
0

0

0

0

0

VAX LISP/ULTRIX
User's Guide

Order Number: AA-EV08A-TE

May 1986

This document contains information required by a LISP language
programmer to interpret, compile, and debug VAA LISP programs.

Operating System and Version: UL TRIX-32 Version 1.2
UL TRIX-32m Version 1.2

Software Version: VAA LISP/ULTRIX Version 2.0

digital equipment corporation
maynard, massachusetts

First Printing, May 1986

The information in this document is subject to change without notice Q
ij

and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document. ·

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

© Digital Equipment Corporation 1986.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of
this document. Your comments will assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECUS
MicroVAX
VAXstation
DECnet
ULTRIX-32
ULTRIX-32m

UNIBUS
VAX
MicroVAX II
VAXstation II
ULTRIX

PDP
VMS
MicroVMS
AI VAXstation
ULTRIX-11

0

.Q

0

0

0

o·

0

PREFACE

CHAPTER 1

1.1
1.1.1
1.1.1.1
1.1.1.2
1.1.2
1.1. 3
1.1.4
1.1. 5
1.1. 6
1.1. 7

1.2
1. 2 .1
1. 2. 2
1.3
1. 3 .1
1. 3. 2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.3.3
1. 3. 4

O CHAPTER 2

0

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.10
2.10.1

CONTENTS

Part I
VAX LISP/ULTRIX SYSTEM CONCEPTS AND FACILITIES

INTRODUCTION TO VAX LISP

OVERVIEW OF VAX LISP
vaxlisp Shell Command

Interpreter
Compiler

Error Handler
Debugging Facilities
Pretty Printer
Call-Out Facility
Alien Structure Facility
VAX LISP/ULTRIX Function, Macro, and Variable
Descriptions_

HELP FACILITIES
ULTRIX HELP
LISP HELP

ULTRIX FILE SPECIFICATIONS
File Name
Pathname

Directory Names
Slash(/) Separators
Sample Pathname
Host Names

Default Values
VAX LISP Default File Types

USING VAX LISP

INVOKING LISP
EXITING LISP
ENTERING INPUT
DELETING INPUT
ENTERING THE DEBUGGER
USING CONTROL KEY SEQUENCES
CREATING PROGRAMS
LOADING FILES
COMPILING PROGRAMS

Compiling Individual Functions and Macros
Compiling Files
Advantages of Compiling LISP Expressions
Advantage of Not Compiling LISP Expressions

vaxlisp COMMAND OPTIONS
Three Ways to Use the vaxlisp Command

iii

1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-5

1-5
1-5
1-5
1-6
1-7
1-7
1-7
1-8
1-8
1-8
1-8
1-8
1-9

2-1 -
2-2
2-2
2-2
2-3
2-3
2-4
2-5
2-6
2-6
2-6
2-8
2-8
2-9

2-14

2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7
2.10.8
2.10.9
2.10.10
2.10.11
2.10.12
2.11
2.11.1
2 .11. 2

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.2

CHAPTER 4

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.3.1
4.5.3.2
4.5.4
4.5.5
4.6
4.6.1
4.6.2

COMPILE
ERROR_ACTION
[NO]INITIALIZE
[NO]LISTING
[NO]MACHINE_CODE
MEMORY
[NO]OPTIMIZE
[NO]OUTPUT_FILE
RESUME
[NO]VERBOSE
[NO]WARNINGS

USING SUSPENDED SYSTEMS
Creating a Suspended System
Resuming a Suspended System

ERROR HANDLING

ERROR HANDLER
VAX LISP ERROR TYPES

Fatal Errors
Continuable Errors
Warnings

CREATING AN ERROR HANDLER
Defining an Error Handler

Function Name
Error-Signaling Function
Arguments

Binding the *UNIVERSAL-ERROR-HANDLER* Variable

DEBUGGING FACILITIES

CONTROL VARIABLES
CONTROL STACK
ACTIVE STACK FRAME
BREAK LOOP

Invoking the Break Loop
Exiting the Break Loop
Using the Break Loop
Break Loop Variables

DEBUGGER
Invoking the Debugger
Exiting the Debugger
Using Debugger Commands

Arguments
Debugger Commands

Using the DEBUG-CALL Function
Sample Debugging Sessions

STEPPER
Invoking the Stepper
Exiting the Stepper

iv

2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-23
2-24
2-25
2-25
2-26

3-1
3-1
3-2
3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7

4-3
4-3
4-4
4-4
4-4
4-5
4-6
4-7
4-7
4-8
4-9
4-9

4-11
4-13
4-18
4-18
4-20
4-20
4-21

0

0

0

0

0

0

0

0

0

0

4. 6. 3
4.6.4
4.6.4.1
4.6.4.2
4.6.5
4.6.5.1
4.6.5.2
4.6.5.3
4.6.6
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.4.1
4.7.4.2
4.7.4.3
4.7.4.4
4.7.4.5
4.7.5
4.7.5.1
4.7.5.2

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.4
5.5
5.6
5.7
5.7.1
5.7.2
5.7.3
5.8
5.9

Stepper Output
Using Stepper Commands

Arguments
Stepper Commands

Using Stepper Variables
STEP-FORM
STEP-ENVIRONMENT
Example Use of Stepper Variables

Sample Stepper Sessions
TRACER

Enabling the Tracer
Disabling the Tracer
Tracer Output
Tracer Options

Invoking the Debugger
Adding Information to Tracer Output
Invoking the Stepper
Removing Information from Tracer Output
Defining When a Function or Macro Is Traced

Tracer variables
TRACE-CALL
TRACE-VALUES

PRETTY PRINTING AND USING.EXTENSIONS TO FORMAT

PRETTY PRINTING WITH DEFAULTS
HOW TO PRETTY-PRINT USING CONTROL VARIABLES

Explicitly Enabling Pretty Printing
Limiting Output by Lines
Controlling Margins
Conserving Space with Miser Mode

EXTENSIONS TO THE FORMAT FUNCTION
Using the WRITE FORMAT Directive
Controlling the Arrangement of Output
Controlling Where New Lines Begin
Controlling Indentation
Producing Prefixes and Suffixes
Using Tabs
Directives for Handling Lists

DEFINING YOUR OWN FORMAT DIRECTIVES
DEFINING PRINT FUNCTIONS FOR LISTS
DEFINING GENERALIZED PRINT FUNCTIONS
ABBREVIATING PRINTED OUTPUT

Abbreviating Output Length
Abbreviating Output Depth
Abbreviating Output by Lines

USING MISER MODE
HANDLING IMPROPERLY FORMED ARGUMENT LISTS

v

4-21
4-:2 4
4-25
4-26
4-28
4-28
4-28
4-29
4-31
4-32
4-33
4-33
4-34
4-35
4-36
4-36
4-36
4-37
4-37
4-37
4-37
4-38

5-2
5-3
5-3
5-4
5-4
5-5
5-5
5-7
5-8

5-11
5-13
5-14
5-15
5-16
5-18
5-19
5-21
5-23
5-24
5-24
5-25
5-26
5-28

CHAPTER 6

6.1
6 .1.1
6.1.1.1
6.1.1.2
6 .1. 2
6 .1. 3
6 .1. 4
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4
6.4.1
6.4.2
6.4.3
6. 4 .·4
6.4.5
6.4.6
6.4.6.1
6.4.6.2
6.5
6.6
6.6.1
6.6.1.1
6.6.1.2
6.6.2
6.7

VAX LISP/ULTRIX IMPLEMENTATION NOTES

DATA REPRESENTATION
Numbers

Integers
Floating-Point Numbers

Characters
Arrays
Strings

PATHNAMES
Name strings
When to Use Pathnames
Fields in a COMMON LISP Pathname
Field Values of a VAX LISP Pathname
Three Ways to Create Pathnames
Comparing Similar Pathnames
Converting Pathnames into Namestrings
Functions That Use Pathnames
Using the *DEFAULT-PATHNAME-DEFAULTS* Variable

GARBAGE COLLECTOR
Frequency of Garbage Collection
Static Space·
Messages
Available Space
Garbage Collection Failure

INPUT AND OUTPUT
Newline Character
Terminal Input
Terminal Output
End-of-File Operations
File Organization
Functions

OPEN Function
WRITE-CHAR Function

KEYBOARD FUNCTIONS
COMPILER

Compiler Restrictions
COMPILE Function
COMPILE-FILE Function

Compiler Optimizations
FUNCTIONS AND MACROS

Part II

6-20
6-2
6-2
6-3
6-5
6-6
6-7
6-7
6-8
6-8
6-9
6-9

6-10
6-12
6-12 0
6-13
6-13
6-14
6-15
6-15
6-16
6-16
6-16
6-16 0
6-17 .
6-18
6-18
6-18
6-19
6-19
6-19
6-19 ,
6-20
6-21 0
6-21
6-21
6-21
6-22
6-24

VAX LISP/ULTRIX Function, Macro, and Variable Descriptions

APROPOS Function
APROPOS-LIST Function
BIND-KEYBOARD-FUNCTION Function
BREAK Function
CANCEL-CHARACTER-TAG Tag
CHAR-NAME-TABLE Function

vi

1
3
4
7

:o

0

0

0

0

0

COMPILEDP Function
COMPILE-FILE Function
COMPILE-VERBOSE Variable
COMPILE-WARNINGS Variable
CONTINUE Function
DEBUG Function
DEBUG-CALL Function
DEBUG-PRINT-LENGTH Variable
DEBUG-PRINT-LEVEL Variable
DEFAULT-DIRECTORY Function
DEFINE-FORMAT-DIRECTIVE Macro
DEFINE-GENERALIZED-PRINT-FUNCTION Macro
DEFINE-LIST-PRINT-FUNCTION Macro
DELETE-PACKAGE Function
DESCRIBE Function
DIRECTORY Function
DRIBBLE Function
ERROR-ACTION Variable
EXIT Function
Format Directives Provided with VAX LISP
GC Function
GC-VERBOSE Variable
GENERALIZED-PRINT-FUNCTION-ENABLED-P Function
GET-GC-REAL-TIME Function
GET-GC-RUN-TIME Function
GET-INTERNAL-RUN-TIME Function
GET-KEYBOARD-FUNCTION Function
HASH-TABLE-REHASH-SIZE Function
HASH-TABLE-REHASH-THRESHOLD Function
HASH-TABLE-SIZE Function
HASH-TABLE-TEST Function
LOAD Function
LONG-SITE-NAME Function
MACHINE-INSTANCE Function
MACHINE-VERSION Function
MAKE-ARRAY Function
MODULE-DIRECTORY Variable
POST-GC-MESSAGE Variable
PPRINT-DEFINITION Function
PPRINT-PLIST Function
PRE-GC-MESSAGE Variable
PRINT-LINES Variable
PRINT-MISER-WIDTH
PRINT-RIGHT-MARGIN Variable
PRINT-SIGNALED-ERROR Function
PRINT-SLOT-NAMES-AS-KEYWORDS Variable
REQUIRE Function
ROOM Function
SHORT-SITE-NAME Function
STEP Macro
STEP-ENVIRONMENT Variable
STEP-FORM Variable

vii

11
12
15
16
18
19
20
21
22
23
25
28
30
32
33
35
37
38
39
40
43
44
45
46
48
so
51
52
53
54
55
56
58
59
60
61
63
64
65
67
70
71
72
73
75
77
78
80
83
84
85
86

APPENDIX A

INDEX

FIGURES

TABLES

A.1
A.1.1
A.1.2
A.1. 3
A.1.4
A.1.5
A.1.6
A.1. 7
A.1.8
A.1.9
A.2
A. 3
A.4

5-1

1-1
2-1
2-2
2-3
3-1
4-1
4-2
4-3
4-4

SUSPEND Function
THROW-TO-COMMAND-LEVEL Function
TIME Macro
TOP-LEVEL-PROMPT Variable
TRACE Macro
TRACE-CALL Variable
TRACE-VALUES Variable
UNBIND-KEYBOARD-FUNCTION Function
UNCOMPILE Function
UNDEFINE-LIST-PRINT-FUNCTION Macro
UNIVERSAL-ERROR-HANDLER Function
UNIVERSAL-ERROR-HANDLER Variable
WARN Function
WITH-GENERALIZED-PRINT-FUNCTION Macro

PERFORMANCE HINTS

DATA STRUCTURES
Integers
Floating-Poi~t Numbers
Ratios
Character's
Symbols
Lists and Vector's
Strings, General Vector's, and Bit Vectors
Hash Tables
Functions

DECLARATIONS
PROGRAM STRUCTURE
COMPILER REQUIREMENTS

Variables Governing MiseI' Mode

VAX LISP File Type Specifications
Control Key Sequences
Options of the vaxlisp Shell Command
Option Modes for the vaxlisp Command
EI'rOI'-Signaling Functions
Debugging Functions and Macros
Debugger Commands
Debugger Command Modifiers
Stepper Commands

viii

87 0 90
91
92
93

104
105
106
107
108
109
110
111
112

A-1
A-2
A-2
A-2
A-3
A-3
A-4

0

A-5 0
A-6
A-6
A-6

A-10
A-12

5-26

1-9
2-3

2-12
2-14

3-7

0

4-1
4-10 ·
4-12 n
4-24 '----"

5-1 Format Directives Provided by VAX LISP 5-6

0 6-1 VAX LISP Floating-Point Numbers 6-3
6-2 Floating-Point Constants 6-4
6-3 VAX LISP Pathname Fields 6-10
6-4 Summary of Implementation-Dependent Functions and

Macros 6-25
1 ~ormat Directives Provided with VAX LISP 40
2 Data Type Headings 81
3 TRACE Options 94

0

0

0

0
ix

0

0

0

0

0

0

0

PREFACE

Manual Objectives

The VAX LISP/ULTRIX User's Guide is intended for use in
debugging LISP programs, and for use in compiling and
programs on ULTRIX-32 and ULTRIX-32m systems. The VAX
elements are described in COMMON LISP: The Language.*

Intended Audience

developing and
executing LISP
LISP language

This manual is designed for programmers who have a working knowledge
of LISP. Detailed knowledge of ULTRIX-32 is helpful but not

O essential. However, some sections of this manual require more
extensive understanding of the operating system. _In such sections,
you are directed to the appropriate manual(s) for additional
information.

Structure of This Document

An outline of the organization and chapter content of this manual
ofollows:

PART I: VAX LISP/ULTRIX SYSTEM CONCEPTS ARD FACILITIES

Part I consists of six chapters, which explain VAX LISP concepts and
describe the VAX LISP facilities.

• Chapter 1, Introduction to VAX LISP, provides an overview of
VAX LISP, explains how to use th~ help facilities, and
describes ULTRIX file specifications.

• Chapter 2, Using VAX LISP, explains how to invoke and exit
from VAX LISP, use control key sequences, enter and delete
input, create and compile programs, load files, and use

Q* Guy L. Steele Jr., COMMON LISP: The Language, Digital Press (1984),
Burlington, Massachusetts.

xi

PREFACE

suspended systems. In addition, Chapter
ULTRIX vaxlisp command and its o~tions.

• Chapter 3, Error Handling, .describes
error-handling facility.

2

the

describes the

VAX LISP

• Chapter 4, Debugging Facilities, explains how to use the VAX
LISP debugging facilities.

• Chapter 5, The Pretty Printer, explains how to use the VAX
LISP pretty printer.

• Chapter 6, VAX LISP/ULTRIX Implementation Notes, describes the
features of LISP that are defined by or aie dependent on the
VAX implementation of COMMON LISP.

PART II: VAX LISP/ULTRIX FUNCTION, MACRO, ARD VARIABLE DESCRIPTIONS

Part II describes functions, macros, and variables specific to VAX
LISP and any COMMON LISP objects that have specific implementation
characteristics in VAX LISP. Each function or macro description
explains the function's or macro's use and shows its format,
applicable arguments, return value, and examples of use. Each
variable description explains the variable's use and provides examples
of its use.

Associated Documents

The following documents are relevant to VAX LISP/ULTRIX programming:

• VAX LISP/ULTRIX Installation Guide

• COMMON LISP: The Language

• VAX LISP/ULTRIX System Access Programming Guide

• ULTRIX-32 Programmer's Manual

• ULTRIX-32 Supplementary Documentation

• VAX Architecture Handbook

xii

0

0

0

0

0

0

0

PREFACE

Conventions Used in This Document

The following conventions are used· in this manual:

Convention

()

[)

UPPERCASE

lowercase
italics

Meaning

Parentheses used· in examples of'-LISP c0de indlcate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

Square brackets enclose elements that are optional.
For example:

[doc-string]

Defined LISP characters, functions, macros, variables,
and constants are printed in uppercase characters;
however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters.

Lowercase italics in function and macro descriptions
and in text indicate arguments that you supply;
however, you can enter them in lowercase, uppercase, or
a combination of lowercase and uppercase characters.

Q bold Names of ULTRIX commands and command options in the
text (not in examples) are in bold type.

0
{ }

{ }*

0

In LISP examples, a horizontal ellipsis indicates code
not pertinent to the example and not shown.

A vertical ellipsis indicates that all the information
that th~ system would display in response to the
particular function call is not shown; or, that all the
information a user is to enter is not shown.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example:

{keyword value}

In function and macro format specifications, braces
followed by an asterisk enclose elements that are
considered to be one unit of code, which can be
repeated zero or more times. For example:

{keyword value}*

xiii

Convention

&OPTIONAL

&REST

&KEY

<RET>

<CTRL/x>

command(n)

PREFACE

Meaning

In function and macro format specifications, the word O
&OPTIONAL indicates that the arguments after it are
defined to be optional. For example:

PPRINT object &OPTJONAL package

Do not specify &OPTIONAL when you invoke a function or
macro whose definition includes &OPTIONAL.

In function and macro format specifications, the word
&REST indicates that an indefinite number of arguments
may appear. For example:

BREAK &OPTIONAL format-string &REST args

Do not specify &REST when you invoke the
macro whose definition includes &REST.

function

In function and macro format specifications, the word
&KEY indicates that keyword arguments are accepted.
For example:

COMPILE-FILE input-pathname &KEY {keyword value}*

Do not specify &KEY when you invoke the function or Q
macro whose definition includes &KEY.

A symbol
indicates
example:

with a 1-
that· you

<RET> or <ESC>

to 3-character abbreviation
press a key on the terminal. For

In examples, carriage returns are implied at the end of Q
each line. However, the <RET> symbol is used in some
examples to emphasize carriage returns.

<CTRL/x> indicates a control key sequence where you
hold down the CTRL key while you press another key.
For example:

<CTRL/C> or <CTRL/Y>

The (n) after a command is the section number of the
ULTRIX-32 Programmer's Manual that contains a
description of that command. For example:

vi(1)

xiv

0

0
Convention

Black print

Red print

0

0

0

0

PREFACE

Meaning

In examples, output lines and prompting characters that
the system displays are in black print. For example:

Lisp> (CDR '(ABC))
(BC) ,
Lisp>

In examples, user input is shown in red print.
example:

Lisp> (CDR '(ABC))
(BC)
Lisp>

xv

For

(

0

0

0

0

0

0

0

0

0

0

PART I

VAX LISP/ULTRIX SYSTEM CONCEPTS AND FACILITIES

(
l

0

0

0

0

0

0

0

0

LISP is a general
used extensively
and development
processing, game
characterized by:

CHAPTER 1

INTRODUCTION TO VAX LISP

purpose programming language. The language has been
in the field of artificial intelligence for research
of robotics, expert systems, natural-language
playing, and theorem proving. The LISP language is

• Computation with symbolic expressions and numbers

• Simple syntax

• Representation of data by symbolic expressions or multilevel
lists

• Representation of LISP programs as LISP data, which enables
data structures to execute as programs and programs to be
analyzed as data

• A function named EVAL, which is the language's definition and
interpreter

Q • Automatic storage allocation and garbage collection

0

VAX LISP is implemented on both the VMS and the ULTRIX-32 operating
systems. VAX LISP as implemented on the VMS operating system is
formally named VAX LISP/VMS. VAX LISP as implemented on the ULTRIX
operating system is formally named VAX LISP/ULTRIX. Both VAX
LISP/ULTRIX and VAX LISP/VMS are the same language but with some
differences. For the differences, see the VAX LISP/ULTRIX Release
Notes. These notes are kept on line in the VAX LISP product

I directory, by default, /usr/lib/vaxlisp, in the file vaxlispnnn.mem,
where nnn is the VAX LISP version number (for example, lisp020.mem for
version 2.0)

This manual describes VAX LISP/ULTRIX but refers to VAX LISP/ULTRIX by
VAX LISP where practicable.

1-1

INTRODUCTION TO VAX LISP

This chapter provides an overview of the VAX LISP language. The
overview is arranged so that it parallels the structure of thio
manual. In addition to ,the overview, the chapter describes:

• On-line help facilities for ULTRIX and for LISP

• ULTRIX file specifications

1.1 OVERVIEW OF VAX LISP

The VAX LISP language runs on the ULTRIX-32 and the ULTRIX-32m
operating systems. This manual refers to both operating systems as
ULTRIX except in a few situations where the operating systems differ.

VAX LISP is an extended implementation of the COMMON LISP languageo
defined in COMMON LISP: The Language. In addition to the features
supported by COMMON LISP, VAX LISP provides the following extensions:

• VAX LISP shell command, vaxlisp

• Error handler

• Debugging facilities

• Pretty printer 0
• Facility for calling out to c and other ULTRIX compiled

languages

• Facility for defining non-LISP data structures

• VAX LISP functions, macros, and variables

These extensions are described in Sections L 1.1 through 1.1. 7. Q
NOTE

VAX LISP does not support ·complex numbers. However,
you can manipulate complex numbers by the use of the
alien structure and call-out facilitie~.

Some of fhe functions, macros, and facilities defined by COMMON LISP
are modified for the VAX LISP implementation. Chapter .6 provides
implementation-dependent information about the following topics:

• Data representation

0 • Pathnames

1-2

.-~ u

INTRODUCTION TO VAX USP

• Garbage collector

• Input and output

o Compiler

o Functions and macros

1.1.1 vaxlisp Shell Command

You can invoke VAX LISP from either shell (the C Shell or the Bourne
shell) with the shell command vaxlisp. Depending on the option(s) you
use with the vaxlisp command, you can start the LISP interpreter or
the LISP compiler. Chapter 2 describes the vaxlisp shell command and o· all the options you can use with it. Chapter 2 also explains how to:

• Invoke LISP

• Exit LISP

• Create programs

• Load files

0 • Compile programs

• Use suspended systems

1.1.1.1 Interpreter - The VAX LISP interpreter reads an expression,
evaluates the expression, and prints the results. You interact with
the interpreter in l~ne-by-line input.

QWhile in the interpreter, you can create LISP programs. You can also
use programs that are stored in files if you load the files into the
interpreter. Chapter 2 explains how to create LISP programs and how
to load files into the VAX LISP interpreter.

0

1.1.1.2 Compiler - The VAX LISP compiler is a LISP program that
translates LISP code from text to machine code. Because of the
translation, compiled programs run faster than interpreted programs.

You can use
compile a
can compile
Chapter 2).

the compiler to compile a single function or macro or to
LISP source file. If you are in the LISP interpreter, you
a single function or macro with the COMPILE function (see

1-3

INTRODUCTIOf\l TO VAX LISP

You can compile a program either from the shell or in LISP. If
are in the shell, you must specify the vaxlisp command with
compile (-c) option; if you are in LISP, you must invoke
COMPILE-FILE function. Chapter 2 explains how to compile
programs that are stored in files.

you

theo
the '

LISP

1.1.2 Error Handler

VAX LISP contains an error handler, which is invoked when errors occur
during the evaluation of a LISP program. Chapter 3 describes the
error handler and explains how you can create your own error handler.

1.1.3 Debugging Facilities

VAX LISP provides several functions and macros that return or
information you can use when you are debugging a program.
also provides four debugging facilities: the break loop,
stepper, and tracer.

display Q
VAX LISP

debugger,

The functions that return debugging information and the break loop,
stepper, and tracer facilities are defined in COMMON LISP and are
extended in VAX LISP. The break loop lets you interrupt the
evaluation of a program, the stepper lets you use commands to step Q
through the evaluation of each form in a program, and the tracer lets
you examine the evaluation of a program. The debugger is a VAX LISP
facility. The facility provides commands that let you examine and
modify the information in the LISP system's control stack frames.

Chapter 4 explains how to use the debugging facilities.

1.1.4 Pretty Printer

VAX LISP provides a pretty printer facility. You can use the facility
to control the format in which LISP objects are printed. The pretty
printer can be helpful in making objects easier to understand by means
of indentation and spacing. You can use the pretty printer with the
existing defaults, or you can control it with control variables.
Chapter 5 explains how to use the pretty printer in both of these
ways.

1.1.5 Call-Out Facility

VAX LISP includes a call-out facility, which lets. you call routines
written in C and other ULTRIX compiled languages. Chapter 2 of the

1-4

0

0

0

0

0

0

0

INTRODUCTION TO VAX LISP

VAX LISP/ULTRIX System Access Programming Guide describes the call-out
process and explains how to use the call-out facility.

1.1.6 Alien Structure Facility

VAX LISP supplies an alien structure facility. It lets you define,
create, and access VAX data structures that are used to communicate
between the VAX LISP language and C or other ULTRIX languages.
Chapter 3 of the VAX LISP/ULTRIX System Access Programming Guide
describes the alien structure facility and explains how to use it.

1.1.7 VAX LISP/ULTRIX Function, Macro, and Variable Descriptions

VAX LISP/ULTRIX contains many functions, macros,
are either not mentioned or are mentioned but not
COMMON LISP language. These functions, macros,
divided into the following categories:

and variables that
fully defined in the

and variables are

• Implementation-dependent
defined in Common LISP:

objects mentioned
The Language

but not fully

• VAX LISP objects that implement the parts of VAX LISP that are
described in this manual

• System access-specific objects (pertaining to the call-out,
alien structure, and interrupt function facilities)

These LISP objects let you use the VAX LISP facilities and some ULTRIX
facilities without exiting or calling out from the LISP system.

The LISP objects in the first two categories listed above are
described in Part II of this manual. System access-specific objects
are described in Part II of the VAX LISP/ULTRIX System Access
Programming Guide.

1.2 HELP FACILITIES

You can get help in using VAX LISP both from the shell (on ULTRIX-32
I only) and f rem the LISP interpreter.

1.2.1 UL TRIX HELP

Although ULTRIX-32 has the ULTRIX-32 Programmer's Manual on line,
ULTRIX-32m does not. So, only if you are on ULTRIX-32, can you get

1-5

INTRODUCTION TO VAX LISP

information about ULTRIX commands, their parameters, and
qualifiers by using the on-line ULTRIX-32 Programmer's Manual.

their

You display this manual's information on your terminal by using the
shell command man(l) with a second command (the one about which you
want to find information) as an argument. The format for d9ing this
is:

man command-name

Example

% man vaxlisp

0

In the preceding example, the man(l) command will display one
screenful (the first 21 lines of text on a terminal capable of
displaying 24 lines) of the manual's explanation on the vaxlisp Q
command.

Once you are reading a section of the on-line manual, you can move
through it in several ways:

• To se~ one more line of text, press the RETURN key.

• To see a second screen of text, press the SPACE bar.

• For further viewing commands, see the discussion of the Q
more(l) command in the ULTRIX-32 Programmer's Manual.

If the screen has displayed all of a section, you are automatically
returned to the shell prompt. If more is to be displayed, the last
line of your screen contains the phrase "--More--(xx%)". The percent
figure gives the fraction of the file (in characters) that has been
displayed so far. If you want to leave a section before all of it is
displayed, press the q key.

1.2.2 LISP HELP

VAX LISP provides two functions you can use to obtain help during a
LISP session: DESCRIBE and APROPOS. The.DESCRIBE- function displays
information about a specified LISP object. The type of information
the function displays depends on the object you specify as its
argument. You can use the APROPOS function to search through a
package for symbols whose print names contain a specified string. See
COMMON LISP: The Language for information about packages.
Descriptions of the DESCRIBE and APROPOS functions are provided in
Part II.

1-6

0

0

0

0

0

0

0

INTRODUCTION TO VAX LISP

1.3 ULTRIX FILE SPECIFICATIONS

An ULTRIX file specification indicates the input file to be processed
or the output file to be produced. A discussion of ULTRIX file name
syntax follows. For more information, see the ULTRIX-32. Programmer's
Manual.

1.3.1 File Name

ULTRIX is case sensitive. So, a file name in uppercase letters
indicates a file different from the same name in lowercase letters.

ULTRIX file names can be from 1 to 255 ASCII characters in length.
Any character (printable.or not) can be used except for the'slash 11 / 11

(the delimiter) and the null character (the terminator). However, to
use only alphanumeric characters is best. Many nonalphanumeric
characters have special meaning to the shell and can create confusion
if you use them in a file name.

You can use a hyphen(-) in a file name, but you should not use a
hyphen as the first character in the name. The hyphen preceded by a
space indicates an option argument to a command, not a file name.

Although an extension to a file name (a file type) is not required,
you can create file names with extensions by placing a period between
the extension and the base of the name; for example, factorial.lsp.
VAX LISP uses extensions (file types) to name files. See Section
1.3.4.

ULTRIX does not maintain version numbers for files. ·So, if you make a
new version of an old file and do not rename the old version, the old
version will be lost.

1.3.2 Pathname

On ULTRIX, the pathname of a file is the file's name plus the name of
the directory-tree structure that contains the file. The directory
tree goes from the system root directory to the file's working
(default) directory. The directory tree is called a pathname because
it is like a path that leads to a file's location.

The last component of a pathname is usually a file name, though it can
be a directory name if that is what is wanted. For example, if you
use the pwd(l) command to show your working dire_ctory, that command
displays a pathname whose last component is a directory.

1-7

INTRODUCTION TO VAX LISP

NOTE

A pathname is also a COMMON LISP data type (see
Chapter 6). In the other chapters of this manual, the
word PATHNAME refers to the COMMON LISP data type.

1.3.2.1 Directory Names - In ULTRIX, a directory is named in the same
way as any other file with one exception: The first slash(/) in a
complete pathname indicates the system root directory. Other than the
system root directory, directories are simply file names "that are
branches of the root directory. So, the following specification could
be either of a file or of a directory:

/usr/users/jones/lispl

1.3.2.2 Slash(/) Separators - Slashes (/) separate the components of
a pathname (directory names from each other, and a file name from its
directory) •. However, a single slash(/) by itself stands for the
ULTRIX system root directory.

0

0

1.3.2.3 Sample Pathname - In the following sample pathname, Q
factorial.lsp is a file in the directory /usr/users/jones/lisp, and
lisp is a subdirectory of the directory /usr/users/jones:

/usr/users/jones/lisp/factorial.lsp

1.3.2.4 Host Names - Normally, a host (computer) name is not included Q
in a pathname. However, when using the rcp(l) command to copy files
between computers, the host name followed by a colon(:) is added to
the front of a pathname. For example, in the following file
specification, miami is the host name:

miami :/usr/users/jones/lisp/factorial •. lsp

1.3.3 Default Values

You do not have to supply a complete pathname each
file, load an initialization file, or resume
Also, the file name ·by itself wi.thout its type is
name is contained in your working directory.

1-8

time you compile a
a suspended system.
sufficient if the

0

INTRODUCTION TO VAX LISP

The way the system fills in default values depends on the operation

O that is being performed. For example, if you are compiling a file and
you specify only a file name, the compiler processes the source
program if it finds a file with the specified file name in the default
directory. The file (in your directory) does not have to have a type;
but if it does, it must have the default type of lsp for the. system to
process the file without your specifying the file type· (in your
command line). Suppose you pass the following file specification to
the compiler:

% vaxlisp -c circle

Also, suppose the file circle is in the directory /usr/user/jones.
Then the previous file specification would be equivalent to:

% vaxlisp -c /usr/user/jones/circle.lsp

Q In either specification, the compiler searches through the
directory-tree structure of/, usr, user, and jones, seeking the file
circle or, if that does not exist, circle.lsp. Since no output file
is specified, the compiler generates the file circle.fas and stores it
in directory jones.

0 1.3.4 VAX LISP Default File Types

VAX LISP has the default file types listed in Table 1-1.
types are explained in Chapter 2.

Table 1-1: VAX LISP File Type Specifications

File Type Description

Qfas Fast-loading file (output from compiler)

lis Error listing (output from compiler)

These file

lsp Source file (input to LISP reader or compiler)

SUS

0

Suspended system (a copy of the LISP memory in use
during an interactive LISP session)

1-9

-----------------·---------

(

0

0

0

·o

0

0

CHAPTER 2

USING VAX LISP

This chapter describes the shell command vaxlisp and its options and (
oexplains the following:

• Invoking LISP

• Exiting LISP

• Entering input

• Deleting input

0 • Entering the debugger

• Using control key sequences

• Creating programs

• Loading files

0 • Compiling programs

• Using suspended systems

2.1 INVOKING LISP

You invoke an interactive LISP session by typing the shell command
vaxlisp. When it· is executed, a message identifying the VAX LISP

, system appears, and then the LISP prompt (Lisp>) is displayed. For
example:

% vaxlisp

0
Welcome to VAX LISP, Version V2.0

Lisp>

2-1

USING VAX LISP

See Section 2.10 for a description of the options you can use with the
vaxlisp command.

2.2 EXITING LISP

You can exit from LISP by using the LISP EXIT function. For example:

Lisp> (EXIT)
%

When you exit the LISP system, you are returned to the shell.

2.3 ENTERING INPUT

You enter input into the VAX LISP system a line at a time. Once you
move to a new line, you cannot go back to the previous line. However,
you can recover an input expression or an output value by using the
following 10 unique variables:·

I
II
Ill

*
**

+
++
+++

These variables are described in COMMON LISP: The Language. The
following example illustrates the use of the plus sign(+) variable
that is bound to the expression most recently evaluated:

Lisp> (CDR '(ABC))
(BC)
Lisp>+
(CDR (QUOTE (ABC)))
Lisp>

COMMON LISP symbols are not case sensitive.

2.4 DELETING INPUT

The keys that control how you delete input vary d~pending on whether
you use the Bourne or the C Shell and on what options you use in a
shell. For more information on deleting input, see the ULTRIX-32
Programmer's Manual.

2-2

0

0

0

0

0

0

0

0

USING VAX LISP

2.5 ENTERING THE DEBUGGER

If you make an error in an interactive VAX LISP session, the error
automatically invokes the debugger, which replaces the LISP prompt
(Lisp>) with the debugger prompt (Debug 1>). If you continue to make
errors, each new error puts you into another level in the debugger.
The debug prompt indicates the level of interaction. For example, the
prompt "Debug 2>" means you are at a second level in the debugger.
For information on how to use the VAX LISP debugger, see Chapter 4.

Typing <CTRL/C> is a quick way to recover from an error without using
the VAX LISP debugger. If you want to recover from an error by
discarding the expression you typed and starting over, type <CTRL/C>.
<CTRL/C> returns you to the read-eval-print loop, which displays the
LISP prompt (Lisp>).

2.6 USING CONTROL KEY SEQUENCES

Table 2-1 lists three helpful QLTRIX signals and the default control
key sequences bound to these signals. To display the settings of
control keys for various signals, type the stty all command. For
further information on characters that generate signals and on how to
change control key sequences bound to these signals, see the stty·(1)
command in the ULTRIX-32 Programmer's Manual. The control keys that
generate these signals are the only control characters that can be
bound to functions with BIND-KEYBOARD-FUNCTION (see Part II for a
description of BIND-KEYBOARD-FUNCTION).

Table 2-1: Control Key Sequences

Q Signal

Default
Control-Key
Sequence Function

SIG INT <CTRL/C>

0

In LISP, <CTRL/C> first invokes the -
CLEAR-INPUT function on the
TERMINAL-IO stream, then throws to
the catcher established for
CANCEL-CHARACTER-TAG. If you want to
recover from an error by discarding the
expression you typed and starting over,
type <CTRL/C>. (See the description o(
CANCEL-CHARACTER-TAG in Part II for an
example of changing the behavior of
<CTRL/C>.)

2-3

Table 2-1 (cont.)

Signal

SIGQUIT

SIGTSTP

Default
Control-Key
Sequence

<CTRL/\>

<CTRL/Z>

2.7 CREATING PROGRAMS

USING VAX LISP

Function

By default, <CTRL/\> (A\), makes a core
dump and exits LISP. <CTRL/\> can be
bound with the BIND-KEYBOARD-FUNTION
function.

In the C shell, suspends a process and
returns you to the shell, letting you
execute other commands while the
process (such as an interactive LISP
session) remains suspended. The shell
command jobs shows you the number of
any suspended processes. By typing %n
in response to the shell prompt, where
n is the number of your suspended
process, you will be returned to your
suspended process. See the ULTRIX-32
Programmer's Manual for further
information regarding the SIGTSTP
signal.

The most common way to create a LISP program is by using a ·text
editor. In this way, the program exists in a source file that can be
loaded into the LISP environment by the LISP LOAD function.

0

0

0

Although you can compose source programs with any text editor, the Q
ULTRIX vi(l) screen editor provides three options that help you enter
and edit LISP source code.

• lisp Changes the (and) commands to move backward and
forward over LISP expressions.

• ai Properly indents LISP expressions.

• sm Briefly shows the on-screen position of an open
parenthesis that matches a close parenthesis.

You can set these options in the editor startup file EXINIT with the
line:

set lisp ai sm

2-4

0

USING VAX LISP

For more information on this editor, see the ULTRIX-32 Programmer's
oanual and the ULTRIX-32 Supplementary Documentat.ion -- Volume I.

Another way to create LISP programs is to define them, using the LISP
interpreter in an interactive LISP session. If you define functions
with the DEFUN macro or macros with the DEFMACRO macro, the
definitions become a part of the interpreted LISP environment. You
can then invoke your defined functions and macros. However, since
these definitions are not in a permanent text file, your work is
stored only temporarily and disappears when you exit VAX LISP.
Entering programs by means of the interpreter is really useful only
for experimenting with small functions and macros.

2.8 LOADING FILES

OBefore you can use a file in interactive LISP, you must load the file
into the LISP system. The file can be compiled or interpreted;
compiled files load more quickly. You can load a file into the LISP
system in two ways:

•

0

0

•

0

Load the file by specifying the vaxlisp INITIALIZE (-i) option
when in the shell. For example:

% vaxlisp -i myinit.lsp

Welcome to VAX LISP, Version V2.0

Lisp>

The LISP prompt indicates the file has been successfully
loaded. If the file is not successfully loaded, an error
message indicating the reason appears on your terminal screen.
Include the VERBOSE (-v) option to cause the names of
functions loaded in an initialization file to be listed at the
terminal. For more information on the -i option, see Section
2.10.4.

Load the file by using the
interactive·LISP session.

LISP LOAD
For example:

function when

Lisp> (LOAD "testprog. lsp") .

in an

; Loading contents of file /usr/users/jones/testprog.lsp
; FACTORIAL

FACTORS-OF
Finished loading /usr/users/jones/testprog.lsp

T
Lisp>

The file name, testprog.lsp, can be a string, symbol, stream,
or pathname. FACTORIAL and FACTORS-OF are t~e functions

2-5

USING VAX LISP

indicates contained in the file testprog.lsp. The final T
that the file has been successfully loaded.
information on the LOAD function, see Part II.

For more Q

With the -i option, you can load more than one file at a time. With
the LOAD function, however, you can specify only one file at a time.

2.9 COMPILING PROGRAMS

You compile LISP programs by compiling the LISP expressions that make
up the programs. You can do this individually apart from any file or
in a file. You can compile LISP expressions individually by using the
LISP COMPILE function. You can compile a file of LISP expressions by
using the LISP COMPILE-FILE function or the shell vaxlisp command with
the COMPILE (-c) option.

2.9.1 Compilrng Individual Func~ions and Macros

In LISP, the unit of compilation is normally either a function or a
macro. You can compile a function or a macro in a currently running
LISP session by using the COMPILE function. This function is
described in COMMON LISP: The Language.

You normally call a LISP function first in interpreted form to see if
the function works. Once it works as interpreted, you can test it in
compiled form without having to write the function to a file. Use the
COMPILE function for this purpose. Section 2.9.3 has an example of
how the compiler can find errors that the interpreter misses.

When you compile a function or a macro that is not in a file, the
consequent compiled definition exists only in the current LISP
session; the definition is not in a file. However, you can use the
VAX LISP UNCOMPILE function to restore the interpreted definition.
This function, described in Part II, is useful when debugging
programs. Because the interpreted code shows you more of your
function's evaluation than the compiled code, you can find errors more
easily. For more information on finding errors in your code, see the
description of the VAX LISP debugger in Chapter 4.

2.9.2 Compiling Files

0

0

0

Any collection of LISP expressions can make up a program and can be
stored in a file. The compiler processes such a file by compiling the
LISP expressions in the file and writing each compiled result ~o an.
output file. Q

2-6

USING VAX LISP

C) You can compile LISP files either in the shell with the vaxlisp
command and the COMPILE (-c) option or in an interactive LISP session
with the LISP COMPILE-FILE function.

0

The -c option is described in Section 2.10.2. The
function is described in Part II and in COMMON LISP:
The following example shows how the -c option is used to
file myprog.lsp in the shell:

% vaxlisp -c myprog.lsp
%

COMPILE-FILE
The. Language.

compile the

This example produces an output file named myprog.fas. The next
example shows how the COMPILE-FILE function can be used to compile the
file myprog.lsp from in t~e LISP system:

Lisp> (COMPILE-FILE "myprog.lsp")
Starting compilation of file /usr/users/jones/myprog.lsp

FACTORIAL compiled.

Finished compilation of file /usr/users/jones/myprog.lsp
O Errors, 0 Warnings
11 /usr/users/jones/myprog.fas"
Lisp>

O Both methods of compiling LISP files ~re equivalent except in their
defaults. The COMPILE-FILE function automatically lists the name of
each function it compiles at the terminal, but the -c option does not.
Both methods produce fast-lo'ading files (type fas) that run more
quickly than uncompiled files. The fast-loading files by default are
placed in the directory containing your source files~

The first method of compiling files, using the LISP -c option, has the

Oadvantage that you can compile several files in one step. For
example:

% vaxlisp -c filel.lsp file2.lsp file3.lsp

When you use the COMPILE-FILE function, it takes several steps to
compile several files, since you can compile only one file at a time.

The second method of compiling files, using the LISP COMPILE-FILE
function, has the· advantage of enabling yeti to stay in LISP both

I during compilation and afterwards. This method is convenient if you
are compiling a single function and want to quickly check for errors
and correct them without leaving LISP. This method is necessary if
the compilation depends on changes you have made to the LISP
environment; that is, you have defined some macros or changed a

Q package.

2-7

USING VAX LISP

2.9.3 Advantages of Compiling LISP Expressions

You can use both compiled and uncompiled (interpreted) files and
functions during a LISP session. Both compiled and uncompiled LISP
expressions have their advantages. The advantages of compiling a
file, a macro, or a function are:

• Compiling a function or a macro is a good initial debugging
tool, since the compilation does static error checking
(checking a program for errors without running it), . such as
checking the number of arguments to a function or a macro.
For example, consider the following function definiti6n:

(DEFUN TEST (X)
(IF(> X 0)

(+ 1 X)
(TEST (TRY X) X)))

In the definition of the function TEST, the alternate
consequent (the false part) of the IF condition has two
arguments ("(TRY X)" aJ;}d "X"),- while the function definition
of TEST calls for only one argument. Despite this error, this
function might work correctly as an interpreted (uncompiled)
function if the argument given is a positive number, since it
uses only the first consequent (the true part); so you may not
detect the error. But if you compiled the function, the
compiler would detect the error in the second consequent and
issue a warning.

• A compiled file not only loads much faster, but the compiled
code executes significantly faster than. the corresponding
interpreted code.

2.9.4 Advantage of Not Compiling LISP Expressions

You can debug run-time errors in an interpreted function more easily
than you can debug them in a compiled file or function. For example,
if the debugger is invoked because an error occurred in an uncompiled
function, you can use the debugger to find out what code caused the
error. If the debugger is invoked because .an error occurred in a
compiled function, the code surrounding the form that caused an error
to be signaled may not be accessible. The steppe~ facility is also
more informative with interpreted than with compiled functions. See
Chapter 4 for information on the debugger and the stepper.

2-8

0

0

0

0

0

0

0

0

0

0

USING VAX LISP

2.10 vaxlisp COMMAND OPTIONS

The vaxlisp-shell
according to the
command is:

command can be
standard ULTRIX

specified with
conventions.

several options
The format of the

vaxlisp [-option .•.] [file] ...

The conventions are:

•

•

•

Options and their arguments qualify the vaxlisp command .

Files specified with the COMPILE option are the only arguments
to the command. Files specified with any other option are
arguments of that option only. Thus, files to be compiled do
not have to be specified immediately after the COMPILE option,
but files that are the argument of any other option have to be
specified immediately after that option. Also, options
specified with the COMPILE option apply to all the file(s) to
be compiled.

For example, in the following command line, myprogl.lsp and
myprog2.lsp are specified with the COMPILE (-c) option. These
file are the only arguments of the command vaxlisp, and the
VERBOSE (-v) option applies to both of the files. The file
myinit.lsp is the argument of the INITIALIZE (-i) option.

vaxlisp -c -i myinit.lsp·-v myprogl.lsp myprog2.lsp

ULTRIX is case sensitive; the command name is in the lower
case and all the options, with the exception of the LISTING
(-L) and the VENDOR (-V) options, are in the-lower case.

Most options can be specified in two ways:

As a VENDOR (-V) option with an option-name argument.
example:

-V COMPILE

For

As a single-letter option without the option name. For
example:

-c

• Some options accept arguments. These arguments can be either
a file name, a number, a symbol, or a string depending on the
option. To specify an option argument, type the option
specifier followed by a space and the argument. For example:

2-9

USING VAX LISP

-i myprog.lsp

or

-m 15000

or

-V NOWARNINGS

or

-V "NOWARNINGS"

• To specify a list of option arguments, type a space after the
option specifier and either separate the arguments with
commas, or include the arguments in string quotes and separate Q
the arguments with spaces. For example:

-i mrprog1.lsp,myprog2.lsp

or

-i "myprog1.lsp myprog2.lsp"

e When specifying a number of options, you can specify them in Q
any order. However, an option that takes an argument must
have that argument follow the option specifier. For example:

-v -i file

or

-i file -v

• Most options can be negated only in the -v form. You negate Q
an option by adding NO to the -v option name. For example:

-V NOVERBOSE

The two exceptions to this rule are the WARNINGS option and
the OUTPUT_FILE option. WARNINGS can be negated by NOWARNINGS
in the -v form or by -w; OUTPUT_FILE can be negated by
NOOUTPUT_FILE in the -V form or by -n.

• If conflicting options are specified, the
specified is used.

last option

• If you use the -v option specifier, the rules for formatting
the argument(s) of the -v are:

2-10

0

0

0

0

0

0

USING VAX LISP

Case can be either upper, lower, or a mixture.
example, the following are equivalent:

-v compile

-V COMPILE

-V Compile

For

Option names can be abbreviated to the fewest ambiguous
letters. For example, MEMORY can be abbreviated to ME, and
MACHINE_CODE can be abbreviated to MA.

Option-name arguments can be combined into one unit by
joining them together with commas or in a string surrounded
by double quotes and separated by spaces. For example, the
following three command lines are equivalent:

-v INITIALIZE=file -v MACHINE_CODE -v COMPILE file

-V INITIALIZE=~ile,MACHINE_CODE,COMPILE file

-v "INITIALIZE=file MACHINE_CODE COMPILE" file

Options can be specified either as a string (with quotes)
or not (without quotes). For example, the following are
equivalent:

-V COMPILE

-V "COMPILE"

Specify an option argument
followed by. an equal sign
example:

by typing
(=) and

-V "INITIALIZE=MYPROG.LSP"

or

-V INITIALIZE=MYPROG.LSP

Options specified with more than one
INITIALIZE and OPTIMIZE options) have
format with the arguments enclosed in
separated by commas. For example:

-V "OPTIMIZE=(SPEED:3,SAFETY:2)"

the option
the argument.

name
For

argument (the
to be in string
parentheses and

In the format description, option arguments are surrounded
by braces ({ }) when you can choose only one value from a
list. For example:

2-11

USING VAX LISP

-v ERROR_ACTION={EXIT or DEBUG}

Table 2-2 summarizes the.options you can use with the vaxlisp shell()
command. Sections 2.10.2 through 2.10.13 describe each option in
detail.

Table 2-2: Options of the vaxlisp Shell Command

Option Function

-v COMPILE (or) -c

-V ERROR_ACTION={EXIT or DEBUG}

-v INITIALIZE=file(sJ (or) -i file(s)
-V NOINITIALIZE

-V LISTING[=file] (or) -L
-V NOLISTING

2-12

Invokes the VAX LISP ~ompiler
to compile one or more source
files (input arguments that
default to the file type lsp).

EXIT causes your program to,o
exit LISP when an error
occurs. EXIT is the default
in jobs not attached to a
terminal and when you use the
-c option. DEBUG invokes the
VAX LISP debugger when an
error occurs. DEBUG is the
default in an interactive LISP
session. Q
Causes the LrSP system to load
an initialization file(s).
The default file types for an
initialization file are· lsp
and fas. -v NOINITIALIZE
suppresses the loading of
initialization files.

Specifies that a listing file()
be created during compilation.
You can specify a listing file
name only with the -v format
of the option. A listing
consists of the file name,
date of compilation, names of
the LISP expressions compiled
(if the -v option is
specified), and warning and
error messages. The default
file type for a listing file
is lis. -v NOLISTING
suppresses a listing file and
is the default except in jobs .
not attached to a terminal.()
In such jobs, -v LISTIRG is
the default.

USING VAX LISP

(:)ab~e 2-2 (cont.)

Option

-V MACHINE_CODE (or) -a
-V NOMACHINE_CODE

-v MEMORY=nurnber (or) -m number

-V "OPTIMIZE=(SPEED:n,SPACE:n,
SAFETY:n,COMPILATION_SPEED:n)" Q-v NOOPTIMIZE

0

0 -v OUTPUT_FILE=file (or) -o file
-V NOOUTPUT_FILE (or) -n

-v RESOME=file (or) -r file

-v VERBOSE (or) -v 0 -V NOVERBOSE

2-13

Function

Includes LISP machine code in
the listing file. -v
NOMACHINE_CODE suppresses a
listing of the machine code
and is the default.

Specifies the amount of
dynamic virtual memory LISP
allocates in 512-byte pages.

Tells the compiler that each
quality has the corresponding
value. SPEED is the speed at
which the object code runs,
SPACE is the space occupied or
used by the code, SAFETY is
the run-time error checking of
the code , and
COMPILATION_SPEED is the speed
of the compilation process. n
is an integer in the range O
to 3. The value O is the
lowest priority value; the
value 3 is the highest. The
default value for n is 1. See
Chapter 6 for a description of
optimization declarations.
-V NOOPTIMIZE' suppresses
optimization.

name of the
to be the

The default
is fas. -v

Causes the
compiled file
specified name.
output file type
NOOUTPUT_FILE prevents
compiled code from being
written to a file.

Resumes a suspended LISP
system. The default file type
for a suspended LISP system is
sus. See Section 2.11 on
Using Suspended Systems.

Lists on the output device and
the listing file, if any, the
names of functions and macros
loaded (if -i) or compiled (if

USING VAX LISP

Table 2-2 (cont.)
~\

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---;\ ) 
Option Function ,..____/ 

-V WARNINGS 
-V NOWARNINGS (or) -w 

-c). -v NOVERBOSE suppresses 
a listing of func~ion and 
macro names defined ln a file. 
-V NOVERBOSE is the default. 

Specifies that the compiler is 
to produce warning messages. 
-v WARNINGS is the "default. 
-V NOWARNINGS prevents the 
compiler from producing 
warning messages. 

2.10.1 Three Ways to Use the vaxlisp Command 

Depending on the option modifying it, you can use the vaxlisp command 
in one of the following three ways called modes: 

e COMPILE 

9 INTERACTIVE 

o RESUME 

to compile LISP files 

to invoke an interactive LISP session 
(the default) 

to resume a suspended LISP system 

Table 2-3 lists the options of ·the vaxlisp shell command that apply to 
each mode. The vaxlisp command without an option puts you in an 
interactive LISP session (the default). 

Table 2-3: Option Modes for the vaxlisp Command 

Option Mode 

COMPILE COMPILE 

ERROR_ACTION INTERACTIVE or COMPILE or RESUME 

INITIALIZE INTERACTIVE or.COMPILE 

LISTING ' COMPILE 

MACHINE_CODE COMPILE 

MEMORY INTERACTIVE or COMPILE or RESUME 

OPTIMIZE COMPILE 

2-14 

0 

0 

0 

0 



0 

0 

0 

0 

l 

0 

USING VAX LISP 

Table 2-3 ( cont. ) 

Option Mode 

OUTPUT_FILE COMPILE 

RESUME RESUME 

VERBOSE INTERACTIVE or COMPILE 

WARNINGS COMPILE 

2.10.2 COMPILE 

The COMPILE option, abbreviated as -c, invokes the VAX LISP compiler 
to compile one or more source files. These source files are specified 
as arguments to the vaxlisp shell command (rather than as arguments of 
the -c option). The compiler creates a fast-loading (fas) file from 
each source file, which defaults to type lsp. Unlike other compilers, 
such as those for C and FORTRAN, the LISP compiler does not generate 
ULTRIX object a.out files. So, the LISP compiler does not have an "o" 
file type. If the ~c option is used with the NOOUTPUT_FILE (-n) 
option, the compiler compiles the source file but does not put the 
compiled code in a file. That method is helpful if your purpose in 
compiling the file is to check for errors. See Section 2.10.9 for 
more information on the NOOUTPUT_FILE ·option. 

By default, the compiler gives your newly compiled file the same name 
as your source file with a fas file type, puts the new file in your 
source file's di rectory, and returns you to the . shell when the 
compiler is finished. If you want function names to be listed on your 
output device as they are compiled, you must specify the VERBOSE (-v) 
option (see Section 2.10.11). If you want to compile files with the 
aid of initialization files, use the INITIALIZE (-i) option (see 
Section 2.10.4). 

If you use the LISTING, MACHINE_CODE, OPTIMIZE, OUTPUT_FILE, VERBOSE, 
and WARNINGS options with the COMPILE option, the options apply to all 
the files to be compiled. 

If you compile more than-one file at a time, separate file names with 
a space. 

Format 

vaxlisp -c file1 ••. 

or 

vaxlisp -V COMPILE file1 

2-15 



USING VAX LISP 

Example 

% vaxlisp -c factorial.lsp 

Mode 

Compile 

2.10.3 ERROR_ACTION 

The ERROR_ACTION option can be specified only with the -v option. The 
ERROR_ACTION option has two mutually exclusive values: EXIT and 
DEBUG. 

