
C

'""

Abstract:

The development of -the Algol W compiler and run-time system

are discussed, with particular reference to input/output facilities

and external subr·outine linkages.

A Technical Report prepared for the 4th MTS Workshop held at

Newcastle University in July 1978.

Algol W Development at Newcastle

By

JoAo Hunter and M.M. Hindmarsh

TECHNICAL REPORT SERIES

Series Editor: Dr. B. Shaw

© 1978 University of Newcastle upon Tyne.

Number 124
October, 1978

Printed and published by the University of Newcastle upon Tyne,
Computing Laboratory, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

1

Added entries

bibliographical details
HUNTER, James Alan.

Algol W Development at Newcastle. (By] J .A. Hunter
and M.M. Hindmarsh.

Newcastle upon Tyne: University of Newcastle upon Tyne,
Computing Laboratory, 1978.

(University of Newcastle upon Tyne, Computing Laboratory,
Technical Report Series, no. 124.)

12"

HINDMARSH, Margaret Mary.

Suggested classmarks (primary classmark underlined)

Library of congress:
Dewey (17th)

U. D.C.

Suggested keywords

Abstract

001.6424
681 .322.06

ALGOL W

001.6425

COMPILERS
PROGRAMMING LANGUAGES

The development of the Algol W compiler and run-time system are
discussed, with particular reference to input/output facilities and external
subroutine linkages.

About the author

Both of the authors are currently Programming Advisors for the Northumbrian
Universities Multiple Access Computers organisation (NUMAC).

r

r

r

r

-,,.

2

3

4

5

6

7

8

9

10

Appendix

Appendix 2

Appendix 3

Appendix 4

Appendix 5

Appendix 6

Appendix 7

Appendix 8

Appendix 9

Appendix 10

Table of Contents

Introduction

Design Aims

Re-entrancy and System Organisation

Operating System Independence

Compiler Control Cards

Run-time Input/Output

External Subroutine Linkages

Compiler System Modifications

User Documentation

Future Plans

Compiler Control Cards

Compiler Parameters

Standard Procedures

Standard Functions

Pre-declared Variables

Format Strings

Code Generated by the CALL Procedure

A Commentary by James Eve

Bibliography

Glossary of Terms

2

5

9

13

19

26

34

41

42

45

49

55

64

70

78

82

83

89

90

=

Introduction

This year we will release the new version. We expect
to have the first release system ready in December, and it
will be known as Release 6.0. Documentation will follow by
February '79, at which point we will distribute it. During
the long development time, design aims have changed
somewhat, but we trust that the final result will be
acceptable to those MTS sites most interested. We assume,
from the correspondence we have received, that these sites
are primarily the University of Alberta, the University of
Michigan and the University of British Columbia.

Our reason for producing this Workshop paper in the
format of a Technical Report is to ensure a wider
readership, particularly among the Laboratory staff at
Newcastle. It is possible that certain members of the
Computing Science Department may see this document as a 'U'
trailer for an 'X' movie. We can offer some reassurance on
this score. This report is essentially a final
specification of the coming Algol W release, and nothing
which is not described, or at least hinted at, in these
pages will be in the released version 6.0.

Implementation is not yet complete in some areas of the
system, and this means that there may be slight changes
before release. For instance, if any better names for new
pre-declared identifiers are suggested to us before release,
we would certainly consider them. This paragraph then is a
disclaimer: the user system will be described in a new
edition of the User Reference Manual, and this report should
not be taken as user documentation.

2 Design Aims

Initially we intended to do only remedial work to keep
our own users happy. We had available a bolt-on
multi-streaming I/O interface (our *STRAW), a modified
compiler interface (our *AW) and an expressed wish to
inprove the linkage to non-Algol W routines. The idea
originally was to merge these three with a few minor
modifications, and the figure of six man-months was quoted
(Algol W working party - Newcastle July 1975).

By the time one of us (JAH) actually started to work on
the project in November 1975, several other sources of
feedback had appeared. A user survey brought replies from
most departments at Newcastle, showing a diversity of
requirements but almost all insisting on a vastly improved
I/O system. The second major source of information was the
2nd MTS Workshop held at the University of Alberta in July
1975. This brought two major points to our attention.
First, the University of Michigan (and most other sites)
would like a standardized compiler system. Second, the
University of Alberta would only be interested in an
enhanced Newcastle Algol W if their modifications
(originally from Manitoba) were incorporated. This seemed
quite reasonable from their point of view as they had many
users with programs dependent on their extensions.

As a result of this combined evidence, our own Algol W
and Alberta's were both examined to see if a multi-streaming
system could be built in which would be acceptable to both
sites. At this point we would like to thank Kathryn Ward
who sent us the University of Alberta system and Tony
Marsland who visited Newcastle and put Alberta's point of
view.

Our I/O extensions in *STRAW worked with READ(ON) and
WRITE(ON) by providing a switching procedure to vary the
reader and writer between the available I/O streams.
Alberta provided new standard procedures GET(ON) and PUT(ON)
which specify through their parameters the I/0 stream and
formats to be used in that operation. In effect, the
Alberta system provides a Fortran-type I/O interface to
Algol W.

When the coding and logic of the Alberta system were
examined, the form of their implementation proved to be

2

unacceptable to us. The additional code for the formatted
I/O system highlighted a criticism of our own library in
that it is not re-entrant. Algol W's library is not a
library in the normal sense of the word where modules are
selectively loaded as required. A program to add two
numbers together will load the whole 'library' (30+ kbytes
of code) regardless of the fact that it does not need
complex ABS, or COS, or whatever. A further criticism of
the Alberta system is the manner in which I/O information is
buffered. It has two separate systems, with separate
buffers, for READ/WRITE and GET/PUT, and this means that a
user program writing to the same stream with both WRITE(ON)s
and PUT(ON)s could have data appearing on separate lines in
a possibly surprising order, depending on which buffer gets
flushed first.

Having accepted in principle the desirability of the
Alberta I/O entries, our own stream switching approach, and
above all re-entrancy, a start was made on the design of a
new I/O system. Since the compiler phases had been coded
re-entrantly from inception, we have been able to produce a
system which consists entirely of shared code. Only the
user's object program need sit in his own address space.
We consider this aspect of the improvements to be the most
important one; with the trend towards re-entrant language
processors we could not see Algol W surviving for practical
applications without this improvement.

The principle of having a single compiler interface, as
recommended by the 2nd MTS Workshop, was accepted. This
takes the form of a single public file, *ALW, which
determines by control cards and the run parameter field the
mode in which it is to run. Many control cards are
available but none are essential - all can be left to
default.

Late in the project (later than we like to admit), we
decided that any enhanced Algol W had to be able to run
unchanged under other operating systems, notably IBM's MVS.
There has been considerable discussion here during the last
year about future operating systems for the NUMAC computers.
Part of the discussion centred on what we believed to be the
most important part of MTS at the user level. My own (JAH)
feeling, as a programmer, was that the most likeable part of
MTS was the clean subroutine interface. A module of about
25 routines has been written to implement this, with the
calling sequences slightly altered from the MTS ones to
allow easier implementation under other operating systems.

3

Algol W sits on this interface and the main system makes no
direct calls to MTS.

As a consequence of this work a modified version of the
Elementary Function Library has been produced for Algol W,
the main changes being in the error handling, and a
keyword/expression scanner more suited to Algol W's needs
has been written. This latter subroutine, KXSCAN, is
completely independent of other routines and has therefore
been seized by our MVT/MVS crew who are unaccustomed to such
luxury!

The remaining sections of this report are in greater
detail and some familiarity with Algol W at the
implementation level is assumed.

4

3 Re-entrancy and System Organisation

The new system is a development of the old, and will be
distributed as the old compiler, a set of update decks, and
new library and system control routines. To enable
reference to be made to the system components we will give
the names now:

DRIVER
SERVICES
AWA
AWB
LOADER
RENTALIB
IOPACK
SYSPACK
FMTPACK
FDPACK
FUNRTNS
SHORTFNS
LONGFNS
RECORDS
BADGUYS
WOLFPACK
MTSSIM

Compiler control routines
Compiler I/O etc. service routines
Compiler scan and parse phase
Compiler code generation phase
CLG mode loader
Library initialisation routine
Run-time I/O system entries.
I/O system control routines
I/O system formatting routines
I/O system format string decoder
Analytic and implicit function entries
Modified type 'E' EFL routines
Modified type 'D' EFL routines
Record allocation
Run-time error processor
Independent routines e.g. KXSCAN
MTS system interface module

All of the above modules reside in shared address space.
Routines AWA, AWB and RECORDS are coded in PL360. All of
the remainder are in Assembly Language.

this
the

This

We intend to have only one public file here for
Algal W system. It is called *ALW, and it links to
entry point of the shared system which is in DRIVER.
common entry point is used for object deck generation,
compile load and go (CLG) and student monitor modes. The
decision on which mode is in force is taken after inspection
of the leading control cards in the source deck (if any),
and the *ALW run parameter field (if any). By default an
object deck will be generated.

Entry to a user program requires that the run-time
system be initialised. In the original system this
required one of the library modules to be the entry point
for a user program. It picked up the genuine user program
module addresses (AWXSC001 for the first code segment, and
AWXRCTBL for the record description table), and branched to
the library initialisation routine, which then called the
first code segment to start execution. This is not a very

5

clean way to go about things. To circumvent this linkage
problem, the compiler code generation has been modified to
generate an extra starter segment which is made the program
entry point. The sole function of this control section,
AWXSTART, is to branch to the library initialisation routine
taking with it the address of a vector of user program
segment addresses. The library initialisation routine is
in RENTALIB.

By suitably structuring the address vector in AWXSTART,
it has been possible to reduce dependence on non standard
loader records to a minimum. The library entries
referenced by user programs for I/O etc. are all contained
in a low core symbol table AWSYSLCS: this is also in
RENTALIB. Referencing this by a V-constant in AWXSTART
eliminates the need for a RIP (Reference If Present) loader
card, so that only:

LCS
LCS

LCSYMBOL
AWSYSLCS

are required to link in an Algol W user object program in
MTS. AWSYSLCS is a low core symbol table containing all
entry npmes in Algol W which are required in the user
interface. This includes all library routine symbols and
the compiler entry point name AWDRIVER. AWSYSLCS is the
only symbol required in the MTS system low core symbol table
LCSYMBOL. The public file *ALW needs to contain only:

RIP AWSYSLCS
LCS LCSYMBOL
RIP AWDRIVER
LCS AWSYSLCS
LDT AWDRIVER

to allow the shared code compiler system to be invoked.

In load and go mode the necessary data structures are
built by LOADER, and the RENTALIB initialisation routine is
called by the control routines in DRIVER. LOADER is a new
re-entrant loader, with most of the previous restrictions
removed. For example, under test it has loaded a 220
segment, 144 kbyte program. Design of the loader takes
into account the provision of a linkage editing option to
generate single control section object decks; this will,
however, not be provided initially.

6

.,

Run time input/output entries are accessed via IOPACK.
they are implemented by a set of routines in SYSPACK and
FMTPACK. The internal linkage for these routines is
implemented by a set of stack manipulation macros which
solve many of the problems of structuring a complex I/O
system.

Standard functions of analysis (SIN, COS etc.), and
implicitly called functions (powers, complex arithmetic) are
accessed via FUNRTNS. All elementary function calls are
immediately passed on via transfer vector entries to the
relevant routines in SHORTFNS and LONGFNS. These are the
Michigan EFL library routines modified so as to be suitable
for Algol W.

Record allocation is unchanged from previous versions
of Algol W. The routine is still in PL360 and the only
conversion work done has been to achieve re-entrancy.

The run-time error processor (BADGUYS) is still on the
stocks. We have a very primitive version available at the
moment, basically to prevent the system collapsing about our
ears whilst testing. It looks as if this will be the last
module coded. The basic error m~ssages will not be quite
so basic when we do get around to implementing them. Using
the Elementary Function Ltbrary is one factor in this, since
it does not forget the starting values of function
arguments. Similarly a fair amount of information is
available if an error is detected somewhere in the I/O
system. Post mortem dumps and more sophisticated
facilities will not be available in release 6.0 - see later
discussion.

The last two modules to be mentioned are WOLFPACK and
MTSSIM.

WOLFPACK contains subroutines which are logically
independent of the Algol W system although called by it.
An example of this is the KXSCAN
(keyword-and-expression-scanner) subroutine. This is a
re-implementation of the University of Michigan's KWSCAN
routine with many of the restrictions removed: in particular
it can process free standing right hand side expressions.
It can therefore be used for the implementation of both the
Newcastle and Alberta style input routines, with the
exception of the Alberta "A" and "Z" formats which do not

7

fit into KXSCAN's conception of an expression.

MTSSIM is the only routine in the system to call MTS
subroutines directly. It provides a subroutine interface
by which the other modules communicate with the operating
system. The rest of the system is independent of MTS.
System independence is discussed in the next section.

Distribution of the system should be fairly clean. In
answer to expressed anxieties at the 2nd MTS Workshop,
Algol W will be distributed in a form which only requires
the G Assembler and the Linkage Editor to be available. A
PL360 (fairly old and simple) and an UPDATE (a by-product of
my 2H-CS Assembler teaching load) will_be included, plus all
source decks required to generate and test the system. All
development here is centred on a special user identifier
ALWB. It would be an advantage to any implementor to have
an ID of this name available. All macros used in system
assemblies are supplied in a single library. This is
maintained as an IEBUPDTE source deck to facilitate use
under MVS/MVT. Last but not least, Algol W only uses the
System/360 Model 65 subset of System/370 machine
instructions.

All entry point names within Algol W which are required
for Algol Ware 8 characters in length, the first two being
AW. The requirement for the MTS shared system is about 120
kbytes of store and one symbol (AWSYSLCS) in LCSYMBOL.

8

. .

4 Operating System Independence

Newcastle would like to be in a position to have the
same version of Algol W available for both MTS and MVS.
The reasons for this are two-fold. First, we will
ourselves be running both operating systems on the 370/168
from December 1978. Also we have received several requests
from OS installations for a better version of Algol W. We
would like to be able to satisfy these requests, probably as
a cost covering operation rather than as a commercial
enterprise.

With this in mind, the new system has been designed
with all of the MTS dependent parts built into one module,
MTSSIM. In theory, Algol W could be run under other
systems simply by replacing this module by MVSSIM, CMSSIM or
whatever. In practice, some tinkering might still be
required. The two points which come to mind are
line-number/record-key formats, and the generation of
MTS-specific LCS loader records.

MTSSIM provides a subroutine interface which is
intended to be well defined. We do not believe that it
will be until we have implemented the system under at least
one other operating system.

Three kinds of subroutines are provided. They are
storage allocation, initialisation, and service routines.

The storage allocation routines are AWG'TMAIN and
AWFRMAIN. Both are register call routines and neither
require register 13 to point to a save area. These two
routines may be called at any time whether or not the system
interface is in an initialised state.

All other routines in the system interface have
standard OS Type I convention calls with a fixed number of
parameters. Many of the subroutines will be instantly
recognisable to members of the MTS installations as
variations on the basic set of MTS I/O subroutines. The
strategy developed is to make the first parameter of each
routine the address of a one hundred double-word work area.
This allows an implementation using this interface to
achieve re-entrancy without hanging storage addresses on the
operating system.

9

The initialisation routines are AWSIMBGN (which must be
called before any routine other than AWGTMAIN/AWFRMAIN is
presumed available) and AWSIMEND (after which call the
routines other than AWGTMAIN/AWFRMAIN are no longer
available). Within these AWSIMBGN/AWSIMEND brackets any of
the other routines may be called. Note, however, that the
100D work area must be the same region for all system
interface routine calls, and that it must not be changed by
the caller. It is assumed that AWSIMBGN is called only
once at the start, and AWSIMEND only once at the end. This
affects the implementation of the Algol W library in that,
in load-and-go mode, the library does not call the
initialisation routines. These are called by DRIVER once
only, and the 100D work area is passed to the library
together with an indication that it is being called in
load-and-go mode. When running an object deck or decks
from a file, the library will call the SIM initialisation
routines, again only once each.

The service routines are the raison d'etre of the whole
system interface. A set of about twenty routines is
provided to do input/output operations and one or two
specials. For instance, there is an accounting entry which
is called from several points in the system. This will be
supplied as a null routine, but an installation requiring
such facilities would be free to implement it without
modifying the main Algol W system.

As an example of a routine lifted from MTS consider
AWRDRECD. As its name suggests it is used to read in
records from an input file-or-device into memory, and as
such is equivalent to the MTS READ system subroutine. In
MTS a record would be read by:

CALL READ,(REGION,LENGTH,MODS,LNUM,UNIT)

In the Algol W system the equivalent call would be:

CALL AWRDRECD,(WORK,REGION,LENGTH,MODS,LNUM,UNIT)

where WORK is the 100D region previously mentioned, and the
other parameters are as defined in the MTS READ subroutine
specification. The similarity between the two calls should
be readily apparent. We have yet to decide which modifiers
will be supported in our implementations in operating
systems other than MTS. Indexed, sequential, notify and
errrtn are at present used by the main Algol W system and
would have to be included.

