)

PRINTING
REPRESENTATION CARD CODE

.s 0-2-8

0-3-8

(0-4-8

.V 0-5-8

.W 0-6-8

.X 0-7-8

. SYLLABLE STRING MEANING

fault

comma (in a procedure call a comma
ends a parameter expression)

external code procedure call or
left parenthesis

string quotes

Boolean true

Boolean false

o

00
........
N
o

• o o

TABLE II. THE INTERPREJTATION .. _OE _.SXLLABLES, FOLLORING_l'HE. CQNTIN.UATIQN. .,.SYLLA~LE

DECIMAL PRINTING
BCD CODE (Octal) EQUIVALENT REPRESENTATION CARD CODE SYLLABLE STRING MEANING

0 0 0 0 ·fault

1 1 1 1 ML ABS

2 2 2 2 ·ML SIGN

3 3 3 ·3 ML LN

4 4 4 4 ML ARCTAN

"5 5 5 5 ML EXP

6 6 6 -6 ML LOG

7 7 7 7 ML SIN

10 8 8 8 ML COS

11 9 9 9 ML SQRT

12 10 ~ 2-8 ML TANH

13 11 = 3-8 ML ENTlER

14 12 4-8 ML SET TIME

15 13 .5 5-8 ML FIX ARGUMENT

16 14 .6 6-8 ML FLOAT ARGUMENT

22 18 B 12-2 OWN BEGIN

24 20 D 12-4 STACK DUMP

27 23 G 12-7 VALUE CALL OF ARRAY

30 24 H 12-8 LIBRARY

31 25 I 12-9 ML GETTlME

00
All other syllables are faults.

N
~

8/22

0 TABLE III, STANDARD FUNCTIONS

Standard functions are declared in block zero; otherwise, they are addressed
in the normal manner.

Order Number Function Reference Descri]2tion

1 PRINT 3

2 READ 3

3 ABS 1 Absolute value of an argument

4 SIGN 1 Sign of an argument

,5 LN 1 Natural logaritbn

6 ARCTAN 1 Arc Tangent

7 EXP 1 Exponential'

8 LOG 1 Common logarithm (base 10)

9 SIN 1 Sine

10 COS 1 Cosine

11 SQRT 1 Square Root

0 12 TANH 1. Hyperbolic tangent

13 ENTlER 1 Greatest integer function

14 TEXT 2

15 SETTlME 1 Sets running time limit

16 GETTIME 1 Indicates time remaining

17 PRINTING FORMAT 3

18 SAVE 3

19 WRITE 3

20 READING FORMAT 3
21 READING REAL 3

22 READING EXIT 3

23 READING INTEGER 3

24 READING BOOLEAN 3

25 LINE 2 New line

26 REAL FORMAT 2,

27 INTEGER FORMAT 2,

28 BOOLEAN FORMAT 2

• 29 PAGE 2·

30 SPACES 2·

8/23

o

•

o

9/1

9.. The Stack

9~1 Introduction

The ALGOL Processor's Stack is used in carrying out the computational

processes as indicated by the syllable string generated by the pre-processor.

The stack is a large one dimensional ~rray's~ored backW4\rc;lsi~ :~he--':;letn()ry.

On the printed page,the top, or the last entry, of the stack is on the bot­

tom of the page.

There is another smaller stack known as the display. It is used to keep

account of dynamic entries to blocks and procedures. Several registers are

also used for communication within the stack; these are described as they

are encountered in the examples"

A stack dump may be obtained by using the comment control card - ~l!:

dump; This will cause a stack dump to be made at the place in the ALGOL

source program where the comment occurs" A stack dump will also be made when

~ an error condition causes the Processor to terminate its execution of a program"

•

9~1.1 Form of the stack dump

The first things printed are some of the variables used for communication

within the stack.

The accumulator! pointer,. abbreviated AP, is used to index the stack and give~

the location of the top of the stacke The display pointer, abbreviated DP,

is used to index the display and indicates the number of dynamically entered

blocks and procedures. The parameter pointer, abbreviated PP, is used to

allow returns from dynamically nested blocks" It points to the location of

the beginning of the last dynamic block" The syllable count, word address,

and syllable have alredy been. defined; they indicate the location in the

. string when the dump occurred" The block number and order number' have also

. been defined; they give the variable being processed at the time the stack

dump occurred. The value address, abbreviated VA, is used to give the

location in the stack of the variable being processed when the dump.~ccurs •

o

o

e'

9/2

The next block of information prin~ed is the display$ This is printed

,with the display pointer to give the history of the'dynamic block structure

of the programo The value of the display for each display pointer is the

beginning of that block in the stack.

The stack itself is then printed. The left hand column contains the

value of the accumulator pointer while the content of the stack at that

location is printed to the right.

STACK DUMP

VARIABLES

9.2 Stack Dump Examples

ACCUMULATOR POINTER
DISPLAY POINTER =
pARAMETER POINTER
SYLLABLE COUNT
WORD ADDRESS
SYLLABLE =
BLOCK NUMBER =
ORDER NUMBER =
VALUE ADDRESS

DP DISPLAY
1 156

158
1

156
1

198
o
o
o
o

These examples will t>e sirililar',to the examples of Chapter 8:

The stack dump will contain the structures created by these examples when

executed by the Processor.

9~2.l Declarations of Variables

begin real a,b,c,d,e,f; integer x,y,z; boolean good, bad, poor;

9.2.1.1 Simple Variabl~s

AP STACK
136 **LINK BN= 1 PP= 1 WP= 160
138 VALUE UNINITIALIZED (a)
140 VALUE UNINITIALIZED (b)
142 VALUE UNINITIALIZED (c)

144 VALUE UN IN I'!l'IALI ZED (d)
146 VALUE UNINITIALIZED (e)
148 VALUE UNINITIALIZED (f)

150 VALUE UNINITIALIZED (x)
152 VALUE UNINITIALIZED (y)
154 VALUE UNINITIALIZED (z)
156 VALUE UNINITIALIZED (good)
158 VALUE UNINITIALIZED (b~d)

160 VALUE UNINITIALIZED (poor)

o

o

140
142

.'

9/3

The execution of the begin syllable B causes the Processor to

create a block link to indicate the beginning of a block. The

location of the link is entered in the display. The link contains

information on the dynamic block number BN ,. the parameter pointer,

and the working space pointer, WSP.

The amount of storage to be allocated for the variables declared

in each block is determined by the syllable following the begin

syllable. Two locations in the stack are set aside for each declared

variable. In the case of simple variables, one word contains infor­

mations on the type and whether the variable has been initializedo

The other word contains the actual value of the identifier. The

working space pointer gives the ~osition of the last location used

for this allocation. The computational processes are carried out

above the working space pointer to protect the information and the

value of the identifiers~

Own Variables

begin own real a; ~ inteser i;

AP STACK
75 VALUE
77 VALUE

136 'i'o'C'L INK
138 VALUE

UNINITIALIZED
UNINlTIALIZED
BN= 1 PP=
UNINITIALIZED

1 WSP=

Storage is allocated for the ~ variables before the block link

for block number 1 is added to the stack. Storage for declared

variables is handled in the same manner.

9.2.1.3 Array Declarations

begin array a[1:7,~1:3];

*"kLINK BN= 1 PP= 1 WP= 184

138

VALUE ARRAY REAL DIM= 2 MP= 145 FEP= 151 AL=35 ADD=~20
AP MAPPING DATA

145 BS= 1 SB= 7
147 BS= ~l SB= 5

AP ARRAY VALUES

o

o

151

0'

9/4

The execution of the array declaration syllable Y causes infor­

mation on the dimensions and the allocation of array storage to

be stored in the two cells corresponding to that identifier. This

information contains the number of dimensions DIM, the mapping

pointer MP, the first element pointer FEP, the array length

AL , and the ADD which is used to compute the actual address of

array elements.

The mapping pointer gives the location of further information on

the array_ There is one mor~ cell set aside for each dimension of

the array_ This cell contains the basis subscript BS and the sub­

script bound SB. These are the lower bound and the width of each

dimension of the array_

The first element pointer has the address of the first element of

'the array_ All other elements are stored in order with the first

dimensions increasing the most rapidly. The array elements are

stored above the working space poin.ter, and another register known

as the c;l~.l;aration pointer is used to protect them; it is not

printed however.

When arrays are printed, the two cells in which the initial infor­

mation is stored are ,printed. The mapping information then follows,

with the array elements following last" Array elements having a

value of 0 are not p·rinted~ Printing of the stack is then returned

to the usual sequential order.

Swltch Declarations

switch s=:=: .?l, £.2, £.3, £.4;

SWITCH PA=6, 205 SEC= 4 PP= 149
WA SWITCH LIST PA

205 PA=2, 200
20~ PA=3, 201
207 PA=4, 202
208 PA=5, 203

The execution of the switch declaration syllable S causes infor- .

mationon that switch identifier to be stored in the two cells

allocated' for it .. ' The program address gives the location in the
f

o

o

•

176

9.2.2

9/5

syllable string of the firs't pseudo program address. The switch

element count SEC gives the number of' elements in the switch

list .. The parameter point:er gives the location of the last block

or procedure entered. This is required by the local and global

nature of ALGOL variables o The locations in the syllable string

of the ps'eudo program addresses is given next by the word address

WA & The location which the pseudo program address is referencing

is given by the corresponding switch list :FA a

Procedure.. Dec larations

proc~du~ sum.(a,b,c,d,e); value a,b; real a; i,Itteger array b;

PROGRAM DESCRIPTOR BN= 1 pp= 168 PA=l, 263 REAL

The execution of the procedure declaration syllable P causes a

program descriptor to be stored in the two cells allocated for the

procedure identifier.

The information cont~ined is the block number in which the proce~

dure is declared, a parameter pointer performing its usual func­

tion, a program address giving the location in the string where

execution of the procedure begins, and the type of the procedure.