• EXIT causes the evaluation of your program to stop and exits 
LISP if a fatal or a continuable error occurs (for a 
description of errors and warnings, see Chapter 3). EXIT is 
the default in jobs not attached to a terminal and in compile 
mode;'that is, with the -c option. 

• DEBUG calls the VAX LISP debugger if an error occurs. Once 
you are in the VAX LISP debugger, you can look at your error, 
inspect the control stack, and continue your program from the 
point at which it stopped. DEBUG is the default in an 
interactive session. See Chapter 4 for more information on 
the debugger. 

You can use the ERROR_ACTION option when invoking an interactive LISP 
session or when compiling 
ERROR_ACTION option is mainly 
terminal and is equivalent 
(see Part II). 

Format 

f'iles with the COMPILE (-c) option.· The 
useful for jobs not attached to a 
to the VAX LISP *ERROR-ACTION* variable 

vaxlisp -v ERROR_ACTION=value 

Example 

% vaxlisp -c -v ERROR_ACTION=DEBUG myp~og.lsp 

Mode 

Inte'racti ve, Compile, or Resume 

2-16 

0 

0 

0 

0 

0 



USING VAX LISP 

2.10.4 [NO]INITIALIZE 

QThe INITIALIZE option, abbreviated as -i, causes the LISP system to 
load one or more initialization files containing LISP source code or 
compiled code. An initialization file's purpose is to predefine 
functions you might want to use in a LISP session. The def~ult is to 
have no initialization file. · 

If the initialization files contain calls to exiting functions or if 
these files contain errors and the ERROR_ACTION option is set to exit 
(-V ERROR_ACTION=EXIT), the LISP system returns to the shell without 
going into an interactive LISP session. If the initialization files 
contain errors and the ERROR_ACTION option is set to debug (-V 
ERROR_ACTION=DEBUG), the LISP system puts you into the LISP debugger. 
See Section 2.10.3 for more information on the ERROR_ACTION option. 

O The -i option uses the LISP LOAD function to determine defaults for 
the proper file type, directory, and other parts of a file 
specification. For example, you do not have to specify the file type 
with the name of your initialization file, if that file has a fas or a 
lsp file type. If your directory contains a file name with both a fas 
and a lsp file type, the LISP system selects the most recently created 
file as the initialization file. If only a lsp type file or only a 
fas type file of a given name and directory exists, the LISP system 
selects the type file that exists. 

Quse ~he VERBOSE (-v) option (see Section 2.10.11) to display on the 
terminal screen the names of the functions or macros in the 
initialization file. 

You can use the -i option when invoking an interactive LISP session or 
when compiling files with the COMPILE (-c) option. You cannot use the 
-i option with the RESUME {-r) option; if you do, the -i option is 
disregarded. 

Q If you load more than one 
use parentheses inside 
NOINITIALIZE form of this 
loading of initialization 

file by 
quotes 
option 

files. 

Format for Interactive Mode 

vaxlisp -i file![, ••• ] 

or 

vaxlisp -v INITIALIZE=file 

or 

using the -v option format, you must 
(see the following format). The 

(-V ROIRITIALIZE) suppresses the -

o vaxlisp -v "INITIALIZE={filel[, ••• J)" 

2-17 



USING VAX LISP 

Format for Compile Mode 

vaxlisp -i filel[, .... ] -c file 0 
or 

vaxlisp -V "INITIALIZE=(filel[, ... ]) COMPILE" file 

Example 

% vaxlisp -i myinit -v 

Welcome to VAX LISP, Version V2.0 

Loading contents of file 
FACTORIAL 
FACTORS-OF 

; Finished loading /usr/users/jones/myinit.lsp 
* 

In the· preceding example, the file type defaults to lsp. 
FACTORIAL and FACTORS-OF are functions that are loaded into the 
LISP system from Jones's initialization file. The form (SETF 
*TOP-LEVEL-PROMPT* "*" ) in the initialization file changes the 
Lisp> prompt to an asterisk(*). The *TOP-LEVEL-PROMPT* variable 

0 

is described in Part II. Q 
The SETF form and the prompt variable are not listed on an output 
device when the file is loaded, because the VERBOSE option (-v) 
lists only functions and macros defined in the file. 

Mode 

Interactive or Compile 

2.10.5 [NO]LISTING 

The LISTING option,abbreviated as -L, is meaningful only if it is 
specified with the COMPILE (-c) option. The -L option specifies that 
the compiler generate a listing file during compilation. You must 
specify this option if you want a listing file. A listing includes 
the name of the file compiled, the date it was compiled, warning or 
error messages produced during compilation, and a summary of warning 
and error messages. If you specify the VERBOSE (-v) option and the -L 
option, the listing also includes the names of the functions compiled. 

You can specify a file name for the listing only in the -v format. Do 

0 

so only when you want the listing file name to be-different from the. 
name of the source file. If you specify the LISTING option without a Q 
file name, the LISP system produces a listing file with a lis file 
type and the same name as the source file. 



0 

0 

0 

0 

0 

USING VAX LISP 

The NOLISTING form of this option prevents the compiler from 
generating a listing file and is the default except in jobs not 
attached to the terminal. In such jobs, LISTING is the default. 

Format 

vaxlisp -c -L file 

or 

vaxlisp -V COMPILE,LISTING[=file] file 

Example 

% vaxlisp -c myprog.lsp -v -V listing=factorial.lis 

Sample Listing File 

Mode 

Listing output for file /usr/users/jones.lis/myprog.lsp 
Compiled at 10:33:30 on Friday, 20 April 1984 by JONES 
Lisp Version V2.0 

Starting compilation of file "/usr/users/jones.lis/myprog.lsp". 
FACTORIAL compiled. 

Finished compilation of _file "/usr/users/jones.lis/myprog.lsp". 
O Errors, 0 warnings 

Compile 

2.10.6 [NO]MACHINE CODE 

The MACHINE_CODE option,abbreviated as -a, is meaningful only if it is ·· 
specified with the COMPILE (-c) option. The -a option requests the 
compiler to put a listing of the VAX LISP machine code in a file 
separate from the fas file the compiler generates. The compiler also 
puts anything usually included in a listing file in this file (see 
Section 2.10.5 for a description of a listing file). 

,VAX LISP machine code is similar to a standard assembly language code. 
However, compiling LISP code does not generate object modules that can 
be linked. 

The -a option has no effect on the machine code; this option produces 
only a machine-code listing file. The machine-code -listing file 
generated when you use the -a option has the same name as your source 
file and has a lis file type (unless you also used the LISTING option 
to specify a different name). 

2-19 



USING VAX LISP 

The NOMACHINE_CODE form of this option, the default, prevents 
compiler from generating a listing of the LISP machine code. 

Format 

vaxlisp -a -c file 

or 

vaxlisp -V COMPILE,MACHINE_CODE file 

Example 

% vaxlisp -a -c myprog.lsp 

Mode 

Compile 

2.10.7 MEMORY 

the 

The MEMORY option, abbreviated as -m, lets you specify the amount of 
dynamic virtual memory the LISP system allocates in 512-byte pages. 

0 

0 

The LISP system requires a minimum of 6000 pages of dynamic virtual Q 
memory in addition to the read-only and static memory. So, the 
default page size for the dynamic virtual memory is 6000 pages. If 
you specify fewer than 6000 pages with the -m option, the system 
disregards the requested page size and uses the default page size. 
You do not need the -m option if you intend to use no more than·6000 
pages of dynamic memory. 

To see how many pages of memory are available at any point while you 
are in LISP, use the LISP ROOM function. If you discover that you Q 
need more memory, save your work by creating a suspended system and : 
exit LISP. Then reenter LISP with the RESUME (-r) and the -m options. 
Use the -m option to specify a larger number of pages than you had 
previously specified. For information on creating a suspended system, 
see Section 2.11.1; for descriptions of the -r option and the ROOM 
function, see Section 2.10.10 and Part II, respectively. 

Format 

vaxlisp -m value 

or 

vaxlisp -v MEMORY=value 

2-20 

0 



USING VAX LISP 

Example 

0 % vaxlisp -m 15000 

Welcome to VAX LISP, Version V2.0 

Lisp> 

Mode 

Interactive or Compile or Resume 

2.10.8 [NO]OPTIMIZE 

OThe OPTIMIZE option can be specified only as a string argument of the 
-v option. This option lets you optimize your program according to 
the following qualities: 

• SPEED (execution speed.of the code} 

• SPACE (space occupied by the code} 

• SAFETY (run-time error checking of the code} 

Q • COMPILATION_SPEED (speed of the compilation process) 

You can optimize your program by setting a priority value for each 
quality. That value must be an integer in the range of Oto 3. The 
value O means the quality has the lowest priority in relationship to 
the other qualities; the value 3 means the quality has the highest 
priority in relationship to the other qualities. When you do not 
specify the OPTIMIZE option, the qualities each take the default value 

Cof 1. To suppress optimization, use the NOOPTIMIZE form of this 
!>ption. 

The OPTIMIZE option is meaningful only if it is specified with the -
COMPILE (-c) option. The optimize qualifier affects only the compiler 
and does nothing to the interpreter, the debugger, or any other VAX 
LISP facility. See Chapter 6, Appendix A, and COMMON LISP: The 
Language for information on specifying optimization declarations. 

Format 

vaxlisp -c -v "OPTIMIZE=(guality:value[, ••. ])" file 

0 
2-21 



USING VAX LISP 

Example 

% vaxlisp -c -v "OPTIMIZE=(SPEED:3,SAFETY:2)" mypro~.lsp 0 
or . 

% vaxlisp -c -V "OPTIMIZE=SPEED:3" myprog.lsp 

Mode 

Compile 

2.10.9 [NO]OUTPUT_FILE 

The OUTPUT_FILE option, abbreviated as -o, is meaningful only when it Q 
is specified with the COMPILE (-c) option. The -o option tells the 
compiler to write the compiled code to a specific file. If you 
specify the -o option with a file name, the LISP system puts the 
compiled code· in a file with that specified name. Use the option only 
when you want to change the name of the compiled file so that the 
source file and the compiled file have different names. By default, 
an output file is produced. 

The -o option does not specify a listing file, only a compiled file. Q 
See the LISTING (-L) option (Section 2.10.5) for an explanation of a 
listing file. 

If this option is not specified, the compiler produces a file with the 
same name as the source file artd a type of fas~ 

The NOOUTPUT_FILE option, abbreviated as -n, prevents compiled code 
from being written to a file. If you want only to check a file for 
errors, use this option with the COMPILE (-c) option. 

Format 

vaxlisp -c -o file file 

or 

vaxlisp -V COMPILE,OUTPUT_FILE=file file 

Example 

% vaxlisp -c -o test.fas factorial.lsp 

Mode 

Compile 

2-22 

0 

0 



0 

USING VAX LISP 

2.10.10 RESUME 

The RESUME option, abbreviated as -r, resumes a suspended LISP system 
where the suspension occurred. See Section 2.11 for an explanation of 
suspended systems. The-rand the INITIALIZE (-i) options cannot be 
used together. 

Format 

vaxlisp -r file 

or 

vaxlisp -V RESUME=file 

Example 

Q % vaxlisp -r myprog.sus 
T 

0 

Lisp> 

Mode 

Resume 

2.10.11 [NO)VERBOSE 

The VERBOSE option, abbreviated as -v, lists on an output device and 
in the listing file the names of the functions loaded from an 
initialization file, and the names of functions in a-file as they are 
compiled. The -v option applies only to files loaded with the 
INITIALIZE ( -i) option o.r compiled with the COMPILE ( -c) option. 

Q The NOVERBOSE form of this option (the default) prevents the names of 
functions compiled with the COMPILE option or loaded with the 
INITIALIZE option from being listed in a file or at the terminal. 

Format 

vaxlisp -v -i file 

or 

vaxlisp -v VERBOSE,INITIALIZE=file 

or 

0 
2-23 



USING VAX LISP 

vaxlisp -v -c file 

or 

vaxlisp -V VERBOSE,COMPILE file 

Examples 

1. % vaxlisp -v -i myinit.lsp 

Welcome to VAX LISP, Version V2.0 

; Loading contents of file /usr/users/jones/myinit.lsp 
; FACTORIAL 
; FACTORS-OF 
; Finished loading /usr/users/jones/myinit.lsp 
Lisp> 

FACTORIAL and FACTORS-OF are functions that are loaded into 
the LISP system from Jones's initialization file. 

2. % vaxlisp -v -c myprog.lsp 

Starting compilation of file /usr/users/jones/myprog.lsp 

MULT compiled. 
SUB compiled. 
DIV compiled. 

Finished compilation of file /usr/users/jones/myprog.l.sp 
O Errors, 0 Warnings 
% 

0 

0 

0 

MULT, SUB, and DIV are functions compiled in the file, 
myprog.lsp. The compiled definitions of these functions are Q 
written to the file, myprog.fas. 

Mode 

Interactive or Compile 

2.10.12 [NO]WARNINGS 

The WARNINGS option specifies that the LISP system is to produce 
warning messages. Warning messages are the default when you use the 
COMPILE (-c) option. warnings can be specified only in the -v format. 

A warning message indicates that the LISP system has detected a. 
possible error. If warnings are signaled while a file is being Q 
compiled and the value of the *BREAK-ON-WARNINGS* variable is NIL, the 

2-24 



USING VAX LISP 

default, the compilation continues. But, if errors are signaled, Ocompilation of the expression causing the error is not continued 
though the rest of the file is compiled. See Chapter 3 for more 
information on the differences between warnings and errors. 

The NOWARNINGS form of this option suppresses warning messag~s ano is 
abbreviated as -w. 

The following example of a warning message is the message the compiler 
displays for the TEST function defined in Section 2.9.3. 

% vaxlisp -c test.lsp 
Warning in TEST 

TEST earlier called with 2 args, wants at most 1. 
% 

oFormat 

vaxlisp -w -c file 

or 

vaxlisp -V NOWARNINGS,COMPILE file 

Example 

Q % vaxlisp -w -c myprog.lsp 

Mode 

Compile 

0 2.11 USING SUSPENDED SYSTEMS 

A suspended system is a binary file that is a copy of the LISP memory 
in use during an interactive LISP session up to the point at which you 
create the suspended system. The purpose of a suspended system is to 
save the state of an interactive LISP session. You might want to do 
this if your work is incomplete. By resuming LISP from a suspended 
system, you can continue your work from the point at which you 
stopped. 

2.11.1 Creating a Suspended System 

The VAX LISP SUSPEND function puts in a file the LISP memory in use 
during an interactive LISP session, enabling you to resume the same 

O LISP session at a later time. The SUSPEND function does not stop the 
current LISP session; you can continue to use the LISP session after 

2-25 



USING VAX LISP 

the SUSPEND function has put a copy of memory into a file. The 
SUSPEND function also automatically invokes a garbage collection ofo 
dynamic memory space. See Chapter 6 for information on garbage 
collections. 

In the following example, the file filex.sus is created and a copy of 
the memory in a LISP session is put into that file. The fil~ name can 
be a string, symbol, or pathname. See Chapter 6 and COMMON LISP: The 
Language for a description of pathnames. 

Lisp> (SUSPEND "filex.sus") 
Starting garbage collection due to GC function. 
Finished garbage collection due to GC function. 
Starting garbage collection due to SUSPEND function. 
Finished garbage collection due to SUSPEND function. 

NIL 
Lisp> 

After your file is created, the system returns to your interactive 
LISP session. You can exit LISP when you see the LISP prompt. Your 
suspended system file is place~ either in your default directory or in 
the directory you specified in the file specification. The file is 
usable only in an interactive LISP session. For a description of the 
SUSPEND function, see Part II. 

2.11 .2 Resuming a Suspended System 

To resume a suspended system, invoke the LISP system with the RESUME 
(-r) option and the name of the file containing the suspended system. 
Program execution continues from the point at which you called the 
SUSPEND function. See Section 2.10.10 for an explanation of the -r 
option. 

2-26 

0 

0 

0 

0 



() 

0 

0 

CHAPTER 3 

ERROR HANDLING 

The LISP system invokes the VAX LISP error handler when errors are 
signaled during program evaluation. This chapter explains what the 
error handler does when an error is signaled. Because the system's 
error handler might not meet your programming needs, VAX LISP allows 
you to create your own error handler. The procedure for creating an 
error handler is also explaine9 in this chapter. 

3.1 ERROR HANDLER 

The VAX LISP error handler function, UNIVERSAL-ERROR-HANDLER, performs 
four sequential steps. 

1. Checks the number of nested errors that have 
three nested errors have occurred, the error 
your program, displays a message, and returns 
top-level read-eval-print loop; otherwise, 
continues to the next step. 

occurred. If 
handler aborts 

you to the 
the handler 

Q 2. Checks the type of error. 

' 

0 

3. Displays an error message that provides you with information -
about the error. 

4. Performs the appropriate operation for the type of error that 
was signaled. 

3.2 VAX LISP ERROR TYPES 

Three types of errors can occur during the evaluation of a LISP 
program: 

o Fatal error 

3-1 



ERROR HANDLING 

• Continuable error 

• warning 

When an error is signaled, the VAX LISP system displays an error 
message that provides you with the following information: 

• The type of error that was signaled 
continuable error, or warning 

• The name of the function that caused the error 

fatal error, 

• The name of the function that was used to signal the error 
ERROR, CERROR, or WARN 

• A description of the error 

0 

• If a continuable error, an explanation of what will happen if' 0 
you continue the program's evaluation from the point at which 
the error occurred 

The format of an error message and the information a message provides 
depend on the type of the error. The next three sections describe the 
types of errors; each description includes the error type's message 
format and the operation the error handler performs. 

3.2.1 Fatal Errors 

When a fatal error is signaled; the error handler displays a message 
in the following format: 

Fatal error in function function-name (signaled with ERROR). 
Error description. 

In the preceding format description, function-name is the name of the 
function that caused the error, and ERROR is the name of the function 
that was used to signal the error (see Table 3-1). The error 
description is a message telling why the error occurred. The message 
is generated from the format string and the arguments in the call to 
the ERROR function; the message can be.displayed on more than one 
line. 

An example of a fatal error message follows: 

Fatal error in function MAKE-ARRAY (signaled with ERROR). · 
Only vectors can have fill pointers. 

-0 

0 

After the message is displayed, the error handler checks the va~ue of 
the VAX LISP *ERROR-ACTION* variable. Its value can be either the Q 
:EXIT or the :DEBUG keyword. The ERROR_ACTION (-V 

3-2 



ERROR HANDLING 

__ "ERROR_ACTION=valuen) option you use with the vaxlisp command sets the Cralue of the *ERROR-ACTION* variable when you invoke the LISP system 
(see Chapter 2). When the value is :EXIT (you used the 
ERROR_ACTION=EXIT form of the option), the error handler causes the 
LISP system to exit on an error; when the value is :DEBUG (you used 
the ERROR_ACTION=DEBUG ·form of the option, the defaul~ in an 
interactive session), the handler invokes the VAX LISP debugger. 

If the debugger is invoked, you can use it to locate the error in your 
program. After you locate the error, you can correct it and restart 
your program's evaluation. 

0 

NOTE 

You cannot continue your program's evaluation from the 
P?int at which a fatal error occurred. 

The *ERROR-ACTION* variable is described in Part II and the debugger 
is described in Chapter 4. 

3.2.2 Continuable Errors 

c=)ihen a continuable error is signaled, ~he error handler displays a 
message in the following format: 

Continuable error in function function-name (signaled with CERROR). 
Error description. 
If continued: Continue explanation. 

In the preceding format d.escription, function-name is the name of the 

Cfunction that caused the error, and CERROR is the name of the function 
lhat was used to signal the error (see Table 3-1). The error 
description is a message telling why the error occurred. The message 
is generated from the format string and the arguments in the call to -
the CERROR function; the message can be displayed on more than one 
line. A line of text that explains what will happen if you continue 
your program's evaluation follows the error description. 

An example of a continuable error message is: 

Continuable error in function ENTER-NAME (signaled with CERROR). 
The value you specified is not a string. 
If continued: You will be prompted for a new value. 

After the message is displayed, the error handler checks the value of 
the VAX LISP *ERROR-ACTION* variable in the same way ir.checks the 

c=)alue after a fatal error (see Section 3.2.1). 

3-3 



\ 

ERROR HANDLING 

If the debugger is invoked,,you can do one of the following: 

• Continue from the error; the CERROR function performs 
corrective action that is specified in the error message. 

the Q 

• Locate the error in your program. After you locate the error, 
you can correct it and restart your program's evaluation. 

The *ERROR-ACTION* variable is described in Part II and the debugger 
is described in Chapter 4. 

3.2.3 Warnings 

A warning is an error condition .that exists in your program, which may 
or may not affect your program's evaluation. When this type of error Q 
occurs, the system displays a message for the following reasons: 

• You might want to correct the error later. 

• Your program might correct the error, but you should know that 
the error occurred. 

When a warning is signaled, the error handler displays a message 
the following format: 

Warning in function function-name (signaled with WARN). 
Error description. 

in 

0 
In the preceding format description, function-name is the name of· the 
function that caused the error, and WARN is the name of the function 
that was used to signal the error (see Table 3-1). The error 
description is a message telling why the error occurred. The message 
is generated from the format string and the arguments in the call to 
the WARN function; the message can be displayed on more than one line. Q 
An example of a warning error message is: 

Warning in function TE (signaled with WARN). 
3 is not a symbol. 

After the message is displayed, the error handler checks the value of 
the *BREAK-ON-WARNINGS* variable in the same'way it checks the value 
*ERROR-ACTION* variable after a fatal error (see Section 3.2.1). 

NOTE 

If the value of the *BREAK-ON-WARNINGS* variable is T, 
the'debugger is invoked when a warning is .signaled. 

3-4 

0 



ERROR HANDLING 

If the debugger is invoked, you can use it to locate the error in your 

O program. After you locate the error, you can correct it, exit the 
debugger, and then continue your program's evaluation from the point 
where the error occurred. 

The *BREAK-ON-WARNINGS* variable is described in COMMON LISP: The 
Language. The *ERROR-ACTION* variable is described in Part II, and 
the debugger is described in Chapter 4. 

3.3 CREATING AN ERROR HANDLER 

The VAX LISP *UNIVERSAL-ERROR-HANDLER* variable is bound to the 
system's error handler. This binding provides you with a way to 
create your own error handler if the system's handler does not meet 

oyour programming needs. To create an error handler you must: 

1. Define the error handler. 

2. Bind the *UNIVERSAL-ERROR-HANDLER* variable to your defined 
handler. 

The *UNIVERSAL-ERROR-HANDLER* variable is described in Part II. 

Q 3.3. 1 Defining an Error Handler 

To define an error handler, you must define an error handler function. 
This function must be able to accept two or more arguments since the 
LISP system passes at least two arguments to the error handler each 
time an error occurs in a program. Therefore, specify the arguments 
in an error-handler definition in the following format: 

Q function-name error-signaling-function &REST args 

The arguments provide the error 
information: 

handler with the following -

• The name of the function that called the error-signaling 
function 

• The name of the error-signaling function 

• The arguments that were passed to the error-signaling function 

0 
3-5 



ERROR HANDLING 

An example of an error handler definition is: 

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME 
ERROR-SIGNALING-FUNCTION 
&REST ARGS) 

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR) 
(EQ ERROR-SIGNALING-FUNCTION 'CERROR)} 

(FLASH-ALARM-LIGHT)) 
(APPLY #'UNIVERSAL-ERROR-HANDLER 

FUNCTION-NAME 
ERROR-SIGNALING-FUNCTION 
ARGS)) 

CRITICAL-ERROR-HANDLER 

The preceding error handler checks whether a fatal or continuable 
error is signaled. If either type of error is signaled, the handler 
calls the function FLASH-ALARM-LIGHT and then passes the error signal 
information to the VAX LISP error handler. 

When you define an error handler, the definition can include a call to 
the UNIVERSAL-ERROR-HANDLER function. If the definition does not 
include a call to this function and you want the handler to check the 
value of the *ERROR-ACTION* or *BREAK-ON-WARNINGS* variable, you must 
include a check of the variable in the handler's definition. 

If you want an error handler to 
described in Sections 3.2.1 
UNIVERSAL-ERROR-HANDLER or 
Descriptions of these functions 

display error messages in the formats 
to 3.2.3, include a call to either the 

PRINT-SIGNALED-ERROR function. 
are provided in Part II. 

The next three sections describe the arguments an error handler ·must 
be able to accept. 

0 

0 

0 

3.3.1.1 Function Name - The function-name argument is the name of the Q 
function that calls an error-signaling function. This argument 
enables the error handler to include the function's name in the error 
message the handler displays. 

3.3.1.2 Error-Signaling Function - The error-signaling-function 
argument is the name of the error-signaling funct~on that is called to 
generate the error signal. Depending on which function is called, a 
fatal error, continuable error, or warning is signaled. 

The error handler uses the error-signaling-function argument to 
determine the contents of the args argument. 

Table 3-1 lists the functions that can be passed as . the Q 
error-signaling-function argument and briefly describes each function. 

3-6 



ERROR HANDLING 

Table 3-1: Error-Signaling Functions 

OFunction Description 

CERROR Function Signals a continuable error 

ERROR Function Signals a fatal error 

WARN Function Signals a warning 

See COMMON LISP: The Language for detailed descriptions of the CERROR 
and ERROR functions. See Part II for a description of the WARN 
function. 

03.3.1.3 Arguments - The args argument is the list of arguments passed 
to the error-signaling function when the error-signaling function is 
invoked. The contents of the list depends on which function is 
invoked. The list can include one or two format strings and their 
corresponding arguments. The format strings and arguments are passed 
to the FORMAT function, which produces the correct error message. 

03.3.2 Binding the *UNIVERSAL-ERROR-HANDLER* Variable 

Once you define an error-handling function, you must bind the 
*UNIVERSAL-ERROR-HANDLER* variable to it. The following example shows 
how to bind the variable to a function: 

Lisp> (LET ((*UNIVERSAL-ERROR-HANDLER* 
#'CRITICAL-ERROR-HANDLER)) 

(PERFORM-CRITICAL-OPERATION)) 

OThe LET special form binds the *UNIVERSAL-ERROR-HANDLER* variable to 
the CRITICAL-ERROR-HANDLER function that was defined in Section 3.3.1 -
and calls a function named PERFORM-CRITICAL-OPERATION. When the form 
is exited because the evaluation finished or the THROW function is 
called, the *UNIVERSAL-ERROR-HANDLER* variable is restored to its 
previous value. 

0 
3-7 



0 

0 

0 

0 

0 



0 

CHAPTER 4 

DEBUGGING FACILITIES 

Debugging is the process ' of locating and correcting programming 

O errors. When an error is signaled, the VAX. LISP error handler 
displays a message, which provides you with your initial debugging 
information: the error type, the name of the function that caused the 
error, the name of the function the LISP system used to signal the 
error, and a description of the error. 

Once you know the name of the function that caused an error, you can 
use the VAX. LISP debugging functions and macros to locate and correct 
the programming error. Table 4-1 lists the debugging functions and 

O
macros with a brief description of each. See Part II for more 
detailed descriptions. 

Table 4-1: Debugging Functions and Macros 

Name 

OAPROPOS 

APROPOS-LIST 

l:!REAK 

DEBUG 

DESCRIBE 

0 

Function 
or Macro 

Function 

Function 

Function 

Function 

Function 

Description 

Locates symbols whose print names 
contain a specified string argument as a 
substring and displays information about 
each symbol it locates. 

Locates symbols whose 
contain a specified string 
substring and returns a 
symbols it locat~s. 

Invokes the break loop. 

print names 
argument as a 
list of the 

Invokes the VAX. LISP debugger. 

Displays detailed information about a 
specified object. 

4-1 



DEBUGGING FACILITIES 

Table 4-1 (cont.) 
~~~~~~~~~~-o 

Function
Name or Macro

DRIBBLE Function

ROOM Function

STEP Macro

TIME Macro

TRACE Macro

UNTRACE Macro

Description

Sends the input and the output of an
interactive LISP session to a~specified
file.

Displays information about the state of
internal storage and its management.

<

Invokes the stepper.

Displays timing information about the
evaluation of a specified form.

Enables the tracer for functions and
macros.

Disables the tracer for functions and
macros.

This chapter provides the following:

0

o A list of the functions and the macro that
debugging information

provide you with O
@ Descriptions of two variables that control the output of the

debugger, the stepper, ·and the tracer facilities

• A description of the VAX LISP control stack

• Explanations of how to use the following debugging facili"ties:

Break loop A read-eval-print loop you can invoke while
the LISP system is evaluating a program.

Debugger A control stack
interactively to inspect and
control stack frames.

debugger you can use
modify the LISP system's

Stepper A facility you can use interactively to step
through a form's evaluation.

Tracer A facility you can use to inspect a program's
evaluation.

4-2

0

0

4.,

OvAX

DEBUGGING FACILITIES

CONTROL VARIABLES

LISP provides two variables that control
debugger, the stepper, and the
DEBUG-PRINT-LENGTH and *DEBUG-PRINT-LEVEL*.
analogous to the COMMON LISP variables
PRINT-LEVEL but are used only in the debugger.

the output of the
tracer facilities:
These variables are

PRINT-LENGTH and

DEBUG-PRINT-LENGTH Controls the number of displayed elements at
each level of a nested data object. The
variable's value must either be an integer or
NIL. The default value is NIL (no limit).

DEBUG-PRINT-LEVEL Controls the number of displayed levels
nested data object. The variable's
must either be an integer or NIL.
default value is NIL (no limit).

of a
value

The

0
4.2 CONTROL STACK

The control stack is the part of LISP memory that stores calls to
functions, macros, and special forms. The stack consists of stack
frames. Each time you call a function, macro, or special form, the

{:JVAX LISP system does the following:

1. Opens a stack frame.

0

2. Pushes the name of the function associated with the function,
macro, or special form that was called onto the stack frame.

3. Pushes the function's arguments onto the stack frame.

4. Closes the stack frame when all the function's arguments are
on the stack frame.

5. Evaluates the function.

The LISP system can have several open stack frames at a time because
the arguments used by LISP functions are frequently LISP expressions.

Each control stack frame has a frame number; which is displayed as
part of the stack frame's output. Stack frame numbers are displayed
~n the output of the debugger, the stepper, and the tracer.

There is always one active stack frame, and it can either be
significant or insignificant. Significant stack frames are those that
invoke documented and user-created functions. Insignificant stack
frames are those that invoke undocumented functions.

0
4-3

DEBUGGING FACILITIES

Debugger commands show only significant stack frames unless you
spec 1 fy the ALL modifier with a debugger command (see Section c
4.~.3.1). Significant stack frames store one of the following calls:)

@ A call to a function named by a symbol that is in the current
package

• A call to a function that is accessible in the current package
and is explicitly or implicitly called by another function
that is in the current package

See COMMON LISP: The Language for information on packages.

Many stack frames in the control stack store internal, undocumented
functions. These stack frames are insignificant to most users;
therefore, by default, the debugger does not display their
representation. However, if you are using the debugger and you want Q
to examine these stack frames, you can specify the ALL modifier with
debugger commands.

4.3 ACTIVE STACK FRAME

The active stack frame is a stack frame that stores a call to a
function the LISP system is evaluating. The system can evaluate a O function call in the active stack frame because the frame contains all
the function's argument values. Only one stack frame is active at a
time and an active stack frame can exist anywhere on the control
stack.

The active stack frame can have a previous active stack frame and/or
it can have a next active stack frame. The previous active stack
frame represents the caller of the function in the current active
stack frame.

4.4 BREAK LOOP

The break loop is a read-eval-print loop that you can invoke to debug
a program. You can invoke the break loop while a program is being
evaluated. If you do, the evaluation is interrupted and you are
placed in the loop.

4.4.1 Invoking the Break Loop

0

You can invoke the break loop by calling the BREAK function.
ways of using the BREAK function to debug a program are:

The two Q

4-4

()

0

DEBUGGING FACILITIES

• Use a keyboard function to invoke the BREAK function directly
while your program is being evaluated.

• Put the BREAK function in specific places in your program.

In either case, the BREAK function displays a message~ (if you
specified one in your form calling the BREAK function) and enters a
read-eval-print loop. If you specified a message, the BREAK function
displays the message in the following format:

Break in function function-name (signaled with BREAK).
description.

In the preceding format description, function-name represents the name
of the function the LISP system was evaluating when you entered the.
break loop. BREAK is the riame of the function that caused the LISP
system to invoke the break loop. The description is optional and can
be printed on more than one line. A description usually provides the
reason the break loop was invoked.

An example of a break loop message follows:

Break in function CHECK-INPUT (signaled with BREAK).
Values are too high.

O After the message is displayed, a prompt
margin of your terminal:

is displayed at the left

Break>

4.4.2 Exiting the Break Loop

Owhen you are ready to exit the break loop and continue your
evaluation, invoke the VAX LISP CONTINUE function.

program's

0

Break> (CONTINUE)

The CONTINUE function causes the evaluation of your program to
continue from the point where the LISP system encountered the BREAK
function.

If you are in a nested break loop and you invoke the CONTINUE
function, you are placed in the previous break-loop level. A
description of the CONTINUE function is provided in Part II.

4-5

DEBUGGING FACILITIES

4.4.3 Using the Break Loop

Once you are in the break loop, you can check what your program is
doing by interacting with the LISP system as though you were in the
top-level-loop. For example, suppose you define a variable named
FIRST and a function named COUNTER, which uses the variable *FIRST*.

Lisp> (DEFVAR *FIRST* 0)
FIRST
Lisp> (DEFUN COUNTER NIL

(IF(< *FIRST* 100)

COUNTER

(PROGN (INCF *FIRST*) (COUNTER))
FIRST))

You can bind <CTRL/\> (A\) to the BREAK function in the following way:

BIND-KEYBOARD-FUNCTION #FS #'BREAK

Then, you interrupt a function's evaluation by typing <CTRL/\>.

Lisp> (COUNTER)<RET>
<CTRL/\>
Break>

Once you are in the break
variable *FIRST*.

Break> *FIRST*
16
Break>

If you call the CONTINUE
r.uUNTER continues.

Break> (CONTINUE)

loop, you can check the value of the

function, the evaluation of the function

After you call the CONTINUE function, you can see that the evaluation
was continued by invoking the break loop again and rechecking the
value of the variable *FIRST*.

<CTRL/\>
Break> *FIRST*
93
Break>

Use the CONTINUE function again to complete the_function's evaluation.

Break> (CONTINUE)
100

4-6

0

0

0

0

0

DEBUGGING FACILITIES

CChanges that you make to global variables and global definitions while
;ou are in the break loop remain in effect after you exit the loop and
your program continues. For example, if you are in the break loop and
you find that the value of the variable named *FIRST* has an incorrect
value, you can change the variable's value. The change remains in
effect after you exit the break loop and continue your~program's
evah1ation.

0

4.4.4

NOTE

The forms you type while you are in the break loop are
evaluated in a null lexical environment, as though
they are evaluated at top level. Therefore, you
cannot examine the lexical variables of a program that
you interrupt with'the break loop. To examine those
lexical variables, invoke the debugger (see Section
4.5). For information on lexical environments, see
COMMON LISP: The Language.

Break Loop Variables

The break loop uses a copy of the top-level-loop variables (plus (+), C?yphen (-), asterisk (*), slash (/), and so on) the same way the
cop-level loop uses them (see COMMON LISP: The Language). These
variables preserve the input expressions you specify and the output
values the VAX LISP system returns while you are in the break loop.

4.5 DEBUGGER

C~he VAX LISP debugger is a control stack debugger. You can use it
lnteractively to inspect and modify the LISP system's control stack
frames. The debugger has a pointer that points to the current stack
frame. The current stack frame is the last frame for which the
debugger displayed information. The debugger provides several
commands that:

e Display help

~ Evaluate a form or reevaluate a function call a stack frame
stores

® Handle errors

e Move the pointer from one stack frame to another

Q e Inspect or modify the function call in a stack frame

4-7

DEBUGGING FACILITIES

~ Display a summary of the control stack

The debugger reads its input from and prints its output to the
bound to the *DEBUG-IO* and the *TRACE-OUTPUT* variables.

streamo

NOTE

The stack frames the debugger displays are no longer
active.

Before you use the debugger, you should be familiar with the VAX LISP
control stack. The control stack is described in Section 4.2.

4.5.1 Invoking the Debugger 0
The VAX LISP system invokes the debugger when errors occur. You can
invoke the debugger by calling the VAX LISP DEBUG function. For
example:

Lisp> (DEBUG)

When the debugger is invoked, a message that identifies the debugger, Q
a message that identifies the current stack frame, and the command
prompt are displayed at the left margin of your terminal in the
following format:

'
Control Stack Debugger
Frame #5: (DEBUG)
Debug n>

The letter n in the prompt represents an integer, which indicates the Q
number of the nested command level you are in. The value of n
increases by one each time the command level increases. For example,
the top-level read-eval-print loop is level 0. If an error is invoked -
from the top-level loop, the debugger displays the prompt Debug 1>.
If you make a mistake again causing an error while within the
debugger, that error causes the debugger to display the prompt
Debug 2>.

After the debugger is invoked, you can use the debugger commands to
inspect and modify the contents of the system's control stack.

A description of the DEBUG function is provided in Part II.

4-8

0

0

0

0

DEBUGGING FACILITIES

4.5.2 Exiting the Debugger

To exit the debugger, use the QUIT debugger command. It
debugger to return control to the previous command level.

Debug 2> QUIT
Debug 1>

causes the

If you specify the QUIT command when the debugger command level is 1
(indicated by the prompt Debug 1>), the command causes the debugger to
exit and returns you to the system's top level. For example:

Debug 1> QUIT
Lisp>

By default, the QUIT command displays a confirmation message before
the debugger exits if a continuable error causes the debugger to be
invoked. For example:

Debug 1> QUIT
Do you really want to ret~rn to the previous command level?

If you type YES, the debugger returns control to the previous command
level.

Do you really want to return to the previous command level? YES
Lisp>

If .you type NO, the debugger prompts you for another command.

Do you really want to return to the previous command level? NO
Debug 1>

You can prevent the debug_ger from displaying the confirmation message

Oby specifying the QUIT command with a value other than NIL. For
example:

Debug 1> QUIT T
Lisp>

A description of the QUIT command is provided in Section 4.5.3.2.

0

'1,5.3 Using Debugger Commands

The debugger
stack frame
the debugger
operations.

commands let you inspect and modify the current
and move to other stack frames. You must specify
commands with one or more arguments that qualify
These arguments are listed in Section 4.5.3.1.

4-9

control
many of
command

DEBUGGING FACILITIES

You can abbreviate debugger commands to as few characters as you like,
as long as no ambiguity is in the abbreviation. ,Q
Enter a debugger command by typing the command name or abbreviation
and then pressing the RETURN key. For example:

Debug 1> BACKTRACE<RET>

If you pres,s only the RETURN key, the debugger prompts you for another
command.

Table 4-2 provides a summa·ry of the debugger commands. "Detailed
descriptions of the commands are provided in Section 4.5.3.2.

Table 4-2:

Command

BACK TRACE

BOTTOM

CONTINUE

DOWN

ERROR

EVALUATE

GOTO

Debugger Commands

Description

Displays a backtrace of the control stack.

Moves the pointer to the first stack frame on the
control stack.

Enables you to correct a continuable error.

Moves the pointer down the control stack.

Redisplays the error message that was displayed
when the debugger was invoked.

Evaluates a specified form.

Moves the pointer to a specified stack frame.

0

0

HELP (or)

QUIT

? Displays help text about the debugger commands. Q
Exits to the previous command level.

REDO

RETURN

SEARCH

SET

Invokes the function in the current stack frame.

Evaluates its arguments. and causes
stack frame to return the same
evaluation returns.

Searches the control stack for
function.

a

the current
values the

specified

Sets the values of the components in the
stack frame.

current

4-10

0

~ble 4-2 (cont.)

___G'Jmmand

SHOW

STEP

TOP .

UP

DEBUGGING FACILITIES

Description

Displays information stored in the current stack
frame.

Invokes the stepper for the function in the
current stack frame.

Moves the pointer to the last stack frame in the
control stack.

Moves the pointer up the control stack.

WHERE Redisplays the argument list and the function name

O in the current stack frame.

4.5.3.1 Arguments - Some debugger
debugger commands accept optional
is an integer is usually optional;
or form is required. If you
required, the debugger prompts you

commands require an argument; other
arguments. An argument whose value
an argument whose value is a symbol
do not specify an argument that is
for the argument. For example:

0 Debug 1> RETURN<RET>
First Value:

The debugger does not prompt for arguments if you specify them in the
command line.

Enter an argument after the command it qualifies and then press the
RETURN key. For example:.

O Debug 1> DOWN ALL<RET>

The types of arguments you can specify with debugger commands are:

• Debugger command

• Symbol

• Form

• Integer

• Function name

0
• Modifier

4-11

DEBUGGING FACILITIES

NOTE

Only parenthesized expressions
evaluate (that is, arguments
EVALUATE command) are evaluated.

and arguments to
specified with the

The preceding arguments are self-explanatory with the exception of the
integer and modifier arguments.

Integer arguments represent control stack frame numbers. Each stack
frame on the control stack has a frame number, which the 0 debugger
displays as part of the stack frame's output. The debugger reassigns
these numbers each time it is invoked. You can specify a frame number
in a debugger command to refer to a specific stack frame. If you
refer to a t'rame number that is outside the current debugging session,

0

an error is signaled. If you refer to the stack frame number of a Q
frame that was established in another debugging session in a current
nested session, the command in which you specify the frame number
results in an erroneous or unpredictable result.

Table 4-3 provides a summary of the modifier arguments you can specify
with debugger commands.

Table 4-3: Debugger Command Modifiers
~~~~~~~~~~-0 
Modifier Command Modification 

ALL 

ARGUMENTS 

CALL 

DOWN 

FUNCTION 

HERE 

NORMAL 

QUICK 

TOP 

Operates on both significant and insignificant 
stack frames. 

Operates on the arguments specified with the 
function in the current stack frame. 

Operates on the call to the current stack frame. 

Moves the pointer down the control stack. 

Operates on the function object in the current 
stack frame. 

Operates on the current stack frame. 

Displays the function name and the argument list 
in the control stack frames. 

Displays the function name in the control stack 
frames. 

~ . 

0 

Starts a backtrace at the top of the 
stack. 

control Q 

4-12 



-~ ...... 
DEBUGGING FACILITIES 

0 Table 4-3 (cont.) 

Modifier Command Modification 

0 

0 

UP 

VERBOSE 

Moves the pointer up the control stack. 

Displays the function name, argument list, local 
variable bindings, and special variable bindings 
in the control stack frames. 

4.5.3.2 Debugger Commands - The VAX LISP debugger provides commands 
that you can use to move through and modify the system's control 
stack. 

HELP 
? 

Help Command 

The HELP command displays help text about the debugger 
commands. You_ can specify this command with one 
argument, which is the name of the debugger command 
about which you want help text. If you specify the 
HELP command without an argument, the debugger displays 
a list of the debugger commands. 

You can abbreviate this command by using a question 
mark (?). 

Evaluation Command 

0 
You can evaluate LISP expressions while you are in the 
debugger .. If you want the LISP system to evalute a 
parenthesized form, you can specify the form and then 
press the RETURN key. If you want the system to 
evaluate a symbol, you must use the EVALUATE command. 
You can also evaluate expressions by entering the break -
loop. For information on the break loop, see Section 
4.4. 

EVALUATE 

0 

The EVALUATE command explicitly evaluates a specified 
form. You must specify the command with an argument 
that is the form you want the LISP system to evaluate. 
The system evaluates the form in the lexical 
environment of the current stack frame. 

4-13 

.. ,.-.. --....... J 
·. . ' ~. ,' :" , .. :;' 

.. ' 



CONTINUE 

QUIT 

REDO 

RETURN 

S'l'EP 

DEBUGGING FACILITIES 

Error-Handling Commands 

The debugger deals with errors that invoke the 
debugger. Each of the following debugger commands 
deals with errors in a different way. 

The CONTINUE command causes the debugger to r~turn NI~, 
letting you return from a continuable error or from a 
warning if the value of the *BREAK-ON-WARNINGS* 
variable is T. This command is not the same as the 
CONTINUE function. See Chapter 3 for a descrf~tion of 
error types. 

The QUIT command lets you exit to the previous command 
level. If the current level of the debugger is 1, the· 
command causes the debugger to exit to the LISP prompt 
(Lisp>). You can specify this command with an optional 
argument. If a continuable error invokes the debugger 
and the argument is NIL, the debugger displays a 
confirmation message. If you respond to the message by 
typing YES, the.command returns control to the previous 
command level. If the argument is not NIL, the 
debugger does not display a message. The default value 
for the optional argument is NIL. 

The REDO command invokes the function in the current 
stack frame, causing the LISP system to reevaluate the 
function in that frame. This commard is useful for 
correcting errors that are not continuable, such as 
unbound variables and undefined functions. To do so, 
first bind th• variables or defin£ the function·with 
the SET command, then use the REDO co r, Htand. 

The RETURN command evaluates its arg·,.rnents and causes 
the debugger to force the current st:,ck frame to return 
the same values the evaluation r~turns. You must 
specify the command with an arguru!nt that is a form. 
When the command is executed, the fo;sm is evaluated. 
When the evaluation is complete the current stack 
frame returns the same· values that .:.lie evaluated form 
returns. 

The STEP command invokes 'the step;·er for the function 
that is in the current stack f r,1me. When the stepper 
is invoked, the LISP system reev~~uates the function. 
This command is useful if you w,·1t to repeat an error 
to get information about the caust of the error.· 

4-14 

0 

0 

0 

0 

0 



0 

BOTTOM 

DOWN 

0 

OGOTO 

SEARCH 

0 

TOP 

0 

DEBUGGING FACILITIES 

Movement Commands 

The movement commands move the debugger's pointer to 
another stack frame. The debugger displays the new 
stack frame's information. 

The BOTTOM command moves the pointer 
significant stack frame on the control 
specify the ALL modifier with the BOTTOM 
command moves the pointer to the first 
frame on the control stack whether 
significant or insignificant. 

to 'the first 
stack. If you 

command, the 
(oldest) stack 
the frame is 

The DOWN command moves the pointer toward the bottom of 
the control stack, one frame at a time. You can 
specify this command with optional arguments. One of 
the optional arguments is the ALL modifier. If you 
specify ALL, the command moves the pointer down the 
significant and insignificant stack frames on the 
control stack. 

You can also specify an optional integer argument, 
which indicates the number of stack frames down which 
the command is to move the pointer. 

The GOTO command moves the pointer to a specified stack 
frame. You must specify this command with an integer 
that specifies the numbe·r of the stack frame. 

The SEARCH command searches the control stack for a 
specified function name. You must specify this command 
with two arguments. The first argument must be either 
the UP or the DOWN modifier to specify the direction of 
the command's search. The second argument must be the 
name of the function for which the command is to 
search. 

You can also specify an optional integer argument. -
This argument must follow the function name argument in 
the command specification. The integer you specify 
indicates the number of occurrences of the specified 
function name that you want the command to skip. 

The TOP command moves the pointer to the last (newest) 
significant stack frame on the control stack. If you 
specify the ALL modifier with the TOP command, the 
command moves the pointer to the last stack frame on 
the control stack whether the frame is significant or 
insignificant. 

4-15 



UP 

WHERE 

ERROR 

SET 

SHOW 

DEBUGGING FACILITIES 

The UP command moves the pointer toward the top of the 
control stack. You can specify this command witn~ 
optional arguments. One of the optional arguments is'-._./ 
the ALL modifier. If you specify it, the command moves 
the pointer up the significant and insignificant stack 
frames on the control stack. 

You can also specify an optional integer argument. It 
indicates the number of stack frames up which the 
command is to move the pointer. 

The WHERE command redisplays the function name and 
argument list in the current stack frame. 

I 

Inspection and Modification Commands 

You can inspect and change. the information in a O 
function call before the LISP system evaluates the 
call. To do this, use the inspection and modification 
commands. 

The ERROR command redisplays the error message that was 
displayed for the error that invoked the debugger. 

The SET command sets the values of the components ino 
the current stack frame. You must specify this command 
with three arguments. The first argument must be 
either the ARGUMENTS or the FUNCTION modifier. The 
modifier determines what the command sets. The 
following list 'describes what is set when you specify 
each modifier: 

• 

• 

ARGUMENTS -- The value of an argument in the current 
stack frame. 

FUNCTION -- The function object in the current stack Q 
frame. 

If you specify the ARGUMENTS modifier, the second 
argument must be the symbol that names the .argument to 
be set, and the third argument must be a form that 
evaluates to the new value •. If you specify the 
FUNCTION modifier, the second argum~nt must be a form 
that evaluates to a function or the name of a function. 
The new function must take the same number of arguments 
the old function takes. 

The SHOW command displays information stored in the 
current stack frame. You must specify this command 
with the ARGUMENTS, CALL, FUNCTION,.or HERE modifier. o· 
The modifier determines what the command is to display. 

4-16 



0 

0 

BACK TRACE 

o. 

0 

0 

DEBUGGING FACILITIES 

The following list describes what the command displays 
when you specify each modifier: 

• ARGUMENTS -- A list of the arguments in the current 
stack frame. 

• CALL -- The function call that.created the current 
stack frame. The command displays the function call 
so that its output is easy to read. The arguments 
in the call are represented by their values. 

• FUNCTION·-- The function in the current stack frame. 
The function can be either interpreted or compiled 
with the COMPILE function. The function cannot be 
displayed if it is a system function or if it is 
loaded in a compiled file. 

• HERE -- A description of the current stack frame. 

Backtrace Command 

The BACKTRACE command displays the argument list of 
each stack frame in the control stack, starting from 
the top of the stack. You earl specify the command with 
modifiers to specify the style and extent of the 
backtrace. 

The modifiers you can specify are ALL, 
HERE, TOP, or VERBOSE. By default, 
the NORMAL and the TOP modifiers. The 
describes the style or extent the 
uses when you specify each modifier: 

NORMAL, QUICK, 
the command uses 
following list 

BACKTRACE command 

• ALL -- Displays significant and insignificant stack 
frames. 

• NORMAL -- Displays the function name and argument -
list in each stack frame. 

• QUICK -- Displays the function name in each stack 
frame. 

• HERE. -- Starts the backtrace'at the current stack 
frame. 

• TOP -- Starts the backtrace at the top of the 
control stack. 

• VERBOSE 
list, and 
frame. 

Displays the function name 7 argument 
local variable bindings in each stack 

4-17' 



DEBUGGING FACILITIES 

4.5.4 Using the DEBUG-CALL Function 

The DEBUG-CALL function returns a list representing the call at the 
current debug stack frame. This function is a debugging tool and 
takes no arguments. The list returned by DEBUG-CALL can be used to 
access the values passed to the function in the current st~ck frame. 
If used outside the debugger, DEBUG-CALL returns NIL. The following 
example shows how to use the function: 

Lisp> (SETF THIS-STRING "abed") 
"abed" 
Lisp> (FUNCTION-Y THIS-STRING 4) 
...• Error in function FUNCTION-Y 
Frame #4 (FUNCTION-Y "abed" 4) 
Debug 1> (SETF STRING (SECOND (DEBUG-CALL))) 
"abed" 
Debug 1> (EQ "abed" STRING) 
NIL 
Debug 1> (EQ THIS-STRING STRING) 
T 

In this case, the function in the current stack frame is FUNCTION-Y. 
The call to (DEBUG-CALL) returns the list (FUNCTION-Y "abed" 4). The 
form (SECOND (DEBUG-CALL)) evaluates "abed", the first argument to 
FUNCTION-Y in the current stack frame. Note that the string returned 
by the call (SECOND (DEBUG-CALL)) is the same string passed to the 
function FUNCTION-Y. See the description of the TRACE macro for 
another example of the use of the DEBUG-CALL function. 

4.5.5 Sample Debugging Sessions 

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X)) 
FIRST-ELEMENT 
Lisp> (FIRST-ELEMENT 3) 

Fatal error in function CAR (signaled with ERROR). 
Argument must be a list: 3 

Control Stack Debugger 
Frame #11: (CAR 3) 
Debug 1> DOWN 
Frame #8: (BLOCK FIRST-ELEMENT (CAR X)) 
Debug 1> DOWN 
Frame #5: (FIRST-ELEMENT 3) 
Debug 1> SHOW HERE 
It is a cons 
Format: FIRST-ELEMENT x 
-- Arguments 
X : 3 

4-18 

0 

0 

0 

0 

0 



0 

DEBUGGING FACILITIES 

Debug 1> SET 
Type of SET operation: ARGUMENT 
Argument Name: X 
New Value: '(1 2 3) 
Debug 1> WHERE 
Frame #5: (FIRST-ELEMENT (1 2 3)) 
Debug 1> REDO 
1 
Lisp> 

The argument in a stack frame is changed from an integer to a 
list, and the function is reevaluated with the correct 
argument. 

2. Lisp> (DEFUN PLUS-Y (X) -(+ X Y)) 
PLUS-Y O Lisp> (PLUS-Y 4) 

0 

0 

0 

Fatal error in function SYSTEM::%EVAL (signaled with ERROR). 
Symbol has no value: Y 

Control Stack Debugger 
Frame #8: (BLOCK PLUS-Y (+ X Y)) 
Debug 1> DOWN 
Frame #5: (PLUS-Y 4) 
Debug 1> UP 
Frame #8: (BLOCK PLUS-Y (+ X Y)) 
Debug 1> (SETF Y 1) 
1 
Debug 1> WHERE 
Frame #8: (BLOCK PLUS-Y (+ X Y)) 
Debug 1> EVALUATE 
Evaluate: Y 
1 
Debug 1> DOWN 
Frame #5: (PLUS-Y 4) 
Debug 1> REDO 
5 
Lisp> 

The value of the variable Y is set with the SETF macro, and 
the body of the function PLUS-Y is reevaluated. 

3. Lisp> (DEFUN·ONE-PLUS (X) (1+ X)) 
ONE-PLUS 
Lisp> (ONE-PLUS '(1 2 3 4)) 

Fatal error in function 1+ (signaled with ERROR). 
Argument must be a number: (1 2 3 4) 

Control Stack Debugger 
Frame # 11 : ( 1 + ( 1 2 3 4 ) ) 

4-19 



DEBUGGING FACILITIES 

Debug 1> SET FUNCTION 
Function: 'CAR 
Debug 1> WHERE 0 
Frame #11: (CAR (l 2 3 4)) 
Debug 1> DOWN 
Frame #8: (BLOCK ONE-PLUS (1+ X)) 
Debug 1> UP 
Frame #11: .(CAR (1 2 3 4)) 
Debug 1> REDO 
1 
Lisp> (PPRINT-DEFINITION 'ONE-PLUS) 
(DEFUN ONE-PLUS (X) (1+ X)) 
Lisp> 

This example shows that changing the contents of a stack 
frame does not change the contents of other stack frames or 
the function that was originally evaluated. 0 

4.6 STEPPER 

The stepper is a facility you can use to step interactively through 
the evaluation of a form. You can control the stepper with stepper 
commands as it displays and evaluates each subform of a specified 
form. 

