

 A PROPOSED DEFINITION OF THE LANGUAGE

 B C P L

 This document sets out a proposal for the

 definition of a standard BCPL and was prepared by

 M.D. Middleton in collaboration with

 R. Firth (HPAC Ltd.)

 M. Richards (University Cambridge)

 I. Willers (CERN Geneva)

 who are members of the BCPL Standards Committee

 elected at the BCPL User Meeting on 7th March 1979

 in Cambridge.

 M.D. Middleton

 Das RZ der Universitaet Regensburg

 Universitaetsstrasse 31

 D-8400 Regensburg

 W.-Germany

 CONTENTS

 1 Introduction 1

 1.1 Scope and Purpose 1

 1.2 Language Extensions 1

 1.3 Meta-Language 2

 2 Data 3

 2.1 Data Storage 3

 2.1.1 Dynamic 4

 2.1.2 Static 4

 2.1.3 Global 4

 2.1.4 Other storage areas 4

 3 Lexical considerations 5

 3.1 Character set 5

 3.2 Basic contructions of the language 6

 3.2.1 Tag, Name, Identifier 6

 3.2.2 Basic Symbol 6

 3.2.3 Element 9

 3.3 Omission of symbols 13

 3.4 Tagged brackets 14

 3.5 Comments 14

 3.6 GET 15

 4 Expressions 16

 4.1 Syntax of expression 16

 4.2 Operator precedence 17

 4.3 Semantics of expression 17

 1.10.1979 i

 4.3.1 R-mode expressions 18

 4.3.2 L-mode expressions 22

 4.3.3 Assigment mode 23

 4.3.4 Truth-value mode 23

 4.3.5 Constant expressions 24

 5 Commands 25

 5.1 Routine call 25

 5.2 Assignment 25

 5.3 Conditional 26

 5.4 Repetitive commands 27

 5.5 FOR command 28

 5.5 RESULTIS command 29

 5.6 Switchon 29

 5.7 Transfer 30

 6 Declarations 32

 6.1 Scope and extent of block-head-declarations . 32

 6.2 Global declaration 34

 6.3 Static Declaration 35

 6.4 Manifest 36

 6.5 Dynamic declaration 37

 6.6 Vector declaration 37

 6.7 Procedure 38

 6.8 Labels and Prefixes 40

 6.9 Simultaneous declarations 41

 7 The program constructions 42

 7.1 Section 42

 ii 1.10.1979

 7.2 Block and compound command 43

 8 Standard Header File 44

 8.1 Globals in the Standard Header File. . . . 44

 8.2 Manifest Constants in the Standard Header. . 45

 9 Input/Output 46

 9.1 Standard Stream Organization Procedures . . 47

 9.2 Standard Input/Output Procedures 48

 10 BCPL Runtime System 52

 10.1 Start and Stop 52

 10.2 Stack organization routines 53

 10.3 String handling 53

 Appendix. 56

 A1 Character Constants 56

 A2 Character Operator 57

 A3 Field Selectors 57

 A4 Optional compilation 59

 A5 Compound Assignment 60

 A6 Section and needs 61

 A7 Store Allocation 61

 A8 Scaled arithmetic 63

 A9 Block I/O 63

 A10 Binary I/O 64

 A11 Direct access I/O 65

 A12 System Services 67

 A13 Floating point 68

 A14 Time and Date 71

 1.10.1979 iii

 A15 External procedure 71

 iv 1.10.1979

 BCPL Standard

 1 Introduction

 1.1 Scope and Purpose

 This document has been produced in response to requests at

 the inaugural meeting of the BCPL Users Group on

 7th March 1979. It is a revised version of a previous

 attempt at standardization (Middleton 1979) which was in turn

 based on the original BCPL manual (Richards 1969, 1973). It

 is intended as a specification of the language and its

 runtime system which will be adopted as a standard at a

 subsequent BCPL User Group meeting.

 1.2 Language Extensions

 The language and runtime system described in the body of

 this paper is BCPL-level 0 and is intended to form the basis

 of a standard to which all implementations should adhere.

 The Appendix gives a number of possible extensions. These

 are grouped into 'Packets'. None of the packets is mandatory

 but if any facilities from any given packet described in the

 appendix are included then the whole packet should be

 implemented in the form described there.

 1.10.1979 1

 BCPL Standard

 1.3 Meta-Language

 For the syntactic definition Backus Naur Form with the

 following extension is used:

 [] are metabrackets which mean that the categories

 between the brackets must occur at least n times but not more

 than m times. If n or m is omitted the default values are

 n = 0 and m = .

 For the semantic definition the following conventions are

 used unless explicitly qualified in a particular section.

 E, E1, E2,... stand for arbitrary expressions

 K, K1, K2,... stand for arbitrary constant expressions

 and

 C, C1, C2,... stand for arbitrary commands.

 2 1.10.1979

 BCPL Standard

 2 Data

 There are no explicit data types in BCPL. The only unit

 of data is the BCPL word which for any given implementation

 is a bit string of fixed length not less than 16 bits. A

 BCPL word may be used to represent values of many different

 types including integers, characters and truth values. As

 there are no explicit data types the compiler performs no

 type checking and always assumes that operands have the

 required type.

 The basic unit of storage is a cell which is large enough

 to hold a BCPL word. Each available cell has an integer

 address which can be operated upon and stored in the same way

 as any other BCPL word. Adjacent cells have integer

 addresses that differ by one.

 2.1 Data Storage

 A BCPL program has at least three available areas of

 storage: dynamic, static and global.

 1.10.1979 3

 BCPL Standard

 2.1.1 Dynamic

 This area is normally a single block of contiguous storage

 which is used for storage of temporary results and dynamic

 variables.

 2.1.2 Static

 This is a not necessarily contiguous area of store in

 which static variables can be stored.

 2.1.3 Global

 This is a block of contiguous store which is used for

 communication between seperately compiled sections of a BCPL

 program. The cells of this block are numbered from zero up

 to some limit and all are available to each section.

 2.1.4 Other storage areas

 Other storage areas may (but do not have to) be made

 available to the program by means of procedure calls. See

 section A7 in the Appendix.

 4 1.10.1979

 BCPL Standard

 3 Lexical considerations

 The machine representation of a BCPL program is dependent

 on the character set used.

 3.1 Character set

 The character set is divided into the following:

 <layout char> ::= <space char> | <newline char>

 <space char> includes at least 'space' and 'tab'

 <newline char> is any 'carriage control character'

 such as linefeed, new page etc.

 <letter> includes all upper case letters and,

 if the implementation allows, lower

 case letters. Lower case letters

 have the same meaning as upper case

 letters except in strings and

 character constants where they stand

 for themselves.

 <digit> ::= 0|1|2|3|4|5|6|7|8|9

 <special> a set of special characters which are

 used to build BCPL basic symbols.

 <other> all other characters in the character

 set. These may occur only in

 strings, character constants and

 comments.

 1.10.1979 5

 BCPL Standard

 3.2 Basic contructions of the language

 The basic syntactic unit in BCPL is the <symbol>

 <symbol> ::= <element> | <basic symbol>.

 With the exception of a restriction on <newline character>

 any number of <layout character>s may appear between

 <symbol>s, but <layout character>s may not appear within a

 <symbol>. It will also be seen from the syntax that <layout

 character>s are sometimes necessary to separate <symbol>s

 which would otherwise elide, for example <name> and <dec

 number>.

 3.2.1 Tag, Name, Identifier

 <tag> ::= [<tag character>]

 where <tag character> is one of <letter>, <digit> or

 '.' (dot). Some implementations also allow the underline

 character in tags.

 <name> ::= <letter> <tag>

 <identifier> is a <name> which is not a <basic symbol>.

 3.2.2 Basic Symbol

 A <basic symbol> is a symbol made up of either a sequence

 of letters or a sequence of <special>s.

