Computer Simulation:
A Simulation Language and Example

By
Ralph Edwin Love, Jr,

B.S. (Stanford University) 1957

THESIS

Submitted in partial satisfaction of the requirements for the degree of
MASTER OF SCIENCE
in
Electrical Engineering
in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

Approved:

Committee in Charge

JUL 20 1962

Deposiitod in THO UNIVerSity LiDIAIY e enssascons st sssmsios ssnssvonsssssevismsnisssimisaiiombunsnstnns i
Date Librarian

Chapter

1.
2.

(U8}

TABLE OF CONTIENTS

Introduction

BC NELIAC

2.1

N
n

N ORI
e AL &) T 3 B 8 S

DR

Introduction

Metalanguage

Flowchart

Declaration Lists

Variables

Ixpressions

Program Logic

Agsignment Statements
GO0 TQ Statements and SWITCH Statements
FOR Statements

DO Statements
Conditional Statements

N

e, o W Lo .

Ul & W

Intercom 500

3.1

L W W

302
3.3

Intercom 500 Computer

.1.1 Computer Organization
.1.2 Command Structure
.1.3 Operation Codes
Algorithm for Simulation
Conclua;onB'

Symbolic Intercom 500

u.l

4.2

Source Language
-Algorithm

20

Page

~N O &

10
10

13
13
14
14
16

17
17
17
20
20
22
23
36

36
38

308t

19672
303

TABLE OF CONTENTS (cont.)

Appendix ' Page
A. Transliteration Rules 40
B. Operation Code Limitations 42
C. Intercom Card Format Ly
D. Use of Machine Language Subroutines in
Symbolic Intercom 45
E. Symbolic Intercom 500 Assembler 47
F. BC NELIAC Simulation of Intercom 500 48
G. A Syntactical Flowchart for BC NELIAC 49

Bibliography 50

Chapter 1
INTRODUCTION

The term "simulation" can be defined as the replace-
ment of a given system by a substitute system, or "simulator",
which responds to the external environment in a similar way
as the original system. With the devclopment of large scale

' of systems has become a field

data processors "simulation'
of important interest aﬂd study. Simulation studies have been
made on such subjects as the nation's economy, mental activi-
ties of the braln and new digital computer systems. As digi-

tal computers become larger and faster, simulations will become
more accurate and complex in their representation of the origi-
nal system. In all simulation problems run on a computer it

is necessary to write a program, which consists of a set of
instructions to the computer, to direct the machine's operation
and perform the desired simulation.

A program may be written in the following forms: machine-
language coding, assembly language, or problem oriented languages.
In machine language coding each individual instruction is written
in the numerical language of the specific computer for which
the program was intended. The assembly language allows the pro-
grammer to refer to computer functions or to memory storage
addresses symbolically, with letters instead of numbers. Prob-
lem oriented languages allow the computer user to express a

program in terms of the problem, instead of the computer.

.To write programs in machine or assembly languages
requires the programmer know most of the machine or symbolic
instructions and thelr various ways of being modified. Since
the program has to be written on an instruction-by-instruction
basis, the process of developing a program can be complex,
tedious, and slow.

Problem oriented languages allow the computer user free-
dom to think in terms of the problem and less in terms of the
details of the computer. If the language used is machine
independent, then the programs written in the problem oriented
language will not become outdated as new computers are developed
and marketed.

The purpose of this paper is to describe a machine indepen-
dent, problem oriented language,BC NELIAC, which developed into
being a useful language for writing programs for simulation
problems. The most significant feature of BC NELIAC is that
programs coded in the source language are self-documenting. Four
other important features which make BC NELIAC useful for simula-
tion problems are partword operations, chain expressions,

ALGOL type source language, and fast compiling speed. Partword
operations and chain expressions are explained in the section on
BC NELIAC. Samples of the BC NELIAC source lénguage'are shown
throughout this paper and in the appendix. | . .

As a simulation example, the programming language, Inter-
com 500, used on the Bendix G-15 digital computer will be des-
cribed. This simulation problem was chosen for two purposes:
first, to consider the economy of operating a small scale Inter-

com Computer versus a large scale data processor simulating

Intercom 500, and second, to provide Intercom on a machine
with a larger memory and faster operating speed. As an intro-
duction to the paper a description of BC NELIAC will be given
after whioh an explanation of Intercom 500 will be developed.
Finally, the algorithm used in the simulation will be shown
and a modification to the Intercom 500 language will be pre-
sented.

Chapter 2
BC NELIAC

2.1 Introduction

BC NELIAC is a problem oriented language which is
used on the IBM 704 large-scale general purpose digital com-
puter. It was developed by students at the University of
California and is a modified version of the original Neliac
created at the Naval Electronics Laboratory in San Diego,
California. The most significant Teature of Neliazc is that
the translator is written in its own language. This feature
has allowed modifications to be made to Neliac quickly and
easily. One of the main distinctions of BC NELIAC is the
inclusion of some ALGOL-60 delimiters to the source lunguage.l

The delimiters not only make the program more readable
but allow the programmer greater ease in visualizing end writ-
ing the simulation program. Another important feature is
chain expressions which has been added to BC NELIAC to simpli-
fy operations involving character manipulations and make the
language less machine oriented.2 This is an account of the
more important features of BC NELIAC. The aim is to explain

rather than to define the language.

1. The ALGOL 60 delimiters were added to the Neliac Load
Source flow chart in the summer, 1961, by Ralph Love.

2. Chain expressions were added to the Neliac system in
January 1962, by Niklaus Wirth.

2.2 Metalanguage

The syntax of BC NELIAC is described using the ALGOL
metalanguage. It will be helpful to use this metalanguage
in the following explanation of BC NELIAC. The basic sym-
bols of this language are:

1:= Metalinguistic connective meaning "is defined to be”

| Metalinguistic connective meaning "or"

4 > Delimiting brackets which enclose metalinguistic

variables.

Metalinguistic variables afe a sequence of characters
enclosed in the delimiting brackets { > . The symbols used
for distinguishing the metalinguistic variables have been
chosen to be words describing épproximately the nature of
the corresponding varilable. This is done only for understand-
ing and has no technical significance. 1In a formula a mark,
which is not a varliable, connective, or a delimiter denotes
itself. Juxtaposition of marks and/or variables in a formula
signifies Juxtaposition of the marks and/or varisbles in the
language being defined. Metalinguistic formulze are composed
of metalinguistic connectives, variocbles enclosed within de-
limiting brackets, and an indication of Juxtaposition.

Metalinguistic Formula example.

{1dentifier) ::= { letter YK 1dentifier > letter |
{identifier >{digit >

{letter> ::= AlB|c|...|Y]|2

aigitd ::= ol1]2]...|8|9

6.

The formula for identifier is recursive since { identif'ier)
abpears on both sides of the "defining connective."” The
metalinguistic variable < letter > 4ndicates { identifier Y can
have the value A, or B, or C, etc. The marks {identifier)
{digit D> mean given some value of { identifier > another can be
formed by Juxtapositioning a value of the variable {digit) .

If the values of digit are the arabic numerials then the follow-
ing are illustrations of legitimate values of {identifier) :

A

AB

A1B

Y55A

XYZT799

The BC NELIAC reference language will be used in the

program examples of this paper. In some cases the symbols
used in the reference language are not avallable in the charac-
ter set used with the IBM 704 digital computer. Rules for
transliteration from the reference language to the hardware

representation are included in the appendix.

2.3 Flowchart

The logical segment of the BC NELIAC program is the flow-
chart. It consists of two parts; the first part is a declara-
tion or dimension list and the second part is the program logic.
In the declaration portion variables are declared and in some
cases set equal to initial values. The program logic portion

is the actual program which specifies the operations to be

performed on the variables defined

in the declaration list.

The program loglc consists of a sequence of statements, which

are separated bj punctuation marks

(usually commas.) By

labelling single statements, with an identifier and a colon,

they may be referred to from other

points of the program.

Normally statements will be executed consecutively. This

rule may be broken by introducing GO TO statements which

explicitly specify the next statement to be executed, or DO

statements which cause a subroutine to be executed and then con-

trol returned to the statement after the DO statement. The

processing sequence of the program may be shortened by condi-

tional statements, which may cause
skipped.
If the program logic portion
compound tail then a flowchart has
{ flowchart D> ::={declaration
A BC NELIAC program consists
The flowcharts are not independent
declared or labels occuring in any

certain statements to be

of a flowchart is called a
the form:

1ist > ; { compound tail) ..
of a sequenct of flowcharts.
logical segments. Variables

flowchart may be referred

to from within any arbitary flowchart; however, normally vari-

ables should be declared before they are called.

Flowchart example
A, B, C;
SUM: A+ B+ C>A ..
2.4 Declaration Lists

All variables used in the program except labels and indices

must be declared. Declaration lists serve to define certain

properties of the variables in the program. Declaration of

a variable may consist of a declaration identifier, alternate
name, structure declaration, and value list. Each declaration
1s separated by a comma in the declaration list.

A declaration identifier is the name by which the de-
clared variable will be referred. If more than one name is
given to the identical variable, alternate names may be listed
with a colon in between.

A variable is normally a computer word (36 bits for the
IBM TO4 Computer); however, the structure declaration contains
information about the sub-structure of the variable, which may
consist of several part words or a chain of characters. Names
referring to partwords are included within a left brace and
right brace in the declaration. Each partword name is followed
by a definition of the part or subfield of the computer word
it represents and is enclosed in parentheses. The partword
limits specify the right most (lowest) and the left most
(highest) bit belonging to the named partword.

A variable may consist of a chain of characters, symbols,
or groups of bits which in the program will be treated as sepa-
rate entities in the program logic. The structure declaration
for a chain variable consists of the number of bits forming a
character or symbol preceded by an asterisk and enclosed in
parenthesis.

The value list may pre-assign a numerical value to a

variable and/or define the dimension of a variable in the case

\O

of an array.

The value list consists of two parts, both of which may
be empty. The first part defines the dimensions of the vari-
able in the case of an array (if it is empty, the dimension
is assumed to be 1) The second part is the number list in the
case of an array, which degenerates to a number in the case
of a single variable. If the number list is empty, the vari-
able is pre-assigned the value O.

Also, a variable may be assigned a predetermined loca-
tion in the IBM TO4 computer (absolute addressing), by follow-
ing the variable with * OCT and an octal integer.

The declaration of a variable can have the following
form:

declaration ::={declaration identifier)I

{ structure declaration)k alternate names)
{value list)
Declaration Examples
Simple Variables
A, By &

Alternate Names

A: Al: AS;
A: B: C4,
Partword

A: §{B(7 > 10), ¢(9 > 12)] ,
Chain Variable

A (#6), B(*9),
Value List Assigned to Variable

A <‘ 5) B(3) 6 2’1,5’

10.

Array
A(10), B(5),
Declaration List
A, B, C,
BLOCK OF WORDS (100),
WORD: ALTERNATE NAME 1: ALTERNATE NAME 2,
INSTRUCTION: { PREFIX (33 > 35), DECREMENT (18 > 32),
TAG (15 > 17), ADDRESS (0 » 14),
RIGHT WORD (0 > 17)} ,
2.5 Variables
Variables are combined with numbers, punctuation, and'
operational symbols to form expressions and statements. Vari-
ables can be declared as fixed point or floating point quanti-
ties. A subscripted variable designates values which are
components of linear or single dimensional arrays. The array
components of linear or single dimensional arrays. The array
component referred to by a subscripted variable is specifiled
by the actual numerical value of the subscript expression and
will be an integer.
The letters I through N are reserved for variables of
a particular type known as indices, and they must not be de-
clared.
2.6 Expressions
Expressions are the major constituents of statements.
There are five important types of expressions used in
BC NELIAC. They are: arithmetic‘expressions, Boolean express-
gions, designational expressions, chain expressions, and logi-

cal expressions.

11.

L3

Arithmetic expressions are used to compute a numerical
value by executing the indicated arithgetic operations on
the actual numerical values of the variables of the expressions.
The arithmetic expression is followed by a left to right arrow
to denote replacement and a variable which is set equal to
that which preceded the arrow. :

Boolean expressions consist of a comparison of an arith-
metic expression and a variable. Boolean expressions produce
an output of true or false, depending on whether the conditilon
stated is satisfled, or not.

Designational expressions may be either a label or a
switch designator which consists of a label and subscript.
They are normally used in G0 TQ statements.

Chain expressions are intended to simplify operations
involving character manipulations. A variable will consist
of a chain of characters when a chain declaration is applied
to it. Two operations may be performed on chain variables —
"catenate" and "obtain first character". The '"catenating opera-
tion" will left shift a chain variable one character and add
at the right another character. Its form is:

Variable 1 ++ Variable 2
The "obtain first character operation" will obtain the left
most character of a chain variable, and has the form:
*Variable binary operator
The logical AND or OR functions of two variables is per-

formed using the logical expression.

e = s i e

2.7 Program Logic

The program logic or compound tail portion of a flow-
chart consists of statements which are the unit of instruc-
tions, or sentences, of this algebraic language. As in
written English their order of appearance is important.
Statements may be chained together with commas in between
thus forming unconditional statements, or they may be pre-
fixed by conditions, thus forming conditional statements.

A compound statement may be formed by grouping a set
of statements together with BEGIN preceding the first state-
ment and END following the last statement. Any statement
within a compound statement may itself be a compound state-
ment.

A portion of the syntax for the program logie section
is:

{ compound tail) ::=<{statement)K statement)

{ compound tail)

{statement) ::= < label) : (statement >k unconditional

statement), | { conditional statement

{ compound statement) ::= BEGIN compound tail > END

There are six important types of statements which will
be discussed. They are assignment statements, GO TO state-
ments, SWITCH statements, FOR statements, DO statements and
conditional statements. The first five of these are consid-

ered unconditional statements.

12.

2.7T.1 Assignment Stotements

The assignment statemgnt specifies an expression to be
evaluated and avv2riab1e which is to have the resulting value
assigned to it. If the ?ariable to the right of an arrow
is designating a partial word, then the part(s) of the word
not designated remain unaffected by the assignment statement.

An assignment statement is executed in the following

steps

1) the expression to the left of the arrow 4s
evaluated

2) ° the subscript expression of the variable to the
right of the left most arrow 1s evaluated

3) the variable is assigned the value of the
expression

4) for each following varizble steps 2 and 3 are

performed sequentially.

If E is an expression, V is a variable, and L is the
name of the statement, a labelled assignment statement has
the form:

L E->»>V
Assignment Statement example
AlI]l + B> c[1](10 > 15).
2.7.2 GO TO Statements and SWITCH Statements

Unconditional transfer of control statements are formed

following the words GO TO with a designational expression.

Thus, the next statement to be executed will be one having

13.

14.

the value of the designational expression as its label.
A SWITCH statement consists of a separate label by which 1t
may be referenced; and names a group of alternative points in.
a program to which control may be transferred as the result
of a single GO TO statement. The switch statement has the
following form:
«es. GO 70 L3. GO TO L2. SWITCH name :GO TO Ll.
Thé selection of the actual point to which control is trans-
ferred depends on the value of theé subscript.expression of
the switch designator in the GO TO statement. Wifh increas-’
ing value of the subscript expréssion an earlier label in
the SWITCH statement is-chosen for the transfer.
GO_TO Statement example
G0 TO A.
G0 TO B[J].
SWITCH Statement example
GO TO F. GO TO E. GO TO D. B: GO TO C.
2.7.3 FOR Statements
The FOR statement facilitates writing an iterative
operation one or more times. The variable which determines
the number of executions is an index. The index takes on
values beginning with d first limit and is modified by an in-
crement for each successive execution of the iterative opera-
tion. The execution of the FOR statement ends when a succes-
sive applicztion of the increment would cause the index to

pass beyond the second limit.

15.

The FOR statement has the following form:
FOR index = first limit STEP increment UNTIL Second 1limit DO
BEGIN statement S END |
FOR statement example
FOR I = O STEP 1 UNTIL B DO
BEGIN C[I] * D[I] > E[I] END

2.7.4 DO Statements
A procedure or subroutine 1s a part of a program that
"»is written only once but 1s to be executed at several points
throughout the same program. A procedure is called for by a
DO statement or procedure statement which effectively inserts
the procedure body into the program taking fhe place of the
DO statement. After the procedure has been executed the pro-
gram continues with the next statement after the DO statement.
The format of the DO statement is:
DO Procedure Name,
The format of the PROCEDURE or subroutine is;
PROCEDURE Procedure Name:
BEGIN Statement S5,, S,, S3, END
DO Statement example
DO INCREMENT,
PROCEDURE or Subroutine example
- PROCEDURE INCREMENT:
BEGIN J+1 > J, I+2 > I END

16.

2.7.5 Conditional Statements
Conditional statements cause statements to be executed
or skipped depending on the results of a Boolean expression
or comparison. The conditional statement consists of a
Boolean expression preceded by the word IF and followed
by the word THEN, a "true part", and a "false part.” Both
"true" and "false parts" are unconditional statements. They
are normally terminated by a semicolon, or by a period if
the last statement was a GO TO statement. If the comparison
is satisfied, the statement following THEN 1s executed after
which control is transferred to the beginning of the next
statement following the false part, unless the THEN state-
ment terminates with a GO TO statement. If the comparison
is not satisfied the ELSE statement is executed after which
control is transferred to the beginning of the next statement
unless a GO TO statement terminates the "false part."
Either "true" or "false parts" may be left vacuous by immedi-
ately terminating it with a semicolon.
The format of a conditional statement is:
IF Boolean Expression
THEN unconditional statement, period or semicolon
ELSE unconditional statement, period or semicolon
Conditional Statement example
IF A >B
THEN A+ B > C;
ELSE GO _TO D.

