June. 7, 1957

FORTRAN INTRODUCTORY PROGRAMMER'S MANUAL

SECTION III

This material may be reproduced as desired.

Programming Research Department
International Business Machines Corporation
590 Madison Avenue

New York 22, New York

DISCLAITAMER

Although this program has been carefully tested by

se is made of its correct

its contributor, no guarant

cns, and no responsibility

is-taken by him in case of possible failure.

functioning under all conditi

SECTION 1III

Introduction

Several of the statements introduced in Section II offered a

convenient method for handling one dimensional arrays in a systematic,

repetitive manner. However, no provision was made for handling two

and three dimensional arrays. This provision greatly facilitates the
solving of many engineering and scientific problemg' which require matrix
manipulations for their solution. This section will describe the extension
of subscripting to two and three dimensional arrays and the expansion of
the use of the DO state'r»nent'tyo handle such arrayé. Severai other new

statements will also be introduced.

The following example of matrix multiplication will serve to

illustrate DC "nesfs" and multiple subscripts.

Example: Given the matrix A with dimensions 10% 15 and the matrix
B with dimensions 15x 12, To compute any element Cij of the matrix
C = AB select the ith row of A and the jth column of B, and sum the

products of their corresponding elements: thus
1
Cij = 2 AikBkj-
k=1

The following is a possible FORTRAN program for matrix multi-

plication.

DIMENSION A(10, 15), B(15, 12), C(10, 12)

3 FORMAT (5El14.5)

10

20

30

50

60

READ 3, A, B

DO 30I= 1,10

ha ny::.wm_f_m /24 DO

DO 30J= 1,12 /ianye &'fo?m!.bo
C(I,J)= 0.0 |
DO 20K = 1, 15 Ean.y.t..,qf_._s?_'-"lbo

C(1,J) = C(L, I)+A(L, K)*B(K, J)

PRINT 50, I, J, C(I,J)

FORMAT (215, E16.7)

STOP

The DIMENSION statement says '"matrix A is of maximum size

10x 15, matrix B is of maximum size 15x 12, and matrix C is of maxi-

mum size 10x 12", The READ statement reads all elements of the matrix

A and then all elements of matrix B into the 704 from cards, the format

being specified by statement 3. Since two dimensional arrays are stored

""columwise', the matrices A and B must be keypunched in that order;

e.g. A1), A21, A3], A4y, ..., Ajg, 15- Notice that statements 6

through 30 constitute a program similar to programs considered in

Section II.

Whatever values I and J have at the moment, this program

will compute and print C(I, J) along with I and J. Statement 5 says that

this program is to be repeated 12 times first for J= 1, then J = 2, ...

J = 12. Notice that for each repetition of statements 6 through 30 state-

ment 20 is executed 15 times, first for K= 1, then for K= 2 and so on.

Thus when the process called for by statement 5 is complete, the Ith

row of the product matrix has been computed and printed. In a similar
manner, statement 4 causes the program from statement 5 to statement
30 to be repeated for the appropriate valuesﬂl of I and thereby produces ali
of the rows of the product matrix.

This example illustrates the fact that one or more DO's may
appear in the range of a DO statement. This ''nesting'" of DO's can
result in a single statement being the last statement in the range of
several DO's. (for example, statement 30 is the lé.st one in the range
of DO statements 4 and 5). Copse‘quently‘;a‘more _gl_e,ne‘r_a',’vl':rule isinéeded
to describe the flow of control and incrementing of »indicés followiﬂg the
last statement in the range of a DO, |

RULE. Upon completing the last sta.témentg in the réﬁge

of a DO control passes to the first statement in the fange of the

nearest preceding DO which is not yet completed and the index

of that DC is incremented. The last statement in the range of a

DO may not be a control statement (e.g. IF, GO TO, DO, etc.).

If all DO's containing this last statement are completed, control

" passes to the next statement.