The stepper has a pointer that points to the current stack 
the system's control stack. The current stack frame is the 
for which the stepper displayed information. 

frame ono 
last frame 

The stepper prints its command interaction to the stream bound to the 
*DEBUG-IO* variable; it prints its output to the stream bound to the 
*TRACE-OUTPUT* variable. 

0 
4.6. 1 Invoking the Stepper 

You can invoke the stepper by calling the STEP macro with a form as an 
argument. The following example invokes the stepper with a call to a 
function named FACTORIAL: 

Lisp> (STEP (FACTORIAL 3)) 

When the stepper is invoked, it displays a line of text that includes 
the first subform of the specified form and the stepper prompt. The 
output is displayed at the left margin of your terminal in the 
following format: 

: #9: (FACTORIAL 3) 
Step> 

4-20 

0 



DEBUGGING FACILITIES 

After the stepper is invoked, you can use the stepper commands to 

O control the operations the stepper performs and the way the stepper 
displays output. 

4.6.2 Exiting the Stepper 

Usually, when you use the stepper, you press the RETURN key until the 
stepper steps through the entire specified form. If you want to exit 
from the stepper before it steps through a form, use the QUIT stepper 
command. This command c·auses the stepper to return control to the 
previous command level that was active when the stepper was invoked. 

Step> QUIT 
Lisp> 

O By default, the QUIT command displays a confirmation message before it 
causes the stepper to exit. For example: 

0 

Step> QUIT . 
Do you really want to exit the stepper? 

If you type YES, the stepper exits and returns control to the command 
level that was active when the stepper was invoked. 

Do you really want to exit the stepper? YES 
Lisp> 

If you type NO, the stepper prompts you for another command. 

Do you really want to exit the stepper? NO 
Step> 

O You can prevent the stepper from displaying the confirmation message 
by specifying the QUIT command with a value other than NIL. For 
example: 

Step> QUIT T 
Lisp> 

A description of the QUIT command is provided in Section 4.6.4.2. 

I 

4.6.3 Stepper Output 

Once you 
displays 

Q form: 

invoke the 
two types 

stepper with a specified form, the stepper 
of information as the LISP system evaluates the 

4-21 



DEBUGGING FACILITIES 

• A description of each subform of the specified form 

• A description 0£ the return value from eich subform 0 
If the subform being evaluated is a symbol, the stepper 
descriptions in a line of text that includes 
information: 

• The nested level of the symbol 

displays the 
the following 

:;. 

• The control stack frame number that indicates where the symbol 
and its return value are stored 

o The symbol 

• The return value 

The stepper indicates the nested level of a symbol with indentation. 
When the number of nested levels increases, the indentation increases. 
After making the appropriate indentation, the stepper displays the 
control stac·k frame number, the symbol, and the return value in the 
following format: · 

#n: symbol=> return-value 

0 

If the subform being evaluated is not a symbol, the stepper displays Q 
the descriptions in a line· of text that includes the following 
information: 

e The nested level of the subform 

• The control stack frame number that indicates where the 
subform is stored 

• The subform 

0 The stepper indicates the nested level of a subform with indentation. 
When the number of nested levels increases, the indentation increases. -
After making the appropriate indentation, the stepper displays the 
control stack frame number and the subform in the following format: 

#n: (subforrn) 

The description of a return value includes the'following information: 

e The nested level of the return value 

e The control stack frame number that indicates where the return 
value is stored 

• The return value 

4-22 

0 



DEBUGGING FACILITIES 

CThe stepper also indicates the nested level of each return value with 
indentation. The indentation matches the· indentation of the 
corresponding call. After making the appropriate indentation, the 
stepper displays the control stack frame number and the return value 

0 

0 

0 

in the following format: 

#n => return-value 

Suppose you define a function named FACTORIAL. 

Lisp> (DEFUN FACTORIAL (N) 
(IF(<= N 1) 1 (* N (FACTORIAL (- N 1))))) 

FACTORIAL 

The following 
displays when 

example illustrates the format of the output the stepper 
you invoke it with the form (FACTORIAL 3): 

Lisp> (STEP (FACTORIAL 3)) 
#4: (FACTORIAL 3) 
Step> STEP 
: #10: (BLOCK FACTORIAL (IF(<= N 1) 1 (• N (FACTORIAL (- N 1))))) 
Step> STEP 
: : #14: (IF (<= N 1) 1 (* N (FACTORIAL (- N 1)))) 
Step> STEP 
: : : #18: ( <= N 1) 
Step> STEP 
: : : : #22: N => 3 
: : : #18 => NIL 
: : : #17: (* N (FACTORIAL (- N 1))) 
Step> STEP 
: : : : #21 : N => 3 
: : : : #21: (FACTORIAL (- N 1)) 
Step> STEP 
: : : : : #25: (- N 1) 
Step> STEP 
: : : : : : #29: N => 3 
: : : : : #25 => 2 
: : : : : #27: (BLOCK FACTORIAL (IF(<= N 1) 1 (* N (FACTORIAL (- N 1))))) 
Step> OVER 

: : : #27 => 2 
: : : #21 => 2 

: : : #17 => 6 
: : #14 => 6 
: #10 => 6 
#4 => 6 
6 

Note that the FACTORIAL function is a recursive function and, in the 
preceding example, has three levels of recursion. The stepper 
indicates the nested level of each subform with an indentation, 
indicated with a colon followed by a space (: ). The stepper 

O indicates the number of the stack frame in which a call is.stored with 
an integer. The integer is preceded with a number sign and followed 
by a colon (#n:). . 

4-23 



DEBUGGING FACILITIES 

The nested level of each return value matches the indentation of the 
corresponding subform. The stepper indicates the number of the Ci 
control stack frame onto.which the LISP system pushes the value with 
an integer that matches the stack frame number of the corresponding 
sutform. The integer is preceded by a number sign and followed by an 
arrow (#n =>) that points to the return value. 

4.6.4 Using Stepper Commands 

Stepper commands let you use the stepper to step through the 
evaluation of a LISP expression, form by form. You must specify some 
commands with arguments. They provide the stepper with additional 
information on how to execute the command. 

You can abbreviate stepper commands to as few characters as you like, Q 
as long as no ambiguity is in the abbreviation. 

Each time a command is executed, the stepper displays a return value 
if the subform returns a value, displays the next subform, and prompts 
you for another command. Enter a stepper command by typing the 
command name or abbreviation and then pressing the RETURN key. For 
example: 

Step> STEP<RET> 
: : : #22: (IF(<= N 1) 1 (* N (FACTORIAL (- N 1)))) 
Step> 

If you press only the RETURN 
subform the stepper displays. 
stepper displays the value and 
for another command. 

Step><RET> 

key, the LISP system evaluates the 
· If the evaluation returns a value, the 
the next subform and then prompts you 

#22: (IF(<= N 1) 1 (* N (FACTORIAL(~ N 1)))) 
Step> 

Table 4-4 provides a summary of the stepper commands. Descriptions of 
the stepper commands are provided in Section 4.6.4.2. 

Table 4-4: Stepper Commands 

Command Description 

BACKTRACE Displays a back trace of a form's evaluation .. 

DEBUG Invokes the debugger. 

0 

0 

EVALUATE Evaluates a specified form. with the 
disabled. 

stepper Q 

4-24 



DEBUGGING FACILITIES 

Table 4-4 (cont.) 
O~~~~~~~~~~-

Command Description 

0 

0 

FINISH 

HELP (or) ? 

OVER 

SHOW 

QUIT 

RETURN 

STEP 

UP 

Finishes the evaluation of the form that was 
specified in the call to the STEP macro with the 
stepper di sabled. • 

Displays help text about the stepper commands. 

Evaluates the subform in the current stack frame 
with the stepper disabled. 

Displays the subform in the current stack frame. 

Exits the stepper. 

Forces the current stack frame to return a value. 

Evaluates the subform in the current stack frame 
with the stepper enabled. 

Evaluates subforms with the stepper disabled until 
the stepper gets back to a subform that contains 
the subform in the current stack frame. 

4.6.4.1 Arguments - Stepper command arguments modify the 
the stepper commands perform. Some stepper commands 
argument, and some commands accept optional arguments. The 
you can specify with the stepper commands are: 

operations 
require an 
arguments 

• Integer 

Q • Form 

• Stepper command 

NOTE 

Only parenthesized expressions 
evaluate (that is, arguments 
EVALUATE command) are evaluated. 

and arguments to 
specified with the 

Enter an argument after the command it modifies and press the RETURN 
key. For example: 

O Step> EVALUATE(<= N l)<RET> 

4-25 



DEBUGGING FACILITIES 

If an argument is required and you omit it, the 
for the argument. For example: 

stepper prompts you 

0 
Step> EVALUATE<RET> 
Evaluate: (<= N 1) 

The stepper does not prompt for arguments if you specify the& in the 
command line. 

4.6.4.2 Stepper Commands - The stepper provides c9mmands that let you 
control how it steps through a form's evaluation. 

HELP 
? 

Help Command 

The HELP command displays help text about the stepper 
commands. You can specify this command with one 
argument, the name of the stepper command about which 
you want help text. If you specify the HELP command 
without an argument, the stepper displays a list of the 
stepper commands. 

You can abbreviate this command by using 
mark (?). 

Evaluation Command 

a question 

You can evaluate· expressions while. you are in· the 
I 

stepper. If you want the LISP system to evaluate a 

0 

0 

EVALUATE 

parenthesized form, you can specify the form and then 
press the RETURN key. If you want the system to 
evaluate a symbol, you must use the EVALUATE command. Q 
The EVALUATE command causes the LISP system to 
explicitly evaluate a specified form. You must specify -
the command with an argument, which must be the form 

DEBUG 

you want the system to evaluate. The system evaluates 
the form in the lexical environment of the form 
currently being stepped. 

Debugger Command 

The DEBUG command invokes the debugger at 
stack frame that stores the call to the 
When the debugger returns control to the 
stepper prompts you for a command. 

4-26 

the control 
current form. 
stepper, the 

0 



QUIT 

0 

BACK TRACE 

0 

DEBUGGING FACILITIES 

Display Command 

The SHOW command displays the subform in the current 
stack frame. 

Exiting Command 

The QUIT command causes the stepper to exit and return 
control to the command level that was active when the 
stepper was invoked. You can specify this command with 
an optional argument. If you specify NIL, the stepper 
displays a confirmation message before it causes the 
stepper to exit. If you respond to the message by 
typing YES, the stepper exits. If you specify a value 
other than NIL, the stepper does not display a message. 
The default value for the optional argument is NIL. 

Backtrace Command 

The BACKTRACE command lists the subforms of the form 
being stepped through. You can specify the command 
with an optional integer, which determines the number 
of subforms that are to be listed. The stepper works 
its way back the specified number of subforms and then 
lists the subforms in the order in which they were 
invoked. If you do not specify the argument, the 
stepper lists all the subforms the LISP system is 
evaluating. 

Commands That Continue Evaluation of the Form Being Stepped Through 

0 
FINISH 

0 

Several,stepper commands continue the evaluation of the 
form being stepped through, each command continuing the 
evaluation in a different way. 

The FINISH command evaluates the form you specified in 
the call to the STEP macro. You can specify the 
command with an optional argument that is a form. When 
the stepper executes the command, the LISP system 
evaluates the form. If the evaluation returns a value 
other than NIL, the stepper steps through the 
evaluation of the form until it reaches the end of the 
evaluation. If the evaluation returns NIL, the LISP 
system disables the stepper and then evaluates the form 
you specified in the call to the STEP macro. The 
default value for the optional argument is NIL. 

4-27 



DEBUGGING FACILITIES 

OVER The OVER command causes the LISP system to evaluate the 
subform in the current stack frame with the steppero 
disabled.-

RETURN The RETURN command causes the LISP system to evaluate 
the RETURN command's argument and causes the stepper to 
force the current stack frame to return tie values 
returned by the evaluation. This command must be 
specified with an argument that must be a form. When 
you execute the command, the LISP system evaluates the 
form. When the evaluation is complete, the current 
stack frame returns the values returned by the 
evaluated form. 

STEP The STEP command causes the LISP system to evaluate the 
subform in the current stack frame with the stepper 
enabled. This command is equivalent to pressing theo 
RETURN key. 

UP The UP command causes the LISP system to evaluate 
subforms with the stepper disabled until control 
returns to the subform that contains the subform in the 
current stack frame. You can specify the command with 
an optional integer argument (n). If you specify the 
argument, the system evaluates subforms with the 
stepper disabled until control returns to the subformo 
that contains the subform in the current stack frame n 
levels deep. The default value of the argument is 1. 

4.6.5 Using Stepper Variables 

The stepper facility has 
debugging tools when 
*STEP-ENVIRONMENT*. 

two special 
in the 

variables 
stepper: 

that are useful 
*STEP-FORM* and 

0 
4.6.5.1 *STEP-FORM* - The *STEP-FORM* variable· is bound to the form 
being evaluated while stepping. For example, while executing the form 

(STEP (FUNCTION-Z ARG1 ARG2)) 

the value of *STEP-FORM* is the list (FUNCTION-Z ARG1 ARG2). When not 
stepping, the value is undefined. 

4.6.5.2 *STEP-ENVIRONMENT* - The *STEP-ENVIRONMENT* variable is boun~ 
to the lexical environment in which *STEP-FORM* is being evaluated.o 
By default in the stepper, the lexical environment is used if you use 

4-28 



0 

0 

0 

0 

0 

DEBUGGING FACILITIES 

the EVALUATE command. See COMMON LISP: The Language for a description 
of dynamic and lexical environment variables. 

Some COMMON LISP functions (for example, EVALHOOK, APPLYHOOK, and 
MACROEXPAND) take an optional environment argument. The value bound 
to the *STEP-ENVIRONMENT* variable can be passed as an envi~onment to 
these functions to allow evaluaton of forms in the context of the 
stepped form. 

4.6.5.3 Example Use of Stepper Variables - The following example 
illustrates the use of the *STEP-FORM* and *STEP-ENVIRONMENT* special 
variables. 

Lisp> (SETF X "Top level value of X") 
"Top level value of X" 
Lisp> (DEFUN FUNCTION-X (X) 

(IF (< X 3) 1 

FUNCTION-X 
(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2))))) 

Lisp> (STEP (FUNCTION-X 5)) 
#4: (FUNCTION-X 5) 
Step> STEP 
: #10: (BLOCK FUNCTION-X (IF(< X 3) 1 

(+ (FUNCTION-X (- X 1)) 

Step> STEP 
(FUNCTION-X (- X 2))))) 

: : #14: (IF (< X 3) 1 (+ (FUNCTION-X (- X 1)) 
(FUNCTION-X (- X 2)))) 

Step> . : . . . 
Step> 

. . . . . . . . . . . . 
Step> . . . . . . 
Step> . : . . . 
Step> 

Step> . . . . . . 

Step> . . . . . . 

STEP 
#18: (< X 3) 
STEP 
: #22: X => 5 
#18 => NIL 
#17: (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X. 2))) 
STEP 
: #21: (FUNCTION-X (- X 1)) 
STEP 
: : #2 5: ( - X 1) 
STEP 

: #29: X => 5 
#25 => 4 -
#27: (BLOCK FUNCTION-X (IF(< X 3) 1 

(+ (FUNCTION-X (- X 1)) 

STEP 
(FUNCTION-X (- X 2))))) 

. . . #31: (IF (< X 3) 1 . . . 
(+ (FUNCTION-X (- x 1)) 

(FUNCTION-X ( - x 2)))) 
STEP . . . . #35: (< x 3) . . . . 

4-29 



Step> STEP 

Step> STEP 

DEBUGGING FACILITIES 

: #39: X => 4 
#35 => NIL 
#34: (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2))) 

· • • : # 3 8 : ( FUN CT I ON - X ( - X 1 ) ) 
Step> EVAL *STEP-FORM* 
(FUNCTION-X (- X 1)) 
Step> STEP 

#42: (- X 1) 
Step> STEP 

: #46: X => 4 
#42 => 3 
#44: (BLOCK FUNCTION-X 

(IF (< X 3) 1 

Step> EVAL *STEP-FORM* 
(BLOCK FUNCTION-X 

(+ (FUNCTION-X (- X 1)) 
(FUNCTION-X (- X 2))))) 

(IF (< X 3) 1 (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2))))) 
Step> STEP 
: : : : : : : : : : #48: (IF (< X 3) 1 

Step> STEP . . . . . . 
Step> STEP 

Step> STEP . . . . . . 
Step> EVAL X 
3 
Step> (EVAL 'X) 
"Top level value of X" 
Step> EVAL *STEP-FORM* 
(FUNCTION-X (- X 1)) 

(+ (FUNCTION-X (- X 1)) 
(FUNCTION-X (- X 2)))) 

#52: (< X 3) 

: #56: X => 3 
#52 => NIL 
#51: (+ (FUNCTION-X (- X 1)) 

(FUNCTION-X (- X 2))) 

#55: (FUNCTION-X (- X 1)) 

Step> (EVALHOOK 'X NIL NIL NIL) 
"Top level value of X" 
Step> (EVALHOOK 'X NIL NIL *STEP-ENVIRONMENT*) 
3 
Step> ( EVALHOOK ( CADR *STEP-FORM*) NIL NIL *STEP-.ENVIRONMENT*) 
2 
Step> STEP . . . . . . . . . . . . 
Step> STEP 

#59: (- X 1) 

: #63: X => 3 
#59 => 2 
#61: (BLOCK FUNCTION-X 

( IF ( < X 3) 1 

4-30 

0 

0 

0 



0 Step> FINISH 
5 

DEBUGGING FACILITIES 

(+ (FUNCTION-X (- X 1)) 
(FUNCTION-X (- X 2))))) 

This example shows that the *STEP-FORM* special variable is bound to 
the form being evaluated while stepping. The example also !hows that 
the *STEP-ENVIRONMENT* special variable is bound to the lexical 
environment in which the currently stepped form is being evaluated. 

The call to EVALHOOK evaluates the form (- X 1) in the lexical 
environment of the stepper, that is, with the local binding of x.. A 
call to EVALHOOK with a null environment specified shows that X's 
value in the null lexical environment differs from that in the 
stepper. The EVAL command uses the *STEP-ENVIRONMENT* environment; 
the EVAL function uses the null lexical environment. 

0 
4.6.6 Sample Stepper Sessions 

0 

0 

0 

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X)) 
FIRST-ELEMENT 
Lisp> (SETF MY-LIST '(FIRST SECOND THIRD)) 
(FIRST SECOND THIRD) 
Lisp> (STEP (FIRST-ELEMENT MY-LIST)) 
: #9: (FIRST-ELEMENT MY-LIST) 
Step> STEP 
: : #14: MY-LIST=> (FIRST SECOND THIRD) 
: : #15: (BLOCK FIRST-ELEMENT (CAR X)) 
Step> STEP 
: : : #22: (CAR X) 
Step> EVALUATE (CAR X) 
FIRST 
Step> FINISH 
FIRST 
Lisp> 

2. Lisp> (DEFUN PLUS-Y (X) (+ X Y)) 
PLUS-Y 
Lisp> (SETF Y 5) 
5 
Lisp> (STEP (PLUS-Y 10)) 
: #9: ( PLUS-Y· 10) 
Step> STEP 
: : #15: (BLOCK PLUS-Y (+ X Y)) 
Step> EVALUATE 
Evaluate: (+ X Y) 
15 
Step> STEP 
: : : #22: (+ X Y) 

4-31 

____________________________ /_ 



DEBUGGING FACILITIES 

Step> BACKTRACE 
(PLUS-Y 10) 
: (BLOCK PLUS-Y (+ X Y)) 
: : (+ X Y) 

0 
Step> SHOW 
(+ X Y) 
Step> OVER 

: : #22 => 15 
: : #15 => 15 
: #9 => 15 
15 
Lisp> 

3. Lisp> (DEFUN ADDITION (X) (+ X Y)) 
ADDITION 
Lisp> (SETF Y 5) 
5 
Lisp> (STEP (ADDITION 4)) 
: #9: (ADDITION 4) 
Step> STEP 
: : #15: (BLOCK ADDITION(+ X Y)) 
Step> STEP 
: : : #22: (+ X Y) 
Step> BACKTRACE 
(ADDITION 4) 
: (BLOCK ADDITION(+ X Y)) 
: : (+ X Y) 
Step> EVALUATE 
Evaluate: (+ X Y) 
9 
Step> STEP 

9 

: #27: X => 4 
: #26: Y => 5 
#22 => 9 

#15 => 9 
#9 => 9 

Lisp> 

4.7 TRACER 

The VAX LISP tracer is a macro you can use to ~nspect a program's 
evaluation. The tracer informs you when a function or macro is called 
during a program's evaluation by printing information about each call 
and return value to the stream bound to the *TRACE-OUTPUT* variable. 
To use the tracer, you must enable it for each function and macro you 
want traced. 

4-32 

0 

0 

0 

0 



0 

DEBUGGING FACILITIES 

NOTE 

You cannot trace special forms. 

4.7.1 Enabling the Tracer 

You can enable the tracer for one or more functions and/or macros by 
specifying the function and macro names as arguments in a call to the 
TRACE macro. For example: 

Lisp> (TRACE FACTORIAL ADDITION COUNTER) 
(FACTORIAL ADDITION COUNTER) 

The TRACE macro returns a list of the functions and macros that are to o be traced. 

If you try to trace a function or macro that is already being traced, 
a warning message is displayed. To avoid this error, call the TRACE 
macro without an argument to produce a list of the functions and 
macros for which tracing is enabled. For example: 

Lisp> (TRACE) 
(FACTORIAL ADDITION COUNTER) 

QA description of the TRACE macro is provided in Chapter 8. 

4.7.2 Disabling the Tracer 

To disable the tracer for a function or macro, specify the name of the 
function or macro in a call to the UNTRACE macro. It returns a list 

Oof the functions and macros for which tracing has just been disabled. 
For example: 

Lisp> (UNTRACE FACTORIAL ADDITION COUNTER) 
(FACTORIAL ADDITION COUNTER) 

You can disable tracing for all the functions 
enabled by calling the UNTRACE macro without 
to disable tracing for a function that is not 
message is displayed. 

I 

for which tracing is 
an argument. If you try 
being traced, a warning 

The UNTRACE macro is described in COMMON LISP: The Language. 

0 
4-33 



DEBUGGING FACILITIES 

4. 7 .3 Tracer Output 

Once you enable the tracer for a function or macro, the tracer 
displays two types of information each time that function or macro is 
called during a program's evaluation: 

• A description of each call to the specified function'or macro 

• A description of each return value from the specified function 
or macro 

The description of a call to a function or macro consists of a line of 
text that includes the following information: 

• The nested level of the call 

• The control stack frame number that indicates where the call 
is stored 

• The name and arguments of the function associated with the 
function or macro that is called 

The tracer indicates the nested level of 
When the number of nested levels increases, 
After making the appropriate indentation, 
control stack frame number, the function 
the following format: 

#n: (function-name arguments) 

a call with indentation. 
the indentation increases. 
the tracer displays the 
name, and the arguments in 

The tracer also displays a line of text for the return value of ·each 
evaluation. The line of text the tracer displays for each value 
includes the following information: 

• The nested level of the return value 

• The control stack frame number that indicates where the return 
value is stored 

• The return value 

The tracer indicates 
indentation. The 
corresponding call. 
the control stack 
format: 

the nested level of. each return value with 
indentation matches the indentation of the 

After making the indentation, the tracer displays 
frame number and the return value in the following 

#n => return-value 

4-34 

0 

0 

0 

0 

0-



DEBUGGING FACILITIES 

c=Juppose you define a function named FACTORIAL. 

Lisp> (DEFUN FACTORIAL (N) 
(IF(<= N 1) 1 (* N (FACTORIAL (- N 1))))) 

FACTORIAL 

The following example illustrates the format of the output t~e tracer 
displays when the function FACTORIAL is called with the argument 3: 

0 

Lisp> (FACTORIAL 3) 
#11: (FACTORIAL 3) 
. #27: (FACTORIAL 2) 
.. #43: (FACTORIAL 1) 
. . #43 => 1 
• #27 => 2 
#11 => 6 
6 

The FACTORIAL function is a recursive one and, in the case of the 
preceding example, has three levels of recursion. The tracer 
indicates the nested level of each call with indentation. Each level 
of indentation is indicated with a period followed by a space (. ). 
The tracer indicates the number of the stack frame in which a call is 
stored with an integer. The integer is preceded with a number sign 
and followed by a colon (#n:). 

Ohe nested level of each return value m~tches the indentation of the 
corresponding call. The tracer indicates the number of the control 
stack frame onto which the LISP system pushes the value with an 
integer. This integer matches the stack frame number of the 
corresponding call and is preceded with a number sign and followed by 
an arrow (#n =>) that points to the return value. 

Q. 7 .4 Tracer Options 

You can modify the output of the tracer by specifying options in the -
call to the TRACE macro. Each option consists of a keyword-value 
pair. The format in which to specify keyword-value pairs for the 
TRACE macro is: 

(TRACE (function-name keyword-1 value-1 
keyword-2 value-2 ... ) ) 

You can also specify options for a list of functions and/or macros. 
The TRACE macro format in which to specify the same options for a list 
of functions and macros is: 

0 (TRACE ((name-1 name-2 ••• ) keyword-1 value-1 
keyword-2 value-2 
... ) ) 
4-35 



DEBUGGING FACILITIES 

NOTE 

Forms the system evaluates just before or just after a 
call to a function or macro for which tracing is 
enabled are evaluated in a null lexical environment. 
For information on lexical environments, see COMMPN 
LISP: The Language. 

0 

The keywords you can use to specify options are: 

e :DEBUG-IF 
:PRE-DEBUG-IF 
:POST-DEBUG-IF 

s :PRINT 

!-- Invoke the debugger 

:PRE-PRINT 1-- Add information to tracer output 
:POST-PRINT 

• :STEP-IF -- Invokes the stepper 

• :SUPPRESS-IF -- Removes information from tracer output 

• :DURING -- Determines when a function or macro is traced 

4.7.4.1 Invoking the Debugger - You can cause the tracer to invoke 
the debuggei by specifying the :DEBUG-IF, :PRE-DEBUG-IF, or 
:POST-DEBUG-IF keyword. These keywords must be specified with a form. 
The LISP system evaluates the 'form before, after, or before and after 
each call to the function or macro being traced. If the form returns 
a value other than NIL, the tracer invokes the debugger after each 
evaluation. 

0 

0 

0 
4.7.4.2 Adding Information to Tracer Output - You can add information -
to tracer output by specifying the :PRINT, :PRE-PRINT, or :POST-PRINT 
keyword. You must specify these keywords with a list of forms. The 
LISP system evaluates the list of forms and the tracer displays the 
return values before, after, or before and .after each call to the 
function or macro being traced. The tracer displays the values one 
per line and indents them to match other tracer output. If the forms 
to be evaluated cause an error, the debugger is invoked. 

4.7.4.3 Invoking the Stepper - You can cause the tracer to invoke the 
stepper by specifying the :STEP-IF keyword. You must specify this ·o 
keyword with a form. The LISP system evaluates the form before ,each 
call to the function or macro being traced. If the form returns a 
value other than NIL, the tracer invokes t~e stepper. 

4-36 



0 

0 

0 

0 

0 

DEBUGGING FACILITIES 

4.7.4.4 Removing Information from Tracer Output - You can remove 
information from tracer output by specifying the :SUPPRESS-IF keyword. 
You must specify this keyword with a form. The LISP system evaluates 
the form before each call to the function or macro being traced. If 
the form returns a value other than NIL, the tracer does not display 
the arguments and the return value of the function or macro being 
traced. 0 

4.7.4.5 Defining When a Function or Macro Is Traced - You can define 
when a function or macro, for which tracing is enabled, is to be 
traced by specifying the :DURING keyword. You must specify this 
keyword with a function or macro name or a list of function and/or 
macro names. The functions and macros for which the tracer is enabled 
are traced only when they are called (directly or indirectly) from 
within one of the functions or macros whose names are specified with 
the keyword. 

4. 7.5 Tracer Variables 

You can use two special variables with the TRACE macro. These are 
helpful debugging tools: *TRACE-CALL* and *TRACE-VALUES*. With these 
variables and the preceding tracer options, you can control when to 
debug or step depending on the arguments to a function or the return 
values from a function. 

4.7.5.1 *TRACE-CALL* - The *TRACE-CALL* variable is bound to the 
function or macro call being traced. The following example shows how 
to use the variable: 

Lisp> (DEFUN FUNCTION-X (X) 
(IF (< X 3) 1 

(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2))))) 
FUNCTION-X 

Lisp> (TRACE (FUNCTION-X 
:PRE-DEBUG-IF(< (SECOND *TRACE-CALL*) 2) 
:SUPPRESS-IF T)) 

(FUNCTION-X) 
Lisp> (FUNCTION-X 5) 
Control Stack Debugger 
Frame #26: (DEBUG) 
Debug 1> DOWN 
Frame #21: (BLOCK FUNCTION-X 

(IF {< X 3) 1 
(+ (FUNCTION-X (- X 1)) 

(FUNCTION-X (- X 2))))) 

4-37 



DEBUGGING FACILITIES 

Debug 1> DOWN 
Frame #19: (FUNCTION-X 3) 
Debug 1> (CADR (DEBUG-CALL)) 
3 
Debug 1> CONTINUE 
Control Stack Debugger 
Frame #19: (DEBUG) 
Debug 1> CONTINUE 
5 

e In this example, FUNCTION-Xis first defined. 

e Then the TRACE macro is called for FUNCTION-X. TRACE is 
specified to invoke the debugger if the first argument to 
FUNCTION-X (the function call being traced) is less than 2. 
Since the PRE-DEBUG-IF option is specified, the debugger is 
invoked before the call to FUNCTION-X. As the :SUPPRESS-IF 
option has a value of T, calls to FUNCTION-X do not cause any 
trace output. 

@ The DOWN command moves the pointer down the control stack. 

The DEBUG-CALL function returns 
current debug frame function call. 
the list is 3. This accesses the 
function in the current stack frame. 

a list representing the 
In this case, the CADR of 
first argument to the 

Finally the CONTINUE command continues the evaluation of 
FUNCTION-X. 

4.7.5.2 *TRACE-VALUES* - The *TRACE-VALUES* variable is bound to the 

0 

0 

0 

list of values returned by a traced function. Consequently, the 
variable can be used only with the :POST- options to the TRACE macro. Q 
Before being bound to the return values, the variable returns NIL. 
The following example shows how to use the variable: 

Lisp> (TRACE (FUNCTION-X 
:POST-DEBUG-IF (> (FIRST *TRACE-VALUES*) 2))) 

(FUNCTION-X) 
Lisp> (FUNCTION-X 5) 
#4: (FUNCTION-X 5) 
. #11: (FUNCTION-X 4) 

#18: (FUNCTION-X 3) 
. #25: (FUNCTION-X 2) 

#25=> 1 
.•. #25: (FUNCTION-X 1) 

. #25=> 1 
. • #18=> 2 
•• #18: (FUNCTION-X 2) 
. . #18=> 1 

4-38 

0 



0 

0 

0 

0 

0 

DEBUGGING FACILITIES 

Control Stack Debugger 
Frame #12: (DEBUG) 
Debug 1> BACKTRACE 
-- Backtrace start -
Frame #12: (DEBUG) 
Frame #7: (BLOCK FUNCTION-X 

(IF (< X 3) 1 
(+ (FUNCTION-X (- X 1)) 

(FUNCTION-X (- X 2))))) 
Frame #5: (FUNCTION-X 5) 
Frame #1: (EVAL (FUNCTION-X 5)) 
-- Backtrace ends --
Frame #12: (DEBUG) 
Debug 1> CONTINUE 
. #11=> 3 

#11: (FUNCTION-X 3) 
. #18: (FUNCTION-X 2) 

.. #18=> 1 
#18: (FUNCTION-X 1) 

.. #18=> 1 

. #11=> 2 
Control Stack Debugger 
Frame #5: (DEBUG) 
Debug 1> CONTINUE 
#4=> 5 

TRACE is called for FUNCTION-X (the same function as in the 
previous example) to start th~ debugger if the value returned 
exceeds 2. The value returned exceeds 2 twice once when it 
returns 3 and at the end when it returns 5. 

4-39 



0 

0 

0 

0 

0 



0 

0 

0 

0 

CHAPTER 5 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

Pretty printing clarifies the meanings of LISP objects- by modifying 
their printed representations. It inserts indentation and line breaks 
at appropriate places, making pretty-printed output easier to read 
than output produced with standard print functions. Pretty printing 
is an alternative to standard printing for all LISP objects, but is 
particularly useful for printing LISP code, complex data lists, and 
arrays.* 

When pretty printing is enabled, any output function that prints 
output can potentially perform pretty printing. The following example 
contrasts the standard and pretty-printed treatments of a COND 
structure: 

Lisp> (SETF T-QUESTION '(COND ((EQUAL TERMINAL 
'VT240) START) (T (PRIN1 '(WHAT TERMINAL TYPE ARE YOU 
USING?))))) 
( COND ( ( EQUAL TERMINAL ( QUOTE VT2 4 0) ) START) ( T (.PRIN1 
(QUOTE (WHAT TERMINAL TYPE ARE YOU USING?))))) 
Lisp> (PPRINT T-QUESTION) 
(COND ((EQUAL TERMINAL 'VT240) START) 

(T (PRIN1 '(WHAT TERMINAL TYPE ARE YOU USING?)))) 

The first version (produced by the standard read-eval-print loop) -
breaks the line at an awkward place and provides no indentation. Only 
one line is being printed. The line is either wrapped or truncated, 
depending on the operating system (VMS or ULTRIX-32) and the setting 
of the terminal. The pretty-printed (PPRINT) version is more readable 
because it starts a new line at the beginning of a nested list, 
indenting the list to· line up with the structure nested to the 
equivalent level in the first line. 

* VAX LISP pretty printing and the extensions to FORMAT are based on a 
program described in the paper PP: A Lisp Pretty Printing System, 

O A.I. Memo No. 816, December, 1984. The paper and the program were 
written by Richard C. Waters, Ph.D., of the MIT Artificial 
Intelligence Laboratory. 

5-1 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

This chapter describes four ways to print LISP objects: 

• Section 5.1 tells how to pretty-print·objects. 

• Section 5.2 tells how to control the format of pretty-printed 
objects using print control variables. 

• 
• Section 5.3 tells how to use the VAX LISP FORMAT directives 

that support pretty-printing. 

e Sections 5.4 through 5.9 tell how you can extend the VAX LISP 
print functions to handle specific structures and types of 
structures by defining new print functions. 

5.1 PRETTY PRINTING WITH DEFAULTS 

Three print functions let you pretty-print without .explicitly using 
print control variables: 

e PPRINT formats an object and prints it to a stream. 

• PPRINT-DEFINITION formats the function object of a symbol and 
prints it to a stream. 

0 

0 

• PPRINT-PLIST formats the property list of a symbol and prints Q 
it to a stream. 

Use PPRINT when you want to let the system decide how best to format 
an object. PPRINT prints whatever object is given as its argument. 
The COND structure at the beginning of this chapter is an example of 
the output format specified for lists starting with a particular 
symbol. 

You can use PPRINT-DEFINITION to print the definition of a LISP O 
function. Supply the function name as the argument, as follows: 

Lisp> (DEFUN BELONGS (THIS PILE) (COND ((NULL PILE) NIL) ((EQUAL 
THIS (CAR PILE)) PILE) (T (BELONGS THIS (CDR PILE))))) 
BELONGS 
Lisp> (PPRINT-DEFINITION 'BELONGS) 
(DEFUN BELONGS (THIS PILE) 

(COND ((NULL PILE) NIL) 
((EQUAL THIS (CAR PILE)) PILE) 
(T (BELONGS THIS (CDR PILE))))) 

If the object to be printed is the property list of a symbol, use 
PPRINT-PLIST, as shown in the following example: 

Lisp> (SETF (GET 'PLACES 'CITIES) '(AUGUSTA SACRAMENTO))· 
(AUGUSTA SACRAMENTO) 

5-2 

0 



0 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

Lisp> (SETF (GET 'PLACES 'STATES) '(MAINE CALIFORNIA)) 
(MAINE CALIFORNIA) 
Lisp> (PPRINT-PLIST 'PLACES) 
(STATES (MAINE CALIFORNIA) 
CITIES (AUGUSTA SACRAMENTO)) 

PPRINT-PLIST prints only indicator-value pairs for which the 1 indicator 
is accessible in the current package. PPRINT-PLIST emphasizes the 
relationships between the indicator-value pairs. 

5.2 HOW TO PRETTY-PRINT USING CONTROL VARIABLES 

VAX LISP supports the global print control variables included in 
COMMON LISP. In addition, VAX LISP provides three variables that 

oaffect only pretty-printed output: 

~ *PRINT-RIGHT-MARGIN* 

e *PRINT-MISER-WIDTH* 

e *PRINT-LINES* 

can adjust By changing the values of these variables, you 
pretty-printed output to suit a variety of situations. 

QYou can also specify values for these three variables in calls to 
WRITE and WRITE-TO-STRING functions. These functions have 
extended to accept the following keyword arguments: 

the 
been 

:RIGHT-MARGIN 
:MISER-WIDTH 
:LINES 

Orf you specify any of these 
variable is bound to the value 
output is produced. 

arguments, the corresponding special 
you supply with the argument before any 

0 

5.2.1 Explicitly Enabling Pretty Printing 

When the COMMON LISP variable *PRINT-PRETTY* is non-NIL, it enables 
Piretty printing. If you set *PRINT-PRETTY* to T, you can pretty print 
by calling any print function. The LISP read-eval-print loop will 
also pretty-print when *PRINT-PRETTY* is non-NIL. 

The following example shows the effect of a PRIN1 function call when 
pretty printing is enabled: 

5-3 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

Lisp> (SETF *PRINT-PRETTY* T) 
T 0 Lisp> (PRINl '( (TIGER TIGER BURNING BRIGHT) (IN THE FORESTS OF 
THE NIGHT) (WHAT IMMORTAL HAND OR EYE) (COULD FRAME THY FEARFUL 
SYMMETRY) ) ) 
((TIGER TIGER BURNING BRIGHT) 

(IN THE FORESTS OF THE NIGHT) 
(WHAT IMMORTAL HAND OR EYE) 
(COULD FRAME THY FEARFUL SYMMETRY)) 

You can also enable pretty printing by specifying a non-NIL value for 
the :PRETTY keyword in functions such as WRITE and WRITE-TO-STRING. 

5.2.2 Limiting Output by Lines 

Pretty printing lets you abbreviate output by controlling the numberO 
of lines printed. With the variable *PRINT-LINES* set to any integer 
value, the print function you use stops after printing the specified 
number of lines~ The output stream replaces omitted output with the 
characters" " Abbreviation by number of lines occurs only when 
pretty printing is enabled. See Section 5.7 for more details on 
abbreviating output. 

The following example shows pretty-printed output with *PRINT-LINES*Q 
set to 2. 

Lisp> (SETF *PRINT-LINES* 2) 
2 
Lisp> (SETF *PRINT-PRETTY* T) 
T 
Lisp> (PRINT '((IN WHAT DISTANT DEEPS OR SKIES) (BURNT THE FIRE 
OF THINE EYES) (ON WHAT WINGS DARE HE ASPIRE) (WHAT THE HAND 
DARE SEIZE THE FIRE))) 0 ((IN WHAT DISTANT DEEPS OR SKIES) 

(BURNT THE FIRE OF THINE E ... 

5.2.3 Controlling Margins 

The *PRINT-RIGHT-MARGIN* variable lets you adjust the width of 
pretty-printed output. The value should be an integer; it specifies 
the exclusive upper limit on column numbers. With the left margin at 
0, *PRINT-RIGHT-MARGIN* specifies the number of columns in which you 
can print. The default value, NIL, causes the print functions to 
query the output stream for the right margin value. The default 
varies, but is always appropriate to the output device. 

Output may exceed the right margin if the printer. encounters a long Q 
symbol name or string. The left margin is normally 0, but you can 

5-4 



0 

0 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

change it by using logical blocks with the FORMAT function 
(see Section 5.3). 

5.2.4 Conserving Space with Miser Mode 

to indent 

Miser mode can help you avoid running out of horizontal space when you 
print complicated structures. Pretty printing adds line breaks and 
indentation to output to indicate levels of nesting, so that deeply 
nested structures often use up much of the line width. Miser mode 
conserves line width by minimizing indentation and inserting new lines 
where possible. You can use this feature by setting the variable 
*PRINT-MISER-WIDTH* to an integer value two or three times the length 
of the longest symbol in the output (usually a value between 20 and 40 
is appropriate). 

The system subtracts the value of *PRINT-MISER-WIDTH* from the right 
margin of the output stream to determine the column at which miser 
mode takes effect. In other words, miser mode becomes effective when 
the total line width available for printing after indentation is less 
than the value of *PRINT-MISER-WIDTH*. You can set 
*PRINT-MISER-WIDTH* to NIL to disable miser mode. See Section 5.8 for 
more details. 

O The default value of *PRINT-MISER-WIDTH* is 40. 

0 

5.3 EXTENSIONS TO THE FORMAT FUNCTION 

VAX LISP provides eight 
specified in COMMON LISP. 

FORMAT directives in addition to those 
The added directives allow you to specify: 

• Logical blocks, which are groupings of related output tokens 

• Multiline mode new lines, which result in new lines if output 
cannot fit on one line 

• Indentation, which aids in indenting portions of a form 

Table 5-1 lists and briefly describes the FORMAT directives that VAX 
LISP provides. This section provides a guide to their use. The 
section presupposes a ·thorough knowledge of the LISP 'FORMAT function. 
~ee COMMON LISP: The Language for a full description of FORMAT. 

Use the FORMAT function as follows: 

FORMAT destination control-string &REST arguments 

OThis function formats the arguments according to the format you 
specify with directives in the control string. destination .specifies 

5-5 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

the output stream. The arguments identify the objects to be operated 
on by the control string. The sections that follow describe the Q 
application of these directives and the effects of the col0n and 
at-sign modifiers on them. 

Table 5-1: Format Directives Provided by VAX LISP 

Directive Effect 

Prints the corresponding argument under direction of 
the current print variable values. 

Begins a logical block. Depending on modifiers, this 
directive causes FORMAT to print one or more of the 
arguments following the control string. 

Ends a logical block. 

Specifies a multiline mode new line. 
effective only in a logical block. 

This directive is 

Sets indentation ton columns after the logical block 
or after the prefix. This directive is effective only 
in a logical block. 

0 

-n/FILL/ Prints the elements of a list with as many elements as Q 
possible on each line. If n is 1, FORMAT encloses the 
printed list in parentheses. This directive is 
effective only in a logical block. 

-n/LINEAR/ If the elements of the list, to be printed cannot be 
printed on a single line, this directive prints each 
element on a separate line. If n is 1, FORMAT encloses 
the printed list in parentheses. This directive is Q 
effective only in a logical block. 

-n,m/TABULAR/ Prints the list in tabular form. If n is 1, FORMAT -
encloses the list in parentheses; m specifies the 
column spacing. This directive is effective only in a 
logical block. 

These FORMAT directives provide the sole means of. performing pretty 
printing in VAX LISP. All functions that explicitly perform pretty 
printing (for example, PPRINT and PPRINT-DEFINITION) do so by using 
these directives. Objects printed with FORMAT are printed normally 
unless pretty printing is enabled. Pretty printing is enabled when 
both the following conditions exist: 

5-6 

0 



CJ 

PRETTY .PRINTING AND USING EXTENSIONS TO FORMAT 

1. A logical block is started. 

2. *PRINT-PRETTY* is non-NIL, or the colon modifier is specified 
in the logical block directive (-:!). 

Nothing prevents you from starting a logical block when *PRINT-PRETTY* 
is NIL. However, any conditional new lines or indentation'specified 
within the logical block will be ignored. This feature results in 
normal-looking output, ·as opposed to pretty-printed output. By 
allowing this flexibility, FORMAT lets you use one control string to 
format data, and the data is either printed normally or 
pretty-printed, according to the value of *PRINT-PRETTY*. 

5.3.1 Using the WRITE FORMAT Directive 

Q u·se the -w FORMAT di rec ti ve to print an element when you want to use 
the current values of the print control variables. The argument for 
-w can.be any LISP object. In contrast, -A and -s specify the values 
of print control variables. 

0 

You can use up to four prefix parameters with -w to pad the printed 
object: 

-mincol,colinc,minpad,padcharw 

For an explanation of these parameters, see the description under 
"FORMAT Directives Provided with VAX LISP" in Part II of this manual. 

The colon modifier (-:W) binds the following print control variables 
for the duration of the WRITE: *PRINT-ESCAPE* to T, *PRINT-PRETTY* to 
T, *PRINT-LENGTH* to NIL, *PRINT-LEVEL* to NIL, and *PRINT-LINES* to 
NIL. The following example contrasts the effects of using-wand -:w. 

0 Lisp> (SETF *PRINT-PRETTY* NIL) 

0 

NIL 
Lisp> (SETF *PRINT-ESCAPE* NIL) 
NIL 
Lisp> (SETF *PRINT-LENGTH* 2) 
2 
Lisp> (SETF COLORS ' ( ( "Yellow" "Purple" "Orange" "Green") 
"Pink" "Beige" "Buff") ("Peach" "Violet" 

Lisp> (FORMAT T "-W" COLORS) 
((Yellow Purple ... ) (Aqua Pink ... ) •.. ) 
NIL 
Lisp> (FORMAT T .. -:w" COLORS) 
(("Yellow" "Purple" "Orange" "Green") 

("Aqua" "Pink" "Beige" "Buff") 
("Peach" "Violet" "Chartreuse")) 

5-7 

"Chartreuse"))) 
("Aqua" 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

The first FORMAT call truncates the first two sublists to two colors 
and truncates the outer list to two sublists. This truncation occursQ 
because *PRINT-LENGTH* is 2. The first FORMAT call omits quotation ~ 
marks because *PRINT-ESCAPE* is NIL. The second FORMAT call produces 
the full list of colors and includes quotation marks, because it 
implicitly sets *PRINT-LENGTH* to NIL and *PRINT-ESCAPE* to T. The 
second FORMAT call also indents the lists because it implic\tly sets 
*PRINT-PRETTY* to T. 

5.3.2 Controlling the Arrangement of Output 

Two concepts support the dynamic arrangement of output for pretty 
printing: logical blocks and conditional new lines. Logical block 
directives divide the total output into hierarchical groupings, which 
are referred to as logical blocks or subblocks. The goal of FORMAT is o 
to print an entire logical block (including all its subblocks) on one 
line. If pretty printing is enabled, the logical block is printed on 
one line only if the logical block fits between the current left and 
right margins. Printing all the output on one line is referred to as 
single-line mode printing. 

The output for a logical block may not fit on one line when pretty 
printing. In this case, the block must be subdivided into sections at 
points where it may be split into multiple - lines. Conditional new Q 
line directives specify these points. Multiline mode printing is the 
name given to the condition where a logical block must occupy multiple 
lines. 

When pretty printing is enabled, FORMAT buffers the contents of a 
logical block until it can decide whether to use single-line mode or 
multiline mode printing. 

A third mode, miser mode, is described briefly in Section 5.2.4 and in Q 
detail in Section 5.8. 

Use the-! and - directives to specify a logical block in the form: -

- !block-. 

where block can include any FORMAT directives. A logical block takes 
one argument from the FORMAT argument list. If that argument is a 
list, any directives within the logical block that take arguments take 
them from that list, as shown in the following example: 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 40) 
40 
Lisp> (SETF *PRINT-PRETTY* T) 
T 

5-8 

0 



0 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

Lisp> (FORMAT T n-1-w- ." '((STARS (BETELGEUSE 
DENEB SIRIUS)) (PLANETS (MERCURY VENUS EARTH 
MARS JUPITER SATURN NEPTUNE PLUTO)))) 
(STARS (BETELGEUSE DENEB SIRIUS)) 
(PLANETS (MERCURY VENUS EARTH MARS 

JUPITER SATURN URANUS NEPTUNE 
PLUTO)) 

The logical block takes the entire list as its argument. The -w 
directive within the logical block causes FORMAT to pretty-print the 
list because *PRINT-PRETTY* is set to T. 

If the argument is not a list, the logical block is effectively 
replaced by the -w directive. 

You can alter the directive to start a logical block (-!) by adding Otwo modifiers. When the directive includes a colon (-:!), the 
directive sets *PRINT-PRETTY* and *PRINT-ESCAPE* to T and 
*PRINT-LENGTH*, *PRINT-LEVEL*, and *PRINT-LINES* to NIL for all the 
printing controlled by the logical block. 

When the-! directive includes an at-sign (-@!), the directives 
within the logical block take successive arguments from the FORMAT 
argument list. The logical block uses up all the arguments, not just 
a single list argument. Therefore, no directives that take arguments 

Ofrom the argument list can appear after a logical block modified by an 
at-sign in the logical block directive (see the last example in this 
section). You can use the -- directive· inside a logical block to 
check whether the logical block arguments have been reduced to a 
non-NIL atom. See Section 5.9 for information on handling improperly 
formed argument lists. 

The output associated with any FORMAT directive is subject to pretty 
printing when the directive occurs within a logical block and 

Q*PRINT-PRETTY* is non-NIL. 

A logical block defines an indentation level and can define a prefix 
and a suffix. By default, when pretty printing is enabled, the -
indentation level is the position of the first character in the 
logical block. Each line following the first line in the logical 
block is printed preserving indentation and per-line prefixes, so that 
the first character in the line normally lines up with the first 
character in the block following the prefix. However, no default 
prefix or suffix is associated with a logical block. 

You can create nested logical blocks within a logical block, using the 
-!block-. directive. For example: 

0 
5-9 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 70) 
70 
Lisp> (SETF *PRINT-PRETTY* T) 
T 
Lisp> (FORMAT T "-!Stars: -!-s -s-. Planets: -!-s -s-.-." 

'((BETELGEUSE DENEB) (MARS JUPITER))) 
Stars: BETELGEUSE DENEB Planets: MARS JUPITER 

In this example, two logical blocks are created within 
logical block. Each logical block uses the next 
printing: 

• 
the principal 
argument for 

• The enclosing logical block uses the elements of the principal 
list ((BETELGEUSE DENEB) (MARS JUPITER)) as its arguments. 

• The first inner logical block uses the elements of the list 
(BETELGEUSE DENEB) as its arguments. 0 

• The second inner logical block uses the elements of the list 
(MARS JUPITER) as its arguments. 

Lisp> (FORMAT T .. - : !Stars: - !-s -s-. Planets: - !-s -s- .- . " 
'((BETELGEUSE DENEB) (MARS JUPITER))) 

Stars: BETELGEUSE DENEB Planets: MARS JUPITER 

In this example, the 
printing implicitly, 
example. 

colon in 
producing 

the 
the 

Lisp> (SETF *PRINT-PRETTY* T) 
T 

- : ! 
same 

directive 
output 

Lisp> (FORMAT T .. -@!-S -%-s -%-s -%-s-." 

enables pretty 
as the previous 

'(BETELGEUSE DENEB SIRIUS) 'POLARIS 'VEGA 'ALGOL 
'ALDEBERAN) 

(BETELGEUSE DENEB SIRIUS) 
POLARIS 
VEGA 
ALGOL 

In this example, the at-sign causes the logical block to use all 
following arguments. Unneeded arguments are used up by the logical 
block but not printed. The first -s applies to the first argument 
(the list (BETELGEUSE DENEB SIRIUS)). The rema1n1ng three -s 
directives apply to POLARIS, VEGA, and ALGOL. ALDEBERAN goes 
unprinted, because there is no corresponding directive. 

Lisp> (FORMAT T "-@!Stars: - !-s -s-. Planets: - !-s -s- .- • ". 
'(BETELGEUSE DENEB) '(MARS JUPiTER)) 

Stars: BETELGEUSE DENEB Planets: MARS JUPITER 

0 

0 

In this example the at-sign in the outermost logical block 
(-@!) directs the logical block to use all the arguments. 

directive. Q 
The first 

5-10 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

inner logical block uses the elements of the list (BETELGEUSE DENEB); O:he second inner logical block uses the elements of the list (MARS 
JUPITER) . 

0 

5.3.3 Controlling Where New Lines Begin 

Five FORMAT directives let you specify 
start according to the demands of 
delimits a section in a logical block. 

places where 
the situation. 

new lines can 
Each directive 

s The-% directive produces an unconditional new line. When 
used within a logical block, the directive preserves 
indentation and per-line prefixes. 

• The -& directive produces a fresh line. When used within a 
logical block, the directive preserves indentation and 
per-line.prefixes. 

The - directive produces a multiline mode new line when used @ 

within a logical block. 

The - directive produces an if-needed new line when used • : -
within a logical block. 

0 • The -@_ directive produces a miser-mode new line when used 
within logical block. ..... : . a 

You can specify unconditional new lines (-%) and fresh lines (-&) if 
you know in advance how the text should be laid out. If a new line is 
produced by one of these directives when the FORMAT function is 
printing a logical block, FORMAT prints the logical block in the 
multiline mode, preserving indentation and per-line prefixes. 

~rhe -& directive specifies a fresh line, whether or not pretty 
printing is enabled. If the -& directive occurs inside a logical 
block when pretty printing is enabled and any output is on the line 
other than prefixes and indentation, the FORMAT call starts a fresh 
line, preserving indentation and per-line prefixes. The following 
examples show the use of the-% and -& directives: 

0 
5-11 



1-

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

Lisp> (FORMAT T "Stars-:!;-@;_%_S -%-s _%_S_ ." 
'(BETELGEUSE DENEB SIRIUS)) 

Stars; 

NIL 

BETELGEUSE 
DENEB 
SIRIUS 

Lisp> (FORMAT T "Stars-:!;-@;_&_S -&-s -&-s-." 
'(BETELGEUSE DENEB SIRIUS)) 

Stars; BETELGEUSE 
DENEB 
SIRIUS 

The first FORMAT call starts a new line after the prefix";", 
the -% directive starts a new line wherever.the directive 
Replacing the-% directive with the -& directive changes the 
because the fresh line is not needed after the prefix. 

because 
occurs. 
output, 

The remaining three 
are conditional. 
length abbreviation 
enabled. 

new line directives offer flexibility because they 
However, they have no effect on output (except 
-- see Section 5.7.1) when pretty printing is not 

The - directive (multiline mode new line) starts a new line if the 
output for the enclosing logical block is too long to fit on one line 

0 

0 

or if any other directive in the logical block causes a new line. Q 
When the output is too long, FORMAT uses multiline mode, and every -
directive in a logical block starts a new line. The directive 
(if-needed new line) produces a new line if it is needed: if the 
following section of output is too long to fit on the current line. 
The -@_ directive (miser-mode ·new line) produces a new line if pretty 
printing is enab°Ied with miser mode in effect (see Section 5.8 for 
details). The FORMAT function ignores the three conditional new line 
directives when they occur outside a logical block. 

