o RN ',“‘ ’ B ,‘  -
R | | /%L&%W\.
| o ) u’ ST

€ MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A. 1. LABORATORY -

Artificial Intelligence Lo T EE
Memo No. 279 - - February 1973

PRETTY-PRINTING
CONVERTING LIST TO LINEAR STRUCTURE

Ira Goldstein

ABSTRACT

Pretty-printing is the conversion of 1ist structure to a readable
format. This paper outlines the computational problems encountered
in such a task and documents the current algorithm in use.

Work reported herein was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Technology research program sup-
ported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense and monitored by the Office of Naval Research under
Contract Number N00014-70-A-0362-0003.

Reproduction of this document in whole or in part is permitted for
any purpose of the United States Government.




» CONTENTS
( T. Introduction
I1. Computational Analysis

(7 A. The Rasic Task
V ' B. Finite Width
‘ C. Linear Format
D. Finite Length
E. The RECURSIVE RE-PREDICTCR, A Top—Down Aprroach
¥. The Table Scheme, A Bottom-Up Approach :
G. Semantics
E. Comments
1. History

III. Documentation

A. Top level functions
1. GRIND and GRINDO
2. GRINDEF
Formatting
4. REMGRIND '
5. Functions, atoms and properties reserved by grlnd.

R. Predefined formats
1. Standard formats
2. Srecial GRINDFNs
%« Inverting read macros
4. System packages

C. Comments
1. Single semi comments
2. Double semi ccmments
2. Triple semi comments

A D. Grind contrel

E. Defining new formats
1. GRINDFNs
2. Vocabulary
%. Examples
4. GRINDMACROs

IV. Suggested future improvements

A. Conceptual
E. InrIementation

¢
=




page 3

T. INTRODUCTION

- Pretty-printing is a fundamental debugging aid for LISP.
List structure presented as an unformatted linear string is very
difficult for a person to understand. The purpore of pretty-
rrinting is to clarify the structure of a LISP expressior. . The
simplest class of pretty-printers accomplishes this bty the 3ud1010u°
insertion of sraces and carriage returns. Section IT anslyzes the
computatlonal complexity of such algorithms. [See section IV for
suggestions for more sophisticated schemes which break the ccde intc
separate expressions.] The existence of algorithms which are only
linearly more expensive than the standard LISP printing routines is
- demonstrated. Various extensions for adding semantic knowlecdge to
the pretty-printer are then considered. Section III documents the
rretty-print package currently available for MACLISP. Section IV
suggests additional improvements to be considered for the future.

‘II. COMPUTATIONAL ANALYSIS

- A. THE BASIC TASK

The LISP PRINT ing primitives print expressions as strings.
Their only concession to clarity is the insertion of a carriage
return each time the right margin is reached. This results in code
which is not very readable when longer than a single line. Indeed,
the carriage returns can even be inserted directly into the middle
of a word. [The LISP reader ignores carriage returns on inpuvt]. '
- The following example is the definition of FACTORTAL PRINT’ e¢ by
LISP. The dots represent the left and right margins.

" (DEFUN FACTORIAL (X) (co’
ND ((= X 0) 1) ((* (FACT
ORIAL (1~ X)) X))))

* [

ILet L be a list of the following form:
(<FUNCTION> <ARG(1)> <ARG(2)> cce <ARG(N)>) |
The obgectlve of the pretty-printer is to present L in a fashion

vhich emphasizes its procedural role. The "standard format" for
accomnplishing this is aligning the arguments one under the next.




(<FUECTICN> <FRETTY-FRINT ARG€1 >
~ <PRETTY-FRINT ARC(2

<PRETTY-PRINT ARC(N)>)

‘Using this format, the FACTORIAL function takes on the following,

more understandable, appearance:

" (DEFUN FﬁgTQRIAL

COND ((= X 0) 1 )-'
((* (FACTORIAL (1- X))
X)))) T

L) . .

Note that any format used by pretty»rrlnt muct leave T, re—
readable by LISP. Hence, the following structure wouvld te illegal:

(<FUNCTION> <PRETTY-PRINT ARG(1;> <PRETTY-PRINT ARGéH/2 + 13
<PRETTY-PRINT ARG(2)> <PRETTY—PRITT ARG(N/2 + 2

| <PRETTY~PRINT ARG(N/2)> <PRETTY-PRINT ARG(N)>)

If the only yroblem which the pretty~pr1vter faced was the
1nsert10n of extra sraces and carriage returns, the computational
cost in excess of the standard LISP PRINT would be negligible. The
difficulty arises from the finite width of the page, For
sufficiently large s—-expressions, every sublist cannot be printed 1n
standard format. Instead, the less desirable miser format must te

used.

(<FUNCTION>
<PRETTY-PRINT ARG (1)>

<PRETTY—PRINT‘ARG (N)>)

This format is minimal with respect to the indentaticn of the
arguments.  All arguments begin only one qpace over from the opening
rarenthesis. o

There are rare instances of lists that cannot be pretty—
rrinted even in miser format. If the derth of the list :
exceeds the width of the page, indenting one for each level !ID




rare 5

is impossible. See suggestion A-% ir sectior IV for a
technique for handling expressions of great depth.

The role of miser format is illustrated ty our FACTCRETAL

- exanmrles. When first shown PRINTed, the ragewidth was. 24 spaces.

Fowever, the pagewidth was increased to %25 in order to dermonstrate
standard format. Without the extra width, it is impecssitle to use
standard format on the list and all of its sub-expressiors without
exceeding the right-hand margin. Hence, the pretty-rrinter is face”
with the necessity to use miser format on some sub-expressiorns if
the.entire list is to fit on the page. This prediction represents
the tasic extra—-cost above the standard I1.ISP PRINT which the rretty-
printer requires. The following format for FACTCRIAL ilustrstes the
cautious use of miser format until sufficient w1dth becores
avallable to switch to standard form.

