MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

s Memorandum-M-352
' July 21, 1967.

To: Project MAC Participants

From: Martin Richards

Subject: The BCPL Reference Manual
ABSTRACT

BCPL is a simple recursive programming language
designed for compiler writing and system programming: it
was derived from true CPL (Combined Programming Language)
by removing those features of the full language which make
compilation difficult namely, the type and mode mathhing
rules and the variety of definition structures with their

associated scope rules.

(This is a copy of the original document)

4.0

5.0

Introduction

BCPL Syntax

2.1 Hardwars Syntax

2e%01 BCPL Canonical Symbols :
24142 Hardware Conventions and Preprocessor

Rules

2.2 Canonical Syntax

Data Ttems

344 Rvalyes, DLvalues and Dats Items
342 Types

Primary Expressions

bl Nenes A

de2 String Constants

443 Nuncrical Constants

44 . True and False

4.5 " Bracketted Ixpressions

4.6 " Result Blocks

4.7 Voector Applications

4.8 ‘Tunction Applications

4.9 Lv Bxpressions

4490 Rv Expressions

Compound Expressions

5e1 ~ Arithmetic Expressions

5e2 Relational Expressions

543 Shift Bxpressions

5ed: Logical Expressions

5.5 Conditional Expreccsions

Commands

641 Assignment Commands

6.2 Simple Assiznment Commands

6.3 Routine Comsands

Ged Labelled Co:amands *

5.5 Goto Comr.nds

6.6 If Commai:ls

6.7 Unless Cemmands

6.8 Whille~Conuands:

6.9 Until Cormands

o410 Test Comands

Ga11 Repeated Commands

€12 Tor Commands

€e13 Break Comannds

614 Tinish Com ands

6ot Return Corrmnds

6416 Resultis Cormands

617 Switchon Comiands

6.18 Blocks ‘

Definitions

74 Scope Rules

7.2 Space Allocation and Extent of
Data Itens

T3 Global Declarations

7 o4 Manifest Declarations

7.5 Sinple Definitions

7.6 Vector Definitions

Te7 Function Definitions

7.8 Routine Definitions

1.9 Simultanecus Definitions

Exanple Progran

PR

1.0 Introduction S ' : :

BCPL is the heart of thie BCPL Comniling Systen; it is a

language which looke nuch like true CPL [1] but is, in fact, a very

sinple lanjuage which is easy to compile into effieciecnt codee. The

main differences between BCPL and CPT are:

(1)
(2)

(5)
(6)

A sinplified syntax.

411 data itcns have Rvalues which are bit patterns of
the same length and the tyne of an Rvalue depends only
on the context of its use and not on the declaration of
the data iterie This sinplifies the compiler and inproves
the object code efficicney but as a rosult there is no
type checking.

BCPL has o nanifest maned constant facility.

Functions and reutines mey only have free variables which
are nanifest naicd constants or whose Lvalues are nanifest
constants (i.c., explicit functions or routines, labels

or global variables)e.

The user rey manipulate both L and Rvalues explicitly.

There is a schcme for separate compilation of segnents

of a »rosran.

2.0 BCPL Syntax
The syntactic notation used in this panual is basically BNF

with the following extensibns:

(1)

(2)

The synbols B, D and C are used as shorthand for

sexpréssion> <definition> and <conmand>.

The 1n®talinguistic brackets *<' and '>! may be nested and

thus used to group together more than one constituent
sequence (which may contain alternatives)e An integer
suvscript may be attached to the -iatalinguistic bracket
'>! and used to specify rcpetition; if it is the
integer n, then the sequence within the brackets must

be repeated at least n times; if the integer is followed
by a minus sign, then the sequence may be repeated at
nost n tines or it may be absent. ' "

2.1 Hardware Syntax

The hardware syntax is the syntax of an actual implecmentation

2.

of the language and is therefore necessarily inplceaentation dependent
since it depends on the character set that is availcble. To simplify
the description of any inplenentation of BCPI: a canonical symtax has
been 'defined and this is given in the scction 2.2 The canconical
representation of a BOPL progran con51sts of a secquence cf syrbols
fron the follohlxg sct. '

2.41+1 BCPL Canonical Syﬁbols

NUEBER N/MT STRINGCONST TRUT TALSE

VAIOF LV RV DIV RW PLUS MINUS

%) NB LS GR LE G¥ NOT LSHIFT RSHIFT
LOGAYD LOGOR Q¥ INEQV COND COMMA
“AND ASS GOTO RESULTIS COLON TEST

¥OR IF UNLZSS WHILE UNTIL RTPEAT REPPATTHILE
ROFZATUNTIL BRTAK RETURN FINISH SUITCHON CASE
DEFAULT LWI MANI'HST GLOBAL

BE SYCTBR. STCTKET RBRA RKWT SBRA SKET
SEMICOLON INTO TO DO OR VEC STAR

The symbols NUMBZR, N:ME, STRIVGCOI'ST, SECTBRA and SECTKET
denote connosite iteis which cach have an associated sdéquence of

characters.