Chapter 3
INTERCOM 500

3.1 Intercom 500 computer

Intercom 5001 is a programming system which is used on
the Bendix G-15 digital computer. When Intercom 500 is stored
in the G-15 memory, we essentially have an Intercom 500 digi-
tal computer. It is thils computer that will be used as a
simulation example. Included in the appendix is a BC NELIAC
program simulating the Intercom 500 digital computer. The
program has been tested and run successfully on the IBM 704
datz processing systen.

3.1.1 Computer Organlzation

The internal orgenization of the Intercom machine can be
divided into five distinct functions: input, output, memory,
arithmetic, and control. A diagram of the computer organi-
zation is shown in figure 1.

Three forms of input devices are available: paper tape,
punched cards, and magnetic tape. The input information may
consist of data or comﬁands. Information may be put out in
form of paper tane or on the typewriter.

The memory consists of 600 locations in which commands
or data may be stored. Locations in the memory are specified

by a four digit number called an "address." A command can

be stored at, and executed from, any available address.

1. Intercom 500 card system

17.

i

18 J
) 1
INPUT OUTPUT
Punched Cards Paper Tape
Typewriter Typewriter
Paper Tape
ARITiMETIC UNIT INTERNAL MEMORY CONTROL UNIT
B P
Accumulator 600 Words Curr. Inst. Reg.
We——-—» ———= Locatlon Counter
Index Reglsters
3 h
V

AUXILIARY MEMORY

Magnetic Tape

i e g =

Intercom Computer Organization. Arrows represent direction of

information flow,.

Figure 1

19.

Data also may be stored at anﬁ address.

The arithmetic section performs four operations - addi-
tion, subtraction, multiplication, and division. These opera-
tions are performed in a special register called the accumu-
lator and this register can be addressed like any other
location in memory.

The control section directs the operation of the computer.
It consists of the curfent instruction register, location
counter, and index registers. The Intercom machine has two
important modes of operation: manual and automatic. During
manual operation an instruction is read in directly from the
input device to the current instruction register, where it is
interpreted and executed. These instructions never appear in
memory. The location counter has no meaning in the manual
mode and the index registers operate as they do in the auto-
matic mode.

In the automatic mode each instruction from memory has
to be placed in the control section before it can be inter-
preted and executed. The current instruction register is the
temporary storage in which each instruction is held while it
is being interpreted after being brought from memory. Normally
commands are obeyed in numerical sequence of thelr memory loca-
tion. The location counter is given the address of the first
command to be obeyed after which it keeps a running record of
the location in memory of the instruction being executed. The

index registers are avallable when automatic address modifi-

20.

cation is desired. Each command which 18 used with an index
register has its address modified by adding the contents of
the index register to the address part of the instruction be-
fore the command is executed.
3.1.2 Command Structure

The machine instructions are in the form of numerically
expressed commands which can be held in the internal memory.
Each command is expressed by seven digits and sometimes an
execution mark. The first diglt of a command represents one
of the ten index registers and may be left blank if no index
is used. The next two digits specify the operation code
which tells the machine what to do. The last four digits are
termed the address part, and usually refer to a location in
memory. If an instruction has an execution mark it will be
interpreted and executed when it is read into the computer.
The instruction will never appear in the internal memory and,
therefore, not interfer in any way with the program.
3.1.3 Operation Codes

There are five major groups of operation codes available:
arithmetic commands, transfer of control commands, input-output
commands, index register cdmmands, and special commands. The
detail operation of these commands will be shown in the section
on the simulation algorithm.

For a better understanding of the various modes in which
the intercbm machine will operate Figure 2 1s given. Figure 2

is a block diagram shoWing the function of the input operation

i eSS

21

SUBROUTINES

07x 00x

READ | e MANUAL
. DATA OPERATING - COMMANDS
MANUALLY 67x 5 MODE < 67X MANUALLY

61x initiates
SELECTIVE
PRINT

69x% 69x%
A
87
READ < AUTOMATIC ’50 READ
ONE (52 OPERATING ONE
DATUM e e _MODE = COMMAND
SELECTIVE
PRINT

Block dlagran showing the function of the input operation codes
and other important commands for transferring the machine between
its various stages of operation. The "x" after an operation code

indicates an execution mark.

Figure 2

22,

codes and other important commands for transferring the
machine between 1its various stages of operation. The 50 and
52 instructions will read commands and data, respectively,
into memory. If these commands are executed while the machine
is in the manual mode, information (commands or data) will be
stored in memory beginning with the address specified in the
read instruction.” Information will be stored.sequéntially in
memory until znother command with an executlion mark is inter-
preted. This command may be a 67 or 69 operation code which
would transfer the machine to the manual or automatic mode,
respectively. If the read commands (50 or 52) are executed
while in the automatic mode, computation will halt and one
word of information will be read into the computer and stored
in the address specified in the read command; then computation
will continue in the automatic mode. An 07 command will put
the computer in a mode of operation for loading subroutines
and a 61 command causes the machine to transfer to the selec-
tive print mode.
3.2 Algorithm for Simulation

Essentially, all intercom commands can be executed in
any one of three modes: manual, automatic, or selective print
mode. When the computer is in the manual mode, commands will
be executed as they are read into the machine. In the auto-
matic mode 1t 1is expected that the program is stored in the
internal memory. The location counter is given the location

of the first command in the program after which commands of

23.

the program are automatically executed. The selective print
mode is the same a8 the automatic mode except information con-
cerning selected commands can be automatically typed out during
computation. The ¢omputer is notified which command to type
out by selectors provided in the program. The information
typed will be the location of the command, the command itself,
and the contents of the accumulator, if the contents of the
accumulator is different than during the listing of a preceed-
ing command. '

Figure 3 is a block diagram showing the basic operation
of the BC NELIAC program which simulates the intercom 500
machine. The heart of the program is a large switch (EXECUTE)
which is called as a procedure or subroutine (EXECUTE COMMAND)
by any one of the three machine oberating modes. This switch
in turn calls the correct operation code, executes the command,
and returns control to the original machine operating mode
(except in the case of a command which changes operating modes).

The following simplified program written in BC NELIAC
illustrates the operation oé the algorithm for the manual and
automatic modes and describes the function of each operation
code. Read card is a procedure which inputs one word of infor-
mation to the machine. Execute Command is a subroutine which
transfers the program to the proper operation code subroutine.
3.3 Conclusions

Since the IBM TO4 digital computer has a larger memory
than the Bendix G-15, provisions have been made for a total
memory size of 23,500 words in the BC NELIAC simulation on the

MANUAL
OPERATING
MODE

PROCEDURE
EXECUTE COMMAND

SWITCH EXECUTE

ARITHMETIC
COMMANDS

TRANSFER
COMMAIIDS

AUTOMATIC
OPERATING
: MODE
SELECTIVE
PRINT
MODE

Y

INPUT-
OUTPUT
COMMANDS

INDEX
COMMANDS

SPECIAL
COMMANDS

Block dlagram showing the basic operation of the BC NELIAC

program which slmulates the Intercom 500 machine. The lines

wilth arrows show the flow of the program while executing an

operation code,

Figure 3

24

IBM 704 computer. A sample problem executed on the Intercom
Simulation required 38 seconds running time as compared to

30 minutes on the Bendix G-15. To determine the advisability
of developing a compiler for Intercom, a hand simulated com-
piled program of the sample problem was run on the IBM 704

and required 1.2 seconds. With speeds of 30 minutes for the
G-15 and 1.2 seconds for the IBM TO4 the figures would indi-
cate the G-15 is not economical for operating Intercom prob-
lems. This fact 1s confirmed when consildering the speed of
operation of Intercom on an IBM 7090 computer. If an IBM 7090
is six times as fast as the IBM 704, a 5 hour Intercom problem
on the G-15 would require 2 seconds on the IBM T7090.

The advantage of BC NELIAC as a source language is shown
by the amount of time required to write and "debug" the Inter-
com 500 simulation program. It took five weeks for writing
and "debugging" the program. The machine independent charac-
teristics of BC NELIAC are indicated by the fact this simula-
tion will be converted to the IBM 7090 in about three days.
Most of the changes for the IBM 7090 will be in the input-out-

put operations.

26.
Simplified Program of Intercom 500 Manual and Automatic Modes

(comT DECLARATION LIST)
A: ACCUMULATOR, :
CR: COMMAND REGISTER: INDEX(7 » 10), OP CODE(0 > 6),
ADDRESS(11 > 18)
EA: EFFECTIVE ADDRESS, '
IR: INDEX REGISTERS: W DIFFERENCE(10), W LIMIT(10),
: W BASE({10), C BASE(10),
C DIFFERENCE(10), € LIMIT(10),
IRA: INDEX REGISTER ACCUMULATOR,
LC: LOCATION COUNTER,
M: MEMORY(23500),
MQ: MQ REGISTER,
MARK 1, MARK 2;
(COMMENT PROGRAM LOGIC)
MANUAL MODE: DO READ CARD, DO EXECUTE COMMAND,
GO TO MANUAL MMODE.
(COMMENT READ CARD INPUTS ONE WORD OF
INFORMATION TO THE MACHINE.
EXECUTE COMMAND TRANSFERS PROGRAM
TO PROPER OP CODE SUBROUTINE)
AUTOMATIC MODE: STATE 1: M[LC] > CR,
IF INDEX # O
THEN ADDRESS + W BASE [INDEX]
+ C BASE [INDEX] > EA;
ELSE ADDRESS > EA;
STATE 2: DO EXECUTE COMMAND,
STATE 3: LC + 1 - LC, GO TO STATE 1.

s e

———

FUNCTION OF INTERCOM 500 OPERATION CODES
Operation Intercom 500 Symbolic Definition and/or
Operation Intercom Description
Code Operation :
Code

ARITHMETIC COMMANDS
Clear and Add 42 CLA: {mlEa) > A},
Clear and Subtract 40 CLS: {- M(EA] > A},
Clear and Add Absolute 45 CAB: {IM[EA]I > A},
Store 4'9 STO: {A > M[EA]} 3
Ada 43 FAD: {n + M[EA] > a} ,
Subtract 41 FSB: (A - M[EA] > 4} ;
Multiply 44 FMP: {r x M[EA) > A} ,
Divide 48 FDP: {A / MIEA] > A} ,

Inverse Divide

47 IFD: MIEA] / A > A}

A

e e e R e i i it

28‘

FUNCTION OF INTERCOM 500 OPERATION CODIS (cont.)

Operation Intercom 500 Symbolic Definition znd/or
Operation Intercom Descriptilon
Code Operation
Code
TRANSFER OF CONTROL COMMANDS 2
Transfer 29 TRA: {EA » LC, GO 7O
STATE 1.} ,
Transfer on Non- . 20 TNN: {IF A > O THEN
negative

EA > LC, GO TO
STATE 1.3} ,

Transfer on Negative 22 TRN: {I¢ A< O THEN
EA > LC, GO TO
STATE 1.3}

Transfer on Zero 23 TZE: {IF A = O THEN
EA > LC, GO TO
STATE 1.3} ,

Transfer Mark Place 1 26 TMI: {Lc > MARK 1,
EA > LC, GO TO
STATE 1.3} ,

Return to Marked 16 RT1: farK 1 + 1 > LC,
Place 1 GO TO STATE 1.3} ,
Transfer Mark Place 2 28 TM2: {pc-a MARK 2,
EA > LC, GO TO
STATE 1.;} 3
Return to Marked 18 RT2: {MARK 2 + 1 > LC,
Place 2

GO TO STATE 1.3} ,

Transfer to Machine - 08 TSR: DO MACHINE SUB-
Subroutine ROUTINE, } ,

29.

FUNCTION OF INTERCOM 500 OPERATION CODES (cont.)

Operation Intercom 500 Symbolic Definition and/or
Operation Intercom Description
Code Operation

Code
INDEX COMMANDS

Assign Word Base T0 AVB: {ADDR > W BASE
[DDEX] |,
Assign Word Difference 71 AWD: {ADDR > W DIFFERENCE
[moEX] |,
Assign VWord Limit 72 AWL: {ADDR > W LIMIT
[DoEx] } ,
Assign Chonnel Base 73 ACB: {ADDR > C BASE
| [mpEX]]) ,
Assign Channel Difference T4 ACD: {ADDR > C DIFFERENCE
[DDEX] i ,
Assign Channel Limit 75 ACL: {ADDR > C LIMIT
[DDEX]} ,
Increment and Test © 76 TTW: {w BASE [INDEX]

Word Base + N DIFFERENCE

[INDEX] > W BASE
[INDEX],

IF W BASE {INDEX]
< W LIMIT
[INDEX] THEN
ADDR > LC, GO TO
STATE 1.;} 2

30.

FUNCTION OF INTERCOM 500 OPERATION CODES (cont.)

Operation Intercom 500 Symbolic Definition and/or
Operation Intercom Description
Code Operation
Code
INDEX COMMANDS (cont.)
Increment and Test © 7 I7C: {c BASE [INDEX]
Channel Base : + C DIFFERENCE
[INDEX] > C BASE
[DEX],
IF C BASE [INDEX)
< C LIMIT
[INDEX] THEN

ADDR > LC, GO TO
STATE 1.3} ,

Set Index Accumulator 09 SIA: A > RA),

Clear and Add Index to' 78 CLI: {ADDR x 11 + INDEX

T > I, R[I) > IRA},
Store Index from IRAT 79 STI: {ADDR X 11 + INDEX

> I,IRA > IR[I]} ,

31.

FUNCTION OF INTERCOM 500 OPERATION CODES (cont.)

Operation Intercom 500 Symbolic Definition and/or
Operation Intercom Description
Code Operation
Code
INPUT OUTPUT COMMANDS - Following descriptions not in NELIAC form.
Originate Loadingl 50 ORG: See sect. 3.1.3
Commands for expl.
Read Command® 50 RCM: See sect. 3.1.3
Automatic ; for expl.
Load Exponential Data® 52 LDD: See sect. 3.1.3
for expl.
Read Exponential Data® 52 RED: See sect. 3.1.3
Automatic for expl.
Punch Binary Cards 39 PBC: Binary cards
punched from
ADDR/100 # 100
to ADDR-1.
Read Binary Cards 55 RBC: Absolute binary
. cards read into
’ . memory.
Position Typewriter, 30 PIC: ADDR/100 -> No. of
Tabs and carriage return carriage returns

ADDR-ADDR/lOO*lOO
-> No. of tabs.

Write Literal and Tab 31 WLT: EA printed, and
typewriter tabbed.
Write Location Counter : 06 WLC: IC-1 printed, and
. and Tab typewriter tabbed.

Write Command and Tab 35 WCT: M[{EA] printed as
- j command and type-
writer tabbed.

Write Memory and Tab 37 WMT: M[EA] printed in
octa, and type-
writer tabbed.

324
FUNCTION OF INTERCOM 500 OPERATION CODES (cont.)
Operation Intercom 500 Symbolic Definition and/or
Operation Intercom Description
Code Operation
' Code

INPUT QUTPUT COMMANDS (cont.)
Write Floating Decimal 33 WPT: M[EA] printed in
and Tab : floating decimal

form, and type-
writer tabbed.

Write Floating Decimal 38 WFC: M[EA] printed in

and Return Carriage ; floating decimal
form, and type-
writer carriage

returned.

Write Exponential Data 32 WET: M[EA] printed in

and Tab exponential form,
and typewriter
tabbed.

Write Exponential Data 34 WEC: M[EA] printed in

and Return Carriage exponential form,
; and typewriter
carriage returned.

33.

FUNCTION OF INTERCOM 500 OPERATION CODES (cont.)

Operation Intercom 500 Symbolic Definition and/or
Operation Intercom Description
Code Operation
Code
SPECIAL COMMANDS
Exit to Manual Mode 67 MAN: {Go T0 MANUAL MODE.}
Exit to Automatic Mode 69 AUT: {EA > LC, GO TO
STATE 1.} ,
No Operation 00 NOP: {GO TO STATE 3.} ,
Ring Bell 63 BEL: {DO RING BELL,} ,
Breakpoint Halt 63 BPH: {GO TO MONITOR.
ENDJOB. } ,
Load Subroutines’’> o7 LSR: {DO LOAD SUBROUTINES,]
Exit Loading Subroutines 00 ELS: ‘DO EXIT LOAD SUB-
OUTINES,} ,
Block Copy 81 BLC: See Bendix Inter-
: com Reference
Manual.
Initiate Selective Printl 61 IS Initiate Selective
Print.

End Selective Print 62 ESP: End Selective Print

FUNCTION OF INTERCOM 500 OPERATION CODES (cont.)

Operation Intercom 500 Symbolic Definition and/or
Operation Intercom Description :
Code Operation ‘ ‘
Code |

SPECIAL COMMANDS FOR IBM 704 INTERCOM

Exit to Monitor Endjob 80 EJB: {GO_TO MONITOR
ENDJOB. } ,

Read Clock 64 CLK: {DO READ CLOCK,} ,

Load MQ 65 LDQ: {MlEA] > Ml ,

Store MQ 66 STQ: {maq>muEr},

SPECIAL COMMANDS FOR SYMBOLIC INTERCOM

Exponential Data - EXD: Used with exponen-
tial data
Mzsk-Selector - MSK: Used with selectors
for selective
print.
Equals - EQU: Assigns constant
to symbol. (
Block Started by Symbol - BSS: Assigns block of

storage to symbol.

End Symbolic Program - END: Last card in sym-
bolic program deck

Blank - e Same as NOP

35.

FUNCTION OF INTERCOM 500 OPERATION CODES (Footnotes)

1. Operation Code used only in the manual mode.
2. Operation Code(s) used only in the automatic mode.
3. See appendix

4. Component partn of an index register are symbolized by the
contents of ADDR, as rollowa:

IF ADDR = COMPONENT =
0 W DIFFERENCE
1 W LIMIT
2 W BASE
3 C BASE
4 C DIFFERENCE
5 C LIMIT

" Chapter 4
ASYMBOLIC INTERCOM 500

4.1 Source Language

An Intercom 500 program i1is a sequence of seven digit
commands which instructs the Intercom computer to perform a
particular task. Symbolic Intercom has been developed as a
source language more conﬁenient for the programmer to use.
There are approximately seventy different operation codes in
Intercom 500. Writing programs using the numerical form for
operation codes creates a complexity which is overcome by
Symbolic Intercom. In Symbolic Intercom a symbolic code can
be used for each of the operation codes, e.g. ADD for opera-
tion code 43. Since the numerical-type code does not have
any of the mnemonilc qualities of an alphabetic code nor does
it provide a format that one may easily scan in order to see
the meaning of a group of instructions, the symbolic form will
necessarily result in faster and more accurate coding.