10

In order to free Algol W from dependence on the limited
set of MTS logical device names, the unit parameter is
derived by the Algol W system from an interrogation of the
system interface via a subroutine AWDDNAME. When supplied
with an 8-character name AWDDNAME returns a 1 to 8 character
key for use with AWRDRECD in the UNIT field. A set of
internal names is defined which is the only one seen by an
Algol W user within a program. To invoke that program in a
particular system, he or she has to be aware of the mapping
of internal and external names in that operating system, for
instance:

INTERNAL
NAME

+
+
+

MTS LOGICAL
DEVICE NAME

+
+
+

MVS DATA
DEFINITION NAME

+++
+ +

INPUT + SCARDS + SYSIN
PRINT + SPRINT + SYSPRINT
PUNCH + SPUNCH + SYSPUNCH
ECHO + SERCOM + SYSLOG
USER + GUSER + SYSUSER

+ +
0 . . . 19 + 0 . . . 19 + SYSUTO

(as strings + + . . . SYSUT19
or integers) + +

An Algol W user might code in his program:

PUT("PUNCH", "X,A3,2X,A66,I8", CODE, DATA, ISEQ);

Algol W internal tables are aware of PUNCH - in fact a hash
look up is done. The unit field in the internal control
block for PUNCH will have been filled in at I/O
initialisation by AWDDNAME. For MTS it will be
CL8 1 SPUNCH1

• It need not be, as Algol W does not inspect
the unit field, but merely uses it in calls to the system
interface. It is convenient in MTS to supply CL8 1 SPUNCH1

because this cuts down the work that the system interface
has to do. In other systems a 4-byte table address might
be more appropriate.

The Algol W system links into the system interface
routines directly so they are loaded together. However,
for other purposes two low core symbol tables are provided,
AWSIMCS and SIMLCS. The first contains all the routines,
and SIMLCS contains the general use subset of the routines
with 6-character long names formed by stripping off the

1 1

leading AW, e.g. RDRECD for AWRDRECD. These entries are
therefore Fortran callable. They should provide us with a
means of accessing an MTS-like subroutine environment in
both the MTS and MVS systems.

12

5 Compiler Control Cards

As previously mentioned, none of the control cards are
essential. If a file containing only Algol W source
statements is presented to *ALW via (in MTS) SCARDS, it is
compiled to an object deck. The file -AWLOAD is obtained
and emptied for this purpose. When invoked
conversationally, by default no listing is produced. In
batch a listing is written to (again in MTS) SPRINT.
Should a terminal user wish to have a listing he can either
assign SPRINT explicitly or code PAR=SOURCE on the $RUN
command. In the latter case, with SPRINT not assigned, the
file -AWLIST is obtained and emptied for the listing. If
SPUNCH has been explicitly assigned then this is used for
the object program rather than -AWLOAD.

To cause a program to be loaded immediately and
executed after compilation, assuming no data is required
from SCARDS, all the user needs to do is code PAR=GO on the
RUN command. Action proceeds as for the default deck
generation option, except that the object program is written
to a virtual file in the user's address space, -AWLOAD not
being used. This object program is then loaded and
executed. The compiler main data area, which is now free,
is used for this purpose. Storage remaining in this region
after loading the program provides space for the run time
stack. The virtual file storage is freed before execution
of the user's object program.

Using control cards, the basic load and go job is

/ALGOLW <compilation parameters>

<algol w source statements>

/EXECUTE <run time parameters> --+

<data for the above program>
l
I

--+

'

Repeat
zero
or more
times

--+

I
I Repeat
I zero
I or more
I times
I

l
I

--+

Note that a program, once compiled, may be executed many
times by repeating the EXECUTE card. This apparent miracle
is achieved by copying the record description table on entry

1 3

.,

to the library, which was the only obstacle to re-usability
(and, in fact, re-enterability) of an Algol W object
program.

Many other control cards are supported, and a brief
description follows. The recognition of control card
"verbs" requires at least four characters to appear
(including the slash prefix), and any abbreviation from the
full name down to that limit is acceptable. All control
cards start with a slash, including former directives such
as /TITLE, /LIST and /NOLIST. To enable old decks to be
run with the new compiler, a keyword parameter is supplied
to allow definition of an alternative starting prefix
character.

The original intention was to satisfy the appeal made
by Gary Pirkola at the Second MTS Workshop for a
standardized set of control cards for MTS language
processors. We feel we have achieved most of the
requirements; however local conditions and structure of the
language processor system have meant a couple of compromises
had to be made along the way. For instance, /COMPILE would
cause difficulties here. The method by which NUMAC's Batch
Monitor student systems work is for the MTS and OS HASPs to
recognise an <S8> card followed by a language control card,
and queue the job for the corresponding monitor task. At
present we have three batch monitors: Algol W (control card
$ALGOL), WATFIV ($COMPILE) and PL/C ($PLC). Hence /COMPILE
would cause user confusion with the WATFIV system. For any
installation requiring /COMPILE a one line modification to a
keyword table is all that is necessary: however, the NUMAC
distribution version will use /ALGOLW instead.

Because we are committed to supporting the present
production Algol W system for two years after the new one
goes in, we feel that certain changes can be brought forward
in the new version as conversion of users is bound to be
slow. Control card recognition is one of these areas.
Control cards will now begin with a slash (/) symbol only.
The distinction between control cards and compiler
directives has tended to confuse some of our users, so the
directives have been reorganised as follows. Directives
which control the action of the compiler scanner (i.e. those
which have some instantaneous effect) have been made into
control cards. Hence @LIST becomes /LIST, etc.
Directives whose action was a constant of the compilation
(i.e. those which do not have any effect until parse or code
generate time) have been made compiler run parameters. For

14

example @NOCHECK becomes NOCHECK as a parameter.

Compiler parameters may appear either in the run
parameter field of *ALW, or on a control card indicating
that a new Algol W program follows. At this point we shall
discuss how *ALW differentiates between modes when control
cards are present.

There are three modes in which *ALW can run. It can
generate an object deck: we shall call that one Deckgen.
It can compile, load and execute a program: that we shall
call CLG mode (G for GO). It can support a student monitor
system. This mode, Monitor, is a special case of CLG mode
where certain facilities are denied to a user to protect the
integrity of the system (for instance, access to Assembler
coded subroutines of unknown ferocity).

When *ALW is invoked, its first action after the
necessary initialisation has been carried out is to read in
the first record from its INPUT stream, which, in MTS, will
be SCARDS. Invoking the input routines in SERVICES to
request a single record will cause records to be read from
SCARDS until either a program start control card or a
non-control card has been read (end-of-file, would of
course, cause termination). Program start cards are
/ALGOLW or /OPTIONS. Other control records are processed
immediately (for instance /COMMENT which is a null
operation) or they generate a control record for the
compiler. An example of this latter type is /LIST, which,
by forming a data record for the compiler scanner,
transforms itself into a non control record and therefore
stops the reading process.

As a result of this action, *ALW's control routines in
DRIVER are either in possession of a /ALGOLW or /OPTIONS
record which they must process, or have a control or source
record for the compiler (which has not yet been invoked).

/ALGOLW and /OPTIONS are fundamentally the same pseudo
command. Both take the same parameters, which are the same
set valid in the *ALW $RUN command parameter field.
However /ALGOLW has an implicit GO parameter attached (it
invokes CLG mode) whilst /OPTIONS has associated with it an
implicit NOGO (stay in default Deckgen mode). GO or NOGO
parameters on the cards could, of course, change the mode
again if the user so desired.

15

Because the set of compiler parameters is now very
extensive, a continuation mechanism was felt necessary and
this is provided by allowing cards with a plus sign in
column one to be continuations of /ALGOLW or /OPTIONS cards
(note that plus cannot start a valid Algol W program). *ALW
continues by processing the parameters on the control cards
held and then looping to read and process continuations
until a non-control card (or compiler control record) has
been encountered. From this moment the mode is cast in
concrete and may not be changed during this run. If a
/MONITOR record is encountered before the first /ALGOLW
record, Monitor mode is set and remains in force until the
run terminates.

At this stage the compiler is invoked. Its first read
will supply the pending source or control record which must
by now be held by the DRIVER routines. Reading proceeds
with the interface routines permanently on the lookout for
further control cards. This may sound a rather complex way
of organising it but it implements Gary Pirkola's main
recommendation without restricting the users' use of the
interface, although most users will probably limit
themselves to a set of simple recipes. A description of
the various control cards is given in Appendix One, and a
list of parameters which may appear on /ALGOLW or /OPTIONS
cards, or in the parameter field, is given in Appendix Two.

Batch compilation of object decks is now provided. If
an Algol W source program is followed by a /OPTIONS card
then the compiler decides to compile another program, or,
more usefully, procedure. This action may be repeated as
often as desired, allowing a library of routines to be
compiled in one run of *ALW. The *ALW run parameter field
is applied to each compilation after the /OPTIONS
parameters, if any, have been processed.

For convenience, another control card is provided to
allow the overall compilation options to be supplied with
the source deck in one place. This is /GLOBAL.
Parameters given on this card are applied for each
compilation before the /OPTIONS card parameters are
processed. This removes the need to repeat common
parameters on each /OPTIONS card, but allows the global ones
to be over-ridden in a particular case if so required.
Note that the *ALW run parameter field is applied to each
compilation after the control cards have been processed.

16

Monitor mode is worth further clarification. This
coding is the result of several discussions with Peter
Whillance of NUMAC's Basic Systems Group. The aim of this
mode is to provide an idealised Batch Monitor environment.

The major problem with Batch Monitor system
implementation is in deciding when all output from a job has
been produced. In most implementations of Algol W, for
example, a program requiring no data will be compiled and
run when the next user's $ALGOL card forces this action.
This introduces a fair amount of unwelcome complexity into
HASP Batch Monitor interfaces. They have to be aware of
the control card constructions used by a particular language
processor and cannot treat the process as a convenient black
box. To help with this problem a /FLUSH card is provided.
Processing of this card causes the *ALW system to complete
the current compilation and execute the program. If a
program is executing an end-of-file will be supplied to it,
should it attempt to read further through the source deck,
until the program stops. No further /EXECUTE requests are
then accepted and the Monitor will not process another job
until a valid /ALGOLW card comes along. Any HASP interface
has then only to block the jobs together supplying a /FLUSH
card between each. There should be little problem in
deciding which output goes with which job.

As part of its Batch Monitor role, *ALW contains coding
to produce a header banner for each job processed, and also
calls a verification and logging entry in the system
interface module. Any installation-dependent identifier
checks and job logging can therefore be done by local mods
in MTSSIM. The Monitor will not process a job unless an ID
is given on each /ALGOLW card, and this ID is passed OK by
the verification routine.

Provision for input from other files is provided via a
/COPY control card. In MTS, of course, $CONTINUE WITH is
available. However, not all operating systems are so
fortunate (or so cursed?), and with the Batch Monitor it is
essential that errors in a copy file do not stop the
Monitor. After a /COPY command has been obeyed, and
end-of-file signalled from the copy file, processing
continues with the original input stream. At the present
time, chaining of /COPY commands is not allowed but future
versions will have this facility. In Monitor mode, /ALGOLW
cards in a copy file are treated as /FLUSH to prevent
several jobs being batched together on the sly. All other
control cards are available.

17

4

All input by the compiler system allows, by default,
records of any length. Long records, if they are being
sent to the compiler, are split into 72 byte chunks and sent
as requested. Options are provided to check for short
records only. If such a check fails, or indeed any error
is detected during a compiler read operation, an in-line
error message is produced as part of the compiler listing.

18

=

6 Run-time Input/Output

Our intention here is to provide both the Newcastle and
Alberta routines in such a way that they behave as the user
would expect them to do. (We are refering here to the
problem of the separate buffers mentioned earlier.) We
also want a multi-streaming I/O package which can be
accessed via the Newcastle entries. A secondary aim is to
provide some kind of indexed input/output facility with
database projects particularly in mind. First, here are
some definitions.

By Newcastle entries we mean the original standard I/O
routines READ, READON, WRITE, WRITEON etc. The Newcastle
extension to these routines was the 1971-72 addition of an
output formatting system based on pre-declared variables
such as R FORMAT, R W etc. Use of these routines in the
past has always implied that Algol W possesses only a single
input stream and a single output stream and for many years
this has formed the basis of most serious criticisms of
Algol W.

By Alberta entries we mean the set of I/O routines
which specify in their calls both a source/destination unit
and a format string. These routines originated at the
University of Manitoba and were merged with the 1972
Newcastle release by staff at the University of Alberta to
form an MTS version. Most of the present Newcastle
strategy for an enchanced Algol W comes from a wish to
provide these facilities without the overhead of the larger
library - hence our re-entrancy goal. Alberta's entries
effectively provide Fortran formats in Algol W: their names
are GET, GETON, PUT and PUTON.

To implement both series of I/O entries, a basic set of
multi-streaming I/O routines has been written. The
Newcastle and Alberta entries sit above these basic
routines. The system is set up so that each input/output
unit in use has its own control block, with I/O buffers
chained on to it. We define a stream name for each unit to
be a string of from 1 to 30 characters formed from the set A
- Z, 0 - 9, These stream names fall into one of two
categories.

Predefined stream names are provided to access system
I/O units as described in the section on system

1 9

.,

independence. Hence INPUT in MTS accesses SCARDS and PRINT
accesses SPRINT. The I/O unit numbers can be accessed
either as a string ("0") or as an integer.

User defined streams provide dynamic allocation of
files and devices. A new standard procedure, ASSIGN, both
defines a stream name to Algol Wand assigns a file or
device name to it. When work on this unit is finished
another standard procedure, RELEASE, may be called to free
the file or device and disable the stream name. For
example:

ASSIGN("PRINT","-0UTPUT(LAST+1)");

re-assigns the PRINT stream. In MTS a call to SETLIO in
MTSSIM would result in .. LDN SPRINT being re-assigned.
Dynamic allocation of streams is performed in the next
example:

ASSIGN("DATA", "CL38:DATAONE");
GET("DATA", "3X,I5", NDITEMS);
FOR I:=1 UNTIL NDITEMS DO

GET("DATA", "3(F12.5,5X)", A(I), B(I), C(I));
RELEASE("DATA");

This example dynamically creates an input stream called
DATA, reads in some values from it, and then closes down the
stream again. Because DATA is user defined, the low level
calls would be to GETFD and FREEFD in MTS.

To provide multi-streaming support for the Newcastle
entries, we have introduced the concept of the current
Reader stream and the current Writer stream. Initially the
current reader stream is INPUT (in MTS - SCARDS) and the
current writer stream is OUTPUT (MTS - SPRINT). Two more
standard procedures, READER and WRITER, are provided to
switch streams. For example:

READER(2);
FOR I := 1 UNTIL 30 DO READON(DATA(I));

The READON statement here will be reading from unit 2. One
of the functions of READER will be to ensure that reading
from unit 2 via READON fetches a new record, regardless of
the state of stream 2 or of the previous current reader
stream.

20

Another example is

WRITER("SPUNCH");
FOR I:=1 UNTIL CARDS DO WRITECARD(DECK(I));
WRITER("PRINT");

This example causes the writer stream to be temporarily
re-assigned to PUNCH (in MTS - SPUNCH) to allow the program
to dump a string array on this unit. WRITECARD is the
output parallel of READCARD, and has been added to the
system both for completeness and for compatibility with the
Alberta implementation which also has it.

One major difference between the Newcastle style output
procedures (WRITE etc.) and the Alberta ones (PUT etc.) is
that the latter never generate carriage control characters
automatically. If required, they must be supplied
explicitly via the output list or the format string.

The Newcastle WRITE and related entries do generate
control characters automatically. This action may be
disabled either by specifying PAR=NOCC on the run command,
or by setting a new pre-declared logical variable WRITE CC
to FALSE.

A series of standard procedures has been added to the
system to provide basic services such as rewinding and
emptying files attached to I/O units. A complete list
appears in Appendix Three.

A set of additional entries for string input/output has
been provided which includes support for simple indexed
operations. Because Algol W normally buffers its I/O,
indexed operations cannot be provided with the usual I/O
entries which deal in data items, because the actual
physical reads and writes occur at unpredictable times
determined by the state of the I/O unit buffers. However,
all the string I/O entries cause immediate reads and writes
and can be indexed if required. The option taken was to
provide separate entries for the indexed operations. All
these entries follow Alberta's style in that they specify
the I/O stream to be used. One example is

GETCARD(9, STRI);

which reads a string from unit 9 into STRI. If the record
read is longer than the declared length of STRI then it will

21

be truncated; otherwise it will be padded with trailing
blanks. Another example is

PUTCARD("PUNCH", CARD);

which, similarly, writes a card image to PUNCH. The
indexed entries all specify a line number in internal form
as the second parameter of the call. Implementation in
other operating systems requires that the index or key is
made to appear to be an integer. However, the key could be
allowed to take a different form with very little
modification on the Algol W side of the system interface.
Examples are:

XGETCARD("MF", INDEX, INBUFF);
XPUTCARD("DF", INDEX, OUTPUT);
XDELETE("UF", INDEX);

In all three of these entries the second parameter, INDEX,
is an index to the file on the specified unit. The last
entry, XDELETE, deletes records. This is provided both for
clarity and because Algol W does not have zero length
strings for a null write, as MTS has. MF, DF and UF are
assumed to be user defined stream names created using the
ASSIGN procedure, and attached to files which permit indexed
operations.