2¢1+.2 Hardware Conventions and FPreprocesscr Rules

(a) If the inmvlenentation character set contains both

capital and snmall letters then the followiﬁg conventicns hold:

(1) A nane is either a singlc small letter or a
‘sequence of letters and dizits starting with a
capltal letter. The character irmediately foll-
owing a nane miey not be a lotter orga dipgit.

(2) & sequence of two or nore small letters which is

. not part of a NalE, SECTBRA, SECTKET or STRINGCONST
is a reserved systen word anld @nay be used to
ropresent o canonical symbol. For exanple:
let and logor could be used te represent LAET and
LOGOR but Lot and Logor are nanes.

(b) User's comment nay be included in a vprogran betweon a

3.

double slabh '//' and the end of the line. Exanplo:

let R[] be // This routire rofills tho vector Synb
§ for i = 1 to 200 Qo Readeh [INPUT, 1v Symb*[i]] %

(c) Section brackets may be tagrcd with a sequence of
letters and digits and two scction brackets are said to mateh if
their tags are idmlt__j,cal. More than one section may be closed by =
single closing scetion bracket since, on encountering a closing
scetion bracket, if the current ovening scetion bracket is found not
to match then the current scction is automatically closed by the
insertion of an extra closirz bracket. The process is rcpeated until

the natohing open scction bracket is found.

(d) Tne canonical symboi SEMICOLON is inscrted between pairs
of items if they appeared on different lines and if the first was from

the set of items which may end a corrmand or definition, nanelys

BEEARK ‘RETURN FINISH RT TAT SKBT RKWT
SiECTKOT I STRINGCOUST NUMOTR TRUZ TALSE

and the second is fron the set of iteas which may start a comnand,

nanely:

T58T #O0R I UNLTWSS UINTIL VHILE GOTC RTSULTIS

CiSE DIFLUTT B LK RTTURN PINISH STCTBRA

RBRA VLOF TV RV NAE

(e) The canonical sy:ibol DO is inserted betwcen pair of iteas
if they appeoarcd on the sane line and if the first is from the sct of
itens which nay ond an expression, nanely:

SKET RKET S7CTKZT M.i® NUMBIZR

STRINMGCOMST TWR FALST
and thc second is from the sct of iteas which nwst start a comuand,
nariely:

78T FOR IF UNMI2SS UNTIL THILE GOTO RTSULTIS

CASE DNNMECULT RTAX S7TURY FINISH

4.

(f) A directive of the form:
get <specificr>

nay be used anywhere in-aUCPL. progran; 1t direets the compiler to
replace the directive with the file or input streau of text referred
to by the specifier. The exact syntactic for: of the specifier is
inplenentation aepenaent but it will usually be either a string

constant or an intezer.
Exanple:

The followins is a completc prozram scguent for separate com-
pilationp it is written in 2 fictitious hardwarc ropresentation and
exhibits sone of the preprocessor rulese. dote that it was not necess-
ary to write a single semicolon since they will all be inserted auto-

matically.

et 'HRUD2' //This 'zets' the file called HEAD2 which prosunably
declarcs Checkdistinct, Report and Dvec

let Checkdistinct{E, S] be
$(1 until B=S do //The symbol $(represonts a SECTBR:
$(letp=T4+ 4

)

and N = Dvec*[7]
while » 1s S &c /yNote that 1ls is a

// systen word, p is a nane.
$(if Dvee*[n]=N do Report [142, M]
pt=p+ 4 §)

E:=Z+ 2 $)1 //Note that this closes

/ytwo seetions.

6e
540+ Data Itons

3+4 Rvalues, DLvalues . and Data Itens

An RVALUE is a2 binary bit pattern of a fixed length (vhich is
inplementation dependent), it is usually the size of a conmputer word.
Rvalues nay be used to represent a variety of different kinds of
objects such as interers, truth valuves, vectors or functions. - The

actual kind of obj:et represonted is called the TYPE of thc Rvalue.

4 BCPL expression can be evaluated to yield en Rvalue but its
type remains undeiined until the Rvalue is used in some definitive
context and it is then asswied to renresent an object of the required

tyne. Tor example, in the followving function application
(3*[1i] » 2, 2) (4, 2[1]]

the expression ' (B*[i] » £, g) is cvaluated to yield an Rvalue which
is then interpreted as the Rvalue of a function since the expression
occurred in the onerator position of a function application; . whether
f and g are in fact functions is not explicitly checked. Sinilarly
the exvression B*[i] (which is a vector application) occurs where
arhoolednchs expected and so its Rvalue is interpreted as a truth.

value.

