L1
12
13

31
32
33
34
35

The Language

Part 1 - The Language
Table of Contents

General Information..............0........... fee et 1-1
The Maclisp Language. et e, e 1-1
Structureof the Manualiiiiiiiinn.... 1-3
Notational Conventionscciviivnnnnn.... e 1-4
Data Objects............................ herrrereseenteennas 1-7
The Basic Actionsof LISP P e, 1-11
Binding of Variables...................o ... 1-11
Evaluationof Forms.covvvvennn... P eeeeaes e 1-13
Application of Functions, 1-15
Special Forms ittt e 1-19
Binding Context Pointers.ccoiivuieinennnnnna... 1-22

Juiy 27, 1978 » | Page I-1

General Information

1. ngérdl Information
1.1 The Maclisp Language

Maclisp is a dialect of Lisp developed at M.LT’s Project MAC and M.LT.s
Artificial Intelligence Laboratory for use in artificial intelligence research and related
fields. Maclisp is descended from the commonly-known Lisp 15 dialect; however, many
features of the language have been changed or augmented.

This document is intended both as a reference source for the language and as a
user’s guide to three implementations. These are, in chronological order, the M.LT.
Artificial Intelligence Lab’s implementation on the DEC pdp-10 computer under their
operating system ITS, hereafter referred to as "the ITS implementation,” Project MAC's
implementation on Honeywell's version of the Multics system, hereafter referred to as
“"the Multics implementation,” and the version that runs on the DEC pdp-10 under
DEC’s TOPS-10 operating system, hereafter called "the DEC-10 implementation.” The
DEC-I0 implementation also runs under TENEX by means of a TOPS-10 emulator.

‘Since the ITS and DEC-I0 implementations are closely related, they are sometimes

referred to collectively as the pdp-10 implementation. There are reputed to be several
other implementations.

These implementations are mostly compatible; however, some implementations have
extra features designed to exploit peculiar features of the system on which they run, and
some implementations are temporarily missing some features. Most programs will work

. on any implementation, although it is possible to write machine-dependent code if you try

hard enough. '

The Maclisp system is structured as an environment, which is essentially a set of

'~ names and bindings of those names to data structures and function definitions. The

environment contains a large number of useful functions. These functions can be used
through an interpreter to define other functions, to control the environment, to do useful
work, etc. '

The interpreter is the basic user interface to the system. This is how the user enters
"commands.” When Maclisp is not doing anything else, such as running a program, it
waits for the user to enter a Lisp form. This form is evaluated and the value is printed
out. The form may call upon one of the system functions (or a user-defined function, of
course) to perform some useful task. The evaluation of a form may initiate the execution

July 27, 1978 el Page Il

Maclisp Reference Manual

of a large and complex program, perhaps never returning to the "top level” interpreter,
or it may perform some simple action and immediately wait for the user to type another
form. :

It is also possible to get into the interpreter while a program is running, using the
break facility. This is primarily used in debugging and related programming activities.

The functions invoked by the top-level interpreter may be executable machine
programs, or they may themselves be interpreted. This is entirely a matter of choice and
convenience. The system functions are mostly machine programs. User functions are
usually first used interpretively. After they work, the compiler may be applied to them,

* turning them into machine programs which can then be loaded into the environment.

All of this is done within a single consistent language, Lisp, whose virtue is that the
{ data structure is simple and general enough that programs may easily operate on

. ‘ programs, and that the program structure is simple and general enough that it can be
used as a command language.

Page 1-2 ‘ 21-1.1 July 27,1978

| General Information
1.2 Structure of the Manual

The manual is generally structured into sections on particular topics; each section
contains explanatory text and function definitions, interspersed. In general, each section
contains both elementary and complex material, with complexity increasing toward the
end of the section. An axiomatic, step-by-step development is not used. Frequently the
more complex information in a section will assume knowledge from other sections which
appear later in the manual. The new user is advised to skip around, reading early
chapters and early sections of chapters first.

Often descriptions of Lisp functions will be given not only in prose but also in terms
of other Lisp functions. These are as accurate as possible, but should not be taken too
literally. Their main purpose is to serve as a source of examples. '

" Accessing information in the manual is dependent on both the user’s level of ability
and the purpose for which she or he is using the manual. Though cover to cover reading
is not recommended (though not excluded), it is suggested that someone who has never
previously seen this manual browse through it, touching the beginning of each
subdivision that is listed in the Table of Contents, in order to familiarize himself or
herself with the material that it contains. To find an answer to some particular
question, one must use one of the provided access methods. Since the manual is
structured by topics one can use the Table of Contents that is found at the beginning of
the manual, and the more detailed tables of contents found at the beginning of each of
the six major parts, to find where information of a general class will be found. Entry
into the manual is also facilitated by the Glossary and the Concept Index, which are
found at the end. Also at the end of the manual are a Function Index and an Atomic
Symbol Index which are probably most useful to a regular and repeated user of the
dialect, or to an experienced user of another dialect, who wishes to find out the answer to
a question about a specific function. When one section of the manual assumes knowledge
of another section a page number reference to the other section will generally be given.

July 27, 1978 #1-1.2 | Page 1-3

‘Maclisp Reference Manual , U

1.8 Notational Conventions

There are some conventions of notation that must be mentioned at this time, due to
their being used in examples.

Most numbers are in octal radix (base eight). Numbers with a decimal point and
spelled-out numbers are in decimal radix. It is important to remember that by default
Maclisp inputs and outputs all numbers in octal radix. If you want to change this, see
the variables base and ibase.

A combination of the characters equal sign and greater than symbol, "=>", will be
used in examples of Lisp code to mean evaluation. For instance, "F => V" means that

evaluating the form F produces the value V.

All uses of the phrase "Lisp reader,” unless further qualified, refer to that part of
- the Lisp system which reads input, and not to the person reading this document.

The terms "S-expression” and "Lisp ‘object"‘ are synonyrhs for "any piece of Lisp

data.” (U

The character "$" always stands for dollar-sign, never for “alt mode,” unless that is
specifically stated. :

The two characters accent acute, "/, and semi-colon, ";", are examples of what are
called macro characters. Though the macro character facility, which is explained in Part
5, is not of immediate interest to a new user of the dialect, these two macro characters:
come preset by the Lisp system and are useful. When the Lisp reader encounters an
accent acute, or quote mark, it reads in the next S-expression and encloses it in a quote-
form, which prevents evaluation of the S-expression. That is:

“some-atom
turns into:
(quote some-atom)
and

“(cons “a “b)

turns into

Page I-4 21-1.3 July 27,1978

O

C

General Information

(quote (cons (quote a) (guote b)))‘

The semi-colon (;) is used as a commenting character. When the Lisp reader
encounters it, the remainder of the line is discarded.

The term "newline” is used to refer to that character or sequence of characters which
indicates the end of a line. This is implementation dependent. In Multics Maclisp,
newline is the Multics newline character, octal 0I2. In ITS Maclisp, newline is
carriage return (octal 015), optionally followed by line feed (octal 012) In dec-10
Maclisp, newline is carriage return followed by line feed.

All Lisp examples in this manual are written according to the case conventions of
the Multics implementation, which uses both upper and lower case letters and spelis the
names of most system functions in lower case. Some implementations of Maclisp use
only upper case letters because they exist on systems which are not, or have not always
been, equipped with terminals capable of generating and displaying the full ascii
character set. However, these implementations will accept input in lower case and
translate it to upper case, unless the user has explicitly said not to.

July 27,1978 | #1-1.3 ~ Page 15

Page 1-6

Maclisp Reference Manual

21-1.3

July 27,1978

U

Data Objects

2. Data Objects

Lisp works with pieces of data called “objecfs" or "S-expressions.” These can be simple
"atomic” objects or complex objects compounded out of other objects. Functions, the basic
units of a Lisp program, are also objects and may be manipulated as data.

Objects come in several types. All types are manifest; that is, it is possible for a
program to tell what type an object is just by looking at.the object itself, so it is not
necessary to declare the types of variables as in some other languages. One can make
declarations, however, in order to aid the compiler .in producing optimal code. (See part
42) :

It is important to know that Lisp represents objects as pointers, so that a storage cell
(a "variable”) will hold any object, and the same object may be held by several different
storage cells. For example, the same identical object may be a component of two different
compound objects. ’

The data-types are divided into three broad classes: the atomic types, the non-atomic
types, and the composite types. Objects are divided into the same three classes according
to their type. Atomic objects are basic units which cannot be broken down by ordinary
chemical means (car and cdr), while non-atomic objects are structures constructed out of
other objects. Composite objects are indivisible, atomic, entities which have other objects
associated with them. These other objects may be examined and replaced.

The atomic data types are numbers, atomic symbols, strings, and subr-objects. Atomic
- symbols can also be regarded as composite. See below.

In Lisp numbers can be represented by three types of atomic objects: fixnums, flonums,
and bignums. A fixnum is a fixed-point binary integer whose range of values is
machine-dependent. A flonum is a floating-point number whose precision and range of
values are machine-dependent. A bignum is an infinite-precision integer. It is
impossible to get "overflow” in bignum arithmetic, as any integer can be represented by a
bignum. However, fixnum and flonum arithmetic is faster than bignum arithmetic and
requires less memory. Sometimes the word “fixnum” is used to include both fixnums and
bignums (i.e. all integers); in this manual, however, the word “fixnum” will never be used
to include bignums unless that is explicitly stated.

The printed representations f\ or numbers are as follows: a fixnum is represented as a
sequence of digits in a specified base, usually octal. A trailing decimal point indicates a

July 27, 1978 #1-2. Page I-7

Maclisp Reference Manual

decimal base. A flonum is represented as a set of digits containing an embedded or
leading decimal point and/or a trailing exponent. The exponent is introduced by an
upper or lower case "e”. A bignum looks like a fixnum except that it has enough digits
that it will not fit within the range available to fixnums. Any number may be preceded
by a + or - sign. Some examples of fixnums are 4, -1232, ~191., +46. An example of
a bignum is 1565656565656565656565656565656565. Some examples of flonums are:

4.0, .01, -6e5, 4.2e-~1. ‘

One of the most important Lisp data types is the atomic symbol. In fact, the word
"atom"” is often used to mean just atomic symbols, and not the other atomic types. An
atomic symbol has associated with it a name, a value, and possibly a list of "properties”.
The name is a sequence of characters, which is the printed representation of the atomic
symbol. This name is often called the "pname,” or "print-name.” A pname may contain
any ascii character except the null character, which causes trouble in some

_ implementations. For example, a certain atomic symbol would be represented externally

as foo; internally as a structure containing the value, the pname "foo”, and the
properties. '

There are two special atomic symbols, t and nil. These always have their respective
selves as values and their values may not be changed. nil is used as a "marker” in
many contexts; it is essential to the construction of data structures such as lists. t is
usually used when an antithesis to nil is required for some purpose, eg. to represent
the logical conditions "true” and "false.” Another property of the special atomic symbol
nil is that its car and its cdr are always nil.

The value of an atomic symbol can be any object of any type. There are functions to
set and get the value of a symbol. Because atomic symbols have values associated with

* them, they can be used as variables in programs and as “dummy arguments” in

functions. It is also possible for an atomic symbol to have no value, in which case it is
said to be "undefined” or "unbound.”

The property list of an atomic symbol is explained on page 2-52. It is used for such
things as recording the fact that an atomic symbol is the name of a function.

An atomic symbol with one or no characters in its.pname is often called a "character
object” and used to represent an ascii character. The atomic symbol with a zero-length
pname represents the ascii null character, and the symbols with one-character pnames
represent the character. which is their pname. Functions which take character objects as
input usually also accept a string one character long or a fixnum equal to the ascii-code

value for the character. Character objects are always interned on the obarray (see page
2-58).

Page I-8 : 21-2. July 27,1978

Data Objects

Another Lisp data type is the string. This is a sequence of characters (possibly zero-
length). Strings are used to hold messages to be typed out and to manipulate text when
the structure of the text is not appropriate for the use of “list processing.” The printed -
representation of a string is a sequence of characters enclosed in double-quotes, eg.
"foo". If a " is to be included in the string, it is written twice, eg. "foo""bar" is
foo"bar. In implementations without strings, atomic symbols are used instead. The
pdp-10 implementations currently lack strings.

A "subr-object” is a special atomic data-type whose use is normally hidden in the

~ implementation. A subr-object represents executable machine code. The functions built

into the Lisp system are subr-objects, as are user functions that have been compiled. A
subr-object has no printed representation, so each system function has an atomic symbol
which serves as its name. The symbol has the subr-object as a property.

One composite data type is the array. An array consists of a number of cells, each of
which may contain any Lisp object. The cells of an array are accessed by subscripting;
each cell is named by a tuple of integers. An array may have one or more dimensions;
the upper limit on the number of dimensions is implementation-defined. An array is not
always associated with an atomic symbol which is its name. Rather, an array is always
designated by an array-pointer, which is a special kind of atomic Lisp object.
Frequently, an array-pointer will be placed on the property list of a symbol under the
indicator array and then that symbol will be used as the name of the array, since
symbols can have mnemonic names and a reasonable printed representation. See page 2-
89 for an explanation of how to create, use, and delete arrays.

Another composite data type is the file-object, which is described on pari 53.

The sole non-atomic data type is the "cons.” A cons is a structure containing two
components, called the "car” and the "cdr” for historical reasons. (These are names of
fields in an IBM 7094 machine word.) These two components may be any Lisp object,
even another cons (in fact, they could even be the same cons). In this way complex

~structures can be built up out of simple conses. Internally a cons is represented in a

form similar to:

I I : I
| car | cdr |
] 1 1

where the boxes represent cells of memory large endugh to hold a pointer, and “car” and
"cdr” are two pointers to objects. The printed representation of a cons is the “dotted-
pair” notation (A . B) where A is the car and B is the cdr.

July 27,1978 21-2. 4 Page 1-9

Maclisp Reference Manual

Another way to write the mternal representation of a cons, which is more convenient
for large structures, is:

There are three Lisp fﬁnctions_associated with conses: cons, car, and cdr. The

~function cons combines its two arguments into a cons; (1 . 2) can be generated by

evaluating (cons 1 2). The function car returns the car component of its argument,
and the function cdr returns the cdr component of its argument.

" One type of structure, built out of conses, that is used quite often, is the "list.” A list
is a row of objects, of arbitrary length. A list of three things 1, 2, and 3 is constructed
by (cons 1 (cons 2 (cons 3 ni1))); nil is a special atom that is used to mark the

end of a list. The structure of a list can be diagrammed as:

==» 0 ====> 0 ====> 0 =-==> nil

_— L
N C ——
w < ——

From this it can be seen that the car of a list is its first element, that the cdr of a list
is a list of the elements after the first, and that the list of no elements is the same as
nil.

This list of 1, 2, and 3 could be represented in the' dot-notation used for conses as
(1 . (2 . (3 . nil))). However, a more convenient notation for the printed
representation of lists has been defined: the "list-notation™ (1 2 '3). It is also possible

to have a hybrid of the two notations which is used for structures which are almost a list

except that they end in an atom other than nil. For example, (A - (8. (C.D)))
can be represented as (A B C . D).

A list not containing any elements is perfectly Iegal‘ and frequently used. This zero-
length list is identified with the atom nil. It may be typed in as either n11 or ().

Page I-10 ‘ #-2. July 27, 1978

The Basic Actions of LISP

3. The Basic Actions of LISP
3.1 Binding of Variables

The basic primitives of programming in Lisp are variables, forms, and functions. A
variable is an atomic symbol which has a value associated with it; the symbol is said to be
bound to that value. The value may of course be any Lisp object whatsoever. The atomic
symbol acts simply as a name by which the program may refer to the value while it is
processing it.

This is similar to the concept of variables in other programming languages.

" However, Lisp’s concept of the scope of names is subtly different from that of most "block-

structured” languages. At a given moment, a variable may actually have several
bindings in existence. Only the most recent, or current binding, can be used. When a
new binding is created, the previous one is pushed onto a stack. It will become accessible
again when the binding which superseded it is removed. Creation and removal of
bindings is synchronized with subroutine calling (and with certain special forms
described below) so this mechanism corresponds closely to the "local variables™ concept of

- other programming languages. However, Lisp considers that there is only one variable

whose binding changes, rather than several separate variables which happen to have the
same name. Any reference to a variable, even from outside the particular program which
gave it its current binding, gets the current binding and not one determined by "scope
rules.” It is possible to simulate the other concept of scope of names by using binding
context pointers, which are described later (see page 1-22). '

Unlike many other languages, Lisp does not combine the concepts of name and
storage. Many languages associate with a variable (a name) a piece of storage which
can hold one object of a particular type, such as a floating point number. The variable’s .
value resides in this storage. It is then impossible for two variables to really have “the

“same” value; one could have a copy of the value of another but not the same identical

object.

The situation in Lisp is quite different. Binding a variable to a value is not
copying the value into storage associated with that variable. Values exist as separate
objects in their own right and in their own storage. Binding is simply an association
between a variable and a value; consequently there is no reason why two variables cannot
have truly identical values. Similarly, erasing the binding between a variable and its
value does not destroy or throw away the value; it simply breaks the association. Of

July 27,1978 - #1-3. Page I-11

Maclisp Reference Manual

course, if there is no other use for the value the storage it occupies will eventually be
reclaimed by the system and put to more productive use.

Often these processes of creating a new binding of a variable to a value and
reverting to a previous binding are referred to as binding and unbinding the variable,
respectively.

A slightly different way of creating a binding between a variable and a value is
assignment. When a variable is bound to a value, the previous binding is saved and
can be restored, but when a variable has a value assigned to it, the previous binding is
not saved, but is simply replaced. Thus binding may be regarded as creating a new
level of usage of a variable, while assignment switches a variable to a different value
within the same level. For instance, a subroutine or function'may bind a variable to an.
initial value when it is entered, and then proceed to make use of that variable, possibly
assigning a different value to it from time to time. The initial binding of the variable
establishes the (temporary) ownership of that variable by the subroutine.

Due to the subtlety of the distinction between binding and assignment, some people
have proposed that assignment be eliminated wherever possible. The Maclisp do

function can often be useful in this regard.

There are several program constructs by which a variable can be bound. These will
be explained after forms and functions have been introduced.

Page 1-12 21-3.1 o July 27,1978

| The Basic Actions of LISP
3.2 Evaluation of Forms

The process of "executing” a Lisp program consists of the evaluation of forms.
Evaluation takes a form and produces from it a value (any Lisp object), according to a
strict set of rules which might be regarded as the complete semantics of Lisp.

If the form is atomic, it is evaluated in a way which depends on its data type. An
atomic symbol is a variable; it evaluates to the value to which it is currently bound. If it
is not bound, an error occurs. (See part 3.4.) A number or a string is a literal constant;
it evaluates to itself. The special atomic symbols t and nil are also treated as
constants. A constant can also be created by use of the quote special form; the value of
(quote x) is x. :

If the form is a list, its first element specifies the operation to be performed, and its
remaining elements specify arguments to that operation. Non-atomic forms come in two
types: special forms, which include the necessary programming operations such as
~ assignment and conditionals, and function references, in which the “operation” is a
function which is applied to the specified arguments. Thus functional composition is the
method by which programs are built up out of parts - as distinguished from composition
_ of data structures, for example. Lisp functions correspond closely to subroutines in other
. programming languages.

A function may be either a primitive which is directly executable by the machine,
called a subr (short for "subroutine”), or a function defined by composition of functions
and special forms, called an expr (short for "expression.”) Most subrs are built in to the
language, but it is possible for a user to convert his exprs into subrs by using the
compiler (see part 4) This gains speed and compactness at some cost in debugging
features.

There is additional complexity because special forms are actually implemented as if
they were function references. There is a special type of subr called an fsubr which is
used for this purpose. An fsubr is permitted to make any arbitrary interpretation of its
argument specification list, instead of following the standard procedure which is
described below. It is also possible to define a special form by an expr, which is then
called a fexpr. Most of the built-in special forms are handled specially by the compiler.
They are compiled as the appropriate code rather than as a call to the fsubr.

Other types of functions are lsubr, which is just a subr with a variable number of
arguments, lexpr, which is an expr with a variable number of arguments, and macro,
which is a type of special form whose result is not a value, but another form; this allows
a "transformational” type of semantlcs

July 27, 1978 #1-3.2 | Page I-13

Maclisp Reference Manual

Consider the form

(F Al A2 .. An)

The evaluator first examines F to see if it is a function which defines a special form,
i.e. an fsubr, a fexpr, or a macro. If so, F is consulted and it decides how to produce a
value. If not, F must be an ordinary function. The sub-forms Al through An are
evaluated, producing n arguments, and then the definition of F is applied to the
arguments. (Application is described in the following section.) This yields a result
(some Lisp object), which is then taken as the value of "the form. ,

An atomic form of some random type, such as a subr-object, a file, or an array-pointer,
evaluates to something random, often itself; or else causes an error depending on the
convenience of the implementation. Note that an array-pointer is different from an
atomic symbol which happens to be the name of an array; such an atomic symbol is
evaluated the same as any other atomic symbol.

" Page I-14 P . 31-32 - July 27,1978

C

The Basic Actions of LISP
3.3 Application of Functions

When a non-atomic form is evaluated, the function specified by that form is combined
with the arguments specified by that form to produce a value. This process is called
application; the function is said to be applied to the arguments.

The first step in application is to convert the function-specifier into a functional
expression (sometimes confusingly called a functional form.) A functional expression is a
Lisp object which is stylized so that Lisp can know how to apply it to arguments. The
rules for this conversion will be described after the types of functional expressions have
been explained.

There are basically two types of functional expression. A lambda-expression is a
functional expression which specifies some variables which are to be bound to the
arguments, and some forms which are to be evaluated. One would expect the forms to
depend on the variables. The value of the last form is used as the value of the
application of the lambda-expression. Any preceding forms are present purely for their
side-effects. A lambda-expression looks like:

(lambda (a b c d)
forml
forme
form3)

Here a, b, c, and d are the variables to be bound to the values of the arguments,

" called the lambda-variables. If at a certain moment the current binding of a was the

one created by this 1ambda-expression, a would be said to be 1ambda-bound. Clearly this -
lambda-expression is a function which accepts four arguments. The application of the
functional expression to four arguments produces a value by evaluating forml, then
form2, and then form3. The value of form3 is the value of the whole form. For
example, the value of the form

((lambda (a b) b) 3 4)

is 4. The functional expression used is a very simple one which accepts two arguments
and returns the second one.

If we gfant the existence of a primitive addition operation, whose functional
expression may be designated by +, then the value of the form :

((1ambda (a b) (+ a b)) 3 4)

July 27,1978 2133 | Page I-15

Maclisp Reference Manual

is 7. Actually,
(+ 34)
evaluates to the same thing.

The second basic type of functional expression is the subr, which is ‘a program
directly executable by the machine. The arguments of the form are conveyed to this
- program in a machine-dependent manner, it performs some arbitrary computation, and it
returns a result. The built in primitives of the language are subrs, and the user may
write lambda-expressions which make use of these subrs to define his own functions.
The compiler may be used to convert user functions into subrs if extra efficiency is
required. '

It is extremely convenient to be able to assign names to functional expressions.
Otherwise the definition of a function would have to be written out in full each time it
was used, which would be impossibly cumbersome.

Lisp uses atomic symbols to name functions. The "property list” mechanism is used
to associate an atomic symbol with a functional expression. (See page 2-52 for an
explanation of property lists.) Because the binding mechanism is not used, it is possible
for the same name to be used for both a variable and a function with no conflict. Usually
the defun special form is used to establish the association between a function name and
a functional expression.

Thus, the car of a form may be either a functional expression itself, or an atomic
symbol which names a functional expression. In the latter case, the name of the
"property” which associates the symbol with the expression gives additional information:

A lambda-expression is normally placed under the expr property. This defines an
ordinary expr. :

If a Tambda-expression is placed under the fexpr property, it defines a special form.
In that case, the first Tambda-variable is bound to the cdr of the form being evaluated.
For example, if foo is a fexpr, and (foo (a b) (c d)) is evaluated, then foo’s
lambda-variable would be bound to ((a b) (c d)). A second lambda-variable may
optionally be included in a fexpr. It will be bound to a "binding context pointer” to the
context of the evaluation of the form. (See page 1-22 for the details of binding contex
pointers.) ~

If a 1ambda—expression with one lambda-variable is placed under the macro
property, it defines the "macro” special form mentioned above. The lambda-expression is

Page 16 - #1-33 July 27, 1978

C

The Basic Actions of LISP
applied to the entire form, as a s'ingle argument, and the value is a new form that is
evaluated in place of the original form.
If a subr-object is placed under the subr property, it defines a subr. If a subr-object
is placed under the fsubr property, it defines a special form. A subr-object under the

1subr property defines a subr which accepts varying numbers of arguments.

There are some additional refinements. A 1ambda-expression which accepts varying ’

- numbers of arguments, called a Texpr, looks as follows:

(lambda n
forml
form2)

The single, unparenthesized, 1ambda-variable n is bound to the number of arguments.
The function arg, described on page 2-12, may be used to obtain the arguments.

Another property which resembles a functional property is the autoload property. If
Lisp encounters an autoload property while searching the property list of a symbol for
functional properties, it loads in the file of compiled functions specified by the property,
then searches the property list again. Presumably the file would contain a definition for
the function being applied, and that definition would be found the second time through.
In this way packages of functions which are not always used can be present in the
environment only when needed.

An array may also be used as a function. The arguments are the subscripts and the
value is the contents of the selected cell of the array. An atomic symbol with an array

property appearing in the function position in a form causes that array to be used.

If the function-specifier of a form doesn’t'meet any of the above tests, Lisp evaluates
it and tries again. In this way, "functional variables” and “"computed functions” can be
used. However, it is better to use the funcall function. (See page 2-13.)

There are some other cases of lesser importance:

There is an obscure type of functional expression called a Tabel-expression. It looks
like
‘(1abel name (lambda (...) ...))

The atomic symbol name is bound to the enclosed lambda-expression for the duration of
the application of the label-expression. Thus if name is used as a functional variable
this temporary definition will be used. This is mostly of historical interest and is rarely
used in actual programming.

July 27,1978 31-33 . Page I-7

Maclisp Reference Manual

Another type of functional expression is the funarg. A funarg is a list beginning
with the atomic symbol funarg, as you might expect, and containing a function and a
binding context pointer. Applying a funarg causes the contained function to be applied
in the contained binding context instead of the usual context. funargs are created by
the xfunction special form.

An expr property may be an atomic symbol rather than a 1ambda-expression. In this
case, the atomic symbol is used as the function. The original symbol is simply a synonym
for it. :

In addition to the variety of application just described, which is used internally by
the evaluation procedure, there is a similar but not identical application procedure
available through the function apply. The main difference is: that the function and the

. arguments are passed to apply separately. They are not encoded into a form,
consequently macros are not accepted by this version of application. Note that what is
passed to apply is a list of arguments, not a list of expressions which, ‘evaluated, would
yield arguments. '

Page 118 31-3.3 T July 27,1978

The Basic Actions of LISP
8.4 Special Forms
This section briefly describes some of the special forms in Maclisp. For full details
on a specific special form, consult the Function Index in the back.
Constants
(quote x) evaluates to the S-expression x.
(funétidn x) evaluates to the functional expression x. There is little real
difference between quote and function. The latter is simply a mnemonic
reminder to anyone who reads the program - including the compiler - that the
specified expression is supposed to be some kind of function.
Conditionals
Conditionals control whether or not certain forms are evaluated, depending on the

results of evaluating other forms. Thus both the value and the side effects of the
conditional form can be controlled.

-

(cond (predicate forml form2...) (predicate formlv form2...)...)

is a general conditional form. The lists of a predicate and some forms are called
clauses. The cond is evaluated by considering the clauses one by one in the order
they are written. The predicate of a clause is evaluated, and if the result is true,
that is, anything other than nil, then the forms in that clause are evaluated and
the cond is finished without examining the remaining clauses. If the result is not
true, ie. if it is nil, then the next clause is examined in the same way. If all the
clauses are exhausted, that is not an error. The value of a cond is the value of
the last form it evaluates, which could be ni1 if no predicate is true, or the value
of a predicate if that predicate is true but has no forms in its clause.

(and forml form2 form3...) evaluates the forms in succession until one is ni1
or the forms are exhausted, and the result is the value of the last form evaluated.

(or forml form2 form3...) evaluates the forms until one is non-ni1 or the
forms are exhausted, and the result is the value of the last form evaluated.

July 27,1978 34 ' ' Page I19

Maclisp Reference Manual

N6n4L6cal Exits
.(catch form tag) evaluates the form, but if the special form (throw value tag)
is encountered, and the rags are the same, the catch immediately returns the
value without further ado. See page 2-44 for the full details.

Iteration

- (prog (variable...) form-or-tag ...) allows Fortranoid - programs with
- goto’s, local variables, and returns to be written.

(do ...) is the special form for iteration. See page 2-38 for the details of prog
and do.

Defining Functions

(defun name (argl arg2...) forml form2...) defines an (interpreted)
function. See page 2-60 for full details.

' Error Control

(break name t) causes ";bkpt name” to be typed out and gives control to a
read-eval-print loop so that the user can examine and change the state of the
world. When he is satisfied, the user can cause the break to return a value. See
page 3-5 for the details of break.

(errset form) evaluates the form, but if .an error occurs the errset simply
returns nil. If no error occurs, the value is a list whose single element is what
the value of the form would have been without errset.

Assignment

(setq varl valuel var2 value2...) assigns the values to the variables. The
values are forms which are evaluated.

(store (array subscript] Subscriptz. ..) value) assigns the value to the afray
cell selected by subscripting. See part 2.8 for further information on arrays.

Miscellaneous Parameters

(status name -optional args-) returns miscellaneous parameters of LISP. name
is a mnemonic name for what is to be done. :

Page 1-20 31-3.4 | July 27, 1978

The Basic Actions of LISP

(sstatus name -optional args-) sets miscellaneous parameters.
See p‘art 3.7 for the details of status and sstatus.
Pretty-Printing
(grindef x) prettily prints the value and function definition (if any) of the
~ atomic symbol x. Indentation is used to reveal structure, the quote special form is
represented by 7, etc. See part 6.3 for the details..
Tracing
(trace name) causes the function name to print a message whenever it is called

and whenever it returns. See page 3-35 for the many features and options of
trace. ,

C July 27, 1978 | 334 - Page 1-21

Maclisp Reference Manual
3.5 Binding Context Pointers

There is a special type of object called a binding context pointer, or sometimes an “a-
list pointer”, which can be used to refer to a binding context (a set of bindings of
variables and values which was extant at a particular instant) Due to the stack
implementation of Maclisp, a binding context pointer is only valid while control is
nested within the binding context it names. It is not possible to exit from within a
binding context but keep it around by retaining a pointer to it.

A binding context pointer is either a negative fixnum or nil. nil means the
"global” or "top level” binding context. The negative fixnum is a special value of

implementation dependent meaning which should be obtained only from one of the four

following sources: the function evalframe, the function errframe, the special form
xfunction, or the second 1ambda-variable of a fexpr.

The only use for binding context pointers is to pass them to the functions eval and
apply to specify the binding context in which variables are to be evaluated and
assignments are to be performed during that evaluation or application. Binding context
pointers are also used -internally by xfunction. When it generates a funarg, it puts in
the funarg the functional expression it was given and a binding context pointer
designating the binding environment current at the time xfunction was called.

Page 1-22 $1-3.5 July 27,1978

Function Descriptions

Part 2 - Function Descriptions

Table of Contents

L Predicatesottt ittt 2-1
2. The Evaluator et eeeereehacseenettiata sttt ensessnns 2-7
3. Manipulating List Structure.0....coviueruernenanenn. 2-15
31 COMSES . . vttt et ittt ittt it 2-15
32 Lists ... eeiiae.... 2718
33 Alteration of List Structure PP 2-22
3.4 Tables ettt 2-28
35 SOOI ..o e 2-30
36 Hunks e P ... 232
4. S Flowof Control. i i i i i i et . 235
41 Conditionalsttt it 2-36
4.2 Iteration. i e e 2-38
43 Non-local EXits. 2-44
44 Causing and Controlling Errorsciiiiene.n. 2-46
5. AtomicSymbols...;..............................; 2-49
5.1 The ValueCell. S PO 2-49
5.2 The Property List.ootn i 2-52
53 The Print-Name.t it iiiennnannnas e 2-56
5.4 Interning of Symbols i 2-58
55 Defining Atomic Symbols as Functions e 2-60
6. Numbers i i i e 2-63
6.1 Number Predicates. e i, 2763
6.2 COMPATISON. . . .\ttt teeeae et e anananaaaneneananennnns 2-65
6.3 CONVEISIONottt ittt ittt iiieeeieennannanananns 2-67
6.4 CArithmetic. e et 2-69
6.5 Exponentiation and Logarithm Functions. et 2-77
6.6 ‘Trigonemetric Functionscoiiiiiiiiiiiiiaan.. 2-78
6.7 Random Functions i iiiiiiiiiinnieinnanannnns 2-79
6.8 Logical Operations on Numbersou... e 2-80
7. Character Manipulation. i, 2-83
July 27,1978 . , Page 2-1

71
72

Maclisp Reference Manual

Character Objects. e e i 2-83
Character Strings FE e 2-86
ATTaYS e e 2-89
Mapping Functions i it 2-97

July 27,1978

-

e

Predicates

1. Pré&icates '

A predicate is a function which tests for some condition involving its argument and

returns t if that condition is true, or ni1 if it is not true.

The following predicates are for checking data types. These predicates return t if
their argument is of the type indicated by the name of the function, ni1 if it is of some .
other type. Note that the name of most predicates ends in the letter p, by convention.

atom SUBR 1 arg
The atom predicate returns nil if its argument is a dotted-pair or a list, or t if
it is any kind of atomic object such as a number, a character string, or an atomic
symbol. ' : :

symbolp SUBR 1 arg

The symbolp predicate returns t if its argument is an atomic symbol, or ni1 if it
is anything else. ’

fixp SUBR 1 arg
- The fixp predicate returns t if its argument is a fixnum or a bignum, otherwise
nil. '
floatp SUBR 1 arg

The floatp predicate returns t if its argument is a flonum, n11 if it is not.

bigp SUBR 1 arg

The predicate bigp returns t if its argument is a bignum, and n11 otherwise.

July 27,1978 32-1. ' Page 2-1

Maclisp Reference Manual

numberp . SUBR 1 arg
The numberp predicate returns tif its argument is any kind of number, nilif it
is not:

hunkp - SUBR 1 arg
The hunkp predicate returns t if its argument is a Aunk (see page 2-33 for a
discussion of hunks). ‘hunkp does not consider list cells to be hunks. This
predicate does not exist in the Multics implementation.

typep ‘ SUBR 1 arg

typep is a general function for constructing type-predicates. It returns an atomic
symbol describing the type of its argument, chosen from the list

(fixnum flonum bignum 1ist symbol string array random)

symbol means atomic symbol. Tist means a list or a cons. array means array-
pointer. random is for all types that don’t fit in any other category. Thus
numberp could have been defined by:

(defun numberp (x) !
(and (memq (typep x) “(fixnum flonum bignum))
t)) '

The following two functions only exist in the Multics implementation.

stringp SUBR 1 arg

The stringp predicate returns t if its argument is a string, otherwise ni1.

subrp SUBR 1 arg

The subrp predicate returns t if its argument is a "subr” object, i.e. a pointer to
the machine code for a compiled or system function. Example:

(subrp (get “car “subr)) => t

Page 2-2 _ 82-1. July 27, 1978

Predicates
C |

The following are a more miscellaneous set of predicates.

eq SUBR 2 args

(eq x y) => t if x and y are exactly the same object, ni1 otherwise (cf. equal).
It should be noted that things that print the same are not necessarily eq to each
other. In particular, numbers with the same value need not be eq, and two similar
lists are usually not eq. In general, two atomic symbols with the same print-name
are eq, but it is possible with maknam or multiple obarrays to generate symbols
which have the same print-name but are not.eq. Examples: '

(eq “a “b) => nil
(eq “a “a) => t :
(eq “(a . b) “(a . b)) => nil (usually)
(eq (cons “a “b) (cons “a “b)) => nil (always)
(setq x “(a . b)) (eq-x x) => t since it is
the same copy of (a . b) in both arguments.
(setqg x (setq y 17)) (eq x y) => t or ni)
depending-on the implementation. You can
(Tﬂ“ never rely on numbers being eq.

equal _ SUBR 2 args

* The equal predicate returns t if its arguments are similar (isomorphic) objects.
(cf. eq) Two numbers are equal if they have the same value (a flonum is never
equal to a fixnum though). Two strings are equal if they have the same length,
and the characters composing them are the same. All other atomic objects are
equal if and only if they are eq. For dotted pairs and lists, equal is defined
recursively as the two car’s being equal and the two cdr’s being equal. Thus
equal could have been defined by:

m;,

July 27,1978 ' 82-1. - Page 28 .

Maclisp Reference Manual

(defun equal (x y)
(or (eq x y) , _
(and (numberp x) (numberp y) (numequal x y))
(and (not (atom x))
" (not (atom y))
(equal (car x) (car y))
(equal (cdr x) (cdr y)))))

if there was an auxiliary function for numeric equality:

(defun numequal (x y)
(and (eq (typep x) (typep y))
(zerop (difference x y))))

This numequa function is not the same as the Maclisp numeric-equality function,
=, because the latter only compares non-big numbers.

As a consequence of the above definition, it can be seen that equal need not
terminate when applied to looped list structure. In addition, eq always implies
equal. An intuitive definition of equal (which is not quite correct) is that two
objects are equal if they look the same when printed out.

not SUBR 1 arg

not returns t if its argument is nil, otherwise nil.

null SUBR 1 arg

This is the same as not. Both functions are provided for the sake of clarity.
nu11 should be used to check if something is ni1 and return a logical value. not
should be used to invert the sense of a logical value. Even though Lisp uses n11
to represent logical “false,” you shouldn’t make understanding your program

depend on this. For example, one often writes

(cond ((not (null x)) ...)
(...))