All these string entries accept strings of length 1 to
256 bytes. The restriction on READCARD (which insisted on
an 80-byte destination string) has also been lifted, and the
complementary routine WRITECARD has been added with the
capability of writing strings of any length up to 256 bytes.

The two string input procedures previously mentioned
(GETCARD and XGETCARD) bypass the normal end-of-file
handling (using the ENDFILE reference to the pre-declared
EXCEPTION record) providing instead a single pre-declared
logical variable FILEMARK. This should, however, be
inspected after each attempted read operation. Such a
simplification is particularly necessary in the case of the
indexed entry XGETCARD, where the absence of a record is
synonymous with end-of-file.

Many of the requirements for input items have been
relaxed, both for READ/READON and GET/GETON.

22

·•

Strings can now appear in an input field either within
quotes (") or primes ('). If there are no blanks in the
string then the quotes or primes surrounding the string are
optional. With bit strings the hash symbol (#) is now also
optional.

Logical values may be read in as TRUE or FALSE (or any
abbreviation down to Tor F), or as the integers 1 or 0.

Restrictions on floating-point number formats have also
been relaxed. The exponent separator which is currently
the prime (') may now also be the characters "E" or "D",
thereby allowing the output from Fortran programs to be read
into Algol W without prior editing. Also, in the present
system, a trailing "L" is required for long real values to
retain their accuracy. We feel this to be nonsensical and
will, in the new system, decode all numbers as type D
accuracy until they are stored. The presence of a trailing
"L" will be failed in the new system. This change is not
upward compatable, but we feel it is logical to introduce it
at this time.

Complex numbers present a problem in that the present
system cannot re-input complex values which it has
previously output. This is because the input format is
A+BI where there are no embedded blanks. To cure this we
intend to allow complex values to be input as either A+BI or
as (A,B). The second format may contain embedded blanks,
and this will be used to output complex values. The
brackets may seem a trifle strange but it will allow us to
both retain neat columnar output and allow later re-input of
the items.

The Alberta Fortran-like formats fall into three
groups. There are control entries (H, T and X), there are
specials (A and Z) which do not obey the rules for
expressions under the Newcastle system, and there are the
remaining formats (D, E, F, I and L) for which expressions
may easily be defined. This last set will be processed by
the same KXSCAN routines used for the Newcastle formats just
described. Each defines a field width: some define a
decimal field width, but this will be ignored by the input
routines. Within each field examined, one and only one
expression must appear, of the correct type, or an error
will be recognised. Certain Fortran attributes such as
recognising blanks as zeros, implying the position of a
decimal point, and allowing spaces between the exponent

23

separator and the exponerit will not be implemented, as they
are considered contrary to the spirit of the Algal W
implementation. A numerical value will, after input, be
exactly as it appears to be, without suprises for the
unwary.

The two special formats (A and Z) present no particular
problems. Defaulting the field width on an A or Z format
specification will imply a width which is the length of the
variable in A format and twice that in Z format. Embedded
blanks will be allowed to enable tidy input of long
hexadecimal strings to be produced.

For output formats we do not intend any major changes
other than in the complex number format mentioned earlier.
However, to enable Algal W to output floating point values
that can be read in by Fortran, the exponent separator
character has been made a variable, R EXPCHAR. It still
defaults to the prime ('), but can be-set by a user to "E''
or "D" as desired. Also in the floating point arena, we
intend to tidy up the Newcastle freepoint format but as yet
the form this will take has not been finally decided.

Alberta provide, in their system, the ability to do I/O
conversion both into and out of string variables within the
program. They do this by allowing the string to appear in
the unit field of a GET(ON) or a PUT(ON) procedure call.
By our more general stream name definition we have prevented
this construction so, clearly, it must be re-introduced in
another form. We have done this by providing two extra
standard. procedures:

GETSTRING(string, format, variable-list);
PUTSTRING(string, format, variable-list);

User controlled error recovery will be provided for these
routines.

Lastly, in order to provide some degree of
interchangeability between the Newcastle and Alberta I/O
procedures, the following extensions are defined. A format
string may be the reference value NULL in which case the
Newcastle formatting system is used. Similarly, Newcastle
formatting is also invoked if a format string is exhausted
(rather than causing a format rescan).

24

This allows a certain mix:

REAL A, B; STRING(24) S;

GET ("INPUT", "A24", S, A, B);

would read the first 24 bytes of the record into the string
Sand then locate two real numbers by free format scanning.

To allow the reader and writer streams to be used in
GETs and PUTs without the programmer having to remember
their assignmemts, two pre-declared variables are provided
to reference them. Examples of these are:

GETCARD(RDR, LINE);

reads a line from the current reader stream, and

REWIND(WTR);

rewinds the current writer stream, presumably for re-input
of the data.

25

.,

7 External Subroutine Linkages

Apart from the I/O system, one of the major criticisms
of Algol W over the years has been the inadequacy of its
external linkages. Two means of communication with
external routines were provided, one for precompiled Algol W
procedures and another to implement the IBM OS Type I "S 11

type linkage (to Fortran and Assembler for instance).

In general, the linkage for Algol W procedures has
weathered the years well. The mechanism in the source code
involves replacing a procedure body by the sequence: ALGOL
<string>, where <string> is a string literal defining the
external procedure first code segment ESDname. The
implementation of the linkage, in which the compiler omits
the generation of the procedure code segment, leaving the
gap to be filled by the precompiled code, is attractive in
its simplicity and means that calling an external Algol W
procedure is no more expensive than calling an internally
defined one. With the single exception that unbound global
identifiers may not be referenced in the procedure header of
the precompiled external routine, all of the facilities of
the Algol W procedure call mechanism are available. This
restriction, however, does mean that reference parameters
may not be passed (as they need to refer to a record class
which cannot.be defined when the header is built). It is
possible to get round this by a fiddle but we cannot see any
way in which this could be made cleaner.

One curious feature of the ALGOL linkage will change.
Users have always had to apply a peculiar algorithm to
determine the entry point name from their procedure name.
In the new system these two names will be the same, with a
supplied ALGOL <string> name being truncated to eight
characters if necessary. The original scheme came about
because of the way in which Algol W picks its segment names.
Basically a five character module root is produced by either
truncating the name to five characters, or, in the case of a
short name, by padding it out to that length with hash (#)
symbols. Segment names are then produced by appending 001,
002, 003 etc., and the user has to supply the name of the
first segment. Hence arose the peculiar requirement for
<rootchars>001 . The compiler has now been modified so that
this scheme is followed only for the second and subsequent
segments. For the first, the name of the procedure itself
is used, truncated to eight characters if necessary. Users
need only be careful, in a many procedure environment, to
ensure that the first five characters are unique.

26

For linkage to routines coded to the OS Type I
standard, the situation is not so satisfactory. The
mechanism requires that a programmer should code FORTRAN
<string> as a procedure body. This generates a code
segment which sets up a call to the external routine whose
ESDname is <string>. Whilst the overhead in calling an
Algol W procedure is normally small, it does mean that each
call to an external routine involves a double call within
the Algol W program.

Other restrictions of this mechanism are more serious.
Because a rigid type mask is imposed by the procedure
header, in order to call the same external routine with
either a different number of parameters or a parameter of a
different type, the procedure linkage must be declared
again. This is time consuming and wasteful in the amount
of code that is generated. Furthermore, most languages
which are called by this linkage do not have the rigid
restrictions on variable types found within Algol W. This
prpvides an excellent discipline for a programmer within the
Algol W language, but it is quite wrong to attempt to impose
it on the outside world, and it has become clear that if
Algol W is to survive as a research tool then a better
linkage must be provided.

Originally we intended to change the language
definition slightly to accomodate a new external linkage.
However, this met with considerable opposition from the
academic side of the laboratory. Fortunately, it was found
possible to provide all the requirements utilising yet
another variation of the standard procedure mechanism.

Standard procedures were originally provided to support
only the input/output system via READ, WRITE, etc.
However, the main properties of standard procedures make
them nearly ideal for providing an external subroutine
calling mechanism. They accept a variable number of
parameters, according to the whim of the programmer, and
these parameters may be of any simple type; that is, any
scalar quantity may appear as a parameter - literal,
identifier, field id, or simple expression.

The main standard procedure we have provided is named
CALL. The first parameter to this procedure will normally
be a literal string, in which case it is taken to be the
entry point ESDname of the called routine. This routine
name, being supplied as a literal, does not need

27

declaration. This provides effectively the equivalent of the
Fortran CALL statement. Subsequent parameters to the
standard procedure form the parameters of the called
routine. Some examples of CALL are

CALL("MTS");
CALL ("READ", REGION, LEN, MOD, LNUM, UN IT);

The first example sets up a call to subroutine MTS without
supplying any parameters. The second sets up a call to the
READ subroutine with five parameters.

In the spirit of the OS Type I linkage, the variable
length convention is obeyed. If there are N parameters,
bit zero is set on the N'th parameter address. If N is
zero then general register one, which would normally point
to the parameter list, will be zeroed.

Passing of arrays as parameters presents no problems
even though only simple types are allowed. A user simply
supplies the element at which he deems his array to start,
followed by the size of that array. Algol W calculates the
address of that first element, and passes that address on as
the parameter. Hence:

REAL ARRAY DATA(N: :M);

.
CALL ("SUM", DATA(N), M-N+1);

This is, in fact, a clearer solution than that of the
current FORTRAN linkage. Arrays passed as parameters via
the present construction result in a calculated address of
the element whose subcript (or subscripts) is (or are) one.
This tends to confuse users; we hope that the CALL scheme
will make them think more deeply about array organisation.
Fortunately Algol Wand Fortran both store their arrays in
the same manner.

When an external routine is called via the new CALL
mechanism, the program mask is zeroed before the call, and
restored to its previous value on return. This is
essential because Algol W, by default, runs with fixed point
overflow trapping enabled, and this is under the control of
the user via EXCEPTION record assignments to pre-declared
error control reference variables. The MTS system, on the
other hand, initialises fixed point overflow trapping off,

28

and many programs, albeit lazily, do take advantage of this.
The University of Michigan Integrated Graphics package is a
persistent offender, and recently a case occurred where the
MTS READ routine failed for this reason.

With run time checking enabled, a flag is set to enable
the error processor to distinguish between program
interrupts within Algol W, and those outside. The latter
variety then gets a more appropriate form of error
processing.

Several extensions to the CALL mechanism have been
implemented. These allow a simple register call facility,
and also allow subroutine addresses to be passed as
integers. Before discussing these it is necessary for us
to mention some extended storage control standard procedures
which have been provided.

Basically, these routines provide the facilities of the
Move Characters (MVC), Load Address (LA) and Translate (TR)
instructions of System 370 architecture. They are provided
so that data manipulation operations which transcend normal
definitions of Algol W types or which access data areas
outside Algol W may be achieved.

MOVE provides.a byte by byte copy operation from one
Algol W variable to another. No type conversion is done.
FETCH moves data from an address contained in an integer
variable to a second Algol W variable. STORE is the
complement of FETCH, sending data from an Algol W variable
to a specified address. LOCATE returns the address of an
Algol W variable. TRANSLATE translates an Algol W storage
region using a supplied table.

MOVE, FETCH, STORE and TRANSLATE take two or three
parameters. The third parameter, if supplied, is taken to
be an explicit length. If no length is given, the implied
length of the variables is used. For MOVE, this will be
the minimum of the two possible lengths. Example:

STRING(256) DATA; INTEGER NUM;

MOVE(DATA(12J4), NUM);

This copies 4 bytes from 12 bytes offset within DATA to the

29

integer NUM. This kind of transfer achieves for Algol W
the effect of EQUIVALENCE in Fortran. Direct
implementation of EQUIVALENCE in Algol W would be very
difficult, if not impossible. LOCATE will be familiar to
Fortran users who have used the MTS ADROF
(address-of-Fortran-variable) subroutine.

As well as providing the ability to find the address of
an internal Algol W variable, a standard function called
EXTERNAL has been added to return the address of an external
symbol. The address is returned as an integer, and the
external symbol name is defined as a literal string in the
same manner as for the CALL standard procedure.

Using EXTERNAL, FETCH and STORE together allows a
careful user to retrieve and manipulate data in Fortran
Named COMMON or BLOCK DATA sections. For some special
applications, such as supplying parse tables to a compiler
written in Algol W, it would be more practical to generate
these tables outside Algol Wand access them in this way.
The usual course of defining large tables as literals tends,
unfortunately, to burst the compiler at the seams, and there
is no simple solution to this problem. Algol W was simply
not designed with bulk data initialisation in mind.

Returning to CALL, as well as providing for a literal
string entry name, the subroutine can be designated by an
address held in an integer or bits variable. Suitable
manipulation of data via EXTERNAL and FETCH allows the use
of subroutine address transfer vectors. Entirely
unintentionally, the use of LOCATE on an internal variable
allows machine instructions to be issued from within Algol W
provided that those instructions (in a bits array, say) form
a subroutine. We shan't mention this again as no doubt it
will appall some members of staff ...

To implement a register call mechanism, RCALL is
provided. This is like CALL, but takes no parameters.
Before transferring control, it loads general registers zero
and one from pre-declared integer variables RO and R1.
These are adjacent in storage and may also be referenced as
a pre-declared eight-byte string variable R01.

Clearly we needed to provide a method of recovering the
values returned after a function call. To achieve this,
after every return from a subroutine invoked by either CALL

30

or RCALL, general registers fifteen, zero and one and
floating point register zero are saved. General register
fifteen appears in the variable R CODE as usual, the general
register save being achieved by a-single store multiple as
R CODE is immediately before RO1 in storage. Floating
point register zero appears in a new long real variable
called R FLOAT.

For those interested, an example of the code generated
by an invocation of the CALL standard procedure is given in
Appendix Seven.

Everything so far described in this section has already
been implemented and tested. It remains to discuss the
question of call back of procedures, and the invocation of
Algol W procedures from other languages.

Calling a Fortran subroutine and passing the address of
another Fortran callable subroutine as a parameter to the
call is already possible by the use of the EXTERNAL standard
function. For example:

CALL("FSUB", A, 8, EXTERNAL ("QXYZ"), C, D);

calls a Fortran subroutine called FSUB for which the third
parameter is the address of another Fortran subroutine,
QXYZ, which may then be called from FSUB.

The seemingly simple extension to call back Algol W
pr6cedures in the same way is in fact several orders of
magnitude harder. The compiler modifications to support
this extension are already in but some careful work needs to
be done in the library before it can work. Call back is
provided for a user by adding yet another standard function
called LINK. This takes a literal string again, but this
time it contains the name of a main code procedure. For
safety reasons, LINK is valid only when nested within a call
parameter list.

31

For example:

BEGIN
REAL PROCEDURE ZFUNCTION(REAL VALUE A,B);
BEGIN

END ZFUNCTION;

CALL("FSUB", A, B, LINK("ZFUNCTION"), C, D);

END OF PROGRAM.

In this example the LINK function call specifies that
procedure ZFUNCTION is callable, by an OS Type I sequence,
from the Fortran subroutine FSUB. Since the Algol Wand
Fortran linkage conventions are entirely different, a change
of environment needs to be performed. This is achieved by
the LINK function call invoking a library routine which sets
up an OS Type I callable routine in the Algol W code segment
local data stack. The address of this local stack routine
is returned as the value of the function, and this is then
passed as a parameter to Fortran.

When the Fortran subroutine FSUB calls back the routine
which it had been lead to believe is ZFUNCTION, this local
stack routine is executed first. It must save FSUB's
registers in FSUB's save area. It must then copy the
Algol W OS save area from main run time dummy section
(DSECT) addressed storage to a safe location in the local
stack. Next it calls a second library subroutine passing
to it the addresses of the main Algol W DSECT, the first
code segment of the Algol W procedure to be called, and of
course the FSUB supplied parameter list pointer. The first
two addresses have been left in the local stack by the first
library routine (the one invoked by LINK). This second
library routine then behaves as a section of main code
Algol W program, setting up an Algol W call to the
procedure. On return the Algol W save area must be
restored, any function result values loaded, FSUB's
registers restored and control passed back to FSUB.

There are undoubtedly a great number of pitfalls
possible in this implementation. The copy of Algol W's
save area is required because the re-called Algol W
procedure may call another external subroutine, thus
overwriting the main save area (which would be used by FSUB

32

on return). Similarly, because of this external call
possibility the actual build-up of the parameter list for
the call to FSUB needs to be modified. Normally, CALL uses
a region set aside for it in the DSECT. Again, this might
get re-used so there is an additional rule that if one of
the parameters in a CALL is a LINK call, then the parameter
list is built in the local stack instead. If the parameter
list was always built in the stack, "DATA AREA OVERFLOW"
would regularly result so the decision is necessary.
Another point is that Algol W needs its program mask back
again (another little job for the library routine as it will
be in the saved general register three - see Appendix
Seven). How the error processor is to handle an error
trace back from a procedure called back from Fortran is
still giving nightmares.

We are committed to providing this facility as we
foolishly promised it to our users some time ago.
Basically two non-trivial library routines need to be coded.
We will not guarantee that this feature will be in the first
new release of the system, but it should follow soon after.

We have had requests from Alberta (via Kathryn Ward)
for the ability to call Algol W procedures from Fortran (or
from hotter climates ...). We do not dismiss this out of
hand but we will not be doing it immediately. Our thoughts
are that such a facility would require three OS type I
routines to be called from Fortran; one to initialize
Algol W (provide a stack and I/O system), one to call the
procedure (similar to the second library routine required by
LINK), and a last routine to shut down Algol W. In this
system Algol W would be initialised once, called by
procedure invocation as many times as required, and shut
down once. These are just thoughts at the moment but
Alberta's patience may eventually be rewarded.

