April 10, 1957

' FORTRAN INTRODUCTORY PROGRAMMER'S MANUAL
SECTION II

This material may be reproduced as desired.

Programming Research Department
International Business Machines Corporation
590 Madison Avenue

New York 22, New York

'SECTION II

INTRODUCTION

At this point it should be possible to use that part‘ of the FORTRAN
' language comprising System I to direﬁt the operation of the 704 in thé
solution of certain problems. However, it may be difficult or im-
possible to program the solﬁtion of some problems using only the six
statements délscribed in Section I. In this section th.e vocabulary of
the System I language will be gnlar'ged in order to make it possible fo
direct the 704 in the solution of many moife p:éﬁlems.

One shortcoming of the language of Systém I is the laborious
prbgramming which is necessary to carry out relatively simple re- .
ﬁetitive calculations or logicé,l steps such as are encountered in the
addition of two vectors or the sélectien Of‘a' cértain number' frbm a list
of nﬁmbers. However, it is possible tc; u;q the subscript notation of
mathematics in S&stem II to make fhe pro‘éram'ming of such problems
easier. Thus é mathematician would denote that c; is the sum of the
vectors (aj, a2, a3$ and (b, by, b3) by writing |

Ci":a;i"'bi S i=1, 2, 3.
| Notice that the first part of the statement

-Ci= ai+bi-

2.

is a general statement which, in effect, becomes three specific

statements
cy=ajtby -
cz = az+b,
C3 = a3+b3

bjr assighing the values 1, 2, and 3 to i.

Bf us;ng the FORTRAN language it is poesible to fnake geeeral
sfatemenis like ''¢i = ai+bi" and to fneke other statements which aesign
the desired vallues to i. When a ge_nerai statement is executed it is
é.lways executed in its specifi_g sensel. For e#am_ple, if t.he variable I
has the value 3 when the FORTRAN equivalent of c; = aj+b;,

C) = A(D) +B(I) |
is‘e'xecuted, then ihe veriablee A‘(i3) and B(3) are added anvd' the sum is
“assigned as the value of C(3). Thus‘ to cdmput'e the sum vector

(C(1), C(2), G(3)
it is necess_ery to execute the general etatemeet 3 times, each time
‘with I hav‘in‘g one of the values 1, 2, 3. Therefore, in addition to
permitting arithmetic formelas with subscripted variables, it is nec-
 essary to provide for a method ef stating that a given set of such
formulas should be executed repetitivel? for certain values of the

subscript. The FORTRAN statement wﬁich prevides this ability is

called‘a 'DO statement. Together with a.-rifhmetic formulas, DO
statements are the most useful statements provided in the FORT?.AN '
jila'ngua.ge. 'An example of a "DO" .statement, followed by an explanation,
appears below,
DO 20I=1, 256
This statement instructs the 704 to '"execute all statements which follow,
up to and including the statement numbered 20, ZSQ times (the first
time for I = 1, the second time for I, = 2, and so.on, and the last time -
for I = 250) and then go on to the statement following 20'". Thus, to
. returﬁ to the example of vecfoi addition, the IE‘ORTR.AN statements
necessary to add (A(I) and B(I) are |
DO 11I=1,3
1 C(I) = A(I)+B(I)
, .
When the statement numbered 2 is finally encountered, the values of
' C(1), C(2), and C(3) will have been computed and stored.

- Example - It is required to compute the following quantities

P; = Vsin2(A;B;+Cy)+ cos? (AiBj-C;)

Qi = sinz (A1+Ci) + (!OB2 (Ai—Ci)
for i = 1,100. A possible FORTRAN program for this calculation

fyollows .

1 TRIGF(X, Y) = SINF(X+Y)**2+COSF(X-Y)**Z

2 'DIMENSION A(100), B(100), C(100), P(100), Q(lOO) :
3 READ 8, A, B., C

-4 DO6I= 1,100

5 P(I) = SQRTF(TRIGF(A(I)*B(I), C(I)))

6 Q(I) = TRIGF(A(I), C{I))

7 . PRINT 8, (A(I), B(I), C(I), P(I), Q(I), I=1, 100)

