
\
'I ,

• (<' ~ I Iv e.-
Artificial Intelligence ProJect~~ru:,E and MIT CoriJtlutation Center
Symbol loianipula ting Language--~iemo 4--Revlsions of t.he Language

John McCarthy

1. Protected temporary storage.

When a routine is defil'led recursively as are mSRlist and .£ill

{that i~ ~hen the routine itself occurs in the program defining the

routine,)!ertain s 'pecial problems with temporary storage a.rise. Speci­

fically, the execution of the routine as a subroutine or itself makes

use of the same temporary storage registers. There are a number of ~ays

to avoid a conflict over temporary storage, and after much argument the

following solution has been adopted. Those temporary storage registers

lllhich should be preserved tillen the routine uses a subroutine lfhich may
." a

.. , use the ~~broutine itself,torID~single block of consecutive registers

private to the routine ~hich ~,r. called the block of protec~e~ tempo£a~l

storage of this routine. The register in ~hich IR4 is stored is also

included in this block. Except for the register in ~hich IR4 is stored

the routine is required to be transparent to the registers ot the block:

that is the contents of this bloc~ must be the same when the routine

exits as trey were when it was entered. In order for the routine to

'be 9~~e to nse the registers of the block it must save them before it

uses them and restore them aftervards. The situation is then similar

to the SHARE convention on IRl and IR? They are saved by a routine

which puts them on what is ce.lled the public Bush dow list 01' PPDL g

and before the main routine exits they are restored from this list.

The SAVE and UNSAVE routines are used as follows; a program using them

might be

SID RSl,4

TSX SAVE,4

RS1+1,O,5

•••

••• (program that uses RS2 to RS5)

. . .

r

RS5

Rs4

RS3

RS~

RSI

T5X UNSAVE,4

RSl+l t O,5

LXD RSl,4

TRA 1,4

-2-

iba raason that IR4 is handled differently from the other

quantities that have to be saved is tbat it is used to enter SAVE

and UNSAVE and therefore must be saved before SAVE is entered and

restored after the exit from UNSAVE.

This procedure for t~ndl1ng protected temporary storage haD

another virtue which sho~s up in the routine for differentiation

described 14t~~' . In the multiplication case the program arising

frOM the first calls its argument J and the program arising

from the second must use this quantity J to compare ~ith K and

must also kave V vhich is one of the arguments of the original

~. If the argument J ot the first is stored in a protected

temporary storage register, it will be there vhen the routine compiled

from the second wants it in spite of the fact that the earlier values

of K on the second maplist \Jill have used Sill. The ganeral property

of the present system of handling protected te~porary storage 1s that

the values stored therein are accessible to all explicitly written

lower level routines hIlt are not changed either by them or by the use

of the original routine as a subroutine. (As an aside, it may be

remarked that if an attempt ~ere made in the ~ routine to expand

out one of the references to ~ in it by substituting the definition

-3-

of diff there would occur a collision of bound variables (unless the
names vere changed) and that this collision would .reflect itself

programwise in a collision of temporary storage. Tae relation be­

t~een bound variab'ds and protected temporary storage is close and

might be worth a systematic investigation.)

-4-

2. A Revised Version of "Maplist"

2.1 Problems posed by the old maplist.

The version of mapUs..! 1n memo 1 1mS wrl tten "mapUst(t,.Y ,£(J»ef

where J 1s a dummy variable ~hlcb ranges over the address parts of

the words in the list t and f(J) was an expression in J. This

version hadtvo serious defects. First, the location of t~e word in

which J vas stored ~as frequently needed. The second turned up when

t tried to write the SAP program for maplist. The designation of J

as the name of the indexing variable cannot conveniently be done in the

calling sequence of mapl1st. Instea.d lje do it in specifying the functi,on

f using the Church notation for functional abstraction if necessary.

In addition to the above mentioned defects the old version was ambiguous

in that it did not say how words of the three types should be treated.

The new JIll'Dlis;t is written "maplist(L,f)Gt. Its value is the loca­

tion of a list formed from free storage \jhose elements eor'respond

in a 1-1 ~~ with the elements of L. The element of the new list Which

corresponds to the element of the old list in location J has address

p9.rt f(J) .

