
PR.E LIMINARY ROE POR8T

Programming Research Group
Applied Science Division

International Business Machines Corporation

November 10, 1954

Specifications for

The IBM Mathematical FOR.mula

F ORTB A N -,

System,

Copyright, 1954, by International Business Machines Go~ltpsxati~n
590 Madison Avenue, New York, 22, New York \---+.-._

--- -------- --- -

PRE iIM1NAR.Y RE P0R.T

Specifications for the IBM Mathematical F - 0R.mula TR,A Nslating System,

The iBM Mathematical Formula Translating Sys tem or briefly, FORITRAN, will
comprise a large se t of programs to enable the IBM 704 to accept a concise
formulation of a problem in terms of a mathematical notation and to produce
aummatically a high speed 704 program for the solution of the problem. The
logic af the 704 is such that, for the f i r s t time, programming techniques have
bebr, devised which can be applied by an automatic coding system in such a way
that an automatically coded problem, which has been concisely stated in a
language which does not resemble a machine language, will be executed in
about the same time that would be required had the problem been laboriously
'nand coded. Heretofore, systems which have sought to reduce the job of
coding and debugging problems have offered the choice of easy coding and slow
execation or laborious coding and fast execution.

It is felt that FORXRAN offers a s convenient a language for stating prohlems
fo r machine solution a s is now known. Studies have indicated that a hand coded
program for a problem wil l usually contain at least 5 times a s many characters
and sometimes 20 times a s many characters a s the problem statement in
YORTRAN language. Furthermore, after an hour course in FOR.TRAN
ratation, the average programmer can fully understand the steps of a
procedure state3 in FOR ?RAN language without any additional comments.

Before considering the way in which a problem may be presented for automatic
coding by the FOR.TRAN system, it might be well to consider some of the
hdvantages of such a system. Basically, of course, the reason for the
existence of high speed computers is the fact that they make possible the
solution of problems in a much shorter time and at much less cost than
would otherwise be required. The time and cost required for the solution
of a problem on a high speed calculator fall roughly into 4 catagories:

1. Analysis and Programming
2. Coding
3. Debugging
4. Machine Solution

1.b aster and more capacious machines will considerably reduce the cost and
time required for item 4 but s o fa r the advent of new machines seems to
have dorLe little to reduce either the cost or time required for items 1,2,
and 3. It seems to be quite generally true that the personnel costs of a
computing installation a r e at least a s great as the machine cost. Further-
more, it is reasonable to assume that personnel cost for coding and debugging
-onStitute considerably more than half the total personnel cost. Finally, at
installations which have relatively few long term problems, a s much a s 1/2
of the machine cost is devoted. to de bugging. Therefore, in a crude fashion

ane can say that out of every dollar spent to solve an average problem on a
high speed computer, l ess than 25 cents is spent for analysis and programmin:',
more than 25 cents is spent for personnel coding and debugging cost, about
25 cents fo r machine debuggirg cost, and about 25 cents fo r machine running
cast.

S .me F ORTRAN should virtually eliminate coding and debugging, i t should
oe possible to ~ l v e problems for l ess than half the cost that would be r e -
quired without such a system. Furthermore, since i t will be possible to
%vote nearly all usable machine time to problem solution instead of only half
-tne usable machine time, the output of a given machine should be almost
doubled. Also, of course, the to:.al elapsed time for the solution of a problem
should be a smal l fraction of the time required without FOR#TRAN since the
time required for coding and debugging is usually more than 3/4 the total
elapsed time. Not only does FORTR.AN greatly reduce the initial investment
ir, sroducing a program, but it will reduce even more the cost of repro-
g-amming problems for future IBM calculators, since each such calculator
s h u l d have a system s imilar to FOR.TRAN accompanying i t which could
:ranslate the statement of the-problem in a language very much like FOR.TRAN
LC i ts own code.

In addition to FDRTR AN'S great potentialities for economy, such a system
will make experimental investigation of various mathematical models and
numerical methods more feasible and convenient both in human and economic
terms. Also, FORTRAN may apply complex, lengthy techniques in coding
a problem which the human coder would have neither the time nor inclination
to derive or apply. Thus, in many cases, FORTRAN may actually produce
a better program than the normal human coder would be apt to produce.

Finally, the amount of knowledge necessary to utilize the 704 effectively
by means of F31ir l 'HAN is far less than the knowledge required to make
effective use of the 704 by direct coding. Information concerning how to
use subp~.ograms, what machine instructions a r e available, how to
optimize a sequence of calculations, and concerning a large number of other
coiling techniques, is built into the FOR.TRAN system and i t is not necessary
fo r the programmer to be familiar with this information. In fact, a great
desl of the information the programmer needs to know about the FORTR.AN
sysrem is already embodied in his knowledge of mathe.aatics. Thus i t will
be possible to make the full capabilities of the 704 available to a much wider
range of ~ e o p l e than would otherwise be possible without expensive and time
consuming training programs.

In summary, then, a system such a s FORTRAN has the following potential;
ities :

1. Great economy of time and money.
2. Feasibility of more mathematical experiments.
3. Ability to apply complex, lengthy techniques in coding a

problem.

4. Ability to make the 704 avilable to more people with more
convenience and less training.

Before beginning a description of the FORTR.AN system, it should be noted
L : ~ - + the following description is intended only to indicate present plans. A l -
:bough the methods by which FOR.TR.AN will operate a r e well understood,
future developments in programming FOR*TR.AN may necessitate certain minor
changes in the system a s it is presented below.

