RGN

NIL Notes
~ for

Release 0.259

June 1983

-

Glenn S. Burke
George J. Carrette

Christopher R. Eliot

This report describes research done at the Laboratory for Computer Science of the Massachusetts
Institute of Technology. Support for this research was provided in part by the National Institutes
of Health grant no. 1 P01 LM 03374-04 from the National Library of Medicine, the U. S. Air
Force undbr grant F49620-79-C-020, the National Acronautics and Space Administration under
grant NSG 1323, the U. S. Department of Energy under grant ET-78-C-02-4687, and the Digital
Equipment Corporation of Maynard, Massachusetts, with grants of cquipment.

~

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE
CAMBRIDGE MASSACHUSETTS 02139

| . | : :

Abstract

This document describes NIL, a New Implementation of Lisp. NIL is currently under
development on the DEC VAX under the VAX/VMS opcrating system.

Acknowledgments

The chapter on defstruct is a workover of the chapter ‘appearing in [8], by Alan Bawden;
added inaccuracies arc solcly the fault of GSB, however.

The chapter on flavors was written in part by quck Sobalvarro. The editor and its
documentation is the work of Christopher Eliot.

The interfaces to many functions and facilities, and some of the terminology used in this
document, are taken or derived from those uscd in the COMMON LISP manual [1]; in particular,
the terminology used for describing scope and extent in chapter 3.

As this document is gradually transforming . from "relcase notes” to a "manual”, some
descriptive scgments have been lifted from the NIL Primer written by GSB, which is included

with the NIL distribution.

Dedication

This publication is dedicated to Randy Davis, may his 750 never crash, -

Note

Any comments, suggestions, or criticisms will be welcomed. Please send Arpa or Chaos
network mail to BUG-NIL@MIT-ML.

Those not on the Arpanet may send U.S. mail to
Glenn S. Burke
Laboratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139

The Arpa network mail distribution list for announcements pertaining to NIL is normally used
for announcements about the facilitics described here. Contact the author to be placed on it.

¢ Copyright by the Massachusetts Institute of Technology; Cambridge, Mass. 02139

Permission to copy all or part of this material is granted, provided that the copies are not made
or distributed for resale, the MIT copyright notice and the title of this document and its date
appear, and that noticc 15 glvcn that copying is by permission of Massachusctts Institute of
Technology.

NIL Notes for Release 0.259 i Summary Table of Contents

Summary Table of Contents

L Introduction o . L e e e e e e e e e e 1
2 DA TYPES . « v v v e e e e e e e e e 3
3. Scope, Extent,and Binding oL e e e e e e e e e 8
4, Predicates e e e e e e e e e e e e e e e e e e 13
5. Programming CONSLIUCES v v v vt e e e e e e e e e e e e e e e e e e e 17
6. LiSts e e e e e e e e e e e e e e e e e 30
J. SCQUENCES &+ & v v v v ot e 37
8. SYMDOIS .« o v o e e e e e e e 41
0. NUMDBCIS o it e 46
10, CharaCters. . . o v v v vt e 61
11 Ammays. . . v v o e 67
12, Strings. e e e e e e e e e e e e e e e e e 75
13 Hashing. v i it i i e e e 81
14, PacKages i e e e e e e e e e e e e e e e e e e e U X
15. Defstruct e e e e e e e e e e e 85
16. The Flavor Facility e e e e e e e e e e e e e e e 104
17. Input, OQutput,and Strcams e e e e e e e e e e e 113
18, Syntax. e e e e e e e e e e e e e e e e 137
19. Debugging and Metering e e e e e e e e e e e e e e 143
5 5 () v 152
21 Compilation. o e e e e e e e e e e e e e e e 154
22. Introductiontothe STEVE editor i it e e 158
23, ThePatch Facility oo i it i e e s e s e e e e e e e e e e e e 189
24, TalkingtoNIL Gt e e s e e s e 196
25. Peripheral Utilities. v o v v vt o e 204
26. NILExtended Data-Types. « « v v v v v v o e v v e e v e v s e e e e 207
27. Foreign Language Interface e e e e e e e e e 209
28. WhatWillBreak. v v i i e et e e e e 212
References. . . v v v i e 217
ConceptIndex. e e e e e e e 218
Message Index. i e e e e e e e 220
ResourceIndex e e e e e e e e 221
Variable Index. e e e e e e e e e e L. 222
FunctionIndex o . e e 223

17-JUN-83

Table of Contents ‘ il NIL Notes for Rclcése 0.259

Table of Contents

LoIntroduction. o i i e e e e e e e e e e e e e e e e e 1
2. DataTypes e 3
2L NUMDDOIS . . o o s e 3
211 Rationals. e e, e e e e e e e e e e e 3
2.1.2 Floating-point Numbers e e e e e e e e e e e e e e e e 4
2,13 Complex NUMDEIS. o o v ot e 4
22 CharaClers . . . v v v o e 5
23 Symbols e e e e e e e e e e e e .5
24 Listsand Conses ¢ o v i i e 6
2.5 Arrays e ... 6
2.6 SHTUCHUIES. . . v v v i e vt e e e e et e e e e e e e e e e e e e e e e e e e .6
27 Functions. e e e e e e 6
28 Randoms e e e e e e e e e e e e e 6
281 Minisubrso oo S v e e e e e 6
282 Modules. L e e e e e e e e e e e e e 7
283 Internal MarkerS. v v vt e e e e e e e e e e 7
284 Unused Types . . . v v v i i i s s e e e e e e e e e e e e e e e e e 7
3. Scope, Extent,and Binding L L e e e e e e 8
3.1 LambdaApplication v v v i i e e e e e e e 10
4 Predicates. it e i e e e e e e e e e e e e e e e e .13
4.1 TypePredicates. e e e e 13
411 TypeSpecifiers. o i i e e e e e e e 13
412 General TypePredicates v v v v v v v v it e e e e e e e e e e 14
4.1.3 Specific Type Predicates e e e e ... 14
42 Equality Predicates v v v v it i e e e e e e e e e e e e e e e 15
S. Programming Constructst vt e e e e e e e e e e e e 17
501 Definition FOrmS & .« & 4 v v v v it e s e s e e e e e e e e e e e e e e e e 17
5.1.1 Defining Functions. v v vt v it s e e e e e e e e e e e e 17
S.1.2 Defining Macros. « v v v v v vt e e e e e e e e e e e e e e e e e e e .17
5.1.3 Defining Variables o . i e e e e e e e e e 18
5.14 Controlling Evaluation Time 0 i i it it i e e e e e e 19
5.2 Binding. e s e A e a e e e e e e e e e e e 19
53 Conditionals i i i e e e e e PO 20
5.4 Tteration CONSIIUCTS. . & & v v v v v e e e e e e e e e et e e e e e e e e 23

54.1 MappingFunctions e e e e e e e e e e e e e e 23
5.4.2 Special ItecrationForms. e e e e e e e e e e e 24
5.4.3 Blockand Tagbody. L 24
5.5 Non-Local Flow of Control v v v i i e et e e e e e e e e e e e e e e e e 26
56 Multiple Values. i it i e e et e e e e e e e e e e e 27
5.7 SETF. . o it e e e e e e e e e e e e 28
6. LIStS . . L e e e e e e e e e e e 30
6.1 Creating, Accessing, and Modifying ListStructure., v oo v v v v ... 30
6.2 Substitution. i e e e e e e e e e e e e e 33
6.3 Using Listsas Sets. o v v it it i it e e e e e e e e e e e e 33
17-JUN-83

NIL Notes for Release 0.259 . iii Table of Contents

6.4 ASSOCIAtion LiStS v v s e 35

7.8€equences e e e e e 37
7.0 Creating New SEqUENCES . . v v v v v v v v v v e e e et e e e e e e e e e e 37
7.2 Operations ON SCQUENCES . + « « v v 4 v v v v o vt v v e e e e e e e e e 38
7.3 Tteration OVer SCQUENCES « v v v v v v v v v e e e e e e e e e 39
T4 SOMiNg SEQUENCES . . v v v v v v v e e e bt e e e e e e 40

8.Symbols e e e e e e e e e 41
8.1 TheProperty List. v v v i i e i s e e e e e 4]
82 ThePrintName oo it e e e e e e e e e e e e e e e e 42
8.3 Creating SymbolS. v . o i e e e e e e e e e e 42
8.4 The Valucand Function Cells.« o i i i v i i e et e e e e 43
8.5 Internal ROULINES. . .« v v v v v v e et e e e e e e e e e e e e e e e e e e e 44

0, NUMDIS . o v v v vt e e e et et e s 46 .
9.1 Predicateson NUMDEIS. & o v v v v v v e v e e e e e et e e e e e e e e e e 46
9.2 Comparisons ON NUMDEIS . . v v v v v v v o v e e et e e e e e e 46
9.3 Arithmetic Operations v v« v vt v e e e e e e e s 47
9.4 TIrrational and Transcendental Functions v ¢ v v i v v v i i e e 48

9.4.1 Exponential and Logarithmic Functions v oo 49
9.4.2 Trigonometricand Related Functions v . . v v v i v v v m v oo 49
9.5 Type Conversions and Component Extractionson Numbers.o oo 50
9.6 Logical Operationson Numbers o v v i v i v vt it s e e 51
9.7 Byte Manipulation Functions. 0 i i o e e e e 53
9.8 Random NUMDBEIS . . v . v v v v v e e e e e e e e e e e e e e e e e e 55
99 Fixnum-Only Arithmetic. i i it i e e e e 56
9.9.1 COMPATISONS & & « v v v o o v v v v vt vttt e b e e e e 56
9.9.2 Arithmetic Operations. e e e e e e e e e e e e e e e e e 57
993 Bitsand Bytes . . v v v v v v i e e e e e e e e e e e e e e e e e s 57
9.9.4 The Super-Primitives« o v v v v v it e e e e e e 59
9.10 Double-Float-Only Arithmetic. v v v v i it o e it e e e e 60

10, CharacterS. «» « « v v v v v v e v e e e e e e e e e e e e e e 61
10.1 PredicatesonCharacters. v v v v v v v e v e e e e e e e e 61
10.2 Character Constructionand Selection ¢ . v v v v v v it i v e e e e e 62
10.3 Character Conversions. I 63
10.4 Internal Error CheckingRoutines v v v v vt i v i i e e e 63
10.5 Low-LevelInterfaces« v v v i i [64
10.6 The NILCharacterSet . . v ¢ v v v v v v v v v v e e v e v v e e e e s o e e e 65

11, AITAYS. + v v v v e e e et e e e e e e e e e e e e e e e e 67
11.1 Array Creation, Access, and Attributes. e e e e e e 67
112 Array Element TYPES . . .« v v v v v v e o et e e e n e e e e e e e 68
113 FillPOINtErS. . v v i v v v v v e e e e s o n s et o e oo e v e e e e e e e e e e e 69
114 DisplacCd AITAYS « .« « « v v v v v v v e e et e e e e e s !
11.5 Modifying Array Sizes and CharacteristicS . . « « v v v v v v v v v v v v e e a e LI
11.6 Special Vector Primitives o v v v i i e e e e 72
117 SIMpIe VECIOTS & . & v v v o v e e e e e e e e e e e et e e e e e e 72
118 BItATTAYS. « v v v v v v i e et v e et e e e e e e 73

11.8.1 Simple BIt VECIOrS . . . v v v v i i et e e e e e e 74

17-JUN-83

Table of Contents iv : NIL Notes for Release 0.259 ’
] T 75
12,1 String Coercion v v v v i e e e e e e e e e e e e e e e 75
122 String Comparison. v v v o i e e e e e e e e e e e e e 76
12.3 Extracting Charactersfrom Strings e e 76
1231 Low-Level ACCesS. .« v v v v v v e e i e e e e e e e e e e e e e e e e '
124 String Creation v v v v v e e e e e e e e e e e 77
12.5 More String Functions. o e e e e e e e e e e .. 18
12.6 Implementation Subprimitives. o o o v oo e e 79
13 Hashing i i it i e oo e e e et e e w e e e e 81
13.1 Hash Tables. e e e e e e e e e e e e e e e e e ... 81
- 13.1.1 Additional Hash-Table Predicates. ¢ o 0 i i i i i it i e e e e e o 31
13.2 Hash Predicates v o v v et e et et e s e e e e e e e e e e e e e e 82
133 Symbol Tables. v o v o e i e e e e e e e e e e e e e e 82
14. Packages. e 83
15, DCFSIIUCE. & o v v o e e e e e e e e e e e e e e e 85
151 Introduction. e e e e O -
152 ASimple Example. e PO 85
15.3 Syntaxof defstruct. e e e e e e e e 86
15.4 Optionstodefstruct e e e e e e e e e e e e .. 87
1540 YPe o o e e e e e e e e e e e e 87
1542 CONSIIUCIOT. + & v v v v v e e e e e e e e et e e e e e e e e e e e e e e 88
1543 :alterant o e e e e e e e e e e e e e e e 89
1544 named. e e e e e et e a e e s e e e e e e e 91
1545 predicate. . v v v v v e e e e e e e e e e e e e e e 91
1546 print. ... e e e e e 91
1547 :default-pointer. . . . v v v i v vt e e e e e e e e e e e e e e . 92
1548 :cONC-NAME. . . v v v v v v i e e e s e e e e e e e e e e e e e e e 92
1549 dinclude. e e e e f e n e s ke ah ae i 4 e s e e e 93
15400 tcopier. e e e e e e e e e e e e e e e e e e e 94
15411 :class-symbol . .t v v i s e 94
15412 ssfa-function. o . . . s e e e e e e e e e e e e e e e e s 94
15403 tsfa-name & o e 95
15414 Size-Symbol. . & . v v e 95
15415 (SIZe"MACTO . .« v v v v v i i e e e e e e e e e e e e e 95
15.4.16 :initial-offset. e e e e e e e e e e e e e e e 95
15417 but-first. . . . L . e e e e e e e e e e e e e e e e e 95
15.4.18 :callable-accessors e e e e e e e e e e e e e e e . 96
15419 teval-When. . . o . v i i e e e e e e e e e e et e e e e e e 96
15420 :property T 96
15421 ATypeUsed AsAnOption v v v v i i it i e e e e e e e e e 96
15422 Other OplionS v v v i v et e e e e e e e e e e e e e e e .. 97
15.5 The defstruct-description Stricture. v v v vt e e e e e e e e e e 97
15.6 Extensionsto defStruct. e e e e e e e e e e 98
1561 ASimple Example v v it i e e e e e e e e e 98
15.6.2 Syntax of defstruct-define-type O 99
15.6.3 Options to defstruct-define-type. v o i v i it e e e e e 99
15.6.3.1 tcons. L. e e e e e e e e e e e e 9

| - " 17-JUN-83 |

NIL Notes for Release 0.259 Sy ~ Table of Contents

15.6.3.2 tref . . L . e e e e e e e e e e 100
C 15633 predicate. . .. L. L e e e e e e e e e e 101
15634 toverhead L L. e e e e e e e e e e e e 101
18635 mmamed e e e e e e e e e e e e e e e 101
15.6.3.6 Keywords. . . v . .t i e 102
15.6.3.7 :defstructoptions e e e e e e e e e 102
15.6.3.8 :defstruct e e e e e e e e e e e e e 102
15.6.3.9 1COPIET .+ v v v v v e 103
15.6.3.10 :implementations. e e e e e e e e e e e .. 103
16. The Flavor Facility i i i i e i e e e e e e e e e e e 104
16.1 Introduction. o v i e e e e e e e e e e e e e e e e e e 104
16.1.1 Object-oriented Programming e 104
16.1.2 Object-oricnted Programming UsingFlavors 105
16.2 System-Defined Messages v v v i it i e e e e e e e e e 109
163 Message Defaults v v v v i i e e e e e e e e e e 111
17. Input, Qutput,andStreams e e e e e e e e e e e e e 113
17.1 StandardStreams 00 e e e e e e e e e e 113
17.2 Stream Creationand Operations. v v v v v et vt e e e e e e e 114
173 Input Functions. 0 i i it e e e e e e e e e e e e e e e 116
17301 Asciilnput. oo o e e e e 117
1732 BinaryInput o e PN e e 118
17.4 Output FUDCHONS . + v+ v v v v o v e e e e e e e e et et e e e e 118
1741 AsciiOutput c.... e e e e e e e e e e e 119
1742 BinaryOutput e e N 120
17.5 FormattedOutput. e e e e e e e e e e e e e e e e 120
17.6 Querying the USer. . . . v v v v v v v e i e e et e e e e e e e e e s 121
17.7 Filesystem Interface. . i . .« v v v v i i i vt e e s e e e e e e e e e e e 122
17701 Pathnames . . o v v v v v v v v o o et e e s e e e e e e e e e 122
17.7.1.1 Pathname Functions. i i i it e e e e e e e e 123
17.7.1.2 Mergingand Defaulting o v v it e e e e e e e e e 124
1772 Opening Files v v v vt it e e e e e e I 126
1773 OtherFileOperations v v v v v v v v vt e e e e e e e e e 127
1774 FileMatching v v v v v et e e it e e et e et e e e 128
17.7.5 Loading Files. e e e e e e e e e e e e e e e e e e 128
1776 FileAttribute Lists ittt e e e e 129
17.7.7 Internals for VMS Record Management Services e e 131
17771 DataStructures & . . v v v v v v v e 131
17.7.7.2 RMS Hacking. e e e et e e e e e e e e e e 131
178 Terminal I/70 o i it s e e e e e e e e e e 133
17.8.1 Modifying the Terminal Characteristics. e e e e e e e e e e e e e e 134
17.8.2 Making More Terminal Streams e e e e e e e e e e 135
01783 Display TTY MeESSages . .+ v v v v v v v it e ettt e e e et e e e 135
18. Syntax., e e e e e i e e e e e e e e e e e 137
18.1 Whatthe Rcader Tolerates.« v v v v v v v v v v v e e e e e e e e 137
182 TheLispReader. i . i i i i i e e e s e e e e e e 140
1821 Introduction + v v v v vt e e e e e e e e e e e e e e e e e s 140
1822 Reader Extensions v v v v i v i i e e e e e e e e e e e 141

17-JUN-83

Table of Contents - vi NIL. Notes for Release 0.259

1823 Readtable. . . . o v v v s e e e e e e e e e e e e e e e e e e e 141
1824 Alternative Syntax i i e e e e e e e 142
19. Debuggingand Metering. v o oo i e e e e 143
191 Flowof Control . . . v v v v v i e e e et e e e e e e e e e e e s 143
1901 TIACHZ . + v v v v o v e e e e e e e e e e e e 143
19.1.2 Whodoes What,and Where. v v o i i i i e e e e e 144
192 Examining ObJeCtS. . . v v v o o v v i et e e e e e e e e e e e e e 145
19.3 Debugand Breakpoints v b i e e e e 145
194 MCICHING + o v v v v e e e e e e e et e e e e e e e e 145
1941 TIMINZ . . . v v o e e e e e e e e 146
1942 FunctionCalling o i i i e e e e e 147
19.5 SystemManagement. v v vt u e e e e e e e e e 148
1951 ANCXAMPIE. + o v v v v e it e e e e e e e .2 149
19.5.2 "Source (Re)Compilation™« . L e e 150
19.5.3 Informationin Modules.t e e e e e e e e e e e 150
19.5.4 Related UHLLES. .« « v v v v v v e 151
19.6 Verification v v vt e e e e e e e e e e e e e e e e e e e 151
20, BITOIS « v v v v e 152
21 Compilaion . . .« ¢ v o e 154
21.1 Summary of CompilerFlags. e e e e e e e e e e e e 156
21.1.1 CompilationControl v v v v i e e 157
2112 Interaction Control . .« v v v v v v v e e e e e e e e e e e e e e e 157
22. Introductiontothe STEVE editor. v v v v v v i e et e e e v e e 158
221 Introduction. . . v v o v it e 158
222 GettingStarted e e e e e e e e e e e e e e e 158
223 EditingFiles, « o v v v v it e e e e e e e e 159
224 Modifyingthebuffer. o e e e e e e 163
224.1 TheSimplestCommands . . . v . v v vt v v e e 163
22.4.2 Now that you know the SimplestCommandso, 164
22421 NumeriCATEUIMENES . . . v v v v v v v v b e v v v e e e e e e e e e e e 164
2422 Control-X e e e e e e 165
22423 Meta-Xand Control-Meta-X o i i i e e e e e 165
122424 Marksand Regions. v v v v it e e e e e e e 166
22425 Killingand Un-killing o v v v i i i e e e e e e 166
22426 ListOrientedCommands.« . . o v ittt i e e s e e e e 167
22427 *MOTE® . . . i i e 167
2428 Aborts. e e e e e e e e e e e e e e e 167
225 MajorModes i e e e e e e e e e e e e e e 167
22.6 Helpand Self Documentation v v v v v v v v v o i e e e e e e e e e 168
227 GlossaryofCommands v v v v v v v e w s e e e e e 169
22.7.1 Special CharacterCommands v v v v v v v vt bt e e 170
2272 Control Character CommandS. . . . v v v v v v v e vt et et e e e e 170
2273 MetaKeycommands e e e e e e 173
2274 Control-MetaCommands. v v v v it s s e e e e e e e e e e e 175
2275 Control-X Commands, . « v v v v v v v b e e e e e e e e e e e e e 177
202276 Meta-X CommandS. . . . v .k e 180
22.8 Extendingthe BEditor. i i e e e 183

17-JUN-83

NIL Notes for Release 0.259 vii Table of Contents

2281 Editor Functions i i i e e e e e e e e e e e e 183
2282 EAUOr ObJects . . & v v v v st e e e e e e e e e e e e e e e e 184
22.8.3 Other Functionsand Conventions. v v v v it b vt et e e e e 186
23. ThePatch Facilityo o e e e s e e e e e e e e 189
231 UserFunctions v o o it e e e e e e e e e e e e e e e e e e e 190
23.2 Patch System Information. e e e e 191
233 AddingPatches, e e e e e e e e 191
23.4 Defining Patch Systems o . 0 i e e e e e e e 193
24, TalkingtoNIL S 196
P38 N 1 1 1+ T 196
242 The Toplevel Loop v v i i it e e e e e e e e e e e e e e e e e e 197
243 Enteringand ExitingNIL o e 197
244 VMS . L e e e e e e e e e e e 199
245 Installation e e e e e e e e e e 199
246 Howthe NILControl Works o 0o vt it s s e e i e e 202
25. Peripheral Utilities. v v v i o v i i e e e e e e e e e e e e e e e e P 204
25.1 The Predicate Simplifier. e e e e e e 204
252 AMINIF-MYCIN e e e 205
25.3 Maclisp Compatibility forMacsyma 0 i it e i e e e e e 206
26. NIL Extended Data-Types. v v v v i v i e e et e e e e e e e e e e e e 207
26.1 The Extend Structure e 207
262 TheFlavorObject. 0 v v i it e e e e e e e e e e e e 208
27. Foreign LanguageInterface e e e e e e e e e e e e 209
27.1 Introduction. v i i e 209
27.2 Kerneland System-Services ¢ . o i v it v e . e e e e e e 209
273 VMSobjectfiles. . v . v v v i e e e e e i e e e e e e e e e e e e e e e e e e 210
274 DataConversion . . . v v v v vt b e 210
275 lowerlevel roUtings 0 . i i i e e e e e e e e e e s 211
28. What Will Break. o i i i i et s e e e e e e e e e e e e e e e 212
28.1 WhatBrokeSince Release 0. L i i i i e e e e e e e 212
2810 NIL T, et . v v v v v e e e e i e e e e e e e e e e e e e e e L 212
28.12 Common Lisp Arrays. v v v i v e e e e e e e e e e e e e e e e 212
28.1.3 Generic Arithmetic and New Numeric Types. e e e e e e e e e e 213
282 FUtTe Changes. « v v v v v v e e e e et e e e e e e e e e e e 213
2821 Multiple Values v i i it e e e e e e e e e 213
28.2.2 Variable Naming Conventions e e e e e e e e e e e e 214
2823 GarbageCollection.t i i it e e e e e e e e e 215
2824 EITOr System. & v v v v v e 215
28.2.5 NewPackage Facility. v e e e e e e e e e e e 216
28.2.6 Vector-push and Vector-push-extend i i 216
28.2.7 Miscellancous Other Things e e e e e e e e e e e e 216
References. o v i i i i e e e e e e e A V)
Concept Index. et e e e e e e e e et e e e e e 218

17-JUN-83

Table of Contents viii NIL Notcs for Release 0.259

MessageIndexo o 220
ResourceIndex 221
Variable Index e e e e e e e e e e e e 222
FUnCion INdeX. . . v v oo v ot e e e e e e 223

17-JUN-83

NIL Notes for Release 0.259 1 Introduction

1. Introduction

NI, which stands for New Implementation of Lisp, is a dialect of LISP which runs on the
DEC VAX. NIiL currently runs under the VMS opcrating system. It will likely be converted to run
under UNIX (TM) at some point, but there is no effort underway to do so right now.

NIL is a dialect of COMMON LISP. COMMON LISP is essentially a formal specification of the
LisP language such that programs which conform to that specification may be transported without
modification from one COMMON LiISP implementation to another, and be expected to run
compatibly, As of this writing, the "final" draft of the COMMON LiSP manual is not yet ready;
for this reason, this document is in its present form; eventually, the NI manual will be the
COMMON LisP manual, supplemented by facilities provided only by Nii, and by other COMMON
LisP facilities which are not part of the corc COMMON LISP language requirement.

This is an interim document. The NIL language is in the process of being converted to
COMMON LISP, as it is known to be at the time. Certain significant conversions have been
performed since NIL Release 0; for instance, the "singlc-letter” arithmetic functions, such as +
and -, are now generic (they used to be fixnum-only, as in MACLISP). The basic types for
representing ratios (non-integer rational numbers) and complex numbers have been added, as has
a new array implementation which provides the basis for conforming to the COMMON LISP array
specification. This document schizophrenically attempts to cover three arcas. One is “primer"
documentation; those things which must be known for any programming to get done. In this
case, attempts are made to point out what of these things are COMMON LISP compatible. Another
is the set of things which might be expected to- change incompatibly, due-to COMMON LISP
conversion. The third is those which are part of the NIL core Virtual Machine, as it is being
developed more formally. These include, for example, functions like %string-replace, which ‘are
suitable low-level primitives for a VAX (or other byte-machine, like perhaps an IBM-370) to
provide. Lastly, there are certain parts of NIL which have undergone large amounts of recent
development, and are fairly stable, and which may provide functionality for users in various
domains; the 1/0 system, for example. Much of the provided documentation will be of things
which are obscenely low-level; sometimes, this is to point out places where the implementation
falls short of the design; often too, to document these for those who may find it useful
debugging, or in performing implementation-dependent activities; and occasionally, to explicitly
note how the implementation differs from the general and portable semantics (as in the case of
numbers and eq).

These notes are designated as Revision 0 of the notes for Release 0.259. Although they are
largely based on the previous notes (Revision 1 of the notes for Release 0), they have changed
too drastically (as have some parts of NIL) to be considered a simple revision of the previous
notes.

This document is intended to be supplemented with the Maclisp Extensions Manual [3],
which documents some facilities which behave pretty much the same in NIL, and have thus been
largely omitted from this for expediency. Other revisions of these notes will appear informally
from time to time, until such time as the COMMON LISP manual is publicly available, and the NIL
documentation can be made to complement that.

ML:NILMAN;INTRO 14 - '17-JUN-83

Introduction 2 ‘ NII. Notes for Release 0.259

So, rcad on. Hopefully grains of salt will not be in too much demand.
Oh, one last very significant note: unlike most every other Lisp manual emmanating from MIT

over recent years, unqualified numbers in this one are DECIMAL, not OCTAL. NiL defaults both
the input and output radices to decimal.

ML:NILMAN;INTRO 14 ' ' ‘ 17-JUN~83

NIL Notes for Releasc 0.259 3 ' Data Types

2. Data Types

2.1 Numbers

The NIL (and COMMON LISP) hierarchy of numerical types looks like this:
number
rational
integer
fixnum
bignum
ratio
float
short-float
single-float
double-float
long-float
complex
Collectively, the non-complex numbers are referred to in NIL as the type non-complex-number;
the term real is not used because of potential confusion with FORTRAN floating-point. Note that
there is no guarantee that the above types might not be further subdivided for the convenience of
the implementation.

2.1.1 Rationals

The integer data type is intended to represent mathematical integers. There is no magnitude
limit on them other than that imposed by memory or addressing limitations.

In NIL, those integers which can be fit in a 30 bit field in twos-complement are fixnums,
which are represented in such a way that no. storage is consumed. For integers not in this range,
bignums are used. Generic arithmetic functions automatically choose the appropriate
representation.

Integers are ordinarily represented in decimal -notation, optionally preceeded by a sign
character and optionally followed by a decimal point. See also chapter 3 of [3] which provides
additional syntax for reading integers in other radices.

A ratio is the type used to represent non-integer rational numbers. It consists logically of
integer components which are its numerator and denominator (which are accessible by functions of
the same namcs). The ‘external interface is defined such that a ratio will always appear to be in
reduced form (whether or not it is), and the denominator will always be positive. (COMMON LISP
sez it can’t be zero, infinity freaks.) The arithmetic routines which deal with rational numbers
tranparently convert between ratios, bignums, and fixnums as appropriate.

ML:NILMAN;TYPES 23 | ' - 17-JUN-83

Numbers - ' g NIL Notes for Release 0.259

2.1.2 Floating-point Numbers

NiL. currently offers onc floating-point format, which is double-precision, having an 8-bit
exponent and 56-bit mantissa (significand) (including the hidden bit). This type is double-float.
For various historical reasons, it is also called flonum (from Maclisp). Note that in NIL (as in all
MIT lisp dialects), suffixing a sequence of digits by a decimal point does not produce a floating-
point number, but rather forces the integer to read in in radix 10; to force floating-point, the
decimal point must be followed by digits. Thus, "10." is the fixnum ten, but "10.0" is floating-
point ten. The other syntax is to use exponential notation, as in 1.0e+10. In this too, in NIL,
at lcast one digit is required after the decimal point, although none are required before the

decimal point.

COMMON LisP allows for at least four kinds of floating-point representations, which must meet
the following criteria (note that this differs from what was in the previous relecase notes!):

Format Minimum Precision Minimum Exponent Size
Short 13 bits -7 bits
Single : 24 bits : - 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits
Eventually, NIL will provide all of these formats, with the following specs:
Type Precision Exponent
short-float 19 bits 8 bits
single-float 24 bits 8 bits
double-float 56 bits 8 bits
‘long-float 113 bits 15 bits

The long-float type will require microcode support to avoid software emulation.

The various forms of floating-point number are syntactically distinguished by the use of the
- character used in exponential notation. For example, 10.0d0 is double-float ten; 10.0s0 is short-
float ten, 10.0l0 is long-float ten, and 10.0e0 is single-float ten. When exponential notation is
not used, the type of float is determined by the user-modifiable variable *read-default-float-
formats; this should only be set to double-float right now, although eventually it will default to
single-float.

2.1.3 Complex Numbers

#C (realpart imagparg)
The real and imaginary parts may be extracted with the realpart and imagpart functions. Only
the basic arithmetic functions handle complex numbers currently. -

Note that although computations with ratios get automatically reduced to integers when
possible, and thus one should not see an object of type ratio with a denominator of 1, it is
possible to- have a complex number with a zero imaginary part. In the future, complex numbers
will be restricted to have real and imaginary types which are either both rational, or both floating-
point numbers of the same format. Additionally, gaussian rationals with a zero imaginary part
will always be reduced to ordinary rational numbers and will not be of type complex.

ML:NILMAN;TYPES 23 : 17-JUN-83

NIL Notes for Release 0.259 o 5 Characters

2.2 Characters

NIL provides a data type for representing characters. Characters are the things one
manipulates when doing "character /0™ on streams. They are the things one gets out of, and
puts into, strings. Having a separate data type allows them to maintain their identity within the
lisp (as opposed to being an interpretation placed on fixnums, for instance). Chapter 10 is
devoted to this. —

Characters in NIL use #\ syntax for input and output, as shown below. Note that if the
character after the #\ stands alone, it is taken literally. If it occurs after a prefix such as
"control-", then it will be trcated like an ordinary token, $o may nced to have a preceding
backslash to inhibit case translation or just to allow proper token parsing.

#\a ; Lowercase "a".
#\A ; Uppercase "a".
#\Control-a ; Uppercase "a", with the control bit.
#\Meta-\a ; Lowercase "a", with the meta bit.

Some characters have names, which may be used in place of the character itself:
#\Rubout ; The "rubout" or "delete” character
#\Hyper-Space ; The "space™ character with the hyper bit.

Only a subset of all possible characters are allowed to be contained in strings. These comprise
the string-char data type. It happens that in NIL these are those characters which have no font
or bits attributes (both are 0).

2.3 Symbols

Notationally, tokens which cannot be interpreted as anything else are taken to be symbols,
except that tokens consisting entirely of unslashified dots are supposed to cause a syntax error.
Thus, 1.0e +4 will read as a floating-point number, but 1.0e +4a will read as a symbol.

Symbols are what are used as names in lisp. They can name functions, and variables (the
two uses of which are syntactically distinguishable by the LISP evaluator). Symbols have a print
name or pname, which is a string containing the characters used in the printed representation of
the symbol. A symbol also has a property list or plist associated with it. This is a list of
alternating "indicators” and "values", allowing one to store unidirectional associations on the
symbol. A symbol also has a package, which points to the "name space" it is associated with
(chapter 14, page 83).

The symbol nil is special. It is used both to represent boolean false, and the empty list. Its
alternate printed representation is (), the empty list. It has the data type null, which is both a
subtype of symbol and a subtype of list, and is the only object of that type. Its value is not
allowed to be changed. Otherwise, it is treated the same as other symbols (it has a property list
etc.). v

The symbol t is used to represent boolean truth. Its value is also not allowed to be changed.

Symbols are often used as keywords. Because of the existence of multiple namespaces
(packages), this might present a problem because two symbols read into different namespaces

ML:NILMAN;TYPES 23 - : : 17-JUN-83

Lists and Conses R 6 NIL Notes for Release 0.259

might not be the same. This is solved by having special keyword symbols, or just keywords for
short. A symbol which is typed in preceded by a colon (and nothing else) is read into the
namespacc (package) for keywords. Thus, all symbols so designated arc the same (they are eq).
Keywords are sclf-evaluating, and their valucs are not allowed to be modified.

2.4 Lists and Conses

- some basic lisp here

2.5 Arrays

Arrays in NIL are a very general type. One dimensional -arrays are the type vector. Arrays
can be specialized as to the types of clements they may contain. A one dimensional array (a
. vector) which can only contain "string characters” (sece the string-charp function, page 15) is a
string. A one dimensional array which is allowed to hold only objects of type bit (that is, the
integers O or 1) is a bit vector. Arrays are discussed fully in chapter 11, page 67.

2.6 Structures

NIL provides a structure or record definition facility. This is supplied by the defstruct
function (page 85), which is cssentially the same one used in both MACLISP and LISP MACHINE
Lisp. In NIL, defstruct-defined objects are capable of being of their own type (by use of the
:extend option to defstructy—that is, defstruct provides a way for users to decfine their own
types distinguishable by typep. Additionally, such types interface to the NIL flavor system, which

may be used to give them methods for such things as how they should print and pretty-print.

2.7 Functions

2.8 Randoms

Internally used types.

2.8.1 Minisubrs

Pointers to special subroutines (not procedures). Stripping off the type bits results in the
address of the subroutine, which is called via JSB. But argument-passing conventions vary.

ML:NILMAN;TYPES 23 ‘ 17-JUN-83

NIIL. Notes for Release 0.259 : 7 Randoms

2.8.2 Modules

A module, as a type, is a logical unit of compiled subroutines and the constants and
datastructures they reference. When the compiler compiles a file, it produces a module. When
the garbagecollector (haha) relocates things, it relocates the module as a block. The name module
should not be used for this purpose, so it will probably be changed in a future release.

2.8.3 Internal Markers

The type siiinternal-marker is used for various things in NIL, none of which should
" ordinarily be visible to (or touched by) the user. Objects of this type arc meant to be checked
for by things like the debugger and garbage-collector (to, for instance, parse stack frames), and
manipulating them out of context will confuse these programs.

These objects print out as #! followed by the name followed by L For instance,

#!AFM-3! ; Stack marker for 3-arg function
; call frame

#1PC-MARK! : Next slot on stack is a PC

#1DOUBLE-FLOAT-MARK] ; Next two stack entries are the

- ;s representation of a double-float
This is almost the same as what used to be called the type constant; internal-marker excludes the
null object.

2.8.4 Unused Types

There are a number of unused type codes in NIL. Certain internal routines, upon
encountering them, bomb out to the VMS debugger because your NIL is then undoubtedly losing
its lunch.

ML:NILMAN;TYPES 23 17-JUN-83

Scope, Extent, and Binding 8 NIL Notes for Release 0.259

3. Scope, Extent, and Binding

The NIL interpreter uses lexical scoping. What this means, simply, is that variable rcferences
which are "textually within" the code which binds them, are valid. Those references which are
not "textually within" the binding form are not, and will (typically) cause unbound-variable errors.
Consider the definition

(defun make-associations (keys single-value)
(mapcar #’(lambda (key) (cons key single-value)) keys))
which takes a list of keys (perhaps for use by assoc), and returns an association list associating
all of those keys with the same single value. The first argument to mapcar, the lambda
expression, is technically a function. (The #' construct is explained below.) It is, however,
textually within the binding of the argument single-value, so that variable. reference is lexical,
and that function works in NIL as desired. Consider the alternative form ’
(defun make-associations (keys single-value)
(mapcar #'make-one-association keys))
(defun make-one-association (key)
{cons key single-value))
which might appear to be cquivalent. The reference to single-value in the definition of make-
one-association is nor textually within the binding of that variable, hence appears "free".
Although this function (in the absence of extra declarations, as described below) would function
"properly” in the MACLISP or LISP MACHINE LISP interpreters, it will not in NiL. It is interesting -
to note that (again without special declarative information) both the MACLISP and LISP MACHINE
LsP compilers will treat the second example as an error (or at least produce incorrect code),
because although the interpreters do not enforce lexical scoping rules, code is compiled that way.

A short note may be in order on the #’ construct which appeared above is in order. #°' is
an abbreviation for (function. ...), just as ' is an abbreviation for (quote ...). In MACLISP, the
two are equivalent. However, in NIL (and to some extent in LISP MACHINE LISP too), use of this
special form is necessary to cause the proper (functional) interpretation of the form being
evaluated. In fact, in the make-associations example, it is that special interpretation which
makes the lexical reference to single-value "work". If quote was used instead of function, the
example would not work as desired. function (or #°) need not just be used around lambda
expressions. It may also be used around function names (as in the second make-associations
example). The effect of evaluating (function name) is equivalent to what the interpreter does
when it "evaluates” name in the function position of a list being evaluated.

NiL does not restrict one to using only lexical scoping rules. It is possible to declare to NIL
that a variable is special, and should be able to be referenced by code nor textually within the
binding construct. Or, perhaps a variable should have a global toplevel value and not be bound
anywhere, or maybe even have a toplevel value, and be bound in some places. This is the
purpose of the special declaration, which NIL implements compatibly with COMMON. LISP, and
which is about the same as it is in LISP MACHINE LISP-and MACLISP. '

Most of the time, special variables are declared to be special globally. This means that the
NIL interpreter (and compiler) will always treat the variable as being special, even if there is no
declaration for it at the place it is bound. As a matter of style, variables declared special are
usually given names which begin and end with the character » so that they can be visually

ML:NILMAN:BIND 23 17-JUN-83

NIIL. Notes for Release 0.259 9 Scope, Extent, and Binding

distinguished from more "ordinary” lexically scoped variables. One way to globally declare a
variable special is with defvar (page 18). For instance,

(defvar #*leaves*)

(defun find-all-leaves (tree)

(let ((*Teaves* nil)) ; Empty set of leaves
(find-all-leaves-1 tree) ; Grovel over the tree
*leaves» ; And return the leaves found
))

(defun find-all-leaves-1 (tree)
(cond ((atom tree)
(cond ((not (memq tree *leaves#*))
(setq *leaves* (cons tree xleaves#*)))))
(t (find-all-leaves-1.(car tree))
(find-all-leaves-1 (cdr tree)))))
There are more esoteric (or SCHEME-like) ways in which the above could have been performed,
without the use of the special variable *leaves*, but the above is fairly straightforward, fairly
efficient, and will also run (both interpreted and compiled) compatibly in MACLISP and LISP
MACHINE LISP, :

The above intuitive (or, if you prefer, hand-waving and vague) description can now be used
to more formally define the terms of scope and extent which are used to describe the accessibility
and lifetimes of things, of which variable bindings are one instance. The scope of something tells
where it may be validly referred to. To say that something has lexical scope then means that it
may be used anywhere "textually” within the construct which "crcates” the object (e.g., the
lambda-expression which binds a variable). Note that this does not in itself imply that the
reference becomes invalid if that construct is exited. That dimension is the extent of the object,
which tells the zime during which the object (e.g., variable binding) is valid. dynamic extent
means that the object (reference) is only valid during the execution of the construct. indefinite
extent means that there is no such limitation. Variable bindings in the NIL interpreter (which are
not special) have lexical scope and indefinite extent. This means upward funarg capability.

indefinite scope means that there is no restriction on where a valid reference may occur from.
This is the case with special variables; the "free" references may be made from any piece of
code. The bindings of such variables, however, have only dynamic extent; they become invalid
(are "unbound") when the binding construct is exited. This combination of scope and extent,
which is quite common, is referred to as dynamic scope.

Now, for the pragmatics. The current NIL compiler actually only implements local scope

- instead of lexical scope. Its capabilities lic only in determining when it is losing. In many cases,

this does not matter because the constructs being used are expanded out into other constructs,

making the references local. This is what happens for mapcar, for instance: in the construct
(let ((zz (computate))) ‘

(mapc #'(lambda (x) (mumblify x zz)) some-list})) .
the rcference to zz within the lambda expression is a non-local (but lexical) reference. That
expression is recoded by the compiler, however, as an iteration without a scparate function, in
which the reference become local.

ML:NILMAN;BIND 23 o ' 17-JUN-83

[.ambda Application 10 NII. Notes for Release 0.259

reference This is actually a moderately standard way to handle lexical variables; rewrite
the form when possible to cause the reference to become local. The MACLISP compiler
does this with the mapping functions: cven if the open-code-map switch is turned off, if
such a refercnce occurs it will expand out the iteration to allow the local reference.

Environment transfer is implemented with closures. A closure is essentially an encapsulation
of a function, and some portion of a binding environment. The closures with which lexical:
environment transfer is performed in the interpreter, interpreter closures, bundle up the lexica!
environment as of the time of their creation. Thus,

{setq fn (let ((x 5)) (function (lambda () x))))
=> #<Interpreter-Closure (Anon) 1 259ABC>
(funcall fn)
=> §) .
One may test for a closure in general with (typep x 'closure), or with the closurep predicate

(page 15).

NiL actually has the capability for giving "dynamic" variables indefinite extent. This can be
used to implement old-fashioned closures as created by the Lisp Machine closure function (which
exists in NIL).

In NIL, what has been said for variables as far as scope, extend, binding, and shadowing is
concerned, is equally true for functions. Variable value and function value are handled in
virtually identical fashions. The primary differences between the two are that the interpreter does
not warn you when you create a new toplevel special function value (it does when you create a
new toplevel special variable value when the variable is not globally declared special), and the
compiler makes its special assumption quietly.

The design of the NIL binding mechanism is described by White in [6].

3.1 Lambda Application

Application of a lambda expression in NIL is much like that of LISP MACHINE LISP. A lambda

expression is of the general form
. (1ambda lambda-list {declaration}* {form}x)
In the simplest case, lambda-list is a (possibly empty) list of variable names, which are the formal
parameters to the lambda expression when it is treated as a function. There must be as many
arguments to the lambda-expression as there are variables. Thus,
((lambda (a b c) (list abc)) 12 (+ 3.4))
= (127)

The lambda-list may also contain special keywords which begin with the character & They
arc typically used to drive the matching of the formal parameters (variables) in the lambda list
with the values they should be bound to. There are basically just four such keywords, each of
which is optional, and which should appear in the order they are shown in:

&optional '

The items from the &optional to the next &-keyword (or end of the lambda-list) describe
optional arguments to the function. Each such item may be of one of the following
forms:

ML:NILMAN;BIND 23 ' 17-JUN-83

NIL Notes for Relcase 0.259 11 L.ambda Application

variable
If a corresponding argument is supplied, then variable will be bound to that.
Otherwise, it will be bound to nil.
(variable)
Same as an isolated variable.
(variable init-form)
If there is a corresponding argument, then variable is bound to that. If not, then
init-form is cvaluated, and variable bound to that result. The evaluation of inif-
Jorm is performed in an environment where all of the variables in the lambda list
to the left of this one have been bound already.
(variable init-form init-p-var)
Just like the previous format. Additionally, init-p-var will be bound to t if there
was an argument supplied, nil if not.
&rest
There must be exactly onc item between an &rest keyword and the next &-keyword (or
the end of the lambda-list). This variable is bound to a list of all the remaining
arguments to the functlon ’
&key
The items between &key and either &aux or the end of the lambda-list describe
keyworded arguments to the function. Thesc are arguments which are passed by keyword
rather than by position: when given, it must be preceded by the keyword naming which
argument it is. For example, the calls
(fi11 sequence new-item :start start :end end)
(fi11 sequence new-item :end end :start start)
are cffectively the same, All keyworded arguments are by default optional. The
specification of a keyworded argument in the lambda list is normally the same as that of
an optional argument. The name of the variable is used to generate the keyword which
flags that particular parameter. For instance, fill is defined with the lambda-list
(sequence item &key (start 0) end)
Additionally, with the non-atomic forms of optional parameter specification, a list of the
actual keyword which should be used and the variable to bind the argument to may be
used instead. For example, if it were desired that the keyword :start be used to flag the
starting index, but that the formal parameter be named i, then the lambda-list could have
been written as
(sequence item &key ((:start i) 0) end)
It is important to note that if both &key and &rest are given, then the list the &rest
variable is ‘bound to is the same list from which the keyworded arguments are extracted.
This is sometimes useful if the arguments are going to be passed en-mass to some other
function using apply, and is rarely used.
&aux
Bindings specified with &aux are for auxiliary variables; they have no correspondence to
the "arguments” given to the lambda expression. The only things which may follow &aux
in the lambda list are bindings specs for these auxiliary variables, which may take one of
the following forms:
variable
variable will be bound to nil.
(variable)
variable will be bound to nil. However, becausc this syntax may cventually be

ML:NILMAN;BIND 23 : 17-JUN-83

1.ambda Application ' n NIL Notes for Relcase 0.259

cither disallowed or made to mean somcthing clse, one should usc either just
variable or (variable nil). ‘
(variable init-form)

init-form is evaluated, and variable bound to the result.
The first &aux init-form is evaluated within the cenvironment produced by the preceding
portion of the lambda list. As cach &aux binding specification is processed, the variable
is bound, and will be available to any following init-forms. Because the stuff with &aux
has little to do with the lambda application, it may be clearer for the body of the lambda
expression to be wrapped in let (page 19) or let* (page 20); in fact, the portion of the
lambda list following &aux could be given as the binding-list to let*, and have the same
- meaning.

The usc of &rest in NIL results in consing. If the keyword &restv is used in place of &rest,
then the variable will be bound to a stack vector rather than to a list. This is an object which is
a simple general vector, but has only dynamic extent; it loses its validity when the function with
&restv in its lambda-list is exited. Essentially, the stack vector is just a pointer into the stack
where the values are stored. This feature should be used with care, if at all.

ML:NILMAN:BIND 23 : 17-JUN-83

By

NIL. Notes for Release 0.259 13 Predicates

4. Predicates
4.1 Type Predicates

4.1.1 Type Specifiers

A type specifier is an expression which may be used to express a data-type constraint.
nil No object is of the type nil; nil is a subtype of all types.

t All objects are of the type t. For instance,
(make-array (10 10) :element-type t)
makes an 10x10 array which can hold objects of any type.

type-name _
This is the most common form of type specifier; just a type name, for instance number,
double-float, string. ype-name may be the name of a flavor defined with defflavor
(page 107), by defstruct with the :extend option (page 85), or one of the many NIL
types noted in various places in this document.

(not type-specifier)
All objects which are not of type type-specifier.

(and 15l 152 ... tsn) -
The intersection of the given type specifiers.

(or sl sl ... tsn)
The union of the given type spec1ﬁers

{member xI x2... xn)
This defines a type which is one of the objects Ax] , X2, .. xn. Equality is defined by

eql (page 16).
(satisfies function-name)
An object is a "member” of this type. if function-name returns a non-null value when
applied to it, otherwise it is not. ‘
There are-some more complex forms which are used variously as synonyms for, and constraints
on, more general types. For instance;

(integer low high)
An object is of this type if it is an integer between low and high. low and hzgh may be
integers, in which casc the boundary check is inclusive, lists of integers, in which case the
- boundary check is exclusive, or the atom =, which signifies infinity of the appropriate
sign, Thus, (integer 0 *) is a type specifier for all non-negative integers, and (integer
(0) *) or (integer 1 *) for all positive integers.

(signed-byte size)

(unsigned-byte size)
An object is of these types if it can be rcpresented in the appropriate form in twos-
complement notation in a field of the specified size. (Without a hidden-bit convention.)
Thus, (signed-byte 3) is thc same as (integer -4 3), and (unsigned-byte 3) is the

ML:NILMAN;PRED 18 17-JUN-83

Type Predicates | 14 NIL Notes for Release 0.259

same as (integer 0 7).
bit Either O or 1.

(array element-type dimensions)
Hairier. Probably not worthwhile using yet.

4.1.2 General Type Predicates

typep object &optional type-specifier
If only onc argument is supplied, this is (somewhat) like MACLISP typep, and returns the

exact implementation type of object.

Otherwise, returns t if object is of type type-specifier, nil otherwise. See the description of
type specifiers, above.

of -type object type-specifier = 1
This is the name NIL gave to two-argument (only) typep. Use of typep is preferred.

4.1.3 Specific Type Predicates

This first group are convenient, fast, supported in COMMON LISP, etc.

null object :
This returns t if object is nil, nil otherwise. Stylistically, null is used to test for object
being the empty list, whereas not (page 20), which is functionally equivalent because of
the empty-list/boolean-false duality of nil, is used to test for boolean falsity. This is why
constructs of the form
(if (not (null x)) frob-non-null-x frob-null-x)
are so prevalent.

symbolp object
Returns t if object is a symbol, nil otherwise.

consp object
Returns t if object is a cons, nil otherwise. This is the same as (not (atom object)).

pairp object
Old NIL name for consp..

1istp object
consp or null,

fixnump object

characterp object
These test for the exact types fixnum and character. Use of typep with a second
argument of fixnum or character is preferred.

ML:NILMAN:PRED 18 | 17-JUN-83

NIL Notes for Release 0.259 15 Equality Predicates

flonump object ~
Archaic and obsolete predicate for determining if object is of type double-float. Use of
floatp (for floating-point numbers of any format), or (typep object 'double-float) is
preferred.

string-charp character
Tells if character is a character which may be stored in a string. This will bc a type of
sorts in COMMON LISP, such that a string is a vector with elements of type string-char.
Note that the function string-charp requires its argument to be a character, as opposed
to just any object.

In NIL, this is characters with bits and font of O (sce chapter 10).

stringp object
vectorp object -
~ Tell if object is a string or vector respectively. These are equivalent to doing (typep

object 'string) and (typep object *vector).

numberp object

floatp object
These are the same as (typep object 'number) and (typep object 'float) respectively. They
arc provided mainly for MACLISP compatibility,

bigp object
MACLISP compatibility: (typep object 'bignum).

closurep object
Tells if object is a closure.
4.2 Equality Predicates

Note also null (page 14) and not (page 20), for testing for nil.

eq x y ,
This tells if x and y are the exact same object. Implementationally, this is true if x and y

are the same "pointer”. For instance; :

(setq =foo* (cons ’'a 'bh)) => (a . b)
(eq *foox *foox) = t
(setq *bar* (cons 'a 'b)) => (a . b)
(eq *foox *bar=*) => nil

Philosophically, what this predicate says is that if one can side-cffect the object x, then
the equivalent side-effect will happen to y simultaneously. There are certain kinds of
objects which have no structure, and thus cannot be side-effected. These objects have the
behaviour that two of them created the same will then be eq. As a rule, for code
transportability, resilience, and clarity, this behaviour is something which should not be
depended on. In NIL, it happens that objects of type fixnum and character, among
some other more obscure ones, exhibit this behaviour; this may not be true in other LISP
implementations, however (it is not in MACLISP, for instance). For comparisons of such

- ML:NILMAN;PRED 18 , 17-JUN-83

Equality Predicates 16 » NIL Notes for Release 0.259

eql x

equal

objects, eq is not the proper test; eql is.

y ' ‘ .
eql is a predicate for testing for cquality on non-structured objects. It is true if x and y

are both numbers of the same type and numerically cqual, or if x and y are both objects
of type character and represent the same character, or (otherwise) if they are the same
object (eq). This is the default predicate for many functions such as member and subst,
and also for the case spccial form (page 22).

x)y

Fairly standard equal. Numbers, characters, symbols, and most random types are
compared as by eql. Conses are equal if their cars and cdrs arc equal. Arrays are
equal if they have the same clement-type constraints, rank, and dimensions, and if all the
corresponding components are equal. This means that that strings are not equal if any
corresponding characters differ in case; in this, equal differs from the LISP MACHINE LISP
definition, but is compatible with COMMON LISP. It also means that a string is not equal
to a non-string vector which contains the same characters as the string.

ML:NILMAN;PRED 18 ‘ 17-JUN-83

NIL Notes for Release 0.259 , Y * Programming Constructs

5. Programming Constructs

The NIL special and toplevel forms.
5.1 Definition Forms

5.1.1 Defining Functions

defun name bvl {declaration}* [documentation] {form}* Special Form
Defines name as a function.

If bvl is the atom macro, then this is assumed to be a MACLISP-style macro definition,
and is transformed appropriately.

If bvl is the atom fexpr, then this is assumed to be a MACLISP-style fexpr definition, and
an attempt is made to turn it into a NIL special form. Note, of course, that due to
evaluator semantics this will usually not work (calls to eval will, for instance, utilize a
new lexical contour).

Otherwise, name is defined as a lambda-expression with byl as its lambda-list and the
declarations and forms as its body. ¥

Until full function specs are implemented, name may only be a symbol, in which case the
dynamic function definition is set, or a two-list of the form (name propname), in which
case the function is placed on the propname property of name. In principle, name is a
general function-spec.

5.1.2 Defining Macros

A LISP MACRO differs from an ordinary function in that the code of the macro is run, not to
obtain a value for the form, but rather to obtain a new form to be used in place of the original
form. In LISP, this is not done through any strange and miraculous string-processing and
substitution, but by LISP code itself; LISP program code is just LISP data, which can be
manipulated and constructed by ordinary LISP programs. When a macro call is encountered by a
LisP compiler, the code for the macro is run then and there, during the compilation, to construct
the new form which must be compiled instead. For that reason, LISP macros, while general LISP
functions, should not depend on their dynamic environment (although if properly arranged they
may have global declarative or definitional information around).

defmacro name pattern {declarations}* {documentation}* {form}* Special Form ;
This is the preferred way for macros to be defined. name is defined as a macro. When a
call to name is encountered by the interpreter or compiler, the list of arguments to name
(specifically, the cdr of the calling form) is matched against pattern; the forms are then
evaluated in an environment where the variables specified by pattern are bound to the
components of the arguments which they match, and the resulting value is used in place
of the original form.

ML:NILMAN;PCONS 56 ‘ ‘ 17-JUN-83

Definition Forms | 18 NIL Notes for Release 0.259

pattern is generally a pattern of symbols and conses, but it may also have in it,
intermixed, &optional, &rest, and &body. The following defines foo as a macro to be .
synonymous with car:
‘ (defmacro foo (x)

(1ist ’car x))
In NIL, the &mumble keywords nced not be "top-level” within the pattern:.

(defmacro with-output-to-string ((var &optional string)
&body form)

ved) ‘
More details on the syntax is available in the Maclisp Extensions Manual [3]. Especially
useful with macros is backquote, which is also documented there.

macro name bvl {declarations}* {documentation}* {form}* Special Form
Primitive macro definition. You probably shouldn’t use this, at least not for routine

macro definitions.

5.1.3 Defining Variables

defvar var [init [documentation]] - Special Form
Globally declares var to be special. If there is an inir form specified, then when. this
form is loaded (evaluated), if var is not already bound (dynamically), it will be set to the
value of init. .

defparameter var init [documentation] Special Form
This is like defvar, only var is always set to the value of init.

def constant var init [documentatzon] : Special Form
Similar, and additionally states that the value of var is not intended to change. A
correctable error is signaled if, when this form is loaded (evaluated), var has a value not
equal to the value of init.

The NIL compiler will, at its discretion, utilize the (defined or implied by init being a
constant) value of var inline. So if you will be changing the value of a defconstant
variable out from under other compiled code, you should be using defparameter.

special {variable}* ‘Special Form
Globally - declares each variable to be special. Note that this normally occurs within a
declare special form. Within a declare form, when processed by the compiler, the
declaration is made local to the compilation of that file. As a toplevel special form
however, in addition to being declared local to that compilation, the form will be output
into the compiled file so will make the declaration when that file is loaded (just as defvar
and defparameter do).

This is documented b.cause you should be able to wrxte defvar yourself. special, as a
special form, is not in COMMON LISP.

ML:NILMAN;PCONS 56 17-JUN-83

NII. Notes for Release 0.259 ' 19 Binding

5.1.4 Controlling Evaluation Time

Macros often need to return multiple forms to be processed as if they all appeared
independently at toplevel. For instance, defvar and its variants could all be trivially implemented
as macros (if they aren’t alrcady). The canonical MACLISP way to do this is to rcturn a progn
special form, the first clement of which is the form (quote compile). Although it is unclear that
such a special kludge will always be required, it is certainly always safe to usc such a (progn
'compile ...) form. Note that (progn 'compile forms...) is treated the same as (eval-when (load)

Sforms...).