(DEFUN
FACTORTAL
X)
(COND
=X 0) 1)
* (FACTORIAL (1- X)-
X))

E. FINITE WIDTH

Vhat, then, are the btasic computational costs for pretty—

rrinting on.a page of finite width? If lists are descrited as

trees, then the cost of rrinting is simply that of visiting each tir
of the tree in left-to-right order. The cost of pretty-rrinting
will be analyzed with respect to this basic "tree traversal"
overhead. Uron first arriving at any norn-terminal node of the tree,
the rretty-printer has no knowledge of the size of the subtree
teginning there. Hence, it cannot know whether there is sufficient
space to use standard format. The pretty-printer must arply a
rrediction function to the subtree to estimate the width required to
print it in standard format. If that width is more than is
currently available, miser format must be used. The additional cost
of pretty-printing, then, is simply the cost of yrediction. '

Cne criterion for judging different rretty-print algorithms
is the number of times each node of the tree must be revisited. In
these terms, a minimal algorithm would perform orly two tree
traversals - one to obtain predictior information and one to
actually print the subtree.

The following analysis will proceed 2t a qualitative level.
The assumption will te that list operations represent the major




cost, with nurerical operaticns teing cheap. The intenticrn i- tc
rive the reader the flaver of this computption91'rrotlem. VFeweave
tc turn th se assertions into theorems wculd reguire a2 rcre forrme}
attack. TFor exarrle, a rrecice comparison of the cost of nurerics)
versus list operatiors would be recessary. Ctherwise, cre roses.
through the the tree could be used to Godelize it. Subs equert
computation could then be entirely nurericel.

Is a "minimal® two-traversal algorithm Pruwlble? The an wer'
is yes. [This yes assumes that the rumber of lirnes reeded tc rrznt
the expression is igrored. The section on "finite lensth" consicdars
this additional complexity.] One pass cen be rece tc asrcocizte v1tk \
each sublist the minimal width needed to prirt it in stardard R
format. This information comrpletely determires how the s—exyresscion
is printed. The pretty-rrinter uses the more eccnomical nriser
format from the top down, until the aveilable wicdth oxcseds the
minimum needed to use standard format. At that roint, the printer
is assured of room to prlnt all remaining sutlists ir standard
format. This is the structure which was uoeé to rrlnt FACTCEIAL in
the last example.

A single prediction yass is sensitle providirgs the cost of
storing and accessing the minimur width comruted for each piece cof
substructure is less than the cost of recomruting the nunber. .
Fortunately, this is the case. Tor examrle, a hash table accessed e
bty a numerical comrutation on the pointer to the sublist takes fixed
time, regardless of the size of the list structure. Of course, for
sufficiently small list structures, the fixed cost of accessing and
cleering & hash table will not be worthwhile. Put this is
uninteresting mathematically. Indeed, ever from a2 practical
standpoint, the hash scheme is so fast that its coverhead is rot
roticed cn small lists. ‘ ' ' ’ : :

C. LINEAR FORMAT

Analysis of the rrett prlntlng task was begun ir reacticn
to the urinformative use of "{1near format" bty.the LISP primitives.
Fowever, when a sub-expression can fit in the space remaining on the‘
line, lirear format is sensitle. As we shall see, even with this
additional comrlexity, two tree traversals are sufficient

The: predlctlon pass nust now save tvo Tieces of data - the
linear width of the sub-expression as well a5 1ts mirirmur width.
These twc numbers can be computed on the same pass through the tree.
The printing pass is extended in the obvious way. Tirst prefernrce
is given to linear format if sufficient width 13 qvmlable.
Ctherwise, the algorlthm is as before.




pere 7T

FINITE LENGTH

T
. e

Thre is an additional elemert of corpleyltv in rretfv~ _
rrinting that has not yet been considered. Vhen TISF ccde is srresd
cut over mary lires or, vorse, many tages, it egain tecores
indecipherable. Hence, a rretty-rrirt algor1thm should 2lco attentt
to fermat s—expressions in the least number cof lines. Tc actieve
the minirum rumber of lines, we shall have tc 2llow &r ircresse in
computational cost. Nevertheless, we will yrepose a scheme which
still requires only two tree traversals and is therefore linear in
the size of the tree. ~

The rredictor described sbove car corrute the number of
lines needed to print an expression in minimal width. The
difficulty, however, is that there may be extra width availatle.
This can allow the use of linear format to cdecresse the rumber of
lines needed to rrint the expression. TFor example, for FACTCRIAL,
the rretty-printer always prints the seccnd argumert, of "x" under.
the first. Fowever, with sufficient width, a lire is saved bv
rrinting (* (FACTCRIAL (1— X)) X) in lineer format. .

(DEFUN F%CTORIAL

COND §§= X 0) 1)
* (FACTORTAT, (1- X)) X))))

For functions with many argumentc such as (PIUS 122456 7),

use of linear format over standard format car meke a glprlflcant
difference in the number of lines and, consequently, the
‘rerdability. Thus, remembering a clvyle datum correspondlnp to the
rumber of lires needed to print a given sub-expression in minimal -
width is not sufficiernt information. At first blush, it would
arpear necessary to reexamine each svb-exrressiorn ~very time the
available width changes.

F. THE RECURSIVE RE-FREDICTOR, A TOP-DOVN ALCCORITEM

Let us begin by examining aprroaches that do reexamine
sublists many times. One obvious algorithm is tc consider all
rossible format choices at each node, corpruting the resulting number
cf lines required. Py brute search, this aprroach is guaranteed to
find the sequence of formats that ylelds the minizum number cf
lines. However, the exponential cost is certainly prohititive. A
less powerful but less costly alternative is the RECURSIVE RF-
FREDICTOR.

