
,

I SI.UlA N R

INfORMATION 743

COMMON BASE LANGUAGE
by

Ole-Johan Dahl, Bjorn Myhrhuug

and

Kristen Nygaard

NORWEGIAN COMPUTING CENTER
NORSK REGNESENTRAL
NR

B- No. Res. inst. name NTNF-group

NR

Title

SL\\ ULA 67

Ava ilabil it y

OPEN

Co mIilon Base La nguage
Reprint 5

Report no. I ISBN

743 82-5 39- 022 5- 5
Authors No. of pages

18 1
Ole-Joh a n Dahl, Bjo rn .\ \yhrha ug & Kriste n Nygaa rd Date

Ed ition

10. Feb.1984

Project cI ient/Sponsor

Abstract

Thi s docUlllent conr a ins the de fini t ion o f the [H O)! ralll,n in " language
SI:\ \ULA 67, ex clud ing the Algo l la nguage. The la nguage de fi niti on
is s upe rvized by the SII\IU LA Sta nd a rds C rou p.

The docume nt is a re vi sed ve rs ion o f the SL\iU LA 67 Co m mon llase
Language of 19~2, a nd includes the modifi cation s a nd cla rifi ca ti ons
passed by the SI,\\ ULA Sta nd a rd s G roup at the ir mee tin g in
Se pte r:Jbe t 19~3.

KE Y WORDS KEY WORDS IN NOR WEG IAN

SI\ \ULA 67 SI,\\ULA 67

P r n~ r " , ':l in ' lan" ua' c s Prog ram me rin Rssp rak

Co rou tines Korutine r

Si ,:.u lat ion language Si mule ringss [l ra k

CR No.

SUBJ ECT GR.

February 1984

A complete definition encomprising the Modified
Report on the Alghorithmic Language ALGOL 60 and

the Common Base Language authorised
as the SIMULA 67 programming language definition,
by the SIMULA Standards Group in October 1970 and

subsequently modified by recommendations made
by the SSG at the annual mee tings

Jan 1973, Sept 1973, Oct 1974, Sept 1976, Sept 19'71 ,
Sept 1978 Sept 1979 ,Aug 1980, Sept 198 1,

Sept 1982 and Sept 1983 .

COMMON BASE LANGUAGE
by

Ole-Johan Dahl, Bj0rn Myhrhaug
and

Kristen Nygaard

SIMULA TM is a trademark of Norwegian Computing Center
@ Copyright 1968 , 1970, 1982 Norwegian Computing Center

PREFACE TO THE ly68 COMMON BASE EDITION

SIMULA 67 is a general purpose programming language developed by the authors
at the Norwegian Computing Center. Compilers for this language are now
implemented on a number of different computers.

The Norwegian Computing Center regards the SIMULA 67 language as its own
property . The implementations have taken place under contracts with the Nee
for professional assistance.

A main characteristic of SIMULA is that it is easily structured towards
special ised problem areas, and hence can be used as a basis for Special
Application Languages.

This report is a reference document for the SIMULA 67 Common Base. The Common
Base comprises the language features required in every SIMULA 67 compiler. ~he
"Introduction" highlights some features of the language. The following
sections are intended as a precise language definition. Users manuals and
textbooks will appear later.

During our development of SIMULA 67 we have benefited from ideas and
suggestions from a number of colleagues. First of all we Silould 1 ike to
mention C.A.R. Hoare whose ideas on referencing have been used :'lnd extended,
S. Kubosch who has been an important source of useful comments and criticism
and Mrs. I. Siguenza whose help in the typing of this report has been
indispensable.

We should also like to express our gratitude to D. Belsnes, P. Blunden, J.
Buxton, J.V. Garwick, (/). Hjart<ZlY, (/J. Hope, P.M. Kjeldaas, D. Knuth, .J. Laski,
A. Lunde, J. Newey, T. Noodt, K.S. Si<og, C. Strachey and N. \.Jirth, as vleU as
SIMULA I users who have given advice based upon their experience. FinCllly, the
authors feel that they benefited very much from the SIMlILA 1i7 Common Base
Conference in Oslo, .June 1957, and would Uke to thank the rarticipants.

Oslo, May 1908

Ole-Johan Dahl Bj<Zlrn Myhrhaug Kristen Nygaard

PREFACE TO THE 1970 COMMON BASE EDITION

This revised version contains the modifications and clarifications passed hy
the SIMULA Standards Group at their meeting in May 1970. Several minor errors
have also been corrected.

Compilers are now availahle on a wide range of computers, including CD 3<00,
CD 3600, CD 6600, UNIVAC 1108 and IBM 360/370 .

The authors would like to thank the members of the SIMULA Standards Croup for
their interest and help, and the typing pool and printing shop of the
Norwegian Computing Center for their efficient work.

We would also like to extend our list of acknowledgements in the original
preface by K. Babcicky, C.M. Birtwistle, R. Kerr and M. Woodger .

Oslo, October 1970

Ole- Johan Dahl Bj0rn Myhrhaug Kristen Nygaard

\
i
1 •

PREFACE TO THE 1982 COMMON BASE EDITION

This revised version contains the modifications and clarifications
passed by the SIMULA Standards Group at their meetings January 1973,
September 1973, October 1974, September 1976, September 1977, September
1978, September 1979, August 1980, Septemher 1981 and September 1982.
Several minor errors have been corrected .

Compilers are now available on a wide range of computers , including
CD 3300, CD 3600, CD 6600, CYBER, UNIVAC 1100, IBM 360/370 , DEC- 10 ,
DEC-20, Siemens 7000, ICL 2900, Data General Eclipse, Nord 100 , BESM 6 ,
VAX 11, PRIME and CII HB DPS8.

NCC has developed, in cooperation with the Program Library Unit and the
Regional Computing Center at the University of Edinburgh, a SIMULA
implementation package that significantly will reduce the effort to
bring up a new SIMULA system. The first adapt ions for this system ~ave
been for VAX 11, CII HB DPS8, PRIME and Nord 500.

Oslo, December 1982

PREFACE TO THE 1984 EDITION

This revised version contains the modifications and clarifications
passed by the SIMULA Standards Group at its meeting Septemher lqR3 .

Oslo , February 1984

\

\

\
1
\

\
i

Contents:

1. Introduction
1.1. General purpose programming languages
1.2. Special application languages 2
1.3. The basic characteristics of SIMULA 67 3
1.3.1. Algorithmic capability 3
1.3.2. Decomposition 3
1.3.3. Classes 5
1.3.4. Application language capability 7
1.3.5. List processing capability 9
1.3.6. String handling 10
1. 3.7. Input/output 10

Standardization
Language definition
Comment conventions
Hardware representation language

Compiler directive lines
Program lines

10

11

11
12
12
'2

1.4.
1.5.
1.6.
1.7.
1.7.1.
1.7.2.
1.7.3.
1.7.3.1.
1.7.3.2.
1.7.4.

Representation of identifiers and keywords 13
Identifiers
Keywords

Representation of special symbols

2. Class declarations
2.1. Syntax
2.2. Semantics
2.2.1. Subclasses
2.2.2. Concatenation
2.2.3. Virtual quantities
2.3. Attribute protection
2.3. 1 . Syntax
2 . 3. 2. Semantics
2.3.2.1. Protected
2.3 . 2.2. Hidden
2.3.2.3. Combination of protected and hidden

3. Types and variables
3.1 . Syntax
3. 2.
3.2.1.
3.2 .2.
3.2 . 2 . 1.
3.2 .2.2 .
3.2.3.
3.2 . 3.1.
3.2 . 3. 2 .
3. 2.4.

Semantics
Object references
Characters

Collating sequence
Character subsets

Text
Text objects and text frames
Text variables

Representation of constants

17

17
19
21
23
26
28
28
28
28
29
29

31

32
32

I
I

I
I

3.2.4.1.
3.2.4.2.
3.2.4.3.
3.2.5.
3.2.5.1.
3.2.5.2.
3.2.6.
3.2.7.
3.2.8.

Strings
Character constants
Numeric constants

Extended arithmetic types
Short integers
Long reals

Constant declarations
Initialization
Subordinate types

4. Expressions
4.1. Value and reference expressions
4.1.1.
4.1.2.
4.2.
4.2.1.
4.2.2.
4.3.
4.3.1.
4.3.2.
4.3.2.1.
4.3.2.2.
4.3.2.3.
4.3.2.4.
4.4.
4.4.1.
4.4.2.
4.4.2.1.

Syntax
Semantics

Character expressions
Syntax
Semantics

Object expressions
Syntax
Semantics

Qualification
Object generators
Local objects
Instantaneous qualifications

Text expressions
Syntax
Semantics

Strings

5. Relations
5.1. Character relations
5. 1 . 1 • Syntax
5.1.2.
5.2.
5.2.1.
5.2.2.
5.3.
5.3.1.
5.3.2.
5.4.
5.4.1.
5.4.2.

Semantics
Text value relations

Syntax
Semantics

Object relations
Syntax
Semantics

Reference relations
Syntax
Semantics

6. Statements
6.1. Assignment statements
6. 1 . 1 . Syntax
6.1.2.
6.1.2.1.
6.1.2.2.
6.2.

Semantics
Arithmetic value assignment
Object reference assignment

For statements

37
38
38
39
39
40
41
42
42

43
43
43
43
44
44
44
45
45
45
46
47
47
48
49
49
49
50

51
51
51
51
52
52
52
53
53
53
53
53
54

55
56
51i
57
58
58
60

6. 2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.

6.2.6.

6.3.
6.3.1.
6.3.2.
6.4.
6.4.1.
6.4.2.

Syntax
Semantics
For list elements
The controlled variable
The value of the controlled
variable upon exit
Labels local to the controlled
statement

While statement
Syntax
Semantics

Prefixed blocks
Syntax
Semantics

7. Remote accessing
7.1. Remote identifiers
7.1.1. Syntax
7.1.2. Semantics
7.2. Connection
7.2.1. Syntax
7.2.2. Semantics

8. Procedures and parameter transmission
8.1. Syntax
8.2. Semantics
8.2.1. Call by value
8.2.2. Call by reference
8.2.3. Cal l by name

9. Sequencing
9.1. Block instances and states of execution
9.2. Quasiparallel systems
9.2.1. Semi-symmetric sequencing:

detach - call

60
61
62
64
64

64

65
65
65
66
66
(i6

69
70
70
71
73
73
74

77
77
77
79
80
81

83
83
85
86

9.2.2. SymmetriC component sequencing: 87
detach - resume

9. 2 .3.
9.3.
9.3.1.
9. 3.2.
9. 3.3.
9. 3.4.
9. 3.5.

Dynamic enclosure and the operating chain 88
Quasi-parallel sequenc i ng

The detach statement
The call statement
The resume statement
Object "end"
Go to statements

10. The t ype "text"
10. 1. Text attri butes
10. 2. "constant", "start ", " length" and "ma in"
10. 3. Character access
10.4. Text generation

92
92
94
95
96
96

97
97
98
99

101

•

I
t

i

-,j

10.5.
10.6.
10.7.
10.8.
10.8 .1.
10.8.2.
10.9.
10.10.

Text reference assignment
Text value assignment
Subtexts
Numeric text values

Syntax
Semantics

"De-editing" procedures
Editing procedures

11. Input-output
11.1. The class "FILE"
11.1.1. Definition
11. 1.2.
11. 2.
11.2.1.
11.2.2.
11.3.
11.3.1.
11.3.2.
11.4.
11.4.1.
11.4.2.
11.5.
11.5.1.
11.5.2.

Semantics
The class "infile"

Definition
Semantics

The class "outfile"
Definition
Semantics

The class "directfile"
Defintion
Semantics

The class "printfile"
Definition
Semantics

12. Random drawing
12.1. Pseudo-random number streams
12.2. Random drawing procedures

13. Utility procedures

14 . System classes
14.1. The class "SIMSET"
14.1.1 General structure
14.1.1.1. Definition
14.1.1.2. Semantics
14.1.2. The class "linkage"
14.1.2.1. Definition
14.1.2.2. Semantics
14.1.3. The class "link"
14.1.3.1. Definition
14.1.3.2. Semantics
14.1.4. The class "head"
14.1 .4.1. Definition
14.1.4.2. Semantics
14.2. The class "SIMULATION"
14.2.1. General structure
14.2.1.1. Definition
14.2.1.2. Semantics

102
102
103
104
104
105
106
107

109
111
111
111
113
113
115
117
117
118
119
119
121
122
122
123

125
125
126

129

131
132
132
132
132
133
133
133
134
134
135
136
136
136
137
138
138
139

14.2.2. The class "process"
14 .2.2.1. Definition
14.2.2.2. Semantics
14.2.3. Activation statements
14.2 . 3.1. Syntax
14.2.3.2. Semantics
14.2.4 . Sequencing procedures
14.2.4.1. Definitions
14.2.4.2. Semantics
14.2.5. The main program
14.2.5.1. Definition
14.2 .5. 2. Semantics
14.2.6. Utility procedures
14 .2.6.1. Definition
14.2.6.2. Semantics

15. Separate compilation
15.1. Syntax
15.2. Semantics

16. Extensions to SIMULA

17. Features being investigated

18. References

19. Alphabetical index of syntactical units

REFERENCES
INDEX

140
140
141
142
142
142
144
144
145
148
148
148
149
149
149

151
151
152

155

157

159

161

Introduction

1.1 General purpose programming languages

High level languages, like FORTRAN, ALGOL 60 and COBOL were originally
regarded as useful for two purposes:

- to provide concepts and statements allowing a precise formal
description of computing processes and also making communication
between programmers easier.

- to provide the non-specialist with a tool making it possible for
him to solve small and medium-sized problems without specialist
help.

High level languages have succeeded in these respects. However, strong
new support for these languages is developing from a fresh group: those
who are confronted with the task of organizing and implementing very
complex, highly interactive programs, e.g. large simulation programs.

These tasks put new requirements on a language:

- in order to decompose the problem into natural, easily conceived
components, each part should be describable as an individual
program. The language should provide for this and also contain
means for describing the joint interactive execution of these
sub-programs.

- in order to relate and operate a collection of programs, the
language should have the necessary powerful list processing and
sequencing capabilities.

in order to reduce the already excessive amount of debugging
trouble associated with present day methods, the language should
give "reference security". That is, tl--e language and its compiler
should spot and prohibit execution involving invalid use of data
through data referencing based on wrong assumptions.

Even if the organizational aspects of complex programming are becoming
more and more important, the computational aspects must, of course, be
taken care of at least as well as in the current high-level languages.

It is also evident that such a general language should be oriented
towards a very wide area of use. The market cannot for long accommodate
the present proliferation of languages.

"'

,
2

1.2 Special application languages

Until now, the computer has been a powerful but frightening tool to
most people. This should be changed in the years to come, and the
computer should be regarded as an obvious part of the human
environment. More and more people should get their capabilities
increased through the availability of the "know-how" and data they
need.

A condition for this development is that the demands on the computer
user are reduced, which implies that communication between man and
computer is made easier.

Know-how is today to a large extent made operative through "application
packages" covering various fields of knowledge and methods. But these
packages are in general not sufficiently flexible and expandable, and
also often require specialist assistance for their use.

The future seems to be "application languages" which are problem­
oriented, perhaps in the extreme. Such languages may provide the basic
concepts and methods associated with the field in question and allow
the user to formulate his specific problem in accordance with his own
earlier training.

At the same time, such languages should be flexible in the sense that
new knowledge acquired should be easily incorporated, even by the
individual user.

The need for application languages is apparently in conflict with the
desire for the non-proliferation of languages and for general purpose
programming languages.

A solution is to design a general purpose programming language to serve
as a "substrate" for the application languages by making it easy to
orient towards specialized fields, and to augment it by the
introduction of additional aggregated concepts useful as "building
blocks" for programming.

By making the general purpose language highly standardized and
available on many types of computers, the application languages also
become easily transferable, and at the same time the software
development costs for the computer manufacturers may be retarded from
the present rapid increase.

1.3 The basic characteristics of SIMULA 67

1.3.1 Algorithmic capability

SIMULA 67 contains most features of the general algoritmic language
ALGOL 60 as a subset. The reason for choosing ALGOL 60 as a starting
point was that its basic structure lent itself to extension. It was
felt that it would be impractical for the users to base SIMULA 67 on
yet another new algorithmic language, and ALGOL 60 already had a user
basis, mainly in Europe.

1.3.2 Decomposition

In dealing with problems and systems containing a large number of
details, decomposition is of prime importance. The human mind must
concentrate; it is a requirement for precise and coherent thinking that
the number of concepts involved is small. By decomposing a large
problem, one can obtain component problems of manageable size to be
dealt with one at a time, and each containing a limited number of
details. Suitable decomposition is an absolute requirement if more than
one person takes part in the analysis and programming.

The fundamental mechanism for decomposition in ALGOL 60 is the block
concept. As far as local quantities are concerned, a block is
completely independent of the rest of the program. The locality
principle ensures that any reference to a local quantity is correctly
interpreted regardless of the environment of the block.

The block concept corresponds to the intuitive notion of "sub-problem"
or "sub-algorithm" which is a useful unit of decomposition in orthodox
application areas.

A block is a formal description, or "pattern", of an aggregated data
structure and associated algorithms and actions. When a block is
executed, a dynamic "instance" of the block is generated. In a computer
a block instance may take the form of a memory area containing the
necessary dynamic block information and including space for holding the
contents of variables local to the blOCk. A block instance can be
thought of as a textual copy of its formal description, in which local
variables indentify parts of memory allocated to the block instance.
Any inner block of a block instance is still a "pattern", in which
occurrences of non-local identifiers, however, identify items local to
textually enclOSing block instances. Such "bindings" of identifiers
non-local to an inner block remain valid for any subsequent dynamic
instance of that inner block.

3

4

The notion of block instances leads to the possibility of generating
several instances of a given block which may co-exist and interact,
such as, for example, instances of a recursive procedure. This further
leads to the concept of a block as a "class" of "objects", each being a
dynamic instance of the block, and therefore conforming to the same
pattern.

An extended block concept is introduced through a "class" dec lara tion
and associated interaction mechanism such as "object references"
(pointers), "remote accessing", "quasi-parallel" operation, and block
"concatenation".

Whereas ALGOL 60 program execution consists of a sequence of dynamically
nested block instances, block instances in SIMULA 67 may form arbitrary
list structures. The interaction mechanisms which are introduced, serve
to increase the power of the block concept as a means for decomposition
and classification.

A central new concept in SIMULA 67 is the "object". An object is a
self-contained program (program instance), having its own local data and
actions defined by a "class declaration". The class declaration defines
a program (data and action) pattern, and objects conforming to that
pattern are said to "belong to the same class".

If no actions are specified in the class declaration, a class of pure
data structures is defined.

Example:

class order(number); integer number;
begin integer number_of_units, arrival_date;

real processing_time;
end· --'

A new object belonging to the class "order" is generated by an
expression such as

"new order(103)"

and as many "orders" may be introduced as desired.

The need for manipulating objects and relating objects to each other
makes it necessary to introduce list proceSSing facilities (as described
below) •

A class may be used as "prefix" to another class declaration, thereby
building the properties defined by the prefix into the objects defined
by the new class declaration.

Example:

order class batch_order;
begin integer batch_size;

real setup_time;
end· --'

order class Single_order;
begin real setup_time, finishing_time, weight; end;

Single_order class plate;
begin real length, width; end;

6

New objects belonging to the "sub-classes" - "batch order", "single
order" and "plate" all have the data defined for "order", plus the
additional data defined in the various class declarations. Objects
belonging to the class "plate" will, for example, comprise the following
pieces of infonnation: "number", "number_of_units", "arrival_date",
"processing_time", "setup_time", "finishing_time", "weight", "length"
and "width".

If actions are defined in a class declaration, actions conforming to
this pattern may be executed by all objects belonging to that class. The
actions belonging to one object may all be executed in sequence, as for
a procedure. But these actions may also be executed as a series of
separate subsequences, or "active phases". Between two active phases of
a given object, any number of active phases of other objects may occur.

SIMULA 67 contains basic features necessary for organizing the total
program execution as a sequence of active phases belonging to objects.
These basic features may be the foundation for aggregated sequencing
prinCiples, of which the class SIMULATION is an example.

i

t

t
f;
g
f.

1.3.4 Application language capability

SIMULA 67 may be oriented towards a special application area by defining
a suitable class containing the necessary problem-oriented concepts.
This class can then be used as prefix to the program by the user
interested in this problem area.

The unsophisticated user may restrict himself to using the aggregated,
problem-oriented and familiar concepts as constituent "building blocks"
in his programming. He may not need to know the full SIMULA 67 language,
whereas the experienced programmer at the same time has the general
language available, and he may extend the "application language" by new
concepts defined by himself.

As an example, in discrete event system simulation, the concept of
"simulated system time" is cormnonly used. SIMULA 67 is turned into a
simulation language by providing the class "SIMULATION" as a part of the
langua~e. (In this case provided with the compilers)

In the class declaration

class SIMULATION;
begin •.••••..••..••.•.•.•.•••. end;

a "time axis" is defined, as well as two-way lists (which may serve as
queues), and also the class "process" which gives an object the property
of having its active phases organized through the "time axis".

7

8

A user wanting to write a simulation program starts his program by

SIMULATION begin •••••.•••••••..••••

in order to make all the simulation capabilities available in his
program. If he himself wants to generate a special-purpose simulation
language to be used in job-shop analysis, he may write:

SIMULATION class JOBSHOP;
begin ••.•••.••••.••••.••••••••••• end;

and between "begin" and "end" define the building blocks he needs, such

as

PROCESS class CRANE;
begin end;

PROCESS class MACHINE;
begin procedure DATACOLLECTION;

end;

etc.

The programmer now compiles this class, and whenever he or his
colleagues want to use SIMULA 67 for jobshop simulation, they may write
in their program

JOBSHOP begin ••••.••.••••••

thereby making available the concepts of both "SIMULATION" and
"JOBSHOP" •

This facility requires that a mechanism for the incorporation of
separately compiled classes is available in the compiler (see section
15).

.
t
f
[, , ,

1.3.5 List processing capability

When many objects belonging to various classes do co-exist as parts of
the same total program, it is necessary to be able to assign names to
individual objects, and also to relate obj ects to each other, e.g.
through binary trees and various other types of list structures. A
system class, "SIMSET", introducing circular two-way lists is a part of
the language.