A simplified defparameter, which did not handle documentation, could have been written
like this: ,
(defmacro defparameter (variable value-form)

‘(progn ’'compile
(special ,variable)
(setq ,variable ,value-form)))

This behaviour and the special casing only applies to toplevel forms.

oval-when kwd-list {form}* v - Special Form
This is as if each of the forms appeared at toplevel, but were only there to be processed
at the times specified by kwd-list. The allowable keywords for kwd-list are

eval : _
When the eval-when form is evaluated by the interpreter.

load
When the forms of the eval-when are loaded compiled (they will be treated as if

they were seen at toplevel by the compiler; e.g., defuns will be compiled, etc.).

compile
The forms will be evaluated immediately when processed by the compiler.

5.2 Binding

let ({variable value}¥) {declaration}* {form}* Special Form
let evaluates all of the values, and then binds all of the variables to the corresponding

values. The forms are then evaluated in that environment, and the result(s) of the last
form is the resuli(s) of the let. For instance, '
(tet ((a forml) (b form2))
compute)
==>
((1ambda (a b) compute)
forml form2)

Various other constructs in NIL acccpt a list of lists of variables and values syntactically
the same as that used by let. This is what is meant by the term ledlist.

ML-NILMAN:PCONS 56 © 17-JUN-83

Conditionals 20 NIL Notes for Release 0.259

In NIL, let will accept, in place of a variable, a pattern used for destructuring. The
variables within the pattern are bound to the corresponding parts of the value. This is the
interface to destructuring used by defmacro; see it, page 17, for more information on
destructuring.

Because COMMON LISP let is not defined to support destructuring, it is recommended that,
if destructuring is used, it be hidden in a macro. This will make it both casier to read
(all the extra parcnthescs needed to use let with destructuring make it hard to read), and
also make it easier to change should let cventually be changed to nof support
destructuring (at which time there will be a primitive provided which does). For instance,
the NIL compiler defines the macro debind-args to destructure argument lists:
(defmacro debind-args (arglist-pattern form &body body)
*(let ((,arglist-pattern (cdr ,form))) ,@body))

let* ({(variable value)}*) {declaration}* {form}* Special Form
Syntactically, let* is similar to let. However, rather than binding the variables in parallel,
it binds them sequentially. That is, when each value form is evaluated, the corresponding
variable is bound to that value, and the following values are evaluated in that
environment. For instance,
(Tet* ((a forml) (b form2))
‘compute)
==>
({1ambda (a)
((1ambda (b)
compule)
Jorm2))
Jorml)

5.3 Conditiohals

Af predicate consequent [elseform] Special Form
if evaluates predicate. If the result is not false (i.e., not nil), then the result of the if is
the result of evaluating consequent. Otherwise, if elseform is specified, the result of the if

is the result of evaluating elseform, otherwise nil.

not x
not is used logically to invert the sense of a predicate. That is, it is by convention used

to test for the object representing boolean false. Because of the empty-list/boolean-false
duality of the symbol nil, it is functionally equivalent to null (page 14), which logically
checks for the empty list which is represented by the type named null. Thus, one often
sees constructs of the form
(if (not (null 1)) consequent elseform)

because null is used t check for empty-listness (for instance, being at the end of an
iteration down a list), and the not is used to invert the sense, so that the consequent w111
be run if there is in fact something left to the list I.

ML:NILMAN;PCONS 56 L 17-JUN-83

NIL Notes for Release 0.259 21 .

cond {(predicate {consequent})} *

Conditionals

Special Form -

General historical cond. Each predicate to the cond is evaluated, in order. If the result
of an cvaluation is false, then the cond cvaluates the corresponding consequents in that
"clause”, returning as its value the value(s) of the last one, unless there were no
consequents, in which case the value of the cond is the value of the predicate cvaluation.

(cond (pl cl)
(p2 ¢2)
(te))
is equivalent to
(if pl cl
(if p2 c2 €))

however cond allows multiple consequents, and also may more clearly show the selection

by clearly listing the sequentially processed tests.

If all of the predicates are false, then cond returns nil.

when predicate {consequent-form}*
(when predicate
consequent-1
consequent-2

consequent-n)
==>
(cond (predicate
consequent-1
consequent-2

consequent-n))

unless predicate {consequent-form}*
(unless predicate
consequent-1
consequent-2

consequent-n)
==>
(cond ((not predicate)
consequent-1
consequent-2

consequent-n))

and {form}*

Special Form

Special Form

Special Form

Evaluates each form, and if any returns nil, and immediately returns nil without

evaluating any subsequent forms. (and) =>t.

ML:NILMAN;PCONS 56

17-JUN-83

Conditionals | 2 » NIL Notes for Relcase 0.259

or {form}* Special Form
Evaluates each form, and if one returns a non-null result, that value is rcturned by or
without evaluating any of the following forms. (or) => nil.

or is supposed to rcturn exactly one value, no matter how many were produced by the
evaluation of a form, except for the last form which is evaluated tail-rccursively (with
respect to multiple value propagation). It doesn’t currently behave quite this way.

- case keyform {(({key*}) {consequent}*)}* Special Form
A dispatch form utilizing the eql predicate. In general,
(case keyform
((key-1-1 key-1-2 ...) form-1-1 form-1-2 ...)
((key-2-1 key-2-2) form-2-1 form-2-2 ...)
.)
is esscntia]ly the same as
(tet ((tem keyform))
(cond ((or (eql tem ’key-l 1) (eql tem 'key-1-2) ...)
Jorm-1-1 form-1-2 ...)
({or (eql tem ’key-‘2-1) (eql tem 'key-2-2) ...)
SJorm-2-1 form-2-2)
Y
Since the keys are constant, however, it is possible for the compiler to determine the
cheapest way to perform the comparisons. (Sec eql, page 16.)

In place of a list of keys, one may use a single atomic key. Also, the symbols t and
otherwise are special-cased and cause that "clause" to always be selected; no subsequent
clauses will be examined. For example,
(case (times 2 2)
(1 'one)
(2 'two)
(3 'three)
(t 'many))
=> many

Note that this function is what selectq thought 1t would once be, and may be used in
place of MACLISP caseq.

typecase object {(type-specifier {form}*)}* Special Form
typecase examines cach of its "clauses” in turn. If object is of the type specified by that
type-specifier (see typep, page 14), then the forms in that clause are evaluated, and the
value of the last form is returned by typecase. Note that a type-specifier of t will always
_cause the corresponding clause to be selected. .

typecase can often produce moderately better code than repeated calls to typep, by
factoring out operations nceded for more than one of the checks. The NIL typecase does
not yet do any clever pointer-type dispatch, however.

ML:NILMAN;PCONS 56 : : : ; ‘ 17-JUN-83

NIL. Notes for Release 0.259 23 Iteration ConStructs

5.4 Iteration Constructs

5.4.1 Mapping Functions

mapc function list &rest more-lists
mapl function list &rest more-lists
mapcar function list &rest more-lists
maplist function list &rest more-lists
mapcan function list &rest more-lists
mapcon function list &rest more-lists

These are the standard complement of LISP mapping functions, which itcrate down all of
the lists in parallel. They accumulate results in three different ways, and apply fiunction in
two different ways. In all cascs, if more than one list is supplicd, they are stepped in
parallel and the iteration terminates when the end of the shortest one is reach.

mapc and map! each returns its first argument as, its value; that is, they are typically for
effect. mapc applies finction to the cars of successive sublists, that is, to the elements of
the lists, whereas mapl applies function to the sublists themselves. Thus,

(mapc #'print '(a b c))
prints

a

b

c
whereas

(mapl #'print ’(a b c¢))
prints

(a b c)

(b c)

(c) _
Both return lisz, their first argument. Note that the function is not called on the null list,
even though that might be thought of as a sublist. Random example where the return
value is useful:

(map1 #'(lambda (subl)

: (rplacd subl (delete (car subl) (cdr subl))))
some-list) '

eliminates (destructively) all duplicate elements from some-Iist.

mapl is what used to be called map in MACLISP. map is now a generic sequence
function (page 39). :

mapcar and maplist each returns a list of the results of applying function to the
successive arguments; for mapcar, as with mapc, the arguments are the elements of the
lists, and for maplist, as with mapl, they are the sublists themsclves. For example:
(mapcar #'(lambda (x y) (plus x y)) '
(12 3) '(9 10 11))
=> (10 12 14)
That could have been written as

ML:NILMAN:PCONS 56 | o 17-JUN-83

Iteration Constructs | 24 NIL Notes for Release 0.259

(mapcar #'plus ...)

mapcan and mapcon "splice together” the results of applying finction to its successive
arguments, using (essentially) nconc. One common usc of mapcan is to mapcar
‘conditionally:
(mapcan #'(lambda (x) (and (pred x) (1ist (fx))))
some-list)
is kind of like doing (mapcar f some-lzst) having first dcleted those elements which do

not satisfy pred.

54.2 Spécial Iteration Forms

dotimes (var count) {declaration}* body... Special Form
Evaluates the forms in body in an environment where var is stepped from 0 up to (but
not including) the value of count. body is actually a tagbody body, and dotimes
establishes an implicit block named nil, thus return may be used to return a value from
the dotimes before the iteration terminates; see section 5.4.3, page 24.

dolist (var lisi) {declaration}* body... Special Form
body is evaluated with var bound to the successive elements of the value of the form list.

body is actually a tagbody body, and dolist establishes'an implicit block named nil, thus
return may be used to return a value from the dolist before the iteration terminates; see

section 5.4.3, page 24.

dovector (var vector) {declaration}* body... . Special Form
Similar to dolist, but for vectors.

loop gubbish... » Macro
loop is described in another document [5]. It is noted here because it deals correctly with
“the incompatibilities between LISP MACHINE LISP and COMMON LISP blocks and returns,

loop will probably be changed incompatibly by COMMON LISP; the first edition of the
COMMON LISP manual will not, however, have a specification for loop. The loop
currently in NIL is the same one described in [5], and that documentation is quite
accurate, even though it was written before loop was really introduced into NIL.

5.4.3 Block and Tagbody

block and tagbody together implement the flow-of-control functnonahty provided by standard
prog. prog could have been implemented as a macro in terms of these and let, and in fact is
described in that fashion by COMMON LISP.

block name {declaration}* {form}* - Special Form
block evaluates the forms. 1If a lexically apparent return-from is cvaluated with a tag of
name (or name is nil and a return is evaluated), then the value(s) of the form given to
return or return-from are returned as the value of -the block form. Otherwise, the block
form returns the value(s) of the evaluation of the last form.

ML:NILMAN;PCONS 56 - S R 17-JUN-83

NIL Notes for Release 0.259 25 , Iteration Constructs

Note that the argument to return or return-from is evaluated in the environment in
which it occurs, not the environment where the block was established.

return form Special Form
Evaluates form, and returns the value(s) it returns from the nearest lexically apparent
block with a name of nil. Many special forms implicitly establish blocks named nil, such
as prog, do, dolist, dotimes, dovector, and (usually) loop.

Note that this differs subtly from LISP MACHINE LISP. In LISP MACHINE LISP, return
returns from the innermost prog (i.e., block) which is not named t. In NIL (and COMMON
LISP), a return to a block name of nil only matches a block name of nil, and the block
name t is not distinguished in any way.

return-from name form . ' Special Form
Evaluates form, and returns the value(s) it returns from the nearest lexically apparent
block with a name of name. name is not evaluated.

tagbody {wg | form}* Special Form
The body of a tagbody is exammed sequentially. If a form is atomic, then it is a tag and
is ignored, otherwise it is evaluated. If during the evaluation a lexically apparent call to
go is evaluated with an argument of one of the tags, then control is returned to that
point within the tagbody form, which resumes its interpretation. If the interpretation
reaches the end of the tagbody, the result is nil.

go tag Special Form
tag is not evaluated. Control is returned to the nearest lexically apparent tagbody form
with a tag name of ag, which resumes interpretation of the tagbody at the form
following that tag.

It is important to note that the name matching of block/return-from and tagbody/go is
lexical. For instance,
(defun f (x)
(block foobar
(g #'(1ambda (x) (return-from foobar x)) x)))
(defun g (fn x)
{1ist (block foobar
(funcall fn x))))
(f 'foo) => foo N
not (foo). The NIL compiler cannot handle this example, however. Also, the named block only
has dynamic extent; if an attempt is made to return to a lexically apparent block construct which
has been exited, the interpreter will complain.

prog varlist {declaration}* {tag | form}* Special Form
- Standard prog. varlist may be a list of variables, or a list of lists of variables and their
initial values. They will be bound in parallel. prog can be built from the above
primitives:

ML:NILMAN;PCONS 56 : , 17-JUN-83

Non-Local Flow of Control 26 NIL Notes for Release 0.259

&

(et varlist
the declarations
(block nitl
(tagbody the tags and forms)))

For compatibility with LISP MACHINE LISP, - if the first "argument” to prog is a non-null
atom, then that is used as the name of the block, with the varlist following.

5.5 Non-Local Flow of Control

catch g {form}* Special Form
COMMON LISP catch. g is evaluated and the result saved. Then, if during the
evaluation of the forms, if a throw to that tag (as tested for by eq) occurs, the catch
form so named will return the values given to the throw. The tag so named has dynamic

extent.

The tag to catch is allowed to be any LISP object. This means that one can generate a
guarantecd unique tag by (for instance) {ncons nil), or by using a datastructure which is
somehow associated with the control point of the catch. This is, in fact, how the NIL
interpreter implements the block and tagbody constructs; it uses the datastructures in
which it stores its control-flow information as tags to catch. :

" Note that this is incompatible with the standard MACLISP catch function documented in
the 1974 manual ([9]). However, PDP10 MACLISP has been bitching and moaning about
use of catch for some year or more now, advising the use of *catch instead (which is
equivalent to NIL’s catch).

throw lag. Jorm : - Special Form
tag and form are evaluated. Control is returned from the nearest catch established with a
tag eq to the value of zag, and that catch then returns all the values produced by form.

special form because of multiple value passback. of course that doesn’t work reliably yet...

Note that this is incompatible with the old-fashioned MACLISP throw function. However,
in PDP10 MACLISP throw has been out of vogue for some time, supplanted by =*throw,
which has syntax and semantics identical to this throw, and which is supported in NIL.

unwind-protect protected-form {cleanup-form}* Special Form
protected-form is evaluated, and the result returned. Upon exit, the cleanup-forms are
evaluated. No_matter how the exit is achieved (throw, error, whatever),

In principle, unwind-protect returns whatever extra values protected-form did. In the
current implementation, this cannot ‘be guaranteed because no state is saved around the
evaluation of the clean..p-forms.

ML:NILMAN;PCONS 56 ‘ 17-JUN-83

NIL Notes for Releasc 0.259 27 Multiple Values

scatch g {form}* ~ Special Form
Old name for what is now catch. Will be supported and identical to what catch is now
indefinitely, for the sake of MACLISP programs, which use this name with identical syntax.
(Note however that MACLISP catch allows fag to be a list of tags, - which means it can’t be
just any object.)

sthrow tag form Special Form
Old name for what is now throw. Will be supported and identical to what throw is now
indefinitely, for the sake of MACLISP programs, which use this name with identical syntax.

This scems to be an ordinary function. But then multiple-value passback is unreliable.

5.6 Multiple Values

documentation

NIL contains a kludgey implementation of multiple values, similar to what exists in LISP
MACHINE LISP. The implementation is based on the hack put into MACLISP some time ago, and
suffers from approximately the same deficiencies: namely, that multiple values passed back to
forms receiving a single value "normally” might hang around and be picked up later if no other
multiple-value passing is done.

values &rest values
Returns as many values as it is given arguments; the first value being the first argument,
etc. It is permissible for there to be no values.

values-1ist Iist | o _
- Returns as multiple values all the elements of Iist,

values-vector vector
Because NIL makes such great use of vectors, this is provided also; it returns all the
elements of vector as multiple values.

1 For example, in NIL values is defined by
(defun values (&restv vec)
(values-vector vec))

multiple-value variables values-form Special Form
The variables in variables, which must be a list of variables, are set to the corresponding
multiple values returned by the evaluation of values-form. Extra values are ignored; if too
few values are rcturned, the extra variables are set to nil. ~

multiple-value always returns exactly one value, the value of the first value returned by
values-form (or nil if none were returned).

In NIL, as in LISP MACHINE LISP, one may use nil in place of a variable to cause the
corresponding value to be ignored. This is specifically disallowed by COMMON LiSP, The
preferred way to handle this uses multiple-value-bind, below.

ML:NILMAN;PCONS 56 17-JUN-83

SETF _ | 28 NIL Notes for Release 0.259

The name of this will be changed to multiple-value-setq by COMMON LISP...

multiple-value-bind variables values-form {form}* Special Form
Somewhat like multiple-value, except the variables in variables are bound to the values
produced by values-form, and each of the forms evaluated in that environment. '

Note that, although in NIL nil may be used as a placcholder in variables for a value
which will not be used, it may not in COMMON LISP. The preferred way to ignore a
value is to use a name for it, and declare that name to be ignored; for instance,
(multiple-value-bind (quo rem) (%bignum-quotient-norm x y)
(declare (ignore quo))
(hack-about-with rem)) -
This additionally provides the benefit of having the value "documented" by virtue of
~ being associated with a named variable.

multip]e value-1ist form Special Form
form is evaluated, and all of the values it produces are returned as a list. For example:
(multiple-value-Tist (values 1 2)) => (1 2)
~(multiple-value-list (values)) => nil

5.7 SETF

setf {place value}* Macro
setf is sort of a generalized setq. Essentially, a setf form expands into the code needed
to store each value into each place. For example, just as
(setq x 3) :
stores 3 into x,
(setf (car 1) §)
stores 5 into the car of the value of |,

setf always returns the last value stored.

setf works on variables, all defined car/cdr functions, array and sequence accessing
functions (aref, elt, vref, char, bit), get, various attribute accessors (symbol-plist,
symeval, fsymeval, etc.), and all accessors defined by either defstruct or defflavor. In
fact, it is the canonical (and the only formally defined) way to modify slots of structures
defined with defstruct. It also operates on a number of low-level NIL primitives,
including nibble, get-a-byte, and get-a-byte-2c.

setf also operates on certain other forms whose "inversions” are not strictly side-cffecting,
by performing a the setf on an argument of the function (which must be valid as a place
to setf). These include Idb and load-byte. For instance, the side-effect performed by
(setf (1db bytespec place) val)
is the same as
(setf place (dpb val bytespec place))
although the return value should be different. The return value from this expansion is
incorrect in the current implementation, in that it actually does expand as shown.

ML:NILMAN:PCONS 56 | B 17-JUN-83

NIL. Notes for Release 0.259 . 29 SETF

The setf methodology is even morc helpful when the logical operation being performed on
the place is "read-modify-write”. This means that the place needs to only be specificd once in the
form,

push object place : Macro
Approximately
(setf place (cons object place))
except that order of evaluation is preserved, and the forms of place are evaluated only
once.

pop place Macro
Approximately
(progl place (setf place (cdr place))
but the forms in place are evaluated only once.

There are a mess of other other such macros COMMON LISP dcfines, but they are deferred
until the new setf in some future rclease of NIL. They are incf and decf (incrementing and
decrementing the place), (shiftf placel place? ... placen value), which returns the original value
of placel, stores the value of place? into placel, .. and value in placen. Also rotatef which is
like shiftf but gets the value from placel.

ML:NILMAN;PCONS 56 17-JUN-83

Lists . 30 NII. Notes for Release 0.259

6. Lists

Note also consp (page 14), listp (page 14).

6.1 Creating, Accessing, and Modifying List Structure

Note also the * reader-macro (chapter 2 of [3]), which is convenient for creating list structure
in template form, especially if large portions of it are constant.

car
cdr
c....r

rplaca cons new-car
rplacd cons new-cdr _
Sec also setf (section 5.7, page 28) which can be used to update any of the above car/cdr

references.

See also push (page 29) and pop (page 29) which can be used to maintain a list in FIFO
form in an arbitrary setfable place.

cons x y
Makes a cons whose car is x, and whose cdr is y.

ncons x
Equivalent to (cons x nil).

Xxcons x y ;
"Exchanged" cons. Equivalent to (cons y x).

1ist &rest elements
Returns a freshly created list of its arguments.

(Tist) = il
(list 'x) => (x)
(list 'x 'y) = (xy)

Tist* first-thing &rest other-things ;
Sort of like list, but the last argument to list* is used as the cdr of the final cons,
instcad of nil. Alternatively, it may be thought of as many nested conses;

(1ist* 'a) => a

(list» 'a 'b) => (a . b)
(1ist* 'a ’'b 'c) => (ab . ¢)
(1ist* ’a ’'b nil) => (a b)

ML:NILMAN:LIST 21 | ' 17-JUN-83

NIL Notes for Release 0.259 . 31 - Creating, Accessing, and Modifying List...

make-11ist size-of-list ,
Creates a list of nils size-of-list long.

append &rest lists

(append x y) returns a list which has first all of the elements of x, followed by all of
the elements of y; for instance,

(append (a b) "(x y)) => (a b xy)
The subpart of -this list (in the example, the cddr) is the original last argument to
append; append never copics its last argument.

(append x y z)

==> (append x (append y z))

When given one argument, append returns that argument; with no arguments, it returns
nil.

last list
Returns the last cons of list (not the last element!), unless /isz is nil, in which case it
returns nil. In NiL, last deals properly with a non-null last cdr of /isz. The only non-
cons it will accept as an argument however is nil.
(last '(a b . c)) => (b . c)

nconc &rest lists v
: Joins together all of the lists by destructively modifying them. Specifically, for each of
the lists which is not nil, the final cons (as might be returned by last) is modified by
rplacd to be the next list.
(setg 11 ’'(a b))
(setqg 12 *(x y))

{nconc 11 12) => (abxy)
and now, :
a => (a b xy)

One should be careful, however, about using nconc strictly for effect (i.e., not using the
returned value), because if the first list is nil (the empty list) the desired side-effect will
not occur. '

1ist-length Ilist
The list-specific length (page 37) function. In NIL, there is no particular benefit to using
list-length over length other than to verify that the argument is a list (as opposed to a
more general sequence); since length is the way to obtain the length of a list in MACLISP,
programs which wish to remain MACLISP-compatible may use length without penalty.

copy-list list , ,
Copies the top-level conses of list. This may be used to replace the common idiom
(append list ()) ‘
and, additionally, handles a non-null last cdr of list gracefully.

ML:NILMAN;LIST 21 » : 17-JUN-83

Creating, Accessing, and Modifying List... - 32 NIL Notes for Release 0.259

copylist list
Old name for copy-list.

copy-alist alist
Like copy-list, and additionally, each top-level clement of alist which is a cons has that

first cons copied also.

copyalist alist
Old name for popy-alist.

copy-tree (ree
Returns a copy of free. Recurses through both the car and the cdr, terminating at non-

- conses. That is, only conses are copicd. This replaces the old MACLISP idiom
(subst nil nil tree)
which has been broken by COMMON LISP.

copytree free , ;
Old name for copy-tree.

first list
second list
third list
fourth list
fifth list
sixth list
seventh list
eighth list
ninth list
tenth list
car, cadr, efc.

rest list
cdr

nth index list
Returns the indexth element of /ist, zero origined. Note also that this takes its arguments
in a different order than elt (and other more specialized sequence accessors).

If index is not less than the length of list, nth returns nil by analogy to car and cdr. In
this it also differences from elt. :

nthedr ntimes list ,
Returns list after ntimes cdrs have been taken on it.

ML:NILMAN;LIST 21 : : : 17-JUN-83

NIlL. Notes for Release 0.259 : 33 Substitution

6.2 Substitution

These functions arc cxtensions of the subst and sublis functions which are defined by
MACLISP and LISP MACHINE LISP. Note that they by default use egl to test for equality; this is
incompatible with MACLISP and the previous release of NIL, in which subst used equal but sublis
uscd eq (but only worked on symbols). A different test may be specified by usc of the :test
keyworded argument; this is a predicate of two arguments used to test "cquality”. If it is more
convenient, the sensc of the predicate may be reversed by use of the :test-not keyword.

Note also that these functions only descend through list structure (“trees™); they do not look
inside of vectors, arrays, or other structures.

subst new old tree &key :test :test-not :key
Returns a copy of tree, with new substituted when a of the trce matches old according to

the test.

This is incompatible with MACLISP subst, in that the result is nor guaranteed to always
copy even if substitution is not performed. The MACLISP- idiom (subst nil nil rree) is
‘replaced by the copy-tree function (page 32). Be on the lookout for the use of this
idiom in old code, for it can cause obscure bugs when uncopied structure is modified.

nsubst new old tree &key :test itest-not :key
Like subst, but does not copy: the new components are destructively stored in tree.
However, this should be used for value, for if tree matches old, the result is new but no

bashing of list structure is done.

sublis a-list tree &key :test :test-not :key
Like subst, but performs substitution for several things at once. a-list is an association
list of the objects to match, and their replacements. For example,
(sublis '((yes . no) (t . nil)) '(t generally means yes))
=> (nil generally means no)

nsublis a-list tree &key :test :test-not :key
Like sublis, but destructive. -See also nsubst.

6.3 Using Lists as Sets

One common use of lists is as sets of objects. NIL (and COMMON LISP) provide a complement
of functions for doing this. ’

All of the functions take similar arguments. Normally, they use eql as their predicate, so that
they work on numbers properly also. If this is not suitable for the purpose, then a predicate may
be specified by giving it as the :test keyworded argument. For instance,

(union ’((a b) (b) (c)) '((d) (e) (a b) (b)) :test #'equal)
=> ((a b) (b) (c) (d) (e))

The sense of the predicate can be reversed by using :test-not instead of :test.

ML:NILMAN;LIST 21 17-JUN-83

Using Lists as Scts ' 34 NIL Notes for Release 0.259

Sometimes the clements of the sct are datastructures of some sort, and one desires to only
compare one part of the datastructure, but not write a predicate to comparc things. If the :key
keyworded argument is uscd, then that is a function which will be applied to cach clement as it
is tested, and the results of that will be given to the cquality predicate, rather than the clements
themselves. For example,

(union ’((a) (b) (c)) '((d) (e) (a) (b)) :key #’car)

=> ((a) (b) (c) (d) (e)) ~

The :key-specified function is only applied to elements extracted from lists, never to single item
arguments given to any of these functions (such as member, below). The ordering of the result
“may not be depended on; neither may the result if either of the inputs contains duplicate
elements (as defined by the predicate), nor the particular choice of element (that is, the one from
" the first list or the one from the second list). Thus,

“(union ’((a) (b x) (c)) "((d) (e) (e) (b y)) :key #’'car)
might rcturn either of the sets

((a) (b x) (c) (d) (e))
or

((a) (b y) (c) (d) (e))

since they are equivalent according to the test criteria.

member item list &key :test :test-not :key
If item is a member of list according to the specified test (which defaults to # 'eql), then
" member returns the sublist whose car satisfied the test. Otherwise, nil is returned. The
other functions in this section are implemented in terms of this. Note that if a function is
specified with :key, it is only applied to items of list, not to item.

Note that the default predicate for member, #’eql, is incompatible with MACLISP member.
This provides consistency with all other similar functions.

memq item list
This is member with a test of #'eq. memq is not defined by COMMON LISP, but is

inherited from MACLISP. It is specially handled by the NIL compiler.

union listl list2 &key :test :test-not :key
Returns the union of list/ and lise2.

intersection listl list2 &key iest itest-not :key
‘Returns the intersection of /istl and list2.

set-difference /list! lisi2 &key iest :test-not key
Returns the set difference of listl and list2 (a list of the elcments of list] which are not

present in list2, according to the predicate).

sot-exclusive-or list] list2 &key :test :test-not :key »
Returns a list of the elements which occur in either list/ or list2, but not both, according
to the predicate.

ML:NILMAN;LIST 21 : 17-JUN-83

Association L.ists 36 NII. Notes for Releasce 0.259

pairlis keys data &optional a-list
Returns an a-list made by associating keys and data and adding them to the front of a-
list. keys and data must be lists of the same length.
(pairlis ’'(foo bar) ’'("Foo" "Bar") ’'((baz . "Baz")))
=> ((foo . "Foo") (bar . "Bar") (baz . "Baz"))
The result will share structure with a-list, so modifications to the associations in the
returned result will affect those assocations in a-/ist also. '

assq item alist

This is assoc, but uses #'eq as its test. assq is not defined by COMMON LISP, but is
inherited from MACLISP. It is specially handled by the NIL compiler.

ML:NILMAN:LIST 21 | ’ 17-JUN-83

NII. Notes for Release 0.259 ; 35 Association Lists

subsetp list/ list2 &key :test :test-not &key
Returns t if list/ is a subset of (but not necessarily a proper subset of) list2, nil otherwise.

adjoin item list &key :test :test-not :key
If item is-a member of list according to the specified test, this just returns /iss; otherwise,
‘it conses item onto the front of list; and returns that. That is, '
(if (member item list test-keyworded-args)
list _
(cons item list))

6.4 Association Lists

Association lists are an abstraction built from lists which are uscful in many cases. An
association list (or a-list, sometimes misspelled alist in this document), is a list, all elements of
which are conses; the car of each cons is the key, and the cdr of each cons is the data
associated with that key. .

There are two different ways in which association lists may be used. In one, the association
list is not:considered to-have more than one association with "the same" key (as determined by a
user-specified predicate, as with many other NIL functions). In this case, it may be better to use
hash tables (chapter 13, page 81), unless the number of entries is kept fairly small. The other is
where the implicit ordering of a list comes into play. One entry in the association list might have
the same key as another; since association lists are always searched in left-to-right order, the first
occurence will shadow any other occurences. A simple LISP lexical interpreter might use an
association list to hold the lexical variable bindings, - for instance.

assoc item a-list &key :test :test-not :key
Searches a-list for an association whose key matches item according to the specified test; if
one is found, that cons is returned; otherwise nil is returned. If a non-null result is
returned, the datum of it may be modified by use of rplacd.-

Note that if a function is specified with :key, it is only applied to the keys in the a-list,
not to item. '

Note also that since the default test is #°’eql, this is incompatible with MACLISP assoc.
To retain the same effect, one must use

(assoc item a-list :test #'equal)
Of course, often the choice of assoc in MACLISP is because ifem is a number, so equal
is not needed in NIL because eql compares numbers correctly. ‘

rassoc item a-list &key :test :test-not key

Like assoc, except that item is matched against each datum in a-list, rather than each
key. :

ML:NILMAN;LIST 21 - ' 17-JUN-83

NIL Notes for Release 0.259 37 Sequences

7. Sequences

A scquence is considered to be ecither a list or a vector (which is by definition a one-
dimensional array). A few functions which might be uscful are presented here.

Many scquence function take start and end arguments to delimit some subpart of the sequence
being opcrated on. As a general rule, the start is inclusive, and the end is exclusive; thus the
length of the subsequence is the difference of the end and the start. The start typically defaults
to 0, and the end to the length of the sequence. Also, the end, where it is an optional
argument, may be explicitly specified as nil, and will still default to the length of the sequence.

81t sequence index
This is the general sequence access function. It returns the indexth element of sequence;
the index is taken to be zero-origined. This will work gencrally on lists, vectors, strings
(which are by definition vectors anyway), etc. One may modify an element of a sequence
by using setf. For instance, :
(setq v (make-vector 10))
=> #(nil nil nil nil nil nil nil nil nil nil)
(setf (elt v 5) ’foo)
=> foo '
And now, -
v => #(nil nil nil nil nil foo nil nil nil nil)

length sequence
Returns the length of sequence. In NIL, length will detect a circular list, and signal an

" error.

7.1 Creating New Sequences

make-sequence fype size &key :initial-element
Makes a sequence of the given type and size. The types of most interest are list, string,
vector, and bit-vector. If the :initial-element keyworded argument is given, then the
sequence is initialized with that element. Otherwise, the initialization depends on the type
of the sequence. For instance,
(make-sequence '1ist 5 :initial-element t)
> (ttttt)
(make-sequence 'string 5 :initial-element #\»)
=> "annnn" :

concatenate result-type &rest sequences
Creates a sequence of type result-type (as might be given to make-sequence), and stores
in it the concatenation of all the elements of sequences. For instance,
(concatenate ’'string "foo" "bar" "baz")
=> "foobarbaz"
(concatenate 'list "foo" "bar" '(1 2))
=> (#\T #\o #\o #\b #a #r 12)

ML:NILMAN;SEQUEN 7 17-JUN-83

Opcrations on Sequences 38 NIL Notes for Release 0.259

subseq sequence start &optional end
“Returns a sequence of the same type as sequence, containing clements from start up to

(but not including) end.

(subseq "foo on you" 4) " => "on you"
(subseq "foo on you" 4 6) => "on"
(subseq "foo on you" 4 3) => isanerror
(subseq '(a b c d) 1 3) => (b ¢)

Note that the result of subseq never shares with the original sequence. Thus, (subseq
list 5) is not the same as (nthedr 5 /ist). In fact, subseq would signal an error in this
case if the /ist did not have at lcast 5 elements.

copy-seq sequence -
Copies the sequence sequence. This might be necessary if the result is going to be
modified, for instance.

7.2 Operations on Sequences

reverse sequence
Returns a copy of sequence, with the elements in the opposite order.

nreverse sequence

Reverses sequence destructively; it does not create a copy. Note that if sequence is a list,
onc should always use the return value of nreverse; that is, do something like

(setq 1 (nreverse 1))
rather than just

(nreverse 1)
This is in general true for all destructive list operations, such as sort and delgq. The
reason is that although the cons cells of the input list are reused, the pointer returned is
not necessarily the same as the original "first" cons of the list. :

111 sequence element &key :start :end

Replaces the elements of sequence with element, from start (default 0) up to end (default
length of the sequence).

(setqg a (012345 86))

(fi11 a nil :start 2 :end 4)

=> (0 1 nil nil 4 5 6)

And now,

a => (0 1nil nil 4 5 6)

replace sequencel sequence? &key :start :end :startl :end1 :start2 :end2
Replaces the elements of the specified subsequence of sequencel by the elements of the
specified subsequence of sequence2.
(setq v (make-sequence ’'vector 10))
=> #(nil nil nil nil nil nil nil nil nil nil)
(replace v (12 3 45 8))
=> #(123 45 6 nil nil nil nil)
v=>#(123456 nil nil nil nil)

ML:NILMAN;SEQUEN 7 : N | | 17-JUN-83

NIL Notes for Release 0.259 39 Iteration over Sequences

start and end are uscd as defaults for startl, endl, start2, and end?, which otherwise
default to 0 and the lengths of the corresponding sequences. The number of elements
transferred is the length of the shorter subsequence.

"

7.3 Iteration over Sequences

The following functions itcrate a user-specified function over one or more sequences in various
ways. They arec not handled specially by the NIL compiler yet, however, so cases where the
function is a #’'(lambda ..) form will not compile if the lambda expression contains free
references to lexical variables in the containing code.

map result-type function &rest sequences
This is the general sequence mapping function. Note that this is different from the
MACLISP and LISP MACHINE LISP map function, which is renamed to mapl by COMMON
LISP.

The result is a ncw sequence of type result-type (cf. make-sequence), containing the
results of applying firnction to the elements of sequences. There must be at least one
sequence specified; function gets as many arguments as there are sequences—first it gets
called on all of the first (index 0) elements, then on all the second elements, etc. The
iteration terminates when the end of any of the sequences is reached, so the result will
have the same length as the shortest input sequence.

(map ’list #’'cons "abc" '(a b ¢))

=> ((#\a . a) (#\b . b) (#\c . c))

If result-type is list, and the input sequences are all lists, then this is the same as mapcar
(page 23).

some predicate &rest sequences
If the result of applying predicate to the corresponding elements of sequences is not nil,
that value is returned; otherwise, nil is returned. The predicate is called with as many
arguments as there are sequences; first on all of the first (index 0) elements, etc. Only
the parts of the sequences up to the length of the shortest are considered.

every predicate &rest sequences
Like some, but returns t if the result of applying predicate to the elements of sequences is
never nil, nil otherwise.

' notany predicate &rest sequences
Returns t if the result of applying predicate to the correspondmg elements of sequences is
always nil, nil otherwise,

notevery predicate &rest sequences

ML:NILMAN;SEQUEN7 ' 17-JUN-83

Sorting Sequences 40 NIL Notes for Rc,]éasc 0.259

7.4 Sorting Sequences

sort sequence predicate &key key
~ This is the COMMON LISP sort function; when it is used without a key, it is MACLISP

compatible.

sequence is° destructively sorted according to the predicate predicate, which receives two
arguments and should return a non-null value only if its first argument is strictly less than
its second argument. If key is specified, then it is a function of on¢ clement which is
applied to the sequence element before being passed on to the predicate.

For MACLISP compatibility, if sequence is a list, then the sort is stable; equivalent pairs of
items (those where the two keys are neither strictly less than cach other) remain in their
original order. ‘When sequence is a vector, a quicksort algorithm is used.

sortcar sequence predicate .
This is provided for MACLISP compatibility. It is just like
~ (sort sequence predicale :key #'car)

stable-sort sequence predicate &key key

Like sort, but guarantees that the sort will be stable (see sort). If sequence is a vector,
then a bubble sort is used.

ML:NILMAN;SEQUEN 7 , 17-JUN-83

NII. Notes for Release 0.259 41 Symbols

8. Symbols

8.1 The Property List

symbol-plist symbol
Returns the property list of symbol. Unlike the MACLISP plist function, this only works
" on symbols, not disembodied property lists.

plist symbol
symbol-plist.

setplist symbol newplist
Sets the property list of symbol to be newplist Note that unlike in MACLISP, setplist does
not work on disembodied property lists, only symbols,

The proper COMMON LISP style is to use setf of the symbol-plist.

get symbol indicator
Standard MACLISP get. symbol may actually be a disembodied property list. COMMON
Lisp will be adding other primitives for dealing with symbols and property-list associations
in other structures.

Unlike in MACLISP, get does not arbitrarily check the type and then return nil if it is
neither a symbol nor a list; in NIL one gets an error for an invalid type.’

get1 symbol indicator-list
Standard MACLISP ggtl. Returns the subpart of the property list of symbol beginning with
the first indicator found in the list indicator-list, or nil if none was found.

As in MACLISP, symbol may also be a disembodied property list.

putprop symbol value indicator ,
Standard MACLISP putprop. If symbol already has an indicator property, this replaces it
with value, otherwise puts a new one, ' '

remprop symbol indicator
Standard MACLISP remprop. If symbol has an indicator property, then that is removed by
being spliced out of the property list, and the sublist of the property list whose car is the
value (being removed) is returned. If there is no such property, nil is returned.

Note: COMMON LISP does not define the actual value returned by remprop, only that it
will be null if the property was not found, non-null if it was.

ML:NILMAN:SYMBOL 14 : 17-JUN-83

The Print Name L 42 NII. Notes for Release 0.259

8.2 The Print Name

symbol-print-name symbol
Returns the print-name of symbol.

Note that print-names of symbols should never ever be modified.

In NIL, the print-name of a symbol will always be a "simple" string, never a general
character sequence or even a string of adjustable size,

The name may be shortened to symbol-name. Which is used hardly matters.

get-pname symbol
Superceded by COMMON LISP symbol-print-pame.

samepnamep syml sym2 _ ,
Returns t if sym/ and sym2 have equal print names. Case is significant. sym/ and sym2

may be strings too. Either (or both) of the symbols may be specified as strings instead.

8.3 Creating Symbols

make symbol pname
Makes a new uninterned symbol whose print-name is the strmg pname. It will have no

value or function bindings, no package, and an empty property list.

That the print-name (as returned by symbol-print-name) of the returned symbol will be

eq to pname should not be depended upon.
¢

copysymbol sym &optional copy-props
If copy-props is nil, then this is the same as (make- symbol (get-pname sym)); that is,

it returns a virgin symbol with the same print-name as sym. If copy-props is not nil, then
the value and function definition and property-list and package of sym will be copied to
the new symbol.

Actually, the current dynamic bindings (value and function) of sym are copied to the new
global dynamic bindings of the new symbol.

The COMMON LISP name of this, like other copysomething functions, is copy-symbol.
The name copysymbol is MACLISP compatible (but in MACLISP the second argument is -
not optional). copysymbol with a null copy-props argument is a reasonable way to
generate a unique symbol which is somewhat mnemonic although not completely visually
unique. The NIL compiler copies symbols like if-false to generate tags, for instance; no
new print name is created, just the basic symbol structure, on which properties can be
placed.

ML:NILMAN;SYMBOL 14 : : 17-JUN-83

NIL. Notes for Release 0.259 43 The Valuc and Function Cells

gensym &optional x
Standard inherited-from-MACLISP gensym. gensym crcates new uninterned symbols. The
print name of the symbol is constructed by prepending a single character prefix to the
decimal representation of a. counter which gets incremented every time gensym is called.
The name has been around for so long that automatically generated names are commonly
refered to as gensyms, and the act of doing so as gensyming.

(gensym) returns such a constructed symbol.

(gensym symbol) sets the prefix to be the first character of symbol, and then makes a
gensym,

(gensym integer) sets the counter to integer, and then makes a gensym. Actually,
integer must be a non-negative fixnum.

gentemp &optional prefix
Hairer form of gensym. This is not strictly compatible with the COMMON LISP definition,
so i won’t be more specific. The point, however, is that an interned symbol is generated,
which may be used as a variable or function name or somesuch. The print-name of the
generated symbol will have prefix as a prefix, probably an incrementing numeric suffix,
and potentially large quantities of gubbish in the middle. '

Use this for creating variables for use in macro expansions, because the symbol can be
typed in.

symbol-package symbol
Returns the contents of the package cell of symbol. This should be a package object, or
nil. : B

8.4 The Value and Function Cells

See also chapter 3, page 8 for discussion about scope, extent, and binding, and chapter 3,
page 8 for a description of the NIL internal mechanism for performing variable and function
binding.

Special implementation qualification: because of the hairy value cell mechanism in NIL, value
cells are not just allocated in the heap, so (due to lack of code to do some relocation right now)
‘there is an assembly-time limitation on how many may be created, Thus, generating symbols and
using the value cells to store things may not work as well as you expected (an error complaining
NEW_SLINK wants to grow the SLINK occurs). This limitation is not a function of the
mechanism but rather of the lack of garbage-collector, however.

symeval symbol
Returns the current dynamic (special) binding of symbol.

ML:NILMAN;SYMBOL 14 17-JUN-83

Internal Routines | M o NIL Notes for Release 0.259

sot symbol value
Sets symbol’s dynamic (special) binding to be value.

An crror is signalled if symbol is a constant (as defined by defconstant).

boundp symbol
Returns t if symbol has a defined binding, nil otherwise. Note that

(setq *foox* 1) => 1

(tet ((*foox 3))
(declare (special *foox*))
(makunbound ’=*foox*)
(boundp '*foo*))

=> il

*foox => 1

makunbound symbol
"Undefines" the current dynamic value binding of symbol.

An error is signalled if symbol is a constant (as defined by defconstant).

fsymeval 'symbol
% Returns the current dynamic (special). function binding of symbol.

fset symbol function
Sets symbol’s dynamic (special) function binding to be function.

fboundp symbol
Returns t if symbol has a defined dynamic function binding, nil otherwise. (Like

boundp.)

fmakunbound symbol
Analogous to makunbound.

8.5 Internal Routines

%symbol-cons string
Internal symbol conser. Creates a symbol with string as its print-name. (Note there is no

mechanism- provided for modifying the print-name of a symbol.)

The following routines are the primitives from which the earlier routines could be built. They
arc opgn-coded by the compiler, and work on all symbols including nil. They are intended for
low-level code like that which might be found in intern.

%symbol-print-name symbc’
Returns the print name of the symbol symbol.

ML:NILMAN;SYMBOL 14 : 17-JUN-83

NIL. Notes for Release 0.259 45 Internal Routines

%symbol-package symbol
Returns the contents of the package cell of symbol.

%set-symbol-package symbol new-value
Modifies the contents of the package cell of symbol to be new-value, and returns new-
value.

%symbol-property-1ist symbol
Returns the contents of the property list cell of symbol. This is, in fact, the property list
itself.

%set-symbol-property-1ist symbol new-value
Modifies the contents of the symbol's property list cell to be new-value, and returns new-
value.

%symbol-1ink-cel1 symbol _
This returns the contents of the link cell of symbol. This is the thing used to implement
the totally hairy NIL value cell scheme, which is described in chapter 3, page 8.

ML:NIL.MAN;SYMBOL 14 ' 17-JUN-83

Numbers 46 ’ NIL Notes for Release 0.259

9. Numbers

NIL provides several different representations for numbers. Presently, it provides integers, of
essentially unlimited precision, and floating-point. There is also the ratio data type, for
representing non-integer rational numbers. The complex data type has been added, but only.
works with the basic arithmetic functions right now.

NiL integers are currently of two kinds. There are fixnums and bignums. Fixnums have 3C
bits of precision, including the sign, -and are represented without consing (i.e, no memory
consumption). Integers which require more than 30 bits to represent are implemented as bignums.
Bignums are an extended data-type, and can grow to any size, limited only by whatever system
parameter happens to be limiting the growth of your NIL, and your patience. :

Floating-point numbers in NIL currently are of only one type, double-floats. A double-float
utilizes the VAX double-precision floating-point representation, which takes up 64 bits; this
provides 56 bits of precision in the fraction, and binary exponent from -127 to 127.

NIL also has provision for floating-point numbers of other formats, as described in section 2.1,
page 3. ' :

9.1 Predicates on Numbers

Note also the type predicates numberp, bignump, integerp, fixnump, floatp, ratiop,
rationalp, and complexp. ;

zerop number .
Returns t if number is integer, floating-point, or complex zero, nil otherwise.

plusp non-complex-number
minusp non-complex-number
Return t if non-complex-number is of the appropriate sign, nil otherwise.

oddp integer
evenp integer
Return t if integer is odd (even), nil otherwise.

9.2 Comparisons on Numbers

= pumber &rest more-numbers

/= number &rest more-numbers

< number &rest more-numbers

> number &rest more-numbers

{= number &rest more-numbers

>= number &rest- more-numbers :
These functions each take one or more arguments. If the sequence of arguments satisfies
a certain condition: '

ML:NILMAN:NUMBER 49 v | 17-JUN-83

NIL. Notes for Release 0.259 47 } Arithmetic Operations

= all the same

/= all different

< monotonically increasing

> monotonically decreasing

<= monotonically nondecreasing
>= monotonically nonincreasing

then the predicate is true, and otherwise is false.

Complex numbers are only acceptable as arguments to = and /=; the others require
their arguments to be non-complex.

These functions also have fixnum-only and double-float-only versions.

greaterp numl! num?2 &rest more-numbers

lessp numl num?2 &rest more-numbers
These are implemented as synonyms of < and >, and exist for MACLISP compatibility.

max number &rest more-numbers

min number &rest niore-numbers
Generic max/min. Works on any non-complex numbers. Note also the existence of
max& and min& (page 56), which only work on fixnums, and max$ and min$ (page 60),
which only work on double-floats.

9.3 Arithmetic Opera'tions

+ &rest numbers

plus &rest numbers
Returns the sum of all of the numbers, performing type coercion as appropriate. If there
are no numbers, O is returned. The name plus is retained for MACLISP compatibility.
Note also the fixnum-only + &, and double-float-only +$.

1+
addl number
(plus number 1)
The name add1 is retained primarily for MACLISP compatibility.

- number &rest numbers
With one argument, - returns the negative of that argument. With more than one
argument, it subtracts all of the others from the first. Type coercion is performed as
necessary. Note also the fixnum-only -&, and double-float-only -$ functions.

difference number &rest numbers
When given more than one argument, difference subtracts from the first argument all the
others, and returns the result. When given one argument, difference returns it. This is
noteworthy becausc it is compatible with the MACLISP difference function, and it is

incompatible with - above.

ML:NILMAN:NUMBER 49 | 17-JUN-83

Irrational and Transcendental Functions 48 NIL Notes for Release 0.259

1- number
subl number
(- number 1)
The name sub1 is retained for MACLISP compatibility.

minus number
This is the same as (- number); the name is retained for MACLISP compatibility.

* &rest numbers

times &rest numbers :
Returns the product of all of the numbers, coercing as appropriate. The identity for this
operation is 1. The name times is retained for MACLISP compatibility.

/ number &rest numbers
This is the generic rationalizing division function. With one argument, / reciprocates the
argument; with more than one, it divides the first by all the others, and returns the
result. / will return a ratio if the mathematical quotient of two integers is not an exact
integer; truncating integer division is performed by the MACLISP compatible quotient
function, and will be provided by the COMMON-LISP truncate function (not yet in NIL),

quotient number &rest more-numbers
This is the MACLISP-compatible quotient function. When given more than one argument,
quotient divides the first by all the others, and returns the result. With one argument,
returns -that argument. Previous release notes lied on this point. quotient performs
truncating division on integers; it does not produce a result of type ratio unless one of
the ‘arguments is a ratio.

conjugate number . ‘
Returns the complex conjugate of number, which is number itself if number is not
complex,

gcd &rest integers
Returns the greatest common divisor of the integers. With no arguments, gcd returns O.

Tcm integer &rest mofe-z‘ntegers ,
Returns the least common multiple of the integers.

9.4 Irrational and Transcendental Functions

Beware floating-point error.

ML:NILMAN;NUMBER 49 : 17-JUN-83

NIL Notes for Release 0.259 49 Irrational and Transcendental Functions

9.4.1 Exponential and Logarithmic Functions

exp number
Returns e raised to the power number, where e is the basc of the natural logarithms.
This currently always works by coercing number to a double-float, and returning a double-

float result.

expt base-number power-number
Returns base-number raised to the power power-number. 1f base-number is an rational
number and the power-number is an integer, the calculation will be exact and the result
will be a rational number. Otherwise, the calculation devolves into floating-point, and will
use a logarithmic computation if power-number is not an integer. Not all types and type
combinations arc supported yet.

log number &optional base :
Returns the logarithm of number in the base base, which defaults to e, the base of the
natural logarithms. This currently uses only double-float arithmetic, so must coerce

number and base to double-floats.

sqrt - number :
Returns the principal square root of number.

If number is a negative non-complex number, a complex number is returned.

The actual square-root computation is only performed using double-float arithmetic now,
so the answer (or its real part if it is complex) is currently always a double-float (but see
isqrt, below). - ‘

isqrt integer _ _
Integer square-root: the argument must be a non-negative integer, and the result is the
greatest integer less than or equal to the exact positive square root of the argument.

9.4.2 Trigonometric and Related Functions

abs number
Returns the absolute value of the argument.

signum number
By definition,
(signum x) <=> (if (zerop x) x (/ x (abs x)))
signum of an rational number will return -1, O, or 1 according to whether the number
is negative, zero, or positive. For a floating-point number, the result will be a floating-
point number of the same format with one of the mentioned three values.

signum of a complex number is a complex number of the same phase but with unit
magnitude.

ML:NILMAN;NUMBER 49 ~ 17-JUN-83

Type Conversions and Component... - 50 NIL Notes for Release 0.259

sin radians
cos radians

tan radians .
Standard trig functions. Will eventually accept complex arguments. The current versions

only produce double-float results, and must coerce their arguments to double-floats.

asin number

acos number
asin returns . the arcsinc of the argument, and acos the arccosine. The result is in

radians. These will eventually accept complex -arguments. The current versions only use
double-float arithmetic, however.

atan y &optional x
" An arctangent is calculated and- the result is returned in radians.

With two arguments y and x, neither argument may be complex. The result is the
arctangent of the quantity y/x. The signs of y and x ere used to derive quadrant
information; moreover, x may be zero provided y is not zero. The value of tan is always
between -7 (exclusive) and # (inclusive).

describe special cases

sinh number
cosh number
tanh number
Hyperbolic sine, cosine, and tangent.

~asinh number
.acosh number

atanh number »
These aren’t yet implemented.

9.5 Type Conversions and Component Extractions on Numbers

float number
Converts number to floating-point. This is currently always a double-float.

remainder integer divisor
Standard MACLISP remainder. Will become hairier in the future.

ML:NILMAN;NUMBER 49 - 17-JUN-83

NIL. Notcs for Release 0.259 _ 51 Logical Opcrations on Numbers

9.6 Logical Operations on Numbers

The logical operations in this section treat integers as if they were represented in two’s-
complement notation.

In MACLISP, and in the previous release of NIL, most of the functions presented here were
fixnum-only. However, they now accept (and produce) arbitrary-precision integers. See also the
section on fixnum-only arithmetic, section 9.9, page 56.

logior &rest integers

Togxor &rest integers

logand &rest integers

logeqv &rest integers .
These return the bit-wise logical inclusive or, exclusive or, and, or equivalence (also
known as exclusive nor) of their arguments. If no arguments arc given, the results are 0
for logior and logxor, and -1 for logand and logeqv, which are the identities for those
operations. Note that these functions are not yet defined; for use on fixnums only, use
logior&, logxor8, logand&, or logeqv& (page 57).

lognand integerl integer2

lognor integerl integer?

Togandc1 integerl integer?

logandc2 integerl integer2 .

logorcl integerl integer2

logorc2 integerl integer2
These are the other six non-trivial bit-wise logical operations on two arguments. Because
they are not commutative or associative, they take exactly two arguments rather than any
non-negative number of arguments. :

The "c1" and "c2" in some of the above names should be read as "having complemented
argument 1 (or 2)"; for instance, logorcl is the logical or of the logical complement of
integerl, with integer2.

logandc1 and logandc2 are often used as bit-clearing functions. However, the ordering
-given to such names as bit-clear or logclr is often confusing (and historically, has been
incompatible from one macro-package to another). logandc1 returns integer? with all bits
which are on in integerl, cleared; logandc2 returns integerl, after clearing any bits
which are set in integer2.

boole op integerl integer2 ;
The function boole takes an operation op and two integers, and returns an integer
produced by performing the logical operation specified by op on the two integers.

There are sixteen variables (the names of which are listed below) which have the boolean
functions as their values; the boolean functions are represented as fixnums from 0 to 15

(inclusive). ‘

ML:NILMAN:NUMBER 49 ' » 17-JUN-83

Logical Operations on Numbers - 52 NIL Notes for Release 0.259

The NIL implementation of boole defines the boolean functions such that they map into
the standard "truth table" used in Maclisp. That is, if the binary representation of op is
abed, then the truth table for the boolean operation is

y
|0 1
0]a c

x |
1]b d

For cxample, the boolean function 4 has bmary representation 0100. This shows that the
result will have a bit set only when the corresponding bit of integerl is 1 z_md integer? is
0. This is the logandc2 opcration. New code, especially that intended to be transported
between COMMON LISP implementations, should never rely on this—this coincidence is
provided only for MACLISP compatibility. ‘

For Maclisp compatibility, when NIL boole receives more than three arguments, it goes
from left to right, thus:
(boole k x y z) <=> (boole k (boole k xy) z)
~ In certain cases it may accept less than threc arguments. Again, new code should not rely

on this behaviour.

Tognot integer
Returns the bit-wise logical not of its argument. Every bit of the result is the complement

of the corresponding bit in the argument.

logtest integerl integer2
logtest is a predicate Whlch is true if any of the bits designated by the 1’s in integerl are

1’s in integer2.
(logtest x y) <=> (not (zerop (logand x y)))

logbitp index integer
logbitp is true if the bit in integer whose index is index (that is, its weight is (expt 2
index)) is a one-bit; otherwise, it is false. '

ash integer count
Shifts integer arithmetically left by count bit positions if count is positive, or right -count

bit positions if count is negative. The sign of the result is always the same as the sign of
integer.

The actual implementation of ash works on, and will produce, bignums. There is also an
ash& function which deals only with fixnums.

In practice, count is only allowed to be a fixnum...

logcount integer
Not yet in??

ML:NILMAN;NUMBER 49 ~ ' ~ 17-JUN-83

NIL. Notes for Release 0.259 : 53 ' Byte Manipulation Functions

integer-Tlength integer
integer-length returns the zero-origined index of the sign bit of the field necded to
represent integer in twos-complement notation. That is, any integer 7 may be represented
in twos-complement notation in a field (1+ (integer-length 7)) long. If integer is non-
negative, then it may be represented in unsigned binary form in a field (integer-length
integer) long. For instance,

(integer-length 5) => 3

because the binary representation of 5 is ...0101.

haulong integer :
Returns the number of significant bits in the absolute valuc of integer. The precise
computation performed is ceiling(log2(abs(integer)+1)).

For example:

(haulong 0) => 0
(haulong 3) => 2
(haulong 4) => 3

(haulong -7) => 3
haulong is provided for MACLISP compatibility; integer-length should be used in
preference.

haipart ‘integer count \
This function exists primarily for MACLISP compatibility. Its functionality is subsumed by

the generic Idb and dpb functions.

Returns the high count bits of the binary representation of the absolute value of integer,
or the low -count bits if count is negative.

9.7 Byte Manipulation Functions

There are various functions in NIL and COMMON LISP to deal with arbitrary-width contiguous
fields of bits within integers. '

Conceptually, most of these functions use objects called byte specifiers to describe such fields.
The represcntation of a byte specifier, and the restrictions on the fields it is capable of describing,
are implementation dependent. The function byte accepts two integers representing the size and
position of the byte, and returns a byte specifier. Such a specifier designates a byte whose width
is size, and whose right-hand bit has weight (expt 2 position), in the terminology of integers
used as logical bit vectors.

byte size position
Returns a byte-specifier.

byte-size bytespec

byte-position bytespec
Returns the size/position of the bytespec.

ML:NIL.MAN:NUMBER 49 : © 17-JUN-83

Byte Manipulation Functions 54 NIL Notes for Relcase 0.259

Historically, the functions Idb and dpb, although first implemented in Lisp Machine Lisp, are
derived from the PDP-10 instruction set. In that context, a four-digit octal. number is used as a
bytespec; it is typically referred to as ppss, because, in octal, the byte position is pp, and the
byte size is ss. The Idb, dpb, mask-field, and deposit-field functions were originally
implemented with such a bytespec, usually typed in by the user in octal. Both MACLISP and NIL
originally implemented Idb and dpb in this way, such that they only operated on fixnums.
However, thc COMMON LISP dcfinitions must work on all integers. Additionally, it was decided
that the range restrictions of the ppss bytespec were too limiting. For that reason, NIL has
incompatibly changed the bytespec format previously used. Functions are provided which utilize
“both the new and the old bytespecs.