The following is a description of the admissible symbols and combinations of
symbols in the FORTRAN language and how to use it:

1. CONSTANTS

A . F E E D POINT (INTEGERS)

, i) General Form:
. -

1 to 5 sequential decimal digits optionally preceded by a plus or
minus sign

ii) Examples: - --

3. FLOATING POINT

i) General Form:

Any sequence of decimal digits with a decimal point preceding o r
intervening between any 2 digits o r following a sequence cd digits,
all of this optionally preceded by a plus or minus sign.

38 The number must be less than 10. in absolute value and

greater than in absolute value.

No specific list of functions is given since there is no limit on the number
crf possible functions. Functions must be single-valued.

A. GENERAL FORM:

Three or more alphabetic or numeric characters (beginning with an
alphabetic character) followed by a left parenthesis followed by 1st
argument followed by a right parenthesis o r by a comma followed
by 2nd argument followed by a right parenthesis or by a comma
followed by 3rd argument, etc.

EXAMPLES:

ii) sqr t (a+b) : means

iii) factl(m+n) : means (m+n) !
c.-. -

iv) sqrt(sin(axx2)) : m,eans 4sinta2)

v) max(a, b, c, d, e) : means select the largest of the quantities
a, b, c,d, e.

Any sequence of variables and functions separated by operation
symbols and paretltheses which forms a meaningful mathematical
expression in the normal way. Note that every adjacent pair of
variables or functions must be separated by an operation symbol.

By repeated use of the following rules, all legal expressions may
be derived and all expressions s o derived a r e legal provided they
have less than 750 characters.

i) Any constant or variable is an expression.

ii) If E is an expression not of the form +F or -F', then +E and -E
a r e express io~~s .

iii) If xxx denotes a function of n arguments, and if E E2. . . En a r e
expressions, then in general xxx (E E2# . . . , Ed is an ex-
pression. Although functions may have this general f om*, certain
functions will place restrictions on the form of pe rm&sib l~
arguments. , .

5

. 9

iv) If E is an expression, so is (E)

v) If E and F a r e expressions where F is not of the form +G o r -G
and o is one of the permissible binary operations, then EoF is
an expression.

vi) If E and F a r e expressions, so is ExxF

C. EXAMPLES:

a/b/c Note that this is equivalent to (a/b)/c

a/bxc Note that this is equivalent to (a/b)xc

a/(b+c)xd Note that this is equivalent to (a/(btc))xd

a+sin(bxc / (d+ (e+ (f+g)))xc os (b))xbxx2 Note the use of redundant
parentheses in this example to indicate the desired order of
computation.

2 . x r Note that the decimal point is used to denote that 2 is
retained in floating point form.

1 . 5 3 ~ 1 0 ~ ~ - 1 4 denotes 1.53 x 10- 14

When the order of binary ope,*ations in an expression is not
completely specified by parentheses, the order of precedence is
understood to be as follows:

1. addition - subtraction
' 2. multiplication-division

3. exponentiation

F o r example, the expression

Mdtiplicatiori arid division wi l l have no fixed relationship of
precedence, except in the sense of example ii above.

F IXED POINT EXPR*ESSIONS, F LOATING POINT EXPR.ESSIONS,
MIXED EXPRESSIONS

i) Fixed point expressions a r e expressions containing only fixed point
constants and variables.

a) A l l fixed point expressions will be evaluated by : xed point
i~tti~i~t.r arithmetic. Thus, the value of i+m/n w~!l be

-- --_
i-c {tiie integral part (unrounded) of m+n) .

I-\--.--
.-------- ----

-------- --. -
ii) Floating point expressions a r e expressions containing only floating

_ point constants and variables with the exception of fixed point
arguments of certain functions and fixed point variables or
constants following the operation xx.

a) Floating point expressions will be evaluated u s h g floating
point arithmetic. It may be necessary in certain cases to use
redundant parsntheses to indicate a particular sequence in
which the operations should be performed in order to avoid
obtaining intermediate resul ts in the evaluation of the ex-
pression which might l ie outside of the range 10-.38 $8

iii) A mixed expression 1.s any expression not belonging to one of the
two above cateqories.

a) The type of arithmetic employed in evaluating a mixed ex-
press'ion is described below in the section headed:
.ARITHMETIC FOR.MULAS.

E. VER.IFICATION OF COJ3REC'I USE OF PAREWI'HESES

In complicated expressions involving the use of many parenthcases,
i t is very easy to omit closing some parentheses. Therefore, in
such cases , i t is suggested that the programmer use the following
procedure to make sure that the parentheses in an expression
indicate the sequence of operatio.igrb he desi res . Working from left
to right, number each parenthesis, right o r left, a s follows: Xiimber
the f i r s t parenthesis 1 I t , label each left parenthesis with an integer
one larger than the number of the parenthesis immediately to the left
of it. Label each right parenthesis with an integer one l e s s than the
number of the parenthesis immediately to the left, of it. Having done
this, the mate of any left parenthesis labeled "nV will be the f i r s t
r ight parenthesis to the right of i t labeled n-1. It should bs noted
that these numbers are not part of the FORTRAN language and should
not be entered in the expression.

6. SUBSCRJPTS A N D SUBSCR.IPrI' EXPRESSIONS: -- - u - - u

Subscripts and subscript expressions described below must have non-
negative, non-zero values at all t imes.

A subscript is any fixed point variable or constant.