8 FORMAT (5F 10.4)

9 STOP

Statement 1 defines the function TRIGF(X, Y) as‘equal to the
e;:pression (sinZ(X+Y)+cpsz(X-Y)). The DIMENSION state-
ment indicates that the arrays A, B, C, P, and Q each have
100 elements. A, B, and C having been specified as arrays,
the list A, B, C in the READ statement will cause all
elementg of A, then all elements of B, and then C to be

read into the 704 from cards.l Noﬁce that the READ state-
ment refers to a new type of statement (8), FORMAT. In
this example, the FORMAT statement specifies the extérnal
arrangement for both iﬁput and output data. "5F 10.4'" says
"there are _5__1:"ixed point decimal fields per card or line,
each figld being _1_9_ columns wide with 4 decimal placed to the

right of the decimal point'", Hence A, B, C, P, and Q

5.

will be read or printed as (____1: XX, XXXX). Statement

4 says '"DO the following statements through statement
number 6 for I = 1, I= 2, ..., I= 100." Statements 5
and 6 compute P; aﬁd Q;. The PRINT statement says
"print the arrays A, B, C, P, and QforlI= 1, 1‘00 as
specified by format statement numl;er 8." Statement 9
stops the computer. The new method of notétioﬁ and the
use of the DO, FORMAT, DIMENSION and function state-
ments which have been introduced here, together with
several other new stétements for input and output é,nd tape

manipulation, will be presented in the following pages.

. Integer Constants and Variables

In Section I, only floating poiht constants (which must have a

‘decimal point) and variables (which must not begin with I, J, K, L,

.M or N) were considered. However, it should be clear that floating

point numbers are neither desirable nor necessary for use as sub-

scripts; i.e., X, 3 is not a very useful notation and X3 0 is re-

dundant and wastes space. Integer constants and variables are more

‘useful in this regard and are available in System II. The two rules

which follow describe the method of writing such numbers.

1. Integer constants are written without a decimal

point.

2. Integer variables must begin with I, J, K, L,
M or N.
S\ibscripted variables when used in FORTRAN statementé, are writtén
as the name of the variable-. Jfollowe‘d by the subscript (an integer con-
.stal;xt or variable) in parentheses, e. g. A(3) is the FORTRAN re-
presentation of A3 and X(I) is the FORTRAN representation of Xj.
- Subscripts are not restricted to single quantities. They may take
- the general fo.rm“
Kxl + L
whére I represents any integer variable and K and L représent any
unsigned integer cons,tants.(L may, of ‘course‘, be zez;o in wiﬁéh case
the form reduces to K+I)., Furthet examples appear below.
Y(M+1) means Ym41l
P(3*K-5) means P3k.5
If a floating point variable, for example A, is used as a subscripted
variable, it represents the collection of variables A(l), A(2), A(3); |
etc. and riiay not be used without a subscript, except iﬁ an input-
output sfatement (like READ or PRINT) when ;t is desired to transfer
the entire array. Thus it is not possible to use B(J) and B in different

statements and expect to have both a vector, B(J), and a variable, B.

70

It should also be emphasizedi that reference to a subscripted variable
whose subscript is an integer variabie, i.e. X(N), is always inter-
pieted in a specific sense determined by the value of N. Therefore,
- some statement which assigns a value to N, suchas "N=1+J", a

- DO statement, or ."READ 6, N", should always be encountered be-
fore reaching a sta._tément which refers to X(N).

Integer quantities are not permitted to appear in floating éoint
expressions éxcépt as subscripts or as exponents. However, an ex-
pression containing integer quantities only (such as the one above)
may be written; such expressions will be eva}.uated using integer
arithmetic rafhér than floating point arithmetic. Some éxamples of

expressions which are and are not permitted appear below.

Expression | / Permissable Arithmetic Used
A*B%*(C*%2) Yes - Floating

2%A No = aecaaa

I+7J Yes Integer

2. %A Yes Floating
Axx(I+J) ‘ Yes -Floating

2%1 Yes Integer

I1+A B No ------

. As long as the expression on the right side of an arithmetic formula
is a legitimate one as described above, there are no further restrictiong
, oh arithmetic formulas. There are, however, certain pitfails Which
may be encountered if formulas are written having an integer ekpression
‘on one side and a floating point expression on the other. For ekample,
the formula

I= A+ B%%J
.instructs the 'f04 to compute the value of "A+BJ" using floating point
arithmetic and then truncate the re.sult (i.e. drop any fractional part) |
and avssign the integer so obtained as the value of I. This meaning
results from the fact that the expression on the right is a floating
point expression whereas the variable on the left is an integer variable,
Conversely, the formula

A= JOB+N/3
instructs the 704 to compute the value of "JOB+N/3" usiﬁg integer
arithmetig, ‘put the resulting integer in ﬂo‘ating point form and assign
this as the vaiue of A. Note that integer arithmetic gives an integer
result even for N/3. Thus the value of 8/3 would be 2, the largest
integer not exceeding 8/3, whereas the value of 8. /3. in a floating

point expression is 2. 66666, ..