The program for maplist can be written.

maplist (T"f) ::- <r, - 0-)0, Heons (f(TJ), maplist (cdr(L) ,f»}

A SAP version of this m8nlist is given in tbe appendix to this memor­

andum. It uses the programming convention that the argume~ts aTe given

to rnaplist in the ae and the mq that tbe return is by TRA 1,4, and that

the function f is given in the form of an instruction TXL F where F

is the address of a routine fOIl computing f which expects its argument

in the ACt returns its result in the I.e, and returns by TRA 1,4.

-5-

2.2 Functional abst~action - The Church A os.

r-' In order to be able to use forms in the definition of the

r

functions which are the arguments of maplist it 1s necessary to use

functional abstraction as developed by Church. We digress from the

subject or pro~mmlng into mathematical logic in order to explain

the idea of functional abstraction.

Ve shall call an expression t a functional expression when ·we

have given rules for assigning a value to expressions such as £(3)
•

or £(3,4) according to the number of arguments f is supposed to take.

An expression such as x2 + y does not meet this requirement because}

should we write (x2 + 1)(3,4), l!1hich no-one does, it uould be ambigu­

ous whether b~ meant 3 to replace x or y. Other difficulties

also arise. To clarify this matter Church invented his ~-operator.

(Ax) . e(x)!1 where t,(x) is seme expression in the symbOl X, denotes

the function whose value for a given argument is to be obtained by

·substituting that argument for x in the expression~(x) and evaluat­

ing that expression. Thus tSx) .x2 denotes the function which squares

its a.rgument. (~r'l).{x2 + 1) 1s the function whose value is obtained

by substituting the first argument for x and the second argument for y.

Thus (1\ xy). (x2 + 1)(3,4) ~ 13 and (:~X1). (x:2 + 1)(4,3) e 19.

The letter A serves as a quantifier in that the variable on which it

opera tes becomes bOlmd . and can be fel>laced by another variable

provided tbit-iS done everywhere it occurs in the expression on wbich

1\ operates and provided the nev variable does not occur in this ex-
' 22 pression. Thus we can write (1\ xY).(X -\- y) -= (1\xu).(x + u).
I 2

An expressio, x + 'I m thout 1\ t s 1s called a Lorm and thus we may say

that the 1\ -~perator has the effect of transforming forms into functions.

/

-6-

The use of the]l. -opera. tor and its propertie E are fully described

in Church's tract, The Calculi of 1\ -CR,uwsiol'!. \fhicb appeared as an

Annals of Mathe_tics Study.

For no~ at 1eas\ tiS only need the simplest properties ot the

1\ -operator. We sball write A (J,~) for the function ~ho~e value is

obtained by substituting the argument for J in the expression ~

and use a similar notation for functions or several variables. Thus

1\ (J,J*J+1) denotes the function whose value is obtained by squaring

the arg~ment and adding 1. The function ~hich we have written abaTe

2
(1\ xy).(x +·1) tlill be written 7dx,y,rx+ 1) 1n our programming

system.

r

-7-

2.3 An example
As an example of the use of the new maplist and of

the use of functional abstraction we sball rewrite the
routine for differentiating simple algebraic expressions.
In addition to the changes occasioned by the new mapllst
we shall change the notation we used for constants and the
identity function and make the routine one ~lhlch can per­
form partial differentiation with respect to a given variable.
We need the following conventions for the representation
of expressions by list structures:
1. As before a Bum or product 1s represented by a list whose first

\oJorCl has ~lus or times in ita address part anc;l \Ilhoae sub­
sequent elements are words containing the expressions to
be added or multiplied.
2. A constant or variable is represented by the location
of its property list.

The routine for dlfferent;latlng the expression represented
by the list structure starting in location L with respect
to the variable V is:
diff(L, V) = (L == V~Cl,car(L) :;; O---lCO,car(L) .. plus---4
cons(plus,maplist(cdr(L),A(J,dlff(car{J),V}»),car(L) = times ~
cons(plus,maplist(cdr(L),A(J,cons(times,maplist(cdr{L),A(K,
(J F K~ c'opy(car{K» # l--? diff(car(K}, V»»»», I ~error)

In this formula CO and Clrepresent the constants 0
and I resp~ctively.

