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Preface

.. it is important not to lose sight of the fact that there is a
difference between training and education. If computer science is a
fundamental discipline, then university education in this field
should emphasize enduring fundamental principles rather than
transient current technology.”

Peter Wegner, T hree Computer Cultures [Weg 70]

This text is nominally about LISP and data structures. However, in the
process it covers much broader areas of computer science. The author has
long felt that the beginning student of computer science has been getting a
distorted and disjointed picture of the field. In some ways this confusion is
natural; the field has been growing at such a rapid rate that few are
prepared to be judged experts in all areas of the discipline. The current
alternative seems to be to give a few introductory courses in programming
and machine organization followed by relatively specialized courses in more
technical areas. The difficuity with this approach is that much of the
technical material never gets related. The student’s perspective and
motivation suffer in the process. This book uses LISP as a means for relating
topics which normally get treated in several separate courses. The point is not
that we can do this in LISP, but rather that it is natural to do it in LISP.
The high-level notation for algorithms is beneficial in explaining and

xi



xii PREFACE

understanding complex algorithms. The use of abstract data structures and
abstract LISP programs shows the intent of structured programming and
step-wise refinement. Much of the current work in mathematical theories of
computation is based on LISP-like languages. Thus LISP is a formalism for
describing algorithms, for writing programs, and for proving properties of
algorithms. We use data structures as the main thread in our discussions
because a proper appreciation of data structures as abstract ob jects is a
necessary prerequisite to an understanding of modern computer science.

The importance of abstraction obviously goes much farther than its
appearance in LISP. Abstraction has often been used in other disciplines as
a means for controlling complexity. In mathematics, we frequently are able to
gain new insights by recasting a particularly intransigent problem in a more
general setting. Similarly, the intent of an algorithm expressed in a
high-level language like Fortran or PL/1 is more readily apparent than its
machine-language equivalent. These are both examples of the use of
abstraction. Our use of abstraction will impinge on both the mathematical
and the programming aspects. Initially, we will talk about data structures as
abstract objects just as the mathematician takes the natural numbers as
abstract entities. We will attempt to categorize properties common to data
structures and introduce notation for describing functions defined on these
abstractions. At this level of discussion we are thinking of our LISP-like
language primarily as a notational convenience rather than a computational
device. However, after a certain familiarity has been established it is
important to look at our work from the viewpoint of computer science. Here
we must think of the computational aspects of our notation. We must be
concerned with the representational problems: implementation on realistic
machines, and efficiency of algorithms and data structures. However, it
cannot be over-emphasized that our need for understanding is best served at
the higher level of abstraction; the advantage of a high-level language is
notational rather than computational. That is, it allows us to think and
represent our algorithms in mathematical terms rather than in terms of the
machine. It is after a clear understanding of the problem is attained that we
should begin thinking about representation.

We can exploit the analogy with traditional mathematics a bit further.
When we write sqrt(x) in Fortran, for example, we are initially only
concerned with sgrt as a mathematical function defined such that
x = sqrt(x)esqrt(x). We are not interested in the specific algorithm used to
approximate the function intended in the notation. Indeed, thought of as a
mathematical notation, it doesn’t matter how sqr¢ is computed. We might
wish to prove some properties of the algorithm which we are encoding. If so,
we would only use the mathematical properties of the idealized square root
function. Only later, after we had convinced ourselves of the correct encoding
of our intention in the Fortran program, would we worry about the
computational aspects of the Fortran implementation sqrt. The typical user
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will never proceed deeper into the representation than this; only if his
computation is lethargic due to inefficiencies, or inaccurate due to
uncooperative approximations, will he look at the actual implementation of
sqrt.

Just as it is unnecessary to learn machine language to study numerical
algorithms, it is also unnecessary to learn machine language to understand
non-numerical or data structure processes. We make a distinction between
data structures and storage structures. Data structures are abstractions,
independent of Aow they are implemented on a machine. Data structures are
representations of information chosen to exhibit certain ordering and
accessibility relationships between data items. Storage structures are
particular implementations of the abstract ideas. Certainly we cannot ignore
storage structures when we are deciding upon the data structures which will
encode the algorithm, but the interesting aspects of the representation of
information can be discussed at the level of data structures with no loss of
generality. The mapping of data structures to storage structures is usually
quite machine dependent and we are more interested in ideas than coding
tricks. We will see that it is possible, and most beneficial, to structure our
programs such that there is a very clean interface between the abstract
algorithm and the chosen representation. That is, there will be a set of
representation-manipulating programs to test, select or construct elements of
the domain; and there will be a program encoding the algorithm. Changes of
representations only require changes to the programs which access the
representation, not to the basic program.

One important insight which should be cultivated in this process is the
distinction between the concepts of function and algorithm. The idea of
function is mathematical and is independent of any notion of computation;
the meaning of "algorithm” is computational, the effect of an algorithm being
to compute a function. Thus there are typically many algorithms which will
compute a specific function.

This text is not meant to be a programming manual for LISP. A
certain amount of time is spent giving insights into techniques for writing
LISP functions. There are two reasons for this. First, the style of LISP
programming is quite different from that of "normal” programming. LISP
was one of the first languages to exploit the virtues of recursive
programming and explore the power of procedure-valued variables. Second,
we will spend a great deal of time discussing various levels of implementation
of the language. LISP is an excellent medium for introducing standard
techniques in data structure manipulation. Techniques for implementation of
recursion, implementation of complex data structures, storage management,
and symbol table manipulation are easily motivated in the context of
language implementation. Many of these standard techniques first arose in
the implementation of LISP. But it is pointless to attempt a discussion of
implementation unless the reader has a thorough grasp of the language.
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Granting the efficacy of our endeavor in abstraction, why study LISP?
LISP is at least fifteen years old and many new languages have been
proposed. The difficulty is that the appropriate combination of these
features is not present in any other language. LISP unifies and rationalizes
many divergent formulations of language constructs. One might surmise that
a new language, profiting from LISP’s experience, would make a better
pedagogical tool. A strong successor has not arrived, and toy languages are
suspect for several reasons. The student may suspect that he is a subject in a
not too clever experiment being performed upon him by his instructor.
Having a backlog of fifteen years of experience and example programs
should do much to alleviate this discomfort. The development of LISP also
shows many of the mistakes that the original implementors and designers
made. We will point out the flaws and pitfalls awaiting the unwary language
designer.

We claim the more interesting aspects of LISP for students of computer
science lie not in its features as a programming language, but in what it can
show about the structure of computer science. There is a rapidly expanding
body of knowledge unique to computer science, neither mathematical nor
engineering per se. Much of this area is presented most clearly by studying
LISP.

Again there are two ways to look at a high level language: as a
mathematical formalism, and as a programming language. LISP is a better
formalism than most of its mathematical rivals because there is sufficient
organizational complexity present in LISP so as to make its implementation a
realistic computer science task and not just an interesting mathematical
curiosity. Much of the power of LISP lies in its simplicity. The data
structures are rich enough to easily describe sophisticated algorithms but not
so rich as to become obfuscatory. Most every aspect of the implementation of
LISP and its translators has immediate implications to the implementation of
other languages and to the design of programming languages in general.

We will describe language translators (interpreters and compilers) as
LISP functions. The structure of these translafors when exposed as LISP
functions aids immensely in understanding the essential character of such
translators. This is partly due to the simplicity of the language, but perhaps
more due to our ability to go right to the essential translating algorithm
without becoming bogged down in details of syntax.

LISP has very important implications in the field of programming
language semantics, and is the dominant language in the closely related study
of provability of properties of programs. The idea of proving properties of
programs has been around for a very long time. Goldstein and von
Neumann were aware of the practical benefits of such endeavors. J.
McCarthy’s work in LISP and the Theory of Computation sought to
establish formalisms and rules of inference for reasoning about programs.
However, the working programmers recognized debugging as the only tool
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with which to generate a ‘“correct” program, though clearly the
non-occurrence of bugs is no guarantee of correctness. Until very recently
techniques for establishing correctness of practical programs simply did not
exist.

A recent seét of events is beginning to change this.

1. Programs are becoming so large and complex that, even though we write
in a high-level language, our intuitions are not sufficient to sustain us
when we try to find bugs. We are literally being forced to look beyond
debugging.

2. The formalisms are maturing. We know a lot more about how to write
“structured programs"; we know how to design languages whose constructs
are more amenable to proof techniques. And most importantly, the tools
we need for expressing properties of programs are finally being
developed.

3. The development of on-line techniques. The on-line system, with its
sophisticated display editors, debuggers and file handlers, is the only
reason that the traditional means of construction and modification of
complex programs and systems has been able to survive this long. The
interactive experience can now be adapted to program verifiers and
synthesizers.

This view of the programming process blends well with the LISP
philosophy. We will show that the most natural way to write LISP programs
is "structured” in the best sense of the word, being clean in control structure,
concise by not attempting to do too much, and independent of a particular
data representation.

Many of the existing techniques for establishing correctness originated
in McCarthy’s investigations of LISP; and some very recent work on
mathematical models for programming languages is easily motivated from a
discussion of LISP.

LISP is the starting point for those interested in Artificial Intelligence.
It is no longer the "research” language, but has become the "systems"
language for A.I. Today’s research languages are built on LISP, using LISP
as a machine language.

Finally there are certain properties of LISP-like languages which make
them the natural candidate for interactive program specification. In the
chapter on implications of LISP we will characterize "LISP-like" and show
how interactive methods can be developed.

This text is primarily designed for undergraduates and therefore an
attempt is made to make it self-contained. There are basically five areas in
which to partition the topics: the mechanics of the language, the evaluation
of expressions in LISP, the static structure of LISP, the dynamic structure of
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LISP, and the efficient representation of data structures and algorithms.
Each area builds on the previous. Taken as a group these topics introduce
much of what is interesting computer science. _

The first area develops the programming philosophy of LISP: the use
of data structures in programming; the language primitives, recursion, and
other control structures. The second area, involving a careful study of the
meaning of evaluation in LISP, gives insights into other languages and to
the general question of implementation. The next two areas are involved
with implementation. The section on static structure deals with the basic
organization of memory for a LISP machine -- be it hardware or simulated
in software. The dynamics of LISP discusses the primitive control structures
necessary for implementation of the LISP control structures and procedure
calls. LISP compilers are discussed here. The final section relates our
discussion of LISP and its implementation to the more traditional material of
a data structures course. We discuss the problems of efficient representation
of data structures. By this point the student should have a better
understanding of the uses of data structures and should be motivated to
examine these issues with a better understanding.

A large collection of problems has been included. The reader is urged
to do as many as possible. The problems are mostly non-trivial; they attempt
to be realistic, introducing some new information which the readers should
be able to discover themselves. There are also a few rather substantial
projects. At least one should be attempted. There is a significant difference
between being able to program small problems and being able to handle
large projects. Small programming projects can be accomplished in spite of
any admonitions about “good programming style". A large project is an
effective demonstration of the need for elegant programming techniques.
The text is large and covers much more than is recommended for a
one-semester course. A typical one semester course on data structures covers:

Chapter 1: all

Chapter 2: without 2.4, 2.5, and 2.10.

Chapter 3: without the mathematical aspects of 3.13

Chapter 4: without 4.7, 4.8, and the mathematical aspects of 4.11
Chapter 5: without 5.8, 5.19, and 5.20

Chapter 6: without 6.8, and 6.12 through 6.20

Chapter 7: without 7.5, 76, and 7.10 through 7.14

Chapter 8 is also optional.

If a good interactive LISP implementation is available, then the pace
can be quickened and the projects enlarged. However, if only a poor or
mediocre implementation is accessible, then the course time is better spent
without any actual programming, or the course should be augmented to
include an implementation laboratory. LISP is an interactive language;
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attempts at other modes of operation do a disservice to both the language
and the user.

Finally a note on the structure of the text. The emphasis flows from the
abstract to the specific, beginning with a description of the domain of LISP
functions and the operations defined over that domain, and moves to a
discussion of the details of efficient implementation of LISP-like languages.
The practical-minded programmer might be put off by the “irrelevant”
theory and the theoretical-minded mathematician might be put off by the
“irrelevant” details of implementation. If you lie somewhere between these
two extremes, then welcome.

Acknowledgments

This book began informally at UCLA in 1970 as an alternative to the data
structures course. Any book which takes eight years to complete must have a
list of acknowledgements. Between the 1970 manuscript and the present
version stretches an incredible list of revisions and rewritings. That task was
made possible only by the document preparation system at the Stanford
Artificial Intelligence Laboratory. The Artificial Intelligence community is
still the superior developer of computer related tools.

The final shape of this book has been guided by many sources, but
particularly I would like to mention Michael Burke and the San Jose State
Mathematics Department, who allowed me to use my manuscript in their
data structures course. To Ruth Davis who read and re-read the enumerable
versions of paragraphs, sections, and chapters, trying to make sense out of
the author and his material; her reward: to copy-edit the manuscript. Ruth’s
aid has been both technical and personal; with out her there would be no
"Anatomy of LISP." To Nancy Meller of the UCLA Computer Science
Department for typing the orginal LISP notes. To Les Earnest of the
Stanford AL Labs for aid beyond the call of duty. To Paulette for trying to
understand. To Richard Manuck of the Stanford Computer Science Library,
a most excellent librarian with an exceptional library. To John McCarthy
for the insight which led to LISP, and for establishing an environment at
Stanford which is staffed so admirably and supplied with so many talented
people. To E, PUB, and the XGP, for existing. To Dick Dolan and the
staff of the H. P. Journal, who both tolerated and sympathized with my
attempts to transform the computer generated text into something which
could be typeset.

Particular mention must go to Guy Steele and Gianfranco Prini. Guy
reviewed a much inferior version of this text. His insights, comments, and
criticisms were invaluable. With comments like: "that’s not a compromise, it’s
a bloody surrender!”, the text was bound to improve. Gianfranco, was more
fortunate; he reviewed the results of Guy’s scoldings. '

Many other people have had significant influence on the text. I feel



xviii PREFACE

fortunate to be able to acknowledge these individuals: Bruce Anderson, Bob
Boyer, Michael Clancy, Bob Doran, Daniel Friedman, Richard Gabriel,
Michael Gordon, Patrick Greussay, Anthony Hearn, Freidrich von Henke,
Forrest Howard, Bill McKeeman, Peter Milne, J S. Moore, Jorge Morales,
Charles Prenner, Steve Russell, Hanan Samet, Vic Scheinman, Herbert
Stoyan, Dennis Ting, and Steve Ward. I apologize to any individuals I
neglected to mention; I must surely have forgotten someone.

Similarly there are topics related to LISP which I have neglected. The
whole area of Artificial Intelligence applications has been slighted, but for
every author there must come a time when you have to say "Enough!” I've
been saying that for several years. It is particularly difficult to cease when
dealing with a topic as dynamic as LISP. Many sections only hint at deeper
problems, and surely some errors persist; but "Enough!”

As always, it is the author’s responsibility for the final shape of a
document; the substantial and textual errors, errors of omission and
commission are all mine. Each of the reviewers ob jected strongly to one or
more facets of this book; to some, it was too theoretical; for some, too

practical. I must have done something right.
John Allen



CHAPTER 1

Symbolic Expressions

1.1 Introduction

This book is a study of data structures and programming languages; in
particular it is a study of data structures and programming languages
centered around the language LISP. However, this is not a manual to help
you become a proficient LISP coder. We will study many of the formal and
theoretical aspects of languages and data structures as well as examining the
practical applications of data structures. We will show that this area of
computer science is a discipline of importance and beauty, worthy of careful
study. How are we to proceed? How do we introduce rigor into a field whose
countenance is as ad hoc and diverse as that of programming? We must bear
in mind that the results of our studies are to have practical applications. We
must not pursue theory and rigor without proper regard for practice. Our
study is not that of pure mathematics; our results will have applications in
everyday programming pracice. However, for guidance let’s look at
mathematics. Here is a well-established discipline rich in history and full of
results of both practical and theoretical importance.

One of the more fertile, yet easily introduced areas of mathematics, is
that of elementary number theory. It is easy to introduce because everyone
knows something about the natural numbers. Number theory studies
properties of a certain class of operations definable over the set N of

1



2 Symbolic expressions 1.1

non-negative integers also called natural numbers. A very formal
presentation might begin with a construction of N from more primitive
notions, but it is usually assumed that the reader is familiar with the
fundamental properties of N. In either case the next step would be to define
the class of operations which we would allow on our domain.

We shall begin our study of LISP in a similar manner, as an
investigation of a certain class of operations definable over a domain of
ob jects, called Symbolic Expressions. Though most people know something
about the natural numbers, the term "symbolic expresssions” has no standard
interpretation. We must define what we mean by "symbolic expression”. If
we asked someone to define the domain N, the definition we would receive
would depend on how familar that individual was with the properties of the

natural numbers. !
For most people and most purposes, the following characterization of a
natural number is satisfactory:

I A natural number is a sequence of decimal digits.
The definition assumes the terminology of “sequence”, "decimal” and "digit"
are known. If any of these terms are not understood, they can be further
elaborated. However, this process of explanation and description must
terminate. We must assume that some concepts require no further
elaboration. The current definition suffers from a different kind of
inadequacy. It fails to illuminate the relationships between natural numbers.
The "meaning” of the natural numbers is missing. It is like giving a person
an alphabet and rules for forming syntactically correct words but not
supplying a dictionary which relates these words to the person’s vocabulary.
If pressed for details we might attempt a more elaborate
characterization like the following:

1. zero is an element of N.

II 2. If nis in N then the successor of n is in N.
3. The only elements of N are those created by finitely many applications
of rules 1 and 2.

Definition II appears to be completely at the other end of the spectrum; it
tells us very little about the appearance of the integers. It gives us an initial
element zero and an operation called successor, which is to exhibit a new
element, given an old one. Unless we are careful about the meaning of
successor, definition II will be inadequate. For example if we define the

'We will not attempt to arrive at a completely self-contained definition
of "natural number”. That is a difficult undertaking. See [Goo 57]. We will
be satisfied with discussing some of their characteristics.
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successor of a natural number to be that same number then 1I is satisfied but
unsatisfactory.

We can define successor as a specific mapping, S, which creates new
elements sub ject to the rules that two elements, x and 9 are equal just in the
case that S(x) equals S(y); and S(x) is different from x, for any element x.
We select a distinguished element, 0, as a notation for zero; and abbreviate
S(0) as 1, and abbreviate S{S(0)) as 2 etc. in the usual manner.

The characterization of decimal digits given in 1 is syntactic. The
notation itself tells us nothing about the interrelationships between the
numbers, but it does give us a notation for representing them. Thus 2 can
be used to represent two. One benefit of the S-notation is that it explicitly
shows the means of construction. That is, it shows more of the properties of
these numbers than just distinguishability. We shall refer to the digit
representation as numerals and reserve the term, natural number, for the
abstract object. Thus numerals denote, stand for, or represent the abstract
ob jects called natural numbers; and definition I is better stated as: "a natural
number can be represented as a finite sequence of digits".

But notation and syntax are necessary and we must be able to give
precise descriptions of syntactic notions. Given a choice between the two
previous definitions, I and II, it appears that II is more precise. Much less
is left to the imagination; given zero and a definition of successor the
definition will act as a recipe for producing elements of N. This style of
definition is called an inductive definition or generative definition.

The basic content of an inductive definition of a set of ob jects consists
of three parts:

(1) A description of an initial set of ob jects; the elements of this set
are the initial elements of the set we are describing in the inductive
definition.

IND
(2) Given the description of some existing elements in the set, we
are given a means of constructing more elements.
(3) A termination clause, saying that the only elements in the set are
those which gained admittance by either (1) or (2).

Notice that our definition of N, in terms of zero and successor, is an instance
of IND: we are defining the set of natural numbers: zero is initially included
in the set; then applying the second phrase of the definition we can say that
one is in the set since one is the successor of zero.

We can recast the positional notation description as an inductive
definition.
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1. A digit is a numeral.
2. If n is a numeral then n followed by a digit is a numeral.

3. The only numerals are those created by finitely many applications of 1
and 2.

In words, "a numeral is a digit, or a numeral followed by a digit".

In this application of IND, the initial set has more than one element;
namely the ten decimal digits. Again, we assume that the questioner knows
what "digit" means. This is a characteristic of all definitions: we must stop
somewhere in our explication. Notice too that we assume that "followed by"
means juxtaposition.

Inductive definitions have been the province of mathematics for many
years; however, computer science has developed a style of syntax specification
called BNF (Backus-Naur Form) equations which has the same intent as that
of inductive definitions. Here is the previous inductive definition of
"numeral” as a set of BNF equations:

<numeral> <digit>

<numeral> := <numeral><digit>

As an abbreviation, the two BNF equations may also be written:
<numeral> := <digit> | <numeral><digit>.

A comparison between the BNF and the inductive descriptions of "numeral”
should clarify much of the notation, but we will give a more detailed

analysis. The symbol ":=" may be read "is a", the symbol “" may be read

or". The character strings beginning with "<" and ending with ">"
correspond to "numeral” and "digit” in 1 and 2; by convention, components of
BNF equations which describe elements are enclosed in "<" and ">"; and
elements which are given explicitly are written without the "< >" fence. Thus
"<digit>" is not a numeral but is a description; to make the definition of

<numeral> complete we should include an equation like:
<digit> 5=0111213141516171819

Juxtaposition of ob jects implies concatenation of the syntactic ob jects. Thus
“89" is an instance of "<numeral><digit>".

It will be convenient to have notations for the abstract objects as well
as notations for the syntactic representations. The BNF equations describe
syntactic classes; for example, the set described by <numeral> is the syntactic

class of numerals. 2 When we are talking about a syntactic class of ob jects we

?Note we could have written <numeral> := <digit> and
<numeral> = <digit><numeral>, generating the same class, but in a different
order. Questions of syntax and grammars will not be stressed in this book.
See [Aho 72].
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will write <ob ject>; when we are talking about the abstract object we will
write <object>. For example <numeral> is the class of natural numbers.

What should be remembered from the discussion in this section? We
need precise ways of describing the elements of our study on data structures.
We have seen that inductive definitions are a powerful way of describing
sets of objects. We have seen a variant of inductive definitions called
Backus-Naur Form equations. We will use BNF equations to describe the
syntax of our data structures and our language.

We have also introduced the difference between an abstract ob ject and
a representation for that object. This distinction has been well studied in
philosophy and mathematics, and we will see that this idea has strong
consequences for the field of programming and computer science. Abstract
ob jects and their representations will play crucial roles in this text.

1.2 Symbolic Expressions: Abstract Data Structures

We wish to show that the use of abstraction will benefit the study of data
structures and LISP. To begin our study we should therefore characterize
the domain of LISP data structures in a manner similar to what we did for
numbers.

Our objects are called Symbolic Expressions. Our domain of
Symbolic Expressions is named <sexpr>. Symbolic expressions are also
known as S-expressions or S-exprs.

The set of symbolic expressions is defined inductively over a base set
named <atom>. The set <atom> can itself be defined inductively. We give a
set of BNF equations for elements of <atom> below, but the essential
character of the domain is that it represents two kinds of objects: the literal
atoms and the integers. The elements of <atom> are called atoms.

<literal atom> | <numeral> | -<numeral>

<atom letter>
<literal atom><atom letter>
<literal atom><digit>

<digit> | <numeral><digit>
<atom letter> A|B|C..|Z 3
<digit> =0]112.19

A <literal atom> is therefore a string of uppercase letters and digits, sub ject
to the provision that the first character in the atom be a letter.

<atom>
<literal atom>

[}

<numeral>

SWe use ellipses here as a convenient abbreviation.
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For example: atoms non atoms
ABCI23 24
12 a
A4D6 38g
NIL ABD.
T (A.B)

The characteristics of atoms which most interest us are their
distinguishability: the atom ABC is distinguishable from the atom AB. That
"AB" is a part of "ABC" is not germane to our current discussion. 4 Similarly,
we will seldom need to exploit numerical relationships underlying the
numerals; at most we will use simple counting properties. Therefore most of
our discussions will deal with non-numeric atoms. Most implementations of
LISP do however contain a large arithmetic entourage. Many
implementations also give a wider class of literal atoms, allowing some special
characters to appear; for most of our discussion the above class is quite
sufficient.

The domain of Symbolic expressions, called <sexXpr> is defined

inductively over the domain <atom>, ®

1. Any element of <atom> is an element of <sexpr>.

2. If a; and &, are elements of <sexpr>, then the pair of &; and @, is in
<sexpr>. Pairs are also called dotted-pairs since their standard
representation in LISP is (a;.a5).

Thus <sexpr> includes <atom> as a proper subset. The notation we chose
for the dotted-pairs is the following:

A dotted-pair consists of a left-parenthesis followed by an
S-expr, followed by a period, followed by an S-expr,
followed by a right-parenthesis.

For example, let a; be (4.B) and a, be (I1.T), then (&, .a,) is
((A.B).(1.T)).

‘Greek letters @ and B will be used in the text to designate pattern
matches. In the current context the pattern matches will involve
S-expressions; they can match any well-formed S-expression. For a further
example, let (4.(B.C)) be (a.f) then a is A and B is (B.C). These
variables are called match-variables or meta-variables.

Finally here’s a BNF description of the full set of S-expressions.

<sexpr> : = <atom> | (<sexpr> . <sexpr>)

“However, we will discuss such topics in Section 7.3 on string
processing.
SWe will not give the termination clause, but it is assumed to hold.
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Notice that if we allow real numbers as atoms then some care would
need to be exercised when writing S-expressions. For example, should (3.1.2)
be interpreted as the dotted pair (3 . 1.2), as the dotted pair (3.1. 2), or is it
just an ill-formed expression? Interpretation of such ambiguous constructs
will depend on the implementation; such details are discussed later.

Examples: S-exprs non S-exprs
A A.B
(A.B) (A.B.C)

(((4.B).C).(4.B)) ((4.B))

The set described by <sexpr> is a specific syntactic representation of the
domain <sexpr>. However, the set <sexpr> will be a convenient notation
since it makes explicit the construction of the composite S-expr from its

components, ® and the notation is also consistent with LISP history.
However there is more to the domain <sexpr> than syntax, just as

there is more to N than positional notation. 7 What are the essential features
of S-expressions? Symbolic expressions are either atomic or they have two
components. If we are confronted with a non-atomic S-expression then we
want a means of distinguishing between the "first" and the “second"
component. The "dot notation" does this for us, but obviously “(", *)", and "."
of the dotted-pairs are simply notation or syntax. We could have just as well
represented the dotted-pair of 4 and B as the set-theoretic ordered pair,
<A,B> or any other notation which preserves the essentials of the domain
<sexpr>.

The distinctions between abstract objects and their representation are
quite important. As we continue our study of more and more complex data
structures the use of an abstract data structure instead of one of its
representations can mean the difference between a clear and clean program
and a confusing and complicated program. There are similar gains for us
when we study algorithms defined over these abstract data structures. The
less the algorithm knows about the representation of the data structure, the
easier it will be to modify or understand that algorithm. Indeed you may
have already experienced this phenomenon if you have programmed. A
program written in a high-level language is almost always more
understandable than its machine-language counterpart. The high-level
program is more abstract whereas the machine-language program knows a

®Just as the "successor” notation shows the construction of the numbers
from 0. This kind of notation will be much more useful in LISP, since our
interest in data structures will focus on the construction process and the
interrelationships between components of an S-expr.

72, 11 in Roman numerals, 10 in binary, "zwei" in German ... are all
representations of the same number.
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great deal about representations. Finally, if you still doubt that
representations make a difference in clarity, try doing long division in
Roman numerals. We will say much more about abstraction and
representation in algorithms and data structures as we proceed.

1.3 Trees: Representations of Symbolic expressions

Besides the more conventional typographical notations, S-expressions also
have interesting graphical representations. S-exprs have a natural
interpretation as a structure which we call a LISP-tree or L-tree.

Here are some L-trees:

A B NIL
I 2 4
D E

We can give an inductive definition:

1. Any element of <atom> is an L-tree.
2. If n, and n, are L-trees then

ny na

also forms an L-tree. Most important: there are no intersecting branches.
Later we will talk about more general structures called list-structures.

You can see how to interpret S-exprs as L-trees. The atoms are
interpreted as terminal nodes; and since non-atomic S-exprs always have two
sub-expressions we can write the first sub-expression as the left branch of an
L-tree and the second sub-expression as the right branch.
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For example:

(4.B) (4.(B.C)) ((A4.B).C)
/\
A B C A B C

Other representations of LISP-trees are possible; for example
(A .(B.C)) can be expressed as:

————— | ® . —3| o .
] 1 1
l Lol
A B C
or:
— | A . —| B c

These last two representations are called box-notation.

Please keep in mind the distinction between the abstract S-expr and the
several representations which we have shown. The question of
representation is so important and will occur so frequently that we introduce

notation for a representational mapping, R. To represent domain D in
domain E, we will define a function Rp,¢ which usually will be specified
inductively, and will express the desired mapping.

For example a representational mapping SRG,,,,,ML_Q,,G can be given:

R[[ <atom> ]| = <atom>

and for & and B in <sexpr>:

Ril(«.6)] -

Rl«1 ®el
Typically context will determine the appropriate subscript on the
R-mapping; thus we will omit it.

Problems
1. Which of the following are dotted-pairs?
a.(X.Y) b.{((4.(B.C)) c. A2 d(X.Y2.2)
2. Write the following as LISP trees:
a. ((A.B).(B.(C.D))) b. (((A.B).C).E)

c. ((X.NIL).(Y.(Z.NIL))) d. (NIL.NIL)
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3. Write the following LISP trees as S-exprs:
a. b. c.

DE C
A NIL

CONS | e—f—| X | e=t—] Y | NIL

CiR NiL
QUéTE i N*L

1.4 Primitive Functions

So far we have described the domain of abstract ob jects called S-exprs and
have exhibited several representations for these objects. We will now
describe some functions or operations to be performed on this domain. We
need to be a bit careful here. We are about to see one of the main differences
between mathematics and computer science: mathematics emphasizes the idea
of function; computer science emphasizes the idea of algorithm, process, or
procedure.

Mathematically a function is simply a mapping such that for any given
argument in the domain of the function there exists a unique corresponding
value. In elementary set theory, a definition of function f involves saying that
fis a set of ordered pairs f = { <x,, 9>, ..}; the x/s are all distinct and the
value of the function f for an argument ¥x; is defined to be the corresponding
9 No rule of computation is given to locate values; with the first definition
it is implicit that the internal structure of the mapping doesn’t matter; in the
set-theoretic definition, the correspondence is explicitly given.

An algorithm or procedure is a process for computing values for a
function. The factorial function, n/, can be computed by many different
algorithms; but as a function it is a set

{<0,1>, <1,I>, <2,2>, <3 6>, .<n,nt>, .}.

The domain of a function is the set of all values for which the function is
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defined; the range of a function is the set of all values which the function
takes on. A careful definition of a function requires specification of a
further set called the domain of discourse. The domain of discourse, named
D, consists of all possible values which may occur as the argument to a
function. If the domain of a particular function f coincides with D then f is
said to be a total function over D; if there are elements of D which are not
in the domain of f then f is a partial function over D, and.f is said to be
undefined for those values. For example, the factorial function is typically
considered to be partial over the integers: total for the natural numbers, but
undefined for negative integers. Thus the concept of "total” or "partial” is
relative to a specified domain of discourse. However, a function f total over
a domain D; can be extended to be total over a domain D;uD, by assigning

values to f(d) for deD,-D,. In this way, for example, factorial can be
extended to be total over the integers by defining n/ to be 0 for n less than
0. We may extend the range of a function when we extend the domain; thus
f{d) need not be in the range of the original f. For example, we added 0 to
the range when we extended the factorial function. When we extend the
range we must specify what additions have been made.

A substantive decision needs to be made on how we are to handle
partial functions. 8 Since we are attempting to be reasonably realistic about
our modelling of computation we should be as precise as possible in our
formalism. We could introduce a class of error values and include them in
the range of f; these values would be given as the result of applying f to an
argument not in its domain; or we could simply say that the result is

"unspecified”. > We shall pick an intermediate position; we shall introduce

one new element, L, called "unspecified” or "undefined”, or "bottom". 10 we
will define all our functions over domains augmented with this element; thus

constructs like f{.L) = a are allowed. For the moment, think of L as covering
all anomalous conditions which could be detected and printed as error
messages; later we will refine this interpretation.

