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Preface 

" ... it is important not to lose sight of the fact that there is a 
difference between training and education. If computer science is a 
fundamental discipline, then university education in this field 
should emphasize enduring fundamental principles rather than 
transient current technology. II 

Peter Wegner, Three Computer Cultures [Weg 70] 

This text is nominaJ1y about LISP and data structures. However, in the 
process it covers much broader areas of computer science. The author has 
long felt that the beginning student of computer science has been getting a 
distorted and disjointed picture of the field. In some ways this confusion is 
natural; the field has been growing at such a rapid rate that few are 
prepared to be judged experts in all areas of the discipline. The current 
alternative seems to be to give a few introductory courses in programming 
and machine organization followed by relatively specialized courses in more 
technical areas. The difficulty with this approach is that much of the 
technical material never gets related. The student's perspective and 
motivation suffer in the process. This book uses LISP as a means for relating 
topiCS which normally get treated in several separate courses. The point is not 
that we can do this in LISP, but rather that it is natural to do it in LISP. 
The high-level notation for algorithms is beneficial in explaining and 

xi 
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understanding complex algorithms. The use of abstract data structures and 
abstract LISP programs shows the intent of structured programming and 
step-wise refinement. Much of the current work in mathematical theories of 
computation is based on LISP-like languages. Thus LISP is a formalism for 
describing algorithms, for writing programs, and for proving properties of 
algorithms. We use data structures as the main thread in our discussions 
because a proper appreciation of data structures as abstract objects is a 
necessary prerequisite to an understanding of modern computer science. 

The importance of abstraction obviously goes much farther th an its 
appearance in LISP. Abstraction has often been used in other disciplines as 
a means for controlling complexity. In mathematics, we frequently are able to 
gain new insights by recasting a particularly intransigent problem in a more 
general setting. Similarly, the intent of an algorithm expressed in a 
high-level language like Fortran or PL/l is more readily apparent than its 
machine-language equivalent. These are both examples of the use of 
abstraction. Our use of abstraction wilt impinge on both the mathematical 
and the progra.mming aspects. Initially, we will talk about data structures as 
abstract objects just as the mathematician takes the natural numbers as 
abstract entities. We wi1J attempt to categorize properties common to data 
structures and introduce notation for describing functions defined on these 
abstractions. At this level of discussion we are thinking of our LISP-like 
language primarily as a notational convenience rather than a computational 
device. However, after a certain familiarity has been established it is 
important to look at our work from the viewpoint of computer science. Here 
we must think of the computational aspects of our notation. We must be 
concerned with the representational problems: implementation on realistic 
machines, and efficiency of algorithms and data structures. However, it 
cannot be over-emphasized that our need for understanding is best served at 
the higher level of abstraction; the advantage of a high-level language is 
notational rather than computational. That is, it allows us to think and 
represent our algorithms in mathematical terms rather than in terms of the 
machine. It is after a clear understanding of the problem is attained that we 
should begin thinking about representation. 

We can exploit the analogy with traditional mathematics a bit further. 
When we write sqrt(x) in Fortran, for example, we are initially only 
concerned with sqrt as a mathematical function defined such that 
x = sqrt(x)*sqrt(x). We are not interested in the specific algorithm used to 
approximate the function intended in the notation. Indeed, thought of as a 
mathematical notation, it doesn't matter how sqrt is computed. We might 
wish to prove some properties of the algorithm which we are encoding. If so, 
we would only use the mathematical properties of the idealized square root 
function. Only later, after we had convinced ourselves of the correct encoding 
of our intention in the Fortran program, would we worry about the 
comp,utational aspects of the Fortran implementation sqrt. The typical user 



PREFACE xiii 

will never proceed deeper into the representation than this; only if his 
computation is lethargic due to inefficiencies, or inaccurate due to 
uncooperative approximations, will he look at the actual implementation of 
sqrt. 

Just as it is unnecessary to learn machine language to study numerical 
algorithms, it is also unnecessary to learn machine language to understand 
non-numerical or data structure processes. We make a distinction between 
data structures and storage structures. Data structures are abstractions, 
independent of how they are implemented on a machine. Data structures are 
representations of information chosen to exhibit certain ordering and 
accessibility relationships between data items. Storage structures are 
particular implementations of the abstract ideas. Certainly we cannot ignore 
storage structures when we are deciding upon the data structures which wi11 
encode the algorithm, but the interesting aspects of the representation of 
information can be discussed at the level of data structures with no loss of 
generality. The mapping of data structures to storage structures is usually 
quite machine dependent and we are more interested in ideas than coding 
tricks. We will see that it is possible, and most beneficial, to structure our 
programs such that there is a very clean interface between the abstract 
algorithm and the chosen representation. That is, there will be a set of 
representation-manipulating programs to test, select or construct elements of 
the domain; and there will be a program encoding the algorithm. Changes of 
representations only reqUire changes to the programs which access the 
representation, not to the basic program. 

One important insight which should be cultivated in this process is the 
distinction between the concepts of function and alg'orithm. The idea of 
function is mathematical and is independent of any notion of computation; 
the meaning of "algorithm" is computational, the effect of an algorithm being 
to compute a function. Thus there are typically many algorithms which will 
compute a specific function. 

This text is not meant to be a programming manual for LISP. A 
certain amount of time is spent giving insights into techniques for writing 
LISP functions. There are two reasons for this. First, the style of LISP 
programming is quite different from that of "normal" programming. LISP 
was one of the first languages to exploit the virtues of recursive 
programming and explore the power of procedure-valued variables. Second, 
we will spend a great deal of time discussing various levels of implementation 
of the language. LISP is an excellent medium for introducing standard 
techniques in data structure manipulation. Techniques for implementation of 
recursion, implementation of complex data structures, storage management, 
and symbol table manipulation are easily motivated in the context of 
language implementation. Many of these standard techniques first arose in 
the implementation of LISP. But it is pointless to attempt a discussion of 
implementation unless the reader has a thorough grasp of the language. 
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Granting the efficacy of our endeavor in abstraction, why study LISP? 
LISP is at least fifteen years old and many new languages have been 
proposed. The difficulty is that the appropriate combination of these 
features is not present in any other language. LISP unifies and rationalizes 
many divergent formulations of language constructs. One might surmise that 
a new language, profiting from LISP's experience, would make a better 
pedagogical tool. A strong successor has not arrived, and toy languages are 
suspect for several reasons. The student may suspect that he is a subject in a 
not too c1ever experiment being performed upon him by his instructor. 
Having a backlog of fifteen years of experience and example programs 
should do much to alleviate this discomfort. The development of LISP also 
shows many of the mistakes that the original implementors and designers 
made. We will point out the flaws and pitfalls awaiting the unwary language 
designer. 

We c1aim the more interesting aspects of LISP for students of computer 
science lie not in its features as a programming language, but in what it can 
show about the structure of computer science. There is a rapidly expanding 
body of knowledge unique to computer science, neither mathematical nor 
engineering per se. Much of this area is presented most c1early by studying 
LISP. 

Again there are two ways to look at a high level language: as a 
mathematical formalis_m, and as a programming language. LISP is a better 
formalism than most of its mathematical rivals because there is sufficient 
organizational complexity present in LISP so as to make its implementation a 
realistic computer science task and not just an interesting mathematical 
curiosity. Much of the power of LISP lies in its simplicity. The data 
structures are rich enough to easily describe sophisticated algorithms but not 
so rich as to become obfuscatory. Most every aspect of the implementation of 
LISP and its translators has immediate implications to the implementation of 
other languages and to the design of programming languages in general. 

We will describe language translators (interpreters and compilers) as 
LISP functions. The structure of these translators when exposed as LISP 
functions aids immensely in understanding the essential character of such 
translators. This is partly due to the simplicity of the language, but perhaps 
more due to our ability to go right to the essential translating algorithm 
without becoming bogged down in details of syntax. 

LISP has very important implications in the field of programming 
language semantics, and is the dominant language in the c10sely related study 
of provability of properties of programs. The idea of proving properties of 
programs has been around for a very long time. Goldstein and von 
Neumann were aware of the practical benefits of such endeavors. J. 
McCarthy's work in LISP and the Theory of Computation sought to 
establish formalisms and rules of inference for reasoning about programs. 
However, the working programmers recognized debugging as the only tool 
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with which to generate a "correct" program, though clearly the 
non-occurrence of bugs is no guarantee of correctness. Until very recently 
techniques for establishing correctness of practical programs simply did not 
exist. 

A recent set of events is beginning to change this. 

1. Programs are becoming so large and complex that, even though we write 
in a high-level language, our intuitions are not sufficient to sustain us 
when we try to find bugs. We are literally being forced to look beyond 
debugging. 

2. The formalisms are maturing. We know a lot more about how to write 
"structured programs"; we know how to design languages whose constructs 
are more amenable to proof techniques. And most importantly, the tools 
we need for expressing properties of programs are finally being 
developed. 

3. The development of on-line techniq ues. The on-line system, with its 
sophisticated display editors, debuggers and file handlers, is the only 
reason that the traditional means of construction and modification of 
complex programs and systems has been able to survive this long. The 
interactive experience can now be adapted to program verifiers and 
synthesizers. 

This view of the programming process blends wen with the LISP 
philosophy. We will show that the most natural way to write LISP programs 
is "structured" in the best sense of the word, being clean in control structure, 
concise by not attempting to do too much, and independent of a particular 
data representation. 

M any of the existing techniques for establishing correctness originated 
in McCarthy's investigations of LISP; and some very recent work on 
mathematical models for programming languages is easily motivated from a 
discussion of LISP. 

LISP is the starting point for those interested in Artificial Intelligence. 
It is no longer the "research" language, but has become the "systems" 
language for A.1. Today's research languages are built on LISP, using LISP 
as a machine language. 

FInally there are certain properties of LISP-like languages which make 
them the natural candidate for interactive program specification. In the 
chapter on implications of LISP we will characterize "LISP-like" and show 
how interactive methods can be developed. 

This text is primarily designed for undergraduates and therefore an 
attempt is made to make it self-contained. There are basically five areas in 
which to partition the topiCS: the mechanics of the language, the evaluation 
of expressions in LISP, the static structure of LISP, the dynamiC structure of 
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LISP, and the efficient representation of data structures and algorithms. 
Each area builds on the previous. Taken as a group these topics introduce 
much of what is interesting computer science. 

The first area develops the programming philosophy of LISP: the use 
of data structures in programmiilg; the language primitives, recursion, and 
other control structures. The second area, involving a careful study of the 
meaning of evaluation in LISP, gives insights into other languages and to 
the general question of. implementation. The next two areas are involved 
with implementation. The section on static structure deals with the basic 
organization of memory for a LISP machine -- be it hardware or simulated 
in software. The dynamics of LISP discusses the primitive control structures 
necessary for implementation of the LISP control structures and procedure 
ca11s. LISP compilers are discussed here. The final section relates our 
discussion of LISP and its implementation to the more traditional material of 
a data structures course. We discuss the problems of efficient representation 
of data structures. By this point the student should have a better 
understanding of the uses of data structures and should be motivated to 
examine these issues with a better understanding. 

A large collection of problems has been included. The reader is urged 
to do as many as possible. The problems are mostly non-trivial; they attempt 
to be realistic, introducing some new information which the readers should 
be able to discover themselves. There are also a few rather substantial 
projeCts. At least one should be attempted. There is a significant difference 
between being able to program small problems and being able to handle 
large projects. Small programming projects can be accomplished in spite of 
any admonitions about "good programming style". A large project is an 
effective demonstration of the need for elegant programming techniques. 
The text is large and covers much more than is recommended for a 
one-semester course. A typical one semester course on data structures covers: 

Chapter 1: alJ 
Chapter 2: without 2.4, 2.5, and 2.10. 
Chapter 3: without the mathematical aspects of 3.13 

Chapter 4: without 4.7, 4.8, and the mathematical aspects of 4.11 
Chapter 5: without 5.8, 5.19, and 5.20 
Chapter 6: without 6.8, and 6.12 through 6.20 
Chapter 7: without 7.5, 7.6, and 7.10 through 7.1i 
Chapter 8 is also optional. 

If a good interactive LISP implementation is available, then the pace 
can be quickened and the projects enlarged. However, if only a poor or 
mediocre implementation is accessible, then the course time is better spent 
Without any actual programming, or the course should be augmented to 
inc1ude an implementation laboratory. LISP is an interactive language; 
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attempts at other modes of operation do a disservice to both the language 
and the user. 

Finally a note on the structure of the text. The emphasis flows from the 
abstract to the specific, beg'inning with a description of the domain of LISP 
functions and the operations defined over that domain, and moves to a 
discussion of the details of efficient implementation of LISP-like languages. 
The practical-minded programmer might be put off by the "irrelevant" 
theory and the theoretical-minded mathematician might be put off by the 
"irrelevant" details of implementation. If you lie somewhere between these 
two extremes, then welcome. 
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CHAPTER 1 

Symbolic Expressions 

1.1 Introduction 

This book is a study of data structures and programming languages; in 
particular it is a study of data structures and programming languages 
centered around the language LISP. However, this is not a manual to help 
you become a proficient LISP coder. We will study many of the formal and 
theoretical aspects of languages and data structures as well as examining the 
practical applications of data structures. We wilt show that this area of 
computer science is a discipline of importance and beauty, worthy of careful 
study. How are we to proceed? How do we introduce rigor into a field whose 
countenance is as ad hoc and diverse as that of programming? We must bear 
in mind that the results of our studies are to have practical applications. We 
must not pursue theory and rigor without proper regard for practice. Our 
study is not that of pure mathematics; our results will have applications in 
everyday programming practice. However, for gUidance let's look at 
mathematics. Here is a well-established discipline rich in history and full of 
results of both practical and theoretical importance. 

One of the more fertile, yet easily introduced areas of mathematics, is 
that of elementary number theory. It is easy to introduce because everyone 
knows something about the natural numbers. Number theory studies 
properties of a certain class of operations definable over the set N of 

1 
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non-negative integers also called natural numbers. A very formal 
presentation might begin with a construction of N from more primitive 
notions, but it i$ usually assumed that the reader is famiHar with the 
fundamental prop.erties of N. In either case the next step would be to define 
the class of operations which we would al10w on our domain. 

We shall begin our study of LISP in a similar manner, as an 
investigation of a certain class of operations definable over a domain of 
objects, cal1ed Symbolic Expressions. Though most people know something 
about the natural numbers, the term "symbolic expresssions" has no standard 
interpretation. We must define what we mean by "symbolic expression". If 
we asked someone to define the domain N, the definition we would receive 
would depend on how familar that individual was with the properties of the 

natural numbers. 1 

For most people and most purposes, the fol1owing characterization of a 
natural number is satisfactory: 

I A natural number is a sequence of decimal digits. 

The definition assumes the terminology of "sequence", "decimal" and "digit" 
are known. If any of these terms are not understood, they can be further 
elaborated. However, this process of explanation and description must 
terminate. We must assume that some concepts reqUire no further 
elaboration. The current definition suffers from a different kind of 
inadequacy. It fails to illuminate the relationships between natural numbers. 
The "meaning" of the natural numbers is missing. It is like giving a person 
an alphabet and rules for forming syntactically correct words but not 
supplying a dictionary which relates these words to the person's vocabulary. 

If pressed for details we might attempt a more elaborate 
characterization like the fol1owing: 

1. zero is an element of N. 
II 2. If n is in N then the successor of n is in N. 

3. The only elements of N are those created by finitely many applications 
of rules 1 and 2. 

Definition II appears to be completely at the other end of the spectrum; it 
tells us very little about the appearance of the integers. It gives us an initial 
element zero and an operation called successor, which is to exhibit a new 
element, given an old one. Unless we are careful about the meaning of 
successor, definition II wilJ be inadequate. For example if we define the 

I We will not attempt to arrive at a completely self-contained definition 
of "natural number". That is a difficult undertaking. See [Goo 57]. We wi1l 
be satisfied with discussing some of their characteristics. 
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successor of a natural number to be that same number then II is satisfied but 
unsatisfactory. 

We can define successor as a specific mapping, S, which creates new 
elements subject to the rules that two elements, x and yare equal just in the 
case that S(x) equals S(y); and S(x) is different from x, for any element x. 
We select a distinguished element, 0, as a notation for zero; and abbreviate 
S(O) as 1, and abbreviate S(S(O» as 2 etc. in the usual manner. 

The characterization of decimal digits given in I 'is syntactic. The 
notation itself tells us nothing about the interrelationships between the 
numbers, but it does give us a notation for representing them. Thus 2 can 
be used to represent two. One benefit of the S-notation is that it explicitly 
shows the means of construction. That is, it shows more of the properties of 
these numbers than just distinguishability. We shall refer to the digit 
representation as numerals and reserve the term, natural number, for the 
abstract object. Thus numerals denote, stand for, or represent the abstract 
ob jects called natural numbers; and definition I is better stated as: "a natural 
number can be represented as a finite sequence of digits". 

But notation and syntax are necessary and we must be able to give 
precise descriptions of syntactic notions. Given a choice between the two 
previous definitions, I and II, it appears that II is more precise. Much less 
is left to the imagination; given zero and a definition of successor the 
definition will act as a recipe for producing elements of N. This style of 
definition is called an inductive definition or generative definition. 

The basic content of an inductive definition of a set of objects consists 
of three parts: 

IND 

(1) A description of an initial set of objects; the elements of this set 
are the initial elements of the set we are describing in the inductive 
definition. 

(2) Given the description of some existing elements in the set, we 
are given a means of constructing more elements. 
(3) A termination clause, saying that the only elements in the set are 
those which gained admittance by either (1) or (2). 

Notice that our definition of N, in terms of zero and successor, is an instance 
of IND: we are defining the set of natural numbers: zero is initially included 
in the set; then applying the second phrase of the definition we can say that 
one is in the set since one is the successor of zero. 

We can recast the positional notation description as an inductive 
definition. 
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1. A digit is a numeral. 
2. If n is a numeral then n followed by a digit is a numeral. 
3. The only numerals are those created by finitely many applications of 1 

and 2. 

In words, "a numeral is a digit, or a numeral followed by a digit". 
In this application of IND, the initial set has more than one element; 

namely the ten decimal digits. Again, we assume that the questioner knows 
what "digit" means. This is a characteristic of an definitions: we must stop 
somewhere in our explication. Notice too that we assume that "followed by" 
means juxtaposition. 

Inductive definitions have been the province of mathematics for many 
years; however, computer science has developed a style of syntax specification 
called BNF (Backus-Naur Form) equations which has the same intent as that 
of inductive definitions. Here is the previous inductive definition of 
"numeral" as a set of BNF equations: 

<numeral> ::= <digit> 
<numeral> :;= <numeral><digit> 
As an abbreviation, the two BNF equations may also be written: 
<numeral> ::= <digit> I <numeral><digit>. 

A comparison between the BNF and the inductive descriptions of "numeral" 
should clarify much of the notation, but we wilt give a more detailed 
analysis. The symbol "::=" may be read "is a", the symbol III" may be read 
"orll. The character strings beginning with "<II and ending with ">" 
correspond to "numeral" and "digit" in 1 and 2; by convention, components of 
BNF equations which describe elements are enclosed in "<" and 11>11; and 
elements which are given explicitly are written without the "< >" fence. Thus 
lI<digit> II is not a numeral but is a description; to make the definition of 
<numeral> complete we should include an equation like: 

<digit> :: = 0 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

Juxtaposition of objects implies concatenation of the syntactic objects. Thus 
1189" is an instance of "<numeral><digit>". 

It will be convenient to have notations for the abstract objects as well 
as notations for the syntactic representations. The BNF equations describe 
syntactiC classes; for example, the set described by <numeral> is the syntactic 
class of numerals. 2 When we are talking about a syntactic class of objects we 

2Note we could have written <numeral> ::= <digit> and 
<numeral> ::= <digit><numeral>, generating the same class, but in a different 
order. ~uestions of syntax and grammars will not be stressed in this book. 
See [A ho 72]. 
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wi11 write <object>; when we are talking about the abstract object we will 
write <object>. For example <numeral> is the eta.ss of natural numbers. 

What should be remembered from the discussion in this section? We 
need precise ways of describing the elements of olir study on data structures. 
We have seen that inductive definitions are a powerful way of describing 
sets of objects. We have seen a variant of inductive definitions called 
Backus-Naur Form equations. We will use BNF equations to describe the 
syntax of our data structures and our language. 

We have also introduced the difference between an abstract object and 
a representation for that object. This distinction has been well studied in 
philosophy and mathematics, and we will see that this idea has strong 
consequences for the field of programming and computer science. Abstract 
ob jects and their representations will play crucial roles in this text. 

1.2 Sym bolic Expressions: Abstract Data Structures 

We wish to show that the use of abstraction will benefit the study of data 
structures and LISP. To begin our study we should therefore characterize 
the domain of LISP data structures in a manner similar to what we did for 
numbers. 

Our objects are caned Symbolic Expressions. Our domain of 
Symbolic Expressions is named <sexpr>. Symbolic expressions are also 
known as S-expressions or S-exprs. 

The set of symbolic expressions is defined inductively over a base set 
named <·atom>. The set <atom> can itself be defined inductively. We give a 
set of BNF equations for elements of <atom> below, but the essential 
character of the domain is that it represents two kinds of objects: the literal 
atoms and the integers. The elements of <atom> are called atoms. 

<atom> 
<literal atom> 

<numeral> 

<atom letter> 
<digit> 

:: = <literal atom> I <numeral> I -<numeral> 
:: = <atom ietter> 
:: = <literal atom><atom letter> 
:: = <1iterai atom><digit> 
:: = <digit> I <numera1><digit> 

:: = A I B Ie ... I Z 3 

:: = 0 I 1 I 2 ". I 9 

A <literal atom> is therefore a string of uppercase letters and digits, subject 
to the provision that the first character in the atom be a letter. 

3We use ellipses here as a convenient abbreviation. 
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For example: atoms non atoms 

ABe12] 2A 

12 a 
A4D6 $$g 
NIL ABD. 
T (A. B) 

The characteristics of atoms which most interest us are their 
distinguishability: the atom ABC is distinguishable from the atom AB. That 
"AB" is a part of "ABC" is not germane to our current discussion. 4 Similarly, 
we win seldom need to exploit numerical relationships underlying the 
numerals; at most we will use simple counting properties. Therefore most of 
our discussions will deal with non-numeric atoms. Most implementations of 
LISP do however contain a large arithmetic entourage. Many 
implementations also give a wider class of Hteral atoms, allowing some special 
characters to appear; for most of our discussion the above class is qUite 
sufficient. 

The domain of Symbolic expressions, called <sexpr> is defined 
inductively over the domain <atom>. 5 

1. Any element of <atom> is an element of <sexpr>. 

2. If at and a 2 are elements of <sexpr>, then the pair of at and a 2 is in 
<sexpr>. Pairs are also called dotted-pairs since their standard 

representation in LISP is (at.a2)' 

Thus <sexpr> includes <atom> as a proper subset. The notation we chose 
for the dotted-pairs is the fol1owing: 

A dotted-pair consists of a left-parenthesis followed by an 
S-expr, foHowed by a period, followed by an S-expr, 
followed by a right-parenthesis. 

For example, let aJ be (A. B) and a 2 be (J. T); then (at. a 2) is 
«A.B).(J.T». 

Greek letters a and fJ will be used in the text to designate pattern 
matches. In the current context the pattern matches will involve 
S-expressions; they can match any well-formed S-expression. For a further 

example, let (A . (B . e» be (a . fJ) then a is A and fJ is (B. e). These 
variables are called match-variables or meta-variables. 

Finally here's a BNF description of the full set of S-expressions. 

<sexpr> :: = <atom> I «sexpr> . <sexpr» 

4However, we wiJI discuss such topics in Section 7.3 on string 
processing. 

5We wi1l not give the termination clause, but it is assumed to hold. 
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Notice that if we allow real numbers as atoms then some care would 
need to be exercised when writing S-expresSions. For example, should (3.1.2) 
be interpreted as the dotted pair (3 . 1.2), as the dotted pair (3.1 .2), or is it 
just an ill-formed expression? Interpretation of such ambiguous constructs 
will depend on the implementation; such details are discussed later. 

Examples: S-exprs non S-exprs 

A A.B 

(A.B) (A.B.C) 

(((A. B) . C) . (A . B» ((A . B» 

The set described by <sexpr> is a specific syntactic representation of the 
domain <sexpr>. However, the set <sexpr> will be a convenient notation 
since it makes explicit the construction of the composite S-expr from its 
components, 6 and the notation is also consistent with LISP history. 

However there is more to the domain <sexpr> than syntax, just as 

there is more to N than positional notation. 7 What are the essential features 
of S-expressions? Symbolic expressions are either atomic or they have two 
components. If we are confronted with a non-atomic S-expression then we 
want a means of distinguishing between the "first" and the "second" 
component. The "dot notation" does this for us, but obviously "(", ")", and "." 
of the dotted-pairs are simply notation or syntax. We could have just as well 
represented the dotted-pair of A and B as the set-theoretic ordered pair, 
<A,B> or any other notation which preserves the essentials of the domain 
<sexpr>. 

The distinctions between abstract objects and their representation are 
quite important. As we continue our study of more and more complex data 
structures the use of an abstract data structure instead of one of its 
representations can mean the difference between a clear and clean program 
and· a confusing and complicated program. There are similar gains for us 
when we study algorithms defined over these abstract data structures. The 
less the algorithm knows about the representation of the data structure, the 
easier it will be to modify or understand that algorithm. Indeed you may 
have already experienced this phenomenon if you have programmed. A 
program written in a high-level language is almost always more 
understandable than its machine-language counterpart. The high-level 
program i.~ more abstract whereas the machine-language program knows a 

6 Just as the "successor" notation shows the construction of the numbers 
from O. This kind of notation will be much more useful in LISP, since our 
interest in data structures will focus on the construction process and the 
interrelationships between components of an S-expr. 

72, II in Roman numerals, 10 in binary, "zwei" in German ... are aH 
representations of the same number. 
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great deal about representations. Final1y, if you still doubt that 
representations make a difference in clarity, try doing long division in 
Roman numerals. We wi11 say much more about abstraction and 
representation in algorithms and data structures as we proceed, 

1.3 Trees: Representations of Symbolic expressions 

Besides the more conventional typographical notations, S-expressions also 
have interesting graphical representations. S-exprs have a natural 
interpretation as a structure which we call a LISP-tree or L-tree. 

Here are some L-trees: 

/\ 
A 1J NIL 

1 
D E 

We can give an inductive definition: 

1. Any element of <atom> is an L-tree. 
2. If n 1 and n2 are L-trees then 

/\ 
nl n2 

also forms an L.,tree. Most important: there are no intersecting branches. 
Later we will talk about more general structures cal1ed list-structures. 

You can see how to interpret S-exprs as L-trees. The atoms are 
interpreted as terminal nodes; and since non-atomic S-exprs always have two 
sub-expressions we can write the first sub-expression as the left branch of an 
L-tree and the second sub-expression as the right branch. 
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For example: 

(A. B) 

/\ 
A B 

(A.(B.C» 

IA 
ABC 

«A.B).C) 

M 
ABC 

Other representations of LISP-trees are possible; for example 
(A . (B . C» can be expressed as: 

'q=qJ 
B C 

or: 

These last two representations are called box-notation. 
Please keep in mind the distinction between the abstract S-expr and the 

several representations which we have shown. The question of 
representation is so important and will occur so frequently that we introduce 

notation for a representational mapping, tR. To represent domain D in 

domain E, we will define a function tRO-+E which usually will be specified 
inductively, and will express the desired mapping. 

For example a representational mapping tR<sexpr>-+l-tree can be given: 

tR[ <atom>] = <atom> 

and for Q and fJ in <sexe.r>: 

fIltU«. tl)] -A 
tR[«] tR[fJ] 

Typically context will determine the appropriate subscript on the 

tR-mapping; thus we will omit it. 

Problems 

1. Which of the following are dotted-pairs? 
a. (X . Y) b. «A. (B . C» c. A2 

2. Write the foHowing as LISP trees: 
a. « A . B) . (B . (C . D») 
c. «X. NIL). (Y . (Z . NIL») 

d. (X . Y2 . Z) 

b. «(A. B) . C) . E) 
d. (NIL. NIL) 
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3. Write the following LISP trees as S-exprs: 
a. h. c. 

1\ 
ABC 

o NIL 
d. e. 

GI3-q.Ip 1 CONS ·+1 X 

CiR ~~ ¥-rr 
I · + I",-Y--,--N_I L~ 

1.4 Primitive Functions 

So far we have described the domain of abstract objects cal1ed S-exprs and 
have exhibited several representations for these objects. We will now 
describe some functions or operations to be performed on this domain. We 
need to be a bit careful here. Weare about to see one of the main differences 
between mathematics and computer science: mathematics emphasizes the idea 
of function; computer science emphasizes the idea of algorithm, process, or 
procedure. 

Mathematically a function is simply a mapping such that for any given 
argument in the domain of the function there exists a unique corresponding 
value. In elementary set theory, a definition of function f involves saying that 
f is a set of ordered pairs f = { <xI, 'I>' ... }; the xts are all distinct and the 
value of the function f for an argument Xi is defined to be the corresponding 
Yi' No rule of computation is given to locate values; with the first definition 
it is implicit that the internal structure of the mapping doesn't matter; in the 
set-theoretic definition, the correspondence is explicitly given. 

An algorithm or procedure is a process for computing values for a 
function. The factorial function, nl, can be computed by many different 
algorithms; but as a function it is a set 

{<O,l>, <1,1>, <2,2>, <),6>, ... <n,nl>, ... }. 

The domain of a function is the set of all values for which the function is 
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defined; the range of a function is the set of all values which the function 
takes on. A careful definition of a function requires specification of a 
further set called the domain of discourse. The domain of discourse, named 
D, consists of all possible values which may occur as the argument to a 
function. If the domain of a particular function f coincides with D then f is 
said to be a total function over 0; if there are elements of 0 which are not 
in the domain of f then f is a partial function over D, and I is said to be 
undefined for those values. For example, the factorial function is typically 
considered to be partial over the integers: total for the natural numbers, but 
undefined for negative integers. Thus the concept of "total" or "partial" is 
relative to a specified domain of discourse. However, a function f total over 
a domain OJ can be extended to be total over a domain DJuD2 by assigning 

values to f(d) for deD2-D J. In this way, for example, factorial can be 
extended to be total over the integers by defining nl to be 0 for n less than 
o. We may extend the range of a function when we extend the domain; thus 
f( d) need not be in the range of the original f. For example, we added 0 to 
the range when we extended the factorial function. When we extend the 
range we must specify what additions have been made. 

A substantive decision needs to be made on how we are to handle 
partial functions. 8 Since we are attempting to be reasonably realistic about 
our modelling of computation we should be as precise as possible in our 
formalism. We could introduce a class of error values and include them in 
the range of f; these values would be given as the result of applying f to an 
argument not in its domain; or we could simply say that the result is 
"unspecified". 9 We shall pick an intermediate position; we shall introduce 

one new element, .L, catted "unspeCified" or "undefined", or "bottom". JO We 
will define att our functions over domains augmented with this element; thus 

constructs like. f(.L) = a are al1owed. For the moment, think of .L as covering 
all anomalous conditions which could be detected and printed as error 
messages; later we will refine this interpretation. 

As we define new data structures we will frequently want to extend our 
functions to larger domains. For most of our purposes, a function f defined 
on (an augmented domain) 0 will be extended to a larger domain, DuD J, by 

8Partial functions occur naturatty in computation. Most programs will 
fail to give results under some circumstances. The function which that 
program is computing is a partial function. Some error conditions can 
produce error messages; some error conditions may cause the program to 
loop. We will analyze both situations. 

9How "unspecified" manifests itself on a machine will depend on the 
implementation. Sometimes error messages are given; sometimes not. 

t O"bottom" is sometimes written .J.,. 
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defining j(d l ) = j(J..) for dleDI-D, It therefore j(J..) need not be J... 

However many of the functions which we will examine are defined such that 

j( ... , J.., .. .) = J... Functions which possess this property are caned strict 
functions. 

To apply this discussion of J.. to S-exprs we will define an extended 
domain S to be: 

S = <sexpr> u {.1.} 

Then we can talk about functions which are total over S or over <sexpr>, 
and we will talk about functions which are partial over <sexpr>. When we 
ask if an S-expr function is partial or total without specifying a domain, we 
are asking the question over the natural, unextended domain, <sexpr>. 

We will now move towards a more algorithmic presentation. We win 
return to the mathematical aspects occasionally, but our main concern in this 
text is a treatment of algorithms expressed in LISP. We wi11 continue to say 
"LISP function" or just "function", but what we are expressing or describing 
is a particular algorithm or procedure, not a function in the mathematical 
sense. When we wish to stress the distinction we will use "procedure" or 
"algorithm ". 

The first LISP function we consider is cons. This binary function is 
used to generate S-exprs from less complicated S-exprs. cons is called a 
constructor-function and is a strict function; 12 it is a total function over the 
domain S. More precisely, since cons is a binary function, each argument of 
cons is free to take on values from S. 13 Whenever cons is presented with two 

elements" and IJ from <sexpr>, cons[a;IJJ returns a new S-expr (" .IJ). 

Interpreted as a LISP-tree, cons[a;IJ] forms a new LISP tree which has a left 

branch " and has aright branch IJ. 

For example: cons[A; B) = (A . B) 

cons[(A . B); C] = «A . B) . C) 

Expressions which can have a value, are caned forms. S-exprs are 
forms since they are the constants of our language: the value of a constant is 
that constant. Function applications are forms: the value is the result of 
performing the deSignated function on the deSignated arguments. 

Notice that we are designating function application in LISP by 

tIThe exception to this extension convention involves the definition of 
predicates which can ten whether or not an arbitrary element is in a specified 
domain. These predicates always give true or false when applied to any 

element other than .1.. 
12For an alternative interpretation of cons see [Fri 7Sa]. 
13We could also say that cons is total over the Cartesian product SxS. 
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"function name, followed by a list of arguments delimited by '[' and ']'." 14 
The '[...]'-notation is part of the LISP syntax and we will reserve 
'( ... )'-notation for the function application of mathematics. In a few places in 
our discussions the distinction will be important. Typically the distinctions 
will occur when we wish to distinguish between the LISP algorithm and the 
mathematical function computed by that algorithm. 

A critical distinction has already arisen in discussing forms like 
cons[A;B). The constructor cons is actual1y an algorithm. Since it is a 
primitive algorithm it wilt be represented on a machine by a sequence of 
operations which dep.end on the implementation of S-exprs and depend on 
the primitive operations of the hardware machine. The process of extracting 
a value from the form cons[A; B) is called evaluation. Evaluation is an 
algorithmic idea; there is no idea of evaluation involved with the concept of 
"function". To reinforce this algorithmic interpretation we will say things 
like" a function returns as value ... " meaning the algorithmic representation 
of a function computes and produces a value. 

We have two strict, unary selector functions, car and cdr, 15 for 
traversing LISP-trees. We already know the meaning of "strict"; a unary 
function expects one argument; and a selector function is a data structure 
manipulating function which will select a component of a composite data 
structure. Such LISP functions are called selectors since they wilt select 
components of non-atomic elements of <sexpr>. Thus car and cdr are 
partial functions over <sexpr>: they give values in <sexpr> only for 

non-atomic arguments; they give J. whenever they are presented with an 
atomic argument. 

When given a non-atomic argument, (<< , ~), car returns as value the 

first subexpression, "; cdr (pronounced could-er) returns as value the second 

sub-expression fl. 

For example: car[(A , B)] = A 

carrA] =J. 

cdr[(A . B)] = B 

cdr[(A . (B . C»] = (B . C) 

car[«A . B) . C») = (A . B) 

14The syntax equations for forms are given on page 17. 
15These names are hold-overs from the original implementation of 

LISP on an IBM 704. That machine had partial-word instructions to 
reference the address and decrement parts of a machine location. The a of 
car comes from "address", the d of cdr comes from "decrement". The c and r 
come from "contents of" and "register". Thus car could be read "contents of 
address part of register", 
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We will include functional composition as a notation for combining 
LISP expressions. The composition of two unary functions f and g is 

another function, denoted in mathematics by fog; The value .of an 

expression, fog[x], is the value of fig[x]]. That is, the value of fog[x] is a z 

such that y is the value of g[x] and z is the value of fiy]. fog may be 
undefined for several reasons: g[x] may be undefined and f is strict, .or fly] 
may be undefined. 

Here are some examples of composition: 

carocdr[(A . (B . e))] = car[cdr[(A . (B . e)]] = car[(B . e)] = B 

cdrocdr[( A . (e . B))] = cdr[cdr[( A . (e . B ))]] = cdr[( e . B)] = B 

edr[edr[A]] = .L 

ear[tdr[( A . B)]] = .L 

car[eons[X ,'A]] = X cdr[cons[Y;X]] = x 
All the functions in these examples are strict; for that reason, if g[x] gives .L 

then the composition fog[x] also gives .L. that need not be the case if f is 
non-strict. 

The composition of many car and cdr functions occurs so frequently 
that an abbreviation has been developed. Given 'Such a compesition, we 
select in left-to-right order, the relevant a's and d's in the car's and cdr's. We 
sandwiCh this string of a's and d~s between a left-hand c and a right-hand r 
and give the composition this name. 

For example: cadr[x] <= car[cdr[x]] 

eaddr[x] <= car[cdr[cdr[x]]] 

cdar[x] <= cdr[car[x]] 

These compositions are also called car-edr-chains, and are useful in 
traversing LISP-trees. The notation "<=" is to be read "is defined to be the 
function ... ". This notation is only a temporary convenience and not part .of 
LISP. Soon we will study what is involved in giving and using definitiens 
in LISP (Section 3.4). For the moment intuition will suffice. 

It is useful to introduce some terminology for the comp.onents .of a 
function definiti.on. Let 

fix}; ... ; xn] <= ~ 

represent a typical definition. The name of the functi.on is f; the body .of the 

functi.on is the expression t The list [Xt; ... ; xn] appearing after the functien 
name is called the formal parameter list. The elements .of the fermal 
parameter list are caned f.ormal parameters and will playa rele similar te 
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that of variables in mathematics. 16 Therefore we will also refer to formal 

parameters as variables. Lower-case identifiers 17 will be used as variables 
and function names. So for example Y and CAR are atoms; y and car could 
be used as variables. Be clear on the distinction between LISP variables like 

x, y or foo, and the match variables 18 1ike a or fJ. If a and fJ denote 

S-expressions then (a . fJ) denotes a well-formed S-expr. The construction, 
(x . y), is not well-formed, but cons[xjY] is correct. 

A function is applied using the common notation of function 
application: 

flal" ... ; an] 

The ai's are called actual parameters; for an application to be well formed, 
the actual parameters must agree in number with the formal parameters of 
the definition and they are to be associated in a one-for-one order, ai with Xi' 
Thus in the expression car[cdr[(A. B))] the actual parameter to the car 
function is cdr[(A. B)), and the actual parameter to cdr is (A. B). The 
process of associa.ting formal parameters with actual parameters is called 
binding. A large part of our study will involve various aspects of the 
binding process. 

It is convenient to introduce some terminology to distinguish between 
an algorithmic idea and its mathematical counterpart. The phrase 
"function call" is used to name the procedural counterpart to 
"function application". LISP is called an appJicative language since it is 
based on the idea of function application. Mathematically speaking, a 
composition of functions is simply another function -- i.e., a mapping -- and 
therefore nothing need be said about how to compute composed functions. 
From a computational point of view, we want to express evaluation of 
expressions involving composed functions in terms of the evaluation of 
subexpressions. This would allow us to describe a complex computation in 
terms of an appropriate sequence of subsidiary com,putations. One of the 
more natural ways to evaluate expressions involving compositions is to 
evaluate the inner-most expressions first, then work outwards. Assume 
arguments to multi-argument functions are evaluated in left-to-right order. 
Thus: 

cons[car[(A . B)];cdr[(A . (J . 2»]] reduces to cons[A;cdr[(A. (J . 2»]] 
reduces to cons[A;( 1 . 2)] 
reduces to (A. (J . 2» 

This may seem to be a simple operation but in fact evaluation is a very 

16The behavior of formal parameters and 'variables is not identical. 
We will say more about the distinction in Section 4.1. 

17See page 17 for the BNF equations for <identifier>. 
18also called meta-variables 
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complex process. The value of an expression may depena on the order in 
which we do things. For example, consider the evaluation of 
second[car[A); B) where second[x;y) <= y. If we expect second to be a strict 

function, then second[car[A); B) must return J. even though it is reasonable 
to believe that the value of the computation should be B since second does 
not visibly depend on the value of its first parameter. It appears that if we 
postponed the evaluation of the arguments until those values were actual1y 
needed, then at least this problem would be solved. However, the 
conseq uences of defining a function to be strict are severe; they cannot be 
sidestepped by resorting to different schemes for evaluating arguments. 
There is an alternative, but not particularly attractive, strategy for assigning 
strictness: we could examine the body of the function; if the function uses all 
its parameters, then it's strict. If the function doesn't depend on one or more 
parameters, then it's non-strict. Thus with this interpretation, second is 
non-strict. We prefer the initial interpretation, reasoning that, if a function 
is passed bad information, then we wish to know about it, even if the 
function does not use that specious result. 

Strictness is closely related to evaluation schemes for parameter passing. 
Here are two common techniques: 

eBV Evaluate the arguments to a function; pass those evaluated 
arguments to the function. 

This scheme, called Call By Value, is what we were informally using to 
evaluate the previous examples. 

An alternative evaluation process is Call By Name: 

CBN Pass the unevaluated arguments into the body of the function. 

Assuming second is defined to be strict, then second[car[A]; B] yields J. under 
either CBV or CBN. However if we define second to be non-strict then CBV 

and CBN wil1 both give value B. With CBV, x is bound to J.; while with 
eBN x is bound to carrA]. .. 

Further relationships between evaluation schemes and strictness will be 
investigated. On page 21 we discuss non-terminating computations. In 
Chapter 3 we wi11 discuss evaluation techniques and· will give a precise 
characterization of the evaluation of LISP expressions. On page 20 we will 
introduce a non-strict language construct but, until that time, intuitive 
application of CBV will suffice. . 

We must exercise care when discussing the process of evaluation; the 
function we are characterizing by computing its values will often depend on 
our choice of evaluation scheme. 
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Before introducing a further class of'LISP expressions we summarize 
the syntax of the LISP expressions al10wed s? far: 

<form> 
<constant> 
<application> 
<function-part> 
<arg> 
<variable> 
<identifier> 
<letter> 
<digit> 

::= <constant> I <application> I <variable> 
::= <sexpr> (where <sexpr> is given on page 6) 
::= <function-part>[ <arg>; ... ;<arg>] 
::= <identifier> 
::= <form> 
::= <identifier> 
::= <letter> I <identifier><letter> I <identifier><digit> 
::= a I b I c ... I z 
::= 112 1 ... 19 

The use of e11ipses in the last equation is an abbreviation we have seen 
before. The use of eHipses in the <application> equation is different. It is an 
abbreviation meaning "zero or more occurrences". Thus the equation means 
an <application> is a <function-part> fo11owed by the symbol "[" followed by 
zero or more <arg>'s followed by the symbol "]". This use of ellipses can 
always be replaced by a sequence of BNF equations. for example, this 
instance can be replaced by: 

<application> ::= <function-part>[ <arg-list>] I <function-part>[ ] 
<arg-list> ::= <arg> I <arg-Jist>i<arg> 

To improve readability we will frequently violate these syntax equations, 
allowing function names containing special characters, e.g. fact*, fib' or + ; or 
writing x+y instead of +[x;y]. No attempt will be made to characterize these 
violations; occurrences of them should be clear from context. 

Notice that the class <form> is a col1ection of LISP expressions which 
can be evaluated. A <form> is either: 

1. a constant: the value is that constant. 
2. an application: we've said a bit about evaluation schemes for these 

constructs. 
3. a variable: a variable in LISP wi11 typically have an associated value in 

some environment. 

We wi11 wait to Section 3.4 for a precise description. 
An important constraint on LISP forms which is not covered by the 

syntax equations is the reqUirement that functions are defined as being n-ary 
for some fixed n. Any n-ary LISP function must have exactly n arguments 
presented to it whenever it is applied. Thus cons[A], cons[A;B;C], and 
car[A;B] are all i1I-formed expressions and therefore denote J.. 
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Problems 

1. Discuss cons[car[x];cdr[x]] = x. 

2. Discuss cons[car[a];cdr[a]] = a. 

1.5 Predicates and Conditional Expressions 

We cannot generate a very exciting theory based simply on car, cdr, and cons 
with functional composition. Before we can write reasonably interesting 
algorithms we must have some way of performing conditional actions. To do 
this we first need predicates. A LISP predicate is a function returning a 
value representing truth or falsity. We will represent the concepts of true 

and false by t and f respectively. Since these truth values 'are distinct from 
elements of S, we wilt set up a new domain Tr which wilt consist of the 

elements, t and f. As usual the extra element .L is included so that we may 
talk about partial predicates just as we talked about partial functions on 
<sexpr>. J9 

LISP has two primitive predicates. The first is a strict unary predicate 
named atom; atom is total over <sexpr>, and is a special kind of predicate 
called a recognizer or a discriminator. Recognizers are used to determine 

the type of an instance of a data structure. Thus atom wilt retu'rn t if the 

argument denotes an atom, and will return f if the argument is a non-atomic 
S-expr. 

atom[A] = atom[N I L] = t 

atom[(A . B)] = f 

atom[car[( A . B)]] = t 

atom[.J..] = l 

What should we do about the value of constructs like: cons[atom[A]; A]? 

The evaluation of atom[A] gives t, but t is not an element of S and thus is 
not appropriate as an argument to cons. Using our discussion of page 11, we 
extend the domains of the S-expr primitives to 

SI = SuTr 

For example, for seTr:car[s] = car[.L], and cons[s; A] = cons[.L; A] 

19A word for the previous LISP user: our use of t and f marks our 
first major break from current LISP folklore. The typical LISP trick is to 

use the atoms T and NIL rather than t and f as truth values. Our 
convention will disallow some mixed compositions of LISP functions and 
predicates. We will relax this restriction when we write LISP 'programs. 
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Since those primitives are strict with respect to undefined we have: 

atom[t] == J. 

cons[J.; Al = J. 

cons[A;· J.] = J. 

Notice that we n~w have two sep~rate domains: S-expressions and truth 
val~es. Since we will be writing functions over several domains w~ will need 
a general recognizer for each domain to assure that the operations defined on 
each abstract data structure are properly applied. Thus we introduce the 

recognizer iSsexpr which will give t on the domain of S-exprs, f for for any 

element not in <sexpr> and will give J. for J.. 

issexpr[( A . B)] = issexpr[A] = t 

issexpr[t] = f 

issexpr[J.) = J. , 

Another primitive predicate we need is named eq. It is a strict binary 
predicate, partial over the set <sexpr>;it wi11 give a truth value only if its 

arguments are both atomic. It returns t if the arguments denote the same 

atom; it retutns f if the arguments represent different atoms. eq yields J. if 
either argument to eq denotes an element not in the set <atom>. 

eq[A;A] = t eq[A,·B] = f 

eq[(A . B); A] = J. eq[(A . B);(A . B)] = J. 

eq[eq[A;B);D) = J. eq[J.;x] = J. 

eq[car[( A . B )];car[cdr[( A . (B . C»]]] = f 

Rather than define a version of eq, say eqTr' which is defined over Tr 
and acts like eq, we will simply extend the definition of eq to St so that it 
may compare two elements of Tr. 

eq[t;t] = t 

eq[f;f] = t 

eq[A;t] = J. 

eq[f;J.] = J. 

eq[t,.fJ = f 

We need to include a construct in our language to effect a 
test-and-branch operation. In LISP this operation is indicated by the 
conditional expression. It is written: 
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Each Pi is an expression which takes on values in the set Tr or gives J..; each 
ej is an expression which will give a value in St. We will restrict the 
conditional expression such that a11 the ej must have values in the same 

domain or be .L; i.e. all be in <sexpr> or all be in Tr. 
Assuming that an instance of a conditional expression meets this 

restriction, the rule for evaluation is given by the fo11owing: 

We evaluate the Pi'S from left to right, finding the first 

which returns value t. When we find such a Pi' we 
evalu'ate the corresponding ej. The value of the 
conditional expression is the value computed by' that ej; if 

all of the pj'S evaluate to f then the conditional expression 

gives .1... The conditional expression also gives .I.. if we 

come across a pj which has value J.. before we reach a Pi 

with value t. 
For example: 

[atom [A] -) B; eq [A;( A . B)] -) C) = B 

Notice that the P2 expression is undefined, but the conditional gives value B 

since PI gives value t; this means that conditional expressions are non-strict. 

[eq [A;(A . B)] -) C; atom [A] -) B] = J.. 

Here a reordering makes the evaluation return J... 

[atom [(A. B)] -) B; 
eq [A ; B] -) C; 
eq [car[(A . B)~; cdr[(B . A)]] -) E] E 

This example is more complex so, to improve readibility, we split the 
conditional clauses across several Jines. This stylistic formatting is called 
pretty printing. 

[eq [A; A] -) t; atom· [A] -) fJ = t 
[eq [A; A] -) t,',atom [A] -) B] = .J.. 

Note that non-strictness is relative to a single domain; thus the last example 

above gives J.. since it contains ej's of differing domains. 
Frequently it is convenient to use a special form of the conditional 

expression where the final Pn is guaranteed to be true. There are many 

expressions which always evaluate to t; eqU;J] is one. The simplest 

expression is the constant t. 
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Consider the special form: [p I ~ e 1; ... ; t ~ en] 

If we know that the previous Pi'S are either true or false, 20 the final 
Pn -+ en-case is a catch-all or otherwise-case which wi11 be executed if none of 

the previous p/s give t. Thus the use of t in this context can be read 
"otherwise"; and the conditional can be read: 

"If PI is true then el' else if P2 is true then ... , otherwise en" 

The introduction of conditional expressions has further widened the 
gap between traditional mathematical theories and computational theories. 
Previously we could almost Side-step the issue of order of evaluation; it didn't 

really matter unless .1. was involved. But now the very definition of meaning 
of conditionals involves an order of evaluation. 

The order of evaluation is important from a computational viewpoint: 

if we are going to give as value the leftmost ej whose pj evaluates to t, then 
there is no need to compute any of the other e/s; those values wilt never be 
used. A more pressing difficulty is that of partial functions. If we did not 
impose an order of evaluation on the components of a conditional, then 
frequently we would attempt to evaluate expressions which would lead to 

undefined results: [eq[O;O] ~ 1; t ~ car[A]] gives 1 using the meaning of 
conditionals, whereas the expression would be undefined if we were reqUired 

to evaluate car[A). If we think of an occurrence of .1. being mapped to an 
error message, evaluating car[A] would cause termination of the computation. 

But, if we continue to anow .1. as an argument or value, then we can 
characterize the effect of a conditional expression as a non-strict function. 

Recall, a non-strict function is allowed to return a value other than J. when 

one of its arguments is .1.; or, put another way, we don't examine the 
definedness of arguments before applying the function. 

For example, let if(x;y;z) be the conditional function 21 computed by: 

[x -+ y; t -+ zl We can define if as a non-strict function such that: 

y if x is t 
if( x;y;'!.) = z if x is f 

.L if x is .L 

However there is more to the "strictness" implied by conditional 
expressions than just making sure that proper arguments are passed on 
function calls. 

Consider the following algorithm: 

one[x] <= [x=O ~ 1; t ~ one[x-J]] 
Assume that one is non-strict and assume the domain of discourse is the 
integers. That means, one will try to compute with any (integer) argument it 

20We must also know that all the ej's are elements of the same domain. 

21Notice we are writing '( ... r rather than 'L..J' Since we are talking about 
the function and not the algorithm. See page 12. 



22 Symbolic expressions 1.5 

is given. The algorithm for one defines a function giving 1 for any 
non-negative integer and is undefined· for any other number. From a 
computational point of view, however, one[-J] appears "undefined" in a 
different sense from carrA] being "undefined". The computation one[-J] does 
not terminate and is said to diverge. For a partial function like car, we can 
give an error message whenever we attempt to apply the function to an 
atomic argument, but we cannot expect to include tests like "if the 
computation jIa] does not terminate then give error No. 15." 22 From the 
purely functional point of view, one still defines the partial function which is 
1 for the non-negative integers, but computationally there's an important 
distinction to be made. 

So we see that a computation may be "undefined" for two· reasons: it 
involves a non-terminating computation or it involves applying a partial 
function to a value not in its domain. 23 Note that the distinction between 
"undefined" and "diverges" is fuzzy. If we restrict the domain of one to the 

natural numbers, then one[-J] denotes .l rather than diverges. Or, put 
another way, "undefined strictness" is a special case of "divergent strictness" 
where we are able to predict which computations wi11 not terminate. Those 
cases can be checked by defining the fUnction to be strict over a domain 
which rules out those anomalies. Thus a case can be made for identifying 

divergent computations with .l; however there is typically more to 
non-termination that just "wrong kind of arguments". 

We want to extend our discussion of strictness to encompass divergence. 
Recall the discussion on page 15 of second[x; yJ <= y. Defining second to be 
strict reqUired that each application of second determine whether either 

argument denoted .l. If we want. second to be strict with . respect to 
divergence, then we must test each argument for divergence. That implies 
evaluation of each of the arguments, which in turn implies that if a 
computation of an argument diverges, then the computation of the function 
application must also diverge. This implies that it is natural to associate 
"strict with respect to divergence" with CBV, since in the process of checking 
for termination, we must compute values. However if a function is strict then 
calling style doesn't m~tter. In contrast, a non-strict function does not check 
arguments for divergence, and indeed the divergence of a computation may 
depend on the calling style. Consider the evaluation of second[one[-J]; B] 
where one is total over the integers. This evaluation will diverge under CBV 
whi1e it converges to Busing CBN. 

We cannot reqUire all our functions to be strict if we expect to do any 
non-trivial computation. That is, we need a function which can determine its 
value without computing the values of an of its arguments--a "don't care 

22 A discussion of such topiCS involves a description of the "halting 
problem" for computational devices. See [Rog 67] for details. 

23Compare (A)-undefined and E-undefined in [M or 68]. 
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condition"--. The conditional function is such a non-strict function. That is 

ij(t;q;r) has value q without knowing anything about what happens to r. In 

particular, ij(t;q;.J..) = q and ij(f;.J..;r) = r. Now since ij is to be a function 

and therefore single-valued, if ij(t;q;.J..) = q then for any argument x, 

ij(t;q;x) = q. Notice that .L is now carrying an additional "don't-care" 
interpretation; this is consistent with its previous meaning when we think of 
the function being computed by the algorithm. 

Even given that a computational definition is desired, there are other 
plausible interpretations of conditionals. Consider the definition: 

g[x;y] <= [lic[x] ~ l;t ~ J]. Assuming that lie is a total predicate, any value 
computed by g will be 1. But requiring left-to-right evaluation could spend a 
great deal of unnecessary computation if lie is a long involved calculation. 
One might further request that g[x;y] give 1 even if lie is non-terminating. 
Questions of evaluation are non-trivial. We will spend two chapters, 
Chapter 3 and Chapter 4, discussing LISP evaluation and its possible 
alternatives. 

What benefits have resulted from our study of .L and divergence? We 
should have a clearer understanding of the difference between function and 
algorithm and a better grasp of the kinds of difficulties which can befall a 
computation. We have uncovered an important class of detectable errors. 
The character of these miscreants is that they occur in the context of 
supplying the wrong kind of argument to a function. This kind of error is 
called a type fault, meaning that we expected an argument of a specific type, 
that is from a specific domain, and since it was not forthcoming, we refuse to 

perform any kind of calculation. Thus atom[f] and cons[t;A] are undefined 
since both expect elements of S as arguments. Divergent computations are 
equal1y repugnant but there is no general method for testing whether an 
arbitrary calculation will terminate. 

This discussion concludes the applicative portion of LISP constructs. It 
may not seem like you can do much useful computation with such a limited 
collection of operations as those proposed so far for LISP; there are no 
assignment statements or explicit control constructs. Things are not quite as 
trivial as they might seem. In elementary number theory all you have is lero 
and some simple functions, and elementary number theory is far from 
"elementary." Manipulation of our primitives, with composition, and 
conditional expressions, coupled with techniques for definition can also 
become complicated. 

Let's apply the LISP constructs which we now have, and define a new 
LISP function. For example: our predicate eq is defined only for atomic 
arguments. We would like to test for equality of arbitrary S-exprs. What 
should this more complex equality mean? By equality we mean: as trees, the 
S-exprs have the same branching structli're; and the corresponding terminal 
nodes are labeled by the same atoms. Thus, we would· like to define a 
predicate; 'qual; such that: 
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equal[( A . B);( A . B» = t 

equal[A,'A] = t 

equal[(A . B);(B . A)] - f 

equal[(A . (B . C»,-(A . (B . C»] - t 

equal[(A . (B . C»,'((A . B) . C)] -= f 
Here's an informal description of the equal predicate. 

1.5 

1. If both arguments are atomic then see what eq says about them. We can 
test if they are both atomic by using atom and a conditional expression. 

2. If one is atomic and the other is not they can't be equal S-exprs. 
3. Otherwise both are non-atomic S-exprs. Both have two sub-expressions. 

Look at both first subexpressions. If these sub-expressions are not equal 
then the original expressions cannot be equal either. If the first 
subexpressions are equal then the question of whether or not the original 
expressions . are equal depends on the equality of the second 
subexpressions. Thus the following definition: 

equal[x;y] <- [atom[x] -+ [atom[y] -+ eq [x,·y],· t -+ f),· 
atom[y] -+ f; 
equal [car[x];car[y)] -+ equal[cdr[x);cdr[y]]; 

t -+ f] 

Notice that the third informal clause translates into a LISP conditional clause 
which involves applications of the equal predicate itself. The use of recursive 
definitions is an important and powerful programming toot. 

Notice too that we use nested conditional expressions in equal: e} is 
itself a conditional. Also we have used predicates in the ej positions at ea and 
el i; this isal1owable, and in fact expected, since equal is a predicate. 

Let's show that equal does perform correctly for a specific example. 
This will also show a complicated evaluation of a conditional expression. 
We wilt use the cal1-by-value rules. We wilt perform the evaluation by 
substituting the evaluated actual parameters for the formal parameters in the 
body of the definition. Then we will simplify the resulting expression. 24 

24This is not the method LISP uses to perform ca11-by value, but it has 
the same computational effect in most cases. The anomalous cases involve an 
important area in language design. For example, how should fi2;J] be 
evaluated when fix;y] <= +[x;[y;z)] ? 
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equal[(A . B);(A . C)] reduces to: 

[atom[(A. B)) -+ [atom[(A. C)] -+ eq[(A. B);(A. C)]1' t -+ fJ; 
atom[( A . C)] -+ t 
equal[car[( A . B »);car[( A . C»)) -+ equal[cdr[( A . B »);cdr[( A . C»)); 

t -+ fJ 
We find that PI (Le., atom[(A . B)] ) and P2 ( atom[(A . C)]) when evaluated 

(in order) give f. We must now evaluate Pa, which is: 
equal[car[( A . B ))1'car[( A . C )]]. This reduces to equal[A1'A], and: 

equal[A;A] = [atom[A] -+ [atom[A] -+ eq[A,'A]; t -+ f]; 

atom[A] -+ t 
equal[car[A]1'car[A]] -+ equal[cdr[A],'cdr[A]]1' 

t -+ fJ 

This conditional expression will evaluate to t. So Pa in the original call of 
equal[(A . B);(A . e)] is true and we must evaluate the ea expression which is 
equal[cdr[( A . B ));cdr[( A . e)]]. That expressior simplifies to equal[B;C] and 
we caU equal. After substitution and simplification equal will finally return 

value f. That means that equal[(A. B);(A . e)) gives f. Notice that 
eq[(A . B);(A . C)] appeared but was never evaluated because of left-to-right 
evaluation scheme of conditional expressions. 

Clearly, evaluation of LISP expressions in this amount of detail is not a 
process which we wish to do very often by hand. Fortunately the process can 
be executed by a machine. 

Finally, to include conditional expressions in our syntax of LISP 
expressions, we should add: 

<form> ::= <conditional expression> 
and <condi~ional expression> ::= [<form> -+ <form>; ... ; <form> -+ <form>] 
where <form> was defined on page 17. 

These syntax equations fail to capture all of our intended meaning. For 
example, the <form>s appearing in the Prposition are restricted to be forms 
taking values in Tr, the truth domain. That restriction is not expressed in 
the equations, and indeed, is difficult to express naturally in such syntax 
equations. See [Hop 69] for a discussion of expressibility and grammars. 

l. Evaluate the following: 

a. eq[X;Y] 
c. car[(X·. Y)) 

e. cadr[(X .(Y . NIL»] 
g. eq[cdr[( A . B )];cdr[( C . B)]] 
i. cons[atom[A];atom[( A . B»)] 

Problems 

b. cons[X ;YJ 
d. car[cons[X ;Y]] 

f. cdar[(X .(Y . NIL»)] 
h. atom[cons[( A. B );( C . D)]] 

j. eq[atom[ATOM);atom[EQJ] 
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k. [t -+ A; t -+ B) I. [f -+ A; t -+ B) m. [eq[A;B] -+ 4] 

n. [atom[XJ -+ atom[XJ; t -+ FOOJ 

o. [eq[EQ; XJ -+ A; eq[A; BJ -+ B; t -+ C] 

p. cons[[eq[A; BJ -+ 1; t -+ FOO],' cons[A; cadr[(A . (B . C»]]] 

q. equal[(A . B),.{A . B)] r. eq[(A . B);(A . B)] 

2. Consider the following definition: 

twist[s] <= [atom[s] -+ s; 

t -+ cons[twist[cdr[s ]],·twist[car[s ]]]] 

a. Is the function partial or is it total? Now evaluate: 
b. twist[A] c. twist[(A . B)] d. twist[« A . B) . C)] 

3. Now try: 

findem[x,,] <= [atom[x] -+ [eq[x;y] -+ T; t -+ N I L],~ 

t -+. cons[jindem[car[x],,]Jindem[cdr[x);,])] 

a. Is this function total? Now evaluate: 
b. jindem[(A . B);AJ c. jindem[(B .(A . C»,'A) 

d.jindem[(B .(A . C»;C] e.findem[(A . B);(A . B)] 

1.6; Sequences: Abstra~t Data Structures 

1.5 

In several areas of mathematics it is convenient to deal with seq uences of 
information. For example, a problem domain may be more naturally 
described as ordered col1ections of numbers rather than individual numbers. 
This may either simplify understanding of the problem or simplify the 
formulation of the functions defined on the domain. Several programming 
languages include arrays as representations of these mathematical ideas. We 
should notice that sequences are. data structures. We wilt have tp describe 
constructors, selectors, and recognizers f~r them. Subsequently we wi,ILexplore 
applications of sequences as data ~tructures. 

After a certain familia·rity is·· gained in the application of algorithms 
which manipulate sequences, we witt discuss the problems of representation 
and' implementation of this data structure. We· wi1t first give an 
implementation of sequences in terms of S-expressions. That is, we will 

describe an tR-mapping giving a representation of sequences and their 
primitive operations in terms of LISP's S-exprs and primitive functions. Still 
later in Section 7.2 we will disc4S's low-level implementation of this data 
structure in terms of conventional machines. 
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But now we will study sequences as abstract data structures: what are 
their essential structural characteristics? What properties should be present 
in a programming language to allow a natural and flexible representation? 
This discussion wilt shed light on the important problems of representation 
and abstraction. 

