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1. Protected temporary storage. 

When a routine is defil'led recursively as are mSRlist and .£ill 

{that i~ ~hen the routine itself occurs in the program defining the 

routine, )!ertain s 'pecial problems with temporary storage a.rise. Speci­

fically, the execution of the routine as a subroutine or itself makes 

use of the same temporary storage registers. There are a number of ~ays 

to avoid a conflict over temporary storage, and after much argument the 

following solution has been adopted. Those temporary storage registers 

lllhich should be preserved tillen the routine uses a subroutine lfhich may 
." a 

.. , use the ~~broutine itself,torID~single block of consecutive registers 

private to the routine ~hich ~,r. called the block of protec~e~ tempo£a~l 

storage of this routine. The register in ~hich IR4 is stored is also 

included in this block. Except for the register in ~hich IR4 is stored 

the routine is required to be transparent to the registers ot the block: 

that is the contents of this bloc~ must be the same when the routine 

exits as trey were when it was entered. In order for the routine to 

'be 9~~e to nse the registers of the block it must save them before it 

uses them and restore them aftervards. The situation is then similar 

to the SHARE convention on IRl and IR? They are saved by a routine 

which puts them on what is ce.lled the public Bush dow list 01' PPDL g 

and before the main routine exits they are restored from this list. 

The SAVE and UNSAVE routines are used as follows; a program using them 

might be 

SID RSl,4 

TSX SAVE,4 

RS1+1,O,5 

••• 

••• (program that uses RS2 to RS5) 

. . . 
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RS5 

Rs4 

RS3 

RS~ 

RSI 

T5X UNSAVE,4 

RSl+l t O,5 

LXD RSl,4 

TRA 1,4 
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iba raason that IR4 is handled differently from the other 

quantities that have to be saved is tbat it is used to enter SAVE 

and UNSAVE and therefore must be saved before SAVE is entered and 

restored after the exit from UNSAVE. 

This procedure for t~ndl1ng protected temporary storage haD 

another virtue which sho~s up in the routine for differentiation 

described 14t~~' . In the multiplication case the program arising 

frOM the first calls its argument J and the program arising 

from the second must use this quantity J to compare ~ith K and 

must also kave V vhich is one of the arguments of the original 

~. If the argument J ot the first is stored in a protected 

temporary storage register, it will be there vhen the routine compiled 

from the second wants it in spite of the fact that the earlier values 

of K on the second maplist \Jill have used Sill. The ganeral property 

of the present system of handling protected te~porary storage 1s that 

the values stored therein are accessible to all explicitly written 

lower level routines hIlt are not changed either by them or by the use 

of the original routine as a subroutine. (As an aside, it may be 

remarked that if an attempt ~ere made in the ~ routine to expand 

out one of the references to ~ in it by substituting the definition 
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of diff there would occur a collision of bound variables (unless the .......... 
names vere changed) and that this collision would .reflect itself 

programwise in a collision of temporary storage. Tae relation be­

t~een bound variab'ds and protected temporary storage is close and 

might be worth a systematic investigation.) 
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2. A Revised Version of "Maplist" 

2.1 Problems posed by the old maplist. 

The version of mapUs..! 1n memo 1 1mS wrl tten "mapUst(t,.Y ,£(J»ef 

where J 1s a dummy variable ~hlcb ranges over the address parts of 

the words in the list t and f(J) was an expression in J. This 

version hadtvo serious defects. First, the location of t~e word in 

which J vas stored ~as frequently needed. The second turned up when 

t tried to write the SAP program for maplist. The designation of J 

as the name of the indexing variable cannot conveniently be done in the 

calling sequence of mapl1st. Instea.d lje do it in specifying the functi,on 

f using the Church notation for functional abstraction if necessary. 

In addition to the above mentioned defects the old version was ambiguous 

in that it did not say how words of the three types should be treated. 

The new JIll'Dlis;t is written "maplist(L,f)Gt. Its value is the loca­

tion of a list formed from free storage \jhose elements eor'respond 

in a 1-1 ~~ with the elements of L. The element of the new list Which 

corresponds to the element of the old list in location J has address 

p9.rt f(J) . 