Hence basic new types, "references", are introduced. References ar e
"qualified", which implies that a given reference only may refer to
objects belonging to the class mentioned in the qualification (or
belonging to subclasses of the qualifying class).

Example:

ref (order) next, previous;

The operation of making a reference denote a specified object is wr i tten
":-" and read "denotes".

Example:

next:- new order(101); previous:- next;

or (also valid since "plate" is a subclass of "order")

next:- new plate(50);

Data belonging to other objects may be referred to and used by "remote
accessing", utilizing a special "dot notation".

Example:

if next.number > previous.number then

comparing the "number" of the "order" named "next" with the "number" of
the "order" named "previous".

The "dot notation" gives access to individual pieces of informati on.
"Group access" is achieved through "connection statements".

9

10

Example:

inspect next when plate do begin ..•.• end;

In the statement between begin and end all pieces of information
contained in the "plate" referenced by "next" may be referred to
directly.

1.3.6 String handling

SIMULA 67 contains the new basic type "character". The representation
of characters is implementation defined.

In order to provide the desired flexibility in string handling, a
compound type called "text" is introduced. The "text" concept is closely
associated with input/output facilities.

1.3.7 Input/output

ALGOL 60 has been seriously affected by the lack of standardized
input/output and string handling. Clearly a general purpose programming
language should have great flexibility in these areas. Consequently,
input/output are defined and made a standardized part of SIMULA 67.

1.4 Standardization

For a general purpose programming language it is of paramount importance
that while the language is uniquely defined and at the same time under
strict control, it may be extended in the future.

This is achieved by the SIMULA Standard Group, consisting of
representatives for firms and organizations having responsibility for
SIMULA 67 compilers. The statutes lay down rigid rules to provide for
both standardization and future extensions.

The SIMULA definition which is required to be a part of any SIMULA 67
system is named the "SIMULA 67 Common Base Definition".

I
f
f

f

i

I

1.5 Language definition

The language definition given in the following sections must be
supplemented by the formal definition of ALGOL 60 (1). The syntactic
definitions given in this report are to be understood in the following
way.

1) Syntactic classes referred to, but not defined in this report,
refer to syntactic definitions given in (1).

2) Definitions in this report of syntactic classes defined in (1)
replace the crrresponding definitions given in (1).

3) Any construction of the form

<ALGOL some syntactic class>

stands for the list of alternative direct productions of <some
syntactic class> according to the definition given in (1).

1.6 Comment conventions

For the purpose of including explanatory texts among the symbols of a
program the following comment convention holds:

The sequence:

comment <any sequence of printable
characters not containing ;>;

end <any sequence of printable characters
not containing end, else, when,
otherwise or ;>

! <any sequence of printable characters
not containing ;>;

is equivalent to:

space

end

space

Note: This comment convention is an extension of the Algol 60
convention since it permits comments wherever .a space may
be recognised.

Also note that since comments are not symbols of the
SIMULA language they are permitted to extend over more
than one line record.

11

12

1.7 Hardware representation language

A SIMULA program text must be represented according to ISO standard,
Ref. No. ISO 646-1973, and consists of a sequence of line records. If a
line record consists of more than 72 positions, an implementation may
treat as significant only the first 72 positions. There are two kinds
of line records: Compiler directives (see 1.7.1) and Program lines (see
1.7.2). Apart from 1.7.1 this document is only concerned with Program
lines.

1.7.1 Compiler directive lines

Compiler directives are identified by having a % character (ISO code 37)
in the first position of the line record. Such lines are always taken
as compiler control lines and the interpretation of their contents is
implementation dependent. If a line starts with a % character followed
by a blank, this should be treated as a line of comment.

1.7.2 Program lines

Line records which do not have a % character in the first position
are taken as Program lines. In the remaining part of this document, the
words "program text" mean the sequence of Program lines excluding the
Compiler directives.

The program text consists of a sequence of symbols, comments and spaces.
Comments are treated in detail in section 1.6. The symbols are:

- Identifiers
- Keywords
- Constants
- Special symbols

A symbol must be contained in a single line record, i.e. it cannot be
continued from one line to the next. The extent of a symbol is decided
by a left-to-right scan of a Program line beginning at position 1 or at
the first position containing a non-space character following an already
recognized symbol or comment, trying to recognize the largest possible
string of characters which fits the syntax of a symbol.

As a consequence of this rule there must be at least one space
separating colon and minus sign in an array declaration.

1.7.3 Representation of identifiers and keywords

Identifiers and keywords must conform to the following syntax rule

<id or keyword>
.. - <letter>

<id or keyword> <letter>
<id or keyword> <digit>
<id or keyword> <underline>

i.e. a sequence of letters, digits and underlines starting with a
letter. Note that spaces are not permitted inside identifiers or
keywords.

1.7.3.1 Identifiers

A symbol is recognized as an identifier in the scan mentioned in section
1.7.1.2 if it conforms to the syntax rule above and it is not found in
table 1.

Note that the length of an identifier is restricted to at most 72
characters, and all characters (including underlines) are significant.

1.7.3.2 Keywords

A symbol is recognized as a keyword if it conforms to the syntax rule
above and is found in table 1. These keywords are reserved and cannot
be used as identifiers. An implementation may not reserve symbols other
than those mentioned in table 1.

13

14

1.7.4 Representation of special symbols

The set of special symbols which is a part of this recommendation is
given in table 2. Some of the special symbols of the reference language
have only a reserved word representation in the hardware representation.

These are:

i i

I Hardware I Reference
, representation 'language

I I ,
AND

,
1\ , EQV I ==

I IMP I =>

I Nar I -,

I OR I V

I I

Some of the special symbols of the reference language have an
alternative reserved word representation in the hardware representation.

These are:

i i

I Alternative I
I hardware , Hardware Reference

I representation , representation language

I I
I EQ I ,

GE
,

>= ~ , GT
,

> > , LE
, L

<=

I LT I < <

I NE I <> ~
I I

f 15

i , , i

Hardware , Reference , Hardware I Reference I
representation 'language , representation I language I

I , , ,
ACTIVATE activate I LABEL 'label I
AFTER after I LE ,~ ,
AND 1\ 1 LONG I long 1
ARRAY array , LT I < I
AT at , NAME 1 name 1
BEFORE before I NE 1# 1
BEGIN begin , NEW 1 new 1
BOOLEAN boolean , NONE 1 none I
CHARACTER character , Nar I-=;- I
CLASS class NarEXT notext
COt1'1ENT corrrnent OR v
DELAY delay OTHERWISE otherwise

, DO , do PRIOR prior
ELSE else PROCEDURE 2rocedure
END end PROTECTED 2rotected
EQ QUA ~
EQV - REACTIVATE reactivate
EXTERNAL external REAL real
FALSE false REF ref
FOR for SHORT short
GE ~ STEP step
GO .s2 SWITCH switch
GaTO goto TEXT text
GT > THEN then
HIDDEN hidden THIS this
IF if TO to
IMP => TRUE true
IN in UNTIL until
INNER inner VALUE value
INSPECT inspect VIRTUAL virtual
INTEGER integer WHEN when
IS is WHILE while

Table 1. Reserved words and their meanings

Only the upper case versions are given - all combinations of
upper and lower case letters that spell a word given here are
also considered reserved words.

16

i
I Reference Hardware Alterna t i ve Name
I Language
~

Representation Hardw. Repr.

;- + + plus
i minus

* * times

~: I / divide (real)

II divide (integer)
t ** exponentiate
> > GT greater than
~ >= GE greater or equal
< < LT less than
6 <= LE less or equal

EQ equal

:I: <> NE not equal
reference equal

=1= =1= ref. not equal
dot
comma
colon
semicolon

& basis of ten
((left parenthesis
)) right par.

e (left bracket
]) right bracket

. - .- becomes
:- :- denotes

single quote

" " double quote

cOrTlTlent COM-lENT comment

Table 2. Hardware representation of special symbols.

2 Class declarations

2.1 Syntax

<declaration >
<ALGOL declaration>
<class declaration>
<external declaration>

<class identifier>
<identifier>

<prefix>
<empty>
<class identifier>

<virtual part>
<empty>
virtual: <specification part>

<class body>
<statement>
<spli t body>

<initial operations>
.. - begin

<block head>;
<initial operations> <statement>;

<final operations>
.. - end

<compound tail>

<spli t body>
<initial operations>
<inner part> <final operations>

<class declaration>
::= <prefix> <main part>

<main part>
class <class identifier>

<formal parameter part>;
<value part> <specification part>
<protection part>
<virtual part> <class body>

17

18

<inner part>
inner

<label>: <inner part>

<protection part>
<empty>
<protection part> <protection specification>

<protection specification>
.. _ hidden <identifier list>;

~ted <identifier list>;
hidden protected <identifier list>;
protected hidden <identifier list>;

2.2 Semantics

A class declaration serves to define the class associated with a class
identifier. The class consists of "objects" each of which is a dynamic
instance of the class body.

19

An object is generated as the result of evaluating an object generator,
which is the analogy of the "call" of a function designator, see section
4.3.2.2.

A class body always acts like a block . If it takes the form of a
statement which is not an unlabelled block, the class body is identified
with a block of the form

where S is the textual body. A split body acts as a block in which the
symbol "inner" represents a dummy statement.

For a given object the formal parameters, the quantities specified in
the virtual part, and the quantities declared local to the class body
are called the "attributes" of the object. A declaration or
specification of an attribute is called an "attribute definition".

Specification (in the specification part) is necessary for each formal
parameter. The parameters are treated as variables local to the class
body. They are initialized according to the rules of parameter
transmission, (see section 8 .2). Call by name is not available for
parameters of class declarations. The following specifiers are accepted:

<type>, array, and <type> array .

Attributes defined in the virtual part are called "virtual quantities" .
They do not occur in the formal parameter list. The virtual quantities
have some properties which resemble formal parameters called by name.
However, for a given object the environment of the corresponding "actual
parameters" is the object itself, rather than that of the generating
call. See section 2.2. 3.

Identifier conflicts between formal parameters and other attributes
defined in a class declaration are illegal.

The declaration of an array attribute may in a constituent subscript
bound expression make reference to the formal parameters of the clasc
declaration, thus subscript bound expression \~ich refer t o attr ibu~es

other than the formal parameters of the class declaration (or its
prefixes, see 2.2.1) are illegal.

20

Example:

The following class declaration expresses the notion of lin-point Gauss
integration" as an aggregated concept.

class Gauss (n); integer n;
begin array W, X(1:n);

real procedure integral(F,a,b); real procedure F;
real a,b;

begin real sum, range; integer i;
range:: (b-a)*O.5;
for i:: step 1 until n do
sum:: sum + F(a+range*(X(i)+1))*W(i);
integral:: range * sum;

end integral;
comment compute the values of the elements of

W and X as functions of n;

end Gauss;

The optimum weights W and abscissae X can be computed as functions of
By making the algorithm part of the class body, the evaluation and
assignment of these values can be performed at the time of object
generation. Several "Gauss" objects with different values of n may
co-exist. Each object has a local procedure "integral" for the
evaluation of the corresponding n-point formula. See also examples of
section 6.1.2.2 and section 7.1.2.

n.

f 21

2.2.1 Subclasses

A class declaration with the prefix "C" and the class identifier "D"
defines a subclass D of the class C. An object belonging to the subclass
consists of a "prefix part", which is itself an object of the class C,
and a "main part" described by the main part of the class declaration.
The two parts are "concatenated" to form one compound object. The class
C may itself have a prefix.

Let C1, C2, •••.. , Cn be classes such that C1 has no prefix and Ck has
the prefix Ck-1 (k : 2,3, .•... , n). Then C1,C2, , Ck-1 is called
the "prefix sequence" of Ck (k = 2,3, , n). The subscript k of Ck
(k = 1, 2, , n) is called the "prefix level" of the class. Ci is
said to "include" Cj if i <= j, and Ci is called a "subclass" of Cj if i
> j (i, j = 1, 2, ... , n). The prefix level of a class D is said to be
"inner" to that of a class if D is a subclass of C, and "outer" to that
of C if C is a subclass of D. The figure 2.1 depicts a class hierarchy
consisting of five classes, A, B, C, D and E:

class A ,
A class B ,
B class C ,
B class D ,
A class E ,

A capital letter denotes a class. The corresponding lower case letter
represents the attributes of the main part of an object belonging to
that class. In an implementation of the language, the object structures
shown in Fig. 2.2 indicate the allocation in memory of the values of
those attributes which are simple variables.

The following restrictions must be observed in the use of prefixes:

1) A class must not occur in its own prefix sequence.

2) A class can be used as prefix only at the block level at
which it is declared. A system class is considered to be
declared in the smallest block enclosing its first textual
occurrence. An implementation may restrict the number of
different block levels at which such prefixes may be used
(See section 11, 14 and 15).

An implementation may restrict the language by demanding that a class
should be defined textually before all its subclasses.

22

,....---,
I I
I a I
L-J

A

I
I

B E

I
~
I I

C D

Fig. 2.1

,....---, ,....---,
I I I I
I a I I a I
J----I J----I
I I I I
I b I I b I
L-J ~

I I
I c I
L-J

includes: A,B,C,D,E
outer to: B,C,D,E

includes: B,C,D
outer to: C,D
inner to: A

,....---, ,....---,
I I I I
I a I I a I
~ ~
I I I I
I b I I e I
~ L-J
I I
I d I
L-J

Objects of classes A, B, C, D and E respectively.

Fig. 2. 2

23

2.2.2 Concatenation

Let Cn be a class with the prefix sequence C1, C2, •..•. , Cn-1, and let
X be an object belonging to Cn. Informally, the concatenation mechanism
has the following consequences.

1) X has a set of attributes which is the union of those
defined in C1, C2, , Cn. An attribute defined in Ck
(1 <= k <= n) is said to be defined at prefix level k.

2)

3)

X has an "operation rule" consisting of statements from the
bodies of these classes in a prescribed order. A statement
from Ck is said to belong to prefix level k of X.

A statement at prefix level k of X has access to all
attributes of X defined at prefix levels equal to or outer
to k, but not directly to attributes "hidden" by conflicting
definitions at levels < k. (These "hidden" attributes may be
accessed through use of procedures or this.)

4) A statement at prefix level k of X has no immediate access
to attributes of X defined at ~refix levels inner to k,
except through virtual quantities (See section 2.2.3).

5) In a split body at prefix level k, the symbol "inner"
represents those statements in the operation rule of X which
belong to prefix levels inner to k, or a dummy statement if
k = n. If none of C1, ..•.. , Cn-1 has a split body the
statements in operation rule of X are ordered according to
ascending prefix levels.

A compound object could be described formally by a "concatenated" class
declaration. The process of concatenation is considered to take place
prior to program execution. In order to give a precise description of
that process, we need the following definition.

An occurrence of an identifier which is part of a given block is said to
be an "uncOlll1litted occurrence in that block", except if it is the
attribute identifier of a remote identifier (see section 7.1), or is
part of an inner block in which it is given a local significance. In
this context a "block" may be a class declaration not including its
prefix and class identifier, or a procedure declaration not including
its procedure identifier. (Notice that an uncOlll1litted i dentifier
occurrence in a block may well have a local significance in that block.)

I

J

24

The class declarations of a given class hierarchy are processed in an
order of ascending prefix levels. A class declaration with a non-empty
prefix is replaced by a concatenated class declaration obtained by first
modifying the given one in two steps.

1. If the prefix refers to a concatenated class declaration, in
which identifier substitutions have been carried out, then
the same substitutions are effected for uncommitted
identifier occurrences within the main part.

2. If now identifiers of attributes defined within the main
part have uncommitted occurrences within the prefix class,
then all uncommitted occurrences within the main part of
these identifiers are systematically changed to avoid name
conflicts. Identifiers corresponding to virtual quantities
defined in the prefix class are not changed.

The concatenated class declaration is defined in terms of the given
declaration, modified as above, and the concatenated declaration of the
prefix class.

1. Its formal parameter list consists of that of the prefix
class followed by that of the main part.

2. Its value part, specification part, and virtual part are the
unions (in an informal but obvious sense) of those of the
prefix class and those of the main part. If the resulting
virtual part contains more than one occurrence of some
identifier, the virtual part of the given class declaration
is illegal.

3. Its class body is obtained from that of the main part in the
following way, assuming the body of the prefix class is a
split body. The begin of the block head is replaced by a
copy of the block head of the prefix body, a copy of the
initial operations of the prefix body is inserted after the
block head of the main part and the end of the compound
tail of the main part is replaced by a copy of the compound
tail of the prefix body. If the prefix class body is not a
spli t body, it is interpreted as if the symbols "; inner"
were inserted in front of the end of its compound tail.

If in the resulting class body two matching declarations for
a virtual quantity are given (see section 2.2.3), the one
copied from the prefix class body is deleted.

The declaration of a label is its occurrence as the label of
a statement.

Examples:

class point(x,y); real x,y;
begin ref (point) procedure plus (P) ; ref (point) P;

plus:- new point(x+P.x, y+P.y);
end point;

2 5

An object of the class point is a representation of a point in a
cartesian plane. Its attributes are x, y and plus, where plus represents
the operation of vector addition.

point class polar;
begin real r,v;

ref (polar) procedure plus (P) ; ref (paint) P;
plus :- new polar(x+P.y, y+P.y);

r:= sqrt(x**2 + y**2);
V:= arctg(x,y);

end polar;

An object of the class polar is a "point" object with the additional
attributes r, v and a redefined plus operation. The values of r and v
are computed and aSSigned at the time of object generation. ("arctg" is
a suitable non-local procedure.)

26

2.2.3 Virtual quantities

Virtual quantities serve a double purpose:

1) to give access at one prefix level of an object to
attributes declared at inner prefix levels, and

2) to permit attr ibute redeclarations at one prefix level valid
at outer prefix levels.

The following specifiers are accepted in a virtual part:

label, switch, procedure and <type> procedure.

A virtual quantity of an object is either "unmatched" or is identified
with a "matching" attribute, which is an attribute whose identifier
coincides with that of the virtual quantity, declared at the prefix
level of the virtual quantity or at an inner one. The matching attribute
must be of the same kind as the virtual quantity. At a given prefix
level, the type of the matching quantity must coincide with or be
subordinate to (see Section 3.2.7) that of the virtual specification and
that of any matching quantity declared at any outer prefix level.

At any given prefix level PL inner or equal to that of a virtual
specification, the type of the virtual quantity is

- if there is no match at prefix levels outer or equal to PL,
then that given in the virtual specification,

- if there is a match at prefix level outer or equal to PL,
then that of the match at the innermost prefix level outer or
equal to PL.

It is a consequence of the concatenation mechanism that a virtual
quantity of a given object can have at most one matching attribute. If
matching declarations have been given at more than one prefix level of
the class hierarchy, then the one is valid which is given at the
innermost prefix level outer or equal to that of the main part of the
object. The match is valid at all prefix levels of the object equal or
inner to that of the virtual specification.

Example:

The following class expresses a notion of "hashing", in which the "hash"
algorithm itself is a "replaceable part". "error" is a suitable
non-local procedure.

class hashing (n) ; integer n;
virtual: integer procedure hash;
begin integer procedure hash(T); value T; text T;

begin integer i;
while T.more do

i:= i + rank(T.getchar);
hash:= i - (illn*n);

end hash;
text array table (0:n-1); integer entries;
integer procedure lookup (T ,old);

end hashing;

name old; value T;
Boolean old; text T;
begin integer i; Boolean entered;

i:= hash(T);
while not entered do
begin if table(i)==notext then

begin table(i):- T;
entries:= entries + 1;
entered:= true;

end else if table(i) = T then
old:= true

else begin i:= i + 1;

end;
lookup:= i;

end lookup;

if i = n then i:= 0;

hashing class ALGOL_hash;
begin integer procedure hash(T); value T; text T;

begin integer i; character c;
while T.more do
begin c:= T.getchar;

if c <> ' , then i:= + rank(c);
end;
hash:= i - (illn*n);

end hash;
end ALGOL_hash;

27

• b

i

28

2.3 Attribute protection

The definition of the syntactic unit <main part> in the Common Base
text, section 2.1 may be replaced by the following:

<main part>
class <class identifier>

<formal parameter part>;
<value part> <specification part>
<protection part>
<virtual part> <class body>

where <protection part> is defined as follows:

<protection part>
•• - <empty>

<protection part> <protection specification>

<protection specification>

2.3.2 Semantics

hidden <identifier list>;
protected <identifier list>;
hidden protected <identifier list>;
protected hidden <identifier list>;

The protection specification makes it possible to restrict the scope of
class attribute identifiers.

2.3.2.1 Protected

A class attribute, X, which is specified protected in class C is only
accessible:

1) within the body of C or its subclasses
2) within the blocks prefixed by C or any subclass of C.

In any other context the meaning of the identifier X is as if the
attribute definition of X (see Cornmon Base 2.2) were absent.

Access to a protected attribute is, subject to the restriction above,
legal by remote accessing.

A class attribute may be specified protected only at the prefix level
of its definition. Note that a virtual attribute may only be specified
protected in the same class heading where the virtual specification is
placed.

Attributes of the classes SIMSET and SIMULATION are protected.

2.3 .2.2 Hidden

A class attribute, X, specified hidden in class C is not accessi ble
within subclasses of C or blocks prefixed by C or any subclass of C. In
this context the meaning of the identifier X is as if the attribute
definition of X (see Cornmon Base 2.2) were absent.

Observe that specifying a virtual quantity hidden effectively disables
further matching at inner levels.

Only a protected attribute may be specified hidden, however the hidden
specification may occur at a prefix level inner to the protected
specification.

2.3 .2.3 Combination of protected and hidden

The effect of specifying an attribute hidden protected or protected
hidden is identical to that of specifying it as both protected and
hidden.

Conflicting or illegal hidden and/or protected specifications
constitute a compile time error.

Note that if there are several attributes with the same identifier in
the prefix sequence to a hidden specification, and these are protected,
but not hidden, the innermost accessible attribute will be hidden.

29

30

3

3.1

\ --~~---

Types and variables

<type declaration>
::= <type> <type list>

<array declaration>

<type>

array <array list>
<type> array <array list>

<value type>
<reference type>

<value type>
integer
short integer
real
long real
Boolean
character

<reference type>
.. - <object reference>

text

<object reference>
.. - ref (<qualification>

<qualification>
::= <class identifier>

<type list> ::= <type list element>
<type list> • <type list element>

<type list element> ::= <identifier> !