A sequence is an ordered set of elements. 25 For example, (x l' X2' x3), is 
the standard notation for a sequence of the three elements x I' x2, and x3' 
The length of a sequence is defined to be the number of elements in that 
sequence. We will anow sequences to have sub-sequences to an arbitrary 
finite depth. That is, the elements of a sequence will either be individuals or 
may themselves be sequences. For example, a sequence of length n, each of 
whose elements are sequences of length m, is a matrix. Here are BNF 
equations for sequences and their elements: 

<seq> 
<seq elem> 
<indiv> 
<literal indiv> 

<numeral> 
<indiv letter> 
<digit> 

::= ( <seq elem>, ... ,<seq elem» 26 

::= <indiv> I <seq> 
:: = <literal indiv> I <numeral> I -<numeral> 
:: == <indiv letter> 
:: = <literal indiv><indiv letter> 
:: = <literal indiv><digit> 
:: = <digit> I <numeral><digib 
:: = A I B I C .•. I Z 

:: = 0 I 1 I 2 ... I 9 

Notice that the structure of <indiv> is the same as that for LISP's <atom>; 
the only difference is in the fonts used for letters and digits. We have made 
the distinction between LISP atoms and seq uence individuals intentionally. 
Thus (A, (B, C), D, (E, B)) is a seq uence of length four, whose second and 
fourth elements are also sequences whose length is two. We will use "( )" as 
notation for the empty sequence. 

We want to write LISP-like functions operating over sequences, so we 
will at least need to give constructors, selectors, recognizers, and predicates for 
seq uences. As in the case of S-exprs, we will include the undefined element, 
and the full domain of sequences will be named 

Seq = <seq>u{J.} 

As on page 18, we extend the primitive LISP operations to inc1Qde this 
new domain, by defining: 

S2 = Slu<seq> 

and extend each operation appropriately over S2' For example: 

25For an alternative description of seq uences and a discussion of a 
different view of data structures see page 11. 

26For the meaning of these ellipses see page 17. 
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atom[A] = .L 

carrA] = 1. 

car[(A, B)] = 1. 

cons[A; B] = 1. 

issexpr[(A)] = f 

1.6 

We, need to define some data structure operations specific to sequences. 
What are the essential characteristics of a sequence? First, a sequence either 
is empty or has elements. Thus we wi11 want a predicate to test for emptyness. 
Next, if the sequence is non-empty, we should be able to select elements. 
Finally, given some elements, we should be able to build a new sequence 
from them. 

Predicates on sequences are like predicates on S:-expressions, mapping 

sequences to truth values in Tr.27 The basic predicate, which tests for 
emptyness, is called null. 

t if x is the empty seq uence, ( ). 

null[x] is f if x'is a non-empty sequence. 

J. otherwise. 

null[( )] = t 

null[(A, B)] = f 

null[f] = 1. 

Thus null gives usable values only for sequences. Since we intend to operate 
on domains which contain data structures other than sequences, we wilt need 
a recognizer to be sure that null is not applied to arguments which are not 
sequences. We will name this recog'nizer isseq. 

isseq[(A, B, e)] = t 

isseq[A] = f . 

isseq[A] = f 

isseq[t] = f . 

isseq[( )] = t 

isseq[.L] = 1. 

27The reason for restructuring LISP predicates might now be apparent 
to previous users of LISP: if we mappeg the truth values to the atoms T and 
NIL as is typically done, then we'd have to map. truth· values of 
sequence-predicates to representations as sequence elements, and we would 
have to perpetuate that decision for every new ",.bstract data structure 
domain that we wanted to introduce. 
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The predicate isseq is total over all domains, whereas null is only partial: 
total over <seq>, but undefined for S-exprs. 

While on the subject of predicates, there are a couple more we shall 

need. The first one is a recognizer, isindiv, which will give value t if its 

argument is an individual, give f if its argument is a sequence, and will give 

.L otherwise. 
The second predicate is the extension of the equality relation to the 

class of sequence individuals. We shall use the same name, eq, as we did for 
the S-expression predicate. In fact, whenever we define a new abstract data 
type we will assume that an appropriate version of eq is available for the 
elements of the base domain. One of our first tasks will be to extend that 
equality relation to the whole domain. We will do so for sequences later in 
this section. Equality is a basic relation in mathematics so it is not surprising 
to see it play an important role here. eq is one of the few relations which we 
shall define across all domains. Functions or predicates like eq, which are 
applicable on several domains, are called polymorphic functions. 

Next, the selectors for a (non-empty) sequence include: first, second,etc, 
where: 

fir st[(A, B, Cn = A 

second[(A, B, e)] = B 

third[(A, B)] = .L 

It is also convenient to. define an "all-but-first" selector, called rest. 

rest[(A, B, e)] = (B, e) 

rest[(B, e)] = (e) 

rest[(e)] = ( ) 

rest[e] = .L 

rest[( n = .L 

In conjunction with rest, we shall utilize a constructor, concat, which is to add 
a single element to the front of a sequence. 

concat[A,'(B,C)) = (A, B, C) 

concat[A,{ n = (A) 

concat[(A),{B,C)] = «A), B, C) 

concat[(B,C),'A] = .L 

concat[A,' B] .. .L 
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The final constructor is called seq; it takes an arbitrary number of 
sequence elements as arguments and returns a sequence consisting of those 

elements (in the obvious order). Let ")I """n be elements of <seq elem>; 
then: 

seq[" I; "2; ... ; an] = ("), ••• , an) 

One question may have come to mind: how do we know when we have 
a sufficient set .of functions for the manipulation of an abstract data 
structure? How do we know we haven't left some crucial functions out? If we 
have enough, how do we know that we haven't included too many? Actually, 
this second case isn't disastrous, but when implementing the functions it 
would be nice to minimize the number of primitives we have to program. 
These problems are worthy of study and are the concern of anyone interested 
in the design of programming languages. We will say a bit more about 
solutions to these questions beginning on page 36. 

Notice that we have been describing the sequence functions without 
regard to any underlying representation. We have said nothing about these 
sequence operations except that they construct, test, or select. We consider 
sequences as abstract data structures, suitable for manipulation by LISP-like 
algorithms; we define algorithms over the domain of sequences, using the 
primitive operations, conditional expressions, and recursion. How sequences 
are represented as S-exprs or represented on a machine, is irrelevant. 
Sequences have certain inherent structural properties and it is those 
properties which we must understand before we begin thinking about 
representation. In the next section we wi11 show how to represent sequences 
as certain S-expressions and sequence operations as LISP operations on that 
representation. 

Let's develop some expertise in manipulating sequences. The first 
example wi1l be an extension of the equality relation to sequences. We 
perpetuate the name equal from S-exprs, and the basic structure of the 
definition wi1l parane) that of its namesake; but the components of the 
definition wilJ involve sequence operations rather than S-expr operations. It 
will be of value to compare the two predicates. The S-expr version is to be 
found on page 24. 

equal[x;y) <.=[isindiv[x) -+ [isindiv[y) -+ eq[x;y); t -+ f); 

isindiv[y) -+ f; 
null[x) -+ [null[y) -+ t; t ~ fJ; 
null[y) -+ f,· 
equallfirst[x),first[y)) -+ equal[rest[x);rest[y)); 

't-+fJ 

This equal works on sequences and sequence elements as its S-expr 
counterpart worked on dotted pairs and atoms. 

Next, we wiJI write a predicate member of two arguments x and y. x is 
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to be an individual; y is to be a sequence; member is to return t just in the 
case that x is an element of the sequence y. What does this specification tell 
us? The predicate is partial. The recursion should be on the structure of y; 
and termination (with value f) should occur if y is the empty sequence. If y is 
not empty then it has a first element; can it 2:. Compare % with x. If these 

elements are identical then member should return t; otherwise see if x occurs 
in the remainder of the seq uence y. 

Notes: 
1. We cannot use eq directly to check equality since, though x is an 

individual, there is no reason that the elements of y need be. We will 
introduce a subsidiary predicate same to assure that eq is applied only to 
arguments of the correct type. 

2. Recal1 that we can get the first element of a sequence with first, and the 
rest of a sequence with rest. 

So here's member: 

where: 

member[x;y] <=[null[y) ~ f; 
same[first[y);x) ~ t; 
t ~ member[x;rest[y))) 

same[u;v] <= [isindiv[u] ~ eq[u;v); t ~ fJ 
Next is an arithmetic example to calculate the number of elements in a 

sequence. 

length[n] <= [null[n] ~ 0; t ~ Plus[J;length[rest[n]]]] 

1.7 Lists: Representations of Sequences 

We can now write LISP-like functions describing operations on sequences; 
the algorithms are clean and understandable. However, if we wish to ruil 
these programs in a LISP environment, then we have to represent the data 
structures and the algorithms in terms understandable to LISP. 28 This is the 
problem of representation. Granted, we could have overcome the problem by 
representing sequences directly as LISP S-expressions and could have written 
functions in LISP which used car-edr-chains to directly manipulate the 
representations. However, the resulting programs would be much more 
difficult to read and debug and understand. More important, the programs 
would be explicitly tied to a specific representation of the abstract data 

28If we wish Lisp to run on a conventional machine we have to 
represent LISP's data structures and algorithms in a manner understandable 
to that hardware. This task is the subject of later chapters in the book. 
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structure. At some later date it might be desired to change the representation; 
then many programs would have to be rewritten. We will illustrate these 
difficulties soon. In Section 2.3 we develop a complex algorithm for 
differentiation on a class of polynomials, moving from an unclear and highly 
representation-dependent formulation, to a clear, concise, 
representation-independent algorithm. 

Obviously we will . always have to supply a representational bridge 
between the abstract data structures and algorithms, and their concrete 
counterparts. One aspect of this study of data structures is to understand 
what is reqUired to build this bridge and how best to represent these 
req uirements in a programming language. 

The first decision to be made is how to represent the abstract data 
structure; how should we represent sequences as S-expressions? How should 
we choose representations in general? Usual1y there is not just one "best" 
representation. Some obvious considerations involve the difficulty of 
implementing the primitive operations (constructors, selectors, recognizers, 
and predicates) on the abstract data structure. Also we must keep in mind the 
kinds of algorithms which we wish to write; computation takes time, and 
since this is computer science we should give consideration to efficien.cy. 

A reasonable choice for a representation of sequences as S-expressions 
is the following: ". 

D1 [ <indiv>] = <atom> 

and for aI' ... , «n in <seq elem>: 
m[ (<< 1, ... , «n) ] = 

The right-hand branch in this LISP-tree representation of a sequence win 
always point to the rest of the sequence or will be the atom NIL. Notice that 

the description of the D1-mapping is recursive. Thus for example: 
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m[ «A.B,C),(D)) ] .. 
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NIL 

m[ (D) ] 

which wilt finally exp'and to «A . (B . (C. NIL») . «D . NIL) . NIL» since 

m[ (A,B,C) ] is (A . (B ,,(C. NIL») and m[ (D) ] is (D . NIL) 
For convenience sake we wi11 carryover the sequence notation 

-- (A, B, C) -- to that for the representation in LISP -- (A, B, C) -- 29 thinking 
of (A, B, C) as an abbreviation for (A . (B . (C. NIL»). 

Next, what about a representation for the empty sequence? Looking at 
the representation of a non-empty sequence it appears natural to take NIL as 

m[()] since after you have removed all the elements from the sequence 
NIL is all that is left in the representation. To be consistent then: 

m[()]=NIL 

This gives us a co~plete specification of the 9l-mapping for the 
domain; we have represented the abstract domain of sequences in a subset of 
the domain of Symbolic Expressions. The S-expr representation of a 
sequence is called a list; and we will refer to the abbreviation, 

(at, ... , an) for (at. (a2' ... (an' NIL) ... » as list-notation. 

Sequences are the abstract data structure; lists are one of their 
representations. Since the atom NIL takes on special significance in 
list-notation it is endowed with the special name list terminator. 

And a notational point: in graphical interpretation of list-notation it is 
often convenient to write: 

NIL as 

29Be aware that A is an atom and A is a sequence element; they are not 
the same data structure. 
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For example (A, (B, C), D) is: 

Jr, in "dotted-pair" notation: (A. «B . (e . NIL». (D . NIL») 
FinaJly, in list-notation the commas can be replaced by spaces 30 

e.g. (A, (B, e), D) = (A (B e) D) 
but beware: the "dots" in dot-notation are never opti~:ma1! 

that is (A. (B . e» ;o! (A (B e» 

1.7 

At this point we have an intuitive understanding of what we mean by 
"sequence"; we have described selectors, constructors, and recognizers, albeit 
at an abstract level, for manipulating sequences, and we have represented our 
notion of sequences as a subset of the S-expressions caJled lists. The final 
step is to represent our sequence-manipulators as certain LISP functions. Let 

first r be a LISP function which will represent the sequence operation first. 31 
Then for example we might expect: 

m[ first[(A, B, e)] ] = jirstr[(A, B, e)] = A 

The problem is that this line is not qUite right. LISP functions expect their 
inputsto be S-expressions but (A, B, C) is not an S-expression. To be correct 
we should have written: 

jirstr[(A . (B . (C . NIL»)] = A 

It might be argued that (A, B, e) is just a convenient abbreviation for 
(A . (B . (C . NIL»), but even so, if we wish the machine to use the 
abbreviation we must be able to express that translation scheme to the 
machine. We must therefore examine the implications of the notation. 
Clearly it is easier to read arid write in list notation and, as long as we 
perform only list-operations on lists, there is no reason to look at the 

30This convention is one of the few instances of a "good" bug. The 
early LISP papers required full use of commas, but due to, a programming 
error in the LISP output routine, lists were printed without commas. It 
looked so much better that the bug became institutionalized. 

31Indeed, once the tn-mapping is defined on the domain it is induced 
on the operations~ 
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underlying dotted.pair representation. 32 However, we must keep in mind 
that list operations are carried out on the machine using the dotted.pair 
represent.ation. We might carry out the "Hst-to-dotted-pair" transformations 
implicitly, but a machine which evaluates LISP expressions will have to have 
an explict transformation mechanism. So a necessary part of our 
representation of sequences is the specification of transformations between 
the abstract data structure notation and the notation of the underlying 
representation. We can give representations for the sequence operations. We 
should continue to write the subscript r on the LISP representation of a 
sequence operation, like seq being represented by seqr' In most circumstances 
the distinction between abstraction and representation will be clear, so we win 
usually omit the subscript. The construction of a sequence from an arbitrary 
number of elements will be represented by a LISP function seqr' We will use 
list interchangeably with seqr' 

9l[' seq] = list 

list[" 1; "2; ... ;"n] generates a list consisting of the "i arguments. That is, for 

n~ 1, list is the appropriately nested composition of conses: 
cons[" 1;cons["2; ... cons["n;N I L]] .. .1, and for n = 0, list[ ] = ( ) 

Examples: list[A;B] = ( A B) 

list[A,'B~'C] = (A B C) 

list[A;list[B;C]] = "list[A;(B C)] = (A (B C» 
list[NIL] = (NIL) 

Notice that list is not strictly a LISP fUnction as we have prescribed them; 
list does evaluate its arguments, but it can take an arbitrary number of them. 
On page 17 we' reqUired that LISP functions be of fixed arity. For the 
moment, list is simply a notational abbreviation for nested applications of 
cons. The representation of the selector functions should be apparent from 
the graphical representation. We leave it as an exercise for the reader to 
specify representations for these functions; however, here are a few of the 
other representations: 

32Indeed, a strong case can be made for never allowing any operations 
on lists except list operations! See the discussion of type-faults on page 23 and 
page 241. 
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m [ isindiv ] = atom 

m[ isseq ] = isstrictlist where: 

where: 

isstrictlist[x] <= [atom[x] -+ [eq[x; NIL] -+ t; t -+ fJ; 
islistelement[car[x]] -+ isstrictlist[cdr[x]]; 

t -+ fJ 

islistelement[x] <= [atom[x] -+ t; t -+ isstrictlist[x]] 

1.7 

The predicate atom does not quite characterize tsindiv. We have been 
assuming that: 

but 

m [fit); ... j tn]] = m[r][ m[t)]; m[t2 ]; ... j m[tn] ] 

m[isindiv[( )]] ;I! m[tstndtv][m[( )]] 

Some descriptions of LISP use this strict definition of lists, so that elements 
of a list are either atomic or are 1ists themselves. In practice it is often 
convenient to aJ10w elements of a Jist to be arbitrary S-expressions. This more 
liberal interpretation of lists is expressed by the following recognizer: 

islist[x] <= [atom[x] -+[eq[x;N I L] ~ t,' t ~ fJ; t ~ islist[cdr[x]] ] 

Therefore (A,(A.B),C) is a list of three elements. But beware: 
(A, (A . B), C) is not a sequence, and neither is (A, (A . B), C). 

Since lists may have dotted pairs as elements, it is natural to extend list 
to handle such cases: 

list[cons[A;B];car[(A. B)]] = ((A . B) A) 

To summarize the accomplishments of this section, we have in effect 
added a new data structure to the repertoire of LISP. The addition process 
includes: 

1. The abstract operations. We give constructors, selectors, 
and predicates for the recognition of instances of the data 
structure.: 

2. The underlying representation. We must show how the 
new data structure can be represented in terms of existing 
data structures. 

8. Abstract operations as concrete operations. We must write 
LISP functions which faithfully mirror the intended 
meaning of the abstract operations when interpreted in the 
underlying representation. 

4. The input/output transformations. We should give 
conventions for transforming to and from the internal 
representation. 

There is another view of 'the representability of dat~ structures 
([Mar 74]). We use transfer functions which are mappings between the 
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abstract structure and its representation. We need two transfer functions; a 
write-function, W, to map the representations into the abstract objects; and a 
read-function, R, to map the abstract objects to their representations. 

Consider the problem of representing sequences. We want R to map 
from elements of <seq elem> to <sexpr> (see page 27 and page 5); and we 
want W to map from <sexpr> to <seq elem>. Before we give such Rand 
W, tet's see what they witt do for us. We could define first r such that: 

jirstr[x] = W[car[R[x]]] 

What the equation says is that given a sequence x, we can map it to the 
S-expression representation using R; the result of this map is an S-expr and 
therefore suitable fare for car; the result of the car operation is then mapped 
back into the set of sequence elements by W. The other operations for 
manipulating sequences can be described similarly. With this introduction, 
here are appropriate transfer functions: 

W[e] <= [isnil[e] -+ mknull[]; 
atom[e] -+ mkindiv[e]; 

t -+ concat[W[car[e]];W[cdr[e]]] ] 

R[l] <=[null[l) -+ NIL; 
isindiv[l] -+ atomize[l]; 

t -+ cons[Rlfirst[l]];R[rest[l]]] ] 

We have seen a11 of the functions and predicates involved in Rand W 
except atomize, mknull and mkindiv. In terms of our current representation of 
sequences, these three functions are essentia11y the identity function, i[x] <= x. 
However that is true only because of the particular representations that we 
picked; the functions need not be so simple. A more careful inspection would 
show that mkindiv expects as input an atomic S-expression and outputs a 
sequence individual; atomize acts conversely. If the representations of the 
atomic S-expressions were different from the representations of sequence 
individuals, then we would have some work to do. 

We review what has transpired since it is a model of what is to come. 
We developed a new abstract data structure called sequences; discussed 
notational conventions for writing sequences; described operations and 
pertinent control structures for writing algorithms; and finally showed that it 
was possible to represent sequences in the previously developed domain of 
S-exprs. If we had a machine which could execute S-expr algorithms we 

could encapsulate that machine within the m-mapping such that we could 
write in sequence-notation and have it translated internally to S-expr form; 
we could write sequence-algorithms and have them execute correctly using 

the m-maps of the sequence primitives; and fina11y it would produce 
sequence-output rather than the internal S-expr form. For all intents and 
purposes our augmented LISP machine understands sequences. Indeed, this 
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is the way most LISP implementations are organized; input may either be in 
S-expr form or list-notation; internally all data structures are stored as 
S-exprs; all algorithms operate on the S-expr form; and finally, any S-exprs 
which can be interpreted as lists are output in list-notation. 

We will approach the other abstract data structure problems in a 
similar manner, first developing the data structures independent of their 
representation, and later showing how to represent this new domain in terms 
of some previously understood domain. We will see in Section, 9.4 that 
much of the mapping from input through output can be specified in a 
natural style and LISP can automatically generate the necessary input and 
output programs. 

1. Discuss 

as opposed to 

Problems involving Jist-notati?n 

cons[" l;cons["2;"3]] 
cons["I;Cons["2,; cons["3; NIL]]] 

as a representation for (" 11 "2, "3) 

2. Translate the following lists into S-expr dotted-pair notation. 
a. (A Be) b. (A) c. ((A)) d. (A ( B (C))) e. (NIL) 

Now go the other way and translate the following S-exprs into list notation. 
f. «A . (B . NIL») . «C . NIL). NIL)) g. (NIL. NIL) 
h.(CONS . «QUOTE. (A . NIL)). NIL)) 

3. Evaluate the following: 
a. fir st[( A B)] 
c. concat[A;(B e)] 
e. concat[eq[A;A];( ABC)] 

b. rest[( A B)] 
d. concat[AiNIL] 
f. flrst[rest[(A B)]] 

1.8 A Respite 

" ... 1 think that one of the chief difficulties is that the general 
standard of programming is extremely low. . .. 1 think that I would 
like' to suggest again that the general standards of programming 
and the way in which people are taught to program is abominable. 
T hey are over and over again taught to make puns; to do shifts 
instead of multiplying when they mean multiplying; to multiply 
when the, mean shifts; to confuse bit patterns and numbers and 
generally to say one thing when they actually mean something quite 
different. N Otl) this is the standard way of writing a program and 
they take great pleasure in doing so-' Isn't it wonderfun It saves a 
quarter of a microsecond somewhere every month'. Now I think we 
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will not get a proper standard of programming ... until we can have 
some proper professional standards about how to write programs,' 
and this has to be done by teaching people right at the beginning 
how to write programs properly ... " 

C. Strachey, Conference on Software Engineering, 1968 

This section summarizes and ·reflects on the material of this chapter. First a 
reiteration of a previous admonition: though most of this material may seem 
quite straightforward, the next chapter will begin to show you that things are 
not all that trivial. LISP is quite powerful. The preceding material is basic 
and the sooner it becomes second nature to you the better. 

A second admonition: besides learning about the basic constructs of the 
language, the previous material should begin to convince you of the necessity 
for precise specification of programming languages. In particular we have 
seen that the process of evaluation of expressions must be spel1ed out quite 
carefully. Different evaluation schemes lead to quite different effects. Since 
evaluation is the business of programming languages we should do all we 
can to make a precise specification. 

And a final warning: a major point of this whole book is to instill a 
respect for abstraction as a tool for controlling complexity in programming, 
and as a means of writing implementation independent programs. As we 
begin writing more complex algorithms, the power of abstraction will become 
more apparent, but the lessons we learned in representing sequences contain 
the essential ideas of abstraction and representation. 

We have now seen two examples of abstract data structures. First, we 
studied S-expressions without any consideration for their implementation; 
they were abstract objects of sufficient interest in their own right. We then 
introduced the operations on the data structures: car, cdr, cons, eq and atom. 
Finally the control structures,. conditional expression and recursion, were 
given. Control structures are used to direct the flow of the algorithm as it 
executes. These three components, data, operations, and control, are the 
main ingredients of any programming language. Most languages have an 
apparently richer class of control devices; "white"-statements and "DOli-loops 
are examples. Later we will show how to introduce such constructs into LISP. 
Most control structures are explicit language constructs like the conditional 
expression, whereas recursion is typically implicit. 33 The interaction between 
recursion and the procedure-calling mechanism gives LISP a powerful 
control structure. 

As we introduce each new abstract data structure we add new 

33However some languages do require some kind of declaration to the 
effect that a procedure is recursive. 
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operations tailored to its needs. When we introduced sequences we also 
introduced first, rest, null, ... ,etc. We did not add any new control structure, 
though a simpler control structure which operated on sequences, selecting 
elements and performing operations on those elements, might be useful. 
There is a natural relationship between data structure and control structure; 
sometimes we can exploit it to good measure. When we consider abstract 
data structures in future chapters we will again see the three components: 
data, operations, and control. 

The new feature which we considered in discussing sequences was the 
problem of representation. We showed how to represent sequences in terms 
of S-expressions. We wiJ) continue this pyramiding of data structures in the 
future; we will consider our work done as soon as we have a representation 
of our new data structure in terms of an .existing one. Finally we witt exhibit 
a representation of the underlying layer of S-expressions. Later we will 
discuss different representations of data structures, independent of their 
possible S-expression representation; there are data structures which are not 
best represented as S-expressions. A further consideration appears because 
of the representation issue; even though we have represented a particular 
data structure as a complex S-expression we should not operate on that 
representation with S-expression functions. We should refrain from using car 
and cdr on lists even though the representation is well-known. In our 
representation of lists we could find the nth element in a list by using cadn- 1 r. 
And we know that cdr represents the rest of the list. Though our 
representation of sequences is such that first, rest and concat are identical to 
car, cdr, and cons respectively, we should use the names first, rest, and concat 
to make it clear that we are operating on lists. These 
representation-dependent coding' tricks 34 are dangerous. They are really type 
faults as discussed on page 23 and page 241. 

For a more practical benefit, consider the problem of program 
modification. We might wish to change the representation of a data 
structure. If the programming has been done in terms of abstract operations 
on abstract data structures then only those functions which relate the 
abstraction to the representation need be changed. If we had used the 
representation throughout the program, then every use of the representation 
must be changed. While we are discussing some of the more practical 

implications of our work we should discuss how .L should be understood. As 

things currently stand, the appearance of .L in any application of strict 
functions wiJ] immediately cause the termination of the computation. No 

\ 
information other than the fact that .L did appear results from such an 

occurrence. If we thought of the evaluation of .L as resulting in a divergent 
computation, then no information at all would be forthcoming. In reality, a 
LISP implementation can handle many computations which involve .L. The 

34called "puns" by C. Strachey 
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computation might be terminated and an error printed; in an interactive 
implementation, the user might be given an opportunity to correct the error 
and have ~he computation continue; and alas, some implementations just 
continue computation with some arbitrary piece of information produced by 
an excursion into the subsconscious of LISP. Divergent computations cannot 
be detected in such a clear manner and implementations differ in their 

handling of this interpretation of.L. We wilt have more to say about the 

implementation of .L in Section 6.23. 
Later, we will motivate the more traditional studies of data structures 

by considering the implementations of LISP-related languages. But the path 
to those studies is at least as important. On the way we will show that we can 
exploit abstraction as a means for giving a clear specification of evalua.tion 
of LISP expressions, and the representational techniques we will use will 
involve applications of abstract data structures. A more tangible benefit 
should be an increased awareness of the structure and behavior of 
programming languages, and the beginnings of a better style of 
programming. 

Another part of our investigation should be to answer the question 
"What is a data structure?". As we mentioned at the beginning of Section 1.6 
there is a different characterization of sequences which wiH give a different 
interpretation of data structures.' The standard mathematical definition of a 
sequence is as a function from the integers to a particular domain. 

Thus a finite seq uence s might be given as: 

s = {<1, s», <2, S2>' ... <n, sn>} 

To select components of s, we use ordinary function application: sO) = Sj. 

Indeed, if you have programmed in a language which has array constructs, 
you will recognize "application" as the style of notation used: A[3] selected the 
third component for the array A. 

However this is qUite different from what we did in the section on 
sequences. For example, if (A, B, C) is a sequence, s, then in the new 
interpretation we should write: 

S = {<1, A>, <2, B>,<3, C>} 

Thus s( 2) is B, etc. What has happened is that what was previously 
considered to be a data structure has become a function, and the selector 
functions on the data structure have now become static indices on the 
function. Or to make things more transparent: 

S = {<first, A>, <second, B>,<third, C>} 

Then we would write s(first) rather than jirst(s). 35 This idea can easily be 

35The language PPL (Polymorphic Programming Language) lets you 
do this: carEs] and s[car] both work. 
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applied to S-exprs and their functions. In graphical terms we are 
representing the structures such that the arcs of the graph are labeled with 
the selector indices. With L-trees the labeling was implicit: left-branch was 
car; right-branch was cdr. With explicit labels on the branches, the trees 
need not be ordered. Several languages implement such unordered trees; 
they are caned structures in Algol 68 and EL 1, and ca11ed records in Pascal. 
Several formalisms exploit this view of data structures; in particular the 
Vienna Definition Language ([Weg 72]), which is a direct descendant of 
LISP, represents its data in such a manner. 

What then is a data structure? It depends on how you look at it. For 
our immediate purposes we will try to remain intuitive and informal. We 
will try to characterize an abstract data structure as a domain and a collection 
of associated operations and control structures. The operations and control 
mechanisms should a110W us to describe algorithms in a natural manner but 
should, if at an pOSSible, remain representation independent. 

A few tricks were embedded in the problem sets: Recall problem h on 

page 25. The composition atom[cons[ .. .J] will always evaluate to f 36 since 
the result of cons is always non-atomic. In j, we used atoms with the same 
letter strings as predicate names, ATOM and EQ. ATOM and EQ are 
perfectly good atoms, and are not to be confused with the LISP predicates. 
Problem p shows that conditional expressions may appear within a 
functional composition. 

Notice that twist in problem 2 is total whereas findem is partial. 
findem is partial since y must be atomic. Both fU'nctions build new treeS: 
twistem reverses left- and right-branches recursively; flndem builds a tree 
with the same branching structure as x, but the terminal nodes contain T at 
the points' where the atom y appears in the original tree, and N J L otherwise. 

Be clear on the difference between the representation of the empty list: 
N J L, and the list consisting of N J L: (N J L); note that (N J L) is an 
abbreviation for (N J L . NIL), which certainly is not N J L. List-notation is 
an abbreviation and can always be translated back into a S-expr, but not 
every S-expr is the representation of a list. 

The distinction between concat and list is sometimes confusing: 

concat[a J ; (a2, ... an)] is (aJ, a2' ... an) 

list[a J ;(a2,'" an)] is (a J (a2 ... an» 

So con cat will add a new element to the front of an existing list, whereas list 
will create a new Jist whose elements will be the values of the arguments to 
list. 

36If it has a value at all! If the computation of the- arguments to the 

cons does not terminate or gives J. then we won't get f. 
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1.9 Becoming an Expert 

We have already traced the development of a few LISP algorithms, and we 
have given a few programming hints, It is time to reinforce these tentative 
starts with a more intensive study of the techniques for writing good LISP 
programs. This section will spend a good deal of time showing different 
styles of definition, giving hints about how to write LISP functions, and 
increasing your familiarity with LISP, For those of you who are impatiently 
waiting to see some real applications of this programming language, we can 
only say "be patient". The next chapter will develop several non-trivial 
algorithms, but what we must do first is improve your skills, even at the risk 
of worsening your disposition. 

First some terminology is appropriate: the style of definition which we 
have been using is cal1ed definition by recursion. The basic components of 
such a definition are: 

REC 

1. A basis case: what- to compute as value for the function in one or 
more particularly simple cases. A basis case is frequently referred to 
as a term in ation case. 

2. A general case: what to compute as value for a function, given 
the values of one or more previous computations with that function; 

You should compare the structure of a REC-definition of a function with 
that of an IND-definition of a set (see IND on page 3), Applications of 
REC-definitions are particularly useful in computing values of a function 
defined over a set which has been defined by an IND-definition, For 
example, assume that we have defined a set A using IND then a typical 
algorithm for computing a function f over A would involve two parts: first, 
an indication of how to compute f on the base domain of A, and second, 
given values for some elements of A say a], ... ,an, use IND to generate a new 
element a; then specify the value of f(a) as a function of the known values 
of f(a1), "" f(an), That is exactly the structure of REC. 

Here is another attribute of IND-definitions: Suppose we have defined 
a set A using IND, and we wish to prove that a certain property P holds for 
every element of A. We need only show that: 

PRF 
1. P holds for every element of the base domain of A. 

2. Using the technique we elaborated in defining the function f 
above, if we can show that P holds for the new element perhaps 
relying on proofs of P for sub-elements, then we should have a 
convincing argument that P holds over all of A. 
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This proof technique is a generalization of a common technique for proving 
properties of the integers. In that context it is called mathematical induction. 

We are seeing an interesting parallel between inductive definitions of 
sets, recursive definitions of functions, and proofs by induction. As we 
proceed, we will exploit various aspects of these interrelationships. However 
our task at hand is more mundane: to develop facility at applying REC to 
define functions over the IND-domains of symbolic expressions, S, and of 
sequences, Seq. 

First let's verify that the functions we have constructed so far do indeed 
satisfy REC. Recall our example of equal on page 24. The basis case 
involves a calculation on members of <atom>; there we rely on eq to 
distinguish between distinct atoms. The question of equality for two 
non-atomic S-exprs was recast as a question of equality for their cars and 
cdrs. But that too, is proper since the constructed object is manufactured by 
cons, and car and cdr of that ob ject ~elect the components. 

Similar justification for length on page 31 can be given. There the 
domain is Seq. The base domain is the empty sequence, and length is 
defined to give 0 in that case. The general case in the recursion comes from 

the IND-definition of a sequence. 37 Given a sequence 5, we made a new 
sequence by adding a sequence element to the front of s. Again the 
computation of length parallels this construction, saying that the length of 
this new sequence is one more than the length of ~he sequence s .. 

For a more traditional example consider the factorial function, n!. 

1. The function is defined for non-negative integers. 
2. The value of the function for 0 is 1. 
3. Otherwise the value of n! is n times the value of (n-l)!. 

It should now be clear how to write a LISP program for the factorial 
function: 

fact[n] <= [eq[n;O] -+ 1; t -+ times[n,fact[subl[n]]]] 38 

The implication is that it is easier to compute (n;.l)! than to compute n!. But 
th at too is in accord with our construction of the integers usiri\g the successor 
function. . ; .. 

These examples are typical of LISP's recursive definitions. The body 
of the definition is a conditional expression; the first few branches involve 

37Note (page 27) that we didn't give an explicit IND-definition, b~t 
rather a set of BNF equations. The reader should supply the explicit 
definition. 

38times is a LISP function which performs multiplication, and subl 
subtracts 1 from its argument. 
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special cases, called termination conditions. Then the remainder of the 
conditional covers the general case-- what to do if the argument to the 
function is not one of the special cases. 

Notice that fact is a partial function, defined only for non-negative 
integers. When writing or reading LISP definitions pay particular attention 
to the domain of definition and the range of values produced. The following 
general hints should also be useful: 

1. Is the algorithm to be a LISP function or predicate? This information can 
be used to double-check uses of the definition. Don't use a predicate 
where a S-expr-valued function is expected; and donft use an 
S-expr-valued function where a list-value is expected. 

2. Are there restrictions on the argument positions? For example, must some 
of the arguments be truth values? Similar consistency checking as in 1 can 
be done with this information. 

3. Are the termination conditions compatible with the restrictions on the 
arguments? If it is a recursion on lists, check for the empty list; if it is a 
recursion on arbitrary S-exprs, then check. for the appearance of an atom. 

4. Whenever a function caB is made within the definition, are all the 
restrictions on that function satisfied? 

5. Don't try to do too much. Try to be lazy. There is usually a very simple 
termination case. If the termination case looks messy, there is probably 
something wrong with your conception of the program. If the general 
case looks messy, then write some subfunctions to perform the brunt of 
the calculation. 

Apply the suggestions when writing any subfunction. When you are finished, 
no function will do very much, but the net effect of all the functions acting 
in concert is a solution to your problem. That is part of the mystiq ue of 
recursive programming. 

As you may have discovered, the real difficulty in programming is 
writing your own programs. But who says programming is easy? LISP at 
least makes some of your decisions easy. Its constructs are particularly frugal. 
So far there is only one way to write a non-trivial algorithm in LISP: use 
recursion. The structure of the program flows like that of an inductive 
argument. Find the right induction hypothesis and the inductive proof is 
easy; find the right structure on which to recur and recursive programming is 
easy. It's easier to begin with unary functions; then there's no question about 
which argument is to be decomposed. The only decision is how to terminate 
the recursion. If the argument is an S-expr we typically terminate on the 
occurrence of an atom. If the argument is a list, then terminate on ( ). If the 
argument is a number then terminate on zero. 
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Consider a slightly more complicated arithmetical example, the 
Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, .... This sequence can be characterized 
by the following recurrence relation: 

f(O) = 0 
f( 1) = 1 

f(n) = f(n-1)+f(n-2) 

The translation to a LISP function is easy: 

Jib[n] <= [eq[n;O] ~ 0; 
eq[n;J] ~ 1; 

t ~ plus[jib[subl[n]],iib[subl[subl[n]]]]] 

where plus is a representation of the lTIathematical function +. 
A few additional points can be made here. Notice that an evaluation 

scheme may imply many duplicate computations. For example, computation 
of Jib[5] req uires the computation of Jib[ 4] and Jib[3]. But within the 
calculation of Jib[ 4] we again calculate Jib[3], etc. It would be nice if we 
could restructure the definition of Jib to stop this extra computation. 39 Since 
we do wish to run programs on a machine we should give some attention to 
efficiency. 40 

We wi11 define another function, called/ib', on three variables x, y, and 
n. The variables, x and y, will be used to· tarry the partial computations. 
Consider: 

Jibl[n] <= fib'[n;O,·J] 

where: Jib'[n;x;y] <= [eq[n;O] ~ x; 

t ~ fib'[subl[n];plus[x;y];x]] 

This example is complicated enough to warrant closer examination. The 

initial call, fib I en], has the effect of calling fib' with x initialized to 0 and 

with y initialized to 1. The calls on fib' within the body of the definition, say 
the ith such recUrsive caU, has the effect of saving the i,h Fibonacci number 
in x and the i_1st in y. 

39 An alternative solution is to supply a different evaluation scheme 
which might be able to remember previously calculated results. [Got 71J. 

4oFor those readers with some programming experience, the solution 
may appear easy: assign the partial computations to temporary variables. 
The problem here is that our current subset of LISP doesn't contain 
assignment. 
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For example: 

fib 1 [4J = fib'[ 4;0 ,.I] 

= fib'[7;1;OJ 
= f ib'[2;1;I] 
= jib'[l,'2;1] 
= f ib'[0,.7,.2] 
=7 
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Functions like fib', used to help fib 1, are called "help functions" or 

auxiliary functions; variables like x and 'J in fib' are called 
accumulators ([Moor 74J), since they are used to accumulate the partial 
computations. The techniq ue of using auxiliary functions and accumulators 
can also be applied to the factorial example. When viewed computationally, 
the resulting definition will be more efficient, though the gain in efficiency is 
not as apparent as that in the Fibonacci example. 41 
Thus: 

fact 1 [n] <= fact'[n,.I] 

where: fact'[n;x] <= [eq[n;OJ -+ x; t -+ fact'[subl[n];times[n;x]]] 

It appears that the pairs fact, factt and fib, fib] are eqUivalent. Perhaps we 
should prove that this is so. We presented the crucial ideas for the proof in 
the discussion on page 43 concerning IND, REC and PRF. We shaH 
examine the question of proofs of eqUivalence in Section 2.10. 

AUXiliary functions are also applicable to LISP funcUons defined over 
S-exprs: 

length[n] <= [null[n] -+ 0,. t -+ addl[length[rest[n]]]] 42 

length) [n] <= length'[n;O] 

where: length'[n,'xj <= [null[n] -+ X; t -+ length'[rest[n];addl[x]]] 

Again, it appears that length is eqUivalent to length]. 

So far our examples have either been numerical or have been 
predicates, Predicates only reqUire traversing existing S-exprs; certainly we 
win want to write algorithms which build new S-exprs. Consider the 
problem of writing a LISP algorithm to reverse a list x. There is a simple 
informal computation: take elements from the front of X and put them onto 

4)The fib) example improves efficiency mostly by calculating fewer 
intermediate results. The gain in the fact] example is involved with the 
machinery necessary to actually execute the program: the run-time 
environment, if you wish. We will discuss this when we talk about 
implementation of LISP in Chapter 6. The whole question of: "what is 
efficient?" is open to discussion. 

42add l[x] <= x+ 1 
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the front of a new list ,. Initially, , should be ( ) and the process should 
terminate when x is empty. 

For example, reversal of the list (A BCD) would produce the sequence: 
x , 
(A BCD) ( ) 
(B C D) (A) 
(C D) (B A) 
(D) (CBA) 
( ) (D C B A) 

What follows is reverse, where we use a sub-function rev' to do the hard 
work and perform the initialization with the second argument to rev'. 

reverse[x] <= rev'[x,-( )] 

rev'[x;y] <= [null[x] ~ y; t ~ rev'[rest[x];eoneatljirst[x);y]]] 

This reverse function builds up the new list by coneat-ing the elements onto 
the second argument of rev'. Since" was initialized to ( ) we are assured that 
the resulting construct will be a list. We w.ilI see a "direct" definition of the 
reversing function in a moment. 

The development of an algorithm which 'constructs new objects may not 
always be so straightforward. Suppose we require a LISP function named 
append of two list arguments, x and y, which is to return a new list which 
has x appended onto the front of ,. For example: 

append[(A B D);(C E)] = (A B DeE) 

append[A;(B 0)] =.L since A is not a list. 

append[(A B C);( )] = append[( );(A Be)] = (A B C) 

append is a partial function; it should be defined by recursion, but recursion 
on which argument? If either argument is ( ) then the value given by 
append is the other argument. The ne~t Simplest case is a one-element list; if 
exactly one of x or y is a Singleton how does that help us discover the 
recurrence relation for appending? It doesn't help much if y is a Singleton; 
but if x is a singleton, then append could give: 

eoncatljirst[x],"j] as result 

So recursion on x is likely. The definition now follows. 

append[x,"j] <= [null[x] ~ y; t ~ eoneat[jirst[x],·append[rest[x],.,])]. 

Notice that the construction of the result is a bit more obscure than that 
involved in reverse. The construction has tc) "wait" until we have seen the 
end of the list x. For example: 
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append[(A B C);(D E F)] = concat[A;append[(B C);(D E F)]] 
= concat[A;coneat[B;append[( C );( D E F )]]] 
= coneatlA,· 

coneat[B; 
concat[C; 

append[( );( D E F)]]]] 

= concat[A;concat[B,'concat[C;( D E F)]]] 

= coneat[A;concat[B;(C D E F)]] 

= concat[A;( BCD E F)] 

=(ABCDEF) 

Weare assured of constructing a list here because y is a list and we are 
concat-ing onto the front of it. LISP functions which are to construct list 
output by concat-ing must concatenate onto the front of an existing list. That 
list may be either non-empty or the empty list, ( ). This is why the 
termination condition on a list-constructing function, such as the following 
function, dotem, returns ( ). 

dotem[x;y] <= [ null[x) -+ ( ); 

t -+ eoneat[cons[jirst[x],!irst[y]];dotem[rest[x];rest[y]]]] 

The arguments to dotem are both lists assumed to contain the same number 
of elements. The value returned is to be a list of dotted pairs; the elements of 
the pairs are the corresponding elements of the input lists. 

Note the use of both eoncat and cons: concat is used to build the final 
list output; cons is used to build the dotted pairs. Now if we had written 
dotem such that it knew about our representation of lists, then both functions 
would have been cons. The definition would not have been as clear. 
Look at a computation as simple as dotem[(A);(B»). This will involve 

concat[cons[A;B];dotem[( );( )]] 

Now the evaluation of dotem[( );( )] returns our needed ( ), giving 

concat[cons[A;B);( ») = concat[(A . B);( )] = «A . B» 

If the termination condition of dotem returned anything other than ( ) then 
the list-construction would "get off on the wrong foot" and would not 
generate a list. 

As promised on page 48, here is a "direct" definition of reverse. 

reverse[x] <= [null[x] -+ ( ); 

t -+ append[reverse[rest[x]];concat[jirst[x];( )]]] 

This reversing function is not as efficient as the previous one. Within the 
construction of the reversed list the append function is called repeatedly. You 
should evaluate something like reverse[(A BCD)] to see the difficulty. 

It is possible to write a directly recursive reversing function with no 
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auxiliary functions, no functions other than the primitives, and with not 
much clarity. We shall persist because it is a good example of discovering the 
general case of the recursion by careful consideration of examples. Let us can 
the function rev. 

We consider the general case first, and postpone the termination 
conditions until later. Consider, for example, rev[( ABe D)]. This should 
evaluate to (D C B A). How can we construct this Jist by recursive cans on 
rev? Assume x has value (A BCD). Now note that (D C B A) is the value 
of concat[D;(C B A)l Then D is first[rev[rest[x]]] (it is also first[rev[x]] but 
that would not help us since the recursion must reduce the complexity of the 
argument). 

How can we get (C B A)? Well: 

(C B A)= rev[(A B e)] 
= rev[concat[A;(B e)]] 

(we are going after rest[x] again, 
but first we can get A from x. 

= rev[concat[jir st[x];( Be)]] 
= rev[concat[first[x];rev[(C B)]]] 
= rev[concat[jirst[x];rev[rest[( DeB )]]]] 
= rev[concat[jirst[x];rev[rest[rev[rest[x]]]]]] 

That is, rev[x] looks like concatlfirst[rev[rest[x]]]; 
rev[concatlfir st[x],· 

rev[rest[rev[rest[x]]]]]]] 

Now, the termination conditions are simple. First rev[( )] gives (). But 
notice that the general case which we just constructed has two concats. That 
means the shortest list which it can make is of length two. So lists of length 
one are also handled separately: the reverse of such a list is itself. Thus the 
complete definition should be: 

rev[x] <= [null[x] -+ ( ); 
null[rest[x]] -+ x; 

t -+ concat[ fir st[rev[rest[x]]]; 
rev[concatlfir st[x]; 

rev[rest[rev[rest[x]]]]]]] ] 

We have only hinted at the issue of efficiency in computation. The 
question of efficiency involves deeper questions of the evaluation 
mechanisms. We will return to these issues after we have discussed the LISP 
evaluation sc~eme more completely. 
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Problems 

Use the following definition: 

match[k;m] <= [null[k] ~ NO,' 

and evaluate: 

null[m] ~ NO; 
eqlfirst[k],!irst[m]] ~ jirst[k]; 

t ~ match[rest[k],'rest[m]]] 

a. match[(X);(X)] b. match[(A B E);(J 0 E)] 
c. match[(F 0 0); (B A Z)] 

2. Now write your own functions: 
a. among[x;y] <= ... : among is to be a predicate; x is an atom; y is a list 

of atoms. among is to return. f if x is not found as an element 

of y; otherwise, among is to return t. 

e.g. among[A;( ABC)] = among[A;( C D E A)] = t 
among[Al;(A2 B2)] = f. 

b. anywhere[x;y] <= ... : anywhere is a predicate; x is an atom; y is an 

arbitrary S-expr or list. anywhere is to return t just in the 
case that x appears somewhere in y. 

e.g. anywhere[A;(A Be)] = anywhere[A;«A . B) . C)] = t 
anywhere[A;( BCD)] = f. 

c. collectpair[z;x;y] <= ... : X and yare atoms; z is an S-expression or list, 
some of whose subexpressions, may begin (x .. .) or 
(y ... ). collectpair is to return a dotted pair whose 
car-part is a list of all the occurrences of (x ... ) and 
whose cdr-part is a list of all occurrences of (y ... ). 

e.g. collectpair[«A 1) «B . 2) (C A 4»);A;B] = «(A 1) (A 4» . «B . 2») 

d. pred[x] <= ... : X is a positive integer. pred is a function, returning the 
predecessor of its argument. The only arithmetic function you 
may use is add1. 

e.g. pred[3] = 2; pred[O] is undefined; 
pred[addl[x]] = x for x ~ o. 

e. signum[x] <= ... : X is an integer. Signum returns N EOAT IV E, ZERO, 
or POSIT IV E depending on the sign of x. You may use 
add1 and sub1 but no comparision function other than eq. 
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f. maxdepth[l] <= ... : l is a list. This function is to find the maximum 
depth of nesting of any element in l. Assume that l is a 
strict list (see page 36); that is, any sub-element is either 
atomic or is itself a strict list. For example 

maxdepth[( )] = 0; maxdepth[(((B) C) A)] = J 



CHAPTER 2 

Applications of LISP 

" ... All the time I design programs for nonexisting machines and 
add: 'if we now had a machine comprising the primitives here 
assumed, then the job is done.' 
... In actual practice, of course, this ideal machine will turn out not 
to exist, so our next task --structurally similar to the original one-­
is to program the simulation of the "upper" machine .... But this 
bunch of programs is written for a machine that in all probability 
will not exist, so our next job will be to simulate it in terms of 
programs for a next lower level machine, etc., until finally we have 
a program that can be e')Cecuted by our hardware .... " 

E. W. Dijkstra, [Dij 72] 

2.1 Introduction 

There are several ways of interpreting this remark of Dijkstra. Anyone who 
has programmed at a level higher than machine language has experienced 
the phenomenon. The act of programming in a high-level language is that of 
writing algorithms for a nonexistent high-level machine. Typically however, 

53 
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the changes of representation from machine to machine are all done 
automatically: from high-level, to assembly language, and finally to hardware 
instructions. 

A related view of Dijkstra's remark involves our discussions of abstract 
data structures and algorithms. We express our algorithms and data 
structures in terms of abstractions ind,ependent of how they may be 
represented in a machine; indeed we can use the ideas of abstraction 
regardless of whether the formalism wi1l find a representation on a machine. 
This use of abstraction is the true sense of the programming style cal1ed 
"structured programming". We will see in this chapter how this 
programming style is a natural result of writing representation-independent 
LIS P programs. 

As we have previously remarked, we wilt see a close relationship 
between the structure of an algorithm and the structure of the data. We 
have seen this already on a small scale: list-algorithms tend to rec~r "linearly" 
on rest to ( ); S-expr algorithms tend to recur "left-:and-right" on car and cdr, 
final1y decomposing the expression to atoms. Indeed, the instances of control 
structures appearing in an algorithm typical1y parallel the style of inductive 
definition of the data structure which the algorithm is examining. t 

If a structure is defined as: 

~::=~11~21~3 
e.g. <seq elem> ::= <indiv> I <seq> 

then we can expect to find a conditional expression whose predicate positions 

are filled by the recognizers for the ~i'S. 
If the structure is defined as: 

~::=~l'" ~l 
e.g. <seq> ::= «seq elem>, ... , <seq elem» 

that is, a homogeneous sequence of elements, then we wi1l have a "linear" 
recursion like that experienced in list-algorithms. 2 

1 The ideas sketched here have more formal explanations in algebraic 
notions; see [Hen 75]. 

2 Indeed there are other forms of control like iteration or lit (page 196) 
which are related to such data structures. 



2.1 

as: 

e.g. 
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Finally if the structure is defined with a fixed number of components 

~ ::= ~I ~2 ~3'" ~n 
<sexpr> ::= «sexpr> . <sexpr» 

then we can expect occurrences of selector functions to extract the 
components from the structure. 3 

Thus a data-structure algorithm tends to "pass off" its work to 
subfunctions which will operate on the components of the data structure. 

Thus if a structure of type ~ is made up of components of types ~), ~2' ~3' 

and ~4' then the structure of an algorithm f operating on t> typically 
involves caUs on subfunctions fl through f4 to handle the subcomputations. 

Each fi will in turn break up its ~i' Thus the type-structure of the call on f 
would be: 

This is the essence of level-wise programming: we write j, fl"" ,f4 
independently of the representation of their data structures. f will run 
provided that the fi's are available. As we write the fi's we will probably 

invoke computations on components of the corresponding ~i' Those 
computations are in turn executed by subfunctions which we have to write. 
This process of elaboration terminates when aU subfunctions are written and 
all data structures have received concrete representations. In LISP this means 
the lowest level functions are expressed in terms of LISP primitives and the 
data structures are represented in terms of S-exprs. Thus at the highest level 
we tend to think of a data structure as a class of behaviors; we don't care 
about the internal mechanisms which implement that behavior. At the 
lowest level, machine-language routines simulate one of many possible 
representations. 

This process of elaboration of abstract algorithm and abstract data 
structure may modify the top-level definition of f. In reality, implementation 
considerations may effect some earlier decisions and require replanning of an 
earlier strategy. At that time the complete plan should be re-examined; local 
modifications may have global repercussions. A programming style is not a 
panacea; it is no substitute for clear thinking. It only helps control the 
complexity of the programming process. 

3you may have noticed that we are therefore dealing with essentially 
"context-free" abstract data structures; i.e., those generated by context-free 
grammars. See [Hop 69]. 
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2.2 Examples of LISP Applications 

The next few sections wilt examine some rion-trivial problems involving 
computations on data structures. We will describe the problem intuitively, 
pick an initial representation for the problem, write the LISP algorithm, and 
in some cases "tune" the algorithm by picking "more efficient" data 
representations. . 

The examples share other important characteristics: 

1. We examine the problem domain and attempt to represent its elements as 
data structures. 

2. We reftecton our (intuitive) algorithm and try to express it as a LISP-like 
data-structure manipulating function. 

3. While performing 1 and 2, we might have to modify some of our 
deCisions. Something assumed to be structure might better be represented 
as algorithm, or some algorithm might be better repesented as a data 
structure. 

4. When the decisions are made, we evaluate the LISP {'unction on a 
representation of a problem. 

S. We reinterpret the data-structure output as an answer to our problem. 

Pictorially in terms of LISP: 

informal => LISP function 
algorithm 

domain => S-expressions 

evaluation 
interpret 

S-expr output as answer 

Whenever we write computer programs, whatever language we use, we 
always go through a similar representation problem. The process is more 
apparent in a higher~JeveJ language like FORTRAN or ALGOL, and is 
most noticeable in a language like LISP which primarily deals with data 
structures. 

When we deal with numerical algorithms, the representation problem 
has usually been settled in the transformation from real-world situation to a 
numerical problem. One has to think more explicitly about representation 
when we deal with structures like arrays or matrices. We are encoding our 
information in the array. But the preceding diagram occurs within the 
machine, even for strictly non-structured numerical calculation. 
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numerical => machine 
algorithm instructions 

execution 
:---... interpret 

numbers => binary 
representation 

binary number as answer 

The encodings are done by the input routines. The result of the execution is 
presented to the external world by the output routines. 

However, when we come to data-structure computations, the 
representation problem really becomes apparent. We have to think more 
about what we are doing since we lack certain preconceptions or intuitions 
about such computations. More importantly, we are trying to represent actual 
problems directly as machine problems. We do not attempt to first analyze 
them into a complex mathematical theory, but try to express our intuitive 
theory directly as manipulations of data-structures. This is a different kind 
of thinking, due wholly to the advent of computers. Indeed the field of 
computation has expanded so much as to make the term "computer" obsolete. 
"Structure processor" is more indicative of the proper level at which we 
should view "computers". 

We have already seen a simple example of the representation problem 
in the discussion of list-notation beginning in Section 1.6. 

sequence 
algorithm => LISP function 

evaluation 
;---... interpret 

S-expr result as answer. 

sequence 
expression => S-expression 

The following sections deal with representation of complex data 
structure problems in LISP. 

2.3 Differentiation 

This example will describe a rudimentary differentiation routine for 
polynomials in several variables. We will develop this algorithm through 
several stages. We will begin by doing a very direct, but 
representation-dependent, implementation. We will encode polynomials as 
special LISP lists and will express the differentiation algorithm as a LISP 
program operating on that representation. When this program is completely 
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specified we will then scrutinize it, attempting to see just how much of the 
program and data structure is representation and how much is essential to 
the algorithm. 

You should recognize two facts about the differentiation algorithm for 
polynomials: first, the algorithm operates on forms (or expressions) as 
arguments and returns forms as values. Previously discussed algorithms have 
operated on simple values and produced simple values. The differentiation 
algorithm takes expressions as arguments and produces a new expression as 
value. Second, you should realize that the algorithm for differentiation is 
recursive. The question of differentiating a sum is reduced to the ability to 
differentiate each summand. Similar relationships hold for products, 
differences, and powers. There must be some termination conditions. 
Differentiation of a variable, say x, with respect to x is defined to be the 
number one; differentiating a constant, or a variable not equal to x with 
respect to x gives a result of zero. This begins to sound like the 
IND-definitions of sets (in this case the set of polynomials) and the associated 
REC-definitions of algorithms (in this case differentiation of polynomials). If 
this is the mold into which our current problem fits, then we must give an 
inductive definition of our set of polynomials. Though polynomials can be 
arbitrarily complex, involving the operations of addition, multiplication, 
negation, and exponentiation, their general format is very simple if they are 
described in our LISP-like notation where the operation precedes its 
operands. We assume that binary plus, times, and exponentiation are 
symbolized by +, ):<, and t; we will write +[x;2) instead of the usual infix 
notation x+2. The general term for this LISP-like notation is prefix 
notation. 

Here are some examples of infix and prefix representations: 

infix 

x*z+2y 
x*y*z 

prefix 
+[*[x,'z),' *[2,.y]] 
*[x;*[y,.z]] 

We now give an inductive definition of the set of polynomials we wish 
to consider. The definition will involve an inductive definition of terms. 

1. Any term is a polynomial. 

2. If P1 and P2 are polynomials then the "sum" of Pt and P2 is a polynomial. 
where: 
1. Constants and variables are terms. 
2. If t1 and t2 are terms then the "product" of t) and t2 is a term. 

3. If t1 is a variable and t2 is a constant then "tt raised to the t2th power" is 
a term. 

4. If tt is a term then "minus" tt is a term. 
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We now give a BNF description of the above set using the syntax of prefix 
notation: 

<poly> 
<term> 

::= <term> I <plus>[ <poly>;<poly>] 
::= <constant> 
::= <variable> 
::= <times>[ <term>;<term>] 
::= <expt>[ <variable>;<constant>] 
::= <minus><term> 

<constant> ::= <numeral> 
<plus> ::= + 

<times> ::= ~< 

<expt> ::= t 
<minus> ::=­

<variable> ::= <identifier> 

It is easy to write recursive algorithms in LISP; the only problem here 
is that the domain and range of LISP functions is S-exprs, not the 
polynomials. We need to represent arbitrary polynomials as S-exprs. We 
wi11 do the representation in lists rather than S-exprs. 

Let m be a function mapping polynomals to their representation such 
that a variable is mapped to its uppercase counterpart in the vocabulary of 
LISP atoms. Thus: 

m[ <variable>] = <literal atom> 

Let constants (numerals), be just the LISP numerals; these are also 
respectable LISP atoms. Thus: 

m [ <numeral>] = <numeral> 

We have now specified a representation for the base domains of the 
inductive definition of our polynomials. It is time to develop the termination 
cases for the recursive definition of differentiation. 

We know from differential calculus that if u is a constant or a variable 
then: 

duldx = 1 if x = u 
o otherwise 

We will represent the d-operator as a binary LISP function named diff. The 
application, duldx wiH be represented as diffiu;x). Since constants and 
variables are both represented as atoms, we can check for both of these cases 
by using the predicate isindiv. Thus a representation of the termination 
cases might be: 

diffiu;x] <= [isindiv[u] -+ [eq[x;u] -+ 1; t -+ 0] ... ] 

Notice we write the abbreviation, isindiv instead of isindiv,. You should be 
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a bit wary of our definition already: diffl.1;J] will evaluate to 1. 
Now that we have covered the termination case, what can be done for 

the representation of the remaining class of terms and polynomials? That is, 
how should we represent sums and products? 

First, we will represent the operations ~(, +, ., and t as atoms: 

m[ + ] = PLUS 

m[ i.e] = TIMES 

m[ - ] = MINUS 
m[ t ] = EXPT 

We will now extend the mapping 91 to occurrences of binary operators 
by mapping to three-element lists: 

m[ "[fJ);fJ2J ] = (91["], m[fJ)], m[fJ2 ]) 

Unary applications will result in two-element lists: 

m[ "[fJ] ] = (fR[a], m[fJ]) 

For example: m[ +[x; 2] ] = (PLUS X 2) 
For a more complicated example, the polynomial 

x2 + 2yz + u 

will be translated to the fonowing prefix notation: 

+[t[x;2]; +[*[2;*[y;z]]; u]] 

From this it's easy to get the list form: 

(PLUS (EXPT X 2) (PLUS (TIMES 2 (TIMES Y Z» UJ) 

Now we can complete the differentiation algorithm for + and *. We know: 

dlf + gJ/dx = df/dx + dgldx. 

Expressing this phrase as part of difl, 

we would see: u = m[ f + g] = (PLUS, m[ f ], m[g ]) 
where: second[u] - m[r ] and, third[u] = m[ g ] 5 

4This is messier than it really needs to be because we assume that + 

and ~:< are binary. You should also notice that our m-mappihg is applicable to 
a larger class of expressions than just <poly>. Look at (x + y)*(z + 2). 

5 As we intimated earlier, we have entered an unwise course here. We 
have tied the algorithm for symbolic differentiation to a specific 
representation for polynomials. Believing that much can be learned from 
seeing mistakes, we will use that representation, and on page 62 we win 
examine our decision. 
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The result of differentiating u is to be a new list of three elements: 

1. The symbol PLUS. 

2. The effect of diff operating m [r ] 
S. The effect of diff operating m [g ] 

Thus another part of the algorithm: 

eq[first[u];P LU S] ... Ust [P LU S; diffisecond[u],-x];diffithird[u];x]] 

dlf-i<g ]/dx is defined to be f* dg/dx + g *df/dx. 

So here's another part of diff 

eq[jirst[u];TIMES] ... Ust[PLUS; 
list[T 1M ES; second[u];diffithird[u];x]]; 
list[T 1M ES ;third[u];diffisecond[u];x]]] 

Finally, here's an example. We know: 

d[x*y + x]/dx = 'j + I 

Try: 

diff [(PLUS (TIMES X Y) X); xj 
= list[PLUS; diffi(TIMES X V); X];diffiX;X]] 
= Ust[ PLUS; 

list[PLUS; 
list[T 1M ES,' X,' difJ{Y;X]]; 
list[T 1M ES,' Y,' diffiX ;X]]]; 

diffiX;X]] 

= Ust[ PLUS,' 
list[PLVS; 

list[T 1M ES; X ,-0]; 
list[T 1M ES; Y;Il]; 

I ] 

=(PLUS (PLUS (TIMES X 0) (TIMES Y I» 1) 
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which can be interpreted as: 

x*O + y*I + 1 

Now it is clear that we have the right answer; it is equally clear that the final 
representation leaves much to be desired. There are obvious simp1ifications 
which would have done before we would. consider this output acceptable. 
This example is a particularly simple case for algebraic simplification. We 
can easily write a LISP program to perform simplifications like those 
expected here: like replacing O*x by 0, and x*I by x. But the general problem 
of writing simplifiers, or indeed of recognizing what is a "simplification", is 
quite difficult. A whole branch of computer science has grown up around 
symbolic and algebraic manipulation of expressions. One of the crucial parts 
of such an endeavor is a sophisticated simplifier. For more details and 
examples of the power of such systems see [Hea 68], [MAC 74], or [Mos 74]. 

Points to note 

This problem of representation is typical of data structure algorithms 
regardless of what language you use. That is, once you have decided what 
the informal algorithm is, pick a representation which makes your algorithms 
clean. Examine the interplay between the algorithm and the representation, 
and continue to examine your decisions as you refine your method. In 
Section 2.6 we will see a series of representations, each becoming more and 
more "efficient" and each requiring more "knowledge" being built into the 
algorithm. The remainder of this section wilt reexamine our representations 
in the differentiation algorithm. 