 The machine representation of <basic symbol>s is

 implementation dependent and in this document a canonical

 representation of the <basic symbol>s is used. The following

 6 1.10.1979

 BCPL Standard

 table gives the set of canonical <basic symbol>s together

 with a list of alternative representations.

 basic alternative

 symbol representation(s)

 TRUE

 FALSE

 ? NIL

 ([

)]

 @ LV

 !(monadic) RV

 !(dyadic)

 *

 /

 REM

 +

 -

 = EQ

 ~= = NE \=

 < LT

 <= LE

 > GT

 >= GE

 << LSHIFT

 >> RSHIFT

 NOT ~ \

 & /\ LOGAND

 | \/ LOGOR

 EQV

 NEQV

 ->

 ,

 TABLE

 VALOF

 ;

 :

 VEC

 BE

 LET

 AND

 :=

 BREAK

 LOOP

 ENDCASE

 RETURN

 FINISH

 GOTO

 RESULTIS

 1.10.1979 7

 BCPL Standard

 SWITCHON

 INTO

 REPEAT

 REPEATUNTIL

 REPEATWHILE

 UNTIL

 WHILE

 FOR

 TO

 BY

 IF

 UNLESS

 CASE

 DEFAULT

 DO THEN

 ELSE OR

 ABS

 GET

 MANIFEST

 GLOBAL

 STATIC

 Further Symbols

 The following character combinations are used in certain

 BCPL constructions and are given here for completeness.

 character construction

 combination

 $() section brackets

 $))

 '(single quote) character constant

 "(double quote) string constant

 # literal

 //) comments

 /*)

 */)

 Extended Basic Symbols

 The following list gives basic symbols and character

 combinations used in recommended extensions.

 8 1.10.1979

 BCPL Standard

 symbol alternative representations

 #+

 #-

 #*

 #/

 #= #EQ

 #~= #NE # = #\=

 #< #LT

 #<= #LE

 #> #GT

 #>= #GE

 #ABS

 FIX

 FLOAT

 SECTION

 NEEDS

 EXTERNAL

 %

 $$

 $<

 $>

 3.2.3 Element

 <element> ::= <identifier> | <literal>

 An <identifier> represents either a variable which at runtime

 will be bound to some particular cell or a <manifest

 constant> which is treated as a literal. A <literal> is a

 direct representation of a constant.

 <literal> ::= <number> | <character constant> |

 <string constant> | <logical value> |

 <undefined>

 Number

 <number> ::= <based number> | [<digit>]

 <based number> ::= #[O] [<octal digit>] |

 #B[<binary digit>] |

 #X[<hex digit>]

 1.10.1979 9

 BCPL Standard

 <octal digit> ::= 0 | 1 | ... 7

 <binary digit> ::= 0 | 1

 <hex digit> ::= 0|1|2|3|4|5|6|7|8|9||A|B|C|D|E|F

 Semantics

 A number has some machine representation which is chosen

 such that the BCPL operators have the expected results.

 Binary, octal and hexadecimal numbers may be written with

 leading zeros suppressed and, so long as the cell length of

 the implementation is not exceeded, the normal rules for

 conversion between positive numbers in these bases hold.

 Character constant

 <character constant> ::= '<string character>'

 Any single character may appear within the single quotes

 except *, ' or <newline character>. <string character> may

 also be any of the following special representations:

 special represents

 representation

 ** *

 *' '(single quote)

 *" "(double quote)

 *S or *s space

 *T or *t tab

 *N or *n newline

 *P or *p newpage

 *Xnn or *xnn the hexadecimal character nn

 *Onnn or *onnn the octal character nnn

 10 1.10.1979

 BCPL Standard

 Semantics

 A character constant is the representation of the given

 character in an implementation dependent internal code. It

 occupies a complete BCPL word and is right justified and

 padded on the left with zeros.

 String constant

 <string constant> ::= "<up to K string characters>"

 Within a string any character represents itself except *, "

 and <newline character>. The special representation of

 character constants (see above) may be used within a string.

 K is an implementation constant whose value is not less than

 127; in most implementations it is 255.

 In a string the sequence

 * [<layout char>] *

 is ignored.

 Semantics

 A string constant is represented by the BCPL-address of

 the zeroth of a set of contiguous cells which at runtime hold

 the actual characters of the string together with its length

 packed. Each cell is divided into a number of 'bytes' (not

 necessarily of the same size). Byte zero of cell zero of a

 1.10.1979 11

 BCPL Standard

 string contains the length and subsequent bytes contain the

 characters packed contiguously and in the given sequence.

 The unused bytes of the last cell are filled with binary

 zeros. See section 10.3 for information about the string

 handling library procedures.

 Logical value

 <logical value> ::= TRUE | FALSE

 The meaning of the values is self explanatory. The

 machine representation is such that the operators

 NOT, &, |, EQV, NEQV

 have the expected results, see section 4.3.1. Thus the

 representation of FALSE is a bit pattern of all zeros and the

 representation of TRUE is a bit patern of all ones.

 Undefined

 <undefined> ::= ?

 The value of this is undefined.

 12 1.10.1979

 BCPL Standard

 3.3 Omission of symbols

 The symbols ; (semicolon), DO and THEN can be omitted when

 the compiler can tell by context whether one is required or

 not. There are, however, a few cases where ambiguities can

 arise and these are resolved by the compiler according to the

 following two rules:

 a) The first symbol after a newline character may not be a

 dyadic operator, or -> or a comma.

 b) The compiler reads the source program sequentially

 symbol for symbol without backtracking and while parsing

 a given construction accepts all symbols which (with the

 exception of rule (a) could possibly belong to that

 construction. The first symbol which could not belong

 to the given construction is taken as the start of a new

 construction.

 With these rules in mind the following recommendations are

 made to programmers over omission of symbols.

 The following syntactic conventions are safe.

 a) Semicolon should only be omitted if it is the last

 non-comment symbol on a line.

 b) DO or THEN should only be omitted when the following

 symbol is one that can only start a command.

 1.10.1979 13

 BCPL Standard

 3.4 Tagged brackets

 The section brackets $(and $) may be written as $(<tag>

 and $)<tag>. Each opening section bracket must be matched by

 an identically tagged closing bracket. However, when the

 compiler finds a closing section bracket with a non-null tag,

 if the nearest opening section bracket does not match, that

 section is closed and the process is repeated until a

 matching opening section bracket is found. Thus

 syntactically a tagged opening section bracket is the same as

 a null-tagged (untagged) one and a tagged closing bracket is

 the same as one or more untagged closing section brackets.

 Some implementations generate a warning message if a tagged

 section bracket is not explicitly closed by a matching one.

 3.5 Comments

 Comments may be introduced by one of the two symbols

 // or /*

 The sequence

 // [<character other than <newline char>>] <newline char>

 has the syntactic significance of a <newline>

 The sequence

 14 1.10.1979

 BCPL Standard

 /* <any character sequence that does not contain*/> */

 has the syntactic significance of a <layout char>.

 3.6 GET

 It is possible to include a file in the source text by

 using the directive

 GET <file identity>

 where <file identity> is a machine dependent identification

 of a file. This is usually a string.

 The GET directive must appear on a line by itself and the

 effect is to replace this line with the text of the given

 file.

 1.10.1979 15

 BCPL Standard

 4 Expressions

 4.1 Syntax of expression

 The following syntax defines the form of BCPL expressions.

 This syntax must be used in conjunction with the binding

 power of the operators to give an unambiguous parsing of an

 expression.

 <expression> ::= <element> | (<expression>) |

 <function call> |

 <expression> [<dyop> <expression>] |

 <monop> <expression> |

 <conditional exp> | VALOF <command> |

 TABLE <expression list>

 <monop> ::= ! | @ | ABS | + | - | NOT

 <dyop> ::= ! | * | REM | / | + | - | = | ~= |

 < | > | <= | >=| << | >> | & | | |

 EQV | NEQV

 <function call> ::= <procedure call>

 <procedure call> ::= <expression>(<expression list>) |

 <expression>()

 <conditional exp> ::= <expression> -> <expression>,

 <expression>

 <expression list> ::= <expression> [,<expression>]

 <command> is defined in section 5.

 16 1.10.1979

 BCPL Standard

 4.2 Operator precedence

 Ambiguities in the above syntax are resolved by the

 following order of binding power.

 (highest, most binding) () (bracketed expression)

 Procedure call

 ! (dyadic)

 ! (monadic) @

 * / REM

 + - (monadic and dyadic)

 = ~= < <= > >=

 << >>

 NOT

 &

 |

 EQV NEQV

 -> , (conditional comma)

 TABLE , (comma in a table)

 (lowest, least binding) VALOF

 Operators of equal precedence associate to the left.

 VALOF is different from the other operators in that it

 operates on a <command> rather than on an expression. In so

 far as this <command> can terminate with an <expression>,

 VALOF is the least binding operator.