As we define new data structures we will frequently want to extend our
functions to larger domains. For most of our purposes, a function f defined
on (an augmented domain) D will be extended to a larger domain, DuD,, by

8Partial functions occur naturally in computation. Most programs will
fail to give results under some circumstances. The function which that
program is computing is a partial function. Some error conditions can
produce error messages; some error conditions may cause the program to
loop. We will analyze both situations.

®How "unspecified” manifests itself on a machine will depend on the
implementation. Sometimes error messages are given; sometimes not.

10"hottom" is sometimes written .
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defining f(d;) = (L) for d,€D;-D,'! therefore f(1) need not be L.
However many of the functions which we will examine are defined such that
f.., L, ..)= 1. Functions which possess this property are called strict
functions.

To apply this discussion of L to S-exprs we will define an extended
domain S to be:

S = <sexpr>u {1}

Then we can talk about functions which are total over S or over <sexpr>,
and we will talk about functions which are partial over <sexpr>. When we
ask if an S-expr function is partial or total without specifying a domain, we
are asking the question over the natural, unextended domain, <sexpr>.

We will now move towards a more algorithmic presentation. We will
return to the mathematical aspects occasionally, but our main concern in this
text is a treatment of algorithms expressed in LISP. We will continue to say
"LISP function” or just "function”, but what we are expressing or describing
is a particular algorithm or procedure, not a function in the mathematical
sense. When we wish to stress the distinction we will use “procedure” or
"algorithm".

The first LISP function we consider is cons. This binary function is
used to generate S-exprs from less complicated S-exprs. cons is called a

constructor-function and is a strict function; 12 it is a total function over the
domain S. More precisely, since cons is a binary function, each argument of
cons is free to take on values from S. '® Whenever cons is presented with two
elements & and B from <sexpr>, consla;8) returns a new S-expr (a.f).
Interpreted as a LISP-tree, consla,8] forms a new LISP tree which has a left
branch & and has a right branch §.

For example: cons[A; Bl = (A . B)
consl(A.B); Cl=((A.B).C)

Expressions which can have a value, are called forms. S-exprs are
forms since they are the constants of our language: the value of a constant is
that constant. Function applications are forms: the value is the result of
performing the designated function on the designated arguments.

Notice that we are designating function application in LISP by

"'The exception to this extension convention involves the definition of
predicates which can tell whether or not an arbitrary element is in a specified
domain. These predicates always give true or false when applied to any
element other than L.

12For an alternative interpretation of cons see [Fri 76a).

3We could also say that cons is total over the Cartesian product SxS.
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"function name, followed by a list of arguments delimited by ‘" and ‘7." 14
The T.J-notation is part of the LISP syntax and we will reserve
‘...Y-notation for the function application of mathematics. In a few places in
our discussions the distinction will be important. Typically the distinctions
will occur when we wish to distinguish between the LISP algorithm and the
mathematical function computed by that algorithm.

A critical distinction has already arisen in discussing forms like
cons(4;Bl. The constructor cons is actually an algorithm. Since it is a
primitive algorithm it will be represented on a machine by a sequence of
operations which depend on the implementation of S-exprs and depend on
the primitive operations of the hardware machine. The process of extracting
a value from the form cons[A; B] is called evaluation. Evaluation is an
algorithmic idea; there is no idea of evaluation involved with the concept of
“function”. To reinforce this algorithmic interpretation we will say things
like " a function returns as value .." meaning the algorithmic representation
of a function computes and produces a value.

We have two strict, unary selector functions, car and cdr, 15 for
traversing LISP-trees. We already know the meaning of "strict”; a unary
function expects one argument; and a selector function is a data structure
manipulating function which will select a component of a composite data
structure. Such LISP functions are called selectors since they will select
components of non-atomic elements of <sexpr>. Thus car and cdr are
partial functions over <sexpr>: they give values in <seXpr> only for

non-atomic arguments; they give . whenever they are presented with an
atomic argument.

When given a non-atomic argument, (& . ), car returns as value the
first subexpression, @; cdr (pronounced could-er) returns as value the second
sub-expression .

For example: carl(A.B)]= 4
car[4] = L
cdrl(A.B)]= B
cdrl(A.(B.C))]1=(B.C)
carl((A.B).C)1=(A.B)

19The syntax equations for forms are given on page 17.

15These names are hold-overs from the original implementation of
LISP on an IBM 704 That machine had partial-word instructions to
reference the address and decrement parts of a machine location. The @ of
car comes from "address”, the d of c¢dr comes from "decrement”. The ¢ and r
come from “contents of" and "register”. Thus car could be read "contents of
address part of register”.
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We will include functional composition as a notation for combining
LISP expressions. The composition of two unary functions f and g is

another function, denoted in mathematics by feg. The value of an
expression, foglx], is the value of flglx]l. That is, the value of foglx] is a z

such that y is the value of glx] and z is the value of fly] fog may be
undefined for several reasons: g{x] may be undefined and f is strict, or fIy]
may be undefined.

- Here are some examples of composition:

carocdr((A . (B .C))] = carlcdrl(A.(B.C)]}=carl(B.C)l= B
cdrocdr[(A . (C . B))] = cdrledr[(A.(C . B))]] = cdr[(C.B)}= B
cdrledrlA]] = L

car(edr[(A.B)]} = L
carlcons{X;A11 = X cdrlcons[V;X11 = X

All the functions in these examples are strict; for that reason, if g{x] gives L

then the composition foglx] also gives .L. That need not be the case if f is
non-strict.

The composition of many car and cdr functions occurs so frequently
that an abbreviation has been developed Given such a composmon we
select in left-to-right order, the relevant a’s and d’s in the car’s and cdr’s. We
sandwich this string of ¢’s and d’s between a left-hand ¢ and a right-hand
and give the composition this name.

For example: cadrlx] <= carlcdrlx]]
caddrlx] <= carlcdricdrix]]]
cdarlx] <= cdrlcar[x]]

These compositions are also called car-cdr-chains, and are useful in
traversing LISP-trees. The notation "<=" is to be read "is defined to be the
function ..". This notation is only a temporary convenience and not part of
LISP. Soon we will study what is involved in giving and using definitions
in LISP (Sectlon 34) For the moment intuition will suffice.

It is useful to introduce some terminology for the components of a
function definition. Let

Sl o 2 <= &

represent a typical definition. The name of the function is f; the body of the
function is the expression §. The list [x;; ..; x,] appearing after the function

name is called the formal parameter list. The elements of the formal
parameter list are called formal parameters and will play a role similar to
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that of variables in mathematics. ' Therefore we will also refer to formal

parameters as variables. Lower-case identifiers 7 will be used as variables
and function names. So for example ¥ and CAR are atoms; y and car could
be used as variables. Be clear on the distinction between LISP variables like

x, 9 or foo, and the match variables '® like & or 8. If @ and B denote

S-expressions then (a . B) denotes a well-formed S-expr. The construction,
(x . 9), is not well-formed, but conslx,y] is correct.

A function is applied using the common notation of function

application:

flay; ..; a,]

The a's are called actual parameters; for an application to be well formed,
the actual parameters must agree in number with the formal parameters of
the definition and they are to be associated in a one-for-one order, g; with x;
Thus in the expression carlcdr[(4 . B)]] the actual parameter to the car
function is cdr[(4. B)), and the actual parameter to c¢dr is (4. B). The
process of associating formal parameters with actual parameters is called
binding. A large part of our study will involve various aspects of the
binding process.

It is convenient to introduce some terminology to distinguish between
an algorithmic idea and its mathematical counterpart. The phrase
"function call” is wused to name the procedural counterpart to
"function application”. LISP is called an applicative language since it is
based on the idea of function application. Mathematically speaking, a
composition of functions is simply another function -- i.e, a mapping -- and
therefore nothing need be said about how to compute composed functions.
From a computational point of view, we want to express evaluation of
expressions involving composed functions in terms of the evaluation of
subexpressions. This would allow us to describe a complex computation in
terms of an appropriate sequence of subsidiary computations. One of the
more natural ways to evaluate expressions involving compositions is to
evaluate the inner-most expressions first, then work outwards. Assume
arguments to multi-argument functions are evaluated in left-to-right order.
Thus:

conslcar[(A . B))cdrl(4 . (1.2))]] reduces to cow;s[A;cdr[( A.(1.2)1
reduces to cons{A4;(1. 2)]
reduces to (A4.(1.2))

This may seem to be a simple operation but in fact evaluation is a very

18The behavior of formal parameters and variables is not identical.
We will say more about the distinction in Section 4.1.

17See page 17 for the BNF equations for <identifier>.

183150 called meta-variables
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complex process. The value of an expression may depend on the order in
which we do things. For example, consider the evaluation of
secondlcar[A); B] where secondlx;9] <= 9. If we expect second to be a strict

function, then secondlcar[A4]; B] must return .L even though it is reasonable
to believe that the value of the computation should be B since second does
not visibly depend on the value of its first parameter. It appears that if we
postponed the evaluation of the arguments until those values were actually
needed, then at least this problem would be solved. However, the
consequences of defining a function to be strict are severe; they cannot be
sidestepped by resorting to different schemes for evaluating arguments.
There is an alternative, but not particularly attractive, strategy for assigning
strictness: we could examine the body of the function; if the function uses all
its parameters, then it's strict. If the function doesn’t depend on one or more
parameters, then it's non-strict. Thus with this interpretation, second is
non-strict. We prefer the initial interpretation, reasoning that, if a function
is passed bad information, then we wish to know about it, even if the
function does not use that specious result.

Strictness is closely related to evaluation schemes for parameter passing.
Here are two common techniques:

CBV  Evaluate the arguments to a function; pass those evaluated
arguments to the function.

This scheme, called Call By Value, is what we were informally using to
evaluate the previous examples. '
An alternative evaluation process is Call By Name:

CBN Pass the unevaluated arguments into the body of the function.

Assuming second is defined to be strict, then secondlcar[4]; B] yields .L under
either CBV or CBN. However if we define second to be non-strict then CBV

and CBN will both give value B. With CBV, x is bound to 4; while with
CBN x is bound to car[4].

Further relationships between evaluation schemes and strictness will be
investigated. On page 21 we discuss non-terminating computations. In
Chapter 3 we will discuss evaluation techniques and will give a precise
characterization of the evaluation of LISP expressions. On page 20 we will
introduce a non-strict language construct but, until that time, intuitive
application of CBV will suffice.

We must exercise care when discussing the process of evaluatlon, the
function we are characterizing by computing its values will often depend on
our choice of evaluation scheme.
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Before introducing a further class of LISP expressions we summarize
the syntax of the LISP expressnons allowed so far:

<form> == <constant> | <application> | <variable>
<constant> u= <SEXpr> (where <sexpr> is given on page 6)
<application> == <function-part>[<arg>; ..;<arg>]

<function-part> := <identifier>

<arg> u= <form>

<variable> := <identifier>

<identifier> z= <letter> | <identifier><letter> | <identifier><digit>
<letter> s=alblc .. |2

<digit> w= 1) 2] 19

The use of ellipses in the last equation is an abbreviation we have seen
before. The use of ellipses in the <application> equation is different. It is an
abbreviation meaning “zero or more occurrences”. Thus the equation means
an <application> is a <function-part> followed by the symbol "[" followed by
zero or more <arg>’s followed by the symbol "]". This use of ellipses can
always be replaced by a sequence of BNF equations. for example, this
instance can be replaced by:

<application> := <function-part>[<arg-list>] | <function-part>{ ]
<arg-list> u= <arg> | <arg-list>;<arg>
To improve readability we will frequently violate these syntax equations,
allowing function names containing special characters, e.g. facts, fib" or + ; or
writing x+y instead of +[x;y]. No attempt will be made to characterize these
violations; occurrences of them should be clear from context.

Notice that the class <form> is a collection of LISP expressions which
can be evaluated. A <form> is either:

1. a constant: the value is that constant.

2. an application: we've said a bit about evaluatlon schemes for these
constructs.

3. a variable: a variable in LISP will typically have an associated value in
some environment.

We will wait to Section 3.4 for a precise description.

An important constraint on LISP forms which is not covered by the
syntax equations is the requirement that functions are defined as being n-ary
for some fixed n. Any n-ary LISP function must have exactly n arguments
presented to it whenever it is applied. Thus cons[4), cons[4;B,C], and

car[A;B] are all ill-formed expressions and therefore denote L.
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Problems

1. Discuss conslcarlx];cdrlx]] = x
2. Discuss conslcarla);cdrial]l = a.

1.5 Predicates and Conditional Expressions

We cannot generate a very exciting theory based simply on car, cdr, and cons
with functional composition. Before we can write reasonably interesting
algorithms we must have some way of performing conditional actions. To do
this we first need predicates. A LISP predicate is a function returning a
value representing truth or falsity. We will represent the concepts of true

and false by t and f respectively. Since these truth values are distinct from
elements of S, we will set up a new domain Tr which will consist of the

elements, £ and f. As usual the extra element L is included so that we may
talk about partial predicates just as we talked about partial functions on

<gexpr>. '° _

LISP has two primitive predicates. The first is a strict unary predicate
named afom; atom is total over <sexpr>, and is a special kind of predicate
called a recognizer or a discriminator. Recognizers are used to determine

the type of an instance of a data structure. Thus afom will return { if the
argument denotes an atom, and will return f if the argument is a non-atomic

S-expr.
atom[A] = atom[NIL] = t
atom[(A.B)] =f
atomlcar[(A . B)]] =
atom[L] = L

What should we do about the value of constructs like: cons{atom[A4]); AP

The evaluation of atom[A4] gives 1, but { is not an element of S and thus is
not appropriate as an argument to cons. Using our discussion of page 11, we
extend the domains of the S-expr primitives to

S, = SuTr

For example, for s€Tr:car(s] = car[.L], and consls; A] = cons[L; A]‘

'®A word for the previous LISP user: our use of t and f marks our
first major break from current LISP folklore. The typical LISP trick is to

use the atoms T and NIL rather than t and f as truth values. Our
convention will disallow some mixed compositions of LISP functions and
predicates. We will relax this restriction when we write LISP programs.
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Since those primitives are strict with respect to undefined we have:

atom[t] = L
cons[L; A)= L
cons[4; L1= L

Notice that we now have two sepatate domains: S-expressions and truth
values. Since we will be writing functions over several domains we will need
a general recognizer for each domain to assure that the operations defined on
each abstract data structure are properly applied. Thus we introduce the

recognizer issexpr which will give £ on the domain of S-exprs, f for for any
element not in <sexpr> and will give .L for .L.

issexprl(A . B)) = issexpr(A4) = &
issexpr(t] = §
issexpr[L] = L

Another primitive predicate we need is named eq. It is a strict binary
predicate, partial over the set <sexpr>; it will give a truth value only if its

arguments are both atomic. It returns t if the arguments denote the same

atom; it returns f if the arguments represent different atoms. eq yields L if
either argument to eg denotes an element not in the set <atom>.

eqlA; Al = t eqlA;B] = f

eql(A.B); A= L  eql(A.B){A.B)]=1
eqleq(A;B);D]} = L eqlL;x]=1

eqlear((A . B))carlcdrl(A.(B.C)N =¥

Rather than define a version of ¢g, say éqr,, which is defined over Tr
and acts like eg, we will simply extend the definition of eg to S; so that it
may compare two elements of Tr.

eqlt Al =t eqlf; L= 1
eqlffl=1 eqltfl = f
eqldtl = L

We need to include a construct in our language to effect a
test-and-branch operation. In LISP this operation is indicated by the
conditional expression. It is written: ‘ SR

(p1oeypzey.;py el
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Each p; is an expression which takes on values in the set Tr or gives .L; each
e; is an expression which will give a value in S;. We will restrict the
conditional expression such that all the e; must have values in the same

domain or be .; i.e. all be in <sexpr> or all be in Tr.
Assuming that an instance of a conditional expression meets this
restriction, the rule for evaluation is given by the following:

We evaluate the p/s from left to right, finding the first

which returns value {. When we find such a p;, we
evaluate the corresponding €. The value of the
conditional expression is the value computed by that e; if

all of the p;’s evaluate to f then the conditional expression

gives L. The conditional expression also gives L if we
come across a p; which has value .L before we reach a p;

with value t.
For example:
latom [A) > B; eq[A(4.B)1>Cl=B
Notice that the p, expression is undefined, but the conditional gives value B

since p,; gives value {; this means that conditional expressions are non-strict.
| leg [4;(4 . B)] - C; atom [4] > B = L

Here a reordering makes the evaluation return .L.

~ [atom [(4 . B)] » B;
eqAd;Bl>C;, .
eq [carl(A . B)); carl(B . A)1» E] = E

This example is more complex so, to improve readibility, we split the
conditional clauses across several lines. This stylistic formatting is called
pretty printing. :

leg [4; A1~ t; atom [A] > 1=t

leq [4; A) - t; atom [A) > B] = L
Note that non-strictness is relative to a single domain; thus the last example
above gives .L since it contains e;’s of differing domains.

Frequently it is convenient to use a special form of the conditional
expression where the final p, is guaranteed to be true. There are many

expressions which always evaluate to t; eg[/;1] is one. The simplest
expression is the constant {.
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Consider the special form: [p, - e} ., 1 - e,]

If we know that the previous p/s are either true or false, 20 the final

Pn = €,-case is a catch-all or otherwise-case which will be executed if none of

the previous p;s give {. Thus the use of t in this context can be read
"otherwise"; and the conditional can be read:

"If p; is true then e, else if p is true then .., otherwise e,"

The introduction of conditional expressions has further widened the
gap between traditional mathematical theories and computational theories.
Previously we could almost side-step the issue of order of evaluation; it didn’t

really matter unless 1 was involved. But now the very definition of meaning
of conditionals involves an order of evaluation.

The order of evaluation is important from a computational viewpoint:
if we are going to give as value the leftmost e; whose p; evaluates to t, then
there is no need to compute any of the other e/s; those values will never be
used. A more pressing difficulty is that of partial functions. If we did not
impose an order of evaluation on the components of a conditional, then
frequently we would attempt to evaluate expressions which would lead to
undefined results: [¢q[0,0] > I; t - car[A]] gives I using the meaning of
conditionals, whereas the expression would be undefined if we were required
to evaluate car[4] If we think of an occurrence of L being mapped to an
error message, evaluating car[4) would cause termination of the computation.
But, if we continue to allow L as an argument or value, then we can
characterize the effect of a conditional expression as a non-strict function.
Recall, a non-strict function is allowed to return a value other than L when
one of its arguments is L; or, put another way, we don’t examine the
definedness of arguments before applying the function.

For example, let if(x;y;2) be the conditional function 2! computed by:

[x > 9;t > z). We can define if as a non-strict function such that:

yif xist
iflxyn) = zifxisf
Lifxis L
However there is more to the “strictness” implied by conditional
expressions than just making sure that proper arguments are passed on
function calls.
Consider the following algorithm:
onelx] <= [x=0 - I; t - onelx-1]]
Assume that one is non-strict and assume the domain of discourse is the
integers. That means, one will try to compute with any (integer) argument it

2%We must also know that all the e;’s are elements of the same domain.

2!Notice we are writing {..)’ rather than ‘..J since we are talking about
the function and not the algorithm. See page 12.
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is given. The algorithm for one defines a function giving I for any
non-negative integer and is undefined for any other number. From a
computational point of view, however, one[-I] appears “undefined” in a
different sense from car[4] being "undefined”. The computation one[-1] does
not terminate and is said to diverge. For a partial function like car, we can
give an error message whenever we attempt to apply the function to an
atomic argument, but we cannot expect to include tests like “if the

computation fla] does not terminate then give error No. 15." 22 From the
purely functional point of view, one still defines the partial function which is
I for the non-negative integers, but computationally there’s an important
distinction to be made.

So we see that a computation may ‘be "undefined” for two- reasons: it
involves a non-terminating computation or it involves applying a partial

function to a value not in its domain. ?® Note that the distinction between
“undefined” and "diverges” is fuzzy. If we restrict the domain of one to the

natural numbers, then one(-1] denotes .1 rather than diverges. Or, put
another way, "undefined strictness” is a special case of "divergent strictness”
where we are able to predict which computations will not terminate. Those
cases can be checked by defining the function to be strict over a domain
which rules out those anomalies. Thus a case can be made for identifying

divergent computations with 1; however there is typically more to
non-termination that just "wrong kind of arguments".

We want to extend our discussion of strictness to encompass divergence.
Recall the discussion on page 15 of secondlx; y] <= 9. Defining second to be
strict required that each application of second determine whether either

argument denoted L. If we want second to be strict with respect to
divergence, then we must test each argument for divergence. That implies
evaluation of each of the arguments, which in turn implies that if a
computation of an argument diverges, then the computation of the function
application must also diverge. This implies that it is natural to associate
"strict with respect to divergence" with CBV, since in the process of checking
for termination, we must compute values. However if a function is strict then
calling style doesn’t matter. In contrast, a non-strict function does not check
arguments for dwergence and indeed the divergence of a computation may
depend on the calling style. Consider the evaluation of secondlone[-1); B]
where one is total over the integers. This evaluatlon will diverge under CBV
while it converges to B using CBN.

We cannot require all our functions to be strict if we expect to do any
non-trivial computation. That is, we need a function which can determine its
value without computing the values of all of its arguments --a "don’t care

227 discussion of such topics involves a description of the "halting
problem" for computational devices. See [Rog 67] for details.

23C;:)mpare w-undefined and E-undefined in [Mor 68).
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condition"--. The conditional function is such a non-strict function. That is
if(t;¢,;v) has value ¢ without knowing anything about what happens to r. In
particular, if(t;q;1) = ¢ and if(f;1,r) = . Now since if is to be a function
and therefore single-valued, if if(t;g;L)=¢ then for any argument x,
if(t;;x) = q. Notice that L is now carrying an additional "don’t-care”
interpretation; this is consistent with its previous meaning when we think of
the function being computed by the algorithm.

Even given that a computational definition is desired, there are other
plausible interpretations of conditionals. Consider the definition:

glx;9] <= iclx] » 1;t > 1] Assuming that lic is a total predicate, any value
computed by g will be 1. But requiring left-to-right evaluation could spend a
great deal of unnecessary computation if lic is a long involved calculation.
One might further request that glx;y] give I even if lic is non-terminating.
Questions of evaluation are non-trivial. We will spend two chapters,
Chapter 3 and Chapter 4, discussing LISP evaluation and its possible
alternatives.

What benefits have resulted from our study of L and divergence? We
should have a clearer understanding of the difference between function and
algorithm and a better grasp of the kinds of difficulties which can befall a
computation. We have uncovered an important class of detectable errors.
The character of these miscreants is that they occur in the context of
supplying the wrong kind of argument to a function. This kind of error is
called a type fault, meaning that we expected an argument of a specific type,
that is from a specific domain, and since it was not forthcoming, we refuse to

perform any kind of calculation. Thus atom[f] and cons[t;4] are undefined
since both expect elements of $ as arguments. Divergent computations are
equally repugnant but there is no general method for testing whether an
arbitrary calculation will terminate.

This discussion concludes the applicative portion of LISP constructs. It
may not seem like you can do much useful computation with such a limited
collection of operations as those proposed so far for LISP; there are no
assignment statements or explicit control constructs. Things are not quite as
trivial as they might seem. In elementary number theory all you have is zero
and some simple functions, and elementary number theory is far from
“elementary." Manipulation of our primitives, with composition, and
conditional expressions, coupled with techniques for definition can also
become complicated.

Let’s apply the LISP constructs which we now have, and define a new
LISP function. For example: our predicate ¢q is defined only for atomic
arguments. We would like to test for equality of arbitrary S-exprs. What
should this. more complex equality mean? By equality we mean: as trees, the
S-exprs have the same branching structure; and the corresponding terminal
nodes are labeled by the same atoms. Thus, we would like to define a
predicate, ¢gual, such that:
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equall(A.B)(A.B)]=1
equall4A;4] = £

equall(A.B){B. A =Ff
equall(A.(B.C)(A.(B.C) =t
equall(A.(B.C));((4.B).CN=f

Here’s an informal description of the equal predicate.

1. If both arguments are atomic then see what eq says about them. We can
test if they are both atomic by using atom and a conditional expression.

2. If one is atomic and the other is not they can’t be equal S-exprs.

3. Otherwise both are non-atomic S-exprs. Both have two sub-expressions.
Look at both first subexpressions. If these sub-expressions are not equal
then the original expressions cannot be equal either. If the first
subexpressions are equal then the question of whether or not the original
expressions are equal depends on the equality of the second
subexpressions. Thus the following definition:

equal[x,y] <= [atom[x] > [atomly] > eg [x;); t » T);

atomly] - f;
equal [carlx); car[y]] - equallcdrx);cdrlyl);

t- 1l

Notice that the third informal clause translates into a LISP conditional clause
which involves applications of the equal predicate itself. The use of recursive
definitions is an important and powerful programming tool.

Notice too that we use nested conditional expressions in equal: e; is
itself a conditional. Also we have used predicates in the e; positions at e5 and
€); this is allowable, and in fact expected, since equal is a predicate.

Let’'s show that equal does perform correctly for a specific example.
This will also show a complicated evaluation of a conditional expression.
We will use the call-by-value rules. We will perform the evaluation by
substituting the evaluated actual parameters for the formal parameters in the

body of the definition. Then we will simplify the resulting expression. 2

24T his is not the method LISP uses to perform call-by value, but it has
the same computational effect in most cases. The anomalous cases involve an
important area in language design. For example, how should f12;3] be
evaluated when flx;9] <= +[x;[y;2]] ?
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equall(A . B)(A . C)] reduces to:

latom[(A . B)] - [atom[(A . C)]1 > egl{A . B),(A.C)); t - f);
atom[(A4.C)) - §;
equallcar[(A . B)licar[(4 . C))] » equallcdr((A . B))edr[(A . C));
t-1f

We find that p,; (ie., atom[(4 . B)]) and p, ( atom[(4 . C)]) when evaluated

(in order) give f. We must now evaluate ps which is:
equallcar((A . B));car[(A . €)1l This reduces to equall4;4]), and:

equallA;A] = [atom[4] > [atom[A] » eétA;A]; t- 1)
atom[4] > f;
equallcar(A);car(A)] » equallcdr(A;cdr(AT);
t-f

This conditional expression will evaluate to t. So p3 in the original call of
equall{A . B),{A . C)] is true and we must evaluate the eg expression which is
equallcdr[(A . B));cdr[(A . C)1). That expression simplifies to equallB;C] and
we call equal. After substitution and simplification equal will finally return
value f. That means that equall(A.B)(A.C)] gives f. Notice that
eql(A . B);(A . C)] appeared but was never evaluated because of left-to-right
evaluation scheme of conditional expressions.

Clearly, evaluation of LISP-expressions in this amount of detail is not a
process which we wish to do very often by hand. Fortunately the process can

be executed by a machine.
Finally, to include conditional expressions in our syntax of LISP

expressions, we should add:

<form> 1= <conditional expression>
and <conditional expression> := [<form> = <form>; ..; <form> - <form>]
where <form> was defined on page 17.

These syntax equations fail to capture all of our intended meaning. For
example, the <form>s appearing in the p;-position are restricted to be forms
taking values in Tr, the truth domain. That restriction is not expressed in
the equations, and indeed, is difficult to express naturally in such syntax
equations. See [Hop 69] for a discussion of expressibility and grammars.

Problems
1. Evaluate the following:
a. eglX;¥] b. cons[X;¥]l
c. car[(X .Y)] d. carlcons[X ;Y]]
e. cadr[(X (Y . NIL))] f. cdar[(X (Y . NIL))]

g. eqledr[(A . B))edr[(C . B)]] h. atomlcons[(4 . B),(C . D)]]
i. conslatom[A);atom[(A . B)]] Jj eglatom[ATOM );atom[EQ])
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k.[t> 4;t- B) . LIf> A;t> Bl m.[eql4;B] > 4]
n. latom[X] - atom[X]; t » FOO) |
o. [eqlEQ; X1~ A; eqlA; Bl B; t - C]

p. conslleqlA; Bl > 1; t > FOOJ; cons[A; cadrl(4 . (B . C))1l]
q. equall(A . B),(A.B)] r.egl(4 . B)A . B)]

2. Consider the following definition:

twist[s] <= [atom[s) > s;
t - consltwistlcdrls]));twistlcar[s11]]

a. Is the function partial or is it total? Now evaluate:
b. twistl4] ¢ twistl(A.B)]  d. twistl((4. B).C)]

3. Now try:

findem[x;y] <=[atom[x] > [eglx;y) > T; t > NIL);
t - conslfindemlcarlx];yl;findemlcdr{x];y1l]

a. Is this function total? Now evaluate: ;
b. findem[(A . B);A) c. findem[(B (A4 . C));A]
d. findem[(B (A4 .C)),C] e findem[(A.B){A4 . B)]

16 Sequences Abstract Data Structures

In several areas of mathematncs it is convenient to deal with sequences of
information. For example, a problem domain may be more naturally
described as ordered collections of numbers rather than individual numbers.
This may either simplify understanding of the problem or simplify the
formulation of the functions defined on the domain. Several programming
languages include arrays as representations of these mathematical ideas. We
should notice that sequences are data structures. We will have to describe
constructors, selectors, and recognizers for them. Subsequently we will explore
applications of sequences as data structures.

After a certain familiarity is gamed in the apphcatlon of algorlthms
which manipulate sequences, we will discuss the problems of representation
and implementation of this data structure. We  will first give an
implementation of sequences in terms of ‘S-expressions. That is, we will

describe an  R-mapping giving a representatlon of sequences and their
primitive operations in terms of LISP’s S-exprs and primitive functions. Still
later in Section 7.2 we will discuss low-level implementation of this data
structure in terms of conventional machines.
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But now we will study sequences as abstract data structures: what are
their essential structural characteristics’ What properties should be present
in a programming language to allow a natural and flexible representation?
This discussion will shed light on the important problems of representation
and abstraction.

A sequence is an ordered set of elements. 25 For example, (x), X,, X3), is
the standard notation for a sequence of the three elements x;, X5, and xgj.
The length of a sequence is defined to be the number of elements in that
sequence. We will allow sequences to have sub-sequences to an arbitrary
finite depth. That is, the elements of a sequence will either be individuals or
may themselves be sequences. For example, a sequence of length n, each of
whose elements are sequences of length m, is a matrix. Here are BNF
equations for sequences and their elements:

<seq> == ( <seq elem>, ..,<seq elem> ) 6
<seq elem> u= <indiv> | <seq>
<indiv> = <literal indiv> | <numeral> | -<numeral>

<literal indiv> : = <indiv letter>
<literal indiv><indiv letter>
<literal indiv><digit>

<numeral> <digit> | <numeral><digit>
<indiv letter> :=A|B|C..|Z
<digit> x=001]12..]19

Notice that the structure of <indiv> is the same as that for LISP’s <atom>;
the only difference is in the fonts used for letters and digits. We have made
the distinction between LISP atoms and sequence individuals intentionally.
Thus (A, (B, C), D, (E, B)) is a sequence of length four, whose second and
fourth elements are also sequences whose length is two. We will use "()" as
notation for the empty sequence.

We want to write LISP-like functions operating over sequences, so we
will at least need to give constructors, selectors, recognizers, and predicates for
sequences. As in the case of S-exprs, we will include the undefined element,
and the full domain of sequences will be named

Seq = <seq>u{l}

As on page 18, we extend the primitive LISP operations to include this
new domain, by defining:

S, = S,u<seq>

and extend each operation appropriately over S,. For example:

Z5For an alternative description of sequences and a discussion of a
different view of data structures see page 41.

28For the meaning of these ellipses see page 17.



28 Symbolic expressions 1.6

atom[A] = L
car[A] = L
carl(A,B)l = L
cons[A; B] = L
issexpr{(A)] = f

We need to define some data structure operations specific to sequences.
What are the essential characteristics of a sequence? First, a sequence either
is empty or has elements. Thus we will want a predicate to test for emptyness.
Next, if the sequence is non-empty, we should be able to select elements.
Finaily, given some elements, we should be able to build a new sequence

from them.
Predicates on sequences are like predicates on S- -expressions, mappmg

sequences to truth values in Tr. %7 The basic predicate, which tests for
emptyness, is called null.

t if x is the empty sequence, ( ).
nulllx)is ¥ if x'is a non-empty sequence.
L otherwise.
nulll()) =1
nulll(A, B)] = f
nulllf] = L

Thus null gives usable values only for sequences. Since we intend to operate
on domains which contain data structures other than sequences, we will need
a recognizer to be sure that null is not applied to arguments which are not
sequences. We will name this recoghizer isseq.

issegl(A, B, C)] = t
isseqlA) =f
isseqlA] = |
isseqlt] = T~
isseql( )] =t
isseqll] = L

27The reason for restructuring LISP predicates might now be ai)parent
to previous users of LISP: if we mapped the truth values to the atoms T and
NIL as is typically done, then wed have to map truth values of
sequence-predicates to representations as sequence elements, and we would
have to perpetuate that decision for every new abstract data structure
domain that we wanted to introduce.
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The predicate isseq is total over all domains, whereas null is only partialk

“total over <seq>, but undefined for S-exprs.
While on the subject of predicates, there are a couple more we shall

need. The first one is a recognizer, isindiv, which will give value t if its
argument is an individual, give  if its argument is a sequence, and will give

4L otherwise.