First, here is the complete diff algorithm for + and i.4: 

diffiu,-x] <= [isindiv[u] ~ [eq[x;u] -+ 1,' t -+ 0]; 
eq[flrst [u]; PLUS] -+ list[PLUS,' 

diffisecond[u],· x],· 
diffithird[u]; x]]; 

eq[jirst[u],- TIMES] -+ list[PLUS; 

t ~.L] 6 

list[TIMES; 
second[u]; 
diffithird[u]; x]],­

list[T 1M ES; 
third[u]; 
diffisecond[u]; x]]],, 

As we mentioned earlier, the current manifestation of diff encodes too much 
of our particular representation for polynomials. The separation of algorithm 
from representation is beneficial from at least two standpOints. First, 
changing representation should have a minimal effect on the structure of the 

6The element .L is not strictly part of LISP. 
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algorithm; but diff knows that variables are represented as atoms and knows 
that a sum is represented as a list whose first-part is P LU S.Second, 
readability of the algorithm suffers greatly. How much of diff real1y needs 
to know about the representation and how can we improve the readability of 
diffi 

The uses of first, second, and third are not particularly mnemonic. 7 We 
used second to get the first argument to a sum or product and used third to 
get the second. We used first to extract the operator. However first, second, 
and third select components of sequences; they know nothing about 
polynomials. We want to refer to polynomials as abstract data structures. 
Let's define the selectors: 

Then diff becomes: 

op[x] <= first[x] 
argt[x] <= second[x] 

arg2[x] <= third[x] 

difflu;x] <= [isindiv[u] ~ [eq[x;u] ~ 1; t ~ 0]; 
eq[op[u]; PLUS] ~ list[PLUS; 

diffiargt [u],' x]; 
diffiarg2[u]; x]]; 

eq[op[u]; TIMES] ~list[PLUS; 

t ~ .L] 

.list[T 1M ES; 
argt[u],' 
diffiarg2[u]; x]]; 

list[T 1M ES; 
arg2[u],' 
diffiargt [u],' x]]]; 

Still, there is much of the representation present. Recognition of variables 
and other terms can be abstracted. We need only recognize when a term is a 
sum, a product, a variable or a constant. To test for the occurrence of a 
numeral we shall assume a unary LISP predicate called numberp which 

returns t just in the case that its argument is a numeral. Then, in terms of 
the current representation, we could define such recognizers and predicates 
as: 

issum[x] <= eq[op[x];P LU S] 

isprod[x] <= eq[op[x];T 1M ES] 

isconst[x] <= numberp[x] 

isvar[x] <- [isindili[x] -+ not[isconst[x]],' t ... fJ 
samevar[x;y] <= eq[x;y] 

7However, they are more readable than car-cdr-chains. 
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Now we can rewrite diff as: 

diffl.u;x] <= [isvar[u] -+ [samevar[x,'u] -+ 1,' t -+ 0]; 
isconst[u] -+ 0,' 
issum[u] -+ list[P LV S; 

difj(argt[u]; x]; 
difj(arg2[u]; x]]; 

isprod[u] -+ list[P LV S,' 

t -+ .L] 

list[T 1M ES; 
argt[uJ,' 
difj(arg2[u]; x]]; 

list[T 1M ES; 
arg2[u]; 
difj(ar g t [u]; x]]],· 

2.3 

Readability is certainly improving, but the representation is stin known to 
diff When we build the result of the sum or product of derivatives we use 
knowledge of the representation. It would be better to define: 

makesum[x,,] <= list[P LV S ,'X,,] 

makeprod[x,,] <= list[T 1M ES ,'X,,] 

Then the new diff is: 

diffl.u;x] <= [isvar[u] -+ [samevar[x;u] -+ 1; t -+ 0],' 
isconst[u] -+ 0; . 
issum[u] -+ makesum[ difj(argt [u]; x],, 

difj(arg2[u]; x]]; 
isprod[u] -+ makesum[makeprod[argt[uj,· 

difj(arg2[u],' x]]; 
makeprod[ar g 2[U]; 

diff [argt[u],' x]]]; 

t -+ .L] 

In the process, diff has become much more understandable and, more 
importantly, the details of the representation have been relegated to 
subfunctions. Changing representation simply requires supplying different 
subfunctions. No changes need be made to diff There has only been a slight 
decrease In efficiency. The termination condition in the original diff is a bit 
more succinct, but speaking precisely it was incorrect. The gain in 
independence far outweighs the slight efficiency consideration. Looking 
back, first we abstracted the selector functions: those which selected 
components; next we abstracted the recognizers: . the preditates indicating 
which kind of term was present; finally we modified the constructors: the 
functions which make new terms. These three components of programming: 
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selectors, recognizers, and constructors, will appear again on page 164 in a 
discussion of M cearthy's abstract syntax. 

The diff algorithm is much more abstract now, in the sense that the 
representation of the domain and the representation of the functions and 

predicates which manipulate that domain have been extracted out. 8 This is 

our Otmapping again; we mapped the domain of <poly>'s to lists and 
mapped the constructors, selectors, and recognizers to list-manipulating 
functions. Thus the data types of the arguments u and x are <poly> and 
<var> respectively, not list and atom. To stress this point we should make one 
more transformation on diff. We have frequently said that there is a 
substantial paral1el between a data structure and the algorithms which 
manipulate it. Paral1eling the BNF definition of <poly> on page 59, we write: 

difflu;x] <= [isterm[u] -+ diffterm[u;x]; 
issum[u] ~ makesum[dif}1argt[u]; x]; 

dif}1arg2[u]; x]]; 

t -+ .1.] 

diffterm[u;x] <= [isconst[u] -+ 0,' 
isvar[u] -+ [samevar[x,'u] -+ 1; t -+ 0]; 
isprod[u] -+ makesum[makeprod[argt [u]; 

dif}1arg2[u],' x]]; 
makeprod[ar g 2[U]; 

dif}1argt[u]; x]]]; 

t -+ .1.] 

To satisfy our complaint of page 59 that diffil; J] gives a defined result, we 
should also add: 

difr[u; x] <= [isvar[x] -+ [ispoly[u] -+ diffiu; x]],, t -+ .1.] 

Finally, notice that our abstraction process has masked the order-dependence 
of conditional expressions. Exactly one of the recognizers will be satisfied by 
the form u. 

Problems 

L Extend the version of diff of your choice to handle differentiation of 
powers such as t[x; 3]. 

2. Extend diff to handle unary minus. 
3. Extend diff to handle differentiation of the trigonometric functions, sin 

and cos and their composition with polynomials. For example it should 
handle sin2x + cos( x3 + 5x -2). 

4. Write an algorithm to handle integration of polynomials. 

~o be particularly precise, our references to 0 and 1 should really be 
mkconst[O] and mkconst[J], signifying the functions which make constants. 
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2.4 Tree Searching 

A natural application of LISP's recursive power occurs in tree searching 
algorithms. These algorithms are the heart of programs which play games. 
A ubiquitous feature of sophisticated game playing is "a strategy". In a 
simple game. for example tic-tac-toe. an optimal strategy may be easily 
computable. In games like checkers and chess. the algorithmic approach 
would require enormous computational power; heuristic methods are applied 
to reduce the computational requirements. 

The heart of this strategy formation is often a tree structure. That tree 
wi11 have nodes representing "possible moves". In a single-person game. the 
evaluation of the tree will result in a "best move"; any move that wins. In a 
two-person game we must be more careful; the branching structure will 
represent both your moves and those of the opponent. and the position 
evaluation must take that into account: "Now if I move here. then my 
opponent wilt move there ..... " 

The tree-structured data and recursive programming style of LISP. 
a1Jow simple formulations of complex tree strategies. The description 
involves discussion of the abstract data structures and their representations. 
The objects are finitely branching trees; that is, we assume that any node in 
a tree can have any finite number of branches. We wil1 also assume that the 
trees wi11 terminate on an of their branches. We need a recognizer, named 

is_term, which wi11 return t if the' tree is the trivial terminal tree with no 
branches. A terminal tree may either be a WIN or a LOSS. If ies a win, we 
know how to achieve our goal; if it's a LOSS, then we look further. That 
"further" says examine the alternatives the immediate parent of that node; if 
there aren't any alternatives then back up to the grandparent. 

If a tree has branches they are located by the selector branches. We will 
assume those branches are presented as an ordered sequence. perhaps 
ordered by their plausible value. Therefore we wi11 use the selectors first and 
rest to select candidate branches. 

eval_tree[tr] <= [ is_term[tr] -+ [is_win[tr] -+ tr,' t -+ LOSS]; 

t -+ eval_branches[branches[tr ]]] 

eval_branches[l] <= [null[l] -+ LOSS; 
eq[LOS S ;eval_treelfir st[l]]] -+ eval_branches[rest[lJ]; 
t -+ fir st[l]] 

The simplicity of the description is pleasing. It encourages us to proceed to 
more complex tree strategies. 

Attempts at exhaustive search of game trees becomes prohibitively 
expensive when applied to games like checkers and chess. However, 
computers have had reasonable success at checkers, and are beginning to 
play passable chess. A recent article, [Sug 77]. addresses the feasibility of 
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home chess machines. Those successes are based on more sophisticated 
analysis of game trees. The ideas involved in that analysis are easily 
expressed in LISP. 

In the following discussions we will make several assumptions. 
1. Our opponent is as smart as we are. This assumption allows us to use our 

evaluation function in evaluating the positions of our opponent. 
2. We assume that our opponent is also trying to win. Therefore his move 

wi11 reflect his best attempt to defeat us. Since we are using the same 
pOSition-evaluator, his "maximal harm" is our "minimal good". We are 
thus following a "max-min" strategy wherein we attempt to find the best 
move which our opponent cannot turn into a disaster for us. 

From these ideas we formulate our position evaluation strategy as 
follows: 
1. Grow a tree of moves. First our possible moves from a pOSition, then his 

counter moves; then our responses, etc. Continue this until the branch 
terminates or until a termination condition is forced. 9 

2. Once the tree is built, we evaluate the terminal nodes. 
3. The values are propagated back up the tree using the min-max idea. If 

the preceding node is ours, we assign that node the maximum of the 
branch values; if the preceding node is his we assign the minimum of the 
values. We proceed in this fashion, finally returning the value of the 
"best path". 

We will simplify matters somewhat, returning only the "value" of the best 

path. 10 First, we develop some subfunctions: 

maxlist[l;f] <= [null[l] ~ -00; t ~ max[j[first[l]]; 
maxlist[rest[l],j]] 

minlist[l;jJ <= [null[l] ~ 00; t ~ min[j[first[l]]; 
minlist[rest[l];jJ] 

The "00" denotes a number, bigger than any other value our evaluation 
function f can concoct. The f is a different kind of variable from those we 
have seen before. It is used as a LISP function within the bodies of the 
definition, yet passed as a variable. It is therefore called a functional 
variable. We will discuss such variables in the next chapter, but for now the 
intent should be clear from some examples: 

maxlist[( 1 3 5 2),'addIJ = 6 and minlist[( 1 3 5 2);addJ] = 2 

With those preliminaries, we are ready to present the mini-max strategy: 

9We assume we have methods for determining when a move is already 
present in the tree. 

lOWe should really return the best value and a description of the best 
path. 
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maxpos[p] <= [is_urm[pJ ~ value[pJ,· 
t ~ maxlist[branclzes[pJ,' minposJJ 

minpos[pJ <= [is_term[pJ ~ value[pJ; 
t ~ minlist[branclzes[pJ; maxposJJ 

maxpos gives the value of a position for the maximizing player and minpos 
gives the value of a position for the minimizing player. value is the 
terminal position evaluation function. 

What's even more interesting is that there is a simple technique which 
will allow us to discover the optimal path, usual1y without having to visit an 
the nodes. The technique, discovered by John McCarthy in 1958, is ca11ed 
CI-{:J pruning; it is based on the observation that if our opponent is assured 
that he can force us into an unfavorable position then he won't make a move 
which would give us a better position. That's obvious; what is not obvious is 
that he can often make such decisions on the basis of only a partial 
evaluation of the tree. Consider: 

o 

~ opponent's moves 

N M 

m r-+"" our moves 

7 3 4 ? 

Since we are to evaluate the position at N, we maximize the pOSition, getting 
7; that becomes the value of node N. It is up to our opponent to evaluate 
position 0, and he now knows we're going to get a 7 if he moves to N. He 
looks questioningly at "?"; if that value is greater than 7 then he immediately 
rejects move M without examining the other possibilities; things can only get 
worse for him. If "?" is less than 7, then he looks at additional alternatives at 
M. Once our opponent is finished evaluating the position, then it's our turn to 
play the game at the position above 0, only now we will try to maximize 

what that stingy individual has left us. We let" be the value which must be 
exceeded for a position to be desirable by the position about to play; and let 
(:J be the value which must not be exceeded if the move leading to the 
pOSition wou'ld be made by the opponent; in the above example 7 is the 

~-value when evaluating M. With that, we modify the min-max algorithms to 

include CI-{:J pruning. 
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maxlistol./3[I;j;(I;/J] <= [null[l] -+ (I; 

fiJir st[l]] ~ fJ -+ {J " 

t -+ maxlistot./3[ rest[l); 
f; 
max[c¥;fiJir st[l]]]; 
{J]] 

minlistol./3[I,j;(I;{JJ <= [ null[l] -+ {J; 

fiJirst[l)] :; C¥ -+ C¥; 

t -+ minlistot./3[ rest[l],· 
f; 
C¥; 

min[fJ ;fiflr st[l]]]]] 
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maxposo(./3[P;c¥;{Jl <= [is_term[p] -+ max[c¥;min[fJ;value[p]]; 

t -+ maxlist ot./3[branches[p]; min pos 1 ;c¥;fJ]] 

minpos 1 [xl <= minposot./3[x;c¥;fJ] 

'minposo(./3[p;(I;{Jl <= [ is_term[p] -+ max[c¥;min[fJ;value[p]]; 

t -+ minlistot./3[branches[pJ; maxpOst;c¥,·fJJ] 

maxpos t [x] <= maxposot./3[x;c¥;fJ] 

The process can be initialized with c¥ and fJ set to -00 and 00 respectively. 
Tighter bounds on "acceptab1iHty" can be enforced by picking different (I'S 

and /J's. The' effect will be to shorten the search time while, perhaps, ignoring 
some winning moves; caveat emptor. 

This not a trivial algorithm. However its description as a LISP 
program is about as simple and as compact as you will find; anywhere. 

2.5 Data Bases 

One of the more intriguing applications of LISP is in the area of data base 
management. In this section we introduce the ideas and suggest how LISP 
can be applied to the problems. 

A data base is a collection of objects together with a set of functions to 
pose questions about the objects in the base, to select objects from the base, 
and to construct new entries in the base. Expressed differently, a data base is 
an abstract data structure. We need to locate information in the base. We 
should be able to ask the system for a specific object or we should be able to 
partially specify our request ("find a11 books about LISP" or "find all books 
about LISP published before 1975"). We should be able to add entries and 
delete entries, but we will postpone these kinds of requests unti1later. 

The representational details of objects will be suppressed as usual, and 
we will concentrate on the abstract properties. In our first example, the 
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ob jects in the data base wi1l represent constants: an object will have a name 
and a collection of properties and va1ues. 

prop1 vall 

prop2 val2 
• • • 

propn I valnl 

An object representation 

For examp1e, a data base deaHng with business supp1ies might have 
objects named boxes. Each box has properties like size and contents. 

Not aU objects need to have the same number of properties. For 
examp1e in a data base whose objects are bibliographie references, books 
need not have page references, whereas journa1 articles require them; journal 
references don't include a publisher whereas books do. The programs which 
manipulate the data base must be structured to take changeab1i1ity into 
account. 

Here are some examples: the first one was extracted from the side of a 
Xerox paper box; the second might be a representation of a bibliographic 
entry for this book. 

NAME 4029258 

SIZE 8-1/2 >< 11 
COLOR WHITE 

AMNT 10 REAMS 

AUTHOR ALLEN, JOHN, R. 

TITLE THE ANATOMY OF LISP 

TYPE BOOK 

PUBL MCGRAW-HILL 

DATE 1977 

Given a data base of objects, we need to be able to manipulate these 
objects in meaningful ways. We wiU not address the prob1ems of designing 
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input and outputJ but wilt concern ourselves solely with the problems of 
semantics of data base primitives: how can we use the information in the 
base? 

In requesting information from a data base, we typically specify part of 
the request and expect the system to come up with a set of possibilities which 
fit our description. For example, the request: "find all books about LISP", 
specifies that we are interested only in books, not in journal articles or course 
notes; the topiC is specified to be LISP, but the system is free to select the 
other components: the authorJ the title, the publisher and the date of 
publication. The objects which are specified are called constants, the 
unspecified components are variables. A request is a structure called a 
pattern and consists of an ordered collection of constants and variables. The 
elements in the data base are also patterns; for this exampleJ they contain 
on ly constants; such constant patterns are also catted records. The process of 
discovering whether or not a record in the data base matches the req uest is 
called pattern matChing. 

We describe a simple pattern matcher named match. It expects two 
arguments. The first argument is a constant pattern catted pat. The second 
argument, exp represents a request; it may be constant, or it may contain 
variables. If it does contain variables, then the pattern matching process 
must establish a match between those variables and components of our data 
base object. The value returned by match will either represent the 
associations built up to match the constant pattern to the expression, or the 
value returned will indicate failure if no match is possible. 

Patterns wi11 be represented as lists with atoms representing constants, 
and variables represented as lower-case greek letters. We wi11 represent 
failure by returning the atom NO. In the case that a match is pOSSible, we 
will return a list of pairs, where each pair is a variable and its matching 
constant. 

For example: match[(A (B C»;(A (B a»J = ((a C» 

match[(A B C);(A a /J» = ((a B) (/J C» 

match[(A B C);(A C /J» = NO 

Pattern matching can become quite complex. For example: 

match[(A (B C) (D C»,-(A (B a) (/J C»] = ((a C) (/J D» 

match[(A (B C) (D C»,'(A (B a) (a C»] = NO 

The second example fails since once we have associated C with a we must 
use that association throughout the rest of the pattern match; and (D C) does 
not match (a C) when a denotes C. II 

IlThis assumes that the match proceeds in a left-to-right order. 
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We will write match in terms of a subfunction named match'. This 
subfunction carries a third argument, mUst, which represents the list of 
partial matches. Whenever we locate a variable in the expression, we 
examine the current mUst. If the variable appears, then we must check its 
entry against the corresponding part of the pattern. If the variable does not 
occur in mlist, then we associate the variable with the appropriate part of the 
constant pattern. 

match[patjexp] <= match'[pat,·exp,{ )] 

match'[pat,·exp;mlist] <= [equal[mlistjNO] -+ NO,. 
isconst[ex.p] -+ [ sameconst[pat"expl -+ mlist; 

t -+ NO]; 
isvar[exp] -+ check[ pat " 

exp,. 
lookup[pat ;mUstl,· 
mUst); 

t -+ match'[suffix[pat),. 
suffix[exp ]; 
match'[prefix[pat],'prefix[exp ];mlist]] 

check[varjexp;val;mUst] <= [not[val) -+ concat[mkent[var,'exp];mlist],' 
sameconst[expjvalJ -+ mlist; 
t -+ NO] 

lookup[var;l] <= [null[l] -+ f; 
samevar[var ;name[jir st[l]]] -+ val[fir st[l]]; 
t -+ lookup[var;rest[l]]] 

To complete our description of match we should supply the data structure 
manipulating functions: isconst, isvar, prefix, suffix, samevar, and sameconst; 
and mkent, name, and val. The first five are related,dealing with the 
representation of patterns; the final three involve the representation of the 
match list. Note that we have assumed that mUst is a list. We will restrict the 
match algorithm to simple matches on tree structure. We represent prefix as 
first and suffiX and rest though much more general interpretations are 
possible. We leave it to the reader to supply representations of the missing 
functions. 

Given a basic pattern matcher, we can begin to elaborate on a data 
base management system. We need some means of controlling the matcher. If 
several entries in the system match the inquiry, then we must decide how to 
manage the matches. In simple cases we could make a list of all the 
possibilities. If the number of matches is very large we might want to return 
a few at a time, remembering where we were in the search of the base. The 
natural extension of this idea is to allow a potentially infinite set Of elements 
present in the data base. In programming languages we are able to talk about 
such potentialities by using a procedure. 
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Instead of having objects explicitly stored in the base, we may allow 
procedures to occur as data base elements. Such a procedure would generate 
elements. For example, instead of storing the integers as explicit objects, we 
could store a procedure to generate the integers. This introduces two 
problems: how do we store procedures as data objects; and, assuming that we 
have called such a procedure and it has delivered an explicit object, how do 
we represent the notion that the next time we can that procedure, we want 
the next object? That is, a procedure named get_next_integer should return 
1 the first time it is ca11ed, but know to return 2 the next time it is called in 
the same context. It must also know to return 1 when it is called in a new 
context. 

Other possible extensions involve the operations on the base. Assume 
that the base contains "all roses are red" and knows that object 0 1 is a rose; 
if we ask the data base for all red objects, we should expect to see a 1 appear 
as a candidate. That expectation requires a deductive ability built into the 
base manipulator. That is, we need not have explicitly stored the information 
in the base, but we expect to be able to deduce facts from information in the 
base using some relationships and reasoning ability. 

There are at least two ways the "roses are red" problem can be solved. 
Notice that "all roses are red" is much like a procedure; given an object 
which is a rose, it generates an object which is red. So, on entering a rose 
ob ject in the data base, the system could also explicitly add the fact that the 
rose was red. This is an example of an input demon. A demon is a 
procedure whiCh is not explicitly called but is activated by the occurrence of 
another event. Whenever an object is added to the base the collection of 
input demons is checked. If an applicable demon is found, it is activated; its 
activation might activate other demons. 

The activation of a demon is a different kind of procedure call than 
previously seen. The activation is done on pattern matching rather than by a 
user-initiated call. Thus the calling style is generally known as pattern 
directed invocation ([Hew 72], [Bau 72]). The demon procedure is stored in 
the data base along with a pattern which determines conditions for its 
activation. In the case of an input demon, an input to the base initiates a 
match of the input demon patterns against the input. If a match is found, the 
corresponding procedures are executed. The match process can bind 
variables to parts of patterns and therefore the procedure typically has access 
to the match information. 

Let's establish some notation and give an example. To introduce 
records to our system we use a unary procedure named add_item. The 
argument to add_item is the record we wish to add. 

add_item[( ROSE 01)] 

We will use a ternary procedure named add_demon to insert demons in 
the base. The first argument is the type of demon; so. far we have discussed 
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demons invoked by adding elements; we will also have demons which are 
applied when items are removed, or when items are accessed. These three 
types will be named ADD, REMOVE, and FETCH. The second argument is 
the pattern which wil1 invoke this demon; and the third argument is the 
action to be taken if the pattern matches. For example: 

add_demon[ADD;( ROSE a);add_item[( RED a))]] 

Demons are also used to monitor the removal of information from the base. 
The third use of demons is involved with another possible solution to 

the "an roses are red" problem. Instead of explicitly adding the fact that 01 
is a red object we might wait until a request for red objects occurs. At that 
time we could use the "all roses are red" demon backwards. That is, we could 
look for any roses in the data base; the assertion that a "rose" object is also a 
"red" object allows us to accept "rose" objects as solutions to our inquiry. 
This feature introduces a certain deductive capability to our system. It also 
introduces some organizational problems. 

We have to recognize when a procedure is capable of producing objects 
of the desired type. We therefore index these data base procedures by a 
pattern which tells what the procedure accomplishes. That pattern is called 
the procedure's goal and the invocation of such a procedure is again 
pattern-directed, but has an added connotation of being goal-oriented. 

Again, we introduce some notation and an example. Let the request for 
a data base item be given by: 

fetch[a], where a is a pattern. 

Since a fetch request might discover several possibilities, some being items 
and some being goal-directed procedures, we need a way of examining the 
selected information. 

We introduce a function named try_next, whose single argument is the 
result of a fetch. Each catt on try_next either produces a new item or signals 
that no more items exist on the fetch list. 

An extension to this basic data base manipulating system has become 
convenient in artificial intelligence research. Let us assume we wish to derive 
a plan or sCherne for achieving a desired goa1. In the derivation process we 
will make hypotheses and then pursue their implications. A similar behavior 
can be simulated if we allow the creation of multiple data bases. Each base 
corresponds to a hypothetical situation or world, and the fetch-ing of an 
ob ject in a world corresponds to asking whether or not a desired state is 
attainable in that world. 

Instead of requiring that an transformations occur in one data base, 
several systems ([Con 73], [Q.A 4 72]) have implemented a layered data base. 
In this situation we are able to add, delete and fetch from specified data 
bases. We add two operations push_base and pop_base which allow us to 
manipulate whole data bases as objects. 
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The control structures necessary for handling such data base 
manipulations may be very non-structured; some of the implementation ideas 
for such control will be discussed in Section 4.5. We will discuss some 
details of the data structure implementation in Section 5.6. For more 
information see [McD 75] and [Con 73]. 

Problems 

1. Recall our discussion of match on page 72. Supply a representation for 
match lists and supply the eight data structure functions. 

2. The match routine we developed on page 72 reqUired that pat be a 
constant pattern. Write a more general pattern matcher named unify 
which allows either pat or exp to contain variables. This more gereral 
match routine is called a unifier ([Rob 65]). 

For example: 

unify[(A (B a) A); (A (~ D) 8)] = «a D) (fJ B) (8 A» 

unify[(A (B a) A); (A (fJ D) fJ)] = NO 

unify[(a A a); (fJ ~ B)] = NO 

2.6 Algebra of Polynomials 

Assume that we want to perform addition and multiplication of polynomials 
and further assume that each polynomial is of the form Pl + P2 + ... + Pn 
where each term, Pi' is a product of variables and constants. The two 
components of each term are a constant part called the coeffiCient, and the 
variable part. We shall assume without loss of generality that the set of 
variables which appear in the polynomials are lexicographically ordered, 
e.g. x < y < z; and assume that each variable part obeys that ordering; thus 
we would insist that xzy2 be written xy2z. We do not assume that the terms 
are ordered within the polynomial; thus x + xy and xy + x are both 
acceptable. We further assume that the variables of each Pi are distinct and 
that no Pi has 0 as its coefficient. The standard algorithm for the addition 

of rni_tPi with rmj_tqj indicates that qj can be combined with a Pi if the 
variable parts of these terms are identical. In this case the resulting term has 
the same variable part but has a coefficient equal to the sum of the 
coefficients of Pi and qj. We will examine four representations of 
polynomials, before finally writing any algorithms. To aid in the discussion 
we will use the polynomial x2 - 2y - z as our canonical example. 
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First representation 

We could use the representation of the differentiation example. This would 
result in our example assuming the form: 

(PLUS (TIMES 1 (EXPT X 2» (PLUS (TIMES -2 Y) (TIMES -1 Z») 

The above conventions specify an unambiguous representation for our class 
of polynomials. Strictly speaking, we did not need to impose the ordering on 
the set of variables. However, we need to impose some additional constraints 
before we have data structures which are well-suited to the class of 
polynomial algorithms we wish to represent. 

Second representation 

We are really only interested in testing the equality of the variable parts; we 
will not be manipulating variable parts in any other way. So we might 
simply represent the variable part as a list of pairs; each pair contains a 
variable name and the corresponding value of the exponent. Knowing that 
polynomials are always sums, and knowing the class of algorithms we wish to 

implement, we write r.Pi as: 

( (rep of PI), (rep of P2), ... ) 

This representation would make our example appears as: 

«TIMES 1 aX . 2») (TIMES -2 ay . 1») (TIMES -1 «Z . 1»» 

This representation is sufficient and it does have the flexibility we need, but 
it is still not terribly satisfying. We are ignoring too much of the structure in 
our class of polynomials. 

Third representation 

We know that the occurrence of variables is ordered in each variable part; 
we can assume that we know the class of variables which may appear in any 

polynomial. So instead of writing x2y3z as 

aX . 2) (Y . 3) (Z . 1», 
we eQuId write: (2 3 1) assuming x, y, z are the only variables. 

In a further Simplification, notice that the TIMES in the representation is 
superfluous. We always multiply the coefficient by the variable part. So we 
could simply concat the coefficient onto the front of the variable part 
represen tation. 

Let's stop for some examples. 
term 
2xyz 

2x2z 

4z3 

representation 
(2 111) 

(220 1) 

(400 3) 
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Thus our canonical polynomial would now be represented as: 

«1 2 0 0) (-2 0 10) (-1 0 0 1)) 

This representation is not too bad; the first-part of any term is the 
coefficient; the rest-part is the variable part. For example, the test for 
equality of variable parts is now simply a can on equal. 

Let's start thinking about the structure of the main algorithm. 

Fourth representation 

The algorithm for the sum must compare terms. Finding similar terms, it wilt 
generate an appropriate new term, otherwise it simply copies the terms. 
When we pick a Pi from the first polynomial we would like to find a 
corresponding qj with the minimum amount of searching. This can be 
accomplished if we can order the terms in the polynomials. A natural 
ordering can be induced on the terms by ordering the numerical 
representation of the exponents. For sake of argument, assume that a 
maximum of two digits wilt be needed to express the exponent of anyone 

variable. Thus the exponent of x2 will be represented as 02, or the exponent 
of z 10 will be represented as 10. Combining this with our ordered 
representation of variable parts, we arrive at: 

term representation 
43x2y3z4 (43,020304) 

2x2z (2,020001) 

4z3 (4,000003) 

Now we can order on the numeric representation of the variable part of the 
term. One more change of representation, which will result in a 
Simplification in storage reqUirements: 

represent axAyBzC as (a . ABC) 

This gives our final representation: 

«(1 .20000) (-2 .100) (-1 . 1» 

Note that 20000 > 100 > 1. 
Finally we will write the. algorithm. We will assume that the 

polynomials are initially ordered and will write the algorithm so as to 
maintain that ordering. Each term is· a dotted pair of elements: the 
coefficient and a representation of the variable part. 

As in the previous differentiation example, we should attempt to 
extract the algorithm from the representation. 
We sh all define: 

coefix] <= car[x] and expo[x] <= cdr[x] 

To test the ordering we will use the LISP predicate: 

greaterp[x"J gives t if x is greater than y. 
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In the construction of the 'sum' polynomial we will generate new terms by 
combining coefficients. So a constructor named mknode is needed. In terms 
of the latest representation mknode is defined as: 

mknode[x;y] <= cons[x;y] 

So here's a graphical representation of our example pOlynomial: 

Here's the algorithm: 

polyadd[p;q] <= 
Fnullpoly[pJ ~ q; 
null poly[q] ~ p; 

x2 - 2y - z 

-1 1 

greaterp[expo[jtrst[p ]];expolfirst[q]]] ~ concat[jirst[p]; 
polyadd[rest[p ];q ]]; 

less p[expo[jir step ]];expolfir st[q ]]] ~ concat[jir st[q J; 
polyadd[p;rest[qJJJ,· 

zerop[plus[coefijir st[p ]];coej[jirst[q ]]]] ~ polyadd[rest[p ];rest[q ]]; 
t ~ concat[ mknode[plus[coej[jirst[pJ];coej[jirst[q]]],· 

expo[fir step ]]]; 
polyadd[rest[p ];rest[q ]]]] 

where: zerop[x] <= eq[x;O] 
Notice that our algorithm is quite abstract. 

Now for, an explanation and example. The form of polyadd is: 

[p I ~ el; P2 ~ e2; Pa ~ ea,· P4 ~ e4; P5 -+ e5; P6 -+ e6] 
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PI -+ el and P2 -+ e2 check if either polynomial is empty. 

Pa -+ ea and P4 -+ e4 examine the ordering of terms so that the resultant 
polynomial retains the ordering. 

P5 or Ps will not be reached unless the variable parts are equal. 

P5 -+ e5' Since the variable parts are equal, we can combine terms. However, 
we must check for cancellations and not include any terms with zero 
coefficient in our resultant polynomial. 

Ps -+ Ps· In the final case we must add a new node to our polynomial. 
Here's an informal execution of polyadd: \ 

polyadd[ x+y+z; x2-2y-z ] 
= concat[x2;polyadd[x+y+z; -2y-z]] 
= concat[x2;concat[x;polyadd[y+z; -2y-z]]] 
= concat[x2 ;concat[x ;concat[node[l +-2 t'y ];polyadd[z,·-z]]]] 

= concat[x2;concat[x;concat[-y;polyadd[z; -z]]]] 

= concat[x2 ;concat[x;concat[ -y;polyadd[( );( )]]]] 
= concat[x2;concat[x;concat[-y;( )]]] 

= x2+x-y 

Extensive work has been done on polynomial manipulating algorithms for 
efficient storage and fast execution ([Got 76]). 

Problem 

l. Write an algorithm, polymult, to perform the multiplication of two 
polynomials. 

2.7 Evaluation of Polynomials 

Though you are undoubtedly quite tired of looking at polynomials, there is 
at least one more operation which is usefully performed on polynomials. The 
operation is evaluation. Given an arbitrary polynomial, and values for any 
of the variables which it contains, we would like to compute its value. First 
we will assume that the substitutions of values for variables has already been 

carried out. Thus we are dealing with poJ'ynornials of the form: En
i_) Pi where 

Pi is a product of powers of constants. For example: 

2a + 3*42 + 5 

This could be represented as: 

(PLUS (EXPT 2 J) (PLUS (TIMES J (EXPT 4 2» 5» 
We have taken this general representation because we have great 
expectations of generalizing the resulting algorithm. 
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We describe a LISP function, value, which will take such an S-expr 
representation and compute its value. Input to value will be numerals or lists 
beginning with either P LU S, TIMES, or EX PT and followed by two 
numerals or other expressions of the same form. 

<constexp>::= <constant> 

<sum> 
<prod> 
<expt> 

::= <sum> 
::= <prod> 
::= <expt> 
::= (P LU S <constexp> <constexp> ) 
::= (TIMES <constexp> <constexp> ) 
::= (EX PT <constexp> <c'onstexp> ) 

The value of a numeral is that numeral; to evaluate the other forms of 
input we should perform the operation represented. We must therefore 
assume that operations of addition, multiplication, and exponentiation exist. 
Assume they are named +, ~<, and t, respectively. What then should be the 
value of a representation of a sum? It should be the result of adding the 
value of the representations of the two summands or operands. That is, value 
is recursive. It should now be clear how to write value: 

value[x) <= [isconstant[x) ~ x; 

where: 

issum[x) ~ '+[value[argt[x]];value[arg2[x]]]; 

isprod[x] ~ *[value[argt[x)];value[arg2[x))); 
isexpt[x] ~ t[value[argt[x]],'value[arg2[x))]] 

isconstant[x] <= numberp[x] 

issum[x] <= eq[jirst[x);PLUS) 

isprod[x) <= eq[!irst[x);TIMES) 

isexpt[x] <= eq[!irst[x),'EX PT] 

Compare the structure of the evaluator with that of the BNF equations. 

Problems 

1. Show how to extend value to handle binary and unary minus. 
2. Write an algorithm instantiate which will take two arguments, one 

representing a set of variables and values, the other representing a 
polynomial. The algorithm is to return a representation of the polynomial 
which would result from substituting the values for the variables. 

3. We would like to represent expressions like 2+3+4 as (PLUS 2 3 '4) rather 
than (PLUS (PLUS 2 3) 4) or (PLUS 2 (PLUS 3 4)); or, represent 
2*3~<4+5+6 as (PLUS (TIMES 2 3 4) 56). Write a new version of value 
which can evaluate such n-ary representations of + and foe. 
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More on polynomial evaluation 

Though it should be clear that the current value function does perform the 
appropriate calculation, it should be equally clear that the class of 
expressions which value handles is not particularly powerful. We might wish 
to evaluate requests like: 

A "What is the value of x*y + 2*z when x=4, y=2, and z=l?" 

Now the function instantiate, requested in problem 2 ·above, offers one 
solution: make a new copy of the representation of x*y + 2*z with the 

variables replaced by their values. 12 This wpuld result in a representation of 
4*2 +2*1, and this new expression is suitable' fare for value. Computationally, 
this is a terrible solution. instantiate will go through the structure of the 
expression looking for instances of variables, and when located, will replace 
them with the appropriate values. value then goes through the structure of 
the resulting expression performing the evaluation. We desire a function, 

value', which combines the two processes: the basic structure of value' is that 
of mild-mannered value, but when a variable, say x, is recognized inside 

value' then value' would look at a table like that expected by instantiate, 
find x and return the value associated with the entry for x. 

Let's formalize our intuitions about value'. It will be a function of two 
arguments. The first will be a representation of a polynomial; the second will 
be a representation of the table of variables and values. You may have 
noticed that the original version of value does handle expressions which are 
not actually constant polynomials; (2 + 3)*4 for example. Since we will wish 
to apply our evaluation functions to more general classes of expressions we 
wi1t continue, indeed encourage, this generality. Regardless of the class of 
expressions we wish to examine, it is the structure of the table which should 
be the first order of business. An appropriate table, tbl, will be a set of 
ordered pairs <name;, val;>; thus for the above example the table 
{<x, 4>, <y, 2>, <z, 1>} would suffice. Following our dictum of abstraction 
and representation-independent programming, we will not worry about the 
representational problems of such tables. We witl simply assume that "tables" 
are instances of an abstract data structure called <table>, and we will only 
concern ourselves for the moment with the kinds of operations we need to 
perform. We will need two selector functions: name, . to select. the 
variable-component of a table entry; and val, to select the value-component. 
A complete discussion of such a data structure would entail discussion of 
constructors and recognizers, 'and perhaps other functions, but for the current 

value', these two functions will suffice. 

12We have seen this substitution and simplification process before in 
discussing equal on page 24. It is a useful model for computation, but does 
not reflect current implementation practice. However, see [Ber 75]. 
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value' will need a table-function, locate, to locate an appropriate 
variable-value entry. The binary function locate will take an argument, x, 
representing a variable; and an argument, tbl, representing a table. locate win 
match x against the name-part of each element in tbl; if a match is found 
then the corresponding val-part is returned. If no match is found then locate 
is undefined. 

So far, little structure has been imposed on elements of <table>; tables 
are either empty or not; but if a table is non-empty then each element is a 
pair with recognizable components of name and val. However, the 
specification of algorithms to examine elements of <table> imposes more 
structure on our tables. If we were dealing with mathematical functions 
rather than algorithms then a side condition to the effect that a table had no 
pairs with duplicate first elements would be sufficient {and reqUired). 
However, we are dealing with algorithms and therefore must describe a 
method for locating elements. 

Recursion is the only method we have for specifying locate, and 
recursion operates by decomposing a structure. Sets are notorious for their 
lack of structure; there is no order to the elements of a set. But if we are to 
write a LISP algorithm for locate, that algorithm will have to be recursive on 
the "structure" of tbl, and so we impose an ordering on the elements of that 
table. That is, we will represent tables as sequences. We know how to 
represent sequences in LISP: we use lists. 

With this introduction, here's locate: 13 

locate[x;tbl) <= [eq[name[first[tbl]);x] ~ val[first[tbl]],' 

, t ~ locate[x;rest[tbl]) ) 

The effect of locate is to find the first element of tbl which has a 
name-component which matches x. Having found that match, the 
corresponding val-part is returned. If there were other matches further along 
in the sequence locate would not see them. Other representations of tables 
are certainly possible. This representation will be useful in later applications. 
And here's the new more powerful value': 

value'[x,·tbl) <= [isconstant[x] ~ x; 
isvar[x] ~ locate[x;tbl]; 
issum[x] ~ +[ value'[argl [x];tbl]; 

value'[ar g 2[X ];tbl]],' 

isprod[x] ~ *[ value'[argt[x];tbZ]; 

value'[ar g 2[X ],·tbl]]; 

isexpt[x] ~ t[ value'[argt [x];tbl]; 

value'[arg2[x];tbl]] ] 

t3The interpretation of tbl as a function implies that locate represents 
function application; i.e., locate[x,·tbl] is tbl(xJThis is a very acceptable view 
of table lookup. 
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Notice that tbl is carried through as an explicit argument to value' even 
though it is only accessed when a variable is recognized. Notice too that 
much of the structure of value' is quite repetitious; the lines which handle 
sums, products, and exponentiation are identical except for the function 
which finally gets applied to the evaluated arguments. That is, the basic 

structure of value' is potentially of broader application than just the simple 
class of polynomials. In keeping with our search for generality, let's pursue 

value' a little further. 
What value' says is: 

1. The value of a constant is that constant. 
2. The value of a variable is the current value associated with that variable 

in the table. 
3. The value of a function call is the result of applying the function to the 

evaluated arguments. It just turris out that the only functions value' 
knows about are binary sums, products, and exponentiation. 

Let's clean up value' a bit. 

value'[x;tbl] <= [isconstant[x] ~ X; 
isvar[x] ~ locate[x;tbLJ,. 
isfun_args[x) ~ apply[fun[x); 

eval_ar gs[ar gs[x];tbl]); 
t ~ .L) 

The changes are in the third branch of the conditional. We have a new 
recognizer, isfun_args to recognize function application. We have two new 
selector functions; fun selects the representation of the function -- sum, 
product, or power in the simple case; args selects the arguments or parameters 
to the function -- in this case an functions are binary. We have two new 
functions to define: eval_args, which is supposed to evaluate the arguments 
finding values for any of the variables; and apply, which is used to perform 
the desired operation on the evaluated arguments. 

We are stilt trying to remain as representation-free as possible: thus the 

generalization of the algorithm value', and thus the care in picking 
representations for the data structures. We need to make another data 
structure decision now; when writing the function eval_args, we will be 
giving a recursive algorithm. This algorithm wilt be recursive on the 
structure of the first argument, which is a representation of the arguments to 
the function. III contrast to our pOSition when writing the function locate, 
there is a natural structure on the arguments to a function: they form a 
sequence. That is fil,'2;J) is typical1y not the same as fiJ;2"l] or f applied to 
any other permutation of {l, 2, 3}. Thus writing eval_args ,as a fUl)ction, 
recursive on the sequence-structure of its first argument, is quite natural. 
Here is eval_args: 
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eval_args[args;tbl] <= [null[args] -+ 0; 
t -+ concat[ value'[lirst[args];tbl); 

eval_args[rest[args];tbl)] ] 

Notice that we have written eval_args without any bias toward binary 
functions; it wi11 evaluate a sequence of arbitrary length, returning' a 
sequence representing the evaluated arguments. 

There should be riq real surprises .in apply; it gets the representation of 
the function name and the sequence of evaluated arguments and does its job: 

appIY[ln; evargs] <= [issumlfn] -+ +[ argJ[evargs]; 
. arg2[evargs]]; 

isprod[ln] -+ *[argJ [evargs]; 
arg2[evargs]]; 

isexptlfn) -+ t[ argJ[evargs); 
arg2[evargs]] ] 

If we should desire to recognize more functions then we need only modify 
apply. That would be a satisfactory short~term solution, but we would like a 
more general function-definition facility. Such a feature would allow new 
functions to be defined during a computation; then if an application of that 
function were need~d, the value-function would find that definition and 
apply it in a manner analogous to the way the pre-defined functions are 
applied. How far away are we from this more desirable super-value? Well 
value' is already well-endowed with a mechanism for locating values; perhaps 
we can exploit this judiciously placed code. In what context would we be 
interested in locating function definitions? Here's an example: 

B "What is the value of fi 4;2;}] when fix;y;z] <= x*y + 2*z?" 

If we have a means of recovering the definition of I, then we can reduce the 
problem to A of page 81. We will utilize the table-mechanism, and therefore 
will use locate' to retrieve the definition of the function f. In our prior 
applications of locate we would find a constant as the associated value. Now, 
given the name j, we would expect to find the definition of the function. 
The question then, is how do we represent the definition of fi Certainly the 
body of the function, x*y + 2*z, is one of the necessary ingredients, but is that 
all? Given the· eXfJression x*y + 2*z can we successfully compute fi 4;2;J]? 
Not yet; we need to know the correspondence between the values 1, 2, 4 and 
the variables, x, y, z. That information is present in our notatilJrl 
fix;y;z] <= ... , and is a crucial part of the definition of f. That is, the order of 
the variables appearing after the function name is an integral part of the 
definition: fiy;z;x] <= x*y +2*z defines a different function. 

, Since we are now talking about representations of functions, we are 
entering the realm of abstract data. structures again. We have a reasonable 
understanding now of the essential components of such a repre,sentation. 
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For our purposes, a function has three parts: 

1. A name; f in the current example. 
2. A formal parameter list; [x;y;z] here. 
3. A body; x*y + 2*z in the example. 

We do not need a complete study of representations for functions yet. For our 
current discussions we can assume a representation exists, and that we are 
supplied with three selectors to retrieve the components mentioned above. 

1. name selects the name component from the representation. We have 
actu ally seen name before in the definition locate on page 82. 

2. varUst selects the list of variables from the representation. We have 
already seen that the natural way to think about this component is as a 
sequence. Thus the name varUst. 

3. body selects the expression which is the content of the definition. 

Given a function represented in the table according to these conventions, 
how do we use the information to effect the evaluation of something like 

jf. 4;2;1]? First value' will see the representation of jf. 4;2;1]; it should 
recognize this as an instance of function-application at the following line of 

value': 

isfun_args[x] ~ apply[fun[x];eval_args[args[x];tbl]] 

This should cause an evaluation of the arguments and then pass on the work 
to apply. 

Clever apply should soon realize that f is not the name of a known 
function. It should then extract the definition of f from the table; associate 
(or bind) the evaluated arguments (4, 2, 1) with the variables of the 
parameter list (x, y, z), making a new table with name-value pairs 
«x, 4>, <y, 2>, <z, 1». Now we are back to the setting of problem A of 

page 81. We should ask value' to evaluate the body-component of the 
function using the new tbl. This works fine for x, y, and z; within the 
evaluation of the body of f we will find the right bindings for these 
variables. But we might also need some information from the original tbl. 
The evaluation of the body of f might entail the application of some 
function definition present in tbl. For example, the representation of 

"what is g[2] where g[x] <= x+s[x); and sEx] <= x*x ?" 

Within the body of g we need the definition of s. Therefore, instead of 
building a new table we will add the new bindings to the front of the old 
table. Since locate begins its search from the front of the table we will be 
assured of finding the new bindings; since the old table is stitt accessible we 
are assured of finding any necessary previous bindings. 
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We should be able to create a new value" now. Looking at the finer 

detail of value' and apply, we can see a few other modifications need to be 

made. apply' will locate the function definition and thus tbl should be 

included as a third argument to apply'. That is, inside apply' we will have: 

isfun[jn] ~ apply'[locate[jn;tbl];evargs,·tbl]; 

After locate has done its work, this line (above) will invoke apply' with a 

function definition as first argument. We should prepare apply' for such an 
eventuality with the following addition: 

isdefifn] ~ value"[body[jn],-newtbl[varlist[fn];evar gs ;tblJ],· 

What does this incredible line say? It says 

"Evaluate the body of the function using a new table 
manufactured from the old table by adding the pairings of the 
elements of the formal parameter list with the evaluated 
arguments. " 

It also says we should write newtbl. This LISP function will make a new table 
by adding new name-value pairs to an existing table. So we'd better name a 
constructor to generate a new name-value pair: 

mkent is the constructor to make new entries. It will take two arguments: the 
first wilt be the name, the second wi11 be the value. 

Since we have assumed that the structure of tables, variable-lists, and 
calling seq uences to functions are all seq uences, we will write newtblassuming 
th.s representation. 

newtbl[vars;vals;tbl] <= [null[vars] ~ tbl; 
t ~ concat[mkent[first[~ars],jirst[vals]]; . 

newtbl[ rest[vars]; 
rest[val$]; 
tbl]] ] 

And finally here's the new value"-apply' pair: 

value"[x,·tbl] <= [isconstant[x] ~ x: 
isvar[x] ~ locate[x,·tblJ,· 
isfun_args[x] ~ apply'[fun[x); 

eval_args[args[x],·tbl],· 
tbl] ] 
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apply'lfn;evargs,·tbl] <= [issum[jn] ... +[argt[evargS];arg2[eVargs]]; 
isprod[fn] ... *[argt[evargS];arg2[eVargs]]; 
isexpt[jn] ... t[argt [evargS];arg2[eVargs]]; 

isfunlfn] ... apply'[locate[fn;tbl];evargs;tbll; 
isdefifn] ... value"[ bOdylfn]; 

newtbl[ varlist[fn]; 
evargs;tbl]] ] 

eval_args[args;tbl] <= [null[args] ... ( ); 
t ... concat[value"[first[args],·tbl]; 

eval_args[rest[args];tbl]] ] 

Let's go through a complete evaluation of B of page 84. As before, we 

will use fR as a mapping from expressions to representations. Thus we want 
to pursue: 

value"[fR [fi 4;2;1] ]; m [{ <I, [[x;y;z] x*y + 2*z]> }]J. 

Let us denote the initial symbol table, m[{ <I, [[x;y;z] x*y + 2*z]> lJ] as init. 
This will simplify many of the expressions. Notice that our representation of 
fin init has associated the variable list [x;y,·zJ with the body of the function. 
Thus locate, operating on this table with the name f, will return a 
representation of [[x;y;zJ x*y + 2*z). 

The recognizer isfun_args should be satisfied and thus the 
computation should reduce to: 

apply'[ fun[m[jt4,'2;J] ]],. 
eval_args[args[fR[ fi 4,'2;J] ]];init],' 
init] 

or: apply'[ m[ f ] "eval_args[ m[ [4,'2;J] ]; initJ,' init J 
eval_args will build a sequence of the evaluated arguments: (4,2,1), resulting 
in: 

apply'[ m[ f ] ;(4, 2, 1) ,. init ] 

apply' should decide that f satisfies isfun giving: 

apply'[ loeate[ m[ f ] ; init ]; (4, 2, 1) ,. init ] 

locate will retrieve the definition, and 

apply'[ m[ [[x,,;z] x*y + 2*z] ] ,. (4, 2, 1) ; init ] 
should be the result. 
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Next, apply' should realize that m[ [[XiYiZ] x*y + 2*z] ] satisfies isdef 
and thus: 

value"[body[tR[ [[XiY;Z] x*y + 2*z] ]]; 
newtbl[ varlist[!R [ [[X;YiZ] x*y + 2*z] ]]; 

(4,2); 
init]] 

or: value"[ m[ [x*y + 2*%] ] ;newtbl[ m[ [X;YiZ] ] ;(4,2);init]] 
after body and varlist are finished. 

m[ [X,'iZ] ] is (m[ x ], m[ Y ], m[ z ]), and therefore the computation 
of nelotbl wil1 build a new table with entries for x, y, and Z on the front: 

m[{ <x, 4>, <y,2>, <z, 1>, <I, [[x;y,·z] x*y + 2*%]> }]. 

Thus we can value" with: 

value"[fR [ [x*y + 2*z] ],. 
m[{ <x, 4>, <y, 2>, <x, 1>, <f, [[x,1;%] x*y + 2*%]> }]] 

Now we're back at problem A of page 81. 

Time to take stock 

We have written a reasonably sophisticated algorithm here; we should 
examine the results quite careful1y. Notice that we have written the 
algorithm with almost no concern for representation. We assume that 
representations are available for such varied things as arithmetic expressions, 
tables, ca11s on functions, and even function definitions. Very seldom did we 
commit ourselves to anything close to a concrete representation, and then only 
with great reluctance. It was with some sadness that we imposed a seq uencing 
on elements of tables. Variable lists and calling sequences were not as 
traumatic; we claimed their natural structure was a sequence. As always, if we 
wish to run these programs on a machine we must supply some 
representations, but even then the representations will only interface with our 
algorithms at the constructors, selectors and recognizers. 

We have made some more serious representational decisions in the 
structure of the algorithm. We have encoded a version of the CBV -scheme 
of page 16. We have seen what kinds of difficulties that can cause. We will 
spend a large amount of time in Chapter 3 discussing the problems of 
evaluation. 14 

14A second decision was implied in our handling of function 
definitions; namely we bound the function name to a data structure 
representing the formal parameter list and the function body. This 
representation gives the expected result in most cases, but involves one of the 
more problematic areas of programming languages: how do you find the 
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Finatly, our decisions on the data structures and the algorithms were 
not made independently. For e~ample, there is strong interaction between our 
representation, of tables and the algorithms, locate and newtbl which 
manipulate those tables. We should ask how much of this interaction is 
inherent and how much is gratuitous. For example, we have remarked that 
our representation can contain pairs with duplicate first elements. It is the 
responsibility of locate to see that we find the expected pair. If we wrote 
locate to search from right to left, we could get the wrong pair. We could 
write newtbl to be more selective; it could manufacture a table without such 
duplications: 

newtbl[vars;vals;tbl] <= [null[tbl] -+[null[vars] ri 0,' 
t -+ concat[mkent[jirst[vars),jirst[vals)]; 

newtbl[ rest[var s); 
rest[vals); 
( »))); 

member[name[jir st[tbl)),'var s) -+ newtbl[var s; 

t -+ concat[jir st[tbl]; 
newtbl[var s ;vals ;rest[tbl))) ] 

vals; 
rest[tbl]); 

This version of netutbl reqUires much more computation than the alternative. 
Its advantage is that the "set"-ness of symbol tables is maintained. A 
disadvantage is that the rebinding process implies a rebuilding of the table. 
The "set" property is one which we need not depend on for our algorithms; 
in fact, we will frequently expect that a table is represented as a sequence 
with the previous values of variables found further along in the sequence .. 

The main point of this example however is to impress on you the 
importance of writing at a sufficiently high level of abstraction. We have 
produced a non-trivial algorithm which is clear and concise. If it were 
desirable to have this algorithm running on a machine we could code it and 
its associated data structure representations in a very short time. In a very 
short time we will be able to run this algorithm on a LISP machine. 

bindings of variables which do not appear in the current variable list? For 
example, function names belong in this category. Such variables are catled 
non-local variables. The scheme proposed in this section finds the binding 
which is current when the function was applied. ,This corresponds to the 
"latest active" binding made for the variable in question. Some programming 
languages, in particular LISP, follow this strategy; some other languages 
follow Algol 60 and use the binding which was current when the function 
was defined, and some languages allow both. The next two chapters begin a 
study of binding strategies. 
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Problem 

1. On page 81 we mentioned the possibility of writing the new value as' a 
.combination of old value and instantiate. We rejected that scheme. On 
page,8!> we had to save an old table since we might need some previously 
~efilied functions. We might not have had this difficulty if we had 
substituted directly. Write a substitution-type value and use it to evaluate 
the g[2] example. ' 
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2.8 The Great Progenitors 

The following problems are written (intentionally) with a great deal of the 
representation built into them. 

1. The Great Mother of All Functions (tgmoaj) 

tgmoafix] <= [isindiv[x] ~ [eq[x;T] ~ t; 
eq[x;NIL] ~ f,· 
t -+ TRY AGAINNEXTWEEK],' 

eq[jirst[x];QUOT E] -+ second[x]; 
eq[jirst[x];CAR] ~ car[tgmoajfsecond[x]]]; 
eq[jirst[x];CDR] -+ cdr[tgmoajfsecond[x]]]; 
eq[jirst[x];CONS] -+ consEtgmoajfsecond[x]]; 

tgmoafithird[x]]]; 
eq[first[x];ATOM] -+ atom[tgmoafisecond[x]]]; 
eq[jir st[x];EQ] ~ eq[t gmoafisecond[x]];t gmoafithird[x])]; 

t ~ TRY AGAINNEXTWEEK] 

Evaluate the following: 

a. tgmoafiT] 
b. tgmoafiA] 
c. tgmoafi(CAR (QUOTE (A . B»)] 
d. tgmoafl.(CDR (QUOTE (A B»)] 
e. tgmoafl.(EQ (CAR (QUOTE (A . B») (QUOTE A))] 
f. tgmoafi(EQ (CAR (QUOTE (A . B») A)] 
g. tgmoajf.(ATOM (CAR (QUOTE (A B»»] 

-2. The Great Mother of All Functions Revisited (tgmoajr) 

tgmoafr[x] <= [isindiv[x] -+ [eq[x;T] ~ t; 
eq[x,'N I L] .... f,. 
t -+ TRYAGAINNEXTWEEK]; 

eq[jirst[x];QUOT E] -+ second[x]; 
eq[jirst[x];CAR] ~ car[tgmoajr[second[x]]]; 
eq[first[x],'CDR] ~ cdr[tgmoajr[second[x]]]; 
eq[jirst[x];CONS] -+ consEtgmoafr[second[x]]; 

tgmoajr[third[x]]]; 
eq[first[x];ATOM] -+ atom[tgmoajr[second[x]]]; 
eq[fir st[x ]"EQ] ~ eq[tgmoajr[second[x]];t gmoafr[t hird[x]]]; 
eq[first[x];CON D] ~ evcond[rest[x]]; 

t ~ TRY AGAINNEXTWEEK] 
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evcond[x] <= [tgmoajr[jirst[jirst[x]]] --+ tgmoajr[secondV'irst[x]]]; 
t --+ evcond[rest[x]] ] 

Evaluate the fol1owing: 

a. tgmoajr[T] 
b. tgmoafr[(CDR (QUOTE (A B))] 
c. tgmoafr[(EQ (CAR (QUOTE(A . B») (QUOTE A»] 
d. tgmoafr[(COND (EQ (CAR (QUOTE (A . B») (QUOTE A» 

(QUQTE FOO»)] 
5. tgmoafr[(COND ((ATOM (QUOTE (A») (QUOTE FOO» 

(T (QUOTE BAZ»)] 

Coming soon: Son of the Great Progenitor !! 

2.9 Another Respite 

2.8 

We have again reached a point where a certain amount of reflection would 
be beneficial. Though this is not a programming manual we would be 
remiss if we did not analyze the programming style which we have been 
advocating. 

1. Write the' algorithm in an abstract setting; do not muddle the abstract 
algorithm with the chosen representation. If you follow this dictum your 
LISP programs wi1l never use car, cdr, cons, and atom, and rarely use eq. 
All instances of these LISP primitives wilt be relegated to smal1 
subfunctions which manipulate representations. 

2. When writing the abstract program, do not be afraid to cast off difficult 
parts of the implementation to subfunctions. Remember that if you have 
trouble keeping the details in mind when writing the program, then the 
confusion involved in reading the program at some later time, wilt be 
overwhelmfng. Once you have convinced yourself of the correctness of 
the current composition, then worry about the construction of the 
subfunctions. Seldom does the process of composing a program flow so 
gently from top-level to specific representation. Only the toy programs are 
easy; the construction of the practical program will be confusing, and win 
reqUire much rethinking. But bring as much structure as you can to the 
process. 

3. From the other side of the question, don't be afraid to IQok at specific 
implementations, or specific data-structure representations before y.ou 
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begin to write. There is something quite comforting about a "real" data 
structure. Essentially data structures are static objects, 15 while programs 
are dynamic objects. A close look at a possible representation may get you 
a starting point and as you write the program a distinction will emerge 
between a dependence on the specific representation and the use of 
properties of an abstract data structure. 

Perhaps the more practical reader is overcome by the inefficiencies 
inherent in these proposals. Two answers: first, "inefficiency" is a very 
ethereal concept. Like "structured programming", it is difficult to define but 
recognizable when it occurs. Hardware development has enabled us to 
efficiently execute many operations which were quite inefficient on earlier 
machines. But even at a more topical level, much of what seems inefficient 
can now be straightened out by a compiler (see Chapter 6). Frequently, 
compilers can do very clever optimizations to generate efficient code. It is 
better to le·ave the cleverness to the compiler, and the clarity to the 
programmer. 

The current problems in programming are not those of efficiency; they 
are problems of correctness. That is, we have a better grasp of techniques for 
improving efficiency of programs than we do of techniques for gUiding the 
construction of programs which work. How do you write a program which 
works? Until practical tools are developed for proving correctness it is up to 
the programmer to certify his programs. Any methodology which can aid the 
programmer will be most welcome. Clearly, the closer you can write the 
program to your intuition, the less chance there is for error. This was one of 
the reasons for developing high-level languages. The original motivation for 
such languages was a convenient notation for expressing numerical problems. 
With data structures, we are able to formalize a broader range of domains, 
expreSSing our ideas as data structure manipulations rather than as 
numerical relationships. 

There are at least two kinds of. errors which are prevalent in data 
structure programming: errors of omission -- misunderstanding of the basic 
algorithm; and errors of commission -- errors due to misapplied cleverness in 
attempting to be efficient. 

The occurrences of errors of omission can be minimized by presenting 
the user with programming constructs which are close to the informal 
algorithm. Such constructs include control structures, data structures, and 
representations for operations. 

Errors of commission comprise the great majority of the present day -
headaches. It is here that programming style can be beneficial: keep the 
representation of the data structures away from the description of the 
algorithm; write concise abstract programs, passing off responsibilities to 

15 At least within the program presently being constructed. 
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subfunctions. Whenever a definition of "structured programming" is arrived 
at, this advice on programming style will no doubt be included. 

The realization that programs will have errors or require modification 
raises some difficulties for highly structured languages. A . realistic debugging 
system must allow program modification and data structure modification; if 
the language system imposes rigid restrictions on such activities the 
programmer's productivity will suffer. Most language systems have been 
designed for the execution of programs. LISP systems put a higher premium 
on debugging, perhaps because of the nature of Artificial Intelligence 
research: the original motivation for LISP. LISP programming systems have 
a high degree' of interactiveness; the result is an effective programming tool. 
It is a tool with sharp edges; one can either build mediocre tools which can't 
hurt anyone, or can build a sharp tool and expect that it be applied by 
knowledgeabie users. LISP programmers belong in the second classification. 
Our discussions of LISP programming style should develop some of the 
req uisite knowledge. 

Before closing this discussion of LISP programming style, we can't help 
but note that in the preceding section, The Great Progenitors have 
completely ignored our good advice. This would be a good time for the 
interested reader to abstract the tgmoaf algorithm from the particular data 
representation. This detective work wilt be most rewarding. 

Problems 

1. Write an abstract version of tgmoaf. 

2.10 Proving Properties of Programs 

People are becotning increasingly aware of the importance of gIVIng 
convincing arguments for such concepts as the correctness or eqUivalence of 
programs. These are both very difficult enterprises. 16 We will sketch a proof 
of a simple property of two programs and leave others as problems for the 
interested reader. How do you go about proving properties of programs? In 
Section 1.9 we noted certain benefits of defining sets using inductive 
definitions. There was a natural way of thinking about the construction of 
an algorithm over that set. We have exploited that observation in our study 
of LISP programming. We need to recall the observation that inductive style 
proofs (see PRF on page 43) are valid forms of reasoning over such domains. 
Since we in fact defined our data structure domains in an inductive manner, 

16Q.uestion of "correctness" reduce to "eq uivalence" notions in a broad 
sense, relating perhaps a declarative specification to a procedural 
specification. 
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it seems natural to look for inductive arguments when proving properties of 
programs. This is indeed what we do; we perform induction on the structure 
of the elements in the,data domain. 

For example, given the definition of append given on page 48 and the 
definition of reverse given on page 49, 

append[x;y] <= [null[x] ~ y,' t ~ concat[jirst[x];append[rest[x],-y]]] 

reverse[x] <= [null[x] ~ ( ); 

t ~ append[reverse[rest[x]];concat[jirst[x];( )]]) 

we wish· to show that: 

append[reverse[y);reversp.[x]) = reverse[append[x;y]] 

for any lists, x, and y. The induction wilt be on the structure of x. 