Dimension Statements

Whenever a subscripted variable appears in a FORTRAN program,
it is necessary to include a statement which indicates the size of the array
referred to by this variable. This type of statement is a DIMENSION
s_ta.teinent and it permits the 704 to assign the proper number of storage
locations to each subscripted variable.

The‘ DIMENSION statement consists of the name of:each subscripted
variable followed by an integer in parentheses which representé the greatest
number of elements which will ever be included in the array. The variables
are sépara.ted by commas and the whole group of names is preceded by the
.word DIMENSION.

If the subscripted variables ALPHA(I), GAMMA(J), and VECI’OR(N)
had appeared in a FORTRAN program, .then a DIMENSION statement
mentioninyz these variables vw.oulc;l have to be included. Assuming that the
number of elements in ALPHA(I) wﬂl never exceed 100, the number in
GAMMA(J) will never exceed 25, and in VECTOR(N) will never exceed 12,
then the DIMENSION statement would be written as

DIMENSION ALPHA(100), GAMMA(25), VECTOR (12).

DIMENSION statements are not actually executed. No instructions

corresponding to this sfatement will appear in the translated

10.

program. However, a DIMENSION statement giving the size of each
array should precede the first e:;ecutable statement i"nentiohihg that

a);'ra.y. A single DIMENSION statement, including all subscripted |
variables mentioned in the program, may be used or separate state-

-ments may be inserted prior to mentioning each new array.

DO Statements

An example of the use of a DO statement appeared in the intro-
duction to this section. The usefulnéss of such a statement for
ca.rrying out repetitive calculations was mentioned briefly then, The
standard form for a DO statement in System II is

| DO N I=mj, my
where N is a statement number
I is an integer variable
mj and m) are integer c.onstants.

The meaning of the statement is ""execute the statements following
this DO statement, up to and including the statement numbered N, first
with I requal to my, ‘then with I equal to m;+1, etc., and finally with
I= mj3, and then gé to the statement following statement N\,

The set of statements following the DO statement and extending

through statement N is called the range ‘'of the DO statement. In

11.

System II, none of the stateménts in the range of a' DO statemeﬁt can
be another DO statement, Howew}er,' the range may contain GO T‘O‘
or IF statements, and thése may t_ransfe‘r control out of fhé range of
the DO.

To illustrate the usefulness of this feature as well as giving
another example of a DO statement, consider a'set of fifty numbers,
A(J) and a number B. The problem is to select the érﬁalllea‘f value of
J, if there is éne, for which B = A(J). A"prégram to accomplish th‘is‘ '
could be written as follows:

10 DO 12 J=1,50

11 iF (B - A(J)) 12, 20, 12

12 CONTINUE

13 (if control reaches this statement the search has been

unsuccessful)

20 © (if control reaches this statement, the desired value
of J is available for use).
It should be ndted that control passes to statement 20, out of

the range of the DO statement, as soon as the index of the DO, in this

case J, reaches a value for which B -~ A(J) equals zero. Any reference

12

which is now made to J will be interpreted for J equal to that specific value.
Whenever B-A(J) is not equal to zero, control goes to the last statement in the
range of the DO. This statement, CONTINUE, means "no operation." The
reason for using it relates to the meaning of the DO statement. The DO
statement causes the index, J in this example, to be increased by 1 each time
the last statement in its range, statement 12 in this example, is reached, after
which control goes to the first statement in its range. In this example, when
B-A(J) is not zero, it is desired to increase J and begin the range again. To
accomplish this, control must reach the last statement in the range (which
cannot be the IF statement) even though no more work remains to be done
with the current value of J. In this example, therefore, the last statement in
the range of the DO statement must be CONTINUE, which means "do

nothing."

Function Statements

Within the limits of the part of FORTRAN introduced in Section I, certain
functions, specified by the computing center, were permitted in writing
arithmetic expressions, such as square root, sine, log, etc. The functions were
restricted to those appearing in the list furnished by the computing center.

It is also possible, however, to write expressions involving functions
peculiar to the problem at hand. Each desired function is defined by means of

a function statement. For example, suppose it is desired to use the function

G(X)=13+J4.1X+X 2

several times in a program.