There is no exnlicit check to ensure that there are no type

riisratches.

An LVLUE is a bit »attern representin; a storage location
containing an Rvalue. An Lvalue is the sanec -size as an Rvalue and is
a type in BCPL.. There is one context vhere an Rvalue is interpreted as
an Bvalue and that is as the operand of the onadic operater rv. For

exanple, in the expressi.n

v f[i]

the expression ¥£[i] is evaluated to yield an Rvalue which is then
interpreted as an Lvalue since it is the operand cf rv. The application
of rv on this Lvalve yields the Rvalue vhich is contained in the loc-

ation represented {or referred to) by thc Lvaluc. (See Note 1),

Te

An Lvalue may be obtained by applyins; the operator lv to an
identifier, a .vector application'or'an|£x expression, see section 4.9.
A DATA ITH is composed of an Lvalue, the refercnced Rvalue and

possibly an associated identifiere The 'term is used loosely to mean

the Lvalue, Rvalue or identifier depending on context.
In BCPL a date iten nay have at most one identifier. The

folloving diazran shows a data ite» for a six bit .achine.

-
—

i
:. T

o

The broken line indicates the semantic association between an.ident-

ifier x and the storage location which is represented by the box;
the unbroken arrov shows the correspondence between the Lvalue ny401
and the Rvalue "M N{, and the broken arrow shows the correspondence

between the identifier x and the Livelue "1™,

It is meaningful to say that the Lvalue of the data itea x is
the bit pattern OM101, that the Rvalue of the data iter x 1is the bit
pattern "™ and that the Lvalue 11" refers to the data item x.

3.2 ZIypes
An Rvalue uay represent én object of one of the following types:

integer, 1logical, Boclean, function, routine, label,

string, wvector and Lvalue.

Al though the bitpatterﬁ representations of each type is impleﬂentation

dependent certain relations between types is not.

(4) The Rvalue of a vector v, séy, is #dentical to the Lvalue
of its gzeroth elenent:

v = v vio]
vand hence

'gx. v = v*[o]

8.

(2) The Lvalue of the nth element of a vector v Day be
obtained by adding the intejer n to v; thus

1v v¥{n] = wvin

e , t
(3) Ifr x, v ond t are the first, second and n h maraneters
of a function or routine and if v = lv x, then :

vlo] = x
1] =
‘and v*[a] = ¢t

This property nayibé uséd t6 definé functions and routines with a
variable nuﬁber‘of actual parameters.,rln the definition of such a
function or routine it is necessary to give‘a’fdrﬁal paraaeter list
which is at least as lons as the lonzest actual parancter list of any
call for it, | V

Exanple

RPN

The following definition

let R[a, b, ¢, 4, 6, £] De
§letv=1y 2

definis the routine R which may be called with 6 or less actual -
paraneters. During the execution of the routine, the variable - v may
be used as a vector whose first n elements are the first n actual
parameteré'of the call; thus during the followdn:. eall

R[126, 36, 18, 99]
the initial-iff Rvalues of

v v?[O],‘v*[1], v¥[2] and v*[3] are 126, {36, 18 and 99.
he Rvalue of a label #s a bit pattern representings. the progran

position of the labelled coirands ote that it doecs not contain in-

forration about;the activation level of the function or routine in which

%
the label occurred. {a S e

The Rvalue 01 a function or routine is a reoresentatlon of the

entry point of the function or routine.

4.0 Prinary expressions

4.4 Names

Sytitactic forn: A name is a ouquance of one or more charac-
ters fron a rustrlcted alvhabet called the nane
character alvhabets The hardware representation
of characters in this alphabet and the rules for
reco nizing the starts and ends of naies are

implementation dependent.
One hardware representation is as followse

The nane character alphabet contains the
letters A ev.e Z and a ¢.se z and the digits
©® ¢+4e 9 and these are all represented difectly
by the sanc hardware charactersy A nane either
séarts with a capital letter and is terminated
by the firs§ non-letter or di;jit, or it is a
single small letter,

Senanticss ' Two nanes are equal if they have the sane
‘séquence of namc alphabet characterse A nanme ray
always be evaluated to vield an Rvalue. If the
nane was declared to be a ranifest constant (see
section 7.4) then the Rvalue will be the saze on
every evaluationg if the nane was declared in any
other Ry then it is a var1able and its Rvalue nmay
be changed dynanically by an assignnent cormand,
If ‘N-is a variable then its Lvalue is the Rvalue
of the expressiont

iv N

4,2 Strinz Constants

Syntactic form:

Semanticss

10

'¢string alphabet character>o'

The hardware representation of characters in the
string alphébet is impleaentation dependent. One

hardware representation is as follows®

The string character alphabet contains all the
characters except * and ' are represented directly.