The following example shows how you can specify a multiline mode new Q 
line and an if-needed new line: 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 16) 
16 
Lisp> ( FORMAT T n- : !- s - _- s - : _ - s - - - s- . II 

'(BETELGEUSE .ALDEBERAN MERCURY JUPITER)) 
BETELGEUSE 
ALDEBERAN 
MERCURY 
JUPITER 

This FORMAT function produces output in the multiline mode, because 
the output will not fit on one line. The multiline mode new line 
directives(-_) produce a new line for each element. The 
directive directs FORMAT to start a new line befo.re MERCURY if needed Q 
(and a new line is needed). 

5-12 



0 

0 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

You can produce printed output that fills up the space available in 
each line by using the at-sign (@) modifier with the directive that 
ends the logical block (- !block-@.). This modifier causes FORMAT to 
start a new line if needed following every blank space or tab and is 
equivalent to inserting a-=- directive after each element to be 
printed, as shown in the following example: 

5.3.4 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 25) 
25 
Lisp> (FORMAT T "-@:!ANTARES ALPHECCA ALBIREO CANOPUS CASTOR 

POLLUX MIRZAM ALGOL BELLATRIX CAPELLA MIRA 
MIRFAK DUBHE POLARIS-@." ) 

ANTARES ALPHECCA ALBIREO 
CANOPUS CASTOR POLLUX 
MIRZAM ALGOL BELLATRIX 
CAPELLA MIRA MIRFAK DUBHE 
POLARIS 

Controlling Indentation 

With pretty printing enabled, a call to FORMAT indents the output for 
a logical block so that the first character in each succeeding line 
falls under the first character following the prefix in the first 

O line. When pretty printing is not enabled, the FORMAT call does not 
produce indentation, and the indentation directive has no effect. 

Use the -nI directive or the -n:I directive if you want to change the 
standard pretty-printed indentation. The -nI directive causes FORMAT 
to indent subsequent lines n spaces from the position of the first 
character in the logical block. The -n:I directive, on the other 
hand, causes FORMAT to indent subsequent lines n spaces from the 
output column corresponding to the position of the directive. If you 

Oomit the parameter n, the default is 0. Although this parameter can 
be less than O when used with the colon, the indentation cannot move 
to the left of the first character in the logical block. An 
indentation directive affects only indentation produced on subsequent -
new lines. · 

The following example shows several variations of the indentation 
directive: 

0 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 15) 
15 
Lisp> (FORMAT T .. - : 1-s -2r :_-s - :rs - _-s -1r_-s-." 

'(BETELGEUSE DENEB SIRIUS VEGA ALDEBERAN)) 
BETELGEUSE 

DENEB SIRIUS 
VEGA 

ALDEBERAN 

5-13 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

DENEB lines up under the Tin BETELGEUSE, because the directive 
produces a new line and -21 causes an indentation of 2 spaces past the Q 
beginning of the block .. The -:I directive for the third argument. sets 
the indentation to the column of the firsts in SIRIUS, so that the v 
of VEGA lines up with the S. ALDEBERAN lines up with the first. E in 
BETELGEUSE, because the -11 directive resets the indentation to one 
column past the first character in the logical block. • 

The -1 directives only set the indentation. They do not· 
lines and they do not take effect until new lines begin. 
in the directives for DENEB and·ALDEBERAN, the indentation 
precede the new line directives. 

5.3.5 Producing Prefixes and Suffixes 

start new 
Therefore, 
directives 

You can specify FORMAT control strings that add prefixes and suffixes 
to the printed output produced for a logical block. Several options 
are available. 

If you divide the format control string intd three sections by 
inserting the-; directive twice, the-string will specify a prefix and 
a suffix, as follows: -!prefix-;body-;suffix- .. The first ; 
directive marks the end of the prefix; the second marks the beginning 
of the suffix. If you omit the second -; directive, no suffix is 
specified. Although the body can be any FORMAT control string, the 
prefix and suffix cannot include FORMAT directives. 

When a FORMAT call prints output for a logical block that includes a 
prefix and pretty printing is' enabled, the second line of the output 
is indented so that the second line lines up with the firs~ character 
in the block following the prefix. When the logical block includes a 
suffix, the FORMAT call always prints the suffix at the end, even if 
abbreviation directives.eliminate some of the body of the block. 

In the following examples, "Stars<" forms the prefix, and ">" forms 
the suffix. 

Lisp> (FORMAT T "-!Stars C;-s -%-S -_-s-;>-." 
'(SIRIUS VEGA DENEB)) 

Stars <SIRIUS 
VEGA 
DENEB> 

NIL 
Lisp> (SETF *PRINT-LENGTH* 2) 
2 
Lisp> (FORMAT T .. - !Stars <- ;-s -%-s -_-s- ;>-." 

'(SIRIUS VEGA DENEB)) 
Stars <SIRIUS 

VEGA ••• > 

5-14 

0 

0 

0 

0 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

In the second example, FORMAT truncates the list to two elements, 

Clecause *PRINT-LENGTH* is set to 2 (see Section 5.7), but it still 
dds the suffix after the last list element. VEGA lines up under 

SIRIUS in the first column for the body of the logical block. 

You can specify the prefix parameter 1 in the logical block t directive 
(-l!block- .), causing the FORMAT call to use parentheses for the 
prefix and suffix, as shown: 

Lisp> (FORMAT T .. -1:!-S -%-s-." 
'(CASTOR POLLUX)) 
(CASTOR 
POLLUX) 

You can create per-line prefixes in a logical block by specifying the 
at-sign modifier in the-; directive used to indicate the end of the 

O refix (-@;). This modifier causes FORMAT to repeat the prefix at the 
eginning of each line, as shown in the following example: 

Lisp> (FORMAT T .. -:!<<-@;-$ -%-s -_-s - _-s-;>>- ." 
'(ALGOL ANTARES ALBIREO ALPHECCA)) 
<<ALGOL 
<<ANTARES 
<<ALBIREO 
<<ALPHECCA>> 

Q'he prefixes and the list elements line up. 

If you nest logical blocks, you can specify a prefix with each block, 
as shown: 

0 

Lisp> (FORMAT T n-: !Bright stars-; -@!<<-@;-$ -s .-%-s -
- s-; > >-. - ; 
still twinkle.-." 
'(SIRIUS VEGA DENEB ALGOL)) 
Bright stars <<SIRIUS VEGA 

<<DENEB ALGOL>> still twinkle. 

The prefix and suffix for the outer logical block are "Bright stars" 
'and "still twinkle". The prefix for the inner logical block, "<<", is 
printed on each line after the indentation required by the prefix for 
the first logical block. The suffix for the inner logical block, 
">>", is printed once at the end of the block. 

5.3.6 Using Tabs 

You can use the tab directive to arrange output in columns. When 
pretty printing is enabled, the -n,rnT tab directive counts spaces, 

C~eginning with the indentation of the immediately enclosing logical 
block. The integer n specifies a number of columns. The .integer rn 

5-15 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

specifies an increment: the number of columns to be added at one time~ 
until the column width is at least n columns. The at-sign modifiei: ) 
makes the tab directive relative, so that -n,m@T counts space~ 
beginning with the current output column. When pretty printing is not 
en~bled, on the other hand, the -n,mT directive counts spaces from the 
beginning of the line, as specified in COMMON LISP. The defaults for 
n and mare 1 (see COMMON LISP: The Language for details). t 

In the iterative example that follows, the tab directive precedes the 
if-needed new line directive: 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 29) 
29 
Lisp> (FORMAT T "Stars: -:@!_{_s_A -11T-s -A-=--}-." 

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL 
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA 
ANTARES)) ' 

Stars: POLARIS DUBHE 
MIRA MIRFAK 
BELLATRIX 
ALGOL 
POLLUX 
ALBIREO 
ALPHECCA 

CAPELLA 
MIRZAM 
CANOPUS 
CASTOR 
ANTARES 

0 

Since the tabs are counted from the indentatioh of the logical block,o 
the tab directives do net have to account for the fact that the whole 
block is shifted seven columns to the right. 

5.3.7 Directives for Handling Lists 

VAX LISP provides three FORMAT directives that simplify the printing 
of lists. Each implicitly uses the -w directive repeatedly to printo 
elements. 

• If pretty printing is enabled, the -n/FILL/ directive causes -
FORMAT to fill the available line width by inserting a space 
and an if-needed new line after each list element except the 
last. FORMAT encloses the list in parentheses if n is 1. If 
pretty printing is not enabled, -n/FILL/ causes FORMAT to 
print the output in .single-line mode. 

• If pretty printing is enabled, the -n/LINEAR/ directive causes 
FORMAT to print the list on a single line if the list fits. 
Otherwise, FORMAT prints each element on a separate line. 
FORMAT encloses the list in parentheses if n is 1. If pretty 
printing is not enabled, -n/LINEAR/ causes FORMAT to print the .0 output in single-line mode. . 

5-16 



0 

0 

0 

0 

0 

• 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

If pretty printing is enabled, the -n,m/TABULAR/ directive 
causes FORMAT to print the list as a table, using columns of m 
spaces for list elements. The default value for m is 16. 
FORMAT encloses the list in parentheses if n is 1. If pretty 
printing is not enabled, -n,m/TABULAR causes FORMAT to print 
the output in single-line mode. 

The following examples show the kinds of formats you can produce with 
the list-handling directives: 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 36) 
36 
Lisp> (FORMAT T "Stars: -@:!-/FILL,1." 

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL 
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA 
ANTARES)) 

Stars: POLARIS DUBHE MIRA MIRFAK 
BELLATRIX CAPELLA ALGOL 
MIRZAM POLLUX CANOPUS 
ALBIREO CASTOR ALPHECCA 
ANTARES 

NIL 
Lisp> (SETF *PRINT-RIGHT-MARGIN* NIL) 
NIL 
Lisp> ( FORMAT T "Stars: - @: !- /LINEAR.1." 
'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL 
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA 
ANTARES}) 
Stars: POLARIS 

DUBHE 
MIRA 
MIRFAK 
BELLATRIX 
CAPELLA 
ALGOL 
MIRZAM 
POLLUX 
CANOPUS 
ALBIREO 
CASTOR 
ALPHECCA 
ANTARES 

NIL 
Lisp> (FORMAT T "Stars: -@: !-0,20/TABULAR.1 ." 
'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL 
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA 
ANTARES)) 
Stars: POLARIS 

MIRFAK 
ALGOL 
CANOPUS 
ALPHECCA 

DUBHE 
BELLATRIX 
MIRZAM 
ALBIREO 
ANTARES 

5-17 

MIRA 
CAPELLA 
POLLUX 
CASTOR 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

5.4 OEFINING YOUR OWN FORMAT DIRECTIVES 

VAX LISP lets you define· your own FORMAT directives to supplement the 
directives supplied with the system. Any FORMAT directive that you 
define you can use in the control string argument to a FORMAT call. 

DEFINE-FORMAT-DIRECTIVE name 
(arg stream colon at-sign 
&OPTIONAL (parameter! default) 

(parameter2 default) 
... ) 

&BODY forms 

This macro defines a directive named name. After you define a FORMAT 
directive, you can use it (whether or not pretty printing is enabled) 
by including -;name/ in a FORMAT control string. 

NOTE 

If you do not specify a package with name when you 
define the directive, name is placed in the current 
package. If you do not specify a package when you 
refer to the directive, the FORMAT directive looks in 
the USER package for the directive definition. 

For the body of the macro call, the symbols you supply for arg, 
stream, colon, and at-sign are bound as follows: 

• arg is bound to the argument list for the FORMAT directive you 
define. 

e stream is bound to the stream on which the printing is to be 
done. 

• The colon and at-sign arguments are bound to NIL unless the 
colon and at-sign modifiers are used with the directive. 

There must be one optional argument for each prefix parameter that is 
allowed in the directive. A parameter argument will receive the 
corresponding prefix parameter if it was spe-cified in the directive. 
Otherwise, the default value will be used, as with all optional 
arguments. 

The body is evaluated to 
A user-defined FORMAT 
level of indirection. 
repeatedly, which may 
following example shows 
messages: 

print the argument argon the output stream. 
directive can be useful because it provides a 
In addition, you can call .the directive 
save you some time coding and debugging. The 

a format directive used to produce error 

5-18 

0 

0 

0 

0 

0 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

0 
Lisp> (DEFINE-FORMAT-DIRECTIVE EVALUATION-ERROR 

(SYMBOL STREAM COLON-P ATSIGN-P 
&OPTIONAL (SEVERITY 0)) 

(DECLARE (IGNORE ATSIGN-P)) 

0 

(FRESH-LINE STREAM) 
(PRINC (CASE SEVERITY 

( 0 "Warning: ") 
(1 "Error: ") 
(2 "Severe Error: ")) 

STREAM) 
(FORMAT STREAM "-:!The symbol -s -:_does not have an -

integer value.-%Its value is: -=_-s-." 
SYMBOL (SYMBOL-VALUE SYMBOL')) 

(WHEN COLON-P 
(WRITE-CHAR #\BELL STREAM))) 

EVALUATION-ERROR 
Lisp> (SETF PROCESS NIL) 
NIL 
Lisp> (FORMAT T "-1:/EVALUATION-ERROR/" 'PROCESS) 
Error: The symbol PROCESS does not have an integer value. 

Its value is: NIL 
<BEEP> 

This example shows the definition of a FORMAT directive, an 
application of the directive, and the printed output. It assumes that 

O the current package is USER. The prefix parameter 1 in 
"~:/EVALUATION-ERROR/" indicates th~ severity of the error being 
signaled. The colon in the FORMAT call produces a beep on the 
terminal. 

5.5 DEFINING PRINT FUNCTIONS FOR LISTS 

OYou can use DEFINE-LIST-~RINT-FUNCTION to define functions to print 
specific kinds of lists in formats of your choice. Functions that you 
define are effective only if pretty printing is enabled. The printer 
checks the first element of each list that it prints. If the first· 

I 

element of a list matches the name of a list-print function, the list 
is printed according to the format you have specified. Create a 
list-print function according to the following format: 

This 
the 
and 
The 

DEFINE-LIST-PRINT-FUNCTION symbol (list stream) 
&BODY forms 

macro defines or redefines a print function for lists for which 
first element is symbol. list is bound to the list to be printed 

stream is bound to the stream on which the printing is to be done. 
forms are evaluated to output list. 

QFor example, if you 
MY-SETQ, any list 

define a 
beginning 

list-print function for the symbol 
with MY-SETQ will be printed in your 

5-19 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

format when pretty-printing is enabled: 

Lisp> ( DEFINE-LIST-.PRINT-FUNCTION MY-SETQ ( LIST STREAM) 
(FORMAT STREAM 

LIST)) 
MY-SETQ 
Lisp> (SETF BASE '(MY-SETQ HI 3 BYE 4)) 
(MY-SETQ HI 3 BYE 4) 
Lisp> (PRINT BASE) 
(MY-SETQ HI 3 BYE 4) 
(MY-SETQ HI 3 BYE 4) 
Lisp> (PRRINT BASE) 
(MY-SETQ HI 3 

BYE 4) 

0 

When pretty printing is not enabled, the value of BASE is printedo 
without regard to the list-print function defined for MY-SETQ. PPRINT 
enables pretty printing, producing a representation of the value of 
BASE using the specified list-print function. 

VAX LISP pretty printing incorporates predefined list-print functions 
for many standard LISP functions. However, if you define a list-print 
function for a LISP keyword, your function will override the one built 
into the system. 

NOTE. 

When you use DEFINE-LIST-PRINT-FUNCTION, you may 
encounter two kinds of ·output that you do not expect: 

• In most cases, a list whose first element is the 
symbol for a defined list-print function will be 
printed in the format specified, even if the 
context and meaning of the list are irregular and 
the format is inappropriate. For example, if your 
data says (LET IT BE) and LET is the symbol of a 
defined list-print function, the resulting output 
may be inappropriate. 

• List-print functions are not used when you print a 
list under control of a user-defined FORMAT 
directive. 

You can disable any defined list-print function by using the 
UNDEFINE-LIST-PRINT-FUNCTION macro. Its format is: 

UNDEFINE-LIST-PRINT-FUNCTION symbol 

5-20 

0 

0 

0 



0 

0 

0 

0 

0 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

This macro disables the list-print function defined for symbol. The 
following example disables the LET list-print function defined in the 
example at the beginning of this section: 

Lisp> (UNDEFINE-LIST-PRINT-FUNCTION MY-SETQ) 
MY-SETQ 

5.6 DEFINING GENERALIZED PRINT FUNCTIONS 

Using generalized print functions, you can specify how any object is 
pretty-printed, regardless of its form. Functions that you define and 
enable are effective only if pretty ·printing is enabled. First you 
define a function with DEFINE-GENERALIZED-PRINT-FUNCTION. Then you 
enable the function. You can enable it globally, using 
GENERALIZED-PRINT-FUNCTION-ENABLED-P. Or you can enable it locally, 
using WITH-GENERALIZED-PRINT-FUNCTION. 

Use the following format when you define a generalized print function: 

DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream) 
predicate 
&BODY forms 

This macro defines or redefines a print function with the name name. 
object is bound to the object to be printed. stream is bound to the 
stream to which output is to be· sent. predicate governs the 
application of the generalized print function. The predicate is 
operative on any LISP object. A generalized print function will be 
used if it is enabled and the predicate evaluates to true on the 
object to be printed. (NULL OBJECT) is the predicate in the sample 
generalized print function shown at the end of this section. The 
output stream can use your generalized print function to print any 
object for which the predicate does not evaluate to NIL. forms 
identifies arguments to be evaluated in the call to FORMAT. 

If a generalized print function and a list-print function for the same 
symbol are both enabled, the generalized print function will be used. 

A related function lets you test whether a specific generalized print 
function is enabled: 

GENERALIZED-PRINT-FUNCTION-ENABLED-P name 

You can also use this function to globally change the status of the 
function, using SETF as shown: 

5-21 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

( SETF ( GENERALIZED-PRINT-FUNCTION--ENABLED-P name) T) 

or 

(SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P name) NIL) 

Use the WITH-GENERALIZED-PRINT-FUNCTION macro to locally 'enable a 
generalized print function in the following format: 

WITH-GENERALIZED-PRINT-FUNCTION name &BODY forms 

This macro locally enables the generalized print function named name 
when it evaluates the specified forms. 

0 

The printer checks generalized print functions that have been enabled 
in reverse order from the order of their enabling. This means that in 
cases where two or more generalized print functions apply, the most Q 
recently enabled function is used. 

Enabling a generalized print function globally is less efficient than 
enabling it · locally, because the printer must check the predicate of 
globally enabled print functions against every object to be printed. 
If you enable the generalized print function locally, the printer 
checks the function's predicate against the object being printed only 
during execution of the code within the macro, instead of on every 
call to a print function. Since the read-eval-print loop is used Q 
often, the difference in efficiency can be significant. 

Consider the following examples: 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 25) 
25 
Lisp> (GENERALIZED-PRINT-FUNCTION-ENABLED-P 'PRINT-NIL-AS-LIST) 
NIL 
Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST 

(OBJECT STREAM) 
(NULL OBJECT) 

(PRINC II ( ) II STREAM)) 
PRINT-NIL-AS-LIST 
Lisp> (PRINT NIL) 
NIL . 
NIL 
Lisp>(PPRINT NIL) 
NIL 
Lisp> (WITH-GENERALIZED-PRINT-FUNCTION 'PRINT-NIL-AS-LIST 

(PRINT NIL) 

NIL 
( ) 

(PPRINT NIL)) 

5-22 

0 

0 



0 

0 

0 

0 

0 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

Lisp> (SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P 
'PRINT-NIL-AS-LIST) T) 

T 
LISP> (PPRINT NIL) 
( ) 

The first PRINT call prints NIL, because pretty printing is not 
enabled. The first PPRINT call prints NIL, because the generalized 
print function PRINT-NIL-AS-LIST is not enabled. The second PRINT 
call prints NIL, because pretty printing is again not enabled. The 
second PPRINT call prints ( ), because the generalized print function 
is enabled locally and pretty printing is enabled. The third PPRINT 
call prints ( ), because the generalized print function is enabled 
globally and pretty printing is enabled. 

NOTE 

A generalized print function controls the printing of 
an object only if the following conditions exist: 

1. The generalized print function is enabled globally 
or locally. 

2. The predicate specified with DEFINE-GENERALIZED
PRINT-FUNCTION is true. 

3. The object to be printed does not come under 
control of a user-defined FORMAT directive. 

In cases where two or more generalized print functions 
are applicable, only one is chosen. The one.chosen is 
the most recently enabled (globally or locally) 
generalized print function for which the predicate 
specified with DEFINE-GENERALIZED-PRINT-FUNCTION is 
true. 

Generalized print functions are not used when you 
print an object under control of a user-defined FORMAT 
directive. 

5.7 ABBREVIATING PRINTED OUTPUT 

You can abbreviate printed output according to: 

• The length of the object to be printed 

• The depth of nested logical blocks 

e The number of lines in the output 

5-23 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

LISP and are Length and depth abbreviatio~ are S~?ported in COMMON 
effective whether er not pretty p1inting ls enabled. 
abbreviation based un the numb1::r of lines of output is 
VAX LISP; this is effective only when pretty printing is 

In addition ,n 
supported in"-....../ 
enabled. 

5.7.1 Abbreviating Output Length 

You can control the number of sections of printed output by setting 
the *PRINT-LENGTH* variable. The value you supply specifies the 
number of sections to be printed for any affected logical block. The 
directives _, -%, and -& mark the sections of a logical block (see 
Section 5.3.3 for details). After the output stream prints 
*PRINT-LENGTH* sections of a logical block, it prints an ellipsis 
( ... ) and stops processing the logical block. If the logical block 
is nested with other logical blocks, the output stream terminates onlyo 
the processing of the immediately enclosing logical block. Output is 
not truncated if the value of *PRINT-LENGTH* is NIL. 

The following example shows output abbreviation based on length: 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 47) 
47 
Lisp> (SETF *PRINT-LENGTH* 11) 
11 
Lisp> (SETF *PRINT-PRETTY* T) 
T 
Lisp> (FORMAT T "Stars: -@!_{_W_" -:_-}-." 

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL 
MIRZAM POLLUX 'CANOPUS ALBIREO CASTOR ALPHECCA 
ANTARES)) 

Stars: POLARIS DUBHE MIRA MIRFAK BELLATRIX 
CAPELLA ALGOL MIRZAM POLLUX CANOPUS 
ALBIREO 

Each star name in the list constitutes a separate logical 

0 

section. FORMAT prints " " after the eleventh star name to -
indicate that the list has been abbreviated at that point. 

5.7.2 Abbreviating Output Depth 

Use the variable *PRINT-LEVEL* to control the depth of printed output. 
*PRINT-LEVEL* specifies the lowest level of dynamically nested logical 
blocks to be printed. When your program calls FORMAT recursively, the 
output stream keeps track of the actual nesting level and abbreviates 
output when the level reaches *PRINT-LEVEL*. The printed character # 
indicates where the stream has truncated the output. You can prevent 
depth abbreviation by setting *PRINT-LEVEL* to NIL. o 

5-24 



0 

0 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

Dynamic nesting of logical blocks occurs frequently when you print 
complicated structures. This nesting may not be obvious as you read 
the program. For example, if you have defined list-print functions 
for the primitives IF and PROGN, printing a program that uses a 
combination of these primitives would involve dynamic nesting of 
logical blocks, since each list print function uses the -w,directive 
implicitly. The following example shows how the output stream 
abbreviates the printing of a structure in accord with the value of 
*PRINT-LEVEL*: 

5.7.3 

Lisp> (SETF *PRINT-LEVEL* 3) 
3 
Lisp> (PPRINT '(LEVEL1 (LEVEL2 (LEVEL3 (LEVEL4 (LEVELS)))))) 
(LEVEL1 (LEVEL2 (LEVEL3 #))) 
Lisp> (SETF *PRINT-LEVEL* 2) 
2 
Lisp> (PPRINT '(LEVEL1 (LEVEL2 (LEVEL3 (LEVEL4 (LEVELS)))))) 
(LEVELl (LEVEL2 #)) 
Lisp> (PPRINT '(LEVELl 4 5 6 (LEVEL2 (LEVEL3 (LEVEL4 

(LEVELS)))))) 
(LEVELl 4 5 6 (LEVEL2 #)) 

Abbreviating Output by Lines 

O You can control the number of lines printed in the output by setting 
the *PRINT-LINES* variable. The value you supply specifies the number 
of lines to be printed for the outermost logical block. The output 
stream prints" ... " at the end of the last line to indicate where it 
has truncated the output. If *PRINT-LINES* is NIL, the output stream 
will not abbreviate the number of lines p·rinted. This abbreviation 
mechanism is effective only when pretty printing is enabled. 

0 

0 

In the following example, printing stops at 
line: 

Lisp> (SETF *PRINT-LINES* 4) 
4 
Lisp> ( FORMAT T "Stars: - : !- /LINEAR/'. ti 

the end of the fourth 

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL 
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA 
ANTARES)) 

Stars: POLARIS 
DUBHE 
MIRA 
MIRFAK 

5-25 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

5.8 USING MISER MODE 

If you print large structures with deeply nested logical blocks, you 
may find the miser mode useful. Indentation produced in the output by 
the nesting of logical blocks, prefixes, and the -nI directive reduces 
the line length available for printing. Miser mode ~elp~you avoid 
running out of space and printing beyond the right margin. Miser mode 
does not, however, guarantee the elimination of these problems. 

Pretty printing uses single-line mode if the output fits on one line. 
If the FORMAT control string permits new lines and the output requires 
two or more lines, pretty printing normally uses multiline mode. The 
printer determines whether to print a logical block in miser mode 
according to the current column of the output at the beginning of the 
logical block and the values of two variables: 

e *PRINT-RIGHT-MARGIN* 

• *PRINT-MISER-WIDTH* 

*PRINT-RIGHT-MARGIN* specifies the location of the right margin. 
*PRINT-MISER-WIDTH* specifies a number of columns before the right 
margin. When the current output column at the beginning of a logical 
block is equal to or greater than the difference between 
*PRINT-RIGHT-MARGIN* and *PRINT-MISER-WIDTH*, then the logical block 

0 

0 

is printed in miser mode. This condition occurs when the total Q 
available line width is less than the value of *PRINT-MISER-WIDTH*, as 
shown in Figure 5-1. 

COLUMN AT WHICH 
PRINTER 

ENTERS MISER MODE *PRINT-RIGHT-MARGIN* 

'----•PRINT-MISER-WIDTH*___.! 0 
Figure 5-1: Variables Governing Miser Mode 

You can disable miser mode by setting *PRINT-MISER-WIDTH* to NIL. 

Miser mode.saves space by: 

• Ignoring indentation FORMAT directives 

0 
5-26 



0 

0 

0 

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

o Starting a new line at every conditional new line directive: 

Multiline mode new line (- _) 

If-needed new line (-:_) 

Miser mode new line (-@_) 

The two examples that follow contrast pretty printing in multiline 
mode and miser mode: 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 60) 
60 
Lisp> (SETF.*PRINT-MISER-WIDTH* 35) 
35 
Lisp> (FORMAT T .. - : !Stars with Arabic names: -s -s -271- :_-s -

- : r@_- s - ..: s - ii-_- s- • II 
'(BETELGEUSE (DENEB SIRIUS VEGA) 

ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX) 
Stars with Arabic names: BETELGEUSE (DENEB SIRIUS VEGA) 

ALDEBERAN ALGOL 

BELLATRIX 
NIL 

(CASTOR POLLUX) 

Lisp> (FORMAT T "- !Stars with Arabic names: - :@!-s - :_-s -
-21r:_-s -:i-@_-s -_-s -11-_-s-.-." 

'(BETELGEUSE (DENEB SIRIUS VEGA) 
ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX) 

Stars with Arabic names: BETELGEUSE 
(DENEB SIRIUS VEGA) 
ALDEBERAN 
ALGOL 
(CASTOR POLLUX) 
BELLATRIX 

Qrn the first output sample, FORMAT uses multiline mode. Miser mode is 
never enabled, because the logical block begins at column O and miser 

I 

mode takes effect only if the column begins at column 25 (60 35). -
ALDEBERAN lines up with the T in BETELGEUSE, because the -271 
directive sets the indentation for following lines at column 27 and 
the :_ directive produces a new line. The -=I-@_-s directive sets 
the column for the next line at the level of the A in ALGOL. The -11 
directive controls the last argument, BELLATRIX, setting the 
indentation to column 1. 

The second output example shows the effects of miser mode, because the 
text in the outer logical block, "Stars with Arabic names:", causes 
the inner logical block to begin at column 26. With 
*PRINT-MISER-WIDTH* set to 35, FORMAT enables miser mode when the 
logical block begins past column 25. FORMAT conserves space by 

Ostarting a new line at every multiline mode new line directive(-_) 
and every if-needed new line directive (-:_). FORMAT also .inserts a 

5-27 



PRETTY PRINTING AND USING EXTENSIONS TO FORMAT 

new line at the miser mode new line directive (-@_) and ignores theo 
indentation directives (-nl). _ 

5.9 HANDLING IMPROPERLY FORMED ARGUMENT LISTS 

VAX LISP provides a method for gracefully handling argument lists that 
are improperly formed. The function of the- ... directive, when used in 
a logical block, differs slightly from the corresponding function in 
COMMON LISP. 

In COMMON LISP the- ... directive is used with the iteration directives 
-{ and-} to check whether the argument list has been reduced to NIL. 
If the list is NIL, iteration stops. 

You can also use the- ... directive to check whether the argument listQ 
for a logical block has been reduced to a non-NIL atom. If the check 
shows that the argument list is a non-NIL atom, the printer prints 
space-dot-space ( . ) and uses the -w directive to print the value of 
the atom. FORMAT then stops processing the immediately enclosing 
logical block, after printing the suffix (if one is there). No error 
condition results. The following example shows the use of FORMAT to 
print a dotted pair: 

Lisp> (FORMAT T "-1:!-@Cs- ... -}- ." 
'(CASTOR POLLUX DENEB. ALDEBERAN)) 

(CASTOR POLLUX DENEB. ALDEBERAN) 

This feature serves as a useful debugging tool, because it lets the 
FORMAT function work even when'the argument list is improperly formed. 

NOTE 

When the- ... directive is included in a logical block, 
the FORMAT function checks whether the argument list 
is a non-NIL atom, even when pretty printing is not 
enabled. 

5-28 

0 

0 



(_] 

0 

0 

0 

0 

CHAPTER 6 

VAX LISP/ULTRIX IMPLEMENTATION NOTES 

VAX LISP is an implementation of LISP that is based on COMMON LISP as 
described in COMMON LISP: The Language. This chapter describes how 
implementaton-dependent aspects of COMMON LISP are implemented on the 
ULTRIX-32/32m operating systems. This chapter does not describe 
implementation differences between VAX LISP/VMS (VAX LISP as 
implemented on VMS) and VAX LISP/ULTRIX (VAX LISP as implemented on 
ULTRIX). For such differences, see the VAX LISP/ULTRIX Release Notes. 
These are on-line in the file /usr/lib/vaxlisp/lispnnn.mem, with nnn 
standing for the VAX LISP/ULTR.IX version number. For example, 
lisp020.mem is the file containing the release notes for Version 2.0. 

Most of the information in this chapter refers to subjects that COMMON 
LISP: The Language refers to as implem·entation dependent. The purpose 
of this chapter is to clarify the implementation specifics for the 
following topics: 

• Data representation 

• Pathnames 

• The garbage collector 
/ 

• Input and output 

• Keyboard functions that execute asynchronously when you type a 
control character 

e The compiler 

• Functions and macros 

NOTE 

Complex numbers are documented in COMMON LISP: The 
Language, but they are not implemented in VAX LISP. 

6-1 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

T, NIL, and keywords are not legal function names in 
VAX LISP. 

VAX LISP supports only symbols that are in the package 
named LISP. 

6.1 DATA REPRESENTATION 

COMMON LISP defines the data types implemented in VAX LISP but COMMON 
LISP does not define implementation-dependent information related to 
the data types. This section provides data type information specific 
to VAX LISP. Complete descriptions of data types are provided in 
COMMON LISP: The Language. The following data types require VAX LISP 

0 

implementation information: Q 
• Numbers 

• Characters 

• Arrays 

• Strings 

6.1.1 Numbers 

Sections 6.1.1.1 and 6.1.1.2 provide implementation i~formation about 
the integer and floating-point number data types. 

0 

6.1.1.1 Integers - COMMON LISP defines two subtypes of integers: Q 
fixnums and bignums. The ranges of these two integer types depend on 
the implementation. In VAX LISP, the integers in the range -2**29 to 
2**29-1 are represented as fixnums; integ~rs not in the fixnum range 
are represented as bignums. VAX LISP stores bignums as two's 
complement bit sequences. 

In VAX LISP, the EQ function returns T when it is called with two 
fixnums having the same value. 

The values of the COMMON LISP integer constants are implementation 
-dependent. The names of the constants and the corresponding VAX LISP 
values follow: 

e MOST-POSITIVE-FIXNUM 536870911 

e MOST-NEGATIVE-FIXNUM -536870912 

6-2 

0 



0 

VAX LISP/ULTRIX IMPLEMENTATION NOTES 

NOTE 

The range of integers represented as fixnums will 
likely be cut in half in VAX LISP Version 3.0. That 
is, integers in the range -268,435,456 to +268,435,456 
(-2**28 to 2**28-1) will be represented as fixnum~. 
The current range for fixnums is -2**29 to 2**29-1. 
Remember this note when placing FIXNUM declarations in 
your programs. 

Descriptions of these constants are provided in COMMON LISP: The 
Language. 

0 6.1.1.2 Floating-Point Numbers - COMMON LISP 
types of floating-point numbers: 

defines the following 

e Short floating-point numbers 

e Single floating-point numbers 

e Double floating-point numbers 

Long floating-point numbers 

VAX LISP, these four types are implemented with VAX floating 
types. Both the short and single floating-point numbers 
implemented as VAX F_floating data. Double floating-point numbers 
implemented as VAX G_floating data. Long floating-point numbers 
implemented as VAX H_floating data. For information on the 
floating data types, see the VAX Architecture Handbook. 

data 
are 
are 
are 
VAX 

O Table 6-1 lists the types of COMMON LISP floating-point numbers, the 
corresponding VAX data types, and the number of bits allocated for the 
exponent and significand of each flo~ting-point type. 

Table 6-1: VAX LISP Floating-Point Numbers 

COMMON LISP Type VAX Type Exponent Significand 

SHORT-FLOAT F_floating 8 24 

SINGLE-FLOAT F_floating 8 24 

DOUBLE-FLOAT G_floating 11 53 

0 
LONG-FLOAT H_floating 15 113 

6-3 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

NOTE 

If your system does not have G and H floating-point 
instructions, see the ULTRIX-32 Programmer's Manual 
Binder IIIA "System Managers" for information on how 
to configure your system to use the g/h floating-poiot 
emulator. 

The values of the COMMON LISP floating-point constants are 
implementation dependent. You can use the values of these constants 
to compare the range of values and the degrees of precision of the VAX 
LISP floating-point types. Table 6-2 lists the names of the constants 
and provides the actual hexadecimal values and the decimal 
approximations for VAX LISP. 

Table 6-2: Floating-Point Constants 

Hexadecimal 
Constant Representation 

Approximate 
Decimal 
Value 

DOUBLE-FLOAT-EPSILON d8MdMH88 IM883CCd 

DOUBLE-FLOAT-NEGATIVE-EPSILON 8M8Hl8111 8Ml83CC8 

LEAST-NEGATIVE-DOUBLE-FLOAT M8MH818Y 11118118 

l.lld-16 

l.lld-16 

-S.56d-319 

LEAST-NEGATIVE-LONG-FLOAT 

LEAST-NEGATIVE-SHORT-FLOAT 

LEAST-NEGATIVE-SINGLE-FLOAT 

LEAST-POSITIVE-DOUBLE-FLOAT 

LEAST-POSITIVE-LONG-FLOAT 

LEAST-POSITIVE-SHORT-FLOAT 

LEAST-POSITIVE-SINGLE-FLOAT 

LONG-FLOAT-EPSILON 

LONG-FLOAT-NEGATIVE-EPSILON 

NOST-NEGATIVE-DOUBLE-FLOAT 

NIHYHHHM IHBYHMYM M8HIM888 88Y88RM1 -8.41L-4933 

181118M8H -2.94e-39 

MIMIBMBH -2.9Ce-39 

•••••a•e MMBIMlll S.56d-389 

88MMIMH8 MHHHIMBM HBIMMMld 88118881 B.41L-4933 

1111111111811 2.He-39 

11111181188 2.94e-39 

888H88AN 88888181 888811888 A88A3F91 9.63L-35 

818HM8H8 8888M8HA 8R88M8MM IHIH3F91 9.63L-35 

FFFFFFFF rrrFFFFF -B.99d387 

NOST-NEGATIVE-LONG-FLOAT FFFFrrrF FFFFFFFF FFFFFFFF FFPFPFPF -s.9SL4931 

NOST-NEGATIVE-SHORT-FLOAT PPPPPFFF -1.71•38 

NOST-NEGATIVE-SINGLE-FLOAT PFPFPPFF -l.71e38 

NOST-POSITIVE-DOUBLE-FLOAT FFFFFFPF FPPF7PFF B.99d317 

MOST-POSITIVE-LONG-FLOAT FFFFFFFF FFFFFFFF FFFFFFFF FFFF7FFF S.9SL4931 

MOST-POSITIVE-SHORT-FLOAT FFPF7FFF 1.7He38 

MOST-POSITIVE-SINGLE-FLOAT FPFF7PPF l.71e38 

SHORT-FLOAT-EPSILON 1111113481 5.96e-8 

SHORT-FLOAT-IIEGATIVE-EPSILON 11113481 S.He-8 

SINGLE-FLOAT-EPSILON HH348M S.He-8 

SINGLE-FLOAT-NEGATIVE-EPSILON 11113481 S.He-8 

0 

0-

0 

0 

Descriptions of these constants are provided in COMMON LISP: The ·o 
Language. 

6-4 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX IMPLEMENTATION NOTES 

COMMON LISP allows an implementation to define a floating-point minus 
zero. In VAX LISP, floating-point minus zero does not exist. 

6.1.2 Characters 

COMMON LISP defines characters as objects that have three 
code, bits, and font. The code attribute specifies 
character is printed or formatted. The bits and font 
specify extra flags to be associated with a character. 

attributes: 
the way a 
attributes 

In VAX LISP, the character attributes are defined as follows: 

• The code attribute consists of eight bits and is encoded using 
the extended ASCII character set. However, the ULTRIX 
operating system masks the eighth bit, which produces the same 
effect as having specified 7-bit characters. 

• 

• 

The bits 
CONTROL, 

The font 

NOTE 

You can prevent the masking of the eighth 
by setting the terminal in RAW mode, but 
is not recommended (see tty(4) in 
ULTRIX-32 Programmer's Manual). 

attribute consists of the four COMMON 
HYPER, META, and SUPER. 

attribute consists of four bits. 

NOTE 

The CONTROL attribute bit has no association 
control characters in the ASCII character set. 

bit 
this 
the 

LISP 

with 

bits: 

The VAX LISP implementation of COMMON LISP functions that perform 
character comparisons bases its comparisons on the numeric values that 
correspond to the extended 8-bit ASCII character set. The character 

I predicate functions and the rules that the functions use to compare 
characters are described in COMMON LISP: The Language. 

The ordering of two characters that have different bits and font 
attributes and the same character code is undefined in VAX LISP. 

The COMMON LISP character constants 
limits on the code, bits, 

that 
and 

are the 
font 

exclusive 
attributes 

upper 
have 

6-5 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

implementation-dependent values. The names of the constants 
corresponding VAX LISP values are: 

D CHAR-CODE-LIMIT 256 

e CHAR-BITS-LIMIT 16 

e CHAR-FONT-LIMIT 16 

NOTE 

The value$ of these constants might change in future 
releases of VAX LISP. 

and the 

Descriptions of these constants are provided in COMMON LISP: The 
Language. 

You can obtain a table of valid VAX LISP character names by calling 
the VAX LISP CHAR-NAME-TABLE function described in Part II. 

6.1.3 Arrays 

0 

0 

COMMON LISP defines· an array as an object whose components are O 
arranged according to a Cartesian coordinate system and whose number 
of dimensions is called its rank. The limits on an array's rank, 
dimensions, and total size are implementation dependent. 

The names of the array constants and the corresponding VAX LISP values 
are: 

e ARRAY-DIMENSION-LIMIT 536870911 

e ARRAY-RANK-LIMIT 536870911 

• ARRAY-TOTAL-SIZE-LIMIT 536870911 

These constants are described in COMMON LISP: The Language. 

COMMON LISP defines a specialized array as an array that can. contain 
only elements of a specific type. VAX LISP creates a more efficient 
specialized array when an array's element type is STRING-CHAR,. 
(SIGNED-BYTE 32), or a subtype of FLOAT or (UNSIGNED-BYTE 1-29). If 
an array does not have one of these element types, VAX LISP creates a 
general array (element type is T). 

6-6 

0 

0 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

d.1.4 Strings 

COMMON LISP defines a string to be a vector of string characters. In 
VAX LISP, a string can be composed of as many as 65,535 characters. 

A string character is a character that can be stored in a string 
object. In VAX LISP, the characters that compose the 8-bit 1scII (see 
the first note in Section 6.1.2) character set are string characters. 
String characters cannot have a bits or font attribute. 

6.2 PATHNAMES 

Pathnames exist both in ULTRIX and in COMMON LISP. However, pathnames 
are used with different meanings in the ULTRIX operating system and in 

OCOMMON LISP. 

o In ULTRIX, a pathname is an ULTRIX file specification. See 
Chapter 1 for a description of ULTRIX pathnames. 

e In COMMON LISP, a pathname is a LISP data object that 
represents a file specification. See COMMON LISP: The 
Language for a description of COMMON LISP pathnames. 

O
This section describes how VAX LISP implements COMMON LISP pathnames 
on the ULTRIX operating system; this section is not about ULTRIX 
pathnames. Unless otherwise noted, references to pathnames in this 

0 

0 

section are references to the word as used by COMMON LISP and as 
implemented by VAX LISP. The section is divided as follows: 

0 Name strings 

9 When to use pathnames· 

Cl Fields in a COMMON LISP pathname 

@ Field values of a VAX LISP pathname 

• Three ways to create pathnames 

• Comparing similar pathnames 

e Converting pathnames into namestrings 

• Functions that use pathnames 

e Using the *DEFAULT-PATHNAME-DEFAULTS* variable 

6-7 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

6.2.1 Namestrings Q 
In VAX LISP, file names can be represented by pathnames, namestrings, 
symbols, or streams. Besides the term PATHNAME, COMMON LISP has 
introduced the term NAMESTRING. Since computer systems (for example, 
VMS and ULTRIX) have different ways of formatting file names, COMMON 
LISP uses namestrings to translate between 'pathnames 
(implementation-independent names) and file names 
(implementation-dependent names). 

A namestring is a string naming a file in an implementation-dependent 
form customary for the file system. A VAX LISP namestring is a string 
containing a valid ULTRIX file specification. For example, if a file 
in the ULTRIX file system is called /usr/users/doe/.profile, the 
equivalent namestring would be displayed as 11 /usr/users/doe/.profile". 

File system functions, such as LOAD, accept pathnames but internallyo 
convert them to namestrings. For more information on namestrings, see 
Section 6.2.7. 

6.2.2 When to Use Pathnames 

Pathnames do not replace the traditional ways of representing a file 
in LISP. Instead, the pathnames add a new way of representing a fileo 
to make LISP programs portable between systems with different 
file-naming conventions. 

Pathnames, however, do not have to refer to an existing file or give 
complete file specifications·; pathnames can exist as data objects in 
themselves and are used as arguments to pathname functions (see 
Section 6.2.8 and COMMON LISP: The Language). 

Several pathname functions and most functions that deal with the fileo 
system can take either pathnames, namest~ings, symbols, or streams as 
their arguments. However, the values of the following variable and 
arguments must be pathnames: 

• The *DEFAULT-PATHNAME-DEFAULTS* variable 

• The defaults argument in a call to the PARSE-NAMESTRING 
function 

See Section 6.2.9 and COMMON LISP: The Language for a description of 
the preceding variable and function. 

6-8 

·o 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX IMPLEMENTATION NOTES 

6.2.3 Fields in a COMMON LISP Pathname 

A COMMON LISP pathname is a LISP data object composed of six 
Each field represents one of the following aspects of 
specification: 

fields. 
a file 

e Host 

• Device 

- file system 

- file structure or a (physical or logical) 
device on which files are stored 

• Directory - group of related files 

• Name 

• Type 

• Version 

- file name 

- file extension 

number incremented every time the file is 
modified 

6.2.4 Field Values of a VAX LISP Pathname 

Although all VAX LISP pathnames contain the six fields of a COMMON 
LISP pathname to make its files portable, VAX LISP/ULTRIX uses only 
four of the fields. Since the ULTRIX operating system does not use 
version numbers or specifically ·indicate devices in its file 
specifications, VAX LISP/ULTRIX pathnames do not use the device and 
version fields of a COMMON LISP pathname. For a description of ULTRIX 
file specifications, see Chapter 1. 

The following examples show how the components of an ULTRIX 
specification are mapped into the fields of a VAX LISP pathname. 
first example shows an ULTRIX file specification: 

miami:/usr/~sers/doe/test.lsp 

file 
The 

The second example shows the pathname that represents the preceding 
file specification: 

#S(PATHNAME :HOST "miami:" :DEVICE NIL 
:DIRECTORY 11/usr/users/doe" :NAME "test" 
:TYPE "lsp" :VERSION NIL) 

Table 6-3 names the fields of a VAX LISP pathname, the ULTRIX file 
components that correspond to those fields, and the data type each 
field accepts. 

6-9 



VAX LISP/UL TRIX IMPLEMENTATION NOTES 

Table 6-3: VAX LISP Pathname Fields 

Field Name 

:HOST 

:DEVICE 

:DIRECTORY 

:NAME 

:TYPE 

:VERSION 

ULTRIX 
Component 

node 

not used 

directory 

filename 

filetype 

not used 

Field Value 

String or NIL. 
field value is 

An example 
"miami:". 

of 
• 

a host 

String or NIL. This field does not 
include the slash(/) that separates a 
directory from a file name. Examples of 
directory field values are 
"usr/users/doe", "doe", and" .. ". 

String, NIL, or the :WILD keyword. The 
:WILD keyword is translated into the 
ULTRIX wildcard symbol, the asterisk 
( * ) . Examples of name field values are 
"lisp" and "l*sp". 

String, NIL, or the :WILD keyword. The 
:WILD keyword is translated into the 
ULTRIX wildcard symbol, the asterisk 
( * ) . This field does not include the 
period ( . ) that precedes the type. 
Examples of type field values used with 
the MAKE-PATHNAME function are "lsp" and 
"fas". 

6.2.5 Three Ways to Create Pathnames 

You can create a pathname in any one of three ways depending on which -
of the following functions you use: 

• The MAKE-PATHNAME function 

Lisp> (MAKE-PATHNAME :HOST "miami:" 
:DIRECTORY "/usr/usez:,s/doe" 
:NAME "test" 
:TYPE "lsp") 

#S(PATHNAME :HOST "miami:" :DEVICE NIL 
:DIRECTORY "/usr/users/doe" :NAME "test" 
:TYPE "lsp" :VERSION NIL) 

6-10 

0 

0 

0 

0 

0 



0 

VAX LISP/ULTRIX IMPLEMENTATION NOTES 

The PATHNAME function 

Lisp> (PATHNAME "miami:/usr/users/doe/test.lsp") 
#S(PATHNAME :HOST "miami:" :DEVICE NIL 

:DIRECTORY "/usr/users/doe" :NAME "test" 
:TYPE "lsp" :VERSION NIL) 

e The PARSE-NAMESTRING function 

Lisp> (PARSE-NAMESTRING "miami:/usr/users/doe/test.l~p") 
#S(PATHNAME :HOST "miami:" :DEVICE NIL 

:DIRECTORY "/usr/users/doe" :NAME "test" 
:TYPE "lsp" :VERSION NIL) 

The MAKE-PATHNAME function 
user-input keywords :HOST, 

O the PATHNAME function and 
pathname by: 

directly creates a 
:DIRECTORY, and so on. 
the PARSE-NAMESTRING 

pathname from the 
On the other hand, 

function create a 

• Using a pathname, namestring, symbol, or stream as an 
argument. 

• Parsing the argument. 

e Returning a pathname, if the parse operation is a success. 

Qsee COMMON LISP: The Language for descriptions of these functions. 

0 

0 

You can create a 
place a slash 
"/usr/users/doe" 
However, the 
/usr/users/doe, 

pathname that represents a directory name. To do so, 
(/) after the directory. For example, the string 
names the file doe in the directory /usr/users. 
string "/usr/users/doe/" names only a directory, 

and no file name. 

NOTE 

The LISP system does not check that you enter an 
existing or a complete file specification when you 
create a pathname. So, you can create a pathname that 
is not usable in ULTRIX. If that situation occurs, 
and you perform a file operation, the operation will 
not succeed. To correct the problem, you must change 
the pathname to conform with an ULTRIX file 
specification. See Chapter 1 for a description of 
ULTRIX file specifications and see Section 6.2.4 for a 
description of the field values in a VAX LISP 
pathname. 

6-11 



VAX LISP/UL TRIX IMPLEMENTATION NOTES 

6.2.6 Comparing Similar Pathnames 

0 
You should use the EQUAL function to compare pathnames with the same 
field entries. This function is sensitive to keywords and their 
equivalent symbols (that is, :WILD is equivalent to "*"). For 
example I if the MAKE-PATHNAME and PARSE-NAMESTRING functHms create 
different pathnames for the file test.*, you can use the EQUAL 
function to compare the pathname that is returned by each function 
(see COMMON LISP: The Language). The following calls to the SETF 
macro set the pathnames created by the MAKE-PATHNAME and 
PARSE-NAMESTRING functions to the variables X and Y: 

Lisp> (SETF x (MAKE-PATHNAME :NAME "test" :TYPE"*")) 
#S(PATHNAME :HOST "miami:" :DEVICE NIL :DIRECTORY NIL 

:NAME "test" :TYPE "*" :VERSION NIL) 
Lisp> (SETF Y (PARSE-NAMESTRING "test.*")) 
#S(PATHNAME :HOST "miami:" :DEVICE NIL :DIRECTORY NIL 

:NAME "test" :TYPE ":WILD" :VERSION NIL) 

The EQUAL function can be used to compare the variables X and Y, even 
though the keyword :WILD and its string equivalent ("*") are used. 

Lisp> (EQUAL X Y) 
T 

0 

The function returns T, indicating that the pathname values of X and Y O 
are equal. 

6.2.7 Converting Pathnames into Namestrings 

You can convert a pathname into a namestring by specifying the 
pathname in a call to the NAMESTRING function. The VAX LISP 
implementation of the NAMESTRING function removes the host value if 
the value is the current host. The following call to the SETF macro 
sets THIS-PATHNAME to the pathname that is created with the PATHNAME -
function: 

Lisp> (SETF THIS-PATHNAME 
(PATHNAME "/usr/user/doe/test.lsp")) 

:itS(PATHNAME :HOST "miami:" :DEVICE NIL 
:DIRECTORY "/usr/users/doe" :NAM~ "test" 
:TYPE "lsp" :VERSION NIL) 

When the NAMESTRING function is 
argument, the ~amestring that 
pathname's host: 

called with THIS-PATHNAME as its 
is returned does not include the 

Lisp> (NAMESTRING THIS-PATHNAME) 
"/usr/user/doe/test.lsp" 

6-12 

0 



0 

VAX LISP/ULTRIX IMPLEMENTATION NOTES 

6.2.8 Functions That Use Pathnames 

Most of the functions you can use to create and manipulate VAX LISP 
pathnames are described in COMMON LISP: The Language. However, the 
following two functions need further explanation: 

• The DIRECTORY function 

The DIRECTORY function (described in Section 6.7) converts its 
argument to a pathname and merges that pathname with the 
following ULTRIX file specification: 

host:directory/* 

The values for the host and directory fields are supplied by 
the *DEFAULT-PATHNAME-DEFAULTS* variable (see next section). 

0 • The DEFAULT-DIRECTORY function 

The DEFAULT-DIRECTORY function (described in Part II) is 
supplied by VAX LISP in addition to the pathname functions 
described in COMMON LISP: The Language. This function returns 
a pathname that refers to the current directory. 

0 6.2.9 Using the *DEFAULT-PATHNAME-DEFAULTS* Variable 

0 

0 

The value of the *DEFAULT-PATHNAME-DEFAULTS* variable is used by some 
pathname functions to fill pathname fields not specified in their 
arguments. The default value of this variable is a pathname whose 
host and directory fields indicate the current directory and whose 
device, name, type, and version fields contain NIL. 

In VAX LISP, you can change the 
*DEFAULT-PATHNAME-DEFAULTS* variable in two ways: 

• With the SETF macro 

The following example illustrates 
change a pathname's directory 
"/usr/users/doe/test": 

using 
from 

value of 

the SETF macro 
"/usr/users/doe" 

Lisp> (SETF *DEFAULT-PATHNAME-DEFAULTS* 

the 

to 
to 

. (MAKE-PATHNAME :DIRECTORY 11/usr/users/doe/test")) 
#S(PATHNAME :HOST "miami:" :DEVICE NIL 

:DIRECTORY "/usr/users/doe/test" :NAME NIL 
:TYPE NIL :VERSION NIL) 

With the DEFAULT-DIRECTORY function 

The value of the *DEFAULT-PATHNAME-DEFAULTS* variable is set 
to the value of your default directory when LISP. starts and 

-6-13 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

when you change your directory with -the form (SETF 
(DEFAULT-DIRECTORY) ... ). To check the value of your default O 
directory, call the DEFAULT-DIRECTORY function. For example: 

Lisp> (DEFAULT-DIRECTORY) 
#S(PATHNAME :HOST "miami:" :DEVICE NIL 

:DIRECTORY "/usr/users/doe" :NAME N!:L 
:TYPE NIL :VERSION NIL) 

The pathname returned in this example indicates that the 
default directory is /usr/users/doe on host miami. In this 
case, each time a pathname function fills a pathname field 
with a default value, the corresponding value in the directory 
"/usr/users/doe" is used. 

To change the value of your default directory, set it with the 
SETF macro. For example, the following illustrates how to 
change a default directory from /usr/users/doe to 
/usr/users/doe/test: 

Lisp> (SETF (DEFAULT-DIRECTORY) "./test/") 
"./test/" 

The next example illustrates that when the directory is 
changed, the DEFAULT-DIRECTORY function returns a new pathname 
referring to the new default directory: 

Lisp> (DEFAULT-DIRECTORY) 
#S(PATHNAME :HOST "miami:" :DEVICE NIL 

:DIRECTORY "/usr/users/doe/test" :NAME NIL 
:TYPE'NIL :VERSION NIL) 

NOTE 

The value of the *DEFAULT-PATHNAME-DEFAULTS* variable 
must be a pathname. Do not set this variable to a 
namestring, symbol, or stream. 