<constant element>

<constant element> <identifier>
< identifier>

<value expression>
<string>

31

r
33

3.2.2 Characters

A character value is an instance of an "internal character". For any
given implementation there is a one-one mapping between a subset of
internal characters and external ("printable") characters. The character
sets (internal and external) are implementation defined.

3.2.2.1 Collating sequence

The set of internal characters is ordered according to an implementation
defined collating sequence. The collating sequence defines a one-to- one
mapping between internal characters and integers expressed by the
function procedures:

integer procedure rank(c); character c;

whose value is in the range (O,N-l), where N is the number of internal
characters, and

character procedure char(n); integer n;

The parameter value must be in the range (O ,N-l), otherwise a run time
error is caused.

Example:

Most character codes are such that the digits (0-9) are character values
which are consecutive and in ascending order with respect to the
collating sequence. Under this assumption, the expressions

"rank(c) - rank ('0')" and "char(rank('0') + il"

provide implementation independent conversion between digits and their
arithmetic values.

3.2.2.2 Character subsets

Two character subsets are defined by the standard non-local procedures:

Boolean procedure digit(c); character c;

which is true if c is a digit, and

Boolean procedure letter (c); character c ;

which is true if c is a letter of the Snglish alphabet, i,e. 3 -Z,

A-Z (but not for additional national letters like re,0,a).

1
!

I
I
I

34

A text value is an ordered sequence, possibly empty, of characters. The
number of characters is called the "length" of the text value.

A text frame is a memory device which contains a nonempty text value. A
text frame has a fixed length and can only contain text values of this
length. A text frame may be "variable" or "constant". A constant frame
always contains the same text value. A variable frame may have its
contents modified.

A text reference identifies a text frame. The reference is said to
possess a value, which is the contents of the frame it identifies. The
special text reference notext identifies "no frame". The value of notext
is the empty text value.

A text variable is a memory device which contains a complete structure
consisting of a text reference and a "position indicator". A text
variable is said to reference the text frame (or no frame) identified by
its contents. The position indicator is used for accessing the
individual characters of the frame referenced.

A text variable may reference both variable and constant text frames.

A text variable is said to possess a value, which is the value possessed
by the text reference it contains.

The type text serves to declare or specify a text variable quantity.

3.2.3.1 Text objects and text frames

A "text object" is conceptually an instance of the following class
declaration:

class TEXTOBJ(SIZE,CONST);
integer SIZE; Boolean CONST;
begin character array MAIN(1:SIZE); end' -'

Any non-empty sequence of consecutive elements of the array attribute
MAIN constitutes a text frame. More specifically, any text frame is
completely identified by the following piece of information:

1) a reference to the text object containing the frame,

2) the start position of the frame, being an integer within the
subscript bounds of the MAIN attribute of that text object,

3) the length of the frame.

A frame which is completely contained in another frame is said to be a
"subframe" of that other frame. The text frame associated with the
entire array attribute MAIN is called the "main frame" of the text
object. All frames of the text object are sub frames of the main frame.
Note that a main frame is a subframe of no frame except itself.

The frames of a text object are either all constant or all variable, as
indicated by the attribute CONST. The value of this attribute remains
fixed throughout the lifetime of the text object. A constant main frame
always corresponds to a string (see 4.4.2.1).

The attribute SIZE is always positive and remains fixed throughout the
lifetime of a text object.

The identifier TEXTOBJ, as well as the three attribute identifiers, are
not accessible to the user. Instead, properties of a text object are
accessible through text variables.

3.2.3.2 Text variables

A text variable is conceptually an instance of a composite structure
with four constituent components (attributes):

ref (TEXTOBJ) OBJ;
integer START, LENGTH, POS;

35

Let X be a text variable. Then X.OBJ, X.START, X.LENGTH and X.POS denote
the components of X, respectively. These four components are not
directly accessible to the user. Instead, certain propert i es of a t ext
variable are represented by procedures accessible through dot notation.
These procedures are described in section 10.

> ,

36

The components OBJ, START and LENGTH constitutes the text reference part
of the variable. They identify the frame referenced (see 3.2.3.1). POS
is used for accessing the individual characters of the frame referenced
(see section 10.3).

The components of a text variable always satisfy one of the following
two sets of conditions:

1) OBJ =/= none
START >= 1
LENGTH >= 1
START + LENGTH <= OBJ.SIZE + 1
1 <= POS <= LENGTH + 1

2) OBJ == none
START = 1
LENGTH = 0
POS = 1

The latter alternative defines the contents of a variable which
references no frame. Note that this alternative thereby defines the
special text reference notext.

3.2.4 Representation of constants

3.2.4.1 Strings

<string>
<simple string>
<string> <string separator> <simple string>

<simple string>
::= "<character sequence>"

<character sequence>
.. - <empty>

<character sequence> <ISO code>
<character sequence> <non-quote>
<character sequence> <text quote>

<ISO code>
::= !<unsigned integer>!

<non-quote>
::= <any printing character except ">

<text quote>
tlU

<string separators>
.. - <space>

<end of line>
<string separators> <space>
<string separators> <end of line>

A <simple string> must be contained in one Program line. Long strings
are included as a sequence of <simple string>s separated by <string
separators>. The <end of line> marks the end of every line record.

37

Any printing character except the string quote represents itself. In
order to include the complete ISO alphabet any character may be

represented inside a string (or a character constant) by its ISO code
according to table 4 and surrounded by code quotes (! - ISO code 33) .
The <unsigned integer> cannot consist of more than three digits and must
be less than 256. If these conditions are not satisfied the construction
is interpreted as a <character sequence>. The <string quote> may,
however, also be represented in strings as two consequtive quotes ("").

38

Examples:

string:

"AB"

"AB"
"CDE"

"CDE"

"!2!ABCDE! 3!"

"AB""C'"'DE"

3.2.4.2 Character constants

<character designation>
.. - <ISO code>

represents:

ABCDE

ABCDE

ABCDE enclosed in the
STX and ETX characters

AB"C"DE

<any printing character>

A character constant is either a single printing character (ISO code
32-126) itself or it is an <ISO code> (cf. 3.2.4.1) representing the
corresponding character - in both cases surrounded by character quotes
(' - ISO code 39).

3.2.4.3 Numeric constants

In real constants the ampersand character (& - ISO code 38) represents
the 'basis of ten' of the reference language.

E.g. 2&12 stands for 2 12

A double ampersand must be used if and only if the constant is to be
taken as a literal of type long real.

E.g. 0.3141592&&1, 2&&-1 etc.

Any such constant will be treated as real in case the type long real is
not supported.

3.2.5 Extended arithmetic types

The type declarations short integer and long real are
recommended extensions of the standard arithmetic types. An
implementation may choose to support both, none or either of them alone
but the following rules must be observed:

If type short integer is supported the effect of any
such declaration shall be that described in 3.2 . 5 . 1,
otherwise short integer declared identifiers shall be
treated as though they were declared integer.

If type long real is supported the effect of any such
declaration shall be that described in 3. 2.5 . 2 , otherwise
long real declared identifiers shal l be treated as
though they were declared real.

Apart from the special considerations described in 3.2.5.1 and 3 . 2 .5.2
the types short integer and long real are fully compatible with types
integer and real respectively and they can consequently be used in any
place where integer or real occur in the language definition outside
these paragraphs.

3.2.5.1 Short integers

The type declaration short integer serves to declare identifiers
representing integer variables whose value range is a subset of that of
integer variables. In an expression any position which can be occupied
by an integer declared variable may be occupied by a short integer
declared variable.

- There is no apparent difference in evaluation of an
arithmetic expression with short integer constituents as
compared with one without such constituents.

- The assignment of an integer value to a short integer
variable constitutes a run time error if the value being
assigned exceeds the permissible range for the short
integer type.

39

40

3.2.5.2 Long reals

The type declaration long real serves to declare identifiers
representing variables capable of retaining a higher precision of
floating point values than variables of type real. In an expression any
position which can be occupied by a variable or number of type real may
be occupied by a variable or number of type long real. The following
rules govern the evaluation of expressions containing long real
constituents:

- The operations +, -, * and I with at least one long
real operand have the conventional meaning and are
understood to be carried out with a higher arithmetic
precision than if there were no long real constituents
present. The result of any such operation is of type long
real.

- The operation II is not defined for long real operands.

- If at least one of the branches of a conditional arithmetic
expression evaluates to a long real value the whole
expression is understood t o be of type long real.

The comparison operation in a relation involving at least
one long real expression is to be carried out with a
higher arithmetic precision than if there were no long
real constituents present.

- A standard mathematical function of type real yields
value of type long real in case that the argument is
also of type long real. Furthermore the standard
procedures TIME and EVTIME return long real results and
finally the first formal parameter to the standard
procedures PUTFIX, PUTREAL, OUTFIX and OUTREAL is assumed
to be of type long real.

- The standard procedures GETREAL and INREAL should have type
long real when it is not evident from the context which
type it should be.

- Random drawing procedures involving real quantities work
in single precision. It is permitted to restrict some of
the other standard procedures to single precision only .

- The assignment of a l ong real value to a real variable
may constitute a run time error in case that the range of
t he long real values exceeds that of r eal values.
Alternatively a prec ision loss may occur at such
assignment. However this should not constitute a run time
error.

- The assignment of a real value to a long real
var iable may consti t ut e a run time er ror in case that t he
range of the real values exceeds that of long real
values .

3. 2. 6 Constant declarations

41

An ident i fi er whi ch i s declared by means of a <cons tant element> has a
fi xed val ue throughout i ts scope . The evaluat ion of the expression takes
pl ace in the same manner as the evaluation of the bounds of an array.
Thus any variables referenced in t his express ion will contribute their
val ues at t he time of t hei r evaluation, and any subsequent change will
not affect the cons t ant.

The constant decl aration i s subj ec t to the following restrict ion : If
the expr ession conta i ns any identi f ier that is declared in the same
block head , then t hi s mus t be a constant that has been defined textually
before the referenc ing <cons tant el ement> .

The constant elements of a block head ar e evaluated from left t o right.

42

3.2.7 Initialization

Any declared variable is initialized at the time of entry into the block
to which the variable is local. The initial contents depends on the type
of the variable.

real
integer
Boolean
character
object reference
text

3.2.8 Subordinate types

0.0
o
false
implementation defined
none
notext

An object reference is said to be "subordinate" to a second object
reference if the qualification of the former is a subclass of the class
which qualifies the latter.

A proper procedure is said to be of "type universal". Any type is
subordinate to the universal type (Cf. sections 2.2.3, 8.2.2 and
8.2.3).

4 Expressions

4.1 Value and reference expressions

4.1.1 Syntax

4.1.2

<label>
<identifier>

<expression>
<value expression>
<reference expression>
<designational expression>

<value expression>
.. - <arithmetic expression>

<Boolean expression>
<character expression>

<reference expression>
.. - <object expression>

<text expression>

Semantics

The syntax for label represents a restriction compared with ALGOL 60 .

A value expression is a rule for obtaining a value.

An object expression is a rule for obtaining an object reference.

A text expression is a rule for obtaining an identification of a text
variable (and thereby a text reference).

A designational expression is a rule for obtaining a reference to a
program point.

43

Any value expression or reference expression has an associated type,
which is textually defined. The type of an arithmetic expression is that
of its value. The following deviations from ALGOL 60 are introduced;

1) An expression of the form

<factor>**<primary>
is of type real.

j

44

2) A conditional arithmetic expression is of type integer
if both alternatives are of type integer, otherwise its
type is (long) real. If necessary, a conversion of
the value of the selected alternative is invoked.

4.2 Character expressions

4.2.1 Syntax

<simple character expression>
.. - '<character designation>'

<variable>
<function designator>

(<character expression>

<character expression>
.. - <simple character expression>

4.2.2 Semantics

<i f clause> <simple character expression>
else <character expression>

A charac ter expression is of type character. It is a rule for
obtaining a character value. A character designation is either an
external character or another implementation defined representation of
an internal character.

4.3 Object expressions

<simple object expression>
.. - none

<variable>
<function designator>
<object generator>
<local object>
<qualified object>

(<object expression>

<object expression>
.. - <simple object expression>

<if clause><simple object expression>
else <object expression>

<object generator>
::= new <class identifier> <actual parameter part>

<local object>
::= this <class identifier>

<qualified object>

4.3.2 Semantics

<simple object expression>
~ <class identifier>

An object expression is of type ref «qualification». (The scope of
<qualification> conforms to the same scope rules as other identifiers.)
It is a rule for obtaining a reference to an object. The value of the
expression is the referenced object or none.

-15

46

4.3.2.1 Qualification

The qualification of an object expression is defined by the following
rules:

1) The expression none is qualified by a fictitious class
which is inner to all declared classes.

2)

3)

4)

A variable or function designator is qualified as stated in
the declaration (or specification, see below) of the
variable or array or procedure in question.

An object generator, local object, or qualified object is
qualified by the class of the identifier following the
symbol "new", "this", or "~" respectively.

A conditional object expression is qualified by the
innermost class which includes the qualifications of both
alternatives . If there is no such class, the expression is
illegal.

5) Any formal parameter of object reference type is qualified
according to its specification regardless of the
qualification of the corresponding actual parameter.

6) The qualification of a function designator whose procedure
identifier is that of a virtual quantity, depends on the
access level (see section 7). The qualification is that of
the matching declaration, if any, occurring at the innermost
prefix level equal or outer to the access level, or if no
such match exists, it is that of the virtual specification.

4.3.2.2 Object generators

An object generator invokes the generat i on and execution of an object
belonging to the identified class. The object is a new instance of the
corresponding (concatenated) class body. The evaluation of an object
generator consists of the following actions:

1) The object is generated and the actual parameters, if any,
of the object generator are evaluated. The parameter values
and/or references are transmitted. (For parameter
transmission modes, see section 8) .

2) Control enters the object through its initial begin
whereby it becomes operating in the "attached" state (see
section 9) . The evaluation of the object generator is
completed:

-1'7

case a: whenever the basic procedure "detach" is executed
"on behalf of" the generated object (see section
9.1), or

case b: upon exit through the final end of the object .

The value of a.n object generator is the object generated as the result
of its evaluation. The state of the object after the evaluation is
either "detached" (case a) or "terminated" (case b).

4.3.2.3 Local objects

A local object "this C" is a meaningful expression provided, of course
that the expression is used within the scope of the class identifier C
and within

1) the class body of C or that of any subclass of C, or

2) a connection block whose block qualification is C or a
subclass of C (see section 7.2).

The value of a local object in a given context is the object which is,
or is connected by, the smallest textually enclosing block instance, in
which the local object is a meaningful expression. If there is no such
block the local object is illegal (in the given context) . For an
instance of procedure or class body " textually enclosing" means
containing its declaration .

I

I

48

4.3.2.4 Instantaneous qualifications

Let X represent any simple reference expression, and let e and D be
class identifiers such that D is the qualification of X. The qualifi ed
object "X ~ e" is then a legal object expression, pr ovided that e is
outer to or equal to D or is a subclass of D. Otherwise , i.e . i f C and D
belong to disjoint prefix sequences, the qualified object is illegal .

If the value of X is none or is an object belonging to a class outer
to C, the evaluation of X ~ e constitutes a run time er ror.
Otherwise, the value of X ~ e is that of X. The use of instantaneous
qualification enables one to restr ict or extend the range of attributes
of a concatenated class object accessible through inspection or remote
accessing (See also section 7).

4.4 Text expressions

4.4.1 Syntax

<simple text expression> notext !
<string>
<variable>

<text expression>

4 . 4. 2 Semantics

<function designator>
«text expression»

<simple text expression>

<if clause> <simple text expression>
else <text expression>

A text expression i s of type text. It is a rule for obtaining an
identificationof a text var iable.

The result of evaluating

- notext , or an empty string, identifies an anonymous text variable
whose contents are defined by the conditions (2) of section 3.2 . 3.2.

- a non-empty string identifies an anonymous text variable which
references a constant text frame whose value is the internal
representation of the external character sequence. This frame is
always a main frame. The POS component of the anonymous variable
equals 1.

- a tex t variable identifies the variable itself.

- a text function designator identifies an anonymous text variable
which contains a copy of the final contents of the text variable
associated with the procedure identifier during the execution of the
procedur'e in question.

a text expression enclosed in parentheses identifies an anonymous
text variable which contains a copy of (the contents of) the text
variable identified when evaluating the same expression without
parentheses.

a conditional text expression ideentifies an anonymous text var iable
which contains a copy of (the contents of) the text variable
identified by the branch which was selected for eval uation.

For further information on the text concept, see section 10 .

49

52

5.2 Text value relations

5.2.1 Syntax

<text value relation>
.. - <simple text expression>

<relational operator> <simple text expression>

5.2.2 Semantics

Two text values are equal if they are both empty, or if they are both
instances of the same character sequence. Otherwise they are unequal.

A text value T ranks lower than a text value U if and only if they are
unequal and one of the following conditions is fulfilled:

1)

2)
3)

T is empty.
U is equal to T followed by one or more characters.
When comparing T and U from left to right the first
nonmatching character in T ranks lower than the
corresponding character in U.

5.3 Object relations

<object relation>
<simple object expression>
is <class identifier>

<simple object expression>
in <class identifier>

5.3.2 Semantics

The operators "is" and "in" may be used to test the class membership
of an object.

The relation "X is e" has the value true if X refers to an object
belonging to the class e, otherwise the value is false.

The relation "X in e" has the value true if X refers to an object
belonging to a class e or a class inner to e, otherwise the value is
false.

5.4 Reference relations

5.4.1 Syntax

<reference comparator>
•. - =1=

<reference relation>
.. - <object reference relation>

<text reference relation>

<object reference relation>
<simple object expression>
<reference comparator>
<simple object expression>

<text reference relation>
.. - <simple text expression>

<reference comparator>
<simple text expression>

53

54

5.4.2 Semantics

The reference comparators "==" and "=1=" may be used for the comparison
of references (as distinct from the corresponding referenced values).
Two object (text) references X and Y are said to be "identical" if they
refer to the same object (text frame) or if they both are none
(notext). In those cases the relation "X==Y" has the value true.
Otherwise the value is false.

The relation "X=I=Y" is the negation of "X==Y".

Let T and U be text variables. The relation "T==U" is equivalent to

T.OBJ == U.OBJ
and T .S'fART = U • START
and T.LENGTH = U.LENGTH

Observe that the POS components are ignored. Also observe that the
relations "T=I=U" and "T=U" may both have the value true. (T and U
reference different text frames which contain the same text value.)

The following relations are all true (cf. section 4.4.2.1).

T = notext ~ T
"" -- notext
"ABC" =1= "ABC"

notext

(different occurrences)

The following example further illustrates the definitions of section
4.4.2.1.

class C;
begin text T; T:- "ABC" end;

The relation "new C.T == new C.T" is here true.

Reference comparators have the same priority level as the relational
operators.

6 Statements

<statement>
.. _ <ALGOL unconditional statement>

<conditional statement>
<for statement>
<connection statement>
<while statement>

<unlabelled basic statement>
<assignment statement>
<go to statement>
<dummy statement>
<procedure statement>
<activation statement>
<object generator>

<conditional statement>
.. _ <ALGOL conditional statement>

<if clause><connection s tatement>
<if clause><while statement>

For <connection statement> see section 7 .2 .
For <activation statement> see section 14 .2. 3.

55

.. - ;" 56

6.1 Assignment statements

6. 1 • 1 Syntax

<assignment statement>
.. _ <value assignment>

<reference assignment>

<value left part>
<variable>
<procedure identifier>
<simple text expression>

<value right part>
<value expression>
<text expression>
<value assignment>

<value assignment>
::= <value left part> .- <value right part>

<reference left part>
<variable>
<procedure identifier>

<reference right part>
<reference expression>
<reference assignment>

<reference assignment>
::= <reference left part> :- <reference right part>

6.1.2 Semantics

The operator ":=" (read: "becomes") indicates the assignment of a value
to the value type variable or value type procedure identifier which is
the left part of the value assignment or the assignment of a text value
to the text frame referenced by the left part. A text procedure
identifier as a value left part within the procedure body is
intet'preted as a text variable. The corresponding assignment statement
will thus imply an assignment to the local procedure identifier.

The operator ":-" (read: "denotes") indicates the assignment of a
reference to the reference type variable or reference type procedure
identifier which is the left part of the reference assignment.

A procedure identifier in this context designates a memory device local
to the procedure instance. This memory device is initialized upon
procedure entry according to section 3.2.~ .

57

The value or reference assigned is a suitably transformed representation
of the one obtained by evaluating the right part of the assignment . If
the right part is itself an assignment, the value or reference obtained
is a copy of its constituent left part after that assignment operation
has been completed.

Any expression which is, or is part of, the left part of an assignment
is evaluated prior to the evaluation of the evaluation of the right
part.

For a detailed description of the text value assignment, see section
10.6. There is no value as~ignment operation for objects.

The type of the value or reference obtained by evaluating the right
part , must coincide with the type of the left part, with the exceptions
mentioned in the following sections .

If the left part of an assignment is a formal name parameter, and the
type of the corresponding actual parameter does not coincide with that
of the formal specification, then the aSSignment operation is carried
out in two steps.

1) An assignment is made to a fictitious variable of the type
specified for the formal parameter .

2) An assignment statement is executed whose left part is the
actual parameter and whose right part is the fi et i.tious
variable.

· .

58

The value or reference obtained by evaluating the assignment is, in this
case, that of the fictitious variable.

For text reference assignment see section 10.5.

6.1.2.1 Arithmetic value assignment

In accordance with ALGOL 60, any arithmetic value may be assigned to a
left part of type real or integer. If necessary, an appropriate
transfer function is invoked.

Example:

Consider the statement (not legal in ALGOL 60):

X:= i:= Y:= F:= 3.14

where X and Yare real variables, i is an integer variable, and F is a
formal parameter called by name and specified real. If the actual
parameter for F is a real variable, then X, i, Y and F are given the
values 3, 3, 3.14 and 3.14 respectively. If the actual parameter is an
integer variable, the respective values will be 3, 3, 3.14 and 3.