These two exceptions are represented by
*% ond *' respectively.
In addition

*n represents newline

*s " space
*b " backspace
*“b " tab

A string constant of length one has anlt

Rvalue which is the bit pattefn representation of

" the character; this is right justified and filled

with, zeros,

A string constant with length other than one 1is
represented as a BCPL vector; the length and the
string characters are packed in successive words

pf the vector.
Example:

If characters are packed 4 per word then the
strings i

YAbhel ™Mnt

is represeﬁted as followss:

1.

6 1A ibi— Tt

4.3 Numerical Constants

>
N

445

4.6

Syntactic foruas

Seuanticst

True andé False

Syntactic forwus

Semantiés:

Rvalue L . v
v11‘ 1ot vt 0
<digit>, or 8 <digit>,

The sequence of disits is interpreted as a
décimal interer in the forer case, and as a

rizht justificd octal number in the latter.

true or false

The Rvalue of true is a bit pattern entirely
conposed of ones} the Rvalue of false is zeros
Note that

true = false

Bracketeéd Exnressions

Syntactic form:

Semantics:

Result Blocks

Syntactic forn:

Senantics:

()

Parcntheses may enclose any expression; their

sole purpose is to specify smouping.

valof <block>

A'rgsult block is a for: of BCPL expression;
it is evaluated by executing the block until a
resultis statenent is encountered,:this causes
execution of the block to cease and returns the

value of the expression in the yesultis cormand.

12.

4.7 Vector Applications

Syntactic forat B *[B2] |
.. The asterisk is necesséry to distinguish
a vector application from a-function applic-

~ation«r Bt is a primary expression.

Semanticé: _ . A vector is represented by a pointer to a
B consecutive group of words which are the
elements of the vector. The pointer points
to the zeroth element. To evaluate a vector:
application 71 and E2 are evaluated to yield
two Rvalues, the first is interpreted as a
vector pointer and the second as the subscript;
the element is then accessed to yield the
result.
The Lvalue of an’élement may be obtained

by evaluating the expression .
v # * [B2.]

The representations of Vectors, Lvalues
and intezers is such that the following relat-
ions are true:

M *[32) =ov (5 +E2)
1v B ¥ [72]=m +82

4.8 Tunction Applications

Syntactic form: ™ [B2, %3, «»e Pn]
E1 is a primary expression.
Semantics: ' The function application is evaluated by
evaluating the expressions B1, 2 ... Zn and
assigning the Rvalues of P2 ... En to the first

4.9 Lv Expressions

Syntactic forms

Semanticsi

13.

n~1 formal parameters of the function whose
Rvalue is the value of E1; this function is
then entered. The result of the application

is the Rvalue of the expression in the function

definition, see section 7.7,

lv T

47 1is a primary expression.

The Lvdlue of some expressions nay he
obtained by applying the operator lv; it is
only meaningful to apply lv to a vector app-.
lication, an rv expﬁession or an identifiex
which is not a manifest constant.

he result of the apﬁlication depends on
the leading overator cf the operand as follows:

(a) A vector application.

The result is the Lvalue of the

elenent referenced, see section 4.7.

(b) An rv expression.
The result is the value of the
operand of rv. The followin; relation

is always true:

lvrv E=E

(c) A naie.

The result is the Lvalue of the
data iter with the _iven nanme (which
must net be a manifest constant). If
the nane was declared explicitly as

a function, routine, global or label

14.

then its Lvalue is a manifest con-

stant (but its Rvalue is not), see

secﬁion Tele

4410 Rv_Expressions

kg

Syntactic foru

I3

‘is a primary expression.

Semantics: The value of an rv expre;sion:is obtained
by evaluating its onerand to yield an Rvalue
which is then interpreted as the Lvalue of a

data iteme The result is the Rvalues of this

data itene

5+ Compound Expressions

5e1 Arithnetic Exgressibns

Syntactic .form:

T * E2 or 31 / 22 or P4 rem B2 or

. ¥ + B2 or +71 or TI1-E2 or -Ei
The operators * / and rem are more bind-

inz than + and - and associate to the rijht.

" The operators + and - associate to the left.

Semantics{ A1l these operators interpret the Rvalues
of thel r operands as signed integers, and all
yield intezer results.

The operator * denotss integer multiplic-

ation.

The division operator / yields the correct
resuls 4f ™1 is divisible by ¥2; it is other-
wise imnlementation dependent but the rounding

< : error is never greater than 1,
The operator ren yields the remainder of
T4 divided by T2; its exact specification is

implenentation dependent.

15,

The onerators + and ~ apre self-explanatory.