NOTE: This page was blank in the original scanned document; the text has been recovered from the
similar document:

[Grace E. Mitchell.] The FORTRAN Automatic Coding System for the IBM 704 EDPM :
Programmer's Primer. International Business Machines Corporation, 1957, Form 32-0306.
https://archive.computerhistory.org/resources/text/Fortran/102665486.05.01.acc.pdf

13.

The function statement defining G(X) might be written as follows:
GXXF(X) = 1.3 + SQRTF(4. 14X+ X#42)
A latefﬁérithmétic formula in the‘ prdgram’,l ‘employing GXXF might‘be
Y = 10. 34GXXF(ALPHABETA) + 14.7
In thié use of GXXF, befofe th‘é v;alue of the function is computed, the
quantity AI_.JPHA*BETA will be substituted for X in the expreséidn'de-
fining GXXF. | | |
In genéral function state‘ments. ndu‘st obey the following rules:
1. All function statements in a program must be the first
statements in that plzogram.
2. The function name must ha&e foux; to éeven alphabetic
or numeric characters; the first must be alphabetic
and the last must be F. |
3. Thé I;ame of thé functiog visvfolloWe‘d by parentheses
encl;)sing the argument 6r arguments. Mﬁltiple
arguments are separated by commas. Each arguinent
must be a sing1é variable,
4. Any é.:-éument which is a floating point vdriable in the
definition of a functioh should be a ﬂbating point

quantity in any subsequent use of the function. A similar

rule applies to integer arguments.

14,

5. The value of a function will be a floating ﬁoint quantity
unless the namé of the function'begina with X, in which .
case the value will be an integer quantity,
- An example will serve to show some properties of function state~
ménts. |
1 FIRSTF(X) = X%%2 + A%%2

2 SECONDF(R, S) = SQRTF(FIRSTF(R/(R+S)))

fl

15 Q(I) = FIRSTF(Y*B(I))

27 P = SECONDF(l. 7*DELTA, ALPHA)*PI
- Notice that it is permissable'to use a previously defined function
in the definition of subsequent funétions. Notice also that the variable
Ais involv'ed in the definition of FIRSTF but it is not an argument. A
may be used like any other variable in the problem.and its current

value will be used each time FIRSTF is evaluated.

1

Tape Input and Output '

Thus far, the only\ methods that have been mentioned for trans-

ferring decimal data into and out of the internal storate of the 704 are

15,

use of tﬁe card ,r'ea'de.r. and printer attached to the computer. The
operation of these units is controlled by the READ and éRINT state-
rhents introduced in Section I. |

waever, there is anothe;'- method for- tran.sferring; information
: i'nlt'o:and out of internal storage, aamely use -of magnetic tapes. Just
as a READ statement directed the 704 to read data from cards, a
READ INPUT TAPE statement directs the 704 tc readidata into
storage from magnetic tape. Similarly, just as the use of a PRINT
statement,cause; on-line printing, a WRITE QUTPUT TAPE statement
causes: the: éutput“ informati’c_on to be written on 'magne‘tic tape.

Most computer installations: will-have available two machines
which are not connected to the computer. One of these machines
will be capable of reading information from punched cards and writing
this.informatio.n.onu magnetic.tape. The other machine will be able to
read information written on magnetic tape and print this information.
- By using the card-to-tape machine, the information contained in a
deck of data cards can be:written on magnetic tape and read into the
704 by a READ INPUT TAPE statement. The output information
written onuniagnetic tépe by a WRITE OUTPUT TAPE statement can
béﬁ read and printed Ey using the tape-to-printer machine.

\

The advantages of using magnetic tape for input and output lies

16.

in the fact that the computer reads from and writes on magnetic tape
much mbre rapidly than it reads cards and prints, This ;;ngavgs‘»;hat

a éreat deal of computer time which 'would otherwise be required for.
card reading and printing can be relegated to the relatively inexpensive
card-to-tape and tape-to-printer equipment,

The 704 computer may have up to ten attached tape units which,
in the FORTRAN language, are referred to by the numbers 1, 2, ...
10. The general form of the two input-output statements mentioned
above is

READ I‘NPUT TAPE I‘, N, List

WRITE OUTPUT TAPE I, N, List
where I is the number of the tapé unit (an integer between 1 and 10
or an integer variable), N is the number.of a FORMAT statement
(explained on page 18),.and 'List' denotes a lis:t of names of quantities
to be read or written, Note the resemblance between these state-
ments and the general form for READ and PRINT

" READ N, List

PRINT N, List

where, in Systém I, N was either 1 or 2 and referred to particular

FORMAT statements supplied by the computing center.

