Werkvespreking 24 september 1968 RA W19=1
M,H. van Emden
Onderverp:

ADAPTIVE ROMBERG INTEGRATION

2, wmr a.dagtive Romberg integ: ;-:.

Fomberg's method for numerically integrating a function of one variable
has many desirable properties (see: Bauer F.L., H. Rutishauser and E.
Stiefel: New aspects in numerical quadrature, Proc. Symp. Appl. Math.,
vol. 15 (1963)). One of these is that a polynomial of arbitrary high
degree may be integrated exactly if enough function values are avail~
able. The function values used are spaced at equel distances and this
is a drawback when the function shows intense fluctuations in some

part of the interval of integration.

A procedure will be called 'adaptive’ i1f there is a provision for adapt-~
ing the spacing of the function values to the local intensity of fluc—
tuation of the integrand. Adaptive integration procedures have been
published and these have the drawbeck that an integration formula of
fixed order 1s used, although in many cases enough function values are
calculated to use a formula of higher order. Because this is not done,
unnecessarily many function values are used.

The procedure to be described below combines the full power of Romberg's
method with the adaptive feature. '

Be The me‘;hod. o;{_buildiwrthg 'Bomberg scheme

In executing Romberg's method the scheme is usually (see, for instance,
algorithm n0.60 by F.L. Bauer, Comm. ACM, &, p.255) built up as follows.
Suppose the Romberg scheme (denoted from now on by 'RS°) has been cal-
culated for 2{n+1 function values and suppose that the correction term
wvas not yet amall enough. Then between every two existing function values
a new function value 1s inserted, 2jn in all, and their sum is used for
extending the existing RS by one row.

It is, however, possible to derive the RS over a whole interval from the
RS's belonging to its left and right halves, vhich in their turn are
derived from ... and so on. This process 18 executed by a recursive ALGOL
procedure. This method is somewhat more laborious than the usual one,

but it has the advantage that the adaptive feature may be introduced.

Suppose that over a whole intervel the correction is too large. If the
function happens to be smooth in some subinterval, this will show as

a amall correction in the appropriate RS and the integration, of that
interval at least, may be finished. In this way the calculation of an
RS over an interval causes zero or more subintervals to disappear from
the rest of the process because a satisfactory approximation for the
integral over these has been found. For the remaining subintervals we
know that between every two existing function values a new function
value has %0 be inserted (‘°interstitial function value' in the sequel)
before it mekes sense to apply the same procedure to them.

RA W19-2

C. Stoge memmt

Every interval treated by the procedure 'subinterval' may give rise to
several ssparate (non-adjacent) intervals to be treated likevise by
*subinterval® at a later time. At any one moment only one interval is
being handled and several others may be waiting for their turn. Inter—
vals are represented by a set of function valuea stored contiguously

in the array 'fa'. The problem is t0 manoesuvre the intervals in such

a way that all the unused elements of fa ars adjacent to each other

and to the one interval being treated at the moment.

The solution used in our program may described as follows. The intervals
valting for their turn are stored in two stacks in fa, the *waning stack'
at one end and the 'waxing stack' at the other end. The unused space

is in the middle. In general the interval being intergrated sits

astride the unused space and is progressively transferred, as the build—
ing of the RS proceeds, from the waning stack onto the waxing stack.

This 18 possible because in principle the building up of the RS requires
the funciion values sequentially. Some past function values are also
required, but the number of these is in the order of the logatithm of
the total number of function values. They are conveniently stored as a
local variable in the various recursive activations of the procedure
‘rom'. The *interstitial values' are placed on ‘top of the waxing stack,
alternating with the values coming from the waning stack.

The adaptive features requires that a part of an interval be deleted if
the correction term in its RS is small enough. Whenever an RS is com—
pleted, the corresponding interval is on top of the waxing stack.
Deletion is effected by a suitable change of the stack pointer trans—
ferring the appropriate part of the waxing stack to the unused space
and by placing two descriptive elements on top of the waxing stack.

In this way the remainder of the interval is made into a separate
interval.