 4.3 Semantics of expression

 There are five context dependent modes of evaluation of

 expressions

 R-mode

 L-mode

 assignment mode

 truth value mode

 constant.

 1.10.1979 17

 BCPL Standard

 4.3.1 R-mode expressions

 The normal mode is R-mode and unless something to the

 contrary is stated all expressions are evaluated in this

 mode. All operators are valid in R-mode.

 Brackets

 (E)

 Brackets serve only to affect the grouping of operands of

 an expression.

 Function call

 E(E1, E2, ...)

 See procedure call section 6.7

 Vector application

 E1!E2

 The BCPL vector application is a symetrical operation such

 that:

 E1!E2 = !(E1+E2)

 Note that this implies E1!E2 = E2!E1. One interpretation of

 the expression E1!E2 is that E1 is a pointer to a set of

 contiguous cells (a vector) and E2 is an index. The result

 of the operation is the E2th cell of the vector.

 18 1.10.1979

 BCPL Standard

 Indirection

 !E

 The ! operator acts as an indirection operator. The

 expression E is evaluated and is interpreted as the address

 of a cell whose content is then the result of the whole

 expression.

 Address of

 @E

 The operator @ causes E to be evaluated as an address.

 The expression E is evaluated in L-mode and the result of the

 whole expression is then this value.

 Arithmetic operators

 The arithmetic operators

 * / REM + -

 operate on values as if they were integers. REM is the

 remainder (modulus) operator:

 if m/n = q

 and m REM n = r

 then q * n + r = m

 for m, n (except n=0), if m and n are both positive then q is

 the largest integer which satisfies the above equations for

 1.10.1979 19

 BCPL Standard

 positive r. The direction of rounding is undefined for the

 operator / if either of its operands are negative.

 For all arithmetic operations the effect of integer

 overflow is ignored.

 Relations

 A relational operator compares the integer values of its

 two operands and yields a truth-value (TRUE or FALSE) as

 result. The operators are as follows:

 = equal

 ~= not equal

 < less than

 <= less than or equal

 > greater than

 >= greater than or equal

 These operators make arithmetic comparisons of their

 operands. An extended relational expression such as

 'A' <= CH <= 'Z'

 is equivalent to

 'A' <= CH & CH <= 'Z'

 Shift operators

 In the expression E1<<E2 (E1>>E2), E2 should evaluate to

 yield a non-negative integer. The value is E1, taken as a

 bit pattern, shifted left (or right) by E2 places. Vacated

 positions are filled with 0 bits. If the value of E2 is an

 integer larger than the word length on the implementation

 number of bits in a word then the then the result of the

 20 1.10.1979

 BCPL Standard

 shift operations is undefined.

 Logical operations

 These operate on values considered as bit patterns: the

 operator NOT causes bit by bit complementation of its

 operand. The other operators combine their operands bit by

 bit according to the following table.

 Operands Operator

 & | EQV NEQV

 0 0 0 0 1 0

 0 1 0 1 0 1

 1 0 0 1 0 1

 1 1 1 1 1 0

 Conditional operations

 E1 -> E2, E3

 E1 is evaluated in truth-value mode. The result of the

 expression is the value obtained by either evaluating E2 or

 E3 depending on whether E1 yields TRUE or FALSE,

 respectively. If E1 yields neither then the result is

 undefined.

 Table

 The value of the expression

 TABLE K0, K1, K2, ..., Kn

 1.10.1979 21

 BCPL Standard

 is the address of the zeroth element of a static vector of

 n + 1 cells initialized to the values K0, K1, K2, ..., Kn

 which must be constant expressions.

 VALOF expression

 The expression

 VALOF C

 where C is a command, is evaluated by executing C until a

 RESULTIS command is encountered. The value of the VALOF

 expression is then the value of the expression contained in

 the RESULTIS command and execution of C finishes.

 4.3.2 L-mode expressions

 L-mode expressions occur in two contexts:

 a) as operand of the @ operator, or

 b) on the left hand side of an assignment command.

 An expression is evaluated in L-mode to give the address of a

 cell. Therefore only the following constructions are

 allowed:

 N where N is an identifier which is the name of a

 dynamic, static or global cell. The value is the

 address of the given cell.

 !E where E is any expression. The value is E

 E1!E2 where E1 and E2 are any expressions. The value is

 E1 + E2.

 22 1.10.1979

 BCPL Standard

 4.3.3 Assigment mode

 An assignment mode context occurs only on the left hand

 side of an assignment command. Here the expression is

 evaluated to give the address of a cell in which a value will

 be stored. For further details of the assignment command,

 see section 5.2.

 4.3.4 Truth-value mode

 A truth-value context occurs whenever the result of the

 expression will be interpreted immediately as TRUE or FALSE.

 The expression is evaluated only so long as is necessary to

 determine whether it is true or false - more precisely: if

 after parsing (i.e. taking account of brackets and binding

 power) the least binding operator is &, | or NOT it is

 evaluated from left to right according to the following

 rules:

 Op Form of Evaluation as truth value

 Expression

 NOT NOT E1 E1 is evaluated in truth-value mode and if

 this is TRUE the result is FALSE,

 otherwise the result is TRUE.

 & E1&E2 E1 is evaluated in truth-value mode. If

 this result is FALSE, the whole expression

 is FALSE, otherwise the expression has the

 result E2 evaluated in truth-value mode.

 | E1|E2 E1 is evaluated in truth-value mode. If

 this result is true then the whole

 expression is true, otherwise the whole

 expression has the value of E2 evaluated

 in truth-value mode.

 1.10.1979 23

 BCPL Standard

 In all other cases the expression is evaluated in R-mode and

 the result is interpreted as TRUE or FALSE. If the result of

 this evaluation does not actually yield either of the values

 TRUE or FALSE then the result is undefined.

 4.3.5 Constant expressions

 A constant expression is one which must be evaluated at

 compile time and may include only:

 <identifiers> declared as MANIFEST constants

 <number>

 <character constant>

 <logical value>

 <undefined>

 ABS

 + - * / REM

 << >>

 NOT & | EQV NEQV

 24 1.10.1979

 BCPL Standard

 5 Commands

 The complete set of commands is given in this section

 <unlabelled command> ::= <routine call> | <assignment> |

 <conditional> | <repetitive> |

 <for command> | <resultis> |

 <switchon> | <transfer> | <block> |

 <compound>

 A definition of compound commands and blocks is given in

 section 7.2. The definition of the remainder of the commands

 is given in the following subsections.

 5.1 Routine call

 <routine call> ::= <procedure call>

 See procedure call section 6.7.

 5.2 Assignment

 <assignment> ::= <expression list> <assop>

 <expression list>

 <assop> ::= :=

 Semantics

 There are two basic forms of the assignment command:

 a) Simple assignment command

 E1 := E2

 The expression E2 is evaluated in R mode to give a

 BCPL-word and the expression E1 is evaluated in

 1.10.1979 25

 BCPL Standard

 assignment mode to give the identity of a place where

 this should be stored. If E1 is an L-mode expression

 this is simply a cell in which the result is to be

 stored.

 b) Multiple assignment

 L1, L2, ... := E1, E2, ...

 The expressions L1, L2, ..., E1, E2, ... are evaluated

 and assigned to the cells defined by the assignment mode

 expressions L1, L2, ... in an undefined order. Some

 assignment may take place before all left and right hand

 expressions have been evaluated.

 5.3 Conditional

 Syntax

 <conditional> ::= IF <expression> THEN <command> |

 UNLESS <expression> THEN <command> |

 TEST <expression> THEN <command> ELSE

 <command>

 Semantics

 The semantic forms of the command are

 IF E THEN C1

 UNLESS E THEN C2

 TEST E THEN C1 ELSE C2

 E is evaluated in truth-value mode and if the result is true

 C1 is executed otherwise C2 is executed.

