
I
CC-56

'1'0:

From:

COf.~U'rATImi CENTER

Massachusetts Institute of Technology
Cambridge 39, Massachusetts

p. Mo Morse

J. McCarthy

Page 1 of 19

Date: December 13, 1951

S1mJECT; A PROPOSAL POll A COHPlLER

This memorandum contains the first version of

the first two chapters of a proposal for a compiler.

Comments on the points rai·sed so far and complaints

about ambiguities are earnestly solicited.

CBAPTBa 1

1. Introduction

The purpose of an automatic coding system in scientific

computing is to reduce the elapsed time between the decision to make

a computation and getting the results. It can make feasible computa

tions which, without it, would be too complicated to undertake.

This report describes a proposed new automatic coding system

which 1 hope will be a sufficient advance over those now available or

Boon to be available to justify the effort of writing the required

translation program. The specifications for the system are presented

in sufficient detail for evaluation of its merits, but would be subject

to mod1fication in the course of wr1ting the translation program. A

number of the ideas to be presented have been suggested by the Port ran

system for the laM 104, the proposed Scat system for the IBD 109, and
\

the Iflowmatic system for the UNIVAC. The source language is mainly

independent of the machine being used, except that. the provisions for

referring directly to machine registers and their parts, which we

believe must be included in any powerful source language, have been worked

out only for the IBM 104.

In what follows, underlined terms are defined by the sentences

in which they occur.

l01 What is an Automatic Coding System

An automatic coding system has two parts 0 These are

loa source lanpage in which procedures for sol v1ng

CC-56 2

problems can be described more conveniently than io machine language, and

2. a translation pr~ram which translates prosrams written

ill the sou~,ce lanauage into machine language 0

"
Thus we have to clo With three programs: the source pr ogram

, , ,

written 1n the sOIII'ce lanauaae, the object Pl'Olram which is t~e result
. - : . .

of translatiD8" thls , ~rosram into machine lausua3e .. aDd the t~~nslator 01'

compiler whlch does, the translating.

~r8 soaetlmes lose staht of the distinction between a

problem aDd a procedure for sol viag It; this 8011etlaes causes them to
. " , . :. . .

talk about haviaa vi ttea a probla 1Jl I'ortraa. The d18tinct~~n is ~1Il-

portant In decldiD8 what it is po.sible to make automatic codiua systems , , ' , i
do for us. A problem is defined by a procedure for telling w.heth~r one

has a solution, not by a procedurC9 for gettiD8 one. For example, the

problem of proviag or disproving Fermat's last theorem in one of the

known systems of formalized arithmetic is well defined since an alleged

pr06f one way or the other can readily be tested, b1It there is no known

procedure for letting a proof. The artificial intelligence problem is

that of getting a procedure Which is sood at solvins problems in general

and Is DRlch Juirder than the automatic codins problem which is merely

that of tranelat1111 already formulated procedures from one lauguage to

another. The automatiC coding problem may admit a fairly ~atisfactory

general solution although we don't expect to achieve a fally general

solution in this s,stem.

102 What ShOUld a Good Source Laaguage Be Like?

It has often been said that if only we could program the

calculator iD EnSlish, the automatic coding probl~ would be 801~ed.

The English laasuaae has features which have not as yet been incorporated

in any procrammiq lansuage and which programmers covet, such as a very

rich vocabulary and provisions for introducing new terminology; nevertheless

it is a priori no more likely that BDglish is very well SUited for de

scr1biDg complicated procedures, than it is that EDglish is well suited

for describiDi the theorems of an advanced branch of mathematics or the

laws of physics. (In fact, English 1s a very poor languag~ for giving

complicated instructions. Some programming systems for business use have

beea advertised as allowing the pr08l'811!mer to write in Engl1sh o It seems

to me that these claims are somewhat fraudulent o It is, of course., easy

to make a system 1n wbich the instructioDS ~e English sentences. To take

r

CC-56
3

an extreme example, we could require the programmer to write "put the

number in register 1000 in the accumulator" instead of "CLA 1000".

However, to really be able to claim that English is being used as a pro

gramming language, one would have to be able to accept any reasonable

synonym for a sentence, and eveD more important ODe would have to have

the facility available in BDglish of being able to define new termlnolOlY •
.' . ' . .

One may hazard a pes~1 that were su~ a f~cil~t" available, the pro-
o . • ~ 'L'

grammer would qui~y u~e it to establish a jarcon that would look almost

as incompreb"si~l. to the uDin1tiat~ as the present progr~QS laacuases.