The EFCURSIVE RE-PREDICTCR works in the followiny way. Urpon
earriving at a given ncde, the algforithm lknows N, the remeinirge




ovailable width. Lirear format is ueéd if N is cufflclehtly 1a rgp '
Ctherwise, it estimates how many lines it wovld take tc yrint tho
argurents

in-width gr - 1) corresyonding to the use of miser fcrme t
ané in width (N - <linear width of the functlon)) corresyording
to standard format.

The estimate is made by guessing that all sublists are printed ir
the following way: : et =T

linear format if sufficient wldth~-
else standard format.

This scheme is not guaranteed to find the sequence of formet choices.
that results in the minimum number of lires. It does not corsider
all possible sequences. VWhen insufficent space cccurs, it prints
the toplevel expression in miser format. It igncres the pou~1b111tv
of printing the toplevel expression in standard formet while
rrinting the sublists in miser form.

Computationally, the RECURSIVE RF~PREDICTOR can reexamine a
given subtree many times. Thus, the cost is still exponential in
the worst case. Nevertheless, for various reasons, this approach is

.r0551b1e. | ‘ v | ‘ ;@‘

1. Lists beginning wlth ron-atomic elemerts such as I.AMBLA
expressions can always be printed in miser format. This
avoids prediction costs for these sublists. ;

2. There is no longer any point to remembering the minimum
width needed for standard format. Since the predictor must
reexamine each sublist for the number of lines, it can at
the same time check that the list fits in the given width.

Z. A hash table can still used to remember the linear width.

4. Empirically, much LISP code is broad tut not deep.

FROG s are typical examples. After yredictirg ard printing

the first level or two, it is often the case that the

remaining elements almost all fit in linear formet. Thus,
. little recursive re-yrediction is needed. :

This RECURSIVE RE-PREDICTCR is the current pretty-print
algorithm in use. Empirical observations indicate that it is only
some four to five times slower than PRINT. Thus, it is of practical
use. The next section describes an algorithm thet is theoretically
linear in the size of the list. It has not yet been implemented,
and, in rractice, may not be worth 1mplement1ng. The use of tables
and rumerical operations is required. The overhead of these ‘ &
computations might be prchibitive for handling the average LISP




prare 9

(>rrooolor. Alco, svch rumerical operations are more cfficient
reand-coded ir LAP than written directly ir IISP. 1In »nv care, the
firal verdict must await implementation. :

F. TFF TARBLE ALGCRITF, A BOTTCM~UP ATPROACY

% bottom-ur attack can yield a predicter which is liresr in
the size of the tree. One predictior pass is uvsed. The triclr will
te tc rerember more than just the minimal width ard correspordings
length. Instead, a step functior must be built for each ncde which
rrovides the mlnlnal numter of lines reeultlrr fcr different w:nt“v
For examrle,

(PLUS 2 Z 4)

WIDTH # OF LINFS ~ ~  TCRMAT
0-4 : impossitle e
5~7 . T - riser
&11 ' 3 : standard
12-LINEWIDTF 1 lineer

y Such tables are finite. The nurber of irtervals is limited bty the

(" finiteness of LINEWIDTH. The tabtles for all of the daughters of a
giver node determine the table for the parent.  Fefore giving more
cdetails of this tabtle scheme, notice that the cost is only a linear
increase in the tasic "tree traversal" computation. [This assumes
that the cost of numerical CCMPARE ‘s needed to merge tables is
roughly comrarable to moving ur end down levels in the tree.]

The table for the parent is tuilt by rerging the tables for
the cdaughters, creating their "refinement". For exaryple, the table
for (PLUS 2 7 4) given above is tuilt from the tazbles for the atems
FLUS, "2v, nZn apd "4", For each rossitle width, the taltle entry is
the minirum rumber of llres to pretty-rrint the given suttree. This
is deterrined by checking the number of lines resulting from each
format. The number of lines to rrint a giver tree in a givern format
is conrletely determined by the choice of format and the tables for
the cdaughters. A given initial width and 2 givern format imply a
specific width for each daughter. The predictor, then, looks up the
nunber of lines that the daughter requires for that width. The
total nurmber of lines is obtained by sumning over all the daughters.

; The formet used to obttair the minimum numker of lines is
recorded es well. Ultimately, this bottom—ur aprroach yields a

table for the toplevel list. The entry for the total LIKFVWILTE
fives tre number of lines to rrint the eyrrecelor as well as the
rrogran for doing it. ‘

@




 pare

Come_savings in cost is possible. This cen bte dcne by 'K
ﬁeferrlnzrp limits for the widths that a given tzatle ruot cercider.
The nexirum width is: , ‘

LINEVIDTH - DEPTT.

This is true since each level of the tree costs a2t least one urit of
width in order to print the opening parenthesis. Alternatively, it
can e viewed as the width corresponding to usings only miser forrat.
A lower tound cn the table is obtained by corsidering the use of
only stardard format. This results in maximel indentaticn. Tor
each use of standard format, the available width decreases b" o

7 ;for the opening parenthesis
-+ FLAT 'where FLAT equals the linear width of the first element
+ 1 °for the space between the first and second elemerts.

These uprer and lower bounds are computed as the predictor travels
down the tree. The tables are computed on the return trip beck up.
Thus no extra tree traversing is necessary. An additional bound on
the minimum width that need e considered for a giver tatle is
obtained by the left-to-right analysis of the dauvghters of each
node. Suppose the table for daughter(1) asserts that it is
impossible to pretty-print this subtree in less width than MIN.
Then, it is unnecessary to consider widths less than MIN for the
remaining daughters. :

Fowever, it is clear that such savings, though useful from a
Tractical standpoint, still leave the alporlthm linear in the size
of the tree. Indeed, the tatle algorithm is essentially minimal in
its cost. This can te illustrated by a worst case snalysis.’

