. ’ R Sijver
Art}ficﬁalaintel}igence Project--RLE and MIT Compnutation Center
Symbol Manipulating Language--Memo 4--Revisions of the Language

John McCarthy
1. Protected temporary storage.

When a routine is defined recursively as are maplist and diff
(that is, when the routine itself occurs in the program defining the
routins, jertain special problems with temporary storage arise. Speci-
fically, the execution of'the routine as a gubroutine of itself makes
uge of the same temporary storage registers. There sre a number of ways
to avoid a conflict over temwporary storage, and afier much argumeni the
following solution has been adopted. Those temporary siorage registers
which should be preserved when the routine uses & subroutine wvhich may

a

~use the subroutine itself, formpsingle block of consecutive registers

private to the routine which *¢ called the block of protected tsmporary

storage of this routine. The register in which IR4 is stored is also

included in this block. Exzcept for the register in which IR4 is stored
the routine is required te be transparent to the registers of the block:
that is the contents of this block must be the same when the routine
exits as they were when it was entered. In order for the routine to

be sh?e to use the registers of the block it must save them before it
uges them and restore them afterwards. The situation is then similar
io the SHARE convention on IR1 and IR2. They are saved by a routins

vhich puts them on what is called the public push down list or PPDL,

and before the main routine exits they are restored from this list,
The SAVE and UNSAVE routines are used as follows; a program using theam
might be
SXD RS1,4
TSX SAVE,4
RS1+1,0,5

LR N]

o (program that uses RS2 to RS5)

TSX UNSAVE,4
RS1+1,0,5

LXD RS1,4

TRA 1,4
RS5
RS4
RS3
RS?

RS1

The reason that IR4 is handled differently from the other
quantities that have to bs saved is thet it is used to enter SAVE
and UNSAVE and therefore must be saved defore SAVE is entered and
restored afier the exit from UNSAVE.

This procedure for handling protecled temporary storage has
another virtue which shows up in the routine for differentiation
described jazo, . . In the multiplication case the program arising
from the first calls its argument J and the program arising
from the second must use this quantity J to compare with K and
must also have V which is one of the arguments of the original
diff. If the argument J of the first 1is stored in a protected
temporary storage register, it will be there vhen the routine complled
from the second wants it in spite of the fact that the earlier values

o

of X on the second maplist will have used diff. The general property
of the present system of handling protecied temporary storage 1s that
the values stored thersin are accessible to all explicitly written
lover level routines but are not changed either by them or by the use
of the original routine as a subroutine. (As an aside, it may be
remarked that if an attempt vere made in the diff routine to expand

out one of the references to diff in it by substituting the definition

-3~

of diff there would occur a collision of bourd variables (unless {he
names vere changed) and that this collision would reflect itsel?
programvise in a collision of temporary storage. The relation be-
tveen bound variables and protected temporary siorage is close and

might be worth & systematic investigation.)

[

2. A Revised Version of "Maplist”
2.1 Problems posed by the old maplist.
The version of mapligt in memo 1 was written “maplist(%,J,£(J))"
vhere J 1is a dummy variasble which ranges over the addregs parts of
the words in the 1ist L and f£(J) was an expression in J. This
version had two serious dsfects. First, the location of the word in
vhich J was stored was frequently needed. The second turned up when
I tried to write the SAP program for maplist. The designation of J
as the neme of the indexing variable cannot convenisntly be done in the
calling sequence of maplist. Instead we do it im specifying the fumction
f using the Church notation for functional abstraction if necessery.
In addition to the above mentioned defects the old version was ambiguous
in that it did not say how words of the three types should be treated.
The new naplist is written "maplist(L,f)®, Its value is the loca-
tion of a list formed from free storage vwhose elements correspond
in a 1-1 vay with the elements of L. The eiement of the new list which
corresponds to the element of the old list in location J has address

part f{J)

The program for maplisi can be written.

maplist (7,£) = (L - 0-30,1->cons (£(L), maplist (cdr(L),f}))
A SAP version of this maplisi is given in the appendix to this wmemor-
andum. It uses the programming convention that the argumenis are given
to maplist in the ac and the mq that the return is by TRA 1,4, and that
the function £ 1is given in the form of an insiruction TXL F vhere F
is the address of & routine for computing f which expects its argument

in the AC, returns its result in the AC, and returns by TRA 1,4.