It II1sht be SU'I81se4 that perhaps mathematics has already pro

vided us with the ~lic tools necessary to describe procedures. Th1s

turns out not to be the case for two reasons. First mathematical s,.1»o1-

ism is mainly used for the expression of declarative sentences; program-. ,

.1na deals in iaperati v. sentences. SeCOlldly, definiq new terminology

is alllOst always carried out informally ill the natural lansuac., 80 that

mathematics doeBntt give too much help in this important problea.

For this reason, it seems !lOst likely that a special symbolic

laaguage will be developed for the expression' of procedures which will

contain those ,fea.tures of the natural and mathematical languages which

are' the most valuable. This laDgUage will not be dependent on a parti

cular calculator, although it will have .facilities for descrlblDs calcu

lators and takiDg special account of their peculiarities. It is not

likely that the language Will be as easy to learn to use as present coa

puter languages, because one will be able to express in a primitive way

concepts which are expressed in a ver, complicated way in present systems.

One may regard a progralDlBill8 laacaage as a co-ordiJl8.te syste18

1n the space of procedures. Prom this po1nt of view, we can see that

one of the desirata for a language 1s that those aspects of a program

one would most like to vary are expressed as changes in ODe or just a

few co-ordinates. We shall call the various attributes of a program

variables. These variables may, in a given system be divided into four

categories: System variables, program variables, program segment vari

ables, and computational variables. A system variable is one which
. . ' .

can be changed only by ch8Dgiag the progra.mming system, a program variable

one which is set by .the programmer and which does Dot change during the

course of the calculation, a program segment variable is one which caR
"

be different for different segments of the same program, and a computation

o

CC-56

variable is one which changes its. ·val ue during the course of the program.

As Perlis empha6iz~s, a system can be more powerful than another simply

by making ~ syst~ variable in the one sy~tem a program variable in

another. Some of the most important differences be~weeD this system and

Fortran can be expressed as saying that certain attributes of a Portran

program which can only be changed by chaIlgims the system~ are prosr am

sepeot variables in our system. Some. 01 Portran' s program variables are

program Sepl8Dt and eVa computation variables in this .yst_. The si.

plest examples of this· are that the k1Dds at ·arithmetic aval1ab~. ~

with thea the 1D8IID~"'. 01 the operation .s,abols are program SepeDt vari

ables since new kiDds of qu8lltlty a:acl new meaniqs for tbe operatiODs
, . .'

can be defined within the system. 'lbe t1POlraphical COIlvent1cms are

also program segaent variables. The statasents themselves w.bicb are

program variables 1n Fortran are computatioaal variables here since the

program. can generate more source laDSUBle p1'OfP'8S in the course of opera

tion and caD call in the compiler to compile it.

The source lansuage is general eDOUSh to express the CGIIpller

itself. This will ·eDable the COIIlpller to be written 1n a sort of boot

strapping .. y wherein early inefficient versions are used to compile

later more efficient ones with added· features.

1.3 Peatures of the Source 1.aJI§aaIe

The most important feature of the source lansuage of this

system is the freedom it gives the p~osr r to define new ways of ex

pressing hillSel·f. This ability is provided by several features.

10 A tJP8 of statement called the equivalence statem8Dt which

provides for the introduction of abbreviations for any kind of expression.

2. Tbe translator starts with certain tables giviag the rela

tion bet~ etatemaDts in the source language and the successive

laDgUqes throuch which the translation goes. Much of the translation

is accomplished by compiliag tables comprising information taken from

the source progr8ll1. Bi tiler set of tables can be directly enlarged or

altered by SUitable source program statements. This of course includes

the tables which determine how table altwatiOD instructions are obeyed.

3. Tbe above two features should suffice for most extensions

of the lauauece o However" in addition, certain points in the compillq

prosram are accessible to the progr8llllller in the sense that he hiaself

can describe program to be executed at tbese poiats under appropriate

CC-56 5

conditions, The writinl of such program is made easy by providing

convenient ways to refer to parts of a statement in various stages of

translation sad to entries 1n the tables o

4. The ability to describe a computation by giving final

state of the machiae In terms of the initial state without baviag to

worry about intermediate changes to the variables used in the compu

tatiOll. o

'0 AD ezteaded set of basic, quantities and operation~ c0m

pared to PortraD includiq fixed-point full words, losical 1IOJ'd~, ~

I-bit qg&ntlti8S which play aD especially importaDt role in the systeB.

6. ,A direct W8¥ of haDdliDg propositions and predtcates and

conditional f~ctl0D8 Which eliminates much branchiQl in the source

prograao

70 A 1ara8 generalization of the concept of subscr~pted vari

able where the set of subscripts caD be aQ1 ordered set aDd not just the

set of integers. Subscripts in expressiGDS caD be arbitrary expreSSions.

