NATIONAL PHYSICAL LABORATORY

TEDDINGTON, MIDDLESEX, ENGLAND

PAPER 2-3

AUTOMATIC PROGRAMMING
PROPERTIES AND PERFORMANCE OF
FORTRAN SYSTEMS I AND II

by

J. W. BACKUS

To be presented at a Symposium on
The Mechanization of Thought Processes,

which will be held at the National Physlcal

Laboratory, Teddington, Middlesex, from 24th~

27th November 1958. The papers and the discussions

are to be published by H.M.S.0. in the Proceedings

of the Symposium, Thls paper should not be repro=-

- duced without the permlssion of the author and of.
the Secretary, National Physical Laboratory. b

(94009)

BIOGRAPHICAL NOTES

John W. Backus received his A.M. degree (mathematics) at
Columbla University in 1950. Since 1950 he has been with
International Business Machine Corporation working on
programming, computer systems deslgn, and automatic
programming systems design., He 1s at present manager of
the Programming Research Department,

He 1s author of "The IBM 701 Speedcoding System"
(1953) and Joint author (with G, M. Amdahl) of "The
System Design of the IBM Type 704" (1955) presented to
meetings of the Assoclation for Computing Machinery.

2=3.p2

"AUTOMATIC PROGRAMMING:

PROPERTIES AND PERFORMANCE OF
FORTRAN SYSTEMS I AND II

by

J. W. BACKUS

SUMMARY

A BRIEF general discussion of the goals and methods of automatic programming
techniques is followed by a somewhat detalled description of the input
languages of FORTRAN Automatic Coding Systems I and II. The statements of
these inputr/languages provide (in part) concise means for writing algebraic
expressions, for specifying iteratlve repetitions of portions of a pro=-
cedure, for referring to one, two and three dimensional arrays of data, for
defining new functions and procedures, and for specifying input and output
procedures, Recent extensions of the input language are described.

FORTRAN I has been in use for a year and a half, Over half the instruc-
tions being written for some sixty 704 installations are thought to be
produced by FORTRAN. The cost of programming and "debugging"ls reduced by
about 4-to-1. A few other statistics and applications are cited. The final
section discusses the relationship of automatic programming and the
mechanization of thought processes,

INTRODUCTION

AUTOMATIC programming techniques seek to make it easy to do a desired job
on a computer, This i{s accomplished by providing a language in which the
statement of the desired process is natural and concise, together with some
means of causing a'machine to carry out the stated process. Glven a machine
equipped to accept statements of procedures in a language other than the
"hardware language", one may ask the same questions about this "synthetic"
machine that are used to evaluate a real machine: (1) how easy 1s it to
prepare programs for, and (2) how rapidly does it execute the programs for

(94009) 2=3.p3

which 1t will be used? In general,. automatic programming systems provide
synthetic machines which are far superlor -to thelr real counterparts
with respect to question (1) and range from slightly inferior to greatly
inferior to their real counterparts on question (2).

Automatic programming systems have been widely used in the United States
for a number of years, The purpose of the early systems was to provide
synthetic machines which had floating-point operatlions and often index
reglsters (B-tubes), since the real machines did not. In many instances
the synthetic machines were only one-half to one~tenth as fast as their
real counterparts, but although their input languages were machine-1like,
they were considerably easier to program,

In the past elghteen months a number of new automatic programming
systems have been completed, and others are being developed, which have
strikingly similar input languages. These languages use mathematical
notation and a varlety of statements which make the writing of most pro-

. cedures - of numerical computation a natural and concise process. The
synthetic machines provided by these systems range in speed from virtually
the speed of the corresponding real machine to perhaps one-half of that
speed, FORTRAN 1s one of these systems., Consliderable effort was devoted to
making the speed of the synthetic FORTRAN machine as close as possible to
that of the IBM 704, 1ts real counterpart. This paper will describe the
language and some of the recent developments of this system and report on
some of the effects which it has had on the computing work at & number of
704 installations.

In the fleld of commerclal data processing a number of automatlc
programming systems have recently been under development which provide
considerable simplifications in specifying jobs in this area. Automatic
programming systems for data processing, however, still face several
difficult problems: .

