
June· 7, 1957

FORTRAN INTRODUCTORY PROGRAMMER'S MANUAL

SECTION III

This material may be reproduced as desired.

Programming Research Department

Intern.ational Business Machines Corporation

590 Madison Avenue

New York ZZ. New York

~!
ILl

<
«
...I

IJ
Vl

SECTION III

Introduction

Several of the statements introduced in Section II offered a

convenient method for handling one dimensional arrays in a systematic,

repetitive manner. However, no provision was made for handling two

and three dimensional arrays. This provision greatly facilitates the

solving of many engineering and scientific problems which require matrix

manipulations for their solution. This section will describe the extension

of subscripting to two and three dimensional arrays and the expansion of

the use of the DO statement to handle such arrays. Several other new

statements will also be introduced.

The following example of matrix multiplication will serve to

illustrate DO "nests" and multiple subscripts.

Example: Given the matrix A with dimensions 10'" 15 and the matrix

B with dimensions 15 x 12. To compute any element Cij of the matrix

C = AB select the i th row of A and the j th column of B, and sum the

products of their corresponding elements: thus

J2-
Cij = L AikBkj·

k= 1

The following is a possible FORTRAN program for matrix multi-

plication.

DIMENSION A(10, 15), B(15, 12). C(10, 12}

3 FORMAT (5E14.5)

READ 3, A, B

4 DO 30 I = 1, 10 ____ I>'q nyc_.a{_l1l1- D D _

5 DO 30 J = 1, 12 KCLlIJj.-e.. ____ t2£ __ e{ I!lJ ./JD

6 C(I, J) = O. 0

10 DO 20 K = 1, 15 8~111"(.a{- 3 G3jj])0

--.--,-.~~-- ... ~,-20 C(I, J) = C(I, J)+ A(I, K) *B(K, J)

30 PRINT 50, I, J, C(I,J)

50 FORMAT (215, EI6.7)

60 STOP

The DIMENSION statement says "matrix A is of maximum size

lOx 15, matrix B is of maximum size 15x 12, and matrix C is of maxi-

mum size lOx 12". The READ statement reads all elements of the matrix

A and then all elements of matrix B into the 704 from cards, the format

being specified by statement 3. Since two dimensional arrays are stored

"columwise", .. the matrices A and B must be keypunched in that order;

e. g. All,A2l> A3I' A41' ... , A l O,I5' Notice that statements 6

through 30 constitute a program similar to programs considered in

Section II. Whatever values I and J have at the moment, this program

will compute and print C(I, J) along with I and J. Statement 5 says that

this program is to be repeated 12 times first for J = 1, then J = 2, ...

J = 12. Notice that for each repetition of statements 6 through 30 state-

ment 20 is executed 15 times, first for K = I, then for K = 2 and so on.

Thus when the process called for by statement 5 is complete, the I th

- 3 -

row of the product matrix has been computed and printed. In a similar

manner, statement 4 causes the program from statement 5 to statement

30 to be repeated for the appropriate values of I and thereby produces all

of the rows of the product matrix.

This example illustrates the fact that one or more DO's may

appear in the range of a DO statement. This "nesting" of DO's can

result in a single statement being the last statement in the range of

several DO's. (for example, statement 30 is the last one in the range

of 00 statements 4 and 5). Consequentlya more8e.q.era~,rule is.,needed

to describe the flow of control and incrementing ofindices followin'g the

last statement in the range of a DO.

RULE. Upon completing the last statement in the range

of a 00 control passes to the first statement in the range of the

nearest preceding 00 which is not yet completed and the index

of that DO is incremented. The last statement in the tange of a

DO may not be a control statement (e. g. IF, GO TO, DO, etc.).

If all DO's containing this last statement are completed, control

passes to the next statement.

Subscripts for Two and Three Dimensional Arrays

In the preceding example of matrix multiplication A, B. and C

were two dimensional arrays. As was noted each variable had two

subscripts which were separated by commas. and the entire set en­

closed in parentheses.

For example:

A(I, K)

B(K, J)

e(I. J)

Three dimensional arrays are denoted by thl3 use of three subscripts.

