

BIOGRAPHICAL NOTES

John W. Backus received h i s A,M, degree (mathematics) a t
Columbia University i n 1950, Since 1950 he has been with
I n t e r n a t i o n a l Business Machine Corporation working on
programming, computer sys tems design, and automat ic
programing systems design, He is a t present manager of
the Programming Research Department.

He is au tho r of nThe IBM 701 Speedcoding Systemw
(1953) and j o i n t au thor (wi th G, M, ~ rndah l) of "The
System ~ e s i g n of the IBM Type 7 0 4 q 1 9 5 5) presented t o
meetings of the Associat ion f o r Computing Machinery, I

' AUTOMAT1 C PROGRAMMING:

PROPERTIES A N D PERFORMANCE OF
FORTRAN SYSTEMS I AND 1 1

SUMMARY

A BRIEF general discussion of the goals and methods of automatic programming
techniques is followed by a somewhat de ta i led description of the input
languages of FORTRAN Automatic Coding Systems I and 11, The statements of
these inputdanguages provide (in par t) concise means for wri t ing algebraic
expressions, for specifying i t e r a t i v e repe t i t ions of portions of a pro-
cedure, for re fer r ing to one, two and three dimensional arrays of data, for
defining new functions and procedures, and for specifying input and output
procedures, Recent extensions of the input language are described,

FORTRAN I has been i n use fo r a year and a half , Over half the instruc-
t ions being wri t ten for some s ix ty 704 ins t a l l a t i ons are thought t o be
produced by FORTRAN, The cost of programming andndebuggingNis reduced by
about 4-to-1, A few other s t a t i s t i c s and applications are cited, The f ina l
sect lon discusses the relat ionship of automatic programming and the
mechanization of thought processes,

INTRODUCTI ON

AUTOMATIC programming techniques seek t o make it easy to do a desired job
on a computer, This is accomplished by providing a language i n which the
statement of the desired process is natural and concise, together with some
means of causing a',lrnachine to car ry out the s ta ted process. Given a machine
equipped t o accept statements of procedures in a language other than the
flhardware languagen, one may ask the sane questions about t h i s nsynthet icn
machine tha t a r e used to evaluate a r e a l machine: (1) how easy is it t o
prepare programs for, and (2) how rapidly does it execute the programs for

which it w i l l be used? In general, automatic programing systems provide
synthetic machines which are f a r superior .to t he i r r ea l counterparts
with respect t o question (1) and range from s l igh t ly in fe r io r t o great ly
Infer ior to t h e i r r ea l counterparts on question (2).

Automatic programning systems have been widely used i n the Uni ted Sta tes
fo r a number of years, The purpose of the ear ly systems was t o provide)r

synthetic machines which had floating-point operations and often index
r eg i s t e r s (B-tubes) , since the r e a l machines did not, In many instances
the synthet ic machines were only one-half t o one-tenth a s f a s t as t he i r
r ea l counterparts, but0although t h e i r input languages were machine-like,
they were considerably eas ier t o program,

In the past eighteen months a number of new automatic programming
systems have been completed, and others a r e being developed, which have
s t r ik ingly s imi lar input languages, These languages use mathema t i c a l
notation and a var ie ty of statements which make the wri t ing of most pro-
cedures of ~iumerical computation a na tura l and concise process. The
synthet ic machines provided by these systems range i n speed from v i r tua l ly
the speed of the corresponding r ea l machine to perhaps one-half of tha t
speed, FORTRAN is one of these systems. Considerable e f f o r t was devoted to
making the speed of the synthet ic FORTRAN machine a s close as possible t o
t ha t of the IBM 704, its rea l counterpart. This paper w i l l describe the
language and some of the recent developments of t h i s system and report on
some of the e f f ec t s which it has had on the conputing work a t a number of
704 ins ta l la t ions ,

In the f i e ld of commercial data processing a number of automatic
programming sys tems h a ~ e *recently been under development which prov~lde
considerable simplif icat ions in specifying Jobs in t h i s area, AutOmatiC
programming sys tems for data processing, however, still face several
d i f f i c u l t problems:

(1) Existing languages are often too r ig id to describe various desirable
procedures and s i tua t ions and, in many instances, are not su f f i c i en t ly
concise,
(2) The need fo r synthetic machines t o he v i r tua l ly a s f a s t a s t he i r
r ea l counterparts is much grea ter i n the data processing area than i n
computing and the d i f f i cu l ty of achieving t h i s is greater.