B. A SUBSCRIPT EXPRESSION

A subscript expression is a fixed point expression of not more than 3
terms where all but one term is a single fixed point variable o r
constant and one term may be a product of two subscripts. A l l but
one of the variables in a subscript expression must be designated as
relative constants (see section, RE LATWE CONSTANTS, under
SPECIFIC ATION SENTENCES). Parentheses a r e not permitted in
subscript expressions.

i) Examples:
u-

where j and n a re relative constants:

SUBSCRIPTED VARIABLES
-*

A subscripted variable is a variable (fixed point or floating poict.
followed by a left parenthesis followed by one, two, or three subscripts
or subscript expressions (where each subscript or subscript ex-
pression except the last is followed by a comma) all followed by a
right parenthesis.

Each subscript or the elements of each subscript expression may be 1
subscripted fixed point variables.

Subscripted variables may be used in an expression in the same
manner as ordinary variables. ~
No subscript or element of a subscript expression which is a
subscript of a fixed point variable which, in turn, is the subscript
of another variable may have a subscript.

ii) a(i, j)

iii) a(i, j, k)

iv) a(3xi+n, m) : means a
3xi+n, m

- ---

= - vii) a(i(j)) : means a i
j

viii) i(,j(k))

ix) a(n(i, j), m(k, 1)) : means a
"i, j p m ~ , 1

X) a (3xi(j)+2, k)

xi) a(1)

xii) a(i, i+19 i)

xiii) a (1, j)

xiv) a(5, 7, 15)

8. ARITHMETIC F OR,MULA S - --L --
A. An arithmetic formula is a variable (subscripted, o r not), followed

by an equals sign, followed by an expression.

B. It should be noted that the equals sign in an arithmetic formula has I

the significance of llreplaceN. In effect, therefore, the meaning of
an arithmetic formula is a s follows: Evaluate the expression on the
right and substitute this value a s the value of the variable on the left.

I ~
C. If the variable on the left of an arithmetic formula is a fixed point

variable and the expression on the right is a mixed expression, then
the value of each floating point constant and variable in the mixed
expression, with the possible exception of arguments of certain
functions, wi l l be truncated to integers. The value of any floating
point valued function will also be converted to an integer and the
entire expression will be evaluated by fixed point integer arithmetic.
Similarly, if the variable on the left of an arithmetic formula is a
floatiny: point variable, and the expression on the right is a mixed
expression, the values of fixed point constants and variables will be
represented a s floating point numbers and the expression will be
evaluated with floating point arithmetic.

D. If the variable on the left of an arithmetic formula is a fixed point
variablc ~ . n d the expression on the right is a floating point expresdion,
the expression will be evaluated with flcatihg point arithmetic and
the result truncated to an integer. Similarly, ii the vz.:iable on the
left of an arithmetic formula is a floating point variable and the
expression on the right is a fixed poict expression, the expression

9

will be evaluat ed using integer arithmetic and the result substituted
in floating point form for the value of the variable on the left.

E, EXAMPLES:

i) a(i, j)=sqrt(b(i)xx2+sin(c(j)x(g+cos(h/(pts/(r+~))))) means:

iii) i=i+ 15 means : increase value of i by 15 or it* ')=i(")+ 15

iv) a=b

vi) x (i) = bxxi -- - -__

I---..- .

vii) a @)=a (i) + k I - ~ ~ ~ ~ - ~ j ~ I , - 2 ~ ~ b ~ ~ ~ x c (j j) This formula means increase
the value of ai-by-the following quantity:

20

viii) a=a+i

ix) f=axb+n/ (m+c)

9. FORMULA NUMBERS
--------' -

Each FORTRAN formula may have an integer associated with it called
the formula number. If a formula has a formula number, the formula
number is written to the left of the formula. The formula number must
be less than 100,000. If a formula is to be referred to by a control
formula as described below, it must be assigned a formula number
which is different from the formula number of every other formula.
With this exception, the choice of. formula number for a formula is
completely arbitrary.

A. EXAMPLE

10. CONTR.OL FORMULAS
u--- ' -- -

A sequence of arithmetic formulas indicate that the operations implied
by the first formula should be carried out and then the operations indicated
by the second one, etc. Certain formulas called control formulas a r e
provided to alter this sequence of operations in various ways.

*.

In giving the general foiam of the control formulas beiow, iower case
letters and various symbols such a s comma, equals sign and parentheses
will be given in the way which they must appear in the particular formula.
Capital letters will be used to represent a class of symbols which mgy
appear a t a g'ven point in a formula. Square brackets a r e w e d to enclose
symbols which may optionally appear !n the formula.

i) Informal Description

Do-formulas specify a sequence of formulas to be repeated
a number of times for different values of a specified subxr ip t
and the formula to be executed next after the required number
of repetitions. Thus the formula.

will cause the sequence of formulas beginning with the formula
numbered 10 and ending with the formula numbered 14 to be
executed 9 times, the f i rs t time with i=4, the second time with
i= 0? the third time with i=8, etc. and the last time with i=-20.
Formula 50 will be executed after formula 14 when i=20.-- Thus" -.. _
the f i rs t number after-the-equa-1s-sign- is the initial value of the
subscript, thexext number the final value or upper bound for the
subscript, and the third number is the increment. to be applied
each time. The increment need not be given when i t is 1.
Furthermore, since it frequently happens that a do-formula
immediately precedes the sequence of formulas to be repeated
and that the formula to be executed after the proper number of
repetitions immediately follows Lhe repeated sequence, it is not
necessary in such a case to specify the f i rs t formula of the
sequence or the formula to be executed after the appropriate
repetitions of the sequence. Thus the formula:

causes the formulas immediately following itself up to and
including the formula numbered 17 to be repeated in sequence
20 times for i-1, i=2, . . . i=20, after which the formula
following the formula numbered 2V will be executed.

ii) Formal Description ...IcLII

General form:

or:

vii)

Begin execution of the sequence of formulas in the range
of do-formula A.

