UNIVERSITY OF
CALIFORNIA

COMPUTER

CENTER BERKELEY

BC ALGOL Manual - . L
S o ‘ " October 1966

\

'~ BC-ALGOL

o ~ University of quiforniq _ ‘
' Computer Center =~ ca
‘ ' Berkeley A ‘ : .

Computer Center

University of California :

Room 201, Campbell Hall : ’)
Berkeley, California 94720 v

BC ALGOL Manual Change Slip

Please send me changes and additions to the BC ALGOL Manual

until the close of the current semester. I understand that

changes will be sent to me at the address entered below unless
v , . P

a change of address is submitted to the Computer Center, 201

Campbell Hall,

NAME

ADDRESS

‘:» BC ALGOL MANUAL

October 1966

University of California
Computer Center
Berkeley

iii

Table of Contents

Introduction v v ... I
Chapter 1. The Relation Between BC-ALGOL and ALGOL 60. . . 1/1
1.1 Source Language + v « « v « « «11
1.2 . Use of Special BC-ALGOL Delimiters 1/2
1.3 .Restrictions of BC-ALGOL , . . ., . 1/2

1.4 Interpretations of the ALGOL Report 1/3
1.5 Arithmetic Variables and Expressions 1/7
1.6 Classes of Procedures +« + « « + + . . . - 1/8
1.7 Form of Source Card Deck 1/9
1.8 Size Limitations . . « v v v v v v o « & » » o . 1/10

1.9 Execution Times v v v v « + v & + « » « « 1/11

Chapter 2. Standard Functions and Timing Procedures . . . 2/1
2.1 Standard Functions . . . + « & v v v v v o . . 2/2

2.2 Timing Procedures v « & v v « & o« o » 2/3

‘:’ Chapter 3. Standard Input and Output Procedures 3/1
301 INPUE v v v 4 e v ke e e e e e e e e e . w30
3.2 Simple Qutput . . . ¢« v ¢ 4 4 s 4 v e o . v . s . 3/2
3.3 Printing Alphanumeric Information 3/5
3.4 Punch OUtpPUL &« & v v & v & « v o« o o = + » o« « .. 3/6
3.5 More Flexible Output . . v + « v v o & « « « » « 3/7

3.6 Character Handling Procedures . « + . + « « « . . 3/8
Chapter 4. Comment Control Options . . v v « & « + « . . « 4/1

Chapter 5. Error Messages . + « « « o + « o« o« + « « « » « 5/1

| 5.1 Translator Messages . . .« 4+ « » « « + + o+ o« = « « 5/1

5.1,1 Excess of Capacity « + . . + . « « + « « «» 5/1

5.1.2 Errors in bracket-like structures 5/2

5.1.3 Other erets in delimiter structures e o« 5/2

5.1.4 Operand errors « « o« o « « « « « « « « « « 5/4

5.1.5 Errors in declarations or specifications . 5/4

5.1,6 Type EXrors . + + 4 + . » » » « o + « « » 5/6

0 5.1.7 Preprocessor loader diagnostics 5/6

7.5.7 Use of INTERP, GETADD 7/10
7.5.8 An Example of Using an Assembled Procedure 7/12
7.6 Methods of Linkage . « . « . v + o v v « v « . 7/12

7.6.1 Code Procedures Loaded in Front of the ALGOL
Processor - Method 1 + + «» . » . 7/13

7.6,2 Code Procedures Loaded by the Preprocessor
Loader - Method 2 , 17/15

7.7 Specific Information About the Preprocessor @ R
Loader . « .+ v v v v o v e v e e e e e e . T/21

7.7.1 Declarations . . . o ¢ + » o« o« o . .. 1/21
7.7.2 Restrictions . . o + . o » v s 7/21
7.7.3 Error Diagnostics and Messages 7/22
7.7.4 Printout « ¢ o v « v ¢« ¢« o o o o 0 0 o . . 1/22
7.7.5 General . . .« . . v 4 v e v e e T/22
7.7.6 The Assembly Tape . + . « . + o « o « o « 7/22
7.8 An Interface Routine for FORTRAN II Binary Decks .7/23

Chapter 8. The Syllable String . + . « . « + 2 = « « « « .8/1
8.1 Introduction . « « o v v v v v v e v v o 0 .. . 8/1
8.1.1 Stack Addresses . « o« + + « o o« « » » . . 8/1
8.1.2 Program Addresses . o+ « « « « 5 o« « « » - 8/2
8.1.3 The Edited String . « « « . + « « + . . . 8/3
8.1.4 Form of the Syllable String « 8/4

8.2 Syllable String Examples . . . « . + v « « « . . 8/4
8.2.1 Declaration of Variables 8/4
8.2.1.1 Simple Variables 8/4

8.2,1.2 Own Declarations . « « 8/5

8.2.1.3 Array Declarations 8/5

8.2.1.4 Switch Declarations 8/6

8.2.1.5 Procedure Declarations 8/7

8.2.2 Assignment Statements . ; e« s+ e+« . . 8/8
8.2.2.1 Assigning Constants 8/8

8.2.2.2 Assigning Variables s e v e e . . . 8/8

8.2.2.3 Arithmetic Assignments 8/9

' 8.2.2,4 Array Assignments + . . . o 8/9
8.2.2.5 Boolean Assignments 8/10

Chapter 10.
10.1
10.2
10.3
10.4

Appendix 1
Appendix
Appendix
Appendix
Appendix

References

Library Tape Operations +» » ,» » » . -10/1
Introduction .« « « « o + « + 4 » & o s o+ .+« 10/1
Input/Output Selection + « + + & « « v » o » » . 10/1
Scratch Storage . « + . + « v « « s s s o4 o4 s ,10/2
Additional Facilities « . « + « » +« « + + &« » » .10/2

Report on the Algorithmic Language ALGOL 60. . .A/1
Capitalization Symbol & A/2
Input and Output Using FORTRAN Format.A/3
Tape Unit Correspondence Table Alb

Semicolon Trace .+ + « » + « + v« + s » + & + «» + A/5

.R/1

- * @ . LI v 9 . @ ® + @ a2 - . . . @ B P

vii

CrdSbem | MMQQB
mﬁi:‘;‘m)9\ mmmxf% s

Introduction

The present manual 1is the third revised and enlarged edition, and des-

cribes the BC-ALGOL System as developed bylRalph Love, Russell Briggs, Ken

Thompson, Ron Smith, Gary Anderson, Klaus Wirth, Gayne Winters, R. Sherman

Lehman, John McE€onnell and David Redell,] The revision was done begohn

McConnell,(David Redell

Chr. Gram, and R. Sherman Lehman. This manual

covers all the earlier writeups on the BC-ALGOL System, the input and output
procedures, the print and read procedures, the comment control options, the
revised diagnostics, the character and bit manipulation procedures, the use

of code procedures, and the syllable string. Furthermore, the manual includes
a description of tape handling procedures, the stack dump, library tape opera-
tions, new character handling facilities, and a run-time execution trace, The

notation used is that of the reference language (see Appendix 1).

This manual is not intended as a textbook in ALGOL Programming. It is,
rather, a reference manual describing the use of the BC-ALGOL System, and
thus assumes some degree of familiarity on the part of the reader with ALGOL
60. Beginning ALGOL programmers will find sections 1.1, 1.5 - 1.7, and
Chapters 2-5 most helpful, More advanced users will find the remaining sec-
tions of the manual useful inlltiriiingthe more powerful features of the

system,

The BC-ALGOL System is a program running under the FORTRAN Monitor
System (FMS) on the coupled IBM 7040-7094 system at the Computer Center,
University of California, Berkeley. The program consists of: a translator
(or pre-processor), and an interpreter (or processor). The translator
accepts a BC-ALGOL program (on punched cards) as source language and trans-
lates it into a string of operators and operands (called the syllable string)
written in a modified Polish notation., The translator also performs a

partial syntactical check on the source program,

1/2

If no errors are found, the interpreter executes the ALGOL program by

processing the syllable string interpretively.

If any error is found, the execution phase is not entered, and when more
than 8 different syntactical errors are found, translating is discontinued

at that point.

ALGOL 60

1. The Relation Between BC-ALGOL and ALGOL 60

1.1 Source Language

The BC-ALGOL source language is a punched card hardware representation
of ALGOL 60 as defined by the following transliteration table for the

basic symbols,

[\

o
v}

e oa

.

s > N
-}
Naeotd > Noeo-o

'EQV'
'"IMP'
"OR!

'AND'
'NOT'
'LSS'
'LEQ"
'EQL’
'GEQ'
'GTR

'NEQ'

+ & VIV UIAA g SCcyilg

X
*

See '""Capitalization Symbol', Appendix 2.

"Transliteration Table

BC ALGOL

ALGOL 60

. we ~ o~ o
L o |o
S lg -t

comment
while
for
step
until
do
integer
real
Boolean

array
switch

procedure

label

string

1/1

BC ALGOL ALGOL 60

'DIV' own
- value

'Go TO' true

'BEGIN' false
< if
.< then
% else
5 end
..)

' COMMENT ']

'"WHILE' ?

'FOR' ,

'STEP

'UNTIL' "

lDO'

'INTEGER '

'REAL'

'BOOLEAN'

' ARRAY '

'SWITCH'

' PROCEDURE '

'LABEL'

'STRING'

BC ALGOL

'OwN'
'"VALUE'
'"TRUE'
'FALSE'
"IF'
'"THEN'
'ELSE'
'END'

1/2

1.2 Use of Special BC-ALGOL Delimiters

1.3

BC-ALGOL includes the following fouy delimiters not mentioned in the
ALGOL 60 report:

Notation in Manual BC-ALGOL
assembly 'ASSEMBLY'
binary 'BINARY'
code 'CODE'
oct 'ocT!

The delimiters binary and assembly are used to allow the use of machine-

coded procedures; see sections 1,6, 1.7 and chapter 7.

The delimiter code allows the use of procedures precompiled and

included in the BC-ALGOL system; see section 1,6 and chapter 7.

The delimited oct is used to introduce constants written in octal rather
than the conventional decimal notation; integers preceded by oct will

be computed as base 8 rather than as base 10,

Furthermore the delimiter comment followed by a colon and one of several
special text strings is used as an instruction to the system causing a
special action at translation or execution time. (See Comment, Controls,

chapter 4.)

Restrictions of BC-ALGOL

Identifiers may have any length but only the first 18 characters (other

than blank spaces) are significant.
Integers may not be used as labels.

The subscript bounds for arrays declared own must be constants.

©

1/3

1.4 Interpretations of the ALGOL Report

We distinguish the interpretations given in this section from the res-
trictions stated previously. 1In the case of the restrictions, it is
recognized that the BC-ALGOL implementation does not implement ALGOL
60 fully as defined by the Revised Report. The interpretations, on
the other hand, represent choices of the implementers on difficult
questions where the exact meaning of the Report is not clear. The
user should be warned that other implementations of ALGOL are quite
likely to handle some of these questions differently. All references
in this section are to the Revised Report (see Appendix 1).

a. The order of evaluation of primaries in an expression and subscripts

of a subscripted variable is from left to right. (See Sections

3.1.4.2, 3.3.5.2,) The expressions occurring in array declarations

will be evaluated in the order of their occurrence in the block

head. (See Section 5.2.4,) The assignment of values to the

actual parameters ¢alled by value occurs in the order in which they

occur in the actual parameter list. (See Section 4.7.3.1.)

b. In addition to standard functions available without explicit
declarations (see Section 3.2.4) there are standard procedures
available without explicit declarations -- for example, input and
output procedures, An identifier used for a standard function
or procedure may, however, be either declared or used as a label,
In that case in the corresponding block the standard function or

procedure cannot be referred to since the rules of Section 4.1.3
apply.

c. Section 4.1.3 is interpreted as if the following addition were
made to the second paragraph: A program may be labelled. 1In this
context such a program should be considered as if it were enclosed

by begin and end and treated as a block.

1/4

d. Paragraph 4 of Section 4.5.3.2 is interpreted to mean: If none
of the Boolean expressions of the if clause is true, the effect
of the whole conditional statement will be equivalent to that of
a dummy statement except for possible side effects due to the

evaluation of the Boolean expressions.

e. The description of how the values assigned to the controlled
variable of a for statement are obtained is interpreted literally
only when the for list elements are arithmetic expressions or
of the form E while F . For an element of the form A step B
until C it is assumed that the execution described in section
4,6.4.2 is not dependent upon the order of evaluation of B and
C nor on whether B is evaluated more than once per step.* If
the controlled variable is a subscripted variable, then it is
assumed that the effect of the execution corresponding to a step-
until element does not depend upon whether the subscripts of the

subscripted variable are evaluatéd more:than once per. step.

Section 4.6.5 is interpreted as if the following sentence were
added: Upon exhaustion of each step-until element or while
element of a for list the value of the controlled variable is

undefined.

f. The values of own quantities are handled as if they were values
of quantities local to a block enclosing the entire program. The
scopes of the identifiers for own quantities are, however, deter-
mined by their declarations., (This treatment of own variables is
certainly the intended one for own variables not declared within
a procedure body. (See Section 5.) For own variables local to a
procedure body, what the intended interpretation is, especially

when the procedure is called recursively, is highly controversial.)

At present B and C are evaluated, in this order, once per step.

/8§

A procedure whose declaration begins with a type declaration may
be called by means of a procedure statement. If the procedure
identifier occurs explicitly as a left part in an assignment
statement, then it will be treated as in Section 5.4.4 but upon
exit from the procedure body the value of the procedure identifier
will be lost.

A designational expression may be called by value if the corres-
ponding formal parameter is specified by the specifier label.

(See Sections 4.7.3.1, 5.4,5.) 1In this case when the formal
parameters in the value list are assigned values before entering
the procedure body; the designational expression is evaluated and
the resulting label substituted for the formal pérameter throughout
the procedure body. If the designational expression is undefined,

then the effect of the procedure call is undefined.

Specifications of formal parameters called by name are ignored,

(See Section 5.4,5.)

Sections 4.7.4 and 5.4,3 dre idterpreted as requiring that the
formal parameter list of a. procedure heading may not contdin

two or more formal parameters which are identical.

The exact effect of a function designator is left implicit in
the ALGOL Report. We interpret it as if the following addition

to Section 4.7.3 were made:

A function designator also calls for the execution of a
procedure body. Where the procedure body is written in ALGOL,
the effect of this execution will be equivalent to the effect
of first performing the operations described in Sections 4,7.3,1
and 4,7.3.2 at the time of evaluation of the function designator,
The modified procedure body is then executed as if it were located

at the'place where the function designator occurs, with conflicts

1/6

between identifiers handled as described in Section 4.7,3.3.
Statements and expressions within the procedure body containing
the procedure identifier are handled as prescribed in Section
5.4,4, If in the execution of the procedure body a go to state-
ment leads out of the procedure body, then evaluation of the
expression containing the function designator is discontinued

and the next statement executed is determined as in Section 4,3.3,
Otherwise, upon exit from the procedure body evaluation of the
expression in which the function designator bccurs is continued,
If the function designator occurs in an array declaration, then
according to Section 5.2,4.4, the evaluatlon of the function desig-

nator must be completed,

The rules in Sections 4.7.4, and 4.7.5. are interpreted as

holding for function designators as well as procedure statements,

1, Section 4.3.5 is interpreted to mean the following: A switch
designator will be said to be out-of-bounds if its subscript
expression when evaluated according to Section 3.5.4. assumes a
value other than 1, 2, ..., n where n 1is the number of entries
in the corresponding switch list. A go to statement with a desig-
national expressions which is an out-of-bound switch designator
is equivalent to a dummy statement, except for possible side
effects occurring in the process of evaluating the switch desig-
nator., If the designational expression is undefined for any
other reason, then the go to statement is undefined., (Note that
when the substitution for a formal parameter specified by label
is made, the resulting designational expression cannot be a
switch designator because it is surrounded by parentheses. See

Section 4.7.3.2.)

1.5

1/7

Arithmetic Variables and Expressions

Variables of type integer and real are represented by normal integer

and floating point numbers in the IBM 7094, Therefore the range for

integer is
abs (integer)< 34 359 738 368 = 2435 .
and the range for non-zero reals is

24(~128) < 2.910-39 < abs (real) < 1.6..38 < 24127,

10

The real variables are stored with 27 significant bits. Thus the last

bit of a real has a relative value between 710-9 and 1510-9 .

Each arithmetic operation is rounded correctly after normalization of
the result; hence, the relative error in the result has an absolute

value of at most 7.51099 .

1/8

o 1.6 (Classes of Procedures

In keeping with the provisions of the Revised Report Sections 4.7.8,
5.4.1, and 5.4.6 (see Appendix 1), a procedure body may be either

an ALGOL statement or <code> . In BC-ALGOL, <code> refers to pro-
cedures in machine language, some of which are supplied by the sys-

tem, and others of which may be loaded with the user's program. The

classification is as follows:

procedures

0 body = ALGOL statement body = L:ode>

i]

predefined in system included in user's program
must be predeclared binary assembly
declared in (see Chapter 7) (see Chapter 7)
block 1 as
code I
(see Chapter 5) predeclared by loaded by user
‘ system with own copy
(see Chapter 2 of processor
and Appendix 3) (see Chapter 7)

O

1/9 |

1.7 Form of Source Card Deck

BC-ALGOL programs are run under the FORTRAN Monitor System (under the

DCS Monitor System) and require two standard monitor control cards before
and one after the source deck. After the 1last end of the ALGOL program
‘there must follow a card having. the:character: $ in column 1l this may
‘be followed by cards with data to be fead by ‘the ALGOL. program.” The set-
Wp .15 (e’ al¥o [1])¢

a. One normal JOB card:

cols. 1-4: $JOB
cols. 8-11: <job number>

cols. 16-36: <optionsp»(time limit, page limit, card limit, rush,
numbetr of ‘copies)
cols. 37-60 <name .and ‘other.identification>

b. An FMS control card:

cols. 1l-4: SFMS
cols, 8-12: ALGOL

c. The ALGOL source program (and binary decks, if any)
d. A card with $ “in column 1
e. Data cards, if any

A normal EOF card:
cols: 1-4: SEOF

Binary decks may be put anywhere in the ALGOL source program;.s€e

chapter 7 for :futther details.

The ALGOL program must be punched in columns 1-72, The contents of

cols, 73-80 are skipped by the translator (but are printed disjointly in
the listing of the program and may be used for card identification pur-
poses.) Blanks and shifting to a new card have no significance except
that a $ (the transliteration of semicolon) should not appear in column

1 because of possible confusion with Monitor control cards.

1/10

1.8 Size Limitations

The finite sizes of available storage and of the tables used by the

translator impose some restrictions upon the size of a program,

a. Total Storage: The total storage available for the
translated program is approximately
15000 cells. In the stack, each simple
variable occupies 2 cells and each array
element 1 cell. The store required for
the program varies greatly with the pro-
gram's structure, but for estimation
purposes, it may be assumed that 100
statements occupy 400-500 cells.

b. Blocks and identifiers: The maximum number of statically nested
blocks allowed in a program is 32, No
more than 63 identifiers may be declared
in any blockhead, and a maximum of 330
may be current at any time. No more than
800 identifiers total may be declared in

any program,

There are some further limitations which only very exceptional programs
will exceed. Nearly all such violations give rise to appropriate error

messages (see chapter 5).

1/11

o

1.9 Execution Times

The following table shows some selected execution times for the basic
operations (timings on the standard functions are found in the next
chapter). The times given are rough averages and may be used to make

a first estimate of the running time for a program.

millisec,
assignment: a :=b 0.2
arithmetic operations, e.g., rl := r2 + r3 0.3
Boolean operation, e.g.s, bl := b2 b3 0.25
exponentiation: rl :=r2}i , where i = 1,2,3 0.5 - 0.6
rl :=r2 }r3 0.8 - 0.9
transfer: go to L 0.2
if clause: if b then 0.1

for statement:

for il := i2 step i3 until i4 do initialization 0.8
each step
‘:) for il := 12, i3, ... do each list-element 0.6
procedure call:
no parameters: P; 0.4
one simple parameter: P(1); 0.7
block head
with simple variable: begin real rl; 0.15
with array: begin array A[l:2]; 0.4
reference to subscripted variable
with one subscript A[i] 0.1
with two subscripts B[1i, j] 0.2

2/1

2, ‘Standard Functions and Timing Procedures

2,1 Standard Functions

The predeclared standard functions include all those recommended in

[2] and, in addition, the hyperbolic tangent and the decimal logarithm.

For each of them the code consists of some parameter linkage and,

(except for abs, entier, and sign) a call to the appropriate library

subroutine under the FMS Monitor.

The following table shows for each

standard function 1) the library subroutine used, 2) the length of the

code, 3) the average time used per call, and 4) the accuracy obtained.

Further details on the algorithms are found in the write-ups for the

subroutines, available from the Computer Center Library.

Standard FMS Sub- Number Execution
Function routine of cells time per Comments, ;errors
used used call

abs(x) - 10 0.15 millisec as described in [2]

entier (x) - 13 0.2 millisec as described in [2]

sign (x) - 10 0.2 millisec - as described in [2]

sqrt(i) BC ROOT 82 0.3 millisec calculates‘le] and
terminates with a diag-
nostic if x < 0 ,

cos(x), BC SIN 182 0.4 millisec rel. error < 10“8 except

sin(x) for very large arguments

arctan(x) BC ATAN 1104 0.4 millisec calculates the principal
value,
o w N
-3 < artan < 2
rel. error < 10-8

exp(x) BC EXP 94 0.4 millisec if x > 88.028, an over-
flow message ends execu-
tion. If x < -88.028,
the result is zero.
rel. error < 21-27 yhere
i = number of integral bits
in x.

tanh(x) BC TANH 114 0.4 millisec calculates the hyperbolic

tangent with rel. error <10“‘8

except for x near .00034 or
.17 where the rel. error may
be near 3 X 10-8

2/2

Standard FMS Sub- Number Execution
Function routine of cells time per Comments, errors
used used call

In(x) BC LOG4 107 0.4 millisec if x < 0, a diagnostic
ends execution. rel.
error < 3 % 10-7

log(x) BC LOG & 107 0.4 millisec calculates loglo(x)
Errors and diagnostic
as above.

With the exception of entier and sign they are all real procedures. The para-

meters may be of type real or integer.

2,2

Timing Procedures

Two timing procedures are available; they are predeclared and should not
be declared in the user's program. One is for setting a time limit for

the execution, and the other one is for obtaining the time left,

procedure settime(x); .

causes execution to be interrupted x seconds later (unless a new call of
settime is executed before that). When execution is interrupted the

message OVERTIME TRAP and a stack dump are printed.

real procedure get time;

causes the amount of time remaining until interruption to be returned

as the value of gettime. A call of settime must be executed previously.

The procedures use the automatic ''clock" in cell 5 (and converts the

contents of it into seconds).

3/1

3. Standard Input and Output Procedures

The input-output procedures which are described in this chapter have been

designed so that they are procédures’in the sense of the ALGOL Report., Al-

though their procedure bodies must necessarily be in code because they deal

with input-output, their headings can be written in AIGOL., For this reason

procedures having a variable number of parameters have not been included.

All procedures described in this chapter are available as predeclared pro-

cedures.
1. Input

For input the procedure input with one actual parameter is used. The
parameter should be g variable which is to be assigned a value obtained
from a data card, The variable: may be of any type and can be either

a simple variable or a subscripted variable. . Numbers and logical values
can be punched on the data cards separated by commas., One or two con-
secutive blanks spaces within a number will be treated as insignificant,
but three or more blank spaces can be used in place of a comma for
separating numbers. Only columns 1-72 of the card will be read. A
number must not be split between two cards. The last number on a card

need not be followed by a comma.

Numbers on data cards which are ALGOL :numbers (see Section 2?5 of the
ALGOL Report) and satisfy the following additional restrictions will be
handled properly:

(1) An integer must be less than 24 35 in absolute value.

(2) A number of type real may not have more than 2 digits in its
exponent part.

(3) A decimal number may not have more than ten digits before
the decimal point.