The second predicate is the extension of the equality relation to the
class of sequence individuals. We shall use the same name, ¢g, as we did for
the S-expression predicate. In fact, whenever we define a new abstract data
type we will assume that an appropriate version of eg is available for the
elements of the base domain. One of our first tasks will be to extend that
equality relation to the whole domain. We will do so for sequences later in
this section. Equality is a basic relation in mathematics so it is not surprising
to see it play an important role here. ¢q is one of the few relations which we
shall define across all domains. Functions or predicates like eg, which are
applicable on several domains, are called polymorphic functions.

Next, the selectors for a (non-empty) sequence include: first, second, etc,
where:

firstl(A, B, C)] = A

second[(A, B,C)} = B
third[(A, B)] = L
It is also convenient to define an "all-but-first" selector, called rest.
rest{(A, B, C)] = (B, C)
rest[(B, C)] = (C)
rest{(C)) = ()
rest{Cl= 1
restl( )] = 1

In conjunction with rest, we shall utilize a constructor, concat, which is to add
a single element to the front of a sequence.

concat[A;(B,C)] = (A, B, C)
~ concatlA ()] = (A)
~concatl(A)(B,C)] = ((A), B, C)

concat[(B,C);Al = L
concat[A; Bl = L
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The final constructor is called seq; it takes an arbitrary number of
sequence elements as arguments and returns a sequence consisting of those

elements (in the obvious order). Let &, .., @, be elements of <seq elem>,
then:
seqlay; ay; .;a,) = (g, .., ap)

One question may have come to mind: how do we know when we have
a sufficient set of functions for the manipulation of an abstract data
structure? How do we know we haven't left some crucial functions out? If we
have enough, how do we know that we haven’t included too many? Actually,
this second case isn't disastrous, but when implementing the functions it
would be nice to minimize the number of primitives we have to program.
These problems are worthy of study and are the concern of anyone interested
in the design of programming languages. We will say a bit more about
solutions to these questions beginning on page 36.

Notice that we have been describing the sequence functions without
regard to any underlying representation. We have said nothing about these
sequence operations except that they construct, test, or select. We consider
sequences as abstract data structures, suitable for manipulation by LISP-like
algorithms; we define algorithms over the domain of sequences, using the
primitive operations, conditional expressions, and recursion. How sequences
are represented as S-exprs or represented on a machine, is irrelevant.
Sequences have certain inherent structural properties and it is those
properties which we must understand before we begin thinking about
representation. In the next section we will show how to represent sequences
as certain S-expressions and sequence operations as LISP operations on that
representation.

Let’s develop some expertise in manipulating sequences. The first
example will be an extension of the equality relation to sequences. We
perpetuate the name egqual from S-exprs, and the basic structure of the
definition will parallel that of its namesake; but the components of the
definition will involve sequence operations rather than S-expr operations. It
will be of value to compare the two predicates. The S-expr version is to be
found on page 24.

equallx;y] <=[isindivlx] > lisindivly) > eqlx;9); t - );
isindivly] - f;
nulllx] > [nullly] » t; t > fJ;

nullly] > ;
equallfirstlx);firstlyl] » equallrestix);restlyl);

to 1]

This equal works on sequences and sequence elements as its S-expr
counterpart worked on dotted pairs and atoms.
Next, we will write a predicate member of two arguments x and y. x is
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to be an individual; § is to be a sequence; member is to return t just in the
case that x is an element of the sequence 3. What does this specification tell
us? The predicate is partial. The recursion should be on the structure of y;

and termination (with value f) should occur if y is the empty sequence. If y is
not empty then it has a first element; call it zz Compare z with x. If these

elements are identical then member should return f; otherwise see if x occurs
in the remainder of the sequence y.

Notes:

1. We cannot use ¢q directly to check equality since, though x is an
individual, there is no reason that the elements of y need be. We will
introduce a subsidiary predicate same to assure that eq is applied only to
arguments of the correct type.

2. Recall that we can get the first element of a sequence with first, and the
rest of a sequence with rest.

So here’s member:

member(x;y] <=[nullly) - {;
samelfirstlylx] - t;
t - memberlx;restlyll]

where: samelu,v] <= lisindivlu] » eqlu;v); t > f]

Next is an arithmetic example to calculate the number of elements in a
sequence.

lengthln] <= [nullln) > 0; t > pluslllengthlrestin]ll]

1.7 Lists: Representations of Sequences

We can now write LISP-like functions describing operations on sequences;
the algorithms are clean and understandable. However, if we wish to run
these programs in a LISP environment, then we have to represent the data

structures and the algorithms in terms understandable to LISP. 28 This is the
problem of representation. Granted, we could have overcome the problem by
representing sequences directly as LISP S-expressions and could have written
functions in LISP which used car-cdr-chains to directly manipulate the
representations. However, the resulting programs would be much more
difficult to read and debug and understand. More important, the programs
would be explicitly tied to a specific representation of the abstract data

281f we wish LISP to run on a conventional machine we have to
represent LISP’s data structures and algorithms in a manner understandable
to that hardware. This task is the sub ject of later chapters in the book.
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structure. At some later date it might be desired to change the representation;
then many programs would have to be rewritten. We will illustrate these
difficulties soon. In Section 2.3 we develop a complex algorithm for
differentiation on a class of polynomials, moving from an unclear and highly
representation-dependent formulation, to a clear, concise,
representation-independent algorithm. ‘ -

Obviously we will always have to supply a representational bridge
between the abstract data structures and algorithms, and their concrete
counterparts. One aspect of this study of data structures is to understand
what is required to build this bridge and how best to represent these
requirements in a programming language. ’

The first decision to be made is how to represent the abstract data
structure; how should we represent sequences as S-expressions? How should
we choose representations in general? Usually there is not just one "best”
representation. Some obvious considerations involve the difficulty of
implementing the primitive operations (constructors, selectors, recognizers,
and predicates) on the abstract data structure. Also we must keep in mind the
kinds of algorithms which we wish to write; computation takes time, and
since this is computer science we should give consideration to efficiency.

A reasonable choice for a representation of sequences as S-expressions
is the following: '

mﬂ:<indiv>]] = <atom>
and for &y, .., &, in <seq elem>:

m[[ (ab seey an) ]] =

NIL
R e, ]
The right-hand branch in this LISP-tree representation of a sequence will
always point to the rest of the sequence or will be the atom N/L. Notice that
the description of the R-mapping is recursive. Thus for example:
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R (aBC\DY T =

R aB0 ]

NIL
R o

which will finally expand to ({A.(B.(C.NIL))).((D.NIL).NIL)) since
RI AB,C) Nis(4.(B.(Cc.NIL))) and R[[ (D) Jis (D . NIL)

For convenience sake we will carry over the sequence notation
-- (A, B, C) -- to that for the representation in LISP -- (4, B, C) -- 29 thinking
of (A, B, C) as an abbreviation for (4 .(B.(C . NIL))).

Next, what about a representation for the empty sequence? Looking at
the representation of a non-empty sequence it appears natural to take N/L as

RO since after you have removed all the elements from the sequence
NIL is all that is left in the representation. To be consistent then:

RLO -~

This gives us a complete specification of the R-mapping for the
domain; we have represented the abstract domain of sequences in a subset of
the domain of Symbolic Expressions. The S-expr representation of a
sequence is called a list; and we will refer to the abbreviation,

(ay, .., a,) for (a;.(a,. ..(a,.NIL)..)) as list-notation.

Sequences are the abstract data structure; lists are one of their
representations. Since the atom NI/L takes on special significance in
list-notation it is endowed with the special name list terminator.

And a notational point: in graphical interpretation of list-notation it is
often convenient to write:

NIL as /

2%9Be aware that 4 is an atom and A is a sequence element; they are not
the same data structure.



34 Symbolic expressions 1.7

For example (4, (B, C), D) is:

L | B | - C |/

ar, in "dotted-pair" notation: (4.((B.(C.NIL)).(D.NIL)))
Finally, in list-notation the commas can be replaced by spaces

eg. (4,(B,C),D)=(A(BC)D)
but beware: the "dots" in dot-notation are never optional!

thatis (4.(B.C))=(4A(BC))

At this point we have an intuitive understanding of what we mean by
“sequence”; we have described selectors, constructors, and recognizers, albeit
at an abstract level, for manipulating sequences, and we have represented our
notion of sequences as a subset of the S-expressions called lists. The final
step is to represent our sequence-manipulators as certain LISP functions. Let
first, be a LISP function which will represent the sequence operation first. 3!
Then for example we might expect:

R firstt(a, B, N 1 = firstf(4,B,CN) = 4

The problem is that this line is not quite right. LISP functions expect their
inputs to be S-expressions but (4, B, C) is not an S- expressxon To be correct
we should have written:

first[(A.(B.(C.NIL))1= 4

It might be argued that (4, B, C) is just a convenient abbreviation for
(A.(B.(C.NIL))), but even so, if we wish the machine to use the
abbreviation we must be able to express that translation scheme to the
machine. We must therefore examine the implications of the notation.
Clearly it is easier to read and write in list notation and, as long as we
perform only list-operations on lists, there is no reason to look at the

30

%9This convention is one of the few instances of a "good" bug. The
early LISP papers required full use of commas, but due to a programming
error in the LISP output routine, lists were printed without commas. It
looked so much better that the bug became institutionalized.

3'Indeed, once the R-mapping is defined on the domain it is induced
on the operations.
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underlying dotted-pair representation. 3 However, we must keep in mind
that list operations are carried out on the machine using the dotted-pair
representation. We might carry out the "list-to-dotted-pair” transformations
implicitly, but a machine which evaluates LISP expressions will have to have
an explict transformation mechanism. So a necessary part of our
representation of sequences is the specification of transformations between
the abstract data structure notation and the notation of the underlying
representation. We can give representations for the sequence operations. We
should continue to write the subscript , on the LISP representation of a
sequence operation, like seq being represented by seq,. In most circumstances
the distinction between abstraction and representation will be clear, so we will
usually omit the subscript. The construction of a sequence from an arbitrary
number of elements will be represented by a LISP function seq,. We will use
list interchangeably with segq,.

R seq T = tise

listlay; ay; ... ;@] generates a list consisting of the &; arguments. That is, for

n21, list is the appropriately nested composition of conses: ‘
conslaconslay; ... consla;NIL])..], and for n = 0, list[ ] = ()

Examples: list{A;B] = (A B)
list{4;B,C]1= (ABC)
listlA;list[B,C]] = listlA(B C)1 = (4 (B C))
listINIL]) = (NIL)

Notice that list is not strictly a LISP function as we have prescribed them;
list does evaluate its arguments, but it can take an arbitrary number of them.
On page 17 we required that LISP functions be of fixed arity. For the
moment, list is simply a notational abbreviation for nested applications of
cons. The representation of the selector functions should be apparent from
the graphical representation. We leave it as an exercise for the reader to
specify representations for these functions; however, here are a few of the
other representations:

3%Indeed, a strong case can be made for never allowing any operations
on lists except list operations! See the discussion of type-faults on page 23 and
page 241.



368 Symbolic expressions 1.7

R isindiv ]| = atom
fﬁ[[ isseq ]] = isstrictlist where:

isstrictlistlx] <= [atom[x] > [eqlx; NIL1 > £, £ > f);
islistelementlcar(x]] » isstrictlistlcdr(x]];

t-f]
where: islistelement(x] <= latom[x] > t; t > isstrictlist[x]]

The predicate atom. does not quite characterize isindiv. We have been
assuming that:

,R[[f[ti,‘ oey Zn]:" = WIL']][ m[[t]]],' m[[fz]],‘ ey !Rl[t,,]] ]
but R [Lisindiol( ] = m[isindiv:ﬂ[m [oH)Ih

Some descriptions of LISP use this strict definition of lists, so that elements
of a list are either atomic or are lists themselves. In practice it is often
convenient to allow elements of a list to be arbitrary S-expressions. This more
liberal interpretation of lists is expressed by the following recognizer:

islist(x] <= [atomlx] -[eqlx;NIL] > t; t » f); t > islistledrlx]] ]

Therefore (A4,(A.B),C) is a list of three elements. But beware:
(A, (A . B), C) is not a sequence, and neither is (4, (4. B),C).

Since lists may have dotted pairs as elements, it is natural to extend list
to handle such cases:

listlcons[A;Blcar((A4 . B)]] - (( A.B)A)

To summarize the accomplishments of this section, we have in effect
added a new data structure to the repertoire of LISP. The addition process
includes: _

1. The abstract operations. We give constructors, selectors,

and predicates for the recognition of instances of the data
structure.: '

2. The underlying representation. We must show how the

new data structure can be represented in terms of existing
data structures.

3. Abstract operations as concrete operations, We must write
LISP functions which faithfully mirror the intended
meaning of the abstract operations when interpreted in the
underlying representation. :

4. The input/output transformations. We should give

conventions for transforming to and from the mternal
representation.

There is another view of ‘the representability of data structures
(IMor 74]). We use transfer functions which are mappings between the
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abstract structure and its representation. We need two transfer functions; a
write-function, W, to map the representations into the abstract objects; and a
read-function, R, to map the abstract ob jects to their representations.

Consider the problem of representing sequences. We want R to map
from elements of <seq elem> to <sexpr> (see page 27 and page 5); and we
want W to map from <sexpr> to <seq elem>. Before we give such R and
W, let’s see what they will do for us. We could define first, such that:

first,[x] = Wlcar[R[x]]]

What the equation says is that given a sequence x, we can map it to the
S-expression representation using R; the result of this map is an S-expr and
therefore suitable fare for car; the result of the car operation is then mapped
back into the set of sequence elements by W. The other operations for
manipulating sequences can be described similarly. With this introduction,
here are appropriate transfer functions:

Wle] <=[isnille] » mhnull[];
atomle] » mhindivle);

t > concat[Wicarlel);Wicdrlelll ]

R[] <=[nuillll) » NIL;
isindiv(l] > atomizell);

t - cons[RIfirst[1];RIrest[11]] ]

We have seen all of the functions and predicates involved in R and W
except atomize, mknull and mkindiv. In terms of our current representation of
sequences, these three functions are essentially the identity function, i[x] <= x.
However that is true only because of the particular representations that we
picked; the functions need not be so simple. A more careful inspection would
show that mkindiv expects as input an atomic S-expression and outputs a
sequence individual; atomize acts conversely. If the representations of the
atomic S-expressions were different from the representations of sequence
individuals, then we would have some work to do.

We review what has transpired since it is a model of what is to come.
We developed a new abstract data structure called sequences; discussed
notational conventions for writing sequences; described operations and
pertinent control structures for writing algorithms; and finally showed that it
was possible to represent sequences in the previously developed domain of
S-exprs. If we had a machine which could execute S-expr algorithms we

could encapsulate that machine within the ?R-mapping such that we could
write in sequence-notation and have it translated internally to S-expr form;
we could write sequence-algorithms and have them execute correctly using
the R-maps of the sequence primitives; and finally it would produce
sequence-output rather than the internal S-expr form. For all intents and
purposes our augmented LISP machine understands sequences. Indeed, this
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is the way most LISP implementations are organized; input may either be in
-expr form or list-notation; internally all data structures are stored as
S-exprs; all algomhms operate on the S-expr form; and finally, any S-exprs
which can be interpreted as lists are output in list-notation.

We will approach the other abstract data structure problems in a
similar manner, first developing the data structures independent of their
representation, and later showing how to represent this new domain in terms
of some previously understood domain. We will see in Section. 9.4 that
much of the mapping from input through output can be specified in a
natural style and LISP can automatically generate the necessary input and
output programs

Problems involving list-notétipn

1. Discuss conslayconslay;azl]
as opposed to consla;;consley; conslag; NILII
as a representation for (e;; &, ag)
2. Translate the following lists into S-expr dotted-pair notation.
a.(ABC) b.(4) c. ((4)) d. (A(B(C))) e (NIL)
Now go the other way and translate the following S-exprs into list notation.
f.((4.(B.NIL)).((C.NIL).NIL)) g.(NIL . NIL)
h. (CONS . ((QUOTE . (A . NIL)). NIL))

3. Evaluate the following:

a. firstl(4 B)] b. restl(4 B)]
c. concat[4;(B C)] d. concat[A;NIL]
e. concatleq(4;A4)(A B C)] f. firstlrest[(4 B)]]

18 A Respite

“..I think that one of the chief difficulties is that the general
standard of programming is extremely low. ..I think that | would
like to suggest again that the general standards of programming
and the way in which people are taught to program is abominable.
They are over and over again taught to make puns; to do shifts
instead of multiplying when they mean multiplying; to multiply
when they mean shifts; to confuse bit patterns and numbers and
generally to say one thing when they actually mean something quite
different. Now this is the standard way of writing a program and
they take great pleasure in doing so-‘Isn’t it wonderful? It saves a
quarter of a microsecond somewhere every month’. Now I think we
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will not get a proper standard of programming .. until we can have
some proper professional standards about how to write programs;
and this has to be done by teaching people right at the beginning
how to write programs properly .."

C. Strachey, Conference on Software Engineering, 1968

This section summarizes and reflects on the material of this chapter. First a
reiteration of a previous admonition: though most of this material may seem
quite straightforward, the next chapter will begin to show you that things are
not all that trivial. LISP is quite powerful. The preceding material is basic
and the sooner it becomes second nature to you the better.

A second admonition: besides learning about the basic constructs of the
language, the previous material should begin to convince you of the necessity
for precise specification of programming languages. In particular we have
seen that the process of evaluation of expressions must be spelled out quite
carefully. Different evaluation schemes lead to quite different effects. Since
evaluation is the business of programming languages we should do all we
can to make a precise specification.

And a final warning: a major point of this whole book is to instill a
respect for abstraction as a tool for controlling complexity in programming,
and as a means of writing implementation independent programs. As we
begin writing more complex algorithms, the power of abstraction will become
more apparent, but the lessons we learned in representing sequences contain
the essential ideas of abstraction and representation.

We have now seen two examples of abstract data structures. First, we
studied S-expressions without any consideration for their implementation;
they were abstract objects of sufficient interest in their own right. We then
introduced the operations on the data structures: car, cdr, cons, eq and atom.
Finally the control structures, conditional expression and recursion, were
given. Control structures are used to direct the flow of the algorithm as it
executes. These three components, data, operations, and control, are the
main ingredients of any programming language. Most languages have an
apparently richer class of control devices; "while"-statements and "DO"-loops
are examples. Later we will show how to introduce such constructs into LISP.
Most control structures are explicit language constructs like the conditional

expression, whereas recursion is typically implicit. 33 The interaction between
recursion and the procedure-calling mechanism gives LISP a powerful

control structure.
As we introduce each new abstract data structure we add new

%3However some languages do require some kind of declaration to the
effect that a procedure is recursive.
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operations tailored to its needs. When we introduced sequences we also
introduced first, rest, null, ...etc. We did not add any new control structure,
though a simpler control structure which operated on sequences, selecting
elements and performing operations on those elements, might be useful.
There is a natural relationship between data structure and control structure;
sometimes we can exploit it to good measure. When we consider abstract
data structures in future chapters we will again see the three components:
data, operations, and control.

The new feature which we considered in discussing sequences was the
problem of representation. We showed how to represent sequences in terms
of S-expressions. We will continue this pyramiding of data structures in the
future; we will consider our work done as soon as we have a representation
of our new data structure in terms of an existing one. Finally we will exhibit
a representaticn of the underlying layer of S-expressions. Later we will
discuss different representations of data structures, independent of their
possible S-expression representation; there are data structures which are not
best represented as S-expressions. A further consideration appears because
of the representation issue; even though we have represented a particular
data - structure as a complex S-expression we should not operate on that
representation with S-expression functions. We should refrain from using car
and cdr on lists even though the representation is well-known. In our
representation of lists we could find the n' element in a list by using cad™'r.
And we know that cdr represents the rest of the list. Though our
representation of sequences is such that first, rest and concat are identical to
car, cdr, and cons respectively, we should use the names first, rest, and concat
to make it clear that we are operating on lists. These

representation-dependent coding tricks ®* are dangerous. They are really type
faults as discussed on page 23 and page 241.

For a more practical benefit, consider the problem of program
modification. We might wish to change the representation of a data
structure. If the programming has been done in terms of abstract operations
on abstract data structures then only those functions which relate the
abstraction to the representation need be changed. If we had used the
representation throughout the program, then every use of the representation
must be changed. While we are discussing some of the more practical

implications of our work we should discuss how L should be understood. As

things currently stand, the appearance of L in any application of strict
functions will immediately cause the termination of the computation. No
\

information other than the fact that 1L did appear results from such an

occurrence. If we thought of the evaluation of L as resulting in a divergent
computation, then no information at all would be forthcoming. In reality, a

LISP implementation can handle many computations which involve .L. The

4called "puns” by C. Strachey
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computation might be terminated and an error printed; in an interactive
implementation, the user might be given an opportunity to correct the error
and have the computation continue; and alas, some implementations just
continue computatlon with some arbitrary piece of information produced by
an excursion into the subsconscious of LISP. Divergent computations cannot
be detected in such a clear manner and implementations differ in their

handling of this interpretation of L. We will have more to say about the

implementation of L in Section 6.23.

Later, we will motivate the more traditional studies of data structures
by considering the implementations of LISP-related languages. But the path
to those studies is at least as important. On the way we will show that we can
exploit abstraction as a means for giving a clear specification of evaluation
of LISP expressions, and the representational techniques we will use will
involve applications of abstract data structures. A more tangible benefit
should be an increased awareness of the structure and behavior of
programming languages, and the beginnings of a better style of
programming.

Another part of our investigation should be to answer the question
"What is a data structure?”. As we mentioned at the beginning of Section 1.6
there is a different characterization of sequences which will give a different
interpretation of data structures. The standard mathematical definition of a
sequence is as a function from the integers to a particular domain.

Thus a finite sequence $ might be given as:

S = {<11 sl>v <2: 52>v -"<nn S,,>}

To select components of §, we use ordinary function application: s(i) =
Indeed, if you have programmed in a language which has array constructs,
you will recognize "application” as the style of notation used: A[3] selected the
third component for the array A.

However this is quite different from what we did in the section on
sequences. For example, if (A, B, C) is a sequence, s, then in the new
interpretation we should write:

= {<1, A>, <2, B>,<3, C>}

Thus s(2) is B, etc. What has happened is that what was previously
considered to be a data structure has become a function, and the selector
functions on the data structure have now become static indices on the
function. Or to make things more transparent:

s = {<first, A>, <second, B>,<third, C>}

Then we would write $(first) rather than firsi(s). 3 This idea can easily be

%The language PPL (Polymorphic Programming Language) lets you
do this: car[s] and s[car] both work.
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applied to S-exprs and their functions. In graphical terms we are
representing the structures such that the arcs of the graph are labeled with
the selector indices. With L-trees the labeling was implicit: left-branch was
car; right-branch was c¢dr. With explicit labels on the branches, the trees
need not be ordered. Several languages implement such unordered trees;
they are called structures in Algol 68 and EL1, and called records in Pascal.
Several formalisms exploit this view of data structures; in particular the
Vienna Definition Language ([Weg 72]), which is a direct descendant of
LISP, represents its data in such a manner.

What then is a data structure? It depends on how you look at it. For
our immediate purposes we will try to remain intuitive and informal. We
will try to characterize an abstract data structure as a domain and a collection
of associated operations and control structures. The operations and control
mechanisms should allow us to describe algorithms in a natural manner but
should, if at all possible, remain representation independent.

A few tricks were embedded in the problem sets. Recall problem h on

page 25. The composition atom[cons[ ..]] will always evaluate to f 3¢ since
the result of cons is always non-atomic. In j, we used atoms with the same
letter strings as predicate names, ATOM and EQ. ATOM and EQ are
perfectly good atoms, and are not to be confused with the LISP predicates.
Problem p shows that conditional expressions may appear within a
functional composition.

Notice that twist in problem 2 is total whereas findem is partial.
findem is partial since 3 must be atomic. Both functions build new trees:
twistem reverses left- and right-branches recursively; findem builds a tree
with the same branching structure as ¥, but the terminal nodes contain T at
the points where the atom y appears in the original tree, and N/L otherwise.

Be clear on the difference between the representation of the empty list:
NIL, and the list consisting of NIL: (NIL); note that (NIL) is an
abbreviation for (NIL . NIL), which certainly is not N/L. List-notation is
an abbreviation and can always be translated back into a S-expr, but not
every S-expr is the representation of a list.

The distinction between concat and list is sometimes confusing:

concatlay; (@y, .a,)] is (e, a5, .. a,)

listla ) {ap, .. @))] is (@) (&, .. &)

So concat will add a new element to the front of an existing list, whereas list
will create a new list whose elements will be the values of the arguments to
list. :

S61f it has a value at all! If the computation of the arguments to the
cons does not terminate or gives L then we won't get f.
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1.9 Becoming an Expert

We have already traced the development of a few LISP algorithms, and we
have given a few programming hints. It is time to reinforce these tentative
starts with a more intensive study of the techniques for writing good LISP
programs. This section will spend a good deal of time showing different
styles of definition, giving hints about how to write LISP functions, and
increasing your familiarity with LISP. For those of you who are impatiently
waiting to see some real applications of this programming language, we can
only say "be patient”. The next chapter will develop several non-trivial
algorithms, but what we must do first is improve your skills, even at the risk
of worsening your disposition.

First some terminology is appropriate: the style of definition which we
have been using is called definition by recursion. The basic components of
such a definition are:

1. A basis case: what to compute as value for the function in one or
s more particularly simple cases. A basis case is frequently referred to
as a termination case.
REC
2. A general case: what to compute as value for a function, given
the .values of one or more previous computations with that function.

You should compare the structure of a REC-definition of a function with
that of an IND-definition of a set (see IND on page 3). Applications of
REC-definitions are particularly useful in computing values of a function
defined over a set which has been defined by an IND-definition. For
example, assume that we have defined a set A using IND then a typical
algorithm for computing a function f over A would involve two parts: first,
an indication of how to compute f on the base domain of A, and second,
given values for some elements of A say aj, ..,an, use IND to generate a new
element @; then specify the value of f(a) as a function of the known values
of f(a,), .., f(a,). That is exactly the structure of REC.

Here is another attribute of IND-definitions: Suppose we have defined
a set A using IND, and we wish to prove that a certain property P holds for
every element of A. We need only show that:

1. P holds for every element of the base domain of A.
PRF
’ 2. Using the technique we elaborated in defining the function f
above, if we can show that P holds for the new element perhaps
relying on proofs of P for sub-elements, then we should have a
convincing argument that P holds over all of A.
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This proof technique is a generalization of a common technique for proving
properties of the integers. In that context it is called mathematical induction.

We are seeing an interesting parallel between inductive definitions of
sets, recursive definitions of functions, and proofs by induction. As we
proceed, we will exploit various aspects of these interrelationships. However
our task at hand is more mundane: to develop facility at applying REC to
define functions over the IND-domains of symbolic expressions, S, and of
sequences, Seq.

First let’s verify that the functions we have constructed so far do indeed
satisfy REC. Recall our example of equal on page 24. The basis case
involves a calculation on members of <atom>; there we rely on e¢g to
distinguish between distinct atoms. The question of equality for two
non-atomic S-exprs was recast as a question of equality for their cars and
cdrs. But that too, is proper since the constructed ob ject is manufactured by
cons, and car and cdr of that ob ject select the components.

Similar justification for length on page 31 can be given. There the
domain is Seq. The base domain is the empty sequence, and length is
defined to give 0 in that case. The general case in the recursion comes from
the IND-definition of a sequence. 87 Given a sequence s, we made a new
sequence by adding a sequence element to the front of s. Again the
computation of length parallels this construction, saying that the length of
this new sequence is one more than the length of the sequence s. :

For a more traditional example consider the factorial function, n'

1. The function is defined for non-negative integers.
2. The value of the function for 0 is 1.
3. Otherwise the value of n! is n times the value of (n-i).

It should now be clear how to write a LISP program for the factorial
function:

factln] <= [eqln,0] » 1; t > times[nfactlsubl[n]]]] 38

The implication is that it is easier to compute (n- l)' than to compute n!. But
that too is in accord with our construction of the mtegers usmg the successor
function.

These examples are typical of LISP’s recursive definitions. The body
of the definition is a conditional expression; the flrst few branches involve

37Note (page 27) that we didnt give an explicit IND-definition, but
rather a set of BNF equations. The reader should supply the explicit
definition.

%8times is a LISP function which performs multiplication, and subi
subtracts I from its argument.
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special cases, called termination conditions. Then the remainder of the
conditional covers the general case-- what to do if the argument to the
function is not one of the special cases.

Notice that fact is a partial function, defined only for non-negative
integers. When writing or reading LISP definitions pay particular attention
to the domain of definition and the range of values produced. The following
general hints should also be useful:

1. Is the algorithm to be a LISP function or predicate? This information can
be used to double-check uses of the definition. Dont use a predicate
where a S-expr-valued function is expected; and don’t use an
S-expr-valued function where a list-value is expected.

2. Are there restrictions on the argument positions? For example, must some
of the arguments be truth values? Similar consistency checking as in 1 can
be done with this information.

3. Are the termination conditions compatible with the restrictions on the
arguments? If it is a recursion on lists, check for the empty list; if it is a
recursion on arbitrary S-exprs, then check for the appearance of an atom.

4, Whenever a function call is made within the definition, are all the
restrictions on that function satisfied?

5. Don’t try to do too much. Try to be lazy. There is usually a very simple
termination case. If the termination case looks messy, there is probably
something wrong with your conception of the program. If the general
case looks messy, then write some subfunctions to perform the brunt of
the calculation.

Apply the suggestions when writing any subfunction. When you are finished,
no function will do very much, but the net effect of all the functions acting
in concert is a solution to your problem. That is part of the mystique of
recursive programming.

As you may have discovered, the real difficulty in programmmg is
writing your own programs. But who says programming is easy? LISP at
least makes some of your decisions easy. Its constructs are particularly frugal.
So far there is only one way to write a non-trivial algorithm in LISP: use
recursion. The structure of the program flows like that of an inductive
argument. Find the right induction hypothesis and the inductive proof is
easy; find the right structure on which to recur and recursive programming is
easy. It’s easier to begin with unary functions; then there’s no question about
which argument is to be decomposed. The only decision is how to terminate
the recursion. If the argument is an S-expr we typically terminate on the
occurrence of an atom. If the argument is a list, then terminate on ( ). If the
argument is a number then terminate on zero.
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Consider a slightly more complicated arithmetical example, the
Fibonacci sequence: 0, 1, 1, 2, 3,5, 8, ... This sequence can be characterized
by the following recurrence relation: -

f(0) = 0
f(1) =1
f(n) = f(n-1)+f{n-2)
The translation to a LISP function is easy:
fibln]l <= [egln;0]1~ 0;
eqln; 1] - 1;
t > pluslfiblsublnd);fiblsubllsubln1il]]
where plus is a representation of the mathematical function +.
_ A few additional points can be made here. Notice that an evaluation
scheme may imply many duplicate computations. For example, computation

of fib[5] requires the computation of fib[4] and fib[3). But within the
calculation of fib[4] we again calculate fib[3], etc. It would be nice if we

could restructure the definition of fib to stop this extra computation. 3 Since
we do W1sh to run programs on a machine we should give some attention to

ef f1c1ency

We will define another function, called fit’, on three variables x, y, and
7. The variables, x and y, will be used to carry the partlal computations.
Consider:

fiby[n] <= fib"[n,;0;1]

where: fib'In;x;9] <= legln,0] - x;

t - fib*[sublln); pluslix;)x]1]
This example is complicated enough to warrant closer examination. The
initial call, fib,[n), has the effect of calling fib* with x initialized to 0 and
with y initialized to 1. The calls on fib* within the body of the definition, say
the i such recursive call, has the effect of saving the it" Fibonacci number
in x and the i-1% in y.