When the waning stack has vanished, the direction is reversed and the
waxing stack becomes the waning stack.

When both stacks have vanished, the procedure 'integral' is finished.

D. The re;sult_.s of some tes"l'.s

The following table shows the result of some tests. The performance of
ALGOL procedures for numerical integration using adaptive simpson
(actually using, due to extrapolation, the 5-point Romberg formula),
Romberg and adaptive Romberg techniques may be compared for some
integrands, It will be seen that in general less function values are
needed at the expense of more processing time per function. When a single
function value takes more than a certain minimum amount of time €o compute,
the adaptive Romberg procedure will be faster.

&bE, Wil s rel,tol,= =3 abs,%cl.= rel,tol,=s ;=5

&dap‘t.
§im:p8. e 1907@‘%5 n@ 17 "‘. 1907&507 005

romberg -, 191025815 .02 9 =.190701539 .03

adapt.
ropberg —, 191025815 04 9 =,190701539 .08

integral(0, 2, exp(x X xj % sin(exp(x x x)), x):

e §Q,.N Sime coun® resuld time count

abe.tol. =

—~. 190702523
-, 190702522

RA Wi9=3

Telstol.= =T &bs.%ol.= rel.tol.= =0

time count result 'time count

121 -, 190702523 62 397
33 =,190702523 .05 33
33 =.190702523 .iT 33

abs.%0ol.= rel.tol.= =3 abs,tol.= rel,tol.= x5 abs.tol.= rel.tol.= yp=7 abs.tol.= rel.tol.= &9

&dﬂpto ‘
simps. .+.963629789 A1 129 +.963391383 1.2i
*omber&-i?-.902980336 20 65 +.964208997 1.49

adapt.
Werg—e 002634385 .28 L1 +.963368480 i.28

reselh %time cound r@sul‘t time count

385

)

£
VA

18

o

+.963402535
+.963401092
+.963397889

‘time bexm‘b resal% time coum'.

25 m-¢,9634.02539 12,73 4037

1025 +.96340%1092 2.94 1025

305 +.963402538 3.87 529

integral(exp(-n), 1, 1/(n X x), X)s n= 5

RA W19k

9

a.bs.'tol,a rel.tol.a =3 abs.tol = rel.tol.= ;=5 abs,tol.s rel.tol.= x~7 abs.tol.= rel.tol,=
result time count result time count result time cownt vesult time count
22;@:: +1,000248896 ,03 29 +1.000000542 .08 69 +1.000000001 .2k 213 +1,000000000 .79 685
rcm@@:g+1.o7%5h6713 .05 33 %1?002306617 ,13 129 +1.000180265 .26 257 +1.000006760 .47 513
;g§§:ég+1.002397933 .12 25 +1.00000782 .29 57 +1.000000112 .60 113 +1.000000002 .68 129

integral(exp(-n)s 1, 1/(n % x), x)5 n= 10

ab8,50L.= rel.tol.s 43 abs.tol.= vel.tol.s ;5 abs.

resuld %ime count resuls Yime count

tol.s rel.tol.=s y—T abs.tol.= rel.tol.= y9 -

result time count

result time count
Z?Zﬁﬁi + 688633649 .06 b5 +1koooooou66 17 189 +1;oooooqoow ,53 - 449 +1,000000000 1.6§ jkoé
pa&berg+5 812@03280 -1 129 +2 016u09633 ,47 515 +1.15957561 1.79 2049 none k.30 5000
?ﬁigﬁ;g +.688641583 .22 45 +1.000008292 .59 113 +1,000000186 1.15 217 +1.000000002 1.91 353

integral(exp(-0), 1, 1/(n X x), %); n= 20

RA W19-5

&bs,%Oloa 2310%1.; lg=’3 ab@&%@l,s T@l;t@l.ﬁ Li‘='5 abS.‘bOl.S relotolaa n='7 abSOtolo§ r@lutol-oa f“9 ‘.