(4) A number of type real must be equal to 0 or have absolute
value in the range from 16'38 to ;38

(5) Three or more consecutive blanks may not occur within a number.

(6) Either '10' or the letter E can be used as a transliteration

of 10°

3/2

An ALGOL number may not end with a decimal point. However, standard
output routines in local use produce such numbers as punched output.
Consequently, such numbers are accepted as data by input with their
conventional meanings. If ‘a data item cannot be handled properly by
“input, the program will be terminated after the printing of an error

message.

A number is first read into the computer and then if the type of the

number differs from the type of the actual parameter, a conversion is
performed before assigning it as a value to the actual parameter. For
integers the number read in agrees exactly with the number represented

on the data card.

For numbers of type real the decimal number part of the number on the
card is truncated after 10 digits and the resulting number converted
to floating point form with a relative error which will not exceed
830~9 .

Logical values may be represented on the data cards by 'TRUE' and
YFALSE' . (The alternate representations TRUE and FFALSE are
accepted, but their usage is strongly discouraged.)

procedure input (a);

comment Assigns to a as value the next number or logical wvalue

represented on the data cards;

Simple output

. For beginning use the procedures output , line , and page will be

sufficient for output. The procedure output has one parameter, The

actual parameter can have a value of any one of the three types real,

integer, or Boolean. The pfinter used:tith the 7094 computer

has available 131 printing positions on each line. If the procedure
output is used without calling the format setting procedures des-
cribed in Section 5, then each number or logical value will be printed
in a field occupying 20 printing positions. Each call of output will

cause an additional number to be printed on the same line as long as

3/3

space remains. If insufficient space on the line remains, then a new
line will be started automatically. Also, a new line can be started

at any time by calling the procedure 1line which has no parameter.
Blank lines can be obtained by additional calls of 1line . A new page
can be started by calling page , a procedure’'with:no parameters. ' .To
leave space between two successive fields on a line the procedure
spaces with one actual parameter can be called. The actual parameter
gives the number of blanks spaces to be left. Thus spaces (10) would

cause 10 blanks spaces to be left.

A number printed will be adjusted to the right in the field. If the
number printed is of type real, then it will be printed in floating
decimal point notation with one digit before the decimal point and

seven digits’after the decimal point. For example, the number 12.754
will be printed in the form 1.275400E 01 with seveh blank spaces
'before the first digit. A number of type integer will be printed as a
decimal integer. If the value of the actual parameter of output 1is

a logical value, then FALSE or TRUE will be printed right-adjusted
in the field.

A line of printing which has been begun by one or more calls of the
procedure output will always be finished and a new line begjin when
one of the procedures title, pfint, or printing format is called

or when a dump 1is made.

procedure output (x);
comment Causes the value of x to be printed. A new line is not begun

if space remaing on the previous line;

procedure line;
comment Starts a new line;

procedure nlcr;

comment New line, carﬁigge return, This procedure is completely equi=~

valent to line;

3/4

procedure page;
comment Starts a new page;

procedure spaces (n); value n; integer n;

comment Causes n blank: spaces to be left in the line being printed
provided n > 0, If there are less than n spaces remaining
in the line, the line will be filled with blanks and a new
line will be started at the left margin. If n <0 , the pro-

cedure has no effect;

Example 1. The following program will produce a table on each line
of which an integer will appear with its square root and cube root. Fifty
lines will appear on each page. The length of the table is determined by

a parameter read in as data.

begin integer i, n;

page;

for i:=1 step 1 until n do
begin gutput (i);
output (sqrt (i));
output (i 4 (1/3));
line;
if i = (1 : 50) x 50 then page

end

end

Example 2. Procedures to print a given number of values on a line
can be constructed easily. The following declaration can be used to

define a procedure for printing three numbers on a line.

procedure print 3(a,b,c);
begin output (a); output (b); output (c); line end;

3/5

Printing alphanumeric information

The procedure text is used to place a text in the line being currently
form for output. Thus it can be used to print titles, column headings,
and error messages. The procedure title can be used to print a title

which is read from data cards.

procedure text(s); string s;
comment Causes the text given by the string s to be placed in the line

being printed. If enough space does not remain on the line for

the entire text, then the text will be continued on subsequent

lines;

procedure title;
comment When this procedure is called, two new data cards are read and

the contents of columns 1-72 on the first card and 1-59 on the
eecond card are copied to form a printed line with 131 charac-

ters. The remainder of the second card is skipped;

Example 3. In Example 1 a title could be printed at the top of
the first page of output by inserting the following four statements
after the first call of page.

spaces (12);
text (Stable_of _square_roots _and,_cube_roots");
line; line;

Note that the string blank in the hardware representation is represented

by a blank space. Thus one writes

TEXT('('TABLE OF SQUARE ROOTS AND CUBE ROOTS')')$

3/6

Example 4. Suppose one wished to print three results, the values

of n, x, and y. This could be accomplished by the following statements:

text (én :=?); output (n); spaces (10); N
text (fx :=?); output (x); spaces (10);
text (%y :=%); output (y); spaces (10);

Example 5, The following program draws a graph.

begin integer i;

page;
for i:= 0 step 1 until 50 do
begin spaces(sin(6.283 X 1/50) X 40 + 40);
text(¢.?); line

end

end

Punch output

The procedure punch when called has the effect that subsequent calls of the
standard ocutput procédures will ‘cause. numbers to?beqpunchédfoﬁﬁéardsfrétﬁer
than printed. . ThHis will be:useful if the numbers are to bé used as data for
somg;qtherﬁprogngm,;:Iflthey;ane to -be pegdﬁwithﬁ input- it~will;beﬁnecessary
to leave-:sufficient space so that numbers will be separated by at least

three blank spaces. For integers a field of width 15 is sufficient,.

For a number of type real a field of width 17 is sufficient if the

number is punched in floating point form. When punching a card for use

with input only the first 72 columns of the card may be used for ‘
punching information to be read. To change back to printing after

punching, a call of the procedure printer is made. After a call of

punch the procedure .line has the effect of starting a new card.

procedure punch;

comment Causes the card punch to be used for output.rather’ -

than the printer. All 80 columns of the card may be punched;

procedure printer;

comment Causes a return to the printer for output. The line length is

reset to be 131 print positions;

3/7

More flexible output

The procedures real format , integer format , and boolean format are
used to change the formats according to which values of the corresponding
types are printed or punched. Each of these procedures sets a format
specification which remains in effect until the next call of the same
procedures or until the end of the program if there is no later call.
Thus, the statement integer format (5) has the effect that all numbers
of type integer which are printed by means of output will be printed

in fields of width five until the next call of integer format . Note
that it is possible to give a new format specification with each cell

of output , but usually this will not be necessary.

procedure integer format (n); value n; integer n;

comment This procedure has the effect that number of type integer
printed or punched subsequently by output will appear right-
adjusted in fields of width n provided 1 < n < 72;

procedure boolean format (n); value n; integer n;

comment logical values printed or punched by output will occupy fields
of width n positions provided 5 < n < 72, Either TRUE fol-
lowed by a blank space or FALSE will be printed right-adjusted
in the field;

procedure real format (fixed n, d); value n,d;

Boolean fixed; integer n,d;

comment Numbers of type real will be printed or punched by output in
fields of width n with d digits after the decimal point pro-
vided 2<n<72 and 0<d< 9. If the parameter fixed has
the value true, then the numbers will be printed in fixed point
notation without an exponent. If fixed has the value false, then
the number will be printed in floating decimal point notation with
an exponent and with one digit before the decimal point; A num-
ber of type real having absolute value greater than 227-1(1.3x108)
will be printed incorrectly if the parameter FIXED has the value
true. If real numbers this large are to be printed, then the para-

meter FIXED should have the value false;

3/8

The above procedures have restrictions for their parameters of type integer.
If an erroneous call is made with an actual parameter having a value out-
side the permitted range, then a return is made to the standard format with

a field of width 20 for values of the corresponding type.

Example 5. If the number to be printed will not fit in the field spe-
cified for it, then the sign and most significant digits of the number will
be lost. As an example of how this can be avoided, consider the following
statements:

real format (abs(x) < 1000, 10, if abs(x) < 1000 then 5 else 3);

output (x);
which will assure that x can be fitted in a field of width 10,

Example 6. The output given for the example in Section 1.4 of A Guide
to ALGOL Programming by D. McCracken could be handled by the following

statements:

real format (true, 10, 3);

integer format (6);

output (a); output (b); output (c);
output (x 1 real); output (x 1 imag);
output (x 2 real); output (x 2 imag);
output (roots); line

Character handling procedures

The procedures described in this section can be used in connection with the

procedures input , output , and text for input or output of a single character.

procedure in character (c); integer c:

comment This procedure assigns to ¢ as value the BCD representation of the
next character on the data cards. The BCD representation will be an
integer between O and 63 inclusive. If in character is called

immediately after column 72 of a data card is read by a previous call

of in character, then the value 58 representing an end of line

character will be assigned to c¢ . Another call of in character
will result in the first character on the next data card being read.
If in character is used after a call of input , the character
read will be the one immediately after a comme terminating the num-
bei, the first character after three successive blank spaces ter-

minating the number, or the first character on the next data card;

3/9

procedure new input line;
comment This procedure causes the remainder of the current data card
to be skipped. A subsequent call of input or in character

will read data from the next data card;

procedure out character (c); value c; integer c;

comment This procedure places the character whose BCD representation
is the integer c¢ on the current output line. If the charac-

ter will not fit on the current line, then a new line is started;

integer procedure character (s); gtring s;

comment This procedure assigns to the function designator the BCD repre-
sentation of the first character in the BC-ALGOL hardware repre-
sentation of the first basic symbol in s after the initial left
string quote. The BCD representation is an integer between 0
and 63;

Example 7. The following program reads in arithmetic expressions
containing the variables x and y , the binary operators + and X ,
and parentheses. Each expression is supposed to be on a separate data
card and is terminated by the first blank space on the card. The pro-
gram transforms these expressions into Polish notation and prints out
the resulting Polish strings. The priority scheme used is similar to
that currently employed by the preprocessor in the BC-ALGOL system.

begin integer ¢, 1, j, n;

integer array stack [0:50];

integer procedure priority(c); value c; integer c;

priority := if ¢ = character(*(®) then O

else if ¢ = character(®)?) then 1
else if ¢ = character(¢+’) then 2
else if c = character(¢x?) then 3 else -1;

start: input(n);
for j :=1 step 1 until n do

begin.:. new input line; line; i := 0;

3/10

next: in character(c);

if ¢ = character(°x?) U ¢ = character(¢y?) then
begin out character(c); go to next end;
if ¢ = character(%(?) then go to put on stack;
check: if i > 0 then
begin if priority(c) < priority(stack[i]) then
begin out character(stack[i]); i := 1 - 1;
go to check
end ,
end;
if c=cha'racter(")’) then begin i:=i~1; go to next end;
if priority(c) > 0 then
put on stack: begin i := i+l; stack[i] := c¢; go to next end;
line
end

end

4/1

4, Comment Control Options

The use of the delimiter comment allows the programmer to add notation to
his program for easier understanding. The comment has no effect on the

processing of the program except as described in this chapter.

The following comments when inserted in the ALGOL source program will

perform the described control functions during the translating (pre-processing)
phase of computation of the ALGOL program. Comments may also appear outside
of the ALGOL source program, When comments follow the last end, a semicolon:

must follow the delimiter end before the delimiter comment.

Comment Control Card Function

Listing Controls:

comment: page; The listing of the sotrdé program will start
on a new page, with a heading specified by
the title control card.

comment: title; The next card in the source is the title to
be put on the top of a page when the page
control card is used.

comment: stop print source; This is used to delete printing of the
source program. The comment controls,
name list, page, and title are disabled
when this is used.

comment: start print source; This is used to resume printing of the
source program,

comment: name list; The translator will print out the current
name list at the point where the control
card is located.

comment: print string; The Syllable String (see chapter 8) will
be printed after the source program has
been completely translated or at a ter-
minating diagnostic.

comment: loader list; This is used to obtain the storage map,
entry points, transfer vector, and a
listing of the relocated object program
for each code procedure loaded by the
Pre-processor Loader.

comment: sts list; This is used when operating in the STS
system to speed the printing of source
programs by the 1050 terminal., The
identification field is deleted,

4/2

Comment Control Card Function

Execution Time Options

comment: no array tests; This is used to delete the testing for
correctness of bounds and dimensions in
the pre-processor and in the processor.

comment: skip array print; This is used to delete the printing of
arrays when a stack dump ig imade by the
processor.
comment: variable number of This is used to allow the next procedure
parameters; declared to be used with any number of
parameters.
comment: no parameter tests; When this is used the pre-processor

and the processor do not make any tests
as to correctness of the number of para-
meters in any procedure statement.

comment: common; This is used to allow externally coded
procedures to use COMMON, This has the
disadvantage that the source program's
name list is destroyed and cannot be used
by the processor with the stack dumps.

comment: dump; This will cause the processor.to:giye
a stack dump at the point in the program
where the control card is placed. This
control card may not be put in the block-
head, or before the first begin.

comment: dump number := c; This is used to obtain a stack dump =«
locations past the accumulator pointer
at the time the dump is requested (where
¢ 1is a constant).

Semicolon Trace Option (see Appendix 5)

comment: semicolon trace; This informs the system that the semi-
or colon trace will be used.

comment: semicolon trace := c;

comment: on semicolon trace; Turns on the semicolon trace.

comment: off semicolon trace; Turns off the semicolon trace.

Library Tape Options (see Chapter 10)

comment : library A5; This will assign unit A5 as a library tape.

comment: library B5; This will assign unit B5 as a library tape.
comment: <filename>; This will insert the file named <filename>

at this point in the source program.

Comment Control Card

Input Tape Options (see Chapter 10)

comment: scratch tape;

comment: source tape;

Function

Causes cards to be read from unit A4
rather than from the source card deck.

Resets the system to resume reading cards
from the source card deck.

5/1

5. Error Messages

The system performs a nearly complete syntactical check of the source pro-
gram. Most of this is performed by the translator (pre-processor) and the
error messages from this phase will appear in the listing of the program
immediately after the statements causing the messages. Some syntactical
and some semantic check is performed at execution time (by the processor)
and an error messages from this phase will appear among the output from

the program.

During translation, the translator will continue working on the source
program until 8 different error types are recognized, but the execution

phase will never be entered when an error is found.

An error found at execution time results in a message and a dump, and

further execution is deleted.

5.1 Translator Messages

Below follows a list of the error messages from the translator. Many
of them are followed by a reference to [2], not shown here. In most
cases, a short explanation or an example of an ALGOL text which could

cause that particular message is given.

5.1.1 Excess of Capacity

¥k THE MAXIMUM NUMBER OF DECLARATIONS HAS BEEN EXCEEDED IN THE PRESENT BLOCK.

The maximum number allowed is 63.

*% THE MAXIMUM NUMBER OF FOR LIST ELEMENTS IN A FOR LIST HAS BEEN EXCEEDED.

The maximum number allowed in 100,

*% OPERATOR STACK SIZE EXCEEDED.

An expression requires stacking of more than 100 operators
(or parentheses) during translation.

*% LENGTH OF NAME LIST EXCEEDED.

The maximum number of names allowed at once is 330.

%

*%

*%

*k

*%

*%

k%

*%

*%

*%

*%

*%

*%

5/2

5.1.2 Errors in Bracket-like Structures

THE END OF YOUR DECK WAS REACHED WHILE PROCESSING A STRING. THE
NUMBER OF MISSING RIGHT STRING QUOTES IS <integer>. THIS STRING
BEGAN AT WORD ADDRESS <integer>.

Ex: Dbegin text (‘UHA) end

THE END OF YOUR DECK HAS BEEN REACHED. THERE ARE <integer> '"'BEGIN'S"
FOR WHICH NO "'END'S" HAVE BEEN FOUND.

Ex: Dbegin; begin; end

A PROGRAM MUST BE A BLOCK OR A COMPOUND STATEMENT.
Ex: A program not enclosed between begin and end .

THERE ARE <integer> MORE ")' THAN " (' IN THE LAST STATEMENT,
Ex: a := (b-c) d + £f) ;

THERE ARE <integer> MORE " (' THAN ")'" IN THE LAST STATEMENT.

THERE ARE <integer> MORE)., THAN . (IN THE LAST STATEMENT,
Ex: a :=M (i,j]l + 2 ;

THERE ARE <integer> MORE . (THAN). IN THE LAST STATEMENT.

5.1.3 Other Errors in Delimiter Structure

THE NUMBER OF '''"IF'S" AND '"THEN'S'" DOES NOT BALANCE,
Ex: if a> b do x :=0 ;

AN "'ELSE'" OCCURS IN A CONDITIONAIL STATEMENT WHICH CONTAINS NO "'THEN'",
Ex: if (a> b) then a :=0 else b :=1 ;

"'ELSE'" DOES NOT OCCUR IN A CONDITIONAL STATEMENT. POSSIBLY THERE IS
AN UNWANTED "$" AFTER THEN "''THEN'",

Ex: if a> b then a := 0; else b :=1 ;

THE CURRENT "'DO''" IS NOT IN A FOR STATEMENT,
Ex: for i :=1; dos :=s+b ;

A "'DO'" IS IN A FOR STATEMENT BUT HAS NOT BEEN PRECEDED BY AN "=",

Ex: for a, b, cdo s :=s + t ;

THE SEPARATOR "'WHILE'' IS NOT IN A FOR STATEMENT,
Ex: for i :=i+ 1 ; while b< 0 do s :=s+ ¢t ;

5/3

THE SEPARATOR "'WHILE'" OR THE SEPARATOR "'UNTIL'" IS NOT IN A FOR STATEMENT,
Ex: ; i :=1 step 1 until 10 do s := s - N[i] ;

AN "'EQL'" HAS BEEN USED AFTER A "'FOR'' WHERE AN '"='" WAS EXPECTED.
Ex: for i =1 doa:=0 ;
AN "='"'" WAS EXPECTED AFTER THE LAST "'FOR'' PERHAPS AN "'EQL'" WAS USED.

THE SEPARATOR "'UNTIL'' IS NOT PRECEDED BY A "'STEP'",
Ex: for i :=1i+ 1 until 10 do t :=t M[i] ;

THE SEPARATOR "JSTE?'"TIS'NOTfINNA;FOR»STATEMENT.
Ex: for 1 :=1; step 1 until 10 do s := s + M[i] ;

ILLEGAL SYMBOL IN LAST FOR STATEMENT,

Ex: for i := 1 then x :=0 ;

ILLEGAL DELIMITER USED IS "'<string>'" ... POSSIBLY A MISSING ' OR MIS-
SPELLED DELIMITER

‘Ex: begin ream a, b ;
THE LAST COLON IS NOT PRECEDED BY A LABEL,
Ex: a:=>b;
tx =0
A "," HAS OCCURRED IN AN ILLEGAL LOCATION, A ''$" WAS EXPECTED HERE,
Ex: A:=B+C, B:=C+ D ;
AN "=" HAS BEEN USED WHERE AN "'EQL'" WAS EXPECTED.,
Ex: if a :=Db then s :=0 ;
ILLEGAL SYMBOL ORDER FOLLOWING " 'BEGIN'",
Ex: Dbegin ,
ERROR IN SYNTAX IN THE LAST STATEMENT,

This may occur in different contexts.

INCORRECT LEFT PART OF ASSIGNMENT TO FUNCTION DESIGNATOR,
Ex: real procedure x(a);
x(a) := a * 2;

ek

*%k

*k

ot

%k

*%

*%

%

*%

%%

5/4

5.1.4 Operand Errors

AN INTEGER LARGER THAN 2*%*35-1 IS NOT ALLOWED.
Ex: x := 34359738368 ;

A DECIMAL POINT MUST BE FOLLOWED BY A DIGIT,.
Ex: y =4, ;

A DECIMAL POINT OR LEFT BRACKET OCCURS ILLEGALLY,
Ex: z := 45 [B] ;

AN EXPONENT PART IS IMPROPERLY FORMED.

Ex: a := 510N H

A NUMBER OUTSIDE THE RANGE OF FLOATING POINT NUMBERS IS NOT ALLOWED.

Ex: b := 5,200 ;

A LETTER OF A '(" CANNOT LEGALLY FOLLOW A NUMBER.
IMPLICIT MULTIPLICATION IS NOT ALLOWED.

Ex: ¢ := 5A ;
Ex: d := 16(B) ;

SYSTEM OR MACHINE ERROR., PLEASE REPORT THIS TROUBLE,

See your instructor or a Computer Center consultant,

5.1.5 Errors in Declarations or Specifications

THE PRESENT IDENTIFIERS <identifier> IS DOUBLY DEFINED. THE ALGOL
PREPROCESSOR ONLY RECOGNIZES THE FIRST 18 SIGNIFICANT CHARACTERS.

Ex: begin real a,B, c;
a: b := 0;

Eg: procedure P(A, B, C, A) ;
DECLARATIONS MUST OCCUR IN A BLOCKHEAD, NOT IN THE MIDDLE OF STATEMENTS,

Ex: begin real a; a :=0 ;
procedure P;

<identifier> IS AN UNDEFINED NAME,
Ex: begin real al; a2 :=0 ;

%

*%k

*de

%%

*%

%%

*ede

%k

*%

ok

dok

*%

5/5

THERE IS AN ILLEGAL DELIMITER IN THE ARRAY DECLARATION BOUNDED PAIR
LIST FOLLOWING ", (" OR "," .

Ex: begin array A[l = 10];

THERE IS AN ILLEGAL DELIMITER IN THE ARRAY DECLARATION BOUND PAIR
LIST FOLLOWING ",." ,

Ex: begin array A[1:,1:10] ;
AN IDENTIFIER HAS BEEN CALLED BY VALUE BUT IS NOT IN THE PARAMETER LIST.
Ex: procedure P(a,b); value ab ;

AN IDENTIFIER IN THE VALUE LIST HAS NOT BEEN SPECIFIED.
Ex: procedure P(a,b); value a; real b; b := 2 x a ;

ILLEGAL SYMBOL IN VALUE LIST.
Ex: wvalue a[l1:10] ;

AN IDENTIFIER IN THE SPECIFICATION PART IS NOT IN THE FORMAL PARAMETER
LIST, THE CURRENT IDENTIFIER IS <identifier>,

Ex: procedure P(a,b); real ab;

AN IDENTIFIER IN THE SPECIFICATION PART IS A GLOBAL VARIABLE, THE
CURRENT IDENTIFIER IS <identifier>.

Ex: procedure P(a,b); real a, P;

AN IDENTIFIER IN THE SPECIFICATION PART HAS OCCURRED MORE THAN ONCE,
THE CURRENT IDENTIFIER IS <identifier>.

Ex: procedure P(a,b); real a,b; Boolean a;

A . (CANNOT OCCUR IN THE SPECIFICATION PART,
Ex: procedure P(a,b); arfaz a [1:10] ;

A DELIMITER OTHER THAN ",'" OR "$" HAS OCCURRED IN THE SPECIFICATION PART.
Ex: procedure P(a,b); real a + b ;

AN ACTUAL PARAMETER LIST OF A PROCEDURE STATEMENT DOES NOT HAVE THE
SAME NUMBER OF ENTRIES AS THE FORMAT PARAMETER LIST OF THE PROCEDURE
HEADING, THE PROCEDURE WAS DECLARED WITH <integer> PARAMETERS, AND
USED WITH <integer> PARAMETERS,

Ex: procedure P(a,b); a :=b ;
P(x + y) ;

THERE IS AN ERROR IN SYNTAX IN THE BLOCK HEAD.

*k

*k

*%

%

*¥k

E

%

*%

*%

Sk

5/6

5.1.6 Type Errors

A FORMAL. PARAMETER CORRESPONDING TO A PROCEDURE IDENTIFIER MAY NOT
BE USED AS A LEFT PART, THE CURRENT IDENTIFIER IS <identifier>,

Ex: procedure P(A); procedure A;
begin A :=1 ;

A PROCEDURE IDENTIFIER IS NOT FOLLOWED BY ''(".