The location where the actual execution begins is usually the

location of the check parameter count syllable oN The

exceptions are when the comment control cards C011Dllent~ no para­

meter tests; or comment: variable number of parameters; are in.

effectQ

Procedure Statements

A procedure statement causes the program descriptor associated with

that procedure identifier to be brought to the top of the stack. A proce'"

dure link is then added above the program descriptor o The procedure link

is similar,' to a block link in that it' contains informatioIl on the location

of the last block or procedure link. It contains the working space pointer

which performs the same function as it does for a block. The location in

the string of the procedure statement is also includedo

o

o

9/6

Parameters

Parameters are brought to the top of the stack in the order in

. which they appear in the procedure statement.

If the parameter is a simple variable, a stack address is placed

. on the top of the s tack for this parameter. I t contains a value

address VA, which gives the actual location of the paramter in

the stack~ The type of parameter is also given. If the parameter

is a conatant, its value is placed in. the location for the para~

meter. The description DES is given which has the property of

the parallleter.

Parameters which are not simple identifiers are handled

differently. Parameters which are array or switch elements, pro­

cedure identifiers, or expressions, cause a program descriptor

to be placed in that parameter's location. This program descriptor

contains the block member of the procedure statement, the parameter

pointer, and the location in the string where the parameter appears ..

The type of the parameter is also given.

The following examples illustrate calls of three parameters. In

the first one the parameters are all simple identifiers which cause

three stack addresses to be placed on the stack. In the .second,

the first parameter is an array element which causes a program

descriptor to be placed in the corresponding location.

o

o

e·

9/7

If the formal parameter, .. Ls c;alled by value, the same mechanism

is used o However, before execution of the procedure body the

actual value of the parameter is placed on the top of the stack

instead of the stack address.. This has the effect of making a copy

of the actual parameteri for the procedure so that the procedure

cannot change the actual parameter in the stack.. This is how calls

by value are specified in the ALGOL 60 Report Section 407.3~l.

If arrays are called by value, the information word for the array

is placed in that parameter's location and the actual elements are

placed above the working space pointere

If the procedure body itself is a block, then a block link is added

after the spaces for the parameters have been filled with the appro­

priate information. i Execution of the procedure body begins, and

storage is allocated for the declared variables as described before.

S,Eltu (lO;b,7,7,2);

241 PROGRAM DESCRIPTOR
244 *PROCEDURE LINK
246 VALUE REAL
248 VALUE ARRAY INTEGER

AP MAPPING DATA
212 BS= I
AP ARRAY VALUES

256 1
257 2
258 3
259 4
260 5

250 VALUE INTEGER
252 VALUE INTEGER
254 VALUE INTEGER

9.3 FOR Statements

BN=43 PP= 191 PA=2,
BN~ 2 PP= 191 PA=I,
0.10000000E 02
DIM= 1 MP= 212 FEP=

SB= 5

7
7
2

189 REAL
236 WP= 279 RP= 191

256 AL= 5 ADD= 1

For statements are treated as implicit procedures in the BC-ALGOL system.

Examples illustrating the various types are given.

0

o

•

9/8

9 .. 3.1 !2.!: step until

for i := 1 step 1 until 3 do <statement9;

252 STACK ADDRESS VA= 204 INTEGER DES =0
254 VALUE INTEGER 1 .,

256 VALUE INTEGER 1
258 VALUE INTEGER 3
260 PROGRAM DESCRIPTOR BN=l PP= 202 PA=I, 215 REAL
263 *PROCEDURE LINK BN=2 PP= 202 PA=6, 220 wp= 263 RP=

The controlled variable's ~tack address is placed on the top of the

stack o Then the initial value~ the increment and the final value

are placed on the stock. A program descriptor is placed on the top

of the stack with a program address which contains the location in

the string of the statement to be executed. A procedure link is

then constructed in which the program address contains the location

in the string of the for list. The actual computations described

by the statement are performed above the proc:edure link~

for list ---
for i := 1,2,3, do <statement>;

252 STACK ADDRESS
254 VALUE INTEGER

VA= 204 INTEGER
1

BN= 1 pp= 202

DES=O

I

256 PROGRAM DESCRIPTOR
259 "'(PROCEDURE'LINK BN= 2 PP= 202

F4=0, 222 REAL'
PA=2, 226 WP= 259 RP=

The controlled variable's stack address is again brought to the

top of the stack" The' value that the controlled variable is to

assume is placed above it. The program descriptor and procedure

link are then placed on the top of stack as described before.

for while:

for i := 1 while b < 10 do ~statement>;

252 STACK ADDRESS
254 VALUE INTEGER
256 PROGRAM DESCRIPTOR
258 PROGRAM DESCRIPTOR
261 *PROCEDURE LINK

VA= 204'

BN= 1 .
BN= 1

. BN= 2

1
INTEGER

PP= 202
PP= 202
pp;::: 202

DES=O

PA=O,
PA-2,
PA=6,

234
236
242

REAL
REAL
WP= 261 Rp::a

3

2

'.

o

• '

229
231
233
235
237'

9/9

The controlled variable is agaih brought to the top of the

stack. The value it is to assume is then brought to the top

of the stack. A program descriptor giving the location in the

string of the Boolean expression is then placed on the top of

the stack. The program descriptor and the procedure link are

then added to the stack o

If the parameters of a for statement ate not simple identifiers

or constants, then a program descriptor will appear with the

location in the string of the ~arameter.

If the for statement is nested, then there will be a series of

stack addresses, values, program descriptors and procedure links

on the top of the stack as each for statement is executed. The

example following is a stack dump of a statement of the form

for a:= 1 step ~ until ~ do

for b:= 1 step 1 until 3 do

<statement> ;

STACK ADDRESS VA= 1'81 INTEGER DES=O
VALUE INTEGER 1
VALUE INTEGER 2
VALUE INTEGER 5
PROGRAM DESCRIPTOR BN= 1 REAL

240 *PROCEDURE LINK BN= 2
PP= 179
PP= 179
INTEGER

PA=l, 209
PA=6, 219
DES=O

WP= 240 RP=
242 STACK ADDRESS VA= :l89
244 VALUE INTEGER 1
246 VALUE INTEGER 1
248 VALUE INTEGER 3
250 PROGRAM DESCRIPTOR BN= 2 'REAL
253 *PROCEDURE LINK BN= 3

PP= 240
PP= 240

PA=O,
PA=6,

210 '
215 ,WP= 253 RP=

9.4 Composition of the Stack's Special Structures

For ease in writing machine code procedures, a more detailed knowledge of

the structure of the stack may be useful. This section is intended for

that purpose •

1

1

o

o

.'

The stack storage assignments for the stack quantities are:

Description

o
o
o
o
o
o
1
2
3
4
5
6

Stack Type

o
1
2
3
4
5

The abbreviations used are:

BN for block number
DESC for description

TyPe of Stack Element

REAL value
INTEGER value
BOOLEAN value
SWITCH DESIGNATOR
LABEL
STRING ADDRESS
ARRAY DECLARATION
STACK ADDRESS
PROGRAM DESCRIPTOR
BLOCK LINK
PROCEDURE LINK
SWITCH DECLARATION

9/10

INFOWORD for the IBM 7094 word containing the description of the stack
quantity

PRQCRTN for processor return
STKDS 'for stack address description
SC for syllqble count
--~- for zeros normally expected in that part of a word.

The representation of the IBM 7094 word is as follows:

FREFIX DECREMENT : I TAG t: ADDRESS

Bit 0 23 '1718 2021 35
Number

The various structures will now be given; the actual IBM, 7094 word

by the accumulator pointer is designated by an arrow on th$. left.

9.4.1 Value •• real, .integer, or boolean

-> DESC 1 -_... I TYPE I
VALUE

referenced

If the low order bit of the info word is a 1, then the variable is unin­

tialized. If next bit to the low order bit is a 1, then the variable is

undefined.

9/11

• 9.4.2 A Switch designator

-:>
DESC -~,..- type ---- If

SC word a4dress,~ parameter pointer

9.4.3 A label

-:> DESC -~-- type c. ___

SC word address parameter pointer

9.4.4 A string address

-:>

STRING ADDRESS

o
9.4.5 An array declaration

DESC ---- type parameter pointer

JIlapping pointer first element pointer

array mapping data

- ADDER

LOWER BOUND, FIRST SUBSCRIPT

WIDTH, FIRST SUBSCRIPT
-

other subscripts

DIMENSION

ARRAY LENGTH

•

o

o

•

9/12

9.4.6 A stack address

DEse _- TYPE

STKDS STACK ADDRESS

9.4.7 A program descriptor

-:>
DEse BN, PRoe RTN TYPE PROCESSOR ADDRESS

se WORD ADDRESS PARAMETER POINTER

9.5.8 A block link

DEse BN TYPE working space pointer

-:>
declaration pointer parameter pointer

se· word address

Note that this structure contains three IBM 7094 words instead of the usual

two. The declaration pointer is used in case arrays are declared. It is

set at the end of the storage allocation for the array elements and pro­

tects them in the same manner the working space pointer protects the

declared variables information and values.

9.4.9 A procedure link

DEse BN TYPE working space pointer

-:> declaration pointer parameter pointer

se word address j return pointer

Note that the procedure link also contains three IBM 7094 words. The

return pointer is used to restore the processor to its original state

after the completion of a procedure statement. The link for a for body

is similar except that the for type replaces the return pointer.

9/13

o 9.4.10 A switch declaration

-> DEse switch element count

SC word address parameter pointer

o

•

o

o

•

10/1

10. Library Tape Operations

10.1 Introduction

The BC-ALGOL library tape operations will allow a user a fair degree of flexi­

bility in generating a source language BC-ALGOL program. Provisions are made

for selecting various input-output units, as well as providing for sc~atch

storage.

10.2 Input-Output Selection

The selection of the various input-output units is achieved by using comment­

control cards. The cards and their uses are also listed in Chapter 4.