Tentat1vely, we expect that an expression maplist (L,A(J,~»)
will be compiled as follows. As mentioned earlier maplist must
be supplied its functional argument in the form of an in­
struction TXL for a suitable location F. The program in F
will begin STO J and from then on will simply be a program
for evaluating the expresslon~. Thus we see that A has
a quite Simple effect on the object program.

r

-8-

2.4. The second version of maplis~.
The recursive definition of mapl1st given in the previous

section is map11st(I.,i'; '1';0 (L=O O~l cons(f(L)1 mapllst
(cdr(L) If»). A straightfor't~Jard compilation from this
definition leads to a program that when L is not zero
computes the arguments of the ~ons before computing the
value of the ~. Because of this the routine proceeds to
the end of the list L before lt talces any words from free
storage; that ls, it goes to the end of the list and works
backwards. In order for the routine to be able t9 find its
way back it has to store three words in the PPDL for each
element of the list. The time required by maplist comes to
about 1.7 milliseconds per list element exclusive of the
time requIred to compute the f(J)'s. It 1s possible to
rettJr!te maplist so that 1t l'1orks fOrt'Jard in the list. The
program then goes as follows!

functiOn(maplist(I../f))
/ L = o~return(o)

maplist = cons(f(L),O)
M -= mapl1st

al L = cdr(L)
cdr(M) = co08(f(L),0)
car(L) = O~return(maplist)

t·'! = cdr(M)

" go(al)
This program takes about .4 milliseconds per element of L
exclusive of the time required to compute the f(J)'s.

One is very reluctant to say that routines like maplist
should be described by programs like the above which is
certainly much less clear than the previous description. On
the other hand it is hard to see how to mal<e the compiler
take a description like the recursive definition of maplist
and produce a program like the second version. Tentativel~,

we expect to recode a very few routines like maplist which are
much used for high speed and accept the speed penalty in
exchange for ease of statement for other routines. The

r speed disadvantage is probably greater 1n maplist than 1n
almost any other routine. It should be noted that the reason
the second procedure can be made to work 1s that the value

of map11st/ namely the location of the constructed list, can

-9-

3. Some Examples of SAP Language Programs
We give some examples of the way in which some of the

programs described earlier in LISPI (List Proceaser) have
been coded by hand in SAP. These examples are given so that
the reader can confirm his understanding of the meaning of the
conventions of LISP and also so that he can consider the problem
of designing a compiler which will produce results not too
much worse than the hand coded examples. Moreover, it should
help users of the system with their hand coding before the
.compiler becomes available. All the routines described here
are deb~ed.

1. c6ns(a,d)
The first function we shall describe is cons(a,d) which

puts its two arguments in a word taken from the free storage
list and returns with the location of the word taken as the
value of the function. We are using the same conventions as
Fortran I to the effect that the first two arguments of a
function are given to it in the AC and the MQ respectively and
that the return 1s by TRA 1,4 with the answer 1n the AC.

CONS STQ Tl
ARS 18
ADD Tl

CONSl SXD Tl,4
CONS2 LXD Fa ~,4

TXH ·:.+4,4~0

Tl

SXD FROUT,4

TSX FROUT+I,4
LXD FROUT,4

LDQ 0,4
STQ FREE
STO 0,4
PXD 0,4
Lxt> Tlj4

TRA 1,4

DEC
ADD

MAKE WORD

OUT OF FREE STORAGE
NO FREE STORAGE
XX

CONSTRUCT WORD

I

-10-

2. coPy(L)
This routine copies a whole list structure into free

storage and returns with the location of the new copy_ Its
program in LISP is

COpY(L)=(L~~O,car(L).O~L,l~cons(copy(car(L»,copy(cdr(L»»

This has been translated into the SAP program:
COPY TZE 1,4 L=O

SXD C81,4
PDX 0,4
8XD CT1,4
CLA 0,4
PAX 0,4
TXH C1,4,0
CLA CTI
LXD CSl,,4
TRA 1,4

C1 TSX SAVE,4
CS1+1,,2

LXD CTl,4
CLA 0,4
STO CS2
ANA DECM
TSX COPY,4
LXA CS2,,4
STO CS2
PXD 0,4
TSX COFY,4
LDQ CS2
TSX cONS,4
TSX UNSAVE,4

. CS1+1,,2

LXD CS1,4
TRA 1,4

L

L

CWR(L)
CAR(L)
CAR(L)=O
L

L

CWR(L)

CDR(L)

COPY(CDR(L))
CAR(L)
COPY(CDR(L))

COFY(CAR(L))

CONS.(COPY(CAR(L» ,COPY(CDR(L»)

CS2
CSI

r CT1
DECM ,,-1

r

-11-

3. map1ist(L,f)
We shall give the SAP versions of both the slow but

easily described map11st and the fast but more complicated
one which is actually used. It would be desirable that the
compiler would compile the descr1ption of the slow one into
the program of the fast one.