Ex: x := sqrt x (a-b) ;

THE IDENTIFIER PRECEDING THE CURRENT ''('" HAS NOT BEEN SPECIFIED OR
DECLARED AS A PROCEDURE IDENTIFIER, THE CURRENT IDENTIFIER IS <identifier>,

Ex: real a,b,c; a := b(c + 1) ;

THE IDENTIFIER PRECEDING THE CURRENT ", ("' HAS NOT BEEN DECLARED OR
SPECIFIED AS AN ARRAY OR SWITCH IDENTIFIER.

Ex: begin real r ; array rr[1l:F}; r[l] :=0 ;

AN ARRAY OR SWITCH IDENTIFIER IS NOT FOLLOWED BY ". (" . THE CURRENT
IDENTIFIER IS <identifier>,

Ex: begin array M[1:110];
M :=0 ;

THE NUMBER OF SUBSCRIPTS OF A SUBSCRIPT LIST IS NOT EQUAL TO THE DIMEN-
SION OF THE ARRAY AS DECLARED, IT WAS DECLARED AS <integer> DIMENSIONAL
BUT USED WITH <integer> SUBSCRIPTS.

Ex: begin array A [1:2,1:5];
Al1,3,5]: = 0;

INTEGER LABELS ARE NOT ALLOWED IN BC-ALGOL.
Ex: 502 : X :=0 ; .

A LABEL IS BEING USED AS THE CONTROL VARIABLE IN A FOR STATEMENT,

Ex: for L :=1,2,3do s :=s + f ;
L:a:=0;

5.1.7 Pre-processor Loader Diagnostics

PROCEDURE <identifier> WILL OVERFLOW COMMON AND INTERFERE WITH THE
PROCESSOR,

Ex: The code procedure used too much common storage.

PROCEDURE <identifier> REQUIRES MORE SPACE THAN ALLOTTED BY PROGRAM
CARD, POSSIBLY A MISSING PROGRAM CARD,

%t

*%

*k

*k

*%

L

k%

*%

5/7

LOADING OF CODE PROCEDURE <identifier> WILL EXCEED SYLLABLE STRING
SIZE.

Ex: The code procedure contains too many instructions and
will not fit into the syllable string, ‘

CODE PROCEDURE NOT FOUND <identifier>.
LOWER LEVEL ROUTINES NOT FOUND <identifier>.

CARD <integer> DOES NOT HAVE A 12 OR AN 11 PUNCH IN CARD COLUMN 1.

Ex: Trying to load a card which is not a binary card.
THE FIRST BINARY DECK DOES NOT HAVE A PROGRAM CARD.,

PROCEDURE <identifier> CALLS FOR COMMON STORAGE WHICH IS UNDEFINED,

Ex: A code procedure using common was loaded without using
the control card comment: common;

CHECKSUM ERROR ON CARD <integer>,

CHECKSUM DELETED ON CARD <integer>.

5.2

Yk

*ek

sk

%%

Fete

%%

*%

*%

¥

k%

Fok

*%

Yok

5/8

Iﬁterpreter Diagnostics

The following diagnostics are detected and listed on the program out-
put during the interpretive phase of processing. Any of the diagnostics

will terminate the program,

5.2.1 Excess of Capacity

THE ALGOL PROCESSOR STACK SIZE HAS BEEN EXCEEDED.

AN OVERFLOW OCCURRED IN PERFORMING INTEGER ARITHMETIC. THE RESULT OF
AN OPERATION WHEN IT IS OF TYPE INTEGER MUST BE LESS THAN 2**35 IN
ABSOLUTE VALUE,

THE ALGOL PROCESSOR PROGRAM ADDRESS STACK SIZE HAS BEEN EXCEEDED,

AN OVERFLOW OCCURRED IN AN EXPONENTIATION OPERATION OF THE FORM A**B
WHERE A = <number>, B = <number> ,

AN OVERFLOW OCCURRED IN PERFORMING REAL ARITHMETIC, EITHER THE RESULT

OF AN OPERATION OR A NUMBER OBTAINED AT AN INTERMEDIATE STEP IS GREATER
THAN OR EQUAL TO 2**127 IN ABSOLUTE VALUE.

5.2.2 Errors in bracket-like structures

THE UPPER SUBSCRIPT BOUND OF BOUND PAIR NUMBER <integer>/QF AN ARRAY
DECLARATION IS SMALLER THAN THAT OF THE CORRESPONDING LOWER BOUND.
SEE ALGOL 60 REPORT SECTION 5.2.4.3.

5.2.3 Errors in Input-Output

ERROR IN A CALL OF AN INPUT OR OUTPUT PROCEDURE WHICH USES FORMATS.
NO FORMAT CORRESPONDS TO THE FIRST PARAMETER.

ERROR MESSAGE BY EXEM, THE MONITOR'S ERROR SUBROUTINE,

ERROR IN INPUT. AN INTEGER REPRESENTED ON A DATA CARD IS GREATER
THAN 2#*%*35-1 IN ABSOLUTE VALUE. THE DATA CARD IS ...

ERROR IN INPUT. A NUMBER OF TYPE 'REAL' REPRESENTED ON A DATA CARD
IS TOO LARGE IN ABSOLUTE VALUE. THE DATA CARD IS ...

ERROR IN INPUT. THE INCORRECT DATA CARD IS ...

A CALL TO SAVE HAS BEEN MADE WITHOUT A CORRESPONDING CALL TO PRINTING
FORMAT.

A CALL TO READING INTEGER, READING REAL, OR READING BOOLEAN HAS BEEN
MADE WITHOUT A CORRESPONDING CALL TO READING FORMAT.

*%

*%

Jek

%k

%k

*%

ok

%k

ok

*%

%%

**

%

5/9

5.2.4 Type Errors

THE VALUE OF THE CONTROLLED VARIABLE OF A FOR STATEMENT IS UNDEFINED
DUE TO THE EXHAUSTION OF A FOR LIST ELEMENT. IT HAS NOT BEEN REINIT-
IALIZED BEFORE ITS USED IN AN EXPRESSION, SEE ALGOL 60 REPORT SECTIONS
4.6.5.AND 4,6.

Ex: for i :=1 step 1 until 100 do A :=1; b := A[i];

THE ALGOL PROCESSOR DID NOT FIND A STACK ADDRESS TO STORE THE VALUE
OF THE ARITHMETIC OR BOOLEAN EXPRESSION. A VALUE OR INCORRECT QUANTITY
HAS BEEN USED AS A LEFT PART VARIABLE, SEE ALGOL 60 REPORT SECTION 4.2,
2.7, AND 2.8,

Ex: B+ 1 := C;

A SIMPLE VARIABLE HAS NOT BEEN INITIALIZED BEFORE IT IS USED IN AN
EXPRESSION, SEE ALGOL 60 REPORT SECTIONS 3.3.3, 3.4.3, 2.7, 3.1l.1,
AND 3.1.3.

Ex: real C; A :=C ;

THE ALGOL PROCESSOR HAS EXECUTED AN ILLEGAL SYLLABLE, ILLEGAL SYLLABLE =
<letter> (OCT = <integer>).

A FORMAL PARAMETER WHICH IS CALLED BY VALUE CORRESPONDS TO A SWITCH
DESIGNATOR WITH AN UNDEFINED VALUE. ., SEE ALGOL 60 report SECTION 4.3.5,

AN TLLEGAL ACTUAL PARAMETER WAS USED IN A PROCEDURE STATEMENT CALLING
A CODE PROCEDURE,

BOOLEAN CONVERSION REQUESTED IN <identifier>.

5.2.5 Arithmetic Errors

THE RESULT OF AN EXPONENTIATION OPERATION OF THE FORM A**B IS UNDEFINED
WHERE A = <number>, B = <number>. SEE ALGOL 60 REPORT SECTION 3.3.4.3.

DIVISION BY O IS UNDEFINED.

5.2.6 System Diagnostics

CODE PROCEDURE DID NOT EXIT CORRECTLY.

SUBROUTINE <identifier> WAS CALLED WITH <integer> ARGUMENTS.

Ex: Erroneous call of standard functions such as a := 1ln (b,c) ;
OVERTIME TRAP.

SUBROUTINE <identifier> NOT IN CODE LIST.

6/1

6. Predefined Code Procedures

6.1 Code Procedures

Code procedures are allowed in ALGOL 60 as stated in section 4.7.8 of
the ALGOL 60 report. The predefined code procedures described in this
chapter are to 'allow greater flexibility in using BC-ALGOL.

Note: FEach of these procedures, if used, must be declared in the first

block of the program,

The parameters must be the same as the expected type; outside of this

restriction, they may be any general ALGOL parameter.

These procedure identifiers are not reserved for use unless they are
specifically declared. If the code procedure of a given name is not

declared, that identifier may be used in any manner desired.

6.2 Input-Output Code Procedures

The BC-ALGOL system contains some predefined code procedures for use
along with the standard’ input-output procedures described in Chapter 3.
For each of these procedures the declaration (which should appear in the
heading of the first block of the user's program if he wishes to use the
code procedure) is given below together with a comment explaining the
procedure, Many of these procedures occur naturally in pairs, with one

for input and one for output,

procedure set input line length(n); value n; integer n; code;

comment This procedure sets the length of subsequent input lines to
be n characters provided 1 < n < 132, All characters after
the first n are ignored. A call of this procedure automa-

tically causes a new line to be started;

procedure set output line length(n); value n; integer n; code;

comment This procedure sets the length of subsequent 6utput lines to
be n characters. It does not cause a new line to be started.
Thus the length of an output line can be adjusted depending on

the contents even after the line is partially constructed;:

6/2

integer - procedure read position; code;

comment Thé ‘function designator is assigned as value the number of
the next position to be read on the current input line. The

first position on a line is numbered 1;

integer procedure print position; code;

comment The function designator 1s assigned as value the number of
the next position on the output line for which a character has

not been constructed. The first position on a line is numbered 1;

procedure in line (a); integer array a; code;

comment A new input line is always started when this procedure is called.
Then, if possible, an entire line of input is read into the one-
dimensional array a with each element of a containing the

BCD representation of one character.

The representation of the first character of the line is placed
in the element of a with least subscript, the second in the
element of next higher subscript, etc., If the array contains
more elements than there are position on the input line, then
the number 58?0 is stored in the element immediately following
the one containing the representation of the last character of
the line, The remaining elements of the array, if there are
any, are not assigned values. If the array is not long enough
to hold the entire line, then only enough characters are read

to £fill the array;

procedure out line (a); integer array a; code;

comment A new output line is started. This procedure is essentially
the inverse of in line . It causes output of the line of
characters whose BCD representations are in a . Characters
are taken from a until the end-of-line character corres-
ponding to the integer 58?0 is reached or until the whole array
a 1is used. Additional characters may be placed on the end-gf
the line by using out character , text , or output 1f space

remains;

5839 = 72g = standard end-of-line character.

6.3

procedure

comment

6/3

octal format (n); value n; integer n; code;

This procedure has the effect that numbers of type integer
printed or punched subsequently by output will appear right-
adjusted in fields of width n in octal notation provided

1 <n< 72

integer procedure becd(s); string s; code;

comment

This procedure assigns to the function designator the BCD repre-
sentation of the first 6 characters in the hardware representation
of the open string obtained by stripping off the outer string
quotes from s . If there are less than 6 characters in the open
string, then enough blanks are added at the end to make up a full

word of 6 BCD characters.

Tape Selection Procedures

procedure

comment

procedure

comment

in unit (n); value n; integer n; code;

This procedure causes the logical tape unit from which data are
to be read by means of input , in character , etc., to be changed
to the unit with number n ., This change is also effective for
the input procedures which use FORTRAN formats. A call of in

unit causes a new input line to be started;

out unit (n); integer n; code;

This procedure causes the logical tape unit for output by means
of output , text , out character , etc. to be the unit with
number n , This procedure has no effect upon whether the out-
put will be suitable for punching on cards or listing on a line
printer. Thus it should be preceded by a call of punch or
printer which will determine whether a carriage control charac-
ter is included on each record or not. The change of output

unit is also effective for the output procedures which use FORTRAN

formats. A new output line is started automatically;

6/4

©

6.4 Tape Handling Procedures

These procedures will handle all tapes except those used by the monitor;
these are the monit input tape A2, logical -1; the monitor punch tape B4,
logical -2; the monitor print tape A3, logical -3. 1In the following des-
criptions, the parameter log is the logical number of the tape unit, and

count, where used, determines the number of records or files to be skipped.

procedure bksprecord (log, count); integer log, count; code;

comment The tape specified by log is backspaced count records;

procedure fdsprecord (log, count); integer log, count; code;

comment The tape specified by log is forward spaced count records.

NOTE: In bksprecord and fdsprecord , and end of file gap and mark is
considered to be the same as an end of record gap;

procedure bkspfile (log, count); integer log, count; code;
‘z’ comment The tape specified by log is backspaced count files;

procedure fdspfile (log, count); integer log, count; code;

comment The tape specified by log is forward spaced count files;

procedure endfile (log); integer log; code;

comment The tape specified by log has an end of file written on it;

procedure rewind (log); integer log; code;
comment The tape specified by log is rewound;

©

6/5

6.5 Rescan Procedure;

procedure

comment

Example

rescan; code;
rescan causes the monitor to resume reading control cards at
Note that

the current location on the input tape (A2), tnunit

cannot be used to assign this function to a unit other than A2;

Both of .the ALGOL programs in the following job will execute

because of the call to rescan:

$JOB, ..

$FMS ALGOL

begin
procedure rescan; code;
integer i,j,k; real x;

i:=1; j :=k 1= 2;
x := 1/k; text (®program one?); ;*g
rescan

end

*USE (ALGOL)
*DATA
begin

EWW

real y;
y := 5; output (y);
text (*program two?)
end
$
SEOF

6.6 Bit Manipulation Procedures

procedure

comment

getptw (full word, low bit number, high bit number, output); code;
getptw (get partword) extracts the binary bits between the word

including low bit number and high bit number. The type of all
parameters must be integer. Bits are numbered from 0 to 35 from

left to right;

012345 35

To take the high order octal character, which takes 3 bits, the
call would be

getptw (full, 0, 2, out);

procedure

comment

procedure

comment

procedure

comment

6/6

To take the high order alphanumeric (BCD) character, the call

would be
getptw (full, 0, 5, syllable);

Output is type integer with the value right-adjusted and the
higher order bits zeroed.

stoptw (input, éull word, low bit number, high bit number); code;
stoptw (store partword) stores the rightmost high-low + 1 bits of
input into bits between and including low bit number and high bit
number of full word. The type of parameters must be integer;

To store the character "S" (octal 62) into the third character of
full word the call would be

stoptw (oct 62, full word, 12, 17);

type shift (input, output); code;

type shift takes an input of either type integer or type real
and changes the type to real or integer, respettively, without
changing the representation (that is, without floating or fixing

the input);

To take the real number 1.0 and store it in the integer array

stack, the call would be
type shift (1.0, stack [1]);

The integer number stored in stack would be (in octal) 201400000000,
which is the octal number which represents the floating point 1.0
in the 7094.

convrt (number, exponent, output); code;
convrt takes the integers, number and exponent, and forms the
indicated real representation, which is returned through output

an integer., (Exponent is taken as a power of 10);

procedure shift (argument 1, argument 2, shift number, output); code;

comment

shift shifts the '"double precision'" integer words argument 1 and

_argument 2 'shift number' bits to the left. The high order 'shift

number' bits from argument 1 are returned to output (type integer)
right-adjusted with the extra bits zeroed;

©

6/7

6.7 Logical Arithmetic

6.8

procedure compl (in, out); integer in, out; code;
comment comp 1 takes the 1's complement of in and returns it in the

variable out, This is a bit-wise complementing procedure;

i.e., each bit of the word is complemented;

procedure comp2 (in, out); integer in, out; copde;

comment comp 2 takes the 2's complement of the parameter in and returns
it in the parameter out. This is like the 1's complement with
an additional 1 added in bit number 35;

procedure and (word 1, word 2, out); integer word 1, word 2, out; code;

comment and takes the Boolean product of word 1 and word 2 and returns
the result in out. This is a bit-wise Boolean product; each
corresponding bit of the two words is operated on by these rules:
if both are 1's, then a 1 is stored in that bit in out; otherwise,
a 0 is stpred there;

procedure or (word 1, word 2, out); integer word 1, word 2, out; code;

comment or performs a Boolean addition of word 1 and word 2 and returns

the result in out. This is again a bit by bit operation with
the following rule: 1if either bit is a 1, then a 1 is stored

in out; otherwise, a 0 is stored in out;

Random Number Generator

Two random number generators are available as predefined procedures. The

first, random, is a real procedure and generates floating point numbers

between O and 1 with a flat probability distribution. The second, lehmer,

is an integer procedure and generates integers between 1 and 235 - 1. The

procedure lehmer has the additional property that the bit pattern in the

word containing the generated integer is also random.
If used, they must be declared in the outermost block of the program as:

real procedure random; code;

and/or

integer procedure lehmer; code;

6/8

Of course the word "random" is used here in the sense of pseudo-random.
The sequences generated have extremely long periods -- random's is 233
and that of lehmer is slightly less -- so large that a user would generate

only a small fraction of the possible numbers in any problem.

The numbers generated by lehmer are those relatively prime to the modulus
235 + X * K(mod 235 - 1.
*&

K and Xo are of course also relatively prime to 2

The numbers generated by random are obtained by considering the integers

- 1 , They are obtained as power residues:

obtained from Xn+1 = Xn * K (mod 235) as binary ffactions, i,e., with

the binary point at the extreme left. Here the Xn are odd integers

and K 1is of the form 8 * F + 3 (to ensure maximum period).

Additional procedures are available to change the constants K and XO

in random:

procedure start random (ﬁ); integer N; code;
1]

This procedure assigns to XO the value of N. Hence following calls

of random create a sequence of numbers with N as '"base'".

procedure lodrandom (K); integer K; code;

This procedure replaces the multiplier in random with the value of K.

procedure getrandom (N); integer N; code;

get random assigns to N the value of the last integer generated within

random,

Associated with lehmer are similar procedures, startlehmer, getlehmer,

and lodlehmer which can be declared similarly. If the additional pro-
cedures are not used, they need not be declared.

It is recommended that if the multiplier K 1is changed in either routine,
it be of the order of the square root of the modulus, i.e., 217< K < 218 .
The suitability of either generator to a particular problem should be tested

by the user.

©

6/9

6.9 Examples of ALGOL procedures using predefined code procedures

GET CHARACTER

This procedure: puts the next BCD character on the input cards into the
parameter char , and keeps 1in filled with new characters. The code

procedures used are ' shift , 4nd bed procedure incard reads a card.

procedure get character (char);
begin integer temp, blank, nothing; own integer cc, wc;
own integer array inbuffer [1..12];
blank := bed (“LuouuD):
shift (in, inbuffer[wc], 6, temp);
shift (temp, blank, 30, nothing);
char := temp;
if cc = 6 then
begin cc := 1;
if we = 12 then ; _
begin we := 1; {ncard (4nbuffer) end
else we := we + 1 ‘
end
else cc :=cc+ 1
end;

REAL NUMBER ROUTINE

This procedure takes numbers from cards (in BCD representation) and returns
them through out in real representation, but integer mode. The actual
parameter replacing out could be an element of an integer array. The
code procedures used are convrt and bcd
block 1.

, which are to be declared in

A non-local integer array called alpha list 1is used which holds a code
number for each type of BCD symbol.(for example, 1 for number, 2 for *

letters, etc.).

procedure real number (out); integer out;
begin integer char, number, exponent, add;

add := exponent := number := 0;

return 1:
get character (char);
if char = bcd (°.*) then go to return 1;
if alpha list [char] # number code then go to end;
if char- = bed (%?) then

begin add := ~1; go to return 1;

end;
number := number ¥ 10 + char;
exponent := exponent + add;
go to return 1;

convrt (number, exponent, out);

REAL MULTIPLY

The following routine performs a ''stack'" type multiply operation. This
method is similar to that used in the BC-ALGOL processor.

procedure real mult (accumulator pointer, stack);
begin real real 1, real 2;
type shift (stack [accumulator pointer], real 1);
type shift (stack.[accumulator pointer-1], real 2);
type shift (real 1 X real 2, stack [accumulator pointer-1]);
accumulator pointer := accumulator pointer-1l;
end;

7.1

7.2

7/1

7. Implementation and Use of Code Procedures

Introduction

The advantages of using Code Procedures in the BC-ALGOL System are (a)
speed of execution, and (b) availability of machine code,.

A major problem in using Code Procedures is the transference of para-

meters from the ALGOL Proceeor's Stack to the Code Procedure. There are

- six routines to facilitate the transferring of parameters. These are

discussed in Section 2. Two methods of returning from a Code Procedure
to the ALGOL processor are discussed in Section 3. Routines to fix and
float numbers are discussed in Section 4, Examples of the use of the
routines discussed in Sections 2, 3, and 4, are found in Section 5.

Two * methods of linking a Code Procedure with the ALGOL source pro-

gram are discussed in Sections 6, 7, and 8. The method discussed in

'Section 8 is a new method, It utilizes a loader in the ALGOL' pteproces-

sor. A partial library is provided but a double transfer vector must

be used.

It is assumed that the reader is familiar with the Syllable String} the

Processor's Stackl, and FAP,

Transferring of Parameters

The six routines to facilitate the transference of parameters are:

7.2.1 INTERP
The call of INTERP from a code procedure‘causes the ALGOL Processor
to execute a syllable string that is in the Code Procedure at loca~-
tion -1, 4. Associated with INTERP is the Escape Syllable, 35g,

which when executed by the processor causes:

See chapters 8 and 9.

7/2

a, The top of stackz, i.e,, STACK [AP] and STACK [AP + 1]

to be put in the MQ and AC3, respectively;

b. The ALGOL processor to return control to the Code Procedure

by transferring to the word immediately preceding the word

containing the Escape Syllable,

7.2.2 LOADST

The call of LOADST will place the M.Q4 and AC on the top of the
stack at STACK [AP + 2] and STACK [AP + 3] and set AP := AP + 2,

- 7.2.3 FUNCTN

The transfer to FUNCIN places the AC and MIQ4 in the last Program
Description (STACK [PP-1] and STACK [PP-2], respectively) generated
by the ALGOL Processor and returns control to the ALGOL Processor.

2

3

In this report STACK is considered as an add on stack, i.e., when an
entry is put on the top of STACK, it is placed in the first empty

location up from the bottom of STACK. Note that this is the reverse
of the order in the Stack dump (see Chapter 9).

example:

high addresses

®eeov b e

-
low addresses

The following

Vn =
SAn
PAn
PD
PL
WSP
AP
PP
AC
MQ =

]

PD < AP
VALUE

VALUE
*% LINK < PP

notations are used in this chapter:

The value of the variable N
The S3tack Address of N

The Program Address of N
Program Descriptor

Procedure Link

Working Space Pointer
Accumulator Pointer

Parameter Pointer

7090-7094 Accumulator
7090-7094 Multiplier-Quotient

<

<

top of stack

bottom of stack

When storing a value in stack, the information word must be all zeros
except for the type (the tag).

7/3

7.2.4 FETCH
By using INTERP only the "top value in STACK may be brought
to a Code Procedure. The routine FETCH will bring a value from
any location in Stack to a Code Procedure. FETCH is used with
one full word integer parameter, for example, NUMBER., The call
FETCH(NUMBER) will bring STACK [AP-NUMBER] and STACK [AP=1-NUMBER]
to the MQ and AC, respectively.

7.2.5 REPLAC

By using LOADST (or FUNCIN) a Code Procedure places a value only
on the top of Stack (or in the last Program Descriptor). The
routine REPLAC is used with one full word integer parameter, e.g.,
NUMBER; The call REPLACE (NUMBER) places the MQ and AC into

STACK [AP-NUMBER] and STACK [AP+1-NUMBER], respectively.

7.2.6 GETADD

‘:’ The call of GETADD will return the addresses of the ALGOL Processor's

variables:

STACK

ACCUMULATOR POINTER
PARAMETER POINTER
ARGUMENTS

SYLLABLE STRING
WORD ADDRESS
SYLLABLE COUNT

in locations:

~N~NoupbwNnH
L R L 2 I
PR

respectively.