To _ inform the BC-ALGOL system of the user's wish to use the library facilities

two comment controls are available comment: library A5; or comment: library B5;

Either one or both of these may be used in the same program. They must appear

before the first begin of the program. Accomp~nying these cards must be a $SETUP

card for each unit used. The purpose of the $SETUP card is to instruct the

computer operator to mount a given tape reel and to assign to it a logical name

(see Appendix 4). These cards must appear after the $JOB card.

The $SETUP card has the following format:

column 1 8 16
$SETUP 1111.-:£ i:;- reel , NORING

NO RING is used to protect the library tapes from accidental destruction and

must be used.

Once the BC-ALGOL system is using the library facilities, input files may be

selected with the following control card comment: <filename>;. The input

file is a logical grouping of source language statements ended by an end of

file character. The control card instructs the BC-ALGOL sy.stem to read the

file designated by <filename> and insert it as part of the source program

to be executed. This card must be in the source program deck; if found else­

where, it is ignored. If th~re is no file with that name on the library units

used, the card is ignored. For obvious reasons, when using the library faci­

lities, file names corresponding to the comment control words listed in Chapter

4 should not be used.

o

o

•

10/2

10.3 Scratch Storage

Provisions have been made for the use of a scratch tape. The method is to

again use a comment control comment: scratch tape;. This must appear in

the source deck or it will be ignored. The action taken is to transfer in­

put control to the scratch tape unit A4. One of the uses could be to save

intermediate text generated by one ALGOL program as the input to another seg-

ment of an ALGOL job.. The device used will be a disk simulation unless

a $SETUP card for this option was included.

To return control to the normal input mode by using comment: source tape;

It must be found on unit A4 to be executed. If found anywhere else, it is

ignored. In addition to returning the input mode to the normal one, an end

of file is written on unit A4 without rewinding it.

10.4 Additional Facilities

There exists a group of code procedures which will allow the library faci­

lities to be used with a great deal of flexibility. As they are all des­

cribed in Chapter 6, they will be briefly mention~d here.

The procedure rescan is used to return control to the monitor for segmen­

tation of a long job into separate pt.ograms. With the scratch storage facil­

ities, this could be useful.

The procedures inunit and outunit are useful for generating or reading

from tapes "at execution time.

There are quite a few other tape handling facilities available. The user is

referred to Chapter 6 for their descriptions.

A figure to show the interactions of the library facilities along with their

means of entry and exit is given. Note that these facilities are not recur­

sive and that everything is channelled through the normal source card deck.

The $EOF .. is :the end of file character on the tape .

10/3

•

comment: source tape; comment: scratch tape;

o $EOF

/

•

•

o

•

Reprinted by the

ASSOCIATION FOR COMPUTING MACHINERY
From Communications of the ACM 6 (Jan. 1963), 1-17.

Revised Report on the Algorithmic Language
ALGOL 60

.J. W. BACKUS

F. L. BAUEH

J. GREEN

PETER :NAun (RrlitoJ')
C. KATZ

.J. l\ICCARTHY

A .. J. PERLIR

H. HrTIRHA r:-;EIl

K. SAMELSO~
B. VAUQUOIS

.J. H. WEGRTEI~
A. VA~ WIJ:-';GAARDEN

~1. 'V OODGER

Dedicated to the 111 r'-nwry (~f IVI£LI AM T lIRANSKI

Reprints distributed by the Association for Computing Machinery, 211 East 43 St., New York 17, N. Y.
Single copies to individuals, no charge; Single copies t.o companies, 50¢ each;
l\Iul1iple eopi('~: first 10, 50¢ each; next 100, 25¢ each; all over 100, lOt each.

•

o

•

Revised Report on the Algorithmic Language
ALGOL 60

PI·~n~lt :\.\"{Tn (I~l(W()r)

.J. 'V. BACKUi-l

F. L. B,\ lJElt

.T. Gm<;EN

C. KATZ

.J. l\lcCA I{THY

A . .T. PEHLli-l

H. HUTIi-lHA Ui-lElt

K. RAMELi-lO:\

B. VAUqUOIS

.J. H. \V T~nSTEIX
A. VAN \VIJ~GAARDEN

':\I. 'VO()J)m<~n

J)rdiratrd t() the .'1lcJJI()r!J ()f lV!L/,lAM TfilL1NSKI

SUMMAHY

The report gives a eomplete defining description of the
int('rnational algorithmie language ALGOL GO. This is
a language suitahle for expressing a large dass of nu­
l1H'rical proeesses in a form suffieiently concise for dirpet
automatic translation into the language of programmed
automatic' C'omputers.

The illtrodU(~tion ('ontains an acC'ount of the preparatory
\York kading up to the final conference, where the language
was d('iin('cl. In addition, the notions, rrferen('e language,
publicatioll language and hardware rppresentations are
('xplained.

I n the first chapter, a survey of thr hasic constituents
and fraturrs of the language is given, and the formal
notatioll, by which the syntaetic strueture is defined, is
('xplaill('d.

Th(' s('('olld chaptN lists all th(' basic symhols, and the
syntaetie units knowll as identifiers, numiwrs and strings
arc dpfined. Further, some important notions such as
quantity and value are defined.

The third chapter explains the rules for forming ex­
pressions and the meaning of these expressions. Three
diffen'llt typps of expressions exist: arithmetic, Boolran
(logieal) and drsignational.

The fourth chapter describes the opf'fational units of
tll<' language, known as statements. The basic statemrnts
arc: assignment statements (evaluation of a formula),
go to statements (explicit hreak of the sequence of ex­
ecution of statements), dummy statemcnts, and pro­
cedure statements (call for cxecution of a dosed prof'ess,
defined by a prof'edure dCf'laration). The formation of
more f'omplex struf'tures, having statement character, is
cxplailH'd. 'These include: conditional statements, for
staten1<'llts, ('ompollnd statements,and blocks.

In the' fifth ('hapfer, the units kllown as (kelarations,
s('l'\'ing for ddining permanent properties of thp units
('nt<>ring into a pro('('SS oesf'rihf'd in the language, are
defin('d.

Thp I'('polt (,Ilds with two detailed examples of the' use
of tIl<' language and an alphabetic illdex of definitions.

C()!\iTENTS

Ii'\1'R()J)l"CTIO:-';

1. STRI'CTl"Rl'J OJ<' THE LA:'\nu AG}<~
1.]. Furmalism for syntact.ic description

2. BASIC SYl\fBOLR, IDE:,\TIFIERR, XU:'I!RERR, AND STRINGS.

BAsrc CO,,"CEPTS.

2.1. Lptters
2.2. Digits. Logical values.
2.:3. Delimiters
2.4. Identi fiers
2Ji. :'\lImiJNs
2.1i. Strings
2.7. Qllantities, kinds and scopes
2.8. Vallles and types

3. EXPRERSIO:'\S

3.1. Variahles
~{.2. Function designat ors
~L:L Arithmetic expressions
~{.4. Boolean expressions
:3.01. I)esignational expressions

4. ~'I'ATE:vm"Ts

4.1. Compound statements and hlocks
4.2. Assignment statements
4.3. (;0 to statempnts
4.4. Dumrn:v statements
4 .•). Conditional statements
4.n. For statements
4.7. Procedure statements

15. I h:CL.IRATW:,\S

.1.1. Type declarations
5.2. Array declamtioI\s
5.3. Switch declarations
5.4. Procedure declarations

EXAl\lPLEfl OF PR()CEDl;RI'~ 1)ECLARATIO:-';S

ALPHABETIC I:\"DEX OF I h~FI~I1'IO\'S OF C()"CEPTS A:\"O

~Y:,\TACTIC F:,\lTS

COmnllllli('aliulIS of IIU' :\Cl\l

o

o

•

grumrning languages will lead to better rf'solutioll:
1. Riof' f'He'd:"; of functions
.) Th(, ('all h~' name' cOJ}(,pp1
::. own: ,-.:tati(' OJ' dynamic'
+. For stat{'rnent: static or dynamic
.). Confliet hetwepn :;;pel'ification and declaration
The authors of the ALGOL 60 Report present at 1}}0,

Rom{' Conferf'nc{', heing aware of thf' formation of a
'Vorking Croup on ALGOL by IFIP, ac(~eptcd that any
colleetiw> rf'spollsihility which they might have with
rf'spf'd 10 t hI' d('velopnwnt, sp('cification and refinem{'nt
of the AU;OJJ language will from now on be transferred to
that hody.

This report has hf'cn reviewed by IFIP TC 2 on Pro­
gramming Languagf's in August] f)G2 and has heen ap­
prov('d hy the Council of thf' 1 ntPrnational Ff'deration
for I Ilformation Processing.

As with the preliminary ALGOL ff'port, three differf'nt
levf'ls of language arf' ff'cognized, nampl~' a Rf'fef{~lWe

Language, a Puhlication Language and spv{'ral Hardware
H{'prf'sf'ntations.

REFEREXCE LAXGUAGE

1. It is the working language of the committee.
2. It is the defining language.
~. The characters are determined by ease of mutual

understanding and not by any computer limitations,
coders notation, or pure mathematical notation.

+. It is the hasic reference and guide for compiler
builders.

:). It is the guide for all hardware represf'ntations.
G. It is the guide for transliterating from publication

language to any locally appropriate hardware rf'presenta­
tions.

REVISED ALGOL 60

7. The mnin publications of the ALGOL language itself
\yill Il:-;(~ the rpferpnce representation .

l)l~BLICATION LANGUAGE

J. '1'h(' publicatioll language admits variations of the
reff'rrlWP language ac(~ording to usage of printing and hand­
\\Thillg (e.g., suhscripts, spaces, exponents, Greek letters).

2. It i:-; l1s('d for stating and communicating processes.
:L 'I'll(' eharaet('rs to be used may be different in

difff'n'llt countries, hut univo(~al correspondence with
rf'f(,I'I'Il('(' rq)rf'sPllt atioll must be spcured.