PROPERTIES OF FORTRAN

GENERAL
The FORTRAN synthet ic computer is real ised by a 704 program, cal led

FORTRAN translator , which accepts programs written in FORTRAN language
produces corresponding 704 machine language programs, The t rans la tor

(94009) 2-3. p4

the
and

program was writ ten over a period of two and one-half years with an
expenditure of about 18 markyears of e f for t ; it cmpr ises a program of
about 25,000 instructions, The t rans la tor program was made avai lable t o a l l
704 1nstalLations in April, 1957, A report of the usage of the system since
that time appears i n a subsequent section of t h i s paper.

Since the i n i t i a l d is t r ibut ion of the FORTRAN system, cer ta in extensions
have bwn made to the input language and the t rans la tor has been consider-
ably modified t o accept this extended language, The resul t ing system is
ltnown a s FORTRAN I1 ; l!C has recently been d is t r ibuted t o 704 i n s t a l l a t i o n s h

FORTRAN I INPUT LANGUAGE

The following description-by-example of the FORTRAN I input language is
extracted from .a prevl ously pub1 lshed paper rref. 1) ;
Ari thmetic Statements

h u @ l e 1: ~om&te:

FORTRAN Program:

Notice tha t the desired program is a s ingle FORTRAN statementh an
ari thmetic formula, Its meaning is: nEvaluate the expression on the r igh t of
the = sign and make t h i s the value of the variable on the l e f t , The symbol
* denotes mu1 t ip l l ca t ion and ** denotes exponentiation (I, e, , A**B means
A*), The program which is generated from th i s statement e f f ec t s the computa-
t ion i n floating-point arithmetic, avoids comguting (~12.0) twice1 and
computes (B/2,0)**2 by a mult ipl icat ion ra ther than by an exponentiation
routine, Had (B12.0) W2.01 appeared instead, an exponentiation routine
would necessari ly be used, requiring more time than the mult ipl icat ione

The programmer can r e fe r t o quant i t ies in both floating-point and
in teger form, Integer quanti t ies a re somewhat r e s t r i c t ed in t he i r use and
serve primarily a s subscripts o r exponents, Integer constants are written
without a decimal point, Example: 2 (integer form) vs 2.0 (floating-point
form), Integer var iab les begin with I, J, K, L, M, o r N. Any meaningful
ar i thmetic expression may appear on the right-hand side of an arithmetic
statement, provided the followlng r e s t r i c t i on is observed: an integer
quanti ty can appear i n a floating-point expression only a s a subscript o r
a s an exponent o r a s the argument of certain functions, The functions which

+ The new sec t ions of the FORTRAN I1 t r ans l a to r for the 704 were wr i t ten by
C). E. Mitchell, P, B. Sheridan, B. Brady and L, May with the assistance of the
authors of the original FORTRAN system.

the programer may r e fe r to are limited only by chose avai lable on the
l i b r a r y tape a t the time, such a s SQRTF, plus those simple f ~ c t i o n s which
he has defined fo r the given problem by means of function s t a t a m t s , An
example w l l l serve to describe the l a t t e r ,

Function Statements ~ .
&le 2: Define a /hnetlon of three variables t o be used throughout

a given pmblan, ' as iolJows:
ROOTF(A, B, C) = (- (B/ 2.0.) BQRTF((B/ 2,0) **2 - A*C)) /A

ntnctlon statements must precede %he r e s t of the program, They a re composed
of the desired function name (ending in F) followed by any desired argu-
men ts which appear i n the a r i t lmetic expression on. the r igh t of the =
sign, The de f in1 t iod .of a function may employ any ~ r e v l o u s l y defined
f'unc tions. Having, dqillled ROOTF as above, the qrogramner may apply 1 t to
any s e t of arguments in any subsequent arithmetic statements, For example,
a l a t e r ar i thmetic statement m i @ n be

THETA = 1.0 + aAMMA*ROOTF(PI, 3, M Y + 14.0, '7.63)

1X) Statements, DIMENSION Statements, and Subscripted Variabl e s
B m p l e 3: Set Qm, equal t o the l a rges t quantity P(ai+bQ/ (P(ai-bl) for