Subscripts for Two and Three Dimensional Arrays

In the preceding example of matrix multiplication A, B, and C
were two dimensional arrays. As was noted each variable had two
subscripts which were separated by commas, and the entire set en-

closed in parentheses,

For example:
A(I,K)
B(K, J)
e,)
Three dimensional a;rays are denoted by the use of three s’hﬁacripts;
For example:
¥(M, N+10, 5%L)
The same ;ules presented in Section II regarding the formation of sub-
scripts a.ppiy to the two and three dimensiohal cases.
The DIMENSION statement is air,hilar}y q?ctended to two or three
dimensional arrays. For example the sv‘tat:ervne;xt
DII\ZENSION w(lo0, 10, 15), AL'PHA(15,5), Vv(20,10)
causes 1500 locations in storage to be set aside for the thr‘ee. dimensidnal,

array W, 75 locations for the two dimensional array ALPHA, and 200

locations for V.

DO '"Nests'
There are certain rules wh?ch must be observed when;iuv_sing J_)O"é:
within DO's or DO '"nests". |
1. If the range of a DO statemeni‘ includes another DO
statement, then all siatementéf in the range of tl’!xisj ,

second statement must also be in the range of the fix"“‘si::v?.‘

DO statement,

Permitted Violation of Rule 1

2. No transfer of control by IF-type or GO TO-type state-
ments is permitted into the range of any DO from outside
its range since such transfers would not permit the DO

loop to be properly indexed.

Permitted Violation of Rulé 2
L A
E >
D k

-

All ofb the DO statements presented in the preceding material
were written in the form
DO N I= my, my
In these cases the index, I, started at the specified value, m;j,

and was increased by one each time the statements in the range of the

-6 -

DO were executed until the value of I equaled mj,. It is possible, how-
ever, to achieve greater flexibility in the DO statements by adding a
third fixed point number so that the general form is

DO N I= m,, m,, mgy

In this case the value of the index, I, starts at m; (2s before),
but it is increased by m3 (which may be different from one) each time
until the value of I equals or exceeds m, at which point the DO is
""satisfied'. It is not necessary to include mj in the DO statement
unless it is different from one, i.e. the statements -

DO 20 1= 1,10
and

DO 20 1= 1,10,1
are equivalent.

Every type of calculation is permitted in the range of a DO with
one exception. No calculation which changes the value of the index or
any of the indexing parameters (m;, m,, m3) of the DO statement is
permitted within the range of that DO statement. The indexing para-
meters (m;, mp, m3) may be either integer constants or non-sub-

scripted integer variables.

Lists for Two and Three Dimensional Arrays

The extension of the input-output statements to govern the transfer

of two and three dimensional arrays to or from magnetic core storage

requires only that the subscripting information given earlier be used
when writing the "list'. If the list

JOBNO, CASE, RUN, K, (X(I), Y(I,K),I= 1, 4)

((z(1,J),1=1,3), W(J,3),J=1, 3)
were used With an input statement, the éuccessive words, as they were
read into the 704, would be interprt;ted as the‘following sequencve of
variables and placed in the storage locations (previously assigned by
FORTRAN) in that same ‘ofder:

JOBNO, CASE, RUN, K', X(1), Y(1,K), X(2), Y(2,K)

X(3), Y(3,K), X(4), Y(4,K), Z(1, 1), Z(2, 1), Z(3, 1),

w(1, 3), Z(1, 2), Z(2, 2), Z(3, 2), W(2, 3}, Z(1, 3), Z(2, 3)

Z(3, 3), W(3, 3) |

Note that a variable subscript (K) wé.s used at one point. This is
permissable only if that variable has been previously assigned a valiue
(in this case, a value was read in earlier).

To transfer a complete array, subscripting énd index information
is not necessary. Such information is provided, in this case, by the
DIMENSION stafement. Using the example from the previous page, the
statements

DIMENSION ALPHA (15, 5)
READ 1, ALPHA-
would cause the entire 75 word array
ALPHA(1, 1), ALPHA(2, 1), ALPHA(3, 1), ALPHA(4, 1)...

ALPHA(15, 1), ALPHA(1, 2), ALPHA(2, 2), ALPHA(3, 2),

ALPLIA(4, 2). . . ALPHA(15, 5)

to be transferred into magnetic core storage in the above ovder,

"Assigned GO TO"

One modification of the GO TO statement which allows greater
frecdom in direccting the logical flow of a program is the "assigned GO
TO" statement.