HAHDWAHF; HEPRESE~TATIONS

]. Each one of these is a condensation of the reference
langllagp (,Ilforced by the limited number of characters on
st,[1ndard input equipment. '

2. Each Olle of these Ilses thp character set of a particu­
lar ('omputcr and is the languagp accepted by a translator
for that ('OmplltPr.

:L Ea('h one of these must he aeeompanied by a special
f'et of rules for translit('rating from Publication or Refer­
em'p language.

FOJ' tran:"Jit{'ration hetwcen the reference language and
a language sllitahlc for publications, among others, the
fol1m\'ing rulps are f(~commendcd.

R,,/erfll(,(l,nn(]lIo{F'

~\d)"cript hrad;ct [1

Expollent iatioJ\ i
Parcntheses ()

Basis of t.en 10

Puhlication Language

L(nvering of the line between the
hrackets and removal of the
brackets

Raising of the exponent
Any form of parentheses, brackets,

braces
Raising of the ten and of the follow­

ing integral number, inserting of
the intended multiplication sign

DESCRIPTION OF THE REFEHE'\CE LA~(;(JAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language
has three different kinds of representations-reference,
hard\,,'are, and publication-and the development de­
scribed in th(' sequel is in terms of the reference repre­
spntatioll. This means that all objects defined within the
lallguag(' are represented by a given set of symhols-and
it is only in the ehoice of symbols that the other two
rppr('spntations may differ. Structure and content must
hI'· the :;;;anw for all representations.

'I'll(' pUl'pOSf' of the algorithmie languag(' is to dpscrihe
compntat.iollal proeesses. The hasic coneppt used for the
df';,wriptioll of calculating rules is th(' well-known arith­
m(,tic exprpssion containing as constituents numh('rs, vari­
ahles, and fllnetions. From sl1rh expr('ssions are com­
pound('d, hy applying rul('s of arithmetie eomposition,

Was siel! iihprhallpt sagpn hi,sst, Hisst
sid, klnr sagpn; und wovon man nicht
r('(iPn kanll. dariibpr muss man s('hweigen.

LUDWIG \hTTGE:>iRTEIN.

s('lf-containpd units of the language-explicit formulae
-(~all('d assignn1('nt statf'mf'nts.

To ;.;;hO\\' th(' flow of computational processes, certain
nonarithnwtic statements and statement clauses are
addf'd whi('h may dpscribe, e.g., alternatives, or iterative
repetitions of ('omputing statements. Since it is necessary
for th(~ function of these statements that one statement
ref!'I' to another, stat('nlPnts may be provided with labels.
A s('qU('ll('(' of statenl('nts may be ('nclosed between the
statpnl('llt hrackpts begin and end to form a compound
statcllH'nt.

Statf'm(,llts an' supporU,d hy d('clarations which are not
thf'mseh'('s ('omputillg instructions hut inform the trans­
latof of the ('xistence and eertain properties of objects
appearing ill st,atem('nts, snch as the class of numbers
tak(,lt Oil as vahws b~T a variahh', the dimension of an

Commlllli('utiun!'l of the ACM :1

•

o

•

a program th(' following "comnwJlt" eonventions hold:

The srqurncc of basic symbols: is equivalent to

; ('omnwnt <an~' 1'f''1I1f'nce not containing;);
hc~in (,()Illnwnt (any ~cqllcnce not containing ;);
(,Ild (:lny ;;('qIlPIlCf' not containing end or ; or else>

he~in

end

By ('qlli\"al(,IJ('(' is h('r(' l1wallt that any of the thrf'e stnw­
tur('s showil in th(' ldt-hand column may he replaced, in
allY O('('I\lTf'I}(,(' outsid(' of strings, hy th(' symhol shown Oil

t}w same lill(, ill th(' right-hand column without any
('tr('d Oil th(' adion of th(' program. It is further understood
that tlw ('omnwilt structur(' ('ncol1nt(,lT'd first in th(' t('xt
\\·h('11 r('aaillg from left to right has pr('('('d(,IH'(, ill lwing
r('plac('d o\"('r lat('r strlldur('s contained ill the sequence.

2A. I DE:\TIFIEHS

2A.1. Syntax

Ortent i ticr \ :: = (Ietter'\ i (i dentifier) (letter ,\: (identi fier) <digi t)

2.4.2. Examples

q
Soup
l'17a

a:1+kTJf.Y s
J!A RIL LV

2A.3. Sf'mantics
Id('ntifirrs have no inherent meaning, but serve for the

identification of simpl(' \"ariahles, arrays, lahpls, switches,
and proceaur('s. They may be chosen freely (cf., however,
s('ction 0.2.-t Standard Functions).

The same idf'ntifier cannot he used to denote two
different quantities except· when these quantities have
disj0int scopes as defined by the declarations of the pro­
gram (d. scetiOll 2.7. Quantities, Kinds and Sc:opes, and
section ;'5. D('e1arations).

2.5. NUMBERS

2.5.1. Syntax

(unsigned integer) :: = (digit)1 (unsigned integer) (digit)
(integer) ::= (unsigned integer)I+(unsigned integer)1

- (unsigned integer)
(decimal fraction) ::= . (unsigned integer)
<exponent part) ::= to(integer>
(decimal numher> :: = (unsigned integer >1 (decimal fraction >!

(unsigned integer) (decimal fraction>
(un~ignf'd numher) ::= (decimal number)! (exponent partl!

(decimal numher) (exponent part)
(number> :: = (tmsigned numher)l+ (unsigned numher >!

- (unsigned numher)

2.5.2. Examples

o
Iii
.5384

+0.7:300

-200.084
+07.43 108

9.3410+10
210-4

2.5.3. Semantics

- .08310 -02
- 107

]0-4

+10+5

Decimal numbers have their conventional meaning.
The exponent part isa scale factor expressed as an integral
power of 10.

REVISED ALGOL 60

2.5.1. Type~
1ntegers arc of type integer. All other numbers are of

type real (d. section 5.1. Type Declarations).

2.6. STlu:\GS

2.6.]. Syntax

(propf'r string) :: = (any ~cquence of basic symbols not containing
, or ')! (empty)

(opPJ} f'tl'ing) ::= <[)rop('r stringji'(open string)'!
<'open i"itring)(open st.ring)

("iring> ::= '(open ~tring>'

2.6.2. Examph'~

'5k" - '[[['A = / :'Tt"
' __ This u is u a u 'f-itring"

2.6.3. Semantics
I 11 order to enable the language to handle arhitrary

~('qll('Il('es of basi(~ symbols the string quotes ' and' are
introduced. The symhol u d('notes a space. It has no
signifi('an('(' outside strings.

Strings are used as aetual parameters of procedures
(cf. scC'tiolls :~.2. Function Designators and 4.7. Procedure
Statements).

2.7. QCA:\TITJE:-;, KIX[)S AXD SCOPES

Th(' following kinds of quant.ities are distinguished:
silllpl(' \'ariahles, arrays, labels, switches, and procedures.

The :;wop(' of a quantity is the set of statements and
expre:::.;sions in which the declaration of the identifier asso­
ciatrd with that quantity is valid. For labels see section
4.1.:L

2.8. VALt:ES A:\j) TYPES

A value is an ordered set of numbers (special case: a
single ll11rnher), an ordered set of logical values (special
case: a single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their c:on­

stituf'llts are defined in section :3. The value of an array
identifipr is the ordered set of values of the corresponding
array of suhscripted variables (cf. section 3.1.4.1).

The various "types" (integer, real, Boolean) basically
denotf' properties of values. The types associated with
syntaetie units refer to the values of these units.

3. Expressions

In the language the primary constituents of the pro­
grams descrihing algorithmic processes are arithmetic,
Boolran, and designational expressions. Constituents of
thf's(' f'xpressions, except for certain delimiters, are logical
valurs, numhers, variables, function designators, and
elPmrntary arithmetic, relational, logical, and sequential
operators. Since the syntactic definition of both variables
and function designators contains expressions, the defini­
tion of expressions, and their constituents, is necessarily
recurSIve.

(expression) ::= (arithmetic expression)I(Boolean expression)/
(designational expression)

Communications of the ACM 5

o

o

•

3.3.2. Examples
Primari('s :

7.39410-8
sum
w[i+2,8]
cos(?I+zX3)
(a-:3/!I+ vui8)

Factors:

omclla
8'Utn ICOS (!J+zX :~)
i .:1fJ.llo -8Iw[i +2,811 (a-:3/!J+vuiS)

Terms:

U
o I/lC(la. X sum lCO.s Uj+zX~~) /7 .394 10-8 f w[i+2,Sl f

(a-3/y+vuiS)

Simple arithmetic expression:

u - } 'u +omcgaX swn i cos (y+ z X 3) /7 .394ul - S jw[i +2,8] i
(a-3/y+vui8)

,\rit hmetic expressions:

wX u-Q(S+Cu)j2
if q>O then S+3XQ/A else 2XS+3Xq
if a<O then U+V else ifaXb>li then V/V else if

k;/=y then V/V else 0
aX sin (omegaX t)
O.571012Xa[lVX (N -1)/2,0]
(A. Xarctan (y) +Z)i(7 +Q)
if q then n-l else n
if a<O then A/B else if U=O then B/A dse z

3.3.3. Semantics
An arithmetic expression is a rule for computing a

numerical value. In case of simple arithmetic expressions
this value is obtained by executing the indicated arith­
metic operations on the actual numerical values of the
primaries of the expression, as explained in detail in
section 3.3.4 below. The actual numerical value of a
primary is obvious in the case of numbers. 1;'or variahles
it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising from
the romputing rules defining the procedure (cf. sertion
.1.4.4. Values of Function Designators) when applied to
the currc'nt values of the procedure parameters given in
the expression. Finally, for arithmetic expressions en­
closed in parentheses the value must through a recursive
analysis be expressed in terms of the values of primaries
of the other three kinds.