6.1.2.2 Object reference assignment

Let the left part of an object reference assignment be qualified by the
class Cl, and let the right part be qualified by Cr. If the right part
is itself a reference assignment, Cr is defined as the qualification of
its constituent left part. Let V be the value obtained by evaluating the
right part. The legality and effect of the reference assignment depend
on relationships between Cr, Cl and V.

Case 1.

Case 2.

Cl is of the class Cr or outer to Cr:
The reference assignment is legal and the
assignment operation is carried out.

Cl is inner to Cr:
The reference assignment is legal. The assignment
operation is carried out if V is none or is an
object belonging to the class Cl or a class inner
to Cl. If not, the execution of the reference
assignment constitutes a run time error.

59

Case 3. Cl and Cr satisfy neither of the above relations:
The reference assignment is illegal.

Similar rules apply to reference assignments implicit in for clauses and
the transmission of parameters.

Example 1:

Let "Gauss" be the class declared in the example of the section 2.2 .

ref (Gauss) G5, Gl0;
G5:- new Gauss(5); Gl0:- new Gauss(10);

The values of G5 and Gl0 are now Gauss objects. See also example 1 of
section 7.1.1.

Example 2:

Let "point" and "polar" be the classes declared in the example of
section 2.'2.2.

ref (point) Pl, P2; ref (polar) P3;
Pl:- new polar (3 ,4); P2:- new point (5,6) ;

Now the statement "P3:- Pl" assigns to P3 a reference to the "polar"
object which is the value of Pl. The statement "P3: - P2" would cause a
run time error.

60

6.2 For statements

6.2.1 Syntax

<controlled variable>
::= <simple variable>

<controlled statement>
::= <statement>

<for statement>
<for clause><controlled statement>
<label> : <for statement>

<for clause>
.. _ for <controlled variable>

<for right part> do

<for right part>
._ <value for list>
:- <reference for list>

<value for list>
<value for list element>
<value for list> ,
<value for list element>

<reference for list>
<reference for list element>
<reference for list> ,
<reference for list element>

<value for list element>
<value expression>
<text value>
<arithmetic expression>
step <arithmetic expression>
until <arithmetic expression>

<value expression>
while <Boolean expression>

<reference for list element>
<reference expression>
<reference expression>
while <Boolean expression>

6.2.2 Semantics

A for clause causes the controlled statement to be executed repeatedly
zero or more times. Each execution of the controlled statement is
preceded by an assignment to the controlled variable and a test to
determine whether this particular for list element is exhausted.

Assignments may change the value of the controlled variable during
execution of the controlled statement.

6 1

bl.

6.2.3 For list elements

The for list elements are considered in the order in which they are
written. When one for list element is exhausted, control proceeds to the
next, until the last for list element in the list has been exhausted.
Execution then continues after the controlled statement.

The effect of each type of for list element is defined below using the
following notation:

C: controlled variable
V: value expression

3. V while B
======== =====

Alfa: C:= V;

if E..~ B t hen ~ to Beta;
S;

E2 to Alfa;
Beta: next for list element

4. R

R: reference expression C:- R;
A: arithmetic expression S;
B: Boolean expression next for list element
S: controlled statement

The effect of the occurrence of expressions as for list elements may be
established by textual replacement in the definitions.

Alfa, Beta and Delta are different identifiers which are
not used elsewhere in the program. Delta identifies a non­
local simple variable of the same type as A2.

1. V

C:= V;
S;
next for list element

2. A1 step A2 until A3
=======================

C:= A1;
Delta:= A2;

Alfa: if Delta*(C-A3) > 0 then E2 to Beta;
S;
Delta:= A2;
C:= C + Delta;
E2 to Alfa;

Beta: next for list element

5. R while B

Alfa:

Beta:

C:- R;
if not B then E2 to Beta;
S;
E2 to Alfa;
next for list element

63

64

6.2.4 The controlled variable

The semantics of this section (6.2) is valid when the controlled
variable is a simple variable which is not a formal parameter called by
name, or a procedure identifier.

To be valid, all for list elements in a for statement (defined by
textual substitution, section 6.2.3) must be semantically and
syntactically valid.

In particular each implied reference aSSignment in cases 4 and 5 of
section 6.2.3 is subject to the rules of section 6.1.2.2, and section
10.5, and each text value assignment in cases 1 and 3 of section 6.2.3
is subject to the rules of section 10.6.

6.2.5 The value of the controlled variable upon exit

Upon exit from the for statement, the controlled variable will have the
value given to it by the last (explicit or implicit) assignment
operation.

6.2.6 Labels local to the controlled statement

The controlled statement always acts as if it were a block. Hence,
labels on or defined within the controlled statement may not be accessed
from without the controlled statement.

6. 3 While statement

<while statement >

6.3.2 Semantics

while <Boolean expression>
do <statement>

<label> : <while statement>

A while statement causes a statement to be executed zero or more times .

The Boolean expression is evaluated. When true, the statement following
do is executed and control returns to the beginning of the while
statement for a new test of the Boolean expression .

When the expression is false, control passes to after the while
statement.

65

66

6. 4 Prefixed blocks

6.4.1 Syntax

<block>
<ALGOL block>
<prefixed block>

<block prefix>
::= <class identifier> <actual parameter part>

<main block>
<unlabelled block>
<unlabelled compound>

<unlabelled prefixed block>
<block prefix> <main block>

<prefixed block>

6.4.2 Semantics

<unlabelled prefixed block>
<label> : <prefixed block>

An instance of a prefixed block is a compound object whose prefix part
is an object of the class identified by the block prefix, and whose main
part is an instance of the main block. The formal parameters of the
former are initialized as indicated by the actual parameters of the
block prefix. The concatenation is defined by rules similar to those of
section 2.2.2.

The following restrictions must be observed:

1) A class in which reference is made to the class itself
through use of "this", is an illegal block prefix.

2) The class identifier of a block prefix must refer to a class
local to the smallest block enclosing the prefixed block . If
that class identifier is that of a system class, it refers
to a fictitious declaration of that system class occurring
in the block head of the smallest enclosing block.

A progr~ is enclosed in a prefixed block (cf. section 11) .

Example:

Let "hashing" be the class declared in the example of section 2.2.3.
Then within the prefixed block,

hashing (64) begin integer procedure hash(T)j
value Tj text Tj ,

end

a "lookup" procedure is available which makes use of the "hash"
procedure declared within the main block.

67

68

7 Remote accessing

An attribute of an object is identified completely by the following
items of information:

1) the object,

2) a class which is outer to or equal to that of the object,
and

3) an attribute identifier defined in that class or in any
class belonging to its prefix sequence.

69

Item 2 is textually defined for any attribute identification. The prefix
level of the class is called the "access level" of the attribute
identification.

Consider an attribute identification whose item 2 is the class C. Its
attribute identifier, item 3, is subjected to the same identifier
substitutions as those which would be applied to an uncommitted
occurrence of that identifier within the main part of C, at the time of
concatenation. In that way, name conflicts between attributes declared
at different prefix levels of an object are resolved by selecting the
one defined at the innermost prefix level not inner to the access level
of the attribute identification.

An uncommitted occurrence within a given object of the identifier of an
attribute of the object is itself a complete attribute identification.
In this case items 1 and 2 are implicitly defined, as respectively the
given object and the class associated with the prefix level of the
identifier occurrence.

If such an identifier occurrence is located in the body of a procedure
declaration (which is part of the object), then, for any dynamic
instance of the procedure, the occurrence serves to identify an
attribute of the given object, regardless of the context in which the
procedure was invoked.

Remote accessing of attributes, i.e. access from outside the object, is
either through the mechanism of "remote identifiers" ("dot notation")
or through "connection". The former is an adaptation of a technique
proposed in (3), the latter corresponds to the connect ion mechanism of
SIMULA I (1).

A text variable is (itself) a compound structure i n the spnse that i t
has attributes accessible through the dot notation.

70

7.1 Remote identifiers

7.1.1 Syntax

<attribute identifier>
::= <identifier>

<remote identifier>
.. _ <simple object expression>.<attribute identifier>

<simple text expression>.<attribute identifier>

<identifier 1>
<identifier>
<remote identifier>

<variable identifier 1>
.. _ <identifier 1>

<simple variable 1>
::= <variable identifier 1>

<array identifier 1>
::= <identifier 1>

<variable>
.. _ <simple variable 1>

<array identifier 1> (<subscript list>)

<procedure identifier 1>
<identifier 1>

<function designator>
.. _ <procedure identifier 1> <actual parameter part>

<procedure statement>
::= <procedure identifier 1> <actual parameter part>

<actual parameter>
<expression>
<array identifier 1>
<switch identifier>
<procedure identifier 1>

7.1.2 Semantics

Let X be a simple object expression qualified by the class C, and let A
be an appropriate attribute identifier. Then the remote identifier
"X.A" , if valid, is an attribute identification whose item 1 is the
value X and whose item 2 is C.

The remote identifier X.A is valid if the following conditions are
satisfied:

1) The value X is different from none.

2) The object referenced by X has no class attribute declared
at any prefix level equal or outer to that of C.

Condition 1 corresponds to a run time check which causes a run time
error if thevalue of X is none .

Condition 2 is an ad hoc rule intended to simplify the language and
its implementations.

A remote identifier of the form

<simple text expression>.<attribute identifier>

identifies an attribute of the text variable identif ied by evaluating
the simple text expression, provided that the attribute identifier is
one of the procedure identifiers listed in section 10.1.

71

72

Example 1:

Let G5 and G10 be variables declared and initialized as in example 1 of
section 6.1.2.2. Then an expression of the form

G5.integral(•.•.•) or G10.integral(•••••)

is an approximation to a definite integral obtained by applying
respectively a 5 point or a 10 point Gauss formula.

Example 2:

Let P1 and P2 be variables declared and initialized as in example 2 of
section 6.1.2.2. Then the value of the expression

P1.plus (P2)

is a new "point" object which represents the vector sum of P1 and P2.
The value of the expression

P1 ~ polar. plus (P2)

is a new "polar" object representing the same vector sum.

1.2 Connection

1.2.1 Syntax

<connection block 1>
::= <statement>

<connection block 2>
::= <statement>

<when clause>
•. _ when <class identifier> do <connection block 1>

<otherwise clause>
<empty>
otherwise <statement>

<connection part>
<when clause>
<connection part> <when clause>

<connection statement>
.._ inspect <object expression>

<connection part> <otherwise clause>
inspect <object expression> do

<connection block 2> <otherwise clause>
<label> : <connection statement>

A connection block may itself be or contain a connection statement.
This "inner" connection statement will then be the largest possible
connection statement.

Example:

Consider the following:

inspect A when A1 do
inspect B when B1 do S1

when B2 do S2
otherwise S3;

*
*
*

The inner connection statement includes the lines that are marked with
an asterisk (*l.

73

74

7.2.2 Semantics

The purpose of the connection mechanism is to provide implicit
definitions of the above items 1 and 2 for certain attribute
identifications within connection blocks.

The execution of a connection statement may be described as follows:

1) The object expression of the connection statement is
evaluated. Let its value be X.

2) If when-clauses are present they are considered one after
another. If X is an object belonging to a class equal or
inner to the one identified by a when clause, the
connection block 1 of this when-clause is executed, and
subsequent when-clauses are skipped. Otherwise the
when-clause is skipped.

3) If a connection block 2 is present it is executed, except
if X is none in which case the connection block is
skipped.

4) The statement of an otherwise clause is executed if X is
none, or if X is an object not belonging to a class
included in the one identified by any when-clause.
Otherwise it is skipped.

A statement which is a connection block 1 or a connection block 2 acts
as a block, whether it takes the form of a block or not. It further
acts as if enclosed in a second fictitious block, called a "connection
block". During the execution of a connection block the object X is said
to be "connected". A connection block has an associated "block
qualification", which is the preceding class identifier for a
connection block 1 and the qualification of the preceding object
expression for a connection block 2.

Let the block qualification of a given connection block be C and let A
be an attribute identifier, which is not a label or switch identifier,
defined at any prefix level of C. Then any uncommitted occurrence of A
within the connection block is given the local significance of being an
attribute idenfification. Its item 1 is the connected object, its item
2 is the block qualification C. It follows that a connection block acts
as if its local quantities are those attributes (excluding labels and
switches) of the connected object which are defined at prefix levels
outer to and including that of C. (Name conflicts between attributes
defined at different prefix levels of C are resolved by selecting the
one defined at the innermost prefix level.)

Example:

Let "Gauss" be the class declared in the example of section 2.2. Then
within the connection block 2 of the connection statement

inspect new Gauss(S) . do begin end

a procedure "integral" is available for numeric integration by means of
a S point Gauss formula.

75

76
8 Procedures and parameter transmission

8.1 Syntax

<procedure heading>
<procedure identifier> <formal parameter part>
<mode part><specification part>

<mode part>
<value part> <name part>
<name part> <value part>

<name part>
name <identifier list>;

<empty>

<specifier>
.. _ <type>

array
<type> array
label
switch
procedure

<type> procedure

<parameter delimiter>

For actual parameter see section 7.1.1.

8.2 Semantics

With respect to procedures, SIMULA 67 deviates from ALGOL 60 on the

following points:

1) Specification is required for each formal parameter.

2) The ALGOL specifier "string" is replaced by "text".

3) A "name part" is introduced as an optional part of a
procedure heading to identify parameters called by name.
Call by name is not the default parameter transmission

mode.

77

78

4)

5)

Call by name is redefined in the case that the type of
actual parameter does not coincide with that of the formal
specification.

Exact type correspondence is required for array parameters
irrespective of transmission mode.

There are three modes of parameter transmission: "call by value", "call
by reference", and "call by name".

The default transmission mode is call by value for value type
parameters and call by reference for all other kinds of parameters.

The available transmission modes are shown in fig. 8.1 for the
different kinds of parameters to procedures. The upper left subtable
defines transmission modes available for parameters of class
declarations.

i i

I Transmission modes I
I i i I
I Parameter by value !by reference I by name I
I I .I I
I value type D I I II 0 I
I object reference I I D II 0 I
I text 0 I D II 0 I
I value type array 0 I D II 0

,
, reference type array I I D II 0

,
I , 'I ,
I procedure I I D I 0 I
, type procedure I I D

,
0 I

'label I I D I 0 I
I switch I I D I 0 I
I- I I ,
I D: default mode 0: optional mode I: illegal I
I I

fig. 8.1 Transmission modes

8.2.1 Call by value

A formal parameter called by value designates initially a local copy of
the value (or array) obtained by evaluating the corresponding actual
parameter. The evaluation takes place at the time of procedure entry or
object generation.

The call by value of value type and value type array parameters is as
in ALGOL 60.

A text parameter called by value is a local variable initialized
by the statement

FP:- copy(AP)

where FP is the formal parameter and AP is the variable identified by
evaluating the actual parameter. (":-" is defined in section 10 .5, and
"copy" in section 10.4).

Value specification is redundant for a parameter of value type.

There is no call by value option for object reference parameters and
reference type array parameters.

79
,

ou

8.2.2 Call by reference

A formal parameter called by reference designates initially a local
copy of the reference obtained by evaluating the corresponding actual
parameter. The evaluation takes place at the time of procedure entry or
object generation.

A reference type formal parameter is a local variable initialized by a
reference assignment

FP:- AP

where FP is the formal parameter and AP is the reference obtained by
evaluating the actual parameter. The reference assignment is subject to
the rules of section 6.1.2.2. Since in this case the formal parameter
is a reference type variable, its contents may be changed by reference
assignments within the procedure body, or within or without (by remote
accessing) a class body.

Although array-, procedure-, label- and switch-identifiers do not
designate references to values, there is a strong analogy between
references in the strict sense and references to entities such as
arrays, procedures (i.e. procedure declarations), program pOints and
switches. Therefore a call by reference mechanism is defined in these
cases.

An array-, procedure-, label-, or switch-parameter called by reference
cannot be changed from within the procedure or class body; it will thus
reference the same entity throughout its scope. However, the contents
of an array called by reference may well be changed through appropriate
assignments to its elements.

For an array parameter called by reference, the type associated with
the actual parameter must coincide with that of the formal
specification. For a procedure parameter called by reference, the type
associated with the actual parameter must coincide with or be

subordinate to that of the formal specification.

8.2.3 Call by name

Call by name is an optional transmission mode available for parameters
to procedures. It represents a textual replacement as in ALGOL 60.

However, for an expression within a procedure body which is

1) a formal parameter called by name,

2) a subscripted variable whose array identifier is a formal
parameter called by name, or

3) a function dseignator whose procedure identifier is a
formal parameter called by name,

the following rules apply:

1) Its type is that prescribed by the corresponding formal
specification.

2) If the type of the actual parameter does not coincide
with that of the formal specification, then an evaluation
of the expression is followed by an assignment of the
value or reference obtained to a fictitious variable of
the lattper type. This assignment is subject to the rules
of section 6.1.2. The value or reference obtained by the
evaluation is the contents of the fictitious variable.

Also, for a formal text parameter called by name, the following rule
applies:

- If the actual parameter is a string, then all occurrences
of the formal parameter evaluate to the same text frame,
(see section 4.4.2. i).

Section 6.1.2 defines the meaning of an assignment to a variable which
is a formal parameter called by name, or is a subscripted variable
whose array identifier is a formal parameter called by name, if the
type of the actual parameter does not coincide with that of the formal
speci fication.

Assignment to a procedure identifier which is a formal parameter is
illegal, regardless of its transmission mode.

Notice that each dynamic occurrence of a formal parameter called by
name, regardless of its kind, may invoke the execution of a non­
trivial expression, e.g. if its actual parameter is a remote
identifier.

81

82

9 Sequencing

9.1 Block instances and states of execution

The constituent parts of a program execution are dynamic instances of
blocks, being sub-blocks, prefixed blocks, connection blocks and class
bodies.

A block instance is said to be "local to" the one which (directly)
contains its describing text. E.g. an object of a given class is local
to the block instance which contains the class declaration. The
instance of the outermost block (see section 11) is local to no block
instance.

At any time, the "program sequence control", PSC, refers to that
program point within a block instance which is currently being
executed. For brevity we say that the PSC is "positioned" at the
program point and is "contained" in the block instance.

The entry into any block invokes the generation of an instance of that
block, whereupon the PSC enters the block instance at its first
executable statement. If and when the PSC reaches the final end of a
non-class block instance (i.e. an instance of a prefixed block, a
sub-block, a procedure body or a connection block) the PSC returns to
the proghram point immediately following the statement or expression
which caused the generation of the block instance. For sequencing of
class objects see sections 9.2 and 9.3.

A block instance is at any time in one of four states of execution:
"attached", "detached", "resumed" or "terminated".

A non-class block instance is always in the state attached. The
instance is said to be "attached to" the block instance which caused
its generation. Thus, an instance of a procedure body is attached to
the block instance containing the corresponding <procedure statement>
or <function designator>. A non-class, non-procedure block instance is
attached to the block instance to which it is local. The outermost
block instance (see section 11) is attached to no block instance. If
and when the PSC leaves a non-class block instance through its final
end, or through a goto statement, the block instance ceases to exist.

83

1
J

84

A class object is initially in the attached state and said to be
attached to the block instance containing the corresponding <object
generator>. It may enter the detached state through the execution of a
"detach statement" (see section 9.3.1). The object may reenter the
attached state through the execution of a call statement (see section
9.3.2), whereby it becomes attached to the block instance containing
the call statement. A detached object may enter the resumed state
through the execution of a resume statement (see section 9.3.3). If and
when the PSC leaves the object through its final end or through a goto
statement, the object enters the terminated state. No block instance is
attached to a terminated class object.

The execution of a program which makes no use of detach, call or resume
statements is a simple nested structure of attached block instances.

Whenever a block instance ceases to exist, all block instances local or
attached to it also cease to exist. The dynamic scope of an object is
thus limited by that of its class declaration.

The dynamiC scope of an array declaration may extend beyond that of the
block instance containing the declaration, due to the call by reference
parameter transmission mode being applicable to arrays.

9.2 Quasi-parallel systems

A quasi-parallel system is identified by any instance of a sub-block or
a prefixed block, containing a local class declaration. The block
instance which identifies a system is called the "system head".

The outermost block instance (see section 11) identifies a system
referred to as the "outermost system".

A quasi-parallel system consists of "components". In each system one of
the components is referred to as the "main component" of the system.
The other components are called "object components".

A component is a nested structure of block instances one of which,
called the "component head", identifies the component. The head of the
main component of a system coincides with the system head. The heads of
the object components of a system are exactly those detached or resumed
objects which are local to the system head.

At any time exactly one of the components of a system is said to be
"operative". A non-operative component has an associated "reactivation
point" whicn identifies the program point where execution will continue
if and when the component is activated.

The head of an object component is in the resumed state if and only if
the component is operative. Note that the head of the main component of
a system is always in the attached state.

In addition to system components, a program execution may contain
"independent object components" which belong to no particular system.
The head of any such component is a detached object which is local to a
class object or an instance of a procedure body, i.e. which is not
local to a system head. By definition, independent components are
always non-operative.

The sequencing of components is governed by the detach, call and resume
statements, defined in section 9.3. All three statements operate with
respect to an explicitly or implicitly specified object. The following
two sections serve as an informal outline of the effects of these
statements .

85

1
~I

86

9.2.1 Semi-symmetric sequencing: detach - call

In this section the concept of a quasi-parallel system is irrelevant.
Consequently we only consider object components, making no distinction
between components which belong to a system and those which are
independent.

An object component is created through the execution of a detach
statement with respect to an attached object , whereby the PSC returns
to the block instance to which the object is attached. The object
enters the detached state and becomes the head of a new non-operative
component whose reactivation point is positioned immediately after the
detach statement .

The component may be reactivated through the execution of a call
statement with respect to its detached head, whereby the PSC is moved
to its reactivat i on point. The head reenters the attached state and
becomes attached to the block instance containing the call statement .
Formally, the component thereby loses its status as such.

9. 2.2 SymmetriC component sequencing : detach - resume

In this section we only consider components which belong t o a quasi­
parallel system.

Initially, i.e. upon the generation of a system head, the main
component is the operative and only component of the system.

Non-operative object components of the system are created as desribed
in the previous section, i.e. by detach statements with respect to
a t tached object s local to the system head.

Non- operative object components of the system may be activated by
call-statements , whereby they lose their component status, as
described in t he previous section.

