ENGLISH ELECTRIC-LEO COMPUTERS LTD.

‘Report by a

Dept. Systems Programming L. Hoore
Report No. | k/AD u -42

Date
Title 4-50 ALGOL COLFILER:-

THE INTSRIGDIAT: CODE

SUMMARY 4 definition of the Intermediate Code generated by the first pass
of the 4~50 ATLGOL Compiler ~

KW 1027

Distribution: see end of report

Report No. K/AD u 4é Sheet No. 1

Introduction

The purpose of this document is to define the form of the Intermediate Code

. generated by the first pass of the System 4-50 ALGOL Compiler., Since the
design of the Intermediate (ode is based on that of the Object Program
generated by the Whetstone XKDF9 ALGOL Translator, use is made of the fact that
the Whetstone Object Code is fully defined in the book 'ALGOL 60 Implementation',
by B. Randell and L.J. Russell, Academic Press, 1964. The differences between '
the Intermediate Code and the Whetstone Object Code arise from (i) the three-

. pass structure of the System 4-50 ALGOL Compiler, which is designed to generate
machine code as the end product, and (ii) the altered method of handling the
run~-time stack, now based on:the ideas of the ALCOR-ILLINOIS 7090 ALGOL
Compilers ’

This document has a scope restricted to a definition of those parts of the
System 4-50 ALGOL Intermediate Code which differ from the corresponding parts

of the Whetstone KDF9 ALGOL Object Code. A working knowledge of the Whetstone
Object Code is therefore assumed, although for those without access to the
reference quoted above, a brief introductory section to the System 4 form is
included. No attempt will be made in this document to describe the generation
of Intermediate Code from the source Algol or the translgtion of the Intermediate
Code into machine code, nor will the detailed modus operandi of the generated:
machine code programs be mentioned. A brief description of the overall

structure of the compiler is included.

o 102 : — ENGLISH ELECTRIC LEO MARCONI

Report No. X/AD u 42 Sheet No. 2

CONTENTS . : . PAGE
INTRODUCTION C 1
A.. GENERAL DESCRIPTION OF THE COMPILER. ' 4
A(i)Wote on the running of the object code, : 6
1. INTRODUCTION TO THE INTERMEDIATE CODE: NOTATION - o T
1A, Tabels ' 9
1B. Support Tables . 10
2. BRIEF ILLUSTRATION OF THE INTERMEDIATE CODE IN USE. 13
2A., Note on the‘Translation of Designational Expressions. 15
3. BLOCKS | 16
4. PROCEDURES 17
4A. Procedure Structure in the Intermediate Code. 17
4B. Parameter List Operations. ' 17
-4C. Calls of Function Designators and Procedure Statements. . ' 18
4D, Actual Operations. . - 19
4E, Example of a Procedure Call, ' 20
4F. Use of Formal Parameters within a Procedure Body. 22
5. SWITCHES , » ' ' 24
5A. Switch Structure in the Intermediate Code. ~ ' '24
5B. Switch Designatofs and Array Elements as Actual Parameters. i 26
6. CONDITIONAL STATEMENTS AND EXPRESSIONS o 27
7. ARRAYS : 28
8. FOR ‘STATEMENTS , ' 30
8A. General 30 -
8B. For Statement Structure in the Intermediate Code. 32
8C. Arithmetic Element _ : 33
8D. While Dlement | C m
8E. Step Until Element. : 35
8F, Exangple of a For Statement. ' : 36
9. OWN VARIABLES. | L ' 38
10. NOTE.ON L'D5Pu:DiE’T COMPILATION OF ALGOL PROCEDURES. . 39
11, 'LIBRARY PROCEDURES. - 4
12, THE INTERMEDIATE CODE OPERATION TRACE 42
13. THE INTERMEDIATE CODE OPERATIONS FAIL AND LFAIL. 43

KW 1028 : ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 3

14, DICTIONARY OF INTERMEDIATE CODE OPERATIONS.

44
14A, Parameter Notation. 48
14B. Hexadecimal Codes. ‘ 50
15. 4—5.0 ALGOL HARDWARE REPRESENTATION 51

kW 1028

ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 4

N

A, GENERAL DESCRIPTION OF THE COMPILER

The System 4~50 ALGOL compiler is a three pass compiler, which translates
source ALGOL into machine code modules. The three passes of the compiler

- are known as Phase 10, Phase 20, Phase 30. The System 4-50 ALGOL
-language and the compiler's relationship with the 5J Program Trials
System are fully described in the System 4-50 ALGOL Reference ual,
Parts I and II. .

The compiler translates a module at a time. -A source ALGOL program, or
a procedure for independent compilation, is presented to Phase 10. The
‘action of Phase 10 is to 5

10.a) convert the source ALGOL into an internal code called Intermediate
Code, generating as it does so

10.b) a set of two support tables. One is the Position Identifier

Table, and is a reference table of labels and procedures, the other is the
Level Parameters (b), containing information about .the types and
characteristics of procedures and their parameters. The Intermediate Code
and the Position Identifier Table may be listed on request, as may

10.c) the Storage Mapy; a listing of the stack locations of the ALGOL
variables, This item is not preserved after listing. A further function
of Phase 10 is

10.d) to perform rigorous checks on the syntactic legality of the source
“ALGOL, The failure mecchanism employed is, -briefly, to detect and notify

" as many syntactic errors as possible without aborting either the ' ,
translation or the generation of Intermediate Code and support tablese
Upon detecting a syntactlc error, the error is netified and a FAIL
operation is planted in the generated Intermediate Code; then error
recovery procedures are used to find the earlicst point in the succeeding
text at which translation can be rcsumed. This generally implies the,
loss of a statement or of a cluster of declarations. Naturally, this
mechanism is not applied to catastrophic failures. The result is a
sprinkling of FAIL operations in the generated Intermediate Code for the
various syntactic errors detected. At object execute time each of these
is an entry into the run-time failure routine, so _that the first one to-
be dyneamically encountered will terminate the run.

'Phase 10 writes the Intermediate Code (10.a) and the support tables
(10.b) to a work file, and finally initiates the call -of Phase 20 as
an overlay to itself. The action of Phasz 20 is %o

- 20.a) process the Intermediate Code and the support tables produced by
Phase 10, to generate machine code with forward references missing.

20.b) The information required to supply these missing references is
built up into a table which is an updated machine address form of the
Position Identifier Table,

Phase 20 writes the machine code in this form (20.a) and the reference
table (20 b) to a work file, and finally initiates the call of Phase
30 as an overlay to itself. .

kW 1028 ‘ . ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 5

The action- of Phase 30 is to

30.a) update the machine code using the information left in the work
file by Phase 20. Phase 30 also

30.b) ensures that the resulting machine code module is in a form
rccognisable to the operating rcegimc in which it will eventually run.
This involves the generation of ESD, RLD, and END information. Then

30.c) ‘the gencrated machine code module may optionally be listed in
pseudo-usercodc Fform, :

The organisation of the transfer of information between one pass and the
next via the work file (on the 5J Trials Librory disc) is performed by a
set of threc special purpose disc hondling routines (D.,HsR.s) onc for
each pass. These D.H.R.s arc wyritten so as to use the disc as efficiently
as possible.

The overlay structure of the compilcr is controlled by a small root
segmént which consists of a single control module. The overlays brought
down successively by the root segment are:

2 Phase 10
3) Phase 20
4) Phase 30

(1; Options processor

Each overlay returns control to ROOT which then brings down the next

overlay or returns control to the system (Compilation Control).
. \

"o 2088 . ENGLISH ELECTRIC LEO MARCONI

A(i).

Report No. K/AD u 42 Sheet No. 6

Note on the Running of the Objcct Codec.

A relocatable binary module generated by the compiler will contain
external references to other modulcs, namely:-

a) 1ndependcntly compiled modulesy written originally in ALGOL or in
usercode (later cxtensions may be made to include other lanﬂuuges),
written by the user and called by him in the module concerned. If
written in usercode, the rules listed in the Part II Refcrence HManual
must be observed.

b) a standard module without which no object program can be run,
containing a set of support routines for processes initiated in the
object module or bound objcct modules being run, - These routines are
the Slave Routines. Examples are Float, Fix, Call by namec, Procedure
entry, Make array storage function, etc.. The full list appears in
the Part II Refcrence Manual. This module is writtcn initially in

" usercode, cnd is a standard package, supplied with the compiler.

c) a set of input-output modules, in sufficient number to satisfy the
peripheral requirements of .the program being run. The input-output’
procedures required to use the full range of System 4-50 standard
peripheral devices are arranged in self-contained groups. The
arrangement into modules is fully described in the Part II Manue

The input-output modules are written initially in uscrcode, and are
supplied with the compiler as stondard packages.

d) if required, eny of the standord function modules required to
perform the functions SIN, COS, ctec.. For a full list see the

Reference Manual Part II. These modules are written initially in
usercode, and are supplied with the compiler as standard packages.

e) a dummy module destined to hold the run-time stack. This must
alwoys appear in store after all the other modules, that is its start
address must be higher than the final address of any other module, to
allow for its expansion when the object progrem is running. This
module must olweys be present.