8 0 A way of describing flow apart from the coaputatioa state-

Hnts.

9 0 Tbe ability to compile statements referring to lists aDd

tables 0

10. The ability to define functions aDd other open &Del closed

subroutines 1n a powerful way.

110 The abUi ty to refer to the machiae registers 0

12. The ability to comptle statements which modify others.

13. Tbe ability to'compile interpreters and interpretive

codiDg.

14. lb. ability to define one's own typographical conventions

including the ability to define what Is to be done in cases where nothlag

1s stated. These COIlventiODs caD be prOBl"8111 or prosram Sepl8l1t variables.

Because the 8),stem as a whole has so maDy features it will not

be as quick to learn fully as previOUS systems. However I .iaplified 8ub

systGDIs will be availablel which Vlil1 be easier to learn if less powerful.

The library tape of the system can coatain Rot only open aDd

closed subroutines, but also the sets of definitions for introducing new

kinds of quantity or for defining simplified subsystems.

.J .

CC-56 6

104 Objectives ill Designi. the Translator

G! va the source language 8.Ild. the computer on which the

object programs are to be run, there are a number of desirable properties

for the translator. !bese include:

10 The object prosraas should be efficient 0 This s)'stem will

carr,. out several kiDds of optll11zation on the prosram illCludill8, taklag

calculaticma out of loops ft. poss1ble, calcu1atiaa comilon sulJ-expressions

onl)' once, stratcht lllliJia pal"ts of tipt loops, decid! .. whether certain

'laallti ties should ... recalculated or updated, 4ec1dl111 whether tules

should be formed of c~ auiliary quaatitles, 8Ild fiUll" taking

advantase of cert&lD speeial sl'tUatlODS.

2. It should be possible to impose COD8traints OIl the object

procrraa as to where 1 t fiads certain variables and what regions of storase

I t occupies 0 Other CODstraints ma, also help optilB1zation.

3. The time required for compiling should not be excessive.

This can be accomplished by putting less effort into optimlzinc the rarer

parts of the PrGIl'8a. This compiler Will also have facilities for com

piling very small prosraas entlrel), in hiBh speed storace.

40 It should be possible to malte small changes express8ct in

the source languace Without recompiling the Whole program.

S. It should have SGOd facilities for detectias &8 lIIUIy

errors as possible in the source prosra. aDd printing out a cOIIPlaint

about all errors that can be found. If posSible, the machine should go

on to other work While an error is being corrected and then take up frOll

where 1 t left off rather than starti ... the compilation frOll the beg1nn1q.

6. It should make a report on the translation which should in

clude the correspondences between the source program and the object pro

gram, chaages the compiler has made in the source program for opUlIl1zation

purposes, the locat1oa of quantities 1n storage, information about the

object program 1ncludiDg lists of the instructions referr1q to particu

lar storaae addresses and the times required for all subcomputations for

Which this can be deterainecl.

7. The compiler should lit into a complete s,stem for operating

the machine which should be so des1pecl as to minim1ze the elapsecl time

between submitt1aa a request for computation and getting correct results.

,.
I

CC-56 1

105 Plan of this Report

The Dext chapter, chapter 2, describes the kinds of compute

&tat~9nts allowed in the system. Compute statements are those which

cause new values to be computed for certaa quantities. The important

concept of nOD-recursive prosram segment which is a natural unit of

prqram is introduced and discussecl.

Chapter 3 discusses the statea8Dts wbich determine the flow of

control. Theile include the concl1 tlO1U1l branches, index1aa over ordered

set., aDd the alcebralc .. y of describing flow separated from the compu

tat1.ons.

Chapter .. takes up the atat __ ts by wIllch tile l8D8WISe can

be extended 0 'lb.ese include a klnd of statement called the equivalence

statement which .akes abbreviatiOD8 and cbaDges of notation eaay, table

ntl'J statements Which alter the tables used by the compiler i. maklaa

the traaslatioD, and flnally the facility for introducing prosraa at

strategic places in the compllill3 process. An example is 81ven of how

these facilities can be used to provide new kinds of quantity such as

complex numbers or quatemioDs in terms of Which algebraic formula~ can

then be written.

Chapter 5 takes up the manipulation of symbolic quaatities such

as al.ebraic formulas or statements in a compiler 0 'IIlis is iIaportaat

in itself for maklag the compiler do calculus and other symbolic com

putations aDd also because 'this kind of computation is performed by the

COIIpller itself and hence will be .'-eel 1n the boot-strappiq operation

of writing t~e compiler in the lanauase of the compiler and usine the

simpler parts to translate the more difficult parts.