An additional function of Symbolic Intercom is overcom-
ing the necessity of doing absolute coding. In absolute cod-
ing every word (command or data) in storage is assigned a
location number used as a means of making references. This
reference 1s made through the use of the address portion of the
command. With absolute coding the programmer must determine
the storage allocation in advance of coding. Since the storage
requirements cannot be accurately anticipated, a re-design of

the program may be necessary after its completion. If memory

gpace is limited, this re-design could cause rewriting of

the program. Another problem occurs in absolute coding when
an attempt is made to modify a program. Modifications usually
entall insertions, deletions and re-arrangements of instruc-
tions. Every numerical reference made in the program to a
location affected by the modifications must be changed so the
program is sti1ll operative. This is a serious problem when
there are several insertion and deletion areas. Every refer-
enée made must be tested to see how many of the different in-
sertion and deletion creas affect it.

Symbolic~-coding solves these problems of absolute coding
because the basic method of referencing 1s changed. Instead
of using an actual location number to indicate every reference
made in the program, 2 location 1s given a name, or a symbol.
This symbol has no numerical significance and no direct re-
lationship to any particular storage-assignment scheme. The
symbol is strictly a reference for the benefit of the pro-
grammer while writing his program.

A progrem which is given the name assembly program, de-
fines where a symbolic program will sit in storage and what
numerical location is assigned to each symbol. The assembly
program also makes the transletion between the symbolic opera-
tion code and the numeric operation code. Hence, if the input
to the Intercom assembly program is Symbolic Intercom, the

output will be Intercom 500.

Erssamers i

In writing a symbolic program the following rules
should be adhered to:
1. Every symbol is unique and independent of all other
symbols.
2. If a symbol has been assigned to a particular location,
all further references to this location may use the
same symbol.
3. The locations of all instructions or data in a program
“having no reference made to them need no symbol
assigned to them.
Included in the appendix is a BC NELIAC listing of the Symbolic
Intercom assembly program. All Intercom 500 operation codes
have a symbolic representation which are given in section 3.2
In addition, two psuedo operation codes have been added to the
symbolic language - EQU and BSS. EQU allows the programmer
to assign a constant to any symbol, and BSS provides for a
block of storage to be assigned to a symbol. The accumulator
can be addressed by the symbol ACC.
4.2 Algorithm
The Symbolic Intercom assembler 1s divided into two parts:
first pass and second pass. In the first pass a storage cell,
called the location counter, keeps track of the storage assign-
ment of the current word in the program being assembled. The
Intercom operation codes for read command or read data initial-
ize the location counter. The location counter is increased

by one for each word used by the program. The entire program

39.

is examined sequent;ally during the first pass and any loca-

tion with a symbolic name has this name put in a symbol table
along with thé current value of the location counter. Also,

each symbolic operation code 1s converted to the appropriate

Intercom 500 numerical "op code'.

The second pass again examines the input sequentially
and for each symbol used as an address in an instruction,
replaces it with the appropriate location counter value from
the symbol table. At thq completion of the second pass, all
symbolic commands have been converted to Intercom 500 instruc-
tions, and a copy of the symbol table, multiply defined and/or
undefined symbols are printed out.

40

- Appendix A

Transliteration rules

This appendix presents a summary of equivalences between
the character set used with the hardware representation

BC NELIAC on the IBM 704 digital computer and the BC NELIAC
Reference Language. All word delimiters must be separated by
blanks in the hardware representation.

Character Hardware Reference
Operator Represen- Language
tation Symbols

Miscellaneous Blank

Operators Replacement Operator = >
left Arrow = €
Decimal Point i
Punctuation Comma ’ ’
Operators Period &
Semicolon $; 3
Arithmetic Add + +
Operators Subtract - -
Multiply * x
Divide ; / i
Relational Less LSS &
Operators Less or Equal LEQ <
Equal EQU =
Greater or Equal GEQ pe -
Greater GTR >
Not Equal NEQ ##
Logical And AND N
Operators OR OR V
Sequential GO TO GO TO GO TO
Operators IF IF Ir
FOR FOR FOR

Transliteration rules (cont.)

Character
Operator

Sequential DO

Operators
(cont.)

Separator
Operators

Bracket
Operators

Pseudo
Operators

THEN
ELSE

STEP
UNTIL
COLON
PERIOD
COMMA
SEMICOLON

Left Perentheses
Right Parentheses
Left Bracket

Right Bracket
BEGIN,or Left Brace

END, or
Right Brace

Shifrt
Crutch Code
Cetal

Alphabetic
Characters

Numeric Characters

Hardware
Represen-

tation

DO
THEN
ELSE

STEP
UNTIL
CLN

LBK
RBK

BEGIN
or LBR

END, or
RBR

MCH
ocT
A...::’

41

Reference
Language
Sxmgols
DO
THEN
ELSE

STEP
UNTIL

Appendix B h2.

OPERATION CODE LIMITATIONS

Due to hardware differences between the IBM 704 and

Bendix G-15 the following operation codes will perform

differently on the two machines:

Op Code 68: Breakpoint Halt: BPH
G-15: Computation is halted.

IBM 704: Transferred to Monitor Endjob.
Op Code 30: Position Typewriter, Tabs and Carriage Return: PTC
G-15: Paper in the typewriter carriage is autémati-
cally positioned by the execution of CR
carriage returns, followed by TB tabs.
CR is a two digit number ranging from 00 to 28.
TB is a two digit number ranging from 00 to 28.
IBM 7O4: Same as G-15 except tab settings are pre-set and
aliow a maximum of six columns of printout.
Op Code 37: Write Memory and Tab: WMT
G-15: The contents of location ADDR are typed out in
hexadecimal form.
IBEM TO4: The contents of location ADDR are typed out in
octal form.
Op Code 39: Punch Binary Cards: FBC
G-15: The contents of words 00 through ADDR-1 of the
channel determined by the first two digits of
ADDR are punched on paper tape.
IBM 704: Same as G-15 except cards are punched and no

index registers will be punched on the cards.

43.

Ob Code 55: Read Binary Cards: RBC

@-15: Punched tape, previously punched by the
computer, is photo-electrically read and entered
into the chaﬁhel in the memory specified by the
first two digits of ADDR. Information is entered
in the channel beginning at word position 00
and ending with location ADDR-1.

IBM 704: Punch cards, previously punched by the computer,
are stored in memory accbrding to the absolute
address on the column binary cards. ADDR has

no significance.

Appendix C : hly,
INTERCOM CARD FORMAT

Intercom 500

Fighty column (numbered 1 - 80 from left to right)
IBM cards are used with one word of data or one commond cor-
tained on a card. The card format for Intercom 500 will have

the following form:‘

COLUMN: 1 -63 64 66 68 69 70 T2 74 76 78t 807
COMMAND

CARDS: COMMENT K 0 P A D D R S -
DATA
CARDS: COMMENT E E D D D D D -

K = Index Register

OP = Operation Code

ADDRS = Address

EE = EXCESS Fifty Exponent

DDDDD = Datum
The card format for Symbolic Intercom is the following form:
COLUMN: 1-6 8 - 10 12 - 20 25 - T2
WORD
(DATA OR
COMMAND): SYMBOL3 OP CODE VARIABLE FIZLD' COMI:NT

1. A "minus" punched in column 78 on a data card indicates
the data 1is negative.

2. A "minus" punched in column 80 on a command card indicates
an execution mark.

3. An asterisk in column 1 of a command card indicates an
execution mark.

4. Datum is indicated by an "op code" of EXD. The seven digit
datum number is placed in the varisble field (with a minus
following the datum, if required.

Appendix D 45.

USE OF MACHINE LANGUAGE SUBROUTINES
, IN SYMBOLIC INTERCOM

Loading Subroutines
After executing the command LOAD SUBROUTINES, the follow-

ing commands may be executed to store in memory the desired

subroutines.

SUBROUTINE OP CODE VARIABLE FIELD
Fraction Selector FRS FRACTN
Square Root and Cube Root SQT SQTCUB
Log LOG LOG
Power B/R POWER
Sin and Cosine TRG TRIG
Arctangent ART ARCTAN
Hyperbolics HYB HYFBOL
Index Register Utilization IRU IRU
Selective Print LSP SELPRT
Clears Index Reglsters CIR XREGS
Clears Index Registers and CLM MEMORY
Memory

Transfer to Machine Language Subroutines.

SUBROUTINE OP CODE VARIABLE FIELD
Selects Floating Decimal TSR DECPTO TO
Fraction Length DECPTT
Square Root of x TSR SQRT

Cube Root of X TSR CUBERT

Loge X TSR LOGE

Transfer to Machine Language Subroutines (cont.)

SUBROUTINE ~ QP CODE VARIABLE FIELD
Log2 x TSR LOG2
Log,, X TSR LOG10
e TSR EXP
g* TSR PWR2
10* TSR PWR10
n™ (fixed point base- TSR EXP1
fixed point exponent)
a™ (floating point base- TSR EXP2
fixed point exponent)
2 (floating point base- TSR EXP3
floating point exponent)
Sin x (radians) . TSR \éIN :
Sin x (degrees) TSR SIND
Cos x (radians) TSR co3
Cos x (degrees) TSR COSD
Arctan x (radians) TSR ATAN
Arctan x (degrees) TSR ATAND
Sinh x and Cosh x TSR SINH
Tanh x TSR TANH
Fix Floating Point Number TSR FIX

Flont Fixed Point Number TSR FLOAT

e e e e N s

e
=

:

HE ,
g
&

MENSIONING 47a
OWCHART NUMBER 00001
$START SIN CLN SYMBOLIC INTERCOM 500 CLN

MCH 0772000 OCT 205, IOH PRINT (50,04)s FORTY ONE = N,
ZERO = I, GO TO FIRST PASS..

FLOWCHART NUMBER 00002

(COMMENT SIMPLE VARIABLE DIMENSION LIST
BCD DIGIT (4),
CALL PUNCH,

CHARACTER,
CM1,CM2,CM3,CM4,CM5,CM6,CMT7,CM8,
DIGIT,

LOCATION COUNTER,

NUMB,

PROGRAM LENGTH,

SYMB,

SYMBOL TABLE LENGTH,

IR CLN LBR INDEX REGISTER(30=35) RBR ,

C CLN LBR OP TEN(30=35) RBR »

P CLN LBR OP UNIT(30=35) RBR ,

ADDR 1 CLN LBR CH TEN(30=35) RBR

ADDR 2 CLN LBR CH UNIT(30=35) RBR

ADDR 3 CLN LBR WD TEN(30=35) RBR ,

ADDR 4 CLN LBR WD UNIT(30=35) RBR ,

SIGN VALUE CLN LBR DATA SIGN(30=35) RBR = OCT -206060606060,
X CLN LBR X MARK(30=35) RBR »

(COMMENT ARRAY DIMENSION LIST

COMMENT A (900),
COMMENT B (S00),
COMMENT C (900),
COMMENT D (900),
COMMENT E (S00),
COMMENT F (900),
COMMENT 6 (900),
COMMENT H (900),

EX MARK {900),

OPERATION (900),

SYMBOL FIELD (900),

MULTIPLY DEFINED SYMBOLS (26),
UNDEFINED SYMBOLS (26),

(COMMENT LOGICAL VARIABLE DIMENSION LIST
BCD NUMB (=6),

COMMAND OP CODE (=6) (900),

DATA (=6),

NAME (=6),

SYMBOL (=6),

VARIABLE FIELD A (=6) (900),

VARIABLE FIELD B (=6) (900),

(COMMENT CONSTANT DIMENSICN LIST
ALL BLANK = DOCT -206060606060,
ASTERISK = OCT -146060606060,

BCD 9 = OCT 11,

COMMA = OCT 73,

EEND = OCT 254524606060,
LAST COP CODE = 69,

LDD OP = OCT 050200000000,
MAXIMUM COMMAND CODE = OCT
MINUS SIGN =
ORG OP = OCT 050000000000,
PART BLANK = OCT 6060,
PUNCH CALL =
SHORT BLANK = OCT 60,

ZERO = 0Oy

ONE = 1,

FOUR = &,

FIVE = 5,

TEN = 10,

FORTY ONE = 41,

080300000000,

OCT -006060606060,

OCT -076445233060,

ONE THOUSAND (3) = 1000, 100, 10,

OPERATION TABLE (74) = OCT
ocT
ocT
ocT
ocT
ocr
ocT
ocr
ocT
ocy
ocT
ocr
ocTY
ocY
cCcT
ocT
ocT
ocT
ocy
ocT
ocry
ocT
ocrT
ocy
ocT
ocTY
ocT
ocT
cCT
ocT
ocT
ocT
ocy
ocTy
ocT
oCcT
ocT
cCcT
cCT
ocT
ocT
ocr
oct

234321606060,
=226346606060,
262124606060,
266222606060,
264447606060,
262447606060,
-235121606060,
-237125606060,
234362606060,
312624606060,
-234545606060,
-235145606060,
-054647606060,
-234401606060,
~-116301606060,
-234402606060,
-116302606060,
-236251606060,
256724606060,
316366606060,
-262563606060,
-262523606060,
-262663606060,
-262623606060,
216622606060,
-112524606060,
-112344606060,
216463606060,
-042145606060,
216624606060,
216643606060,
~076323606060,
232122606060,
212322606060,
212324606060,
212343606060,
316323606060,
254122606060,
-264323606060,
~262363606060,
316247606060,
-046242606060,
256247606060,

(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT

CLA
STO
FAD
FSB
FMP
FOP
TRA
TZE
CLS
IFD
TNN
TRN
NOP
™1
RT1
™2
RT2
TSR
EXD
ITW
WET
WEC
WFT
WFC
AWB
RED
RCM
AUT
MAN
AWD
AWL
PTC
CAB
ACB
ACD
ACL
ITC
EJB
WLC
WCT
ISP
MSK
ESP

47b

LN ([| || (O ([[([N A L L LI L |}

42
49
43
41

48
29
23
40
47
20
22
00
26
16
28
18
08
91
76
32
34
33
38
70
52
50
69
67
71
712
30
45
73
T4
75
7
80
06
35
61
90
62

N N N Bt Nt St Nt Nt et P NP e Nl R NP S N Nt b P N N Nt N St b b it Nt i up b it N " o -

CcCY
oCcY
ocT
ocT
ocT
ocY
ocT
ocT
ocT
oct
ocT
ocT
ocT
ocT
ocT
(418 §
ocTY
ocT
(#1084
ocT
ocT
ocT
oCcy
ocT
ocT
ocr
ocT
oCcT
ocT
ocT
oCcT

OPERATICON CODE (=6) (74) =
oCcT
(v1on §
ocT
cCY
ocT
ocY
ocT
ocy
ocT
oCct
CCY
ocY
oCcT
oCcT
ocrY
ocT
ocT
ocT
ocy
ocT
oct
ocT
ocy
oCcT
ocT
ocT
oCcT
ocT
oCcT

-264363606060,
-072223606060,
-112223606060,
234331606060,
-226331606060,
~-223121606060,
224323606060,
234342606060,
222543606060,
224730606060,
-032450606060,
-226350606060,
-264463606060,
-036251606060,
~036247606060,
233151606060,
234344606060,
265162606060,
-225063606060,
-034627606060,
~-076651606060,
~235127606060,
215163606060,
307022606060,
315164606060,
254362606060,
-206060606060,
226262606060,
255064606060,
~065127606060,
~032424606060,

040200000000,
040900000000,
040300000000,
040100000000,
040400000000,
040800000000,
020900000000,
020300000000,
040000000000,
040700000000,
020000000000,
020200000000,
000000000000,
020600000000,
010600000000,
020800000000,
010800000000,
00080000000C,
090100000000,
070600000000,
030200000000,
030400000000,
030300000000,
030800000000,
070000000000,
050200000000,
050000000000,
060900000000,
060700000000,

(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
{COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
{COMMENT
(COMMENT
(COMMENT
({COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(CCMMENT
(COMMENT
(COMMENT

(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(CCMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
({COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COGMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT
(COMMENT

47c

WLT
PBC
RBC
CLI
STI
SIA
BLC
CLK
BEL
BPH
LDQ
sTQ
WMT
LSR
LSP
CIR
CLM
FRS
sQrT
LOG
PWR
TRG
ART
HYB
IRU
ELS
BLANK
BSS
EQU
ORG
LDD

LI | T (O {{ ((O J{ { |AI

L

CLA
STO
FAD
FSB
FMP
FDP
TRA
TZE
CLS
IFD
TNN
TRN
NOP
™1
RT1
™2
RT2
TSR
EXD
ITW
WET
WEC
WFT
WFC
AWB
RED
RCM
AUT
MAN

(I TN N L | N (T A N (N A N N AN}

31
39
55
78
79
09
81
64
63
68
65
66
37
07
00
00
00
01
02
03
C4
05
06
07
12
00

82
83
50
52

42
49
43
41
44
48
29
23
40
47
20
22
00
26
16
28
18
08
91
76
32
34
33
38
70

50
69
67

W N N et N W N N S NP N NP N Nt N St Nt Wt Ny b it N St P S b N b N S

T W Gt e W Nt P Gt NP Ry Gt . Gt B Rl NP Sl S P N S e St Sy

SYMBOL TABLE

(COMMENT
ocT
(COMMENT
ocT
(COMMENT
ocT
(COMMENT
ocT
(COMMENT
ocT
(COMMENT
ocrT
(COMMENT
ocT
(COMMENT

oCT
ocT
ocT
oCcT
oCT
oCcy
10 §
ocT
ocT
ocT
ocT
ocT
ocT
ocr
ocT
ocT
ocT
ocT
ocT
ocT
ocT
(8109 §
ocr
ocTY
oct
ocT
ocr
ocTY
oct
1199 §
ocT
oCcT
ocT
ocT
ocT
ocT
ocy
ocT
ocrT
ocT
ocy
ocy
ocT
acT
ocy