6.3 GARBAGE COLLECTOR 

When VAX LISP is executing, LISP objects are created dynamically. 
Some of the objects that are created are always used and referred to, 
while others are referred to for only a short time. When a LISP 
object can no longer be referred to, the space that the ·Object 
occupies can be reclaimed by the VAX LISP system. This process of 
reclaiming space is called garbage collection. 

0 

0 

0 

The VAX LISP garbage collector is a stop-and-copy. garbage collector. Q 
The LISP system includes a dynamic memory pool, which is divided into 

6-14 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

C-~wo equal-sized spaces: dynamic-0 space and dynamic-1 space. At a 
;iven time, LISP objects are allocated in either dynamic-0 or 
dynamic-1 space. When the memory in the current space is exhausted, 
LISP processing is temporarily suspended, and the LISP data objects 
that can still be referred to are copied to the other space. The 
objects that cannot be referred to are not copied. 

• 
You can ignore garbage collections of dynamic memory space when you 
are writing LISP programs. Garbage collections occur automatically 
when the current dynamic space is exhausted. Though LISP processing 
is suspended during a garbage collection, LISP processing continues 
when a garbage collection is complete. 

Sections 6.3.1 through 6.3.5 provide information about the VAX LISP 
garbage collector. 

0 
6.3.1 Frequency of Garbage Collection 

The frequency of garbage collection is proportional to the amount of 
dynamic memory space that is availa~le in the VAX LISP system. You 
can set the amount of dynamic memory space that is to be available by 
specifying the MEMORY (-m) option (see Chapter 2) when you invoke the 
LISP system. Garbage collection occurs less often if you use this 

ooption to increase the size of the dynamic memory space. 

The degree to which the frequency of garbage collection and the size 
of dynamic memory affects run-time efficiency depends on the program 
being executed. If a program creates more permanent objects than 
objects that can be referred to for a short period of time, the 
garbage collector has to perform more copy operations. As a result, 
the program slows down. The fewer the copy operations the garbage 
collector has to perform, the faster the garbage collection is 

ofinished. 

6.3.2 Static Space 

LISP objects that are created in stati~ space are not collected by the 
garbage collector. These objects do not move and they are not 
deleted, even if they can no longer be referred to. You can create 
objects in static space by using the :ALLOCATION keyword with the 

, MAKE-ARRAY function (see Part II) or with the constructor function~ 
that are defined by the DEFINE-ALIEN-STRUCTURE macro for alien 
structures. (See the description of the DEFINE-ALIEN-STRUCTURE macro 
in Part II.), 

0 
6-15 

--------------------·~----··--------- ---



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

6.3.3 Messages 

When a garbage collection occurs, a message is displayed when theO 
operation begins and when it is finished. You can suppress these 
messages by changing the value of the VAX LISP *GC-VERBOSE* variable 
to NIL. When the value is NIL, messages are not displayed. 

You can also specify the contents of the messages 
values of the VAX LISP *PRE-GC-MESSAGE* and 
variables. The *GC-VERBOSE*, *PRE-GC-MESSAGE*, and 
variables are described in Part II: 

NOTE 

by changing the 
*POST-GC-MESSAGE* 
*POST-GC-MESSAGE* 

If you suppress or change the garbage collection 
messages and a garbage collection is initiated due to 
a control stack overflow, to determine whether your 
program is in a recursive loop is difficult. 
Therefore, you should not suppress or change the 
messages before you debug your program. 

6.3.4 Available Space 

0 

Garbage collection generally occurs when a LISP object is being Q 
created. If a garbage collection occurs and not enough dynamic memory 
space is available to allocate the object, an error is signaled. When 
this situation· exists, you can suspend the LISP image and resume it 
later with more dynamic-memory·space. For information· about how to 
suspend and resume a LISP image, see Ch~pter 2. 

6.3.5 Garbage Collection Failure 

The garbage collection process may fail to complete. If, for example, 
a garbage collection is initiated because of control stack overflow, 
the size of the control stack must increase, and the amount. of dynamic 
memory space must decrease. If the reduced dynamic memory space 
cannot contain all the LISP objects that can be referred to, the VAX 
LISP process is terminated, and control returns to the shell. This 
condition is usually caused by a user programming_ error, such as a 
function that is recursive and nonterminating. 

6.4 INPUT AND OUTPUT 

VAX LISP terminal I/0 and file I/0 are implemented by way of low-level 
ULTRIX system I/0 routines. See the ULTRIX-32 Programmer's Manual for 
a description of ULTRIX I/0. 

6-16 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/UL TRIX IMPLEMENTATION NOTES 

The VAX LISP implementation dependencies for I/0 have to do 
following topics: 

with the 

• Newline character 

• Terminal input 

• Terminal output 

• End-of-file operations 

• File organization 

• Functions 

The implementation-dependent information 
provided in Sections 6.4.1 through 6.4.5. 

about these topics is 

6.4.1 Newline Character 

COMMON LISP defines the #\NEWLINE character as a character that is 
returned from the READ-CHAR function as an end-of-line indicator. In 
VAX LISP, the character code for the #\NEWLINE character has an 
integer value of 255. 

In VAX LISP, the WRITE-CHAR and WRITE~STRING functions interpret the 
#\NEWLINE character as follows: 

• When the WRITE-CHAR function is called with 
character as its argument value, the function 
new line. This call is equivalent to a call 
function (see COMMON LISP: The Language). 

the #\NEWLINE 
starts writing a 
to the TERPRI 

• When the WRITE-STRING function is called with an argument 
string that contains the #\NEWLINE character, the function 
divides the string into two lines. The following example -
shows the output that is displayed by the WRITE-STRING 
function when the #\NEWL_INE character is not used: 

Lisp> (WRITE-STRING (CONCATENATE 'STRING 
"NEW" 
"LINE")) 

NEWLINE 
"NEWLINE" 

Both of the strings NEW and LINE are displayed on the same 
line. A call to the WRITE-STRING function, which includes a 
string argument that contains the #\NEWLINE character, looks 
like the following: 

6-17 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

Lisp> (WRITE-STRING (CONCATENATE 'STRING 

NEW 
LINE 
"NEW 
LINE" 

"NEW" 
(STRING #\NEWLINE) 
"LINE")) 

This call to the WRITE-STRING function displays the strings 
NEW and LINE on separate lines. 

The #\NEWLINE character is the only character that causes a new line 
to be written. VAX LISP writes carriage returns and linefeeds without 
special interpretation. 

6.4.2 Terminal Input 

In VAX LISP, ·terminals perform input operations in line mode. Input 
is returned by the READ-CHAR function only after you press the RETURN 
key. 

The READ-CHAR function returns ASCII characters as data unless a 
character is used by the ULTRIX terminal driver for terminal control. 

See the ULTRIX-32 Programmer's Guide [see ioctl(2) and stty(l) tty(4)] 
for information on terminal control characters. 

6.4.3 Terminal Output 

0 

0 

0 

ULTRIX truncates terminal output rather than wraps. To make output Q 
more readable, set the *PRINT-PRETTY* variable to T. 

6.4.4 End-of-File Operations 

In VAX LISP, read operations from a file do_ not indicate the end of 
the file until the operation after the last character in the file is 
performed. 

Read operations from a terminal do not indicate the end of a file in 
VAX LISP. 

In VAX LISP, you can close a stream that is connected to your terminal 
if the stream is not·related to the stream bound to the *TERMINAL-IO*_ 
variable. If you attempt to close the stream boupd to *TERMINAL-IO*, Q 
no action is performed. 

6-18· 



VAX LISP/UL TRIX IMPLEMENTATION NOTES 

6.4.5 File Organization 

CJ VAX LISP creates ULTRIX files that are sequential streams. 

CJ 

6.4.6 Functions 

Two COMMON LISP functions used for I/0 have VAX LISP dependencies and 
need further explanation. The implementation information for the 
following functions is provided in the next two sections: 

e OPEN 

e WRITE-CHAR 

6.4.6.1 OPEN Function - Before you can access a file, you must open 
it with the OPEN function or the WITH-OPEN-FILE macro. The OPEN 
function can be specified with keywords that determine the type of 
stream that is to be created and how errors are to be handled. The 
keywords you can specify are the following: 

e :DIRECTION 

CJ @ ·:ELEMENT-TYPE 

CJ 

CJ 

o :IF-EXISTS 

e :IF-DOES-NOT-EXIST 

VAX LISP restricts the values you can specify for the preceding 
keywords. The rest of this section explains the restrictions. 

For the :IF-EXISTS keyword values of :RENAME, :RENAME-AND-DELETE, and 
:SUPERSEDE, the old file is renamed to the same name with the string 
"old" appended to the file type. On closing files opened with any of -
these three values, and specifying :ABORT T, the new version is 
deleted and the old is restored to its former name. On closing files 
with :ABORT NIL, on :RENAME there is no action; with :RENAME-AND 
DELETE or :SUPERSEDE, the old file is deleted. 

VAX LISP supports all the values for the :ELEMENT-TYPE keyword except 
CHARACTER. VAX LISP allows you to open binary streams, but the 
maximum byte size for a stream is 512 8-bit bytes. 

6.4.6.2 WRITE-CHAR Function - In VAX LISP/ULTRIX, if a file is opened 
with :DIRECTION :IO, the user must set the file position with the 
FILE-POSITION function when changing from reading to writi~g and vice 

6-19 



VAX LISP/UL TRIX IMPLEMENTATION NOTES 

versa. Not setting the file position will cause the file to be left 
in an inconsistent state. Q 
The WRITE-CHAR function disregards the bit and font attributes of 
characters. 

6.5 KEYBOARD FUNCTIONS 

A keyboard function is a function that is invoked when the user types 
a particular control key. The BIND-KEYBOARD-FUNCTION function binds 
an ASCII control character to a function, creating a keyboard 
function. A keyboard function interrupts the current LISP processing 
as soon as the specified control key is typed. When the keyboard 
function exits, the VAX LISP system resumes processing at the point 
where it was interrupted. 

Note that you can use the BIND-KEYBOARD-FUNCTION to bind only three 
characters (C, \, and Z). See Chapter 2 foi more information on these 
characters. 

Keyboard functions are not always called as soon. as the specified 
control key is typed. If a low-level LISP function, such as CDR or 
CONS, is being evaluated or a garbage collection is being performed, 
keyboard functions are placed in a queue until they can be evaluated. 
Delays in keyboard function evaluation are generally not perceptible. 
An example of when you might perceive a delay is when the system 
performs a garbage collection. 

VAX LISP also provides a means· by which you can assign different 
priorities for keyboard functions. These priorities, called interrupt 
levels, are described in the VAX LISP/ULTRIX system Access Programming 
Guide. 

0 

0 

If you suspend the LISP system when keyboard functions are defined, Q 
the functions are still defined when the system is resumed. The 
key/function bindings are not lost. 

Besides the BIND-KEYBOARD-FUNCTION function are. the VAX LISP functions 
GET-KEYBOARD-FUNCTION and UNBIND-KEYBOARD-FUNCTION. The 
GET-KEYBOARD-FUNCTION function returns information about a function 
that is bound to a control character, and the UNBIND-KEYBOARD-FUNCTION 
function removes the binding of a function from a.control character. 

Descriptions of the BIND-KEYBOARD-FUNCTION, GET-KEYBOARD-FUNCTION, and 
UNBIND-KEYBOARD-FUNCTION functions are provided in Part II. 

6-20 

0 



0 

0 

0 

0 

0 

VAX LISP/UL TRIX IMPLEMENTATION NOTES 

6.6 COMPILER 

For inform~tion on how to compile LISP expressions and the advantages 
and disadvantages of compiling LISP expressions, see Chapter 2. This 
section describes two compiler restrictions (one with the COMPILE 
function and one with the COMPILE-FILE function) and compiler 
optimizations. • 

6.6.1 Compiler Restrictions 

The VAX LISP compiler translates interpreted function definitions into 
function objects that contain VAX instructions. The COMPILE function 
causes these objects to be bound as the definitions of the symbols 
that name them. The COMPILE-FILE function puts the objects into an 
output file. Because of the way these two functions handle such 
objects, a restriction exists for the use of each of the functions. 

6.6.1.1 COMPILE Function - The compiler cannot compile pieces of code 
unless they are function definitions defined at top level. Therefore, 
you cannot use the COMPILE function to compile a function unless you 
create the function in a null lexical environment (not top level). An 
example of a LISP expression that cannot be evaluated follows: 

Lisp> (LET ((COUNTER 0)) 
(COMPILE NIL #'(LAMBDA() (INCF COUNTER)))) 

The COMPILE function cannot compile the function object in the 
preceding example because the object depends. on the lexical 
environment in which it was created. In the following example, the 
COMPILE function is called with a lambda expression rather than a 
function object: 

Lisp> (LET ((COUNTER 0)) 
(COMPILE NIL '(LAMBDA() (INCF COUNTER)))) 

The call to the COMPILE function in the preceding example compiles the 
lambda expression. The value that is returned is a compiled object 
that increments the dynamic value of COUNTER. The compiled object 
does not increment the local value of COUNTER, which encloses the call 
to the COMPILE function. 

6.6.1.2 COMPILE-FILE Function - The COMPILE-FILE function encloses 
each top-level form of the file it is compiling with an anonymous 
function definition. Therefore, the function cannot put a compiled 
function object that is recognized as data into an output file. 
Consider the following form: 

6-21 



VAX LISP/ULTRIX IMPLEMEN'rATION NOTES 

Lisp> (SETF F '#.(COMPILE NIL '(LAMBDA (C) (PRINT C)))) 
#<Compiled Function #:G1149 #x504C4C> 

When the COMPILE-FILE function reads the preceding form from a file 
that is being compiled, an anonymous function is created. This 
function becomes part of the third element of the list wl\ose first 
element is the SETF special form. The preceding call to the ~ETF 
special form can be compiled but the list cannot be put into the 
output file. 

6.6.2 Compiler Optimizations 

0 

In VAX LISP, you can control two qualities of compiled code: the 
speed of the generated code and whether run-time safety checking is to Q 
be performed. The default value for these qualities is 1. You ·-can 
set the values globally and locally.· To set the values globally in 
VAX LISP, you can either use the shell vaxlisp command with the 
COMPILE (-C) and the OPTIMIZE (-V "OPTIMIZE=value") options (see 
Chapter 2) or specify the OPTIMIZE declaration in a call to the 
PROCLAIM function ( see COMMON LISP: The Language). Both' '·methods of 
setting the quality values produce the same results. For example, if 
you are in the ·shell and you want to set the global values of the 
speed quality (speed of object code) to 3 · and the safety quality 
(run-time error checking) to·· 2, _use the following ULTRIX command Q 
specification: 

% vaxlisp -V "COMPILE OPTIMIZE=(SPEED:3,SAFETY:2)" myprog.lsp 

If you are in LISP and you want to set the global values of the speed 
and safety qualities, specify the PROCLAIM function as the first form 
in the file. For example, to set the values of the qualities to the 
same values that were set in the preceding example, specify the 
following call to the PROCLAIM function as the first form in the file Q 
myprog.lsp: 

(PROCLAIM '(OPTIMIZE (SPEED 3) (SAFETY 2))) 

You can also set the quality values locally. To do this,' you must use 
the OPTIMIZE declaration within the form for which you-want the values 
to be set. Local optimization quality-values override global ·quality 
values. 

All proclamations are put into the fastload file so that they also 
occur when fastloaded. However, the compiler observes INLINE 
proclamations only when the OPTIMIZE SPEED quality is greater than the 
OPTIMIZE SPACE quality, and does not check for stack overflow. 

If you are more concerned about the safety of your code than the speed Q 
at which it .is evaluated, the ·value of the safety quality must be 
greater than 1, or the value of the speed quality must be less than 2. 

6-22 



VAX LISP/ULTRIX IMPLEMENTATION NOTES 

O When this relationship exists between the two quality values, the 
compiler generates safe code. Safe code is code that checks arguments 

- to ensure that the arguments are of the proper data type. Examples of 
safe code are the following: 

0 

0 

0 

• Code that uses generic arithmetic 
• 

• Code that checks if the arguments of calls to functions that 
require list arguments are lists 

o Code that checks whether indices used to access arrays are 
bound 

If you are more interested in producing code that is evaluated fast 
than in producing safe code, the value of the speed quality must be 
greater than or equal to 2, and the value of the safety quality must 
be less than or equal to 1. When this relationship exists between the 
two quality values, the compiler considers type declarations and 
generates type-specific code. Type-specific code executes faster than 
safe code. If you want the compiler to generate type-specific code, 
you must specify declarations in your code in addition to setting the 
values of the speed and the safety qualities to the correct values. 

Consider the following code and suppose the value of the safety 
quality is 1 and the speed quality is 2: 

(DEFUN LOOP-OVER-A-SUBLIST (INPUT-LIST) 
(DO ((I (GET-INITIAL-VALUE) (1+ I)) 

(L INPUT-LIST (CDR L))) 
((OR(>= I (THE FIXNUM *FINAL-VALUE*)) 

( ENDP L) ) 
L) 

(DECLARE (FIXNUM I) 
(LIST L)) 

(DO-SOME-WORK LI))) 

Since the value of the safety quality is less than 2 and the value of 
the speed quality is greater than 1, the compiler regards the type 
declarations. In this example, the types FIXNUM and LIST are declared 
with the following form: 

(DECLARE (FIXNUM I) 
(LIST L)) 

When the example code is compiled, the compiler uses the type 
declarations and translates the 1+, CDR, ENDP, and>= functions in the 
code as follows: 

• The 1+ function becomes one VAX instruction. 

Q • The CDR function becomes one VAX instruction. 

6-23 



• 

VAX LISP/ULTRIX IMPLEMENTATION NOTES 

The ENDP function is transformed into the NULL function. 

The>= function becomes two VAX instructions: a longwordO 
comparison and a branch. 

The value of the *FINAL-VALUE* variable and the return value of the 
GET-INITIAL-VALUE function must be fixnums. Also, the fNPUT-LIST 
argument specified for the LOOP-OVER-A-SUBLIST function must be a true 
list (not an atom or a dotted list). 

If a declaration is violated, the error that results is not signaled. 
For example, if you call the LOOP-OVER-A-SUBLIST function with the 
symbol LOOP, an error results because the argument is not a list, but 
the error is not signaled. Errors such as this can cause damage to 
the LISP environment, which cannot be repaired. By default, the 
values of the speed and safety qualities are set such that error 
checking and signaling code are generated for all operations; such Q 
values prevent you from damaging the LISP environment. 

If the INPUT-LIST argument in the preceding example is not guaranteed 
to always be a list, you can add an explicit type check before the DO 
loop. The following form is an example of an explicit type check: 

(UNLESS (LISTP INPUT-LIST) 
;but doesn't check for a dotted-list 

(ERROR "Cannot loop through this object: -s." INPUT-LIST)) O 

The check performed by the LISTP function is evaluated at run time, 
even though the compiler might heed the FIXNUM and LIST declarations. 

If you want a function to be compiled inline, you must proclaim it 
INLINE. Declaring a function INLINE has no effect. However, once a 
function has been proclaimed INLINE, it will be compiled inline unless 
specifically declared NOTINLINE. 

For more information on making LISP compiled code run fast, see theQ 
release notes. 

6. 7 FUNCTIONS AND MACROS 

Several functions and macros described in COMMON LISP: The Language 
have implementation dependencies. Table 6-4 lists the names of these 
functions and macros and provides a brief explanation of the type of 
information that is implementation dependent. For a summary 
description of these functions and macros, see Part II •. Each 
description consists of the function's or macro's use, 
implementation-dependent information, format, applicable arguments, 
return value, and examples of use. See COMMON LISP: The Language for. 
further information regarding these functions and.macros. Q 

6-24 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX IMPLEMENTATION NOTES 

Table 6-4: Summary of Implementation-Dependent Functions and Macros 

Name 

APROPOS 

APROPOS-LIST 

BREAK 

COMPILE-FILE 

DESCRIBE 

DIRECTORY 

DRIBBLE 

GET-INTERNAL-RUN-TIME 

LOAD 

LONG-SITE-NAME 

MACHINE-INSTANCE 

MACHINE-VERSION 

MAKE-ARRAY 

REQUIRE 

ROOM 

SHORT-SITE-NAME 

TIME 

TRACE 

WARN 

Function 
or Macro 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Function 

Macro 

Macro 

Function 

6-25 

Implementation-Dependent 
Information 

Optional argument and DO-SYMBOLS 
t macro 

Optional argument and DO-SYMBOLS 
macro 

Facility invoked 

Keywords and return value 

Displayed output 

Argument merged with wildcards 

Cannot nest calls 

Meaning of return value 

Finds latest file 

Location of information 
string returned 

Return value 

Return value 

:ALLOCATION keyword 

Modules 

Displayed output 

Location of information 
string returned 

Displayed output 

Keywords 

Facility invoked 

for 

for 

------------------------··-·---·---·-------



0 

0 

0 

0 

0 



0 

0 
PART II 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

0 

0 

0 



0 

0 

0 

0 

0 



0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

APROPOS Function 

Searches through packages for symbols whose print names contain a 
specified string. The function is not sensitive to the case of 
characters. The string can be either the print name or a substring of 
the symbol's print name. 

The APROPOS function displays a message that shows the string that 'is 
being searched for and the name of the package that is being searched. 
When the function finds a symbol whose print name contains th_e string, 
the function displays the symbol's name. If the symbol has a value, 
the function displays the phrase "has a value" after the symbol as 
follows: 

*MY-SYMBOL*, has a value 

If the symbol has a function definition, the function displays the 
phrase "has a definition" after the symbol as follows: 

MY-FUNCTION, has a definition 

In VAX LISP, the APROPOS function uses the DO-SYMBOLS macro rather 
than the DO-ALL-SYMBOLS macro. As a result, the function displays by 
default only symbols that are accessible from the current or specified 
package. For information on packages, see COMMON LISP: The Language. 

Q Format 

0 

0 

APROPOS string &OPTIONAL package 

Arguments 

string 

The string to be searched for in the symbols' print names. If 
you specify a symbol for this argument, the symbol's print name 
is used. 

package 

An optional argument. If you specify the argument, the symbols 
in the specified package are searched. If you specify T, all 
packages are searched. If you do not specify the argument, the 
symbols that are accessible in the current package are searched. 

Return Value 

No value. 

1 

--------·-------------------· 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

APROPOS Function (cont.) 

Example 

Lisp> (APROPOS. "*PRINT") 

Symbols in package USER containing the string "*PRINT":•. 
*PRINT-CIRCLE*, has a value 
*PRINT-SLOT-NAMES-AS-KEYWORDS*, has a value 
*PRINT-RADIX*, has a value 
*PRINT-ESCAPE*, has a value 
*PRINT-ARRAY*, has a value 
*PRINT-GENSYM*, has a value 
*PRINT-LEVEL*, has a value 
*PRINT-PRETTY*, has a value 

0 

*PRINT-LENGTH*, has a value O 
*PRINT-RIGHT-MARGIN*, has a value 
*PRINT-MISER-WIDTH*, has a value 
*PRINT-BASE*, has a value 
*PRINT-CASE*, has a value 
*PRINT-LINES*, has a value 

Searches the package USER for the string *PRINT and displays a 
list of the symbols that contain the specified string.· 

2 

0 

0 

0 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

QAPROPOS-LIST Function 

Searches through packages for symbols whose print names contain a 
speci~ied string. The function is not sensitive to the case of 
characters. The string can be either the print name or a substring of 
the symbol's print name. 

When the function completes its search, it returns a list of the 
symbols whose print names contain the string. 

In VAX LISP, the APROPOS-LIST function uses the DO-SYMBOLS macro 
rather than the DO-ALL-SYMBOLS macro. As a result, the function 
includes by default only symbols that are accessible from the current 
package in the list it returns. For information on packages, see 
COMMON LISP: The Language. 

QFormat 

0 

APROPOS-LIST string &OPTIONAL package 

Arguments 

string 

The string to be ~earched for in th~ symbols' print names. If 
you specify a symbol for this argument, the symbol's print name 
is used. 

package 

An optional argument. If you specify the argument, the symbols 
in the specified package are searched. If you specify T, all 
packag~i are searched. If you do not specify the argument, the 
symbols that are accessible in the current package are searched. 

OReturn Value 

0 

A list of the symbols whose print names contain the string. 

Example 

Lisp> (APROPOS-LIST "ARRAY") 
(ARRAY-TOTAL-SIZE ARRAY-DIMENSION ARRAY-DIMENSIONS 
SIMPLE-ARRAY ARRAY-DIMENSION-LIMIT ARRAY-ELEMENT-TYPE 
ARRAYP *PRINT-ARRAY* ARRAY-RANK ARRAY-RANK-LIMIT 
MAKE-ARRAY ARRAY-TOTAL-SIZE-LIMIT ARRAY-ROW-MAJOR-INDEX 
ADJUST-ARRAY ARRAY ARRAY-IN-BOUNDS-P ADJUSTABLE-ARRAY-P 
ARRAY-HAS-FILL-POINTER-P) 

Searches the symbols that are accessible in the current package 
for the string ARRAY and returns a list of the symbols that 
contain the specified string. 

3 

' 



VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

BIND-KEYBOARD-FUNCTION Function 

Binds an ASCII keyboard control character (characters of codes O too 
31) to a function. When a control character is bound to a function, 
you can execute the function by typing the control character on your 
terminal keyboard. A function bound in this way is called a keyboard 
function. ' 
On ULTRIX, the control characters that can be bound are those that 
generate the SIGINT, SIGQUIT, and SIGTSTP signals, by default 
<CTRL/C>, <CTRL/\>, and <CTRL/Z> respectively. You can use the shell 
command stty(l) (stty all) to find the current bindings of these 
signals. 

When you type the control character, the LISP system is interrupted at 
its current point, and the function the control character is bound to 
is called asynchronously. The LISP system then evaluates the function Q 
and returns control to where the interruption occurred. 

You can delete the binding of a function and a control character by 
using the UNBIND-KEYBOARD-FUNCTION function. You can use the 
GET-KEYBOARD-FUNCTION function to get information about a function 
that is bound to a control character. 

You can specify an interrupt level (an integer in the range O through 
7) for a keyboard function by using the :LEVEL keyword. A keyboardo 
function can only interrupt code that is executing at an interrupt 
level below its own. Keep the following guidelines in mind when 
specifying an interrupt level: 

• The default interrupt level for keyboard functions is 1. · 

• Interrupt level 6 is used by LISP to handle 
therefore, a keyboard function executing at 
cannot receive input from the keyboard. For 
careful when using interrupt level 6. 

keyboard input; 
interrupt level 6 
this reason, be Q 

• Interrupt level 7 can interrupt any code that is not in the -
body of a CRITICAL-SECTION macro. A keyboard function 
executing at interrupt level 7 must terminate by executing a 
THROW to a tag, such as CANCEL-CHARACTER-TAG. 

• If you bind a control character to the BREAK or DEBUG 
functions, use a level that is high enough to interrupt your 
other keyboard functions but that is less than 6. 

The VAX LISP/ULTRIX System Access Programming Guide contains more 
information about using interrupt levels and about the 
CRITICAL-SECITON macro. 

4 

0 



0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

BIND-KEYBOARD-FUNCTION Function (cont.) 

NOTE 

When you bind a control character to a function, the 
stream bound to the *TERMINAL-IO* variable must be 
connected to your terminal. • 

See Chapter 6 
asynchronously. 

Format 

for an explanation about calling 

BIND-KEYBOARD-FUNCTION control-character function 
&KEY :ARGUMENTS :LEVEL 

functions 

O Arguments 

control-character 

The ASCII control character to be bound 
bind a function to a control character 
SIGINT, SIGQUIT, or SIGTSTP signal 
<CTRL/\>, and <CTRL/Z>). 

to the function. You can 
that generates the ULTRIX 
(by default, <CTRL/C>, 

Q function 

0 

0 

The function to which the control character is to be bound. 

:ARGUMENTS 

A list containing arguments to be passed to the specified 
function when it is called. The arguments in the list are 
evaluated when the BIND-KEYBOARD-FUNCTION function is called. 

:LEVEL 

An integer in the range 0-7, specifying the interrupt level for 
the keyboard function. The default is 1. 

Return Value 

T. 

5 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRiPTIONS 

BIND-KEYBOARD-FUNCTION Function. (cont.) 

Example 

Lisp> (BIND-KEY.BOARD-FUNCTION #\FS #'BREAK). 
T 
Lisp> <CTRL/\> 
Break> 

Binds <CTRL/\> to the BREAK function. You can theri invoke a break 
loop by typing <CTRL/\>. 

6 

0 

0 

0 

0 



0 

0 

VAX 'USP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

BREAK Function 

Invokes a break loop. A break loop is a nested read-eval-print 
For more information about break loops, see Chapter 4. 

loop. 

Format 

BREAK &OPTIONAL format-string &REST args 

Arguments 

format-string · 

args 

The string of characters that is passed to the FORMAT function to 
create the break-loop message. 

The arguments that are passed to the FORMAT function as arguments 
for the format string. 

Return Value 

When the CONTINUE function is called to exit the break loop, the 
BREAK function returns NIL. 

Q Example 

0 

0 

(WHEN (UNUSUAL-SITUATION-P CONDITION) 
(BREAK "Unusual situation -n encountered. Please investigate" 

CONDITION)) 

Calls the BREAK function if the value of the UNUSUAL-SITUATION-P 
function is not NIL. The break message contains the condition 
code. 

7 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

CANCEL-CHARACTER-TAG Tag 

CANCEL-CHARACTER-TAG, when used in a CATCH construct,· catches the 
throw that occurs whenever the cancel character is typed at the 
keyboard. In VAX LISP/ULTRIX, <CTRL/C> by default causes a THROW to 
CANCEL-CHARACTER-TAG. Thus, you can use CANCEL-CHARACTER-TAG in a 
CATCH construct to alter the behavior when a user types <CTRt/C>. To 
check the characters that are bound to signals, type the shell command 
stty all. 

You can also use CANCEL-CHARACTER-TAG in a THROW construct to cause an 
exit to the VAX LISP read-eval-print loop. In this way, you can 
partially simulate the action of the cancel character from within your 
code. (The cancel character also invokes the CLEAR-INPUT function on 
the *TERMINAL-IO* stream.) 

Format 

CANCEL-CHARACTER-TAG 

Example 

Lisp> (DEFUN TRAPPER() 

TRAPPER 

(CATCH 'CANCEL-CHARACTER-TAG 
(LOOP)) 

(PRINC "Execution came through here")) 

Lisp> (TRAPPER) 
<CTRL/C> 
Execution came through here 
"Execution came through here" 
Lisp> 

• The TRAPPER function sets up a catcher 
CANCEL-CHARACTER-TAG, then enters an infinite loop. 

• The user types <CTRL/C>. 

for 

• The PRINC function prints a string, indicating that execution 
continued following the CATCH form rather than returning 
directly to the Lisp> prompt. 

8 

0 

0 

0 

0 

0 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

0 
CHAR-NAME-TABLE Func.tion 

Displays a formatted list of the VAX LISP character names. 

Format 

CHAR-NAME-TABLE 

Return Value 

No value. 

Example 

Lisp> (CHAR-NAME-TABLE) 

0 Hex Code Preferred Name Other Names 

00 NULL NUL 
01 "A SOH 
02 ,. B STX 
03 ,. c ETX 
04 ,. D EOT 
05 .. E ENQ 
06 ,. F ACK 

0 
07 BELL 
08 BACKSPACE 
09 TAB 

.. G BEL 
,. H BS 
.. I HT 

OA LINEFEED ... J LF 
OB "K VT 
oc PAGE "L FORM FEED FF 
OD RETURN "M CR 
OE "'N so 
OF "O SI 

0 
10 "P 
11 ,. Q 

12 "'R 

DLE 
XON DCl 
DC2 

13 "S XOFF DC3 
14 "T DC4 
15 ,. u NAK 
16 "V SYN 
17 "W ETB 
18 ,. x CAN 
19 "Y EM 
lA ... z SUB 
1B ESCAPE ESC ALT MODE 
lC FS 
1D GS 
1E RS 
lF us 

0 20 SPACE 
7F RUBOUT 

SP 
DELETE DEL 

9 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

CHAR-NAME-TABLE Function (cont.) 

84 IND 0 
85 NEL 
86 SSA 
87 ESA 
88 HTS 
89 HTJ 
BA VTS 
BB PLD 
BC PLU 
BD RI 
BE SS2 
8F SS3 
90 DCS 
91 PUl 
92 PU2 
93 STS 0 
94 CCH 
95 MW 
96 SPA 
97 EPA 
9B CSI 
9C ST 
9D osc 
9E PM 
9F APC 0 
FF NEWLINE 

0 

0 
10 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

COMPILEDP Function 

A predicate that checks whether an object 
compiled function definition. 

is a symbol that has a 

Format 

COMPILEDP name 

Argument 

name 

The symbol whose function, macro, or special form definition is 
to be checked. 

Return Value 

The interpreted function, macro, or special form definition, if 
the symbol has an interpreted definition that was compiled with 
the COMPILE function. Returns T, if the symbol has a compiled 
definition that was not compiled with the COMPILE function. 
Returns NIL, if the symbol does not have a compiled function 
definition. 

Example 

Lisp> (DEFUN ADD2 (X) (+ X 2)') 
ADD2 
Lisp> (COMPILEDP 'ADD2) 
NIL 
Lisp> (COMPILE 'ADD2) 
ADD2 compiled. 
ADD2 
Lisp> (COMPILEDP 'ADD2) 
(LAMBDA (X) (BLOCK ADD2 (+ X 2))) 

• The call to the DEFUN macro defines a function named ADD2. 

• The first call to the COMPILEDP function returns NIL, because 
the function ADD2 has not been compiled. 

• The call to the COMPILE function compiles the function ADD2. 

• The second call to the COMPILEDP function returns the 
interpreted function definition, because the function ADD2 was 
previously compiled. 

11 

----··-------------·----.. ---



VAX LISP/ULTRIX FUNCTION, MACHO, AND VARIABLE DESCRIPTIONS 

COMPILE-FILE Function 

Compiles a specified LISP source file and writes the compiled code 
a binary fast-loading file (type fas). 

Format 

COMPILE-FILE input-pathname 

Arguments 

&KEY :LISTING :MACHINE-CODE :OPTIMIZE 
:OUTPUT-FILE :VERBOSE :WARNINGS 

input-pathname 

A pathname, namestring, symbol, or stream. The compiler uses the 
value of the *DEFAULT-PATHNAME-DEFAULTS* variable to fill in file O 
specification components that are not specified. The file type 
defaults to lsp. 

:LISTING 

Specifies whether the compiler is to produce a listing file. The 
value can be T, NIL, or a· pathname, namestring, symbol, or 
stream. If you specify T, the compiler produces a listing file. 
The listing file is assigned the same name as the source file O with the file type lis, and is placed in the directory that 
contains the source file. 

If you specify NIL, no listing is produced. The default value is 
NIL. 

If you specify a pathname, nam·estring, symbol, or stream, the 
compiler uses the value as the specification of the listing file. 
The compiler uses the lis file type and the value of the 
input-pathname to fill the components of the file specification Q 
that are not specified. 

:MACHINE-CODE 

Specifies whether the compiler is to include the machine code it 
produces for each function and macro .it compiles in the listing 
file. The value can be Tor NIL. If you specify T, the listing 
file contains the machine code. If you spe~ify NIL, the listing 
file does not contain the machine code. The default value is 
NIL. 

:OPTIMIZE 

Specifies the optimization qualities the compiler is to 
during compilation. The value must be a li&t of sublists. 
sublist must contain a symbol and a value, which specify 

12 

use 
Each 
the 0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

COMPILE-FILE Function (~ont.) 

optimization qualities and corresponding values that the compiler 
is to use during compilation. For example: 

((SPACE 2) (SAFETY 1)) .. 
The default value for each quality is one. For a detailed 
discussion of compiler optimizations, see Chapter 6. 

:OUTPUT-FILE 

Specifies whether the compiler is to produce a fast-loading file. 
The value can be T, NIL, or a pathname, namestring, symbol, or 
stream. If you specify T, the compiler produces a fast-loading 
file. The output file is assigned the same name as the source 
file with the file type fas and is placed in the directory that 
contains the source file. The default value is T. 

If you specify NIL, no fast-loading file is produced. 

If you specify a pathname, namestring, symbol, or stream, the 
compiler uses the value as the specification of the output file. 
The compiler uses the fas file type and the value of the 
input-pathname to fill the components of the file specification 
that are not specified. 

:VERBOSE 

Specifies whether the compiler is to display the name of 
functions and macros it compiles. The value can be Tor NIL. If 
you specify T, the compiler displays the name of each function 
and macro. If a listing file exists, the compiler also includes 
the names in the listing file. If you specify NIL, the names are 
not displayed or included in the listing file. The default value 
is the value of the *COMPILE-VERBOSE* variable (By default, T). 

:WARNINGS 

Specifies whether the compiler is to display warning messages. 
The value can be T or NIL. If you specify T, the compiler 
displays warning messages. If a listing file exists, the 
compiler also includes the messages in the listing file. If you 
specify NIL, warning messages are not displayed or included in 
the listing file. The default value is the value of the 
*COMPILE-WARNINGS* variable (By default, T). 

Return Value 

If the compiler generated an output file, a namestring is 
returned. Otherwise, NIL is returned. 

13 



VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

COMPILE-FILE Function (cont.) 

0 Examples 

1. Lisp> (COMPILE-FILE "factorial" :VERBOSE T) 

Starting compilation of file /usr/users/smith/facto~ial.lsp 

FACTORIAL compiled. 

Finished compilation of file /usr/users/smith/factorial.lsp 
O Errors, 0 Warnings 
"/usr/usrs/smith/factorial.fas" 

Compiles the file factorial.lsp, which is in the current 
directory. A fast-loading file named factorial.fas is 
produced. The compilation is logged to the terminal, because o 
the :VERBOSE keyword is specified with the value T. 

2. Lisp> (COMPILE-FILE "factorial" :OUTPUT-FILE NIL 
:LISTING T 
:WARNINGS NIL 
:VERBOSE NIL) 

NIL 

Compiles the file factorial.lsp, which is in the current o 
directory. A fast-loading file is not produced, because the 
:OUTPUT-FILE keyword is specified with the value NIL. A 
listing file named factorial.lis is produced. warning 
messages are suppressed, because the :WARNINGS keyword is 
specified with the value NIL. 

0 

0 
14 



VAX USP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

*COMPILE-VERBOSE* Variable 

Ocontrols the amourit of information 'that the compiler displays. 

0 

0 

0 

0 

The COMPILE-FILE function binds the *COMPILE-VERBOSE* variable to the 
value supplied by the :VERBOSE keyword. If the :VERBOSE keyword is 
not specified, the function uses the existing ~alue t of the 
*COMPILE-VERBOSE* variable. If the value is not NIL, the compiler 
displays the name of each function as it is compiled; if the value is 
NIL, the compiler does not display the function names. The default 
value is T. 

Example 

Lisp> (COMPILE-FILE "math") 
Starting compilation of file /usr/users/smith/math.lsp 

FACTORIAL compiled. 
FIBONACCI compiled. 

Finished compilation of file /usr/users/smith/math.lsp 
O Errors, 0 Warnings 
"/usr/users/smith/math.fas" 
Lisp> (SETF *COMPILE-VERBOSE* NIL) 
NIL 
Lisp> (COMPILE-FILE "math") 
"/usr/users/smith/math.fas" 

• The first call to the COMPILE-FILE function shows the output 
the compiler displays during the compilation of a file, when 
the *COMPILE-VERBOSE* variable is set to T. 

• The call to the SETF macro sets the value of the variable to 
NIL. 

• The second call to the COMPILE-FILE function compiles the file 
without displaying output, because the variable's value is 
NIL. 

15 



VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

*COMPILE-WARNINGS* Variable 

Controls whether the compiler displays warning messages during D 
compilation. 
The COMPILE-FILE function binds the *COMPILE-WARNINGS* variable to the 
value supplied with the :WARNINGS keyword. If the :WARNINGS keyword 
is not specified, the function uses the existin0 valu~ of the 
*COMPILE-WARNINGS* variable. If the value is not NIL, the compiler 
displays warning messages; if the value is NIL, the compiler does not 
display warning messages. The default value is T. 

NOTE 

The compiler always displays fatal and continuable 
error messages. 

Example 

Lisp> (COMPILE-FILE "math") 
Starting compilation of file /usr/users/smith/math.lsp 

Warning in FACTORIAL 
N bound but value not used. 

FACTORIAL compiled. 
Warning in FIBONACCI 

N bound but value not used . 
. FIBONACCI compiled. 

Finished compilation of file /usr/users/smith/math.lsp 
O Errors, 2 Warnings 
"/usr/users/smith/math.fas" 
Lisp> (SETF *COMPILE-WARNINGS* NIL) 
NIL 
Lisp> (COMPILE-FILE "math") 
Starting compilation of file /usr/users/smith/math.lsp 

FACTORIAL compiled. 
FIBONACCI compiled. 

Finished compilation of file /usr/users/smith/math.lsp 
O Errors, 2 Warnings 
"/usr/users/smith/math.fas" 

• The first call to the COMPILE-FILE function shows the output 
the compiler displays during the compilation of a file, when 
the *COMPILE-WARNINGS* variable is set to T. 

• The call to the SETF macro sets the value of the variable to 

0 

0 

0 

NIL.. 0 

16 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*COMPILE-WARNINGS* V~riable (cont.) 

· • The second call to the COMPILE-FILE function compiles the file 
without displaying warning messages in the output, because the 
variable's value is NIL. 

17 



VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS 

CONTINUE Function 

Enables you to exit the .break loop. When you call this function, it 
causes the BREAK function to return NIL and the evaluation of your 
program to continue from the point at which the break loop was 
entered. 

Format 

CONTINUE 

Return Value 

NIL. 

Example 

Lisp> (BIND-KEYBOARD-FUNCTION #\FS #'BREAK) 
Lisp> (LOAD "fileb.lsp") 
; Loading contents of file /usr/usrs/smi ... 
"\ 
Break> (LOAD "filea.lsp") 

Loading contents of file /usr/usrs/smith/filea.lsp 
FUNCTION-A 

Finished loading /usr/usrs/smith/filea.lsp 
T 
Break> (CONTINUE) 
Continuing from break loop ... 
, FUNCTION-B 
; Finished loading /usr/usrs/smith/fileb.lsp 
T 
Lisp> 

• The BREAK function is bound to <CTRL/\> ("\). 

• The file fileb.lsp is loaded. 

• The programmer, realizing that filea.lsp (which is needed to -
initialize an environment for fileb.lsp) is not yet loaded, 
invokes the BREAK loop. 

• The file filea.lsp is then loaded. 

• Finally, the call to 
loading of fileb.lsp 
top-level loop. 

the CONTINUE function continues the 
and then returns the programmer to the 

18 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTION~ 

DEBUG Function 

Invokes the VAX LISP debugger. 

For information about how to use the VAX LISP debugger, see Chapter 4. 

Format 

DEBUG 

Return Value 

Returns NIL. You can cause the debugger to return other values 
(see Chapter 4). 

Example 

Lisp> (DEBUG) 
Control Stack Debugger 
Frame #5: (DEBUG) 
Debug 1> 

Invokes the VAX LISP debugger. When you invoke the debugger, it 
displays an identifying message, stack frame information, and the 
debugger prompt. 

19 



VAX LISP/ULTRIX FUNCTION .. MACRO, AND VARIABLE DESCRIPTIONS 

DEBUG-CALL Function 

Returns a list representing the current debug frame function call.O 
This function is a debugging tool and takes no arguments. The list 
returned by the DEBUG-CALL function can be used to access the values 
passed to the function in the current stack frame. 

Format 

DEBUG-CALL 

Return Value 

A list representing the current debug frame function call. 
is returned if this function is called outside the debugger. 

Example 

Lisp> (SETF THIS-STRING "abed") 
"abed" 
Lisp> (FUNCTION-Y THIS-STRING 4) 
.... Error in function FUNCTION-Y 
Frame #4 (FUNCTION-Y "abed" 4) 
Debug 1> (SETF STRING (SECOND (DEBUG~CALL))) 
"abed" 
Debug 1> (EQ "abed" STRING) 
NIL 
Debug 1> (EQ THIS-STRING STRING) 
T 

NIL 

0 

0 
In this case, the function in the current stack frame is 
FUNCTION-Y. The call to (DEBUG-CALL) returns the list 
(FUNCTION-Y "abed 4). The fo~m (SECOND (DEBUG-CALL)) evaluates 
"abed", the first argument to FUNCTION-Yin the current stack 
frame. Note that the string returned by the call (SECONDO 
(DEBUG-CALL)) is the same string passed to the function 
FUNCTION-Y. See the description of the TRACE macro for another 
example of the use of the DEBUG-CALL function. 

0 
20 



() 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*DEBUG-PRINT-LENGTH* .Variable 

Controls the output that the debugger, stepper, and tracer facilities 
display. This variable controls the number of objects these 
facilities can display at each level of a nested data object. The 
variable's value can be either a positive integer or NIL. If the 
value is a positive integer, the integer indicates the ~umber of 
objects at each level of a nested object to be displayed. If the 
value is NIL, no limit is on the number of objects that can be 
displayed. The default value is NIL. 

The value of this variable might cause the printer to truncate output. 
An ellipsis ( ... ) indicates truncation. 

This variable is similar to the *PRINT-LENGTH* variable described in 
COMMON LISP: The Language. 

Q Example 

0 

0 

0 

Lisp> (SETF ALPHABET '(ABC DEF G HI J K)) 
(ABC DEF G HI J K) 
Lisp> (SETF *DEBUG-PRINT-LENGTH* 5) 
5 
Lisp> (+ 2 ALPHABET) 

Fatal error in function+ (signaled with ERROR). 
Argument must be a number: (ABC DEF G HI J K) 

Control Stack Debugger 
Frame #5: (+ 2 (ABC DE ... )) 
Debug 1> (SETF *DEBUG-PRINT-LENGTH* 3) 
3 
Debug 1> WHERE 
Frame #5: (+ 2 (ABC ... )) 

• The call to the SETF macro sets the symbol ALPHABET to a list 
of single-letter symbols. 

e The value of the *DEBUG-PRINT-LENGTH* variable is set to 5. 

e The illegal call to the plus sign(+) function causes the LISP 
system to invoke the debugger. The debugger displays only 
five elements of the list that is the value of the symbol 
ALPHABET the first time it displays the stack frame numbered 
5. 

e The call to the SETF macro within the debugger sets the value 
of the *DEBUG-PRINT-LENGTH* variable to 3. 

• The debugger displays three elements of the list, after you 
change the value of the variable. 

21 



VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS 

*DEBUG-PRINT-LEVEL* Variable 

Controls the output that the debugger, stepper, and tracer facilities O 
display. This variable controls the number of levels of a nested 
object these facilities can display. The variable's value can be 
either a positive integer or NIL. If the value is a positive integer, 
the integer indicates the number of levels of a nested objett to be 
displayed. If the value is NIL, no limit is on the number of levels 
that can be displayed. The default value is NIL. 

The value of this variable might cause the printer to truncate output. 
A number sign(#) indicates truncation. 

This variable is similar to the *PRINT-LEVEL* variable described in 
COMMON LISP: The Language. 

Example Q 
Lisp> (SETF ALPHABET '(A (B (C (D (E)))))) 
(A (B (C (D (E))))) 
Lisp> (SETF *DEBUG-PRINT-LEVEL* 3) 
3 
Lisp> (+ 2 ALPHABET) 

Fatal error in function+ (signaled with ERROR). 
Argument must be a number: (A (B (C (D (E))))) 

Control Stack Debugger 
Frame #5: (+ 2 (A (B #))) 
Debug 1> (SETF *DEBUG-PRINT-LEVEL* NIL) 
NIL 
Debug 1> WHERE 
Frame #5: (+ 2 (A (B (C (D (E)))))) 

• The call to the SETF macro 
nested list. 

sets the symbol ALPHABET to 

• The value of tpe *DEBUG-PRINT-LEVEL* variable is set to 3. 

• The illegal call to the plus sign(+) function causes the LISP 
system to invoke the debugger. The debugger displays only 
three levels of the nested list (that is the value of the 
symbol ALPHABET) the first time it displays the stack frame 
numbered 5. 

• The call to the SETF macro within the debugger sets the value 
of the *DEBUG-PRINT-LEVEL* variable to NIL. 

The debugger displays all the levels of the nested list, after 
you change the value of the variable. 

22 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

DEFAULT-DIRECTORY Function 

Returns a pathname with the host and directory fields filled with 
values of the current default directory. 

the 

The DEFAULT-DIRECTORY function is similar to the ULTRIX shell command 
pwd. For information about the pwd command, see the'ULTRIX-32 
Programmer's Guide. 

You can change the default directory by using the SETF macro. Setting 
your default directory with this macro also resets the value of the 
*DEFAULT-PATHNAME-DEFAULTS* variable. Performing this operation is 
similar to using the ULTRIX shell command ed. See Chapter 6 and 
COMMON LISP: The Language for information about pathnames and the 
*DEFAULT-PATHNAME-DEFAULTS* variable. 

Note that the directory must exist for 
succeed. 

the change of directory to 

Format 

DEFAULT-DIRECTORY 

Return Value 

The pathname that refers to the default directory. 

Examples 

1. Lisp> (DEFAULT-DIRECTORY) 
#S(PATHNAME :HOST "miami:" :DEVICE NIL 
:DIRECTORY 11 /usr/users/smith" :NAME NIL :TYPE NIL 
:VERSION NIL) 
Lisp> (SETF (DEFAULT-DIRECTORY) "./tests/") 
"./tests/" 
Lisp> (DEFAULT-DIRECTORY) 
#S(PATHNAME :HOST "miami:" :DEVICE NIL 
:DIRECTORY 11 /usr/users/smith/tests" :NAME NIL :TYPE NIL 
:VERSION NIL) 

• The first call to the DEFAULT-DIRECTORY function returns 
the pathname that points to the default directory. 

e The call. to the SETF macro changes the default directory 
to /usr/users/smith/tests. A slash is included in the 
string to indicate that tests is a subdirectory rather 
than a file. 

• The second call to the DEFAULT-DIRECTORY function verifies 
the directory change. 

23 



VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

DEFAULT-DIRECTORY Function (cont.) 

2. Lisp> (DEFAULT-DIRECTORY) 
#S(PATHNAME :HOST "rniami:" :DEVICE NIL 
:DIRECTORY "/usr/users/smith/tests" :NAME NIL :TYPE NIL 
:VERSION NIL) 
Lisp> *DEFAULT-PATHNAME-DEFAULTS* ' 
#S(PATHNAME :HOST "rniami:" :DEVICE NIL 
:DIRECTORY "/usr/users/srnith/tests" :NAME NIL :TYPE NIL 
:VERSION NIL) 
Lisp> (NAMESTRING (DEFAULT-DIRECTORY)) 
11 /usr/users/srnith/tests/ 11 

Lisp> (SETF (DEFAULT-DIRECTORY) " .. /") 
II •• I" 
Lisp> (NAMESTRING (DEFAULT-DIRECTORY)) 
11 /usr/users/smith/ 11 

Lisp> (NAMESTRING *DEFAULT-PATHNAME-DEFAULTS*) 
11 /usr/users/smith/" 

• The first call to the DEFAULT-DIRECTORY function returns 
the pathname that points to the default directory • 

• The call to the *DEFAULT-PATHNAME-DEFAULTS* variable shows 
that its value is the same as the value returned by the 
DEFAULT-DIRECTORY function. 

0 

0 

• The call to the NAMESTRING function returns the 
as a string. 

pa thnarne Q. 
• The call to the SETF macro changes the default directory 

to /usr/users/smith: 

• The last two calls to the NAMESTRING function show that 
the return values of the DEFAULT-DIRECTORY function and 
the *DEFAULT-PATHNAME-DEFAULTS* variable are still the 
same. 

24 

0 

0 



.o 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

DEFINE-FORMAT-DIRECTIVE Macro 

Defines a directive for use in a FORMAT control string, supplementing 
directives supplied with VAX LISP. In a call to FORMAT, specify a 
directive you have defined in the form: 

-;name/ 

You can also specify colon and at-sign modifiers: 

-@ :/name/ 

You can also specify one or more parameters: 

-n,n/name/ 

DEFINE-FORMAT-DIRECTIVE provides means for the body of the format 
directive you define to receive the value of parameters and the 
presence or absence of colon and at-sign modifiers. 

See Section 5.4 for more information about defining format directives. 

Format 

DEFINE-FORMAT-DIRECTIVE name 
(arg stream colon-p atsign-p 
&OPTIONAL {parameter1 default) 

(parameter2 default) ... ) 
&BODY forms 

Arguments 

name 

arg 

The name of the FORMAT directive defined with this macro. 

NOTE 

If you do not specify a package with name when 
you define the directive, name is placed in the 
current package. If you do not specify a package 
when you refer to the directive, the FORMAT 
directive looks in the USER package for the 
directive definition. 

A symbol that is bound to the argument to be formatted by the 
directive. 

25 



VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS 

DEFINE-FORMAT-DIRECTIVE Macro (cont.) 

stream 

A symbol that is bound to the stream to which the printing is 
be done. 

to 

colon-p 

A symbol that is bound to Tor NIL, indicating whether a colon 
was specified in the directive. 

atsign-p 

A symbol that is bound to Tor NIL, indicating whether an at-sign 
was specified in the directive. 

parameters 

forms 

There must be one optional argument for each prefix parameter 
that is allowed in the directive. A symbol supplied as a 
parameter argument will be bound to the corresponding prefix 
parameter if it was specified in the directive. Otherwise, the 
default value will be used, as with all optional arguments. 

Forms which are evaluated to print argument to stream. The 
can begin with a declaration and/or documentation string. 

body 

Return Value 

The name of the FORMAT directive that has been defined. 

Example 

Lisp> (DEFINE-FORMAT-DIRECTIVE EVALUATION-ERROR 
(SYMBOL STREAM COLON-P ATSIGN-P 
&OPTIONAL (SEVERITY 0)) 

(DECLARE (IGNORE ATSIGN-P)) 
(FRESH-LINE STREAM) 
(PRINC (CASE SEVERITY 

( 0 - "Warning: ") 
(1 "Error:")' 
(2 "Severe Error: ")) 

STREAM) 
(FORMAT STREAM "-:!The symbol -s -:_does not have an -

integer value.-%Its value is: -=_-s-." 
SYMBOL (SYMBOL-VALUE SYMBOL)) 

(WHEN COLON-P 
(WRITE-CHAR #\BELL STREAM))) 

EVALUATION-ERROR 

26 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

DEFINE-FORMAT-DIRECTIVE Macro (cont.) 