-5~
2.2 Functlonal abstraction - The Church A ‘s.

In order to be able to use forms in the definition of the
functions vhich are the arguments of maplist it is necessary to use
functional absiraction as developed by Church. Ve digress from the
subject of programming into mathematical logic in order to explain
the idea of functional abstraction.

e shgll call an expression f a functional expression when we
have given rules for assigning & value to expressions such ag f£(3)
or f(i3,l&) according to the number of arguments £ is supposed to iake.
An expression such as xz + y aoes not meet this requirement because,
should wve write (zz2 + y)(3.4), which no-one does, it would be ambigi.
ous whether we meant 3 to replace x or y. Other difficulties
also arise. To clarify ithis matter Church invenied his A-operator.
(Ax). £(x), vhere £{x) is some expression in the symbol x, denotes
the function vhose value for a given argument is to be obtained by
gubstituting that argument for x in the expression €(x) and evalvat-
ing that expression. Thus (£x) .x° denotes the function which squares
its argument. (%xy).(xz + y) 4is the function vhose value is obisined
by substituting the first aigument for x and the second argument for y.
Thus (Axy).(z% + y)(3,4) = 13 and Ox). (F + ¥)4,3) = 19.

The letter A serves as a quantifier in that the variable on which it
operates becomes bound - and ce.h be replaced by another variasble
provided this is done everywhere it occurs in the expression on vhich
N operates and provided the new wvariable does not occur in this ex-
pression. Tfms we can write (A xzr).(x?' Y y) = (Axzu).(x® + u).
An expressio? xz + y vithoutA *s is called & form and thus we may say

that the A -?pera‘cor has the effect of transforming forms into functions.

-6-
The use of thea -~operator and its properties are fully descrided

in Church*s tract, The Caiculi of A -Conversion, which appeared as an

Annals of Mathewmatics Study.

For now at leas} we only need the simplesi propertles of the
A -operator. We shall write A {J,£) for the function vhose value is
obtained by substituting the argument for J in the expression &
end use a siwilar notation for functions of several variables. Thus
A {(J,J%J+1) denotes the function whose value is obtained by squaring
the argument and adding 1. The function which we have written above
()‘xy).(xg+-y) will be written A(x,y,x*x+ y) in our programming
system.

-7 -

2.3 An example
As an example of the use of the new maplist and of

the use of functional abstraction we shall rewrifte the

routine for differentiating slmple algebralc expressions.

In addition to the changes occasioned by the new maplis®

we shall change the notatlon we used for constants and the

identity function and make the routine one which can per-

form partial differentiation with reaspect to a given variable.

We need the following conventions for the representation

of expressions by list structures:

1. As before a sum or product 1s represented by a list whose first
wort has plus or times in its address part and whose sub-

sequent elements are words contalning the expressions to

be added or multiplied.

2. A constant or variable is represented by the location

of its property list.

The routine for differentiating the expression represented
by the 1list sftructure starting in leocation L with respect
to the variable V is:
diff(L,v) = (L = V—Cl,car(L) = 0~—CO,car(L) = plus —
cons(plue,maplist(cdr(L),A(J,diff(car{J},V)))),car(L) = times —>
cons(plus,maplist(cdr(L),N(J,cons{times,maplist(cdr(L), (K,

(J# K— copy(car(K)),1—difrf(car(k),v)))))))),1 ~serror)
In this formula CO and Cirepresent the constants O
and 1 respectilvely.

Tentatively, we expect that an expression maplist (L,A(J,&))
will be compiled as follows. As mentioned earlier maplist must
be supplied its functional argument in the form of an in-
struction TXL for a sultable location F. The program in F
will begin STO J and from then on will simply be a program
for evaluating the expression&. Thus we see that A has
a quite simple effect on the objJect program.