2+2 Relaticnal Expressions

‘Syntactic Form:

Semantics:

5.3 Shift Expressions
Syntactic form¢

Semantics:

B <relop> T2 seee <relop> En
where <reclop> 3= = E < ! > ! < ! >

and n > 2

The relational owmerators are less binding

than the arithmetic operators,

The result of evaluating an extended
relation is true if and only if 2ll the indiv-
idual relations are true, Thc order of eval-~
uation is undefined, The Rvalueé of the ex-
pressions 1 444 &0 are interpréted as signed
integers and the relational operators have

their usual mathenmatical meanings,

B4 lshigx E2 or E1 rshift -2

F2 is any primary or arithmetic expressicn.
and ™ 1is any shift, relational, arithmetig¢ or
primary expressions Thus the shift operators
are less binding than the relations on the
left and more kinding on the rightov

The Rvalue of E1 is interpreted as a log-
ical bit pattern and that of EZ2 as an in%eger.
The result of 71 1lshift L2 is the bit pattern
E1 shifted to the left by T2 placess B
rshift 2 is as for 1lshift but shifts to the
righte Vacated positions are filled with zeros
and the result is undefined if 2 is negative

or greater than the data item sizes

5.4 Lozical Expressians

mil—————

Syntactic form

Semantics:

16.

"B or ™ N"EB2 or T4VvE or
1 £ T2

taj

™Moo= B2 or

The operator ~ is most binding; then,

in decreasing order of binding power are:
Ny Vy B, é'

A1l the logical overators are less binding than

. the shift operators.

.The operands of all the logical operators
are intérpreted as binary bit patterns of ones

and Zeros.

The application of the operator . yields
the logical negation of its operands The
resuif of the application of any other logical
operator is a bit pattern whose n™ bit depends
only on the nth bits of the operands and can be

detorained by the following table.

The values of the Onerator

qth bits NV = ;
"both ones T, 1 1 A
both zeros n n 1 0
othcriise n 7 . N 1

55 Conditional Expressions

Syntactic forms

T - Be, T3

", w2 aﬁa E3 may be any logical express-
ions or expfeééions of greater. binding powor,
E2 and 73 may, in addition, be conditional

expressions.

17

‘Semanticse The faiue of the conditional expression
1 » 72, B3 is the Rvalue of 22 or T3 depend-
ing on vwhether the value of }‘1 represents true
or false respectivelye In either gase only
one alfernativé is evaluated. If the value
of B{ does not represent either true or
false tﬁen the result of the conditional

expression is undefined.
6," Commands

6.1 Assiznment Commands

Syntactic form: L1, L2, 4o« In 3= R1, R2, evs Bn

Semantics: - The senantics of the assisnment command
is defined in tems of the simple assignment
comnand; the command given above is semantic-

ally equivalent to the following sequencesl

L1 := R
L2 := Q2
« o+ o o
In = BRn

Note that the individual assignments are ex-

ecuted from left to right and not simultansously.

6.2 Simplc Assigmment Cormands

Syntactic forns T4 e= 322

Semanticss - F1 say either be an i&entifier, a vector
' application or an rv expreséion, and its
effect is as follows: ' 3
(a) If PB4 is an identifier:

The identifier must_refer to a

6.3 Routine Comnmands

Syntactic foirms

Scnantics:

6.4 Labeclled Qommands

Syntactic forms.

Scrnanticss

18.

‘data item which has an Lvalue (i.e.,
it rust not bc declared as a man~
ifest named constent). The assign-
ment replaces the Rvaluec of this
data iten by the Rvalue of E2.

(b) If # is a vector application:
The element rcferenced by B is
updated with the Rvalue of E2

(¢) If E1 is an rv expression: "
The operand of rv is evaluated.

~ to yield a value which is then inter-

preted as an Lvalue; The Rvalue of E2
then rcplages the Rvalue of the data

iter referred to by the Lvalue.

B #2, £3, «.0 In]
whcre B1 is a prinmary cxprcssion.

‘The above comaand i8 cxccutcd by assigning
> L}

the Rvalucs of E2, E3, e.e » BEn to the
first n-1 formal paramcters of thc routinc
vhosc Rvaluc is the valuc of E4; this
routiné is thcn entered. The oxccution
of this command is completc when the

cxecutlon of the routing body 1is complcte.

‘N: C wherc N is a namce.

This dcclarcs & data itom with nanc Nj

its scopc is the smallost $ixtually cnclosing

routinc body or result block and its initial

6,5 Godto Comnands

Syntactie form:

Scmantics:

646 If Commands
Syntactic form:

Scmantics:

6.7 Unless Commands

Syntactic fonni

Scmanticss

19,
Rvalue is a bit pattem roprcsénting the pro-
Gram position of the command C. Its Lvaluc
is a manifést constant, and rcfers to a pos-
ition in thc zlobal veector (soe scetion 7.3)
if and only if thce labclled command occurs
within the scope of a zlobal with tho samc
name as thc labcle The Rvaluc of a label is

initialized prior to cxccution of the program.