A non- operative object component of the system may also be reactivated
thr ough the execution of a resume statement with respect to its
detached head , whereby the PSC is moved to its reactivation point. The
head of t he component enters the resumed state and the component
becomes operative . The previously operative component of the system
becomes non- oper at ive, its reactivation point positioned immediately
aft er the resume statement . If this component is an object component
i t s head enter s the detached state.

The mai n component of the system regains operative status through the
execut ion of a detach statement with respect to the resumed head of the
currently operat ive object component, whereby the PSC is moved to the
reactivation poi nt of the main component . The previously operative
component becomes non-operative, its reactivation point positioned
immediately after t he det ach statement. The head of this component
~nters t he detached st at e .

Obser ve t he symmet ric relationship between a resumer and its resumee,
i n contrast t o tha t between a caller and its callee.

87

88

9.2.3 Dynamic enclosure and the operating chain

A block instance X is said to be "dynamically enclosed" by a block
instance Y if and only if there exists a sequence of block instances

X = ZO, Z 1, ..•. , Zn = Y (n>=O)

such that for i= 1,2, .•• ,n:

- Zi-l is attached to Zi, or

- Zi-l is a resumed object whose associated system head is
attached to Zi.

Note that a terminated or detached object is dynamically enclosed by no
block instance except itself.

The sequence of block instances dynamically enclosing the block
instance currently containing the PSC is called the "operating chain".
A block instance on the operating chain is said to be "operating". The
outermost block instance is always operating.

A component is said to be operating if the component head is operating.

A system is said to be operating if one of its components is operating.
At any time, at most one of the components of a system can be
operating. Note that the head of an operating system may be non­
operating.

An operating component is always operative. If the operative component
of a system is non-operating, then the system is also non-operating. In
such a system, the operative component is that component which was
operating at the time when the system became non-operating, and the one
which will be operating if and when the system again becomes operating.

Consider a non-operative component C whose reactivation point is
contained in the block instance X. Then the following is true:

- X is dynamically enclosed by the head of C.

- X dynamically encloses no block instance other than itself.

The sequence of block instances dynamically enclosed by the head of C
is referred to as the "reactivation chain" of C. All component heads on
this chain, except the head of C, identify operative (non-operating)
components. If and when C becomes operating, all block instances on its
reactivation chain also become operating.

Example:

begin comment S1 ;
ref(C1) X1;
class C1;

1

2

3
4

5
6
7
8
9

begin procedure P1; detach;

10

11

12
13
14
15
16
17
18
19
20

P1
end C1;
ref(C2) X2;
class C2;
begin procedure P2;

begin detach;
*)

end P2;
begin comment system S2;

ref(C3) X3;
class C3;
begin detach;

P2
end C3;
X3:- new C3;
resume(X3)

21 end S2
22 end C2;
23 Xl:- new Cli
24 X2:- new C2;
25 call(X2)
26 end Sl;

The execution of this program is explained below. In the figures,
system heads are indicated by squares and other block instances by
circles. Vertical bars connect the component heads of a system, and
left arrows indicate attachment.

89

90

Just before, and just after the execution of the detach statement in
line 4, the situations are:

Fig. 9.1

Fig. 9.2

r-t
1 s 1 1 +- (X1) +- (P1) +-PSC
~

r-t
1 s11 +-psc
~

1
(X1) +- (p1) +- Reactivation point (RP) of X1

Before and after the detach in l i ne 16:

Fig. 9 . 3 r-t r-t
I S1 1 +- (X2) +- 1 s21 +- (X3)
~ L.J

+-PSC

1
(X1) +- (P1) +- RP of P1

Fig. 9.4 r-t r-t
I sd +- (X2) +- 1 s2 1 +-PSC
~ ~

1 1
1 (X3) +-RP of X
I

(X1) +- (P1) +-RP of X

Fig. 9.4 also shows the s ituation before the resume in line 20. After
this resume:

Fig. 9 .5 r--"1 r--"1

I sd +- (X2) +-1 s2 1 +- RP of mai n component of S2

~ ~
1 1
1 (X3) +-PSC
I

(X1) +- (P1) +-RP of X1

Before and after the detach in line 10:

Fig . 9.6

Fig . 9.7

,--, r-t
1 S1 1 +- (X2) +- 1 S2 1 +- RP of main component of S2

~
1

L,J
1
1
1

(X3) +- (P2) +- PSC

(X1) +- (P1) +- RP of X1

r-t
1 S1 1 +- PSC
~

1
(xn +- (p1) +- RP of X1
1
I

(X2) +- +- RP of main component of S2

(X3) +- (P2) +- RP of X2

Note that X3 is still the operative component of S2 and does not have a
reactivation point of i ts own . Fig. 9.7 also shows the situation before
the call in l ine 25 . After this call, the situation in fig. 9. 6 is
reest ablished . I f, however , the cal l in l ine 25 is replaced by a
"resume(X2)" the following situation arises:

Fig . 9.8 r-t
1 S1 1 +- RP of main component of S1
L,J

1
(X 1) +- (P1) +- RPofX1
1
1

(X2) +- +- RP of main component of S2

(X3) +- (P2) +- PSC

If now a "resume(X1) " is executed at * in line 11, the PSC is moved to
the "RP of X1" in fig. 9.8, leaving an "RP of X2" at the former PSC . If
instead a "detach" is executed, fig . 9.8 leads back to fi g. 9 . 7 .

9 1

92

9.3 Quasi-parallel sequencing

A quasi-parallel system is created through the entry into a sub-block
or a prefixed block, which contains a local class declaration, whereby
the generated instance becomes the head of the new system. Initially,
the main component is the operative and only component of the system.

9.3.1 The detach statement

Any class that has no (textually given) prefix will by definition be
prefixed by a fictitious class whose only attribute is:

procedure detach; .••

Thus, every class object or instance of a prefixed block has this
attribute. Consider the effect of an invokation of the detach attribute
of such a block instance X:

If X is an instance of a prefixed block the detach stament has no
effect.

Assume that X is a class object. The following cases arise:

1) X is an attached object.
If X is not operating the detach statement constitutes an error.

Assume X is operating. The effect of the detach statement is:

- X becomes detached and thereby (the head of) a new non-operative
object component, its reactivation point poSitioned immediately
after the detach statement. As a consequence, that part of the
operating chain which is dynamically enclosed by X becomes the
(non-operating) reactivation chain of X.

- The PSC returns to the block instance to which X was attached
and execution continues immediately after the associated <object
generator> or call statement (see section 9.3.2).

If X is local to a system head, the new component becomes a member
of the associated system. It is a consequence of the language
definition that, prior to the execution of the detach statement, X
was dynamically enclosed by the head of the operative component of
this system. The operative component remains operative.

2) X is a detached object.
The detach statement then constitutes an error.

3) X is a resumed object .
X is then (the head of) an operative system component. Let S be the
associated system. It is a consequence of the language definition
that X must be operating. The effect of the detach statement is :

- X enters the detached state and becomes non-operative, its
reactivation point positioned immediately after the detach
statement. As a consequence, that part of the operating chain
which is dynamically enclosed by X becomes the (non-operating)
reactivation chain of X.

- The PSC is moved to the current reactivation point of the main
component of S, whereby this main component becomes operative
and operating. As a consequence, all block instances on the
reactivation chain of the main component also become operating.

4) X is a terminated object.
The detach statement then constitutes an error.

93

I
94

9.3.2 The call statement

"call" is fonnally a procedure with one object reference parameter
qualified by a fict i tious class including all classes. Let Y denote the
object referenced by a call statement.

If Y i s terminated, attached or resumed, or Y
statement constitutes an error .

none, the call

Assume Y is a detached object. The effect of the call statement is:

- Y becomes attached to the block inst ance contai ning the call
statement, whereby Y l oses its status as a component head. As a
consequence the system to which Y belongs (if any) loses the
associated component.

- The PSC is moved to the (former) reactivation point of Y. As a
consequence , all block instances on the reactivat ion cha in of Y
become operating.

9.3 . 3 The resume statement

"resume" is fonnally a procedure with one object reference parameter
qualified by a fictitious class including all classes. Let Y denote thE
object referenced by a resume st~~ement .

If Y is not local to a system head, i.e. if Y is local to a class
object or an instance of a procedure body, the resume statement
constitutes an error .

If Y is terminated or attached, or Y==none, the resume statement
constitutes an error.

If Y is a resumed object, the re'Sume statement has no effect. (It is a
consequence of the language definition that Y must then be operating.)

Assume Y is a detached object being (the head of) a non- operative
system component. Let S be the associated system and let X denote (the
head of) the current operative component of S. It is a consequence of
the language definition that X must be operating, and that X is either
the main component of S or local to the head of S. The effect of the
resume statement is:

- X becomes non- operative, its reactivation point positioned
immediately after the resume statement. As a consequence, that
part of the operating chain which is dynamically enclosed by X
becomes the (non- operating) reactivation chain of X. If X is ar
object component its head enters the detached state .

- The PSC is moved to the reactivation point of Y, whereby Y
enters the resumed state and becomes operative and operating.
a consequence, all block instances on the reactivation chain ot
Y also become operating.

96

9.3.4 Object "end"

The effect of the PSC passing through the final end of a class object
is the same as that of a detach with respect to that object, except
that the object becomes terminated, not detached. As a consequence it
attains no reactivation point and loses its status as a component head
(if it has such status).

9.3.5 go to statements

A designational expression defines a program point within a block
instance.

Let P denote the program point identified by evaluating the
designational expression of a goto statement, and let X be the block
instance containing P. Consider the execution of the goto statement:

1) Let Y denote the block instance currently containing the PSC.

2) If X equals Y the PSC i moved to P.

3) Othewrwise, if Y is the outermost block instance the goto
statement constitutes an error.

4) Otherwise the effect is that of the PSC passing through the
final end of Y (see section 9.3.4) whereafter the process is
immediately repeated from 1).

10 The type "text"

Cf. sections 3.2.3, 4.4.2, 5.2 and 5.4.

10.1 Text attributes

The following procedures are attributes of any text variable . They may
be accessed by remote identifiers of the form

<simple text expression>.<procedure identifier>

Boolean procedure constant (cf. 10.2)
integer procedure start (cf. 10.2)
integer procedure length (cf. 10.2)
text procedure main (cf. 10.2)
integer procedure pos (cf. 10.3)
procedure setpos (cf. 10.3)
boolean procedure more (cf. 10.3)
character procedure getchar (cf. 10.3)
procedure putchar (cf. 10.3)
text procedure sub (cf. 10.7)
text procedure strip (cf. 10.7)
integer procedure getint (cf. 10.9)
long real procedure getreal (cf. 10.9)
integer procedure getfrac (cf. 10.9)
procedure putint (ef. 10.10)
procedure putfix (ef. 10.10)
procedure putreal (cf. 10.10)
procedure putfrae (ef. 10.10)

In the following section "X" denotes a text variable unless otherwise
is specified.

97

,"'4;

98

10.2 "constant", "start", "length" and "main"

Boolean procedure constant;
constant:= if OBJ == none then true else OBJ.CONST;

integer procedure start; start:= START;

integer procedure length; length:= LENGTH;

text procedure main;
if OBJ == none then min:- not ext else
begin text T; T.OBJ:- OBJ;

T.START:= 1;
T.LENGTH:= OBJ.SIZE;
T.POS:= 1;
main:- T;

"X.main" is a reference to the min frame which contains the frame
referenced by X.

The following relations are true for any text variable X:

Examples:

X.main.length >= X.length
X.main.main == X.main
notext.main == notext
"ABC".main = "ABC"

Boolean procedure overlapping(X,Y); text X,Y;
overlapping:= if X.main =1= Y.main then false else

if X.start <= Y.start then
X.start + X.length > Y.start

else
Y.start + Y.length > X.start;

"overlapping(X,Y)" is true if and only if X and Y reference text frames
which overlap each other.

Boolean procedure subtext(X,Y); text X,Y;
subtext:= X.main == Y.main

and X.start >= Y.start
and X.start + X.length <= Y.start + Y.length;

"subtext(X,Y)" is true if and only if X references a subframe of Y, or
if both reference notext.

10.3 Character access

The characters of a text are accessible one at a time. Any text
variable contains a "position indicator", which identifies the
currently accessible character, if any, of the reference text frame.
The position indicator of a given text variable X is an integer in the
range (l,X.length+l).

The position indicator of a given text variable my be altered by the
procedures "setpos", "getchar", and "putchar" of the text variable.
Also any of the procedures defined in sections 10.9 and 10.10 may alter
the position indicator of the text variable which contains the
procedure.

Position indicators are ignored and left unaltered by text reference
relations, text value relations and text value assignments.

The following procedures are facilities available for character
accessing. They are oriented towards sequential access.

integer procedure pos; pos:= POS;

procedure setpos(i); integer i;
POS:= if i < 1 or i > LENGTH + then LENGTH + else i;

Boolean procedure more;
more:= POS <= LENGTH;

character procedure getchar;
if POS > LENGTH then error else
begin getchar:= OBJ.MAIN(START + POS - 1);

POS:= POS + 1
end· -'

procedure putchar(c); character c;
if OBJ == none then error else
if OBJ.CONST then error else
if POS > LENGTH then error else
begin OBJ.MAIN(START + POS - 1):= c;

POS:= POS + 1

Note that the implicit modification of POS is lost immediately if
"setpos", "getchar" or "putchar" is successfully applied to a text
expression which is not a <variable> (see section 4.4. 2) .

99

Example:

procedure compress(T); text T;
begin text U;

character c;
T.setpos(1);
U:- T;
while U.more do
begin c:=U.getchar;

if c <> ' , then T.putchar(c)
end;
while T.more do T.putchar(' ')

end compress;

The procedure will rearrange the characters of the text frame
referenced by its parameter. The non-blank characters are collected in
the leftmost part of the text frame and the remainder, if any, is
filled with the blank characters. Since the parameter is called by
reference, its position indicator is not altered. The character
constant ' , represents a blank character value.

10.4 Text generation

The following standard procedures are available fo!' text frame
generation:

text procedure blanks(n); integer n;
if n < 0 then error else
if n = 0 then blanks:- notext else
begin text T; T.OBJ:- new TEXTOBJ(n,false);

T.START:= 1;
T • LENGTH: = n;
T.POS:= 1;
T:= notext;
blanks:- T

end;

10 1

"blanks(n) " , with n > 0, references a new variable main frame of length
n, containing only blank characters. "blanks(O)" references notext.
Observe that the statement "T:= notext" effectively fills the text frame
with blank characters (see section 10.6).

text procedure copy(T); text T;
if T == notext then copy:- notext else
begin text U; U.OBJ:- new TEXTOBJ(T.LENGTH,false);

U.START:= 1;
U.LENGTH:= T.LENGTH;
U.POS:= 1;
U:= T;
copy:- U

end' --'

"copy(T) " , with T =1= notext, references a new variable main frame which
contains the same text value as T.

102

10.5 Text reference assignment

Syntax, see section 6.1.1.

Let X be the text variable which constitutes the left part of a text
reference assignment, and let Y denote the variable identified by
evaluating the corresponding right part (see section 6.1.2). The effect
of the assignment is defined as the four component assignments:

X.OBJ:- Y.OBJ;
X.START:= Y.START;
X.LENGTH:= Y.LENGTH;
X.POS:= Y.POS;

10.6 Text value assignment

Syntax, see section 6.1.1.

Let X be the text variable identified as the result of evaluating the
left part (see section 4.4.2) of a text value assignment, and let Y
denote the text variable identified by evaluating the corresponding
right part (see section 6. 1.2): If X references a constant text frame,
or X.LENGTH < Y.LENGTH, then the assignment constitutes an error.

Otherwise, the value of Y is conceptually extended to the right by
X.LENGTH - Y.LENGTH blank characters, and the resulting text value is
assigned as the new contents of the text frame referenced by X. Note
that if X == notext, the assignment is legal if and only if Y == notext.

Note that the effect of the assignment "X:= Y" is eqiuvalent to that of
"X:= copy(Y)", regardless of whether or not X and Y overlap.

The position indicators of the left and the right parts are ignored and
remain unchanged.

If X and Yare non-overlapping texts of the same length then after the
execution of the value assignment "X:= Y", the relation "X = Y" is true.

10.7 Subtexts

Two procedures are available for referencing subtexts (subframes).

text procedure sub(i,n); integer i,n;
if i < ° or n < 0 or i + n > LENGTH +
if n = 0 then sub:- notext else
begin text T; T.OBJ:- OBJ;

T.START:= START + i - 1;
T.LENGTH:= n;

T.POS: = 1;
sub:- T

then error else

If legal, "X.sub(i,n)" references that sub frame of X whose first
character is character number i of X, and \-lhich contains n consecutive
characters . The POS attribute of the expression defines a local
numbering of the characters within the subframe . If n = 0, the
expression references notext.

If legal, the following Boolean expressions are true for any text
variable X:

X.sub(i,n).sub(j,m) == X.sub(i+j-1,m)

n <> ° ~ X.main == X.sub(i,n).main

X.main.sub(X.start,X.length) X

text procedure strip;

The expression "X. strip" is equivalent to "X.sub(1,n)", where n is the
smallest integer such that the remaining characters of X, if any, are
blanks .

Let X and Y be text variables. Then after the value assignment
"X : = Y", if legal, the relation

X.strip Y.strip

has the value true.

l ll3

104

10.8

10.8.1

Numeric text values

Syntax

<EMPTY>

· .-
<DIGIT>

· .- 0 1 2 3
5 6 7 8

<DIGITS>

· .- <DIGIT>
<DIGITS> <DIGIT>

<BLANKS>
· .- <EMPTY>

<BLANKS> <BLANK>

<SIGN>
<EMPTY> +

<SIGN PART>
::= <BLANKS> <SIGN> <BLANKS>

<INTEGER ITEM>
::= <SIGN PART> <DIGITS>

<FRACTION>
. <DIGITS>

<DECIMAL ITEM>

<EXPONENT>

<INTEGER ITEM>
<SIGN PART> <FRACTION>
<INTEGER ITEM> <FRACTION>

4

9

::= <LOWTEN CHARACTER> <INTEGER ITEM>

<REAL ITEM>
. . _ <DECIMAL ITEM>

<GROUPS>

<SIGN PART> <EXPONENT>
<DECIMAL ITEM> <EXPONENT>

<DIGITS>
<GROUPS> <BLANK> <DIGITS>

<GROUPED ITEM>
<SIGN PART> <GROUPS>
<SIGN PART> . <GROUPS>
<SIGN PART> <GROUPS> . <GROUPS>

<NUMERIC ITEM>
<REAL ITEM>
<GROUPED ITEM>

<LOWTEN CHARACTER>

10.8.2 Semantics

The syntax applies to sequences of characters, i.e. to text values.
<BLANK> stands for a blank character.

A numeric item is a character sequence which may be derived from
<NUMERIC ITEM>. "Editing" and "de-editing" procedures are available for
the conversion between arithmetic values and text values which are
numeric items, and vice versa.

10 5

106

10.9 "De-editing" procedures

A de-editing procedure of a given text variable X operates in the
following way:

1) The longest numeric item, if any, of a given form is
located, which is contained in X and contains the first
character of X. (Notice that leading blanks are accepted as
part of any numeric item.)

2) If no such numeric item is found, a runtime error is
caused.

3) Otherwise the numeric item is interpreted as a number.

4) If that number is outside a relevant implementation defined
range, a runtime error is caused.

5) Otherwise an arithmetic value is computed, which is equal
to or approximates that number.

6) The position indicator of X is made one greater than the
position of the last character of the numeric item. Note
that this increment is lost immediately if X does not
correspond to a <variable>, (see section 4.4.2).

The following de-editing procedures are available.

integer procedure getint;

The procedure locates an INTEGER ITEM. The function value is equal to
the corresponding integer.

long real procedure getreal;

The procedure locates a REAL ITEM. The function value is equal to or
approximates the corresponding number. If the number is an integer
within an implementation defined range, the conversion is exact.

integer procedure getfrac;

The procedure locates a GROUPED ITEM. In its interpretation of the
GROUPED ITEM the procedure will ignore any BLANKS and a possible
decimal point.

The function value is equal to the resulting integer.

107

10.10 Editing procedures

Editing procedures of a given text variable X serve to convert
arithmetic values to numeric items. After an editing operation, the
numeric item obtained, if a~y, is right adjusted in the text frame
referenced by X and preceded by as many blanks as necessary to fill the
text frame. The final value of the position indicator of X is equal
X.length+1. Note that this increment is lost immediately if X does not
correspond to a <variable>, (see section 4.4.2).

A positive number is edited without a sign, a negative number is edited
with a minus sign immediately preceding the most significant character.
Leading nonsignificant zeros are suppressed, except possibly in an
EXPONENT.

If X references a constant text frame or notext, an error is caused.
Otherwise if the text frame is too short to contain the resulting
numeric item, the text frame into which the number was to be edited, is
filled with asterisks.

procedure putint(i); integer i;

The value of the parameter is converted to an INTEGER ITEM which
designates an integer equal to that value.

procedure putfix(r,n); long real r; integer n;

The resulting numeric item is an INTEGER ITEM if n=O or a DECIMAL ITEM
with a FRACTION of n digits if n>O. It designates a number equal to the
value of r or an approximation to the value of r, correctly rounded to
n decimal places. If n<O, a runtime error is caused.

procedure putreal(r,n); long real r; integer n;

The resulting numeric item is a REAL ITEM containing an EXPONENT with a
fixed implementation defined number of characters. The EXPONENT is
preceded by a SIGN PART if n=O, or by an INTEGER ITEM with one digit if
n=1, or if n>1, by a DECIMAL ITEM with an INTEGER ITEM of 1 digit only,
and a fraction of n-1 digits. If n<O a runtime error is caused.

In putfix and putreal, the numeric item designates that number of the
specified form which differs by the smallest possible amount from the
value of r or from the approximation to the value of r.

If the parameters to putfix (putreal) are such that some of the printed
digits will be without significance, zeroes are substituted for these
digits (and no error condition is raised).

108

procedure putfracCi,n); integer i,n;

The resulting numeric item is a GROUPED ITEM with no decimal point if
n<=O, and with a decimal point followed by total of n digits if n>O.
Each digit group consists of 3 digits, except possibly the first one,
and possibly the last one following a decimal point. The numeric item
is an exact representation of the number i * 10**(-n).