2 sane i between 1 and 1000 where P(z) = co + c lx + c 8 + c#,

F O R T ' . Program: r

2 DIMENSION ~(1000), B (1000)

6 STOP

The program above is complete except for input and output statements
which w i l l be described la te r . The first statement is not executed; it
defines the desired polynomial (in factored form for e f f i c i en t output
program), Similarly, the second statement merely in forms the executive
routine that the vectors A and B each have 1000 elements, Statement 3
assigns a la rge negative i n i t i a l value to w, - 1 0 x 1 0 ~ ~ , using a special
concise form fo r writing floating-point constants, Statement 4 says n D 0
the following sequence of statements down t o and including the statement
numbered 5 for successive values of I from 1 t o 1000. In th is case there
is anly one statement 5 t o be repeated, I t is executed 1000 times; the

first time reference is made to A (1) and B (l) , the second time t o A(2) and
B(2), etc. After the 1000th execution of statement 5, statement 6 -- STOP --
is f i n a l l y encountered. In statement 5, the Functlon MAXF appears. MAXF
may have two o r more arguments and i ts value, by defini t ion, is the value
of i ts l a rges t argument. Thus on each repetltiorr of statement 5 the old
value of WAX is replaced by i t s e l f o r by the value of PoLYF(A(I)+
~ (1)) /POLYF(A(I) - ~ (1)) . whichever is larger. The value of $IAX a f t e r the
1000th repe ti t lon is there fore the desired maximum.

&le 4: Multiply the n x n matrix aAj(nS2Q) by its transpose, obtaining
the produce elements on o r below the main diagonal by the re la t ion

'and the remaining elements by the relat ion

DIMENSI (3N A (20,20) , C (a1 20)
2 1 = 1 , N

l J O 2 J = 1 , I R

A s i n the preceding example, the DIMENSION statemeqt says tha t there are
two matrices of maximum s i z e 20x20 named A and C. For explanatory purposes
only, the three boxes around the program show the sequence of statements
control led by each DO statement. The first DO statement says tha t procedure
P, 1. e., the following statements through statement 2 (duter box) is to be
car r ied out fo r I = 1 then fo r I = 2 and so on up t o I = N. The first
statement of procedure P(D0 2 J = 1, I) d i r ec t s tha t procedure Q be done
for J = 1 t o J = I. And of course each execution of procedure Q involves N
executions of /procedure R for K = 1, 2,. . . , N.

Consider procedure Q. Each time its l a s t statement is completed the
nindexn J of its control l ing DO statement is increased by 1 and control

.."
goes to the first s ta temat of Q, unt i l Pinally its l a s t statement is
reached and J - I, Qincs th i s is also the l a s t statement of P and P has
not been repeated un t i l I * N, I w i l l be increased and control w i l l then
pass to the f i r s t s t a tment of P, This statement (DO 2 5 = 1, I) causes
the repeti t ion of Q to begln again. Finally, the l a s t statement of Q and P
(statement 2) w i l l be reached with J = I and I = N, meaning that. both Q
and P have been repeated the required number of times, Control w i l l then
go to the next statement, STOP, Each t h e R is executed a new term is
added to a product element, Each time Q is executed a new product element
a d i t8 m t e are obtained, Each time P Is executed a product row (over t o
the diagonal) and the corresponding column (down to the diagonal) are
ob Cained,

READ, MBYT, FORMAT, IF md GO TO Statements
h a p l e 5: Fbr each case, read f r m cards two vectors, ALPHA and RHO,

and the number ARO,ALPHA and RHO each have 26 elements and A L H I A (I) ~
ALPHA(Itl), I = 1 to 24, Find the SUM of a l l the elements of ALPHA from
the beginning to the l a s t one which 1s less than or equal to ARO [assume
ALPKA(I) ~ R O (A L P H A (~ ~) ~ . I f t h i s l a s t element is the Nth, se t VALUE =
3,14159*RH0(N), Print a l lne for each case with Am, SUM, and VALUE,

F O R T . Program:

DIMENSION ~~PlhT251, RHo(26)

2 READ 1, BLPHA, RHO, ARC)

3 SUM = ~ U M ~ ~ ~ P H A (I

4 VALUE = 3e14158*RH0(1 1)

PRINT 1, ARO, SUM, VALUE

The FORMAT statement says that numbers are to be found (or printed) g
per card (or l lne) , that each number is in x e d - p o i n t formr that each
number occupies a f ie ld 12 columns wlde and that the decimal p i n t is
located 4 dig i t s from the right, The FORMAT statement is not executed', i t
is referred to by the F(EAD and PRINT statements to describe the desired
arrangement of data in the external medium,