©

7/4

7.3 Returning from a Code Procedure

There are two logically equivalent methods to return from a Code

Procedure to the ALGOL Processor:3

a. Transfer to SRETURN,
b. Use INTERP to have the ALGOL Processor execute: a period (=338).

7.4 Routines to Fix and Float Numbers

The following routines, which must be used via INTERP, will fix or float
(if it is not already integer or real) the value on the top of STACK,
i.e., STACK [AP+1], and leave it on the top of STACK,

7.4.1 To fix the value on the top of Stack, one must cause the
ALGOL Processor, via INTERP, to execute the syllables 57158.
7.4.2 To float the value on the top of Stack, one must cause the

ALGOL Processor, via INTERP, to execute the syllables 57168.

7.5 Examples

Consider two logically equivalent Code Procedures for computing the

square of an integer number:

7.5.1 Example 1. Use of INTERP and FUNCIN
ALGOL Source Program
 integer m,n;
procedure square (A); binary;
n := 2;
m := square(n);

end;

Also see FUNCIN, Sec. 7.2.3.

Code Procedure SQUARE written in FAP

COUNT 20

ENTRY SQUARE

TRA *+3

oCT 650201350000
SQUARE TSX $INTERP, 4

STQ INFO

STO N

XCA

MPY N

XCA

LDQ INFO

TRA $FUNCIN
INFO PZE
N PZE

END

Note that the parameter is in block 2, This implies the procedure

square must be declared in block 1. The syllable 35, brings
STACK[AP], STACK[AP+1] to the MQ and AC, respectively.

7.5,2 Example 2, Use of INTERP and LOADST

ALGOL Source Program

begin
integer m,n;
procedure square (a,b); binary;
n := 2;
square (m,n);

end;

Code Procedure SQUARE written in FAP

ENTRY SQUARE

COUNT 20

TRA *+3

oCT 650202350000
SQUARE TSX $INTERP, 4

STQ INFO

STO N

TRA *+3

TRA *+3

0CT 210201350000

TSX $INTERP, &

LDQ
MPY
XCA

LDQ
TSX
TRA
BCI
TSX
INFO PZE
N PSE
END

Discussion of Example 1:

N
N

INFO
SLOADST, 4
*+42

1,=$.
$INTERP, 4

When the code procedure is entered, at SQUARE, the status of the Stack is:

SAn

< WSP, AP

PL

< PP

PD

SAm

PD

Vn

Vm

*% LINK

The execution of 358 through the call of interp brings the value of N

to the AC and the associated information word to the MQ,

of Stack is now:

The top

Vn(=2)

< AP

SAn

< WSP

PL

< PP

PD

SAm

PD

Vn

Vm

LINK

The transfer to FUNCTN overlays the last program descriptor in STACK
with the AC and MQ (in STACK [PP-1] and STACK [PP-2], respectively),

and transfers control back to the ALGOL Processor.

Stack is now:

7/7

4 < AP
SAm

PD < wsSp
Vn

Vm

LINK < PP

The processor now completes the execution of the Syllable String which

puts the value of 4 into M and cleans up Stack, i.e., sets the AP equal

to the WSP,

Discussion of Example 2:

When the code procedure is entered, at SQUARE, the top of Stack is:

SAn

SAm

PL

PD

PD

Vn

Vm

*% LINK

<

The execution of 358 through the first call of

of N‘to the AC and the information word to the

is now:

Vn (=2)

SAn

SAm

PL

PD

PD

Vn

Vm

LINK

<
<

WSp < AP

PP

interp brings the value

MQ. The top of Stack

AP
WSP

PP

The execution of 358 through the second call of interp brings up the

Stack Address of M, i.e,, STACK:

7/8

SAm <
VN (=2)
SAn <
SAm
PL <
PD
PD
Vn
Vm
LINK

AP

WSP

PP

The call of LOADST puts the value of N2 on the top of Stack:

4 < AP
SAm
Vn(=2)
SAn <
SAm
PL <
PD
PD
o) %
Vm

LINK

WSP

PP

The third call of INTERP causes three things to happen:

1. = 4 is stored in M,
2. $ The AP is set equal to the WSP.

3. This is the Return Syllable, execution of which returns
control to the ALGOL Processor.

7.5.3 Use of FETCH

If STACK is in the following configuration:

AP
WSP

Vn <
SAn <
SAm
PL <
PD
Vm
Vn

PP

g‘l’ *% LINK

7/9

The following coding will suffice to bring the stack address of M,
i.e., STACK [AP-4] and STACK [AP-3], to the MQ and AC, respectively:

.

TSX $FETCH,4
PZE =4

Remember that every entry in Stack, except array elements and switch

program addresses, is two 7090-94 words.

7.5.4 Use of REPLAC

If STACK is in the following configuration:

Vm < AP
Vn
SAn <
SAn
PL <
PD
SAn
PD
Vn
Vm
LINK

WSP

PP

The following coding will suffice to overlay the last program descriptor

in STACK with the MQ and AC

.

TSX $REPLAC, 4
PZE =10

The MQ would be put int STACK[AP-10], and the AC in STACK[AP-9].

7/10

7.5.5 Use of GETADD

Suppose that the following coding exists in a code procedure:

.

TSX $GETADD, 4
CLA* 2,4

after the execution of CLA* 2,4 the value of the Accumulator

Pointer will be in the AC.

7.5.6 Use of GETADD

Suppose the following coding exists in a code procedure:

TSX $GETADD, 4
CLA 5,4

after the execution of CLA 5,4 the AC will contain the absolute
address of syllable string in the form
TSX Syllable String, O

7.5.7 Use of INTERP, GETADD

As an illustration of how INTERP and GETADD can be used to obtain

information from syllable string, consider:

ALGOL Source Program

begin
procedure online (s); binary;

online ('INFORMATION TO BE TRANSMITTED TO A CODE PROCEDURE
BY USING INTERP AND GETADD');

7/11

After execution of the call of the procedure online , the
Stack looks like:

PD < WSP, AP
PL < PP
PD
PD
*% TLINK

where the last PD contains the absolute word address of Syllable
String containing the character 75, which precedes the message

8
INFORMATION ... GETADD.

The code procedure to transmit this information from Syllable String
to the code procedure

.

TRA SETUP

OCT 350000000000 RETURN THE PROGRAM ADDRESS OF THE
ONLINE TSX S$INTERP,4 MESSAGE TO THE AC(14—>30) IN BINARY
SETUP ANA =0001777740000

ARS 14

ADD =1 INDEX 1 CONTAINS THE SUBSCRIPT OF

PAX 0,1 SYLLABLE STRING

TSX $GETADD RETURNS ABSOLUTE ADDRESS OF

CLA 5,4 SYLLABLE STRING

STA *+3
AGAIN AXT 12,2

AXT 6,4

LDQ **’1

STQ MESSE,2

TX1 *+1,1,1

.
.

Each time the 1IDQ **,1 command is executed, a word of the message,

INFORMATION ... GETADD, is brought to the MQ from Syllable String.

7/12

7.5,8 An Example of Using an Assembled Procedure

Sample Deck:
Col. 1 Col, 7

* DECKS
* FAP
ENTRY SQUARE
TRA *+3
OCT. 650201350000
SQUARE TSX SINTERP, 4
STQ INTO
STO N
XCA
MPY N
XCA
LDQ INFO
INFO PZE
N PZE
END

Col, 1 Col. 7

* USE (ALGOL))
% DATA) Both cards are required
begin

integer m,n;
procedure square(n); assembly;
2;

n 3

m := square(n);
end;

SEOF

7.6 Methods of Linkage

There exist two methods of linking.code procedures with ALGOL Programs;
one is advantageous to the systems programmer while the other is advan-

tageous to the general user.

7/13

Code Procedures lLoaded in Front of the ALGOL Processor

7.6.1 Method 1

Method 1 is advantageous to the systems programmer but not to the user,

The method consists of

1. Loading the code procedure in FRONT of the ALGOL Processor;
2, Entering the entry point(s) in the subroutine XCODE,

XCODE is an ALGOL Processor subroutine that contains a list of all code
procedures linked by this method (plus other predefined I/0 routines).

The ALGOL Processor searches the XCODE list when a code procedure, linked
by this method is to be executed. The entry in XCODE consists of the
first six non-blank characters to the ALGOL Source Declaration immediately
followed by a transfer to the appropriate entry point.

Code procedures. linked by this Method 1 must be declared as:

procedure <procedure identifier><formal parameter part>; <specifica-
tion part> code;

Example of the entry in XCODE: Consider the code procedure square dis-

cussed in Section 4.1, To link it by method 1, the declaration must be:

procedure square(n); code;

The entry in XCODE must be:

.

BCI 1,SQUARE
TRA $SQUARE

These two names need not be the same; the name in the address field of

the BCI command is the name used in the ALGOL Source Program. The name
in the address field of the TRA command is the name of the entry point
in the code procedure. If the name in either of these cases contains
less than six (6) characters, it is to be left-adjusted and filled
with blanks,

Example

ALGOL Source Program

.

begin
Erocgdure AAA(B,c); code;

end

.

Entry in XCODE

BCI 1,AAA
TRA $2z2zZ
WARNING ! ! ! !

CODE PROCEDURES LINKED BY THIS METHOD WILL AFFECT THE LINKAGE OF CODE
PROCEDURE BY METHOD 2, SEE SECTION 7.7 FOR EXPLANATION.

Advantagés of Method 1

1, The standard single transfer vector is used.

2. If an absolute core load of the processor is used, the code pro-
cedures only have to be relocated once.

3. Common is defined.

4, Library is available.

4
If common is used, the ALGOL Source Program's name list, which is
used in a Stack dump, will be destroyed. ‘

7/15

Disadvantages of Method 1

1. The code procedureé always remain in core thereby limiting the
size of stack~and string.

2, The user must have his own copy of the processor which takes
approximately twenty (20) seconds to load.

7.6.2 Code Procedures Loaded by the Preprocessor Loader
Method 2. Method 2 is advantageous to the general user. The method con-

sists of placing the binary deck(s) anywhere in the source program before

the last $.

Code procedures linked by this method must be declared as:

procedure <procedure identifier> <formal parameter part>;
<specification part> binary;
‘Code procedures may also be loaded from the assembly tape., An *DECKS
card must be included as one of the monitor control cards. Code proce-
dures linked by this method must be declared as:
procedure <procedure identifier> <formal parameter part>;
<specification part> assembly;
Code procedures linked by Method 2. are loaded into syllable string by a
loader in the ALGOL Preprocessor (hereéfter referred to as PP Loader)
at preprocessing time. Code procedures may be linked to a partial
library. The loader does not know where the entry points to this library
are. To solve this problem a double transfer has been created. 1In core
locations 144, to 271, at execution time are the addresses of all entry

8 8
- points in the partial library.

A partial library is available consisting of all the routines that the
processor requires. Other routines required must be provided. NOTE:
If a code procedure requires a lower level routine, for example routine
AA, and this entry point appears in the library and is also loaded, the
linkage will be set up with the routine that is 1oade&.

The entry points provided in the partial library are:

ALOG - 14
ALOG10 - 14
ATAN - 15
ATAN2 - 15
Ccos - 16
DATE - 8
DUMP -~ 7
EMPTY - 1
ENDFYL - 9
EXECUT - 1
EXEMDP - 7
EXIT - 7
EXP - 13
FETCH ~ 1
FUNCTIN - 1
GETADD ~ 1
INPUT - 9
INTERP - 1
LOADST - 1
LOG - 14
LOG10 - 14
OUTPUT - 9

The number beside the entry point

routine they are in:

- 19 BC
- M2 BC
I1 BC
- I1 BC
- 14 BC
- P2 BC
- Z0 BC

W~ WM
|

- ALGOL Processor

I0S
I0H
10B
STH
TSH
EXEM
TIME

PDUMP - 7
REPLAC - 1
REWYND - 9
RETURN - 1
SDUMP - 7
SIN - 16
SQRT - 17
TANH - 18
TENLOG - 14
TIME - 8
TIMEH - 8
TIMREM - 8
TSHGCY - 6
TSHSET - 6
WRITE3 - 25
(BSF) - 2
(BSR) - 2
(BUF) - 4
(CSH) - 6
(EFT) - 17
(ETT) - 2
(EXB) - 4

10
11
12
13
14
15
16

The Double Transfef Vector

5

indicates, with

I9
19
19

19

B3
B3
Bl
Bl

BC
BC
BC
BC
BC
BC
BC
BC

Code procedures loaded by Method 2 using

" go through a double transfer vector.

(EXIT) - 7
(EXPF) - 13
(FIL) - 3
(I0B) - 4
(I0H) - 3
(10S) - 2
(Iou) - 20
(LCH) - 2
(PRIN) - 21
(RCH) - 2
(RDC) - 11
(RDS) - 2
(RER) - 11
(RERN) - 7
(REW) - 2
(RLR) - 10
(RIN) -

3
(RUN) - 2
(RWT) - 22
(sca) - 5
(SET) - 4

IONE
TSB
RER
WER
EXP
LOG4
ATAN
SIN

17
18
19
20
21
22
23
24
25

‘L2 BC

7/16

(SPH) - 5
(SPHN) - 5
(STC) - 2
(STH) - 5
(STHD) - 5
(STHM) - 5
(TCO) - 2
(TEF) - 2
(THS) - 23
(TRC) - 2
(TSB) - 10
(TSH) - 6
(TSHM) - 6
(UNIT) - 2
(WEF) - 2
(WER) - 12
{(WRS) - 2
WTC) - 12
(XCED) - 7
(XCDE) - 7
(XCDT) - 7

the table below, what

ROOT
TANH
EFT
10U
PRTN
RWT
TES
RERN

B4 BC
B2 BC
Q3 BC

JO0 BC
Q3 BC
19 BC
L3 BC
WRITE

routines in the partial library

5 WRITE3 must be called once before the code procedure does any 1/0

or calls EXIT.

7/17

Example

If one has the logical number of a tape unit, N, and wants to
use (IOU) to obtain the physical number, in the case of a single
transfer vector the following coding would be sufficient to

bring the physical number to the AC:

.

CLA $(IOU)
ADD N

STA %*-+1
CLA #%

For a block diagram see Figure 7.1,

In the case of a double transfer vector an additional level of

indirect addressing is needed, i.e.,:

.

CLA% $(IOU)

ADD N
STA *+1
CLA *

For a block diagram see Figure 7.2,

Example

Consider the case in which one wishes to use (I0S) to test for
an end-of-file on ‘the tape that has just been read. In the case of

a single transfer vector, the following coding would suffice:

AXC EOFROU, 4
XEC* $ (TEF)

7/18

of.
< ‘$
Transfer vector) [T
- TTR §(I0U) __ . |of |Code Procedure
CLA $(I0U) ' !
Code Prgcedure
Syllable String

g < ALGOL Processor

o | — | .

Library Subroutines

L (IOU) 10U

77777

Fig. 7.1. A map of core showing the single transfer vector.

7/19

0
Laa ‘ Pseudo Tr £
o ansfer
TIR $(10U) 77 Vector List
271 - L
- -
[}
— Transfer vector
B .,E?fiiﬁiqu_ of Code Procedure
CLA $(1I0U) Code Procedure
., . A 4
= < Syllable String
g < ,
ALGOL Processor
(10U) 10U
< <= 4 Library Subroutines
77777 '

Fig. 7.2. A map of 7094 core showing the double transfer vector
' 11nkag_ between code procedures and external routines

7/20

In the -case of a double transfer vector, an additional level

of indirect addressing is needéd:

.

AXC EOFROU,4
CLA* $(TEF)
STA . *+1

XEC* %%

.

Note that this double transfer vector does not apply to any trans-

" fers or lower level routines loaded by the PP Loader and linked

to code procedures,

"WARNING ! ! ! THE PP LOADER MUST KNOW THE ABSOLUTE ADDRESS OF SYLLABLE

STRING AT EXECUTION TIME., ANY CHANGES THAT CAUSE THIS ADDRESS TO CHANGE
NECESSITATE A RECOMPILATION OF THE PREPROCESSOR.

There are two types of changes that cause this address to change:

1. Any change in any of the subroutines loaded in FRONT of the ALGOL
Processor such that the load point of the ALGOL Processor is

changed, i.e., use of Method 1 for linking code procedures.

2. Any changes in the declaration list of the first flow chart

of the ALGOL Processor.

If the absolute address of Syllable String changes, the method to com-

pute the new address is:

1, Using the storage map find the location at which the ALGOL
Processor is loaded.
2, From the ALGOL Processor Name List find the location at which

the Syllable String is located.

3. The new absolute address of Syllable String is the sum of (1)

and (2); (all three of these are octal numbers).

7.7

7/21

Initialize the variable BASE ADDRESS OF SYLLABLE STRING in the ALGOL
Preprocessor (located about card number 59000) and recompile the ALGOL
Preprocessor. The PP Loader also expects to find at OCT 144 the second
transfer vector list. The entries in this transfer vector list must be
in the same order as the entries in the PP Loader's variable: PSEUDO

TV LIST.

Advantages of Method 2:

1, Only the code procedures needed are loaded.
2, Binary decks are loaded with the source program or from the

assembly tape6 (Use the *DECKS card.)

Disadvantages of Method 2:

1. There is a need for double transfer vector,
2, The complete library is not available.
3. Common is undefined.7

Specific Information About the Preprocessor Loader

7.7.1 Declarations

1. When binary deck(s) are included in the ALGOL source program use:

procedure <procedure identifier> <formal parameter part>;
<specification part> binary;

2. When the assembly tape is to be loaded use:

Brocedufe <procédure identifier> <formal parameter part>;
<specification part> assembly;
(Also use *DECKS card.)

NOTE: Both can be used in the same program,

7.7.2 Restrictions
1. No more than 50 code procedures can be loaded.
2. No more than 500 entry points can be loaded.
3. Common is undefined.'7

6

See Section 7.2,

See chapter 4 on comment control.

7/22

7.7.3 Error Diagnostics and Messages

See chapter entitled "Error Messages'.

7.7.4 Printout

7.7.4,1 Printout from the PP Loader should only be used as a
debugging aid. To obtain the printout, use the comment

control card: comment: LOADER LIST;

7.7.4.2 The printout obtained by using the comment control card
LOADER LIST consists of:

from where each code procedure was loaded;

a list of all the entry points in each code procedure
and their core location at execution time

c. the transfer vector for each code procedure
d. a comment that the checksum was deleted on any card
e. the location in core used by each code procedure both
absolute core locations and word addresses of Syllable
String
£. a listing of each relocated code procedure
7.7.5 General

1. The PP Loader loads all code procedures after all of the ALGOL

Source Program has been pre-processed.

2, The PP Loader refers to all code procedures that are loaded by

the first entry point in the code procedures.,

3. The PP Loader card count is recycled to 1 when a program card

is encountered.

4, The PP Loader will accept overlays.

7.7.6 The Assembly Tape

To load code procedures from the assembly tape:

1. the assembly tape must be logical -2;

‘2, the assembled decks on the tape must be preceeded by an end-of-
file mark;

3. the read/write heads must be positioned AFTER the assembled decks
when the PP Loader is called.

7.8

7/23

The above conditions are satisfied on the present BC Monitor System
at Berkeley. If the assembled decks are written on the assembly tape
starting from the load point, i.e,, without a preceeding end-of-file

mark, the following changes must be made in the subroutine LDRIO:
1. Replace Card

' TIMO1940 with: AXC *+2,4
TJM01960 with: TRA REWB4+2

2, Merge the following cards:

SLQ RESETA+3 TIMO1671
TRA SATRIN TIMO1721

TLOB * TIJMO1951

An Interface Routine for FORTRAN II Binary Decks

Introduction

The only requirement on the compiled subprogram which is to be linked to
the BC ALGOL system by this method is that it accept a standard FORTRAN
IT calling sequence. This is the case for all SHARE subprograms not

designed to run under IBSYS.

The user must write a buffering subprogram in FORTRAN II whose name will
be used in the ALGOL program and which will call both the linking sub-
routine and the subprogram to be linked. For example, if the user
wishes to use a matrix inversion routine INVERT(A,N), his buffering
program would be:

SUBROUTINE INV(A,N)

CALL LINK

CALL INVERT(A,N)

CALL RETURN

RETURN

END
The subroutine LINK effects the parameter linkage; the subroutine RETURN
returns control to the ALGOL program; and the FORTRAN verbs RETURN and

END are present only because the FORTRAN II compiler requires them.

7/24

In the user's ALGOL program, it is the buffering routine which is declared
and used, 1In the above exampie, INV would be declared as a procedure,
begin
procedure INV(A,n); binary;

INV(B,n);

end

The binary decks for both the buffering routine and the linked routine
(in the above example INV and INVERT respactively) are loaded with the
ALGOL source.

The above example illustrates the me thod which is to be used in linking
external routines to an ALGOL main program. It must be remembered, how-
ever, that the full power of the ALGOL procedure statement is restricted
by the nature of the routine to be linked. In particular, the following

restrictions hold:

1. An expression or subscripted variable may not be called
by name,

2. A parameter may not be a designational expression (e.g.,

a label). A
3. A parameter may not be a procedure or switch identifier.
4, An integer expression must be less than 217 in absolute
value,

If 2, 3 or 4 occur, processing will be halted and a diagnostic will be
given, An exception to 3 is a function désignhator - without parameters;

in which case the identifier is an expression itself.

Expressions and subscripted identifiers are handled according to the

following:

1. If the formal parameter corresponding to an expression or con-
stant appears in the value list of the buffering routine, then
it is evaluated and converted to the specified type. (This
occurs before the linking routine is called.) Linkage is made
to the storage cell which contains the value of the variable

created.

7/25

2. If the actual parameter is the identifier of a simple
variable then linkage is made to the storage cell which

contains the current value of the variable.

3. If the actual parameter is an array identifier, then linkage
is made to the first element of the array. (This corresponds

to FORTRAN II requirements.)

4, If the actual parameter is a string, then linkage is made as
in (3) to an integer array which contains the Hollerith
characters six to a word. (If the number of characters in
the string is a multiple of six, then the first character of
the next word in the array will be an octal 75. If not, the
last character of the string will be an octal 75.) 1In no case

will trailing blanks be supplied.

5, If the actual parameter is an expression whose corresponding
formal parameter does not appear in the value list, then the
expression is evaluated, and linkage is made to the storage

cell which contains the result. No type conversion is made.

BC ALGOL stores integers differently than FORTRAN II does.

The Boolean quantitites true and false are stored in BC ALGOL as the
the Hollerith TRUE-- and FALSE- and will be linked as if the quantities
were integers. It is sometimes useful to note that true is a negative

integer and false is a positive integer.

If the subprogram to be linked is a function, then the return part of
the buffering subprogram is slightly different. A call to FUNCT I,
FUNCT J, FUNCT R, or FUNCT B is made instead of a call to RETURN. For
example, if F(X,Y) is the function to be linked, then the buffering
would be

SUBROUTINE F1(X,Y)

CALL LINK

CALL F(X,Y)

CALL FUNCTR

RETURN
END

7/26

The corresponding ALGOL program:

begin
real procedure F1(X,Y); binary;

o 0 v 0

Z =X+ Y * F1(X,Y);

¢« v e e e

end

To link INTEGER FUNCTIONS, use the subroutines FUNCTI and FUNCTJ
instead of FUNCTR. With FUNCTI, the sﬁSrage readjustment of integers

is automatic; with FUNCTJ no storage adjustment is made.

FUNCTB. is used to link Boolean functions,

8.1

8/1

8. The Syllable String

Introduction

The syllable string is the link between the two processing programs in
the BC-ALGOL system. Being the output of the pre-processor and the
commands for the processor, it contains information as to how the user's
ALGOL program is being processed. The syllable string represents the
logical processing pattern for the computational processes which the
ALGOL source describes, The string itself is composed of syllables

(six bit binary numbers - printed as BCD characters) which are inter-
preted by the processor as operations on the stack - the processor’'s

tool for organizing and ordering the computations.