Tan

2.4. The second version of maplist.

The recursive definition of maplist given in the previous
gsection is maplis¢(1,¢! = (L=0 0,1 cons(f(L), maplist
(cdr(L),f))). A straightforward compllation from this
definition leads to a program that when L 1s not zero
computes the arguments of the cons before computing the
value of the cons. Because of this the routine proceeds to
the end of the list L before it takes any words from free
storage; that 1s, it goes to the end of the 1list and works
backwards. In order for the routine to be able to find its
way back it has to store three words in the PPDL for each
element of the list. The time required by maplist comes to
about 1.7 milliseconds per l1list element exclusive of the
time required to compute the f(J)'s. It is possible to
rewrite maplist so that 1t works forward in the 1list. The
program then goes as follows:

function(maplist(l.,f))

/ L = O0—return(0)

maplist = cons(f(L),0)

M = maplilst
al L = cdr(L)

cdr(M) = cons(f(L),0)

cdr(L) = O-return(maplist)

M = cdr(M)

N\ &go(al) ,
This program takes about .4 milliseconds per element of L
exclusive of the time required to compute the £(J)'s.

One is very reluctant to say that routines like maplist
should be described by programs like the ahove which 1s
certainly much less clear than the previous description. On
the other hand it 1s hard to see how to make the compiler
take a description like the recursive definition of maplist
and produce a program like the second version. Tentatively,
we expect to recode a very few routines like mapllst whlch are
much used for high speed and accept the speed penalty in
exchange for ease of statement for other rocutines. The
speed disadvantage is probably greater in maplist than in
almost any other routine. It should be noted that the reason
the second procedure can be made to work is that the value

of maplist, namely the location of the constructed list, can

- s -

3, Some Examples of SAP Language Programs

We give some examples of the way in which some of the
programs described earlier in LISP1 (List Processer) have
been coded by hand in SAP. These examples are given so that
the reader can confirm his understanding of the meaning of the
conventions of LISP and also so that he can consider the problem
of designing a compiler which will produce results not too
much worse than the hand coded examples. Moreover, it should
help userg of the system with thelr hand coding before the
compiler becomes available. All the routines described here
are debugged.

1. céns(a,d)

The first function we shall describe is cons(a,d) which
puts 1ts two arguments in a word taken from the free storage
list and returns with the location of the word taken as the
value of the function. We are using the same conventlons as
Fortran I to the effect that the first two arguments of a
function are given to it in the AC and the MQ respectively and
that the return is by TRA 1,4 with the answer in the AC.

CONS STQ Tl DEC
ARS 18 ADD
ADD T1 MAKE WORD

CONS1 SXD T1,4
CONS2 IXD FR &4
TXH *+4,4,0 OUT OF FREE STORAGE
SXD FROUT,4 NO FREE STORAGE
TSX FROUT+1,%4 XX
LXD FROUT,4
LDQ 0,4 CONSTRUCT WORD
STQ FREE
STO 0,4
PXD 0,4
LXD T1,4
TRA 1,4
71

-10-

2. copy(L)
This routine coples a whole 1list structure into free
storage and returns with the location of the new copy. Its
program in LISP is
copy(L)=(L40—0,car(L)=0~L,l—cons(copy(car(L)),copy(cdr(L))))
This has been translated into the SAP program:

COPY TZE 1,4 L=0
SXD CS1,4
PDX 0,4 L
SXD CT1,4 L
CLA 0,4 CWR(L)
PAX O,4 CAR(L)
TXH C1,4,0 CAR(L)=0
CLA CT1 L
LXD CS1,4
TRA 1,4
o3] TSX SAVE,4
CSl+l,,2
LXD CT1,4 L
CLA 0,4 CWR(L)
STO CS2
ANA DECM CDR(L)
TSX COPY,4 COPY(CDR(L))
LXA CS2,4 CAR(L)
STO CS2 COPY(CDR(L))
PXD 0,4
TSX COPY,4 COPY(CAR(L))
LDQ Cs2
TSX CONS,4 CONS{COPY(CAR(L)) ,COPY(CDR(L)))
TSX UNSAVE,4
CS1+1,,2
LXD CS1,4
TRA 1,4
cs2
cSl
cTl
DECM R |

DECM
T1
F(L)
L

F
MS1

3. maplist(L,f)

w13~

We shall give the SAP versions of both the slow but
easily described maplist and the fast but more complicated
one which 1s actually used. It would be desirable that the
compiler would compile the description of the slow one 1nto
the program of the fast one.