If the last formula in the range of do-f ormula A or a
control formula referring control to do-formula A is
encountered before a control formula referring to a
formula not in the range of do-formula A, increment
the specified subscript by the appropriate increment
and if the resulting value is not larger than the upper
bound specified for the subscript, begin step A again,
if this value is larger than the specified upper bound,
execute the formula having the third formula number
specified in do-f ormula A. If do-formula A specifies
only one formula number, execute the formula f ollcwing
the last formula in the range of do-formula A. The
execution of a do-formula is considered complete only
when the formulas in i ts range have been repeated the
appropriate number of times o r when a control formula
in the range of the do-formula is encountered which
refers to a formula not in the range of the do-formula.

Restrictions on the Range .of a Do-Formula

The third formula number specified by a do-formula A
may not refer to a formula in the range of do-formula
B unless do-formula A is itself in the range of do-
formula B. A similar restriction applies to formula
numbers specified by if -formulas and go to-formulas
described below.

If do-formula A and do-formula B a re such that neither
lies in the range of the other and if S is the sequence of
formulas comprising the range of do-formula A and if
S' is the sequence of formulas comprising the range of
do-formula B, then either S must be wholly included in
Sf or Sf must be wholly included in S, if S and S' have
any formula- in common.

-- - . -... B, IF-FORMULAS . .-.
-_. . _, _

----......._ .-- ---_ ---_ _ .-

I)

ii)

.-I Informal - - . Dlscription------------

If -formulas enable one to state an inequality or equality
condition and indicate that one formula should be executed
next if the condition is satisfied and to indicate a second
formula to be executed next if the condition is not satisfied.

F-ormal Description

Where:

N may be a single floating point variable or constant or a
subscript or a subscript expression.

S may be one of the following symbols:

F is a formula number.

Thus the symbols within the parentheses indicate an equality
or inequality. The first formula number indicates the formula
to be executed next if the equality or inequality is satisfied
and the second formula number indicates the formula to be
executed next if the equality or inequality is not satisfied.

iii) Example -

>
'I his formula means "If nxi = k+ 1, execute formula 3 next,
otherwise execute formula 9 nextn.

i) General Form
--+ -

where F is a formula number indicating the formula to be
executed next.

STOP-F 0R.MULAS

1) General _I_ Form

Stop

When such a formula is executed, the machine will stop. If
the s ta r t button is depressed following execution of a stop-
formula, the formula following will be executed next.

E. RELABEL-FORMULAS

-- - --

* b - ----- -.- .
% - -- __

, . :. * --- -_ --- - ---
i) Informal Description I

Relabel-f ormulas enable the programmer to cyclically
relabel the elements n a vector, the rows or columns of
a matrix, the rows or columns or planes of a three dimensional
array. For example in a 4 by 4 matrix, he may wish to
operate on rows 2 and 3, record rows 1 and 2 on auxiliary
storage, replace rows 1 and 2 by new information, operate
on rows 4 and 1, record rows 3 and 4 and replace them by
new information, operate on rows 2 and 3, etc. If, after

, replacing the information in rows 1 and 2 with new information,
he relabels the rows a s follows he can then use the same formulas
to car ry out the second set of operations that he used to carry
out the first:

Old row 3 becomes new row 1
Old row 4 becomes new row 2
Old row 1 becomes new row 3
Old row 2 becomes new row 4

Using this type of relabeling, the sequence of operations
indicated above becomes simply the repetition of the following
steps:

Operate on rows 2 and 3
Record rows 1 and 2
Replace rows 1 and 2 with new information
Relabel

ii) F-ormal Description

General Form:

where V may be any subscripted variable all but one of
whose subscripts is the integer 1 and whose remaining
subscript is either a constant or a single fixed point
variable. The subscript which i s not 1 indicates which
element, row or column, row, column or plane is to
become the new f i rs t element, f i rs t row or first column,
f i rs t row or first column or f i r s t plane.

a) "Relabel a(3)Ii has the following significance where a
is a vector of 7 elements. A reference to a(1) after
the execution of this formula is equivalent to a reference
to a(3) before the execution of this formula. Similarly, the

new a(2) corresponds to the old a(4), the new a(3) to the I

old a(5), the new a(4) to the old a@), the new a(5) to the
old a(?), the new a(6) to the old a(l) , the new a(7) to the I
old a(2).

b) "Relabel a(1, n, 1)" has the following meaning where "a"
is a 3 by 4 by 5 array and where n has the value 3, the
old a(i, 3, j) become the new a(i, 1, j) for all values of i
and j and finally the old a(i, 2, j) become the new a(i, 4, j)
for all values of i and j.

INPUT- OUTPUT FOR#MUL)A S

Ihput-output formulas enable the programmer to specify that
information should be brought into the 704 from cards or 'input tapes
or information should be printed or punched or written on oytpui tapes.
Since the number of variables which may be referred to a t any moment
in a calculation is limited by the extent of high speed storage, it may
be necessary to record the values of certain variables in auxiliary
storage and at other times to assign new values to certain variables
corresponding to information in auxiliary storage. Input -output
formulas a re provided for this purpose also. Capital let ters appearing
in the formula descriptions below will again be used to indicate the
class of symbols which may appear in the corresponding position in
the formula.