The program for maplist can be written. 

maplist (T"f) ::- <r, - 0-)0, Heons (f(TJ), maplist (cdr(L) ,f»} 

A SAP version of this m8nlist is given in tbe appendix to this memor­

andum. It uses the programming convention that the argume~ts aTe given 

to rnaplist in the ae and the mq that tbe return is by TRA 1,4, and that 

the function f is given in the form of an instruction TXL F where F 

is the address of a routine fOIl computing f which expects its argument 

in the ACt returns its result in the I.e, and returns by TRA 1,4. 
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2.2 Functional abst~action - The Church A os. 

r-' In order to be able to use forms in the definition of the 

r 

functions which are the arguments of maplist it 1s necessary to use 

functional abstraction as developed by Church. We digress from the 

subject or pro~mmlng into mathematical logic in order to explain 

the idea of functional abstraction. 

Ve shall call an expression t a functional expression when ·we 

have given rules for assigning a value to expressions such as £(3) 
• 

or £(3,4) according to the number of arguments f is supposed to take. 

An expression such as x2 + y does not meet this requirement because} 

should we write (x2 + 1)(3,4 ), l!1hich no-one does, it uould be ambigu­

ous whether b~ meant 3 to replace x or y. Other difficulties 

also arise. To clarify this matter Church invented his ~-operator. 

(Ax) . e(x)!1 where t,(x) is seme expression in the symbOl X, denotes 

the function whose value for a given argument is to be obtained by 

·substituting that argument for x in the expression~(x) and evaluat­

ing that expression. Thus tSx) .x2 denotes the function which squares 

its a.rgument. (~r'l).{x2 + 1) 1s the function whose value is obtained 

by substituting the first argument for x and the second argument for y. 

Thus (1\ xy). (x2 + 1)(3,4) ~ 13 and (:~X1). (x:2 + 1)(4,3) e 19. 

The letter A serves as a quantifier in that the variable on which it 

opera tes becomes bOlmd . and can be fel>laced by another variable 

provided tbit-iS done everywhere it occurs in the expression on wbich 

1\ operates and provided the nev variable does not occur in this ex-
' 22 pression. Thus we can write (1\ xY).(X -\- y) -= (1\xu).(x + u). 
I 2 

An expressio, x + 'I m thout 1\ t s 1s called a Lorm and thus we may say 

that the 1\ -~perator has the effect of transforming forms into functions. 

/ 
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The use of the]l. -opera. tor and its propertie E are fully described 

in Church's tract, The Calculi of 1\ -CR,uwsiol'!. \fhicb appeared as an 

Annals of Mathe_tics Study. 

For no~ at 1eas\ tiS only need the simplest properties ot the 

1\ -operator. We sball write A (J,~) for the function ~ho~e value is 

obtained by substituting the argument for J in the expression ~ 

and use a similar notation for functions or several variables. Thus 

1\ (J,J*J+1) denotes the function whose value is obtained by squaring 

the arg~ment and adding 1. The function ~hich we have written abaTe 

2 
(1\ xy).(x +·1) tlill be written 7dx,y,rx+ 1) 1n our programming 

system. 
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2.3 An example 
As an example of the use of the new maplist and of 

the use of functional abstraction we sball rewrite the 
routine for differentiating simple algebraic expressions. 
In addition to the changes occasioned by the new mapllst 
we shall change the notation we used for constants and the 
identity function and make the routine one ~lhlch can per­
form partial differentiation with respect to a given variable. 
We need the following conventions for the representation 
of expressions by list structures: 
1. As before a Bum or product 1s represented by a list whose first 

\oJorCl has ~lus or times in ita address part anc;l \Ilhoae sub­
sequent elements are words containing the expressions to 
be added or multiplied. 
2. A constant or variable is represented by the location 
of its property list. 