The READ statement says nREZCID cards in the card reader which are
arranged according to FORMAT statement 1 and arssign the successlve numbers

obtained a s values of ALPHA(I) I = 1, 25 and RHO(1) I .= 1, -25xmd AROefl
Thus flALPHA, RHO, ARGn is a description of a list of 51 quant i t ies (the
s i ze of ALPHA and RHO being obtained from the DIMENSION statement), Reading
of cards proceeds u n t i l these 51 quanti t ies have been obtained, each card
having f ive numbers, a s per the FORMAT descrfgtlon, except the l a s t which
has the value of ARG Only, Since ARQ teminated the list, the remaining
four f i e l d s on the l a s t card are not read, The PRINT statement is -similar
t o READ except tha t i t spec i f ies a list of only three quanti t ies , Thus
each execution of PRINT causes a s ingle l ine t o be printed with ARG, SUM,
VALUE printed i n the first three of the five f i e ld s described by FORMAT
statement 1,

The I F statement says * I f ARG - ALPHA(I) is negative go to statement 4,
if it is zero go to statement 3, and i f i t is positive- go to 3 2 Thus the
rege t i t ion of the two statements controlled by the DO consists non'nally
of computing ARG - ALPHA(I), f lnding it zero or positive, and going to
statement 3 followed by the next repet i t ion, However, when I has been
increased t o the extent tha t the f i r s t ALPHA exceeding ARC3 is encountered,
c m t r o l w i l l pass t o statement 4. Note tha t t h i s statement does not
belong to the sequence controlled by the DO, In such cases, the repet i t ion
specif ied by the DO is terminated and the value of the index (in t h i s
case I) is preserved, Thus i f the f i r s t ALPHA exceeding ARG were ALPHA(^^),
then RHo(IQ) would be obtained in statement 4,

The GO TO statement, of course, passes control to statement 2, which
i n i t i a t e s reading the 11 cards fo r the next case, The process w i l E eontinue
u n t i l there a re no more cards in the reader, The above program 1s . en t i r e ly
complete, When gunched in cards a s shown, and compiled, the t rans la tor w l l l
produce a ready-to-run 704 program which w l l l perform the Job speclIied,

Other Types of FORTRAN Statements
In the above examples the following types of

been exhibi ted,
Arithmetic statements

Functlon statements
DO statements

IF statements

Go TO statements
READ statements

PRINT statements
STOP statements
DIMENSION statements
FORMAT statements

*3. pQ

FORTRAN s t a t emen t S have

i

The explanations accompagying each example have attempted t o show some
of the possible applications and variat ions o r these statements, I t is
f e l t t ha t these examples give a representative picture of the FORTRAN
language; however, many of its features have had to be omitted, There a re
23 other types of statements in the language, many of them completely
analogous to some of those described here, They provide f a c i l i t i e s for cr re fer r ing t o other input-output and auxil iary storage devices (tapes,
drums, and card gunch), for speci fying preset and computed branching of
control, for detect ing various conditions which may a r i s e such a s an
attempt t o divide by zero, and for providing various information about a

I

program t o the t ranslator , A complete description of the language is to be
found in nPrograrmnerb Reference Manual, the FORTRAN Automatic Coding
System for the IEN 704%

Preparation of a Program for Trans1 at i on
The t rans la tor accepts statements punched one per card (continuation

cards may be used fo r very long statements), There is a separate key on
the keypunching device for each character used in FORTRAN statements and
each character is repreaented in a single column of the card, Keypunching
a FORTRAN program is, %ere fore, a process s imilar t o t ha t of typing the
program,

Trans dat ion
The deck of cards obtained by keypunching may then be put i n the card

reader of a 704 equipped with the t rans la tor program, When the load button
is pressed one ge ts e i t he r 1) a f l i s t of lnput statements which f a i l t o
conform to specif icat ions of the FORTRAN language accompanied by remarks
which indicate the type of e r ror in each case; 2) a deck of binary cards
representing the desired 704 program; 3) a binary tape of the program
which can e i t h e r be preserved or loaded and executed immediately a f t e r
t ranslat ion is complete; or 4) a tape containing the output program i n
symbolic form su i t ab le f o r a l te ra t ion and l a t e r assembly,

FORTRAN I1 INPUT LANGUAGE

The principal shortcoming of the FORTRAN I lnput language is tha t the
programer is unable t o define new statements i n terms of the given ones,
He can introduce only functions which he can define by an arithmetic J

expression, The lnput language of FORTRAN I1 is ident ica l t o tha t of
FQRTRAN I except tha t cer ta in additional statements a re provicled, With

1 these the programmer may create a FORTRAN language subprogram, assign a
name t o it, and indicate those variables in the subprogram which are t o be
regarded a s the inputs and/or outputs, He may invoke a subprogram in any

other program by giving its name and ~upp ly ing appropriate parameters,
There is provision for indicating tha t a subprogram defines e i t h e r a
function (which may be employed in arithmetic expressions in other
programs) or a subroutlne (which may be invoked a s a statement i n other
programs) ,

d kanple 1: Write a subprogram which c lears the first N elements of a .