(1) Existing languages are often too rigld to‘deScribe various desirable

procedures and situations and, in many instances, are not sufficiently

concise, ‘

(2) The need for synthetic machines to be virtually as fast as thelr

real counterparts 1s much greater in the data processing area than in

computing and the difficulty of achieving this 1is greater.

PROPERTIES OF FORTRAN

GENERAL ‘
The FORTRAN synthetic computer is realized by a 704 program, called the

FORTRAN translator, which accepts programs written in FORTRAN language and

produces corresponding 704 machine language programs. The translator .

(94009)] 2=3.p4

program was written over a period of two and one-half years with an
expenditure of about 18 man-years of effort; it comprises a program of
about 25,000 instructions, The translator program was made avallable to all
704 installations In April, 1957. A report of the usage of the system since
that time appears in a subsequent section of this paper,

Since the initial distribution of the FORTRAN system, certain extensions
have been made to the input language and the translator has been conslder-
ably modifled to accept this extended language. The resulting system is
known as FORTRAN II; It has recenuy been distributed to 704 lnstallationst.

FORTRAN I INPUT LANGUAGE

The following description-by-example of the FORTRAN I input language is
extracted from a previously published paper (ref.1). '

Arithmetic Statements
Example 1: Computes

-(B/2) + \/(B/2)2 - AC

A

root =

- FORTRAN Program:
ROOT = (=(B/2,0) + SQRTF((B/2.0)%*2 = a%C)) /A

Notice that the desired program 1s a single FORTRAN statementhi an
arithmetic formula., Its meaning 1s: "Evaluate the expression on the right of
the = sign and make this the value of the variable on the left." The symbol
% denotes multiplication and *% denotes exponentiation (1l.e., A%kB means
AB). The program which is generated from this statement effects the computa-
tion In floating-point arithmetic, avolds computing (B/2.0) twice and
computes (B/2.0)*%%2 by a multiplicatlion rather than by an exponentiation
routine, Had (B/2.0)*%2,01 appeared instead, an exponentiation routine
would necessarily be used, requiring more time than the multiplication.

The programmer can refer to gquantitles in both floating-point and
integer form. Integer quantitles are somewhat restricted in their use and
serve primarily as subscripts or exponents., Integer constants are written
without a decimal point, Example: 2 (integer form) vs 2.0 (floating=-point
form). Integer variables begin with I, J, K, L, M, or N. Any meaningful
arithmetic expression may appear on the right=hand side of an aritimetic
statement, provided the following restrictlon 1s observed: an integer
quantity can appear in a floating=-point expression only as a subscript or
as an exponent or as the argument of certaln functions. The functions which

¢4 The new sections of the FORTRAN II translator for the 704 were written by
G. E. Mitchell, P, B. Sheridan, B. Brady and L. May with the assistance of the
authors of the original FORTRAN system.

(94009) R-3,p5

the programmer may refer to are limited only by those available on the
library tape at the time, such as SQRIF, plus those simple functions which
he has defined for the given problem by means of runction statements. An
example will serve to describe the latter,

Function Statements

Example 2: Define 8 Eruncuon of three variables to be used throughout
a given problan. as follows: '

mwﬂmmm ((w&m+wmﬂmmmnw-Awnm-

F\mction statements must precede the rest of the program, They are composed
of ‘the desired Mnction name (ending in 'F) followed by any desired argu=

: ear 4n the arithmetic expression on.the right of the =

sign. The definition:of a functlon may employ any previously defined
functions, Having .defined ROOTF as above, the -programmer may apply 1t to
any set of arguments in any subsequent arithmetic statements, For example.
a later arithmetic statement might be .

THETA = 1.0 + GAMMA*ROOTF(PI. 3, 2%Y + 14.0, 7.63)

Do Statements, DIMENSION Statements, and Subscnpted Variables
Example 3: Set Q.. equal to the largest qQuantity Play+b;)/ (Play=b,) tor

same i\ between 1 and 1000 where P(x) = o + €% + czxz + t3t3.