I The slow maplist 1s defined by

maplist{L,r)={L=0-40,1~cons(r(L),maplist(cdr(L),r»)

Its SAP program is
MAPLIS TZE 1,4

SXD MSl,4

DECM
T1
F(L)
L

F

MSI

TSX SAVE,4
MSl+l,,4

STO L
STQ F
TSX F,4
STO F(L)
LXD L,4
CLA 0,4
ANA DECM
LDQF
TSX MAPLIS,4
STO Tl
LDQ Tl
CLA F(L}
TSX CONS,4
TSX UNSA VB, 4

MSl+l,,4
LXD MS1,4
TRA 1,4

,,-1

L = 0 0

SAVE 3 REGISTERS AND IR4

F NOW CONTAINS A TXL TO A SUBROUTINE
WE HAVE F(L)

MASK TO KEEP DECREMENT ONLY, WE HAVE CDR (.L)

THE RECURSIVE STEP. MAPLIST(CDR(L) ,F) ,o

CONS(F(L),MAPLIST(CDR(L),F»

PROTECTED TEMPORARY STORAGE

XX

XX

XX
The second version of maplist is

runction(map11st(L,f»

I L = O--)return(0)

r

r

-12-
mapllst = cons(f(L),O)
M = map11st

al /: L = cdr(L)
. cdr(M) = cons(f(L)IO)

cdr(L) = O~return(map11st)
M = cdr(M)

'\ go(al)
which g1ves the SAP program
rJIAPLIS TZE 1,4

SXD MSl,4

TSX SAVE,4
MS1+l,,5

STOMS2
STQ MS3

TSX MS3,4

LDQ MZERO

TSX CONs,4
STO Ms4
STO MS5

MLOP1 LXD MS2,4
CLA 0,4
PDX 0,4

TXH MPRG1,4,0

CLA Ms4
TSX UNSAVE,4

MSl+l,,5
LXD MSl,4
TRA 1,4

MPRGI SXD MS2 .. 4
CLA MS2
TSX MS3#4

LDQ MZERO

TSX CONS,4
LXD MS5,4
STD 0,4

STO MS5
TRA MLOPI

F

F(M)

CONS(F(M),O)
N

Q

M

CDR(M)
CDR(M)=O

M=CDR{M)

F(M)

CONS(F(M),O)
Q

CDR(Q)='P

Q=P

•

r
'.

r

MS5
MS4
MS3
MS2
MSl
MZERO PZE

4. dItf(L,V)

-13-

Q

N

F

M

As a tinal example we give the SAP version of the
ditf program described earlier. It shows how expressIons
includ1ng ;\' s may be compiled. The reader should note
carefully how the quantity J 1s made available to the
lower order function definition (the section called PI in
the example)

The LISP form of dift is
dltr(L,V) = (L=V~Cl,car(L) = ~CO,car(L) = plus~

cons(plus,maplist(cdr(L),~(J,ditt(car(J),v»»,car(L)=tImes~

cons(plus,map11st(cdr(L),~(J,cons(times,maplist(cdr(L),A(K,

(JFK~copy{car(K»,l-;dirt(car{K),V»»»»,l~error)

