

 Bootstrapping the BCPL Compiler using INTCODE

 by M. Richards

 Abstract:

 For a compiler written in its own language, there is the

 problem of choosing a good strategy for bootstrapping it onto

 a new machine. The method explored in this paper is the

 preferred mechanism for transferring BCPL and involves the use

 of an interpretive machine code called INTCODE. INTCODE is

 designed specifically for this purpose. Its design and the

 general strategy of using it in a transfer are described.

 Computer Laboratory,

 University of Cambridge,

 Corn Exchange Street,

 Cambridge,

 England August 1973

 Bootstrapping the BCPL Compiler using INTCODE

 The portability of a programming language is strongly influenced

 by its design, the structure of its compiler and the mechanism used

 to transfer it from one machine to another. Although the prime

 concern of this paper is to discuss a method of easing the boot-

 strapping problem, it is in order to survey the effects on a language

 of requiring it to portable, since decisions in this area have

 a considerable bearing on the subsequent bootstrapping problem.

 A programming language is always a compromise between the

 differing and usually conflicting requirements of a large number

 of constraints and design aims. For instance, one often wishes

 to incorporate powerful high-level facilities into a language

 without, at the same time, jeopardising the efficiency of the

 compiled code. Alternatively, one may be under pressure (from

 users) to provide language extensions at a time when the compiler

 is already too large to fit comfortably in the machine.

 The main effect of the portability constraint on a language

 is a reduction in the number of primitive facilities provided and

 the removal of most machine dependencies. Small machine

 independent languages are inherently portable, and only gross

 errors in compiler design will prevent such languages from being

 transferred easily. It is worth noting that much of the effort

 required to transfer a compiler is in the rewriting of the code-

 generator for the new machine, and that the size of the machine

 independent parts of the compiler are of little relevance. This

 suggests that portability is enhanced mainly by reducing the more

 fundamental facilities of the language such as the variety of

 data and storage types, the complexity of the calling mechanism

 for procedures, and the number of primitive expression operators,

 while many of the higher level features such as conditional

 commands and the scope rules of identifiers may, on the other

 hand, be left in without portability suffering significantly.

 BCPL [1,2] was designed to be inherently portable and, as a

 result, it has rather few primitive facilities. It has, for

 instance, only one data type, three storage types, a very simple

 procedure calling mechanism, and few expression operators, and it

 is possible to describe the language in terms of a very simple

 abstract machine whose machine code is a simple and natural inter-

 face between the machine independent part of the compiler and the

 code generator. Since there is only one data type, all variables,

 values of expressions, anonymous results, and arguments are of the

 same size and it is reasonable for the allocation of space for

 items in the run-time stack to be done by the machine independent

 part of the compiler, with a consequent simplification of the

 code-generator and an improvement in portability. The language

 has a wide variety of non-primitive linguistic facilities such

 as conditional commands and syntactic constructions to reduce

 the need for GOTO commands, but the only expression operators

 available correspond to the fixed point, logical and relational

 instructions common to most computers. Two additional operators

 provide facilities for forming and using machine addresses, and

 since these operators, like all the others, cannot check the

 types of their operands, they are dangerously powerful. In many

 respects, BCPL can be regarded as a clean machine code in

 high level notation.

 The interface language - OCODE

 OCODE [3] is the name of the assembly language for the

 abstract BCPL machine. Its design is important since it is the

 interface language between the first phase of the compiler and

 the code-generator, and, like any other language, it must satisfy

 a number of constraints, the main one being that it must be

 capable of efficient code-generation. The OCODE form of an

 expression is basically the reverse polish translation with

 separate OCODE statements for each operation. For example, if

 x, y and z are local variables in positions 4, 5 and 6 of the

 current stack frame, then the OCODE translation of x/y + z

 would be:

 LP 4 LP 5 DIV LP 6 PLUS

 There are three fundamental operations for BCPL local variables:

 loading the value, loading the address of the variable and up-

 dating the variable, and LP, LLP and SP are the corresponding

 OCODE keywords. Similarly, the other two storage types, global

 and static, each have three OCODE statements for their trans-

 lation. Thus, there are only 9 statements, in all, for accessing

 variables; in addition to these, there are 19 for the arithmetic,

 relational and logical primitives, and one for indirection which

 is also used for subscripted expressions and data structure

 selection. There are 5 statements for loading the various kinds

 of explicit constants available in the language, and remaining

 statements are mainly directives to the code-generator, or are

 concerned with procedure calls and jumps. Thus, the abstract

 BCPL machine can be programmed in a language containing fewer

 than 60 different simple statements.

 It is instructive, at this stage, to consider the effect of

 language extensions on the complexity of OCODE. We have seen

 already that each storage type requires three OCODE statements;

 however, for each additional numerical data type in the language

 the effect is far more disastrous. We would require three new

 statements for each of the storage types and about 12 new statements

 for expression operators defined for the new data type. Unfort-

 unately, the situation is likely to be even worse than this since

 it may be necessary to leave the space allocation to the code-

 generator which will, in consequence, require a more complex

 version of OCODE and a proportional increase in effort required to

 write the code-generator. For a BCPL-like language extended to

 contain real and long-real arithmetic, one would expect the

 corresponding OCODE to contain nearly 120 different statements.