In the more general arithmetic expressions, which in­
clude if clauses, one out of several simple arithmetic ex­
pressions is selected on the basis of the actual values of the
Boolean expressions (cf. section 2.4. Boolean Expressions).
This selection is made as follows: The Boo'lean expressions
of the 'if clauses are evaluated one by one in sequence from
left to right until one having the value true is found. The
value of the arithmetic expression is then the value of
the first arithmetic expression following this Boolean
(the largest arithmetic expression found in this position

REVISED ALGOL 60

IS 1\1}(1(~rsto()d). The (~onstrlleti()ll:

else <simple arithllletic expression)

is (>(pIi\'alpnt to th(> eonstrudioll:

else if true then <simple arithmetic expression)

:{.iLL Opf'fators and types
Apart. from the Boolean expressions of if clauses, the

('on:-;titlH'llts of simple arit hmdic expresHions must be of
types rpal or integer (d. sf'dion .),1. Type Declarations).
Tlw meanillg of the' hasie opprators and the types of the
rXI)l'r~~ioll:-; to which thry lead are given by the following
rul('s:

3.3. L'I. Thr olwrators +, -, and X have the conven­
tional llwaning (addition, suhtradion, and multiplication).
The type of the ('xpressiol1 will he integer if both of the
operands arc of integer type, otherwise real.

3.3..1.2. The operations (term)/(factor) and (term) ...;­
(factor) hoth denote dh'ision, to he understood as a multi­
plica tioll of t he term hy the rpciproeal of the factor with
due rq!;ard to the rules of preredenee (d. section 3.3.5).
Thus for rxampl('

n/hX 7 j(p- q)X1.'/s

((((aX (b-1»Xi)X «(p_q)--I»XV)X (S-l)

The oJ.)('rator is ({cfinrd for all four combinations of
types)'pal and integer and will yield results of real type
in allY rase. 'The operator + is defined only for two
opPl'allds both of type integer and will yield a result of
type integer, mathematically defined as follows:

a+b= sign (a/b)Xentier(abs(a/b)

(d'. :-;('etiolls :L2A and :L2.;')).
3.:lA.3. Thr oprration (faetorH(primary) denotes ex­

ponentiation, where the factor is the hase and the primary
is the exponent. Thus, for example,

2inik means

while

2i (nirn) means

\Vriting i for a 1ll1l1lh('r of integer type, r for a number of
real type, and a for a numher of either integer or real
type, the result is given hy the following rules:

aii If i>O, aXaX ... Xa (i times), of the same type as a.
If i=O, if a;/=O, 1, of the same type as a.

if 0.=0, undefined.
If i<O, if a~O, l/(aXaX ... Xa) (the denominator has

- i factors), of type real.
if a=O, undefined.

air If (1)0, cxp(rX[,,(a), of type real.
If a=O, if r>O, 0.0, of type real.

if r~O, undefined.
If a<O, always undefined.

3.3.5. Pr('('edenec of operators
The sequence of operations within one expression is

Communications of the ACM ,7

o

o

•

Switch D('rlarations) and by the actual numerical value
of its subscript expression selects one of the designational
expressions listed in the switch declaration by cou~iing
these from left to right. Since the designational expression
thus selected may again be a switch designator this evalua­
tion is obviously a recursive process.

3.5.4. Th(' subscript expression
The evaluation of the subscript expression is analogous

to that of subscripted variables (cf. section 3.l.4.2). The
value of a switch designator is defined only if the subscript
expf("\ssion assumes one of the positive values 1, 2,3, ... ,1).,

whel'(\ n is th(' number of entries in the switch list.
3.5.5. l'nsigned int('gers as labels
'Cnsigned integers used as labels have the property that

l('ading z('r08 do not affect their meaning, e.g. 00217
denotes the same label as 217.

4. Statements

The units of operation within the language arc called
statements. They \vill normally be executed consecutively
as written. However, this sequence of operations may be
broken by go to statements, which define their successor
explicitly, and shortened by conditional statements,
\vhich may ('ause certain statements to be skipped.

In ord('r to make it possible to define a specific dynamic
succession, statements may be provided with labels.

Since sequences of statements may be grouped together
into ('ompound statements and blocks the definition of
statement must necessarily be recursive. Also since decla­
rations, described in section 5, enter fundamentally into
the syntactic structure, the syntactic definition of state­
,ments must suppose declara,tions to be already defined.

4.1. COMPOUND STATEMENTS AND BLOCKS

4.1.1. Syntax

(unlabelled basic statement) :: = (assignment statement) I
(go to statement)! (dummy statement) / (procedure statement)

(basic statement) :: = (unlabelled basic statement) / (label):
(basic statement)

(unconditional statement) :: = (basic statement> I
(compound statement) I (block)

(statement) ::= (unconditional statement)/
(conditional statement)/ (for statement>

(compound tail) :: = (statement) end / (statement)
(compound tail)

(block head) ::= he~in(declaration)l(block head)
(declaration)

(unlabellecl. compound) :: = hegin (compound tail>
(unlabelled block) :: = (block head> ; (compound tail)
(compouncl. statpment) :: = (unl ahplled compound) I

(label): (compound statement ')
(block) ::= (unlabelled block>I<lahel):(block)
(program) :: = (block) I (compound statement!

This syntax may he illustrated as follows: Denoting arbi­
trary statements, declarations, and labels, by the letters
S, D, and L, respectively, the hasic syntactic unit~ take
the forms:

Compound statemf'llt:

L: L: ... begi n S ; S ; ... S Send

REVISED ALGOL 60

Block:

L: L: '" begin D ; D ; .. D ; S ; S ; ... S ;
Send

I t should be kept in mind that each of the statements S
may again be a complete compound statement or block.

4.1.2. Examples

Basic statements:

a := p+q
go to Naples
START: CONTISUE: W := 7.993

Compound statelllf'nt:

Block:

hegin x := 0 ; for y := 1 step 1 until n do
x := x+A[y] ;

if x>q then go to STOP else if x>w-2 then
go to S ;

Aw: St:.W := x+bob end

Q: hegin integer i, k ; real IV ;

for i := 1 step 1 until m do
for k := i+l step 1 unt.iJ m do
lwgin 10 := A[i, kj ;

A[i, kJ := A[k, iJ ;
A[k,ij:= 1Oendforiandk

end block Q

·1.1.3. Semantics
Every block automatically introduces a new level of

nomenclature. This is realized as follows: Any identifier
occurring within the block may through a suitable declara­
tion (cf. section 5. Declarations) be specified to be local
to the block in question. This means (a) that the entity
represented by this identifier inside the block has no
existence outside it, and (h) that any entity represented
hy this identifier outside the block is completely inacces­
sible inside the block.

Identifiers (except those representing labels) occurring
\vithin a block and not being df'clared to this block will be
nonlocal to it, i.e. will represent the same entity inside
the bloek and in the level immediately outside it. A label
separated hy a colon from a statement, i.e. labelling that
statement, behaves as though declared in the head of the
smallest embracing block, i.e. the smallest block whose
hrackets begin and end enclose that statement. In this
context a procedure body must be considered as if it were
enclosed by begin and end and treated as a block.

Since a statement of a block may again itself be a block
the concepts local and nonlocal to a block must be under­
stood recursively. Thus an identifier, which is nonlocal
to a block A, mayor may not be nonlocal to the block B
in which A is one statement.

4.2. ASSIGNMENT STATEME~T8

4.2.1. Syntax

(left part):: = (variable) : = / (procedure identifier) : =
(left part list) :: = (left part)! (left part list) (left part)
(assignment statement) ::= (left part li:;t) (arithmetic expression >/

<left part list> (Boolean expression)

Communications of the ACM 9

•

o

•

ment following the complete conditional statement. Thus
the effect of the delimiter else may be described by saying
that it defines the successor of the statement it follows to '
be the statement following the complete conditional
statement.

The construetion

else (unconditional statement)

is equivalent to

else if true then (unconditional fStatement>

·If none of the Boolean expressions of the if clauses is
true, the effect of the whole conditional statement will be
equivalent to that of a dummy statement.

For further explanation the following picture may be
useful:

r------------,------,
i . i 1

if B1 then 81 else if B2 thenS2 else S3 ; S4

l _________ J t. _________ J
B1 false B2 false

4.5.4. Go to into a conditional statement
The effect of a go to statement leading into a conditional

statement follows directly from the above explanation of
the effect of else.

4.6. FOR STATEMENTS

4.6.1. Syntax

(for list element> ::= (arithmetic expression)!
(arithmetic expression> step (arithmetic expression> until
(arithmetic expression >! (arithmetic expression> while
(Boolean expression)

(for list> :: = (for list element>! (for list) , (for list element)
<for clause> :: = for (variable> : = (for list> do
(for statement) :: = (for clause) (statement) I

(label): (for statement)

4.6.2. Examples

for q := 1 step s until n do A[q] := B[q]
for k := 1, V1X2 while V1 <N do

for j := I+G, L, 1 step 1 until N, C+D do
A[k,j] := B[k,j]

4.6.3. Semantics
A for clause causes the statement S which it precedes to

be repeatedly executed zero or more times. In addition it
performs a sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture:

r---------------~

1 i
Initialize test ; statement S ; advance ; successor

1 i L _________________________ ~

for list exhausted

In this picture the word' initialize means: perform the first
assignment of the for clause. Advance means: perform the
next assignment of the for clause. Test determines if the
last assignment has been done. If so,. the execution con-

REVISED ALGOL 60

tinues with the successor of the for statement. If not, the
statement following the for clause is executed.

4.6.4. The for list elements
The for list gives a rule for obtaining the values which

are consecutively assigned to the controlled variable. This
sequence of values is obtained from the for list elements
by taking these one by one in the order in which they are
written. The sequence of values generated by each of the
three species of for list elements and the corresponding
execution of the statement S are given by the following
rules:

4.6.4.1. Arithmetic expression. This element gives rise
to one value, namely the value of the given arithmetic
expression as calculated immediately before the corre­
sponding execution of the statement S.