(41) =

242523476301,
DECPT1
242523476304,
DECPT4
242523476307,
DECPT7
264346216360,
FLOAT
236422255163,
CUBERT

~034627026060,
LOG2
256747606060,
EXP

ocT
oCT
ocT
ocT
ocT
ocy
ocT
ocT

070100000000,
070200000000,
030000000000,
040500000000,
070300000000,
070400000000,
070500000000
070700000000,
080000000000,
000600000000,
030500000000,
060100000000,
090000000000,
060200000000,
030100000000,
030900000000,
050500000000,
070800000000,
070900000000,
000900000000,
080100000000,
060400000000,
060300000000,
060800000000,
060500000000,
060600000000,
030700000000,
000700000000,
000000000000,
000000000000,
000000000000,
000100000000,
000200000000,
000300000000,
000400000000,
000500000000,
000600000000,
000700000000,
010200000000,
000000000000,
000000000000,
080200000000,
080300000000,
050000000000,
050200000000,

i

7d

265121236345,
FRACTN
242523476302,
DECPT2
242523476305,
DECPT5
315164606060,
IRU
~225063236422,
sQicus
-034627606060,
LOG
=034627010060,
LOGL1O
-076651026060,
PWR2

(COMMENT AWD = 71
(COMMENT AWL = 72
(COCMMENT PTC = 30
({COMMENT CAB = 45
(COMMENT ACB = 73
(COMMENT ACD = 74
(COMMENT ACL = 75
(COMMENT ITC = 77
(COMMENT EJB = 80
(COMMENT WLC = 06
(COMMENT WCT = 35
(COMMENT ISP = 61
({COMMENT MSK = 90
(CCMMENT ESP = 62
(COMMENT WLT = 31
({COMMENT PBC = 39
(CCMMENT RBC = 55
(COMMENT CLI = 78
(COMMENT STI = 79
(COMMENT SIA = 09
(COMMENT BLC = 81
(COMMENT CLK = 64
(COMMENT BEL = 63
(COMMENT BPH = 68
(COMMENT LDQ = 65
(COMMENT STQ = 66
(COMMENT WMT = 37
(COMMENT LSR = 07
(COMMENT LSP = 00
(COMMENT CIR = 00
(COMMENT CLM = 00
(COMMENT FRS = 01
(COMMENT SQT = 02
(COMMENT LOG = 03
{COMMENT PWR = 04
(COMMENT TRG = 05
(COMMENT ART = 06
(COMMENT HYB = 07
(COMMENT IRU = 12
(COMMENT ELS = 00
(COMMENT BLANK
(COMMENT BSS = 82
(COMMENT EQU = 83
(COMMENT CRG = 50
(COMMENT LDD = 52
OCT 242523476300,
DECPTO
OCT 242523476303,
DECPT3,
OCT 242523476306,
DECPT6
OCT 263167606060,
FIX
OCT ~-225051636060,
SQRT
OCT ~034627256060,
LOGE
OCT ~074666255160,
POWER
OCT ~076651010060,
PWR10

W N et N et WP S Tt B NP St N Gd Nt TR NP S Sl Nt NP Gl N Gt P S Gt Nl W Gt P P Nt) N i wt wh N W b "t — -

47
OCT 256747016060, OCT 256747026060, OCT 256747036060,
(COMMENT EXP1 EXP2 EXP3
OCT -235131276060, OCT -223145606060, OCT -223145246060,
(COMMENT TRIG SIN SIND
OCT 234662606060, OCT 234662246060, OCT 215123632145,
(COMMENT COS cosp ARCTAN
| OCT 216321456060, OCT 216321452460, OCT 307047224643,
(COMMENT ATAN ATAND HYPBOL
OCT -223145306060, OCT -232145306060, OCT 212323606060,
(COMMENT SINH TANH ACC
OCT -222543475163, OCT -275125276260, OCT -042544465170,
(COMMENT SELPRT XREGS MEMORY
WORD SPACE A (250),
SYMBOL TABLE VALUE (41)= OCT 000000000000, OCT 000000100000,
(COMMENT FRACTN DECPTO
0CT 000000010000, OCT 000000020000, OCT 000000030000,
(COMMENT DECPT1 DECPT2 DECPT3, i
OCT 000000040000, OCT 000000050000, OCT 000000060000, b
(COMMENT DECPT4 DECPTS DECPT6 i
O0CT 000000070000, GCT 000100000000, OCT 000100000000, 4
(COMMENT DECPT7 IRU FIX h
OCT 000100010000, OCT 000200000000, OCT 000211070000, 4
(COMMENT FLOAT sQrcus SQRT I
OCT 000201040000, OCT 000300000000, OCT 000301070000, it
(COMMENT CUBERT LOG LOGE i
OCT 000300100000, OCT 000307010000, OCT 000400000000, b
(COMMENT LO62 LOG10 POWER
OCT 000402020000, OCT 000400100000, OCT 000407020000,
(COMMENT EXP PWR2 PWR10
OCT 000401010000, OCT 000401020000, OCT 000401030000,
(COMMENT EXP1 EXP2 EXP3
0CT 000500000000, OCT 000504020000, OCT 000503110000,
(COMMENT TRIG SIN SIND
OCT 000502060000, GCT 000502030000, OCT 000600000000,
(COMMENT COS cosD ARCTAN
OCT 000602040000, OCT 000602050000, OCT 000700000000,
(COMMENT ATAN ATAND HYPBOL
O0CT 000700110000, OCT 000701000000, OCT 020100010000,
(COMMENT SINH TANH ACC
OCT 000000010000, OCT 000000020000, OCT 000000030000,
(COMMENT SELPRT XREGS MEMORY
WORD SPACE B (250),
$DIMENSIONING CLN ..
ASSEMBLER
FLOWCHART NUMBER 00003
$FIRST PASS CLN
READ PROGRAM CLN
I + ONE = I, IOH READ (51,0, SYMBOL FIELD, OPERATION, VARIABLE

FIELD Ay VARIABLE FIELD By CM1,CM2,CM3,CM44CM5,CM6,CMT7,CMB),
IF OPERATION EQU EEND
THEN I = PROGRAM LENGTH, VARIABLE FIELD A = CALL PUNCH(=1),
N - ONE = SYMBOL TABLE LENGTH,
GO TO CONVERT SYMBOL TABLE TO BCD.S
FOR J4 EQU O STEP 1 UNTIL 73 DO
BEGIN IF OPERATION EQU OPERATION TABLE LBK J RBK
THEN 60 TO CHECK PSEUDO OP.$ END ,
ICH PRINT (52,0, CPERATION), GO TO ENDJB.

[JRE——

CHECK PSEUDO OP CLN 47f

IF J GTR LAST OP CODE
THEN GO TO PSEUDO OPERATION LBK J-70 RBK .$

OPERATION CODE LBK J RBK = COMMAND OP CODE LBK I RBK ,
STORE CARD CLN

SYMBOL FIELD = SYMBOL FIELD LBK I RBK , OPERATION

= OPERATION LBK I RBK , VARIABLE FIELD A

= VARIABLE FIELD A LBK I RBK , VARIABLE FIELD B

= VARIABLE FIELD B LBK I RBK 5 CM1 = COMMENT A LBK I RBK ,

CM2 = COMMENT B LBK I RBK o CM3 = COMMENT C LBK I RBK ,
CM4 = COMMENT D LBK I RBK , CM5 = COMMENT E LBK I RBK ,
CM6é6 = COMMENT F LBK I RBK 4, CM7 = COMMENT G LBK I RBK ,
CM8 = COMMENT H LBK I RBK o IF SYMBOL FIELD EQU ASTERISK

THEN MINUS SIGN = EX MARK LBK I RBK , GO TO READ PROGRAM.
ELSE ALL BLANK = EX MARK LBK I RBK $

IF SYMBOL FIELD NEQ ALL BLANK
THEN DO ENTER SYMBOL IN TABLE, $$

LOCATION COUNTER + ONE = LOCATION COUNTER, GO TO READ PROGRAM.

GO TC LDD. GO TO ORG. GO TO EQUAL.
PSEUDC OPERATION CLN GO TO BSS.

BSS CLN
LDD OP = COMMAND OP CODE LBK I RBK , IF SYMBOL FIELD
= SYMBOL FIELD LBK I RBK NEQ ALL BLANK
THEN DO ENTER SYMBOL IN TABLE, $$
DU CONVERT ADDRESS, LOCATION COUNTER + NUMB - ONE
= LOCATION COUNTER = NUMB, VARIABLE FIELD A
= VARIABLE FIELD B LBK I RBK ,
CONVERT LOCATION COUNTER TO BCD CLN
FOR J EQU O STEP 1 UNTIL 2 DO y
BEGIN NUMB /ONE THOUSAND LBK J RBK = BCD DIGIT LBK J RBKE%
ONE THOUSAND LBK J RBK = DIGIT, NUMB - DIGIT f
= NUMB, END ,
NUMB = BCD DIGIT LBK 3 RBK » FOR J EQU 1 STEP 1 UNTIL 3 DO
BEGIN BCD DIGIT(=6) ++ BCD DIGIT LBK J RBK (=6)
= BCD DIGIT(=6), END ,
BCD DIGIT =2 EXP 12 +PART BLANK
OPERATION = OPERATION LBK I RBK
CM2 = COMMENT B LBK I RBK CM3 COMMENT C LBK I RBK ,

= VARIABLE FIELD A LBK I RBK ,
; }

CM4 = COMMENT D LBK I RBK , CM5 = COMMENT E LBK I RBK ,
=
$

CM1 = COMMENT A LBK I RBK

CM6 = COMMENT F LBK I RBK CM7 COMMENT G LBK I RBK ,
CM8 = COMMENT H LBK I RBK SIGN = EX MARK LBK I RBK ,
GO TO READ PROGRAM.
EQUAL CLN
IOH PRINT (60,0, SYMBOL FIELD, OPERATION, VARIABLE FIELD A,
CM1l, CM2, CM3, CM4, CM5, CM6y CM7, CM8),
DO ENTER SYMBCL IN TABLE, DO CONVERT ADDRESS,
NUMB = SYMBOL TABLE VALUE LBK N-1 RBK 4 I - ONE = I,
G0 TO READ PROGRAM.
LDD CLN
DC CONVERT ADDRESSy NUMB = LOCATICON COUNTER, LDD CP
= COMMAND OP CODE LBK I RBK o GO TO STORE CARD.
ORG CLN
DO CONVERT ADDRESS, NUMB = LOCATION COUNTERs CRG CP
= COMMAND OP CODE LBK I RBK 4, GO TO STORE CARD.

o @ 9 -

CONVERT SYMBOL TABLE VALUE TC BCD CLN
FOR I EQU 41 STEP 1 UNTIL SYMBOL TABLE LENGTH DO
BEGIN FOR J EQU ZERO STEP 1 UNTIL 2 DO
BEGIN SYMBOL TABLE VALUE LBK I RBK / ONE THOUSAND LBK J RBK
= BCD DIGIT LBK J RBK # ONE THOUSAND LBK J RBK = DIGIT,

g .

SYMBOL TABLE VALUE LBK I RBK - DIGIT 47g
= SYMBOL TABLE VALUE LBK I RBK , END ,
SYMBOL TABLE VALUE LBK I RBK = BCD DIGIT LBK 3 RBK ,
FOR J EQU 1 STEP 1 UNTIL 3 DO
BEGIN BCD DIGIT(=6) ++ BCD DIGIT LBK J RBK (=6)
= BCD DIGIT (=6), END ,
BCD DIGIT = 2 EXP 12 = SYMBOL TABLE VALUE LBK I RBK , END ,
ZERO = 1,
SECOND PASS CLN
I + ONE = I, IF I EQU PROGRAM LENGTH
THEN IOH PRINT {(55404)y GO TO WRITE TABLES ON TAPE 9.8
IF COMMAND OP CODE LBK I RBK GTR MAXIMUM COMMAND COCE
THEN VARIABLE FIELD A LBK I RBK = DATA,
FOR J EQU O STEP 1 UNTIL 5 DO f
BEGIN =DATA = INDEX REGISTER LBK J RBK , DATA += DATA END , |
VARIABLE FIELD B LBK I RBK = DATA, FOR J EQU ©C STEP 1 UNTIL 2 |
DO BEGIN #DATA = WD UNIT LBK J RBK , DATA += DATA, END ,
60 TO WRITE ODUTPUT TAPES.S$
OUTPUT COMMAND CLN
#COMMAND OP CODE LBK I RBK = 0P TEN, COMMAND OP CODE LBK I RBK
+= COMMAND OP CODE LBK I RBK , * COMMAND OP CODE LBK I RBK
= 0P UNIT, EX MARK LBK I RBK = X,
VARIABLE FIELD A LBK I RBK = NAME = SYMB(=1),
IF SYMB EQU ALL BLANK
THEN ZERO = NAME $$
IF #NAME GTR BCD 9
THEN BEGIN DO BUILD SYMBOL,
FOR K EQU SYMBOL TABLE LENGTH STEP ~1 UNTIL O DO
BEGIN IF SYMB EQU SYMBOL TABLE LBK K RBK
THEN SYMBOL TABLE VALUE LBK K RBK (=1) = BCD NUMB, |
GO TOC OUTPUT BCD VARIABLE FIELD.$ END ,
SYMB = UNDEFINED SYMBOLS LBK M RBK 4 M + ONE = M,
ZERO = BCD NUMB, END $
ELSE BEGIN RIGHT ADJUST CLN
IF NAME(O=5) EQU SHORT BLANK
THEN NAME /7 2 EXP 6 = NAME, GO TO RIGHT ADJUST.S
IF NAME(6=11) NEQ COMMA
THEN NAME = 2 EXP 12 = NAME $$
FOR J EQU ZERO STEP 1 UNTIL 3 DO
BEGIN #NAME = CH TEN LBK J RBK 4 NAME += NAME, END ,
IF =NAME = CHARACTER EQU COMMA
THEN NAME += NAME, #NAME = INDEX REGISTER,
GO TO WRITE OUTPUT TAPES. |
ELSE ZERO=INDEX REGISTER, GOTO WRITE OUTPUT TAPES. END $
OUTPUT BCD VARIABLE FIELD CLN '
FOR K EQU O STEP 1 UNTIL 3 DO
BEGIN #BCD NUMB = CH TEN LBK K RBK ,
BCD NUMB += BCD NUMB, END ,
CUTPUT INDEX CLN
IF J NEQ FIVE
THEN GO TO CHECK INDEX.$
IF CHARACTER EQU COMMA
THEN #VARIABLE FIELD B LBK I RBK = INDEX REGISTER,
GO TO WRITE OUTPUT TAPES.S$
IF *VARIABLE FIELD B LBK I RBK EQU COMMA
THEN VARIABLE FIELD B LBK I RBK = NAME, NAME += NAME,
#NAME = INDEX REGISTER, GO TO WRITE OUTPUT TAPES.
ELSE ZERO = IR, GO TO WRITE OUTPUT TAPES.
CHECK INDEX CLN
IF CHARACTER NEQ COMMA
THEN ZERO = IR, 60 TO WRITE OUTPUT TAPES.S$
NAME += NAME, ®*NAME = INDEX REGISTER,

Flllllllllllll---—r~

l

WRITE OUTPUT TAPES CLN 47h
SYMBOL FIELD LBK I RBK = SYMBOL FIELD, OPERATION LBK I RBK
= OPERATION, VARIABLE FIELD A LBK I RBK = VARIABLE FIELD A,
VARIABLE FIELD B LBK I RBK = VARIABLE FIELD B,
COMMENT A LBK I RBK = CMl, COMMENT B8 LBK I RBK = CM2,
COMMENT C LBK I RBK = CM3, COMMENT D LBK I RBK = CM4,
COMMENT E LBK I RBK = CM5, COMMENT F LBK I RBK = CMé6,
COMMENT G LBK I RBK = CM7, COMMENT H LBK I RBK = CM8,
WRITE TAPE 5 CLN
I0H PRINT (53,59 CM1,CM2,CM3,CM4,CMS5,CM6,CMT7,CM8By IR, O, P,
ADDR 1, ADDR 2, ADDR 3, ADDR 4, SIGN VALUE, X),
WRITE TAPE 9 CLN
I0H PRINT (54,0, IR, O, P, ADDR 1, ADDR 2, ADDR 3, ADDR 4,
SIGN VALUE, X, SYMBOL FIELD, OPERATION, VARIABLE FIELD A,
VARIABLE FIELD B, CM1,CM2,CM3,CM4,CM5,CM6,CM7,CM8),
ALL BLANK = SIGN VALUE, GO TO SECOND PASS.
WRITE TABLES ON TAPE 9 CLN
FOR J EQU 41 STEP 1 UNTIL SYMBOL TABLE LENGTH DO
BEGIN SYMBOL TABLE LBK J RBK = SYMB,
SYMBOL TABLE VALUE LBK J RBK = NUMB, IOH PRINT (56,0,
SYMB, NUMB), END ,
IF L NEQ ZERO
THEN IOH PRINT (57,04)9 FOR J EQU O STEP 1 UNTIL L-1 DO
BEGIN MULTIPLY DEFINED SYMBOL LBK J RBK = SYMB,
I0OH PRINT (58,0, SYMB), END $$
IF M NEQ ZERO
THEN I0H PRINT (59,0,)y FOR J EQU O STEP 1 UNTIL M-1 DO
BEGIN UNDEFINED SYMBOLS LBK J RBK = SYMB,
I0OH PRINT (58,0, SYMB), END $$
EXIT ASSEMBLER CLN
MCH 0770000 OCT 205, MCH 0772000 OCT 205,
IF CALL PUNCH EQU PUNCH CALL B
THEN GO TO RETRN. (COMMENT WRITE T-5 ON T-9 BCD CARD IMAGES) {§
ELSE GO TO RETRN.. (COMMENT START INTERCOM 500 INTERPRETER) §

i

4 FLOWCHART NUMBER 00004

$PROCEDURE ENTER SYMBOL IN TABLE CLN
BEGIN SYMBOL FIELD(=1l) = NAME, FOR J EQU O STEP 1 UNTIL 5 OO
BEGIN #NAME = CHARACTER,
IF CHARACTER EQU SHORT BLANK
THEN GO TO EXIT.
ELSE SYMBOL ++ CHARACTER = SYMBOL $
EXIT CLN
NAME += NAME, END ,
ADJUST CHARACTERS LEFT CLN
IF =SYMBOL EQU ZEROD
THEN SYMBOL ++ SHORT BLANK = SYMBOL,
GO TO ADJUST CHARACTERS LEFT.$
SYMBOL = SYMBOL TABLE LBK N RBK (#1), LOCATIOGN CCUNTER
= SYMBOL TABLE VALUE LBK N RBK 4 FOR J EQU O STEP 1 UNTIL N-1 DO
BEGIN IF SYMBOL TABLE LBK J RBK EQU SYMBOL TABLE LBK N RBK
THEN SYMBOL TABLE LBK N RBK
= MULTIPLY DEFINED SYMBOLS LBK L RBK o L + ONE = L,
GO TO EXIT SYMBOL TABLE ENTRY.$ END ,
EXIT SYMBOL TABLE ENTRY CLN
N + ONE = Ny ZERO = SYMBOL, END ,