As an example of the usce of the "assigned GO TO'" statement,
suppose it is desired to calculate scveral average values such as
average temperature, pressure, and density. Assuming ;hu data to
be on cards, the following program might be used:

DIMENSION X(45)
5 ASSIGN 30 TON
10 READ 2, X

SUM = 0.0
15 DO 20 1= 1,25
20 SUM = SUM+ X(I)
25 AVG = SUM/25.0
26 GO TO N, (30,40, 50)
30 AVGTEM = AVG
31 ASSIGN 40 TO N

GO TO 10

40 AVGPRE = AVQG

41 ASSIGN 50 TO N
GO TO 10

50 AVGDEN = AVG
PRINT 60, AVGTEM, AVGPRE, AVGDEN
STOP

60 FORMAT (3E14.5)

In this example, statement 26 transfers control to one of the
three statements in the list, i.e. 30, 4'0 or 50 depending upon the value
of N at the time of execution. The first execution of statement 26
causes control to be transferred to statement 30 since statemeﬁt 5
assigned the value of 30 to N. Statement 31 assigns the value of 40 to
N, hence the second execution of statement 26 transfers control to
statement 40. The third execution of statement 26 transfers control to
statement 50, the value of 50 having been assigned to N by statement 41,

In general terms, the '""assigned GO TO" is wi'itten as

GO TO N, (n}, ny, ... n)
where N is a non-subscripted integer variable appearing in a previously
executed ASSIGN statement and n}, np, ... ny, are statement numbers.
These numbers are, in effect, a list of values which may be assigned
to N. Note the comma which is inserted between the variable and the
left parentheses; it must always be included.

The statement

ASSIGN 30 TON

is not equivalent to the arithmetic formula

- 10 -

N = 30

A variable which has l?een ""assigned" can be used only for di«
recting an "assigned GO TO' until the vériable, say N, is set equal
to an arithmetic expression, at which time N is re-established as an
ordinary variable. Likewise, an ordinary variable has no effect on
an ""assigned GO TO' until this variable has been "assigned'.

There is a restriction on the '"assigned GO TO!'" statement when
it lies in the range of a DO statement. This restriction requires that
the statements to which the ""assigned GO TO'" may transfer must all
lie outside the nest. If this condition cannot be met, it may be possible
by suitable programming changes to use a '""computed GO TO'" to accomplish

the desired branching since there is no restriction on such statement.

"Computed GO TO"

The computed GO TO is similar to the "assigned GO TO" in
that both statements establish a many-way fork. They differ in that
the "assigned GO TO'" requires that the proper branch be chosen by
pre-~setting or "assigning' while, with the '""computed GO TO", the
proper branch is determined by the value of a integer variable. The
value of this variable may be arrived at by computation; no companion

statement (comparable to ASSIGN) is necessary.

Example:

- 11 -

Given: Ai, Bi, Ni, Xi, YiforI= 1,10 to compute

Zi = [/A;X;?+B;Y; for Ni

il

1

Zi =) A;X;“-B;Y; for Ni

2. A possible FORTRAN

program follows.

10

11

20

21

22

23

DIMENSION A(10),B(10), N(10), X(10), Y(10)
READ 3, (A(I),B(I), N(I), X(I), ¥(I), I = 1, 10)
FORMAT (2E13.5, I3, 2E13.5)

DO 21 I= 1,10

J= N(I)

GO TO (10,20), J

Z(I) = SQRTF(A(I)*X(I)*#2 + B(I)*Y(I))

GO TO 21

Z(1) = SQRTF(A(D)*X(I)#+2 - BI)*Y(1))
PRINT 23, A(I),B(I), N(I), X(I), Y(I), Z(I)
STOP |

FORMAT (2E13.5, 13, 3E13.5)

In this example, statement 7 transfers control to statement 10 if J = 1

or to statement 20 if J = 2. Since J is set equal to Ni by statement 6,

the correct formula for Zi is selected. Statement 6 is necessary since

J cannot be a subscripted variable.