4.6.4.2. Step-until-element. An element of the form
A step B until C, where A, B, and C, are arithmetic ex­
pressions, gives rise to an execution which may be de­
scribed most concisely III terms of additional ALGOL
statements as follows:

V:= A ;
L1: if (V-C)X sign(B»O then go to element exhausted;

statement S
V := V+B ;
go to L1 j

where V is the controlled variable of the for clause and
element exhausted points to the evaluation according to
the next element in the for list, or if the step-until-element
is the last of the list,.to the next statement in the program.

4.6.4.3. While-element. The execution governed by a
for list element of the form E while F, where E is an
arithmetic and F a Boolean expression, is most concisely
described in terms of additional ALGOL statements as
follows:

L3: V := E j

if -, F then go to element exhausted
Statement S ;
go to L3 ;

where the notation is the same as in 4.6.4.2 above.
4.6.5. The value of the controlled variable upon exit
Upon exit out of the statement S (supposed to be com­

pound) through a go to statement the value of the con­
trolled variable will be the same as it was immediately
preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is unde­
fined after the exit.

4.6.6. Go to leading into a for statement
The effect of a go to statement"outside a for statement,

which refers to a label within the for statement, is unde­
fined.

4.7. PROCEDURE STATEMENTS

4.7.1. Syntax

(actual parameter) :: = (string)! (expression> I (array identifier) I
(switch identifier>! (procedure identifier)

(letter string):: = (letter) I (letter string) (letter>

Communications of the ACM II

•

o

•

same. Thus the information conveyed by using the elabo­
rate ones is entirely optional.

4.7.8. Procedure body expressed in code
The restrictions imposed on a procedure statement

calling a procedure having its body expressed in non­
ALGOL ('ode cvidently can only be derived from the charac­
teristics of the code used and the intent of the user and
thus fall outside the scope of the reference language.

5. Declara tions

Declarations serve to define certain properties of the
quantities used in the program, and to associate them with
identifiers. A declaration of an identifier is valid for one
block. Outside this block the particular identifier may be
used for other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time of an
entry into a block (through the begin, since the labels
inside are local and therefore inaccessible from outside)
all identifiers declared for the block assume the signifi­
cance implied by the nature of the declarations given.
If these identifiers had already been defined by other
declarations outside they are for the time being given a
new significance. Identifiers which are not declared for the
block, on the other hand, retain their old meaning.

At the time of an exit from a block (through end, or by
a go to statement) all identifiers which are declared for
the block lose their local significance.

A declaration may be marked with the additional
declarator own. This has the following effect: upon a re­
entry into the block, the values of own quantities will be
unchanged from their values at the last exit, while the
values of declared variables which are not marked as own
are undefined. Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those for standard functions (cf. sections 3.2.4 and
3.2.5), all identifiers of a program must be declared. No
identifier may be declared more than once in anyone
block head.

Syntax.

(declaration) :: = (type declaration) I (array declaration)1
(switch declaration)1 (procedure declaration)

5.1. TYPE DECLARATIONS

5.1.1. Syntax

(type list) :: = (simple variable) 1
(simple variable) , <type list)

(type) :: = real 1 integer I Boolean
(local or own type) ::= (type)lown (type)
(type declaration) :: = (local or own type) (type list)

5.1.2. Examples

integer p,q,8
own Boolean Acryl,n

5.1.3. Semantics
Type declarations serve to declare certain identifiers to

represent simple variables of a given type. Real declared
variables may only assume positive or negative values

REVISED ALGOL 60

including zero. Integer declared variables may only assume
positive and negative integral values including zero.
Boolean declared variables may only assume the values
true and false.

In arithmetic expressions any position which can be
occupied by a real declared variable may be occupied by
an integer declared variable.

For the semantics of own, see the fourth paragraph of
section 5 above.

5.2. AURA Y DECLARATIONS

5.2.1. Syntax

(lower hound) :: = (arithmetic expression)
(upper bound) :: = (arithmetic expression)
(bound pair) :: = (lower bound): (upper bound)
(bound pair list) :: = (bound pair) I (bound pair list), (bound pair)
(array segment) ::= (array identifier)l(bound pair list)]!

(array identifier). (array segment)
(array list) :: = (array segment) I (array list), (array segment)
(array declaration) :: = array (array list) 1 (local or own type>

arra), (array list>

5.2.2. Examples
array a, b, c[7:n,2:mJ, 8[-2:10)
own integer array A [if c <0 then 2 else 1: 20]
real array q[-7:-1]

5.2.3. Semantics
An array declaration declares one or several identifiers

to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the
bounds of the subscripts and the types of the variables.

5.2.3.1. Subscript bounds. The subscript bounds for
any array are given in the first subscript bracket following
the identifier of this array in the form of a bound pair list.
Each item of this list gives the lower and upper bound of a
subscript in the form of t\VO arithmetic expressions sepa­
rated by the delimiter: The bound pair list gives the
bounds of all subscripts taken in order from left to right.

5.2.3.2. Dimensions. The dimensions are given as the
number of entries in the bound pair lists.

5.2.3.3. Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given the type real is understood.

5.2.4. Lower upper bound expressions
5.2.4.1 The expressions will be evaluated in the same

way as subscript expressions (cf. section 3.1.4.2).
5.2.4.2. The expressions can only depend on variables

and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently in the outer­
most block of a program only array declarations with
constant bounds may be declared.

5.2.4.3. An array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds.

5.2.4.4. The expressions will be evaluated once at each
entrance into the block.

5.2.5. The identity of subscripted variables
The identity of a subscripted variable is not related to

the subscript bounds given in the array declaration. How-

Communications of the ACM 13 .

•

o

•

block, whether it has the form of one or not. Consequently
the scope of any label labelling a statement within the
body or the body itself can never extend beyond the pro­
cedure body. In addition, if the identifier of a formal
parameter is declared anew within the procedure body
(including the case of its use as a label as in section 4.1.3),
it is thereby given a local significance and actual param­
eters which correspond to it are inaccessible throughout
the scope of this inner local quantity.

5.4.4. Values of function design~tors
For a procedure declaration to define the value of a

function designator there must, within the procedure
body, occur one or more explicit assignment statements
with the procedure identifier in a left part ;at least one of
these must be executed, and the type associated with the
procedure identifier must be declared through the appear­
ance of a type declarator as the very first symbol of the
procedure declaration. The last value so assigned is used
to continue the evaluation of the expression in which. the
function designator occurs. Any occurrence of the pro­
cedure identifier within the body of the procedure other
than in a left part in an assignment statement denotes
activation of the procedure.

5.4.5. Specifications
In the heading a specification part, giving information

about the kinds and types of the formal parameters by
m~ans of an obvious notation, may be included. In' this
part no formal parameter may occur more than once.
Specifications of formal parameters called by value (cf.
section 4.7.3.1) must be supplied and specifications of
formal parameters called by name (cf. section 4.7.~.2)
may be omitted.

5.4.6. Code as procedure body
It is understood that the procedure body may be ex­

pressed in nOn-ALGOL language. Since it is intended that
the use of this feature should be entirely a question of
hardware representation, no further rules concerning
this code language can be given within the reference
language

Examples of Procedure Dedarations:

EXAMPLE 1.

procedure euler (fct, sum, eps, tim) ; value eps, tim
integer tim ; real procedure fct ; real sum, eps ;
COlnment euler computes the sum of fct(i) for i from zero up to
infinity by means of a suitabley refined euler transformation. The
summation is stopped as soon as tim times in succession the abso­
lute value of the terms of the transformed series are found to be
less than eps. Hence, one should provide a function fct with one
integer argument, an upper bound eps, and an integer tim. The
output is the sum sum. euler is particularly efficient in the. case
of a slowly convergent or divergent alternating series· ; .
begin integer i, k, n, t ; array m[O: 15] ; real mn, mp, ds
i := n := t := 0 ; m[O]:= fct(O) ; sum:= m[O]/2
nextlerm: i := i+1 ; mn:= fct(i)

for k := 0 step 1 until n do
begin mp := (mn+m[k])j2 m[k] := mn

mn := mp end means ;

end euler

REVISED ALGOL 60

if (abs(mn) <abs(m[n])!\(n<15) then
begin ds := mn/2 ; n := n+1 ; m[n] :=

mn end acccpt
else.ds : = mn ;
sum := sum + ds
if abs(ds) <eps then t := t+1 else t := 0
if t<tim then go to nextterm

EXAMPLE 2.8

procedure RK (x,y,n,F KT,eps,eta,xE,yE,ji) ; valucx,Y ;
integer n ; Boolean ji ; real x,eps,ela,xE ; array
y,yE ; procedurc.FKT ;
comment: RK integrates the system y/ = !k(X,Yl ,Y2 , ... , Yn)
(k= 1,2, ... ,n) of differential equations with the method of Runge­
Kutta withaut~matic search for appropriate length of integration
step. Parameters are: The initial values x and y[k] for x and the un­
known functions Yk(X). The order n of the system. The procedure
FKT(x,y,n,i) which represents' the system to be integrated, i.e.
the set of functions Jk . The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the
integration interval xE. The output parameter yE which repre­
sents the'solution at x=xE. The Boolean variable ji, which must
always be gi yen the value true for an isolated or first entry into
RK. If however the functions y must be available at several mesh­
points Xo ,Xl, ... ,:in, then the procedure must be called repeat­
edly (with X=Xk , XE=Xk+l, for k=O, 1, ... ,n-1) and then the
latcr calls may occur withji=false which saves computing time.
The input parameters of F KT must be x,y,n, the output parameter
z represents the set of derivatives z[k]=f;.(x,y[l], y[2], .. ~, y[n])
for x and the actual y's. A procedure comp enters as a nonlocal
identifier. ;
begin

array z,yl,y2,y3[1 :n] ; real x1,x2,x3,B ; Boolean out
integer k,j ; own real s,Bs ;
procedure RK1ST (x,y,h,xe,ye) ; real x,h,xe ; array

Y,ye ;
comment: RK1ST integrates one single RUNGE-KUTTA

with initial values x,y[k] which yields the output
parameters xe=x+h and ye[k], the latter being the
sol ution at xe. Important: the parameters n, F KT, z
enter RK1ST as nonlocal entities

begin
array w[l :n], a[l :5] ; integer k,j
all] := a[2] := a[5] := hj2 ; a[3] .- a[4] := h
xe := x ;
for k := 1 step 1 until n do yc[kl := w[kl:= y[k]
for j := 1 step 1 until 4 do
begin

FKT(xe,w,n,z)
xe := x+a[j]
for k := 1 step 1 until n do
begin

w[kl := y[k]+a[j]Xz[k]
yelk] := ye[k] + a[j+1]Xz[kl/3

8 This RK-program contains some new ideas which are related
to ideas of S. GILL, A process for the step-by-step integration of
differential equations in an automatic computing machine,
[Proc. Camb. Phil. Soc. 47 (1951), 96]; and E. FROBERG, On the
solution of ordinary differential equations with digital computing
machines, [Fysiograf. Stillsk. Lund, Forhd. 20, 11 (1950), 136-152].
It must be clear, however, that with respect to computing time
and round-off errors it may not be optimal, nor has it actually
been tested on a computer.