 26 1.10.1979

 BCPL Standard

 5.4 Repetitive commands

 Syntax

 <repetitive> ::= WHILE <expression> DO <command> |

 UNTIL <expression> DO <command> |

 <command> REPEAT |

 <command> REPEATWHILE <expression> |

 <command> REPEATUNTIL <expression>

 Semantics

 The command is executed repeatedly until the condition

 (<expression>) becomes true or false as implied by the

 command. If the condition preceeds the body (WHILE, UNTIL)

 the test will be made before each execution of the body. If

 it follows the body (REPEATUNTIL, REPEATWHILE) the test will

 be made after execution of the body which is therefore

 executed at least once. The rule that as much as possible is

 included in the construction being parsed (see section 3.3),

 applies here. Thus for example

 WHILE E1 DO C REPEATUNTIL E2

 is the same as

 WHILE E1 DO $(C REPEATUNTIL E2 $)

 and

 E := VALOF C REPEAT

 is the same as

 E := VALOF $(C REPEAT $)

 1.10.1979 27

 BCPL Standard

 5.5 FOR command

 Syntax

 <for command> ::= FOR <indentifier> = <expression>

 TO <expression> [BY <expression>] DO

 <command>

 Semantics

 FOR N = E1 TO E2 BY K DO C

 If the constant K is positive this is equivalent to

 $(LET N, d = E1, E2

 WHILE N <= d DO

 $(C

 N := N + K

 $)

 $)

 If the value of K is negative N <= d is replaced by N >= d.

 If 'BY K' is omitted 'BY 1' is assumed. The declaration

 LET N, d

 declares two new variables N and d; d being a new identifier

 which does not occur in C. On some implementations

 (particularly 16 bit word addressed machines capable of

 addressing a segment of more than 32k words) the test is for

 N-d <= 0 or N-d >= 0 as the case may be.

 28 1.10.1979

 BCPL Standard

 5.5 RESULTIS command

 Syntax

 <resultis> ::= RESULTIS <expression>

 Semantics

 This command gives the result of the smallest textually

 enclosing VALOF expression (see section 4.3.1). It may occur

 only in the body of a VALOF expression.

 5.6 Switchon

 Syntax

 <switchon> ::= SWITCHON <expression> INTO <compound>

 where the compound command contains <case label>s.

 Semantics

 A case label has the form

 CASE K:

 or DEFAULT:

 where K is a constant expression.

 The switchon command is executed by first evaluating the

 expression and if a case exists which has a constant with

 this value, then execution is continued from that label;

 otherwise if there is a default label execution is continued

 1.10.1979 29

 BCPL Standard

 from there; otherwise execution is continued from the point

 just after the end of the switchon command.

 5.7 Transfer

 Syntax

 <transfer> ::= GOTO <expression> | FINISH | RETURN |

 BREAK | LOOP | ENDCASE

 Semantics

 a) GOTO E

 The expression is evaluated and interpreted as an address

 to which control is transferred. The only meaningful

 result of the expression is the value associated with a

 label (see section 6.8). GOTO may occur anywhere in the

 program where a command is allowed. The label to which

 control is transferred must be in the same procedure body

 as the GOTO command.

 b) FINISH

 may occur anywhere in the program where a command is

 allowed and causes an implementation dependent

 termination of the entire program.

 c) RETURN

 causes control to be returned to the caller of the

 current procedure.

 30 1.10.1979

 BCPL Standard

 d) BREAK

 causes execution of looping command to be terminated.

 Control is resumed just after the end of the smallest

 textually enclosing looping command. The resumption

 point must be in the same procedure body as the BREAK

 command. A looping command is either a repetitive

 command or a FOR command.

 e) LOOP

 causes execution of a looping command to be repeated.

 Control is transferred to the point just before the end

 of the body of the looping command. For a FOR command

 this is the point where the control variable is

 incremented and for the repetitive commands it is the

 point where the condition (if any) is tested. The

 resumption point must be within the same procedure body

 as the LOOP command.

 f) ENDCASE

 causes control to be transferred to the point just after

 the end of the smallest textually enclosing switchon

 command. The resumption point must be within the same

 procedure body as the ENDCASE command.

 1.10.1979 31

 BCPL Standard

 6 Declarations

 Every identifier used in a BCPL program must be declared

 explicitly. There are 10 distinct declarations in BCPL which

 fall into two groups.

 a) Static declaration:

 Global, Static, Manifest, Function, Routine, Label.

 b) Dynamic declarations:

 Dynamic, Vector, Formal-parameter, For-command-control.

 The declaration of formal parameters is described in section

 6.7. and the for-command is described in section 5.5. All

 other declarations except label declarations occur at the

 head of a block and are known as block-head-declarations.

 <block head declaration> ::= <global dec> | <static dec> |

 <manifest dec> | <dynamic dec> |

 <vector dec> | <function dec> |

 <routine dec>

 6.1 Scope and extent of block-head-declarations

 The scope of an identifier (i.e. the region of the program

 in which it is known) is the declaration in which the

 identifier is declared (to allow for recursive definition),

 the subsequent declarations and commands up to the end of the

 smallest textually enclosing block, or the end of the program

 if there is no textually enclosing block; but for dynamic

 declarations excluding any textually nested procedure bodies.

 This restriction on dynamic declarations means that no

 32 1.10.1979

 BCPL Standard

 reference may be made in a procedure to a dynamically

 declared identifier which is declared outside the procedure

 (such quantities are called dynamic free variables).

 Identifiers declared at the same level must have different

 names, but an identifier may be declared with the same name

 as one declared a different level. In this case the two

 identifiers are normally distinct and the identifier declared

 at the textually outer level is not directly accessible

 within the scope of the identifier declared at the inner

 level. (For exceptions see rule for initializing global

 cells in sections 6.7 and 6.8).

 The extent of an identifier (that is the duration at run

 time when a cell is actually assigned to the identifier)

 depends on the type of the declaration. There are two

 possible extents in BCPL.

 a) Static

 The identifier is permanently associated with one

 particular cell and this cell remains available throughout

 the run.

 b) Dynamic

 On each entry to the block containing the declaration a

 cell is associated with the identifier. This cell remains

 available until control passes to the end of the block

 containing the declaration. Note that if the declaration

 is invoked recursively there may be more than one instance

 1.10.1979 33

 BCPL Standard

 of the same identifier existing at any one time.

 6.2 Global declaration

 The means of communication between separately compiled

 segments of a program is the global vector.

 Syntax

 <global dec> ::= GLOBAL <glob defs>

 <glob defs> ::= $(<glob def> [;<glob def>] $)

 <glob def> ::= <identifier>:<expression>

 Semantics

 The declaration

 GLOBAL $(<glob def1>; <glob def2>; ... <glob defn> $)

 is a syntactic abbreviation of

 GLOBAL $(<glob def1> $)

 GLOBAL $(<glob def2> $)

 ...

 GLOBAL $(<glob defn> $)

 The declaration

 GLOBAL $(N : K $)

 (where K is a constant expression) associates the identifier

 N with the Kth cell of the global vector. Thus N identifies

 a static cell which may be accessed by N or any other

 identifier associated with the same global vector cell.

 34 1.10.1979

 BCPL Standard

 6.3 Static Declaration

 Syntax

 <static dec> ::= STATIC <sm defs>

 <sm defs> ::= $(<sm def> [; <sm def>] $)

 <sm def> ::= <indentifier> = <expression>

 Semantics

 The declaration

 STATIC $(<sm def1>; <sm def2>; ... <sm defn> $)

 is a syntactic abbreviation of

 STATIC $(<sm def1> $)

 STATIC $(<sm def2> $)

 ...

 STATIC $(<sm defn> $)

 The declaration

 STATIC $(N = K $)

 where K is a constant expression causes permanent allocation

 of a cell to the identifier N. This cell will be initialized

 to the value K prior to execution of the program.

 1.10.1979 35

 BCPL Standard

 6.4 Manifest

 Syntax

 <manifest dec> ::= MANIFEST <sm defs> sp

 <sm defs> is defined in section 6.3.

 Semantics

 The declaration

 MANIFEST $(<sm def1>; <sm def2>; ... <sm defn> $)

 is a syntactic abbreviation of

 MANIFEST $(<sm def1> $)

 MANIFEST $(<sm def2> $)

 ...

 MANIFEST $(<sm defn> $).

 The declaration

 MANIFEST $(N = K $)

 causes the name N to be associated with the value given by

 the constant expression K. This association takes place at

 compile time and no storage cell is involved at run time.

 Thus the value associated with the name cannot be changed and

 the name cannot be used in a L-mode or assignment-mode

 contexts.