~ 1db bytespec integer
bytespec specifies a byte of integer to be extracted. The result is returned as a positive

integer.

A fixnum-only version which utilizes the new NIL bytespec format is available as Idb&,
page 58.

The original fixnum-only version, which utilizes the obsolete ppss bytespec format, is
available as %ldb, page 59.

There ‘is also load- byte (page 59), which takes the byte position and size separately, and
‘operates only on fixnums.

1db-test bytespec integer
(not (zerop (1db bytespec integer)))

mask-field bytespec integer
7Not yet in??

dpb newbyte bytespec integer
Returns a number which is the same as infeger except that the bits specified by bytespec
are replaced by newbyte, which is -interpreted as twos-complement, and truncated if

necessary.

For limited fixnum-only applications using new the bytespec format, see dpb& and set-
Idb&, page 58. For utilizing the obsolete ppss bytespec format, see %dpb, page 59.

There is also the fixnum-only deposit-byte (page 59), which takes the position and size
separately, and operates only on fixnums.

deposit-field newbyte bytespec integer
Mnot yet in??

ML:NILMAN:NUMBER 49 | S 17-JUN-83

NIIL. Notes for Release 0.259 : 55 Random Numbers

9.8 Random Numbers

random &optional modulus random-state
If no modulus argument is given, then this is compatible with the MACLISP random
function of no arguments: it returns a number randomly distributed over the range of all
fixnums. (COMMON LISP docs not define random of no arguments.) Otherwise, modulus
must be cither an integer or floating-point number. The answer returned is a number of
the same type (an integer or the same floating-point format), between zero (inclusive) and
modulus (exclusive).

If random-state is supplied, it must be an object of type random-state; this is what
holds the state of the random number generator. If it is not supplied, then the global
random number state (the value of *random-state#*) is used.

The random number returned is random over "all its bits"; random-state is used to
compute a sequence of random bits which are used to construct the result. For a floating-
point number, this is used as the significand (fraction) of a constructed number which is
scaled to the appropriate range; for an- integer, a sequence of bits is constructed
approximately 10 bits longer than that needed for the result, and then a modulus
operation performed. As an efficiency note, this means that bignum arithmetic might be
performed to produce a result for a fixnum modulus in order to manipulate the
intermediate quantity 10 bits longer.

srandom-states Variable
This holds the global random state used by default by random. One may, for instance,
lambda-bind this variable to a new object of type random-state to save and restore the
state of the random number generator.

make-random-state &optional state
This creates a new random-state object. If state is nil or not supplied, then a copy of
the current value of *random-states is returned. If stare is t, then a new random-state
is returned, seeded from the time. Otherwise, siafe should be a random-state; its state
is copied.

When NIL is first loaded up, the random-state object in *random-state* is always in the

same state. It may be seeded from the current time by doing

(setq *random-statex (make-random-state t))
if that is necessary for applications. There is, however, no officially defined way to get a
"known" random-state from which the same sequence of pseudo-random numbers may be
generated, other than copying one with make-random-state and saving it. If this is found to be
necessary (for instance to reproducibly debug a program which uses the random number
generator), the form

{si:make-random-state-internal)
will create a new random-state the same as the one NIL starts up with.

For MACLISP compatibility, the random option to the status and sstatus macros is supported.
(status random) returns a copy of the current value of *random-state*; (sstatus random
random-state) restores *random-state* to a copy of that. One may also reseed by doing (sstatus
random integer).

ML:NILMAN;NUMBER 49 : » - 17-JUN-83

- Fixnum-Only Arithmetic - 56 " NIL Notes for Release 0.259

9.9 Fixnum-Only Arithmetic

Currently, the NIL compiler does not make any use of typc declarations to help it decide to
inline-code arithmetic routincs. Primarily for this reason, NIL provides a full complement of
fixnum-only and double-float-only arithmetic routines, which will be inline-coded by the compiler
(when possible and reasonable) into fairly cfficient code.

It is true, however, that declarations would not solve all problems. Consider, for example,
the following: ' ; :
(let ((x compute) (y compute) (z compute))
(declare (fixnum x y z))
(let ((n (plus x y z)))
(declare (fixnum n))
: o) '
In order to be totally correct, the compiler could not inline-code that call to plus as fixnum-only
arithmetic without any checking (at least not in any simple way), because an intermediate result
could overflow. For plus, this can only be done when there are two (or fewer) arguments. For
the fully generic COMMON LISP /, the result could be a rational number! So, NIL provides a full
complement of fixnum-only routines to parallel the generic routines which are normally used. In
some cases, the routines are hardly worth having as type-specific versions because they are not
inline-coded (for whatever reason), but are provided for completeness; mostly, however, they will
be compiled with no checking whatsoever.

In NIL, as in MACLISP, the totally open-compiled fixnum-only routines behave "as the machine
does”; that is, overflow is generally not detected. Note that the VAX hardware detects division by
zero, however, and those routines not compiled as machine instructions, such as ~&, may detect
overflow and signal an error.

9.9.1 Comparisons

=& number &rest more-numbers

/=& number &rest more-numbers

<& number &rest more-numbers

>& number &rest more-numbers

<=& number &rest more-numbers

>=& number &rest more-numbers :
Fixnum-only versions of the =, /=, £, etc. functions.

max& fixnum &rest more-fixnums

min& fixnum &rest more-fixnums
Fixnum-only max and min.

ML:NILMAN;NUMBER 49 : e R : - 17-JUN-83

NIL Notes for Releasc 0.259 i 57 Fixnum-Only Arithmetic

9.9.2 Arithmetic Operations

+& &rest fixnums
Fixnum-only + (plus).

-& fixnum &rest more-fixnums .
One arg: unary negation. Otherwise, fixnum-only subtraction.

+& &rest fixnums
Fixnum-only multiplication.

/& fixnum &rest more-fixnums
Fixnum-only division. With one argument, reciprocates, which seems singularly uscless to
me. Note that this is truncating division.

\ fixnuml fixnum?2
See below:

\& fixnuml fixnum?2
Fixnum-only remainder. Although there is no COMMON LISP \ function to make the
fixnum-only (as inherited from MACLISP) \ function change incompatibly, the name of \
is being changed to \& for consistency. Note that this function must normally be typed
in as \\&, because \ is the "quoting" character in NIL.

1+8& fixnum
1-& fixnum
Fixnum-only 1+ and 1-.

abs& fixnum
Fixnum-only abs.

signum& fixnum
Fixnum-only signum.

~& fixnuml fixnum?2
Fixnum-only expt. It is an error for the result to exceed the range representable by a

fixnum.

9.9.3 Bits and Bytes

logand& &rest fixnums.
logior& &rest fixnums
logxor& &rest fixnum
logeqv& &rest fixnums
lognand& fixnuml fixnum2
lognor& fixnuml fixnum?2
logandc1& fixnuml fixnum2
logandc2& fixnuml fixnum2
logorci& fixnuml fixnum2

ML:NILMAN;NUMBER 49 - » ' " 17-JUN-83

Fixnum-Only Arithmetic | ' 58 NIL. Notes for Release 0.259

1ogobc2& Sixnuml fixnum?2
Fixnum-only boolean functions

boole& op fixnuml fixnum2
Fixnum-only boole.

lognot& fixnum
Fixngm-on]y lognot.

logtest& fixnuml fixnum?2
Fixnum-only logtest.

logbitp& index fixnum
Fixnum-only logbitp. This is defined for an index larger than the number of bits in a

fixnum.

ash& fixnum count :
Fixnum-only ash. Shifting by a positive count may shift bits into the sign position, thus

changing the sign of the result (and losmg blts) It is an error if count is not of type
(signed-byte 8).

Togcount& fixnum
Not yet in?

haulong& fixnum
Not inline-coded, but provided for completeness (see, perhaps, %fixnum-haulong, page

59). Maybe this should be dyked, since haulong should dispatch just as rapidly.

1db& bytespec fixnum
Fixnum-only Idb. This is not strictly a version of generic Idb which takes a fixnum
second argument, but rather a version of low-level fixnum byte-extraction which takes a
general bytespec as an argument: it is an error for the byte to extend outside of the
fixnum (for the position plus the size of the bytespec to be greater than 30).

dpb& newbyte bytespec fixnum
As Idb& is to idb, so dpb& is to dpb. Other Idb& restrictions apply.

set-1db& bytespec fixnum newbyte
Maybe this shouldn’t be here, but it is in case setf gets-used on Idb&.

Back in the olden days when there were few thoughts about integers greater than 34359738367
(or something like that), the byte-specifier to Idb and its friends used to be designated as ppss.
The mt&pretatmn of this is that, if you consider ppss to be a 4-digit octal number, the number
(octal) pp tells the position of thé byte being referenced, and the ss the size. In order that a byte
specifier not be so restricted in the size of the "byte" it is referencing (since the pp can be
upwards-compatibly extended to the left but the ss cannot), NIL has incompatibly abandoned that
format. So that code which uses this old format may be trivially converted, however, the old
functionality may be obtained with the %Idb and %dpb functions, below.

ML:NILMAN:;NUMBER 49 - | - © 17-JUN-83

NIL Notes for Release 0.259 . 59 ' Fixnum-Only Arithmetic

%1db ppss fixnum
Extracts the byte defined by ppss (as described above) from ﬁxnum It is an error if the
byte so referenced lics outside of the fixnum (that is, the size plus the position is greater
than 30).

%dpb val ppss ﬁxnum
Returns a fixnum which is ﬁxnum with the byte defined by ppss replaced by the fixnum
val (truncated as necessary). It is an error if the byte so referenced lics outside of the
fixnum (that is, the size plus the position is greater than 30).

9.9.4 The Super-Primitives
Getting closer still to the hardware...

%fi1xnum-haulong fixnum
NIL uses this routine to tell it how to do the haulong computation on fixnums. That is,
it exists to be open-compiled by such functions as haulong and in one or two other
critical places. The expansion is not nice to look at. This routine is mostly superceded by
some other special compiler primitives which are not described here anyway.

Toad-byte fixnum position size
This is the primitive NIL extract-a-byte-from-a-fixnum function. In the style of many NIL
primitives, and in the style of the VAX byte-extracting instructions, it takes arguments of
- position and size (different ordering from the byte function). It is an error for the byte
described by position and size to lie out of bounds of the internal representation of a
fixnum (30 bits).

deposit-byte fixnum position size newbyte
Modifies the byte, as per load-byte. Note argument ordermg is different from dpb in
that newbyte comes last. This is to make it convenient for setf to use.

sys:%fixnum-plus-with-overflow-trapping x y Special Form
overflow-code... :

sys:%fixnum-difference-with-overflow-trapping x y Special Form
overflow-code...

sys:%fixnum-times-with-overflow-trapping x y Special Form
overflow-code...

sys:%fixnum-ash-with-overflow-trapping x y Special Form
overflow-code...

These are special forms which primarily exist for the benefit of implementing generic
arithmetic functions. The appropriate binary operation on x and y, inlinc-coded, is
performed; if afterwards there has been no overflow, that result is returned. Otherwise,
overflow-code is run, and the resultant value returned.

Only the compiler knows how to use these right now.

ML:NILMAN;NUMBER 49 : » 17-JUN-83

Double-Float-Only Arithmetic 60 » ~ NIL Notes for R.clcasc 0.259

9.10 Double-Float-Only Arithmetic

NIL provides some functions (like those in MACLISP) which operate only on double-floats. It is
unlikely that corresponding functions will be provided for other floating-point types when they are
added, however; inline-coded arithmetic on such numbers will be handled by declarations to the
compiler at that time,

+$ &rest double-floats
*$ &rest double-floats
-$ double-float &rest more-double-floats
/$ double-float &rest more-double-floats
1+$ double-float
1-$8 double-float
Double-float-only stuff. Essentially this is maclisp-compatible.

abs$ double-float
Double-float-only abs.

max$ &rest double-floats
min$ &rest double-floats

ML:NILMAN:NUMBER 49 ' ‘ ' ‘ o 17-JUN-83

NIL Notes for Release 0.259 61 - : . Characters

10. Characters

In NIL, characters are represented as a separate data type. This provides multiple benefits;
among them, the object maintains some semantic identity when it appears in code (it is obvious
that it is a "character™), and since it does maintain its identity as a character, the read/print/read '
"fixed-point" is capable of functioning across differing LISP implementations that internally utilize
different character sets (e.g., ASCII vs. EBCDIC).

Characters in NIL have three different attributes: their code, their bits, and their font. The
code defines the basic ("root") character. The bits are used as modificrs. Typically, an input
processor (such as the editor, or even the prescan for the toplevel Lisp read-eval-print loop) will
treat a character without any bits as "ordinary” and assume it is part of the text being typed in,
but treat a character with- some bits as being a command. Four of the special bits are named:
they arc control, meta, super, and hyper. The font is not used for anything by NIL right now,
but the information can be there if anyone wants to make use of it.

NIL character objects are immediate-pointer structures; they require no storage. Most of the
routines which construct, dissect, and compare characters are open-coded by the compiler.

The NIL character set has not yet been cleaned up with respect to the confusion between the
ASCIL control characters and the characters it uses with the control bit. See section 10.6, page 65.

char-code-1imit ' . Variable
char-font-1imit Variable
char-bits-1imit Variable

These variables have as their valucs the upper exclusive limits on those attributes of
characters. The values should not be changed. It happens that, in the VAX
implementation, all three are 256 so that each quantity will fit into an 8-bit byte.

10.1 Predicates on Characters

standard-charp character
This returns t if character is one of the "standard" ASCH characters. These are all the
ordinary graphic characters (alphanumerics and punctuation characters), plus Space and
Return. For some reason, Backspace, Tab, and Form seem o be in here and shouldn’t.

graphic-charp character
Returns t if character is a graphic (printing) character; that is, it has a single-position
glyph. Although this could in principle be true for most characters without bits attributes,
it is currently only true for those which are guaranteed to be so in standard ASCIL

alpha-charp character
uppercasep character
lowercasep character
bothcasep character
alphanumericp character
Predicates on character objects. All are nil for characters with any bits, and ignore the

ML:NILMAN;CHAR 17 17-JUN-83

Character Construction and Selection 62 v NIL Notes for Release 0.259

font.

char= &rest characters
char< &rest characters
char{= &rcst characters
char)> &rest characters

char>= &rest characters :
All of these routines require two or more arguments, which must be character objects.

They perform comparison strictly on the character as given; that is, case, font, and bits
matter. When more than two arguments are given, the routines return t if the comparison
succeeds for all consequetive pairs of characters. All of these routines get open-compiled.

Note: COMMON LISP only defines these as taking two arguments?

char-equal charl char?
char-lessp charl char2?

char-greaterp charl char2? . ,
charl and char2 must be character objects. These behave like char=, char<, and char>,

ignoring font, bits, and case.

characterp frobozz
Returns t if frobozz is of type character, nil otherwise. Because character is a primitive

VAX NIL data type, this routine-is efficiently coded by the compiler.

' 10.2 Character Construction and Selection

character frobozz ‘
Coerces frobozz to a character. It may be already a character, a fixnum, in which case

char-int is applied, or a string or symbol of length 1, in which case that single character
is used. ’

char-code character
char-bits character

char-font character
These three functions extract those attributes (as fixnums). All are efficiently open-coded

by the compiler, and accept only character objects.

code-char code &optional (bits0) (font0)
Creates a character with code, bits, and font of code, bits, and font, unless that is not
possible in the implementation, in which case nil is returned.

make-char char &optional (bits0) (font0)
Creates a character with code of the the code of char, and with bits and font of bits and
Sont, unless that is uot possible in the implementation, in which case nil is returned.
make-char could have been defined as
(defun make-char (char &optional (bits 0) (font 0))
(code-char (char-code char) bits font))

ML:NILMAN;CHAR 17 o , : 17-JUN-83

NIL Notes for Release 0.259 63 Character Conversions

10.3 Character Conversions

char-upcase char
char-downcase char
Upper- or lower-casify char, preserving the font and bits attributes of it.

~char-1int char.

Returns a non-negative intcger (in NIL, thxs will be a fixnum) encoding of the character
char. If the bits and font of char are 0, this is the same as char-code. This is useful
for hashing, and certain character-fixnum conversions such as those needed for the Maclisp
tyi function are defined in terms of char-int.

int-char integer
~int-char returns a character object ¢ such that (char-int ¢) is equal to integer, if that is
possible; otherwise nil is returned.

char-name char
Returns the name of the character char, if it has one. Supposedly, all characters which
have zero font and bits attributes and which are non-graphic (see graphic-charp) have
names.,

In NIL, the name of a character is by convention a symbol in the keyword package.

name-char sym
The argument sym must be avsymbol. If the symbol is the name of a character object,
that object is returned; otherwise nil is returned.

Character name symbols are symbols in the keyword package.

digit-charp

digit-weight

digit-char
Random things are happening to these, avoid them at present. See some of the routines
described in section 10.5, page 64.

10.4 Internal Error Checking Routines

The following may be of use to users writing their own routines for dealing with characters,
(They should eventually be supplanted by more general type-checking macros, whcih will probably
turn into calls to these routines...)

si:require-character character

Error-checks that character is in fact a character This is what is called by (for example)
the interpreted version of char-code.

ML:NILMAN;CHAR 17 - : , : 17-JUN-33

Low-Level Interfaces ' T 64 NIL Notcs for Release 0.259

si:require-character-fixnum integer
Error-checks that integer is in fact an integer for which there is a character representation;

that is, on which int-char would return a character. All such integers in NIL happen to
be non-negative fixnums.

10.5 Low-Level Interfaces

%int-char fixnum :
Non-check version of int-char. It is an error for fixnum to not be the integer encoding

of a valid character objcct, as would be rcturned by char-int.

The following four routines define digitness in the NIL character set, at a low level.

%valid-digit-radixp radix
' This defines the valid range of radices which %digit-char-in-radix operates on. The

radix must be a fixnum.

%digit-char-in-radixp char radix
Primitive predicate for testing whether the character object char 1s a digit character in the

fixnum radix radix (which must be a valid numeric radix).

%d1g1t char-to-weight char
For any char which satisfies %digit-char-in-radixp, this will return the wexght of that

digit.

%digit-weight-to-char weight
This inverts %digit-char-to-weight.

The following two routines perform low-level case mapping for the NIL character set.

%char-upcase-code code

%char-downcase-code code
These routines perform low-level case mapping for the NIL character set. code must be a
valid character code; the returned value is a character with O bits and font attributes.

For example,
(char-equal ¢/ ¢2)
is the same as
(char= (%char-upcase-code (char-code c¢/))
(%char-upcase-code (char-code ¢2)))

ML:NILMAN:CHAR 17 ' | | 17-JUN-83

NIL. Notes for Release 0.259 | 65 The NIL Character Set

10.6 The NIL Character Set

As can bc scen, the format of character objects in NIL provides for a basic eight-bit root
character (defincd by the code), which can then have both birs and font attributes added to it
However, the 170 devices NIL must deal with only handle (at most) eight-bit characters—often
only seven.

In principle, NIL will utilize an eight-bit character set; half of these will be graphic characters
(the normal ASCIl graphics, plus special symbols), and the other half rescrved, format cffectors
(such as linefeed, backspace), and special commands for things like the editor and debugger
(Abort, Resume, Clear-Screen, that kind of thing). All of these characters will then be able to
have bits and font attributes added.

To deal with this on (for instance) an ordinary seven-bit ASCII terminal, NIL will have to do
three things in the future. These are not done now, but are noted because they have bearing on
the representation of character objects and input from devices.

I Turn ordinary ASCH control characters into the NIL version of the control character. For
instance, the ASCII character with code of 1, which is what you get when typing Control-
A on a standard ASCH keyboard, will turn into the character 4 (uppercase A) with the
Control bit set.

2 Provide "prefix" character-level commands in various places in order that other characters
with bits may be entered (this is what is done in the editor). For instance, in the current
input processor used by the reader, the character Control-\ is "prefix meta"—it "reads"
another character and returns that with the meta bit added.

3 Provide some quoting or escape convention for inputting the extended graphic characters,
since the codes for them are now normally being interpreted as characters with the
Control bit set.

Secondarily, there will probably also be some translation of the actual codes mvolved but that is
irrelevant unless one is looking at the actual codes used in characters (which one generally should
not). For instance, of the 256 "normal" characters, the low 128 would be graphics, and the high
128 the others. Some sort of symmetry would be maintained by having the Ascl format effectors
and Rubout have their ASCI values plus 128. The others would be new characters to be used as
various sorts of commands, but mostly left reserved for expansion. This.is, in fact, approximately
how the LISP MACHINE LISP character set is defined.

Unfortunately, none of this is done right now. When the character Control-A is typed on an
ASCII terminal, it is read in as the character whose code is 1, not as what is actually the character
Control-A. The editor, for instance, does some of the abovementioned transmutations on its
input, and any prefixing commands for adding bits supplied by other input processors would be
modeled after those used in the editor,

The algorithm which may be used to translate ASCII into what is currently used in NIL is this,
Given an eight-bit character, if the code has the high bit set (it is greater than 127 decimal), then
subtract out that bit, and remember to add the Meta bit to the character which will be eventually
obtained. (This bit is what would be set by a terminal with a Mera key; such capability normally
needs to be enabled by somcthmg like :

ML:NILMAN:CHAR 17 . , . . 17-JUN-83

The NIL Character Set 66 NIL Notes for Release 0.259

$ set term/eightbit : '
to DCL.) Now we have a seven-bit character. If the seven-bit code is less than 32, and if it is not

onc of the codes for Backspace, Tab, Linefeed, or Return (8, 9, 10, and 13 respectively), then
add 64 to it, and set the Control bit. Adding 64 forms the corresponding uppercase-alphabetic or
punctuation character. Thus, 1 turns into Control-A (65 plus Control), and 135 turns into
Control-Meta-G (135 = 128 + 7, = Meta + Control + 73 which is G).

ML:NILMAN;CHAR 17 ' ' ' | 17-JUN-83

NIL Notes for Relcase 0.259 ~ 67 Arrays

11. Arrays

Arrays in NIL cncompass a large number of varied objects which share certain features and
aspects of usage. NIL arrays may range in rank (number of dimensions) from 0 to about 250. Al
array indices in NIL are zero origined. Onec-dimensional arrays are vectors, are of the type vector,
and may be used by the various sequence functions (in chapter 7). The data in multidimensional
arrays is always stored in row-major order; this is compatible with MACLISP, although normally it
does not matter.

11.1 Array Creation, Access, and Attributes

make-array dimensions &key element-type displaced-to displaced-index-offset adjustable
Sfill-pointer
This is the general array creation function. dimensions may be an integer, in which case
the rank of the created array will be one (it will be a vector), or a list of integers which
are the sizes of the corresponding dimensions of the array.

The array will be created to hold objects of type element-type. If this is not supplied, t is
assumed, and the created array will be able to hold any lisp objects. The most common
types, aside from t, are bit (which creates a bit-array), and string-char (which creates a
string-char-array). The special types which NIL supports, and their consequences, are
discussed in section 11.2, page 68.

If fill-pointer is not null, then the array must be one-dimensional (a vector). It will be
created with a fill pointer initialized to fill-pointer, which must be betwcéen zero and the
size of the array (inclusive). Fill pointers are discussed in section 11.3, page 69.

Normally, the size of an array may not- be changed (other than by modification of its fill
pointer if it has one). This allows the implementation some leeway to provide for more
efficient access and storage. However, if adjustable is specified and not nil, then the array
will be created in such a way that its size (and its displacement attributes) can be
modified later by adjust-array. Modification of array size and attributes is discussed in
section 11.5, page 71.

The displaced-to and displaced-index-offset arguments control array displacement; that is
where one array can "point into” another. This is discussed in section 11.4, page 71.

aref array &rest indices
Returns the element of array addressed by the indices. The number of indices must

match the rank of the array, and each index must lie between zero (inclusive) and the
size of the corresponding dimension of the array (exclusive).

An array clement may be set by using setf with aref.

ML:NILMAN;ARRAY 29 _ ' 17-JUN-83

Array Element Typces 68 NIL Notes for Release 0.259

array-rank array
Returns the rank of array.

array-dimension array dimension-number _
Returns the size of the dimension dimension-number of array. The dimension number
must be between zero (inclusive) and the rank of the array (exclusive).

array-dimensions array
Returns a list of the sizes of the dimensions of the array.

array-element-type array
Returns the element-type of array. This is not necessarily the same as what was given as

_the element-type argument to make-array; rather, it is the actual element-type used to
implement the array, which will be a supertype of the originally specified element-type.
This is discussed further below. :

11.2 Array Element Types

Arrays may be restricted to contain only a certain type of element; this restriction is the
element type of the array. Some element-types are distinguished in that the arrays will then be of
a particular distinguishable type. For instance, arrays with element-type of string-char are
string-char-arrays, and one-dimensional arrays of element-type string-char (which are therefore
also vectors) arc of type string. Similarly, the types bit-array and bit-vector are distinguished.
There are other type restrictions (most of which result in special storage strategies for the data)
which do not result in the array itself being of a particular type; nevertheless, the element-type of
an array may be obtained with the array-element-type function (page 68).

When an array is created with a particular element type, the system chooses the most specific
element type it offers which can satisfy the requirement. For instance, if an array is requested of
element type (double-float 0.0 1.0) (double-floats between zero and one), a double-float -array
will be created. Similarly, for an array with element-type symbol, the element-type t will be
used. array-element-type returns the type actually used; the requested element-type is forgotten.

There are several array types currently defined by NIL. Most of them are not particularly
useful right now, because NIL does not yet have a smart enough compiler to cause declaratxons
about array element types to cause the references to open-compile.

bit The array can only hold bits (the integers 0 and 1). A one-dimensional array of element-
type bit is of the type bit-vector. If it not adjustable, not displaced, and has no fill
pointer, then it will be a simple-bit-vector, and is specially implemented (less storage
overhead, and faster access). Many NIL complex datastructures, including the current
implementation of bignums and more complex arrays which hold bits and small bytes, are
built from simple bit vectors. Because of their utility, bit arrays are discussed further in
section 11.8, page 73. :

string-char
The array can only hold characters which satisfy the predlcate string-charp (page 15). A
one-dimensional array of this clement-type is of type string. A string that is not
adjustable, not displaced, and has no fill pointer is of the type simple-string; this is

ML:NILMAN;ARRAY 29 17-JUN-83

NI1L. Notes for Release 0.259 . 69 ' Fill Pointers

implemented more efficiently than more general strings. Chapter 12 is devoted to strings.

character
The array can hold only characters (but they may be any type of characters). This
provides no advantage over the clement-type t in the current implementation; in a later
NIL, vectors of clement-type character will be acceptable to the string functions (chapter
12).

(unsigned -byte 8)
(signed-byte 8)
(unsigned-byte 16)
(signed-byte 16)
Store those integers which are representable in the respective fields.

double-float
The double-floats are stored packed in machine representation. Until the compiler has
sufficient power to specially handle accesses to arrays of this type, therc is no particular
benefit to their use, because a generic array reference to a double-float array will have to
cons the number to return it. ‘

t An array of element-type t can hold any lisp object. If such an array is one-dimensional,
not adjustable, not displaced, and has no fill pointer, then it is a simple vector (currently
called simple-general-vector, although that will probably be shortened to just simple-
vector). Such a vector is especially efficient, and may be accessed specially (see sgvref,
page 72).

11.3 Fill Pointers

The :fill-pointer option to make-array allows one to create a vector of varying length., It is
only applicable to one-dimensional arrays. The fill pointer of a vector is an integer which may
range from 0 to the size of the vector. It is used as the length of the vector; the value of the fill
pointer will be returned by length (page 37), and used as the length by all sequence and string
functions; in fact, by everything except for aref (and its variants such as char and bit). The
contents of the array at and beyond the fill pointer are still considered valid, and are protected by
the garbage-collector; they just are not considered when the array is viewed as a sequence.

A string with a fill pointer is reputed to be similar to a PL/I varying string, although such a
comparison is beyond the realm of this author’s knowledge. :

To find the actual atlocated length of a vector which has a fill pointer, use array-dimension
with a dimension number of 0. array-dimension always returns the allocated length.

vector-push vector object
vector must be a vector with a fill pointer. If the fill pointer is a valid index into the
vector (that is, its value is less than the allocated length of the vector), then vector-push
stores object into that slot, increments the fill pointer, and returns the original
(unincremented) fill pointer (which addresses where the object was stored). If the fill
pointer is the same as the allocated length (the only other valid situation), then vector-
push returns nil. ‘

ML:NILMAN;ARRAY 29 - o 17-JUN-83

Fill Pointers o NIL Notes for Relcase 0.259

vector-push-extend vector object &optional extension
This is like vector-push, but whercas vector-push will return nil if the vector is "full”,
vector-push-extend will instead call adjust-array to increase the size of vector in order
that it might do the push. Thus, it never returns nil. If extension is supplicd and not nil,
then that is the amount by which the size of vector is incremented by adjust-array, if
necessary; otherwise, some random guess based on the current size is used.

In order for adjust-array to succeed in increasing the size of vector, vector must have
been created with the :adjustable option to make-array; sce section 11.5, page 71.

vector-pop veclor
© This is the inverse of vector-push. The fill pointer of vector is decremented, and the

object addressed by that index is returned. The fill pointer must not already be zero.

The vector and object arguments to vector-push and vector-push-extend are expected to be
reversed by COMMON LISP, in order that they not be different from those to push (page 29). Ah

well,

reset-f111-pointer vector &optional (index 0)
Resets the fill pointer of vector, which must have one. If index is not specified, O is

assumed.

At some point in the future, the function fill-pointer will be introduced. It will take one
argument, a vector with a fill pointer, and return the value of the fill pomter At that
time, use of reset-fill-pointer will be superceded by setf of fill- -pointer.

One common use of vectors with fill pointers is as buffers. For example, the NIL compiler
uses a vector with a fill pointer for allocating a table of value cell indices to be referenced by the
code it is compiling. It creates a vector with make-array, specifying that the array is adjustable,
and giving it an initial fill pointer of 0. Then, it uses vector-push-extend to add a new entry,
and the value that returns is the index into this table. vector-push-extend. takes care of
increasing the size of the vector if the initial guess as to its size was too small,

This same technique can be used for gbenerating text, if the vector is a string (that is, make-
array was given string-char as the :element-type keyword). This is how some string
accumulating primitives work.

With vector-pop, vectors with fill pointers can also be used as stacks.

ML:NILMAN;ARRAY 29 ' 17-JUN-83

NIL. Notes for Release 0.259 71 Displaced Arrays

11.4 Displaced Arrays

Arrays may be created which do not have data of their own, but in fact "shar¢" data with
some other array. Thesc are displaced arrays. The uses for displaced arrays vary. On¢ might
want to access the elements of a multi-dimensional array as if it were a vector; this could be
done by :
(make-array size :displaced-to other-array)
which returns a vector which will access the clements of other-array in row-major-order. With
displacement, a displaced index offset may also be specified. Conceptually, when an array is
accessed, a single index is computed from the indices and dimensions of the array; this is the
index into the row-major-order data. This index then has the displaced-index-offset added to i,
to get the index into the data for the array being displaced to.

Another potential usc for displaced arrays is to reference some "substructure” of an array
which implicitly has some “structure”. This causes modification of the displaced array to modify
the referenced subpart of the original array. In general, however, it is not appropriate to use
array displacement as a substitute for a subseq operation (page 38); it is intended for cases
where modification of one must implicitly modlfy the other, although if the subsequence is large
it may be worthwhile.

Efficiency note: displaced arrays which are displaced to non-adjustable arrays access at just
about the same speed as normal arrays (not counting those which are especially efficient, namely
simple vectors, simple strings, and simple bit vectors). Arrays displaced to adjustable arrays are a
touch slower. At this time, the NIL compiler does not know how to inline code any non-vector
array access, however, so aref (or use of it with setf) will produce general function call unless
there is exactly one index.

11.5 Modifying Array Sizes and Characteristics

Normally, an array may not have the size of its dimensions or other attributes changed once
it is created (other than modification of its fill pointer; section 11.3, page 69). If a non-nuil
:adjustable option is given to make-array, however, the array will be created such that this is
possible.

adjust-array array dimensions &key displaced-to dtsplaced-mdex-offset element-type
Sfill-pointer
adjust-array interprets dimensions just as make-array does. The array is modified to
have the new dimensions; however, its rank may nof be changed.

If fill-pointer is specified, then array must have originally been created with a fill pointer;
the value of fill-pointer is used as the new one. :

The remaining options will not be detailed at this time. adjust-array currently only
works on one-dimensional arrays, so although not generally useful yet, it has enough to
keep vector-push-extend happy.

ML:NILMAN;ARRAY 29 : 17-JUN-83

'Spccial Vector Primitives - 72 NIL Notes for Release 0.259

11.6 Special Vector Primitives

There arc scveral vector primitives in NIL which are around for ‘mostly historical reasons,
being superceded by more generic array primitives. It is not the case that these routines are any
more cfficient than the COMMON LISP-defined generic routines, as all of the routines in this section

- work on all sorts of vectors so differ trivially if not at all.

vref vector index : :
This is absolutely identical to aref when aref is given a vector and a single index. aref is
the preferred function to use in code; the NIL compiler compiles aref of a single index as
a call to the internal vector-referencing subroutine.

vector- 'length veclor
The only difference between this and the genenc sequence length function is that length

also accepts lists. The efficiency difference between the two is trivial, if at all measurable.

About the only justification for using vector-length is that it is more restrictive about the
type of its argument than length is (both perform runtime type checking since they have
to dispatch).

11.7 Simple Vectors

Simple vectors of element-type t, the primitive data-type simple-generali-vector, are a
building block for more complicated datastructures in NIL, including less simple arrays. There are
special routines for creating and manipulating them, which are coded efficiently by the NIL
compiler.

Vectors of this type may be checked for with typep, of course.

make-vector size &Kkey initial-contents initial-element
Makes a vector of element-type t, size long. Because no comphcated array options can be
specified, this will always be a simple vector.

This may be called make—simple-vector in the future, but the name make-vector will
be preserved indefinitely.

sgvref simple-vector index
References a simple general vector. This routine is entirely open-coded by the compiler,
with no error checking; to retain runtime type and bounds checking, aref must be used.

sgvref may be used with setf.

Because the term simple-general-vector may be shortened to simple-vector, sgvref
may be renamed svref. The name sgvref will be maintained indefinitely for upwards-
compatibility if this happens, however.

ML:NILMAN;ARRAY 29 S - 17-JUN-83

NII. Notes for Release 0.259 73 : Bit Arrays

simple-general-vector-length vector
Returns the length of the simple vector vector. 1 suppose this could be renamed to
sgvlength (svlength) in the future, by analogy to sgvref.

11.8 Bit Arrays

Arrays which contain only bits, which can be used to represent boolean true and faise, are
uscful in various applications. There are several functions which perform boolean operations on
arrays of this clement type.

Bit arrays may be more or less appropriate for a particular application than integers uscd to
represent a sequence of bits. Bit arrays (or bit-vectors) may be side-effected; integers may not.
Integers however may. be used to represent infinite sets, because they are virtually extended with
their sign. Bit arrays, of course, may be multi-dimensional. Sec also section 9.6, page 51.

bit bit-array &rest subscripts
Just like aref (page 67), but only works on arrays of element-type bit.

setf may be used with bit.

bit-and bit-array-1 bit-array-2 &optional result-bit-array

bit-ior bit-array-1 bit-array-2 &optional result-bit-array

bit-xor bit-array-1 bit-array-2 &optional result-bit-array

bit-eqv bit-array-1 bit-array-2 &optional result-bit-array

bit-nand bir-array-1 bit-array-2 &optional result-bit-array

bit-nor bir-array-1 bit-array-2 &optional result-bit-array

bit-andcl birarray-1 bit-array-2 &optional result-bit-array

bit-andc2 bit-array-1 bit-array-2 &optional result-bit-array

bit-orcl bir-array-1 bit-array-2 &optional result-bit-array

bit-orc2 bit-array-1 bit-array-2 &optional result-bit-array
These crunch together bit-array-1 and bit-array-2, performing the appropriate bitwise
logical operation. bit-array-1 and bit-array-2 must have the same rank and dimensions. If
result-bit-array is nil or not specified, then the result is a freshly created bit array of the
same rank and dimensions. If it is t, then the results are stored in bit-array-1.
Otherwise, it must-be a bit array of the same rank and dimensions as the other two, and
the results are stored into it.

bit-not bit-array &optional result-bit-array
Performs a bitwise logical negation on the contents of bir-array. If result»bzt-array is nil or
not specified, then the result is returned as a freshly created bit array of the same rank
and dimensions as bit-array. If result-bit-array is t, then bit-array is side-effected with the
results. Otherwise, result-bit-array should be the a bit array of the same rank and
dimensions as bit-array, and will have the results stored into it.

ML:NILMAN;ARRAY 29 : 17-JUN-83

Bit Arrays 74 NIL Notes for Release 0,259

11.8.1 Simple Bit Vectors

In NIL, a onc-dimensional bit array which is not adjustable, not displaced, and has no fill
pointer, is represented as the primitive type simple-bit-vector, which is represented more
cfficiently than a more general bit array. Simple bit vectors arc used as building blocks for more
complicated structures which contain binary data, such as the more complicated bit arrays, and
even arrays of element-type double-float. There are primitives for accessing variable length fields
from them as (possibly sign-extended) fixnums (but nor gencral intcgers), and primitives for
treating them as if they were sequences of eight-bit bytes.

Once upon a time the name for this type was bits. This name still lingers in places, but is
being replaced by simple-bit-vector.

make-bits size &optional initial-element
Creatcs a simple bit vector size long, initialized w1th initial-element, which must be elther

Qori.

simple-bit-vector-length simple-bit-vector .
Returns the length of simple-bit-vector.

nibble simple-bit-vector skip take
Returns the sequence of bits take long from simple-bit-vector, starting at skip, as a
fixnum. take may range from zero to the number of bits representable in a fixnum (30);
however, if the last, the result will include the sign bit so may be unacceptable for
certain applications. The result is zero-extended.

setf may be uséd with nibble to replace the field.
nibble-2c simple-bit-vector skip take
Like nibble, but the result is sign-extended. That is, the result is interpreted as a signed
binary value from the referenced field. :
setf may be used with nibble-2¢ to replace the field.
get-a-byte simple-bit-vector byte-index
Interprets simple-bit-vector as a sequence of type (unsigned-byte 8), and returns the bhyte-
indexth byte.
setf may be used with get-a-byte.
get-a-byte-2c simple-bit-vector byte-index
Interprets simple-bit-vector as a sequence of type (signed-byte 8), and returns the byte-
indexth byte.

setf may be used with get-a-byte-2c.

ML:NILMAN;ARRAY 29 | - 17-JUN-83

NI1. Notes for Release 0.259 75 | Strings

12. Strings

Strings arc vectors of characters which satisfy the predicate string-charp (page 15). Although
the gencric sequence and array primitives opcrate on strings, there are two reasons for having
additional functions for strings. For one, it is convenient for atomic symbols to be used in place
of strings; symbols arc not coerced to strings by sequence functions, but they are for most of the
string functions. Additionally, many of thc string functions which compare characters do so
independent of the character case; the secquence functions are generally based on the eql predicate
(page 16), .so arc case dependent.

Eventually, the string functions will be gencralized to handle arguments which are general
character sequences (that is, of type (vector character), vectors which can hold any characters,
not just those which arc string-charp). Until then, functions which can be given character
arguments which contain non-zero bits and font attributes may not behave correctly if that is
done.

The COMMON LISP string functions will all take keyworded arguments. Most of the string
functions defined do not do so yet. When the change is made, they will be arranged to figure
out how they were called, and behave accordingly.

/

12.1 String Coercion

string frobozz ,
This routine coerces frobozz to a string. If it is a string, that string is returned. If it is a
symbol, the print-name is returned. If it is a character object, a string one-character long
containing that character is returned; this string will probably not be freshly created. If
Jfrobozz is a fixnum, then the result is as if (string (character frobozz)) were performed.

to-string frobozz
This routine believes itself to be a coercer of sequences to strings. It is a superset of
string; it additionally will accept any sequence, and interpret that as a sequence of
characters; it thus may be used to convert lists or vectors of characters to strings; the
contained characters will be coerced to characters using to-character. Bit vectors will be
converted into strings of the characters 1" and "0".

This routine believes that nil is a sequence of no elements. When nil is really the symbol
nil in a future release of NIL, this routine will probably be quite confused, and will be
the wrong thing for code to use to do symbol -> string coercion.

ML:NILMAN;STRING 49 : 17-JUN-83

String Comparison ' | 76 NIL Notes for Release 0.259

12.2 String Comparison

None of the string functions are firmly defined with Common Lisp at this time. The set of
" functions provided is a subset of those defined long long ago in the NIL design process, and those
found uscful in the Lisp Machinc implementation. Those which are defined by Lisp Machine
Lisp will in general -be generic (that is, they will coerce their "string” argument(s) to strings using
string). There are also routines which do not do coercion, in order that they might be able to be
open-compiled if possible.

When routines deal with boundaries within strings, there are two different conventions
applicd. ‘Many functions take range arguments as the lower inclusive bound and the upper
exclusive bound (gencrally named start and end). These arguments conveniently default to 0 and
the length of the string (typically). As a general rule, an upper exclusive bound may be explicitly
specified as nil producing behavior as if it were not specified; this is often necessary in order for
following optional arguments to be specified.

The other commonly used substring convention is for a starting index and a count (generally
named start and count) to be specified. (This convention is used primarily by subprimitives, and
old NIL functions, not COMMON LISP functions.) The substring in question is that starting at the
index, and proceeding for count characters. Having a specified count run off the string is an
error. Not specifying a count will cause it to default to a value such that the substring will
continue to the end of the string. An explicit specification of nil for a count is not allowed in
this circumstance: the fact that this may work in some cases is purely fortuitous. The original
design intent had been to be able to determine at compile time how the count must be computed.
Routines using this convention sometimes name these arguments skip and fake rather than start
and count.

string-equal s/ s2 &optional (startl 0) (start20) endl end?
This is the basic routine for performing case-independent string-equality checks. The
substring of s/ from start/ up to but not including end/ (which defaults to the length of
s1 if nil or not supplied) is compared to the substring of s2 from siari2 up to but not
including end? (defaulted similarly). s/ and s2 are coerced to strings using string. The
character comparison is that defined by char-equal :

str‘lng lessp s/ s2 &optional (startl 0) (start20) endl end? :
Similar to string-equal; the comparison is that defined by char- greaterp, with a shorter
string "less than" a string it is a prefix of,

12.3 Extracting Characters from Strings
char string index

Returns the indexth character (zero- onglncd) of the string string, as a character object.
string must be a string.

ML:N‘ILMAN;STRING 49 SRR : 17-JUN-83

NIL. Notes for Release 0.259 - n : String Creation

char-n string index
Esscntially, (char-int (char string index)). This routine should probably not be used.
For clarity and transportability it is better to use char-int or char-code on the result of
char, or, if appropriate, one of the functions like char< (page 62) or char-lessp (page
62).

rplachar string index new-character , :
This replaces the indexth character of the string string with the character object new-
character.. It returns new-character.

The preferred (and COMMON LisP-defined) way fo update a character of a string is to use
setf with char.

rplachar-n string index new-character-int
This replaces the indexth character of the string string with the character which the
fixnum new-character-int is the integer representation of. new-character-int is returned.

12.3.1 Low-Level Access

+internal-char-n string index:
char-n on the primitive string string. Open-compiled always.

- +internal-rplachar-n string index new-character
Similarly, rplachar-n, always open-compiled.

12.4 String Creation

make-string length &key :initial-value :initial-contents

Makes a string length long. Since no complicated array options may be specified, this will
always be a simple-string. If initial-contents is specified, that should be a sequence
which is used as the initial contents of the string; if it is not as long as the newly-created
string, then the last element will be used.repeatedly. If initial-value is specified, it should
be a character; the string created is filled with that character. If neither is specified, then
the initial contents of the string is undefined by COMMON LISP; in NIL, it will be filled
with the character whose code is 0, #\null. As with make-array, it is an error for both
initial-value and initial-contents to be specified.

string-length string
Returns the length of the string string. string must be a string; it is not coerced.

For COMMON LISP, this function is superceded by the generic length function (page 37).
There should be no noticeable efficiency difference between length and string-length. Of
course, string-length will complain if its argument is not a string, whereas length will
accept any scquence, including nil.

ML:NILMAN:STRING 49 o | | 17JUN83

More String Functions R NIL Notes for Release 0.259

string-append &rest strings
- Returns a string which is the concatenation of all the strings. The arguments are coerced
to strings using string; in this it differs from the generic sequence function concatenate
(page 37), which will not accept symbols, but will accept sequences (of characters) other
than strings. : ‘

- string-replace stringl string? &optional (index!0) (index20) count
Replace a substring of stringl with a substring of string2. If count is not specified, then
it is chosen such that ncither substring referred to exceeds the bounds of the string.

This is an old NIL primitive which is obsoleted by the generic sequence function replace
(page 38).

substring string start &othonal end _
Returns the substring of string (coerced to a string using string) from the index start up
to but not including end, which defaults to the length of string if nil or not specified. If
the range specified is the cntire string, string itself is returned; transportable code should
not depend on this however, but rather use copy-seq (page 38).

- string-upcase string &key start end
string-downcase string »
Returns ‘a copy of string with all characters converted -as by char-upcase (or char-
downcase. In NIL, the result is currently always a copy, but transportable code should

not depend on this,

12.5 More String Functions
string-reverse string

string-nreverse siring
string must be a string.

string-search-char char string &optional (from0) to
string-reverse-search-char char string &optional from (to0)
string-search-not-char char string &optional (from0) to
string-reverse-search-not-char char string &optional from (t00)

string-search-set charset string &optional (from0) fto
string-reverse-search-set charset string &optional from (to0)
string-search-not-set charser string &optional (from0) to
string-reverse-search-not-set charset string &optional from (to0)
char-set is coerced into a sequence of characters: it should be a string, or a list or vector
of objects acceptable to character (page 62).

ML:NILMAN:STRING 49 - ' ~ 17-JUN-83

NIL Notes for Release 0.259 \ 19 Implementation Subprimitives

string-left-trim charset string

string-right-trim charset string

string-trim charset string
char-set is interpreted as by string-search-set, page 78. What happens if no charactcrs
are trimmed? The result is as defined by substring, q.v.

string-search key string &optional (from0) to
string-reverse-search key string &optional from (to0)

12.6 Implementation Subprimitives

The routines described in this section are very fast routines primitives which are oriented
towards being open-compiled. As such, they perform very few niceties like argument defaulting.
The versions available in the interpreter probably will do some error checking, but don’t count on
it These are the stuff of which higher-level routines are made. Those which take string -
arguments only accept simple strings.

%string-cons length fill-character
Creates a primitive string length long, filled with the character fill-character. Calls to
make-string will compile into calls to this, if possible, so one should not go out of the
way to use this.

set-string-length swring length
Sets the length of string (which must be a string) to be length length must not be
greater than the starting length of the string. This should have ‘a different name, because
it is not always going to be matched with string-length. This will only work on simple

strings.

#string-posq character string index count
This searches through string starting at index and proceeding for count characters for the
character character. If it is found, then the index at which it occurs is returned;
otherwise nil is returned. This primitive only looks at the code attribute of character,

ignoring the rest.

%string-eqv stringl string? indexI index2 count
Returns t if the substrings of stringl and string2? defined by index!, index2, and count
are string = —that is, the same, with case being significant.

%string-replace destination source destination-index source-index count
This is the primitive string-replace. It transfers count characters from the string source to
the string destination, starting at the given indices.

%string-translate destination source translation-table destination-index source-index count
This is a slightly hairier version of %string-replace. Instecad of the characters being
transferred literally, the code of each character taken from the string source is used as an
index in the string translation-table to obtain the character to store. For example, string-
upcase could be defined

ML:NILMAN;STRING 49 e : 17-JUN-83

Implementation Subprimitives : 80 NIL Notes for Release 0.259

(defun string-upcase (string
. &aux (len (string-length string)))
(%4string-translate

(make-string len) string »:character-upcase-table

0 0 len)) _
where *:character-upcase-table has as its value a string char-code-limit long whose
ith character is the uppercase version of the character with code i. Note that this
definition of string-upcase is not correct if the input string is not a primitive string.

String hashing in NIL is ultimately performed by the CRC instruction.

%string-hash swring crc-table start count :

This performs a hash computation on the substring of string starting at character start and
proceeding for count characters. cre-table must be a simple bit vector 512 bits (16 VAX
longwords) long; it should contain the hash polynomial for use by the CRC instruction.
Several hash polynomial tables are provided (they arc listed below). The hash
computation is initially -1; the result is returned as a signed NIL fixnum—that is, a 32-bit
word with the top two bits shifted off. Consult the VAX architecture manual, or some
other DEC documentation, to set up other hash polynomials.

For this to be properly useful for incrementally generating CRC computations, this
primitive will have to be changed to somehow input and output full 32-bit quantities.

»:autodin-ii-hash-polynomial - o Variable
*:cc1tt-hash—polynom1a1 - ' Variable
x:crc-16-hash-polynomial Variable

This is the one NIL uses for doing intern and sxhash of strings.

MI:NILMAN;STRING 49 ‘ ' 17-JUN-83

NIL Notes for Release 0.259 81 - Hashing

13. Hashing

NIL supports a COMMON LISP compatible hash-table facility. This will eventually include the
ability to have a hash-table from which associations can be garbage-collected.

13.1 Hash Tables
The fqllowing routines are COMMON LISP compatible:

make-hash-table &key :est :rehash-threshold :rehash-size :size
Creates a hash table. The fest may be one of #’eq, #'eql, or #’equal. NIL.
additionally provides some others it is able to perform significant optimizations on as
primitive (see below). Note that for NIL to use some predicate it must know how to
compute a hash code compatible with that predicate’s notion of equality; thus, not just
any predicate is acceptable.

7

gethash key hash-table &optional default
This returns two values. If there is an entry for key in hash-table, then this returns as its
values the value associated with key, and t. Otherwise, it returns default, and nil.

gethash may be used with setf to add an entry to (or replace an entry in) a hash table.

remhash key hash-table
Removes the entry associated with key from hash-table.

clirhash hash-table ;
Removes all entries from hash-table.

hash-table-count hash-table
Returns the number of entries in hash-table.
13.1.1 Additional Hash-Table Predicates

NIL additionally offers the following predicates for hash-tables:
string-equal

string =

associating hashing routines with predicates, making this list extensible?

ML:NILMAN;HASH 17 ' ' - 17-JUN-83

~ Hash Predicates : 82 NIL Notes for Release 0.259

13.2 Hash Predicates

sxhash object
This is the general LISP hashing function, based on the predicate equal (page 16). It
returns a non-ncgative intcger; in NIL, this will always be a fixnum. Two objects which
are equal should always sxhash to the same thing. If this is not true, then any hash
tables which use sxhash and equal will break. Note that because NIL will have a
relocating garbage collector, the hash of an object should never be a function of the
address of anything. ’ '

'sys:sxhash-combine “{hash} + : : Macro
This macro might be useful to writers. of :sxhash methods. It is a canonical way to
combine a fixed number of hash codes. For example, the sxhash of a cons does
(sys:sxhash-combine (sxhash (car x)) (sxhash (cdr x)))
The hashes are rotated some fixed amount determined by the number of arguments, and
crunched together in some canonical fashion. (There may be a limitation on the number
of arguments which are handled...)

13.3 Symbol Tables

Although one can use packages to implement symbol tables, and this has been recommended
in the past, it is now better to use a hash table based on the appropriate predicate, and storing
an appropriatc object as the value. For cxample, if onc had been using a package as a symbol
table and then using the symbol after interning it, a hash table could be used using string-equal
or string= as the predicate (as appropriate) and putting a symbol in as the value. Depending on
what the symbol is used for, it may be better to use a defstruct-created object instead; attributes
can be accessed faster off of this than as properties on the plist of a symbol. Secondarily, there is
a moderate space inefficiency to generating lots of value cells in NIL, so instcad of generating

- symbols and using their value cells to store things is also better to use a specialized structure.

- ML:NILMAN:HASH 17 : 17-JUN-83

NIL. Notes for Release 0.259 83 Packages

14. Packages

Sketchy. This is all probably going to break, either as a result of COMMON LISP or complete
reimplementation and redesign or both.

understanding of simple obarrays/oblists and interning is assumed below

The basic idea of packages is that if all programs in a large messy environment like NIL use
the same name-space for symbols (the traditional oblist or obarray), then cither they will probably
run into problems with naming conflicts, or every programmer is going to have to go out of his
way to ensure that each program’s names will be unique to that program. For cxample, by
having naming conventions like reader-do-this and reader-frob-uncertainly or (heh heh) pkg-
find-package and pkg-create-package. (I didn't name them, they came from LISP MACHINE
LISP.) »

Packages are an attempt to solve this by allowing each program (or "package") to have its
own name-space, but allowing inheritance of symbols from other name-spaces. Each package may
be considered to be a symbol table (or oblist or obarray), which has a "superior" package. The -
act of interning a string in a package (to find or create the symbol it should correspond to)
involves looking in that package’s symbol table. If there is a symbol with that print name there,
then that symbol is returncd. Otherwise, try the package’s superior package, etc. If one gets to
the "top of the tree” and no symbol has been found, then a symbol is created with the given
print name, and inserted into the symbol table of the original package.,

The NIL package hierarchy looks approximately like this:
keyword
global
»
sys
system-internals
compiler
file-system
gc
format
user o } '
The GLOBAL package has in it all of the symbols which are intended to be used (shared) by
everyone. They include function names like car and variable names like char-code-limit. The
user package is the package which NIL starts out in, for users to randomly use. New isolated
packages should be created under global, like user and format are. ‘

The sys package is sort of a global package for the NIL system. It is initialized to contain
those symbols which modules in system-internals, file-system, etc. should share.

The keyword package is for keywords: symbols like :which-operations. Note that it is not
under global. The result of this is that typing in :open results in a different symbol from typing
in open in any other package, resulting in the symbol :open being identified with the keyword
package, and the printing functions then being able to print it as :open rather than open.

ML:NILMAN;PACKAG 10 17-JUN-83

Packages 84 NIL Notes for Release 0.259

A little thought about the use of the sys and global packages in the above description will
show that they should not be ordinary packages like the "terminal nodes” of the package-tree.
Adding symbols to them results in significant behavior change. For this reason, it is supposed to
be disallowed by normal interning, and only done by thc globalize function (page 84). This

.~ check is not done currently. Anyway, it is. likely that a different scheme will be concocted

cventually.

pkg-find-package name-or-package &optional losing-mode under-pkg ‘
If name-or-package is not a package, then the name is looked up and the package
returned.

pkg-create-package name superior-package

pkg-goto &optional name
Setqs pakcage to the pkg-find-package of name; convenjent for setting the toplevel

value (for which it is intended).
package , Variable
globalize name &optional in-package
intern string-or-symbol &optional package

intern-soft string-or-symbol &optional package
Non-side-effecting version: if no existing symbol is found, nothing is done and nil is
returned. : -

mapatoms function &optional (pkgpackage) (do-superiors? i)
Calls function on all symbols in pkg (which is run through pkg-find-package first, so
may be a package name). If do-superiors? is not nil, then the "superior” packages of pkg
are examined also. More generally, if do-superiors? is nil, the "internal” symbols only of
pkg are iterated over; otherwise, all symbols accessible from pkg are. function could
conceivably be called more than once on the same symbol,

This is not open-compiled by the NIL compiler, so may suffer from lexical vs local
variable problems.

ML:NILMAN;PACKAG 10 ’ 17-JUN-83

NII. Notes for Release 0.259 " 85 Defstruct

15. Defstruct

15.1 Introduction

This chapter is a modification of the description of defstruct appearing in the Maclisp
Extcnsions Manual [3]. The primary modification has been the deletion of those things which (1)
are not applicable to NI, or (2) do not yet work in NIL. For this reason, some of the wording
may scem a bit strange, in that the original document is concerned with helping users write code
compatible in differing Lisp implementations. defstruct is part of the COMMON LISP standard (but
not all the parts of it), and the documentation on it will be fixed in the future. Any inaccuracies
in this modification of it are purely the fault of GSB.

The keywords which are used in defstruct are all interned in the keyword package, just like
other keywords in NIL. For compatibility with MACLISP programs, however, defstruct will accept
those not in the keyword package. Converscly, the MACLISP defstruct will check for symbols
which have a leading ":" in their names. In NIL, one should use thc colons for stylistic
consistency.

15.2 A Simple Example

defstruct ‘ Macro
defstruct is a macro defining macro. The best way to explain how it works is to show a
sample call to defstruct, and then to show what macros are defined and what each of
them does.

Sample call to defstruct:
(defstruct (elephant (:type :1list))
color '
(size 17.)
(name (gensym)})
This form expands into a whole rat’s nest of stuff, but the effect is to define five macros: color,
size, name, make-elephant and alter-elephant. Note that there were no symbols make-
elephant or alter-elephant in the original form, they were created by defstruct. The definitions
of color, size and name are easy, they expand as follows:
(color x) ==> (car x)
(size x) ==> (cadr x)
(name x) ==> (caddr x)

You can sce that defstruct has decided to implement an elephant as a list of three things; its
color, its size and its name. The expansmn of make-elephant is somewhat harder to explain,
let’s look at a few cases:

(make-elephant) => (1list nil 17. (gensym))
(make-elephant color. 'pink) ==> (1list 'pink 17. (gensym))
(make-elephant name 'fred size 100)

==> (1ist nil 100 ’'fred)

ML:NILMAN;DEFSTR 89 o , | ' 17-JUN-83

Syntax of defstruct 86 NIL Notes for Release 0.259

As you can sce, make-elephant takes a "sctg-style" list of part names and forms, and
cxpands into a call to list that constructs such an clephant. Note that the unspecified parts get
defaulted to picces of code specified in the original call to defstruct. Note also that the order of
the setg-style arguments is ignored in constructing the call to list. (In the cxample, 100 is
evaluated before 'fred even though ’fred came first in the make-elephant form.) Care should
thus be taken in using code with side effects within the scope of a make-elephant. Finally, take
note of the fact that the (gensym) is evaluated every time a new elephant is created (unless you

override it).
The explanation of what alter-elephant does is delayed until section 15.4.3, page 89.