3%An alternative solution is to supply a different evaluation scheme
which might be able to remember previously calculated results. [Got 74].

For those readers with some programming experience, the solution
may appear easy: assign the partial computations to temporary variables.
The problem here is that our current subset of LISP doesn’t contain
assignment.
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For example:

fib[4] = fib’[4,0,1]
= fib[3;1,0]
= fib'[2;1:1]
= fib'1;2;1]
= fib[0,3;2]
=3

Functions like fib’, used to help fib,, are called “help functions" or
P 1 P

auxiliary functions; variables like x and 9§ in fib* are called
accumulators ([Moor 74]), since they are used to accumulate the partial
computations. The technique of using auxiliary functions and accumulators
can also be applied to the factorial example. When viewed computationally,
the resulting definition will be more efficient, though the gain in efficiency is
not as apparent as that in the Fibonacci example. !

Thus:

fact [n] <= fact’[n;1)

where:  fact’[n;x] <= [eqln;0] > x; t > fact’[subl(n];timesin;x11]

It appears that the pairs fact, fact; and fib, fib; are equivalent. Perhaps we
should prove that this is so. We presented the crucial ideas for the proof in
the discussion on page 43 concerning IND, REC and PRF. We shall
examine the question of proofs of equivalence in Section 2.10.

Aucxiliary functions are also applicable to LISP functions defined over
S-exprs:

lengthln] <= [nullln] » 0; t > addlllengthlrest[n]]]) 42

length,[n] <= length'(n,0]

where: length’[n;x] <= [nuliln] » x; t > length*[restln);add1lx]]]
Again, it appears that lengt4 is equivalent to length;.

So far our examples have either been numerical or have been
predicates. Predicates only require traversing existing S-exprs; certainly we
will want to write algorithms which build new S-exprs. Consider the
problem of writing a LISP algorithm to reverse a list x. There is a simple
informal computation: take elements from the front of x and put them onto

“1The fib, example improves efficiency mostly by calculating fewer
intermediate results. The gain in the fact; example is involved with the
machinery necessary to actually execute the program: the run-time
environment, if you wish. We will discuss this when we talk about
implementation of LISP in Chapter 6. The whole question of: "what is
efficient?” is open to discussion.

42add1[x] <= x+1
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the front of a new list . Initially, § should be ( ) and the process should
terminate when x is empty.
For example, reversal of the list (4 B C D) would produce the sequence:

x y
(ABCD) ()
(BCD) (4)

(C D) (B A)

(D) (CB4)
() (DCBA)

What follows is reverse, where we use a sub-function rev” to do the hard
work and perform the initialization with the second argument to rev”.
reverse[x] <= rev"[x,( )]

rev’lx;9) <= [nulllx] - 9; t > rev'[restlx);concatlfirstlx];y11]

This reverse function builds up the new list by concat-ing the elements onto

the second argument of rev”. Since y was initialized to ( ) we are assured that
the resulting construct will be a list. We will see a "direct” definition of the
reversing function in a moment.

The development of an algorithm which constructs new ob jects may not
always be so straightforward. Suppose we require a LISP function named
append of two list arguments, x and 9, which is to return a new list which
has x appended onto the front of y. For example:

appendl(A B D){C E)) = (AB D C E)
append(A;(B C)] = L since 4 is not a list.
appendl(A B C);( )] = appendl( )(A BC))=(4ABC)

append is a partial function; it should be defined by recursion, but recursion
on which argument? If either argument is () then the value given by
append is the other argument. The next simplest case is a one-element list; if
exactly one of x or y is a singleton how does that help us discover the
recurrence relation for appending? It doesn’t help much if y is a singleton;
but if % is a singleton, then append could give:

concat[ﬂrst[x],*y] as result

So recursion on x is likely. The definition now follows.

appendlx;y] <= [nulllx] > y; t » concatlfirstlx);appendlrestix];y1l).

Notice that the construction of the result is a bit more obscure than that
involved in reverse. The construction has to "wait" until we have seen the
end of the list x. For example:



1.9 Becoming an Expert 49

appendl(A B C)(D E F)] = concat[A;append((B C)(D E F)]]

= concat[A;concat[B;append((C),(D E F)II]
= concatlA;

concat(B;

concatlC;
appendl( )(D E F)1I

= concat{ A;concat[B;concat[C{D E F )]
= concat{A;concat[B{C D E F)]]
= concat{4;(BC D E F)]
=(ABCDEF)

We are assured of constructing a list here because y is a list and we are
concat-ing onto the front of it. LISP functions which are to construct list
output by concat-ing must concatenate onto the front of an existing list. That
list may be either non-empty or the empty list, ( ). This is why the
termination condition on a list-constructing function, such as the following
function, dotem, returns { ).

dotemlx;y] <= [ nulllx] - ( );
t > concatlcons(firstlx);firstlyll;dotemlrest[x];restly]]]]

The arguments to dotem are both lists assumed to contain the same number
of elements. The value returned is to be a list of dotted pairs; the elements of
the pairs are the corresponding elements of the input lists.

Note the use of both concat and cons: concat is used to build the final
list output; cons is used to build the dotted pairs. Now if we had written
dotem such that it knew about our representation of lists, then botk functions
would have been cons. The definition would not have been as clear.

Look at a computation as simple as dotem[(4),{B)]. This will involve

concatlcons[ A;Bl;dotem{( );( )1]
Now the evaluation of dotem[( ) )] returns our needed ( ), giving
concatlcons[A;B){ )] = concatl(A . B){ )] = ((A. B))

If the termination condition of dotem returned anything other than ( ) then
the list-construction would "get off on the wrong foot” and would not

generate a list.
As promised on page 48, here is a "direct” definition of reverse.

reverselx] <= [nulllx] > ( );

t > appendlreverselrestlx]);concat(firstlx],( )]
This reversing function is not as efficient as the previous one. Within the
construction of the reversed list the eppend function is called repeatedly. You

should evaluate something like reverse{(4 B C D)] to see the difficulty.
It is possible to write a directly recursive reversing function with no
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auxiliary functions, no functions other than the primitives, and with not
much clarity. We shall persist because it is a good example of discovering the
general case of the recursion by careful consideration of examples. Let us call
the function rev.

We consider the general case first, and postpone the termination
conditions until later. Consider, for example, rev[(4 B C D)). This should
evaluate to (D C B 4). How can we construct this list by recursive calls on
rev? Assume x has value (4 B C D). Now note that (D C B A) is the value
of concat[D,;(C B A)). Then D is firstlrevlrest[x]]] (it is also first[rev(x]] but
that would not help us since the recursion must reduce the complexity of the
argument).

How can we get (C B A)? Wellk:

(C B A)=revl(A B C)]
rev[concat[A;(B C)]]

(we are going after rest[x] again,
but first we can get 4 from x.

revlconcat(firstlx];(B C)1]
revlconcat(firstlx);rev[(C B)]]]
revlconcatfirstlx)revlrestl(D € B)I
revlconcat(firstlx)revlrestirevlrest[x11111]

1

That is, revslx] looks like concat[first[revlrest(x]]];
revlconcatlfirstlx];
revlrestlrevlrest(x]11111]

Now, the termination conditions are simple. First revl( )] gives ( ). But
notice that the general case which we just constructed has two concats. That
means the shortest list which it can make is of length two. So lists of length
one are also handled separately: the reverse of such a list is itself. Thus the
complete definition should be:

revlx] <= [ nulllx] - ( );
nulllrestlx]] » x;

t > concatl firstlrev[rest[x]]);
revlconcat(first[x);
revlrestlrevlrest[x11111]] ]

We have only hinted at the issue of efficiency in computation. The
question of efficiency involves deeper questions of the evaluation
mechanisms. We will return to these issues after we have discussed the LISP
evaluation scheme more completely.
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Problems

I Use the following definition:

matchlk,m) <= [null[k] » NO;
nulllml » NO;
eqlfirstlk);firstlm]) - firstlk];

t - matchlrest[k];rest{m]]]

and evaluate:

a. matchl(X);(X)] b. matchl(A B E),(] O E)]
c. matchl(F 0 0); (B AZ)]

2. Now write your own functions:

a. amonglx;9] <= .. : among is to be a predicate; x is an atom; y is a list
of atoms. among is to return f if x is not found as an element
of y; otherwise, among is to return {.

e.g. amonglA;(A B C)) = amonglA{C D E A)} =1
amonglA1;(42 B2)] = {.

b. anywherelx;9) <= .. : anywhere is a predicate; x is an atom; 9y is an

arbitrary S-expr or list. anywhere is to return t just in the
case that x appears somewhere in y.

e.g. anywhere[4;(A B C)] = anywhere[A;((A . B) .C)] = {
anywhere[A(BC D)) = {.

C. collectpair[z;x,jy] <= .. :x and y are atoms; z is an S-expression or list,
some of whose subexpressions, may begin (x ..) or
(y ..). collectpair is to return a dotted pair whose
car-part is a list of all the occurrences of (x ..) and
whose cdr-part is a list of all occurrences of (y ...).

e.g. collectpairl((A 1) ((B.2)(C A4));A;Bl=(((A1)(A44).((B.2))

d. predlx] <= .. : x is a positive integer. pred is a function, returning the
predecessor of its argument. The only arithmetic function you
may use is addl.

eg. pred[3] = 2; pred(0] is undefined;
predladdllx]] = x for x 2 0.

e. signumlx] <= .. : x is an integer. signum returns NEGATIVE, ZERO,
or POSITIVE depending on the sign of x. You may use
addl and subl but no comparision function other than egq.
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f. maxdepthll] <= .. : ! is a list. This function is to find the maximum
depth of nesting of any element in /. Assume that ! is a
strict list (see page 36); that is, any sub-element is either
atomic or is itself a strict list. For example

maxdepthl( )] = 0; maxdepthl(((B) C) A)] = 3



CHAPTER 2

Applications of LISP

“..All the time | design programs for nonexisting machines and
add: ‘if we now had a machine comprising the primitives here
assumed, then the job is done’

. In actual practice, of course, this ideal machine will turn out not
to exist, so our next task --structurally similar to the original one--
is to program the simulation of the “"upper” machine... But this
bunch of programs is written for a machine that in all probability
will not exist, so our next job will be to simulate it in terms of
programs for a next lower level machine, etc., until finally we have
a program that can be executed by our hardware..."

E. W. Dijkstra, [Dij 72]

2.1 Introduction

There are several ways of interpreting this remark of Dijkstra. Anyone who
has programmed at a level higher than machine language has experienced
the phenomenon. The act of programming in a high-level language is that of
writing algorithms for a nonexistent high-level machine. Typically however,

53
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the changes of representation from machine to machine are all done
automatically: from high-level, to assembly language, and finally to hardware
instructions. '

A related view of Dijkstra’s remark involves our discussions of abstract
data structures and algorithms. We express our algorithms and data
structures in terms of abstractions independent of how they may be
represented in a machine; indeed we can use the ideas of abstraction
regardless of whether the formalism will find a representation on a machine.
This use of abstraction is the true sense of the programming style called
“structured programming”. We will see in this chapter how this
programming style is a natural result of writing representation-independent
LISP programs.

As we have previously remarked, we will see a close relationship
between the structure of an algorithm and the structure of the data. We
have seen this already on a small scale: list-algorithms tend to recur “linearly”
on rest to ( ); S-expr algorithms tend to recur “left-and-right” on car and cdr,
finally decomposing the expression to atoms. Indeed, the instances of control
structures appearing in an algorithm typically parallel the style of inductive
definition of the data structure which the algorithm is examining. !

If a structure is defined as:

%IZ‘-‘- ®] lbz |®3
eg. <seq elem> := <indiv> | <seq>

then we can expect to find a conditional expression whose predicate positions

are filled by the recognizers for the Ds.
If the structure is defined as:

Q "= Ql gl
eg. <seq> := (<seq elem>, .., <seq elem>)

that is, a homogeneous sequence of elements, then we will have a "linear”
recursion like that experienced in list-algorithms. 2

IThe ideas sketched here have more formal explanations in algebraic
notions; see [Hen 75].

2 Indeed there are other forms of control like iteration or /it (page 196)
which are related to such data structures.



2.1 Introduction 585

Finally if the structure is defined with a fixed number of components
as:

g = gl ®2 93 g“

eg. <sexpr> := (<sexpr> . <sexpr>)

then we can expect occurrences of selector functions to extract the
components from the structure. 8

Thus a data-structure algorithm tends to “pass off” its work to
subfunctions which will operate on the components of the data structure.

Thus if a structure of type D is made up of components of types D, Dj, Dy,

and D, then the structure of an algorithm f operating on D typically
involves calls on subfunctions f; through f, to handle the subcomputations.

Each f; will in turn break up its D; Thus the type-structure of the call on f
would be:

1D = glfilD) )i 2AD,)if3[D3)if 2l D]

This is the essence of level-wise programming: we write f, f},..,fa
independently of the representation of their data structures. f will run
provided that the fi's are available. As we write the f;'s we will probably

invoke computations on components of the corresponding ;. Those
computations are in turn executed by subfunctions which we have to write.
This process of elaboration terminates when all subfunctions are written and
all data structures have received concrete representations. In LISP this means
the lowest level functions are expressed in terms of LISP primitives and the
data structures are represented in terms of S-exprs. Thus at the highest level
we tend to think of a data structure as a class of behaviors; we don’t care
about the internal mechanisms which implement that behavior. At the
lowest level, machine-language routines simulate one of many possible
representations. ‘

This process of elaboration of abstract algorithm and abstract data
structure may modify the top-level definition of f. In reality, implementation
considerations may effect some earlier decisions and require replanning of an
earlier strategy. At that time the complete plan should be re-examined; local
modifications may have global repercussions. A programming style is not a
panacea; it is no substitute for clear thinking. It only helps control the
complexity of the programming process.

3You may have noticed that we are therefore dealing with essentially
“context-free” abstract data structures; i.e, those generated by context-free
grammars. See [Hop 69].
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2.2 Examples of LISP Applications

The next few sections will examine some non-trivial problems involving
computations on data structures. We will describe the problem intuitively,
pick an initial representatlon for the problem, write the LISP algorlthm, and
in some cases "tune” the algorithm by picking “"more effncnent data
representations.

The examples share other important characteristics:

1. We examine the problem domain and attempt to represent its elements as
data structures.

2. We reflect on our (intuitive) algorithm and try to express it as a LISP-like
data-structure manipulating function.

3. While performing 1 and 2, we might have to modify some of our
decisions. Something assumed to be structure might better be represented
as algorithm, or some algorithm mlght be better repesented as a data
structure.

4. When the decisions are made, we evaluate the LISP function on a
representation of a problem.

5. We reinterpret the data-structure output as an answer to our problem.

Pictorially in terms of LISP: ~N

informal => LISP function
algorithm
evaluation

——— interpret
S-expr output as answer

domain  => S-expressions

Whenever we write computer programs, whatever language we use, we
always go through a similar representation problem. The process is more
apparent in a higher-level language like FORTRAN or ALGOL, and is
most noticeable in a language like LISP which primarily deals with data
structures.

When we deal with numerical algorithms, the representation problem
has usually been settled in the transformation from real-world situation to a
numerical problem. One has to think more explicitly about representation
when we deal with structures like arrays or matrices. We are encoding our
information in the array. But the preceding diagram occurs within the
machine, even for strictly non-structured numerical calculation.
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numerical => machine
algorithm  instructions
execution

® interpret

binary number as answer

numbers => binary )
representation

The encodings are done by the input routines. The result of the execution is
presented to the external world by the output routines.

However, when we come to data-structure computations, the
representation problem really becomes apparent. We have to think more
about what we are doing since we lack certain preconceptions or intuitions
about such computations. More importantly, we are trying to represent actual
problems directly as machine problems. We do not attempt to first analyze
them into a complex mathematical theory, but try to express our intuitive
theory directly as manipulations of data-structures. This is a different kind
of thinking, due wholly to the advent of computers. Indeed the field of
computation has expanded so much as to make the term "computer” obsolete.
"Structure processor” is more indicative of the proper level at which we
should view "computers”.

We have already seen a simple example of the representation problem
in the discussion of list-notation\beginning in Section 1.6.

sequence
algorithm => LISP function
evaluation

A— interprEt
S-expr result as answer.

sequence
expression => S-expression  /

The following sections deal with representation of complex data
structure problems in LISP.

2.3 Differentiation

This example will describe a rudimentary differentiation routine for
polynomials in several variables. We will develop this algorithm through
several stages. We will begin by doing a very direct, but
representation-dependent, implementation. We will encode polynomials as
special LISP lists and will express the differentiation algorithm as a LISP
program operating on that representation. When this program is completely
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specified we will then scrutinize it, attempting to see just how much of the
program and data structure is representation and how much is essential to
the algorithm.

You should recognize two facts about the differentiation algorithm for
polynomials: first, the algorithm operates on forms (or expressions) as
arguments and returns forms as values. Previously discussed algorithms have
operated on simple values and produced simple values. The differentiation
algorithm takes expressions as arguments and produces a new expression as
value. Second, you should realize that the algorithm for differentiation is
recursive. The question of differentiating a sum is reduced to the ability to
differentiate each summand. Similar relationships hold for products,
differences, and powers. There must be some termination conditions.
Differentiation of a variable, say x, with respect to x is defined to be the
number one; differentiating a constant, or a variable not equal to x with
respect to x gives a result of zero. This begins to sound like the
IND-definitions of sets (in this case the set of polynomials) and the associated
REC-definitions of algorithms (in this case differentiation of polynomials). If
this is the mold into which our current problem fits, then we must give an
inductive definition of our set of polynomials. Though polynomials can be
arbitrarily complex, involving the operations of addition, multiplication,
negation, and exponentiation, their general format is very simple if they are
described in our LISP-like notation where the operation precedes its
operands. We assume that binary plus, times, and exponentiation are
symbolized by +, %, and 1; we will write +{x;2] instead of the usual infix
notation x+2. The general term for this LISP-like notation is prefix
notation.

Here are some examples of infix and prefix representations:

infix prefix
xx2+29 +[xlx;2); «[2,9]]
Xz wlae;4y,;2]]

We now give an inductive definition of the set of polynomials we wish
to consider. The definition will involve an inductive definition of terms.

1. Any term is a polynomial.

2. If p; and p, are polynomials then the "sum” of p; and p, is a polynomial.
where:

1. Constants and variables are terms.

2. If t; and t, are terms then the "product” of t; and t, is a term.

8. If t, is a variable and t; is a constant then “t; raised to the t,'" power" is
a term.
4. If t) is a term then "minus” t; is a term.
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We now give a BNF description of the above set using the syntax of prefix
notation:

<poly>  u= <term> | <plus>[<poly>;<poly>]
<term> 1= <constant>
u= <variable>
u= <times>[<term>;<term>]
= <expt>[<variable>;<constant>]
1= <minus><term>

<constant> == <numeral>
<plus> =+
<times> =
<expt> =1

<minus> u= -
<variable> ::= <identifier>

It is easy to write recursive algorithms in LISP; the only problem here
is that the domain and range of LISP functions is S-exprs, not the
polynomials. We need to represent arbitrary polynomials as S-exprs. We
will do the representation in lists rather than S-exprs.

Let R be a function mapping polynomals to their representation such
that a variable is mapped to its uppercase counterpart in the vocabulary of
LISP atoms. Thus:

R[] <variable> || = <literal atom>

Let constants (numerals), be just the LISP numerals; these are also
respectable LISP atoms. Thus:

R <numeral> ]| = <numeral>

We have now specified a representation for the base domains of the
inductive definition of our polynomials. It is time to develop the termination
cases for the recursive definition of differentiation.

We know from differential calculus that if « is a constant or a variable

then:

du/dx = 1ifx=u
0 otherwise

We will represent the d-operator as a binary LISP function named diff. The
application, du/dx will be represented as difflu;x]. Since constants and
variables are both represented as atoms, we can check for both of these cases
by using the predicate isindiv. Thus a representation of the termination
cases might be:

difflu;x) <= [isindiv{u] » [eglx;ul » 1; £ 0] .. ]

Notice we write the abbreviation, isindiv instead of isindiv,. You should be
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a bit wary of our definition already: diff(/;1] will evaluate to I.

Now that we have covered the termination case, what can be done for
the representation of the remaining class of terms and polynomials? That is,
how should we represent sums and products?

First, we will represent the operations #, +, -, and T as atoms:

R+ ] - pPLUS
R« ] - TIMES
R - 1 - minus
RIL+ = ExpPr

We will now extend the mapping R to occurrences of binary operators
by mapping to three-element lists:

R ai8,:8,) 1 - R[] R[6, 1 RL6.1)

Unary applications will result in two-element lists:

R a8 [ - R[], R[81)

For example: R +lx; 21 = (PLUS X 2)
For a more complicated example, the polynomial

%2+ 292+ u
will be translated to the following prefix notation:
[10x;2); +[sL24y2]); wl] 1
From this it’s easy to get the list form:

(PLUS (EXPT X 2) (PLUS (TIMES 2 (TIMESY Z))U))

Now we can complete the differentiation algorithm for + and » We know:
dif + g)/dx = dffdx + dg/dx.

Expressing this phrase as part of diff,
we would see: u = !R[[f+ g 1 - (pLus, mﬂ:f 1 !R[[g JI)
where:  secondlul = R[f | and, thirdlu)=R[ g 5

This is messier than it really needs to be because we assume that +

and # are binary. You should also notice that our R-mapping is applicable to
a larger class of expressions than just <poly>. Look at (x + 9)«(z + 2).

SAs we intimated earlier, we have entered an unwise course here. We
have tied the algorithm for symbolic differentiation to a specific
representation for polynomials. Believing that much can be learned from
seeing mistakes, we will use that representation, and on page 62 we will
examine our decision.
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The result of differentiating u is to be a new list of three elements:

1. The symbol PLUS.
9. The effect of diff operating R ]|
3. The effect of diff operating R[[¢ 1

Thus another part of the algorithm:
eqlfirstlul;PLUS] » list [PLUS; difflsecondlu);x);difflthird[ul);x]]

dlfxg)/dx is defined to be fx dgldﬁc + g «dffdx.
So here’s another part of diff:
eqlfirstlul; TIMES) > listlPLUS;

listlTIMES;; secondlu);difflthirdlul;x]);

list(TIMES;thirdlu);dif flsecondlu);x11]
Finally, here’s an example. We know:
dlxsy + x)idx = y + 1
Try:
diff (PLUS (TIMES X Y) X); X]
= listlPLUS; diffl(TIMES X Y) XJdifflxX;X1]
= listt PLUS;
list(PLUS;
listlTIMES; X; diffly ;X1);
listiTIMES; Y ; diff{X;X1);
difflX;X]]

= listl PLUS;
listlPLUS;
listlTIMES; X ;0);
listtTIMES; Y :13);
1]

=(PLUS (PLUS (TIMES X 0)(TIMESY 1)) 1)
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which can be interpreted as:
x40 + g5l + 1

Now it is clear that we have the right answer; it is equally clear that the final
representation leaves much to be desired. There are obvious simplifications
which would have done before we would consider this output acceptable.
This example is a particularly simple case for algebraic simplification. We
can easily write a LISP program to perform simplifications like those
expected here: like replacing 0+x by 0, and x«l by x. But the general problem
of writing simplifiers, or indeed of recognizing what is a "simplification", is
quite difficult. A whole branch of computer science has grown up around
symbolic and algebraic manipulation of expressions. One of the crucial parts
of such an endeavor is a sophisticated simplifier. For more details and
examples of the power of such systems see [Hea 68), [MAC 74), or [Mos 74].

Points to note

This problem of representation is typical of data structure algorithms
regardless of what language you use. That is, once you have decided what
the informal algorithm is, pick a representation which makes your algorithms
clean. Examine the interplay between the algorithm and the representation,
and continue to examine your decisions as you refine your method. In
Section 2.6 we will see a series of representations, each becoming more and
more “efficient” and each requiring more "knowledge” being built into the
algorithm. The remainder of this section will reexamine our representations
in the differentiation algorithm.
First, here is the complete diff algorithm for + and #

difflu;x] <= [lisindivlu] - [eglxul » I; t > 0);
eqlfirst [u); PLUS] » list(PLUS;
difflsecondlul; x);
difflthird[ul; x]);
eqlfirstlul; TIMES] - list{PLUS;
listlTIMES;
second[ul;
difflthirdlul; x]]
listlTIMES;
thirdlul;
difflsecondlul; x11);

ts1] 6

As we mentioned earlier, the current manifestation of diff encodes too much
of our particular representation for polynomials. The separation of algorithm
from representation is beneficial from at least two standpoints. First,
changing representation should have a minimal effect on the structure of the

%The element L is not strittly part of LISP.
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algorithm; but diff knows that variables are represented as atoms and knows
that a sum is represented as a list whose first-part is PLUS. Second,
readability of the algorithm suffers greatly. How much of diff really needs
to know about the representation and how can we improve the readability of
diff?

The uses of first, second, and third are not particularly mnemonic. ” We
used second to get the first argument to a sum or product and used third to
get the second. We used first to extract the operator. However first, second,
and third select components of sequences; they know nothing about
polynomials. We want to refer to polynomials as abstract data structures.

Let’s define the selectors:

oplx] <= firstlx]
arg [x] <= secondlx]
argolx) <= thirdlx]

Then diff becomes:

difflu;x] <= lisindivlu] - leglx;u) » 1; 1 - 0);
eqloplul; PLUS) > list[PLUS;
difflarg,ul; x);
difflarg,lul; x1);
eqloplul; TIMES] » list[PLUS;
UisdTIMES;
argy[ul;
difflarg,lul; x1);
lisdTIMES;
argolul;
difflarg [u); x11);
t- 1]
Still, there is much of the representation present. Recognition of variables
and other terms can be abstracted. We need only recognize when a term is a

sum, a product, a variable or a constant. To test for the occurrence of a
numeral we shall assume a unary LISP predicate called numberp which

returns £ just in the case that its argument is a numeral. Then, in terms of
the current representation, we could define such recognizers and predicates
as:

issumlx] <= eqlop(x);PLUS]

isprodlx] <= eqlop[x),TIMES]

isconstx] <= numberplx]

isvarlx] <= [isindiv[x] » notlisconst(x]); t » )
samevar(x;y) <= eqlx;y)

7I-Iowever, they are more readable than car-cdr-chains.
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Now we can rewrite diff as:

difflu;x) <= [isvarlu) » [samevarlx;u) » I; £ - 0J;
isconst[u) » 0;
issumlul » UstlPLUS;
difflarg,[u); x);
difflarg,lul; x1);
isprod{ul » list[PLUS;
listiTIMES;
argylul;
difflargylul; x1);
list[TIMES;
argolul;
difflarg,[ul; x11);

t- 1]

Readability is certainly improving, but the representation is still known to
diff. When we build the result of the sum or product of derivatives we use
knowledge of the representation. It would be better to define:

makesumlx,;y) <= listtPLUS %;9)

makeprodlx;y] <= listlTIMES ;%]
Then the new diff is:

difflu;x] <= [isvarlu) - [samevarlx;u) » I; t » 0]
isconst[u) - 0;
issumlu] - makesum[dsz[argl[u]; x];
difflargylul; x]1;
isprodlul » makesumlmakeprodlarg(u);
difflarg,lul; x]);
makeprodlarg,lul;
diff larg,[u); x10);
t- 1]

In the process, diff has become much more understandable and, more
importantly, the details of the representation have been relegated to
subfunctions. Changing representation simply requires supplying different
subfunctions. No changes need be made to diff. There has only been a slight
decrease in efficiency. The termination condition in the original diff is a bit
more succinct, but speaking precisely it was incorrect. The gain in
independence far outweighs the slight efficiency consideration. Looking
back, first we abstracted the selector functions: thosé which selected
components; next we abstracted the recognizers: the predicates indicating
which kind of term was present; finally we modified the constructors: the
functions which make new terms. These three components of programming:
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selectors, recognizers, and constructors, will appear again on page 164 in a
discussion of McCarthy’s abstract syntax.

The diff algorithm is much more abstract now, in the sense that the
representation of the domain and the representation of the functions and
predicates which manipulate that domain have been extracted out. # This is
our M-mapping again; we mapped the domain of <poly>’s to lists and
mapped the constructors, selectors, and recognizers to list-manipulating
functions. Thus the data types of the arguments u and x are <poly> and
<var> respectively, not list and atom. To stress this point we should make one
more transformation on diff. We have frequently said that there is a
substantial parallel between a data structure and the algorithms which
manipulate it. Paralleling the BNF definition of <poly> on page 59, we write:

difflu;x] <= [isterm[u) > difftermlu,x];
issumlu) » makesuml difflarg,(ul; x);

difflarg,lul; x1);
t- 1]

aifftermlu;x] <= [isconst{u] » 0;
isvarlul » [samevarlx;ul » 1; t » 0];
isprodlu] - makesumlmakeprodlarg,[ul;
difflarg,lul; x1);
makeprodlarg,lul;
difflarg,[ul; x]1);

t- 1]

To satisfy our complaint of page 59 that diffll; 1] gives a defined result, we
should also add:

diff'lu; x] <= [isvarlx] > lispolylu) » difflu; x]}; t > L)

Finally, notice that our abstraction process has masked the order-dependence
of conditional expressions. Exactly one of the recognizers will be satisfied by
the form u.

Problems

1. Extend the version of diff of your choice to handle differentiation of
powers such as t[x; 31

2. Extend diff to handle unary minus.

3. Extend diff to handle differentiation of the trigonometric functions, sin
and cos and their composition with polynomials. For example it should
handle sin2x + cos(x® + 5x -2).

4. Write an algorithm to handle integration of polynomials.

®To be particularly precise, our references to 0 and I should really be
mkconst[0] and mkconst[1], signifying the functions which make constants.
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2.4 Tree Searching

A natural application of LISP’s recursive power occurs in tree searching
algorithms. These algorithms are the heart of programs which play games.
A ubiquitous feature of sophisticated game playing is "a strategy”. In a
simple game, for example tic-tac-toe, an optimal strategy may be easily
computable. In games like checkers and chess, the algorithmic approach
would require enormous computational power; heuristic methods are applied
to reduce the computational requirements.

The heart of this strategy formation is often a tree structure. That tree
will have nodes representing “possible moves". In a single-person game, the
evaluation of the tree will result in a "best move"; any move that wins. In a
two-person game we must be more careful;, the branching structure will
represent both your moves and those of the opponent, and the position
evaluation must take that into account: "Now if I move here, then my
opponent will move there, ... ."

The tree-structured data and recursive programming style of LISP,
allow simple formulations of complex tree strategies. The description
involves discussion of the abstract data structures and their representations.
The objects are finitely branching trees; that is, we assume that any node in
a tree can have any finite number of branches. We will also assume that the
trees will terminate on all of their branches. We need a recognizer, named

is_term, which will return t if the'tree is the trivial terminal tree with no
branches. A terminal tree may either be a WIN or a LOSS. If it’s a win, we
know how to achieve our goal; if it's a LOSS, then we look further. That
"further” says examine the alternatives the immediate parent of that node; if
there aren’t any alternatives then back up to the grandparent.

If a tree has branches they are located by the selector branches. We will
assume those branches are presented as an ordered sequence, perhaps
ordered by their plausible value. Therefore we will use the selectors first and
rest to select candidate branches.

eval_treeltr]) <= [ is_termltr] > lis_winltr] > tr; t > LOSS];
t - eval_branches(branches(tr]l]

eval_branches(!] <= [nullll] » LOSS;
eqlLOS S ;eval_treelfirst(1]]] » eval_brancheslrest[i]];

t > firsel2]]

The simplicity of the description is pleasing. It encourages us to proceed to
more complex tree strategies.

Attempts at exhaustive search of game trees becomes prohibitively
expensive when applied to games like checkers and chess. However,
computers have had reasonable success at checkers, and are beginning to
play passable chess. A recent article, [Sug 77], addresses the feasibility of
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home chess machines. Those successes are based on more sophisticated

analysis of game trees. The ideas involved in that analysis are easily

expressed in LISP.
In the following discussions we will make several assumptions.

1. Our opponent is as smart as we are. This assumption allows us to use our
evaluation function in evaluating the positions of our opponent.