- FORTRAN Program: .
1 POLYF(X) = CO+Xk(C1+Xk(C2+X%C3))
2 DIMENSION A(1000), B(1000)
3 QAX < -1,0E20
4 D051 =1, 1000
5 QMAX = MAXF(Q1AX, POLYF(A(I) + B(I))/POLYF(A(I) - B(I)))
6 STOP

The program above 1s cdmplete except for input and output statements
which will be described later. The first statement is not executed; it
defines the desired polynomial (in factored form for efficient output
program). Similarly, the second statement merely informs the executive
routine that the vectors A and B each have 1000 elements, Statement 3 ‘
assigns a large negative initial value to QMAX, '-10x102°, using a speclal
concise form for writing floating-point constants, Statement 4 says "DO
the following sequence of statements down to and including the statement

numbered 5 for successive values of I from 1 to 1000." In this case there
1s only one statement 5 to be repeated. It i1s executed 1000 times; the

(94009) 2-3,p8

first time reference 1s made to A(1) and B(1), the second time to A(2) and
B(2), etc. After the 1000th execution of statement 5, statement 6 == STOP =
1s finally encountered. In statement 5, the function MAXF appears, MAXF
may have two or more arguments and its value, by definition, is the value
of 1ts largest argumént, Thus on each repetition of statement 5 the old
value of QMAX is replaced by itself or by the value of POLYF(A(I)+
B(I))/POLYF(A(I) - B(I)), whichever 1s larger, The value of QMAX after the
1000th repetition is therefore the desired maximum.

Example 4: Multiply the n x mmatrix.ay 01<20) by 1its transpose, obtaining
the produce elements on or below the main dlagonal by the relation

n
ci;j = . E a; k.aj‘k (far j < 1)

‘and the remaining elements by tne relation
Jn .5

FORTRAN Program:
DIMENSION A(20,20), C(20,20)

3? 2I=1, N

o [

ﬂ? 25=1,1
¢(1,J) = 0.0
:1’N

3? 1K

1 | | B(L3) = c1,0) + A(1,0*A(,K | |

—

2 || c(I) =c(1,J)
" STOP

[V

4s In the preceding example, the DIMENSION statement says that there are
two matrices of maximum size 20x20 nemed A and C. For éxplanacory purposes
only, the three boxes around the program show the sequence of statements
controlled by each DO statement, The first DO statement says ‘that procedure
P, 1.e., the followlng statements through statement 2 (outer box) 1s to be
carried out for I = 1 then for I = 2 and so on up to I = N. The first
statement of procedure P(DO 2 J = 1, I) directs that procedure Q be done
for J =1 toJ = I. And of course each execution of procedure Q involves N
executions of procedure R for X = 1, 2,.445 No

Conslder procedure Q, Each time 1ts last statement is completed the
tindex" J of 1ts controlling DO statement 1s Increased by 1 and control

(94009) 2-3,p7

goes to the first statement of Q, until finally its last statement is
- reached and J = I, Since this 1s also the last statement of P and P has
not been repeated until I * N, I will be increased and control will then
pass to the first statement of P, This statement (DO 2 J = 1, I) causes
the repetition of Q to begin again, Finally, the last statement of Q and P
(statement 2) will be reached with J = I and I = N, meaning that.both Q
and P Wave been repeated the required number of times, Control will then
g0 to the next statement, STOP, Each time R 18 executed a new term 1s
added to a product element. Each time § is executed a new product element
and 1ts mate are obtained. Each time P 1s executed a product row (over to
the diagonal) and the corresponding column (down to the dlagonal) are
" obtained, : :

"READ, PRINT, FORMAT, IF and GO TO Statements

Example 5: For each case, read from cards two vectors, ALPHA and RHO,
and the number ARG.ALPHA and RHO each have 25 elements and ALPHA(I)S
ALPHA(I+1), I = 1 to 24. Find the SUM of all the elements of ALPHA from
the beginning to the last one which is less than or equal to ARG [assume

" ALPHA(1) SARGSALPHA(25)]. If this last element is the Nth, set VALUE =
- 3.14159%RHO(N). Print a 1line for each case with ARG, SUM, and VALUE,

FORTRAN Program:
DIMENSION ALPHA(25), RHO(25)
FORMAT(5F12, 4)
2 READ 1, ALPHA, RHO, ARG
SUM = 0.0 '
"DOBI=1, 26
IF (ARG - ALPHA(I))4, 3, 3
3 SUM = SUM+ALPHA(I)
4 VALUE = 3,14159%RHO(I = 1)
PRINT 1, ARG, SUM, VALUE
G0 TO 2.