, The slow maplist is defined by
maplist(L,f)=(L=0—0,1—cons(f(L),maplist(cdr(L),f)))
Its SAP program is
MAPLIS TZE 1,4

SXD MS1,4

TSX SAVE,4
MS1+1,,4

STO L

STQ F

TSX F,4

STO F(L)

LXD L,4

CLA O,4

ANA DECM

IDQ F

TSX MAPLIS,4

STO T1

1bQ Tl

cLA F(L)

TSX CONS,4

TSX UNSAVE,4
MS1+1,,4

LXD MS1,%

TRA 1,4

::‘1

L=0 0

SAVE 3 REGISTERS AND IRA4

F NOW CONTAINS A TXL TO A SUBROUTINE
WE HAVE F(L)
MASK TO KEEP DECREMENT ONLY, WE HAVE CDR(L)

THE RECURSIVE STEP. MAPLIST(CDR(L),F).

CONS(F(L) ,MAPLIST(CDR(L),F))

PROTECTED TEMPORARY STORAGE
XX
XX
XX

The second version of maplist 1s
function(maplist(L,f))

/ L = 0.return(0)

]2
maplist = cona(f(L),0)
M = maplist
al / L = cdr(L)
"~ edr(M) = cons(f(L),0)
edr(L) = O—return(maplist)
M = cdr(M)
\ go(al)
which gives the SAP program
MAPLIS TZE 1,4

SXD MS1,4
TSX SAVE,%
MS1+1,,5
STO MS2 M=L
STQ MS3 F
TSX MS3,4 F(M)
LDQ MZERO
TSX CONS,4% CONS(F(M),0)
STO MSk N
STO MS5 Q
MLOP1 LXD MS2,4 M
CLA 0,4
PDX O,4 CDR(M)
TXH MPRG1,4,0 CDR(M)=0
CLA MS4
TSX UNSAVE,4
MS1+1,,5
LXD MS1,4
TRA 1,4
MPRGI SXD MS2,4 M=CDR(M)
CLA MS2
TSX MS3,4 F(M)
LDQ MZERO
TSX CONS,4 CONS(F(M),0)
LXD MS5,4 Q
STD 0,4 CDR(Q)=P
STO MS5 Q=P

TRA MLOP1

o o

M35
Msh
MS3
MS2
MS1
MZERO PZE

- IR >

§, dier(L,v)

As a final example we give the SAP version of the
diff program described earlier. It shows how expressions
including A's may be compiled. The reader should note
carefully how the quantity J 1is made available to the
lower order function definition (the section called PI in
the example)

The LISP form of diff is
dirf(L,v) = (L=V—Cl,car(L) = 0-3CO,car(L) = plus—>
cons (plus,maplist{cdr(L),N(J,diff(car(J),V)))),car(L)=times—=
cons(plus,maplist(cdr(L),A(J,cons(times,maplist(cdr(L), A (K,
(3#£K—copy(car(K)),1—diff(car(K),V)))))))),;l~error)

This compiles into
DIFF STO L
STQ T1
SUB T1
TNZ D1
CLA 0gC1D
TRA 1,4
D1 SXD Ds1,4
LXD L, 4 CAR(L)=0—-CO
CLA 0,4
PAX 0,4
TXH D2,4,0
LXD DSL,4
CLA OgcOD
TRA 1,4
D2 TSX OFSAVE,4
DS1+1,,3
STQ V
LXD L,4