Page 2-4 82-1. July 27,1978

: ‘. Predicates
C .

rather than

(cond (x ...)
(...))

There is no Joss of efficiency since these will compile into exactly the same
instructions.

See also the number predicates (page 2-63).

C

July 27, 1978 #2-1. ' Page 2-5

Page 2-6

Maclisp Reference Manual

82-1.

July 27, 1978

U

The Evaluator

2. Thé Evaluator

eval LSUBR 1 or 2 args
(eval x) evaluates x, as a form, atomic or otherwise, and returns the resuit.

(eval x p) evaluates x in the context specified by the binding context pointer p.
Example: :

(setg x 43 foo “bar)
(eval (list “cons x “foo))
=> (43 . bar)

apply LSUBR 2 or 3 args
(apply f y) applies the function f to the list of arguments y. Unless f is an

fsubr or fexpr, such as cond or and, which evaluates its arguments in a funny
way, the arguments in the list y are used without being evaluated. Examples:

(setq f 7+) (apply f 7(1 2 3)) => 6

(setq f 7-) (apply f 7(1 2 3)) => -4

{apply “cons “((+ 2 3) 4)) =>
((+23).4)nt (5.4)

(apply f 9 p) works like apply with two arguments except that the application
is done with the variable bindings specified by the binding context pointer p.

quote FSUBR
The special form (quote x) returns x without trying to evaluate it. quote is
used to include constants in a form. For convenience, the read function normally
converts any S-expression preceded by the apostrophe or acute accent character ()
into the quote special form. For example,

(setq x “(some list))

is converted by the reader to:

July 27,1978 B2 Page 2-7

Maclisp Reference Manual ' @

(setg x (quote (some 1list)))

which when evaluated causes the variable x to be set to the constant list value
shown. For more information on mput syntax, see the detailed discussnon in part
5.1

quote could have been defined by:

(defun quote fexpr (x) (car x))

function FSUBR

function is like quote except that its argument is a functional expression. To
the interpreter, quote and function are identical, but the compiler needs to be
able to distinguish between a random piece of data, which should be left alone,
and a function, which should be compiled into machine code. Example:

(mapcar (function (lambda (p q)
(cond ((eq p 7x) q)
(t (Vist p 7= q)))))
first-list-of-things
(compute-another-1ist))

calls mapcar with three arguments, the first of which is the function defined by
the lambda-expression. The actual value passed to mapcar depends on whether
the form has been compiled. If it is interpreted, the lambda-expression written
above will be passed. If it is compiled, an automatically-generated atomic symbol
with the compiled code for the lambda-expression as its subr property will be
passed. The usual thing to do with functional arguments is to invoke them via
apply or funcall, which accept both the compiled and the interpreted functional
forms.

function makes no attempt to solve the "funarg problem xfunction should be
used for this purpose.

Page 2-8 ‘ 82-2.. July 27, 1978

O

C

The Evaluatdr

s=function . FSUBR

The value of (xfunction f) is a "funarg” of the function f. A funarg can be
used like a function. It has the additional property that it contains a binding
context pointer so that the values of variables are bound the same during the
application of the funarg as at the time it was created, provided that the binding
environment in which the funarg was created still exists on the stack. Hence if
foo is a function that accepts a functional argument, such as

(defun foo (f) ‘
(append one-value (f the-other-value))) -

or, better

(defun foo (f) A
(append one-value (funcall f the-other-value)))

then
(foo (xfunction bar))
works, but

(foo (prog (x y z)
(do something)
(return (*functiop bar))))

does not if bar intends to reference the prog variables x, y, and 2z
xfunction is intended to help solve the "funarg problem,” however it only works
in some easy cases. Funargs generated by xfunction are intended for use as
functional arguments and cannot be returned as values of functional applications.
Thus, the user should be careful in his use of xfunction to make sure that his

- use does not exceed the limitations of the Maclisp funarg mechanism.

It is possible to assign a value to a variable when a previous binding of that
variable has been made current by a funarg. The assignment will be executed in
the proper context. (This has not always been the case in Maclisp; it is a fairly

new feature.)

A funarg has thé form
(funarg function . context-ptr)

~ July 27, 1978 82-2. ~ Page 29

Maclisp Reference Manual

comment l FSUBR

comment ignores its arguments and returns the atomic symbol comment.
Example: . :

(defun foo (x) _
(cond ((null x) 0) ,
(t (comment x has something -in it)
(1+ (foo (cdr x))))))

- Usually it is preferable to comment code using the semicolon-macro feature of the
standard input syntax. This allows the user to add comments to his code which
are ignored by the lisp reader.

Example:

(defun foo (x)
(cond ((null x) 0)
(t (1+ (foo (cdr x)))) ;X has something in it
))

A problem with such comments is that they are discarded when the S-expression is
read into lisp. If it is edited within lisp and printed back into a file, the
comments will be lost. However, most users edit the original file and read the
changes into lisp, since this allows them to use the editor of their choice. Thus
this is not a real problem.

prog2 LSUBR 2 or more args
The expressions in a prog2 form are evaluated from left to right, as in any Isubr-
form. The result is the second argument. prog2 is most commonly used to
evaluate an expression with side effects, then return a value which needs to be
computed before the side effects happen. *
Examples:

(prog2 (do-this) (do-that)) ;Jjust get'z things evaluated

(setq x (prog2 nil y ;parallel assignment
(setq y x))) ;which exchanges x and y

(defuh prog2 nargs (arg 2)) ;a lexpr definition for prog2

Page 2-10 82-2. July 27,1978

0 ' The Evaluator

progn LSUBR 1 or more args

The expressions in a progn form are evaluated from left to right, as usual, and
the result is the value of the last one. In other words, progn is an Isubr which
does nothing but return its last argument. Although lambda-expressions, prog-
forms, do-forms, cond-forms, and iog-forms all use progn implicitly, that is, they
allow multiple forms in their bodies, there are occasions when one needs to
evaluate a number of forms for side-effects and make them appear to be a single
form. progn serves this purpose. Example:

(progn (setq a (cdr frob‘)) (eq (car a) (cadr a)))
might be used as the antecedent of a cond clause.
-progn could have been defined by:

(defun progn nargs
(and (> nargs 0)
(arg nargs)))

0 progv FSUBR

progv is a special form to provide the user with extra control over lambda-
binding. It binds a list of variables to a list of values, and then evaluates some
forms. The lists of variables and values are computed quantities; this is what
makes progv different from lambda, prog, and do.

(progv var-list value-list forml form2 ...)

first evaluates var-list and value-list. Then the variables are bound to the values.
In compiled code the variables must be special, since the compiler has no way of
knowing what symbols might appear' in the var-list. If too few values are

_supplied, the remaining variables are bound to nil. If too many values are
supplied, the excess values are ignored.

After the variables have been bound to the values, the forms are evaluated, and -
finally the variable bindings are undone. The result returned is the value of the
last form. Note that the "body” of a progv is similar to that of progn, not that of
prog. '

Example:

C

July 27, 1978 82-2. | Page 2-1i

Maclisp Reference Manual

(setq a “foo b “bar)

(progv (1ist a b “b) (1ist b) (1ist a b foo bar))
=> (foo nil bar nil)

During the evaluation of the body of this progv, foo is .bound to bar, bar is
bound to ni1, b is bound to nil, and a remains bound to foo.

arg ' SUBR 1 arg

(arg nil), when evaluated during the application of a lexpr, gives the number
of arguments supplied to that lexpr. This is primarily a debugging aid, since
lexprs also receive their number of arguments as the value of their lambda-
variable.

(arg i), when evaluated during the application of a lexpr, gives the value of the
£th argument to the lexpr. i must be a fixnum in this case. It is an error if ¢ is
less than 1 or greater than the number of arguments supplied to the lexpr.

Example:
(defun foo nargs ;define a lexpr foo.
(print (arg 2)) ~ ;print the second argument.
(+ (arg 1) sreturn the sum of the first
(arg (- nargs 1)))) ;and next to last arguments.

setarg SUBR 2 args

setarg is used only during the application of a lexpr. (setarg i x) sets the
lexpr’s i'th argument to x. i must be greater than zero and not greater than the
number of arguments passed to the lexpr. After (setarg ¢ x) has been done,
(arg i) will return x.

Page 2-12 82-2. -~ July 27,1978

The Evaluator

listify SUBR 1 arg

(hst1fy n) efficiently manufactures a list of n of the arguments of a lexpr.
With a positive argument 7, it returns a list of the first n arguments of the lexpr.
With a negative argument n, it returns a list of the last {abs n) arguments of
the lexpr. Basically, it works as if defined as follows:

(defun Yistify (n)
{cond ((minusp n)
(listifyl (arg nil) (+ (arg nil1) n 1)))

(t
(listifyl n 1))))

‘(defun tistifyl (n m) ; auxiliary function.
(do ({i n (1- i))
(result nil (cons (arg 1) result)))
((< 1 m) result)))

funcall) LSUBli 1 or more args

(funcall f al a2 .. an) calls the function f with the arguments al, a2, .., an. It
is similar to apply except that the separate arguments are given to funcall, -
rather than a list of arguments. If fis a fexpr or an fsubr there must be exactly

one argument. f may not be a macro. Example:

(setq cons “plus)
(cons 1 2) => (1 . 2)
(funcall cons 1 2) => 3

subrcall FSUBR

subrcall is used to invoke a subr-pointer directly, rather than by referring to an
atomic symbol of which the subr-pointer is the subr property. The form is:

(subrcaﬁ type p al a2 .. an)

All arguments except the first are evaluated. type is the type of result expected:
fixnum, flonum, or nil (any type). p is the subr pointer to be called. al
through an are the arguments to be passed to the subr subrcall compiles into

efficient machine code.

juiy ?7, 1978 82-2. Page 2-13

Maclisp Reference Manual

1subrcall " FSUBR

Isubrcall is identical to subrcall except that the subr-pointer called has to be
an lsubr instead of a subr. This is because many Lisps use different internal
calling sequences for Vsubrs than for subrs. '

arraycall FSUBR
arraycall is similar to subrcall and 1subrcall except that an array-pointer
is used instead of a subr-poi'nter. The first argument of arraycall must

correspond to the type that the array was given when it was created. An
arraycall expression may be used as the first argument to store.

Page 2-14 | 22 ~ July2r, 1978

3.

3.1

car

cdr

- car

cdr

Manipulating List Structure

Manipulating List Structure
Conses

SUBR 1 arg
Returns the first component of a cons.

Example: (car “(a b)) => a

SUBR 1 arg
Returns the second component of a cons.

Example: ('cdr “(abc)) =>(bc)

SWITCH
SWITCH

Oﬂicia"y car and cdr are only applicable to lists. However, as a matter of
convenience the car and cdr of nil are nil. This allows programs to car and
cdr off the ends of lists without having to check, which is sometimes helpful.
Furthermore, some old programs apply car and cdr to objects other than lists in
order to hack with the internal representation. To provide control over this, the
value of car can be set to control which data types are subject to the car operation.
Similarly, the value of cdr controls the cdr operation. - Illegal operations will
cause errors. For reasons of efficiency, this error checking is only enabled in
(xrset t) mode (see page 3-29) and is mostly turned off in compiled programs
The values to which the switches may be set are:

Value Operation applicable to
list lists.

nil lists and nil.
symbol lists, nil, and symbols.
t anything.

July 27, 1978 22-3. Page2s

cons

Maclisp Reference Manual
The default value of the switches is ni1.

SUBR 1 arg

All the compositions of up to four car’s and cdr’s are defined as functions in
their own right. The names begin with ¢ and end with r, and in between is a
sequence of a's and d's corresponding to the composition performed by the
function.

For example,
(cddadr x) = (cdr (cdr (car (cdr x))))

Some of the most commonly used ones are: cadr, which gets the second element of
a list; caddr, which gets the third element of a list; cadddr, which gets the fourth
element of a list; caar, to car twice.

The car’ing and cdr’ing operations of these functions have error checking under
the control of the car and cdr switches explained above, just as the car and cdr
functions themselves do.

-SUBR 2 args

This is a primitive function to construct a new dotted pair whose car is the first
argument to cons, and whose cdr is the second argument to cons. Thus the
following identities hold (except when numbers are involved; as always numbers
are not well-behaved with respect to eq):

(eq (car (cons x y))bx).=> t
(eg (cdr (cons x y)) y) => ¢t

Examples:
(cons “a “b) => (a ..b) .
(cons “a (cons “b (cons “c nil))) => (a b ¢)
(cons “a (bcdef))=>(abcdef)

ncons . SUBR 1 arg

(ncons x) = (cons x nil) = (1ist x)

Page 2-16 o $2-3.1 ' ~ July 27,1978

‘ 0 Manipulating List Structure

xcons 'SUBR 2 args

xcons ("exchange cons”) is like cons except that the order of arguments is
reversed.

Example: :
(xcons “a “b) => (b . a)

C

July 27, 1978 82-3.1 » Page 2-17

‘Maclisp Reference Manual U

3.2 Lists

last SUBR 1 arg
Tast returns the last cons of the list which is its argument.

Example: -
(setg x “(a b ¢ d))
(last x) => (d)
(rplacd (last x) “(e f))
x=>(abcdef)

last could have been defined by:
(defun last (x)
(cond ({null x) x)
((null (cdr x)) x)
((last (cdr x)))))
In some implementations, the null check above may be replaced by an atom check, @‘

which will catch dotted lists. Code which depends on this fact should not be
written though, because all implementations are subject to change on this point.

Tength SUBR 1 arg

length returns the length of its argument, which must be a list. The length of a
list is the number of top-level conses in it.

Examples:
(length nil) => 0
(ltength “(a b c d)) =>4
(length “(a (b c) d)) => 3

length could have been defined by:

Page 2-18 : 22-3.2 July 27, 1978

Manipulating List Structure

{defun length (x)
(cond ((null x) 0)

((1+ (length (cdr x))))))
or by: '

(defun length (x)
(do ((n 0 (1+ n))
(y x (cdr y)))
((nul1 y) n)))

The warning about dotted lists given under 1ast applies also to Tength.

list LSUBR 0 or more args
1ist constructs and returns a list of its arguments.

Example: »
' (list 34 “a (car ‘(b . c)) (+6 -2))=>(34ab 4)

list could have been defined by:

(defun Vist nargs
(do ((n nargs (1- n))
(s nil (cons (arg n) s)))
((zerop n) s)))
(This depends on parallel assignment to the control variables of do.)

append LSUBR 0 or more args

The arguments to append are lists. The result is a list which is the concatenation
of the arguments. The arguments are not changed (cf. nconc). For example,

(append “(a b c) 7(d e f) ‘nil ,’(g))'=> (abcdefg)

To make a copy of the top level of a list, that is, to copy the list but not its

elements, use (append x nil).

July 27,1978 | ©32-3.2 Page 2-19

Maclisp Reference Manual

A version of append which only accepts two arguments could have been defined by:

(defun append?2 (x y)
(cond ((null x) ¥y)
((cons (car x) (append2 (cdr x) y)))))

The generalization to any number of arguments could then be made using a lexpr:

(defun append argcount
(do ((i (1- argcount) (1- 1))
(val (arg argcount) (append2 (arg i) val)))
((zerop 1) val)))

reverse SUBR 1 arg

Given a list as argument, reverse creates a new list whose elements are the
elements of its argument taken in reverse order. reverse does not modify its

argument, unlike nreverse which is faster but does modify its argument.
Example: :

(reverse “(a b (c d) e)) => (e (c d) b a)
reverse could have been defined by:

(defun reverse (x) ;
(do ((1 x (cdr 1)) ; scan down argument,
(r nil ; putting each element
(cons (car 1) r))) ; into list, until
({(null 1) r))) ;s no more elements.

nconc LSUBR 0 or more args
nconc takes lists as arguments. It returns a list which is the arguments
concatenated together. The arguments are changed, rather than copied. (cf.
append) :

Example: :
(nconc “(abc) (def))=>(abcdef)

Note that the constant (a b c¢) haS now been changed to (abc de f). If

Page 220 32-3.2 o © July 27,1978

Manipulating List Structure

this form is evaluated again, it will yield (a bc d e f d e f). This is a
- danger you always have to watch out for when using nconc.

nconc could have been defined by:

(defun nconc (x y) ;for simplicity, this definition
(cond ((null x) y) ;only works for 2 arguments.
(t (rplacd (last x) y) ;hook y onto x
x))) _ ;and return the modified x.

nreverse SUBR 1 arg

nreverse reverses its argument,' which should be a list. The argument is
destroyed by rplacd’s all through the list (cf. reverse).

Example: - :
(nreverse “(a bc)) => (c b a)

nreverse could have been defined ﬁy:

'ZD . (defun nreverse (x)
(cond ({null x) nil)
((nreversgl x nil))))

(defun nreversel (x y) ;auxiliary function
(cond ((null (cdr x)) (rplacd x y))
((nreversel (cdr x) (rplacd x y)))))
; + this last call depends on order of argument evaluation.

nreconc SUBR 2 args

(nreconc x y) is exactly the same as (nconc (nreverse x) y) except' that it
is more efficient. : ‘

nreconc could have been defined by:
(defun nreconc (x y)
(cond ((null x) y)
((nreversel x y))))

using the same nreversel as above.

C July 27, 1978 32-3.2 Page 221

Maclisp Reference Manual
8.3 Alteration of List Structure

The functions rplaca and rplacd are used to make alterations in already-existing
list structure. The structure is not copied but physically altered; hence caution should be
exercised when using these functions as strange side-effects can occur if portions of list
structure become shared unbeknownst to the programmer. The nconc, nreverse, and
nreconc functions already described have the same property. However, they are
normally not used for this side-effect; rather, the list-structure modification is purely for
efficiency and compatible non-modifying functions are provided
rplaca SUBR 2 args

(rplaca x 9) changes the car of x to y and returns (the modified) x. Example:
(setq g “(a b c))
(rplaca (cdr g) 7d) => (d c)

Now g => (a d ¢)

rplacd SUBR 2 args
 (rplacd x 9) changes the cdr of x to 9 and returns (the modified) x. Example:
| (setq x “(a b c)) |
(rplacd x “d) =} (a . d)
Now x => (a . d)

See also setplist (page 2-55).

subst SUBR 3 args

(subst x y z) substitutes x for all occurrences of y in z, and returns the modified

copy of z. The original z is unchanged, as subst recursively copies all of z
replacing elements eq to § as it goes. If x and y are ni1, z is just copied, which

is a convenient way to copy arbitrary list structure:

* Page 2-22 S 32-33 | July 27,1978

0) ‘ | Manipulating List Structure

Example:

(subst “Tempest “Hurricane
“(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

subst could have been defined ‘by:

(defun subst (x y 2) .
(cond ((eq z y) x) - if item eq to y, replace.
((atom z) z) ;if no substructure, return arg.
((cons (subst x y (car z)) ;otherwise recurse.
(subst x y (cdr 2))))))

" sublis " SUBR 2 args

sublis makes substitutions for atomic symbols in an S-expression. The first
~ argument to sublis is an association list (see the next section). The second
argument is the S-expression in which substitutions are to be made. sublis looks
CD at all atomic symbols in the S-expression; if an atomic symbol appears in the
association 'list occurrences of it are replaced by the object it is associated with.
The argument is not modified; new conses are created where necessary and only
where necessary, so the newly created structure shares as much of its substructure
as possible with the old. For example, if no substitutions are made, the result is
eq to the old S-expression.
Example:

(sublis 7((x . 100) (z.. zprime))
“{plus x {(minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

 In some implementations sublis works by putting temporary sublis properties
on the atomic symbols in the dotted pairs, so beware.

July 27,1978 82-3.3 Page2-28

|

Maclisp Reference Manual
3.4 Tables

Maclisp includes several functions which simplify the maintenance of tabular data
structures of several varieties. The simplest is a plain list of items, which models
(approximately) the concept of a set. There are functions to add (cons), remove
(delete, delg), and search for (member, memq) items in a list. ‘

Association lists are very commonly used. An association list is a list of dotted pairs.
The car of each pair is a "key” and the cdr is "data”. The functions assoc and assq
may be used to retrieve the data, given the key. -

Structured records can be stored as association lists or as stereotyped S-expressions
where each element of the structure has a certain car-cdr path associated with it. There
are no built-in functions for these but it easy to define macros to implement them (see
part 6. 2)

Simple list-structure is very convenient, but may not be efficient enough for large

- data bases because it takes a long time to search a long list. Maclisp includes some

hashing functions (sxhash, maknum) whxch aid in the construction of more efficient,
hairier structures

member : SUBR 2 args

(member x y) returns nil if x is not a member of the list 3. Otherwise, it

returns the portion of y beginning with the first occurrence of x. The comparison :

is made by equal. y is searched on the top level only.

Example:
(member “x 7(1 2 3 4)) => nil ‘
(member “x “(a (x y) cxdex f))=>(xdexf)

Note that the value returned by member is eq to the portion of the list beginning
with x. Thus rplaca on the result of member may be used, if you first check to
make sure member did not return nil.

Example:

(catch (rplaca {or (member x 2z)
(throw nil lose))

Y)
lose)

Page 2-24 _ 3234 . July 27, 1978

U

Manipulating List Structure

member could have been defined by:

(defun member (x y)
(cond ((null y) nil)
((equal x (car y)) y)
((member x (cdr y)))))

memq . SUBR 2 args

memq is like member, except eq is used for the comparison, instead of equal.
~ memq could have been defined by:

{defun memq (x y)
(cond {(null y) nil)
((eq x (car y)) y)
((memq x (cdr y)))))

delete LSUBR 2 or 3 args
(delete x y) returns the list y with all top-level occurrences of x removed.

equal is used for the comparison. The argument y is actually modified
(rplacded) when instances of x are spliced out. delete should be used for

value, not for effect. That is, use
(setq a (delete “b a))
rather than

(delete “b a))

The latter is not equivalent when the first element of the value of a is b.

(delete x 9 n) is like (delete x y) except oﬁly the first n instances of x are
deleted. n is allowed to be zero. If n is greater than the number of occurrences of

x in the list, all occurrences of x in the list will be deleted.
Example:

(delete ‘a ‘(bac (ab)da e))v=) (bc (ab)de)

July 27, 1978 8234 Page 2-25

Maclisp Reference Manual

delete could have been deﬁned‘by:

(‘defun délete nargs ; lexpr for 2 or 3 args

(deletel (arg 1) ; pass along arguments...
(arg 2) ,

(cond ((= nargs 3) (arg 3))
(123456789.)))) ; infinity

(defun deletel (x y n) ;auxiliary function
(cond ((or (null y) (zerop n)) y) /
({equal x (car y)) (deletel x
(cdr y)
(1- n)))
((rplacd y (deletel x (cdr y) n)))))

LSUBR 2 or 3 args

delq is the same as delete except that eq is used for the comparison instead of
equal. T

sxhash SUBR 1 arg

sxhash computes a hash code of an S-expression, and returns it as a fixnum,
which may be positive or negative. A property of sxhash is that (equal x y)
implies (= (sxhash x) (sxhash y)). The number returned by sxhash is some
possibly large number in the range allowed by fixnums. It is guaranteed that:

1) sxhash for an atomic symbol will always be positive.

2) sxhash of any particular expression will be constant in a particular
implementation for all time, probably.

~ 3) Two different implementations may hash the same expression into differen
values. '

4) sxhash of any object of type random will be zero.

5) sxhash of a fixnum will = that fixnum.

Page 2-26 82-3.4 -~ July 27,1978

Manipulating List Structure

Here is an example of how to use sxhash in maintaining
hash tables of S-expressions:

(defun knownp (x) ;look up x in the table
(prog (i bkt) ‘

(setq i (plus 76 (remainder (sxhash x) 77)))
;The remainder should be reasonably randomized between
;-76 and 76, thus table size must be > 175 octal.

(setq bkt (table 1)) _
;bkt is thus a 1ist of all those expressions that hash
;into the same number as does x. ' :

(return (member x bkt))))

To write an “intern” for S-expressions, one could

(defun sintern (x)
{prog (bkt i tem)
(setq bkt (table (setq i (+ 2n-2 (\ (sxhash x) 2n-1)))))
;2n-1 and 2n-1 stand for a power of 2 minus one and
;minus two respectively. This is a good choice to
;randomize the result of the remainder operation.
(return (cond ((setq tem (member x bkt))
(car tem))
(t (store (table i) (cons x bkt))
x))))

assoc SUBR 2 args

(assoc x y) looks up x‘ in the association list (list of dotted pairs) 9. The value
is the first dotted pair whose car is equal to x, or ni1 if there is none such. ‘

Examples:
(assoc ‘r “((a . b) (c .d) (r . x) (s .y) (r . 2)))
=> (r . x) ; '

(assoc “fooo “((foo . bar) (zoo . goo))) => nil

It is okay to rplacd the result of assoc as long as it is not ni1, if your intention
is to "update” the "table” that was assoc’s second argument.

July 27, 1978 32-3.4 _ Page 2-27

Maclisp Reference Manual

Example: '
(setg values “((x . 100) (y . 200) (z . 50)))
(assoc “y values) => (y . 200) .
(rplacd (assoc “y values) 201)
(assoc “y values) => (y . 201) now
(One should always be careful about using rplacd however)

A typical trick is to say (cdr (assoc x y)). Since the cdr of nil is
guaranteed to be nil, this yields ni1 if no pair is found (or if a pair is found
whose cdr is nil)

assoc could have been defined by:

(defun assoc (x y)
({cond ((pull y) nil)

((equal x (caar y)) (car y)i
((assoc x (cdr y))):)) .

' assq k SUBR 2 args

assq is like assoc except that the comparison uses eq instead of equal. assq
could have been defined by:

(defun assqg (x y)
(cond ((null y) nil)
((eq x (caar y)) (car y))
((assq x (cdr y)))))

sassoc ' SUBR 3 args .

(sassoc x y z) is like (as_soc x 9) except that if x is not found in 9, instead of
returning nil sassoc calls the function z with no arguments. sassoc could
have been defined by: '

(defun sassoc (x y z)
(or (assoc x y)
(apply z-nil)))

sassoc and sassq (see below) are of limited use. These are primarily leftovers
from Lisp L5. :

Page 2-28 22-3.4 ' July 27,1978

C

Manipulating List Structure

sassq SUBR 3 args

(sassq x y z) is like (assq x y) except that if x is not found in 9, instead of
returning nil sassq calls the function z with no arguments. sassq could have

been defined by:

(defun sasSq (xy z)
(or (assg x y)
(apply z nil)))

maknum " SUBR 1 arg

(maknum x) returns a positive fixnum which is unique to the object x; that is,
(maknum x) and (maknum y) are numerically equal if and only if (eq x y).
This can be used in hashing.

In the pdp-10 implementations, maknum returns the memory address of its
argument. In the Multics implementation, an internal hash table is employed.

Note that unlike sxhash, maknum will not return the same value on an expression
which has been printed out and read back in again.

munkam SUBR 1 arg

munkam is the opposite of maknum. Given a number, it returns the object which
was given to maknum to get that number. It is inadvisable to apply munkam to a
number which did not come from maknum. :

July 27,1978 ' 32-3.4. " Page2-29

Maclisp Reference Manual

3.6 Sorting

Several functions are provided for sorting arrays and lists. These functions use
algorithms which always terminate no matter what sorting predicate is used, provided
only that the predicate always terminates. The array sort is not necessarily stable, that
is equal items may not stay in their original order. However the list sort is stable.

After sorting, the argument (be it list or array) is rearranged internally so as to be
completely ordered. In the case of an array argument, this is accomplished by permuting
the elements of the array, while in the list case, the list is reordered by rplacd’s in the
same manner as nreverse. Thus if the argument should not be clobbered, the user must
sort a copy of the argument, obtainable by fillarray or append, as appropriate.

Should the comparison predicate cause an error, such as a wrong type argument
error, the state of the list or array being sorted is undefined. However, if the error is
corrected the sort will, of course, proceed correctly.

Both sort and sortcar handle the case in which their second argument is the
function alphalessp in a more efficient manner than usual. This efficiency is primarily
due to elimination of argument checks at comparison time.

sort SUBR 2 args

The first argument to sort is an array (or list), the second a predicate of two
arguments. Note that a "number array” cannot be sorted. The predicate must be
applicable to all the objects in the array or list. The predicate should take two

. arguments, and return non-nil if and only if the first argument is strictly less
than the second (in some appropriate sense).

The sort function proceeds to sort the contents of the array or list under the
ordering imposed by the predicate, and returns the array or list modified into
sorted order, ie. its modified first argument. Note that since sorting requires
many comparisons, and thus many calls to the predicate, sorting will be much
faster if the predicate is a compiled function rather than iriterpreted.

Page 2-30 ’ 82-3.5 | July 27,1978

0 Manipulating List Structure

Example:

(defun mostcar (x)
(cond ((atom x) x)
((mostcar (car x)))))

(sort “fooarray
(function (lambda (x y)
(alphalessp (mostcar x) (mostcar y)))))

If fooarray contained these items before the sort:

(Tokens (The lion sleeps tonight))
(Carpenters (Close to you))
((Rolling Stones) (Brown sugar))
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))

then after the sort fooarray would cbntain:-

O ((Beach Boys) (I get around)) .
(Beatles (I want to hold your hand))
(Carpenters (Close to you)) '
((Ro1ling Stones) (Brown sugar))
(Tokens (The lion sleeps tonight))

sortcar SUBR 2 args
sortcar is exactly like sort, but the items in the array or list being sorted

should all be non-atomic. sortcar takes the car of each item before handing two .
items to the predicate. Thus sortcar is to sort as mapcar is to map11ist.

July 27, 1978 3235 Page 2-31

Maclisp Reference Manual

3.6 Hunks

This section applies only to the pdpl0 implementation.

Hunks are a generalization of conses, useful in constructing more efficient data
structures. A hunk is like a cons but it has more components; hunks come in several
convenient sizes. The advantage of an n-element hunk over an n-element list is that the
hunk occupies less space (half as much if n is a power of 2). The elements of a hunk
can be referenced more efficiently than the elements of a list, since the compiler knows the
relative locations of the components and addresses them directly.

The advantage of lists over hunks is flexibility; lists can be any length, can vary in
length, can be altered by rplacd, and can be manipulated with a library of useful
searching, sorting, and combining operations, previously described in this chapter.

Another feature of hunks is that at times one may treat a hunk as a cons, ignore the
extra components. This allows the construction of list structure which has extra "frobs”
stuck on at certain points. The atom function does not consider hunks to be atomic; it
returns nil if given a hunk.

print represents hunks using an extended form of dot-notation; read however does
not yet understand this notation. See the writeup on print.
hunk LSUBR 0 or more args
hunk takes any number of arguments, and returns a hunk whose components are
the arguments. The first argument is the car, and the last is the cdr; that is, the
~arguments are in the order 1, 2, 3, .., N-, 0. This is the same order as print

and makhu.nk use.

The maximum size of a hunk is 128 components This may vary from -
implementation to implementation.

With no arguments, hunk returns nil. With one or two arguments, hunk returns
a cons.

Page 292 - 8236 | | July 27, 1978

O

Manipulating List Structure

cxr SUB'R 2 args

(cxr n k) returns the n’th component of the hunk k. car of a hunk returns the
Ist component, and cdr of a hunk returns the Oth component.

rplacx SUBR 3 args

(rplacx n k z) replaces the n'th component of the hunk % with z. The value of
rplacx is its (modified) second argument. rplaca of a hunk replaces its Ist
component, and rplacd of a hunk replaces its Oth component..

makhunk SUBR 1 arg

(makhunk n), where 7 is a fixnum, creates and returns an n-element hunk, filled
with nils. (makhunk /), where ! is a list, creates and returns a hunk of the
appropriate length, initialized from I. This is like (apply “hunk !).

Like hunk, makhunk will return nil or a cons if ydu ask for a hunk of 0, 1, or 2
elements. ' ‘

hunksize SUBR 1 arg
hunksize returns the number of components in its argument. hunksize of ni1l
is 0 and hunksize of a cons is 2. :

hunkp VARIABLE
If the value of hunkp is nil, the functions print, equal, and purcopy treat
hunks as conses, as most other system functions do. The extra elements are simply

ignored. If the value of hunkp is non-nil, which is the default, these three
functions deal with all the elements. sxhash always deals with all the elements.

July 27, 1978 82-3.6 . Page2-33

Page 2-34

Maclisp Reference Manual

July 27, 1978

Flow of Control

4. 'Floﬁ of Control

Maclisp provides a variety of structures for flow of control.

Functional application is the basic method for construction of programs. All
operations are written as the application of a function to arguments. Maclisp programs
are often written as a large collection of small functions which implement simple -
operations. Some of the functions work by calling others of the functions, thus defining
some operations in terms of others. .

Recursion exists when a function calls itself. This is analogous to mathematical
induction. :

Iteration is a control structure present in most languages. It is similar to recursion
but sometimes less useful and sometimes more useful. Maclisp contains a generalized

- iteration facility.- The iteration facility also permits those who like "gotos” to use them.

Conditionals allow control to branch depending on the value of a predicate. and and
or are basically one-arm conditionals, whﬂe cond is a generalized multi-armed
conditional.

Nonlocal exits are similar to a return, except that the return is from several levels of
function calling rather than just one, and is determined at run time. Thesé are mostly
used for applications such as escaping from the middle of a function when it is
discovered that the algorithm is not applicable.

Errors are a type of non-local exit used by the Lisp interpreter when it discovers a
condition that it does not like. Errors have the additional feature of correctability, which
allows a user-specified function (most often a break loop), to get a chance to come in and
correct the error or at least inspect what was happening and determine what caused it,
before the nonlocal exit occurs. This is explained in detail on part 3.4.

" Maclisp does not directly provide "hairy control structure” such as multiple processes,
backtracking, or continuations.

July 27, 1978 g82-4. Page 2-35'

- 4.1

and

or

Maclisp Reference Manual
Conditionals

FSUBR

(and forml form2...) evaluates the forms one at a time, from left to right. If

any form evaluates to nil, and immediately returns nil without evaluating the

remaining forms. If all the forms evaluate non-nil, and returns the value of the

last one. and can be used both for logical operations, where ni1 stands for False
and t stands for True, and as a conditional expression. -

Examples:
(and x y)

(and (setq temp (assq x y))
(rplacd temp 2z))

(and (null. (errset (something)))
(princ "There was an error."))

Note: (and) => t, which is the identity for this operation.

FSUBR

(or forml form2...) evaluates the forms one by one from left to right. If a form
evaluates to nil, or proceeds to evaluate the next form. If there are no more
forms, or returns nil. But if a form evaluates non-nil, or immediately returns

~ that value without evaluating any remaining forms. or can be used both for

cond

logical operations, where nil stands for False and t for True, and as a
conditional expression.

Note: (or) => ni}l, the identity for this operation.

FSUBR

The cond special form consists of the word cond followed by several clauses.
Each clause consists of a predicate followed by zero or more forms. Sometimes the
predicate is called the antecedent and the forms are called the consequents.

Page 2-36 | A g-41 - July 27, 1978

C

Fiow of Control

(cond (antecedent consequent consequent. . .)
(antecedent ...)

-)

The idea is that each clause represents a case which is selected if its predicate is
satisfied and the predicates of all preceding clauses are not satisfied. When a
case is selected, its consequent forms are evaluated.

cond processes its clauses in order from left to right. First the predicate of the
current clause is evaluated. - If the result is nil, cond advances to the next
clause. Otherwise, the cdr of the clause is treated as a list of forms, or
consequents, which are evaluated in order from left to right. After evaluating the
consequents, cond returns without inspecting any remaining clauses. The value -
of the cond special form is the value of the last consequent evaluated, or the value
of the antecedent if there were no consequents in the clause. If cond runs out of
clauses, that is, if every antecedent is nil, that is, if no case is selected, the value
of the condis nil.

Example:
(cond ((zerop x) ;First clause:
(+y 3)) ; (zerop x) is antecedent.
; (+y 3) is consequent.
((null y) ;A clause with 2 consequents:
(setq x 4) ; this
(cons x z)) ; and this. ;
{(2) ;A'clause with no consequents:
; the antecedent is just z.
) ;This is the end of the cond.

This is like the traditional Lisp 15 cond except that it is not necessary to have
exactly one consequent in each clause, and it is permissible to run out of clauses.

July 27,1978 g2-4.1 ~ Page2%7

Maclisp Reference Manual

4.2 Iteration

prog ' FSUBR

- prog is the "program” special form. It provides temporary variables, sequential
evaluation’ of statements, and the ability to do "gotos.” A prog looks something
like:

(prog (varl var2...)
tagl
statementl]
statement2 -
tag2
statement3

)

varl, var2, .. are temporary variables. When the prog is entered the values of -
these variables are saved. When the prog is exited they are restored. The
variables are initialized to ni1 when the prog is entered, thus they are said to be
"bound to nil1" by the prog. However, variables which have been declared fixnum

or flonum will be initialized to 0 or 0.0 instead, but only in compiled programs.
You should be careful about relying on the initial value of prog-variables.

The part of a prog after the temporary variable list is the body. An item in the
body may be an atomic symbol or a number, whlch is a tag, or a non-atomxc form,
which is a statement.

prog, after binding the temporary variables, processes its body sequentially. tags
are skipped over; statements are evaluated but the values are ignored. If the end
of the body is reached, prog returns nil. If (return x) is evaluated, prog
stops processing its body and returns the value x. If (go teg) is evaluated, prog
jumps to the part of the body labelled with the tag. The argument to go is not
evaluated unless it is non-atomic.

It should be noted that the Maclisp prog is an extension of the Lisp L5 prog, in
that go’s and return’s may occur in more places than Lisp 15 allowed. However,
the Lisp compilers implemented on ITS, Mutltics, and the DECsystem 10 for
Maclisp require that go’s and return’s be lexically within the scope of the prog.
This makes a function which does not contain a prog, but which does contain a go
or return uncompilable.