Suppose that an intermediate width W in o takle for the sublist 1 is
rot computed. Ottaining the minimum number of lines can be made to
hinge on just this piece of information. A sketch of the argumert
is: ;

Construct a supertree for I, for which 2 sequence of miser—
standard choices could be made resulting in wldtb ¥ hezpy ,
Tossible. '

Construct the sisters of L such that thev pretty¢pr1nt
optimally in this width. :

Then, if L behaves well for width W, it should be chcven.‘
Fut if the number of lines tc print I in width V¥ is large,
then it is not worth choosing.

Hence, the ch01ce of format deperds on hcw L behaveq in thl“
width. ; ,




e 15

. SFMANTICS
So far, we have introcduced orly three forrats for lirtn:

ctandard forrat
‘miser forrat v ]
linear forrat

Knowledge of the semantics of variocus types cf q—oxpreq ions lenads
to acdltlonal forms. TFor example, argument lists for PRCG’s qrﬂ
LAVBLA s are preferatly rresented as btlocks.

(PROG (3*%3% 333%% XX EHH XXHXX
FHHRH HWWNF IO NN «x—**-x-x-)

TAG ~ stags are uninderted.

¢« & o

e e e
® ¢ 0
R B R ]
¢ o 0

'Similarly, the preferred format for SETCQ should te:

(SETQ NAmé 1) <PRETTY-PRINT CF VALUE’%?i)
NAME(2S <PRETTY-PRINT CF VALUF(2)>

-)

This additional versatility can te achieved ty extending the pretty-
rrint algorithm. In the current PRETTY-FRINT peckage, srecisl
formats have been designed for meny TISP rrimitives. [This includes
- informing the rredictor of the srecial way suvch functions as PRCC
end SETQ are handled.] 1If sufficient space is avgllable, these

formats are rreferred over standard cr mirer format. See section =~

JII for detalls.

I'e CCHMMENTS
;',.v’ LS My
The importance of documertlng code cannot be under—
- estirated. Fence, the pretty-printer, wher applied to files,
formats semi-cclcon comments. These comments can be inserted in the
code or rrinted on the right-hand half of the page. Again see
section ITI for detalls.

T. HISTORY

Fill Gosrter developed one of the earllest pretty;prlpt
a2lgorithms for L{SP. It used the recursive re-prediction scheme to
minimize the numbter of lines. Fugene Charniak mcodified the rrogran
to process semi-colon comments. Ira Goldstein extended the comment
formats, made the pretty-printer programmable with respect to adding




rew formets for ;p901al functions, added a “frh °chor9 fcr lanoer

width and develored the table algorlthm discussed¢ abcve. Cerl
Fewitt, Guy Steele, John White, Gerry Sussmar, Terry Vincerad,
Roberts, and Stavros Macrakis prcv1ded many helprl suggFes tlcn

prude




©

pare 17

TTI. Documrentaticn

The new prind package ¢iffers from earlier ores irn rxcvicdirs
o larger numter of formats in which s—exrressions and corrents cen
te ground. A variety of predefired formats exist which can 1~ :
associated with any LISP functior. For_ unusual formats, the uvrer
can design his own procedures to control frirdinge.

The grind package is autcmatically loadecd inte TISP ureon
executing GRIND or GRINDEF. Alternstively, the uvser can oktain the
file via: | . o

(FASLOAD F GRIND CCE)

The REM feature can subsequently be used to eliminate unvented ccde
(see section A-4). Send suggestions and bugs to IRA. ‘

A. Top level functions

’

1. GRIND and GRINDO — fexprs

CRIND and GRINDO convert files tc rretty-rrinted form. Their
input format is that of the LISP file marirulatirg furcticns like
UREAD and UWRITE. - : , : , .

(GRIND <filenamel1> <filename2> <device> <uname>)
UFIIE‘s a pretty-printed form of the file uncer the came name. The

usual LISP conventions for default device, user and file names are
used. To avoid rossible disasters, use ">" as your srecond file

name. CRINDO does not UFILE. Hence, it is useful for filing the

rretty-printed file under a different nane. For exakple,

| | (GRINDC CEFO > DSK IRA) (UFILE CEO FRINT)

results in the rretty-printed version being filed as CEO PRINT.

o. GRINDFF — fexyr L |
GRINDEF takes atoms as arguments. Itrthen pretty-prints

their EXPR, FEXPR, MACRO and VALUE properties. For exanrle,

(GRINDEF PROGRAM1 PRCCRANMZ)
rretty-prints these two LISP functions.

The default prorerties yretty-printed by CRINDEF can be
modified in two ways. ’ ’




(GRINDEF <LIST OF ADDITIONAL PROPERTIES> <ATON1> (ﬂTON" cea)
ﬂpperds the addltlonal properties to the list of defﬂult rrorﬂrf1pw‘
for the duration of the current call to GRINDEF. A rPrranent change
to the default properties pretty-printed by GRINIFF is rode tw T
setting the atom Y“GRINDPROPERTIES" to a new llst of prorertiac

"(GRINDEF)" will repeat the last call to CRIEDFF. Thie
saves tyring when repeatedly CRINDEF “ing the same furvtlcnv

2. Formatting _
The pretty-printer can be programmed in the follcwing ways:

a. (<gr1pd-control—fh> <arguments>) executes the yrlrd-ccntrcl- o
fn on the given arguments. A typical grind control function is
PROGRAMSPACE. (PROGRAMSPACF 80) sets the width sveilztle for
pretty—printnng code to 80. Complete documerfatlon fOIICt, in
ITI-C.

t. (<GRINDFN or GRINDMACRO> <function> <gr1nd-fo”mat>) aeqlgr

the grind-format to the function as either a GRIMNDFN or i
CRINDMACRC. Vhenever the pretty-printer encounters the fUnctlon
as the first element of a list, the list is rrinted using the
special format. The grlnd~format can either be the name of a
function of no irputs or the body of a lambda definition. A
variety of predefined formats such as PROC-FCRM are described in
the next section. The mechanism for bu1ldlng new format° is =
rresented in section III—E. .