A. DESCRIPTION OF SEQUENCE OF AN 0R.DER.ED ARRIAY

In specifying that the elements of a 1, 2, or 3 dimensional a r ray
of data should be recorded in auxiliary storage or in specifying
that the elements of a 1, 2, or 3 dimensional array should be
assigned values corresponding to certain guantities in auxiliary
storage, it is necessary that a certain sequence of the elements in
the array be either understood or specified. This sequence is that
in which elements will be recorded or brought from auxiliary
storage. If no sequence is specified, the sequence will be
understood to be al, ae. . . a in the case of vectors o r all, aZ1.. .

n
a
nY a 12, a22,. . . a in the case of 2 dimensional arrays or

mn

a in the case of three dimensional arrays.
nmk

When no sequence is specified for a given array which is to be
recorded on or read from ~ux i l i a ry storage, it will be understood
that the entire array is to be recorded on or read from auxiliary
storage.

Informal Description

,'
t

. I."

ii)

A specification of sequence for a one dimensional a r r ay a(i)
might be I 1 i = l , 7". This indicates the sequence alp a2, . . . a7.
A specification of sequence for a two dimensional a r ray a(i, j)
might be j=4,8, i=:, 10'2. This indicates the sequence

a2, 4' a4, 4' 4 , , . , a
1(),4' 5' aq, 5' 5' ' a ~ ~ , 5' "

a l O , 8' Note that a third quantity specified after the range of a

given subscript indicates an increment and if a third quantity is
not specified the increment is taken to be one.
In general, the subscript specified f i rs t in a specification of
sequence is varied least frequently, the subscript specified
second is varied more frequently and the third subscript
specified is varied most frequently. If a specification of
sequence is given, each subscript of the array with its
appropriate range and possible increment must be listed 'in
the appropriate order.

Formal Descr i~ t ion

A description of sequence f o r a one dimen2ional a r ray has
the following form:

A description of sequence for a two dimensional a r r ay has
the following form:

A description of sequence for a three dimensional a r r ay has .

the following form:

where:

S may be a subscript which appears as a subscript of the array
whose sequence is being specified

N may be a subscript or subscript expression

Note that square brackets enclose symbols which a re optional.

B. LIST OF QUANTITIES

i) Formal Description

A list of quantities has the following form:

.
Q

' * . : \%,*
\

where V may be:

1. a single variable or constant
2. a subscripted variable
3. a left parenthesis followed by one or more

subscripted a r r ays (each except the last
followed by a comma) followed by a
s ;~wifPa t ion of sequence followed by a
;*<.?, r * y a b , L , ~ ~ !?&s.

where L may be lidt of quantities. However, none of the
quantities in the list may be constants.

a) Example '

readn, (a(i,j) j=l,20, 1=5,10), b(i)

This formula indicates that the sequence of variables n,
a 's and bi t s should be assigned the sequence of values
i, j

coming from the card reader in a one-to-one fashion.

D. CAR.D PUNCHING FORMULAS

punch L

where L is a list of quantities

ii) Card Punching Formulas in3icate a sequence of quantities
to be punched on cards.

FR INT FORMULAS

i) ~ e n e r a l Form: ---
print L

where L is a list of quantities

F, TAPE R.EADING FORMULAS

i) General Form:

read tape (N) L

or:

G..

. read input tape

where N is a tape number or fixed point variable and L is a list
of quantities and no quantity is a constant.

TAPE WRITING FORMULAS

i) General Form: -
write tape (N) L

or:

write output tape (N) L

where N is a tape number or a fixed point variable and L is a
list of quantities.

H. ADDITIONAL FORMULAS FOR MANIPULATING TAPE

i) General Form:

-. end file (N)
-- _ rewind (N)

\A\..-- backspace (N) - ---1
------\ __

where N may be a tape number or a fixed point variable.

DRUM READING FORMt.T.LAS

General Form:

read drum (N, M) L

where N is a drum number or fixed point variable and M is a
drum location or fixed point variable and L is a list of quantities.
T h e drum location is an integer between 1 and 2048. The effect
of this formula is to cause the quantities on the given drum
beginning at the given drum location and in the consecutively
numbered drum local~ions following to become the values of
the quantities specified in the list of quantities in high speed
storage.

DRUM WRITING FORMULAS

i) General Form:

write drum (N, M) L

where N is a drum number or fixed point variable and M is a
drum location or fixed point variable and L is a l ist of
quantities.

RESTRICTION ON LISTS OF QUANTITIES IN DRUM READING AND
WR IT ING F ORMUL AS

If a specification of sequence is given with any array specified in
a list of quantities in a drum reading or writing formula, the
subscripts appearing in such a specification of sequence must
appear in the opposite order from the subscripts associated with the
a r ray and only the last subscript may have an arbitrary range.
Subscripts other than the last must have ranges specified
beginning with 1 and ending with the maximum value possible
for that subscript. None of the subscripts in the specification
of sequence may have increments other than 1. Only one a r ray
may appear with a specification of sequence in a single pair of
parentheses.

A) Examples: --
The following list of quantities may correctly be specified by
drum reading or writing formulas:

where 50 is the maximum possible value for i and j.
The following l ist of quantities may not be correctly specified
by a drum reading or writing formula:

-- - --

(a , j, k) k=4,50, j=3,20, $=l,50)
--

((, j , k) j=l,50, i=1,50, k=l,50)-' ------.
_____- - I--

_- -------.
-=

12. SPECIFICATION SENTENCES

In addition to the problem formulation in terms of FOR*TRAN formuks,
certain additional information is either necessary o r desirable to
enable the FORTRAN system to produce an ezficient program.
Specification sentences provide the means of supplying such information
to the FOR.TR.AN system.