The FORMAT statement says that numbers are to be found (or printed) 5
per card (or 1line), that each number is in Fixed-point form, that each
number occupies a fleld 12 columns wide and that the decimal point is
located 4 digits from the right. The FORMAT statement 1s not executed; it
1s referred to by the READ and PRINT statements to describe the desired Y
arrangement of data in the external medium.

The READ statement says "READ cards in the card reader which are
arranged according to FORMAT statement 1 and assign the successive numbers

(94009) 2-3,p8

obtained as values of ALPHA(I) I = 1, 25 and RHO(I) I .= 1, 25 and ARG."
Thus "ALPHA, RHO, ARG" 1is a description of a 1ist of 51 quantities (the
size of ALPHA and RHO beling obtained from the DIMENSION statement). Reading
of cards proceeds untlil these 51 quantitles have been obtalned, each card
having five numbers, as per the FORMAT description, except the last which
has the value of ARG only. Since ARG terminated the 1list, the remalning
four flelds on the last card are not read, The PRINT statement is-similar
to READ except that it specifles a 11st of only three quantities, Thus
each execution of PRINT causes a single line to be printed with ARG, SUM,
VALUE printed in the first three of the flve flelds described by FORMAT
statement 1.

The IF statement says "If ARG - ALPHA(I) 1s negatlve go to statement 4,
1f it 1s zero go to statement 3, and 1f 1t is positive go to 3." Thus the
repetition of the two statements controlled by the DO consists normally
of computing ARG - ALPHA(I), finding it zero or positive, and going to
statement 3 followed by the next repetition. However, when .I has been
increased to the extent that the first ALPHA exceeding ARG 1s encountered,
control will pass to statement 4. Note that this statement does not
belong to the sequence controlled by the DO. In such cases, the repetition
specified by the DO is terminated and the value of the index (in this
case I) 1s preserved, Thus 1f the first ALPHA exceeding ARG were ALPHA(20),
then RHO(19) would be obtalned in statement 4.

The GO TO statement, of course, passes control to statement 2, which
initiates reading the ‘11 cards for the next case. The process wili econtinue
until there are no more cards In the reader. The above program is entirely
complete, When punched In cards as shown, and compiled, the translator will:
produce a ready-to~run 704 program which will perform the Job specified.

Other Types of FORTRAN Statements

In the above examples the following types of FORTRAN ‘statements have
been exhiblted.

Arithmetic statements
Functlon statements
DO statements

IF statements

GO TO statements
READ statements
PRINT statements

STOP statements
DIMENSION statements
FORMAT statements

(94009) 2~3,p9

The explanatlions accompanying each example have attempted to show some
of the possible applications and variations of these statements, It is
felt that these examples give a representative picture of the FORTRAN
language; however, many of its features have had to be omitted., There are
23 other types of statements In the language, many of them completely
analogous to some of those described here. They provide facilitles for
referring to other Input-output and auxiliary storage devices (tapes,
drums, and card punch), for specifylng preset and computed branching of
control, for detecting various conditions which may arise such as an
attempt to divide by zero, and for providing various information about a
program to the translator, A complete description of the language 1s to be
found in "Programmer's Reference Manual, the FORTRAN Automatic Coding
System for the IBM 704", .