For exampJe:

X(M, N+ 10, 5*L)

The same rules presented in Section II regarding the formation of sub-

scripts apply to the two and three dimensional cases.

The DIMENSION statement ~s similarly extended to two or three
,'- ."'

dimensional arrays. For example the statement

DIMENSION W(10, 10, -Ii), ALPHA(15,5), V{20. 10)

causes 1500 locations in storage to be set aside for the three dimensional

array W. 75 locations for the two dimensional array ALPHA, and 200

locations for V.

DO "Nests"

There are certain rules which must be observed when using :DO's

within DO's or DO "nests".

1. If the range of ci.' DO statement includes another DO

statement. then all statements in the range of this . .

second statement must also be in the range of the first

DO statement.

• 5 -

Permitted Violation of Rule 1

[

[~

~

2. No transfer of control by IF-type or GO TO·type state­

ments is permitted ~ the range of any DO from outside

its range since such transfers would not permit the DO

loop to be properly indexed.

Permitted Violation of Rule 2

All of the DO statements presented in the preceding material

were wdtten in the form

In these cases the index, I, started at the specified value, mI.

and was increased by one each time the statements in the range of the

- 6 -

DO were executed until the value of I equaled mZ' It is possible, how­

ever, to achieve greater flexibility in the DO statements by adding a

third fixed point number so that the general form is

DONI=m1,mZ,m3

In this case the value of the index, I, starts at ml (as before),

but it is increased by m3 (which may be different from one) each time

until the value of I equals or exceeds mZ at which point the DO is

"satisfiedll • It is not necessary to include m3 in the 00 statement

unless it is different from one, i. e. the statements

00 ZO I = 1,10

and

DO ZO 1= 1,10,1

are equivalent.

Every type of calculation is permitted in the range of a DO with

one exception, No calculation which changes the value of the index or

any of the ind.exing parameters (ml' mZ' m3) of the 00 statement is

permitted within the range of that 00 statement. The indexing para-

meters (m l' mZ' m3) may be either integer constants or nOll- sub­

scripted integer variables.

Lists for Two arid Three Dimensional Arrays

The extension of the input-output statements to govern the transfer

of two and three dimensional arrays to or from magnetic core storage

- 7 -

requires only that the subscripting information given earlier be used

when writing the "list". If the list

JOBNO, CASE, RUN, K, (X(I), Y(I, K),I = 1,4)

« Z(I, J), I = 1, 3}, W(J, 3), J = 1, 3)

were used with an input statement, the successive words, as they were

read into the 704, would be interpreted as the following sequence of

variables and placed in the storage locations (previously assigned by

FORTRAN) in that same order:

JOBNO, CASE, RUN, K, X(l), Y(1, K), X(2), Y(2, K)

X(3), Y(3,K),X(4), Y(4,K),ZP, I),Z(2, I),Z(3, 1),

W(l, 3), Z(1 , 2), Z(2, 2), Z(3, 2), W(2, 3), Z(1, 3), Z(2, 3)

Z(3, 3), W(3, 3)

Note that a variable subscript (K) was used at one point. This is

permissable only if that variable has been previously assigned a value

(in this case, a value was read in earlier).

To transfer a complete array, subscripting and index information

is not necessary. Such information is provided, in this case, by the

DIMENSION statement. Using the example from the previous page, the

statements

DIMENSION ALPHA (15,5)

READ 1, ALPHA·

would cause the entire 75 word array

ALPHA(I, I),ALPHA(2, I),ALPHA(3, I),ALPHA(4, 1) •.•

ALPHA(15, 1), ALPHA(1,2), ALPHA(2, 2), ALPHA(3, 2),

- H -

ALPllA(4, 2) ... ALPIIA(15,5)

to be tranl:iferred into nl.lgneUc CO.rLl l3t.orage in the above (l1·der.

"Assigned GO TO"

One modification of the GO TO l:itatellwnt which allows greater

freedom in directing the logical flow of it program is the "assigned GO

TO" statC111ent.