The string is written in modified Polish notation., This notation's main

advantage is that arithmetic and logical expressions can be written with-
out parentheses. This is achieved by placing the operator after the
variables instead of between them. For example X + Y 1is written XY+
and (X-Y)*Z becomes XY-Z*, All operations are thus strictly from left

to right. ‘

8.1.1 Stack Addresses. Variables are identified in the stack by

the block in which they were declared (block number) and by the
order in which they appear in that block (order number). For
example, the stach address 38 refers to the variable which was
declared eighth in the third block. An A or a V precedes

the stack address to indicate whether tHe addresé or the value

of the variable does onto the stack.l The string segment Al2 V3l
tells the processor to "stack' the address of the second variable
in the first Block then to stack the value of the first variable

in the third block.

Statically nested blocks increase in block number; while parallel
blocks have the same block number. For example, a program may have

the following block structure}

The syllable for a formal parameter value call is W not V ,

8/2

BN = 1
BN = 2
BN = 3

BN = 2

The parameters of a procedure have a block number one higher than
the procedure itself. Variables local to the procedure have a
block number two higher than that of the procedure. Block zero

is reserved for predeclared procedures and own variables,

8.1.2 Program Addresses. As syllables are six bit binary numbers,

six syllables fit into a thirty-six bit computer word. In the
syllable string, these words are numbered sequentially from zero
as are the syllables in each word (left to right). A particular

syllable in the string ‘is located by its word address - the number

of the word in which it is contained - and by its syllable count -

the number of the syllable in the word. Together these two numbers

form a program address, When reading a stack dump or when referring

to a particular syllable or location in the string, one uses the
program address as an absolute reference. However, word addresses
appear relative to the position in which they occur in the string.
(The syllable count is always an absolute reference.,) A word
address in the string can be thought of as the number of words one
- must move from one syllable (present location) to another (designated
location) increasing word addresses. There is a simple rule which
one may use to.compute program addresses for absolute references.
The program address in the‘string is comprised of four syllables.
The first is the syllable count; the next three are the word address.
Let W denote this word address. Add the decimal equivalent of W
“to the word address of the first syllable in W; the result, modulo

215, is the new word address., There is an exception to this rule

8/3

however; if the syllable count‘(preceding W) is in a different
word than is the first syllable of W then 1 must be subtracted
from the above result. For example, consider the word address

3C+ in figure 2. Its decimal equivalent is 227, adding the word
address of the syllable.3, i.e. 10, yields 237 and this is correct

since the syllable count, 4, is in the same word,

00 % =10
4 3 ¢ +

Fig 2. Sample Word with Heading

8.1.3 The Edited String. As some syllables do not have a unique

printing character, the string is edited prior to printing so that
a syllable appears on the page as a BCD character or as a period
followed by a BCD character. Typical words might be:

+ = $.F4 , or ..F402.,V

A period appearing in a word implies that it and the next charac-
ter combine to name the syllable, Table 1 gives a complete list

of how the edited syllables print.2
To obtain the edited string, use the following comment control:

comment: PRINT STRING;

Above each word of string, the word address appears both in a

BCD representation and decimal value. As an example:

045 = 306
[syllable string]

2 With the exception of .¥, .., and .-, a period before a

character adds octal 10 to the BCD value of the character in the
internal representation.

8/4

8.1.4 Form of the syllable string. Where it is necessary for easier

comprehension of the structure of the syllable string, a diagram
will be included, Some symbols which will be used with be a circle
enclosing a letter - this designates an actual syllable in the
string; a rectangle represents a complex structure which will

explained in a later section.

8;2 Syllable String Examples

8.2.1 Declaration of Variables

8.2,1.1 Simple Variables

form: ® ~M TYeE TR ... ©

where NUM = total number declared

TYPE = the type of variable declared,
R = real, J = integer, H = Boolean, S = switch,
Y = array, P = procedure, For arrays and pro-
cedures numbers also specify types: 0 = real,
1 = integer, 2 = Boolean,
NO. TYPE = the number of that type declared

reference: begin real a,b,c,x,y,3; integer i; boolean good, bad, poor;

source: 'BEGIN' 'REAL' A,B,C,X,Y,Z $ 'INTEGER' I § 'BOOLEAN' GOOD,

BAD, POOR $
string: 02T = 179 02U = 180 02V = 181
B #R6J1H 33
éomment: B begin syllable
10 variables declared in this block
R6 6 are of type real
J1 1 is of type integer
- H3 3 are of type boolean
$ end of declarations for this block

(NOTE - no other declarations are followed
by a §)

8/5

8.2.1.2 Own Declarations

f&r_m: @ @ [Frest of‘program] @ ® [Mon Q@ @ PA |
)

where TOT = the total number of owns.

comment: Own variables are handled in the BC ALGOL system by
making it look like they have been declared.in block O.
This means that there will be no string generated at the
point where the variable was declared, but the string
will appear at the end of the program. The first word
of every program is a transfer to the end to check to
see if there were any own declarations.

reference: own real r; own integer ij;

source: .'OWN' 'REAL' R $ 'OWN' 'INTEGER' I $

string: 02T =179 ... [rest of ALGOL program] ... 033 = 195
T300AB ce ’ .P
O ' 034 = 196 035 = 197
BOR1J1 $T57.X.0
comment : T300A transfer to end of the program to check
for own declarations
B begin of ALGOL program
.PB own begin
0 = 46, = 38, ., BCD representation of total

number of variables declared as own. This
includes the predefined procedures, 36 or (M)
+ those declared (2).

R1J1 1 real, 1 integer declared

$ end of declarations '

T57.X.0 transfer to beginning of program

8.2.1.3 Array Declarations
form: @ [T B [UE ... I§ O [mom

where TYPE

the type of the array

LB = lower bound
UB = upper bound
TOT = total number of arrays declared in this statement

8/6

reference: real array xyz[A:7, B:1];

source: 'REAL' 'ARRAY' XYZ.(A..7, B..l). $
string: 02U = 180 02v = 181 02W =182
YOV11C 000007 LO0v12'l
comment : Y v array declaration syllable
0 . type is real
Vil value of A, lower bound
C000007 integer constant 7, upper bound
.0 integer constant 1, lower bound
V12 value of B, upper bound
" end of declaration
1 1 array declared with these bounds

8.2.1.4 Switch Declarations

DECLARATION

form: @ E’,__EI [PH]5 A (S)... NEXT STATEMENT OR '

Qhere SEC = switch element count

[= a label structure explained in 8.2.4.1.

PPA = pseudo program address., This consists of 3
syllables instead of the usual 4. The left
most 3 bits of the left most syllable contain
the syllable count, the remaining 15 bits
contain the word address.

" example: P.X, = 4777738
word address = 77773, = -5
syllable address = 4
reference: switch s := £1, L2, 13, La;

source: 'SWITCH' S = L1, L2, L3, L4 $

string: 035 = 197 036 = 198 037 =199 038 = 200 039 = 201 031 = 202

S 000004 600500 0#L100 0.%.GL11 019.GL1
03 = 203 03' = 204 03.5 = 205 03,6 = 206 03.7 = 207
301.7.GL 1301F.G G.X, .G.X, P.X,

03+ = 208

.P.X,

8/7

comment: S switch declaration syllable
000004 4 elements in this switch
6005 PA which points to first PPA
000# PA which points to next declaration or statement
L1000X first label in switch
.G switch go to syllable
... etc.
G.X, first PPA pointing to first label
... etc,

8.2.1.5 Procedure Declarations

PART

form: @ m P @ (PARAM] ‘m lm [procedure body] ?

where TYPE = the type of the procedure declared
PARAM = number of parameters

VALUE PART X ,
SPECIFICATION PART) as defined in ALGOL 60 report

reference: procedure sam (a,b,c,d,e); value a,b; real a; integer array b;
[procedure body]

source: 'PROCEDURE' SAM(A,B,C,D,E) $ 'VALUE' A,B, $ 'REAL' A $
"INTEGER' 'ARRAY' B $ [procedure body]

string: 046 = 262 047 = 263 048 = 264 [procedure body] 04.7 = 271

P0100 9.N% 21 0.PGU221 .o
comment: P procedure declaration syllable

0 ' type real

1009 PA pointing to next statement or declaration
N check parameter count syllable

5 5 parameters '

U21 first parameter called by value

0 type is real

. PG array called by value
022 second parameter called by value

1 type is integer

[procedure body]
o procedure return syllable

8/8

8.2.,2 Assignment Statements

8.2,2,1 Assigning Constants

form: [} TCONSTANT|

where T = Type of Constant. If the constant is not a
special one, the constant occupief the next
full word. In this case C 1s the syllable
for an integer constant; D 1s for a real
constant, Special constants appear as any
other syllable would. These are O for integer;
.0 for integer l1; .W for boolean true; and .X
for boolean false,.

number conversions

To convert a number in the string, first convert it to octal, then

to decimal. Conversion to octal merely requires replacing each

syllable by its octal equivalent; e.g., + .P - 000 4is 20 57 13 00 00 00,
Note that ,P represents one syllable. Note also that two octal digits
replace on syllable, ‘

An octal integer is easily converted. For example:

octal 4 217 1=4% 84 + 2 % 83 + 1 * 82-+ 7% 8+ 1= 22529,

Floating point numbers are stored as 2" % M where n is an integer
and M is an octal fraction.

To obtain n: subtract 200 (octal arithmetic) from the first three
octal digits,

To obtain M: divide each digit beginning with the fourth by increasing
' powers of eight, and sum these,

Example: 205715000000 = 2° * (2+ %z + 33 +...) = 30.0
8.2.2,2 Assigning Variables
reference: C X 1=V,
source: X=YS$
string: 02X = 183 02Y = 184
Al4V15® =3
comment: Al4 place the address of X on the top of the processor's
stack ° :
V15 place the value of Y on the top of the processor's
stack

= store the value on the top of the stack into the
next address, i.e. value of Y onto X
$ end of statement

8.2,2.3

8/9

Arithmetic Assignments
reference: x :==-(b-c¢c *a) ;
source: X = -(B-C**A) §$
string: 02.vV = 189 02.Ww = 190 02.X = 191
Allvll V13vll e v - =8
comment: All Stack the address of x
V12V13vll Stack the values of ¢, b, and a, respectively
o Raise the next-to-top value in the stack to
the power of the top value in the stack. Store
the result in the next-to-top location in the
stack, make this the top of the stack. (ct a).
- Subtract the top value in the stack from the
next-to-top value and store in the next-to-top
location. Make this the new top of the stack.
. unary minus
= store into x
$ end of statement
8.2.2.4 Array Assigments

form: [SUB 1] [SUB 2| ... [SGB n] @ [BN| [ON] [D-1] @ [BNI [oN] ® ®

where SUB 1, SUB 2, ..., SUB n = the subscripts of the
array :
BN = block number
ON = order number
D-1 = number of dimensions of the
array -1,
reference: data [1,3] := a;
source: DATA ,(1,3). = A S
string: 04 = 294 04P = 295 04Q = 296 04R = 297
.0C 000003 Al31lVl 2=8
comment: .0 iﬁteger constant 1, first subscript
C000003 integer constant 3, second subscript
Al3 stack the address of data
1 dimensions of data -1
stack the value of a

V12

$

store a into data [1,3]
end of statement

8/10

8.2.2.5 Boolean Assigments ‘

reference: good := good V¥ bad 2 poor;
source: GOOD = GOOD 'OR' BAD 'IMP' POOR $
string: 041 = 257 042 = 258 043 = 259
A18V18 V193Vl #M=$
comment: Al8 stack the address of good
V18,v19 stack the values of good and bad
3 logical or syllable
V1 stack the value of poor
M logical implication operation

store the result in good
end of statement

R

8,2.3 Conditional Statements

form: [BOOL] @@.@)@'

where BOOL = A Boolean Statement
UNCON = unconditional statement

L ®

reference: 1f a>b then c¢ :=aelsec :=b ;
source: 'IF' A 'GTR' B '"THEN' C = A 'ELSE'C =B $
string: 041 = 257 042: = 258 043 = 259 044 = 260 045 = 261
V11vVliz 813003 Al3V11l =T4002 A13V12 .
046 = 262
comment: V11l V12 stack the values of A and B
8 Logical operator, greater than
I If syllable
3003 PA which indicates transfer to be made if
: statement is false
Al3 Vil= C=A
T 4002 transfer around the false statement to the
end of the conditional statement
Al3 V12 C =8B
$ end of statement

8/11

8.2.4 Transfers

8.2,4,1 Labels

form © B FA © ©® !

reference: here: ¢ := a; [other statements] go to here;
source: HERE .. C = A $ [other statements] 'GO TO' HERE $
string: 010 = 64 011 =65 ... [other statements]
A 13v11
015 = 69 016 = 70
L2 57.X.5G$
comment: Al3 Vil= C = A, note no syllables are generated

at the labeled point
[other statements]

1.2 label in block 2

57.X.5 PA which points to location of label in
the syllable string

G go to the location of the designational
expression just processed

S 4 end of statement

8.2.4.2 Switches

form: [EUE @ BN ON D=1 ©
A switchis processed as a one-dimensional array of type label.

SUB = the subscript of the switch

gg ;= the stack address of the switch
D-1 = number of dimensions -1

reference: go to S[5];

source: 'GO TO' S.(5).$

string: 02U = 180 02V = 181 02W = 182
c 000005 Z160G$

where BN = the block number of the label, this is used to maintain the
block structure of 'ALGOL after the transfer is made.
PA = the Program Address which points to the location of the

labeled point in the string.

8/12

o ' : comment: CO000005 integer constant 5, the subscript of the
‘ switch
Z switch transfer syllable
16 the stack address of switch S
0 dimension -1 of switch S
G go io syllable
S end of statement

8.2,5 FOR Statements

As there are different types of 'for' statements, different forms
will be shown. The type of for statement is specified as follows:

0 = simple for, 1 = general for, 2 = for while, 3 = for list,

a. the for step until statement: é.g, for a := 1 step 3 until 22 do ...;

@ WFI.I 7| () ® [V (0T (1) I 4 O) [T
MENT T

where STATEMENT

o D

the statement to be executed

the rontrolled variable

the initial value of the variable

the value by which it is incremented each time

INC =
FIN = the final value the variable is to have
TYPE = the type of for statement; in this case I;
unless the comment control simple for has
been used, then it would be 0.
b. the for 1list statement: é,g, for a :=1,2,3, ... do ... ;

@ [pa] FTATRIENT] (5) ® AL) @ ® @ vaL, | b4l O ®

Note 3 "= the type this time
VAR = the variable in the for statement
VALI, VALZ, etc. = the successive values taken on by the

variable

8/13

c. the for while statement: e.g. for a := 10 while b < 50 do ...

¥

@ [pA] [BOOL] IS*'EATEMENTl @@') VAR| [VAL| T[PE] 155_7 Q0 @

L

where BOOL = a Boolean statement such as b < 50

d. nested fors: e.g. for a :=1,1.5,2 step 2 until 14, 17 do ...;

@@g@@é@@m EI]TJ@@C@@@ZI@’&@@

where VALl, VAL2 =l,L 5 values in a for list type = 3

igé$? the initial value, increment, and final
FIN) value for the for step until stement, type =
VAL3 = 17 value in a for list type = 3.

a would take the successive values, 1,1.5,2,4,6,8,10,12,14,17.

reference: for a := 1 step 1 until 10 do sam[a] := a;
source: 'FOR' A=1 'STEP' 1 'UNTIL' 10 'DO' SAM .(A). = A §
string: 02X = 183 02Y = 184 022 =185 02.5 = 186 02, = 187
T20 03V1lA 120V1l- =,5FV11l ~ .0.0C -
02(= 188 02,V = 189
00000# 27.X,)1
comment: T2003 transfer to the start of the for statement °
V11A120V1l= SAM[a] := a the statement
.5 end of statement
F for syllable
Vil value of a
.0 integer constant 1, the initial wvalue.
.0 the increment
C00000# integer constant 10, the final value
27.X, PA which points to the statement
) end of for statement
1 type of for statement

1

8.2.6

Procedure Statements

Comment: A procedure statement is effected in the same manner as
a value call, i,e. getting a value to the top of the stack,
The parameter list, if not empty, follows the value call and
is enclosed within parentheses. A program address (whichb

points to the parameter list) follows the left parenthesis.

. !
form: ® BNl (o8] © Al [PARAMETERS | ()

OR _PA_

parameters = the string giving the parameters which compose
the procedure statement

reference: p(x,y,2);

source: P(X,Y,2) §
string: 04+ = 272 04A = 273 04B = 274 04C = 275
V11 (20 01v12v 13vil) $
comment : Vil . call of procedure p
: (parameter list follows
2001 program address which points to the start

of the parameters
V12V13Vli4 X,Y,Z = the parameters
) end of the parameter list

Comment: When a parameter is more complicated than an unsigned
number or a simple variable, the parameter is handled as
follows: The syllable string for this 'complex" parameter
appears within the parentheses surrounding the parameter
list between the program address which points to the para-
meter list and the parameter list itself. A comma follows
this string. In place of the value call which would have
been generated for a ''simple' parameter is a program address
which points back to the string generated for the complex
parameter. For example, the procedure statement P(A,X+Y,B)

has a string with the following structure:

8/15

v
vit ([P.A] Vvi2 V13 + , V14 V15)
P X+Y A B

If a simple parameter is itself a formal parameter, a
procedure identifier, an array identifier, or a switch
identifier, then the W syllable is used instead of the
V syllable. Signed constants are treated as complex para-
meters while unsigned constants are simple parameters and
appear in the parameter list with the usual structure (C
syllable etc.). Labels are considered complex parameters
if they appear in the source program after their use as a
parameter; otherwise, they are treated as a simple para-
meter and appear in the parameter list. If the label is
a formal parameter, then the W syllable is used in the
parameter list; otherwise, the L structure (see 8.2.4.1.)

is used.

8.2.7 Handling of Strings

Comment: When strings are used as constants, they appear in
the string as any other constant would.* When used as a

parameter in a procedure, they have a special syllable.

reference: text (‘ABC’);

source: TEXT('('" ABC'')') §
string: 04t = 316 04.V =317 04.W = 318 04.X = 319
V0.6(10 : 02.VABC .V,27.X.X)$
comment: V0.6 call of text
(parameters follow
1002 program address which points to end of parameters
.V string quote
ABC.V ABC string quote
, end of string
27.X.X program address which points to start of string
)$ end of parameters

"c 3 .
See thapter 6 . on character handling and bit manipulation routines.

8/16

~ 8.2.8 The Continuation Syllable

To allow the processor to operaté with 127 different syllables
instead of the 64‘corre3pond1ng to the normal 64 BCD characters,
the syllable .P 1is used as a éontinuation syllable. This has
the effect that the syllable fdllowing .P 1is interpreted as
shown in Table II instead of fable I (see below).

TABLE I
DECIMAL PRINTING
BCD CODE (octal) EQUIVALENT REPRESENTATION CARD CODE SYLLABLE STRING MEANING
00 00 0 0 fault
01 01 1 1 =~ integer divide
02 02 2 2 A logical "and"
03 03 3 3 V logical "or"
04 - 04 4 4 < 1less than
05 05 5 5 < less than or equal to
06 ' 06 6 6 = equal to
07 07 7 7 > greater than or equal to
10 08 8 8 > greater than
11 09 9 9 = not equal to
12 10 ¥ 2-8 transfer to word address + 1 for
entry into external procedure .
(E.g. code)
13 11 = 3-8 :=: store
14 12 ! 4-8 end of array or switch declarations
15 13 .5 ' 5-8 end of for body
16 14 .6 6-8 ML" LINE
17 15 .7 7-8 ML PAGE
20 16 + 12 add
21 17 A 12-1 address call

*

ML = machine language

L1/8

o

TABLE I (continued)

DECIMAL " PRINTING
BCD CODE (Octal) EQUIVALENT REPRESENTATION CARD CODE SYLLABLE STRING MEANING
22 18 B 12-2 begin
23 19 C 12-3 integer constant
24 20 D 12-4 floating point constant
25 21 E 12-5 end
26 22 F 12-6 for
27 23 G 12-7 go to
30 24 H 12-8 Boolean
31 25 I 12-9 if
32 26 S 12-0 A exponentiation
33 27 - 12-3-8 procedure return
34 28) 12-4-8 ML OUTPUT
35 29 .E 12-5-8 escape character - used to return
o the processor from s code sub-
routine .
36 30 F 12-6-8 function identifier
37 31 . 12-7-8 switch go to
40 32 - 11 subtract
41 33 J 11-1 integer
42 34 K 11-2 = equivalent
43 35 L 11-3 label
44 36 M 11-4 D implies
45 37 N 11-5 = not

81/8

o

TABLE I (continued)

PRINTING

DECIMAL
BCD CODE (Octal) EQUIVALENT REPRESENTATION CARD CODE
46 38 0 11-6
47 39 P 11-7
50 40 Q 11-8
51 41 R 11-9
52 42 - 11-0
53 43 11-3-8
54 44 11-4-8
55 45 N 11-5-8
56 46 .0 11-6-8
57 47 P 11-7-8
60 48 BLANK BLANK
61 49 / 0-1
62 50 s 0-2
63 51 T 0-3
64 52 U 0-4
65 53 v 0-5
66 54 W 0-6
67 55 X 0-7
70 56 Y 0-8
71 57 z 0-9

SYLLABLE STRING MEANING

integer constant 0
procedure
ML SPACES

real

unary minus

semicolon

multiply

check parameter count

integer constant 1

continuation syllable (see Table II)
skip to next syllable

real divide

switch declaration

then or transfer

value

value call
value call, formal parameter

fault

array

switch transfer

61/8

[~

TABLE I (continued)

DECIMAL PRINTING
BCD CODE (Octal) EQUIVALENT REPRESENTATION CARD CODE
-7 58 .S 0-2-8
73 59 , 0-3-8
74 60 (0-4-8
75 61 .V 0-5-8
76 62 W 0-6-8
77 63 .X 0-7-8

. SYLLABLE STRING MEANING

fault

comma (in a procedure call a comma
ends a parameter expression)

external code procedure call or
left parenthesis

string quotes
Boolean true

Boolean false

0z/8

(=

TABLE II, THE INTERPRETATION. OF. SYLLABLES.FOLLOWING THE CONTINUATIQN SYLLABLE

- DECIMAL PRINTING
BCD CODE (Octal) EQUIVALENT REPRESENTATION CARD CODE SYLLABLE STRING MEANING

"0 0 - 0 0 fault
1 1 1 1 ML ABS
2 2 2 2 ‘ML SIGN
3 3 3 '3 ML LN
G 4 4 4 ML ARCTAN
5 5 5 s ML EXP
6 6 6 6 ML LOG
7 7 7 7 ML SIN
10 8 8 8 ML COS
11 9 9 9 ML SQRT
12 10 # 2-8 ML TANH
13 11 = 3-8 ML ENTIER
14 12 ' 4-8 ML SET TIME
15 13 5-8 ML FIX ARGUMENT
16 14 6-8 ML FLOAT ARGUMENT
22 18 B 12-2 OWN BEGIN
24 20 D 12-4 STACK DUMP
27 23 G 12-7 VALUE CALL OF ARRAY
30 24 " 12-8 LIBRARY
31 25 1 12-9 ML GETTIME

All other syllables are faults.

1¢/8

TABLE III,

STANDARD FUNCTIONS

8/22

Standard functions are declared in block zero; otherwise, they are addressed
in the normal manner.