Having bound the generatod object module with such object modules of
types (a), (b), (¢), (d) and (e) as are necessary, the resulting
prozram may be run in the normal way. Note that modules of types
(b), (c) and (&) will be bound automatically into the root segment
unless otherwise specified. It is hoped to arrange for the stack (e)
to be automatically included in the correct p031t10n for prograns

which do not use overlays.

kW 1028

ENGLISH ELECTRIC LEO MARCONI

Report No. X/AD u 42 Sheet No. 7

!
1. INTRODUCTION TO THE INTERMEDIATE CODR:

/

JOTATION /

The Intcrmedicte Code generated by Phase 10 is a string of variable lengfh
pseudo-instructions, each pseudo-instruction comprising on operation fiedd
of 1 byte, and an operand field of length zero bytés or greater.

The operction ficld for convenience is assigned a mnemonic name for use
in discussion. Such mnemonics are CF ("Call Function), TFI (i Take
Formol Integer), PST ("Parometer String')s. For the full list, see the
Dictionary of Intermediate Code Operctions, secction 14. For the
hexadecimal internal representations of these operations, see section 14B.

The opercnd field may consist of counts,'labels; pointers; stack addresses,
constants, or may bc absent. The symbols uscd in this Report to denote
quontities in the operand field are:-

k The hierarchy number. This is theé nesbted procedure depth of the
current procedure, starting ot zero for the outermost program level.
The moximum permitted value is k = 14.

s The stack address, in words, within the hierarchy, starting at s = .

Both k and s arc nceded to specify a stack address
comnpletely. Stack addresses arc denoted by (k,s),
indicating that k and s are packed into two bytes,
with 4 bits for k and 12 bits for s.

n The block level within the current (or destination) hieraxrchy,
starting at n = 1. n requires 1 byte. '

A" TheTr'th entry in o support table called Level Parameters (b) (see
below section 1B). Each entry in this table is 1 byte in length.
_ 1r requires two bytes., -

m Number of words of stack spacc in the current hierarchy requirced to
hold the link data oand paramctcrs for this hierarchy. m requires
1 byte. . .

¥ 'The maximum block nesting depth within the current hierarchy, -
that ig the greatest value of n. N requires 1 byte.

a Number of arrays in an array scgment. o requires 1 bytce
b Number of dimensions of an array. b requires 1 byte.
T The r'th foilure in this modulc. r requires 1 byte.

% //The type of the operation which eventually gave risc to a syntactic
* failure. +t rcquires 1 byte.

S4 Special form of the parometer s; thus (k, S4) gives the stack
address of the first of the locations in the stack assigned to a
for statement.

oW 1028 ' - ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 8

identifier An identifier 'of up to cight EBCDIC choracters, left ‘
hand justified and padded with spaces (X'40') at the right-
hand end if necessary. Requires 8 bytes. '

constant The valuc of an explicit constant. Requires 4 bytes for
integer constants, 8 bytes for real constants.

string A string of basic symbols representing onc-for-one the
characters in the string as written in the ALGOL program,
including all string quotes. One byte for' each basic symbol.

L Number of words of stack space in the current hierarchy
required to hold the first order working storage, given by
L = m + number of words of stack spacc requirecd
to hold all variables declared within the
hierarchy, including 4 words for every array
declaration.
L appears in combined with k, as (k, L), so that 12 bits are
required for L.

- A one byte space.

?he remaining parameters refer to labels, described in the next section
14).

J‘..

KW 1028 . . ENGLISH ELECTRIC LEO ‘MAR“CONI .

Report No. X/AD u 42 Sheet No. 9

1A. Labels.

Three kinds of 1a5els are used in the Intermediate Code, as follows:

(1) .

(11)

L labels.

Labels written explicitly in the source ALGOL program are referred

‘to internally as L labels. Thus Ll is the (l+1) th user's label to

be declared. The number 1 is zero for the first label. As a .
parameter, 1 always appears in combination with k in the form (k,l),
so that 1 requires 12 bits. Note that switches are assigned L
labels, the name used in the Position Identifier Table: (see below
Section 1B) being the name of the switch.

P labels.

At a procedure declaration, the procedure is assigned a P label of

the form Pp, denoting the (p+1)th procedure to be declared. The
number p is zero for the first procedure declared. As a parameter,

p always appears in combination with k.in the form (k,p), so that 12 -
bits are required for p. The name used for each P label in the
Position Identifier Table (see below) is the name of the procedure.

(1ii)G labels.

For transfers of control in the Intermediate Code which are neither
explicit (that is using a 'GOTO' statement, which employs L labels)
nor procedure calls (vhich use P labels),'G labels are generated

of the form Gg, where the number g starts from zero for the first.
As a parameter, g always appears on its own, and requires two bytes.
For a G label, the name part in the Position Identifier: Table

(see below) is blank.

Throughout this document these labels, in both their left-hand and
right-hand incarnations, have been written.explicitly into the
Intermediate Code for clarity of exposition. In fact, left-hand
labels have no existence in the Intermedidte Code; they exist only
as entries in the Position Identifier Table (see below, Section 1B).

‘Right-hand labels in the Intermediate Code are in. fact the quantities

1, py, and q defined above. These act as pointers to the
appropriate entries in the Position Identifier Table, wherein are
found the Intermediate Code addresses to which the labels refer.

kw 1028

ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 10

1B Support Tables.

The support tables requlrcd with the Intermediate Code are the Position
Identificr Table end Level Parametcrs (b)s There is a table called
Level Parameters (a), but this is purely intcrnal to Phase 10 and is not
relevant to this discussion of the Intermediate Code. \

Position Identifier Table:-

[P

——————————————————————— c'
, INTERNAL | 1/C '
EXTERNAL NAME NAME BYTE CARD NO. |
NO. « v
o . - —— o e ————————— ks cn o - — Jd _
6 3 : 2 5 BYTES

External Name

vInternal Name

I/C Byte No.

Card No. s

: A string of eight 8—b1t ba31c symbols packed into eight
6-bit characters. All external (source) names are held in
this form in Phase 10 for economy of space. This item
exists only within Phase 10 for use in failure messages
and in diagnostic listings.

¢ The first byte contains the 8;bit basic symbol for G, L,

or P, The last two bytes contain the numeric value (as
e binary integer) of g, 1, or p, starting from @.

¢ The byte number of the labelled 1ntermed1ate code operation,

starting from 1.

The current card number as read from the card, held as

eight packed decimal digits held in 5 bytes., This item
exists only within Phase 10 for use in failure messages
and in diagnostic listingse.

kW 1028

. ENGLISH ELECTRIC LEO MARCONI-,

Report No. K/AD u 42 Sheet No. 11

Level Parameters (b):-

. TABLE(B) (or LIST(B))
Mo - > PO
. f Parameters to PO

™ — - R

—> 12 4
T
\ FP2 ' :
7 Parameters
-) to P1
Parameters
to FP2
SE : .
SE
-— Paramcter to P3
P4
FP5
P = PROCEDURE _— } Parameters Parameters
FP = FORMAL PROCEDURE. Yo FE5 o P4
SE = SPECIFICATION END MARKER. SE
. . SE ’ . .

Each entry in list (b) is one byte long, The paremetér®(see (1)) is a
pointer to a procedure entry in list (b), as indicated in the diagram above. .
The list of values of 'is internal to Phase 10, and is indexed by the valué
of p assigned to each new procedure, including formal procedures. This list
is called Level Parameters (a).

The entries in list (b) are, for the various situations:-

1) Procedure entry:-
NE@gt 4

a) N is 1 if the procedure has paramcters, @ otherwise

"b) The next 3 bits are always zcro.

c¢) tttt gives the type of the procedure according to the follow:\.ng scheme -
#@81 procedure 111@ integer procedure :
1191 real procedurc - . 1211 boolean procedure.

™ 2) Formal parameter:~
Nttttttt

KW 1028 ' ~ ENGLISH ELECTRIC LEO MARCONI

Report No. X/AD u 42 Sheet No. 12

—~ 3)

4)

5)

a) N is set to 1 for parameters called by velues Thus N may be set to 1
for reel, integer, boolean, rcal array, integer array, boolean array,
or label parameters. '

b) The next seven bits (t) give the type of. the paramcter according to
' the following scheme:- :

2811181 real . ~ 0111101 . real proccdurc¥
0011110 integer 0111110 integer procedure¥
0011011 Dboolean 0111011 Dboolean procedure*
1011101 real array 0100001 proccdure*
1011110 integer array 1010001 switch
1011011 Dboolean array 0000001 1label
0000000 string

* Included here only for completcness.
Procedures which are paramcters.

a) The entry for the formal procedure is
Nttttttt

~where N is set to 1 if the formal proccdure has parameters, and the
'seven bits (t) represent the type of the formal procedure according

. to the scheme in (2b) above (marked with an asterisk).
!

b) ’Parameters to the formal procedure are entered as in (2) above,
9) A parameter to the formal procedure which is itself a procedure is
entered as the single entry
grtttttt
as in (3a) above, with N=g.