As an exarnple of the use of tlw "iulsignt.Hl GO TO" statelllent,

suppose it is desired to calculate several avcrag(l vaJUt.ls sLlch aH

average temperature, pressun~, and denHity. Al:lsluning the data to

be on ca rds, the foJJ.owilig p loOg ran1 might bt! used:

DIMENSION X(25)

5 ASSIGN]O TO N

10 READ 2, X

SUM= 0.0

1 5 DO 20 I c:: 1. 25

20 SUM::: SUM + X(I)

25 AVG ::: SUM/25.0

26 GO TO N, pO, 40, ')0)

30 AVGTEM: AVe

31 ASSIGN 40 TO N

GO TO 10

40 AVGPRE ::: AVG

41 ASSIGN 50 TO N

GO TO 10

50 AVGDEN = AVG

- 9 -

PruNT60, AVGTEM, AVGPRE, AVGDEN

STOP

60 FORMAT (3E14. 5)

In this example, statement 26 transfers control to one of the

three statements in the list, i. e. 30,40 or 50 depending upon the value

of N at the time of execution. The first execution of statement 26

causes control to be transferred to statement 30 since statement 5

assigned the value of 30 to N. Statement 31 assigns the value of 40 to

N, hence the second execution of statement 26 transfers control to

statement 40. The third execution of statement 26 transfers control to

statement 50, the value of 50 having been assigned to N by statement 41.

In general terms, the "assigned GO TO" is written as

GO TO N, (nl' n2' ... n m)

where N is a non- subscripted integer variable appear~ng in a previousiy

executed ASSIGN statement and nl' n2' ..• nm are statenlent numbers.

These numbers are, in effect, a list of values which may be assigned

to N. Note the comma which is inserted between the variable and the

left parentheses; it must always be included.

The statement

ASSIGN 30 TO N

is not equivalent to the arithmetic formula

- 10 -

N = 30

A variable which has been "assigned" can be used only for di­

recting an lIassigned GO TO" until the variable, say N, is set equal

to an arithmetic expression, at which time N is re-established as an

ordinary variable. Likewise, an ordinary variable has no effect on

an lIassigned GO TO" until this variable has been "assi,gned".

There is a restriction on the "assigned GO TO" statement when

it lies in the range of a DO statement. This restriction requires that

the statements to which the "assigned GO TO" may transfer must all

lie outside the nest. If this condition cannot be met, it may be pos sible

by suitable programming changes to use a "computed GO TO" to accomplish

the desired branching since there is no restriction on such statement.

"Computed GO TO"

The computed GO TO is similar to the "assigned GO TO" in

that both statements establish a many-way fork. They differ in that

the "assigned GO TOil requires that the proper branch be chosen by

pre-setting or "assigning" while, with the "computed GO TO", the

proper branch is determined by the value of a integer variable. The

value of this variable may be arrived at by computation; no companion

statement (comparable to ASSIGN) is neces sary.

- 11 -

Example:

Given: Ai, Bi, Ni, Xi, Yi for I = 1, 10 to compute
,----- -- <---_ .. _----,

Zi=1IAiXi2+BiYi forNi= 1

,---_._- -<--- -.. - --<,
Zi = }AiXi2 -BiYi for Ni = 2. A possible FORTRAN

program follows.

..
DIMENSION A(10), B(10), N(10) , X(lO) , Y(lO)

READ 3, (A(I), B(I), N(l) , X(I), Y(I), I = 1, 10)

3 FORMAT (2EI3.5, 13, 2E 13.5)

5 DO 21 1= 1, 10

6 J = N(I)

7 GO TO (10,20). J

10 Z(I)= SQRTF(A(I)*X(I)**2 + B(I)*Y(I»

11 GO TO 21

20 Z(I) = SQRTF(A(I)*X(I)**2 - B(I)*Y(I»

21 PRINT 23, A(I). B(I), N(I), X(I), Y(I), Z(I)

22 STOP

23 FORMAT (2EI3.5, 13, 3EI3.5)

In this example, statement 7 transfers control to statement 10 if J = 1

or to statement 20 if J = 2. Since J is set equal to Ni by statement 6,

the correct formula for Zi is selected. Statement 6 is necessary since

J cannot be a subscripted variable.