Chapter 6 takes up input and output.

Chapter 1 takes up the detailed design of the compiler and

the facilities provided for optimizing programs aDd also the fitt1ag

of the complIer i. an operator 8yst8mo

CC-56

2. Quantities, 8~lsR Compute StatGJ9S1ltsp aDd Non-Recursive
Program SepleDts

8

"1'b1s cIaopter takes up a kiDd of statemeat which is basic ill

aay compiler 8Ild le1l we call the compute 8tatGlllellt. Compute state

ments, whlch corre&pODd In f1lllctiOD to tho ar1t1uaet1c statemeats ill

Portrllll, are CDIIIp11ed iDto prop-am ale1a OOIIIPItG8 11ft values for certaia

quaatt ties. All «"BPle of a CCIIIDPIte sutemat 1s

A •• + CIA.

The IQ'OP8I!I ..,11.. fro. thts cauMS tILe expr-.slOD em tile ript of

the equall't, .118 to lie oaaputed "ilia the curreat val... of tile qaaa

U ties cleDO'ted ." 0 • .,aol. A, ., ad C. , 1'be ren1 t beooMII t_
aew value of tile Q1I8Ilt1 ty deaote4 .., tile 8JIIIIol A.

"'ore de.crlb1Qg compute statements, we first di8CUSS 'qqaDti

Ues in ,eneral, the .,....,1s which 'are the haIlcl1e. with Vlhich we hold

th_, and the fuC'ticmal expressions (called algebraic expressions ill

PortraD) ill fWlctlCJD8, paewlo-f1lllctions aDd operatiODS Which describe

the computations. !be particular lsportaDce of propositional quantities

is discussed. 1'1Aall,., we latrGCluce the aew concept of Iloll-recursive

proar- seapaent. I"or mlDy purposes iacludiac ~ sub-expression

opt1l11zaticm by the ec.piler this 1s a natural ani t of procram.

2.1 QaaDtitl ••

Prev1aua coapi1er. ~t a fixed set of kiDds of quantity.

III partiCUlar, Portl'&ll adalts two: the floatlq poillt llUIIber aud tile

illteger of 16 bUs pin sip. The present compiler admits &Il arbitrary

set of kiDds of qgaatit" siDce there is a process by Which aew klDds of

quanti t,. can be defilled 8Dd used. The compiler lauguage Will have tb:e

important collservative property that the major kinds of expression Which

can be used With the kiDds of quantities origiaally provided for caB also

be used wi th the .. ewl, defined killds of quantity. In particular,

fUllctional expressions can be used With all kinds of quantity.

Basic to this compiler will be the two kinds of quantity allowed

ill Portron and the fall length fixed-point quantit" the full length

logical word of tbe 704, and the OIle-bl t proposi tloaal quanti t, • Other

kiDde of quantity caa be defilled ill terms of the basic ones or else by

giving the progra.s vblCb defille what the operation and function symbols

meau whell applied to these quantit1es o

r

CC-56 9

In general, a type of quantity is defined by describing how it

1s represented in the machine and What operat1ODS combine quanti ties of

this type with others of the same type and also with quantities of other

types. We g1ve soae ezamples of kiDds d quantity which may be used o

1. Ileal t1ple precision numbers

2. Coapl_ nabers

3. Qaatena1_

4. Veotor.
S. Cli1fud II,,~S

6. lJUnctioru rapHe_ted in SOlIe .y, e1ther by a table, a

formula, or perlaapa by a eecauence ~ npaasion coefficiats. More

generall" .l ts of fuact10D spacGS.

1 • Striaca of cbaracters. '!'his kind 18 especially importlUlt

s1nce the compiler it •• lf functious b.Y manipulating stri". of cbar.ac-

tel's.

8. Lists, described in the UDDer used by lte_ll, Shaw, and

8iam. We 811all have more to 8&y about tiles. later.

Quantities caD be objects quite differeat from numbers each as

algebraic and functional expressions, differential equationa, shapes,

colors, PI'Op"8IIS (in acme particular laapaae) or electrical networlle.

tt is worth ail. to define a new kind of quanti t)' 1f enough a&IIples

will occur in the PI'OBl"Ul and useful operati01ls caD be def1ned invol v-

1... quant1 ti88 of this killd and other !duds. i'or example, tile operatiOl1B

of si~lificatlon, subst1tutioa and differentiation with respect to a

variable aay be def1ned for algebraic expressiollS. An op.ratiou of

solut10n might be defined for a class of d1fferent1al equat1ons. Opera

tions of combination, 1dent1fication of variables, and comp1lation might

be defined for programs. Operations of comitinatlOJl III1Sht be defi.ad

for electrical networks as might operation of solutio. combinins a net

work 111 til ini tlal cond1 tiODS.

lODe of the above kinds of quantity will be explicitly pro

vided for 1n the s,stea, thougb once the stateaents defining them have

been made, the definitions can be included in the library tape.