- Page 2-38 ‘ 82-4.2 - July 27,1978

- Flow of Control

See also the do special form, which uses a body similar to prog. The do, catch,
and. throw special forms are included in Maclisp as an attempt to encourage
goto-less programming style, which leads to more readable, more easily maintained
code. The programmer is recommended to use these functions instead of prog
wherever reasonable.

Example:
(prog (x y z) ;x, y, zare prog variables - temporaries.
(setq y (car w) z (cdr w)) ;w is a free variable.
loop

(cond ((null y) (return x))
((null z) (go err)))
rejoin : ,
(setq x (cons (cons (car y) (car z))
‘ x))
(setq y (cdr y)
z (cdr z))
(go Toop)
err
(break are-you-sure? t)

0 (setq z y)

(go rejoin))

do FSUBR

The do special form provides a generalized "do loop” facility, with an arbitrary

- number of "index variables” whose values are saved when the do is entered and
restored when it is left, i.e. they are bound by the do. The index variables are
used in the iteration performed by do. At the beginning they are initialized to
specified values, and then at the end of each trip around the loop the values of the
index variables are changed according to specified rules. do allows the
programmer to specify a predicate which determines when the iteration will
terminate. The value to be returned as the result of the form may optionally be
specified.

do comes in two varieties.

C July 27, 1978 3242 | Page 239

Maclisp Reference Manual

The newer var‘iéty of do looks like:

(do ((var init repeat)...)
(end-test exit-form...)
body...)

The first item in the form is a list of zero or more index variable specifiers. Each
index variable specifier is a list of the name of a variable var, an initial value init,
which defaults to ni1 (or possibly zero, as mentioned under prog) if it is omitted,
and a repeat value repeat. If repeat is omitted, the var is not changed between
loops. :

All assignment to the index variables is done in parallel. At the beginning of the
first iteration, all the inits are evaluated, then the vars are saved, then the vars
are setqged to the values of the inits. To put it another way, the vars are

- Tambda-bound to the values of the inits. Note that the inits are evaluated before
the vars are bound. At the beginning of each succeeding iteration those vars that
have repeats get setq'ed to the values of their respective repeats. Note that all
the repeats are evaluated before any of the vars is changed.

The second element of the do-form is a list of an end testing predicate end-test
and zero or more forms, the exit-forms. At the beginning. of each iteration, after
processing of the repeats, the end-test is evaluated. If the result is nil, execution
proceeds with the body of the do. If the resuit is not nil, the exit-forms are
evaluated from left to right and then do returns. The value of the do is the
value of the last exit-form, or nil if there were no exit-forms. Note that the
second element of the do-form resembles a cond clause. -

If the second element of the form is nil, there is no end-test nor exit-forms, and
the body of the do is executed only once. In this type of do it is an error to have
repeats. This type of do is a "prog with initial values.”

If the second element of the form is the S-expression (ni1), there is no end-test or
exit-forms, and the body of the do is executed over and over. This is a “do
forever.” The infinite loop can be terminated by use of return or throw.

The remainder of the do-form constitutes a prog-body. When the end of the body

is reached, the next iteration of the do begins. If return is used, do returns the
~ indicated value and no more iterations occur.

Page 2-40 $2-4.2 July 27,1978

O " Flow of Control

The older variety of do is:
{(do wvar init repeat end-test body. ..)

The first time through the loop var gets the value of init; the remaining times
through the loop it gets the value of repeat, which is re-evaluated each time. Note
that init is evaluated before the value of var is saved. After var is set, end-test is
evaluated. If it is non-ni1, the do finishes and returns nil. If the end-test is
nil, the body of the loop is executed. The body is like a prog body. go may be
used. If return is used, its argument is the value of the do. If the end of the
prog body is reached, another loop begins.

Examples of the older variety of do:

(setq n (cadr (arraydims x)))
(do i 0 (1+ i) (= i n)
(store (x i) 0)) ;zeroes out the array x

(do zz x (cdr zz) (or (null zz) (zerop (f (car 2z)))))
; this applies f to each element of x
(“m ; continuously until f returns zero.

Examples of the new form of do:

(do ((n (cadr (arraydims x)))
(10 (1+ 1)))
((=in)
(store (x 1) 0))
ithis is like the example above,
;except n is local to the do

(do ((x) (¥) (2)) (ni1) body)
is like
(prog (x y z) body)

except that when it runs off the end of the body, do loops but prog returns ni1.
On the other hand, ‘

(do ((x) (y) (2)) nil body)

is identical to the prog above (it does not loop.)

July 27, 1978 _ o 32-42 ' Page 2-41

go

Maclisp Reference Manual

(do ((x y (f x))) ((p x)) body)

is like

(do x y (f x) (p x) body)
The construction

{(do ((x e (cdr x)) (oldx x x)) ((null x)) body)
exploits parallel assignment to‘ index variables.' On the first
iteration, the value of oldx is whatever value x had before the do was

entered. On succeeding iterations, o1dx contains the value that X had on the
prevnous iteration. :

~ In either form of do, the body may contain no forms at all. Very often an iterative

algorithm can be most clearly expressed entirely in the repeats and exit-forms of a
new-style do, and the body is empty.

(do ((x x (cdr x))

(y y (cdr y))
(z nil (cons (f x y) z))) ;exploits parallel

((or (null¥ x) (null y)) ; assignment.
(nreverse z)) stypical use of nreverse.
) ;no do-body required.

is like (maplist 7f x y).

FSUBR

The (go tag) special form is used to do a "go-to” within the body of a do or a
prog. If the tag is an atom, it is not evaluated. Otherwise it is evaluated and
should yield an atom. Then go transfers control to the point in the body labelled
by a tag eq or = to the one given. (Tags may be either atomic symbols or
numbers). If there is no such tag in the body, it is an unseen-go-tag error.

"Computed” go's should be avoided in compiled code, or altogether.

Page 2-42 . 82-4.2 July 27,1978

0 Flow of Control

Example:

(prog (x y 2)
(setq x some frob)
Toop
do something : ’
(and some predicate (go loop)) ;regular go
do something more
(go (cond ((minusp x) “loop) ;"computed go”
(t “endtag)))
endtag
(return 2))

return SUBR 1 arg

return is used to return from a prog or a do. The value of return’s argument
is returned by prog or do as its value. In addition, break recognizes the typed-
in S-expression (return value) specially. If this form is typed at a break,
(E» value will be evaluated and returned as the value of break. If not at the top
" level of a form typed at a break, and not inside a prog or do, return will cause
a fail-act error. '
Example:

(do ({x x (cdr x))
(n 0 (xn 2)))
((null x) n)
(cond ((atom (car x))
(setg n (1+ n)))
((memq (caar x) “(sys boom bleah))
(return n))))

C

July 27,1978 - 82-4.2 Page 2-43

Maclisp Reference Manual
4.3 Non-local Exits

. catch ' FSUBR

catch is the Maclisp function for doing structured non-local exits. (catch x)
evaluates x and returns its value, except that if during the evaluation of x
(throw y) should be evaluated, catch immediately returns 9 without further
evaluating x.

catch may also be used with a second argument, not evaluated, which is used as
a tag to distinguish between nested catches. (catch x b) will catch a (throw y

b) but not a (throw y z). throw with only one argument always throws to the
innermost catch. catch with only one argument catches any throw. It is an

error if throw is done when there is no suitable catch.

Example:

‘(catch'(mapcar (function (lambda (x)
(cond ({minusp x)
(throw x negative))
(t (f x)))))
y)
negative)

which returns a list of f of each element of y if y is all positive,'otherwise the first
negative member of y. ’

The user of catch and throw is advised to stick to the 2 argument versions,

.~ which are no less efficient, and tend to reduce the likelihood of bugs. The one
argument versions exist primarily as an easy way to fix old Lisp programs which
use errset and err for non-local exits. - This latter practice is rather confusing,
because err and errset are supposed to be used for error handling, not general
program control.. . '

The catch-tag break is used by the break function.

Page 344 ' 32-43 July 27, 1978

Flow of Control

throw FSUBR
throw is used with catch as a structured non-local exit mechanism.
~ (throw x) evaluates x and throws the value back to the most recent catch.

(throw x tag) throws the value of x back to the most recent catch labelled with
tag or unlabelled. catch'es with tags not eq.to tag are skipped over. x is
evaluated but tag is not. ,

See the description of catch for further details.

m July 27, 1978 82-4.3 A Page 2-15

Maclisp Reference Manual " | 0

4.4 Causing and Controlling Errors

See the complete description of the Maclisp error system (part 34) for more
information about how these functions work. '

error LSUBR 0 to 3 args

- This is a function which allows user functions to signal their own errors using
the Maclisp error system.

(error) is the same as (err).

(error message) signals a simple error; no datum is printed and no user
interrupt is signalled. The error message typed out is message. -

(error message datum) signals an error with message as the message to be
typed out and datum as the Lisp object to be printed in the error message. No
user interrupt is signalled.

(error message datum uint-chn) signals an error but first signals a user . @
interrupt on channel uint-chn, provided that there is such a channel, and it has a
non-nil service function, and the special conditions concerning errset (see page
3-16) are satisfied. uint-chn is the name of the user-interrupt channel to be used
(an atomic symbol); see part 3.4.2. If the service function returns an atom, error
goes ahead and signals a regular error. If the service function returns a list,
error returns as its value the car of that list. In this case it was a "correctable”
~error. This is the only case in which error will return; in all other cases oontrol
is thrown back to top level, or to the nearest enclosing errset

errset ' FSUBR

The special form (errset form flag) is used to trap an expected error. errset

evaluates the form. If an error occurs during the evaluation of the form, the error
is prevented from escaping from inside the errset and errset returns nil. If

no errors occur, a list of one element, the result of the evaluation, is returned. The
result is listified so that there will no ambiguity if it is nil. errset may also be

made to return any arbitrary value by use of the err function.

The flag is optional. If present, it is evaluated before the form. If it is ni1, no
error message will be printed if an error occurs during the evaluation of the form.
If it is not nil, or if it is omitted, any error messages generated will be printed.

Page 2-46 32-4.4 July 27, 1978

m _ Flow of Control

Examples:
If you are not sure x is a number: |

(errset (setq x (addl x)))
This example may not work in compiled code if the compiler chooses to open-code
the addl rather than calling the addl subroutine. In general, one must be
extremely foolhardy to depend on error checking in compiled code.
To suppress the error message if the value of a is not an atomic symbot:

(errset (set a b) nil)

" To do the same but generate one’s own message:

{or (errset (set a b) nil)
(error “(not a variable) a))

C\ err - FSUBR
P

(err) causes an error which is handled the same as a Lisp error except that there
is no preliminary user interrupt, and no message is typed out.

(err x) is like (err) except that if control returns to an errset, the value of
the errset will be the result of evaluating x, instead of nil.

(err x ni'l) is the same as (err x).

(err x t) is like (err x) except that x is not evaluated until just before the
- errset returns it. That is, x is evaluated after unwinding the pdl and restoring
the bindings.

Note: some people use err and errset where catch and throw are indicated.
This is a very poor programming practice. See writeups of catch and throw for
details. '

C

July 27,1978 82-4.4 - Page 2-47

Page 2-48

Maclisp Reference Manual |

82-4.4

C

Atomic Symbols

b. Atomic Symbols

Bb.1 The Value Cell

Each atomic symbol has associated with it a value cell, which is a piece of storage -
that can refer to one Lisp object. This object is called the symbol’s value, since it is what -
is returned if the symbol is evaluated. The binding of atomic symbols to values allows
them to be used in programming the way "variables” are used in other languages.

The value cell can also be empty, in which case the symbol has no value and is said
to be unbound or undefined. This is the initial state of a newly-created atomic symbol.

_ Attempting to evaluate an unbound symbol causes an error to be signalled.

An object can be placed into a symbol’s value cell by lambda-binding or by -
assignment. (See page I-11) The difference is in how closely the value-changing is
associated with control structure and in whether it is considered a side-effect.

setq FSUBR

The setq special form is used to assign values to variables (atomic symbols.) setq
processes the elements of its form in pairs, sequentially from left to right. The
first member of each pair is a variable, the second is a form which evaluates to a
value. The form is evaluated, but the variable is not. The value-binding of the
variable is made to be the value specified. You must not setq the special atomic-
symbol constants t and nil. The value returned by setq is the last value
assigned, i.e. the result of the evaluation of the last element of the setq-form.

Example: (setq x (+ 1 2 3) y (cons x nil))
This returns (6) and gives x a value of 6 and y a value of (6).
Note that the first assignment is completed before the second vassignmem is

started, resulting in the second use of x getting the value assigned in the first
pair of the setq.

July 27,1978 82-5. Page 2-49

Maclisp Reference Ma;nuall

set " SUBR 2 args

set is like setq except that the first argument is evaluated; also set only takes
one pair of arguments. The first argument must evaluate to an atomic symbol,
whose value is changed to the value of the second argument. set returns the

value of its second argument. Example:

(set (cond ((predicate) “atoml) (t ’atomZ))
' “stba)

evaluates to stba and gives either atoml or atom2 a value of stba.
set could have been defined by: .

(defun set (x y)
(eval (1ist “setq x (1ist “quote y))))

Alternatively, setq could have been defined by:

‘(defun setq fexpr (x)
- ((lambda (var val rest)
(set var val)
(cond ((null rest) val)
((apply (function setg) rest)))) ;if more, recurse
(car x)
{eval (cadr x))
(cddr x)))

symeval SUBR 1 arg

(symeval a) returns the value 6f a, which must be an atomic symbol. The.

compiler produces highly optimal code for symeval, making it much better than
eval when the value of a symbol needs to be taken and the particular symbol to be

used varies.

Page 2-50 82-5.1 July 27,1978

O

Atomic Symbols

boundp : SUBR'I arg
The argument to boundp must be an atomic symbol. If it has a value, t is

returned. Otherwise nil is returned.

makunbound SUBR 1 arg

The argument to makunbound must be an atomic symbol. Its value is removed, i.e.
it becomes unbound. ‘

Example:
“(setg a l)
as=>1
(makunbound “a)
a => unbnd-vrbl error.

.makunbound returns its argument.

July 27, 1978 22-5.1 Page 2-51

Maclisp Reference Manual
6.2 The Property List

A property-list is a list with an even number of elements. Each pair of elements
constitutes a property; the first element is called the "indicator™ and the second is called
the “value" or, loosely, the "property.” The indicator is generally an atomic symbol which -
serves as the name of the property. The value is any Lisp object.

For example, one type of functional property uses the atom expr as its lndicator In
the case of an expr-property, the value is a list begmmng with 1ambda.

An example of a property list with two properties on it is:
(expr (lambda (x) (plus 14 x)) foobar t)

The first property has indicator expr and value (lambda (x) (plus 14 x)), the
second property has indicator foobar and value t.

Each atomic symbol has associated with it a property-list, which can be retrieved with
the plist function. It is also possible to have "disembodied” property lists which are not
associated with any symbol. These keep the property list on their cdr, so the form of a
disembodied property list is (<anything> . plist). The way to create a disembodied
property list is (ncons nil). Atomic symbols also (usually) keep their property list on
their cdr, but you. aren’t allowed to know that. Use the plist function to get the
property list of a symbol.

Property lists are useful for associating "attributes” with symbols. -Maclisp uses
properties to remember function definitions. The compiler uses properties internally to
keep track of some of what it knows about the program it is compiling.

The user familiar with Lisp 15 will want to note that the property list "flags™ which
are allowed on Lisp 15 property lists do not exist in Maclisp. However, the same effect
can be achieved by using properties with a value of t or nil.

Some property names are used internally by Maclisp, and should therefore be
avoided in user code. These include args, array, auvtoload, expr, fexpr,
fsubr, 1subr, macro, pname, sublis, subr, value, used by the Lisp system
proper; arith, xarray, atomindex, xexpr, xfexpr, xlexpr, numfun,
number, numvar, ohome, special, sym, used by the compiler; grindfn,
grindmacro, used by the grinder. '

" Page 2-52 | 82-5.2 July 27,1978

w : Atomic Symbols

get SUBR 2 args

(get x y) gets x's y-property. x can be an atomic symbol or a disembodied
property list. The value of x's y-property is returned, unless x has no y-property
in which case ni1 is returned. It is not an error for x to be a number, but n11
will always be returned since numbers do not have property lists. -

. Example: '

(get “foo “bar)

=> nil sinitially foo has no bar property
(putprop “foo “zoo “bar) ;give foo a bar property

=> zoo o
(get “foo “bar) jretrieve that property

=) 200 .
(plist “foo) - ;look at foo's property list

=> (bar zoo ...other properties...)
get could have been defined by:

(defun get (x y)
‘ZD‘ ‘ (do ((z (cond ((numberp x) nil)
((atom x) (plist x))
(t (cdr x)))
(cddr 2z)))
((or (null z) (eq y (car 2z)))
(cadr z))))

This relies on the fact that the car and the cdr of ni1 are ni1, and therefore
(cadr z)isnilif zisnil.

getl SUBR 2 args

(getl x y) is like get except that y is a list of indicators rather than just a
single indicator. get) searches x’s property list until a property whose indicator
appears in the list y is found. ‘

The portion of x’s property list beginning with the first such property is returned.
The car of this is the indicator (property name) and the cadr is the property
value. get] returns ni1 if none of the indicators in y appear on the property list
of x. - ' ‘

C

July 27, 1978 82-5.2 Page 2-53

Maclisp Reference Manual

get1 could have been defined by:

(defun getl (x pl) |
(do. ((q (plist x) (cddr q))) ; scan down P-1ist of x
((or (null q) (memq (car q) pl))
q))) ‘

This definition is simplified and doesn’t take numbers and disembodied property
lists into account. .

putprop ‘ SUBR 3 args

(putprop x y z) gives x a z-property of y and returns §. x may be an atomic
symbol or a disembodied property list. After somebody does (putprop x y 2),
(get x z) will return y. ‘

.

Example:
(putprop “Nixon “not “crook)

If the symbol already has a property with the same name that property is removed -
first. This ensures that get1 will always find the property which was put on most
recently. For instance, if you were to redefine an expr as a subr, and then
redefine it as an expr again, this effect of putprop causes the evaluator to find the
latest definition always.

A lisp deﬁmtlon of the basic putprop without the compllcations of numbers and
disembodied property lists might be:

.(defun putprop (x y z)
{remprop x 2)
- (setplist x (cons z (cons y (plist x))))
y)
defprop FSUBR

defprop is a version of putprop with no argument-evaluation, which is
sometimes more convenient for typing. For instance,

Page 2-54 | 8252 July 27,1978

‘Atomic Symbols

(defprop foo bar oftenwith')

is equivalent to

(putprop “foo “bar “oftenwith)

remprop SUBR 2 args
(remprop x y) removes xs y-property, by splicing it out of x's property list. The

value is nil if x had no y-property. If x did have a y-property, the value is a list
whose car is the property, and whose cdr is part of x's property list, similar to

(cdr (getl x 7(y))).

x may be an atomic symbol or a disembodied property list. Example:
(remprop “foo “expr)

undeﬁnes. the function: foo, assuming it was defined by

(defun foo (x) ...)

plist SUBR 1 arg

(plist x) returns the property list of the atomic symbol x.

setplist SUBR 2 args'
(setplist x /) sets the property list of the atomic symbol x to L. This is to be

used with caution, since in some implementations property lists contain internal
system properties which are essential to the workings of the Lisp system.

| ~ July 27,1978 32-5.2 Page 2-55

Maclisp Reference Manual

5.3 The Print-Name

Each atomic symbol has an associated character string called its “print-name,” or
"pname” for short. This character string is used as the external representation of the
symbol. If the string is typed in, it is read as a reference to the symbol. If the symbol is

to be print’ed, the string is typed out.

See also page 2-83 for some other functions which have to do with pnames.

samepnamep SUBR 2 args

.. The arguments to samepnamep must evaluate to atomic symbols or to character
strings. The result is t if they have the same pname, ni1 otherwise. The pname
of a character string is considered to be the string itself. Examples:

(samepnamep “xyz (maknam “(x y z))) => t

(samepnamep “xyz (maknam “(w x y))) => nil

(samepnamep “x "x") => t

alphalessp SUBR 2 args

(alphalessp x y), where x and y evaluate to atomic symbols or character strings,
returns t if the pname of x occurs earlier in alphabetical order than the pname of
9. The pname of a character string is considered to be the string itself.

Examples: :
(alphalessp “x “x1) => t
(alphales§p 72 7q) => nil
\(alphalessp "x® 7y) => t

Note that the "alphabetical order” used by alphalessp is actually the ASCII
collating sequence. Consequently all upper case letters come before all lower case

letters.

Page 2-56 ' , 22-5.3 : July 27,1978

O

0_ Atomic Symbols

pnget SUBR 2 args
(pnget symbol n) returns the pname of the symbol as a list of fixnums
containing packed n-bit bytes. The legal values of n depend on the
implementation; in the pdp-10 implementation, 6 (SIXBIT) and 7 (ASCII) are
allowed. If this seems obscure, that’s because it is. Example: ’

(pnget “MUMBLERATOR 7) =)
(-311246236550 -351327625542 -270_33)

pnput " SUBR 2 args

This is a sort of inverse of. pnget. (pnput (pnget foo 7) flag) returns a
symbol with the same pname as foo. The symbol is interned if flag is non-ni1l.

July 27,1978 | . 3253 | Page 2-57

Maclisp Reference Manual
5.4 Interning of Symbols

One normally wants to refer to the same (eq) atomic symbol every time the same
pname is typed. Maclisp implements this through what is called the obarray. The
obarray is a hash-table of atomic symbols. These symbols are said to be interned, or
registered in the obarray. Whenever a pname is read in Lisp input, the obarray is
searched for a symbol with the same pname. If one is found, the pname is considered to
refer to that symbol.. If not, a new symbol is created and added to the obarray.

The representation of an obarray is a Lisp array. The first 510. (or thereabouts)
elements of the array contain lists which are buckets of a hash table. The last 128.
elements of the array contain the "character objects,” symbols with l-character pnames.
(These entries contain nil if the corresponding symbol has not yet been interned.) The
character objects are treated specially for efficiency. There are usually one or two unused
array elements between these two areas.

In order to allow for multiple name spaces, Maclisp allows multiple obarrays. An
obarray can be made "current” by binding the symbol obarray to the appropriate array-
. pointer. See page 2-89 for details on how to manipulate obarrays and arrays in general.

It is possible to have a symbol interned on several obarrays at the same time. It is

also possible to have two different (non-eq) symbols with the same pname interned on
different obarrays. Furthermore it is possible to have a symbol which is not interned on
any obarray, which is called an uninterned symbol. These are useful for purely-internal
functions, but can cause difficulty in debugging since they can’t be accessed directly.
Such a symbol can be accessed via some data structure that contains it, set up by the
program that created it.

Normally symbols are never removed from obarrays. It is possible for the user to
explicitly remove a symbol from the current obarray. There is also a feature by which
"truly worthless” symbols may be removed automatically (see page 3-60). :

intern - SUBR 1 arg
(intern x), where x is an atomic symbol, returns the unique atomic symbol which
is "interned on the obarray” and has the same pname as x. If no symbol on the

current obarray has the same pname as x, then intern will place x itself on the
obarray, and return it as the value.

Page 2-58 82-54 July 27, 1978

0‘

remob

 Atomic Symbols

SUBR 1 arg

The argument to remob must be an atomic symbol. It is removed from the current
obarray if it is interned on that obarray. This makes the atomic symbol
inaccessible to any S-expressions that may be read in or loaded in the future.
remob returns nil. ' ‘

copysymbol SUBR 2 args

A subr of two arguments. The first argument must be a symbol, and the second
should be t or nil. The result is a new, uninterned symbol, with the same pname
as the argument. "Uninterned” means that the symbol has not been placed on any
obarray. If the second argument is t, the new symbol will be given the same value
as the original and will have a copy of its property list. Thus the new will start
out with the same value and properties as the old, but if it is setq'ed or
putproped, the value or property of the old will not be changed. If the second
argument is nil, the new symbol has no value and no properties (except possibly
internal system properties.)

gensym LSUBR 0 or 1 args

gensym creates and returns a new atomic symbol, which is not interned on an
obarray (and therefore is not recognized by read.) The atomic symbol’s pname is of
the form prefix number, eg. g0001.. The number is incremented each time.

If gensym is given an argument, a numeric argument is used to set the number.
The pname of an atomic-symbol argument is used to set the prefix. For example:

if (gensym) => g0007

then (gensym “foo) => 0008
(gensym 40) => 0032

and (gensym) => f0033

Note that the number is in decimal and always four digits, and the prefix is
always one character. '

July 27, 1978 32-54 - . Page 2-59

Maclisp Reference Manual
5.5 Defining Atomic Symbols as Functions

Atomic symbols may be used as names for functions. This is done by putting the
actual function (a subr-object or a lambda-expression) on the property list of the atomic
symbol as a “"functional property,” ie. under one of the indicators expr, fexpr,
macre, subr, 1subr, or fsubr.

Array properties (see page 2-89) are also considered to be functional properties, so
an atomic symbol which is the name of an array is also the name of a function, the
accessing function of that array. :

When an atomic symbol which is the name of a function is aWied, the function
which it names is substituted. '
defun - FSUBR

defun is used for defining functions. The general form is:

(defun name type (lambda-variable...)
body...)

However, name and type may be intefi:hanged. type, which is optional, may be
. expr, fexpr, or macro. If it is omitted, expr is assumed. Examples:

(defun addone (x) (1+ x)) ;defines an expr
(defun quot fexpr (x) (car x)) ‘ ;defines a fexpr
(defun fe_xpr quot (x) (car x)) ' ;is the same
(defun zzz ekpr x | ;this is how you
(foo (arg 1)(arg 2))) ; define a lexpr.

The first example above is really just defining a synonym. Another way to do this
is: : . :
(defprop addone 1+ expr)

That ' is, an atomic functional property indicates synonyming. This can be
particularly useful to define a macro by an expr or fexpr, or even by a subr.

The f unctiohs defprop and putprop rhay also be used for defining functions.

Page 2-60 . 82-5.5 July 27, 1978

Atomic Symbols

There is a feature by which, when a file of functions has been compiled and loaded
into the lisp environment, the file may be edited and then only those functions
which were changed may be loaded for interpretive execution. This is done by
compiling with the "E" switch, and then reading in the source file with the
variable defun bound non-nil. Each function will have an expr-hash property
maintained, which contains the sxhash of the interpreted definition of the
function. defun will only redefine the function if this hash-code has changed.
This feature is rather dangerous since reasonable alterations to the function
definition may not change the sxhash and consequently may not take effect.
Because of its general losingness, this feature is only available in the pdp-10
implementation and sometimes not even there.

defun could have been defined by:

(defun defun fexpr (x) ;circular, byt yo'u get the idea
(prog (name type body) .

; first, analyze the form, get arguments..
(cond ((memg (car x) “(expr fexpr macro))
(setq type (car x) '
name (cadr x)
body (cddr x)))
((memg {cadr x) “(expr fexpr macro))
(setqg name (car x)
. type (cadr x)
body (cddr x)))
((setq name (car x)
type “expr
body (cdr x))))

(setq body (cons “lambda body))

; now, check for expr-hash hair.
(cond ((and defun .
(get name “expr-hash)
(= (get name “expr-hash)
(sxhash body)))
) _
; actually make the definition
((putprop name body type)))
(return name))) :

July 27,1978 $2-5.5 . Page 2-61

args

sSysp

Maclisp Reference Manual

" LSUBR 1 or 2 args

(args f) tells you the number ‘of arguments expected by the function f If f

wants n arguments, args returns (nil . »). If f can take from m to n
arguments, args returns (m . n). If fis an fsubr or a-lexpr, expr, or fexpr, the
results are meaningless. '
(args f x), where x is (ni1 . n) or (m . n), sets the number of arguments
desired by the function f. This only works for compiled, non-system functions.
SUBR 1 arg

The sysp predicate takes an atomic symbol as an argument. If the atomic symbol
is the name of a system function (and has not been redefined), sysp returns the
type of function (subr, 1subr, or fsubr). Otherwise sysp returns nil.
Examples:

(sysp “foo) => nil (presumably)

(sysp “car) .=)> subr

(sysp “cond) => fsubr

Page 2-62 - 3255 . July 27,1978

O

Numbers

6. Nuﬁbers

For a description of the various types of numbers used in Maclisp, see part 1.2.

6.1 Number Predicates

Zerop SUBR 1 arg
The zerop predicate returns t if its argument is fixnum zero or flonum zero.
(There is no bignum zero) Otherwise it returns nil. It is an error if the
argument is not a number. If that is possible signp should be used.

plusp SUBR 1 arg
The plusp predicate returns t if its argument is strictly greater than zero, ni1 if
it is zero or negative. It is an error if the argument is not a number.

minusp SUBR 1 arg
The minusp predicate returns t if its argument is a negative number, ni1 if it is
a non-negative number. It is an error if the argument is not a number.

oddp ' SUBR 1 arg
The oddp predicate returns t if its argument is an odd number, otherwise nil.
The argument must be a fixnum or a bignum.

signp FSUBR
The signp predicate is used to test the sign of a number. (signp ¢ x) returns t

if x’s sign satisfies the test ¢, ni1 if it does not. x is evaluated but ¢ is not. The
result is always nil if x is not a number. ¢ can be one of the following:

uly 27, 1978 , ' 22-6. . Page 2-63
y g

Maclisp Reference Manual

1 means x<0
Te " . x40
e " x=0"
n . x#0
ge " x>0
g . x>0

Examples:
(signp le -1) => t
(signp n 0) =>.nil
{(signp g 7(foo . bar)) => nil

haulong SUBR 1 arg

(haulong x) returns the number of significant bits in x. x can be a fixnum or a
bignum. The result is the least integer not less than the base-2 logarithm of
jx}+l.

Examples:
(haulong 0) => 0
(haulong 3) => 2
{haulong -7) => 3
(haulong 12345671234567) => 40.

Page 2-64 , g2-6.1 July 27, 1978

0} , : Numbers

6.2 Comparison

SUBR 2 args

(= x 9) is t if x and y are numerically equal. x and y must be both fixnums or
both flonums. Use equal to compare bignums.

greaterp " LSUBR 2 or more args

greaterp compares its arguments, which must be numbers, from left to right. If
any argument is not greater than the next, greaterp returns nil. But if the
arguments to greaterp are stnctly decreasing, the result is t. Examples:

(greaterp 4 3) =>t

(greaterp 1 1) =) nil

(greaterp 4.0 3.6 -2) => t

(greaterp 4 31 2 0) => nil
‘:D > ‘ SUBR 2 args

(> x 9) is t if x is strictly greater than y, and ni1 otherwise. x and 9 must be
both fixnums or both flonums. :

Tessp LSUBR 2 or more args

lessp compares its arguments, which must be numbers, from left to right. If any
argument is not less than the next, Tessp returns nil. But if the arguments to
lessp are strictly increasing, the result is t. Examples:

(lessp 3 4) => t

(lessp 1 1) => nil
(lessp ~2 3.6 4) => ¢t
(lessp 0 2 1 3 4) => nil

m;

July 27,1978 22-6.2 : Page 2-65

Maclisp Reference Manual

< _ " SUBR 2 args
(< x 9) is tif x is strictly less than y, and ni1 otherwise. ¥ and y must be both
fixnums or both flonums.

max LSUBR 1 or more args
max returns the largest of its arguments, which must be numbers. If any

argument is a flonum, the result will be a ﬂonum Otherwise, it will be a ﬁxnum
or a bignum depending on its magnitude. :

min : LSUBR 1 or more args
min returns the smallest of its arguments, which must be numbers. If any

argument is a flonum, the result will be a flonum. Otherwise, it will be a fixnum
or a bignum depending on its magnitude.

" Page 2-66 : 22-6.2 July 27,1978

Numbers

6.3 Conversion

fix SUBR 1 arg
(fix x) converts x to a fixnum or a bignum depending on its magnitude.

Examples:

(Fix 7.3) => 7
(Fix -1.2) => -2
(fix 104) => 104

ifix : SUBR 1 arg

(ifix x) converts x from a ﬂqn_ukn to a fixnum. ifix will never return a
bignum, unlike fix. This allows it to be efficiently open-coded. This is not the.
same function as IFIX in Fortran; rounding is down rather than towards zero.

It is like ENTIER in Algol.

ifix does not exist in the Multics implementation.

float SUBR 1 arg

(float x) converts x to a flonum. Example:

(float 4) => 4.0
(float 3.27) => 3.27

abs SUBR 1 argA

(abs x) => |x|, the absolute value.‘of the number x. abs could have been defined

by:
(defun abs (x) (cond ({minusp x) (minus x))
(t x))) .
0/ July 27,1978 82-6.3 " Page 267 -

| Maclisp Reference Manual

minus ' "SUBR 1 arg

minus returns the negative of its argument, which can be any kind of number.

Examples:
| .
‘ (minus 1) => -1
(minus -3.6) => 3.6
haipart SUBR 2 args

(haipart x n) extracts n leading or trailing bits from the internal
representation of x. x may be a fixnum or a bignum. n must be a fixnum. The
value is returned as a fixnum or a bignum If-n is positive, the result contains
the n high-order significant bits of |x|. If n is negative, the result contains the
In| low-order bits of |x]. If Inl is bigger than the number of signiﬁwnt bits in
x, lxl is returned. :

Examples:
(haipart 34567 7) => 162

(haipart 34567 -5) => 27

| S | (haipart -34567 -5) => 27

Page 268 a3 - July 2,197

0 o | Numﬁers ‘

6.4 Arithmétic

General Arithmetic
These functions will perform arithmetic on any kind of numbers, and always yield
an exact result, except when used with flonums. (Flonums have limited precision and
range.) Conversions to flonum or bignum representation are done as needed. Flonum
representation will be used if any of the arguments are flonums; otherwise fixnum
representation will be used if the result can fit in fixnum form, or bignum representation
if it cannot.

The two sections after this one describe other arithmetic functions which are more
efficient but less powerful.

plus LSUBR 0 or more args

plus returns the sum of its arguments, which may be any kind of numbers.

(:D difference - LSUBR 1 or more args
difference returns its first argument minus the rest of its arguments. It works
for any kind of numbers.
times ' LSUBR 0 or more args

times returns the product of its arguments. It works for any kind of numbers.

quotient LSUBR 1 or more args'

" quotient returns its first argument divided by the rest of its arguments The
arguments may any kind of number.

Exarhples: .
(quotient 3 2) =>1 ;Tixnum division truncates.

(guotient 3 2.0) => 1.5 ;but flonum division does not.

(quotient 6.0 1.5 2.0) => 2.0

July 27, 1978 | 22-6.4 | Page 2-69

addl

subl

Maclisp Reference Manual

SUBR 1 arg

(addl x) => x+1. x may be any kind of number.

SUBR 1 arg

(subl x) => x-1. x may be any kind of number.

remainder SUBR 2 args

gcd

.expt

xdif

(remainder x 9) => the remainder of the division of x by 3. The sign of the
remainder is the same as the sign of .the dividend. The arguments must be
fixnums or bignums.

SUBR 2 args -
(gcd x 9) => the greatest common divisor of x and 9. The arguments must be
fixnums or bignums.

SUBR 2 args

(expt x z) =

The exponent z may be a bignum if the base x is 0, 1, or -I; otherwise z should be a
fixnum. x may be any kind of number.

As a special feature, expt allows its second argument to be a flonum, in which
case the first argument is converted to a flonum and the exponentiation is
performed in floating point, using logarithms. The result is a flonum in this case.

SUBR 2 args

x*dif is a subr form of difference. It is documented here because some people
use it. There is no reason to use it, since the compiler automatlcally converts
difference into xdif as required.

Page 270 22-6.4 | July 27,1978

Numbers

%xquo SUBR 2 args
*quo is a subr form of quotient. It is documented here because some people use

. it. There is no reason to use it, since the compiler automatically converts
quotient into xquo as required. '

July 27, 1978 32-64 Page 2-71

Maclisp Reference Manual

Fixnum Arithmetic

These functions require their arguments to be fixnums and produce only fixnum

results. If the true result, which would be returned by the more general functions
described previously, is too large to be represented as a fixnum, the result actually
returned will be truncated to an implementation-dependent number of bits, which is 36.
(including the sign) in the Multics and pdp-10 implementations. The compxler produces

highly-optimized code for these operations.

+

LSUBR 0 or more args

+ returns the sum of its arguments. The arguments must be fixnums, and the
result is always a fixnum. Examples:

(+26 -1) =>7
(+ 3) =>3 strivial case
(+) =>0 ;identity element

LSUBR 0 or more args

This is the fixnum-only subtraction function. With one argument, it returns the
number’s negation. With more than one argument it returns the first argument
minus the rest of the arguments.

(-) => 0, the identity element
(- 3) => -3 :
(- 53)=>2
(-26 -1) => -3

etc.

LSUBR 0 or more args
* returns the product of its arguments. Examples:
(x 45 -6) => -120.

(x 3) => 3 strivial case
(x) =>1 ;identity element

Page 2-72 . 82-6.4 . July 27,1978

i
|

1+

W\

Numbers

LSUBR 0 or more args

This is the fixnum-only division function. The arguments must be fixnums and
the result of the division is truncated to an integer and returned as a fixnum.
Note that the name of this function must be typed in as //, since Lisp uses / as an
escape character.

If used with more than one argument, it divides the first argument by the rest of
the arguments. If used with only one argument, it returns the fixnum reciprocal
of that number, which is -1, 0, 1, or undefined depending on whether the number is -
-1, large, 1, or 0. .

(/7) =>1, the identity element.

(/7 20. 5) => 4

(/7 100. 3 2) => 16.

etc.

SUBR 1 arg

(1+ x) => x+1. x must be a fixnum. The result is always a fixnum.