rasult time count

time cound r@suit :
adapt, ' ‘ ' B '
sizps, +,3h6587196 205 hs ¢,5342h157h .20 169

romberg +.36085% 4 1.79 20k9 k,29 5000
adapt. ' o '

romberg +.346595133

3}021@

.21 s +.589163316 .71 141

integral(0, 1, (n + 1) X x Any X); n= 5

result - t;me count

669

<‘resuit~- timé count

+.727588879 .79 +.874535761 3.08 2621

-none - k.26 5000 none k.15 5000

+.830077291 2.00 385 +.989774310 L4.33 817

absothoaAr@lotdl,s g%3 ab8.%0l.= rel.tol.s x5 abs.tol.= rel.tol.= y=7 abs.tol.= rel.tol.= y9

resuls

time count “?esuit timé coun$ - .resuit timé count “resuit timé count
Z’fﬁaﬁgi +1,000000000 .01 9 +1.000000000 Ok 29 +1.000000000 .09 69 +3.000000000 .33 2k9
rombergs1.000000000 .01 9 +1.000000000 .02 9 +1.000000000 .01 9 +1.000000000 .02 9
;g$§Zég&1,0000QQOOO O 9 +1.000000000 .03 9 +1,000000000 .0 9 +1.000000000 .Ok 9

integral(0, 1, (n + 1) X x-An, x); n= 10

abs,tol.= rel.%0l.s w3 abe.%0l.= rel.%0l.= =5 abs.tol.= rel.tol.= y—7 - abs.tol.= rel,tol.= 9

RA Wi9-6

: _r@gﬁiﬁ %imé count wesuld time count - result timé count - yesult time count
2§§§§Z +1.000076868 .02 13 +1.000000088 .06 L1 +1,000000019 .18 129 #1,000000000 .47 333
raslberg?l 000000795 .03 17 #1.000000795 .03 17 #1,000000000 .05 33 #1.000000000 .03 33
ggzéﬁ;g%WQOOO%QQSSI ol 11 #1.000000237 .13 27 +1,000000019 .18 37 +31.000000000 .29 59

integral(O, 1, (2 4+ 1) X x An, x5 n= 20

a8, htdo= PBL.HO o= 3 &bS.T0Lle= el t0les y=F 8b8.,%0le= ral,t0l.= p=T abs.tol.= rel,tol.= yo

PesuLh
adapt,.
8impe. %1?60019151% .03
romsererl 001790156 .03
&dapt ° ’

rombargsl 002060235 .05

time cound

Yime

»r@sult
17 +1.,000000396 .07

17 #1.000008630 .05

11 +1.000011561 .09

count Are@ui% timé cound r@suit timé eount
kg +10000060038 923 153 +1.000000000 .59 393
33 %YOOOOOOOOOZ .09 65 +1.,000000000 718 129
19 +1.000000059 .20 39 +1,000000000 b3 9

RA W19=T7

E. Text of ths ALGOL procedure

real procedurs integral(x,a,b,fX,ae,re,max,full up);
value a,b,ae,re,max; real X,a,b,fx,ae,re; Integer max;

Iabel full up;

begin integer r;su,1,1,J,1po,lpi,rpl,rpo,lpa,s,n;
S hyhh, hming Sy sum, $0,%1,80,81,d, ¢, bay 1va,

rva,mva.3

boolean cl,left,fr; array fa[O:max];4[0:119];
cedure romg
begin integer llp; real 1lv,1l%r,1%0,1%1; boolsan lcl;
‘ﬁi r=-=] then
begin lvai= rva; Xi= xth; mvai= fx; rpis= rplss;

rva:s falrpll; lpass lpi; fa[lpil:s lva;

lpi:=slpies; fa[lpi):s mva; 1pi:=lpisvs;

n=n+l 3

1f (lpi~rpi)Xe>0 then goto full up;

Tle= (Lvasrva)X.5; ©0:= (G1Hva)X.5;

cs= (%0=%1)/3; t0:= ©0vc;

1f abs(cxba) < abs(tOXre)+ae then

bagin tr:s gbs(h)Xt0; cli= true; n:s n-L;
bi= nXhhy 1f abs(b) > kmin then
begin fa[lpi-a]:= asb; fallpl o= n3