2.2 Spbols

We describe computat1ons involv1ng quant1t1es by expres

SiODS in the symbols repre •• tillS these qunti ties. The CODDection

between a s7Mbo1 and the quantity of quantities it ropreseats is

r

CC-56 10

determined by conventions which in this compiler are usually program

variables, but sometimes program segment variables, and even computation

variables. In SAP symbols represent the numbers of storage registers

and sometimes program parameters. That this is so is best indicated by

the meant ... of ari tbBletic expressions in the symbols. However, the

astertsk (0) represeatiac the current value of the location counter in

the new SAP 1s aD esample of a syaI)ol nose COIIDectiOll wi til numbers is

quite diff~reDt.

In IOrtr.aa a s,mbol represaDts the caateats of a resister except

tbat a s)'lOol used ODly as an illdo ma, never have a fixed hOJl8 resister.

The meaaiD8 of ari~tic expressions in the symbols bears out this illter

pretation.

III the course of the later chapters, the reader Will see that

a symbol may be connected with the quantities it represellts in quite a

variety of ways.

Typographically, we shall allow sequences of letters and digits

beginning with a letter to represent a symbol. We shall not make a re

striction on the leagth of symbols and we will avoid system conventions

such as that ill Fortran that sJllbols becinniD8 wi tb I, ••• , Jr represent

fixed point variables. We will, however, reserve tentatively special

symbols for the contents of the machine registers AC, MQ, lLC, 111, 112,

IRA SL SW -- It 1 It I h ~, 1, 1, etc. _I tentative y ae&Il that t e programmer can

reject this usage by an appropriate statement and keep these syabols

uncommitted. Tbe conventions definiaa a duffers' system might contain

such a statement in order to keep the duffers uncontaminated by uy

actual knowledge of the machine. We shall give some examples of the use

of the symbols for the machine registers later.

2.3 Algebraic Expressions and Simple Compute Stateaents

The points we want to make first are best illustrated by

giviaa an example of a simple compute statement which is what Fortran

calls an arithmetic statement. In our opinion the Fortran term prejudges

the question of what such statements are good for. Our example is

A III A + "C + COS(D)

This formula is an imperative to the computer to compile instructions

that wlll replace the value of the quantity A by the result of evaluating

tbe formula on tbe right side using tbe current values of the quantities

CC-56 11

represented by the symbols in it.

What is the advantage to the prOl'rammer of being able to

write such an expression rather than the sequence of expressions

X • COS (D)

Y. 8 $C

Z.X+y
A_A+Z

especially coasideJ'1118 the fact the first thi.. the compiler does Wi th

the oneinal fOlWllla 1s to translate 1 t into somethiDC corre~poJldlDC to

the s&qUeDce of four eleD8Rtary foraulas? The following are some of the

advaD:tsces:

I • This is the way non-Pl'08r rs are used to wri tillg

2. The proer8J11118r saves VIr! tillS a n1lllber of characters. This

has to be balamced against the fact that the program coDsist1aa of a

sequence of el ... nta~ formulas is more easily Changed thaD the single

more co.plicated formula.

3. The progr88llller avoids having to invent the auxiliary

quantities X, T, and Z. We regard this last as the most important ad

vantaae because ezperience has shown that it is in the inventi ... and

handling of auziliary quantities that errors are most often made.

4. There is an addi tiona! advantace that the compiler can plan

the sharIng of temporary storace better than th~ programmer can.

The ability to make the output of one calculation the input of

another without havine to give the intermediate result any other name

than the nase of the calculation that produces it is of use in other

than numerical colllpUtat1on. Certainly it is useful in describing s)'lBbolic

manipulations as we shall show later in this paper, and we believe it will

also be useful in data processing.

Algebraic expressions are obtained by combining the symbols rep

resenting constants, quantities, operations, and functions together with

commas and parentheses as punctuation according to recursive rules which

are too familiar to need repet1 tion here. Just as in Port ran we shall

use the symbols + - 0 / and O~ to represent the elementary operations of

addition, subtraction, multiplication, division, and exponentiation.