33

., .,

8 Compiler System Modifications

Most of the work on the new system concerns the
production of new re-entrant Assembler modules forming the
run-time system and compiler support system. However, the
compiler itself is based on the Stanford original, as
developed at Newcastle during 1971-1972 by James Eve and
Edwin Satterthwaite.

The compiler consists of two large PL360 modules known
as AWA (Phase A - the scan and parse passes) and AWB (Phase
B - the code generation pass). Both of these modules were
coded re-entrantly in the original version and have been
maintained in that happy state ever since. Had they not
been so, it is doubtful whether the present work would have
been attempted as Newcastle does not have the resources to
support a compiler recoding project.

To give an idea of the extent of the updates here are a
few figures. Both phases of the compiler are about five
thousand lines of PL360 code. Update files tend to appear
unjustifyably large to non-combatants, but the cognoscenti
will appreciate the extent of the edits involved by the fact
that there are three thousand lines of updates. About 60%
of these updates are in Phase B.

Over the compilers as a whole several changes have been
made. Where possible, coding has been cleaned up and
commented when changes were made, in the hope of making the
compiler easier to maintain in the future. The compiler
communicates with the outside world, in this case the DRIVER
and SERVICES modules·, via a transfer vector. This contains
subroutine addresses and option flags. Reflecting the
tendency to move control card functions out to the DRIVER
and SERVICES routines, this transfer vector has been
extended to 120 bytes to carry extra information.

In all phases of the compiler the error message
prologue

ERROR xxxx NEAR COORDINATE yyyy

has been shortened by the deletion of the word COORDINATE.
This should not cause confusion to users and guarantees that
most error messages fit on to the screen of the more
primitive variety of glass teletype. Also, when running at

34

a terminal, error messages are prefixed by the source for
the offending coordinate. This is achieved by the scanner
sending each source listing line to a routine in the
SERVICES module which then writes a compressed version to a
virtual file. When an error message print occurs, the
error processor that has gained control requests source
lines from this service routine. The lines are
reconstituted and passed back for printing. This process
is independent of any normal production of a compiler
listing in a file, and source is therefore always available
for echoing. If the coordinate in the error message is
apparently not available, then source for the immediately
previous line which is available will be echoed. Tests
have shown this facility to be remarkably cheap, and for
moderate programs the virtual memory required to store the
program listing is not excessive. In a large scale test
for a 5000 line program, the compiler took 0.6 seconds to
write the compressed listing to VM, and 64 pages of storage
were required. The equivalent for a file was 4 seconds
(D3.2 MTS - IBM 370/168). When running conversationally a
listing file is not generated (by default), and this
facility provides a cheap way of pinpointing errors.

There are modifications throughout the compiler phases
to allow automatic generation of long real precision object
code. This is invoked by the LONG compiler option. When
this is specified all declarations of real quantities are
treated as if they had been declared long real. Similarly,
complex become long complex. This is carried through into
the code generation phase where calls to short precision
analytic functions such as SQRT generate calls to the
routine which implements LONGSQRT. To achieve this, the
Name Table entries for pre-declared functions are patched to
the required types at Pass One initialisation. When the
code for the routine call is being generated, short real
functions indicate (by alias entries in a new standard
function table) which routine should actually be called.
Floating point literal values are automatically assembled to
8-byte precision.

In order to loosen some of the restrictions imposed by
the compiler some alteration of the table structure has been
incorporated. The segment number for a block or procedure
has been moved out of the Name Table to a new dynamically
allocated Segment Table. Since only 8 bits were available
in the Name Table for this quantity, a maximum segment
number of 255 was imposed. This was becoming a serious
constraint. Segment numbers can now theoretically be up to
999, although other constraints limit the useful maximum to

35

about 500 - still twice the present value.

Related to segmentation problems was a restriction on
the maximum number of external subroutine names which could
be referenced by one compilation. This restriction applied
to both the ALGOL <string> and FORTRAN <string>
constructions and limited the number of different values of
<string> to 32. Re-arrangement of the compiler common area
has allowed this to be increased to 256. The CALL standard
procedure mechanism uses a different table for ESDname
stora·ge. Processing of this CALL procedure takes place in
Pass Three (code generation). Processing of the ALGOL and
FORTRAN strings takes place in Pass Two (the parser) and
hence the limit there is for the whole program, as
segmentation bounds are not fully decided until the parser
completes its task.

Another restriction which prevented the compilation of
very large programs was the fixed size Block List Table.
The Block List is a table with one entry per block,
procedure or F.OR statement, and this originally had a
maximum size of 256 entries. Alberta raised this figure to
448, and we at Newcastle also accepted this modification.
However, it became clear that a more resilient solution was
required, since the table was still fixed in size, but had
eaten away the last part of the directly addressable
compiler common area. Accordingly, modifications were
applied to allocate this table dynamically. The Block List
is used in conjunction with the Name Table to resolve
decisions on identifier scope. As such the table is
hammered fairly heavily throughout compilation and this gave
rise to concern that a significant speed degradation might
result from the extra level of indirection in the
addressing. However, much to our relief, tests failed to
show any change in timing, and the alteration can be.judged
a success.

Quite considerable changes of detail have been made to
the scanner (Pass One). These changes do not, of course,
alter the basic method of conversion of the user's prugram
into a tokenised string. Rather, they implement a series
of individually small changes which together, it is hoped,
will make the compiler more convenient to use.

As previously mentioned, all control card scanning has
been moved out of Phase A into the compiler service
routines. Control cards which need to communicate with

36

. '

.,

Phase A do so by setting up a control record and sending
this as data to the scanner, which then deals with it in the
normal way. Hence, /TITLE will send a control record
containing the address of the new title string. The
scanner routine will then reset the listing header buffer to
reflect the change.

Error conditions detected whilst reading source records
also cause transmission of information to the scanner. In
this case it is an error message that is being transmitted.
This message is printed in-line in the listing, bracketted
between lines of minuses, and is flagged as a Pass One
error. Only the error message is written to the virtual
listing file (not the lines of minuses), so when the Pass
One error is printed, the compiler service routine error
message forms the source listing echo.

Two changes to the error processing are important.
Firstly, detection of a serious (non-warning) error in Pass
One now stops compilation before Pass Two is invoked.
Because error messages ·tend to snowball, the useful
information in the Pass Two checking is unlikely to be
clearly displayed if the lexical scan has found
inconsistencies already. Secondly, where more than one
non-warning error message occurs for the same coordinate,
only the first is printed. Warning messages are always
printed. This technique may seem somewhat arbitrary in its
selection of the messages to be displayed, but in practice
it has been found to work well, particularly for terminal
users. Most programmers require only to be directed to the
erroneous coordinate, and so the source code echo is
generally more useful than the error message except in the
more clear cut cases (such as an ID being undeclared or
multiply declared). Usually the error message tends to
comment on the effect of the error rather than its cause.

The most noticeable change to the scanner is in the
size of the pre-declared identifier tables. For instance,
there were 45 standard procedures and functions; now there
are 110 of them. This increase in size caused some
addressability problems in the Pass One read only data
segment and some table re-ordering will be apparent for that
reason.

A fast commenting facility has been added. This uses
the per cent sign as delimiter. "%" starts such a comment
and either the next"%" or the next semi-colon terminates

37

it. The reason for allowing the semi-colon as a terminating
delimiter is to prevent an erroneously terminat~d or
unterminated fast comment from swallowing the rest of the
program.

Two synonyms of common symbols have been introduced.
The double slash (//) is now allowed in place of the
vertical bar Cl) as a separator in substring designators.
The additional reserved word NOT has been aaded and is
allowed in place of the negate symbol C,). Note that this
allows such combinations as "NOT=" for ",="· For anyone
who has ever been confused by the device support routines
for typical ASCII terminals, the motives behind this
extension will be obvious. Another character which gives
trouble at such devices is the underbar () but
unfortunately there is no other symbol whTch performs its
designated function so well, since it is provided for use as
a word break separator within identifiers.

A cross reference listing of identifiers used in the
program may now be requested. This facility is implemented
through coding in the compiler service routines. If the
option is enabled, each identifier look up in the scanner
causes the service routine to be called and the identifier
and coordinate passed to it. When Pass One is complete,
the routine is called again to sort, collate and print the
entries. The actual printing is done via a routine in the
scanner in order to keep track of the listing pages. The
format of the printed output allows two columns of
identifiers with up to eight coordinate numbers per half
line. As such it is fairly compact. No attempt is made
to distinguish different declarations of the same
identifier; the information required for this distinction is
not available when the collation is done. If printed, the
cross reference will appear after the source listing and
before any error messages are printed.

Modifications to the parser are few. Mainly they are
concerned with making the Block List and Segment Tables
dynamic. We should mention here, for the record, that it
was necessary to be fairly devious when implementing the
modifications to allow segment numbers greater than 255.
The parser decides segmentation, forcing a new segment when
a procedure or non-trivial block comes along, or when it
decides that it is liable to lose track of itself (as with
some block expressions). The output from the parser is the
tree, or collection of trees, used by the code generator.
Because the parser is processing a linear tokenised program

38

to produce the trees, one per segment, it has to suspend and
resume processing of particular segments while it deals with
more deeply nested ones. When doing this, it pushes data
relevant to the segment on to the tree top, and pops this
information again when required. The segment number is one
of these items, and the original routines provided only
eight bits for this purpose. Rather than attempt the
fearful task of amending the tree format, four bits were
found in the header (previously spare), and the two together
provide the required twelve bit segment number.

Standard functions are intercepted on their otherwise
smooth passage through the parser to check for the occurence
of the LINK standard function. It will be remembered that
this is to be used for the future call back of main code
Algol W routines from Fortran. The parameter to this
routine is a literal string which contains the name of the
procedure which would be called back had we implemented the
rest of the coding to enable this. Only in the parser may
the scope of a variable be checked so here the procedure
identifier is looked up. If it is found and passes the
checks then the Name Table offset of the procedure is
patched into the tree in place of the Literal Table pointer
for the string. The code generator can then acquire the
information it needs from the Name and Segment tables.

The majority of the modifications to the code
generation phase concern changes and additions to the
standard function and procedure repertoire. It will be
appreciated that they are quite extensive. The standard
function case table has been broadened in scope to
incorporate check codes for those procedures which require
them, and segment numbers for those procedures which invoke
library routines (some of these generate in line code).
All processing for CALL and related procedures, and for the
extended storage control procedures, is contained in this
pass.

In the pass three error processor, changes have been
made to allow the compiler to continue to generate code if
an error is found in a standard procedure. This is
sensible if a single erroneous GET call, for instance, is
not to cause the entire program to fail. When the
erroneous statement is assembled, a call to the run time
error processor is built into the object program output to
prevent execution of the error path. This action applies
only to the newly added pass three errors; the original set
remain fatal to the compilation.

39

·•

References to library routines now have more meaningful
names than the anonymous AWXSLnnn external symbol names of
the present system. All ESDnames in the Algol W system now
begin with AW and are followed by 6 alphabetic characters.
This should avoid clashes with any system routine names.

The starter segment AWXSTART, which has already been
discussed, is generated at the start of this pass before the
Record Table is output.

40

.,

9 User Documentation

This always seems to be a thorny subject with other
installations. Our user manual has also come in for some
criticism, probably justified, from our own users, chiefly
because it is oriented towards Computer Scientists. Our
new approach is based on having two manuals available.

The first will be an introductory document adapted from
our programmed introductory text, which was originally
written by John Lloyd and Hazel Fells several years ago.
Its format is based on the programmed introductory texts for
other languages, e.g. Fortran, and it is a no-nonsense
introduction to the language designed for engineering and
science students. It has proved very popular since its
publication. Hazel and John are re-writing this document
to provide a general introductory manual to Algol W, with
more detailed information on procedures and string handling,
so that it becomes a useful first introduction for all
users. It is worth noting that while it was originally
written for engineers and scientists, most of our Computer
Science academic staff prefer their students to use it
instead of the Bauer primer in the present User Manual.

The second manual will be adapted from the new
University of Michigan MTS Volume 16 ("Algol Win MTS").
UM have kindly allowed us to modify this for our use, and it
will become our new "Algol W Reference Manual". As part of
the modification it will be converted from TEXT/360, which
we do not use here, to TEXTFORM on which we are about to
standardize. This new manual is written in clear readable
English, and has met with approval from most staff who have
so far seen the draft copy in our possession.

The main modification we plan to the UM manual is to
add additional chapters describing our extensions to the I/O
system, the external subroutine calling linkages and the
compiler interface. The I/O extensions will be an extended
version of the relevant section of the University of Alberta
Computing Science manual, TR15-75, which we also have
permission to adapt.

The large amount of documentation made available by
Michigan and Alberta will greatly simplify our task of
describing the new system for our users. Our thanks go to
both of these MTS installations for their generosity.

41

10 Future Plans

When Release 6.0 is out we would like Algol W to enter
a period of stability. This wish is at odds with the
requirement for a new release of Algol W to replace
completely the current one, because there is no debugging
system in the new release. We also wish to provide an MVS
Algol W, and we have still to implement facilities for call
back of main code Algol W procedures from Fortran.

This last item, the call back facility, is almost
certain to be coded soon after Release 6.0 comes out. The
lack of this facility is a serious drawback to the use of
the English *NAG (Numerical Algorithms Group Ltd.)
mathematical subroutine library. Since we recommend this
library to our users, and do not wish the overhead of
maintaining separate Fortran and Algol W versions, this
extension has fairly high priority.

Production of an MVS interface should not be an
extensive exercise. Because we have taken care to keep the
Algol W system clear of complex routines in MTS, such as the
elementary functions and the keyword scanner, the system
interface module routines provide basically only an I/O and
storage allocation interface. We do not think that these
will be difficult to interface to MVS. IBM's Virtual
Storage Access Method (VSAM) dataset organisation should
make this particularly easy, as it effectively provides MTS
line files in MVS. Newcastle would like to produce a
version of Algol W for IBM's standard large machine
operating system, and although we, its probable
implementors, have not yet received the go ahead for this
extension, it seems likely that we shall eventually do so.
NUMAC will be running an overnight MVS service on our
370/168 from December 1978 or thereabouts.

We have left the most difficult discussion, that of the
debug system, to the last. We should emphasise at this
point that not only has no decision been made on this part
of the work, but as yet no discussion has taken place here
regarding it. These paragraphs represent our own thoughts
and are in no way a specification of work to be done.

There are two separate questions regarding any debug
system developed. One is to provide a post mortem dump
option to display variables in the event of an error. An

42

extension of this would be to provide a user callable
procedure interface to this giving a snapshot dump and
continue facility. However, the second requirement, for
serious debugging, would be a fully interactive system
similar in nature to the MTS symbolic debugging system
(SDS).

The University of Michigan Computing Center have
indicated to us they would like to see Algol W debuggable by
the use of SDS itself. This entails work to enable the
compiler to generate symbol table records (SYM cards). SDS
uses these after loading to locate variables for display and
statements for the setting of break points. Whilst we
agree in principle with the idea of providing an SDS-like
debugging system for Algol W, we are against the use of SDS
itself ·to provide this for two reasons.

First, we have gone to a great deal of trouble to
provide extensive facilities within the language, at the
same time reducing the MTS dependence to a minimum. Use of
SDS would re-introduce a high level of MTS specificity into
the language system. Since the benefits of this work would
then only be available in one of our operating systems, we
are opposed to this.

The second reason concerns aesthetic aspects of the use
of SDS. SDS was originally developed to debug Assembly
language programs and as such it is excellent. Its
extension to Fortran provides a good debugging system for
that language because of the basically similar structure to
(modular) Assembler. However, in our opinion, SDS's
extension to block structured languages fails to provide a
reliable system on several grounds. For instance, SDS
would have difficulty keeping track of identifier scope in
its display of (possibly) unavailable variables; display of
variables would present an Algol W user with data types very
alien to that user, more so than in Fortran; and we feel
that display of a program st~tement should echo the Algol W
source for that statement, and not (as SDS would do) display
the nearest machine instruction to hand.

To add some constructive criticism to our rejection of
SDS, we propose to modify the compiler so that the main
tables are dumped as a data control section. The compiler
already contains code to output the segment Name Table
entries and a Coordinate Table with each program segment.
A single extra V-constant address per program segment could

43

associate the correct compiler data segment table with each
program segment. As this data would contain both the
identifier tables and the tokenised program, most of the
facilities of SDS and some it cannot provide would become
available by the addition of extra modules to the run-time
system. Not all of the details are clear to us yet, but it
appears that suitable construction of segment tables, using
weak externals for Algol W procedures, could link in the
tables for other procedure compilations. Thus we would
provide the same debugging facilities in both load and go
and object deck generation modes. Also, and we see this as
of paramount importance, such a system would be immediately
available in any other operating system for which a working
system interface module existed.

44

APPENDIX 1 Compiler Control Cards

/ALGOLW

The /ALGOLW control card indicates to *ALW that
Algol W source text follows and that, unless otherwise
overridden, the program is to be executed when (and
if) it has compiled. Parameters which may appear on
this card are the same set that are valid in the $RUN
parameter field, and oti /GLOBAL or /OPTIONS control
cards. These parameters are described in Appendix
Two.