 Many applications do not require real arithmetic and the

 improvement in portability resulting from its omission is attractive.

 OCODE makes no provision for optimisation based on the

 analysis of the flow structure of the program, but optimisation

 at the local level is certainly possible and is performed by most

 code-generators. Particular care was taken in the design of the

 OCODE primitives for procedure definitions and calls so that

 there would be as wide a choice as possible in the details of

 the actual calling mechanism used.

 Before INTCODE was developed, OCODE was the basis of the

 mechanism used to transfer the compiler to a new machine. At that

 time, the bootstrapping kit consisted of the source form of the

 compiler and a character representation of the corresponding

 OCODE form. To bootstrap the compiler, one first had to write a

 simple non-optimising code-generator for OCODE and then use it

 to generate code for the entire compiler from its OCODE form

 supplied in the kit. The first stage of the bootstrap was

 completed by combining this code with suitable interface

 routines to provide input, output and other operating system

 facilities. An optimising code-generator for the new machine

 could then be produced by suitably modifying an already

 existing one for some other machine; this being far less work

 than writing one from scratch.

 OCODE is thus effective not only as an interface between

 the two halves of the compiler, but also as the basis of a

 method of bootstrapping. However, after completing several

 transfers using OCODE, it was found that the bootstrapping

 capability could be improved. OCODE makes more provision for

 optimisation than is necessary for bootstrapping purposes and,

 although a simple code-generator could be written, it required

 more knowledge and understanding of BCPL than was absolutely

 necessary. Thus, when the implementation of the bootstrap code-

 generator was undertaken by a programmer with no previous

 experience with BCPL, it often took longer than expected and

 frequently contained strategic errors in design. The solution

 was to take OCODE and to compile it into the assembly language

 of a second, even simpler, machine code for the BCPL abstract

 machine. The assembly language that was designed for this

 purpose is called INTCODE and it could be used in place of OCODE

 in the BCPL kit.

 The INTCODE machine

 Unlike a conventional computer, the INTCODE machine is not

 fully specified, and such details as the word-length, byte-size,

 and instruction format are left undefined. The machine has 6

 control registers as follows: A and B are accumulators for

 computing expressions, C is the sequence control register giving

 the location of the next instruction to be obeyed, D is a register

 used to hold the computed address of the current instruction, and

 P and G are index registers. All these registers are the size of

 a machine word.

 An instruction has a 3 bit function field, and an address

 field of unspecified size, 2 bits for index modification and an

 indirection bit. These fields may be laid out in the word in

 any way that is convenient for the interpreter. An instruction

 is executed as follows. Firstly, it is fetched from the store

 and C is incremented, then, the computed address is formed by

 assigning the address field to D, conditionally adding P or G

 as specified by the modification field, and indirecting if

 required. Finally, the operation specified by the function

 field is performed.

 The 8 machine functions are: LOAD, ADD, STORE, JUMP,

 JUMP ON TRUE, JUMP OF FALSE, CALL, and EXECUTE OPERATION, and they

 are denoted in the assembly language by the single mnemonic

 letters L, A, S, J, T, F, K, and X, respectively. LOAD will

 assign the computed address to A after saving its previous contents

 in B. ADD will add D to A, and STORE will assign A to the storage

 location addressed by D. The effect of JUMP is to assign D to C,

 thus causing a transfer of control. JUMP ON TRUE and JUMP ON FALSE

 are conditional transfer instructions that test the value held in

 A. For these instructions, zero represents false and any non-zero

 value represents true. CALL is used in the compilation of a BCPL

 function or routine call. It increments P by the amount specified

 in D, saves the old value of P and the return address, and then

 jumps to the entry point held in A. The final instruction

 EXECUTE OPERATION provides a miscellaneous collection of arithmetic,

 relational, logical, and control functions, the actual function

 being determined by D. Most of the functions operate on B and

 A, usually leaving a result in A. For example, X7 will cause the

 remainder after the integer division of B by A to be assigned to

 A. There are 23 execute operations in the basic INTCODE machine,

 but for practical use, a further 5 to 10 are needed in order to

 provide an adequate interface with the operating system.

 The assembly form of an INTCODE instruction consists of the

 mnemonic letter for the function, followed by 'I' if indirection

 is specified, followed by 'P' or 'G' if P or G modification is

 specified, and finally followed by the address. The address is

 either given explicitly as a decimal integer or as a reference

 to a label. A label reference is denoted by 'L' followed by

 the label number. A number not preceded by a letter is

 interpreted as a label setting directive and causes the specified

 label to be set to the address of the next item to be assembled.