We shall also waat symbols for the el~tary moolean operations, and

additional symbols for the elementary Boolean operations, and additional

symbols are desirable. We shall also establish as tentative conventions

CC-56 12

the same seniority rules between the operation symbols. It should be

understood that since functional notation is provided for, the operation

symbols are a concession to custom; a worthwhile one in terms of the

legibility of programs.

Tbe calculations represented by the particular operation and

function symbols depend on the kinds of quantity the quantity symbols

in the expression represent. However, the first step in compiling a

fOr.Bala Wbich transfor.s an algebraic expression into a sequence of

elementary expressiODs, is independent of what the operations represent.

It is only after this transformation bas taken place that the rules

established by the procraamer which define the operations on his kinds

of quanti tie. affect the CODpilation process by determining the trans

lation of the el tary algebraic statements. Tbe translation rules

may have several effects. Pirst they may live rise to sequences of

aacblne operations. Thus A •• + C may ,lve' rise to one of the four

sequences

CLA A

ADD •

&TO C

ADD •

STO C

CIA A

ADD B ADD B

dependins on the nei,hboring formulas. Second, a transfer to a

subroutine lI&y be compiled. Third, the elellentar, expressions .y be

replaced by coaplex e~,ressiODs in symbols representtns more primitive

"uantt ties. We do not discuss how the prograamer indicates what kincl

of quantity a given symbol represents in this section.

2.4 Pseudo-functions

Programains has not yet reached a state where all kinds

of calculations can be described with no regard at all for the fact

that the aachine has a storage which is divided into numbered registers.

In this laaguage we provide certain pseudo-functions which allow one to

connect numbers with the contents of the corresponding registers. They

are called pseudo-functions because while they compose like functions,

the value of a pseudo-function of a number depends not aerely on the

nuaber but also on the contents of the memory of the results of the

asseably process. Here are a few such pseudo-functions:

1 • CAR CAR(X) denotes the .!:,ontents of the address part of .!:egister

number X. Thus CAR(3) is the 15 bit quantity stored in the address part

CC-56 13

of register number 3. We have s~veral pseudo-functions similar to CAR .

2. CDR contents of tbe decrement part of register number - . -
3. CWR COIltents of tbe !bole of !,egister number

4. ITS(Y,Z,z> denotes tbe Y-X+l bit quantity in bits X through Y

of regi ster number Z.(lhis pseudo-function should be distinguished from

the function BIIIT(X,Y,Z) whose value is the Y-X+l bit quantity consis

tiq of bits X throush Y of the 36 bit quantity Z. It is relatecl to tbe

pseudo functiOD aiD by BI'l'8(X, 'f, Z) _ EDIT (X, 'f ,CIIR(Z» • Both alTS

and BIIJT bave their uses.)

Additional pseudo functions of tbis kind can be d~fined as system

or PNlraa var1ables.

5. *<X) '!'bis pseudo-function for those quanti ties for Which it

makes sense, gives the address of tbe first resister assigned by the com

piler for 1 ts storqe. In the comp1led prograM it will generally be a

constant.

6. 1WIB(X). This 1s mainly useful 1n input-output stat t

when X is an i.ell: which runs over a list of quanti ties. Its value is

the striq of letters used by tbe programmer to IUUII8 the quantity. Its

use can greatly simplify output statements.

2.5 Prapo.~I~nal Qgantltles and Functions

A propositional quantity is a one bit quantity generally

associated with the truth of falSity of a proposition. Tbe value 1 of

the quantity is associated with the truth of the proposltlon and 0 Witb

ita falsity. Tbia syatem provides a number of operatlons and functions

which can be used to combine propositional quantities with each other

aDd with other kinds of quantlty.

First of all, we have the predicates .. , < and -E which are

used to compute propositional quantities from numbers. A predicate is

a function which takes on the values "true" and "false" which here are

represented by the blts 1 and O. A typical esample of a compute state

ment lnvolvi .. a predicate is

p .. (A .. B + C)

which calls for tha quantl ty P to be r ,eplaced by 1 if the value of the

~uaDtity A 1s equal to the sum of tbe values of the quantities B and C.

HOt1ce in tbis stateaent tbe character • is used both as a predicate

operation and as a symbol for the operation of replacement. We can

probably set by with this dual usage, although if there were plenty of

character symbols it might be worth While to use something l1ke a left

14

pointing arrow as a symbol for replacement and reserve the • sign for

use as a predIcate.