The marker SE (Specification End) (X'FF') is used to terminate the entries
for a normal or a formal procedure (but not in case (3c) above).

The information for the entries described in (3a), (3b), (3c) is obtained
from the comment specification for the formal prdcedure.

kW 1028 ' ENGLISH ELECTRIC LEO MARCONI

Report No. " X/AD u 42 Sheet No. 13

2,

BRIEF ILLUSTRATION OF THE.INTERMEDIATE CODLE IN USE

The Intermediate Code may be understood as an objcet language which on
execution operates on a simple push-down operand stack. Before proceeding,
it is important to note that throughout this section, references to
stacking in fact refer to a notional stack imagined to exist for the
Intermediatc Code to operate on in a straightforward non-optimal way.

. These refercnces to stacking are not ncecessarily to be applied to the

stack used by the machine code object progrems actually generated by this
compiler.. Whenever possible, the stack visualised for the Intermediate
code to opcrate on will be referred to as the notional stack.

A simple arithmetic statement will be used as an illustration.

Presuming A,B,C and D to have been decclared as 'REAL',
A: =B +C*D

will have the Intcrmcdiate Code representation (reverse Polish):-

TRA k,Ag Placc address of 4 on notional stack
TRR (k,yB Place value of B on notional stack
‘TRR k,Cg Place value of C on notional stack -
TRR (k,D Place valuc of D on notional stack
* . Multiply top two items of notional
. - stack, leaving 1 result
+) Add top two items of notional stack,
' lcaving 1 result
ST Store result into A, l?aving the

notional stack empty.

TRA stands for Take Real Address, TRR stands for Take Real Result, ST
stands for Store. All Take operations placc. an item on the notional
stack. All dyadic operations such os multiply (¥) and add (+) operate
on the top two items of the notional stack, replacing them by a single
result item. The opcration store (ST) requires the top two itcms of the
notional stack to be a result and an address, with the result item
uppermost; its action is to store the result item into the location
specified by the address item, finally deleting both the result item
and the address item from the stack. .

These manipulations all rcfer to the working arca of the notional stack,
The quantities (k,A), (k,B), ctc., which define A, B, ctc., arc themselves
addresses in the notional stack, but they arenot addresses in the
working aree. The Intermediate Code operations generatcd at the
decleration or specification of the quentities A, B, etc., define
locations on top of the existing notional stack specifically to hold the
values associated with A, B, ctc., and the corresponding addresscs
(k44), (k,B), etc., arc thereafter reserved for this usec alonce. This
applies throughout the current block level (but‘not nccessarily
throughout the current hierarchy k). Having rescrved all such locations
on the notional stack for the declarcd and specified variables, the
remainder of the notional stack is used as a working area, as indicated
in the cxample above,

Briefly, cvery timec a new hicrarchy is entered, o rcgion of thc notional
" stack is reserved to hold ell the paramcters to the hicrarchy (prochure)

kW 1028 ' ENGLISH ELECTRIC LEO MARCONI

Report No. - K/AD u 42 Sheet No. 14

and all the information defining thc variables declared in oll containcd
blocks. This is called the first ordur working storagee. The remainder
of the notional stack is then used as o working region, and for holding
ony array clements. On exit from the current hicrarchy (procecdure), the
whole region of the notional stack associatcd with it is thrown away.
Fote that the reservation of space on the notional stack for all
variables declarcd in contained blocks is done in an optimel way, such
that blocks at the same level in the hicrorchy share the same or
overlapping arcas for their declored variables,

To terminate this brief introductory section, an Algol program will be
presented, consisting of the arithmcetic statement used above but this time
in o procedural environment, together with an annotated listing of the

~ resulting Intermcdiate Code.

'BEGIN' 'REAL' 4,B,C,D;
' PROCEDURE' P(X), 'WALUE' X; 'REAL' X;
A.:-‘-’- X + C * D,
At =B: = C: =D: = 43
P(B)
lEHDI

The generated Intermediate Code is

§1) Start block luvel 1

.UJa cg) Junp to by-pass the procedure declaration

PE (1, 12),12,1 Stort hierarchy k=1, rescrving 12 words on the notional
stack for procedure P's link dato and its paramcter X.

CP - 2; ¢ This refers to the value of X (which is
called by vwlue) in the new hierarchy's notional stack at

(1 10). (See Section 4B)

TRA (0,10 A
TRR (1,10) X
TRR (0,14 C
TRR (0,16 - D
*
+) -
ST .
RETURN End of the procedurec. Uses links in notional stack to
return to point of call. s
6Z : TRA (0,10 A
RR 20,12 B
0,14 C
TRR (0,16 D
TIC (45 Put integer 4 on the notional stack
STA
STA Store 4 into D,C4B,yi succe331vely (the operatlon STA
STi leaves 4 on the stﬁck but deletes the destination address)
ST ‘
cP (1, og ,00. Initiates the call of procedure P ("Call Function")
PSR (G4 _
TRR (0,12) B{ Sets up the parcmeter B
EIS
" G1 : APP. ' Narker for end of parameters .
BEWD (1) End block level 1 (that is m in progrem)
FINISH

~ .
’
7

o ~ ' ENGLISH ELECTRIC LEO MARCONI

Report No. ¢ /AD u 42 Sheet No. 15

.2A. Note on the Translation of Designational Expressions

The following conventions are used when translating a designational
expression into Intermediate Code:- .

(1) Within an actual parometer expression or a switch declaration:
The operations TL, TFLW, TFLV, and INDR (when used in a switch
call), have the run-time effcct of planting the resulting lobel
onto the notional stack. No transfer of control is effected. A
stacked label is a two-word item (8 bytes) containing

Topmost word:~ address of start of working area in notional stack
~ for the level at which the label is declared
Second word:- &) N (1 byte), the block level within the hierarchy
at which the label was.declared;

b) eddress in the compiled program pointed at by
the label.

(ii) Elsewhere:

a) The operation TL at run timé, having cvaluated the label, effects
-an immediate transfer of control. DNothing is stacked. :

« b) The operations TFLN, TFLV, and INDR (when used in a switch call),
: at run time, all operate on the previously stacked label (see
(i) above), effecting an immediate transfer of control.

Using these conventions, there is no need for the’ compiler to
generate explicit transfer-of-control instructions, such as the
GTA and CTFA of Whetstone KDF9 Algol.

KW 1028 ' . ENGLISH ELECTRIC LEO MARCONI

Report No. X/AD u 42 Sheet No. 16

3. BLOCKS

'Within a hierarchy, block structure is rcpresented in the Intermediate
. Code by:-

BE (n)

(BE =.Block Entry)

L
]
.
.
.

BEND (n)
: (BEND = Block @nd)

n is the block nesting number in the current hierarchy, starting from one

- at the start of the procedure body. For a labelled procedurc body, n
for the label is one, while n for the start of the procedure body becomes
two, :

An Intermediate gode block is created only at a 'BiGIN' followed by
declarations, terminating at the corresponding 'END'. Spacc on the
notional stack, to hold the necessary information ebout the declared
Quantities, is available throughout the period in which the block is
active. This information is held in the first order working storage

(see Section 2). Variables declared as integer or boolcan occupy one

word (4 bytes), variables declared as real occupy two words (8 bytes)

and must be double-word aligned by the compiler, and quantitics declared as
arrays occupy four words (16 bytes).

kW 1028 ' ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 - Sheet No. 17

A. PROCEDURES

AA, Procedure Structure in the Intermediate Code

Declarations

The form of the Intermediate Code generated for a procedure

U3 (Gg)

Pp : PE(k,L),m,N
Paramcter list
operations

Procedure body
RETURN

® » o -8 o

declaration is illustrated in the following schematic:-

Present to prevent execution of the
procedure before it is called.

Procedure Entry operation.

To set up the parameters ready for

use in the procedure body,lf necessarys
See section AB.
Normal Intermcdiate Codé operationg,

. Returns to the point of call of

this procedure.
If several procedure declarations
are presented together, label Gg
is not assigned until the last
such procedure has been translated
into Intermediate Code., That is,
more than dne procedure declaration
may be by-passed by one UJ operation.

Note that at a procedure declaration, the operation PE is always
assigned a P label, which is used both in the procedure call mechanism

and for diagnostic purposes.