The routine for dlfferent;latlng the expression represented 
by the list structure starting in location L with respect 
to the variable V is: 
diff(L, V) = (L == V~Cl,car(L) :;; O---lCO,car(L) .. plus---4 
cons(plus,maplist(cdr(L),A(J,dlff(car{J),V}»),car(L) = times ~ 
cons(plus,maplist(cdr(L),A(J,cons(times,maplist(cdr{L),A(K, 
(J F K~ c'opy( car{K» # l--? diff( car(K}, V»»»», I ~error) 

In this formula CO and Clrepresent the constants 0 
and I resp~ctively. 

Tentat1vely, we expect that an expression maplist (L,A(J,~») 
will be compiled as follows. As mentioned earlier maplist must 
be supplied its functional argument in the form of an in­
struction TXL for a suitable location F. The program in F 
will begin STO J and from then on will simply be a program 
for evaluating the expresslon~. Thus we see that A has 
a quite Simple effect on the object program. 
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2.4. The second version of maplis~. 
The recursive definition of mapl1st given in the previous 

section is map11st(I.,i'; '1';0 (L=O O~l cons(f(L)1 mapllst 
(cdr(L) If»). A straightfor't~Jard compilation from this 
definition leads to a program that when L is not zero 
computes the arguments of the ~ons before computing the 
value of the ~. Because of this the routine proceeds to 
the end of the list L before lt talces any words from free 
storage; that ls, it goes to the end of the list and works 
backwards. In order for the routine to be able t9 find its 
way back it has to store three words in the PPDL for each 
element of the list. The time required by maplist comes to 
about 1.7 milliseconds per list element exclusive of the 
time requIred to compute the f(J)'s. It 1s possible to 
rettJr!te maplist so that 1t l'1orks fOrt'Jard in the list. The 
program then goes as follows! 

functiOn(maplist(I../f)) 
/ L = o~return(o) 

maplist = cons(f(L),O) 
M -= mapl1st 

al L = cdr(L) 
cdr(M ) = co08(f(L),0) 
car(L) = O~return(maplist) 

t·'! = cdr(M) 

" go(al) 
This program takes about .4 milliseconds per element of L 
exclusive of the time required to compute the f(J)'s. 

One is very reluctant to say that routines like maplist 
should be described by programs like the above which is 
certainly much less clear than the previous description. On 
the other hand it is hard to see how to mal<e the compiler 
take a description like the recursive definition of maplist 
and produce a program like the second version. Tentativel~, 

we expect to recode a very few routines like maplist which are 
much used for high speed and accept the speed penalty in 
exchange for ease of statement for other routines. The 

r speed disadvantage is probably greater 1n maplist than 1n 
almost any other routine. It should be noted that the reason 
the second procedure can be made to work 1s that the value 

of map11st/ namely the location of the constructed list, can 
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3. Some Examples of SAP Language Programs 
We give some examples of the way in which some of the 

programs described earlier in LISPI (List Proceaser) have 
been coded by hand in SAP. These examples are given so that 
the reader can confirm his understanding of the meaning of the 
conventions of LISP and also so that he can consider the problem 
of designing a compiler which will produce results not too 
much worse than the hand coded examples. Moreover, it should 
help users of the system with their hand coding before the 
.compiler becomes available. All the routines described here 
are deb~ed. 

1. c6ns(a,d) 
The first function we shall describe is cons(a,d) which 

puts its two arguments in a word taken from the free storage 
list and returns with the location of the word taken as the 
value of the function. We are using the same conventions as 
Fortran I to the effect that the first two arguments of a 
function are given to it in the AC and the MQ respectively and 
that the return 1s by TRA 1,4 with the answer 1n the AC. 