/COMMENT

/COPY

/EOF

Source decks can be self-documenting by inserting null
operation /COMMENT cards.

/COPY is provided to allow source code or data
inclusion from files, particularly from Student Batch
systems. The single parameter is a file-or-device
name. All errors generated by reference to this
fdname are fielded, and do not stop the compiler
driver run.

A "soft" end-of-file indication either to the compiler
or (CLG) the run-time system is provided by /EOF. If
supplied to the compiler it completes compilation of
the current program or procedure source. If CLG or
Monitor mode is in force, a succesfully compiled
program is loaded, but not executed. Execution can
then be started by a /EXECUTE control card. The /EOF
~ard could be used if a data file were to be edited
before execution.

/EXECUTE

Execution of a successfully compiled and loaded user
program is initiated by /EXECUTE. Any data read by
the program via.the INPUT stream in CLG mode, or any
stream in Monitor mode, should follow this card.
Note, however, that any of the control cards are valid
in-line and are obeyed if encountered. The /EXECUTE
card may appear many times for a particular program,
allowing many runs without re-compiling. Parameters

45

on this card are treated as run-time parameters and
are processed by the library initialisation routine.

/FIXED

The input mode will be set to FIXED. See the
description of this parameter in Appendix Two.

/FLUSH

/FREE

All processing for the system is brought up to date by
/FLUSH so that a HASP Student Monitor system may be
sure that all output for a job has appeared. It
therefore forces compilation, loading and execution of
any pending source text. Any program that is
executing is prevented from reading further data from
the source stream. After this card has executed,
further /EXECUTE cards cause an error message until a
new job has been started by a /ALGOLW card.

The input mode will be set to FREE. See the
description of this parameter in Appendix Two.

/GLOBAL

/GLOBAL takes the same parameters as /ALGOLW and
/OPTIONS, but they are not immediately processed.
Instead they are processed for each subsequent
compilation immediately prior to the /ALGOLW or
/OPTIONS card parameters, and hence provide a means of
changing the compiler defaults over a series of
batched compilations. This control card is not
available in Monitor mode.

/INDENT

/LIST

The compiler listing indentation can be changed during
the course of a compilation using /INDENT. By
default this is set to 3 spaces per block level, but
it may be given any value between O and 5. The
single parameter on this card is an unsigned integer.
If no parameter is found, 3 is assumed.

This is the old @LIST compiler directive, and
production of compiler listing output is turned on for
subsequent source lines. However, if an overriding
NOLIST parameter has been given as a compiler option

46

parameter (see appendix 2), this card is ignored.

/MESSAGE

/MESSAGE is similar to /COMMENT in that it does not
affect compilation or running of the system, but any
characters following the pseudo command will be
printed on the ERROR unit. In MTS this is SERCOM.
If no characters are present a blank line is printed.

/MONITOR

If this card is encountered in the initial control
card group and before a /ALGOLW card has been
processed, Monitor mode is set. This is the only way
to set Monitor mode on and once in effect it cannot be
disabled. It has certain implications for users in
that it is designed to implement a fail-safe student
system. Some control cards, such as /GLOBAL, /OBEY
and /STOP, are disabled. External procedures may not
be linked in, and all I/O is routed via the INPUT and
OUTPUT streams.

/NEWPAGE

This card causes the compiler to start a new page on
the compiler source listing. The title string
remains unchanged.

/NOINDENT

Automatic indentation in the source listing is turned
off with /NOINDENT. It is equivalent to /INDENT,O.

/NOLIST

/OBEY

This is the old @NOLIST compiler directive: it turns
off production of compiler listing output for
subsequent source lines. However, if an overriding
LIST parameter has been given as a compiler option
parameter (see Appendix two), this card will be
ignored.

Any characters appearing on this card are presumed to
compose a system command and are passed on the
operating system in use, if that system supports
command processing. In MTS this would be an MTS
command, thereby allowing a user access to the Editor
and other file system utility commands. /OBEY is not

47

allowed in Monitor mode.

/OPTIONS

The /OPTIONS control card indicates to *ALW that
Algol W source text follows, but, by default, an
object deck should be generated. Otherwise it is
like /ALGOLW. Parameters which may appear on this
card are the same set as those that are valid in the
$RUN parameter field, and on /ALGOLW or /GLOBAL
control cards. These parameters are described in
Appendix Two.

/SEQUENCED

The input mode will be set to SEQUENCED. See the
description of this parameter in Appendix Two.

/SPACE

/STOP

/TITLE

/SPACE is similar in action to the Assembler SPACE
operation, but also includes a conditional page skip
facility. It takes zero, one or two parameters. If
given, any parameters must be unsigned integers. The
first parameter, which defaults to 1, is the number of
lines to·skip on the listing. The second parameter,
if given, is the number of line_s which should be
remaining on the current listing page after the
spacing operation. If there are fewer lines than
this left, a new page is forced instead.

/STOP causes the
program which is
it is executed.
Monitor mode to
Monitor. Only
Monitor.

Algol W system to shut down. Any
pending is compiled, and in CLG mode

The card is treated as /FLUSH in
prevent users shutting down the
a genuine end-of-file will stop the

This is the old @TITLE directive. Its purpose is to
place a string of from 1 to 35 characters in the
listing header line. If no parameter is given the
title string is cleared. /NEWPAGE can be used to force
a new listing page without deleting the title string.

48

APPENDIX 2 Compiler Parameters

AUTOSKIP; NOSKIP

If AUTOSKIP is in effect, one blank line is left on
the listing before any procedure header line is
printed, thus automatically separating procedures.
NOSKIP disables this action. AUTOSKIP is the
default.

CHECK; NOCHECK

CODE

These parameters provide the facility formerly
available via the @NOCHECK directive. NOCHECK
suppresses the generation of code to check array
subscripting, case selection indexing, substring
indexing and reference binding at run time. CHECK is
the default.

If specified, a pseudo assembly listing is produced
for each code segment generated. It was formerly
@DUMP*, 1

CONCHAR=character

The control card start character can be changed from
the standard 11 / 11 • CONCHAR=@ would allow a program
containing @LIST, @NOLIST or @TITLE to be compiled.

ECHO; NOECHO

FIXED

ECHO causes the compiler scanner to store a compact
version of the listing for use in error diagnostic
printing, should any errors be detected. ECHO is the
conversational default, in batch it is NOECHO.

Card image source follows - see FREE description.

FREE; FIXED; SEQUENCED

The compiler interface, by default, accepts program
source input lines of any length - this is the action
of the FREE parameter. Lines longer than 72 bytes
are split into 72-byte chunks and fed to the compiler
scanner. FIXED and SEQUENCED are provided to allow

49

checking of card image source records. FIXED assumes
a maximum visible length of 72 bytes on a card and
will flag longer records as an error. SEQUENCED is
similar, but assumes an 80 byte maximum, and that
bytes 73-80 contain a card sequence identifier.

GENERATE

Undoes the effect of the SYNTAX parameter. (See
below.)

GO; NOGO

As laid down by the 2nd MTS Workshop, a program for
immediate execution must not require control cards.
GO marks a program for execution if successfully
compiled. The default NOGO parameter causes an
object deck to be generated.

ID=1-to-8-characters

This keyword expression is used to supply a user
identifier on a /ALGOLW card. Monitor mode insists
on this parameter being given, and will call a system
interface routine to verify the ID. Only
alphanumerics are allowed.

INDENT; INDENT=integer; NOINDENT

These parameters control source listing indentation.
Indenting is enabled, by default, to three spaces per
block level, but it may be varied between zero and
five spaces per block level. If the calculated
indent for any source listing line exceeds 32, then it
is overridden to 32. INDENT is equivalent to
INDENT=3. Similarly, NOINDENT is equivalent to
INDENT=O.

LIBRARY=filename(s)

The names of any run time object files or library can
be stored with the source program. An INC loader
record is generated as part of the object code.

LINESPERPAGE=integer, LPP=integer

The lines-per-page on the source listing may be varied
by the use of this keyword parameter between 25 and
100. The default is 60.

LIST, L

50

Production of a compiler listing is forced by LIST and
any /NOLIST cards in the deck will be ignored. The
parameter is related to SOURCE, PRINT and NOLIST, and
it is never the default.

LISTING=filename

When run at a terminal, *ALW will produce a source
listing in a file if SOURCE or LIST is given. The
default filename is -AWLIST. This keyword parameter
can change the filename. Note that the file is
emptied before use, and that if the PRINT stream has
been assigned (SPRINT in MTS) then the assigned
file-or-device will be used in preference.
Specifying this parameter implies SOURCE.

LONG; SHORT

MAP

*ALW has the ability to convert all 32-bit floating
point entities to 64-bit precision, and it is done by
specifying LONG. The default is SHORT, which does no
conversion.

Causes the system loader to print a module address map
after loading the successfully compiled program in CLG
or Monitor mode.

NOCHECK

No run time checking - see CHECK.

NOECHO

No error source listing ecno - see ECHO.

NOGO

Set Deck Generation mode - see GO.

NOINDENT

NOLIST

No indenting of compiler listing - see INDENT.

This option will suppress any compiler listing,
ignoring any /LIST cards it may encounter. It is the
default when running conversationally if the PRINT
stream (MTS - SPRINT) is not assigned explicitly.

51

See also the LIST, SOURCE and PRINT parameters.

NONUMBER

No line numbers on the listing - see NUMBER.

NOSKIP

Does not separate procedures on the listing - see
AUTOSKIP.

NOTEST

No interactive debug table generation - see TEST.

NOXREF

Suppresses any cross reference listing - see XREF.

NUMBER; NONUMBER

These parameters control the display of the source
line number on the listing. NUMBER is the default,
except in Monitor mode where NONUMBER is enforced.

OBJECT=filename

If *ALW is generating an object deck, it will be
produced on the PUNCH stream (MTS - SPUNCH), if it is
assigned. If it is not, then, by default, the file
-AWLOAD is used. This keyword parameter allows the
default filename to be changed. Note that the file
is emptied before use.

PAGES=integer, P=integer

PRINT

Set the execution printed pages limit.

A compiler listing is produced as if the SOURCE
parameter had been given, but the assignment of the
PRINT stream (SPRINT in MTS) is not checked. The
listing is produced on PRINT even if it has not been
explicitly assigned.

RUNPARS=(run-time-parameter-string)

The RUNPARS keyword parameter allows a set of run-time
parameters to be specified at compile time. They are
compiled into the starter se~ment AWXSTART, and hence

52

this parameter only has meaning for main programs.
At run-time, the string is processed before any run
parameters, so the effect is to change the defaults.
It should be particularly useful to users who have
programs creating large arrays. A single run
parameter may follow the equals sign; if several are
given they should be specified within parentheses.

SEQUENCED

See the description of FREE.

SHORT

See the description of LONG.

SIZE=integer(Klp)

Specifies the compiler working storage area size.

SOURCE, S

STACK

The SOURCE parameter causes the compiler to produce a
listing, but /LIST and /NOLIST control cards along the
way will be obeyed. If the PRINT stream (MTS -
SPRINT) has not been assigned, it will be defaulted to
either -AWLIST or the name given with the LISTING
parameter.

This causes the compiler to print a stack dump after a
syntax error has been detected.

SYNTAX; GENERATE

TABLES

SYNTAX is the parameter which has the same action as
the old @SYNTAX directive - check the program only, do
not generate object code. GENERATE negates this, and
is the default.

A listing of the main compiler internal tables is
produced. It is the old @DUMP*,3 directive.

TEST; NOTEST

Produces interactive debug tables. Actually it will
not do so yet, but the thought is there. When and if
we implement a debug system, this parameter will

53

invoke it.

TIME=integer(SIM), T=integer(SIM)

execution time limit

TRACE

Produces code, tables and tree listing - this is the
old @DUMP*,7 directive.

XREF, X; NOXREF

XREF produces a cross reference listing, in two column
format, after the source listing and before any error
messages are printed.

54

APPENDIX 3 Standard Procedures

This Appendix provides basic information for all the
standard procedures which will be available in Release 6.0
of Algol W. Standard procedures were originally provided
to implement the input/output system via READ(ON) and
WRITE(ON). As such they allow parameters to be any simple
type identifier or expression - that is, any scalar
quantity. It has been possible to implement all of the
extensions to the ·I/O system and provide an extended
external call linkage using variations of the standard
procedure linkage. No change to the language itself was
required.

Some standard procedures generate calls to library
routines while others generate in-line code. This
difference is not apparent to a user calling them.

In the following descriptions of standard procedures
the character preceding the name indiGates the status of the
identifier:

* newly added in Release 6.0
+ significantly changed or extended

essentially unchanged from previous releases
$ deleted in this release

* ASSIGN(stream, file-or-device-name)

ASSIGN is used to allocate, or re-allocate, an I/O
stream. The given file-or-device-name is assigned to
the stream, and it will be opened when the stream is
next used for I/0. Note that any file-or-device-name
valid in the Operating System in use may be specified:
in MTS this means that modifiers, line number ranges
and explicit concatenation are all allowed.

* ATTNTRAP(logical-value)

Simple attention interrupt processing is provided
through the use of this standard procedure.
ATTNTRAP(TRUE) enables the trap and ATTNTRAP(FALSE)
disables it again: by default the trap is not enabled.
When trapping is on, attention interrupts do not halt
execution of the program, and this allows sensitive
parts of a program to be executed without risk of
interruption. A program may find out if an interrupt
has occurred by inspecting the pre-declared logical
variable ATTNMARK. This is initially false, but is

55

set to true when an attention interrupt is fielded.

* CALL(ESDname, optional-subrtn-parameters)

The standard procedure mechanism is used to implement
a new IBM OS Type I subroutine linkage. The ESDname
parameter must be either a literal string giving the
subroutine name, or an integer or bits variable
containing the address -to which control should be
transferred. If parameters are given, they may be of
any type that is allowed for standard procedures.
Hence they can be literals, simple variable IDs or
simple expressions. The procedure stores the return
values of the contents of general registers fifteen
(in R CODE), zero (in RO), one (in R 1) and of f_loating
point-register zero (in long real R FLOAT). Note
that the integers RO and R1 are avaTlable as an eight
byte string R01.

* CONTROL(stream, control-parameter-strings)

CONTROL gives a programmer access to the operating
system file-or-device control facilities. For
instance, in MTS, if the stream were assigned to a
magnetic tape then CONTROL could be used to set the
block size, write tape marks, position the tape, etc.

* EMPTY(stream)

If the specified stream is attached to a file then
Algol W will attempt to empty it, that is, the file is
left in a state such that all information previously
held becomes inaccessable. Attempts to read an empty
file produce an end-of-file indication, and the next
write would place a new first record in the file. In
MTS, this can also be achieved via a CONTROL
operation, but a separate standard procedure is
provided to aid user program readability.

* FETCH(source-address, destination, optional-length)

This is one of the the extended storage control
routines. Its purpose is to fetch bytes of data from
a source address, given as the value of an integer or
bits parameter, into an Algol W variable of any simple
type. If no length parameter is given, then the
implied length of the destination parameter is used.

* FLUSH(stream)

56

FLUSH causes the contents of the output buffer for the
stream, if any, to be written out. It has the same
effect on the specified stream as IOCONTROL("NEWLINE")
would have on the current writer stream.

* GET(stream, format, input-list)

GET and GETON are the main Alberta formatted input
procedures. Data is read into the items specified in
the input list from the given stream under control of
the supplied format string. The format strings are
Fortran-like in appearance, with certain changes and
extensions for their Algol W implementation. GET
will fetch a new input record. GETON continues to
decode the current input record for the stream,
continuing from where the last operation left off.
The presence of a slash (/) in the format string will
cause a new input reco~d to be fetched.

* GETCARD(stream, input-string-list)

GETCARD provides a procedure similar to READCARD, but
in which the first parameter specifies the input
stream to be used in the operation. One important
difference is in the handling of end-of-file
conditions. GETCARD bypasses the mechanism using the
pre-declared ENDFILE reference; instead it sets a
logical variable FILEMARK after each operation.

* GETON(stream, format, input-list)

See the description of GET.

* GETSTRING(source-string, format, input-list)

This procedure provides the means to perform input
conversion operations from data records held in an
Algol W string. Its operation is similar to that of
GET, but the first parameter gives the source string
holding the data rather than an input stream name.

+ IOCONTROL(integer-or-string-control-key)

IOCONTROL has been extended in operation to allow both
integer and string codes to be given, and more options
are provided. These options are:

1 NEXTCARD
2 NEWLINE
3 NEWPAGE
4 NORMAL

Next read fetches new input record
Next write starts a new record
Next write starts a new page
Generate ANSI cc chars

57

5
6
7
8

FULLPAGE
DOUBLESKIP
TRIPLESKIP
OVERPRINT

.,

Generate "9" and";" cc chars
Next write skips two lines
Next write skips three lines
Next write overprints line

If the key is given as a string, unambiguous
abbreviation down to a minimum of three characters is
allowed.

* LOCATE(item, address-destination)

A user program may obtain the address of an Algol W
identifier or field identifier using this procedure.
The address of the first parameter is placed in the
second parameter which should be an integer or bits
variable.