Order Number Function

1 PRINT

2 READ

3 ABS

4 SIGN

5 LN

6 ARCTAN

7 EXP

8 LOG

9 SIN

10 cos

11 SQRT

12 TANH

13 ENTIER

14 TEXT

15 SETTIME

16 GETTIME

17 PRINTING FORMAT
18 SAVE

19 WRITE
20 READING FORMAT
21 READING REAL
22 READING EXIT
23 READING INTEGER
24 READING BOOLEAN
25 LINE
26 REAL FORMAT
27 INTEGER FORMAT
28 BOOLEAN FORMAT
29 PAGE
30 SPACES

Reference

3

DR NN WWW W W W W WE EN e o e g e e e W

Description

Absolute value of an argument
Sign of an argument

Natural logarithm

Arc Tangent

Exponential "

Common logarithm (base 10)
Sine

Cosine

Square Root

Hyperbolic tangent

Greatest integer function

Sets running time limit

Indicates time remaining

Order‘Number‘

Table ITI (Continued)

Description

Function Reference
31 TITLE 2
32 ’ PUNCH 2
33 PRINTER 2
34 INPUT 2
35 OUTPUT 2
36 FORMAT 3

8/23

9.1

9/1

9, The Stack

Introduction

The ALGOL Processor's Stack is used in carrying out the computational

processes as indicated by the syllable string generated by the pre-processor,

The stack is a large one dimensional array stored backwards in the memory.
On the printed page, the top, or the last entry, of the stack is on the bot-
tom of the page.

There is another smaller stack known as the display. It is used to keep
account of dynamic entries to blocks and procedures. Several registers are
also used for communication within the stack; these are described as they

are encountered in the examples,

A stack dump may be obtained by using the comment control card - comme:t:
dump; . This will cause a stack dump to be made at the place in the ALGOL
source program where the comment occurs, A stack dump will also be made when

an error condition causes the Processor to terminate its execution of a program,

9.1.1 Form of the stack dump

The first things printed are some of the variables used for communication

within the stack.

The accumulator, pointer, abbreviated AP, is uséd to index the stack and gives

the location of the top of the stack., The display pointer, abbreviated DP,

is used to index the display and indicates the number of dynamically entered
blocks and procedures. The parameter pointer,‘abbreviated PP, is used to
allow returns from dynamically nested blocks. It points Eo the location of
the beginning of the last dynamic block. The syllable count, word address,
and syllable have alredy been defined; they indicate the location in the

" string when the dump occurred. The block number and order number have also

.been defined; they give the variable being processed at the time the stack

dump occurred. The value address, abbreviated VA, is used to give the

location in the stack of the variable being processed when the dump.occurs,

9/2

The next block of information printed is the display. This is printed
with the display pointer to give the history of the dynamic block structure
of the program. The value of the display for each display pointer is the
beginning of that block in the stack.

The stack itself is then printed. The left hand column contains the
value of the accumulator pointer while the content of the stack at that

location is printed to the right.

.. STACK DUMP
VARIABLES
ACCUMULATOR POINTER = 158
DISPLAY POINTER = 1
PARAMETER POINTER = 156
SYLLABLE COUNT = 1
WORD ADDRESS = 198
SYLLABLE = 0
BLOCK NUMBER = 0
ORDER NUMBER = 0
o VALUE ADDRESS = 0
DP - DISPLAY
1 156

9.2 Stack Dump Examples

These examples will be similar to the examples of Chapter 8/
The stack dump will contain the structures created by these examples when

executed by the Processor.

9,2.1 Declarations of Variables
begin real a,b,c,d,e,f; integer x,y,z; boolean good, bad, poor;

9.2.1.,1 Simple Variables

AP STACK
136 #*%L, TNK BN= 1 pPP= 1 WP= 160
138 VALUE UNINITIALIZED (a) :
140 VALUE UNINITIALIZED (b)
142 VALUE UNINITIALIZED (c¢)
: 144 VALUE UNINTTIALIZED (d)
. . 146 VALUE UNINITIALIZED (e)
148 YVALUE UNINITIALIZED (£)
150 VALUE UNINITIALIZED (X%)
152 VALUE - UNINITIALIZED (¥)
154 VALUE UNINITIALIZED (2)
156 VALUE UNINITIALIZED (good)
158 VALUE UNINITIALIZED (bad)

160 VALUE UNINITIALIZED (poor)

9/3

The execution of the begin syllable B causes the Processor to
create a block link to indicate the beginning of a block, The
location of the link is entered in the display. The link contains

information on the dynamic block number BN ,, the parameter pointer,

and the working space pointer, WSP .

The amount of storage to be allocated for the variables declared

in each block is determined by the syllable following the begin
syllable. Two locations in the stack are set aside for each declared
variable. 1In the case of simple variables, one word contains infor-

mations on the type and whether the variable has been initialized.

The other word contains the actual value of the identifier. The
working space pointer gives the position of the last location used
for this allocation. The computational processes are carried out
above the working space pointer to protect the information and the

value of the identifiers,

9,2.1,2 Own Variables

begin own real a; own intecer i;

AP STACK

75 VALUE UNINITIALIZED

77 VALUE UNINITIALIZED

136 #%LINK BN= 1 PP= 1 wWsSP= 138
138 VALUE UNINITIALIZED

Storage is allocated for the own variables before the block link
for block number 1 is added to the stack. Storage for declared

variables is handled in the same manner.

9.2.1.3 Array Declarations
begin array a[l:7,-1:3];

140 **LINK BN= 1 pPP= 1 WP= 184

142 VALUE ARRAY REAL DIM= 2 MP= 145 FEP= 151 AL=35 ADD=-20
AP MAPPING DATA
145 BS= 1 8B= . 7
147 BS= -1 SB= 5

AP ARRAY VALUES

151

9/4

The execution of the array declaration syllable Y causes infor-
mation on the dimensions and the allocation of array storage to

be stored in the two cells corresponding to that identifier. This
.information contains the number of dimensions DIM , the mapping
pointer MP , the first element pointer FEP , the array length
AL, énd the ADD which is used to compute the actual address of

array elements.

The mapping pointer gives the location of further information on
the array. There is one more cell set aside for each dimension of
the array. This cell contains the basis subscript BS and the sub-
script bound SB , These are the lower bound and the width of each

dimension of the array.

The first element pointer has the address of the first element of
the array. All other elements are stored in order with the first
dimensions increasing the most rapidly. The array elements are
stored above the working space pointer, and another register known
as the deglaration pointer is used to protect them; it is not

printed however.

When arrays are printed, the two cells in which the initial infor-
mation is stored are,pfinted..The mapping information then follows,
with the array elements following last. Array elements having a
value of 0 are not printed. Printing of the stack is then returned

to the usual sequential order.

9,2,1.4 Switch Declarations

switeh s=: g1, 22, £3, L4;

SWITCH . PA=6, 205 SEC= 4 PP= 149
WA SWITCH LIST PA
205 PA=2, 200
20% PA=3, 201
207 PA=4, 202
208 PA=5, 203

The execution of the switch declaration syllable S causes infor-
mation on that switch identifier to be stored in the two cells
allocated for it, The program address gives the location in the

9/5

syllable string of the first pseudo program address. The switch
element count SEC gives the number of elements in the switch
list. The parameter pointer gives the location of the last block
or procedure entered, This is required by the local and global
nature of ALGOL variables, The locations in the syllable string
of the pseudo program addresses is given next by the word address
WA . The location which the pseudo program address is teferencing

is given by the corresponding switch list PA ,

9.2,1,5 Procedure. Declarations
procedure sum(a,b,c,d,e); value a,b; real a; irteger array b;

176 PROGRAM DESCRIPTOR BN= 1 PP= 168 PA=1, 263 REAL

The execution of the procedure declaration syllable P causes a
program descriptor to be stored in the two cells allocated for the

procedure identifier,

The information contained is the block number in which the proce~
dure is declared, a parameter pointer performing its usual func-
tion, a program address giving the location in the string where

execution of the procedure begins, and the type of the procedure,

The location where the actual execution begins is usually the
location of the check parameter count syllable .N . The
exceptions are when the comment control cards comment: ro para-
meter tests; or comment: variable number of parameters; are in

effect.
9,2.2 Procedure Statements

A procedure statement causes the program descriptor associated with
that procedure identifier to be brought to the top of the stack. A proce-
dure link is then added above the program descriptor, The procedure link
is similar to a block link in that it contains information on the location
of the last block or procedure link. It contains the working space pointer
which performs the same function as it does for a block. The location in

the string of the procedure statement is also included.

9/6

9.2,2.1 Parameters

Parameters are brought to the top of Ehe‘stack in the order in

-which they appear in the procedure statement.

If the parameter is a simple variable, a stack address is placed
“on the top of the stack for this parameter., It contains a value
address VA , which gives Ehe actual location of the paramter in
the stack, The type of parameter is also given. If the parameter
is a constant, its value is placed in_ the location for the para-
meter. The description DES 1is given which has the property of
the parameter.

: Parameters which are not simple identifiers are handled
differently. Parameters which are array or switch elements, pro-
cedure identifiers, or expreésions, cause a program descriptor
to be placed in that parameter's location. This program descriptor
contains the block member of the procedure statement, the parameter
poiﬁter, and the location in the string where the parameter appears.

The type of the parameter is also given.

The fbllowing examples illusfrafe calls of three parameters. In
the first onekthe parameters are all simple identifiers which cause
three stack addresses to be placed on the stack., In the:second,
the first parameter is an ﬁrray element which causes a program
‘descriptor to be pléced in the corresponding location.

sum (a,b,c); o
241 PROGRAM DESCRIPTOR BN=43 "PP= 191 - PA=5, ~ 181 REAL

244 - *PROCEDURE LINK BN="2 PP= 191 PA=2, 217 "“WP= 250 RP= 191
246 STACK ADDRESS VA= 199 INTEGER DES=0 '
248 STACK ADDRESS VA= 201 1INTEGER DES=0
250 STACK ADDRESS : " VA= 203 1INTEGER DES=0

sum (x[1],b,c);
241 PROGRAM DESCRIPTOR BN=43 PP= 191 PA=5, 181 REAL
244 *PROCEDURE LINK BN= 2 PP= 191 = PA=4, 221 WpP= 250 RP= 191
246 PROGRAM DESCRIPTOR BN= 1 PP= 191 PA=5, 218 REAL
248 STACK ADDRESS VA= 201 INTEGER DES=0

250 STACK ADDRESS VA= 199 INTEGER DES=0

903

9/7

If the formal parameter. .is called by value, the same mechanism

is used.

However, before executlion of the procedure body the

actual value of the parameter is placed on the top of the stack .

instead of the stack address,
of the actual parameter;

cannot change the actual parameter in the stack.

This has the effect of making a copy
for the procedure so that the procedure
This is how calls

By value are specified in the ALGOL 60 Report Section 4,7.3.1.

If arrays are called by value, the information word for the array

is placed in that parameter's location and the actual elements are

placed above the working space pointer,

If the procedure body itself is a block, then a block link is added

after the spaces for the parameters have been filled with the appro-

priate information.. Execution of the procedure body begins, and

storage is allocated for the declared variables as described before.

sam (10,b,7,7,2);

241 PROGRAM DESCRIPTOR
244 *PROCEDURE LINK

246 VALUE REAL

248 VALUE ARRAY INTEGER
AP MAPPING DATA
212 BS= 1
AP ARRAY VALUES
256 1
257 2
258 3
259 4
260 5

250 VALUE INTEGER

252 VALUE INTEGER

254 VALUE INTEGER

FOR Statements

1

BN=43 PP= 191 PA=2, 189 REAL
BN= 2 PP= 191 PA=l, 236 WP= 279 RP= 191
0.10000000E 02
DIM= 1 MP= 212 FEP= 256 AL= 5 ADD=
SB= 5
7
7
2

For statements are treated as implicit procedures in the BC~ALGOL system.

Examples illustrating the various types are given.

9/8

9.3.1 for step until
for 1 :=1 step 1l until 3 do <statement>;
252 STACK ADDRESS VA= 204 INTEGER DES=0
254 VALUE INTEGER 1°
256 VALUE INTEGER 1
258 VALUE INTEGER 3 _
260 PROGRAM DESCRIPTOR BN=1L PP= 202 PA=1, 215 REAL
263 *PROCEDURE LINK BN=2 ‘PP= 202 PA=6, 220 WP= 263 RP= 1

The controlled variable's stack address is placed on the top of the
stack, Then the initlal value, the increment and the final value
are placed on the stock., A program descriptor is placed on the top
of the stack with a program address which contains the location in
the string of the statement to be executed. A procédure 1ink is
then constructed in which the program address contains the location
in the string of the for list. The actual computations described

by the statement are performed above the procedure link.

for 1i$t

for 1 :=1,2,3, do <statement>;

252 STACK ADDRESS VA= 204 INTEGER DES=0

254 VALUE INTEGER 1 .

256 PROGRAM DESCRIPTOR BN= 1 - PP= 202 PA=0, 222 REAL

259 *PROCEDURE LINK . BN= 2 PP= 202 PA=2, 226 WP= 259 RP=

The controlled variable's stack address is again brought to the
top of the stack, The value that the controlled variable is to
assume is placed above it, The program descriptor and procedure

link are then placed on the top of stack as described before.

fbr.whila

mceterace

for i := 1 while b < 10 do {statement>;

252 STACK ADDRESS VA= 204 INTEGER DES=0

254 VALUE INTEGER 1

256 PROGRAM DESCRIPTOR BN= 1 PP= 202 PA=0, 234 REAL

258 PROGRAM DESCRIPTOR BN= 1 PP= 202 PA=2, 236 REAL

261 *PROCEDURE LINK " BN= 2 PP= 202 PA=6, 242 WP= 261 RP=

3

9/9

e

The controlled variable is again brought to the top of the
stack, The value it is to assume 1s then brought to the top
of the stack., A program descriptor giving the location in the
string of the Boolean expression is then placed on the top of
the stack, The program descriptor and thebprocedure link are
then added to the stack,

If the parameters of a for statement are not simple identifiers
or constants, then a program descriptor will appear with the

location in the string of the parameter.

If the for statement is nested, then there will be a series of

stack addresses, values, program descriptors and procedure links

~on the top of the stack as each for statement is executed. The

example following 1is a stack dump of a statement of the form

for a:= 1 step ¢ until 3 do

for b:=1 step 1 until 3 do

<statement>;
229 STACK ADDRESS VA= 181 INTEGER DES=0
231 VALUE INTEGER 1 i i
233 VALUE INTEGER 2
235 VALUE INTEGER 5 :
237 PROGRAM DESCRIPTOR BN= 1 PP= 179 PA=1, 209 REAL
240 *PROCEDURE LINK BN= 2 PP= 179 PA=6, 219 WP= 240
242 STACK ADDRESS VA= 189 INTEGER DES=0
244 VALUE INTEGER -1
246 VALUE INTEGER 1
248 VALUE INTEGER 3 ‘
250 PROGRAM DESCRIPTOR BN= 2 PP= 240 PA=0, 210 REAL
253 *PROCEDURE LINK BN= 3 PP= 240 PA=6, 215 WP= 253

9.4 Composition of the Stack's Special Structures

RP=

RP=

For ease in writing machine code procedures, a more detailed knowledge of

that purpose.

‘Eﬁé’strUCture of the stack may be useful., This section is intended for

9/10

The stack storage assignments for the stack quantities are:

Description Stack Type Type of Stack Element

0 REAL value

INTEGER value
BOOLEAN value
SWITCH DESIGNATOR
LABEL '
STRING ADDRESS
ARRAY DECLARATION
STACK ADDRESS
PROGRAM DESCRIPTOR
BLOCK LINK
PROCEDURE LINK
SWITCH DECLARATION

NP LOUNPFRPROOO0OOO0OO
PN

The abbreviations used are:

BN for block number

DESC for description

INFOWORD for the IBM 7094 word containing the description of the stack
quantity

PROCRTN for processor return

STKDS for stack address description

SC for syllable count

---- for zeros normally expected in that part of a word.

The representatlion of the IBM 7094 word is as follows:

PREFIX " DECREMENT TAG ADDRESS

Bit

Number 23 : 1718 2021 | 35

The various structures will now beAgLven;'the‘actual IBM.7094 word referenced

by the accumulator pointer is designated by an arrow on the left.

9.4.i Value.. real, integer, or boolean

DESC ——— TYPE -

VALUE

If the low order bit of the info word is a 1, then the variable is unin=-
tialized. If next bit to the low order bit is a 1, then the variable is
undefined.

9.4.2 A Switch designator

> DESC - type -

SC word address. parameter pointer

9.4.3 A label

> DESC - type ———

SC word address parameter pointer

9.4,4 A string address

> DESC - o o type

STRING ADDRESS

9.4.5 An array declaration

—
- DESC m——— type| parameter pointer

nmapping pointer first element pointer

array mapping data

- ADDER

LOWER BOUND, FIRST SUBSCRIPT

WIDTH, FIRST SUBSCRIPT

other subscripts

DIMENSION

ARRAY LENGTH

9/11

9,4,6 A stack address

.> DESC

- -

TYPE

STKDS

STACK ADDRESS

9.4.7 A program descriptor

> DESC

BN, PROC RIN | TYPE

PROCESSOR ADDRESS

sc

WORD ADDRESS

PARAMETER POINTER

9/12

9.5.8 A block link

DESC BN TYPE | working space pointer
> declaration pointer parameter pointer
5C- word address

Note that this structure contains three IBM 7094 words instead of the usual

two.

The declaration pointer is used in case arrays are declared,.

tects them in the same manner the working space pointer protects the

declared variables information and values,

9.4.9 A procedure link

DESC BN TYPE | working space pointer
> declaration pointer parameter pointer
Sc word address return pointer

Note that the procedure link also contains three IBM 7094 words.

The

return pointer is used to restore the processor to its original state

after the completion of a procedure statement.

The link for a for body

is similar except that the for type replaces the return pointer,

It is
set at the end of the storage allocation for the array elements and pro-

o -

9.4.10 A switch declaration

—>

DESC

switch element count

sC

word address

parameter pointer

9/13

10/1

10. Library Tape Operations

10.1 Introduction

The BC~ALGOL library tape operations will allow a user a fair degree of flexi-
bility in generating a source language BC-ALGOL program, Provisions are made
for selecting various input-output units, as well as providing for scratch

storage,

10.2 Input-Output Selection

The selection of the various input-output units is achieved by using comment-

control cards. The cards and their uses are also listed in Chapter 4.

To . inform the BC-ALGOL system of the user's wish to use the library facilities
two comment controls are available comment: 1library A5; or comment: library B5;
Either one or both of these may be used in the same program. They must appear
before the first begin of the program. Accompanying these cards must be a $SETUP
card for each unit used. The purpose of the $SETUP card is to instruct the
computer operator to mount a given tape reel and to assign to it a logical name

(see Appendix 4). These cards must appear after the $JOB card.

The $SETUP card has the following format:

column 1 8 . 16
$SETUP unit: reel, NORING

NORING is used to protect the library tapes from accidental destruction and

must be used.

Once the BC~-ALGOL system is using the library facilities, input files may be
selected with the following control card comment: <filename>; . The input
file is a logical grouping of source language statements ended by an end of
file character. The control card instructs the BC-ALGOL system to read the
file designated by <filename> and insert it as part of the source program

to be executed. This card must be in the source program deck, if found else—
where, it is ignored. If there is no file with that name on the library units
used, the card is ignored. For obvious reasons, when using the library faci-
lities, file names corresponding to the comment control words listed in Chapter

4 should not be used.

10/2

10.3 Scratch Storage

Provisions have been made for the use of a scratch tape. The method is to
again use a comment control comment: scratch tape; . This must appear in
the source deck or it will be ignored. The action taken is to transfer in-
put control to the scratch tape unit A4, One of the uses could be to save
intermediate text generated by one ALGOL program as the input to another seg-
ment of an ALGOL job. The device used will be a disk simulation unless
a S$SETUP card for this option was included.

To return control to the normal input mode by using comment: source tape;
It must be found on unit A4 to be executed. If found anywhere else, it is
ignored. In addition to returning the input mode to the normal one, an end

of file is written on unit A4 without rewinding it.

10.4 Additional Facilities

There exists a group of code procédures which will allow the library faci-
lities to be used with a great deal of flexibility, As they are all des-
cribed in Chapter 6, they will be briefly mentionéd here.

The procedure rescan 1is used to return control to the monitor for segmen-
tation of a long job into separate ptograms. With the scratch storage facil-

ities, this could be useful.

The procedures inunit and outunit are useful for generating or reading .

from tapes -at execution time.

There are quite a few other tape handling facilities available. The user is

referred to Chapter 6 for their descriptions.

A figure to show the interactions of the library facilities along with their
means of entry and exit is given. Note that these facilities are not recur-
sive and that everything is channelled through the normal source card deck.

The S$EOF “is the end of file character on the tape.

10/3

comment: source tape; comment: scratch tape;

Normal
Source Card
Deck
(A2)

o comment:<filename>; comment:<filename>;

B5
Library

Reprinted by the

ASSOCIATION FOR COMPUTING MACHINERY

From Communications of the ACM 6 (Jan. 1963), 1-17.

Revised Report on the Algorithmic Language
ALGOL 60

. PeTER NaUR (Kditor)
J. W. Backus C. Karz H. RUTISHAUSER J. H. WEGSTEIN

I'. L. BAvER J. McCarraY K. SAMELSON A. vAN WIJNGAARDEN
J. GREEN A.J. PERLIS B. Vatvquols M. WooDGER

Dedicated to the Memory of Wirriam TuURANSKI

Reprints distributed by the Association for Computing Machinery, 211 East 43 St., New York 17, N. Y.
Single copies to individuals, no charge; Single copies to companies, 50¢ each;
Multiple copies: first 10, 50¢ each; next 100, 25¢ each; all over 100, 10¢ each.

Revised Report on the Algorithmic Language
ALGOL 60

C. Karz
J. McCanrtay
A. J. PErus

J. W. Backus
I, 1. Baver
J. GREEN

Perer Navr (Fditor)
H. RuTisHAUSER
K. SameLsox
B. Vauquors

J. H. WEGSTEIN
A. vAN WIINGAARDEN
M. WoongER

Dedicated to the Memory of WirLiavw ToraNskI

SUMMARY

The report gives a complete defining description of the
international algorithmie language ALGOL 60. This is
a language suitable for expressing a large class of nu-
merical processes in a form sufficiently concise for direct
automatic translation into the language of programmed
atutomatic computers.

The introduction contains an account of the preparatory
work leading up to the final conference, where the language
was defined. In addition, the notions, reference language,
publication language and hardware representations are
explained.

In the first chapter, a survey of the basic constituents
and features of the language is given, and the formal
notation, by which the syntactic structure is defined, is
explained.

The second chapter lists all the basic symbols, and the
syntactic units known as identifiers, numbers and strings
are defined. Further, some important notions such as
quantity and value are defined.

The third chapter explains the rules for forming ex-
pressions and the meaning of these expressions. Three
different types of expressions exist: arithmetic, Boolean
(logical) and designational.

The fourth chapter describes the operational units of
the language, known as statements. The basic statements
are: assignment statements (evaluation of a formula),
go to statements (explicit break of the sequence of ex-
ecution of statements), dummy statements, and pro-
cedure statements (call for execution of a closed process,
defined by a procedure declaration). The formation of
more complex structures, having statement character, is
explained. These include: conditional statements, for
statements, compound statements, and blocks.

In the fifth chapter, the units known as declarations,
serving for defining permanent properties of the units
entering into a process deseribed in the language, are
defined.

The report ends with two detailed examples of the use
of the language and an alphabetic index of definitions.

CONTENTS

INTRODUCTION
1., STRUCTURE OF THE LANGUAGE

1.1. Formalism for syntactie description
2. Basic SywmBoLs, IDENTIFIERS, NUMBERS, AND STRINGS.

Basic CoNcePTS.

2.1. Letters

2.2, Digits. Logical values.

2.3. Delimiters

2.4. TIdentifiers

2.5. Numbers

2.6. Strings

2.7. Quantities, kinds and scopes

2.8. Values and types
3. KXPRESSIONS

3.1, Variables

3.2. Function designators

3.3. Arithmetic expressions

3.4, Boolean expressions

3.5. Designational expressions
4. STATEMENTS

4.1. Compound statements and blocks

4.2, Assignment statements

4.3. Gio to statements

4.4, Dummy statements

4.5. Conditional statements

4.6. For statements

4.7. Procedure statements
5. DECLARATIONS

5.1, Type declarations

5.2. Array declarations

5.3. Switch declarations

5.4. Procedure declarations
xamMrrLes or PROCEDURE 1DECLARATIONS
ALPHABETIC INDEX oF DErINITIONS OF CONCEPTS AND

Sy~racrie UNirs

Communications of the ACM

gramming languages will lead to better resolution:

1. Side effects of funetions s
The call by name coneept
own: static or dynamic
For statement: static or dvnamie
. Conflict between specification and declaration

Tho authors of the AnconL 60 Report present at the
Rome Conference, being aware of the formation of a
Working Group on Ancor by IFIP, accepted that any
collective responsibility which they might have with
respect to the development, specification and refinement
of the Arcon language will from now on be transferred to
that body.