The Meaning of a List

Examples of lists have already appeared in READ and PRINT

17,

statements although they were not identified as such. A list is a set
of items separated by coxﬂmas and when the list appears in an input
‘or output statemeht, the order of reading or writing is the order of
the items as written,
For example, the statement

WRITE OUTPUT TAPE 3, 20, A, B, C
has the list "A, B, C' and the quantities A, B, and C will be written
in that order. If any of the items A, B, or C have been specified in a
dimension statement as arrays, then the values of each element of the
array will be written. For example, if A and C are simple variables
and B has been specified in a DIMENSION statement as a subscripted
variable having 3 elements, then the guantities written (referring to the
statement above) would be

A, B(1l), B(2), B(3), C
If A and B were large arrays and one desired to specify the reading or
writing of the quantities

A1), B(1), A(2), B(2), ... A(100), B(100)
in that order, the list would consist of the single item

(A(I), B(I), I= 1, 100)
If it were desired to specify the first seyen elements of the array A
followed by the first five blements of the array B, the list would consist
of the two items |

(AD), 1= 1, 7), (B(I), L= i, 5)

18,

However, if A and B had dimensions seven and five respectively,
the simpler list
33
| would give the samiat"results.
When as above, .an item in a list specifies part of an array or
a mixture of arrays, t%e item must be enclosed in parentheses and
| the variables inside shéuld be followed by commas as shown. The

indexing information, a%g "I = 1, 100", is written exactly as in a DO

statement.

FORMAT Statements

An input or output¥statement, such as READ or PRINT, specifies
the variables which are to receive:values or to be printed. ‘It also
refers to the number of a FORMAT statement which specifies the
external arrangement of a line of input and/or output qata. The
YFORMAT statement contains the spgciﬁcations for each field in the
line. There are three general forms for a field specification

Iw, Ew,d, Fw.d
igvhere Iw indicates an Integer decimal number having a field width of

w columns; Ew.d indicates a floating decimal point number (E), having

a field width of w columns, and d places to the right of the decimal

190

point; Fw d indicates a Fixed .decimal point number, having a field
width of w c-olunﬁns, and d places to the right of the decimal point.
25 FORMAT (E10.4, F8.3, F7.5, E9.2, I3, F4.1)
READ 25, A, B, C, D, I, E
, The above sta.,te.menvts might read the following lines of input data

from cards into the 704.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
T)
+.8765| E+06| |+345.648| |+.56872 -2.34: E+01| |+81] [-1.5
| . ' :
|)
-. 12231 E-02| [+124.785 -.78963| |[-6.78, E+09| [+15 | [+9.8
|

_ : ! |
+.1034, E+05| |-728.654| |+.12345 [+4.35! E-07| |-28| |-2.3
! |

Note that the field width includes a column each for the sign, decimal
.point, and in the case of floating decimal point_numbers thé four -
characters of the exponent - the letter E, the :sign of the exponent,
and the two digits of the exponent. Floating decimal or fixed decimal
point numbers may have any number of digits in the input field;
| however, ohly eight significant digits will be retained. If the decimal
point punched in the card does not agree with the specificaﬁons in
the FORMAT staterﬁent, the decimal point over rides the specification.
If no decimal point is given, the number is treated as if the decimal

point were located according to the specification. No provisioniis

made for handling decimal integers larger than 32767. A

20.

line of input data may have a maximum of 72 characters.

Prior to sending thg input data sheets to the computing center
for keypunching, the card columns for each of the.fields must be
specified. Columns 1-72 are available for use. For this example,
the columns for field 1 should be specified as columns 1-10 (since 10
columns are specified by the FORMAT statement for the first field), .
field 2 columns 11-18, field 3 columns 19-25, field 4_columns 26-34,
field 5 columns 35-37, and field 6 columns 38-41.

Specifying a field width larger than the number of characters in
the field is particularly valuable for use with output statements.

PRINT 10, A, B, C, D, I, E

10 FORMAT (El4.4, F11.3, F10.5, E13.3, 16, F7.1)

The above statements would print the example data as follows:

___ 0.8765E 06__ . 345.648 - .56872 _ -0.234E 02___ .81 __ -1.5
___-0.1223E-02___ 124.785__ -.78963 _ -0.678E 10 __ 15 9.8
0.1034E 05 -728.654 __ .12345 _ 0.435E-06___ -28 __ -2.3

~ Note the three column separation between fields provided for by the
FORMAT stafemeng. In the case of floating decimal point nﬁmbers the
field width includes the zero6 preceding the decimal point. Floatipg
decimal point numbers are printed with the first significant digit
immediately to the right of the decimal point, therefore, these numbers

will have as many significant digits’as there are decimal places

21.