¢
kS

~ c. (UNFCRMAT <fupct10n>) removes any special CRIhDFN or :
- GRINDMACRO properties of the function. - , :

For all of the atove specifications, <furct10n> can ?e replaced ty
<list of functions>. The grind Qpelelcatlop 1q then aprlled to
each function in the list. :

{1ca11y format statements are either placed in a "GRIhD
(INIT)" file read by the grind package when 1oaded or 1vsertea :
directly into the user’s file as ‘ -

'°*(GRINDFN THPROG PROG—IORM) (PROGRANSPACE 80) <cr>. o
Comments beglnnlnp with "3j;®*" cause the pretty—prlnter to evaluate i

the remainder of the line. If the line consists of only a s1ng1e s—
expression, the toplevel parentheses are optlonal.

e 3 s*GRINDFN THPROG PROG-FORM

The normal LISP READ-EVAL-PRINT loop ignores semi-colon comments. s (
Hence, ;;* commerts cnly have effect when the file is ground. - =




pare 15

Ol

y
?/, 4. RFVGRIND - fexpr

(REMGRIND) removes all of the grind rackasge’s fUPPthn" fror
ser’s LISP. Alternatively, the user cen te more °elcct1ve in
“ﬁrunzng the space occuried by the grind rackage ty erasirs only
“those features he does not need. This is done as follows: -

(REMCRIND FILE)- erases GRIND and CRINDO. Useful when orly
GRINDEF is needed. ' o

(REMCRIND UCONTROL) - erases the formatting functions. It
does not erase those special forrats already defined by the
user. But it prevents him from defining any more. Useful
after the user has created his special formats. ‘

(REMGRIND FORNAT) - erasec both the form?ttlng functlonq as
well as any all special formats.

(REMGRIND SEMI) - erases special functiors for handllm
semi-colon commerts.

‘5. Functions, atoms and rroperties reserved fy grind.

The functions and atomrs reserved by grind can be found in
the DECLARE statement in the grind file. The grind Tackage also
uses the indicators "GRINDFN" and "GRINDMACRC" for «re01fy1ng
'srecial grind formats.

P. Predefined formats

1. Standard formats

The following formats are used by the pretty-printer in the

absence cf any special formatting instructions. Choice deperds cn

~the avaliable width and the cost in number of lires. The algorithm
is described in section II.

28+ LINEAR-FORM - The expr6551on is printed with no extra insertion
z0f carriage-returns and spaces. this is the forrmat used by the LISP
‘rrinting primitives. It is used by GRIND only vhen there is
sufficient width remaining on the line.

t. STANDARD-FORM ~ This is the preferred format for lists beginning
with atomic functions. It is also used on other lists if fewer
lines are needed to rrint the code this way. :

) (<function> <pretty-rrint of argig“Ig)
' . ~ <pretty-rrint of arg(2)>




<pretty~rr1nt of ary(2)>)

C. LIQER—TORF - This format conserves the srace reralnlnp or t»ﬂ '
line. Vhen in width trouble, furcticn lists are rrlrted th1° weY.

(<pretty-print of element§1;> -

<rrett3 —-print of element(2)>

<pretty-pr1pt of elenent(n)>)
é. FUNNY-FORM — Occasionaly, this format decreases the number of
lines needed to rrint an expression. It is used whenever this ic
the case. If PREDICT is NIL, computctlon is caved by grorins 1t

(<1LEMENT(1)> <FLEIFNT(2)> .o <PRFTTY~PRTPT oF TIFIE&A(H)>\

2. Srecial GRINDFNs

Fach of the following grind- formatc can te a°s1pned to ary
function by: .

(CRINDFN <function> <grind—format>)
2. BIOCK-FORY - the entire eyprecelob is fround as *ext where the

Jeft margin follows the opening parenthesis of th@ express 1or. For
exanrle, : , .

(ARBCDFFC
HIJKL M
OPORSTU
VU XYZ)

Typically, argument lists and planner patterns are ground as blocks.

t. DFF-FCRM - Def—form is the standard fcrmat for yrlndlny .
cefiniticns. The "defun", function-rname, incdicators and argument
list are always ground on the first line. The argument list is .
ground as a block. The remaining elements of the definition are
ground as a "body", i. e. derending on their 31ze, they are grourd
cne under the ether in : , : o :

i. either the space reraining on the line; e. ?¥1

(DEFUN FINAME <ARGLIST GRCUND AS PLOCK} *RHHRH

FRXREX N 19



‘c. LAMBDA-FORM — the LAMPDA and its arglist are ground on_the first

‘the LAMBDA are ground as a "tody" i. e. depending on their size, and

e. MEM-FORM — The first ar ment is ground as code. The remainder

pare 17

******)

ii. in standard format, i. €. aligned under the furcticn
rane: '

(DETUN FNNAME INDICATOR <ARGLIST GROUND AS PlCCK)
P ,

% HHHK
' ******)

iii. or in miser format, j. e. aligned urder the defun:

(DEFUN FNNAME INDICATCR <ARGLIST GROUND AS PLOCK?>

3% FRH
T
******).

line. The arglist is ground as & block. The rera’ning elements of
in order of yreference,:
i. in either the space remairing on the line, €. g.