Calls

The form of the Intermediatc Code generated at a procedure call is
illustrated in the following schematic:-

Call operation
Actual operations

APP

4B. Parvamcter List Operations

See section AC for details of call
opcrations

Define the actual parameters of this
procedure. Sec section AD.

Morks. the erid of the list of actual
. operations,

The full list of these operations is:-

CRFA Copy real formel array ,
CIFA Copy integer formel array Arrarys by value .
ABFA : Copy boolean formal array ‘
CA Sce below Arrays by name .
All other items by name

cp . ~ See below

or by valuce.

These 1ntermed1ate code operations arc all paraneterless. The operations

CA, CP are uscd

only to 1ocate
copy operation (arrays hy value

?nc arrvay word rcferred to by a subsequent

kw 1028

ENGLISH ELECTRIC LEO MARCONI

i

|

AC

Report No. K/AD u 42 Sheet No. 18

Calls of Function Designators and Procedure Statements

The call operations for the various kinds of procedure (or function)
are:-

CF (k,p)lfr - Call function CFZ(kyp), 7 Call function
) Zero
CTF(k,p), 7 Call typc function CTFZ(kyp), 1T Call type fuhction
) - ZeTro
CrF(k,s), ™ Call formal function CFFZ(k,s), T Call formal
‘ . -+ function zero
CTFF(k,s), T Call type formal CTEFZ(k,s), T Call type formal
function function zero

The operations in the righthind column arc used to call procedures
with no parameters, and are distinguished by the addition of the
descrintor 'zexro!.

k is the hierarchy number of the called procedure, p is the index
nuaber of the called procedure Pp, 47 is the pointer to level
parancters (b). The combination (k,s) for a formal procedure is

the stack address of the foraal parameter location for that procedure.

A function call which invokes a procedure as a function designator
uses one of the operations CTF, CTFZ, CTFF, CTFFZ.

The corresponding call invoking a proceduré¢ as a procedure statement
uscs one of the operations cr, Crz, CFr, Crrz,

A location on top of the notional stack is reserved for the result

.of a type procedure. Use of -2 procedure statement will result in the

deletion of the unused or superfluous result location.

© kW 1028

ENGLISH ELECTRIC LEO MARCONI

-

4D..

Report No. X/AD u 42 Sheet No. 19

Actual Operations

At a procedure call, any actual parameters are translated into-
Intermediate Code involvins some of the following special-
purpose operations:-

PSR(Gg) Paramcter subroutine EIS End implicit
: subroutine

PRAﬁk,s - Par. real array
PTA(k,s)y~ Par. integer array
PBA(k,8), - Par, boolean array
PSW(ky1)y~ Par. switch PFSW(k,s),~ Par. formal
. ‘ . switch
PPR(k,p), W Par. procedure PFPR(kys)M Par. formal
' " procedure

PIF(k,p), T Par. integer function PFFI(k,s),M Par. formel

) function integer
PRF(ky D)y M Par. real function PFFR(k,), Par. fornal
. ' ' function real
PBF(k,p), 1T Par, boolean function PFFB(k,s), T Par. formal
' function hoolean
PST ('('STRING')') Par. string PFST(k,s),~ Par. formal
, string
PEST Par. end string

Every actual paramcter is translated into a sequence of Intermediate

.Code operations. This sequence of intermediate code operations &e

called an implicit (paramcter) subroutine. The first operation in an
implicit subroutine is always PSR, the last operation is always EIS.
The label parameter Gg to PSI points to the next PSR or to APP, which
ever is approprizcte. ‘

Vhen an actual parsmeter is o (formal) avray, a (formal) switch, a

ormal) Procedure, or a (formal)string, the body of the implicit
subroutine is the appropriate single parometer operation from the
above list. Formal arroy »araneters use the operctions PRA, PIL
or PBA, ~

When an actual paramcter is o constant, the body Jf the implicit
subroutine is onec of the operations TIC, TRC, TBC.

When an actual parcmeter is a string, the body of the implicit
subroutine consists of the operation PST, followed hy the string in
Algol basic symbols (including the opening ond closing string quotes),
followed by the marker operoiion PEST.

When an actual parcmeter is an expression or a designational
expression, the body of the iuplicit subroutine is the sequence of
Intermediate Code operations (not parameter operations) nccessary to
cvaluate the appropriate result. This includes lobel identifiers,

When an actual parametef could be a valid left hond side of an
assignnent statement then thc body of the implicit subroutine is

. the sequence of Intermediate Codec operations (not paramcter

operations) neccssary to evaluate the appropricte address,

kw 1028

ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 20

Excizple of a Procedure Call

AE,
The following rather unlikely procedurc statement will be translated
into Intcrimediate Code as an illustration of the generation of actual
parancters. '
P(A,A, 'TRUE'y X + Y, Cy 'IF' I = ¢ 'THEN!' R1 JELSE! R2,:
s, @, '('PING')!, T, B'<'1, 41)1,.T|<42x>|); ‘
"The following types arc assuned for the, variables occuring in this
proccdure statenent:- ’
A real
X real
Y real formal
C real
C rcal array)
I integer
1 label
R2 label
S switch
Q integer procedure
F procedure foraal
B integer array
T switch
A1 parancters will be written symbolically, e.g. no nunbers will
be sunplied- for hierarchy nunbers, block levels or stack addresses.
Label nunmbers will be assumed to start from zeroe
The Intermediate Sode translation iss-
CF(kyp), 97 proccdure call operation .
- PSR(ag : ' '
TRA(k, A) A
EIS
ag: Psngm) .
TIC(2) 4
EIS
G1: PSR(G2) .
TBCT VTRUE!
EIS -
G2: PSR(G3)
TRR(k,X)
TFR(k, Y)
+ ' X+Y
- BIS >
G3: PSR€G4,)
PRA(X,C), - v
EIS-
]
kw 1028

ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 21

G4: PSR(GS)
BEX

TIR(k,I)
TICH

IFJ(G6) . :
~ TL(k,R1),n =1
UJ(G7)
G6: TL(k,R2),n R2 . :
CEND ‘ oy
G7¢ EIS
G5: PSREGB)
PSW(k,S), - S
EIS
G8: PSREG9)
PIF(k,Q), 1" Q
EIS
G9: PSR(G1g) :
PST ('('PING')!) '(1PING!)!
PEST
EIS
G16:PSR(G11)
PFPR(k,F)y -7 F
EIS
G11:PSR(G12)
T140(k,B),2
TIC1
TIC(A) ,
INDR(2) © B¢, AN
EIS .
G12:PSR(G13)
SAPP(k, T)
TIC(2)
INDR(1) . T2yt
- EIS
G13:APP

KW 1028 ' o ENGLISH ELECTRIC LEO MARCONI
/ -

Report No. K/AD u A2 Sheet No. 22

. 4F, Use of Formal -Paraneters within a Procedure Body

The operations used within a procedure body to rcfer to a formal
peraneter fall into the following classes, depending on the specification
of the formal parameters- '

a) - By value

On entry to a proccdure, the varameter locations sct up.for parameters
called by value are initialised with the actual values of these
parcrieters at the point of call of the procedurc. By this neans they
arc nade local to the procedurc body, and are operated on by
Internediate Code operations of the normal (non-formal) kind such as
TiR, TRA (i.e. Internediate Code operations whose mmemonic does not
contain F for 'formal'). The stack paremeters (k,s) to these
Interuedinte Code operations are the stack addresses of the parameter
locations. This paragraph does not apply to labels by value (sce
below, (e)). '

b) By nome
The following Intermediate Code operations arc used, in which (k,8)

denotes the stack address of the appropriate formal parameter
location: - :

kys variables (scalars)

%g?ﬁ §k,s§ Addresses of arithmetic or booloan formal
TrBA(k, 5)

"R : '
ggf(i’: Values of arithmctic or boolean formal
TFBé ’ variables (scalars)

c) Switches

kys

TFor a formal switch, the operation TFS(k,é) is used instead of the
operation SLPP(k,1). See(SGCtion 5, : -

d) Proccdures
The operations used are

CFF(k,s), M Call formal function

CTFI(kys), T " Call type formal function ,
CFFZ(kys), : Call fornmal function zcro
CTFFZ(k,s},Tr . Caell type formal function zero

Sec Section(AC).