CONS STQ Tl 
ARS 18 
ADD Tl 

CONSl SXD Tl,4 
CONS2 LXD Fa ~,4 

TXH ·:.+4,4~0 

Tl 

SXD FROUT,4 

TSX FROUT+I,4 
LXD FROUT,4 

LDQ 0,4 
STQ FREE 
STO 0,4 
PXD 0,4 
Lxt> Tlj4 

TRA 1,4 

DEC 
ADD 

MAKE WORD 

OUT OF FREE STORAGE 
NO FREE STORAGE 
XX 

CONSTRUCT WORD 
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2. coPy(L) 
This routine copies a whole list structure into free 

storage and returns with the location of the new copy_ Its 
program in LISP is 

COpY(L)=(L~~O,car(L).O~L,l~cons(copy(car(L»,copy(cdr(L»» 

This has been translated into the SAP program: 
COPY TZE 1,4 L=O 

SXD C81,4 
PDX 0,4 
8XD CT1,4 
CLA 0,4 
PAX 0,4 
TXH C1,4,0 
CLA CTI 
LXD CSl,,4 
TRA 1,4 

C1 TSX SAVE,4 
CS1+1,,2 

LXD CTl,4 
CLA 0,4 
STO CS2 
ANA DECM 
TSX COPY,4 
LXA CS2,,4 
STO CS2 
PXD 0,4 
TSX COFY,4 
LDQ CS2 
TSX cONS,4 
TSX UNSAVE,4 

. CS1+1,,2 

LXD CS1,4 
TRA 1,4 

L 

L 

CWR(L) 
CAR(L) 
CAR(L)=O 
L 

L 

CWR(L) 

CDR(L) 

COPY(CDR(L) ) 
CAR(L) 
COPY(CDR(L) ) 

COFY(CAR(L) ) 

CONS.(COPY(CAR(L» ,COPY(CDR(L») 

CS2 
CSI 

r CT1 
DECM ,,-1 
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3. map1ist(L,f) 
We shall give the SAP versions of both the slow but 

easily described map11st and the fast but more complicated 
one which is actually used. It would be desirable that the 
compiler would compile the descr1ption of the slow one into 
the program of the fast one. 

I The slow maplist 1s defined by 

maplist{L,r)={L=0-40,1~cons(r(L),maplist(cdr(L),r») 

Its SAP program is 
MAPLIS TZE 1,4 

SXD MSl,4 

DECM 
T1 
F(L) 
L 

F 

MSI 

TSX SAVE,4 
MSl+l,,4 

STO L 
STQ F 
TSX F,4 
STO F(L) 
LXD L,4 
CLA 0,4 
ANA DECM 
LDQF 
TSX MAPLIS,4 
STO Tl 
LDQ Tl 
CLA F(L} 
TSX CONS,4 
TSX UNSA VB, 4 

MSl+l,,4 
LXD MS1,4 
TRA 1,4 

,,-1 

L = 0 0 

SAVE 3 REGISTERS AND IR4 

F NOW CONTAINS A TXL TO A SUBROUTINE 
WE HAVE F(L) 

MASK TO KEEP DECREMENT ONLY, WE HAVE CDR (.L) 

THE RECURSIVE STEP. MAPLIST(CDR(L) ,F) ,o 

CONS(F(L),MAPLIST(CDR(L),F» 

PROTECTED TEMPORARY STORAGE 

XX 

XX 

XX 
The second version of maplist is 

runction(map11st(L,f» 

I L = O--)return( 0) 
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mapllst = cons(f(L),O) 
M = map11st 

al /: L = cdr(L) 
. cdr(M) = cons(f(L)IO) 

cdr(L) = O~return(map11st) 
M = cdr(M) 

'\ go(al) 
which g1ves the SAP program 
rJIAPLIS TZE 1,4 

SXD MSl,4 

TSX SAVE,4 
MS1+l,,5 

STOMS2 
STQ MS3 

TSX MS3,4 

LDQ MZERO 

TSX CONs,4 
STO Ms4 
STO MS5 

MLOP1 LXD MS2,4 
CLA 0,4 
PDX 0,4 

TXH MPRG1,4,0 

CLA Ms4 
TSX UNSAVE,4 

MSl+l,,5 
LXD MSl,4 
TRA 1,4 

MPRGI SXD MS2 .. 4 
CLA MS2 
TSX MS3#4 

LDQ MZERO 

TSX CONS,4 
LXD MS5,4 
STD 0,4 

STO MS5 
TRA MLOPI 

F 

F(M) 

