
152 Chapter II . Common symbolic language for computers I Langage symbolique commun pour les machines a caleul numerique 

G Symposium on automatic programming 

Coordinator A. J. Per lis, Carnegie Institute of Technology, Pittsburgh, Po. (USA) 

1. Introduction 

by A. J. Perlis 

Automatic programming (AP) is concerned with trans
forming problem oriented command languages into machine 
language codes. The solution of a problem generally begins 

with the statement of an algorithm which must be given 
in some notation, preferably one which provides full ope
rational and descriptive power and uses an optimum number 
of symbols. The need to transform this into machine code 
itself leads to algorithms which should be written in a pro
blem oriented language. This gives a recurrence procedure 



and implies that a few problem-oriented languages are 
sufficient. 
The first problem oriented languages (including ALGOL) 
have been designed for the algorithms of numerical mathe
matics. Their forms are essentially the same, though de
tails often depend on the computer used. The only descrip
tions so far available of the translation processes are given 
in machine language partly because the problem is new, 
and partly because the algorithms are more complicated 
than those for which ALGOL was designed. The algorithms 
are in fact close to those needed for translating natural 
languages and an AP language to describe them would 
require: 

1) Organization of data into lists whose structure and size 
cannot be specified a priori; 

2) Recursively defined functions whose domains may in
clude data organized as in (1); 

3) Specification of functions as sets over which a data 
dependent priority scheme operates as a selection prin
ciple c.f. Markov's definition of algorithms; 

4) Dynamic generation of algorithms; 
5) Integer arithmetic. 

In addition there are code translation processes which arise 
when algorithms are combined, for example the construc
tion of assembly systems which is one of the most difficult 
tasks in AP. There are problems associated with the re
duction of unnecessary duplication for entering subroutines 
and with the specification of unambiguous procedures for 
communicating information to subroutines. 
Finally, AP systems should permit dynamic intervention, 
possibly using checking circuits, for example when critical 
situations of low probability arise. Attention must also be 
given to diagnostic procedures to allow for program testing 
when there is a translation between the original program 
and the machine code realisation. 

2. Code to code translation systems 

by A. W. Holt (USA) (read by A.]. Perlis) 

Present automatic programming systems, while of great 
value, have shortcomings which are due to the basic 
approach employed. They are usually prepared by the com
puter manufacturer, and once written they are almost as 
difficult to change as the computer itself. The individual 
user rarely produces his own system, because the process 
is long and costly. 
Work with UNIVAC I and II has shown that the trans
lation program should not be written directly in machine 
code, but in terms of auxiliary programmed components. 
If such components were supplied by the manufacturer, 
users could develop their own systems as they obtain ex
perience in their particular problems. It also becomes pos
sible to translate many problem codes into a particular 
machine code, or vice versa. 
Analysis of the translation process has led to the division 
of the UNIVAC system into a "system core" containing a 
few basic components and a "translating library" whose 
components are used with varying frequency. Examples 
are: 

A) Core functions: 

1) Overall control and the determination of priority 
amongst functions to be performed; 

2) Services such as 
a) Dictionary look up 
b) Contextual and absolute substitutions 
c) Determining class membership 
d) Determining order relations 

3) Address interpretation, allowing chains of indirect 
reference for assembly. 

G Perlis· Symposium on automatlc programming 153 

B) Library functions: 

1) Decoding parenthesis structure into a set of priority 
numbers 

2) Providing translating dictionaries 
3) Economising the assembled code 
4) Applying formal rules to strings of digits in certain 

machine instructions 

Translations typically proceed by a chain of steps in each 
of which a core element is present, controlling one or more 
library elements. The problem is given initially in problem 
code and must be reduced to computer code. The library 
elements are largely det~rmined by the problem code in 
the early steps and by the machine code in the later steps, 
while the same core element may be used in many steps. 