KW 1028 : E 4 ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 23

e) Lebels

The operations used are

TFLN(k, s 'Take formel label by nanc.
TFLV(k, s

Take formel label by value.
f) Lrroys

The paramcter locations on the notional stack for formal

array parameters by nanme or by value contain cxactly the

saiie information as is uscd elsevhere for arrays. Use of such
parancters thercfore does not involve gpecicl operations. To

be specific, the only opecrations involved for any arry accessing
‘vhatever are:-

TBAA (X, s)b Take boolcan array address -
TIA(ky8)b - Take integer arrsy address
TRiA(k,s),D Take rcal array address

and the operations IFDA(b) and INDR(b).

kW 1028 ' . ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 . Sheet No. 24

. a
5. SWITCHES

SAL: Switch Structure in the Intermcdiate Code

%' Declarations

i

The form of the Intermediatce Code generated for o switch declaration
is illustrated in the following schematic:=-

UJ(cg) Present to prevent exccution of the

suitch before it is called.
Ll: DSI(G1) co Decrement switch index (see below)
Eveluate 1st switch elemont

ELS End implicit subroutine (terminator
| p; i ‘
G1s DSI(G2) or each eler agnt)

Evaluate 2nd switch clement
EIS

L] -] - L 2

¢(a-1): DSI(Gn) : ' -
Evaluate nth switch OIO“Onu

EIS
Gn: ESL End SW1tch llsc (see below)

G¢: . - . ',-\ ‘s

A’'switeh is called by a su1tch &oalanmtocorlth e subscript cxpression
vhich is evaluated at- the point of call, On transfer of control to
the declarcd switch at the label L1, the function of the operation
DSI is to subtract onc from the value of the subscript expression and
to jump to the next DSI if the result is non-zero., If this process
continues until the opecration LSL is encountered, o failure condition
cxists, because the specified subscript is oub of the range defined
by the switch list. Having found a DSI vhich rcduces the subscript
to zoero (the mth DSI if the original value of the subscript vas m

ne appropriate switch element is evaluated, and the associated EIS
causes a roturn to the point of call of the switch.

Hote that a switch declaration is not made into a block. Note also
hat the first DSI in a switch declaration is assigned an L label,
vhich is used both in the switch designator nmechanism and for
diagnostic purposes. ‘

o Toas ~ — ~ ENGLISH ELECTRIC LEO WARCONI

Report No. K/AD u A2 Sheat No. 25

Designators

The form of the Intcrmediate Code gonerated for a switch
designator is illustroted in the following schematic:-

ShpP(k,1) Switch approaching

Evaluate subscript expression
INDA(1) Index address

The opecration IlNDA is also uued'vhen'ovaluatlng subscripted
varicbles, but the context is always sufficient to determine which
use is 1n'cendod.

~ ENGLISH ELECTRIC LEO MARCONI

kW 1028

Report No, K/AD u 42 Sheet No. 26

.

5B. Switch Desiemators and Array Elcements as_Actubl Paraneters

If an actual paraneter in a procedure call is written as c.gs

Sig 12151
it moy not be knovm whether S is a switch or an array until later
in the translation. It is thercfore necessary to allow space for

either oventuallty in the mMteornediate Code. -

The alternative final results a,ro:-

Switch designator . Arrey elemont
. SAPP(k, 1)
1 Uy . corrcgponds to TRAA(Kns), 1
| .
E INDA(1) corresponds %o IMDA(1)
w5(k,8) sponds t TRAA(K, 8), 1
DUMMY correcspondas o 95),

DUMIY is a one byte Internmediatc Code operation whose only function
1s to fill spacc.. : _ .

For the detailed implcementation of this technique, refer to the
docunentation of Phase 1{.

kW 1028 ENGLISH ELECTRIC LEG MARCONI

Report No. K/AD u 42 Sheet No. 27 .

6« CONDITIONAL STATEMENTS AND EXPiESSIONS

The form of the Intermediate Code gencrated for a conditional statement
or expression will be illustratod schenatically for the case 'IF* B
ITHEN' C !'ELSE' D, where C and D arc either both expressions or both
stateﬂcnts°

BEX
Translation of B
IFI(GY)

Translation of C

uI(e1)

Trenslation of D
CEND -

.

Boolean expression marker

Y

If false jump (f.e. if B false)
Unconditiqpal juﬁp

Conditional enﬂ.nanker

| This inplementation permits D itself to be a conditional statement

or expression.

In the case of a

conditional statement 'IF' B 'THEN' C, - -

where C is a statenent, the translation into Intermediate code is:=-

BEX
Translation of B

- IFJ(GP)

Translation of C
CEND

* N .

L ° - L)

kW 1028

ENGLISH ELECTRIC LEO MARCONI

Report No. X/AD u 42 Sheet No. 28

.7. ARRAYS

Declarations

The form of the Intermediate Code generated for an array declaration

o t('"REAL') ,
(townt) VINTEGER' ¢ '"ARRAY' A,B,e.e,K'<'I1:L2,M1:M2,000,21:22'D"
! BOOLEAN! -

where A,B,«ss,K represent the array identifiers, and L1 and 12, M{ and
M2,.04e 21 and Z2 represent expressions defining the lower and upper
bounds respecctively of the first, second, ..., last dimensions, is
illustrated in the following schemotic:-

Translation of I1

STACK STACK is an array- bound

Translation of L2 ’ separator.

STACK - -
Translation of M1 '

S TI‘L CK

Translation of 21

STACK

Translation of Z2 '

Make Storage Punction See below for the forms of the
. operation.

The possible Torms of the ilnke Storage Function operation are:-

1BSF(k,5),a Make boolean storage function
MISF k,s;,a Make integer storcge function
IRSTF(k,s),a Make real storage function

where (k,s) is the stack address of the last of the stacked array items
for AyByees K, from which the rest may be found. -The stacked array
items, each containing all the defining information for each individual
" array, are normally referred to as the array words, although in fact
they each occupy four words on System 4 (16 bytes). All these array
words generated from one array segment sh:re the same storage function.

a-is the number of arrays in the array segment (i.e. the mmber of the
ArTrays AyByeeesK)e This is also the number of array words generated by
Fhe meke storage function operation.

KW 1028 ’ ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 29

Subscripted Variables

The forn of the Intermediate Code generated for a subscripted varicble
L'V Tydyeees2!> ", whore I,Jy40492 are arithmetic expressions each of
wvhich may be a further subscriptcd variable, is illustrated by the
following schematic:~

Take array address See below for possible forms of this
Evaluate I operation
Evaluate J ' o

Evalvate 2 .
INDR(b) or INDA(b) Index result or Index address,
according to context.

The possible forms.of the Take array address operation arez-

TBAA(k,s),b Taike boolean arrey address
TIAMk,ys)yb ' Take integer arrcy address
TRAA(k, S)y D Take real array cddress '

vhere (k,s) is the stack address of the corresponding arroy word, .
and b is the number of dimensions of the arrqy.

The operation INDR(b) delivers the valuc of the subscripted varic ble,
IIDA(D) delivers its address (on the notional stack),

xW 1028)

|-

ENGLISH ELECTRIC LEO MARCONT

Report No.. K/AD u 42 " Sheet No. 30

8, FOR SIAYT.IHITS
8A, General

A for statcnient is treated as a block which opens with the
Intermediate Code opcration.

- FBE(n) For block entry,

vhich poerforns exactly the sanc functions as the operation
. BE(n), and terminates with the Intermediate Code operation

BEND(n) Block end
as uscd for normal blocks (scc Section 3).

Becausce a for statement requircs three parameters to control the
running of thic various for list clerients, these three quantities
arc 'declared' at this point, that is, space is reserved for
then, as if they had been declared explicitly, in the first order
working storage (see Sections 2,3). The three paraneters are:-

Stack address (words) Paronoter Function
(k,s) ' SA(voolean) Morker controlling the

action of the Intermediate
Code opcration AST (sec
Section 8E)

(kys+1) - ' FI(intecger) The for index (see below
4 and Section 8E).
(kys+2) S3(rcal) - Holds the initial value of

the controlled varioble
each time round a for list
elenent, Phase 10 treats
53 as real, but Phase 20
loter determines its type
to be the same as that of
the controlled variable.

The stack address (k,s) is double-word aligned.

An eitra block is crcated if the comtrolledstatement is itself a
block or o labelled block. .

The quantity TI (Test Index) is also used but docs not reside on
the stack. At the beginning of each for list element it is a copy
of FI. TI is the iten actually decremented (in a register) by the
operation DFI,

kW 1028 : : : ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 31

Several Intermediate Code operations have been introduced
specifically for use in the translation of for statenents.
Thesc operations are:-

DFI§Gg; Decrenent for index

AST(Gg Avoid step

ST , ‘ Specinl purposc ST operatlon with
run tince effect of ST ‘

STFA Store from address - special purpose

' ST operntion , -

FNIT(k,SA) For initialise

CSM Controlled statement marker

STUL (Gg) Step=until macro operation

FI~1 Deerement FI by 1, used in while elenonts.

STEP Morlzer used in step until elcments

The usc of these operations will be clear from the examples vhich
¢ follow, '

AW 1028 ' ENGLISH ELECTRIC LEO MARCONI

“Report No. X/AD u A2 Sheat No. 32

83, Ior Statement Structure in the Intermediate Code

The form of the Intermediate Code generated for a for statement
of the form

'"FOR!'V:= first element, second element,,.., last doment 'DO!
Controlled statement,
is illustrated in the following schematic:-

'
moT

Ju(n) For block entry . .