This report has been reviewed by IFIP TC 2 on Pro-
gramming Languages in August 1962 and has been ap-
proved by the Council of the International Federation
for Information Processing.

As with the preliminary Avrcor report, three different
levels of language are recognized, namely a Reference
Language, a Publication Language and several Hardware
Representations,

L R D

REFERENCE LANGUAGE

1. It is the working language of the committee.

2. It is the defining language.

3. The characters are determined by ease of mutual
understanding and not by any computer limitations,
coders notation, or pure mathematical notation,

4. It is the basic reference and guide for (‘ompllor
builders.

5. It is the guide for all hardware representations.

6. It is the guide for transliterating from publication
language to any locally appropriate hardware representa-
tions.

REVISED ALGOL 60

The main publications of the Arcorn language itself
will use the reference representation.

PuBLicaTion LANGUAGE

The publication language admits variations of the
reference language according to usage of printing and hand-
writing (e.g., subscripts, spaces, exponents, Greek letters).

2. It is used for stating and communicating processes.

The characters to be used may be different in
different countries, but univocal correspondence with
reference representation must be secured.

HARDWARE REPRESENTATIONS

1. Ilach one of these is a condensation of the reference
language enforeed by the limited number of characters on
standard input equipment.

2. Fach one of these uses the character set of a particu-
lar computer and is the language accepted by a translator -
for that computer.

3. Each one of these must be accompanied by a special
set of rules for transliterating from Publication or Refer-
ence language.

For transliteration hetween the reference language and
a language suitable for publications, among others, the
following rules are recommended.

Publication Language

Lowering of the line hetween the
brackets and removal of the
brackets

Raising of the exponent

Any form of parentheses, brackets,
braces

Raising of the ten and of the follow-
ing integral number, inserting of
the intended multiplication sign

Reference Language
Subseript hracket [}

Exponentiation |
Parentheses ()

Basis of ten 1o

DESCRIPTION OF THE REFERENCE LANGUAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language
has three different kinds of representations—reference,
hardware, and publication—and the development de-
seribed in the sequel is in terms of the reference repre-
sentation. This means that all objects defined within the
language are represented by a given set of symbols—and
it is only in the choice of symbols that the other two
representations may differ. Structure and content must
he the same for all representations. '

The purpose of the algorithmic language is to deseribe
computational processes. The basic concept used for the
description of caleulating rules is the well-known arith-
metic expression containing as constituents numbers, vari-
ables, and functions. From such expressions are com-
pounded, by applying rules of arithmetic composition,

Vy\'as siivh itherhaupt sagen lasst, lisst
sich klar sagen; und wovon man nicht
redden kann. daritber muss man schweigen,
Lupwic WITTGENSTEIN.
self-contained units of the language—explicit formulae
—called assignment statements.

To show the flow of computational processes, certain
nonarithmetic statements and statement clauses are
added which may describe, e.g., alternatives, or iterative
repetitions of computing statements. Since it is necessary
for the function of these statements that one statement
refer to another, statements may be provided with labels.
A sequence of statements may be enclosed between the
statement brackets be«rm and end to form a compound
statement.

Statements are supported by declarations which are not
themselves computing instructions but inform the trans-

“lator of the existence and certain properties of objects

appearing in statements, such as the class of numbers
taken on as values bv a variable, the dimension of an

Communications of the ACM 3

conventions hold:
f
is equivalent to

a program the following “comment”

T'he sequence of baste symbols:

; comment (any sequence not containing ;); ;
begin comment (any sequence not containing ;); begin
end {(any sequence not containing end or ; or else) end

By equivalenece is here meant that any of the three struc-
tures shown in the left-hand column may be replaced, in
any occurrence outside of strings, by the symbol shown on
the same line in the right-hand column without any
effeet on the action of the program. It is further understood
that the comment structure encountered first in the text
when reading from left to right has precedence in being
replaced over later structures contained in the sequence.

2.4. IDENTIFIERS
2.4.1. Syntax

(identifier® ::= (letter)|(identifier)(letter)|{identifier) (digit)

2.4.2. Examples

q

Soup

T"17a
a3tkTAN s
WARILYN

2.1.3. Semantiecs

Identifiers have no inherent meaning, but serve for the
identification of simple variables, arrays, labels, switches,
and procedures. They may be chosen freely (ef., however,
section 3.2.4. Standard IFunctions).

The same identifier cannot be used to denote two
different quantities except: when these quantities have
disjnint scopes as defined by the declarations of the pro-
gram (cf. secetion 2.7. Quantities, Kinds and Scopes, and
section 5. Declarations).

2.5. NUMBERS
2.5.1. Syntax

(unsigned integer) ::= (digit)|(unsigned integer)(digit)

(integer) ::= (unsigned integer)|+ (unsigned integer)!
— (unsigned integer)

(decimal fraction) ::= .(unsigned integer)

(exponent part) ::= w{integer)

{decimal number) ::= (unsigned integer)|(decimal fraction)|
(unsigned integer){decimal fraction)

(unsigned number) ::= (decimal number)! (exponent part}|
(decimal number)(exponent part)

{number) ::= (unsigned number)|+ (unsigned number)|
— (unsigned number)

2.5.2. Examples

0 —200.084 — .083,0—02
177 +07.43,68 — 107
5384 934m+10 10_4
+0.7300 21 0—4 +10+5

2.5.3. Semantics

Decimal numbers have their conventional meaning.
The exponent part isa scale factor expressed asanintegral
power of 10.

REVISED ALGOL 60

2.5.4. Types ‘
Integers are of type integer. All other numbers are of
type real (cf. section 5.1. Type Declarations).

2.6. STRINGS
2.6.1. Syntax
(proper string) ::= (any sequence of basie symbols not containing
“or ")l (empty)
{open string) ::= (proper string)|*(open string)’]
(open string){open string)
(string) ::= “(open string)’

2.6.2. lIixamples
Sk, = [I‘A=/"TL

‘.. This uis ua u ‘string”

2.6.3. Scemanties
In order to enable the language to handle arbitrary
sequences of basic symbols the string quotes ¢ and ’ are
introduced. The symbol u denotes a space It has no

_significance outside strings.

Strings are used as actual parameters of procedures
(cf. sections 3.2. Funection Designators and 4.7. Procedure
Statements).

2.7. QuaNTITIES, KINDS AND SCOPES

The following kinds of quantities are distinguished:
simple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and
expressions in which the declaration of the identifier asso-
ciated with that quantity is valid. TFor labels see section
4.1.3.

2.8. VaLuEs axn Types ,

A value is an ordered set of numbers (special case: a
single number), an ordered set of logical values (special
case: a single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their con-
stituents are defined in section 3. The value of an array
identifier is the ordered set of values of the corresponding
array of subscripted variables (cf. section 3.1.4.1).

‘The various ‘“‘types” (integer, real, Boolean) basically
denote properties of values. The types associated with
syntactic units refer to the values of these units.

3. Expressions

In the language the primary constituents of the pro-
grams describing algorithmic processes are arithmetic,
Boolean, and designational expressions. Constituents of
these expressions, except for certain delimiters, are logical
values, numbers, variables, function designators, and
elementary arithmetie, relational, logical, and sequential
operators. Since the syntactic definition of both variables
and function designators contains expressions, the defini-
tion of expressions, and their constituents, is necessarily
recursive.

{expression) ::= (arithmetic expressmn)](Boolean expression)|
' {deSIgnatlonal expression)

Communications of the ACM »n D

3.3.2. Iixamples
Primaries:
7.3%410—8
sum
wli+2,8]
cos(y+2X3)
(a—3/y+vul8)
FFactors:
omega

sumleos(y+2X3)
7.3900—8Tw([(+2,8]T (a—3/y+vui8)

Terms:

U
omegaxX sumlcos (y+2zX3),7.30410—8Twli+2,8]1
(a—3/y-+vu18)

Simple arithmetic expression:

U — Yu+omegaX sumicos(y+2X3)/7.39410—8Twli+2,8]7
(a—3/y+vul8)

- Arithmetic expressions:

wXu—Q(S+Cu)12

if ¢>0 then S+3XQ/A else 2XS+3Xq

if a<0 then U4V else if aXb>17 then U/V else if
k#y then V/U else 0

aX sin(omegaXt)

0.571012Xa[N X (N —1)/2, 0]

(AXarctan (y)+2)1(7+Q)

if ¢ then n—1 else n

if a<0 then A/B else if b=0 then B/A else 2

3.3.3. Semantics

An arithmetic expression is a rule for computing a
numerical value. In case of simple arithmetic expressions
this value is obtained by executing the indicated arith-
metic operations on the actual numerical values of the
primariecs of the expression, as explained in detail in
section 3.3.4 below. The actual numerical value of a
primary is obvious in the case of numbers. I'or variables
it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising from
the computing rules defining the procedure (cf. section
5.4.4. Values of Function Designators) when applied to
the current values of the procedure parameters given in
the expression. Finally, for arithmetic expressions en-
closed in parentheses the value must through a recursive
analysis be expressed in terms of the values of primaries
of the other three kinds.)

In the more general arithmetic expressions, which in-
clude if elauses, one out of several simple arithmetic ex-
pressions is selected on the basis of the actual values of the
Boolean expressions (cf. section 3.4. Boolean Expressions).
This selection is made as follows: The Boolean expressions
of theif clauses are evaluated.one by one in sequence from
left to right until one having the value true is found. The
value of the arithmetic expression is then the value of
the first arithmetic expression following this Boolean
(the largest arithmetic expression found in this position

v REVISED ALGOL 60
is understood). The construction:)
else (simple arithmetic expression)
is equivalent to the construction:
else if true then (simple arithmetic expression)

3.3.4. Operators and types

Apart from the Boolean expressions of if clauses, the
constituents of simple arithmetic expressions must be of
types real or integer (cf. section 5.1. Type Declarations).
The- meaning of the basic operators and the types of the
expressions to which they lead are given by the following
rules:

3.3.4.1. The operators +, —, and X have the conven-
tional meaning (addition, subtraction, and multiplication).
The type of the expression will be integer if both of the
operands are of integer type, otherwise real. _

3.3.4.2. The operations (term)/(factor) and (term) +
(factor’ both denote division, to he understood as a multi-
plication of the term by the reciprocal of the factor with
due regard to the rules of precedence (cf. section 3.3.5).
Thus for example

a/bX7/(p—q)Xr/s
means
U{aX BTNXDX (p—) X)X (871

The operator - is defined for all four combinations of
types real and integer and will yield results of real type
in any case. The operator =+ is defined only for two
operands both of type integer and will yield a result of
type integer, mathematically defined as follows:

a+b= sign (a/b)Xentier (abs{a/b))

(cf. seetions 3.2.4 and 3.2.5).

3.3.4.3. The operation (factor)](primary) denotes ex-
ponentiation, where the factor is the base and the primary
is the exponent. Thus, for example,

2ntk means (2r)*

while

27 (ntm) means 202™

Writing 7 for a number of integer type, r for a number of
real type, and a for a number of either integer or real
type, the result is given by the following rules:

ati If >0, aXaX ... Xa (¢ times), of the same type as a.
If ¢=0, if a0, 1, of the same type as a.
if =0, undefined.
If 1<0, if a0, 1/(aXaX ... Xa) (the denominator has
—1 factors), of type real.
if =0, undefined.
alr If a>0, exp(rXln(a)), of type real
If a=0, if r>0, 0.0, of type real.
if r<0, undefined.
If a<0, always undefined.

3.3.5. Precedence of operators
The sequence of operations within one expression is

Communications of the ACM q

Switch Declarations) and by the actual numerical value
of its subscript expression selects one of the designational
expressions listed in the switch declaration by courifing
these from left to right. Since the designational expression
thus selected may again be a switch designator this evalua-
tion is obviously a recursive process. :

3.5.4. The subseript expression

The evaluation of the subscript expression is analogous
to that of subscripted variables (cf. section 3.1.4.2). The
value of a switch designator is defined only if the subscript
expression assumes one of the positive values1, 2,3, ... ,n,
where n is the number of entries in the switch list.

3.5.5. Unsigned integers as labels

Unsigned integers used as labels have the property that
leading zeros do not affect their meaning, e.g. 00217
denotes the same label as 217.

4. Statements

The units of operation within the language are called
statements. They will normally be executed consecutively
as written. However, this sequence of operations may be
broken by go to statements, which define their successor
explicitly, and shortened by conditional statements,
which may cause certain statements to be skipped.

In order to make it possible to define a specific dynamic
succession, statements may be provided with labels.

Since sequences of statements may be grouped together
into compound statements and blocks the definition of
statement must necessarily be recursive. Also since decla-
rations, described in section 5, enter fundamentally into
the syntactic structure, the syntactic definition of state-
ments must suppose declarations to be already defined.

4.1. CoMPOUND STATEMENTS AND BLOCKS
4.1.1. Syntax

(unlabelled basic statement) ::= (assignment statement)]
{go to statement)| (dummy statement)|{procedure statement)

(basic statement) ::= (unlabelled basic statement)|(label):
(basic statement)

(unconditional statement) ::= (basic statement)!
(eompound statement)| {block)

(statement) ::= (unconditional statement)|
(econditional statement)|{for statement)

(compound tail) ::= (statement) end |(statement) ;
(compound tail) :

(block head) ::= begin(declaration)|(block head) ;
(declaration)

(unlabelled compound) ::= begin (compound tail)

(unlabelled block) ::= (block head) ; (compound tail)

{compound statement) ::= (unlabelled compound})|
(label): (compound statement > '

(block) ::= (unlabelled block}|{label):(block)

{program) ::= (block)|{compound statement)

This syntax may he illustrated as follows: Denoting arbi-
trary statements, declarations, and labels, by the letters
S, D, and L, respectively, the basic syntactic unite take
the forms:

Compound statement:

L:L:...beginS ; S ; .8 ; Send

REVISED ALGOL 60
Block:

L:L: .. begin D ; D ; .D ; S ; 8 ; ..8
S end

’

It should be kept in mind that each of the statements S
may again be a complete compound statement or block.
4.1.2, Examples

Basic statements:

a:= p+tgq
go to Naples
START: CONTINUE: W .= 7.993

Compound statement:

beginz := 0 ; fory := 1 step 1 until » do
r= z+Alyl ;
if £>¢q then go to STOP else if t>w—2 then
gotoS ;
Aw: St: W := z+bob end

Block:

(Q: begin integer i,k ; realw ;
for 7 := 1 step 1 until m do
for k := 141 step 1 until m do
begin w = A[, k] ;
Ale, k] = Ak, 7]
Alk, 7] := w end for 7 and £
end block Q

4.1.3. Semantics

Iivery block automatically introduces a new level of
nomenclature. This is realized as follows: Any identifier
occurring within the block may through a suitable declara-
tion (cf. section 5. Declarations) be specified to be local
to the block in question. This means (a) that the entity
represented by this identifier inside the block has no
existence outside it, and (b) that any entity represented
by this identifier outside the block is completely inacees-
sible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will be
nonlocal to it, i.e. will represent the same entity inside
the block and in the level immediately outside it. A label
separated by a colon from a statement, i.e. labelling that
statement, behaves as though declared in the head of the
smallest embracing block, i.e. the smallest block whose
brackets begin and end enclose that statement. In this
context a procedure body must be considered as if it were
enclosed by begin and end and treated as a block.

Since a statement of a block may again itself be a block
the concepts local and nonlocal to a block must be under-
stood recursively. Thus an identifier, which is nonlocal
to a block A, may or may not be nonlocal to the block B
in which A is one statement. ‘

4.2, ASSIGNMENT STATEMENTS
4.2.1. Syntax

(left part) ::= (variable) := |(procedure identifier) :=

{left part list) ::= (left part){{left part list)(left part).

(assignment statement) ::= (left part list) (arithmetic expression)|
(left part list}(Boolean expression)

Communications of the ACM 9

ment following the complete conditional statement. Thus
the effect of the delimiter else may be described by saying

that it defines the successor of the statement it follows to -

be the statement following the complete conditional
statement.
The construction

else (unconditional statement)
is equivalent to
else if true then (uncoflditional statement)

If none of the Boolean expressions of the if clauses is
true, the effect of the whole conditional statement will be
equivalent to that of a dummy statement.

For further explanation the following picture may be

useful:
r———_—=—=- T
f | i 1
if Bl then S1 else if B2 then S2 else 83 ; S4
Voo R i)
B1 false B2 false

4.5.4. Go to into a conditional statement

The effect of a go to statement leading into a conditional
statement follows directly from the above explanation of
the effect of else.

4.6. For STATEMENTS
4.6.1. Syntax

(for list element) ::= (arithmetic expression)|
(arithmetic expression) step (arithmetic expression) until
(arithmetic expressmn)]{a,rlthmetlc expression) while
(Boolean expression)
(for list) ::= (for list element)| (for list) , (for list element)
(for clause) ::= for (variable) := (for list) do
{for statement) ::= (for clause)(statement)|
(label): (for statement)

4.6.2. Examples

for ¢ := 1 step s until n do A[q] := Bg]
for k := 1, V1X2 while V1<N do
for j := I4+G@G, L, 1 step 1 until N C+D do
Alk,j] = B[k,]]

4.6.3. Semantics

A for clause causes the statement S whlch it precedes to
be repeatedly executed zero or more times. In addition it
performs a sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture: .

Initialize ; test ; statement S

; advance ; successor
S 1

for list exhausted.

In this picture the word initialize means: perform the first

assignment of the for clause. Advance means: perform the
next assignment of the for clause. Test determines if the
last assignment has been done. If so, the execution con-

! " REVISED ALGOL 60

tinues with the successor of the for statement. If not, the
statement following the for clause is executed.

4.6.4. The for list elements

The for list gives a rule for obtaining the values which
are consecutively assigned to the controlled variable. This
sequence of values is obtained from the for list elements
by taking these one by one in the order in which they are
written. The sequence of values generated by each of the
three species of for list elements and the corresponding
execution of the statement S are given by the following
rules:

4.6.4.1. Arithmetic expression. This element gives rise

‘to one value, namely the value of the given arithmetic

expression as calculated immediately before the corre-
sponding execution of the statement S.
4.6.4.2, Step-until-element. An .element of the form

A step B until C, where A, B, and C, are arithmetic ex-
pressions, gives rise to an execution which may be de-
scribed most concisely in terms of additional ArgoL
statements as follows:

V:i=A ;
L1: if (V=C)X sign(B)>0 then go to element exhausted;

statement S ;

=V+B

goto Ll ;
where V is the controlled variable of the for clause and
element exhausted points to the evaluation according to
the next element in the for list, or if the step-until-element
is the last of the list, to the next, statement in the program.

4.6.4.3. While-element. The ‘execution governed by a

for list element of the form E while F, where E is an
arithmetic and F a Boolean expression, is most concisely
described in terms of additional AvLcoL statements as
follows:
L3:V:=E ;

if —F then go to element exhausted ;

Statement S ;
go to L3 ;

where the notation is the same as in 4.6.4.2 above.

4.6.5. The value of the controlled variable upon exit

Upon exit out of the statement S (supposed to be com-
pound) through a go to statement the value of the con-
trolled variable will be the same as it was immediately
preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is unde-
fined after the exit,.

4.6.6. Go to leading into a for statement

The effect of a go to statement,.outside a for statement,
which refers to a label within the for statement is unde- ‘
fined.

4.7. PROCEDURE STATEMENTS
4.7.1. Syntax

(actual parameter) ::= (string)|({expression)[(array 1dent1ﬁer)]
(switch 1dent1ﬁer)] (procedure identifier)
(letter string) ::= (letter)|(letter string){letter)

Communications of the ACM 11

same. Thus the information conveyed by using the elabo-
rate ones is entirely optional.

4.7.8. Procedure body expressed in code

The restrictions imposed on a procedure statement
calling a procedure having its body expressed in non-
ArcoL code evidently can only be derived.from the charac-
teristics of the code used and the intent of the user and
thus fall outside the scope of the reference language.

5. Declarations

Declarations serve to define certain properties of the
quantities used in the program, and to associate them with
identifiers. A declaration of an identifier is valid for one
block. Outside this block the particular identifier may be
used for other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time of an
entry into a block (through the begin, since the labels
inside are local and therefore inaccessible from outside)
all identifiers declared for the block assume the signifi-
cance implied by the nature of the declarations given.
If these identifiers had already been defined by other
declarations outside they are for the time being given a
new significance. Identifiers which are not declared for the
block, on the other hand, retain their old meaning. _

At the time of an exit from a block (through end, or by
a go to statement) all identifiers which are declared for
the block lose their local significance.

A declaration may be marked with the additional
declarator own. This has the following effect: upon a re-
entry into the block, the values of own quantities will be
unchanged from their values at the last exit, while the
values of declared variables which are not marked as own
are undefined. Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those for standard functions (cf. sections 3.2.4 and
3.2.5), all identifiers of a program must be declared. No
identifier may be declared more than once in any one
block head.

Syntax.

(declaration) ::= (type declaration)|(array declaration)|
(switch declaration)|(procedure declaration)

5.1. TYPE DECLARATIONS
5.1.1. Syntax

(type list) ::= (simple variable)|
(simple variable) , (type list)
(type) ::= real | integer | Boolean
(local or own type) ::= (type)lown (type)
(type declaration) ::= (local or own type)(type list)

5.1.2. Examples

integer p,q,s .
own Boolean Acryl,n

5.1.3. Semantics

Type declarations serve to declare certain identifiers to
represent simple variables of a given type. Real declared
variables may only assume positive or negative values

REVISED ALGOL 60

including zero. Integer declared variables may only assume
positive and negative integral values including zero.
Boolean declared variables may only assume the values
true and false.
. In arithmetic expressions any position which can be
occupied by a real declared variable may be occupied by
an integer declared variable.

For the semantics of own, see the fourth paragraph of
section 5 above.

5.2. ARRAY DECLARATIONS
5.2.1. Syntax

(lower bound) ::= (arithmetic expression)
{upper bound) ::= (arithmetic expression)

(bound pair) ::= (lower bound): {(upper bound)

(bound pairlist) ::= (bound pair)|{bound pair list), (bound pair)

(array segment) ::= (array identifier)[(bound pair list)]|
(array identifier), (array segment)

(array list) ::= (array segment)|(array list),(array segment)

(array declaration) ::= array ({(array list)|(local or own type)

array (array list)

5.2.2. Itxamples
" array a, b, c[7:n,2:ml], s[—2:10]
own integer array A[if ¢<0 then 2 else 1:20]
real array ¢[—7:—1]

5.2.3. Semantics

An array declaration declares one or several identifiers
to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the
bounds of the subscripts and the types of the variables.

5.2.3.1. Subscript bounds. The subscript bounds for
any array are given in the first subscript bracket following
the identifier of this array in the form of a bound pair list.
Each item of this list gives the lower and upper bound of a
subseript in the form of two arithmetic expressions sepa-
rated by the delimiter : The bound pair list gives ‘the
bounds of all subscripts taken in order from left to right.

5.2.3.2. Dimensions. The dimensions are given as the
number of entries in the bound pair lists.

5.2.3.3. Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given the type real is understood.

5.2.4. Lower upper bound expressions

5.2.4.1 The expressions will be evaluated in the same
way as subscript expressions (cf. section 3.1.4.2).

5.2.4.2. The expressions can only depend on variables
and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently in the outer-
most block of a program only array declarations with
constant bounds may be declared.