 36 1.10.1979

 BCPL Standard

 6.5 Dynamic declaration

 Syntax

 <dynamic dec> ::= LET <identifier list> =

 <expression list>

 <identifier list> ::= <identifier>[, <identifier>]

 Semantics

 LET N1, N2, ... Nn = E1, E2, ... En

 declares identifiers N1, N2, ... Nn. At run time a cell is

 allocated to each of these identifiers dynamically when

 control passes through the declaration, and these cells are

 initialized in an undefined order with the values E1, E2, ...

 En. The initial value may also be given as undefined (?) in

 which case no initialization takes place.

 6.6 Vector declaration

 Syntax

 <vector dec> ::= LET <identifier> = VEC <expression>

 Semantics

 LET N = VEC K

 declares a variable N which points to a vector of K+1 cells

 where K is a constant expression. At run time K+1 contiguous

 1.10.1979 37

 BCPL Standard

 cells numbered from 0 to K are allocated dynamically and a

 further cell is allocated with which the identifier is

 associated. This latter cell is initialized with the address

 of the zeroth cell of the vector. The cells of the vector

 are not initialized.

 6.7 Procedure

 There are two types of procedure in BCPL: the function and

 the routine.

 Syntax

 <function dec> ::= LET <identifier> <par list> =

 <expression>

 <routine dec> ::= LET <identifier> <par list> BE

 <command>

 <par list> ::= () | (<identifier list>)

 Semantics

 Routines and functions are equivalent except that a

 function yields a result whereas a routine does not. A

 function may be called as a routine and a routine may be

 called as a function (returning an undefined value).

 The declarations

 LET N(P1, P2, ... Pn) = E

 LET N(P1, P2, ... Pn) BE C

 38 1.10.1979

 BCPL Standard

 declare a function (routine) named N with n parameters. The

 brackets are required even if n=0. A parameter has the scope

 of the expression E (command C).

 If the procedure declaration is in the scope of a global

 declaration with the same name, then the global cell will be

 initialized with the entry address of the procedure before

 execution of the program. Otherwise, a static cell is

 created, is associated with the identifier N, and is

 initialized with the entry address.

 A procedure is invoked by the call

 E0(E1, E2, ... En)

 where E0 is evaluated to give the entry address. In

 particular, within the scope of the identifier N, the

 procedure N may be invoked by the call

 N(E1, E2, ... En)

 provided the value of N has not been changed during execution

 of the program.

 Arguments are passed by value. Each argument (Ei) is

 evaluated and the value is copied into a newly created cell

 which is then associated with the parameter Pi. The order of

 evaluation of arguments is undefined. These cells are

 consecutive in store so that the argument list behaves like

 an initialized vector. The space allocated to parameters is

 1.10.1979 39

 BCPL Standard

 released when evaluation of the procedure is complete.

 Notice that although arguments are always passed by value,

 this value may be an address.

 6.8 Labels and Prefixes

 Syntax

 <prefix> ::= <label> | <case label> |

 <default label>

 <label> ::= <identifier>:

 <case label> ::= CASE <expression>:

 <default label> ::= DEFAULT:

 <command> ::= <unlabelled command> |

 <prefix> <command> | <prefix>

 Semantics

 Case label and default label are described in section 5.6

 (Switchon).

 The declaration

 N:

 declares the label N. Exactly as in the case of a procedure

 declaration a label causes a static to be declared if it is

 not within the scope of a global declaration of the same

 identifier. The local or global cell is initialized before

 execution of the program with the address of the point in the

 program labelled, so that the command

 40 1.10.1979

 BCPL Standard

 GOTO N

 has the expected effect.

 The scope of a label is the smallest of the following

 regions:

 a) the command sequence of the smallest textually

 enclosing block, or

 b) the body of the smallest textually enclosing VALOF

 expression routine or for-command.

 Using a goto command to transfer control to a label which is

 outside the current procedure will produce undefined

 (chaotic) results. Such transfers can be performed by using

 the library procedures LEVEL and LONGJUMP (see section 10.2).

 6.9 Simultaneous declarations

 Any declaration of the form

 LET ...

 may be followed by one or more declarations of the form

 AND ...

 where any construction which may follow LET may also follow

 AND. As far as the scope is concerned, such a collection of

 declarations is treated as a single declaration. The order

 in which declarations are evaluated is undefined.

 1.10.1979 41

 BCPL Standard

 7 The program constructions

 A BCPL program consists of a number of separately

 compilable sections (modules) which will be loaded together

 with a runtime system to produce a complete program. The

 individual sections communicate with one another by means of

 the global vector.

 7.1 Section

 Syntax

 <BCPL section> ::= <declarations>

 <declarations> ::= <block head declaration>

 [; <block head declaration>]

 Semantics

 Although in principle all block-head-declarations are

 allowed in a BCPL section, only global, static, manifest and

 procedure declarations are meaningful.

 42 1.10.1979

 BCPL Standard

 7.2 Block and compound command

 Syntax

 <block> ::= $(<declarations> ;

 <command sequence> $)

 <compound> ::= $(<command sequence> $)

 <command sequence> ::= <command> [; <command>]

 Semantics

 A block or compound command is syntactically equivalent to

 a single command. The commands in a command sequence are

 executed in the order in which they occur.

 1.10.1979 43

 BCPL Standard

 8 Standard Header File

 In order to simplify the language and allow for efficient

 interfacing with the operating system the procedures

 described in sections 9 and 10 are not declared as standard

 in the compiler. The declarations for these routines are

 contained in a standard header file which may be incorporated

 into each program by means of a GET directive. This process

 costs a little at compile time but has significant advantages

 for cross-compilation and transportation of BCPL programs.

 Global cells 0 to n, where n is implementation dependent,

 are reserved for system procedures and these are defined in

 the standard header, together with a number of manifest

 constants. On most implementations, n is at least 99.

 8.1 Globals in the Standard Header File

 All Procedures names (including START) described in

 sections 9 and 10 of this document are allocated cells in the

 global vector. All further procedures from the appendix and

 implementation dependent routines which are implemented as

 part of the runtime system of the installation are also

 included, as is the global cell:

 RESULT2

 A general working cell which may be used by functions to

 44 1.10.1979

 BCPL Standard

 return a 'second result'.

 8.2 Manifest Constants in the Standard Header

 The following manifest constants are defined in the

 standard header.

 ENDSTREAMCH

 The result returned by RDCH when a stream is exhausted.

 On most implementations ENDSTREAMCH=-1.

 BYTESPERWORD

 The number of 'bytes' (=characters) packed in a cell in

 strings and in PUTBYTE and GETBYTE.

 FIRSTFREEGLOBAL

 The number of the first global cell which is available

 to the user.

 BITSPERWORD

 The number of bits in a BCPL word.

 MAXINT

 The most positive integer which may be held in a BCPL

 word.

 MININT

 The most negative number which may be held in a BCPL

 word.

 1.10.1979 45

 BCPL Standard

 9 Input/Output

 Input/output facilities in BCPL are always invoked by

 procedure calls. The basic form of I/O always takes place

 via streams. A stream is basically an ordered sequence of

 normal characters, intermixed with newline, space, and other

 format characters, which are accessed sequentially. Each

 stream is identified by a stream identity the form of which

 is implementation dependent. Normally this is either an

 integer in a given range or the address of a control block.

 On entry to a BCPL program an input stream (the standard

 input for the operating system), and an output stream

 (standard output = printer or terminal) may be set up and

 selected.

 Many of the procedures associated with input do not

 include a stream identity in the call. These procedures

 operate on the 'Current Input Stream' (CIS) which is defined

 by the routine SELECTINPUT. Likewise many output procedures

 operate on the 'Current Output Stream' (COS).

 46 1.10.1979

 BCPL Standard

 9.1 Standard Stream Organization Procedures

 STREAM := FINDINPUT(S)

 This function initializes a stream for reading. S is a

 string which identifies the stream to the operating

 system. The content of the string is implementation

 dependent. The result of the function is the a value

 which represents the stream and is used SELECTINPUT. If

 the stream cannot be opened for some reason the value

 zero is returned and an implementation dependent error

 code is given in RESULT2.

 STREAM := FINDOUTPUT(S)

 As for FINDINPUT but for output streams.

 SELECTINPUT(N)

 CIS:=N. All calls of RDCH will operate on stream N until

 changed by a further call of SELECTINPUT. This routine

 may be called with a given stream indentity even if this

 stream is already the CIS. N=0 is allowed and causes

 CIS to be undefined in which case future calls of RDCH

 will cause an error.