PROCEDURE CONVERT ADDRESS CLN u
BEGIN VARIABLE FIELD A = NAME, IF »NAME = NUMB GTR BCD 9 g

b7i
THEN BEGIN DO BUILD SYMBOL, FOR K EQU N-1 STEP -1 UNTIL 0 DO
BEGIN IF SYMB EQU SYMBOL TABLE LBK K RBK
THEN SYMBOL TABLE VALUE LBK K RBK = NUMB,
GO TO EXIT CONVERT ADDRESS.$ END ,
ZERO = NUMB, END $
ELSE BEGIN CONVERT BCD NUMBER TO BINARY CLN
NAME += NAME, IF =NAME = BCD NUMB EQU COMMA
THEN GO TO EXIT CONVERT ADDRESS.$
IF BCD NUMB NEQ SHORT BLANK
THEN BCD NUMB + NUMB = TEN = NUMB,
GO TO CONVERT BCD NUMBER TO BINARY.S$ END $
EXIT CONVERT ADDRESS CLN
END

PROCEDURE BUILD SYMBOL CLN
BEGIN FOR J EQU ZERC STEP 1 UNTIL 5 DO
BEGIN #NAME = CHARACTER,
IF CHARACTER EQU SHORT BLANK
THEN GO TO EXIT BUILD SYMBOL.S$
IF CHARACTER EQU COMMA
THEN GO TO EXIT BUILD SYMBOL.S$
SYMBOL ++ CHARACTER = SYMBOL, NAME += NAME, END ,
EXIT BUILD SYMBOL CLN
IF =SYMBOL EQU ZERO
THEN SYMBOL ++ SHORT BLANK = SYMBOL,
GO TO EXIT BUILD SYMBOL.S$
SYMBOL = SYMB(=1), ZEROC = SYMBOL, END s..

ASSEMBLER FORMATS 475
FLOWCHART NUMBER 00005

CONTROL
50(14H1SYMBOLIC MODE///)
51(C6,41XC3,1XC6+C3,4X8C6)
52(27H ILLEGAL OPERATION CODE = C3)
53(8C6414X9(1XC1))
54(3X9C143XC641XC341XCH4C645X8C6)
55(//7/713H SYMBOL TABLE/X)
56(3XC645XC4)
57(//725H MULTIPLY DEFINED SYMBOLS/X)
58(3XCé6)
59(/7//18H UNDEFINED SYMBOLS/X)
60(15XC641XC3,1XC6,11X8CH)

)
=

=
:
:

:
:
:

DIMENSIONING

FLOWCHART NUMBER 00001

$START INTERCOM 500 INTERPRETER CLN
FORMAT ADDRESS = PRINTOUT LBK 32766 RBK , FIRST PRINT VARIABLE
FORMAT = M, GO TO PERMIT MANUAL OPERATION..

FIRST

%FLOHCHART NUMBER 00002

4

(COMMENT

VARIABLE DIMENSION LIST

ACCUMULATOR = 0.0%0,

ADDR

ADDRESS (7),

ADDRESS SEPARATION,

BCD NUMBER (4),

CHL (7),

COL 64 CLN LBR COLUMN 64130=33),

COL 66 CLN LBR COLUMN 661({30=33),

COL 68 CLN LBR COLUMN 681(30=33),

COL 69 CLN LBR COLUMN 69(30=33),

COL 70 CLN LBR COLUMN 70(30=33),

COL 72 CLN LBR COLUMN 72130=33),

COL 74 CLN LBR COLUMN 74(30=33),

COL 76 CLN LBR COLUMN 761(30=33),

COMMAND A,

COMMAND B,

COMMENT1 CLN Cl, COMMENT2 CLN C2,
COMMENT4 CLN C4, COMMENTS5 CLN C5,
COMMENT? CLN C7, COMMENTS8 CLN C8,
COMMENT10 CLN C10, COMMENT11 CLN

DATUM (7) = 0.0#0y599999

EMPTY WORD CLN EW,

EXCUTE,

EXPONENT,

FIRST SELECTOR A,

FIRST SELECTOR B,

COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN

K{(30=35)
0(30=35)
P(30=35)
C(30=35)
H(30=35)
L(30=35)
W(30=35)
D(30=35)

RBR
RBR
RBR
RBR
RBR
RBR
RBR
RBR

COMMENT3 CLN C3,
COMMENT6 CLN Cé6,
COMMENT9 CLN C9,

Cll,

FRACTION SELECTOR CHANNEL CLN FRAC SEL CHANNEL,

INDEX (7).,

INDEX REGISTER ACCUMULATOR CLN IRA,

INDEX REGISTER COMPONENT ADDRESS CLN IR COMP ADDRESS,

INDEX REGISTER UTILIZATION CHANNEL CLN

J TEMPORARY STORAGE CLN JTS,
LAST WORD,

LOCATION,

LGG CHANNEL,

MARK PLACE 1,

MARK PLACE 2,

MEMORY (#128) = OCT 65000, CELL = OCT 65000,

MODE,

MQ,

NUMBER,

OP CODE (7),

PAST ACCUMULATOR,
POWER CHANNEL,
PROGRAM STORAGE,
SECOND SELECTCR,
SECOND SELECTCR A,
SECOND SELECTCR B,

IRU CHANNEL,

48a

o W Y 9 W ¥ e w

=

Loy

SELECTOR = 1, 48b |
SIGN, |
STORAGE
SUBROUTINE, |
TAB = 1, |
TABL (7)., !
WD (7)), i
DIFFERENCE (11), !
LIMIT (11), '
BASE (11), ‘
BASE (11), ‘
DIFFERENCE (11), ‘

|

aEalgh & & 4

LIMIT (11),
(COMMENT CONSTANT DIMENSION LISTY)

ADDR INCREMENT = OCT 13000,
AUTOMATIC = 1, j
BLANK = OCT ~206060606060, !
BCD 100 = OCT 010000, %
CARRIAGE RETURN FORMAT CLN LBR CR (24=35) RBR [
= OCT 000060746134, !
COMMAND FORMAT (4) = OCT 103060606023, OCT ~064444130274, ,
OCT -050273016734, OCT 024503736060,
FIRST FORMAT = 32767,
FIRST PRINT VARIABLE = 32765, ;
FIXED POINT FORMAT (9) = OCT 260200330773, OCT 260200330173, |
OCT 260200330273, OCT 260200330373, OCT 260200330473, |
OCT 260200330573, OCT 260200330673, OCT 260200330773,
OCT 260200330073, ;
FLOAT CONSTANT = OCT 233000000000,
FLOATING POINT FORMAT = OCT 250200330773,
FLOATING POINT TWO = 2.0+0, «
FLOATING POINT TEN = 10.0+0, !
LAST FORMAT WORD = OCT 3477777777177, :
LAST PRINT CALL WORD = OCT 002100070011, :
LIST ALL COMMANDS = 1, .
LOCATION FORMAT (4) = OCT 010530606060, OCT 234644442145,
OCT 246043462313, OCT -050573606060, :
LOG E 2 = 0.69314718%0, H
MANUAL = 0,
MAXIMUM FIXED POINT NUMBER = 1.0%10, ,
MINUS = DCT -006060606060, :
OCTAL FORMAT (2) = OCT 036704304623, OCT -231342010373, f
ONETAG = OCTY 100000, /|
OP CODE MASK = OCT 177, |
OUTPUT CONSTANT = OCT 65000,
PERFORMED = 1,
TAB FORMAT CLN LBR TB (6=23) RBR = OCT -206000000067,
TABL FORMAT = OCT 010567450573,

ZERO = 0,

ONE = 1,

THO = 2,

THREE = 3.
EIGHT = 8, !
TEN = 10, 5
ELEVEN = 11, |
THWENTY = 20, |
TWENTY ONE = 21, ‘
TWENTY SIX = 26, l
THIRTY NINE = 39, |

(COMMENT

FORTY TWO = 42,
FIFTY FIVE = 55,
SIXTY FIVE = 65,
SEVENTY ONE = 71,
SEVENTY TWO = 72,
SEVENTY SIX = 76,
SEVENTY SEVEN = 77,
NINTY SEVEN = 97,
ONE HUNDRED = 100,
ONE HUNDRED TWO = 102,
EIGHT HUNDRED = 800,

TEN THOUSAND (4) = 10000, 1000, 100,

SUBROUTINE DIMENSION LIST

ARCTAN # OCT 65504,
ATAND # OCT 65476,

COS = OCT 65266,

COSD = OCT 65251,

CUBE ROOT = OCT 65171,
EXPT = OCT 66050,

EXPl = OCT 66165,

EXP2 = OCT 66227,

EXP3 = OCT 66301,

FIX = OCT 65100,

FLOAT # OCT 65105,

LOG 2 = OCT 66356,

LCG 10 = OCT 66345,
LOG E = OCT 66356,
POWER 2 = 0OCT 66301,
POWER 10 = OCT 66301,
READ CARDS = OCT 70030,
READ CLOCK = OCT 70312,
SIN = OCT 65270,

SIND = OCT 65253,

SINH COSH = OCT 65607,
SQRT = OCT 65112,

TANH = OCT 65716,

$DIMENSIONING CLN

ACCUM
DATUM
ENTER
FORMA
LOCAT
TABL

TRANS
W DIF

WD AD
CHL A
opP CO
INDEX

ULATOR ADDRESS CLN
ADDRESS CLN
SELECTIVE PRINT CLN

T ADDRESS CLN

ION ADDRESS CLN

ADDRESS CLN

FER TO EXIT RC CLN

FERENCE ADDRESS CLN

MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH

DRESS CLN
DDRESS CLN

DE ADDRESS CLN
ADDRESS CLN

MCH
MCH
MCH
MCH

0000600
1000000
0020000
0000000
1000000
1000000
0020000
0000000

1000000
1000000
1000000
1000000

48c

10,

ACCUMULATOR,

CATUM,

START SELECTIVE PRINT,
FORMAT,

ADDRESS»

TABL

EXIT RETURN CARRIAGE,
W DIFFERENCE,

WD,

CHL,

CP CODE,
INDEX,

T e e e e W e e S I S e s T e e e i e
Coe— o e e e e e e e - gde = e B e R s e = RSN e B S e S o
T bR T it B et T R i e y il G Vreal Toiagt e .. e sl 2 LSy ot et sl i ot 1. niet i s L

g

STl e
S R Y

T3

FORMAT CLN MCH 7460606 OCT 06060,
MCH 000000C Oy MCH 0000000 Oy
MCH 0000000 0y MCH 0000000 0,
MCH 0000000 Oy MCH 0000000 O,
MCH 000000C O, MCH 0000000 Oy
MCH 0000000 0y MCH 0000000 O,
MCH 0000000 0, MCH 0000000 O,

MCH 0000000 00, MCH 0000000 00, (|
MCH 0000000 0, MCH 0000000 O, f
MCH 0000000 0, MCH 0000000 O,
MCH 0000000 O, MCH 0000000 0, {{
MCH 0000000 0y MCH 0000000 0, i
MCH 0000000 0, MCH 0000000 O, {f
MCH 00000000, MCH 00000000,.. f}

OPERATING MODES AND EXECUTE COMMAND SWITCH 48d
FLOWCHART NUMBER 00003

$PERMIT MANUAL OPERATION CLN (COMMENT OP CODE = 67)
IF TAB NEQ ONE i
THEN DO RETURN CARRIAGE, $%
MANUAL = MODE, IOH PRINT (8,0,4),
READ INSTRUCTION CLN
DO READ CARD, DO COMMAND CARD CONVERSION, IOH PRINT (4,0, INDEX,
OP CODEy ADDRy C15C2,C34C44C5,C63CT75C84C9,C104C11), PERFOUORMED :
= ADDRESS SEPARATION, DO EXECUTE COMMAND, GO TO READ INSTRUCTION.}
PROCEDURE READ CARD CLN 4
BEGIN IOH READ (140, C1,C2,C3,C4,C5,C6,C7+C8,C9,C10,C11, COL 64, W
COL 66, COL 68, COL 69y COL 70y COL 72y COL 74, COL T6+SIGNyEXCUTE),
FOR J EQU O STEP 1 UNTIL 7 DO (
BEGIN IF COL 64 LBK J RBK EQU BLANK
THEN ZERO = COL 64 LBK J RBK $$% END 4 END ,

COMPUTE AUTOMATICALLY CLN (COMMENT OP CODE = 69) %
IF TAB NEQ ONE ,
THEN DO RETURN CARRIAGE, $$
AUTOMATIC = MODE, IOH PRINT (9,0,), DO GEY ADDRESS, I = LOCATION,
COMMAND EXECUTION CLN
MEMORY LBK LOCATION RBK AND OP CODE MASK = OP CODE,
DO EXECUTE COMMAND, LOCATION + ONE = LOCATION,
GO TO COMMAND EXECUTION.
PROCEDURE EXECUTE COMMAND CLN
BEGIN G0 TO EXECUTE LBK OP CODE RBK .
GO TO BLOCK COPY. GO TO ENDJOB. GO TO COPY IRA INTC IRD.
GO TO CLEAR IRA AN ADD IRD. GO 7O INCREMENT C BASE.
GO TO INCREMENT W BASE. GO TO ASSIGN C LIMIT.
GO TO ASSIGN C DIFFERENCE. GO TO ASSIGN C BASE. i
GO TO ASSIGN W LIMIT. GOTO ASSIGN W DIFFERENCE. GOTO ASSIGN W BASE.
GO TO COMPUTE AUTOMATICALLY. GO TO BREAKPOINT HALT. ‘
GO TO PERMIT MANUAL OPERATION. GO TO STORE MQ. GO TO LOAD MQ.
GO TO CLOCK. GO TO RING BELL. GO TO STOP SELECTIVE PRINT.
GO TO INITIATE SELECTIVE PRINT. GO TO ERROR. GU TO ERROR.
GO TO ERROR. GO TO ERROR. GO TO ERROR. GO TO READ PAPER CARDS.
GO TO ERROR. GOTO ERROR. GOTO PERMIT TYPE IN OF FLOATING POINT DATA.§
GO TO ERROR. GOTO PERMIT COMMAND TYPE IN. GOTO STORE. GOTO DIVIDE. |
GO TO INVERSE DIVIDE. GOTOC ERROR. GOTO CLEAR AN ADC ABSOLUTE VALUE. |
GO TO MULTIPLY. GO TO ADD. GO TO CLEAR AN ADD. ;
GO TO SUBTRACT. GO TO CLEAR AN SUBTRACT. GO TO PUNCH PAPER CARDS. &
GO TO TYPE FIX POINT NUMBER AN RC. GOTO TYPE MEMORY IN OCTAL AN TAB.!
GO TO ERROR. GO TO TYPE COMMAND FROM MEMORY AN TAB. '
GO TO TYPE FLOAT POINT NUMBER AN RC.
GO TO TYPE FIXED POINT NUMBER AN TAB.
GO TO TYPE FLOATING POINT NUMBER AN TAB.
GO TO TYPE TABULATING NUMBER AN TAB. GOTO PCSITION TYPEWRITER PAPER.}
GO TO TRANSFER. GO TO MARK PLACE 2 AN TRANSFER. i
GO TO ERROR. GO TO MARK PLACE 1 AN TRANSFER. GO TO ERROR.
GO TO ERROR. GO TO TRANSFER ON ZERO. GO TO TRANSFER ON MINUS.
GO TO ERROR. GO TO TRANSFER ON PLUS AN ZERO.
GO TO ERROR. GO TO RETURN TO MARK PLACE 2.
GO TO ERROR. GO TO RETURN TO MARKED PLACE 1. GO TC ERROR.)
GO TO ERROR. GO TO ERROR. GO TO ERROR. GO TO ERROR. GO TO ERROR. |
GO TO SET IRA. GO TO PERFORM SUBROUTINE. GO TO LOAD SUBROUTINES.
GO TO TYPE LOCATION OF LAST COMMAND EXECUTED. GO TO ERROR.
GO TO ERROR. GO TO ERROR. GO TO ERROR. GO TO ERRCOR.
EXECUTE CLN GO TO NO OPERATION.
EXIT COMMAND CLN END ..