5.2.4.3. An array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds. :

5.2.4.4. The expressions will be evaluated once at each
entrance into the block. _

5.2.5. The identity of subscripted variables

The identity of a subscripted variable is not related to
the subscript bounds given in the array declaration. How-

Communications of the ACM 13

block, whether it has the form of one or not. Consequently
the scope of any label labelling a statement within the
body or the body itself can never extend beyond the pro-
cedure body. In addition, if the identifier of a formal
parameter is declared anew within the procedure body
(including the case of its use as a label as in section 4.1.3),
it is thereby given a local significance and actual param-
eters which correspond to it are inaccessible throughout
the scope of this inner local quantity.

5.4.4. Values of function designators

For a procedure declaration to define the value of a
function designator there must, within the procedure
body, occur one or more explicit assignment statements
with the procedure identifier in a left part; at least one of
these must be executed, and the type associated with the

procedure identifier must be declared through the appear- -
ance of a type declarator as the very first symbol of the

procedure declaration. The last value so assigned is used
to continue the evaluation of the expression in which.the
function designator occurs. Any occurrence of the pro-
cedure identifier within the body of the procedure other
than in a left part in an assignment statement denotes
activation of the procedure.

5.4.5. Specifications

In the heading a specification part, giving information
about the kinds and types of the formal parameters by
means of an obvious notation, may be included. In this

part no formal parameter may occur more than once. .

Specifications of formal parameters called by value (cf.
section 4.7.3.1) must be supplied and specifications of
formal parameters called by name (cf. section 4.7.3.2)
may be omitted.

5.4.6. Code as procedure body

It is understood that the procedure body may be ex-
pressed in non-ArGoL language. Since it is intended that
the use of this feature should be entirely a question of
hardware representation, no further rules concerning
this code language can be given within the reference
language

Examples of Procedure Declarations:

ExampLE 1.
procedure euler (fct, sum, eps, tim) ; value eps, tim ;
integer {tm ; real procedure fct ; real sum, eps ;

comment euler computes the sum of fet(z) for ¢ from zero up to
infinity by means of a suitabley refined euler transformation. The
summation is stopped as soon as tim times in succession the abso-
lute value of the terms of the transformed series are found to be
less than ¢ps. Hence, one should provide a function fet with one
integer argument, an upper bound eps, and an integer tim. The
output is the sum sum. euler is particularly efficient in the, case
of a slowly convergent or divergent alternating series ;

begin integer 7, k, n,t ; array m[0:15] ; real mn, mp, ds ;
t:=n:=0t:=0 ; m[0]:=fet(0) ; sum:= m[O]/2’ ;
nextterm: ¢ := i+1 ; mn := fct(@) ; ‘
for k := 0 step 1 until n do
begin mp := (mn+mlk])/2 ; mlk] := mn ;
mn := mp end means ;

REVISED ALGOL 60
if (abs(mn)<abs(m[n])) A\ (n<15) then
begin ds = mn/2 ; n = a4+l ; mn] :=
mn end aceept,
elseds := mn
sum 1= sum + ds ;
if abs(ds) <eps then ¢ := (+1 else ¢ := 0 ;
if (<tim then go to nextterm
end euler o

ExampLE 2.8

procedure RK(xyn,FKTepsetaxEyE,fi) ; value zy ;
integer n ; Boolean fi ; real zepsetaxE ; array
yyE ; procedure FKT ;

comment: RK integrates the system ui'=fc(@,yi,¥2, ... ,Yn)
(k=1,2, ... ,n) of differential equations with the method of Runge-
Kutta with automatic search for appropriate length of integration
step. Parameters are: The initial values z and y[k] for z and the un-
known functions yi(z). The order n of the system. The procedure
FKT(zynmn, Z) which represents the systém to be integrated, i.e.
the set of functions fx . The tolerance values eps and efa which
govern the accuracy of the numerical integration. The end of the
lntegratlon interval zE. The output parameter yE which repre-

" sents the solution at z=zE. The Boolean variable fi, which must

always be given the value true for an isolated or first entry into
RK. If however the functions y must be available at several mesh-
points o, 21 , ... , &» , then the procedure must be called repeat-
edly (with 2=z, tE=14., for k=0, 1,..., n—1) and then the
later calls may occur with fi=false which saves computing time.
The input parameters of FKT must be z,y,n, the output parameter
z represents the set of derivatives z[k|=f.(z,y[1],yl2], ..., yln])
for z and the actual y’s. A procedure comp enters as a nonlocal
identifier ;

begin ’ :
array z,yl,y2,y3[1 n] ; real 21,0223, H ; Boolean out ;
integer k,; ; own real s,Hs ;
procedure RKI1ST (z,y,h,xe,;ye) ; real xhze ; array

Y,ye
comment: RK1ST integrates one single RUNGE-KUTTA
with initial values z,y[k] which yields the output
parameters ze=z-+h and yelk], the latter being the
solution at ze. Important: the parameters n, FKT, z
enter RK1ST as nonlocal entities ;
begin -l
array w{l:n],a[l1:5] ; integerk,j °;
a[l] := a[2] := a|5] := h/2 ; a[3] := al4] :=
ze :=zx)
for k := 1 step 1 until n do ye[k] := wlkl = ylk] ;
for j := 1 step 1 until 4 do i)
begin
FKT (zewn,z)
e := z+alj] ;
for k := 1 step 1 until n do
begin
wlk] := ylkl+alj]1Xz[k] ;
yelk] := yelk] + ali+1]Xz[k]/3

8 This RK-program contains some new ideas which are related
to ideas of 8. GILL, A process for the step-by-step integration of
differential equations in an automatic computing machine,
[Proc. Camb. Phil. Soc. 47 (1951), 96]; and E. FroBERG, On the
solution of ordinary differential equations with digital computing
machines, [Fysiograf. Sillsk. Lund, Forhd. 20, 11 (1950), 136-152].
It must be clear, however, that with respect to ¢omputing time
and round-off errors it may not be optimal, nor has it actually
been tested on a computer. .

Communications of the ACM 15

{factor), def 3.3.1

false, synt 2.2.2

for, synt 2.3, 4.6.1

(for clause), def 4.6.1 text 4.6.3

(for list), def 4.6.1 text 4.6.4

(for list element), def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.3

(formal parameter), def 5.4.1 text 5.4.3

(formal parameter list), def 5.4.1

(formal parameter part), def 5.4.1

{for statement), def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete
section) ; ' ‘

(function designator), def 3.2.1 synt 3.3.1, 3.4.1 text 3.2.3, 5.4.4

go to, synt 2.3,4.3.1 : .
{go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

(identifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3
(identifier list), def 5.4.1

if, synt 2.3, 3.3.1, 4.5.1

Gf clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2
(if statement), def 4.5.1 text 4.5.3.1

{implication), def 3.4.1

integer, synt 2.3, 5.1.1 text 5.1.3

{integer), def 2.5.1 text 2.5.4

label, synt 2.3, 5.4.1

(label), def 3.5.1 synt 4.1.1, 4.5.1, 46.1 text 1, 4.1.3
{eft part), def 4.2.1 '

(left part list), def 4.2.1

(letter), def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1
{letter string), def 3.2.1, 4.7.1

local, text 4.1.3

(local or own type), def 5.1.1 synt 5.2.1
{logical operator), def 2.3 synt 3.4.1 text 3.4.5
{logical value), def 2.2.2 synt 2, 3.4.1

{lower bound), def 5.2.1 text 5.2.4

minus —, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 3.3.1 text 3.3.4.1
(multiplying operator), def 3.3.1

nonlocal, text 4.1.3
(number), def 2.5.1 text 2.5.3, 2.54

{open string), def 2.6.1
{operator), def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5

(parameter delimiter), def 3.2.1,4.7.1 synt 5.4.1 text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 351, 47.1, 54.1
text 3.3.5.2
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
(primary), def 3.3.1 .
procedure, synt 2.3, 5.4.1
{procedure body), def 5.4.1
{procedure declaration), def 5.4.1 synt 5 text 5.4.3
(procedure heading), def 5.4.1 text 5.4.3
(procedure identifier) def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.54
{procedurc statement), def 4.7.1 synt 4.1.1 text 4.7.3
{program), def 41.1 text 1
{proper string), def 2.6.1

quantity, text 2.7

REVISED ALGOL 60

real, synt 2.3, 5.1.1 text 5.1.3
(relation), def 3.4.1 text 3.4.5
(relational operator), def 2.3, 3.4.1

scope, text 2.7
semicolon ;, synt 2.3, 4.1.1, 5.4.1

‘(separator), def 2.3

(sequential operator), def 2.3

(simple arithmetic expression), def 3.3.1 text 3.3.3

(simple Boolean), def 3.4.1

{simple designational expression), def 3.5.1

(simple variable); def 3.1.1 synt 5.1.1 text 2.4.3

space u, synt, 2.3 text 2.3, 2.6.3

(specification part), def 5.4.1 text 5.4.5

(specificator), def 2.3

(specifier), def 5.4.1

standard funection, text 3.2.4, 3.2.5 :

(statement), def 4.1.1, synt 4.5.1, 46.1, 5.4.1 text 4 (complete
section)

statement bracket, see: begin end

step, synt 2.3, 4.6.1 text 4.6.4.2

string, synt 2.3, 5.4.1

(string), def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3

string quotes ¢ ’, synt 2.3, 2.6.1, text 2.6.3

subscript, text 3.1.4.1

subseript bound, text 5.2.3.1

subseript brackets [|, synt 2.3, 3.1.1, 3.5.1, 5.2.1

(subscripted variable), def 3.1.1 text 3.1.4.1

(subscript expression), def 3.1.1 synt 3.5.1

(subsecript list), def 3.1.1

successor, text 4

switch, synt 2.3, 5.3.1, 5.4.1

(switch declaration), def 5.3.1 synt 5 text 5.3.3

(switch designator), def 3.5.1 text 3.5.3

(switch identifier), def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1

(switch list), def 5.3.1

{term), def 3.3.1

ten 1, synt 2.3, 2.5.1

then, synt 2.3, 3.3.1, 45.1

transfer function, text 3.2.5

true, synt 2.2.2

(type), def 5.1.1 synt 5.4.1 text 2.8

{type declaration), def 5.1.1 synt 5 text 5.1.3
(type list), def 5.1.1

(unconditional statement), def 4.1 .1, 4.5.1
(unlabelled basic statement), def 4.1.1
{unlabelled block), def 4.1.1

(unlabelled compound), def 4.1.1
(unsigned integer), def 2.5.1, 3.5.1
(unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

(upper bound), def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1

value, text 2.8, 3.3.3

(value part), def 5.4.1 text 4.7.3.1

(variable), def 3.1.1 synt 3.3.1, 3.4.1, 4:2.1, 4.6.1 text 3.1.3
{variable identifier), def 3.1.1

while, synt 2.3, 4.6.1 text 4.6.4.3

END OF THE REPORT

Note: This Report is published in the Communications of the ACM, in Numerische Mathematik, and in The Computer Jour-
nal. Reproduction of this Report for any purpose is explicitly permitted; reference should be made to this issue of the
Communications and to the respective issues of Numerische Mathematik and The Computer Journal as the source.

Reprints are available as follows from the Association for Computing Machinery, 211 East 43 Street, New York 17, N. Y.:
Single copies to individuals, no charge; Single copies to companies, 50 cts.; Multiple copies: first ten, 50 cts. ea.; next 100,

25 cts. ea.; all over 100,_ 10 cts. ea.

Communications of the ACM 17

Af2

APPENDIX 2

Capitalization Symbol ®

Lower case letters are transliterated into capital letters, Capital letters
are transliterated into a special capitalizing symbol followed by the capital
letter. The capitalizing symbol is punched on cards by multiple punching of
+ and O . It is printed on the card, usually, as a + inside a 0 . When
the card is reproduced, the printing symbol is a stylization of a stéer's
head, It is printed on the 407 as O on the main computer's printer as +
and on the 1401 printer under 930 program control as a 2 and

It prints as a / on the sts terminals (IBM 1050).

, Superimposed.

A3/1
APPENDIX 3

Input and Output Using FORTRAN Format

The eleven procedures described in this chapter allow for input and
output governed by FORMAT's nearly as in FORTRAN programs, The procedures
are available as predeclared procedures; two of them, READ and PRINT, do
not adhere strictly to the rules of ALGOL 60 since they can be called with

any number of phrameters,

1. The procedure FORMAT

FORMAT is called with two actual parameters; the first must be an integer
variable and the second must be a string which is a FORTRAN Format (see
[3]) with the following conventions: '
The Format written between the string quotes inclﬁdes the outer
parenthesis of the FORTRAN Format.
The Format character for integers is J, not I,

The Format character for Booleans is A5,

The call causes the Format string to be assigned to (stored in) the
variable given as the first parameter and then later calls of READ or
PRINT can use this format, see below. Naturally, the value of the
variable used as the first parameter should not be changed by other

- assignments before the READ/PRINT statements referring to this

variable,

2. The procedures READ and PRINT

READ and PRINT allow for an arbitrary number (& 1) of actual parameters,
The first may be an integer variable containing the format wanted (must
be assigned in a previous call of FORMAT), or it may be a string with

the format itself.

In a call of READ the following parameters must be names of simple or
subscripted variables of any type to which values will be assigned
according to the format and the data cards read. Each call of READ

initiates the reading of a new data card.

A3/2

In a call of PRINT the following parameters may be expressions of any
type, and the value of each expression is evaluated and printed
according to the format. Each call of PRINT causes printing to start

on a new line,

Reading or printing is continued until the list of variables or
expressions is exhausted; if the list of specifications in the format
is exhausted before this, the format list is repeated as described in

[3].

It is impossible to read or print all elements of an array just by

giving the array identifier as a parameter,

The conversion between decimalland binary representatioﬁs are carried
out by means of the input output routines in the FORTRAN Monitor System,
see [3]. If the type of the actual parameter does not fit with the
corresponding part of the format, the outcome may be a nonsense value

but no warning is given.
Example 1
begin integer i, j, fmt, fmt 3; Boolean b;
FORMAT (fmt, ¢ (2F5, A5)");
FORMAT (fmt 3, ¢(1HO, F4, F7, A5)7):

READ (fmt, i, j, b);
PRINT (fmt 3, j, (i+j)*2, b);

end

Example 2
begin integer fmt, i; array A[1:20];

for i :=1 step 1 until 20 do
READ (®(F10.5)%, A[i]);

FORMAT (fmt, %(2E15.5)7);

for i :=1 step 2 until 20 do
PRINT (fmt, A[i], A[i+1]);

end

This program will read 20 numbers from 20 cards and print them out with

2 numbers per line.

A3/3

Supplementary Procedures for Input

The following 5 procedures may be used for reading several values, one

at a time, according to a specified format:

READING FORMAT with one parameter, a string or an integer variable,
supplies the format or the reference to the format which governs the
following data input by any of the three procedures below. If READING
FORMAT is called with an integer variable as the parameter, a previous

call of FORMAT must have assigned a format to that variable,

The real procedure READING REAL .(without parameters) has as its
(real) value the next item read from the data cards according to the

format defined by the last call of READING FORMAT.

The integer procedure READING INTEGER and the Boolean procedure
READING BOOLEAN correspondingly reads the next integer or Boolean value,

The procedure READING EXIT (without parameters) must be used to
signal the termination of input with the given format using the above

procedures, see the note and an example in 4 below.

Each call of READING FORMAT starts input from a new data card but
apart from that the card control is governed by the specified format.

Supplementary Procedures for Qutput

The following 3 procedures may be used for printing many values, one

at a time, according to a specified format:

PRINTING FORMAT with one parameter sets up the wanted format for
dutput, exactly as does READING FORMAT for input,

SAVE 1is called with one parameter which may be an expression of
any type. Each call sets aside the value of the parameters and all
these values will be printed by one subsequent call of the procedure
WRITE (without parameters). Each call of PRINTING FORMAT starts printing
on a new line but otherwise the line control is governed by the specified

format,

Use of the procedures described in 3 and 4 adheres further--

more to the following

A3/4

NOTE:
' READING FORMAT activates the input mechanism,

READING EXIT deactivates the input mechanism.

PRINTING FORMAT activates the output mechanism,

WRITE deactivates the output mechanism,

Only one mechanism may be activated at a time.

No dumps or other input/ouput procedures may be called while a

mechanism is activated as above,

At most calls of SAVE may be made before WRITE 1is called.

Example 3

begin integer i, data; array x [1 : 100];
format (data, ‘kFlO, £20,8)%);
. READING FORMAT (data);
0 » for i := READING INTEGER while i < 100 do
x [i] := READING REAL;
READING EXIT;
PRINTING FORMAT (€(5E20,8)%);
for i := 2 step 2 until 100 do save (x[i]);
WRITE;

end

This program will read pairs of one integer and one real number from

each data card (as long as the integer is < 100), and then print 50

numbers in 10 lines with 5 numbers per line.

Al4

APPENDIX 4

Tape Unit Correspondence Table

Logical No. Unit Normal ALGOL Use

-3 A3 PRINTER

-2 ‘B4 PUNCH
=1 A2 READER

0 illegal illegal

1 Bl

2 B2

3 B3

4 A4 Scratch

o 5 A5 library tape:

6 B5 library tape
7-16 See BC Users Manual

Al5

APPENDIX 5

Semicolon . Trace

The semicolon trace is useful for debugging programs which execute but fail

to give the expected results,

The comment control '"comment: semicolon trace;'" (or, alternately ''comment:
semicolon trace := <constant>;'") should appear before the first begin. It
sets up the semicolon trace by numbering all semicolons, and printing, after

each line in the listing, the number of the first semicolon on that line,

The comment control 'comment: on semicolon trace;" turns on the trace: as
each semicolon is reached during execution, the number of that semicolon
is printed out. Up to 215-1 semicolons may be printed, unless the alternate

form "comment: semicolon trace := <constant>;'" was used, whereupon the con-

stant replaces 215-1 as the limit,

The comment control "comment: off semicolon trace;" turns off the trace. The

trace may be turned on and off any number of times during a program.

R/1

REFERENCES

1, Users Manual. Computer Center, University of California, Berkeley,
First revision, September 1965.

2, P. Naur (ed.): Revised Report on the Algorithmic Language ALGOL 60,
Regnecentralen, Copenhagen 1962.

3. IBM Reference Manual. 709/7090 FORTRAN Programming System. Form
No. C 28-6054. '

210 West Union Street, #20
Fullerton, California

October 10, 1966

Computer Center
University of California
Room 201, Campbell Hall
Berkeley, California

Gentlemen:

| have read with interest the BC ALGOL Manual sent to me. | note
that the contributors to the manual have been given credit at the
beginning of the manual, however, my name has been omitted. |
would appreciate it if you could include my name among those of
the authors when the manual is revised.

Sincerely,

Tom Marlin

	BC_ALGOL-19660001_a
	BC_ALGOL-19660002_a
	BC_ALGOL-19660003_a
	BC_ALGOL-19660004_a
	BC_ALGOL-19660005_a
	BC_ALGOL-19660006_a
	BC_ALGOL-19660007_a
	BC_ALGOL-19660008_a
	BC_ALGOL-19660009_a
	BC_ALGOL-19660010_a
	BC_ALGOL-19660011_a
	BC_ALGOL-19660012_a
	BC_ALGOL-19660013_a
	BC_ALGOL-19660014_a
	BC_ALGOL-19660015_a
	BC_ALGOL-19660016_a
	BC_ALGOL-19660017_a
	BC_ALGOL-19660018_a
	BC_ALGOL-19660019_a
	BC_ALGOL-19660020_a
	BC_ALGOL-19660021_a
	BC_ALGOL-19660022_a
	BC_ALGOL-19660023_a
	BC_ALGOL-19660024_a
	BC_ALGOL-19660025_a
	BC_ALGOL-19660026_a
	BC_ALGOL-19660027_a
	BC_ALGOL-19660028_a
	BC_ALGOL-19660029_a
	BC_ALGOL-19660030_a
	BC_ALGOL-19660031_a
	BC_ALGOL-19660032_a
	BC_ALGOL-19660033_a
	BC_ALGOL-19660034_a
	BC_ALGOL-19660035_a
	BC_ALGOL-19660036_a
	BC_ALGOL-19660037_a
	BC_ALGOL-19660038_a
	BC_ALGOL-19660039_a
	BC_ALGOL-19660040_a
	BC_ALGOL-19660041_a
	BC_ALGOL-19660042_a
	BC_ALGOL-19660043_a
	BC_ALGOL-19660044_a
	BC_ALGOL-19660045_a
	BC_ALGOL-19660046_a
	BC_ALGOL-19660047_a
	BC_ALGOL-19660048_a
	BC_ALGOL-19660049_a
	BC_ALGOL-19660050_a
	BC_ALGOL-19660051_a
	BC_ALGOL-19660052_a
	BC_ALGOL-19660053_a
	BC_ALGOL-19660054_a
	BC_ALGOL-19660055_a
	BC_ALGOL-19660056_a
	BC_ALGOL-19660057_a
	BC_ALGOL-19660058_a
	BC_ALGOL-19660059_a
	BC_ALGOL-19660060_a
	BC_ALGOL-19660061_a
	BC_ALGOL-19660062_a
	BC_ALGOL-19660063_a
	BC_ALGOL-19660064_a
	BC_ALGOL-19660065_a
	BC_ALGOL-19660066_a
	BC_ALGOL-19660067_a
	BC_ALGOL-19660068_a
	BC_ALGOL-19660069_a
	BC_ALGOL-19660070_a
	BC_ALGOL-19660071_a
	BC_ALGOL-19660072_a
	BC_ALGOL-19660073_a
	BC_ALGOL-19660074_a
	BC_ALGOL-19660075_a
	BC_ALGOL-19660076_a
	BC_ALGOL-19660077_a
	BC_ALGOL-19660078_a
	BC_ALGOL-19660079_a
	BC_ALGOL-19660080_a
	BC_ALGOL-19660081_a
	BC_ALGOL-19660082_a
	BC_ALGOL-19660083_a
	BC_ALGOL-19660084_a
	BC_ALGOL-19660085_a
	BC_ALGOL-19660086_a
	BC_ALGOL-19660087_a
	BC_ALGOL-19660088_a
	BC_ALGOL-19660089_a
	BC_ALGOL-19660090_a
	BC_ALGOL-19660091_a
	BC_ALGOL-19660092_a
	BC_ALGOL-19660093_a
	BC_ALGOL-19660094_a
	BC_ALGOL-19660095_a
	BC_ALGOL-19660096_a
	BC_ALGOL-19660097_a
	BC_ALGOL-19660098_a
	BC_ALGOL-19660099_a
	BC_ALGOL-19660100_a
	BC_ALGOL-19660101_a
	BC_ALGOL-19660102_a
	BC_ALGOL-19660103_a
	BC_ALGOL-19660104_a
	BC_ALGOL-19660105_a
	BC_ALGOL-19660106_a
	BC_ALGOL-19660107_a
	BC_ALGOL-19660108_a
	BC_ALGOL-19660109_a
	BC_ALGOL-19660110_a
	BC_ALGOL-19660111_a
	BC_ALGOL-19660112_a
	BC_ALGOL-19660113_a
	BC_ALGOL-19660114_a
	BC_ALGOL-19660115_a
	BC_ALGOL-19660116_a
	BC_ALGOL-19660117_a
	BC_ALGOL-19660118_a
	BC_ALGOL-19660119_a
	BC_ALGOL-19660120_a
	BC_ALGOL-19660121_a
	BC_ALGOL-19660122_a
	BC_ALGOL-19660123_a
	BC_ALGOL-19660124_a
	BC_ALGOL-19660125_a
	BC_ALGOL-19660126_a
	BC_ALGOL-19660127_a
	BC_ALGOL-19660128_a
	BC_ALGOL-19660129_a
	BC_ALGOL-19660130_a
	BC_ALGOL-19660131_a
	BC_ALGOL-19660132_a
	BC_ALGOL-19660133_a
	BC_ALGOL-19660134_a
	BC_ALGOL-19660135_a
	BC_ALGOL-19660136_a
	BC_ALGOL-19660137_a
	BC_ALGOL-19660138_a
	BC_ALGOL-19660139_a