.s,peciﬁed. However, no moré than eight sigzﬁﬂcant digits are possible.
A maximum of 119 ‘characters mé.y be printed per line.

The FORMAT statement is not executed and may be place'd.
anywh;re in the program. The field specifications are enclosed in
‘parentheses with commas between the specifications for successive
fields. Successive fields having the same format may be specified by
inserting a coefficient (indicating the number of identical fields) before
the codé 1ette¥' E, F, orI. Thus

FORMAT (I3, 2E12.3, F8.4)
is equivalent to
FORMAT (I3, El2.3, E12. 3,,F8.4)

It may be of interest to consider now the FORMAT sfatements
which were referred to as 1 and 2 in Section I. FORMAT statement
1, which referred to fixed decimal point 1nput.a‘nd output, is w.rittenl
as

1 FORMAT (5F14.5)

The code letter F is preceded by the number 5, which'indic\';ates '
how many times thié specification is to be repeated.per line. The
field width of 14 allows for six digits and a sign to the left of the
‘decimal point (7 spaces), the decimal point (1 s‘pace),‘ and five digits
tq the right of the decimal point (5 spaces), plus one additonal space

for field separation.

22.

'FORMAT 2, which referred to floé.ting decimal pc;int input

and output, is written as
2 | FORMAT (1P5E14.5)

The scale factor (1P) shifts the decimal point so that there is
one significant digit to the left of the decimal point. (See Section
III for scale facfors.)‘ The field width of 14 allows for one digit
énd a sign to the left of the decimal point, the decimal point, ﬁye
digits to the right of thé decimal point, the four character exponent

field, plus two additional spaced for field separation.

General Information About the Use of Tapes -

Information is recorded linearly on magnetic tape in blocks
called "records'. Records may be o f varying lengths. IT;:ach recor&
is separated from the next by a gap of blank tépe, the ""end-of-record
gap''.

When a WRITE OUTPUT TAPE statement is executed, the tape
writing rpéchanism writes, as a single record, all of the quantities
in the List. For example

WRITE OUTPUT TAPE 2, X, Y, Z
would cause the three numbers whi;:h are the curreﬁt values of X, Y,
and Z to be written as a single record (in the order X, Y, Z) on tape '

2. Physically, the tape would be moved forward over the stationary

tape reéd-write head which records magnetically the three numbers
and then erases a short segmenf of tape as the vend-of—record gai).

~ At the end of this operation the tape is in position for writing the
next record.

The effect of the statement

READ INPUT TAPE 2, X, Y, Z
would be to move tape 2 forwaxrd over the read-write head to start
reading the first record encountered, assigning tﬁe first number of
the record as the value of X, the seconu as the value of Y, and the
third as the value of Z. If thé list in the READ INPUT TAPE stafe-
ment specifies more quanﬂties then ther’e-aré numbers in the record,
the corﬁputer will stop since this'condition is regarded as 'aﬁ error,
If the list specifies N quantities and the next record on the tape
contains more than N quantities, only the first N numbers will be
read from the record. After reading these N numbers, the tape will
be moved (without rea.ding) to the next inter-record gap.

A tape can be read or written only in the forward direction.
However, there are two statements which can be used F° move fhe
tape backward. These are

REWIND\X"I‘

BACKSPACE I

24,

where I is the number of the tape unit.

REWIND moves the tape back to the physical starting point
régardleas of its current position and may be used to position ‘the
tape at the beginning of the first unit record to be Qritten or regd.

BACKSPACE moves the tape back to the beginning of the pre~
ceding record. If the tape is in a rewound position, a BACKSPACE
statement ha.s no effect. In order to move a tape forward one re'cord
without readiﬁg any’information into storage, the statement "READ
TAPE I, with no list specified, may be used.

Ey use of the above statements, a tape may be positioned for
reading or writing at the beginning of any record desired. However,
because of the nature of the tape read-write mechanism, Writing a
new record on tape will make it impossible to read any old in-
formation following this new record. It would not be possible to writ_e‘_
over a record in the middle of a tape and then réad oid information
writt;en after this point. Since tlhe tape can be positioned only at the
beginning of a record, it is not possible to begin reading or writing
in the middle of a récqrd.