Basis: x is ( ). 
We must thus show: append[reverse[y];( )] = reverse[append[( );y]] 
But: reverse[append[( );y]] = reverse[y] by the def. of append 
We now establish the stronger result: append[z;( )] = z ]7 

Basis: z is ( ). 
Show append[( );( )] = ( ). Easy. 

Induction step: Assume the lemma for lists, z, of length ·n; 
Prove: append[concat[x;z];( )] = concat[x,'z] 
Since concat[x;z] is not ( ), then applying the definition ,of append 
says we must prove: concat[x,'append[z;( )]] = concat[x;z] 
But our induction hypothesis is applicable since z is shorter than 
concat[x ;z]. 
OUf result follows. 

So the Basis for our main result is established. 

171n the following proof several intermediate steps have been omitted. 
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Induction step: Assume the result for lists, z, of length n; 
Prove: 
(l)append[reverse[y);reverse[concat[x,'z))) . 

= reverse[append[concat[x;z),'y)) 
Applying the definition of reverse to the LHS of (1) yields: 

(2) append[reverse[y);append[reverse[z);concat[x;( )]]] 
Applying the definition of append to the RHS of (I) yields: 

(3) reverse[concat[x;append[z;y]]] 

Applying the definition of reverse to (3) yields: 
(4) append[reverse[append[z;y)];concat[x;()]] . 

Using our induction hypothesis on (4) gives: 
(5) ap pend[append[reverse[y);rever se[z]];concat[x;( )]] 

At this point we must establish that (2) = (5), 
But this is just an instante of the associativity of append: 

append[x;append[y;·z]] = append[append[x;y];z] 

2.10 

The structure of the proof is analogous to proofs by mathematical 
induction in elementary number theory; The ability to perform such proofs is 
a direct consequence of our careful definition of data structures. 
Examination of the proof will show that there is a close relationship between 
what we are inducting on in the proof and what we are recurring on during 
the evaluation of the expressions. A program written by Boyer and Moore 
has been reasonably successful in generatIng, proofs like the above by 
exploiting this relationship. See [Boy 75] or [Moor 75b], 18 

Problem~ 

1. Prove the associativity of append. 
2. Analysis of the above proof shows frequent use of other results for LISP 

functions. Fill in the details. Investigate the possibility of formalizing this 
proof, showing what axioms are needed. 

3. Show the eqUivalence of fact (page 44) and fact) (page 47), 

4. Show the eqUivalence of length and length) (page 47). 

5. Using the definition of reverse, given on page 48, prove: 

reverse[reverse[x]] = x 

) Brhere is also a formal system based on a typed ~-ca1culus which has 
had Significant success in proving properies of programs. 
[LCF 72], [New 75]. More recently [Car 76] has developed a formal system 
including rules of inference,. a proof checker, and a viable programming 
language which is based on a "typed LISP", 



CHAPTER 3 

Evaluation of LISP Expressions 

..... I always worked with programming languages because it seemed 
to me that until you could understand those, you really couldn't 
understand computers. Understanding them doesn't really mean 
only being able to use them. A lot of people can use them without 
understanding them . ..... 

Christopher Strachey[Str 74] 

3.1 Introduction 

In the previous chapters of this text we have talked about some of the 
schemes for evaluation. We have done so rather informally for LISP; we 
have been more precise about evaluation of simple arithmetic expressions. 
Section 2.7 discussed that in some detail. We shall now look more closely at 
the informal process which we have been using in the evaluation of LISP 
expressions. This is motivated by at least two desires. 

We want to run our LISP programs on a machine. To do so requires 
the implementation of a translator to turn LISP programs into instructions 
which can be carried out by a conventional machine. We will be interested 
in the structure of such implementations. Any implementation of LISP must 
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be grounded on a precise, and clear understanding of what LISP-evaluation 
entails. Indeed, a deep understanding of evaluation is a prerequisite for 

implementation of any language. 1 

Our second reason for pursuing evaluation involves the question of 
programming language specification. At a practical level we want a clean, 
machine independent,2 "self-evident" language specification, so that the 
agony involved in implementing the design can be minimized. At a more 
abstract level, we should try to understand just what is specified when we 
design a language. Are we specifying a single machine, a' class of machines, 
or a class of mathematical functions? Just what is a programming language? 
The syntactic specification of languages is reasonably well established, but 
syntax is only the tip of the iceberg. Our study of LISP will address itself to 
the deeper problems of semantics, or meaning, of languages. 

Before we address the direct question of LISP evaluation, we should 
perhaps wonder aloud about the efficacy of studying languages in the detail 
which we are proposing. As computer scientists we should be curious about 
the structure of programming languages because we must understand our 
tools -- our programming languages.' People who simply wish to use 
computers as tools need not care about the structure of languages. Indeed 
they usually couldn't care less about the inner workings of the language; they 
only want languages in which they can state their problems in a reasonably 
natural manner. They want their programs to run and get results. They are 
interested in the output and seldom are interested in the detailed process of 
computation. For a simple analogy, consider the field of mathematics. The 
practicing mathematician uses his tools -- proofs -- in a similar manner to the 
person interested in computer applications. He seldom needs to examine 
questions like "what is a proon" He does not analyze his tools. 'However not 
so many years ago such questions were raised, and for good reason. Some 
common forms of reasoning were shown to lead to contradictions unless care 
was taken. j 

Our position is more like that of the foundations of mathematics; there 
the tools of mathematics are studied and analyzed.' Mathematics has 
flourished because of it. Though our expectations are not quite, that 
presumptuous, we do expect that programming language design cannot help 
but be improved. 

Our study of language implementation will proceed from the abstract to 

IThe question of evaluation cannot be Sidestepped by basing a 
language on a compiler. A compiler must produce code which when executed, 
simulates the evaluation process. " 

2By "machine independent" we mean independent of arty specific 
hardware implementation. A programming language, almost by definition, is 
a machine specification. What we would like is a "sufficiently high level" 
machine. 



3.1 Introduction 99 

the concrete. Each level wilt intimately involve the study of data structures. 
The next two chapters will be the most abstract, building a precise high-level 
description of an evaluation scheme for LISP. In fact, the discussion is much 
more general than that of LISP; the text addresses itself to prob,em areas in 
the design of any reasonably sophisticated language. In subsequent chapters 
we probe beneath the surface of this high-level description and discuss 
common ways of implementing the necessary data structures and control 
structures. In the process we will not only understand LISP but will develop 
a firm understanding of virtually any other language. 

But how can we begin to understand LISP evaluation? In Section 2.7 
we made a beginning, giving an algorithm for a subset of the computations 
expressible in LISP. This subset covered evaluation of some simple 
arithmetic expressions. From our earliest grade school days we have had to 
evaluate simple arithmetic expressions. Later, in algebra we managed to cope 
with expressions involving function application. Most of us survived the 
experience. We should now try to understand the processes we used in these 
simple arithmetic cases, doing our examination at the most mechanical level. 
The basic intent of the algorithm is fixed: evaluate the expression; but 
within that general constraint we often have several distinct alternatives. 
Those places. at which we have choices should be remembered. We will make 
reasonable choices so that the process becomes deterministic and then 
proceed. Later, we should reflect on what effect our choices had on the 
resulting scheme. For example, recall· the discussion of the representation of 
symbol tables on page 89. We had several options, but picked one which 
seemed to satisfy our intuitions and was reasonably efficient. But we should 
subject that decision to dose scrutiny: does it realty fulfill our expectations? 
In absence of absolute standards, these questions are usually answered by 
examining the behavior of the algorithm. 

The first thing to note in reflecting on simple arithmetic examples is 
that nothing. is really said about the process of evaluation. When asked to 
evaluate (2*3) + (5*6) we never specified which summand was to be 
evaluated first. Indeed it didn't matter here. 6 + (5*6) or (2*3) + 30 both 
yield 36. Does it ever matter? Sums and products are examples of arithmetic 
operations; can we always leave the order of evaluation unspecified for 
arithmetic operations?, What about evaluation of arbitrary functional 
expressions? If the order doesn't matter, then the specification of the 
evaluation process becomes much simpler. If it does matter then we must 
know why and where. 

We have seen that the order of evaluation can make a difference in 
LISP. On page 15 we saw that CBV, LISP's computational interpretation of 
function application, reqUires some care. On page 21 we saw that order of 
evaluation in conditional expressions can make a difference. Since we are 
using CBV we must make some decision regarding the order of evaluation of 
the arguments to a function caB, say jf.tt;t2; ... ;tnJ. We will assume that we 
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will eva.lua.te the arguments from left to right. This second decision about 
the order of evaluation can also effect the computation. 

Consider the example due to J. Morris: 

fix;y] <= [x = 0 ... 0,' t ... fix-l,jty-2,'X]]] 

Evaluation of fi2,·J] wiH terminate if we always evaluate the outermost 
occurrence of f Thus: 

fi2;I] = fil,jt;.1;2]] = fiO,jtfi-l;2]-2,·J]] = 0 

However if we evaluate the innermost occurrences 3 first, the computation 
wi1J not terminate: 

fi2;J] = fil,jt-l;2]] = fil,jt-2,:fi0;-J]]] = fil,jt-2;0]] = ... 

The choice of evaluation schemes has far reaching consequences. The 
evaluation scheme, CBV, which we chose is called call-by-value. It is caned 
appIicative order evaluation or inside-out style of evaluation, meaning that 
we evaluate the subexpressions before evaluating the main expression. 
Alternative proposals exist; caH-by-name evaluation, also called normal order 
evaluation, is another common scheme. We introduced this outside-in, scheme 
on page 16 as CBN. From an implementation perspective, call-by:value is 
favored; these issues wi1l be.discussed soon. However those advantages must 
be weighed against the knowledge that call-by-value may lead to 

non-terminating computations when catl-by-name would terminate. 4 

Informally, calt-by-value says: evaluate the arguments to a function 
before you apply the function definition to the arguments. Let's look at a 

simple arithmetic example. Let fix;y] be x2 + y and consider fi3+4;2*2]. 
Then call-by-value says evaluate the arguments, getting 7 and 4; associate 
those values with the formal parameters off (i.e. 7 with x and 4 with y) and 

then evaluate the body of f resulting in 72 + 4 = 53. This is the scheme we 
captured in Section 2.7. 

Call-by-name says pass the un evaluated actual parameters to the 

function, giving (3+4? + 2*2. This expression wilt simplify to 53. In 
general, evaluation can be described as "substitution followed by 
simplification"; the different evaluation schemes involve different choices 
about the order in which those operations are performed. We will say more 

3The notions of "innermost" and "outermost" evaluation need to be 
slightly embellished for multiple-argument applications. If the chosen 
application has several arguments, then we must specify an order for their 
evaluation. Thus terms like "leftmost-outermost" and "rightmost-innermost" 
occur. For example, the LISP scheme is an instance of "leftmost-innermost" 
evaluation. 

4There are also examples where call-by-v'3.lue will terminate but 
ca1t-by-name will not. See page 227. 
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about cal1-by-name and other styles of evaluation in Section 3.13 and 
Section 4.9. Most of this chapter will be restricted to call-by-value. 

If you look at the structure of value" and appl,' beginning on page 86 
you will see that they encode a call-by-value strategy and have the following 
interpretation: 

1. If the expression is a constant then tne value of the expression is that 

constant. (The value of J is J). 5 

2. If the expression is a variable then see what the current value associated 
with that variable is. Within the evaluation of, say, fiJ,'4] where 

fix;,] <= x2 + , the current value of the variable x is 3. 
3. The only other kind of arithmetic expression that we can have is a 

function name fonowed by arguments, for example fiJ,·4]. In this case we 

first evaluate the arguments 6 and then apply the definition of the 
function to those evaluated arguments. When we apply the function 
definition to the evaluated arguments we associate the formal parameters 
of the definition with the values of the actual parameters. This process 
of associating parameters is called binding and simulates some form of 
substitution. We then evaluate the body of the function using this new 
environment. Notice that we do not explicitly substitute the values for 
the variables which appear in an expression. We Simulate substitutions 
by table lookUp. 

We want to apply this treatment of evaluation to LISP expressions. If 
the LISP expression is a constant, then the value of the expression is that 
constant. The constants of LISP are the S-exprs. Thus the value of (A . B) 
is (A . B), just like the value of J is J. Variables and functional applications 
appear in LISP and are handled similarly to 2 and 3 above. The additional 
artifact of LISP is the conditional expression. But its evaluation can also be 
precisely specified. We did so on page 20. 

In more specific detail, here is some of the struCture of the LISP 
evaluation mechanism: 

1. If the expression to be evaluated is a constant then the value is that 
constant. 

2. If the expression is a variable find its value in the current environment. 
3. If the expression is a conditional expression then it is of the form 

[p 1 -+ e 1; P2 -+ e2; ... ;Pn -+ en). Evaluate it using the semantics defined on 
page 20. 

5We are ignoring the distinction between the numeral 3 and the 
number 3. 

6Here we are using the evaluation process recurSively. 
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4. If the expression is of the form: fit Jj't21" , •• 1'tn] then: 
a. Evaluate the arguments tt, t2, ••• 1 tn from left to right. 

h. Find the definition of the function, f. 
c. Associate the evaluated arguments with the formal parameters in 

the function definition. 
d. Evaluate the body of the function, while remembering the values 

. of the variables. 

W,e saw in (Section 2.7) that a simple kind of arithmetic evaluation can 
be transcribed into a recursive LISP algorithm. That algorithm operates on 
a representation of the expression and produces the value. Most of our work 
in that example was done without giving explicit details of the 
representation. We had previously given a detailed representation in 
Section 2.3. 

We have demonstrated an informal, but reasonably precise, evaluation 
scheme for LISP; our discussion is ready for more formal development. It 
should be ch~ar that we could write a LISP function representing the 
evaluation process provided that we can find a repres,entation for LISP 

expressions as S-expressions. This mapping, 9l, of LISP expressions to 
S-exprs is our first order of business. We will accomplish this mapping by 
using an extension of the scheme introduced in Section 2.3. 

The rationale for mapping LISP expressions onto S-exprs and writing 
a LISP function to act as an evaluator may seem overly opaque, but the 
mapping is no more obscure than that in the polynomial evaluation or 
differentiation examples. It is just another instance of the diagram of 
page 56, only now we are applying the process to LISP itself. Once the 
representation is given we wiH produce a LISP algorithm which describes the 
evaluation process used in LISP. The effect is to force us to make precise 
exactly what is meant by LISP evaluation. This precision will have many 
important ramifications. The first dividend is an abstract, compact, and high 
level description of a LISP machine. 
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In terms of the diagrams on page 56 we have: 

LISP evaluation => LISP evaluation algorithm 
Call-by-value eval 

LISP evaluation 

..... -+ m[A] interpret this output 
as answer A 

expression => Representation 

car[(A . B)] m[car[(A. B)]] 

The diagram is almost circular. We evaluate an evaluation algorithm named 
eval. We break the circle by supplying a lower-level implementation of the 
orig'inal evaluator. That wiH be the subject of Chapter 5 and Chapter 6. 
With that, our diagram reduces to: 

LISP expression => => 
car[(A . B)] 

Representation 

m[car[(A . B)]] 
J,J, 

LISP evaluation 
eval 
J,J, 

Representation of answer 

m[A] 

This picture reflects two points: we should pick a representation such that the 
reinterpretation of the answer is easy. We should also pick a representation 
such that the representation of the expression is easy. If those two conditions 
are satisfied, then we might as well write our programs in the representation 
and do the input and output transformations ourselves. With this in mind 
we can simplify further to: 

. m[car[(A . B)]] =a LISP evaluation algorithm=> m[A] 
This last diagram reflects the typical LISP programming language. We 
program using the data structure representation. 

We've already seen the evaluation of representations of LISP 
expressions. The great progenitor of al1 functions is an evaluation 
algorithm for the LISP primitive functions and predicates, car, cdr, cons, atom 
and eq when restricted to functional composition and constant arg~ments. 
The representation used there was a list representation, and exemplifies a 
notation which we wi11 develop further. 

In the next section we will give a specific mapping of LISP expressions 
onto lists and S-exprs. But remember that we should attempt to keep the 
knowledge of the representation out of the structure of the algorithm. Let's 
stop for a description of the representation and some examples of translating 
LISP functions into that representation. 
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3.2 S-expr Translation of LISP Expressions 

We wilt go through the list of LISP constructs, describing the effect of the 

representational map, 91, and give a few examples applying 91. The first 
class of LISP' objects we represent are the numerical constants. We will 
represent numerals just as numerals, e.g.: 

91 [ <numeral> ] = <numeral> 

Other simple components of LISP syntax include the identifiers used as 
variable names and function names; and of course the LISP atoms and 
S-exprs themselves. We want to represent identifiers and S-exprs as 
S-expressions. The first request is understandable, but perhaps the second 
request seems vacuous: LISP S-exprs are S-exprs. Both requests are 
justifiable as we shall now see. 

In the evaluator, identifiers are used as variables; therefore we might 
represent a varjable , as: 

91[,] = (VAR ,) 

For example x could be represented as (V AR X). 
Every LISP expression must have a representation; and the mapping 

function must be such that we can recover the original object from its 
representation. From (V AR X) we can ten that it is a representation of the 
variablex. Now consider the representation of the non-numerical LISP 
constant:. atoms and S-exprs. Since (VAR X) is a LISP constant, it must have 
a representation under our mapping. We cannot represent the expression as 
itself since that would violate our inverse mapping property. Fol1owing our 
discussion of variable representation, we could represent a constant ex as: 

91[a] = (CONST a) 

This mapping will solve the problems; we can 

map the list (VAR X) to (CONST (VAR X» 

91[x] = (VAR X) 

91[X] = (CONST X) 7 

When this maping is extended to represent all LISP expressions the 
resulting expressions become very complex. Since we wish to use the mapped 
expressions as the programming language, human engineering conSiderations 
beg for a simplification. Therefore we use the following map: 

7To be consistent, we should represent numerals in this format too. 
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m[x] = X 

m[X] = (QUOTE X) 

That is, we wi1l translate identifiers to their upper-case counterpart. 

Thus: 91 [<identifier> ] = <literal atom> 

E~amples: m[x ] = X 

m[y2 ] = Y2 

m[car ] = CAR 

The mapping for LISP constants is: 

For example: 

m[<sexpr> ] = (QUOTE <sexpr» 

m[X ] = (QUOTE X) 

m[(A . B) ] = (QUOTE (A . B» 

m[QUOTE ] = (QUOTE QUOTE) 

We must extend the mapping to the other constitutients of the 
language. We must map applicative expressions of the form fie} ; ... ;enJ 
onto S-exprs. Following the style of our initial mapping, we might map fix] 
onto something like (APP (VAR F) (VAR X» or (APP (FUN F) (V AR X», 
signifying that the list represents an applicative expression. However this 
leads to cumbersome expressions. We have seen one other mapping for 
functions in prefix form in Section 2.3. We wi11 use that mapping, called 
Cambridge Polish, 8 here. That is: 

mlI!rel;e2;· ... ;en] ] = ( m[r ] m[ el ] m[ e2 ] ... D1[ en ] ) 

Examples: fR[car[x) ] = (D1[car ] m[x ] ) = (CAR X) 

fR[car[X) ] = (fR[car ] m[X ] ) = (CAR (QUOTE X» 

fR[cons[cdr[(A . B»),.x] ] = (CONS (CDR (QUOTE (A . B») X) 

B-rhe name, Cambridge Polish, is derived from two sources: 
Cambridge, since M.LT. is in Cambridge Massachusetts, and McCarthy was 
at M .l.T. while developing his ideas; Polish, since the representation is a 
dialect of a notation developed by a school of Polish logicians. 
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The fR-mapping must also handle conditional expressions. A 
conditional is represented as a Jist whose first element is CON D and whose 

next n elements are representations of the Prej pairs. The m-map of such 

pairs is a Jist of the fR-maps of the two elements: 

m[[p) ~ e),' ... ;Pn -+ en] ] = (COND (m[ PI ] 

91[ e}]) 

(m[ Pn ] m[ en ]» 
An example: 

m[[atom[x) -+1; q[y1-+ X] ] = (COND «ATOM X) 1) 
«Q Y) (QUOTE X») 

Notice that (COND .... ) and (QUOTE ... ) look like translations of function 
applications of the form cond[ ... ] and quote[ ... ]. However since we expect 
application to be performed using call-by-value, we mqst handle these 

constructs in a special manner. Indeed, quote["1 stands for 91 ["]. Similarly 
the "arguments" to cond are not to be interpreted as in function applications; 
for example, COND «ATOM X) 1) ... ) does not represent 
cond[ atom[x][J]; ... J. 

Finally, the translations of the truth values t and f will 'be T and NIL, 
respectively. ,~'" 

m[t] = T 

m[f] = NIL 

You might have noticed that these last two applications of the chosen 

fR-mapping have the potential to cause trouble. They will spoil the 1-1 

property of fR: 

m[t] = T 

m[nU] = NIL 

The usual way to escape from this difficulty is to outlaw tand nil as LISP 
variables. 9 

Perhaps our concern for the' m-mapping's properties appears 

heavy-handed where a simple solution seems apparent: t is t and t is t; when 

we want the truth value we write t and \vheri we want the variable we write 
t. The answer is that when. we write programs for a machine version of 

gIn LISP 1.5 T and F were used as the representations of t and f; the 
atoms T and F were (permanently) bound to values *T* and NIL. Note too, 
that oU'r initial mapping could solve the problem by mapping t to (V AR T) 

and mapping t to (BOOL T). 
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LISP, we will be writing the tn-image, rather than the more traditional 
syntax. Thus to ask a LISP machine to evaluate car[(A . B)] we present it 
with (CAR (QUOTE (A . B»). What this means is that we are presenting 
OUf programs to the machine as data structures of the language. to It would 
be like expressing programs in Fortran or Algol as arrays of integers; that is, 
the data structures of those languages. We wi11 explore the implications of 
this approach to programming in later sections. 

In essence, then, there are two LISP's: there is the algorithmic language 
and there is the programming language. The programming language is a 
data structure representation of the algorithmic language. The algorithmic 
language is called the meta-language or M-expr LISP, and for historical 
purposes, the programming language is caned S-expr LISP. 

Review the tgm's (Section 2.8) now that you understand that they are 
evaluators for simple subsets of LISP expressions; discover what LISP 
expressions were encoded in arguments to the tgm's and verify the answers 
you obtained earlier. Note that the only atoms which the great mothers 
recognize are T and NIL. Any other atoms elicit an error message. What do 

othe~ atollls represent? Numerals are atoms and are the tn-maps of numerals. 
We could extend tgmoaf to handle'this case. Atoms are also translations of 
variables and function names. So one task is to include a mechanism in our 
LISP evaluator to handle evaluation of variables and function names. We 
have already seen the necessary mechanism in Section 2.7 where we studied 
tables as abstract data stuctures. The other piece of LISP which did not 
appear in the evaluator for polynomials was conditional expressions. 
Conditional expressions were handled in tgmoafr .. The "progenitors" did not 
handle· variable references, however. In preparation for that work we 
reexamine the issues of symbol tables. 

3.3 5ym bol Tables 

One distinguishing feature of computer science is the ubiqUity of devices to 
store and recover information. A notation which addresses itself to computer 
science must treat this aspect. In hardware oriented languages and some 
high level programming languages we find the notion of "cell" or "location" 
and find operations to explicitly deposit and examine information in those 
cells. Our LISP subset has no such explict features; it relies on the 
implementation of binding and variable evaluation to perform similar 
notions. As part of our examination of evaluation we wish to expose these 
details to close scrutiny and understand how binding and variable evaluation 
can be mechanized. The most common notion used to implement these 

tOCompare this with the technique of Godel numbering in formal logic 
[Men 64]. 
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operations is the symbol table. I I This is the device we used informally in 
Section 2.7; we will review some of that discussion here. 

In its abstract form, a symbol table is a set of ordered pairs of objects; 
one of the elements of each pair is a name; the other is a value associated 
with that name. This means that symbol tables can be characterized as 
relations or perhaps even as functions. This latter characterization is indeed 
viable. On page 89 we showed that a table could be constructed and 
maintained in a manner preserving functionality. As an abstract operation, 
finding an element in a symbol table is also quite simple: given a set of 
ordered pairs and a name, find a pair whose first element is the same as the 
given name. This operation can be described as function application where 
the function being applied is the table and the argument is the name 
component. That is: locate[x;tbl] = tbl(x). 

The maintenance of symbol tables as sets was a bit too abstract; the 
level of abstraction we implemented viewed a symbol table as a sequence of 
pairs, each pair representing a variable and its corresponding value. The 
table manipulating algorithms, given in Section 2.7, depended heavily on the 
implied sequencin'g of call-by-value and recursion. Since this was consistent 
with the explicit sequencing used in adding elements to the table, we 
achieved the desired effect. We found the expected bindings, even though 
there may have been other candidates in the tables. In the remaining sections 
of this chapter we wi11 utilize more features of this interplay between 
representation of data and calling style of algorithm. Symbol tables are just 
one manifestation of this phenomenon. 

Symbol tables are also known as association lists or a-lists; thus assoc is 
the traditional name of a LISP function to search a symbol table. More 
recently symbol tables have been called environments;' thus we frequently 
will use the identifer env as a variable which is an environment. The binary 
function assoc expects a name and a symbol table as arguments. It will 
examine the table from left to right, looking for the first pair whose 
name-component matches the given name. If a pair is found, then that pair 
is returned; if no such pair is found, the result is undefined. We will need to 
deSignate a sel~ctor, name, to locate the name-component of a pair, and 
another selector, value, to retrieve the value-component. 

assoc[x;env] <= [eq[name[jirst[env]];x] -+ jirst[env]; 

t -+ assoc[x;rest[env]]] 

If the table is very long and' the desired pair is close to the end of the 
table, then we will be in for a very long search. The search scheme encoded 
in assoc is called linear search, and is unnecessarily inefficient for tables of 
substantial length. However the phenomemona we, wish to study now are not 

1 I Reca1t, we are simulating substitution; see [Ber 75] for an alternative. 
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directly related to efficiency of searching methods. 12 We will come back to 
symbol tables in Section 5.6 to study the problems of efficient storage and 
retrieval of information. It witt suffice now simply to think of a symbol table 
as represented in LISP by a list of dotted pairs: a name dotted with value. 
In this representation, then, name[x] <= car[x], and value[x] <= cdr[x]. For 
completeness, we should also specify a constructor. Though we won't need the 
function for a while, we wilt name it mkent; it wilt take an identifier and a 
value and return a new symbol table entry. Its representation here is 
mkent[x,.y] <= cons[x,.y]. 

To illustrate the representation and algorithms, assume we wish to 
represent three variables x, y, and z which were to have values 2, 3, and 4. 
That fact could be encoded as: 

(( X . 2) (Y . 3) (Z . 4» 

Then the retrieval of y and u could be encoded as: 

assoc[Y,. «X . 2) (Y .3) (Z .4»] = (Y .3) 

assoc[U,. «X . 2) (Y . 3) (Z . 4»] =.L 

The retrieval of .L for u could be implemented as an error message or, better 
yet, could interact with the user to isolate the misconception, correct it, and 
continue. 

We must also represent bindings of variables to non-numeric S-exprs. 
For example, we must represent information like: "the current value of x is 
A". We wi11 place the dotted-pair (X . A) in the table. Now this 
representation is certainly open to question: why not add (X . (QUOTE A»? 
The latter notation is more consistent with our conception of representation 
espoused on page 56. That is, we map LISP expressions to S-expressions; 
perform the calculations on this representation, and finally reinterpret the 
result of this calculation as a LISP expression. The representation we have 
chosen for symbol tables obviates the last reinterpretation step; recal1 the 
diagram on page 103. Now it witt. turn out that for our initial subsets of 
LISP this reinterpretation step simply would involve ,istripping" the 
QUOT Es. The only "values" which a LISP computation can return are 
constants; however more general evaluation schemes are conceivable; partial 
evaluation may be useful, simplifying x+y+2 to x+6 wheny has value 4. 
Perhaps the LISP representation of table entries is a poor one; we will see. In 
studying any existing language, or contemplating the design of any new one, 
we must question each detail of representation. Decisions made too early can 
have serious consequences. 

12 At least indirectly the discussion is related to search efficiency. LISP 
implements a dynamiC binding or "latest active" binding strategy. A case can 
be made for static binding on the baSis of shorter symbol table searches. 
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Before continuing we should take stock of our current position. In this 
section we have recreated the table-lookup mechanism we used in Section 2.7, 
but now we are paying a bit more attention to representation. We can locate 
things in a table and we have seen how ca1ting functions can add values to a 
table. We have said nothing about adding function definitions to the tables. 
Abstractly we know how to extract the definition from the table and apply it. 
We must give an explicit representation of the storage of a function. This 
turns out to be a reasonably non-trivial problem. We have seen that it is 
possible to mechanize at least one scheme for evaluation of functions -­
call-by-value, evaluating arguments from left to right. We have seen that it 
is possible to translate LISP expressions into S-exprs in such a way that we 
can write a LISP function which wilt act as an evaluator for such 
translations. In the process we have had to mechanize the intuitive devices 
we might mentally use to recall the definition of functions and to recall the 
current values of variables. It became clear that the mechanism of symbol 
tables could be used. To associate a variable with a value was easy. To 
associate a function name with its definition required some care. That is, 
part of the definition of a function involves the proper assoc::iation of formal 
parameters with the body of the definition. The next section introduces a 
notation for describing function definitions. 

3.4 A-notation 

Recall our discussion of the problems of representation of function 
definitions. This discussion began on page 84 and our conclusion was that to 

represent a definition like fix,,] <= ~ we needed a symbol table entry with 

name f and a value part which contained the body of the definition, t and 
the list of formal parameters, [x;y). This view of the content of a definition 
will have to be revised, but its implementation containssufficient compleXity 
to support a lively and· fruitful discussion. LISP uses a unique notation, 
caBed the A-nQtation to lend precision to our informal discussion of function 
representation. 

The A-notation is derived frorn the ~-ca1culus, a formalism invented by 
the logician Alonzo Church ([Chu 41]) to model functions which are 

describable by algorithms. The ~-calculus is useful for discussing the 
concepts of function and function application. Since many algorithms 
compute functions and since function application is simulated by procedure 
calls, the calculus is wen suited for a purified discussion of procedures in 

programming languages. We shan outline the ~-ca1culus in Section 3.13. 
The A-notation was introduced into programming languages by John 
McCarthy in the description of LISP ([McC 60]). There are several 

important distinctions between Church's ~-ca1culus and the A-notation of 
McCarthy; we wilt point outthe differences in Section 3.13. 



3.4 X-notation 111 

We begin the discussion by exempJifying the need for more precise 
terminology. We have been informal1y writing fix;y] <= x*y + y as a 
definition of the function i. This notation is supposed to convey the 
following intent: f is the name of a function or rule; whenever f is supplied 
with two numeric arguments it is supposed to multiply those arguments and 
add the result to the second. The resulting sum is the desired answer. Since 
informality is susceptible to ambiguity, we should analyze the "<="-notation 
more closely. Though we say i is beiog defined, it is not i, but fix;y] which 
appears to the left of the "<="-symbo1. First, fix;y] does not denote a 
function, f denotes a function. To see what fix;y] means consider the 
following example. When we are asked to evaluate car[(A . B)] we say the 
value is A. car[(A . B)] is an expression to be evaluated; we have cal1ed 
such expressions LISP forms. If car[(A . B)] is a form then so is car[x]; only 
now the form references a variable instead of a constant; therefore the value 
of the form depends on the current value assigned to the variable x. So the 
function is car; the form is car[xJ. Therefore, the function is f; fix;y] is a 
form, and so is x*y + y. The informal notation has a form on both sides of 
the "<=". We would like a notation which clearly shows what is being defined 
and what is given. 

Further, our notation has realty been specifying more than just the 
name. The notation specifies the formal parameters (x and y) and the order 
in which we are to associate actual parameters in a call with the formal 
parameters of the definition (x with the first, y with the second). More 
subtly, the notation tells which variables in the function body are to be 
supplied values when the function is called. For example define 
g[x] <= x*y + y; then the expression g[2] specifies that x is to receive a value 
2, but leaves unspecified what the value of y should be. 13 

We also wish to have a notation so that function definitions can be 
inserted into the symbol table as "values" assigned to names. They will be 
parametric values, but they will be values. The A-notation performs this task 
by preceding the function body with a list of variables, called lambda Jist. 
The lambda list has been previously called the formal parameter list; either 
term is acceptable. Each parameter in the lambda list is catted a lambda 
variable (or a formal parameter). The resulting construct is preceded by "A[" 
and foHowed by"]". Using the above example, the identifier f denotes 
exactly the same LISP function as X[[x;y] x*y + yJ. The A-notation introduces 
nothing new as far as our intuitive binding and evaluation processes are 
concerned; it only makes these operations more clear. To analyze these ideas 
a bit further, notice that X[[x;y] x*y + yJ is the "same" function as 
X[[u,'v] u*v + v]. This means in effect that the formal parameters are "place 
holders" and can be uniformly replaced with other identifiers. Notice to that 
function names are also place holders. 

13Note also, that the "values" for + and i.e are also unspeCified. 
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one[x] <= [x=O -+ 1; t -+ one[x-lJ] 

is the same function as: 

fxy[x] <= [x=O -+ 1; t -+ fxy[x-lJ] 

3.4 

There are certain restrictions on the replacement of identifiers; the 
precise description of that algorithm requires care. The implementation of 
that algorithm will be part of this chapter. 

One benefit of the A-notation is that we need not give explicit names to 
functions in order to perform the evaluation. Evaluation of expression$ 
involving such anonymous functions, also called open lambdas, is within the 
province of LISP. Currently, we will restrict our discussion to A-expressions 
which are function constants, just like A is an S-expr constant. Since a 
A-:expression is a constant, its value is itself. LISP will evaluate an 
application involving a A-expression in two stages; first, it will bind the 
evaluated actual parameters to the A-variables, and then it will evaluate the 
function body. 

Consider, for example: 

A[[X;y] x2 + y][2;3] 

We associate 2 with x and 3 with y and evaluate the expression: 

x2 + y 

This calculation will give 7. 
, To evaluate the more complex: 

A[[X] cdr[car[x]]][«A . B) . C)] 

we bind x to the S-expression ((A . B). C) and evaluate the function body. 
The evaluation pr9cedure first evaluates car[x] with the current binding of x; 
this result, (A . B), is passed to cdr; and that calculation finally returns B. 

The A-notation can be lJsed anywhere LISP expects to find a function, 
for example: 

A[[X] jirst[x]] 
[A[[Y] rest[y]][( A B)]] 

This expression eqUivalent to writing: 

fig[(A E)]] where fix] <= first[x] and g[y] <= rest[y] 

Though the second form is perhaps easier for us to comprehend, the first 
form is eqUivalent and will be acceptable to the evaluator. In fact, the 
evaluation of the second formulation will effectively reduce to the first 
formulation on its way to final evaluation. 

A([x)jirst[x]][A[[y] rest[y]][(A B)]] = A[[x]jirst[x]][(B)] = B 

LISP evaluation reqUires care. For example the LISP function >..[[x]2] 
is not the constant function which always gives value 2. The evaluation of 
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an expression involving this function requires the evaluation of the actual 
parameter associated with x. That computation may not terminate. For 
example, consider A[[x]2][jact[-I]] where fact is the LISP implementation of 
the factorial function given on page 44. 

Since we intend to include A-expressions in our language we must 

include an fR-mapping into S-expression form for them. The character A will 
be translated to LAMBDA and the formal parameters will be translated into 
a list: 

Here are some examples of A-expressions and their fR-translations: 

9l[>..[[x;y] x2 + y]] = (LAMBDA (X Y) (PLUS (EXPT X 2) Y» 

m[>..[[x;y] cons[car[x];y]]] .. (LAMBDA (X Y) (CONS (CAR X) Y» 

To complete our introduction of A-expressions, our LISP syntax 
equations will be augmented to include: 

<function> ::= A[ <varlist><form>] 

<varlist> ::= [<variable>; ... ; <variable>] 14 

Besides giving a clear notation for function definitions, the A-notation 
is a useful computational device. Consider the following sketch of a function 
definition: 

g <= A[[x][1I'[lic[x]] -+ lic[x],' .... x .. .J] 

where li'e may be a long involved calculation, and 11" is a predicate. 
We certainly must compute lic[x] once. But as g is defined, we would 

compute lie[x] twice if PI is true: once in the calculation of Pt, and once as et. 

Since both calculations of lic[x] will give the same value, 15 this second 
calculation is unnecessary. Instead, we could write: 

g <= >..[[x] j[lic[x];x]] 

where: f <= A[[U;V][1I'[u] -+ u; .... v .. .J] 

In this scheme lie will only be evaluated once; its value will be passed into f 
This solution reqUires introduction of a new function name. Using 
A-expressions, in a style caned internal lambdas we can improve g without 
adding any new function names to our symbol tables. 

Replace the body of g with: 

LAM A[[Y][1I'[Y] -+ y, . ... x ... ]][lic[x]] 

l~Recall that this use of ellipses means "zero or more occurrences of 
<variable>". 

150ur current LISP subset has no side effects. That means there is no 
way for a computation to affect its surrounding environment. The most 
common construct which has a side-effect is the aSSignment statement. 
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Call this new function g': 

g' <= A[[x] A[[Y][1I"[Y] -+ y; ... x ... ]][lic[x]] ] 

Now when g' is called we evaluate the actual parameter, binding it to x, and 
evaluate LAM. Evaluation of LAM involves only one calculation of lie [x], 
binding the result to y. We then evaluate the body of the conditional 

expression as before. If PI is true, then this definition of g' involves one 
calculation of lic[x] and two table look-ups (for the value of y), rather than 
the two calculations of lic[x] in g. M ore conventional programming 
languages can obtain the same effect as this use of internal lambdas by 
assignment of lic[x] to a temporary variable. We will introduce asSignment 
statements in LISP in Section 4.2. 16 

Problems 

1. What is the difference between AU ] x*y + y] and x*y + y ? 

3.5 Mechanization of Evaluation 

We first gave plausibility arguments for the existence of an evaluator for 
LISP; and then picked a representation for LISP expressions; finally we 
introduced a precise notation for discussing functions. It is now time to write 
an evaluator for representations of LISP expressions. The evaluator will be 
the final arbiter on the question of the meaning of a LISP construct. The 
evaluator is thus a very important algorithm. We will express it and its 
related functions in a representation-free form, but we will keep our 
Cambridge Polish representation in mind. 

As we have discovered, the great progenitors (Section 2.8) are 
evaluators for subsets of LISP. With our symbol-table mechanism we could 
now extend those algorithms to handle variable look-ups. Rather than do 
this we wiJI make a total revision of the structure of the evaluators. In 
making the revision, the following points should be remembered: 

16This technique is also related to the ideas of common sub-expression 
recognition in compiling algorithms (Section 6.16). 
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1. Expressions to be evaluated can contain variables, both simple variables 
and variables naming A-expressions. Therefore, evaluation must be done 
with respect to an environment or symbol table. We wish to recognize 
other function names besides CAR,-CDR, CONS, EQ, and ATOM in our 
evaluator, but explicitly adding new definitions to the evaluator in the 
style of the recognizers for the five primitives is not an attractive 
approach. That scheme would require rewriting sections of the evaluator 
every time a new definition was introduced. An alternative solution is to 
hold the definitions in a symbol table. Our symbol table should hold the 
function definitions and the evaluator should contain the general schemes 
for finding the definitions, binding variables to values, and evaluating 
the function body. 

2. A11 function ca11s are to be evaluated "by-value." However, there are some 
special forms which are not evaluated in the normal manner. 
Conditional expressions, quoted expressions, and lambda expressions are 
handled differently, and the evaluator wi11 recognize these constructs 
specially. 

The primary algorithm in the evaluator wilt be named eval. It wilt take 
two arguments; the first will be a representation of an expression to be 
evaluated, and the second will be. a representation of a symbol table. The 
evaluator will recognize numbers, and the constants T and NIL, and if 
presented with a variable, wi11 attempt to find the value of the variable in 
the symbol table using as soc (Section 3.3). 

eval will also recognize the special forms cond and quote. When eval 
recognizes a conditional expression (represented by (COND ... ) ), the body of 
the CON D wilt be passed to a subfunction named evcond. evcond embodies 
the conditional expression semantics as described on page 20. The 
representation, (QUOTE"), signifies the occurrence of a constant, Q, which is 
simply returned. Any other expression is a call-by-value application. The 
argument-list evaluation is handled by evlis in the authorized left-to-right 
ordering. This calculation is performed by recurring on the list representing 
the arguments. Finally, we apply the function to the list of evaluated 
arguments. This is done by the function apply. 

With this introduction we will now write a more general evaluator 
which wi11 handle a larger subset of LISP than the tgms. 
Here's the new eval: 

eval <= }..[[exp,.environ] 
[isconst[exp] -+ denote[exp]; 
isvar[exp] -+ lookup[exp;environ]; 
iscond[exp] -+ evcond[ar g c[exp ];environ],' 
isfunc+args[exp] -+ apply[func[exp]; 

evlis[ar glist[exp ];environ); 
environ] ]] 
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and: 

lookup <=A[[var;env] value[assoc[var;env]]] 

denote <= A[[exp] [isnumber[exp] ~ exp; 
istruth[exp] ~ exp,' 
isfalse[exp] ~ exp,· 
issexpr[exp] -+ rep[exp]; 
islambda[exp] -+ exp ]] 

where: 

3.5 

rep knows how to extract the S-expr from the representation. In our scheme 
the selector rep is given by cadr. 

The other selectors, constructors and recognizers which relate this abstract 
definition to our particular S-expression representation are grouped on 
page 117. 

evcond <= A[ [e,'environ] 
[eval[ante(jir st[e ]];environ] ~ eval[conseq[jir st[e]];environ]; 

t -+ evcond[rest[e],'environ] ]] 
and, 

evlis <= A[[e,'environ] [null[e] ~ ( ); 

t -+ concat[eval[jirst[e],'environ],' 
evlis[rest[e],'environ]] ]] 

The subfunctions, evcond and evlis, are simple. evcond appeared before in 
tgmoafr in a less abstract form; evlis constructs a new list consisting of the 
results of evaluating the elements of e from left to right, using the symbol 
table, environ, where necessary. Since evcond and evlis are LISP functions, 
they are subject to the left-to-right evaluation rule. Thus evlis embodies the 
left-to-right rule. If evlis were evaluated under a right-to-Ieft rule then evlis 
would evaluate expressions in right-to-Ieft order. It is possible to write a 
version of evlis which only depends on being evaluated CBV, and which 
does embody the left-to-right rule: 

evlis <= A[[e;environ] [null[e] -+ ( ); 

t -+ A[[X] concat[x;evlis[rest[e];environ]]] 
[eval[jirst[e];environ]] ]] 

To continue, the function apply takes three a.rguments: a representation 
of a function, a representation of the evaluated arguments, and a 
representation of a symbol table. apply explicitly recognizes the 
rep'resentations of the five primitive functions CAR, CDR, CONS, EQ, and 
ATOM. If the function name is a variable, the definition is .located in the 
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symbo1 tab1e by eval and applied to the arguments. Otherwise the function 
must be a A-expression. Things now get interesting; we must evaluate the 
body of the A-expression after b~nding the formal parameters of the 
A-expression to the evaluated arguments. We add variable-value pairs to the 
front of the current symbol table. We wiH define a subfunction, mkenv, to 
perform the binding; then pass the function body and the new symbol table 
to eval. 
Here is apply: 

apply <= ).[ lfn;args,environ) 
[iscarlfn) -+ car[ar g 1 [ar gs ]],. 
isconslfn) -+ cons[argl [args);arg2[args)]; 

isvar[fn] -+ apply[eval[fn;environ];args;environ]; 
iSlambdalfn] -+ eval[ body[fn]; 

mkenv[var s[fn],'ar g s ,'envtron]] ]] 

mkenv <= ).[[vars;vals;environ] pairlis[vars;vals;environ]] 

pairlis<= ).[[vars;vals;environ] 
[null[vars) -+ environ; 
t -+ concat[mkent[ftr st[var s J,ftr st[vals ]]; 

pairlis[ rest[var s]; 
rest[vals]; 
environ]] ]] 

Some of the functions and predicates which wi1t relate these abstract 
definitions to our specific S-expression representation of LISP constructs are 
given below. . 

R ecog n izers 
iscar <= ).[[x] eq[x;CAR]] 
isSexpr <= ).[[x] eqf.j'irst[x]~·QUOT E]] 
istruth <= ).[[x] eq[x;T]] 
islambda <= ).[[x] eqf.j'irst[x];LAM BDA]] 

isfun+args <= ).[[x] t] 

Selectors 
func <= ).[[x] first[x]] 
arglist <= ).[[x] rest[x]] 
body <= ).[[x] third[x]] 
vars <= ).[[x] second[x]] 

argsc <= ).[[x] rest[x]] 
argl <= ).[[x] first[x]] 
arg2 <= ).[[x] second[x]] 
ante <= ).[[x] first[x]] 
con seq <= ).[[x] second[x]] 
rep <= ).[[x] second[x]] 

Constructor 

mkent <= ).[[x;y] cons[x;y]] 

Another application of the left-to-right property occurs within apply, in 
the symbol table search and construction process. Notice that lookup uses 
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assoc to look from left to. right for the latest binding of a variable. Thus the 
function which augments the table must add the latest binding to the front. 
New bindings occur when the function mkenv, using patrlis, builds an 
augmented symbol table with the A-variables bound to their evaluated 
arguments. The functions lookup and mkenv operate together. We will see 
representations of these functions other than assoc andpairlis. The actual 
search and construction operations witt change, but the critical relationship 
that mkenv always builds a table compatible with the search strategy of 
lookup will be maintained. 

To summarize then: the evaluation of an expression fiat; ... ,'an], where 

the a;'s are S-exprs, consists in applying eval to the m-translation, 

(fR[ f ] m[ at ] ... m[ an ]). This behavior is again an example of the 
diagrams of page 56. In its most simple terms, we mapped LISP evaluation 
onto the LISP eval function; mapped LISP expressions onto S-expressionsj 
and executed eval. Notice that in this case we do not reinterpret the output 
since the structure of the representation does this implicitly. We have 
commented on the efficacy of this already on page 109. 

The specification of the evaluation of LISP expressions using eval and 
apply is one of the most interesting developments of computer science. 

Problems 

1. Compare our version of eval and apply with the version given in 
[M cC 65]. Though the current version is much more readable, how much 
of it still depends on the representation we chose? That is, how abstract 
is it really? 

2. Complete the specification of the selectors, constructors, and recognizers. 

3.6 Examples of eval 

We wi1J demonstrate the inner workings of the evaluation algorithm on a 
couple of samples and wilt describe the flow of control in the execution in a 
couple of different ways. The examples will be done in terms of the image of 

the fR-mapping rather than being done abstractly. We do this since the 

structure of an actual LISP evaluator will use this representation. t 7 It is 
important that you diligently study the sequence of events in the execution of 
the· evaluator. The process is detailed, but it must be done at least once. 

Let's evaluate fi2;J] where f <= X[[x;y] x2 + yJ. That is, evaluate: 

eval[ m[ fi2;3] ]; m[{ <f, X[[x;y] +[1'[x;2]; y]]> }]] 

After appropriate translation this is eqUivalent to evaluating: 

eval[(F 2 J); «F . (LAMBDA (X Y) (PLUS (EXPT X 2) V»)))] 

) 7Recall that we will be programming in the m-image. 
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Notes: 

1. «F . (LAMBDA (X Y) ... ») = «F LAMBDA (X Y) ... » This is 
mentioned because most LISP implementations witt print the latter even 
if you write the former. 

2. Since the symbCiI table «F ... » occurs so frequently in the following trace, 
we will abbreviate it as st. We have no mechanism yet for permanently 
increasing the repertoire of known functions. We must therefore resort to 
subterfuge and initialize the symbol table to get f defined. 

3. For this example we must assume that + and t (exponentiation) are known 
functions. Thus apply would have to contain recognizers for P LU Sand 
TIMES: 

... atom[fn) ~ [ isplus[fn) ~ +[argt[args),'arg2[args)); 
isexptlfn) ~ t[argt[args);arg2[args)]; ... ) 
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So ,val[( F 2 ] );It] 
::I apply[ func[( F 2 J )]; 

evlis[arglist[( F 2 J )],'st],' 
st] 

= apply[F ,'evlis[( 2 J );st],'st] 
= apply[F;( 2 J Jist] 

== apply[ eval[F,'st),' 
(2 J),' 
st] 

= apply[ (LAMBDA (X Y) (PLUS (EXPT X 2) Y»; 
(2 J),' 
st] 

= eval[ body[(LAMBDA (X Y) (PLUS (EXPT X 2) V»~]; 
mkenv[vars[(LAMBDA (X Y) (PLUS (EXPT X 2) V»~]; 

(2 J); 
st]] 

= eval[ (PLUS (EXPT X 2) Y),' 
pairlis[(X Y);(2 J Jist]] 

= eval[ (PLUS (EXPT X 2) V); 
«X . 2)(Y . J)(F LAMBDA (X Y) ",»] 

= apply[ P LV S,' 
evlis[«EXPT X 2) Y),'«X , 2)(Y , J).,»); aX .2).,.)] 

3.6 
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Let's do a little of: evlis[aEXPT X 2) Y);aX. 2)(Y. J) ... )] 

Now back to apply: 

= apply[ PLUS; 
(4 J); 

= concat[ eval[(EXPT X 2);«X . 2)(Y , J) .. ,)]; 
evlis[(Y),'«X , 2) ... )]] 

= concat[ apply[ EX PT; 
evlis[(X 2);aX . 2) ... )],' 
aX ,2) .. .] 

evlis[(Y ), ... .J] 

= concat[ apply[ EX PT,' 
(2 2); 
«X , 2); 
.. .J,' 

ev[is[(Y),' .. .]] 

= concat[ t[argt[(2 2)];arg2[(2 2)]]; 
evlis[(Y); ... ]] 

= concat[t[2,·2],.evlis[(Y),· ... ]] 
= concat[4;ev[is[(Y);«X . 2)(Y . J) .... )]] 
= concat[ 4;concat[eval[Y ,·aX .2) ... )]; eVlis[( );« ... »)]]] 
= concat[ 4 ;concat[J;( )]] 
= (4 J) 

«X .2) (Y . J) ... )] 

= +[4;J] 
=7 

It should now be clear that eval does perform as you would expect, at least 
for this example. It is not clear that a simpler scheme might not do as well. 
In particular, the complexity of the symbol table mechanism which we 
claimed was so important has not been exploited. The next example win 
show that a scheme like ours is necessary to keep track of variable bindings. 
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Let's sketch the evaluation of fact[)] where: 

fact <= A[[X][X = 0 -+ 1; t -+ *[xJ'act[x-1JJJJ 

that is, eval[( FACT J );5t] where 5t names the initial symbol table: 

«FACT. (LAMBDA (X) (COND((ZEROP X) 1) 
(T (TIMES X 

(F ACT (SUBI X»»»» 18 

3.6 

In this example we will assume that the binary function *, the unary 
predicate zerop <= A[[x] x = 0] and unary function sub1 <= A[[x] x-I] are 
known and are recognized in the evaluator as TIMES, ZEROP and SUBI 
respectively. 

Then eval[( FACT 3 Jist] 
= apply[F ACT; 

evlis[() );st]; 
5t] 

= apply[(LAMBDA (X) (COND ... »; 
(3); 
st] 

= eval[(COND ((ZEROP X) 1) (T ( , .. »);((X , 3) , st)] 
= evcond[«((ZEROP X) 1) (T (TIMES X (FACT (SUB1 X»»),, 

«X ,3) , stY] 
Now, let 5tl be «X " 3) , stY 

= eval[(TIMES X (FACT (SUB1 X»); stI] 
= applyLr 1M ES; 

evlis[(X (FACT (SUBI X»); stI]; 
5tl] 

= applyLrIMES; 
concat[J; 

evlis[«FACT (SUB1 X»),, st1]],' 
stl] 

18We have split the CON D across several lines in an indented fashion 
to improve readibility. Such techniques are common in LISP. The idea is 
called "pretty printing" and is discussed further on page 274 and in 
Section 9.2. 
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Now things get a little interesting inside evlis: 
evlis[«FACT (SUBI X»);sU] 

= concat[ eval[( FACT (SU BI X»; stI]; 
( )] 

and eval[(FACT (SUBI X»,'stl] 
= apply[F ACT; 

evlis[«SU BI X »;stl]; 
stl] 

= apply[F ACT,' (2),'stl] 
= apply[(LAMBDA (X) (COND ... »; 

(2),. 
st1] 

= eval[(COND «ZEROP X) 1) ... »,·«X . 2) . sU)] 

Within this latest call on eval the symbol-table-searching function, lookup, 
wilt find the pair (X . 2) when looking for the value, of x. This is as it 
should be. But notice also that the older binding, (X . 3), is still around in 
the symbol table sU, and wilt become accessible once we complete this latest 
call on eval. It will become accessible because this earlier manifestation of 
the table was saved by the A-binding process as we entered the inner call on 
eval; as we leave this inner evaluation, the previous incarnation of the table 
is restored. 

As the computa.tion continues, the current symbol ta.ble a.ppears as 
follows: 

«F ACT LAMBDA (X) (COND ... ») = st 
« X . 3) . st) = stl 
«X . 2) . stI) = st2 
«X .,1) . st2) = st3 

«X .0) . s~3) 

Thus each new level of the table builds on the prior tablej each prior table is 
saved by the following line from apply (page 117): 

islambda[fn] -+ eval[body[jn];mkenv[vars[jn];ar g s ;environ] 

The call on eval is performed with the augmented table; when we leave that 
inner eval we return to an environment which contains the prior table. 

Using mkenv to concatenate the new bindings onto the front of the 
symbol table as we call eval, generates the reqUired environment. The tricky 
part occurs when we leave that particular can on evalj the old table is 
automatically restored by the recursion mechanism. That is, concatenating 
things onto the front of a table doesn't Change the table, but if we call eval or 
apply with a symbol table of say: 
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concat[(X . 2);concat[(X . 3); st]] 

then in that can on tval or apply we have access to 2 as the value of x, 
rather than 3. 

In this representation, the search function lookup always proceeds from 
left to right through the table and, since the table entry function mktnv 
always adds pairs onto the left of the table before tval is caned, we will get 
the expected binding of the variables. 

The structure of mkenv should be analyzed further: it takes a formal 
parameter list, an evaluated actual parameter list, and an environment, as its 
arguments; it a1Jocates a new block to contain the name-value pairs and 
proceeds to send each name-value pair to its proper slot in the block. The 
value of mkenv is the newly constructed environment formed by linking the 
new block onto the front of the old environment. It turns out that pairlis is 
able to combine the action of making the new block and filling the slots. 

A more accurate picture of the abstract behavior of mktnv is: 

mktnv <= ~[[vars;vals;tnv] mkenv'[vars;vals;alloc[vars];tnv]] 

mktnv' <= ~[[vars;vals;block;tnv] [null[vars] ... link[block;tnv]; 

t -. mkenv'[ rest[vars]; 
rest[vals]; 
send[first[vars); 

fir st[vals]; 
block],' 

env) )]] 

Our current implementation of pairlis is eqUivalent to: 
alloc <=~[[x] ()] 19 

send <= ~[[var;val;block] concat[mkent[var,'val];block]] 

link <= ~[[block,'env] append[block;env]] 

The computational behavior of pairlis is slightly different: here the 
name-value pairs are added to the environment in an order reverse to that 
used in pairlis. Since the variables in the A-list must be distinct from one 
another, this alternative environment is eqUivalent to the previous one. 

Symbol table manipulation is very important, so let's look at it again in 
a slightly different manner. In this example, expressions and table entries 
will be written more informally. Since the evaluator is operating on the list 
representation of expressions we should continue to present these arguments 
to eval as lists. However. the object being represented might be more 

19a1loc is defined as a unary function even though its argument is 
ignored here. This generality is in anticipation of future binding 
imolementations. 
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understandable and readable 20 than the representation of that object. Thus, 

initially, we will write tn[E] rather than the explicit tn-image of t for 

example, write fR[ract[J]] rather than (FACT J). Later we will simply 

write ~ where no confusion is likely. With similar motivation, we represelit 
the symbol table between vertical bars, "I", in such a way that if a table, t), is: 

bn 
then concating a new element, bn+J onto tJ gives: 

b l 

The elements of the table should also be presented as tn.images, but we will 
represent the entries in a more transparent form. For example: 

eVdlnR[ractL~]]; I fact: >..[[x][x=O ~ I,·t ~ *[x,fact[x-I]]]] I ] 

= eval[fR[[x=O ~ 1; t ~ *[x,fact[x-J]]]]; Ix: J I ] 
fact: >..[ ... ] 

X : 2 ] 
x:J 

fact: >..[ ••• ] 

X : 1 ] 
x:2 
xo'3 

fact: >..[ ••• ] 

20Readability of LISP expressions is a subject of heated between LISP 
users and non-users. Since we pro[ram using the list representation there is 
an initial period in which the representation is "difficult to read ", However 
that phemononon is short lived; the regularity of LISP expressions, the 
minimality of syntax, the use of formatting programs called "pretty printers", 
and several abbreviational devices soon overcome any supposed 
disadvantages. This text presents LISP expressions in the meta-language 
since we Wish to stress the notions of representation independence, rather 
than LISP's programming behavior. 



126 Evaluation 3.6 

X:O ] 
x:1 
x:2 
x:3 

fact: x[ ... ] 

ill! *[J; *[2; *[1;1J]] with: x:l 
x:2 

x:2 

= *[3,'2] with: x:3 ] 

= 6 with: I fact: x[ ... ] 

=6 

Notice that after we went to an the trouble to save the old values of x we 
never had to use them. However, in the general case of recursive evaluation 
we must be able to save and restore the old values of variables. For 
example, if we had defined fact as: 

fact <= X[[x][x=O ~ 1; t ~ *[jact[x-J],-x])), 

then we would have to access the old binding of x. 
For further example, recatt the definition of equal: 

equal <= x[[x;y)[atom[x) ~ [atom[y) ~ eq[x;yJ; t ~ fJ,· 
atom[y) ~ f; 
equal[car[x);car[y)) ~ equal[cdr[x];cdr[y]); 

t ~ f)] 

If we were evaluating: 

equal[((A . B) . C);((A . B) . D)], 

then, reading across the page, our symbol table structure would change as 
follows: 

lequal : X[[X,1] .. .] I ==> X : «A . B) . C) ==> 
Y : ((A . B) . D) 
equal : X[[x,1] ... ] 
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x:(A.B) 
y : (A . B) 

x : «A . B) . C) ==> 
y:«A.B).D) 

equal : >..[[x;y] ... ] 

x:B 
y:B 

x:(A.B) 
y:(A.B) ==> 

x : «A . B) . C) 
Y : «A . B). D) 
equal: >..[[x;y] ... ] 

x:A 
y:A 

x:(A.B) 
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y : (A . B) ==> 
x:«A.B).C) 
y:«A.B).D) 

equal.: >..[[x;y] ... ] 

x:C 
y: D 

x:«A.B).C) ==> 
y:«A.B).D) 

equal: >..[[x;y] ... ] 

lequal : >..[[x;y] ... ] I 

This degree of complexity is necessary, for while we are evaluating 
equal[car[x];car[y]], we rebind x and y but we must save the old values of x 
and y for the possible evaluation of equal[cdr(x]jcdr[y]). It is not clear that 
this implementation is optimal. The search for the values of x and y is short, 
but the evaluation of any subexpressions involving equal must retrieve the 
definition of equal. That search is proportional to the depth of the initial 
arguments to equal. 

Before continuing, we should examine eval and apply to see how they 
compare with our previous discussions of LISP evaluation. The spirit of 
call-by-value and conditional expression evaluation is maintained. A-binding 
seems correct, though our current discussion is not complete. At least one 
preconception is not maintained here. Recal1 the discussion on page 17. We 
wanted n-ary functions caBed with exactly n arguments. An examination of 
the structure of eval and apply shows that if a function expecting n 
arguments is presented with fewer, then the result is undefined; but if it is 
given more arguments than necessary then the calculation is performed. For 
example: 

eval[(CONS (QUQTE A) (QUOTE B) (QUOTE C»,'NIL] 
reduces to eval[(CONS (Q!JOTE A) (QUOTE B»;NIL] 
reduces to (A. B) 

This example shows one of the pitfalls in defining a language by an 
evaluator. If the intuitions of the language speCifiers are faulty or incomplete 
then either we must maintain that faulty judgement, or we must lobby for a 
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"revised report". 21 

The definition of a language by an evaluator written in that language 
is subject to other criticisms. The troublesome areas of our description of 
LISP's evaluation induded A-binding, calling styles in general and 
call-by-value in particular, and left-to-right order of eValuation. We wrote 
eval to explicate the meaning of these constructs, yet within eval we often 
relied on exactly these constructs to convey our intent. Now, our description 
in not entirely circular; eval does convey much of our intention to the reader, 
but the discussion of hO'lIJ these constructs operate is either impliCit or is 
explained by using the same kind of constructs. In gaining a clearer 
understanding of what LISP constructs mean, eval is exemplary. Indeed 
many of the details of how these constructs work are irrelevant to such an 
understanding. When we attempt to implement a language feature we cannot 
assume the existence of that feature; the implementation must be prepared 
from a combination of more primitive components. As we proceed through 
the text we will introduce the mechanisms which are necessary to implement 
LISP and, indeed, implement the constructs of most other languages. In 
Section 4.4 we give several alternative algorithms for eval. The algorithms 
will evolve to an eval which makes explicit most of the mechanisms we heed. 
In Chapter 5 we will begin to discuss efficient representations for LISP's 
data structures, control structures, and primitive operations. The remainder 
of the current chapter will explicate further features of LISP in preparation 
for that discussion. 

Probiems 

1. Which parts of the evaluator allow the evaluation of functions applied to 
too many arguments? 

2. Find other anomaiies in the evaluator. That is, find places where 
unexpected results are obtained? 

3.7 Variables 

Let's look more dosely at A-binding in eval. The scheme presented seems 
reasonable, but as with "cons[A,'B;C]", there may be more expressed here than 
we anticipated. 

If we asked eval to compute fi2], given a representation for 
f <= A[[X] x + y] but no representation for the value of y it would complain. 
It would find f, bind 2 to x, and begin the evaluation of the body of f. It 

21For example the LISP 1.6 system ([~ua 72]) gives (A . A) for cons[A]; 
the MacLISP system ([Moo 74]) gives- (A . "missing-arg"); and InterLISP 
([lnt 75]) gives (A). 



3.7 Variables t 29 

would find x's value, but it would find no value for y. However, if we asked 
it to evaiuate the form ~.[[y] fi2]][I] it would work. It would find the value of 
y to be 1 and would get a final answer of J. You should convince yourself of 
this assertion. 

Within the evaluation of fi2] in x'[[y] fi2]][J] the variable y has a 
different character from that of x. The value of x is found within the latest 
A-binding, whereas y was bound in a dynamically surrounding A-binding. 
That is, the A-expression which bound y took effect before the binding of x 
and is still in effect when the binding of x is made. We do have access to y's 
binding in this case; the lookup routine wil1 locate y's value. There is a third 
kind of name-value association present in these examples: we expect that the 
symbol "+" is recognized during the evaluation as denoting a procedure for 
computing the sum of two numbers. In previous discussions we have 
assumed that "+" was pre-defined inside apply and therefore explicitly 
recognized. Finally, in the first example, a fourth kind of variable usage 
occurred. The variable y had no associated value when the computation 
expected one. In this section we wish to examine these properties of 
variables. 