Preparation of a Program for Translation

The translator accepts statements punched one per card (continuation
cards may be used for very long statements)., There 1s a separate key on
the keypunching device for each character used in FORTRAN statements and
each character 1s represented in a single column of the card. Keypunching
a FORTRAN program 1s, therefore, a process similar to that of typing the
program,

Translation

The deck of cards obtalned by keypunching may then be put in the card
reader of a 704 equipped with the translator program. When the load button
1s pressed one gets either 1) aflist of Input statements which fail to
conform to specifications of the FORTRAN language accompanied by remarks
which indicate the type of error in each case; 2) a deck of binary cards
representing the desired 704 program; 3) a binary tape of the program
which can elther be preserved or loaded and executed immedlately after
translation 1s complete; or 4) a tape containing the output program in

- symbolic form suitable for alteration and later assembly.

FORTRAN II INPUT LANGUAGE

The princlpal shortcoming of the FORTRAN I input language 1s that the
programmer 1s unable to define new statements In terms of the glven ones.
He can introduce only functions which he can define by an arithmetic
expression. The Input language of FORTRAN II 1s identical to that of
FORTRAN I except that certain additlional statements are provided. With
these the programmer may create a FORTRAN language subprogram, assign a
name to it, and indicate those variables in the subprogram which are to be
regarded as the inputs and/or outputs. He may invoke a subprogram in any

(94009) o 23, p10

other program by giving 1ts name and supplying appropriate parameters,
There 1s provision for Indicating that a subprogram defines elther a
function. (which may be employed in arithmetic expressions in other
programs) or -a subroutine (which may be invoked as a statement in other
programs) .

Example 1: Write a subprogram which clears the first ¥ elements of a
vector,

FORTRAN II Subprogram:
SUBROUTINE CLEAR(A,N)
DIMENSION A(1000)

D0O1JF1, N
1 A(J) = Q.0
RETURN

The first statement indicates that the entire program following is a
subroutine, that 1ts name is CLEAR, and that 1ts parameters are the
vector A and the integer variable N, The last statement indicates that
the process which constitutes the subroutine 1s complete.

Example 2: Write a subprogram which realizes the function:

10 /10
gla,x) =X a(;‘_ xin

il V=1
FORTRAN II Subprogram:
FUNCTION G(A,X)
DIMENSION X(10,10), R(10)
CALL CLEAR (R,10)
G = 0.0
D0O21I=1, 10
DO1J =1, 10
R(I) = R(I)+X(L,J)
2 G = GHAsxI*R(I)
RETURN

The flrst statement says that the following subprogram defines a
function G of A and X. The CALL statement invokes the subroutine of
example 1 to clear the vector R. Notlce that the next statement and sub-
sequent ones refer to a variable whose name 1s that of the function.

The value of the varlable G when RETURN 1is executed 1s the value of the
function.

(94009) : 2~3,pl1

The above subprograms may be translated independently. The outbut in

each case will be a deck of punched cards having the machine language
program, with the appropriate prologue for linkage, In a form which may be
easily adjusted by a loading program to operate anywhere in the store. In
this form the names themselves of called subprograms are retalned in the
deck representing the calling program and are used by the loadlng program
to establlsh the appropriate references of each program to its subprograms
as they are being loaded. This complete independence of a program from 1ts
calling and called programs until the point of loading for execution has

several benefits:

(1) Each program and subprogram may be checked out and/or recompiled
Independently. Thus each correction in the FORTRAN language statement
of a process will involve retranslation of only that subprogram in
which the change 1s made.

(2) Each subprogram is produced in precisely the form suitable for
Incluslion in the library, Inclusion 1s accomplished simply by placing
the output deck in the library deck. When loaded this deck will produce
a new 1ibrary tape which is avallable to the translator. Library
programs, of course, require no translation. ‘

(3) Since each subprogrem may be obtained without the inclusion of the
subprograms which it calls, the use of two subprograms, which both call
a third, need not result in a copy of the third accompanying each of
them 1n the store.

(4) Since the machine-language calling sequences resulting from input
language references to functions or subroutines are quite standard, 1t
is immaterial whether a required subprogram is generated by FORTRAN or
1s written in machine-language. Thus, for example, & speclal hand-
coded Input routine may be invoked by a CALL statement, *

Example 3: Compute g(sin(g(7nr))2,s) for pairs of 10x10 matrices r, s
read from cards, and print the result for each case, where ¢ 1s the function

of example 2.