This compiles into
DIFF STO L

Dl

STQ Tl
SUB Tl
TNZ Dl

CLA O;tC1D
TRA 1,4

SXD DSl,4

LXD L,4
CLA 0,4
PAX 0,4
TXH D2,4,0
LXD DSL,4
CLA O;tCOD
TRA 1,4

D2 TSX 0$SAVE,4
DSl+l,,3

STQ V

LXD L,4

CLA 0,4

CAR(L)=O-CO

-14-

PAX 0,4
STO CWRL
PXD 0,4
CAS O$PLUSD
TRA *+2
TRA DP

CAS TlMESD
TRA *+2
TRA DM
PMR LITES,FPR
TRA O,1ERROR

DP LDQ ETAl
TRA D3

DM LDQ NUl
D3 LXD CWRL,4

PXD 0,4
TSX MAPLIS,4
TSX UNSAVE,4

r DSl+l,,3
STO Tl
LDQ Tl
CLA O$PLUSD
LXD DSl.,4
TRA O$CONS

ETA 1 TXL ETA
ETA SXD ETSl:.4

PDX 0,4
CLA 0,4
PAX 0,4
PXD 0,4
LDQV
LXD ETSl,4
TRA DIFF

ETSI
NUl TXL NU

NU SXD NSl,4
TSX 0~SAVE,4

NSl+l,O,2

STO J

-15-
LXD CWRL,4
PXD 0,4 CDR(L)
LDQ PIl
TSX MAPLIS,4
TSX UNSAVE,4

NSl+l,0,2
STO Tl
LDQ Tl
CLA TIMESD
LXD NS1,4
TRA O,iCONS

PIl TXL PI
PI SXD PIS1,4

PDX 0,4
SUB J

TZE PD
CLA 0,4
PAX 0,4
PXD 0,4
LXD PIS1,4
TRA o,iCOPY

PD CLA 0,4
PAX 0,4
PXD 0,4
LDQV

LXD PIS1,4
TRA DIFF

V

CWRL
DSl
T1
L
ADDM -1
J

NS1
PIS1

-16-
5. Additional Functions and Subroutines

5~l select (ajv~l; ••• ; vn,enje) is the same as
the conditional expression (a=vI~el, ••• ,a=v~en,l~e)
1n effect. However, 1t may be complIed In open form using
CAS inst~ctlons and moreover provides a convenient abbrevia­
tion tor one of the more common cases of conditional express­
ion.

5.2 list{l!, ••• , in)
This function has as value a list constructed from tree

storage containing the items l 1l eeo,1n in the address fields
of the successive words. We may describe it recursively for
ourselves by writing:

I1st(1)=cons(i,O)
l1st(il~···,1n)=cons(il,list(i2,···,ln»

However,. it should be noted that this is not a definltion in
the language and cannot easily be made Into one. An exten­
sion ot the language would be required to allow the defini­
tion of functions of variable numbers of arguments by
recursion on the number of arguments. This is not the same
as defining a runction ot a llst of arguments by recurslon
which is allowed.

Although we cannot define list within the language in
terms of cons~ there wll1 be .no dIfficulty in definlng the
program to compile list In the compiler. This is because
the compiler will have the arguments in the form of a list
of expressions. The resulting program mlght either be an
open subroutine of variable length containing a number of
references to cons or, though this is more unlikely, a

reference to a closed subroutine which can determine for it­
self in some way the number of arguments.

5.3 eql(L:~ ,L2)
The value of eql(Ll,L2) is I or 0 according to whether

two lists of the special form

L,l .))1 I)1 }---7"

C,TatUm) L I datum I L r datJAm)
have the same number of items and data words in corresponding
places are equal. Such lists will be called one-level lists.
They are presently used to store the external names of objects

r

-17-

on their property lists. There w111 also be other uses.
The program for eql(Ll,L2) is

eql(Ll,L2)=(L1=L2~l,Ll=0VL2=O--JO,l--JO;! .r(car(Ll))=
cur(car(L2»Aeq1(cdr(Ll),cdr(L2»)

5.4. cpl(L)
It is also necessary to be able to copy one-level

lists. We have
cpl(L)=(L=O~O,I~ons(consw(cwr(car(L»»,cpl(cdr(L»»

which does it.

5.5. search (L,p,f,u)
This routine searches the list L for an element

satisfying the condition p and if it finds one exits with
t ot that element; if the search is unsuccessful search
exits with the value of the expression u. We have

search(L,p,flu)=(L=O~u,P(L~r(L),I~search(cdr(L),p,r,u»

5.6 subst(L,V,M) (substitute L for V in M)
Substitution in expressions can take many forms and

we have only begun to explore the possibilities.
The present routine is

subst(L,V,M)=(M=O~O,equal(M,V)~opy(L),car(M)=o-,M,l~

cons(subst(L,y,car(M»,subst(L,V,cdr(M»»

5.7. sublis(P,E)
sublis(P,E) makes the list of substitution P in the

expression E. P 1s a list of structure p
41 1 >E----)" .