E is ovaluated to yicld an Rvalue, then
exccution is .rosumcd at the ‘statencnt whosc

labcl had the samc initial Rvaluch

i E do ©
E is cvaluatcd to yiold an Rvaluec which
is thon interprotcd as a truth valuce In

BCPL, false is rcprescnted by zero and true

by tho complcment of falsce

~ falsc
If thc valuc of B rcpresents falsc thon the
command € is not cxocuted; if it represants
true then it is oxecuted and if it rcprescnts

neither true nc® false then the effect is

. impleomentation depondontr

unless E do C

This statoment is cxactly cquivalent to

the followings:

i£ «(E) & ¢

2n,

68 While Cormands

Syntactic form: ‘unless E do ©
-Semanticss P ‘ This'islequiValent to the following
sequence:
~goto L
M: C

L: if E goto M

where L and M are identifiers which do not

occur elséwhere in the ‘Drogram.

6.9 Unt§l Commands

Syntactic forms until - E do G
Semanticss This statement is equivalent to

while o (E) do C.

6410 Test Conmmands

Syntacﬁic forms test E then C1 or €2
Semantics: This statement is equivalent to the

PR

following sequence:

i «(E) goto L
C1
goto M
ph c2.
LES

where L and M are identifiers which do not

occur elsevhere in the program. .

6.14 Repeated Commands ‘ Co. ‘
S&ntactig1form: , 2~ C xrepeat or. ..

- C - repeatwhile E or C prepeatuntil E

hats

21,

Where C is any commend other than an
if, unless, until, while, test or for
command.

© . Séuantics: N o C-repeaf is equivalent to:
L: ¢ o
>o” Lytto T
C‘fegeatwhile E is equivalent to:
L: C
if E pgoto L
C repeatuntil E is equivalent to:
L: C
if (E) g_g_i_c_g{L
where L is an identifier which does not

occur elsevhere in the program.

6412 For--Comaands

Syntactic form: for N=11 to B2 do C

where N is a namnes

Semanticst The above statement is equivalent to:
& let N=TH
until N > 52 do-
§ C

<

Ni=Ne4 §

6.13 Bregk Commands

Syntactic form: break"
Semantics: " When this statement is executed it

causes execution to be resumed at the point
Just after the smallest textually enclosing
'ioop command. The loop commands are those

with the following key words:

3
L

6.14 Finish Commands
o éynfactic form:

Semanticss.

6+.15 Return Commands

Syntactic form:

Semantics:

6416 Resultis CommandS
Syntactic foms

SSemantics{

6417 Switchon Commands
Syntactic form:

Semantics: .

22,

until, while, repeat, repeatwhile,

eneatuntil and for.

finish

This ca:ses the execution of the

program to cease.

return

This causes a return from a routine
bodl§ to the point just after the routine
command which made the routine call.

resultis E

This causes execution of the smallest
enclosing result block to cease and return

the Rvalue of E,

switchon E into <block>
where the bléck contains labels of the

forn:

case <constant> ¢ or
default:

The éxpression is first evaluated, then
if a case exists which has aiconstant with
the same value then execution is resumed at

that label; otherwise if there is a default

6.18 Blocks

Syntactic form: -

Semantics:

7+0 Definitions

T7+1 Scope Rules

23.

label then execution is continued from
there; otherwise execution is resumed

just after the end of the switchon command.

The switch is implemented as a direct
switch, a sequential search or a hash switch
depending on the number and range of the

case constants.

Cc<y; C > § or
< let D {

OV W

<constdef>-$%“€';"0“>o §

A block is executed by executing the

declarations (if any) in sequence and then

~ executing ¢he commands of the block.

The scope of the definee of a declar-
ation is the region of progran consisfihg
of the declaration itself, the succeeding

declarations and the command sequences

l The SCOPE of ‘a name N is the textual region of program throughout

which N refers to the same data item. Every occurrence of a name nust

be in the scope of a declaration of the same narie.

There are threé kinds of declaration:

(1) A fomal paraneter list of a fﬁnétion‘or>routine: its scope
. 1is the function or routine body.

(2) The set of labels set by colon of a routine or result block:
its scope 1s the routine or result block body.

(3) BEach declaretion in the declaration sequence of a block:
its scope 1is the region of progra: consisting of the declar-

ation itself,

the succeeding declarations and the command

sequence of the blocke.

24.