- 12 -

As was noted in the example the '""computed GO TO'" has the

form
GO TO (5,10, 15,20), I

where the numbers enclosed in parentheses are statement numbers.
Control is transferred to the first statement in the list (in this case, to
statement 5) if, at the time of execution, the value of I'is one; it is trans-
ferred to the second statement in the list (in this case, to statement 10)
if the value of I is two; etc. Any number of statement numbers may éppear
in the list. The value of I may be arrived at in any manner desired
(e.g. by an arithmetic statement, as the result of DO indexing) and its
value at the time of execution of the '"'computed GO TO" determines which
branch will be taken by the program. Note the comma which is inserted

between the right parenthesis and the variable.

FORMAT Statements

In Section II the basic field specifications Iw, Ew.d, and Fw.d
were discussed. In this section Scale Factors, Hollerith fields, and

Multiple-line formats will be introduced.

Scale Factors

The use of scale factors allows greater flexibility in an output .

format. As noted in Section II, the specification

- 13 -

(2E14. 4)
might print the following output line
-0.4321E 04 0.5678 E-06
If the specification is written as
(2P2E14.4)
the same output data would print as
-43.2147E 02 56.7839E-08
The scale factor 2P causes the floating point number to be multiplied by
10Z and the exponent to be reduced by 2 prior to printing. Only a positive
scale factor may be used with an E-type specification, however, positive
or negative scale factors may be used with an F-type specification, e.g.
the specification
(-1PF10.3, 7TPF8. 3)
would print the following data
-4321.47 . 0000005678
as

-432. 147 5.678

Hollerith Fields

English text may be printed by specifying a Hollerith field. Such
fields are designated by the letter H preceded by a number designating
the number of characters in the text and followed by the desired English

characters (including blanks). In order to print the factors X and Y as

- 14 -

well as their product, the FORMAT statement
10 FORMAT(2HX = F8.3, 4H Y = F8.3,
5H XY = F8.3)
could be used to print the output line

X= _10.723_ Y= -12.561 XY = -134.692

NOTE, there is no comma after a Hollerith field in the format speci-

fication.

Multiple-line FORMAT

In Section II in order to print the following lines of output data,
—67. 891ZE-03 106. 23 -73

______ 732 82.976 6.25
two FORMAT statements would have been necessary, namely

10 FORMAT (2PE13.4, F8.2, 15)

11 FORMAT (19, Fl2.3, F5.2)
However, with the introduction of multiple-line formats, only one
FORMAT statement is required to print the above lines

12 FORMAT(ZPE13.A4, F8.2, 15/19, F12.3, F5.2)
The slash (/) separates the different line formats. Thus, in this ex-
ample, lines 1, 3, 5,... have the format (2PE13.4, F8.2, 15) and lines

2, 4, 6, ... have the format (19, Fl12.3, F5.2). Each line may have a

maximum of 119 characters.

- 15 -

Debugging

In order to debug a FORTRAN prqgram; it is recommended that
extra print statements under the control of a sense sviritch be used. The
sense switches are located on the_ 764 coiisolé and may be used to control
the program. The following IF"jst‘a‘femegtvis used in conjunction with the
sense switches.

IF (SENSE SWITCH i) &y, np

where i refers to one of the gix sense switghes 1, 2, 3, 4;, 5, or 6, and
n, and n, are statement nurhbers. if sense sw@téh iis "UP" control is
fransferred to statement n.um‘lsef"iﬁz,r‘if sense' switéh i is "DOWN!" control
is transferred to statement f;il;nber n. The following example illustrates
the use of sense switches as an aid in debugging a program.
Example:

Givern: aj, bj, and ¢j for I = 1, 10 to compute and print

\

10 j 10 , 1‘.\'! :!‘f 1,9 2
RESULT = | 2. (ae)¥ = (bj-ci)/ 7 (ajbi-ci%)
' i= 1 ' /'{' i=1 . i=1l

The foilowing FORTRAN prograrﬁ" is written and corﬁfi{iéd“(i. e. translated
into 704 language).

DIMENSION A(10),B{10), C(10)

SUMI = 0.0
suMz = 0.0
SUM3 = 0.0

READ 1, (AlI),B(I),C(I), 1= 1, 10)

DO 10 1= 1,10

- 16 -

SUM 1 = SUMI + (A(I)*C(I))%x2

SUM 2 = SUM2 + B(I) - C(I)

SUM 3 = SUM3 + A(I)*B(I) - C(I).