* MOVE(source, destination, optional-length)

This is one of the the extended storage control
routines, its purpose is to move bytes of data from
one Algol W variable to another without doing any type
conversion. The variables may be of any simple type.
If no length parameter is given, then the minimum of
the two implied parameter lengths will be used. This
procedure provides, via a copy operation, some of the
flexibility of the Fortran EQUIVALENCE construction.

* NEWLINE(string-or-integer-key)

NEWLINE provides the same features as IOCONTROL, but
in an active rather than passive way. IOCONTROL
determines the action that should be taken when the
next write takes place (for keys other than one).
This action can be overridden if another call to
IOCONTROL is found before the next write. NEWLINE,
on the other hand, acts in such a way that every call
to it is visible. If an integer key is given, then
that number of new lines is produced, to a maximum of
forty. A request for zero or fewer lines will cause
a single overprinted line to be started. If a string
is supplied, then the first character of the string is
used as the carriage control character of a new output
line. The difference in action means that two
IOCONTROL(2) statements produce one new line whereas
two NEWLINE(1) statements produce two new lines.

* OBEY(system-command-string)

For operating systems which support a command
processor, OBEY allows commands to be issued from

58

within a program. The entire string given is
supplied as the command.

* PROTECT(stream)

If the stream is attached to a file, PROTECT will
cause all changes to the file buffers to be written
back to the disk copy of the file, so protecting the
information from system damage occurring at a
subsequent time in the program run. Without this
protection, such a crash before the file was released
could result in information being lost.

* PUT(stream, format, output-list)

PUT and PUTON are the main Alberta formatted output
procedures. Items specified in the output list are
written to the given stream under control of the
supplied format string. These format strings are
Fortran-like in appearance, with certain changes and
extensions for their Algol W implementation. PUT
starts a new input record; PUTON continues to append
to the current output record for the stream,
continuing from where the last operation left off.
If the maximum output length of the stream will be
exceeded by adding another item then a new output
record is started. A new record may also be forced
by inserting a slash (/) in the format string.

* PUTCARD(stream, output-string-list)

PUTCARD provides a procedure similar to WRITECARD, but
one in which the first parameter specifies the input
stream to be used in the operation.

* PUTON(stream, format, output-list)

See the description of PUT.

* PUTSTRING(string-destination, format, output-list)

This procedure provides the means to perform output
conversion operations directly into an Algol W string.
It is similar to PUT in operation, but the first
parameter gives the destination string which is to
receive the output rather than the output stream name.

* QUALIFY(stream, qualify-keyword-list)

QUALIFY is related to CONTROL in that it allows a user

59

to change the attributes of an I/O stream. However,
while CONTROL communicates with the operating system,
QUALIFY sets those attributes which are local to
Algol W. For instance, it is called to change the
input and output lengths of I/O streams.

* RCALL(ESDname)

RCALL provides a simple call facility in which
parameters are supplied to the called routine by
loading them into the machine's general registers.
The ESDname parameter is as described in the
description of the CALL standard procedure.
Parameters are loaded from the pre-declared integer
variables RO and R1 (also available as an 8-byte
string R01. As implied by their names, they are used
to load general registers zero and one. On return,
the contents of these registers are stored in the same
variables. Additionally, as for CALL, the value of
general register fifteen is saved in R CODE and that
of floating point register zero in the-long real
R FLOAT.

READ(input-list)

The basic input routines READ and READON are unchanged
in their mode of operation. However, many of the
restrictions on the format of data items have been
relaxed. As before, READ starts a new record while
READON does not. Either routine will fetch a new
input record if there are no further data items in the
current one.

+ READCARD(input-string-list)

This procedure, which was originally implemented to
read card images into 80-byte strings, has been
modified to accept destination strings of any length.

* READER(stream)

There are two stream switching procedures READER and
WRITER). The use of READER forces the specified
stream to become the current input stream. The next
READ, READON or READCARD will use this stream and
fetch a new input record from it.

READON(input-list)

See the description of READ.

60

* RELEASE(stream)

This procedure is used to free the resources attached
to an I/O stream. If the I/O stream is one of the
pre-defined ones (for example one of the logical
device numbers Oto 19), then any remaining
information in the output buffers is written to the
file-or-device attached and it is then closed down and
freed. If the stream is a user defined one (using
the ASSIGN procedure), then, in addition, it is
deleted from Algol W's internal tables.

* REWIND(stream)

As the name implies, the specified stream will be
rewound so that subsequent reads and writes start at
the beginning of the file or device attached. Note
that in MTS only the currently active member of a
series of concatenated files-or-devices will be
rewound. An attempt to rewind a stream which may not
be rewound (such as a card reader) will cause a fatal
error.

* SENSE(stream, sense-keys, returned-info-list)

*

SENSE will be used to return information about the
state of I/O streams. The exact form of the keywords
has yet to be decided, but information such as the
filename, control block address and feasibility of
operations such as indexing and rewinding will be
available. It is similar to GET in form, but appears
to do I/O from the system control block itself rather
than from attached files-or-devices.

STOP(string-to-print-or-NULL)

Invoking this procedure causes the execution of the
program to be terminated. If a string is given as a
parameter it will be printed on the ERROR stream.

* STORE(source, destination-address, optional-length)

This is another of the the extended storage control
routines. Its purpose is to store bytes of data from
an Algol W variable of any simple type at a
destination address which is given as the value of an
integer or bits parameter. If no length parameter is
given, then the implied length of the source parameter
is used.

61

+ TRACE(any-parameter)

Calls to TRACE do nothing in this version.
Eventually, should we implement an interactive
debugging system, it will form a user program entry to
that system.

* TRANSLATE(source, translate-table, optional-length)

This is the last of the the extended storage control
routines. It is provided to give Algol W user
programs direct access to the machine Translate
instruction. For each byte in the source parameter,
a byte is fetched from the translate table at an
offset corresponding to the numerical EBCDIC value of
the source byte. The byte fetched from the table
replaces the byte in the source parameter. This
implies that the translate table will normally be
assumed to be 256 bytes in length. If no length
parameter is given, then the implied length of the
source parameter is used. This procedure can perform
many varied actions: as well as translation of
character codes it can be used to re-arrange the bytes
of a string according to a supplied pattern.

WRITE(output-list)

The basic output routines WRITE and WRITEON are
unchanged in their mode of operation. However, some
improvements and changes in the output conversions
have been added. Floating point values may be output
with any desired exponent separator (using the
pre-declared variable R EXPCHAR). Complex values are
output in the form (realpart, complexpart), which is
acceptable as input. As before, WRITE starts a new
record while WRITEON does not. Either routine will
start a new output record should the output buffer
overflow when an item is converted.

* WRITECARD(output~string-list)

This procedure is added as the complement of READCARD.
Although its name implies card images, it will, in
fact, output strings of any length. Any previous
contents of the writer stream output buffer is
written. The string is transferred to the buffer,
and then it too is output. In this it differs from
the action of WRITE on the same string, because WRITE
does not flush the information out until the buffer is
full, or a request to do so has occurred. In effect,

62

WRITECARD is a WRITE with an implicit
I0C0NTR0L("NEWLINE") associated with it.

WRITE0N(output-list)

See the description of WRITE

* WRITER(stream)

This is one of the two stream switching procedures
(the other being READER). It causes the specified
stream to become the current output stream, and the
next WRITE, WRITEON or WRITECARD will start using this
stream. Any record partially built for the previous
writer stream will be output at the time of the
switch.

* XDELETE(stream, index-list)

Indexed deletion of lines from a file attached to a
stream is performed by this procedure. The index
list is a list of integer line numbers to be deleted
from the file. In MTS, the internal form of the line
number, 1000 times the external form, is used.

* XGETCARD(stream, index, input-string-list)

This entry provides an indexed form of the GETCARD
procedure. Instead of reading the next record in
sequence, the record is fetched from the line number
given by the index parameter. Line numbers are as
described for XDELETE. If no information is present
at the given line, it is treated as an end-of-file
condition and dealt with as for GETCARD. If more
than on string is specified in the list, only the
first one is fetched from the indexed line. The
second and any subsequent records are fetched serially
after the first.

* XPUTCARD(stream, index, output-string-list)

This entry gives an indexed form of the PUTCARD
procedure. Records are index written using the line
number given in the index parameter. Line numbers
are described under XDELETE. If a record is already
present at the given line, it will be replaced by the
new one. If more than one string is given, only the
first will be index written. The remainder will be
serially written following the indexed write.

63

APPENDIX 4 Standard Functions

This Appendix provides basic information for all of the
standard functions which will be available in Release 6.0 of
Algol W. Standard functions are provided to implement
standard functions of analysis, transfer functions for data
type conversion, and one or two special routines. All have
one scalar argument and produce a single scalar result.
The types of the argument and result are pre-defined to one
combination only.

Some standard functions generate calls to library
routines while others generate in-line code. This
~ifference is not apparent to a user calling them. It is
worth noting, however, that specification of the LONG
compiler option will cause automatic generation of calls to
long real and long complex functions when the names of the
real and complex ones are given. For instance, SIN would
cause a call to LONGSIN.

In the following descriptions of standard functions the
character preceding the name indicates the status of the
identifier:

* newly added in Release 6.0
+ significantly changed or extended

essentially unchanged from previous releases
$ deleted in this release

* real procedure ARCCOS(real value ARG);
* long real procedure LONGARCCOS(long real value ARG);

The inverse cosine function.

* real procedure ARCSIN(real value ARG);
* long real procedure LONGARCSIN(long real value ARG);

The inverse sine function.

real procedure ARCTAN(real value ARG);
long real procedure LONGARCTAN(long real value ARG);

The inverse tangent function.

string(12) procedure BASE10(real value ARG);

The real argument is returned as the basic formatted
string S+EE-DDDODDD .

64

*
*

*
*

*
*

*
*

*

string(20) procedure LONGBASE10(long real value ARG);

The long real argument is returned as the basic
formatted string S+EE-DDDDDDDDDDDDDDD .

string(12) procedure BASE16(real value ARG);

The real argument is returned as the basic hexadecimal
formatted string SS+BB-AAAAAA

string(20) procedure LONGBASE16(long real value ARG);

The long real argument is returned as the basic
hexadecimal formatted string SS+BB-AAAAAAAAAAAAAA

bits procedure BITSTRING(integer value ARG);

The integer argument is returned as the equivalent
bits value.

string(1) procedure CODE(integer value ARG);

The string returned is the EBCDIC character
corresponding to the value of the argument REM 256 .

real procedure COS(real value ARG);
long real procedure LONGCOS(long real value ARG);

The cosine function.

real procedure COSH(real value ARG);
long real procedure LONGCOSH(long real value ARG);

The hyperbolic cosine function.

real procedure COT(real value ARG);
long real procedure LONGCOT(long real value ARG);

The cotangent function.

complex procedure CXCOS(complex value ARG);
long complex procedure LONGCXCOS(long complex value ARG);

The complex cosine function.

complex procedure CXEXP(complex value ARG);
long complex procedure LONGCXEXP(long complex value ARG);

The complex exponential function.

complex procedure CXLN(complex value ARG);

65

*

*
*

long complex procedure LONGCXLN(long complex value ARG);

The complex natural logarithm function.

complex procedure CXSIN(complex value ARG);
long complex procedure LONGCXSIN(long complex value ARG);

The complex sine function.

* complex procedure CXSQRT(complex value ARG);
* long complex procedure LONGCXSQRT(long complex value
ARG);

The complex square root function.

* string(24) procedure DATE(integer value ARG);

The time and date are returned as a string in a format
determined by the integer argument.

integer procedure DECODE(string(1) value ARG);

This integer value returned corresponds to the
position of the argument character in the EBCDIC
ordering.

integer procedure ENTIER(real value ARG);

One of the three real to integer conversion functions.
The others are ROUND and TRUNCATE.

* real procedure ERF(real value ARG);
* long real procedure LONGERF(long real value ARG);

*
*

The error function.

real procedure ERFC(real value ARG);
long real procedure LONGERFC(long real value ARG);

The complementary error function.

real procedure EXP(real value ARG);
* long real procedure LONGEXP(long real value ARG);

The exponential function.

integer procedure EXPONENT(real value ARG);

The integer value of the machine representation
exponent of the real argument is returned.

* integer procedure EXTERNAL(string(8) value ARG);

66

This entry returns the address of an external symbol.
The symbol must be given as a literal string of
between one and eight characters, with no embedded
blanks. The purpose of this function is to allow a
user access to data control and Fortran named common
sections, when used in conjunction with the STORE and
FETCH standard procedures.

* integer procedure FULLWORD(integer value ARG);

This procedure assumes that the integer argument
consists of a halfword integer in bits 0-15 and no
relevant information in bits 16-31. The result is
produced by a 16 bit Shift Right Arithmetic operation.

* real procedure GAMMA(real value ARG);
* long real procedure LONGGAMMA(long real value ARG);

The gamma function.

* integer procedure HALFWORD(lnteger value ARG);

This procedure assumes that the integer argument is in
the range -32768 <= ARG <= 32767 . The halfword result
is produced by a 16 bit Shift Left Arithmetic
operation. An exceptional condition will be
recognised if the argument is outside the expected
range.

complex procedure IMAG(real value ARG);
long complex procedure LONGIMAG(long real value ARG);

The real argument is returned as a complex value.

real procedure IMAGPART(complex value ARG);
long real procedure LONGIMAGPART(long complex value ARG);

The imaginary part of a complex quantity is returned
as a real value.

string(12) procedure INTBASE10(integer value ARG);

The integer argument is returned as the basic
formatted string S-DDDDDDDDDD .

string(12) procedure INTBASE16(integer value ARG);

The integer argument is returned as the basic unsigned
hexadecimal formatted string SSSSAAAAAAAA .

* integer procedure LINK(string(64) value ARG);

67

LINK will provide, in a subsequent release, a call
back facility which will enable a Fortran subroutine
to call a supplied main code Algol W procedure. The
argument will be a literal string giving the name of
the procedure which may be called. LINK will only be
valid when issued from within a CALL standard
procedure parameter list, for safety reasons.

real procedure LN(real value ARG);
long real procedure LONGLN(long real value ARG);

The natural logarithm function.

* real procedure LNGAMMA(real value ARG);
* long real procedure LONGLNGAMMA(long real value ARG);

The natural logarithm of the gamma function.

real procedure LOG(real value ARG);
long real procedure LONGLOG(long real value ARG);

The logarithm to the base ten function.

integer procedure NUMBER(bits value ARG);

The value returned is the integer corresponding to the
bits argument.

logical procedure ODD(integer value ARG);

Returns a logical value of TRUE if the argument is odd
and FALSE if it is even.

real procedure REALPART(complex value ARG);
long real procedure LONGREALPART(long complex value ARG);

The real part of a complex quantity is returned as a
real value.

integer procedure ROUND(real value ARG);

One of the three real to integer conversion functions.
The others are ENTIER and TRUNCATE.

real procedure ROUNDTOREAL(long real value ARG);

The properly rounded real value of the long real
argument is returned.

real procedure SIN(real value ARG);
long real procedure LONGSIN(long real value ARG);

68

The sine function.

* real procedure SINH(real value ARG);
* long real procedure LONGSINH(long real value ARG);

The hyperbolic sine function.

real procedure SQRT(real value ARG);
long real procedure LONGSQRT(long real value ARG);

The square root function.

* real procedure TAN(real value ARG);
* long real procedure LONGTAN(long real ·value ARG);

The tangent function.

* real procedure TANH(real value ARG);
* long real procedure LONGTANH(long real value ARG);

The hyperbolic tangent function.

+ integer procedure TIME(integer value ARG);

The TIME function has been extended to provide
additional options. Those now available are:

-2 Elapsed time, 1/60 sec
-1 Time of day, 1/60 sec, since midnight
0 Total CPU time, 1/100 min
1 Total CPU time, 1/60 sec
2 Total CPU time, 1/38400 sec
3 Problem state CPU time, 1/38400 sec
4 Supervisor state CPU time, 1/38400 sec

All items other than -1 are times since the program
started execution.

integer procedure TRUNCATE(real value ARG);

One of the three real to integer conversion functions.
The others are ENTIER and ROUND.

69

APPENDIX 5 Pre-declared Variables

This appendix gives a list of all pre-declared
identifiers in Release 6.0 of Algol W, other than standard
procedures and standard functions which are dealt with in
the two previous appendices.

In the following descriptions of pre-declared variables
the character preceding the name indicates the status of the
identifier:

*

*

*

* newly added in Release 6.0
+ significantly changed or extended

essentially unchanged from previous releases
$ deleted in this release

integer A COUNT

This is initialised to zero, and incremented by one
each time an ASSERT statement is encountered during
execution.

logical ATTNMARK

The ATTNTRAP standard procedure is used in conjunction
with this variable. It is initialised to FALSE when
trapping is enabled by calling ATTNTRAP(TRUE). When
an attention interrupt occurs ATTNMARK becomes TRUE.

logical CANREPLY

This variable indicates whether a user program is
running in conversational or batch mode. It is TRUE
for conversational.

reference(EXCEPTION) DIVZERO

Floating point divide by zero exceptions are
intercepted using DIVZERO.

reference(EXCEPTION) ENDFILE

End-of-file exceptions are intercepted using ENDFILE.
Note that two of the new entries, GETCARD and
XGETCARD, bypass this exception mechanism and set the
FILEMARK pre-declared logical variable only.

real EPSILON

The largest real number which, when added to 1.0, 1

70

gives a sum which is still 1.0 .

record EXCEPTION

This is the only pre-declared record, and is used.in
exception processing. XCPNOTED, XCPLIMIT, XCPACTION,
XCPMARK and XCPMSG are field identifiers of this
record, and all exception processing interception
variables are references to it.