The editing and de-editing procedures are oriented towards "fixed
field" text manipulation.

Example:

text Tr, type, amount, price, payment;
integer pay, total;
Tr:- blanks(80);
type:- Tr.sub(1, 10);
amount:- Tr.sub(20,S);
price:- Tr.sub(30,6);
payment:- Tr.sub(60,10);

if type. strip = "order" then
begin pay:= amount.getint * price.getfrac;

total:= total + pay;
payment.putfrac(pay,2)

end

.. ...,

109

11 Input-output

The semantics of certain 1/0 facilities will rely on the intuitive
notion of "files" ("data sets") which are collections of data external
to the the program and organized in a sequential or addressable manner.
We shall speak of a "sequential file" or a "direct file" according to
the method of organization.

Examples of sequential files are:

a batch of cards
a series of printed lines
input from a keyboard
data on a tape

An example of a direct file is a collection of data items on a drum, or
a disc, with each item identified by a unique index.

The individual logical unit in a file will be called an "image". Each
"image" is an ordered sequence of characters.

1/0 facilities are introduced through block prefixing. For the purpose
of this presentation, this collection of facilities will be described
by a class called "BASICIO". The class is not explicitly available in
any users program.

The program acts as if it were enclosed in the following block:

BASICIO (inlength, outlength) begin inspect SYSIN do
inspect SYSOUT do
<program>

end

where out length is an integer constant representing the length of a
printed line as defined for the particular implementation.

In any program execution the unique instance of this prefixed block
constitutes the head of the outermost quasi-parallel system (see
section 9.2).

The par'ameter INPUT LINELENGTH may be omitted; in this case all
occurrences elsewhe;e of it are replaced by 80. The actual values of
INPUT LINELENGTH and OUTPUT_LlNELENGTH are device dependent, their
default values are 80 and 132 respectively.

Within the definition of the 1/0 semantics, identifiers in CAPITAL
LETTERS represent quantities which are not accessible in a user
program. A series of dots is used to indicate that actual coding is
either found elsewhere, described informally, or implementation
defined.

110

The overall organization of "BASICIO" is as follows:

class BASICIO (INPUT LINELENGTH, OUTPUT LINELENGTH);
integer INPUT _ LINELENGTH, OUTPUT _ LINELENGTH ;
begin ref (infile) SYSIN;

ref (infile) procedure sysin;
sysin:- SYSIN;

ref (printfile) SYSOUT;
ref (printfile) procedure sysout;

sysout:- SYSOUT;
class FILE ,
FILE class infile ..•••.•..••••• ;
FILE class outfile •••••••••.••. ;
FILE class directfile •..•.•••.• ;
outfile class printfile •...•.•• ;

SYSIN: - new infile("SYSIN") ;
SYSOUT: - new printfile("SYSOUT");
SYSIN.open(blanks(INPUT_LINELENGTH));
SYSOUT.open(blanks(OUTPUT_LINELENGTH));
inner;
SYSIN.close;
SYSOUT.close;

end BASICIO;

"SYSIN" and "SYSOUT" represent a card-oriented standard input unit and
a printer-oriented standard output unit. A program may refer to the
corresponding file objects through "sysin" and "sysout" respectively.
Most attributes of these file objects are directly available as a
result of the implied connection blocks enclosing the program.

The files "SYSIN" and "SYSOUT" will be opened and closed wi thin
"BASICIO", i.e. outside the program itself.

11.1 The class "FILE"

11.1.1 Definition

class FILE(FILENAME, .•...); value FILENAME; text FILENAME;
virtual: procedure open, close;
begin text image;

Boolean OPEN;
procedure setpos(i); integer i;

image.setpos(i);
integer procedure pos;

pos:= image.pos;
Boolean procedure more;

more:= image. more;
integer procedure length;

length:= image. length;

end FILE;

11.1.2 Semantics

Within a program, an object of a subclass of "FILE" is used to
represent a file. The following four types are predefined:

"infile"

"out file"

"directfile"

"printfile"

representing a sequential file where input
operations (transfer of data from file to
program) are available.

representing a sequential file where output
operations (transfer of data from program to
file) are available.

representing a direct file with facilities
for both input and output.

(a subclass of outfile) representing a
sequential file with certain facilities
oriented towards line printers.

An implementation may restrict, in any way, the use of these classes
for prefixing or block prefixing. System defined subclasses may,
however, be provided in an implementation.

Each FILE object has a text attribute "FILENAME". It is assumed that
this text value identifies an external file which, through an
implementation defined mechanism, remains associated with the FILE
object. The effect of several file objects representing the same
(external) file is implementation defined.

111

112

The variable "image" is used to reference a text frame which acts as a
"buffer". in the sense that it contains the external file image
currently being processed. An implementation may require that "image".
at the time of an input or output of an image. refers to a main frame.

The procedures "setpos". "pos". "more" and "length" are introduced for
reasons of convenience.

A file is either "open" or "closed". as indicated by the variable
"OPEN". Input or output of images may only take place on an open file.
A file is initially closed (except SYSIN and SYSOUT as seen from the
program) .

The procedures "open" and "close" perform the opening and closing
operations on a file. Since the procedures are virtual quantities they
may be redefined completely (i.e. at all access levels) for objects
belonging to special purpose subclasses of infile. outfile. etc.

These procedures will be implementation defined. but they must conform
to the following pattern.

boolean procedure open (fileimage ••.••);
text fileimage; •.•...
if OPEN then ERROR - --
else if ..• ! the file was opened sucessfully; then
begin open:= OPEN:= true;

image:- fileimage;

end open;

procedure close (.....•.);
begin OPEN:= false;

image:- notextj
end close;

The procedures may have additional parameters and additional effects.

11.2 The class" infile"

11.2.1 Definition

FILE class infile; virtual: Boolean procedure endfile;
procedure inimage;

begin boolean procedure open(fi l eimage •.•.) ;
text file image;
if OPEN then ERROR
else if !the file was opened successful l y; t hen
begin open:= OPEN:= true

ENDFILE:= false;
image:- fileimage;
image:= notextj
setpos(length + 1);

end open;

procedure close
begin j

ENDFILE:=
end close;

Boolean ENDFILE;

..... ,

Boolean procedure endfile;
endfile:= ENDFILE;

procedure inimage;
begin •.••.•• j

if ENDFILE then image: = "! 25 ! ";
setpos(1);

end inimage;

character procedure inchar;
begin if not more then inimage;

inchar:= image.getchar;
end inchar;

113

114

Boolean procedure lastitem;
begin while not ENDFILE do

begin while more do

exit:

end;

if inchar <> ' , then
begin setpos(pos-1);

go to exit;
end;

inimage;

lastitem:= true;

end lastitem;

integer procedure inint;
begin text T;

if lastitem then ERROR;
T:- image.sub(pos,length-poS+1);
inint:= T.getint;
setpos(poS+T .pos-1)

end inint;

long real procedure inreal;

integer Qrocedure infrac;

text procedure intext(w); integer w;
begin text T; integer m;

intext:- T:- blanks(w);
for m: = 1 step 1 until w do

T.putchar(inchar);
end intext;

ENDFILE: = true;

end infile;

11.2.2 Semantics

An object of the class "infile" is used to represent a sequentially
organized input file.

11 5

The procedure " inimage" performs the transfer of an external file image
into the text "image". A runtime error occurs if the text is notext
or is too short to contain the external image. If it is longer than the
external image, the latter is left adjusted and the remainder of the
text is blank filled. The position indicator is set to one.

If an "end of file" is encountered, the text value "!25!" is assigned
to the text "image" and the variable "ENDFILE" is given the value true.
A call on "inimage" when ENDFILE has the value true is a runtime error.

The procedure "open" will give ENDFILE the value false and set "image"
to blanks. Otherwise it conforms to the pattern of section 11.1.2.

The procedure "endfile" gives access to the value of the variable
ENDFILE.

The remaining procedures provide mechanisms for "item oriented" input,
which treat the file as a "continuous" stream of characters with a
"position indicator" (pos) which is relative to the first character of
the current image.

The procedure "inchar" gives access to and scans past the next
character.

If the remainder of the file contains one or more non-blank characters
"lastitem" has the value false, and the position indicator of the file'
is set to the first non-blank character.

The procedures "inreal" and "infrac" are defined in terms of the
corresponding de-editing procedures of "image". Otherwise the
definition of either procedure is analogous to that of "inint". These
three procedures will scan past and convert a numeric item containing
the first non-blank character and contained in one image, excepting an
arbitrary number of leading blanks .

116

The expression "intext(n)" where n is a positive integer is a reference
to a new varable main frame of length n containing the next n
characters of the file. "pos" is moved to the following character. The
expression "intext(O)" references notext.

The procedures "inchar" and "intext" may both give access to the
contents of the image which corresponds to an "end of file".

Example:

The following piece of program will input a matrix by columns. It is
assumed that consecutive elements are separated by blanks or contained
in different images. The last element of each column should be followed
immediately by an asterisk.

begin array a(1 :n, 1 :m);
integer i, j;
procedure error; •.•..••• ;
for j:= 1 step 1 until m do
begin for i: = 1 step 1 until n-1 do

begin a(i,j):= inreal;
if (if sysin.more then inchar <>

else false)
then error
end;
a(n,j):= inreal;
if inchar <> '*' then error;

end;

11.3 The class "outfile"

11.3. 1 Definition

FILE class outfile; virtual: procedure out image;
begin boolean procedure open(fileimage, .•.);

text fileimage;
if OPEN then ERROR

117

else if ... !the file was opened successfully; then
begin open:= OPEN:= true;

image:- fileimage;
setpos(1);

end open;

procedure close .•......•. ,
begin if pos <> 1 then outimage; end;

procedure out image;
begin if not OPEN then ERROR;

image:= notext;
setpos(1)

end out image;

procedure outchar(c); character c;
begin if not more then outimage;

image.putchar(c);
end outchar;

text ~ocedure FIELD(w); integer W;
begin if w<O or w>length then ERROR;

if pos+w-1 > length then outimage;
FIELD:- image.sub(pos,w);
setpos(poS+w)

end FIELD;

procedure outint(i,w); integer i,w;
FIELD(w).putint(i);

procedure outfix(r,n,w); long real r; integer n,w;
FIELD(w).putfix(r,n);

procedure outreal(r,n,w); long real r;
integer n,w;

FIELD(w).putreal(r,n);

118

procedure outfrac(i,n,w); integer i,n,w;
FIELD(w).putfrac(i,n);

procedure outtext(T); text T;
FIELD(T.length):= T;

end outfile;

11.3.2 Semantics

An object of the class "outfile" is used to represent a sequentially
organized output file.

The transfer of an image from the text "image" to the file is performed
by the procedure "outimage". The procedure will react in an
implementation defined way if the image length is not appropriate for
the external file. The text is cleared to blanks and the position
indicator is set to 1, after the transfer.

The procedure "close" will call "out image" once if the position
indicator is different from 1. Otherwise it conforms to the pattern of
section 11.1.2.

The procedure "outchar" treats the file as a "continuous" stream of
characters.

The remalmng procedures provide facili ties for "i temoriented" output.
Each item is edited into a subtext of "image", whose first character is
the one identified by the position indicator of "image", and of a
specified width. The position indicator is advanced a corresponding
amount. If an item would extend beyond the last character of "image",
the procedure "outimage" is called implicitly prior to the editing
operation.

The procedures "outint", "outfix", "outreal" and "outfrac" are defined
in terms of the corresponding editing procedures of "image". They have
an additional integer parameter which specifies the width of the
subtext into which the item will be edited.

For the procedure "outtext", the item width is equal to the length of
the text parameter.

11.4 The class "directfile"

Note: The definition of "directfile" is presently
under study by the SIMULA Developement Group.

11.4.1 Definition

FILE class directfile;
virtual: Boolean procedure endfile;

procedure locate,inimage,outimage;
begin integer LOC;

integer procedure location;
location: = LOC;

procedure locate(i); integer i;
begin if not OPEN then ERROR;

LOC:= i;
end locate;

boolean procedure open(fileimage, ...);
text file image;
if OPEN then ERROR - --
else if ... !the file was opened successfully; then
begin open:= OPEN := true;

image:- fileimage;
setpos(1);
locate(1);

end open;

procedure close ,

Boolean procedure endfile; ..•.... ,

procedure inimage ;
begin

locate(LOC+ 1);
setpos(1)

end inimage;

procedure out image;
begin

locate(LOC+ 1);
image:= notext;
setpos(1)

end outimage;

119

120

character procedure inchar .•..•.. ,
Boolean procedure lastitem ,
integer procedure inint ..•.....•• ;
long real procedure inreal ;
integer procedure infrac .••...... ;
text procedure intext •..•........ ;
procedure outchar ...••.••..•...•• ;
text procedure FIELD .•..•........ ;
procedure outint •..••....••••.•.. ;
procedure outfix .•..••..•.•••.••. ;
procedure outreal••.••..•.• ,
procedure outfrac ••......•..•.•.• ,
procedure out text •..•.•.•.•.•.••• ,

end directfile;

11.4.2 Semantics

An object of the class "directfile" is used to represent an external
file in which the individual images are addressable by ordinal numbers.

The variable "LOC" normally contains the ordinal number of an external
image. The procedure "location" gives access to the current value of
LOC. The procedure "locate" may be used to assign a given value to the
variable. The assignment may be accompanied by implementation defined
checks and possibly by instructions to an external memory device
associated with the given file.

The procedure "open" will locate the first image of the file. Otherwise
it conforms to the rules of section 11.1.2.

The procedure "endfile" may have the value true only if the current
value of LOC does not identify an image of the external file. The
procedure is implementation defined.

The procedure "inimage" will transfer into the text "image" a copy of
the external image currently identified by the variable LOC if there is
one. Then the value of LOC is increased by one through a "locate"
statement. If the file does not contain an image with an ordinal number
equal to the value of LOC, the effect of the procedure "inimage" is
implementation defined. The procedure is otherwise analogous to that of
section 11.2.

The procedure "out image" will transfer a copy of the text value " image"
to the external file, thereby adding to the file an external image
whose ordinal number is equal to the current value of LOC. A runtime
error occurs if the file cannot be made to contain the image. If the
file contains another image with the same ordinal number, that image is
deleted. The value of LOC is then increased by one through a "locate"
statement. The procedure "out image" is otherwise analogous to that of
section 11.3.

The remaining procedures are analogous to the corresponding procedures
of section 11.2 and 11.3.

121

122

11.5 The class "printfile"

11.5.1 Definition

outfile class printfile;
begin integer LINES_PER_PAGE, SPACING, LINE;

integer procedure line; line:= LINE;

procedure linesperpage(n); integer n;
LINES_PER_PAGE:= n;

procedure spacing(n); integer n; SPACING:= n;

procedure eject(n); integer n;
begin if not OPEN then ERROR;

if n > LINES_PER_PAGE then n:= 1;
if LINE > LINES PER_PAGE then LINE: = 0;

LINE:= n;
end eject;

boolean procedure open(fileimage, .• •);
text fileimage;
if OPEN then ERROR
else if .•• !the file was opened successfully; then
begin open:= OPEN:= true;

image:- fileimage;
setpos(1);

eject(1)
end open;

procedure close .•.. ,
begin

if pos <> 1 then out image;
SPACING:= 1;
eject(LINES_PER_PAGE);
LINES PER PAGE:= ••...• ,
LINE:= 0;

end close;

procedure out image;
begin if not OPEN or image == notext

then ERROR;
if LINE> LINES_PER_PAGE then eject(1);
comment output - the image on the line

denoted by LINE;
LINE:= LINE + SPACING;
image:= notext;
setpos(1);

end out image;

LINES_PER_PAGE:=
SPACING: = 1;

end printfile;

11.5.2 Semantics

An object of the class "printfile" is used to represent a printer­
oriented output file. The class is a subclass of "outfile". A file
image represents a line on the printed page.

123

The variable "LINES_PER_PAGE" indicates the maximum number of physical
lines that will be printed on each page, including intervening blank
lines. An implementation defined value is assigned to the variable at
the time of object generation, and when the printfile is closed. The
procedure "linesperpage" may be used to change the value. If the
parameter to "lines per page" is zero, "LINES_PER_PAGE" is reset to the
same implementation defined value as at the time of object generation.
The effect is implementation defined if the parameter is less than
zero.

The variable "SPACING" represents the value by which the variable
"LINE" will be incremented after the next printing operation. The
variable is set equal to 1 at the time of object generation and when
the printfile is closed. Its value may be changed by the procedure
"spacing". A calIon the procedure "spacing" with parameter less than
zero or greater than "LINES_PER_PAGE" constitutes an error. The effect of
a parameter to "spacing" which is equal to zero may be defined by an
implementation either to mean successive printing operations on the
same physical line, or to be an error.

The variable "LINE" indicates the ordinal number of the next line to be
printed, provided that no implicit or explicit "eject" statement
occurs. Its value is accessible through the procedure "line". Note that
the value of "LINE" may be greater than "LINES_PER_PAGE". The value of
"LINE" is zero when the file is not open.

.S

&

124

The procedure "eject" is used to position to a certain line identified
by the parameter, n.

The following cases can be distinguished:

n <= ° : ERROR
n > LINES_PER_PAGE: Equivalent to eject (1)

n <= LINE Position to line number n on the next page

n > LINE Position to line number n on the current page

The tests above are performed in the given sequence.

The procedure "outimage" operates according to the rules of section
11.3. In addition, it will update the variable "LINE".

The procedure "open" and "close" conform to the rules of section 11.1.
In addition, "open" will position to the top of a page, and "close"
will output the current value of "image" if "pos" is different fran 1
and reset "LINE", "SPACING" and "LINES PER_PAGE".

12 Random drawing

12.1 Pseudo-random number streams

All random drawing procedures of SIMULA 67 are based on the technique
of obtaining "basic drawings" from the uniform distribution in the
interval <0,1>.

A basic drawing will replace the value of a specified integer variable,
say U, by a new value according to an implementation defined algorithm.
As an example, the following algorithm may be suitable for binary
computers:

U(i+1) = remainder «U(i) * 5**(2p+1)) II 2**n)

where Uti) is the i'th value of U, n is an integer related to the size
of a computer word and p is a positive integer. It can be proved that,
if uta) is a positive odd integer, the same is true for all Uti) and
the sequence uta), U(1), U(2), .•. is cyclic with period 2**n-2. (The
last two bits of U remain constant, while the other n-2 take on all
possible combinations).

125

The real numbers uti) = Uti) * 2**(-n) are fractions in the range
<0,1>. The sequence u(1), u(2), •.• is called a "stream" of pseudo­
random numbers, and uti) (i = 1,2, ..•) is the result of the i'th basic
drawing in the stream U. A stream is completely determined by the
initial value uta) of the corresponding integer variable. Nevertheless,
it is a "good approximation" to a sequence of truly random drawings.

By reversing the sign of the initial value uta) of a stream variable,
the antithetic drawings 1-u(1), 1-u(2), should be obtained. In
certain situations it can be proved that means obtained from samples
based on antithetic drawings have a smaller variance than those
obtained from uncorrelated streams. This can be used to reduce the
sample size required to obtain reliable estimates.

126

12.2 Random drawing procedures

The following procedures all perform a random drawing of some kind.
Unless it is explicitly stated otherwise the drawing is effected by
means of one single basic drawing, i.e. the procedure has the side
effect of advancing the specified stream by one step. The necessary
type conversions are effected for the actual parameters, with the
exception of the last one. The latter must always be an integer
variable specifying a pseudo-random number stream.

1. Boolean procedure draw (a,U); name U; real a; integer U;

The value is true with the probability a, false with the
probability 1-=-;. It is always true if a ~and always false

if a <= O.

2. integer procedure randint (a,b,U); name U; integer a,b,U;

The value is one of the integers a, a+1, .•. , b-1, b with equal
probability. If b < a, the call constitutes an error.

3. real procedure uniform (a,b,U); name U; real a,b;
integer U;

The value is uniformly distributed in the interval (a,b>. If b < a,

the call constitutes an error.

4. real procedure normal (a,b,U); name U; real a,b;
integer U;

The value is normally distributed with mean a and standard
deviation b. An approximation formula may be used for the normal

distribution function.

5. real procedure negexp (a,U); name U; real a; integer U;

The value is a drawing from the negative exponential distribution
with mean 1/a, defined by -In(u)la, where u is a basic drawing.
This is the same as a random "waiting time" in a Poisson
distributed arrival pattern with expected number of arrivals per

time unit equal to a.

6. integer procedure Poisson (a,U); name U; real a;
integer U;

127

The value is a drawing from the Poisson distribution with parameter
a. It is obtained by 0+1 basic drawings, u(i), where n is the
function value. n is defined as the smallest non-negative integer
for which

n
1T u(i) < e**(-a)

i=O

The validity of the formula follows from the equivalent condition

n
~ -In(u(i))la > 1

i=O

where the left hand side is seen to be a sum of "waiting times"
drawn from the corresponding negative exponential distribution.

When the parameter a is greater than some implementation defined
value, for instance 20.0, the value may be approximated by
entier(normal(a,sqrt(a),U) + 0.5) or, when this is negative, by

zero.

7. real procedure Erlang (a,b,U); name U; real a,b;
integer U;

The value is a drawing from the Erlang distribution with mean 1/a

and standard deviation 1/(a*sqrt(b)). It is defined by b basic
drawings u(i), if b is an integer value,

b
- L In(u(i))I(a*b)

i= 1

and by c+1 basic drawings u(i) otherwise, where c is equal to
entier(b) ,

c
- (L In(u(i))I (a*b)) - ((b-c)*ln(u(c+ll)/(a*b))

i=1

both a and b must be greater than zero.

The last formula represents an approximation.

128

8. integer procedure discrete (A,U); name U; real array A;
integer U;

The one-dimensional array A, augmented by the element 1 to the
right, is interpreted as a step function of the subscript, defining
a discrete (cumulative) distribution function. The array is assumed
to be of type real.

The function value is an integer in the range (lsb, usb+1), where
Isb and usb are the lower and upper subscript bounds of the array.
It is defined as the smallest i such that A(i) > u, where u is a
basic drawing and A(usb+1) = 1.