SUBR 1 arg

(1- x) => x-1. x must be a fixnum. The result is always a fixnum.

SUBR 2 args

(\ x y) returns the remainder of x divided by y, with the sign of x. x and 9
must be fixnums. Examples:

(\52)=>1
(\ 65. -9.) => 2
“{\ ~-65. 9.) => -2
SUBR 2 args

This subr of two arguments is like gcd, but only accepts fixnums. This makes it
faster than gcd. .

July 27, 1978 32-6.4 Page 2-73

Maclisp Reference Manual

 SUBR 2 args

~ is the fixnum only exponentiation function. It is somewhat faster than expt,
but requires its arguments to be fixnums, uses fixnum arithmetic, and always
returns a fixnum result, which will be incorrect if the true result is too large to be
represented as a fixnum.

Page 2-74 82-6.4 | July 27,1978

-

0 : | Numbefs

Flonum Arithmetic

These functions require their arguments to be flonums, and always produce flonum
_ results. If the true result is too large or too small to be represented as a flonum, an
arithmetic underflow or overflow error will occur. (In the pdp-10 implementation these
errors are not detected in compiled programs.) The compiler produces highly-optimized
code for these operations. ' ‘

+$ LSUBR 0 or more args
+8$ returns the sum of its arguments.
Examples:

(+8 4.1 3.14) => 7.24
(+¢ 2.01.5 -3.6) =>-0.1

| (+8 2.6) => 2.6 strivial case
3 (+8) =>10.0 ;identity element
0 -8 LSUBR 0 or more args

This is the flonum-only subtraction function. When used with only one argument,
it returns the number’s negation. Otherwise, it returns the first argument minus
the rest of the arguments.

(-8$) => 0.0, the identity element
(-$ x) => the negation of x.
(-$ 6.0 2.5)=>4.5

(-%$ 2.0 1.5 -3.6) => 3.1

etc.

3) LSUBR 0 or more args
%8 returns the product of its arguments. Examples:‘

(x$ 3.0 2.0 4.0) => 24.0
(x$ 6.1) => 6.1
.0

1 strivial case
(x8) => 1

;identity element

July 27, 1978 | 3264 " Page 275

/8

1+8

e

Page 2-76 , | . 32-6.4 July 27,1978

Maclisp Reference Manual A | 0

LSUBR 0 or more args

This is the flonum-only division function. Note that the name of this function
must be typed in as //$, since Lisp uses / as an escape character. This function
computes the reciprocal if given only one argument. If given more than one
argument, it divides the first by the rest.

(//8) => 1.0, the identity element
(//% 5.0)=>0.2

(//8% 6.28 3.14) => 2.0

(//% 100.0 3.0 2.0) => 16.5
etc.

SUBR 1 arg

(1+8 x) => x+1.0. x must be a flonum. The result is always a flonum.

SUBR 1 arg

(1-8$ x) => x-1.0. x must be a flonum. The result is always a flonum. @

SUBR 2 args

~$ is the flonum-only exponentiation function. The first argument must be a
flonum, the second must be a fixnum (repeat, a fixnum), and the result is a flonum.
To raise a flonum to a flonum power, use (expt x y) or (exp (»8 y (log

x))).

Numbers
6.6 Exponentiation and Logarithm Functions

sqrt SUBR 1 arg

(sart x) => a flonum which is the square root of the number x. This is more
accurate than (expt x 0.5). The fbllowing code, which is due to Gosper, should

~ be written if the square root of a bignum is desired. It is essentially a Newton
iteration, with appropriate precautions for integer truncation.

(defun bsqrt (n)
(bsgrtl (abs n) _
(expt 2 (// (1+ (haulong n)) 2))))

(defun bsqrtl (n guess)
((1ambda (next)
(cond ((lessp next guess)
(bsgqrtl n next))
(t guess)))
(quotient (plus guess (quotient n guess))

2)))
exp ' SUBR 1 arg
(exp x) => &
Tog SUBR 1 arg

(log x) => the natural logarithm of x.

July 27,1978 82-6.5 Page 2-77

Maclisp Reference Manual

6.6 Trigonometric Functions

sin SUBR 1 arg
(sin x) gives the trigonometric sine of x. x is in radians. x may be a fixnum or
a flonum. ”

cos - SUBR 1 arg

(cos. x) returns the cosine of x. x is in radians. x may be a fixnum or a flonum.

atah ' SUBR 2 args

(atan x y) returns the arctangent of x/y, in radians. x and y may be fixnums or
flonums. y may be 0 as long as x is not also 0.

Page 2-78 _ 82-6.6 July 27,1978

‘ol

C

Numbers

6.7 Random Functions

random LSUBR 0 to 2 args

(random) returns a random fixnum.
(random nil) restarts the random sequence at its beginning.

(random x), where x is a fixnum, returns a random fixnum between 0 and x-1
inclusive. A useful function is: ' :

(defun frandom () ‘
(//% (float (random 10000.)) 10000.0)))

which returns a random flonum between 0.0 and 1.0.

(random nl n2) sets the random number seed from the pair of integers nl, n2.

zunderfliow SWITCH

~ If an intermediate or final flonum result in the interpretive arithmetic functions

(times, %8, expt, etc) is too small in magnitude to be represented by the machine,
corrective action will be taken according to the zunderf1ow switch.

If the value of zunderflow is non-nil, the offending result will be set to 0.0 |
and computation will proceed. If the value of zunderflow is ni1, an error will
be signalled. nil is the initial value.

In the pdp-I0 implementation compiled code is not affected by zunderflow if the
arithmetic in question was open-coded by the compiler. Instead, computation
proceeds using a result with a binary exponent 256 higher than the correct

exponent. - In the Multics implementation zunderflow works the same for

compiled code as for interpreted code. '

~ See (sstatus divov), which controls division by zero (part 3.7).

July 27, 1978 . 82-6.7 Page 2-79

Maclisp Reference Manual
6.8 Logical Operations on Numbers.

These functions may be used freely for bit manipulation; the compiler recognizes
them and produces efficient code.

boole LSUBR 3 or more args
(boole k x y) computes a bit by bit Boolean function of the fixnums x and 9y

under the control of k. k must be a fixnum between 0 and 17 (octal). If the binary
representation of k is abcd, then the truth table for the Boolean operation is:

y
Lo 1
0] a ¢
VR
i1l b d

If boole has more than three arguments, it goes from left to right; thus
(boole k x y z) = (boole k (boole k x y) 2)

U

The most common values for k are 1 (and), 7 (or), 6 (xor). You can get the
complement, or logical negation, of x by (boole 6 x -1).

The following macros are often convenient:

(defun logand macro (x) -
(subst (cdr x) “f “(boole 1 . f)))

(defun logor macro (x) , .
(subst (cdr x) 7f “(boole 7 . f))) . _ ‘

-(defun logxor macro (x) } |
(subst (cdr x) 7f “(boole 6 . f))) :

Page 2-80 22-6.8 o July 27,1978 0) |

Numbers

Alternatively, these could be defined with macrodef (see part 6.2):
(macrodef logand x (boole 1 . x))
(macrodef logor x (boole 7 . X))

(macrodef logxor x (boole 6 . x))

Ish SUBR 2 args’

(1sh x y), where x and y are fixnums, returns x shifted left bits if y is positive,
or x shifted right |y| bits if y is negative. Zero-bits are shifted in to fill unused
positions. The result is undefined if |y] > 36. The number 36 is
implementation dependent, but this is the number used in both the Multics and E

pdp-10 implementations. Examples:

(1sh 4 1) => 10 (octal)
(1sh 14 -2) => 3
(I1sh -1 1) => -2

rot ' SUBR 2 args

(rot x y) returns as a fixnum the 36-bit representation of x, rotated left y bits if
y is positive, or rotated right |y| bits if y is negative. x and y must be fixnums.
The results are undefined if |y| > 36. As with 1sh, the number 36 depends on
the implementation. Examples:

(rot 1 2) => 4

(rot -1 7) => -1

(rot 601234 36.) => 601234
(rot. 1 -2) => 200000000000
(rot -6 6) => -501

The following feature only exists in the pdp-10 implementatioﬁ.
The internal representation of flonums may be hacked using these functions. 1sh
or rot applied to a flonum operates on the internal representation of the flonum

and returns a fixnum result. For example, (1sh 0.5 0) => 200400000000
(octal). The following function also exists: :

0 ~ July 27,1978 | 32-6.8 Page 281

Maclisp Reference Manual

fsc " SUBR 2 args

(fsc x y) performs a FSC instruction on the two numbers x and 9, and returns
the result as a flonum. Consult the pdp-10 processor manual if you want to use
this. '

x and 9 may be fixnums or flonums; fsc just uses the machine representations of
the numbers. If y is greater than 777777 octal, the FSC instruction is omitted and
the possibly-unnormalized flonum with the same machine representation as x is
returned. ’

. Page 2-82 ‘ | 22-6.8 July 27,1978

0 ‘ Character Manipul_ation
g . .

7. Chéracter Manipulation

7.1 Character Objects

An atomic symbol with a one-character pname is often called a character object and
used to represent the ascii character which is its pname. In addition the atomic symbol -
with a zero-length pname represents the ascii null character. Functions which take a
character object as an argument usually also accept a string one character long or a
fixnum equal to the ascii-code value for the character. Character objects are always
interned on the obarray (see page 2-58), so they may be compared with the function eaq.
. ascii SUBR 1 arg
(ascii x), where x is a number, returns the character object for the ascii code x.
(D Examples:

(ascii 101) => A

o (ascii 56) => /.

g'etchar SUBR 2 args
(getchar x n), where x is an atomic symbol and n is a fixnum, returns the n’th

character of x’s pname; n = | selects the leftmost character. The character is
returned as a character object. ni1 is returned if n is out of bounds.

getcharn SUBR 2 args

getcharn is the same as getchar except that the character is returned as a
fixnum instead of a character object.

July 27,1978 N YR 2 | " Page2-83

Maclisp Reference Manual

maknam SUBR 1 arg

maknam takes as its argument a list of characters and returns an uninterned -
atomic symbol whose pname is constructed from the list of characters. The

characters may be represented either as ﬁxnums (ascii codes) or as character -
objects. Example:

_ (maknam “(a b Goyd))'=> ab0d

implode ' SUBR 1 arg

implode is the same as maknam except that the resulting atomic symbol is
interned. It is more efficient than doing (1intern (maknam x)), although it is

less efficient than plain maknam which should be used when interning is not
required. .

readlist SUBR 1 arg

The argument to readlist is a list of characters. The characters may be

represented either as fixnums (ascii codes) or as character objects. The characters @
in the list are assembled into an S-expression as if they had been typed into read

(see part 51) If macro characters are used, any usage in the macro character

function of read, readch, tyi, or tyipeek not explicitly specifying an input

file takes input from readlists’s argument rather than from an I/O device or a

file. This causes macro characters to work as you would expect.

Examples:
(readlist ’(a b c)) => abc
(readlist “(/(pr 15l nt/ /- foo0/)))
=> (print (quote foo)) ;ascii 151 = "i"

Note the use of the slashified special characters left parenthesis, space, quote, right
parenthesis in the argument to readlist.

|
Page 2-84 o 82-7.1 ' ' July 27, 1978 0 \

Character Manipulation -

explode SUBR 1 arg

(explode x) returns a list of characters, which are the characters that would be
typed out if (prinl x) were done, including slashes for special characters but
not including extra newlines inserted to prevent characters from running off the
right margin. Each character is represented by a character object. Example:

(explode “(+ /12 3)) => (/(+ /1 1111 121 1317))
;Note the presence of slashified spaces in this list.

explodec SUBR 1 arg
(explodec x) returns a list of characters which are the characters that would be
typed out if (princ x) were done, not including extra newlines inserted to
prevent characters from running off the right margin. Special characters are not

slashified. Each character is represented by a character object. Example:

(expiodec 7(+ /12 3)) => (/(+/ /Y /2 /3 1))

exploden SUBR 1 arg

(exploden x) returns a list of characters which are the characters that would be
typed out if (princ x) were done, not including extra newlines inserted to

prevent characters from running off the right margin. Special characters are not
slashified. Each character is represented by a number which is the ascii code for

that character. cf. explodec. Example:

(exploden 7(+ /12 3)) => (50 53 40 61 62 40 63 51)

- flatsize s SUBR 1 arg

(flatsize x) returns the number of characters prinl would use to print x out.
flatc SUBR 1 arg

(flatc x) returns the number of characters princ would use to print x out,
without slashifying special characters.

‘July 27,1978 2271 Page 2:85

Maclisp Reference Manual
7.2 Character Strings

These character string functions only exist at present in the Multics implementation
of Maclisp. A predicate to test if your implementation has these functions is
(status feature strings)

These functions all accept atomic symbols in place of strings as arguments; in this
case the pname of the atomic symbol is used as the string. When the value of one of

these functions is described as a string, it is always a string and never an atomic
symbol. Also see the functions on page 2-56.

catenate LSUBR 0 or more args

The arguments are character strings. The result is a string which is all the
arguments concatenated together. Example:

(catenate "foo" "-" "bar"') z> "foo-bar"

index SUBR 2 args

index is like the PL/I builtin function index. The arguments are character
strings. The position of the first occurrence of the second argument in the first is
returned, or 0 if there is none. Examples: :

(index "foobar" "ba") => 4
(index "foobar" "baz®") => 0
(index "goobababa" "bab") =) 4

. stringlength SUBR 1 arg

The argument to stringlength must be a character string. The number of
. characters in it is returned. Examples:

~ (stringlength "foo") => 3
(stringlength *") => 0

Page 2-86 $2-7.2 . July 27,1978

0\ | ' - Character Manipulation

substr LSUBR 2 or 3 args.
This is like the PL/I substr builtin. (substr x m n) returns a string n
characters long, which is a portion of the string x beginning with its m’th
character and proceeding for n characters. m and n must be fixnums, x must be a
string.

(substr x m) returns the portion of the string x beginning with its m'th
character and continuing until the end of the string. Examples:

.(substr "foobar" 3 2) => "ob"
(substr "resultmunger” 6) => "tmunger"
get_pname SUBR 1 arg
(get_pname x) returns. the pname of x as a character string. X must be an
atomic symbol.
0 make_atom SUBR 1 arg
make_atom returns an atomic symbol whose pname is given as a character string
argument. Contrary to previous editions of this manual, this atomic symbol is

interned. Example:

(make_atom "foo") => foo

©

July 27, 1978 32-7.2 o Page 2-87

Page 2-88

Maclisp Reference Manual

82-7.2

July 27,1978

Arrays

8. Arrays

As explained in part 1.2, an array is a group of cells which may contain Lisp objects.
The individual cells are selected by numerical subscripts.

An array is designated by a special atomic object called an array-pointer. Array-
pointers can be returned by the array-creation functions array and xarray. An array-
pointer may either be used directly to refer to the array, or, for convenience in referring
to the array through input/output media, it may be placed on the property list of an

- atomic symbol under the indicator array, and then that symbol can be used as the name

of the array.

There are several types of arrays. The main types are ordinary arrays, whose cells
can hold any type of object, and number arrays, whose cells can only hold numbers.
Number arrays permit more efficient code to be compiled for numerical applications, and
take less space than an ordinary array which contains the same number of numbers. See

the arrayx declaration (part 4.2) and the arraycall function (page 2-14).

When an array is created its type must be declared by giving a "type code.” The type
code for ordinary arrays is t. For number arrays, the type code is either fixnum or
flonum A particular number array can only hold one type of numbers because its cells -
contain the machine representation of the number, not the Lisp-object representation.

Some other types of arrays are: un-garbage-collected arrays, with a type-code of nil,
which are the same as ordinary arrays except that they are not protected by the garbage
collector and therefore can be used for certain esoteric hacks; obarrays, with a type-code
of obarray, which are used to maintain tables of known atomic symbols so that the same
atomic symbol will be referenced when the same pname is typed in; and readtables, with

a type=code of readtable, which are used to remember the syntax specifications for the =

Lisp input reader. Normally, there is only one readtable and one obarray, supplied by

the system, but the user may create additional readtables and obarrays in order to

provide special non-Lisp environments or to gain additional control over the Lisp
environment. Lisp functions such as read can be made to use an additional readtable
or obarray by re-binding the variable readtable or obarray, respectively.

An array-pointer may also be dead, in which case it does not point to any array. One

of the functions array, *array, or xrearray may be used to revivify a dead array-
pointer.

July 27,1978 | 32-8. | Page 2-89

Maclisp Reference Manual

The functions array and xarray are used to create arrays. The first argument
may be an atomic symbol, which makes that atomic symbol the name of an array, putting
an array-pointer on its property list, or redefining an array-pointer that was already on
the property list to point to the new array. Alternatively the first argument may be an
array pointer, which causes that array pointer to be redefined to point to a new array, or
it may be nil, which causes a new array pointer to be created and returned. Except in
the latter case, array returns its first argument. *xarray always returns the array
pointer, never the atomic symbol. ' '

A readtable or an obarray may not be created with user-specified dimensions. The
dimensions are always determined by Lisp. Other types of arrays allow any reasonable
number (at least 3, anyway) of dimensions to be specified when they are created The
subscripts range from O up to | less than the dimension specified.

Ordinary and un-garbage-collected arrays are initialized to n11. Fixnum arrays are
initialized to 0. Flonum arrays are initialized to 0.0.

Obarrays are initialized according to the third argument given to array or xarray.
nil causes a completely empty obarray to be created. Not even ni1 will be interned on
this obarray. t causes the current obarray (value of the symbol obarray) to be copied.
An array-pointer which is an obarray, or an atomic symbol which names an obarray,

causes that obarray to be copied. If no third argument is given, the current obarray is
copied.

Readtables are initialized in a similar fashion. If the third argument of array or

- xarray is nil, then the current readtable is copied. If it is t, then the readtable being
created is initialized to the initial standard Lisp readtable, including the macro
characters 7 and ;. (Note that this is the ppposite of the t-ni1 convention for obarrays.
This. is_for compatibility with the makreadtable function, which no longer exists.) An
array-pointer or symbol of a readtable to be copied may also be given. If no third
argument is given, the current readtable is copied. '

An array-pointer may be redefined to an entirely.different type and size of array,
using the xarray function. It remains the same array-pointer, eq to itself. If a
variable was setd’ed to the array-pointer, that variable will now indicate the new array.
If a symbol has that array-pointer on its property list, it will now. be the name of the new
array.

The xrearray function can be used to redefine the size or arrangement of
dimensions of an array without losing its contents, or to make an array-pointer not point
to any array (become dead). If there is only one argument, the array-pointer is killed,
the array’s contents are discarded, and the array-pointer becomes a "dead array” as
described above. xarray may now be used to redefine it as a new array.

Page 2-90 32-8. July 27,1978

e

Arrays

If more than one argument is given to xrearray, they are the same arguments as to
xarray. xrearray with more than one argument cannot be used to change the type of
an array, and cannot operate on a readtable or an obarray, but it can be used to change
the dimensions of an array. The modified array will be initialized from its old contents
rather than nil, 0, or 0.0. The elements are taken in row-major order for
initialization purposes, and if there are not enough, nil, 0, or 0.0 will be used to fill
the remaining elements of the modified array, according to the type.

The Multics implementation also has a type of arrays called external arrays.
External arrays reside in a Multics segment rather than within the Lisp environment.

They behave much like fixnum arrays, and should be declared as such to the compiler.

To create an external array, use a form.such as
(array foo external pointer length)

The pointer is a packed pointer to the beginning of the array, i.e. a fixnum whose first
six octal digits are the segment number and whose second six octal digits are the word
address. The length is the number of words in the array. External arrays can only
have one dimension, can only contain fixnums, and are not initialized when they are
created. They cannot usefully be saved by the save function. This type of array can be
used for communication between Lisp programs and Multics programs or subsystems
written in other languages, when large amounts of numerical data or machine words
must be passed back and forth. See also defp11 (part 46). '

If you want the range of subscripts on arrays to be checked, it is necessary to set the
xrset flag non-nil (ie run in (xrset t) mode) and to avoid the use of in-line array
accessing (i.e. the arrayx declaration) in compiled programs. The amount of checking
performed when =xrset is .nil and/or compiled code is used depends on the
implementation.

Juty 27,1978 . 82-8. _ Page 2-91

Maclisp Reference Manual 0

- Here is an example of a use of arrays:

(defun matrix-multiply (arrl arr2 result)
"(and (eq (typep arrl) “symbol) ;convert arguments
(setq arrl (get arrl “array))) ;to array-pointers
(and (eq (typep arr2) “symbol)
(setq arr2 (get arr2 “array)))
(and (eq (typep result) “symbol)
(setg result (get result “array)))
(do ((ii (cadr (arraydims result))) ;get relevant
(jJ (caddr (arraydims result))) ;dimensions
(kk (cadr (arraydims arr2))))
()
(do 1 0 (1+ 1) (= 1 i) ;result := arrl x arr2
(do j 0 (1+ J) (= J JJ)
(do ((k 0 (1+ k))

(r 0.0))
((= k kk)
(store (arraycall flonum result 1 j) r))
(setq r (+8 r (%8 (arraycall flonum arrl 1 k) _
: (arraycall flonum arr2 k j) @
NN
result)
xarray LSUBR 3 or more args

(xarray x y bl b2 .. bn) defines x to be an n-dimensional array. The first
subscript may range from 0 to b/ minus 1, the second from 0 to 2 minus 1, etc. y

" is the type of array, as explained above. It may be chosen from among: t, nil,
fixnum, flonum, readtable, obarray.

array FSUBR

(array x 9 bl b2 .. bn) has the same effect as (xarray (quote x) (quote)
b1 b2 .. bn). This special form is provided for your typing convenience.

Page 2-92 = - 82-8. July 27,1978 0

Arrays

xrearray LSUBR 1 or more args

xrearray is used to redefine the dimensions of an array.

(xrearray x) kills the array-pointer ¥, or the array-pointer which is the array
property of the atomic symbol x. The storage used by the associated array is
reclaimed. The value returned is t if x was an array, n11 if it was not.

(xrearray x type diml dim2 .. dimn) is like (xarray x type diml dim2 ..

dimn) except that the contents of the previously existing array named x are copied -

into the new array named x. If it is a multi-dimensional array, row-major order is
used. This means the last subscript varies the most rapidly as the array is
traversed.

store FSUBR

The special form (store arrayref value) is used to store an object into a

particular cell of an array. The first element of the form, array-ref, must be a
subscripted reference to an array, or an invocation of arraycall. By coincidence,
certain other forms work as array-ref, for instance (apply f {) where f turns out
to be an array. The second element, value, is evaluated and stored into the
specified cell of the array. store evaluates its second “argument” before its first
"argument”. : ' "

Examples:
(store (data 1 j) (plus 1 J))

(store (sine-values (fii (x$ x 100.0)))
~(sin x))’

(store (arraycall fixnum az i j) 43)

arraydims SUBR 1 arg

(arraydims x), where x is an array-pointer or an atomic symbol with an array
property, returns a list of the type and bounds of the array. Thus if A was
defined by (array A t 10 20),

(arraydims “A) => (t 10 20)

July 27, 1978 ‘ 32-8, " Page2-93

Maclisp Reference Manual

fillarray SUBR 2 args

(fillarray a !) fills the array a with consecutive items from the list /. If the
array is too short to contain all the items in the list, the extra items are ignored.
If the list is too short to fill up the array, the last element of the list is used to fill
each of the remaining cells in the array.

(fillarray x y) fills the array x from the contents of the array y. If y is bigger
than x, the extra elements are ignored. If y is smaller than x, the rest of x is
unchanged. x and 9 must be atomic symbols which have array properties, or array-
pointers. The two arrays must be of the same type, and they may not be readtables
or obarrays. : ‘

The list-into-array case of fillarray could have been defined by:

(defun fillarray (a x)
(do ((x x (or (cdr x) x))
(n 0 (1+ n))
(hbound (cadr (arraydims a))))
{(= n hbound))
(store (a n) (car x))
)

a) _ | N

An extension to the above definition is that fillarray will work with arrays of
more than one dimension, filling the array in row-major order. fillarray
returns its first argument.

Hstarray LSUBR 1 or 2 args

(1istarray array-name) takes the elements of the array specified by array-name
and returns them as the elements of a list. The length of the list is the size of the
array and the elements are present in the list in the same order as they are stored
in the array, starting with the zero'th element. If the array has more than one
dimension row-major order is used.

(1istarray array-name n) is the same, except that at most the first n elements
will be listed.

array-name may be an array-pointer or an atomic symbol with an array-property.

Page 2-94 828 : July 27, 1978

Arrays

Number arrays may be efficiently saved in the file system and restored by using the
functions loadarrays and dumparrays.
loadarrays SUBR 1 arg

(1oadarrays file-spec) reloads the arrays in the file, and returns a list of 3-lists,
of the form: '

((newname oldname size) ...)

newname is a gensymed atom, which is the name of the reloaded array.

(newname ought to be an array-pointer, but this function was defined before array-
pointers were invented.) oldname is the name the array had when it was dumped.
size is the number of elements in the array.

dump_arrays SUBR 2 args

(dumparréys (arrayl array2 ...) file-spec) dumps the listed arrays into the
specified file. The arrays must be fixnum or flonum arrays.

In both of the above, the file-spec argument is dependent on the system. In ITS or
DEC-I0 Lisp, the file-spec is a list of zero to four items, as in uread, and the
same defaults apply. In Multics Lisp, the file-spec is an atomic symbol or a string
which gives the pathname of the segment to be used. The defaults and other
; features of the Lisp 1/O system are not applied. Only a segment may be specified,
not a stream.

As a special compatibility feature, in Multics Lisp loadarrays will recognize a
pdp-10 dumparrays file. (One can be moved to Multics through the ARPA
Network File Transfer Protocol if the "type image" and "bytesize 36" commands
are employed.) The pnames will be converted to lower case and flonums will be
converted to the H6880 machine representation. dumparrays can create a file
which pdp-10 loadarrays can read, including upper-case pnames and pdp-10
format flonums, if it is invoked as follows:

(dumparrays (arrayl array2...) “(pdpl0 file-spec))

w July 27, 1978 , $2-8. . » Page 2-95

i’age 2-96

Maclisp Reference Manual

32-8.

July 27, 1978

C

C

Mapping Functions

9. Mabping Functions

Mapping is a type of iteration in which a function is successively applied to pieces
of a list. There are several options for the way in which the pieces of the list are chosen
and for what is done with the results returned by the applications of the function.

For example, mapcar operates on successive elements of the list. As it goes down the
list, it calls the function giving it an element of the list as its one argument: first the
car, then the cadr, then the caddr, etc., continuing until the end of the list is reached.
The value returned by mapcar is a list of the results of the successive calls to the
function. An example of the use of mapcar would be mapcar'ing the function abs over

the list (1 -2 -4.5 6.0el5 -4.2). Theresultis (1 2 4.5 6.0el5 4.2).

The form of a call to mapcar is
(mapcar fx)

where f is the function to be mapped and x is the list over which it is to be mapped.
Thus the example given above would be written as

(mapcar “abs
7{1 -2 -4.5 6.0el5 -4.2))

This has been generalized to allow a form'such as
(mapcar fxIx2..xn)

In this case f must be a function of n arguments. mapcar will proceed down the
lists x1, x2, ..., xn in parallel. The first argument to f will come from x1, the second from
x2, etc. The iteration stops as soon as any of the lists is exhausted.

There are five other mapping functions besides mapcar. maplist is like mapcar
except that the function is applied to the list and successive cdr’s of that list rather than
to successive elements of the list. map and mapc are like maplist and mapcar
respectively except that the return value is the first list being mapped over and the
results of the function are ignored. mapcan and mapcon are like mapcar and maplist
respectively except that they combine the results of the function using nconc instead of
Tist. That is, ‘ '

July 27,1978 ‘ 82-9. Page 2-97

Maclisp Reference Manual

- (defun mapcon (f x y) :
(apply “nconc (maplist f x y)))

Of course, this definition is far less general than the real one.
Sometimes a do or a straight recursion is preferable to a map; however, the mapping

functions should be used wherever they naturally apply because this increases the clarity
of the code.

Often f will be a lambda-type functional form rather than the atomic-symbol name of

a function. For example,
(mapcar ’(lahbda (x) (cons x something)) some-list)

- The functional argument to a mapping function must be acceptable to apply - it
cannot be a macro. A fexpr or an fsubr may be acceptable however the results will be
bizarre. For instance, mapping set works better than mapping setq, and mapping
cond is unlikely to be useful.

It is permissible (and often useful) to break out of a map by use of a go, return,
or throw in a lambda-type function being mapped. This is a relaxation of the usual
prohibition against "non-local” go’s and return’s. If go or return is used the program
may have to be compiled with the (mapex t) declaration, depending on the
~ implementation, so watch out! Consider this function which is similar to and, except that
it works on a list, instead of on separate arguments.

(defun andl (x)

(catch
(progn ,
(mapc (function (lambda (y)

(or y (throw nil the-answer))))
X) - :
t)
the-answer))

Admittedly this could be better expressed as a do:

(defun andl (x)

(do ((y x (cdr y)))
((null y) t)
A{or (car y) (return nil))

))

Page 2-98 82-9. July 27, 1978

Mapping Functions

Here is a table showing the relations between the six map functions.

applies function to

| successive | successive |

| sublists | elements |
et LL L S — $omemmcecec———— +
its own | | |
second | map | mapc |
argument | | |
--------------- L Lt)
1ist of the | i |
returns function | maplist | mapcar |
results | | |
--------------- e L LT TRy A
nconc of the | : | I
function | mapcon | mapcan |
results | | ' |
--------------- ecencmmmccccccfmmncnncccnannnand

mapatoms LSUBR 1 or 2 args

(mapatoms fn obarray) applies the function fn to all the symbols on the specified
obarray. If the second argument is omitted, the current obarray is used. Note that the
obarray argument must be an array-pointer, not a symbol which names an array. The
symbol obarray is bound to the obarray being mapped over during the execution of
. mapatoms.

This function exists because some of the cells in an obarray contain lists of symbols -
and others contain single symbols, and user programs shouldn’t have to know this.
Example: :

(mapatoms
(function
(lambda (x)
(and {sysp x)
(print (1ist x (sysp x) (args x)))))))

July 27,1978 | i 82-9. ' Page 2-99

The System

Part 3 - The System

Table of Contents

1. TheSystem.................... e e et e e e 3-1
L1 The Top Level Function 3-1
1.2 Breakpoints. i e e 3-5
1.3 Control Charactersoo ittt i, 3-9
1.4 Exceptional Condition Handling........ e e 3-15
1.4.1 The LISP Error Systemiiuue. e 3-15
1.4.2 ‘User Interrupts e .3-16
143 Catalogue of User Interrupt Channels. 3-19
1.4.4 Autoload e e e e 3-26
15 Debugging. P e e . 3-28
151 Binding, Pdl Pointers, and the Evaluator 3-28
1.6.2 Functions for Debugging...................... e 3-28
153 The Trace Package i, 3-35
15.4 The Stepper P 3-40
155 The MAR Break Featureviiiiiiiiiiniiennn. 3-55
16 Storage Managemento ittt 3-59
16.1 Garbage Collection............... ... i, 3-59
16.2 SPaces .. e e e 3-60
163 Storage Control Functionso, 3-63
16.4 Dynamic Space and Pdl Expansion............................. 3-64
165 Initial Allocation e i 3-65
1.7 Implementing Subsystems with Maclisp.......... e 3-67
171 Entering LISP 3-67
1.7.2 Saving an Environment. i iiiiiiiien, 3-68
173 Gaining and Keeping Control., 3-71
1.7.4 Purity ..o e 3-71
1.8 Miscellaneous Functions 3-77
1.81 The Status Functions it 3-77
1.8.2 Time i e 3-99
183 Escaping fromLISP............... o oLt e 3-99
184 Additional Functions. iiiiiii.., 3-101
. August 3, 1978 Page 3-1

The System

1. The.System
1.1 The Top Level Function

The following function is an approximation to what Maclisp does when it is at its
“top level.”

C August 3, 1978 33-1. | Page 31

Maclisp Reference Manual

~ (defun standard-top-level nil
(prog (*q “w “r evalhook base ibase ...)
errors ;errors, uncaught throws, etc. come here
~g ;ctrl/G quits come here
(reset-bound-vars-and-restore-pdis)
(setg ~q nil) '
(setq *w nil)
(setq evalhook nil)
(nointerrupt nil) ,
(do-delayed-tty-~and-alarmclock-interrupts)
;Recall that errors do (setq // errlist) so lambda-binding
; errlist will work properly. See errlist.
(mapc (function eval) //)
(or (status linmode)(terpri))

(do ((eof (list nil)) sinternal variables
(prt 7% x))
(nil) ;do forever (until ~g or error)

(setq x (cond ({status toplevel)
(eval (status toplevel)))
(t (terpri)
(cond (prinl (funcall prinl prt))
(t (prinl prt)}))

(typ 40)
(setq (do ((form))(nil)
{(setq form
(cond (read
(funcall read
' eof))
(t (read eof))))
(or (eqg form eof)
(return form))
(terpri)))
(and (null read)
(atom -)

(is-a-space (tyipeek))(tyi))
((lambda (+) (eval --)) '
~ (prog2 nil + (setqa + -)))))))))

which causes a "read-eval-print loop,” ie. each S-expression that is typed in gets

evaluated and the value is printed, then the next S-expression is read. Errors and “g
quit to top level. That is they reinitialize and then re-enter this loop, printing a * (but

Page 3-2 ‘ B <N N § August 3, 1978

The System

not destroying the value of the variable x). Notice that there is a place in the middle
where the user can insert his own special form to be evaluated, using (sstatus
toplevel). It is also possible to change just the reader or just the printer by setqing
read or prinl. See the sstatus function (page 3-77).

Variables used by the top-level read-eval-print loop:
% : ~ VARIABLE

Contains the last S-expression printed out by the read-eval-print loop, that is, the.
value of the last form typed in. This is true even after an error return to top
level, allowing one to refer to the value printed out before the aborted computation.

+ VARIABLE

Contains the last S-expression typed in. This can be used to edit it or to do it

over again. (Notice how + is bound in the read-eval-print loop. This causes + to
receive the correct value even if the evaluation aborts, since an error or g quit
will undo the binding.) :

- © VARIABLE

Contains the current S-expression typed in. This can be used by user-written
error handlers. It can’t be usefully accessed by expressions typed in, since it is set
before the expression is evaluated.

By special arrangement the values of +, %, and - are preserved' across a break.
When the break is first entered these have the values for the last top-level operation,
during the break they behave the same as at top level, and after the break returns they
- are restored to the values for the top level loop. (See break, page 3-5).

- VARIABLE

/ is used to temporarily hold the value of errlist when an error returns to top
level. This is so that 1ambda-binding err1ist will have an effect (assuming no
one lambda-binds /). Note that / must be typed in as // since the slash

- character is special to the LISP reader.

August 3, 1978 | ¢3-1.1 Page 3-3

Maclisp Reference Manual

errlist " VARIABLE

The value of errlist is a list of forms which are evaluated when control returns
to top level either because of an error or when an environment is initially started.
It doesn’t apply if the environment started up was saved using (suspend). This
feature is used to provide special error handling for subsystems written in LISP.

The symbol errlist is evaluated to get the list of forms in the binding context in
which the error occurred, but the forms themselves are evaluated in the top-level
binding context. ‘

Example:

((lambda (errlist)
{(putprop “foo “bar “baz)
~(hack)
(remprop “foo “baz))
(cons “(remprop “foo “baz)
errlist))

The property list of foo will be properly restored even if the computation (hack)
is aborted.

Page 3-4 : 83-1.1 August 3, 1978

The System

1.2 Breakpoints

Breakpoints are a mechanism to allow the user to gain control at any point in a
program. Use of the function break causes a read-eval-print loop, similar to the one at
top level, to be entered. (This is also called a break loop) The user may evaluate any S-
expressions, inspect the bindings of variables, and exit from the break in several ways.
Normal execution then proceeds. (See page 2-43 and page 3-31)

This mechanism can be used to permit human intervention when an unexpected .
condition occurs. It is used in this way by the Maclisp error system. See the section on
Exceptional Condition Handling, page 3-15. A break loop makes the full power of the
LISP interpreter available for debugging. '

break FSUBR

(break rag pred) evaluates pred, but not tag. If the value of pred is not nil,
the state of the 1/O system is saved, ";bkpt tag" is typed out, and control returns
‘to the terminal. We say that a "break loop" has been entered. tag may be any
‘ : object. It is used only as a message typed out (using princ) to identify the break.
0 It is not evaluated. If pred is omitted, t is assumed. Thus (break tag) is
equivalent to (break tag t). (break tag nil) returns nil, and produces no
action whatsoever. '

A break loop is a read-eval-print loop similar to top level. break does an errset
so that errors cannot cause an abnormal return from the break. A “x quit, which
causes an ordinary error, will thus return to the break loop if used to interrupt a
computation started in the break loop. A “g quit, however, returns back to LISP
top level, resetting the environment using the errlist, as described above.

Two forms, 8P and (return x), may be typed in a break loop. If 8P is typed in,
break returns nil and execution continues. This "$P" is <dollar> P in the
Mutltics implementation, but <altmode> P in the PDP-10 implementations,
followed of course in either case by a.<space> or <newline> as appropriate (see
(status linmode)). (An atom other than $P can be used to perform this

" function by changing the value of $P to another (non-ni1) atom. The initial
value of 8P is always $P).

If (return x) is typed in, break evaluates x and returns that value. If as a

result of the evaluation of a typed-in form, (throw x break) is evaluated,
break returns x as its value. (Notice the distinction - executing a form (return

C August 3, 1978 8312 Page 3-5

~ Maclisp Reference Manual

x) does not return from break unless it was typed directly at the break loop.)
See return, page 2-43.

When break returns, the state of the I/O system is restored.