 As an example, the following piece of BCPL program:

 IF SW DO X := 126

 Y := Y REM X

 could be translated into the following INTCODE:

 LIG103 / load SW

 FL73 / jump on false to label 73

 L126 / load 126

 SP3 / assign to X

 73 / set label 73

 LIP4 / load Y

 LIP3 / load X

 X7 / form remainder

 SP4 / assign to Y

 In this example, SW is assumed to global 103, and X and Y

 to be the third and fourth local variables.

 Data may be assembled using various data statements. For

 instance, the statement D163 will cause a word to be allocated

 with initial value 163, and DL46 will allocate a word holding

 the value of label 46 as initial value. String data can be

 assembled using character statements; for instance, the BCPL

 string "ABC" might compile into:

 LL493 ...

 493 C3 C65 C66 C67

 ...

 In this example, the instructions LL493 will load the address of

 a region of store where the bytes 3, 65, 66, and 67, representing

 the string, are stored. They are packed according to the word-

 length and byte-size of the particular implementation.

 Other facilities in INTCODE include directives for

 initialising global variables and marking the ends of segments

 of code, and a comment facility.

 We can see from this description that INTCODE is an easy

 assembly language to learn and use, and that its assembler and

 interpreter are simple to write. The INTCODE kit of the BCPL

 compiler consists of the source form and the corresponding

 INTCODE translation of the compiler and that part of the library

 that is written in BCPL. The documentation includes a detailed

 description of INTCODE and a BCPL version of the assembler and

 interpreter. To bootstrap the compiler using this kit, one

 first rewrites and tests the assembler and interpreter in some

 suitable language. Next, one constructs a library to provide

 the necessary input and output routines. This library consists

 partly of hand-written INTCODE and partly of the compiled form

 of the BCPL library suitable modified (if necessary) for the new

 word-length and byte-size. These corrections are simple as most

 of this library is machine independent. Finally, the compiler

 can be assembled and tested. To simplify this last stage, several

 debugging aids are incorporated permanently into the compiler.

 Many of these are in the lexical and syntax analysers which are

 usually the first sections to be tested. There is, for instance,

 an option to print the current input character on every call of

 the lexical analyser, and there is another option to print the

 integer code of basic symbols as they are recognised. Once the

 lexical analyser works, the rest of the compiler usually works

 immediately and the options to print the syntax tree and the

 intermediate object code are provided mainly for their educational

 value in helping implementers to understand the compiler.

 Summary and Conclusions

 The OCODE mechanism provides a reasonable mechanism for

 portability, since its bootstrapping capability is good and, once

 the bootstrap is complete, it is possible to write (or modify) a

 code-generator to compile adequately efficient code. However, it

 was found that time could be saved by using INTCODE and the

 reasons for this are listed below.

 a) Less knowledge and less work is required to construct

 the first bootstrap.

 b) INTCODE is easier to learn and is more convenient to write

 or modify than OCODE, and so it is reasonable and useful to

 include many of the machine dependent parts of the library in the

 kit.

 c) Bootstrapping an INTCODE version of the BCPL compiler is

 a useful educational exercise. It allows the implementer to learn

 BCPL, the specification of OCODE, and how the compiler works before

 he needs to write a new code-generator.

 d) Little of the programming of the initial bootstrap need

 be discarded when the production code-generator takes over, since

 much of the original code is concerned with library routines which

 will still be required. Also, it has frequently been found that

 the interpretive system has sufficient advantage in size and

 convenience to merit its continued existence even after the

 production system is available.

 e) The text of the INTCODE form of the compiler is more

 compact than the corresponding OCODE text and this reduces the

 amount of material comprising the kit. When using magnetic tape,

 this advantage is small, but when using cards or paper tape, it

 is too important to ignore.

 In conclusion, INTCODE is a useful aid to simplifying the

 bootstrapping problem for BCPL, but it should be remembered that

 it, in itself, does not make the language portable. For a larger

 language such as Algol 68, portability is a much harder problem,

 since the abstract machine is larger and more complicated,

 reflecting the greater variety of data types and primitive

 operations. Furthermore, to obtain a reasonable level of

 optimisation, a larger proportion of the compiler will have to

 be machine dependent. Although many of the arguments for using

 an interpreter in the initial bootstrap are still valid, they

 hold less weight since the scale of the job is so much larger.

 Even so, the use of an interpretive scheme may prove beneficial

 in some circumstances.

 References

 [1] Richards, M. BCPL - A tool for compiler writing and

 systems programming.

 Spring Joint Computer Conference, 1969.

 [2] ----------- The BCPL Programming Manual.

 The Computer Laboratory, University of

 Cambridge, 1973.

 [3] ----------- The Portability of the BCPL compiler.

 Software, Practice and Experience,

 Vol. 1, No. 2 (1971).

 [4] ----------- INTCODE - An interpretive machine code for

 BCPL.

 The Computer Laboratory, University of

 Cambridge, 1972.