Communications of the ACM IS

•

o

•

(factor), def 3.3.1
false, synt 2.2.2
for, synt 2.3, 4.6.1

(for clause), def 4.6.1 text 4.6.3
(for list), def 4.6.1 text 4.6.4
(for list element>, def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.3
(formal parameter), def 5.4.1 text 5.4.3
(formal parameter list), def 5.4.1
(formal parameter part), def 5.4.1
(for statement), def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete

section)
(function designator), def 3.2.i synt 3.3.1, 3.4.1 text 3.2.3, 5.4.4

go to, synt 2.3,4.3.1
(go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

(identifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3
(identifier list), def 5.4.1
if, synt 2.3, 3.3.1, 4.5.1

(if clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2
(if statement), def 4.5.1 text 4.5.3.1
(implication), def 3.4.1
integer, synt 2.3, 5.1.1 text 5.1.3

(integer), def 2.5.1 text 2.5.4

label, synt 2.3, 5.4.1
(label), def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1 text], 4.1.3
(left part), def 4.2.1 .
(left part li~t), def 4.2.1
(letter), def 2.1 synt 2,2.4.1,3.2.1,4.7.1
(letter string), def 3.2.1, 4.7.1
local, text 4.1.3

(local or own type), def 5.1.1 synt 5.2.1
<logical operator), def 2.3 synt 3.4.1 text 3.4.5
(logical value), def 2.2.2 synt 2, 3.4.1
(lower bound), def 5.2.1 text 5.2.4

minus -, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 3.3.1 text ~.3.4.1

<rr.ultiplying operator), def 3.3.1

nonlocal, text 4.1.3
(number), def 2.5.1 text 2.5.3, 2.5.4

(open string), def 2.6.1
(operator), def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5

(parameter delimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5.4.1

text 3.3.5.2
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1

(primary), def 3.3.1
procedurf>, synt 2.3, 5.4.1

(procedure body), def 5.4.1
(procedure declaration), def 5.4.1 synt 5 text. 5.4.3
(procedure heading), def 5.4.1 text 5.4.3
(procedure identifier) def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4
(procedure statement), def 4.7.1 synt 4.1.1 text 4.7.3
(program), def 4.1.1 text 1
(proper string), def 2.6.1

real, synt 2.3, 5.1.1 text 5.1.3
(relation), def 3.4.1 text 3.4.5
(relational operator), def 2.3, 3.4.1

scope, text 2.7
semicolon ;, synt 2.3, 4.1.1, 5.4.1

(separator), def 2.3
(sequential operator), def 2.3

REVISED ALGOL 60

(simple arithmetic expression \, def 3.3.1 text 3.3.3
(simple Boolean), def 3.4.1
(simple designational expression), def 3.5.1
(simple variable); def 3.1.1 synt 5.1.1 text 2.4.3
space u, synt 2.3 text 2.3, 2.6.3

(specification part), def 5.4.] text 5.4.5
(specificator), def 2.3
(specifier), def 5.4.1
standard function, text 3.2.4, 3.2.5

(statement), clef 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete
section)

statement bracket, see: begin end
step, synt 2.3, 4.11.1 text 4.6.4.2
string, synt 2.3, 5.4.1

(string), def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes' " synt 2.3, 2.6.1" text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.31
subscript brackets [], synt 2.3, 3.1.1, 3.5.1, 5.2.1

(subscripted variable), def 3.1.1 text 3.1.4.1
(subscript expression), def 3.1.1 synt 3.5.1
(subscript list), def 3.1.1
successor, text 4
switch, synt 2.3, 5.3.1, 5.4.1

(switch declaration), def 5.3.1 synt 5 text 5.3.3
(switch designator), def 3.5.1 text 3.5.3
(switch identifier), def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1
(switch list), def 5.3.1 .

(term), def 3.3.1
ten 10, synt 2.3, 2.5.1
then, synt 2.3, 3.3.1, 4.5.1
transfer function, text ~.2.5
true, synt 2.2.2

(type>, def 5.1.1 synt 5.4.1 text 2.8
(type declaration), def 5.1.1 synt 5 text 5.1.3
(type list), def 5.1.1

(unconditional statement), def 4.1 .1, 4.5.1
(unlabelled basic statement), def 4.1.1
(unlabelled block), def 4.1.1
(unlabelled compound), def 4.1.1
(unsigned integer), def 2.5.1, 3.5.1
(unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

(upper bound), def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1
value, text 2.8, 3.3.3

(value part), def5.4.1 text 4.7.3.1
(variable), def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
(variable identifier), def 3.1.1

quantity, text 2.7 whiJe, synt 2.3, 4.6.1 text 4.6.4.3

END OF THE REPORT

NOTE: This Report is published in the Communications of the ACM, in Numerische Mathematik, and in The Computer Jour­
nal. Reproduction of this Report for any purpose is explicitly permitted; reference should be made to this issue of the
Communications and to the respective issues of Numerische Mathematik and The Computer Journal as the source.

Reprints are available as follows from the Association for Computing Machinery, 211 East 43 Street, New York 17, N. Y.:
Single copies to individuals, no charge; Single copies to companies, 50 cts.; Multiple copies: first ten, 50 cts. ea.; next 100,
25 cts. ea.; all over 100, 10 cts. ea.

Communications of the ACM 17

o

o

•

A/2

APPENDIX 2

Capitalization Symbol $

Lower case letters are transliterated into capital letters. Capital letters

are transliterated into a special capitalizing symbol followed by the capital

letter .. The capitalizing symbol is punched on cards by multiple punching of

+ and o. It is printed on the card, usually, as a + inside a o. When

the card is reproduced, the printing symbol is a stylization of a steer's

head. It is printed on the 407 as 0 on the main computer's printer as +
and on the 1401 printer under 930 program control as a 2 and superimposed.

It pi"in·t:s as a I on the sts terminals (IBM 1050).

•

0

•

A3/l

APPENDIX 3

Input and Output Using FORTRAN Format

The eleven procedures described in this chapter allow for input and

output governed by FORMAT's nearly as in FORTRAN programs. The procedures

are available as predeclared procedures; two of them, READ and PRINT, do

not adhere strictly to the rules of ALGOL 60 since they can be called with

any number of p~rameters.

1. The procedure FORMAT

FORMAT is called with two actual parameters; the first must be an integer

variable and the second must be a s'tring which is a FORTRAN Format (see

[3]) with the fo llowing conventions:

The Format written between the string quotes includes the outer
parenthesis of the FORTRAN Format.

The Format character for integers is J, not I.

The Format character for Booleans is AS"

The call causes the Format string to be assigned to (stored in) the

variable given as the first parameter and then later calls of READ

PRINT can use this format, see below. Naturally, the value of the

variable used as the first parameter should not be changed by other

assignments before the READ/PRINT statements referring to this

variable.

2. The procedures READ and PRINT

or

READ and PRINT allow for an arbitrary number <2: 1) of actual parameters.

The first may be an integer variable containing the format wanted (must

be assigned in a previous call of FORMAT), or it may be a string with

the format itself.

In a call of READ the following parameters must be names of simple or

subscripted variables of any type to which values will be assigned

according to the format and the data cards read. Each call 0'£ READ

initiates the reading of a new data card.

•

o

•

A3/2

In a call of PRINT the following parameters may be expressions of any

type, and the value of each expression is evaluated and printed

according to the format. Each call of PRINT causes printing to start

on a new line.

Reading or printing is continued until the list of variables or

expressions is exhausted; if the list of specifications in the format

is exhausted before this, the format list is repeated as described in

[3] •

It is impossible to read or print all elements of an array just by

giving the array identifier as a parameter.

The conversion between decimal and binary representations are carried

out by means of the input output routines in the FORTRAN Monitor System,

see [3]. If the type of the actual parameter does not fit with the

corresponding part of the format, the outcome may be a nonse·nse value

but no warning is given.

Example I

Example 2

begin integer i, j, fmt, fmt 3; Boolean b;

FORMAT (fmt, 1(2F5, A5)');
I i

FORMAT (fmt 3, 1(IHO, F4, F7, A5)');

READ (fmt, i, j, b);

PRINT (fmt 3, j, (i+j)*2, b);

end

begin integer fmt, i; array A[I:20];

for i := I step I until 20 do

READ (~(FIO.5)', A[i]);

FORMAT (frnt, ~(2E15.5)');

for i := 1 step 2 until 20 do

PRINT (~mt, A[i], A[i-f-l]);

end

This program will read 20 numbers from 20 cards and print them out with

2 numbers per line.