9. real procedure linear (A,B,U); name U; real array A,B;
integer U;

The value is a drawing from a (cumulative) distribution function F,
which is obtained by linear interpolation in a non-equidistant
table defined by A and B, such that A(i) = F(B(i)).

It is assumed that A and B are one-dimensional real arrays of the
same length, that the first and last elements of A are equal to 0
and 1 respectively and that A(i) >= A(j) and B(i) > B(j) for i > j.
If any of these conditions are not satisfied, the effect is
implementation defined.

The steps in the function evaluation are:

1. draw a uniform <0,1> random number, u.

2. determine the lowest value of i, for which

A(i-1) <= u <= A(i)

3. compute D = A(i) - A(i-1)

4. if D = 0: linear B(i-1)
if D <> 0: linear B(i-1) + (B(i) - B(i-1))*(u-A(i-1))/D

10. integer procedure histd (A,U); name U; real array A;
integer U;

The value is an integer in the range (lsb,usb), where Isb and usb
are the lower and upper subscript bounds of the one-dimensional
array A. The latter is interpreted as a histogram defining the
relative frequencies of the values.

129

13 Utility procedures

The following procedures are defined:

procedure histo (A,B,c,d); real array A,B; real c,d;

It will update a histogram defined by the one-dimensional arrays A and
B according to the observation c with the weight d. A(lba+i) is
increased by d, where i is the smallest integer such that c <= B(lbb+i)
and Iba and Ibb are the lower bounds of A and B respectively. If the
length of A is not one greater than that of B the effect is
implementation defined. The last element of A corresponds to those
observations which are greater than all elements of B.

procedure terminate_program;
! terminate program;

A calIon this procedure will terminate program execution as if control
passed through the final end.

--------_.- -~--

130

131

14 System classes

Two additional system-defined classes are available:

class SIMSET;

and

SIMSET class SIMULATION;

The class SIMSET introduces list processing facilities corresponding to
the "set" concept of SIMULA I (2). The class SIMULATION further defines
facilities analogous to the "process" concept and sequencing facilities
of SIMULA 1.

The two classes are available at any block level of a program. An
uncommitted occurrence of the identifier SIMSET or SIMULATION will act
as if an appropriate declaration of the corresponding system class were
part of the block head of the smallest textually enclosing block. An
implementation may restrict the number of block levels at which such
implicit declarations may occur in anyone program.

In the following definitions, identifiers in capital letters, except
"SIMSET" and "SIMULATION", represent quantities not accessible to the
user. A series of dots is used to indicate that the actual coding is
found in another section.

132

14. 1 The class "SIt1SET"

The class "SIt1SET" contains facilities for the manipulation of circular
two-way lists, called "sets".

14.1.1 General structure

14.1.1.1 Definition

class SIt1SET;

14.1.1.2 Semantics

begin class linkage; ..••.. ,
linkage class head; •••... ,
linkage class link; .•••.. ;

end SIt1SET;

The reference variables and procedures necessary for set handling are
introduced in standard classes declared wi thin the class "SH-£ET".
Using these classes as prefixes, their relevant data and other
properties are made parts of the object themselves.

Both sets and objects which may acquire set membership have references
to a successor and a predecessor . Consequently they are made subclasses
of the "linkage" class.

The sets are represented by objects belonging to a subclass "head" of
"linkage". Objects which may be set members belong to subclasses of
"link" which is itself another subclass of "linkage".

14. 1 .2 The class "linkage"

14.1.2.1 Definition

class linkage;
begin ref (linkage) SUC, PRED;

ref (link) procedure suc;
suc:- if SUC in link then SUC

else none;
ref (link) procedure pred;

pred:- if PRED in link then PRED
else none;

ref (linkage) procedure prev;
prev:- PRED;

end linkage;

14.1.2.2 Semantics

The class "linkage" is the cormnon denominator for "set heads" and "set
members".

"SUC" is a reference to the successor of this linkage object in the
set, "PRED" is a reference to the predecessor.

The value of "SUC" and "PRED" may be obtained through the procedures
"suc" and "pred" . These procedures will give the value "none" if the
designated object is not a "set" member, i.e. of class "link" or a
subclass of "link".

133

The attributes "SUC" and "PRED" may only be modified through the use of
procedures defined within "link" and "head". This protects the user
against certain kinds of programming errors.

The procedure prev enables a user to access a set head from its first
member.

134

14.1.3 The class "link"

14.1.3.1 Definition

linkage class link;
begin procedure out;

if SUC =/= none then
begin SUC.PRED:- PRED;

PRED.SUC:- SUC;
SUC:- PRED:- none

end out;

procedure follow(X); ref (linkage) X;
begin out;

if X =/= none then
begin if X.SUC =/= none then

begin PRED:- X;
SUC:- X.SUC;
SUC.PRED:- X.SUC:- this linkage;

end
end follow;

procedure precede(X); ref (linkage) X;
begin out;

if X =/= none then
begin if X.SUC =/= none then

begin SUC:- X;
PRED:- X.PRED;
PRED.SUC:- X.PRED:- this linkage;

end
end precede;

procedure into(S); ref (head) S;
precede (S) ;

end link;

14.1.3.2 Semantics

Objects belonging to subclasses of the class "link" may acquire set
membership. An object may only be a member of one set at a given
instant.

In addition to the procedures "suc" and "pred", there are four
procedures associated with each "link" object: "out", "follow",
"precede" and "into".

The procedure "out" will remove the object from the set (if any) of
which it is a member. The procedure call will have no effect if the
object has no set membership.

135

The procedures "follow" and "precede" will remove the object from the
set (if any) of which it is a member and insert it in a set at a given
position. The set and the position are indicated by a parameter which
is inner to "linkage". The procedure call will have the same effect as
"out" (except for possible side effects from evaluation of the
parameter) if the parameter is "none" or if it has no set membership
and is not a set head. Otherwise the object will be inserted
immediately after ("follow") or before ("precede") the "linkage" object
designated by the parameter.

The procedure "into" will remove the object from the set (if any) of
which it is a member and insert it as the last member of the set
designated by the parameter. The procedure call will have the same
effect as "out" if the parameter has the value "none" (except for
possible side effects from evaluation of the actual parameter).

136

14.1.4 The class "head"

14.1.4.1 - Definition

linkage class head;
begin ref (link) procedure first; first:- suc;

ref (link) procedure last; last:- pred;

Boolean procedure empty;
empty:= SUC == this linkage;

integer procedure cardinal;
begin integer I;

ref (link) X;
X:- first;
while X =1= none do -- ---
begin I:= 1+1;

X:- X.suc;
end;
cardinal:= I

end cardinal;

procedure clear;
while first =1= none do first. out;

SUC:- PRED:- this linkage;
end head;

14.1.4.2 Semantics

An object of the class "head", or a subclass of "head" is used to
represent a set. "head" objects may not acquire set membership. Thus, a
unique "head" is defined for each set.

The procedure "first" may be used to obtain a reference to the first
member of the set, while the procedure "last" may be used to obtain a
reference to the last member.

The Boolean procedure "empty" will give the value true only if the set
has no members.

The integer procedure "cardinal" may be used to count the number of
members in a set.

The procedure "clear" may be used to remove all members from the set.

The references "suc" and "PRED" will initially point to the "head"
itself, which thereby represents an empty set.

14.2 The class "SIMULATION"

The system cla,ss "SIMULATION" may be considered an "application
package" oriented towards simulation problems. It has the class
"SIMSET" as prefix, and set-handling facilities are thus immediately
available.

The definition of "SIMULATION" which follows is only one of many
possible schemes of organization of the class. An implementation may
choose any other scheme which is equivalent from the point of view of
any user's program.

137

In the following sections the concepts defined in SIMULATION are
explained with respect to a prefixed block, whose prefix part is an
instance of the body of SIMULATION or of a subclass. The prefixed block
instance will act as the head of a quasi-parallel system which may
represent a "discrete-event" simulation model.

I
I

138

14.2.1 General structure

14.2.1.1 Definition

SIMSET class SIMULATION;
begin link class EVENT_NOTICE (EVTIME, PROC);

long real EVTIME; ref (process) PROC;
begin ref (EVENT_NOTICE) procedure suc;

suc:- if SUC is EVENT_NOTICE then SUC
else none;

ref (EVENT_NOTICE) procedure pred;
pred:- PRED;

procedure RANK (BEFORE); Boolean BEFORE;
begin ref (EVENT_NOTICE) P;

P:- SQS.last;
while P.EVTIME > EVTIME do

P:- P.pred;
if BEFORE then
while P.EVTIME = EVTIME do

P:- P.pred;
follow(P) ;

end RANK;
end EVENT_NOTICE;
link class process;
begin ref (EVENT_NOTICE) EVENT;

end process;
ref (head) SQS;
ref (EVENT_NOTICE) procedure FIRSTEV;

FIRSTEV:- SQS.first;
ref (process) procedure current;

current:- FIRSTEV.PROC;
long real procedure time;

time:= FIRSTEV.EVTIME;
procedure hold •.•.•.•.•••.•• ;
procedure passivate •..•••••• ;
procedure wait •••••.•••••••• ;
procedure cancel ;
procedure ACTIVATE •.•••••••. ;
procedure accum ..••••••..••• ;
process class MAIN_PROGRAM •..••.• ,
ref (MAIN]ROGRAM) main;
SQS:- new head;
main:- new MAIN_PROGRAM;
main.EVENT:-~ EVENT_NOTICE(O,main);
main.EVENT.into(SQS);

end SIMULATION;

13 9

14.2.1.2 Semantics

When used as a prefix to a block or a class, "SIMULATION" introduces
simulation-oriented features through the class "process" and associated
procedures.

The variable "SQS" refers to a "set" which is called the "sequencing
set", and serves to represent the system time axis. The members of the
sequencing set are event notices ranked according to increasing values
of the attribute "EVTIME". An event notice refers through its attribute
"PROC" to a "process" object, and represents an event which is the next
active phase of that object, scheduled to take place at system time
EVTIME. There may be at most one event notice referencing any given
process object.

The event notice at the "lower" end of the sequencing set refers to the
currently active process object. The object can be referenced through
the procedure "current". The value of EVTIME for this event notice is
identified as the current value of system time. It may be accessed
through the procedure "time".

J

I
~

I
I

140

14.2.2 The class "process"

14.2.2.1 Definition

link class process;
begin ref (EVENT_NOTICE) EVENT;

Boolean TERMINATED;
Boolean procedure idle; idle:= EVENT -- none;

Boolean procedure terminated;
terminated:= TERMINATED;

long real procedure evtime;
if idle then ERROR

else evtime:= EVENT.EVTIME;

ref (process) procedure nextev;
nextev:- if idle then none else -- ---- ---- ----

if EVENT.suc == none then none
else EVENT.suc.PROC;

detach;
inner;
TERMINATED:= true;
passivate;
ERROR

end process;

14.2.2.2 Semantics

An object of a class prefixed by "process" will be called a process
object. A process object has the properties of "link" and, in addition,
the capability to be represented in the sequencing set and to be
manipulated by certain sequencing statements which may modify its
"process state". The possible process states are: active, suspended,
passive and terminated.

141

When a process object is generated it immediately becomes detached, its
reactivation point positioned in front of the first statement of its
userdefined operation rule. The process object remains detached
throughout its dynamic scope.

The procedure "idle" has the value true if the process object is not
currently represented in the sequencing set. It is said to be in the
passive or terminated state depending on the value of the procedure
"terminated". An idle process object is passive if its reactivation
point is at a user defined prefix level. If and when the PSC passes
through the final end of the user-defined part of the body, it proceeds
to the final operations at the prefix level of the class "process", and
the value of the procedure "terminated" becomes true. (Although the
process state "terminated" is not strictly equivalent to the
corresponding basic concept defined in section 9, an implementation may
treat a terminated process object as terminated in the strict sense). A
process object currently represented in the sequencing set is said to
be "suspended", except if it is represented by the event notice at the
lower end of the sequencing set. In the latter case it is active. A
suspended process is scheduled to become active at the system time
indicated by the attribute EVTIME of its event notice. This time value
may be accessed through the procedure "evtime". The procedure "nextev"
will reference the process object, if any, represented by the next
event notice in the sequencing set.

I
142

14.2.3 Activation statements

14.2.3.1 Syntax

<activator>
activate
reactivate

<activation clause>
::= <activator><object expression>

<simple timing clause>
.. _ at <arithmetic expression>

delay <arithmetic expression>

<timing clause>
.. _ <simpl e timing clause>

<simple timing clause> prior

<scheduling clause>
.. _ <empty>

<timing clause>
before <object expression>
after <object expression>

<activation statement>
::= <activation clause> <scheduling clause>

14.2.3.2 Semantics

An activation statement is only valid within an object of a class
included in SIMULATION, or within a prefixed block whose prefix part is
such an object.

The effect of an activation statement is defined as being that of a
call on the sequencing procedure "AcrIVATE" local to SIMULATION.

procedure AcrIVATE (REAC, X, CODE, T, Y, PRIOR);
value CODE; ref (process) X, Y; Boolean REAC, PRIOR;
text CODE; long real T;

143

The actual parameter list is determined from the form of the activation
statement, by the following rules.

1. The actual parameter corresponding to "REAC" is true if
the activator is reactivate, false otherwise.

2.

3.

4.

5.

6.

The actual parameter corresponding to "X" is the object
expression of the activation clause.

The actual parameter corresponding to "T" is the
arithmetic expression of the simple timing clause if
present, otherwise it is zero •

The actual parameter corresponding to "PRIOR" is true if
prior is in the timing clause, false if it is not used
or there is no timing clause.

The actual parameter corresponding to "Y" is the object
expression of the scheduling clause if present, otherwise
it is none.

The actual parameter corresponding to "CODE" is defined
from the scheduling clause as follows:

scheduling clause

empty
at arithmetic expression
delay arithmetic expression
before object expression
after object expression

actual text parameter

"direct"
"at"
"delay"
"before"
"after"

144

14.2.4 Sequencing procedures

14.2.4.1 Definitions

procedure hold(T); long real T;
inspect FIRSTEV do
begin if T > 0 then EVTIME:= EVTIME + T;

if suc =/= none then
begin if suc.EVTIME <= EVTIME then

begin out; RANK(false);
resume(current)

end
end hold;

end

procedure passivate;
begin inspect current do

begin EVENT.out; EVENT:- none
end;
if SQS.empty then ERROR else resume(current)

end passivate;

procedure waiteS); ref (head) S;
begin current.into(S);

passivate
end wait;

procedure cancel(X); ref (process) X;
if X == current then passivate else
inspect X do if EVENT =/= none then
begin EVENT .out;

EVENT:-~
end cancel;

procedure AcrIVATE(REAC, X, CODE, T, Y, PRIOR);
value CODE; ref (process) X, Y; Boolean REAC, PRIOR;
text CODE; long real T;
inspect X do if not TERMINATED then
begin ref (process) Z;

ref (EVENT_NOTICE) EV;
if REAC then EV: - EVENT
else if EVENT =/= ~ then E2 to exit;
z:- current;
if CODE = "direct" then

direct:
begin EVENT:- new EVENT_NOTICE(time,X);

EVENT.precede(FIRSTEV)
end direct
else if CODE = "delay" then
begin T:= T + time;

.&2 to at
end delay
else if CODE "at" then

at: begin if T < time then T:= time;

exit:

if T = time and PRIOR then EQ to direct;
EVENT:- new EVENT_NOTICE(T, X);
EVENT.RANK(PRIOR)

end at
else if (if Y == none then true

else Y.EVENT
then EVENT:- none else

begin if X == Y then £2 to exit;

none)

comment reactivate X before/after X;
EVENT:- new EVENT_NOTICE(Y.EVENT.EVTIME, X);
if CODE = "before" then EVENT.precede(Y.EVENT)

end before or after;
if EV =/= none then
begin EV.out;

else EVENT.follow(Y.EVENT)

if SQS.empty then ERROR
end;
if z =/= current then resume(current);

end AcrIVATE;

145

•

i

146

14.2.4.2 Semantics

The sequencing procedures serve to organize the quasi-parallel
operation of process objects in a simulation model. Explicit use of the
basic sequencing facilities (call, detach, resume) should be avoided
within SIMULATION blocks.

The statement "hold(T)", where T is a real number greater than or equal
to zero, will halt the active phase of the currently active process
object, and schedule its next active phase at the system time "time +

T". The statement thus represents an inactive period of duration T.
During the inactive period the reactivation point is positioned within
the "hold" statement. The process object becomes suspended.

The statement "passivate" will stop the active phase of the currently
active process object and delete its event notice. The process object
becomes passive. Its next active phase must be scheduled from outside
the process object . The statement thus represents an inactive period of
indefinite duration. The reactivation point of the process object is
positioned within the "passivate" statement.

The procedure "wait" will include the currently active process object
in a referenced set, and then call the procedure "passivate".

The statement "cancel(X)", where X is a reference to a process object,
will delete the corresponding event notice, if any. If the proces
object is currently active or suspended, it becomes passive. Otherwise
the statement has no effect. The statement "cancel(current)" is
equivalent to "passivate".

The procedure "ACTIVATE" represents an activation statement, as
described in section 14.2.3. The effects of a calIon the procedure are
described in terms of the corresponding activation statement. The
purpose of an activation statement is to schedule an active phase of a
process object.

Let X be the value of the object expression of the activation clause.
If the activator is activate the statement will have no effect
(beyond that of evaluating its constituent expressions) unless the X is
a passive process object. If the activator is reactivate and X is a
suspended or active process object, the corresponding event notice is
deleted (after the subsequent scheduling operation) and, in the latter
case, the current active phase is terminated. The statement otherwise
operates as an activate statement.

The scheduling takes place by generating an event notice for X and
inserting it in the sequencing set. The type of scheduling is
determined by the scheduling clause.

An empty scheduling clause indicates direct activation, whereby an
active phase of X is initiated immediately. The event notice is
inserted in front of the one currently at the lower end of the
sequencing set and X becomes active.The system time remains unchanged.
The formerly active process object becomes suspended.

A timing clause may be used to specify the system time of the scheduled
active phase. The clause "delay T", where T is an arithmetic
expression, is equivalent to "at time + T". The event notice is
inserted into the sequencing set using the specified system time as
ranking criterion. It is normally inserted after any event notice with
the same system time; the symbol "prior" may, however, be used to
specify insertion in front of any event notice with the same system
time.

Let Y be a reference to an active or suspended process object. Then the
clause "before Y" or "after Y" may be used to insert the event notice
in a position defined relation to (before or after) the event notice of
Y. The generated event notice is given the same system time as that of
Y. If Y is not an active or suspended process object, no schedulIng
will take place.

Example:

The statements

activate X
activate X before current
activate X delay 0 prior
activate X at time prior

are equivalent. They all specify direct activation.

The statement

reactivate current delay T

is equivalent to "hold(T)".

147

148

14.2.5 The main program

14.2.5.1 Definition

process class MAIN_PROGRAMj
begin

while true do detachj
end MAIN PROGRAMj

14.2.5.2 Semantics

It is desirable that the main component of a simulation model, i.e. the
SIMULATION block instance, should respond to the sequencing procedures
of section 14.2.4 as if it were itself a process object. This is
accomplished by having a process object of the class "MAIN_PROGRAM" as a
permanent component of the quasi-parallel system.

The process object will represent the main component with respect to
the sequencing procedures. Whenever it becomes operative, the PSC will
immediately enter the main component as a result of the "detach"
statement (cf. section 9.3.1). The procedure "current" will reference
this process object whenever the main component is active.

A simulation model is initialized by generating the MAIN_PROGRAM object
and scheduling an active phase for it at system time zero. Then the PSC
proceeds to the first userdefined statement of the SIMULATION block.

14.2.6 Utility procedures

14.2.6.1 Definition

procedure accum (a,b,c,d)j name a,b,cj

begin a:= a+c * (time-b)j
b·- timej
C:= C + d

end accumj

14.2.6.2 Semantics

long real a,b,c,dj

149

A statement of the form "accum (A,B,C,D)" may be used to accumulate the
"system time integral" of the variable C, interpreted as a step
function of system time. The integral is accumulated in the variable A.
The variable B contains the system time at which the variables were
last updated. The value of D is the current increment of the step
function.

150
15 Separate compilation

A user defined procedure or class declaration can be compiled as a
separate module. Other programs and/or separate modules can make
references to a separately compiled module by means of an <external
declaration>.

15.1 Syntax

<SIMULA source module>
.. _ <external head> <program>

<external head> <procedure declaration>
<external head> <class declaration>

<external head>
<empty>
<external head> <external declaration>

<external declaration>

<external
.. -

<kind>
.. -

<external procedure declaration>
<external class declaration>

procedure declaration>
external <kind> <type>
procedure <external list>
external <kind> procedure <external
external -<kind> procedure <external
<procedure binding>

<empty>
<identifier>

<external class declaration>
external class <external list>

<external list>
<external item>
<external list> • <external item>

<external item>

list>
item>

<identifier>
<identifier> <external identification>

151

152

<external identification>
<string>

<external binding>
is <procedure declaration>

15.2 Semantics

An <external declaration> is a substitute for a complete declaration of
the corresponding class or procedure. An uncommitted occurrence of a
standard identifier within a separately compiled class or procedure
refers to the implicit declaration of the identifier at the outermost
level of the program. Note, however, that the use of the standard
procedure detach in a separately compiled class matches the implicit
declaration within that class.

The <kind> of an <external procedure declaration> may indicate the
source language in which the separately compiled procedure is written
(e.g ASSEMBLY, COBOL, FORTRAN, PL1 etc.). The <kind> must be empty if
this language is SIMULA. A non-SlMULA procedure cannot be used as an
actual parameter corresponding to a formal procedure.

The <identifier> of an <external item> must be identical to the
<identifier> of the corresponding separately compiled procedure or
class. An <external item> may also introduce an <external
identification> to identify the separately compiled module with respect
to an operating system.

If the <identifier> of an <external class declaration> is referenced
before the body of the separately compiled procedure or class or in a
<program> block prefix, then this identifier must be declared in the
<external head>.

In the case that an external procedure declaration contains a
<procedure binding>, the procedure body must be empty. The dummy
declaration of the procedure given in the <procedure binding> will
define the usage of the procedure within the Simula source module, thus
the external procedure is fully declared with respect to type and order
of the parameters while the algorithm of the procedure body is given in
a separate (non-Simula) module.