1po:= 1lpic= lpi+s

end else lpi:= lpo; n:= 0; a:= x+hh

end else

b

In Tr:s 03 cl:= false end

end elss
begln Ji= J=w ri= r-ij lis 1/2; lefti= true;

8r:

romg
Lpss lps; llves lva; ltr:=s trj lcl:s= clj
Lei:=b1; 1t0:9%0; left:= False;
roms
Lo= Ads ros r1) Jo= Jors lvacs Llvg
lpa:s 1lp; 80:= (1lvasrva)X.5;
tlisr]es
if left then (80X.5) else (G[J+rlesOX.5);
di= 15 for 1= Jow-1 step —1 until J do
begin di= dxk; si:= 80; s0:= tli-rl;
cs= (80-81)/(d~1); 80:= 80+c;
B[]
1f left then (s0X.5) else (%[1]+s0X.5)
endy — —
de= axle; si:= 803 80:s (1t15%1)X.53
cs= (80-81)/(d~1); 80:= 80%c;
dss axby 1:s 803 80:= (130+10)X.5;
c:= (80-%1)/(d~1); t0:= 80%c;
+£ lelAcl then
Pegin tr:<treitr; cl:<true end else
if abs(cxba) < abs(tO<rej+ae then

T

end;

- RA W19-8
begin tr:= abs(h)Xt0X1l; cl:= true;
anew: n:s (lpa-~lpo)xs; if n > O then
beg.n b:= nxhh;
if abs(b) > Imin then
begin lpi:= 1lpa+s;
fa[lpi]:= a¥b;
lpl:= lpi+s;
fa[lplil:=s n;
lpo:= lpl:= lpiss
end else lpl:s 1po;
n:= 03 a:= x+hh
end else
begin n:= fa[lpo-8l; b:= fa[lpo-s—s];
a:= b-nXhh; lpo:= lpo—(n+3)Xs;
goto anew
end
end else
begin tr:streltr; cli=false end
end;
IF r= su then
5;6% sus= sul; if abs(rpo-rpi) > 1 then goto sr
en

end

_"éed.ure suprom;

12 rpt then

begin rim suim =13 Li= 13 Jiw O left:s true; rom;
sum:= sumdtr; suprom

end else if ny0 then

Begin fallpiTt= rve; lpi:= lpi¢s;
b= xXhh; 1f abs(b)>hmin then
begin fa[lpi):= asb; lpi:= lpi+s;

fa[lpi]:= n; lpo:= lpi:= lpivs

end else lpi:= lpo

end;
cadure subintervel;
anew: if rpo = O V rpo= max then

begin If 1 fr then
begin fris true; hiw <=hh; hhi= —.5Xhh; s8:= —8;

lpi:= rpi; vpii= 1po; lpo:= rpo; rpo:= rpi;

gg‘to anew

end
end alse

begin fr:s false;

rpi:s rpivs; n:s falrpll; rpi:s rpi+s; a:= fa[rpil;

rpl:s rpies; rvacs falrpll; rpo:= rpienxs;
n:= 0; x:= a=hh; suprom; goto anew
end;
Pai= b-a; if b<a then begin hi= b; bi= a3 a:= h end;
h:= abs(be]; hh:s hX.5; hmin:s a.ba(baXre),
x:= b3 falmax]:= £x; x:= a; fa[max~1):= £x;
fa[max-2]:= a; fa[mex-3]:= 13
¥poi= rpiis max—l; lpo:= lpi:s 0; s:= 1;
sum:= 0; subinterval; integral:= sign(ba)Xsum

RA W19-9
A FORMAL LANGUAGE TECHNIQUE APPLIED T0 BUSINESS DATA PROCESSING

A, Introducticon

The prograxmuing assignment called for an ALGOL-60 program to process

a large amount of data (about 6 cheracters, punched on paper tape) into
sales surveys to ba output on a line printer. This report will only
deal with the part of the program that interprets the input tape. The
printed record of the input tape is (because of size and structure)
unsuitable for visual check on mistakes,

The tape should produce nuwibers and these are of different levels:

some numbers say something about a whole block of following numbers.
These blocks are separated by delimiters, which are hierarchically re-
lated because several comsecutive blocks may constitute a block of
higher laevel.