3. A variation of the ALGOL language 

by H. D. Huskey (USA) 

Some modifications to ALGOL are proposed, with parti
cular attention to the problems of using the language 
with a small computer and of expressing mathematical 
formulae. There is no change in the symbols used, but the 
logical relations of some formulae are changed. A basic 
limitation to the attempt to use normal mathematical 
notation arises from the need to write all symbols at a 
single level in each line, i.e. to avoid superscripts and sub
scripts. 
ALGOL is extended by defining the value of an expression' 
E as a sequence of bits with particular values 1,0 if all the 
bits are 1 or ° respectively. An expression El may have a 
value other than ° or 1 and may then be used in the ex-
pression 

El"V = : X 

which allows the use of El as a mask to be applied to V. 
Another extension is the form of conditional statements, 
namely 

A=B:A=:D 

C=:D, 

which means that if A = B then A replaces D but if A =1= B 
then C replaces D. This may be placed on two lines for the 
sake of legibility in the manuscript. 
Finally there is the problem of dimensioning. Declarations 
are added in the form 

, A(5), 

which states that there are five items A l , A 2 ·•• A5 • Simi
larly there may be multi-dimensional declarations, such as 

,A(10,25), 

Such statements may be distinguished from subscripted 
variables by the punctuation marks which appear on each 
side. This maybe used to form statements, such as the follow
ing for matrix multiplication 

S 1: a (10, 20), b (20, 10), c (10, 10) 

[[0 =: c[i,jJ, [c[i,jJ + a[i,kJ X b[k,jJ 

=: c[i,j]] k = 1(1) 20J c = 1(1) 10J j = 1(1) 10 

4. Algorithms and machine logic for analysing economic 
activity 

by N. E. Kobrinski (USSR) 

1) The analysis of the activity and management of an 
industrial enterprise is based on the study of information 
obtained both in the course of manufacturing processes 
and from outside. As a rule, the information "word" 
comprises two elements: the classification group and the 
base. The first defines the economic attributes, while the 
second is a concrete or an abstract number. 



154 Chapter II . Common symbolic language for computers I Langage symboliqce commun pour les machines it calcul numerique 

2) Accounting and planning algorithms are obtained by 
means of complex operations which involve both the 
classification groups and bases. These operations require 
a comparatively small set of standard operators. 

3) The standardization of operators allows the design and 
characteristics of the machines for economic estimation 
and calculation to be optimised taking into consideration 
the scope of processed information, the predetermined 
form for the results and the reliability, cost and service 
conditions of the machine. 

4) The realization of the above points is illustrated in a 
machine intended for economic analysis, which is at 
present under development. 

S) The economic efficiency of a machine is determined not 
only by the reduction of labour expended in processing 
information but also by the reduction of the time lag in 
the data processing circuit. 

6) Further development of means of automation for man
agement control at manufacturing plants demands the 
use of mathematical schemes which are adequate for 
actual management systems, and of algorithms which 
ensure the realization of an optimum management proc
ess. It is also necessary to proceed with further investiga
tions on the economic efficiency of machines intended 
for the automatic management control of industrial 
plants. 

5. Autoprogrammation pour Gamma 60 

par Mme. J. Poyen (France) 

L'auteur a presente une description preCIse du langage 
et de la syntaxe A.P.3, et un bref aperc;:u des possibili
tes de ce langage. A.P.3 est une programmation auto
matiquc de type algebrique, destinee a. l'ecriture de pro
bleme scientifiques, et conc;:ue a. l'usage du calculateur 
Gamma 60 de la Compagnie de Machines Bull. Elle est 
assez proche du langage courant pour que tout lecteur 
familier avec les expressions mathematiques puisse com
prendre d'embJee la signification de tout programme. On 
peut inclure dans la bibliotheque de sous-programmes 
d'A.P. 3, tous les sous-programmes ou programmes exist ants 
dans un bureau de calcul, qu'ils soient ecrits en langage 
machine, avec un code symbolique moins evolue ou avec 
I'A.P.3Iui-meme. 
Les elements constitutifs des programmes d'A.P.3 sont 
l'alphabet latin majuscule et minuscule, les chiffres arabes 
et les signes d'operation. Un probleme se presente sous la 
forme de phrases, composees a. l'aide des symboles defines 
precedement. Ces symboles peuvent etres groupes en mots. 
Certains de ces mots sont les mots «cles» et les mots com
plementaires qui constituent «l'ossalure» de la phrase. 
D'autres sont utilises pour designer les operandes et les 
sous-programmes enregistres. 
La nature des operandes dans un programme A.P.3 est 
precisee par une phrase qui utilise Ie mot cJe «Definition ». 