- 12 -

As was noted in the example the "computed GO TO" has the

form

GO TO (5, 10, 15,20), I

where the numbers enclosed in parentheses are statement numbers.

Control is transferred to the first statement in the list (in this case, to

statement 5) if, at the time of execution, the value of lis one; it is trans­

ferred to the second statement in the list (in this case, to statement 10)

if the value of I is two: etc. Any number of statement numbers may appear

in the list. The value of I may be arrived at in any manner desired

(e. g. by an arithmetic statement, as the result of 00 indexing) and its

value at the time of execution of the "computed GO TO" determines which

branch will be taken by the program. Note the comma which is inserted

between the right parenthesis and the variable.

FORMA T Statements

In Section II the basic field specifications lw, Ew. d, and Fw. d

were discussed. In this section Scale Factors, Hollerith fields, and

Multiple-line formats will be introduced.

Scale Factors

The use of scale factors allows greater flexibiUtyln a~ output.

format. As noted in Section II, the specification

- 13 -

(2E 14.4)

might print the following output line

-0.4321E 04 0.5678 E-06

If the specification is written as

(2P2E 14.4)

the same output data would print as

-43.2l47E 02 56.7839E-08

The scale factor 2P causes the floating point number to be multiplied by

2
10 and the exponent to be reduced by 2 prior to printing. Only a positive

scale factor may be used with an E-type specification, however, positive

or negative scale factors nlay be used with an F-type specification, e. g.

the specification

(-lPF10.3,7PF8.3)

would print the following data

-4321. 47 .0000005678

as

-432.147 5.678

Hollerith Fields

English text may be printed by specifying a Hollerith field. Such

fields are designated by the letter H preceded by a number designating

the number of characters in the text and followed by the desired English

characters (including blanks). In order to print the factors X and Y as

- 14 -

well as their product, the FORMAT statement

10 FORMAT (2HX = FB.3, 4H __ Y = FB.3,

5H XY = FB.3)

could be used to print the output line

X= 10.723 Y= -12.561 XY = -134.692

NOTE, there is no comma after a Hollerith field in the format speci-

fication.

Multiple-line FORMAT

In Section II in order to print the following lines of output data,

-67. B912E-03 106.23 -73

732 B2.976 6.25

two FORMAT statements would have been necessary, namely

10 FORMAT (2PEI3. 4, FB.2, 15)

11 FORMAT (19, FI2.3, F5.2)

However, with the introduction of multiple-line formats, only one

FORMAT statement is required to print the above lines

12 FORMAT (2PEI3.4, FB.2, 15/19, FI2.3, F5.2)

The slash (/) separates the different line formats. Thus, in this ex-

ample, lines I, 3, 5, ... have the format (2PEI3. 4, FB.2, 15) and lines

2, 4, 6, .•. have the format (19, FI2.3, F5.2). Each line may have a

maximum of 119 characters.

- 15 -

Debugging

In order to debug a FOR THAN program, it is recommended that

extra print statements under the control of a sense switch be used. The

sense switches are located on the 704 console and may be used to control

theprograrn. The following IF statement is used in conjuncUon with the

sense switches.

IF (SENSE SWITCH i) nI' nZ

where i refers to one of the six sense switches 1, 2, 3, 4, 5, or 6, and

n 1 and n 2 are statement numbers. If sense switch i is "UP'; control is

transferred to statement number n2' .if sen.se switch i is IlDOWNI! control

is transferred to statement nu~ber n l' The following example illustrates

the use of sense switches as an aid in debugging a program ..

Example:

Gi Yen: ai, bi' and Ci for I:::: 1, 10 to compute and print

\
10

(aiCj)Z)i 10 \ J 10
I "'- ,

2 RESULT = L (b'o _co)i./ .';; (a-b- -c-)

l
4. 1,. ,. .L··· .. ·-·· 1 1 1

i= 1 ! \ i= 1 / ,; i= 1 i /

The foHowing FORTRAN program is v,:ritten and compiled (1. e. translated

into 704 language).