So now you know how to construct a new elephant and how to examine the parts of an
clephant, but how do you change the parts of an already existing elephant?. The answer is to use
the setf macro (section 5.7, page 28).

(setf (name x) °'bill) ==> (rplaca (cddr x) 'bill)
which is what you want. :

And that is just about all there is to defstruct; you now know enough to use it in your code,
but if you want to know about all its interesting features, then read on.

15.3 Syntax of defstruct

The general form of a defstruct form is:
(defstruct -(name option-1 option-2 ... option-n)
slot-description-1 o
slot-description-2

slot-description-m)

name must be a symbol, it is used in constructing names (such as "make-elephant”) and it is
given a defstruct-description property of a structure that describes the structure completely.

Each option-i is either the atomic name of an option, or a list of the form (option-name arg .
rest). Some options have defaults for arg; some will complain if they are present without an
argument; some options complain if they are present with an argument. The interpretation of rest
is up to the option in question, but usually it is expected to be nil.

Each slot-description-j is either the atomic name of a slot in the structure, or a list of the
form (slot-name init-code), or a list of byte field specifications. init-code is used by constructor
macros (such as make-elephant) to initialize slots not specified in the call to the constructor. If
the init-code is not specified, then the slot is initialized to whatever is most convenient, (In the
elephant example, since the structure was a list, nil was used. If the structure had been a
fixnum array, such slots would be filled with zeros.) '

A byte field specification looks like: (field-name bytespec) or (fleld-name: bytespec init-code).
Note that since a byte field specification is always a list, a list of byte field specifications can
never be confused with the other cases of a slot description. The byte field feature of defstruct
may be undergoing change in NIL due to the incompatible change of bytespec format (see section

ML:NILMAN:DEFSTR 89 - ; 7 17-JUN-83

NII. Notes for Relcase 0.259 - 87 : Options to defstruct

9.7, page 53), so is discouraged for the present.

15.4 Options to defstruct
The following sections document each of the options defstruct understands in detail.

On the Lisp Machine and in NiL, all these defstruct options are interned on the keyword
package.

15.4.1 :type

The :type option specifies what kind of lisp object defstruct is going to use to implement
your structure, and how that implementation is going to be carried out. The :type option is
illegal ‘without an argument. If the :type option is not specified, then defstruct will choose an
appropriate default (vectors in NIL, hunks in PDP-10 MACLISP, arrays on Lisp Machines and lists
on Multics). It is possible for the user to tcach defstruct new ways to implement structures, the
interested rcader is referred to section 15.6, page 98, for more information. Many useful types
have already been defined for the user. A table of these "built in" types follows: (On the Lisp
Machine and in NIL all defstruct type names are interned on the keyword package.)

list
Uses a list. This is the default on MULTICS MACLISP.

:named-list :
Like :list, except the car of each instance of this structure will be the name
symbol of the structure. This is the only "named" structure type defined on
Multics and is the default named type there. (See the :named option documented
in section 15.4.4, page 91.)

- tree

Creates a binary tree out of conses with the slots as leaves. The theory is to
reduce car-cdring to a minimum. The :include option (section 15.4.9, page 93)
does not work with structures of this type.

list» .
Similar to :list, but the last slot in the structure will be placed in the cdr of the
final cons of the list. Some people call objects of this type "dotted lists”. The
iinclude option (section -15.4.9, page 93) does not work with structures of this

type.

:array
Uses an array object (nor a symbol with an array property). This is the default on
Lisp Machines. Eventually, many of the same hairy array options which defstruct
supports on the Lisp Machine will be supported in NIL; until the new array
scheme is implemented, however, NIL users are advised to use :vector instead.

ML:NILMAN;DEFSTR 89 : » : 17-JUN-83

Options to defstruct 88 NIL. Notes for Release 0.259

'sfa

' Uses an SFA. The constructor macros for this type accept the keywords :sfa-
function and :sfa-name. Their arguments (evaluated, of course) are used,
respectively, as the function and the printed representation of the SFA. Sce also
the :sfa-function (section 15.4.12, page 94) and :sfa-name (scction 15.4.13, page
95) options. (SFAs arc available in NIL for compatibility with PDP-10 MACLISP.)

:vector

Uses an vector. This is the default type in NII, althdugh in the future the default
will produce a typed object (the :extend defstruct type).

:named-vector
Like vector, except clement number 0 always contains the name symbol of the

siructure. Note that this is not the default named type in NIL, :extend is.

:extend v
This is the default named type in NiL. It uses the NIL flavor system to define the

structure. . The effect of this is that the structure will have a type name of the
name symbol, which will work with typep, and can otherwise be treated as a
flavor defined with defflavor, except that the existence of instance variables is not
defined: one may use defmethod to define methods, and access the slots with the
defstruct-defined accessor macros. The type defined by defstruct will inherit
methods for printing, describe, and inspect.

See also the :class-symbol option (section 15.4.11, page 94)

15.4.2 :constructor

The :constructor option specifies the name to bé given to the constructor macro. Without an
argument, or if the option is not present, the name defaults to the concateration of "make-" with
the name of the structure. If the option is given with an argument of nil, then no constructor is
defined. Otherwise the argument is the name of the constructor to define. Normally the syntax
of the constructor defstruct defines is:

(constructor-name
keyword-1 code-1
keyword-2 code-2

keyword-n code-n)

Each keyword-i must be the name of a slot in the structure (not necessarily the name of an
‘accessor macro;, see the :conc-name- option, section 15.4.8, page 92), or one of the special
keywords allowed for the particular type of structure being constructed. For each keyword that is
the name of a slot, the constructor expands into code to make an instance of the structure using
code-i to initialize slot keyword-i. Unspecified slots default to the forms given in the original
defstruct form, or, if none was given there, to some convenient value such as nil or 0.

‘ For keywords that are not names of slots, the use of the corresponding code varies. Usually
_ it controls some aspect of the instance being constructed that is not otherwise constrained. The
only one of these which is used in NIL is the :sfa-function option (section 154,12, page 94). On

ML:NILMAN:DEFSTR 89 B 17-JUN-83

NIl Notes for Release 0.259 89 - Options to defstruct

the Lisp Machine and in NIL all such constructor macro keywords (those that are not the names
of slots) arc interned on the keyword package.

If the :constructor option is given as (:constructor name arglist), then instcad of making a
keyword driven constructor, defstruct defines a "function style" constructor. The arglist is used
to describe what the arguments to the constructor will be. In the simplest case somecthing like
(:constructor make-foo (a b ¢)) dcfines make-foo to be a three argument constructor macro
whose arguments are used to initialize the slots named a, b and c.

In addition, the keywords &optional, &rest and &aux are recognized in the argument list.

They work in the way you might expect, but there are a few fine points worthy of explanation:
{:constructor make-foo
(a &optional b (c ’'sea) &rest d &aux e (f 'eff)))

This defines make-foo to be a constructor of one or more arguments. The first argument is used
to initialize the a slot. The second argument is used to initialize the b slot. If there isn’t any
sccond argument, then the default value given in the body of the defstruct (if given) is used
instead. The third argument is used to initialize the ¢ slot. If there isn’t any third argument,
then the symbol sea is used instead. The arguments from the fourth one on are collected into a
list and used to initialize the d slot. If there are three or less arguments, then nil is placed in the
d slot. The e slot is not initialized. 1It's value will be something convenicnt like nil or 0. And
finally the f slot is initialized to contain the symbol eff.

The b and e cases were carefully chosen to allow the user to specify all possible behaviors.
Note that the &aux "variables" can be used to completely override the default initializations given
in the body.

Since there is so much freedom in defining constructors this way, it would be cruel to only
allow the :constructor option to be given once. So, by special dispensation, you are allowed to
give the :constructor option more than once, so that you can define several different constructors,
each with a different syntax.

Note that even these "function style” constructors do not currently guarantee that their
arguments will be evaluated in the order that you wrote them.

15.4.3 :alterant

The :alterant option defines a macro that can be used to change the value of several slots in
a structure together. Without an argument, or if the option is not present, the name of the
alterant macro defaults to the concatecnation of "alter-" with the name of the structure. If the
option is given with an argument of nil, then no alterant is defined. Otherwise the argument is
the name of the alterant to define. The syntax of the alterant macro defstruct defines is:
(alterant-name code
slot-name-1 code-1
slot-name-2 code-2
slot-name-n code-n)
code should evaluate to an instance of the structure, each code-i is evaluated and the result is
made to be the value of slot slor-name-i of that structure. The slots arc all altcred in parallel

ML:NILMAN;DEFSTR 89 | o 17-JUN-83

Options to defstruct 90 NIL Notes for Relcase 0.259

after all codchas been evaluated. (Thus you can use an altcrant macro to exchange the contents
to two slots.)

Example:
(defstruct (lisp-hacker (:type :1ist)
:conc-name
:default-pointer
:alterant)

(favorite-macro-package nil)

(unhappy? t)
(number-of-friends 0))

(setq Tisp-hacker (make-Tisp-hacker))
Now we can perform a transformation:
(alter-lisp-hacker Tlisp-hacker
favorite-macro-package ’'defstruct
number-of-friends 23.
unhappy? nil)

==> ((lambda (G0009)

((1ambda (G0011 G0010)
(setf (car G0009) ’defstruct)
(setf (caddr G0009) GOO11)
(setf (cadr G0009) G0010))

23.

nil))

lisp-hacker)

Although it appears from this example that your forms will be evaluated in the order in
which you wrote them, this is not currently guaranteed.

Alterant macros are particularly good at simultaneously modifying several byte fields that are
allocated from the same word. They produce better code than you can by simply writing
consecutive setfs. They also produce better code when modifying several slots of a structure that
uses the :but-first option (section 15.4.17, page 95). .

For defstruct types whose accessors take more than one argument, all of those arguments
must be supplied to the alterant macro in place of just the usual one. (Sec section 15.6.3.2, page
100 for how accessors with more than one argument can come to be, there are no built-in
defstruct types with this property.)

ML:NILMAN;DEFSTR 89 : | 17-JUN-83

NII. Notes for Release 0.259 91 Options to defstruct

15.4.4 :named

This option tells defstruct that you desire your structure to be a "named structure”. In PDP-
10 MACLISP this means you want your structure implemented with a :named-hunk, :named-list
or :named-vector. On a lLisp Machinc this indicates that you desire cither a :named-array or a
:named-array-leader or a :named-list. On Multics this indicates that you desirc a :named-list.
In NIL this indicates that you desirc a :extend, a :named-vector or a :named-list. defstruct
bases its decision as to what named type to use on whatever value you did or didn’t give to the
:type option.

It is an error to use this option with an argument,

15.4.5 :predicate

The :predicate option causes defstruct to generate a predicate to recognize instances of the
structure. Naturally it only works for some defstruct types. Currently it works for all the named
types as well as the types :sfa (PDP-10 MACLISP and NIL only) and :extend (NIL only). The
argument to the :predicate option is the name of the predicate. If it is present without an
argument, then the name is formed by concatenating "-p" to the end of the name symbol of the
structure. If the option is not present, then no predicate is generated. Example:

(defstruct (foo :named :predicate)
foo-a
_ foo-b)
defines a single argument function, foo-p, that is true only of instances of this structure.

15.4.6 :print

The :print option allows the user to control the printed representation of his structure in an
implementation independent way:
- (defstruct (pair :named
(:print "{~S . ~S}"

(pair-first pair)
‘(pair-second pair)))

pair-first ’

pair-second)

The arguments to the :print option are used as if they were arguments to the format function
(page 120), except that the first argument (the stream) is omitted, They are evaluated in an
environment where the name symbol of the structure (pair in this case) is bound to the instance
of the structure to be printed.

This option presently only works on Lisp Machines and in NIL, using the defstruct types
:named-array and :extend respectively. We hope to make it work in PDP-10 MACLISP for the
:named-hunk type soon. In MULTICS MACLISP, this option is ignored. Notice that if you just
specify the :named option without giving an cxplicit :type option, each defstruct implementation
- will default to a named type that can control printing if at all possible. '

ML:NILMAN:DEFSTR 89 17-JUN-83

Options to defstruct 92 ‘ NIL Notes for Release 0.259

15.4.7 :default-pointer

Normally the accessors are defined to be macros of exactly one argument. (They check!) But
if the :default-pointer option is present then they will accept zero or one argument. When used
with one argument, they behave as before, but given no arguments, they expand as if they had
been called on the argument to the :default-pointer option. An example is probably called for:

(defstruct (room (:type :tree) '
(:default-pointer *xcurrent-room*x*))
{room-name 'y2)
‘(room-contents-1list nil))
Now the accessors expand as follows:
(room-name x) ==> (car Xx)’
(room-name) ==> (car **current-room*x*)

If no argument is given to the :default-pointer option, then the name of the structure is
uscd as the "default pointer”. :default-pointer is most often used in this fashion.

15.4.8 :conc-name

Frequently all the accessor macros of a structure will want to have names that begin the same
way; usually with the name of the structure followed by a dash. The :conc-name option allows
the user to specify this prefix. Its argument should be a symbol whose print name will be
concatenated onto the front of the slot names when forming the accessor macro names. If the
argument is not given, then the name of the structure followed by a dash is used. If the :conc-
name option is not present, then no prefix is used. An cxample illustrates a common use of the
:conc-name option along with the :default-pointer option:

(defstruct (location :default-pointer
:conc-name)
(x 0)
(y 0)
(z 0))
Now if you say
(setq location (make location x 1 y 34 z 5))
it will be the case that
(location-y)
will return 34. Note well that the name of the slot ("y") and the name of the accessor macro for
that slot ("location-y") are different.

ML:NILMAN;DEFSTR 89 17-JUN-83

NIL Notes for Release 0.259 . 93 Options to defstruct

15.4.9 :include

The :include option inserts the dcfinition of its argument at the hcad of the new structure’s
definition. In other words, the first slots of the new structure arc ecquivalent to (i.e. have the
same names as, have the same inits as, etc.) the slots of the argument to the :include option.
The argument to the :include option must be the name of a previously defined structure of the
same type as the new one. If no type is spccified in the new structure, then it is defaulted to
that of the included one. It is an error for the :include option to be present -without an
argument. Note that :include does not work on certain types of structures (e.g. structures of type
itree or clist*). Note also that the :conc-name, :default-pointer, :but-first and :callable-
accessors options only apply to the accessors defined in the current defstruct; no new accessors
are defined for the included slots.

An example:
(defstruct (person (:type :1ist)
:conc-name)
name .
age '
sex)

(defstruct (spaceman (:include person)
:default-pointer)
helmet-size
(favorite-beverage ’'tang))
Now we can make a spaceman like this:
(setq spaceman (make-spaceman name 'buzz
age 45.
sex t
heimet-size 17.5))
To find out interesting things about spacemen:

(helmet-size) ==> (cadddr spaceman)
(person-name spaceman) ==> (car spaceman)
(favorite-beverage x) ==> (car (cddddr x))

As you can see the accessors defined for the person structure have names that start with
"person-" and they only take one argument. The names of the accessors for the last two slots of
the spaceman structure are the same as the slot names, but they allow their argument to be
omitted. The accessors for the first three slots of the spaceman structure are the same as the
accessors for the person structure.

Often, when one structure includes another, the default initial values supplied by the included
structure will be undesirable. These default initial values can be modified at the time of inclusion
by giving the :include option as:

(:include name new-init-I ... new-init-n)
Each new-init-i is cither the name of an included slot or of the form (included-slot-name new-init).
If it is just a slot name, then in the new structure (the one doing the including) that slot will
have no initial value. If a new initial value is given, then that code replaces the old initial value
code for that slot in the new structure. The included structure is unmodified.

ML:NILMAN;DEFSTR 89 S 17-JUN-83

Options to defstruct | 94 . NlL_Notcs for Releasc 0.259

15.4.10 :copier

This option causes defstruct to generate a single argument function that will copy instances of
this structure. The argument to the :copier option is the name of the copying function. If this
option is present without an argument, then the name is formed by concatenating "copy-" with
the name of the structure.

Example: :
(defstruct (coat-hanger (:type :1ist) :copier)
current-closet
~wire-p)
Generates a function approximately like:
(defun copy-coat-hanger (x)
(1ist (car x) (cadr x)))

15.4.11 :class-symbol

For use with the :extend defstruct type available only in NIL (section 15.4.1, page 88), this
option allows the user to control how the flavor definition is performed. This option must be
given a variable name as an argument; the value of that variable is used as the flavor (class)
object of the object which the defstruct-defined constructor will create. defstruct will not define
the flavor. '

This option was originally implemented for bootstrapping purposes, so that typed objects in
NIL could be created before the flavor system was fully loaded. Eventually it will be fully
outmoded by extensions to the flavor system, which already has the capability of defining accessor
macros for instance variables.

15.4.12 :sfa-function

Available in PDP-10 MACLISP and in NIL, this option allows the user to specify the function
that will be used in structures of type :sfa. Its argument should be a piece of code that evaluates
to the desired function. Constructor macros for this type of structure will take :sfa-function as a
keyword whose argument is also the code to evaluate to get the function, overriding any supplied
in the original defstruct form.

If :sfa-function is not present anywhere, then the constructor will use the name-symbol of
the structure as the function. '

ML:NILMAN;DEFSTR 89 ; 17-JUN-83

NIL Notes for Relcase 0.259 95 Options to defstruct

15.4.13 :sfa-name

Available only in PDP-10 MACLISP and NIL, this option allows the user to specify the object
that will be used in the printed representation of structures of type :sfa. Its argument should be
a picce of code that cvaluates to that object. Constructor macros for this type of structure will
take :sfa-name as a keyword whose argument is also the code to cvaluate to get the object to
usc, overriding any supplied in the original defstruct form.

If :sfa-name is not present anywhere, then the constructor will use the name-symbol of the
structure as the function. o

15.4.14 :size-symbol

The :size-symbol option allows a user to specify a symbol whose value will be the "size" of
the structure. The exact meaning of this varies, but in general this number is the one you would
need to know if you were going to allocate one of these structures yourself. The symbol will
have this value both at compile time and at run time.. If this option is present without an
argument, then the name of the structure is concatenated with "-size" to produce the symbol.

15.4.15 :size-macro

Similar to :size-symbol. A macro of no arguments is defined that expands into the size of
the structure. The name of this macro defaults as with :size-symbol. '

15.4.16 :initial-offset

This option allows you to tell defstruct to skip over a certain number of slots before it starts
allocating the slots described in the body. This option requires an argument, which must be a
fixnum, which is the number of slots you want defstruct to skip. To make use of this option
requires that you have some familiarity with how defstruct is implementing you structure,
otherwise you will be unable to make use of the slots that defstruct has left unused. '

15.4.17 :but-first

This option is best explained by example:’
(defstruct (head (:type :1ist)
(:default-pointer person)
(:but-first person-head))

nose
mouth
eyes)
So now the accessors expand like this: ,
(nose x) ==> (car (person-head X))
(nose) ==> (car.(person-head person))

ML:NILMAN;DEFSTR 89 - - 17-JUN-83

Options to defstruct % NIL Notes for Relcase 0.259

The theory is that :but-first’s argument will likely be an accessor from some other structure,
and it is ncver expected that this structure will be found outside of that slot of that other
structure. (In the example I had in mind that there was a person structure which had a slot
accessed by person-head.) It is an error for the :but-first option to be used without an’
argument.

15.4.18 :callable-accessors

This option controls whether the accessors defined by defstruct will work as "functional
~arguments”. (As the first argument to mapcar, for example.) On the Lisp Machine and in NIL
accessors are callable by default, but in PDP-10 MACLISP it is expensive to make this work, so
they arc only callable if you ask for it. (Currently on. Multics the feature doesn’t work at all..))
The argument to this option is nil to indicate that the feature should be turned off, and t to turn
the feature on. If the option is present with no argument, then the feature is turned on.

’

15.4.19 :eval-when

Normally the macros defined by defstruct are defined at eval-time, compile-time and at load-
time. This option allows the user to control this behavior. (:eval-when (eval compile)), for
example, will cause the macros to be defined only when the code is running interpreted and
inside the compiler, no trace of defstruct will be found when running compiled code.

Using the :eval-when option is preferable to wrapping an eval-when around a defstruct
form, since nested eval-whens can interact in unexpected ways.

15.4.20 :property

For cach structure defined by defstruct, a property list is maintained for the recording of
arbitrary properties about that structure.

The :property option can be. used to give a defstruct an arbitrary property. (:property
property-name value) gives the defstruct a property-name property of value. Neither argument is
evaluated. To access the property list, the user will have to look inside the defstruct-description
structure himself, he is referred to section 15.5, page 97, for more information.

15.4.21 A Type Used As An Option

In addition to the options listed above, any currently defined type (a legal argument to the
:type option) can be used as a option. This is mostly for compatibility with the old Lisp Machine
defstruct. 1t allows you to say just fpe when you should be saying (itype zype). Use of this
feature in new code is discouraged. It is an error to give an argument to a type used as an
option in this manner.

ML:NILMAN;DEFSTR 89 : , 17-JUN-83

NIL Notes for Release 0.259 : 97 The defstruct-description Structure

15.4.22 Other Options

Finally, if an option isn’t found among those listed above, defstruct checks the property list
of the name of the option to see if it has a non-null :defstruct-option property. If is does have
such a property, then if the option was of the form (option-name value), it is trcated just like
(:property option-name value). That is, the defstruct is given an option-name property of value.
If such an option is used without an argument, it is treated just like (:property option-name 1).
That is, it is treated as if the argument was t.

This provides a primitive way. for the user to define his own options to defstruct. Several of
the options listed above are actually implemented using this mechanism.

15.5 The defstruct-description Structure

This section discusses the internal structures used by defstruct that might be uscful to
programs that want to interface to defstruct nicely. The information in this section is also
necessary for anyone who is thinking of defining his own structure types (section 15.6, page 98).
Lisp Machine and NIL programmers will find that the symbols found only in this section are all
interned in the "systems-internals" package ("SI" for short).

Whenever the user defines a new structure using defstruct, defstruct creates an instance of
the defstruct-description structure. This structure can be found as the defstruct-description
property of the name of the structure; it contains such useful information as the name of the
structure, the number of slots in the structure, etc.

The defstruct-description structure is defined something like this: (This is a bowdlerized
version of the real thing, I have left out a lot of things you don’t need to know unless you are
actually reading the code.)

(defstruct (defstruct-description
(:default-pointer description)
(:conc-name defstruct-description-))
name
size
property-alist
slot-alist)

~ The name slot contains the symbol supplied by the user to be the name of his structure, -
something like spaceship or phone-book-entry.

The size slot contains the total number of slots in an instance of this kind of structure. This
is not the same number as that obtained from the :size-symbol or :size-macro options to
defstruct. A named structure, for example, usually uses up an extra location to store the name
of the structure, so the :size-macro option will get a number one larger than that stored in the

defstruct dcscnptlon

The property-alist‘slot contains an alist with pairs of the form (property-name . property)
containing propertics placed there by the :property option to defstruct or by property names used
as options to defstruct (sce scction 15.4.20, page 96, and section 15.4.22, page 97).

ML:NILMAN;DEFSTR 89 - 17-JUN-83

Extensions to defstruct 98 ' NIL Notes for Release 0.259

The slot-alist slot contains an alist of pairs of the form (slot-name . slot-description). A slot-
description is an instance of the defstruct-slot-description structure. The defstruct-slot-
description structure is deﬁned somcthing like this: (another bowdlerized defstruct)

(defstruct . (defstruct slot-description
(:default-pointer slot-description)
) (:conc-name defstruct-slot-description-))
number
ppss
init-code
ref-macro-name)

The number slot contains the number of the location of this slot in an instance of the
structyre. l.ocations are numbered starting with 0, and continuing up to onc less than the size of
the structure. The actual location of the slot is determined by the reference consing code
associated with the type of the structure. See section 15.6, page 98.

The ppss slot contains the byte specifier code for this slot if this slot is a byte field of its
location. If this slot is the entire location, then the ppss slot contains nil.

The init-code slot contains the initialization code supplied for this slot by the user in his
defstruct form. If there is no initialization code for this slot then the init-code slot contains the
symbol %%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is deﬁned as an accessor that references
this slot. :

15.6 Extensions to defstruct

defstruct-define-type ' Macro
The macro defstruct-define-type can be used to teach defstruct about new types it can

use to implement structures.

15.6.1 A Simple Example

Let us start by examining a sample call to defstruct-define- type This is how the :list type
of structure might have been defined:
(defstruct-define-type :1ist
(:cons (initialization-list description keyword- opt1ons)
:1ist

(cons 'Tist initialization-list))

(:ref (slot-number description argument)
(1ist 'nth slot-number argument)))

This is the minimal example. We have provided defstruct with two pieces of code, one for
consing up forms to construct instances of the structure, the other to cons up forms to reference
various elements of the structure.

ML:NILMAN:DEFSTR 89 | 17-JUN-83

NIL. Notes for Release 0.259 99 Extensions to defstruct

From the example we can sce that the constructor consing code is going to be run in an
environment where the variable initialization-list is bound to a list which is the initializations to
the slots of the structure arranged in order. The variable description will be bound to the
defstruct-description structure for the structure we are consing a constructor for. (See scction
15.5, page 97.) The binding of the variable keyword-options will be described later. Also the
symbol :list appears after the argument list, this conveys some information to defstruct about how
the constructor consing code wants to get called.

The reference consing code gets run with the variable slot-number bound to the number of
the slot that is to be referenced and the variable argument bound to the code that appeared as
the argument to the accessor macro. The variable description is again bound to the appropriate
instance of the defstruct-description structure.

This simple cxample probably tells you enough to be able to go ahcad and implement other
structure types, but more details follow.

15.6.2 Syntax of defstruct-define-type

The syntax of defstruct-define-type is
(defstruct-define-type fype
option-1

option-n) _
where each option-i is either the symbolic name of an option or a list of the form (option-i .

rest). (Actually option-i is the same as (option-i).) Different options interpret rest in different
ways.

The symbol fype is given a defétruct-type-description property of a structure that describes
the type completely.

15.6.3 Options to defstruct-define-type

This section is a catalog of all the options currently known about by defstruct-define-type.

15.6.3.1 :cons

The :cons optioh to defstruct-define-type is how the user supplies defstruct with the
necessary code that it needs to cons up a form that will construct an instance of a structure of

this type.

~The :cons option has the syntax:
(:cons (inits descnptzon keywords) kind
body)

body is some code that should construct and rcturn a piece of code that will construct,
‘initialize and return an instance of a structure of this type.

ML:NILMAN;DEFSTR 89 | : 17-JUN-83

Extensions to defstruct ' 100 NIIL. Notes for Release 0.259

The symbol inits will be bound to the code that the constructor conser should usc to initialize
the slots of the structure. The exact form of this argument is determined by the symbol kind.
There are currently two kinds of initialization. There is the :ist kind, where inits is bound to a
list of initializations, in the correct order, ‘with nils in uninitialized slots. And there is the :alist
kind, where inits is bound to an alist with pairs of the form (slot-number . init-code).

The symbol description will be bound to the instance of the defstruct-description structure
(section 15.5, page 97) that defstruct maintains for this particular structure. This is so that the
constructor conser can find out such things as the total size of the structure it is supposed to
create.

| The symbol keywords will be bound to a alist with pairs of the form (keyword . value),
where cach keyword was a keyword supplied to the constructor macro that wasn’t the name of a
slot, and value was the "code" that followed the keyword. (See section 15.6.3.6, page 102, and

section 15.4.2, page 88.)

It is an error not to supply the :cons option to defstruct-define-type.

15.6.3.2 :ref

- The :ref option to defstruct-define-type is how the user supplies defstruct with the
necessary code that it needs to cons up a form that will reference an instance of a structure of

this type.

The :ref option has the syntax: |
(:ref (number description arg-l ... arg-n)
body)

body is some code that should construct and return a piece of code that will reference an
instance of a structure of this type.

The symbol number will be bound to the location of the slot that the is to be referenced.
This is the same number that is found in the number slot of the defstruct-slot-description
structure (section 15.5, page 97).

The symbol description will be bound to the instance of the defstruct-description structure
that defstruct maintains for this particular structure,

The symbols arg-i are bound to the forms supplied to the accessor as arguments. Normally
there should be only one of these. The last argument is the one that will be defaulted by the
:default-pointer option (section 15.4.7, page 92). defstruct will check that the user has supplied
exactly n arguments to the accessor macro before calling the reference consing code.

It is an error not to supply the :ref option to defstruct-define-type.

ML:NILMAN;DEFSTR 89 : 17-JUN-83

NIL Notes for Release 0.259 101 ' Extensions to defstruct

15.6.3.3 :predicate

The :predicate option to defstruct-define-type is how defstruct is told how to produce
predicates for a particular type when the :predicate option to defstruct is used (section 15.4.5,
page 91). lIts syntax is:

(:predicate (description name)
body)

The variable description will be bound to the defstruct-description structure maintained for
the structure we are to generatc a predicate for. The variable same is bound to the symbol that
is to be defined as a predicate. body is a piece of code to evaluate to return the defining form
for the predicate. A typical use of this option might look like:

(:predicate (description name)
*(defun ,name (x)
(and (frobbozp x)
(eq (frobbozref x 0)
',(defstruct-description-name)))))

15.6.3.4 :overhead

The :overhead option to defstruct-define-type is how the user declares to defstruct that the
- implementation of this particular type of structure "uses up" some number of slots locations in the
object actually constructed. This option is used by various "named" types of structures that store
the name of the structure in one location.

The syntax of :overhead is:
(:overhead n)
where #n is a fixnum that says how many locations of ‘overhead thls type needs.

This number is only used by the :size-macro and :size-symbol options to defstruct. (See
section 15.4.15, page 95, and section 15.4.14, page 95.)

15.6.3.5 :named

The :named option to defstruct-define-type controls the use of the :named option to
defstruct. With no argument the :named option means that this type is an acceptable "named
structure”. With an argument, as in (:named iype-name), the symbol fype-name should be that
name of some other structure type that defstruct should use if someone asks for the named
version of this type. (For cxample, in the definition of the :list type the :named option is used
like this: (:named :named-list).)

ML:NILMAN;DEFSTR 89 o : 17-JUN-83

Extensions to defstruct ' 102 ~ NIL Notes for Release 0,259

15.6.3.6 :keywords

The :keywords option to defstruct-define-type allows the user to define constructor
keywords (scction 15.4.2, page 88) for this type of structurc. (For example the :make- array
constructor keyword for structures of type :array on Lisp Machines.) The syntax is:

(:keywords keyword-1 ... keyword-n)
where cach keyword-i is a symbol that the constructor conser expects to find in the keywords: alist
(scction 15.6.3.1, page 99).

15.6.3.7 :defstruct-options

The :defstruct-options option to defstruct-define-type is similar to thce :keywords option.

It is used to definc new options that may appear in the options part of a defstruct for a structure
of this type. Its syntax is: -

(:defstruct-options option-1 ... option- n) :
This defincs each option-i to be a option to defstruct that can be,used with structures of this
type. For example, the :array defstruct type for the Lisp Machine uses the :defstruct-options
option.as follows:

(:defstruct- optlons make~array)

Currently this just works by giving each opfion-i a non-null :defstruct- option property (see
section 15.4.22, page-97), but soon it will check to be sure that each optzon-z is only used as an

option with structures of this type.

15.6.3.8 :defstruct

The :defstruct option fo defstruct-define-type allows the user to run some code and return
some forms as part of the expansion of the defstruct macro.

The :defstruct optidn has the syntax:
(:defstruct (description)
body)

body is a piece of code that will be run whenever defstruct is expanding a defstruct form
that defines a structure of this type. The symbol description will be bound to the instance of the
defstruct-description structure that defstruct maintains for this particular structure.

The value returned by the :defstruct option should be a list of forms to be included with
those that the defstruct expands into. Thus, if you only want to run some code at defstruct
expand time, and you don’t want to actually output any additional code, then you should be
carcful to return nil from the code in this option.

ML:NILMAN;DEFSTR 89 o : : ' . 17-JUN-83

NIL. Notes for Release 0.259 103 Extensions to defstruct

15.6.3.9 :copier

The :copier option to defstruct-define-type allows the user to tell defstruct how to gencrate
the copicer functions required by the :copier option to defstruct (section 15.4.10, page 94). This
option is entircly optional, because defstruct alrcady has enough information to write an adequate
copicr function for any given type given the information supplied to the :ref and :cons options to
defstruct-define-type. However, it is sometimes desirable to teach defstruct a betrer way to
copy a particular type of structure.

The :copier option has the syntax:
(:copier (description name)
body)

Similar to the :predicate option, description is bound to the instance of the defstruct-
description structure maintained for this structure, name is bound to the symbol to be defined,
and body is some code to evaluate to get the defining form. For example:

(:copier (description name)
*(defmacro ,nameé (x)
‘(copy-frobboz ,x)))

15.6.3.10 :implementations

The :implementations option to defstruct-define-type is primarily useful to the maintainers
of defstruct in keeping control of the variations in defstruct types available in different
implementations. Its syntax is: ’

(:implementations arg-l ... argn)

This makes the defstruct-define-type in which it appears only take effect in those
implementations of LISP in which (status feature arg-i) is true for at least one of the arg-i.

ML:NILMAN;DEFSTR 89 R | | : 17-JUN-83

The Flavor Facility B S 104 NIL Notes for Release 0.259

16. The Flavor Facility

16.1 Introduction

Languages such as Smalltalk and Act-1 are designed to encourage a style of programming
called object-oriented programming. LISP- MACHINE LisP offers a facility for object-oriented
programming as wcll; it is called the Flavor System, or just flavors. NIL offers a more primitive
version of flavors than is available on the Lisp Machine, but unless you do quite complicated
things with flavors, you will probably never notice the difference.

16.1.1 Object-oriented Prograinming '

Suppose you were writing a file system. You might have several different types of files,
including, for example, binary files and text files. If you wrote a program to print files on a
user's terminal, and you wanted it to print ASCII characters when the user printed a text file, but
octal numbers when the user printed a binary file, you might implement it as follows

(typecase file
(binary (octally-print file))
(text (ascii-print file)))
That is, you might dispatch off the type of the file, calling the appropriate function to print the
file. It might be nicer, however, to keep the information about how the file should be printed
. with the file itself. That is, the method used for printing itself could be part of the information
contained in each file; we could simply decide that every type of file we will support in our
operating system will know how to perform certain operations, and we could spemfy prmtmg on a
terminal to be one of them. Then we would implement the above as
(send file :print-contents)
where :print-contents is the name of a method that could be specified for each type of file.

On simply looking at the differences between the two samples of code, one might notice that
the second expresses much more clearly and compactly what we are doing: printing the file. We
trust whoever defined this type of file object to have defined a reasonable :print-contents method
for it, and we don’t worry any further about type-dispatching and the like. Thus object-oriented
programming constructs can have the effect of freeing the programmer from an extra level of

detail.

This should sound familiar even to users who have not used flavors, because it is similar to
generic arithmetic in COMMON LISP. In fact, operations that work for more than one type of
object (like the imaginary :print-contents above) are called generic operations.

Another thing we might notice about the object-oriented way of doing things is described by
its name. We might say somewhat fancifully that the files in our example above have been raised -
from the realm of “inanimate data” to being objects that can do things. A file has become an
object that knows how to print itself, and can be asked to do so.

ML:NILMAN:FLAVOR 42 17-JUN-83

NII. Notes for Release 0.259 105 Introduction

Objects can know of things besides their methods for performing operations, and this brings
up another advantage of objcct-oriented programming, which is useful even when one is not
planning on implementing operations that will work on a large class of objects. Two objects of
the same type will share the same methods for performing an operation. But two objects of the
same typce can still have distinct state. They can have instance variables: variables that are local
to cach instantiation, in much the same way that scoped variables are local to a function call.
For example, the file objects we were discussing above could have variables :author and :write-
date, and cach object would have its own value for these variables.

16.1.2 Object-oriented Programming Using Flavors

When we usc flavors to write object-oriented code, the objects themsclves are not flavors.
They are instantiations of flavors. The flavor of an object is actually its type. We define a flavor
using defflavor. The definition of a flavor looks like

(defflavor flavor-name instance-variables
‘component-flavors)
optionl option2...) ’

The flavor-name can be any symbol, the instance-variables a (possibly null) list of symbols
(variables) and their initial values, the component-flavors a list of flavors, and the options will be
described further below. A more concrete example is: .

(defflavor bicycle ({wheel-size nil) (gear-ratios nil)
(selected-gear nil):
(distance-travelled nil))
()
:gettable-instance-variables
:settable-instance-variables)

The option :gettable-instance-variables will cause a method that will return the value of .
that instance variable to be defined for each of the instance variables. :settable-instance-
variables will cause a method that will allow us to set the value of that instance variable to be
generated for each instance variable.

If we want to create an instantiation of the flavor bicycle, we use make-instance:
(setq my-bike (make-instance ’'bicycle))
returns
#<BICYCLE 1287B8>
or something like it. This object can be described:

ML:NILMAN;FLAVOR 42 | | | 17-JUN-83

Introduction 106 NIL Notes for Release 0.259

(describe my-bike)

The instance at address 1287B8 is of flavor BICYCLE and is 4
Q's long. It directly or indirectly includes flavors (BICYCLE
VANILLA-FLAVOR), and is of the types (BICYCLE VANILLA-FLAVOR).
The 4 instance variables are:

WHEEL-SIZE NIL

GEAR-RATIOS NIL

SELECTED-GEAR NIL

DISTANCE-TRAVELLED NIL
NIL

We can cause an instantiation of a flavor to execute a method with send. The methods
crcated upon definition of a flavor with the option :settable-instance-variables have the names
of the instance variables appended to "set-", but are in the keyword package. Thus we could set
the value of wheel-size like this: _

(send my-bike :set-wheel-size 27)

" The methods created on definition of a flavor with the option :settable-instance-variables are
the same as the names of the variables, but are in the keyword package. So we could get the
value of :wheel-size like this:

(send my-bike :wheel-size)

27 :

We can define methods for the flavor we've created with the function defmethod.

send object message &rest args
This is the basic message-passing primitive. It should be used instead of funcall, which

has been used in the past in LISP MACHINE LISP.

lexpr-send object message &rest args
This is to send as lexpr-funcall (now subsumed by apply) is to funcall.

There must be at least one arg given, and the last one must be either a list or a vector.
The object is sent message with arguments of all of the other args followed by all the
elements of the last arg. :

send-forward object message {arg}* ' : Special Fohn
This is only valid within the lexical scope of a defmethod definition.

Let the flavor which this method was defined on be called flav. send-forward then does
a send, but starts searching for methods to handle message after flav.

n.b. send-forward is necither as efficient as it should be nor as efficient as one would like,
yet. Note that it can be used to acheive many of the same effects as method combination.

ML:NILMAN;FLLAVOR 42 - : , 17-JUN-83

NII. Notes for Release 0.259 107 Introduction

lexpr-send-forward object message {arg}* | Special Form
Like lexpr-send, but does send-forward.

make-instance flavor-name &rest keyworded-arguments
This is the primary instantiation function. The keyworded-arguments are altcrnating
keywords and values. - Typically, they specify initial values for the instance variables which
are initable (as specificd with the :initable-instance-variables option to defflavor). They
may also be arbitrary keywords which are checked for validity against those specified with
the :init-keywords option to defflavor, which (merged with the :init-plist specification to
- defflavor) will be passcd as arguments to the :init mecthod of the flavor.

defflavor flavor-name instance-variables included-flavors options... Special Form

Sflavor-name is the name of the flavor being defined. After it is defined, it is acceptable as a
second argument to typep (page 14), which will return t if given a second argument of flavor-
name and a first argument of an instantiation of flavor-name, or any other flavor which directly or
indirectly includes flavor-name.)

instance-variables is a list of instance variables for the flavor. These are not necessarily all of
the instance variables of the instance; some may be inherited from other flavors which flavor-name
is being built from. However, compiled flavor methods for flavor-name may not know about those
inherited instance variables, so if you "know" that a flavor is going to have certain variables and
neced to use them, you should include them here. (Note that in the current NIL instance variable
inheritance is performed when the defflavor form is compiled, so one will not receive a diagnostic
about this. The inheritance will be deferred in in some later release, however, to provide for
other features, including the ability to not have the component flavors of flavor-name defined
when the defflavor is being compiled or interpreted.)

Instecad of an instance variable, one may specify a list of an instance variable and an
initialization form. Each such form will be evaluated if necessary to determine the default value
for that instance variable, at instance creation time. (NIL actually does not use eval, but stores
the value either as a constant, if it self-evaluates, or as a function of no arguments which
evaluates the initialization form; this function will be compiled when the defflavor form is
compiled.) ~

If no initialization form is specificd, the instance variable will be unbound. This will cause an
unbound variable reference in the NIL interpreter. Compiled code (and external references) will
pick up the unbound pointer and probably behave spastically; however, the unbound pointer will
print showing the name of the variable, and the fact that it is a lexical instance variable.

"The following defflavor options all deal with instance variables which must be listed in the
instance-variables given for the defflavor. They may appear as atomic options, like :gettable-
instance-variables and :settable-instance-variables in the bicycle example (page 105),
which case they refer to all of the instance-variables of the defflavor, or listed with those hey
pertain to, as in

(defflavor frob (var-1 var-2 var-3) ()
‘ :gettable-instance-variables
(:settable-instance-variables var-1 var- 2))
in which var-1, var-2, and var-3 arc all :gettable, but only var-1 and var-2 are :settable.

ML:NILMAN;FLAVOR 42 : | 17-JUN-83

Introduction 108 NIIL. Notes for Release 0.259

\ :gettable-instance- ~variables

Causes automatic generation of methods which will fetch the values of the specified

| instance variables. Each mcthod name is thc name of the variable interned in the
keyword package. Thus in the bicycle example, one may send a bicycle the :distance-
travelled message to find how far the bicycle has traveled.

:settable -instance-variables
Causes automatic generation of methods which will replace the values of the specified
instance variables. Each method takes exactly onc argument, the ncw value. The method
name will be the concatentation of "SET-" and the instance variable name, interned in
the keyword package. : '

initable-instance-variables
This specifies which instance variables may be trivially initialized by make-instance (and
instantiate -flavor). For those which may be, it is donc by specifying a keyword which is
the instance variable name interned in the keyword package followed by the value. For
cxample,
(make-instance ’'bicycle :wheel-size 26)

:outside-accessible-instance-variables
This causes automatic generation of macros which access the specified instance variables
without sending messages. In principle this is more efficient than sending the message; i,
of course, requires that thc instance have such instance variables. This is most useful
when the instance variables are ordered (see below); otherwise, some lookup has to be
performed.

:ordered-instance-variables
The instance variables will be ordered in the instance in exactly the order they are listed
here, starting from slot 0. This can be done to allow super-fast external accessing, or
simply because other low-level code (like VMS assembly language routines) needs to be
able to understand the structure.

T ¥ -

:special-instance-variables
don’t work.

:functional -instance -variables
no workee.

Other options. Many of the instantiation-time checks are not performed, and some are sort of
meaningless in the current implementation. This is because this implementation performs all
inheritance computations at eval or compile time.

:required-flavors
The flavors listed are required to be included in any ﬂavor which includes this one.
make-instance is supposed to barf if that is not the case.

required-instance-variables
The instance variables Iisted arc required to be defined by any flavor which includes this
one, and make-instance is supposed to barf if that is not the case.

:required-methods
Any flavor including this flavor is required to support the listed methods. This is alledgely
checked at instantiation time.,

ML:NILMAN:FLAVOR 42 ' . 17-JUN-83

NIL Notes for Relcase 0.259 : 109 : System-Defined Mcssages

:no-vanilla-flavor
Do not include vanilla-flavor, as is done by default.

sincluded-flavors
Sort of like building the flavor from the named flavors, but thcy are made to come last
always. where is the inheritance-order and vanilla-flavor insertion and this explained?

:flavor-not-instantiable
This flavor is not itself instantiable. This should be specified for things which are not
complete in themselves, but mixin flavors—flavors which are meant to be mixed in to
provide some aspect of other flavors,

sinit-keywords ‘
Allowable keywords which make-instance will pass along to the :init message when a
flavor is instantiated. ’

:default-init-plist '
Alternating keyword-values, which are supplied to the :init message when a flavor is
instantiated, unless the keyword was supplied already to make-instance.

:documentation
ummmm

defmethod (flavor-name message-name [message-type]) arglist Special Form
body... .
Defines a method message-name for flavor. message-type is not supported, do not use it.
arglist is any lambda-list acceptable to NIL. self will be bound (lexically) for the
evaluation of body. ’

Lexical instance variables are correctly enclosed by the NIL interpreter in this version of
NIL. The only time this can fail is if there is any funny stuff with how the definition is
being performed, like evaluating a defmethod inside the lexical environment of another
defmethod or a defun. This would not work compiled anyway. '

defmethod-primitive (flavor-name message-name) arglist body... Special Form
This is used to define a method without interfacing to deal with the self variable or the
instance variables. The arguments which the generated function receives will be the object,
the map vector, the message, and the other arguments. This routine exists primarily for
primitive low-level method-generation code, as that ‘which might be used by defstruct.

16.2 System-Defined Messages

Here are some of the messages the system uses to deal with objects defined by defflavor, and
what they mean.

cprint-self stream level slashify-p ' Message
The object should print itself to the stream stream. level is the recursion level of printing,
and should be compared against the dynamic value of prinlevel. slashify-p being non-null
means that the output should maybe be re-readable; it is being done by prin1 rather than

princ.

ML:NILMAN;FLAVOR 42 17-JUN-83

System-Defined Messages | 110 - NIL Notes for Release 0.259 |

If you use this in a non-trivial fashion (specifically, if the object will be printed in a non-
atomic fashion), then it might be reasonable to definc methods for the pretty-printer using
the :pp-dispatch and :pp- anaphor dlspatch methods, and define the non-pretty-printing
:print-self method in terms of how the pretty-printing is performed. This is described in

(71

.equal other-object ' ’ ‘ Message
The object should return t if it is equal to olherobject nil if it is not. other-object wiil
be of the exact same: type as the object receiving the message (a consequence of the

formal definition of equal, page 16).

:sxhash Message
The object should return a hash encoding of itsclf, such that two objects which are equal
have the same hash. See the description of sxhash, page 82, for the semantics which
. must be enforced, and note also the default :sxhash method, page 111.

;eval ’ , Message
Allows extending the evaluator in strange and wondrous ways to handle evaluation of non-
list forms. Note that certain types which are defined to self-cvaluate do so by special case
checks in the interpreter, so one cannot change the evaluation behaviour of those types.

:funcall argument-vector ‘ ' ~_ Message
This is what happens by default when a funcall is performed on an-instance. argument-
vector is a stack.- vector (section 3.1, page 12) of the arguments.

:describe 2arguments? Message
This is what is used by the describe function (page 145). :
:exhibit-self stream | Message
:select-nth n * . Message
:store-nth n value Message

These are used by the exhibit function (page 145) to define how exhibition is performed
on objects of the given type. Basically, exhibition is initiated by sending the object a
:exhibit-self message; it should respond by printing out the appiopriate information, and
returning the number of “slots” or "indices” which it includes. (Try exhibiting various
NIL objects to see the format; do nof include the clear-screen in the display. The indices
printed out in the initial display are printed by this method.) Then, the object will be
sent (as the user interacts) :select-nth and :store-nth messages to select and store the
corresponding components. Generally, there is' no need to define such a method for
ordinary flavors, as the method inherited from vanilla-flavor will show the instance
variable names etc. -

:pp-dispatch format-description? Message
:pp-anaphor-dispatch Message
These are used by the NIL pretty-printer [7]. :pp-dispatch is used to control formatting;
to use this you will need to consult the pretty-printer documentation. :pp-anaphor-
dispatch is used to detect circularities in the structure being printed; all that is normally
necded is to call the function pp-anaphor-dispatch on each of the components which
will be printed by the :pp-dispatch method. These methods should be defined in pairs,

ML:NILMAN;FLAVOR 42 - ' 17-JUN-83

- NIL Notes for Release 0.259 ' 111 | : Message Defaults

so that they refer to the same set of components.

16.3 Message Defaults
Here are some of the messages provided by vanilla-flavor, and what they do.

:print-self stream level slashify-p - Operation On vanilla-flavor
Prints somcthing vagucly informative.

:get-handler-for message-name Operation Onvanilla-flavor
Returns the handler function for the message message-name, or nil. In NIL, this is
~ necessarily a subr.

toperation-handled-p message-name Operation Onvanilla-flavor
Returns a non-null value if the object supports a message message-name, nil otherwise.

:send-if-handles message &rest args . Operation Onvanilla-flavor
If the object supports message, then it is sent that message with arguments of whatever
args were passed; otherwise, nil is returned.

:which-operations Operation On vanilla-flavor
A list of all of the messages Whlch the object handles is returned. This is computed
dynamically and cached on a per-flavor basis.

;equal Operation On vanilla-flavor
By default, two objects are equal only if they are eq. If the object has interesting
criterial components, it must define an equal message to compare them.

:sxhash Operation On vanilla-flavor
The default :sxhash simply returns a hash computation on the name of the flavor. The
reason for this is that if two objects are equal, their sxhashes must be equal. So, if the
object does anything interesting for the :equal message, it should probably define a
compatible :sxhash message so that different objects will hash differently.

sexhibit-self stream Operation On vanilla-flavor
:select-nth n Operation On vanilla-flavor
:store-nth n value Operation Onvanilla-flavor

The default exhibition method displays the all of the instance variables of the instance,
and their values. The select and store methods just allow one to fetch and modify the
variables by index.

:pp-dispatch format-description? Operation On vanilla-flavor
The default :pp-dispatch method pretty-prints the object the way it prints (via :print-
self), and treats it as atomic. If you define a :print-self method for something, the :pp-
dispatch mcthod may not function as desired, in that it will not do any formatting of the
components,

ML:NILMAN;FLLAVOR 42 . : S 17-JUN-83

Message Defaults 112 NIL Notes for Release 0.259

:pp-anaphor-dispatch Operation On vanilla-flavor
The default :pp-anaphor-dispatch mcthod does nothing, on the grounds that the :pp-
dispatch method will not be printing any components.

ML:NILMAN;FLAVOR 42 o ,' 17-JUN-83

NIL Notes for Release 0.259 : 113 Input, Output, and Streams

17. Input, Output, and Streams

Input and output in NIL is performed by operations on streams. Some streams can operate in
only one dircction (input or output), and some can operate in both.

streamp x
Returns t if x is a stream, nil otherwise.

Most operations on streams are performed by functions which take the strcam as one of its
arguments, possibly defaulted. Although ultimately the strcam opcerations turn into message-
passing using the flavor system, these functions are the perferred way to do things, as they
perform what mediation might be necessary between the desired effect and the stream’s
capabilities.

17.1 Standard Streams

The following variables have as their values streams used for various purposes. In the future,
the names will be changed to have * characters at both ends; e.g., standard input will become
xstandard-input#.

standard-input ' Variable
This is used as the default stream for various input functions, and for the toplevel and

breaklevel loops.

standard-output : ‘ Variable
This is used as the default stream for various output functions, and for the toplevel and
breaklevel loops.

terminal-io : Variable
The value of terminal-io is ordinarily the stream which connects to the user’s console.

error-output Variable
This is the stream to which error messages should be sent. Normally, it directs output
through the value of terminal-io (but see comments below), but it could be made to
send them to a file, for instance. (This may not be used properly yet.)

query-io : Variable
This stream is used to ask questions of the user. Normally it uses the terminal, but could
be made to (for instance) log the input. :

trace-output - . Variable
This is the stream to which output from tracing (see the trace function, page 143) is sent.

All of the above streams, with the exception of terminal-io, are initially bound to synonym_
streams which pass all operations on to the stream whxch is the value of terminal-io.

ML:NILMAN;NEWIO 15 ' ‘ 17-JUN-83

Stream Creation and Operations 14 NII. Notes for Release 0.259

The value of terminal-io should not normally be changed; to change where various input and
output is sent, the appropriate other stream(s) should be modified. There are occasions when it
* might be rcasonable to change the valuc of terminal-io, however, which is why the other strcams
arc supposed to indirect through the value of it: fancy graphics or window hacking might
necessitate making a completely new stream for it. This type of thing will be dealt with in some
later version of this document, :

Nii. additionally dcfines the following streams, which should probably be flushed, or at least
renamed with something more in line with the above variables. :

msgfiles ~ Variable
This is used for random kinds of mcssage printout which will not require interaction on

the part of the user. The compiler, for instance, prints its notifications here.

 17.2 Stream Creation and Operations

open what &rest keyworded-arguments
The open function is the function used for creating streams which interface to 170
"devices in NIL. It is likely that this will change in the future, such that each specific type
of "opening” has its own specialized function (e.g., for "files”, "terminals", possibly other
devices), in which case open will be for "files".

First, keyworded-arguments is put into a canonicalized form, FEssentially, open is
considered to take alternating keyword/value arguments. However, for MACLISP
compatibility, if open is given exactly two arguments, the second is interpreted as either a
single keyword, or a list of single keywords, which are mapped specially into the standard
open keyword arguments. Thus, in NIL,

(open pathname ’out)
opens pathname as a standard buffered ascii output file, and

(open pathname) ,
opens pathname as an ordinary buffered ascii input file.

open attempts to determine the way in which to actually perform the open by looking at
the options. I am bging very vague about this because it is going to change somewhat,
but hopefully will remain upwards compatible. If there is a :type keyword, then the
argument to that is used to tell open what type of open is being performed. The
interesting ones right now are

dsk

which says that what should be interpreted as a pathname, and the open will
refer to a file in some filesystem. The specifics of this for VMS are discussed later
in (page 126).

My »
which says that what is the name of a terminal (it may be nil, meaning use the
logical name TT), or a string with or without a : terminating it, or a pathname in
which the device is used), and the open should behave accordingly. This tty may
- actually be quite uscless, and you probably want instead

ML:NILMAN;NEWIO 15 : 17-JUN-83

NIL Notes for Release 0.259 115 Stream Creation and Operations

.display-tty
which is like :tty but scts things up so that cursorpos will work on it. This is
discussed more thoroughly in <not-yet-writtend.

If no :type is specified and what is a stream, it is sent the :open message with arguments
keyworded-arguments. The normal use of this is to re-open a stream which has been
closed, and in this case no arguments arc normally needed (and often are illegal). Not all
strcams necessarily support this, but all currently defined NIL streams which might be
returned by open and to which close is mecaningful, do. Many streams which support
this support the :set-pathname message, which is the primitive form of the MACLISP
cnamef function; this allows changing the pathname which will be opencd when a closed
stream is reopened.

with-open-file (var what &rest gubble) body... ‘ Special Form

This binds var to the result of opening what with options gubble, and executes body in

~ that environment.” When the body is exited, the file is closed. (You cannot fool with-

close

open-file by setqing var.) If the form is exited abnormally, by an error, quit, or
*throw, the file is closed in :abort mode; for a freshly written output file, this means it
is deleted.

The behaviour of with-open-file with respect to treatment of what and gubble, and to
errors in opening, is identical to open otherwise.

with-open-file should be used wherever that scoping is reasonable, so that stray open
files are not left around by buggy programs. There is also potential for it to be somewhat
more storage efficient due to use of resources, since the extent of the created stream is
known to be dynamic (it is not valid to pass it back outside of the with-open-file form).
This is not done yet, but will be someday.

stream &optional abort-flag
Closes stream.

You may close an already closed stream; close will return nil if the stream is already
closed (or does not support closing), t otherwise.

If abort-flag is not nil, then (in principal) this is an error close, as perhaps performed by
abnormal exit from a with-open-file form. For an output file, this might mean that the
file gets deleted. This is done with ordinary "disk" type output streams. ‘

abort-flag will probably be changed to be a keywbrded argument in the future.

make-synonym-stream symbol

This makes a synonym - stream. Such a stream directs (most) operanons on it to the
current dynamic binding of the variable symbol. In this way, the stream produced can
always be indirccting to another stream, even when the value of symbol changes by its
being bound or setqged.

ML:NILMAN:NEWIO 15 - 17-JUN-83

5

Input Functions ' 116 | NIL Notes for Relcase 0.259

make-string-output-stream &optional &key (line-length79) (line-number 1)
(:page-length 60) (:page-number 1) (:character-position 0)
This creates a stream which will accumulate all output given to it. This output may be
obtained as a string by get-output-stream-string, below.

The options are used to initialize various parameters of the strcam, so that formatting may
be performed to it. By special dispensation to COMMON LISP, if make-string-output-
stream is given exactly one argument, that is the line length.

get-output-stream-string string-output-stream
string-output-stream should be a strcam created by make-string-output-stream. * This
returns all of the text accumulated since the last call to get-output-stream-string on this
stream, or the strcam’s creation, as a string.

with-output-to-string (var . options) body... Special Form
This binds var to a strcam which will accumulate all output sent to it as a string, which
will be returned when with-output-to-string returns. The options which the strcam may
be created with are passed directly to make-string-output-stream, q.v. The stream so
created has only dynamic extent; it is allocated as a resource, and.dcallocated on exit
from with-output-to-string. As such, with-output-to-string can be more efficient than
calling make-string-output-stream and get-string-output-stream-string yourself.

make-string-input-stream string &optional &key (istart0) :end
This returns a stream which, when read from, will produce the characters of string from
-start to end (defaultly the end of the string). The behavmur of the strcam is undefined if

string is modified during the reading.

with-input-from-string (var string . options) body... Special Form
This evaluates body in an environment in which var is bound to a stream created by
make-string-input-stream with a string of string and extra options options.

The stream so created, however, has only dynamic extent. The stream is allocated on
entry and ceallocated on exit for later reuse, so with-input-from-string can be more
efficient than doing this yourself.

17.3 Input Functions

First some functions not specific to ascii input streams (necessarily). listen and clear-input
could conceivably be meaningful on strange peripheral devices (dreamer, aren’t i?).

1isten &optional input-stream
This will return nil if there is no input immediately available from input-sream, non-null
otherwise. On a terminal, the intent is that it tells whether the user has typed some input
which has not been reau yet. On non-interactive streams it should be true except at end-
of-file; most streams probably don’t support it yet.

ML:NILMAN;NEWIO 15 S o ~ 17-JUN-83

NII. Notes for Release 0.259 ‘ 117 Input Functions

clear-input &optional input-stream
Flushes buffered input from input-stream. This only works on thc terminal right now. (It
isn’t really meaningful for non-interactive strcams.)