Two data items are said to be declared at the same level of defin-

dtion if they were declared in the same formal parameter 1ist, as labels

of the same routine or result block, or in the same definition.

‘There are three sémantic restrictions concernming scope rules; these

are:

(a)
(v)

()

Two data items with the same name may not be declared in the
same level of definition.

If a pame N is used but not declared within the body of a
function or routine, then it must either be a manifest naned
constant or a data item with a manifest constant Lvalue, that
is it must have beeh declared as a zlobal, an explicit funetion
or routine, or assa:label.

A label set by cclon may not occur within the scope of a data
jtem with the same name if that data item was declared within
the scope of the label and was not a global,

Y Sgace Allocation and Extent of Data Itens
The EXTENT of a data item is the “time through which it exists and -

has an Lwvalue. Throughoﬁt the extent of a data item,hits Lvalue remains

constant and its Rvalue is changed only by assignment.

In BCPL data items can be divided into two classess

(1)

(2)

t

Static data items:

Those data items whose extents lasts as long -as ‘the
progran execution time; such data items have manifest constant
Lwvalues. Every static data item nust have been declared either
in a function or routine definition, in a global declaration
or as a label set by colon.

Those data items whose extent is limited; the extent of
a dynamic data item starts when its declaration is executed
and continues until exccution leaves the scope of the: declar-
ation. Bvery dynanic data item must be-declared either by a
simple definition, a vector definition or as a formal parameters
The Lvalue of such a data item is not a nanifest constant.

25,

A data item is initialized at most onee at the start of its
extent; static data items are lnitialiged prior to:execution of the
prosrai and a dynamic data item at the time when its declaration is
executed. Both static and dynamic data itews may have their Rvalués

changed by assi:nnent.

During the execution of a recursive function or routine, a single
textural declaration may give rise to more than one activation of its
definee. The only declarations which can give rise to multiple activ-

ations are those that declare dynanic data items nanely:

sinple definitions, vector definitions and formal parancters.

7.3 Global Declarations

Syntactic fora: global § <name> ¥ <constant>

<t <hane> :'<constant>'>O §

-

Seménfiﬁs: t The global:vecfor is the sole means |
of communication between separately compiled
segments of a prozram. To call a function or
routine which is deélared in one segment fron
a position in another it is necessary to
declare it as a global in each of the two

segnents.

he above declaration declares a set of
nanes to be global and allocates the posit-
jons in the zl6bal vector-as defined by the
manifest constants.
A global variable is a static itenm and

has an Lvalue which is a manifest constant.

7¢4 Manifest Declarations

Syntactic form: nanifest § <nane> = <constant>

< ; <name> = constant> > §

[
I

7.5

7.6

Semantics:

Sinple Definitions
Syntactic forn:

Semantiog;

Vector Definitions

- Syntactic form:

Senantics;

26,

This declaration declares:each_name
to be a manifest éonstant‘with a value equal
to the value of its associated constant ex-
preésion. The meaning of a progjram would
rencin unchansed if all,occurrences'of mans
ifest named constants were textually re-

placed by their correspondins values.

- This facility has been pro&ided to im-
prove the readability of progrﬁﬁéwénd to
#ive the programmer~§reater flexibility in
the choice of intermal representations of
data. o

N1, N2, eee Nn = E1, ese En

' Data items with names N1 +.. Nn are
first declared, but not initialized, and
then the following assignment command is

executed
N, N2, «ve Nn := 1, F2, .. En

A simplo definition declared dynamic

data.items.

N = vec <constant>

where N 1is.s nanei-- P

The value of the' constant expression

nust be a manifest constant and it defines

" the maximum allowable subséript value of

the vector N. The minimum subscript value

is always zero. The initial Rvalue of N

77 Function Definitions

Syntactie form:

Semantics:

7.8 Routine Definitions

Syntactic fora:

27,

is the Lvalue of the zeroth elenment of the
vector; both N and the elements of the

vector are dynamic data items.

- The use of a vector is described in

section 4.7.

N[<namelist>1_] = I
where N 1is a name.

This defines a function with name N;
the data item defined is static and has its
Rvalue initialiéed prior to execution of the
programe The Lvalue of N is a manifest
constant, and refers to a position in the
glebal vector if and only if the function.
definition is in the scope of a global

definition of the same name.

The names in the name list are called
formal parameters and their scope is the
body of the function E. The extent of a
formal parameter lasts from the moment of
its initialization in a-call until the time

when the evaluation of the body is conmpletee.

A1l functions and routines may he

defined and used recursively.

Function applications are described in

section 4.8,

N[<name1ist>1_] be <block>

vhere N is a nanme.

28.

Semanticst ' This defines a routine with name N,
The semantics of a routine definition is
exactly as for a function definition except
that the body of a routine is a block and
therefore its application yields no result.
A routine should therefore ohly be called

in the context of a command.