CLA O,k

DP

DM
D3

ETA1
ETA

ETS1
NU1

PAX
STO
PXD
CAS
TRA
TRA
CAS
TRA
TRA
PMR
TRA

LoQ
TRA

1pQ
LXD
PXD
TSX
TSX

STO
LDQ
CLA
LXD
TRA
TXL
SXD
PDX
CLA
PAX
PXD
LbQ
LXD
TRA

TXL

SXD
TSX

STO

0,4
CWRL
0,4
OZPLUSD
*42

DP
TIMESD
#42

DM
LITES,FPR
OFERROR
ETAl

D3

NUl
CWRL, 4
0,4
MAPLIS, %
UNSAVE, 4
DS1+1,,3
i

o
OZPLUSD
DS1,4
OZCONS
ETA
ETS1,4
O,4

0,4

0,4

0,4

v

ETS1,4
DIFF

NU

NS1,4
OZgSAVE, 4
NS1+1,0,2
J

-1

PI1
PI

CWRL
DS1
Tl

ADDM

NS1
PIS1

LXD
PXD
DQ
TSX
TSX

STO

CILA

TXL
SXD
PDX
SUB
TZE
CLA
PAX
PXD

TRA
CLA
PAX
PXD
1pQ
LXD
TRA

CWRL, 4
0,4 CDR(L)
PIl
MAPLIS,4
UNSAVE, 4
NS1+1,0,2
T1

T1

TIMESD
NS1,4
OZCONS

PI

PIS1,4
0,4

PD
0,4
0,4
0,4
PIS1,4
0gCOPY
0,4
0,4
0,4

\
PIS1,h
DIFF

=16~
5. Additional Functions and Subroutines

5.1 select (a;vypl; Swad vn,en;e) is the same as
the conditional expression (aavi—oel,...,a=vﬁ—9en,l—+e)
in effect. However, 1t may be compiled in open form using
CAS instructions and moreover provides a convenient abbrevia-
tion for one of the more common cases of conditional express-
ion.

5.2 list(ii, ceey 1))

This function has as value a list constructed from free
storage containing the items 11,...,1n in the address fields
of the successive words. We may describe it recursively for
ourselves by writing:

1ist(1i)=cons(1,0)

list(il,...,1n)=cons(il,list(12,...,in))

However, it should be noted that this is not a definition in
the language and cannot easily be made into one. An exten-
sion of the language would be required to allow the defini-
tion of functions of variable numbers of arguments by
recursion on the number of arguments. This is not the same
as defining a function of a list of arguments by recursion
which 1s allowed.

Although we cannot define list within the language in
terms of cons, there will be no difficulty in defining the
program to compile list in the compiler. This is because
the compiler will have the arguments in the form of a 1iat
of expressions. The resulting program might either be an
open subroutine of variable length containing a number of
references to cons or, though this 1s more unlikely, a

reference to a closed subroutine which can determine for 1t-
self in some way the number of arguments.

5.3 eql(L,L2)

The value of eql(Ll,L2) is 1 or O according to whether
two lists of the specilal form

I I =

have the same number of items and data words in corresponding
places are equal. Such lists will be called one-level lists.
They are presently used to store the external names of objects

sl T

on their property lists. There will also be other uses.
The program for eql(Ll,L2) is

eql(Ll,L2)=(L1=L2-—-1,L1=0VL2=0—0,1—sc: r(car(Ll))=
cur({car(12))Aeql(cdr(Ll),cdr(L2)))

5.4, cpl(L)
It is also necessary to be able to copy one-level
lists. We have
epl(L)=(L=0—0,1—scons(conswu(cwr(car(L)))),cpl{cdr(L))))
which does it.