IF (SENSE SWITCH 1) 10,5

5 PRINT 1, SUM 1, SUM 2, SUM 3
1¢ CONTINUE

RESULT = SUMI1%*SUM2/SUM3

»PRINT 1, RESULT

STOP
A test case is run using the compiled program. The 704 operator is
instructed to run the test case with sense switch 1 "UP'" (which causes
the printing of intermediate results). Assume the test case has the.
following input data

a) = -.23456 by = 12.34111 c, = +27.86523:
Then the first line of output is

42.72019 -15.52412 -30.75996

The hand calculations show that for I = 1

SUM 1 = 42.72019
SUM 2 = -15.52412
SUM 3 = -779.36577

SUM 1 and SUM 2 results agree, however, SUM 3 results do not agree.
By looking at the FORTRAN statement which computes SUM 3, the

error is located. The statement is changed from

- 17 -

SUM 3

SUM3 + A(I)xB(I) - C(I)
to

SUM 3 = SUM3 + A(I)%B(I) - C(I)#%2

After the indicated change is made, the FORTRAN program is again
compiled and the test re-run. This time the machine results agree
with the hand computed results. The 704 operator is instructed to run
the production data with sense switch 1 "DOWN'"., With sense switch 1 |
"DOWN?!" the IF (SENSE SWITCH) statement transfers control to state-

ment 10, therefore, no intermediate results are printed.

Storage
Many problems which are to be solved using the 704 will require
the use of tapes and/or drums for additional storage. In order to
determine whether additional storage will be necessary or not do the
following:
1) Multiply the nurﬂber of f‘ORTRAN statements by 10,
call this value A.
2) Add up the number of locations specified by entries in
DIMENSION statements, call this value B. (e.g. A(12,
6) required 72 locations).
3) Use the rules on page 18 to determine the numbef of
storage locations needed for input-output routines, call

this value C.

- 18 -

4) The list of available functions provided by the computing
center should give the number of locations required for
each function. Add these numbers for the functions used
in the program, call this D.

5) If (A+B+C+D) is much greater than the number of locations
in the storage unit of the 704 to be used for running the
program, then the program will have to be rewritten,
using tapes and drums for auxiliary storage of data. If
(A+B+C+D) is nearly equal to the number of locations in
the storage unit then the program should be compiled to
find the precise number of locations required, since
(A+B+C+D) is merely an estimate.

If it is necessary to use drums and/or binary tapes for intermediate
storage, consult the FORTRAN Programmer's Reference Manual for in-
formation regarding the necessary statements. ‘The Programmer's
Reference Manual also contains additional control statements and covers
particular situations in which some of the restrictions presented here may
be relaxed. It also includes information regarding limitations on the size
of a FORTRAN program (e.g. the number of variables, the size of DO

nests, the number of transfer statements, etc.).

Rules for estimating storage required for input-output routines.

1. For each of the following statements appearing add the corresponding

- 19 -

number. (U, for éxztmple, several PRINT sfatements appear add
in 258 only once.)

PRINT L - 258

READ | 137
READ INPUT TAPE 21
WRITE OUTPUT TAPE 12
PUNCH | 90

2. Add to the above total:
If there is both décimal‘inpﬁt andvolutput - 945
If only decimal output - 484 |

If only decimal input - 461

Example

Given n points (xj, yj) to fit by least squares method an m degree

polynomial

v = agta x+ ayx?+ .. cta xT,
In order Fo obtain the/ coefﬁcients ag, a3, ceaveeo,an it‘ is necessary to
solve the normal equations
(1) Spag+Siajt.... +Smam = Vo
(2) S139+ 8221+ == +5m412m = V)
(m+1) Sm?0+Sm+121 -+« +S2mam = Vm
where Sg=n Vo = 3: Yi

i=1

-20 -

n . h,
SI = Xi Vl - .L/‘M lel
i i=1
n_ 2 n_
Sp= 0 X3 Vp = Yi¥i
i=1 i=1
n) AU ¢
S;m= 2 x2m Vm = 4oy
i=1 i; 1 :

Having computed the S's and V's, the normal equations are solved using
the method of elimination which is illustrated by the following solution of

the normal equations for a second degree polynomial.