2. We assume that our opponent is also trying to win. Therefore his move
will reflect his best attempt to defeat us. Since we are using the same
position-evaluator, his "maximal harm” is our "minimal good". We are
thus following a "max-min" strategy wherein we attempt to find the best
move which our opponent cannot turn into a disaster for us.

From these ideas we formulate our position evaluation strategy as
follows:

1. Grow a tree of moves. First our possible moves from a position, then his
counter moves; then our responses, etc. Continue this until the branch
terminates or until a termination condition is forced.

2. Once the tree is built, we evaluate the terminal nodes.

3. The values are propagated back up the tree using the min-max idea. If
the preceding node is ours, we assign that node the maximum of the
branch values; if the preceding node is his we assign the minimum of the
values. We proceed in this fashion, finally returning the value of the
"best path”.

We will simplify matters somewhat, returning only the "value” of the best
path. '° First, we develop some subfunctions:

maxlistll;f] <= [nullll} » -co; £ - max[ flfirsell];
maxlistrest[1):f1]

minlist{l;f] <= nullll] » oo; t > minlf{first[1]);
minlistlrest[1];f1]

The "o" denotes a number, bigger than any other value our evaluation
function f can concoct. The f is a different kind of variable from those we
have seen before. It is used as a LISP function within the bodies of the
definition, yet passed as a variable. It is therefore called a functional
variable. We will discuss such variables in the next chapter, but for now the
intent should be clear from some examples:

maxlist[(I1 3 5 2);addl} = 6 and minlistl(l 3 5 2);addl] = 2

With those preliminaries, we are ready to present the mini-max strategy:

®We assume we have methods for determining when a move is already
present in the tree.

1%We should really return the best value and a description of the best
path.
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maxposlp) <= [s_termlp] > valuelp);
t - maxlistlbranches[p]; minpos])

minpos(p) <= lis_termlp) > valuelp);
t » minlistlbranches(p); maxpos]]

maxpos gives the value of a position for the maximizing player and minpos
gives the value of a position for the minimizing player. value is the
terminal position evaluation function.

What’s even more interesting is that there is a simple technique which
will allow us to discover the optimal path, usually without having to visit all
the nodes. The technique, discovered by John McCarthy in 1958, is called

a-f8 pruning; it is based on the observation that if our opponent is assured
that he can force us into an unfavorable position then he won’t make a move
which would give us a better position. That’s obvious; what is not obvious is
that he can often make such decisions on the basis of only a partial
evaluation of the tree. Consider:

0

opponent’s moves

=
. J—

ce 0 our moves

7 3 4 ?

Since we are to evaluate the position at N, we maximize the position, getting
7; that becomes the value of node N. It is up to our opponent to evaluate
position 0, and he now knows we’re going to get a 7 if he moves to N. He
looks questioningly at "?"; if that value is greater than 7 then he immediately
rejects move M without examining the other possibilities; things can only get
worse for him. If "?" is less than 7, then he looks at additional alternatives at
M. Once our opponent is finished evaluating the position, then it’s our turn to
play the game at the position above 0, only now we will try to maximize
what that stingy individual has left us. We let & be the value which must be
exceeded for a position to be desirable by the position about to play; and let
B be the value which must not be exceeded if the move leading to the
position would be made by the opponent; in the above example 7 is the
B-value when evaluating M. With that, we modify the min-max algorithms to
include a-8 pruning.
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maxlist , gll;f;0,8] <= [nulill] > a;
flfirsti) 2 B - B;

t - maxtist, gl restll];

{nax[a,ﬁfirst[l]]];
81l
minlist,gll;f;0,8] <= [ nullll] > B;
flfirstlll]l s ¢ » a;
t > minlist, gl restll];
£
«,

minlB,flfirst[1111]]

maxpos  glp;a;8] <= Lis_termlp] » maxla,minlBvaluelpl);
t - maxlist, glbranches(p); minpos, e8]
minpos,[x] <= minpos , glx;0;8)

‘minpaso‘ﬁ[p;a;ﬁ] <= Lis_termlp] > maxlomin(B valuelp]);
t > minlist, gdlbranches(p); maxpos o;81]
maxpos,[x] <= maxpos , glx;0,8)

The process can be initialized with @ and B set to -0 and o respectively.
Tighter bounds on "acceptablility” can be enforced by picking different a’s
and f'’s. The effect will be to shorten the search time while, perhaps, ignoring
some winning moves; caveat emptor.

This not a trivial algorithm. However its description as a LISP
program is about as simple and as compact as you will find; anywhere.

2.5 Data Bases

One of the more intriguing applications of LISP is in the area of data base
management. In this section we introduce the ideas and suggest how LISP
can be applied to the problems.

A data base is a collection of ob jects together with a set of functions to
pose questions about the ob jects in the base, to select ob jects from the base,
and to construct new entries in the base. Expressed differently, a data base is
an abstract data structure. We need to locate information in the base. We
should be able to ask the system for a specific object or we should be able to
partially specify our request ("find all books about LISP" or “find all books
about LISP published before 1975"). We should be able to add entries and
delete entries, but we will postpone these kinds of requests until later.

The representational details of ob jects will be suppressed as usual, and
we will concentrate on the abstract properties. In our first example, the
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ob jects in the data base will represent constants: an ob ject will have a name
and a collection of properties and values.

propl | vall

prop2 | val2

propn | vain

An object representation

For example, a data base dealing with business supplies might have
ob jects named boxes. Each box has properties like size and contents.

Not all objects need to have the same number of properties. For
example in a data base whose objects are bibliographic references, books
need not have page references, whereas journal articles req uire them; journal
references don’t include a publisher whereas books do. The programs which
manipulate the data base must be structured to take changeablility into
account.

Here are some examples: the first one was extracted from the side of a
Xerox paper box; the second might be a representation of a bibliographic
entry for this book.

NAME 4623258
SIZE 8-1/2 x 11
COLOR WHITE
AMNT 18 REAMS

AUTHOR ALLEN, JOHN, R.
TITLE THE ANATOMY OF LISP
TYPE BOOK

PUBL MCGRAW-HILL
DATE 1977

Given a data base of ob jects, we need to be able to manipulate these
ob jects in meaningful ways. We will not address the problems of designing



2.5 Data Bases 71

input and output, but will concern ourselves solely with the problems of
semantics of data base primitives: how can we use the information in the
base?

In requesting information from a data base, we typically specify part of
the request and expect the system to come up with a set of possibilities which
fit our description. For example, the request: "find all books about LISP",
specifies that we are interested only in books, not in journal articles or course
notes; the topic is specified to be LISP, but the system is free to select the
other components: the author, the title, the publisher and the date of
publication. The objects which are specified are called constants, the
unspecified components are variables. A request is a structure called a
pattern and consists of an ordered collection of constants and variables. The
elements in the data base are also patterns; for this example, they contain
only constants; such constant patterns are also called records. The process of
discovering whether or not a record in the data base matches the request is
called pattern matching.

We describe a simple pattern matcher named match. It expects two
arguments. The first argument is a constant pattern called pat. The second
argument, exp represents a request; it may be constant, or it may contain
variables. If it does contain variables, then the pattern matching process
must establish a match between those variables and components of our data
base object. The value returned by match will either represent the
associations built up to match the constant pattern to the expression, or the
value returned will indicate failure if no match is possible.

Patterns will be represented as lists with atoms representing constants,
and variables represented as lower-case greek letters. We will represent
failure by returning the atom NO. In the case that a match is possible, we
will return a list of pairs, where each pair is a variable and its matching
constant.

For example: matchl(A (B C)),(A (B a))] = ({a C))
matchl(A B C)(Aa B8)] = ((a B) (B C))
matchl(A B C)(A C B)1 = NO

Pattern matching can become quite complex. For example:

matchl(A (B C) (D C));(A(Bea)(BC)]=((aC)(B D))
matchl(A (B C) (D C)); (A (B a)(a C))]= NO

The second example fails since once we have associated C with @ we must
use that association throughout the rest of the pattern match; and (D C) does

not match (&« C) when & denotes C. !

""This assumes that the match proceeds in a left-to-right order.
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We will write match in terms of a subfunction named matcA’. This
subfunction carries a third argument, mlist, which represents the list of
partial matches. Whenever we locate a variable in the expression, we
examine the current mlist. If the variable appears, then we must check its
entry against the corresponding part of the pattern. If the variable does not
occur in mlist, then we associate the variable with the appropriate part of the
constant pattern.

matchlpat;exp) <= match’[patexp( )]

match’[pat;expmlist) <= [equallmlist;NO) » NO;
isconstlexp] - [ sameconstlpat;exp] » mlist;
t- NOJ);
isvarlexpl » checklpat;
exp;
lookupl(pat;mlist);
mlist);

t » match’Lsuffix{pat);
suffixlexpl;
match[prefix[pat);prefixlexplmlist]]

checklvar;exp,valmlist] <= [notlval] » concatlmkentlvar explmlist);
sameconstlexp,vall » mlist;

t-> NO)

lookuplvar;l) <= [nulill] » f;
samevarlvar;namelfirstli]]] » vallfirstl1);

t - lookuplvar;rest(!]]]

To complete our description of matchk we should supply the data structure
manipulating functions: isconst, isvar, prefix, suffix, samevar, and sameconst;
and mkent, name, and wval. The first five are related, dealing with the
representation of patterns; the final three involve the representation of the
match list. Note that we Aave assumed that mlist is a list. We will restrict the
match algorithm to simple matches on tree structure. We represent prefix as
first and suffix and rest though much more general interpretations are
possible. We leave it to the reader to supply representations of the missing
functions.

Given a basic pattern matcher, we can begin to elaborate on a data
base management system. We need some means of controlling the matcher. If
several entries in the system match the inquiry, then we must decide how to
manage the matches. In simple cases we could make a list of all the
possibilities. If the number of matches is very large we might want to return
a few at a time, remembering where we were in the search of the base. The
natural extension of this idea is to allow a potentially infinite set of elements
present in the data base. In programming languages we are able to talk about
such potentialities by using a procedure.
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Instead of having objects explicitly stored in the base, we may allow
procedures to occur as data base elements. Such a procedure would generate
elements. For example, instead of storing the integers as explicit ob jects, we
could store a procedure to generate the integers. This introduces two
problems: how do we store procedures as data ob jects; and, assuming that we
have called such a procedure and it has delivered an explicit ob ject, how do
we represent the notion that the next time we call that procedure, we want
the next object? That is, a procedure named get_next_integer should return
I the first time it is called, but know to return 2 the next time it is called in
the same context. It must also know to return I when it is called in a new
context.

Other possible extensions involve the operations on the base. Assume
that the base contains "all roses are red” and knows that ob ject Oy is a rose;
if we ask the data base for all red ob jects, we should expect to see O, appear
as a candidate. That expectation requires a deductive ability built into the
base manipulator. That is, we need not have explicitly stored the information
in the base, but we expect to be able to deduce facts from information in the
base using some relationships and reasoning ability.

There are at least two ways the "roses are red" problem can be solved.
Notice that "all roses are red" is much like a procedure; given an ob ject
which is a rose, it generates an object which is red. So, on entering a rose
object in the data base, the system could also explicitly add the fact that the
rose was red. This is an example of an input demon. A demon is a
procedure which is not explicitly called but is activated by the occurrence of
another event. Whenever an object is added to the base the collection of
input demons is checked. If an applicable demon is found, it is activated; its
activation might activate other demons.

The activation of a demon is a different kind of procedure call than
previously seen. The activation is done on pattern matching rather than by a
user-initiated call. Thus the calling style is generally known as pattern
directed invocation ((Hew 72], [Bau 72]). The demon procedure is stored in
the data base along with a pattern which determines conditions for its
activation. In the case of an input demon, an input to the base initiates a
match of the input demon patterns against the input. If a match is found, the
corresponding procedures are executed. The match process can bind
variables to parts of patterns and therefore the procedure typically has access
to the match information.

Let’s establish some notation and give an example. To introduce
records to our system we use a unary procedure named add_item. The
argument to add_item is the record we wish to add.

add_item[(ROSE 01I)]

We will use a ternary procedure named add_demon to insert demons in
the base. The first argument is the type of demon; so far we have discussed
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demons invoked by adding elements; we will also have demons which are
applied when items are removed, or when items are accessed. These three
types will be named ADD, REMOVE, and FETCH. The second argument is
the pattern which will invoke this demon; and the third argument is the
action to be taken if the pattern matches. For example:

add_demon[ADD;(ROSE a);add_item[(RED a))]]

Demons are also used to monitor the removal of information from the base.

The third use of demons is involved with another possible solution to
the "all roses are red" problem. Instead of explicitly adding the fact that O
is a red object we might wait until a request for red objects occurs. At that
time we could use the "all roses are red" demon backwards. That is, we could
look for any roses in the data base; the assertion that a "rose” ob ject is also a
"red" object allows us to accept “rose” objects as solutions to our inquiry.
This feature introduces a certain deductive capability to our system. It also
introduces some organizational problems.

We have to recognize when a procedure is capable of producing ob jects
of the desired type. We therefore index these data base procedures by a
pattern which tells what the procedure accomplishes. That pattern is called
the procedure’s goal and the invocation of such a procedure is again
pattern-directed, but has an added connotation of being goal-oriented.

Again, we introduce some notation and an example. Let the request for
a data base item be given by:

fetchla], where a is a pattern.

Since a fetch request might discover several possibilities, some being items
and some being goal-directed procedures, we need a way of examining the
selected information.

We introduce a function named try_next, whose single argument is the
result of a fetch. Each call on ¢ry_next either produces a new item or signals
that no more items exist on the fetch list.

An extension to this basic data base manipulating system has become
convenient in artificial intelligence research. Let us assume we wish to derive
a plan or scheme for achieving a desired goal. In the derivation process we
will make hypotheses and then pursue their implications. A similar behavior
can be simulated if we allow the creation of multiple data bases. Each base
corresponds to a hypothetical situation or world, and the fetci-ing of an
object in a world corresponds to asking whether or not a desired state is
attainable in that world.

Instead of requiring that all transformations occur in one data base,
several systems ([Con 73], [QA4 72]) have implemented a layered data base.
In this situation we are able to add, delete and fetch from specified data
bases. We add two operations push_base and pop_base which allow us to
manipulate whole data bases as ob jects.
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The control structures necessary for handling such data base
manipulations may be very non-structured; some of the implementation ideas
for such control will be discussed in Section 4.5. We will discuss some
details of the data structure implementation in Section 56. For more
information see [McD 75] and [Con 73].

Problems

1. Recall our discussion of match on page 72. Supply a representation for
match lists and supply the eight data structure functions.

2. The match routine we developed on page 72 required that pat be a
constant pattern. Write a more general pattern matcher named unify
which allows either pat or exp to contain variables. This more gereral
match routine is called a unifier ((Rob 65]).

For example:

unifyl(4 (B @) A); (A(B D) 8)]=((a D) (B B) (S 4))
unifyl(4 (B &) A); (A (B D) B)] = NO
unifyl(a A a); (B B B)l= NO

2.6 Algebra of Polynomials

Assume that we want to perform addition and multiplication of polynomials
and further assume that each polynomial is of the form py + pp + .. + p
where each term, p;, is a product of variables and constants. The two
components of each term are a constant part called the coefficient, and the
variable part. We shall assume without loss of generality that the set of
variables which appear in the polynomials are lexicographically ordered,
eg. x <9<z and assume that each variable part obeys that ordering; thus
we would insist that xzy? be written xyzz. We do not assume that the terms
are ordered within the polynomial, thus x +xy and xy+x are both
acceptable. We further assume that the variables of each p; are distinct and
that no p; has 0 as its coefficient. The standard algorithm for the addition
of T".1p; with E".,q; indicates that ¢; can be combined with a p; if the
variable parts of these terms are identical. In this case the resulting term has

the same variable part but has a coefficient equal to the sum of the
coefficients of p; and ¢. We will examine four representations of

polynomials, before finally writing any algorithms. To aid in the discussion
we will use the polynomial x2 - 2y - z as our canonical example.
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First representation

We could use the representation of the differentiation example. This would
result in our example assuming the form:

(PLUS (TIMES 1(EXPT X 2))(PLUS (TIMES -2Y) (TIMES -12)))

The above conventions specify an unambiguous representation for our class
of polynomials. Strictly speaking, we did not need to impose the ordering on
the set of variables. However, we need to impose some additional constraints
before we have data structures which are well-suited to the class of
polynomial algorithms we wish to represent.

Second representation

We are really only interested in testing the equality of the variable parts; we
will not be manipulating variable parts in any other way. So we might
simply represent the variable part as a list of pairs; each pair contains a
variable name and the corresponding value of the exponent. Knowing that
polynomials are always sums, and knowing the class of algorithms we wish to

implement, we write Lp; as:

( (rep of py), (rep of p5), ..)
This representation would make our example appears as:
((TIMES 1((X .2))) (TIMES -2((Y .1))) (TIMES -1{((Z . 1))))

This representation is sufficient and it does have the flexibility we need, but
it is still not terribly satisfying. We are ignoring too much of the structure in
our class of polynomials.

Third representation
We know that the occurrence of variables is ordered in each variable part;
we can assume that we know the class of variables which may appear in any
polynomial. So instead of writing xzysz as

((x.2)(y.3)(z.1),

we could write: (2 3 I) assuming x, 9, z are the only variables.

In a further simplification, notice that the TIMES in the representation is
superfluous. We always multiply the coefficient by the variable part. So we
could simply concat the coefficient onto the front of the variable part
representation.

Let’s stop for some examples.
Y P

term representation
2xy2 (2111)
2x%z (2201

423 (400 3)
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Thus our canonical polynomial would now be represented as:
((1200)(-2010)(-1001))

This representation is not too bad; the first-part of any term is the
coefficient; the rest-part is the variable part. For example, the test for
equality of variable parts is now simply a call on equal.

Let’s start thinking about the structure of the main algorithm.

Fourth representation

The algorithm for the sum must compare terms. Finding similar terms, it will
generate an appropriate new term, otherwise it simply copies the terms.
When we pick a p; from the first polynomial we would like to find a
corresponding ¢; with the minimum amount of searching. This can be
accomplished if we can order the terms in the polynomials. A natural
ordering can be induced on the terms by ordering the numerical
representation of the exponents. For sake of argument, assume that a
maximum of two digits will be needed to express the exponent of any one

variable. Thus the exponent of x? will be represented as 02, or the exponent

of z'° will be represented as I0. Combining this with our ordered
representation of variable parts, we arrive at:

term representation

43x%%%  (43,020304)

2x% (2,020001)

423 (4, 000003)

Now we can order on the numeric representation of the variable part of the
term. One more change of representation, which will result in a
simplification in storage requirements:

represent ax™yB2C as (a . ABC)

This gives our final representation:
((1.20000) (-2 . 100) (-1. 1))

Note that 20000 > 100 > 1.

Finally we will write the algorithm. We will assume that the
poiynomials are initially ordered and will write the algorithm so as to
maintain that ordering. Each term is a dotted pair of elements: the
coefficient and a representation of the variable part.

As in the previous differentiation example, we should attempt to
extract the algorithm from the representation.

We shall define:

coeflx] <= carlx] and expolx] <= cdr{x]

To test the ordering we will use the LISP predicate:

greaterplx;y] gives t if x is greater than y.
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In the construction of the ‘sum’ polynomial we will generate new terms by
combining coefficients. So a constructor named mknode is needed. In terms

of the latest representation mknode is defined as:
mhnodelx;y] <= conslx,y]

So here’s a graphical representation of our example polynomial:

x2.2y-2

Here’s the algorithm:

polyaddlp;q] <=
[nullpoly(p) - ¢;
nullpolylql » p;
greaterplexpolfirst(pllexpolfirstlqll] » concatlfirst(p);
polyaddlrestpl;ql);
lessplexpolfirstlplexpolfirstlgll] » concatlfirstlq);
polyaddlp,restlql]);
zeropl pluslcoeflfirstlpllcoeflfirstlglll] » polyaddirest(p);restiqll;
t > concatl mknodel pluslcoef(first[p)l;coeflfirst(qll);
expolfirst[p1l);
polyaddlrest[pl;restiglll]

where: zeroplx] <= eqlx,0]
Notice that our algorithm is quite abstract.
Now for an explanation and example. The form of polyadd is:

[p1 e, p2-eypg- ey Pa = €4 Ps = €5/ Pg es)
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p; = e; and p, - ep check if either polynomial is empty.

ps - ez and p4 - e, examine the ordering of terms so that the resultant
polynomial retains the ordering.

Ps or pe will not be reached unless the variable parts are equal.

ps - es. Since the variable parts are equal, we can combine terms. However,
we must check for cancellations and not include any terms with zero
coefficient in our resultant polynomial.

Ps = Pe- In the final case we must add a new node to our polynomial.

Here’s an informal execution of polyadd: \

polyaddl x+y+z; x2-29-2 ]

= concatlx?;polyaddlx+y+z; -2y-21)

= concatlx?;concatlx;polyaddly+z; -2y-2]]]

= concat[x?;concat[x,concatlnodel1+-2,9); polyaddlz;-211]]

= concat[x?;concat[x;concat(-y;polyadd(z; -2]1]]

= concatlx?;concatlx;concat(-y;polyaddl( )} )1

= concatlx?;concatlx;concat-y;( )11

= x2+x-y

Extensive work has been done on polynomial manipulating algorithms for
efficient storage and fast execution ([Got 76]).

Problem

1. Write an algorithm, polymult, to perform the multiplication of two
polynomials.

2.7 Evaluation of Polynomials

Though you are undoubtedly quite tired of looking at polynomials, there is
at least one more operation which is usefully performed on polynomials. The
operation is evaluation. Given an arbitrary polynomial, and values for any
of the variables which it contains, we would like to compute its value. First
we will assume that the substitutions of values for variables has already been

carried out. Thus we are dealing with polynomials of the form: I%.,p; where
p; is a product of powers of constants. For example:

28434474 5
This could be represented as:
(PLUS (EXPT 2 3)(PLUS (TIMES 3 (EXPT 4 2)) 5))

We have taken this general representation because we have great
expectations of generalizing the resulting algorithm.
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We describe a LISP function, value, which will take such an S-expr
representation and compute its value. Input to zalue will be numerals or lists
beginning with either PLUS, TIMES, or EXPT and followed by two
numerals or other expressions of the same form.

<constexp>:= <constant>

= <sum>

= <prod>

= <expt>
<sum> := (PLUS <constexp> <constexp> )
<prod>  := (TIMES <constexp> <constexp> )
<expt> := (EXPT <constexp> <constexp> )

The value of a numeral is that numeral; to evaluate the other forms of
input we should perform the operation represented. We must therefore
assume that operations of addition, multiplication, and exponentiation exist.
Assume they are named +, %, and T, respectively. What then should be the
value of a representation of a sum? It should be the result of adding the
value of the representations of the two summands or operands. That is, value
is recursive. It should now be clear how to write value:

valuelx] <= [isconstant[x] » x;
issumlx] » +[valuelarg,[x1valuelarg,[x1]);
isprodlx]) » <[valuelarg [x));valuelarg,lx1]);
isexptlx] » Mvaluelarg,[x])valuelarg,[x1]]]

where: isconstant(x] <= number plx]
issumlx] <= eqlfirstlx};PLUS]
isprodlx] <= eqlfirstlx),TIMES)
isexptlx] <= eqlfirstlx};EXPT]

Compare the structure of the evaluator with that of the BNF equations.

Problems

1. Show how to extend walue to handle binary and unary minus.

2. Write an algorithm instantiate which will take two arguments, one
representing a set of variables and values, the other representing a
polynomial. The algorithm is to return a representation of the polynomial
which would result from substituting the values for the variables.

3. We would like to represent expressions like 2+3+4 as (PLUS 2 3 4) rather
than (PLUS (PLUS 2 3)4) or (PLUS 2(PLUS 3 4)); or represent
2:324+5+6 as (PLUS (TIMES 2 3 4) 5 6). Write a new version of value
which can evaluate such n-ary representations of + and .
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More on polynomial evaluation

Though it should be clear that the current value function does perform the
appropriate calculation, it should be equally clear that the class of
expressions which value handles is not particularly powerful. We might wish
to evaluate requests like:

A "What is the value of xxy + 2¢z when x=4, y=2, and z=1?"

Now the function instantiate, requested in problem 2 -above, offers one
solution: make a new copy of the representation of xiy + 2%z with the

variables replaced by their values. ' This would result in a representation of
42 +2x], and this new expression is suitable fare for value. Computationally,
this is a terrible solution. instantiate will go through the structure of the
expression looking for instances of variables, and when located, will replace
them with the appropriate values. value then goes through the structure of
the resulting expression performing the evaluation. We desire a function,

value’, which combines the two processes: the basic structure of value’ is that
of mild-mannered wvalue, but when a variable, say x, is recognized inside

value’ then value’ would look at a table like that expected by mstantzate
find x and return the value associated with the entry for x.

Let’s formalize our intuitions about value’. It will be a function of two
arguments. The first will be a representation of a polynomial; the second will
be a representation of the table of variables and values. You may have
noticed that the original version of value does handle expressions which are
not actually constant polynomials; (2 + 3)«4 for example. Since we will wish
to apply our evaluation functions to more general classes of expressions we
will continue, indeed encourage, this generality. Regardless of the class of
expressions we wish to examine, it is the structure of the table which should
be the first order of business. An appropriate table, tb/, will be a set of
ordered pairs <name,val>, thus for the above example the table
{<x, 4>, <y, 2>, <z, I>} would suffice. Following our dictum of abstraction
and representation-independent programming, we will not worry about the
representational problems of such tables. We will simply assume that "tables”
are instances of an abstract data structure called <table>, and we will only
concern ourselves for the moment with the kinds of operations we need to
perform. We will need two selector functions: name, to select the
variable-component of a table entry; and val, to select the value-component.
A complete discussion of such a data structure would entail discussion of
constructors and recognizers, and perhaps other functions, but for the current

value’, these two functions will suffice.

12We have seen this substitution and simplification process before in
discussing equal on page 24. It is a useful model for computation, but does
not reflect current implementation practice. However, see [Ber 75].



82 Applications 2.7

value* will need a table-function, locate, to locate an appropriate
variable-value entry. The binary function locate will take an argument, x,
representing a variable; and an argument, tbl, representing a table. locate will
match x against the name-part of each element in tbl; if a match is found
then the corresponding val-part is returned. If no match is found then locate
is undefined. ‘

So far, little structure has been imposed on elements of <table>; tables
are either empty or not; but if a table is non-empty then each element is a
pair with recognizable components of name and wval. However, the
specification of algorithms to examine elements of <table> imposes more
structure on our tables. If we were dealing with mathematical functions
rather than algorithms then a side condition to the effect that a table had no
pairs with duplicate first elements would be sufficient (and required).
However, we are dealing with algorithms and therefore must describe a
method for locating elements.

Recursion is the only method we have for specifying locate, and
recursion operates by decomposing a structure. Sets are notorious for their
lack of structure; there is no order to the elements of a set. But if we are to
write a LISP algorithm for locate, that algorithm will have to be recursive on
the "structure” of ¢b/, and so we impose an ordering on the elements of that
table. That is, we will represent tables as sequences. We know how to
represent sequences in LISP: we use lists. ‘

With this introduction, here’s locate: '
locate[x;tbl] <= [eglnamelfirst(tbi);x] - vallfirstlebll);
t - locatelx;restltbi]] ]
The effect of locate is to find the first element of tbl which has a
name-component which matches x. Having found that match, the
corresponding val-part is returned. If there were other matches further along

in the sequence locate would not see them. Other representations of tables
are certainly possible. This representation will be useful in later applications.

And here’s the new more powerful value’:
value’x;thl] <= [isconstantlx] » x;
isvar(x] » locatelx;tbl];
zssum[x] > +[ valuelarg,[x);tbl];
value'larg,lx);tbl]);
isprodlx] » [ value’larg[x];2bl];
value’lar g [x);tbll];
isexptlx] > M valuelarg [x];tbl);
value'larg,[x);tbl]] 1

3The mterpretatxon of tbl as a function implies that locate represents
function application; i.e., locatelx;tbl] is tbi(x). Thls is a very acceptable view
of table lookup.
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Notice that tb! is carried through as an explicit argument to value® even
though it is only accessed when a variable is recognized. Notice too that
much of the structure of value’ is quite repetitious; the lines which handle
sums, products, and exponentiation are identical except for the function
which finally gets applied to the evaluated arguments. That is, the basic
structure of value’ is potentially of broader application than just the simple
class of polynomials. In keeping with our search for generality, let’s pursue

value’ a little further.
What value” says is:

1. The value of a constant is that constant.

2. The value of a variable is the current value associated with that variable
in the table.

3. The value of a function call is the result of applying the function to the

evaluated arguments. It just turns out that the only functions value’
knows about are binary sums, products, and exponentiation.

Let’s clean up value’ a bit.

value'[x;tbl] <= [isconstant[x] ~» x;
isvarlx] - locatelxtbl);
isfun_argslx] » applyl funlx);
eval_argslargs(x];ebl]);

to L]

The changes are in the third branch of the conditional. We have a new
recognizer, isfun_args to recognize function application. We have two new
selector functions; fun selects the representation of the function -- sum,
product, or power in the simple case; args selects the arguments or parameters
to the function -- in this case all functions are binary. We have two new
functions to define: eval_args, which is supposed to evaluate the arguments
finding values for any of the variables; and apply, which is used to perform
the desired operation on the evaluated arguments.

We are still trying to remain as representation-free as possible: thus the

generalization of the algorithm wvalue’, and thus the care in picking
representations for the data structures. We need to make another data
structure decision now; when writing the function eval_args, we will be
giving a recursive algorithm. This algorithm will be recursive on the
structure of the first argument, which is a representation of the arguments to
the function. In contrast to our position when writing the function locate,
there is a natural structure on the arguments to a function: they form a
sequence. That is f[1,2,;3] is typically not the same as f3,;2;1] or f applied to
any other permutation of {1, 2, 3}. Thus writing eval_args as a function,
recursive on the sequence-structure of its first argument, is quite natural
Here is eval_args:
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eval_argslargs;thl] <= [nulllargs] - ();

t > concatl value'[firstlargs);thl];
eval_argslrestlargs);tbl]] ]

Notice that we have written eval_args without any bias toward binary
functions; it will evaluate a sequence of arbitrary length, returning a
sequence representing the evaluated arguments.

There should be no real surprises in apply; it gets the representation of
the function name and the sequence of evaluated arguments and does its job:

applylfn; evargs) <= [issumlfn] - +[ arg,levargs);
’ arg,levargsll;
tsprod[fn] > #[arg [evargs];
argylevargsll;
isexptlfn] » tlarg levargs);

argolevargsll ]

If we should desire to recognize more functions then we need only modify
apply. That would be a satisfactory short-term solution, but we would like a
more general function-definition facility. Such a feature would allow new
functions to be defined during a computation; then if an application of that
function were needed, the walue-function would find that definition and
apply it in a manner analogous to the way the pre-defined functions are
applied. How far away are we from this more desirable super-value? Well

value’ is already well-endowed with a mechanism for locating values; perhaps
we can exploit this judiciously placed code. In what context would we be
interested in locating function definitions? Here’s an example:

B "What is the value of f[4,2;1] when flx;9,2] <= x%y + 2x2?"

If we have a means of recovering the definition of f, then we can reduce the
problem to A of page 81. We will utilize the table-mechanism, and therefore
will use locate to retrieve the definition of the function f. In our prior
applications of Jocate we would find a constant as the associated value. Now,
given the name f, we would expect to find the definition of the function.
The question then, is how do we represent the definition of f? Certainly the
body of the function, x+y + 2xz, is one of the necessary ingredients, but is that
all? Given the expression xxy + 2%z can we successfully compute f[4,2;1]?
Not yet; we need to know the correspondence between the values /, 2, 4 and
the variables, x, y, 2z That information is present -in our notation
flx;9:2) <= ., and is a crucial part of the definition of f. That is, the order of
the varlables appearing after the function name is an integral part of the
definition: fly,;z;x] <= x#y +2+z defines a different function.

~ Since we are now talking about representations of functions, we are
entering the realm of abstract data structures again. We have a reasonable
understanding now of the essentiai components of such a representation.

B
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For our purposes, a function has three parts:

1. A name; f in the current example.
2. A formal parameter list; [x;y;z] here.
3. A body; xxy + 2%z in the example.

We do not need a complete study of representations for functions yet. For our
current discussions we can assume a representation exists, and that we are
supplied with three selectors to retrieve the components mentioned above.