Lisp> (SETF PROCESS NIL) 
NIL 
Lisp> (FORMAT T "-1:/EVALUATION-ERROR/" 'PROCESS) 
Error: The symbol PROCESS does not have an integer value. 

Its value is: NIL , 
<BEEP> 

• This example shows the definition of a FORMAT directive, a use 
of the directive, and the printed output. 

• The prefix parameter 1 in "-1:/EVALUATION-ERROR/" indicates 
the severity of the error being signaled. The colon produces 
a beep on the terminal. 

27 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

DEFINE-GENERALIZED-PRINT-FUNCTION Macro 

Defines a function that specifies how any object is to be prett() 
printed, regardless of its form. Generalized print functions are 
effective only when they are enabled (globally or locally) and when 
pretty printing is enabled. You can enable a generalized print 
function globally, using GENERALIZED-PRINT-FUNCTION-ENABLEb-P. Or, 
you can enable it locally, using WITH-GENERALIZED-PRINT-FUNCTION. An 
enabled generalized print function is used if its predicate evaluates 
to a non-NIL value. 

See Section 5.6 for more information about 
functions. 

generalized print 

Format 

DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream) predicate O 
&BODY forms 

Arguments 

name 

The name of the generalized print function being defined. 

object 

0 A symbol that is bound to the object to be printed. 

stream 

A symbol that is bound to the stream to which output is to be 
sent. 

predicate 

enabledo 

forms 

A form. When the generalized print function has been 
(globally or locally), the system evaluates this form for every -
object to be pretty printed. If the form evaluates to non-NIL on 
the object to be pretty printed, the generalized print function 
will be used. 

Forms that print object to stream, or take any 
These forms can refer to the object and stream 
symbols used for object and stream. The body can 
declaration and/or documentation string. 

other action. 
by means of the 
begin with a 

Return Value 

The name of the generalized print function that has been defined. 0 
28 



0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, ANU VAHIADLI: UC.:>vn11- 11v ..... ;, 

DEFINE-GENERALIZED-PRINT-FUNCTION Macro (cont.) 

Example 

Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST 
(OBJECT STREAM) 
(NULL OBJECT) 
( PR INC II ( ) II STREAM) ) 

PRINT-NIL-AS-LIST 
Lisp> (PRINT NIL) 
NIL 
NIL 
Lisp>(PPRINT NIL) 
NIL 
Lisp> (WITH-GENERALIZED-PRINT-FUNCTION 'PRINT-NIL-AS-LIST 

(PRINT NIL) 

NIL 
( ) 

(PPRINT NIL)) 

Lisp> (SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P 
'PRINT-NIL-AS-LIST) 

T) 
T 
Lisp> (PPRINT NIL) 
( ) 

• The first PRINT call prints NIL, because the generalized print 
function PRINT-NIL-AS-LIST is.not enabled • 

• The first PPRINT call prints NIL, because PRINT-NIL-AS-LIST is 
still not enabled. 

• The second PRINT call prints NIL, because pretty printing is 
not enabled. 

• The second PPRINT call prints ( ) , because the generalized 
print function is enabled locally. 

• The third PPRINT call prints ( ) , because the generalized 
print function is enabled globally. 

29 



VAX LISP/ULTRIX FUNCTION, MACRO, AND- VARIABLE DESCRIPTIONS 

DEFINE-LIST-PRINT-FUNCTION Macro 

Defines and enables a function to print lists that begin with 
specified element. Defined functions are effective only when pretty 
printing is enabled. The system checks the first element of each list 
to be printed for a match. If the first element of a list matches the 
name of a list-print function, the list is printed according to the 
format you have defined. 

See Section 5.5 for more information about list-print.functions. 

Format 

DEFINE-LIST-PRINT-FUNCTION symbol (list stream) &BODY forms 

Arguments 

symbol 

list 

The first element of any list to be printed in the defined 
format. 

A symbol that is bound to the list to be printed. 

stream 

forms 

A symbol that is bound to the stream on which printing is to be 
done. 

0 

0 

Forms to be evaluated. The forms refer to the list to be printed 
and the stream by means of the symbols you supply for list ando 
stream. The body can include declarations. Calls to FORMAT may 
also be included. 

Return Value 

The name of the list-print function that has been_defined. 

Example 

Lisp> (DEFINE-LIST-PRINT-FUNCTION MY-SETQ (LIST STREAM) 
(FORMAT STREAM 

MY-SETQ 

.. -1 !'"w"'"' - : r @Cw"'"' - : _-w"' ... - %- 1- • " 
LIST)) 

Lisp> (SETF BASE '(MY-SETQ HI 3 BYE 4)) 
(MY-SETQ HI 3 BYE 4) 

30 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

DEFINE-LIST-PRINT-FUNCTION Macro (cont.) 

Lisp> (PRINT BASE) 
(MY-SETQ HI 3 BYE 4) 
(MY-SETQ HI 3 BYE 4) 
Lisp> (PPRINT BASE) 
(MY-SETQ HI 3 

BYE 4) 

e The list-print function MY-SETQ is defined. 

• The call to PRINT does not use the list-print function MY-SETQ 
to print the value of BASE, because pretty-printing is not 
enabled. 

• The call to PPRINT does use the list-print function MY-SETQ to 
print the value of BASE. 

31 



VAX LISP/UL TRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

DELETE-PACKAGE Function 

Uninterns all the symbols interned in the package, unuses all theo 
packages the function uses, and deletes the package. An error is 
signaled if the package is used by iny other package. 

Format 

DELETE-PACKAGE package 

Argument 

package 

A package, or a string or symbol naming a package 

Return Value 

T. 

Example 

Lisp> (DELETE-PACKAGE "TEST-PACKAGE") 
T 
Lisp> (FIND-PACKAGE "TEST-PACKAGE") 
NIL 

32 

0 

0 

0 

0 



0 

0 

VAX LISP/ULTRIX FUNCTION 1 MACRO! AND VARIABLE DESCRIPTIONS 

DESCRIBE Function 

Displays information about a specified object. If the specified 
object has a documentation string, this function displays the string 
in addition to the other information the function displays. The type 
of information the function displays depends on the t¥pe of the 
object. For example, if a symbol is specified, the function displays 
the symbol's value, definition, properties, and other types of 
information. If a floating-point number is specified, the number's 
internal representation is displayed in a way that is useful for 
tracking such things as roundoff errors. 

Format 

DESCRIBE object 

Argument 

object 

The object about which information is to be displayed. 

Return Value 

No value. 

Q Examples 

1. Lisp> (DESCRIBE 'C) 

It is the symbol C 
Package: USER 
Value: unbound 
Function: undefined 

0 2. Lisp> (DESCRIBE 'FACTORIAL) 

It is the symbol FACTORIAL 
Package: USER 

0 

Value: unbound 
Function: a compiled-function 

FACTORIAL n 

3. Lisp> (DESCRIBE PI) 

It is the long-float 3.1415926535897932384626433832795LO 
Sign: + 
Exponent: 2 (radix 2) ~ 
Significand: 0.78539816339744830961566084581988LO 

33 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTtONS 

DESCRIBE Function (cont.) 

4. Lisp> (DESCRIBE '#(1 2 3 4 5)) 
It is a simple-vector 
Dimensions: ( 5) 
Element type: t · 
Adjustable: no 
Fill Pointer: no 
Displaced: no 

Displays information about the simple-vector #(1 2 3 4 5). 

34 

0 

0 

0 

0 

0 



0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

DIRECTORY Function 

Converts its argument to a pathname and returns a 
pathnames for the files matching the specification. 
function is similar to the ULTRIX ls command. 

Format 

DIRECTORY pathname 

Argument 

pathname 

list of the 
The DIRECTORY 

The pathname, namestring, stream, or symbol for which the list of 
file system pathnames is to be returned. In VAX LISP/ULTRIX, 
this argument is merged with the following default file 
specification: 

host::directory/* 

The host and directory values 
*DEFAULT-PATHNAME-DEFAULTS* variable. 

are supplied by the 

Specifying just a directory is equivalent to specifying a 
directory with wild cards (*) in the name field of th~ argument. 
For example, the following two e~pressions are equivalent: 

(DIRECTORY "MYDIRECTORY/") 

(DIRECTORY "MYDIRECTORY/*") 

Both expressions return a list of pathnames that represent the 
files in the directory mydirectory. 

O The following equivalent expressions return the list of pathnames 
for files in your de~ault directory: 

0 

(DIRECTORY"") 

(DIRECTORY (DEFAULT-DIRECTORY)) 

Return Value 

A list of pathnames, if the specified pathname is matched, and 
NIL, if the pathname is not matched. 

35 



VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

DIRECTORY Function (cont.) 

Example 

Lisp> (DEFUN MY-DIRECTORY (&OPTIONAL (FILENAME"")) 
(LET ((PATHNAME (PATHNAME FILENAME)) 

(DIRECTORY (DIRECTORY FILENAME))) 
(COND ((NULL DIRECTORY) 

(FORMAT T 
"-%No files match -A.-%" 
(NAMESTRING FILENAME))) 

(T (FORMAT T 
"-%The following -:[files are-;file is-] 
in the directory -A" 

(EQUAL (LENGTH DIRECTORY) 1) 
(PATHNAME-DIRECTORY 

(NTH O DIRECTORY))) 
(DOLIST (DIRECTORY) 

( FORMAT T .. - &-2T- A" ( FILE-NAMESTRING X))) 
(TERPRI))) 

(VALUES))) 
MY-DIRECTORY 
Lisp> (MY-DIRECTORY) 
The following files are in the 'directory /usr/usrs/smith/tests 

testS.drb 
testl.lsp 
example.txt 
test3.lsp 
test6.lsp 

Lisp> (MY-DIRECTORY "*.lsp") 
The following files are iri the directory /usr/usrs/smith/tests 

testl.lsp 
test3.lsp 
test6.lsp 

0 

0 

0 

• The call to the DEFUN macro defines a function that formats Q 
the output of the DIRECTORY function, making the output more 
readable. The function is defined such that it accepts an 
optional argument and does not return a value. 

• The first call to the function MY-DIRECTORY Bhows how the 
function formats the directory output when an argument is not 
specified. 

• The second call to the function MY-DIRECTORY includes an 
argument; the output includes only the files of type lsp. 

36 

0 



0 

VAX LISP/UL TRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

DRIBBLE Function 

Echoes the input and output of an interactive LISP session to a 
specified file, enabling you to save a record of what you do during 
the session in the form of a file. 

' When you want to stop the DRIBBLE function from echoing input and 
output to the pathname, close the file by calling the DRIBBLE function 
without an argument. 

In VAX LISP/ULTRIX, there is one restriction on the use of the DRIBBLE 
function: you cannot nest calls to the DRIBBLE function. 

Format 

DRIBBLE &OPTIONAL pathname 

Q Argument 

0 

0 

0 

pathname 

The pathname to which the input and output of the LISP session is 
to be sent. 

Return Value 

If an argument is specified with the function, 
returned and dribbling is turned on. If debugging 
function is called with no arguments, then T is 
dribbling is turned off. If dribbling is off 
without an argument, NIL is returned. 

Examples 

1. Lisp> (DRIBBLE "newfunction.lsp") 
Dribbling to /usr/users/smith/newfunction.lsp 
Lisp> 

no value is 
is on and the 
returned and 
and is called 

Creates a dribble file named newfunction.lsp. The LISP 
system sends input and output to the file until you call the 
DRIBBLE function again (without an argument) or exit LISP. 

2. Lisp> (DRIBBLE) 
T 

Closes the dribble file that was previously opened. 

37 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*ERROR-ACTION* Variable 

Determines the action the VAX LISP error handler is to take when an 
error occurs. The value of this variable can be the :EXIT or the 
:DEBUG keyword. If the value is :EXIT, the error handler causes the 
LISP system to exit; if the value is :DEBUG, the handler invokes the 
VAX LISP debugger. The default value is :DEBUG for interaclive LISP 
sessions; the default value is :EXIT otherwise. 

In addition to setting this variable within a LISP form, you can also 
set it on LISP initialization with the -v "ERROR_ACTION=value" option 
(see Chapter 2). 

Example 

Lisp> (CAR 'A) 

Fatal error in function CAR (signaled with ERROR). 
Argument must be a list: A. 

Control Stack Debugger 
Frame #5: (CAR A) 
Debug 1> QUIT 
Lisp> (SETF *ERROR-ACTION* :EXIT) 
:EXIT 
Lisp> (CAR 'A) 

Fatal error in function CAR (signaled with ERROR). 
Argument must be a list: A. 
% 

• When the first error occurs, the LISP system invokes the VAX 
LISP debugger because the value of the *ERROR-ACTION* variable' 
is :DEBUG (the default). 

0 

0 

0 

• The call to the SETF macro sets the value of the variable to Q 
:EXIT. 

• The second time the error occurs, the LISP system exits and 
control returns to ULTRIX. 

38 

0 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

EXIT Function 

()Causes the LISP system to exit and to return control to ULTRIX. 

() 

You can pass the status of the LISP system to the shell when you exit 
the LISP system by specifying an optional argument. Whe~ the LISP 
system exits, the argument's value is passed to ULTRIX. 

Format 

EXIT &OPTIONAL status 

Argument 

status 

A fixnum or a keyword that indicates the status of the LISP 
syste·m that is to be returned to ULTRIX when the LISP system 
exits. The keywords you can specify and the types of status they 
return are the following: 

:ERROR 
:SUCCESS 

Return Value 

Error status (-1) 
Success status (0) 

() No value. 

Examples 

()_ 

() 

1. Lisp> (EXIT) 
% 

Exits the LISP system. 

2~ Lisp> (EXIT :ERROR) 

Exits the LISP system. When control returns to ULTRIX, VAX -
LISP has returned -1. 

39 



VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

Format Directives Provided with VAX LISP 

VAX LISP 
addition 

provides 
to those 

eight directives for the 
described in COMMON LISP: 

lists and describes these directives. See 
information about using these directives. 

FORMAT function, inO 
The Language. Table 1 

Section 5.3 for more 

• 
Table 1: Format Directives Provided with VAX LISP 

Directive Effect 

-w Prints the corresponding argument under direction of 
the current print variable values. The argument for -w 
can be any LISP object. This directive takes a colon 
modifier and four prefix parameters. 

Use the colon modifier (-:W) when you want to 
*PRINT-PRETTY* and *PRINT-ESCAPE* to T, and 
*PRINT-LENGTH*, *PRINT-LEVEL*, and *PRINT-LINES* 
NIL. 

set 
set 
to 

The prefix parameters 
parameters are identical 
directive. 

specify 
to those 

padding. These 
used with the -A 

-mincol,colinc,minpad,padcharw 

mincol specifies the minimum width of the printed 
representation of the object. FORMAT inserts padding 
characters on the right, until the width is at least 
mincol columns. Use the at-sign with minpad to insert 
the padding characters on the left instead. The 
default for mincol is 0. 

0 

0 

colinc specifies an increment: the number of padding Q 
characters to be inserted at one time until the width 
is at least mincol columns. The default is 1. 

minpad specifies the m1n1mum number of padding 
characters to be inserted. The default is 0. 

padchar, preceded by a 
padding character. 
character. 

single quote, 
The default 

specifies the 
is the space 

Begins a logical block. A logical block ·is a 
hierarchical grouping of FORMAT directives treated as a 
unit. FORMAT must be processing a logical block with 
*PRINT-PRETTY* true to enable pretty printing .. 
Directives inside a logical block refer to elements of Q 
a single list taken from the argument list to FORMAT. 

40 



VAX LISP/ULTRIX FUNCTION. M/•;..;RO. AND VARIABLE DESCRIPTIONS 

Format Directives Provided with VAX LISP (cont.) 

OTable 1 (cont.) 

Directive 

0 

o_ 

0 

0 

Effect 

(If the argument supplied 
list, then the logical 
argument is printed as if 
directive takes colon and 

to the logical block is not a 
block is skipped and the 

with -w.) The logical block 
at-sign modifiers. 

When the directive is modified by a colon (-:!), the 
directive sets *PRINT-PRETTY* and *PRINT-ESCAPE* to T 
and *PRINT-LENGTH*, *PRINT-LEVEL*, and *PRINT-LINES* to 
NIL. 

When the directive is modified by an at-sign (-@!), the 
directives within the logical block take successive 
arguments from the FORMAT argument list. The logical 
block uses up all the arguments, not just a single list 
argument. Arguments not needed by the logical block 
are used up as well, so that they are not available for 
subsequent directives. 

Specify a parameter of 1 (-1!) to enclose the output in 
parentheses. 

Ends a logical block. If modified by an at-sign(-@!), 
the directive inserts a new line if needed after every 
blank space character. 

Specifies a multiline mode new line and marks a logical 
block section. This directive takes colon and at-sign 
modifiers. When modified by a colon (-:_), the 
directive starts a new line if not enough space is on 
the line to print the next logical block section. When 
modified by an at-sign(-@_), the directive starts a 
new line if miser mode is enabled. 

The - directive and its variants are effective only 
when used within a logical block with pretty printing 
enabled. 

Sets indentation for subsequent lines to n columns 
after the beginning of the logical block or after the 
prefix. When modified by a colon (-n:I), the directive 
causes FORMAT to indent subsequent lines n spaces from 
the column corresponding to the position of the 
directive. The -nI directive and the -n:I variant are 
effective only when used within a logical block with 
pretty printing enabled. 

41 



VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

Format Directives Provided with VAX LISP (cont.) 

Table 1 (cont.) 

Directive 

-n/FILL/ 

-n/LINEAR/ 

Effect 

Prints the elements of a list with as many el~ments as 
possible on each line. If n is 1, FORMAT encloses the 
printed list in parentheses. If pretty printing is not 
enabled, the directive causes FORMAT to print the 
output on a single line. 

If the elements of the list to be printed cannot be 
printed on a single line, this directive prints each 
element on a separate line. If n is 1, FORMAT encloses 
the printed list in parentheses. If pretty printing is 

0 

not enabled, this directive causes FORMAT to print the Q 
output on a single line. 

-n,rn/TABULAR/ Prints the list in tabular form. If n is 1, FORMAT 
encloses the list in parentheses; rn specifies the 
column spacing. If pretty printing is not enabled, 
this directive causes FORMAT to print the output on a 
single line. 

42 

0 

0 

0 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

GC Function 

() Invokes the garbage collector. The LISP system initiates garbage 
collection during normal system use whenever necessary. You cannot 
disable this process. However, the GC function enables you to 

() 

() 

() 

() 

initiate garbage collection during system interaction. • 
NOTE 

The LISP system does not use the GC function to 
initiate garbage collections. Therefore, redefining 
the GC function does not prevent garbage collection. 

You might want to use the GC function to invoke 
just before a time-critical part of a LISP 
function this way reduces the possibility 
initiating a garbage collection when a critical 
executing. 

the garbage collector 
program. Using the GC 
of the LISP system 
part of the program is 

See Chapter 6 for a description of the garbage collector. 

Format 

GC 

Return Value 

T, when garbage collection is completed. 

Example 

Lisp> (GC) 

T 

Starting garbage collection due ~o GC function. 
Finished garbage collection due to GC function. 

Invokes the garbage collector. Whether the messages are printed 
when a garbage collection occurs depends on the value of the 
*GC-VERBOSE* variable. 

43 



VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

* GC-VERBOSE * Variable 

A variable whose value is used as a flag to determine whether the LISP O 
system is to display messages when a garbage collection occurs. If 
the flag is NIL, the system displays messages. If the flag is not 
NIL, the system displays a message before and after ,a garbage 
collection occurs. The default value is T. 

The messages the LISP system displays are controlled by the VAX LISP 
*PRE-GC-MESSAGE* and *POST-GC-MESSAGE* variables. 

For more information on garbage collector messages, see Chapter 6. 

Example 

Lisp> *GC-VERBOSE* 
T 
Lisp> (GC) 
; Starting garbage collection due to GC function. 
; Finished garbage collection due to GC function. 
T 
Lisp> (SETF *GC-VERBOSE* NIL) 
NIL 
Lisp> (GC) 
T 

0 

• The first evaluation of the *GC-VERBOSE* variable returns the Q 
default value T, which indicates that the LISP system will 
display a message before and after a garbage collection occurs 
(depending on the values of the *PRE-GC-MESSAGE* and 
*POST-GC-MESSAGE* variables). 

• 

• 

The call to the GC function shows 
system displays when a garbage 
variable's value is T. 

the default 
collection 

The call to the SETF macro sets the value of the 
NIL. 

messages the 
occurs and the 

variable 

• The second call to the GC function shows that the system does 
not display messages when the variable's value is NIL. 

44 

0 



0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

GENERALIZED-PRINT-FUNCTION-ENABLED-P Function 

Used to globally enable a generalized print function or test whether a 
generalized print function is enabled. GENERALIZED-PRINT-FUNCTION
ENABLED-P is a predicate, and it can be used as a place form with 
SETF. 

' 
See Chapter 5 for more information about using generalized print 
functions. 

Format 

GENERALIZED-PRINT-FUNCTION-ENABLED-P name 

Argument 

name 

A symbol identifying the generalized print function to be enabled 
or tested. 

Return Value 

Tor NIL. 

Example 

Lisp> (GENERALIZED-PRINT-FUNCTION-ENABLED-P 'PRINT-NIL-AS-LIST) 
NIL 
Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST 

(OBJECT STREAM) 
(NULL OBJECT) 

( PRINC II ( ) II STREAM) ) 
PRINT-NIL-AS-LIST 
Lisp> (SETF (GENERALIZED PRINT-FUNCTION-ENABLED-P 

'PRINT-NIL-AS-LIST) 
T) 

T 
Lisp> (PPRINT NIL) 
( ) 

e The first use of the GENERALIZED-PRINT-FUNCTION-ENABLED-P 
function returns NIL, because no generalized print function 
named PRINT-NIL-AS-LIST has been defined . 

• The call to DEFINE-GENERALIZED-PRINT-FUNCTION defines the 
generalized print function PRINT-NIL-AS-LIST. 

• The call to SETF globally enables the generalized print 
function PRINT-NIL-AS-LIST. 

• The PPRINT call prints ( ), because the generaljzed print 
function is enabled globally and pretty printing is enabled. 

45 



VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS 

GET-GC-REAL-TIME Function 

Lets you inspect the elapsed time used by the garbage collector during 
program execution. This function is useful for tuning programs. 

The function measures its value in terms ,of the 
INTERNAL-TIME-UNITS-PER-SECOND constant. This value is cumulative. 
It includes the elapsed time used for all the garbage collections that 
have occurred. A description of the INTERNAL-TIME-UNITS-PER-SECOND 
constant is provided in COMMON LISP: The Language. 

When a suspended system is resumed, the elapsed time is set to 0. 

For more information on the garbage collector, see Chapter 7. 

Format 

GET-GC-REAL-TIME 

Return Value 

The real time that has been used by the garbage collector. 

Examples 

1. Lisp> (GET-GC-REAL-TIME) 
3485700000 
Lisp> (GC) 
; Starting garbage collection due to GC function. 
; Finished garbage collectiori due to· GC function. 
T 
Lisp> (GET-GC-REAL-TIME) 
401210000 

e The first call to the -GET-GC-REAL~TIME function 
the real time used by the garbage collector. 

returns 

• The call to the GC function invokes a garbage collection. 

• The second call to the GET-GC-REAL-TIME function returns 
the updated real time that has been used by the garbage 
collector. 

46 

0 

0 

0 

0 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE- DESCRIPTIONS 

GET-GC-REAL-TIME Funct.ion (cont.) 

0 . 2. Lisp> (DEFMACRO 'GC-ELAPSED-TIME (FORM) 

0 

0 

0 

0 

'(LET* ((START-GC (GET-GC-REAL-TIME)) 
(VALUE ,FORM) 

· (END-GC (GET-GC-REAL-TIME))) 
(FORMAT *TRACE-OUTPUT* 

"-%GC elapsed time: -o seconds-%" 
(TRUNCATE 

(- END-GC START-GC) 
INTERNAL-TIME-UNITS-PER-SECOND)))) 

GC-ELAPSED-TIME 
Lisp> (GC-ELAPSED-TIME (SUSPEND "myfile.sus")) 

Starting garbage collection due to GC function. 
Finished garbage collection due to GC function. 
Starting garbage collection due to SUSPEND function. 
Starting garbage collection due to SUSPEND function. 

GC elapsed time: 54 seconds 
NIL 

• The call to the DEFMACRO macro defines 
GC-ELAPSED-TIME, which evaluates a form 
amount of elapsed time that was used 
collector during a form's evaluation. 

a macro named 
and displays the 
by the garbage 

• The call to the GC-ELAPSED-TIME function displays the 
amount of elapsed time the garbage collector used when the 
LISP system evaluated the.form (SUSPEND "myfile.sus"). 

47 



VAX LISP/ULTRIX ~UNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

GET-GC-RUN-TIME Function 

Lets you inspect the CPU time used by the garbage collector during 
program execution. This function is useful for tuning programs. 

The function measures its value in terms of the 
INTERNAL-TIME-UNITS-PER-SECOND constant. This value is c~mulative. 
It includes the CPU time used for all the garbage collections that 
have occurred. A description of the INTERNAL-TIME-UNITS-PER-SECOND 
constant is provided in COMMON LISP: The Language. 

When a suspended system is resumed, the CPU time is set to 0. 

For more information on the garbage collector, see Chapter 6. 

Format 

GET-GC-RUN-TIME 

Return Value 

The CPU time that has been used by the garbage collector. 

Examples 

1. Lisp> (GET-GC-RUN-TIME) 
0 
Lisp> (GC) 
; Starting garbage collection due to GC function. 
; Finished garbage collection due to GC function. 
T 
Lisp> (GET-GC-RUN-TIME) 
13400000 

0 

0 

0 

• The first call to the GET-GC-RUN-TIME function returns the 
CPU time used by the garbage collector. Q 

• The call to the GC function invokes a garbage collection. 

• The second call to the 
the updated CPU time 
collector. 

48 

GET-GC-RUN-TIME function returns 
that has been used by the garbage 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

GET-GC-RUN-TIME Functipn (cont.) 

2. Lisp> (DEFMACRO GC-CPU-TIME (FORM) 
'(LET* ((START-GC (GET-GC-RUN-TIME)) 

(VALUE ,FORM) 
(END-GC (GET-GC-RUN-TIME))) 

(FORMAT *TRACE-OUTPUT* 
"-%GC CPU time: -o seconds-%" 
(TRUNCATE 

(- END-GC START-GC) 
INTERNAL-TIME-UNITS-PER-SECOND))) 

GC-CPU-TIME 
Lisp> (GC-CPU-TIME (SUSPEND "myfile.sus")) 
; Starting garbage collection due to GC function. 
; Finished garbage collection due to GC function. 
; Starting garbage collection due to SUSPEND function. 
; Starting garbage collection due to SUSPEND function. 
GC CPU time: 10 seconds 
NIL 

• The call to the DEFMACRO macro· defines a macro named 
GC-CPU-TIME, which evaluates a form and displays the 
amount of CPU time that was used by the garbage collector 
during a form's evaluation. 

• The call to the GC-CPU-TIME function displays the amount 
of CPU time the garbage collector used when the LISP 
system evaluated the form· (SUSPEND "myfile.sus"). 

49 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

GET-INTERNAL-RUN-TIME Function 

Returns an integer that represents the elapsed CPU time used for the 
current process. The function value is measured in terms of the 
INTERNAL-TIME-UNITS-PER-SECOND constant. A description of the 
INTERNAL-TIME-UNITS-PE.R-SECOND constant is provided in COMMON LISP: 
The Language. • 

Format 

GET-INTERNAL-RUN-TIME 

Return Value 

The elapsed CPU time used for the current process. 

Example 

Lisp> (DEFMACRO MY-TIME (FORM) 

MY-TIME 

'(LET* ((START-REAL-TIME (GET-INTERNAL-REAL-TIME)) 
(START-RUN-TIME (GET-INTERNAL-RUN-TIME)) 
(VALUE ,FORM) 
(END-RUN-TIME (GET-INTERNAL-RUN-TIME)) 
(END-REAL-TIME (GET-INTERNAL-REAL-TIME))) 

(FORMAT *TRACE-OUTPUT* 

VALUE)) 

"-&Run Time: -,2F sec., -
Real.Time: -,2F sec.-%" 

· (/ (- END-RUN-TIME START-RUN-TIME) 
INTERNAL-TIME-UNITS-PER-SECOND) 

(/ (- END-REAL-TIME START-REAL-TIME) 
INTERNAL-TIME-UNITS-PER-SECOND)) 

Defines a macro that displays 
evaluation of a specified form. 

timing information about 

50 

the 

0 

0 

0 

0 

0 



· VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

O GET-KEYBOARD-FUNCTION Function 

Returns information about the function that is bound to a control 
character. 

0 

0 

0 

0 

Format 

GET-KEYBOARD-FUNCTION control-character 

Argument 

control-character 

The control character to which a function is bound. 

Return Value 

Three values: 

1. The function that is bound to the control character. 

2~ The function's argument list. 

3. The function's interrupt level. 

If a function is not bound to the specified control character, 
the function returns NIL for all three values. 

Examples 
. 

1. Lisp> (BIND-KEYBOARD-FUNCTION #\FS #'BREAK) 
T 
Lisp> (GET-KEYBOARD-FUNCTION #\FS) 
#<Compiled Function BREAK #x261510> 
NIL 
1 

e The call to the BIND-KEYBOARD-FUNCTION function binds -
<CTRL/\> to the BREAK function. 

e The call to the GET-KEYBOARD-FUNCTION function returns the 
function to which <CTRL/\> is bound; the function's 
argument list, which is NIL; and the function's interrupt 
level, which is 1. 

2. Lisp> (GET-KEYBOARD-FUNCTION #\AZ) 
NIL 
NIL; 
NIL 

All three values returned are NIL, because <CTRL/Z> is not 
bound to a function. 

51 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

HASH-TABLE-REHASH-SIZE Function 

Returns the rehash size of a hash table. The rehash size indicates O 
how much a hash table is to increase when it is full. You specify 
that value when you create a hash table with the MAKE-HASH-TABLE 
function. For information on hash tables, see COMMON LISP: The • Language. 

Format 

HASH-TABLE-REHASH-SIZE hash-table 

Argument 

hash-table 

The name of the hash table whose rehash size is to be returned. 

Return Value 

An integer greater than O or a floating-point number greater than 
1. If an integer is returned, the value indicates the number of 
entries that are to be added to the table. If a floating-point 
number is returned, the value indicates the ratio of the new size 
to the old size. 

0 

Example O 
Lisp> (SETF *PRINT-ARRAY* NIL) 
NIL 
Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL 

:SIZE 200 
:REHASH-SIZE 1.5 
:REHASH-THRESHOLD .95)) 

#<Hash Table #x503BA8> 
Lisp> (HASH-TABLE-REHASH-SIZE TABLE-1) 0 
1.5 

• The first call to the SETF macro sets the value of the 
*PRINT-ARRAY* variable to NIL. 

• The second call to the SETF macro sets TABLE-1 to the hash 
table created by the call to the MAKE-HASH-TABLE function. 

• The call to the HASH-TABLE-REHASH-SIZE function returns the 
rehash size of the hash table, TABLE-1. 

52 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

HASH-TABLE-REHASH-THRESHOLD Function 

Returns the rehash threshold for a hash table. The rehash threshold 
indicates how full a hash table can get before its size has to be 
increased. You specify that value when you create a hash table with 
the MAKE-HASH-TABLE function. For information on hash tables, see 
COMMON LISP: The Language. I 

Format 

HASH-TABLE-REHASH-THRESHOLD hash-table 

Argument 

hash-table 

The hash table whose rehash threshold is to be returned. 

Return Value 

An integer greater than O and less than hash table's rehash size 
or a floating-point number greater than O and less than 1. 

Example 

Lisp> (SETF *PRINT-ARRAY* NIL) 
NIL 
Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL 

:SIZE 200 
:REHASH-SIZE 1.5 
:REHASH-THRESHOLD .95)) 

#<Hash Table #x503BA8> 
Lisp> (HASH-TABLE-REHASH-THRESHOLD TABLE-1) 
0.95 

• The first call to the SETF macro sets the value of the 
*PRINT-ARRAY* variable to NIL. 

• The second call to the SETF macro sets TABLE-! to the hash 
table created by the call to the MAKE-HASH-TABLE function. 

e The call to the HASH-TABLE-REHASH-THRESHOLD function returns 
the rehash threshold of the hash table, TABLE-1. 

53 



VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCHIPTIONS 

HASH-TABLE-SIZE Function 

Returns the current size of a hash table. You specify that value when 
you create a hash table with the MAKE-HASH-TABLE function. For 
information on hash tables, see COMMON LISP: The Language. 

Format 

HASH-TABLE-SIZE hash-table 

Argument 

hash-table 

The hash table whose initial size is to be returned. 

Return Value 

An integer that indicates the initial size of the hash table. 

Example 

Lisp> (SETF *PRINT-ARRAY* NIL) 
NIL 
Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL 

#<Hash Table #x503BA8> 
Lisp> (HASH-TABLE-SIZE TABLE-1) 
233 

:SIZE 200 
:REHASH-SIZE 1.5 
:REHASH~THRESHOLD .95)) 

• The first call to the SETF macro sets the value of the 
*PRINT-ARRAY* variable to NIL. 

0 

0 

0 

• The second call to the SETF macro sets TABLE-1 to the hash O 
table created by the call to the -MAKE-HASH-TABLE function. 

• The call to the HASH-TABLE-SIZE function returns the initial 
size of the hash table, TABLE-1. 

54 



VAX LISP/ULTRIX .. FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

QHASH-TABLE-TEST Function 

Returns a value or a symbol that indicates how a hash table's keys are 
compared. The value is specified when you create a hash table with 
the MAKE-HASH-TABLE function. For information on hash tables, see 
COMMON LISP: The Language. 

Format 

HASH-TABLE-TEST hash-table 

Argument 

hash-table 

The hash table whose test value is to be returned. 

QReturn Value 

0 

0 

0 

Either a function (#'EQ, #'EQL, or #'EQUAL) or a symbol (EQ, EQL, 
or EQUAL). EQL is the default when creating a hash table. 

Example 

Lisp> (SETF *PRINT-ARRAY* NIL) 
NIL 
Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL 

: SIZE 200' 

#<Hash Table #x503BA8> 
Lisp> (HASH-TABLE-TEST TABLE-1) 
EQUAL 

:REHASH-SIZE 1. 5 
:REHASH-THRESHOLD .95)) 

• The first call to the SETF macro sets the value of the 
*PRINT-ARRAY* variable to NIL. 

• The second call to the SETF macro sets TABLE-1 to the hash -
table created by the call to the MAKE-HASH-TABLE function. 

• The call to the HASH-TABLE-TEST function returns the test for 
the· ·hash table, TABLE-1. 

55 



VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS 

LOAD Function 

Reads and evaluates the contents of a file into the LISP environment. 0 
In VAX LISP, if the specified file name does not specify an explicit 
file type, the LOAD function locates the source file (type lsp) or 
fast-loading file (type fas) with the latest file write date and loads 
it. This ensures that the latest version of the file is loaded, 
whether or not the file is compiled. 

Format 

LOAD filename 
&KEY :IF-DOES-NOT-EXIST :PRINT :VERBOSE 

Arguments 

filename 

The name of the file to be loaded. 

:IF-DOES-NOT-EXIST 

Specifies whether the LOAD function signals an error if the file 
does not exist. The value can.be Tor NIL. If you specify T, 

0 

the function signals an error if the file does not exist. If you O specify NIL, the function returns NIL if the file does not exist. 
The default value is T. 

:PRINT 

Specifies whether the value of each form that is loaded is 
printed to the stream bound to the *STANDARD-OUTPUT* variable. 
The value can be Tor NIL. If you specify T, the value of each 
form in the file is printed to the stream. If you specify NIL, Q 
no action is taken. The default value is NIL. This keyword is 
useful for debugging. 

:VERBOSE 

Specifies whether the· LOAD function is to print a message in the 
form of a comment to the stream bound to the *STANDARD-OUTPUT* 
variable. The value can be Tor NIL. If you specify T, the 
function prints a message. The message includes information such 
as the name of the file that is being loaded. If you specify 
NIL, the function uses the value of *LOAD-VERBOSE* variable. The 
default is T. 

Return Value 

A value other than NIL if the load operation .is successful. 

56 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

LOAD Function (cont.) 

Example 

Lisp> (COMPILE-FILE "factorial") 

Starting compilation of file /usr/users/smith/factorial!lsp 

FACTORIAL compiled. 

Finished compilation of file /usr/users/smith/factorial.lsp 
O Errors, 0 Warnings 
"/usr/users/smith/factorial.fas" 
Lisp> (LOAD "factorial") 

T 

Loading contents of file /usr/users/smith/factorial.fas 
FACTORIAL 

Finished loading /usr/users/smith/factorial.fas 

• The call to the COMPILE-FILE function produces a fast-loading 
file named factorial.fas. 

• The call to the LOAD function locates the fast-loading file 
factorial.fas and loads the file into the LISP environment. 

57 



VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS 

LONG-SITE-NAME Function 

If the file lispsite.txt exists in the LISP product directory, the 
LONG-SITE-NA~E function finds the file, reads it, and returns its 
content as a string that represents the physical location of the 
computer hardware on which the VAX LISP system is running. Otherwise, 
the LONG-SITE-NAME function returns NIL. 1 

The LISP product directory is the directory referred to by the 
environment variable VAXLISP if it exists, or by /usr/lib/v.axlisp if 
the environment variable does not exist. See the VAX LISP/ULTRIX 
Installation Guide for more information on the LONG-SITE-NAME function 
and on creating the file lispsite.txt. 

Format 

LONG-SITE-NAME 

Return Value 

A string that represents the physical location of the computer 
hardware on which the VAX LISP system is running or NIL. 

Example 

Lisp> (LONG-SITE-NAME) 
"Smith's Computer Company 
Artificial Intelligence Group 
22 Plum Road 
Canterbury, Ohio 47190, 
" 

58 

0 

0 

0 

0 

0 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

O MACHINE-INSTANCE Func_tion 

Returns a string naming the current host or NIL. 

0 

0 

0 

0 

Format 

MACHINE-INSTANCE 

Return Value 

A string naming the computer hardware on which a VAX LISP system 
is running. This string is the current node name. If no host 
name exists, this function returns NIL. 

Example 

Lisp> (MACHINE-INSTANCE) 
"miami" 

59 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

MACHINE-VERSION Function 

The MACHINE-VERSION function displays the same 
shell command hostid(l) displays. 

Format 

MACHINE-VERSION 

Return Value 

information that 

An integer is returned, which is the host ID. 

Example 

Lisp> (MACHINE-VERSION) 
332 

60 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

MAKE-ARRAY Function 

Creates and returns an array. VAX LISP has added the :ALLOCATION 
keyword to this COMMON LISP function. When the function is used with 
the :ALLOCATION keyword and the value :STATIC, the function creates a 
statically allocated array. 

' 
During system usage, the garbage collector moves LISP objects. You 
can prevent the garbage collector from moving an object by allocating 
it in static space. Arrays, vectors, and strings can be statically 
allocated if you use the :ALLOCATION keyword and :STATIC value in a 
call to the MAKE-ARRAY function. Once an object is statically 
allocated, its virtual address does not change. Note that such 
objects ar never garbage collected and their space cannot be 
reclaimed. By default, LISP objects are allocated in dynamic space. 

NOTE 

A statically allocated 
address even if a 
performed. 

object maintains its memory 
SUSPEND/RESUME operation is 

Calling the MAKE-ARRAY function with the 
keyword-value pair is useful if you are 
Preventing the garbage collector from moving 
garbage collector to go faster. 

:ALLOCATION :STATIC 
creating a large array. 
the array causes the 

The MAKE-ARRAY function has a number of other keywords that can be 
used. See COMMON LISP: The Language for information on the other 
MAKE-ARRAY keywords. 

VAX LISP creates a specialized array when the array's element type is 
STRING-CHAR, (SIGNED-BYTE 32), or a subtype of FLOAT or (UNSIGNED BYTE 
1-29). For all other element types, VAX LISP creates a generalized 
array, with the element type T. For compatibility of VAX types with 
LISP types when calling external routines, see the tables on data -
conversion in the call-out chapter of the VAX LISP/ULTRIX System 
Access Programming Guide. 

Format 

MAKE-ARRAY dimensions 
&KEY :ALLOCATION other-keywords 

Arguments 

dimensions 

A list of positive integers that are to be the dimensions of the 
array. 

61 



VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

MAKE-ARRAY Function (cont.) 

:ALLOCATION 

Specifies whether the LISP object is to be statically allocated. 
You can specify one of the following values with the :ALLOCATION 

' keyword: 

:DYNAMIC 

:STATIC 

other-keywords 

The LISP object is not to be statically 
allocated. This value is the default. 

The LISP object is to be statically 
allocated. 

See COMMON LISP: The Language. 

Return Value 

The statically allocated object. 

Example 

Lisp> (DEFPARAMETER BIT-BUFFER 
(MAKE-ARRAY '(1000 1000) :ELEMENT-TYPE 'BIT 

:ALLOCATION :STATIC)) 
BIT-BUFFER 

Creates a large array of bits named BIT-BUFFER, which is not 
intended to be removed· from the system. The :ELEMENT-TYPE 
keyword is one of the other keywords (described in COMMON LISP: 
The Language) that this function accepts. 

62 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

* MODULE-DIRECTORY* Variable 

A variable whose value refers to the directory containing the module 
that is being loaded into the LISP environment due to a call to the 
REQUIRE function. The value is a pathname. 

This variable is useful to determine the location of a lodule if 
additional files from the same directory must be loaded by the module. 
For example, consider the following contents of a file called 
requiredfilel.lsp: 

(PROVIDE "requiredfilel") 
(LOAD (MERGE-PATHNAMES "reguiredfile2" *MODULE-DIRECTORY*}) 
(DEFUN TEST 

... ) 
When you specify the preceding module with the REQUIRE function, you 
do not have to identify the module's directory if it is in one of the 
places the REQUIRE function searches (see Part II for a description of 
the REQUIRE function). Furthermore, using the *MODULE-DIRECTORY* 
variable as in this example ensures that the file requiredfile2 will 
be loaded from the same directory. After the module is loaded, the 
*MODULE-DIRECTORY* variable is rebound to NIL. 

NOTE 

As this variable is bound tluring calls to the REQUIRE 
function, nested calls to the function cause its value 
to be updated appropriately. 

63 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*POST-GC-MESSAGE* Variable 

Controls the message the LISP system displays after a garbage O 
collection occurs. The value of this variable can be NIL, a string of 
message text, or the null string(""). If the value is NIL, the 
system displays a system message. If the value is a string, the 
system displays the string. If the v~riable's value is 'the null 
string (""), the system displays no output. The default value is NIL. 

The system messages appear in the following form: 

Finished garbage collection due to GC function. 

System messages differ according to the cause of the garbage 
collection. If you set the *POST-GC-MESSAGE* variable, the message 
you establish supersedes all system messages displayed after a garbage 
collection, regardless of cause. 

Example 

Lisp> (GC) 
; Starting garbage collection due to GC function. 
; Finished garbage collection due to GC function. 
T 
Lisp> (SETF *POST-GC-MESSAGE* II II ) 

II II 

Lisp> (GC) 
; Starting garbage collection due to GC function. 
T 
Lisp> (SETF *POST-GC-MESSAGE* "GC finished") 
"GC -- finished" 
Lisp> (GC) 
; Starting garbage collection due to GC function. 
GC -- finished 
T 

0 

0 

• The first call to the GC function 
messages the LISP system displays 

shows the garbage collection Q 
by default. 

• The first call to the SETF macro sets the value of the 
*POST-GC-MESSAGE* variable to the null string(""). 

• The second call to the GC function shows that the system does 
not display a message when a garbage collection is finished 
when the variable's value is the null string. 

• The second call to the SETF macro sets the value of the 

• 
variable to the string "GC finished". 

The third call to the GC function shows that the system 
displays the new message when a garbage collection is finished 
if the variable's value is a string. 

64 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

PPRINT-OEFINITION Function 

Pretty prints to a stream the function definition of a symbol. 

Format 

PPRINT-DEFINITION symbol &OPTIONAL stream 

Arguments 

symbol 

The symbol whose function value is to be pretty-printed. 

stream 

The stream to which the code is to be pretty-printed. The 
default stream is the stream bound to the *STANDARD-OUTPUT* 
variable. 

Return Value 

No value. 

Examples 

1. Lisp> (DEFUN FACTORIAL (N) 
"Returns the factorial of an.integer." 
(COND ((<= N 1) 1) (T (* N (FACTORIAL (- N 1)))))) 
FACTORIAL 
Lisp> (PPRINT-DEFINITION 'FACTORIAL) 
(DEFUN FACTORIAL (N) 

"Returns the factorial of an integer." 
(COND ((<= N 1) 1) (T (* N (FACTORIAL (- N 1)))))) 

• The call to the DEFUN macro defines a function called 
FACTORIAL, which returns the factorial of an integer . 

• The call to the PPRINT-DEFINITION function pretty-prints 
the function value of the symbol FACTORIAL. 

2. Lisp> (DEFUN RECORD-MY-STATISTICS 
(NAME AGE SIBLINGS MARRIED?) 
(UNLESS (SYMBOLP NAME) 
(ERROR "-s must be a symbol." NAME)) 
(SETF (GET NAME 'AGE) AGE 
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS 
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?) NAME) 
RECORD-MY-STATISTICS 

65 



VAX LISP/UL TRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS 

PPRINT-DEFINITION Function (cont.) 

Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS) 
(DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?) 

(UNLESS (SYMBOLP NAME) 
(ERROR n-s must be a symbol." NAME)) 

(SETF (GET NAME 'AGE) AGE 
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS 
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?) 

NAME) 

• The call to the DEFUN macro defines a function called 
RECORD-MY-STATISTICS. 

• The call to the PPRINT-DEFINITION function pretty-prints 
the function value of the symbol RECORD-MY-STATISTICS. 

66 

0 

0 

0 

0 

·o 



VAX. LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

PPRINT-PLIST Function 

O Pretty-prints to a stream the property list of a symbol. A property 
list is a list of symbol-value pairs; each symbol is associated with a 
value or an expression. The PPRINT-PLIST function prints the property 
list in a way that emphasizes the relationship between the s1mbols and 
their values. 

0 

0 

PPRINT-PLIST prints only the symbol-value pairs for which a symbol is 
accessible in the current package. (For information on packages, see 
COMMON LISP: The Language.) On the other hand, SYMBOL-PLIST returns 
all the symbol-value pairs (the entire property list) of a symbol, 
even those not accessible in the current package. So, the form 
(PPRINT-PLIST 'ME) is not equivalent to the form (PPRINT (SYMBOL-PLIST 
'ME). The following example shows the differences between the two 
forms: 

Lisp> (MAKE-PACKAGE 'PLANET) 
Lisp> (SETF (SYMBOL-PLIST 'ME) 

'(GIRL "SAMANTHA" BOY "DANIEL" 
PLANET::INHABITANT-OF "EARTH")) 

(GIRL "SAMANTHA" BOY "DANIEL" PLANET::INHABITANT-OF "EARTH") 
Lisp> (PPRINT (SYMBOL-PLIST 'ME)) 
(GIRL "SAMANTHA" BOY "DANIEL" PLANET::INHABITANT-OF "EARTH") 
Lisp> (PPRINT-PLIST 'ME) 
(GIRL "SAMANTHA" 

BOY "DANIEL") 

The form (PPRINT (SYMBOL-PLIST 'ME)) prints the symbol-value pair 
PLANET::INHABITANT-OF "EARTH", but the form (PPRINT-PLIST 'ME) does 
not print that pair. This is because the symbol INHABITANT-OF in the 
package PLANET is not accessible in the current package (a symbol can 
be in another package but still be accessible in the current package). 
The symbol ME in the current package is associated with the 
symbol-value pair INHABITANT-OF "EARTH" in the PLANET package, but the Q PPRINT-PLIST function does not print that symbol-value pair because it 
is not accessible in the current package. 

Format 

PPRINT-PLIST symbol &OPTIONAL stream 

Arguments 

1 symbol 

The symbol whose property list is to be pretty-printed. 

0 
67 



I ·---

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

PPRINT-PLIST Function (cont.) 

0 stream 

The stream to which the pretty-printed output is to be sent. The 
default stream is the stream. bound to the *STANDARD-OUTPUT* 

' variable. 

Return Value 

No value. 

Examples 

1. Lisp> (SETF (GET 'CHILDREN 'SONS) '{DANNY GEOFFREY)) 
(DANNY GEOFFREY) 
Lisp> (SETF (GET 'CHILDREN 'DAUGHTERS) 'SAMANTHA) 
SAMANTHA 
Lisp> (PPRINT-PLIST 'CHILDREN) 
(DAUGHTERS SAMANTHA 
SONS (DANNY GEOFFREY)) 

• The calls to the SETF macro give the symbol CHILDREN the 
properties SONS and DAUGHTERS. The property list of the 
symbol CHILDREN has two properties: DAUGHTERS whose value 
is SAMANTHA and SONS whose value is the list (DANNY 
GEOFFREY). 

~ ~he call to the PPRINT-PLIST function pretty-prints the 
property list of the symbol CHILDREN. The pretty-printed 
output emphasizes the relationship between each property 
and its value. 

0 

0 

2. Lisp> (DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?) 
(UNLESS (SYMBOLP NAME) 

{ ERROR .. - s must be a symbol." NAME))· Q 
(SETF {GET NAME 'AGE) AGE 

{GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS 
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED) 

NAME) 
RECORD-MY-STATISTICS. 
Lisp> (DEFUN SHOW-MY-STATISTICS (NAME) 

(UNLESS (SYMBOLP NAME) 
(ERROR "-s must be a symbol." NAME)) 
(PPRINT-PLIST NAME)) 

SHOW-MY-STATISTICS 
Lisp> (RECORD-MY-STATISTICS 'TOM 29 3 NIL) 
TOM 
Lisp> (SHOW-MY-STATISTICS 'TOM) 
(IS-THIS-PERSON-MARRIED? NIL 
NUMBER-OF-SIBLINGS 3 
AGE 29) 

68 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

PPRINT-PLIST Function (cont.) 

• The first call to the DEFUN macro defines a function named 
RECORD-MY-STATISTICS. 

• The second call to the DEFUN macro defines a, function 
named SHOW-MY-STATISTICS. The definition incluaes a call 
to the PPRINT-PLIST function . 

• The call to the RECORD-MY-STATISTICS function inputs the 
properties for the symbol TOM. 

e The call to the SHOW-MY-STATISTICS function pretty-prints 
the property list for the symbol TOM. 

69 



VAX LISP/ULTRIX FUNCTION, MACRO; AND VARIABLE DESCRIPTIONS 

*PRE-GC-MESSAGE* Variable 

Controls the message the LISP system displays whe~ a garbage 
collection starts. The value of this variable can be NIL, a string of 
message text, or the null string(""). If the value is NIL, the 
system displays a system message. If the value is a string ~f message 
text, the system displays the message text. If the variable's value 
is the null string, the system displays no output. The default value 
is NIL. 

System messages appear in the following form: 

Starting garbage collection due to GC function. 

VAX LISP messages preceding garbage collection differ depending on the 
cause of the garbage collection. If you set the *PRE-GC-MESSAGE* 
variable, the message you establish supersedes all system messages, 
regardless of cause. 

Example 

Lisp> (GC) 
; Starting garbage collection due to GC function. 
; Finished garbage collection due to GC function. 
T 
Lisp> (SETF *PRE-GC-MESSAGE* "") 
1111 

Lisp> (GC) 
; Finished garbage collection due to GC function. 
T 
Lisp> (SETF *PRE-GC-MESSAG~* "GC -- started") 
"GC -- started" 
Lisp> ( GC) 
GC -- started 

Finished garbage collection due to GC function. 
T 

• The first call to the GC function shows the garbage collection -
messages that are printed by default. 

• The first call to the SETF macro sets the value of the 
*PRE-GC-MESSAGE* variable to the null string(""). 

• The second call to the GC function causes the system not to 
display a message when the garbage collection starts. 

• The second call to the SETF macro sets the value of the 
variable to the string "GC -- started". 

0 

0 

0 

0 

• The third call to the GC function causes the system to display 
the new message text when the garbage collection starts. Q 

70 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*PRINT-LINES* Variable 

Ospecifies the number of lines to be printed by an outermost logical 
block. The default for this variable is NIL, which specifies no 
abbreviation. *PRINT-LINES* is effective only when pretty printing is 
enabled. When the system limits output to the number of lines 
specified by *PRINT-LINES*, it indicates abbreviation by replacing the 
last four characters on the last line printed with" ... ". 

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP 
to accept the :LINES keyword. If you specify this keyword, 
*PRINT-LINES* is bound to the value you supply with the keyword before 
any output is produced. 

See Chapter 5 for more information on using the *PRINT-LINES* 
variable. 

O Example 

0 

0 

0 

Lisp> (SETF *PRINT-LINES* 4) 
4 
Lisp> ( FORMAT T II Stars: - : !- /LINEAR/'. 11 

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL 
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA 
ANTARES)) 
Stars: POLARIS 

DUBHE 
MIRA 
MI ... 

e With *PRINT-LINES* set to 4, printing stops at the end of the 
fourth line. 

• The last four characters of the last line are not printed. 
MIRFAK becomes MI. 

71 



VAX LISP/UL!RIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

"PRINT-MISER-WIDTH* Variable 

Controls miser mode printing. If the available line width between the 
indentation of the current logical block and the end of the line is 
less than the value of this variable, the pretty printer enables miser 
mode. When output is printed in miser mode, all indentations are 
ignored. In addition, a new line is started for every condiiional new 
line directive·(-_, ._, -@_). The default value for 
*PRINT-MISER-WIDTH* is 40. 

You can prevent the use of miser 
*PRINT-MISER-WIDTH* variable to NIL. 

mode by setting the 

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP 
to accept the :MISER-WIDTH keyword. If you specify this keyword, 
*PRINT-MISER-WIDTH* is bound to the value you supply with the keyword 
before any output is produced. 

For more information about miser mode and the 
*PRINT-MISER-WIDTH* variable, see Sections 5.5 and 5.8. 

Example 

Lisp> (SETF *PRINT-RIGHT-MARGIN* 60) 
60 
Lisp> (SETF *PRINT-MISER-WIDTH* 35) 
35 

use of 

Lisp> (FORMAT T "-!stars with Arabic names: -:@!-s -:_-s -
-21I-:_-s -:r@_-s -_-s -1r_-s-.-." 

'(BETELGEUSE (DENEB SIRIUS VEGA) 
ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX) 

Stars with Arabic names: BETELGEUSE 
(DENEB SIRIUS VEGA) 
ALDEBERAN 
ALGOL 
(CASTOR POLLUX) 
BELLATRIX 

the 

• The text, "Stars with Arabic names:", in the outer logical 
block causes the inner logical block to begin at column 26. 
With *PRINT-MISER-WIDTH* set to 35, FORMAT enables miser mode 
when the logical block begins past column 25. 