$ reference(EXCEPTION) EXPERR

Formerly used to intercept exceptions in the
evaluation of the EXP and LONGEXP standard functions,
it has now been deleted from the new system and its
place taken by a new elementary function exception
reference named FUNCTION.

$ integer FIELDSIZE

This was a synonym of R W. It has never been
documented, and it is deleted in the new release.

* logical FILEMARK

*

Every input operation sets this variable to be TRUE if
an end-of-file occurs and FALSE if it does not.
However, unless the ENDFILE exception reference has
been suitably assigned, the Algol W error processor
will normally take control. If ENDFILE is assigned
to NULL, inspection of FILEMARK becomes the only way
of detecting an end-of-file.

long.real FN_VALUE

Under control of XCPACTION(FUNCTION), this variable
may be used to provide a replacement value for an
elementary function which has encountered an
exceptional condition. If it supplies a replacement
for a complex or long complex function, the imaginary
part will be zero.

* reference(EXCEPTION) FUNCTION

This variable is being introduced to provide
interception for all elementary function exceptional
conditions. As a result, the former reference
variables EXPERR, LNLOGERR, SINCOSERR and SQRTERR have
been deleted. The interception they provided, and
that for all of the newly introduced elementary
functions, is now vested in FUNCTION. One of the

71

options provided via XCPACTION(FUNCTION) settings will
be to load a replacement value from a pre-declared
variable FN VALUE.

$ integer I_LENGTH

This variable has been in the system for a long time,
but has never been used and has therefore been deleted
from the system. The facility it was intended to
provide (control of the input buffer visible length)
will be supplied by the QUALIFY standard procedure.

integer I W

The integer output field width in the Newcastle
formats.

reference(EXCEPTION) INTDIVZERO

Interception of the integer division by zero exception
is performed using INTDIVZERO.

$ integer INTFIELDSIZE

This was a synonym of I W. It has not been in the
documentation since 1973 and the opportunity is being
taken to delete it in the new release.

reference(EXCEPTION) INTOVFL

Interception of the integer overflow exception uses
INTOVFL. Note that Algol W will trap this condition
by default, whereas most operating systems (including
MTS) do not. This has caused problems in the past
but the new CALL and RCALL external linkages zero the
program mask before they call the subroutine
designated. Assignments to this reference are no
longer necessary to circumvent such problems.

$ reference(EXCEPTION) LNLOGERR

*

Formerly this reference was used to intercept
exceptions resulting from calls to the LN, LONGLN, LOG
and LONGLOG standard functions. It has now been
deleted and its place is taken by a new elementary
function exception reference named FUNCTION.

long real LONGEPSILON

The largest long real value which, when added to 1.0L,
gives a sum which is still 1.OL .

72

integer MAXINTEGER

The largest integer value the machine can support.
It is 2**31 - 1

long real MAXREAL

The largest floating point value which can be
represented on the machine. It is of the order of
7.237 * 10**75 .

$ integer O_LENGTH

*

This variable has been in the system for a long time,
but has never been used and has therefore been
deleted. The facility it was intended to provide
(control of the output buffer maximum length) will be
supplied by the QUALIFY standard procedure.

reference(EXCEPTION) OVFL

This allows floating point exponent overflow
exceptions to be trapped.

long real PI

3.14159 ... etc.

integer R_CODE

The return code from FORTRAN construction external
subroutine calls is found in general register fifteen.
R CODE is provided to receive this, and it now also
performs the same function for the linkage via the
CALL and RCALL standard procedures.

integer RD

The decimal digits field width for floating point
output using the Newcastle "A" format is in RD.
Initially it is zero.

string(1) R_EXPCHAR

The exponent separator with floating point out~ut is
initially the prime (')but may be set to "E" or "D"
if the output items are to be re-input by a Fortran
program. R EXPCHAR should be set to the required
character.

* integer R FIXED

73

-

*

*

.,

This is a synonym of RO.

long real R_FLOAT

See the description of RO.

On return from an external routine invoked by the CALL
or RCALL standard procedures, the value of floating
point register zero is saved in this variable. Hence
any real or long real result from a function procedure
may be retrieved.

string(1) R_FORMAT

The format designator for the Newcastle formats may be
"f" (for Freepoint), "S" (for Scaled) or "A" (for
Aligned decimal point). The default is "f" and it is
changed by setting R FORMAT. Some changes have been
made to the Freepoint output to make it tidier.
Complex values are now output as (A,B) rather than as
A+BI: this enables complex values to be re-input.

integer R_W

The total field width for floating point numbers
output using the Newcastle formats.

* bits RDR

*

This variable is provided so that standard procedures
such as GET which specify explicit I/O streams may
refer to the current reader stream.

integer RO

RO is referenced by both the CALL and RCALL external
subroutine linkages. RCALL loads general register
zero from it before calling the subroutine. Both
entries save the value of register zero on return in
RO. Integer and logical return values can hence be
recovered.

* string(8) R01

RO and R1 can be used together as a string.
is RO, and R01(414) is R1.

* integer R1

R01(014)

R1, like RO, is used by both CALL and RCALL. In this
case it is used to load and save general register one
instead of zero.

74

integer s_w

The space field width which will follow any item,
other than a string, which has been output using the
Newcastle formats is in SW.

$ reference(EXCEPTION) SINCOSERR

Formerly this reference was used to intercept
exceptions resulting from calls to the SIN, LONGSIN,
COS and LONGCOS standard functions. It has now been
deleted and its place is taken by a new elementary
function exception reference named FUNCTION.

$ reference(EXCEPTION) SQRTERR

*

*

Formerly this reference was used to intercept
exceptions resulting from calls to the SQRT and
LONGSQRT standard functions. It has now been deleted
and its place is taken by a new elementary function
exception reference named FUNCTION.

integer SYSCODE

At some point we will allow calls to the Alberta style
string I/O routines (GETCARD, XGETCARD, PUTCARD and
XPUTCARD) to return successfully even if a serious
error occurs. When this happens, SYSCODE will
contain the I/O routine return code.

integer SYSINDEX

This will contain the line (or index) number used by
the last completed I/O operation.

* string(256) SYSPARM

*

This string contains, on entry to the program, any
string provided as a run-time parameter in the par
field of the $RUN command or on a /EXECUTE control
card. If no such string is given, it will contain
all spaces.

integer SYSTERM

This variable controls the printing of information
when a program terminates execution. The values and
their actions are:

0 or less
1

No timing information printed
Total CPU time only printed

75

*

2 or more Total, supervisor, problem and
elapsed times are printed.

The conversational default is 1; in batch it is 2 .

reference(exception) UNFL

Floating point exponent underflow can be intercepted
using UNFL. By default Algol W does not trap this
exception.

logical WRITE_CC

This variable has been added to give a user program
dynamic control over the setting of the run-time
CC/NOCC switch. By default Algol W will generate
carriage control characters automatically if the
Newcastle output entries, WRITE, WRITEON or WRITECARD
are used. Setting this switch to FALSE is equivalent
to supplying PAR=NOCC in the run parameter field, and
will disable this action. The Alberta style entries
(PUT, PUTON, PUTCARD or XPUTCARD) never generate
implicit carriage control characters.

* bits WTR

This variable is provided so that standard procedures
such as PUT which specify explicit I/O streams may
refer to the current writer stream.

integer XCPACTION

The third field designator of the EXCEPTION
pre-declared record. It specifies which option to
take in the exception processing.

integer XCPLIMIT

The second field designator of the EXCEPTION record.
It specifies the number of exceptions of its
particular kind to be processed before terminating
execution.

logical XCPMARK

The fourth field of the EXCEPTION record. If TRUE,
then the message XCPMSG is printed each time an
exception occurs.

string(64) XCPMSG

76

The fifth field of the EXCEPTION record. The
contents are printed as an error message when an
exception occurs. This action is under the control
of XCPMARK.

logical XCPNOTED

The first field of the EXCEPTION record.
is set to TRUE when an exception occurs.

77

This flag

APPENDIX 6 Format Strings

Input/output and other data conversion operations can
be performed under the control of format strings. They are
used with the procedures

GET (stream, format-string, input-list);
GETON

GETSTRING (string, format-string, input-list);

where stream is an integer or a string input device name,
format-string> is a string and input-list is a list of
variables whose values are to be read, and

PUT (stream, format-string, output-list);
PUTON

PUTSTRING (string, format-string, output-list);

where stream is an integer or string output device name, and
output-list is a list of expressions whose values are to be
written.

The format string is a string literal or a string
variable which contains up to 256 characters, and consists
of one or more format 'specifications separated by commas
(,), spaces or slashes (/). For each item in the I/O list
there should be a corresponding format specification. That
specification, or field descriptor, describes, on input, the
kind of information in the field or, on output, the
appearance of the data when it is printed.

Each field descriptor consists of a letter (I, F, E, L,
A, Z, H, X, T which designates the type of information
(integer, real, etc.) and a number which designates the
field width. The decimal and floating point descriptors (F
and E) also require, for output, the number of decimal
digits that are to be printed.

Integer (I) and real (F and E) have some rules in
common.

On input, a sign, if any, must be the first non-blank
character; if no sign appears, the number is assumed to be
positive. A completely blank field or embedded blanks will

78

cause an error message to be produced. If no decimal point
appe~rs in For E format, it is assumed to follow the last
digit. The number can be placed anywhere within the
specified field.

On output, the number appears right justified in the
field. If the field is too small it is increased to the
default value so that something useful can be printed.

With all format types except the tabulator, T, a repeat
factor can be placed in front of the field descriptor.
Several field descriptors, of all types, can be grouped
within brackets and a repeat factor put before thee opening
bracket. For output using the Hand X formats, if, instead
of an integer repeat factor, the letter "R" is used, the
value of the repeat factor is taken from the next item in
the data list.

There now follows a description of the different format
types.

I-FORMAT

This is used to transmit integer values. The form is
Iw where w is the field width. For example, if X and
Y are integer variables

GET(5, "I3, I5", X, Y)

reads x from the first three columns and y from the
next five.

F-FORMAT

F-format is used for real values, and takes the form
Fw.d where dis the number of digits after the decimal
point. The value can be input with or without an
exponent: it is output in decimal format, without an
exponent, unless the field width specified is too
small to permit sensible printing. On input the 11 .d"
is ignored and may be omitted.

E-FORMAT

Real values are always output with an exponent if
E-format is specified, but input is exactly the same
as for F-format. The form is Ew.d, where w, the
field width, must be large enough to allow 4 spaces

79

for the exponent to be printed. For example

X:=123.456;
PUT(8, "E9.2", X);

prints

1.23'+02

H-FORMAT

This is used for carriage control and for printing a
line of identical characters. If encountered on
input, it is skipped. Its form is He where c is one
character. If it appears as rHc a sequence of r
characters is output. For example

PUT(6, "H1, F5.2", X);

prints the value of X at the start of a new page.

X-FORMAT

The form of this format is wX. On input, w columns
are skipped and on output w spaces are printed. No
data is transmitted.

T-FORMAT

This is simply a tabulator, of the form Tcol, where
col specifies the location of the start of the next
field descriptor. If the column specified is less
than the current position in the record, the field
begins in that column in the next record.

LITERAL STRINGS

The format specification can include literal strings
enclosed in single quotes ('). These are printed
exactly as they appear.

To force the start of a new record on input or
output, a slash (/)maybe inserted in the format
string.

If the format string runs out before the data
list is exhausted, further processing of the list

80

follows the normal Newcastle Algol W
rules. if the data list is exhausted
Tor literal strings are processed.
items are ignored.

81

free format
first, only H, X,

All other format

APPENDIX 7 Code Generated by the CALL Procedure

For: CALL ("SUBR", A, B); the code generated by
Pass Three would be:

CH1

CH2

LA
ST
LA
ST
BALR
SR
SPM
01
LA
L
MVI
BALR
MVI
STM
STD
SPM

R3,A
R3,PARLIST
R3,B
R3,PARLIST+4
R3,0
R 1 , R 1
R1
PARLIST+4,X'80'
R1,PARLIST
R15,=V(SUBR)
CALLFLAG,X'02'
R14,R15
CALLFLAG,X1 00 1

R15,R1,RETCODE
FRO,RFLOAT
R3

Load first parameter address
Store in first word
Load second parameter address
Store in second word
Save program mask
Zero register one
Zero program mask
Set VL end of list bit
Load parameter list address
Load entry point address
Set "CALL" indication
Call external routine
Reset "CALL" indication
Set R CODE, RO and R1
Set R-FLOAT
Restore program mask

The two instructions marked CH1 and CH2 would not be
generated if the NOCHECK option is specified for the
compilation.

As can be seen from the example, the instruction
overheads are 9 instructions for a parameterless call with 2
instructions for checking information. With parameters,
there is one instruction to set the VL bit, and at least two
instructions for each parameter. Additional instructions
will be generated if the quantity is non-scalar, or if it is
a reference or string field identifier.

These instructions are generated in-line for each call;
CALL therefore has the status of a macro instruction in the
eyes of the compiler (as are READ, WRITE etc.). We believe
this instruction sequence to be the minimum safe set. It
is not possible to do clever instruction saving things with
parameter address calculations because this would clash with
the compiler code generation optimising algorithm.

82

APPENDIX 8 A Commentary by James Eve

This commentary, which was MTS Workshop paper 9L, was
written by Jim Eve after seeing a draft version of this
report. We have included it here for the record, as some
of information contained is no longer easily obtainable
elsewhere.

-----***000***-----

Some Comments on the Evolution of the Algol W
Compiler currently used at Newcastle

James Eve

Two days before the beginning of the MTS workshop
during a discussion of the report by Alan Hunter and
Margaret Hindmarsh, Brian Randell suggested that I should
try to write a semi-historical account of the evolution of
the compiler. These hurriedly composed notes are the
outcome. It would have been nice to have checked a few
things properly and removed some unevenness in them but even
so they should explain in part why some suggested changes,
admittedly desirable, have either not been made or,
alternatively, have been made in a way which is not the most
aesthetically appealing.

It is worth re-iterating at the outset that the initial
design of the Algol W language was completed as long ago as
1965 and the implementation of the compiler occupied roughly
the period 1965-67. The general understanding of
programming languages and compilers have improved radically
since then. It is also worth stating that in 1965 the
architecture of the IBM 360 and its idiosyncracies were not
the familiar objects that they are now, Nonetheless Algol W
and its compiler have been in use first at Stanford and
subsequently at many other places for over ten years. The
endurance of the Algol W system in view of the subsequent
onslaughts upon it and the subsequent development of other
languages and compilers is something of a tribute to Wirth's
foresight and the skill of the graduate students who
implemented it.

83

The first upheavals in the compiler occurred during its
implementation when consideration was given to providing
facilities for parallelism and data files; these were
eventually abandoned in view of the substantial revision of
already completed work which would have been needed. They
were responsible for some complexity and generality in the
coding which in retrospect were a disadvantage.

The original objective was to produce a "production"
compiler rather than a student compiler as typified by
WATFOR and the compiler was well on the way to completion
before the U-turn leading to its consideration for
educational use. In the event it was found that modest
changes to the operating system interface sufficed to
produce sufficiently high compilation speeds and low enough
system overhead to meet the requirements of such
environments; the basic structure of the compiler itself was
unchanged. Wirth subsequently criticised the result
pointing out that this change upset the balance of the
design drastically. However that may be it had one very
useful consequence - a single compiler which could meet the
rather disparate needs of teaching and production. While
not an optimising compiler in the usual global sense it does
perform a number of local optimisations which made it
something of a "best buy" in comparison with current
Algol 60 compilers in Wichman's surveys. Some unpublished
work showed that its output competed favourably with
Fortran G compiled programs though the latter undoubtedly
won in the case of programs making heavy use of arrays.

The compiler produced re-entrant code from the outset
though not in OS object module format as at present. In
view of subsequent events it is interesting that
considerable effort was made to provide a good error
recovery system to cope with syntax errors. This system
was ad hoe and achieved at the expense of syntactically
invalid "real programs"; it also depended heavily on the
particular grammar then in use.

My knowledge of the compiler's history between 1968 and
1970 is sketchy. To the best of my knowledge a number of
extensions and modifications which were made at that time
were never completely documented. In that period Sue
Graham, one of the implementors of the compiler, used it for
experimental work relating to her Ph.D. thesis. She
evolved a technique which improved the efficiency of the
simple precedence parsing algorithm quite dramatically;
overall compilation times were reduced by 10%-15%. Not

84

surprisingly her algorithm was incorporated into the
compiler then in use at Stanford. Unfortunately the syntax
error recovery system was incompatible and was abandoned -
effort to repeat the ad hoe reconstruction was not
available. A more primitive "panic mode" recovery, which
does not differ radically from that in current use, was
installed.