•

o

•

3.

A3/3

Supplementary Procedures for Input

The following 5 procedures may be used for reading several values, one

at a time, according to a specified format:

READING FORMAT with one parameter, a string or an integer variable,

supplies the format or the reference to the format which governs the

following data input by any of the three procedures below. If READING

FORMAT is called with an integ~r variable as the parameter, a previous

call of FORMAT must have assigned a format to that variable.

The real procedure READING REAL . (without parameters) has as its

(real) value the next item read from the data cards according to the

format defined by the last call of READING FORMAT.

The integer procedure READING INTEGER and the Boolean procedure

READING BOOLEAN correspondingly reads the next integer or Boolean value.

The procedure READING EXIT (without parameters) must be used to

signal the termination of input with the given format using the above

procedures, see the note and an example in 4 below.

Each call of READING FORMAT starts input from a new data card but

apart from that the card control is governed by the specified format.

4. Supplementary Procedures for Output

The following 3 procedures may be used for printing many values, one

at a time, according to a specified format:

PRINTING FORMAT with one parameter sets up the wanted format for

output, exactly as does READING FORMAT for input.

SAVE is called with one parameter which may be an expression of

any type. Each call sets aside the value of the parameters and all

these values will be printed by one subsequent call of the procedure

WRITE (without parameters) 0 Each call of PRINTING FORMAT starts printing

on a new line but otherwise the line control is governed by the specified

format.

•

o

•

A3/4

Use of the procedures described in 3 and 4 adheres further-­

more to the following

NOTE:

READING FORMAT

READING EXIT

PRINTING FORMAT

WRITE

activates the input mechanism.

deactivates the input mechanism.

activates the output mechanism.

deactivates the output mechanism.

Only one mechanism may be activated at a time.

No dumps or other input/ouput procedures may be called while a
mechanism is activated as above.

At most calls of SAVE may be made before WRITE is called.

Example 3

begin integer i, data; array x [1 : 100];

format (data, "-(FlO, E2008)'');

READING FORMAT (data);

end

for i := READING INTEGER while i < 100 do

x [i] := READING REAL;

READING EXIT;

PRINTING FORMAT (t(5E20.8)~);

for i := 2 step"2uhtillOO do save (x[i]);

WRITE;

This program will read pairs of one integer and one real number from

each data card (as long as the integer is < 100), and then print 50

numbers in 10 lines with 5 numbers per line •

A/4

• APPENDIX 4

Tape Unit Correspondence Table

L,,-gica1 No. Unit Normal ALGOL Use

-3 A3 PRINTER

-2 'B4 PUNCH

-1 A2 READER

0 illegal i11eAa1

1 B1

2 B2

3 B3

4 A4 Scratch

o 5 A5 library tape':

6 B5 library tape

7-16 See BC Users Manual

•

•

o

•

A/5

APPE:NDIX 5

Semicolon. Trace

The semicolon trace is useful for debugging programs which execute but fail

to give the expected results.

The comment control "comment: semicolon trace;" (or, alternately "comment:

semicolon trace := <constant>;") should appear before the first begin. It

sets up the semicolon trace by numbering all semicolons, and printing, after

each line in the listing, the number of the first semicolon on that line.

The conment control "comment: on semicolon trace;" turns on the trace: as

each semicolon is reached during execution, the number of that semicolon

is printed out. Up to 215_1 semicolons may be printed, unless the alternate

form "comment: semicolon trace := <constant>;" was used, whereupon the con-
15 stant replaces 2 -1 as the limit.

The conment control "comment: off ~,emico10n trace;" turns off the trace. The

trace may be turned on and off any number of times during a program .

•

o

•

R/l

REFERENCES

1. Users Manual. Computer Center, University of California, Berkeley.
First revision, September 1965.

2. P. Naur (ed.): Revised Report on the Algorithmic Language ALGOL 60.
Regnecentralen, Copenhagen 1962.

3. IBM Reference Manual. 709/7090 FORTRAN Programming System. Form
No. C 28-6054.

. '

•

o

•

Computer Center
University of Cal ifornia
Room 201, Campbell Hall
Berkeley, Cal ifornia

Gentlemen:

210 West Union Street, #20
Fullerton, California

October 10, 1966

I have read with interest the BC ALGOL Manual sent to me. I note
that the contributors to the manual have been given credit at the
beginning of the manual, hONever, my name has been omitted. I
would appreciate it if you could include my name among those of
the authors when the manual is revised.

Sincerely,

Tom Marl in

•

	BC_ALGOL-19660001_a
	BC_ALGOL-19660002_a
	BC_ALGOL-19660003_a
	BC_ALGOL-19660004_a
	BC_ALGOL-19660005_a
	BC_ALGOL-19660006_a
	BC_ALGOL-19660007_a
	BC_ALGOL-19660008_a
	BC_ALGOL-19660009_a
	BC_ALGOL-19660010_a
	BC_ALGOL-19660011_a
	BC_ALGOL-19660012_a
	BC_ALGOL-19660013_a
	BC_ALGOL-19660014_a
	BC_ALGOL-19660015_a
	BC_ALGOL-19660016_a
	BC_ALGOL-19660017_a
	BC_ALGOL-19660018_a
	BC_ALGOL-19660019_a
	BC_ALGOL-19660020_a
	BC_ALGOL-19660021_a
	BC_ALGOL-19660022_a
	BC_ALGOL-19660023_a
	BC_ALGOL-19660024_a
	BC_ALGOL-19660025_a
	BC_ALGOL-19660026_a
	BC_ALGOL-19660027_a
	BC_ALGOL-19660028_a
	BC_ALGOL-19660029_a
	BC_ALGOL-19660030_a
	BC_ALGOL-19660031_a
	BC_ALGOL-19660032_a
	BC_ALGOL-19660033_a
	BC_ALGOL-19660034_a
	BC_ALGOL-19660035_a
	BC_ALGOL-19660036_a
	BC_ALGOL-19660037_a
	BC_ALGOL-19660038_a
	BC_ALGOL-19660039_a
	BC_ALGOL-19660040_a
	BC_ALGOL-19660041_a
	BC_ALGOL-19660042_a
	BC_ALGOL-19660043_a
	BC_ALGOL-19660044_a
	BC_ALGOL-19660045_a
	BC_ALGOL-19660046_a
	BC_ALGOL-19660047_a
	BC_ALGOL-19660048_a
	BC_ALGOL-19660049_a
	BC_ALGOL-19660050_a
	BC_ALGOL-19660051_a
	BC_ALGOL-19660052_a
	BC_ALGOL-19660053_a
	BC_ALGOL-19660054_a
	BC_ALGOL-19660055_a
	BC_ALGOL-19660056_a
	BC_ALGOL-19660057_a
	BC_ALGOL-19660058_a
	BC_ALGOL-19660059_a
	BC_ALGOL-19660060_a
	BC_ALGOL-19660061_a
	BC_ALGOL-19660062_a
	BC_ALGOL-19660063_a
	BC_ALGOL-19660064_a
	BC_ALGOL-19660065_a
	BC_ALGOL-19660066_a
	BC_ALGOL-19660067_a
	BC_ALGOL-19660068_a
	BC_ALGOL-19660069_a
	BC_ALGOL-19660070_a
	BC_ALGOL-19660071_a
	BC_ALGOL-19660072_a
	BC_ALGOL-19660073_a
	BC_ALGOL-19660074_a
	BC_ALGOL-19660075_a
	BC_ALGOL-19660076_a
	BC_ALGOL-19660077_a
	BC_ALGOL-19660078_a
	BC_ALGOL-19660079_a
	BC_ALGOL-19660080_a
	BC_ALGOL-19660081_a
	BC_ALGOL-19660082_a
	BC_ALGOL-19660083_a
	BC_ALGOL-19660084_a
	BC_ALGOL-19660085_a
	BC_ALGOL-19660086_a
	BC_ALGOL-19660087_a
	BC_ALGOL-19660088_a
	BC_ALGOL-19660089_a
	BC_ALGOL-19660090_a
	BC_ALGOL-19660091_a
	BC_ALGOL-19660092_a
	BC_ALGOL-19660093_a
	BC_ALGOL-19660094_a
	BC_ALGOL-19660095_a
	BC_ALGOL-19660096_a
	BC_ALGOL-19660097_a
	BC_ALGOL-19660098_a
	BC_ALGOL-19660099_a
	BC_ALGOL-19660100_a
	BC_ALGOL-19660101_a
	BC_ALGOL-19660102_a
	BC_ALGOL-19660103_a
	BC_ALGOL-19660104_a
	BC_ALGOL-19660105_a
	BC_ALGOL-19660106_a
	BC_ALGOL-19660107_a
	BC_ALGOL-19660108_a
	BC_ALGOL-19660109_a
	BC_ALGOL-19660110_a
	BC_ALGOL-19660111_a
	BC_ALGOL-19660112_a
	BC_ALGOL-19660113_a
	BC_ALGOL-19660114_a
	BC_ALGOL-19660115_a
	BC_ALGOL-19660116_a
	BC_ALGOL-19660117_a
	BC_ALGOL-19660118_a
	BC_ALGOL-19660119_a
	BC_ALGOL-19660120_a
	BC_ALGOL-19660121_a
	BC_ALGOL-19660122_a
	BC_ALGOL-19660123_a
	BC_ALGOL-19660124_a
	BC_ALGOL-19660125_a
	BC_ALGOL-19660126_a
	BC_ALGOL-19660127_a
	BC_ALGOL-19660128_a
	BC_ALGOL-19660129_a
	BC_ALGOL-19660130_a
	BC_ALGOL-19660131_a
	BC_ALGOL-19660132_a
	BC_ALGOL-19660133_a
	BC_ALGOL-19660134_a
	BC_ALGOL-19660135_a
	BC_ALGOL-19660136_a
	BC_ALGOL-19660137_a
	BC_ALGOL-19660138_a
	BC_ALGOL-19660139_a