An approximate LISP definition of what break does follows. Note that the user

program can modify this by using (sstatus breaklevel).

Page 3-6 » 2 August3,1978

The System

(defun break fexpr (x)
(xbreak (eval (cadr x)) (car x)) ;note argument reversal

(déclare {special ~q “w evalhook x + -))
(defun xbreak (breakp breakid) -

(and breakp
{do ((*q nil) (*w nil) (evalhook nil) (terpri t) (x x) (+ +) (- -))

O) ;bind key variables
. (tefpri msgfiles) ;msgfiles arguments
(princ 7| ;bkpt | msgfiles) ; used for .
(princ breakid msgfiles) ; Newio only
(terpri msgfiles))
(setq + =) ;last form typed
(return
(prog2 nil
(catch
(do () (nil) ;do forever (until throw)
(errset
(do ((eof (list nil)) (form))
(nil) '

- (cond ((status breaklevel)
(eval (status breaklevel)))
(t (setq form (cond (read (funcall read eof))
(t (read eof)))) -
(and (null read)
(atom form)
(is-a-space (tyipeek))
(tyi))
(cond ((eq form eof) (terpri))
((and 8P (eq form “8$P)) (throw nil break))
((eq (car form) “return)
(throw (eval (cadr form)) break))
(t (setq - form) ‘
{print
(setq % ((lambda (+) (eval form))
(prog2 nil + (setq + =)))))
(terpri))))))))
break)
(terpri)
M)

August 3, 1978 83-1.2 3 Page 3-7

Maclisp Reference Manual

The arguments to break are a breakpoint identification and (optionally) a break
switch. If the break switch evaluates to nil, then nil is returned. Otherwise, Athe
variables ~q, “w, evalhook and terpri are bound to nil, the variables %, +, and - are
bound to their current values, and the message ";bkpt <breakid>" is printed. A read- -
eval-print loop similar to the top level loop is then entered. This break loop is
surrounded by an errset. Errors or typing ~x merely cause the break loop to be re-
entered. The value of (status breaklevel) serves a functlon similar to that of
(status toplevel) in the top level loop.

‘As each form is read in the default break loop, there are four cases:

I. End of file. For console input this merely indicates rubout beyond the number
of input characters. Whether input is from console or elsewhere, the (terpri)
is done and the reader is entered.

2. The form is the atom $P or eq to the non-nil value of 8P nil is returned
from the break.

3. The form 1s (return value) The form value is evaluated and returned from
the break. -

4. Otherwise the form is evaluated and the result printed out in a manner

analogous to the top level read-eval-print loop. The variables +, -, and x

© are updated appropriately. (Recall, however, that they were bound on entry to
xbreak, and so will be restored eventually.) ’

The way to return from a break is to do a throw with a tag of break; this will

return from the catch which surrounds the break loop. This is how cases 2 and 3
return their values; case 4 may also cause a return from the break.

Page 3-8 - : #3-1.2 7 August3,1978

The System

1.3 Control Characters

LISP can be directed to take certain actions by entering "control characters” from the
terminal. The difference between control characters and normal input is that control
characters take effect as soon as they are entered, while normal input only takes effect

. when LISP asks for it, by use of functions such as read, or by being in the top level

read-eval-print loop or in a break loop.

Control characters can be typed in from the terminal according to some procedure.
that depends on the implementation. A program can mimic the effects of the various
control characters by directly calling the function associated with the particular control
key (see below).

Although control characters are usually processed as soon as they are typed, they may
be delayed if there is a garbage collection in progress or LISP is in (nointerrupt
tty) mode - see the nointerrupt function (page 3-18).

Entering Control Characters in ITS LISP

In the ITS implementation of Maclisp, control characters are entered by means of the
"CTRL" key on the terminal. For example, CTRL/g is entered by holding down
"CTRL" and striking the "G" key. Control characters normally echo as an uparrow or
circumfiex followed by the character. ' '

In Newio, any character at ali may be made an interrupt character. See (sstatus
tty) and (sstatus ttyint).

. Interrupt characters are also read as part of the terminal input stream. Normally
they are marked in the readtable as "worthless” characters.

Entering Control Characters in TOPS-10 LISP

Most control characters may be entered in the same way as in ITS LISP if LISP is
currently read’ing from the terminal. If a LISP program is actively running, it is
necessary to first gain its attention by typing the CTRL/c character one or two times,
thereby returning to the monitor. The monitor command REENTER may then be used
to re-enter the LISP. LISP will print "?*" and read a character, which may be a control
character or a character whose “control” meaning is to be used. Thus typing either “g or
"G" will cause the “g interrupt to occur. If LISP is not ready to take an interrupt,
there may be a delay before the "?*" is printed.

Entering Control Characters in Multics LISP

August 3, 1978 83-1.3 | Page 3-9

Maclisp Reference Manual

"In the Multics implementation of Maclisp, one signals one’s desire to enter a
“control” character by hitting the "attention” key on the terminal. (This is called "break,”
- "interrupt,” "attn,” "quit," etc. on different terminals. If Multics is being accessed
through the ARPA network, an "interrupt process” (eS S or @S I P from a TIP) signal
should be transmitted.) LISP responds by typing out "CTRL/". Now you may type one
letter from the list later in this section, which will be interpreted to have its “control”

meaning. This control character must be followed by a newline.

It is also possible to enter "control” characters from an input character stream, which
may have its source at the terminal or in an exec_com, without the use of the "attention”
key. The desired control character is prefixed by a \036 character. If two of these prefix
characters occur together, one \036 character is read and no “"control” action is
performed. Otherwise, the character following the \036 is processed as a control
character, then reading continues.

Control characters will be accepted in upper or lower case. All characters other than
those with defined meanings are rejected with an error message. Only one control
character may be entered at a time.

Example for Multics LISP:
(lines containing user input are preceded by ">>>")

>>> . (defun loop (x) (loop (addl x)))

Toop

D {(Toop 0)
function runs for a long time,

> {ATTN> then user hits attention button.
> CTRL/B LISP types "CTRL/", user types "B"
>>> ;bkpt ~b system enters break loop
D X user looks at value of x

4067
>»> <ATTN> user hits attention button again
> CTRL/G and returns to top level

Quit

*

When a "user interrupt” is caused, if the interrupt is not enabled nothing happens. If
the interrupt is enabled, then a user-specified function is called. The interrupt may be
enabled by binding the appropriate symbol to the function to handle it, or by using the
(sstatus ttyint) function (page 3-78). ’

In the following descriptions of control characters, those which can - always be

Page 3-10 o 3313 | August 3, 1978

The System

processed immediately, even during a garbage collection or in (nointerrupt “tty)

mode, will be indicated by an ™

for the ITS and TOPS-10 implementations, and an ""

for the Multics Implemention. When appropriate, equivalent LISP code is given for
producing the same result from a user program.

Control Characters that have initially defined meanings in all implementations:

B

D

Q!

R!

T!

runs a break loop with breakid "~b" (see break, page 3-5). (In the PDP-
10 Oldio implementation ~h is used instead of *b.) (break “~b).

sets the value of the atom “d to nil, turning off garbage collector messages.
Because “c is trapped by DEC-10 monitors, this control character can only
be typed using the REENTER mechanism and typmg "C". (setq ~d
nil).

sets the value of the atom ~d to t, turning on garbage collector messages.
{setq ~°d t)

quits back to the top level of LISP, rebinding all variables to their global
values, resetting various system variables, and evaluating the errlist
forms. This is used to stop a running program when there is no intention
of restarting it again. (Prints out a %; see the "top level” function and the
~gf unctlon) H is used instead of “b in some implementations (see above).

sets the value of the atom.”q to t, enabling input from the source selected
by the value of infile, or selected by .use of the function uread. In the

"PDP-10 Newio implementation, this is not an interrupt character; instead

it is a macro character, and takes effect only if processed by read. (setq
~q t).

sets the value of the atom “r to t, enabling output to the destinations
selected by the value of outfiles, or selected by use of the uwrite
function. (setq “r t).

turns off typeout until input is read. This is used to suppress the rest of
the typeout from the current request, without affecting typeout from the next
request that is typed in. It is implemented by setting “w to t, then putting

a macro character in the input stream which sets “w to ni1 and does a
(terpri) when it is read.

sets the value of the atom *r to nil, disabling output to the destinations
that CTRL/r enables. (setq “r nil).

C August 3, 1978 | #3-1.3 Page 3l

V!

? b

The following control characters only exist in PDP-10 implementations with the |

The

Maclisp Reference Manual

causes the current call to read to be restarted from the beginning. (Not
available in PDP-10 implementations).

sets the value of the atom “w to nil, enabling output to the terminal.
(setg "“w nil).

sets the value of the atom “w to t, disabling output to the terminal. (setq
“w t) (and possible also (clear-output tyo)).

causes an error which can be caught by errset. This is a less drastic
"quit” than CTRL/g. If it is typed within a break loop, it will return no
further than the break loop, since break uses errset. (error “quit).

On ITS returns to ITS command level, ie. DDT. On Multics returns to
Multics command level. (start re-enters LISP.) On TOPS-10 goes to DDT
if a DDT has been loaded with LISP.

following control characters only exist in the Multics implementation.

does nothing, and is used merely to speed up a slow process by causing an
interaction.

asks the LISP subsystem what it is doing: running, w.a'iting for input,
collecting garbage, or running with tty-interrupts masked off.

"moby I/O" capability. (For now, this means only at the MIT AI Laboratory.) (see
(sstatus ttyscan), page 3-8I).

F

< 0 z

Cause graphics display slave to seize a display.
Turn on display for character output.
Turn off display for character output. -

Cause display slave to release display.

The following control characters only work in the PDP-10 implementation. They are
not really interrupts, but occur only when processed by the terminal mput prescanner (see
(sstatus ttyscan) page 3-81).

K

Page 3-12

redisplay the current input. This allows you to get a clean copy of your

$3-1.3 August 3, ‘1978

The System

input after rubouts have been used. (On a display console, LISP will
. attempt to make rubbed-out characters actually disappear from the screen.
~k is still useful if a timing error disrupts this process.)

L erases the screen if the terminal is a display, then does a CTRL/k.
Control-Character Functions

~9 SUBR 0 args
Produces a.quit to top level just as if a CTRL/g had been typed.
These functions exist only in the PDP-10 Oldio and the Muitics implementations.
They are being phased out, so using them in new programs is not recommended.
ioc FSUBR
The argument to ioc is processed as if it were a "control character” that had been
typed in. Numbers are taken as a whole, atomic symbols’ pnames are processed
character by character, except that ni1 is ignored. Examples:
(ioc 1) causes user interrupt 1.
(ioc vt) switches output to the terminal.
(ioc q) switches input to a file.

(ioc g) quits back to the top level of LISP.

If ioc returns, its value is t.

iog FSUBR

iog first saves the values of the I/O switches “q, “r, and “w. Then it processes
its first argument the same as ioc. Next the remaining arguments to iog are
evaluated, from left to right. The values of the variables *q, *r, and “w are
restored, and the value of the last argument is returned. Example:

(iog vt (princ "A Message."))

August 3, 1978 #3-1.3 - Pages3Is

Maclisp Reference Manual

gets a message to the console no matter what the 1/O system is doing. It evaluates
to "A Message." : S

(iog a x1 x2 ... xn)
can also be written

((lambda (*q “r “w)
(ioc a)
x1
x2
xn)
ni¥ nil nil)

Page 314 ‘ 8313 © August 3, 1978

The System

‘1.4 Exceptional Condition Handling

1.4.1 The LISP Error System

The errors detected by the LISP system are divided into two types: correctable and
uncorrectable. The uncorrectable errors will be explained first since they are simpler.

An uncorrectable error is an error that causes the evaluation in which it occurs to be
aborted. When an uncorrectable error occurs, the first thing that happens is the printing
of an error message. In Oldio, the error message goes to the terminal and nowhere else
(unless suppressed, see errset, page 3-20), no matter how the I/O switches and
variables are set. In Newio, the variable msgfiles is a list of the files to which error
messages should be routed; this initially is just the terminal. The error message consists
of some explanatory text and (usually) the object or form that caused the error.

After the error message has been printed, control is returned to the most recent error-
catcher. There is an error-catcher at top level, and error-catchers are set up by the
function errset (and break, which uses errset). All variable bindings between the
error-catcher and the point where the error occurred are restored. Thus all variables are
restored to the values they had at top level or at the time the errset was done, unless

" they were setqged free (without being bound).

What happens next depends on how the error-catcher was set up. At top level, the
forms on the errlist are evaluated and the top level loop (or a user specified top level
form) is re-entered. (The symbol errlist is evaluated prior to the above restoration of
bindings, and saved in the variable /. In this way the errlist used is the one current
at the time of the error, despite the restoration of bindings.) If an error returns to
break, it simply re-enters its read-eval-print loop. In the Multics implementation the
fact that break has caught an error is signalled by ringing the bell on the terminal. If
an error returns to errset, errset returns nil and evaluation proceeds. If an error
returns to top level, the state of the world is reset and * is typed.

The above description is slightly simplified. The user can request an interrupt to
occur between the typing of the message, and the unwinding of bindings and return of
control to an error-catcher. If the error is going to return to.top level, the xrset-trap
user interrupt is signalled. This user interrupt is initially a system-supplied break loop
which allows the user to examine the values of variables before the bindings are restored,
in hope of finding the cause of the error. In (xrset t) mode a break loop is entered,
but in- (xrset nil) mode the user interrupt is ignored. If the error is going to return

August 3, 1978 83-1.4 Page 3-15

Maclisp Reference Manual

to a break or an errset, and xrset is non-nil, the errset user interrupt is
signalled. The initial environment contains a null handler for this interrupt, but the
user may supply a break loop or other handler.

Correctable errors are errors which may be corrected by user intervention. If such an

" error is properly corrected, evaluation will proceed as if no error had occurred. If the

option to correct the error is not exercised, this type of error will be handled as if it were
an uncorrectable error. :

When a correctable error occurs, a user interrupt is signalled. See page 3-19 for
user interrupt channel assignments for these errors. The initial environment contains
handlers for these errors which print an error message simifar to the message printed for
an uncorrectable error and then enter a break loop.

The argument passed to the user interrupt handler is an S-expression describing the
error. See section 1.4.2 for details. If the user interrupt handler is ni1, or if it returns
a non-list, the error is treated as an uncorrectable error.- But if the handler returns a
list, the first element of that list is used to correct the error in a way which depends on
the particular error which occurred.

If the most recent error-catcher is not top-level, correctable errors will be treated as
uncorrectable errors unless there is a non-null handler for the errset interrupt. This
is to prevent confusing "multiply nested” error breaks unless the user indicates that he

- is sophisticated by setting up a handler for the errset mtvexrupt (Th_g errset handler

|tself is only mvoked if *rset is non-nil, however)

See the f unctions error, err, and errset.
1.4.2 User Interrupts

LISP provides a number of "user interrupts,” which are a mechanism by which a user
procedure may temporarily gain control when an exceptional condition happens. The
exceptional conditions that use the user interrupt system include certain control
characters, the alarmclock timers, asynchronous I/O conditions, the garbage collector, and
many of the errors that are detected by the interpreter or by the system f unctlons Errors
detected by user functions can use this mechamsm also.

The user interrupts are divided up into several channels. Each channel has
associated with it a service function. If the service function is ni1, interrupts on that
channel will be ignored. If the service function is not nil, it is a function which is -

Page 316 83144 August 3, 1978

FCMJ

The Sy‘stem

called with oné argument when the user-interrupt occurs. (A few interrupt handlers
take more than one argument. See the specific descriptions.) The nature of the argument
depends on which channel the interrupt is on; usually it is an S-expression which can be
used to localize the cause of the interrupt. Some user interrupts use the value returned
by the service function to decide what to do about the cause of the interrupt.

Interrupts can be either synchronous (e.g. errors and garbage collector interrupts) or
asynchronous (control characters, alarmclock, etc). To prevent timing errors,
asynchronous interrupts are always run in (nointerrupt t) mode. A handler for an
asynchronous interrupt must explicitty do (nointerrupt nil) to permit other
asynchronous errors to interrupt it. (For example, the system-supplied b handler does
this so that control character interrupts can be used within the ~b break loop.)

The service functions for most user interrupts are kept as the values of symbols with
mnemonic names. A list of these symbols begins on page 3-19. There are also user
interrupts for control characters. The service functions for these are declared using
(sstatus ttyint). See page 3-78.

The initial values for the service functions of the various interrupts are provided by
the system as break loops for some interrupts and nil for others (except for some
control characters). '

There are some special considerations for user interrupts signalled by correctable
error conditions.” The argument to the service function is a description of the error
whose exact form is described in the catalogue at the end of this section. If the service
function returns nil (or any other atom), the normal error procedure occurs -- control
returns to the most recent errset, or to top level if there was no errset. If the service
function returns a list, the first element of the list is used to attempt recovery from the

 error. The exact way that it is used is described in the catalogue. If recovery is

successful execution proceeds from the point where the error occurred. If recovery is
unsuccessful another error is signalled.

‘Here is an example of a user interrupt service function. This is the one supplied by
the system for unbound variable errors when the user does not specify one. Note that the
system-supplied error service functions consistently bind args to the argument supplied.
The user can check the value of this variable to see.what is wrong. Note too that the
system-supplied error handlers restore readtable and obarray before breaking.

August 3, 1978 83-1.4.2 Page 3-17

Maclisp Reference Manual

_ (defun +internal-ubv-break (args)
(declare (special args))
(errprint nil msgfiles) sprint-error message
((1lambda (readtable obarray)

~ (nointerrupt nil)
(break unbnd-vrbl))
(get “readtable “array)
(get “obarray “array)))-
(setq unbnd-vrbl “+internal-ubv-break)

alarmclock SUBR 2 args

alarmclock is a function for controlling timers. It can start and stop two
separate timers; one is a real-time timer (which counts seconds of elapsed time) -

and the other is a cpu-time timer (which counts microseconds of machine run time).

‘The first argument to alarmclock indicates which timer is being referred to: it
may be the atom time to indicate the real-time timer or the atom runtime to
indicate the cpu-time timer.

The second argument to alarmclock controls what is done to the selected
timer. If it is a non-negative number (fixnum or flonum) the timer is started.
Thus if n is a positive fixnum or flonum, evaluating (alarmclock “time n)
sets the real-time timer to go off in n seconds, and (alarmclock “runtime n)
sets the cpu-time timer to go off in n microseconds. 'If the timer was already
running the old setting is lost. Thus at any given time each timer can only be
running for one alarm, but the two timers can run simultaneously.

If the second argument to alarmclock is not a positive number, the timer is
shut off, so (alarmclock x nil) or (alarmclock x -1) shuts off the x timer.

alarmclock returns t if it starts a timer, ni1 if it shuts it off.

When a timer goes off, the alarmclock user interrupt occurs. The service
function is run in (nointerrupt t) mode so that it will not be interrupted
while it is performing its service. If it wants to allow interrupts, other timers, etc.
it can evaluate (nointerrupt nil). In any case the status of the nointerrupt
flag will be restored when the service function returns. The argument passed to

the user interrupt service function is the atom time or the atom runtime, -

depending on which timer went off. See also the function nointerrupt.

Page 3-18 #3142 | August 3, 1978

The System

nointerrupt SUBR 1 arg

(nointerrupt t) shuts off LISP interrupts. This prevents alarmclock
timers from going off and prevents the use of control characters such as CTRL/g
and CTRL/b. Any of these interrupts that occur are simply saved.
(nointerrupt t) mode is used to protect critical code in large subsystems
written in LISP. A similar deferral technique is used by the LISP system itself
to protect against interrupts in the garbage collector. '

(nointerrupt “tty) prevents control characters (typed on the terminal, or
"tty") from causing interrupts; however, alarmclock interrupts (and other
asynchronous interrupts) are still allowed. Any non-tty asynchronous interrupts
which were saved will now go off.

‘(nointerrupt nil) turns interrupts back on. Any interrupts which were
saved will now get processed. This is the normal, initial state.

The result returned from nointerrupt is the previous interrupt status - n11,
t, or tty.

Example:
((1ambda (oldstatus).
<{protected code>

(nointerrupt oldstatus))
(nointerrupt t))

1.4.3 Catalogue of User Interrupt Channels

Each user interrupt channel (except some associated with files) has a variable whose
value is a functional form, the service function for that channel. The name of the

~ interrupt channel is the same as the name of the variable. The following lists the user

interrupt channels in alphabetical order. The argument to which the service function is
applied and the value which it should return are described. By convention, almost all
service functions receive one argument. Some user interrupts are initially set to a
system-supplied handler which binds.the variable args to this argument and enters a
break loop. The name of the interrupt is used as the break identifer.

Some user interrupts ignore the value returned by the service function, while others .

August 3, 1978 $3-1.4.2 Page 3-19

Maclisp Reference Manual

distinguish two cases. If the value is atomic, the service function was not able to recover
from the condition that caused the interrupt. LISP will take its default action, such as
returning control to the most recent errset. If the value is a list, the car of that list is
used to recover from the condition that caused the interrupt. It is usually a new piece of
data to be used in place of the one that was being complained about, or a new form to be
evaluated in place of the form that erred.

If the value of the service-function variable is ni1 instead of a functional form, the
user interrupt is considered to be turned off. The system behaves as if the function had
run and returned nil.

Some user interrupts are asynchronous in nature, and are executed in
(nointerrupt t) mode to prevent timing errors. The interrupt handler may choose to
run in (nointerrupt nil) mode, however, as the initial ~“b handler does. The
nointerrupt mode is restored after the handler is run. Such mterrupts are themselves

deferred by (nointerrupt t) mode.

. alarmclock VARIABLE

The value of alarmclock is the service function for the user interrupt signalled when a

timer set up by the alarmclock function goes off. The argument is the name of the
timer which went off, time or runtime. The returned value is ignored. The service
function is executed in (nointerrupt t) mode. This interrupt is initially turned off.

autoload VARIABLE

The value of autoload is the service function for the user interrupt which provides
automatic loading of program packages into the environment. The argument is
(function-name . autoload-property). The returned value is ignored. See page 3-26 for
details. This interrupt is initially set to a function which simply loads a file.

cli-message VARIABLE

The value of cli-message service handler for the user interrupt signalled when
another job has interrupted the LISP job via the CLI device. The argument is ni1 and
the returned value is ignored. A user handler is expected to open a file on the CLA
device and read the message from the other job. The service function is run in
(nointerrupt t) mode. This interrupt is initially turned off. Currently, it exists only
in the ITS Newio implementation.

Page 3-20 33-1.4.3 August 3, 1978

The System

errset VARIABLE

The value of errset is the service function for the user interrupt which is signalled
when an error is caught by an errset and xrset is non-nil. The argument is ni1l
and the returned value is ignored. This user interrupt is initially off. Turning it on

affects the behavior of the error system (see page 3-16).

fail-act VARIABLE

The value of fail-act is the service function for the user interrupt which is signalled

when any of a large variety of miscellaneous error conditions occurs. The argument is a
list whose first element is generally a symbol which describes the type of error condition.
The rest of the list contains various objects related to the error. The returned value
depends on the error. These are not standardized and will not be described here. This
interrupt is initially set to a break loop.

gc~daemon , VARIABLE

The value of gc-daemon is the service function for the user interrupt which is signalled
after each garbage collection. The argument is a list of items; in the PDP-10

implementation each item is of the form (space-name free-before free-after size-before
size-after) and in the Multics implementation, each item is of the form (space-name
free-before . free-after). The returned value is ignored. This interrupt is initially

turned off.

gc-lossage "~ VARIABLE

The value of gc-lbs_sage is the service function for the user interrupt which is
signalled when there is no more available address space or when the Time Sharing
Monitor rejects a request for more memory. In the Multics implementation, there is
always enough memory, so this user interrupt never occurs. In the PDP-I0
implementation the argument is the name of the space that lost, and the returned vaiue
is ignored. This interrupt is initially set to a break loop.

gc-overflow VARIABLE

The value of gc-overflow is the service function for the user interrupt which is
signalled when a space overflows its gcmax. (see alloc and (status gcmax).) The

August 3, 1978 $3-1.43 Page 3-21

-Maclisp Reference Manual

argument is the name of the space. The returned value is ignored. This interrupt is
initially set to a break loop.

io-lossage VARIABLE

The value of jo-lossage is the service function for the user interrupt which is
signalled when the I/O system encounters an error (for example, a file which was being
opened was not found). The argument is a list of the name of the function which erred
and its arguments, which may have been standardized or otherwise partially digested.
The returned value is a list of a new form to be evaluated in place of the call to the
function which erred. This interrupt is initially set to a break loop.

machine-error VARIABLE

The value of machine-error is the service handler for the user interrupt signalled
when some difficulty is experienced by the host machine. The service function receives
four arguments instead of one. The first is an atomic symbol indicating the type of
error: ‘

eval : illegal machine operation

examine ' attempt to reference non-existent memory
deposit attempt to write into read-only memory
oddp parity error

The other three arguments are fixnums which are addresses of memory locations. The
second is the location of the error; the third is the program counter when the error
occurred; and the fourth is the JPC (the program counter as of the last jump
instruction before the error occurred). The machine-error handler may signal a
different kind of error or a *g quit (see the “g function) if desired, or enter a break
loop. The subr function (see page 3-10) may be useful in decoding the three fixnum
arguments. If the handler returns, the value is ignored and the erroneous operation is
retried. If the user provides no machine-error handler (the interrupt is initially
turned off), the error is handled in the default manner for the host machine. On ITS,
this puts the user in DDT. This currently exists only in the PDP-10 Newio
implementation.

Example:

Page 3-22 23-143 ~ August 3, 1978

C

The System

(defun machine-error-handier (type loc pc jpc)
((l1ambda (args terpri)
(declare (special args terpri))
(terpri msgfiles)
{cond ((eq type “examine)
(princ /| ;REFERENCE TO NON-EXISTENT
MEMORY| msgfiles))
((eq type “deposit)
(princ 7[;WRITE INTO READ-ONLY MEMORY|
msgfiles))
((eq type “eval)
(princ 7| ;ILLEGAL MACHINE OPERATIONI
msgfiles))
((eq type “oddp)
(princ 7| ;MEMORY PARITY ERROR|

msgfiles))
(t (princ 7| ;UNKNOWN MACHINE ERROR]|
msgfiles)))
(princ 7| FROM LOCATION | msgfiles)

(princ pc)
(princ 7| IN FUNCTION | msgfiles)
{prinl (subr pc))
(break machine-error))
(list type loc pc jpc)
t))

mar-break VARIABLE

The value of mar-break is the service handler for the user interrupt signalled when the
memory location specified by (sstatus mar) (see page 3-95) has been accessed in the
specified manner. The argument is ni1 and the returned value is ignored. The service
function is run in (nointerrupt t) mode. Also, LISP implicitly performs (sstatus
mar 0 nil) before running the user interrupt; this helps to prevent infinite loops. This
interrupt is initially turned off. It currently exists only in the ITS Newio
implementation. See page 3-55 for more information on usmg this interrupt.

 August 3, 1978 $3-1.4.3 Page 3-23

Maclisp Reference Manual

pdi-overfiow " VARIABLE

The value of pdl-overflow is the service function for the user interrupt which is
signalled when a pushdown list exceeds its pdimax. (see alloc and (status .
pdimax).) The argument is the spacename of the pushdown list. The returned value is
ignored. This interrupt is initially set to a break loop.

sys-death : VARIABLE

The value of sys-death is the service handler for the user interrupt signalled when the
time-sharing system is about to go down, has been revived from that state, or is being
debugged. The argument is nil and the returned value is ignored. A user handler
may wish to examine the result of (status its) to determine the state of the system.
The service function is run in (nointerrupt t) mode. This interrupt is initially
turned off. This currently exists only in the ITS Newio implementation.

tty-return: VARIABLE

The value of tty-return is the service handler for the user interrupt signalled when
- control of the terminal is returned to the LISP job by its superior. This allows LISP to

determine that the display screen may have been changed by other jobs. The argument is

nil and the returned value is ignored. The service function is run in (nointerrupt
t) mode. This interrupt is initially turned off. This currently exists only in the ITS
Newio implementation.

unbnd-vrbl VARIABLE

The value of unbnd-vrbl is the service function for the user interrupt which is
signalled when an attempt is made to evaluate an atomic symbol which does not have a
value (an unbound variable) The argument is a list of the symbol which could not be
evaluated. The returned value is a list of a new symbol to be evaluated in its place.
This interrupt is initially set to a break loop. '

undf-fnctn " VARIABLE

The value of undf-fnctn is the service function for the user interrupt which is

signalled when an attempt is made to apply an undefined function. The argument is a
list of the functional form which could not be applied. The returned value is a list of a
new functional form to take its place. This interrupt is initially set to a break loop.

Page 3-24 - 23-1.4.3 - August 3, 1978

The System

unseen-go-tag VARIABLE

The value of unseen-go-tag is the service function for the user interrupt which is '

signalled when go or throw is used with a tag which does not exist in the current prog
body or in any catch, respectively. The argument is a list of the erroneous tag. The
returned value is a list of a new tag to replace it. This interrupt is initially set to a
break loop.

- wrng-no-args - VARIABLE

The value of wrng-no-args is the service function for the user interrupt which is
signalled when a function is called with the wrong number of arguments. The
argument is a list of two items: First, a list of the function and the arguments that were
passed. Second, the 1ambda-list if the function was interpreted, or the same dotted pair
as args returns if the function was compiled, or the atom ? if this information could not
be determined. The returned value is a list of a new form to be evaluated in place of the
losing one. This interrupt is initially set to a break loop.

wrng-type-arg VARIABLE

The value of wrng-type-arg is the service function for the user interrupt which is
signalled when an argument is passed to a system function which is not acceptable to
that function. The argument is a list of the argument which was not accepted. The
returned value is a list of a new argument to replace it. That is, directly an argument,
not a form to be evaluated to get an argument. This interrupt is initially set to a
break loop.

xrset-trap VARIABLE

The value of xrset-trap is the service function for the user interrupt which is
signalled when an error returns control to top level, just before the bindings are restored.
By convention, the handler for this interrupt should not do anything unless the variable
*rset is non-nil. This is so that the user will not be bothered unless he has put LISP
in debugging mode. The argument is nil1 and the returned value is ignored. This
interrupt is initially set to a function which enters a break loop if %*rset is non-ni1.

There are other'interrupt handlers which are associated with 1/O files or inferior
jobs. See eoffn, endpagefn, (sstatus ttyint), and create-Jjob.

August 3,1978 $3-1.4.3 Page 3-25

Maclisp Reference Manual -
1.4.4 Autoload

The autoload feature provides the ability for a function not present in the
environment to be automatically loaded in from a file the first time it is called. When
eval, apply, funcall, or the version of apply used by compiled LISP searches the
property list of an atom looking for a functional property, and fails to find one, it looks
for a property under the indicator autoload, and it it finds one, automatic loading will
occur.

Automatic loading is performed by means of the autoload user interrupt; thus the
user may assert any desired degree of control over it. When the autoload property is
encountered, the user interrupt handler is called with one argument, which is a dotted
pair whose car is the atomic symbol which is the function being autoload’ed, and whose
cdr is the value of the autoload property. The system-supplied handler for this user
interrupt could have been defined by:

(setq autoload .
(function (lambda (x) (load (cdr x)))))

From this one can see that the value of the autoload property should be the name of the
file which contains the definition of the function. Note: .in the TOPS-10
implementations the system autoload handler presently uses fasload rather than load
because the Tload function requires the Newio feature. This affects the form of an
autoload property. - ' o
When the interrupt handler returns, it should have put a functional property on the
property list of the function being autoloaded. If not, an undf-fnctn error will occur
with a message such as "function undefined after autoload.”
Examples of setting up functions to be autoloaded:
In the Multics implementation:
(putprop “foo " >udd>AutoProg>Libr‘ary)foo-function" “autoload)
In the PDP-]0 Oldio implementation:
{putprop “foo “(foo fasl dsk me) Zautoload)
In the PDP-10 Newio implementation:

(putprop “foo “((dsk me) foo) “autoload)

Page32%6 23-1.4.4 | August 3, 1978

The System

or (putprop “foo “|dsk:me;foo fasl} “autoload) or the Oldio version also
works.) ‘

August 3, 1978 83-1.4.4 o Page 3-27

Maclisp Reference Manual

1.5 Debugging

1.5.1 Binding, Pdl Poihters, and the Evaluator

The Maclisp evaluator is based on a push down list (pd1), or stack, which holds
bindings, evaluation frames, and sundry internal data. Bindings are values of atomic
symbols which are saved when the synibols are used as 1ambda variables, prog variables,
or do variables. Evaluation frames are constructed when a non-atomic form is evaluated
or when apply is used. They correspond to function calls.

As the evaluator recursively evaluates a form, information is pushed onto the pd1l
and later popped off. When the xrset and nouuo flags are t this information is
sufficiently detailed to be of use in debugging. (See the variables xrset and nouuo in
the next section.)

A position within the pd1 may be named by means of a "pd1 pointer”, which is a
negative fixnum whose value has meaning to the evaluator. nil is also accepted as a
pd1 pointer; it means the top of the stack, i.e. the most recent evaluation. Note that this
is different from nil as a binding context pointer, which means the bottom of the stack
or the outermost evaluation. 0 is also accepted as a pd1 pointer; it designates the frame
at the bottom of the stack. Pd1 pointers may be used as arguments to several debugging
functions described in the next section. Since the fixnum value of a pd1 pointer has only
internal meaning, generally a pd1 pointer cannot be obtained from user input, except by
the user typing in a pdl pointer chosen from a list of pd1 pointers typed out at him.
The "frame” functions described in the next section may be used to obtain pd1 pointers.

An important thing to note about pd1 pointers is their limited scope of validity. If

the information on the pd1 which is named by a pdl pointer has been popped off since
the pd1 pointer was created, the pd1 pointer no longer has valid meaning.

1.56.2 Functions for Debﬁgging

xrset SUBR 1 arg

(xrset x) sets the xrset switch to ni1if x is ni1, or to t if x is non-ni1,
and returns the value it set it to. (See below). This function exists primarily for
user typing convenience. '

Page 328 33-1.5 o August 3, 1978

RY

w ' The System

*(set. ' SWITCH

If the xrset switch is non-nil, extra information is kept by the interpreter to
allow the debugging functions, such as baktrace and evalframe, to work. In
addition, the interpreter will make extra checks such as checking the number of
arguments passed to a subr or Isubr and checking that array subscripts lie within
the declared bounds. Generally, the xrset switch being -on means "I am
debugging”; this is known as "xrset mode". The initial state of the switch is
nil -

nouuo - SUBR 1 arg
(nouuo t) sets the nouuo switch.
(nouuo nil) turns off the nouuo switch. (This is the initial state.)

nouuo returns t or nil according to whether it turned the nouuo switch on or
off. (See below.) This function exists primarily for user typing convenience.

0) nouuo SWITCH

If the nouuo switch is on, function calls made by compiled functions: to
compiled functions or system functions are forced to go through the interpreter
each time. This aids in debugging. If the nouuo switch is off, which is the
normal case, compiled calls can be made to go directly, which is much faster.

The nouuo switch may be turned off at any time. Each compiled function call
will only go through the interpreter once more, at which time it will be linked
directly. If the compiled code has been reloaded into the system with the PURE
option (see page 3-7I) then this direct. link may be unsnapped and the Interpreter
route re-established by (sstatus uuolinks). Because the PURE option-reqmres
an amount of extra space and time, it is not normally on; thus links snapped in
code loaded as non-PURE cannot be unlinked.

~ The trace package turns this switch on when a function is traced, in order to
ensure that tracing will work even for compiled functions. Compiled function
calls which have been "snapped” to go directly do not push debugging information
in xrset mode and cannot be traced. See also (status uuolinks). '

C

August 3, 1978 83-1.5.2 . Page 3-29

Maclisp Reference Manual

baktrace " LSUBR 0 to 2 args

baktrace displays the stack of pending function calls. It gives detailed
information only in (xrset t) mode. The first argument is a pd1 pointer, as
with evalframe. If it is omitted, ni1 is assumed, which means start from the top
of the pd1. The second argument is the maximum number of lines to be typed; if
it is omitted the entire stack is displayed. (The second argument is currently
permitted only in the Muiltics implementation.) The information printed by
baktrace is not the same as that obtained with evalframe; both should be used
to get the maximum amount of debugging information.

baklist - LSUBR 0 to 1 arg

baklist returns a list containing the information which baktrace would
print. (This is available only on the PDP-10 implementations.)

errframe SUBR 1 arg

errframe returns a list describing an error which has been stacked up
because of a user interrupt. The list has the form (err pdlptr message bcp),
where pdiptr is a number which describes the location in the pdl of the error,
message is a list of from one to three things which, given to the error function,
could have caused this same error, and bcp (binding context pointer) is a number
which can be used as a second argument to eval or a third argument to apply to
cause evaluation using the bindings in effect just before the error occurred.

The argument to errframe can be nil, which means to find the error at the
top of the stack; i.e. the most recent error. It can also be a pd1 pointer, in which
case the stack is searched downward from the indicated position. Thus if there
are recursive calls to the error handler, the second error back down the stack may
be found by: - :

(errframe (cadr (errframe nil)))
The argument to errframe may also be a positive number, which is the
negative of a pd1 pointer. This means start from the position in the stack marked

by the pd1 pointer and search upwards.’

If no error is found, errframe returns nil.

Page 3-30 o #3152 . August 3, 1978

The System

errprint LSUBR 1 to 2 args

errprint treats its argument the same as errframe. The second argument,
in Newio implementation only, is the file(s) into which to print the information
(see print). The message portion of the error frame is princ'ed. errprint
returns t if a message was typed out and nil if no error frame was found.

evalframe SUBR 1 arg

The argument to evalframe is a pd1 pointer, as with errframe. The pd1 is
searched for an evaluation of a function call, using the same rules about starting
point and direction as errframe uses. evalframe always skips over any calls to
itself that it finds in the pd1.