5.5. search (L,p,f,u)
This routine searches the list L for an element

satisfyling the condition p and if it finds one exits with

f of that element; if the search is unsuccessful search

exits with the value of the expresslion u. We have
search(L,p,f,u)=(L=0—u,p{L)=f(L),l—5search(cdr(L),p,f,u))

5.6 subst(L,V,M) (substitute L for V in M)
Substitution in expressions can take many forms and
we have only begun to explore the possibilities.
The present routine is
subst(L,V,M)=(M=0-20,equal(M,V)—scopy(L),car(M)=0-—M,1—>
cons(subst(L,V,car(M)),subst(L,V,cdr(M))))

5.7. sublis(P,E)
sublis(P,E) makes the 1list of substitution P in the
expression E. P is a list of structure

P
L_)l“-—'—--_._—_a ____’u: a

r

b 4 ’
v’;-——}'"’é.w I M gy —

The value of subst (P,E) is the location of a newly
formed 1list in which each occurrence of an obJject vy in
the expression E is replaced by the location of a copy
of the corresponding ey
sublis(P,E)=maplist(E,\(J,search(P, \(K,equal(car(J),
car(car(X)))),A(K, copy(car(cdr(car(K))))),(car(car(J))=0—3
car(J),l—-subst(P,car(J)))))

Actually, the way the program is writtem the v's may be
expressions and not merely objJects.

~18-

5.8 error

In many program error is listed as the value of an
expression under certain conditions which should not occur.
What this wmeans is that if the conditions do occur the
routine will go to the error routine. Under certain
conditions 1t may be possible to provide for the error
routine to do something that will make it possible for
the pﬂ;gagg?to continue, but until we understand pro-
grammingthis will not usually be the case and all that
willl be possible is to print some sort of diagnostic
and terminate the run.

In genernl, the error will occur in a subroutine
deep in the hierarchy of subroutines. What we would
like is to know exactly where in the program the error
occurred which really means knowing where we were in each
of the routines of the hierarchy. Our recursive subroutines
will present certaln problems in this respect which we
shall have to solve, but for the present we will discuss
only the non-recursive case. The error routine can trace
its way back up the hierarchy provided each routine includes
the following information in the calling sequence whenever
it uses a TSX.

1. Wwhere it has stored the following information

1.1 Its name

1.2 Where it saved irk

1.3 In the recursive case where it has used SAVE
1.4 A list of quantities to be printed out.

2. Whether it has made any provision for action to
be taken in case of an error in this use of the subroutine
and if so, what action. It should be noted that while
making these provisions for error analysis complicates
the task of writing the program, most of these complica-
tions can be put on the compiler, and that while the extra
information requires space in the program it does not take
time unless an error actually occurs.

5.9 pair(Ll,L2)

This function constructs a list whose elements are
palrs consisting of corresponding elements of the 1ist L1
and L2. If L1 and L2 are not the same length an error
interrupt occurs. For example if the original lists are

Ll
s[a1]) @z a3)

L2
N b2 bbbz)

the new 1list is
O

Y

{ S

i1 Glaz-sp2] 33

The program for pair is:

pair(Ll,L2)=(L1=0AL2=0—0,L1=0#L2=0—error,1—>
cons(cons(copy(car(Ll)),cons(copy(car(L2)),0)),pair(
edr(Ll),cdr(L2)))

5.1C Substitutional functions.

The value of a substitutional function applied to
a list of arguments is the result of substitutions these
arguments for the objects on an ordered list of arguments
in a certain expression containing these arguments. A
substitutional function is represented in the machlne by
a 1list structure as shown below.

T I T sy WY]

{1ist of'argumenﬁE]k~a] expression
There is a routine apply(L,f) whose value is the

result of applying a function to a list of arguments.
This routine expects the function f 1tself to be des-
cribed by an expression. The kinds of expressions for
functions which apply will interpret has not been
determined and for the present we shall only consider
the case where car(f)=subfun. Thus our initial version

of apply is:

2=

apply(L,f)=(ca£Kf)=sﬁbfun-ﬁeublis(pair(car(cdr(f)),
L),car(ecdr(cdr(f)))),1—error)

This definition presents the problem that the list
created by the pair has not further use after apply has
been evaluated and 18 not attached to any named variable,
Therefore unless the compiler is made to insert instruc-
tions to erase such auxillary lists they will steal space
permanently from the free storage list.