INPUT COMMANDS - READ COMMANDS 4L8e

FLOWCHART NUMBER 00004

$PERMIT CCMMAND TYPE IN CLN (COMMENT CP CCDE = 50)?
IF TAB NEQ ONE j
THEN DO RETURN CARRI‘G&: $3
ICH PRINT (6404)»
READ COMMAND CLN
DO READ CARD, DO GET ADDRESSy I = ADDRESS,
DO COMMAND CARD CONVERSION, IF EXCUTE EQU BLANK
THEN IOH PRINTY (3,0, ADDRESS,s INDEX, OP CODE, ADDR, C1,C2,
C34C4,C5,C64CT4C8,C9,C10,C11)y CHL = 2 EXP 18 + WD "
2 EXP 11 + INDEX = 2 EXP 7 + OP CODE = MEMORY LBK I RBK %
ELSE IOH PRINT (4,0, INDEX, OP CODE, ADDRy Cl1,4C2,(3,C4,C5,
C64C74C84C9,C10,C11)y PERFORMED = ADDRESS SEPARATION,
DO EXECUTE COMMAND, ADDRESS - ONE = ADDRESS $
CHECK MODE CLN
IF MODE EQU MANUAL
THEN ADDRESS + ONE = ADDRESS, GO TO READ COMMANDS.
ELSE GO TO EXIT COMMAND.
READ COMMANDS CLN
DO READ CARD, DO CCOMMAND CARD CONVERSICON, IF EXCUTE EQU BLANK
THEN IOH PRINT (3,0, ADDRESS, INDEX, OP CODE, ADDR, Cl,C2,
C39C49C5,C64C7,C8,C9,C10,C11)y CHL = 2 EXP 18 + WD
2 EXP 11 + INDEX = 2 EXP 7 + OP CODE
= MEMORY LBK ADDRESS RBK , ADDRESS + ONE = ADDRESS,
GO TO READ COMMANDS.
ELSE I0OH PRINT (4,0, INDEX, OP CODEy ADDRy Cl,+C2,C3,C4,C5,
C6,CT7,C84C9,C10,C11)y PERFORMED = ADDRESS SEPARATION, é

DO EXECUTE COMMAND, GO TO READ COMMANDS.

PERMIT TYPE IN OF FLOATING POINT DATA CLN {COMMENT OP CODE = 52)5
IF TAB NEQ ONE
THEN DO RETURN CARRIAGE, $%
IOH PRINT (7404)»
READ DATUM CLN
DO READ CARD, DO GET ADDRESSy I = ADDRESS, IF EXCUTE EQU BLANK
THEN DO DATUM CARD CONVERSIUON, IOH PRINT (5,0, ADDRESS,
DATUMy; C14C24C34C44C54C6,C74C8,C9,C10,C11), DATUM
= MEMORY LBK I RBK $
ELSE DO COMMAND CARD CONVERSION, IOH PRINT (4,0, INDEX,
OP CODEy ADDRy C1l9C29C33C443C54C69C74C8,C9,C10,C11),
PERFORMED = ADDRESS SEPARATION, DO EXECUTE COMMAND,
ADDRESS - ONE = ADDRESS $
CHK MODE CLN
IF MODE EQU MANUAL
THEN ADDRESS + ONE = ADDRESSy GO TO READ DATA.
ELSE GO TO EXIT COMMAND.
READ DATA CLN
DO READ CARD,y IF EXCUTE EQU BLANK
THEN DO DATUM CARD CONVERSION, IOH PRINT (5,0, ADDRESS,
DATUMy Cl1l9C249C3:C4,C59C64C749C84C94C10,C11), DATUM
= MEMORY LBK ADDRESS RBK , ADDRESS + ONE = ADDRESS,
G0 TO READ DATA.
ELSE DO COMMAND CARD CONVERSION, IOH PRINT (4,0, INDEX,
OP CODEy ADDRy C1yC29C39C44C54C6,C7,C8,C09,C10,C11),
PERFORMED = ADDRESS SEPARATION, DO EXECUTE COMMAND,
GO TO READ DATA..

g

- R el e I e o e N e e ke T o o Ny - SN T

ol

ARITHMETIC COMMANDS ug8f
FLOWCHART NUMBER 00005

SCLEAR AN SUBTRACT CLN (COMMENT CP CODE = 40)?
DO GET ADDRESS, ZERO - MEMORY LBK I RBK = ACCUMULATCR, it
GO TO EXIT COMMAND.

SUBTRACT CLN (COMMENT OP CODE = 41)f
DO GET ADDRESSs ACCUMULATOR - MEMORY LBK I RBK = ACCUMULATOR, i
GO TO EXIT COMMAND.

CLEAR AN ADD CLN (COMMENT OP CODE = 42)1
DO GET ADDRESS, MEMORY LBK I RBK = ACCUMULATOR, GO TO EXIT COMMAND.
ADD CLN (COMMENT OP CODE = 43)ff
DO GET ADDRESS, ACCUMULATOR + MEMORY LBK I RBK = ACCUMULATOR, 1
60 TO EXIT COMMAND. 4

MULTIPLY CLN (COMMENT OP CODE
DO GET ADDRESSy ACCUMULATOR # MEMORY LBK I RBK = ACCUMULATOR,
GO TO EXIT COMMAND.

L
>
S
-~

1]
»
(8}
ko -

CLEAR AN ADD ABSOLUTE VALUE CLN (COMMENT OP CCDE
DO GET ADDRESSy MEMORY LBK I RBK (=1) = ACCUMULATOR,
GO TO EXIT COMMAND.

INVERSE DIVIDE CLN (COMMENT OP CODE
DO GET ADDRESSy MEMORY LBK I RBK / ACCUMULATOR = ACCUMULATOR,
GO TO EXIT COMMAND.

1}
H
-4
-

DIVIDE CLN (COMMENT OP CODE
DO GET ADDRESS, ACCUMULATOR / MEMORY LBK I RBK = ACCUMULATOR,
GO TO EXIT COMMAND.

[}
»H
@
-~

STORE CLN (COMMENT OP CODE = 49)

DO GET ADDRESSs, ACCUMULATOR = MEMORY LBK I RBK , GOTO EXIT COMMAND..}

TRANSFER OF CONTROL COMMANDS L8g
FLOWCHART NUMBER 00006

$TRANSFER ON PLUS AN ZERO CLN (COMMENT 0P CODE
IF ACCUMULATOR GEQ ZERO
THEN DO GET ADDRESS, I-ONE = LOCATION, GO TO EXIT COMMAND.
ELSE GO TO EXIT COMMAND.

TRANSFER ON MINUS CLN (COMMENT CP CODE
IF ACCUMULATOR LSS ZERO
THEN DO GET ADDRESSy I-ONE = LOCATIONy GO TO EXIT COMMAND.
ELSE GO TO EXIT COMMAND.

TRANSFER ON ZERO CLN (COMMENT CP CODE
IF ACCUMULATOR EQU ZERO
THEN DO GET ADDRESSy I-ONE = LOCATION, GO TO EXIT COMMAND.
ELSE GO TO EXIT COMMAND.

TRANSFER CLN (COMMENT OP CODE
DO GET ADDRESSy I-ONE = LOCATION, GO TO EXIT COMMAND.

MARK PLACE 1 AN TRANSFER CLN (COMMENT CP CODE
LOCATION = MARK PLACE 1, DO GET ADDRESSs I-ONE = LOCATION,
GO TO EXIT COMMAND.

MARK PLACE 2 AN TRANSFER CLN (COMMENT OP CODE
LOCATION = MARK PLACE 2, DO GET ADDRESS,y I-ONE = LOCATION,
GO TO EXIT COMMAND.

RETURN TO MARKED PLACE 1 CLN (COMMENT CP CODE
MARK PLACE 1 = LOCATION, GO TO EXIT COMMAND.

RETURN TO MARK PLACE 2 CLN (COMMENT CP CODE
MARK PLACE 2 = LOCATION, GO TO EXIT COMMAND..

i

il

20)

22)

23)

29)

26)

28)

16)

18)

e——

INDEX REGISTER COMMANDS 48h

FLOWCHART NUMBER 00007

$ASSIGN W BASE CLN (COMMENT cP CODE
DO COMMAND SEPARATION, ADDR = W BASE LBK INDEX RBK ,
GO TO EXIT COMMAND.

ASSIGN W DIFFERENCE CLN (COMMENT OP CCDE =
DO COMMAND SEPARATICON, ADECR = W DIFFERENCE LBK INDEX RBK
GO TO EXIT COMMAND.

ASSIGN W LIMIT CLN (COMMENT CP CODE =
DO COMMAND SEPARATION, ADDR = W LIMIT LBK INDEX RBK o
GO TO EXIT COMMAND.

ASSIGN C BASE CLN (COMMENT OP CODE
DO COMMAND SEPARATIONs ADDR = C BASE LBK INDEX RBK
GO TO EXIT COMMAND.

i

ASSIGN C DIFFERENCE CLN (COMMENT OP CODE
DO COMMAND SEPARATION, ADDR DIFFERENCE LBK INDEX RBK
GO TO EXIT COMMAND.

i
(g

ASSIGN C LIMIT CLN (COMMENT CP CODE =
DO COMMAND SEPARATION, ADDR = C LIMIT LBK INDEX RBK ,
GO TO EXIT COMMAND.

L}

INCREMENT W BASE CLN (COMMENT CP CODE
DO COMMAND SEPARATION, INDEX = Iy IF W BASE LBK I RBK
+ W DIFFERENCE LBK I RBK = W BASE LBK I RBK LEQ W LIMIT LBK I RBK
THEN ADDR - ONE = LOCATIONy GO TO EXIT COMMAND.
ELSE GO TO EXIT COMMAND.

INCREMENT C BASE CLN (COMMENT OP CODE =
DO COMMAND SEPARATION, INDEX = I, IF C BASE LBK I RBK
+ C DIFFERENCE LBK I RBK = C BASE LBK I RBK LEQ C LIMIT LBK I RBK
THEN ADDR - ONE = LOCATION, GO TO EXIT COMMAND.
ELSE GO TO EXIT COMMAND.

CLEAR IRA AN ADD IR D CLN (COMMENT cP CODE
DO COMMAND SEPARATE, WD = ELEVEN + INDEX = I,
W DIFFERENCE LBK I RBK = IRA, GO TO EXIT COMMAND.

]

COPY IRA INTO IR D CLN (COMMENT CP CODE
DO COMMAND SEPARATE, WD # ELEVEN + INDEX = I,
IRA = W DIFFERENCE LBK I RBK , GO TO EXIT COMMAND.

i

SET IRA CLN (COMMENT CP CODE
DO GET ADDRESSy I = IRA, GO TO EXIT COMMAND..

OUTPUT COMMANDS hgi

FLOWCHART NUMBER 00010

S$TYPE LOCATION OF LAST COMMAND EXECUTED CLN (COMMENT OP CODE = 06)
LOCATION - ONE = ADDRESS LBK TAB RBK ,
LOAD LOCATION VARIABLE ADDRESS IN PRINTCUT CALL CLN
LOCATION ADDRESS - TAB = PRINTOUT LBK L RBK , L - ONE = L,
LOAD LOCATION FORMAT CLN
FOR J EQU O STEP 1 UNTIL 3 DO
BEGIN LOCATION FORMAT LBK J RBK = FORMAT LBK M RBK .
M - ONE = My END »
TAB + ONE = TAB, GO TO EXIT COMMAND.
POSITION TYPEWRITER PAPER CLN ‘ (COMMENT OP CODE = 30)

DO GET ADDRESS, I = STORAGE / ONE HUNDRED = CHL * ONE HUNDRED
= NUMBER, STORAGE - NUMBER = WD, IF WD NEQ ZERO
THEN BEGIN IF WD GEQ TEN
THEN WD / TEN = BCD NUMBER * TEN = NUMBER, BCD NUMBER
2 EXP 6 + WD - NUMBER = WD $$
WD = CR, CARRIAGE RETURN FORMAT = FORMAT LBK M RBK ,
M - ONE = M, DO RETURN CARRIAGE, END §
ELSE TAB + CHL = TAB, GO TO EXIT OP CODE 30.
IF CHL NEQ ZERO
THEN CHL + ONE = TAB $
ELSE GO TO EXIT COMMAND.
EXIT OP CODE 30 CLN
CHL = TWENTY = NUMBER, IF NUMBER EQU ONE HUNDRED
THEN BCD 100 = TB $;
ELSE NUMBER / TEN # 2 EXP 6 = TB § v
TAB FORMAT = FORMAT LBK M RBK , M-ONE=M, GO TO EXIT COMMAND.

TYPE TABULATING NUMBER AN TAB CLN (COMMENT OP CODE = 31)§
DO GET ADDRESSy I = TABL LBK TAB RBK , b
LOAD TABL ADDRESS IN PRINTOUT CALL CLN
TABL ADDRESS - TAB = PRINTOUT LBK L RBK , L - ONE = L,

LOAD TABL FORMAT CLN
TABL FORMAT = FORMAT LBK M RBK , M - ONE = M, 3
TAB + ONE = TAB, GO TO EXIT COMMAND. n

TYPE FLOATING POINT NUMBER AN TAB CLN (COMMENT OP CODE = 32)
DO GET ADDRESSs MEMORY LBK I RBK = DATUM LBK TAB RBK , i
LOAD FL PT NUM ADDRESS IN PRINTOUT CALL CLN vl

DATUM ADDRESS —= TAB = PRINTOUT LBK L RBK 5 L = ONE = L,
LOAD FL PT NUM FORMAT CLN
FLOATING POINT FORMAT = FORMAT LBK M RBK 4, M - ONE = M, .
TAB + ONE = TABy, GO TO EXIT COMMAND. b
TYPE FIXED POINT NUMBER AN TAB CLN (COMMENT OP CODE = 33) i

DO GET ADDRESSy MEMORY LBK I RBK = DATUM LBK TAB RBK ,
LOAD FP NUM ADDRESS IN PRINTOUT CALL CLN
DATUM ADDRESS - TAB = PRINTOUT LBK L RBK 5y L = ONE = L,
LOAD FP NUM FORMAT CLN
IF DATUM LBK TAB RBK LSS MAXIMUM FIXED POINT NUMBER
THEN FIXED POINT FORMAT = FORMAT LBK M RBK $
ELSE FLOATING POINT FORMAT = FORMAT LBK M RBK $
M - ONE = My TAB + ONE = TAB, GO TO EXIT COMMAND..

489

FLOWCHART NUMBER 00011

"

$TYPE FLOAT POINT NUMBER AN RC CLN (COMMENT 0P CODE
DO GET ADDRESS, MEMORY LBK I RBK = DATUM LBK TAB RBK ,
LOAD FL PT NUMB ADDRESS IN PRINTOUT CALL CLN
DATUM ADDRESS - TAB = PRINTOUT LBK L RBK 4, L - ONE = L,
LOAD FL PT NUMB FORMAT CLN
FLOATING POINT FORMAT = FORMAT LBK M RBK y M - ONE = M,
DO RETURN CARRIAGE, GO TO EXIT COMMAND.

]

TYPE COMMAND FROM MEMORY AN TAB CLN (COMMENT CP CODE
DO GET ADDRESS, CELL LBK I RBK (7=10) = INDEX LBK TAB RBK ,
CELL LBK I RBK AND OP CODE MASK = OP CODE LBK TAB RBK ,

CELL LBK I RBK (18=26) = CHL LBK TAB RBK , CELL LBK I RBK (11=17)
= WD LBK TAB RBK
LOAD COMMAND VARIABLE ADDRESSES IN PRINTOUT CALL CLN
FOR J EQU O STEP 1 UNTIL 3 DO
BEGIN INDEX ADDRESS LBK J RBK -~ TAB = PRINTOUT LBK L RBK
L - ONE = Ly END
LOAD COMMAND FORMAT CLN
FOR J EQU O STEP 1 UNTIL 3 DO
BEGIN COMMAND FORMAT LBK J RBK = FORMAT LBK M RBK ,
M - ONE = My END ,
TAB + ONE = TAB, GO TO EXIT COMMAND.

]

TYPE MEMORY IN OCTAL AN TAB CLN (COMMENT 0P CODE
DO GET ADDRESS, MEMORY LBK I RBK = DATUM LBK TAB RBK ,
LOAD OCTAL VARIABLE ADDRESS IN PRINTOUT CALL CLN
DATUM ADDRESS -~ TAB = PRINTOUT LBK L RBK 5, L - ONE = L,
LOAD OCTAL FORMAT CLN
OCTAL FORMAT = FORMAT LBK M RBK
OCTAL FORMAT LBK 1 RBK = FORMAT LBK M-1 RBK 4 M - TWO = M,
TAB + ONE = TAB, GO TO EXIT COMMAND.

TYPE FIX POINT NUMBER AN RC CLN (COMMENT OP CODE =
DO GET ADDRESSy MEMCORY LBK I RBK = DATUM LBK TAB RBK ,
LOAD FP NUMB ADDRESS IN PRINTOUT CALL CLN
DATUM ADDRESS - TAB = PRINTOUT LBK L RBK 4 L - ONE = L,
LOAD FP NUMB FORMAT CLN
IF DATUM LBK TAB RBK LSS MAXIMUM FIXED POINT NUMBER
THEN FIXED POINT FORMAT = FORMAT LBK M RBK $
ELSE FLOATING POINT FORMAT = FORMAT LBK M RBK $
M - ONE = My, DO RETURN CARRIAGE, GO TO EXIT COMMAND.

PROCEDURE RETURN CARRIAGE CLN

BEGIN LAST PRINT CALL WORD = PRINTOUT LBK L RBK ,

LAST FORMAT WORD = FORMAT LBK M RBK , TRANSFER TO EXIT RC

= PRINTOUT LBK L-1 RBK ,

PRINTOUT CLN
IOH PRINT (10409 EWsEWEWJEWIEWSEWIEWIEWEW9EW,
EWYEWsEWSEWEWSEWSEWyEWSEWEWJEWIEWSEWSEWSEWIENW) »

EXIT RETURN CARRIAGE CLN
ONE = TAB, FIRST PRINT VARIABLE = L, FIRST FORMAT = My END y..