C;C?,) r-I ':~, 1~{ I
v.~ ~ v:£o e;;;P

The value at subst (P,E) 1s the location of a newly
formed list in which each occurrence of an object Vi in
the expression E 1s replaced py the locat10n of a copy
of the corresponding ei
sublis(p,E)=maplist(E,~(J,search(p,~(K,equal(car(J),

car(car(K»»,~(K, copy(car(cdr(car(K»»),(car(car(J»=O~

car(J),l~ubst(p,car{J»») .
Actually, the way the program is wr1tten the v's may be

expressions and not merely objects.

r

-18-

5.8 error
In many program e~ror is listed as the value of an

expression under certain cond1t1ons which should not occur.
What th1s means 1s that 1f the condit1ons do occur the
routine w1ll go to the error rout1ne. Under certain
cond1tions it may be poss1ble to provide for the error
routine to do something that will ma¥~ it possible for
the program to continue, but until we understand pro-

better
grammingAthis will not usually be the case and all that
will be possible is to print some sort of diagnostic
and terminate the run.

In gener~l, the error will occur in a subroutine
deep in the hierarchy or subroutines. What we would
like is to know exactly where in the program the error
occurred which really means knowing where we were in each
ot the routines of the hierarchy. our recursive subroutines
will present certain problems in this respect whiQh we
shall have to solve. but for the present we will discuss
only the non-recursive case. The error routine can trace
its way back up the hierarchy provided each routine includes
the following information in the calling sequence whenever
it uses a TSX.

1. where it has stored the following information
1.1 Its name
1.2 Where it saved ir4
1.3 In the recursive case where it has used SAVE
1.4 A l1st of quantities to be pr1nted outo

2. Whether it has made any provision tor action to
be taken in caae of an error in th1s use of the subroutine
and if sa, what action. It should be noted that while
making these provisions for error analysis complicates
the task of writing the program, most of these complica­
tions can be put on the compiler. and that while the extra
informat10n requires space 1n the program it does not take
time unless an error actually occurs.

r

-19-

5.9 pair(Ll,L2)
This function constructs a list whose elements are

pairs consisting of corresponding elements of the list Ll
and L2. If Ll and 12 are not the same length an error
interrupt occurs. For example if the original lists are

Ll

~~.!J-7l.!.~_'-{ft I

L2
I

~! ~,!. 1-1l.!?DlEl_l
the new list is

4~~~~~~~
The program for Eair is:
pair(Ll,L2)=(Ll=OAL2=O-7Q,Ll=OrL2=Q-7error,l--?

cons(cons(copy(car(Ll»,cons(copy(car(L2»,O»,pair(
cdr(Ll),cdr(L2»)

5.10 Substitutional functions.
The value of a substitutional function applied to

a list of arguments is the result of substitutions these
arguments for the objects on an ordered list of arguments
in a certain expression containing these, arguments. A
substltu~ional function is represent~d in the machine by

a list structure as shown below.

ll~~~_' ,_. 1 (r---

il/st of argumems) ~I expressionl
There is a routine a~plY(L,t) whose value 1s the

result of applying a function to a list of arguments.
This routine expects the function f itself to be des­
cribed by an expression. The kinds of expressions for
functions which apply will interpret has not been
determined and for the present we shall only consider
the case where car(f)~subfun. Thus our initial version

of apply is:

r

-20-

applY(L,f)~(cab(f)=s#bfun~ubl1s(pair(car(cdr(f»,
".

L) ,car(cdr(cdr(f)))), l eI·ror)

This definition presents the problem that the list
created by the pa1r has not further use after apply has
been evaluated and is not attached to any named variab1e p

Therefore unless the compiler is made to insert instruc­
tions to erase such auxiliary lists they will steal space
permanently from the free storage list.

5.11 The second order map11st.
Consider a list of lists each of which has the same

number of elements. It is desired to scan over these lists
in parallel and to create a new list whose elements corres­
pond to the elements of the listed list but whose value is a
given function f of a · list corresponding elements of the
listed lists. The figure shows the situation when the
calculation is part way through. Value of the ordinary

mapllst U$§ft in lndexingJ C .
~I----"H~
,--[---,~I '--jl~

~'------fl-{_-H---... -.J~ '.~~=~~-4
The calculation required to accomplish the above 1s described
in the recursive definition:

db1map11st(L,f)=search(L,AX(J,car(L)=ofcar (J}=0},
A(J,error),car(L)*0-70,l-7cons(f(L),db1map1ist(maplis~(L,A

(K,cdr(car(K)},F}»)

/

-21-

1'he inner ordinary maplist in this defin1tton \>]ou1.d

be a space thief unless the compiler arrange for ·the list

to be e~ased once it was used.