A. DIMENSION SENTENCES

The maximum possible dimensiops of each 1, 2 or 3 dimensional
a r ray referred to in any formula in the problem formulation must
be specifically given. Thus if a(i, j, k) is specified a s a 5 x 10 x 20
array, then at no time when a reference
i exceed 5, or j
a j, k), it is nevertheless possible to regard a(i, j, k) a s representing
a 4 x 4 x 4 array in a particular instance. This type of situation
will obtain where the dimensions of an a r ray a r e input parameters.

i) General Form:
- --

Dimension V[, V, V, . . .]
where V is a subscripted variable whose subscripts a re fixed
point constants. Thus a(10,11,12) occurring in a dimension
sentence indicates that the maximum dimensions of the arrav a "

..li

a re 10 x 11 x 12,

Note that dimensi.on sentences .specifying the dimensions of all
a r rays apEzy i i f in a p r o b l e m ~ m u l a t i o n must be given.

B. EQUIVALENCE SENTENCES

In certain cases, it may be possible for the FOR.TR.AN system to
assign the same storage location to several variables. For the
purpose of defining when this i s possible, we shall say that a
variable appears in a formula in a type 1 position if the execution
of the formula could not possibly alter the value of the variable
and we shall say that a variable appears in a formula in a type 2
position if the execution of the formula could result in changing
the value of the variable. Thus a variable appears in a type 1

position if: -- --_
- -------- -_ --------.- --_I

1) it is on- tKe- right side of an arithmetic formula.

2) it is a subcript of a variable on the left side of an
arithmetic formula.

3) it appears in an output formula.

4) it appears in a do-formula but not a s the subscript to
be varied.

5) it appears in an llif" or a '"go to1' formula.

And similarly, a variable appears in a type 2 position if:

1) it is the variable on the left side of an arithmetic formula.

2) it appears in an input formula.

3) it appears a s the subscript to be varied in a do-formula.

Thus a set oQ variables may be assigned the same storage location
if for any two variables a and b in theset, a type 2 appearance of a -
followed by a type 1 appgarancz of b always means there is an
intervening type 2 appearance of kPuwhere the order of appearance
is the order of execution of the formulas, Under the same con
ditions it is also possible to allot overlapping storage space to the
elements of two different arrays. Equivalence sentences :ipecify
se ts of variables and arrays such that all variables or a r rays in
the same set may be assigned the same storage area.

i) General Form:

EquiV-alence (V, V[, V, V. . . I)[, (V, v[, V, V, . . . I), . . .]
where V is a variable symbol. The variable symbol may be
either one associated with a simple variable or one associated
with an array. Thus, to indicate that the variable a, the a r ray
b(i, j) and the array c(i, j, k) can be assigned overlapping storage
space, one includes in a dimension sentence the se t (a, b, c).
If the product of the maximum dimensions of c(i, j, k) is greater
than the product of the maximum dimensions of b(i, j), the
inclusion of the above set in an equivalence sentence means
that the storage space allotted to b(i, j) will be included in the
storage space allotted to c(i, 1, k) and that the storage space
allotted to a - will be included in that allotted to b(i, j).

. C. FR.EQUENCY SENTENCES

(.

Frequency sentences enable the programmer to provide the
F OR.Tr?AN system with information concerning estimates of the
frequency with which certain portions of the program will be
executed. Thus the programmer may indicate that he expects the
condition specified by an if-formula to be satisfied 10,000 times
and that the condition will not be satisfied 400 times during the
execution of the program. If the if -f ormula has formula number
3, this estimate would be stated-ten-%frequency sentence a s f 6 l b w s :

_-----C -
_ I - - - - - -c- -

(3, 10000, 400)

Similarly, if a do-formula has a variable range for the subscript
that is to be varied, the programmer may specify that on the
average he expects the do-formula to call for, say, 200 repetitions.
If the do-formula has the formula number 17, the programmer
would indicate this estimate a s follows:

as part of a frequency sentence, and finally if a go to-formula has
a fixed point variable included in it, the programmer may give
estimates of the frequency with which the fixed point variable
will assume the various possible values. If the go to-formula has
the formula number 2 and reads "go to nI1 and if n may take on the
values 14, 15 and 16, then the estimate (2, 13, 100, 14, 10, 15,
1000) indicates that he expects n to take on the value 13, 100 times,
the value 14, 10 times and the value 14, 1000 times. The above
three types of estimates, one for if-formulas, one for do-formulas
and one for go to-formulas a re the only permissible types of
estimates which can appear in a frequency sentence.

i) General Form:
w- -.-

Frequency E[, E, E.. .]

where E is an estimate of any of the three types described above.

D, R.EEATTVE CONSTANT SENTENCES

In certain cases it will be possible for the FORTR,AN system to
produce a more efficient program for a problem if it is supplied
infor mation specifying those fixed point variables whose values
change very infrequently on a relative basis. Rlelative constant
sentences offer the programmer the opportunity of providing this
information to the FORTRAN system.

i) General Form: -
Relative constants N[, N, N, . . .]

where N is a fixed point variable. Thus the sentence,

R.elative constants i, n

where i is a single fixed point variable and n(j) is a fixed point
vector, indicate that the value of i and the values of n(l), n(2), . . .
change very infrequently.