I

(1) SOa0+Slal +Szaz) VO

(2) Sjag+Spa)+S3a;

i

Vi
(3) Spag+S3aj+S4a, = Vp
The forward s.:ution is as follows:
1. Divide equation (1) by Sg
2. Multiply the resulting :equatidn b'y' S and subtract from equation
(2); then by Sp and'subfrac't from equation (3). The resulting

equations are

(4) ag+bjpaj+bizay = by

(5) bppa)+bz3az = b2s

(6) b3zaj+b33ap = by

_ 51 S2 Vo
where blZ = /SO’ DIZ': v./vSOﬂ‘Pl4 = ’/‘VO

-21 -

S2-b1251, b3 = S3-b335), bag = V1-bj45)

bz2

Steps 1 and 2 are repeated using equations (5) and (6). The resulting

equations are

(7) ajtcy32

= C24
(8) €333 = €34
where c = b23/ - _ b24 X
23~ b2z’ 247 /by,
c33 = b33 -cz3b3;
€34 = b34-cp4b32

The backward solution is as follows:

(9) a, = °34/

from equation (8
c33 1 eq (8)

10) a, = €24 - cp3a from equation (7)
1 v 2392

"

(11) ag = bjg- blZal -bj3a, from equation (4)
The following is a possible FORTRAN program for these calculations.
In this program n =100 and m =10. Sg:» S1s S, ... Spm are stored in
SUM (1), SUM (2), SUM (3); ... SUM (2M+1) respectively. Vg, V,,
Vy, ... Vi are stored in V (1), V (2), V (3), ... V (M+l).
DIMENSION X(100), Y(100), SUM(ZI), v(11), A(11), B(11,12)
READ 3,‘ M,.i\l
3 FORMAT (12, 13)

READ 4, (X(I),Y(I), I= 1, N)

4 FORMAT (4E14.7)

13

16

17

20

-22 -

LS = 2*M+l
LB = M+2
LV = Mtl

DO5J= 2, LS
SUM(J) = 0.0
SUM(1) = N
DO6J= 1, LV
V(J) = 0.0
DO161I= 1, N

P= 1.0

V(1) = V(1)+Y(I)
DO 13 J= 2, LV

P = X(I)*P

SUM(J) = SUM(J)+P
V(J) = V(J)+ Y(I)*P
DO 16 J= LB, LS
P = X(I)*P

SUM(J) = SUM(J)+P
DO20I= 1, LV
DO20K = 1, LV

J = K+l

B(K,I) = SUM(J-1)

DO22K=1, LV

22

23

26

28

31

33

35

37

40

41

42

-23 -

B(K,LB) = V(K)

DO31L=1, LV

DIVB = B(L,L)

DO 26 J= L, LB

B(L,J) = B(L, J)/DIVB

Il = L+l

IF (11-LB) 28, 33, 33

DO 311= 11, LV

FMULTB = B(I, L)

DO 31J= L, LB

B(I,J) = B(I,J)-B(L, J)*FMULTB
A(LV) = B(LV, LB)

1= LV

SIGMA = 0.0

DO 37 J=1, LV

SIGMA = SIGMA+B(I-1, J)*A(J)
I=1-1

A(I) = B(I,LB)-SIGMA

IF(I-1) 41, 41, 35

PRINT 42, (A(I), I= 1, LV)

FORMAT (5E15. 6)

The elements of the SUM and V arrays are set equal to zero. SUM (1)
is set equal to N. For each value of i, X and Y, are selected. The
powers ovai are computed and added to the correct sum counter.s. The
powers of X, are multipli'ed by Y, and added to the correct V counters.
In order to save machin'e time when running the object program, the
previously computéd power of Xj is used when com/putin"g; ti;e‘:nextv. power
of X1 Note the ﬁse of va‘r‘iables aé index paramete‘ré. "]';‘he augmented
ma’tfihx'is stored'(statéments 17 - 22), the forward soluti_oﬁ is éoymputed
(‘statements 23 - 31), and the backward solution (staterments 33 - 40) is
cornputéd. The éoefﬁcients ag, aj, a8, &, are stored in the A

m

array.