vector,

FORTRAN TI Su b j rogrm:
i

SUBROUTINE CLEAR(A, N)

DIMENSION ~(1000)

RETURN

The f i r s t statement indicates tha t the e n t i r e program following is a
subroutlne, tha t its name is CLEAR, and tha t its parameters a r e the
vector A and the integer variable N. The l a s t statement indicates t ha t
the process which const i tutes the subroutlne is complete,

&le a: Wri te a subprogran which r ea l i ze s the function:

i =1

FORTM II Subprogram:

FUNCTION O (A, X)

DIMENSION X(10,10), R(1O)

CALL CLEAR (R, 10)

G = 0.0
DO 2 I = 1, 10

DO 1 J = 1, 10

R (I) = R(I)+x(I,J)
G = G+A**I*R(I

RETURN

The first statenent says tha t the following subprogram defines a

i function G of A and X, The CALL statenent invokes the subroutine of
example 1 to c lear the vector R, Notice tha t the next statement and sub-
sequent ones re fer t o a variable whose name is tha t o f the Rulctlon,
The value of the variable G when RETURN is executed is the value of the
function,

The above subprograms may be translated independently, The output in
each case w i l l be a deck of punched cards having the machine language
program, with, the approprlate prologtie for linkage, in a form which may be
eas i ly addusted by g loading program t o operate anywhere i n the s tore , In
t h i s form the names themselves of cal led subprograms are retained in the
deck representing the ca l l ing program and are used by the loading program
to es tab l i sh the appropriate references of each program to its subprograms
a s they are being loaded, This complete independence of a program from its
ca l l ing and cal led programs u n t i l the point of loading for execution has
several benefits:

(1) Each program and subprogram may be checked out and/or recompiled
Independently, Thus each correc t ion in the FORTRAN language statement
of a process w i l l involve re t rans la t ion of only tha t subprogram in
which the change is made,
(2) Each subprogram is produced i n precisely the form sui tab le fo r
inclusion in the l ibrary, Inclusion is accomplished simply by placing
the output deck in the l i b ra ry deck, When loaded t h i s deck w i l l produce
a new l ib ra ry tape which is avai lable t o the t ranslator , Library
programs, of course, require no translat ion,
(3) Since each subprogram may be obtained without the inclusion of the
subprograms which it ca l l s , the use of two subprograms, which both c a l l
a third, need not r e su l t in a copy of the th i rd accmpanying each of
them in the store,
(4) Since the machlne-language ca l l ing sequences resu l t ing from input
language re ferences to Func t ions or subroutines are qui t e standard, 1 t
is immaterial whether a required subprogram is generated by FORTRAN or
is wri t ten in machine-language, Thus, for example, a spec ia l hand-
coded input routine may be invoked by a CALL statement, '

I E m p l e 3: Cmmte g(s in @(n, r)) 2,s) for pa i rs of iOxiO matrices r, s
read from cards, and p r in t the r e s u l t fo r each case, where g is the function
of example 2,

FORTRAN I1 Program

DIMENSION R(lO,lO), ~(10.10)

RESULT ' G (s I N (~ (~ , 14159, R)) **2, S)

PRINT 2, RESULT

When t h i s program is traaslated one may request t ha t any cal led sub-
programs which are on the l i b ra ry tape plus a copy of the loading program
be incorporated in the output deck, In th i s case the given program and
the subprogram fo r the s ine function mighf be contained i n the output.
When the outputs from translat ing-the programs of the first two examples
are added t o t h i s deck, i t is ready to be loaded and run.

FURTHER DEVELOPMENTS I N FORTRAN

In addition t o the f a c i l i t i e s provided by FORTRAN 11, work on the a

t r ans l a to r program fo r the 704 has been almost completed t o provide the
following fac i l i t ies+ .