(LAMPDA <ARGLIST GROUND AS BLOCK> M¥x¥¥
' *

HK FWH
******)

| ii. in standard format:'

(LAMFDA <ARGLIST GROUND AS ELOCK>

36 36363 I
***********)

iiji. or in miser format:

(LAMEDA <ARGLIST GROUND AS BLOCK>
FHAK R KRR FARR ,
*************)

4. PROG-FORM — This format used for PROG'S is similar to TAMEDA-
FORM, except that tags are unindented. . ‘ ; ,

are also ground as code unless quoted, in which case, they are
ground as a tlock. TFor example, ' v




(FEMTER X

“‘MBECDEFGEIJK
MNOPORSTUVUW
Y 2))

Py default, MFMQ, MEMPER, the MAT furncticns, 2nd the'ASSCC‘functicns
are sround in this format. ' : : o ‘

f. CCMMERT-FCRM - The CDE of the expressich is prduné,as a btlccl.
For examrle, , B
(COMMENT THIS IS A VERY IONG

COMMENT THAT TAKES

SEVERAL LINES) , ,
COMMENT, REMCR and *FEXPR, *EXPR, *LFXPR, **ARRAY, SPFCIFL ard
UNSPECIAL clauses of DECLARE’s are ground in this format.
£. SETC-FORM - Stace pernlttlnp, vqr1able~ ard velue~ are rrcvnﬁ as
rairs. For examrle, '

(SETQ A (PLUS 1 1)
| B O)
If there is insufficient space, standard or miser format is used.

Z. Irverting read macros -
OUOTF—type read macros can be inverted vhen prettv~printed.

reader ‘ - prind 3
<char> <expr> - - => (functlon <expr>) - - -> <ch.r> <ﬂypr>

This is accorrlished via the RFEADMACRO 1nstrvct10n:,
(RFADNACRO <function> <macro character or characters>)

The macrc character is PRINC’ed and then the <exrr> is pretty-
Trinted. Two examples are:

(READMACRO QUOTE /°) & (RFADNACRC TFV ;?/9)

—

4. Systen packages

: A package of special formats currentlv exirts for MICRC-
TLNR. To utilize them, place either (PLNR) in ycur CRIET (IIIT)



i«

peee 1G

Tile or ;3*PLNR directly in yvour micro-rlrr files.

C. Ccrmerts

Seri-cclon ccmmerts are defirned as a nemj—color follcwed by
text and concluded by a carriege return. These comments can te

‘Jnserted anywvhere in an s—exyression or aypear 2lone at the tor

Jevel. They are comrletely ignored ty the LISP reader. The ¢ erird
tackage rretty-prints these comments in several formets deperdirg»or
whether the comment begins with 1, 2 or 7 cemi-cclones.

1. Single semi’s

Comments teginning with 2 single semi-colon are Trinted to
the right of the code. Sequences of sinsle-seri ‘s are merged. The

code is normelly ground in the first 7C syaces of the lire

(PROCRAMSPACE) while the single semi ‘s are ground in the finsl £C

.spaces (COMSTACE). GAP = 1 is the spece tetween code and corrents.

—CCOSPaCo—————

49

-

Trogramspace —far—
70 1

ragewidth = 120

Th se values can be altered, for examrle, by insertirg the fclloving

.comment intec a file:

. 53 *(PAGEWIDTH 120 €2 1 20)
This resvlts in PROGRAMS?ACF beccming 89, GAP 1 and COMSTACE *0.
For code that contalr" no single =emi °, a PPOCPﬁVSPACT cf

-£C. 1is preferable.

‘2. Double seni’s

These corments are printed as rart of the code with the
Trorer indentaticn. Sequences of double semi‘s ore merged. st the
top level, TOPVIDTH = PAGEWIDTH is used. Inside code, dcuble seri’s

are llmlted tc PRCGRAMSPACE. To alter TOP\IFTF, execute:

(TOPWIDTH <newvalue>)

2. Triple seni’s

“ss:..." are similar to Y;;5..." with resrect to wnder tation.

‘Fowever, they are otherwise not modified by yrlnd. Sraces are not
~filled ard sequences of comments are never mersec. They are thus
:useful when the user desires his comment to te rrinted eyaotly ar




cr ginally tyred.

I'. Orind control

Th se furctions set various switches and V?rgobler fcr the
rretty-printer.

1. FILL causes multirle spaces arpearing in single ard dcublé reri’s
to be merged. Periods ending sertences are followed kv two ernees,
This is the default case. )

2. NOFILI  causes multiple spaces to te treatoﬁ as such. .Trirle o
semi’s are always NOFILL ed. ‘ _ o

%. MFRGE causes double semi’s to be merged, 1f °Lff1c1ent CC¥°“AC"
remains on the line. ~

4. NCMERGE causes double semi ‘s not to bte merged.  Tkié is the
ranner in which triple seri’s are hapdled The full pagewidth i~
used. S o

. PAGE causes the output of a formfeed.

€. IF cavres grind to insert formfeeds arproylmatelv every 6C lires. : Q»f
Formfeeds are only inserted at the torlevel, rever arrearing wvtbln '
s-exrrescions. This is the default case. R e

7« NCFF 1 mits the insertion of formfeede tn eyr1*01t callu f ~ﬁCV.
€. PPAGE causes grlnd to rreserve orzflnpl ;?ﬂwng of user ‘s flle.

O, NCPREDICT - This switch makes the grind dumber but facter. The
ﬂlyorlthm no 1onper consider as many alternatives for grindirs each
expression. For PROG-FORM and DFF-FORM, format 1 is no longer
considered. Similarly, FUNNY-FORMAT is rever corsidered. Durt rode
is the default state. B : : -

10. PREDICT — All of the formats dlSCU<<ed in the prev1out here, are
considered. :

~11. PACEWIDTH <pegewidth> <programspece> <gar> <commentsrace>

12. PROGRAMSPACF <value> -~ resetes the value cof tke PRCGRAMSPACE.
Fnlarging PROGRAMSPACE shrinks COMSPACE. o :

13. COMSFACE <value> resets the width used for single seri commerts.
The tradeoff is egain with the PRCGRAMSPACE. o . s

14. TOPVIDTE <value> - resets the width used for tonTevel doubln u ‘ ( .
semi comments. | : e




A

Pafre 21 ,

' Definirg rew formats

The vser may wish tovgo teyond the rredefnned forrate

fﬁnscugsed in section III-B. To do thls, CRINDIN -can te usned to

cefire sreciel frlnd functions [SCF’s] of his owr decirn. Thn

=yntex is as follows

(CRINDFN <atom or list of atoms> <grird-formatd)

where the definition is either the rame cf O-inyut procecure or 1hn
tody of a LALPDA expression.