The implementation of A-bindings described in pairlis (page 116) is 
slightly misleading. There, the new A-bindings are concat-ed onto the front of 
the existing table. They go on in a one-at-a-time fashion even though they 
are to be thought of as a logical unit: at the language level they all go on 
together, and they all come off together. It is the structure of this table which 
we should also examine. To these ends we now introduce some terminology. 

Consider the evaluation of the expression: 

x,[[y] equal[X,[[x] cons[x;y]][( A . B )];x]][A] 

in an environment where the definition of equal is known. 
We evaluate the main argument A, and perform the A-binding of A to 

y. This operation of A-binding creates what we cal1 a local symbol table and 
the variables bound in that local table are called local bindings for the body 
of the )..ex:pression. We now begin the evaluation of the arguments to equal. 
The first argument is itself an expression requiring A-binding. We evaluate 
it's argument and bind (A . B) to x. This creates a local binding for x. In the 
process of making x local what happens to y? Notice that the binding 
process has not made y inaccessible: we can compute cons[x;y] even though y 
is not local. Variables like y which are accessible, but not local, we call 
non-local variables. Thus both y and cons are non-local variables in our 
evaluation of cons[x;yJ. There is a further distinction between y and cons: We 
expect cons to be a predefined function; indeed cons has not been A-bound. 
any where in our computation. Variables like cons we will call global 
variables. 

Global variables include predefined function names, car, cdr, etc, and 
variables like t and nil. A useful interpretation of global variables is that 
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they are bound in the initial symbol table, also called the global table. 22 
Non-local variables which are A-bound somewhere in the symbol table we 
call free variables, and variables which have some accessible binding at the 
current point in the computation are called bound variables. 23 

Finally the first argument to equal is evaluated giving «A . B) . A). As 
we complete that evaluation the local binding for x becomes inaccessible, and 
y becomes local again. We examine the second arg'ument to equal, which is x, 
and now find there is no binding for that variable. Variables which have no 
binding of any kind at the time we ask for a value are called unbound 
variables. The local, free, and global variables make up the class of bound 
variables. 

For a computation to be meaningful, each variable which that 
computation references must be bound when we ask for its value. The 
computation of our current example would fail; it would fail even before we 
asked for the definition of equal since we are doing cal1-by-value. One of our 
tasks will be to discuss where definitions such as that for equal should be 
kept. 

Here is a diagram of our characterization of variables: 

variables 

I 
I I 

non-local local 

I 
I I I 

free global unbound 

Notice that a variable which is initially global may become local and then 
free by virtue of A-bindings. 

The binding strategy for local variables is reasonably uniform in 
programming languages: bind some form of the actual parameters 24 to the 
formal parameters and evaluate the body of the definition. One of the 
difficulties in programming languages is deciding what value to associate 

22This analogy breaks down somewhat in that usual implementations 
of LISP allow this global table to be augmented; for example, by function 

. definitions using a version of "<=". Thus the global table can be enlarged 
whereas a true A-binding involves a fixed number of variables. 

230ur notion of free and bound variables has a decidedly 
computational flavor, in contrast to the mathematical definitions of "free" 
and "bound" given on page 170. For example a variable may be both free 
and bound in our terminology. 

24T .... o n ...... '"'~~ .. ~ .. " ........ """tJ' ft~ .. LA"" 1-.. .... " ... _t. .. _ .. _..,.J __ •• _____ 1 .. __ &._..1 .. -

I -~- ---.------ ----I ------- -- -- -._---- _. _··_1' .... · .... ~"' ... '-41 •• U"~Y~l. 
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with a non-local variable. In LISP, it is clear how values get associated; it 
happens through A-binding or by virtue of an initial entry in the symbol 
table. The scheme which LISP uses for discovering the value of any 
variable is to proceed linearly down the symbol table, looking for the latest 
active binding. This scheme is cal1ed dynamic binding. It usually results in 
uncovering the value that is expected; but not always as we will see in 
Section 3.10. Conceptually, the dynamic binding scheme corresponds to the 
physical replacement of the function call with the function body and then an 

. evaluation of the resulting expression. Free variables whose bindings are 
determined dynamically are called fluid variables. 

In review, the evaluation of a typical function-call will involve the 
evaluation of the arguments, the binding of the A-variables to those values, 
the addition of these new bindings to the front of the symbol table, and 
finally the evaluation of the body of the function. That segment of the 
symbol table which we have just added by the A-binding will be called the 
local sym bol table or local environment. The variables which appear in that 
segment are the local variables. The remainder of the symbol table makes 
up the non-local table. Variables which' appear in the global table but not 
in any local table are the global variables. Free variables are bound 
somewhere between the local table and the global table. Variables which are 
local to a form-evaluation are those which were present in the A-binding. 
We first wish to develop a useful notation for describing bindings before 
delving further into the intricacies of binding strategies. That discussion will 
be the content of Section 3.11. 

Problems 

1. Write a LISP predicate, non <= A[[x;e] ... ], which will give t just in the 
case that x and e represent a variable and a A-expression respectively, 
and x is non-local to e. 

2. Give an example showing that the phrase "latest binding" is not a proper 
characterization of dynamic binding. 

3.8 Environments and Bindings 

This section wilt introduce one more notation for describing symbol tables or 
environments. This notation, due to J. Weizenbaum ([Wei 68]), only shows 
the abstract structure of the symbol table manipulations during evaluation. 
Its simplicity will be of great benefit when we introduce the more complex 
binding schemes necessary for function-valued functions in Section 3.10. 

In the previous discussions it has been sufficient to simply think of a 
symbol table as a sequence of pairs; each pair was a variable and its 
associated value. This sufficed because we dealt only with A-variables; we 
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ignored the possibility of free variables. As long as we added the A-bindings 
to the front of the sequence representing the symbol table we showed that 
expected evaluation would result. Local values were found in the table; 
global values were found by explicit recognizers in eval and apply. With the 
advent of free variables, however, it will be necessary to examine the 
structure of environments more closely. We wiJ) describe our environments 
in terms of a local symbol table augmented by a description of where to look 
for the non-local values. 

Instead of having one amorphOUS sequential symbol table, we envision 
a sequence of tables. One is the local table, and its successor in the sequence 
is the previous local table. The information telling where to find the 
previous table is called the access chain or access link. Thus if tables are 
represented by E j and the access link by ~ then we might represent a symbol 
table as: 

(En ~ En-1 ~ ••• ~ E) ~ Eo) 

where En is the local or current segment of the table. We reserve Eo to name 
the global table. 

LISP finds local bindings in the local table and uses the access chain to 
find bindings of non-local variables. If a variable is not found in any of the 
tables, then it is unbound. 

An environment wiJ1 be described as: 

Form 

E'oes' 
IEj 

varl value 
v) I val) 
v2 I val2 

Form is the current form being evaluated. E'oesl is the name of the current 
environment or symbol table. Let x be a variable appearing in Form. If x is 
not found among the Vj'S, then entries· in the table named E j are examined. 
If x is not found in E j then the environment mentioned in the upper 
right-hand quadrant of E j is searched. The search will terminate if x is 
found as a Vj; the value of x is the corresponding valj. If x is not found in a 
local table, and the symbol "I" appears in the right-hand quadrant, then x is 
unbound. 

The notation is used as follows: when we begin the evaluation of a 
form, the initial table Eo is set up with "I" in its access field. The execution 
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of a function definition, say f <= A[[X;y] x2 + y], witl add an appropriate 
entry to the table, binding f to its lambda definition. 25 Now, consider the 
evaluation of the form jl2;3]. When the A-expression is entered, Le., when 
we bind the evaluated arguments (2 and 3) to the A-variables (x and y), a 
new local table (E I) is set up with an access link to Eo, Entries reflecting the 
binding of the A-variables are made in E) and evaluation of the A-body is 
begun. 
The flow of symbol table creation is: 

jl2;3] 
Eo 

" => 
f I A[[X;yJ x2 

+ yJ xl2 
yl3 

=> 

Eo 
II 

return with value 7 
f I A[[x;yl ... J 

Compare this sequence to the example on page 120. 
The sequence of tables corresponds to the evaluation sequence: 

evalUR([fI2;3J ]; 9l[{<f ' A[[X;yJ x2 +yJ>} ]J 
J, 

eval[fR[x2 + y ]; tR[{<x, 2>, <y, 3>, <f, A[[X;yJ x2 +yJ>} ]] 
J, 

7 

You should rea1ize that the Weizenbaum environments are just another 
abstract data structure with associated constructors, selectors, and recognizers. 
They may be expressed as LISP data structures without much difficulty. The 
only difference here is that the environments happen to be more meaningful 
when described graphically than if they were specified by their manipulating 
functions. See the problem on page 135. Graphical representations and 
languages are an important tool in data structure programming; we wilt say a 
bit more about this' in Section 5.4,' 

25Note that we really mean "representation of lambda definition". 
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The execution of fact[3] on page 122 results in a more interesting 
example. The following discussion should be read in conjunction with that 
description. 26 

f act[3] [x=O-+ .. J *[x,fact[x-1]] 

11
6 

Eo E) E) 
1/ 1 Eo I Eo 

=> => => 2 
fact 1 )..[[x][x=O-+I; .. '] x 13 x 13 

~ f act[2] [x=O-+ .J *[x Jact[x-1]] 
El E2 E2 
I Eo 1 El 1 E) 

=> => -> => 1 
x IJ x 12 x 12 

fact[J] [x=O-+ .. ,] *[x Jact[x-1]] 
E2 E3 E3 
1 El 1 E2 I E2 

=> => => => 
X 12 x 11 x 11 

1 

fact[O] [x=O-+I,' .. J 
E3 E4 
1 E2 1 E3 send 

=> ------- => ------- => 1 1 
x 11 x 10 back up 

At the end of the first line we are faced with the evaluation of *[xJact[x-J]]. 
This requires the evaluation of the arguments to *; this is done by evlis. First 
x is evaluated and saved,27 then the evaluation of fact[x-J] is begun using 
environment E 1• In E), x-I gives 2 and we find the definition of fact in Eo. 
In the second line we set up E2 and evaluate fact[2J. Analogous situations 
occur until the fourth line; at this time we suddenly find ourselves in E4 with 
x bound to O. The expression x=O is satisfied and we start back up the right 
margin to conclude the nested evaluations of *[x;fact[x-1]]. This process 
finally terminates at the top, returning a value 6. Notice that we will get the 

26The layout of this example is due to R. Davis. 

27This saved information is not explicitly represented in these pictures 
or in the Weizenbaum diagrams. 
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correct binding of x locany. It is important to note that the occurrence of fact 
within the body of the definition of fact is global. 28 We find the correct 
binding for fact by searching the access chain. We must search the access 
chain even though fact is global. We cannot shortcut the search by simply 
looking in Eo. A variable might have been rebound in an enclosing 
environment and it would be that binding we should discover. 

As a final example showing access to non-local variable bindings 
consider fil] where f <= X[[x] g[2]] and g <= x[[,] x+,J. 

fiJ] g[2] 
~o E) 
II I Eo 

=> 
fl X[[x] g[2]] 
gl x[[,] x+,J 

xlJ 
=> 

, 12 

Notice that when we evaluate x + , we find y has a local value, but we must 
look down the access chain to find a binding for x. 

The scheme for using Weizenbaum environments for the current LISP 
subset is: 

When preparing a A-binding, set up a new Enew with the 
A-variables as the local variable entries and add the values of the 
arguments as the corresponding value entries. The access slot of the 
new Enew points to the previous access environment. The 
evaluation of the body of the A-expression takes place using the 
new table; when a local variable is accessed we find it in Enew; when 
a non-local variable occurs, we chase the access chain to find its 
value. 
When the evaluation of the body is completed, Enew disappears and 
the previous environment is restored. 
You should verify that the current access- and binding-scheme espoused 

by LISP is faithfully described in these diagrams" 

Problem 

1. Environments really are a class of abstract data structures: they include 
constructors, selectors, and recognizers. To help discover what a set of 
such functions might be, give a representation for Weizenbaum 
environments and write new versions of the symbol table manipulating 
functions, lookup and mkenv, which will operate on Weizenbaum 
environments. See page 124. 

28Notice that eq, +, and ~~ are also global. 
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3.9 label 

Placing "A" and a Ust of A-variables in front of an expresson designates the 
variables which appear in the A-list as local variables. An other variables 
appearing in the expression are non-local. For example, f is non-local in the 
following: 

f <= x[[x][zerop[x] -+ 1; t -+ *[xif{x-J]]] ] 

Clearly our intention is that the f appearing to the right of "<=" is the same 
as the f appearing to the left of u<=". 

This has not been a problem for us. We have simply pre-Ioadeq the 
symbol table, binding I to its defjnition; see page 122. LISP has a more 
elegant device for this binding. It is caJJed the label operator and is written: 

label[ <identifier>;<function>] 

Its evaluation has the effect of binding the <identifier> to the <function>. 
The value constructed by executing a label-expression is a representation of a 
function with name <identifier> and body <function>. 

For example, a proper definition of fact is: 

labellfact; X[[x][eq[x;O] -+ 1; t -+ *[x,jact[sub1[x]]]]]] 

To include label in the LISP syntax add: 

<function>::= label[ <identifier>;<function>] 

and the S-expr translation of the label constrllct should naturally be: 

m[label[f,jn] ] = (LABEL m[r] m[rn ]) 

Note that label is a special form, not a ca11-by-value function. 
Since the label operator creates a function, it should appear in the 

function position of a function application. A typical applicauon of the label 

construct, say label[f;X[[x] ~[x]]][e], results in the fonowing environmental 

picture when we get ready to evaluate t[x]: 

label[f;x[[X] ~[x]]][e] 
. Eo 

II 
=> 

f I X[[x] t[x]] 

Notice that labellf"A([x]~]][I!] is eqUivalent to X[[x]~[I!]][quote[e]]; notice too 
that the definition does not appear in the global table Eo. We use label to 
create temporary function definitions. Such definitions disappear w~en the 
environment in which the label was executed is nQ longer accessible to the 

computation. Thus within the evaluation of the body t[x] a recursive call on 
f wi11 refer to the definition of f located inE 1 so long as f is not rebound in 
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t once we have completed the computation initialized in Eo the definition of 
f will disappear. If I is not recursive, then the use of label is unnecessary; an 
anonymous function application will suffice. 

What about statements like "evaluate g[A;B] where 
g <= X[[x;y] ... fiu;v] .. J and I <= >,,[[x,'y] ... ] ?" label defines only one function; 
we may not say label[j,g; ... ]. What we can do is embed the label-definition 
for f within the label-definition for g. 29 Thus: 

label[g; >..[[x;y] ... label[/; >..[[x;y] ... ]][u;v] .. .]] 

Several languages allow a simpler notation for giving mutually 
recursive definitions; see [Rey 72], [Hew 74], or [Sus 75]. 

It can be shown that the label operator is superfluous; the same effect 
can be obtained by a complicated A;.binding. However our point here is not 
to be "minimal", but to be "useful". Implementations of LISP offer other 
definitional fa~i1ities, with "<=" having the effect of permanently establishing 
the definition in Eo. 

The apparent simplicity of the label operator is partly due to 
misconception and partly due to the restrictions placed on the current subset 
of LISP. The following sections will illuminate some of these difficulties. 

Problems 

1. Show one way to change eval to handle label. 
2. Express the definition of reverse given on page 48 using label. 
3. Evaluate the following: 

where: 

and: 

X[[y] label[ln,fn2][fn [f) 

fn2 <= X[[x][y ... 1; x ... 2; t ... Int [t]] 

Int <= X[[y] In[y]] 

3.10 Functional Arguments and Functional Values 

Recall our discussion of : 

eval[(F 2 J),.«F . (LAMBDA (X Y) (PLUS (EXPT X 2) Y»»] 

We now know this is eqUivalent to: 

eval[«LABEL F (LAMBDA (X Y) (PLUS (EXPT X 2) V»~) 2 J),.( )] 

In either case, the effect is to bind the name I to the A-expression. Binding 
also occurs when I 'is called: we bind x to 2, and y to J. In the latter case we 

29Indeed every occurrence of I must be replaced by the label[j,· .. .] 
construct. 
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are binding simple values; in the former we are binding functions as values. 
We have decided that the necessary ingredients to characterize a functional 
value 30 are a representation of the formal parameters, and a representation 
of the expression described in the body of the function. In this section we 
win examine the adequacy of that decision. We begin informatly with a few 
examples. 

Assume we have a list I of dotted-pairs a) , ... , an, and we wish to form 

a new Jist of the form (car[a)] ... car[an]). That is we wish to apply car to 
each of the elements of l. Such a function is easy to write: 

carfirst <= >..[[l][null[l] ~ ( ); t ~ concat[car[jirst[l]];carjirst[rest[l]]]]] 

Now suppose we wish to write a more general function, which instead 
of being speCific to car, will take an arbitrary unary function f and apply it to 

each of the elements of l, generating (flat], ... ,flan]). Such a function could 
plaUSibly be defined as fotlows: 

map first <= x[!fn;l][null[l] -+ ( ); 

t -. concat!fn[first[l]]jmapjirst[jn;rest(l]]]]] 

Thus the first calculation we requested above could be expressed as: 

mapfirst[car;l] ....... or could it? 

Recalling LISP's penchant for cal1-by-value evaluation, we might believe that 
the computation wou1d not be done as expected. We do not want the 
argument car. evaluated to produce an S-expr value; rather, we want its 
evaluation to produce a representation of a primitive function, suitable for 
application. There are two ways out of this dilemma. One solution is to 
suppress the evaluation of car, postponing it until the apply function can 
recognize that a function name has been seen. We have seen one artifact in 
LISP to subdue evaluation: we can make it a constant by quote-ing it. Indeed, 
mapfirst[quote[carJ;LJ or mapfirst[CAR,·l] will work. You should convince 
yourself that mapfirst[CAR;l) will compute carfirst[l); that exercise reqUires 
examining the details of eval. 

A second solution exists and is the one we witl pursue. We say that the 
"value" of car is the description of the program which computes car. Since 
car is' a primitive, that description is machine code for this specific 
implementation. 

Before going on to more complex examples it would be well to note that 
mapfirst is a different kind of LISP function from those we have seen 
before. The first argument to mapfirst is expected to represent a function. 
Notice that the argument fn appears in the body of mapfirs! in a position 
reserved for functions. Therefore any parameter bound to In is expected to 
be a function. Such a use of a function is called a functional argument. 

301t would be better to call these constructs "procedure values" since we 
wi1J take a decidedly algorithmic interpretation of them. 
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The first trick we used above, representing the functional argument car 
as a constant CAR, can be applied to other instances of functional arguments. 

Thus the functional argument: 

A[[X] j[g[x]] 

could be represented as, (LAMBDA (X) (F (0 X») 

The trick is called QUOT E-ing the functional argument since the S-expr 
representation of an instance of such a construct is a QUOT E-ed expression. 
QUOT E-ing is not strictly necessary if we follow the second alternative above 
and use the evaluator described in Section 3.5. Worse yet, QUOT E-ing is also 
not sufficient to capture the intended meaning in all cases of functional 
parameters. To understand why QUOT E.ing is not sufficient we need a 
slightly more complex set of examples. First we try: 

mapfirst[ A[[X] concat[x,·( )]];( ABe D)] 

which we expect to evaluate to ((A) (B) (e) (D» 

mapfirst[ A[[X] concat[x;( )]]; ... ] [null[l] ... ] 
Eo El 
II lEo 

31 

=> => ... 
mapfir st I A[[fn;l][null[l] ... ]] l I (A BeD) 

fn I A[[X] concat[x;( )]] 

Since null[l) is false, the problem reduces to: 

concatfjnfjir st[l]];map fir stfjn;rest[l]]]. 
EJ 

I Eo 

l I (A BeD) 
fn I A[[X] concat[x;( )]] 

Since we are using call-by-value we have to evaluate the arguments to concat; 
that requires evaluating fn[first[l)). The value of 1 we find locally and 
evaluate first[l], getting A. The value for fn is also found locally, and since it 
is the representation of a A-definition, we set up a new environment in which 
to evaluate the body of fn, binding the A-Variable x to A: 

31 Note that we do not use quote. Some implementations do not support 
this notation. Some reqUire quote, and still others give a different 
interpretation to unembellished functions appearing as actual parameters. 
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concat[x;( )] 
E2 
IE. 

x I A 

3.10 

The expected evaluation takes place: (A) is computed and returned to 
environment E} so that we may continue the evaluation mapflrst[jn;rest[l]]. 

However, consider the following variant of this last example. Define: 

foo <= >..[[l] mapfirst[ >..[[x]concat[x;l]]; (A BCD)] 

It would seem that foo[( )] should also give «A) (B) (C) (D» since l will be 
bound to ( ) and therefore the l in the functional argument wi1l effectively be 
( J. 

foo[( )] 
Eo 
1/ 

mapfirst[ >..[[x] concat[x;l]]; .. .] 
E} 
I Eo 

[null[l] ... ] 
E2 
IE} 

=> => => ... 
foo I >..[U]... ] I ( ) l j (A BCD) 

mapfirst I >"[[fn;l][null[l]..']J fn I >..[[x] concat[x;lJ] 

null[l] is false since l is (A BCD), so we evaluate concatlfn[flr st[l]] ... ]. This 
involves evaluating first[l] in E2, giving A. We evaluate fn in E2 and, 
finding a representation of a A-definition, we make a new environment E3 in 
which to evaluate the body of fn. 

As we make E3, we add an entry bihding x to A and we settle down in 
E3 to evaluate concat[x;l): 

concat[x;l] 
Ea 
I E2 

x IA 
Since l is non-local to Ea, we foHow the access chain to find its value in E2 to 
be (A BCD). But that's not the expected value! We expected to find ( ), 
which was hidden away in E t • 

The trouble here is that l was rebound in the interim. The first thing 
to note is that the problem is caused by free variables and dynamic binding: 
l is free in the functional argument. Local variables aren't problematic; 
neither are global variables. The desired binding for l is the one which was 
current when we were binding the functional argument to the formal 
parameter fn. A plaUSible solution then is to replace all non-local variables 
with their values at the time we recognize the functional argument. This will 
not always suffice. See page 145 for a counterexample. A more promising 
solution associates the name of the current environment with the function 
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and use that pair as the value to be' given to the formal parameter. When we 
want to apply the functional argument we set up a new environment, 
introducing a local table with the A-variables bound to their values; only now 
we use the saved environment as the beginning of the access chain. The 
values of any non-local variables which we encounter in the process of 
applying the functional argument will be searched for in the saved 
environment. 

To initialize this process we must be able to recognize the occurrence of 
a functional argument. To that end, we introduce a new operator called 
function. This operator takes one argument: a representation of the function. 
The effect of function will be to construct a value representing that argument 
and the environment which was current when the function-instance was 
evaluated. 

In the current example, we would recognize the function-construct while 
evaluating the arguments to mapfirst; the environment which was current 
then was E). Therefore as we build E2 we want to associate the pair 
x.[[x] concat[x,·l]] - E) with the formal parameter fn. Whenever we apply fn 
we want to use x.[[x] concat[x;l]]; and within that context, whenever we want 
l, we want the value of linE). 

The function-environment pair is called a closure or funarg. In our 
diagrams we will designate the pair as: 

<function>:<environment>. 

Therefore, in our example we should deSignate the value of the functional 
argument as: 

>..[[x] concat[x,·l]]:E 1 

We must also extend the manipulation of Weizenbaum environments to 
handle such constructions. The process which recognizes A-definitions and 
sets up new environments must now watch for funargs. When it sees one it 
uses the associated environment as the access environment. Let's do the' 
example again. 

foo[()] mapjirst[junction[>..[[x] concat[x,·l]]; .. ] [null[l] ... ] 
Eo E) E2 
II I Eo lEI 

=> => ------ => ... 
foo I >..[[l)... l I ( ) l I (A BCD) 

map first I >..[[jn;l][null[lJ...J] fn I >..[[x] concat[x;l]]:E 1 

Things are as before except now fn is bound to the funarg pair in E2• We 
look up fn in E2 and, finding a A-definition, we make a new environment Ea 
in which to evaluate the body of fn. As we make Ea, we add an entry 
binding x to A. But now since the A-definition is a funarg we mak.e the 
access environment E) as saved with fn. Thus we settle down in Ea to 
evaluate concat[x;l)= 
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concat[x;l] 
Ea 
lEI 

xlA 

3.10 

Since I is non-local to Ea, we follow the access chain to find its value in E 1 to 
be ( ) as desired. Thus instead of simply tracing back to the previous 
environment we detour around E2: 

Eo 

1 
E1., 

1 : 
E2 i 
1 : 
Ea..J 

However, there is still some information which we must make explicit if these 
Weizenbaum diagrams are to faithfutJy represent the process of evaluation. 
Namely, after we have finished the evaluation of concat[x;l] we are to restore 
a previous environment. Which one is, it? It isn't E 1, it's E2! That 
information is not available in our diagram, so we must correct the situation. 

In the left-hand quadrant of our diagram we place the name of the 
environment which we wish restored when we leave the current environment. 
That environment name will be caned the control environment, and will 
head a chain of enVironments, called the control chain. a2 Here's the correct 
picture: 

concat[x ;1] 
Ea 

E2 lEI 

xlA 

So after we have finished the computation in Ea we return control to E2• 

Thus the general structure of an environment is as follows: 

321n Algol, the access chain is called the static chain, and the control 
chain is called the dynamic chain. 



3.10 Functional Arguments and Functional Va1lles 143 

Form 
Ecurrent 

Econtrol 1 Eaccess 

var 1 value 
xl I .. · 
x2 I .. · 

I .. · 
xn I .. · 

1 

Consider another example, involving a function to produce the 
composition of two unary functions. We wilt call the function compose. The 
value returned by compose will be a function; that means compose wi11 
produce a functional value: 

com pose[function[car ];function[cdr]] = cadr 
with a plausible definition as: 

compose <= ).,[If,.g J )"[[xyrg[xJJJJ 

This definition of compose is almost right. The value returned by compose is 
to be a function. Indeed it is an instance of a functional value, so, as with 
functional arguments, it needs to be decorated with function so that the 
evaluator will save the environment which contains the right bindings for f 
and g. That environment is the one which was current when the 
function-construct was recognized. So we write: 

compose <= ).,[[j;g] function[>,,[[xJ flg[xJJJJJ 
Now try: app[cons[A;(B. C)]"~omp()selfunction[car],functi()n[cdr]]] 

where: app <= >,,[[y,jJ fly]J 

As usual we evaluate the arguments to app, bind the results to y and f and 
evaluate the body of app. 

app[cons[Al B . C )];compose[junction[car J;function[cdr JJJ 
Eo 
/II 

app 1 ).,[[y,j] flyJ] 
compose 1 >,,[[j;g J function[>,,[[xJ flg[x]]JJJ 

Evaluation of the first argument to app brings no surprises; we get 
(A . (B . C». We begin evaluating the second argument; we find the 
definition of compose in the environment and since it is a A-definition we set 
up a new environment, E l , and evaluate th~ body func.tion[>,,[[x]flg[x]]]]: 
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function[A[[x] j[g[x]]]] 
E) 

Eo I Eo 

f I car:Eo 
g I cdr:Eo 

3.10 

Again, the recognition of the function-construct says return a funarg-pair as 
value. The environment we associate is the current one, E). We now go back 
to Eo, using the control chain. Since both arguments to app are now 
evaluated, we find the definition of app and set up a new environment E 2• 

Thus: 

j[y] jtg[x]] 
E2 E3 

Eo I Eo E2IE) 
=> 

Y I (A . (B . C» x I (A . (B . C» 
f I A[[x]jtg[x]]]:E1 

The form to be evaluated in E2 is fly]; we find y and f both locally. We 
evaluate the argument y, then since f is a A-definition, we set up a new 
environment binding the A-variable x to the value (A . (B . C». But the 
~-definition is also a funarg; therefore the access environment stored in E3 is 
E). The control component of E3 is set to the prior environment, E2; and we 
begin evaluation of the body flg[x]J. 

Now in E3 we find x locally but have to resort to the access chain to 
find f and g; using funargs, we have set up the appropriate environments. 
From E3 we have access to E): 33 

The rest of the evaluation goes without incident: we finish the evaluation in 
E3 and return to E2 and finally to Eo foHowing the control evironments. 

Notice that f and g in the body of compose are free variables and 
therefore their bindings are not to be found in the local environment. Since 
the interesting applications of such functions usually involve free variables, 

33We can go from there to Eo if itwere needed. 
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we must deal with them. In particular, the label operator wi11 typically 
involve free variables. We remarked that j in: 

j <= A[[x][zerop[x] -+ 1; t°-+ *[x,:flx-1J]] ] 

is free. But we want the occurrence of j on the right to be synonymous with 
the f being defined on the left. We can dothis by "tying a knot" in the access 
environment chain. Therefore, we should modify the diagram for label to be: 

label[j;A[[x] ~[x]]][e] 
Eo 
II 

=> 

j I A[[X] ~[x]]:E ] 

Notice that the effect of label is to build junction[A[[x] ~]] and associate that 

with f If we attempted to implement junction[~] by replacing all non-local 

variables in ~ by their current values we wouldn't always get what we 
expect. 

Consider fact <= A[[X][X=O -+ 1; t -+ *[x,fact[x-1]]]] 

If the current environment is Ej: 

Ej 

Ec I Ea 

jactlfoo 

then executing <= should give something like: 

Ej 

Ee I E~ 

facti A[[X] .. fact[x-lJ] :E j 

rather than: 

facti A[[X] .. foo[x-1]] 

Our final step is to include a data structure representation of the 

function construct. The translation scheme is simple: represent function[~] as 

(FUNCTION !R[~]). 

Thus: junction[A[[X] fig[x]]] 

has an !R-image of (FUNCTION (LAMBDA (X) (F (0 X»» 

We must also develop new sections of eval to deal with FUNCTION. The 
device LISP used to associate environments with functions is called the 
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FU N ARG device. 34 When eval sees the construction (FUN CT ION fn) it 
returns as value the list: 

(FUNARG fn "saved") 

where "saved" represents a pointer to the current symbol table. This 
representation, as a list of three objects, is called a funarg triple. It is apply 
that recognizes (FUN ARG fn "saved"). When we are calling fn, we use the 
"saved" symbol table for accessing non-local variables. 

Thus there are two environments involved in the proper handling of 
functional arguments. First there is the environment which is saved with the 
FU N ARG. This is catted the binding environment since it is the 
environment current at the time the functional argument was constructed or 
bound. The second environment, called the activation environment or 
application environment, is the environment which is current immediately 
before the functional argument is applied or activated. 

It is the duty of eval and apply to use the FUN ARG device to maintain 
the proper control of the activation and binding enyironments. 

Finalty, we should update our description of the usage of Weizenbaum 
environments given on page 135: 

When the function construct is recognized, we manufacture a FUN ARC 
trip-Ie consisting of the atom FUN ARC, the function described in the 
instance of function, and the current environment. This triple is the 
value of the function construct and may be bound to any LISP variable; 
typically the LISP variable witl appear in an expression in a pOSition 
reserved for functions. 
When doing a A-binding, set up a new Enew with the A-variables as the 

local variable entries and the values of the arguments as the 
corresponding value entries. The control slot of Enew always points to 
the previous symbol table. The access slot also points to the previous 
environment unle~s the function being applied is a FUN ARG. If it is a 
FU NARC, then set the access slot to the environment which was saved 
with the FUN ARG. 
The evaluation of the body of the A-expression takes place using Enew; 

when a local variable is accessed we find it in Enew; when a non-local 
variable occurs, we chase the access chain to find its value. When the 
evaluation of the body is completed, the previous environment is 
restored. Enew disappears unless it has been saved in a functional object 
constructed during the evaluation of the body, and that object is 
returned as a functional value. 35 
Notice that there is a certain asymmetry about access ahd control. The 

34M ore is said about implementations of FUN ARG in Section 6.17. 
35In fact, LISP wilt allow the retention of environments in more 

general ways since funarg triples can be manipulated as data structures. 
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control slot always points at the previous environment, while the access slot 
may vary. It may follow control, as is the case on simple function calls; it may 
point to an environment earlier in the control chain, as is the case for 
functional arguments; it may point to an environment which control cannot 
return to, as is the case for functional values; or it may point to itself as is the 
case for label's revised implementation. 

There is another asymmetry in the properties of access and control. 
The access environment is a self-sufficient data structure; it can be described 
and manipulated as such using the usual constructors, selectors, and 
recognizers. Typically such environments come into existence as a part of a 
computation; they are constructed during the A-binding process. We can 
implicitly save such an environment through the FUN ARC device; and we 
can explicitly build such environments using the data structure operations 
and pass them to eval as a symbol table. But symbol tables are independent 
of the method used to create them. In particular, once a table has been 
captured by a FUN ARC we need not retain any information about the 
computation which -created that table. However the idea of "control" and 
"state of computation" is integrally tied to access structure. The state of the 
computation involves the expression currently being evaluated, the history of 
those computations which are suspended and waiting for the completion of 
the current computation, and it also involves the access environment since 
that is necessary for the correct evaluation of variables. To "save the, state of 
computation" implies saving the partial computation to that point, savlng the 
expression being evaluated, and saving the current access environment. 

To a large extent, "control environment" is a misnomer. What we are 
intending to capture is the idea of a suspended computation: suspended until 
the subsidiary computation has been completed. Part of the suspended 
computation is the "controi environment",'but there's more. The Weizenbaum 
diagrams show part of the information; they show the environments and the 
expressions being evaluated. However they leave implicit the dynamics of the 
computation: which argument is being evaluated, and where the partial 
results are being stored, and where in the expression we are to continue when 
the subsidiary computation is completed. In Section 4.4 we will develop a 
different eval family which wi11 make much of this information explicit. 
Also in Section 4.4 we will examine the possibility of expanding the 
behavior of control slots. That is, allowing environments other than the 
predecessor to appear in the control slot of a~ environment. 

We have already remarked that functions are parametric values; to that 
we must add that functions may also be tied to the environment in which 
they were created; they cannot be evaluated in vacuo. What does this say 
about "<="? It still appears to act like an aSSignment statement. It is taking 
on more distinct character since 'it must associate environments with the 
function body as it do~s the aSSignment. 

The implementation of function seems like a lot of work to allow a 
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moderately obscure construct to appear in a language. However constructs 
1ike functional arguments appear in several programming languages under 
different guises. Usual1y the syntax of the language is sufficiently complex 
that the true behavior and implications of devices like functional arguments 
is misunderstood. ,Faulty implementations usually result. In LISP the problem 
and the solution appear with exceptional clarity. 36 

Here is a sketch of the abstract structure of the current eval. 

eval <= A[[exp;environ] 

where: 

[isvar[exp] -+ lookup[exp;environ]; 
isconst[exp] -+ denote[exp]; 
iscond[exp] -+ evcond[argsc[exp];environ.l; 
isfun[exp] -+ mkfunarg[exp;environ]; 
isfunc+args[exp] -+ apply[func[exp]; 

evlis[ar glist[exp ];environ]; 
environ]] ] 

apply <= A[[fn;args;environ] 
[isfunnamelfn] -+ ••• , 

islambdalfn] -+ eval[body[fn]; 
mkenv[var slfn];ar gs ;environ]]; 

isfunar g[fn] -+ applylfunc 1 [fn]; 
args; 
evn[fn]]; 

... ]] 

The reader is encouraged to complete the definitions, supplying appropriate 
constructors, selectors and recognizers. 

Now for some specific examples. Most implementations of LISP 
include a very useful class of map~ing functions. 

maplist is a function of two arguments: fn, a unary function; and l, a Jist. 
maplist app1ies the function fn to the list 1 and its tails (rest[l], 
rest[rest[l]], .. ) until 1 is reduced to (). The value of maplist is the list 
of the values returned by fn. Here's a definition of maplist: 

maplist <= A[[fn;l][null[l) -+ ( ); t -+ concatlfn[l);maplist[fn;rest[l]]]]] 

Thus: 
maplist[function[reverse];(A BCD)] = «D C B A) (D C B) (D C) (D» 

The use of function is not strictly necessary since reverse does not reference 
free variables. 

The mapping functionals can be generalized. For example ([Moo 74]) 

36LISP was the first programming language which allowed functional 
values. 
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an application mapfirst[fn;lt; ... ; in] would expect fn to be an n-ary function 
to be applied to consecutive members of each ii' building a list of the results 
of each application. 

An interesting and non-trivial use of functional arguments is shown on 
page 196 where we define a new control structure suitable for. describing 
algorithms built to operate on lists. 

Problems 

1. What changes should be made to the LISP syntax equations to allow 
functional arguments? 

2. Use app on page 143 to define a function which computes factorial 
without using label or explicit calls on the evaluator. 

3. Extend eval and friends to handle functional arguments. 
4. An interesting use of functional arguments involves self-applicative 

functions. An application of a function f in a context fi ... ,j; .. .] is an 
instance of self application. 37 Self-applicative functions can be used to 
define recursive functions in such a way that the definition is not 
statically self-referential, but is d:ynamically re-entrant. For example, here 
is our canonical example, written using a self-applicative ftinction: 

fact <= X[[n] fifunction[f],· n]] 

f <= x[[g;n][n=O ~ 1; t ~ *[n,' g[g,. n-J]] ]] 

Use Weizenbaum's environments to show the execution of fact[2]. 
5. Write a LISP function to find the permutations on a set of n elements. 

For example perm[( A B C)] gives 

« ABC) (A C B) (B C A) (B A C) (C A B) (C B A» 

6. Write a generalized form of the diff algorithm (Section 2.3) to handle 
n-ary sums and products. 

3.11 Binding Strategies and Implementations 

After the discussion of variables iri Section 3.7 and the intervening 
discussions of environments, it should now be clear that the root of the 
binding problem is free variables. We don't want to restrict the use of free 
variables too precipitously since they are a very useful programming 
technique. For example, the possible alternative of passing all global 
information through as extra parameters in calling sequences is overly 

37Provided the deSignated argument position is a functional argument. 
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expensive; 38 often the most natural formulation of a problem involves free 
variables. 

Handling of free variables varies from programming language to 
programming language. The solution advocated by Algol-like languages is 
caned static binding or lexical binding and dictates that an non-local 
references be fixed in the binding environment; thus free variables aren't 
really free in the sense that we have a choice to make. LISP at least gives 

you a choice. 39 Using quote you will get the dynamic binding on free 
variables in a functional argument; using function gives the static 
interpretation. 40 There are no questions about Algol's interpretation of 
functional values: the construct is not allowed. When we discuss 
implementation of binding strategies in Chapter 5 we will see why. 

The binding strategy determines wAen the variables wiJ) receive values; 
the implementation determines how those bindings are to be accomplished 
and therefore, how the lookup of values is to be accomplished. We have 
seen one implementation in the assoc - pairlis pair (Section 3.5, page 124), 
and on page 135 suggested a related implementation using Weizenbaum 
environments. Now we examine another implementation. 

The most general environment structure which LISP creates is a tree of 
local symbol tables, rooted in the global table. The typical LISP computation 
generates a single branch, but functional arguments and values can generate 
additional branches. Locating a variable n involved searching the current 
branch from tip to root, looking for the first occurrence of n. Ifn was bound 
very deep, the search could be long. Indeed the time is proportional to the 
depth of the branch; recall our sample evaluation of equal on page 124. It 
has been noted [Wegb 75) that variables tend to be rebound rather seldom; 
there are few occurrences of any given variable on any particular branch. If 
this is the case, then the search will examine many environment blocks which 
do not contain the desired variable. If the number of bindings of any 
variable is small compared to the number of environment blocks which have 
to be searched to find those bindings, then we would like a viable alternative 
to the assoc - pairlis implementation of lookup - mkenv. That is, a scheme 
whose search is proportional to the number of bindings for" a variable, rather 
than proportional to the depth of the tree. There is such an alternative. 

38Though much of that expense can be mitigated by a clever compiler. 
39However [Ste 76b] shows that dynamiC binding can be simulated in 

a statically bound LISP-like language. 
40 A case can be made for even more flexibility in the interpretation of 

free variables. We could ask that the binding be done on a per variable 
basis. That is we could declare which free variables are to be captured 
statically and which are to be captured dynamically. We could a1so ask that 
both bindings be available and supply selectors which would access either the 
dynamic or the static binding. 
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Namely, we associate all the values possessed by n with n itself. To 
signify which environment created the binding, we associate pairs consisting 
of the value and the environment name. Thus the new mkenv[vars;vals;env] 
application must name a new environment, can it new, and attach it to the tip 
of the current branch in the environment tree. Also, for each entry in vals, 
mkenv must associate a value-new pair with each name in vars. 

The lookup procedure is given the name n and a branch in the 
environment tree. Assume that the tip node of the tree is named Env. If n 
has an attached value pair whose environment component is Env, then the 
associated value is returned by lookup. Otherwise the environment branch is 
searched recursively by lookup for the first node in that branch which has an 
associated value attached to n. 

Here's a graphical description of this reorganized symbol table: 
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Using the discussion of mkenv on page 124, we define: 

alloc <=>..[[x] gensym[]] 
link <= >..[[block;env] concat[block;env]] 
send <= ~.[[n,·v;blk] addval[n,'mkent[jirst[blk];v]]] 

3.11 

The function gensym is to generate a new environment name which alloc 
makes into a new tip node on the end of the current environment branch. 

The function addval adds a new entry to the variable n. The value of 
addval is env. 

The' new lookup is more complicated than the simple assoc. Given a 
node in the environment branch, we must see if there is a related binding for 
n. If there is, then that's the binding we want. If no binding is found we look 
at the next deeper node on the tree, and check its bindings. 

lookup <= :>..[[n;env] :>..[[z] look'[z;z;env]][getval[n]] ] 

look' <= >..[[l;l1;envl [null[l] ~look'[l1;l1;rest[env]] 
eq[name[jirst[l]],first[env]] ~ valuelfirst[l]] 

t ~ look'[rest[l);l1;env] ]] 

This new scheme is caned shal10w binding, and the assoc-pairlis 
scheme is cat1ed deep binding. The essential differences between these two 
binding implementations is that a deep binding search is keyed on the name 
of the variable, whereas a shallow binding strategy is keyed on the 
environment name. These requirements have corresponding implications for 
the organization of the symbol tables. 41 

A further elaboration of the shallow scheme is possible. The essential 
aim of shallow binding is the requction of the search time for values of 
variables. The current scheme improves the situation, but if a variable is 
bound several times we sti1t may have to search the table of values associated 
with the atom. The next modification arranges that the correct binding is 
always found in a fixed location associated with the atom. As with any 
scheme, the benefits are not without penalty; we will discuss some of the 
tradeoffs after we describe the implementation. 

With each variable n we associate a single entry caned the value cell. 
The binding and unbinding mechanisms will maintain the correct value of 
the variable in the value cell. The scheme is a mixture of the two previous 
implementations. 

The lookup routine is similar to the shallow lookup: 

lookup <= >..[[x;env] getval_cell[x]] 

Notice that env is ignored in lookUp. 

41The table organization discussed in this section was also used in a 
language named LC2 ([Mit 70]). In their terminology, "deep table" was caned 
"scope oriented organization" and "shallow table" was caned "name oriented 
organization ". 
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The binding routine is a bit more complex. When binding n we have 
to replace the current value cell with the new binding. We also have to save 
the old binding so that it may be restored when the sub-computation is 
completed; this part of the implementation is like deep binding. We perform 
most of the mkenv operations as given on page 124, but require a new 
version of send. Instead of placing the new bindings in the block built by 
send, we place the current bindings there as we place the new bindings in the 
value cell. The new definition of send follows: 

send < = A[[var ;val ;block] concat[mkent[var ;SllJP _val_cell[var ;val]];block]] 

where sw_val_cell places val in the value cell of var and returns the old 
value. 

The unbinding operation is even more complicated. When we leave an 
environment we expect the prior environment to be re-established. That is 
done automatically by recursion in the deep implementation and in the 
previous shallow binder. See page 117; the recursive caU on eval with the 
new binding of environ will lose its effect as we leave eval. 

However, the new scheme requires more; we must .restore the saved 
values to the value cells, and recursion will not do that automatically. We 
will discuss more of the details of this process in Section 3.11 and 
Section 5.19, but the basic idea is to swap the contents of the saved block 
back into the value cells as we leave the inner call on eval. Notice that we 
cannot simply throwaway the old bindings since a call on function may have 
occurred. The funarg triple can be built as before: saving the current 
environment name (not saving the current contents of all the value cells). 
The application of funargs is therefore more problematic. In the previous 
binding implementations, all we needed to do was establish the saved 
environment name as the evironment to be used for non-local searches. In 
this latest binder, we must re-establish the value cells which were current 
when function was recognized. We will postpone this discussion until 
Section 5.19 and Section 5.20. 

This latest implementation of binding is by far the most complex we 
have seen. It gives fast access to values of variables, but requires more effort 
in changing environments; that is particularly evident in the discussion of 
function constructs. We will discuss the relative merits of these 
implementations in more detail in Chapter 5. Be clear on the distinction 
between a binding strategy and a binding implementation. The two 
strategies we have discussed are called "dynamic" and "static"; the two 
implementations are called "deep" and "shallow". Either implementation 
technique can be used with either binding strategy. 
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Problems 

1. Suggest an implementation of addval which will improve the search 
efficiency of lookup. 

2. Analyze lookup in a manner similar to that performed on mkenv on 
page 124. Identify the parts of lookup which are independent of the 
binding implementation. Rewrite the shallow and deep versions of lookup 
in this more general setting. ' 

3.12 Special Forms and Macros 

We have remarked that the evaluation scheme for LISP functions is 
call-by-value and, for functions with multiple arguments, left.:to-right 
evaluation of arguments. We have also seen, in quote and cond, that not all 
forms to be evaluated in LISP fall within this category. The purpose of 
quote was to stop evaluation; and the "argument list" to cond is also handled 
differently. Since quote and cond were rather anomalous we have called them 
special forms. Now we would like to discuss special forms as a general 
technique. 

. Consider the predicates and and or. We might wish to define and to be 
a binary predicate such that and is true just in case both arguments evaluate 

to t, and defin,e or to be binary and false just in case both arguments 

evaluate. to f. Notice two points. First, there is real1y.no reason to restrict 
these pr,edicates to be binary. Replacing the words "binary" by "n-ary" and 
"both" by "all" in the above description has the desired effect. Second, if we 
evaluate the arguments to these predicates in some order, say left-to-right, 
then we could immediately determine that and is false as soon as we come 

across an argument which evaluates to f; similarly a call on or for an 
arbitrary number of arguments can be terminated as soori as we evaluate an 

argument giving value t. But if we insist that and and or be LISP functions 
we can take advantage of neither of these observations. Rather we will define 
and and or as special forms and handle the evaluation ourselves. Presently, 
the only way to handle special forms is to make explicit modifications to 

eval. 42 

420n page 212 and in Section 4.10 we will discuss simple ways to 
add such forms without modifying eval. 
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Recognizers for the predicates must be added to eval: 

isand[e) ~ evand[arglist[e),'environ); 

isor[e) ~ evor[arglist[e),'environ); 

where: 

evand <= X.[[l;a] [null[l]-+ t; 
eval[jirst[l];a]-+ el1and[rest[l];a]; 

t-+f]] 

evor <= X.[[l;a] [null[l] -+ f; 
eval[jirst[l];a] -+ t; 
t -+ evor[rest[l];a]] ] 

Or, exploiting the duality of and and or ([Ste pc]): 

isand[e] ~ evandor[arglist[e];environ,.t]; 

isor[e] ~ evandor[arglist[e];environ;f]; 

evandor <= X.[[l;a,·d) [null[l] -+ d; 
xor[d;eval[jirst[l);a]] -+ notEd]; 

t -+ evandor[rest[l];a;d])] 

xor <= X.[[a;b][a -+ not[b],. t -+ b]] 

In either formulation there are explicit calls on eval. 43 This seems expensive, 
but the arguments must be evaluated. . 

Special forms have been used for two purposes: one is to control the 
evaluation of arguments; conditional expressions, quoted expressions, and, 
and or are examples. The second application area is to create the effect of 
call-by-value functions with an indefinite number of arguments all of which 
are to be evaluated; the LISP functions, list, append, and plus are' examples 
in this category. 

Even though we wish to define these functions as if they had an 
arbitrary number of arguments, when we call the function, the number of 
arguments to be applied is known. 44 

Assume, for example, we wish to define plus as a function with an 
indefinite number of arguments such that: 

plus[ 4,'5] = 9 
plus[ 4,.5;6] = 15 

plus[ 4;add1[2];4] = 11 

43 Also notice that the abstract versions of evand, evor and evandor 
know that the arguments are represented as a sequence and the structure of 
the recursion implies a left-to-right evaluation. 

44For example, at compile time the number of arguments is known, 
and the compiler can often generate more efficient code than just calls on 
eval. 
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W f; can define plus in terms of a binary addition function, *plus. 

plus[4;5] = *plus[4;5] = 9 
plus[4,'5;6] = *plus[4,'*plus[5,'6]] = 15 

plus[ 4,'add1[2],'4] = *plus[ 4,'*plus[add1[2],'4]] = 11 

3.12 

We expand cal1s on plus into a composition of cal1s on *plus.plus is being 
used as a macro and the expansion process' in terms of *plus is caned macro 
ex pansion. The macro expansion generates a composition of ca11s on *Plus. 

A macro definition is a A-expression of one argument. The call on a 
macro looks just like an ordinary function cal1, but what is bound to the 
A-variable is the whole catt on the macro. 45 The task of the macro body is to 
expand the macro can and return this expansion as its value. This 
expanded form is passed back through eval to complete the computation. In 
Section 4.10 we will discuss the additional mechanisms which evaluators 
must possess for execution of macros. 

Let's define <m= to mean "is defined to be the macro ... ". Then a 
simple macro definition of plus might be: 

plus <m= A[[l] [eq[lengt h[l];]] ... concat[ *P LU S ;rest[l]]; 

t ... list[*PLUS; 
second[l]; 
concat[P LU S ;rest[rest[l]]]]]] 

Thus a call (PLU$ ] 4 5) would bind l to (PLUS] 4 5) and the evaluation 
of the body would result in (*PLUS ] (PLUS 4 5». Evaluation of this 
expression would result in another can on the macro. This time I would be 
bound to (PLUS 4 5). Now eq[length[l);3] is true and the value returned is 
(*P LU S 4 5). This wilt be evaluated, giving 9; fina11y the outermost call on 
*PLUS has all its arguments evaluated, and we get the final answer, 12. 

A more general macro expander can be described as: 

expand <= A[[fn;l][null[rest[l]] ... l; 

t ... list[ fn; 
firs,t[l]; 
expandlfn;rest[l]]]]] 

Then we can define plus <m= A[[l] expand[*PLUS;rest[l]]]. 
In a similar manner, 

append <m= A[[l] expand[*APPEND;rest[l]]] 

where *append is the binary version of append. 
Since the body of a macro has available a11 of the evaluation 

mechanism of LISP, and since the program structure of LISP is also the data 
structure, we can perform arbitrary computations inside the expansion of the 
macro. 

45 A similar device, caned "meta composition", is used in [Bac 73). 
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The idea of macro processing is not recent. Some of the earliest 
assemblers had extensive macro facilities. Lately macros have been used as a 
means of extending so-catted high level languages. One of the most simple 
kinds of macros is textual substitution. That is, when a use of a macro is 
detected we simply replace the call by its body. A slightly more sophisticated 
application is the syntax macro. Every time we come across an application 
of a syntax macro the expander processes it as if it had never been seen 
before even though much of the expansion is repetitious. That is, syntax 
macros have no memory. 

Computational macros are an attempt to reduce some of this 
repetition. In this scheme a certain amount of processing is done at the time 
the macro is defined. For example a computational subtree reflecting the 
bod y of the macro might be formed. Then whenever the macro is used we 
can simply make a copy of this subtree and "glue" this subtree into the 
parse-tree which we are building. This computational subtree is commonly 
formed by passing the body of the macro through the language processor in 
a slightly non-standard way. The main problem with the computational 
macro is that there are many desirable macros which have no such subtree, 
or there is other information necessary to process the macro. There are 
solutions to this problem, one of which, closely parallels the abstract syntax 
ideas of McCarthy. All of these styles of macros are subsets of the LISP 
macros. 

Problems 

1. What is the difference between a special form and call-by-name 
evaluation? Can call-by-name be simulated in LISP without redefining 
eval? 

2. select is a special form to be catted as: select[Q;ql;el; ... ;qn;en;e] and to be 
evaluated as follows: q is evaluated; the qj'S are evaluated from left to 
right until one is found with the value of q. The value of select is the 
value of the corresponding ej. If no such qj is found the value of select is 
the value of e. The select operator is a precursor of the case statement; 
see page 193. Add a recognizer to eval to handle select and write a 
function to perform the evaluation of select. 

3. Define list as a macro. 
4. Extend the eval-apply pair of Section 3.5 to handle macros. 

3.13 Review and Reflection 

"/ think that it is important to maintain a view of the field that 
helps minimize the distance between theoretical and practical work." 

Saul Amarel, [Ama 72] 
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By way of review we sketch the basic LISP evaluator of SectionS.S: eval plus 
the additional artifacts for label and function. 

There are two arguments to eval: a form,46 that is, an expression 
which can be evaluated; and an association list or symbol table. If the form 
is a constant, return that form. If the form is a variable, find the value of the 
variable in the current environment. If the form is a conditional expression, 
then evaluate it according to the'semantics of conditional expressions. 

The form might also be a functional argument. In this case evaluation 
consists of associating the current environment with the function and 
returning that construct as value; in LISP this is done with the funarg 
device. Any other form seen by eval is assumed to be an application, th~t is, 
a function followed by arguments. The arguments are evaluated from 
left-to-right and the function is then applied to these arguments. 

The part of the evaluator which handles function application is called 
apply. apply takes three arguments: a LISP function, a list of evaluated 
arguments, and a symbol table. If the function is one of the five LISP 
primitives then the appropriate action is carried out. If the function is a 
A-expression then bind the formal parameters (the A-variables) to the 
evaluated arguments and evaluate the body of the function. The function 
might also be the result of a functional argument binding; in this case apply 
the function to the arguments and use the saved enVironment, rather than 
the given environment, to search for non-local bindings. If we are applying 
the label.operator, we build a funarg-triple and new environment such that 
the environment bound in the triple is the new environment. We then apply 
the function to the arguments in that environment. 

If the function has a name we look up that name in the current 
environment. We expect that value to be a A-expression, which is then 
applied. However, since function names are just variables, there is no reason 
that the value of a function name could not be a simple value, sayan atom, 
and that value can be applied to the arguments. Examination of apply on 
page 117 will show that apply[X; «A B»,' aX . CAR) ... )] will be handled 
correctly. A generalization of this idea is possible. If the function passed to 
apply is not recognized as one of the preceding cases, then continue to 
evaluate the function-part until it is recognized. Such functions' are called 
computed functions. 

For example, we wilt allow such forms as: 

«CAR (QUOTE (CAR (A .. B»» (QUOTE (A . B») 

46Throughout this section we will say "form", "variable", 
"A-expression", etc. rather than "a representation of a" ... "form", "variable", 
"A-expression", etc. No confusion should result, but remember that we are 
speaking imprecisely. 
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The introduction of computed functions modifies apply (page U 7) slightly: 

apply <= X[[fn,-argsjenviron] [iscar[fn] ~ car[argt[args]],' 
isconslfn] ~ cons[ar g t [ar gs ];ar g 2[ar gs ]]; 

islambdalfn) ~ eval[ body[fn]; 
pairlts[ var s[fn]; 

args; 
environ]]; 

t ~ apply[eval[fn;environ]; 
args; 
environ] ]] 

The subset of LISP which is captured by this evaluator is a strong and 
useful language even though it lacks several of the more common 
programming language features. 47 This subset is caned the applicative 
subset of LISP, since its computational ability is based on the mathematical 
idea of function application. We have persistently referred to our LISP 
procedures as LISP functions, even though we have seen some differences 
between the concept of function in mathematics and the concepts of 
procedure in LISP. It is the mathematical idea of "function'; which the 
"procedures" of our applicative programming language approximate. 
Regardless of differences in syntax and evaluation schemes, the dominant 
characteristic of an applicative language is that a given "function" applied to 
a given set of arguments always produces the same result: either the 
computation produces an error, or it doesn't terminate, or it produces a 
specific value. The applicative subset of LISP uses dynamic binding and 
therefore the ,occurrence of free variables calts the environment into play. 
But still, we have no way to destructively change the environment. Constructs 
which do have such an ability are said to have side-effects and are 
discussed in the next chapter. 

LISP was the first language to exploit procedures as objects of the 

47It is "strong", both practically and theoretically. It is sufficiently 
powerful to be "universal" in the sense that all computable functions are 
representable in LISP. In fact the eval-apply pair represents a "universal 
function", capable of simulating the behavior of any other computable 
function. The usual arguments about the halting problem ([Rog 67] and 
page 181) and related matters are easily expressed and proved in this LISP. 
Indeed, the original motivation for introducing the M-to-S expression 
mapping was to express the language constructs in the data domain so that 
universality could be demonstrated. liS-expression LISP" was used as a 
programming language only as an afterthought. It was S. Russell who 
convinced J. McCarthy that the theoretical device represented in eval and 
apply could in fact be programmed on the IBM70·4:; 
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language. The idea has beengeneraJized substantiaJJy in the intervening 
years. A concise statement of the more· general principle appears in 
[Pop GSa). 

" .. ;This brings Us to the subject of items. Anything which 
can be the value of a variable is an item. All items have 
certain fundamental rights. 

" 

1. All items can be the actual parameters of functions 
2. All items can be returned as results of functions 
3. All items can be the sub jeet of assignment statements 48 
4:. All items can be tested for equality. 

LISP performs wen on the first two principles, a110wing LISP functions to be 
the arguments as well as the results of functions. The fourth principle is 
more difficult; that is, test for the equality of two LISP functions. In can be 
shown ([Rog 67]) that no algorithm can be constructed which will perform 
such a test for arbitrary functions. However in more selective settings, 
program equality can be established, both theoretically ([Man 74:]), and 
practically ([Boy 75], [Dar 73], [Car 76]). 

The language POP-2 ([Pop 68]) has also generalized the notion of 
function application in a slight, but Significant, way. The generalization is 
caned partial application. Given a function 

f <= >..[[x); ... ;xn] ~] 

we compute a new function of n-m arguments by applying f to m arguments 
and obtain a function of the remaining arguments xm+ J through xn: 

>..[[Xm+); ... Xn] ~'] = fit); ... ; tm] 

where ~' results from ~ by binding x) through xm to t) through tm 

respectively. 49 Further generalizations of partial application are imaginable 
([Sta 74:]). 

We have pointed out several "procedural" differences. Our treatment of 
conditional expressions differs from the usual treatment of function 
application: our standard rule for function application is "call by value" 
which requires the evaluation of all arguments before calling the LISP 
function; only some of the arguments to a conditional expression are 
evaluated. Note that the whole question of "evaluation of arguments" is a 
procedural one; arguments to functions aren't "evaluated" or "not evaluated", 
they just "are". 

We have seen different algorithms computing the same function; for 
example fact (page 4:7 and page 149) and fact) (page 4:7) all compute the 

4Brhis issue wiH be postponed until Chapter 4:. 
49POP_2 actually binds the last m arguments. 
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factorial function. If there are different algorithms for computing factorial, 
then there are different alorithms for computing the value of an expression. 
and eval is just one such algorithm. Just as the essence of fact and fact 1 is 
the factorial function, we should capture the essence expressed in eval. Put 
another way, when applications programmers use sqrt or 1f' they have a 
specific mathematical concept in mind. The implementation of the language 
supplies approximations to these mathematical entities, and assuming the 
computations stay within the numerical ranges of the machine, the 
programmers are free to interpret any output as that which the mathematical 
entities would produce. More importantly, the programmers have placed 
specific interpretations or meanings on symbols. We are interested in doing 
the same thing; however we wish to produce a freer interpretation, which 
on ly mirrors the essential ingredients of the language constructs. That is, sqrt 
represents a function and '71" represents a constant. The eval-apply pair gives 
one interpretation to the meaning of functions and constants, but there are 
different interpretations and there are different eval-apply pairs. The 
remainder of this section wilt resolve some of the tension between function 
and procedure. 

What does this discussion have to do with programming languages? 
Clearly the order of evaluation or reduction is directly applicable. Our study 
wilt also give insights into the problem of language specification. Do we say 
that the language specification consists of a syntactic component and some 
description of the evaluation of constructs in that language? Or do we say 
that these two components, syntax and a machine, are merely devices for 
describing and formalizing notions about some abstract domain of discourse? 
A related question for programmers and language deSigners involves the 
ideas of correctness and equivalence of programs. How do we know when a 
program is correct? This requires some notion of a standard against which 
to test our implementations. 50 If our algorithms reatty are reflections of 
functional properties, then we should develop methods for verifying that 
those properties are expressed in our algorithms. Against this we must 
balance the realization that many programs don't fit neatly into this 
rnathematical framework. Many programs are best characterized as 
themselves. In this case we should then be interested in verfying eqUivalence 
of programs. If we develop a new algorithm we have a responsibility to 

demonstrate that the algorithms are eqUivalent in very well. defined ways. 51 
The study of formal systems in mathematical logic offers insight into 

50"Unless there is a prior mathematical definition of a language at 
hand, who is to say whether a proposed implementation is correct?" [Sco 72J. 

51Current theory is inadequate for dealing with many real 
programming tasks. However the realization that one has a responsibility to 
consider the questions, even informally, is a sobering one which more 
programmers should experience. 
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many of these questions. In logic, we are presented with a syntax, and a 
system of axioms and rules of inference. Most usually we are also offered a 
"model theory" which gives us interpretations for the objects of the formal 
system; the model theory supplies additional methods for giving convincing 
arguments for the vaHdity of statements in the formal systefl1. The 
arguments made within the formal system are couched in terms of 
"provability" whereas arguments of ,the model theory are given in terms of 
"truth". For a discussion of formal systems and model theory see [Men Gil 

C. W. Morris ([Mor 55]) isolated three perspectives on language, syntax, 
pragmatics, and semantics: 

Syntax: The synthesis and analysis of sentences in a language. This area is 
weB cultivated in programming language specification. 

Pragmatics: The relation between the language and its user. Evaluators, like 
tgmoaf, tgmoafr and eval, come under the heading of pragmatics. 
Pragmatics are more commonly referred to as operational semantics in 
discussions of programming languages. 

Semantics: The relation between constructs of the language and the abstract 
ob jects which they denote. This subdivision is commonly referred to as 
denotational semantics. 

Put differently, syntax describes appearance; pragmatics describes 

implementation; . and semantics describes meaning. 52 Though there is a 
strong concensus on the syntactic tools for specifying languages, 53 there is no 
consensus on adequate pragmatics, and even less agreement on the 
adequancy of semantic descriptions. We will first outline the pragmatics 
questions and then discuss a bit more of the semantics issues. In this 
discussion we wi11 use the language distinctions of Morris even though the 
practice is not commonly followed in the literature. TypicaBy, syntax is 
studied precisely and semantics is "everything else"; however the distinction 
between computation (pragmatics) and truth (semantics) is important and 
should not be muddled. 