- The value is a list (type pdiptr form bcp), where type is eval or apply,
pdiptr is a pd1 pointer to the evaluation in the stack, suitable for use as an
~ argument to evalframe or errframe or baktrace, form is the form being
~evaluated or a list of the name of the function being applied and the arguments it
was applied to, and bcp is a binding context pointer which can be used with eval
to evaluate something in the binding context just before the evaluation found by
evalframe. ‘

evalframe returns nil if no evaluation can be found.

evalframe only works in (xrset t) mode, since no extra frame information
is saved otherwise.

fretur'n SUBR 2 args

(freturn p x) returns control to the evaluation designated by the pd1
pointer p, and forces it to return x. This "non-local-goto” function can be used to
do fancy recovery from errors.

evalhook VARIABLE

If the value of evalhook is non-null, then special things happen in the
evaluator. When a form (even an atom) is to be evaluated, evalhook is bound to
nil and the functional form which was its value is applied to one argument - the
form that was trying to be evaluated. The value it returns is then returned from

August 3, 1978 3-1.5.2 Page 3-31

V ‘Maclisp Reference Manual

the evaluator. This feature is used by the Stepper package described later in this -
section.

evalhook is bound to nil by breék and setged to nil by errors that go
back to top level and print x. This provndes the ability to escape from this mode if
something bad happens. :

In order not to impair the efficiency of the LISP interpreter, several
restrictions are imposed on evathook. It only applies to evaluation - whether in a
read-eval-print loop, internally in evaluating arguments in forms, or by explicit
use of the function eval. It does not have any effect on compiled function
references, on use of the function apply, or on the "mapping” functions. Also, as
a special case, the array reference which is the first argument to store is never
seen by the evalhook function; however, the subexpressions of the array reference
(the indices) will be seen. (This special treatment avoids a problem with the way
store works.) Normally the evaluator does not check the value of evalhook, in
order to save time. To make it check, you must both be in (xrset t) - debugging
- mode, and have done (sstatus evalhook t). Not all implementations need
both of those, but you should always do both to be sure. If you use the Stepper
package, you need not worry; it does this automatically.

evalhook : LSUBR 2 or 3 args

(evalhook form hook) is a function which helps exploit the evalhook
feature. The form is evaluated with evalhook lambda-bound to the functional
form hook. The checking of evalhook is bypassed in the evaluation of form
itself, but not in any subsidiary evaluations, for instance of arguments in the
form. This is like a "one-instruction proceed” in a machine-language debugger.
If all three arguments are present, the second is a binding context pointer and is
used as the second argument to eval, and the third argument is the hook.

Example:

Page 3-32 : , -33-1.5.2 - August 3, 1978

The System

(defun hook fexpr (x) ;called as (hook <form>)
((lambda (xrset)
(prog2 (sstatus evalhook t)

;magic sstatus

(evalhook (car x) “hook-function)
;evaluate form

(sstatus evalhook nil)))
;more magic

t))

(defun hook-function (f)
((1ambda (terpri)
(declare (special terpri))
(princ 7|form: | msgfiles)
(prinl f msgfiles)
((1ambda (v) ' .
(terpri msgfiles
~ (princ “jvalue: | msgfiles)
(prinl v msgfiles) ‘
v) ' .
(evalhook f “hook-function)))
t)) |
;this is how to eval the
; form so as to hook
; sub-forms

The following output might be seen from (hook (cons (car “(a . b))
‘c): '

form: (cons (car (quote (a . b))) (quote c))
form: (car (quote (a . b)))

form: (quote (a . b))

value: {(a . b)

value: a

form: (quote c)
value: ¢

value: (a . ¢c)
(a . c)

The following functions only exist in the Multics implementation.

August 3, 1978 83-1.5.2 ' ’ Page 3-33

Maclisp Reference Manual

baktracel ~ LSUBR 0 to 2 args
baktracel is the same as baktrace except that binding context pointers
suitable for use with eval and apply are displayed along with the function
names.
baktrace?2 ~ LSUBR 0 to 2 args
baktrace2 is the same as baktracel except that pd1 pointers, suitable for

use with baktrace and evalframe, are displayed along with the function names
and binding context pointers. ‘

Page 3-34. » 83-1.5.2 : 'August 3, 1978

O

The System

1.5.8 The Trace Package

~ The LISP trace package provides the ability to perform various actions at the time a
function is called and at the time it returns. This can be used for traditional tracing or
for more sophisticated debugging actions.

The trace package is not part of the initial environment; however, it is automatically
loaded in on the first reference to the function trace. (See autoload.)

The LISP trace package consists of three main functions, trace, untrace, and
remtrace, all of which are fexprs.

A call to trace has the following form:
(trace trace_specs)

A trace_spec in turn is either an atom (the name of the function to be traced) or a list:
(function-name optionl option2 ...)

where the options are as follows:

break pred causes a break after printing the entry trace (if any) but before
applying the traced function to its arguments, if and only if pred
evaluates to non-nil.

cond pred causes trace information to be printed for function entry and/or exit
if and only if pred evaluates to non-nil.

wherein fn causes the function to be traced only when called from the specified
function fn. The user can give several trace specs to trace, all
specifying the same function but with different wherein options, so
that the function is traced in different ways when called from
different functions. Note that if fn is already being traced itself,
the wherein option probably will not work as desired. (Then again,
it might.) Note that fn may not be a compiled function.’

" argpdl pd! specifies an atom pdl whose value trace initially sets to ni1. A list

of the current recursion level for the function, the function’s name,
and- a list of the arguments is cons'ed onto the pd! when the
function is entered, and cdr'ed back off when the function is exited.
The pdl can be inspected from a breakpoint, for example, and used
to determine the very recent history of the function. This option can

August 3, 1978 $3-1.5.3 - Page 3-35

entry list

exit list

arg
value
both
nil

Maclisp Reference Manual

be ‘used with or without printed trace output. Each function can be
given its own pdl, or one pdl may serve several functions.

specifies a list of arbitrary S-expressions whose values are to be
printed along with the usual entry-trace. The list of resultant
values, when printed, is preceded by a \\ to separate it from the
other information.-

similar.to entry, but specifies expressions whose values are printed
with the exit-trace. Agam the list of values printed is preceded. by

\\.

specify that the function’s arguments, resultant value, both, or
neither are to be traced. If not specified, the default is both. Any
“options” following one of these four are assumed to be arbitrary S-
expressions whose values are to be printed on both entry and exit to
the function. However, if arg is specified, the values are printed
only on entry, and if value, only on exit. Note that since arg,
value, both, and nil swallow all following expressions for this
purpose, whichever one is used should be the last option specified.
Any such values printed will be preceded by a // and will follow
any values specified by entry or exit options.

If the variable arglist is used in any of the expressions given for the cond,
break, entry, or exit options, or after the arg, value, both, or nil option,
when those expressions are evaluated the value of arglist will effectively be a list of
the arguments given to the traced function. Thus

(trace (foo break (null (car érglist))))

would cause a break in foo if and only if the first argument to foo is ni1l.

Similarly, the variable fnvalue will effectively be the resulting value of the traced
function. For obvious reasons, this should only be used with the exit option.

~ The trace specifications may be "factored.” For example,

is equivalent to

(trace ((foo bar) wherein baz value))

(trace (foo wherein baz vajue) (bar wherein baz Value))

Page 3-36

#3-1.5.3 | August 3, 1978

The System

All output printed by trace can be ground into an indented, readable format, by
simply setting the variable sprinter to t. Setting sprinter to nil changes the
output back to use the ordinary print function, which is faster and uses less storage but
is less readable for large list structures.

Examples of the use of trace:

(1) To trace function foo, printing both arguménts on entry and result on exit:
{trace foo)

or (trace (foo)) or (trace (foo both)).

(2) To trace function foo only when called from function bar, and then only if
(cdr x)is nil: :
(trace (foo wherein bar cond (null (cdr x))))

or (trace (foo cond (null (cdr x)) wherein bar))

As this example shows, the order of the options makes no difference, except for arg,
C“ value, both, or nil, which must be last.

(3) To trace function quux, printing the resultant value on exiting but no
arguments on entry, printing the value of (car x) on entry, of fool, foo2, and
(foo3 bar) on exit, and of zxcvbnm and (qwerty shrdlu) on both entry and
exit:

(trace (quux entry ((car x)) exit (fool foo2 (foo3 bar))
both zxcvbnm (gwerty shrdlu)))

(4) To trace function foo only when called by functions bar and baz, piinting
args on entry and result on exit, printing the value of (quux barf barph) on exit
from foo when called by baz only, and conditionally breaking when called by bar if
a equals b: .

(trace (foo wherein bar break (equal a b))
. (foo wherein baz exit ((quux barf barph))))

(5) To trace functions phoo and fu, never prihting anything for either, but

saving all arguments for both on a common pdl called foopdl, and breaking inside
phoo if x is nil:

l U) August 3, 1978 , $3-1.5.3 A Page 3-37

Maclisp Reference Manual

(trace (phoo argpdl foopdl break (null x) cond nil nil)
(fu argpdl foopdl cond nil nil))

The "cond nil" prevents anything at all from being printed. The second ni1
in each trace spec specifies that no args or value are to be printed; although the cond
nil would prevent the printout anyway, specifying this too prevents trace from
even setting up the mechanisms to do this.

trace returns as its value a list of names of all functions traced; for any
functions traced with the wherein option, say (trace (foo wherein bar)),
instead of returning just foo it returns a 3-list (foo wherein bar). If trace
finds a frace spec it doesn't like, instead of the function’s name it returns a list
whose car is ? and whose cdr is an error message. The error messages are:

(? wherein foo) trace couldn’t find an expr, fexpr, or macro property for the
function specified by the wherein option.

(? argpdl foo) The item following the argpdl option was not a non-nil atomic
symbol. :

(? foo not function) Indicates that the function specified to be traced was non-
atomic, or had no functional property. (Valid functional properties
are expr, fexpr, subr, fsubr, 1subr, and macro.)

(? foo) foo is not a valid option.

Thus a use of trace such as

(trace (foo wherein (nil)) (bar argpdl nit))
would return, without setting up any traces,
((? wherein (nil)) (? argpdl nil))

If you attempt to specify to trace a function already being traced, trace calls
untrace before setting up the new trace. If an error occurs, causing (? something) to
. be returned, the function for which the error occurred may or may not have been
untraced. Beware!

- It is possible to call trace with no arguments. (trace) evaluates to a list of all

the functions currently being traced.

Page 3-38 | . $3-153 | August 3, 1978

W‘T'WQ
-)

C

The System

untrace is used to undo the effects of trace and restore functions to their normal,
untraced state. The argument to untrace for a given function should be what trace
returned for it; ie. if trace returned foo, use (untrace foo); if trace returned
(foo wherein bar) use (untrace (foo wherein bar)). untrace will take
multiple specifications, eg. (untrace foo ‘quux (bar wherein baz) fuphoo).
Calling untrace with no arguments will untrace all functions currently being traced.

remtrace, oddly enough, expunges the entire trace package. It takes no arguments.

August 3, 1978 $3-1.5.3 . Page 3-39

Maclisp Reference Manual

1.56.4 The Stepper

The LISP "stepping” package is intended to give the LISP programmer a facility
analogous to the Instruction Step mode of running a machine language program.

The Rich Stepper

The Rich stepper package provides a simple, small debugging capability. It is -

available as a library program in the ITS implementation.

How to Use the STEP Facility

The package contains two compiled functions which are loaded by
(fasload step fasl dsk libisp)

The user interface is through the function (fexpr) step, which sets switcheS to put the
LISP interpreter in and out of "stepping” mode. The basic commands are:

(step t) ; Turn on stepping mode.
(step nil) i Turn off stepping mode.

These commands are usually typed at top level, and will take effect immediately (i.e. the
next S-expression typed in will be evaluated in stepping mode). Also “g, in addition to
_ returning to top level, turns off stepping mode:

In stepping -mode, the LISP evaluator will print out each S-expression to be
evaluated before evaluation, and the returned value after evaluation, calling itself
recursively to display the stepped evaulation of each argument, if the S-expression is a
function call. After displaying each S-expression, the evaluator will wait before
evaluation for a command character from the console:

<space> Continue stepping recursively.

<rubout> : Show returned value from this level only, and continue
stepping upward. o

<cr> or <tab> Turn off stepping mode. (but continue evaluation without
stepping). _ »

Page 3-40 | © 33-154 o August 3, 1978

The System

P - " Redisplay current form in full (i.e. without prinlevel
- or prinlength)

B Get breakpoint; proceed with $P
M See advanced features under Stepping Macro

Expansions.

More Advanced Features

Selectively turning on step:
(step fool foo2 ...)

If this command is typed at top level, stepping will not commence immediately, but rather
when the evaluator first encounters a S-expression whose car is one of fool, foo2, etc.
This form will then display at the console, and the evaluator will be in stepping mode
waiting for a command character. '

Stepping Macro Expansions:

If the stepper is pfoceeded with a <space>, it will not step the execution of macro
expansions, but will rather just show the result of the macro of expansion and wait for
another command.

To see the execution of the macro expansion itself, proceed the stepper with an M
instead of a <space>.

Using step with breakpoints:

The above description applies to turning stepping on and off globally at top level.
More detail is necessary to use step flexibly in and out of breakpoints (e.g. together
with trace).

If stepping is turned on by (step t) at top level, the evaluator will NOT be in
stepping mode within a breakpoint loop. If you wish to use stepped evaluation within a
break loop you must turn it on locally by (step t). Conversely, if stepping was not
turned on at top level and it is turned on by (step t) in a break loop, it will NOT be
on when return is made from the break loop by $P. -

However, executing (step nil) inside a break loop will turn off stepping globally,
i.e. within the break loop, and after return has be made by $P.

August 3, 1978 ' 83-1.5.4 Page 3-41

Maclisp Reference Manual

The most useful feature is the following, however:
h(step) Command at top level has no immediate effect.

After (step) has been executed at top level, a subsequent (step t) inside of a
break loop will have the effect of turning-on stepping mode both inside the break loop
and globally, i.e. the evaluator will start to step as soon as the return is made from the
break loop by 8P. Thus, for instance, one could set trace to break at some special place,
and then use the break to turn on stepping.

prinlevel and prinlength:

In the present version, for convenience, prinlevel and prinlength are lambda-
bound inside the hooking function to 3 and 5 respectively. These could be changed by
editing the expr code and recompiling.

When the P command is used, prinlevel and prinlength are temporarily bound
to nil, and the toplevel printer (the value of atom prinl) is used to redisplay the
current form. :

Overhead of Stepping:

If stepping mode has been turned off by “g, the execution overhead of having the
stepping packing in your LISP is exactly nil.

If stepping mode has been turned off by (step nil, every call to eval incurs a
small overhead--several machine instructions, corresponding to the compiled code for a

simple cond and one function pushdown..

From an overhead point of view, running with (step) entered at top level is the
'same as running with (step nil).

Stopping stepping by responding <tab> incurs the same continued overhead as
(step nil). :

Running with (step fool foo2 ...) can be more expensivé, since a member of

the car of the current form into the list (fool foo2 ...) is required at each call to
eval

In terms of memory requirements, the total compiled steppmg package occupies about
423 words of binary program storage.

lnteraction with debug and trace:

Page 342 | #3-1.5.4 © August3, 1978

The System

No special interactions of the step package with debug, trace, or any other system
packages are known.

The Morgenstern Stepper

The Morgenstern Stepper package provides debugging capabilities for interpreted
LISP programs that are comparable to the capabilities provided by DDT for assembler
code. These capabilities include:

1) Single stepping through the evaluation of a function and over or into other
interpreted f unctions, when called, on a selective basis as determined by the user.
Each such form and its resulting value may be displayed.

2) Dynamic breakpointing on one or more of the following conditions: the form or atom
about to be evaluated matches a pattern you provide; the form being evaluated
involves a specified function; a given atomic symbol evaluates to a given value; a
given atomic symbol is to be bound in a prog, either type of do, or an evald
Tambda-expression; or upon an arbitrary condition specified by a predicate written
as LISP code. '

3) Returning a different value for a given S-expression. This allows for changing the
action that would be selected by conditionals in the program and/or by go’s in a
prog or do. You can also go to any tag inside the current prog.

4) These capabilities may be requested when the program is initially started by a top-
level form, or they may be initiated at any other point in the course of execution -
either from the terminal while in a breakpoint, or directly by the program.

The stepper may be invoked initially by using the function mev as one would use
eval of one argument; eg. (mev “(fcn argl arg2)). From a breakpoint or in a
program, the stepper may be turned on by invoking (hkstart) with no arguments. It
may be turned off by the g command described below, or of course by a CTRL/g break.
After mev evaluates its argument, it returns the value and turns off the stepper. Note
that in the above example the form given as an argument to mev was quoted. If, say, the
value of f was the S-expression (fcn argl arg2), then one could use (mev f)
instead.

At any point during the stepping, one may inspect the values of other variables, and
even reapply mev to any form. This may be done in either of three ways. Each command

August 3, 1978 . #3-1.54 , Page 3-43

Maclisp Reference Manual

will be prompted for by //, usually following the last form printed out. Any S-

expression that is typed which is not recognized as a command will be eval’d (within an

errset to catch errors). Alternatively, the e command to eval any expression, or the h

command to get a nice type of CTRL/h break. (This is really a CTRL/b break, but it
used to be CTRL/h so the command happens to be called h.)

in the its implementation each command must be followed by a space (unless the
command is a list). in the multics implementation each command must be followed by a
newline. actually, this depends not on the implementation but on (status 1inmode).
each form and result which is printed out will be followed by.#number indicating the
relative level of evaluation (i.e. stack depth since invocation).

the primary commands are:

d (mnemonic for down) go down to the next deeper level of evaluation and display the
first form there before evaluating it. eg. if the form is a function call, this will
display the first argument of the function if it has arguments in the call; otherwise
it will display the first s-expression of the body of the function. it then prompts for
the next command.

e (eval) can be used to evaluate an arbitrary expression. it starts a new line, waits
" for you to type the expression, then evals it within an errset, and prints the
result. this is comparable to just typing the expression or atom after the //, but
cannot be confused with a command, and the format is nicer.

h (control-h) enters a break loop, and when $p'ed displays the current form. within the
break,‘one can inspect the values of variables, etc, and even reapply mev to any
form.

n (next) Display the next form at this level, without showing or inspecting the

evaluation of the lower levels of the current form. The value of the current form is
displayed first. If you wish a condition to be tested for at lower levels, use nn
instead. - ,

nn Like n but slower smce it inspects the Iower levels. Use instead of n when testing for
a condition.

u (up) Go up to the next higher level of evaluation and show the next form at that
level. The form(s) at the current and lower levels are evaluated without display. As
an example of its use, after you have seen the evaluation of the arguments to a
function, the next form to be evaluated, if the function is being interpreted, will be
the first S-expression of the function; to avoid seeing how the function is evaluated

Page 3-44 3-1.5.4 August 3, 1978

The System

internally, you can type u. Note that the lower levels are not inspected - thus if a
condition is to be tested for at these levels, use uu.

(u num) If num is positive (or zero), forms are not inspected nor displayed until level

num is returned to. If negative, it goes up (abs num) levels relative to the current
level. Thus (u -1) is equivalent to u.

uu Like u but slower. Use if testing for a condition.
(uu num) Like (u num) but slower. Use if testing for a condition.
q (quit) Exit from the stepper.

s (show or display mode) For datapoints and other display terminals, this gives a nice

easily read output of selected levels that constitute the context of the current
evaluation. Specifically, it selects the current level for sprint’ing (pretty printing)
as a "header”, and as you go deeper, the local context is abbreviate-printed under this
header, and the current output will be sprint'ed. s may be used as often as you
like. Headers will automatically be popped when you return. The command (s
num) selects a particular level as a header. It and the command sn and several
user settable parameters are described in the more detailed section below.

(= s-exp) The S-expression is substituted for the current form and another command is

prompted for (i.e. you can step into or over the new form if you want to). When the
resulting value is returned it will be as if the original form had yielded that value.
For example, you can change the apparent truth or falsity of predicates or bypass a
(go label), as well as just returning different values for an S-expression.

(cond ...) Tests for conditions prior to evaluation of each future form, and when

satished will print a message, display the form, .and wait for another command
(which may of course be h for a break). The argument to this cond is an arbitrary
S-expression or symbol which is evaluated like a predicate. This is similar to the
cond feature of the trace package.

In specifying the predicate, the form about to be evaluated may be obtained as the
value of the variable %%form. The expression (hooklevel) returns the relative
level of evaluation. More than one predicate may be given, in which case they are
or'ed together, except when two arguments form a special test as described in the
more detailed section below. The condition will remain active at all levels that are
inspected by the stepper until explicitly turned off by (cond nil).

(matchf ...) is a function which will pattern match against the current form. It

August 3, 1978 33-1.5.4 Page 3-45

Maclisp Reference Manual

may be used in the predicate of the cond. (Also see its related use as a command.)
The argument to matchf is compared to %%form element by element from left to
right, and succeeds when each element of. the pattern succeeds. Of importance, the
pattern need not include the entire form. % matches anything. The procedure is
applied recursively to sublists, unless the sublist is of the form (# ...) in which
case # is bound to the current element of %%form and the cdr (not cadr) of the #-
list is evaluated as the test on that element. Except in this case, atoms and lists
should be given as in the original code since they are not evaluated. Some simple
examples are:

(matchf xyz) succeeds if the atom xyz is about to be evaluated.
(matchf (setq alpha)) succeeds if the atom alpha is about to be setq'd.

(matchf (putprop name x “source)) succeeds if the property source is
about to be putprop'd on the atom pointed to by (ie. the value of) name.

(matchf (setq (# member # “(alpha beta s3)))) succeeds if either ‘
alpha, beta, or s3 is about to be setqd.

(matchf (rplacd x “(x 9))) matches (rplacd (last urlist) 7(2 9
4)).

(matchf ((# member # “(foo bar)))) succeeds if a function call to either
foo or bar is about to be evaluated (more precisely if the car of the form
about to be evaluated is either foo or bar).

nil (cond nil) turns the cohdition off and saves the current non-ni1 condition.

(cond) When no argument is given, the last non-nil condition (which is the old
property of %%cond) is established as the current condition (which is the value of
%%cond). (If the previous condition was not nil then it is saved as the old
property, thus allowing for alternation of two conditions.)

(matchf ...) is equivalent to (cond (matchf ...)), see above.

The following functions are useful in connection with the stepper.
(hkstart) will initiate stepping when encountered in a program or typed from a

breakpoint. (hkstop) will act like the g command to turn off stepping. (Also see below
for more ‘info.‘) :

Page 3-46 83-1.5.4 August 3, 1978

The System

(mbak) is a function to be used like the LISP system’s (bak1ist). (mbak) strips
out from the result of (baklist) those functions that have to do with the stepper.

The remainder of this section is a complete list of the Stepper commands, which can
be used for reference.

Commands which are not lists must be followed by a space. You can use rubout
before completing the command (and its space if necessary). Alternatively, you may abort
the command before completing it by doing a CTRL/x break.

Any S-expression that you type which is not recognized as a command will be
evaluated (within an errset to catch errors). Thus you can evaluate any atom or do
any function call simply by typing it following the prompting // as long as it is not
interpretable as one of the commands below (or ni1). Note that you can actually go to a
tag within your prog simply by typing (go tag) after the //. To evaluate a form
which looks like a command, type (or form) to evaluate it, eg. (or a) evaluates the
atom a. If you want you can even write functions which know about the stepper and -
treat them as commands.

a (all) Automatically displays all forms and values seen by the stepper at all levels. -
Typing a space at any time thereafter will cause the stepper to leave this mode .
and prompt for a new command. If you want the stepper to wait for a command
after each form, you can use the d command.

Commands a ad (a -) ¢ and cc pause after each new form is displayed if
%%ac-sleep is non-nil. Its value is used as the sleep time in seconds.

ad (all down) Automatically displays all forms and values encountered by the stepper
' in evaluating the current form (ie. at deeper levels). Typing a space prior to
completion will cause the stepper to leave this mode and prompt for a new
command. (Also see d) Sleeps after each form, as described under the a
command.

(a lev) Automatically displays all forms and values at the indicated level and lower
(deeper) levels, turning itself off when evaluation pops to a level with a smaller
level number. Typing a space prior to completion will cause the stepper to leave
this mode and prompt for a new command. (Also see d.) Sleeps after each form
as described under the a command.

b Sets a breakpoint to occur after evaluation of the current form. At the break, the

value to be returned is the value of %%value, and may be changed by setq'ing
this variable. The form that yielded this value is the value of %%form. Type $P

August 3, 1978 #3-1.5.4 Page 3-47

Macliép Reference Manual 0

to proceed from the breakpoint. If you prefer that the system wait rather than
break see the wtif command. (b operates by adding the current hooklevel to
%%breaklist.) You can get automatic breaking at all levels by using (retcond
t) or conditional breaking as described below for the (retcond ...) command.

¢ (current) Automatically displays all forms and values at just the current level.
Typing a space at any time during the display will cause the stepper to leave this
mode and prompt for a new command. The stepper does not inspect the forms of
lower levels - thus if a condition is to be tested for at these levels, use cc. Sleeps
after each form, as described under the a command.

cc Like ¢, but inspects the lower levels.

ctog Flips the %%condnotallow toggle which is initially t, meaning do not allow ¢, m,
n, or u commands if a condition is being tested for. nil means allow these
anyway.

(cond ...) Tests for conditions prior to evaluation of each future form. For pattern
matching against the form using the matchf function and for other information
see the description of (cond ...) above.

special tests for (cond ...): ‘ @
To aid the specification of common tests, the following "flags” are provided - the
same effects could be obtained by inspecting %%form in your own predicate given
to cond. If the first argument to the cond is from the set (form formq bind
bindg atomval atomvalq fcn fcng and andq) then the second argument is
used to derive a test. This process is repeated with the remaining arguments, if
any. The resulting tests, together with any remaining arguments not satisfying
this process, are effectively or’ed together to derive the overall condition (except for
the and andq flag special tests which are and'ed). The arguments are not
evaluated when typed but are evaluated each time the condition is tested. These |
flags each may be used more than once. ‘

The meanings of these flags are:
andq The next argument is and’ed with the remaining tests, and
~ must yield a non-nil value for the remainder of the condition
to succeed. (See the comments for cond in the "complete list of

commands” below regarding the use of side effects)

atomvalq The next argument should be a list of two elements, the first an o ‘

Page 3-48 $3-1.5.4 August 3, 19_78 . 0

_

The System

(unquoted) name of an atom, and the second the value of this
atom for the test to succeed.

bindg ~ Watch for the following (unquoted) atomic symbol to be bound
in a prog, or in either type of do, or an explicitly evaluated
Tambda (as distinct from an applied 1ambda or function call).

fcng Watch for the following (unquoted) function name to be seen by eval as the
car of the form about to be evaluated. (This cannot check for
applied or mapped function calls).

formg The following (unquoted) S-expression is to be watched for. E.g. used to
check'when a particular variable is about to be evaluated.

and These evaluate their argument each time the condition is tested in
bind order to get the desired S-expression or atom name, and then perform
fcn like their "q" counterparts. These are particularly useful if the flag’s

form argument is the value of a variable. (Be sure not to change the

atomval variable's value accidentally while the condition remains in effect.)

As a simple example, (cond fenq rplacd) will check and stop when the function
rplacd is about to be used (ie. when it is the the car of the
O form to be evaluated).

The commands ¢, m, n, and u do not inspect all levels, and thus the condition
cannot be tested for at these levels. You can use cc, nn, mm, or uu instead, or use
the ctog command. Naturally, condition testing slows the speed of execution at
levels that are inspected by the stepper but which you do not have displayed.

If you choose to, you can have your predicates produce side-effects such as
recording information of value to you or setting states for use by the condition
later. You can use the and, andq flags (more than once if you like) to have the
expressions executed even upon success, so long as these flags appear first in the
condition. Other conditions are evaluated in the order of appearance until the
first success is found.

d (down) Displays the next level down. (as described above also). ‘Note that if the
form is an atom, the effect is the same as the n command. Hence if you want the
stepper to display every form and value, but to wait for a command after each
form, just keep using the d command. '

e (eval) Can be used to evaluate an arbitrary S-expression. It starts a new line, waits
for you to type the expression, evaluates it within an errset, and prints the

w August 3, 1978 $3-1.5.4 Page 3-49

Maclisp Reference Manual

result. Comparable to just typing the expression or atom after the //, but cannot
be confused with a command, and the format is nicer.

(= S-exp) Replaces the current form with the given S-expression, and then prompts for
another command, as described above. If two arguments are given, then this
expression will not be treated as a stepper command, rather it will be evaluated
(see comments at top of this section).

h CTRL/h break is executed. The current form is redisplayed -

when $P is typed. The form about to be evaluated is the value of %%form. Within
the break, one can inspect the values of variables, etc., and even reapply mev to any
form.

k (kill) Does not evaluate the current form nor display any
value. This is good for avoiding side effects if restepping through a program
again. Equivalent to (= ni1) followed by m command.

r (last result) A complete rather than abbreviated printout of the
last result is given. (See (p - -) for further information.)
m Next, like n but the result of the current form is not displayed.

If a condition is to be tested for at lower levels, use mm.

(matchf ...) is 'equivalent to (coqd (matchf ...)), see the the description of

{(cond ...) above.
mm \ Next, like nn but the result of the current form is not
displayed. o
n (next) Displays the value of the current form and displays the

next form, then awaits the next command. Does not inspect the lower levels. If a
condition is to be tested for at lower levels, use nn instead.

nn Like n but inspects the lower levels. '

 Page 3-50 83-1.54 August 3, 1978

O

The System

o (old) Does (mev “last form). This is useful for seeing how a
form produced an unexpected value when you went over it with n or nn. If
reevaluating the form can produce side effects be careful. Can be exited from by
the xx command. (The old form is the value of %%oldform.)

ol (old, at current level) Does (mev “last form at this level).
Behaves like 0. Useful to see the form (at this level) which produced the current
value - rather than the last form printed out, as o would yield. (The old form
used here can be obtained by (get %%hooklevel “oldform).)

po(in)print) Redisplays the current form. This is useful if you wish to clear the screen
first with control-L. Gives typical abbreviated display (see (p - -)), except has
somewhat different effect if in display mode (see s command). (For hackers of
special data structures, e.g. "owl", printing will be done with the function which is
the value of the atom prinl if non-nil - as also applies to top-level in LISP.
This value of prinl is checked only in the mev function. Moreover, unless you

request LISP not to "snap links" in compiled code, you may have to reload the
stepper after changing prinl.

pp (full print) Gives a complete printout of the current form.

ppp (even better printout) Pretty-prints the current form using the sprint function.
Uses a lot of screen in general, and so will turn on pagepause for you.

(p - -) Resets the parameters for the abbreviated printout used for results, forms and
the p command. The first parameter is the prinlevel, the second is the prinlength;
both must be given. If nil is given instead of a number no abbreviating is done
with respect to that parameter; thus (p nil nil) turns off abbreviation. (The
current settings are the value of %%hookprin.)

q (quit) Exits from the stepper. Previously requested breaks and conditions are
disabled, and any non-nil conditions are saved on the old property of the
condition name. (Control-G also exits as usual.)

s (show or display mode) For datapoints and other display terminals, this gives a nice
easily read output of selected levels that constitute the context of the current

" evaluation. Specifically, it selects the current level for sprinting as a "header”,
and as you go deeper, the local context is abbreviate-printed under this header,

and the current output will be sprinted. s may be used as often as you like.
Headers will automatically be popped when you return. All sprinting is done

August 3, 1978 $3-1.5.4 Page 3-5i

Maclisp Reference Manual

with pagepause on. If control-X is typed during sprinting, that expression will be
redisplayed using abbreviated-printing instead. When in this display mode, the p
command will clear the screen from the last form down, unless preceeded by
control-L (or if wrap-around occurred), in which case the screen', is fully
redisplayed. Also see (s arg) for more information and options. '

(s arg) If arg is positive, this selects the form at that level as the "header” for s(how)

mode. If negative, it uses the form at arg levels above the current one. If arg is
nil, display mode is turned off (headers are remembered though). (s t) just
turns display mode on if currently off using the previously remembered headers if
still applicable; but if it is already on, this pops the stack of headers by one
(normally headers are automatically popped when the level is returned from). All
sprinting is done with pagepause on. If control-X is typed during sprinting, that
expression will be redisplayed using abbreviated-printing instead. Also see the sn
command. :

Several parameters are user settable from their defaults. %%lowerdisplay and

%%lowerdisplay-min control the maximum and minimum number of levels to
display below the header (defaults of 5 and 2). This is done in abbreviate-printed
form using %%shortprin which is a list of the prinlevel and prinlength (defaults
3 and 3). Sprinting of forms and results will be abbreviate-sprinted by the
msprint function if the flatsize of the expression exceeds %%flatsize-max
(default about 450). The prinlevel and prinlength for the latter are the list
which is the value of %%sprintabbr (default is (7 8)). If %%flatsize is niJ,
full sprinting will always be used; (if negative, abbreviate-sprinting will always
be used so that infinite printing circular structures will sprint and abbreviate-
print finitely. To turn off sprinting of results setq %%result-sprint to nil
(default t). If %%mdistitle is neither nil nor a number, it will be evaluated
just after the screen is cleared, allowing printirig of a title. If it is a number,
that number of blank lines will be left at the top of the screen (also see sviewmsg
function below). If the partial clearing of the screen bothers your eyes, setq’ing
%%eyestrainl to a number of seconds (eg. 0.5 to 2.0) will slow down the new
display depending on the number of lines cleared.

sn Just for s(how) display mode. It prevents clearing of the screen after prompting for

‘another command, but only until the next prompting // after that. Useful if you

want a result to remain displayed a little longer. If you want to prevent clearing
of the screen for more than a couple of times, use (s nil), then do (s t) when
you want to resume display mode.

(retcond ...) Tests for conditions just after each form is evaluated, and breaks

when such condition is satisfied. At the break, the value to be returned is the

Page 3-52 £3-1.5.4 August 3, 1978

The System

value of %%value, and may be changed by setq'ing this variable. The form that
yielded this value is the value of %%form. Type $P to proceed from the breakpoint.
The conditions are specified as for (cond ...). Note that (retcond t) will
give you a break as each level is popped (returned from), including levels above
the one where the request was made. (retcond nil) disables the retcond. If you
prefer waiting rather than breaking see the wtif command.

Two additional flags are available:

valueq The test (equal %%value next-argument) is performed as if it were
and'ed with the remaining predicates in the condition.

value Like valueq but the test is (equal %%value (eval next-argument)).
The overall condition is maintained on the value of the atom %%retcond, and the
previous non-nil condition is on the old property of this atom. If you want both
cond and retcond conditions to be the same you can (setq %%retcond %%cond).
The value and valueq predicates will be ignored in a (cond ...).

u. (up) Go up to next higher level. Current and lower levels are executed without
display. The lower levels are not inspected - thus if a condition is to be tested for
at these levels, use uu. This can be used to skip the display of a function’s
internal evaluation after having seen the arguments, as described in the previous
section.

(u num) If num is positive (or zero), forms are not inspected nor displayed until that
level number is reached. If negative, it goes up this number (absolute value) of
levels relative to the current level. Thus (u -1) is equivalent to u .

uu Like v, but also inspects lower levels. Use if you have a condition to be tested.

(uu num) Like, (u num) but slower. Use if testing for a condition. Note that (uu
-999) effectively means that you won’t see any levels unless the condition in a
cond or retcond is satisfied.

wtal (wait-all) Flips a toggle which when on causes a pause after the evaluation of
every form, but before that value is returned. The system waits for an input
character. Typing y(es), b(reak), or h (for control-h) followed by space will cause a
break as would the b command. Typing just a space, or any other character
followed by a space, will proceed from the pause. Default is off.

wtif (wait-if) Flips a toggle which when on causes requests by the b and (retcond
...) commands to result in a pause rather than a break. The pause is like that

" August 3, 1978 ¢3-1.5.4 Page 3-53

Maclisp Reference Manual

of the wtal command, and may be proceeded by a space; or a break initiated by
typing y, b, or h followed by a space. Default is off.

xx Does a control-X type of LISP quit. (A control-X typed after the // prompt will be
caught by an errset. The xx command is executed outside of that errset.)

The following other facilities exist:

(gethklevel num) This function returns the S-expression that is on the execution
stack of the stepper at the given level number (see hkshow). Can be used to get
an unsprinted unabbreviated display of the form or to record or process the form
as you desire, including reapplication of mev to it in the current context.

(hkshow num) This function will display previous forms which are on the execution
stack, as seen by the stepper while it has been activated. The previous num of
levels are shown, with the current form last. If no argument is given, then all
levels are shown. The display is done under the control .of prinlevel and
prinlength which are settable by the (p - -) command. Of course this function
can also be used as if it were a command by typing it after the prompting //. |

(hksprint num) This function will sprint the form on the level whose number is
given as the argument. Can also be used as a command. @

(hkstart) Use this function to invoke or reinvoke the stepper from a breakpoint or
from a program as described above. If used within a break, type (hkstart) by
itself rather than within another S-expression or function, as it has to climb the
stack from the point of invocation. If an argument is given to this fexpr, it will
be evaluated just prior to establishing stepping, with “w bound to n11, so that you
can print out information if called from-a program. '

(It is possible for the invocation of the stepper by this method to have limited scope under |
some circumstances. Such a boundary would be a second breakpoint higher on the
stack or a previously terminated invocation of the stepper that is still on the stack.
Also if the program was initially started without mev, and stepping is retained
thoughout the rest of the execution, stepping may also remain for forms typed at
top level - to stop this just do control-G (or use the q command) .) !