GRINDFNs are processed as follows: assume the atem 11 hars a
SCF essociated with it. Then, whenever exyressicns cf the ferm (71
<+« IN) are encountered, grind prints "(" 2nd then transfers control
to the definitior of the SGF. Uron entering the SCT, the following
free variables are relevant: .

L <"'"‘ (L1 e ce I.PI)
Il <=—— CFRCT = remairing line width, fol]ow1rn the "("

P SGF gererally rrocesses s=sore. initiel sefment of L, CDR ing

'T. in the process. Note that the SGF must at least process L1. Upon

comrletion, if 1 has been set to NIL, grind sirply prints the
closing parenthesis ")". If, on the other hand, I hes been retound

tc some terminal sepment of itself,

= (Lj coe Iln)

‘then prind rrinte the remainder of L as the tody of a DEF-FORM, i.

e. the eleme-ts cf L are printed one under the other in either
a. the srace rémaining on the line
- k. aligned urder L2
or c. aligned urder L1.
2. Vocabulary

The following vocabulary is useful fer defining °GF' :

1. (REMSEMI) - expr — This function  frocesses eny ; comments tbqf

cccur as initial elements of L, CDR’ 1ng L 1n the process.

Z. (FPRIN S F) - expr - S is prlnted in the format spe01f1ed by F
vhere F can te: : ' ‘

‘LINE - equivalent to PRIN1
‘FICCK ~ BLOCK-FCRM




‘LIST - CCtMINT~FCRM ‘ ;
‘COE - arplies rretty-printer to S.

TPiRIN shcould not be given ; comments as input. (PE”‘EII‘ ig
generally used te avoid this. PFPRIN does not print 2 srece
follcwing S.

Z. (FCRM F) ~ exrr - This furction is derigheﬁ te reliecve the vsor
of ar exrlicit concern fer ccrmmerts. It 2lsc frees hinm fror
1rinting spaces btetween elements of I. Tts defiritien ist

REMSEMI)
PPRIN (CAR L) F)
AND (SETQ L (CDR L)) (PRINC °/ ))

Its action is to first arply REMSEMI, rerovins any 1r1t1“] cerrerts
from L. It then yretty—rrlntc (CAR 1) in the srecified formet ¥.
Finally it CDR"s L ard printe a space if there is still rore tc ro.

4. (TURPRI) - exrr — A carriage return is prznteé TERPLI stould
not te used. . , .

€. (INDELT-TC N) - expr — This function caurses CHRCT to be set to H

ty prrinting a carriage returrn if necessary (N > CFRCT) ard sraces.

Note that CHRCT is the currert width. This rurber is equal to the %f
indertation subtracted from the total lire wvdtn. A comron tug is i
to treat N as the indentation. ' :

(INDENT M) — exyr — M spaces are trinted. An error results if ¥
€xceodQ the space rermaining on the line. ‘ : S

(FCPL) - expr — L is set to (CDR I). Ther REWSEMI is 'epplied.~
The ret result ic to CDR L until its CAR is rot 2 comrent.

& a. (TESTL) - lexyr -~ returns the first elerent of L that IS HC1
a ";" commert.

b. gTESTL k) returnq the jth elemert of L tkat is rot e corrent.

c. (TESTL ; t) returns the entire remainder of L bteginring VITE
the jth elerent. i

(SEMI? X) - expr — returns T only if ¥ is a semi-colon comment.

Z. EXAMPLES

Yollowing are some examples of SGF s.. LANEDA’S are ground
by default in DEF-FORM. The user could schieve the sare effect bty
defining the following SGF: ~

1 (GRINDFN LAMPDA gFORM ‘LINF) S <
- FORM “RIOCK)) | .



page 27

(FCRY. ‘LINF) in line 1 prints LAMPDA and rops L. (FCRM '“TPCV) in
line 2 prints the argument list of the LAMPDA in PLOCK-FCRM :nd
againrn rors L. Contrcl is then returned to prlnd and the remeinder
cf the LAMBDA is printed as a body. »

fnother examrle might be where the urer wirhes tc prlnﬂ ~11
expressions cf the form: . '

(DEFPROP <ATOM> <DEFINITICN> <EXPR, FTXPR CR MACRC>)
as DEFUN’s. This would te done ty:
1 (GRINDFN DEFPEOP

% (COND (2gg¥Q (TESTL 4) ‘(FXPR FEXPR MACRO))
4 (APPEND ELIQT ‘DFFUN (TESTT, 2)) '
5 COND ((FO (TEFSTL 4) °EXPR)
6 NIL)
T (LIST (TESTL 4))))
8 (CDR (TEFSTL 3))))
9 éDEF~IORM)3 ,
10 | ((FORM LINF))))
.\(; The MEMQ of line 2 checks for whether the indicator is a function

@‘, “rroperty. If so, L is redefined as the approprlate DEFUN:

(CADR L) = function nane

The cond of line 5 puts fexpr/macro into the DEFUN
§CDR (CADDR L)g is the argument list of the function
CDDR (CADDR L)) is the body of the function

and then ground in DFF%FORM. If not, DEFPROP is prlnted and control
is returned to grind.

Finally, conclder a function called CMFANS whoqe arguments
are rroperty lists. It is to be ground as follows:

(CMEANS
(<IND-11> <GRIND PROP-11>

<IND—1N> <GRIND PROP-TN))

~ (KIND-M1> <CRIND PROP-}1>
CIND-MN> <GRIND PROP-MN>))
Suppese the additional subtlety is desired that rroperties with

- indicator FOC are pround as tlocks while 81l other properties are
fround ordinarily as code. The following SGF achir~ves this format.