• FORMAT conserves space by starting a pew line at every 
multiline mode new line directive(-_) and every if-needed new 
line directive c-:_). 

• FORMAT starts a new line at the miser mode new line directive 
c-@_) and ignores the indentation directives c-nI). 

72 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*PRINT-RIGHT-MARGIN* Variable 

Specifies the right margin for pretty printing. Output may exceed 
this margin if you print long symbol names or strings, or if your 
FORMAT control string specifies no new line directives of any type. 
If the value of *PRINT-RIGHT-MARGIN* is NIL, the print function uses a • value appropriate to the output device. 

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP 
to accept the :RIGHT-MARGIN keyword. If you specify this keyword, 
*PRINT-RIGHT-MARGIN* is bound to the value you supply with the keyword 
before any output is produced. 

See Chapter 5 for more 
*PRINT-RIGHT-MARGIN* variable. 

Example 

information 

Lisp> (DEFUN RECORD-MY-STATISTICS 
(NAME AGE SIBLINGS MARRIED?) 
(UNLESS (SYMBOLP NAME) 
( ERROR .,- s must be a symbol." NAME)) 
(SETF (GET NAME 'AGE) AGE 
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS 
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED) 
NAME) 
RECORD-MY-STATISTICS 
Lisp> (SETF *PRINT-RIGHT-MARGIN* 40) 
40 

about 

Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS) 
(DEFUN 
RECORD-MY-STATISTICS 
(NAME AGE SIBLINGS MARRIED?) 
(UNLESS 

(SYMBOLP NAME) 
(ERROR 

.,- S must be a symbol." 
NAME)) 

(SETF 
(GET NAME 'AGE) AGE , 
(GET NAME 'NUMBER-OF-SIBLINGS) 
SIBLINGS 
(GET 

NAME 
'IS-THIS-PERSON-MARRIED?) 

MARRIED) 
NAME) 

using 

• The call to the DEFUN macro defines a function 
RECORD-MY-STATISTICS. 

73 

the 

named 



VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS 

*PRINT-RIGHT-MARGIN* Variable (cont.) 

• The call to the SETF macro sets 
*PRINT~RIGHT-MARGIN* variable to 40. 

the value of the 

• The call to the PPRINT function showi the effect the 
variable's value has on the pretty-printed' output. 
PPRINT-DEFINITION stops printing each line before reaching 
column 40. 

74 

0 

0 

0 

0 

0 



CJ 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

PRINT-SIGNALED-ERROR Function 

Used by the VAX LISP error handler to display a formatted error 
message when an error is signaled. The function prints all output to 
the stream bound to the *ERROR-OUTPUT* variable. The error message 
formats are described in Chapter 3. 

' 
You can include a call to this function in an error handler that you 
create (see Chapter 3). 

Format 

PRINT-SIGNALED-ERROR function-name 
error-signaling-function &REST args 

Arguments 

function-name 

The name of the function that is to call the 
error-signaling function. 

error-signaling-function 

specified 

The name of an error-signaling function. 
are ERROR, CERROR, and WARN. 

Valid function names 

args 

The specified error-signaling function's arguments. 

Return Value 

Undefined. 

O Example 

0 

Lisp> (DEFUN CONTINUING-ERROR-HANDLER (FUNCTION-NAME 
ERROR-SIGNALING-FUNCTION 
&REST ARGS) 

(IF (EQ ERROR-SIGNALING-FUNCTION 'CERROR) 
(PROGN 

(APPLY #'PRINT-SIGNALED-ERROR 
FUNCTION-NAME 
ERROR-SIGNALING-FUNCTION 
ARGS) 

(FORMAT *ERROR-OUTPUT* 
"-&It will be continued automatically.-2%.") 

NIL) 

75 



VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

PRINT-SIGNALED-ERROR Function (cont.) 

(APPLY #'UNIVERSAL-ERROR-HANDLER 
FUNCTION-NAME 
ERROR-SIGNALING-FUNCTION 
ARGS))) 

CONTINUING-ERROR-HANDLER 

Defines an error handler that automatically continues from a 
continuable error after displaying an error message. All other 
errors are passed to the system's error handler. 

76 -

0 

0 

0 

0 

0 



0 

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTION!:> 

*PRINT-SLOT-NAMES-AS-KEYWORDS* Variable 

Determines how the slot names of a structure are formatted when they 
are displayed. The value can be Tor NIL. If the value is T, slot 
names are preceded with a colon(:). For example: 

#S(SPACE :AREA 4 :COUNT 10) 

If the value is NIL, slot names are not preceded with a colon. For 
example: 

#S(SPACE AREA 4 COUNT 10) 

The default value is T. 

Example 

O Lisp> (DEFSTRUCT HOUSE 
ROOMS 
FLOORS) 

0 

0 

0 

HOUSE 
Lisp> (MAKE-HOUSE :ROOMS 8 :FLOORS 2) 
#S(HOUSE :ROOMS 8 :FLOORS 2) 
Lisp> (SETF *PRINT-SLOT-NAMES-AS-KEYWORDS* NIL) 
NIL 
Lisp> (MAKE-HOUSE :ROOMS 8 :FLOORS 2) 
#S(HOUSE ROOMS 8 FLOORS 2) 

• The call to the DEFSTRUCT macro defines a structure named 
HOUSE. 

• 

• 

The first call to the constructor function MAKE-HOUSE creates 
a structure named HOUSE. Colons are included in the output 
because the value of the *PRINT-SLOT-NAMES-AS-KEYWORDS* 
variable is T. 

The call to the SETF macro changes the value of the 
*PRINT-SLOT-NAMES-AS-KEYWORDS* variable to NIL. 

• The second call to the constructor function MAKE-HOUSE creates 
a structure named HOUSE. Colons are not included in the 
output because the value of the *PRINT-SLOT-NAMES-AS-KEYWORDS* 
variable is NIL. 

77 



I •- ·-

VAX LISP/UL TRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

REQUIRE Function 

Examines the *MODULES* variable to determine if a specified module has 
been loaded. If the module is not loaded, the function loads the 
files that you specify for the module. If the module is loaded, its 
files are not reloaded. 

' 
When you call the REQUIRE function in VAX LISP, the function checks 
whether you explicitly specified pathnames that name the files it is 
to load. If you specify pathnames, the function loads the files the 
pathnames represent. If you do not specify pathnames, the function 
searches for the module's files in the following order: 

1. The function searches the current directory for a source file 
or a fast-loading file with the specified module name. If 
the function finds such a file, it loads the file into the 

0 

LISP environment. This search forces the function to locate o 
a module you have created before the function locates a 
module of the same name that is present in one of the public 
places (see following steps). 

2. 

3. 

If the environment variable MODULES.is defined, the function 
searches the directory this environment variable refers to 
for a source file or a fast-loading file with the specified 
module name. This search enables the VAX LISP sites to 
maintain a central directory of modules. 

The function searches the directory referred to by the 
environment variable VAXLISP if it is defined or the 
directory /usr/lib/vaxlisp for a source file or a 
fast-loading file with the specified module name. This 
search enables you to locate modules that are provided with 
the VAX LISP system. See the VAX LISP/ULTRIX Installation 
Guide for a description of the use of the environment 

0 

4. 

variable VAXLISP. 

If the function does not find a 
module name, an error is signaled. 

file with the specified Q 
When you load a module, the pathname that refers to the directory that 
contains the module is bound to the *MODULE-DIRECTORY* variable. A 
description of the *MODULE-DIRECTORY* variable is provided earlier in 
Part II. 

The REQUIRE function checks the *MODULES* variable to determine if a 
module has already been loaded. However, the REQUIRE function, when 
loading a module, does not update the *MODULES* variable to indicate 
that the module has been loaded. The PROVIDE function (described in 
COMMON LISP: The Language) does update the *MODULES* variable. use 
the PROVIDE function in a file containing a module to be loaded to 
indicate to the LISP system that the file contains a module of this 
name. 

78 

0 



VAX LISP/UL TRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

OREQUIRE Function (cont.) 

If the loaded file does 
subsequent REQUIRE of the 

not contain a corresponding PROVIDE, 
module will cause the file to be reloaded. 

a 

Format 

REQUIRE module-name &OPTIONAL pathname 

Arguments 

module-name 

A string or a symbol that names the module whose files are to be 
loaded. 

o pathname 

A pathname or a list of pathnames that represent the files to be 
loaded into LISP memory. The files are loaded in the same order 
the pathnames are listed, from left to right. 

Return Value 

Undefined. 

O Example 

0 

0 

Lisp> *MODULES* 
("calculus" "newtonian-mechanics") 
Lisp> (REQUIRE 'relative) 
T 
Lisp> *MODULES* 
("relative" "calculus" "newtonian-mechanics") 

• The first call to the *MODULES* variable shows that the 
modules calculus and newtonian-mechanics are loaded. 

• The call to the REQUIRE 
relative is ioaded. 
variable indicated that 
the function loaded the 

function checks whether the module 
The previous call to the *MODULES* 
the module was not loaded, therefore, 
module relative. 

o The second call to the *MODULES* variable shows that the 
module relative was loaded. 

79 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

ROOM Function 

Displays information about LISP memory. 
the following memory spaces: 

Information is displayed for O 
• Read-only space 

• Static space 

• Dynamic space 

The following information is provided for each type of space: 

• Total number of memory pages that can be used 

• Current number of memory pages being used 

• Percentage of free memory pages available for use 0 
The information for each storage type is displayed on one line in the 
following format: 

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: 6% 

All counts are in 512-byte pages. 

Format 0 
ROOM &OPTIONAL value 

Argument 

value 

Optional argument whose value can be Tor NIL. If you specify 
NIL, the function displays the same information that it displays Q 
when the argument is, not specified. If you specify T, the 
function displays additional information for the read-only, -
static, and dynamic storage spaces. The additional information 
consists of a breakdown of the storage space being used by each 
VAX LISP data type. The information is displayed in the 
following tabular format: 

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: 6% 
(reserved) 0 Functions: 191 Arrays: 0 B-Vectors: 6 
Strings: 381 U-Vectors: 3403 S Flo Vecs: 0 D Flo Vecs: 0 
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0 
Sngl Floe: 1 Dbl Flos: 1 Long Floe: 1 Ratios: 0 
Complexes: 0 Symbols: 0 Conses: 128 (reserved) 0 
Ctrl Stack: 0 Bind Stack: 0 

Table 2 lists the headings and VAX LISP data types the ROOM Q 
function displays for each type of storage space. 

80 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTION!::> 

ROOM Function (cont.) . 

Return Value 

No value. 

Table 2: Data Type Headings 

Heading Data Type 

Functions Compiled function descriptors 

Arrays Nonsimple array descriptors 

B-Vectors Boxed vectors -- simple vectors of LISP objects 

Strings 

u-vectors 

S Flo Vecs 

D Flo Vecs 

L Flo Vecs 

L Wrd Vecs 

Bignums 

Sngl Flos 

Dbl Flos 

Long Flos 

Ratios 

Symbols 

Cons es 

Ctrl Stack 

Bind Stack 

Character strings 

Unboxed vectors -- simple vectors that contain 
compiled code, alien structures, or integers of 
type (mod n) 

Simple float vectors 

Simple double float vectors 

Simple long float· vectors 

Simple longword vectors 

Bignums 

Single float numbers 

Double float numbers 

Long float numbers 

Ratios 

Symbols 

.conses 

Control Stack 

Binding Stack 

81 



VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

ROOM Function (cont.) 

Examples O 
1. Lisp> (ROOM) 

Read-Only Storage 
Static Storage 
Dynamic-0 Storage 

Total Size: 4352, Current Allocation: 4113, Free: 5'Y, 
Total Size: 2176, Current Allocation: 2146, Free: 1% 
Total Size: 3065, Current Allocation: 1292, Frcee: 58% 

Displays a list of the current memory storage information. 

2. Lisp> (ROOM T) 

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: 5% 
(reserved) 0 Functions: 191 Arrays: 0 B-Vectors: 6 
Strings: 381 U-Vectors: 3403 S Flo Vecs: 0 D Flo Vecs: 0 
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0 
Sngl Flos: 1 Dbl Flos: 1 Long Flos: 1 Ratios: 0 
Complexes: 0 Symbols: 0 Conses: 128 (reserved) 0 
Ctrl Stack: 0 Bind Stack: 0 

Static Storage Total Size: 2176, Current Allocation: 2146, Free: 1% 
(reserved) 0 Functions: 322 Arrays: 1 B-Vectors: 81 
Strine,s: 576 U-Vectors: 257 S Flo Vecs: 0 D Flo Vecs: 0 
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0 
Sngl Flos: 2 Dbl Flos: 2 Long Flos: 0 Ratios: 0 
Complexes: 0 Symbols: 360 Conses: 544 (reserved) 0 
Ctrl Stack: 0 Bind Stack: 0 

Dynamic-0 Storage Total Size: 3065, Current Allocation: 1280, Free: 58% 
(reserved) 0 Functions: 3 Arrays: 1 B-Vectors: 214 
Strings: 254 U-Vectors: 12 S Flo Vecs: 1 D Flo Vecs: 0 
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 3 (reserved) 0 
Sngl Flos: 1 Dbl Flos: 1 Long Flos: 1 Ratios: 0 
Complexes: 0 Symbols: 4 Conses: 656 (reserved) 0 
Ctrl Stack: 129 Bind Stack: 36 

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: S'Y, 

0 

0 

Displays a detailed list of · the current memory storage O 
information. 

0 
82 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

SHORT-SITE-NAME Function 

If the file lispsite.txt exists in the LISP product directory, the 
SHORT-SITE-NAME function finds the file, reads it, and returns the 
first line of text as a string that represents the physical location 
of the _computer hardware on which the VAX LISP system ii running. 
Otherwise, the SHORT-SITE-NAME function returns NIL. 

The LISP product directory is the directory 
environment variable VAXLISP if it exists, or 
the environment variable does not exist. See 
Installation Guide for more information on 
function and on creating the file lispsite.txt. 

Format 

SHORT-SITE-NAME 

Return Value 

referred to by the 
by /usr/lib/vaxlisp if 

the VAX LISP/ULTRIX 
the SHORT-SITE-NAME 

A string with a brief description of the physical location of the 
computer hardware on which a VAX LISP system is running, or NIL. 

Example 

Lisp> (SHORT-SITE-NAME) 
"Smith's Computer Company" 

83 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

STEP Macro 

Invokes the VAX LISP stepper. 

The STEP macro evaluates the form that is its argument and returns 
what the form returns. In the process, you can interactively step 
through the evaluation of the form. Entering a question marl (?) in 
response to the stepper prompt displays helpful information. The 
stepper is command oriented rather than expression oriented - do not 
surround commands with parentheses. For further information on using 
the VAX LISP stepper, see Chapter 4. 

Format 

STEP form 

Argument 

form 

A form to be evaluated. 

Return Value 

The value returned by form. 

Example 

Lisp> (STEP (FACTORIAL 3)) 
: #9: (FACTORIAL 3) 
Step 1> 

Invokes the VAX LISP stepper for the function call (FACTORIAL 3). 

84 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

* STEP-ENVIRONMENT* Va.riable 

The *STEP-ENVIRONMENT* variable, a debugging tool, is 
lexical environment in which *STEP-FORM* is being 
default in the stepper, the lexical environment is used 
EVALUATE command. See COMMON LISP: The Language for a 
dynamic and lexical environment variables. 

bound to the 
evaluated. By 
if you use the 
description of 

Some COMMON LISP functions (for example, EVALHOOK, APPLYHOOK, and 
MACROEXPAND) take an optional environment argument. The value bound 
to the *STEP-ENVIRONMENT* variable can be passed as an environment to 
these functions to allow evaluaton of forms in the context of the 
stepped form. 

Example 

Step> EVAL *STEP-FORM* 
(FUNCTION-X (- X 1)) 
Step> (EVALHOOK '(- x 1) NIL NIL *STEP-ENVIRONMENT*) 
2 

The use of the *STEP-ENVIRONMENT* variable in this 
EVALHOOK function causes the local value of X to 
evaluation of the form (- X 1). See Chapter 4 
stepper sessions from which this excerpt is taken. 

85 

call to the 
be used in the 
for the full 



VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

*STEP-FORM* Variable 

The *STEP-FORM* variable, a debugging tool, is bound to the form beingo 
evaluated while stepping. For example, while executing the form 

(STEP (FUNCTION~z ARG1 ARG2)) 

the value of *STEP-FORM* is the list (FUNCTION-Z ARG1 ARG2). When not 
stepping, the value is undefined. 

Example 

Step> STEP 
: #39: X => 4 
#35: => NIL . . . . . . #34: (+ FUNCTION-X (- X 1)) (FUNCTION-X (- X 2))) 

Step> STEP 
. . . . . . : #38: (FUNCTION-X (- X 1)) 
Step> EVAL *STEP-FORM* 
(FUNCTION-X (- X 1)) 

See Chapter 4 for the full stepper 
excerpt is taken. In this case, 
bound to (FUNCTION-X (- X 1)). 

86 

session from which this 
the *STEP-FORM* variable is 

0 

0 

0 

0 



VAX LISP/UL TRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

SUSPEND Function 

O Writes information about a LISP system to a file, making it possible 
to resume the LISP system at a later time. The function does not stop 
the current system, but copies the state of the LISP system when the 
function is invoked to the specified file. When you reinvoke the LISP 
system with the RESUME (-r) option and the file name 'that was 
specified with the SUSPEND function, program execution continues from 

0 

0 

-the point where the SUSPEND function was called. 

Only the static and dynamic portions of the LISP environment are 
written to the specified file. When you resume a suspended system, 
the read-only sections of the LISP environment are taken from 
lispsus.sus in VAXLISP or in /usr/lib/vaxlisp. You must make sure 
that your original LISP system is in lispsus.sus; if it is not, you 
will not be able to resume the system. 

When a suspended system is resumed, the LISP environment is identical 
to the environment that existed when the suspend operation occurred, 
with the following exceptions: 

s All streams except the standard streams are closed. 

e The *DEFAULT-PATHNAME-DEFAULTS* variable is set to the current 
directory. 

@ Call-out state might be lost (see Chapter 2 of the VAX 
LISP/ULTRIX System Acess Programming Guide). 

Format 

SUSPEND pathname 

Argument 

Q pathname 

0 

A pathname, namestring, or symbol that represents the file name -
to which the function writes the LISP-system state. 

Return Value 

T, when the LISP system is resumed at a later time and NIL, when 
execution continues after a suspend operation. 

87 



VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS 

SUSPEND Function (cont.) 

Example 

Lisp> (DEFUN PROGRAM-MAIN-LOOP NIL 
(LOOP (PRINC "Enter number> ") 

(SETF X (READ *STANDARD-INPUT*)) 
(FORMAT *STANDARD-OUTPUT* 

PROGRAM-MAIN-LOOP 

"-%The square root of-Fis -F. 
x 
( SQRT X) ) ) ) 

Lisp> (DEFUN DUMP-PROGRAM NIL 
(SUSPEND "myprog.sus") 
(FRESH-LINE) 
(PRINC "Welcome to my program!") 
(TERPRI) 
(PROGRAM-MAIN-LOOP)) 

DUMP-PROGRAM 
Lisp> (DUMP-PROGRAM) 

Starting garbage collection due to GC function. 
Finished garbage collection due to GC function. 
Starting garbage collection due to SUSPEND function. 
Finished garbage collection due to SUSPEND function. 

Welcome to my program 
Enter number> 25 
The square root of 25.0 is 5.0. 
Enter number> 5 
The square root of 5.0 is 2.236038. 
Enter number> 

<CTRL/C> 
Lisp> (EXIT) 
% vaxlisp -r myprog.sus 
Welcome to my program 
Enter number> 

- 0 " "'6 

• The first call to the DEFUN macro defines a function named 
PROGRAM-MAIN-LOOP. 

• The second call to the DEFUN macro defines a function named 
DUMP-PROGRAM. 

• The call to the DUMP-PROGRAM function copies the current state 
of the LISP environment to the file myprog.sus. The LISP 
system continues to run, displaying the message "Welcome to my 
program" and then executes the PROGRAM-MAIN-LOOP function. 

• The call to the EXIT function exits the LISP system. 

88 

0 

0 

0 

0 

0 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

SUSPEND Function (cont:) 

0 • The vaxlisp -r myprog.sus specification reinvokes the LISP 
system, displays the message, and executes the 
PROGRAM-MAIN-LOOP function. 

0 

0 

0 

0 
89 



VAX LISP/ULTRIX FUNCTION, MACRO, AND. VARIABLE DESCRIPTIONS 

THROW-TO-COMMAND-LEVEL Function 

Transfers control. This function exists only for compatibility· with 
VAX LISP/VMS Vl.x, in which it transferred control to a.numbered 
command level. VAX LISP V2 does not have numbered command levels. In 
VAX LISP V2, THROW-TO-COMMAND-LEVEL either throw~• to the 
CANCEL-CHARACTER-TAG tag or does nothing. 

Format 

THROW-TO-COMMAND-LEVEL level 

Argument 

level 

Either an integer or a keyword. Depending on the 
THROW-TO-COMMAND-LEVEL takes the following action: 

integer 
:CURRENT 
:PREVIOUS 
:TOP 

Return value 

Undefined. 

Example 

No action 
Throw to CANCEL-CHARACTER-TAG 
No action 
Throw to CANCEL-CHARACTER-TAG 

Lisp> (FACTORIAL M) 

argument, 

Fatal error in function SYSTEM::%EVAL (signaled with ERROR). 
Symbol has no value: M 

Control Stack Debugger 
Frame #3: (EVAL (FACTORIAL M)) 
Debug> (THROW-TO-COMMAND-LEVEL :TOP) 
Lisp> 

• The debugger is invoked, because an error was signaled when 
the FACTORIAL function was called •. · 

• The call to the THROW-TO-COMMAND-LEVEL function 
control to the top-level loop. 

90 

returns 

0 

0 

0 

0 

0 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TIME Macro 

OEvaluates a 
returns the 

form, displays the form's CPU 
values the form returns. 

time and real 

The time information is displayed in the following format: 

CPU Time: 0.03 sec., Real Time: 0.23 sec. 

time, and 

If garbage collections occur during the evaluation of a call to the 
TIME macro, the macro displays another line of time information. This 
line includes information about the CPU time and real time used by the 
garbage collector. 

Format 

O TIME form 

Argument 

form 

The form that is to be evaluated. 

Return value 

Q The form's return values are returned. 

Example 

0 

0 

Lisp> (TIME (TEST)) 
CPU Time: 0.03 sec., Real Time: 0.23 sec. 
6 

91 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*TOP-LEVEL-PROMPT* Variable 

Lets you change the top-level prompt. 
be: 

• A string 

The value of this variable 

• A function of no arguments that returns a string 

e NIL 

If you specify NIL, the default prompt "Lisp>" is used. 

Example 

Lisp> (SETF *TOP-LEVEL-PROMPT* "TOP> ") 
"TOP> " 
TOP> 

Sets the value of the variable *TOP-LEVEL-PROMPT* to "TOP> II 

92 

cano 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro 

Enables tracing for one or more functions and macros. 

VAX LISP allows you to specify a number of options that suppress the 
TRACE macro's displayed output or that cause additional in;o;mation to 
be displayed. The options are specified as keyword-valu~ pairs. The 
keyword-word value pairs you can specify are listed in Table 3. 

Format 

NOTE 

The arguments specified in a call to the TRACE macro 
are not evaluated when the call to TRACE is executed. 
Some forms are evaluated repeatedly, as described 
below. 

TRACE &REST trace-description 

Argument 

trace-description 

One or more optional arguments. If an argument is not specified, 
the TRACE macro returns a list.of the functions and macros that 
are currently being traced. Trace-description arguments can be 
specified in three formats: 

• One or more function and/or macro names can be specified which 
enables tracing for that function(s) and/or macro(s). 

narne-1 narne-2 ... 

• The name of each function or macro can be specified with 
keyword-value pairs. The keyword-value pairs specify the 
operations the TRACE macro is to perform when it traces the 
specified function or macro. The name and the keyword-value 
pairs must be specified as a list whose first element is the 
function or macro name. 

(name keyword-1 value-1 
keyword-2 value-2 ... ) 

• A list of function and/or macro names can be specified with 
keyword-value pairs. The keyword-value pairs specify the 
operations the TRACE macro is to perform when it traces each 
function and/or macro in the list. The list of names and the 
keyword-value pairs must be specified as a list whose first 
element is the list of names. 

93 



· VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

((narne-1 name-2 ... ) keyword-1 value-1 
keyword-2 value-2 ... ) 

Table 3 lists the keywords and values that can be specified. The 
forms that are referred to in the value descriplions are 
evaluated in the null lexical environment and the current dynamic 
environment. 

Table 3: TRACE Options 

Keyword-Value Pair 

:DEBUG-IF form 

:PRE-DEBUG-IF form 

:POST-DEBUG-IF form 

:PRINT form-list 

Description 

Specifies a form that is to be 
evaluated before and after each 
call to the specified function or 
macro. If the form returns a value 
other than NIL, the VAX LISP 
debugger is invoked before and 
after the function or macro is 
called. 

Specifies a form that is to be 
evaluated before each call to the 
specified function or macro. If 
the form returns a value other than 
NIL, the VAX LISP debugger is 
invoked before the specified 
function or macro is called. 

Specifies a form that is to be 
evaluated after each call to the 
specified function or macro. If 
the form returns a value other than 
NIL, the VAX LISP debugger is 
invoked after the specified -
function or macro is called. 

Specifies a list of forms that are 
to be evaluated and whose values 
are to be displayed before and 
after 'each call to the specified 
function or macro. The values are 
displayed one per line and are 
indented to match other output 
displayed by the TRACE macro. If 
the TRACE macro cannot evaluate the 
argument, the debugger is invoked 
(see Chapter 4)~ 

94 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

Table 3 (cont. ) 

Keyword-Value Pair 

:PRE-PRINT form-list 

:POST-PRINT form-list 

:STEP-IF form 

:SUPPRESS-IF form 

:DURING name 

Description 

Specifies a list of forms•that are 
to be evaluated and whose values 
are to be displayed before each 
call to the specified function or 
macro. The values are displayed 
one per line and are indented to 
match other output displayed by the 
TRACE macro. If the TRACE macro 
cannot evaluate the argument, the 
debugger is invoked (see Chapter 
4) • 

Specifies a list of forms that are 
to be evaluated and whose values 
are to be displayed after each call 
to the specified function or macro. 
The values are displayed one per 
line and are indented to match 
other output displayed by the TRACE 
macro. If the TRACE macro cannot 
evaluate the argument, the debugger 
is invoked (see Chapter 4). 

Specifies a form that is to be 
evaluated before each call to the 
specified function or macro. If 
the form returns a value other than 
NIL, the stepper is invoked and the 
function or macro is stepped 
through. See Chapter 4 for 
information on the stepper. 

Specifies a form that is to be 
evaluated before each call to the 
specified function or macro. If 
the form returns a value other than 
NIL, the TRACE macro does not 
display the arguments and the 
return value of the specified 
function or macro. 

function or macro name Specifies a 
or a list 
names. The 
specified by 
traced only 

95 

of function and macro 
function or macro 
the TRACE function is 
when it is called 



VA.A Ll::;1-'/UL I HIX .-:UNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

Table 3 (cont. ) 0 
Keyword-Value Pair Description 

(directly or 
within one of 
macros specified 
keyword. 

indi rect\y) f rorn 
the functions or 

by the :DURING 

Return Value 

A list of the functions currently being traced. 

Examples 

1. Lisp> (TRACE FACTORIAL COUNT1 COUNT2) 
(FACTORIAL COUNTl COUNT2) 

Enables the tracer for the functions FACTORIAL, 
COUNT2. 

2. Lisp> (TRACE) 
(FACTORIAL COUNT1 COUNT2) 

Returns a list of the functions for which 
enabled. 

3. Lisp> (DEFUN REVERSE-COUNT (N) 
(DECLARE (SPECIAL *GO-INTO-DEBUGGER*)) 
( IF ( > N 3) 

the 

COUNT1, and 

tracer is 

0 

0 

(SETQ *GO-INTO-DEBUGGER* T) 
(SETQ *GO-INTO-DEBUGGER* NIL)) 

( COND ( ( = N O ) 0 ) 0 
(T (PRINT N) (+ 1 (REVERSE-COUNT (- N 1)))))) 

Lisp> (SETQ *GO-INTO-DEBUGGER* NIL) 
NIL 
Lisp> (REVERSE-COUNT 3) 
3 
2 
1 
3 
Lisp> (TRACE (REVERSE-COUNT :DEBUG-IF *GO-INTO-DEBUGGER*)) 
(REVERSE-COUNT) 
Lisp> (REVERSE-COUNT 3) 
#4: (REVERSE-COUNT 3) 
3 
• #16: (REVERSE-COUNT 2) 
2 
•• #28: (REVERSE-COUNT 1) 

96 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

1 
. #40: (REVERSE-COUNT 0) 

#40=> 0 
. • #28=> 1 
. #16=> 2 
#4=> 3 
3 
Lisp> (REVERSE-COUNT 4) 
#4: (REVERSE-COUNT 4) 
4 
• #16: (REVERSE-COUNT 3) 
Control Stack Debugger 
Frame #17: (DEBUG) 
Debug 1> CONTINUE 
3 
•• #28: (REVERSE-COUNT 2) 
2 

. #40: (REVERSE-COUNT 1) 
1 
•••• #52: (REVERSE-COUNT 0) 
• • • • #52=> 0 
• • . #40=> 1 
. • #28=> 2 
• #16=> 3 
#4=> 4 
4 
Lisp> 

The recursive function REVERSE-COUNT is defined to count down 
from the number it is given and to return. that number after 
the function is evaluated. If, however, the number given is 
greater than 3 (set low to simplify the example), the global 
variable *GO-INTO-DEBUGGER* (preset to NIL) is set to T. 

The first time the REVERSE-COUNT function is traced using the 
DEBUG-IF keyword, the argument is 3. The second time the -
function is traced, the argument is over 3. This sets the 
global variable *GO-INTO-DEBUGGER* to T, which causes the 
debugger to be invoked during a trace of the REVERSE-COUNT 
function. The debugger is invoked after the function's 
argument is evaluated. 

To reset the global variable *GO-INTO-DEBUGGER* to NIL, the 
REVERSE-COUNT function must be completed. So, the evaluation 
of the function was continued with the Debug command 
CONTINUE. 

4. Lisp> (TRACE (REVERSE-COUNT 
:PRE-DEBUG-IF *GO-INTO-DEBUGGER*)) 

(REVERSE-COUNT) 

97 



VAX USP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

Lisp> (REVERSE-COUNT 4) 
#4: (REVERSE-COUNT 4) 
4 
. #16: (REVERSE-COUNT 3) 
Control Stack Debugger 
Frame #17: 
Debug 1> 

The 4 argument to the REVERSE~COUNT function causes the 
*GO-INTO-DEBUGGER* variable to be set to T, which in turn 
causes the debugger to be invoked before the first recursive 
call to the REVERSE-COUNT function. 

5. Lisp> (TRACE (REVERSE-COUNT 
:POST-DEBUG-IF *GO-INTO-DEBUGGER*)) 

(REVERSE-COUNT) 
Lisp> (REVERSE-COUNT 4) 
#4: (REVERSE-COUNT 4) 
4 
• #16: (REVERSE-COUNT 3) 
3 

#28: (REVERSE-COUNT 2)· 
2 

. #40: (REVERSE-COUNT 1) 
1 

. #52: (REVERSE-COUNT 0) 

. #52=> 0 
. #40=> 1 
#28=> 2 

. #16=> 3 
#4=> 4 
4 
Lisp> (TRACE (REVERSE-COUNT 

:POST-DEBUG-IF (NOT *GO-INTO-DEBUGGER*))) 
(REVERSE-COUNT) 
Lisp> (REVERSE-COUNT 4) 
#4: (REVERSE-COUNT 4) 
4 
. #16: (REVERSE-COUNT 3) 
3 

#28: (REVERSE-COUNT 2) 
2 

. #40: (REVERSE-COUNT 1) 
1 

•• #52: (REVERSE-COUNT 0) 
Control stack Debugger 
Frame #53: (DEBUG) 
Debug 1> CONTINUE 

• #52=> 0 

98 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

6. 

Control Stack Debugger 
Frame #41: (DEBUG) 
Debug 1> CONTINUE 

... #40=> 1 
Control Stack Debugger 
Frame #29: (DEBUG) 
Debug 1> CONTINUE 

.. #28=> 2 
Control Stack Debugger 
Frame #17: (DEBUG) 
Debug 1> CONTINUE 

• #16=> 3 
Control Stack Debugger 
Frame #5: (DEBUG) 
Debug 1> CONTINUE 

#4=> 4 
4 
Lisp> 

Here, the first time the REVERSE-COUNT function is evaluated, 
the debugger is not invoked despite the :POST-DEBUG-IF 
keyword, because the keyword invokes the debugger only if its 
condition is met after the function is evaluated. However, 
after the function is evaluated, the *GO-INTO-DEBUGGER* 
variable is reset back to NIL. If the form (SETQ 
*GO-INTO-DEBUGGER* NIL) were removed from the definition of 
the REVERSE-COUNT function, the variable would not have been 
reset to NIL, and the debugger would have been invoked. 

The second time the REVERSE-COUNT function is invoked, the 
form (NOT *GO-INTO-DEBUGGER*) evaluates to T, since the value 
of its argument is NIL. This gives the :POST-DEBUG-IF -
keyword a T value, which in turn fulfills the condition of 
invoking the debugger after the function is evaluated. 

In this situation, the Debug CONTINUE command causes only one 
evaluation. Here, the CONTINUE command must be repeated to 
evaluate all the recursive calls. This example differs from 
example 1, where the CONTINUE command did not have to be 
repeated. 

Lisp> (SETF *L* 5 *M* 6 *N* 7) 
7 
Lisp> (TRACE (* :PRINT (*L* *M* *N*) ) ) 
( *) 
Lisp> (+ 2 3 *L* *M* *N*) 

99 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

7. 

8. 

23 
Lisp> ( * 2 3 *L* *M* *N*) 
# 4: ( * 2 3 5 6 7 ) 
#4 *L* is 5 
#4 *M* is 6 
#4 *N* is 7 
#4=> 1260 
#4 *L* is 5 
#4 *M* is 6 
#4 *N* is 7 
1260 

The+ function is not traced, but the* 
The values of the global variables 
displayed before and after the call to 
evaluated. 

function is traced. 
*L*, *M*, and *N* are 

the * function is 

Lisp> (TRACE ( * :PRE-PRINT (*L* *M* *N*))) 
( *) 
Lisp> (* 2 3 *L* *M* *N*) 
#4: (* 2 3 5 6 7) 
#4 *L* is 5 
#4 *M* is 6 
#4 *N* is 7 
#4=> 1260 
1260 

The values of the global variables *L*, *M*, and *N* are 
displayed before the call to the* function is evaluated. 

Lisp> (TRACE ( * :POST-PRINT (*L* *M* *N*))) 
( *) 
Lisp> (* 2 3 *L* *M* *N*) 
#4: (* 2 3 5 6 7) 
#4=> 1260 
#4 *L* is 5 
#4 *M* is 6 
#4 *N* is 7 
1260 

The values of the global variables *L*, *M*, and *N* are 
displayed after the call to th&* function is evaluated. 

9. Lisp> (TRACE+) 
( +) 
Lisp> (+ 2 3 (SQUARE 4) (SQRT 25)) 
#4: (+ 2 3 16 5.0) 
#4=> 26.0 
26.0 
Lisp> (SETQ *STOP-TRACING* T) 

100 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

NIL 
Lisp> (TRACE(+ :SUPPRESS-IF *STOP-TRACING*)) 
( +) 
Lisp> (+ 2 3 (SQUARE 4) (SQRT 25)) 
26.Q G 

In the first example, the call to the+ function is traced. 
In the second example, the call to the+ function is not 
traced because of the form(+ :SUPPRESS-IF *STOP-TRACING*). 

10. Lisp> (TRACE (FACTORIAL :STEP-IF T)) 
(FACTORIAL) 

11. 

Lisp> (+ (FACTORIAL 2) 3) 
#5: (FACTORIAL 2) 
#9: (BLOCK FACTORIAL (IF(> 2 N) 1 (* N (FACTORIAL (1- N))))) 
Step> 
: #16: (IF (> 2 N) 1 (* N (FACTORIAL (1- N)))) 
Step> 
: : #22: (> 2 N) 
Step> 

The call to the FACTORIAL function invokes the stepper. 

Lisp> (TRACE (LIST-LENGTH :DURING PRINT-LENGTH)) 
(LIST-LENGTH) 
Lisp> (PRINT-LENGTH '(CAT DOG PONY)) 
#13: (LIST-LENGTH (CAT DOG PONY)) 
#13=> 3 

The length of (CAT DOG PONY) is 3. 
NIL 

The PRINT-LENGTH function has been defined to find the length 
of its argument with the function LISP-LENGTH. The 
LIST-LENGTH function is traced during the call to the 
PRINT-LENGTH function. 

12. Lisp> (DEFUN FUNCTION-X (X) 
(IF (< X 3) 1 

(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2))))) 
FUNCTION-X 

Lisp> (TRACE (FUNCTION-X 

(FUNCTION-X) 

:PRE-DEBUG-IF(< (SECOND *TRACE-CALL*) 2) 
:SUPPRESS-IF T)) 

Lisp> (FUNCTION-X 5) 

101 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

Control Stack Debugger 
Frame #26: (DEBUG) 
Debug 1> DOWN 
Frame #21: (BLOCK FUNCTION-X 

(IF (< X 3) 1 

Debug 1> DOWN 

(+ (FUNCTION-X (- X 1)) 
(FUNCTION-X (- X 2))))) 

Frame #19: (FUNCTION-X 3) 
Debug 1> (CADR (DEBUG-CALL)) 
3 
Debug 1> CONTINUE 
Control Stack Debugger 
Frame #19: (DEBUG) 
Debug 1> CONTINUE 
5 

• In this example, FUNCTION-Xis first defined. 

• Then the TRACE macro is called for FUNCTION-X. TRACE is 
specified to invoke the debugger if the first argument to 
FUNCTION-X (the function call being traced) is less than 

0 

0 

2. Since the PRE-DEBUG-IF option is specified, the 
debugger is invoked before the call to FUNCTION-X. As theo 
:SUPPRESS-IF option has a value of T, calls to FUNCTION-X 
do not cause any trace output. 

e The DOWN command moves the pointer down the control stack. 

• 

The DEBUG-CALL function returns a list representing 
current debug frame function call. In this case, the 
of the list is 3. This accesses the first argument to 
function in the current stack frame. 

Finally the CONTINUE command continues the evaluation 
FUNCTION-X. 

13. Lisp> (TRACE (FUNCTION-X 

the 
CADR 
the 

:POST-DEBUG-IF(> (FIRST *TRACE-VALUES*) 2))) 
(FUNCTION-X) 
Lisp> (FUNCTION-X 5) 
#4: (FUNCTION-X 5) 
. #11: (FUNCTION-X 4) 

#18: (FUNCTION-X 3) 
. #25: (FUNCTION-X 2) 
. #25=> 1 
• #25: (FUNCTION-X 1) 

.•• #25=> 1 
• . #18=> 2 

102 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

TRACE Macro (cont.) 

.. #18: (FUNCTION-X 2) 

.. #18=> 1 
Control Stack Debugger 
Frame #12: (DEBUG) 
Debug 1> BACKTRACE 
-- Backtrace start -
Frame #12: (DEBUG) 
Frame #7: (BLOCK FUNCTION-X 

( IF ( < X 3) 1 
(+ (FUNCTION-X 

(FUNCTION-X 
Frame #5: (FUNCTION-X 5) 
Frame #1: (EVAL (FUNCTION-X 5)) 
-- Backtrace ends --
Frame #12: (DEBUG) 
Debug 1> CONTINUE 
. #11=> 3 
. #11: (FUNCTION-X 3) 

#18: (FUNCTION-X 2) 
#18=> 1 
#18: (FUNCTION-X 1) 
#18=> 1 

. #11=> 2 
Control Stack Debugger 
Frame #5: (DEBUG) 
Debug 1> CONTINUE 
#4=> 5 

(- X 1)) 
(- X 2))))) 

TRACE is called for FUNCTION-X (the same function as in the 
previous example) to start the debugger if the value returned 
exceeds 2. The value returned exceeds 2 twice once when 
it returns 3 and at the end when it returns 5. 

103 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*TRACE-CALL* Variable 

The *TRACE-CALL* variable, a debugging tool, is bound to the 
or macro call being traced. 

function O 
Examples 

1. Lisp> (TRACE (FUNCTION-X 
:SUPPRESS-IF(> (SECOND *TRACE-CALL*) 1))) 

This causes FUNCTION-X to be traced only if its first 
argument is 1 or less 

2. Lisp> (TRACE (FUNCTION-X 
:SUPPRESS-IF(<= (LENGTH *TRACE-CALL*) 2))) 

This causes FUNCTION-X to be traced if it is called with more Q 
than 1 argument. 

3. Lisp> (TRACE (FUNCTION-X 

FUNCTION-X 

:PREDEBUG-IF (< (SECOND *TRACE-CALL*) 2) 
:SUPPRESS-IF(< (SECOND *TRACE-CALL*) 2))) 

In this case, the TRACE macro is enabled for FUNCTION-X. The 
debugger will be invoked and tracing suppressed if the first Q 
argument to FUNCTION-X (the SECOND of the value of the 
*TRACE-CALL* variable) is less than 2. So for example, if 
FUNCTION-Xis called with the arguments 3 and 5, *TRACE-CALL* 
is bound to the form (FUNCTION-X 3 5); as 3 is greater than 
2, the call is traced and the debugger not entered. See the 
description of the TRACE macro for further examples of the 
use of *TRACE-CALL*. 

104 

0 

0 



0 

0 

0 

0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

*TRACE-VALUES* Variable 

The *TRACE-VALUES* variable, a debugging tool, is bound to the list of 
values returned by the traced function. You can use the value bound 
to this variable in the forms used with the trace option keywords such 
as :DEBUG-IF. 

Example 

Lisp (FACTORIAL 4) 
#4: (FACTORIAL 4) 
. #11: (FACTORIAL 3) 
•• #18: (FACTORIAL 2) 
.•• #25: (FACTORIAL 1) 
.•. #25=> 1 
.•• #25=> *TRACE-VALUES* is (1) 
. • #18=> 2 
•• #18=> *TRACE-VALUES* is (2) 
• #11=> 6 
• #11=> *TRACE-VALUES* is (6) 
#4=> 24 
#4=> *TRACE-VALUES* is (24) 
24 

In this case, the values returned by the FACTORIAL function and 
bound to the *TRACE-VALUES* variable are displayed as (1), (2), 
(6), and (24). Since the *TRACE~VALUES* variable is bound to the 
list of values returned by a function, it can be used only in the 
:POST- options to the TRACE macro. Before being bound to the 
return values, it returns NIL. See the description of the TRACE 
macro for further examples of the use of the *TRACE-VALUES* 
variable. 

105 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

JNBIND-KEYBOARD-FUNCTION Function 

Removes the binding of a function from a control character. 

Format 

UNBIND-KEYBOARD-FUNCTION control-character 

Argument 

control-character 

The control character from which a function's binding is to be 
removed. 

Return Value 

0 

T, if a binding is removed. NIL, if the control character is not O 
bound to a function. 

Example 

Lisp> (BIND-KEYBOARD-FUNCTION #\FS #'BREAK) 
T 
Lisp> (UNBIND-KEYBOARD-FUNCTION #\FS) 
T 

e The call to the BIND-KEYBOARD-FUNCTION function binds <CTRL/\> 
to the BREAK function. 

e The call to the UNBIND-'KEYBOARD-FUNCTION function removes the 
binding of the function that is bound to <CTRL/\>. 

106 

0 

0 

0 



· 'VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

UNCOMPILE Function 

Q Restores· the interprete~ function definition of a symbol, if the 
symbol's definition was compiled with a call to the COMPILE function. 

0 

0 

The UNCOMPILE function is useful for looking at function .dffinitions 
and debugging. For example, if you are not satisfied with the results 
of a function compilation, you can uncompile the function, look at it, 
redefine it, and then recompile it. 

NOTE 

You cannot uncompile system functions and macros or 
functions and macros that were loaded from files that 
were compiled by the COMPILE-FILE function or the 
compile (-c) option of the vaxlisp command. 

Format 

UNCOMPILE symbol 

Argument 

symbol 

The symbol that repr~sents the function that is to be uncompiled. 

Return Value 

The name of the function, if the specifed symbol 
existing compiled lambda expression and has 
definition; NIL, if it does not. 

represents an 
an interpreted 

Q Example 

0 

Lisp> (DEFUN ADD2 (FIRST SECOND) (+ FIRST SECOND)) 
ADD2 
Lisp> (COMPILE 'ADD2) 
ADD2 compiled. 
ADD2 
Lisp> (UNCOMPILE 'ADD2) 
ADD2 

• The call to the DEFUN macro defines the function ADD2. 

• The call to the COMPILE function compiles the function ADD2. 

• The call to 
interpreted 
function is 
function. 

the UNCOMPILE function successfully restores the 
definition of the function ADD2, because the 
defined and was compiled with th_e COMPILE 

107 



--------- ---

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

UNDEFINE-LIST-PRINT-FUNCTION Macro 

Disables the list-print function defined for a 
list-print function was superseded by the 
undefined, the older function is reenabled. 
list-print function exists for the given symbol. 

symbol. . If 
list-print 

Otherwise, 

anotheO 
function 

no other 

See Chapter 5 for more information about list-print functions. 

Format 

UNDEFINE-LIST-PRINT-FUNCTION symbol 

Argument 

symbol 

The name of the list-print function to be disabled. 

Return Value 

The name of the list-print function that has been disabled. 

Example 

Lisp> (UNDEFINE-LIST-PRINT-FUNCTION MY-SETQ) 
MY-SETQ 

Undefines the list-print function named MY-SETQ. 

108 

0 

0 

0 

0 



0 

0 

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

UNIVERSAL-ERROR-HANDLER Function 

The function to which the VAX LISP system sends all errors that are 
signaled during program execution. By default, the VAX LISP 
*UNIVERSAL-ERROR-HANDLER* variable is bound to this function. 

The VAX LISP error handler is described in Chapter 3. 

Format 

UNIVERSAL-ERROR-HANDLER function-name 
error-signaling-function &REST args 

Arguments 

function-name 

The name of the function that produced or signaled the error. 

error-signaling-function 

args 

The name of an error-signaling function. 
are ERROR, CERROR, and WARN. 

Valid function names 

Q The specified error-signaling function's arguments. 

0 

0 

Return Value 

Invokes the VAX LISP debugger, exits the LISP system, or returns 
NIL. 

Example 

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME 
ERROR-SIGNALING-FUNCTION 
&REST ARGS) 

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR) 
(EQ ERROR-SIGNALING-FUNCTION 'CERROR)) 

(FLASH-ALARM-LIGHT)) 
(APPLY #'UNIVERSAL-ERROR-HANDLER 

FUNCTION-NAME 
ERROR-SIGNALING-FUNCTION 
ARGS)) 

CRITICAL-ERROR-HANDLER 

Defines an error handler that checks whether a fatal or 
continuable error is signaled. If either type of error is 
signaled, the handler flashes an alarm light and then passes the 
error signal information to the universal error handler. For 
information on how to create an error handler, see Chapter 3. 

109 



VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

* UNIVERSAL-ERROR-HANDLER* Variable 

By default, this variable is bound to the VAX LISP error handler, the 
UNIVERSAL-ERROR-HANDLER function. If you create an error handler, you 
must bind the *UNIVERSAL-ERROR-HANDLER* to it. 

Example 

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME 
ERROR-SIGNALING-FUNCTION 
&REST ARGS) . 

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR) 
(EQ ERROR-SIGNALING-FUNCTION 'CERROR)) 

(FLASH-ALARM-LIGHT)) 
(APPLY #'UNIVERSAL-ERROR-HANDLER 

FUNCTION-NAME 

0 

ERROR-SIGNALING-FUNCTION O 
ARGS)) 

CRITICAL-ERROR-HANDLER 
Lisp> (LET ((*UNIVERSAL-ERROR-HANDLER* 

#'CRITICAL-ERROR-HANDLER)) 
(PERFORM-CRITICAL-OPERATION)) 

• The call to the DEFUN macro defines an error handler named 
CRITICAL-ERROR-HANDLER. 

• The call to the special form LET binds the Q 
*UNIVERSAL-ERROR-HANDLER* variable to the error handler named 
CRITICAL-ERROR-HANDLER, while the PERFORM-CRITICAL-OPERATION 
function is evaluated. 

0 

\ 

0 
110 



0 

0 

0 

0 

0 

VAX USP/UL TRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

WARN Function 

Invokes the VAX LISP error handler. The error handler displays an 
error message and checks the value of the *BREAK-ON-WARNINGS* 
variable. If the value is NIL, the WARN functions returns NIL; if the 
value is not NIL, the error handler checks the value of the 
*ERROR-ACTION* variable. The value of the *ERROR-ACTION* va~iable can 
be either the :EXIT or the :DEBUG keyword. If the value is :EXIT, the 
error handler causes the LISP system to exit; if the value is :DEBUG, 
the handler invokes the VAX LISP debugger. 

For more information on warnings, see Chapter 3. 

Format 

WARN format-string &REST args 

Arguments 

format-string 

args 

The string of characters that is passed to the FORMAT function to 
create a warning message. 

The arguments that are passed to the FORMAT function as arguments 
for the format string. 

Return Value 

NIL. 

Example 

Lisp> (DEFUN LOG-ERROR (STATUS-CODE) 
(LET ((MESSAGE (FIND-MESSAGE-FOR-STATUS-CODE 

STATUS-CODE))) 
(IF MESSAGE 

(WRITE-LINE MESSAGE *ERROR-LOG*) 
(WARN "There is no message for status code -D." 

STATUS-CODE)))) 
LOG-ERROR 

Defines a function that is an error logging facility. The 
function logs a message to an error log file. If the message for 
a status code cannot be determined, a warning is issued. 

111 



------- ------. ------

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS 

WITH-GENERALIZED-PRINT-FUNCTI-ON Macro 

Locally enables a generalized print function when it evaluates th~ 
specified forms. See Chapter 5 for more information about using 
generalized print functions. 

Format 

WITH-GENERALIZED-PRINT-FUNCTION name &BODY forms 

Arguments 

name 

identifying the generalized print function to be 
The enabled generalized print function supersedes any 

A symbol 
enabled. 
previously enabled generalized print function for name. Q 

forms 

A call or calls to print functions. 

Return Value 

Output generated by the call or calls to print functions. 

Example 

Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST 
(OBJECT STREAM) 
(NULL OBJECT) 

( PR INC II ( ) II STREAM) ) 
PRINT-NIL-AS-LIST 
Lisp> (WITH-GENERALIZED-PRINT-FUNCTION 'PRINT-NIL-AS-LIST 

(PPRINT NIL)) 
( ) 

The PPRINT call prints ( ), because the generalized 
function is enabled locally and pretty printing is enabled. 

112 

0 

0 
print -

0 



10 

APPENDIXES 

0 

0 

0 

0 



0 

0 

0 

0 



0 

0 

0 

0 

0 

APPENDIX A 

PERFORMANCE HINTS 

LISP code normally does much type checking at runtime. 
execution time and amount of memory required by using 
more efficiently and by using certain programming 
techniques. 

You can reduce 
data structures 

and debugging 

This appendix lists what you can do to optimize the speed of execution 
of your LISP code and the amount of memory required. The sections 
also give the following information: 

• Number of instructions executed by certain functions 

o Relative speed of certain functions compared with others that 
can be used to achieve the same result 

• Explanations of why certain functions and operations require 
so much time and memory 

• Data structure representation 

This information can help you choose the most efficient way to code 
program. 

a 

Some VAX instructions are mentioned in this appendix. Refer to the -
VAX Architecture Handbook for more information on the VAX instruction 
set. 

A.1 DATA STRUCTURES 

This section describes how to optimize the use of data structures in 
your code. 

A-1 



PERFORMANCE HINTS 

A.1.1 Integers 

Fixnurn arithmetic is much faster than bignum arithmetic. Therefore, 0 
if possible use numbers in the range -2**29 to 2**29-1. (The range of 
integers represented as fixnums in future versions is likely to be cut 
in half: -2**28 to 2**28-1. Keep this in mind when placing fixnum 
declarations in your programs.) You must use fixnum declaralions for 
each argument to an arithmetic function and for the result as well to 
generate fixnum-only in-line VAX instructions. The result must be 
declared to be type fixnum, and even though all input values for an 
arithmetic function may be fixnums, the result may not be. (That is, 
fixnums are not closed under arithmetic operations). 

When fixnum declarations are used, fixnum arithmetic takes two 
instructions for each addition or subtraction operation (except 
incrementing and decrementing, which require one instruction each) and 
four instructions for each multiplication and division operation. Q 
Fixnum comparisons consist of a CMPL instruction and the appropriate 
branch; the result's type need not be declared. 

Fixnums are never allocated (they are immediate: they 
manipulated directly, rather than through pointers). 
fixnum arithmetic requires less memory and less .time 
collect.ion than arithmetic with bignums. 

are always 
Therefore, 

for garbage 

Bignums require two longwords for a header and enough space to 
represent the number in two's complement format. Therefore, working Q 
with bignums consumes much more time than working with fixnums. For 
example, to print 1000 factorial take~ much longer than to compute it. 
Much more garbage is produced while calculating the print 
representation than in calculating the result. 

A.1.2 Floating-Point Numbers 

When using floating-point arithmetic, the system allocates new space Q 
for the results. In-line code is generated only when both arguments -
to an arithmetic function are declared to be of the same 
floating-point type. In-line conversions (CVTxx) are not done. The 
VMS math library routines are used for complicated functions, such as 
trigonometric functions. 

Floating-point numbers always have a 1-longword h~ader. 

A.1.3 Ratios 

When working with ratios, the system calls the GCD function after each 
ratio is created, and stores the ratio in canonical form. Use the Q 
TRUNCATE or REM function when you do not need exact answers or when 

A-2 



0 

0 

PERFORMANCE HINTS 

you want a remainder .. The TRUNCATE function executes faster if you 
can declare the result to be a fixnum. The TRUNCATE and REM functions 
are faster than the FLOOR and MOD functions. These in turn are faster 
than the ROUND function. 

Ratios occupy two longwords; they do not have headers. 

A.1.4 Characters 

When representing characters, it is usually not necessary to specify 
bit and font attributes. String characters utilize an 8-bit code that 
is compatible with the ASCII and DIGITAL multinational standards, and 
with the VAX architecture. 

The CHAR= function used without type checking is the same as the EQ 
function. The CHAR<, CHAR<=, CHAR>, and CHAR>= functions generate the 
same code as the fixnum comparisons when no type checking is required 
because declarations were used. This code consists of a CMPL 
instruction followed by the appropriate branch. Like fixnums, 
characters are never allocated (they are immediate), thereby requiring 
less memory and less time for garbage collection. 