St111 higher order maplists are pos3ibll-~ but h.:l~lTe not;

yet bee'n considered. It is \'lorth J.ooking to see t\' l"te -;;bf';r'

a mapllst of infinite order can be defined In the ~1:V3tela .

It is worth whlle to compare the above ~lit;h :::, s1up.le

simultaneous maplist of two l:lsts defint;d bjl'

mapliB t2 (I.l, L2, f) ~ (LI=o/l2=O--~O, I,l~ Y+I..2 "O-)e:r.l'or·.,

1-)COn8 (f (L1 j L2) ,ruaplietd(cdr{ Ll) , <:dr (L2) -' f) I)

5.12 diff(L,\J)~

rhil3 routine differentiates the e~q;r€~ ss ton i -1 the l i:s"C

stru::ture in locatio;'1 L with rS:3peC't t o t h.-; Obj0C t :'T"

In the present version the express :i ons l>i hj.(~h maybe d:l.ff(:~l'­

entiated are combinatIons ot"' consta.nts and v(ir:tabJ.~~s IT :l. n;:~

the conn~ctives E.lu!5_ and ti~~o The rot:_U.l1e is

di:ff (L, '\1)=(L~\T~Cl, car(L) =Q...4C 0 } co.r(L)~plu5----t

cons (plus $ maplist (cdr(L) ~"" (J 1 dif:C (Gar (J) JJ V)))) $ 08.r:.L)=<t: .. m~~s-~
cons (plus J maplist (cdr(L) , ',\(J, cons (ttmes p mapl:l.st «.'.(1:.: ([.: .. },(KjI

J+K-4c;o~y(car(K)) j.1-...,.jlf':_' (car(K) ,V)))))))) J l--4$I'rm:»

This varsion of thc:' dlfferent:tattoY.1 r·o"Lr·~lne which

illustrates most of the :?rlncip) ea i nvol VE d 1n compil~! . .'1.g

recUi:'slvely defined func ·cions l"las ~.;he fi::"st one tCl

be hand·-compiled and Clem.)l1s 'cra ted 0 p., more elabora"i:e

differentiat~_on routine ,::an differ';m1-1ate ex~re')Si(n8 ·~r

fixed t1u"1l.bers of' variables by lCloklng Ufl .. ne fO-"iTlu:as 'r,l'"'

their gradients on the prope~ty lists of ~he fuaction~.

Such dlfferentiation rDutine is:

diff (L, v)~(L""V--!)Cl, car'(L)==O-7CO, N 1"(L} ~:plU8--~

CO(}S {plUB pmaplist (cdr (L), i\(J, dIff(ca:c(J) ~ v)))) ,~Etj:' (L)~: i·.:nes ---7'

cons (plus pmaplist (cdr' (L) ,J-.(J Ji COtlS (-;;imes ; . ~napl ~\.st((! d~L'(L 1-\ (K;.

(J+K~COPY(c8r(K», l-)diff (car(K): V))))))); l~cc"n:j (P:.13

maplist2(apply(grad(car(f.J)),cdr(L)) ~cdr(LL.J\(J,Ki.l i5t. :lmes.

copy(car (.J)) ,d1ff (car (K), V))))))

The last ter'm of the condi ti()".1a.l expresBion invo:~ ,J(~S

the deflni tions of sever3.1 al)Ai.11a~(ly t.hings ~

-22-

1. maplist2, apply, and list are discussed elsewhere
in this section. grad is defined by

grad(M)-search(cdr(M),~(J,car(J)=gradl,~(J,car(J)~),

error)
2. The gradient of a function is assumed to be stored

on 1ts .property l1st as shown 1n the following diagram.

-~ 1-)/ JZra~ ~ i)

®bfun~~git hlYi~). "
Here the v's are the formulas for t e partial erivativ s of
the function. The operat1on of the table look up d1fferen­
tiation may be briefly descr1bed by saying that the routine
looks on the property list of car(L) for the word gradl, then
substitutes the expression in the list c.dr(L) for the arguments
in the gradient, and then forms the sum of products of the
partial derivatives listed in the gradient list with the
derivatives of the arguments of the function in the expression
being differentiated.

It should be noted that we could not have used this
table look up method to differentiate sums and products
because according to opr conventions the number of terms
in a sum or product is not fixed. A still more elaborate
routine would be required to read a formula for differen­
tiating a function of a variable number of terms. The partial
derivatives would presumably have some sort of recursive
definition.