One thought' is to describe the pragmatiCS of a language in terms of the 
process of compilation. That is, the pragmatiCS is specified by a specific 

52This division of language reflects an interesting parallel between 
mathematical logic and programming languages: in mathematical logic we 
have deducUon, computation, and truth; in programming language 
specification we have three analogous schools of thought: axiomatic, 
operational, and denotational. See [Men 64] for the mathematical logic and 
[Dav 76] for a study of the interrelationships; see [Hoa 69] for a discussion 
of the axiomatic school; we will say more about the operational and 
denotational schools in this section. 

53But see [Pra 73] for a contrary position. 
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standard compiler producing code for some well-defined simple machine. 
The meaning of a program is the outcome of an interpreter interpreting this 
code. But then, to understand the meaning of a particular construct, this 
proposal reqUires that you understand the description of a compiler and 
understand the simple machine. Two problems arise immediately. Compilers 
are not particularly transparent programs. Second, a very simple machine 
may not adequately reflect the actual mechanisms used in an implementation. 
This aspect is important if the description is to be meaningful to an 
implementor. 

A more fundamental difficulty is apparent when we consider the 
practical aspects of this proposa1. When asked to understand a program 
written in a high-level language you think about the behavior of that 
program in a very direct way. The pragmatiCS is close to the semantics. You 
think about the computational behavior as it executes; you do not think 
about the code that gets generated and then think about the execution of 
that code. 

A more natural pragmatiCS for the constructs is given in terms of the 
execution of these. constructs; thus eval is the pragmatic description of LISP. 
The eval function describes the execution sequence of a representation of an 
arbitrary LISP expression. That description has a flavor of circularity which 
some find displeasing. However some circularity in description is inevitable; 
we must assume that something is known and does not reqUire further 
explication. If language L} is described in terms of a simpler language L2 
then either L2 is "self evident" or a description L2 must be given. 

So, realistically, the choice is where to stop, not whether to stop. The 
LISP pOSition is that the language and data structures are sufficiently simple 
that self-description is satisfactory. Attempts have been made to give 
non-circular interpreter-based descriptions of semantics for languages other 
than LISP. There is a Vienna Definition Language ([Weg 72]) description 
of PL/l, and a description of ALGOL 68 ([Alg 75]) by a Markov algorithm. 
Both these attempts res~lt in a description which is long and unmanageable 
for all but the most' perSistent reader. 

There are some compelling reasons for deciding on direct circularity. 
First, you need only learn one language. If the specification is given the 
source language, then you learn the programming language and the 
specification language at the same time. Second, since the evaluator is 
written in the language, we can understand the language by understanding 
the workings of the single program, eval; and if we wish to modify the 
pragmatics, we need change only one collection of high-level programs. If we 
wished to add new language constructs to LISP we need only modify eval so 
that it recognizes an occurrence of that new construct; and we must add a 
function to describe the interpretation of the construct. Those modifications 
may be extensive, but they will be controlled revisions rather than a complete 
reprogramming effort. 
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There is another common method for specifying the pragmatics of a 
programming language. The Algol report ([Alg 63]) introduced a standard 
for syntax specification: the BNF equation. It also gave a reasonably precise 
description of the pragmatics of Algol statements in natural language. The 
style of presentation was concise and clear, but suffers from the imprecision 
of natural language. Regardless, this style of description is qUite common 
and is very useful. A recent report ([Moor 76]) on the pragmatics of 
InterLISP used this descriptive style. If the language is quite complex, then 
a formal description can be equally complex. In Section 4.8 we wilt see 
that our interpreter definition wilt extend nicely to richer subsets of LISP. 

Regardless of the descriptive method used, a language description 
should not attempt to explain everything about a language. It need only 
explain what needs explaining. You must assume that your reader 
understands something .... McCarthy: 'Nothing can be explained to a 
stone' [McC 66]. A description of a language must be natural and must 
match the expressive power of the language. That is, it should model how 
the constructs are to be implemented. What is needed is a description which 
exploits, rather than ignores, the structure of the language. Mathematical 
notation is no substitute for clear thought, but careful formulations of 
semantics wi11 lead to additional insights in the pragmatics of language 
design. 54 The task reqUires new mathematical tools to model the language 
constructs, and reqUires increased care on the part of the language designer. 

Let's look at the issue of syntax for a moment. A satisfactory 
description of much of programming language syntax is standard BNF. The 
BNF is a generative, or synthetic grammar since the rewriting rules specify 
how to generate welt formed strings. An evaluator, on the other hand, 
executes the already existing program. This implies that our evaluator is 
analytiC rather than synthetic; it must have some way of analyzing the 
structure of the given program. 

In [McC 62J. John McCarthy introd~ced the concept of abstract 
analytiC syntax. The idea is directly derivable from the LISP experience. The 
syntax is analytic, rather than synthetic, in the sense that it tells how to take 
programs apart -- how to recognize and select subparts of programs using 
predicates and selector functions. 55 It is abstract in the sense that it makes 
no commitment to the external representation of the constitutents of the 
program. We need only be able to recognize the occurrence of a desired 
construct. For example: 

54R. D. Tennent has invoked this approach in the design of 
QU EST ([Ten 76]). 

55We wilt deal with abstract synthetic syntax when we discuss 
compilers. 
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and[issum[t ];isterm[addend[t ]];isterm[augend[t ]]]]] 

and the BNF equation: 

<term> ::= <var> I <const> I <term> + <term> 

issum, addend, and augend, don't realty care whether the sum is represented 
as x+y, or +[x;y] or (PLUS X Y) or xy+. The different external 
representations are reflections of different concrete syntaxes; the BNF 
equation above gives one. Parsing links a concrete syntax with the abstract 
syntax. 

Since the evaluator must operate on some internal representation of the 
source program, a representation reflecting the structure of the program is 
most natural. This representation is more commonly known as a parse tree. 
We can describe the evaluation of a program in terms of a function which 
operates on a parse tree using the predicates and selectors of the analytic 
syntax. Abstract syntax concerns itself only with those properties of a 
program which are of interest to an evaluator. 

The Meta expression LISP constitutes a concrete syntax. 56 The 
M -to-S-expression translator is the parser which maps the external 
representation onto a parse (or computational) tree. The selectors and 
predicates of the analytic syntax are straightforward. Recall the BNF for 
LISP: 

<form> ::= <constant> 
::= <variable> 
::= <function>[<arg>; ... ;<arg>] 
::= [<form> -+ <form>; ... ;<form> -+ <form>] 

We need to write a parser which takes instances of these equations onto an 
internal representation. Much is known about parsing techniques ([Aho 72], 
also see Section 9.4 and Section 9.3) so we will concentrate on the 
post-parse processing. 

Our evaluator will operate on the parse tree and will therefore need to 
recognize representations of constants, variables, conditional expressions, and 
applications. We need to write a function in some language expressing the 
values of these constructs. Since the proposed evaluator is to manipulate 
parse trees, and since the domain of LISP functions is binary trees, it should 
seem natural to use LISP itself. If this is the case, then we must represent 
the parse tree as a LISP S-expr and represent the selectors and recognizers as 
LIS P functions and predicates. 

56The S-expr notation is also a concrete syntax, but one which is more 
closely related to the abstract syntax. 
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Perhaps: 

isconst <= A[[X) or[numberp[x); 
and[atom[x);eq[x,'N I L)); 
and[atom[x),'eq[x;T)],' . 
and[not[atom[x]],-eqljir st[x);QU OT E) 

isvar <= A[[X) and[atom[x],' not[isconst[x]])] 

iscond <= A[[X] eq[first[x],-CON D)] 

3.13 

There are real1y two issues here: a representation of the analytic syntax of a 
language, and a representation in terms of the language itself. In 
conjunction, these two ideas give a natural and very powerful means of 
specifying languages. If this style of specification is reatly effective, then we 
sh()uld be able to specify other languages in a similar fashion. One of the 
weak points of LISP as a programming language is the insi~,ence on binary 
tree representations of data. 57 Many applications could profit from other 
data representations. What we would then like is a language which has 
richer data structures than LISP but which is designed to allow LISP-style 
semantic specification. We would be able to write an evaluator, albeit more 
complex than eval, in the ·lan6'uage itself. The evaluator would operate on a 
representation of the program as a data structure of the language, just as eval 
operates on the S-expr tran~tation of the LISP program. The concrete 
syntax would be specified as a set of BNF equations, and our parser would 
translate strings into parse trees. 
In outline, to specify a construct we must have at least the following: 

1. A concrete production. 
2. An abstract data type. 
3. A mapping from 1 to ~. 
4. An evaluator ror the abstract type. 

In Chapter 8 we will sketch a recent LISP-like language, EL I, which does 

apply these principles. 58 
From a discussion of syntax we have returned to evaluation. After we 

reduce the questions of syntax of programming. languages to questions of 
abstract syntax and stripped way the syntactic differences, how many real 
differences between languages are there? Semantics addresses this issue. 

57M any 'production' versions of LISP have array, string, and even 
record structures available. However the programmer must explicitly request 
and manipulate such storage structures. We would rather develop techniques 
in which the storage structures are implied either by the types of operations 
desired, or by the specification of the abstract data struture, or by interaction 
between the programming system and the user. 

58Compare steps 1 through 4 with those on page 36. 
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Many of the semantic ideas in app1icative programming languages can 

be captured in ~-ca1culus ([Chu 41]). The ~-ca1culus was developed to supply 
a formalism for discussing the notions of function and function application. 

Rather than develop the syntax of "-calculus, we will use LISP-like syntax 
and show how we can abstract from the procedural LISP function to a 
mathematical function. 

Most of the description of LISP which we have given so far is 
classified as operational. That means our informal description of LISP and 
our later description of the LISP interpreter are presented in terms of "how 
does it work or operate". Indeed the purpose of eval was to describe explicitly 
what happens as a LISP expression is evaluated. We have seen (page 100) 
that discussion of evaluation schemes is non-trivial; and that order of 
evaluation can effect the outcome (page 21). 

However, many times the order of evaluation is immaterial. 59 We saw 
on page 127 that eval will compute a value for an application jtat; ... ; an] 
even though f was defined for fewer arguments. How much of eval is 
"really" LISP and how much is "reatly" implementation? On one hand we 
have said that the meaning of a LISP expression is by definition what eval 
will calculate using the representation of the expression. On the other hand, 
we claim that eval is simply an implementation. There are certainly other 
implementations; i.e, other LISP functions evalj which have the same 
input-output behavior as our eval. The position here is not that eval is wrong 
in giving values to things like cons[A;B;C], but rather we want to know what 
is it that eval implements. 

This other way of looking at meaning in programming languages is 
exemplified by denotational or mathematical semantics. This perspective 
springs from the philosophical or,logical device of distinguishing between a 
representation for an object, and the object itself. The most familiar example 
is the numeral-number distinction. Numerals are notations (syntax) for 
talking about numbers (semantics). thus the Arabic numerals 2, 02, the 
Roman numeral II, and the Binary notation 10, all denote the same number 
denoted by the word "two." In LISP, (A B), (A. (B», (A, B) and 
(A . (B . NIL» atl are notations for the same S-expr. That is, an Object 
transends its representations. We want to say that a LISP form car[(A . B)] 
denotes the same object denoted by A, or car[A] denotes undefined just as we 
say in mathematics that 2+2 denotes 4 or 1/0 is undefined, 

59"One difficulty with the operational approach is that it (frequently) 
specifies too much If: C. Wadsworth. 
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Similarly, we say that the denotational counterpart of a LISP function 
is a mathematical function defined over an appropriate abstract domain. 
Before proceeding, we introduce some conventions to distinguish notation 
from denotation. We wi11 continue to use italics: 

A, B, ... , x, ... , car, ... , (A . B) 

as notation in LISP expressions. 

Gothic bold-face: A, B, ... , x, ... , car, ... ,(A . B) 

win represent denotations. 
Thus A is notation for A; the expressioncar[cdr[( A . (B . e »]] denotes 8; the 
mapping, car is the denotation of the LISP function car. 

Several areas of LISP must be subjected to an abstraction process. In 
particular, the operations involved in the evaluation process must be 
abstracted away. These involve an abstraction from LISP's cat1 by value 
evaluation and its left to right order of evaluation of arguments. For 
example, the operation of composition of LISP functions is meant to denote 
mathematical composition; in LISP, car[cdr[(A . (B . e))]] means apply the 
procedure cdr to the argument (A. (B . e)) getting (B. e); apply the 
procedure car to (B. e) getting B. Mathematically, we have a mapping 

carocdr, which is a composition of the car and cdr mappings; the ordered 
pair «A. (8 . C» , B> is in the graph of this composed mapping. At this 
level of abstraction, any LISP characterization of a function is equally good; 
the "efficiency" question has been abstracted away. Many important 
properties of real programs can. be discussed in this mathematical context; in 
particular, questions of equivalence and correctness of programs are even 
more tractab Ie. 

As we remove the operational aspects, we discover a few critical 
properties of functions which must be reconciled with LISP's procedures. We 
must treat the ideas of binding of variables, and we must handle the notion 
of function application. 

We know that there are at least two binding strategies available: static 
binding and dynamic binding; we know that the choice of strategy can effect 
the resultant computation. This computational difference must be studied. 
To illuminate the problem we take anexam.ple in LISP. 
Consider: 

A[[Z] 
A[[U] 

[A] 

A[[Z] u[B))[C]] 
[A[[x] cons[x;z]]) ] 

The dynamic binding strategy will bind z to A; then bind u to the functional 
argument, A[[x] cons[x;z]]; next, z is rebound to e, and finally u[B] is 
evaluated. That involves binding x to B and evaluating cons[x,·z). Since we 
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are using dynamic binding, the latest active bindings of the variables are 
used. The latest active bindings for x and % are Band C respectively, and the 
final value is therefore (B . C). 

We can obtain static binding by replacing X[[x] cons[x;z]] by 
function[X[[x] cons[x;%]]]. This has the effect of associating the variable % 

with the atom A. As we know, the final result of this computation wilt be 
(B. A). 

Before discussing binding strategies further, we must strengthen our 
understanding of the ideas underlying function application. It is this notion 
which a binding strategy is implementing. This involves a more careful 
study of the notion of A-notation as the representation of a function. We 
shan restrict out discussion to unary A-expressions, since n-ary functions can 
be represented in terms of unary functions: 

What properties do we expect a function, denoted by a A-expression, to 
possess? For example, we expect that a systematic renaming of formal 
parameters should not effect the definition of a function. 

X[[y] x] should denote the same function as X[[w] x] 
But 

X[[x] X[[y] x]][w] is not the same as X[[x] X[[w] x]][w] 

This example shows that we need to be careful in defining our substitution 
rules. Closer examination of the last example shows that the result X[[w] w] 
would occur if the substitution changed a non-local name (x) into a local 
name (w). The expected result would have been obtained if we had 
recognized the clash of names and replaced the formal parameter y with a 
new name, say u, and then performed the substitution, getting X[[u] w] which 
is the same as X[[y] w]' Before giving a substitution rule which accounts for 
such changes of name we will introduce some new terminology. 

First, the "same as" retation witt occur frequently in the discussion; we 

should establish some properties of this notion. We introduce;; to denote "is 
the same as";' we could therefore say 

X[[y] x];; X[[w] x] 

We expect that:: obey the rules of equality, being a reflective, transitive and 
symmetric relation. It should also "substitutive" in the following sense: 

( cr): 
if f:: g then fia] :: g[a] 
if f:: g then X[[x] f] :: X[[x] g] 
if a :: b then fial :: fib] 
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Next, we need to talk about the bindings of variables more carefully. 

We wiJ) refer to wen formed components of the statical1y bound A-calculus as 
"terms"; we wi11 continue to refer to components of the dynamically bound 
language LISP as "expressions". Thus, a variable, x, is a free variable 60 in 

an term, t if: 
t is the variable, x. 

t is a term fiA], and x is free in f or x is free in A. 

t is a term >"[[y] M], and x is free in M and x is distinct from y. 
Thus w is free in >..[[x] w). 

We can define a LISP predicate to test for free-ness: 

isfree <= >..[[x,-z] [is_var[z] ~ samevar[x;z]; 

is_app[z] ~ [isfree[x,func[z]] ~ t; 
t ~ isfree[x,'argJ[arglist[z]]]),' 

samevar[>.._var[z];x] ~ t 
t ~ iSfree[x;body[z]]]] 

An occurrence of variable is a bound occurrence in a term t if it 

occurs in t and the occurrence is not free in t For example, w is bound in 
>..[[w] w). A variable may have both bound arid free occurrences; consider 
w[>..[[wJ wJ)' 

Using our new terminology, we can say that a substitution of the actual 
parameter for free occurrences of the formal parameter can be made 
provided no free variables in the actual parameter will become bound 
variables as a result of the substitlition. 

Here is an appropriate substitution rule: 

subst' <= >..[[x;y,-z] [is_var[z] ~ [eq[y;z] ~ x; t ~ z]; 

is_app[z] ~ mk_app[subst'[x;y,func[z]]; 
subs t"[x;y ,'af g I [ar gitj t[z])]],' 

eq[y;>.._var[z]] ~ z; 
not[is!ree[y,-body[z]]] ~ z; 
not[is!ree[>.._var[z];x]] ~ mk_A[A_var[z]; 

t ~ A[[u]mk_A[u; 

subst'[x; 
y; 
body[z]]]; 

subst'[ x,' 

[genvar[ ]] ]] 

y; 
subst'[u; 

>.._var[z]; 
body[z]]]]] 

60Compare this definition of free with that in Section 3.7. 
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where genvar is to supply a new identifier for use as a variable name. 

The substitution rule, subst', is used to express the ~-rule of the 

~-ca1culus: 

(~): ap p 5 subst'[ar g 1 [ar glist[app ]],'A_var[func[app ]];body[func[app ]]] 

where app is an anonymous A-application. 
There is another basic rule of the ~-ca1culus catted the a-rule. The 

a-rule captures the notion that A[[Y] x] denotes the same function as A[[W] x]; 
that is, subject to certain restrictions, we can change the formal parameter. 
The «-rule says: 

(<<): fun. x,[[u] mk_x'[u,'subst'[u"x,_var[!un];body[fun)]][var] 
provided that not[isfree[var ;body[fun]]] 

To summarize then, the ~-ca1culus is a formalism. The a and ~ rules 

are transformation rules, and t1 expresses properties of the relation 5 as rules 
of inference. To complete the description, axioms which govern the 

behavior of 5' as an equivalence relation must be given. The a and ~-rules 
are caned conversion rules; they express. the essential behavior of functions 
and their applications. The a rule formalizes the notion that a function 

denoted by a ~-term is unchanged if we change the formal parameters of the 

~-term. that is: 

A[[X] fix]] 5 A[[y] fiy)] 

We know that such a rule is not valid in LISP; for example x may 
occur free in the definition of f. We can insure that a programming 
language wilt satisfy the a-rule by requiring that the free variables be bound 
to the values which were available at the time the definition was made. This 
is the effect of the function construct of LISP. A language which satisfies 
these notions is ca11ed referential transparellcy. Thus dynamic binding 
violates referential transparency. The difficulty again is the treatment of free 
variables. 

The ~-ca1culus does possess referential transparency. Referential 
transparency is not simply a worthwhile theoretical property; its corollary, 
static binding, is, a very useful practical property. In programming terms, 
referential transparency means that to understand a particular progam we 
need only understand the effect of the subprograms rather than understand 
the implementation of those subprograms. For. example, we need not concern 
ourselves with the naming conventions used internal to the programs. These 
ideas are expressed in the philosophy of modular programming. That 
programming style encourages the construction of program segments as 
self-cont~ined boxes, or modules, with wen-defined input and output 
specifications. The intent is to manufacture larger programs by systematic 
'combination of smaller modules. We wilt discuss some further implications 
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of static binding in Section 5.21. 61 

The ~-rule expresses the intent of function application. We would then 

expect that a model of the ~-calculus would have a domain consisting of 

functions; and require that the ~-rule be ref1ected in the model as function 

application. The equality preserving properties of the a and ~ rules would 

require that if f and g are terms such that if f(a) = g(a), then any Q or fJ 
manipulations of f, g or a yielding r, g' and a', the relation f'(a') = g'(a) 
holds. 

We are now in a position to relate binding strategies with the ideas of 

substitution and ~ reduction. Static binding is an implementation of the ideas 

expressed in the ~ rule. We can implement the notions using subst' and do 
explicit substitutions, or we can simulate the substitutions using a symbol 
table device as LISP does for dynamic binding. No problems should arise if 

we use subst'; however this solution is not terribly efficient. Particular care is 

needed if subst' is to be simulated. The difficulty arises in adequately 
modelling the substitution of values for variables which are free in 
functional arguments or functional values. From LISP, we know one 
solution to this problem: use the function construct. We could simulate the 

effect of subst' by using a LISP symbol table and requiring that every 

functional argument or value be funarg-ed. 62 

From this standpoint, dynamic binding is simply an incorrect 
implementation of substitution. Attempts to legitimize dynamic binding by 
supplying formal rules lead to difficulties. The simple properties expressed in 

subst' and the ~ rule do not hold for dynamic binding. However, dynamic 
binding is a very useful programming toot. Its ability to postpone bindings is 
particularly useful in interactive programming environments where we are 
creating program modules incrementally. The final word on binding 
strategies has not been heard. 

So far the discussion has concentrated on binding strategies. We now 
wish to discuss the implications of calling style. We have discussed two 
calling styles: call-by-value and call-by-name; these computational devic~s 

should have mathematical interpretations. The conversion rules contain ho 
instructions for their order of application. If the hypotheses for a rule is 

satisfied, then it may be applied. In the reduction of a ~-expression there 
may be several reductions possible at any one time. This is as it should be; 
we are extracting the procedural aspects, and certainly calling style is 
procedural. The order of application of rules expresses a particular calling 

algorithm. If we design a ~-calculus machine, we might speCify a preferred 
order, but the machine ref1ects "procedure"; the calculus ref1ects ''function''. 

An interpretation of the conversion rules as rules of computation 

61There have been several recent investigations ([Hew 76], [Sus 75], 
[Ste 76b], [Ste 76c]) of statically bound LISP-lik.e languages. 

620f course, such a c1aim should be proved. 
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requires the establishment of a notion of what is to be computed. The 
conversion rules simply state equivalences between expressions; however the 
fJ rule can be appUed in a manner analogous to LISP's A-binding. That is, it 
can be used to replace an application with the appropriately substituted 
body. In this context the fJ rule is ca11ed a reduction rule; and the application 
of the rule is ca11ed a reduction step. There are two common strategies for 
choosing a reduction step: applicative order and normal order. 

Applicative order reduces right most term; normal order reduces the 

left most term. We wi11 say that a ~-term is in normal form if it contains no 

term reducible by the fJ rule. Not a11 terms have normal forms: let fl name 
x.[[x] x[x]]; then fl[ll] does not have a normal form. Every fJ transformation 
of fl produces a new term which is also fJ reducible. Not an reduction 
sequences yield a normal form: when x.[[x] y][ll[ll]] is reduced in normal 
order, a normal form results; whereas applicative order will not yield a 
normal form. 

The application of the reduction rules can be considered a computation 
scheme. The process of reducing a term is the computation, and a 
computation terminates if that reduction produces a normal form. With this 
interpretation, some computations terminate and some don't. A term has a 
normal form just in the case that some reduction sequence terminates. A 

~-ca1culus machine ([Lan 64]) can simulate the reduction rules in several 
ways since no order of application is specified by the rules. Also, a machine 
might perform the substitutions directly or might simulate the substitutions 
in a manner similar to LISP. Finally we note the close relationships between 
reduction orders and calling styles: applicative order is most naturally 
associated with call-by-value, and call-by-name is reflected in normal order 
reduction. 63 

These discussions suggest some interesting problems. First, there may 

we11 be two or more sequences of reductions for a ~-expression; assuming 
they both terminate, wi11 they yield the same normal forms? In fact, if both 
reduction sequences terminate then they result in the same normal form. This 
is ca11ed the Church-Rosser theorem ([Cur 58], [Ros 71], [Mil 73], [Wad 74a], 
[Leh 73]). 

Second, if we have two ~-terms which reduce to distinct normal forms, 
are they "inherently different" terms? This reqUires some explanation of 
"inherently different". We might say that by definition, terms with different 

normal forms are "inherently different". But thinking of ~-terms as denoting 

functions, to say two ~-terms are "different" is to say we can exhibit 
arguments such that the value of application of one function is not equal to 
the value of the other function application. C. Boehm has established this 

for ~-terms which have normal forms ([Wad 71]). 

63There is more to normal order reduction that just call-by-name; 
normal order reduction also performs "partial evaluation" of function bodies. 
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The situation changes when we examine ~-terms which do not have 
normal forms. Recalling the intuitive relationship between non-termination 
and "no normal form", we might expect that all expressions without normal 
form are "equivalent". However,it can be shown that such an identification 
would lead to contradictions. We might also expect that terms without 
normal forms are "different" from terms which do have normal forms. This 
is also not true; [Wad 71] exhibits two expressions, 1 and J with and without 
normal form, respectively such that I=J. These two terms are the "same" in 
the sense that 3 and 2.99999 ... are the "same"; J is the limit ofa sequence of 
approximations to I. In fact for any term with normal form there is an 
eqUivalent term without normal form. Also, we can exhibit two ~-terms, Y 1 

and Y 2, both without normal form, which are distinct in that no reduction 
sequenc;e will reduce one to the other; but they are "the same function" in the 
sense that, for any argument, a we supply, both reductions result in the same 
term. That is Y 1 [a] = Y 2[a]. 64 The reduction rules of the ~-calculus cannot 
help us. The resolution of the idea of "same-ness" req uires stronger 
analysis. 65 

We can give an interpretation to the ~-calculus such ,that in that 
interpretation the pairs 1 and J, or Y 1 and Y 2' have the same meaning. This 
should be a conv.incing argument for maintaining that they are the "same 
function'.' even though the reduction rules are not sufficient to display that 
equivalence. 66 D. Scott has exhibited a model or interpretation of the 
~-calculus, and, D. P,ark has shown the equivalence in this model of Y 1 and 
Y 2~ and C. Wadsworth as shown the eqUivalence of 1 and J. 

As we said at the beginning of the section, this calculus was intended to 
explicate the idea of "function" and "function application". There is a 
reasonably subtle distinction between Church's conception of a function as a 
rule of correspondence, and the usual set-theoretic view of a function as a set 
of ordered pairs. In the latter setting we rather natural1y think of the 
elements of the domain. and range of a function as existing prior to the 
specification of the function: 

"Let f be the function {<x,l>, <y,2>, ... }" 

When we think of a function given as a predetermined set of ordered pairs 
we do not expect functions which can take themselves as arguments like f(f). 

64Note that fia] may have a normal form even though f does not. 
65The interpretation of "same-ness" which we have been using is that 

of e}{tensional equality. That is, twp functions are considered the same 
function if no differences can be detected under application of the functions 
to an y argu men ts. 

66This demonstration also gives credence to the position that the 
meaning transcends the reduction rules. Compare the incompleteness results 
of K. Codel ([Men 64]). 



3.13 Review and Reflection 175 

Such functions are caned self-appUcative. Several languages, including 
LISP, allow the procedural analog of self applicative functions. They are an 
instance of functional arguments (Section 3.10). The LISP function discussed 
in the problem on page 149 is an instance of a self-applicative LISP 
function. Since we can deal with self-application as a procedural concept at 
least, perhaps some of this understanding wilt help with the mathematical 
questions. 

The ~-ca1culus is an appropriate tool for studying self-application since 

any ~-term may be applied to any ~-term including itself. Compare this with 
the condition in LISP when we think of the S-expression representation of 
the language as the language itself. For example, in the programming 
language LISP; we can evaluate expressions like: 

((LAMBDA (X) ~) (LAMBDA (X) ~)) 

That is, the distinction between program and data disappears, just as it does 
in the ~-calculus. 

As we move again from procedural notions to more denotational 
concepts we remark that denotational interpretations have been introduced 
before. When we said (page 118) that: 

fiat; ... ; an] was the same as eval[(F At ... An);( )] 

we were relating a denotational notion with an operational notion. The left 
hand side of this equation can be interpreted denotationany. The right hand 
side is operational, expressing a procedure can. A proper mathematical 
theory should atlow us to state such an equation precisely and should contain 
methods which anow us to demonstrate the correctness of the assertion. 
Recent research ([Sco 70], [Sco 73], [Wad 71], [Gor 73], [Gor 75]) has begun 
to develop such mathematical methods. 

This denotational-operational distinction is appropriate in a more 
general context. When we are presented with someone's program and asked 
"what does it compute?" we usually begin our investigation operationally, 
discovering "what does it do?" 67 Frequently, by tracing its execution, we can 
discover a denotational description: E.g., "ah! it computes the square root". 

When great mother was presented it was given as an operational 
exercise, with the primary intent of introducing the LISP evaluation process 
without involving complicated names and concepts. Forms involving great 
mother were evaluated perhaps without understanding the denotation, but if 
asked '~what does great mother do?" you would be hard pressed to give a 
comprehensible and purely operational definition. However, you might have 
discovered the intended nature of great mother yourself; then it would be 

67 Another common manifestation of this "denotation" phenomonon is 
the common programmer complaint: "It's easier to write your own than to 
understand someone else's program." 
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relatively easy to describe her behavior. Indeed, once the denotation of great 
mother has been discovered questions like "What is the value of 
tgmoafl.(CAR (QUOTE (A. B»)]? " are more easily answered by using the 
denotation of tgmoaJ: "what is the value of car[(A . B)]?" 

In discussing models for LISP, we wi11 paral1el our development of 
interpreters for LISP since each subset, tgmoaJ, tgmoaJr, and eval, will also 
introduce new problems for our mathematical semantics. Our first LISP 
subset considers functions, composition, and constants. Constants witt be 
elements of our domain of interpretation. That domain will include the 
S-expressions since most LISP expressions denote S-exprs; since many of our 
LISP functions are partial functions, it is convenient to talk about the 

undefined value, .L. We wish to extend our partial functions to be total 
functions on an extended domain. As before (page 12), we shan call this 
extended domain S. 

S = <sexpr> u {J.} 

Before we can discuss the properties of mathematical functions denoted 
by LISP functions, we must give more careful study to the nature of 
domains. Our primitive domain is <atom> .. Its intuitive structure is quite 
simple, basically just a set of atoms or names with no inherent relationships 
among them. Another primitive domain. is Tr, the domain of truth values. 
The domain <sexpr> is more complex; it is a set of elements, but many 
elements are related. In our discussion of <sexpr> on page 6 we made it 
clear that there is more than syntax involved. We could say that for s) and 
S2 in <sexpr> the essence of "dotted pair" is contained in the concept of the 

set-theoretic ordered pair, <SJ,S2>' Thus the "meaning" of the set of dotted 

pairs is captUred by Cartesian product, <sexpr> X <sexpr>. 
Let's continue the analysis of: 

<sexpr> ::= <atom> I «sexpr> . <sexpr» 

We are trying to interpret this BNF equation as a definition of t"he domain 
<sexpr>. Reasonable interpretations of "::=" and "I" appear to be equality 
and set-theoretic union, respectively. This results in the equ~tion: 

<sexpr> = <atom> u «sexpr> x <sexpr» 

This looks like an algebraic equation, and as such, mayor may not have 
solutions. This particular "domain equation" has at .least one solution: the 
S~exprs. There is a natural mapping of BNF equations onto such "domain 
equations", and the solutions to the domain equations are sets satisfying the 
abstract essence of the BNF. The mapping process is also applicable to the 
language constructs. Consider the BNF equations for a simple applicative 
su bset of LIS P: 

<form> ::= <variable> I )...[[<variable>] <form>] I <variable>[<form>] 

We would like to describe the denotations of these equations in a style 
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similar to that used for <sexpr>'s. The denotations of the expressions, 
<form>, of applications, <variable>[form>], and of the variables, <variables>, 
are just elements of S. Expressions of the form ">..[[ <variable>] <form>]" 
denote functions from S to S. Write that set as S-+S. Then our domain 
equation is expressed: 

S = (S-+S) u S 

This equation has no interesting solutions. A simple counting argument wilt 
establish that unless a domain C consists of a single element, then the 
number of functions in C-+C is greater than the number of elements in C. 
This does not say that there are no models for this LISP subset; it says that 
our interpretation of "-+" is too broad. 

What is needed is an interpretation of functionality which will a110w a 
solution to the above domain equation; it should allow a natural 
interpretation such that the properties which we expect functions to possess 
are true in the model. D. Scott gave one interpretation of "-+" for the 

~-ca1culus, defining the class of "continuous functions" ([Sco 70], [Sco 73]). 
This class of functions is restricted enough to satisfy the domain equation, 
but broad enough to act as the denotations of procedures in applicative 
programming languages. We will use the notation "[D 1 -+ D2]" to mean "the 
set of continuous functions from domain D 1 to domain D2'" It is the 

continuous functions which first suppJied a model for the ~-ca1culus and it is 
these functions which supply a basis for a mathematical model of applicative 
LISP ([Gor 73]). 

We can assume that the LISP primitives denote specific continuous 
functions. For example, the mathematical counterpart to the LISP function 
car is the mapping car from S to S defined as follows: 

car: [S -+ 5] 

is J. if t is atomic 
car(t) is t 1 if t is <t 1 , t 2> 

is J. if t is J. 

Similar strategy suffices to give denotations for the other primitive LISP 
functions and predicates. For example: 

atom: [S -+ S] 

is f if t is not atomic 

atom(t) is t if t is atomic 

is J. if t is J. 

Notice that these functions are strict: f(J.) = .L 
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Corresponding to tgmoaf, we wilt have a function, 6 tg, which maps 

expressions onto their denotations. Since 6 tg is another mapping like 91, we 

will use the "[" and "]" brackets to enclose LISP constructs. We need to 
introduce some notation for elements of the sets <sexpr> and <form>. 

Let s be a meta-variable ranging over <sexpr> and e range over 
<form>, then we can write: 

6 tg[s] = s 

6 tg[car[eJ] = car(6 tg[e]) 

with similar entries for cdr, cons, eq; and atom. The structure of this 
definition is very similar to that of tgmoaf. 

Now we continue to the next subset of LISP, adding conditional 
expressions. As we noted on page 23, a degree of care need be taken when 
we attempt to interpret conditional expressions in terms of mappings. We 
can simplify the problem slightly: it is easy to show that the conditional 
expression can be formulated in terms of the simple if-expression: 
ifiPl;el;e2J. We will display a denotation for such if expressions. It will be a 
mathematical function, and therefore the evaluation order win have been 
abstracted out. 68 

Let if denote if where: 

if: [TrxSxS .... S] 
is y if X is t 

if(x,y,z) is z, if X is f 
is L, otherwise 

This interpretation of conditional expressions is appropriate for LISP; other 
interpretations of conditionals are possible. For example: 

if 1: [TrxSxS -+ S] 

is y if X is t 
if 1 (x,y,z) is z, if X is f 

is L if x is Land y 'I- z 
is Y if x is Land y = z 

Neither if nor if) are strict mappings. 

69 

68Recall the comment of Wadsworth (page 167). Indeed, the use of 
conditional expressions in the more abstract representations of LISP 

functions frequently is such that exactly one of the Pi'S is t and all the others 

are f. Thus in this setting, the order of evaluation of the predicates is useful 
for "efficiency" but not necessary to maintain the sense of the definition. See 
page 64. 

69Basing conditional expressions on if 1 would give a value of 1 to 

[carrA] ~ 1; t ~ IJ. 
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To add if expressions to ~tg, yielding ~tgr we include: 

~tgr[ifieJ; e2; eaJ] = if(~tgr[el]' ~tgr[e2]' ~tgr[ea]) 
The next consideration is the denotational description of LISP 

identifiers. Identifiers name either S-exprs or LISP functions. Thus an 
identifier denotes either an object on our domain S or denotes a function 

object. Let Fn name the set of continuous functions: 1:n_1[sn ~ S], and Id be 

<identifier>u.L. We know that the value of a LISP <identifier> (page 17) 
depends on the current environment. Then we might characterize the set of 
environments, enY, as: 

[Id -+ SuFn] 
That is, an element of eny is a continuous function which maps an identifier 
either onto a S-expr or onto an n-ary function from S-exprs to S-exprs. This 
is the essence of the argument used in introducing as soc (Section 3.3). Note 

that assoc[x;l];: l[x] is another instance of a operational-denotational 
relationship. 

For example, given a LISP identifier x and a member of env, say the 
function consisting of {<x,2> ,<y,4>}, together with all pairs <z,.!.> for any z 

other than x ot y, then ~ should map x onto 2. This is an intuitive way of 

saying that 4 should map a member of <identifier> onto a function. This 
function will map a member of eny onto an element of S. IntrodUcing i as 

a meta-variable to range over <identifier>, then for 1 e eny we have: 

4[ i ](1) = I(i) 
The denotation of an identifier is a function; whereas the value of an 
identifier is an element of SuFn. 

The treatment of identifiers leads directly into the denotional aspects of 
function application. We shall maintain the parallels between evaluation 

and denotation, by giving 4e and ~a corresponding to eval and apply. Let 
f' be a member of <function> and e be a member of <form>, then for a 

given element of env, 4a maps f' onto an element of Fn, and Ile maps e 

onto an element of S. 
For example: ~a[car ](1) = car for all 1 in eny. 
Similar equations hold for the other LISP primitive functions and predicates. 
In general, then: 

~a[f' ](1) = I(f) 
To describe the evaluation of a function-call in LISP we must add an 

equation to ~e: 

l1e[f'[el, ... , en]](1) = ~a[f' ](I)(~e[el ](1), ... , lle[en](I» 
We must also make consistent modifications to the previous clauses of ~tgr to 
account for environments. That is, the value of a constant is independent of 
the specific environment in which it is evaluated. 



180 Evaluation 3.13 

4 e[s ](1) ~ s for all I in env. 

We must also extend our equatiQns to account for conditional expressions. 
To discuss function application we must give a mathematical 

characterization of function definitions. In this section we will handle 
A-notation without free variables,postponing more complex cases to 
Section 4.11. 

Assuming the only free vadables in ( are among the xts, the denotation 

of A[[Xt; ... ; xn] (] in a specified environment should be a function from sn to 
S such that: 

4 a[A[[Vt; ... ;vn] eJ](I) = 

~«Xt' ... , xn) 4 e[e](I : <Xt,V t>, .•. , <Xn,Vn>)) 

where A is the LISP A-notation and ~ is its mathematical counterpart and Vi 

is the denotational counterpart of Vi' and (I : ... ) means a new environment 

which coincides with I except for the explicitly given pairs. 
That is, (I : <Xl,Vt>, "'J <Xn,Vn» is a variant of 1 such that each Vi is 

bound to the corresponding Xi: 

(.I : <x,V>)(V)} is:if( v = J., 

J., 
if( v) = .1., 

.1., 
if(Vt = X, 

V, 
I(Vi»» 

In more detail: ~«x), ... ,xn} e(x), •.. ,Xn» is a function f: [sn -+ S] such 

that: 
is e(t 1, ••• ,tn) if m~n and for every i, ti pf.1. 70 

f(t l' ... , t m) 

is .1. otherwise 

Given this basic outline, we can more accurately describe the "equation" of 
page 175: 

jf.a t,' ... ; anJ ;: eval[( FAt ... An)], 

Namely; 

4 e [evaz[fR[P(et; ... enJ];!R[a]J](linit) = 
4 a[ P ](1 new)(4e[e I ](I new), ... , 4 e[ en](lnew» 

where linit is the initial symbol table and Inew is linitaugmented with the 
entires from a. 

70Note that this equation models the LISP trick of supplying too many 
arguments. Other anomalies of LISP, including dynamic binding, are 
describable using these techniques «(Gor 73], (Gor 75]). 
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One of the major difficulties in supplying models for applicative 
languages is caused by the type-free requirement. 71 Self-application is one 
indication of this. We can show that imposing a type structure on our 

language will solve many problems. In a typed ~-calculus a term witt always 
have a normal form ([Mor 68]). Computationatly this means that atl the 

programs wi11 terminate. Also; models for typed ~-calculus are much more 
readily attained ([M i1 73]). However the type free calculus is a stronger 
system;' requiring atl terms to have a consistent type structure rules out 

several useful constructs; in particular, the ~-ca1culus counterpart to the LISP 
label operator cannot be consistently typed. 

From the practical side, a typed structure is a mixed blessing. 
Language delarations are a form of typing and can be quite helpful in 
pinpointing programming errors. Declarations can also be used by compilers 
to help produce optimized code. However, a type structure can be areal 
nuisance when trying to debug a program. It is frequently desirable to 
examine and modify the representations of abstract data structures. Those 
kinds of operations imply the ability to ignore the type information. 

As a final bridge between theory and practice we wilt use LISP to 
introduce one of the fundamental results in recursion theory: a proof of the 
non-existence of an algorithm to determine whether or not a LISP function is 
a total function. This is also caned the unsolvability of the halting problem, 
since the existence of such an algorithm would teUs us whether a LISP 
function would terminate for an inputs. 72 That algorithm does not exist. 73 

The proof depends on our knowledge of the function apply. The 
fundamental relationship is: 

For a function f and arguments ai' ... ,an we know 

th at if fia I; ... ian] is defined in env 

then fiat; ... ;an] = apply[91[r ];list[91 [at ]; ... ;91[an]];env] 

Compare this equation with the equation on page 180. This property of 
apply makes it a universal function for LISP in the sense that if apply is 
given an encoding of a function, of some arguments to be applied, and an 
environment which contains the definition of f and all the necessary 
subsidiary definitions needed by j, then apply can simulate the behavior of f. 

We will assume that the representation of env is the standard a-list of 
dotted pairs: representation of name dotted with representation of 
A-expression. Given a function named g, together with its A-definition we wilt 

designate the S-expr representation of the dotted pair as gR. 

7tH was not until 1969 that a model for the ~-calculus was discovered 
by D. Scott even though the formalism was invented in the late 1930's. 

73 Again, we use "LISP function" as a synonym for "algorithm". To 
complete the halting argument we would have to show that every algorithm 
is expressible in LISP. 

73The argument is adapted from [Lev un]. 
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F or ex amp Ie, given 

fact <= ~[[x][x = 0 -+ 1,' t -+ *[x,fact[x-J]]]] 

Then factR is: 

(FACT. (LAMBDA (X) 
(COND «ZEROP X) 1) 

(T (TIMES X 
(F ACT (SU Bl X»»») 

3.13 

Next, if f refers to ft through fn in its evaluation, we will represent the 
environment as: 

Ustr/';ft R ; •.• in R] 

Finally, we wi11 identify such an environment structure as the representation 
of the definition of the first function in that environment. For example, a 
complete definition of fact would be an environment beginning with factR 
and followed by zeropR, timesR, or sublR if any of these functions were not 
considered primitive. 

Now assume the existence of a unary predicate total such that: 

gives t if x is a r~presentation of a total unary function. 7~ 
total[x] 

gives f in an other cases 

Notice that if totalUist[/; .. .]] is true, then for arbitrary a the evaluation of 

apply[name[.f];list[a],· list[/; .. .]] will terminate and give value fial. 
Now we define a function: 

diag <= >..[[x][total[x] -+ list[apply[name[first[x]];list[x];x]]; t -+ f]] 

Note that diag is totat. Now consider diagR: 

(DIAG . ( LAMBDA 
(X) 
(COND «TOTAL X) (LIST (APPLY (NAME (FIRST X» 

(LIST X) 
X») 

(T NIL») ) 

Form list[diagR; t~talR; applyR, . .. .], and call the resulting list denv. That 
list will be the representation of diag and all its necessary functions. 

74Th is discussion wiJ) nominally concern unary functions, but the 
generalization to n-ary functions is immediate. 
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Now consider the evaluation of diag[denv]. Since diag is total, then 
total[denv] is true, and we can reduced the problem to: 

list[apply[name[jirst[denv]],'list[denv],'denv]] 

but name[first[denv]] = DIAG; and therefore the call on apply reduces to 
apply[DI AG,·[ist[denv);denv]. But that's just diag[denv], and we've shown 
diag[denv] = list[diag[denv]]. That's just not possible. Thus the assumption 
of the existence of total must be in error. 

The usual proof of this result is given in number theory and involves 
encoding the functions into the integers and then expressing the eq uivalent 
of the apply function as an algorithm in number theory. The encoding in the 
integers is analogous to what we did in encoding in the S-expressions. This is 
the problem of representation again. LISP is more than a programming 
language; it is also a formalism for discussing computation. 

To .return to our denotational analysis of LISP, the next addition to Il 
will involve recursion and function definitions: label and u<=u. We know 
that the LISP label operator is similar to u<=", but label builds a temporary 
definition, while u<=u modifies the global environment. Programming 
language constructs which modify the environment are said to have 
side-effects. Side-effects are usually introduced into programming languages 
using imperative constructs. Since our main interest lies in the programming 
aspects of LISP, we wi11 postpone the mathematics until we have discussed 
the procedural aspects of imperative constructs and side-effects. 

Problems 

1. Recall the problem on page 149, dealing with the following factorial 
algorithm: 

fact <= )..[[n) fl.function[j]; n]] 

where: f <= >..[[g;n)[n=O -+ 1,' t -+ *[n; g[g; n-J]] ]] 

Rewrite fact in terms a unary function 1': 

l' <= >..[[x] function[>..[[n][n=O -+ 1; t -+ *[n; x[n-J]] ]]]]. 

Show that fact = 1'[jact]. 

2. The ~-calculus described by the Q and fj rules doesn't look particularly 
rich, similar in power to LISP with just function application but without 
conditional expressions. That is only an i11usion. Show that we can 
represent a simple if function ifl.p,·then;otherwise]. Hint: show that the 

term )..[[x;y] ,] is a good representation for f and the term )..[[x,.,] x] is a 

good representation for t. 
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Imperative Constructs in LISP 

4.1 Introduction 

Al1 of the language constructs we have introduced so far are based on a 
computational interpretation of function application. We therefore can the 
language, applicative LISP. 1 Though this applicative subset is rich and 
powerful, it is often convenient to have access to another type of language 
constuct called the imperative. 

An imperative construct has the intent of a command. For that reason 
imperative commands are caned statements rather than expressions since it is 
the effect of the command which is important; and its value, if it has one, is 

of secondary importance. 2 For example, most programming languages have 
sequencing commands: "first do S 1, then do S2"; that might be written 
"s 1; S2", where S J and S2 are s~atements. The nature of imperatives is 
somewhat illusory, since sequencing can be expressed in our applicative 
subset: 

lIt is also referred to as "pure LISP". 
2Some programming languages insist that statements do not have 

value. The imperatives of LISP do have values; they may be used or ignored 
as the programmer desires. 

184 
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S];S2 is A[[] S2][S]] 3 

Here we depend on LISP's call by value evaluation. Since S] is the 
argument, it is evaluated first; then S2 is evaluated. The value of the 
sequence is the value of S2' LISP calls this sequencing operation prog2' 

An area which is thought to be the province of imperatives is that of 
the aSSignment statement. We will discuss aSSignment statements further in 
Section 4.2, but the intent of such a statement, written: 

<identifier> +- <expression> 

is to think of the <identifier> as a "box" and the intent of the aSSignment is 
to put the value of the <expression> in the "box". Yet, function application 
can encompass many of the traditional uses of aSSignment. 

Recall our definitions of length and length]: 

length[l] <= [null[l] -+ 0,' t -+ addl[length[rest[l]]]] 

len~thJ [l] <= length'[l,-D] 

length'[ll;c] <= [null[ll] -+ c; t -+ length'[rest[ll];addl[c]]] 

The variable c is being used as a "box" or "accumulator" [Moor 74] to 
accumulate length of the list. We will show .in Section 4.2 that length 1 can 
be translated into a program using several imperative features: statements, 
sequencing, aSSignments, and an imperative control regime called iteration. 
We will study iterative control in Section 4.2 and Section 4.3 but it can 
be shown that iterative control can be translated into recursive 
control ([M,C 60), [Sam 75J). 

In many instances the most important implication of imperatives is 
"convenience". There are algorithms which are most naturally described in 
terms of sequences of statements and iteration; and there are many lessons to 
be learned by careful analysis of natural implementations of imperative 
constructs. We are not looking for a minimal language, we are looking for a 
useful programming tool. One of the most useful places for imperative 
constructs is in area of non-local variables, using aSSignment statements to 
pass information across applicative boundaries. This technique is called 
using side-effects. It may very well be that the most distinctive features of 
imperative constructs are involved with their side-effect aspects. 

For example, LISP implementations include a unary primitive named 
print whose effect is to print the value of its argument on the current output 
device. This function also returns its evaluated argument as the value of the 
print statement. Thus mathematically, print acts like an identity function, but 

its execution certainly affects the programmer's environment. 4 

30r better perhaps, A[[dummy] S2][S]] where dummy is a variable not 
occurring free in any function called within S2' 

4Whether the act of printing is a side-effect or the fact that print 
returns a value is a side-effect depends on your point of view. 
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Side-effects can also spoil some of the theoretical properties of 
languages. In our earlier discussions, we have implied that call-by-value is a 
subset of call-by-name in the sense that whenever a call-by-value computation 
terminates, the corresponding call-by-name computation will as well. In the 
presence of side-effects, this is not true. We give an example on page 227. 

4.2 The prog-feature 

Though recursion is a significant tool for constructing LISP programs, there 
is another technique for defining algorithms in LISP. It is an iterative style 
of programming which is called the prog or program feature. 

M any algorithms are presented . more naturally as iterative schemes. 
For example, the recursive algorithms length and length., given on page 185, 
compute the length of a list. Compare those schemes with the following: 
1. Set a variable II to the given list. Set a variable c to zero. 

2. If the list is empty, return the current value in c as value of the 
computation. 

3. Otherwise, increment c by one. 
4. Set II to the rest of ll. 
5. Go to line 2. 

Here is a LISP version of the algorithm: 

length <= A[[l]prog[[l1;c] 
II +- l; 
c +- 0; 

a [null[ll] ~ return[c]]; 
c +- c+J; 
II +- rest[ll]; 
go[a]] ] 

We have introduced several new symbols, form4ts, and functions in this 
example. These innovations llJust be explained before the example is 
complete. First, the basic syntax of a pr~g ,is given by: 

<prog> ::= prog[[<prog variables>]<prog body>] 

<prog body> ::= <prog element><prog body> I <prog element> 

<prog element> ::= <label> I <prog, form>; 

<label> ::= <identifier> 

<prog form> ::= <application> 
::= <conditional statement> 
::= <assignment statement> 
::= <return statement> 
::= <go statement> 
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<conditional statement:>!:= <conditional expression> 

<assignment statement>::= <identifier> ~ <form> 
<return statement> ::= return[ <form>] 
<go statement> ::= go[ <form>] 
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In the example, the variables, II and c, are called prog variables. They 
are local variables, similar in behavior to A-variables; in most 
implementations the prog variables are initialized to ( ) and we wilt assume 

this convention throughout the text. 5 This behavior of prog variables can 
be expressed as: 

prog[[Xl; ... ; xn] ~] =>,,[[xl; ... xn]~][( ),. ... ( )] 

The body ~ contains the imperative behavior. The prog body is a 
sequence of prog forms and labels. Each prog form is evaluated in the usual 
LISP manner, and since the prog body can consist of a sequence of 
prog forms, the prog-body is evaluated from left-to-right. 

If the intent of the prog was simply to execute the sequence of 
prog forms, in left-to-right order, then prog could be replaced by a much 
simpler construct like progn: 

progn <= >"[[Xl; ... ; xn] xn] 

However we will add constructs to LISP which witl allow us to vary the flow 
of control within the prog body. It is to this end that we use labels, like a in 

the example. 6 Before we discuss control structures, we give more details on 
LISP's assignment statement. 

As with all LISP constructs, the assignment statement returns a value, 
but we identify it as a statement since it is executed more for effect than for 
value. The value of the assignment is the value of the form on its 
rig·ht-hand-side. In our example of length, we used an assignment to bind 1I 
to the value of l and to bind c to O. To evaluate an assignment, we first 
evaluate the form; then the identifier is located by searching the access chain. 
Thus the identifier may be a non-local variable. When the identifier is 
located its current value is replaced by the value of the form. Notice that this 
is a different kind of binding than that previously done by A-binding. In 
A-binding we always associated a new ,value with a newly created local 
symbol table as we entered the A-body. We never destroyed the old binding 
of a variable. The assigment statement involves a destructive change to the 
binding. This is important since aSSignments to non-local variables can have 
effect outside the prog while a A-rebinding cannot. This is how an 

5 A useful alternative is to initialize them to some "unbound" value. In 
that way the system can recognize attempts to select the value of a prog 
variable before is has been assigned to. 

6Labels are also known as "tags". 
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assignment statement can achieve a more permanent side-effect. However, 
since prog variables are created like A-bindings, assignments to local prog 
variables cannot effect bindings of these variables which were made outside 
the scope of the current prog. This behavior makes progs suitable as 
components in recursive definitions. For example, a function to reverse a list 
and an of its sublist can be described as: 

bigrev <-,,[[l] prog[[x] 
a [null[l]~ return[x]]; 

x f- concat[bigrev(first[l]],'x]; 
l ~ rest[l]; 
go[a]]] 

As the examples have intimated, prog introduces some new control 
structures so that the prog body need not be executed in simple left-to-right 
order. The control structures are: the conditional statement, the return 
statement, and the go statement. 

Though conditional statements in progs have the same syntax as 
conditional expressions, their semantics is slightly different. A conditional 
statement is executed in the usual manner unless none of the predicate 
alternatives is satisfied. Recall that a conditional expression is undefined in 
this case; a conditional statement however is defined, returns ( ), and executes 
the next statement in the prog body. In our length example, the expression, 

[null[ll] ~ return[c]] indicates that if II is not empty the prog body 
continues at the next statement with the assignment of restUJ] to ll; the 
assignment destroys the old value of ll. If 11 is empty, then the statement 
return[cJ is executed. 

There is a useful interplay between the A-binding of l and the 
assignment binding of ll. We could have dispensed with the prog variable 
ll, and used l throughout the prog body. Even the assignment l f- rest[l] 
would not have effected the binding of the original argument passed to 
length. This is assured because the A-binding saves that value and the effect 
of the assignment is only to change the contents of a "box" whose current 
content is a "pointer" to the value. None of the LISP operations we have 
discussed can alter a value "pointed to" in this fashion. We wilt discuss such 
operations in Section 7.7. 

The return statement is a prog construct similar in effect to exiting a 
A-expression. It is used to leave a prog body and return to the caller of the 
prog. As we leave the prog, the bindings of the prog variables are removed 
as are any A-bindings made on entry to the prog. The value returned is the 
value of the argument to the return statement. The return statement may be 
nested within other LISP computation, as for example: 

concat[A,.return[list[B ]]] 

The effect of the return is immediate; the con cat would never complete its 
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operation. We would return (B) to the ca11er of the enclosing prog. A bit of 
care is needed in describing the meaning of return: we look for the latest 
instance of an entrance to a prog and return from that prog. To visualize 
this, we use the Weizenbaum environments (page 142). We search the 
control chain, looking for the first Form which is prog[[ ... ] '" ]. We then 
restore using the access and control information found in that diagram. We 
wilt give a comprehensive example after discussing the go statement. 

The go statement is used in conjunction with labels to divert the 
implied left-to-right execution of the prog body. Labels rea11y aren't 
executed; they are used to name statements in a prog. It is the go statement 
which uses the label as a destination for transferring control. Labels may be 
in conflict with the A-variables or prog variables since the evaluator for 
progs can resolve the conflicts by context. Any identifier occurring by itself in 
a prog body is a label. Any identifier occurring in an application other than 
a go statement is a variable and its value is searched for in the access chain, 
whereas an identifier appearing in a go statement is interpreted as a label 
and searched for in a prog body. 

The go statement is a little more complicated than the return statement. 
If the argument to go is an identifier then it is interpreted as a label; 
otherwise, the argument is evaluated and the result of the evaluation 
examined. This process continues until a label has been uncovered as the 
result of an evaluation. At that time we must locate a statment in a prog 
which has a matching label attached to it. Our intention is to transfer control 
to that statement. We locate the labeled statement as follows: we look 
through the control chain for the first prog which contains the label. When 
the label is found we transfer control to that labeled statement, restoring the 
access and control environments of the prog which contain that statement. 
Thus there is a double search involved: we search the control chain for prog 
forms, and search the prog forms for the label. Labels need not be local; we 
find the closest dynamically surrounding prog which contains the reqUired 
label. 

The non-local go and return differ from the usual procedure exit in 
that they do not restore the enclosing control environment, but escape further 
back the control chain. 
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Finally, as an example covering the new features of prog consider: 

1<== >"[[y,-z] prog[[l;x] 
l ... 2,' 

l u ... g[y;x;z] 
... ]] 

g <= >..[[x",·z] pr~g[[ ] 

go[l] 

returnlfir st[x]] 
... ]] 

4.2 

In I, l is both a label and a prog variable .. Notice in g that we have no prog 
variables; and since we assume that l is not a label in g we have a non-local 
go. 

Consider the evaluation of fi(A B);J]' 

jf.(A B);J] prog[[l;x] .. .] [l ... 2; l u +- g[y;x;z]; .. .] 
E2 Eo E) 

I II Eo 1 Eo 
=> 

f 1 >..[[y,·z] progL"]] 
g 1 >"[[XiY,'Z] progL .. ]] 

y 1 (A B) 
z 1 J 

=> 

E) 1 E) 

1 ( ) 

x 1 ( ) 

=> 

At this point we have done the A;.binding and initialized the prog variables. 
As we begin the execution of the prog body, we assign 2 to l and, since labels 
have no computational effect, begin the evaluation 'of the assignment 
statement: u +- g[y,-x,·z): 

L .. l u ... g[y,-x,·z); ... ) 
E2 

E) IE) 

l 12 
x 1 ( ) 

We evaluate g[y,-x,·z]: 

prog[[ ] .. .] 
Ea 

E2 I E2 

x I (A B) 
Y 1 ( ) 

z 1 J 

=> 

==> 

L..u +- g[y,-x;z],· .. .] 
E2 

EJI E) 

l 12 
x 1 ( ) 

[. .. go[l]; ... return[lirst[x]],- ... ) 
E4 

EalEa 

The go[l] wi11 search the control chain; it looks in the prog form of E3 but 
finds no label l. It examines theprog of E) next, and there it does find the 
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label l. Thus execution would be continued at the assignment statement using 
E2, the environment which bound the prog variables. In general, we 
continue in the environment which was created on entry to the prog body. 

Notice that once we have left E4 there is no way to jump back into it. 
We can only search down the control chain, and the entry to g is not below 
that of f on that chain. An extension of the semantics of LISP could allow 
such generalized control and we will develop some of those ideas in 
Section 4.4. 

If we executed the return[first[x]] in E4 an action similar to that of go 
would transpire. We would evaluatejirst[x], getting A. We would search the 
control chain for the latest prog expression; here found in E3; and then 
return control to the environment deSignated in the control quadrant; here 
E 2• Thus we return A as the value of g[y;x;z]. Since the call on g was a 
component of th~ assignment u ~ g[y;x;z], we must complete that aSSignment. 
We search the access chain for u. Since u is not found we make a global 
aSSignment in Eo: 

Eo 
III 

f I A[[y;Z] .. .) 
g I A[[X;y;Z] .. ,J 
ulA 

The ability to evaluate the argument to go results in a useful 
programming trick. Let l be a list of dotted pairs, each of the form, (ob jectj . 
labelj). At each labelj we begin a piece of program to be executed when 
ob jectj has been recognized. Then the construct: 

UGH go[cdr[assoc[x ;lJ]] 

can be used to "dispatch" to the appropriate code when x is one of the 
ob ject j• This is an instance of table-driven programming. The blocks of code 
dispatched to can be distributed throughout the body of the prog. Each block 
of code will usually be followed by a go back to the code involving equation 
UGH (above). In fact the argument l in UGH may be global to the 
prog-body. The effect is to make a prog which is very difficult to 
understand. The LISP select (page 157) will handle many of the possible 
applications of this coding trick and result in a more readable program. The 
case-statement (page 193) present in some other languages is also a better 
means of handling this problem. 

The go statement is useful if used with discretion. It is a building block 
for constructing more complex control regimes, particularly since the label 
need not be local to the prog but only need be accessible through the control 
chain. We will examine some more complex kinds of control behavior in 
Section 4.4. 
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Now to the problem of translating a prog into an S-expression 
representation: the construct, 

prog[[vJ,· ... ; vn]... ] will be translated to: 

(PROG(VI ... VN) ... ) 

The body of the prog must be handled special1y by a new piece of the 
evaluator since prog is a special form. 

We must also be careful about the interpretation of +-. We will write 
x+-, in prefix form as: setq[x;,J. We will map this to: 

(SETQ X Y) 
The aSSignment, utq, is also a special form. For if x and, have values 2 
and 3, for example, then the cal1-by-value interpretation of setq[x;,] would 
say setq[2,·3]. This was not our intention. We want to evaluate the second 
argument to sttq while stopping the evaluation of the first argument. 

LISP has another aSSignment-like operator ca11ed set. Both arguments 
of this binary operator are evaluated; the value of the first argument is 
expected to be a representation of a variable; that is, the first argument 
evaluates to a literal atom. The second argument is a LISP form and using 
the value of that form, an assignment is made to. the variable represented by 
the first argument. Thus setq[x,,] is synonymous with set[quote[x],y]. 

As a more complex example, consider set[z; plus[x;lJ]. If the current 
value of variable z is an identifier, then set[z,· Plus[x;J]] makes sense. 
Assume the current value of z is A; and assume the current value of x is 2; 
since A represents the identifier a, the effect of the set statement is to assign 
the value 3 to a. Normally when making aSSignments, we want to assign to a 
name and not a value; thus we will tend to use the setq form. 

Finally, here is a translation of the body of the prog version of length.: 

(LAMBDA (L) 
(PROO (LI C) 

(SETQ Ll L) 
(SETQ CO) 

A (COND «NULL LJ) (RETURN C») 
(SETQ e (ADDI e» 
(SETQ Ll (REST Ll» 
(00 A) » 

Now that aSSignment statements have been described, let's re-examine 
"<,..". We already know (page 147) that "<=" does more than simply associate 
the right hand side with a symbol table entry of the left hand side; it must 
also associate an environment with the function body, and this environment 
is to be used for accessing non-local variables. This operation of associating 
environments is called forming the closure. We thus might be tempted to say: 

! <= A[[ ... J .J is ! +- !unction[A[[ .. ,J ... J J 
A las, this implementation is stin not sufficient as we will see in Section 4.11. 
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Problems involving prog 

1. Write prog-versions of the following functions (or predicates). 
a. member <= x,[[x;yJ ... ]: x is atomic; y is a list of atoms. member is to 

return t just in the case that x is one of the elements in y. 
b. The factori(~.1 function. 
c. delete <= A[[X;y] ... ]: x is atomic; y is a list of atoms. delete is to return 

a list which looks like y, except an occurrences of x have been deleted. 
d. The append function. 
e. last <= x,[[x] ... ]: x is a non-empty list. last is to return the last element 

in x. 
f. Now write the S-expr translations of each of your functions. 

2. What is necessary to extend the evaluator to recognize prog and friends? 
3. The go[cdrL..J]-construct on page 191 is better handled with a case 

statement. A typical syntax for such might be: 

case<index>of <form.>; ... ;<formn> 

<index> is to evaluate to an integer, i. Where O<i~n. The ith <form> of 
the case-statement is executed, and is the value of the statement. Give a 
representation for the case statement and extend the evaluator to 
recognize it. 