CONS(F(M),O ) 
N 

Q 

M 

CDR(M) 
CDR(M)=O 

M=CDR{M) 

F(M) 

CONS(F(M),O) 
Q 

CDR(Q)='P 

Q=P 

• 
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MS5 
MS4 
MS3 
MS2 
MSl 
MZERO PZE 

4. dItf(L,V) 
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Q 

N 

F 

M 

As a tinal example we give the SAP version of the 
ditf program described earlier. It shows how expressIons 
includ1ng ;\' s may be compiled. The reader should note 
carefully how the quantity J 1s made available to the 
lower order function definition (the section called PI in 
the example) 

The LISP form of dift is 
dltr(L,V) = (L=V~Cl,car(L) = ~CO,car(L) = plus~ 

cons(plus,maplist(cdr(L),~(J,ditt(car(J),v»»,car(L)=tImes~ 

cons(plus,map11st(cdr(L),~(J,cons(times,maplist(cdr(L),A(K, 

(JFK~copy{car(K»,l-;dirt(car{K),V»»»»,l~error) 

This compiles into 
DIFF STO L 

Dl 

STQ Tl 
SUB Tl 
TNZ Dl 

CLA O;tC1D 
TRA 1,4 

SXD DSl,4 

LXD L,4 
CLA 0,4 
PAX 0,4 
TXH D2,4,0 
LXD DSL,4 
CLA O;tCOD 
TRA 1,4 

D2 TSX 0$SAVE,4 
DSl+l,,3 

STQ V 

LXD L,4 

CLA 0,4 

CAR(L)=O-CO 
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PAX 0,4 
STO CWRL 
PXD 0,4 
CAS O$PLUSD 
TRA *+2 
TRA DP 

CAS TlMESD 
TRA *+2 
TRA DM 
PMR LITES,FPR 
TRA O,1ERROR 

DP LDQ ETAl 
TRA D3 

DM LDQ NUl 
D3 LXD CWRL,4 

PXD 0,4 
TSX MAPLIS,4 
TSX UNSAVE,4 

r DSl+l,,3 
STO Tl 
LDQ Tl 
CLA O$PLUSD 
LXD DSl.,4 
TRA O$CONS 

ETA 1 TXL ETA 
ETA SXD ETSl:.4 

PDX 0,4 
CLA 0,4 
PAX 0,4 
PXD 0,4 
LDQV 
LXD ETSl,4 
TRA DIFF 

ETSI 
NUl TXL NU 

NU SXD NSl,4 
TSX 0~SAVE,4 

NSl+l,O,2 

STO J 
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LXD CWRL,4 
PXD 0,4 CDR(L) 
LDQ PIl 
TSX MAPLIS,4 
TSX UNSAVE,4 

NSl+l,0,2 
STO Tl 
LDQ Tl 
CLA TIMESD 
LXD NS1,4 
TRA O,iCONS 

PIl TXL PI 
PI SXD PIS1,4 

PDX 0,4 
SUB J 

TZE PD 
CLA 0,4 
PAX 0,4 
PXD 0,4 
LXD PIS1,4 
TRA o,iCOPY 

PD CLA 0,4 
PAX 0,4 
PXD 0,4 
LDQV 

LXD PIS1,4 
TRA DIFF 

V 

CWRL 
DSl 
T1 
L 
ADDM -1 
J 

NS1 
PIS1 
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5. Additional Functions and Subroutines 

5~l select (ajv~l; ••• ; vn,enje) is the same as 
the conditional expression (a=vI~el, ••• ,a=v~en,l~e) 
1n effect. However, 1t may be complIed In open form using 
CAS inst~ctlons and moreover provides a convenient abbrevia­
tion tor one of the more common cases of conditional express­
ion. 