LT ey

34)

s o

R e B R TSt E

35)

T e S o S

e

A e

(TS o

37)

gpmre e o e
S s a e Y

oo

2 oo

!

RD INPUT OUTPUT COMMANDS ’ 48k |
OWCHART NUMBER 00012 |

$PUNCH PAPER CARDS CLN (COMMENT OP CODE = 39)
DO GET ADDRESSy I = STORAGE, ONETAG - STORAGE - ADDR INCREMENT |
= ORIGINy STORAGE / ONE HUNDRED = ONE HUNDRED + ADDR INCREMENT
= STORAGE, ONETAG - STORAGE = STORAGE = 2 EXP 18 + ORIGIN = LIMITS,
DO PUNCH CARDS, GO TO EXIT COMMAND. |
PROCEDURE PUNCH CARDS CLN

BEGIN DO PUNCH,
LIMITS CLN EMPTY WORD,
ORIGIN CLN MCH 0000000 OCT 100y END ,

READ PAPER CARDS CLN (COMMENT OP CODE = 55)
DO READ CARDS, EMPTY WORD, GO TO ENDOFFILE RETURN.
GO TO ERROR RETURN. GO TO EXIT COMMAND.

ENDOFFILE RETURN CLN
IF TAB NEQ ONE
THEN DO RETURN CARRIAGE, $$%
IOH PRINT (14,0,), GO TO ENDJB.
ERROR RETURN CLN
IF TAB NEQ ONE
THEN DO RETURN CARRIAGE, $%
I0H PRINT (1540,), GO TO ENDJB..

SPECIAL COMMANDS 481
FLOWCHART NUMBER 00013

$BLOCK COPY CLN (COMMENT CP CODE = 81)[

DO COMMAND SEPARATION, ADDR - ONE = LAST WORD,
INDEX # ONE HUNDRED + EIGHT HUNDRED = J,
FOR I EQU CHL STEP 1 UNTIL LAST WORD DO

BEGIN MEMORY LBK I RBK = MEMORY LBK J RBK 4 J4 + CNE = J, END ,
CHL = EIGHT HUNDRED / ONE HUNDRED = I, INDEX = J,
FOR K EQU O STEP 1 UNTIL 5 DO

BEGIN W DIFFERENCE LBK I RBK = W DIFFERENCE LBK J RBK ,

I + ELEVEN = I, J + ELEVEN = J, END ,

GO TO EXIT COMMAND.

ERROR CLN
IF TAB NEQ ONE
THEN DO RETURN CARRIAGE, $%
IOH PRINT (13,0, OP CODE), GO TO ENDJB.

NO OPERATICN CLN (COMMENT CP CCDE = 00)
GO TO EXIT COMMAND. r
RING BELL CLN (COMMENT OP CODE = 63)

IF TAB NEQ ONE
THEN DO RETURN CARRIAGE, $$ i
IOH PRINT (11,04)y GO TO EXIT COMMAND.

CLOCK CLN (COMMENT OP CODE = 64)|
DO READ CLOCKs MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND.
LOAD MQ CLN (COMMENT OP CODE = 65)
DO GET ADDRESS, MEMORY LBK I RBK = MQ, GO TO EXIT CCMMAND.
STORE MQ CLN (COMMENT OP CODE = 66)
DO GET ADDRESS, MQ = MEMORY LBK I RBK s GO TO EXIT COMMAND.
BREAKPOINT HALT CLN (COMMENT OP CODE = 68)
IF TAB NEQ ONE
THEN DO RETURN CARRIAGE, $$
IOH PRINT (12,0,), GO TO ENDJB.
ENDJOB CLN (COMMENT 0P CODE = 80)

IF TAB NEQ ONE
THEN DO RETURN CARRIAGE, $%
ZERO = LIMITS, DO PUNCH CARDS, GO TO ENDJB..

L
“
|
|
|
|
|
|
|
|
|
|

e

\
e

LOADING SUBROUTINES 48m

FLOWCHART NUMBER 00014

b

$LOAD SUBROUTINES CLN (COMMENT OP CODE = 0OT)
IF TAB NEQ ONE ‘
THEN DO RETURN CARRIAGE, $%
IOH PRINT (16404),
READ SUBROUTINE CLN
DO READ CARD, DO COMMAND CARD CONVERSION,
GO TO CALL SUBROUTINE LBK OP CODE RBK .

S LS e T e S
e Sk e e e e

GO TO CALL INDEX REGISTER UTILIZATION. i
GO TO CALL ERROR. GO TO CALL ERROR. GO TC CALL ERRCR.
G0 TO CALL ERROR. GO TO CALL HYPERBOLICS. GC TC CALL ARCTAN.
GO0 TO CALL SIN COS. GO TO CALL POWER. GO TO CALL LOCG.
GO TO CALL SQUARE ROOT. GO TO CALL FRACTION SELECTOR.

CALL SUBROUTINE CLN GO TC EXIT LOADING SUBROUTINES.

EXIT LOADING SUBROUTINES CLN (COMMENT N = 0)g
IF SIGN EQU MINUS R
THEN FIXED POINT FORMAT LBK WD RBK = FIXED POINT FORMAT,
IOH PRINT (17,0, WD), GO TC EXIT COMMAND.$
IF WD EQU ZERO
THEN IOH PRINT (18,0,), GO TO EXIT COMMAND.$
IF WD EQU ONE
THEN IOH PRINT (29,04)y GO TO READ SUBROUTINE.S
IF WD EQU THWO
THEN IOH PRINT (34,0,) FOR J EQU O STEP 1 UNTIL 65 DO
BEGIN ZERO = W DIFFERENCE LBK J RBK , END ,
GO TO READ SUBROUTINE.S$
IF WD EQU THREE
THEN IOH PRINT (35,0,) FOR J EQU O STEP 1 UNTIL 65 DO
BEGIN ZERC = W DIFFERENCE LBK J RBK , END ,
FOR J EQU O STEP 1 UNTIL 23500 DO
BEGIN ZERO = MEMORY LBK J RBK , END ,
GO TO READ SUBROUTINE.S$ ¥
CALL FRACTION SELECTOR CLN (COMMENT N=1)§
IOH PRINT (28,04 CHL)y CHL = FRAC SEL CHANNEL, |
GO TO READ SUBROUTINE.

CALL SQUARE ROOT CLN (COMMENT N = 2)§
IOH PRINT (19,0, CHL), GO TO READ SUBROUTINE. i
CALL LOG CLN (COMMENT N = 3) 4
IOH PRINT (20,0, CHL)s CHL = LOG CHANNEL, GO TC READ SUBROUTINE. |
CALL POWER CLN (COMMENT N = 4)
IOH PRINT (21,0,CHL), CHL = POWER CHANNEL, GO TO READ SUBROUTINE.
CALL SIN COS CLN (COMMENT N = 5)
IOH PRINT (22,0, CHL)y GO TO READ SUBROUTINE. i
CALL ARCTAN CLN (COMMENT N = 6)
IOH PRINT (23,0, CHL), GO TO READ SUBROUTINE. |
CALL HYPERBOLICS CLN (COMMENT N = 7)1}
I0H PRINT (27,0, CHL), GO TO READ SUBROUTINE. i
CALL INDEX REGISTER UTILIZATION CLN (COMMENT N =12) }

IOH PRINT (25404 CHL)y CHL = IRU CHANNEL, GO TO READ SUBROUTINE.
CALL ERROR CLN
I0H PRINT (26,0, OP CODE)y GO TO ENDJB..

PERFORMING SUBROUTINES 48n

FLOWCHART NUMBER 00015

LS R

$PERFORM SUBROUTINE CLN (COMMENT CP CODE = 08)|
DC GET ADDRESSy I = STORAGE / ONE HUNDRED = CHL # ONE HUNDRED ¢
= NUMBER, STORAGE-NUMBER = SUBROUTINE, IF SUBROUTINE LEQ TWENTY SIX
THEN GO TO SUBROUTINE TRANSFER LBK SUBROUTINE RBK .$ ‘
IF SUBROUTINE EQU THIRTY NINE (COMMENT SUBRCUTINE = WD = 39),
THEN MCH 0500000 ACCUMULATOR, DO SINDs MCH 0601000 ACCUMULATOR,
60 TO EXIT COMMAND.$ d
IF SUBROUTINE EQU FORTY THWO (COMMENT SUBROUTINE = WD = 42)
THEN MCH 0500000 ACCUMULATORs DO SINs MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.S$
IF SUBROUTINE EQU SEVENTY ONE (COMMENT SUBROUTINE = WD = 71),
THEN MCH 0500000 ACCUMULATOR, DO LOG 10y MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.S$
IF SUBROUTINE EQU SEVENTY TWO (COMMENT SUBRCUTINE = WD
THEN MCH 0500000 FLOATING POINT TEN, MCH 0560000 ACCUMULATCR,
DC POWER 10, MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND.S$
IF SUBROUTINE EQU NINTY SEVEN (COMMENT SUBRCUTINE = WD = 97)!
THEN MCH 0500000 ACCUMULATOR, DO SQRT, MCH 0601000 ACCUMULATOR, [
GO TO EXIT COMMAND. #
ELSE GO TO ERRCR TRANSFER. ¢

TR
S e SR

ol

=Y

i

T Eree e

ot

72)

f

GOTO COS TRANSFER. GOTO ATAND TRANSFER. i
GOTO ARCTAN TRANSFER. GOTO COSD TRANSFER. GOTO EXPT TRANSFER. |
GOTO ERROR TRANSFER. GOTO ERROR TRANSFER. GOTO ERROR TRANSFER. |
GOTO ERROR TRANSFER. GOTO LOG E TRANSFER. GOTO ERROR TRANSFER. §
60TO ERROR TRANSFER. GOTO CUBERT TRANSFER. GOTO EXP3 TRANSFER.
GOTO EXP2 TRANSFER. GOTO EXP1 TRANSFER. GOTO TANH TRANSFER.
GOTO SINH TRANSFER. GOTO CHECK SUBROUTINE. GOTO SELECT FRACTION.|
GOTO SELECT FRACTION. GOTO SELECT FRACTION. GOTO SELECT FRACTION.
60TO SELECT FRACTION. GOTO SELECT FRACTION. GOTO FLOAT TRANSFER. |
SUBROUTINE TRANSFER CLN GOTO FIX TRANSFER.

SELECT FRACTION CLN
FIXED POINT FORMAT LBK SUBROUTINE RBK = FIXED POINT FORMAT,
GO TO EXIT COMMAND.
FIX TRANSFER CLN (COMMENT SUBRCUTINE = WD
IF CHL EQU IRU CHANNEL
THEN MCH 0500000 ACCUMULATOR, DO FIX, MCH 0601000 IRA,
GO TO EXIT COMMAND.S$
IF CHL EQU FRAC SEL CHANNEL
THEN GO TO SELECT FRACTION.
ELSE GO TO ERROR TRANSFER.
FLOAT TRANSFER CLN {COMMENT SUBRCUTINE = WD
IF CHL EQU IRU CHANNEL
THEN MCH 0500000 IRA, DO FLOAT, MCH 0601000 ACCUMULATCR,
GO TO EXIT COMMAND.$
IF CHL EQU FRAC SEL CHANNEL {
THEN GO TO SELECT FRACTION. S
08) §

L}
(»]
o
o

1}
o
o
e

ELSE GO TO ERROR TRANSFER. ’
CHECK SUBROUTINE CLN (COMMENT SUBROUTINE = WD =
IF CHL EQU LOG CHANNEL $
THEN MCH 0500000 ACCUMULATOR, DO LOG 2, MCH 0241000 LOG E 2, ;
MCH 4600000 ACCUMULATOR, GO TO EXIT COMMANC.S$ 5
IF CHL EQU POWER CHANNEL
THEN MCH 0500000 FLCATING POINT TWO, MCH 0560000 ACCUMULATOR,
DO POWER 2, MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND.S$
IF CHL EQU FRAC SEL CHANNEL
THEN GO TO SELECT FRACTION.

b
1
ELSE GO TO ERROR TRANSFER. 480 g

SINH TRANSFER CLN (COMMENT SUBROUTINE = WD = 09)}
MCH 0500000 ACCUMULATOR, DO SINH COSHy GO TO ERRCR TRANSFER. ;
MCH 0601000 ACCUMULATOR, MCH 4600000 MQ, GO TO EXIT COMMAND. E

TANH TRANSFER CLN {COMMENT SUBROUTINE = WD = 10)
MCH 0500000 ACCUMULATOR, DO TANH, MCH 0601000 ACCUMULATOR, {
60 TO EXIT COMMAND.

EXP1 TRANSFER CLN (COMMENT SUBROUTINE = WD = 11)}
MCH 0500000 ACCUMULATOR, MCH 0560000 MQ, DO EXPl, |
MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND. i

EXP2 TRANSFER CLN (COMMENT SUBROUTINE = WD = 12)
MCH 0500000 ACCUMULATOR, MCH 056C000 MQ, DO EXP2, b
MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND.

EXP3 TRANSFER CLN (COMMENT SUBROUTINE = WD = 13)
MCH 0500000 ACCUMULATOR, MCH 0560000 MQ, DO EXP3,

MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND. '

LOG E TRANSFER CLN (COMMENT SUBROUTINE = WD = 17)
MCH 0500000 ACCUMULATOR, DO LOG E, MCH 0601000 ACCUMULATOR, ;
GO TO EXIT COMMAND. §

EXPT TRANSFER CLN (COMMENT SUBROUTINE = WD = 22)
MCH 0500000 ACCUMULATOR,; DO EXPT, MCH 0601000 ACCUMULATOR,

GO TO EXIT COMMAND. A

COSD TRANSFER CLN (COMMENT SUBROUTINE = WD = 23)
MCH 0500000 ACCUMULATOR, DO COSD, MCH 0601000 ACCUMULATOR,

60 TO EXIT COMMAND.

ARCTAN TRANSFER CLN (COMMENT SUBROUTINE = WD = 24) |
MCH 0500000 ACCUMULATOR, DO ARCTAN, MCH 0601000 ACCUMULATOR, !
GO TO EXIT COMMAND. i

ATAND TRANSFER CLN (COMMENT SUBROUTINE = WD = 25)}
MCH 0500000 ACCUMULATOR, DO ATAND, MCH 0601000 ACCUMULATOR,

GO TO EXIT COMMAND.

COS TRANSFER CLN (COMMENT SUBROUTINE = WD = 26) |
MCH 0500000 ACCUMULATOR, DO COS, MCH 0601000 ACCUMULATOR,

GO TO EXIT COMMAND. 1
CUBERT TRANSFER CLN (COMMENT SUBROUTINE = WD = 26)!
MCH 0500000 ACCUMULATOR, DO CUBE ROOT, MCH 0601000 ACCUMULATOR,

G0 TO EXIT COMMAND.

ERROR TRANSFER CLN

IOH PRINT (26,0, SUBROUTINE), GO TO ENDJB..

SELECTIVE PRINT 48p
FLOWCHART NUMBER 00016

$INITIATE SELECTIVE PRINT CLN (COMMENT 0P CODE = 61}
COMMAND EXECUTION = PROGRAM STORAGE, ENTER SELECTIVE PRINT
= COMMAND EXECUTION,
READ CARD SELECTORS CLN
DO READ CARD, IOH PRINT (24,0, COL 64, COL 66, COL 68, COL 69,
COL 70,COL 72,C0L 74,C0LT765C15C24C39C49C54C64C79C89C94C10+C11),
CONVERT SELECTOR CLN
COLUMN K = SECOND SELECTOR A, FOR J EQU O STEP 1 UNTIL 1 DO ;
BEGIN COLUMN O LBK J RBK + SECOND SELECTOR A = 2 EXP 6
= SECOND SELECTOR A, END ,
COLUMN C = SECOND SELECTOR B, FOR J EQU O STEP 1 UNTIL 3 DC
BEGIN COLUMN H LBK J RBK + SECOND SELECTOR B # 2 EXP 6
= SECOND SELECTOR By END
IF SELECTOR EQU ONE
THEN TWO = SELECTOR, SECOND SELECTOR A = FIRST SELECTOR A,
SECOND SELECTOR B = FIRST SELECTOR B,
GO TO READ CARD SELECTORS.$
IF SECOND SELECTOR A NEQ ZERO
THEN GO TO EXIT COMMAND.S$
IF SECOND SELECTOR B EQU ZERO
THEN LIST ALL COMMANDS = SECOND SELECTOR s$$
GO TO EXIT COMMAND.