17.3.1 Ascii Input | . "

Most of the functions which read input take arguments input-stream and eof-value. In general,
if input-stream is nil or not supplied, it defaults to the value of standard-input; if it is the atom
t, the value of terminal-io will be used.

If no eof-value is specified, then an error will be signalled at end-of-file, otherwise the eof
value will be returned. Specifying an eofvalue of nil is not equivalent to specifying no eofvalue.

When input is read from an interactive stream, the characters typed will be echoed at the
user. For those functions which do some significant amount of reading, such as readline or read,
rubout processing will be provided. In this case, specifying an eof-value means that if the user
attempts to "rub out" past the beginning of what he was typing, the function will return eof
value, instead of requiring him to type a complete expression (line, s-expression, whatever the
function calls for).

What actually happens right now is that specxfymg an eof-value when reading from an
interactive stream, dies.

read-char &optional input-stream eof-value
Reads one character from input-stream.

This doesn’t seem to take eof-value yet?

- peek-char &optional input-stream eof-value
This definition is wrong. The arguments should be peek-type, input-stream, eof-value. It
will eventually be fixed.

Peek at a character in the input stream. Like read-char, but the next call to read-char
will return the same character.

unread-char character &opnonal input-stream
Undoes a read-char. peek-char, in the simple case, could have been (sometimes, is)
defined as being a read-char followed by an unread-char of the character just read.

Input streams are only required to support the ability to back up one character: muitiple
unread-chars without intervening read-chars are an error.

readline &optional input-stream eof-value

Reads a line of text from input-stream and returns it, as a string. A second value is
returned, which is t if end-of-file was reached, nil otherwise.

ML:NILMAN:NEWIO 15 o SRR 17-JUN-83

Output Functions o NIL Notes for Relcasc 0.259

read &optional input-stream eof-value
Reads onc s-expression from input-stream, and returns it. Reading and reader syntax is

discussed in section 15.3, page 86.

17.3.2 Binary Inplit '

The semantics of binary input are strcam specific. In general, integers of some significance
are read, and NIL places no special interpretation on any particular values.. The only sort of
binary input NIL supports, however, only reads unsigned cight-bit bytes from disk files.

read-byte input-stream &optional eof-value
Reads one byte from input-siream and returns it as an integer, unless end of file is
reached, in which case the normal end-of-file behaviour occurs.

174 Output Functions

Similar to the input functions, if an optional output-stream argument is not supphed to an
output function, it defaults to the value of standard-output. :

First some functions applicable to both ascii and binary streams.

force-output output-stream ‘ :
" The purpose of force-output is to ensure that no output which may have been produced
is sitting around in anyone’s buffers. If output-stream is buffered by NIL, the output
should be sent to the operating system (or whatever), and if necessary, the operating
system told to send the contents of its buffers off to their eventual destination. '

In practice this doesn’t do anything yet in NIL.

- finish-output ourput-stream
This is like force-output, and addmonally does not return until the output has actually

reached its destination.

If a stream does not handle this, which no currently implemented' NIL streams do, a
force-output is done, q.v.

clear-output output-siream
The purpose of this is to cause as Izttle as p0551b1e of any output already sent to output-
stream to reach its destination; just as force-output attempts to get all buffers sent off,
clear-output attempts to get all buffers flushed.

This is primarily intended for terminals, although it could be meaningful for random
other ‘devices (ascii and binary).- It does not do anything, and is not really expected to,
to a random disk file.

It doesn’t do anything to anything in NIL.

ML:NILMAN;NEWIO 15 B ‘ 17-JUN-83

NIL Notes for Relcase 0.259 19 Output Functions

17.4.1 Ascii Output

write-char char &optional output-stream
Writes char to output-stream.

terpri &optional output-stream
fresh-1ine &optional output-stream
terpri performs a newline on output-stream.

fresh-line docs so, unless it can determine that the "cursor” is at the left margin.

fresh-line is supposed to return t if it performed a newline, nil otherwise. terpri always
returns nil, for historical reasons. ‘

oustr string &optional output-stream (start0) count
Standard NIL string-output. Outputs the characters of string, starting at index start and
procecding for count characters, to output-stream. This is not defined by COMMON LISP,
but has been in NIL for some time and is extremely useful for doing efficient output
becausc it passes a pscudo-substring defined by start and count along to the stream. Most
NIL streams do this more efficiently than single-character output, especially the terminal
stream. :

write-string swring &optional stream

write-1ine string &optional stream
Writes the characters of string to stream. write-line follows them by a newline (terpri,
page 119). In NIL this is almost always faster than using a loop of write-chars.

princ object &optional output-stream

prinl object &optional output-stream

print object &optional output-stream
Standard Maclisp-style printing functions.

prin1 is the basic printing function, which attempts to output the printed representation of
object to output-stream in such a way that it might be reconstructable with read. No
newline or whitespace of any kind is output before or after, so delimiters of some sort
might be needed between successive calls.

print adds those necessary delimiters: it does a terpri first, and writes a space character
afterwards. :

princ is pretty much the same as prin1 except it does not try to make the output
readable with read, but rather outputs things "literally” insofar as that is possible with
arbitrary Lisp objects. Strings, for cxample, are written as if by qustr—simply their
contents. Symbols have their print-names written as for strings, etc. Numbers are
gencrally printed the same as they are by print.

ML:NILMAN;NEWIO 1§ - - : : ' 17-JUN-83

Formatted Output 120 | NIL Notes for Release 0.259

17.4.2 Binary Output

write-byte integer binary-output-stream
Writes the byte integer to binary-output-stream.

Note that the order of arguments here is the reverse of what the MACLISP out function
takes. Because of earlier confusion, the write-byte function accepts its arguments in either
order right now. ’

It is an error if integer does not fit in the byte size the strcam decals with. How is this
defined? Probably by the stream, ie. the bytes could be signed or not, the current ones are
not and are 8-bits, so integer can range from 0 to 255. '

write-bits binary-output-stream bits
Writes the bit-vector bits to binary-output-stream. The intent of this is that bits is taken to
be a concatenation of many bytes of data of whatever sizc the stream deals with.

It is an error for the size (in bits) of bifs to not be an exact multiple of the byte size o
the stream. '

This function is provided' primarily to help spced up the NIL compiler in creating VASL
files. The semantics may change some as additional forms of binary streams are added to
NIL. _ :

This may in fact be flushed.

17.5 Formatted Output

format destination format-string &rest format-args
format is used for producing simple formatted output; for instance, outputting a text
string with things substituted in in particular formats. The documentation on format in
the Maclisp Extensions Manual [3] describes the implementation of format in NIL, except
that NIL is lacking the operations which deal with floating-point numbers.

~format will be supported by COMMON LIsP, There is one known and significant point of
incompatibility: the ~G operator will mean something different; avoid its use if possible
(~» is one alternative).

pretty-prinl object &optional stream
Similar to prin1, but outputs object in (what is hoped to be) a significantly more aesthetic
format, with indentation showing nesting depth etc. The output starts wherever the cursor
happens to be on stream; pretty-print may be used to do this on a new line.

pretty-prin1 assumes that object is actually LISP code, and bases its formatting behaviour
on stylistic conventions used for indenting various program constructs. pretty-prin1-
datum may be used if object should not have these heuristics applied.

ML:NILMAN;NEWIO 15 o | 17-JUN-83

NII. Notes for Relcase 0.259 : 121 Querying the User

In NIL, pretty-prin1 attempts to determine the existence of circular structure, and show
this somchow without blowing up.

As of this release of NIL, this is now the pretty-printer documented in [7].

pretty-print object &optional stream
pretty-prin1, with a terpri first and output of a space character after. This, pretty-print
is to pretty-prin1 as print is to print.

pretty-prini-datum object &optional stream _
Like pretty-prin1, but does not assume that object is LISP code.

pretty-print-datum object &optional stream
Similar.

17.6 Querying the User

The following routines are built on the fquery function, which is modeled after that of LISP
MACHINE LISP. fquery is complicated and subject to change, however, and is not itself
documented here. Of the following routines, y-or-n-p and yes-or-no-p are defined by
COMMON LISP; the others are not. :

y-or-n-p &optional message stream
This prints message to stream (which defaults to the value of query-io), and then reads a
character from stream. It returns t or nil depending on whether the character signified a
positive or negative response: space and rubout are accepted in place of y and n.
Because it is so easy to get a mistaken response from this routine, it should be used for
anticipated questions only. :

Because it is used for both input and output, stream must be bi-directional.

yes-or-no-p &optional message stream
This is similar to y-or-n-p, but requires a more complete answer. Typeahead to sfream
. is flushed (with clear-input, page 117), and it feeps, before reading a complete "yes" or
no" followed by a newline. ’

format-y-or-n-p format-string &rest format-args
Most the time when y-or-n-p is used, people seem to want to use a format string with
some arguments. This does that. Input and output is done to query-io. Otherwise, it
behaves like y-or-n-p. '

format-yes-or-no-p format-string &rest fomrat-args
_ Similarly.

ML:NILMAN:NEWIO 15 | : 17-JUN-83

Filesystem Interface 122 NIL Notes for Release 0.259

17.7 Filesystem Interface

The NI filesystem interface is designed to allow it to refer to more than one filesystem. The
names of files arc not represented as just strings or lists of components, but are objects of type
pathname. The pathname objects for different filesystems would be of different types, and
operations on files in the filesystem arc performed with respect to that type. For instance, we
have under devclopment facilities to allow use of the filesystems of TOPS-20 and ITS use
CHAOSNET. At the moment, only the local VMS filesystem is supported.

17.7.1 Pathnames

A pathname has six criterial components.

host
This component always contains an object which describes the ﬁlcsystcm the pathname

refers to. All pathnames have such a component; no pathname may be formed without
such a component. Thus, pathname interpretation is always performed with respect to
some filesystem. ‘ ‘

device
This is normally a string, naming a device.

directory
A string naming a directory, or a list of strmgs if the dnrectory is structured (that is, if

the pathname is in a subdirectory).

name
A string, the "primary" or "root" name of the file,

type _
A string, the "type" of the file. This is not necessarily as the extension which will be

used to form the host-specific pathname string; e.g., for a VMS filesystem, a file type of
LISP corresponds to the extension LSP.

version
This is the version of the pathname; usually it is an integer.

A pathname need not refer to an actual file in a filesystem, nor need all the components
(other than the host) be present. An unspecified component is represented by nil. Such a
component may be supplied by later defaulting operations. Components may also contain certain
keywords which are interpreted specially: '

:wild
A "wildcard" component.

:newest
:oldest |
These are only applicable to the version component of a pathname. They cause the

reference to the filesystem to refer to the newest or oldest version present. Only newest
is actually supported by the vMS filesystem interface.

:unspecific
If any component in a pathname has this as its value, then the pathname does not refer

ML:NILMAN;NEWIO 15 e ~ 17-JUN-83

NIL Notes for Releasc 0.259 123 Filesystem Interface

to a specific file in the filesystem, but rather to the group of files which match the other
components. This is normally only used for the type or version components, so that one
may refer to the entire group of files with the same device, directory, and name. This
doesn’t have any use in NIL yet; when Nil. pathnames gain the ability to have arbitrary
attributes (propertics) associated with them, it will be significant.
:implied

If a pathname has this as a component, it means that the device component is a logical
name which will supply the value for that component.

17.7.1.1 Pathname Functions

pathname thing
thing is cocrced into a pathname.

If it is a pathname, it is returned.

If it is a list, then it is assumed to be a MACLISP namelist; interpretation of this, and
MACLISP compatible pathname handling, is discussed in <not-yet-writtenD.

If it is a string (or symbol), then the text is examined for a prefix or suffix component,
followed by a ":", which is a host string; if one is found, then that is the host used,
otherwise a host is defaulted (the handling of this is pretty spastic right now, but hardly
matters as there is only one host). The string is then parsed in the manncr specific to
that host, and the resultant pathname returned.

pathname-host pathname
pathname-device pathname
pathname-directory pathname
pathname-name pathname
pathname-type pathname
pathname-version pathname
These return the components of pathname, which is coerced to a pathname with the

pathname function.

namestring pathname
pathname is coerced to a pathname with the pathname function, and its "standard printed

representation” returned, as a string.

user-homedir-pathname &optional host
Returns the user's home directory, as a pathname: the name, type, and version

components will be unspecified.

The home directory is where files specific to the user arc looked for (or defaulted to).
See, for instance, init-file-pathname, page 124.

Under VMS, this is obtained by translating the logical name SYS$LOGIN.

ML:NILMAN;NEWIO 15 17-JUN-83

P‘ilcsystcm Interface - _ : 124 NIL Notes for Release 0.259

user-workingdir-pathname &optional host
Returns the user’s working directory, as a pathname the name, type, and version

components will be unspec:ﬁed

For a local vMS ﬁlesystcm, this is the RMS default device/directory string, which is what
is modified by set default in DCL. If for some reason the string returned by RMS
does not ‘have a device specified, SYS$DISK will be supplied for the device component.
Note that the RMS default is copied from the command interpreter when the NIL process
is created; temporarily cxiting the. NIL and changing the default will not change the value

of this.

user-scratchdir-pathname &optional host
Returns, as a pathname, the dlrcctory of the directory which should be used by programs

for writing "scratch” files.

The local-vms host uses the value of the logical name SYS$SCRATCH if that exists,
otherwise the user’s home directory. If for some reason the device field is absent,
SYS$DISK is supplicd. Note that the value of the logical name is copied from the -
command interpreter when the NIL is created. Temporarily exiting from the NIL and
changing the logical name definition will have no effect.

init-file-pathname program-name &optional host v
This returns the pathname of the user’s init ﬁle for program-name on host. program-name

should be a string,

For NIL under vMS, the init file is on the user’s home directory, and has name NIL and
extension INI (the file type is INIT). This same convention is used in general by this
function; for an arbitrary program name, the init file is named, essentially,
SYSSLOGIN: program-name. INI

In the NIL programming environment, this is more for the use of LISP subsystems than a
general facility (which could do things like determine the init file for logging into the
vax). For example, if you had a system LSB which people loaded into their NIL, or
which was dumped out in a NIL, it might load an LSB init file. Note that there is a
problem here if program-name is not valid as a pathname name component for the
particular host.

17.7.1.2 Merging and Defaulting

Merging and defaulting are the actions used to fill in components missing from a pathname
specification, usually when the pathname is about to be used to reference something in the
filesystem. For the most part, this involves supplying the components missing in one pathname
from another. The algorithm used is slightly more complicated, and is described under merge-
pathname-defaults, below.

In NIL, the pathname defaults for a specific application are maintained in a pathname defaults
object (it will probably be of type fsipathname-defaults). This enables modular handling of
supplying of defaults for multiple hosts, pathname "stickiness" for sets of commands, etc. The
defaults are often used to supply the host with respect to which some operation must be

ML:NILMAN;NEWIO 15 : 17-JUN-83

NIL Notes for Release 0.259 : 125 ' Filesystem Interface

performed, such as pathname parsing.

merge-pathname-defaults pathname &optional defaults default-type default-version
This is the main merger. pathname may be anything coercible to ‘a pathname. defaults
may be a pathname defaults object, a pathname, or a string or symbol (which will be
cocrced to a pathname first). default-type and default-version may be whatever is allowable
for types and versions.

If it is necessary, pathname will be parsed with respect to a host determined from
defaults. If the directory field of it is missing, then that will be supplied by defaults.
There is some question as to what should happen if the device field of pathname is
missing: currently, it is simply filled in from defaults. In the Lisp Machine
implementation of this function, it is supplied as the default device for the host (perhaps
inconsistently, for instance only when parsed from a string?); probably what should
happen is that whether the device comes from defaults or not is determined by the host,
so that it would if the devices were really structured (with directories in them etc.), and
would not otherwise (which in Lisp Machine Lisp appears to be mainly for the sake of
the ITS operating system),

If pathname has a name supplied, then if the type and version of the resulting pathname
are defaulted from default-type and default-version, as necessary Otherwise, the name,
type, and version are defaulted from defaults. Thus:
(merge-pathname-defaults
"[nil.vas]foo" "sys$disk:[gsb]zz.1sp;3" "vasl")
=> #<local-vms-pathname "node:sys$disk:[nil.vas]foo.vas">
(merge-pathname-defaults
"[nil.vas]" "sys$disk:[gsb]zz.1sp;3" "vasl")
=> ffi<local-vms-pathname "node:sys$disk:[nil. vas]zz 1sp;3">
(merge-pathname-defaults
"[nil.vas]=.inp" "sys$disk: [gsb]zz 1sp;3" "lisp")
=> #<local-vms-pathname "node:sys$disk:[nil.vas]zz.inp;3">
In the above, it is worth noting that "=" as a pathname component is used as a
placeholder for an unspecified component, and that a file type of lisp is mapped (by the
VMS pathname code) into an extension of Isp, and vasl to vas. The specifics of the
syntax and file-type/extension mapping are described elsewhere.

The default value of default-version is :newest. The default value of default-type is "lisp";
however, it is highly recommended that this not be depended upon, as it may be changed
to come from defaults.

Here are some of the pathname defaults in use in NIL.
*10ad—pathndme—defau1ts¢ Variable
This is used to provide pathname defaults for load, compile-file, and any similar

functions. It is initialized to the user’s working directory with name FOO and type LISP
(see user-workingdir-pathname, page 124).

ML:NILMAN;NEWIO 15 : 17-JUN-83

Filesystem Interface 126 NIL Notes for Release 0.259

«default-pathname-defaults» ' Vatiable
This provides super-defaults for anything that necds them, such as open, with-open-file,
and parsing a pathname string out of context. It is initialized to the user’s working
~directory with name FOO and type LISP (see user-workingdir-pathname, page 124).

xscratch-pathname-defaults Variable
This is used by things which must writc out "temporary" files. Things which use this
should not modify it; it should be left to the user to set default pathnames for hosts
(primarily for the sake of the device and directory) to say where such files should be
written. See user-scratchdir-pathname, page 124,

For cxample, the current NI compile function creates a file named aaafoo.vas, and
supplies the device and directory from *scratch-pathname-defaults».

17.7.2 Opening Files

Files are opened with the open function (page 114), or with-open-file (page 115), and may
be closed with close (page 115). open by default assumes that the open is a reference to a file,
so coerces its first argument to a pathname, and then creates a strcam to the specified file in the
filesystem. NIL currently employs only two modes of file opening. These are :ascii and :byte

modes.

:ascii will cause the file to be written as variable-length records, with record-attribute of
carriage-return. The existing disk 1/0 code does not have the intelligence to deal with records
longer than 512 bytes, however, so is forced to terminate records when that limit is reached. To
compensate, so that spurious newlines do not-get inserted into LISP files, records exactly 512 long
are assumed to not actually be terminated, but "continued” with the next record, when read as

 input.
fixnum simply uses fixed-length 512-byte records; this is what vas1 files use.

fs:close-all-files
In case you do mess up and lose track of some files, this will close all open files (which
have been really opened as streams, not just kludgey temporary opens). Every known
host object is supposed to keep track of all streams which it has open, in such a way as
to be secure against timing screws, so that this may at least be done.

Doing (exhibit fs:*host-instances#*) should give one a handle on the open files, as the
host instances should point to the files they have open. fs:xhost-instances* is the list of
. all known hosts, which is used to (among other things) drive host-name lookup.

ML:NIILMAN;NEWIO 15 o 17-JUN-83

NIIL. Notes for Releasc 0.259 127 Filesystem Interface

17.7.3 Other File Operations

probe-file pathname
If pathname (which is coerced to a pathname with the pathname function) can be opened,
its trucname is returned; otherwise, nil is returned. This may be used to see if pathname
exists and is accessible. (If a file protection crror occurs, probe-file returns nil, although
that may change, as the intent is to sce if the file exists.)

Note file-length and filepos are missing from NIL.

All of the remaining functions in this section deal with cither a stream, or with a pathname.
For the former, they perform the operation on the open stream; for the latter, on the file in the
filesystem, which may involve opening the file temporarily. At present, none of them work on
streams. A futurc cdition of the filesystem code will contain more code written in LISP, and be
much more versatile in this regard. :

For the functions which are described as returning an error description, this is probably a
string, but may change to be a more complicated object in the future. (That object should,
however, have the property that it will print with princ as the error message.) Tests made on the
return result should be made accordingly; that is, be based on null, or streamp, or listp or
whatever. Signalled errors are typically signalled as proceedable :io-lossage errors; returning a
value from the error should cause the function to return that as its value.

rename-file file new-name &optional (errorp i)
Renames file, a filename or a stream open to a file, to new-name, which must be
coercible to a pathname. If error-p is not nil, then a file-system error will be signaled as
a LISP error; if it is nil, then an error description will be returned. If everything goes
fine, nil is returned. ‘

delete-file file &optional (errorpi)
The file named by file, or the file open on the stream file, is deleted. If an error occurs,
then a LISP error will be signaled if error-p is not ml otherwise an error description will
be returned. If all goes well, nil is returned.

file-creation-date ﬁIe '
This returns the creation date of the file as an integer in universal time format, or nil if

this cannot be determined.
What does that mean if the file isn’t there? (This is the common-lisp definition.)

The absolute value of the integer is almost complete garbage right now, however, two of
them may be compared with greaterp or lessp or equal. This number is precise only to
seconds, which is less than VMS provides.

file-author file
Returns the name of the author of the file as a strmg, or nil. For vMs files, the string is
a UIC, eg. "[200,007]", and the group and member numbers are guaranteed to be

padded with lcading zeros to at least three digits.

ML:NILMAN:NEWIO 15 . 17-JUN-83

Filesystem lnterface 128 - NIL Notes for Release 0.259

17.7.4 File Matching

allfiles list-of pathnames
Returns a list of pathnames matching all of those in list-of-pathnames. This is done, of
course, - by appending together the lists of pathnames which match each of the pathnames

in list-of-pathnames.

By convention, this matches over all those components not specified in each pathname.
vMS does not allow matching all devices, however, so the device should be specified, or
will be dcfaulted from somewhere (where? mms default but it shouldn’t be). Newest
versions can be matched also, by using the appropriate pathname syntax. Note that elipsis
specifications in directories, and star specifications in names, all work (fortuitously,
perhaps, but they work): ec.g. (alifiles "[nil...]286%.%;") returns a list of pathnames of
the files with highest version number of all the files in the NIL hierarchy with first three
characters of their name being "286".

mapalifiles function list-of-pathnames .
Calls function on each pathname which matches pathnames in list-of pathnames. This is

essentially equivalent to
(mapc function (all1files list-of pathnames))
but calls function on each as it is generated rather than consing up the list,

In fact, allfiles is implemented in terms of mapallfiles.

mapallfiles (and hence allfiles) accept a single symbol/string/pathname in place of a list. . It is
unclear what should be done about this; it is (currently at least) of no use to NIL to deal with
multiple specifications at once, and in fact the original alifiles function in MULTICS MACLISP did
not take a list, but only a smgle pathname,

There is also no kludgy testing in NIL such that if a namelist is specified it must be a fully-
specified namelist (insofar as explicit "*" components are specified). Thus using a namelist as a
single pathname will be interpreted as a list of pathnames, potentially resulting (incorrectly) in a
match over all the files on the current device.. (That was the reason for the kludgey check in

. MACLISP, you see...)

17.7.5 Loading Files

load filename &kecy :verbose :package :set-default-pathname :static :default- pathname
:characters :binary :.defaults :print

:verbose
Boolean: print out lots of gubbish about loading. Default is value of *load-

verbosex*.

‘package
override the package specification (if any) obtained from the file.

:set-default-pathname
Boolean: set the default pathname of the pathname-defaults used (see defaults
and :default-pathname, below). Default is value of =load-set-default-

ML:NILMAN;NEWIO 15 | | o 17-JUN-83

NIL. Notes for Release 0.259 . | | 129 Filesystem Interface

pathnamex,

:defaults v
Specified pathname-defaults to use in place of the value of load -pathname-
defaults*. (This onc isn’t in COMMON LISP. Not clear it should be heavily used,
but i can see it has application.)

:default-pathname
Use this for defaulting, in preference to the pathname-defaults. The defaults are
still set in the defaults specified by :defaults (or its absence).

:characters .

:binary
Boolean. :binary t implies that the file is a VASL file; :CHARACTERS T implies
that the file is LISP text. By default, the file is examined to determine which it is.
And, if no type is specified in filename, first a file with type vasl and then a file
with type lisp will be looked for.

:static
Boolean; says to load the file into the static heap. Default is value of «load-in-

static-area».

:print
Boolean; if not nil, says that the results of evaluation of forms in the file are to
be printed. Default is nil, and it probably doesn’t work anyway; certainly not for
vasl files.

17.7.6 File Attribute Lists
Not too much detail yet.. However, it’s necessary to use it.

If, on the first line of a source file the characters "-*-" appear, then the text from the first "-

*." to the next is parsed as a file attribute list. (Funnyness with multiple lines? Well, anyway, it
works easily on one line.) This text is logically a list of keyword/value pairs, with the values
being either single values or lists of values. The entire construct is made invisible to the
processing language by being placed within its commenting construct. _

. -«- Mode:Lisp; Package:Compiler; Base:10; Readtable:NIL -»-
might occur as the first line in a NIL compiler source file. It says that the mode of the file is
lisp (this being for the benefit of text editors), and that the file should be read and processed in
the compiler package, decimal radix, and using the NIL readtable. "“Lists" of values are provided
for by separating the individual items by commas, as in -

. -»x- Mode:Lisp; LSB:ppdef,pretty-print-definition -s-
The parsing of tokens in such a construct is pretty rudimentary and crufty, but essentially things
are symbols except for a series of digits (optionally followed by a decimal point) which is a
decimal integer.

File attributes typically translate into some special binding environment needed for the
processing of the file (in some context). The following are prc-deﬁned in NIL:

package package-name
The file is processed in the package named package-name.

ML:NILMAN;NEWIO 15 o | . 17-JUN-83

Filesystem Interface 130 ' NIL Notes for Release 0.259

readtable readlable-name :
The file is read in using the readtable named readtable-name. Syntax, and readtable

naming, is described in section 15.3, page 86.

base radix
Binds both the input and output radlces no matter what those damned variables are

named.

radix radix
For those who are confused by base and will be even moreso when the variable is

named *basex*.

patch*file yes-or-no
If yes-or-no is yes (it shouldn’t be specificd otherwise), then a varlablc proclaiming the
patch-file-ness of this file is bound, so that various things can sce it and be clever, like
the helptul function which warns you about redefining a function defined by someone else

in another file (said function not existing yet).

isb module-name,system-name
This is defined by 1SB [4], not NIL (q.v.).

When a file attribute list is parsed, the attribute names are keywords, and the values are
either keywords or integers (or lists of keywords or integers).

:file-plist pathname C ' " ‘ Message
If pathname can be opened, then th1s returns a disembodied property list with the file
attributes in the cdr, and the truename of the file in the car. Otherwise, it returns nil.

This probably should be renamed :file-attribute-list.

fs:process-in-load-environment plist funct pathname &rest args
plist should be a parsed file attribute list (with an even number of elements; the cdr of

what is returned by the :file-plist message). pathname should be the pathname which the
file attributes were obtained from.

The environment which is specified by that attribute list is established, and then ﬁmct
called with arguments of pathname and whatever args were given.

This is what is used by both load and the compiler. It enables a stable interface to how
bindings and other environment modifications are obtained from the file attributes.

Examination of the source code (the file [NIL.IO]PATHN.LSP) will show the convention
which is used for defining additional file attributes. It is basically an extension of that defined by
LISP MACHINE LISP.

ML:NILMAN;NEWIO 15 : : , 17-JUN-83

NI1. Notes for Release 0.259 131 Filesystem Interface

17.7.7 Internals for VMS Record Management Services

17.7.7.1 Data Structures

Sce the NIL sopurce files RMSSTR and RMSSUB; the file VMSFILE contains some
examples.

si:make-fab
s1:make-rab
s1:make-nam

si:make-xab

si:fab : Resource
si:rab | Resource
si:nam _ ’ Resource
si:xab v Resource

17.7.7.2 RMS Hacking
si:rms$close fab
si:rms$create fab
si:rms$display fab
si:rms$erase fab
si:rms$extend fab
si:rms$open fab
si:rms$connect rab
s1;rms$de‘l‘eta rab
si:rms$disconnect rab

si:rms$find rab

ML:NILMAN;NEWIO 15 ' ' 17-JUN-83

Fiblcsystcm Interface 132

si:rms$flush rab
si:rms$free rab
si:rms$get rab
si:rms$nxtvol rab
si:rms$Sput rad
si:rms$release rab
si:rms$rewind rab
si:rmsstrunc rab
si:rms$update rab
si:rms$wait rab
si:rms$read rab
si:rms$space rab
si:rms$write rab
‘si:rms$enter fab
si:rms$parse fab
si:rms$remove jfub
si:rms$rename fubl ﬁzbz
si:rms$search fab

si:rms$setddir new-directory-specification

NIL Notes for Release 0.259

Returns, and maybe updates, the RMS default directory. If new-directory-specification is
nil, the RMS default is not modified; otherwise, it is set to new-directory-specification,
which must be a string. This is a fairly direct interface to the SYS$SETDDIR system

service. _

If something goes wrong a system error status code may be returned instead of a string,

ML:NILMAN;NEWIO 15

17-JUN-83

NIL Notes for Release 0.259 : 133 Terminal I/0

17.8 Terminal /0

The current NIL system contains a terminal strcam which is translates general operations into
terminal-specific display codes. Characters output to it (via the :write-char message or the write-
char function) are interpreted as cither display operations (e.g., carriage-return moves the cursor
to the next line or wraps to the top of the screen, and clears the line it moves to), or as graphic
characters (causing certain characters which are nor graphic on typical ascii terminals to to be
printed with certain conventions). Linc wraparound is performed also.

The best way in which this can be accessed is with the cursorpos function, which is MACLISP
compatible, In fact, the behaviour of the cursorposable tty stream emulates the behaviour of
terminals under the ITS operating system, down to the terminal-width fencepost behaviour due to
the use of the last column to hold the continuation character. (The "keyword character” argument
to cursorpos, as defined by MACLISP, in fact derives from the sccond character in the escape
sequence used perform that cursor operation under ITS. Ah well))

cursorpos &optional argl arg? arg3
cursorpos is a MACLISP compatibility function, but it offers an interface to the display
terminal code which may be safely and reliably used. Note that the arguments are
interpreted in rather strange manners.. As a general rule, cursorpos is supposed to
return nil if it was not capable of performing that particular operation on the particular
stream involved, t otherwise. It is nor the case, however, that it may be used on non-
terminal streams; that is an error.

(cursorpos)
returns the cursor position of termmal io as a pair, (vertical-position . horizontal-position).
Both positions are mecasured zero-origined, from the top-left corner of the screen. nil
should be returned if the stream does not have a generally movable cursor.

(cursorpos vpos hpos)
Positions the cursor of the stream terminal-io at that position. Either vpos or hpos may
be nil, in which case the current value is used.

Otherwise, the first arg to cursorpos should be a symbol (or character object), which
may take an additional argument. The case is irrelevant,

C Clears the screen. The cursor moves to the "home" position (top left corner). On
a non-display, this outputs a newline, so always succeeds." ‘

Fresh-line. In this instance, the fresh-line function (page 119) is preferred.
"Top." The cursor is homed, moved to the top left corner.
Home down. Bottom left corner.

Clear-to-end-of-line. From the current position to the right margin is cleared.
The cursor does not move.

E Clear-to-cnd-of-screen. Current position to right margin, and all following lines,
are cleared. The cursor does no move.

T N = >

U Move Up a line. Wraps around the screen, does not scroll.

ML:NILMAN:NEWIO 15 . - 17-JUN-83

Terminal 170 134 NIL Notes for Release 0.259

D Move Down a line. Wraps around the screen, does not scroll.
Move Forward a character position.

B Move Backward a character position. If at the left margin, effectively does U
then moves to the column to the left of the continuation-character column (i.e., it
backs up the amount by which the cursor would have moved for a single-position
printing character).

K Erase the character the cursor is over (this would not be the last one typed
normally, sec below:)

X B, then K. Simpleminded way to rubout the last character typed.

H hpos
Set the horizontal position to Apos.

V vpos
Set the vertical position to vpos.

] The insert-line operation
\ The delete-line operation
~ The insert-char operation

the delete-char operation

Additionally, one may specify a stream to cursorpos by giving that as the last argument.
The atom t as a stream means, as with other printing functions, the terminal (the value
of terminal-io). Note, however, that no stream also uses the value of terminal-io, rather
than standard-output. Note also that the form

(cursorpos 't)
is mtcrpreted as requesting the cursor position of termmal -io; to do a home-up, one
must use some alternate form like

(cursorpos 'top)

(cursorpos #\t)

(cursorpos 't 't)
This strangeness is also MACLISP compatible...

17.8.1 Modifying the Terminal Characteristics
set-terminal-type terminal-name
Resets the terminal characteristics from the termcap entry found for fterminal-name. See

{not-yet-writtend.

si:determine-and-set-terminal-type
This is the routine called on startup which either defaults or asks for your terminal type

ML:NILMAN;NEWIO 15 - 17-JUN-83

B

NIIL. Notes for Release 0.259 135 Terminal 170

:init-with-termcap termcap-struct Operation On si:display -cursorpos-mixin
termcap-struct is what would be returned by si:make-termcap.

17.8.2 Making More Terminal Streams

As noted elsewhere (page 114), open is what may be used to open terminal streams in NIL.
The :type keyword specifies that a terminal stream is requested:

.display-tty
This produces a terminal stream just like that NIL starts up with. Additional options fed to
open may be used to paramecterize it; these are described below.

:cold-load
This produces a "raw" tty which has no display capability. It docs perform some ascii-
ification of non-display characters output, but performs no functions like line wraparound.

ity
what does this do? is it left-over from something?

Interesting additional open keyword arguments which may be specified when opening a
display-tty:

‘terminal-type terminal-type-name

The terminal capabilities description is obtained from the termcap entry for terminal-type- -

name. Since one of these is necessary, you might as well specify the right one rather
than letting it default (the lookup in the database may still be necessary).

:cold-load-stream cold-load-stream
The first arg to open is ignored, and the innards of cold-load-stream (which must be a tty
stream as created by the :cold-load open-type) is extracted to get to the real terminal,
rather than opening a new one. (In the NIL loadup process, first the terminal streams are
set to be a cold-load stream, and then later they are reset to be real display-tty streams
using this. This is less important now than it used to be, but still comes in handy on
occasion. It’s not clear what use it might be to users.)

17.8.3 Display TTY Messages

In case you want to hack graphics on another terminal or something.. See also the source
code in ni1$disk:[nil.io]Jcursor.1sp.

:write-char char Operation On si:display -cursorpos-mixin
This is what implements write-char to a display terminal, with all the interpretation of
~ char described earlier.

soustr string start count Operation On si:display-cursorpos -mixin
Note start and count are not optional. Using this results in a significant efficiency gain
over individual :write-char messages, because the stream attempts to pass along as many
block-mode operations as possible to VMS.

ML:NILMAN;NEWIO 15 ' : : 17-JUN-83

Terminal 170 , 136 NIL Notes for Releasc 0.259

:write-raw-char char Operation On si:display -cursorpos -mixin
This is not actually provided by si:display-cursorpos-mixin, but is required to be
supported by flavors which mix that in. It is how si:display-cursorpos-mixin expects to
get raw codes out to the terminal. Obviously, then, if you also wish to get raw codes to
the terminal, you may usc this message on display tty streams.

iraw-oustr string start count Operation On si:display -cursorpos -mixin
Analogous.

ML:NILMAN;NEWIO 15 ' ' o 17-JUN-83

NIL. Notes for Release 0.259 137 Syntax

18. Syntax

18.1 What the Reader Tolerates

I will defer detailed discussion of rcader input and printed representation to the forthcoming
COMMON LISP manual [1]. The LISP MACHINE LiSP manual [10] also contains a good discussion
of this. What will be presented here is basically a summary of what the current NIL reader
accepts, utilizing COMMON LISP syntax.

Basically, the LISP rcader reads characters from a strcam and forms tokens out of them.
Certain characters cause additional actions to take place; for instance, the (character will cause
multiple (but possibly zero) expressions up to a matching) to be formed into a list. Some
characters are significant only when they are the first non-whitespace character; the # dispatch
macro character behaves like this: #0403 is the integer 259 (# 0 meaning "read in octal”), but
foo #0403 is the symbol whose print name is the string "FO0#0403". Aside from these, the
basic rule is that if a number can be formed from the characters of the token, it is; otherwise, it
is a symbol. The sole exception is that the period character () is taken as a cons dot. If a
character is preceded by a backslash (\), then all special significance is removed from it
including case translation, and is treated as a token constituent.

Thus:

foobar the atomic symbol FOOBAR

foo\bar The atomic symbol whose print name is FOObAR .

259.259 A floating point number. (Currently this is a double-float. } But see the later

discussion on floating-point syntax, section 2.1.2, page 4.)
259\ .259 The atomic symbol with print name 259.259.

| FooBar| Vertical bars read a symbol with all characters (except for vertical bar and
backslash) interpreted as constituent characters. So, this is the symbol whose
print name is FooBar. Backslash may be used to include vertical bars and

- backslashes in the symbol.

| Foo\|Bar\\|
Similarly, the symbol whose print name is Foo|Bar\.

259 The decimal integer 259.

259, The decimal integer 259. A trailing decimal point explicitly forces decimal
" notation, not floating-point.

-259 The negative decimal integer -259.

+259 The decimal integer 259.

25\9 The symbol 259.

\259 The symbol 259.

|259] The symbol 259.

ML:NILMAN;SYNTAX 29 ‘ 17-JUN-83

What the Reader Tolerates : - 138 NII. Notes for Release 0.259

1.0d-5 One times ten to the minus fifth power, as a double-float. See section 2.1.2,
page 4.
:foo A colon in a token uses the characters on the left to name the package the

following symbol is to be read into. The "null" package name means the
package into which keywords are read.

si:foo The symbol FOO, read into the package named SI (the system-internals
package).

si:|Foo\|Bar\\} ,
. The symbol Foo|Bar\, read into the SI package.

foo#0403 The symbol F00#040‘3.

If the token consists entirely of the . character (and none have been slashified), then it is
illegal unless there is exactly onc; that is a cons dot, which is only legal in list/cons formation.
Thus, .foo. is the symbol whose print name is .F0O0., but ... is an error.

The primitive syntax for a cons is
{car . cdr)
In this notation, a list of items a, b, and ¢ would be written as
(a . (b . (c . nil))) ' :
List syntax allows us to "elide” a cons dot with a following cons; the dot is eliminated, as are
the parentheses of the following cons:
{ab . (¢c . nil))
{(a bc . nil)
and finally, because nil is the same as (),
(abc)

The following characters terminate token formation, and do something special when
encountered: '
(Starts a list or cons, as described above.

) Terminates a list or cons, or some other construct which "matches" with parentheses, such
as #(.

| Vertical bar terminates token formation,

" String syntax. The characters up to the matchine " form the string; " and \ may be
included by preceding them with \. '

'’ Reads the following expression, and "wraps" it with the function quote. Thus, 'foo reads
as (quote foo).

* "Backquote". This is used for constructing expressions. Backquote is fully documented in
the Maclisp Extensions Manual [3].

, Comma is used for pe.forming substitution within backquoted expressions (q.v.).

The # character is a dispatch macro character. 1t reads (optional) digits as a numeric decimal
argument, and then dispatches off of the following character. The following are defined:

ML:NILMAN;SYNTAX 29 - 17-JUN-83

NIL Notes for Release 0.259 | 139 What the Reader Tolerates

#’expression
Wraps expression with function, similar to '. Thus, #'car reads as (function car).

#(xI x2... xn)
Reads as a simple general vector n elements long (n may be zero), with those elements,
bits

Reads in as a simple bit vector whose clements are bits (the bdigits 0 or 1). Thus, # »100
is a simple-bit-vector of lcngth 3; its element 0 is 1, and its elements numbered 1 and 2
are both 0.

Brational
Reads rational, the syntax for a rational number (which, remember, may be an integer)
in binary (base 2).

Orational
Reads rational in octal.

Xrational :
Reads rational in hexidecimal.’

radixRrational
Reads rational in radix radix.

fonf\character-or-character-name

Read an object of type character. The \ may be followed by either a single character
(and then a delimiter), or by a token (read as described above), which is interpreted as

. the name of a character. The returned object will have a font attribute of fons, which
defaults to 0. #\a is lowercase a, and #\| is the character object for vertical-bar. A
character name may have the names of character bits prepended to it. For instance,
\hyper-space is the character for space with the hyper bit. If the long form is used,
the final character may need to be slashified to be interpreted correctly. For instance,
#\control-a is uppercase a with the control bit, # \control-\a is lowercase a with the
control bit, and # \control-(is an error (the left-paren delimits) Wthh should have been
typed as # \control-\(.

C(real imag)
A complex number with real part of real and imaginary part of imag.

nAcontents :
Reads in as an array of rank n, thh contents contents (see make-array, page 67). This
does not work yet. »

S(name kwdl vall ... kwdn valn)
General structure syntax, for structures defined by defstruct name is the name of the

defstruct-defined structure. This does not work yet.

+ conditional-expression expression-to-conditionalize
Read-time conditionalization. See the Maclisp Extensions Manual.

- conditional-expression expression-to-conditionalize
Read-time conditionalization. See the Maclisp Extensions Manual.

.expression
Reads in as the evaluation of expression.

ML:NILMAN;SYNTAX 29 - : _ 17-JUN-83

The Lisp Reader . 140 NIL Notes for Release 0.259

.expression
L.oad-time cvaluation. If the expression is being rcad normally into NIL, this behaves like

#.. However, if it is in a file being compiled, the compiler will arrange to have
expression cvaluated at load (i.c., vasload) time, when the comammg expression is being
constructed. This does not work yet in NIL,

18.2 The Lisp Reader

18.2.1 Introduction

The NIL reader was designed to be incrementally extensible and to support the implementation
of other languages in NIL. It also addresses some cfficiency issues to to take advantage of, but to
also hide, low-level considerations in disk and terminal 1/0.

COoMMON Lisp and MACLISP compatible syntax extension functions are provided, along with
readtables for the syntax of NIL, COMMON LISP,MACLISP, and CGOL. The definition of these is in

the file [NIL.LISPIOJRTBSETUP.LSP.

Note that the default readtable has been set to one conforming to the COMMON Lisp
specification. The only significant difference between this and what MACLISP and LISP MACHINE
LISP users have been using is that the syntax escape character is backslash, instecad of slash. Some
MACLISP programs we have seen are also using what is now the package prefix character ":" as a
regular symbol-constituent character. If any of this presents a code porting problem, then set the
readtable to one of the compatible readtables documented later, or spemfy a readtable in the
modcline of the source files in question. For example:

;s-*-Mode:Lisp;Readtable:ML-»-
i3 This code uses ":" and "/" as in maclisp.

;;-*-Mode:Lisp;Readtable:LM-»-
;3 This code reads using the old 1ispmachine syntax.

C -*-Mode:Fortran;Readtable:Fortran-=-
C This would work if one defined a readtable for Fortran.

% -»-Mode:Lisp;Readtable:Cgol-#-
This is lisp code in cgol syntax. Yow! %
define fib(x); if x<2 then 1 else fib(x-1)+fib(x-2)$

;; To get a maclisp readtable,

(setq readtable (si:lookup-readtable "ML"))
;; to get a lispmachine readtable.

(setq readtable (si:lookup-readtable "LM"))

ML:NILMAN;SYNTAX 29 : : SRR 17-JUN-83

NIL Notes for Release 0.259 141 The Lisp Reader

18.2.2 Reader Extensions

For exotic or extensive reader extensions, see the documentation on the readtable, and how
the various language rcadtables are set up, in [NIL.LISPIOJRTBSETUP.LSP and in
[NIL.LISPIO]PARSER.LSP.

setsyntax character type value
This is a MACLISP compatibility feature, altering the syntax of the character in the current
readtable. nype may be macro, splicing, or single. If it is macro or splicing, then
value is a function of no arguments which is invoked when the character is read.

setsyntax-sharp-macro character type function &optional readtable
This is also a MACLISP compatibility feature. fype can be macro, peek-macro, splicing,

or peek-splicing. fiunction gets called with one argument, which is cither null or the
number between the # and the character.

18.2.3 Readtable

readtable Variable

The value of this variable is a datastruction that controls the behavior of the function
read.

si:1aookup-readtable name
- Returns the readtable corresponding to the syntax named by the string name.

si:enter-readtable name a-readtable
Enters a-readiable giving the syntax for name. name may then appear as a readtable
specification in the mode-line of a source-file.

create-readtable
Returns a naked readtable, with syntax for reading whitepace-delimited symbols.

s1:add-number-syntax
Adds syntax for parsing numbers to the current readtable.

si:add-1ist-syntax &optional (open #\() (close #\))
Adds syntax for parsing lists to the current readtable.

si:add-package-syntax &optional (char #\:)
Adds syntax for specifing packages to the current readtable.

si:add-escape-char-syntax char
Makes char the syntax-escape-character in the current readtable

ML:NILMAN;SYNTAX 29 : ~ 17-JUN-83

The Lisp Reader - 142 : NIL Notés for Relcase 0.259

si:add-prefix-op-macro char operator
Makes char a rcadmacro that returns a list of operator and the next thing read. For
example,
(si:add-prefix-op-macro #/' ’'quote)

- 18.24 Alternative Syntax

: The CGOL syntax [11] is available by loading the file NIL$DISK:[NIL.LISPIO]CGOL.LOD.

Further documentation is- in the file NIL$DISK:[NIL.MANUAL]CGOL.TXT. The implementors
do not rccommend the extensive use of CGOL or any ALGOL-like syntax for LISP programming,
especially in environments where program readability and cditability are important long range
considcrations. However, some feel that syntactic variety taken in moderation is good for the
soul.

cgolread '
Recads a CGOL syntax expression.

cgolprint expresszon
Prints an s-expression lisp program in the CGOL syntax

Another parser, for a language with syntax compatible with the symbolic algebra system
MACSYMA [8], is available by loading the file NIL§DISK:[NIL.VAS]PARSER, which sets up a
readtable named infix. The readmacro character "#$" has been set up to invoke this parser in
the "NIL" readtable. Onc could then write the following:

(defun f (v a b x)
#$(V[0,0]:COS((A-B)*X)/(2-2#(A-B)~2)+COS(V[1,1]*X),
v[0,1]:COS((A+B)*X)/(2- 2*(A+B)‘2) V[1,0]*V[0,0],
v[1,0]:V[1,1]+Vv[0,0],
v[1,17:V[0,1]%V[1,0])$)

ML:NILMAN;SYNTAX 29 17-JUN-83

NIL Notes for Release 0.259 143 © Debugging and Mctering

19. Debugging and Metering
19.1 Flow of Control

19.1.1 Tracing

trace function Macro
Puts a trampoline in the function cell that causes printing of the arguments and the return
value around a function call. function is not evaluated.

(defun f (x) (times x x)) => F

(trace f) => (F)
(untrace f) => (F)
(trace f) => (F)

(f 3) ; printout:

#(1 :ENTER F #(3))
#(1 :EXIT F #(9))
The printout is a VECTOR. Its elements are:
[0] Recursion level for the given function
[1] :enter or :exit
[2] Name of the function.

[3] The vector of arguments, or the vector of return values.

Say that you wanted a breakpoint on entry to f. Then say
(defun f-bp (level direction name vector)
(eq direction ’':enter))

(trace (f.(:break f-bp)))

Presently all trace options work this simple and functional way, the syntax of a trace option is
(:keyword predicate-function-to-call), or simply :keyword which means the same thing as
(:keyword t). Options are :noprint, :break, and :info.

One exception: (trace (f :menue)) enters a simple menue of various kinds of trace options.

ML:NILMAN;DEBUG 14 | 17-JUN-83

Flow of Control ' 144 NII. Notes for Releasc 0.259

19.1.2 Who does What, and Where

who-calls symbol &optional &key (type :function)
This scarches all compiled-code modules to find those which reference the fype value-cell
of symbol. type may take on the values :function, :value, :local-function, or :local-
value. It defaults to :function, thus finding all modules which call the function symbol.
A type of walue would find all those modules which referenced symbol as a special
~ variable. :local-function and :local-value (which should probably be :lexical- anyway)
~aren't actually useful; they would only find uses where the references were not compiled
away, and all local references are in the current compiler.

Someday this should be smart enough to do scarching through all defined functions,
including interpreted ones.

,/

whereis finction
Junction should be a symbol or a compiled-function. whereis returns the compiled-code
module (the module-object) which defines finction, or nil if that cannot be determined.

Someday (i keep saying that don’t i) there will be a more gencral mechanism, so that the
source file can be determined for all "defined objects”, such as those defined with defvar,
defstruct, defmacro, etc. Until then, note the following function:

si:module-source-file module
This returns the name of the source file for the module module. The current
- implementation does this by looking at the vasl file from which module was loaded, so
that file must exist on disk (with the same name).

ap ropos string &optlonal (pkg package)
This searches through pkg and all of its super-packages (see chapter 14, page 83) and
returns a list of all of the symbols which contain string as a substring,

si:apropos-generate fin arg &optional (pkgpackage) (superiorsi)
‘This function maps the function frh over all symbols which contain arg (a string or
symbol) as a substring, in the package pkg (and its superiors, if superiors is not nil).
si:apropos-generate uscs mapatoms (page 84); it is possible that fi could be called on
the same symbol more than once, although that will not happen very often in the current
NIL implementation.

The apropos function is defined using this, by
(defvar »apropos-list*)
(defun apropos (arg &optional (pkg package) (superiors t))
(let ((+apropos-list* ()))
(si:apropos-generate
#'(lambda (x) (push x =*apropos-Tist#))
arg pkg superiors)
apropos-list=))
One could write variants of this which test the symbol for specific properties, or with
boundp or fboundp, and which print the results as they are computed rather than
accumulating them in a list.

ML:NILMAN;DEBUG 14 : : , : 17-JUN-83

NIL Notes for Release 0.259 145 , Examining Objects

19.2 Examining Objects

oxhibit object

Invokes an interactive structure editor on the object. There is a "?" command to print out
a command menu. The object is sent any of the following messages, :exhibit-self,
:select-nth, :store-nth. See the definitions for built-in objects in
"[NIL.SRCJEXHIBI.LSP".

describe object

Says a few things about the object.

19.3 Debug and Breakpoints

debug

break

Enters the debugger. Various commands, self documenting via the "?" command. Errors
by default enter the debugger also. Note that in its current state, stack and argument
information displayed requires an additional level of interpretation placed upon it for it to
be correct. For example, local variable information currently shows simply the stack
between call frames, including argument frames being computed and "dirty" (non-Lisp)
data.

tag &optional (predicate-form 1) ‘) Macro
break evaluates predicate-form, which defaults to t. If the result of this evaluation is not
nil, then it enters a "break loop". ";bkpt tag" is printed out, and a recursive read-eval-

print loop is entered. The prompt for reading says n>break>, where n is the number of
nested break loops currently in force. Note that fag is not evaluated.

break is one of the older debugging tools around. It is not nearly as useful as it had
once been, because in a LISP with lexically scoped variables, those values are not apparent
from the break loop. In NIL what is probably more useful would be to insert explicit
calls to (debug) in ones code, rather than to break,

sbreak value tag

This is the internal version of break which evaluates both of its arguments normally. This
is also how you can give a non-constant fag argument to the break loop.

19.4 Metering

ML:NILMAN;DEBUG 14 17-JUN-83

Metering 146 : NIL. Notes for Release 0.259

19.4.1 Timing

timer function &optional (loops 1) arguments
Calls function with arguments arguments (a list or simple general vector), loops times, and
~ prints out information on how much time was taken. Try, for example,
N (timer #'cons 100 #(a b))
Needs some improvement to deal with function-calling and loop overhead; for that reason,
~ this is not too useful with short fast functions.

runtime
This returns the compute time of the process since process creation as a fixnum, in
hundredths of a second (centiscconds). Note that this increment is incompatible with the
MACLISP function of the same name; MACLISP runtime returns the runtime in
microseccnds—this would overflow into bignums in NIL, and also the data for NIL is only
accurate to hundredths of a second.

elapsed-time

time
elapsed-time returns a measurement of elapsed time, in seconds, as a double-float. Two

such quantities may be compared to determinc¢ elapsed time. The origin of this number
may not be depended upon; in MACLISP it is the "system uptime”; in NIL it happens to
be the double-float representation of the current time using the Smithsonian time standard,
but that could conceivably change. This quantity is only really accurate to hundredths of
a second, even though it is potentially accurate to 100-nanosecond tics.

The synonym time is provided for MACLISP compatibility, This name should not be used
in new programs, and should be changed in old programs, as the name time is likely to
be changed incompatibly by COMMON LISP. Also, there is a LISP MACHINE LISP time
function which returns elapsed time, but as a fixnum in sixtieths of a second.

si:pagefault-count
This returns the number of pagefaults taken by the process since process creation,
Although this number is interesting to look at to see if the NIL is thrashing, it must be
taken with several grains of salt due to the way VMS paging/swapping is performed. [The
Jollowing discussion should perhaps be somewhere else, under "performance considerations"?]

The following points are especially of note. First, this number does not count the
number of faults taken which involved fetching a page from the pagefile (or shared image
file). Rather, it includes those "faults” for pages which still reside in physical memory,
but arc just not contained within the working set. Also, the overhead of doing this
paging is charged to the process runtime.

Presumably, then, if one sets the working-sct extent (the process parameter/user quota
WSEXTENT) high, ther the actual working set in use will approach the number of pages
of the job which are resident in physical memory, and the count of pagefaults will better
approximate the number of pagefaults for non-resident pages.

ML:NILMAN:DEBUG 14 17-JUN-83

NIL. Notes for Release 0.259 147 ‘ Mectering

The MACLISP-compatible status macro provides a gctime option which returns the runtime (in
the same units as runtime does) which is the contribution to the process runtime by the garbage-
collector. This is currently, of course, always zcro. When the garbage-collector is available, - there
will be functions which parallel the above three, which will return the contributions to clapsed-
-time, runtime, and pagefaults by the garbage-collector. Note that the values rcturned by the
above functions will always include the contributions by the garbage-collector.

19.4.2 Function Calling

The only type of function call metering which is available in NIL right now is a global
database of how many function calls (and similar things) of various types have been performed
since the NIL was first loaded up.

This number-of-function-calls metering is basically implemented by the NIL compiler. There
are four tables 10 long; the four tables are for metering

Sunction calls
Direct function calls. As in (defun f (x) (g x)).

Suncalls
Simple funcalls.

sends _ '
Calls to send. This does not (unfortunately) include lexpr-send.

applies
Compiled calls to apply (= lexpr-funcall).
The 10 entries in each table count the number of such occurences for zero through eight, and
nine-or-more arguments. When the compiler compiles (say) a function call of two arguments, it
will sneak in an instruction like
incl wrcli$call_meter+2(slp) _
just before it does the actual function call. This sequence takes four bytes of code.

The intent of this type of metering is to measure how intensively various applications perform
function calling, in order that we might be able to estimate how changes to the function calling
sequence (such as modifications to the function entry code, function call-frame setup code, or
even microcode support for either of those or the function call itself) might affect the performance
of NIL programs. We have not yet actually done any measurements with these meters. However,
in the event that they might be useful to people, the functions (which are somewhat dirty and
kludgey) which read them are documented below.

si:get-call-meters A
This returns an a-list of the values of the various calling meters. The a-list will be 4 long,
and the first element of each of these lists is a keyword describing the type of call; the
remaining 10 elements are the number of "calls" of that type for zero through 8, and
(last) nine or more calls. The keywords are :

:function
Direct function calls

ML:NILMAN;DEBUG 14 , S 17-JUN-83

System Management ‘ 148 NIL Notes for Release 0.259

;funcall
Compiled calls to funcall

:send A
Compiled calls to send

:apply v
Compiled calls to apply (lexpr-funcall).

si:show-call-meters &optional (meters(si:get-call-meters))
Prints out the meters.

si:subtract-call-meters afier-meters before-meters
Returns a new "meters list" in which all of the numbers are the difference of the after

and before values. All of the entries are assumed to be in the same order.

One could get a display of how much function éalling (etc.) was going on by dding sométhihg
like ; .
(let ((before (si:get-call-meters)))
(run-program) o
(si:show-call-meters (si:get-call-meters) before))

19.5 System Management

~ Included are some minimal utility functions for maintaining subsystems in NIL. These tools
are not meant to be a comprehensive set, "addressing all the issues" as they say. Instead, they
address some of the issues, have been found useful, and are used along with individual system
specific procedures for maintaining systems' including the editor and MACSYMA.

The practical working procedure on most programs goes something like the following: There
are a set of source files that make up the program. One of these files defines a variable set to a
- list of these file names, and includes code for loading the files, creating needed package
namespace(s), and peforming other functions as needed. Day-to-day works procedes in an
incremental fasion, changes are made to the sources using the built-in editor, and these changes
are tested and debugged using editor commands such as CONTROL-META-C (compile-defun, or
{CONTROL-Z>-C), and META-Z (evaluate-defun, or <ESC>-Z) and other utilites in the system
as nceded. The editor, debugger, evaluator, and exhibitor are invoked many times during a days
development cycle. From time to time during editing the changed files are saved of course, as a
backup against environment crashes. At the end of the day, (or perhaps, during lunch hour, or
after several days), a recompilation of the changed program files may be effected, using some of
the functions documented in this section. :

A somewhat parallel effort is the maintainence of a system that has "users." The same
methodology as used in a development system is in effect; except that now the full-recompilation-
cycle time may be months, and there is a definite target-cnvironment which is to receive system
changes in the form of "patch files.” (See the documentation of the patch facility.)

Some additional functions documented here provide ways to find out something about how
modules depend on one another.

ML:NILMAN;DEBUG 14 - : o : : 17-JUN-83 .