DIMENSION A(10) ,B(10), C(10)

SUMI = 0.0

5UM2 = '0.0

SUM3 = 0.0

READ 1. (A~I),B(I),C(I), I = 1,10)

DO 10 I = 1, 10

- 16 -

SUM 1 = SUMI + (A(I)*C(I))**2

SUM 2 = SUM2 + B(I) - C(l)

SUM 3 = SUM3 + A(I}*B(l) - C(I)

IF (SENSE SWITCH 1) 10,5

5 PRINT I, SUM I, SUM 2, SUM 3

10 CONTINUE

RESULT = SUM1*SUM2/SUM3

PRINT I, RESULT

STOP

A test case is run using the compiled program. The 704 operator is

instructed to run the test case with sense switch 1 "UP" (which causes

the printing of intermediate results). Assume the test case has the i

following input data

al = -.23456

Then the fir st line of output is

42.72019

b 1 = 12.34111

-15.52412

The hand calculations show that for I;:: 1

SUM 1 = 42.72019

SUM 2 = -15.52412

SUM 3 = -779.36577

c 1 = +27.86523"

-30~75996

SUM 1 and SUM 2 results agree, however, SUM 3 results do not agree.

By looking at the FORTRAN statement which computes SUM 3, the

error is located. The statement is changed from

- 17 -

SUM 3 = SUM3 + A(I)*B(I) - C(I)

to

SUM 3 = SUM3 + A(I)*B(I) - C(I}**Z

After the indicated change is made, the FORTRAN program is again

compiled and the test re-run. This time the machine results agree

with the hand computed results. The 704 operator is instructed to run

the production data with sense switch 1 "DOWN". With sense switch 1

"DOWN" the IF (SENSE SWITCH) statement transfers control to state-

ment 10, therefore, no intermediate results are printed.

Storage

Many problems which are to be solved using the 704 will require

the use of tapes and/or drums for additional storage. In order to

determine whether additional storage will be necessary or not do the

following:

1) Multiply the number of FORTRAN statements by 10,

call this value A.

Z) Add up the number of locations specified by entries in

DIMENSION statements, call this value B. (e. g. A(lZ.

6) required 7Z locations).

3) Use the rules on page 18 to determine the number of

storage loca,tions needed for input-output routines. call
; ,

this value C.

- 18 -

4} The list of available functions provided by the computing

center should give the number of locations required for

each function. Add these numbers for the functions used

in the program, call this D.

5} If (A+B+C+D) is much greater than the number of locations

in the storage unit of the 704 to be used for running the

program, then the program will have to be rewritten,

using tapes and drums for auxiliary storage of data. If

(A+B+C+D) is nearly equal to the number of locations in

the storage unit then the program should be compiled to

find the precise number of locations required, since

(A+B+C+D) is merely an estimate.

If it is necessary to use drums and/or binary tapes for intermediate

storage, consult the FORTRAN Programmer's Reference Manual for in­

formation regarding the necessary statements. The Programmer's

Reference Manual also contains additional control statements and covers

particular situations in which some of the restrictions presented here may

be relaxed. It also includes information regarding limitations on the size

of a FORTRAN program (e. g. the number of variables, the size of DO

nests, the number of transfer statements, etc.).

Rules for estimating storage required for input-output routines.

1. For each of the following statements appearing add the corresponding

- 19 -

number. (H. for example, several PRINT statements appear add

in 2.58 only once.)

,
PRINT 258

READ 137

READ INPUT TAPE 21

WRtTE OUTPUT TAPE 12

PUNCH 90

2. Add to the above total:

If there is both decimal input and output - 945

If only decimal output - 484 ,

If only decimal input - 4'61

Example

Given n points (xi. Yi) to fit by least squares method an m degree

polynomial

In order to obtain the coefficients aO' al'•• a m it is necessary to

solve the normal equations

(l)

(2)

(mtl)

where

SmaOtSmtlal··· tSZmam = Ym

So = n "0 = t
i= 1

Yi

- 20 -
n n .. "

S1 =: x, VI = / YiXi 1 J. ••. ~

i= 1
n n

S2 = ?-- X· 2
V2 = /' Yixi '- 1 ~-.-..

i= 1 i= 1

n !l--
S2m = '> x.2m V = L_ YiXim

1 m
i= 1 i= 1

Having computed the SiS and V's, the normal equations are so~v~d using

the method of elimination which is illustrated by .the following solution of

the normal equations for a second degree polynomial.