Les operandes peuvent etre 

des nombres reels en simple ou double precision 
des nombres complexes en simple precision 
des matrices, vecteurs, etc. 
des indices 
des quantites indicees 

On ecrit un formule sous la meme forme que les operandes 
scient des nombres reels ou complexes, des matrices, etc. 
Aucune precision n'est necessaire quant a. la dimension des 
operandes utilises. Elle ne sera indiquee qu'au moment de 
l' exploitation. 
Les autres mots cJes precisent par exemple les ordres de 
saut, de commande a. distance, de preparation, d'entre et 
de sortie, et les ordres sous-programmes. On peut se servir 
de ces mots pour commander une organisation que1conque 
du programme. 

Pour la mise au point du programme A.P. 3, l'utilisateur a a. 
son disposition des outils puissants pour la detection et la 
correction des erreurs. En cas de correction seule la phrase 
erronee doit etre reintroduite et non l'ensemble du pro
bleme. 

6. H. Riesel (Sweden) 

The "alpha code" system for the Swedish computers BESK 
and FACIT has certain features which have not been 
mentioned here. A facility "order control" causes the 
program to punch out sufficient information to identify the 
alpha code orders being obeyed. This allows the diagnosis 
of obscure errors in a new program. Similarly if a forbidden 
operation is attempted, sufficient information is printed to 
identify the fault. 
The system includes a means for compiling routines written 
in alpha code which guards against a "collision" in the 
names given to routines by different programmers. Finally 
there are orders for automatic routing of instructions and 
data which are of great value with a small high speed store. 

7. The cellar principle for formula translation 

by F. L. Bauer and K. Samelson (Fed. Rep. of Germany) 

Within the framework of an algorithmic formula language 
such as ALGOL there are statements of very different com
plexity relative to the machine code. Some are practically 
identical to single machine instructions and need not concern 
us further. On the other hand, a real problem is posed by 
bracket structures which cannot simply be evaluated sequen
tially in terms of machine instructions, of which arithmetic 
expressions are an important case. Rutishauser proposed a 
translation method starting with the innermost brackets
pair, which however requires multiple, or at least back and 
forward, reading of the formula program. 
Brackets and addition symbols separate terms which can 
be evaluated individually. It follows that multiple scanning 
of the formula program can be' replaced by symbolwise 
sequential evaluation of formulae and an auxiliary store 
called the 'cellar'. Every symbol appearing is either evalu
ated immediately or, if this is not possible, it is stored in 
the cellar which works on a strict 'last in -first out' basis, 
Only the symbol entered last into the cellar is needed at 
each stage of the translation process and this symbol in 
conjunction with the next symbol of the formula determines 
the actions of the translator. 
Disregarding some special cases for the sake of simplicity, 
numbers and identifiers for variables can be evaluated 
immediately in terms of addresses. The first symbol 
(except numbers and variables) occurring in an arithmetical 
expression is entered into the cellar automatically and 
subsequent symbols are always tested against the upper
most cellar symbol. If the new symbol is not higher in 
precedence than the cellar symbol, the cellar symbol is 
removed from the cellar, and the corresponding machine 
instructions are attached to the sequence forming the 
program. When the new symbol is lower in precedence 
than the cellar symbol, the comparison process is repeated 
with the next cellar symbol. Finally, the new symbol is 
entered into the highest cellar position. An opening bracket 
indicates the necessity to store away an intermediate result. 
The opening bracket is entered into the cellar, and is 
cancelled out only by the corresponding closing bracket. 
Assignment of storage locations for intermediate results can 
be handled on a similar 'last in-first out' basis in a 
'numbers cellar'. 
Admission of functions and subscripted variables requires 
only slight extensions of the cellar principle as long as the 
value of the storage function of a subscripted variable is to 



be computed directly and completely every time it is 
needed. Since in the general case this requires multiplica
tions, it is time consuming, and cannot be tolerated for 
running subscripts in inner loops, where functions must 
be evaluated recursively using additions only. For general 
polynomial subcript expressions, this becomes rather com
plicated. Therefore, recursive evaluation has been generally 
restricted to subscript expressions which are linear in the res
pective running variable. This means that the translator must 
test for linearity, and provide for calculation of initial value 
and increment of the storage function of the subscripted 
variable outside the loop, and for addition of the increment 
by means of lines or otherwise inside the loop. Further
more, identity of increments for different subscripted 
variables should be established for efficient use of B-lines. 
The initial value and increment of the storage function may 
depend on other running variables belonging to exterior 
loops. In this case, the translator may again provide for 
recursive calculation. 