(hkstop) This function turns off the stepper whenever executed - in the same manner !
as the g command would. . o \
|

hooklist is an atom whose value is inspected before each attempt to read a command
from the console. If hooklist is non-ni1, it is assumed to be a list of commands to

|

|

|

Page 3-54 83-1.5.4 August 3, 1978 D l
. |

|

The System

the stepper - each is printed out when used and treated as if it came from your
typein. hooklist is also examined at each level that is inspected by the stepper
even if no command reading is done (e.g. nn or uu modes).

(mbak) This function gives (bak1ist) but without the stepper functions, as described
above.

(mev top-form) This function initiates stepping and otherwise acts like eval of one
argument, as described above.

(msprint form) Gives abbreviated sprinting of the form. A second and third numeric

argument specify the effective prinlevel and prinlength here, else a list of two

- numbers found as the value of msprint are used. The current implementation is
somewhat slow as the regular sprint does not respond to standard abbreviating.

(sviewmsg lineno toeval) Useful in conjunction with s(how) mode. Puts the cursor at
the lineno and evaluates the second argument, then returns the cursor to its
original position. lineno = 0 means top; if negative counts from bottom, with -l
the bottom line. Typically have %%mdistitle (see (s -) command) be a number
to skip lines-on top, and use sviewmsg to display your debugging information up
there. -

If you really want specialized processing in particular situations, you can inspect
and/or change %%form in a (cond ...) predicate, and %%value in a (retcond ...).
If %%nohookflag is t, form and value printout and command reading (except from a
non-nil hooklist) is inhibited until it is reset to nil. Normal command processing is

. invoked by (%%mhookcom) with %%nohookflag bound to nil. Also described above are

%%breaklist, %%cond, 4%retcond, and %%hookprin.

1.5.56 The MAR Break Feature

This feature is currently available only in the ITS implementation.

The MAR break feature takes advantage of a hardware feature (the Memory Address
Register break) which interrupts whenever a given memory location is accessed in a
specified way. It allows the LISP user to specify an interrupt function to run whenever
a variable or list cell is modified. The user must first "arm” the interrupt by saying
(sstatus mar cond loc). cond is the condition on which to interrupt:

0 Turn off the mar feature.
1 Interrupt on instruction fetch.
August 3, 1978 © 83-1.54 Page 3-55

Maclisp Reference Manual

2 * Interrupt on write (modification).
3 Interrupt on all references.
(numbers are octal)

On a KL-10 processor, additional conditions are available:

10 Interrupt on data read.

1l Interrupt on data read or instruction fetch.
12 Interrupt on data read or write.

13 Interrupt on instruction fetch or write.

loc is any s4expression; that cell is the one monitored.

Example:
(setq foo (list 'a b))
(sstatus mar 2 foo)

will interrupt if the list cell in foo is ever rplaca'd or rplacdd.

An example of the use of the mar-break interrupt:

Page 3-56 | 33-1.5.5 - August 3, 1978

The System

(defun mar-tracer (x)
((1ambda (val)
{sstatus mar 2
(get the-mar-variable “value))
(nointerrupt nil) ;let endpagfn interrupts in
(terpri msgfiles) ' '
(princ '[Now the variable | msgfiles)
(prinl the-mar-variable msgfiles)
(princ’| has the value| msgfiles)
(prinl val msgfiles))
(symeval the-mar-variable)))

(setq mar-break mar-tracer)

(defun mar fexpr (x)
(cond ((null x)sstatus mar 0 nil))
(t (setq the-mar-variable (car x))
;make sure the variable has a value cell
(or (boundp the-mar-variable)
(set the-mar-variable nil))
(sstatus mar 2 (get the-mar-variable “value)))))
{mar quux)
(setg quux 5)
;Now the variable quux has the value 5
5 .
(do ({quux 0 (+ quux 1))) ((= quux 2))
(hack quux)) :
;Now the variable quux has the value 0
;Now the variable quux has the value |
;Now the variable quux has the value 2
;Now the variable quux has the value 5
nil

Notice that quux is altered by the do loop, and also by the restoration of the old value 5.
This example is for a KA-10 processor. On a KA-I0, the user interrupt is always run
after the location has been changed. On a KL-I0 processor, the interrupt occurs just
before a modification or access rather than just after.

The mar break feature is sometimes used by DDT to debug the LISP system. As
long as DDT and LISP do not both try to use the mar break feature on the same LISP
at the same time, there should be no problem. (sstatus mar 0 nil) releases the mar
break feature entirely for use by DDT.

August 3,1978 | #3-1.5.5 Page 3-57

Maclisp Reference Manual

The suspend function will attempt to save and restore the state of the mar break
feature. If you don’t want an armed mar break to persist beyond a call to suspend, turn
it off first with (sstatus mar 0 nil).

When a CTRL/g quit (or the ~g function) forces a quit back to top level, it disables
the mar break before unwinding variable bindings and re-enables it afterwards. This is
because during a CTRL/g quit LISP may not be in a good state for running user
interrupt functions.

Page 3-58 | 33155 ' August 3, 1978

O

C

The System

1.6 Storage Management

In Maclisp storage for programs and data is automatically managed by the system.
The casual user need not concern himself with storage management and need not read
this section. However, the user who is curious about the implementation or who has to
construct a subsystem on top of Maclisp may need to be concerned with how the internal
storage management routines work and how to control their general functioning. In no
case is it necessary to control the exact step by step operations of storage management,
but a variety of functions are provided to set the general policy followed by the LISP.
storage management procedures. '

1.6.1 Garbage Collection

Garbage collection is the mechanism which LISP uses to control storage allocation.
Whenever LISP feels that too much storage is being used, a garbage collection is
initiated. The garbage collector traces through all the S-expressions which can be

- reached by car’ing and cdr’ing from internal atomic symbols’ values and property lists,

from forms and temporary results currently being used by the evaluator, from data-used
by compiled code, and from the saved values of bound variables. All the data which it
finds in this way is "good" data, in that it is possible for it to be used again.
Everything else is garbage, which can never again be used for anything because it

cannot be accessed, so the storage used by it is reclaimed and reused for creating new S-
expressions.

gc 'FSUBR

(gc) causes a garbage collection and returns nil.

gctwa ’ FSUBR

gctwa is used to control the garbage collection of "truly worthless atoms,”
which are atomic symbols which have no value and no properties, and which are
not referenced by any list structure, other than the obarray (the current obarray if
there is more than one).

.(gctwa) causes truly worthless atoms to be removed on the next garbage
collection.

August 3, 1978 : 83-1.6 Page 3-59

Maclisp Reference Manual

(gctwa t) causes truly worthless atoms to be removed on each garbage
collection from now on. Note: gctwa does not evaluate its argument.

(gctwa nil) causes this continual removal of truly worthless atoms to be shut
off, but it does not affect whether the next garbage collection removes twa's.

The value returned by gctwa is a fixnum which is 0 if no garbage collection
of truly worthless atoms will be done, 1 if twa’s are to be gc'ed on the next garbage
collection, 10 if twa's are to be gc'ed on all garbage collections, or 11 if both. (These
numbers are octal; the decimal values are 0, 1, 8, 9.)

~d ' _ SWITCH
If the value of “d is non-nil, the garbage collector prints an informative
message each time garbage collection occurs. (In a Newio implementation, this
message is output to the files in msgfiles, see page 3-15) In the PDP-I0
implementation, it also prints a message when a space is expanded without. first

doing a complete garbage collection, or when a file or inferior job is closed because
a file object was garbage collected. See also (status gcwho).

See also the user iriterrupts gc~daemon, gc-overflow, and gc-lossage.
1.6.2 Spaces

In Maclisp the storage used for LISP objects is divided into several conceptual
subdivisions, called spaces. Each space contains a different type of object. Allocation
proceeds separately in the different spaces, but garbage collection of all spaces occurs
together since an object in one space could contain a pointer to an object in any other
space. :

For example, in the PDP-10 implementation, the spaces are as follows:

LIST Conses (dotted pairs) and lists.
FIXNUM Fixnums.
FLONUM Flonums.

BIGNUM Bignum headers. Bignums also occupy fixnum and list space.

- Page 3-60 23-1.6.1 ' ‘August 3, 1978

O The System

SYMBOL Atomic symbols.

HUNK4 Hunks of various sizes. PDP-10 implementations without hunks do not
have these spaces.

HUNK8 -

HUNK16

ARRAY "Special array cells.”

REGPDL The "regular” pushdown list.

SPECPDL The "special” pushdown list, used in binding.

FXPDL The fixnum pushdown list, used for temporary numeric values.

FLPDL The flonum pushdown list, used fpr temporary numeric values.

0 Binary Program Space used to hold arréys and compiled code.
| pure LIST, pure FIXNUM, pure FLONUM, pure BIGNUM pure HUNG4, .
These spaces are used to store “pure” (read-only) data of the indicated
types. This is a feature used to make subsystems more efficient. See page
3-67.
In the Multics implementation, the spaces are:

list Conses (dotted pairs), lists, atomic symbols, bignums, and strings.

Static Storage Arrays, ﬁles, andﬁhkage to compiled code.

markedpd1 A pushdown list of LISP objects.

unmarkedpdl A pushdown list of machine data, not LISP objects.

Note: in the Multics implementation there is no space for numbers because numbers
are stored in such a way that they do not take up any extra room.

The precise spaces available in a given implementation can be determined by using
{status spcnames), (status purspcnames), and (status pdinames).

L& August 3, 1978 , 83-1.6.2 Page 3-61

Maclisp Reference Manual

Associated with each space is information determining when an attempt to allocate in
that space should cause a garbage collection. The idea is that one should allocate for
quite a while in" a space, and then decide that it is worth the trouble of doing an

expensive garbage collection in order to prevent the space from using too many bits of
actual storage.

The exact nature of this information varies with the space. In a pushdown list (pdl)
" space, all information must be stored contiguously, so the only parameter of interest is
how big the pdl is. This can be measured in three ways, so there are three parameters
associated with a pdl:

pdisize The number of words of valid data in the pdl at the moment.

pdimax The size to which the pdl may grow bef ore intervention is required. This is
used to detect infinite recursion.

pdiroom The size beyond which the pdl may not grow no matter what.

A space such as a list space has three parameters, called the gcsize, gemax, and
goemin. These are in machine-dependent units of "words". The gcsize is the expected
size of the space; as objects are allocated in the space, it will grow without garbage
collection until it reaches this size. When it gets above this size garbage collection will @)
occasionally be required, under control of the other two parameters.

The gcmax is the maximum size to which the space should grow; if it gets this big
garbage collections may occur quite frequently in an attempt to prevent it from growing
bigger.

The gcmin specifies the minimum amount of free space after a garbage collection. It
ma'y be either a fixnum, which specifies the number of words to be free, or a flonum, which
specifies the fraction of the space to be free. The exact interpretation of this depends on
the implementation. In the PDP-10 implementation, which uses free storage lists, the
gcmin is the number of words which must be on the free storage list after a garbage
collection. If there are not this many, the space is grown, except if its size approaches
gcmax it may not be grown by the full amount. In the Multics implementation, which
uses a compacting garbage collector, the criterion for garbage collection is not when a
free list is exhausted but when the space reaches a certain size. This size is the
maximum of gcsize and the sum of the size after compactification plus gemin (if it is a
fixnum) or the size after compactification times 1/(I-gcmin) (if gcmin is a flonum.) The
effect of this is to allow the same amount of allocation between garbage collections as
there would be in the PDP-10 implementation with the same gcmin.

Page 3-62 33-1.6.2 4 ~ August 3, 1978 - 0

The System

Note that these controls over the sizes of spaces are somewhat inexact, since there is
rounding. For instance, the PDP-I0 implementation presently allocates memory to
spaces in blocks of 512. words. The Multics implementation allocates at least 16384.

words between garbage collections and presently controls the size of pushdown lists in
blocks of 16. words.

Some spaces, such as Binary Program Space in the PDP-10 implementation or Static
storage in the Multics implementation are not subject to detailed control by the user.
The management of these spaces is entirely automatic. Generally these are spaces where
the rate of allocation is fairly placid and most objects, once allocated, are used forever .

and never freed. Hence the exact policy used for storage management in these spaces is
not too important.

1.6.3 Storage Control Functions

alloc SUBR 1 arg

The alloc function is used to examine and set parameters of various spaces
having to do with storage management. To set parameters, the argument to
0 alloc should be a list containing an even number of elements. The first element
of a pair is the name of a space, and the second is either a fixnum or a 3-list. A
fixnum specifies the pdimax (for a pdl space) or the gcsize and gcmax (for other
spaces.) A 3-list specifies, from left to right, the gcsize, gcmax, and gemin. nil
means "don’t change this parameter.” Otherwise a fixnum must be supplied, except

in the third element (the gcmin), where a flonum is acceptable. A 3-list cannot be
used with a pdl space.

An example of this use of alloc, in the PDP-10 implementation:

(alloc “(list (30000. 5000. 0.25)
fixnum (4000. 7000. nil)
symbol 6000.
regpdl 2000.))

or, in the Multics implementation:
(alloc “(1ist (30000. nil 0.3)

markedpdl 5000.
unmarkedpdl 5000.))

C August 3,1978 83-1.6.2 Page 3-63

Maclisp Reference Manual

alloc may also be called with an argument of t, which causes it ;o return a
list of all the spaces and their parameters. This list is in a form such that it

could be given back to alloc at some later time to set the parameters back to what
they are now. '

See page 3-87 for some status functions which are related to the topic of storage
spaces. ’

1.6.4 Dynamic Space and Pdl Expansion

There are several user interrupts generated by the storage management. See section
page 3-16 for a description of user interrupts. The gc-daemon interrupt occurs after
each garbage collection. The argument passed to the gc-daemon interrupt handler is a
list of spaces and their sizes. In the PDP-I0 implementation, the items on the list are of
the form: (space-name free-before free-after size-before size-after), where space is the
name of a space, and free-before indicates the number of cells free before the garbage
collection and free-after indicates the number of cells free afterwards. The last two
numbers are the size of the space (see (status spcsize)) before and after the GC.
(The sizes are in PDP-10 words.) In the Multics implementation, the items are of the
form: (space before . after). In the Multics implementation, where "free cells” is a
meaningless concept, only the difference of these two numbers is significant; it represents
the amount of compaction achieved.

The gc-lossage interrupt occurs if the garbage collector tries to expand a space but
fails because, for example, the operating system will not give it any more storage. The
argument passed to the interrupt service function is the name of the space that lost. If

- the interrupt handler returns, the value is ignored, and another garbage collection is
attempted.

The pdl-overflow interrupt is signalled when some pushdown list exceeds its
pdimax. The pdimax is increased slightly so that the interrupt handler will have room
to run. The argument passed to the interrupt function is the name of the pd1 that
overflowed. If the interrupt function uses too much pdl, this interrupt will occur again.
If this happens enough times, the pdimax will reach the pdiroom, there will be no room -
in the pd1 to take a user interrupt, and an uncorrectable error will occur.

The interrupt function can decide to terminate the computation that overflowed the

pd1, for example by doing (“g) or a throw, or it can increase the pdimax by using
alloc or (sstatus pdimax) and then continue the computation by returning. Note

Page 3-64 ‘ $3-1.6.3 August 3, 1978

O

O

O

The System

that, unlike most other user interrupts, if the pd1-overflow interrupt function returns
nil (or the ";bkpt pdl-overflow" is 8P'ed), the computation is continued as if the
pd1 overflow had not occurred. '

The gc-overflow interrupt occurs when some space (other than a pd1) exceeds its
gcmax. This gives the user a chance to decide that the size of the space should be
increased and the computation continued, or that something is wrong and the
computation should be terminated. The argument passed to the interrupt handler is the
name of the space that overflowed. The interrupt handling function will be able to run
because the garbage collector makes sure that the space is sufficiently large before .
signalling the interrupt, even if this makes it become somewhat larger than its gcmax.
This interrupt is similar to pd1-overfliow in that if the interrupt handler function
returns at all, even if it returns nil, the interrupted computation proceeds. To terminate
the computation an explicit (“g) or throw must be done.

1.6.6 Initial Allocation

The PDP-I0 implementations of Maclisp run on a machine with a limited-size
address space. Consequently the allocation of portions of this address space to different
uses, such as LISP storage spaces, becomes important. This is particularly true of the
DEC-10 implementations, which cannot take advantage of paging.

When LISP is first entered, it goes through a dialogue with the user known as
“"allocation.” Normally the dialogue simply consists of the user declining to specify
anything, in which case LISP chooses suitable defaults. If a large problem is to be
worked on, the defaults may be inappropriate and it may be necessary to explicitly

allocate a larger amount of storage. It is also possible for the user’s replies to come from
a file.

If LISP is called with a command line from DDT, for example
:LISP INDEX LOADER COM:
it reads the indicated file in the same way that it would read .LISP. (INIT). See below.
On the other hand, if LISP is called without a command Iihe, it identifies itself and
asks

ALLOC?

Suitable responses are Y, N, and CTRL/q. There are other obscure characters which can

August 3, 1978 $3-1.6.4 Page 3-65

Maclisp Reference Manual

be used as replies to this question, but these three are sufficient for most purposes. ("?"
causes a list of suitable responses to be printed out.) "N" means that you do not want to
specify allocation. You will get the default. CTRL/q means to read your initialization
file (see below.) "Y" means that you wish to go through the following sequence of
questions and answers.

LISP types out the names of various spaces and their sizes. If the name of the space
is preceded by "+", then it cannot be expanded once allocated by this dialogue. After
each question you may enter altmode, which terminates the dialogue and gives the
remaining parameters default values, or space, which goes on to the next question.
Before your altmode or space you may put a number which is the size you want that
space to be, instead of the number that was printed. CTRL/g restarts the dialogue with

the "ALLOC?" question.

If you reply with a CTRL/q, it means to read your initialization file. In the ITS
implementation, this is either udir; .LISP. (INIT) or (INIT); udir .LISP., where
udir is your master sname. In the TOPS-I0 implementation, this is LISP.INI in the

directory you are logged in to. In the Multics implementation, this is
hd>start_up.LISP, where Ad is your home directory. Since the Multics implementation
doesn’t have the allocation dialogue, this ﬁle is always read when the LISP command is
given with no arguments.

The first form in the file should be a comment which is used to answer the questions.
Note that supplying nonexistent space names in the comment doesn’t hurt, so you can
use the same comment for different mplementauons An example of the form of this
comment is:

(comment fixnum 5000 symbol 4000 flonum 2000
bignum 1400 regpdl 5000 hunk8 30000)

The remaining forms in the file are simply read and evaluated using the standard
read-eval-print loop.

Page 3-66 83-1.6.5 ‘ August 3, 1978

The System

- 1.7 Implementing Subsystems with Maclisp

1.7.1 Entering LISP

A subsystem is an entity that exists in most time-sharing systems. It is normally a
complete world which the user enters by typing a command. He then has whatever
facilities the subsystem offers. A subsystem can be oriented toward programming, as the -
Maclisp subsystem itself is, or it can be oriented toward a particular application, for
instance compiling. LISP programs, operating machinery, or solving differential
equations.

Maclisp' is frequently used as a base on which to build subsystems. Consequently it
has been equipped with a number of mechanisms which allow the subsystem writer to
gain complete control over the operation of Maclisp, make it possible to hide the vagaries
of Maclisp from the naive user of a different subsystem, and provide increased efficiency
in memory and processor usage for heavily-used subsystems.

in the ITS implementation

LISP may be entered by the :LISP (or LISP*K) command. The environment set up
by this command is the standard initial environment. LISP now goes through an
allocation dialogue and optionally reads your .LISP. (INIT) file. See page 3-65 for
information on this. '

LISP may be entered by the command :LISP namel name2 dev dir (or :LISP
dev:dir;namel name2). In this case the file dev:dir;namel name2 is read in the
same way as a .LISP. (INIT) file. This can be used to start up a subsystem. The
device defaults to DSK, the directory defaults to your current DDT master sname
(. .MSNAME), and the file names default to .LISP. (INIT).

It is also possible to build a subsystem in a LISP, then save it as TS FO0. The :F00
(or FOO”™K) command will then enter the subsystem, bypassing the allocation dialogue.

in the DEC-10 implementation
LISP may be entered by the monitor command R LISP or RUN LISP. The allocation

dialogue (see page 3-65) is entered. Optionally a LISP.INI in the user’s directory may
be read. If the DEC-I0 monitor allows the use of additional arguments on the R

August 3, 1978 | 33:1.7 " Page 3-67

Maclisp Reference Manual

- command line, then the particular name of a file may be specified (but not a directory).
The extension defaults to INI. This file is read in the same way as a LISP.INI file.
This can be used to start up a subsystem.

. As’in the ITS implementation, a subsystem can be saved and then invoked by the
appropriate R or RUN command.

in the Multics implementation

The Maclisp subsystem is entered by issuing the LISP command at Multics
command level. If LISP is called with no arguments, a copy of the standard initial
environment containing all the system functions and variables is made the current
environment. If the LISP command is issued with an argument, the argument
concatenated with “sv.LISP" is the pathname of a saved environment which is copied
into the current environment. This saved environment would contain some subsystem,

which will receive control. Additional arguments to the LISP command in this case are

actually arguments to the subsystem.

Often one constructs a trivial command for getting into a subsystem, which simply
calls the LISP command with the right arguments.

For instance, the LISP compiler subsystem may be entered through the
LISP compiler command, which calis LISP with the pathname of the saved environment
containing the LISP compiler as the first argument, and the arguments to the
LISP compiler command as the remaining arguments.

When the standard initial environment (ie. the ordinary Maclisp subsystem) is
entered, it checks for a segment named start .up.LISP in the user’s home directory. If
such a segment exists, it is read in, using the load function. This facility allows users
to "customize" LISP.

1.7.2 Saving an Environment

A subsystem is constructed by the fbllowing procedure. One starts with the ordinary
Maclisp subsystem, and defines a number of function definitions and variable values.
This creates an environment which is capable of implementing the desired subsystem.
This environment is then saved in a file, and necessary mechanisms are set up so that an
operating-system command can invoke LISP and cause it to set up the environment

Page 3-68 _ E 83-1.7.1 August 3, 1978

0 The System

saved in'the file. When the saved environment is invoked control is passed to the
functions in it which then proceed to do the business of the subsystem.

The exact way of saving the environment differs from implementation to
implementation. In the Multics implementation there is a function called save:

save FSUBR

(save foo) saves the current LISP environment in a file named foo.sv.LISP
in the working directory. foo is not evaluated. The saving operation destroys the -
working copy of the environment, so when the save is complete LISP returns to
Multics command level.

All variable values, file objects, array contents, and function definitions (and
other properties) are saved, but the contents of the push down lists, including
previous values of bound variables, cannot be saved, so save should only be used
from top level. (See also the section on Gaining and Keeping Control, below)

In the PDP-10 implementations there is a function called suspend:

0

suspend LSUBR 0 to 2 args

suspend puts LISP in a state such that it can be :PDUMP’ed (ITS) or
SSAVE'd (DEC-10) and later restarted. When the saved core image is restarted,
everything will be the same as it was when suspended, and control will return
~ from the invocation of suspend.

suspend may be used at any point in a computation, with the restriction that
no 1/O devices other than the terminal may be in use. If an I/O device other than
the terminal is in use, a fail-act correctable error occurs, indicating the
offending device(s).

In the ITS implementation, care is taken so that all subsystems saved with-
suspend from the same version of LISP will share the pure pages of LISP. In
addition, all invocations of a particular subsystem will share the pure pages
peculiar to that subsystem. Declaration of data to be placed in pure pages is
described in a later section.

In the TOPS-I0 implementation, care is taken so that all LISPs and
subsystems saved from LISP will share the same high segment.

w

; . .
‘ August 3, 1978 _ $3-1.7.2 ' Page 3-69

Maclisp Reference Manual 0

After suspfen'd has prepared the LISP core-image for dumping, it returns
control to the operating system so that it can be dumped.

If suspend is given an argument, that argument is explodec’ed and the
resulting character string is passed back to the operating system as a command.
(See cline and valret.) (On ITS this is done with a .VALUE; on SAIL this is
done with a PTLOAD. On TOPS-I0 the argument is ignored.)

The SAIL version uses the second argument, if present, as a file name. The
high segment is dumped under this name. The low segment should then be saved
with SAVE, not SSAVE. This is used to create subsystems that can share the same
high segment containing code specific to the subsystem.

Commonly one will write a setup routine for a subsystem like this:

(progn
(terpri)
(princ “options:)
... read in options ...
(terpri) : '
(princ “loading) ' U
. load in files of functions ... ° ' '
(gc) ‘
(sstatus gctime 0)
(suspend)
(start-the-subsystem)
))

The subsystem’s environment is now ready for dumping. Alternatively, one
might write (on ITS) \

(suspend “|:PDUMP DSK:FOODIR; ‘TS NSUBSYS/ |
~ :$ALL DONES$/ : |
) : \

which will do the dump itself and print a message when done. On SAIL one
might write : ' '

(suspend 7 |SAVE SYS:F00.SAV| :
7(FOO SHR SYS)) C f

See also the valret function.

o

Page 3-70 3-1.7.2 August 3, 1978

The System
1.7.3 Gaining and Keeping Control

In the Multics implementation, wheri a saved environment is restarted it looks like
an error that returns to top level. The forms in the err1ist are evaluated. These
forms should do whatever is necessary to start up the subsystem. The arguments to the
command which invoked the subsystem may be obtained via (status arg) or (status
Jel).

In the PDP-10 implementations, when a saved environment is restarted execution
continues from the point where suspend was called. The next form evaluated should do

~ whatever is necessary to start up the subsystem. (It is also possible to cause the same

return to top level on startup as in the Multics implementation by using valret instead
of suspend) The arguments of the command line whtch invoked the subsystem may be
obtained via (status jcl).

If the subsystem wants to hide the underlying Maclisp from the user, it has a
number of facilities available. By setting up its own user-interrupt handlers it can
handle any LISP errors which occur itself. In Newio implementations, it can alter,
augment, or abolish standard interrupt control characters. It can replace the Maclisp
interpretive interaction loop with its own by using (sstatus toplevel) and
(sstatus breaklevel). It can also provide a totally different interaction loop by not
returning control to the LISP top level when it is started, but instead retaining control
in its own functions which read and respond to user input.

It is possible for a subsystem_to retain the trappings of Maclisp but change the way
things read and print. Macro characters and the readtable can be used to change the
way input is parsed; alternatively, setq'ing the variable read will redefine the system
reader function (in the PDP-10 implementations). All output by Maclisp (with the
exception of character-string messages) is done through the function prinl, and the
subsystem may redefine this function. In the Multics implementation one simply
redefines it, but in the PDP-10 implementations the variable prinl must be bound to the
function which is to substitute for prinl.

Some subsystems don’t do any of this, but simply consist of standard Maclisp
augmented by some additional functions which may be used in forms typed in at top
level.

1.7.4 Purity

August 3, 1978 33-1.7.3 Page 3-71

Maclisp Reference Manual

In the PDP-I0 implementations, there are some facilities which allow subsystems to
put their non-changing data, function definitions, binary code, etc. into pure pages. This

decreases the load on memory by sharing pages between muitiple users of the same
subsystem.

There are some extra storage spaces which are used to store pure (unchanging)

LISP objects. These are the pure list, pure fixnum, pure flonum, pure bignum, and pure
hunk spaces. - a '

purcopy SUBR 1 arg
This function makes and returns a copy of its argumen‘t in pure storage.
This is primarily of use in the creation of large sharable systems like MACSYMA.

In implementations other than PDP-10 implementations with pure spaces,
purcopy simply returns its argument.

There are a number of features which control how binary code and constants
are purified when a compiled program is loaded into LISP.

bporg VARIABLE

The value of bporg should always be a fixnum, whose value is thé address of

the first unused word of binary program space. This value generally should not
be altered by the user, but only examined. bporg is updated whenever binary code
is loaded by lap or fasload. '

bpend VARIABLE

This variable should also always have a fixnum as its value; this indicates the
last available word of binary program space. This is updated by many internal
LISP routines, such as the garbage collector, the array allocator, and Tap and
fasload.

pagebporg SUBR no args
Causes the variable bporg to he adjusted upwards so as to lie on a page

boundary. This is principally useful on ITS in conjunction with the function
purify. pagebporg returns the new value of bporg.

Page 3-72 83-1.7.4 August 3, 1978

getsp

noret

The System

LSUBR [to 2 args

(getsp n flag) ensures that (- bpend bporg) is at least n, allocating more
memory if necessary. If flag is non-nil, then the memory added is marked as
being potentially purifiable by purify. If flag is omitted, the value of pure is
used. This is generally used by clever subsystems loaders to expand binary
program space quickly so that fasload will not require several garbage collections
to do the same thing. It can also be used by programs which create and destroy
many arrays. See also noret.

VARIABLE

Normally the garbage collector will return memory to the time-sharing system
if (- bpend bporg) is very large, but setting noret non-nil prevents this.
This is useful in conjunction with getsp.

purify SUBR 3 args

The first two arguments to purify should be fixnums, delimiting a range of
memory within the LISP system. The third argument is a flag. If it is ni1, then
the pages covered by the specified range of memory are made impure, i.e. writable.
If it is t, then the pages are made pure, i.e read-only and sharable. If it is
bporg, then the pages are made pure, but in addition some work is done to make
sure that no UUO on those pages may ever be “clobbered”. (See pure and
purclobr1) This option should always be used if the pages involved contain
binary code loaded by lap or fasload. Presently purify does nothing in the
TOPS-10 implementation; it is intended primarily for producing systems built on
LISP, such as MACSYMA, in such a way that pure pages can be shared between
users. Example: the following function might be used to produce a sharable
system on ITS:

August 3, 1978 83-1.7.4 v ' Page 3-73

pure

Maclisp Reference Manual

(defun superdump () ‘
(setq lopage (pagebporg)) ;save low page address
(setq pure 3) ;specifies pure code
(setq lopage (+ lopage 6000)) ;allow for area |

; (ITS page = 2000 words)

(fasload funny fasi) ;load up system
(fasload weird fasl)
(uread some lap)

(sstatus toplevel: ;set up top level for system
“(top-handier)) ~
(setq hipage (pagebporg)) ;save high page address

(purify lopage (1- hipage) “bporg) ;purify pages
(suspend /| :pdump sys:ts super“M|) ;tell ddt to dump

(terpri) : ;stuff for system startup
(princ “welcome/ to/ supersystem/!)
(terpri))

VARIABLE

This variable, initially ni1, should be made non-ni1 by the user before loading
binary code which is to be made pure. It signals lap and fasload to be
circumspect about any UUQ’s in the code, because pure UUO’s cannot be clobbered . to
be PUSHJ'’s or JRST’s. 1ap solves this problem by clobbering the UUO immediately if
the referenced function is already defined and is itself a subr rather than an
expr; otherwise the UUO is made permanently unclobberable (i.e. CALL is converted
to CALLF, etc.).

fasload is somewhat more clever: it too tries to clobber each UUO immediately,
but if it can’t it puts the address of the UUO on a list called purclobrl, which is
checked at the end of each call to fasload, and each UUO on the list is clobbered

-at that time, if the appropriate function had been loaded by that call to fasload.

If the function.never does get defined, then purify will also check purclobri

and convert each UUO to its permanently unclobberable form.

If pure has a fixnum as its value, then fasload (but not lap) behaves
somewhat differently. pure should be the desired size in words of the “uuolinks
area”; this is rounded up to a whole number of pages. (If pure is between 1 and

8, it is the number of pages rather than the number of words) Let the number of

pages be n. First fasload calls pagebporg, and then reserves 2n pages of

Page 3-74 ' 83-1.74 August 3, 1978

" The System

binary program space, unless a previous call to fasload has already reserved
them (i.e. they are reserved only once). Thus fasload has two sets of n pages to
work with; we shall call the first set "area 1" and the second set "area 2". Now
whenever fasload has to load a clobberable UUO, it does not place it in the code
being loaded, but rather hashes it and places it in area 1 if it was not there
already; a copy is placed in the same relative position in area 2. Then an XCT
instruction pointing to the UUO in area | is placed in the binary code. When all
loading has been done, area 2 may be purified, but area | may not.

Now when running the code, the UUO's pointed to by the XCT’s may be -
clobbered (the PDP-10 LISP UUO handler is clever about XCT), provided, of
course, that the value of nouuo is nil, and the code will run faster the second
time around because the XCT's will point to PUSHJ's. However, if (sstatus
uuolinks) is called, then area 2 is copied back into area 1, effectively
unclobbering all the UUO's. This ailows the called functions to be traced again, for
example, or redefined as expr code. Naturally, an area large enough to contain
all the UUO’s should be reserved; (status uuolinks) (q.v.) yields information
relevant to this. As a rule of thumb, the area hsould be 20% larger than the
number of functions called by the loaded code (including LISP functions such as
equal). For the DEC-I0 version, pure may be set to a negative value. the
magnitude is used as above, while the sign’ controls which segment to load into
(positive = low segments, negative = high segment). A negative value also causes
uuolinks area | to go in the low segment, and area 2 in the high segment. For
compatibility, a negative value means the same as a positive value to the ITS
implementation.

purclobri VARIABLE

Used by fasload to keep track of UUO’s which are potentially but not
immediately clobberable.

xpure VARIABLE

This variable controls automatic purification of S-expressions and atomic
symbols. If it is set non-ni1 (the initial value is nil), then the following are
placed in pure storage spaces instead of regular storage spaces: pnames of atomic
symbols; list, fixnum, flonum, bignum, and hunk constants used by code loaded
with fasload; properties whose indicators are in the list which is the value of the
variable putprop (initially subr, fsubr, and 1subr). In the SAIL
implementation, if *pure is a fixnum, it should be an estimate of the fotal number

August 3, 1978 83-1.7.4 : Page 3-75

* Maclisp Reference Manual

of pure data structures needed, including all files previously loaded and the
initial LISP system pure data structures {(currently about 6000. words). This
causes purcopy to use the high segment for pure data. Making the estimate in
xpure too large merely wastes space in the high segment; making it too small
causes purcopy to make copies in the low segment when it runs out of room in the
high segment. This whole feature only works if pure is a negative fixnum.

putpro.p VARIABLE

If the value of xpure is non-nil and the third argument to the putpro‘p
function is in the list of indicators which is the value of the variable putprop,
then the second argument is passed through purcopy to purify the structure.
Furthermore, the two cells of the property list are cons’ed from pure list space.
Since impure cells must precede pure cells in the property list, putprop may not
put a new property at the front of the property list in this case.

The putprop and remprop functions know about purified property lists. If
necessary, they will copy the property list (but not the properties themselves) into
non-pure storage so that it can be modified. This is true regardless of the value

of xpure. Recall also that defprop and defun use putprop.

|

' |

. | o ,‘

Page 3-76 #3174 August 3, 1978 O “
. : .) |

The System

1.8 Miscellaneous Functions

1.8.1 The Status Functions

status ~ FSUBR

The status special form is used to get the value of various system
parameters. Its first argument, not evaluated, is an atomic symbol indicating
which of its many functions status should perform. The use of additional
arguments depends on what the first argument is. These arguments may or may
not be evaluated, depending on the first argument. If certain additional
arguments are omitted, a default value is supplied, again depending on what the
first argument is. The various status functions are listed below.

sstatus FSUBR

The sstatus special form is used to set the value of various system
parameters. Its arguments are similar to those of status.

These are the things that you can do with status and sstatus:

STATUS FUNCTIONS FOR 1/O

tabsize (status tabsize) returns the number of character positions assumed
between tab stops, which depends on the implementation. Currently this is 8 -
in the PDP-10 implementation and 10. in the Multics implementation.

newline (status newline) returns a fixnum which is the ascii code for the
character which marks the end of a line of input. For example, one might
say (= (setq ch (tyi)) (status newline)) . Cureently this is 15
(octal) in the PDP-10 implementation and 12 (octal) in the Multics
implementation. .

charmode (status charmode f) returns the value of the character-mode switch for
the file f.. If f is t or omitted the value of tyo (the default output
terminal) is assumed. If the character-mode switch is t (the normal case for
the terminal) output is sent to the device as soon as it is generated. If the
switch is nil (the normal case for files other than the terminal) output is
“held until a newline is typed, an error occurs, input is requested, or the

August 3, 1978 ' $3-1.8 Page 3-77

1inmode

ttyint

Page 3-78

‘ Maclisp Reference Manual

buffer becores full. (In the Multics implementation, you can also cause the
buffer to be sent by using the force-output function.) This provides

increased efficiency at the cost of not immediately seeing all output in some -

cases.

(sstatus charmode x f) sets the character-mode switch of the file f (f
may be t or omitted to signify the output terminal in the tyo variable) to x,
which may be nil or t. x and f are evaluated. Currently in the PDP-10
implementation it is not possible to set the character-mode switch; one must
specify it initially to open. See also (status linmode) and (status
filemode). '

(status linmode) reads the “"line mode” and (sstatus 1inmode x) sets

the "line mode” to x (t or nil) These functions take an optional extra '

argument, which-is the file whose line mode is being discussed. This
defaults to the value of tyi (the default input terminal). In any case, this
file must be a terminal. In some implementations the “line mode™ may not be
changed. If the "line mode” is t, user input is buffered up a line at a time
before being sent to LISP. The input-editing conventions of the host
operating system are used. If the "line mode” is nil, LISP sees each
character as it is typed and applies its own input editing conventions. This
mode can provide input facilities more suited to LISP and possibly better
handling of the terminal,’if it is a type that LISP knows a great deal

.about. However, it uses more machine resources. It is possible for a user

program to take direct control of the terminal when the "line mode” is ni71;
however, this may require knowledge of the (sstatus tty). The Multics
implementation always operates with a “line mode” of t. See also the
(sstatus ttyscan) function below.

(sstatus ttyint char func file) turns on a tty interrupt character.
When the character char is typed on the input tty file, the LISP program
will be interrupted and the function func will be applied to two arguments
- file and char. If file is omitted, the value of tyi (the default input file) is’
assumed. The char may be éither a character object or a fixnum (ascii code).
Any of the 128. ascii characters may be used. The func may be either an
ordinary functional form or a fixnum, which means the default system
action for the character with that ascii value. For instance a func of 7
means quit back to the top level of LISP (control-G). If func is ni1, the
char is made non-interrupting. All three arguments are evaluated.