19.5.1 An example

: This is an example "system-build" file.
(defparameter *my-files=*
*("USR:[ME.SYS]TOPLEVEL"
"USR:[ME.SYSJUTILS"
"USR:[ME.SYS]BASIC"))

(defvar *my-modules* ())

(defun load-my-system ()
(setq *my-modules* (mapcar #’Toad *my-files+)))

(defun recompile-my-files ()
(mapcar #’'silent-comfile
(mapcan #'(lambda (x)
(if (utils:source-need-compile? x)
(Tist x)))
smy-filesx)))

(defun silent-comfile (x)
(let ((compiler:*messages-to-terminal? ())
(si:print-gc-messages ()))
(comfile x))) ’

(defvar *my-undefined-functions-aliste

()

ML:NILMAN:DEBUG 14

NIL. Notes for Release 0.259 ‘ 149 System Management

17-JUN-83

System Maﬁagement 150 : NIL Notes for Release 0.259

(defun find-my-undefined-functions ()
(setq -*my-undefined-functions-alist* ())
(mapc '
#'(lambda (m)
(if (of-type m 'module)
(utils:map-over-module-cells
#'(lambda (module symbol key)
(if (and (eq key :function)
(not (fboundp symbol)))
(1et ((a (assq
symbol
*my-undefined-functions-alist#)))
(if a '
(unless (memq module (cdr a))
(push module (cdr a)))
(push (1ist symbol module)
my-undefined-functions-alist)))))

m)))
~«my-modules*) :
*my-undefined-functions-alist»)

19.5.2 "Source (Re)Compilation"

utils:vas-source-file filename
Gets the exact name of source file from the object file, filename.

utils:source-need-compile? source-filename &optional object-directory
If there is no object file, or if the version of the number of the present source file is

“greater than the version number of the source from which the object was compiled then
this function returns t.

utils:vas-source-needs-recompile? filename
Gets the source file name for the object filename and checks the version numbers.

1953 Information in Modules

. The exhibit function can be used to look at modules in;eractively.

ML:NILMAN;DEBUG 14 17-JUN-83

NIL Notes for Release 0.259 151 Verification

19.5.4 Related Utilities

These are somtimes used to store information gathered during system programming, for
cxample, "bug" cases, lists of undefined functions, sorted lists of special variables, etc.

utils:print-into-file expression &optional filename :
Prints the expression into the filename which defaults to something gencrated in
sys$scratch.

utils:pp-into-file expression &optional filename
As in utils:print-into-file above, but uses the pretty-print function.

19.6 Verification

verify filename
Expressions are read from the file named filename and fed into a normal read-eval-print

loop. The filename is merged with a default specification of nil1$disk:[nil .verifyl.
The input and results are printed both to the value of terminal-io and to an output file
named filename with file type 1is. (This is the closest thing to batch processing that we
support.) There are various files in the [nil .verify] directory that are "verified” before
a release of NIL is made. This function is also useful for making bug reports that are
easy to deal with. For example, say that you found that multiplication of 2.2.and 3.3 did
not work, you could then make a file multbug. 1sp containing the following:

(si:print-herald) : -

:; multiplication bug

(errset (times 2.2 3.3))
Then run the verify function on this file and send it and the output in your bug note.
An errset would be needed around any expression that would otherwise cause a fatal
error.

ML:NILMAN;DEBUG 14 ' o 17-JUN-83

Errors "' ' 152 : NIL Notes for Release 0.259

20. Errors

Errors in NIL work by signalling error conditions using signal. The specifics of this are going
to be changing in various ways: ‘however, the basic interfaces for "creating” errors can hopefully
be kept static, at least,jnsofar as the functions can be made to accept and interpret arguments
upwards-compatibly. ¥ SR

cerror proceedable restartable condition-name format-string args
This is what needs to be used to signal correctable errors. For an error to be correctable
(in the current scheme), one uses cerror and gives a non-null proceedable argument. The
restartable argument has to do with saying that the error can be "restarted" (i.e.,
something gets tried over again) by throwing to a tag with name error-restart; this is
hardly, if ever, used, and will probably be obsolete quite soon.

condition-name is the name of the condition being signalled; it is typically, although not
necessarily, a keyword.

Jformat-string is a string suitable as an argument to format with extra arguments of args;
that is how the error message is produced. There are, however, conventions on what
particular arguments mean for particular conditions; some of them are described below.

At some point, the error system and how errors (and non-error conditions) are signalled
will all change. It should be the case, however, that vanilla uses of cerror, especially
those with the error conditions listed below, will continue to work.

Here are some of the interesting and well-formed error conditions defined in NIL right now,
and the arguments they expect. (Note that extra arguments may always be given.)

:wrong-type-argument ype-name losing-object
This has to be the most common condition used in NIL. fype-name is the name of the
type of object which was expected, such as number, and losing-object is the object. (The
type-name is not currently used for anything, and lots of code just puts a fairly random
symbol there.) The value returned is used in place: of the value of the wrong type. For
example, a subroutine which arg-checks for fixnum: '
(defun si:require-fixnum {(x)
(do () ((fixnump x) x)
(setq x (cerror t nil :wrong-type-argument
"~¥~5 is not a fixnum"
"fixnum x))))
Wrong-type-argument checks are so common that it is better to subroutinize or macroify
them rather than writing out loops. See, for instance, check-arg (<not-yet-written).

:unbound-variable variable
variable was not bound. Returning a value uses that as the variable instead.

:undefined-function name ,
name is not defined as a function. Returning a value uses that as the function name
instead. \ :

ML:NILMAN:ERROR 10 | 17-JUN-83

NIL Notes for Release 0.259 : 153 Errors

:wrong-number-of-arguments random
This is handled spastically right now. will probably be superceded by something else. At
least when called from compiled code, returning a value causes that value to be returned
as if from the losing call.

sinvalid-form form
form was not meaningful to eval. The return value is evaluated in place of the bad form.

:io-lossage description form
Sort of a catch-all for random 1/O errors. description is a string describing the error, and
form is the form which produced it; for instance
(delete-file "[foo]bar.baz")
might signal a :io-lossage error with a description of the string
"%RMS-E-DNF, directory not found"
and a form like :
(delete-file #<pathname "sys$sysdevice:[foolbar.baz">)

:symbolic-constant-update symbol &optional value old-value
An attempt to update a value cell which is supposed to be constant was detected. In
principle, this can happen to any type of value cell (ie., special or lexical value or
function cells), although in practice only special value cells are created in this manner.
The text of the error message gives the context (i.e., makunbound, set, variable binding,
etc.). The value and old-value are given when convenient for the code generating the error
to do so. : '

Continuing from this error continues without having performed the set, binding,
makunbound, or whatever. The revised error system will probably offer a menu of which
this is one option, and doing the operation is another.

:new-constant-value symbol old-value new-value
This is somewhat similar to :symbolic-constant-update, but is signalled by (the
primitive used by) defconstant (page 18) when the symbol being defined as a constant
has a value already which differs from the one being assigned. Returning from the error
ignores the value returned and proceeds to modify the value of the symbol.

ML:NILMAN;ERROR 10 -17-JUN-83

Compilation 154 : "~ NIL Notes for Release 0.259

21. Compilation

Compilation is essentially the process of translating from one specification into another which
is presumably more low-level in some respects. The NIL compiler translates LISP code into the
VAX instructions necessary to execute that code; some of these instructions may perform the task
dircctly, while others may call functions or NIL kernel subroutines to do it. In any event, the
end result is intended to exclude the NIL interpreter from the running of the program. The NIL
compiler does not output MACRO32 code or anything of the sort; rather, it represents the code
and data itself, and asscmbles the code, LISP objects referenced by the code, and whatever other
information is needed to help construct that data, into a compiled code module. 'This is what the

module data type represents.

When the NIL compiler compiles a file, it first establishes the proper environment for the
compilation, as specified by the file's attribute list (as described in section 17.7.6, page 129). That
done, it reads and processes each form in the file. What it does with each form depends on what

the form is.

(declare declarations) ‘ ; ’
The declarations are processed, and take effect for at least the remainder of the
- compilation. (NIL often makes the declarations globally right now; they might remain

after the compilation, but usually they do not)

(eval-when kwd-list forms...)
If compile is a member of kwd-list, all of the forms are evaluated then and there. Then,

if load is a member of kwd-list, the forms are recursively processed.

(progn forms...)
forms are recursively processed. Note that this is 1dentxca1 to (eval-when (load) forms...),

and upwards-compatible with (progn ‘compile forms...).

(compiler-let bindings forms...)
Establishes the bindings specified by bindings, then recursively processes forms in that
environment. See page 156.

(defun name arglist etc...)

(defun (name property-name) arglist etc. . .)
The function is compiled, and the appropriate assignment (function cell or putprop) will
be put in the compiler’s output file.

(defmacro name etc...)

(macro name lambda-lzst elc...)
The specified macro deﬁmuon for name is added to the compilation environment. Then,
the macro is compiled, so will be there when the compiled output file is loaded.

(defun name macro lambda-list etc...)
The compiler whines at you and tums this into macro. Thls is provided to catch old

MACLISP code which should probably use defmacro (or at the very least macro) instead.

(defun name fexpr lambda-list elc...)
The compiler barfs at you and turns this into a special form definition. Calls to it from
compiled code will not work. If name is only around for users to call interactively,
however, it might just function properly. This is provided only to brute-force through

ML:NILMAN:COMPIL 16 : ' v : 17-JUN-83

NIL. Notes for Relcase 0.259 155 | Compilation

some MACLISP programs. Generally, special forms or fexprs should be rewritten as
macros.

(defun name atom etc...)
The function definition is assumed to be a MACLISP lexpr. It is transformed appropriately,
and compiled, after the compiler gets through giving you a hard time.

(defflavor erc)
Code to perform the flavor definition at load time is gencrated. Additionally, declarative
information is added to the compilation environment so that defmethods will compile
correctly, and the routines defined for the :outside-accessible-instance-variables can
be compiled correctly.

{defmethod elc)
Compiles the code for the defmethod.

anything-else

If anything-else is a macro call or a call to a function the compiler has special rewrite

information about, the macro expansion or rewrite is performed, and the compiler tries

again. Otherwise, anything-else will be evaluated at load time. Currently this is done by

compiling the expression, which climinates load-time dependencies upon macros. ‘
There are various other forms which implicitly do compile-time processing by virtue of how they
arc defined, rather than by the compiler recognizing them specially. For instance, defstruct
(currently) by default expands into the appropriate macro, function, and data definitions, inside of
an eval-when. For this rcason, the above list cannot be taken as being all-inclusive.

compile-file input-file &key :package :set-default-pathname :output-file
:«default-pathname :defaults
Compiles input-file, storing the vasl file in output-file.

If package is specified, then the file is read in in that package, in spite of what might be
specified in the source file property list (see section 17.7.6, page 129).

The input-file is defaulted from the default-pathname if any, and then from defaults,
which should be a pathname defaults. If set-default-pathname is not nil, then the default
pathname of defaults (which defaults to the value of load-pathname-defaults*, page
125) is updated.

output-file defaults to input-file with a vasl file type (VMS extension of VAS).

By special dispensation (to those of me who cannot get out of the habit of using this
feature), if exactly two arguments arc given to compile-file, then the first is the input file
and the second is the output file. This is typically used like

(compile-file "[nil.ioJiofun" "[nil.vas]")

comfile ..

Alternate name for compile-file. COMMON LiSP defines the use of the name compile-
file, but not comfile, for whatever that is worth,

ML:NILMAN;COMPIL 16 ‘ v ' : - 17-JUN-83

Summary of Compiler Flags . 156 - NIL Notes for Release 0.259

compile function
Compiles the interpreted (and in-core) deﬁnition of function, in-core. That is,
(defun fact (x)
(if (zerop x) 1 (t1mes x (fact (subl x)))))
_ (fsymeval ’'fact)
"~ => #<Interpreter-Closure FACT 0 123456>
(compile 'fact)
(fsymeval ’'fact)
- ,=> #<SUBR FACT>
In fact, what happens is that the function is compiled into a temporary file and that file
loaded; this is somewhat of a kludge at the moment, but is done because of limitations
. of the NIL module assembler. Note in this regard user-scratchdir-pathname (page 124)
and *scratch -pathname-defaults* (page 126).

The above described calling sequence is the intersection of what is provided now, and
what COMMON LISP defines for compile. .

compﬂar et ({(var vah}* {form}* S Special Form
When evaluated, this binds dynamically each var to the evaluation of each val, and then
cvaluates the forms in that environment. Syntactically, this is like let and let* (page 19).
At this time, there is no guarantece that the variables are bound in parallel, or
scquentially, however.

When compiled, however, the binding evaluation of the vals and binding of the vars is
done at compile time, and then the forms (as a progn) compiled in that environment.
This is one way to communicate information to the compiler and to macro functions, and
is the only way to set certain compiler switches locally right now.

compiler-let is handled properly as a toplevel form in a file, and is properly tranparent
to things like special predicate compilations.

Most of the variables which compiler-let used to be useful for Rave be excised from NIL,
primarily because the primitives they controlled the compilation of have become more
generic due to the implementation of COMMON LISP arrays. The only two such variables
left are compiler:*open-compile-carcdr-switch and compiler:*open-compile-xref-
switch. compiler-let is still useful, of course, for communication between macros.

21.1 Summary of Compiler Flags

ML:NILMAN;COMPIL 16 : 17-JUN-83

NIL. Notes for Release 0.259 157 ~ Summary of Compiler Flags

21.1.1 Compilation Control

compiler:*open-compile-carcdr-switch Variable
If this is nil, which it is by default, then car, cdr, and all their compositions and update
functions, are compiled as quick subroutinc calls into the NIL kernel, which will perform
type checking. Otherwise, they will be totally open-compiled by the compiler. Having the
type checking on by default is a great aid in debugging. What might happen otherwise is
that the program will attempt to refercnce non-existent memory. Although this also gives
a lisp error, it is not very helpful as far as finding out why the error occurred. Then,
one would have to recompile the program and start over to reenable error checking.
Because of this, it is rccommended that this switch be left nil by default, and only
enabled for critical functions or loops which do lots of iterating down lists, and which are
carcfully checking types along the way. For instance, the built-in function copy-tree
(page 32) is defined as
(defun copy-tree (tree)
(compiler-let ((compiler:*open-compile-carcdr-switch t))
(if (atom tree) tree g
(do ((tree tree (cdr tree))
(1 () (cons (copy-tree (car tree)) 1)))
((atom tree) (nreconc 1 tree))))))

compiler:+open-compile-xref-switch Variable
This switch controls whether the si:xref (page 207) funcnon is totally open-compiled.
When this switch is nil, as it is by default, si:xref is compiled as a quick subroutine call
into the NIL kernel, which will perform type and bounds checking on the arguments. -
si:xref is the primitive which is used for referencing defstruct-defined structures, and-by
the macros which implement outside-accessible-instance-variables for flavors. (Instance
variable references inside of methods are always open-compiled.)

21.1.2 Interaction Control |

compiler:*messages-to-terminal? Variable
If this is not nil, then the compiler (compile-file and compile, and even the LSB-defined
function Isbcl [4]) will print out verbosely on the terminal. If it is nil, nothing will be
printed, unless errors occur, which is a separate can of worms. By default, this is t.

ML:NILMAN;COMPIL 16 IR o ' 17-JUN-83

Introduction to the STEVE editor 158 NIL Notes for Release 0.259

22. Introduction to the STEVE editor

22.1 Introduction

STEVE is a general purpose screen oriented text editor based upon the EMACS editor. In many
respects STEVE and EMACS are identical, with the primary difference being that STEVE is written in
NIL for the DEC VAX-11 scries computers and can be called directly from the NIL interpreter.
Those who are familiar with EMACS will be able to use STEVE immediately, and should skip to
the end of this chapter, as the first part is meant to be an introduction to STEVE.

22.2 Getting Started

There is onc difference between the editor environment and the rest of NIL to be aware of,
Because the editor and VMS have conflicting uses for many of the control keys, the editor must
run in "passall” mode. This implies that the normal interrupt commands do not normally work in
the editor. So the first command to learn is the editor command to rcturn to whatever you were
doing before you entered the editor. It is a two key command typed by holding down the
"Control" key and pressing the "Z" key twice. '

Control-Z Control-Z Return-to-superior,
Exit the editor and return to whoever called it. This is the normal way to exit from
STEVE.

Now that you know how to exit the editor you may be curious how to enter it. Of course
this is not an cditor command, but rather a-NIL function.

ed &optional what-to-edit .
Enters the editor, returning to whatever you were working on before. If you have not
run the editor since starting NIL it will be completely initialized with one empty buffer.

Normally one types (ed) to the NIL interpreter to get into STEVE. what-fo-edit may be a
pathname (or string naming a file), or the name of a function. If given, the editor will
try to find the file or function definition and let you edit it; otherwise the argument is
ignored. There are editor commmands to find files and function definitions anyway, so
the argument is not really very important, except that it can be convenient, and can be
used from programs.

ML:NILMAN;EDITOR 18 ' - 17-JUN-83

NIL Notes for Release 0.259 159 Editing Files

22.3 Editing Files

The principle purpose of an editor is to create or modify a file. In broad outline an editor is
used by reading a file into a buffer, modifying it somehow and then writing it back to some long
term storage device, gencrally a disk. Most of the editor commands are concerned with modifying

a buffer, and will be expained later. In order to understand the commands for reading and
writing files one should know about the general structure of STEVE and its buffers.

e e s e et it e s

o e e e e e e s st s e e s e e e i e

As the diagram shows, the editor runs inside NIL, and contains any number of buffers, each
of which is associated with a file. This diagram can be modified by creating a new buffer or
killing one, or by changing the file associated with any buffer. There are editor commands for all
of these operations, and for some more complex combinations of them. The editor always selects
one buffer as the current buffer, and displays a section of it around the cursor.

The format of this display is one of the features of an EMACS style editor like STEVE, and is
the reason it is called a "screen editor”,

ML:NILMAN;EDITOR 138 ' : ' 17-JUN-83

Editing Files : 160 NII. Notes for Release 0.259

l
This.is a picture of what an editor |
display might look like except that is is very|
small._
Note that the cursor is at the end of
the previous paragraph.

|
|
|
|
I
|
: |
STEVE foo (LISP) disk:[cre]bar.1sp {3} -- = |
|
|

— —— —— — — ——— — — —— p— — — abt—

The box in the diagram represents the cdges of a terminal screen. The two paragraphs are
the contents of a buffer. The single line below that is called the mode line. It contains as much
information about the current state of the editor as is convenient. From this we see that the
buffer is named "foo" and that it is associated with the file "disk:[cre]bar.lsp”. The notation {3}
after the file name indicates that the current version number is 3. If the file does not exist on
disk the version number and the braces will be missing from the mode line. - The star (*) on the
right of the mode line indicates that the buffer has been changed so it is not the same as the file
on disk. The current position of the cursor is at the end of the first paragraph. (On most
terminals a cursor shows up as a blinking underscore or box, though this depends upon the exact
type of terminal. In this chapter we show the cursor as a underline (—) since it is fairly difficult
to print a blinking cursor.)

Under the mode line is a blank area of several lines, This is called the mode area and it is
where most error messages and prompts are shown. ' :

We are almost ready to start expaining the individual editor commands. The only other thing
you should know first is how they are typed. Most STEVE commands are either one or two
character commands. Since one adds alphabetic characters to the buffer simply by typing them
(not that you know this yet) STEVE must not use alphabetic characters for its commands. Instead
the control characters are used. (The control characters are typed by holding down the “control”
key and pressing some other key, just as the capital letters are typed by holding down the shift
key.) Since there are not enough control keys for all of STEVE's commands it also uses a meta
key. A Meta key is similar to a shift key or a control key. Now we can have the characters "a",
"A", "Control-A", "Meta-A", and "Control-Meta-A".

Unfortunately most terminals do not have a meta key. Not to worry, though, STEVE is
designed to work without it, just as certain text justifiers are designed to work with terminals
which have no lower case. Th.ece commands are "bit-prefix" commands. Typing one of these will

~ change the next character you type just as if you had been holding down the corresponding

combination of control and meta keys.

ML:NILMAN;EDITOR 18 : : , o 17-JUN-83

NIL Notes for Release 0.259 ' 161 Editing Files

Altmode Prefix-Meta
Pressing Altmode (marked SELECT or ESCAPE on some tcrminals) will make the next
character a "meta" character. For example Altmode F (two characters) is the same as
Meta-F (one character),

Control-~ Prefix-Control
Pressing Control-t (control-uparrow) will make the next character a "control" character.
For cxample Control-t F (two characters) is the same as Control-F (one character). On
some terminals, notably the VT100, Control-t is typed as Control-~ (control tilde);
normally, the ~ character is a shifted 6, so one holds down control, shifi, and 6.

Control-Z Prefix-Control-Meta
Pressing Control-Z will make the next character be both a control and a meta character.
For example Control-Z F (two characters) is the same as Control-Meta-F (one character).

All of these bit-prefix commands add the quality to the next character. There is no problem
with doing it twice. The two character sequences Control-Z Z and Control-Z Control-Z both are
read as Control-Meta-Z. '

We are now ready start eéxpaining the various editor commands. These are the commands you
will use to create buffers and write files. All of these commands are safe to use since they will
notice if you are about to destroy any of your work and ask you if you really want to do that.

Control-X Control-F Find-File

Find-File will prompt for a file name and you should type it from the keyboard. If there
is a buffer for that file then it will be selected and be the new current buffer. Otherwise
a buffer is created for the file and the file is read in from disk if it exists there. Find-
File is the most common way to read a file from disk. It creates a new buffer for each
file which is convenient. When Find-File creates a buffer it uses the file name without
any extention as the buffer name. Since the name of each buffer must be unique this
doesn’t work when you are editing two files which have the same name but are on
different directories or have different extensions (file types), so Find-File will notice if you
are doing this and will ask you for a new buffer name to use.

Control-X Control-§ Save-File
Save-File writes the current buffer to its associated file, and changes the mode line to
indicate that the buffer and file are now identical. (This is not done until the output is
complete, so if there is a disk error or some other error you will not think it has been
saved when it hasn’t been.)

Control-X Control-V Visit-File

Control-X Control-R
Visit-File is like Find-File except that it re-uses the current buffer, destroying its contents.
It is still safe since it will offer to save it if any changes have been made to it.

Control-X Control-W Write-File
Write-File writes the current buffer to a file, but unlike save file it will prompt you for
the file name.

ML:NILMAN;EDITOR 18~~~ ~) 17-JUN-83

Editing Files o 162 NIL Notes for Release 0.259

As an exakmple, suppose that the screen looks like the diagram above. If you type Control-X
Control-W (Write4P’iIe) the editor will prompt you for a file name. Assume you want to save the
file into disk:[cre]baz.1sp. You type "disk:[cre]baz.1sp". The screen will look like
this:

I - ‘ I
| This is a picture of what an editor |
| display might look I1ke except that is is very|
| small.

Note that the cursor is at the end of
"the previous paragraph.

I
|STEVE foo (LISP) disk: [cre]bar 1sp {3} --

[Write File:disk:[cre]baz. lsp
I

Notice that the cursor is temporarily placed in the mode area. After the command is
complete it will return to the text in the buffer. The editor will fill in an incomplete file
specification for you, using the file specification associated with the buffer. In this example the .
file name could have been typed as [cre]baz.1sp or baz. Isp or just baz smce that is the
only part that is changmg ,

After typing whatever file name you choose you must type Return. Most commands that
prompt you in the mode area require a Return to end the command. Until you press Return you
may change the file name using the delete key and retyping the parts that were wrong. Also the
keys Control-W and Control-U usually delete a word or the whole command letting you start over.
If you delete too far the command is aborted if that is legal, otherwise a bell will sound.

Suppose you hit the Return key now. The buffer will be written, the prompt will be deleted
and the editor will tell you that it has finished. The screen will change showing you what is
happening, and will look like this (though we cannot show you how it changes.)

ML:NILMAN;EDITOR 18 o IR : . 17-JUN-83

NIL Notes for Release 0.259 163 Modifying the buffer

I I
| This is a picture of what an editor |
| display might look like except that is is very]|
| small._

| Note that the cursor is at the end of
| the previous paragraph.

I

I

I

I
|STEVE foo (LISP) disk:[cre]bar.1sp {1} --

[Writing File... | Thisline...
[Written BAZ.LSP;1[CRE]DISK: | Then this line

Notice that the cursor has returned to the buffer text-and that the star (*) has been removed
from the mode line to indicate that the buffer and file are identical, and that the version number
has been changed to 1. This is because the new file name did not exist on disk. Had the file
been saved under its old name the version number would have been incremented by 1 from 3 to
4. Finally the file name in the mode area has been updated so that Save-File will use the new
file name, : .

22.4 Modifying the buffer

22.4.1 The Simplest Commands

As 1 hinted before, typing any alphanumeric character will add it to the buffer. In fact
almost any character that you can type without holding down the control key will act like this.
Also, the delete (or rubout) key will delete the last character before the cursor. If you can place
the cursor where you want it and delete and insert characters then you are already able to make
any editing change you have to. Since it is so simple to change characters in the buffer, STEVE |
concentrates on commands to put the cursor where you want it quickly and easily. The first few
such commands are: .

Control-F Forward-Character
Control-F moves the cursor forward one character in the buffer. (The end of a line
counts as one character.) ' '

Controi-B Backward-Character
Control-B moves the cursor backward one character in the buffer.

Control-N Down-Real-Line
Move straight down to the next line.

Control-P Up-Real-Line
Move straight up to the previous line.

ML:NILMAN:EDITOR18 - e ‘ 17-JUN-83

Modifying the buffer 164 NIL Notes for Release 0.259

These are the commands to move up down right and left.

Now you know how to edit a file! If you can you should probably try to use STEVE to create
-a simple file and save it. Print it if you can and compare it to what you see on the screen. See
what happens if you try to back up before the beginning of the buffer using Control-B or
Control-P. Type enough lines to fill up the screen (use Return to end cach line) then a few
more. What happens when the cursor is about to move onto the mode line? Now use Control-P

to move back.

22.4.2 Now that you know the Simplest Commands

Now that you know the simplest commands there are many others that you should learn.
There arc some general facts about the editor Wthh will help you get more out of each command
‘which I will expain first.

22.4.2.1 Numeric Arguments

It is possible to give any command a numeric argument. The command or may not use it,
but you can always supply it. In fact, if you don’t supply an argument an argument of one (1) is
implied. There are several ways to specify an argument. In all cases the numeric argument is
typed before the command. The most general way to specify an argument is:

Control-U Universal-Argument
Control-U followed by a positive or negative integer specifies that integer as the argument
for the following command. Control-U with no number specifies an argument of four (4).
Control-U Minus with no number is treated specially as an argument of minus 1 (-1).
Some commands treat Control-U with no number differently than Control-U 4. ’

For terminals with a meta key it may be easy to use the meta-digit keys.

Meta-0, Meta-1, ..., Meta-9, Meta-Minus
Control-Meta-0,..., Control-Meta-9, Control-Meta-Minus
Auto Argument
Any of the Metafied numeric digits begin a numeric argument. It is just like Control-U
followed by the digit. Notice that repeated meta digits are multiplied together.

Control-0,..., Control1-9, Control-Minus
Auto-Argument-Digit
The control-digits end any previous digit and act as digits in an argument. Thus Control-2
Control-3 is the argument twenty-three (23). Any arguments before or after a sequence of
control-digits will be multiplied by the final control-digit argument. Because most
terminals do not send control-digits these must be specified using the uparrow bit-prefix
(for instance, by typing Control-t 2), so in practice they are not used much. Note that
the Control-Minus mug* be specified first.

If several arguments are specified they are multiplied together. The primary use of multiple
arguments is to typc Control-U scveral times in a row. Each Control-U multiplies the argument
by four (4). So Control-U Control-U is sixteen (16) and Control-U Control-U Control-U is sixty-
four (64). The cursor movement commands treat the argument as a repeat count (as do most

ML:NILMAN:EDITOR 18 o o 17-JUN-83

NIL Notes for Release 0.259 : 165 Modifying the buffer

commands where that is meaningful). Some useful combinations are Control-U Control-U
Control-F which moves forward about a quarter of a line, and Control-U Control-N which moves
down four lines. You will find many other "Cliches" or combinations of editor commands which
you use automatically to do one thing.

22.4.2.2 Control-X

As 1 said before there are not enough keys on a keyboard for all of the commands defined in
STEVE. The Meta key is one way of getting more characters so STEVE can have a large number of
single character commands. But it is not enough. To get even more commands STEVE usecs the
key Control-X as a prefix character. There are many two character commands which begin with
Control-X. What actually happens is that the editor normally looks up the command for each key
in a table. The Control-X key says that the editor should use a different table for the next key.
This greatly expands the number of commands that can be typed. '

22.4.2.3 Meta-X and Control-Meta-X

With Meta and Control-X it is possible to define enough editor commands, but there is
another problem. Eventually there are so many commands that it becomes difficult to remember
them all. For this reason there is a command, Meta-X, which reads a command name from the
keyboard and executes the command. It is easier to remember the name of an unusual command
that to remember which key invokes it. In fact there are many commands which we don’t bother
to define keys for.

You type Meta-X either by holding the Meta key and pressing X, or by typing the Escape
key followed by X. When you type it the cursor is moved to the echo area and a colon (;) is
printed as a prompt. You type the name of the command and then type Refurn to execute it.
Some Mecta-X commands take "string" arguments. These can be typed in several different ways.
The simplest way is to type the command name, then to type an Escape before each argument.
(An extra Escape after the last argument will be ignored.) When the command has been typed
with all of its arguments, press Refurn to execute it. ’

- There are a number of special features which make it easier to type a Meta-X command. The
Delete (or Rubout) key will delete the last character you have typed. (If you delete too many
characters the Meta-X command is aborted.) The Control-G key will abort the command at any
time. (Control-G will abort a partially typed command almost anywhere in the editor.) Control-W
will delete a word, and Control-U will delete the entire Meta-X command, letting you start over.

The command does not have to be completely typed, -only enough to make it unique. At any
time you may find out if a command is unique by typing Escape (or Altmode on some terminals).
The editor will finish as much of the command as it can and type that part of it for you. If it is
not unique the bell will ring. If it is unique the Escape will be. typed after the command (it
appears as a dollar sign (§)). You may delete these characters just as if you had typed them if
this is not the command you wanted.

The Space key is another special character. It is like Escape except that it only coinpletes one
word of the command. If the command is finished it will add an escape after the last word.

ML:NILMAN;EDITOR 18 , 17-JUN-83

Modifying the buffer 166 NIL Notes for Release 0.259

If you type a question mark (?) while typing a Meta-X command you will see a list of all
possible ways to finish the command. This is typed in the upper part of the screen, over the text.
(As soon as the Meta-X command is finished, the text will be re-displayed.) If the list is longer
than one screenful the word "*morex" will appear on the last line above the mode line. Type
Space to see the next screenful of commands. Type Control-G to abort the entire Meta-X
command. (There are several other commands which use the upper part of the screen
temporarily. All of these will print "+*morex" in the bottom line and expect cither a Space to
continue, or a Control-G' to abort. Any other character causes an abort, and is then used as a

command.)

A summary of special Meta-X characters.

Delete Rubout the last character showing in the command.
Escape - Completes the command and separates arguments.
Space Completes a word.

Control-G Abort everything.
‘Control-W Rubout a word. Works while typing arguments also:

Control-U Start over. Rubout the entire Meta-X command. (Doesn’t abort.)
? _ Help.

Most commands which are normally executed using Meta-X are smart about their arguments.
They can determine how many you have typed and will prompt you for any that are required.
Often it is easier to use Meta-X commands this way since the prompt will tell you what kind of
argument to type. Some commands can do completion for you or otherwise help you type the
arguments. The Control-Meta-X command is a variant of Meta-X which is designed to take
advantage of this. The difference is that the command is executed as soon as it is completed,
either by Escape or Space. Otherwise it is exactly the same as Mera-X.

22.4.2.4 Marks and Regions

Associated with each buffer is a ring which may store up to eight (8) marks. These are buffer
pointers created by certain commands for future reference. There is a command to create a mark
where the cursor is and a command to go to the last mark, and some odher commands. The text
between the cursor and the last mark is called the region. Many commands operate on this

region.

22.4.25 Killing and Un-killing

Whenever more than one character is deleted it is stored in a place called a kill-ring. Should
you decide that it was a mistake to delete it then you may retrieve it with the un-kill command
(Control-Y). This also lets you copy text from one place to another, by killing it, moving the
cursor and then un-killing it. To make several copies type Control-Y several times. The
command un-kill-pop (Meta-Y) will retrieve the next to last peice of killed text. If Meta-Y is
used right after Control-Y or Meta-Y the previous un-kill is deleted first. (Unlike ITS EMAGCS,
Meta-Y can be used at any time.)

ML:NILMAN;EDITOR‘IS : : R , 17-JUN-83

NII. Notes for l{clcase,0.259 : 167 - Major Modes

22.4.2.6 List Oriented Commands

A number of commands operate on "lists". These are normally defined as LISP lists with
balanced parenthescs. This definition is controlled by a syntax table and may vary in different
major modes (see below). For cxample, in 1SB mode the characters { and } are a type a
parenthesis and will define a list. The cditor knows about doublequote syntax for strings and
vertical-bar syntax for symbols.

22.4.2.7 *more*

A number of commands will overwrite the text on the screen. There is no nced to worry,
the text has not changed and will redisplayed when the current command is finished. [f this
overwrite fills the top part of the screen then the word "*morex" will be printed on the line
above the mode-line. The cditor will wait for you to read the screen and type a space. The .
space will not be put into the buffer, it just indicates that you are rcady to sec the next screenful
of information. If you type Control-G it will abort (see below).

&

22.4.2.8 Aborts

When the cditor is reading from the terminal it usually will abort if you ktype Control-G. The
word "aborted" will appear in the mode arca. This is a good thing to try if you are losing,
though it doesn’t work in some places it should.

22.5 Major Modes

When cditing different kinds of documents it is often convenient for some editor commands to
behave slightly differently. For example, when editing a program it seems most useful to have
the Tab key indent the current line so it lines up with the corresponding syntactic unit above it,
but when editing a paper you want the tab key to indent for a paragraph. STEVE has a number
of major modes which are designed for special kinds of editing. Most of the major modes are
very similar, so there is no need to relearn much when you change modes.

Bolio mode
A mode built on Text mode (see below) indended for sources to the text justifier Bolio.
Knows about Bolio comments. Also assumes that Bolio is being used to document a Lisp
program, so the paren echo hack is turned on and Mera-. tries to find a function
definition. The Control-Meta digits are used to change to that number font. Control-
Meta-* inserts a "pop font" command.

Fundamental mode ,
The basic mode upon which most other modes are built. Not used for much edmng,
since usually there is a better and more specialized mode for any particular job.

Lisp mode
For editing L1sP programs. The principle features are that parentheses are matched as
they are typed (try it, it is hard to explain) and that the 7ab key knows how to indent
for LISP code.

ML:NILMAN;EDITOR 18 17-JUN-83

Help and Scif Documentation 168 NIL Notes for Release 0.259

LL mode

Lisp Listener mode is not really for editing documents. It simulates the LISP (or NIL) top
level loop by evaluating cach top level form as soon as it is typed, and printing the result
into the buffer. Therc are several rcasons to use this mode for interactive testing.
Because you are typing at the editor you have its full power to modify a form as you
type it in. You arc not limited to deleteing the last characters typed as you would be
normally. Even after a form is executed you may modify it and re-use it by backing up
~(with Control-P), editing it, and then re-executing the form with Meta-Z or by erasing
and re-typing the last close paren. Finally, there is a record of what you have done, and
the results. You may save the buffer and print it. You may add comments as you work.

LSB mode
For editing 1.SB programs. The primary difference from Lisp mode is that the characters {

and } are also treated as Parentheses.

Test mode
This should be dyked out. It is not useful except for debugging the editor itself,

Text mode .
For editing english (or german or french...) text. 7ab is normal and Meta-. only searches
the loaded buffers without trying to find the source file through the function definition.
(This may be wrong... comments?) Paragraph commands search for lines which begin with
a white space character rather than for blank lines (as they do in program modes.)

22.6 Help and Self Documentation

STEVE has a several commands designed to help you when you don’t know how do something.
The principle commands are Meta-? and Control-Meta-?, which is the more general of the two.
When you type Control-Meta-? the editor will prompt you in the mode area with:

Help (type ? for options):

You respond with a single character. The choices are
Apropos. (You type a Word to search for.)
Document a Character. (You type the character.)
Describe a command. (You type the command name.)
Document a Key. Identical to C.

- Syntax. (You type a character.)

NXRDTOO D

A (Apropos) prints all paragraphs in the help file which contain a string. It is useful for
finding documentation on some concept. Also available through Meta-X Apropos. :

C (Character) finds the name of the command that a key is bound to and then treats that just
like D (Describc) would. Also available through Meta-X Describe-Key. (Type the full name.
Meta-X Describe confuses completion.)

D (Describe) searches for a paragraph in the help file which contains the string in the first
line of the paragraph. The help file is structured so that paragraph will be the documentation for
that command when it is fully typed. If this is losing because you don’t know the full name of
the command try Apropos instead. Also available through Meta-X Describe.

ML:NILMAN;EDITOR 18 - : 17-JUN-83

NIL. Notes for Release 0.259 169 Glossary of Commands

K (key) is another name for C (Character) and Meta-X Describe-Key.

S (Syntax) documents the cditor syntax of characters. The character is rcad using the NIL
function read, so many characters can be typcd as themselves. Most others can be typed by
using the quote prefix "\". The possible syntax types are Word- Alphanumeric, Lisp-Alphanumeric,
White-Space, Paren-Open, Paren-close, String-Quote, Character-quote, and Prefix. Also available
through Meta-X Describe-Char-Syntax. (Note that Meta-X Describe interferes with completion of

this name.)

22.7 Glossary of Commands

So far you know about how to insert characters into the buffer, give commands arguments
and these commands:

Control-F Forward-Character

Control-B Backward-Charqcter
Control-N Down-Real-Line

Control-P " Up-Real-Line

Control-X Control-F Find-File

Control-X Control-S Save-File

Control-X Control-V Visit-File

Control-X Control-R Visit-File

Control-X Control-W Write-File

Delete Backward—De1ete-Charactér

Starting on the next page is a complete list of commands, including these and all others.

ML:NILMAN;EDITOR 18 17-JUN-83

Glossary of Commands 170 NIL Notes for Release 0.259

| Glossary Of STEVE commands

22.7.1 Special Character Commands

Backspace Backward-Character
Move the cursor backward one character or more if given an argument.
Tab Insert-tab (In non-LISP modes)
Insert a tab.
Tab Indent-For-Lisp (In LISP modes)

Indent the current line according to the nesting structure.

Linefeed Tinefeed
Break the current linc and indent the next line. Equivalent to Rerurn followed by Tab.

Return ' Crif ;
Insert a line scparator or just move to the next line if before two blank lines. Skips

comment ender if there is one.

Altmode Bit-Prefix Meta
Make the next character be.a Meta character.,

Rubout - Backward-Delete-Character (in non LISP modes)
Deletes one character before point. If given an argument Kkills that many characters before

point.

22.7.2 Control Character Commands

Control-Altmode Exit-Editor

- Return to whoever called the editor, generally the NIL interpreter.
Control-Space Set—or—pomeark
With no argument places a mark at point. With an argument pops the last mark and
gocs to it.
Control-; ' Indent-for-comment?

Inserts a comment on the current line or adjusts the placement of an existing comment.

Control-< Mark-Beginning
Place a mark at the beginning of the buffer.

Control-= What-Cursor-Position
Prints the X and Y coordinates of the cursor on the screen, the current character and the
number of characters before point and the percentage of the file which that is. Line
scparators count as two characters since that is how many they occupy in a file. See
Count-Lines-Region

Control-> Mark-End
Place a mark at the end of the buffer.

ML:NILMAN;EDITOR 18 : 17-JUN-83

NIIL. Notes for Relcase 0.259 171 Glossary of Commands

Control-@ Set-or-pop-mark
With no argument places a mark at point. With an argument pops the last mark and
gocs to it

Control-A Beginning-0f-Line

Move the cursor to the beginning of the current line.

Control-B Backward-Character
Move the cursor back one character or more if given an argument,

Control-C Exit-Editor
Return to whoever called the cditor, gencrally the NIL interpreter. Control-C should
interrupt the cditor as it does in the rest of NIL but because the editor must be in Passall
mode that is not possible.

Control-D Delete-Character
Delete the character that the cursor is on.
Control-E End-0f-Line
Move the cursor to the end of the current line.
Control-F Forward-Character
Move the cursor forward one character or more if given an argument.
Control-G ‘

Control-G will abort the editor if it is reading from the terminal.

Control-H Backward—Character
Just like Control-B. Control-H is Backspace in seven-bit ASCII,

Control-I Tab :
Control-I does whatever Tab would do. In Lisp Mode and its derivatives (see major
modes, below) this indents according to the syntax of text as a LISP program. In non-Lisp
modes this is a normal Tab. :

Control-J Indent-New-Line
Equivalent to Return followed by Tab. Ends the current line and indents the next line.
Control-K Kill-Line

Kill to the end of the current line. If the cursor is at the end of a line it kills the line
scparator. With an argument kills that many lines.

Control-L New-Window
Clear the screen and redisplay everything. Useful if the screen is garbaged somehow (for
example if someone sends you mail). The window is moved to put the cursor in the
middle of the screen. With an argument puts the cursor that many lines from the top of
the screen. With a negative argument counts from the bottom of the screen.

Control-M CRLF
Insert a line separator or just move to the next line if before two blank lines. Skips
comment ender if there is one,

Control-N Down-Real-Line
Move the cursor straight down one line or more if given an argument.

Control-0 Open-Line
Puts a Return right after the cursor. With an argument creates that many -blank lines.

ML:NILMAN:EDITOR 18 17-JUN-83

Glossary of Commands 172 NIIL. Notes for Release 0.259

Control-P ' Up-Real-Line
Move the cursor up one line or more if given an argument.

Control-Q Quoted-Insert
The next character is treated as an alphanumeric character regardless of what it is. This is
how to put control characters into the buffer. Meta characters cannot be put in the
buffer, becausc they cannot be in NIL strings.

Control-R ' Reverse-I-Search
Incrementally search backward through the buffer for a string.

Control-S I-Search
Incrementally scarch the buffer for a string.

Control-T Transpose-Characters
Exchange the character before the cursor with the character at the cursor.

Control-U Universal-Argument
Read an argument for the next command.

Control-Vv ‘ Next-Screen :
Move the window and the cursor forward almost one screenful. The last two lines of the
window are now the top two lines. With a numeric argument moves the window and
cursor. that many lines.

Cdntro]—w Ki11-Region
Kill the region between point and mark and save it in the Kill ring.

Control-X Prefix-Character
Control-X is a prefix character. Type any character after it for a two character command.

Control-Y Un-Kill
Get the most recent kill out of the kill ring and insert it in the buffer. With an argument
N gets the Nth kill. With just Control-U as an argument, it leaves the cursor before the
un-killed text. ‘

Control-Z Bit-Prefix Control-Meta
Read the next character as a Control-Meta charactcr.

Control-\ Prefix~-Meta
Read the next character as a Meta character.

Control-] Abort-Recursive-Edit
Return from a recursive edit without doing anything more.

Control-~ Bit-Prefix Control
Read the next character as a Control character.

Control-Rubout Backward-Delete-Hacking-Tabs
Like Rubout except that a Tab is first expanded into spaces. This is useful for indenting
things. In Lisp modes Rubout and Control-Rubout are interchanged.

ML:NILMAN;EDITOR 18 ‘ | 17-JUN-83

NIL Notes for Release 0.259 173 Glossary of Commands

22.7.3 Meta Key commands

Meta-Linefeed Indent-New-Comment-Line
Equivalent to Control-N Meta-; ‘

Meta-Return Back-To-Indentation
Put the cursor on the first non white-space character in the current line. (Tabs and spaces
are white-space.)

Meta-Altmode Minibuffer
Start a minibuffer.
Meta-# Change-Font-Word
Change the font of the previous word.
Meta-(Make-parens
Enclose the next LISP expression in parens. With an argument enclose that many LISP
expressions.
Meta-) Move-Over-Right-Paren

Move past the next close parenthesis, then do a Linefeed.

Meta-. Defun-Search-A11-Buffers
Find a defun. In some modes this will look at the subr object to find the module a
grovel around to find and load the file where the function is defined. In most text modes
(other than bolio) it just searches the loaded buffer.

Meta-; : Indent-for-comment?
Inserts a comment on the current line or adjusts the placement of an existing comment.

Meta-< Goto-Beginning
Put the cursor at the beginning of the buffer.

Meta-= Count-Lines-Region
Prints the number of lines between point and mark in the mode area. Also prints the
number of buffer characters between point and mark (counting the line separator as one
character. See What-Cursor-Position.)

Meta-> Goto-End
Put the cursor at the end of the buffer.
Meta-? Describe-Key
Reads a key from the keyboard and prints its documentation.
Meta-A Backward-Sentence
Move to the end of the previous sentace.
Meta-B Backward-Word
Backup one word. (With an argument backs up that many words.)
Meta-C Uppercase-initial
Capitalize a word.
Meta-D Kill-word

Kill the next word.

ML:NILMAN;EDITOR 18 : : 17-JUN-83

Glossary of Commands 174 NIL. Notes for Release 0.259

Meta-E Forward-Sentance

Move the cursor to the end of the current sentance.
Meta-F : Forward-Word

Move over onec word. With an argument moves over that many words
Meta-H Mark-Paragraph

Put point at the beginning of a paragraph and mark at the end.
Meta-I Insert-Tab

Puts a tab into the buffer. Meta-1 does not change in Lisp modes.
Meta-J Indent-New-Comment-Line

Equivalent to Control-N Meta-;. ‘
Meta-K Kil1-Sentence

Kill the sentence after the cursor.
Meta-L Lowercase-Word

Convert the next word to all lowercase characters. : .
Meta-M Back-To-Indentation

Move the cursor to the first non white-space character in the current line,

Meta-N Down-Comment-Line
If the current line has a blank comment delete it. Then move to the next line and add
or adjust the comment start in the correct column.

Meta-P Up-Comment-Line :
If the current line has a blank comment delete it. Then move to the previous line and
add or adjust the comment start in the correct column.

Meta-R Move-To-Screen-Edge '
With an argument move to the beginning of that line on the screen. With a negative
argument count from the bottom. With no argument move one third from the top.

Meta-$S . Center-Line
Centers the non white-space characters in the current line.

Meta-T Transpose-Words
'Exchange the words before and after the cursor.

Meta-U Uppercase-Word
Convert the next word to all upper case characters.

Meta-V Previous-Screen :
Move point and the window back so the two top lines become the two bottom lines.
With an argument move that many lines.

Meta-W Copy-Region
Put the text between point and mark in the kill rmg but do not ddcte it from the buffer.

Meta-[Backward-Paragraph _
Move to the beginning of a paragraph. In Lisp modes a paragraph begins with a blank
line. Otherwise a paragraph begins with a line that starts with a white-space character.

Meta-\ Delete-Horizontal-Space
Delete any spaces or tabs around the cursor.

ML:NILMAN:EDITOR 18 4 ., o 17-JUN-83

NII. Notes for Release 0.259 175 ' Glossary of Commands

Meta-] Forward-Paragraph
Move to the end of a paragraph.

Meta-~ Delete-Indentation
Join the current line to the previous line and delete white space as appropriate. Leaves
the cursor where the line separator was, so a Linefeed undoes the effect of Meta-.

Meta-~ Buffer-Not-Modified
Clears the flag which says the current buffer has been changed. The star (*) in the mode
linc will be erascd. Be carcful with this command: use it only when you are sure there
have not been any changes to the buffer that you want saved.

Meta-Rubout Backward-Kill-Word
Kill the word befor the cursor.

22.7.4 Control-Meta Commands
Control-Meta-Backspace Mark-Defun
Put point at the beginning of a defun and mark at the end

Control-Meta-Linefeed Indent-New-Comment-Line
Equivalent to Control-N Meta-; .

Control-Meta-Return - Back-To-Indentation
Move the cursor to the first non white-space character in the current line.
Control-Meta-(Backward-Up-List

Move backward to next enclosing open parenthesis.

Control-Meta-) Forward-Up-List
Move forward to next enclosing close parenthesis.

Control-Meta-; . Ki11-Comment
Kill the entire comment field on the current line.

Control-Meta-? Editor-Help
Self documentation function. Type a single character (one of A, C, D, K, S, or ?) to
select which type of help you want.

Control-Meta-@ Mark-Sexp
Put the mark at the end of the next LISP expression.

Control-Meta-A Beginning-0f-Defun
Backup to the beginning of the current or previous defun. Does not require matched
parentheses or a complete defun.

Control-Meta-B Backward-Sexp
Move backward over one LISP expression.

Control-Meta-C Compile-Sexp
Compile the current defun. Only works for NIL code. The compiled function is loaded
into the current NIL.

Control-Meta-D Down-List
Move to the inside of the next list in the buffer.

ML:NILMAN;EDITOR 18 - | 17-JUN-83

Glossary of Commands 176 ‘ NIL Notes for Release 0.259

Control-Meta-E ' End-0f-Defun
Move to the end of the current or next defun. Does not require matched parentheses or

a complete defun.

Control-Meta-F Forward-Sexp
Move forward over one LISP expression.
Control-Meta-H ~ Mark-Defun
Put point at the beginning and mark at the end of the current defun.
Control-Meta-J Indent-New-Comment-Line
Equivalent to Control-N Meta-; .
Control-Meta-K Ki11-Sexp
Kill the next LISP expression.
Control-Meta-M Back-To-Indentation
Move the cursor to the first non white-space character in the current line.
Control-Meta-N Forward-List
Move forward over one list.
Control-Meta-0 Split-Line
Break a line at the cursor and indent the second half so it starts in the same column.
Control-Meta-P Backward-List
Move backward over one list. I
Control-Meta-Q Indent-Sexp
Apply tab to every line in the LISP expression following the cursor except for the first
line. ' : _ A
Control-Meta-R Reposition-Window

Try to place the beginning of the current defun at the top of the window without moving
the cursor. Does not require balanced parentheses.

Control-Meta-T Transpose-Sexps
Exchange the previous and next LISP expressions.
Control-Meta-U Backward-Up-List
Move backward to the previous enclosing open parenthesis.
Control-Meta-V Scrol11-0Other-Window
In two window mode scrolls the other window forward. With an argument scrolls by
lines. v
Control-Meta-W Append-Next-Kill

If the next command .is a kill command the previous kill will be appended to it, even if
it would not otherwise be. Has no effect if the next command is not a kill command.

Contro]-Meta—X Instant-Extended-Command
Read an extended (nemed) command from the keyboard and execute it. If completion
finishes the command name it will be executed instantly, without waiting for a Return. ‘

Control-Meta-[Beginning-0f-Defun
Move to the beginning of the current or previous defun.

ML:NILMAN;EDITOR 18 o » 17-JUN-83 .

NIL Notes for Release 0.259 177 Glossary of Commands

Control-Meta-] End-0f-Defun
Move to the end of the current or next defun.

Control-Meta-~ Delete-Indentation
Join the current line to the previous line and delete white space as appropriate. Leaves
the cursor where the line separator was, so a Linefeed undoes the effect of Control-
Meta-1 .

Control-Meta-Rubout 'Backward-Kil]—Sexp
Kill the LISP cxpression before the cursor.

22.7.5 Control-X Commands

Control-X Control-A Toggle-Auto-Fil11-Mode
With no arg, toggles auto fill mode. With a negative arg, turns it off. With a positive
arg, turns it on and sets Fill Column to that number.

Control-X Control-B List-Buffers ’
Lists all buffers and their major modes.
Control-X Control-Z Exit-Editor

Return to whoever called the editor, generally the NIL interpreter,

Control-X Control-D Directory-Display
List all versions and types of the current file. With an argument reads a pathname and
lists all files which match it. : :

Control-X Control-F Find-File '
Find-File will prompt for a file name and you should type it from the keyboard. If there
is a buffer for that file then it will be selected and be the new current buffer. Otherwise
a buffer is created for the file and the file is read in from disk if it exists there. Find-
File is the most common way to read a file from disk. It creates a new buffer for each
file which is convenient. When Find-File creates a buffer it uses the file name without
any extention as the buffer name. Since the name of each buffer must be unique this
doesn’t work when you are editing two files which have the same name but are on
different directories, or have different extensions (file types) so Find-File will notice if you
are doing this and will ask you for a new buffer name to use.

Control-X Tab Indent-Rigidly
With an argument shifts all lines in the region right (or left if negative) that many
columns.

Control-X Control-L Lowercase-Region

Convert all characters between point and mark to lower case.

Control-X Control-N - Set-Goal-Column
Control-N and Control-P try to move to the goal column if there is one. With an
argument removes the goal column. Otherwise set it to the current cursor position.

Control-X Control-0 Delete-Blank-Lines
Dclete all blank lines following point, and if the current is blank delete all blank lines
before it.

ML:NILMAN;EDITOR 18 : : : 17-JUN-83

Glossary of Commands h 178 o NIL Notes for Relcase 0.259

Control-X Control-P Mafk-Page
Put point at the beginning and mark at the end of the current page.

Control-X Control-Q Set-File-Read-Only
With positive argument scts file read only.
With negative argument scts buffer read only.
. With zcro argument allows any access.

Control-X Control-R - Visit-File
Visit-File is like Find-File except that it re-uses the current buffer, destroying its contents.
1t is still safe since it will offer to save it if any changes have bcen made to it.

Control-X Control-S Save-File
Save-File writes the current buffer to its associated file, and changes the mode line to
indicate that the buffer and file are now identical. (This is not done until the output is
complete, so if therc is a disk error or some other error you will not think it has been
saved when it hasn’t been.)

Control-X Control-T Transpose-Lines
Exchange the current and previous lines.

Control-X Control-U Uppercase-Region
Convert all characters between point and mark to upper case.

Control-X Control-V Visit-File
Visit-File is like Find-File except that it re-uses the current buffer, destroying its contents.
It is still safe since it will offer to save it if any changes have been made to it.

Control-X Control-W Write-File
Write-File writes the current buffer to a file, but unlike save file it will prompt you for
the file name. ' .

Control-X Control-X Exchange-Point-And-Mark
Put point where mark is and mark where the point was,

Control-X Altmode Re-Execute-Minibuffer
Evaluate the symbol "+". Meta-X and some other commands setq + appropriately so
this does the right thing.

Control-X # Change-Font-Region
~ Sets the font number of the region to the argument. Good for Bolio at least.
Control-X { Start-Kbd-Macro.

Begins defining a keyboard macro. -
J

Control-X 1 One-Window ‘
Make the current window fill the entire screen and discard all other windows.

Control-X 2 Two-Windows ,
Split the current window into two windows. Can create any number of windows until
they get two small. ‘ '

Control-X 3 ' View-In-Other-Window
Split the current window into two windows but stay in the top half,
Control-X 4 Visit-In-Other-Window

Combines Find-File and two window mode. Asks for a file to find, then displays it in a

ML:NILMAN;EDITOR 18 ‘ - 17-JUN-83

NII. Notes for Release 0.259 . 179 . Glossary of Commands

new sccond window.

Control-X ; Set-Comment-Column
Sets the comment column to the current cursor column. Comment commands try to start
comments in the comment column.

Control-X = What-Cursor-Position
Shows the X and Y coordinates of the cursor on the screen, the current character and
how far through the buffer you are.

Control-X A Append-To-Buffer
Adds the text of region to the end of another buffer.
Control-X B Select-Buffer
Asks for a buffer name and creates or selects a buffer of that name.
Control-X F Set Fil11 Column
Sets the fill column to be the argument, if given, or else the current cursor position.
Control-X G Get-Q-Reg .
Asks for the name of a LISP variable and tries to interpret its value as text to insert into
the buffer. o , }
Control-X H Mark-Whole-Buffer
Put point at the beginning of the buffer and mark at the end.
Control-X K ‘Kill1-Buffer
Reads a buffer name and kills that buffer.
Control-X L Count-Lines-Page
Prints the number of lines in the current page in the mode area.
Control-X O Other-Window
Selects the next window. _
Control-X T Transpose-Regions
Transposes two regions defined by point and the last three marks.
Control-X X Put-Q-Reg

- Asks for a lisp variable and saves the text in the current region there. Designed to be
undone with Get-Q-Reg (Control-X G).

Control-X [Previous-Page
Move point to the previous page boundary.

Control-X] Next-Page
Move point to the next page boundary.

Control-X Rubout Backward-Kil1-Sentence
Kills text to the previous end of sentence.

ML:NILMAN:EDITOR 18 o ~ 17-JUN-83

Glossary of Commands 180 NIL Notes for Release 0.259

22.7.6 Meta-X Commands

Apropos
Scarches the documentation for a string and prints all paragraphs which contain the string.

Auto-Fill-Mode
Toggle auto fill mode. With an explicit argument, turn it on if positive, and off if
- negative. I forget what 0 does. Unfortunately this does not change the mode line. It will

in the next version.

- Bolio-Mode
Bolio mode is built on Text mode, but has features from Lisp mode. In particular Meta-.
docs a Find Function and the parenthesis balancing hack is turned on. Comments are
Bolio comments. Also, Control-Meta-digit and Control-Meta-* insert a Control-F followed
by themsclves, as font switching commands.

Comment-Region :
Adds comments to the beginning of each line between point and mark. Can be undone
with Meta-X Uncomment-Region. Won’t work for languages with a comment terminator (I
think).

Compile
Compiles the file associated with the current buffer. With a pathname argument compiles -
that file instead. Asks if you want the file loaded when done.

Copy-Mode-Line
Copy the first non-blank line of the last buffer selected to the first line of this buﬁ‘er An

argument is the name of a buffer to use instead.

Delete-File
Reads a file name and deletes it. Asks for confirmation.

Describe
Reads a command from the keyboard and searches for documentanon on it.

Describe-Char-Syntax _
Reads a character and lists its editor syntax. For normal characters just type the character
and Return. For special chracters you must type its symbolic name m accordance with
the current readtable.

Evaluate :
Reads and evaluates one NIL form. Prints the value in the mode area. Passall mode is

turned off during evaluation for safety.

Fundamental-Mode
Sets the major mode for the current buffer to Fundamental,

Help-Meta-X-Commands
Lists the Meta-X commands. This will probably go away and be subsumcd under some
more powerful help function.

Kill-Local-Variable
Removes the current buffer’s local binding of a variable.

Ki11-Some-Buffers .
Asks for each buffer whether to kill it or save it

ML:NILMAN;EDITOR 18 : . 17-JUN-83

NIL. Notes for Release 0.259 ‘ 181 Glossary of Commands

Kil11-Variable
Attempts to makunbound some variable. May change or go away.