Use of Symbolic Machine Instruct ions as Statements i n a FORTRAN Program
This fac i l i t y , of course, makes it possible for the programmer t o use

-aperations and to deal wlth u n i t s of information not provided fo r i n the .
FORTRAN language. Certain r e s t r i c t i ons a r e necessary t o e f f e c t an
appropriate relat ionship be tween machlne language r e ferences to i n f orma-
t ion and references in FORTRAN statements wlthln the same F O R V
program,

&le: Write a subroutine which s e t s B(1) = 6.0 o r B(I) = 1.0
according a s the I t h b i t of c e l l A is 0 o r 1 for I = la 2,.ee, N where
N S 38,

F O R T ' 111 Program:
SUBROUTINE EXPAND (A, B, N)

-, DIMENSION B(36)

s LOL I

B(1) = 1.0
i

s 1 STO B(I)

RETURN

In the above program those statements preceded by an T a r e symbolic
704 instructions. For example, the f i r s t such statement is #Load the
Q-register from c e l l A\ me a s t e r i s k i n the fourth +statement indloates

$ The ~r lnc lps l additions to the translator to provide them iaci l i t le8 were '

planned anU wrltten by I. Zlller and R. A. Nelson.

tha t the number following is a s tatenent number, which i n this case is
tha t of the f i f t h S-statement, Note tha t the address par t of the l a t t e r is
a subscripted variable. For those who care to understand t h i s not-very-good
program the operation codes have the following meanings:

CW. c lear the accumulator.

LGL: s h i f t the contents of the 73 b i t r eg i s t e r
comprising the accumulator (l e f t 37 b i t s)
and the Q-register (r i gh t 36 b l t s) one b i t
t o t h e l e f t , '

TZE: t ransfer control when contents of
accumulator a re zero,

STO: store con ten ts of accumulator.

Note the services provided by the t rans la tor even for essent ia l ly non-
numerical processes, in t h i s case: generation of a prologue, assignment
of storage, loop formation, referencing of arrays.

Use o f Boolean EScpressions
Provision has been made to perni t wri t ing nexpressionsfl i n which the

operators are mandfi, norn and wnotN ra ther than the usual arithmetic
operations, When two words are combined under the operation %ndn the
resul t ing word has a zero-bi t i n every posi t lon except those in which the
two operand words both have a 1-bit, Analogous r e s u l t s a re glven by nor@

I* and nnotn, the l a t t e r operation having a s ingle operand, NAndn, nor# and
flnotfl a re designated respectively by W, *+n and n-8,

&le: Let A, B, C, D be four quant i t les which are zero o r one
according a s conditions a, b, c , d respectively, hold o r not. m i t e a
statement which makes E zero o r one according a s the condition

holds o r not,

FORTRAN 111 Statement
B E = A+ (- (B*C) * (-Dl)
The nBfl precedlng the statement indicates tha t the operators a re t o be

interpreted a s Boolean operators, llBn may be applied in t h i s way t o any
statement which contains an expression.

Thus,
B IF(A*B) 0,5,14

w i l l cause control to pass t o s tatenent 5 only i f A*B (A nandN B) i s zero;
otherwise control w i l l pass t o statement 14.

Use of Function o r Subroutine Names a s Parameters of Functions o r
Subroutine s

FORTRAN I1 permits a function value to appear a s a papameter of a
function or subroutine, [e.g., SIN(COS(X)) meaning the s ine of the number,
c o s (~) 1. FORTRAN I11 has provision fo r specifying the name of a par t icu lar

J function or subroutine a s a parameter of another function o r subroutine
which r e fe r s to one or more a rb i t r a ry functions or subroutinese

I &mpLe: Write a subprogram, Rs which, for any a rb i t r a ry functions f
and g, replaces each element, ei, a = 1, 2, . . . , N, of a vector A, by

f (A ~) ~ + g(~i+1)2

SUBROUTINE R(A, N, F, G)

DIMENSION A (1000)

RETURN

Write a subprogram, S, which replaces Xi, z = 1, 2,. . . 10, by

sin(xil + cos(x,+ll
\

- FORTM 3 I Subprogram:
SUBROUTINE S (X)

DIMENSION X (1 l)

F SIN, COS
CALL R(X, 10, SIN, COS)

RE TURN

_ The first of the subprograms above is unusual only i n that the names of
two functions, F and G, are l i s t e d a s parameters. The second subprogram
c a l l s the first and spec i f ies tha t SIN and COS are to be used fo r F and G
respectively. The statement preceded by #FF" makes it possible t o correct ly
i n t e rp re t the CALL statement by indicat ing tha t V I N n and V0Sn are names
of subprograms rather than name8 of variables, and, therefore, must be
retained in symbolic form (up t o loading time).

In addit ion to the above mentioned f a c i l i t i e s for s t a t i ng procedures
which the FORTRAN I11 t rans la tor w i l l accept [namely, (1) use of symbolic
machine instruct ions a s statements, (2) use of Boolean expressions, (3)
use of subprogram names a s parameters] there a re I a c l l i t i e s provided for
wri t lng procedures to manlpiulate alphabe t i c and other symbolic liIf0nmti0n.
No further discussion of the - l a t t e r is glven here.