In the ITS implementation, it may be necessary to use (sstatus tty) to
inform ITS about non-standard interrupt characters.

$3-1.8.1 August 3, 1978

The System

In PDP-10 implementations which support fixnum tty input mode (more
_than 128. characters), then when an interrupt occurs the character is folded
down to 7 bits before selecting an interrupt function. However, the
unfolded character is passed as the second argument to the interrupt
function, so that the function can filter out unwanted characters. If a
fixnum is used for the function, then the fixnum may specify required or
forbidden supra-ascii bits as follows: adding bit n to the fixnum requires
the bit, and adding (Ish n 18) forbids it. For example, in the ITS
implementation using 400000207 (octal) as a function allows CTRL/g to
perform a quit, but not the "pi" character or control-meta-g, since 200
requires the control bit and 400000000 forbids the meta bit.

Example: a standard subsystem convention (used by NCOMPLR,
MACSYMA, and SCHEME, for example) is to use ~* (control-
uparrow, ascii 036) as a quit character which restarts the subsystem.
This leaves g with its normal meaning of “exit to LISP toplevel,”
which is occasionally also useful. ' '

(sstatus ttyint 36
(function (lambda
(f c)
‘:b . (sstatus toplevel “(restart-subsystem))
(do nil ((or (= (listen f) 0) '
’ (= (tyi f) 36))))
(*9))))
(defun restart-subsystem ()
(setqg errlist nil)
(sstatus toplevel nil)
(nointerrupt nil)
(initialize-the-world)
(enter-subsystem))

(status ttyint char file) returns func, the interrupt function for the
character char on the tty file. file may be omitted. It defaults to t.

ttycons (sstatus ttycons tryl tty2) binds two tty files into a console. One
should be an input tty and the other an output tty. If t¢yl or tt92 is t, it
will be taken as the appropriate direction of the default terminal
(determined by the variables tyi and tyo). The binding into a console is
primarily used for purposes of echoing. In addition, interrupt characters
typed on an input tty file should affect the output on its corresponding
output tty file, not on some other tty. If ttyl or tty2 already has a

w August 3, 1978 ' 83-1.8.1 Page 3-79

filemode

Page 3-80

‘ Maclisp Reference Manual

ttycons relationship, that relatibnship is broken before the new one is
established.

If one argument is a tty and the other is nil, a ttycons relationship
involving that tty will be broken. Closing a tty file automatically breaks
any ttycons relationship it may have. (See close.)

To put echoing at the bottom of the screen, distinct from output,

(sstatus ttycons t) ,
' (setq echotty (open “tty: “(echo out tty
echotty))

which conses tty input with a new tty output channel which is set to go to
the echo area at the bottom of the screen.

(status ttycons ttyl) returns the other tty file which .is bound into a
console with ttyl, or nil if there is none.

(status filemode file) => (open-mode-l1ist . internal-cruft).
open-mode-list is a suitable second argument for the open function.
internal-cruft is a list of implementation-dependent information which may
sometimes be needed by special programs.

The following symbols may appear in internal-cruft. (These are the
standardized ones; additional symbols may appear at the discretion of the
implementation.)

cursorpos This file (an output tty) has the ability to position its
cursor anywhere on the screen. See cursorpos.

filepos The filepos function can be used to access randomly
' ~ within the file. See the filepos function. ’

rubout This file (an output tty) has selective erase capability.
(cursorpos “x) will work. See also the rubout
function, page .-

sail This file (an output tty) has the so-called SAIL character
set. This is an extension of ascii which is related to but
not necessarily identical to the actual character set used
at SAIL. ' '

33-1.81 August 3, 1978

m‘ The System

If file is a closed file object, (status filemode) merely returns nil
. instead of giving an error. .

ttyscan (sstatus ttyscan func file) allows the user to supply a function which
performs initial processing of terminal input. func is a functional form,
and file must be a tty input file. If it is omitted, the value of tyi (the
default input terminal) is assumed. Both arguments are evaluated.

When LISP wants to take input from file, it first calls the prescan function,
which is supposed to gobble down a complete unit of input (for instance an -
S-expression) and return a list of characters. The prescanner supplied
automatically by LISP when a tty input file is first opened counts
parentheses and does fancy rubout processing on display terminals. It also
implements the CTRL/k, CTRL/l, and CTRL/u characters (as appropriate
to the implementation) which allow the complete input to be redisplayed or
cancelled, and takes care of force-feed characters. A user-written
prescanner might provide additional features such as super-parentheses,
name recognition and completion, or fancy editing.

The prescan function func is applied to three arguments: the file, the name
(m ‘ of the input function on whose behalf it is acting (read, readch, or
s readline), and a fixnum which, in the case of read, is the count of the
number of unmatched left-parentheses. It is supposed to return a list of
fixnums, which represent characters. The prescan function should read the
input with tyi, since it and tyipeek are the only. mput functions which
don't call the prescan.

If the prescan function returns nil, an eof condition occurs for the input
file. This is the standard way to signal over-rubout.

There is a function called rubout to assist the pre-scanner in processing
rubouts. It is described on page .

It is a good idea for the prescaﬁ function to lambda-bind echofiles to
nil so that characters do not appear in the echo files twice, and so that the
echo files reflect the "clean” input after rubout processing. The system-
supplied prescan function does thlS

(status ttyscan file) returns theﬁle’s func.

This feature does not presently exist in the Multics implementation.

- August 3, 1978 83-1.8.1 : Page 3-81

| Maclisp Reference Manual

The following status functions exist only in the ITS implementation

ttysize

ttytype

tty

Page 3-82

(status ttysize f) returns the height and width of the terminal open as
the file f. If f is omitted, the value of tyo (the default output terminal) is
used. The result is a dotted pair of fixnums "(teyheight . ttywidth)" (cf.
cursorpos). If the terminal is a printing console instead of a display, then
the height will be a very large number such as 200000000000 or so.

(status ttytype f) returns the type of the terminal open as the file f. If
f is omitted, the value of tyo (the default output terminal) is used. The
result is a fixnum taken from the TCTYP (not TTYTYP!) variable in ITS:

0 ~ Printing terminal.

i Good Datapoint.

2 Bad Datapoint ("loser”).

3 Imlac.

4 Tektronix.

5 PDP-1I ("Knight") TV.

6 Memorex.

7 Software terminal.

10 Terminet.

1 Display using standard ascii display codes.
12 Datamedia. :

This status call is meant only for esoteric purposes. To find out whether
you can position the cursor or erase characters, use (status filemode).

(status tty f) returns a list of three fixnums which control the behavior
of the terminal open as file f. If f is omitted, the value of tyi (the default
input terminal) is used. (sstatus tty x 9 z f) sets these three fixnums
to x, 9, and z. If z is omitted, it is not changed. If f is omitted, the value

‘of tyi (the default input terminal) is used. The three fixnums are the ITS

variables TTYST1, TTYSTZ,and TTYSTS. Their meaning is as follows:

TTYST1 and TTYST2 are divided into twelve groups of six bits. Each group
controls a certain subset of the ascii characters. These groups, in left-to-
right order within TTYST1 and TTYST?, are:

(0) ~@-"F ~K “L *N-"R ~T-"Z "\-"_

(1) A-Z a-z (letters)

(2) 0-9 (digits)

(3) ' "#8%8&7, .:; 720\ | ~
(4) + x - / =~ _ (arithmetic operators)

$3-1.8.1 ~ August 3, 1978

The System

(5) <> ()[] (parentheses)
(6) “G *S _

(7) *I ~J (tab, linefeed)

(8) altmode (ascii 33)

(9) “M (carriage return)

(10) rubout (ascii 177)

(11) space, “H (backspace)

The meanings of the six bits in each group are:

40
20
10

4

Echo the character when read by LISP (normal mode).

Echo the character when typed (this may disappear from ITS soon!).
Echo in "image mode" rather than “ascii mode"

Convert lower case to upper case (apphcable only to Ietters not
normally used by LISP - the readtable accomplishes case
conversion). :

Activation characters. If this bit is not set, then ITS will not
schedule LISP to run when you type a character within the group
even if LISP was waiting for terminal input. The only purpose of
this is to increase the efficiency of the time-sharing system. For
example, letters and digits normally have this bit off, since typing one
cannot terminate an S-expression, and there is no point in
"activating” LISP until an S-expression terminator like space or)"
has been typed. An exception to this rule is that for tyi and readch
LISP asks ITS to activate on any character. Normally only groups
(0), (5), (6), (7), (9), (10), and (II) are activators. If you alter the
readtable, you may wish to change the activator groups.

Interrupt characters. If this bit is not set, then even if you have used
(sstatus ttyint) to set up an interrupt function you will not get
the interrupt since ITS won't tell LISP about it. Initially only
groups (0) and (6) cause interrupts (these include all control-
characters except altmode and format effectors). If you give e an
interrupt function, for example, you should set this bit for group (3).

On a keyboard with supra-ascii characters, one may wish to use meta-
characters for interrupts. Suppose we want meta-D to run the function
foo. Then we would turn on the interrupt bit for group 1 (letters) and say:

‘August 3, 1978

(sstatus ttyint 104 sletter D

(function (lambda (f c)
(and (= ¢ 504) ;meta bit
(foo0)))) s 15 400

- filter out plain "D"

3-1.8.1 Page 3-83

Page 3-84

Maclisp Reference Manual

Notice that this only handles meta-D, not meta-d. To handle the latter, one
must also do (sstatus ttyint 144 ...).

Another way to filter out pléin "D" is

(sstatus. ttyint 504 ;require meta bit
“(lambda (f c) (foo0)))
which is somewhat more efficient. On the other hand, to use both meta-D
and control-meta-D, we must do a dispatch on the control bit:

(sstatus ttyint 4
“(lambda (f c)
(cond signore
({or (= c 304)(= c 344))
(setq °d t))
{(or (= c 504)(= c 544))
. (meta-d-foo0))
({or (= ¢ 704)(= c 744))
(control-meta-d-foo)))))
The third variable, TTYSTS, has these bits of interrest:
40000 22 (%TSFCO) If set, output on this terminal uses the supra-ascn
convennon of an "alpha” prefix for "control” and "beta” for
‘ _ "meta”.
20000_22 (%TSALT) If set, ascii codes 175 and 176 are not converted to
33 on input. '
10000_22 (%TSROL) If set, terminal is in scroll mode. -
4000_22 (%TSSAI) If set, echoing and ascii output use the SAIL
character set; otherwise, control characters are output in the
form "~ X".
10_22 (%TSNOE) If set, suppress echomg of typed characters.
2_22 (%TSSII) If set, terminal uses "super-image input” mode. Not
even ~Z and ~_ can take their usual effect for ITS.

Notice that some of these bits affect output even though the argument is an

/input file; they affect the output terminal which is logically related by ITS

to the input terminal. Normally LISP or the user will arrange for
(status ttycons) to reflect this relationship.

$3-1.8.1 August 3, 1978

The System

STATUS FUNCTIONS FOR THE OLD I/0 SYSTEM

uread (status uread) returns a 4-list for the current uread input source, or
nilif uread is not being done.

{sstatus uread --args--) is the same as (uread --args--)

uwrite (status uwrite) returns the 2-list for the current uwrite output
destination.

(sstatus uwrite --args--) is the same as (uwrite --args--)

crunit (status crunit) returns a 2-list of the current unit; ie. device and
directory. ‘

(sstatus crunit device directory) sets the current default device
and directory for uread, etc. The arguments are not evaluated.

crfile (status crfile) returns a 2-list giving the file names for the current file
in the "uread"” 1/O system.

‘J’ (sstatus crfile namel name2) sets the current default file names for
uread, etc. Thearguments are not evaluated.

STATUS FUNCTIONS FOR THE READER

See section 1362 for a description of how the parameters controlled by these
fuhctions are used. All of these parameters are kept in the readtables, and the status
functions below deal with the readtable which is the value of the varjable readtable.
Note: in the following, ¢ represents an argument specifying a character. If ¢ is non-
atomic it is evaluated, and the value must be a fixnum which is the ascii code for a
character. If ¢ is atomic it is not evaluated, and it may be a fixnum or a character object.

chtran (status chtran c) gets the character translation table entry for the
character ¢. This is the ascii code of a character substituted for ¢ when it
appears (not preceded by slash) in a pname being read in. This feature is
used in the PDP-10 implementations to translate lower-case input to upper
case.

(sstatus chtran ¢ k) sets ¢’s character translation to k. k is always
evaluated. See the setsyntax function.

w August 3, 1978 $3-1.81 - ~ Page 385

Maclisp Reference Manual

syntax (status syntax c) returns the syntax bits -for the character ¢, as a
fixnum. '

(sstatus syntax ¢ m) sets ¢’s syntax bits to m. m is evaluated and
returned. The setsyntax function is usually a better way to do this,
however.

Note that in the above two sstatus calls, if ¢ is a macro character it is changed back to

its standard syntax and chtran before the requested operation is performed. However, if

in the standard readtable ¢ is a macro (ie. ~ and ; and |), instead of being changed to

its standard syntax and chtran its syntax is set to 502 (slashified extended alphabetic)

and its chtran is set to itself. ')

macro (status macro c¢) returns nil if ¢ is not a macro character. If ¢ is a
macro character it returns a list of the macro character function and the
type, which is ni1 for normal macros and splicing for splicing macros.

(sstatus macro ¢ f) makes ¢ a macro character which calls the function f

with no arguments. f is evaluated. A fourth argument to sstatus may be

supplied. It is not evaluated. If it is an atomic symbol whose pname begins

with s, ¢ is made a splicing macro.. If f is nil, instead of ¢ being made a

macro-character, ¢'s macro abilities are taken away and ¢ becomes an

ordinary extended-alphabetic character. The setsyntax function is
- generally a better way to do this, however.

+ (status +) gets the value of the + switch (t or nil) in the readtable.
This switch is normally nil. If it is t, atomic symbols more than one
character long beginning with a + or a - are interpreted as numbers by the
reader even if they contain letters. This allows the use of input bases
greater than ten. See ibase.

(sstatus + x) sets the + switch to t or nil depending on x, which is
evaluated. The new value of the + switch is returned.

ttyread (status ttyread) returns the value of the ttyread switch in the
readtable. At present this is not used. for anything in the Multics
implementation. In the PDP-10 implementation it controls how tty “force
feed” characters are used.

(sstatus ttyread x) sets the ttyread switch to t or nil depending on x,

which is evaluated. Again, file defaults to t. The new value of the switch
is returned.

" Page 3-86 - 33-1.8.1 August 3, 1978

m‘ The System

STATUS FUNCTIONS FOR THE PRINTER .

terpri (status terpri file) returns the value (t or nil) of the terpri switch for
the file, which defaults to t. This switch is normally nil. If it is t, the
output functions such as print and tyo will not output any extra
newlines when lines longer than 1inel are typed out. See also the terpri
variable. '

(sstatus terpri x file) sets the terpri switch.

o (status _) returns the value (t or nil) of the _ switch for the current
readtable. If this switch is t, the _ format for octal fixnums with lots of
trailing zeroes is not used.

(sstatus _ x file) sets the _ switch to the value of x, t or nil.
abbreviate(status abbreviate) returns the value of the abbreviation control. See
section 13.7 for a description of the abbreviation control. Note that the
abbreviation control is kept in the current readtable.
O ' (sstatus abbreviate n) sets the abbreviation control to n. ,
/

(sstatus abbreviate nil) turns off abbreviation.

.(sstatus abbreviate t) turns on maximal amount of abbreviation.

STATUS FUNCTIONS FOR THE GARBAGE

COLLECTOR
gctime (status gctime) returns the number of microseconds spent garbage-
collecting.

(sstatus gctime n) resets the gctime counter to n and returns the
previous value of the gctime counter.

It is a ‘good idea to do (gc) and then (sstatus gctime 0) just before
dumping out a subsystem. See also (status gcwho).

spcnames (status spcnames) returns a list of the names of all the spaces available .
in the LISP being used. These are the names acceptable to the alloc
function' and to the following status functions which require a space
argument.

C August 3, 1978 $3-1.8.1 Page 3-87

spcsize

gcmax

gcmin

gcsize

Maclisé Reference Manual
(status Spcsize space) returns the actual current size of space, in
words. space is evaluated.
(status gcmax space) returns the Qcmax parameter for space.
sstatus gcmax space n) sets the gcmax parameter for space to n.
See the alloc function. | |
(status gcmin space) returns the gecmin parameter for space.
sstatus gcmin space n) sets the gcmin parameter f or sface to n.
See the alloc function.

(status gcsize space) returns the gcsize parameter for space. This is
not the actual size of the space - see (status spcsize).

sstatus gcsize space n) sets the gcsize parameter for space to n.

See the alloc function.

purspcnames (status purspcnames) returns a list of names of spaces which

pursize

pdinames

‘pdlisize

pdiroom

pdimax’

Page 3~88

have pure versions. See purcopy.

(status pursize space) returns the actual current size of the pure
version of space. Only spaces returned by (status purspcnames) have
pure versions. .

(status pdinames) returns a list of the names of all the pdls available
in the LISP being used. These are the names acceptable to the followmg
status functions which require a pd1 argument.

(status pdlsize pdl) retum§ the current number of words on a pdl.

‘(status pdiroom pdl) returns the pdlroom of a pdl, ie the maximum

size to which it may ever grow.

(status pdimax pdl) returns the current value of the pdimax parameter
of a pdl.

(sstatus pdimax pdisize) sets the pdimax parameter for the pd1 space to
size. Both arguments are evaluated. See also the alloc function.

33-1.8.1 August 3, 1978

m

The System

The following status function exists only in the PDP-10 implementation

memfree (status memfree) returns the number of words of address space not yet
allocated for any purpose (ie. still available for allocation to various
spaces).

ENVIRONMENT ENQUIRIES

Note: the various enquiries related to time may return ni1 in the rare circumstance that
LISP cannot determine what time it is. :

date (status date) returns a 3-list of fixnums indicating the current date as
(last-two-digits-of-the-year month-number day).

dow (status dow) returns an interned atomic symbol which is the name of the
current day of the week.

daytime (status daytime) returns a 3-list of fixnums indicating the 24-hour time
of day as (hour minute second). .

system (status system x) returns a list of the system properties (that is,
properties whose values are supplied in the initial LISP system) of the
atomic symbol x, which is an evaluated argument. This list may contain
subr, fsubr, 1subr, macro, autoload, or array if x is a system
function, and value if this atomic symbol is a system variable.

LISPversion ‘
(status LISPversion) returns the version identification of LISP. This
is usually an atomic symbol.

-jc (status jc1) returns the "job command line” from DDT in the PDP-10

implementation. This is used to specify the init file, but interpretation of
the file name is terminated by altmode, and (in the ITS implementation at
least) additional information may follow the altmode. . The init file may
wish to examine this information. The DEC-10 implementation supports
two syntaxes for jcl:

.R LISP; -jci-
and .R LISP(-jci-)

Not all DEC-I0 operating systems support both syntaxes, however, and some
support neither. In the Multics implementation this returns the

August 3, 1978 83-1.8.1 Page 3-89

udir

uname

Maclisp Reference Manual

explodec'd second argument of the LISP command, or else nil if the

LISP command did not have two arguments. (See (status arg).) If
LISP was invoked by

LISP environment_name "foo bar”
then (status jc1) => (foo/ bar)

This function is also used by subsystems implemented in Maclisp to pick up
the arguments from the command which invoked them. :

(status udir) returns the name of the user’s directory. In the ITS
implementation this is the user’s "master sname”, which is usually the same

~as the user’s name as returned by (status uname). In the Multics

implementation this is the user’s default working directory. In the TOPS-
10 implementation this is a list (proj prog).

(status uname) returns an interned atomic symbol whose pname is the
user’s login name. In the ITS implementation this is just the . UNAME .

In the Multics implementation this is in the format User.Project.Instance;

the dot will be slashified if print is used to display this. In the TOPS-10

implementation this is actually a list (proj prog) representing the project-

programmer number rather than a symbol. See also (status userid).

The following status functions exist only in the PDP-10 implementation.

. userid

Jname

. Page 3-90

(status userid) tries to return an identification of the user (as opposed

~ to an identification of an instance of his being logged in). Thus if a user

is logged in on several terminals, (status uname) may differ among them,
but (status userid) should be the same. In the ITS implementation this
returns the XUNAME as an interned atomic symbol. Normally the
XUNAME is the same as UNAME with trailing digits stripped off. It is
possible, however, to cause a job to be run with a different XUNAME.
Subsystem initializations should check the userid to determine which init
files to use. In the TOPs-10 implementation this the the .GTNMI and
.GTNM2 GETTAB variables as an atomic symbol, if they exist, and
otherwise is the same as (status uname). In the SAIL implementation .
this is the same as (status uname).

(status jname) returns the job name as an interned atomic symbol. The
Jjname of a job is a unique identifier for it among all of the user’s jobs. In
the ITS implementation this is the job’s .JNAME . In the DEC-10
implementation this is nnnLISP, where nnn is the job number in decimal.

$3-1.8.1 » ~ August 3, 1978

xJjname

seglog

The System

(status xjname) in the ITS implementation returns the . X JNAME as

-an interned atomic symbol. This is normally the name of the program that.

the user invoked to create this job. Usually this will be the same as the
jname, but sa user can invoke several copies of a program at once, each
having a unique jname but all Having the same xjname. In the DEC-10
implementation this will return the job's “program name". On Multics, it
should return (status arg 0).

(status seglog) returns the logarithm (base 2) of the size of a
"segment”, the unit of space allocation. (The size of a segment need not be
the same as the size of a memory page.)

The following status functions only exist in the ITS implementation.

its

(status its) returns a list of five items (obtained from the SSTATU
symbolic system call):

(1) The amount of time in seconds until ITS is going down, as a flonum,
-1.0 if ITS doesn'’t plan to go down, or -2.0 if ITS already is down.

(2) a fixnum which is nonzero if ITS is being debugged.

(3) the number of users logged in, as a fixnum.

(4) the number of memory errors the system has survived, as a fixnum.

(5) the time in seconds the system has been up, as a flonum.

Some of this information may be of use to a user handler for the sys-death interrupt.

hactrn

(status hactrn) returns an atomic symbol indicating what kind of job is
superior to the LISP. Current possibilities are ddt, LISP t (a superior of
unknown type), and nil (no superior).

The following status functions exist only in the Multics implementation.

paging

arg

(status paging) returns a list of the paging-device page reads and total
page reads that have been caused by this process.

(status arg n) returns the n+'th argument of the command which
invoked the subsystem, as an interned atomic symbol. (The first argument,
(status arg 0), is the name of the subsystem.) nil is returned if n is
greater than the number of arguments to the command. .

August 3,1978 . #3-1.8.1 | Page 3-91

Maclisp Reference Manual = . 0

- STATUS FUNCTIONS FOR THE WHO-LINE

The following status functions exist only in the ITS implementation.

whol

Page 3-92

(sstatus whol a b ¢ d) sets four user parameters for the "who-line”
which appears at the bottom of some display terminals. These control the
print format of information specified by (sstatus who2), (sstatus
who3), and (sstatus gcwho). Each of the four parameters specified eight
bits of information. Parameters ¢ and ¢ must be fixnums; b and d may be
fixnums or atomic symbols (which represent the ascii value of the first
character in their pnames). Their meaning is as follows:

a 200 If 1, suppress display of entire who-line.
100 If I, suppress space between halves of who2.
70 Mode for printing high 18. bits of who2.
7 Mode for printing low 18. bits of who2.

b 177 If non-zero, print between halves of who2 as an ascii character.
200 If 1, print character twice.

c 200 If 1, suppress space between who2 and who3. : - @
177 As for a, but affects who3. : ‘

d 877 As for b, but affects who3. _

That is, if the who-line is displayed at ali, the user information appears in
the form:

PPP#+-QQQQ-RRRRee+5S5S

where:

PPPPis the result of printing the high 18. bits of who2 as specified by a’s
70 bits. .

Q_QQQW 18. bits of who?, by ¢'s 7 bits.
RRRFhigh 18. bits of who3, by ¢'s 70 bits.
SSSS low 18. bits of who3, by s 7 bits.
#s zero to two characters, specified by d | w‘ |

- space, unless a’s 100 bit is set.

#3-1.8.1 ~ August 3,1978

+

The System

space, unless ¢'s 200 bit is set.

space, unless ¢'s 100 bit is set.

The possible print modes are:

0

6

7

Do not print.
Date in packed form:
774000 Year mod 100.
3600 Month (January = 1)

174 Day of month.
Printed as mm/dd/yy.

Time in fortieths of a second. Printed as hh:mm:ss.t.

Time in half-seconds, pfinted as hh:mm:ss.
QOctal number.

Decimal number (no " is printed).
Three sixbit characters.

Unused.

(status whol) returns a list of four fixnums {(a b ¢ d).

who? (sstatus who? x) sets the who?2 variable to x if it is a fixnum, or to the
sixbit value of the first six characters of the pname of x if it is a symbol.

(status who? x) returns who?2 as a fixnum.

who3 (sstatus who3 x) and (status who3) are analogous to those for who2.

E)éample:

(all numbers in octal)

(sstatus whol 166 0 144 254)

(sstatus who2 "FOOBAR) ,
(sstatus who3 (+ (LSH 1234 22) 3456))

would cause "FOOBAR 1234,3456" to appear in the who-line. The general idea is that

August 3, 1978

83-1.8.1

Maclisp Reference Manual

the user should set up whol just once and then keep updating who2 and who3 as
appropriate. For example, a routing that processed functions in files might do
(sstatus whol 166 0 166 0)
and on opening a new file do
(sstatus who2 (cadr (truname infile)))
v (sstatus who3 0)
and on encountering a function do
(sstatus who3 fnname)
and so continuously display the filename and function name being processed. One
advantage of doing this over printing the information is that LISP can update who-line
information even though it doesn’t have control of the console.

gcwho (sstatus gcwho n) sets the gewho switch to n. Currently only the low
two bits are significant.

The | bit means that during a garbage collection the who-line should be usurped to
display the message "GC:XXXX", where "XXXX" is the reason for the garbage
collection. On completion of the garbage collection the original user who-line information
is restored. -

The 2 bit means that at the end of the garbage collection the who2 word should be
altered so that the low 18. bits get the resuit of (status gctime), converted to fortieths
of a second, and the high 18 bits get the result of (// (x (status gctime)
100.)(runtime)), which is the percentage of time spent in gc. If the user gives 52
octal and % as the first two arguments to (sstatus whol), then these quantities will be
displaced in the form "nn% hh:mm:sst”, just like the standard system statistics for the
LISP job. The user can still use who3 for his own purposes.

Subsystems which use (sstatus gcwho) should perform
(go)
(sstatus gctime 0) ‘ . '
before dumping out the subsystem, so that the gc time percentages will be accurate .
(status gcwho) returns the value of the gcwho switch.
- MISCELLANEOUS STATUS FUNCTIONS
evalhook (sstatus evalhook t) enables 'the evalhook feature; (sstatus

evalhook ni1) disables it. (status evalhook) returns the state of the
switch. See page 3-31 for the details of this feature.

Page 3-94 $3-1.8.1 _— August 3, 1978

The System

toplevel (status top]ex)el) returns the top-level form, which is continually
- -evaluated when LISP is at its top level. If this is n11, a normal read-eval-
print loop is used. :

(sstatus toplevel x) evaluates and returns x and sets the top level
form to this value.

For example, to make Maclisp have an evalquote top level similar to LISP
L5: ' '

(sstatus toplevel
“(progn (print x)
(apply (read) (read))))

See section 12.1 for further details.

breakievel (status breaklevel) returns the 4break—|oop form. (sstatus
breaklevel x) sets this form. See page 3-6 for how this is used.

- uuolinks (status uuolinks) returns a number which represents the number of
available slots for linking between compiled functions. (status
0 uuolinks) returns nil if no uuolinks pages have been set up yet (see
! pure). Otherwise it returns a list of two items. The first is t if area 2 has
been purified (and so no new calls may be put in the area), and nil
otherwise. The second is the number of slots not yet used in the uuolinks
areas.

(sstatus uuolinks) causes all links between compiled functions to be
"unsnapped.” This should be done whenever (nouuo t) is done to insure
that the interpreter always gets a chance to save debugging information on
every function call.

divov (status divov) returns the state of the "divide overflow™ switch. If this
.switch is ni1 an attempt to divide by zero causes an error. If the switch is
t the result of a division by zero is the numerator plus 1.

(sstatus divov x) sets the "divide overflow” switch to x.

In the PDP-10 implementation, divov applies‘only to quotient. // and
//% do not detect division by zero.

mar - (sstatus mar cond loc) arms the mar (memory address register) interrupt

m August 3, 1978 3-1.8.1 ' Page 3-95

Maclisp Reference Manual

(currently available only in the ITS implementatioﬁ). (status mar)
returns a 1ist of cond and loc, or nil if the mar feature is not in use.
See the mar break feature for more details (page 3-55).

features (status features) returns a list of symbols representing the
features implemented in the LISP being used. The following symbols may
appear in this list:

bibop PDP-10 blg-bag-of-pages ‘memory management
scheme :
lap , ~ this LISP has a LISP Assembly Program loaded
sort the sorting functions described in chapter Il are
present
edit the edit function described in chapter 18 is present
fasload the fasload facility descrlbed in chapter 14 is
present
o the "moby I/O" facility is present | @
bighum the arbitrary-precision arithmetic package is

included in this LISP

hunk the hunks data type and its associated functions
are present.

funarg the “fake funarg" feature (second argument to
eval, third to apply, etc.) is present. :

strings character strings and the functions on them |
described in chapter 8 are present \ i

newio the 1/O functions described in chapter 13 are
included in this LISP; if this feature is not
present only some of those functions are available.

‘roman this LISP can read and print roman numerals (see
base and ibase.

~ trace the trace package (chapter 15) is present.

Page 3-96 ' ' 83-1.8.1 August 3, 1978 S w

grindef

grind

compiler
fastarith
mi

ai

mc

SAIL

' H6180

its
Multics

TOPS-10

The System
the function definition formatter (chapter 16) is
present. '
the file formatter (chapter 16) is present.

this is the LISP compiler (chapter 14) rather than
the interpreter (see also compiler-state).

the fast-arithmetic features of the
compiler are present

this LISP is on the MathLab machine at

MIT '

this LISP is on the AI machine at MIT
this LISP is on the MC machine at MIT
this LISP is running at SAIL

this LISP is on an H6180 Multics machine
or a compatible machine such as a 68/60
or a 68/80.)

this LISP is on some ITS system

this LISP is on some Multics system

this LISP is on some DEC TOPS-10 system;

or on some TENEX system since the TENEX
implementation runs under a TOPS-10
emulator. ‘

A package being "present" means that it has been loaded into

the environment.

If (status features) claims it is not present, it

may still be available because it may be automatically loaded when required.
This does not apply to the compiler.

(car (last (status features))) is an implementation name, such as
ITS or TOPS-10 or Multics. The main idea behind this status call is that
an application package can be loaded into any Maclisp implementation and
can decide what to do on the basis of the features it finds available.

(} , August 3, 1978

83-1.8.1 Page 3-97

feature

Maclisp Reference Manual

(status feature foo) is roughly equivalent to (memg “foo (status
features)), i.e. it determines whether this LISP has the foo-feature. Note
that foo is not evaluated.

(sstatus feature foo) makes foo a feature. foo is not evaluated. For
example, the trace package does’ (sstatus feature trace) when it is
loaded.

Example:

(cond ((status feature bignum) -
(prog2 nil (eval (read)) (read))) ;use first
(t (read) (eval (read)))) suse second

(defun faétorial (n) ;bignum version
(cond ((zerop n) 1)

((times n (factorial (subl n))))

)) ‘

~ (defun factorial (n) ' ;fixnum-only version
(do () ({not (> n 13.))) ;do until n < 13.
(error "argument too big - faqtorial"
n
‘wrng-type-arg))
(cond ((zerop n) 1)
((x n (factorial (1- n))))))

nofeature (sstatus nofeature foo) makes foo not be a feature. foo is not

status

sstatus

Page 3-98

evaluated.

(status nofeature foo) is equivalant to (not (status feature
foo)).

(status status foo) returns tif foo isa valid status function. If it is
not, nilis returned.

(status status) returns a list of valid status functions. The names
are truncated to some implementation-dependent number of characters, such
as 4 orb. ' ’ :
(status sstatus foo) returns t if foo is a valid sstatus function. If it

is not, nil is returned.

¢3-1.8.1 August 3, 1978

The System

(status sstatus) returns a list of valid sstatus functions. As with
.(status status), the names are truncated to some implementation-
dependent number of characters, such as 4 or 5.

1.8.2 Time

runtime

time

sleep

' SUBR no args

(runtime) returns as a fixnum the number of microseconds of cpu time
used so far by the process in which LISP is running. The difference
between two values of {(runtime) indicates the amount of computation that
was done between the two calls to runtime.

SUBR no args

(time) returns the time in seconds that the system has been up, as a
flonum. The difference between the results of two calls to time indicates the
amount of elapsed real time. (In the ITS implementation, time that elapses
while the system is stopped due to memory errors is not considered “real”
and not counted. Use (status daytime) to measure true "real world”
time.)

SUBR 1 arg

(sleep n) causes a real-time delay of .n seconds, then returns n. n may be
a fixnum or a flonum. ‘

See also the alarmclock function, section 1.4.3, and the date, daytime, and dow
functions of the status special form, described in the preceding section.

1.8.3 Escaping from LISP

It is possible to escape temporarily from LISP to execute a command in the host
operating system. Of course, the program (or user) that supplies the command has to
know which operating system it is running under. It is also possible for LISP to return

August 3, 1978 - 83-1.81 Page 3-99

Maclisp Reference Manual

permanently to the host operating system. This discards the LISP environment and
gives back whatever resources, such as memory, it was using.
in the Multics implementation
cline SUBR 1 arg
(cline x), where x is a character string, executes the Multics command x
and returns nil. Example: '
(cline "who -long")

. quit . SUBR no args

(quit) returns from the LISP command, freeing up the temporary segments
that were used to hold the LISP environment.

in the ITS implementation

valret LSUBR € or 1 args .

(valret) does a .LOGOUT if LISP is a top level procedure, and otherwise
~ valrets VK " to DDT.

(valret x) effectively performs an éxplodec on x (in practice x is some
strange atomic symbol like |:PROCEED :DISOWN | , but it may be any S-
expression). If the string of characters is one of "$~X.", ":KILL ", or ":KILL"M" .
then valret performs a "silent kill" by executing a .BREAK 16,20000; otherwise
valret performs a .VALUE, giving the character string to DDT to evaluate as
commands. ’

Examples:

‘(valret | :PROCEED :DISOWN |)

starts the LISP running on its own without a terminal.

{valret 7} :KILL :TECO*M])

kills the LISP and starts up a TECO.

(valret 70SNSP)

Page 3-100 | $3-1.8.3 ‘August 3, 1978

C

The System

causes DDT to print out the contents of all non-zero locations in LISP and
then return to LISP.:

If the valret command leaves you in DDT (or anywhere other than the
LISP), a :CONTINUE or $P command to DDT will return to the LISP, which
will then return from the call to valret. However, valret differs from suspend
in two ways: it does not check for open files, and it does not alter the starting
address of the LISP. If you use valret to dump a subsystem, then starting up
the subsystem causes a return to top level and the consequent evaluation of the
top-level errlist (not the binding of errlist in effect at the time of the -
valret!). Using suspend, the subsystem startup merely causes a return from the
suspend function.

in the TOPS-iO implementation

There is currently no way for LISP to return a command string to the
Monitor in the TOPS-10 implementation. However, (valret) will return control
to the monitor so that a command may be manually typed. Then type
CONTINUE to resume LISP. ’

The remarks above about valret and suspend hold for the TOPS-10
implementation also.

1.8,4 Additidnal Functions

subr

SUBR 1 arg

‘The argument, a fixnum, is taken to be the address of a location within a
compiled or system function. subr attempts to determine the name of the function
by groveling through the current obarray looking at all the compiled function
properties. If it fails it returns "?". This is used by baktrace, for example. This
function may be useful to user handlers for the machine-error interrupt, for
example.

August 3, 1978 33-1.8.3 ' Page 3-101

Maclisp Reference Manual

The following function exists only in the ITS implementation
syscall LSUBR 2 to 10 args

This function allows the LISP user to directly issue ITS symbolic system calls.
The first argument should be
(+ (1sh ¢ 18.) n)

where n is the desired number of output values and c¢ is the control bits for the
call. The second argument should be an atomic symbol whose pname is the name
of the ITS system call. The rest of the arguments should be the input arguments
for the call. An argument may be a fixnum, or a file object (for which the file's
channel number is used). If the call succeeds, a list of n fixnums is returned. If
an error occurs, the ITS error code is returned as a fixnum.

Example: (syscall 0 “scml tyi 3)

sets the number of echo l‘mes for the tty to 3 and
returns nil on success.

Page 3-102 33-1.8.4 ~ August 3,1978

	Part 1 - The Language
	Contents
	1 General Information
	2 Data Objects
	3 The Basic Actions of LISP

	Part 2 - Function Descriptions
	Contents
	1 Predicates
	2 The Evaluator
	3 Manipulating List Structure
	4 Flow of Control
	5 Atomic Symbols
	6 Numbers
	7 Character Manipulation
	8 Arrays
	9 Mapping Functions

	Part 3 - The System
	Contents
	1.1 The Top Level Function
	1.2 Breakpoints
	1.3 Control Characters
	1.4 Exception Condition Handling
	1.5 Debugging
	1.6 Storage Management
	1.7 Implementing Subsystems with Maclisp
	1.8 Miscellaneous Functions