FORTRAN. IT Program
DIMENSION R(10,10), S(10,10)

3 READ 1; R, S,.

1 FORMAT (10F8,3)
RESULT = G(SIN(G(3.14150,R))%*2,5) ‘
PRINT 2, RESULT _

2 FORMAT (E12,4) _ '
@ To 3

(94009) 2-3,p12

When this program is translated one may request that any called sub-
programs which are on the library tape plus a copy of the loading program
be incorporated In the output deck. In this case the given program and
the subprogram for the sine function might be contained in the output,
When the outputs from translating the programs of the first two examples
are added to this deck, 1t 1s ready to be loaded and run.

FURTHER DEVELORMENTS IN FORTRAN

In addition to the facilities provided by FORTRAN II, work on the
translator program for the 704 has been almost completed to provide the
following facilitlesf.

Use of Symbolic Machine Instructions as Statements in a FORTRAN Program

This facility, of course, makes 1t possible for the programmer to use
~gperations and to deal with units of Information not provided for in the
FORTRAN language. Certain restrictions are necessary to effect an
appropriate relationship between machine language references to informa=-
tion and references in FORTRAN statements within the same FORTRAN
program,

Example: Write a subroutine which sets B(I) = 9,0 or B(I) = 1,0
- according as the Ith bit of cell A is 0 or 1 for I = 4, 2..... N where ‘
N 5 36,

FORTRAN IIT Program:
SUBROUTINE EXPAND (4, B,N)
DIMENSION B(36)

8 LDQA
DO11I&1, N

S (M
LOL 1
TZE*1
B(I) = 1.0

8 1870 B(D)
RETURN

In the above program those statements preceded by an "S" are symbolic
704 instructions., For example, the first such statement is "Load the
Q=register from cell A", The asterisk in the fourth S-statement indicates

The princlpal additions to the translator to provide these facllities were
planned and written by I. Ziller and R. A. Nelson.

(94009) v 2-3.p13

that the number following 1s a statement number, which in this case is

that of the fifth S-statement. Note that the address part of the latter is
a subscripted variable., For those who care to understand this not-very-good
program the operation codes have the following meanings:

CIM: clear the accumulator.

LGL: shift the contents of the 73 bit register
comprising the accumulator (left 37 bits)

- and the Q-register (right 36 bits) one bitg

to the left.

TZE: transfer control when contents of
accumulator are 2zero.

STO: store contents of accumulator.

Note the services provided by the translator even for essentially non-
numerical processes, In this case: generation of a prologue. assignment
of storage, loop formation, referencing of arrays,

Use of Boolean Expressions

Provision has been made to permit writing "expressions" in which the
operators are “and", "or" and "not" rather than the usual arithmetic
operations., When two words are combined under the operation "and" the
resulting word has a zero-bit in every position except those in which the
two operand words both have a 1-blt, Analogous results are given by "or®

and "not", the latter operation having a single operand. "And" fort® and
"not" are designated respectively by "k%, 9%+» ‘and t=t,

Example: Let A, B, C, D be four quantities which are zero or one
according as conditions a, b, ¢, d respectively, hold or not. Write a
statement which makes £ zero or one according as the condition

a + (=(bkc)*(=d))
holds or not.

FORTRAN III Statement

B E = A+(=(B*C)*(~D)) ,

The "B" preceding the statement indicates that the operators are to be
interpreted as Boolean operators., "B" may be applied in this way to any
statement which contalins an expression.

"~ Thus,
B IF(A%B) 0,5,14 ‘
will cause control to pass to statement 5 only if A%B (A "and" B) 1s zero,

‘otherwise control willl pass to statement 14.

(94009) _ 2-3,pl4

Use of Function or Subroutine Names as Parameters of Functions or
Subroutines

FORTRAN II permits a function value to appear as a parameter of a
function or subroutine, [e.g., SIN(COS(X)) meaning the sine of the number,
cos(X)]. FORTRAN III has provision for specifying the name of a particular
function or subroutine as a parameter of another function or subroutine
which refers to one or more arbitrary functions or subroutines.