PROBLEM PREPARATION
. . L I L . - - . I I L I I I I

Problem preparation for automatic coding by the FORSTRAN system
consists of the following steps:

PROGRAMMING

The formulas specifying the problem a r e written in the--f form given
above. Note that the-exaet-symbol-ased for writing, say, multiply,
is arbi t rary provided the proper Hollerith code for .multiply is
punched in the formula cards. In addition to the formulas specifying
the problem, dimension sentences giving the maximum dimensions
of all a r rays in the problem and possibly other specification
sentences must be written in the form described above.

DATA PR,EPARATION

Input data, referred to bj card reading formulas o r read input
tape formulas in the problem, should be written on standard forms
suitable for key-punching in standard card forms associated with
card reading formulas and read input tape formulas.

CHECK OF DATA STORAGE SPACE REQUBED

The data storage required for a given problem if no equivalence
sentences a r e specified, is computed as the number of single
variables and constants plus the sum of the products of the
maximum dimensions of each a r r ay referred to in the problem.
In computing data storage space, i t is only necessary to count one
space for a sequence of constants separated by arithmetic
operations. If equivalence formulas a r e given, the amount of
storage space required is the number of constants plus the number
of single variables not appearing in an equivalence s'entence plus
the sum of the products of the maximum dimensions of a r r ays not
appearing in equivalence sentences plus the sum of the products of
the maximum dimensions of the largest a r r ay appearing in each
s e t in an equivalence sentence plus the number of the se ts ,
containing only single variables, which appear in equivalence
sentences. The data storage space required for a program must
be less than a certain amount which will depend on the total high
speed storage space of the machine on which the problem is to be

run. The amount of storage space that would be available in any
machine with 4096 words will be a t least 3,000 units. Problems
must be planned in such a way that the data storage space
required is less than the appropriate amount.

D. KEY PUNCX-TXNG

The formulas specifying the problem a r e punched on cards in the
exact form in which they a r e written. There will be space for
approximately 65 characters on each card. There will be a-.
space on each card for a formula-number ---- which will be left blankc'-----
i f the formula hasrro-nUgber assigfisd. Large formulas may
extend over many cards. An indication on each card will indicate
whether or not the information on the card is a continuation of a
formula on a preceding card. Spaces (denoted by blank columns
on a card) a r e ignored by the FOR-TRAN system. This means
that, if desired, the key puncher can space between symbols
in exactly the way they a r e written, o r not, without disturbing the
meaning of the formula. Specification sentences a r e also punched
in a manner similar to that of formulas. Note again thatdimension
sentences must be punched for any problem making reference to
arrays . Data cards a r e punched in the appropriate form to be
accepted by card reading formulas o r to prepare tapes which a r e
to be read by input tape reading formulas.

E. PREPARATION OF CAR.D DECKS AND INPUT TAPES

The FOR,TR.AN system offers two options:

1) punching of binary program deck f o r the problem o r preparation
of similar program tape and pr inthg of program.

2) immediate execution of problem.

if the user of the system selects option 1, he should prepare a
deck of cards in the following order: all specification sentence

. cards followed by formula cards in the correct order followed by
a specially punched card i n d i c a t i n g t ~ e n d o f t h ~ ~ ~ ~ ~ . ~ ~
formulas for the problem. If the user selects option 2, he should
prepare the same deck a s above and, in addition, a deck of data
cards for each input tape i ~mployed ir. the problem and for the
card reader, if employed.
Having prepared the above decks of cards, he should then prepare
the appropriate input tapes, if any, on auxiliary card to tape
equipment. He may further elect to enter the FORTR-AN formula
deck directly f rom the 704 card reader or to prepare an input tape
f rom this formula deck and enter the formulas in the 704 f r o m this
input tape.

- *
0

P I .

L

F. AUTOMATIC PROELEM CODXNG OF PR.OBLEM BY ?HE FOReTRAN
SYSTEM (* ,,. * a

1 . + 3 *
9 1

If the user h a s 2 e i e c t d option 1 (to obtain the binary cards
representicg '?is program or a tape representing his qrogram),
he should si~np)y, load the FORTRAN system from itsdape and
place the deck 91' FORTRAX formulas in the card reader o r the
corresponding tape on a tape:unit. He should then s e t a sense
switch indicatipg that he has'elected option 1. He should se t
another switch ii~dicating that the program should either be
punched on binary cards or that it should be written on magnetic
tape. Pressing the start button will then cause the.
system tb write the ~ e q u i r e d program, check it,
punch it on binary cards or write it y tape and ep r e an 6 b2 output tape which c m ' be used to print the progra o duxiliary
tape- ta-k,iPter equipr nent. (Installation ngt h a w g auxiliary lF tape - ' l ~ - ~ r i h t b r devices may arrange to ave tKe' program printed
directly). t rk

4 f 4 *'t ' vk$ e

If the user selects option 2 (irnmediat execution), he .should put ? the appropriate input tapes on the adp opriate t a p e ' h i t s and
the appropriate card deck, if any, jn the card r q a d e ~ ' ~ . When the
FORTRAN system is loaded and th6 a5Propriate switches set and
the s t a r t button pressed, the' FORT system pill. write the
required program and causc! its to begin immediately
thereafter. ,* , q .ti & 14. FUTURE ADDITIONS TO THE FORTRAN SYSTE , :-I I , ,

, y,!,

The language of FORTRAN formulas and s g n t e p e s d e q c r i w a h v e
is to be regarded only as the basic FORTRAN larL~uag&. ' 'lKeb F.~RTR.AN
system will be constructed in a manner to make the ,add%ion f new \B formulas, new sentences and new functions as easy ad bss ib . t?-:'
It is expected that the FORTRAN language will be continually enriched
by such additions to make it rna+e economical, more convenient and
more efficient. Some of the possibilities fo f future additions to
FORTRAN a r e listed below:

A. A VARIETY OF NEW INPUT-OUTPUT FOReMULAS WHICH WOULD
ENABLE THE PROGRAMMER TO SPECIFY VARIOUS FORMATS
FOR CARDS, PRINTING, INPUT TAPES AND OUTPUT TAPES

B, POSSIBLE ADDITIONAL CONTROL F ORMULAS
-- .