Q A.1.5 Symbols 

0 

0 

Symbols let you easily associate data with a name. Symbols are 
interned when read by the READ function, and remain interned until 
they are uninterned from all packages using them. So, when you create 
anony~ous variables and functions, use uninterned symbols (created 
using the MAKE-SYMBOL or GENSYM function). 

For VAX LISP, accessing a dynamic variable may require several 
instructions, depending on the declarations and optimizations used. 
Normally, accessing a dynamic variable is slower than accessing local 
variables but faster than accessing closed-over lexical variables. A -
local variable can be accessed quickly because it is stored on the 
stack. A closed-over variable is stored in a vector and passed to 
other functions that use them. Therefore, to access a closed-over 
variable may require several instructions. To reduce the overhead of 
dynamic variable access to one instruction, set the optimization 
declaration SPEED ·to 3 and SAFETY to O, eliminating unbound variable 

, checking, and thus reducing execution time. 

When a special variable is bound to a new value, LISP saves the symbol 
and its old value on the binding stack and stores the new value in the 
value cell of the symbol. This requires either four or five 
instructions. Unbinding a special variable requires one instruction. 
Accessing the parts of a symbol, such as its name, property list, 
package, and value, requires only one instruction each, .if you have 

A-3 



--------- - -------·-- --------

PERFORMANCE HINTS 

used the appropriate declarations to declare the variable as a symbol. 
However, setting a symbol's function cell is very slow. o 
Symbols occupy five longwords each. 

. ti 

A.1.6 Lists and Vectors 

Use lists when the number of elements changes often. Typically, you 
push elements onto and pop elements off the front of the list to 
simulate a stack. Conses are convenient for creating tree structures, 
especially when you need values only at the leaves. If you must 
access many values at each internal node of a tree, use structures 
rather than lists. Conses require two longwords. 

Use vectors when you must access elements often at any position. Q 
Vectors use half as much space as lists, and can cause less paging 
when accessed because vector elements are stored in adjacent memory 
locations. A simple-vector has a single-longword header. 

Use the noncopying (or destructive) versions of the sequence and list 
functions whenever possible. For example, the NCONC function is 
faster than the APPEND function and· the NSTRING-UPCASE function is 
faster than the STRING-UPCASE function. You can use the form 
(NREVERSE (THE LIST X)) rather than the copying version (the REVERSE 
function) to get elements back to their original order if you are just O 
gathering the results in a list. To copy input lists or strings one~ 
and then do destructive operations is more efficient than to always 
use copying versions of functions. 

Copying vectors by using the COERCE or SUBSEQ function results in 
simple vectors (of the type SIMPLE-VECTOR, SIMPLE-STRING, 
SIMPLE-BIT-VECTOR, or SIMPLE-ARRAY) which can be manipulated by 
simpler, faster operations. Therefore, you can copy a vector to 
manipulate it quickly thereafter. However, to avoid numerous garbage Q 
collections, do not use copying versions of functions unless you must. 

NOTE 

Use destructive versions of functions with care, as 
shared data may be modified. 

CAR, CDR, and the other list-manipulating functions by default always 
check their arguments to make sure they are lists and not atoms. To 
increase the speed of list-intensive applications, properly declare 
all lists and use the optimization declaration SPEED= 2 or use SPEED 
= 3 and SAFETY= o. The CAR, CDR, RPLACA, and RPLACD functions each 
require one instruction when used with these declarations. Q 

A-4 



0 

0 

0 

0 

0 

PERFORMANCE HINTS 

If you frequently splice or concatenate lists, use a pointer to the 
middle or end of the list. This is faster than using the NTHCDR, 
MEMBER, APPEND, and NCONC functions on the entire list, as they always 
process from the beginning of the list. The fastest (and default) 
tests for the MEMBER, ASSOC, and RASSOC functions are EQ and EQL. 

Use property lists when you want values for keys to be. ~lobal in 
scope. Do not use property lists if the number of keys is fairly 
constant and known in advance. Instead, use structures and include a 
slot in the structure for a list to be used like a property list for 
the keys that change. 

Use association lists when you want values for keys to be dynamic in 
scope, since pushing entries onto the front of an association list 
shadows later entries. You can use dynamic variables as pointers into 
association lists to help you recall additions to the lists. 

A.1. 7 Strings, General Vectors, and Bit Vectors 

Simple-vectors are processed faster than nonsimple vectors (vectors 
with fill pointers, adjustable vectors, or displaced vectors). 
Simple-vectors take less space since they do not have separate array 
headers and they are created faster. 

Avoid using lists of characters when manipulating symbol names (that 
is, never implement EXPLODE or IMPLODE). Strings are fully supported 
in this language, unlike in older versions of LISP. Some common 
operations on simple strings use the VAX character instructions. 

Many data structures that used to be implemented with lists can be 
more efficiently implemented with simple-vectors (the default 
DEFSTRUCT representation). If the domain of a set is fixed and set 
operations are frequent, using simple bit vectors is much faster than 
using lists. Accessing or updating slots of a declared structure 
takes only one instruction given the appropriate declarations. 
Accessing or updating characters in a simple string or bits in a 
simple bit vector is slower than accessing or updating elements of a 
simple-vector; when accessing or updating characters in a simple 
string or bits in a simple bit vector, data must be converted between 
the internal representation and the LISP representation. For both 
characters and fixnums, this involves at least an ASHL instruction. 
However, there are specialized routines for handling simple strings 

iand simple bit vectors (for example, the STRING-UPCASE and BIT-AND 
functions with the proper declarations). 

These representations take less space than simple vectors that hold 
characters or bits. 

A-5 



PERFORMANCE HINTS 

A.1.8 Hash Tables 

Hash tables provide a good way of storing and accessing arbitraryO 
objects. Although some overhead is required for each access or store, 
the total time required is usually .reasonable even for large numbers 
of objects. VAX LISP hash tables use chains to resolve collisions. - . 
You can access hash tables that use the EQ and EQL functions faster 
than hash tables that use the EQUAL function, because the comparisons 
are faster. However, hash tables that use the EQ and EQL .functions 
must be completely rehashed after each garbage ·collection. Hash 
tables are preferable to lists and bit vectors for representing sets, 
when the number of objects may be large and extremely variable. 

A.1.9 Functions 

Compiled code is faster than interpreted code; when interpreted 
is evaluated, much consing occurs. 

Closures are slower than regular functions. 

code 
0 

You can compile single functions at·any time without using files. For 
example, to compile a function you have just defined, you can use 
(COMPILE 'FUNCTION-NAME) or (COMPILE NIL '(LAMBDA() , ••• ) if you want 
to create anonymous code to be stored and executed later. You can use Q 
the FUNCTION or FTYPE type specifier in a declaration or proclamation 
to inform the compiler about the types of the arguments and the return 
type of a function. 

A.2 DECLARATIONS 

This section describes how to use declarations to optimize LISP code. Q 
By default, most standard VAX LISP functions check their arguments for 
type and other attributes. The compiler can generate much faster code 
for many simple operations by assuming the arguments are of the 
correct type. Therefore, use declarations to supply this information. 

Whether the compiler takes advantage of declarations, and to what 
extent it does, is controlled by the OPTIMIZE declaration. Depending 
on the values of the optimization options, different code may be 
generated, given the presence of type declarations or the assumption 
of such type declarations. 

A-6 

0 



0 

0 

0 

0 

0 

PERFORMANCE HINTS 

NOTE 

Currently, the COMPILATION-SPEED option is ignored. 

The format for using the OPTIMIZE declaration and its options with the 
PROCLAIM and DECLARE functions is as follows: · • 

(PROCLAIM '(OPTIMIZE (SPEED x) (SAFETY y) (SPACE z))) 

or 

(DECLARE (OPTIMIZE (SPEED X) (SAFETY y) (SPACE z))) 

The possible switch values are: 

x=1,y=1,z=1 (the default) 

No particular optimizations done. Generally, type checking will 
be done on all arguments to LISP functions. 

x=2,y<2 

Observes user supplied declarations. Useful when some variables 
are guaranteed to be of the declared type and speed is desired, 
but when not all variables (such as function arguments) can be 
guaranteed to be correct. Some macros (such as DOTIMES and 
DOLIST) expand into code with these declarations already 
supplied. 

x>l,y=O 

Skips bounds checking for vector and array references. 

x=3,y=O 

x>y 

y=3 

Assumes correct argument types to many functions, such as CAR, 
SYMBOL-NAME, and SCHAR. Useful for guaranteed correct and 
debugged functions. Special variable references do not check for 
unbound values. 

Does tail recursion removal, if it can. 

The THE function generates tests for objects being the specified 
type. Useful for fixnum declarations to detect overflows into 
bignums. 

A-7 



PERFORMANCE HINTS 

x>z 

Tries to open-code some sequence functions. 
declarations. 

Observes in-line Q 
Explicit type checking code, such as (IF (CONSP X) ... ),_ is always 
executed regardless of a type declaration for X and the op~imization 
settings. Therefore, you can retain type checking and still increase 
the speed of execution by using declarations. In the following 
example, faster code is generated for incrementing .X by using the 
appropriate optimization settings without having to rebind X. 
Meanwhile, type checking is retained at the start of the function by 
using the explicit type checking code (IF (FIXNUMP X). 

(DEFUN FOO (X) 
(DECLARE (FIXNUM X)) 

(IF (FIXNUMP X) 
( LET . • . ( INCF X) .•. ) 
(ERROR •.. ))) 

Another function that always executes is COERCE, since it is assumed 
that a type check will be executed, even if no coercion needs to be 
done. 

Use fixnum and floating-point declarations for fast arithmetic. The 
· compiler needs to know the types of all the arguments (and for 

fixnums, the result type, too) before it can generate the fast, 
type-specific code available on a VAX. Floating-point operations with 
operands (and therefore results) of the same type can also generate 
fast code. 

Use simple-vector and similar array declarations for fast sequence and 
array operations. Declaring structures is equally helpful. 

0 

0 

The PROCLAIM and DECLARE functions are used to declare a function's Q 
arguments and results whenever the function is called. For example, 
when the proclamation (PROCLAIM '(FTYPE (FUNCTION (FIXNUM} 
SINGLE-FLOAT) MYFUNCTION)) is used, each time MYFUNCTION is called the 
arguments are automatically declared to be fixnums and its result is 
automatically declared to be a single-float. An FTYPE declaration 
does not automatically provide declaration of the LAMBDA-LIST variable 
in the function definition. 

It is important to provide type declarations, .especially for the 
SIMPLE-VECTOR, SIMPLE-STRING, and SIMPLE-BIT-VECTOR types, for the 
arguments to sequence functions. The compiler can generate fast code 
for many common cases such as calls without any keyword arguments. 

Multidimensional array operations also need declarations. Unlike the 
vector operations, multidimensional arrays need the actual (fixnum} · Q 
bounds for each dimension at compile-time, to generate efficient array 
indexing code. In these cases it is helpful to use the DEFTYPE macro 
or a macro that expands into a call to the. DECLARE function. 

A-8 



0 

0 

0 

0 

0 

PERFORMANCE HINTS 

The functions defined in the following examples will be compiled with 
either (1) type-checking code if SPEED is less than 2, or (2) 
non-type-checking code if SPEED equals 3 and SAFETY equals 0. 
However, the second example produces code that does not check the type 
of X but does check the type of (CDR X), when SPEED equals 2 and 
SAFETY is less than 2. This is because there is a declaration 
allowin9 the optimization of the CDR operation, but no decla\ation for 
the CAR operation. 

(DEFUN EXAMPLE1 (X) 
( CADR X)) 

(DEFUN EXAMPLE2 (X) 
(DECLARE (LIST X)) 
( CADR X)) 

In the following examples, a call to EXAMPLE3 always produces generic 
code, since it is not known that the result of the addition will 
necessarily be a fixnum. The declaration in EXAMPLE4 provides that 
information, and all the arithmetic operations are fixnum-specific. 

(DEFUN EXAMPLE3 (X Y) 
(DECLARE (FIXNUM X Y)) 
(+ X Y)) 

(DEFUN EXAMPLE4 (X Y) 
(DECLARE (FIXNUM X Y)) 
(THE FIXNUM (+ X Y))) 

The next example returns a list of the first, indexed, and last 
characters. With SPEED greater than or equal to 2 and SAFETY equal to 
0, all the character fetching from the STRING argument will be very 
fast. The LENGTH operation will also be very fast,· since it need not 
check for the type of the argument like the generic sequence function 
normally would. (This also means executing the form (LENGTH (THE LIST 
X)) is faster than executing the form (LENGTH X).) If SAFETY is 
greater than 0, bounds checking is still done, but type checking (of 
the string, for example) may not be, depending on what optimizations -
are used. 

(DEFUN EXAMPLES (STRING INDEX) 
(DECLARE 

(SIMPLE-STRING STRING) 
( FIXNUM INDEX)) 

(LIST (AREF STRING 0) 
(CHAR STRING INDEX) 
(SCHAR STRING (1- (LENGTH STRING))))) 

Array access is fast in the following code: 

A-9 



PERFORMANCE HINTS 

(EVAL-WHEN (COMPILE LOAD EVAL) 
(DEFCONSTANT I-SIZE 3) 
(DEFCONSTANT J-SIZE 4) 
(DEFCONSTANT K-SIZE 5) 
(DEFTYPE FOOARRAY (&OPTIONAL ELEMENT-TYPE) 

'(SIMPLE-ARRAY ,ELEMENT-TYPE (,I-SIZE ,J-SIZE 

( DE FUN FOO ( ) 
(DECLARE (TYPE (FOOARRAY T) X) 

(TYPE (FOOARRAY STRING-CHAR) Y)) 

(DOTIMES (I I-SIZE) 
(DOTIMES (J J-SIZE) 

(DOTIMES (K K-SIZE) 
(SETF (AREF XI J K) 
(FOO (AREF YI J K))))))) 

A.3 PROGRAM STRUCTURE 

,K-SIZE)))) 
• • 

0 

0 

Avoid using closed-over variables (that is, lexical variables used in Q 
functions created within their scope). References to closed-over 
variables are slower than references to true local variables (which 
are stack allocated), because closed-over variables must be found in 
simple vectors that represent the lexical environment that may take 
several instructions. 

In tight inner loops, use macros or in-line functions rather than 
called functions. Always compile macros, functions declared in-line, 
and calls to the DEFSTRUCT macro before compiling code that uses them. 
Normally, you proclaim a function in-line just before de.fining it. Q 
Any calls to that function will then have the body expanded in-line at 
the calling site, unless you use the NOTINLINE declaration. If you 
declare or proclaim a function using the INLINE declaration without 
later providing a definition, a compiler error will result because no 
definition was provided for an in-line function. 

The FUNCALL and APPLY functions are slower 
whose names are known at compile time. 
system must check the following: 

• Whether the object is a function 

than calls to functions 
This is because the LISP 

• What kind of function (by symbol or 
interpreted or compiled) 

function object, 

A-10 

0 



0 

0 

0 

0 

0 

PERFORMANCE HINTS 

• The number· of arguments the function takes 

The FUNCALL and APPLY functions are usually two to three times slower 
than a compiled call to a fixed function with a fixed number of 
arguments. 

The CATCH 
mechanism 
function. 

special form and 
are slower than 

operations 
calling a 

that use 
function, 

• • the catch-throw 
using the APPLY 

No more penalty is inflicted for using the lambda-list keyword 
&OPTIONAL than for using required arguments. However, an &REST 
variable causes a list to be created for those arguments passed after 
the required and &OPTIONAL arguments~ &KEY arguments are the slowest; 
they have the consing overhead of &REST keyword, plus the run-time 
code to parse that list and assign the proper values for the given 
keywords. 

Using multiple values requires less time and space than consing a list 
or vector of results. Both methods are slower than just returning 
single values. (Consing requires garbage collections later.) 

The READ function is slower than the READ-LINE or READ-CHAR function, 
since READ has to parse the input according to the current LISP reader 
syntax, create numbers, and intern symbols. The READ-CHAR function is 
slower than the READ-LINE function, due to the general overhead of 
streams. 

The WRITE, FORMAT, and PPRINT functions are slower than explicit calls 
to the PRINC and PRINl functions. 

Using the xxx-TO-STRING functions for getting a stripg representation 
of a LISP object is faster than using the WITH-OUTPUT-TO-STRING 
function. The WITH-OUTPUT-TO-STRING function must create a stream and 
use the usual stream functions. The READ-FROM-STRING and 
PARSE-INTEGER functions are faster than the WITH-INPUT-FROM-STRING 
function for the same reason. 

The compiler compiles each top-level form in a file when it compiles a 
file by surrounding arbitrary forms in the following manner: 

(PROGN (DEFUN #:TOP-LEVEL-FUNCTION() arbitrary-top-level-form) 
(#:TOP-LEVEL-FUNCTION)) 

1 An arbitrary-top-level-form is any LISP form other than a call to the 
EVAL-WHEN or PROGN special form, the DEFUN or DEFMACRO macro, the 
PROCLAIM function, or a package function. Creating, compiling, 
dumping, and loading these temporary functions takes time, so it is 
wise to gather many arbitrary forms into functions of reasonable size. 
Typically, such forms can be calls to data initialization functions 
(such as (SETF (GET ••• ) ••. )). To have these function calls inside a 
function definition anyway is desirable so that you can do selective 
initialization from the program without having to reload the file. 

A-11 



PERFORMANCE HINTS 

A.4 COMPILER REQUIREMENTS 

The PROCLAIM, PROVIDE, REQUIRE, and package functions like USE-PACKAGEQ 
and IN-PACKAGE must be used at "top level" for the compiler to 
recognize them. A top-level form is defined as a form without 
surrounding parentheses, or a form at top level within a call to 
either the EVAL-WHEN or PROGN special form. Uses of the D~UN macro 
and anonymous lambdas that would get evaluated in code get compiled as 
separate functions (closures if they use closed-over variables). This 
is true in the following call to the DEFUN macro and to the .anonymous 
lambda that follows. 

(LET ((COUNTER 0)) (DEFUN NEXT() (INCF COUNTER))) 

(TRY #'(LAMBDA (X) (PRINT X))) 

If you want functions as data objects (that is, in data structures Q 
where they would not be processed during normal evaluation), you must 
compile them explicitly. This is exemplified by the difference 
between the following: 

and 

(LIST #'(LAMBDA() (FOO)) 
# ' ( LAMBDA ( ) ( BAR ) ) 

' ( # ' ( LAMBDA ( ) ( FOO ) ) 
#'(LAMBDA() (BAR)) 

In the first case, the compiler recognizes the functions and creates 
compiled-function objects for them. In the second case, the compiler 
does not notice the fucntions since the entire form is quoted. 

0 

If you leave the code in the list at run time, the explicit calls to 
the FUNCALL function on each element of the list would run the code 
interpretively. So, to have compiled code in the list, you must fillo 
it with compiled functions. You can do this at run time by using the 
COMPILE function with NIL as the first argument, or you can fill the 
list with compiled functions once, when loading. Or, you can compile 
a file, using macros that expand into definitions of functions with 
names created using the GENSYM function. Then, have an initialization 
function fill up the list with those compiled functions at load time. 

A-12 

0 



0 

0 

0 

0 

0 

INDEX 

Page numbers in the Index in the form c-n (for example, 2-13) refer to 
a page in Part I. Page numbers in the form n (for example, 25) refer 
to a page in Part II. - • 

? 
debugger command 

description, 4-13 
(table), 4-10 

stepper command 
description, 4-26 
(table), 4-25 

-A-

Abbreviating output by lines, 
5-25 

Abbreviating output depth, 5-24 
Abbreviating output length, 5-24 
Abbreviating printed output, 5-23 
Active stack frame, 4-4 
Alien structure facility, 1-5 
ALL debugger command modifier, 

4-12 
with BACKTRACE command, 4-17 
with BOTTOM command, 4-15 
with DOWN command, 4-15 
with TOP command, 4-15 
with UP command, 4-16 

:ALLOCATION keyword 
MAKE-ARRAY function, 6-15, 61 

APROPOS function 
debugging information, 4-1 
description, 1 
help, 1-6 
(table), 6-25 

APROPOS-LIST function 
debugging information, 4-1 
description, 3 
(table), 6-25 

,ARGUMENTS debugger command 
modifier, 4-12 

with SET command, 4-16 
with SHOW command, 4-17 

ARRAY-DIMENSION-LIMIT constant, 
6-6 

ARRAY-RANK-LIMIT constant, 6-6 

ARRAY-TOTAL-SIZE-LIMIT constant, 
6-6 

Arrays, 6-6 
constants, 6-6 
creating, 61 
specialized, 6-6, 61 

-B-

BACKTRACE 
debugger command 

description, 4-17 
(table), 4-10 

stepper command 
description, 4-27 
(table), 4-24 

BIND-KEYBOARD-FUNCTION function 
description, 4 
keyboard functions, 6-20 

Binding stack, 80 
Bits attribute, 6-5 
BOTTOM debugger command 

description, 4-15 
(table), 4-10 

BREAK function, 18 
binding control character to, 4 
debugging information, 4-1 
description, 7 
invoking the break loop, 4-4 
(table), 6-25 

Break loop, 1-4, 4-4 to 4-7 
exiting, 4-5, 7, 18 
invoking, 4-4, 7 
message, 4-5 
prompt, 4-5 
using, 4-6 
variables, 4-7 

*BREAK-ON-WARNINGS* variable, 
4-14 

defining an error handler, 3-6 
WARN function, 111 

Index-1 



·INDEX 

-c-

CALL debugger command modifier, 
4-12 

with SHOW command, 4-17 
Call-out facility, 1-5 
Cancel character, 8 
CANCEL-CHARACTER-TAG tag 

description, 8 
CERROR function, 109 

defining an error handler, 3-7 
error messages, 3-3 

CHAR-BITS-LIMIT constant, 6-6 
CHAR-CODE-LIMIT constant, 6-6 
CHAR-FONT-LIMIT constant, 6-6 
CHAR-NAME-TABLE function, 6-6 

description, 9 
Characters, 6-5 

attributes, 6-5 
comparisons, 6-5 
constants, 6-6 
names, 9 

Code attribute, 6-5 
Command levels, 90 

debugger, 4-8 
stepper, 4-27 
tracer, 4-34 

Command modifiers 
See Debugger 

COMMON LISP, 1-2 
COMPILE (-c) option 

compiling files, 2-7 
description, 2-15 
modes, 2-14 
optimizing compiler, 6-22 
.(table), 2-12 
with ERROR_ACTION option, 2-16 
with INITIALIZE option, 2-17 
with LISTING option, 2-19 
with MACHINE_CODE option, 2-19 
with NOOUTPUT_FILE option, 2-22 
with NOWARNINGS option, 2-25 
with OPTIMIZE option, 2-21 
with OUTPUT_FILE option, 2-22 
with VERBOSE option, 2-23 

COMPILE function, 1-3, 11, 107 
compiler restrictions, 6-21 
compiling functions and macros, 

2-6 
COMPILE-FILE functio, 1-4 
COMPILE-FILE function, 15, 16 

compiler restrictions, 6-21 

COMPILE-FILE function (Cont.) 
compiling files, 2-7 
description, 12 to 14 
(table), 6-25 

*COMPILE-VERBOSE* variable 
default for :VERBOSE_k,yword, 

13 
description, 15 

*COMPILE-WARNINGS* variable 
default for :WARNINGS keyword, 

13 
description, 16 

COMPILEDP function 
description, 11 

Compiler, 1-3, 6-21 to 6-24 
optimizations, 2-21, 6-22 to 

6-24, 12 
fast code, 6-23 
safe code, 6-23 

restrictions, 6-21 
COMPILE function, 6-21 
COMPILE-FILE function, 6-21 

Conditional new line directives, 
5-8 

Constructor function 
allocating static space, 6-15 

CONTINUE 
debugger command 

description, 4-14 
(table), 4-10 

function 
description, 18 
exiting the break loop, 4-5, 

7 
Control characters 

binding to functions, 6-20, 4 
returning information about 

bindings, 6-20, 51 
(table), 2-3 
unbinding from functions, 6-20, 

106 
Control·stack, 4-3 

debugger, 4-7 
overflow, 6-16 
stack frame 

See Stack frame 
storage allocation, 80 

Controlling indentation, 5-13 
Controlling margins, 5-4 
Controlling where new lines begin, 

5-11 

Index-2 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

INDEX 

CPU time 
displaying, 91 
garbage collector, 48 
getting, 50 

<CTRL/'\> 
recovering from an error, 2-3 

<CTRL/C> 
and CANCEL-CHARACTER-TAG, 8 
invoking the break loop, 2-4, 

4-5 
<CTRL/Z> 

suspending a process, 2-4 
:CURRENT keyword 

THROW-TO-COMMAND-LEVEL function, 
90 

Current package, 67 
Current stack frame, 4-7 

-D-

Data 
representation, 6-2 to 6-7 
structure, 1-1 

Data types 
arrays, 6-6, 61 

constants, 6-6 
specialized, 6-6 

characters, 6-5 
attributes, 6-5 
comparisons, 6-5 
constants, 6-6 
names, 9 

floating-point numbers, 6-3 
constants, 6-4 

integers, 6-2 
constants, 6-2 

numbers, 6-2 
package, 3 
packages, 1 
pathnames, 35 
strings, 6-7, 61 
vectors, 61 

DEBUG 
function 

debugging information, 4-1 
description, 19 
invoking the debugger, 4-8 

stepper command 
description, 4-26 
(table), 4-24-

DEBUG function 
binding control character to, 4 

:DEBUG keyword 
See *ERROR-ACTION* variable 

DEBUG-CALL 
function, 4-18 

description, 20 
:DEBUG-IF keyword • TRACE macro, 4-36, 94 
*DEBUG-IO* variable 

debugger, 4-8 
stepper, 4-20 

*DEBUG-PRINT-LENGTH* variable 
controlling output, 4-3 
description, 21 

*DEBUG-PRINT-LEVEL* variable 
controlling output, 4-3 
description, 22 

Debugger, 1-4, 4-7 to 4-20 
commands 

arguments, 4-11 
entering, 4-11 

descriptions, 4-13 to 4-17 
modifiers (table), 4-12 
(table), 4-10 

controlling output, 21, 22 
error handler, 3-2 to 3-4 
exiting, 4-9, 4-14 
invoking, 4-8, 4-26, 4-36, 19, 

94 
prompt, 4-8 
sample sessions, 4-18 
using, 4-9 

Debugging facilities, 1-4 
See also Break loop, Debugger, 

Stepper, and Tracer 
Debugging functions and macros 

(table), 4-1 
Declarations, 6-23 
Default directory 

changing, 23 
DEFAULT-DIRECTORY function, 23 

See also 
*DEFAULT-PATHNAME-DEFAULTS* 
variable 

description, 23 
*DEFAULT-PATHNAME-DEFAULTS* 

variable 
default directory, 23 
DIRECTORY function, 6-13, 35 
filling file specification 

components, 12 
resuming a suspended system, 87 
using, 6-13 

Index-3 



DEFINE-ALIEN-STRUCTURE macro 
allocating static space, 6-15 

DEFINE-FORMAT-DIRECTIVE macro 
description, 25 

DEFINE-GENERALIZED-PRINT 
-FUNCTION 

macro, 5-21 
DEFINE-GENERALIZED-PRINT

FUNCTION macro 
description, 28 

DEFINE-LIST-PRINT- FUNCTION 
macro, 5-19 _ 

DEFINE-LIST-PRINT-FUNCTION macro 
description, 30 

Defining list-print functions, 
5-19 

DEFMACRO macro 
creating programs, 2-5 

DEFUN macro 
creating programs, 2-5 

DELETE-PACKAGE 
function 

description, 32 
DESCRIBE function 

debugging information, 4-1 
description, 33 
help, 1-6 
(table), 6-25 

:DEVICE keyword 
pathname field, 6-10 

:DIRECTION keyword 
OPEN function, 6-19 

-1 directive, 5-6 
-% directive, 5-11 
-& directive, 5-11 

. directive, 5-6 
-=- directive, 5-11 
-@_ directive, 5-11 
-A directive, 5-28 
-- directive, 5-6, 5-11 
Directives for handling lists, 

5-16 
DIRECTORY function 

description, 35 
pathnames, 6-13 
(table), 6-25 

:DIRECTORY keyword 
pathname field, 6-10 

DO-ALL-SYMBOLS macro, 1, 3 
DO-SYMBOLS macro, 1, 3 
Documentation string, 33 

INDEX 

Double floating-point numbers, 
6-3 

DOUBLE-FLOAT-EPSILON constant, 
6-4 

DOUBLE-FLOAT-NEGATIVE-EPSILON 
constant, 6-4 

DOWN 
debugger command 

description, 4-15 
(table), 4-10 

' . 
debugger command modifier, 4-12 

with SEARCH command, 4-15 
DRIBBLE function 

debugging information, 4-2 
description, 37 
(table), 6-25 

:DURING keyword 
TRACE macro, 4-37, 95 

Dynamic memory, 2-20, 80, 87 
garbage collector, 6-15, 6-16 

-E-

Editor 
creating programs, 2-5 

:ELEMENT-TYPE keyword 
OPEN function,_ 6-19 

Enabling pretty printing, 5-3 
End-of-file operations, 6-18 
EQ function, 6-2 
EQUAL function, 6-12 
ERROR 

debugger command 
description, 4-16 
(table), 4-10 

function, 109 
defining an error handler, 

3-7 
error messages, 3-2 

Error 
listing 

file type, 1-9 
messages 

compiler, 16 
debugger, 4-16 
error handler, 75 
error-handler definition, 3-6 
format, 3-2 
warnings, 2-25, 16 

types, 3-2 to 3-5 

0 

0 

0 

0 

continuable, 3-3 Q 
fatal, 3-2 

Index-4 



0 

0 

0 

0 

0 

Error 
types (Cont. ) 

warning, 3-4, 111 
Error handler, 1-4, 38 

binding *UNIVERSAL-ERROR-
HANDLER* variable, 3-7 

creating, 110 
debugging information, 4-1 
defining, 3-5 
description, 3-1 
error message, 75 
invoking, 111 
UNIVERSAL-ERROR-HANDLER 

function, 109 
:ERROR keyword 

EXIT function, 39 
*ERROR-ACTION* variable, 38 

See also error_action option 
continuable error, 3-3 
defining an error handler, 3-6 
description, 38 
fatal error, 3-3 
WARN function, 111 
warning, 3-4 

*ERROR-OUTPUT* variable 
PRINT-SIGNALED-ERROR function, 

75 
Error-signaling functions, 109 

(table), 3-7 
ERROR_ACTION option, 2-16 

See also *ERROR-ACTION* 
variable 

description, 2-16 
fatal error, 3-3 
modes, 2-14 
(table), 2-12 
with INITIALIZE option, 2-17 

ESCAPE key 
terminal input, 6-18 

EVAL function, 1-1 
EVALUATE 

debugger command 
description, 4-13 
(table), 4-10 

stepper command 
description, 4-26 
(table), 4-24 

EXIT function 
description, 39 
exiting LISP, 2-2 

:EXIT keyword 
See *ERROR-ACTION* variable 

INDEX 

Extensions to the FORMAT function, 
5-5 to 5-17 

-F-

Fast-loading file, 
file type, 1-9 
loading, 56 
locating, 56 
producing, 12, 13 

File 

2-7, 2-15 • 

compiling, 2-6 
directory name, 1-8 
host name, 1-8 
loading, 2-5 
name, 1-7 

representation, 6-8 
organization, 6-19 
pathname, 1-7 
specification 

See also Pathnames, 
Namestrings 

defaults (table), 1-9 
type, 1-9 

File name representation 
See File 

-/FILL directive, 5-6 
FINISH stepper command 

description, 4-27 
(table), 4-25 

Floating-point numbers, 6-3 
constants (table), 6-4 
(table), 6-3 · 

Font attribute, 6-5 
FORMAT 

function, 5-5 to 5-17 
FORMAT directives 

user defined, 5-18 
FORMAT directives in VAX LISP, 

5-6 
Format Directives Provided with 

VAX LISP, 40 
FORMAT function 

break-loop messages, 7 
error messages, 3-7 
warning messages, 111 

Fresh line directive, 5-11 
Function 

compiled, 11 
compiling, 2-6 
defining, 2-5 
definition 

Index-5 



INDEX 

Function 
definition (Cont.) 

editing, 107 
pretty printing, 65 

implementation-dependent 
(table), 6-24 

interpreted, 11 
interrupt 

garbage collector, 6-20 
keyboard, 6-20 

creating, 4 
suspended systems, 6-20 

modifying, 2-6 
FUNCTION debugger command 

modifier, 4-12 
with SET command, 4-16 
with SHOW command, 4-17 

-G-

Garbage collector, 6-14 to 6-16 
available space, 6-16 
changing messages, 6-16 
control stack overflow, 6-16 
CPU time, 48 
displaying time, 91 
dynamic memory, 6-15, 6-16 
elapsed time, 46 
failure, 6-16 
frequency of use, 6-15 
interrupt functions, 6-20 
invoking, 43 
Jrtessage, 70 

See also *POST-GC-MESSAGE* 
variable 

messages, 44, 64 
See also *PRE-GC-MESSAGE* 

variable, *POST-GC 
-MESSAGE* variable 

run-time efficiency, 6-15 
static memory, 6-15, 61 
suspended systems, 2-26 

GC function 
description, 43 

*GC-VERBOSE* variable 
changing garbage collector 

messages, 6-16 
description, 44 

Generalized print functions, 5-21 
GENERALIZED-PRINT-FUNCTION

ENABLED-P 
function, 5-21 

GENERALIZED-PRINT-FUNCTION
ENABLED-P function 

description, 45 
GET-GC-REAL-TIME function 

description, 46 
GET-GC-RUN-TIME functio~ 

description, 48 
GET-INTERNAL-RUN-TIME function 

description, 50 
(table), 6-25 

GET-KEYBOARD-FUNCTION function, 4 
description, 51 
returning information about key 

bindings, 6-20 
Global 

definitions, 4-7 
variables, 4-7 

GOTO debugger command 
description, 4-15 
(table) , 4 -10 

-H-

Handling lists, 5-16 
Hash table 

comparing keys, 55 
initial size, 54 
rehash size, 52 
rehash threshold, 53 

HASH-TABLE-REHASH-SIZE function 
description, 52 

HASH-TABLE-REHASH-THRESHOLD 
function 

description, 53 
HASH-TABLE-SIZE function 

description, 54 
HASH-TABLE-TEST function 

description, 55 
HELP 

debugger command 
description, 4-13 
(table), 4-10 

stepper command 
description, 4-26 
(table), 4-25 

Help facilities 
debugger, 4-13 
LISP, 1-6 
stepper, 4-.26 
ULTRIX, 1-6 

Index-6 

0 

0 

0 

0 

0 



0 

0 

0 

0 

INDEX 

HERE debugger command modifier, 
4-12 

with BACKTRACE command, 4-17 
with SHOW command, 4-17 

:HOST keyword 
pathname field, 6-10 

-I-

-I directive, 5-6 
:IF-DOES-NOT-EXIST keyword 

LOAD function, 56 
OPEN function, 6-19 

:IF-EXISTS keyword 
OPEN function, 6-19 

If-needed new line directive, 
5-11 

Implementation notes, 6-1 to 6-25 
Improperly formed argument lists, 

5-28 
Indentation, 5-13 

preserving, 5-9 
INITIALIZE (-i) option 

description, 2-17 
loading files, 2-5 
modes, 2-14 
(table), 2-12 
with COMPILE option, 2-15 
with RESUME option, 2-23 
with VERBOSE option, 2-23 

Input/Output, 6-16 to 6-20 
end-of-file operations, 6-18 
file organization, 6-19 
functions, 6-19 
#\NEWLINE character, 6-17 
terminal input, 6-18 
terminal output, 6-18 
WRITE-CHAR function, 6-20 

Insignificant stack frame, 4-4 
Integers, 6-2 

constants, 6-2 
INTERNAL-TIME-UNITS-PER-SECOND 

constant, 46, 48, 50 
I Interpreted function definition 

restoring, 107 
Interpreter, 1-3 

creating programs, 2-5 
Interrupt functions 

garbage collector, 6-20 
Interrupt levels 

keyboard functions, 4 

-K-

Keyboard functions, 6-20 
creating, 4 
interrupt level, 4 

specifying, 5 _ 
passing arguments to,~ 
suspended systems, 6-20 

-L-

LEAST-NEGATIVE-DOUBLE-FLOAT 
constant, 6-4 

LEAST-NEGATIVE-LONG-FLOAT 
constant, 6-4 

LEAST-NEGATIVE-SHORT-FLOAT 
constant, 6-4 

LEAST-NEGATIVE-SINGLE-FLOAT 
constant, 6-4 

LEAST-POSITIVE-DOUBLE-FLOAT 
constant, 6-4 

LEAST-POSITIVE-LONG-FLOAT 
constant, 6-4 

LEAST-POSITIVE-SHORT-FLOAT 
constant, 6-4 

LEAST-POSITIVE-SINGLE-FLOAT 
constant, 6-4 

:LEVEL keyword 
BIND-KEYBOARD-FUNCTION function, 

4 
Lexical environment 

compiler restrictions, 6-21 
Limiting output by lines, 5-4, 

5-25 
-/LINEAR/ directive, 5-6 
:LINES keyword 

WRITE and WRITE-TO-STRING, 5-3 
LISP 

exiting, 2-2, 39 
implementation notes, 6-1 to 

6-25 
input/output 

See Input/Output 
invoking, 2-1 
program, 1-1 

compiling, 2-6 
creating, 2-4 
loading 

See File 
programming language, 1-1 
prompt, 2-1 
storage allocation, 1~1 

Index-7 



INDEX 

LISP 
storage allocation (Cont.) 

See also Memory ' 
List-print functions, 5-19 
LISTING (-L) option 

description, 2-19 
modes, 2-14 
(table), 2-12 
with COMPILE option, 2-15 
with NOOUTPUT_FILE option, 2-22 

Listing file, 2-19 
producing, 12 

:LISTING keyword 
COMPILE-FILE function, 12 

LOAD function, 2-5, 2-17 
converting pathnames, 6-12 
description, 56 
(table), 6-25 

*LOAD-VERBOSE* variable 
load message, 56 

Logical block, 5-5 
Logical names 

translating, 59 
Long floating-point numbers, 6-3 
LONG-FLOAT-EPSILON constant, 6-4 
LONG-FLOAT-NEGATIVE-EPSILON 

constant, 6-4 
LONG-SITE-NAME function 

description, 58 
(table), 6-25 

-M-

:MACHINE-CODE keyword 
COMPILE-FILE function, 12 

Machine-code listing, 2-19 
MACHINE-INSTANCE function 

description, 59 
(table), 6-25 

MACHINE-VERSION function 
description, 60 
(table), 6-25 

MACHINE_CODE (-a) option, 2-19 
modes, 2-14 
(table), 2-13 
with COMPILE option, 2-15 

Macro 
compiling, 2-6 
defining, 2-5 
implementation-dependent 

(table), 6-24 
modifying, 2-6 

MAKE-ARRAY function 
allocating static space, 6-15 ~ 
description, 61 '---"' 
(table), 6-25 

MAKE-HASH-TABLE function, 52 to 
SS 

MAKE-PATHNAME function-. 
constructing pathnames, 6-11 
setting pathnames, 6-12 

Memory, 80 
control stack, ·4-3 
dynamic, 2-20, 80, 87 

garbage collector, 6-15, 6-16 
read-only, 2-20, 80, 87 
static, 2-20, 61, 80, 87 

garbage collector, 6-15 
MEMORY _(-m) option O 

description, 2-20 
garbage collector, 6-15 
modes, 2-14 
(table), 2-13 

Miser mode, 5-5, 5-26, 72 
Miser-mode new line directive, 

5-11 
:MISER-WIDTH keyword 

WRITE and WRITE-To-·sTRING, 5-3 0 
Modifiers 

See Debugger 
Module, 78 
*MODULE-DIRECTORY* variable, 78 

description, 63 
Modules, 63 
MOST-NEGATIVE-DOUBLE-FLOAT 

constant, 6-4 
MOST-NEGATIVE-FIXNUM constant, O 

6-2 
MOST-NEGATIVE-LONG-FLOAT constant, 

6-4 
MOST-NEGATIVE-SHORT-FLOAT 

constant, 6-4 
MOST-NEGATIVE-SINGLE-FLOAT 

constant, 6-4 
MOST-POSITIVE-DOUBLE-FLOAT 

constant,. 6-4 
MOST-POSITIVE-FIXNUM constant, 

6-2 
MOST-POSITIVE-LONG-FLOAT constant, 

6-4 
MOST-POSITIVE-SHORT-FLOAT 

constant, 6-4 
MOST-POSITIVE~SINGLE-FLOAT 

constant, 6-4 0 
Index-8 



INDEX 

Multiline mode, 5-8 

O Multi 1 ~ r,,., n,r,flP new 1 ine di rec ti ve, 
5--~ 

0 

0 

0 

0 

-N-

- n, m/TABULAP.,, directive, 5-6 
-n/FILL/ directive, 5-6, 5-16 
- n/LINEAR; d1 i·ecti ve, 5-6, 5-16 
-n/TABULAR/ directive, 5-17 
: NAME keyvmrd 

pathname field, 6-10 
NAMESTRING function 

constructing namestrings, 6-12 
Namestrings, 6-8, 6-12 

See also File 
constructing, 6-12 

New lines, 5-11 
#\NEWLINE character 

description, 6-17 
-nr directive, 5-6 
NOLISTING option 

description, 2-19 
NOMACHINE_CODE option 

description, 2-20 
NOOPTIMIZE option 

description, 2-21 
NOOUTPUT_FILE (-n) option 

description, 2-22 
modes, 2-15 
(table), 2-13 
with COMPILE option, 2-15 

NORMAL debugger command modifier, 
4-12 

with BACKTRACE command, 4-17 
\IOVERBOSE option 

description, 2-23 
NOWARNINGS (-w) option 

description, 2-25 
modes, 2-15 
(table), 2-14 

Null lexical environment 
break loop, 4-7 
compiler restrictions, 6-21 

, tracer, 4-36, 94 
Numbers, 6-2 

-o-

OPEN function, 6-19 
Optimization qualities 

See Compiler 

OPTIMIZE declaration, 6-22 
:OPTIMIZE keyword 

COMPILE-FILE fun~tion, 12 
OPTIMIZE option 

descr1pt1on, 2-21 
modes, 2.-14 
ort::.mizing compiler,· 6!ii-22 
ttable), 2-13 
with COMPILE option, 2-15 

:OUTPUT-FILE keyword 
COMPILE-FILE function, 13 

OUTPUT_FILE (-0) option 
description, 2-22 
modes, 2-15 
(table), 2-13 
with COMPILE option, 2-15 

OVER stepper command 
description, 4-28 
(table), 4-25 

-P-

Packages, 1, 3 
current, 1, 3, 67 

PARSE-NAMESTRING function 
constructing pathnames, 6-11 
setting pathnames, 6-12 

PATHNAME function 
constructing pathnames, 6-11 

Pathnames 
See also File 
constructing, 6-11 
default directory, 23 
description, 6-9 
DIRECTORY function, 35 
fields, 6-10 

(table), 6-10 
functions, 6-13 

Per-line prefix, 5-15 
Per-line prefixes 

preserving, 5-9 
:POST-DEBUG-IF keyword 

TRACE macro, 4-36, 94 
*POST-GC-MESSAGE* variable, 44 

changing garbage collector 
messages, 6-16 

description, 64 
:POST-PRINT keyword 

TRACE macro, 4-36, 95 
PPR INT 

function, 5-2 

Index-9 



INDEX 

PPRINT-DEFINITION 
function, 5-2 

PPRINT-DEFINITION function 
description, 65 

PPRINT-PLIST 
function, 5-2 

PPRINT-PLIST functi0~ 
description, 67 

:PRE-DEBUG-IF keyword 
TRACE macro, 4-36, 94 

*PRE-GC-MESSAGE* variable, 44 
changing garbage collector 

messages, 6-16 
description, 70 

:PRE-PRINT keyword 
TRACE macro, 4-36, 95 

Prefix, 5-14 
per-line, 5-15 

Preserving indentation, 5-9 
Preserving per-line prefixes, 5-9 
Pretty printer, 1-4 

controlling margins, 73 
miser mode, 72 

Pretty printing, 5-1 to 5-28 
:PREVIOUS keyword 

THROW-TO-COMMAND-LEVEL function, 
90 

Print control variables, 5-3 
:PRINT keyword 

LOAD function, 56 
TRACE macro, 4-36, 94 

*PRINT-LENGTH*, 5-24 
*PRINT-LEVEL*, 5-24 
*PRINT-LINES*, 5-4, 5-25 
*PRINT-LINES* variable 

description, 71 
*PRINT-MISER-WIDTH*, 5-26 

variable, 5-5 
*PRINT-MISER-WIDTH* variable 

description, 72 
*PRINT-RIGHT-MARGIN*, 5-26 

variable, 5-4 
*PRINT-RIGHT-MARGIN* variable 

description, 73 
PRINT-SIGNALED-ERROR function 

defining an error handler, 3-6 
description, 75 

*PRINT-SLOT-NAMES-AS-KEYWORDS* 
variable 

description, 77 
PROCLAIM function, 6-22 

Prompt 
break loopr 4-5 
debugger, 4-8 
stepper, 4-20 
top-level, 2-1 

changing, 92 
vaxlisp, 2-1 

Property list 
pretty-print, 67 

-Q-

QUICK debugger command modifier, 
4-12 

with BACKTRACE command, 4-17 
QUIT 

debugger command, 4-9 
description, 4-14 
(table), 4-10 

stepper command 
description, 4-27 
exiting stepper, 4-21 
(table), 4-25 

-R-

READ-CHAR function 
#\NEWLINE character, 6-17 
terminal input, 6-18 

Read-only memory, 2-20, 80, 87 
Real time 

displaying, 91 
garbage collector, 46 

REDO debugger command 
description, 4-14 
(table), 4-10 

Relative tabbing, 5-16 
REQUIRE function, 63 

description, 78 
(table), 6-25 

RESUME (-r) option, 2-26, 87 
description, 2-23 
modes, 2-15 
(table), 2-.13 
with INITIALIZE option, 2-17 
with MEMORY option, 2-20 

RETURN 
debugger command 

description, 4-14 
(table), 4-10 

key 
as a stepper command, 4-28 

Index-10 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

INDEX 

RETURN 
key (Cont.) 

entering 
debugger command arguments, 

4-11 
debugger commands, 4-10 
stepper commands, 4-24 

terminal input, 6-18 
stepper command 

description, 4-28 
(table), 4-25 

:RIGHT-MARGIN keyword 
WRITE and WRITE-TO-STRING, 

ROOM function 
debugging information, 4-2 
description, 80 
specifying memory, 2-20 
(table), 6-25 

Run-time efficiency, 6-15 

-s-

SEARCH debugger command 
description, 4-15 
(table), 4-10 

SET debugger command 
description, 4-16 
(table), 4-10 

SETF macro 

5-3 

changing the default directory, 
23 

setting pathnames, 6-12 
Shell commands 

vaxlisp, 2-1 
Short floating-point numbers, 6-3 
SHORT-FLOAT-EPSILON constant, 6-4 
SHORT-FLOAT-NEGATIVE-EPSILON 

constant, 6-4 
SHORT-SITE-NAME function 

description, 83 
(table), 6-25 

SHOW 
debugger command 

description, 4-17 
(table), 4-11 

stepper command 
description, 4-27 
(table), 4-25 

Significant stack frame, 4-4 
SIGQUIT signal 

and CANCEL-CHARACTER-TAG, 8 

Single floating-point numbers, 
6-3 

SINGLE-FLOAT-EPSILON constant, 
6-4 

SINGLE-FLOAT-NEGATIVE-EPSILON 
constant, 6-4 

Source file 
compiling, 12 
file type, 1-9 
loading, 56 
locating, 56 

. !J 

Specialized arrays, 
Stack frame, 4-3 

active, 4-4 
current, 4-7 
insignificant, 4-4 
number 

6-6 

debugger command 
4-12 

argument, 

stepper output, 4-22 
tracer output, 4-34 

significant, 4-4 
*STANDARD-OUTPUT* variable 

LOAD function, 56 
PPRINT-DEFINITION function, 65 
PPRINT-PLIST function, 68 

:STATIC keyword 
See :ALLOCATION keyword 

Static memory, 2-20, 61, 80, 87 
garbage collector, 6-15 

Status return, 39 
STEP 

debugger command 
description, 4-14 
(table), 4-11 

macro 
debugging information, 4-2 
invoking stepper, 4-20 

stepper command 
description, 4-28 
(table), 4-25 

Step 
macro 

description, 84 
*STEP-ENVIRONMENT* 

variable, 4-28 
description, 85 

*STEP-FORM* 
variable, 4-28 

description, 86 
:STEP-IF keyword 

TRACE macro, 4-36, 95. 

Index-11 



INDEX 

Stepper, 1-4, 4-20 to 4-32 
commands 

arguments, 4-25 
descriptions, 4-26 to 4-28 
(table), 4-24 

exiting, 4-21, 4-27 
invoking, 4-14, 4-20, 4-36, 84, 

95 
output, 4-21 

controlling, 21, 22 
prompt, 4-20 
sample sessions, 4-31 
using, 4-24 

Storage allocation, 1-1 
See also Memory 

Streams, 87 
Strings, 6-7 

creating, 61 
:SUCCESS keyword 

EXIT function, 39 
Suffix, 5-14 
:SUPPRESS-IF keyword 

TRACE macro, 4-37, 95 
SUSPEND function 

creating suspended systems, 
2-26 

description, 87 
Suspended systems, 87 

creating, 2-26 
file type, 1-9 
garbage collector, 2-26 
Internal time, 48 
keyboard functions, 6-20 
real time, 46 
resuming, 2-23, 2-26 

symbolic expressions, 1-1 

-T-

-T directive, 5-15 
Tab directive, 5-15 
Tabs, 5-15 
-/TABULAR/ directive, 5-6 
Terminal 

input, 6-18 
*TERMINAL-IO* variable 

BIND-KEYBOARD-FUNCTION function, 
5 

end-of-file operations, 6-18 
TERPRI function 

#\NEWLINE character, 6-17 

THROW-TO-COMMAND-LEVEL function 
description, 90 

TIME macro 
debugging information, 4-2 
description, 91 
(table), 6-25 

TOP 
debugger command 

description, 4-15 
(table) , 4-11. 

debugger command modifier, 4-12 
with BACKTRACE command, 4-17 

:TOP keyword 
THROW-TO-COMMAND-LEVEL function, 

90 
Top-level loop 

prompt, 2-1 
variables, 2-2 

*TOP-LEVEL-PROMPT* variable 
description, 92 

TRACE macro 
debugging information, 4-2 
description, 93 
enabling the tracer, 4-33 
options, 4-35 
(table), 6-25 

*TRACE-CALL* 
Variable 

description, 104 
variable, 4-37 

*TRACE-OUTPUT* variable 
stepper, 4-20 
tracer, 4-32 

*TRACE-VALUES* 
variable, 4-38 

description, 105 
Tracer, 1-4, 4-32 to 4-39 

disabling, 4-33 
enabling, 4-33, 93 
options 

adding to output, 4-36 
defining when to trace a 

function, 4-37 
invoking the debugger, 4-36 
invoking the stepper, 4-36 
removing information from 

output, 4-37 
options (table), 94 
output, 4-34 

controlling, 21, 22 
: TYPE keyword. 

pathname field, 6-10 

Index-12 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

INDEX 

-u-

ULTRIX commands 
vaxlisp, 1-3 

ULTRIX file specification 
See File 

UNBIND-KEYBOARD-FUNCTION function, 
4 

description, 106 
unbinding control characters, 

6-20 
UNCOMPILE function 

description, 107 
retrieving interpreted 

definitions, 2-6 
Unconditional new line directive, 

5-11 
UNDEFINE-LIST-PRINT-FUNCTION 

macro, 5-20 
UNDEFINE-LIST-PRINT-FUNCTION 

macro 
description, 108 

UNIVERSAL-ERROR-HANDLER function, 
3-1 

defining an error handler, 3-6 
description, 109 

*UNIVERSAL-ERROR-HANDLER* 
variable, 3-5, 109 

description, 110 
UNTRACE macro 

debugging information, 4-2 
disabling the tracer, 4-33 

UP 
debugger command 

description, 4-16 
(table), 4-11 

debugger command modifier, 4-13 
SEARCH debugger command, 4-15 

stepper command 
description, 4-28 
(table), 4-25 

User defined FORMAT directives, 
5-18 

-v-

Variable 
print control, 5-3 

vaxlisp 
command, 1-3, 2-1 

option descriptions, 2-9 to 
2-25 

vaxlisp 
command (Cont.) 

option modes (table), 2-14 
options (table),. 2-12 

Vectors 
creating, 61 

VERBOSE (-v} option 
description, 2-23 
loading files, 2-5 
modes, 2-15 
(table}, 2-13 
with COMPILE option, 2-15 
with INITIALIZE option, 2-17 
with LISTING option, 2-19 
with NOOUTPUT_FILE option, 2-22 

VERBOSE debugger command modifier, 
4-13 

with BACKTRACE command, 4-17 
:VERBOSE keyword 

COMPILE-FILE function, 13, 15 
LOAD function, 56 

:VERSION keyword 
pathname field, 6-10 

-w-

-w directive, 5-6 
WARN function, 109 

description, 111 
error messages, 3-4 
(table), 6-25. . 

WARNING function 
defining an error handler, 3-7 

:WARNINGS keyword 
COMPILE-FILE function, 13, 16 

WARNINGS option 
modes, 2-15 
(table), 2-14 
with COMPILE option, 2-15 

WHERE debugger command 
description, 4-16 
(table), 4-11 

:WILD keyword 
See :TYPE and :NAME keywords 

WITH-GENERALIZED-PRINT-FUNCTION 
macro, 5-22 

WITH-GENERALIZED-PRINT-FUNCTION 
macro 

description, 112 
WRITE 

FORMAT directive, 5-7 

Index-13 



WRITE function 
pretty-printing control 

keywords, 5-3 
WRITE-CHAR function, 6-19, 6-20 

#\NEWLINE character, 6-17 

INDEX 

WRITE-STRING function, 6-17 
WRITE-TO-STRING function 

pretty-printing control 
keywords, 5-3 

Index-14 

0 

0 

0 

0 

0 


	Contents
	Preface
	Part 1: VAX LISP/ULTRIX system concepts and facilities
	1. Introduction to VAX LISP
	2. Using VAX LISP
	3. Error handling
	4. Debugging facilities
	5. Pretty printing and using extensions to FORMAT
	6. VAX LISP/ULTRIX implementation notes

	Part II: VAX LISP/ULTRIX function, macro, and variable descriptions
	Appendix A: Performance hints
	Index