In order to indicate that the last record of information has been .

written on a tape, the statement

25,

END ﬁLE I
where I is the numbér of the tape unit, is used. This causes an end-
of-file mark to be written on the éi)eciﬁed tape which can later be '
recognized by‘t;.he tape reading mechanism to stép tape reading at

‘that point.

Examples
Several .exa‘,mples which illustrate the use of many of the state-
mgnts introduced in this section appear below.
vl. It is required to.calculéte the amount of heat necessary
to raise the temperature of a mixture of ten gases from a given
base temperature, T}, to a series 6f higher temperatures. |
‘These terﬂperatures will be 25 degfrees apart and wili range’
from T up to a maximum of T,.

The heat required may be calculated by multiplying the
heat capacity of the gas mixture by the temperature difference.
Howe\'rer,. the heat capacity is dependent upon the temperature.
The mean heat capacity over a given range may b‘e e_dtimated
by using the ‘ec-lua.tion

C - b +£ 2"‘ . 2
o a+i('r+'r0) 3(1‘ +'r'r0+'r0)

26.

. where Cp = the mean heat capacity
T = the upper temperature, degrees Kelvin
Ty = the lowér temperature, degrees Kelvin
a, b, Jc .= empirical constants, &ifferent for eachb gas

(degrees Kelvin = degrees Centigrade + 273. 1)

Input data will include the amount of each gas present, the three
empirical constﬁnts for each'gas, the base temperatﬁre, and the
maximum temperature (in oC).

A possible FORTRAN program to carry out this calculation appears
below. It has been written‘to provide the individual heat. cépacities in
each range as well as tl}g'total heat requirgrhent.

9 DIMENSION X(10), B(10), C(10), CP(10)
10 FORMAT (10F6. 3) |

11 FORMAT (10E11l. 3)

12 READ INPUT TAPE 4, 10, X, A, Tl, T2
13 READ INPUT TAPE 4, 11, B, C

14 SUM= 0.0

15 TIK= T1+ 273.1

16 TK= TIK

17 TK= TK + 25.0

18 IF ((TK - 273.1)-T2) 19, 27, 27

19 DO21 1=1, 10

.20

21
22
23
24
25
26
27
28
29
30
31
32

33

27,

CP(1) = A(I)+B(I)%(TK+T1K)/2.0
+C(I)%(TK*%2+TK*T 1K+ T1K*%2)/3. 0
SUM = X(I)*CP(I)+SUM

HEAT = SUM*(TK-TI1K)

T = TK - 273.1

WRITE OUTPUT TAPE 5, 31, T1l, T, HEAT

WRITE OUTPUT TAPE 5, 32, X, CP

‘GO TO 17

IF (T2 - 2500.) 12, 28, 28

END FILE 5

"REWIND 4

REWIND 5
FORMAT (2F10.1, E15.5)
FORMAT (F8.1, El4.5)

STOP

The DIMENSION statement sets aside storage locations for the

constants and results. Statements 10 and 11 describe the arrangement

of the input data as follows:

X (fractional amount of each gas) = 0. xxx

A

B

+x.xx
+xx., xxxE+ee

ix. xxinee

28.

Tl, T2 = +xxx.x
Statements 31 and 32 describe the arrangement of the output

data as follows:

X = 0. xxx

CP = 0. xxxxxE+ ee
TL, T = _-i_-_x.xxx.x
HEAT = 10. x:ﬁxxxE_-}_-_ee

Statements 12 and 13 cause the data f01; a case to be transferred
‘ inlto the 704 frorh tape unit 4. Statement 14 sets the location designated
~as SUM to zero. The caicuiation of the absolute temperafure inbdef-
grees Kelvin fromthe base temperature i;; carried out by gtatement

15. Statement 16 sets the original value of the temperature range to
zero, while statement 17 causes the range to be increased by the
specified increment. The upper limit of the range is compared to the
maximum temperature specified for this case. If the maximum has
not been reached, coptrol reaches the DO statement (statement

19). The statements in the range of the DO (statements 20 and 21)
cause the specific he_a_f of each component to be calcu.llatedland'

weighted according to the fraction of that component in the mixture.

29.