I. name selects the name component from the representation. We have
actually seen name before in the definition locate on page 82.

2. warlist selects the list of variables from the representation. We have
already seen that the natural way to think about this component is as a
sequence. Thus the name varlist.

3. body selects the expression which is the content of the definition.

Given a function represented in the table according to these conventions,
how do we use the information to effect the evaluation of something like

f14;2;1 First value’ will see the representation of f[4;2;1]; it should
recognize this as an instance of function-application at the following line of

value”:
isfun_argslx] > applylfunlx)ieval_argslargslx);tbil]

This should cause an evaluation of the arguments and then pass on the work
to apply.

Clever apply should soon realize that f is not the name of a known
function. It should then extract the definition of f from the table; associate
(or bind) the evaluated arguments (4, 2, 1) with the variables of the
parameter list (x, 9, 2), making a new table with name-value pairs
(<x, 4>, <y, 2>, <z, I>). Now we are back to the setting of problem A of

page 81. We should ask value’ to evaluate the body-component of the
function using the new tbl. This works fine for x, 9, and z; within the
evaluation of the body of f we will find the right bindings for these
variables. But we might also need some information from the original tbl.
The evaluation of the body of f might entail the application of some
function definition present in tbl. For example, the representation of

"what is g[2] where glx] <= x+s[x]; and s[x] <= xxx ?"

Within the body of g we need the definition of s. Therefore, instead of
building a new table we will add the new bindings to the front of the old
table. Since locate begins its search from the front of the table we will be
assured of finding the new bindings; since the old table is still accessible we
are assured of finding any necessary previous bindings.
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We should be able to create a new value’’ now. Looking at the finer
detail of value’ and apply, we can see a few other modifications need to be
made. apply’ will locate the function definition and thus tb! should be
included as a third argument to apply’. That is, inside apply’ we will have:

isfunlfn] > apply’llocatelfn;thl);evargs;thl};

After locate has done its work, this line (above) will invoke apply’ with a

function definition as first argument. We should prepare apply’ for such an
eventuality with the following addition:

isdef(fn] - value'*[bodylfn)newtbllvarlist[fn)evargs;tblll;
What does this incredible line say? It says

"Evaluate the body of the function using a new table
manufactured from the old table by adding the pairings of the
elements of the formal parameter list with the evaluated
arguments.”

It also says we should write newtbl. This LISP function will make a new table
by adding new name-value pairs to an existing table. So we’d better name a
constructor to generate a new name-value pair:

mkent is the constructor to make new entries. It will take two arguments: the
first will be the name, the second will be the value.

Since we have assumed that the structure of tables, variable-lists, and
calling sequences to functions are al/ sequences, we will write newtbl assuming
this representation.

newtbllvars;vals;thl] <= [nulllvars) - tbl; :
t > concatlmkent(first{vars);fi rst[vals]]
newtbl[ restlvars);
rest[vals);

tbl]] ]
And finally here’s the new value’*-apply’ pair:

value [x,;thl] <= [isconstant[x] - x;
isvarlx] > locatelx;tbl);
isfun_argsix] > apply’l funlx];
eval_argslargsix);tbl);
thl] ]
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apply'[fn;evargs;thl) <= lissumlfnl » +[arg,levargs);arg,levargs);
isprodlfn] » slarg [evargs)arg,levargsl;
isexptlfn] » 1larg,levargslargolevargsll;
isfunlfn] - apply'llocatelfn;tbl);evargs;thl);
isdeflfn] - value"*[ bodylfn);
newtbll varlist[fn);
evargs;tbl]] ]

eval_argslargs;thl) <= [nulllargs) > ( );
t - concatlvalue'*[firstlargsl;tbl];
eval_argslrestlargsl;thl]] ]
Let’s go through a complete evaluation of B of page 84. As before, we

will use B as a mapping from expressions to representations. Thus we want
to pursue:

value"(R[[ fl4:2;1] 1; R <f, (lx;9;2] 22y + 242)> 1.

Let us denote the initial symbol table, .‘R[{ <f, [[x;9;2) %y + 252]> 11 as init.
This will simplify many of the expressions. Notice that our representation of
f in init has associated the variable list [x;y;z] with the body of the function.
Thus locate, operating on this table with the name f, will return a
representation of [[x;9,2] x5y + 2x2].

The recognizer isfun_args should be satisfied and thus the
computation should reduce to:

apply'l funlR fl4;2:00 T
eval_argslargsIRIL f14,2;1) Msinie;
init]
or:  applyl R £ 1 seval_argst R 14,201 1; imi); imie 1
eval_args will build a sequence of the evaluated arguments: (4,2, 1), resulting
in:
applyl R £ 1 54,2, 1) ;imit ]
apply’ should decide that f satisfies isfun giving:
apply’l locate[m[[ f 1, init 3 (4,2, 1) ; init )

locate will retrieve the definition, and

apply'l R [[x;9,2] Xy + 242] 1:4,2,0;init]
should be the result.
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Next, apply® should realize that !R[[ ([x;9,2] x5y + 2%2] ]] satisfies isdef
and thus:

value ody IR [[x;p;2] xsy + 2%2) TJ;
newtbl] varlisttRI [[x9;2) xxy + 2%2) I

(4,2,1);
init]]

or: value'[ mﬂ: [xsy + 252] ]] ;newtbl[ 93[[ [x;9;2] ]] (4.2,1);init]]

after body and wvarlist are finished.

R tx9,20 Tis RL =« T, RL 9 1, BRI 2 1), and therefore the computation
of newtb! will build a new table with entries for x,y, and z on the front:

7

R <x, 4, <y, 2>, <z, I>, <f, [[x;9;2] xxy + 2%2)> 1
Thus we call value’ with:

value M| [xxy + 242] 1;
RIL{ <x, 45, <9, 25, <z, >, <f, [[x;9;2] vy + 2223 3 ]|]

Now we’re back at problem A of page 81.

Time to take stock

We have written a reasonably sophisticated algorithm here; we should
examine the results quite carefully. Notice that we have written the
algorithm with almost no concern for representation. We assume that
representations are available for such varied things as arithmetic expressions,
tables, calls on functions, and even function definitions. Very seldom did we
commit ourselves to anything close to a concrete representation, and then only
with great reluctance. It was with some sadness that we imposed a sequencing
on elements of tables.. Variable lists and calling sequences were not as
traumatic; we claimed their natural structure was a sequence. As always, if we
wish to run these programs on a machine we must supply some
representations, but even then the representations will only interface with our
algorithms at the constructors, selectors and recognizers.

We have made some more serious representational decisions in the
structure of the algorithm. We have encoded a version of the CBV-scheme
of page 16. We have seen what kinds of difficulties that can cause. We will
spend a large amount of time in Chapter 3 discussing the problems of

evaluation. !4

A second decision was implied in our handling of function
definitions; namely we bound the function name to a data structure
representing the formal parameter list and the function body. This
representation gives the expected result in most cases, but involves one of the
more problematic areas of programming languages: how do you find the
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Finally, our decisions on the data structures and the algorithms were
not made independently. For example, there is strong interaction between our
representation of tables and the algorithms, locate and newtbl which
manipulate those tables. We should ask how much of this interaction is
inherent and how much is gratuitous. For example, we have remarked that
our representation can contain pairs with duplicate first elements. It is the
responsibility of locate to see that we find the expected pair. If we wrote
locate to search from right to left, we could get the wrong pair. We could
write newtb! to be more selective; it could manufacture a table without such
duplications:

newtbl[vars;vals;tbl] <= [nullltbl] »[nulllvars) » ();

t - concatlmkent(firstlvars);firstlvals]l;
newtbl[ restlvars);
restlvals);
( %
member{namelfirsttbi]}vars] » newtbllvars;
vals;
rest(tbl]];

t - concarlfirse(tbl);
newtbllvars;vals;rest(tbl1]] ]

This version of newtbl requires much more computation than the alternative.
Its advantage is that the "set"-ness of symbol tables is maintained. A
dlsadvantage is that the rebinding process implies a rebuilding of the table.
The "set" property is one which we need not depend on for our algorithms;
in fact, we will frequently expect that a table is represented as a sequence
with the previous values of variables found further along in the sequence.

The main point of this example however is to impress on you the
importance of writing at a sufficiently high level of abstraction. We have
produced a non-trivial algorithm which is clear and concise. If it were
desirable to have this algorithm running on a machine we could code it and
its associated data structure representations in a very short time. In a very
short time we will be able to run this algorithm on a LISP machine.

bindings of variables which do not appear in the current variable list? For
example, function names belong in this category. Such variables are called
non-local variables. The scheme proposed in this section finds the binding
which is current when the function was applied. This corresponds to the
“latest active" binding made for the variable in question. Some programming
languages, in particular LISP, follow this strategy; some other languages
follow Algol 60 and use the binding which was current when the function
was defined, and some languages allow both. The next two chapters begin a
study of binding strategies.
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Problem

1. On page 81 we mentioned the possibility of writing the new value as’'a
combination of old value and instantiate. We rejected that scheme. On
‘page .85 we had to save an old table since we might need some previously
defined functions. We might not have had this difficulty if we had
substituted directly. Write a substitution-type value and use it to evaluate
the g[2] example. :
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2.8 The Great Progenitors

The following problems are written (intentionally) with a great deal of the
representation built into them.

1. The Great Mother of All Functions (tgmoaf)

tgmoaflx]) <= [isindiv[x] » [eglx,T] - ¢;

eqlx;NIL] > f;

t > TRYAGAINNEXTW EEK]);
eqlfirstlx;QUOTE] » secondlx);
eqlfirstlx);CAR] > carltgmoaflsecond(x]]);
eqlfirst{x};CDR] > cdrltgmoaflsecondlx]1];
eqlfirstlx);CONS) » consltgmoaflsecond(x]];

tgmoaflthirdlx]1];

eqlfirstlx); ATOM] - atomltgmoaflsecond[x]]];
eqlfirstlx};EQ) - eqltgmoaflsecondlx]);t gmoaflthirdlx]l];

t - TRYAGAINNEXTWEEK]
Evaluate the following:

a. tgmoaf(T]

b. tgmoaflA]

c. tgmoafl(CAR (QUOTE (A . B)))]

d. tgmoaf{(CDR (QUOTE (A B))))

e. tgmoafl(EQ (CAR (QUOTE (A . B))) (QUOTE A))]
f. tgmoafl(EQ (CAR (QUOTE (A . B))) A)]

g. tgmoafl(ATOM (CAR (QUOTE (4 B))))]

‘2. The Great Mother of All Functions Revisited (tgmoafr)

tgmoafrlx] <=[lisindivx] - [eqlx,T] 5 t;

eqlx;NIL] » §;

t > TRYAGAINNEXTW EEK]);
eqlfirstx);QUOT E] » second[x);
eqlfirstlx);CAR) - carltgmoafrisecond(x]]);
eqlfirst[x};CDR] - cdrltgmoafrlsecondlx]];
eqlfirstix;CONS] - consltgmoafrisecondlx]);

tgmoafrithird(x]]);
eqlfirstlx;ATOM] - atom[tgmoafr(secondlx]]);
eqlfirstlx);EQ] - eqltgmoafrisecond[x]);tgmoafrithirdlx1l];
eqlfirstlx);,COND] - evcondlrest(x]];

t - TRYAGAINNEXTWEEK]
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evcond[x] <= [tgmoafrifirstifirstlx]]] - tgmoafrisecondlfirst[x1]);

t - evcondlrest(x]] ]
Evaluate the following:

a. tgmoafr[T]

b. tgmoafrl(CDR (QUOTE (4 B)))]

c. tgmoafr[{(EQ (CAR (QUOTE (A . B))) (QUOTE 4))] ,

d. tgmoafrl(COND (EQ (CAR (QUOTE (A . B))) (QUOTE A))
(QUOTE F00)))]

5. tgmoafrl(COND ((ATOM (QUOTE (4))) (QUOTE F00)
(T (QUOTE BAZ)))]

Coming soon: Son of the Great Progenitor !!

2.9 Another Respite

2.8

We have again reached a point where a certain amount of reflection would
be beneficial. Though this is not a programming manual we would be
remiss if we did not analyze the programming style which we have been

advocating.

I. Write the algorithm in an abstract setting; do not muddle the abstract

algorithm with the chosen representation. If you follow this dictum your
LISP programs will never use car, cdr, cons, and atom, and rarely use eq.
All instances of these LISP primitives will be relegated to small
subfunctions which manipulate representations.

2. When writing the abstract program, do not be afraid to cast off dlfflcult

parts of the implementation to subfunctions. Remember that if you have
trouble keeping the details in mind when writing the program, then the
confusion involved in reading the program at some later time will be
overwhelming. Once you have convinced yourself of the correctness of
the current composition, then worry about the construction of the
subfunctions. Seldom does the process of composing a program flow so
gently from top-level to specific representation. Only the toy programs are
easy; the construction of the practical program will be confusing, and will
require much rethinking. But bring as much structure as you can to the
process. '

3. From the other side of the question, don’t be afraid to look at specific

implementations, or specific data-structure representations before you
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begin to write. There is something quite comforting about a “real” data

structure. Essentially data structures are static objects, '® while programs
are dynamic ob jects. A close look at a possible representation may get you
a starting point and as you write the program a distinction will emerge
between a dependence on the specific representation and the use of
properties of an abstract data structure.

Perhaps the more practical reader is overcome by the inefficiencies
inherent in these proposals. Two answers: first, “inefficiency” is a very
ethereal concept. Like "structured programming”, it is difficult to define but
recognizable when it occurs. Hardware development has enabled us to
efficiently execute many operations which were quite inefficient on earlier
machines. But even at a more topical level, much of what seems inefficient
can now be straightened out by a compiler (see Chapter 6). Frequently,
compilers can do very clever optimizations to generate efficient code. It is
better to leave the cleverness to the compiler, and the clarity to the
programmer.

The current problems in programming are not those of efficiency; they
are problems of correctness. That is, we have a better grasp of techniques for
improving efficiency of programs than we do of techniques for guiding the
construction of programs which work. How do you write a program which
works? Until practical tools are developed for proving correctness it is up to
the programmer to certify his programs. Any methodology which can aid the
programmer will be most weicome. Clearly, the closer you can write the
program to your intuition, the less chance there is for error. This was one of
the reasons for developing high-level languages. The original motivation for
such languages was a convenient notation for expressing numerical problems.
With data structures, we are able to formalize a broader range of domains,
expressing our ideas as data structure manipulations rather than as
numerical relationships. '

There are at least two kinds of errors which are prevalent in data
structure programming: errors of omission -- misunderstanding of the basic
algorithm; and errors of commission -- errors due to misapplied cleverness in
attempting to be efficient.

The occurrences of errors of omission can be minimized by presenting
the user with programming constructs which are close to the informal
algorithm. Such constructs include control structures, data structures, and
representations for operations. ‘

Errors of commission comprise the great majority of the present day"
headaches. It is here that programming style can be beneficial: keep the
representation of the data structures away from the description of the
algorithm; write concise abstract programs, passing off responsibilities to

15At least within the program presently being constructed.
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subfunctions. Whenever a definition of "structured programming” is arrived
at, this advice on programming style will no doubt be included.

The realization that programs will have errors or require modification
raises some difficulties for highly structured languages. A realistic debugging
system must allow program modification and data structure modification; if
the language system imposes rigid restrictions on such activities the
programmer’s productivity will suffer. Most language systems have been
designed for the execution of programs. LISP systems put a higher premium
on debugging, perhaps because of the nature of Artificial Intelligence
research: the original motivation for LISP. LISP programming systems have
a high degree of interactiveness; the result is an effective programming tool.
It is a tool with sharp edges; one can either build mediocre tools which can’t
hurt anyone, or can build a sharp tool and expect that it be applied by
knowledgeable users. LISP programmers belong in the second classification.
Qur discussions of LISP programming style should develop some of the
requisite knowledge. ‘

Before closing this discussion of LISP programming style, we can’t help
but note that in the preceding section, The Great Progenitors have
completely ignored our good advice. This would be a good time for the
interested reader to abstract the tgmoaf algorithm from the particular data
representation. This detective work will be most rewarding.

Problems

1. Write an abstract version of tgmoaf.

2.10 Proving Properties of Programs

People are becoming increasingly aware of the importance of giving
convincing arguments for such concepts as the correctness or equivalence of

programs. These are both very difficult enterprises. '® We will sketch a proof
of a simple property of two programs and leave others as problems for the
interested reader. How do you go about proving properties of programs? In
Section 1.9 we noted certain benefits of defining sets using inductive
definitions. There was a natural way of thinking about the construction of
an algorithm over that set. We have exploited that observation in our study
of LISP programming. We need to recall the observation that inductive style
proofs (see PRF on page 43) are valid forms of reasoning over such domains.
Since we in fact defined our data structure domains in an inductive manner,

18Question of "correctness" reduce to "equivalence” notions in a broad
sense, relating perhaps a declarative specification to a procedural
specification.
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it seems natural to look for inductive arguments when proving properties of
programs. This is indeed what we do; we perform induction on the structure

of the elements in the data domain. :
For example, given the definition of append given on page 48 and the

definition of reverse given on page 49,
appendlx;y] <= [nulllx] > y; t > concatlfirstlx);appendlrest(x];y]]]

reverselx] <= [nulllx] - ( );
t - appendlreverselrestlx]];concatlfirstlx];( )1

we wish to show that:
appendlreverselylreverselx]] = reverselappendlx,yl]

for any lists, ¥, and . The induction will be on the structure of x.

Basis: x is ( ).
We must thus show: appendlreversely)( )] = reverselappendl( );91]
But: reverselappendl( );911 = reversely] by the def. of append
We now establish the stronger result: appendlz( )] =12 7
Basis: zis ( ).
Show appendl( );( )1 = (). Easy.

Induction step: Assume the lemma for lists, 2, of length n;
Prove: appendlconcatlx;2);( )] = concatlx;z]
Since concat(x;z] is not ( ), then applying the definition of append
says we must prove: concatlx;append(z;( )11 = concatlx,z]
But our induction hypothesis is applicable since z is shorter than
concatlx;z]).
Our result follows.
So the Basis for our main result is established.

7In the following proof several intermediate steps have been omitted.
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Induction step: Assume the result for lists, z, of length n;

Prove: o

(1) appendlreversely);reverselconcatlx;2]]]

= reverselappendlconcatlx,z;9]]
Applying the definition of reverse to the LHS of (1) ylelds
(2) append[reverse[y],aﬁpend[reverse[z] -concatlx;( )11]
Applying the definition of append to the RHS of (1) yields:
(3)  reverselconcatlx;appendlz;yll]
Applying the definition of reverse to (3) yields:
(4) appendlreverselappendlz;yllconcatlx;( )11
Using our induction hypothesis on (4) gives:
(5) appendlappendlreverselyl;reverselz]l;concatlx,( )1]
At this point we must establish that  (2) = (5).
But this is just an instance of the associativity of append:
appendlx;appendly;zll = appendlappendlx;y);z] ,
The structure of the proof is analogous to proofs by mathematical

induction in elementary number theory. The ability to perform such proofs is
a direct consequence of our careful definition of data structures.
Examination of the proof will show that there is a close relationship between
what we are mductmg on in the proof and what we are recurring on during
the evaluation of the expressions. A program written by Boyer and Moore
has been reasonably successful in generating proofs like the above by

exploiting this relationship. See [Boy 75] or [Moor 75b]. '8

Problems

1. Prove the associativity of append.

2. Analysis of the above proof shows frequent use of other results for LISP
functions. Fill in the details. Investigate the possibility of formalizing this
proof, showing what axioms are needed.

3. Show the equivalence of fact (page 44) and fact| (page 47).
4. Show the equivalence of length and length, (page 47).
5. Using the definition of reverse, given on page 48, prove:

reverselreverselx]] = x

18T here is also a formal system based on a typed A-calculus which has
had  significant  success in  proving properies of  programs.
[LCF 72], [New 75]. More recently [Car 76] has developed a formal system
including rules of inference, a proof checker, and a viable programming
language which is based on a "typed LISP". :



CHAPTER 3

Evaluation of LISP Expressions

".. I always worked with programming languages because it seemed
to me that until you could understand those, you really couldn’t
understand computers. Understanding them doesn’t really mean
only being able to use them. A lot of people can use them without
understanding them. .."

Christopher Strachey[Str 74]

3.1 Introduction

In the previous chapters of this text we have talked about some of the
schemes for evaluation. We have done so rather informally for LISP; we
have been more precise about evaluation of simple arithmetic expressions.
Section 2.7 discussed that in some detail. We shall now look more closely at
the informal process which we have been using in the evaluation of LISP
expressions. This is motivated by at least two desires.

We want to run our LISP programs on a machine. To do so requires
the implementation of a translator to turn LISP programs into instructions
which can be carried out by a conventional machine. We will be interested
in the structure of such implementations. Any implementation of LISP must

a7
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be grounded on a precise, and clear understanding of what LISP-evaluation
entails. Indeed, a deep understanding of evaluation is a prerequisite for

implementation of any language. ! |
Our second reason for pursuing evaluation involves the question of
programming language specification. At a practical level we want a clean,

machine independent,? “self-evident” language specification, so that the
agony involved in implementing the design can be minimized. At a more
abstract level, we should try to understand just what is specified when we
design a language. Are we specifying a single machine, a class of machines,
or a class of mathematical functions? Just what is a programming language?
The syntactic specification of languages is reasonably well established, but
syntax is only the tip of the iceberg. Our study of LISP will address itself to
the deeper problems of semantics, or meaning, of languages.

Before we address the direct question of LISP evaluation, we should
perhaps wonder aloud about the efficacy of studying languages in the detail
which we are proposing. As computer scientists we should be curious about
the structure of programming languages because we must understand our
tools -- our programming languages.” People who simply wish to wuse
computers as tools need not care about the structure of languages. Indeed
they usually couldn’t care less about the inner workings of the language; they
only want languages in which they can state their problems in a reasonably
natural manner. They want their programs to run and get results. They are
interested in the output and seldom are interested in the detailed process of
computation. For a simple analogy, consider the field of mathematics. The
practicing mathematician uses his tools -- proofs -- in a similar manner to the
person interested in computer applications. He seldom needs to examine
questions like "what is a proof?” He does not analyze his tools. However not
SO many years ago such questions were raised, and for good reason. Some
common forms of reasoning were shown to lead to contradlctlons unless care
was taken. ‘

Our position is more like that of the foundatlons of mathematics; there
the tools of mathematics are studied and analyzed.. Mathematics has
flourished because of it. Though our expectations are not quite . that
presumptuous, we do expect that programming language design cannot help
but be improved.

Our study of language implementation wm proceed from the abstract to

'The question of evaluation cannot be sidestepped by basing a
language on a compiler. A compiler must produce code which when executed
simulates the evaluation process.

2By "machine independent” we mean independent of any specific
hardware implementation. A programming language, almost by definition, is
a’ machine specification. What we would hke is a "sufficiently high level"
machme : :
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the concrete. Each level will intimately involve the study of data structures.
The next two chapters will be the most abstract, building a precise high-level
description of an evaluation scheme for LISP. In fact, the discussion is much
more general than that of LISP; the text addresses itself to problem areas in
the design of any reasonably sophisticated language. In subsequent chapters
we probe beneath the surface of this high-level description and discuss
common ways of implementing the necessary data structures and control
structures. In the process we will not only understand LISP but will develop
a firm understanding of virtually any other language.

But how can we begin to understand LISP evaluation? In Section 2.7
we made a beginning, giving an algorithm for a subset of the computations
expressible in LISP. This subset covered evaluation of some simple
arithmetic expressions. From our earliest grade school days we have had to
evaluate simple arithmetic expressions. Later, in algebra we managed to cope
with expressions involving function application. Most of us survived the
experience. We should now try to understand the processes we used in these
simple arithmetic cases, doing our examination at the most mechanical level.
The basic intent of the algorithm is fixed: evaluate the expression; but
within that general constraint we often have several distinct alternatives.
Those places.at which we have choices should be remembered. We will make
reasonable choices so that the process becomes deterministic and then
proceed. Later, we should reflect on what effect our choices had on the
resulting scheme. For example, recall the discussion of the representation of
symbol tables on page 89. We had several options, but picked one which
seemed to satisfy our intuitions and was reasonably efficient. But we should
sub ject that decision to close scrutiny: does it really fulfill our expectations?
In absence of absolute standards, these questions are usually answered by
examining the behavior of the algorithm.

The first thing to note in reflecting on simple arithmetic examples is
that nothing is really said about the process of evaluation. When asked to
evaluate (2x3)+(5%6) we never specified which summand was to be
evaluated first. Indeed it didn’t matter here. 6 + (5%6) or (2%3) + 30 both
yield 36. Does it ever matter? Sums and products are examples of arithmetic
operations; can we always leave the order of evaluation unspecified for
arithmetic operations?. What about evaluation of arbitrary functional
expressions? If the order doesn’t matter, then the specification of the
evaluation process becomes much simpler. If it does matter then we must
know why and where.

We have seen that the order of evaluation can make a difference in
LISP. On page 15 we saw that CBV, LISP’s computational interpretation of
function application, requires some care. On page 21 we saw that order of
evaluation in conditional expressions can make a difference. Since we are
using CBV we must make some decision regarding the order of evaluation of
the arguments to a function call, say flz,,t5; ..;t,). We will assume that we
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will evaluate the arguments from left to right. This second decision about
the order of evaluation can also effect the computation.
Consider the example due to J. Morris:

flxyl<=[x =02 0;t > flx-1;fly-2,x]0]

Evaluation of f[2;1] will terminate if we always evaluate the outermost
occurrence of f. Thus:

f12;1] = fUf-0;21] = flOfUA1-1;23-2;10) = 0

However if we evaluate the innermost occurrences ° first, the computation
will not terminate:

f12:1) = fILf-1;20) = fUAI-2,£10,-10) = flLA(-2,01) = ...
The choice of evaluation schemes has far reaching consequences. The
evaluation scheme, CBV, which we chose is called call-by-value. It is called
applicative order evaluation or inside-out style of evaluation, meaning that
we evaluate the subexpressions before evaluating the main expression.
Alternative proposals exist; call-by-name evaliiation, also called normal order
evaluation, is another common scheme. We introduced this outside-in scheme
on page 16 as CBN. From an implementation perspective, call-by-value is
favored; these issues will be discussed soon. However those advantages must
be weighed against the knowledge that call-by-value may lead to
non-terminating computations when call-by-name would terminate. 4
Informally, call-by-value says: evaluate the arguments to a function
before you apply the function definition to the arguments. Let’s look at a
simple arithmetic example. Let flx;5] be x% +y and consider f[3+4;2¢2]
Then call-by-value says evaluate the arguments, getting 7 and 4; associate
those values with the formal parameters of f (i.e. 7 with x and 4 with y) and

then evaluate the body of f resulting in 72 + 4 = 53. This is the scheme we
captured in Section 2.7.

Call-by-name says pass the unevaluated actual parameters to the
function, giving (3+4)? + 2%2. This expression will simplify to 53. In
general, evaluation can be described as “substitution followed by
simplification”; the different evaluation schemes involve different choices
about the order in which those operations are performed. We will say more

3The notions of "innermost” and "outermost” evaluation need to be
slightly embellished for multiple-argument applications. If the chosen
application has several arguments, then we must specify an order for their
evaluation. Thus terms like "leftmost-outermost” and "rightmost innermost”
occur. For example, the LISP scheme is an instance of "leftmost-innermost”
evaluation.

“There are also examples where call-by- value will terminate but
call-by-name will not. See page 227.
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about call-by-name and other styles of evaluation in Section 3.13 and
Section 4.9. Most of this chapter will be restricted to call-by-value.

If you look at the structure of value’” and apply’ beginning on page 86
you will see that they encode a call-by-value strategy and have the following
interpretation:

1. If the expression is a constant then the value of the expression is that

constant. (The value of 3 is 3).°

2. If the expression is a variable then see what the current value associated
with that variable is. Within the evaluation of, say, f[3,4] where
flxy) <= x2 9 the current value of the variable x is 3.

3. The only other kind of arithmetic expression that we can have is a
function name followed by arguments, for example f{3;4]. In this case we
first evaluate the arguments ® and then apply the definition of the
function to those evaluated arguments. When we apply the function
definition to the evaluated arguments we associate the formal parameters
of the definition with the values of the actual parameters. This process
of associating parameters is called binding and simulates some form of
substitution. We then evaluate the body of the function using this new
environment. Notice that we do not explicitly substitute the values for

~ the variables which appear in an expression. We simulate substitutions
by table lookup.

We want to apply this treatment of evaluation to LISP expressions. If
the LISP expression is a constant, then the value of the expression is that
constant. The constants of LISP are the S-exprs. Thus the value of (4. B)
is (A . B), just like the value of 3 is 3. Variables and functional applications
appear in LISP and are handled similarly to 2 and 3 above. The additional
artifact of LISP is the conditional expression. But its evaluation can also be
precisely specified. We did so on page 20.

In more specific detail, here is some of the structure of the LISP
evaluation mechanism:

1. If the expression to be evaluated is a constant then the value is that
constant.

2. If the expression is a variable find its value in the current environment.

3. If the expression is a conditional expression then it is of the form
[p; » ey; p2 = € .. ;pn - €,). Evaluate it using the semantics defined on

page 20.

SWe are ignoring the distinction between the numeral 3 and the
number 3.
®Here we are using the evaluation process recursively.
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4. If the expression is of the form: flt;tp; ... ;t,] then:
a. Evaluate the arguments ¢y, ¢y, ..., t, from left to right.

b. Find the definition of the function, f. :

c. Associate the evaluated arguments w1th the formal parameters in
the function definition. :

d. Evaluate the body of the function, while remembermg the values
“of the variables.

We saw in (Section 2.7) that a simple kind of anthmetlc evaluation can
be transcribed into a recursive LISP algorithm. That algorithm operates on
a representation of the expression and produces the value. Most of our work
in that example was done without giving explicit details of the
representation. We had previously given a detailed representation in
Section 2.3.

We have demonstrated an informal, but reasonably precise, evaluauon
scheme for LISP; our discussion is ready for more formal development. It
should be clear that we could write a LISP functioh representing the
evaluation process provided that we can find a representation for LISP

expressions as S-expressions. This mapping, R, of LISP expressions to
S- -€Xprs is our first order of business. We will accomplish this mapping by
using an extension of the scheme introduced in Section 2.3.

The rationale for mapping LISP expressions onto S-exprs and writing
a LISP function to act as an evaluator may seem overly opaque, but the
mapping is no more obscure than that in the polynomial evaluation or
differentiation examples. It is just' another instance of the diagram of
page 56, only now we are applying the process to LISP itself. Once the
representation is given we will produce a LISP algorithm which describes the
evaluation process used in LISP. The effect is to force us to make precise
exactly what is meant by LISP evaluation. This precision will have many
important ramifications. The first dividend is an abstract, compact, and hlgh
level description of a LISP machine.
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In terms of the diagrams on page 56 we have:

LISP evaluation => LISP evaluation algorithm
Call-by-value eval
LISP evaluation
R 4] interpret this output
as answer A

expression => Representation

car[(A . B)] R carl(4. B

The diagram is almost circular. We evaluate an evaluation algorithm named
eval. We break the circle by supplying a lower-level implementation of the
original evaluator. That will be the subject of Chapter 5 and Chapter 6.
With that, our diagram reduces to:

LISP expression => => Representation

carl(A . B)] R carl(4 . )]
H ‘
LISP evaluation
eval
W
Representation of answer

RIL4]

This picture reflects two points: we should pick a representation such that the
reinterpretation of the answer is easy. We should also pick a representation
such that the representation of the expression is easy. If those two conditions
are satisfied, then we might as well write our programs in the representation
and do the input and output transformations ourselves With this in mind
we can simplify further to:

!R[[car[(A B)]II =a LISP evaluation algorlthm > !R[[A]]

This last diagram reflects the typical LISP programming language. We
program using the data structure representation.

We've already seen the evaluation of representations of LISP
expressions. The great progenitor of all functions is an evaluation
algorithm for the LISP primitive functions and predicates, car, cdr, cons, atom
and eq when restricted to functional composition and constant arguments.
The representation used there was a list representation, and exemplifies a
notation which we will develop further.