I (k, S24) Initialise by setting SA
: to !TRUE!, FI and S3 to zero.

G@:Stacks= address of V

S3:= value of V

FI:= FI+1 < The copy . TI of the new FI is
B .o . now available (in a register).
QFI(G1) o Decrement TI by one, and jump to

G1 if non-zero.
Translation of first element
U3(Ge) Jump to controlled s‘tatement

(1abelled Ge)
G1 DFI(Q%

UJ(Gc)

atlon of second elzment

.

[

G(m=1): DFI(Gm)

Translation of last (mth) element

CSM
Ge:Controlled statement .

pag(e) : return for next element
GmsBEND(n) : End of the for statement’

The formats of the varlous kinds of for list element will now be
descrlbed.

W 1028 , . ENGLISH ELECTRIC LEO MARCONI

Report No. x/AD u 42 Sheet No. 33

8C. Arithnectic Elcnent

An erithaectic for list element is an arithmetic expression, A, say.
The Intermecdiate Code form of A as an arithnetic for list element is
illustranted in the following schenaticz=-

DU:RIY

DUMMY

DUILY

Translation of A

STN Stores value of A into the
location V whose address has
beon pre-stacked (see 8B).

This coding fits irto the schenatic in (8B) where the words "Trarnslation
of (nth) clement" appear.

The threc DUIMY operations are gencrated in coscé this elcement turns
out to be a step- until elemont (sec (8E)).

The special operation STN is generated instead of ST as an aid to the
subsequent processing of the Internediate Code by Phase 20, It is
effectively o directive to Phase 20 to 'recmember the address of V for
use in tronslating subsequent clenents into machine codes The machine
code tronslation of STN is identical. to that of: the normal operation ST.

KW 102'8 — . ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 34

B :
8D, . Yhile Element

The form of the Intermediate Code for a while element, of the form
. C'WHAILE'B, where C is an arithmetic expression and B is a boolean
expression, is illustrated in the following schematic:-

DUIIY
DULEY
DU.IY
Translation of C N
ST Stores value of € into V,
whose address has been pre-stacked,

BIEX

Translation of B , :

17J (GP) Return for next element if current
' element exhausted, '

I'T=1 ' Perforus the function FIl:=FI-1

This coding fits into the schematic in (8B) where the words
"Translation of (nth) element" cppears

The three DUiRlYs and the STN operation are present for the
reagons listed in (8C),

It may be of interest to note that in this occurrence of IFJ(G¢),
GO is a backward reference. With this unique exception, the label
parameter to IFJ is always a forward reference.

w1028 . " ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u A2 Sheet No. 35

8Es Step Until Elenent

The following schematic illustrates the forn of the Intermediate
Code generated for a step until clement of the form
D'SYEP'E'UNTIL'F, '

xhere DyEy and F are arithnetic expressions:=-

AST(Gg) Avoid step
Translation of D . ,
- STEP Harker to terminate D
Gg: Translation of E - : A
. Translation of I -
STUN(G@) Step until wacro

This coding fits into the schenatic in (8B) shere the words
"Tronslation of (nth) element'" appears.

AST {Gg) takes the place of the three DUIlYs generated for
arithmetic and for vhile ecleucnts. The function of this operation
is to jump to Gg if SA is falsc.

The function of STUN (Gﬁ) is to perfornn the step using S3 and E
to cvaluate the new value of V, to set SA correcctly, and to eoxit
to Gf vhen the clement is exhousted, otherwise to perform
FI:=FI-1 and to pass on to the controlled statenent. At run tine,
STUN becomes o call of a Slave Routine (sce Seotion(Aa(b))).

AW 1028 . ‘ ' ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 36

8F. Examplc of a For Statement
The Internediats Code translation of the follor1ng,for statomcnt will
bc presented:-
'FOR! A:; 1 fSTEP'Z'UNTIL'1¢, 15, A+2 'WHILE'A'LT'1g
DOt I:=Aj
f" A is assumed to be 'REAL'y I to be 'INTEGER', Locations for S4
- (boolean), FI (integor) qnd S3(real) arc also, crentedss The
| translation is:-
FBE(n)
TNIT(k, S4)
GP: TRA%k,A) Address of A on the notionrl stack
TRi(k,S3) : ' ‘
STTUL Perforns S3:= value of 4, deleting the cddress .
of S3 from the notional stacks The value of A
is obtained from the location pointed at by the
address of A held in the notional stack.
TIA(X%, FI
TIR(k,FI
TIC1
+
STW Performs FI°—ﬁI+1
DI'T(G1 Start of first clement, 1 !STEP!'2'UNTIL'1d
AST(G2 . :
TICH
STEP
G2: TIC(2)
TIC(14)
J.TUTU(C¢)
UJ(G3) Transfér control to controlled statoment
G1: DFI(GA) Start of second clement, 15.
DUy
DUI'JI\;Y
- DUMIY
TIC(15)
STN Performs L:=15" ,
KW 1028 ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u A2 Sheet No. 37

U7(G3) Tronsfor control to controlled statement
GA: DFI(G5) . ' Start of third clenent, A+2'WHILE'A'LT'1¢

DUIMY

DULMY

DUIRIY

TKLIEL,“)

PYIC(2) ‘

N <

8T Performs A:=A+2

- BEX Looleconr erpression narker

TRng,A) . O

TIC(18)

< '

IFT(Gg) ‘Return for next clonont if this elcuent is

: . cxhausted,

FI-1 Perforns II:=FI-1 o N
- CSM : Controlled statement marker
G3: TLtgk,Ig ~ '

TRR(1, A

’ - Perfoims controlled stotenent l:=A,

UJ (Gﬁf) , Return for no:t element. - °

G5: BEND(n) End of for ctatement

KW 1028 o ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 ~ Sheet No. 3

9. -OW VARIABLES

Own voriables in the Intermedicte Code are identificd as hierarchy k=-1.
Thot is, for an owm variable k is 4 bits of all oncs. Because of this
convention, therc arc no Internedinte Code operations referring
eunliecitly to owm variables.

Owm voriables ot run time do not rcside on the notional stack, but in a
special arca vhich also holds the constants required by the generated
progronte Space for all own variables used in o progran is rescrved

innediately on entry to a running orogran. = !

kW 1028 ' "~ ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u A2 Sheet No. 39

10, HIOTE ON TIDEPENDENT COMPILATION OF ALGOL PROCEDURES -

Algol procedurcs nay be prescented to the System A Algol Conpiler for
independent compilation, provided they are presonted to the compiler in
the forn

! BEGII!
{procedurc declarationds;
1END! ‘

(The brackets<> arc not liternls but arc uscd in the Backus normel form
scnsc. Sce < procedurc declaration > in paragraph 5.4.71 of the Revised

Report on Algol 60.) Thc result of such a compilation is a machine code
nodule which nay be called fron any other Algol module or base prograil

The Intermediate Code form of an independently compiled procedure, as

?ou%d'be cxpected from .the form of the Algol above and from Scction
;4_."\. 9 iS:-— .

~(1)
. UJ(cg)
PO: PE(1,L),n, Il
Paranmeter list oporations
Procedure body
' RETURT
G@: BEND(1)

In o . modulc or basc progroa which calls an indepondently cormpiled
procedurc, the source Algol must contain a specification of the called
procedurc. The syntox of this specification, in the notation of !
paragraph 5.4.1 of the Revised Report on Algol 60, is !

{speccification of independently compiled proccdure): =
'PROCEDURE! <proccdurc headingd 'ENTER! <modulc entry’name)'
<{type)> 'PROCEDURE! <proccdurc headingd 'ENTER' <modulc cntry named

Scmantically,

IETIER! <nodule ontry named
stands in place of

{procedurc body>.

in the definition of a procedurc declarantion. The module cntry nane

is the ontry nane assigned to the independently compiled proccdurc when

it wos conpiled. This specificotion mwst be identical with the

.specification part of the independently compiled »procedure., It is the
* uscer's responsibility to ensure thot this is so, since the compiler -

nakes no check (except thot the anount of space reserved for parancters

is chocked at run tind e e S . :

v 10%s , ENGLISH ELEGTRIC LEO MARCONI

Report No.- X/AD u 42 Sheet No. 40

In conformity with Section (4A), bhb Intermediate Code form of tae
specification of an independently compiled procedure is

UJéGg)

Pp: PE(k,L),m,N _
Parcmeter list opcerotions
BUIER (module entry nome)
RETURN

ENTER is here on Intermecdiate Code operation whose pareameter is the

entry nome of the called module, up to eight characters in length. This
method of implementrtion incidentally means that the procedurc identifier
used in the calling module need not be the same as the procedure
identificr of the called module.

ixample:-
Calling module Colled module . .
'BEGIN' 'INTEGER' X; VBEGIN' 'REAL' 'PROCEDURE' ANVIL(U,V,W);
IREAL' '"PROCEDURE! roecn(n,B,c), VINTEGER' U,V,W;

'INTEGER' A,B,C; ANVIL:= WIUIV;

'ENTER' MODULE1 'END!
X:= FORGE(4,3,2) ‘ :
1END! : Compiled with entry nome MODULE1,

The call of the procedure FORGE in the calling module is in fact a call
of the 1naepen€entlj compileé procedure ANVIL, whose entry nome is MODULE1.