At first en ad hoc description wee tried for defining the structure of
the input tape. After a time it became clear that it was impossible to
foresee all permutations of aveilable symbols and to state of each
whether it could or could not be allcwed. Because of mistakes made in
punching the tape, it was %0 be expected that most of these permutations
would occur in the long rum.

Essentially, the problem posed by the input tape is that of the correct

parsing of 1%s punchings. The use of a canbext-free grammasr for the

input tape solved the following problems:

i. providing a conclse and unambiguous description of the structure

of the tape

ii. providing a framework for a program ('syntax-directed') that
parses the tape and processes the information it conveys

ili, outpubting a record of the way in which the program interprets the
‘tape

Be Craimnar

<tmpe>: := a|<date><districte>e<tape>

<date>::s d<hexuple>|<date><forgetit><date>

<districta>: :~ <smpty>|<districtheading><vislte><districts>

<districtheading>: = s<triple>|<districthesding><forgetit>
<districtheading>

<vleite>: :a <empty>|<hello><crders><goodbye><visits>

<hello>: := <winus><hexuple>|<hello><forgstit><hello>

<orders>: ;3 <empty>|<positive><diens>z<orders>

<dtems>: = <amphy>|<positive<items>

<positive>::s <space><guadruple>|<positive><forgetit><positive>

<goodbye>: :s tg|t<Lorgetit>

<griple>::s <diglto>-diglt><digit>

<Quadruple>: ;= <digito><triple>

<hexuple>: = <d.i?1‘t><digit uadruple>

<digit>::= 0[1]2[3]4]5]6|718]9

<empty>: =

<pumber>: := <triple>|<quadruple>|<hexuple>

<delimiters>::= d|e|e|<winus>|<space>|<guodbye>

RA W19-10
The notation used here is that of the 'Revised Report on the Algowithmic
Language ALGOL 60°. The metalinguistic variables for which no production
is given are directly reprasented on the tape.

C. Particulars about the program

The ALGOL~60 program shown below contains only the syntax-directed
structure., Statements for processing the semantic content of the
informaticn raceived are summarized by assignments to the integer
*semantic’.

The program 13 rather loosely related to the grammar, but still
closely enough to make it easy to check whether it will perform
indeed as the grammar specifies. Dspartures from the correspondence
between grammar and program have been instituted to avoid a
proliferation of diminutive procsdures. The procedure ‘number!
processes all productions of <wmumber> and also <forgetit>. The procedure
'£ind' processes the productions of <delimiters>, 'read' is an integer
procedure that delivers the value of the first punching on the tape
that represents scme metalinguistic variable.

The value of this punching is then stored in x and remains there until
either the program achleves such a state that its value can be accepted
or wmntil 1%s occurrence 1s found to be syntactically incoorect.

In the latter case symbols have, in general, to be skipped until the
former case is found to be %rue.

Because the various metalinguistic variables envelop each other, the
concomitant delimliters have a different level of priority.

The following are used:

a 6 2z 2
de 5 space 1
8 L others 0
minus ¢ 3

A call of 'find® oceurs where a certain delimiter is expected or
possidly one of a priority nct lower. Accordingly, it will have one
(whichever situaticn is, after O or more skippings, encountered first)
of the thres follcwing rasults:
1. A punching equal ¢¥o the cne sought is found. 'out! is called and
execution of the next statement after 'find' follows.
11. A punching unequal to the sought but of equal priority, is found.
Jump to the £frst label follows.
iii. A punching unequal to the ocne scught, and of higher priority, is
found. Jump to the second label follows.
find' also takes care that skipped symbols are distingulshable from
accepted symbols in the output.
In this way, the consequences of an error are restricted to the smallest
syrntactical entity containing that error. This entity may happen to be
the largest. In that case all its constituent entitities would be
skipped without being checked syntactically. This possibility is
avoided by having 'find' call ‘districts® or 'visits' as appropriate.
In this way we achieve that an entity may be checked ayn‘bactically
even when contained within an incorrect entity. ‘