In the next section we will give a specific mapping of LISP expressions
onto lists and S-exprs. But remember that we should attempt to keep the
knowledge of the representation out of the structure of the algorithm. Let’s
stop for a description of the representation and some examples of translating
LISP functions into that representation.
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3.2 S-expr Translation of LISP Expressions

We will go through the list of LISP constructs, describing the effect of the

representational map, R, and give a few examples applying R. The first
class of LISP objects we represent are the numerical constants. We will
represent numerals just as numerals, e.g.:

R <numeral> ]| = <numeral>

RL21-2

 Other simple components of LISP syntax include the identifiers used as
variable names and function names; and of course the LISP atoms and
S-exprs themselves. We want to represent identifiers and S-exprs as
S-expressions. The first request is understandable, but perhaps the second
request seems vacuous: LISP S- exprs are S-exprs. Both  requests are

justifiable as we shall now see.
In the evaluator, identifiers are used as vanables therefore we might

represent a variable t as:
R - w4ar vy

For example x could be represented as (VAR X).

Every LISP expression must have a representation; and the mapping
function must be such that we can recover the original object from its
representation. From (VAR X) we can tell that it is a representation of the
variable x. Now consider the representation of the non-numerical LISP
constant: atoms and S-exprs. Since (VAR X) is a LISP constant, it must have
a representation under our mapping. We cannot represent the expression as
itself since that would violate our inverse mapping property. Following our

discussion of variable representation, we could represent a constant & as:
R al - (cONST a)

This mapping will solve the problems; we can

map the list (VAR X) to (CONST (VAR X))

R[] = (var x)
RI[x] =(consT x) 7
When this maping is extended to represent all LISP expressions the
resulting expressions become very complex. Since we wish to use the mapped

expressions as the programming language, human engineering considerations
beg for a simplification. Therefore we use the following map: -

"To be consistent, we should represent numerals in this format too.
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R[x] - x
RIx1 - (quoTE x)

That is, we will translate identifiers to their upper-case counterpart.

Thus: R[[ <identifier> || = <literal atom>
Examples: R« 1-x

Rlp2 J=r2

R car [| = c4R

The mapping for LISP constants is:
!Rﬂ:<sexpr> 1- (QUOTE <sexpr>)

For example: R x 1 - (QUOTE x)
Rl(4.B) ] = (QUOTE (4. B))

R quoTE 1 = (QUOTE QUOTE)
We must extend the mapping to the other constitutients of the

language. We must map applicative expressions of the form fle; ; .. ;e ]
onto S-exprs. Following the style of our initial mapping, we might map flx]
onto something like (APP (VAR F) (VAR X)) or (APP (FUN F) (VAR X)),
signifying that the list represents an applicative expression. However this
leads to cumbersome expressions. We have seen one other mapping for
functions. in prefix form in Section 2.3. We will use that mapping, called

Cambridge Polish, 8 here. That is:
 Rlfteesoied 1= (R TRL e IR0 e, TR0 6, 1)
Examples: R carlx) T = RLcar TR[x 1) = (c4r x)

RIcarix] ] = RLcer JRIX 1) = (CAR (QUOTE X))
R consledri(4 . B)x) 1| = (CONS (CDR (QUOTE (4. B))) X)

%The name, Cambridge Polish, is derived from two sources:
Cambridge, since M.LT. is in Cambridge Massachusetts, and McCarthy was
at M.LT. while developing his ideas; Polish, since the representation is a
dialect of a notation developed by a school of Polish logicians.
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The R-mapping must also handle conditional expressions. A
conditional is represented as a list whose first element is COND and whose

next n elements are representations of the p;-¢; pairs. The m-map of such
pairs is a list of the R-maps of the two elements:
ml]:[p, > 1 v iPn 2 €n) ]] = (COND (!RI]: 3 ]]
mﬂ: € ]] )

@R[ 5, 1R ¢, I
An example:
ml[[azom[x] -1; ¢lyl » X1 ] = (COND ((ATOM X) 1)
((QY)(QUOTE X)))

Notice that (COND .. ) and (QUOTE .. ) look like translations of function
applications of the form condl .. 1 and quotel .. ]. However since we expect
application to be performed using call-by-value, we must handle these

constructs in a special manner. Indeed, quotela] stands for R[[a ] Similarly
the "arguments” to cond are not to be interpreted as in function applications;
for example, COND ((ATOM X) 1)....) does not represent
condl atom[x][1]; .. .

Finally, the translations of the truth values t and f will be T and NIL,
respectively.

Rt =71

RIfD = NIL
You might have noticed that these last two applications of the chosen
R-mapping have the potential to cause trouble. They will spoil the 1-1
property of

R - T
RLnit]l = NIL

The usual way to escape from this difficulty is to outlaw t and nil as LISP
variables. ® T

Perhaps our concern for the: m-mapping’s properties appears
heavy-handed where a simple solution seems apparent: t is t and ¢ is #; when

we want the truth value we write t and when we want the variable we write
t. The answer is that when we write programs for a machine version of

%n LISP 1.5 T and F were used as the representations of t and f; the
atoms T and F were (permanently) bound to values *T% and N/L. Note too,
that out initial mapping could solve the problem by mapping ¢ to (VAR T)

and mapping t to (BOOL T).
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LISP, we will be writing the R-image, rather than the more traditional
syntax. Thus to ask a LISP machine to evaluate car[(4 . B)] we present it
with (CAR (QUOTE (A . B))). What this means is that we are presenting

our programs to the machine as data structures of the language. '° It would
be like expressing programs in Fortran or Algol as arrays of integers; that is,
the data structures of those languages. We will explore the implications of
this approach to programming in later sections.

In essence, then, there are two LISP’s: there is the algorithmic language
and there is the programming language. The programming language is a
data structure representation of the algorithmic language. The algorithmic
language is called the meta-language or M-expr LISP, and for historical
purposes, the programming language is called S-expr LISP.

Review the tgm’s (Section 2.8) now that you understand that they are
evaluators for simple subsets of LISP expressions; discover what LISP
expressions were encoded in arguments to the tgm’s and verify the answers
you obtained earlier. Note that the only atoms which the great mothers
recognize are T and NIL. Any other atoms elicit an error message. What do

other atoms represent? Numerals are atoms and are the R-maps of numerals.
We could extend ¢gmoaf to handle this case. Atoms are also translations of
variables and function names. So one task is to include a mechanism in our
LISP evaluator to handle evaluation of variables and function names. We
have already seen the necessary mechanism in Section 2.7 where we studied
tables as abstract data stuctures. The other piece of LISP which did not
appear in the evaluator for polynomials was conditional expressnons
Conditional expressions were handled in tgmoafr. The "progenitors” did not
handle variable references, however. In preparation for that work we
reexamine the issues of symbol tables.

3.3 Symbol Tables

One distinguishing feature of computer science is the ubiquity of devices to
store and recover information. A notation which addresses itself to computer
science must ‘treat this aspect. In hardware oriented languages and some
high level programming languages we find the notion of “cell” or "location”
and find operations to explicitly deposit and examine information in those
cells. Our LISP subset has no such explict features; it relies on the
implementation of binding and variable evaluation to perform similar
notions. As part of our examination of evaluation we wish to expose these
details to close scrutiny and understand how binding and variable evaluation
can be mechanized. The most common notion used to implement these

19Compare this with the technique of Godel numbering in formal logic
[(Men 64].
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operations is the symbol table. '! This is the device we used informally in
Section 2.7; we will review some of that discussion here.

In its abstract form, a symbol table is a set of ordered pairs of ob jects;
one of the elements of each pair is a name; the other is a value associated
with that name. This means that symbol tables can be characterized as
relations or perhaps even as functions. This latter characterization is indeed
viable. On page 89 we showed that a table could be constructed and
maintained in a manner preserving functionality. As an abstract operation,
finding an element in a symbol table is also quite simple: given a set of
ordered pairs and a name, find a pair whose first element is the same as the
given name. This operation can be described as function application where
the function being applied is the table and the argument is the name
component. That is:  locate[x;thl] = tbi(x).

The maintenance of symbol tables as sets was a bit too abstract; the
level of abstraction we implemented viewed a symbol table as a sequence of
pairs, each pair representing a variable and its corresponding value. The
table manipulating algorithms, given in Section 2. 7, depended heavily on the
implied sequencing of call-by-value and recursion. Since this was consistent
with the explicit sequencing used in adding elements to the table, we
achieved the desired effect. We found the expected bindings, even though
there may have been other candidates in the tables. In the remaining sections
of this chapter we will utilize more features of this interplay between
representation of data and calling style of algorithm. Symbol tables are just
one manifestation of this phenomenon. )

Symbol tables are also known .as association lists or a-lists; thus assoc is
the traditional name of a LISP function to search a symbol table. More
recently symbol tables have been called environments; thus we frequently
will use the identifer env as a variable which is an environment. The binary
function assoc expects a name and a symbol table as arguments. It will
examine the table from left to right, looking for the first pair whose
name-component matches the given name. If a pair is found, then that pair
is returned; if no such pair is found, the result is undefined. We will need to
designate a selector, name, to locate the name-component of a pair, and
another selector, value, to retrieve the value-component.

assoclx;env) <= [eglnamelfirstlenv])x] - firstlenv];
t - assocx;restlenv]]]
If the table is very long and the desired pair is close to the end of the
table, then we will be in for a very long search. The search scheme encoded

in assoc is called linear search, and is unnecessarily inefficient for tables of
substantial length. However the phenomemona we wish to study now are not

“Recall, we are simulating substitution; see [Ber 75] for an alternative.
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directly related to efficiency of searching methods. 12 We will come back to
symbol tables in Section 5.6 to study the problems of efficient storage and
retrieval of information. It will suffice now simply to think of a symbol table
as represented in LISP by a list of dotted pairs: a name dotted with value.
In this representation, then, namelx] <= carlx], and valuelx] <= ¢dr[x]. For
completeness, we should also specify a constructor. Though we won’t need the
function for a while, we will name it mkent; it will take an identifier and a
value and return a new symbol table entry. Its representation here is
mkentlx;9] <= conslx,yl.

To illustrate the representation and algorithms, assume we wish to
represent three variables x, y, and z which were to have values 2, 3, and 4.
That fact could be encoded as:

((X.2)(Y.3)(Z.4)
Then the retrieval of y and u could be encoded as:

assoclY; ((X .2)(Y .3)(Z.4))])=(Y . 3)
assoclU; ((X . 2)(Y .3)(Z.4))] = L

The retrieval of L for u could be implemented as an error message or, better
yet, could interact with the user to isolate the misconception, correct it, and
continue.

We must also represent bindings of variables to non-numeric S-exprs,
For example, we must represent information like: "the current value of x is
A". We will place the dotted-pair (X . A) in the table. Now this
representation is certainly open to question: why not add (X . (QUOTE A4))?
The latter notation is more consistent with our conception of representation
espoused on page 56. That is, we map LISP expressions to S-expressions;
perform the calculations on this representation, and finally reinterpret the
result of this calculation as a LISP expression. The representation we have
chosen for symbol tables obviates the last reinterpretation step; recall the
diagram on page 103. Now it will turn out that for our initial subsets of
LISP this reinterpretation step simply would involve “stripping” the
QUOTEs. The only "values" which a- LISP computation can return are
constants; however more general evaluation schemes are conceivable; partial
evaluation may be useful, simplifying x+y+2 to x+6 when y has value 4.
Perhaps the LISP representation of table entries is a poor one; we will see. In
studying any existing language, or contemplating the design of any new one,
we must question each detail of representation. Decisions made too early can
have serious consequences.

12A¢ least indirectly the discussion is related to search efficiency. LISP
implements a dynamic binding or “latest active” binding strategy. A case can
be made for static binding on the basis of shorter symbol table searches.
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Before continuing we should take stock of our current position. In this
section we have recreated the table-lookup mechanism we used in Section 2.7,
but now we are paying a bit more attention to representation. We can locate
things in a table and we have seen how calling functions can add values to a
table. We have said nothing about adding function definitions to the tables.
Abstractly we know how to extract the definition from the table and apply it.
We must give an explicit representation of the storage of a function. This
turns out to be a reasonably non-trivial problem. We have seen that it is
possible to mechanize at least one scheme for evaluation of functions --
call-by-value, evaluating arguments from left to right. We have seen that it
is possible to translate LISP expressions into S-exprs in such a way that we
can write a LISP function which will act as an evaluator for such
translations. In the process we have had to mechanize the intuitive devices
we might mentally use to recall the definition of functions and to recall the
current values of variables. It became clear that the mechanism of symbol
tables could be used. To associate a variable with a value was easy. To
associate a function name with its definition required some care. That is,
part of the definition of a function involves the proper association of formal
parameters with the body of the definition. The next section introduces a
notation for describing function definitions.

3.4 X-notation

Recall our discussion of the problems of representation of function
definitions. This discussion began on page 84 and our conclusion was that to

represent a definition like flx;y] <= § we needed a symbol table entry with

name f and a value part which contained the body of the definition, §, and
the list of formal parameters, [x;5]. This view of the content of a definition
will have to be revised, but its implementation contains sufficient complexity
to support a lively and fruitful discussion. LISP uses a unique notation,
called the A-notation to lend precision to our informal discussion of function
representation.

The A-notation is derived from the A-calculus, a formalism invented by
the logician Alonzo Church ([Chu 41)) to model functions which are

describable by algorithms. The A-calculus is useful for discussing the
concepts of function and function application. Since many algorithms
compute functions and since function application is simulated by procedure
calls, the calculus is well suited for a purified discussion of procedures in
programming languages. We shall outline the X-calculus in Section 3.13.
The A-notation was introduced into programming languages by John
McCarthy in the description of LISP ([McC 60]). There are several

important distinctions between Church’s A-calculus and the A-notation of
McCarthy; we will point out the differences in Section 3. 13.
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We begin the discussion by exemplifying the need for more precise
terminology. We have been informally writing flx;3]<=x%y+9y as a
definition of the function f. This notation is supposed to convey the
following intent: f is the name of a function or rule; whenever f is supplied.
with two numeric arguments it is supposed to multiply those arguments and
add the result to the second. The resulting sum is the desired answer. Since
informality is susceptible to ambiguity, we should analyze the "<="-notation
more closely. Though we say f is being defined, it is not f, but flx;9] which
appears to the left of the "<="-symbol. First, f[x;9] does not denote a
function, f denotes a function. To see what flx;y] means consider the
following example. When we are asked to evaluate car[(4 . B)] we say the
value is A. car[(4 . B)] is an expression to be evaluated; we have called
such expressions LISP forms. If car[(4 . B)] is a form then so is car[x]; only
now the form references a variable instead of a constant; therefore the value
of the form depends on the current value assigned to the variable x. So the
function is car; the form is car[x]. Therefore, the function is f; flx;y] is a
form, and so is x+y + 9. The informal notation has a form on both sides of
the "<=". We would like a notation which clearly shows what is being defined
and what is given. '

Further, our notation has really been specifying more than just the
name. The notation specifies the formal parameters (x and y) and the order
in which we are to associate actual parameters in a call with the formal
parameters of the definition (¥ with the first, y with the second). More
subtly, the notation tells whick variables in the function body are to be
supplied values when the function is called. For example define
glx] <= xxy + y; then the expression g[2] specifies that x is to receive a value
2, but leaves unspecified what the value of y should be. '3

We also wish to have a notation so that function definitions can be
inserted into the symbol table as "values” assigned to names. They will be
parametric values, but they will be values. The A-notation performs this task
by preceding the function body with a list of variables, called lambda list.
The lambda list has been previously called the formal parameter list; either
term is acceptable. Each parameter in the lambda list is called a lambda
variable (or a formal parameter). The resulting construct is preceded by "A["
and followed by "I". Using the above example, the identifier f denotes
exactly the same LISP function as A[[x;3] x+y + ). The A-notation introduces
nothing new as far as our intuitive binding and evaluation processes are
concerned; it only makes these operations more clear. To analyze these ideas
a bit further, notice that A[lx;y]x%y +9y] is the “"same" function as
Allu;9] uxv + »). This means in effect that the formal parameters are "place
holders” and can be uniformly replaced with other identifiers. Notice to that
function names are also place holders.

I3Note also, that the "values” for + and # are also unspecified.
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onelx]) <= [x=0 - 1; § - onelx-1]]
is the same function as:

fxylx) <= [x=0 > 1; 1 > fxylx-1]]

There are certain restrictions on the replacement of identifiers; the
precise description of that algorithm requires care. The implementation of
that algorithm will be part of this chapter.

One benefit of the A-notation is that we need not give explicit names to
functions in order to perform the evaluation. Evaluation of expressions
involving such anonymous functions, also called open lambdas, is within the
province of LISP. Currently, we will restrict our discussion to A-expressions
which are function constants, just like 4 is an S-expr constant. Since a
A-expression is a constant, its value is itself. LISP will evaluate an
application involving a A-expression in two stages; first, it will bind the
evaluated actual parameters to the A-variables, and then it will evaluate the
function body.

Consider, for example:

Allx;9] % + 91(2;3]
We associate 2 with x and 3 with y and evaluate the expression:
x2+y
This calculation will give 7.
To evaluate the more complex:
MLx] cdrlearlx]N((4 . B) . C)]

we bind x to the S-expression ((4. B). C) and evaluate the function body.
The evaluation procedure first evaluates car[x] with the current binding of x;
this result, (4 . B), is passed to cdr; and that calculation finally returns B.

The A-notation can be used anywhere LISP expects to find a function,
for example:

Alx] firstlx]]
[\([y] restlyd)i(4 B)I]

This expression equivalent to writing:
flgl(4 B))]  where flx] <= firstlx] and gly] <= restly]

Though the second form is perhaps easier for us to comprehend, the first
form is equivalent and will be acceptable to the evaluator. In fact, the
evaluation of the second formulation will effectively reduce to the first
formulation on its way to final evaluation.

ML) firstleI)NLy] restly])(A B)1] = N[x] firstlx]N(B)] = B

LISP evaluation requires care. For example the LISP function A[[x]2]
is not the constant function which always gives value 2. The evaluation of
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an expression involving this function requires the evaluation of the actual
parameter associated with x. That computation may not terminate. For
example, consider A[[x]2)(fact[-1]] where fact is the LISP implementation of
the factorial function given on page 44.

Since we intend to include A-expressions in our language we must
include an R-mapping into S-expression form for them. The character A will
be translated to LAMBDA and the formal parameters will be translated into
a list:

RN Ley; s %) €1 1 = (LAMBDA (X, .. x,) R[E T
Here are some examples of A-expressions and their R-translations:

RIAlx;9) %2 + 91 | = (LAMBDA (X ¥) (PLUS (EXPT X 2)V))

R A[Lx9] conslearlx)y] | = (LAMBDA (X ¥) (CONS (CAR X) V))

To complete our introduction of A-expressions, our LISP syntax
equations will be augmented to include:

<function> = Al<varlist><form>]

<varlist>  := [<variable>; ... ; <variable>] !4

Besides giving a clear notation for function definitions, the A-notation
is a useful computational device. Consider the following sketch of a function
definition:

g <= Nx)wliclx]) - liclx]; ... x .]]

where lic may be a long involved calculation, and 7 is a predicate.
We certainly must compute lic[x] once. But as g is defined, we would
compute lic[x] twice if p, is true: once in the calculation of p, and once as e;.

Since both calculations of lic[x] will give the same value, 'S this second
calculation is unnecessary. Instead, we could write:

g <= A[x] flliclx];x]]
where: f<=Nluolwlu]» u; ... v .]]

In this scheme lic will only be evaluated once; its value will be passed into f.
This solution requires introduction of a new function name. Using
A-expressions, in a style called internal lambdas we can improve g without
adding any new function names to our symbol tables.

Replace the body of g with:

LAM Alyliwlyl » y; .. 2 L J]Uiclx]]

"Recall that this use of ellipses means "zero or more occurrences of
<variable>".

150ur current LISP subset has no side effects. That means there is no
way for a computation to affect its surrounding environment. The most
common construct which has a side-effect is the assignment statement.
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Call this new function g”:
g* <= M) Aylwly) = g; . % ... MlicleT] ]

Now when g* is called we evaluate the actual parameter, binding it to x, and
evaluate LAM. Evaluation of LAM involves only one calculation of lic[x],
binding the result to y. We then evaluate the body of the conditional

expression as before. If p; is true, then this definition of g’ involves one
calculation of lic[x] and two table look-ups (for the value of ¥), rather than
the two calculations of lic[x] in g More conventional programming
languages can obtain the same effect as this use of internal lambdas by
assignment of lic[x] to a temporary variable. We will introduce assignment

statements in LISP in Section 4.2.

Problems

1. What is the difference between A[[ ] x+y + 9] and xzy + § ?

3.5 Mechanization of Evaluation

We first gave plausibility arguments for the existence of an evaluator for
LISP; and then picked a representation for LISP expressions; finally we
introduced a precise notation for discussing functions. It is now time to write
an evaluator for representations of LISP expressions. The evaluator will be
the final arbiter on the question of the meaning of a LISP construct. The
evaluator is thus a very important algorithm. We will express it and its
related functions in a representation-free form, but we will keep our
Cambridge Polish representation in mind.

As we have discovered, the great progenitors (Section 2.8) are
evaluators for subsets of LISP. With our symbol-table mechanism we could
now extend those algorithms to handle variable look-ups. Rather than do
this we will make a total revision of the structure of the evaluators. In
making the revision, the following points should be remembered:

1T his technique is also related to the ideas of common sub-expression
recognition in compiling algorithms (Section 6.16).
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1. Expressions to be evaluated can contain variables, both simple variables
and variables naming A-expressions. Therefore, evaluation must be done
with respect to an environment or symbol table. We wish to recognize
other function names besides CAR, CDR, CONS, EQ, and ATOM in our
evaluator, but explicitly adding new definitions to the evaluator in the
style of the recognizers for the five primitives is not an attractive
approach. That scheme would require rewriting sections of the evaluator
every time a new definition was introduced. An alternative solution is to
hold the definitions in a symbol table. Our symbol table should hold the
function definitions and the evaluator should contain the general schemes
for finding the definitions, binding variables to values, and evaluating
the function body.

2. All function calls are to be evaluated "by-value." However, there are some
special forms which are not evaluated in the normal manner.
Conditional expressions, quoted expressions, and lambda expressions are
handled differently, and the evaluator will recognize these constructs
specially.

The primary algorithm in the evaluator will be named eval. It will take
two arguments; the first will be a representation of an expression to be
evaluated, and the second will be.a representation of a symbol table. The
evaluator will recognize numbers, and the constants T and NI/L, and if
presented with a variable, will attempt to find the value of the variable in
the symbol table using assoc (Section 3.3).

eval will also recognize the special forms cond and quote. When eval
recognizes a conditional expression (represented by (COND ..) ), the body of
the COND will be passed to a subfunction named evcond. evcond embodies
the conditional expression semantics as described on page 20. The

representation, (QUOTE &), signifies the occurrence of a constant, &, which is
simply returned. Any other expression is a call-by-value application. The
argument-list evaluation is handled by evlis in the authorized left-to-right
ordering. This calculation is performed by recurring on the list representing
the arguments. Finally, we apply the function to the list of evaluated
arguments. This is done by the function apply.

With this introduction we will now write a more general evaluator
which will handle a larger subset of LISP than the tgms.
Here’s the new eval:

eval <= N[[exp environ]
[isconstlexp] » denotelexp);
isvarlexp] » lookuplexp environ];
iscondlexp) - eveondlarg lexplienviron];
isfunctargslexp] » applyl funclexpl;
evlislarglistlexp)environ);
environ] ]
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and:
lookup <=Xl[var;env] valuelassoclvar;env]l}

denote <= Nlexpllisnumberlexp] » exp;
istruthlexp) » exp,
isfalselexp] - exp;
issexprlexp] » replexpl;
islambdalexp] -+ exp 11

where:

rep knows how to extract the S-expr from the representation. In our scheme
the selector rep is given by cadr.

The other selectors, constructors and recognizers which relate this abstract

definition to our particular S-expression representation are grouped on

page 117.

evcond <= N[ [e;environ]
[evallantelfirstlell;environ] » evallconseqlfirstle]);environ];
t > evcondl[restle);environ] 1]

and,

evlis <= \[[e;environ] [nulilel » ( );

t > concatlevallfirstle);environ);
evlis[restle);environ]) 1]

The subfunctions, excond and evlis, are simple. evcond appeared before in
tgmoafr in a less abstract form; evlis constructs a new list consisting of the
results of evaluating the elements of ¢ from left to right, using the symbol
table, environ, where necessary. Since evcond and evlis are LISP functions,
they are sub ject to the left-to-right evaluation rule. Thus evlis embodies the
left-to-right rule. If evlis were evaluated under a right-to-left rule then evlis
would evaluate expressions in right-to-left order. It is possible to write a
version of evlis which only depends on being evaluated CBV, and which
does embody the left-to-right rule:

evlis <= \[[e;environ) [nulllel - ( );

t » Allx] concatlx;eviislrestle);environ]l]
[evallfirsile);environ]] 1]

To continue, the function apply takes three arguments: a representation
of a function, a representation of the evaluated arguments, and a
representation of a symbol table. apply explicitly recognizes the
representations of the five primitive functions CAR, CDR, CONS, EQ, and
ATOM. If the function name is a variable, the definition is located in the
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symbol table by eval and applied to the arguments. Otherwise the function
must be a A-expression. Things now get interesting; we must evaluate the
body of the A-expression after binding the formal parameters of the
A-expression to the evaluated arguments. We add variable-value pairs to the
front of the current symbol table. We will define a subfunction, mkenv, to
perform the binding; then pass the function body and the new symbol table
to eval.

Here is apply:

apply <= Al [fn;args,environ]
liscar(fn) » carlarg,largs]);
iscons(fn) » conslarg,largslarg,largsl);

isvar[}n] - apply[e;;d[fn;environ];arg.s;environ];
islambdalfn] » evall body[fn);
mhenvlvars(fn)args;environ]] 1]

mkenv <= Xlvars;vals;environ] pairlislvars;vals;environ])

pairlis <= N[vars;vals;environ)
[nulllvars] > environ;
t » concatlmhent(firstlvars);first(vals]);
pairlis(restlvars);
restlvals);
environ]] 1]
Some of the functions and predicates which will relate these abstract
definitions to our specific S-expression representation of LISP constructs are
given below. '

Recognizers Selectors
iscar <= X[[x] eqlx;CAR]] func <= \lx] firstlx]]
isSexpr <= \lx] eqlfirst[x]};,QUOTE]] arglist <= \[[x] rest[x]]
istruth <= Alx] eqlx,T]] body <= \[[x] third[x]]
istlambda <= \[x] eqlfirstlx;LAMBDAIl vars <= X[x] secondlx]]
isfun+args <= A[[x] t] args, <= A[x] rest[x]]

arg, <= Allx] firstlx]]
argy <= N[x] second[x]]
ante <= \[x] first[x]]
conseq <= \[x] second[x]]
rep <= Nlx] second[x]]

Constructor

mkent <= Al[x,y] cons(x;y]]

Another application of the left-to-right property occurs within apply, in
the symbol table search and construction process. Notice that lookup uses
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assoc to look from left to right for the latest binding of a variable. Thus the
function which augments the table must add the latest binding to the front.
New bindings occur when the function mkenw, using pairlis, builds an
augmented symbol table with the A-variables bound to their evaluated
arguments. The functions lookup and mkenv operate together. We will see
representations of these functions other than assoc and pairlis. The actual
search and construction operations will change, but the critical relationship
that mkenv always builds a table compatible with the search strategy of
lookup will be maintained.

To summarize then: the evaluation of an expression flay; ... ;a,), where

the a's are S-exprs, consists in applying eval to the R-translation,
RLFIRLe, T !R[[ a, ). This behavior is again an example of the

diagrams of page 56. In its most simple terms, we mapped LISP evaluation
onto the LISP eval function; mapped LISP expressions onto S-expressions;
and executed eval. Notice that in this case we do not reinterpret the output
since the structure of the representation does this implicitl. We have
commented on the efficacy of this already on page 109.

The specification of the evaluation of LISP expressions using eval and
apply is one of the most interesting developments of computer science.

Problems

1. Compare our version of eval and apply with the version given in
[McC 65]. Though the current version is much more readable, how much
of it still depends on the representation we chose? That is, how abstract
is it really?

2. Complete the specification of the selectors, constructors, and recognizers.

3.6 Examples of eval

We will demonstrate the inner workings of the evaluation algorithm on a
couple of samples and will describe the flow of control in the execution in a
couple of different ways. The examples will be done in terms of the image of

the M-mapping rather than being done abstractly. We do this since the

structure of an actual LISP evaluator will use this representation. '” It is
important that you diligently study the sequence of events in the execution of
the evaluator. The process is detailed, but it must be done at least once.

Let’s evaluate f{2;3] where f <= Al[x;5] x? + y]. That is, evaluate:
evall R 712,31 1; RIL{ <f, Allxy) +000x;20; 923> 310

After appropriate translation this is equivalent to evaluating:
evall(F 2 3); ((F .(LAMBDA(X Y)(PLUS (EXPT X 2)Y)))]

7Recall that we will be programming in the R-image.
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Notes:

1. ((F . (LAMBDA (X Y) .. ))) = ((F LAMBDA (X Y) .. )) This is
mentioned because most LISP implementations will print the latter even
if you write the former. ;

2. Since the symbol table ((F ..)) occurs so frequently in the following trace,
we will abbreviate it as st. We have no mechanism yet for permanently
increasing the repertoire of known functions. We must therefore resort to
subterfuge and initialize the symbol table to get f defined.

3. For this example we must assume that + and T (exponentiation) are known
functions. Thus apply would have to contain recognizers for PLUS and
TIMES:

... atomlfn) » [ isplus(fn] - +larg largs)arg,largs]);
isexptlfnl » Tlarg,largs)arg,largsll;
.o ]
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So evall(F 2 3);st]
= applyl func(F 2 3));
evlislarglistl(F 2 3))st);
st]

= applylF ;evlis[(2 3);st);st]
= applylF (2 3);st]

= applyl evallF ;st);
(2 3);
st] _
applyl (LAMBDA (X Y)(PLUS (EXPT X 2)7Y));
(2 3);
st)

evall body[(LAMBDA (X V) (PLUS (EXPT X 2)V)));

mkenvl vars((LAMBDA (X Y) (PLUS (EXPT X 2)V)));

(2 3);
st]]

evall (PLUS (EXPT X 2)Y);
pairlis[(X ¥ ),(2 3);st]]

= evall (PLUS (EXPT X 2)V);
((X .2XY .3(F LAMBDA(XY).))]

= applyl PLUS;
evlisl((EXPT X 2) Y){((X . 2XY . 3).));
((x.2).)

3.6
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Let’s do a little of: evlisl((EXPT X 2) Y );((X . 2XY . 3)..)]

= concatl evall(EXPT X 2),((X . 2)XY . 3) ..));
evlis((Y )((X . 2) . )]
concatl applyl EXPT;
evlisl(X 2),((X . 2)..));
((x.2)..1]
evlis[(V); ..]]

concatl applyl EXPT;
22)

(o . 2);
evlis{( Y‘)"- t..]]

= concat[ tlarg,{(2 2))arg,l(2 2)1);
evlisl(V); .. 1]

concat[1[2,2)evlis[(V); ... 1]

concatl4;evlis[(Y );(X . 2)(Y . 3) .)1]
concat[4;concatlevallyY ;(X .2) ..)}; evlis{( ){( ..))]1]
concat[4;concat(3;( )1]

(4 3)

Now back to apply:

= applyl PLUS;
(4 3);
((X.2)(r.3.N

= +(4,3]
=7

It should now be clear that eval does perform as you would expect, at least
for this example. It is not clear that a simpler scheme might not do as well.
In particular, the complexity of the symbol table mechanism which we
claimed was so important has not been exploited. The next example will
show that a scheme like ours is necessary to keep track of variable bindings.
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Let’s sketch the evaluation of fact[3] where:

fact <= N[x)lx = 0 > I, t » *[x;fact[x-1]]]]
that is, eval[(F ACT 3);st] where st names the initial symbol table:

((FACT . (LAMBDA (X)(COND{((ZEROP X) 1)
(T (TIMES X

(FACT (SUBI X)) 18

In this example we will assume that the binary function # the unary
predicate zerop <= X[[x]x = 0] and unary function subl <= A[[x] x-1] are
known and are recognized in the evaluator as TIMES, ZEROP and SUBI
respectively.