8. General Discussion 

S. Gorn (USA): ·With present techniques it may take 30 
man years to write a compiler (d. FORTRAN). With tech
niques now under development it may take 3 man years 
while in five years' time it may require only 3 man months. 

J. W. Carr I I I (USA) : Compilers can be written for anew 
machine with the aid of a compiler working on an existing 
machine, though ALGOL would need some additional 
facilities for this purpose. In this way no detailed machine 
language coding is necessary. 

J. W. Backus (USA): Much ofthe 30 man years quoted by 
Mr. Gorn for FORTRAN was spent in examining the prob
lem to obtain an efficient compiler. The use of a compiler 
to build a compiler is unlikely to give an efficient program 
and so a lot of time will still need to be spent to this end. 

J. V. Garwick (Norway): Small machines demand special 
techniques for compilers, including ALGOL compilers. It 
may be necessary to punch out the program at an inter
mediate stage using floating addresses, and to feed this 
information to the machine again at a later stage. 

M. Landau (Fed. Rep. of Germany): The problem of 
treating multi-dimensional arrays may be eased by the use 
of more elaborate modification systems. 

A. Caracciolo (Italy): A machine has been built with double 
modification, but it has been found that this has not 
significantly eased programming problems. 

K. Samelson: It is doubtful if multiple modifiers can help 
in the treatment of arrays unless the size of the array is 
a power of the radix used in the machine. Only a novel of 
storage could really help. 

H.J. Maehly (USA): In the past, machines have been built 
originally for "direct programming". It was found out later 
that this was too tedious and auxiliary routines-inter
preters, compilers, etc.-have then been written. This is 

G Perlis· Symposium on automatic programming 155 

not very efficient. Instead, we should either construct 
machines for which direct coding is extremely easy and 
simple or, as this seems almost impossible, plan our machines 
not only for fast computing, but also for fast and efficient 
code translation and compiling. In other words, the logical 
design of the machine proper and of its translating routines 
should be considered as an entity. 
The second remark concerns the influence of automatic 
programming on education. Program-oriented languages 
will conceal details of computing efficiency and problems 
of numerical stability. This has already been experienced with 
floating point arithmetics. It is certainly wrong and mislead
ing to say that automatic coding or the use of ALGOL 
could replace mathematical training. On the contrary, the 
purpose of automatic coding is mainly to allow the well
trained scientist and engineer to program for himself, 
without undue loss of time; This will be successful if and 
only if potential users of computing machines and of 
ALGOL translators are well trained in numerical analysis. 

A. J. Mayne (UK): Present developments in automatic 
programming still leave a need for many programmers, 
particularly for commercial and economic uses of computers. 
There is also a requirement for mathematicians who can 
classify computer problems into types which will each use 
a special language. In this language, any redundancy in the 
original statement of the problem will be avoided and a 
short statement will result which can be used as the basis 
of a program. Important problem types arise in statistics 
and some classification has already been attempted at the 
Rothamsted Experimental Station. 
There are ways in which programmers can still exercise 
ingenuity, particularly in the design of autocodes and in 
problems requiring continued modification of orders. It is 
probable that in future programmers will have to be more 
intelligent than at present whilst autocode users will need 
much less detailed knowledge of the machines than con
temporary programmers. 

K. Samelson: AP does not affect the need for mathematical 
analysis of the problem, and programmers must be educated 
to do this rather than to be coders. They should be enabled 
to write programs in a simple code and to use a computer 
as a code transformer. 

H. D. Huskey: Most great advances in mathematics have 
been made possible by improvements to notation. There 
is a need for improvement in the notation for AP, par
ticularly a requirement for a simple notation for simple 
actions. 

R. W. Bemer (USA): In any AP system care should be 
taken that the translation time does not exceed the pro
gram running time. This may involve a preliminary trans
lation from an external to an internal symbol, i. e. from 
a natural language code word to a machine code number, 
particularly for commercial application. 

H. J. Maehly: AP and data processing will require similar 
computers. There is a need for an intermediate AP language 
to ease translation problems and to allow the re-use of 
parts of compilers for different applications. 


	AP_Symposium-ICIP-1959_Page_1
	AP_Symposium-ICIP-1959_Page_2
	AP_Symposium-ICIP-1959_Page_3
	AP_Symposium-ICIP-1959_Page_4