(GRTNDFN CMFANS (PRCG NIL

1 FORM ‘LINE)

A SETO N _(*DIF N 4. ))

z REMSEMT )

Z A (LAMEDA éL) |

2 PROC NIL '

2 INDFNT-TC (IDDT z))
7 PRINC “/()

& B REMSFMT) :

g INDFNT-TC K)

10 COND ((FO (CAR 1) '*c<)
1 - | ~ (FORM “LILF)
12 ~ (FORM “PICCE))
13 | | ((FORM “T.INF

14 (FORM “CCTF 3
15 AND (TESTL) (GO P
16 PRINC * ;3

17 REMSFMI

18 : (CAR L))

19 (COND ((POPL) (CO A)))))

Line 1 prints "CMFANS". Line 2 establishes the‘indentation of the
argurents of CMEANS. Line 3 processes any ccomments rreceding the
first argumert. Line 4 binds the special free veriable 1. to the
current argument of CMEANS for use by FCRM and RFM. Line 6 indents
for the current argument. Line & processes any initial comments
embedded in the arpument. The cond of line 10 forks dependins on
vhether or not the indicator is "FOO". In line 15, TESTI returns
NIL if L contains no more indicator-rroperty pairs. Line 16 prints
the closing parenthesis. 17 processes any remaining comments. Py
line 19, the current argument of CMEANS has teen ground. Hence, L
is popped. If there are no more srguments, POPL returns NIL and the
SGF is done. ' ‘

4. GRINDMACROs

'# GRINDMACRO differs from the above grindfunctiors in that
the grind package takes nothing for granted. It does not *
automatically print the opening rarenthesis, the balance of I. and ;
the closing parenthesis. If the GRINDMACRO function returns T, then
the rretty-printer does nothing more on I.. The assurption is that
the GRINDMACRO has done all the work. This would be the case for a
GRINDMACRO for "QUOTE": ; » , e

(GRINDMACRC QUOTE EPRINC /%)

?PRIN (CADR L) CODF)
T



P

page 2°

t1ternatively, if the GRINDMACRO returns NIT, the rretty-rrinter
rrints L as though nothing had haprered. This mode is wuseful for a
CRINDMACEC used to print "index" information as comments rrecadine

the s-exrression.
CRINDVMACRCs can be defined similarly to CRINTFNs.
(CRINDMACRO <ATOM or LIST OF ATOMS> <grird-fermat>)

pgain the definition can be either the body of a LAMFDA or a
function of O inruts. o




VI. Tossible futuvre improvements

4. CCNCETTUAL

1. The language for specifying formats should te exye andec. /
rattern-criented or temrlate arproach ml{ht ke TrPfProhlf

2. The table scheme would allow the rretty-rrinter to corsider
indertations for the arguements of a functior, irterredizte lotwenr
riser and standard format. The algorithr could choore the preantecnt
indentation that does not cause extra lires tc be printecd.

2. Pretty-printers could do more than just irsert speces and
caiilage returns. For example, FACTORIAL could te printed o
follows: . ’ o

(DEFUN FACTOFIAL (X) (cornp ((= X O) 1) (—~})‘)
(* (FACTCRIAL (1- X)) X)

"=—=>" is interpreted by the reader to mean that the next expres*ion"
READ should be inserted here. This nUFFGQtIOP i=s due to MINSKY.

4. The fact that comments are not read in as part of the list -
ctructure presents a serious obstacle to interactive debugging. The o
~user must return to 2 text editing language to mske corrections in

his code. Otherwise, he loses ary commentary. Cne rossible

rolution would be for comments to be resident. Paging could be used

to store all comments on the same page. This would allow ther to be

swapred out during runtime. The evaluator would have to be modified

to ignore pointers to a comment page. These modifications are

rrobably well worth the effort. The user would be able to move

continuously between defining, running and editirg programs.

F. IMPLEMENTATION

1. Grind should accert a wider variety of TJ6 llke stecifications.
for examrle, _

s *DASH —> Line of dashes

;*CENTER <text> —> Centers text in comment

2. The current scheme for ; comments leads tc ercrmous list
structures since every commert is expanded to a llst, one letter per
‘node. Alternatives to this approach are:
A. TYTI rather than readch. ,
P. Pack ascii characters intc pnares or zrrayv.
C. Use read to peck by turning off gvntay of parentheses,
Periods, commas. ‘ v (@




	Goldstein-AIM279-Pretty_printing0001_a
	Goldstein-AIM279-Pretty_printing0001_b
	Goldstein-AIM279-Pretty_printing0002_a
	Goldstein-AIM279-Pretty_printing0002_b
	Goldstein-AIM279-Pretty_printing0003_a
	Goldstein-AIM279-Pretty_printing0003_b
	Goldstein-AIM279-Pretty_printing0004_a
	Goldstein-AIM279-Pretty_printing0004_b
	Goldstein-AIM279-Pretty_printing0005_a
	Goldstein-AIM279-Pretty_printing0005_b
	Goldstein-AIM279-Pretty_printing0006_a
	Goldstein-AIM279-Pretty_printing0006_b
	Goldstein-AIM279-Pretty_printing0007_a
	Goldstein-AIM279-Pretty_printing0007_b
	Goldstein-AIM279-Pretty_printing0008_a
	Goldstein-AIM279-Pretty_printing0008_b
	Goldstein-AIM279-Pretty_printing0009_a
	Goldstein-AIM279-Pretty_printing0009_b
	Goldstein-AIM279-Pretty_printing0010_a
	Goldstein-AIM279-Pretty_printing0010_b
	Goldstein-AIM279-Pretty_printing0011_a
	Goldstein-AIM279-Pretty_printing0011_b
	Goldstein-AIM279-Pretty_printing0012_a
	Goldstein-AIM279-Pretty_printing0012_b
	Goldstein-AIM279-Pretty_printing0013_a
	Goldstein-AIM279-Pretty_printing0013_b