Example:

external class B, C;
B class E(F); ref (C) F;
begin external class D;

end;

external procedure A;
ref (D) G;
G:- new D;
A(G);

153

As a consequence of paragraph 2.2.1 all classes belonging to the prefix
chain of a separately compiled class must be declared in the same bl ock
as this class . However, this need not be done explicitly; an <ext ernal
declaration> of a separately compiled class may serve as an implicit
declaration of all classes in its prefix chain. Possible conflicts
between explicit and implicit declarations are automatically resolved
by the system provided that the external items in question refer to the
same separately compiled procedure or class, otherwise such conflict
constitutes an error.

An implementation may restrict the number of block levels at which an
<external class declaration> may occur.

154

16 Extensions to SIMULA

This section contains extensions to SIMULA which implementors are
recommended to include. Extensions other than those listed here are
allowed only if the following conditions are fulfilled:

155

a) The implementor provides a translator program, which takes
any SIMULA program accepted by that SIMULA implementation
and translates it into a readable Common Base program in
recommended hardware representation. The resulting Common
Base program may contain a minimum of calls to non-SIMULA
procedures in cases where this is absolutely necessary due
to a lack of facilities in SIMULA (e.g. TIME and DATE
procedures).

b) Each SIMULA implementation has a switch which must be set
to make the compiler accept programs with extensions not
recommended in the Common Base SIMULA.

A SIMULA implementation which allows extensions not in the
Common Base, shall give warning messages for the use of
such extensions.

c) All such non-SIMULA extensions should be reported to the
SIMULA Standards Group, which will send such reports to
the SSG members for comments. Responses from SSG members
will be sent to the originator through the SSG.

156

157

17 Features being investigated

The SIMULA Standards Group and the SIMULA Developement Group are
studying this definition in order to clarify possible obscure points or
to recommend extensions to the language. At the time of print, the
following features are under investigation:

- class directfile

- transplantation

158

18 References

1. P. Naur (Ed.): Revised Report on the Algorithmic Language
ALGOL 60. CACM., vol. 6, No.1, 1963, pp 1-17.

2. O-J. Dahl, K. Nygaard: "SIMULA - A Language for Programming
and Description of Discrete Event Systems. Introduction and
User's Manual." Norwegian Computing Center, Oslo.

3. C.A.R. Hoare: "Record Handling." Lectures delivered at the
NATO Summer School, Villard-de-Lans, September 1966
(Academic Press.)

4. M. Abramowitz & I. A. Stegun (ed): Handbook of Mathematical
Functions, National Bureau of Standard Applied Mathematics
Series No. 55, p. 952 and C. Hastings formula (26 .2.23) on
p. 933.).

5. "Minutes from Annual Meeting of SIMULA Standards Group May
1970". Publication No. s-18, July 1970, Norwegian Computing
Center, Oslo.

6. "Minutes from the Annual Meeting of the SIMULA Standards
Group" from the following dates (NCC publication no) :

January, 1973 (S-4'5)
September, 1973 (S-66)
October, 1974 (S-70)
September, 1976 (S-82)
September, 1971 (S-611)
September, 1978 (S-625)
September, 1979 (S-664)
August, 1980 (S-686)
September, 1981 (S-704)
September, 1982 (S-726)
September, 1983 (S-741)

159

.'';

,.~

';. ,

160

161

19 Alphabetic index of syntactical units

For each syntactical unit, the section of definition is given. AR
indicates that the definition is found in the "revised" ALGOL report
(1). The numbers of the sections in this document where the syntactical
unit is referenced are also indicated. The metalanguage brackets < and>
have been removed from the syntactic units.

=/=

accum procedure
activate
activation clause
activation statement
activator
active
actual parameter
actual parameter part
after
ALGOL block
ALGOL conditional statement
ALGOL declaration
ALGOL relation
ALGOL statement
ALGOL type
ALGOL unconditional statement
antithetic drawing
antithetic pseudo-random numbers
application package
arithmetic expression
arithmetic types, extended
arithmetic value assignment
array
array declaration
array identifier 1
array list
assignment
assignment of object references
assignment of text references
assignment of text values
assignment statement
at
attached
attribute identification
attribute identifier
attribute of a clas~
attribute of a text

6.1, 10.5
6.1.2, 10.6
5.4
5.4

14.2.6
14.2.3.1
14.2.3.1
6, 14.2.3.1
14.2.3.1
9.2
7.1.1
7.1.1, 4.3.1, 6.4.1
14.2.3.1
AR(6.4.1)
fl
AR(2.1)
AR(5)
AR(6)
AR(3.1)
AR(fl)
12.1
12.1
1.2
AR(4.1.1, fl.2.1, 14.2.3.1)
3.2.5
6.1.2.1
3.1, 8.1
3.1
7.1.1
AR(3.1)
6.1.2
6.1.2.2
10.5
10.6
6, 6.1.1
14.2.3.1
9.1
7
7.1.1
2.2
10 . 1

162

attribute protection
BASICIO
becomes
before
begin
begin with class identifier in
bi-directional circular list
binding
blanks, a text procedure

2.3
11

6.1.2
14.2.3.1
2.1

front of it
14.1
1.3.2
10.4

2.2.2

blanks, deletion at the end of a
blanks

text string 10.7

block
block head
block instance

10.8.1
6.4.1
AR(2.1)

1.3.2

block
block
block

instance,
level
prefix

state of execution 9.1
2.2.1
6.4.1

block with class identifier in
Boolean
Boolean expression

call
call by name
call by reference
call by value
cancel of Simulation
card input
cardinal, attribute of Head
chain, operating
char
character
character constant
character constant delimiter
character designation
character expression
character input
character output
character quote
character relation
character string

front of it 2.2.2

3.1
AR(4.1.1, 4.2.1, 4.3.1,
4.4.1, 6.2.1, 6.3.1)

9.2.1
8.2, 8.2.3
8.2, 8.2.2
8.2, 8.2.1
14.2.4
11, 11.1.2
14.1.4

9.2
3.2.2.1
1.3.6, 3.1
4.2.1
3.2.4.2
4.2.1
4.2.1,4.1.1
11.2.2
11.3
3.2.4.2
5, 5.1.1
1.3.6

characters, internal representation 3.2.2.1

circular list structure 14.1

class
class bodies, state of execution
class body
class declaration
class identifier

2.1, 15.1

9.1
2.1
2.1, 15.1
2.1,3.1,4.3.1,5.3. 1,6.4.1,
7.2.1

class identifier in front of begin 2.2.2
clear, attribute of Head 14.1.4

close, attribute if directfile
close, attribute of file
close, attribute of printfile
COBOL
collating sequence
corrrnent
comparison of characters
comparison of reference variables
comparison of text references
comparison of text values
comparison of texts
compound tail

11.4
11.1.2

11.5
1.1
3.2.2.1
1.6
S.l
5.4
10.5
10.6
5.2.1
AR (2. 1)

concatenation 2.2.2, 6.3.2
conditional arithmetic expression 4.1.2
conditional object expression, qualification of 4 . 3 . 2 . 1
conditional statement 6
connected
connection
connection block 1

connection block 2

7.2.2
7, 7 .2
7.2.1
7.2.1

connection blocks, state of execution of 9.1

connection part
connection statement
conctant declarations
control of the execution flow
controlled statement
controlled variable
dataset handling
de-editing of text string
debugging
decimal item
declaration
decomposition

7.2.1
0 , 7.2.1
3.2.0
9
n.2.1
6.2.1
11.
10 .9
1.1
10.8.1
2.1

default initialisation of variables
1. 3.2

3.2.4

defining language
delay

1.5
14.2.3.1

deletion, automatic of enclosed block instance 9.1
denotes 6.1.2

designational expression
detach
detached
detached for prefixed bocks
dice
digit
direct access file
directfile, subclass of fi l e
discrete, random real genera tor
disk direct access
do
dot notation

AR(4.1.1)
4.3.2.2, 9.2.1
4.3.2.:::, 9. 1

6 .3.2
12.
3.2.2 .2 , 10 . 8 . 1
10.8.1, 11, 11 . 4

11. 1.2 , 11 . 4
12 .2
11. 4
6 . 3 . 1, 7 . 2 . 1, 11
7,7.1.2

16 3

164

draw, random boolean procedure
durrrny statement
dynamic instance
dynamic scope of objects
eject, atribute of printfile
else
empty, attribute of head
empty

enclosing of block instances
end
end comnent
end of file in input
endfile, attribute of directfile
equality between text values
erlang, random real procedure
event notice
evtime, attribute of process
execution flow, control of
exponent

12.2
6
2.2
9.1
10.10, 11.5
4.2.1, 4.3.1, 4.4.1
14.1.4
2.1, 7.2.1, 8.1,
14.2.3.1, 15.1
9.1
2.1
1.6
11.2.2
11.2.2, 11.3, 11.4
10.6
12.2
14.2
14.2.2
9
10.8.1

exponential disribution
expression

random generator
4.1.1,

12.2
7.1.1

extended arithmetic types
extensions, recommended
external
external class declaration
external declaration
external head
external identification
external item
external list
external procedure declaration
false
features being investigated
field, hidden attribue of outfile
file attribute close
file attribute open
file handling
file subclass directfile
file, a SIMULA class
final operations
follow, attribute of link
for
for clause
for list element
for right part
for statement
formal parameter, qualification
formal parameter part
formal parameters of name mode

3.2.5
16
15.1
15.1
2.1, 15.1
15.1
15.1
15.1
15.1
15.1
3.2.4
17
11.3
11.1.2
11.1.2
11
11.4
11.1
2.1
14.1. 3
6.2.1
6.2.1
6.2.3
6.2.1
6, 6.2.1
4.3.2.1
AR(2.1, 1\.1)

8.2.3

165

formal parameters of reference mode 8.2.2
Fortran 1.1
fraction 10.8.1
function designator 4.2.1,4.3.1,4.4.1,7.1.1
function, qualification of 4.3.2.1
garbage collection, effect on block life span 9.1
general purpose languages 1.1
generality
getchar of a text
getfrac of text
getint of text
getreal of text
go to statement
goal
grouped item
groups
head, subclass of linkage
hidden
histo, utility procedure
histogram presentation
hold of Simulation
i/o

ident ifier
identifier list
identifier 1
idle, attribute of process
if
if clause
image
image output
in
inchar, attribute of infile
index of syntactical units
infile, subclass of file
infrac
inint, attribute of infile
initial operations
ini tialization

1.1
10.3
10.9
10.9
10.9
6, 9.3.')
1.1
10.9.1
10.8.1
14.1.4
2.3.2, 2. 3.2.2
2.2
13
111.2.4
1.3.7, 11
AR (2. 1, 4. 1. 1, 7. 1 . 1, 15. 1)

AR(8. 1)

7.1. 1
14.2.2
4.2.1, 4.3.1, 4.4.1
4.2.1, 4.3.1, 4.4.1, 5
11
11.3
5.3.1
11.1.2, 11.2.2
19
11.1.2
11.2.1
11.2.1
2.1
3.2.7

initialization of text position indicator 10.3
initialization of variables
inner
inner part
input
input of character
input of integer
input of real
input of text
input-output
inreal, attribute of infile
inspect

3.2.4
2.1
2.1
1.3. 7 ,11.1.2
11.2.2
11.2.1
11.2.1
11.2.1
11
11.2.1
1.3.5, 7.2.1

166

instantaneous qualification
integer
integer input
integer item
integer output
integer, random generator
intext, attribute of infile
into, attribute of link
introduction
is

4.3.2.4

3.1
11.2.1
10.8.1
11.3
12.2
11.2.1
14.1.3
1

5.3.1

IS0-7 character code
iteration

1.7, 3.2.4.1

6.2

kind 15.1

~
label
label inside for-statement
lastitem, attribute of infile
length of a text

6.3.1, 8.1
2.1,4.1.1,6.2.1,6.4.1,7. 2 •1

6.2.6

letter
level of prefix
line output

11.1.2
10.2
3.2.2.2
2.2.1
11.3

line printer output 11, 11.5
linear, random real procedure 11.5, 12.2
lines per page, hidden attribute of printfile
link, attribute of Simset 14.1.3

linkage attribute prev
linkage, attribute of Simset
list processing

14.1.2.1,
14.1.2
1.3.5

list structure, circular 14.1

11, 11.5

14.1.2.2

loc, hidden attribute of directfile 11.4
local object 4.3.1, 4.3.2.3
local object, qualification of 4.3.2.1
local sequence control 9.2
local to, property of block instances 9.1

local variable 3.2

location, attribute of directfile 11.4

long real 3.1, 3.2.5.2

loop 6.3

loop, for statement 6.2

LSC = local sequence control 9.2

main block 6.4.1

main of a text 10.2

main part 2.1

main program 9.2

main program of Simulation 14.2, 14.2.5

metalanguage 1.5

mode part 8.1

monte carlo simulation 12

more of a text 10.3

~
8.1

167

name mode parameters 8.2.3

name part 8.1

negexp, random real generator 12.2

new 4.3.1

new line output 11.3

new text generation 10.4

nextev, attribute of process 14.2.2

none 4.3.1

normal, random real generator 12.2

notext 3.2.4, 4.4.1, 5.4.2

notext.length 10.2

notext.main 10.2

notext.pos 10.3
numeric item 10.8.1

numeric output 11.3

numeric values of text 10.8

numeric values, conversion of text strings 10.10
object 1.3.3, 2.2

object end 9.2.3
object expression 11.1.1,4.3.2, fi.2.1, 7.2.1,

14.2.3.1

object for list
object for list element
object generator
object generator, qualification
object reference
object reference assignment
object reference relation
object relation
open, attribute of directfile
open, attribute of file
open, attribute of printfile

6.2.1
6.2.1
4.3.1, 6

of 4.3.2.1
3.1
6.1.2.2
5.4.1
5.3.1, 5
11.4
11.1.2
11.5

OSC = outer sequence control
otherwise
otherwise clause
out, attribute of link
outchar, attribute of outfile
outer sequence control

9.2, 9.2.1
7.2.1
7.2.1
14.1.3
11.3

outfile, subclass of file
outfix, attribute of outfile
outft'ac, attribute of outfile
outimage, attribute of directfile
out image , attribute of outfile
outimage, attribute of print file
outint, attribute of outfile
output
output of character
output of image
output of integer
O'ltput of line

9.2
11.1.2, 11.3

11.3
11.3
11.4
11.3
11.5
11.3
1. 3. 7
11.3
11.3
11.3
11.'1

168

output of real
output of text
output preparat ion
outreal, attribute of outfile
outtext, attribute of outfile
own of Algol 60
pages, division of output into

11.3
11.3
14.2.6
11.3
11.3
3.2
11.5

parallel sequencing, see quasi-parallel sequencing 9.2
parameter delimeter 8.1
parameter transmission 8

by value, reference, name 8.2
2.2

parameter transmission
parameters of a class
parameters to a procedure
part compilation
passivate of Simulation
pointer
Poisson, random real generator
pos of a text
pos of an infile
position indicator of a text
precede, attribute of linkage
precision, double or half
pred, attribute of linkage
predecessor in linked list
prefix
prefix level
prefixed block

8
15
14.2.4
1.3.5,
12.2
10.3
11.2.2
10.3
14.1.3
3.2.5
14.1.2
14.1.2
2.1
2.2.1
6.4.1

3.2

prefixed blocks, state of execution 9.1
prev, attribute of linkage 14.1.2.1, 14.1.2.2
printfile, subclass of outfile 11.1.2
prior 14.2.3.1
procedure 8.1, 15.1
procedure body, state of execution 9.1
procedure declaration
procedure heading
procedure identifier
procedure identifier
procedure parameters
procedure statement
process, activation of
process, attribute of SIMULATION
program
program control

15.1
8.1
AR (6. 1 . 1, 8. 1)

7.1.1
8
6, 7.1.1
14.2.3
14.2, 14.2.2
15.1
9

program regarded as a quasi-parallel system 9.2
protected 2.3.1, 2.3.2.1
protection part 2.3.1
protection specification
PCS = program sequence control
pseudo random number generation
pseudo random numbers, antithetic

2.3.1
9.1, 9.2.1
12
12.1

purpose
put char of a text
putfix of a text
putfrac of a text
putreal of a text

~
qualification
qualification, instantaneous
qualified object

1.1
10.2
10.10
10.10
10.10
4 .3.1
3.1, 3.2.8, 4.3. 2.1
4.3.2.4
4.3.1

quasi-parallel process in Simulation 14.2.2
quasi-parallel sequencing 9.2
queue handling 14.1
queue, making, emptying, size 14.1.4
quote for text and charater constants 3.2.4.1, 3.2.4.2
randint, random integer generator 12.2
random drawing 12
random drawing, antithetic random numbers 12.1
rank, collating sequence 3.2.2.1
rank, attribute if Simulation 14.2.1.1
reactivate
real
real input
real item
real output
real, random generator
ref
reference
reference assignment
reference comparator
reference expression
reference for list
reference for list element
reference left part
reference mode parameters
reference relation
reference right part
reference type
reference variables, relations on

14.2.3.1
3.1
11.2.1
10.fl. l

11.3
12.2
~ . 1, 4.3.2
1.'1.5, 3.2
Ii.l.l

'5.4.1
4.1.1, 6.2.1

6.2.1
6.2. 1
6.1.1
8 .2.2
5, 5.4.1
6 .1.1

3.1
3.1, 5.3, '5.4

references 18
relation 5
relations between text references 10.5
relations between text values 10.6
relational operator AR(5.1.1, 5.2.1)
remote accessing
remote identifier
resume
scheduling clause
secondary storage
secllrity
separate compilation

1

7.1.1
9.2.2
14.2.3 . 1
11

1.1
15

169

170

sequencing 9
sequencing of event notices in a Simulation 14.2.4
sequencing set, SQS, attribute of Simulation 14.2
sequential file 11
set handling 14.1
set, making, emptying, size
setpos of a text
short integer
sign
sign part
simple character expression
simple object expression

simple text expression

simple text value
simple timing clause
simple variable 1
Simset, system class
Simula 67
Simula Development Group
Simula source module

14.1.4
10.3
3.1, 3.2.5.1
10.8.1
10.8.1
4.2.1, 5.1.1
4.3.1, 5.3.1,
7.1.1
4.4.1, 5.4.1,
7.1.1
4.4.1
14.2.3.1
6.2.1, 7.1.1
14, 14.1
1.3
17
15.1
1.4, 17

5.4.1,

6.1.1,

Simula Standards Group
Simulation, system class
spacing, attribute of printfile
special application languages
specification

1.3.3, 14, 14.2
11.5

specification part
specifier
split body

1.1, 1.2
8.2
AR(2.1,8.1)
8.1
2.1

SQS , sequencing set, attribute of Simulation 14.2
square distribution random generator 12.2
standardisation 1.4
Standards Group of Simula 1.4, 17
statement 2.1, 6,6.2.1, 6.3.1,

7.2.1

statistics collection and output 13
statistics
step
string

collection, time integral 14 . 2. 6
6. 2.1

string of characters
strip, text procedure
structured programming
sub , t ext pr ocedure
subblocks, state of execution of
subclass
subordinate type
subscript list
sub text
sue, attribute of linkage

AR(4.4.1, 15.1)
1.3.6, 4.4 .2
10.7
1. 3. 2
10 .7
9 . 1
1.3. 3 , 2. 2.1 , 3. 2.8
3. 2.8
AR(7 . 1.1)
10.7
14.1.2

succesor in linked list
switch
switch identifier

14 .1. 2
8 .1
AR(7. 1. 1)

syntactical units, alphabetical index 19
sysin
sysout

11
11

system classes Simset and Simulation 14
tape handling 11
terminal input
terminated
terminated, attribute of process
terminate_program
text
text attribute getchar
text attribute getint
text attribute getreal
text attribute length
text attribute main
text attribute more
text attribute pos
text attribute putchar
text attribute putfrac
text attribute putint
text attribute putreal
text attribute setpos
text attributes
text constant delimiter
text expression
text generation
text input
text objects, deletion of
text output
text procedure
text procedure
text procedure
text procedure
text quote
text reference

blanks
copy
strip
sub

assignment

11
4.3.2.2, 9 . 1
14.2. 2
13
3.1
10.3
10.9
10.9
10 .2
10. 2
10 . '\
10.3
10 . 3
10.10
10 .10
10.10
10.3
10 .1
3. 2 .4.1
4. 1.1, 4. 4 .1
10 . 4
11.2.1
9 .1
11.3
10.4
10.4
10.7
10 .7
3. 2.4.1
10.5

reference relation text 5 . 4. 1, 10 . 5
text strings, conversion from numeric values 10.1 0
text strings, conversion to numeric values 10 . 9
text strings, de-editing 10.9
text strings, editing 10.10

171

text value 4.1.1 , 4. b . l, 5. 2. 1, S.l.l ,
6 . 2 .1

text value assignment
t ext, removing of f inal blanks
text length
text position indicator
texts, division of

10.6
10 .7
10.2
10 . 3
10.7

172

texts, referencing parts of
texts, subtexts of
then
this
this in classes prefixing blocks
time integral accumulation

10.7
10.7
4.2.1, 4.3.1, 4.4.1
4.3.1
6.3.2
14.2.6

timing clause 14.2.3.1
transput 1 .3.7, 11
tree of program execution flow 9.2
type 3.1, 8.1, 15.1
type conversion 6.1.2.1
type conversion between integer and real 6.1.2.1
type declaration
type list
uniform, random real generator
unlabelled basic statement
unlabelled block
unlabelled compound
unlabelled prefixed block
until
value assignment
value eKpression
value for list
value for list element
value left part
value parameters to procedures
value part
value right part
value type

3.1
AR(3.1)

12.2
6
AR(6.!I.1)

AR(6.4.1)

6.4.1
6.2.1
6.1.1
4.1.1,6.1.1,6.2.1
6.2.1
fi.2.1
6.1.1
8.2.1
AR(2.1, 8.1)
6.1.1
3.1

values, numeric, conversion to text strings 10.10
variable 4.2.1, 4.3.1, 4.4.1, fi.l.l,

6.2.1, 7.1.1
variable identifier 1 7.1.1
variable, qualification of 4.3.2.1
virtual
virtual part
virtual quantities
wait of Simulation
when
when clause
while
while statement

2.1
2.1

2.2
14.2.4
7.2.1
7.2.1
6.3.1
6, 6.3.1