- 25 -

Master Check List
1. The basic characters which may be used in writing a
FORTRAN statement are
a. A,B,C,, Z (26 alphabetic characters)
b. 0, 1,2,, 9(10 numeric cﬁaracters)
c. + (plus), - (minus), * (asterisk), /(slash‘)k, ((left
parenthesis),) (right parenthesis), , (comma),
= (equal sign), and . (decimal point).
2. Upper and lower case alphabetic characters are indistinguish-
able on a punched card, i.e. "A'" and '"a'" will both be treated
as "A'".
3. “ The digits 1 and 0 must be carefully distinguished from
the alphabetic characters I and O.
4. A variable symbol can consist of six or less characters.
It must satisfy the following conditions:
a. The first character must be alphabetic.
. b. The first character cannot bel, J, K, L,, M, or N
unless it is an integer variable.
c. Any character following the first may be alphabetic
or numeric, but not one of the special characters.
d. The names of all functions appearing in the list of
functions as well as these names without their final

letter "F'" must not be used as variable symbols,

10.

11.

12.

13.

- 26 -

For example, if SINF appears in the list of functions,
then neither SINF or SIN can be used as a variable
symbol.
In indicating a function, the name of the function must agree
exactly with the name appearing in the list of functions.
The argument of a function is enclosed in parentheses.
If a function has more than one argument, the arguments
are separated by commas.
The left side of an arithmetic formula must always be a
variable.
Never omit the operation symbol between two quantities,
e.g. do not write "AB" for "A*B',
Never have two operation symbols in a row, e.g. do not
write ""A*¥-B' for "A*(-B)'"". The only exception is the
operation symbol '**'", which is regarded as a single
symbol.
Blank spaces can be used as desired since blanks are
ignored in the translation.
The prescribed form for the various non-arithmetic state-
ments must be followed exactly (except for arbitrary use
of blank spaces).
The magnitude of every non-zero quantity must lie between
10-38 and 1038, By ''quantity' is meant any constant or any
value assumed by a variable or function in the course of

the calculation.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

- 27 -

Numbers to be read by means of a "READ 1" statement
must not exceed 10 digits.

Numbers to be read by means of a "READ 2'"" statement
must not exceed 8 digits. The exponent must have two
digits and a sign.

Numbers to be printed by means of a "PRINT 1" state-
ment should not exceed 999, 999. 99999.

The (physically) last statement of a program should be a
STOP statement or a statement which causes a transfer to
some other statement in the program (a GO TO or an IF
statement).

All subscripted variables must appear in a DIMENSION
statement which must appear in the program before re-
ference is made to the variables.

Negative subscripts are not permitted.

Subscripting of subscripts is not permitted.

Subscripts for two and three dimensional arrays should be
separated by commas.

Integer variables and constants can be used only as sub-
scripts and exponents.

Integer constants are written without a decimal point.
Decimal integers larger than 32767 are treated '""modulo

32768".

25.

26.

27.

28.

29.

30.

31.

32.

33.

- 28 -

If the range of a DO includes another DO, then all étate'—

ments in the range of this second DO must also lie within

the range of the first DO.

Transfers into the range of any DO from outside its range
are not permitted.

No calculation which changes the index or indexing parameters
of a DO is permitted within the range of that DO.
"Assigned GO TO'" statements have a comma between the
variable and the left parenthesis.

"Computed GO TO'" statements have a comma hetween the
right parenthesis and the keft variable.

An ASSIGN statement must be encountered by the program
prior to encountering an l"a,ss,igned GO TO'" statement,
The ASSIGN statement is not equivalent to the arithmetic
formula. |

When an "assigned GO TO " lies in the range of a DO, all
statement numbers to which control may be transferred
must lie in a single part of the DO nest, or be completely

outside the nest.

	Intro_III-001
	Intro_III-002
	Intro_III-003
	Intro_III-004
	Intro_III-005
	Intro_III-006
	Intro_III-007
	Intro_III-008
	Intro_III-009
	Intro_III-010
	Intro_III-011
	Intro_III-012
	Intro_III-013
	Intro_III-014
	Intro_III-015
	Intro_III-016
	Intro_III-017
	Intro_III-018
	Intro_III-020
	Intro_III-021
	Intro_III-022
	Intro_III-023
	Intro_III-023a
	Intro_III-024
	Intro_III-025
	Intro_III-026
	Intro_III-027
	Intro_III-028
	Intro_III-029