KW 1028 : _ ENGLISH ELECTRIC LEO MARCONI

Repoﬁ:No.KJﬁD u 42 Sheet No. 41

1.

\

LIBRARY PROCEDURES

M1 stonderd input-output procedures, A2 in nunber, nay be used without

the specifications described in Setion(10), as nny all 9 stondard functions

ABS, 3ICN, SQRT, SIN, COS, ARCT.AN, LN, EXP ond ENTIER.
The full list of the A2 standard input-output procedurcs appears in the
Algol Reference lManual. If these nrocedurcs arce used vwithout -
specification, then the compiler will automatically supply specifications
of the standard libeory versiohs. If however the user does not desire
t0 usc the standard library version of onc of thesce procedurcs, then he
st supply the Algol specification giving the cntfy nare gf the module
he wishes to usc instend, as in Scction 10. ’

The Intermediatc Code specificatiohs of the stand""a proccdures supplied
by the compilcr appear as the final items in the generated Intermediate

Code, and thcy have the formots-

PE(1,L),m, N
ENTER (nodulc entry nano)
RETURN

In the spceial casc of the four procedurcs FORMAT, ABS, SIGN, and ENTIER,
the Intermedinte Code specifications gencrated by the compiler use the
parencterless Internedicte Code operations FORWAT, ABS, SIGH, and ENTIER
in placc of ENTER (module unury nanc). This is becouse 'the four nened
procedurcs arc implenented witd 1uat recourse to independently compiled
nodules. The uscr, of coursc, nay still pre-cmpt this system by supplying
o specification of a module he prof rs to the standard versiohs that would

otherwisc be built into his objcet »nrogran.

kW 1028

- ' ENGLISH ELECTRIC LEO MARCONI

Report No. X/AD u 22 Sheet No. 42

12, THE INTERMEDIATE CODE OPERATION TRACE

If the option ROUTE is specificd on the // COMPILE card for an Algol
nodule (sce PS A,13.5 (53/7400) and Algol Refercnce Manual Part 2),
then the Internmediate Code overation . ’

TR.CE (8 charncter identificr in 6 bytes in packed ABS form)
is. generated in.tihe folloving positions:=-

a) Lobels o

At overy usc of a label on the left-hand side (a "declaration™)
the operation TRACE .is generated with the identificr of the label
itsclf as parancter.

Cege L1: FIN2: I'END!
would be translated into

Ll: TRACE (wwwww o L1)
L(1+4¥3 *"TRACE (4w uw FIN2)
BEWD (n)

in which c.g. the parameter L1 appears in packed Algol basic symbol-

- forn os FEFFEBAY 5C1. ?
;b) Procedurcs

At everyprocedurce declaration the operation TRACE is gencrated with
the identificr of' the procedure itself as paranmeter.

cegs 'PROCEDURE' STRUM(X)5e « o »
would hc translated into

Pp : PE (k,L),i2, N
TRACE (wuw STRUN)
4 -]

e

This opecration TRACE pernits -n explicit‘run-%ime listing of lcbels
passcd and procedurcs entored to be made.

T 1078 , ENGLISH ELECTRIC LEO MARCONI

P

R’eport No. K/AD u /|2 Sheet No. 43

13.

TYE_INTERMEDIATE CODE OPERATIONS FATL AND LFAIL

Whon Phose 1@ detects an crror condition at the point of crror in on
Algol source progron, C.g8. @ nis-spelt basic symbol, then the Intermedicte
Codc omcration.

i FLIL(x)
is goncrated, where r is the scerial number of the current failure (i.e.
the rth failure detected so far). Phase 1¢ then recovers and procccds

» vidth the translation and gencration of Interncdiatc Codes This type

of feil opcration is called an immediate failure. 4

Whcn Phasc 1¢ detects a failure condition later then the actual point
of crror (c.g. an identificr not declarcd), then the Intermediate Code
operation '

LFATL (r, skeleton opcration)

is gencrated.LFAIL stonds for late failure. r has the sone nmeaning as
above. !'Skeleton operation! is o one-byte iteir vhose purposc is to give
the successor pass, Phasc 2¢, inforation about thc type of operation that
was present before Phase 10 found it necessary to back-track and plant
LFAIL. The nethod of doing this, and tiic whole problem of skeleton
chaining, is dealt with in the docuientation of Phase 1¢. The five
possible skeleton operations are:

RO Result operation - CeZe TBRg
AO Address opcration cege TRA
S0 Statenent operation CeZs P; - & paraneterless procedure call)
FO Function operation cegs CT)
PO Parancter operation c.gs PRA)

kW 1028 - ' ENGLISH ELECTRIC LEO MARCONI

Report No. X/AD u 42

Sheet No. 44

14, DICTIONARY OF INTERMEDIATE CODE OPERATIONS

Opcration Hexadecinal | Paroneters
Incnonic Operation
Value

ABS Standard function ABS C1 None
ALPP Letual Parancters terminal marker 19 None
AST Lvoid Step #F g
BE Block Entry B In
BEND Block End g5 In
BEX Boolean Expression merker : FC None
Ci ID None
CBFA Copy Boolcan Formal Array 63 None
CEND Conditional End Marker ¥D None
CF Call Function” ‘ 89 (ks p)s T
CFF Call Fornmal Function 98 (ky8), 1
CFFZ Call Fornal Function Zoro 98 Ak, 8), T
CFZ | Call Function Zero 88 (kyp)s
CIFLA Copy Integer Formal Arroy 6L None
CP : | 10 None-
CRFA Copy Real Formal Array 69 None
st Controlled Statement Marker FE None
CTF Call Type Function 1 81 (k)17
CTFF Call Type Fuhc-l;ion Fornal 91 (k,8),T7 .
CTFFZ Call Type Function Formal Zero 99 (ky8), T
CTFZ Call Type Function Zcro 89 (kyp), 1T
DFI Decrenent For Index ;Z5E g
DSI Decrenent Switch Index ¢8 g
DUIRY Durmy opcration FF None
EIS End Implicit - Subroutine merker . 1A None

~ EITER Enter independently compiled procedure 557 Entry Name
EITIER Standard function Enticre C9 None
ESL End Switch List marker @9 None
FAIL Conpilation Failurc iy r
kW 1028 °

ENGLISH ELECTRIC LEO MARCONI -

)

K/AD u 4'2 '.

45

-”“peratiy Hexadecimal Parameters
- .nemonic/ Operation .
Value
FBE For Block entry @6 n
FI-1 For Index minus one CB None
FINISH Fi:n'ish marker for end of Intermediate 9 None
Oode.
FNIT Por statement Initialise cs (k,54)
FORIJAT | Input-Output Procedure FORHMAT C5 None
Irg "If False Jump B2 g
INDA Index Address 6C . b .
INDR | Index Result 1] b
LFAIL |Late compilation failure 1B Tyt
MBSF |Make Boolean Storage Function 63 (kys),a
“SF |Make Integer Storage Function 62 (ky8),a
MESF - |liake Real Storage Function 61 (k,s),a
HEG Negate (unary minus) ™ ‘None
PBA Parameter Boolean Array CF (kys),=
, PBF Parameter Boolean Function D3 . (k,p) 41~
PE |Procedure Entry &1 (k,L),m,N
PEST |Parameter End String marker "ac (none) ;m,N
PYFB Parameter Formal Function Boolean D3 (ky8) y o
PFFI Parameter Formal Punction Integer DA (ky8) g7
PFFR Paraneter Tormal Punction Real D9 (ky8) ‘
PPST |Paremeter Formal String DE (kys) ;=
PFSW |Paremeter Formal Switch DF (ky8) 4~
ZTPR Parsmeter Fornal Procedure D8 (k,8), T
PIA |Parameter Integer Array CE ' (ky8),-
PIF Parameter Integer Punction ' D2 (kyp)s ™
PPR Parameter Procedure Dg (k,0) s v
PRA Parameter Real Array CD (kys),=
- PRF Parameter Real Function D1 (kyp) w7
PSR Parameter Subr utine D1 g
PST Parameter String D6 'string'
PSW |Parameter Switch D7 (k,1) 5
RETURN Reﬁxm from procedure call 72 Tone

Report No. K/AD u 42 Sheet No. 46

Opcration ' ‘ Hexadecinal | Parancters
Ieinonic ’ Operation
: Value
SAPP Switch Approaching 18 (k,1)
SIG Standerd function SIGN c2 None
sT Store | None
STA " | Store Also ¥9 | None
STEP STEP marker in step-until elcuent @B None

© STFA Store From Address, (for statenents). ! FB None
STN Special purpose Store used in for .