e s e e e L Ll

e e iAo e

START SELECTIVE PRINT CLN
IOH PRINT (3040,), IF SECOND SELECTOR EQU LIST ALL COMMANDS
THEN GO TO LIST PROGRAM.$
LIST SELECTED COMMANDS CLN
IF MEMORY LBK LOCATION RBK AND OP CODE MASK = OP CODE / TEN
= BCD NUMBER EQU TWO
THEN GO TO SELECTIVE PRINT TRANSFER.$
IF BCD NUMBER EQU ONE
THEN GO TO SELECTIVE PRINT TRANSFER.$
IF OP CODE EQU SEVENTY SIX
THEN GO TO SELECTIVE PRINT TRANSFER.S$
IF OP CODE EQU SEVENTY SEVEN |
THEN GO TO SELECTIVE PRINT TRANSFER.$ |
ACCUMULATOR = PAST ACCUMULATOR, DO EXECUTE COMMAND,
DO GET ADDRESS, DO CONVERT COMMAND TC BCD,
IF SECOND SELECTOR A AND COMMAND A NEQ FIRST SELECTOR A
THEN GO TO EXIT SELECT COMMANDS.$
IF SECOND SELECTOR B AND COMMAND B NEQ FIRST SELECTOR 8
THEN GO TO EXIT SELECT COMMANDS.$
PRINT SELECTED COMMAND CLN
I = ADDR, IF ACCUMULATOR NEQ PAST ACCUMULATOR
THEN IOH PRINT (31,0, LOCATION, INDEX, OP CODE, ADOR,
ACCUMULATOR) $
ELSE IOH PRINT (32,0, LOCATION, INDEX, OPCODE, ADDR)S$
EXIT SELECT COMMANDS CLN |
LOCATION + ONE = LOCATION, GO TO LIST SELECTED COMMANDS. |
SELECTIVE PRINT TRANSFER CLN |
DO GET ADDRESS, DO CONVERT COMMAND TO BCD, |
IF SECOND SELECTOR A AND COMMAND A NEQ FIRST SELECTOR A ;
THEN GO TO EXECUTE TRANSFER COMMAND.$
IF SECOND SELECTOR B AND CUMMAND B NEQ FIRST SELECTOR B
THEN GO TO EXECUTE TRANSFER COMMAND.$
I = ADDR, IOH PRINT (32,0, LOCATION, INDEX, OP CODE, ADDR),
EXECUTE TRANSFER COMMAND CLN
DO EXECUTE COMMAND, LOCATION + ONE = LOCATION,

|
|
60 TO LIST SELECTED COMMANDS. 48q |
PROCEDURE CONVERT COMMAND TO BCD CLN ,
BEGIN BCD NUMBER * TEN = NUMBER, INDEX # 2 EXP 12 + BCD NUMBER |
s 2 EXP 6 + OPCODE - NUMBER = COMMAND A, |
I = STORAGE, FOR J EQU O STEP 1 UNTIL 3 DO |
BEGIN STORAGE / TEN THOUSAND LBK J RBK = BCD NUMBER LBK J RBK |
» TEN THOUSAND LBK J RBK = NUMBER, |
STORAGE - NUMBER = STORAGE, END o
BCD NUMBER = COMMAND B, FOR J EQU 1 STEP 1 UNTIL 3 DO
BEGIN COMMAND B * 2 EXP 6 + BCD NUMBER LBK J RBK
= COMMAND B, END ,
COMMAND B # 2 EXP 6 + STORAGE = COMMAND B, END ,

LIST PROGRAM CLN

IF MEMORY LBK LOCATION RBK AND OP CODE MASK = OP CODE / TEN

= STORAGE EQU TWO
THEN GO TO PRINT TRANSFER.S$

IF STORAGE EQU ONE
THEN GO TO PRINT TRANSFER.$

IF OP CODE EQU SEVENTY SIX
THEN GO TO PRINT TRANSFER.$

IF OP CODE EQU SEVENTY SEVEN
THEN GO TO PRINT TRANSFER.S$

ACCUMULATOR = PAST ACCUMULATOR, DO EXECUTE COMMAND,

DO GET ADDRESS, I = ADDR, IF ACCUMULATOR NEQ PAST ACCUMULATOR
THEN IOH PRINT (31,0, LOCATION, INDEX, OP CODE, ADDR, |

ACCUMULATOR)S !

ELSE IOH PRINT (32,0, LOCATION, INDEX, OP CODE, ADDR)S$
LOCATION + ONE = LOCATION, GO TO LIST PROGRAM.

PRINT TRANSFER CLN
DO GET ADDRESS, I = ADDR, IOH PRINT (32,0, LOCATION, INDEX,
OP CODE, ADDR), DO EXECUTE COMMAND, LOCATION + ONE
= LOCATION, GO TO LIST PROGRAM.

A N S . ™) . B ———.. S————. S————tia—.. 4

Y T Tt e S, remc

e gt

o W I =

STOP SELECTIVE PRINT CLN (COMMENT CP CCDE = 62)
IOH PRINT (33,04)y PROGRAM STORAGE = COMMAND EXECUTION, ZERO
= FIRST SELECTOR A = FIRST SELECTOR B = SECOND SELECTOR A
= SECOND SELECTOR B = SECOND SELECTOR, ONE = SELECTCR,
GO TO EXIT COMMAND..

RN A

e B ™ e T b B T e ki S s e, LR cecmge oo

F

PROGRAM SUBROUTINES

FLOWCHART NUMBER 00017

$ PROCEDURE COMMAND CARD CONVERSION CLN
BEGIN COLUMN 64 = INDEX, COLUMN 66 = TEN + COLUMN 68 = 0P CODE,

COLUMN 70 = TEN + COLUMN 72 = CHL, IF COL 69 NEQ BLANK
THEN COLUMN 69 = ONE HUNDRED + CHL = CHL $$%

COLUMN 74=TEN + COLUMN 76 = WD, CHL®*ONE HUNDRED+WD = ADDR, END ,

PROCEDURE DATUM CARD CONVERSION CLN
BEGIN COLUMN 64 = TEN + COLUMN 66 - FIFTY FIVE = EXPONENT,
COLUMN 68 = NUMBERy FOR J EQU O STEP 1 UNTIL 3 DO

BEGIN COLUMN 70 LBK J RBK + NUMBER ® TEN = NUMBER, END ,

FLOAT NUMBER CLN

NUMBER + FLOAT CONSTANT = DATUM, FLOAT CONSTANT + DATUM = DATUM,

IF EXPONENT LSS ZERO
THEN ZERO - EXPONENT = EXPONENT,
FOR J EQU 1 STEP 1 UNTIL EXPONENT DO

BEGIN DATUM / FLOATING POINT TEN = DATUM, END ,

GO TO EXIT CONVERSION.S$
IF EXPONENT GTR ZEROD
THEN FOR J EQU 1 STEP 1 UNTIL EXPONENT DO
BEGIN DATUM = FLOATING POINT TEN = DATUM, END ,$$
EXIT CONVERSION CLN
IF SIGN EQU MINUS
THEN ZERO - DATUM = DATUM $$ END ,

PROCEDURE GET ADDRESS CLN
BEGIN IF ADDRESS SEPARATION NEQ PERFORMED
THEN CELL LBK LOCATION RBK (7=10) = INDEX,
CELL LBK LOCATION RBK (18=26) = CHL,
CELL LBK LOCATION RBK (11=17) = WD $$
IF CHL EQU TWENTY ONE
THEN OUTPUT CONSTANT - ACCUMULATOR ADDRESS = I,
GO TO EXIT GET ADDRESS.$
IF WD GEQ ONE HUNDRED TwWO
THEN WD - ONE HUNDRED TWO = WD = ELEVEN + CHL - EIGHT
= IR COMP ADDRESS, OUTPUT CONSTANT + IR COMP ADDRESS
= W DIFFERENCE ADDRESS = I, GO TO EXIT GET ADDRESS.S$
IF INDEX EQU ZERO
THEN ONE HUNDRED = CHL + WD =1 $
ELSE ONE HUNDRED = CHL + WD + W BASE LBK INDEX REBK
+ C BASE LBK INDEX RBK =1 $
EXIT GET ADDRESS CLN
ZERO = ADDRESS SEPARATION, END

PROCEDURE COMMAND SEPARATION CLN
BEGIN IF ADDRESS SEPARATICN NEQ PERFORMED
THEN CELL LBK LOCATICN RBK (7=10) = INDEX,
CELL LBK LOCATICON RBK (18=26) ®= ONE HUNDRED = CHL,
CELL LBK LOCATION RBK (11=17) + CHL = ADDR $
ELSE CHL = ONE HUNDRED = CHL + WD = ADDR $ END ,

PROCEDURE COMMAND SEPARATE CLN
BEGIN IF ADDRESS SEPARATION NEQ PERFORMED
THEN CELL LBK LOCATION RBK (7=10) = INDEX,
CELL LBK LOCATICN RBK (18=26) = CHL,
CELL LBK LOCATION RBK (11=17) = WD $$ END ..

48r

R —

FORMATS 48s
FLOWCHART NUMBER 00020

CONTROL

1{10C64C3,2(C1,1X)3C1,5(1%XC1))

3(2XN593X2(N2y1X)N5,5X10C6,C3)

4({8H EXECUTE2X2({N2,1X)N5,5X10C6,C3)

S5({2XN592XE15.7:2X10C6,C3)

6(/7TH STORE4X10HK OP ADDR)

7{/184 STORE DATA)

8(12H1MANUAL MODE///11X10HK GP ADDR)

9(15H1AUTOMATIC MODEZ/Z/7)

10(24C1)
11(/11H DING DONG/X)

12(/53H BREAKPOINT HALT NOT ALLOWED. TRANSFERRED TC ENDJOB.)
13(/712H OP CODE = N2,36H NOT DEFINED. TRANSFERRED TO ENDJOB.)
14(/57H END OF FILE WHILE READING CARDS. TRANSFERRED TC ENDJOB.)
15(/51H ERROR WHILE READING CARDS. TRANSFERRED TO ENDJOB.)
16(/18H LOAD SUBROUTINES)

17(35H FIXED POINT FRACTION LENGTH = N1,/26H EXIT LOADING SUBRO
1 UTINES/X) :

18(36H FIXED POINT FRACTION LENGTH = 7 /26H EXIT LOADING SUBRO
1 UTINES/X)

19(42H SQUARE ROOT AND CUBE ROOT IN CHANNEL N3)

20(20H LOG IN CHANNEL N3)

211(22H POWER IN CHANNEL N3)

22(24H SIN COS IN CHANNEL N3)

23123H ARCTAN IN CHANNEL N3)

24(10H SELECTOR 2(1XC1)C1,1X5C1+5X10C6,C3)

25043H INDEX REGISTER UTILIZATICON IN CHANNEL N3)

26(/17TH SUBROUTINE N = N2,36H NOT DEFINED. TRANSFERRED TO ENDJOB.)

27(37H HYPERBOLIC FUNCTIONS IN CHANNEL N3)

28(34H FRACTION SELECTOR IN CHANNEL N3)

291(35H SELECTIVE PRINT IN CHANNEL 8)

30(22H BEGIN SELECTIVE PRINT//11H LOCATION7XTHCOMMAND1OX11HACCUMUL
1 ATOR/17X10HK OP ADDR)

31(4XN5,7X2(N291XIN5,5XEL5.7)
32(4XN5,TX2(N251X)IN5)

33(/20H END SELECTIVE PRINT/X)

34(17H CLEAR MEMORY)

35(37H CLEAR MEMORY AND INDEX REGISTERS)

49
Appendix G

A SYNTACTICAL FLOWCHART
for BC NELIAC

\s an 2id in understanding the syntactical rules of
¢ NELIAC 2 flowchart similar to the ALGOL 60 Flowchart has
been developed. The shapes of enclosure on the chart have

the following meanings:

Metalinguistic variables appear in ellipses

<:::::::> and indicate the enclosed variable is de-

fined at that place on the chart.

Metalinguistic variables appearing in rec-

tangles means the variable is defined else-

where on the chart. Grid co-ordinates

for the definition appear at the left. . of

the rectangle.
Basic symbols are enclosed in circles.

l' Vertical arrows indicate a definition of a

metalinguistic variable follows.

Horizontal arrows connect the basic symbols

metalinguistic variables which form a definition.

Every metalinguistic formula used to describe BC NELIAC

appears on the syntactical flowchart.

SBER Hi 3 ' 4 " 5 T e " v 8 9 o ds) R
@
Statement 4 b
Undefined o B nconditional
Label o 12 Statement Stotement
Code - - .
D| Compound K| Procedure K|Declaration | | C|Unconditional Basic
13| Stotement 6 | Identifier 6| Identifier 12| Statement 9 Statement
D| Basic Cl Label Dummy For Go to Assignment
12| Stotement 9 ; Statement Statement Statement Statement
R ::
D D Compound K { Procedure K| Procedure Actual C G : :
24 Empty @ 3| Statement 6 | ldentifier 6| Identifier 7 Prameter part o7 9 Label 16 Subscript Expression
H E r o \
| Index @ og| Integer UNTI 3 For Limit Arithmefic L
i 1 Expression
k Signed H o F
Integer 2| |dentifier = |dentifier .
28 9 7| Integer | |17 F| Arithmetic F| Logical | P
9| Expression 12| Expression f
- '
Multiplying
g 'Hm Operator Factor D
24
H] o [GMultiplyin F | Unsigned - [F] Sign
é} CB g | Primary 8 per%ty g23 Integer ‘ 1| Index 27 In?e1
] ¥
F | Unsigned
3 Nun?ber Variable 0 @ (
@O....C.00@
@ “ .- ,FG Variable
T f —
H e Letter K | Parameter E :
17 | 1dentifier h or Digit 8] List F—‘@—‘ i3 | Expression
A l A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A lo A || A l2 A |3 A

B 12 T A CUEERGER. 1 PegRS o TR TINELS AT B 0l . SRRSBLARRES T S SN T JEENTS ST T IR A . |
Declaration
List
Statement g C°1'-'(‘]pl‘}““d |Bz Statement 204 Empty gDeEI?;?tion_.@_.g Defliasr?hon Specifier Declaration
| nditional
tement Statement
‘ B e K | Declaration Structure Alternate).
22 Specitier [-=\ARRA @ @ 6 | Identifier Declaration Name
Basic Unconditional * ELSE)}—] C [Unconditional .
’ Statement Statement ’ 12| Statement B
- 1 Chain K Declaration Chain
Relation |_|E | Relational E | Uariable 7] Declaration Identifier Declaration
18| Operator 20|or Number
’ Assignment Compound F Unsngned
Statement Tail Relational Uariable 23| Integer
Operator or Number
G : . Riaht part E |Part Word K |Declaration Part Word
I'ls Subscript Expression gUS%o @ é 23| List |dentifier Limit
=) (=
E RIEM tPurt ‘ { @__ L{nsigned Unsigned
Logical el 18 F , F | Unsigned nteger Integer
Exp?ession . Ls Variable 31| Number
L B - D G| Adding _.[
F| Logical [24| EMPYY H| Decimal 8| Operator
12| Expression - 29| Integer
H n |
17| dentifier Octal Octal H| Decimal |
— Inteqer Digit 29| Integer f
D Part word| [D| Chain
24 Empty 27|Declaration
[]
] s
H | | F| Signed E F | Unsigned
@ (1| Index 21 infeger | |28 Integer ” Identifier 23| Integer v
- } =2
| o « @ @ H] identifier Kl Letter
i
T}
ln 03 Digit
bon | F] vori E .
i 6 ariable 3 Expression TR
| = R P | SR N | R R PUSRE | et o e 18| . M i 20 21 o B 3e . 25 . @ o, 21 .

*23"24725V26"27"28f29"3o"3|"32"33"34"35‘*36"4%

NELIAC
SYNTACTICAL CHART

K | Declaration Structure Alternate’) Value
6 | Identifier Declaration Name List

P . ry . —_i
RGOSR Pren] | [Blomersn Tvove | Comersor
: B i] .
e () Blemen | B[R O-fil e (D)

G| Octal
22| Integer

4
eclaration] Part Word
dentifier @

Unsigned
Integer

G| Adding [_]F|Unsigned Real F | Unsigned
H| Decimal 8| Operator| |[23] Integer Number 23| Integer
29| Integer
H| Decimal
29| Integer
Decimal
Integer

1

H| Decimal
29| Integer
G| Octal
23| Digit

B 24

________f!-.!---n!!--II-llIlIIllIlIllllllllI..ll....l.'.l.l

R

50.
BIBLIOGRARIY

"BC SAP TO4 Symbolic Assembly Program,"” Berkeley, Computer
Center, University of California

Feigenbaum, Edward, "Recent Experiments with the EPAM Stimu-
lation of Verbal Learning,” Simulations of Cognitive Processes,
University of California, 1902

Feldman, Julian, "An Analysis of Predictive Behavior In A Two-
Choice Situation," Carnegie Institute of Technology, Pittsburgh,
1959.

Hoggatt, A. C., and Balderston, F. E., "Simulation of Marketing
Prgcesses," Management Science Center, University of California,
1960.

"Intercom 500 Programming System for the Bendix G-15 Computer,"
Los Angeles, Bendix Computer Division, 1961

"Intercom 500-R-1 Card System,'" Berkeley, Department of
Electrical Engineering, University of California, 1962.

"An Introduction to ALGOL €O for the B5000 Information
Processing System," Detroit, Burroughs Corporation, 1961

Leeds, Herbert D., and Welnberg, Gerald M., "Computer Program-
ming Fundamentals," New York, McGraw-Hill, 1961

McCracken, D. D., "Digital Computer Programming" New Yorlk,
John Wiley and Sons, 1957

Naur, Peter, "Report on the Algorithmic Language ALGOL 6O, "
COMMUNICATIONS of the ACM, Volume 3, Number 5, page 299,
May 1960

Newell, A., and Simon, H. A., "Simulation of Human Thought,"
Current Trends in Psychology, University of Pittsburg Press,
1559.

Rowe, Alan, "Apnlication of Computer Simulation for Production
System Design," Santa Monica, California, Systems Development
Corp., 1959

Sammet, Jean, "A Definition of The Cobol 61 Procedure Division
Using ALGOL 60 Metalinguistics,” Needham Heights, Sylvania
Electronics Systems, 1961

Schwarz, H. R., "An Introduction to ALGOL," COMMUNICATIONS
of the ACM, Volume 5, Number 2, page 82 February 1902.

"704 NELIAC Reference Manual," Preliminary Edition, Berkeley,
Degartment of Electrical Engineering, University of California,
1962

	Table of Contents
	1. Introduction
	2. BC NELIAC
	3. Intercom 500
	4. Symbolic Intercom 500
	Appendixes
	A. Transliteration rules
	B. Operation code limitations
	C. Intercom card format
	D. Use of machine language subroutines in symbolic Intercom
	E. Symbolic Intercom 500 assembler
	F. BC NELIAC simulation of Intercom 500
	G. A syntactical flowchart for BC NELIAC
	Bibliography