Example: Write a subprogram, R, which, for any arbitrary functions f
and g, replaces each element, Ai' i =1, 2 eeey N, Of a vector 4, by

FUHZ + g +?

FORTRAN III Subprogram:
SUBROUTINE R(4,N, F,G)
DIMENSION A(1000)
DO1I=1 N 1
1 A(I) = SQRT(F(A(I))%k2+G(A(I+1))%x2)
- RETURN
Write a subprogram, 8, which replaces X;, i =1, 2,... 10, by
k sin(xi)z + cos(x‘-+1)2

- FORTRAN III Subprogram:
SUBROUTINE S(X)
. DIMENSION X(11)
F SIN, COS
CALL R(X, 10, SIN, CO0S)
RETURN

. The first of the subprograms above is unusual only in that the names of
two functions, F and G, are listed as parameters., The second subprogram
calls the first and specifies that SIN and COS are to be used for F and G
respectively. The statement preceded by "F" makes it possible to correctly
interpret the CALL statement by indicating that "SIN® and "COS" are names
of subprograms rather than names of variables, and, therefore, must be
retained in symbolic form (up to loading time).

In addition to the above mentioned facilities for stating procedures
which the FORTRAN III translator will accept [namely, (1) use of symbolic
machine instructions as statements, (2) use of Boolean expressions, (3)
use of subprogram names as parameters] there are facilities provided for
writing procedures to manipulate alphabetic and other symbolic information.
No further discussion of the latter 1s given here. ’

(94009) 2-3,p15

Operation of Programs Which Require More than the Available High-Speéd
Storage Space \

The preceding paragraphs describe certaln new properties of the
FORTRAN translator program. The present sectlon concerns a program
called SLAM# (Subroutine Loader And Monitor). SLAM 1s concerned with the
subprograms from which a program 1s built. At load time 1t splits these
subprograms into groups, each of which will fit into the core space '
available after the data area. has been reserved. It writes these blocks
onto tape and at the same time rearranges the linkage between subprograms.
Then at execution time the monltor part of SLAM puts in cores, at the
appropriate mament, that group of subprograms necessary for the execution
of the program. The monitor takes care of the transfer of arguments
between subprograms.

EXPERIENCE WITH FORTRAN

Since its distribution over a year ago, the use of FORTRAN I has been
steadily increasing. A survey in April of this year of twenty-six
704 installations indicates that over half of them use FORTRAN for more
than half of thelir problems. Many use it for 80% or more of their work
(particularly the newer installations) and almost all use it for some of
thelr work. The latest records of the 704 users' organization, SHARE,
show that there are some sixty installatlions equipped to use FORTRAN
(representing 66 machines) and recent reports of usage indicate that more
than half the machine instructions for these machines are being produced
by FORTRAN. SHARE recently designated the FORTRAN language as the second
official medium for transmittal of programs within the organization (the
other is symbolic machine language).

Programming Economies

Most 704 installations cannot provide accurate information regarding
programming costs., However, the Service Bureau Corporation, which does a
lot of contract programming, has kept careful records of programming time,
machine time used in debugging, and so forth, for many jJobs coded in
symbolic machine language and many others in FORTRAN., Their analysis of
these costs shows that the average cost per debugged Instruction obtained
from FORTRAN programs is about one-fourth the corresponding cost per
instruction obtalned from symbolic programs. (A FORTRAN-produced program
and a symbolic program for a given Job are about the same length.) Since
users have found that a FORTRAN-coded program runs at about the same
speed as the corresponding hand-coded program, considerable savings are

+ Written by M. deV. Roberts.

(94009) 2-3.p16

effected. (Where symbollc programming is used, the cost of programming and
debugging 1s usually 1/2 to 3/4 the total cost of solving a problem.)
Elapsed time for programming has often been reduced by factors of 10 to 1.