Secondly, we have the Boolean operations by wbich propositions

ere combined. The symbols for these operations are A for "and", V
for t'inclusive or", N for "not", 0for "exclusive or", :> for

"materially implies", and even t for "not both". A typical statement

usina these operations 1s

P - Q" «A ••) Y P)

' Thirdl" tor USiDe propositioaa1 quantities to compute quan

tities of other kiDds, we have the fUDction II'. AD example 01 compute

statement involviag the IF-function is

A .. IP(P, X + Y: Q, 11 + Y: (A III B), A + B: O11iERWlSB, a)

The execution of this statement causes the variable A to be replaced by

X + Y it P is true. If P is not true ancl q 1s true, then A is replaced

by 11 - V. It neither P nor q 1s true and A .. D, A is to be replaced b,

A + B. ftaa1ly, if nODe of the precediq predicates i8 true, A is to

be replaced b, a

(If th. II' aml Boolean fUDctloas are to be compiled into

etfioiGDt programs, the usual wav of compiling algebraic sta~emeats,

Which involves computina all the argumeAts of a fuaction before tl7iq

to COIIP1Ite its value, camaot be followed. Consider the statesaent dis

eussed in the previou8 paragraph. It P t1U'DS out to be true" it is UD.

nececess&ry to coapute Q" (A-a), or the quantities correspODdias to

them. A s1m1lar circumstance holds in the case of the previous U8IIple.

RalDely, if Q is talse, nothiDg else need be computed.)

Proposi tional quanti ties will play aa 1IIlportaDt role in our

later discussion of coatrol stateaeDts o

Propositional quaatities have not been ezpllcitly used in ~

putation as BRlch as their Importance WBrr8lltS. This is probably because

the machi.e facilities for dealing with them conveniently have not asaally

been provided.

It may be possible to introduce ezplic1tly some propositional

pseudo-functloos which occur frequeatly in lRformal descriptions of

prOflraaa o ODe ezample is "A has been dODe already" .ere 4. daotes a

certain action 0

15

2.6 Bon-Recursive Program Segments and Compound Compute
State-sBellts

It is frequently possible, wben planaing a part of a

computation, to resard the segment of program as changing the Iilachlne

from a situation A to a situation B where the difference betW0~ the

two situations is that certain quantities have new values in situation

• • If each of these new values c&Il CODveaient1y be expressecl direot1y

1n ter.s of the values of the quantities i. situation A we say that we

are dea1iaa with a DOD-recursive prosraa sec-eat. We shall sive three

examples of nOD-recursive prosraa segmeats.

1. A propoaa to iatel'Ch ... e the value. of two qaaatl ties X

&lid Y.
2. A procram to perform one step of a prediction operation,

in the solutioa of a S7stem of ordinary differeatlal equations by

II1lne t s method.

3. The tolloD88 operation with list structures whlch requires

a digression to describe a method of storiDg lists Which bas beea developed

!lOst fully by Ifewell, SillOD, and Shaw In their Information processi.

La.acuyes. In that S7st- a list consists ot a nUilber of machiDe words.

ID each word of the list 1s the address of the next word of the list as

well as a datum. ('l'h1s assumes that the lemcth of a word is such that a

word o&D contain an address &ad stUl have room for a datum.) In addi

tio. to the data lists there is a free storage list in which all the

registers not filled with data are COIlJlected together. The situation

is shown in figure 2.6.1 wherein an arrow from a symbol to a register

indicates that the value of the symbol 1s the number of the register.

In the case of the 704 we put the address of the next element of a list

in the decrement part of a list register and put the datum 1n the address

part 0 The last item on a list has zero ill its decrement part.

A

'---.~ I fu ~ ill .. ~"-I 0 ..--.

PRBBSTO,_~) I~~ ~--~o !ol

r

CC-56 15

The !lain advantage of such! a way of handling list is when the

length of a given list 1s a computation variable such that it 1s not

feasible to ~sign e~ough storage permanently to each list to take care

of the l argest number ox elements it " may ever have. In addition 1 t is

convenient to insert items in the middle of such a list or to delete

items from it.

The program sepent \98 Wish to describe dealing with these

lists i8 Deeded wIleD OIle wishes to ill8ert aa element at the beg1D1liac

of a list, .ettiDg tbe resister for th1s elemeDt from the free ~toraae

list.