Lisp-Mode
Sets the major mode of the current buffer to Lisp. Turns on the parenthesis ccho hack
and some other features.

LL-Mode
Sets the major mode of the current buffer to LL (Lisp Listener). Lisp Listener mode is
built on Lisp mode, but has the feature that a defun is cvaluated and printed into the
buffer when it is finished. It acts like the top-level loop in many ways, except all input
and output is saved in a buffer. You also get to use Tab and the other editor features
which help typing LISP forms, - '

Locai-Bind
Bind some variable to some value when in the current buffer. If prompting for input this
will tell you what the current value is.

LSB-Mode
Makes the current major be LSB. Very similar to Lisp mode, except that { and } are
also parentheses.

Make-Local-Variable
Like half of Local-Bind. Makes the variable local to the current buffer, but doesn’t
change its value. Not sure if this is useful, it is an attempt to sort of be compauble with
EMACS.

Name-KBD-Macro
If there is a keyboard macro this will allow you to name it and to put it on a key. Asks
for the key, then asks for confirmation about that.

Overwrite-Mode
This is not a major mode. It is also not finished. It is supposed to make self-inserting
characters overwrite the existing characters rather that move them over, This much works,
but there is some other hair which is unimplemented.

Query-Replace
Replace all occurances after point of the first argument with the second argument. Asks
about each replacement. "?" will list the options in the mode area. Space does the
replacement, Rubout does not, Escape exits immediately, Period () makes the replacement
then exits, and Comma makes the replacement, then waits for a Space before continuing
(so you can see the change before moving to the next one).

Rename-Buffer
Change the name of the current buffer.

Rename-File
Takes two file name arguments. Renames the first to the second.

Reparse-Mode-Line
Reset the major mode and all local variables from the file property list of the file
associated with the current buffer.

Replace
Replace all occurrences of the first argument w1th the second argument. Acts

ML:NILMAN;EDITOR 18 ~ : 17-JUN-83

Glossary of Commands 182 NIL Notes for Release 0.259

instantancously (well, as fast as a VAX can go) and lcaves the cursor where it was, Note:
Currently the cursor is left at where the last string was replaced.

Save-All1-Files ;
Lets you save any modified buffers. Asks about each one separately.

Set-Key
The first argument is a Key and the sccond is a binding. Control-X keys can be specified
like (#\Control-X # \Control- B) Keys shou]d be specified is accordance with the current

readtable.

Set-Variable
sets a LISP variable to some value

Set-Visited-Filename
Changes the file name associated with the current buﬂ“cr but does not change the buffer

or write any files.

Test-Mode
A major mode build on LL mode (LlSp Listener) but with passall turned off. Not really
sure why I did this, except to test the editor, since Passall is off in LL mode when

reading and evaluating a form,

Text-Mode ‘
The major mode for editing text. Also try Bolio mode.

Trace-Current-Defun , ‘
Tries to find the name of the current defun and call trace on it. Given and argument will

trace that function instead.

Uncomment-Region ‘
Tries to remove comments from a region of commented code. Meant to be used with

Meta-X Comment-Region.

Underline- Reg1on
If the terminal supports wunderlining change the visible part of the reglon so it is
underlined. Waits for you to type a space, then reverts to the normal display and lets
you continue.

View-Buffer v
Shows the contents of a buffer in screenfuls.

View-File .
Shows the contents of a file in screenfuls. Until the NIL garbage collector works this is
much less efficient than visiting the file since all of the lines are wasted completely.

View-Kbd-Macro _
Shows the sequence of characters in a keyboard macro in the mode area.

View-Mail ~
This is just a hack which runs View-File over the vMS mail file sys$1og1n mail.mai.
If it doesn’t work, don’t use it. , :

View-Variable
Prints the value of a LISP variable. Doesn’t barf if the variable is not bound. -Other than

that it is no better than Meta-X Evaluate.

ML:NILMAN;EDITOR 18 . 17-JUN-83

NIL Notes for Release 0259 183 ' Extending the Editor

What-Page
Prints the current page number and line number.

Write-region :
Writes the text between point and mark to a file. ‘Asks for the file name if it is not
_supplied.

22.8 Extending the Editor

Eventually the internals of the cditor will be documented pretty completely. Currently the
internals are subject to change, so any extention may be broken by future changes to the editor.
However, as any hacker knows, a program does not change all that quickly.. So onc may
assume that most of the internals will not change much. "Not being documented” means that 1
don’t know which parts will change and which parts won’t, so you pays your money and you
takes your chances.

22.8.1 Editor Functions

An editor function is just a NIL function in the package STEVE. Currently the name of the
function as given in this manual or with the Describe-Key command is the name of the NIL
function, .unless that conflicts with some other NIL function. (There has been some talk of adding
a consistent prefix or suffix to all editor commands to distinguish them from other internal editor
functions.) So you can call an cditor function from NIL very easily, just find out its name. For
example the LISP form (steve:forward-word) will move the cursor forward one word, just like
Meta-F would. Numeric arguments are passed in the global variable steve:*arguments».

steve:editor-bind-key key-sequence binding &optional Special Form
mode-name . :
key-sequence may be either a character object or a list containing two character objects. It
is evaluated. The code field of these characters should not be an ASCI control character;
use the bits field to select a control character. A list is interpreted as a two character
command using a prefix character (generally Control-X). The binding is not evaluated. It
may be a function name, an editor command macro specification or a key indirection.

Normally the binding is a function name to call when the key is typed. The function will
be called with no arguments. ‘

If the binding is a character object the binding for that character object is used instead.
This is only used for binding Control-1 to Tab, so it may not be very robust.

A list is used to define an editor command macro. The car of the list is a function and
the cdr is a list of arguments. When the editor is reading the key as a command the
function is called and its values are returned as the "key" and command. This is hairy
and should not be used lightly. Look at the code for numeric arguments and bit-prefixes
to see how it can be used.

ML:NILMAN;EDITOR 18 . S 17-JUN-83

Extending the Editor - 184 NIL Notes for Release 0.259

The nmode-name is used to find the binding table for that major mode. The major mode
must be declared when this is exccuted. The default is to use the current major mode,
which is normally fundamental when not in the editor, i.e. when linking NIL.

If the binding is a symbol then it is also defined as a Mera-X command. Not sure if this
is good but that’s the way it is right now.

steve:editor-defun-key key-sequence name &body forms - Macro
A cross between defun and editor-bind-key. Defuns name to be a no argument function
with a body of forms and binds it to key-sequence using editor-bind-key. There is some
debate about whether to use this function or not.

A number of the editor functions takc optional arguments which are intended to make it
easier to use them from NiL code. Usually these are the arguments which the function uses. For
example one may use the form (query-replace "foo" "bar") from NIL code. In particular most
of the word functions take a numeric argument and use that instead of looking at the value of
steve:*argument*. Some functions have an optional buffer-pointer as an argument. They will
operate on this BP instead of the current cursor when they receive an argument.

22.8.2 Editor Objects

There are several special types of objects used by the editor. These are steve:buffer,
steve:bp, steve:line, steve:edit-cursor, and steve:window-stream. All of them are flavors.
The general intent is that they should not be changed in any way except by sending messages,
nor should more messages be defined. The instance variables may be looked at using the accessor
macros gencrated by defflavor, but be careful because the values are only valid until somthing
changes.

A buffer object contains everything about a buffer including the text. It does not contain a
cursor because there may be several cursors into one buffer. An edit-cursor contains a buffer a
window and the position in the buffer where the upper right hand corner of the window is. An
edit-cursor is also a bp, and as such it is the location of the cursor. A line is quite complex
and should not be hacked under any circumstances. In addition to a string of characters and the
length of the line it contains a list of the bps which point to that line. Whenever the line
changes these bps must be relocated. A line also contains an index which indicates when it was
last modified. This is used to optimize the redisplay. A bp (Buffer Pointer) is a pointer to some
character in a buffer. The important instance variables are the line and position within the line.
Remember that each line has to point to all bps that point to the line. A window-stream is an
output-stream with an x-size, y-size and an x-position and a y-position. The redisplay does not
know how to handle windows whose x-position is not zero, or whose x-size is not equal to the
terminal width. ' '

The correct way to create these objects is with these functions.

ML:NILMAN;EDITOR 18 - : : : 17-JUN-83

NIL Notes for Release 0.259 185 : Extending the Editor

steve:make-bp buffer line position ;
Returns a bp pointing to the position character (zcro based) in line. buffer may or may
- not be ignored. In any case the /ine must be in the buffer. ‘

steve:make-1ine buffer previous next &optional string
Returns a line in buffer between previous and next containing string. 1If next is nil this
will be the end of the buffer.

steve:buffer spec &key :create
spec may be a pathname, a buffer name (as a string), a buffer or an edit-cursor. The
value is either nil or a buffer, which is found or created using spec. The keyword
argument create determines if the buffer is created when it does not exist already. The
default is to create a new buffer.

stave:point spec &key create : .
Like buffer except returns an edit-cursor. The argument create controls whether a buffer
is created in order to build the edit-cursor. (If there is a buffer then an edit-cursor will
always be returned, regardless of the value of create. An edit-cursor must have a buffer.)
The edit-cursor may or may not have a window.

steve:point-selected spec &key create
Like point except that the edit-cursor is selected as the current cursor and its buffer is the

current buffer.
This last function uses primitives which are useful in their own right.

steve:select-point point :
Make point be the current cursor and its buffer the current buffer.

steve:select-point-in-current-window point
Like select-point except the window of the current cursor is stolen. This is usually the

right way tp select a cursor.

Some common operations on lines. These are done carefully, so as to do the right thing at
the beginning and end of the buffer. '

steve:1ine-next line Macro
Return the line after /ine or nil if at the end of the buffer. This is a macro generated by
defflavor.

steve:1ine-previous line _ Macro

Return the line before line or nil if at the beginning of the buffer.

steve:nth-next-1ine line n
Rcturn the line n lines after line. If the end of the buffer is reached, the last line in the

buffer is returned. If n is O the first argument is returned. If n is negative, moves
backward.

ML:NILMAN;EDITOR 13 _ 17-JUN-83

Extending the Editor ' S186 NIL. Notes for Release 0.259

steve:nth-previous-1ine line n
Like nth-next-line except moves up for positive n.

Some operations on bps.

:advance-pos n Operation Onbp
Ask the bp to advance by n chars. Line separators count as 1 character. Bombs back to

the editor top level at beginning and end of buffer.

imove line n ' Operation Onbp
Place the bp pointing to the nth character of line.

:get-char = Operation Onbp
Return the character that the bp points to.

:get-char-forward Operation Onbp
Return the character that the bp points to and advance over it,

:peek-char-backward Operation Onbp
Return the character before the one that the bp points to.

:get-char-backward k ‘ . Operation Onbp
Return the character before the one that the bp points to backup to point to it.

3

Note the unpleasant asymmetry of names. However, none of these can be interpreted as standard
stream messages.

22.8.3 Other Functions and Conventions
Editor errors. |

steve:save-all-files
This is the Meta-X Save-All-Files function. It may be called from outside the editor 1f the

editor is broken, and may be able to save your buffers.

steve:ed-1ose format-string &restv format-args
Abort any operation immediately. Print the format-string and ring the bell, then return to
the editor top-level. The format-string is printed in the mode area. Passall mode is
turned off while aborting to the top level, so if a bug causes a repetitive error you can
escape by typing Control-C at the right instant, Keep trying, it works, but it may take a
few tries..

steve:ed-warn format-string &restv format-args
Like ed-lose except the bell is not rung. In genecral ed-lose is used when the editor
detects an error, and ed-warn is used for predictable events, like the Control-G abort out
of a command reader. I feel that if the user has already done something to cause an
abort he/she will not want to hear how upset the editor is. The bell is to bring attention
to something unexpected.

ML:NILMAN:EDITOR 18 17-JUN-83

NIL Notes for Release 0.259 187 Extending the Editor

steve:ed-warning format-string &restv format-args
Print format-string in the mode area, and continue. Does not cause an exit to the cditor
top-level, but continues any operation in progress.

steve:with-no-passall &body forms Special Form
Exccute forms with the terminal not in passall mode. Sets up an unwind-protect form so
an abort is o.k.

steve:+editor-device-mode* Variable
The editor sets the terminal to passall mode only if this variable is t. If you write an
editor function which turns passall off and on you should always use the form:
(send terminal-io :set-device-mode
:passall steve:*editor-device-mode»)

Arguments.

steve:argument? : Macro
Use the form (steve:argument?) to determine if any numeric argument was given.

steve:c-u-only? Macro
Returns t if the argument was Control-U w1th no number.

steve:real-arg-sup? | Macro
(and (steve:argument?) (not (steve:c-u-only?)))
But more efficient in code and runtime,

stéve:buffer~beg1n? &optional bp‘ Macro
Test whether bp (or the current cursor) is at the very beginning of the buffer.

steve:buffer-end? &optionél bp Macro
Similar; test for the end of the buffer.

steve:first-1ine? &optional bp Macro
Returns t if the bp is anywhere in the first line of its buffer.

steve:last-1ine? &optional bp Macro
Analogous.

steve:not-buffer-begin &optional bp
steve:not-buffer-end &optional bp
steve:not-first-1ine &optional bp
steve:not-last-1ine &optional bp
Return to the editor top level if the bp fails the given test. Otherwise do nothmg

ML:NILMAN;EDITOR 18 : o 17-JUN-83

Extending the Editor 188 ' NIL Notes for Release 0.259

Redisplay

steve:make-screen-image
This is poorly named. It used to be different. Now it is the redisplay entire and

complete. Just call it and the screen will be redisplayed. (If a character has been typed it
will exit immediately.)

steve:setup-mode-area
Generate and print a current mode line.

Some functions use the upper arca of the screen to print things. The redisplay must be
told that this has happened. This is handled by using several special functions to position
the cursor and to do terpri. 1t is possible that this will be changed and that there will be
a special strcam which keeps track of such things. I was sick of defining special purpose
streams when 1 got to this. :

steve:overwrite-start
Begin to overwrite the display. If there has been some overwriting of the screen since the

last redisplay start after it. Otherwise start at the top.

steve:overwrite-home
Start at the top always.

steve:overwrite-terpri :
Move the cursor to the next overwrite line. This will do *more* processing as needed.

steve:overwrite-done
Always call this when finished with an overwnte display. This makes overwrite-start begin

in the right place if called before a redisplay.
Reading from the terminal.

steve:mx-prompter function format-string &restv format-args
Prompts in the mode area using format-string and format-args, then reads from the
terminal using function. Handles Control-G and has some additional internal hair which
allows completing functions to be defined. May be modified to handle ? as a help key

somehow.

steve:read-file-name
Can only be used as an argument to mx-prompter. Reads a file name and returns it as

a string. Some day this will do completion.

steve:read-buffer-name
Only for use as an argument to mx-prompter. Will do buffer name completion and

respond to ?. Example;
steve:(mx-prompter #’'read-buffer-name "Foo(~a): " foo)

ML:NILMAN;EDITOR 18 17-JUN-83

NIL Notes for Release 0.259 189 The Patch Facility

23. The Patch Facility

The patch facility provides a means by which a program (whatever that might mean) may be
incrementally updated; it essentially a bookkecping operation, and is primarily designed for
providing the updates necessary for a dumped-out system. In the context of the patch facility,
such a program unit is called a patchable system; use of the term system in this context means
the same thing, but may not in other contexts. (NIL has no more sophisticated system-building
tools currently, although it certainly has whatever primitives might be needed.)

The design of the NIL patch facility is originally derived from the LISP MACHINE LISP patch
facility [10]. That was first implemented from scratch in MACLISP, and some time later the
MACLISP version was copied and modified to be more appropriate for Nit.. This is noted because
there are various design flaws and misfeatures of the facility, which are inherited and are due in
part to the application of the techniques used to a different programming environment. A future
release should have a redesigned facility which will correct these things.

Patchable systems have both major and minor version numbers. The major version number
corresponds to a complete new system genecration, like when a NIL maintainer (one of the authors)
loads up a new NIL, having incorporated any fixes into the source files and recompiled any files
which nceded it. The minor version number is incremented whenever an update is made. ‘The
updates are maintained on disk; each one corresponds to a particular file (a patch file) which
implements the fix (usually, some function and variable definitions the same as in a newer version
of some source file). A patch directory is maintained for each major version number; it
enumerates (and describes) the patches for each minor version number. Finally, each patchable
system has a patch system definition file, which primarily provides all kinds of default attributes
about the system, which include the current version number and the location of the other files in
the filesystem (thus the only place a pathname need ordinarily be specified to the patch facility is
when pointing at the patch system definition file to define the patch system originally).

A typical cycle of usage for the authors might thus look like this. We have a freshly-made
NIL, say version 175 (the Release 0 version). As bugs are found, they are accumulated into patch -
files. One person might accumulate several fixes over the course of a day into a single patch file.
This might then be the update which makes Lisp 175.0 become Lisp 175.1. Exportation of the
patch directory and the patch files for Lisp 175 to other sites will then allow them to be loaded
by other dumped-out NILs of Lisp version 175. Eventually, one of us will decide that the
changes are too far-reaching or too numerous, and decide to go on.to another system version.
This normally involves ensuring that all updated sources are recompiled, loading up a new NIL,
and telling the patch system we want a new major version number. Note that the last is
independent, conceptually, from loading up a new NIL: it is an operation which says that what
we have on disk is a new version. A conceptual bug in the distributed NIL is the ease with which
one may load up a NIL and increment the version number. Unless one is actually modifying the
files which get loaded, one’s site should remain at NIL version 175. If it does not, then a bug
report referring to the NIL version is meaningless to us.

At the end of section 23.4, page 194, is a description of a more common usage of the patch
system, where it is used for a system which is nor dumped out.

ML:NILMAN;PATCH 25 » - 17-JUN-83

User Functions 190 NIL Notes for Release 0.259

23.1 User Functions

load-patches &rest poorly-designed-keywords
Loads patches for the specified (or all) systems. This takes keyword arguments in a non-
standard - fashion, although that is expected to be changed incompatibly in the future. All
of them except for :systems take no arguments. They are:

:systems list-of-systems
Load patches for the specified list of patch systems rather than all those currently

defined.

:verbose
Be verbose. (Verbosity is forced when ‘there is interaction, of course.) This is the

default.

:silent A
Don’t bel verbose.

:noselective
Don’t be interactive, just load the patches. The default is to query the user on

cach patch.

:selective

Query for loading of each patch. This is the default. Note that one may answer
P instcad of Y or N to the query: this means proceed, which will cause all
succeeding patches to be loaded non-interactively. load-patches is (supposed to
be) clever to force verbose typeout when it is going to ask, and inhibit it again if
:silent was specified and the loading was proceeded.

The standard NIL default init file does a

. (load-patches :noselective)

to load patches without querying, but verbosely (so that you see what might be taking it

a while during startup).

The following two functions, if given no arguments, print information about all defined
systems; otherwise, about the systems given as arguments,

print-system-modifications &rest systems
This prints information about the systems as they exist in core. For each system, it lists
its (current) status, and lists the minor version numbers that have been loaded, and their -
descriptions.

print-system-history &rest systems
This reads the patch directory for the named systems off of disk, and dlsplays the
information; all patches and their descriptions are listed (whether or not they have been
loaded), status changes (the system status may change with a particular minor version
number) are noted, and the "in-core” status with respect to all of this is shown.

Note that although the patch directory is read from disk, the patch system must be
defined in-core in order for this to know where to look for the patch directory.

ML:NILMAN;PATCH 25 » S 17-JUN-83

NIL Notes for Relcase 0.259 : 191 Patch System Information

23.2 Patch System Information

si:system-version-info &optional briefp
Returns a string describing the versions and statuscs of the patch systems defined. If
briefp is specified and not nil, then the status information will be abbreviated, some
("insignificant™) systems will not be shown, and the name of the primary system ("Lisp™)
will be omitted (it always comes first).

si:get-system-version &optional system
Returns multiple valucs describing the current version of the specified patch system:
* the major version number,
» the minor version number,
» and the system status keyword.
By some special strange dispensation, if system is not defined as a patch system, nil is
returned as each of the values. '

si:get-system-version-1ist system
This is a vestigial remnant of Maclisp implementation. Equivalent to
(muitiple-value-list (si:get-system-version system))
(In MACLISP, the multiple-value support code does not normally reside in core, and code
which runs interpreted and needs to examine system version information (for instance
when loading up a system) might not want to force it to be loaded.)

si:print-herald &optional stream look-out-of-core?
This is what prints the startup message. If look-out-of-core? is not nil, then si:print-
herald reads the patch directories off of disk so that it can show what the current versions
and statuses are (what you would get if you do load-patches). With a non-null look-out-
of-core?, si:print-herald effectively does a (si:update-system-statuses nil) (q.v.).

si:update-system-statuses? system-list
Looks on disk and corrects (if necessary) the in-core status information for each of the
systems in system-list, or all defined patch systems if that is nil. The reason for this is
that it is possible for the status of a system to change on disk (a particular patch might
be deemecd to be broken, or the system might be deecmed to be no longer experimental,
for instance). This is done implicitly by load-patches, and by si:print-herald with a
non-null second argument.

23.3 Adding Patches

For the following set of functions, a default system/minor-version-number pair is maintained,
from which system-name and minor-version-number are defaulted. The system name originally
defaults to lisp, which is the name of the NIL patchable system. (This should be changed.)
si:add-patch creates a new minor version number, allocates it in the patch directory, and sets
this in-core default patch version to that. Then one can (for instance) do (si:compile-foad-
patch) to test that patch. If the function does not know which minor version number to deal
with, then it will cycle through all of them, from the "most likely" one first, asking. One way to
force this behavior is to specify a system but not a minor version number to one of these

functions,

ML.:NILMAN;PATCH 25 | o 17-JUN-83

Adding Patches | 192 NIL Notes for Release 0.259

si :add-paich &optional system-name description &rest options
This allocates a new minor version number for the patchable system system-name, with a
description of description and cnvironment options of options (sce the :environment-
options keyword to the si:initialize-patch-system function, on page 194). It then calls
si:re-edit-patch, below.

si:re-edit-patch &optional system-name minor-version-number
Creates a patch file for the appropriate file (if necessary), and calls the built-in editor on
it.

si:compile-patch &optional system-name minor-version-number
Compiles the specified patch. This routine returns several values; the first of which is the
pathname of the compiled file, so that it may be loaded. :

si:compile-load-patch &optional system-name minor-version-number
Compiles and loads the specified patch.

d

si:finish-patch &optional system-name minor-version-number
"Completes” the specified patch; that is, marks it as finished. If a patch is not
"finished”, then load-patches will not load it (nor any succeeding patches).

si:abort-patch &optional system-name minor-version-number _
Flushes (aborts) the specified patch, Any.patch files are not deleted, however; you should
consider doing that manually. If the minor version number was the highest in use, it will
be reused, in which casc a later si:add-patch will use the existing text file to start.
Otherwise, there will be a missing minor version number, which is ok.

si:set-patch-environment system minor-version-number &rest options
In case you forgot with add-patches, this sets the option environment to options. Note
it does not update the file attribute list in the source file of the patch! You must do that
manually.

si:set-system-status system status &optional major-version minor-version
Note that this takes weirder than normal arguments. This sets the status of the specified
version of system to be status. It is willing to modify the status list of major versions
differing from that defined in the current environment. (Not to say that that would not
be equally useful for some of the other functions...)

The typical use of this is to set either the current or the 0 minor version number of the
current major version of some system to either :released or :broken, with the current
status being :experimental (the default when a new major version number is made). Or,
to change the status of an antiquated system from :released to :obsolete.

ML:NILMAN;PATCH 25 ’ 17-JUN-83

NIL Notes for Release 0.259 | 193 Defining Patch Systems

23.4 Defining Patch Systems
si:new-patch-system system-name pathname &optional (do-what :increment-and-define)

si:initialize-patch-system system-name pathname &key :initial-version
:patch-directory :patch-file :compilation-function :editing-function
sinsignificant :default-directory :default-device :nodefault
:environment-options

:nodefault
If not nil, then siinitialize-patch-system will read in an existing version of the
patch system definition filc from pathnam (appropriatcly defaulted) to provide
defaults for those options not spccified. Otherwise, hopefully appropriate default
defaults are used.

linitial-version
May be used to specify the version to be used. This will be written into the
patch system definition file as the current version, which means that calling
si:new-patch-system with the (typicall) :increment-and-define keyword will
increment it first. '

:patch-directory .
A format string which should take one argument, which is the major system
version, to construct the patch directory pathname for that major system version.

:patch-file

A format string which should take two arguments, the major and minor system
versions (in that order), to construct the patch file pathname for the patchs of
those versions. Alternately, it may be a list of two such format strings: the first
will be used as the source file pathname, the second for the vasl file. (This may
‘be used to split the stuff across dircctories or even structures, for instance if the
sources are kept in a different place because of lack of disk space, or are simply
not kept somewhere on some particular machine.)

:compilation-function o
The function called by compile-patch etc. By default, compile-file (page 155) is
used. This should be a symbol, not a closure or compiled-function object. The
function will be given a first argument of the input pathname, and other
keyworded arguments of :output-file and :set-default-pathname (which will be
nil so as to not modify pathname defaults). That is,

(1sbc1 input-pathname
:output-file output-pathname
:set-default-pathname nil)

:editing-function
The editing function which should be used to edit a patch file. It is called with a
single argument, the patch file pathname. The default function simply returns the
list of "now" "edit" and the pathname, which is then returned by si:add-patch
or si:re-edit-patch. -

sinsignificant
If not nil, then si:system-version-info will not show this system when in brief

ML:NILMAN;PATCH 25 o 17-JUN-83

Defining Patch Systems | 194 NIL Notes for Release 0.259

mode.

:default-directory

:default-device
These are used to construct the default pathnames used for the :patch-directory
and :patch-file options, when they are not supplied. They are nor used in
defaulting (although they probably should be). The default-defaults for these are
taken from pathname, and if absent from that, the directory name defaults to
system-name. These options are significantly less useful in NiL than they were in
the MACLISP version of this code...

:environment-options

This and some of the code involved is partially but not totally archalc it .predates
NIL file attribute lists, and was put in to compensate for their absence. The code
in Release 0 still performs redundant bindings of the involved attributes.
However, the data in this option list is used to also initialize the textual file
property list when si:add-patch initializes the patch file. Because of the
kludginess of this, only a few options are supported, although it is extensible if
need be (sce the code). The options currently'handled are

:package
The package name (default is "SYSTEM-INTERNALS", which is probably
a poor choice) _

linput-radix '
The input radix (default is decimal).

LSB, which has been distributed with NIL, is a patchable system also. However, the normal
. NIL environment does not have LSB loaded by default.” There is a file which can be loaded which
will load up all of the parts of LSB. (It is NILSDISK:[LSB]LOAD.LSP, if you have LSB online.)
Esscntially, it sets up the Isb package and loads, up all of the component files of LSB and
performs whatever initializations are needed, and theh docs
(si:new-patch-system
"LSB" "NIL$DISK:[LSB.PATCH]SYSDEF"
:define)
(1oad-patches :noselective)
The file NILSDISK:[LSB.PATCH]SYSDEF.PSD was created with the sicinitialize-patch-system
function. Once that has been created, this reference to it in the LSB loadup file is the only
pathname reference necessary; all others are contained in that file.

With the LSB patchable system, the files which are loaded by the loadup file are not normally
modified except via patches. However, at strategic points, like when many files are being changed
at once, or incompatible changes are being made, or the patches become numerous, thén all of
the files are changed (for instance, recompiled) at once, and the maintainer manually increments
the version number of the LSB patchable system by doing

(si:new-patch-system ’'1sb "nil$disk:[1sb.patch]sysdef"
tincrement)
which increments the on-disk version number. Then, when someone loads the loadup file, they
get the new files, the new major version number, and (until new patches get made) no patches
loaded. :

ML:NILMAN;PATCH 25 : 17-JUN-83

NIL Notes for Release 0.259 : 195 | Defining Patch Systems

Maintaining the system in this way also results in a shorter turnaround time for testing out
small fixes, and getting them “installed"; larger source files do not need to be recompiled.

ML:NILMAN;PATCH 25 ' o 17-JUN-83

Talking to NIL | 196 NIL Notes for Release 0.259

24. Talking to NIL

24.1 Startup

The first thing NIL does when it starts up is to attempt to figure out what kind of terminal
you are using. The way NIL figures out how to talk to a particular terminal is that it uses
“terminal capabilities” database (a UNIX tenncap database). The vMS logical name term is used to
name the terminal type; NIL ignores VMS terminal information. If no such logical name is
defined, then NIL will assume the terminal is a simpleminded printing terminal, and prompt you
for a terminal name. ' :

The terminal names which are both supported and known to work fairly well are

vi52 :
Standard DEC VTSs2.

¢100
Human Designed System’s concept-100. This will probably work for their Concept-108

also.

aaa
Ann Arbor Ambassador:

vt100 ‘ o i
DEC vt100. Obviously you should make sure your vtl00 is in ANSI mode. Also, auto-
linewrap should be disabled.
In DCL, one might say
$ define term "cl100"
if one was on a concept-100. Or, if your terminal varied, you might put in your Togin.com file
$ inquir term "Terminal type (in doublequotes, default vt52)"
$ if term .eqs. "" then term := "vtb52"
$ define term "’ ’term’" , \
which would prompt for the terminal type to assign to the term logical name, defaulting it to
whatever was convenient.

When NIL starts up, it loads your init file if it exists. This would be a file on your login (not
default) directory named NIL.INI. (Init file conventions are discussed on page 124.) Then it
enters its standard read-eval-print loop.

ML:NILMAN;TALK 13 ‘ : 17-JUN-83

NIL Notes for Release 0.259 197 The Toplevel Loop

24.2 The Toplevel Loop

* Variable
The value of this is the last thing the toplevel (or breaklevel) loop evaluated (and
presumably printed).

* » Variable
The previous value of *.

Ty ' Variable
The previous value of »+, '

+ » . Variable
The value of this is the last thing read in by the toplevel (or breaklevel) loop.

++ » _ Variable
+++ ' = Variable
Previous values.

W U ' Variable
This has as its value the vector of values returned from the last thing evaluated by the
toplevel (or breaklevel) loop. That is, its first (number 0) element will be the value of *.

This variable is also used by the debugger the way * is by the toplevel loop, but that
will be changed eventually.

If an evaluation error occurs and you abort back to toplevel, then the value of the * variables
does not get cycled, but the + variables do; thus, + is the form which got the error, but #* is
still the last thing returncd by toplevel evaluation. COMMON LISP intends to change this. (What
NIL does is compatible with MACLISP.) '

24.3 Entering and Exiting NIL

Typing the character control-Y normally exits from NIL. The same command which started .
the NIL initially may then be used to resume it. The NIL can be resumed in other ways too. For
instance, if ni1 was the command used to start the nil,

nil will resume the existing NiL,
nil/kill ~will kill the NIL, and

nil/proceed will resume the NIL, but not allow it to type out, and will leave you in the
command interpreter. If the NIL attempts to type out (or, in fact, calls any of
the following functions), it will wait until it is explicitly resumed.
If NIL is reading input from the terminal, the input processor command for "meta-altmode",
which may be typed as the character sequence control-\ altmode, will return control to the
command interpreter. When the NIL is resumed, it will automatically redisplay the typein it is
accumulating.

ML:NILMAN;TALK 13 : 17-JUN-83

Entering and Exiting NIL 198 “NIL Notes for Release 0.259

Several functions are provided for returning from NIL to the VMS command language
interpreter (CLI) in a more programmable fashion. In all of the following functions where a string
is involved with passing control back to the CLI, the string may have a maximum length of 256
characters. This is checked for by NIL.

valret &optional command-line
(valret) returns control to the CLI. The NIL is suspended until later resumed.

)

(valret command-line) returns to the CLI (suspending the NIL), and additionally causcs
command-line to be interpreted as a command line by the CLI

The passall terminal mode is cleared, and restored when the NIL is resumed. valret with
a string argument works by calling the VMS lib$do_command library routine.

quit
(quit) exits the NIL, causing it to be killed.

Currently, (quit string) kills the NIL and causes string to bc printed instead of "NIL
Terminated"; however this will probably be changed so that string will be interpreted as a
command line, as with valret. v

Passall mode is cleared on exit.

When the NIL is terminated, there is a noticeable pause before the command language
interpreter returns. This is due to the controlling program (RNIL, running in the CLI)
waiting for the process to actually go away. VMS image rundown takes a noticeable time,
and if one were to not wait after requesting process deletion, starting up a NIL of the
same name immediately could cause the new RNIL to be confused. (This is the same as
happens when ni1/ki11 is used in the CLL)

exit-and-run-program (pathname)
Control is returned from NIL to the CLI, and the program image found in pathname is
then run. The NIL will have been suspended. NIL applies no defaulting to pathname,
however, the command interpreter will supply a default file type of exe and will default
the device and directory to the RMS default.

Passall mode is cleared on exit. exit-and-run-program works by having the RNIL
program call the lib$run_program library routine. '

proceed-ni1 &optional string -
Control is returned from the NIL to the cLl. However, the NIL is resumed, so will

continue running "without the terminal”. If a string is supplied, then that is printed (as
with quit). Similarly (as with quit), the interpretation of string should probably be
changed to be a command line for the CLI to execute.

ML:NILMAN;TALK 13 : v 17-JUN-83

NIL Notes for Release 0.259 : 199 VMS

244 YMS

VMS usurps control-Y as interrupt-to-superior. Resuming your NIL gives it a tty-return
interrupt which makes it frob the cursor so that it knows where the cursor is. (This is why it
goes to the bottom of the screen on a display tty.)

Other terminal interrupts are all performed by dispatching from control-C; after the control-C
is typed another character is read. ("?" lists options.) The control-C processing is performed by
Lisp code. This means that control-C will not be processed if interrupts are scverely inhibited.
The NIL system by special dispensation will enter the VMS debugger if multiple control-Cs are
typed and are being ignored.

It is highly unlikely that NIL will enter the vMS debugger unless explicitly told to do so.

Here arc two VMS debugger commands that are useful for returning back to the world. Say

call debug
and the lisp debugger will be entered. (Exiting softly from the Lisp debugger with "gq" will
return to the VMS debugger. One may also perform a non-local exit from the Lisp debugger with
control-G or X.) One can also just

call quit :
from the vMS debugger, which does a throw just like control-G does from the control-C prompt.

si:1isp-debugger-on-exceptions Variable
If non-null, then error conditions and faults will trap to the LISP error handler rather than
bombing out to the VvMS debugger. This can happen from memory access violation errors,
floating overflow and underflow, integer divide by zero, etc.; in general, any such error.
For instance, a reserved operand fault might occur if a variable-field byte instruction was
given a bad size.

If the lisp debugger is used from some exceptional condition, remember that the stack may
not be in a nice-looking state, so examination of what the debugger thinks are local variables near
the top may result in more trouble. Note also that the Lisp code is not run at AST level, but
rather as a continuation of the condition; returning a value from the debugger returns that value
from the most recent VAX procedure call, which is probably the function within which the error
was signalled. Also, the LISP code which -handles such errors binds silisp-debugger-on-
exceptions to nil when it is running; examination of non-LISP data by the debugger from such ;
an error as if it were LISP data might cause a memory protection violation, and blow out to the
VMS debugger.

24.5 Installation

There are 4 parts to installing VAX-NIL at your site.

1 Restoration of the ni1 directory hierarchy from the backup tape.
2 Definition of the required logical names and symbols.

3 Invoking the LISP denamic linker.
4

Handling System and User considerations such as setting up the proper logical names and
symbols (system or group wide and/or in user login files), and installing certain images

ML:NILMAN:;TALK 13 : : o 17-JUN-83

Installation ¢+ . 200 NIL Notes for Relcase 0.259

for efficiency reasons. .

[Step 1] .
It is h]ghly recommended that a rootcd device dcﬁnmon be used for NILSDISK, for example:
$ DEFINE/SYSTEM NILSDISK "__DBAO: [LISPROOT 1"

The entire hierarchy, including executable, object, and source files in MACRO-32, BLISS-32,
and LiSP; and including various DCL command files and sundry data files and documentation
compriscs 1600 files and 40 sub-dircctorics, using approximately 40 thousand blocks of disk space.
If you have the disk space then restore the whole thing, if not, then use sclective backup of
[NIL.PORT], cg.

$ BACKUP/LOG MTAQ:NIL. BAK/SELECT [NIL.PORT]+.» NILSDISK:[»...]
and then select the files according to MINIPORT.COM and VASPORT.COM.

[Step 2]
Use the following command:
$ ONIL$DISK:[NIL.COMISYM

[Step 3] -

If you are running VMS version 3.1 or above, then all you need run now is the lisp linker:

$ LISPLINK
This will result in a rather verbose display of ' loadmg messages, (which will take a minute or
two to load the 120 or so files) after which the message "; Suspending Environment” will be
printed. Followed after a silent pause of about 30 seconds by the standard system startup herald.
At this point a read-eval-print loop is entered, where you will want to type (quit) to exit to DCL
level. The newly created saved lisp enviroment may be restarted by

$ NIL

If you are not running VMS 3.1 or above then you may have to run the vMS linker, (in

which case you had better have restored the obj files from BACKUP),

$ SET DEF NIL$DISK:[NIL.F0O] .

$ NLINK ' '

$ GRNILLINK
Sometimes the RNIL.B32 may need to be recomplled to do that:

$ BLISS/LIB NILLIB NILLIB

$ BLISS RNIL
then do the link commands as above of course.

example: To go from VMS 3.0 to VMS 3.4 you may have to do the following:
BLISS/LIB NILLIB:NILLIB

SET DEF [NIL.F0O]

BLISS RNIL

@RNILLINK

NLINK

LISPLINK

& OB O P e

[Step 4]
Sce the file NILSDISK: [NIL.COMINILINSTAL.COM, which can be moved (perhaps edited first)
to SYSSMANAGER. Then add this to SYSTARTUP.COM:

ML:NILMAN;TALK 13 : - 17-JUN-83

Nil. Notes for Release 0.259 201 . Installation

$OSYSEMANAGER: NILINSTAL
Then users who want to use NIL must have exccuted in their login files:
$@NILSDISK: [NIL.COMJUSYMS '

This will sct up the the standard way of calling NIL,
$ NIL ‘
Which will run NIL as a subprocess. tY or (valret) will exit the subprocess; to resume, type:
$ NIL
or to kill the subprocess:
$ NIL/KILL ! from DCL

(QuIT) ; from LISP

The directory [NIL.SITE] has two files of interest: - [NIL.SITEJSITEPARAMS which if it exists
in compiled form will be loaded right before the LISPLINK saves the virtual memory image.
And [NIL.SITE]JDEFAULT.INI, which is loaded at "re-startup” time if the user does not have a
SYSSLLOGIN:NIL.INI file. After NIL is created on your system then you should edit
SITEPARAMS and compile it. The information is noncritical however.

Upon startup NIL will look for the logical-name "TERM" to determine the type of terminal it
is connected to. For example:
$ Define TERM "vt100"
Presently it does all its own cursor positioning using the data in the file NILSTERMCAP. If the
logical name "TERM" is not defined then NIL will prompt the user for the info upon startup.

[Optional Verification]
In NIL do:
(LOAD "NIL$DISK:[NIL.VERIFY]VERIFY")
(VERIFY "TEST")
Then sit back and watch the little demonstration. No, we do not have program verification
technology to the point where this gives a proof of correctness for the NIL. However...,, then run
$ DIFFERENCES NIL$DISK:[NIL.VERIFY]TEST.LIS

[What if Fallure"]
If you ran out of disk space in step 1, then we can suggest that you somehow make more space
temporarily, (e.g. backup and delete files), and then prune down to the minimum given in
NIL$DISK:[NIL.PORTJMINIPORT.COM when step 3 is completed.

Step 2 couldn’t fail, as all it does is define logical names and symbols.

Step 3 could fail if various system generation parameters and account quotas are not set high
enough. Many sites will fail here, as the default VIRTUALPAGECNT of 8 thousand pages is not
sufficient. (Although it is sufficient to do LXBNIL which does not load the compiler). 16
thousand pages is enough to get started in lisp programming. Other things to look out for are
insufficient pagefile and per-account pagefile quota.

Default account parameters as supplied by DEC have found to be sufficient under VMS 3.0,
but some sites have been found to severly restrict parameters, which has proved to be extremely
frustrating at that subset of those sites where the local expertise for debugging problems caused by

ML:NILMAN;TALK 13 o 17-JUN-83

How the NIL. Control Works l -, 202 NIL Notes for Release 0.259

such restrictions is insufficient.

It is possible to run NIL on a VAX-11/750 with a single RK07 disk, (a mere 27 megabytes!)
as we do here at MIT. However, it is not possible to link a NIL on such a tight system. Idcal
system cnvironments have been found on sites configured to run large databases efficiently.

In step 4, note that the running NIL image is mostly pure, sharable, code and data, so there
is a big performance payoff in proper installation and SYSGEN tuning on a multi-NIL-user
system. If LISPLINK works, but NIL does not, then it may be duc to insufficicnt global sections
and pages.

[Other Options]
If you want to be able to use the VMS debugger on the running lisp image then execute the
following: '
- $RUN [NIL.HACKS]SETDEBUG
Giving NIL$DISK:[NIL.EXE]LISP.EXE; as the filename, and answering Y to the question. With
this setting NIL will start up in the VMS debugger, and you must type GO<KCR> to actually start

1t.

24.6 How the NIL Control Works

This section notes how some of the above stuff works, for the interest of vMS hackers, or
those wishing to extend the above functionality.

Program control of NIL under VMS works in a fairly strange way (or at least so it will appear
to someone used to operating systems in which there is more explicit job/terminal association and
more "monitor" control of inferior processes). This is a function of VMSs lack of a concept of a -
job "having control of the terminal”, and the fact that the NIL process does not contain a
command language. interpreter in its image; the spawn and attach commands are only
implemented by conventions applied by the CLI.

The command nil typically invokes the RNIL program. This is an image which runs within
the CLI process, and "controls” the NiI, which is kept in a separate process. The nil1 command
implicitly supplies lots of arguments to RNIL, one of which is the job name of the NIL process.
RNIL will create one if there is none, or will do something else to it (like resuming it) depending
on additional arguments given (like ni1/proceed or nil1/ki11). RNIL communicates to the
NIL process with mailboxes. When the NIL is resumed, the RNIL. attempts to read from one,
waiting. It rcturns cither when it succeeds in reading a message (as happens with valret), or if it
is abnormally exited (as with typing control-Y).

VMS in its current state does not have the concept of a particular process having "control” of
the terminal it shares with the rest of the process tree. NIL handles this by having a number of
event and state flags which tell it whether or not it is allowed to read from or write to the
terminal. When a NIL is exitcd, the RNIL program clears those flags; when it is resumed, they
are turned back on again. ‘ '

Exiting from NIL with control-Y works in a particularly strahge fashion. The vMS terminal
driver will give a control-Y AST to any process which has enabled it, with no conceptualization

ML:NILMAN;TALK 13 ~ 17-JUN-83 |

NIL Notes for Release 0.259 203 How the NIL Control Works

of what program is "in control of"' the terminal. The control-Y is handled by the CLI, which
then commences image rundown of the RNIL program. RNIL has an exit handler which then. sets
the terminal input and output enabled flags off in the NIL process. (As a special case, it may also
exit similarly if the NIL is terminated some other way, perhaps by exit to thc vMS debugger in
the NIL process. It recognizes the mailbox message for this, and prints "NIL Terminated".)

Control-C has a similar control problem. When a control-C is typed on the terminal, the
terminal driver runs the AST routines for al/l processes which have enabled them. (Multiply, if a
process has enabled more than one.) In the current implementation, the NIL process enables the
control-C AST. When the AST routine is run, it attempts to determine if it should bc the
recipient of that interrupt, by checking to see if it "has control of the terminal" (i.c. the
terminal-input-cnabled flag is on). If not, it ignores the interrupt (and of course re-enablcs the
control-C ast). If it thinks it was the recipient of the interrupt, it cancels the control-C (to help
keep other NILs on the same terminal from having to think about it, i gucss), and queues a LISP
interrupt for control-C. There is one time when this can break down: if the NIL is suspended
when the AST is delivered, the AST will not be run until the NIL is resumed. However, when
the NIL is resumed, the RNIL delivers it a couple other ASTs which cause the terminal input and
output flags to be turned on! If this manages to happen before the control-C AST routine gets
around to checking these flags, then the NIL will think that this control-C was for it, and behave
accordingly. So, if you resume a NiL and it acts like you just typed a control-C, it is probably
because of that contorl-C you typed at the display program half an hour ago.

There is a design change which eliminates this problem, and additionally allows controlled
interruptibility out of arbitrary wait operations (not just terminal input and output, which are
special cased). It involves a sweeping change to lots of code, however, so cannot be put in bits
at a time,

ML:NILMAN;TALK 13 ' ‘ o ‘ ~ 17-JUN-83

Peripheral Utilities _ 204 B NI Notes for Release 0.259

25. Peripheral Utilities

This chapter will accumulate documentation on various minor utilitics which are distributed
with NIL, but which are not necessarily part of NiL proper.

25.1 The Predicate Simpliﬁer

NIL offers a predicate simplifier, which simplifics LiISP-format predicates into disjunctive normai
form.. This program was originally written by Decpak Kapur with the help of Ramesh Patil for
the PROTOSYSTEM automatic programming project directed by William Martin at MIT in the mid
1970s. Since then, it has been converted to use LSB [4], brought up in both LISP MACHINE LISP
and NIL, and improved at a low level. The code for this is not loaded by default in NIL; it
cxists as nil$disk:[nil.utilities]simp, and to load it, the package definition file
nil$disk:[nil.utilities]simp.pkg should be loaded first.

This simplifier only really works on simple predicates and conncctives. It performs some basic
canonicalizations of arithmetic operations and inequalitics (equal, greaterp, and lessp), but it
does not truly recognize identitics or other relations among them. There is also a read-time
(compile-time) conditionalization for whether it attempts to deal with existential quantification, as
represented by forms of the form ‘

(for-some (kI k2 ... kn) pred)
This feature is normally turned otf which simplifies the internal datastructures used and improves
the efficiency in the other cases. Again, simplification of forms containing existential quannﬁcanon
does not always reduce as well as it should.

simp pred-form '
Simplifies pred-form. For example, _
(simp '(and ¢ d (or a b))) => (or (and a c d) (and b ¢ d))

simpor pl p2
simpand pl/ p2
Approximately equivalent to
(simp (1ist and-or-or p/ p2))

simpnot pred
Simplifies the not of pred.

simporlist pred-list
simpandlist pred-list
Simplifies the or or and of pred-list.

*simpor p/ p2

~simpand p! p?
pl and p2 must already be in disjunctive normal form, ie., already simplified (as returned
by some simplification call). This is faster than using simpor or simpand.

 ML:NILMAN:UTILS § : . 17-JUN-83

NIL Notes for Release 0.259 205 A MINI-MYCIN

*simporlist pred-list
*simpandlist pred-list
Simplifies the or or and of the predicates in pred-list, which must be alrecady simplified.

*simpnot pred
Simplifics the not of pred, which must be already simplified.

There is also a hack for doing both uniquizing of predicates returned, and also "atomizing",
associating an atomic symbol with a predicate (which will be expanded out in subsequent
simplification). . The former was important in the PDP-10 MACLISP version when large databases
associating predicates with probabilitics were in use. See the source code if cither of these are
desired.

25.2 A MINI-MYCIN

This is a small production rule system upon which class projects in the MIT course 6.871
were implemented. Some students in the course taught this term by Prof. Peter Szolovits and Dr.
Ramesh Patil used this code in NIL. The directory NIL$DISK:[MYCIN] has what the students
got to start with. This is morc of an example lisp program than it is a utility. Here is part of a
script of a run of the test example: '

(toad "nil$disk:[mycin]loader")
{(1oad-mycin)

Indeterminate context: RULE4 flushed.
Type (return t)

;bkpt ERROR

1>break>(return t)

Indeterminate context: RULES flushed.
Type (return t) '

;bkpt ERROR

1>break>(return t)

(run)

Creating new context node: PERSON-2

The files GOBBLE.LSP and MYCINF.LSP are the basic system, upon which students built sets
of rules to do something useful or interesting. The example above, from MYCINT.LSP is not
interesting, just (barely) illustratory. TAXAID.LSP has a completed project a student did in 1980.

ML:NILMAN;UTILS § ' : : 17-JUN-83

Maclisp Compatibility for Macsyma’ 206 ' NIL Notes for Release 0.259

25.3 Maclisp Compatibility for Macsyma

The dircctory NIL$DISK:[MACSYMA] has some code in that is used for compiling and
running MACSYMA in NIL and that will be useful to anyone porting a MACLISP program.

The file ALOAD.LSP has an autoloading handler that works by handling the :undefined-
tunction crror condition. This might be a generally useful thing to have around.

The file PKGMC . LSP illustrates the use of pkg-create-package and intern-local in order to
build a namespace that shadows conflicting or incompatibly defined functions and variables.

The file NILCOM.LSP gives definitions of the functions map, subst, member, and assoc,
~ which are compatible with MACLISP.

ML:NILMAN;UTILS § . 17-JUN-83

NIL Notes for Relcase 0.259 : 207 NIL Extended Data-Types

26. NIL Extended Data-Types

This chapter describes the implementation of the NIL extended data type (or just extend)
facility. This is the stuff from which flavors and closures are built. It is not necessary to read
this chapter to make normal and efficient use of flavors or structures; rather, this is presented for
the curious, and those who may need such information to interface flavors or structures to non-
LISP code. It makes no attempt to fully explain the implementation of flavors and type
inheritance using this. '

It is not clear why I am documenting this here.

26.1 The Extend Structure

NIL has about 20 primitive data types, which are differentiated by the type bits in the pointer.
One of these types is named si:extend. When typep encounters this type, rather than just
returning its name, it looks further. Implementationally, an extend is structurcd similar to a
simple general vector; it is effectively just such a vector, except that it has an extra header slot in
which the flavor object is stored. (This is what used to be called the class of the object.) This is a
structured object (itself an instance of a flavor), which describes the type. Different extends of
identical types will have the same (eq) flavor objects.

flavor-of object
This is the primitive which finds the flavor object of any LisP object. If object is an
extend, then the flavor object of the extend is returned. Otherwise, the pointer type of
the object (with a little fudging and hedging) is used to find the flavor object which is
associated with that primitive type. Thus, this primitive integrates the primitive types with
the extended types. It is what is used by typep of one argument (of-type), and even by
send. :

s1:xref extend index
Returns the indexth element of extend, which must be an extend. This primitive is
normally compiled as a call to a NIL kernel subroutine which will perform type and
bounds checking (but see compiler:*open-compile-xref-switch, page 157).

si:xref is usable with setf.

si:%xref extend index , ‘
This is an alternate name for si:xref, which is always inline-coded by the compiler
without error checking. It also is usable with setf.

si:make-extend size flavor-object &optional initialization
This is the primitive creation functions for extends. An extend of size size is created, '
with a flavor-object of flavor-object. If initialization is nil or not specified, then the slots
of the created extend are initialized to nil. Otherwise, inifialization must be either a
simple general vector, or another extend, which is a¢ least size long. The created extend
will have its slots copied from initialization. make-instance uses this to initialize constant
slots from a template extend, as it is substantially faster than initializing them individually.

ML:NILMAN;EXTEND 6 17-JUN-83

The Flavor Object 208 | NIL Notes for Release 0.259

Because this is a low-level implementation primitive, no error checking is performed
" anywhere. . :

'26.2 The Flavor Object

The flavor object is a structure which describes the type of the object. Certain of the
components arc defined to occur at specific offsets, for the benefit of the NIL kernel. Code
written in MACRO32 inserts the file ni1$disk:[nil.vm]:clsoff.mix to define these offsets
(which have prefix c1s$). Some of the comments and entrics in that file are out-of-date,
however the slots named there are a superset of those which are actually used by the kernel.

The flavor object is a structure of type sifflavor. The dcfinition of it is in the file
nil$disk:[nil.src]flavm.1sp, and is somewhat gross and hairy; this is a result of
historical and bovtstrap ‘reasons (it used to be defined without using defstruct). The accessors
which fetch components of this structure have names such as si:flavor-type-bits. Some of those
of interest in the kernel are:

si:flavor-name
The name of this type.

si:flavor-types
This is a list of all type names from Wthh this type inherits. Two-argument typep, when
the type-specifier is the name of a flavor-defined type, looks to see if that type specifier is
a member of the flavor-types of the flavor object of the object. That is,
(typep x 'foo)
is (when foo is the name of a flavor-type) done by
(memq 'foo (si:flavor~types - (flavor-of x)))
The first element of this list is always the name of the type.

si:flavor-type-bits
For efficiency reasons, certain non-primitive types are given bit assignments. This slot
holds a fixnum which has a bit set for each of those types which this type inherits from.
The types which have such distinction are some of the numeric and array types. The
official assignments of these bits are in the file ni1$disk:[nil.src]flavsetup.lsp.
The position assignments for MACRO32 code (suitable for use with bbc, for instance) are
in the file ni1$disk:[nil.vm]flivtypes.mix.

ML:NILMAN;EXTEND 6 : , ' ~ 17-JUN-83

NII. Notes for Release 0.259 ‘ 209 Foreign Language Interface

27. Foreign Language Interface

27.1 Introduction

It is desircable to be able to call from NIL procedures that are written in other VMS
supported languages, such as FORTRAN, COBOL, PL1, BLISS, C, PASCAL, lan{Basic}, et. al., not
to mention procedures written in MACRO32, and VMS library routines and system services.
Fortunately this is easy, due to the thc uniform VMS object and symbol table file format,
uniform procedure call mechanism, and rich set of NIL datatypes from which to construct
datastructures compatible with what various foreign language routines expect to receive.

The presently implemented interface is by no means the last word in such endevors; for
example it makes no attempt to enforce datatype restrictions in argument passing; however, it is
found to be functional, and is used in the NIL system itself to access some VMS system scrvices,
to incrementaly dcbug parts of the assembly-language kernal, and to interface to "number-
crunching” FORTRAN subroutines and to some users existing C libraries.

27.2 Kernel and System-Services

The executable code for such procedures is already in the lisp process address space, therefore
accessing them is only a matter of defining an argument-data-convention interface, searching the
lisp or system symbol table to get the required machine address, and creating a lisp subr
trampoline, similar to an element of a transfer vectors the VMS linker would create when one
~ references sharable libraries.

si:defsyscall (lisp-name vms-symbol) &rest argumentspecs Special Form
- Does everything needed to. reference a routine in "LISP.STB" or "SYS.STB". The lisp-
name is defined as a special-form taking alternating named arguments as in a defstruct
defined constuctor. For example, the routine to convert a vms error code into a human-
readable string:
(defsyscall ($getmsg sys$getmsg)
(msgid :in :long :required)
{msglen :out :word :required)
(bufadr :out :string :required)
(flags :in :byte)
(outadr :in :bits))

(defun decode-vms-error-code (loss-code &optional (flags 15)
&aux len)
(using-resource (string-buffer string 256)
($getmsg msgid loss-code msglen len
bufadr string flags flags)
N.B. Calls to SI:DEFSYSCALL, and to many other system internal primitives work when
compiled, but not when intcpreted. The example above is from code in the systems-
internals package. '

ML:NILMAN: VMSOBJ 15 : | 17-JUN-83

VMS object files 210 ' NIL Notes for Release 0.259

27.3 VYMS object files

To call a procedure in a vms object file the user must do three things, define an argument
interface, call the dynamic loader, and enable the trampolines for specific procedures. For

example:

(def-vms-call-interface myfoo)

(defun hack-foo ()
(1ist (hack-vms- obJect file "[gjc.nil]footest")
(enable-vms-call-trampoline
'myfoo 'foo "[gjc.nil]footest.stb")))

(hack-foo)
| Sets up for this BLISS

MODULE FOOTEST =

BEGIN

GLOBAL ROUTINE FOO = 2569;
END

ELUDOM

si:def-vms-call-interface name &rest arglist
Same as defsyscall but doesn’t actually look into any symbol table or create any

~ trampoline. Only works when compiled.

-st:hack-vms-object-file obj-file
Calls the VMS linker on a single object file, and then reads the executable code into a
. bitstring in the lisp address space. Presently a VMS subprocess interface is not
implemented, (which is the easiest way for lisp to invoke the VMS linker), so instead the
user is asked to execute.a VMS command file lisp writes. This happens twice for every

file so hacked. What a kludge.

si:enable-vms-call-trampoline name vms-symbol stb-file
Sets up the trampline for name using the address of the vms-symbol from the stb-file.

27.4 Data Conversion

At a certain level it helps to know the data representations supported by the VAX hardware
itself, and what representations the various language compilers, including lisp, build on this base.
Lets face it, at this point, unless you are willing to deal with such issues its best to forward
specific interface requests to the implementors, and we’ll try to at least provide a family of
existing examples which should make things obvious, or presolved. Even though the macrology
provided by defsyscall et al. may make it easy, it by no means makes things foolproof, as- any
such excursions outside the lisp-world-firewall we set up are frought with frustrating decbugging
problems.

ML:NILMAN;VMSOBJ 15 : 17-JUN-83

NIL Notes for Release 0.259 ‘ 211 lower level routines

In garbage collection, the system will not be forgiving of any violation of the rules of register
and stack usage, and raw address placement.
27.5 lower level routines

As if the ones above weren’t low-level enough.

si:locate-symbol-table-value symbol &rest stb-filenames
Returns null or a fixnum.

si:construct-system-symbol-trampoline #hi8-bits lo24-bits
Returns a trampoline subr which jumps to the address specified.

ML:NILMAN;VMSOBJ 15 - 17-JUN-83

What Will Break 212 NIL Notes for Release 0.259

28. What Will Break

Various changes arc anticipated for future releases of NIL, just as some have taken place for
this relcase. This chapter notes some of the significant nnplemcntauon changes which have alrcady
occurred, and describes some’ which are anncxpated

28.1 What Broke Since Release 0

28.1.1 NIL, T, etc.

Since Release 0, the null object is now also considered to be a symbol. That is, the symbol
nil and the object () are onc and the same. Recompilation of code which uses symbolp, plist
(and setplist), get-pname, and symbol-package is nccessary. If code depended on the
distinction: between the two, it will have to be fixed. Note that, in particular, this change means
(for instance) that the null object will work as a first argument to get now, and that the null
object is -ambiguous with other symbols (which could affect symbol-table hacking and interning,
that kind of thing).