4. Some languages allow constructs like: 

(if p(x) then x else y) +- exp, which is to mean the same as: 

if p(x) then x+- exp else y +- exp 
Can such a construct be written in LISP? 

5. Compare the prog version of length on page 186 with length t on page 47. 
Do you see any interesting relationships? 

6. Give a macro definition of an extended SETQ, which is called as 
(SETQ var. expt ... varn eXPn)' Each varj is a name; each expj is an 
expression to be evaluated and assigned to varj. The assignments should 
take effect from "Ieft-to-right". Thus (SETQ X 2 Y (TIMES 2 X) X 3) 
when executed should assign 3 to X and 4 to Y. 

7. Express setq as a macro over set. 
B. Write a prog which will terminate if call-by-value evaluation is used, but 

will not terminate under call-by-name. 
9. Use your prog version of fact (prob 1, b) and evaluate !act[2] using 

Weizenbaum diagrams. Note the difference between the internal 
structures used here and the structures used in the recursive version. This 
difference in implementation overhead is a quantitive measure of the 
expense of recursion versus the expense of iteration. 
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4.3 Alternatives to prog 

The prog feature of LISP is an effective means for encoding iterative 
algorithms, however it suffers from a few draw-backs. For example, The 
label-and-go style of control is only a sJight elaboration of the control 
mechanisms which are typically used to control a hardware. machine, and 
thus the level of description which is required tends to obscure the actual 
f10w of the algorithm un less the programmer is carefu1. A slight extension to 
conditional expressions and conditional statements can aJ1eviate some of the 
confusion which is likely when constucting complex progs. 

Conditional expressions are currently defined such that each ei must be 
a single expression. With the introduction of side effects, it is convenient to 
extend conditionals to include components of the form: Pi ~ eiJ; ... ;ein' This 
extended component is to be evaluated as fol1ows: if Pi is true, then evaluate 
the eij's from left to right, with the value of the component to be the value of 

7 
ein' 

with: 

For example, this feature, used in progs would al10w us to replace: 

[PJ ~ go[l]] 
m 

return[t],. 
leI; 

e2; 

go[m]; 

... [p I ~ el; e2,' ... ] ... ; return[t]] 

The improved readibility is largely do to the localizing or "packaging" of the 
actions with their initiators; we need not scan an arbitrarily long piece of text 
to discover what the computation will be when the predicate is true. 

Several languages have included more "packaged" versions of iterative 
contro1. The motivation is similar to that which we used in justifying 
recursive control: we didn't care hoto recursion was implemented, an we 
wished to discuss was the effect or behavior of recursion. 8 .. 

An iterative unit must allow the programmer a reasonable degree of 
freedom and naturalness in expres~~on. What should also be recognized is 

7This extended conditional expression ([Bob 69]) is available in 
several versions of LISP; LISP 1.6 [QtJa 72J. MACLISP [Moo 7iJ. and 
INTERLISP [lnt 75]. 

8We could have replaced recursive control with an appropriate 
combination of label-and-go's. and a simulated stack. We will do so shortly. 
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that the structural unit should be amenable to analysis to the same degree as 
that allowed in recursion. We must be able to state precise properties of 
algorithms which use these constructs, and we should 'be able to prove 
properties of such algorithms. 'With the control of the loop structure in the 
language rather than in the hands of the programmer, the static text and the 
dynamic flow of the execution have a close relationship. General use of 
label-and-go's and assignments does not maintain such properties. Our 
iterative control, construct should therefore capture all of the essential 
ingredients of an iteration, and its semantics should be restricted such that its 
static text does indeed reflect its dynamic flow. 

Our first example is based on the MacLISP do [Moo 74]. With some 
inessential changes, its syntax is: 

do [<vart> <init t> <stept>; 
<var2> <init2> <step2>; 

<var n> <initn> <stepn>; 
[<pred> -+ <exit» 
<body> ] 

The construct captures the ideas of intialization and updating of variables 
nicely. Each <varj> is initialized to its <initj>-value simultaneously. Each 
<stepj> is a form which will be evaluated simultaneously upon proper 
completion of each cycle of the do. The <pred> is evaluated, and on giving 

value t the loop will terminate, returning the value of <exit>. If <pred> 

gives f then <body> is executed. This component of the do is a prog body; 
when the last statement in <body> is executed, the <stepj> forms are 
evaluated and assigned to the <varj>'s, and another cycle of the do is begun. 

Since the <body> of the do is a prog body, the return statement may 
appear. This feature allows the dynamic flow to diverge from the static 
text. 9 But consider the do version of member: 

member <= >..[[a;l]do [x l rest[x]; 

[null[x] -+ f] 

[eq[jirst[x];a] -+ return[t]] ] 

This algorithm could be expressed without return but the resulting program 
is unnecessarily complex. 

An alternative iterative construct was proposed in [Wis 75]. 

repeat[ <st-list t >;wnile <pred t >; <st-list2>; until <pred2>; <st-list3>] 

where <pred j> is a predicate, and <st-listj> is a list of statements. The list may 
be empty, but may not contain returns or gos. 

9Compare this to the behavior of free variables under dynamic 
binding. From a programming point of view, being able to escape from the 
static text, either for variable reference or for control may be convenient. 
Whether either feature is "good practice" is a matter of taste. 
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The semantics is as follows: <st·1ist 1 > is executed; <pred J > is then 

evaluated and if false we exit the repeat with f. If <pred 1 > is true, then we 

execute <st-list2> and test <pred2>; if <pred2> is true we exit with t, otherwise 
we execute <st-Jist3> and iterate the loop beginning again at <st-listl >. 

For example we could write member as: 

member <= ~[[a;l] 
repeatfwhile 

not[null[l]],· 
until 
equal[a,fir st[l]]; 

l ~ rest[l]]] 

The difficulty which we encountered with the MacLISP do has been 
alleviated, however the repeat construct has several shortcomings of its own. 
In particular, we have no means for designating what variables are to . be 
initialized and incremented within the loop. Such variables must.,~e declared 
and initialized external to the repea;t; also the stepping of the lodp variables 
must be done using the assignment statement. Similarly the power of 
expression on leaving the repeat is . limited; we cannot explicitly declare what 
values are to be returned. The value is that of the appropriate <pred j>. 

Problems 

1. Some Qf the generaHty of progs can be controlled by the use of a new 
control structure for list operations. The construct is called lit. 10 lit takes 
three arguments: a binary function j, a list l, and a value v. If l is empty, 
give v; ot:herwise apply j to the first element of l and the effect of 
applying lit to the remainder of l. 
For example append could be expressed as: 

append <= A[[X;Y] litlfunction[concat];x;y]] 
Give a non-prog definition for lit. 

2. Here is another useful extension to LISP: Instead of requiring that the 

body of a A-definition be a single expression: t in A[[ ... ] t], anow bodies 

of the form: t); ... ; tn, giving rise to A-definitions like A[[ ... ] tl; ... ; tnJ. 
The application of such a definition means: bind the A-variables as usual, 

then evaluate the tj'S from left to right returning as value, tn' Extend the 
evaluator of Section 3.5 to handle such constructs. 

3. Give an S-expr representation for the repeat expression and add repeat to 
eval.of Section 3.5. 

JONamed for list iterator [Bar 66J 



4.4 Extensions to eval 197 

4.4 Extensions to eval 

The introduction of the prog-feature completes our syntactic description of 
the language constructs of LISP. We would like to give a new version of eval 
which describes the semantics of progs in a manner which accurately reflects 
the techniques used in implementations. We could simply simulate prog 
behavior using recursive techniques, but the iterative control expressed in 
progs is an important idea in its own right and is a simple instance of 
non-recursive control. A mechanism which faithfully implements such control 
structures leads easily to the idea of generalized control structures. 

The second interesting feature introduced with progs was the 
assignment statement. Again, we could mirror most of the behavior of 
aSSignments by careful use of the techniques of recursion and symbol tables, 
but such modelling would not adequately reflect the intent of the construct or 
give insight into the techniq ues used in implementing such constructs. We 
could describe such implementations in a low-level machine language, but 
such practice would only introduce unnecessary details. Rather, we will 
describe an evaluator in LISP using the techniques we have been 
developing. In the process we will elucidate much more than just progs and 
aSSignments; we will lay bare much more of the behavior which was implicit 
in the previous evaluators. Those evaluators used recursion in the 
explication of recursion, frequently depended on call-by-value in the 
explanation of catt-by-value, and suppressed much of the detail of binding 
and look up. The Weizenbaum environments added more detail, but failed 
to describe an explicit mechanism for the handling of partial computations. 
neither showing where partial results were maintained nor how the evaluator 
was to remember where it was in an expression when it had to evaluate a 
sub-expression. All of this detail will come out in the new evaluator. Since 
the structure of the new eval is quite different from those we have seen 
before, and since the level of detail is more intense, we will proceed in several 
steps. 

First we discuss some generalizations of the label-and-go control 
structures. These ideas have importance in their own right when we discuss 
actual interactive implementations of LISP. Next we develop an eval in 
which the handling of access structures is explicit. The innovations in this 
evaluator will form the basic blocks which we will use to model parameter 
passing and aSSignments. This evaluator will still be recursive~y described, 
and will not handle the prog feature. In the final step we replace the 
recursion with explicit control and with this change we have the basis for 
adequate treatment of non-recursive control. Finally we present an evaluator 
which handles all of the prog-related constructs. 
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4.5 Non-recursive Control Structures 

On page 189 we discussed the go construct. In that discussion we noted that 
the scope of the go was not restricted to the current prog; we need only locate 
an appropriate label in a dynamically surrounding expression. Thus we could 
jump out of an expression, passing through many intervening expressions, 
whereas strict recursive control requires that we exit functions in a 
level-by-Ievel fashion. This ability to exit across many levels of computation 
finds applications at the system level in fnteractive LISP implementations 
and is also a useful programming feature. For example, if some 
extraordinary condition occurs within a computation we might wish to abort 
that whole endeavor. As things currently stand we would have to supply an 
additional value in the range of each function which could occur in that 
computation. Each function would have to test for that exception-value and 
when it is found, return that value to the caUer. This is an effective, but not 
elegant, solution to the problem. Notice that this is the solution posed in our 

use of .L in conjunction with strict functions. Indeed, a more elegant solution 
has its origins in the early LISP debugging tools. If a computation produced 
a detectable error, then it was the responsibility of the LISP controller to 
print an error message and terminate the computation. Such behavior was 
acceptable for simple computations. As computations became more complex it 
became clear that the occurrence of one error need not signal the termination 
of all computation. Particularly since the expressions were available as data 
structures, the opportunity for self-correcting programs existed in LISP. Thus 
LISP needed a m~chanism for more selective control of error messages. , 

The early LISP systems supplied a pair of functions named errset and 
err. The function errset evaluates its first argument in the current context. 
If no error occurs in that evaluation, the result is conca ted onto () and 

returned. If an error does occur then the value of the errstt is f. Notice that 
in either case the errset terminates. We can test the success of our calculation 

by sampling the value of errset: f implies failure; otherwise the first element 
of the result is the true value. 

The user can also force the occurrence of an "error" by calling err. The 
unary function err returns the value of its argument to the dynamicaJ1y 
enclosing errse! or, if there is no such errset, the value is returned as the final 
value of the computation. For example if err is restricted to returning values 
in a set disjoint from those returned by a non-"error" computation, then the 
user can test the value of err set to discover the type of "error". 

The freedom allowed by the errset-err combination soon became 
explOited in ways not originally intended. The use of errStt and err in 
non-error-handling contexts often became quite confusing. The MacLISP 
([M 00 74]) dialect includes a pair of constructs named catch and throw to be 
used in these situations. 

catch and throw are both binary functions. Both first arguments are 
expressions; both second arguments are interpreted like prog labels. 
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catch[<form>;<labe1>] evaluates its first argument in the current context, 
and returns that value, except that if during that evaluation, a 
throw[ <form>;<label>] with the same <label> is evaluated, then the value of 
throw's <form> is returned immediately as the value of the corresponding 
catch. 

For example 11: 

catch[mapfirst[function[>..[[x][x<O -+ throw[x,'negative];t -+ fix]]]]; 
y]; 

negative] 

Assuming y is a list of numbers, this expression will return a list of f applied 
to each element of y if each element of y is non-negative, otherwise it will 
return the first negative element of y. 
. The catch-throw pair are the control analog of the 
function-funarg application pair for access. A general implementation of 
catch-throw introduces a very non-recursive control regime. The ususal 
implementation corresponds to allowing functional arguments only; if we 
wish to throw into procedure activations which have already been exited, 
then we 'must implement a control tree similar to the environment trees 
generated for functional values. The next few sections will develop 
implementation techniques which wi11 support such tree~like implementations. 

As motiviation for those techniques; recall the the "'value" of a prog 
label is essentially a pointer to a segment of text in the prog body. The label 
which appears in a catch is evaluated similarly; in this case the "value" is a 
pointer just prior to the return mechanism implemented in the ca11 to catch. 
The action of throw searches the control tree for a matching label and jumps 
to that saved value, thus returning from the catch. If the value which a throw 
returns is a catch label, then we have a handle into the control tree similar to 
that created by a functional value when it creates a handle into an 
environment tree. 

4.6 eval with Explicit Access 

There are two major portions of the evaluation schemes which we should 
scrutinize before we discuss implementations: the access and binding 
structures, and the description of recursive control. This section will look at 
access and binding. 

The Weizenbaum environments give a nice graphical representation of 
the access structures, but it would be instructive to express these ideas in 
terms of LISP functions. This would give us an algorithm, suitable for 
implementation, and would describe the mechanisms of LISP at a more 

11[Moo 74] 
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detailed level than that in the evaluators of Section 3.5. The description will 
involve primitive notions just as the prior eval's do, however the level of 
detail which they capture will be more readily transcribed to 
implementations. As we have previously mentioned, the Weizenbaum 
environments leave much of the detail of access and binding implicit; it win 
be a goal of this section to fin in these details. 

Recall that a Weizenbaum environment was created at function-entry 
time. As we evaluated the arguments to a function, we saved the results in 
some internal data structure. When an arguments were evaluated we formed 
a new local block, linking it onto the front of the existing environment. The 
resulting structure became the new environment. An analysis of these steps 
highlights several points. We need space to contain the evaluated 
parameters, and those results are then moved into a environment block; 
therefore, if we construct the space which is to contain those evaluated 
parameters like an environment block then the linking operation need only 
attach that new object. This strategy is possible since the space reqUirements 
for the evaluated parameters is known: the block must be as long as the 
number of formal parameters expected. 12 This reqUirement can be 
ascertained by examining the definition of the function being called. Once 
the block is allocated, the actual parameters are evaluated and the results are 
sent to the proper slot in the allocated block. Such a block wilt be called a 
destination block; and the operation of placing a result in a destination win 
be .cal1ed sending. Once an the evaluated parameters have been sent,' we 
link the completed block into the front of the current environment. The 
ideas expressed in this section are an embellishment of those on page 124. 
The innovation' is to al10cate space for the evaluated arguments before 
beginning their actual evaluation. The evaluator sends the values to the 
allocated block. 

Here are the primitive routines: 

1. alloc_dest: This unary function is supplied with the formal parameter list 
of a function, and s'upplies a new destination block with the formal 
parameters placed in the name-section of the block. An internal pointer 
is initialized to the first slot in the block. Thus: 

12Some LISP systems allow discrepancies between the number of actual 
parameters and formal parameters. The current scheme will accommodate 
that generality. 
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a destination block 
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I I I + internal pointer 

H-r 
• • • 

ttj 
t t 

formal parameters values 

2. send: This is a binary function whose first argument is a destination block 
and whose second argument is a value to be sent. The value of send is 
the destination block. The effect of send is to send its second argument 
to the current destination slot. The internal pointer is not updated; that 
is the business of next. 

3. next: This function takes a destination block as argument and moves the 
internal pointer of the block to point to the succeeding slot. The value 
of next is the destination block. Thus next is an identity function with a 
side-effect. 

4. link: link takes a· destination block and an environment as arguments and 
links the destination block onto the front of the environment. The 
resulting environment is the value of link. Since the internal pointer is 
only used during the filling of the dest-block, we can assume that link 
replaces that pointer with a pointer to the previous environment. 

5. receive: Sometimes we will wish to examine the result of a computation 
befor~ mak.ing a decision on how to proceed. In particular, in 
conditional expressions we must evaluate the predicate position before 
knowing how to handle the rest of the conditional. The unary primitive 
receive ,lets us look at the result of a computation. The argument to 
receive is a destination block, and the value returned is the value in the 
current slot. 

Problem 

Give a full LISP representation of destination blocks and supply the 
corresponding implementations for the primitive routines, 1 through 5. 
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In the fol1owing evaluators we wi1J freely use the extended conditional 
expressions and A-expressions introduced on page 194 and page 196. The 
first evaluator is named deval, with the ltd coming from "destination". 

deval <= X[[exp;env;dest] 
[isconst[exp] -+ send[dest ;denote[exp ]]; 
isvar[exp] -+ send[dest;lookup[exp,'env]]; 
t -+ deval)[func[exp]; arglist[exp]; env; dest] ]] 

deval) <= 
X [lfun;args;env;dest] 

[atomlfun] -+ [iscond[fun] -+ devcond[args,'env;dest] 
isprim[fun] -+ execute[fun; 

link[evalargs[ args; 
en v; 
alloc_dest 

env],· 
dest]; 

t -+ deval[fun;env;dest]; 
deval)[receive[dest];args,'env;dest] ] 

islambdalfun] -+ evalargs[ bodylist[fun]; 
link[evalargs[ args,' 

env; 

[createvar sEar gs ]]; 

alloc_dest[var slfun]]]]; 
env]; 

dest] 
t -+ deval[fun;env;dest]; deval)[receive[dest];args;env;dest] ]] 

evalargs <= x[['args;env,'dest] 
[null[args] -+dest; 
null[rest[args]] -+ deval[first[args],'env,'dest],' 
t -+ deval[jirst[args])'env;dest); 

next[dest); 
evalargs[rest[args];env,'dest] ]] 

execute <= X[[fun;env;dest)send[dest,'apply[fun;vals[env);( )])] 

Note that execute resorts to apply to handle primitive application. 

devcond <= A[[args;env;dest] 
deval[pred[first[args]],'env,'dest],' 
[r eceive[des t] ~ evalar g s[condbody[fir stEar g s ]],'env ;des t J; 
t ~ devcond[rest[args],' env,'dest] ]] 

This new evaluator must be supplied with an initial destination as well 



4.6 eval with Explicit Access 203 

as being supplied with an initial symbol table. Also, since the result of any 
calculation is a destination block rather than just a simple value, we should 
supply a selector to extract the desired value. For example, if we designate 
val as such a selector, and designate the atom T LB as the repository for the 
top level binding then: 

eval <= A[[exp,'env] val[deval[exp;env;alloc_dest[(T LB )]]]] 

More of the detai1s of argument handling should now be 
understandable: when a function application has been recognized, the 
evaluator sets up a block to hold the results of evaluating the actual 
paramettrrs. If the function is a primitive function then the name slots are 
filled with some system-created names, otherwise the A-variables are used. 

Problem 

Using the new evaluator, sketch the evaluation of fiA] where: f <= A[[X] 
eq[x;AJ]' 

Notice that for most of the evaluation process, dest is a passive element. 
A new destination block is created on function applications, but that dest is 
passed around as an argument through most of the pieces of the evaluator 
without explicit modification. That is, in most A-bindings dest simply gets 
rebound to the ,same object. Since the A-binding process is not inexpensive it 
is tempting to make variables like dest, which change infrequently, into 
non-local variables; they would be initialized at the outside layer and 
modified by side-effects during the evaluation. However the current value of 
dest does need to be saved occaSionally. Those occasions correspond to the 
places where dest gets rebound to something other than dest. We wilt supply 
two new primitives to handle explicit saving and restoring of values: 

1. save: This binary function would be implemented as a special form. Its 
first argument is a name old, and its second argument is a value new. 
The current value associated with old is saved, and the value new 
becomes the value of old. 

2. restore: This is a unary function; its argument is a name name. The latest 
value which was saved for name is restored. The value which name 
had on entry to restore is lost. 

Using save and restore we could express the evaluation of a 
A-application something like: 
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eval[fR[ x.[[x;y)C)[a,·b] ]; env] = save[x;a),· 
save[y;b]; 
evalUR [c] ;env']; 
restore[y]; 
restore[x]; 

4.8 

The implementation details of save and restore wi11 not be needed for 
most of our discussion, however we include some of them here for 
completeness. The information which is saved and restored is accessible 
through a global variable named control. A save[<name>;<value>] has the 
effect of concat-ing the current value of <name> onto the front of control; it 
then sets the new value of <name> to <value>. 

That is: 

Then 

control +- concat[eval[ <name>;env),·control],· 
set[ <name>; eval[ <value>;env)]; 

restorer <name>] performs: 

set[ <name>,jirst[control]]; control +- rest[control] 

The manipulation of control by save and restore is stack-like in LISP. 
That means that only the first element of control is accessible; to access 
elements in the interior of control reqUires restore-ing down to them by 
sequence of "control +- rest[control]". Once we have removed elements from 
control there is no way to access that information again. The control-structure 
is not accessible as a data structure to the same degree of generality as is the 
access structure. The closest analogy to function-funarg is the catch-throw 
pair. However now that control is explicit we can begin to describe extensions 
to LISP which will al10w us to capture control like function captures env. 

Given save and restore we can rewrite deval and its subfunctions to 
access non-local representations of variables used in the current deval. Thus 
the evaluator becomes a function of no arguments; it knows where to find the 
values and it knows how to save and restore those variables. The result is 
an evaluator which has even fewer implict operations than deval. 

deval' <= A[[] [isconst[] ~ send[denote[]],' 
isvar[] ~ send[lookup[]]; 
t ~ save[fun,func[]]; 

save[ar g s ;ar glist[]]; 
devalt[]; 
restore[args); 
restorefJun) ]] 

A few points should be noted now. We will be using the same names 

as we did in deval for all subfunctions of deval'. The difference will be that 
here those functions will know where their arguments are to be found; they 
need not be explicitly passed in. Thus send[denote[]] means that denote 
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extracts a value from the representation in exp and send k.nows that it is to 
send its value to dest. 

With this new evaluator we can define eval as: 

eval <= A[[x;y]jun ~ (); 
args ~(),­
exp ~ X; 
env ~ y; 
dest ~ alloc_dest[(TLB)]; 

deval'[]; 
val[dest]] 

Here is the remainder of deval': 
devalt <= A[[][isatom[] ~ [iscond[] ~ devcond[]; 

isprim[] ~ save[env;env],-
save[dest ;alloc_dest[createvar s[]]],­
evalargs[]; 
link[]; 
restore[dest]; 
execute[],-
restore[env]; 

t ~ deval2[] ] 
islambda[] ~save[env;env],-

save[dest ;alloc_dest[var s[]],. 
evalargs[],· 
link[],' 
restore[dest],. 
save[args,'bodyUst[)]; 
evalar gs[]; 
restore[ar gs]; 
restore[env],-

t ~ deval2[] ]] 
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deval2 <= ).,[[ ] save[exp,jun]j 

deval'[],. 
restore[exp ],' 
save[junjreceive[]],' 
deval ][]; 
restore[jun] ] 

" 

4.6 

We introduced deval2 to capture the computation to be performed when the 
function-position is not recognized as either a A-expression, a conditional, or 
a primitive. Note that we perform save[env;env] in a couple of places in 
deval] , This is necessary to save the current value of env since link modifies 
env, Indeed, the sequence: save env and dest, ,valargs, link, and restore dtst 
can be simplified to: save dest, evalargs, fol1owed by link', where: 

link' <=).,[[] set~int[dest;env],'rotate[env,first[control];dest]] 

and set_int sets the internal pointer of the dest-block to the current 
environment, and rotate[x;Yjz] moves the contents of x to Y, contents of y to z, 
and contents of z to x. 

evalargs. <= ).,[[] [emptyargs[] -+ ( )j 
singlearg[] -+ save[exp;flrst[args]],' 

deval'[); 
restore[exp ]; 

t -+ save[exp,first[args]],' 
deval'[); 
restore[exp ],. 
next[]; 
save[ar gs jrest[ar gs ]]; 
evalargs[]j 
restore[args] ]] 

The discussions surrounding this evaluator taCitly assume that a deep 
binding strategy is being implemented. That assumption is not necessary. 
The final shallow binder of Section 3.11 can be incorporated in the 
framework of these latest evaluators. The key alterations involve the 
rebinding of the value cells inside devalt when islambda is true. We leave 
the modifications as a problem for the reader; and we postpone the treatment 
of function until Section 5. I 9 and Section 5.20. 

Note also that we are never interested in the value returned from a call 
on a sub-function in the evaluator; all values are passed explicity from their 

creator to a destination. We might say that deval' never returns a value. In 
the next section we will build an evaluator which never returns at an. 
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Problems 

1. W rite the new version of devcond. 

2. Examine the save-restore sequences in deval' and its sub-functions for 
possible inefficiencies. That is, are all the saves and restores necessary or 
could explicit aSSignments to some of the non-local variables speed things 
up? 

3. Using the new evaluator, sketch the evaluation of j[A) where: 
f <= A[[x)eq[x;AJ]. 

4. Revise the new evaluator to use shallow binding. You may restrict your 
solution to the case of simple function application without function. 

4.7 eval with Explicit Control 

Recursion and call-by-value are used to gUide the flow of control in a LISP 
evaluator. We have started to explore the implementation of cal1-by-value, 
and now we wish to discuss the implementation of recursion. It is not 
necessary to understand how recursion works to understand recursion; that 
understanding is necessary when we wish to implement recursion. The 
mechanisms used in the implementation of any concept must be of a higher 
level of detail than the mechanism being if1plemented. We cannot use 
recursion to implement recursion. The basic purpose of recursive control in 
the evaluator is to describe what computation to perform next and to 
describe where to go when finished. The evaluator of this section will rely on 
explicit directions to tell it what to do next. The idea is closely related to the 
logical notion of continuations ([Str 74a), [Rey 72], [Fis 72], [Hew 76]) and 
thus we will use that terminology here. In the evaluators of this section we 
will use the destination to tell where the result of the current computation is 
to be put, and use the continuation to tell what the next computation will be. 

Note that the computations in deval are basically of two categories: 
1. Simple transformations like sending, building dest blocks, or selecting 

components of expressions. These computations are non-recursive, 
req uiring a bounded amount of computation. 

2. Recursive ca1ts on the evaluator or its subfunctions. These computations 
can be arbitrarily complex. 

It is the recursive computations which we wish to examine. One of the 
implications of a function call is that we have further computation to be 
performed after the ca11 is completed. It is the responsibility of the evaluator 
to remember where a computation has been interrupted so that it may pick 
up where it left off, after completing the ca11. One of the major problems in 
implementing evaluators is "how to remember". If the function being called 
is a simple calculation of type 1. above, then we could replace the call with a 
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copy of the body of the definition where we have replaced each occurrence 
of a formal parameter with the appropriate actual parameter; this works 
nicely. Indeed making such formal substitutions at runtime is sufficient for 
computations of ~ype 2. as wel1. However the solution in this case is not 
sufficiently efficient. 

Previous evaluators "remembered" what was to be done either by using 
recursion, as in eval (Section 3.5), or by explicit sequencing as in deval. We 
now propose to explicitly pass along information about what to do after the 
current computation is completed. This information is called the 
continuation. 

The first evaluator of this section is eeval; 13 it is a modification of 

deval' of page 204. It takes a single argument c which is a continutation. 
The continutation is passed along as a funarg structure until ceval has 
completed its current computation .. At that time c is executed. For example 

we transform deval' into ceval by forming a conUnuation from that portion 

of deval' which follows the can on devalt. Thus: 

ceval <= X[[c] [isconst[] ~ send[denote[]];c[]; 
isvar[] ~ send[lookup[]];c[]; 
t ~save[jun,fune[]]; 

save[args,·arglist[]]; 
eevalt [junetion[evJ]] ]] 

ev1 <= X[[ ] restore[args]; restore[junc]; e[] ]] 

For the simple cases we just execute the continuation after the send; when we 
have a function application we make up a new continuation. When cevall is 
finished with the function application it executes ev1; that does the restore 
operations and then performs the saved continuation. 

Note the use of junction. The non-local variable e in ev1 represents the 
continuation passed into eeval. Therefore e must be found in the 
environment of the body of ceval not in the environment which is current 
when ev1 is applied. 

As before, eval is expressible with the new evaluator: 

eval <= X[[x,1]jun ~ OJ 
args ~ 0; 
exp ~ x; 
env ~ y; 
dest ~ alloc_dest[(T LB )]; 
eeval[junetion[X[[ ] val[dest]]]] ] 

Transforming the sub-functions of deval' is reasonably straightforward: the 
segment of program below a call on one of the recursive parts of the 
evaluator is given a name; a new continuation is made, similar to the process 

13C for control or continuation 
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of creating evl; then the transformation process is applied to each new 
continuation. For example, here's cevalJ: 

cevalJ <= >..[[e] [isatom[] ~ [iseond[] ~ deveond[c]; 
isprim[] ~save[env;env]; 

save[de~t ;alloc_dest[createvar s[]]]; 
evalargs[junction[ev2]]; 

t ~ ceval2[]; 
islambda[] ~save[env;env]; 

save[dest ;alloc_dest[var s[]] 
evalar g s[junction[ev 5 ]]; 

t ~ ceval2[]] ]] 

eeval2 <= >..[[ ] save[exp;fun]; eeval[junction[evJ]]] 

ev2 <= >..[[ ]link[]; ev] <= >..[[ ] restore[exp],· 
restore[dest]; save[jun;receive[]]; 
exeeute[]; eeval J [junetion[ev4]]] 
restore[env]; 
e[]] 

ev4 <= >..[[ ] restore[jun]; e[]] evS' <= >..[[ ] link[]; 
restore[dest]; 

ev6 <= >..[[ ]restore[args]; 
restore[env],· 
e[]] 

Problems 

save[ar gs ;bodylist[]],· 
evalar gs[junetion[ev6 ]]] 

1. Continuations can also be used as general programming tools. For 
example, evaluate jact2[2] where: 

jaet2 <= >..[[x] jact2'[x,junction[>..[[x] x]]]] 

j aet2' <= >..[[n;f] [zerop[n] ~ j[1],. 

t ~ jact2'[subl[lJ]; 
junction[>..[[x] j[times[n;x]]]]]]] 

2. Write the new version of deveond and evalargs. 

3. Using the new evaluator, sketch the evaluation of fiA] where: 
j <= >..[[x]eq[x;A]]. 

The final transformation step is analogous to that which we performed 

in moving from deval to deval': we remove the argument to eevat and pass 
the continuation explicitly in a non-local variable named cont. This new 
evaluator is named ceval': 
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ceval' <- A[[ ] [isconst[] ~ send[denote[]],. cont[),. 
isvar[] ~ se1!d[lo,o.kup[]],· cont[),' 
t ~ savelfun,func[]]; 

s ave[ar g s s'ar glist[]]; 
save[cont ,function[ev I)],· 
cevalt(] ]] 

ev} <- A[[ ] restore[args],. restore[/unc]; restore[cont],· cont[] ]] 

4.7 

We can remove more control structure from the evaluator by noting that 
executing the continuation, "cont[]", and executing the explicit calls on the 
evaluator's subfunctions are two manifestations of the same phenomenon. In 
the first case we restore to a variable and then execute the variable as a 
function application; in the second, we execute a known call. We can replace 
these two actions by a common action if we always execute from the variable 
cont and replace calls like "cevalJ[]" with the sequence: 

save[cont ;function[cevalJ JJ; cont[) 

Notice that when we make this last save we know that the current value of 
cont is evl. Notice also that when we execute cont[] we enter cevalJ and 
therefore within this ca11 on cevalt, cont is cevalt. A11 this discussion can be 
simplified if we think a bit about the purpose of continuations: we will need 
to make note of what the continuation should be after the current 
computation is finished; and we will need to set cont to deSignate which 
computation to perform now. We therefore introduce a binary primitive 
save_con! which will save its fir~t argument such that restore can restore it to 
cont at the appropriate time; save_con! will set cont from its second argument. 

save_cont <= >..[[x;yJ cont ~ X; save[cont;y)] 

We can remove the calls cont[], and perform the execution outside ceval' 
using a simple loop: 

loop <= A[[] prQg[[] 
l cont[] 

go[l] ]] 

Each function executed by cont[] will perform some simple operations like 
sind or alloc_dest, and then wi11 exit, setting cont to a function name. The 
next pass around, loop will execute the new cont. After slight reorganization 
to eliminate some save-restore operations on cont, we have: 

ceval" <- A[[ ] [isconst[] ~ send[denote[]],. restore[cont],. 
isvar[] ~ send[lookup[]]'- restore[cont),' 
t ~ save[/un;func[]],. 

save[ar gs ,oar glis~[]],. 
save_cont[quote[ev}];quote[cevall]] ]] 

ev} <- A[[ ] restore[args],o restore[/unc],' restore[cont] ]] 
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Notice the use of quote rather than function. In the previous evaluators we 
used function since we had to save the current environment; but the 

continuation c was the only free variable which was in jeopardy. In ceval" 
we have expJicitly saved the continuation using save_cont, and thus quote 
plus the proper use of restore can replace function. We will also introduce an 

abbreviation, writing 'xx for quote[xx]. 14 

Finally, here's eval: 
eval <= >..[[x,.,] catcll[ prog[[ ] fun ~ (); 

args ~ 0,' 
exp ~ x,' 
env ~ y; 
dest ~ alloc_dest[(T LB )],. 
save_cont['>..[[]throw[val[dest]; out]]]; 

'ceval"]; 
loop[]]; 

out]] 
What has been gained by these transformations of the original eval? 

We have made the mechanisms which were implicit in LISP very explicit. 
We have described the implementations of LISP's access and control 
req uirements in terms of very simple computations. We now have developed 
enough detail that we can give a faithful implementation description of all of 
LISP including the function and prog constructs. 

Problems 

L Could we us~ statements like save_cont[ev1;evall] rather than 

save_conte' ev1; , eval J] ? 

2. Using the new evaluator, sketch the evaluation of j(A] where: 
f <= >..[[x] eq[x;A]] 

4.8 An Evaluator for prog 

The evaluator in this section will be the definitive interpreter for LISP 
throughout the rest of this book. It will handle the applicative subset of 
LISP as wen as handling prog related constructs. 

We need to add more mechanism to handle prog. For example the 
execution of the return statement requires that we locate dynamically 
surrounding progs. The go must also locate the latest prog which surrounds 
the go and contains the desired label. The evaluator needs to know when we 
are evaluating a conditional expression and when we are evaluating a 

14This abbreviation is used in several implementations of LISP. See 
page 280. 
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conditional statement; if we are (immediately) in a prog then it's a conditional 
statement, otherwise it's a conditional expression. All of this information 
could be discovered by the evaluator using the currently supplied 
information, however the evaluator'can be made more efficient by adding a 
bit more explicit information. Most of the additions involve prog-entry, go, 
and return and will therefore be pre.sented when we discuss that part of the 
evaluator. The only addition we ~i11 make now will be introduction of a 
variable type which is set to f ROC when we begin an evaluation of an 
application, and is set to P ROG when we enter a prog. 

We witl also rework some' of our current sub-functions to improve 
readability. Since sequences of s~ves happen frequently in the evaluators we 

introduce a new procedure named save' which acts like a sequence of calls on 
save for arguments other than cont. In this latter case, a call on save_cont is 
simulated. Similarly we introduce an iterated version of restore named 

restore'. 

Problem 

Write restore' and save' as macros which expand to cal1s on save and 
restore. 

Here's the new peval: 
peval <= A[[ ] [isconst[] ~ send[denote[]);restore[cont),' 

isvar[] ~ send[lookup[]];restore[cont],' 
t ~ save'ljun,iunc[]; 

ar gs ;ar glist[); 
cont; 'evI; 'pevall]]] 

evI <= A[[ ) restore'[args;func;cont) )] 

It is the responsibility of peval to recognize the occurrence of one of the basic 
forms: a variable, a const,!-nt, or a function application. Discovering the 
structure of an application is the business of pevall' We need to know 
whether the function position represents a ca1t~by-value function or a special 
form. So far the only special form we recognize is cond; 15 however many of 
the constructs which prog introduced are special forms. We could add a 
collection of recognizers issetq, isgo, isprog, etc., to augment the existing 
iscond. Instead we would rather add a device similar to isprim but instead of 
handling the call-by-value primitives with the underlying evaluator, we wish 
to handl~ special forms with our own pieces of peval. We need a predicate 

15 Actually quote is also a special form which we recognize,· however its 
recognition is handled within isconst. 
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named isspee to recognize occurrences of special forms and wi11 need to add 
functions to peval to execute the appropriate programs when isspee is true. 
We will do this by introducing a global table catted speetbl. The name 
components of the table witt be the names for special forms; the value 
components of speetbl will be the names of functions which wilt evaluate the 
corresponding special form. t 6 Then we can write: 

isspec <= A[[ )[null[nassoclfun;spectbl)) -+ f; t -+ t) 
nassoe <= A[[x;l) [null[l) -+ ( ); 

eq[x;namelfirst[lJ]] -+ first[l]; 
t -+ nassoe[x;rest[l]]] 

To execute the appropriate routine we need only put the name in the 
variable eont and loop will do the rest. .We can load eont by: 

cont E- valspec[ ); where: valspee <= >..[[ )value[nassoelfun;speetbl]]] 

For example, with speetbl bound to «COND DEVCOND», our previous 
eeval t would work quite nicely as: 

ceval t <= A[[) [isatom[) -+ [isspec[] -+ cont E- valspec[ ],. 
isprim[] -+ save[env,'env); 

... ) ... ]) 

Before introducing pevall we should say a bit about the inefficiency 
involved in the isspec-valspee pair. We already noted that the linear search 
encoded in assoe is unnecessarily inefficient. However the present 
predicate-function pair is even more wasteful; if isspec is true we perform 
nassocfJun;spectbl] twice. A more efficient computation might save the result 
of the first call on nassoc in a te~porary variable t1 and if isspee is true, 
move the value-part of t1 to cont. Thus: 

isspee <= A[[] t1 E- nassoc[fun;spectblJ] 
[null[tJ] -+ f; t -+ t] ] 

with: valspee <= >..[[ ] value[tl]] 

This is a useful programming trick but does not add to the clarity of the 
program. In Section 5.5 we shatt see a more subtle, but related trick. 

What follows is the remainder of the evaluator interspersed with 
commentary. The main function is pevalt; it handles function applications. 
The application is either a cal1-by-value application or it is a special form. 
An instance of the first requires evaluation of the argument list and then 
evaluation of the procedure body. If the application is a special form then 
the evaluation is handled by a special piece of the evaluator, using the 
mechanism described above. The call-by-value applications are either 

161n the next chapter we wilt see a more efficient way to recognize and 
execute special forms. 
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primitive applications or are anonymous function applications. If the form is 
not recognizable then the function-position is evaluated until' a function 
ob ject is recognized. At that time, the function is applied to its argument list. 

The anomalous situation involves the application of a funarg; though 
it is possible to handle this case as a primitive, it is more instructive to 
present it in detail. Here is pevalJ: 

pevalJ <= ~[[ ][isatom[] ~ [isspec[] ~ cont f- valspec[ ]; 
isprim[] ~ save'[env;env,' 

dest ,'alloc_dest[er eatevar s[]]; 
cont,' 'ev2; 'evalargs),· 

t ~ save'[exp,jun;cont; 'ev); 'peval); 
islambda[] ~ save'[ env,'env; 

dest ;alloc_dest[var s[]; 
conti 'ev5; 'evalargs]; 

isfunarg[] ~ prog[[x;y] 
x f- args; 
args f- bodylist[seeond[jun]],' 
y f- env; 
env f- third[jun); 
save'[env ;env; 

args;x; 
dest ;alloc_dest[var s[second[jun))],. 
env;y; 
cont,' 'ev?,. 'evalar gs ]]; 

t ~ save'[exp,jun; conti 'ev); 'peval] ]] 

The functions ev2 through ev8 handle the control in pevalJ: 

ev2 <= ~[[ ] link[]; restore[dest); exeeute[]; restore'[env;cont]] 
This function passes the evaluation to the body of the primitive. 

ev) <= ~[[ ] restore[exp]; save'[jun;reeeive[J,'cont; 'ev4; I pevalJ]] 
ev) is the return point if we have to evaluate the function position of a form. 
When ev) is catJed the result of that evaluation is in the current dest-slot. A 
receive gets the value; we then pass the new form back to pevalJ. 

ev4 <= A[[ 1 restore'[jun,'cont]] 

ev5 <= ~[[ ] Link[]; restore[dest]; save'[args,'bodylist[]; cont; 'ev6; 'evalargs]] 

ev5 handles the evaluation of the body of a A-expression. Since we are 
allowing multiple-bodied A-expressions (page 196), we pass the bodylist to 
evalargs. If we were restricting ourselves to single-bodied expressions, then 
passing body to peval would suffice. 

ev6 <= A[[ ] restore'[args;env;cont]] 
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The next four functions handle the evaluation of a sequence of expressions. 
If the seq uence is empty, then there is nothing to do. If there is a single 
argument then evaluate it and restore the continuation. Otherwise evaluate 
the first one using peval (sending its result'to dest) and then execute evll. At 
evll we update the destination block using next and get set to evaluate the 
next argument. 
evalargs <= X[[] [emptyargs[] ~ restore[cont],· 

t ~ save[exp,first[args]],· 
cont ~ 'ev9 ]] 

ev9 <= x[[ ][singlearg[] ~ save_cont[ 'evlO; 'pevaLJ; 
t ~ save_cont[' evll; 'peval] ]] 

evlO <= X[[ ] restore'[exp;cont]] 
evll <= X[[ ] next[]; 

args ~ rest[args]; 
exp to- jirst[args]; 
cont ~ 'ev9 ] ] 

Problem 

Using the new evaluator, sketch the evaluation of jlA] where: 
j <= x[[x]eq[x;A]]. 

The combination of evcond and condl handle conditional expressions. 17 

evcond sets up the evaluation of the predicate position such that the 
computation will continue at condl. When that evaluation is completed condl 
receives the result. If t is received then the consequent part of that 
conditional clause is evaluated. Note that we use evalargs here since we allow 

extended conditionals (page 194). If f is received we go back to evcond with 
the remaining part of the conditional. 

evcond <= X[[ ][emptyargs[] ~ err[NO_TRUE_COND_CLAUSE]; 
cont ~ 'evl; 

t ~ save_cont[ 'condl; 'peval); 
exp ~ pred[jirst[args]] ]] 

condl <= x[[ ][receive[] ~args ~ conseq[jirst[args]]; 
save_cont[ 'evl; 'evalargs]; 

t ~ args ~ rest[args]; 
cont ~ 'evcond ]] 

17See the problem on page 219. 
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The next four functions deal with functional arguments. If the argument is 
a primitive, then we just quote it; the assumption is that primitives only 
access local variables and therefore don't need to save the environment. An 
expression which is already funarg-ed is passed as is since it is aready closed 
and therefore has no free variables. If it is a A-expression, we make a 
funarg; otherwise we evaluate the function until we discover its character. 

evfunction <= ).,[[ ] fun Eo- first[args]; 
[isprim[] ~ send[mkquote[Jun]];restore[cont]; 
islambda[] ~ send[mkfunargljun;env)),·restore[cont),. 
isfunarg[] ~ send[fun];restore[cont]; 
t ~ save_cont[ 'funl; , peval),· 

exp Eo- fun ]] 

funl <= ).,[[ ] send[mkfun[receive[ ]]; cont Eo- 'evJ] 

The functions ev? and ev8 control the application of a funarg. 

ev? <= ).,[[] restore[env]; 
link[]; 
restore'[dest jar gs]; 
save_cont[ 'ev8; 'evalargs] ]] 

ev8 <= >..[[ ] restore'[env;cont]] 

Special functions' are needed to' handle explicit ca11s on the evaluator: 
eval[<form>;<env>J. We set up a destination to receive the values of <form> 
and <en v>, and ask evalargs to evaluate these arguments. The results of the 
computation are seen by evl2; this function sets up the call on peval. 

eveval <= >..[[ ] save'[env;env; 
dest;alloc_dest[createvars[(0102)]]; 
cont; 'evI2; 'evalargs]] 

evI2 <= ).,[[ ] exp Eo- first_dest[]; 
env Eo- second_dest[]; 
restore[dest ]; 
save_cont[ 'evI3; 'pevaLJ] 

evI3 <= >..[[ ] restore'[env;cont]] (== ev8) 

There is a second form of can on eval which is useful. If we write 
eval[<form>], then the <form> is evaluated in the environment which exists 
at the point of call. See problem on page 220. 

The remainder of the evaluator involves the prog related constructs. 
Several new ideas are involved. As we discussed on page 211, we must be 
ab Ie to determine whether or not we are executing within a prog: we 
introduced type to handle this. Also every expression or statement in LISP 
has a value. Since we are always send-ing values, we must have a destination 
to receive the values created by prog statements: we will introduce a dummy 
destination which will always receive the value of any statement. This 
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destination is named bb, for "bit bucket". Finally, we must handle assignment 
statements. The innovation here is that the send goes ~o some pre-existing 
destination and destroys the current value: we use a primitive mkdest whose 
effect is to generate a destination pointer to the slot which is to receive the 
value of the °right-hand-side of the assignment. In evsetq we use a function 

lookup' which is similar to lookup except that it returns a pointer to the slot 
containing a value, rather than returning the value in the slot. 

Here are the evaluators for setq and set: 

evsetq <= >..[[] save'[dest,'mkdest[lookup'[jirst[args]]]; 
cont; 'setql; 'peval),· 

exp +- second[args]] 

setql <= >..[[ ]A[[X] restore[dest]; 
send[x]; 
cont +- 'evl ][receive[ ]] 

evset <= A[[ ] save'[args;args,' cont,' 'setl; 'peval); 
exp +- jirst[args] ] 

setJ <= A[[ ] restore[args]; 
args +- mkass[receive[];rest[args]]; 
cont +- 'evsetq ] 

The prog evaluator, evprog, must handle all of the control structures 
which can occur within a prog. Besides ordinary recursion, we can have gos 
and returns. The go must be able to search the control chain for the 
appropriate label, and the return must find the dynamically enclosing prog. 
To handle either of these eventualities, we save some additional information 
when we enter a prog. First we save the current state of the computation; this 
will allow the return to restore everything as it leaves the prog. Next we 
make a new env which has bound all the prog variables to ( ). We save that 
env, since a non-local go witt want to restore that env as it returns for 
execution. Finally we create a golist which is a list of all points in the prog 
which have labels. This construct allows us to discover quickly which labels 
are present in the prog and where they are. t 8 After all this is done we are 
readv to execute the first line of the prog body. 

t 8If it weren't for the existence o. of anonymous progs and 
function-modifying functions, we could put the responsibility of making the 
go-list on "<= n. 
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evprog <= ~[[ ] save'[exp;exp,' 
env;env,' 
dest;alloc_dest[prog_vars[args]],' 
fun,jun; 
args;prog_body[args],' 
type;P ROO]; 

link[]; 
save'[env ;env I' 

golist;mkgo!ist[args]]; 
cont ~ 'line] 

mkgolist <= ~[[body] prog[[z] 
a [null[body] -+ return[z]; 

islabel[jirst[body]] -+ z +- concat[body,'z] ],' 19 

body +- rest[body]; 
go[a] ]] 

4.8 

The actual execution of each line of a prog body is controlled by the 
pair line and line1. Their behavior is similar to that or evalargs, line 
examines the next expression; if there is no next statement, we exit with ( ) 
using prog_exit; if the next statement is a label, it is ignored; other~ise we 
prepare to evaluate the expression, setting the destination to bb, . 

line <= ~[[ ] [null[args] -+ prog_exit[( )); 
i#abel[jirst[args]] ~ args ~ rest[args]; 
t -+ exp +- first[args],' 

dest ~ bb; 
save_cont[ 'linel,' , peval] ]] 

lineI <= ~[[ ] args ~ rest[args]; 
cont ~ 'line ] 

Note that we don't change cont in line when we see a label; we just leave it at 
line and loop does the rest. 

We call prog_exit to return ( ) when the body of the prog is empty. 
Thus the discussion of prog _exit involves the semantics of return. Of the 
two control mechanisms, return is simpler than go. Recalling the discussion 
of save on page 204, we need to look through the control-list for the last block 
designating a prog entry. We restore to that saved state and set control to that 
prior point. 

evreturn <= ~[[ ]exp ~ first[args]; 
save_cont[ 'ret1; 'peval] ] 

retI <= A[[ ] prog_exit[receive[]]] 

t 9Note that this program handles multiply-labeled statements. 
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prog _exit <= >..[[val] control ~ find_prog[controlJ; 
restore'[type ;ar gs ;fun,odest ;env;exp ,ocont]; 
send[val] ] 

The go statement is a bit more complicated. When a go statement is 
recognized, we look back through the dynamic chain to find the first 
occurrence of the desired label. If we are in a prog we check the current 
golist; if the label is not found, or if we are not immediately in a prog, we 
look for the latest golist and search it. We continue this process until we 
discover the label. At that time we restote the environment .to that which 
encloses the label, reset control, and continue the computation at that point. 

evgo <= >..[[ ] exp ~ first[args],o 

prog_go <= 
>..[[cntrl ;exp) 

[isconst[] ~err[BAD_P ROG_LABEL]; 
not[isvar[]] ~ save_cont[' gol,· 'peval] 
t ~ control ~ prog_go[control;exp] ]] 

prog[[ ] a [eq[type;P ROG] ~ [check_go[exp;golist[cntrl]) ~ restore[env]; 
cont ~ 'line; 
return[cntrl); 

t ~ cntrl ~ find_go[rest[cntrl]]; go[a] ]; 
t ~ cntrl +- /ind_go[cntrl]; go[a] ]]] 

check_go <= >..[[lab;glist][null[glist] ~ f; 
eq[lab,!irst[jirst[glist]]] ~ args ~ rest[first[glist]);t; 

t ~ check_go[lab,'rest[glist]] ]] 

The origins of the interpreter presented here can be traced from several 
sources: [Bla 71], [Con 73J. [Sus 75], [Ste 76b]. 

Problems 

1. This problem involves the escape expression discussed in [Rey 72] and 
implemented in the University of Paris's LISP [Gre 75]. We introduce 
the form: 

escaper <function>; <form J >; ... ;<formn>] 

with the fol1owing semantics: we evaluate the <formj>'s from left to right, 
returning the value of <formn> unless we encounter an application 
involving <function>. If such an application does appear we perform that 
application and immediately return the resulting value as the value of the 
escape expression. , , 
Extend our latest evaluator to recQgniz~ and execute the escape 
expression. , 

2. The semantics of go specified that the argufllent would be evaluated if it 
were a function application, however the current peval does not handle 
this case. Correct that oversight. 
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3. Extend evcond to handle conditional statements. 
4. On page 204 we discussed the implementation of save and restore. 

Implement save and restore for peval. 
5. W rite find_go and find_prog. 
6. Revise eve val to handle cal1s on eval with either one or two arguments. 

See page 216. 
7. Refer to the problem involving multiple setq's on page 193. There, you 

were asked to implement that feature using macros. Either implement a 
macro facility in peval or explicitly introduce such a multiple assignment 
feature. You may implement that feature as either a sequential 
assignment or a parallel assignment. . 

8. Recan our discussion of the general catch-throw pair on page 199. 
Implement these functions in peval. 

4.9 Alternatives to eval 

We have seen a lot of evaluators for LISP. We should at least look a bit at 
other possibilities for describing computational behavior. Indeed, what is 
"computation"? When we are given an expression to evaluate we are really 
simulating the application of simplification and substitution rules. The 
simplification rules tell us when an expression can be replaced by another 
expression; typically. we think of the replacing expression as being "simpler" 
than the replaced expression. Thus car[(A . B)] can be replaced by A, or 

[t -+ 2; .. .J can be replaced by 2. 
The substitution rules typical1y allow us to replace a procedure caU with 

an appropriately instantiated copy of the procedure body. Thus a 
computation involving append[( A B );( 2 3)] is identical to that obtained by 
replacing the occurrence of append[( A B );(2 3)] 

with [null[(A B)] -+ (2 3); t -+ concat[first[(A B)]; 
append[rest[(A B)]; 

(2 3)]]] 

The result of such a substitution is 'usually a candidat~ for further 
substitutions and simplifications. The collection of simplification and 
substitution rules is cal1ed the reduction rules for the lal'lguage. Given an 
expression, a computation is said to terminate when there are no further 
reduction rules applicable and the reduced expression is a constant of the 
language. That reduced expression is the value of the original expression. 

The difficulties with these schemes come from both practical and 
theoretical considerations. The 'direct application of reduction rules is quite 
inefficient: making textual substitutions is expensive. Instead we developed 
the ideas of symbol table~ to contain the bindings of the variables, rather 
than perform the actual substitutions. 
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The theoretical difficulty appears since, at any time in a computation, 
there may be more than one reduction rule which is applicable. A further 
difficulty is that one sequence of reductions may terminate, while another 
sequence of reductions is non-terminating'. We have seen this phenomenon in 
previous discussions of call-by-value versus cal1-by-name, inner-most versus 
outer-most, and normal order reductions versus applicative order reductions. 

Though LISP opted for the call-by-value interpretation of expressions, 
it is possible to develop a call-by-name evaluator. Cal1-by-name implies that 
we substitute the unevaluated actual parameters for the formal parameters. 
As in eval, we need not make explicit substitutions; appropriate use of symbol 
tables wi11 simulate the action, but now, when we build a symbol table on 
entry to a A-expression we bind the actual expressions to the A-variables. 
When we encounter a variable in the body of the expression we evaluate the 
actual parameter. The difficulty is that an actual parameter itself may 
contain variables, and those variables need to be interpreted in the binding 
environment. This means that we must bind funarg-like expressions to the 
form al parameters. 

Most of evalname is like eval of Section 3.5, so we only 'sketch the 
interesting parts. Assume the funarg-expression we manufacture has two 
components, the expr-component, and the env-component. 

We can implement evalname by simply changing the symbol table 
orgainzation, supplying new versions of lookup and mkenv. See page 124 and 
page 152. 

alloc <= x.[[vars] 0] 
send <= x.[[var;val;dest] concat[mkent[var;val];dest] 
link <= X.[[dest;env] concat[dest;env]] 

lookup <= x.[[var,·env] l'[var,first[env],'rest[env]] 

l' <= X[[n;bl;env] [null[bl] ~ l'[n,first[env];rest[env]]; 
eq[n;name[fir st[bl]] -+ eval[expr[value[fir st[bl]]]; 

envir[valuelfir st[bLJ]]]; 
t ~ l'[n;rest[blJ;env] ]] 

One advantage of such an evaluator is that it will not evaluate a parameter 
until it actually needs it, whereas eval evaluates all parameters at function 
entry time. If an actual parameter is not used in the computation and the 
computation of that parameter fails to terminate, then evalname will terminate 
while eval will not. There are disadvantages to evalname. Every occurrence of 
a variable within the body of the function will involve a re-evaluation of the 
corresponding actual parameter. If there are no side-effects in the 
computation then these repeated computations are an unnecessary expense. 
Several people ([Wad 71], [Vui 74], [Pac 73], [Hen 76], [Fri 76a]) have 
suggested modifications to evalname to reduce the inefficiency. The basic idea, 
described ascall-by-need, is to proceed in the evalname style until the first use 
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of a variable. At that time we evaluate the actual parameter, and modify the 
symbol table, replacing the actual parameter with its value. Further 
references to that variable simply get the value. Obviously the scheme will 
not work correctly if side-effects are present. We leave it to the reader to 
supply the details of eValneed; see page 224. 

We now explore a different kind of modification to LISP. This one is 
grounded more in practical experience with the programming language, 
though the results do have theoretical interest. It has been noted that 
programmers frequently wish to return more than one value as the result of 
a function application. The standard alternatives in LISP are either to make 
global aSSignments from within the body of the function, or to return a list of 
the desired values making it the responsibility of the calling program to select 
the proper components. Neither alternative is particularly compe11ing. 
Programming with extensive side-effects tends to lead to obscure programs 
and may incur unnecessary complications in debugging; see Section 6.23. 
Passing lists back as values reqUires much additional computation: someone 
must build the list; someone must tear it apart. It is also disturbing that the 
operation being modelled, --multiple-values--, is not recognizable as a 
construct. This is a similar complaint to that we raised in discussing 
labels-and-gos versus an iterative construct. 

Our goal is realizable by a slight extension of the re-interpretation of 
conditional expressions and multiple-bodied A-expressions 
(page 194, page 196). 
We will interpret the form: 

Pi ~ eil,' ... ein 

to return the eirvalues to the calling function in a left-to-right order. If the 
calling program is single-valued then th~ value it sees is the value of ein' This 
is compatible with our current interpretation. 
The evaluation of: 

A[[ ... ]fl[ ... ]; ... ; fn[ ... ]] 

wilt be interpreted similarly. 
For example [Fri 76b) discusses a multiple-valued function named 

sigmasum. This function is to take a list of numbers and return three items: 
the length of the list, the sum of the numbers in the list, and the sum of the 
squares of the numbers in the list. In our notation sigmasum can be 
expressed as: 

sigmasum <= A[[x][null[x] ~ 0;0,-0,' 

t ~ A[ [Zl;Z2;Za]addl[zl]; 
pluslfir st[X];z2]; 
plus[times[first[x]Jirst[x]];za] ] 

[sigmasum[rest[x]]] ]] 

Notice that we use an anonymous A-expression to spread the multiple values 
at the level of the caller. 
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Another example is a solution to the same fringe problem [Hew 74]: 
determine whether or not the terminal nodes of two trees are the same, 
respecting order, but irrespective of tree structure. 20 Thus: 

samefringe[(A (B (e»),' (A Be)] = t 
but samefringe[(A (B e»; (A e B)] = f 
samefringe <- >..[[x,.,J [null[x] ... null[y]; 

t ... >..[[Z 1 ;Z2;Za;Z4] [eq[z 1 ;Za] ... samefringe[Z2,'z4]; 

t ... f]] 
[fringe[x],:fringe[y]] ] 

fringe <= >..[[x][atom[first[x]] ... first[x]; rest[x]; 

t ... A[[y;Z] y; [null[z] ... rest[x]; 

t ... cons[z; rest[x]] ] ] 
[fringe[first[x]]] ] ] 

In this solution,· same fringe is single-valued but uses values from a 
multiple-.valued function. The two values from fringe[~] are spread into z 1 

and z2 and the values from fringe[y] are spread into za an~ z4' 
It is easy to write an evaluator for such multiple-valued expressions. 

Here is a sketch of the basic parts: 

meval <= A[[x;e] [isconst[x] ... list[denote[x]l 
isvar[x] ... Ust[lookup[x;e]]; 
iscond[x] ... mevcond[condbody[x];e]; 

t ... mapply[fun[x];mevlist[arglist[x];e];e] ]] 

mapply <= A[[fn;args;e][isprim[fn] ... list[apply[fn;args;e]] 
islambda[Jn] ... mevlist[ bodylist[Jn]; 

mkenv[vars[fn];args;e] ] 

t ... mapply[eval[fn;e];args;e] ]] 

mevlist <= A[[l,'e] [null[l] ... 0; 
t ... append[meval[jlrst[l];e]; mevlist[rest[l];e]] ]] 

mevcond <=>..[[l,·e] [null[l] ... (),. 
first[meval[pred[jlrst[l]],'e]] ... mevlist[ conseq(first[l]]; 

env],· 

t ... mevcond[rest[l];e] ]] 

20There are many "solutions" to this problem; the simplest is to flatten 
the trees first, then use equal. Indeed, there are many "problems"; the most 
accurate formulation reqUires that no cons operations be done. For more 
details and interesting discussions see [Gre 76], [Hen 76], [And 76a], and 
[Fin 76]. 
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Problems 

1. Complete the specification of evalname. 
2. Complete the specification of evalneed' To do this, you may assume the 

existence of a binary function named stuff whose first argument x is the 
a name in the symbol table, and whose second argument, is a value. 
stuff is to replace the current binding of x with y. 

3. Modify peval to handle multiple-valued functions. 
4. Recall problem 2 on page 154 dealing with the analysis of lookup. Include 

caIJ-by-name and call-by-need in your analysis. 
5. Using the results of the previous problem, make up a table whose rows 

are labeled with the binding implementations: "deep" "shallow", 
"Weizenbaum", "need", and "name"; and whose columns are labeled with 
the prmitives: alloc, link, send, and the primitives for lookup. Supply the 
entries. 

4.10 Function Definitions 

Now that we have developed these more explicit evaluators, we should 
exploit some of this additional detail. In particular, more of the detail of "<=" 

should be understandable. The effect of f <= ~Hx] ~] is to put the definition 
of f in the global environment, whereas label creates a new dest-block with f 
bound to a funarg consisting of~ and that constructed environment. Once 
we leave the environment containing the label definition, that definition is 
effectively destroyed. The effect of "<=" is to be global. A "<="-definition 
could be temporarily superseded by a label-definition to the same name and 
therefore our search for a binding for f may not short-circuit the 
environment chain. 

Our search strategy is encoded in the lookup function; using the current 
environment, we find. the latest active binding for a variable. The prog 
evaluator, peval} of page 214 is a bit more complicated. Besides finding the 
definition we must also determine whether the arguments are to be evaluated. 
The deVice of isspec (page 212) is sufficient for the evaluators, but has some 
difficulties if we wish to al10w user-defined special forms. We will develop a 
syntax for expressing special forms at the user level, and then discuss 
problems of implementation. 

We wi11 define "<f=" to mean " . .is defined to be a special form ... ". A 
special-form definition is also called a fexpr; and a call-by-value definition is 
called an expr. 

A fexpr is defined with either one or two formal parameters. The first 
parameter is always bound to the list of unevaluated actual parameters. If 
the definition has a second formal parameter, then the environment at the 
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point of can is assigned to the second parameter. This distinction needs to 
be made if we expect to perform some evaluation of the formal parameters 
within the fexpr. Using the implementation of eval discussed on page 216 
we can write either eval[ <form>;<env>] or eval[ <form>]. In the latter case the 
environment that is used is the environment which was current when the 
eval is performed. Sometimes this is not the desired environment. Consider: 

fl <f= A[[X] prog[[y] 
y ~ 2; 
return[eval[jir st[x]]]]] 

If we execute f1[0], x will be bound to the list (0) and eval[jirst[x]] will 
return 0 as expected. But if we execute: 

y ~ 0; 
f 1[y]; 

then x gets bound to (Y), and eval[Y] will find the value associated with Y to 
be 2, and the value of jl[y] is 2, rather than the expected O. 