----I _= - ---_
i) Begin Complex Arithmetic

* --I-- -- .-..- - -

ii) End CompteTAr ithmetic

iii) ~eg in -Doub le Precision Arithmetic

fv) End Double Precision Arithmetic

v) Begin Matrix Arithmetic

vi) End Matrix Arithmetic

vii) Sort the Vectors on Tape Number N using the kth element of
each vector a s indicative information

viii) Solve the following N simultaneous equations

ix) Solve the following system of ordinary f i r s t order differential
equations

x) Find the vector x(i) which maximizes the linear function f
and satisfies the following linear ineqqlit ies

C. POSSIBLE ADDITIONAL FUNCTIONS

There will, of course, eventually be a large l ist of arithmetic
functions available to the FORTRAN system. The following
items indicate certain slightly unusual types of functions.

i) General Function: --. -
Such a function would enable a programmer to avoid rewriting
a set of formulas describing a function peculiar to his problem
but which occurs frequently in his problem. Such a function
would enable the programmer to specify the formula numbers of
the formulas describing his function and the arguments to be
used in a given instance. The value of the function would be
the value of the right hand expression of the last specified
formula in the function description, having substituted the
specified arguments for the original arguments appearing in
the formula description of the function.

ii) Definite -- Integral

Such a function would enable the programmer to specify the
independent variable, the limits of integration and the expression
to be integrated.

iii) Summation
-b l Y

This function would enable the programmer to specify the
index of summation, the limits of summation and the expression
to be summed.

iv) Table Lookup

T his f ucction would enable the programmer t.o specify the table
number and the argument (or arguments if the particular function
was bivaribte).

Although the FORTRAN system is being designed to produce a correct
program from a correct meaningful s e t of FOR?R.AN formulas and
although the programmer will invariably discover many possible
formulat.ions of t.he same problem, the use of cert.ain techniques will,
of course, result in more efficient 704 programs.

A. REPRESENTA1i ION OF COMPLICATED EXPR9ESSIOPJS

In translating a single arit.hrnetic formula, the FOR.TRAN system
will permute the operatiocs indicated in the expression on the right
wherever this is permissible in order to minimize the number of
ST0R.E instructions which will be required in the resulting 704
program. Thus a x b x c /d/e would be permuted to a/dxb/exc.
However, any order of computation which is specified by use of
parerit.hesjs will be followed. Furthermore, if certain portions
of an expression are identical to cert-ain other portions of the same
expression (all in the same formula), the system will recognize
this and avoifi duplicaE-~culations . To enable the FOR.TRA N
system to recognize duplications of various subexpressions in an
expression on the right side of ar. arithmetic formula, i t will only
bc necessary to er~close duplicated subexpressions where they
appear as part. of a term in t.he expressior.. Where duplicated
subexpressiols occur a s complete terms, it will not be necessary
to erxlose the term in parentheses. Furthermore, if the duplicated
subexpression is a function which appears in several places with
tne same argumefil;, it wiil not be necessary to enclose the function
i r ~ parentheses even though it may be a portion of a term. Thus
the following expressior.:

a r b x c %(a ~bxc+excos (a'))/ (a~bxe+fxcos (aj) +sqrt (axb~e+fxcos(a))

may be wri?f,eri in the followirig form to avoid duplicate calculations:

((acb)xc)~((arb)xc+excos (a; j/ ((arb)xe+fxcos (aj) + sqrt ((axb)xe+f xcos (a))

In general t ' lm, if a complicated expression is involved in :a problem,
i t is best not to introduce new dependert, variables to represent
portions of the cgmplicated expression a& then to represent the
complicated expression as an expression involving the new dependent
variables. Adherence to this principle allows the FORrI'RAN system
to c a r r y out the maximum amount of optimization.

B. FOR.MATION OF LOOPS

In specifying operations on sequential items in ordered arrays,
it is best to use do-formulas wherever possible since such formulas
present the control information which the system needs in forming
loops in a consolidated form. The use of formulas such as- -- -_

if (i>n) nl, ni2

may result in some unnecessary instructions in the resulting
program if such instructions a r e used to form loops which could
be otherwise formed by the use of do-formulas.

C, DEBUGGING

No special provisions have been included in the FORITRAN system
for locating e r r o r s in formulas. After some experience has been
gained in the use of the system, it will be possible to write a
program to locate the most common of the frequently occurring
e r r o r s in a formula program. Since FORTRAN formulas are
fairly readable, it should be possible t.o check their correctness
by independently recreating the specifications for the problem from
its FORITRAN formulation. In this way it should be possible to
write correct formula programs from which the FORTRAN system
will of course produce correct 704 programs.

D, PROGRAM CHECKS

There are no automatic provisions in the FOR.TR.AN system for
including checks on correct machine operation in an automatically
coded program unless the checks a re $provided for in the original
formula program. Since FORTR AN-written 704 programs will be
writba in accordance with certain uniform principles, it should
be reletively railnple for an operator experienced with FORTRIAN-
written p o g r a m to determine what has happened in a program
&tw a 111a~kine faI1w0,