'I'b. PI'G8~ for tbe abo". tbree eZBlllples are all COIlveaieatl,

described by aeaD8 of a cOJDpOUlld COJIIP1Ite statement aad are 81 va in

Pipre 2.6.2

1. X

l'

i'ipre 2.6.2

2. YOP Al*Yl+81$Y1Pt-A2*1'2+B2*Y2P+A3I11Y3+a3*Y3P

n YO

·np YOP

Y2 n
UP 'flP

'f3 U

Y3P Y2P

3. PRBBSTO CDB(FItBISTO)

CDR(PRIISTO) A

CAR(PRBBSTO) II

A PRDSTO

As can be seen from the examples, a compound compute statement

consists of two columns. Corresponding to each quantity in the lett

column is the value it is to assume in the right column. The nomen

clature of the quantities and their values are all assumed to be given

in terms of the values of these quantities as of the begiDlling of the

execution of the compound statement.

A IlOre elaborate kind of compowul compute statement is also

allowed in which there are three columns: the quantity to be calculated,

a condition, aDd a value. An example of this 1s g1ven 1n figure 2.6.3.

,.
CC-56 17

Figure 2.6.3

Gl A S>O A+l

8aO A

A-:-l

• (BtfO).P 0

C c..l
p A(.O Q

~ A>O 01

The l18li8 of tbe statemeat is 01. The first lille states tlaat

if a>o, A is to be replaoed by A+l. The .eOOJld lille states that if

-..0, A is to be . left as is, WIlile ill the remall1ilaC case, A 1s to be

replaced. by A-I. The lIext lille says that if (~) P, B Is to be

replacecl by O. 8illce there are 110 other statemeDts made about • 1 t

i. assaaed that if the above CGDdltlo11 does 1I0t hold, D will be

Wlchaaced. The lut line illustrates the use of allother special

symbol: 5Bft deJlOtes the lIext statel1eDt to be executed, au.d i~ .. this

compound compute stateaeat, we have that if A>O the present stateD8Dt

01 is to be executed qaill. If the condition is 1I0t satisfied the

physically lIext stataaent ill the program will be executed lIest o

This illustrates another possibility Which will be more fully

explored ill subsequent chapters, the CODcept of the 1I0ra&! procedure.

ODe CaD set up CGIIvntiOl1s as to what Is lIoJ'lll8l.1y done ill certaill

si tuat1011s when the pr~ram does 1I0t say otherwise. These collventlons

will be under the co.ntrol of the programmer.

2.1 Universal Quantifiers

What calculatiollS call be written as 1I01l-recursi;,e progr811
....

segments depends 011 the richlless of the language and ill particular 011

what fwctions &lUI operations have been defilled ill the system. To

take a trivial example, it square root factioll has not been defined in

the systea, then any program sesaeat which requires the eatraction of

a square root is recurSive. Of course, if a square root twction 1s

used ill a compound compute statement, the method of calculatiD8 the

square root will be taken for granted and Will not be subject to further

optimizatiOll in the,compilinc process o

III this sectiGD we presellt another of the concepts of oompound

compute statement which will enable ore program segments to be written

CC-56 18

in this form. This extension changes the previous three colWlDl format

to a four colu~ one where in the additional column which is to be

written on the left contains an index ·aDd a set over which the index

is to vary 0 AD example of such a stateaent is given in figure 2.1.10

Pigue 2.7.1

Quantifier QdDtity CoDdltiOJl Value

r(: ~(3)l AU) .U HCn)

JE-L A(a(J)+C(J» .(J»& a(J)*S(J)

A 8>0 A+l

If (1 to .) L

_ ~ to M) CU,I:) ~ AU ,J).(JI:)
I_I

The IIOSt obvious dOlt&ia of variatioa of 8Jl index is a sepMrJlt

of the int .. ers, but others are poIIsible. Por emuaple, aD index may

vary oyer the eleaeats of a RBWell list.

3.8 MUltiplet-Valued IUnctiODS aDd !beir Composition

It is cony_ient to be able to use subroutines Which

take several inputs and produce several quanti ties as outputs. W.

shall call such routines mu1 tiplet-valuecl f1lDctiODs. (The Ell tiply

valued functiOD in aathaatics is somethiq different. There the

emphasis is on the ambiguity of the value rather thaD on the value

beiDS an ordered collection of quantities.) The problem of ca.poslag

multiplet valued fUDctiODS is best illustrated by the example shown

in .figure 2.8.1.

Figure 2.8.1

Y ___ p.-----l

In the fipre P, 0, H, X, aDd • represent IIUltiplet yaluCDd

functions. Por eaaple, J!I has 4 inputs &lid 3 outputs. The arrows

show the' flow of data and the d1aaram represents a multiplet valued

function with & inputs and 2 outputs which is a sort of composition of

J!, 0, H, X, and 111. It is ' temptiq to try to devise a notation to repre

sGnt this kind of composition &lid which Will include the ordinar,r c -

posl tion of functions as a special ' case, because if we can, we call \Vi te