 SELECTOUTPUT(N)

 COS:=N. As SELECTINPUT.

 ENDREAD()

 This routine closes CIS and sets the input stream

 selection to undefined.

 1.10.1979 47

 BCPL Standard

 ENDWRITE()

 This routine closes COS and sets the output stream

 selection to undefined.

 REWIND()

 The CIS is rewound. Not all streams are rewindable.

 The CIS is closed and re-opened for input.

 STREAM := INPUT()

 The stream identity of the CIS is returned. If the

 result is zero there was no currently selected input

 stream.

 STREAM := OUTPUT()

 The stream identity of the COS is returned. If the

 result is zero there was no currently selected output

 stream.

 9.2 Standard Input/Output Procedures

 CH := RDCH()

 This function delivers the next character from CIS. If

 the stream is exhausted it yields the value ENDSTREAMCH

 which is a manifest constant.

 UNRDCH()

 This routine backspaces the CIS so that the next call of

 RDCH will have the same effect as the last call.

 UNRDCH() may be applied to many streams independently:

 48 1.10.1979

 BCPL Standard

 each stream has its own one-character "unread" state.

 The effect of successive calls of UNRDCH is undefined.

 If UNRDCH is called when no characters have been read

 the effect is undefined.

 N := READN()

 This function reads and yields the value of a decimal

 number [<format>][+|-] [<digit>] where <format> is a

 sequence of layout characters ('*S', '*N', '*P', '*T')

 and <digit> is a decimal digit. READN will read all

 characters up to the first non digit following the digit

 string. The terminating character is returned to the

 input stream using UNRDCH. If there were no decimal

 digits the number returned is zero. All numbers capable

 of being represented in an integer (including the

 largest negative number on a twos complement machine)

 will be read correctly. The result of attempting to

 read a number which cannot be represented as an integer

 is undefined.

 WRCH(CH)

 This routine writes CH to COS.

 WRITES(S)

 This routine writes the string S to COS using WRCH.

 1.10.1979 49

 BCPL Standard

 WRITED(N,W)

 This routine writes N to COS in decimal using WRCH,

 right justified and with sign if negative in a field

 width W. If the given field is not big enough to hold

 the value then it is output in the minimum possible

 field length.

 WRITEN(N)

 This routine writes N to COS in minimum field width

 using WRCH.

 WRITEOCT(N,D)

 This routine writes D least signigicant octal digits of

 N to COS using WRCH.

 WRITEHEX(N,D)

 This routine writes D least significant hexadecimal

 digits of N to COS using WRCH.

 WRITEF(F,A1,A2,...,A11)

 This routine writes the arguments A1,A2,... to COS

 according to the format string F. The format string F

 is copied character for character to COS until the end

 is reached in which case the procedure is terminated or

 until a warning character '%' is encountered in which

 case the action depends on the next character(s) as

 50 1.10.1979

 BCPL Standard

 follows:

 S Write next arg.(Ai) by WRITES(Ai)

 C Write next arg.(Ai) by WRCH(Ai)

 N Write next arg.(Ai) by WRITEN(Ai)

 In Write next arg.(Ai) by WRITED(Ai,n)

 On Write next arg.(Ai) by WRITEOCT(Ai,n)

 Xn Write next arg.(Ai) by WRITEHEX(Ai,n)

 % Write '%'

 $ Skip next arg.(Ai)

 The letters S,C,N,I,O,X in the above table may be in

 upper or lower case. The field width n is a single hex

 digit (0-9, A-F). After outputing the argument the

 whole process is repeated starting at the next character

 of the format string.

 NEWLINE()

 This routine writes a newline to COS using WRCH.

 NEWPAGE()

 This routine writes a newpage to COS using WRCH.

 1.10.1979 51

 BCPL Standard

 10 BCPL Runtime System

 The runtime system includes code necessary for such things

 as initialization, procedure entry and exit etc. together

 with the standard I/O and other routines described in this

 chapter and accessible via the global vector.

 10.1 Start and Stop

 START(ARG)

 A BCPL program is invoked by calling the (user written)

 function START which is by convention global number one.

 On many implementations the argument ARG is a string

 which is passed from the operating system to the user

 program. On some implementations parameters may be

 passed to the user program via a stream which is

 accessed via FINDINPUT with an implementation dependent

 argument. On entry to START a standard input stream and

 a standard output stream may exist and be selected.

 Return from START is exactly equivalent to FINISH.

 STOP(N)

 This routine causes termination of the program. N is

 the completion code that is passed back to the operating

 system. STOP(0) is equivalent to FINISH.

 52 1.10.1979

 BCPL Standard

 10.2 Stack organization routines

 P := LEVEL()

 This function gives a representation of the current

 procedure activation level for use with LONGJUMP.

 LONGJUMP(P,L)

 This routine causes a non-local jump to the label L at

 the activation level P.

 RES := APTOVEC(F, N)

 This function applies the procedure F to two arguments V

 and N where V is a vector of size N. The result is the

 value (if any) returned by the call of F. APTOVEC could

 be described in (illegal) BCPL as:

 LET APTOVEC(F,N) = VALOF

 $(LET V = VEC N // illegal because N not constant

 RESULTIS F(V,N)

 $)

 10.3 String handling

 In BCPL strings are packed with more than one character

 per word so as to ecomonize space. The exact manner of

 packing is implementation dependent and is described in

 section 3.2.3.

 It is however sometimes convenient in BCPL to operate on

 individual characters each in a separate cell. In such a

 representation the characters are stored in cells 1 to n of a

 1.10.1979 53

 BCPL Standard

 vector U and the length (i.e. the number of characters in the

 string) is stored in U!0. These two forms of a string are

 known as a 'packed string' (or simply string where no

 confusion will arise) and 'unpacked string'.

 UNPACKSTRING(S, U)

 This routine unpacks the characters from S into U!1 to

 U!N where N is the length of the string and sets U!0=N.

 The effect of UNPACKSTRING is undefined if S and U

 overlap.

 I := PACKSTRING(U, S)

 This function packs N and the characters U!1 to U!N into

 S where N = U!0. The result is the subscript of the

 highest element of S used. The effect of PACKSTRING is

 undefined if U and S overlap

 CH := GETBYTE(V, N)

 This function yields the Nth byte from vector V.

 PUTBYTE(V, N, B)

 This routine puts the byte B in the Nth byte position of

 vector V.

 Acknowledgements

 The criticisms and suggestions of Benedict Heal (Newcastle

 University) and Mike Jordan (Fendragon, Cambridge) are

 gratefully acknowledged together with discussions with many

 54 1.10.1979

 BCPL Standard

 BCPL users (too many to mention by name here).

 References

 Middleton M.D. (1977) A Proposed Definition of the Language

 BCPL, das RZ der Universitaet Regensburg, Regensburg

 Richards, M. (1969) BCPL: A tool for Compiler Writing and

 Systems Programming, Proceedings of the Spring Joint

 Computer Conference, Vol 34.

 Richards, M. (1973) The BCPL Programming Manual, The

 Computer Laboratory, Cambridge

 Richards, M. and Whitby-Strevens, C. (1979) BCPL - The

 Language and its Compiler Cambridge University Press.

 1.10.1979 55

 BCPL Standard

 Appendix - Extensions

 This appendix contains a list of recommended extension

 packets. None of these packets is mandatory, but if any one

 feature of a packet is implemented then the whole packet

 should as far as possible be implemented. Variations of

 packets should not be implemented. Before an implementor

 introduces any change in the language he should consider

 carefully if the proposed changes are really necessary as

 non-standard language elements can lead to severe problems

 with portability. Extensions to the standard procedures are

 much easier to cope with and these should always be the

 preferred method of extending the language.

 A1 Character Constants

 The following additional special representations are

 allowed:

 special represents

 representation

 *C or *c Carriage return

 *B or *b Backspace

 *E or *e Causes output of currently buffered

 characters on the stream without a

 carriage control character if this is

 possible.

 N.B.

 Each of the special representations will be mapped onto a

 distinct values in the internal code of the machine. The

 actual effect of the characters will however depend on the

 I/O medium used and the effect of a given character is not

 necessarily uniquely defined for every medium.