(1) SOaO+Slal +S2a 2 =: Vo

(2) S 1 a 0 + S2 a 1 + S 3 a 2 = VI

(3) SZaO + S3a .l + S4a 2 = V2

The forwa.rd SL . ution isas follows:

1. Divide equation (1) by So

2. Multiply the res~llltingequation by S1 and subtract from equation

(2)jthenby S2 and subtract from equation (3). The resulting

equations are

(6~ b 3Za 1 + b 33a 2 =: b 34

81 Sz YO
where bIZ = IsO' bIZ =: (SO': b 14 = ·l vO

- 21 -

Steps 1 and 2 are repeated using equations (5) and (6). The resulting

equations are

(8) c33a 2 = c34

where b23
c 23 = /b22'

The backward solution is as follows:

c34
(9) a2 = / c33 from equation (8)

(lO) a 1 = c 24 - c23a 2 from equation (7)

The following is a possible FORTRAN program for these calculations.

In this program n -::: 100 and m =- 10. SO, Sl' S2' .•. S2m are stored in

SUM (1), SUM (2), SUM (3), ... SUM (2M+l) respectively. Va' VI'

V2 •... vm arestoredinV(l), V(2), V(3), •.. V (M+1).

DIMENSION X(100), Y(100), SUM(21), V(ll), A(ll), B(ll, 12)

READ 3, M,N

3 FORMAT (12. 13)

READ 4, (X(I), Y(I), I = l, N)

4 FORMAT (4E14. 7)

- 22 -

LS = 2*M+l

LB = M+2

LV = M+l

DO 5 J = 2, LS

5 SUM(J) = 0.0

SUM(1) = N

DO 6 J = 1, LV

6 V(J) = 0.0

DO 16 I = 1, N

P= 1.0

V(l) = V(l) + Y(I)

DO 13 J = 2, LV

P = X(I)*P

SUM(J) = SUM(J)+P

13 V(J) = V(J) + Y(I)*P

DO 16 J = LB, LS

P = X(I)*P

16 SUM(J) = SUM(J)+P

17 DO 20 1= 1, LV

DO 20 K = 1, LV

J = K+I

20 B(l(, I) = SUM(J-l)

DO 22 K = 1. LV

- 23 -

22 B(K, LB) = V(K)

23 DO 31 L = 1, LV

DIVB = B(L,L)

DO 26 J = L, LB

26 B(L, J) = B(L, J)/DIVB

Il = L+l

IF (11 - LB) 28, 33, 33

28 D031I= Il, LV

FMULTB = B(I, L)

DO 31 J = L, LB

31 B(I, J) = B(I, J) - B(L, J)*FMULTB

33 A(LV) = B(LV,LB)

I = LV

35 SIGMA = 0.0

DO 37 J = I, LV

37 SIGMA = SIGMAtB(I-l, J)*A(J)

I = I-I

A(I) := B(I, LB)-SIGMA

40 IF(I-l) 41, 41, 35

41 PRINT 42, (A(I), I = 1, LV)

42 FORMAT (5EI5. 6)

- 24 -

The elements of the SUM and V arrays are set equal to zero. SUM (1)

is set equal to N. For each value of i. X. and y. are selected.
1 1

The

powers of Xi are computed and added to the correct sum counters. The

powers of Xi are m'liltipUed by y. and added to the correct V counters.
1 . .

In order to save machine time when running the object program. the

previously computed power of Xi is used when computing the next power

of Xi' Note the use of variables as index parameters. The a,ugmented

matrix is stored '(statemen.ts 17 - 22), the forward solution is computed

(statements 23 - 31), and the backward solution (statements 33 :.. 40) is

computed. The coefficients aO' a l' a2' am are stored in the A

array.

- 25 -

Master Check List

1. The basic characters which may be used in writing a

FORTRAN statement are

a. A, B, C, •.... I Z (26 alphabetic characters)

b. 0, 1, 2, , 9 (10 numeric characters)

c. + (plus), - (minus), * (asterisk), / (slash), ((left

parenthesis),) (right parenthesis), , (comma),

= (equal sign), and. (decimal point).