RA W19=11

C. Text of the program

begin

comment van Fmden, 16093

in“t,eg; 1,Jsx8,8,8,forget 1%,8,8,%,2,8pace,
ninus,question mark, blank,semantic;
integer array heptade[0:127]; boolean index;
inheger procedure read;
Tegin inbegsr x,¥3

¥:= heptade[REHEP];

for x:= y walle

X= blank V x= questicn mark do

begin 1f x= question mark 'th.en PRSYM(x);

ye= heptade[REHEP]
end; read:=y

end;
rocedure oubs
begin 3f x s dV x = 8 Ghen NICR;
PRSYM(x); %:= read
end;
Inbeger procedurs number(n,exit); value n;
integer n; Label exit;
begin Integer 1,sum,;tens;
8fart: sum:= 0; tens:s 10 A (n=1);
for f:= 1 step 1 uwntil n do
IF x > 9 Hhen gotO exit else

b@gm Su:= Sud + X X tens; tens:= tens/10;

oub
ends
ii&‘ x = forget i"c Lthen
b@gif ouk; got o start end;
nuber:= sum
end;
gg_)c@»d.ure £ind(p, ex1%0;,exitl); value p;
mf,@gev p; isbel exitO, exim,
bagin izmteﬂ priox,;priop; |
InGagar procedure priority(p); value p;
integer p; priority:=

1f p = space then 1 else

.L; P = 2 then 2 else
i{pﬁ&ﬂuSVpatth@,rLS else
if p = 8 Shen 4 else

I p=aVp = e tuen 5 slse

If p = a then 6 else O;

X D then

begin prioX:= priority(x);

priop:= priority(p);

if pricx = pricp then goto exitOj
if’ priox > priop t‘h@n gto exitis
NICR;

PRINTTEXT({ar wordt gezocht.});
next: if x = 8 then districts else

Z? x = nihus then visits else out;

RA W19~12

priox:= priority(x);
g priox < priop then goto next;
NICR;
PRINTTEXT({einde overgeslagent);
NICR;
if x # p then goto
:Lf priox = priop then exitO else exiti
end; out
end;
.'Em@ ure items;
begin
start: find(space,exit,exit);
semantic:= number(l,start);

goto start;
exi®:
end;
ocedure orders;
be

start: f£ind(space,exit,exit);
semantic:s number(l,exiti);

items;
exi%i: ﬁ.nd.(z,exit,exi‘t), goto start;
exi%:
end;

rocedure visits;
begﬁ

start: find(minus,goon,exit);
semantic:= pumber(6,goon);
orders}
goon: £ind(%,start,exit);
1f X =g Vx = forget it then out else
begin NLCR; PRINTTEXT({z of f ontbreekt}) end;
goto start;

exi%:
end;
Eocedum districts;

star‘i: £ind(s, exit,exit);
semantic:= nuber(3,start);
visits; goto start;

exit:

engd;

.Brocedure tape;
X:= read;

start: £ind(d, goon,exit);
semantic:s= number(6,goon);
districts;

goon: find(e,start,exit);
goto start;

exi®:

end;

RA W19-13

question mark:= 1223

for i:= 0 s%ep 1 until 127 do

heptade[1]ts question mark;

blanks= =13 az= 10; d:= 13; es= 14;

forget it:= 155 g:= 165 s:= 28; ©:= 29;

z:= 35; space:= 933 minus:= 65;

index:= trues

for i:=

0, blank,

97,4,

100,4,

11T5e,

118, forgetit,

103, 8;

2058,

355%s

k,2z,

16, apace,

6lyminus do

begin iF index then j:= i else heptade[J]:= i;
Tndex:= 1 index

end;
Jes O3

for 1= 32,1,2,19,4,21,82,7,8,25 do
beéin h@ptad@[*] = J3 Jo= J#1 end,
tape

	Adaptive Romberg Integration
	Formal Language Technique Applied to Business Data Processing