The actual calculation of the heat requirement is described by
statement 22. Statement 23 causes the upper limit of the range to be
expressed in degrees Centigrade. Writing of the results, along

with the fractions of each component, on tape unit 5 is accomplished
v by'statements 24 and 25. A transfer to begin the calculation for’the
next range is effected by statement 20,

If the comparison at statement 18 indicates that the maximum
temperature for the given cése has been exceeded, control reaches
statgment 27. At this point the maximum temperature is examined
to determine whether it excee'ds 2500°C (which will be the ihdication
that the problem is completed). If it does, control reacheé statement
28, and end-of-file is written, tapes are rewound, (statements 28,
29, and 30), and the 704 stops. If the problem has not been com-
ple*:ed, control is transferred to statement 12 which causes data for
a new case to be read from the input tape.

2. Given Xi, Yi, Zjfori= 1, 10and j= 1,20 -to compute:

10 | 20
PROD=(> Ai Zj
: : i=1 j=1
where Ai= X%+ viif|xi| > |
Ai= X+ Y2 | < |y
Ai= 0 if iXi =Yy

A possible FORTRAN program follows.
3 DIMENSION X(10),-Y(10), Z(20)

.4 FORMAT (5F14.4)

30.

5 READ4, X, Y, Z

6 SUMA= 0.0

7 DO12I=1, 10 .

8 IF(ABSF(X(I)) - ABSF(Y(I))) 9, 12, 11
9 SUMA = SUMA+X(I)+Y(I)#%2

1_’0 GO TO 12

11 SUMA = SUMA+X(I)%#2+Y(I)

12 CONTINUE

13 SUMZ = 0.0

14 DO15J=1, 20

15 - SUMZ = SUMZ+Z(J)
16 PROD = SUMA%*SUMZ
17 PRINT 4, SUMA, SUMZ, PROD
18 STOP
The DIMENSION statement sets aside storage locations for the
input data. Statement 4 specifies the input and outp{lt data as fixed point

numbers having 4 decimal places. The READ statement reads the

input data from cards into the 704. Statement 6 sets the quantity

SUMA to zero. Statements 8-12, under control of the DO statement

10 20
7, compute Z Ai. Statement 15 computes Z Zj under the
i=1 j=1 S

control of DO statement 14. The following statements compute and

print PROD. Statement 12, CONTINUE, serves as a common re-

31.

ference point; and since it is the.last statement in the range of the DO,

after its completion I is increased and the next repetition begun.

SECTION I Check List

II. 1

H.Z
II.3

IL.4
IL.5

II.6
1.7
I1.8
I1.9
1. 10

II.11

All subscripted variables must appear in a DIMENSION state-

ment. This statement must appear in the program before

reference is made to the variables.

Negative subscripts are not permitted.

Subscripting of subscripts 'i's. not permitted.

Integer variables and constants can be used only as subscripts
and 'exponenfs in a floating-point expression. |

Integer constants are written without a’decimal point; integer

. variables must begin with I, J, K, L, M, or N.

The last statement in the range of a DO may not be a. tra.nsfef.
Decimal integers larger tha-n 32767 are treated modulo 32768’.
Ap end-of-file should always be writteﬁ on output tapes. |
Provision for rewinding tapes vshm.lld be made in the program.
No constants may be given in a LIST, only variables. .

The first cha}racter of the first field in a FORMAT statement

for output must be a blank.

(Refer to the end of Section I for additional check points.)

	Intro-Section_II_Page_01
	Intro-Section_II_Page_02
	Intro-Section_II_Page_03
	Intro-Section_II_Page_04
	Intro-Section_II_Page_05
	Intro-Section_II_Page_06
	Intro-Section_II_Page_07
	Intro-Section_II_Page_08
	Intro-Section_II_Page_09
	Intro-Section_II_Page_10
	Intro-Section_II_Page_11
	Intro-Section_II_Page_12
	Intro-Section_II_Page_13
	Intro-Section_II_Page_14
	Intro-Section_II_Page_15
	Intro-Section_II_Page_16
	Intro-Section_II_Page_17
	Intro-Section_II_Page_18
	Intro-Section_II_Page_19
	Intro-Section_II_Page_20
	Intro-Section_II_Page_21
	Intro-Section_II_Page_22
	Intro-Section_II_Page_23
	Intro-Section_II_Page_24
	Intro-Section_II_Page_25
	Intro-Section_II_Page_26
	Intro-Section_II_Page_27
	Intro-Section_II_Page_28
	Intro-Section_II_Page_29
	Intro-Section_II_Page_30
	Intro-Section_II_Page_31
	Intro-Section_II_Page_32