The special object representing boolean truth (#t) is gone. The symbol t takes its place.
Compiled code which references the object #t does not actually have to be recompiled, because
such references will magically turn into the symbol t when the files are loaded. Of course if the
code had been read into the COMMON LISP readtable, it should not contain #t, and there are
probably numerous other reasons why it should be recompiled in the new release anyway. Any
code which depends on the object representing boolean truth not being a symbol must be fixed.

Implementationally, the null object is still the same, but has a pseudo-symbol associated with
it which is used by intern and plist etc. instead. This pscudo-symbol, and the symbol t, have
their values initialized by a mechanism identical to that used by defconstant. Code which is not
recompiled in the new release may be able to change the values of these and other constants.

28.1.2 Common Lisp Arrays

As described in the notes on Release 0, most of COMMON LISP arrays have been implemented.
This modifies the NIL type hierarchy, and thus the semantics of some of the accessors and
predicates. The incompatibility which arose most commonly within the NIL sources was that
vectorp is now true of all one-dimensional arrays, i.e., strings and bit-vectors and other types of
"arrays”. (In release 0, strings, bit-vectors, "general" vectors, and "arrays”, were all disjoint
types.) As a result, successive type tests done with cond or typecase may have to be reordered.
Also, vref works on all one-dimensional arrays, which may mask an incorrect typecheck order.

ML:NILMAN;BREAK 22 ' ' 17-JUN-83

NIL Notes for Release 0.259 213 Future Changes

28.1.3 Generic Arithmetic and New Numeric Types

As noted in the Release 0 notes, the basic "single-character” arithmetic function names now
refer to gencric arithmetic functions. These functions do not have a high penalty for use,
however, as they are mostly implemented as subroutine calls into the NIL kernel, which handle
the common fixnum and double-float cases, including coercion,

The types complex and ratio have been added. The primary incompatibilitics are that the
"basic" division function / now will return a ratio rather than performing truncating integer
division. Although the complex arithmetic is not complete, a complex number may now pop up
on onc when doing something like sqrt of a negative number.

Sce chapter 9, page 46, on numbers, for complete information.

28.2 Future Changes

Some of these are the same as those anticipated as of Release 0.

28.2.1 Multiple Values

In the future, NIL will "natively” support a multiple-value return mechanism. For it to do so
requires that the compiler understand them at a moderately low level; it will be producing code
for receipt of them from function calls, it will have to flag function calls which will be passing
them back to another caller, and it must recognize and compile away all local multiple-value
passing.

The mechanism, which has only been designed at a fairly high level, is this.

Given the compiler behaviour described above, the only place which compiled code can
receive multiple values from is a function call (or a non-lexical throw, but we will ignore this for
the sake of simplicity in this description). This means, that when multiple values are being passed
back (returned or gencrated), if we can recognize those function calls which are simply being :
made to pass back any values to their callers (and thus also recognize those which are expecting
some value or values in particular), we can trace up the stack to find the call which is ultimately
expecting the multiple values. (The function call frames are quite formal and stylized in NIL.)

So what we do is to have the caller which is expecting multiple values allocate a place for
them on the stack and put a marker there, before it allocates the call frame for the functxon it is

about to call.

We have all function calls which simply pass back their values as the value of the function
they are contained in, marked as such, so that examination of the call can determine this. In the
following, the calls to foo and bar would be so marked, but baz would not:

(defun frobnicate (x y)
(if (zerop x) (foo y)
(mvprogl (bar x (subl y))
(baz (subl x) y))))
If (say) within bar there is a call (values this that), then a special subroutine goes looking up the

ML:NILMAN;BREAK 22 S : 17-JUN-83

Future Changes 214 NI Notes for Release 0.259

étack, finds. the frame where bar is called, sees that it passes back its values out of its calling
function, so traces the function frame pointer to the caller of frobnicate, etc.

" If. on the other hand, with baz there is a similar values call, tracing back to that call to
baz reveals that baz is cxpected to return only one value (of interest, at most), so no further
tracing is done. :

, There are two further points of intercst about this scheme. By appropriate use of specialized
markers where multiple values are expected, fast dispatching may be performed for dealing with
various situations, such as multiple-value-list, for instance.

A somewhat kludgey extension is to use this for things like "number calling"—one routine
calling another for (say) flonum value. The one producing the flonum, instead of consing it,
‘looks -back and if the final destination is expecting a flonum in some special way (having, for
instance, pre-allocated a space on the stack for it), then the representation is stored there without
consing, otherwise the value is consed in the heap and passed back via the normal value return
mechanism. The kludge involved here is that if the producer is interpreted code, someone has to
coerce the normal value return into the hacked one. This only is necessary when such a compiled
routine is callmg into interpreted code, so will probably be done by the interpreter-trapping
subroutine. - '

The interpreter-trap wrapper must be capable of recognizing when a value has been stored
"properly" into the compiled receciver, because if the producer is compiled and the interpreter has
produced the value such that it got passed back "naturally”, then it has been stored already
without being consed, even with intervening interpretation!

It is of note that this stack-scarching is not directly analogous to a deep-binding variable-
binding scheme, in terms of efficiency and paging overhead etc., because in the variable binding
scheme the searching must be done up the entire stack (or alist or whatever) every time, the time
for each search growing in proportion to the depth of the stack, but for this the search terminates
whenever values are not being passed back to the previous caller.

28.2.2 Variable Naming Conventions

COMMON LISP is establishing a uniform naming convention for system-defined parameters and
constants. Essentially, all system-defined parameters (those variables whose values are allowed to
be changed, i.e. that parameterize the behavior of the system) will have asterisks (*) at each end
of their names. Thus, the variable base will become *base* (NIL uses si:standard-output-radix
now anyway), and package will become *packages.

All system-defined constants, such as char-code-limit, will not. Part of the justification for
this is that the compiler and interpreter should be able to determine when one is modifying a
constant, but not a parameter, so the constants require less visual distinction. ThlS is in fact
currently the case, as defconstant (page 18) now works.

The change of these variables is indeed going to be catastrophic to both users and the NIL
system itself. Note, however, that one may do (say)

ML:NILMAN;BREAK 22 =~ .. : 17-JUN-83

NIL Notes for Release 0.259 | 215 Future Changes

(who-calls ’package :type :value)
to find all modules (i.e, restricted to compiled code) which reference the special value cell of
package.

28.2.3 Garbage Collection

When the garbage-collector is finished, there will be two major incompatibilitics noticeable.
First, the format of compiled output files will change. Although initially (for bootstrap and
dcbugging purposes) old format files will be accepted, it is unlikely that this will still be the case
by the time the garbage collector is released. Even if it is the case that such old files can be
loaded, thc garbage-collector will not be able to safely run afterwards. Sccond, there is an
incompatible change which must be made to the way unwind-protect is compiled. This cannot
be handled upwards-compatibly, as it involves compiler knowledge about stack usage from the NIL
kernel, so old code might not be able to run correctly. Recompilation, of course, will fix
cverything.

Obviously, when there is a garbage-collector, dirty obcrations like playing with addresses and
changing types become substantially more dangerous, and should be avoided by all code except
for the garbage-collector itself. :

28.2.4 Error System

A new error system and debugger interface is being designed. The arguments to error,
cerror, and/or ferror may be changed incompatibly, although it is hoped that old uses will be
able to be distinguished from new uses. condition-bind uses will have to be recompiled.
Condition names may work upwards-compatibly, however. Note that now, signal erroneously
forces entry to the debugger if the condition goes unhandled; this will be changed. To enhance
the ability of future code to detect old uses, a few conventions may be helpful:

(1) The first two arguments to cerror should always be t or nil.

(2) Always use a string for the "error string” or "format string” for all three error functions.
(MAcLispP-compatible use of error can get by without this if the "string” is a symbol, but
contains at least one space in its text.) '

The future debugger, which is mostly complete now but needs the new error system, will be
much better able to parse the stack in use by compiled code. This will include the ability to
recognize data on the stack which is not LISP objects but rather binary data, show which
arguments to pending function calls have not been computed, etc. To the extent that the
compiler leaves around more specific information, the debugger will be able to show typed values
for the binary data (for example intermediate or local-variable floating point values on the stack).

ML:NILMAN;BREAK 22 v 17-JUN-83

Futurc Changes 216 _ NIL Notes for Release 0.259

28.2.5 New Package Facility

The COMMON LISP package dcfinition is practically finalized now; implementation will start
once it is guaranteed stable. It is unlikely that anything other than code which operates on or
with packages explicitly will have to be changed, with the possnble exception of references to
"internal” in one package made from another package.

28.2.6 Vector-push and Vector-push-extend

The argument order to vector-push and vector-push-extend will be changed so as not to
be unmnemonically different from that of push. Currently, the vector is the first argument, and
the object to push -is the second; these two will be reversed. Unfortunately, this (as a
modification of an carlier COMMON LISP specification) only came about a matter of days before the
NIL release is expected to be ready, in fact, after the announcement of this release. To ease the
change, the future vector-push and vector-push-extend will, when they see first or second
arguments of the wrong type, see if they would be correct when reversed, not that this will

always work.

28.2.7 Miscellaneous Other Things |

The functions subst-if, subst-if-not, and some similar others (which are not documented
here anyway) may have their argument order changed to be consistent with some other functions
(which are not implemented here).

All places in the pathname code which supply a device of SYSSDISK will be changed to
supply the one-level translation of that logical name. For instance, user-workingdir-pathname
currently might return something like "SYS$DISK:[GSB]"; it should in fact be returning
something like "USRD$: [GSB]". '

ML:NILMAN:BREAK 22 S 17-JUN-83

NIL Notes for Release 0.259 217 ; » Future Changes

References

1. Steele, G. L., Common Lisp Reference Manual, Carncgic-Mellon University Department
of Computer Science Spice Project, (in preparation).

2. Steele, G. L., et al., An Overview of Common LISP, paper presented at 1982 ACM
symposium on LISP and Functional Programming. 1982 ACM 0-89791-082-6/82/008/0098

3. Bawden, A., Burke, G. S., and Hoffman, C. W., Maclisp Extensions, MIT Laboratory
for Computer Science, Cambridge, Mass. TM-203, July 1981.

4, Burke, G. S., LSB Manual, TM-200, MIT. Laboratory for Computer Science, Cambridge,
Mass., (June 1981).

5. Burke, G. S. ,and Moon, D. Loop Iteration Macro, TM-169, MIT Laboratory for
Computer Science, Cambridge, Mass., (January 1981).

6. White, J. L., Constant Time Interprétazion for Shallow-bound variables in the Presence of
Mixed SPECIAL/LOCAL Declarations, paper presented at 1982 ACM symposium on
LISP and Functional Programming. 1982 ACM 0-89791-082-6/82/008/0196

7. Hawkinson, L. B, and Burke, G. S. Unwritten memo/documentation on the pretty-
printer noted in section 17.5, page 120. :

8. Mathlab Group, Macsyma Reference Manual, MIT Laboratory for Computer Science,
Cambridge, Mass., (1977).

9. Moon, D. A, MACLISP Reference Manual, MIT Laboratory for Computer Science,
Cambridge, Mass., (1974). ‘

10. Weinreb; D., and Moon, D. Lisp Machine Manual, MIT Artificial Intelligence
Laboratory, Cambridge, Mass., (July 1981). : ' s

11. Pratt, Vaughan R., CGOL - an Alternative External Representatzon for Lisp users, Al

Workmg Paper 121, (March 1976)

ML:NILMAN;MANUAL 61 o | : | 17-JUN-83

NIL. Notes for Release 0.259

Concept Index

Concept Index

&aux lambda-listkeyword. 11
&key lambda-listkeyword, 11
&optional lambda-listkeyword. 10
&restv lambda-listkeyword 0 . 12
asfist . . . e e e e e e e e e e e 35
array e e e e e e B 67
arraydisplacement. . . . v .0 4 0 0. w0 e . 67
arayrank . . . v v 4 s e e e e s e e e e 67
ascii. @ e e e e e e e e e e e e e 65
associationlist. 0 00 V.0 35
auxiliaryvariables 000 11
backquote e e e e e e e e 18
behaviouralequality o0 16
bignum e e e e e e e e 46
DItVECIOT. & & v v v v v et e e e e e e e e 6
booleanfalse « . v o v 0 v 0. 5,20
booleantruth « v v v v v v 0 v e e e 5
bytespecifier0 0oL 58
bytespecifiers. . .+ . . v 0w o0 0 53
characterbits G e e e e e e 61
charactercode, « v v« o ¢ ¢ 4t b b b e b e e 0 61
characterfont. v & v ¢ v ¢ 4 4 b e e . 61
characterset e e e e e e e s 65
class « .. 0w v s e e e e s e 207
COSUFES . & v v & 4 & s o 6 o s ¢ o 0 o 0 s . 10
Compilation + « v « 4 . . e e e o 154
compiledcodemodule e . . 154
consdot . & v 4 v w e e e e e e e e 137,138
CRCinstruction. se e e e 80
denominator . . v« v 4 4 e 4 e s 0w e v 3
destructuring . « v v ¢ ¢« v 4 e e v e 0 e e e 17,20
dispatch macrocharacter 138
displaced arrays se s 4 v s e e cee 1
displaced indexoffset. o000 T
displacingarrays. . . . « 67
double-float . v + v v v v v ot b e v e e 0. . 46
dynamicextent . . v . . 4 4 4 e 4 4 e w00 . .9
dynamicscope 4 . . W P
elementtype ot e e e e e e e s 68
emptylist v 52
equality s s e e s e e e e e e e e 15
error conditions C e et e e e e e 152
extend., .« . v . v u i e e e e e e eon e e . 207
extended characterset e e e e e 65
EXtENt. v 4 . s e i e e e e e e e e e e e e e 9
fexprs. . v v vt s e e e e e e e e 155
fileattributelist 129
fixnum . . . 00 e s e e v e e e .. 46

flavorobject o000 . 207
FlavorSystem v o v v v v 104
gaussianrationals 0 s 4 e 4. e e 4
BeNSYMINE. v 4 v v v 4 4 @ v v o s v s e s e 43
BEOSYMS. & v v 4 4 ¢ o 4 4 o 0 o u e e e 43
identityofobjects0 0w e . 15
indefiniteextent e e e e e e i e e e 9
indefinitescope.0 0000w 0 . 9
imitfile00 0., R
INEEET & v v v v vk e e e e e e e e e e e e 3
interpreter closures v o v e v e e e e s . . 10
keywordsymbols0 0. .. 6
keywordedarguments 11
keywords b e e e e e e e e e 6
Kill-ring s e e e e e 166
lambdalists, 10
letlist. . « . . . v 0 o e e e 19
lexicalscope L L L 00 e e e e 9
lexpr. . . . 0.0 e e e e e e 155
linkeell, P
Listsyntax. . « + v v v v v v v v v v 0 e e .. 138
logicalname o .. 0000w 196
macrocall e e e e e e e e 17
majormodes. v h h e e e e e e e . 167
merging and defaulting of pathnames 124
metakey v v i e e e e e e e e e . 160
- mixinflavors. C et e e e e 109
module v v i e e e 1
multiplevalues. e e W27
numerator. ce e e e e e e e e e 3
obarray e e e e e83
objectequality o0 0. 15
oblist, v « ¢« 4o v v v .. B .
package. et e e e e e e e e e 5
Packages 4 . e e e e e e e . 83,87, 89,97
passallmode . + + ¢« v ¢ v 4 .o e 0 e e e . 198
patchdirectory C e e s e e 189
patchfacility e e e s e e e e 189
patchfile e oeoeeo. 189
patch system definitionfile 189
patchablesystem 4 40 189

pathnamedefaults. 124
PHSL & v v s s e s e e e s e e e e . S

PRAME & v v v v 4 6 v b e e e e e e .
PDSS & v vt e e e e e e e e e e e e e 54,58
Printname. .+ . v v v v 4 v h e e e e e e v e o S

17-JUN-83

NIL. Notes for Release 0.259 219 _ ~ Concept Index

propertylist e e e .. 5 SLFEAMS. 4 v o v 4 o 4 v 4 v o e e e e e e e 113
SANE & v v v v v v e e e e e e e e e e e e 6
randomnumberso 55 SIUCIUTE & & v v v v v e e e e e e e e e e . 6
rank,armay. e e . e e e e 67 SYNONYMSLIEAM . v & o v 4 v v v v o v o v e s 115
13 o e e 3
record00 . e e e e e 6 termlogicalname. 196
typespecifier00 00 e 13
SCOPE . v v v v v v e e e e e e e e e e e e e 9
SEQUENCES &+ + + v v 4 4 4 4 e e e e e e 37 valueequality 16
1w) 8 VECIOT v 4 v v 4 4 e e vt e e e e e e e e e 67
special variables, 8 VirtualMachine 1
SACKVECIOT & v v v v i e e s e s e e e e e e e 12 :

17-JUN-83

Maessage Index

NIL Notes for Release 0.259

Message Index

:advance-pos (tobp). 186
Wdeseribe. .. . 0 ol o e e e e s 110
equal. e e e e e e e e e e e 110
_equal (tovanilla-flavor) 111
eval o .00 T 110
iexhibit=self .« . v v . v e e e e e e e e 110
:exhibit-self (tovanilla-flavor). 111
MAlePHSL « v v b e e e e e e e 130
duncall . . . L L L L L e e 110
get=char (tobp) oo oo 186
:get-char-backward (tobp) 186
:get-char-forward (tobp). 186
:get-handler-for (tovanilla-flavor). 111

:init-with-termcap (to si:display-cursorpos-mixin) . . 135

‘move ObP). « v v e e e e e e e e e 186
:open.............;o 115
“:operation-handled-p (o vanilla-flavor). R 1]

:oustr (tosi:display-cursorpos-mixin) 135
:peck-char-backward (tobp) 186
:pp-anaphor-dispatch P § {1
:pp-anaphor-dispatch (tovanilla-flavor) 112
ppp-dispatch. L. 0 e e 110
:pp-dispatch (tovanilla-flavor)o 111
print-self. 0o 109
:print-self (tovanilla-flavor) 11
:raw=-oustr (to si:display-cursorpos-mixin) 136
select-nth0 L L e e 110
:select-nth (tovanilla-flavor) 111
:send-if-handles (to vanilla-flavor) 111
set-pathname e e e e e e 115
store=nth. 000l 110
:store-nth (to vamlla-ﬂavor) 111
sxhash o 0 0 0 0 0 0 n s s e e e e 110
sxhash (tovanilla-flavor) 1

:which-operations (to vanilla-flavor) 111
:write-char (to si:display-cursorpos-mixin) 135
:write-raw-char (to si:display-cursorpos-mixin} . . . 136

17-JUN-83

NII. Notes for Release 0.259 221 Resource Index

Resource Index

3 o T 131
8 17+« K 131
158 1 o 131
T 721 XY 131
SEMAM v v v v v v e e e e e e e e e h e 131
318 1 o 1 131
SEXAD . v vt e 131

17-JUN-83

Variable Index

NIL Notes for Release 0.259

Variable Index

E e i et e e e e et e e e s 197
T e e e e e e .1
o 197
*.autodin-ii-hash-polynomial 80
*.ccitt-hash-polynomial 80
*:crc-16~-hash-polynomial 80
steve:®argument® v . e e e e e e e . 183
i T 214
default-pathname-defaults 126
steve:*editor-device-mode®*. L. 187
fs:*host~instances®. o0 00w 126
load-pathname-defaults 125
compiler:*messages-to-terminal?. 157

compiler:*open-comnile-carcdr-switch . . . 156,157,157
compiler:*open-compile-xref-switch 156, 157, 207, 157, 207

*package® v e e e e e e e e e e e 214
random-state® 0 .0 e e 55
rcad-default-float-format. 4
scratch-pathname-defaults® 126
N 197
e e 197
e i S 197
*:autodin-ii-hash-polynomial 80
base e e e e e e e e e e e 214
*:ccitt-hash-polynomial e e e 80
char-bits-limit i 0 o0 o0 e 61
char-code-limit. ¢« ¢ v o o . .. 61,214
char-font-limit . . S 61

compiler:*messages-to-terminal? - 157
compiler:*open-compile-carcdr-switch156, 157, 157
compiler;*open-compile-xref-switch . 156, 157, 207, 157, 207

*.crc-16-hash-polynomial 80
CITOr=OUPUL . & v v« 4 4 ¢ v o v v 4 0w w e 13 .
fs:‘host-instances‘ 126
si:lisp-debugger-on-exceptions 199
msgfiles.0 L. s e 114
PACKAZE. + v v v v s e e e e e e e e e e 84,214
prinfevelo 0 0oL 109
query-io . . e e . 113
readtable 00 141
si:lisp-debugger-on-exceptions 199
si:standard-output-radix. e e e e e 214
‘standard-input. e e e e e e e 113
standard=Outpul . « . . v 0 4 . e e v e e .. 113
si:standard-output-radix. 214
steve:*argument® 183
steve:*editor-device-mode* 187
terminal=ioo e . 113
trace=output. i b e s e e e . 113
1 N 197
17-JUN-83

| . i : . . .

NIL Notes for Rcléasc 0.259

Function Index

Function Index

Jchar-downcase-code. 0 ... 0. .. 64
%char-upcase=code 4400 . e . 64
%digit-char-in-radixp. 0. 64
%digit-char-to-weight. 64
%digit-weight-to-char. 64
%dpb. .« . o s e e e e e e e e e e e e 59
sys:%fixnum-ash-with~overflow-trapping 59
sys: %fixnum-difference-with-overflow-trapping59
%fixnum-haulong. v o0 e 59
sys:%fixnum-plus-with-overflow-trapping 59
sys:%fixnum-times-with-overflow-trapping 59
%nt=Char . . v v v ¢ 4 v b e e e e e e e e s 64
Pldb . . . e e e e e e e e e e e e e e 59
%set-symbol-package e 45
%set-symbol-property=list 45
TStANG=CONS. « + & o + o o s o o & o« & & e .19
TSUINGCQY + « « v o v o 0 o v o u v s e .19
%string=hash., 000 80
TSUHNG=POSGe & ¢ o ¢ o o « ¢ 0 w0 w4 e e 79
Tostring-replace. . . . ¢ 4 v 0 v v e e e e e 79
%string-translate 4. e e e e 79
%symbol=COnNS « v « + 4 v v 4w e 4
%symbol-link-cell 45
osymbol-package. . « + v v 4 b0 o0 . s e e e 45
%symbol-print-name 4 4 440w o0 s e 44
%symbol-property-list. 45
Yvalid-digit-radixp « . 04 0 4.0 ... 64
sitfbxref. .« . . h e e e e e e e e e e e e e 207
¥ e e e e e e Ve e e e e e e eoee e W48
T 60
R 2 57
*break 4. .. e e e e e e e e e 145
1+ 27
*simpand 0. . e e e e e e s 204
*simpandlist. et e e e e e e e 205
IMPAOL & v v v . b e e e e e e e e e e 205
SIMPOT. o v 4 v ¢ ¢ o ¢ o 2 o« s o s 0 2 o s 204
*simporlist. o oo v . 205
117 (2 27
S 47
8 i e e e e e e e e e e 60
2 57
+internal-char-n. e e e e e e 77
+internal-rplachar-n e W17
e e e e i e e e e e e e e e e e e .47
... e e e e e e e e e 60
- . . .57
R PPN e e e e e . W48
2 2 .. .60
&, oo oo e e e e .. W57

Tt e e e e e e e e e e e e e e e e e e 46
I=& i e e e e e e e e e e e e 56
s 47
148, o o e e e e e e e e e e 60
14& o o e e e e e e e e e e e e e e e 57
1=, e e e e e e e e 48
1= L o e e e e e e e e e e 60
I=& . v v e e e e e e e e e e e e e e e 57
e e e e s e e e e e e e e e e e e e e e 46
& v v e e e e e e e e e e e e e e e 56
o i e e e e e e e e e e e e e e e 46
C=& v e e e e e e e e e e e 56
o e e e e e e e et e e e e e e 46
S& . s e e e e e e e e e e e e e e e e e 56
D 46
DA . . 56
T e e e e e e e e e e e e e e e e 46
D& v e e e e e e e e e e e e e e e 56
siabort=patch ce e e 192
abs e e s e e e e e e s Y
abs$ e s e e e e e e . 60
Y L. 57
BCOS » v v o e e e e e e e e e e e e e e e 50
acosh e e e e e e e e 50
si;add-escape-char=syntax. . . « + « & + o o o o 141
si:add=list-syntax 0 0 0 4 e e e e e . . 141
si;add-number-syntax v s e e a e 141
si;:add-package-syntax e e 0w e 141
siiadd-patch e e e e e 192
si:add-prefix-op-macro. . + + « ¢ ¢ 4 4 2 o0 s . e 142
T 47
adjoin o & v v e s e e e e e e e e e e e e e 35
adjust=armay. » o « vo0 4 0 0 0 s s a0 0 s 0Tl
allfiles v v e e e e e e e e e e s 128
alpha-charp. v . v 0o v o P 1 |
alphanumericp. . © v v v v 4 e 0 v e e e s e e . 61
and00 . e e e e e e e e 21
append.0 00 0w e e e 3l
APIOPOS &+ v 4 o v 4 b e e e e e s e e e e e e s 144
SI:APTOPOS-ZENerate. « .+ « o o o o o o o o 0 o o 144
aref . .. 00 0. Ve e e e e e e s e e 67
steve:argument? e e e e e e e s 187
array-dimension 0 0 s e 0 e e e e 63
array=dimensionS, « « + + + + 5 0 o s s 0 2 e s+ 68
array-element=type. . + « v 4 v o s 0 00 o0 e s . 68
armay-rank e e e e 68
ash e e e v . 52
ash&. « .« v ¢ o v e e e e e e . 58
AN . . e e e e e e e e e e e .. 50

17-JUN-83

Function Index

aSinh e e e e e e e e e e e e 50
BS50C & o 4 v b h e s e s e e e e e e 35
assq. s e s e s e s s n e e s e 36
atan, . e e e e e e s e e e e 50
17 1 50
bigp e e e e e e e e e e e e e s 15
o (O 73
bit~and et e e e e e e 73
bitandel 0000 .. PR 73
bit-andc2 v e e e e e e e e e .13
BIt=egV « v v v v v e e e e e e e e e e 73
bit<ior. e e e e e e 73
bitomand., 73
bitonor« . 0 v e e e e e e e 73
DIt=not + . . & v i e e e e e e e e e e e 73
bit=orcl . ¢ . v . i s e e e e e e e e e 73
BIt-0rc2 . &« v v e e e e e e e e e e e e e 73
bit=x0r s e e e e e e e e 73
block . . v v . e e e e e e e e e e e 24
boole . . . C e e e e e e e e e e e e 51
booled v v v i i e e e e e e e 58
bothcasep . « « « v v v v v e e e e e e e 61
boundp .« . . . 4w e e e e e e e e e e e . 44
break i e e e e e e e e e e 145
stevebuffer0 o0 o000 185
steve:buffer-begin? 0L 187
steve:buffer-end? e e e e e s 187
DYte, & v v v e e e e s e e e e .. 53
byte=position. i . 0w e e e e 53
byte=size. . « ¢ v o ¢ v v et e e e e e e e 53 -
steveic-u-only?. 0 0 0 e e e e 187
e v v v e o e v e e e e e e e e e e 30
car . . . e e e e e e e e e .. 30
CASEs o v o o .0 o e b & v s e 4 b e e e e .22
€aseq + . 4 . . f e e e e e s e e e e .. 22
L ! T 26
[30
CITOr v & v 4 o & & e e e e et e e e 152
cgolprint, L. . e e e e e e 142
cgolread . v v v v v v e e e e e e e e . 142
char, e e e e e e e e e e e e 76
char=bitS. . ¢ « v ¢ v v b e e e e e e e e e e 62
char=code . . v v v v h e e e e e e e e e e 62
char-downcase . . « v v v v v 4 4 e 0w 0w e 63
char-equal. e e e 62
char-font . . v . . 0 0 e e e e e e e e . 62
char=greaterp. . « v v 4 v v e v e e b e e e 62
char=int. v i e e e e e e e e e 63
char-lessp P 7]
Char-n v v v v v v e e e e e e e e .7
char=name. v e e e e e e e e 63
Char-upcase . + + v v s s ¢ 5 0 0 o0 0 o v s . 63
chard . . v s s e e e e e e e e e e e 62
charK= e e e e e e e e 62
Char=. . . . s i e e e e e e e e e e e 62

NIL Notes for Release 0.259

chard. . . . s s e e e e e e e e e . 62
chad=., . . v . .. e e e e e e 62
character e e e e e e e e e e 62
characterp. v . v v e e e . .. 14,62
check-arg v i v s e e 152
clear-input o e e e . . 117
clear-output.o .. 118
close L e e e e e e e e e 115
fs:close-all-files v o0 .. 126
cosure « . . . o e e e e e e e e e e e e e 1w
closurep. . . . v o0 e e e e e e e e 10,15
crhash c . 0L e 81
cnamef . . u v L s e e e e e e e e e e e e e 115
code-char., 62
comfile. 155
compile. 0w s s e, 156
compile-file., 155
si:compile~load-patch. 192
si:compile=patch e e 192
compiler-let., 156
CONCAENAE &+ & v & 4 4 4 4 4 b e e e e e e . 37
o 1 T 21
COMJUEALE & » v v v v 4 v v v v e n e e v v 48
COMS v v v v v w o s o 4 o o v o o o o o oo+ .30
COMSP. + v v s s o v s o o o o o o o v o o 0 u 14
si:construct-system=-symbol-trampoline 211
copy-alist e e e e e e P 74
copy-list e e e e e P e e e s 31
COPY=SE + + « « & & & & o c o o o « o o o o s . 38
copy=symbol. 42
COPY=EE + v v v v 4 W v v v o v v u s v e 32
CopYalist + v v e e e e e e e e e e e e e 32
COPYlist o v v v v v e e e e e e . [7
copysymbol v i e e e e e e e e e 42
copytree o0 4. e e e e e e e e 32
COS: v o v s v v o s 4 o - 11]
0 50
create-readtable 141
CUISOIPOS & & o+ v o o o e 0 s w0 s o o o & 115,133
debug 000l e .. 145
decf e e e e e e e e e 29
declare o 0 0 v e e e e .. 154
si:def-vms-call-interface., . e o ow 210
defconstant 0. ae e 18
defflavor 0. ... 105,107
defmacro & . . . v v v h e e s e R v/
defmethod. Ce e e e .. 109
defmethod-primitive e e e e e e 109
defparameter. e e ae e e e e e e e 18
defstruct C e e e e e e 85
defstruct-define-type »0 98
sisdefsyseall L ..., 209
defun, « . .. s e e e .. 17,154
defvar e e e i e e P
delete-file. e e e e e 127
deposit-byte, v e s b on s e e 59

NIL Notes for Release 0.259

deposit-field.0 e e . 54
describe., s e e e e e e e 145
si:determine~and-set-terminal-type 134
difference ¢ . 0 b v e e e e e e e 47
digit=char. oo 63
digit=charp 0 63
digit=weight 0000 63
dolist. . . . v v v i e e e e e e e e 24
dotimeS. « v v v v v b e e e e e e e e e e 24
dOVECtOT, & v v v v v v e e e e e e e e e e e s 24
dpb . . L e e e e e 54
dpb&. . . . e e e e e e e 58
=7 158
steveced-lose. 0 0w e e e 186
steveted-warn e e e e e e 186
stevered-warning v e 0w e e 187
steve:editor-bind-key 183
steve:editor-defun-key. 184
eighth o v v v v v v v v i e e 32
elapsed-time. S . 146
L 37
si;enable-vms-call-trampoline 210"
siienter-readtable. o0 ., 141
[e e e e e e e e e e e e e 15
eql. & . v e e e e e e e e e e e e s .16
equal. L L e e e e e e e 16,110
eval-when, D e e e e e e e e e e e 19,154
EVEMP: &« 4 4 v 4 s 4 4o s e e e e e e 46
EVETY o« v 4 v o v b e e e e e s e e e e e 39
exhibit 00 e . 145
exit-and-run-program. 4 . 0 v 0 o0 oo . 198
o 49
BXPt & v v e e e e e e e s e e e e s e e e e 49
fboundp. e h e e e e e e 44
1+ 32
file-author, e e e e e e e e e e e s 127
file-creation=date. . . « + « v 4 ¢ 4 o 00 0. 127
file-length., . . . « « e e e e e 127
filepos .+ ¢ v v v h v e e e e e e e e e 127
1| 38
fill=pointer . . . & v v v v 4 v v e e e e e 70
finish=output. . « « « « ¢ « ¢ ¢ v o v v a .. 118
sifinish-patch ¢« v o v v v v 192
- A 2
steve:first-line?. e e e e 187
fixnump., C e e s e e e e e e PR)
flavor=of « « v ¢ v v 0 b e v e h e e e e e e 207
float « v v v v v e e e e e e e e .]
floatp. « ¢ v v v v v e e e e e e e e e e . .15
flonump. © v v v v v v e e e e e 15
fmakunbound e e e e s 44
force-output. v . a0 . B 8 1
format 00 .0 0. e e e e s e . 120
format-y=or-n=p. . + « « + o+ « 2 o e .. 121
format-yes-or-no=p . . « « « s 2 s s 00 0. . 121

Function Index

fourth ¢ v v i e s s e e e e e 32
fquery e e e e e 121
fresh-line. ¢ v v v v v v v v u s 119
fs:close-all-files v . v v v v v v v v w 126
fs:process-in-load-environment 130
=, 44
fsymeval o 0 0 e e e e e e e e e e 4
7 48
BENSYM. v v v v 4 4 4 v o 0 e e e s e e e e 43
ENMP . v 4 v v e v e e e s e e e e e e e e 43
. 41
get=a=byte h s e e e e e e e e 74
et=a=byte=2C. . .+ . 4 4 v e e e e e e e e e e 74
si:get-call-meters+ ¢ .. 000 0. 147
get-output-stream-string 116
Cet=PRAME .« . 4 v ¢ 4 v e e e e e e e e e e 42
Siiget=system=version . . . « . ¢« . . . o4 0. .. s 191
si:get-system-version-list ¢ ... 191
gethash., ¢ o v v v i oo 81
getl & o v e e e e e e e e e e e 41
globalize« v v v o v 84
- .25
graphic-=charp61
BrEAteIP . v v v v e e e e e e s e e e e 47
si:hack-vms-object-file 210
haipart. « & v v v o b e e e e e s e e e e s 53
hash-table=count v v v ¢ ¢ 4 . . L .81
haulong . . . v v v v s v v o e P X
haulong&. . . . & v v v o v e e e e e e e e 58
Y 20
IMAgPArt « o v v s b e h e s e e e e e e e e 4
inef e e e e e e e e e e e e 29
init-file-pathname « . ¢ oo .. 124
si:initialize-patch-system 193
int=char . . . v ¢ ¢« v v v v e e P 1
integer-length - X]
INEIM & v 4 v v 0 o v o o o o o o s o b e e 84
intern-soft v .. 84
intersection 4 4 e v e e e e e e e e e e 34
isqrt e e e e e e e e e e o 49
7 3
steverlast=line?, 0 .. 0.0 0w . 187
Iem . ..o 000 e e e e e e s ... 48
b e e e e e e e 54
Idb&. © . . .00 .. e e e . .58
Idb-test . . v v v v v e e e e e e e e e e 54
length e e e e . n
lessp, « e e e e e e e e e e 47
O e 9
let* 000 e e e . 20
lexpr=send . . v 4 v v v e e e e e e e .. W06
lexpr-send-forward. ¢ o000 107
Steve:iNe=NeXte « « ¢ 4+ v 4w e w e e e s e 185

17-JUN-83

Function Index

steve:line-previous, e e e e e 185
list . v .o o0 o e e e e e e e 30
st ., .« v v v v e e e e e e e .30
listslength) |
listen . « & v v 4 4w e e e e e e e e e 116
BSIP. & o v v v 0 v v v e e e e e e e e 14
Ioad, + v v ¢ v e e e e e e e e e e e e 128
load-byte oo oo o oo 59
load-patches . « « v v v v v e e e e e e e e . 190
si:locatersymbol-table-value 211
log. ..o v 00 e e ae e e e e e 49
logand, « + v v v i i e e e e e e 51
logand& e h e e e e e e e 57
logandcl. . . v ¢ v v o v v v e w e 51
logandel& i e e e e e e e 57
logande2. TN 51
logandc28 . . v v v 0 e e e e e e e e e 57
loghitp . « + v v v v v v v v i s e e 52
logbitp&. ¢ v o . oo 58
logeount. . & . v v . b e e e e e e e e e 52
logcount&« v v v i e e e e e e e e 58
logeqv, « W e s e e e e e 51
logeqv& . v v v v e e e e e e e e e e e 57
logior . . v & v v e e e e e e e e e e e e 51
logior& v . s e e e e e 57
JTognand v e e e e e e e e e e e 51
fognand&t s e e e e 57
IOBOT. 4 v v ¢ v v v v o o s v e e e e e 51
Iognor& . » v v v v v v b e e e e e e e e e e 57
lognot. e e e e e e e e e 52
lognot& . e e e e e e e e e 58
Togorcl & & v v v e e e e s e e e e e 51
logorel&. « .« v ¢ v v v i e e e e e e e 57
Iogore2 & v v v v e i e e e e e e e e e 51
10OTC2&. v v v v v e v e e e e e e e s 58
logtest, v v ¢« ¢ v vt h Y e e e e e e e e 52
logtest& 58
logXOT: v v & 4 v v 6 s o 0 0 s s e e 51
I0BXOI& « v v v v v e v v e e e e e e e e 57
si:lookup-readtable 0. 141
oo 24
JOWErCasep « ¢ o v o o v ¢ o o 6 20 0 8 2 w0 s 61
MACTO . « ¢ « & o o « s s o o s s s o o o o o4 18
make=array. + o« « ¢« « ¢ « & e h e e e e e e 67
make=bits 4 e v e e e .. T4
stevermake=bp . . v . v v v v e e e e e e e 185
make=chalr. . . « v o v s s s o s v 0 s 0o 62
si:make-extend Ch e e e e .. 207
simake-fab 0000 0w . 131
make-hash-table v o v v oo .. 81
. make=inStance . .« . 4 v 0 e 4 e e e e e . . 105, 107
steveimake=line. Ve e e e 185
make=list0 s e e e e e e e e e k3|
simake=nam 0 0 d e e e a e W 131
simake-rab e i e e e e e 131

NIL Notes for Release 0.259

steve:make-screen-image 188
make-SequenCe. + « & v « v 4 4 4 b e 4 . e W37
make-string . « « « 4+ ¢ 4 v ..)
make-string-input-stream 116
make-string-output-stream. 116
make-symbol0 0 e e e e e e . 42
make-synonym-stream 0 o0 . . 115
make-vector. e e r e s LT
simake-xab. 000 0. 131
makunbound. 0000 4
MAD v & v v s v v o s 0 s r e e e e e e 23,39
mapallfiles. 0000 128
T mAapatoOMS . . v e v e s e e e e e e e e e e e 84
MAPC. v v v v v e e e e e e e e e e s 23
Mapean . . + v v v s v 4t e e e e e e e e e e 23
MaPCAr « & v v o 4 v e e e e e e e e e e s 23
MAPCOM . &+ v 4 4 o s o o o s o s o o o s o o o s 23
14T: o) 23
maplist e e e e e e e e e e e e e 23
mask-fieldv 000 0., 54
£ . 47
max$. . . e e e e e e e e e e e e e 60
max& e e e e e e e e e e 56
member. 0. e e e e e e e e e 34
MEMG & v ¢ v v o o o s o o o o s v o v o v 34
merge-pathname-defaults . . .-. 125
min e e e e e e e e e s 47
mn$. e e e e e e .60
mn&. . v v o v e e e e e s e e e e e e e 56
minus e e e e e e e e e 48
MBUSD « v 0 v v e v e e e e 46
si:module-source~file c .. 144
multiple-value e e W 20
multiple~-value-bind . , e e e s 28
multiple-value=hist 28
multiple=value=setq. + . .« 28

Stevermx=prompter « .« « i + « o 0 o« 4+ o . 188

name-char « R X |
namestring . . ¢ . v v v v v w0 e e e e 123
NCONC. & 4 v s o o o o o o o o o s s o o BIPN) §
DCOMS. + & & o o o » « e e e e e e - .30
si:new-patch-system v 0 4 0 0 193
nbble i s e e e e e e e e e e 74
nibble=2c e s e e e e e e 74
~minth., B . 73
MO v v 4 v v o v v o e e e s e e e s 20
steve:not-buffer-begin 4 187
steve:not-buffer-end 187
stevernot-first-line 0 v 0w 0. .. 187
steve:not-last-line , 187
notany D 39
NOEVETY v 4 v v v s 6 o v v v s o s O
Nreverses o « o o o T
nsublis L. e e e e . W38
nsubst e e e e e e 33
nth, e e e e e e e .32
17-JUN-83

s
=y

NIL Notes for Release 0.259

steve:nth-next-fine 185
steve:nth-previous-line 186
nthedr . . . v 0 0 0 s s e e e e 32
11) 14
numberp L L. s e e e e e e 15
oddp . . v v e e e e e e e e e 46
Of-ype . « « v v v o e e e e e e 14
OPEIl + & v 4 o v v v e e e e e e e 114, 135
o 22
4 119
steveroverwrite-done 0. .. 188
steveioverwrite=home 188
steveroverwrite-start. e 188
steve:overwrite=terpri e e 188
si:pagefault-count, e e e e e 146
pairlis. « v v v e e e e e e e e e e e 36
1 5o 14
pathname ¢ 4 v v 0 e e e 123
pathname-device 123
pathname-directory « .« 4 123
pathname-host.+ ¢ v o v . .. 123
pathname-name « « + + « & o« « & & & & 123
pathname-=type. . « « v v + « « ¢ v o o 4 s o o 123
pathname~version. « + « ¢ + v v 4 4 e 0 a0 . 123
peek-char. 00t e 117
pkg-create-package. 4 44 s e e e . . 84
pkg-find-package. 84
PKE-BOIO . & & v v b v e e e e e e e e e e e 84
PHSt & v v i v s e s s e e e e e e e e e e e 41
Plus e e e e e e e e e e e 47
plusp. e v e e c v s e s e e 46
steve:point, Ve e e e e e 185
steverpoint-selected4 . e . . 185
)« 29
utilscpp-into-file 0., 151
pretty=prinl00 ., e 0 120
pretty=prinl-datum 0. ., 121
pretty=print ¢ o0 0 . e e e e 121
pretty-print-datum 121
prinl. . . .t e e e e e e e e e e s 119
PHOC . & v v ¢ v v v v e v e e e e e e 119
PNt . v vt s e e e e e e e e e e e e e 119
sitprint-herald o000 191
utils:print-into-file0 000 . 151
print-system-history. 190
print-system-modifications e e e e e 190
probe-file, PO V)
proceed-mil 0 0. v e e 198
fs:process-in-load-environment e .. 130
prog e e e e e e e e e e e 25 -
push e e e s e e e e e e e 29
PUPIOP. + v ¢ « « & « & e e e P 1§
QUIE « o v v 0 o e h e e s e e e e e e e e s 198
quotient. v v e e s e e e . e e oa . W48

Function Index

ANdoM. « .« o v v e e e e e e e e e e 55
. 35
sicre-edit-patch L0 L. 192
T« 118
steve:read-buffer-name 188
read=byte. u e e e e e e 118
read-char. . . .-, . . . 0 0 e e e e e e 117
steveread-file-name 188
readling e e e e e e e e e 117
steverreal-arg~sup?. L 0. e e 187
realpart. e e e e e e e e e e e e e 4
remainder. .+ . . . v v e e e e e e e e e e 50
remhash v v o v o 0o s e e 81
TCMPIOP « v v v v 4 v o v a h e e e e e 41
rename-file. e e e e e e e e e e e 127
replace . « v v i vt h e e e e e e e s 38
siirequire-character. « « v ¢ 40 0 o0 .. s 63
si:require-character-fixnum, 64
reset-fill=pointer. 0.0 .. 70
(51 32
TRtUrn s e e e e e e e e e 25
return-from.0 0 e e e e e e e 25
TEVEISE o« v ¢ v o o 4 & b e e et e e e e e 38
sbrms$elose. L . 0 . . e e e e e e e 131
sirms$connect. o u 4 e e e e e e e s 131
siirms$create 0 .. .)
sirms$delete 131
si:rms$disconnect. 0 v 0 e e e e e e e 131
sirms$display 0 0 L 0 0 e e e e e e 131
sirms$enter. h e b e e e e s e e s 132
si:rms$erase.. e e e e e e e e e 131
sirms$extend L. 0L e e 131
sirms$find B) |
sirms$flush, o0 o 0o e e e e 132
siirms$free 0. e e e e e . C 132
SirmsS$get. « . . v v e e e ke e e e e .. 4132
sirms$nxtvol, P & 7]
sirmsfopen. e e e e s e . W131
SErmSPparse. . . . v v v s e s e e e e e e 132
sirms$put L L L L 0 L e e e e e e 132
sirms$read L. . L . e e e e 132
sirmsSrelease v v ek e e e e e e e 13%
SUIMSSrEMOVE . & & ¢ v v v 4w e e e e s e e s 132
si:rms$rename e e e s SO 132
sirms$rewind Lo oL oo 132
Sirms$Search . v v v v v e e v e e e e e e e 132
si:rms$setddir e e e e e e 132
si:rms$space. e e e e e e e 132
SEMSSLIUNC. » v v v v v v e e v e e e e e e s 132
sirmsSupdate 0 0 0 0 e e e e e e . 132
Csitrms$wait e e e e e e 132
sibrms$write. 0 00 0 00 e e e e G132
(0171 . |
54 T 30
mlacd . . . L L s e e e e e e e 30
mlachar B 1)
plachar-n C e e e e e e e e 77

17-JUN-83

~ Function Index

runtime e e e e e e e e e s 146
samepnamep e e e e e e e e .4
steve:save-all-files. e e e e e +. . 186
second. e e e e e e e e e 32
steveiselect=point O £ 5
steve:select-point-in-current-window. 185
selectqs 0. . Ve e e e e e e 2
send . . . s e e e e e e e s e e e e e 106
send-forward. 106
L C e e e e e e e e e e e 44
set-difference.+ v 0 v v e e e e 34
set=exclusive=or. . « v v v 4 0 4 4 e e e e ee 34
Set-ldb&. s e e e e e e e e e e e 58
si:set-patch-environment. 192
set-string=length ¢ . .0 0. 79
sisset-system=~status 4 00 e 00 e 192
set-terminal-type 0 0 00w e . 134
T 28
setplist o e e e e e e e e s e e 41
SEISYNLAX. + & 4 & ¢ o b e 4 e e s s e e e e 141
setsyntax=sharp=macro . . « « o o o < & s & o o o 141
steve:setup-mode=area e . o4 e o e . 188
seventh & v . v . v h e e e e e e e e e e e 32
SBVIEf . v . . h e v e e e e e e e e e e e e 72
shitff
sishow-call-meters . « v v o v v o v 0 v o o4 148
sizfoxref « e e e e e e e e e 207
sizabort=patch0 0 e e e e e e e 192
si:add-escape-char-syntax 0 . s 141
siradd=list=syntax .« .« + « v ¢« v 0 e s e 00w 141
si;add-number-syntax . . « v ¢ 0 b o0 4 e . 141
si;add-package-symtax 0 . o .04 141
stadd-patch 00 192
si;add-prefix-op-macro 142
SI;apropos=generate . .« . o 4 ¢ s o4 40 e 00 o 144
si:compile-load-patcho o000 192
si:compile-patch C e e e s 192
si:construct-system~symbol~-trampoline 211
si:def-vms-call-interface 210
si:defsyscall. e s ee e e e e 209
si:determine-and-set-terminal-type 134
si:enable-vms-call-trampoline. 210
sizenter-readtable v 0 0 4 ae e e . . s 141
si:finish-patch Ve e e e e e e e e e 192
si;get-call-meters 00w e e 147
si;get-system-version e e e e e e 191
si:get-system-version-list.191
si:hack-vms-object-file 210
si:initiglize-patch=-system « 193
si:locate-symbol-table-value 211
sizlookup-readtableo 141
si:make-extend 0 00 0. .. 207
simake-fab o 0o 131
simake-nam v v v 0 4 e e e e e e 131
simake-1ab 000 0 e s e e 131
si:make=xab P K 11

NIL Notes for Release 0.259

si:module-source-file e e e e e 144
si:new-patch-system« . o 4 0 0 .4 . 193
siipagefault-count 0. .., 146
si:print-herald e e e i e e e e e e 191
sire-edit-patch e e e e e 192
sirequire-character . + . . v . . 0 4 4 0w .. . 63
si:require-character-fixnum64
siirms$close 0 . e e e e e e e e e e 131
sirms$connect v . v . e e e e e e e . 131
sims$ereate. v . w4 e e e e e e e 131
sirms$delete. 00 e e e 131
sirms$disconnect 000 . 131
sirms$displayo 131
sibrms$enter e e e e . 132
SrmS$erase . v o v v v w e e s e e e e . 131
siirms$extend e e e e 131
sirms$find . . L L 0 L L 0L s s 131
sbrms$flush 132
sirms$free 0L 132
strms$get0 0 e e e . e e e 132
si.rms$nxtvol. e e e e e e e e e e 132
si:rms$open e e e e e e s e e e e 131
sbrms$parse L . L0000 e e 132
strms$put. L L e e e e e 132
sirms$read 0 . e e e e e e e e e 132
sibrms$release e e e e e e .. 132
sirms$remove L 0L 0 e 0 e . 132

sirms$rename . . . o . v 0 .0 e e e w0 .. . 132
sirms$rewind 0 L 0w e e e .. 132

siirms$search.0 e e ... 132
si;rms$setddir e e e e e . 132
SITMSESPACE « « v 4 v h e e e e e e e e e 132
srms$trunc 0 0 L e e e e . L.l 132
sirms$update L e e e e . 132
srms$wait 4w e s e e e e e e e 132
SETMSSWHLE o« .« v v v s e s s e e e e e e 132
si:set-patch-environment. 192
Sicset~SyStem=-Status . + &« v 4 4 W e b 192
si:show-call-meters. e e e e .. 148
si:subtract-call-meters. e e e e e 148
si;system-version-info. 191
si:update-system-statuses? e e e 191
sixref ... s e e e e e e e e . 27
signal,00 e e e e e e 4. 152
SIENUM . & v v v b e e e e e e e e e e . 49
signum& . . . L . . e s e e e e e e e e e .57
simp . . e e e e e e e e e e e 204
simpand e e e e .. 204
simpandlist e e e e e . 204
simple-bit-vector=length. 74
simple-general-vector-length 73
Simpnot. e e . 204
SHMPOT & 4 v o v 4 40 s 8 s o o s 0 o v v o s 204
simporlist . + e e el 204
sin., e e e e e e e e e . .50
1 1 .50
sixth e e e e e e e e e e 32

17-JUN-83

NIL Notes for Release 0.259

SOME « v v v v v o e b e e e e e e e e e e e 39
SOTL v v v v v et e e e e e e e e e e e e e 40
SOTICAT W v ¢ v s o 0 ¢ o o o & & 4 0 4 b 0 e 40
utils:source-need-compile? 150
special L . L e e e e e e 18
7 | o 49
SSEALUS W v v v ke e e e e e e e e e e s 55
Stable=sort. . v . . . v e e e e e e e e e e 40
standard-charp. .+ « . . v v e e e e e e e 61
SEAMUS. o v v e e e e e e e e e e e e e 55,147
steverargument?. L . L. .. w .. 187
stevebuffer L0 000000000 185
steve:buffer-begin?, 187
steve:buffer-end?.o L. 187
steve:cmu-only?. L0 .. 187
stevered-lose. o 0 e e e e e 186
steveied-warn e e e s e 186
stevered-warning 4 . 4 e e e e . 187
steve:editor-bind-key 0 .00 .. 183
steve:editor-defun-key. 184
stevefirst=line?.0 00 e .. 187
steverlast=line? 187
steverdline-next 0 .. 0 e s 0. 185
steve:line-previous e e e e 185
stevermake=bp v w0 0 e e e e e 185
steveimake~-line, 185
steve:make-screen-image. 188
Steve:mX-prompter e ... 188
steve:not-buffer-begin, e e b e e e 187
- steve:not-buffer-end, 187
steve:not-first=line 000 187
steve:not-last-line 187
steve:nth-next-line ¢ . 0044 185
steve:nth-previous-tine 186
steve:overwrite-done 4 4 . 0w e . 188
steve:overwrite-home 188
steveioverwrite-start. 4 . 4 . b o4 e . . . 188
steveioverwrite-terpri 4 0w .. 188
steverpoint. 0 e o e b e e e e e e 185
steve:point-selected 0 . 0 0. e 0. . 185
steve:read-buffer-name L o000 188
steve:read-file=name 188
steverreal-arg-sup? i 4 0 e e e e s 187
steve:save-all-files 186
steveiselect-point 0000 e 185
steve:select-point-in-current-window 185
steveisetup-mode-area. 0 4 4 o 188
steve;with-no-passall 187
SITEAMP . & 4 v 4 o s o 5 5 s 8 8 e e e e 113
SANB. b 4 ¢ v v o v 0 s o v o o o o v o oo s 15
string-append e e e e e e 78
sting=charp+ . . ¢ . . . S
string-downcase 4.078
string-equal0 .. 00 . e Y [

string=left-trim. . . . v ¢ ¢ v o v 00 e e s W19
string=length, v v v e v oW TT
SAng-1essP « « ¢ 4 v v b e e e e e e e e W16

Function Index

SrNg=Nreverse . . o « v v v s v e e e e e . 78
string-replace e e e e e e e 78
SUTINE-TEVEISE « v v o v 4 v 4 o o & o & s o o o & 78
string-reverse-search0 0. . 79
string-reverse-search-char. 78
string-reverse-search-not-char78
string-reverse-search-not-set 78
string-reverse-search-set 78
string-right-trim. 79
string=search00 e .. 79
string-search=char78
string-search-not-char 78
string-search=not=set « « « v 0 4 0 .. . 78
string-search=set. v . . e 4w 78
String=trim v L e e e e e e e e e e e 79
SLTNG=UPCASE & v v v v v e e e e e e e e e 78
SUHNEP » & v v v v e e e e e e e e e e e e e e 15
subl, o . s e e 48
sublis W e e e e e e e e e e e e e 33
SUDSEGZ o v v v v v e e e e e e e e e e e e 38
SUDSEIP. v v v v v e e e e e e e e e e e e e . 35
SubSt, « v L . e e e e e e e e e e e e e R X]
substring 0 . e e e e e e 78
si:subtract-call-meters 148
SVIef. . o e e e e e e e e e e e e e e e 72
sshash oo s 0 v oo e 82
sys:sxhash-combine, 82
symbol-package 43
symbol-plist v i i iv it e . 41
symbol-print-name. 0 42
SYymbolp v v v v v v e e e e e e S
symeval 000 . . e e e e e 43

sys:%fixnum-ash-with-overflow-trapping 59
sys:%fixnum-difference-with-overflow-trapping 59

sys:%fixnum-plus-with-overflow-trapping 59
sys:%fixnum-times-with-overflow-trapping.5
sys:sxhash-combine. e e e e e e e 82
si:system-version~info PN . 191
tagbhody et e e e e e s 25
17+ . 50
tanh. e e v 50
173+ 1 3
7= ¢+ 5 L 119
1113« 32
throw & & v v v v v v v v 0 e e N 26
tme. . . v v v v o v v v w e e e . . L146
timer ., c e e e e e . 146
tmes . o v v o o 4 4 o s e e e e e e . 48
PO-SUHANE &« & ¢ v v o o o 4 b 4 s e e e e e 75
TACE. + v ¢ v v 4 v e b s e e e e s s . 2113,143
tYPECASE & 4 « v ¢+ 4 b b e b s e e e e e e e .2
1472 -+ P
UNION & v b v v o v v s e v e e e e e e e e s .4
UNIESS & v v v e e e e e e e e s e e e e e 2
unread-char. e e e e e 117

17-JUN-83

Function Index

unwind-protect v 0 4 0 e e e . .. 26
si;update-system-statuses?, 191
UPPEICASCD . + ¢ ¢ ¢« v o o & s s s s 4w . s . . 61
user-homedir-pathname 123
user-scratchdir-pathname. 124
user-workingdir-pathname 124
utils:pp=into-file 0L 151
utils:print-into=file 151
utils:source-need-compile? L. 150
utils;vas-source-file, 150
utils:vas-source-needs-recompile? 150
valret . . . 0 . s e e e e e e e e e e 198
values. . . . v h a e e e e e e e e 27
values=list « . v o0 v e e . 27
Values=veCtor. o « . v 4 v e e e e e e e e 21
utilstvas=source=file .« 0 v . v v . e 150
utils:vas-source~needs-recompile? 150
veetor=length.« . & o . o w0 e 72
VECIOT™POP e « & ¢ o « o o o o v o =+ s o o o o s 70
vector-push e e e e e e e o, . 69
vector-push-extend 1]
L1 L+ 1+ SO e e e e e e s 15
VEIfY « v v v v e e e e s e e e e e e e e e e 151
L 22 S 72

NIL Notes for Release 0.259

when., . v v v e i e e e e e e e e 2

whereis . . v . v v v o 0 e e e .. 144
who-calls 144
with-input-from-string 116
steve:with-no-passall . ., 187
with-open-file. 115
with-output-to-string. « . « .« . 116
write=bits L . e o e e e e e 120
write=byte. . . v v . e e e e e e e e e e e 120
write=char. 0 i e e e e 113
write=line 0o e e e 119
WHite=String 0 e e e e e e e . 119
XCOMS. & & v « v s o o ¢ o & o o v v 0 v v v 30
sixref . oL . . o e e e e e e e 207
Y=OIr-D"P. « v v v 0w w4 e 121
YES=OI=N0"Pe o 4 o s & s s o o o o« o o e el 121
ZETOP. o + v 4 4 4 e e e e s e e e e e e e 46
N e e e e e e e e e e e e e 57
\&. . e e e e e e e e e e 57
A e e e e e e e e e e . 56,57

17-JUN-83