2. Upper and lower case alphabetic characters are indistinguish­

able on a punched card, i. e. "A" and "a" will both be treated

as "A".

3. The digits 1 and 0 must be carefully distinguished from

the alphabetic characters I and O.

4. A variable symbol can consist of six or less characters.

It must satisfy the following conditions:

a. The first character must be alphabetic.

h. The first character cannot be I, J I K. L, M, or N

unless it is an intege.r variable.

c. Any character following the first may be alphabetic·

or numeric, but not one of the special character s.

d. The names of all functions appearing in the list of

functions as well as these names without their final

letter "F" must not be used as variable symbols,

- 26 -

For example, if SINF appear s in the lis t of functions,

then neither SINF or SIN can be used as a variable

symbol.

5. In indicating a function, the name of the function must agree

exactly with the name appearing in the list of functions.

6. The argument of a function is enclosed in parentheses.

7. If a function has more than one argument, the arguments

are separated by commas.

8. The left side of an arithmetic formula must always be a

variable.

9. Never omit the operation symbol between two quantities,

e. g. do not write "AB" for "A*B".

10. Never have two operation symbols in a row, e. g. do not

write "A*-B" for "A*(-B)". The only exception is the

operation symbol "**", which is regarded as a single

symbol.

11. Blank spaces can be used as desired since blanks are

ignored in the translation.

12. The prescribed form for the various non-arithmetic state­

ments must be followed exactly (except for arbitrary use

of blank spaces).

13. The magnitude of every non-zero quantity must lie between

10- 38 and 1038 . By "quantity" is meant any constant or any

value assumed by a variable or function in the course of

the calculation.

- 27 -

14. Numbers to be read by means of a "READ 1" statement

must not exceed 10 digits.

15. Numbers to be read by means of a "READ 211 statement

must not exceed 8 digits. The exponent must have two

digits and a sign.

16. Numbers to be printed by means of a IIPRINT 111 state­

ment should not exceed 999, 999. 99999.

17. The (physically) last statement of a program should be a

STOP statement or a statement which causes a transfer to

some other statement in the program (a GO TO or an IF

statement).

18. All subscripted variables must appear in a DIMENSION

statement which must appear in the program before re­

ference is made to the variables.

19. Negative subscripts are not permitted.

20. Subscripting of subscripts is not permitted.

21. Subscripts for two and three dimensional arrays should be

separated by commas.

22. Integer variables and constants can be used only as sub­

scripts and exponents.

23. Integer constants are written without a decimal point.

24. Decimal integers larger than 32767 are treated Ilmodul0

32768 11 •

- 28 -

25. If the range of a DO includes another DO, then all state­

ments in the range of this second DO must also lie within

the range of the first DO.

26. Transfers into the range of any DO from outside its range

are not permitted.

27. No calculation which changes the index or indexing parameters

of a DO is permitted within the range of that DO.

28. "Assigned GO TO" statements have a comma between the

variable and the left parenthesis.

29. "Computed GO TO" statements have a comma between the

right parenthesis and the l:eft variable.

30. An ASSIGN statement must be encountered by the program

prior to encountering an "assigned GO TO" statement.

31. The ASSIGN statement is not equivalent to the arithmetic

formula.

32. When an "assigned GO TO " lies in the range of a DO, all

statement numbers to which control may be transferred

must lie in a single part of the 00 nest, pr be completely

outside the nest.

33.

	Intro_III-001
	Intro_III-002
	Intro_III-003
	Intro_III-004
	Intro_III-005
	Intro_III-006
	Intro_III-007
	Intro_III-008
	Intro_III-009
	Intro_III-010
	Intro_III-011
	Intro_III-012
	Intro_III-013
	Intro_III-014
	Intro_III-015
	Intro_III-016
	Intro_III-017
	Intro_III-018
	Intro_III-020
	Intro_III-021
	Intro_III-022
	Intro_III-023
	Intro_III-023a
	Intro_III-024
	Intro_III-025
	Intro_III-026
	Intro_III-027
	Intro_III-028
	Intro_III-029