- ' statenents A None
STUN | Step Until T BA g

‘TBA Tnike Boolean Address A3 (kys)
TBAL Teke Boolean Array Address 55 . | (ky8)yD
TBCF Take Boolean Constant False 3B None
TBCT Také Boolean Constant True : 37 None
TBR Take Boolean Result 23 (k,8)
TF3 Take Formal Boolean ‘ 2B ‘ (kys)
TFBA Teke Formal Boolean Address | AB (k,s)
TRI Take Fornal Integer 24 (k,8)
TFIA Teke Fornal Integer Address AL (k,s)
TFLN Take Formal Lebel (by Nauc) A9 : (x,8)
TFLV Tele Formal Label (by Value) A8 (x,s)
TFR | Take Formal Heal o 29 (k,8)
TFRA | Talte Formal Real Address A9 (ky8)
TFS Take Foral Switch ' |78 (k,8)

- TIA - | Take Integer Address 42 (kys)
TIAA Take Integer Lrray Address 52 ‘ (ky8)yD
TIC f Take Integer Constant . 32 constant
TICE Take Integer Constant Zero ' 36 None
TIC1 o Take Integer Constant One 3L * | None
TIR Take Intoger Result 22 (k,8)

KW 1028 . ‘ ENGLISH ELECTRIC LEO MARCONI, ‘

"Report No. /aDp u 42 Sheet No. 45

Opcration . lexadecinal lsara,neters
Mnenonic ;(V)_g;rlgtion
L Take Lebel : Ao (ky1)yn
TRA Take Real Address A1 | (k,8) ‘
TRAL Talke Real Array Address 51 (ky8),D
TRiCE Trace 94. -lidentifier
TRC "|Take Real Constant ’ 31 constant
TRR . |Take Real Result _ 21 (ky5)

S UJ Unconditional Junp Bl , g’
PLUS ‘ + Ef Hone
JINUS * - E1 |None
MULT x B2 None
DVDE / E3 _ |Vone
IDIV - + EA None
EXP ? E5 None
GT D) E8 None
GE 2 EC None
= = ER None
NE ;é EE None
LE < ED None
LT < E9 None -
NOT R Fg None
AND A A None
OR Ad F5 None
THPL . F6 None
EQUIV = F7 None

KW 1028 ENGLISH ELECTRIC LEO MARCONI

Report No. i /xp y 22 Sheet No. 48 -

AAhe Parancter Notation

k
(k/1)
(k/s)

(%, 1)

(x/p)

1'th Uscr's ldbel (pgl). Numbered in order of declaration,
' §2 bytes

g!'th generated label (¢gg). 2 bytes

ptth procedure label (#<p)e Numbered in order of declaration. .

1 byte
hlerarchy nunber (ng). A bits

k and 1 packed into tuo bytes with A bits for k and 12 bits for 1.

Stock addresse k and s packed into two bytes with A bits for
k and 12 bits for s, where s is the nunber of words along
the notionnl stack from the start (s=f) of the stack for
the current hierarchy k. '

k and L packed into two bytes with A bits for k and 12 bits
for L, vhere L is the nunber of words of first order working
storage (including parsiieter space and link data) for the
hierarchy k and its constituent blocks,

k and p packed into two bytes with 4 bits for k and 12 bits
for p. -

n n'!th block level in current (or oeStlnLtlon) hierarchy
(1<n). (1 byte).

ar Tr 'th ontry in Level Parameters (b) (OX77) (2 bytes)

n Nunber of words elong notional stack for sone hierarchy k

fron 8=0 to s= cnd of paraneter space (1 byte).

- N Total block nesting depth within current hicrarchy.

(1K) - (1 byte)

Constant 1 woxd for integer or boolean constants, containing the .
explicit constant.e 2 vords for rezl constants, containing
the explicit constant.

'string'! Basic symbol respresentation (unpocked - i.cs 1 byte per
symbol) of the string, including the oonening and closing
string quotec symbols.

- A onec byte space

a Nunmber of arrays in an arway segnent (1 byto)

b Nuaber of dluen51ons of on array (1 byte)

r r'th failure for this module

SA Special location used in for stotementss Sce Scc%ion 84,

] Type of operation now renleced by the currcent LFAIL operation,

: according to the folloving code:-

A RO X12gt Result operation

| LO X'4¢ Address operation :

' SO X16g1 Statenent operation (1 vyte)

. FO X1ept Function operation

PO Xrogt Parometer operation =
kW 1028 : ENGLISH ELECTRIC LEO MARCONI

Report No. K/AD u 42 Sheet No. 49

Entryname Up to 8 EBCDIC characters, left~hand justified

and padded out with spaces (X'20') as necessary.
Identifier Up to 8 Algol Basic Symbols packed into 6 bytes,
) each Basic Symbol occupying 6 bits. The significant

5 bit items are right-hand justified in the 6 byte
field, padded out with zeros if necessary.

Y

KW 1028 ENGLISH ELECTRIC LEO MARCONI

©R20T My

qavi

'S8p0) TeUroopexsy]

INCOYVYIN 031 JI¥.13373 HSITONI .

1 ' T
N Y 0 |7 2| 3| 4| s5{ 647 | 8| 9 4| B| cCc|D|E]| F
0 [FINISH|PE | RETURN BE |DEVD | FBE |ENTER| DSI |ESL [STUN | STEP DFI | AST
1 : EIS - ! SLPH APP LFATI} CP A |STicy TAIL
2[R0 TR | TIR | TBR ' T TFR_ |TFI | TFB
b 3| e | TIc | | T1cg | TBCT |rIct | TRCR
¥4 |40 A | TIA | TBA ’ TFRA |TPI.L | TFDA |
5 TRaN TIAA | TBAY | “
6 |so IRSH HISF | MBSH ‘ CRFA [CIF. |cBra | Toma
7 |mmR _ | TFS | | -
S Sl CFZ | CTFZ |
9 |CFF |CTFF TRACH] CFFZ CTFFZ | _{ N DI T
LoL | | TFLV] TFLI e N
5 wm | |1 S NN S A T O N O
c |po ABS | SICIT _ | POREY | |l A FVTIERRNIT |PIS1 S IR. |PTL (B,]
_D |PYR |PRF.|PIF |PBF|PSR { - PST | PSV - | PFPR PFFR [PFFT |PFFB | | |PEST|PFey |
T T F _ ‘ B e . S J}w]
F |Wor |MEG AND }OR IIPL |DQUIV] ST |sTa BTN, |STEA |BEX |CED |ooM |DUMMY

/3 *oN Hoday

T

v n @

v

06 ‘oN 129us

-

~ - . 1
45, 450 ALGOL EARDYARE REPRESTHTATION Report No. K/AD w2 Sheet No. 5

ALGOL . ' AEPRESENTATION ' ’
BASIC SY.BOL ECMA.) ALTERNATTIVE
. l i

A-2Z 1A-2 .
%-z] ‘ Z¢ -2 \

-9 -9
o (subscript ten) . '1¢' 9
real ete .'RE&L'eto
1 J s A OT **

oo < - -
'NOT! : —

<

E % -

;-gozen String)) :(: | N.B is the'break'’
string space - —_— o — is the'bre ‘

' or 'underline' charactex

+

/! : -/
1LE! K=
TATD! &

.2 | ,
frsr | /)

< Il N\ ~l—reo v)’/\

(close string) E})'
‘ 1IEQ! ' . =
| TOR! ' | or!
b ‘ 9 . .
x ¥ ’
Y ey >=
> {rmer
(string tab) - ’ ?)
+ il .
> GT! . >
= ; 'EQUIV! .
(string new line) ; o/o
U Aor —=
(Su:lng p*ge change ‘ v '
@\Q VENTER!

g |

oz | , TENGLISH ELECTRIC LEO MARCONI

	p00
	p01
	p02
	p03
	p04
	p05
	p06
	p07
	p08
	p09
	p10
	p11
	p12
	p13
	p14
	p15
	p16
	p17
	p18
	p19
	p20
	p21
	p22
	p23
	p24
	p25
	p26
	p27
	p28
	p29
	p30
	p31
	p32
	p33
	p34
	p35
	p36
	p37
	p38
	p39
	p40
	p41
	p42
	p43
	p44
	p45
	p46
	p47
	p48
	p49
	p50
	p51