Operation o f Program Which Require Nore than the Avai LabLe High-speed
Storage Space \

The preceding paragraphs describe cer ta in new nropert ies of the
FORTR4N t rans la tor program, The present section concerns a program
cal led SLAM+ (Subroutine Loader And Monitor), SLAM is concerned with the
subprograms from which a program is bu l l t, A t load time i t s p l i t s these
subprograms into groups, each of which w i l l lit in to the core space

'

available a f t e r the data area-has been reserved, I t writes these blocks
onto tape and a t the same time rearranges the linkage between subprograms, .
Then a t execution tdme the monitor par t of SLAM puts i n cores, a t the
appropriate moment, t ha t group of subprograms necessary fo r the execution
of the program, The monitor takes care o r the t ransfer of arguments
between subprograms,

EXPERIENCE WITH FORTRAN

Since i ts d is t r ibut ion over a year ago, the use of FORTRAN I has been
s t ead i ly increasing, A survey in April of t h i s year of twenty-six
704 ins ta l la t ions indicates tha t over half of them use FORTRAN fo r more
than h a l l of t he i r problems, Many use i t for 80% o r more of t h e i r work
(par t icu lar ly the newer ins ta l la t ions) and almost a l l use it f o r some of
t he i r work, The l a t e s t records of the 704 users' organization, SHARE,
show that there are some s ix ty in s t a l l a t i ons equipped t o use FORTRAN
(representing 66 machines) and recent reports of usage indicate tha t more
than half the machine instruct ions fo r these machines are being produced
by FORTRAN, SHARE recently designated the FORTRAN language as the second
o f f i c i a l medium for t ransmit tal of programs w i th in the organization (the
other is symbolic machine language),

I P r o g r m i n g Economies
Most 704 in s t a l l a t i ons cannot provide accurate i n f o m t l o n regarding

programming costs, However, the Service Bureau Cbrporation, which does a
l o t of contract programming, has kept carefu l records of p r o g r m l n g time,
machine time used in debugging, and so forth, fo r many jobs coded in
symbolic machine language and many others in FORTRAN. Their ana lys is of
these costs shows tha t the average cost per debugged ins t ruc t ion obtained
from FORTRAN programs is about one-fourth the corresponding cos t per
instruc tion ob talned from symbol1 c programs, (A FORTRAN-produced program
and a symbolic program for a given job are about the same length,) Since
users have found tha t a FORTRAN-coded program runs a t about the same
speed a s the correspondlng hand-coded program, considerable savings are

IIIIII.I."YwI"IIIII"""~.,"~~~~""-.""~."~~"~~~~~""" ,.,.,,,. ~ ~ ~ # ~ " " , ~ , . " , # w , " " , " " " w ~ ~ ~ , , " , , " , " ,,,,,,,, u , " " " ~ .,,,,.,,,,, ",",",." ,,., ",-,"",,,",,,,,",,#," ,.,, ,,,,,,,,,, ,,,,,. m,","e,m,M,,, ,,,", " ~ , w . , ~ ~ - ~ , , , , - " ~ " " , " " , , ~ , ~ , " " " " " ~ " ~ " M - " " ~ " ~ " ~ ~ ~ . " ~ ~ " ~ ~ ~ " ~ " , " w ~ , , " " ~ ~ ~ " , . " .,". ~ " ~ m ~ m " ~ " " ~ - " ~ ~ ~ ~ - ~ - ~ . " ~ ~ - ~ # , ~ " ~ ~ ~ ~ " ~ - ~ " ~ ~ - . ~ " ~ . ~ " " ~ " ~ ~ ~ ~ . ~ ~ " . .
$ Written by M. deV. Roberts,

(94009) 2-3, p 16
i

effected. (Where symbolic programning is used, the cos t of programming and
debugging is usua l ly 112 t o 314 the t o t a l cos t of solving a problem.)
Elapsed time . for programming has of ten been reduced by factors of 10 t o 1,

The average : ra t io of the number o f FORTRAN statements i n a grogram to
the number of r e su l t i ng machine i n s t ruc t i ons (exclusive of a l l sub-
rout ines) is 1 to 7. The t r an s l a to r produces about 100 ins t ruc t ions per

R minute.