Routine commands are described in

section 6.3.

7.9 Simultaneous Definitions

Syntactic form: D <and D 2y
Semantics: 411 the definitions are effectively

executed simultaneously and all the defined
data itens have the same scope which, by the
scope rules given in 7.1., includes the sim-
ultaneous definition itself; a set of
mutually recursive functions and routines may
thus be declared.

8+0 Example Pro:ram

The progran riven in this saction is part of the BCPL library used
in the BCPL compiler itself. |

The hardware representation was specially desisned to suit an
IBM 1050 typewriter with a 938 ;olf ball. Note that the symbols ! ("
and ')! represent the canonical symbols SBRA and SKET respectively.

In the example (which was run on the Project MAC 7N9%4 computer),
two files were printed out and then the former was compiled into reloc-

atable binary.

It is hored that this example exhibits the readability‘of BCPL as

well as sonme of its features.

29.

r printa 1lbla bepl
W 153n.2

LBIA -BCPL N7/26/67 15302

get 'HIAD1A!
let Formdigit(x) = x+48 // the result is an ASCII digit

and Unpackstring(S, V) be
531 let n = s*(o) rshift Bytelshift
let 1,5 = 0,0
until 1 sr n do
(let W= S*(1)
V*(3) := W rshift Bytelshift
V*(J+1) := W rshift Byte2shift & Bytemax
§3+23 := W rshift Byte3shift & Bytemax
V*(j+3) 1= ¥ & Bytenax
i,j 1= i+,j54+4)1

and Packstring(V, S) be
$(1 let n = v*(0)

and 1,j = 0,0

v%m4x'woﬁa,vﬂn@);=o,o,o

until j gr n do ‘

? S*(i) := V¥*(j) 1shift Bytetshift logor

V*§j+1g 1shift Byte2shift logor |
V*(j+2) 1lshift Byte}shlft logor V*(j+3)
i,§ = iH,5+4 ,)1

and WriteS(S) be
$(let V = veec 512

Unpackstring(S, V)
for i =1 to V*(O) do'eruech(OUTPUT V‘(l)) $)

and VriteN(n) be
(let v =. vec 2n:
and Neg = n1s 0
let § = valof :
(if Neg do n := =-n
for i = 0 to 27 do
(v*(i) := n ren 10
'n._. 1{\
1if n=0 resultls i 3)
resultis 20
if Neg do W*ltech(OUTPUT tat).
for i = 0 to j do T%&tech(OUTPUT, Formdlﬂlt(v*(g-l)))
return

3N.

and Trite0(n) be
$(1 let i = 36
until i=0 do $(i := i-3
Tritech(OUTPUTS Formdigit(n rshift i & 7)) $)1

and Report(n) be
$(let Out = OUTHUT
OUTPUT := MONITOR
WriteS(*Report*s')
WriteN(n)
Writech(OQUTPUT, '*n')
OUTPUT := Out

R 2.95041 900

r printa headla bepl
W 1532.9

HEAD1A BCPL n7/26/67 1532.9

global // input output '
i(. Findinput:1n; Createoutput:11; C9to12:12
C12t09:13; 1"base:isd
Readch:15; Yritech:16
Endread:13; Endwrite:19
Endofstream: 2Ny InitializeiN: 21
INPUT: 25; OUTPUT: 26; CONSOLE:27; MONITOR:28 §)

manifest d(Bndofstreanch = 255 $)

global // BCPL compiler library

%(3CDword: 37
Write0:38; Charcode:39; Formnumber:4N; Formdipgit:dd
Packstring:42; Unpackstring:43; WriteS:44; WriteN:45
Report:46; Reportcount:47; Reportmessaze:48; Plist:49
Newvec:5N; List1:51; List2:52; List3:53; List4:54; Listh:55
FreelistP:56; freelistT:57)

manifest $(H1 = 0; H2 = 1; H3 = 2; He = 3; H5 = $)

nanifest // compiler machine spec:.f‘lcatlon _7"'94
$(Bytebits=9; Bytemax=511; Bytesperwordzél- '
Byte4 shift=27; B_fte2sh1ft-18 3yte35h1ft-9, Byte4sh1ft-0 *)

R 14616+1.850

3.

r bepl 1bla

W 1534.9

INPP entered

INPP time 278 centisecs

CAE entered

CAE time 13" centisecs AR tree size = 1166
Trans tine 2M8 contisecs

LINGTH 674 COiliON BREAK 76640
R 9.433+9.316

REFERENCTES

(1] Strachey, C. (Zditor) 'CPL Working Papers' a technical report,
London Institute of Computer Science and the
University Mathematical Laboratory, Cambridge (1966)