 56 1.10.1979

 BCPL Standard

 A2 Character Operator

 The dyadic operator % has binding power just less than the

 operator ! and may occur in two contexts.

 a) In an R-mode expression

 E1 % E2 is equivalent to the standard meaning of

 GETBYTE(E1, E2).

 b) In an assignment mode expression

 E1 % E2 := E3 is equivalent to the standard meaning of

 PUTBYTE(E1, E2, E3).

 A3 Field Selectors

 Syntax

 <expression> ::= SLCT [<expression> :] <expression>

 SLCT and : have lower binding power than any other expression

 operator.

 Semantics

 SLCT K1:K2:K3

 where K1, K2 and K3 are constant expressions. This operation

 defines a field within a vector. K1 is the size of the field

 in bits. K2 is the number of bits between the right most bit

 of the field and the right hand end of the cell containing it

 and K3 is the subscript of the element of the vector

 containing the field. If the size (K1) or the shift (K2) are

 1.10.1979 57

 BCPL Standard

 not explicitly specified zero is assumed. A size (K1) of

 zero implies that the field extends to the left most bit of

 the cell containing it.

 The effect of the SLCT operator is to pack the three

 values into a BCPL word for use later by the operator OF.

 There are implementation dependent limits on the possible

 sizes of K1, K2 and K3. The exact method of packing field

 selectors is implementation dependent except that, subject to

 limits of size

 SLCT 0:0:n = n

 SLCT K1:K2:K3 is a constant expression.

 Field selector application

 Syntax

 <dyop> ::= OF

 Semantics

 The field selector operator OF may occur in two contexts:

 a) R-mode expression

 K OF E

 K is a constant expression which is interpreted as a field

 selector. E is any expression and is interpreted as the

 address of the zeroth cell of a vector. The effect of the

 OF operator is to extract the field defined by K from the

 vector defined by E and shift this so that the result is

 58 1.10.1979

 BCPL Standard

 right justified.

 b) Assignment mode

 K OF E1 := E2

 K is interpreted as a field selector and the appropriate

 number of bits from the right hand end of the result of E2

 are assigned to the specified field.

 A4 Optional compilation

 A directive of the form:-

 $$tag

 will set the value of $$tag to the complement of its previous

 value. Such a directive can occur anywhere in the program.

 A tag retains its value until the end of the program text

 unless complemented explicitly. All tags have initial value

 FALSE. The text enclosed between

 $<tag and $>tag

 will only be compiled if the value of $$tag is TRUE. The tag

 complementing directive is only executed if it is encounted

 in a region of text that is not being skipped.

 1.10.1979 59

 BCPL Standard

 A5 Compound Assignment

 Syntax

 <assignment> ::= <expression list> <assop>

 <expression list>

 <assop> ::= *:= | /:= | REM:= | +:= | -:= | &:= |

 |:= | EQV:= | NEQV:=

 Although <assop> is a basic symbol and as such may not have

 embedded layout characters it is nevertheless made up out of

 the two symbols <op> and := and all the synonyms for a given

 <op> are also allowed.

 Semantics

 There are two forms of compound assignment:

 a) E1 <assop> E2

 where <assop> has the form <op>:=. This has the same

 effect as

 E1 := E1 <op> E2

 b) Compound multiple assignment

 L1, L2, ... <op>:= E1, E2, ...

 This has the same effect as

 L1, L2, ... := L1 <op> E1, L2 <op> E2, ...

 60 1.10.1979

 BCPL Standard

 A6 Section and needs

 A segment of a BCPL program may start with a directive of

 the form

 SECTION "<name>"

 when <name> is a module name acceptable to the linker. It

 defines the section name to be given to the generated object

 module. A new block-head-declaration is defined:

 <needs dec> ::= NEEDS "<name>"

 is a <block head declaration>, where <name> is also a name

 acceptable to the linker. This directive causes an external

 reference to be set up in the object module, so that the

 specified object module will be included automatically by the

 linker.

 A7 Store Allocation

 In addition to the normal BCPL stack there may be another

 area of dynamically allocated storage called the heap. This

 area may be used by the I/O system for maintaining buffers

 etc. but is also available to the user. The procedures for

 accessing the heap are as follows.

 SIZE := MAXVEC()

 This function returns the size of the largest vector

 that there is room for in the heap. Note that on some

 implementations the heap and stack will grow towards

 each other an this (as well as the fact that the heap

 1.10.1979 61

 BCPL Standard

 may be used for I/O buffers) must be allowed for when

 interpreting the result of MAXVEC. Further

 complications may arise in a real-time system.

 V := GETVEC(SIZE)

 This function allocates a contiguous area of store of

 SIZE + 1 words from the heap and returns its vector

 address (so that V!0 to V!SIZE are available). If this

 is not possible the value 0 is returned instead.

 FREEVEC(V)

 This routine returns a vector to the heap. V must be a

 vector allocated by GETVEC, and only entire vectors may

 be returned. The heap mechanism is defined to coalesce

 a returned vector with any contiguous free store, and to

 return store released to the common stack/heap pool.

 SIZE := STACKSIZE()

 This routine returns an approximation to the amount (in

 words) of stack space free. Note that on systems where

 the heap and stack grow towards each other the stack

 space available may be affected by calls of GETVEC,

 FREEVEC, and I/O routines (which may involve allocation

 or deallocation of buffers).

 62 1.10.1979

 BCPL Standard

 A8 Scaled arithmetic

 RES := MULDIV(A,B,C)

 This function calculates (A*B)/C, holding the

 intermediate product (A*B) as a double length integer.

 If the result does not fit in a normal integer the

 action of MULDIV is undefined. The remainder from the

 division is left in global variable RESULT2.

 A9 Block I/O

 Data can be accessed from normal input/output streams

 block by block. Depending on the implementation, a 'block'

 implies either a physical or logical block or more usually a

 logical record. The result of mixing block I/O and normal

 character I/O in a stream is undefined and it is recommended

 that the two types of access are not both used on the same

 stream. The size of a block is measured in units, normally

 bytes or words, which are implementation dependent.

 RES := RDBLOCK(B, L)

 This function reads the next 'block' from CIS into

 buffer B which is of size L. The result is the number

 of units actually read. A result of zero indicates that

 the 'block' was too large to fit into the buffer - in

 this case the first L units of the block are read into

 the buffer and the next call of RDBLOCK will attempt to

 1.10.1979 63

 BCPL Standard

 deliver the rest. A result of less than zero indicates

 an error or that the stream is exhausted - further

 details in RESULT2.

 RES := WRBLOCK(B,L)

 This routine writes a 'block' of size L from buffer B to

 the stream COS. A result of zero indicates a successful

 transfer. A non-zero result indicates an error

 condition - further details in RESULT2.

 A10 Binary I/O

 Binary I/O is inherently machine dependent and therefore

 very difficult to standardize. For this reason two

 alternative schemes are put forward. Whichever scheme is

 used, the effect of mixing binary and character I/O on a

 given stream is undefined.

 a) Via stream definition

 Streams are defined on creation as binary by means of

 suitable implementation dependent arguments to FINDINPUT.

 and FINDOUTPUT. Binary I/O then takes place via the

 routines RDCH and WRCH.

 b) Via special binary I/O procedures

 The following two routines may be used on normal streams

 to read/write in binary:

 RDBIN() gives the next binary character on the CIS

 64 1.10.1979

 BCPL Standard

 WRBIN(x) writes x in binary to the COS.

 Further Facilities for both schemes

 In both schemes a means of specifying record sperators is

 necessary:

 i) The standard header contains a manifest constant

 ENDRECORDCH (usually = -2) which is returned by RDBIN or

 RDCH on binary streams and indicates the end of a record.

 ii) The routine ENDRECORD() causes an end of record to be

 output to the COS.

 A11 Direct access I/O

 The facilities for direct access of data offered by

 different operating systems vary considerably, and the

 primitives offered in BCPL are deliberately kept simple so as

 to encompass as many variations as possible. The term 'file'

 here means a logical collection of data such is a data set

 which is organized as a number of 'blocks' which may be

 accessed in a random order. The term 'block' means the

 physical or logical block or record which is transferred by

 the operating system. It may be possible on some operating

 systems to access some files both by means of direct access

 I/O and stream oriented I/O. This is however not mandatory.

 The size of a block is measured in units, normally bytes or

 words, which is implementation dependent.