Scope of A~plications
11

Calculations have been programmed using FORTRAN i n a l l the major a reas
of s c i e n t i f i c computation (e, g., j e t engine design, airframe design,
reac tor design, numerical weather predict ion, X-ray d l f f rac t ion analysis ,
and a multitude of others) . I t is obvious from the nature of the input
language t h a t FORTRAN o f f e r s numerous conveniences to programmers i n these
areas. I t is in t e r e s t i ng t o note the conveniences offered, and hence, the
use of the system, i n the case of processes which a r e e s s en t i a l l y non-
numerical, For example, FORTRAN programs have been o r a r e being wr i t t en
(with considerable payoff i n s impl ic i ty) t o do Che following: simulate the
behaviour of a control mechanism fo r a proposed computer (J, Cocke, IBM) ,
play chess (J, McCarthy, MIT), p r i n t i sobar ic weather maps
(H. A, Zartner, Jr., U. S. we at he^. Bureau), and prove theorems In
geometry (H, Gelerncer and N o Rochester, IBM) , Many use r s who have no t
made much use of FORTRAN I repor t t ha t FORTRAN I1 w i l l g r ea t l y enlarge
the system's usefulness f o r t h e i r work,

FORTRAN Translators for Various Machines
The preceding paragraphs have re fe r red t o various FORTRAN systems f o r

the 704. There are a l s o t r an s l a to r programs fo r o ther machines which
accept FORTRAN-language programs and produce Drograms f o r the machine i n
question. FORTRANSIT I, I1 and I11 a r e t r a n s l a t o r programs f o r three
conf igurat ions of the IBM 650, Some 265 d l f f e ren t 650 i n s t a l l a t i o n s have
requested some of the FORTRANSIT t r ans l a to r programs. The ac tua l extent of
use which they make of the system is no t known.

Work on FORTRAN t r ans l a to r s f o r the IBM 705 and f o r the IBM 709 1s
nearing completion.

I

RELATIONSHIP OF AUTOMATIC PROGRAMMING TO THE MECHANIZATION
OF THOUGHT PROCESSES

7

In the following remarks ttmechanization of thought processes" o r
"thinking" f o r a machine w i l l be taken t o mean simply *information
processlng of such a nature and complexity t ha t it leads t o behaviour \

\

which in a person would be ca l led thinkinglt, In these te rns the technique
of autonatic programing has Lhree roles i n relat ionship to the study of
machine thinking: one a s recipient, two a s contributor,

Certainly the process of devising an ef f i c l en t machine program to perform
some previously s ta ted complex task may be taken to require thinking, A s
more general and more e f f ect ive techniques a re found for the mechanization
of various thought-like processes, t h e i r application i n the automatic
programing area w i l l undoubtedly permit the users of machines to
communicate requests for programs with increasing ease and brevl t y and
obtain more e f f i c i en t programs to perform each desired task, Thus automatic
programming w i l l bene f i t from progress in the mechanization of thought
processes,

Conversely, a s a special topic i n the f ie ld , e f f o r t s t o find b e t t e r
languages for s t a t i ng procedures and be t t e r techniques for t rans la t ing
them in to machine language w i l l contribute to the general understanding
of complex Information-processing methods, Already various t rans la tors such
a s FORTRAN perform some of the more complex information-processing tasks
presently done by machines.

Almost by de fin1 tion the mechanization of thought processes requires the
construction of very large and cmpl ica ted programs, Therefore, i t would
appear t ha t progress in t h i s a rea w i l l depend heavily on the ava i l ab i l i t y
of automatic programing systems which w i l l make it possible to construct
many experimental programs of great length, Some of the people who have
used FORTRAN for writing programs, such a s the geonetry program o r the
chess program mentioned ea r l i e r , feel tha t t he task of wri t ing them would
be v i r tua l ly impossible i f they had to concern themselves with the
complexities of machine coding i n addition t o those of the process i t s e l f ,
For example, it is expected tha t the geometry program w i l l comprise about
16,000 machine instruct ions and tha t these w i l l r e su l t from 3,000 to 4,800
FORTRAN staternen ts, In this way automatic programming w i l l enlarge the
horizon of research in the mechanization of thought processes by permitting
u s t o study processes whi ch would otherwise be beyond our power t o rea l ize ,

1, BACKUS, J o W e , BEEBER, R, J o , BEST, S o , GOLDBERG, Re, HAIBT, Lo M e ,
HERRICK, H o L o , NELSON, Re A. , SAYRE, D o , SHERIDAN, P. B e , STERN, H e ,

ZILLEP, I., HUGHES, R, A., and NUTT, R, The FORTRAN Automatic Coding
Bystem. Proceedings of the Western Joint Cmbuter Conference,
Los Angeles, California, (Feb,, 1957).