5.2 list{l!, ••• , in) 
This function has as value a list constructed from tree 

storage containing the items l 1l eeo,1n in the address fields 
of the successive words. We may describe it recursively for 
ourselves by writing: 

I1st(1)=cons(i,O) 
l1st(il~···,1n)=cons(il,list(i2,···,ln» 

However,. it should be noted that this is not a definltion in 
the language and cannot easily be made Into one. An exten­
sion ot the language would be required to allow the defini­
tion of functions of variable numbers of arguments by 
recursion on the number of arguments. This is not the same 
as defining a runction ot a llst of arguments by recurslon 
which is allowed. 

Although we cannot define list within the language in 
terms of cons~ there wll1 be .no dIfficulty in definlng the 
program to compile list In the compiler. This is because 
the compiler will have the arguments in the form of a list 
of expressions. The resulting program mlght either be an 
open subroutine of variable length containing a number of 
references to cons or, though this is more unlikely, a 

reference to a closed subroutine which can determine for it­
self in some way the number of arguments. 

5.3 eql(L:~ ,L2) 
The value of eql(Ll,L2) is I or 0 according to whether 

two lists of the special form 

L,l . ) )1 I )1 }---7" 

C,TatUm) L I datum I L r datJAm) 
have the same number of items and data words in corresponding 
places are equal. Such lists will be called one-level lists. 
They are presently used to store the external names of objects 
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on their property lists. There w111 also be other uses. 
The program for eql(Ll,L2) is 

eql(Ll,L2)=(L1=L2~l,Ll=0VL2=O--JO,l--JO;! .r(car(Ll) )= 
cur(car(L2»Aeq1(cdr(Ll),cdr(L2») 

5.4. cpl(L) 
It is also necessary to be able to copy one-level 

lists. We have 
cpl(L)=(L=O~O,I~ons(consw(cwr(car(L»»,cpl(cdr(L»» 

which does it. 

5.5. search (L,p,f,u) 
This routine searches the list L for an element 

satisfying the condition p and if it finds one exits with 
t ot that element; if the search is unsuccessful search 
exits with the value of the expression u. We have 

search(L,p,flu)=(L=O~u,P(L~r(L),I~search(cdr(L),p,r,u» 

5.6 subst(L,V,M) (substitute L for V in M) 
Substitution in expressions can take many forms and 

we have only begun to explore the possibilities. 
The present routine is 

subst(L,V,M)=(M=O~O,equal(M,V)~opy(L),car(M)=o-,M,l~ 

cons(subst(L,y,car(M»,subst(L,V,cdr(M»» 

5.7. sublis(P,E) 
sublis(P,E) makes the list of substitution P in the 

expression E. P 1s a list of structure p 
41 1 >E----)" . 

C;C?, ) r-I ':~, 1~{ I 
v.~ ~ v:£o e;;;P 

The value at subst (P,E) 1s the location of a newly 
formed list in which each occurrence of an object Vi in 
the expression E 1s replaced py the locat10n of a copy 
of the corresponding ei 
sublis(p,E)=maplist(E,~(J,search(p,~(K,equal(car(J), 

car(car(K»»,~(K, copy(car(cdr(car(K»»),(car(car(J»=O~ 

car(J),l~ubst(p,car{J»») . 
Actually, the way the program is wr1tten the v's may be 

expressions and not merely objects. 
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5.8 error 
In many program e~ror is listed as the value of an 

expression under certain cond1t1ons which should not occur. 
What th1s means 1s that 1f the condit1ons do occur the 
routine w1ll go to the error rout1ne. Under certain 
cond1tions it may be poss1ble to provide for the error 
routine to do something that will ma¥~ it possible for 
the program to continue, but until we understand pro-

better 
grammingAthis will not usually be the case and all that 
will be possible is to print some sort of diagnostic 
and terminate the run. 

In gener~l, the error will occur in a subroutine 
deep in the hierarchy or subroutines. What we would 
like is to know exactly where in the program the error 
occurred which really means knowing where we were in each 
ot the routines of the hierarchy. our recursive subroutines 
will present certain problems in this respect whiQh we 
shall have to solve. but for the present we will discuss 
only the non-recursive case. The error routine can trace 
its way back up the hierarchy provided each routine includes 
the following information in the calling sequence whenever 
it uses a TSX. 