Then evall[(FACT 3)st]
= applylF ACT;
evlisl(3);st];
st])
= apply(LAMBDA (X) (COND ..));
st]
= eval[(COND ((ZEROP X) I)(T ( .))((X . 3) . st)]
= evcond[(((ZEROP X) 1) (T (TIMES X (FACT (SUBI X)))));
((X .3).st)]
Now, let stl be ((X . 3).st)
= eval(TIMES X (FACT (SUBI X))); st1]
= apply[TIMES;
evlis[(X (FACT (SUBI X))); st1];
stl]
= applyTIMES;
concat(3;
evlis[((FACT (SUBI1 X))); st1l);
st1]

18We have split the COND across several lines in an indented fashion
to improve readibility. Such techniques are common in LISP. The idea is
called "pretty printing” and is discussed further on page 274 and in
Section 9.2.
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Now things get a little interesting inside evlis:
evlis[((F ACT (SUBI X)));stl]
= concatl evall(F ACT (SUBI X)); stl);
(N
and evall(FACT (SUBI X));st1)
= applylF ACT ;
evlisl((SUBI X ));stl);
st1)
= apply[F ACT; (2),stl]
= apply(LAMBDA (X) (COND ..);
(2)
st1]

= eval[(COND ((ZEROP X) 1) .));((X . 2) . st1)]

Within this latest call on eval the symbol-table-searching function, lookup,
will find the pair (X . 2) when looking for the value of x. This is as it
should be. But notice also that the older binding, (X . 3), is still around in
the symbol table stl, and will become accessible once we complete this latest
call on eval. It will become accessible because this earlier manifestation of
the table was saved by the A-binding process as we entered the inner call on
eval; as we leave this inner evaluation, the previous incarnation of the table

is restored.
As the computation continues, the current symbol table appears as

follows:

((FACT LAMBDA (X) (COND ..))) = st
(X . 3).st)=stl
((X.2).stl) = st2
((X ..1).st2) = st3

((X.0).st3)

Thus each new level of the table builds on the prior table; each prior table is
saved by the following line from apply (page 117):

istambdalfn] > evallbodylfn);mkenvlvarsifnlargs;environ]

The call on eval is performed with the augmented table; when we leave that
inner eval we return to an environment which contains the prior table.

Using mkenv to concatenate the new bindings onto the front of the
symbol table as we call eval, generates the required environment. The tricky
part occurs when we leave that particular call on eval; the old table is
automatically restored by the recursion mechanism. That is, concatenating
things onto the front of a table doesn’t change the table, but if we call eval or
apply with a symbol table of say:
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concatl(X . 2);concatl(X . 3); st]]

then in that call on eval or apply we have access to 2 as the value of x,
rather than 3. )

In this representation, the search function lookup always proceeds from
left to right through the table and, since the table entry function mkenv
always adds pairs onto the left of the table before eval is called, we will get
the expected binding of the variables.

The structure of mkenv should be analyzed further: it takes a formal
parameter list, an evaluated actual parameter list, and an environment, as its
arguments; it allocates a new block to contain the name-value pairs and
proceeds to send each name-value pair to its proper slot in the block. The
value of mkenv is the newly constructed environment formed by linking the
new block onto the front of the old environment. It turns out that pairlis is
able to combine the action of making the new block and filling the slots.

A more accurate picture of the abstract behavior of mkenv is:

mhenv <= N[vars;vals;env) mkenv’[vars;vals;alloclvars);env]]

mkenv’ <= N[[vars;valsblockenv]) [nulllvars] » link[block ;env);

t > mhenv'[ restlvars);
restvals);
send( firstlvars);
firstlvals);
block);
env) 11}

Our current implementation of pairlis is equivalent to:
alloc <=A[lx] ( )] '°

send <= A[var;val;block) concatlmkentlvar;vall;block]]
link <= \[[block,env] appendlblock ;env]]

The computational behavior of pairlis is slightly different: here the
name-value pairs are added to the environment in an order reverse to that
used in pairlis. Since the variables in the A-list must be distinct from one
another, this alternative environment is equivalent to the previous one.

Symbol table manipulation is very important, so let’s look at it again in
a slightly different manner. In this example, expressions and table entries
will be written more informally. Since the evaluator is operating on the list
representation of expressions we should continue to present these arguments
to eval as lists. However, the object being represented might be more

9iloc is defined as a unary function even though its argument is
ignored here. This generality is in anticipation of future binding
implementations.
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understandable and readable 2° than the representation of that ob ject. Thus,
initially, we will write RIED rather than the explicit R-image of §; for
example, write R[[ fact[31]] rather than (FACT 3). Later we will simply

write £ where no confusion is likely. With similar motivation, we represent
the symbol table between vertical bars, *|", in such a way that if a table, t,, is:

then concating a new element, b,,; onto t; gives:

The elements of the table should also be presented as R-images, but we will
represent the entries in a more transparent form. For example:

eval[ml]:fact[il]]; | fact : Mlx)x=0 - I;t » «[x;factlx-1111 | ]

= evallR[[[x=0 - I; t > *[x,fact[x-l]]]:ﬂ; x:3 ]
fact :A[..]

= >:«[5;eval[mﬂ:[x=0 - ...]:[I,- x:2 ]
x:3
fact : A ]

= x[3; «[2;e0allR[[[x=0 - .1]|;

20Readability of LISP expressions is a subject of heated between LISP
users and non-users. Since we program using the list representation there is
an initial period in which the representation is "difficult to read”. However
that phemononon is short lived; the regularity of LISP expressions, the
minimality of syntax, the use of formatting programs called “pretty printers”,
and several abbreviational devices soon overcome any supposed
disadvantages. This text presents LISP expressions in the meta-language
since we wish to stress the notions of representation independence, rather
than LISP’s programming behavior.
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= x[3; %[2; *[I;eval[m ﬂ:[x=0 - ...]]]; x:0 ]
x 1
x:2
x:3
fact :A[ .. ]
w w[3; #02; 9[0T with: x:1 ]
x:2
= x[3; «[2;1]] with: x:2 ]
= %[3,2] with: x:3 ]
=6 with: | fact :A[.. ] |

-6

Notice that after we went to all the trouble to save the old values of x we
never had to use them. However, in the general case of recursive evaluation
we must be able to save and restore the old values of variables. For
example, if we had defined fact as:

fact <= Al[xllx=0 > I; t » [factlx-11x]]],
then we would have to access the old binding of x.
For further example, recall the definition of equal:

equal <= \[[x;y)latom[x] > [atomly] > eqlx;y]; t > f);

atom[y] - ;
equallcarlx)car(y]] » equallcdrixl;cdrly]];

t- 11
If we were evaluating:
equall((4. B) .C){((4 . B) . D)),

then, reading across the page, our symbol table structure would change as
follows:

x:((4.B).C)
9:((A.B).D)
equal : N[x;9] ... ]

==>

lequal : A[x;9]..] | ==>
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x:(A.B) A
9:(A.B) : A
x:((4.B).C) | ==> x: (A B)
equal : N[x;y) ... ] X ((A . B) .C)
y:((A.B).D)
equal : N[x;9] ... ]
;B x:C
:B 9:D
X (A B) x:((A.B).C) ==>
y:(A.B) ==> y:((A.B).D)
X ((A .B).C) equal : \[x;9] .. ]
9:((A.B).D)
equal : \lx;9] .. ]

lequal : A[x;9] .. ] [

This degree of complexity is necessary, for while we are evaluating
equallcar(x);car(y]], we rebind x and y but we must save the old values of x
and 9 for the possible evaluation of equallcdrx);cdrly]]. It is not clear that
this implementation is optimal. The search for the values of x and ¥ is short,
but the evaluation of any subexpressnons involving equal must retrieve the
definition of equal. That search is proportional to the depth of the initial
arguments to equal.

Before continuing, we should examine eval and apply to see how they
compare with our previous discussions of LISP evaluation. The spirit of
call-by-value and conditional expression evaluation is maintained. A-binding
seems correct, though our current discussion is not complete. At least one
preconception is not maintained here. Recall the discussion on page 17. We
wanted n-ary functions called with exactly n arguments. An examination of
the structure of eval and apply shows that if a function expecting n
arguments is presented with fewer, then the result is undefined; but if it is
given more arguments than necessary then the calculation is performed. For
example:

¢vall(CON'S (QUOTE A) (QUOTE B) (QUOTE C));NIL)
reduces to eval[(CONS (QUOTE A) (QUOTE B));NIL]
reduces to (4. B)

This example shows one of the pitfalls in defining a language by an
evaluator. If the intuitions of the language specifiers are faulty or incomplete
then either we must maintain that faulty judgement, or we must lobby for a
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"revised report”. ?!

The definition of a language by an evaluator written in that language
is subject to other criticisms. The troublesome areas of our description of
LISP’s evaluation included A-binding, calling styles in general and
call-by-value in particular, and left-to-right order of evaluation. We wrote
eval to explicate the meaning of these constructs, yet within eval we often
relied on exactly these constructs to convey our intent. Now, our description
in not entirely circular; eval does convey much of our intention to the reader,
but the discussion of Aow these constructs operate is sither implicit or is
explained by using the same kind of constructs. In gaining a clearer
understanding of what LISP constructs mean, eval is exemplary. Indeed
many of the details of how these constructs work are irrelevant to such an
understanding. When we attempt to implement a language feature we cannot
assume the existence of that feature; the implementation must be prepared
from a combination of more primitive components. As we proceed through
the text we will introduce the mechanisms which are necessary to implement
LISP and, indeed, implement the constructs of most other languages. In
Section 4.4 we give several alternative algorithms for eval. The algorithms
will evolve to an eval which makes explicit most of the mechanisms we need.
In Chapter 5 we will begin to discuss efficient representations for LISP’s
data structures, control structures, and primitive operations. The remainder
of the current chapter will explicate further features of LISP in preparation
for that discussion.

Problems

1. Which parts of the evaluator allow the evaluation of furctions applied to
too many arguments?

2. Find other anomalies in the evaluator. That is, find places where
unexpected results are obtained?

3.7 Variables

Let’s look more closely at A-binding in eval. The scheme presented seems
reasonable, but as with "cons[4,B,C]", there may be more expressed here than
we anticipated.

If we asked eval to compute f[2], given a representation for
f <= Alx] x + 9] but no representation for the value of y it would complain.
It would find f, bind 2 to x, and begin the evaluation of the body of f. It

21For example the LISP 1.6 system ([Qua 72]) gives (A . A) for cons[A];
the MacLISP system ([Moo 74]) gives (4. "missing-arg"); and InterLISP
([Int 75]) gives (A).
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would find x’s value, but it would find no value for 9. However, if we asked
it to evaluate the form A[[y] f121][1] it would work. It would find the value of
9 to be I and would get a final answer of 3. You should convince yourself of
this assertion.

Within the evaluation of f[2] in A[[y] f{2])I] the variable y has a
different character from that of x. The value of x is found within the latest
A-binding, whereas y was bound in a dynamically surrounding A-binding.
That is, the A-expression which bound 9y took effect before the binding of x
and is still in effect when the binding of x is made. We do have access to §'s
binding in this case; the lockup routine will locate y’s value. There is a third
kind of name-value association present in these examples: we expect that the
symbol “+" is recognized during the evaluation as denoting a procedure for
computing the sum of two numbers. In previous discussions we have
assumed that "+" was pre-defined inside apply and therefore explicitly
recognized. Finally, in the first example, a fourth kind of variable usage
occurred. The variable y had no associated value when the computation
expected one. In this section we wish to examine these properties of
variables.

The implementation of A-bindings described in pairlis (page 116) is
slightly misleading. There, the new A-bindings are concat-ed onto the front of
the existing table. They go on in a one-at-a-time fashion even though they
are to be thought of as a logical unit: at the language level they all go on
together, and they all come off together. It is the structure of this table which
we should also examine. To these ends we now introduce some terminology.

Consider the evaluation of the expression:

Ally] equalln[[x] conslxyTI(4 . B))NA

in an environment where the definition of equal is known.

We evaluate the main argument 4, and perform the A-binding of 4 to
9. This operation of A-binding creates what we call a local symbol table and
the variables bound in that local table are called local bindings for the body
of the A-expression. We now begin the evaluation of the arguments to equal.
The first argument is itself an expression requiring A-binding. We evaluate
it’s argument and bind (4 . B) to x. This creates a local binding for x. In the
process of making x local what happens to y? Notice that the binding
process has not made y inaccessible: we can compute consx;y] even though y
is not local. Variables like y which are accessible, but not local, we call
non-local variables. Thus both y and cons are non-local variables in our
evaluation of cons[x;9]. There is a further distinction between y and cons: We
expect cons to be a predefined function; indeed cons has not been A-bound .
any where in our computation. Variables like cons we will call global
variables.

Global variables include predefined function names, car, cdr, etc, and
variables like ¢ and nil. A useful interpretation of global variables is that
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they are bound in the initial symbol table, also called the global table. 22
Non-local variables which are A-bound somewhere in the symbol table we
call free variables, and variables which have some accessible binding at the

current point in the computation are called bound variables. %3

Finally the first argument to equal is evaluated giving ((4. B). 4). As
we complete that evaluation the local binding for x becomes inaccessible, and
y becomes local again. We examine the second argument to equal, which is x,
and now find there is no binding for that variable. Variables which have no
binding of any kind at the time we ask for a value are called unbound
variables. The local, free, and global variables make up the class of bound
variables.

For a computation to be meaningful, each variable which that
computation references must be bound when we ask for its value. The
computation of our current example would fail; it would fail even before we
asked for the definition of equal since we are doing call-by-value. One of our
tasks will be to discuss where definitions such as that for equal should be
kept.

Here is a diagram of our characterization of variables:

variables
non-local local
free global unbound

Notice that a variable which is initially global may become local and then
free by virtue of A-bindings.

The binding strategy for local variables is reasonably uniform in
programming languages: bind some form of the actual parameters 2 to the
formal parameters and evaluate the body of the definition. One of the
difficulties in programming languages is deciding what value to associate

22This analogy breaks down somewhat in that usual implementations
of LISP allow this global table to be augmented; for example, by function
.definitions using a version of "<=". Thus the global table can be enlarged
whereas a true A-binding involves a fixed number of variables.

0ur notion of free and bound variables has a decidedly
computational flavor, in contrast to the mathematical definitions of "free"
and "bound” given on page 170. For example a variable may be both free
and bound in our terminology.

24 T'lho navramatove mmau aithan ha arratbiiabad aa ceamaceatoo o3 ¢
£ TR ey | —mveawa ww w WAWSVEVWWS W4 WASW ¥ “l“ulﬁ\'\‘, 1MWV YWOCYCL,.
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with a non-local variable. In LISP, it is clear Aow values get associated; it
happens through A-binding or by virtue of an initial entry in the symbol
table. The scheme which LISP uses for discovering the value of any
variable is to proceed linearly down the symbol table, looking for the latest
active binding. This scheme is called dynamic binding. It usually results in
uncovering the value that is expected; but not always as we will see in
Section 3.10. Conceptually, the dynamic binding scheme corresponds to the
physical replacement of the function call with the function body and then an
~ evaluation of the resulting expression. Free variables whose bindings are
determined dynamically are called fluid variables.

In review, the evaluation of a typical function-call will involve the
evaluation of the arguments, the binding of the A-variables to those values,
the addition of these new bindings to the front of the symbol table, and
finally the evaluation of the body of the function. That segment of the
symbol table which we have just added by the A-binding will be called the
local symbol table or local environment. The variables which appear in that
segment are the local variables. The remainder of the symbol table makes
up the non-local table. Variables which appear in the global table but not
in any local table are the global variables. Free variables are bound
somewhere between the local table and the global table. Variables which are
local to a form-evaluation are those which were present in the A-binding.
We first wish to develop a useful notation for describing bindings before
delving further into the intricacies of binding strategies. That discussion will
be the content of Section 3.11.

Problems

1. Write a LISP predicate, non <= X[x;e] ... ], which will give { just in the
case that x and e represent a variable and a A-expréssion respectively,
and x is non-local to e.

2. Give an example showing that the phrase "latest binding”" is not a proper
characterization of dynamic binding.

3.8 Environments and Bindings

This section will introduce one more notation for describing symbol tables or
environments. This notation, due to J. Weizenbaum ([Wei 681]), only shows
the abstract structure of the symbol table manipulations during evaluation.
Its simplicity will be of great benefit when we introduce the more complex
binding schemes necessary for function-valued functions in Section 3.10.

In the previous discussions it has been sufficient to simply think of a
symbol table as a sequence of pairs; each pair was a variable and its
associated value. This sufficed because we dealt only with A-variables; we
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ignored the possibility of free variables. As long as we added the A-bindings
to the front of the sequence representing the symbol table we showed that
expected evaluation would result. Local values were found in the table;
global values were found by explicit recognizers in eval and apply. With the
advent of free variables, however, it will be necessary to examine the
structure of environments more closely. We will describe our environments
in terms of a local symbol table augmented by a description of where to look
for the non-local values.

Instead of having one amorphous sequential symbol table, we envision
a sequence of tables. One is the local table, and its successor in the sequence
is the previous local table. The information telling where to find the
previous table is called the access chain or access link. Thus if tables are
represented by E; and the access link by = then we might represent a symbol

table as:
(E,» E,;» .» E 2E))

where E, is the local or current segment of the table. We reserve Eq to name
the global table.

LISP finds local bindings in the local table and uses the access chain to
find bindings of non-local variables. If a variable is not found in any of the
tables, then it is unbound.

An environment will be described as:

Form

EIOcel

| E;
var| value
v, | valy
vy | valy
v, |val,

Form is the current form being evaluated. E, is the name of the current
environment or symbol table. Let x be a variable appearing in Form. If x is
not found among the s, then entries in the table named E; are examined.
If x is not found in E; then the environment mentioned in the upper
right-hand quadrant of E,; is searched. The search will terminate if x is
found as a v;; the value of x is the corresponding val. If x is not found in a

local table, and the symbol “/" appears in the right-hand quadrant, then x is
unbound.

The notation is used as follows: when we begin the evaluation of a
form, the initial table Eq is set up with "/" in its access field. The execution
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of a function definition, say f <= A[[x;] %% +y], will add an appropriate
entry to the table, binding f to its lambda definition. 2 Now, consider the
evaluation of the form f[2;3]. When the A-expression is entered, i.e., when
we bind the evaluated arguments (2 and 3) to the A-variables (x and 9), a
new local table (E;) is set up with an access link to Eq. Entries reflecting the
binding of the A-variables are made in E; and evaluation of the A-body is

begun. :
The flow of symbol table creation is:

f12;3] %2+ 9y

Eo E, Eo

H | Eo I

=> => —  return with value 7
finllxylx®+ 9] x ; g f INlx9) .. ]
y .

Compare this sequence to the example on page 120.
The sequence of tables corresponds to the evaluation sequence:

evallR[12;31 ; RIL{<f , Allx9] #2923 T
{

evallR[x? + y 1 R (<x, 2>, <y, 3>, <f, Mlx;9) 22 493} 1]
d
7

You should realize that the Weizenbaum environments are just another
abstract data structure with associated constructors, selectors, and recognizers.
They may be expressed as LISP data structures without much difficulty. The
only difference here is that the environments happen to be more meaningful
when described graphically than if they were specified by their manipulating
functions. See the problem on page 135. Graphical representations and
languages are an important tool in data structure programming; we will say a
bit more about this in Section 5.4.

25Note that we really mean "representation of lambda definition".
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The eéxecution of fact[3] on page 122 results in a more interesting
example. The following discussion should be read in con junction with that

description. 26

, 6
factl3] [x=0- ..] (%, fact{x-1]]
Eo E, E,
I | Eo | Eo
=> => => 2
fact | A[lxllx=0-1;.] x |3 x |3 \
fact(2] [x=0- ..] «[x factlx-1]]
E, ' E; E;
I Eo I E; I Ey
=> => - => I
x |3 x |2 x |2 ~
factll] [x=0- ..] w[x factlx-1]]
E; E3 Ea
| Eq | Eg | Ep
=> => => =>
x |2 ' x |1 x |1 A
1
AN
fact[0] [x=0-1; ..]
Eq E, A
| E; | Eg send
=>> __ => e => I ]
x |1 x |0 back up

At the end of the first line we are faced with the evaluation of x[x,fact[x-1]].
This requires the evaluation of the arguments to s this is done by evlis. First
x is evaluated and saved, 27 then the evaluation of fact[x-I] is begun using
environment E;. In E,, x-1 gives 2 and we find the definition of fact in E,.
In the second line we set up E, and evaluate fact[2]. Analogous situations
occur until the fourth line; at this time we suddenly find ourselves in E; with

x bound to 0. The expression x=0 is satisfied and we start back up the right
margin to conclude the nested evaluations of #[x;fact[x-1]). This process
finally terminates at the top, returning a value 6. Notice that we will get the

2®The layout of this example is due to R. Davis.

27T his saved information is not explicitly represented in these pictures
or in the Weizenbaum diagrams.
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correct binding of x locally. It is important to note that the occurrence of fact

within the body of the definition of fact is global. 2 We find the correct
binding for fact by searching the access chain. We must search the access
chain even though fact is global. We cannot shortcut the search by simply
looking in Eg. A variable might have been rebound in an enclosing
environment and it would be that binding we should discover.

As a final example showing access to non-local variable bindings
consider f{3] where f <= \[[x] g[2]] and g <= A[[y] x+y].

£13] gl2] X+ 9
Ey E, E,
I/ | Eo | E4
— => I, =>
fIallx] gl21] x|3 y |2

gl Aly] x+y]

Notice that when we evaluate x + y we find y has a local value, but we must
look down the access chain to find a binding for x.
The scheme for using Weizenbaum environments for the current LISP
subset is:
When preparing a A-binding, set up a new E,, with the
A-variables as the local variable entries and add the values of the
arguments as the corresponding value entries. The access slot of the
new E., points to the previous access environment. The
evaluation of the body of the A-expression takes place using the
new table; when a local variable is accessed we find it in E,,,; when
a non-local variable occurs, we chase the access chain to find its
value.
When the evaluation of the body is completed, E,,,, disappears and
the previous environment is restored.
You should verify that the current access- and binding-scheme espoused
by LISP is faithfully described in these diagrams.

Problem

1. Environments really are a class of abstract data structures: they include
constructors, selectors, and recognizers. To help discover what a set of
such functions might be, give a representation for Weizenbaum
environments and write new versions of the symbol table manipulating
functions, lookup and mhkenv, which will operate on Weizenbaum
environments. See page 124.

28Notice that g, +, and « are also global.
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3.9 label

Placing "A" and a list of A-variables in front of an expresson designates the
variables which appear in the A-list as local variables. Aill other variables
appearing in the expression are non-local. For example, f is non-local in the
following:

£ <= NxNzeroplx] » 1; t » slx;flx-1]]] ]

Clearly our intention is that the f appearing to the right of "<=" is the same
as the f appearing to the left of "<=",

This has not been a problem for us. We have simply pre-loaded the
symbol table, binding f to its definition; see page 122. LISP has a more
elegant device for this binding. It is called the label operator and is written:

label[ <identifier>;<function>]

Its evaluation has the effect of binding the <identifier> to the <functions.
The value constructed by executing a lgbel-expression is a representation of a
function with name <identifier> and body <function>.

For example, a proper definition.of fact is:

labellfact; N[xIleglx,01 » I1; t » slx;factlsubllx1111]
To include label in the LISP syntax add:
<function>:= labell<identifier>;<function>]

and the S-expr translation of the label construct should naturally be:

R[Liaveilf;fn) 1 = (LaBEL R[f T K[ 1)

Note that labe! is a special form, not a call-by-value function.
Since the label operator creates a function, it should appear in the
function position of a function application. A typical application of the label

construct, say labellfA\[[x] &[x]]lle], results in the following environmental
picture when we get ready to evaluate §lx):

label[f;\[[x] ELx111e] §le)
Eo E
I | Eo
=>

l f I ElxD

Notice that label[f;x[[xJ{])€] is equivalent to A[[xJE[€])quote[€]]; notice too
that the definition does not appear in the global table E;. We use label to
create temporary function definitions. Such definitions disappear when the
environment in which the label was executed is no longer accessible to the
computation. Thus within the evaluation of the body [x] a recursive call on
f will refer to the definition of f located in E; so long as f is not rebound in
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E; once we have completed the computation initialized in Eq the definition of
f will disappear. If f is not recursive, then the use of label is unnecessary; an
anonymous function application will suffice.

What  about  statements like  ‘"evaluate  g[4;B]  where
g <= Nlx;9] ... flu;0] ..] and f <= A[[x,y] .. 1 ?" label defines only one function;
we may not say labellf,g; .. . What we can do is embed the label-definition

for f within the label-definition for g. 2® Thus:
labellg; N[x;9] ... labellf; N[x;] ... Mu;v] ..J]

Several languages allow a simpler notation for giving mutually
recursive definitions; see [Rey 72], [Hew 74), or [Sus 75]).

It can be shown that the label operator is superfluous; the same effect
can be obtained by a complicated A-binding. However our point here is not
to be "minimal”, but to be "useful”. Implementations of LISP offer other
definitional facilities, with "<=" having the effect of permanently establishing
the definition in E.

The apparent simplicity of the label operator is partly due to
misconception and partly due to the restrictions placed on the current subset
of LISP. The following sections will illuminate some of these difficulties.

Problems

1. Show one way to change eval to handle label.
2. Express the definition of reverse given on page 48 using label.
3. Evaluate the following:

[ly] tabellfn,fn )1 [F)

where: fra<=Alxlly» LI;x = 2; t > fnylt]]
and: <= [yl fnlyl)

3.10 Functional Arguments and Functional Values

Recall our discussion of :
evall(F 2 3),((F . (LAMBDA (X Y)(PLUS (EXPT X 2)Y)))]
We now know this is equivalent to:
evall((LABEL F (LAMBDA (X Y)(PLUS (EXPT X 2)Y))) 2 3),( )]

In either case, the effect is to bind the name f to the A-expression. Binding
also occurs when f is called: we bind x to 2, and 9 to 3. In the latter case we

2%Indeed every occurrence of f must be replaced by the labellf;..]
construct.
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are binding simple values; in the former we are binding functions as values.
We have decided that the necessary ingredients to characterize a functional

value %0 are a representation of the formal parameters, and a representation
of the expression described in the body of the function. In this section we
will examine the adequacy of that decision. We begin informally with a few
examples.

Assume we have a list [ of dotted-pairs «; ,.., ®,, and we wish to form

a new list of the form (carle;] ... carla,]). That is we wish to apply car to
each of the elements of /. Such a function is easy to write:

carfirst <= N[nullll] > ( ); £ > concatlcar(firstll]);carfirstlrest[11111]

Now suppose we wish to write a more general function, which instead
of being specific to car, will take an arbitrary unary function f and apply it to
each of the elements of /, generating (fla,], .., fla,]). Such a function could
plausibly be defined as follows:

mapfirst <= N[fn;{)nullll] - ( );
t » concatlfnlfirstli);mapfirstifn,rest(1111]]

Thus the first calculation we requested above could be expressed as:
mapfirstlcarii] ... or could it?

Recalling LISP’s penchant for call-by-value evaluation, we might believe that
the computation would not be done as expected. We do not want the
argument car. evaluated to produce an S-expr value; rather, we want its
evaluation to produce a representation of a primitive function, suitable for
application. There are two ways out of this dilemma. One solution is to
suppress the evaluation of car, postponing it until the apply function can
recognize that a function name has been seen. We have seen one artifact in
LISP to subdue evaluation: we can make it a constant by quote-ing it. Indeed,
mapfirstlquotelcar);l] or mapfirst{CAR,l] will work. You should convince
yourself that mapfirstlCAR;!] will compute carfirst[l); that exercise requires
examining the details of eval.

A second solution exists and is the one we will pursue. We say that the
"value" of car is the description of the program which computes car. Since
car is -a primitive, that description is machine code for this specific
implementation.

Before going on to more complex examples it would be well to note that
mapfirst is a different kind of LISP function from those we have seen
before. The first argument to mapfirst is expected to represent a function.
Notice that the argument fn appears in the body of mapfirst in a position
reserved for functions. Therefore any parameter bound to fn is expected to
be a function. Such a use of a function is called a functional argument.

301t would be better to call these constructs "procedure values” since we
will take a decidedly algorithmic interpretation of them.
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The first trick we used above, representing the functional argument car
as a constant CAR, can be applied to other instances of functional arguments.
Thus the functional argument:

Nlx] flglx]]
could be represented as, (LAMBDA (X) (F (G X))

The trick is called QUOTE-ing the functional argument since the S-expr
representation of an instance of such a construct is a QUOT E-ed expression.
QUOT E-ing is not strictly necessary if we follow the second alternative above
and use the evaluator described in Section 3.5. Worse yet, QUOT E-ing is also
not sufficient to capture the intended meaning in all cases of functional
parameters. To understand why QUOTE-ing is not sufficient we need a
slightly more complex set of examples. First we try:

mapfirstl AMlx] concatlx;( )Jl(ABC D)) 3!
which we expect to evaluate to ((4) (B) (C) (D))

mapfirstl \[[x] concatlx,( )1); ... ] (nulll] ... ]
Eo E,
¥ | Eo
=> =2 ..

mapfirst | \ifnlnulli) .11 | |(A B CD)
fn | AIx] concatlx( )]

Since null[l] is false, the problem reduces to:

concat[fnlfirstll];mapfirstlfnrestl]]).
E

1
| Eo

! |(A BCD)
fn | Mlx] concatlx( )]]

Since we are using call-by-value we have to evaluate the arguments to concat;
that requires evaluating fnlfirst{/]] The value of !/ we find locally and
evaluate first[l], getting A. The value for fn is also found locally, and since it
is the representation of a A-definition, we set up a new environment in which
to evaluate the body of fn, binding the A-variable x to A4:

3!Note that we do not use quote. Some implementations do not support
this notation. Some require quote, and still others give a different
interpretation to unembellished functions appearing as actual parameters.
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concatlx;( )]
E;
| Ey

x| A

The expected evaluation takes place: (4) is computed and returned to
environment E; so that we may continue the evaluation mapfirst{fn;rest[{]].
However, consider the following variant of this last example. Define:

foo <= X[[1] mapfirst] \x)eoncatlx;1]]; (A B C D)]

It would seem that fool( )] should also give ((4) (B) (C) (D)) since ! will be
bound to { ) and therefore the / in the functional argument will effectively be

().
fool( 1 mapfirstl Alx] concatlx;1);..]  [nudlll] .. ]
E E

0 1 E,
I | Eo | Eq
- => => => .
foo | A[[].. ] o) ! (A BCD)
mapfirst | Nl[fn;{)nullll]..]] fn | \[x] concatlx11]

nullll] is false since ! is (4 B C D), so we evaluate concat(fn[first{{]] ... . This
involves evaluating firstll] in E,, giving 4. We evaluate f2 in E, and,
finding a representation of a A-definition, we make a new environment E3 in
which to evaluate the body of fn.

As we make Eg, we add an entry binding ¥ to 4 and we settle down in
Eg to evaluate concat[x;!]:

concatlx;!]
E3
| E2

x| A

Since / is non-local to E3, we follow the access chain to find its value in E; to
be (A B C D). But that’s not the expected value! We expected to find ( ),
which was hidden away in E;.

The trouble here is that [ was rebound in the interim. The first thing
to note is that the problem is caused by free variables and dynamic binding:
! is free in the functional argument. Local variables aren’t problematic;
neither are global variables. The desired binding for [ is the one which was
current when we were binding the functional argument to the formal
parameter fn. A plausible solution then is to replace all non-local variables
with their values at the time we recognize the functional argument. This will
not always suffice. See page 145 for a counterexample. A more promising
solution associates the name of the current environment with the function
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and use that pair as the value to be given to the formal parameter. When we
want to apply the functional argument we set up a new environment,
introducing a local table with the A-variables bound to their values; only now
we use the saved environment as the beginning of the access chain. The
values of any non-local variables which we encounter in the process of
applying the functional argument will be searched for in the saved
environment.

To initialize this process we must be able to recognize the occurrence of
a functional argument. To that end, we introduce a new operator called
function. This operator takes one argument: a representation of the function.
The effect of function will be to construct a value representing that argument
and the environment which was current when the function-instance was
evaluated.

In the current example, we would recognize the function-construct while
evaluating the arguments to mapfirst; the environment which was current
then was E;. Therefore as we build E, we want to associate the pair
A[x] concatlx;l]] - E, with the formal parameter fn. Whenever we apply fn
we want to use A[[x] concat[x;/]]; and within that context,