The “average ratio of the number of FORTRAN statements in a program to
the number of resultlng machine instructions (exclusive of all sub-
routines) is 1 to 7. The translator produces about 100 instructions per
minute, :

Scope of Applications

Calculations have been programmed using FORTRAN in<all the major areas
of sclentific computation (e.g., jJet englne design, alrframe design,
reactor design, numerical weather prediction, X-ray diffraction analysis,
and a multitude of others). It is obvious from the nature of the Input
language that FORTRAN offers numerous convenlences to programmers in these
areas, It is Interesting to note the conveniences offered, and hence, the
use of the system, in the case of processes which are essentially non-
numerical. For example, FORTRAN programs have been or are being written
(with considerable payoff in simplicity) to do the followlng: simulate the
behaviour of a control mechanism for a proposed computer (J. Cocke, IBM),
play chess (J. McCarthy, MIT), print lsobarlic weather maps
(H. A, Zartner, Jr., U, S. Weather Bureau), and prove theorems in
geometry (H., Gelernter and N. Rochester, IBM). Many users who have not
made much use of FORTRAN I report that FORTRAN II wlll greatly enlarge
the system's usefulness for thelr work.

FORTRAN Translators for Various Machines

The preceding paragraphs have referred to various FORTRAN systems for
the 704, There are also translator programs for other machines which
accept FORTRAN-language programs and produce programs for the machine in
qQuestion. FORTRANSIT I, II and III are translator programs for three
configurations of the IBM 680, Some 265 different 650 installations have
requested some of the FORTRANSIT translator programs. The actual extent of
use which they make of the system i1s not known.

Work on FORTRAN translators for the IBM 705 and for the IBM 709 1s
nearing completion.

RELATIONSHIP OF AUTOMATIC PROGRAMMING TO THE MECHANIZATION
OF THOUGHT PROCESSES
In the following remarks "mechanization of thought processes" or
"thinking" for a machline will be taken to mean simply "information

processing of such a nature and complexity that it leads to behaviour

(94009) 2-3.p17

which in a person would be called thinking". In these terms the technique
of automatic programming has three roles in relatlionship to the study of
machine thinking: one as recipient, two as contributor.

Certalnly the process of devising an efficlent machine program to perfom
some previously stated complex task may be taken to require thinking. As
more general and more effective techniques are found for the mechanization
of various thought-like processes, their application in the automatic
programming area will undoubtedly permit the users of machines to
communicate requests for programs with increasing ease and brevity and
obtain more efficlent programs to perform each desired task. Thus automatic
programming will benefit from progress In the mechanlzation of thought
processes,

Conversely, as a speclal topic in the fleld, efforts to find better
languages for stating procedures and better techniques for translating
them into machine language will contribute to the general understanding
of complex Information-processing methods. Already various translators such
as FORTRAN perform some of the more complex information-processing tasks
presently done by machines,

Almost by definition the mechanization of thought processes requires the
construction of very large and camplicated programs. Therefore, it would
appear that progress in this area will depend heavily on the availability
of automatic programming systems which will make 1t possible to construct
many experimental programs of great length. Some of the people who have
used FORTRAN for writing programs, such as the geometry program or the
chess program mentioned earller, feel that the task of writing them would
be virtually Ilmpossible 1f they had to concern themselves with the
complexities of machine coding in addition to those of the process 1itself,
For example, 1t 1s expected that the geometry program will comprise about
168,000 machine instructions and that these will result from 3,000 to 4, OO
FORTRAN statements. In this way automatic programming will enlarge the
horizon of research in the mechanization of thought processes by permitting
us to study processes which would otherwise be beyond our power to realize.

REFERENCE

i, BACKUS, J. W., BEEBER, R. J., BEST, S., GOLDBERG, R., HAIBT, L. M.,
HERRICK, H. L., NELSON, R.. A., SAYRE, D., SHERIDAN, P. B., STERN, H.,
ZILLER, I., HUGHES, R. A., and NUTT, R. The FORTRAN Automatic Coding
System Proceedings of the Western Joint Computer Conference,)
Los Angeles, California, (Feb,, 1957). -

(94009) 2-3.p18