1. where it has stored the following information 
1.1 Its name 
1.2 Where it saved ir4 
1.3 In the recursive case where it has used SAVE 
1.4 A l1st of quantities to be pr1nted outo 

2. Whether it has made any provision tor action to 
be taken in caae of an error in th1s use of the subroutine 
and if sa, what action. It should be noted that while 
making these provisions for error analysis complicates 
the task of writing the program, most of these complica­
tions can be put on the compiler. and that while the extra 
informat10n requires space 1n the program it does not take 
time unless an error actually occurs. 
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5.9 pair(Ll,L2) 
This function constructs a list whose elements are 

pairs consisting of corresponding elements of the list Ll 
and L2. If Ll and 12 are not the same length an error 
interrupt occurs. For example if the original lists are 

Ll 

~~.!J-7l.!.~_'-{ft I 

L2 
I 

~! ~,!. 1-1l.!?DlEl_l 
the new list is 

4~~~~~~~ 
The program for Eair is: 
pair(Ll,L2)=(Ll=OAL2=O-7Q,Ll=OrL2=Q-7error,l--? 

cons(cons(copy(car(Ll»,cons(copy(car(L2»,O»,pair( 
cdr(Ll),cdr(L2») 

5.10 Substitutional functions. 
The value of a substitutional function applied to 

a list of arguments is the result of substitutions these 
arguments for the objects on an ordered list of arguments 
in a certain expression containing these, arguments. A 
substltu~ional function is represent~d in the machine by 

a list structure as shown below. 

ll~~~_' ,_. 1 (r---

il/st of argumems) ~I expressionl 
There is a routine a~plY(L,t) whose value 1s the 

result of applying a function to a list of arguments. 
This routine expects the function f itself to be des­
cribed by an expression. The kinds of expressions for 
functions which apply will interpret has not been 
determined and for the present we shall only consider 
the case where car(f)~subfun. Thus our initial version 

of apply is: 
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applY(L,f)~(cab(f)=s#bfun~ubl1s(pair(car(cdr(f», 
". 

L) ,car( cdr( cdr(f) ) ) ), l ..... eI·ror) 

This definition presents the problem that the list 
created by the pa1r has not further use after apply has 
been evaluated and is not attached to any named variab1e p 

Therefore unless the compiler is made to insert instruc­
tions to erase such auxiliary lists they will steal space 
permanently from the free storage list. 

5.11 The second order map11st. 
Consider a list of lists each of which has the same 

number of elements. It is desired to scan over these lists 
in parallel and to create a new list whose elements corres­
pond to the elements of the listed list but whose value is a 
given function f of a · list corresponding elements of the 
listed lists. The figure shows the situation when the 
calculation is part way through. Value of the ordinary 

mapllst U$§ft in lndexingJ C . 
~I----"H~ 
,--[ ---,~I '--jl~ 

~'------fl-{_-H---... -.J~ '.~~=~~-4 
The calculation required to accomplish the above 1s described 
in the recursive definition: 

db1map11st(L,f)=search(L,AX(J,car(L)=ofcar (J}=0}, 
A(J,error),car(L)*0-70,l-7cons(f(L),db1map1ist(maplis~(L,A 

(K,cdr(car(K)},F}») 
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1'he inner ordinary maplist in this defin1tton \>]ou1.d 

be a space thief unless the compiler arrange for ·the list 

to be e~ased once it was used. 

St111 higher order maplists are pos3ibll-~ but h.:l~lTe not; 

yet bee'n considered. It is \'lorth J.ooking to see t\' l"te -;;bf';r' 

a mapllst of infinite order can be defined In the ~1:V3tela . 