5.11 The second order maplist.

Consider a l1list of lists each of which has the same
number of elements. It is desired to scan over these lists
in parallel and to create a new list whose elements corres-
pond to the elements of the listed 1list but whose value is a
given function f of a list corresponding elements of the
listed 1lists. The figure shows the situation when the
calculation is part way through. Value of the ordinary
maplist used in indexing L

e

The calculation required to accompllish the above 1s desecribed
in the recursive definition:

dblmaplist(L,f)=search(L, x(J,car(L)=0fcar(J)=0),
A{J,error),car(L)=0-30,—icons (f(L),dblmaplist(maplist(L,A
(K,cdr(car(K)),F))))

-2
The inner ordinary maplist in this definition would
be a space thief unlegs the compller arrange for "the list
to be erased once 1t was used.
Still higher order maplists are possible but have not
yet been congidered. It iz worth looking to see whether
a maplist of infinite order can be defined in the systen.
It is worth while to compare the above uith & sivple
simultaneous maplist of two lists defined by:
maplist2(Ll,L2,f)=({L1=0/\L2=0--0, L 1=0512::0—~error,

7

l-scons(f (L1 I2),maplictd{ecdr{Ll),cdr(1R),F) 1)
5,12 A1ff(L,V)——>

This routine differentiates ths expression in the liet
structure in locatlon I with respect to $he object 7.
In the present version the expressions which may be dlifer-
entiated are comblnatlons of constaents and vsriables velng
the connectives plus and fimes. The rouvtine 1s
Aiff(L,V)=(L=V—Cl,car(L)=0C0;car(L)=plus—,
cong(plus,mapiist{cdr(L),AN(J,diff(car(J),V)))) car L)=iines—
cons{plus,maplist(cdr(L),A(J,cons(simes,maplist{cdr (L, W{kE,
Jtg—ycopy(car(K)), ks aifI(car(K)},¥1))))))),1-—srror)

This versicn of the differeatiation rouzine which
11llustrates most of the »rinciples involwed in complliing
recursively defined functions ags the Tlrst one to
be hand-compiled and demonstrated. A more elaborate
differentiation routine can differzntiate expreassicns of
fixed numbers of variables by looking up the formulas ‘or
their gradients on the property lists of vhe functions.
Such differentlation routine ig:

Giff(L,V)=(L=V=-3C1,car(L)=0-3C0, czr{L}=plus—>
coas(plus,maplist(ecdr{L),A{J,81ff(car(T},V)})),car{L)=iineg ~-
cons (plus,maplist(cdr(L),an{J,cons(ines maplist(ede(L; (X,
(J%K~ecopy(car(K)),L—adiff(car(K);v)))))}}),Luacéna(plusj
maplist2(apply(grad(car(il)),cdr(L)),cdr (L} , W J,K,listi iimes,
copy(ear(J)),diff(car(K},V)]}))))

The last fterm of the conditional expression invoives
the definitione of several auxiliiary cthilogs.

-22-

1. maplist2, apply, and list are discussed elsewhere
in this sectlion. grad is defined by

grad(M)=search(cdr(M),A(J,car(J)=gradl,A(J,car(J))),
error)

2. The gradient of a function is assumed to be stored
on its property list as shown in the following dliagram.

— | — gradl e

muni T P o]-—-—) .
B ‘Eumengé vl ° Lgvé

Here the v's are the formulas for the partial derivatives of
the function. The operation of the table look up differen-
tiation may be briefly described by saying that the routine
looks on the property list of car(L) for the word gradl, then
substitutes the expression in the l1list cdr(L) for the arguments
in the gradient, and then forms the sum of products of the
partial derivatives listed in the gradient list with the
derivatives of the arguments of the function in the expression
being differentiated.

It should be noted that we could not have used this
table look up method to differentiate sums and products
because according to our conventions the number of terms
in a sum or product is not fixed. A still more elaborate
routine would be required to read a formula for differen-
tiating a function of a variable number of terms. The partial
derivatlives would presumably have some sort of recursive
definition.