A very much more substantial change to the compiler
resulted from Ed Satterthwaite's Ph.D. work which dealt with
the provision of source language debugging tools in high
level languages. The Algol W compiler ~as the vehicle he
used for practical evaluation of his ideas and the debugging
system is the most obvious aspect of his work. Remarkably
little of the compiler was unaffected by the incorporation
of the debugging system and as a consequence he was probably
the first and only person to have a detailed knowledge of
the working of the whole compiler. In the course of his
work the scanner was recoded completely making it more
robust, the run-time support package was reorganised and a
large part of it recoded, and the scanner and parser were
made simultaneously core resident (both having been reduced
considerably in size) improving batch monitor performance.
With an eye to the future, this phase and the code
generation phase of the compiler were made re-entrant and
the run-time support routines became (almost) serially
reusable. The compiler was embedded in OS, its output was
recast in OS object module format and several performance
improvements were made.

Soon after the debugging system was released Ed
Satterthwaite spent two years at Newcastle which had already
adopted Algol Was its main teaching language. By then he
was aware of several constraints - some original design
constraints, some due to implementation techniques, others
arising from incompatibilities of various extensions - which
were causing problems both in reliability and efficiency.
At that time Tom Anderson and I were experimenting with an
SLR parser embedded in the compiler. Compared with simple
precedence parsers, SLR parsers impose much less stringent
requirements on the form of productions defining the grammar
of the underlying language. It was possible to take
advantage of this to remove some of the constraints
mentioned.

For a period of a year or two after this no major
changes that were visible to the user were made. (The
addition of formatted output was fairly trivial.) Quite a

85

lot of work was done, however, to make the compiler more
reliable. In particular Ed dealt with a number of known
bugs arising from the constraints already mentioned while I
coped with tracking down new ones.

By 1972-73 compiler crashes were very infrequent. The
batch monitor system logged all crashes and gave parti~l
diagnostics. Weeks would go by then there would be two or
three crashes within a couple of days. It took a long time
to locate the cause which turned out to be a problem common
to all compilers since they all interpret the input text to
a certain extents in parallel with the parsing. In the
event of a syntax error, a compiler implicitly or explicitly
makes changes to the text to effect a repair. This is a
non-trivial task but it is insignificant compared to the
difficulty of ensuring that data structures built by the
interpreting routines are adjusted to be consistent with the
repaired form of the text. The interpreting routines are
designed to work on valid text - their effect on all
possible invalid forms just cannot be comprehended at the
design stage.

Inconsistencies between data structures actually built
from the erroneous text and what would have been built had
the repaired text been processed result subsequently in wild
store operations clobbering who knows what. In the context
of the batch monitor the effects were particularly
unfortunate. The offending user program got its error
messages and clobbered say the scanner - the next user
program entered execution, the compiler crashed, the user
could not fathom his output and threw the job back in, the
monitor reloaded the compiler and next time his run was O.K.
Then the offending user program returned without the
offending errqr having been fixed!

Once identified it was possible to overcome this
problem without too much difficulty. SLR parsers have the
property of signalling syntax errors on the first invalid
token. The processed text is therefore the prefix of a
valid program and the data structures built by the
interpreting routines are safe - if a repair can be effected
without implicitly changing the processed prefix. This we
failed to do but it was possible to adopt a systematic
change to prefixes which in practice effectively eliminated
the problem.

86

Soon afterwards we were able to run the compiler in MTS
segment 2 so that overwriting of the first two compiler
phases was not possible but the run time support library and
the operating system interface remained exposed.

Afterwards at my instigation two of our graduate
students, Paul Wynn and Peter White, looked at the
possibility of error recovery under the constraint that no
changes are to be permitted to text already processed. The
results were quite promising; sufficiently good to suggest
that a recovery scheme with excellent reporting capabilities
could be built which would at least match anything currently
available. Furthermore since the recovery was based on
tables used by the SLR parser, changes to the grammar could
be permitted and the error recovery scheme would
automatically react. Unfortunately, for various reasons,
subsequent developments of these ideas did not take place in
the Algol W compiler. In principle a recovery scheme along
these lines could be installed in Algol W but most users
seem to want other things of Algol W than better error
diagnostics and error recovery so that other tasks have
taken priority.

More recent developments have been described in the
report by Alan Hunter and Margaret Hindmarsh. These notes
may shed some light on why some of the things are
implemented the way they are. The compiler has now reached
a stage where some basic design decisions are limiting
factors on further development. The run time register
allocation scheme is most notable among these. Attempts to
circumvent Algol W's lack of variable initialisation
facilities by extensive use of assignments of constants to
variables is frustrated by the limit on the number of
constants which can be stored in a program segment. This
limit is essentially imposed by the IBM 360 addressing
mechanism and can only be overcome by redesign of the
register allocation scheme to free base registers. An
uneasy truce exists between block expressions, the debugging
system and the register allocation scheme. Removing the
restriction that proper blocks can only, be nested to a depth
of eight is similarly constrained. Several limits of the
latter type are known to more than one phase of the compiler
and are used implicitly. For example, certain stacks and
tables in the code generation phase would overflow if some
of these limits are raised. Which limit affects which data
structure is distinctly a problem. There is some evidence
that changes made long ago ove~looked this fact.

87

These are but a few examples to show that in certain
areas there is little room for manoeuver. The compiler at
present is quite robust but ...

88

APPENDIX 9 Bibliography

Wirth, N. and Hoare, C.A.R.,
11A Contribution to the Develpment of Algol",
CACM 9 (1966) 413-431

Bauer, H., Becker, S. and Graham, S.,
11Algol W Implementation",
Stanford University Technical Report CS98, Stanford,
Cali f. , USA (1968)

Wirth, N.
11A Computer System for Educational Environments",
Lecture Notes, International Summer School in New Trends
in Computer Programming} K0benhavn, Danmark (1968)

Wichman, B.A.
"Basic Statement Times for Algol 60 11

,

NAC Report No.15, National Physical Laboratory,
Teddington, England (1972)

Satterthwaite, E.H.
"Source Language Debugging Tools",
Stanford University Technical Report STAN-CS-75-494,
Stanford, Calif., USA (1975)

Wynn, P.
"Error Recovery in SLR Parsers",
M.Sc. Dissertation, University of Newcastle upon Tyne,
Newcastle, England (1973)

Marsland, T.A (Editor)
11Algol W References"
Technical Report TR75-15, University of Alberta Computer
Science Dept., U. of A., Edmonton, Alta, Canada

Salisbury, R.A. (Editor)
MTS Manuals:
- 1: "The Michigan Terminal System", (1978)
- 3: "System Subroutine Descriptions", (1976)
- 5: "System Services", (1976)
- 16: "Algol Win MTS", (1978)
The University of Michigan Computer Center, Ann Arbor,
Mich., USA

Boettner, D.W and Alexander, M.T.
"The Michigan Terminal System",
Proc. I.E.E.E., 63 (1975) 912-918

89

APPENDIX 10 Glossary of Terms

This Appendix provides a glossary of some of the
technical terms used in this report. It is intended for
readers who do not normally deal with Applications Software
at the implementation level.

BLOCK DATA

COMMON

A sub-program for initialising variables in named
COMMON in a Fortran program.

A storage region in a Fortran program that may be
referred to by the calling program and one or more
sub-programs. COMMON blocks may be named or blank
(unnamed).

CONTROL SECTION

See CSECT

CSECT

DSECT

A CSECT, or control section, is an object program
module in System/370, containing executable
instructions or data. For a CSECT to be re-entrant,
this data must be constant.

A Dummy Section of an Assembler program. These are
used to address data regions. They are particularly
useful to a programmer working in a re-entrant
environment as they allow dynamically acquired storage
areas to be addressed conveniently. The term DSECT
tends to be applied loosely to the storage areas
themselves as well as their structures.

DUMMY SECTION

See DSECT.

EFL routines

EFL stands for Elementary Function Library. The
routines in this library provide a programmer with the
commonly required mathematical functions, such as
sine, cosine, etc. The set used in Release 6.0 of

90

.,

Algol W originated at the University of Chicago, and
were the work of Hirondo Kuki and his co-workers.
These were subsequently modified at the University of
Michigan for the MTS Fortran library. The changes
required for Algol W use only affect the internal
linkage to the error processor.

EQUIVALENCE

ESD

A method of controlling allocation of data storage in
a Fortran program. In particular, it causes storage
locations to be shared by two or more variables of the
same or different types. Use of this facility allows
a Fortran programmer to, for example, treat most of an
array as having floating point numbers stored in it,
but cause some elements to be interpreted as integers.
Some MTS System Subroutines pass back a vector of
information in which the type varies from element to
element so an EQUIVALENCE facility can be invaluable.

ESD stands for External symbol Dictionary, and is
usually applied to the loader card of the same name.
ESD cards in an object program specify which other
program modules or or system entries are required by
the module that they head. They do this by
specifying the External Symbol name of the modules or
entries needed.

ENTRY POINT

The address of the the first machine instruction to be
executed when control is passed by a calling routine.
Usually there will be an External symbol name
associated with an entry point. For instance, the
entry point of an Algol W object program is the
location of the symbol AWXSTART.

FLOATING POINT REGISTERS

These are high speed storage regions within the
machine's central processor used for operations on
floating point numbers. In the context of Algol W
this means quantities of types REAL, COMPLEX, LONG
REAL and LONG COMPLEX. the registers are numbered 0,
2, 4 and 6. Each of the four available provide 8
bytes (64 bits) of storage. However, operations on
short precision quantities (REAL and COMPLEX use only
the leading 32 bits of the register.

91

·i
I

GENERAL REGISTERS

General registers, of which there are 16, numbered 0
to 15, provide high speed storage of 32 bit binary
integers. Algol W uses these for operations on
quantities of types INTEGER, LOGICAL, BITS and
REFERENCE. Their main purpose in System/360
architecture is to hold addresses of storage areas.
Machine instructions specify addresses either as the
contents of a register, or as a fixed offset from the
address contained in a register or registers.

IEBUPDTE

INC

IEBUPDTE is one of IBM's OS utility programs. It
contains facilities to establish and maintain the
Partitioned Datasets used in OS to store macro (and
other) libraries.

This stands for Include, and is an MTS-specific loader
card. It is used to specify the name of a file
containing further Loader cards required to
successfully load the object program.

LOADER CARDS

LCS

Loader cards are the output from the code generation
phase of the compiler, containing a representation of
the machine instructions forming the object program.
In MTS the loader, or in MVS the linkage editor, reads
these cards to produce an executable program. The
MTS loader forms the object program directly in memory
to do this. In MVS it is a two stage process.
Loader cards normally come in groups of
ESD/TXT/RLD/END cards called an object module. These
and the other loader cards available are fully
described in MTS Volume 5, "System Services".

The Low Core Symbol loader card. It is used to force
a search of a low core symbol table for unresolved
external symbols at load time.

LCSYMBOL

This is the main MTS user symbol table, containing the
names and addresses of commonly required entries such
as READ, WRITE, etc. The subroutines whose access is

92

LDT

via this table are the m2in resident system routines
described in MTS Volume 3, "System Subroutine
Descriptions".

The Loader Terminate card. Its purpose is simple.
It provides an end-of-file indication to the loader.
It may optionally specify a symbol name which is to be
the program entry point.

LOW CORE SYMBOL TABLE

A low core symbol table is a simple in-core data
structure which is heavily used in the MTS operating
system to supply tables of subroutines referenced by
the loader. The format is a fullword count N of the
number of entries, immediately followed by N 12-byte
entries. There is one entry for each symbol defined
in the table. Each entry consists of an 8-byte
external symbol name followed by a 4-byte entry point
address.

NAMED COMMON

See COMMON.

OS TYPE I LINKAGE

This term describes the subroutine calling convention
followed in many Assembler programs, and which is, in
particular, used by IBM Fortran compiled code. The
linkage convention lays down which registers are to be
used in a call, and the responsibilities of the
calling, and called, routines. Hence:

The calling routine must:
1. Supply a 72 byte fullword aligned register

save area addressed by general register 13.
2. Load the entry point address of the called

routine into general register 15.
3. Load general register 14 with the address

of an instruction to which control is
to be returned when the called routine
terminates.

4. Pass parameters, if any, via general·
registers O and 1. See later.

The called routine must:
1. On entry, save the caller's general

registers in the save area provided from

93

offset 12 bytes. Registers 14 to 12
are saved in that order.

2. Subsequently, establish a new save area of
its own such that:
a. Word 2 (offset 4 bytes) of the new save

area contains the address of the old.
b. Word 3 (offset 8 bytes) of the old save

area contains the address of the new.
c. General register 13 contains the

address of the new save area.
3. On exit, restore the caller's registers,

with the possible exception of 15, 0 and 1.
4. Indicate success or failure by a return

code in register 15. This is normally
positive multiple of 4, with zero
indicating success.

Parameters may be passed either as register values
(see register call) or by the use of a parameter list
(which see). Return values (also defined elsewhere)
are passed by a register load. Note that parameter
passing, while associated with the OS Type I
convention, is not strictly part of it.

PARAMETER LIST

PARSE

Parameter lists are used to pass the addresses of
subroutine parameters to a called routine. In the
S-type call, associated with the OS Type I linkage,
the parameter list address is passed in general
register one. It consists of a contiguous list of
fullword addresses, one for each parameter. In the
variable length convention, bit zero is set on the
last parameter address, and a null parameter list is
indicated by zeroing register one before the call.

To check a string of tokens for correctness according
to a given set of grammatical rules.

PASS ONE

Pass One of the compiler is the lexical scan stage.
The input symbols are scanned and the program
converted to a tokenised string. The compiler
listing is produced as the input records are fetched.
The internal tables used by the compiler are built by
the scanner but not completed until later in the
compilation. Where possible, program correctness is
checked in pass one. However, parsing is left until

94

later. The facility in Algol W which allows procedures
to pre-reference variables in outer blocks means that
checks requiring knowledge of the scope of variables
cannot be made until the whole program has been read
in.

PASS TWO

Pass two parses the tokenised program string, checking
it for grammatical correctness. The program tokens
cause the invocation of semantic routines whose output
is the tree, or more usually trees, representing the
program. Decisions taken at this stage include the
segmentation of the object program. There is one
tree for each program segment to be produced.

PASS THREE

Pass Three is the code generation stage. By a
traverse of each tree produced in pass two, 370
machine instructions are generated. These are output
as a standard OS object deck (see Loader Cards).

PROGRAM MASK

System 370 maintains a machine status register called
the program status word (actually 8 bytes). Part of
this word, one byte, is called the program mask and
contains the condition code, instruction length code
and four bits specifying a set of interrupts which may
be masked from user programs.

PROGRAM SEGMENT

A program segment is a control section output by the
compiler code generator. Program segments are
generated for main programs, procedures, non-trivial
blocks (those with declarations) and certain block
expressions.

RECORD DESCRIPTION TABLE

This is a small control
with every Algol W main
information required at
allocation for records.
AWXRCTBL.

RE-ENTRANT CODE

section output by the compiler
program containing a table of
run time to control storage

Its external symbol name is

An object program is re-entrant if more than one task

95

may simultaneously execute it without mutual
interference. This implies that the program is pure
code - that is, contains only instructions and
constant data. Self-modifying code is not
permissible. Data areas changed by the program must
be maintained as separate copies for each task which
is active. On System/370 the normal method of
achieving this is to have at least one general
register dedicated as a DSECT base register.

REGISTER CALL

Some simple subroutine do not use a parameter list for
passing data values but instead load parameter values
or addresses into general registers, usually zero
and/or one. Several of the basic MTS I/O entries
take their parameters in this way. (See OS Type I
Linkage).

RETURN VALUES

RIP

Return values are ~he results of computation by a
subroutine. The term is usually applied to values
left in registers, in which case integer values are
left in general register zero and real or long real
values in floating point register zero.

This stands for Reference If Present, and is another
MTS specific loader card. It is used to remove the
need for forward referencing of symbols in,a one-pass
loader environment. Symbols which are required later
in a program load can be specified on an RIP card to
force loading or address resolution as they are
encountered.

SAVE AREA

SCALAR

A 72 byte region supplied by a calling routine so that
a called program may save the caller's registers. It
becomes part of a doubly-linked list of areas chaining
subroutine calls together. See OS Type I Linkage.

A simple variable occupying one cell of machine
storage, as opposed to an array or other structure.

TOKENISED PROGRAM

96

The output from the scanner phase is a string
representation of the source program as a series of
tokens. Comments and blanks are removed, and all
reserved words and identifiers are converted to codes
held in the compiler tables. This tokenised program
forms input suitable for the parser.

TRANSFER VECTOR

TREE

Because of limitations in the representation of object
programs in standard object deck form, routines
requiring a large repertoire of external subroutines
tend to pass the addresses of groups of routines in a
single array called a transfer vector. The
displacement within the vector of the address of a
particular routine will usually be indicated in a
DSECT describing the vector.

The output from the parser semantic routines is a
linearised tree. Each item in the tree
representation is a operation code for an intermediate
machine. These codes are used by the code generator
to produce System/370 object code. In fact, for all
but very simple programs, a series of trees is output,
one for each program segment.

V-CONSTANT

In Assembler, references to to external routine
addresses are made using constants of data type V,
hence· the term.

VARIABLE LENGTH CONVENTION

See Parameter List.

VECTOR

A contiguous array of scalar data cells.

WEAK EXTERNAL

Weak externals are external symbols which need not be
resolved at load time. If the loader cannot find the
relevant symbol, its address constant is filled in as
zero. This allows a routine to test for the
existence of an optional external routine before
attempting to transfer control to it.

97

• I

'