It is worth whlle to compare the above ~lit;h :::, s1up.le 

simultaneous maplist of two l:lsts defint;d bjl' 

mapliB t2 (I.l, L2, f ) ~ (LI=o/l2=O--~O, I,l~ Y+I..2 "O-)e:r.l'or·., 

1-)COn8 (f (L1 j L2) ,ruaplietd( cdr{ Ll) , <:dr (L2) -' f) I) 

5.12 diff(L,\J)~ 

rhil3 routine differentiates the e~q;r€~ ss ton i -1 the l i:s"C 

stru::ture in locatio;'1 L with rS:3peC't t o t h.-; Obj0C t :'T" 

In the present version the express :i ons l>i hj.(~h maybe d:l.ff(:~l'­

entiated are combinatIons ot"' consta.nts and v(ir:tabJ.~~s IT :l. n;:~ 

the conn~ctives E.lu!5_ and ti~~o The rot:_U.l1e is 

di:ff (L, '\1)=( L~\T~Cl, car( L) =Q...4C 0 } co.r( L)~plu5----t 

cons (plus $ maplist (cdr( L) ~"" (J 1 dif:C (Gar (J) JJ V) ) ) ) $ 08.r:.L )=<t: .. m~~s-~ 
cons (plus J maplist (cdr(L) , ',\( J, cons (ttmes p mapl:l.st «.'.(1:.: ([.: .. },( KjI 

J+K-4c;o~y( car(K) ) j.1-...,.jlf':_' ( car(K) ,V) ) ) ) ) ) ) ) J l--4$I'rm:» 

This varsion of thc:' dlfferent:tattoY.1 r·o"Lr·~lne which 

illustrates most of the :?rlncip) ea i nvol VE d 1n compil~! . .'1.g 

recUi:'slvely defined func ·cions l"las ~.;he fi::"st one tCl 

be hand·-compiled and Clem.)l1s 'cra ted 0 p., more elabora"i:e 

differentiat~_on routine ,::an differ';m1-1ate ex~re')Si(n8 ·~r 

fixed t1u"1l.bers of' variables by lCloklng Ufl .. ne fO-"iTlu:as 'r,l'"' 

their gradients on the prope~ty lists of ~he fuaction~. 

Such dlfferentiation rDutine is: 

diff (L, v)~( L""V--!)Cl, car'(L)==O-7CO, N 1"( L} ~:plU8--~ 

CO(}S {plUB pmaplist (cdr (L), i\( J, dIff( ca:c( J ) ~ v ) ) ) ) ,~Etj:' (L)~: i·.:nes ---7' 

cons (plus pmaplist (cdr' (L) ,J-.( J Ji COtlS ( -;;imes ; . ~napl ~\.st( (! d~L'( L 1-\ (K;. 

(J+K~COPY( c8r(K», l-)diff (car(K): V) )) ) ) ) ); l~cc"n:j (P:.13 

maplist2(apply(grad(car(f.J) ),cdr(L ) ) ~cdr(LL.J\(J,Ki.l i5t. :lmes. 

copy( car (.J) ) ,d1ff (car (K), V) ) ) ) ) ) 

The last ter'm of the condi ti()".1a.l expresBion invo:~ ,J(~S 

the deflni tions of sever3.1 al)Ai.11a~(ly t.hings ~ 
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1. maplist2, apply, and list are discussed elsewhere 
in this section. grad is defined by 

grad(M)-search(cdr(M),~(J,car(J)=gradl,~(J,car(J)~), 

error) 
2. The gradient of a function is assumed to be stored 

on 1ts .property l1st as shown 1n the following diagram. 

-~ 1-)/ JZra~ ~ i) 

®bfun~~git hlYi~ ). " 
Here the v's are the formulas for t e partial erivativ s of 
the function. The operat1on of the table look up d1fferen­
tiation may be briefly descr1bed by saying that the routine 
looks on the property list of car(L) for the word gradl, then 
substitutes the expression in the list c.dr(L) for the arguments 
in the gradient, and then forms the sum of products of the 
partial derivatives listed in the gradient list with the 
derivatives of the arguments of the function in the expression 
being differentiated. 

It should be noted that we could not have used this 
table look up method to differentiate sums and products 
because according to opr conventions the number of terms 
in a sum or product is not fixed. A still more elaborate 
routine would be required to read a formula for differen­
tiating a function of a variable number of terms. The partial 
derivatives would presumably have some sort of recursive 
definition. 