 1.10.1979 65

 BCPL Standard

 D := FINDDIRECT(S,K)

 This function is the direct access analogue for

 FINDINPUT and FINDOUTPUT. The 'file' identified by the

 string S is located and opened for reading and/or

 writing. The key K specifies the type of access. This

 should be defined by a manifest constant which can

 include the following values:

 DA.IN - read access only

 DA.OUT - write access only

 DA.IO - read and write access

 The result D is a 'file identifier' which is used in

 other direct access I/O procedures. A result of zero

 indicates that the file could not be opened - further

 information is obtainable in RESULT2.

 RES := READDIRECT(D, N, B, L)

 This function reads block N from the file with

 identifier D into buffer B which is of size L. The

 block identifier N will normally be an integer (block

 number) but could, in some implementations, be a string

 which is used as a key. The result is number of units

 actually read. A negative result indicates an error -

 further details in RESULT2.

 RES := WRITEDIRECT(D, N, B, L)

 This function writes a buffer B of size L to block N of

 the file with file identifier D. Block identifier N is

 66 1.10.1979

 BCPL Standard

 as in READBLOCK. A zero result indicates success and a

 negative result indicates an error - further details in

 RESULT2.

 CLOSEDIRECT(D)

 Closes file D.

 A12 System Services

 It is recommended that two procedures are provided to give

 access to the implementation dependent system services, one

 for the filing system and one for the other services.

 RES := FILESYS(OP, A1, A2,...)

 OP is a constant specifying a filing system service

 (such as 'deletefile' or 'renamefile'). A1, A2,... are

 appropriate arguments for the specified service and the

 result RES will usually indicate whether the operation

 was successful.

 RES := OPSYS(OP, A1, A2,...)

 OP is a constant specifying an operating system service

 and A1, A2,... are appropriate arguments for that

 service. RES is an implementation dependent result.

 1.10.1979 67

 BCPL Standard

 A13 Floating point

 There are two possible schemes for a floating point

 package in BCPL: on implementations where the cell size is

 big enough to hold the machine representation of a floating

 point number the Floating Point Language Packet may be

 implemented and where this is not possible the Floating Point

 Procedure Packet may be implemented. In either case the

 Floating Point I/O Procedures should be implemented.

 a) Floating Point Language Packet

 Floating point constants

 A floating point constant is syntactically and

 semantically equivalent to <number> and may have one of the

 forms

 i.jEk

 i.j

 iEk

 where i and j are unsigned integers and k is a (possibly

 signed) integer. The value is the machine representation of

 a floating point number.

 Floating point operators

 The floating point operations are formed by prefixing the

 corresponding integer operation with the character #. See

 section 3.2.2 for the complete list. The precedence of a

 68 1.10.1979

 BCPL Standard

 floating point operator is the same as its integer

 equivalent. In addition there are the monadic operators FIX

 and FLOAT, which have the same precedence as @, for

 conversion between integer and floating point representation.

 Note that the omission of # in a negative floating point

 constant such as #-1.2 will produce an unexpected value.

 b) Floating Point Procedure Packet

 A floating point number is represented by a pointer to a

 vector of FP.LEN cells where FP.LEN is a manifest constant

 declared in the standard library header. The arithemetic

 procedures are functions which operate on these

 representations and require 1 or 2 arguments as normal

 operands plus a further argument as destination. The result

 of the function is in this case the destination.

 Arithmetic Functions

 FPLUS(A,B,C) C:=A#+B resultis C

 FMINUS(A,B,C) C:=A#-B resultis C

 FNEG(A,B) B:=#-A resultis B

 FMULT(A,B,C) C:=A#*B resultis C

 FDIV(A,B,C) C:=A#/B resultis C

 FABS(A,B) B:=#ABS A resultis B

 Any number of the arguments in the above functions may be

 identical.

 1.10.1979 69

 BCPL Standard

 Other Functions

 FFIX(A) resultis FIX A

 FFLOAT(A,B) B:=FLOAT A resultis B

 FCOMP(A,B) resultis (0 A = B

 (-1 A < B

 (1 A > B

 c) Floating Point I/O Procedures

 WRITEFP(A,F,N)

 This routine writes the FP number A to the stream COS in

 the form m.n where F is the total field width and N the

 number of places after the decimal point. If N is zero

 or cannot be represented in the given format it is

 output in the form m.nE[+|-]dd in a field width of F.

 RES := READFP(A)

 This function reads a FP number from stream CIS and

 converts it to its internal representation. For

 implementations with the FP Procedure Packet it stores

 this in the vector A and yields A as the result. For

 implementations with the FP Language Packet it returns

 the explicit internal representation of the FP number

 and does not use A.

 70 1.10.1979

 BCPL Standard

 A14 Time and Date

 Information about time and date is provided as follows:

 DATE(V)

 This routine packs the date as a string into vector V

 and returns as result the pointer V.

 TIMEOFDAY(V)

 This routine packs the time of day as a string into

 vector V and returns a pointer to V.

 T := TIME()

 The result T is an integer representing the CPU time

 used in implementation dependent units. The unit is

 defined in the standard library header by TICKSPERSEC.

 A15 External procedure

 The facilities offered by linkers vary considerably from

 machine to machine. For this reason it is difficult to

 specify a mechanism that is generally applicable for

 interfacing BCPL programs with routines written in other

 languages. It is therefore recommended that the following

 scheme be adopted if possible, but if for some reason

 variations are necessary different system words should be

 used.

 1.10.1979 71

 BCPL Standard

 External declaration

 Syntax

 <blockhead declaration> ::= <ext dec>

 <ext dec> ::= EXTERNAL <ext defs>

 <ext defs> ::= $(<ext def> [; <ext def>] $)

 <ext def> ::= <name> : <string>

 Semantics

 The declaration

 EXTERNAL $(N : S $)

 where S is a string constant causes permanent allocation of a

 cell named N. This cell will be initialized to the value of

 the external reference S prior to execution of the program.

 Calling non-BCPL procedures

 Standard procedures are available for calling procedures

 defined in other languages. It is recommended that the names

 of these standard procedures are of the form CALLlang where

 lang specifies which language, e.g. CALLFORT.

 CALLlang(RTN,N,A1,A2,...,An)

 RTN is the procedure to be called which should be

 declared by an EXTERNAL declaration. N is the number of

 arguments passed to RTN and may be omitted in some

 implementations. A1,A2,...,An are the arguments passed

 72 1.10.1979

 BCPL Standard

 to RTN. The form of these arguments is implementation

 dependent. If RTN is a function, CALLlang yields the

 result.

 1.10.1979 73

 BCPL Standard

 INDEX of non-terminals

 <assignment>. 25

 60

 <assop> 25

 60

 <based number> 9

 <basic symbol> 6

 <BCPL section> 42

 <binary digit> 10

 <block> 43

 <block head declaration>. 32

 72

 <case label>. 40

 <character constant> 10

 <command>. 40

 <command sequence>. 43

 <compound> 43

 <conditional> 26

 <conditional exp> 16

 <declarations> 42

 <default label>. 40

 <digit> 5

 <dynamic dec> 37

 <dyop>. 16

 58

 74 1.10.1979

 BCPL Standard

 <element>. 9

 <expression>. 16

 57

 <expression list> 16

 <ext dec>. 72

 <ext def>. 72

 <ext defs> 72

 <for command> 28

 <function call>. 16

 <function dec> 38

 <glob def> 34

 <glob defs> 34

 <global dec>. 34

 <hex digit> 10

 <identifier>. 6

 <identifier list> 37

 <label> 40

 <layout char> 5

 <letter> 5

 <literal>. 9

 <logical value>. 12

 <manifest dec> 36

 <monop> 16

 <name>. 6

 <needs dec> 61

 <newline char> 5

 1.10.1979 75

 BCPL Standard

 <number> 9

 <octal digit> 10

 <other> 5

 <par list> 38

 <prefix> 40

 <procedure call> 16

 <repetative>. 27

 <resultis> 29

 <routine call> 25

 <routine dec> 38

 <sm def> 35

 <sm defs>. 35

 <space char>. 5

 <special>. 5

 <static dec>. 35

 <string character>. 10

 <string constant> 11

 <switchon> 29

 <symbol> 6

 <tag> 6

 <tag char> 6

 <transfer> 30

 <undefined> 12

 <unlabelled command> 25

 <vector dec>. 37

 76 1.10.1979