The problem is that the call on eval takes place in the prog 
environment. We can correct this by making the definition with two 
arguments, binding the second to the environment at the point of call to the 
fexpr: 

f2 <f= A[[x;a] prog[[y] 
y ~ 2,' 

y ~ 0; 
f 2[y]; 

return[eval[jir st[x);a])]] 

The call on f2 will use the environment with y being 0 rather than 2. 
As a final example: 

f3 <f= A[[x;a] prog[[z] 

y ~ 0; 
f 3 [y]; 

y ~ 2; 
return[eval[jirst[x];a]]]] 

would return 2. 
As we have just seen, special forms must be used with care. Howev 

they are useful in" several contexts. Recall that we restricted 
call-by-value functions to have a fixed number of arguments. For examp 
we wish to add four numbers or append three lists we have to 
something like: 

plus[xt;[plus[X2,'plus[X3,'X4] or append[append[lt;l2];l3] 

Since plus and append are associative operations we would rather write: 

pluS[Xt,'X2;X3,'X4] or append[lt,'l2;l3] 
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We discussed the macro implementation of these constructs in Section 3.12. 
Using a special form, we could write plus as: 

plus <f=' ~[ [l;e] prog[[sum] 
sum ~ 0; 

a [null[l] ~ return[sum]]; 
sum ~ *plus[sum;evallfirst[l];e]]; 
l ~ rest[l]; 
go[a]]] 

Notice that we could have used eval with one argument unless the variables l 
or sum appeared as constitutents of the actual parameters. 

Reca11ing Section 3.12, we can use <f= to extend the evaluator. For 
example, and could be defined as: 

and <f= ~[[l;e] evand[l;e]] where evand is defined on page 155. 

The implementation of g <f= ~[[x] ~] requires that we represent the fact 
that g is a fexpr rather than an expr. The implication of isspec of page 212 
is that we have two tables: one for exprs, one for fexprs. This complicates the 
search strategy unnecessarily. Indeed there should only be one definition or 
va'ue associated with a name at anyone time, so a single table should be 
both necessary and sufficient. We do need some way of determining the 
calling style to be used when applying the definition. One way is to revise 
the isspec technique slightly: we use lookup for all searches, but also have a 
table relating funcUon-name with its calling style. One difficulty with this 
scheme is that we could not handle anonymous fexpr definitions. Therefore 
some versions of LISP replace the character "A" with another special 
character when making fexpr definitions. For example: 

g <f= ~[[x;y] cJ:: g <= ,8[[x;y] c] 
We would translate such ~-expressions into S-expr form, and extend 

the evaluator to recognize such constructs. 
We could use a simiJar technique to recognize macro definitions. The 

next chapter will discuss some alternative implementations. 

Problems 

1. Define list as a special form. 
2. Write a version of peval to handle ~-expressions. 
3. Define two special forms, de and dj, which will implement <= and <f= 

respectively. The format of these special forms is identical. For example: 
de[ <name>;<formal parameters>;<body>] 

will implement 
<name> <= A[<formal parameters> <body>] 
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4.11 Rapprochement: In Retrospect 

As with the review section of the previous chapter, this section is a mixture 
of the practical and the theoretical. That is a healthy attitude to cultivate 
when discussing programming languages. For example, in the first section of 
this chapter we claimed that a theoretical1y expected relationship between 
call-by-name and cal1-by-value breaks down in the presence of side-effects. 
The idea of side-effects is a decidedly practical one, based on the "practical" 
notion of a "variable" as a "box which contains a value", rather than the 
mathematical notion of a "variable" as a description for an anonymous, but 
fixed, element of a domain. 

Consider the following expression: 

prog [[ ] y +- 0; 
A[[X] prog[[ ] 

loop [eq[y;O] ~ go[loop]] 
[y +- 1]]]] 

If this expression is evaluated using call-by-value, we bind y to 0, and 
evaluate the anonymous A-expression. That entails evaluation of y +- 1, before 
entering the prog. The computation of the prog body terminates, returning 
NIL. Call-by-name evaluation would not evaluate y +- 1 and the 
computation would not terminate. 

The issue of side-effects highlights an important distinction between 
"variables" in the mathematical sense and "variables" in the programming 
sense. In mathematics, we use the term, variable, to designate a' fixed, but 
anonymous, object: "let x be ~ real number ... ". In programming languages, an 
object is "variable" as opposed to a "constant", meaning that the quantity 
associated with the object may vary. Thus the idea of "box which contains a 
value" arises again. The manipulation of variables in languages leads to 
further distinctions. 

Applicative languages, model1ed after the X-calculus, simulate the 
reduction rules by associating an environment or symbol table with an 
expression. What' is being simulated is a "copy rule" which says that the 
reduction is to be done by making a copy of the expression, substituting the 

actual parameters info the copy wherever one of the X-variables appeared in 
the original expression.' The effect of the symbol table is to share a common 
instance of the actual parameter. The idea of sharing becomes central when 
we discuss assignments and the behavior of side-effects. If copies of values 
are made, the issue of Side-effects vanishes. Important distinctions arise 
when we are able both to share values and to destructively change values. 
This combination of properties is present in the general assignment 
statement. Because of the close relationship between assignment and LISP's 
A-binding, A-binding is sometimes called a "pUShdown" assignment 
([New 6 lJ), as compared with a "destructive" assignment. The adjective, 
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"pushdown", refers to the A-binding's ability to save the prior binding of a 
A-variable in such a way that it may be restored after the computation is 
completed. 

Differences in binding are highlighted by the implementation of 
function. In the applicative subset,function is satisfactorily implemented by 
the FUN ARG triple, where the substitution is represented by a pointer to the 
binding environment. In the presence of assignment statements, this 
equivalence breaks down. 

Consider the fonowing example due to H. Samet: 

f <= >..[[x] prog [[] 
a f- a+J; 

return[[eq[a;J] ~ X; t ~ -x]]]] 
g <= A[[x,fun] prog{[] 

a f- 0; 
r eturn[fun[x ]]]] 

Now evaluate 1z[J] where h <= A[[a] g[3,function[f]]] 

If we implemented function as a direct substitution of values (or free 
variables, then, h[J] would yield -3. The implemer1tation of function as. a 
pointer to the binding environment yields 3. It is Clear where the problem 
lies; we have assigned to a non-local variable after the substitution would 
have been carried out. However, compare the current situation with the 
example on page 145. The lesson to be learned is that assignment statements 
do not fit weB with the substitution model. .~ 

We enriched the LISP subset to anow such constructs as iteration and 
assignment; therefore, we wished to provide an evaluator which adequately 
reflected the implementation, or pragmatics, of these facilities. We could have 
modelled them directly in the initial L,ISP subset, but the representation 
would not convey the intended implementation. As a result, we developed an 
interpreter w.hich directly modelled the aSSignment statements, return 
statements, and non-local go statements. These are some of the most 
troublesome areas to reflect in an applicative model. 

The result of our investigations was peval. This evaluator expresses the 
implementation of the enriched subset of LISP; it is self-explanatory in the 
sense that any construct which peval uses has a data structure representation 
which is recognizable by peval. That is,pevalcan interpret expressions 
involving representations of peval. 

The process of developing peval exposed the control structure of LISP 
just as the development of eval in Chapter 3 exposed the access structure. A 
data structure model for access environments was necessary since the 
implementation of function demanded it. Traditional LISP does not a110w 
such generality in the area of control structure. The appearance of non~local 
gos and returns reqUires control behavior analogous to that of functional 
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arguments, but control regimes analogous to that of functional values do not 
appear in LISP. More recent demands from LISP users have prompted 
development of generalized control structures in LISP-like languages 
([Hew 72], [Pre 72], [Pre 76a], [Bob 73a], [Con 73]). Now that we have 
developed the data structure representation for control, we could extend 
LISP to altow manipulation of control structures. We resist that temptation, 
leaving such experimentation to the reader. 

As we have just seen there are alternatives to some of the 
LISP-techniques and there are some things which, in retrospect, LISP could 
have done better. There are some conceptual difficulties with LISP 
evaluation. We have seen some computational schemes which will give 
values when LISP's call-by-value does not terminate. Whether these schemes 
are better is a debatable point. Programmers tend to think "cal1-by-value," 
but it is not clear whether that is habit, training, or a fundamental point of 
view towards computation. 21 

The practical and the theoretical aspects of programming languages 
have much common ground. As we have seen, the notion of "function" in 
mathematics is different from the notion of "LISP function." The former is a 
set-theoretic notion, the latter is an algorithmic notion. With the introduction 
of iteration, a further discrimination is needed. A useful classification of 
"recursive" appears in [Hew 76]. 
1. "RecurSive" in the sense of recursive function theory ([Rog 67]) meaning 

that there is an algorithm which specifies the function. This involves a 
precise study of the concepts of algorithm and computability. 

2. "Recursive" in the sense of self-referential. The definition of an algorithm 
makes reference to the algorithm itself. The idea of "self-reference" needs 
to be handled careful1y. The definition may involve mutual recursion: f 
calls g, and g calls f Also, we saw on page 149 that a function may be 
dynamically self-referential, while the static text is not. 

21Compare [And 76] in discussing call-by-name versus call-by-value: 
"programs which don't terminate usually have bugs, and programmers would 
rather find out sooner (call-by-value) than later (call-by-name)". 
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3. Fina])y, "recursive" is used meaning "non-iterative". This is the usual 
interpretation imposed in programming languages. This sense implies 
some assumptions about the evaluation implementation. Basically, it is to 
mean that a recursive evaluation will require more bookkeeping than the 
iterative evaluation. A problem on page 193 asked for an iterative 
evaluation of fact[2]; fewer environments were created there than we 
required for the evaluation of the "recursive" (in the sense of 2) version. 
This third use of the word "recursive" is the least well defined and 
understood. It is freq uently believed tha.t "recursive" in the sense of 2 
implies the third "recursive." The third sense is more a property of the 
implementation of the evaluation scheme thana property of the 
algorithm. Techniques are know for evaluating several classes of 
"recursive" algorithms using iterative storage requirements; [Hew 76], 
[Sus 76], [Gre 76a). 

Since the ideas involved in "recursiv~" are so important to LISP and 
programming languages in general, we want to explore the ideas further. We 
will be most concerned with "recursive" in sense 2; we want to ~nderstand 
what is involved in giving a recursive definition. We now have three ways 
to define functions: the label operator, the "<="-operator; and the assignment 
statement. We need to understand the differences between these operations. 

To begin with, we were able to give counterexamples to interpreting: \ 

j <= >..[[x] ~] as j ~ >..[[x] ~] 

The discussion of binding and environments made 

f ~ function[>..[[x] t]] a more likely candidate; however this interpretation is 
also not adequate. 

We might implement fact <= >..[[x][x=O -+ 1; t -+ *[x,fact[x-J]]]] as: 

fact ~ junction[>..[[x] ... fact[x-1] .. .] 

Consider an initial environment with fact defined: 
Ej 

Ec I Ea 

facti >..[[x] ... !act[x-J] ... ] : E; 

We win demonstrate the inadequacy of two natural interpretations of 
function values: direct assignment of value, and assignment of funarg. We 
execute foo ~ fact and baz ~ function[jact], giving: 

Ej 

Ec I Ea 

facti >..([x] ... jact[x-J] ... ] : E j 

foo I >..[[x] ... !act[x-J] ... ] : E j 

baz I fact : Ej 



4.11 Rapprochement: In Retrospect 231 

Things don't look quite right; the "intent" of both foo ~ fact and 
baz ~ function[fact] was to make foo and baz synonymous with fact. That 
clearly is not the case though the right thing happens if we were now to 
evaluate an expression involving foo or baz. The problem is that it happens 
for the wrong reason even though the occurrence of fact in the body of foo 
will find the right definition of fact; an application of baz will find the 
definition of fact. 

One more step wi11lead to disaster: fact ~ ~[[x] x] 

Ej 

Ec I Ea 

facti A[[X]X] 
foo I A[[X] ... fact[x-J] ... ] : Ej 

baz I fact : E j 

Now we are really lost. Though it is reasonable to redefine fact -- it is only a 
name -- our intent was to keep baz and foo as realizations of the factorial 
function. This intent has not been maintained. 

fact <= ~[[X] ... fact[x-J] ... ] is quite different from: 

foo <= ~[[x] ... fact[x-l] ... ] 22 
To understand what has happened we look at assignments to simple 
variables rather than functional variables. It is clear how the environment 
should change during the execution of the seq uence: 

x~3 

y~x 

x~4 

Let's try something slightly more complicated: 
x~l 

x ~ x2 - 6 
Here we first assign 1 to x; then we evaluate the right hand side of the next 
statement. We look up the current value of x, perform the arithmetic 
computations, and finally assign the value -5 to x. Compare this to the fact 
definition; there we made a pOint of not "evaluating" the name fact in the 
right hand side of "<=". 

Notice that after an assignment like y ~ x has been executed, then 
equality holds between the left-hand and right-hand quantities. Let's look 

more closely at the relationship between "~" and "=". Consider x ~ x2 - 6. 

221n LISP I ([McC 60]) considerations were given to representing 
recursive definitions as circular structure, instead of referring to the name. 
That would have solved the current problem. 
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After the assignment is made, equality does not hold between left- and 
right-hand sides. Now consider x = x2 - 6. Interpreting this expression as 
an equation, not as an expression whose value is true or false depending on 
the current value of x, we find two solutions: let x have value -2 or 3. If we 
examine our "definition" of fact in this light, interpreting "<=" as being 
related to "=" rather than "E-", then we are faced with an equation to be 
solved, only now the form of the solution is a function which satisfies the 
equation. There may be many solutions; there may be no non-trivial 
solutions. In our case there is at least one solution: the usual factorial 
function. So what we should write is something more like: 

fact E- a solution to the equation: f =A[[X][X=O ~ 1; t ~ *[xif{x-J]]]]. 
That is, the real intent of the recursive definition of fact was to define a 
function to effect the computation of factorial and then to name that function 
fact. Questions of when solutions exist, how many, and which are the "best" 
solutions is a topic of much current research ([Man 74]). 

We have seen a related result in the problem on page 183; we were to 
show that fact = 'Tlfact]. That is, fact is a solution to the equation .,.[x] = x. 
Solutions to such equations are ca11ed fixed points. 

The fact result is an instance of a more general result: 

for any 'T, define h <= A[[g] 'Tlfunction[A[[x] g[g[x]]]]] 
(Y) 

then h[junction[h]] :: 'T[hlfunction[h]]] 

We shall not prove this result but we can give some insight into its 
justification as we develop the mathematical properties of label; we continue 
our discussion of Section 3.13. Recall lle and lla from page 232. In any 

environment lla should map labellf;g] in such a way that the denotation of f 
is synonymous with that of g. That is, f is a mapping satisfying the equation 
f(t)J ... , tn) = g(t J, ••• , t n). So: 

lla[label[f';g]](1) = lla[g ](1) 

This wilt suffice for our current A-definitions; we need not modify I since the 
name f wi11 never .I;>e used within the evaluation of an expression involving 
g. 

We must be a bit carefu1. Our treatment of non-local variables in 
LISP (on page 127 and in Section 3.8) reqUires that these variab1es be 
evaluated when the function is activated rather than when the function is 
defined. Thus a A-definition generally reqUires an environment in which to 
evaluate its non-local variables. So its denotation should be a mapping like: 
env ~ [sn -+ S] rather than simply [sn -+ S]. This is consistent with our 
understanding of the meaning of A-notation. It is what function was 
attempting to describe. What we previously have called an open function is 
of the form: [sn -+ S]. Given a name for a function in an environment we 
can expect to receive a mapping from env to an element of Fn. 
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A modification of our handling of label is required to describe the case 
for recursion: 

Interpreting this equation operationally, it says: when we apply a label 
expression in an environment' it is the same as applying the body of the 
definition in an environment modified to associate the name with its 
definition. This is analogous to what the LISP apply function will do. Since 
this interpretation of label is inadequate in general contexts, we should look 
further for a general reading of label. Our hint comes from our 
interpretation of "<=" as an equality. Recall: 

fact +- a solution to the equation: f = ~[[x][x=O ~ 1; t ~ *[x,:tLx-J]]]] 

What we need is a representation of an "equation-solver" which will 
take such an equation and will return a' function Which satisfies that 
equation. In particular we would like the best solution in the sense that it 
imposes the minimal structure on the function. 23 This request for minimality 
translates to finding the function which satisfies the equation, but is 
least-defined on other elements of the domain. This discussion of "least" 
brings in the recent work of D. Scott and the intuition behind this study 
again illuminates the distinction between mathematical meaning 
(denotational) and manipulative meaning (operational). 

Consider the following~ISP definition: 

f <= ~[[n][n=O ~ 0,' t ~ +[fin-lJ;:~[2;sub1[n]]]]] 

When we are asked what this function is doing, most of us would proceed 
operationally; that is, we would begin computing fin] for different values of 
n--what is fiO]?, what' is filJ, .... It is profitable to look at this process 
differently: what we ate doing is looking at a sequence of functions, caU them 
fj's. 

fo = {<0,..L>,<1,..L>, ... } 
f 1 = {<O,O>,< 1,..L>, ... } 
f2 = {<0,0>,<1,1>, ... } 
f3 = {<0,0>,<1,1>,<2,4>, ... } 

thinks 

when we begin, we know nothing. 

now we know one pair. 
now two 
now three 

Eureka!! 

When or if, we realize that the LISP function denotes the "squaring 
function" for non-negative integers, then we have moved from pragmatics to 
semantics. The process of discovering the denotation may be likened to a 
limiting process which converges to a function satisfying the LISP definition. 

23Like a free group satisfies the group axioms, but imposes no other 
requir.ements. 
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That is: 

~«n) n2) = limit of the fj's 
where fi may also be characterised as: 

n2 if Osnsi 

.L if i<n or n<O 

4.11 

We may think of our "equation-solver" as proceeding in such a manner. 
As with simpler equations, there may be several solutions. For example, we 

have seen that a function,g, defined to be n! for n~O and 0 for n<O also 
satisfies the LISP definition of fact. The expected solution for fact is 

undefined for n<O, and is therefore "less defined" than g. We would like our 
equation solver to produce a minimal solution, if possil:He. 

That is, Y applied to a term l' gives a functionf satisfying f = 1'( f). 

Y( 1') = 1'(Y( 1'» 

Also f should be minimal in the sense that any other function which 
satisfies the equation is more defined than f. Compare this with page 232. 
That result can be interpreted as saying: for any 1 

Y(1') = h(h) where h = ~«g)1',(g(g») 
. , 

Such an equation solver does exist; it is called the fixed-point operator. It is 
deSignated here by Y. To comprehend Y we generalize from the previous 
example. 

In terms of our example we want a solution to f =1'(f), where: 

1'(g) = ~«n) if(n=O, 0, g(n-1 )+2*n-1» 

Our previous discussion leads us to believe that ~«n) n2) for n ~O is the 
desired solution. 

How does this discussion relate to the sequence of functions fi? Let's 

look at the behavior of l' for various arguments. The simplest function is the 

totally undefined function, .L . 24 

1'(.L) = ~«n) if(n=O, 0, .L(n-1)+2*n-l» 

but this says 1'(.1..) is just ft. Similarly, 

1'( f'(J.» = X«n) if(n=O, 0, f 1(n-l )+2*n-l» 

is just f 2. Writing 1'i for the composition of 1' ... 1', i times, 25 we can say 

fi = 1'i(.L) or, 

X«n)n2) = Jimi ~ oo1'i(.L) 

24Th is .1.. is the totally undefined function in [Fn ... Fn]. 
25Define 1'0 to be .L in [Fn ... Fn]. 
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It can be shown that the least fixed-point of an equation f = -r( f) 
satisfies the relation: 

Y(-r) = Iimio+oo-rn(J.) 

So the denotation for label might be better described by: 

4a[label[f';gJ](1) = Y(~(h)4a[g ](1 : <f,h>)) 

rather than: 

The characterizations are not equivalent. The behavior of 

4 a[label[car;car]] will exhibit a discrepancy. The fix-point characterization 

reduces label[car;car] to the minimal solution of the equation car =car; that 

solution is J.. The LISP interpretation of label[car;car] gives car. The 
general question of the correctness of the denotational semantics which we 
are developing is the subject of [Gor 73]. 

In summary, LISP has two ways of assigning values to functions: label 
and <=. The use of label manufactures a new "knotted" environment but 
does not always find the mimimal solution [Gor 73]. The evaluation of 

J <= <It is interpreted as J +- cit, where the assignment is made in the global 
environment. LISP's solutions are sufficient for most definitions, but a more 
general treatment of the ideas involved in function definitions is . needed 
from both practical and theoretical considerations. 

A mathematical treatment of the imperative. features of programming 
languages requires an extension of our model. An essential ingredient of 
imperatives is their ability to produce side-effects. This is usually modelled 
by including some notion of "the state of the machine". In such a 
development, the 4 function is specified in terms of an expression, an 
environment, and a state. 

Problems 

1. The Joo1act-baz example of page 230 is not described directly in LISP. 
Can you write a LISP program. without progs which will also exemplify 
this difficulty? . 

4.12 LISP Machines 

"in the beginning was the Word" 

John, 1:1 
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"in the beginning was the Word all right, but it wasn't a fixed 
number of bits" 

R. S. Barton, Software Engineering 

4.12 

The LISP definitions and expressions which we have been writing are 
expressed in a language ca11ed the meta-language, and the LISP expressions 
are cal1ed M -expressions or M -exprs. The most. primitive data structures of 
LISP are ca11ed S-expressions. We have seen that it is possjple to represent 
M -expressions as S-expressions, and indeed, that ~ignificant results are 
obtained from such a mapping. The programm,ng language, LISP, uses 
the S-expr translation of the LISP algorithms. As:we move from the mor~ 
formal aspects of LISP to the practical details of implementations, we should 
reflect on some of the features of LISP which make it a unique programming 
language. 

The arguments to LISP programs are S-exprs and since we are writing 
LISP programs in S-expr form, then data and program are indistinguishable. 
Programs must have a very special structure, but program and data are both 
S-exprs just as in most hardware machines the contents of locations which 
contain data are not distinguishable from locations which contain 
instructions. 26 On a typical contemporary machine it is the way in which a 
location is accessed which determines the interpretation given to the location. 
If a processor accesses the location via the program counter, the contents are 
executed as an instruction. That same location can usually be accessed as 
part of a data manipulating instruction. In that case, the contents are simply 
taken to be data. LISP is one of the few high-level languages which also has 
this property 27 It gives the programmer exceptional power. 

Since the next three chapters delve more deeply into implementation 
details and machine organization, it is useful to illuminate the similarities 
between LISP machines and traditional computers; The similarities are 
striking. A contemporary machine is a computer which executes 
we11-behaved programs segments referencing very well-behaved data 
structures. A LISP architecture, catering to program debugging, has a 
different emphasis. We will see the traditional design as a specialization of a 
LIS P design. 

26 A few machines have been built to enforce a dichotomy between data 
and program; the HP3000 and several of the Burroughs machines ([Org 73], 
[Dor 76]) follow this approach. 

27The IPL series of languages ([New 6lJ) had this property, however 
those languages were more reminiscent of assembly language. 



4.12 LISP Machines 237 

Our discussion will be restricted to common features of contemporary 
computers; we wilt not single out one specific architecture. 28 The basic item 
of information in the computer will be the word; That word will consist of 
binary bits, lero and one: 

e1 ... 1e 

The number of bits in a word will not be too relevant for this 
discussion, however we will assume that each word contains the same number 
of bits. The "word" is our basic unit of data. Since programs will be 
specified as collections of words, it will be convenient to introduce an 
information unit for program representation. 

In most machines, the words are not simply scattered about like loose 
paper on a desk top. Rather, theY' are arranged neatly like the pages in a 
book. Each word has an associated number called a its location. We will call 
a sequential collection of computer words a vector. For example: 

lee 
101 

111 

leee 

10 

01 

11 

1e 

1 

1 

1 

The numbers preceeding the words are the locations of the words. In 

this example we have sketched the vector from locations 48 through 108 . 29 
A program will be stored in memory as a vector of numbers. 

Over this simple matrix of words and vectors the computer industry 
has presented a myriad of representations for instructions and data items. A 
ubiquitous feature is the execution cyc1e of a stored program machine. 

For simplicity, we will assume that the architecure is a Single-address 
instruction machine. This implies that each instruction of our machine win 

28Readers who are familiar with computer architecture may find much 
of this discussion too simple; however our discussions will show relationships 
between LISP and other architectures, and raise some interesting questions 
about machine design. 

29The notation "i8" denotes the base eight, or "octal", representation of 
i. In the remainder of this section, any numeral is an octal numeral. 
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specify two parts; an operation, and a single operand. Since many operations 
we wish to perform expect two operands, the address format may reference 
an implicit operand. That operand, named AC, is a special register in the 
machine. For example, an instruction ADD 100 would mean form the sum 
of the number represented in location 100 and the number represented in 
AC, and place the summation back in AC. 30 Thus the result of the addition 
is "accumulated" in AC; AC is also called the "accumulator." Or J MZ 101 
might mean "begin execution at location 101 if the contents of AC is a 
representation of zero; otherwise execute the instruction following the J M Z." 
We will postpone more detailed examination of specific machine instructions 
until Chapter 6. We wish to concentrate on the mechanisms which a 
computer uses. to execute a program. 

The program counter, denoted by PC, is used to control the execution 
path of a program. If PC references an instruction like the ADD above, then 
the machine executes the addition and then prepares to execute the next 
instruction in the sequence. The detai1~ of the J MZ are a bit more 
complicated. If the contents of the AC is (a representation of) zero then the 
machine will place 101 in the PC so that it can execute the instruction in 
location 101; otherwise the instruction fonowing the J M Z is executed. Our 
intent should be clearer now, but we can do better with a diagram. 
Something like: 

l: C(IR) +- C(C(PC» 
C(PC) +- C(PC) + 1 
execute C(IR) 

go to I 

The notation, C(x), is read "contents of x"; the arrow ''f-'' is read 
"replaced by". Th~ IR, or Instruction register, is an internal register used to 
hold the instruction we are to execute. So step-:by-step the diagram reads: "the 
contents of IR are replaced by the contents of the contents of PC"; that gets 
the next instructiOn. Next, "contents of PC are replaced by contents of PC 
plus 1. Note that PC is incremented before execution of the instruction. If we 
incremented PC after the execution of the instruction, and the instruction 
were a J M Z-type instruction,. then the PC might get a spurious 
incrementation. Final1y we execute the instruction and then go back to fetch 
the next instruction. Embellishments of this basic cycle wi11 get us to a LISP 
machine. 

We will assume that any such word can contain an instruction or data, 
and the interpretation of a word depends on the way the execution 
mechanism of the machine accesses the word. For example, the contents of a 

30 Actually the operation "ADD" wi11 not appear in the memory; rather, 
a bit-pattern will appear there and the computer must interpret that pattern 
to mean "ADD". 
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location can be used both as an instruction and as data; if location 101 
contained the representation of the instruction ADD 101, then the execution 
cycle for that instruction would involve location 101 in both roles; instruction 
and data. This dual role of instruction and data occurs in less ad hoc 
situations. An assembler converts an external string of characters into a 
vector of bit patterns which a loader finally converts into real machine 
instructions. Many of the bit patterns which the loader receives from an 
assembler are simply machine "instructions", however the loader acts on them 
as data items; it does not execute them. 

Several machines a1tow certain embellishments of the operand field of 
an instruction; indirect addressing is one example. If an operand is fetched 
indirectly, that means that contents of the operand field are not used directly 
as data, but are interpreted as a further address and the contents of that 
further address are examined. If the machine al10ws arbitrarily deep indirect 
addreSSing, that further address is examined to see if it specifies additional 
indirection. This chain of indirect addressing must terminate with a "real" 
address if the instruction which instigated this mess is ever to complete its 
execution. 

For example, let a modifier i indicate indirect addressing; then 
ADD 10 i means don't add the contents of location 10 to AC but look at the 
contents of location 10 to determine the address. If the contents of location 10 
is 2, then the contents of location 2 wilt be added to AC. If location 10 
contained 2 i, then indirect cycle continues and the contents of location 2 
would be inspected for an address. However if the contents of location 10 is 
10 i, then we wilt continue to fetch the contents of location 10, looking for an 
operand which wilt not be forthcoming. 

We should examine several of the conventions of this machine, asking 
if they are fundamental to the architecture or are more whims or historical 
accidents. After all the original Von Neumann machines were numerically 

oriented. 31 Why should data be numerical? Why should the instructions be 
sequential? Why do we need accumulators? Let's examine indirect 
addressing more closely. 

Indirect addressing is actuatly a special case of an interesting idea: 
instead of requiring that the operand be a data item, let the operand specify 
a further operation. There are several problems with this scheme, none of 
which are insurmountable as we shall see. However, the most important 
problem for our current concerns is: if an operand may specify a further 
operation, then we must have a way of terminating the "get~new-operand" 
fetch. We saw two solutions in the indirect address paradigm: 

1. An instruction will not invoke indirection if the i modifier is not present 
in the instruction. 

31[Car 75] is interesting paper on the practical design proposed by 
A Ian Turing (of the theoretical Turing machine fame); Turing's machine 
had a much more non-numerical flavor. 
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2. An indirect addressing cycle will terminate the operand fetch. when it 
comes across a reference which does not contain the i modifier. 

These two solutions generalize nicely: 
1. Have operations which look no further. That is, their operand may look 

Hke an operation, but it is not to be taken as such in the current context. 
This is the effect of the quote operator. 

For ex amp Ie: 

loc ADD loc 

When we execute loc, we also access loc as data. 
2. Supply each word with an indicator that distinguishes data from 

instruction. The operand fetch would terminate when a "real" operand 
was fetched. 

As we have already noted, some machines do supply a data-instruction 
indicator (though not for the purpose we have ascribed to it); and as we 
have further noted, we do not plan to follow this policy. The freedom to 
move freely between data and instruction is very powerful, albeit dangerous. 
We would like uniform access to program elements and data elements. That 
is, an instruction can reference either data locations or instruction locations. 
In terms of our current machine this means: 

If a location is referenced by the PC then its contents is decoded as 
an instruction. If a location is referenced as an operand then its 
contents is taken as data. 

We want similar flexibility in a LISP machine. What "arbitrary" 
decisions in the current architecture should we replace? The data items are 
particularly puny. As an initial generalization, we might consider a "vector" 
machine. Here, the basic data units would be vectors of numbers. The would 
lead to an interesting generalization: the ADD operation might now specify 
the component-wise addition of two vectors, etc .... Also programs would be 
representable as data items, since they are vectors. That's some 
improvement. 32 But data and programs are still represented linearly, and the 
data items are an representations of numbers. Surely we can do better. 

First, realize that most programs are not linear; they typically have 
jumps and subroutine calls. A linearity is imposed on program structure 
because of the gratUitous incrementation of the program counter. That 
linearity becomes particularly bothersome when one has to patch machine 
language programs. Note also that much data is non-numerical in nature; 

32This generalization is Similar to that available ·in APL. 
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and much of that information has more complex structure than that supplied 
by a "vector" machine. "Ah, Hah!", you exclaim; we might want vectors, of 
vectors, of ... vectors, because that's a more general structuring of data and 
could be used to reflect the non-linear structure of programs, and ... 

Excellent! Now you're ready for a LISP machine! 
The processor of a "LISP machine" is eval. 33 If eval references an 

S-expr via its "program ,counter", then that S-expr is decoded via the 
internals of eval. If an S-expr is referenced as an argument, then it is taken 
as data. 34 The identity of program and data is not fixed even within the 
execution; a LISP program can create a data structure which can then be 
executed either explicitly, by appearing as an argument to eval, or implicitly, 
by appearing in the function-position of an application. A LISP machine is 
a generalization of the simple computer. The operations which get the next 
instruction or get the next data object, are more complex since neither 
program nor data is sequentially related. The next chapters will discuss 
implementations of LISP structures on traditional computers. 

The simplest way to communicate with such a machine is to read an 
S-expr translation of a LISP expression into memory, evaluate the 
expression, and print the result. Several implementations of LISP use a 
variant of this "read-eval-print" loop: 

prog[[] 
a print[eval[read[]j( )]],. 

go[a]] 

Note the similarity with loop on page 210 and the basic execution cycle of 
our simple computer. 35 

A LISP machine is a calculator using list-notation input and converting 
the output from LISP programs to list-notation wherever possible. But 
internally, all manipulations are done on the S-expression representation. 
LISP will allow you to manipulate the representation of the lists. The LISP 
S-expr operations like car, cdr, and cons operate without complaint on lists, 
even though we have repeatedly said that these functions are S-expression 
functions. LISP's attitude toward car and cdr is similar to its treatment of 
gos and labels: these are useful primitives from which to build tools. 

One effect of this generality is to present the unwary LISP user with an 
incredible potentiality for generating programming errors. The alternative, 
to req uire declarations for all data ob jects and disallow run time 
modifications to programs offers a debugging tool of some power. If we 

33Several "LISP machines" have been proposed or actually built 
including: [Got 74], [Gre 74], [Deu 73], and [Bar 71] 

34This goes for funargs as we)]: until they're applied, they're data. 
35The details of read and print, two of the input and output 

operations in LISP, are discussed in the next chapter. 
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write programs such that the type of each data object must be given, 36 and 
if we write each function such that the proces:s of binding arguments to 
values must check that the type of the actual parameter agrees with the type 
of the parameter of the function, then a very large number of programming 
errors can be located almost as soon as, they occur. You can think of the 
parameter-passing mechanism as a "fire-wan," which wilt help contain the 
deviant behavior to within the particular function. 

Any function which gets caned has- a right to expect that it will be 
called with reasonable values. Part of being reasonable is having the correct 
number of arguments given to it; cons[A; B; CJ is as bad as cons[A). Part of 
being reasonable is having the right kind of arguments; we don't expect 
results from subl[A]. We should not expect that the functions are sufficiently 
omniscient to convert an argument of the wrong kind into a proper one. If a 
function is written to expect an argument of type polynomial then it should 
complain if it receives an argument of type list even though the current 
representation for polynomials might be special instances of lists. 

M any programming languages do offer such omniscience. Fortran calls 
this service "conversion"; Algol68 cans it "coercion". However if each 
function accepts whatever argument it is given and attempts to use it in its 
computation, then the first indication of trouble witJ occur when a primitive 
function is called and causes some error deep within the implementation. 
Typical1y this indication of error is way past the actual source of the 
difficulty. The alternative is to explicitly code tests into the entry code of 
each function definition; but that's an expensive use of the programmer's 
time and computation time. What typically happens is that the tests are left 
out and intensive debugging soon fonows. 

As with most areas of programming, coercion is not a black-or-white 
issue. A strong type structure can hinder as well as help. Requiring explicit 
declarations and directions for conversion is frequently annoying. Several 
important programming tasks are type-free. In particular, the debugging 
programs must be able to freely access an parts of the representation of 
program and data without regard for type. To make debugging meaningful, 
such programs must modify existing structures, changing data structures and 
programs. When dealing with large complex computations, it is not 
acceptable to edit programs, recompile them, and reinitialize the whole 
computation. More sophisticated debugging techniques must be developed. 

LISP's position is that it is the user's responsibility to handle all type 
restrictions by programmed tests. LISP has no capability to maintain 
abstract data structures; in fact, the implementation of LISP itself is open to 
programmer modification. However people have begun investigations of 
"typed LISP" [Car 76], and some implementations of LISP [lnt 75] give some 
aids in constructing and maintaining typed data structures. 

36For example, in Section 2.3 the types of the arguments to diff should 
be <poly> and <variable>, not list and atom. 
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Symbolic expressions are the only real data structure; we almost have 
sequences as a data structure, and the necessary ingredients are there to build 
abstract data structures. But the question of integrity in using such defined 
data structures is left in the hands of the programmer. In summary, LISP is 
an excellent tool for building more complex systems; as a tool, it has the 
ability to cause injury, and since it is a tool it has few preconceptions. These 
are some of the reasons that LISP has maintained its position as the 
"machine language" for Artificial Intelligence. 



CHAPTER 5 

The Static Structure of LISP 

5.1 Introduction 

The material in the previous chapters has been rather abstract. This 
chapter begins a discussion of the mechanisms which occur in 
implementations of LISP. However the importance of the techniques we will 
describe extends far beyond the implementation of this particular language. 
Most of the ideas involved in our implementation are now considered 
standard system programming techniques ana are common tools in language 
deSign. LISP is particularly well~suited to the task of explicating these ideas 
since many find their origins in the first LISP implementation. 

We wiJI begin our discussion of implementation with an analysis of 
storage regimes for S-expressions. As with the more abstract discussions of 
representations" the "concrete" representation which we pick for our data 
structures (S-expressions) wilt have direct bearing on the implementation of 
the primitive constructor (cons), selectors (car, cdr) and predicates (atom, eq) of 
LISP. We must also consider the efficiency of the implementation and we 
must include input and output mechanisms to translate this representation 
back and forth between the external S-expr notation. 

The present chapter will develop a picture of the static structure of an 
implementation, or to be more graphic, this chapter describes the memory of 
a LISP machine. The next chapter discusses the dynamic structure of LISP; 

244 
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that is, the control structures necessary to evaluate expressions involving 
recursive functions and other LISP control constructs. 

Throughout these discussions we will remain as abstract as possible 
without losing 'too much detail. We will describe the "logical" structure of a 
LISP machine, even though a more efficient implementation might map 
differing logical structures onto the same physical structures by utilizing 
machine-dependent techniques. 

5.2 Representation of S-expressions 

We previously have expressed the dotted pair (A . (B .e» as: 

IA 
ABC 

or occasionally (see page 9) as: 

,I i I · 'ct9 
A B C 

This second style of graphical representation has a direct representation in 
the storage layout of our machine. Each "double-box" will be represented as 
a machine location and each arrow will be represented as a pointer to a 
machine location. Notice that each box contains two pointers; therefore each 
corresponding machine location, loc, will be interpreted as containing two 
machine addresses. 1 The left-hand address wilt represent the car-branch; the 
right-hand address will represent the cdr-branch: 

loc I car ( cdr I 
The pointers will either reference atoms or point to two-pOinter boxes. 
Literal atoms -- like A, B, C -- will also be represented in machine locations, 

1 An actual hardware machine may not be of sufficient word-size to 
accomodate two addresses; in this case, several real words may be needed to 
represent one LISP word. For example, the PDP-II (16 bit words) 
implementations typically use two machine words ([Har 75]), and 
micro-processor versions (8 bit words) may use four words ([Pag 76]). In 
Section 7.13 we discuss a special compact representation of LISP cells. 
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only here the contents of each location will be an encoding of the name of 
the atom. The contents of such a location must not be interpreted as 
pointers. 

loc rep. of literal atom 

Tq help keep track of the different uses of machine locations we will 
partition our machine's memory into two disjoint spaces: pointer space, 
which will contain two-pointer cells; and atom space, which will contain 
information like atoms which should not be interpreted as pointers. Thus if 
the first box in our example were represented by location l00 and the second 
were represented by location 405, and the atoms A, B, and C were 
represented by the numbers 40, 41, and 42, and were to be found in locations 
710, 762, and 711, respectively, then the following picture beginning at 
location l00 could represent the dotted pair' (A . (B . e)). 

100 I 710 I 405 

405 I 762·1 711 

710 a 711 42 

762 41 

The left half of location l0e points to the representation of the atom A and 
the right half points to the representation of the dotted pair (B . C). Notice 
too, that given the entry point into the representation --location 100 in the 
example-- we can discover the S-expr being represented. 

This representation of S-exprs is a special case of a scheme called 
1inked list structure. The term "linked" refers to the fact that to find 
succeeding elements in the representation we must follow the explicit pointers 
as opposed to, say, merely incrementing an array pointer. The phrase "list 
structure" describes an arbitrary interconnection of these two-pointer nodes, 
including self-referential structures. We wilt discuss such general structures 
later; for the moment we restrict such constructions to LISP trees: no 



5.2 Representation of S-expressions 247 

intersecting branches. 2 
The particular brand of linked list structure which we have 

demonstrated is caned singly linked. The adjective "singly" means that only 
one pointer is stored as the representation of the arrow, -+. This means that 
the representation only tells us how to find successor elements in the 
structure. For example, if we were looking at location 405 the representation 
tells us how to find the car or cdr; they're· at 762 and 711 respectively. But if 
we wanted to find the predecessor of 405 in this representation it would 
require some further calculation. We would have to start at the beginning of 
the S-expr representation and look for a location such that its car or cdr is 
the desired cell. If a particular application required frequent discovery of 
such predecessors then we might consider a more complex representation 
which would also contain information about the predecessor of each node, 
essentially representing -+ as .... 

For example: 

-I i 1 · +-1--1 ~. )----+. cpr 
ABC 

One such representation is called doubly-linked list structure. In this 
representation of LISP trees we could store three pieces of information with 
each node: 

loc 
predecessor 

car I cdr 

Note that LISP trees always do have unique predecessors. In the case of 
list-structure, unique predecessors do not always exist. Compromises exist in 
some applications: some data structures can be doubly-linked, allowing fast 
traversal but requiring more space; while other data structures are singly 
linked, requiring less space, but requiring more time to traverse ([Gua 69]); 
still other structures may have more compact representation as arrays or 
numbers. For example, a typical representation of a vector, or sequence of 
fixed length, is to store the elements sequentially in memory. a Since each 
element in thts structure has at most one successor we can use the sequential 
addresses as imp licit pointers to retrieve. successive elements. A general 
S-expr has two successors, thus the implied linear addressing scheme of most 

2The implementation of lists using linked addresses was introduced by 
the IPL series of languages; [New 61]. 

aWe will discuss these more detailed representations in Chapter 7. 
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machine memories is insufficient as it stands; LISP uses linked al1ocation. 
Again there are compromises. For example, the following memory 
representation is valid for LISP trees: for any location n, find its successors at 
locations 2n and 2n+J; note that the predecessor of any cell is unique. Each 
location must contain an indication of whether or not it is an atom. The 
remaining contents of a location is available for data; see [Ber 71]. 

We will frequently refer to several different S-exprs simultaneously; for 
example, when we are talking about the implementation of the function cons 
we will be manipulating the representations of two S-exprs. Similarly we will 
want to refer to several pieces of a single complex S-expr; for example we 
might wish to "put a finger" at a specific point in a structure and then, 
depending on the result of a computation on some sub-part, move the 
"finger" either left or right. To facilitate such discussions we will assume the 
existence of a set of pointer registers: Pt I' Pt2, .•. , Ptn• Thus, using the above 
example, the following represents Pt l pointing at (B . C) and Pt2 pointing at 
the atom A: 

405 710 

Implicit in our representation is the assurance that we can differentiate 
between locations in atom space and locations in pointer space. For example, 
assume each of our locations can hold six digits and assume we will store a 
numeric atom as its corresponding number. Then the atom 762711 would be 
stored as: 

I 762711 I 
Since this is exactly the contents of location 405 4 some confusion is possible: 
is the contents a nl.lmiJ€r or is it two pointers? A typical trick is to partition 
memory such that particular portions of the address space correspond to each 
of the logical spaces: atom space or pointer space. In our example we could 
assume that addresses less than 700 are locations for pointers, while 
addresses greater than or equal to 700 contain atoms. Thus the 
representation of 762711 would appear in a location with address 700 or 
greater. 

Though our memory system is not completed yet, we do have enough 
structure to begin a discussion of the implementation of some of the 
primitive LISP operations. 

o4The vertical bar doesn't appear in the machine's memory. 
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Problems 

1. What problems do you foresee in using the double-linking scheme for 
representing LISP's S-exprs? 

5.3 Representation of LISP Primitives 

Now that we have some of the representational problems for S-exprs 
reasonably wen in hand we will look at the implementation of the LISP 
primitives. We will examine car, cdr, eq, and atom in this section, leaving cons 
for later. 

We must understand how these primitives obtain their parameters and 
how they are to return their values. Recall our discussion of environments 
and destinations in Section 4.6. An environment chain was constructed by 
Hnking destination blocks whose value slots have been filled. A dest-block 
was created when we recognized a function application. 5 The name 
components of a block are either the A-variables in the case of a 
A-application or are system-generated names in the case of primitive 
application; the value-slots of a dest-block received the evaluated actual 
parameters. When a dest-block was filled, it was chained onto the front of 
the environment and we were ready to caU the function. Thus the first block 
on the environment chain was the local symbol table. The function was 
expected to return its value to a deSignated dest-block, and then return to the 
interrupted computation. So, on entrance to a primitive we have access to at 
least two structures: a destination block and the environment chain. 

dest env 

L, I 'il L, I 'f- . .. ... 
• • • • • • 

~~ 
• • • rn 
rn 

51f the application supplied an incorrect number of arguments no 
dest-block is built; the debugging routine is called. Several implementations 
supply missing arguments with NIL or evaluate and discard extra 
arguments. This treatment of improper calling sequences ignores one of the 
most common sources of bugs in LISP programs ([Mot 76]). 
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Here is how car uses these structures: 
Let val be the value-part of the first entry in the local table. If val is 
an atom then car is undefined; the implementation should send a 
message to the debugging packag~ (see Section 6.23). If val is not 
atomic, it has a left- and right-hand side. We should send the 
left-hand side of val to the value part of the slot pointed to in the 
dest-block. 

For example: 

dest env 

L I I 'n 
• • • 

m~ 

L 5t".+ 
• • • rn 102 

Before 

.~ 
............ ,--1 ~ 

..... 
• • • 

• • • 

102 12041 221 
After 

Example for car 

For successful completion car expects that its actual parameter represents a 
node in pointer space; otherwise we get an error. If the operation is successful 
then the dest-slot is changed to point to whatever was pointed to by the 
left-hand side of the selected cell. The description of cdr is sufficiently 
similar that we leave it to the reader. 
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On page 248 we described the internal structure of LISP atoms. Using 
that representation we can give a simple implementation for the predicate 
atom: 

dest 

Does the actual parameter point into that area reserved for atom 
names? If so, send a representation of truth as value, otherwise send 
a representation of false. 

env 

L I ,'il L ..... 
• • • 

~oJ 
• • • 

"A" I 710 

I I I 714 "T"I 
We are writing "A" instead of the numeric encoding. Thus "A" is really 40. 

Before 

.~ 
f---..,.,--I ~ 

• • • 
Eit .. ,~ 

• • • 

After 
Example for atom 

Notice that we did not need to examine the contents of location 710, thus 
saving one storage reference. It was sufficient to know that the location was 
between predetermined bounds. If the actual parameter was not pointing at 
an atom we would have returned a pointer toa location containing "NIL". 
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Finally we describe an implementation of eq: 

dest 

L 

Do both actual parameters point into atom space? If not the result 
is undefined. If they do then do they reference the same atom? We 
can determine this latter condition in two ways: first, they might 
point to two different locations in atom space; we would have to 
examine the contents of those locations; if they agreed then eq 
should return a representation of truth. A more satisfactory solution 
is to store each atom uniquely; one location wilt be reserved for II A " , 
etc. Now all eq need do is make sure that both slots point into atom 
space and point to the same location. Thus no additional memory 
reference is required. From now on we wil1 require that all atoms 
are stored uniquely. 

env 

I L .-n Bt 
••• -+ 

i 
• • • 

m~ 710 

• • • 
II Til I t=U 714 

"Alii 710 

Before 

on Bt 
••• -+ 

I · . . 
m~ 710 

• • • 
IIT"I t=U 714 

"Alii 710 

After 
Example for eq 

We still have a ambiguity to resolve if we represent the number 40 as 
48 and represent the atom A as 40. Section 5.6 resolves this conflict. 
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5.4 AMBIT/G 

Before investigating the implementation of atoms, we should explore other 
possible descriptions for LISP's primitives. We have described the 
primitives by example; it would be more pleasing if we could describe each 
primitive in more general terms. Fortunately we can, using a micro-version 

of a graphical language catted AMBIT/G. 6 

When developing a complex structure-manipulating program, we draw 
pictures. In LISP we frequently describe data structures graphical1y and in 
the previous section we gave graphical descriptions of the LISP primitives 
using examples. AMBIT is an extension of both of these ideas; it is a 
graphical language for the description of both data and algorithms. 

The basic statements of the language are pattern-match and 
replacement rules. Several programming languages have complex pattern 
matchers; AMBIT's uniqueness is its graphical presentation of the patterns. 
Patterns are described as combinations of shapes and solid arrows. If an 
instance of a pattern can be found in the current state of the computation, 
then we will replace that instance with a new pattern. The only kind of 
replacement we will allow is the swinging of an arrow so that its head moves 
from one node to another; the tail of the arrow is immovable. Thus the new 
pattern differs from the old only in the positioning of some of the arrow 
heads. Where the arrow head strikes a node is immaterial. Dashed arrows 
show replacements to be made if the pattern matches. Portions of the shapes 
marked with "?" are "don't-care" conditions. 

For example, here's car: 

dest env 

LI I---r--I' TI 
• • • 

L 

5f 
qEJ 

.. I ? I 

..... 

~-+-r +1 
• • • I 

ttl ~ 
4- .. -

Algorithm for car 

This AMBIT diagram contains eq uivalent information to the previous 

6AMBIT/G is an acronym for Algebraic Manipulation By Identity 
Transformation/Graphical. 
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example of car, but the extraneous details of specific addresses have been 
stripped away. We will use such diagrams occasionally when they will 
contribute to clarity. 

Problem 

Give an AMBIT diagram for eq. 

5.5 A Few Programming Techniques 

There are a few useful a.nd practical LISP programming techniques which 
take advantage of the implementation. These tricks are supported in most 
implementations and are useful enough that they should be documented as 
programming language features. 
1. In most implementations ()f eq the check for atom-ness is suppressed and a 

simple address comparison is made. Non-atomic S-expressions are not 
usually stored uniquely; 7 Thus in most implementations 

eq[(A . B),.(A . B)] is usually false, but 
eq[xix] is usual1y true for any x. 

We are not changing the definition of eq; it is still undefined for non-atomic 
arguments. The preceding remarj{.s deal only with the usual implementation 
of eq. 8 

2. The implementation of the truth values t and f is usually simplified, 

mapping f onto NIL, but a1towing anything but NIL as a representation 

of t. This allows several related tricks: 

a. Any expression may be used as a predicate, and 
b. Used as a predicate, not[null[l]] has the same effect as l. 

For example, consider the following extended version of the predicate 
member. 

mem' <= ~[[x;lJ [null[l] ~ r,. 
equal[x,jirst[l]] ~ I; 
t ~ mem'[x;rest[l]]] ] 

This "predicate", mem', will return f if no matching element is found, 
otherwise it wiJI return the list beginning at the match. The non~empty list 
can be used as an indication of truth, and can also supply the calling 
function with the match if a match is found. 

7See the problem on hash consing on page 287. 
8Formally, the implementation is wrong in not satisfying the definition~ 

Pragmatically, the implementation is convenient. 
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3. Several implementations of conditional expressions allow "pt as an 
.abbreviation for "Pi ~ Pi". The computational effect is the same, but Pi is 
only evaluated once. 

Using this feature, mem' could be written: 

mem' <= A[[X,·l] [null[l] ~ f; 
equal[x,jirst[l]] ~ l; 
mem'[x;rest[l]]] ] 

This feature is more useful in contexts where we wish to test for the 
existence of an object and, if a match is found, do something with the object. 
For example, the trick of page 213 could be written: 

where: 

[cont ~ isspec[fun;spectbl]; 
isprim[] ~ ... ; .. .] 

isspec <= A[[X;LJ [null[l] ~ ( ); 
eq[name[first[l]];x] ~ value[jirst[l]],' 
isspec[x;rest[l]]]] 

Since the result of value will be a function name, and never f, there will be 
no ambiguity in using iss pee as a predicate. 

Problem 

1. The application of these tricks may give rise to some unaesthetic 
programs. Typically we have to test for existence then, assuming an 
instance was discovered, we have to perform further computation on that 
instance. 9 Constructs like: 

[it ~ test[object] -+ smash[it); .. ,J 

arise. The objectional aspect involves the variable it. The variable it is 
not local to the conditional expression. Either it is global: an 
unnecessarily gratuitious side-effect;. or it is bound by an enclosing 
A-expression or a prog. In either case the binding is too far removed 
from its usage. Sussman and Steele [Sus 76] suggest the construct: 

test[ <form 1 >; A[[X] <form 2>]; <form3>] 

with the following semantics: evaluate <form 1 >; if it gives a value other 

than f then apply the second argument; a unary function, to that value. 
Otherwise evaluate <form3>' 

Recast the isspec-argument of page 213 in terms of test. Give an 
implementation of test by extending one of our evaluators. 

9If no further computation is necessary, trick No.3 suffices. 
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5.6 Symbol Tables and Property-Jists 

Since we are examining implementation details, and since manipulation of 
symbol tables is such a central issue in evaluation, we should also scrutinize 
symbol tables and their organization. We have seen two fundamentally 
different symbol table organizations: deep binding and shallow binding. We 
should examine the implications of these organizations, and probe deeper 
into their implementation. If the number of entries associated with an atom 
is small then shallow biriding may be advantageous. If the number of entries 
associated with an atom is very large then the shallow binding technique 
may be too costly and deep binding or yet another organization may be 
required ([McD 75J). 

Recall our discussion of getval, addval, and get val_cell in Section 3.11. 
These functions were developed to describe shallow binding, but they are 
i11ustrative of a more general idea. In symbol manipulation and symbolic 
programming, we often want to be able to associate a set of data with an 
item. For example, an algebraic simplifier would like to know whether a 
specific operator is commutative; if so, certain simplifications are valid. We 
could maintain a list of all commutative operations and reqUire that the 
simplifier check that Jist. But since commutativity isa property of the 
operator it seems more natural to associate the property with that operation. 
Search considerations also arise if the list of operations is long. 

We generalize the idea expressed in getval and addval, allowing the 
association of an arbitrary collection of property-value pairs with an atom. 
With each atom we wiJ) associate a list called the property-list or p-Iist. 10 

The names, attribute or indicator, are sometimes used as synonyms for 
property. An atom is frequently called a carrier of the properties. 

A property list is a table of properties and property values. The size of 
the property list is not fixed, but can shrink and grow during a computation. 

propl vall· 

prop2 val2 . . . 
propn I valnl 

We have seen an identical diagram in Section 2.5; property lists are a very 
effective tool for modelling data bases. 11 Thought of as abstractions, 
property lists are symbol tables. The name-entries are properties and the 
value entries are the property values. 

IOProperty lists were introduced to programming languages in the IPL 
series of languages [New 61]. 

11They are by no means the onl, or best way of representing a data 
base. See [McD 75]. 
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We identify an atom with its property list. For example, if we wished 
to represent the n+n_operation as the atom PLUS and wished to signify that 
the operation is commutative and binary, the atom PLUS might be 
represented as: 

PLUS 
commu T 

arity 2 

In these kinds of applications, we are using the atom as a data structure and 
attaching properties to that atom rather than thinking of the atom as a 
representation of an identifier. 
For example: 

CAR 
MFGR BUICK 

YEAR 1959 

These same techniques are applicable. when we consider atoms as 
representations of variables as used in the evaluation process. In fact, an 
atom can simultaneously be used as a carrier of a value and can also have a 
property list: 

E4 

r+f ~ j ~ I E3 

El 
~--~--~--~.j--~---

prop! 1 ~aI11~f~ __ -+f_. __ ~~+ ~ : ~ 
propn I valnl 

p-Ust for X 

• • • 
I 
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An instances of X share a common property list, but the value, or binding of 
x is found using the environment chain. This example is described in terms 
of deep binding, but the property-list idea is also directly applicable to the 
shallow binding schemes. To adapt p-lists to the first shallow binding 
scheme of page 151, we introduce a property named VAR whose property 
value will be the co11ection of environment-value pairs: 

X 
VAR • E4 3 

propl vall E3 A 

• • • El B 

I propn I vain I 
Simi1arly, the second shallow binder could use: 

X j I i 
f VALUE I ·+-+<current value> 
,-I __ ..--l'L..-_-..J' 

In summary, property Hsts are a language feature which is independent 
of the binding strategy we have implemented. A property list can contain an 
the aspects of an atom which we wish to consider; the class of attributes need 
not be fixed, but can vary during the execution of the program. Those 
properties need not involve the fact that atoms are used to represent 
identifiers when we map the meta language onto data structures. The deep 
binding implementation emphasizes that the value of a variable is associated 
with the environment in which that value is created. However a shallow 
binding organization associates values with variables, and thus it is natural 
to think of property-lists when thinking of shallow binding. 

We wish to look more closely at the value aspects of atoms. We have 
seen three properties related to the value of a variable: simple value, 
call-by-value function (expr) and call-unevaluated function (fexpr). We were 
able to distinguish between exprs and fexprs: either place the fexpr name in 
a special list; or store the fexpr as a ,1-expression, rather than as a 
A-expression. We made no explicit distinction between simple values and 
function values; if a simple value appeared in the function position of an 
application, we evaluated that expression until we did discover a function 

object. 12 If a function appeared in a position expecting a simple value, then 
the data structure interpretation of the function ob jeet was taken. 

12It may be a bad idea to distinguish between the evaluation of an 
argument position and the evaluation of a function pOSition. 
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Since u<=" and "<f=" were defined to place the appropriate function 
definition in the global table, we can interpret these operations as associating 
the definition with the atom. That is, being an expr or fexpr is a property of 
the atom. Similarly, globally bound variables like t and nil play the roles of 
constants and therefore can be' interpreted as having a value associated with 
them. Primitive functions like car, and primitive special forms like eond 
should also be considered constants. Their "values" are fixed procedures for 

specific call-by-value and call-unevaluated operations, respectively. 13 

This discussion exemplifies five value-like properties which are 

properties of an atom, rather than properties of a particular environment: 14 

CONST 
EXPR 
FEXPR 
SUBR 
FSUBR 

simple value; used as a constant 
call-by value definition 
call-unevaluated definition 
call-by-value primitive 
call-unevaluated primitive 

In Section 6.18 we will introduce another protocol for assigning values 
to variables, but at anyone time an atom may have at most one of these 
value-related indicators. 15 
For example, car might be represented as: 

j I I 
I SUBR I • +To machine language code for car , " 

Part of the atom-structure for CAR 

13M any implementations are less restrictive: 1. T and NIL can be 
redefined; 2. car, cdr and the other primitives can be redefined. Allowing 1 
will always lead to grief. 2 is justified only for debugging calls on these 
functions; however, if one programs abstractly, there will be no need to 
debug such low level cans. 

14We will discuss the VAR and VALUE properties later. That will be 
the intent of Section 5.19. 

15Several implementations allow atoms to have several of these system 
properties. Thus expressions like car[ear] are executable. The implementation 
uses context to determine which car is a simple variable and which car is the 
primitive procedure. The current eval will operate correctly on this example 
since a recognizer for the function car is explicitly encoded in apply, but such 
tricks lead to unnecessarily mysteriOUS programs. For the same reason, the 
LISP obscenity A[[lambda] ... ] will work. Notice its S-expr representation is 
(LAM BDA (LAMBDA) ... ). Context is used by an evaluator in slightly less 
obnoxious ways. For example, an evaluator for prog can ten a reference to 
the label x from the prog-variable· x in 
... prog[[x;y] ... x fl . .] ... g[x ... ] ... go[x). See page 189. 
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When apply recognizes CAR as a representation for the function car, the 
machine-dependent code wi11 be executed, but CAR can a1so be used as an 
atomic data structure. For examp]e: 

in eval[(CAR (QUOTE (CAR BMW));( )] both uses of CAR wi11 appear. 

As a further examp]e, consider the representation of: 

fact <= >'.[[x][x=O -+ 1; t -+ times[xifact[sub1[x]]]]] 

The right-hand side wou]d be: 
(LAMBDA (X) (COND «ZERQP X) 1) 

(T (TIMES X 
(FACT (SUB1 X)))))) 

To represent the intention that fact is to be defined as the above recursive 
function, we might store the S-expr representation on the property-list of the 
atom FACT and use EX P R as its indicator. The occurrence of the atom 
F ACT in the A-expression is represented as a pointer to the atomic structure 
of FACT. 
Here is part of the atom-structure for FACT: 

2 EXP~ I .p 
I LAMBDA I --t--+I 

FACT 

SUB! I -+1 X 1/1 
Atom-structure for FACT 

Every occurrence of an atom --EXPR, LAMBDA, and so forth-- is actually a 
reference to the appropriate atomic structure. Note that both instances of X 
are actually poi~ters to the representation of X, but that two representations 
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of (X) will typically be distinct. Also keep in mind that we are storing the 
data structure representation of the fact function. 

(LAMBDA (X) (COND «ZEROP X) 1) 
(T (TIMES X (FACT (SUB1 X»»» 

is a perfectly good list. If we attached it to the indicator V ALU E then we 
would have represented the list as the simple value of fact., 

Representations of special forms 'like CON D and QUOTE give rise to 
the indicator F SU BR. When an instance of such a special form is 
recognized, the argument list is passed to the primitive without any 
evaluation. In a similar manner we introduce the indicator F EX P R to 
designate the occurrence of a "<f=" definition. 

Our discussion of property lists as carriers of values has centered on 
the representations of constants; many identifiers in LISP are constants. Even 
though we can redefine functions using a version of "<=", most such 

definitions are relatively constant. 16 The primitive functions are also 
constant. Shallow binding tries to capitalize on this observation, by 
associating all of the value aspects of a variable with the property list, and 
we will soon see that for several interesting subsets of LISP, we can 
significa,ntly simplify the handling of shallow binding. Before discussing 
that, we will show how an evaluator might use such property-list information. 
This reqUires the introduction of property-list manipulating functions. 

5.7 Property-list Functions 

There are four functions for manipulating the property-list: 

putprop[a;v;p] will put the value v under the property p on the property-list 
of the atom a. If the property p already appears on the p-list then the v 
over-writes the old value; otherwise a new property-value pair is added 

to the front of the p-list of a. The value returned by putprop is V. 17 

get[x;i] will search the property-list of the atom x looking for the indicator i. 
If i is found the value associated with that indicator is returned by get. 
If x does not have the indicator then f is returned. Thus getval[x] 
could be defined as get[x;V AR]. 

16To define a temporary function we use label. 
l71n some implementations, the old pair is removed and the new pair 

is added to the front of the p-list. The idea is that since short p-lists are 
usually searched linearly, one should have the most popular properties near 
the front of the list. This reorganization of the table can even be extended to 
include references, to properties, always moving the last referenced property 
pair to the front of the list [Riv 76]. 
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getl[x;l] wHt search the property-list of the atom x for the first occurrence of 
any indicator which appears in the list, I, of indicators. If such a match 
is found, then the remainder of the p-list, beginning with the matching 

indicator, is returned. If no match is found, f is returned. The virtue 
of getl is that it can distinguish between an atom which has an 

indicator with value f and an atom which does not have the indicator. 
get cannot communicate this distinction. The disadvantage of getl is 
that it gives access to the internal structure of the p-list, and therefore 
access to the representation of the atom. Such p-list functions are useful 
but dangerous ([Sam 75). 

remprop[n;p]: The final function in this class is used to remove 
property-value pairs from the p-list of an atom. The function is named 
rem prop. remprop has two arguments: n, an atom; and p, a property. If 
the property is found on the p-list of the atom, then rem prop removes 

the property-value pair and returns t; otherwise it returns f. 

5.8 An eval for Property-lists 

The evaluators in this section do not reflect typical implementation policies, 
but illustrate the use of property lists and introduce the first non-trivial 
application of LISP's ability to interchange program with data. Though this 
chapter is mostly concerned with the static organization of LISP, the ideas 
involved in tne evaluator are sufficiently iinportant and demonstrative of the 
power of property lists that we include them here rather than later. 

The first evaluator uses property names like CONST and EX P R as 
representations for functions const and expr. Discovering that an atom has 
the CONST property, the evaluator applies the function named const to 
perform the evaluation. In this case, the evaluation is simple: return the 
represented constant. We will assume a shallow binding implementation and 
therefore variables are handled by 'recognizing the property V AR and 
passing the evaluation to the function var. In the case of an application, we 
have more work to do; expr handles that. The actual application, is handled 
using LISP's computed function facility discussed on page 158. 

We will describe a sequence of evaluators based on property list 
manipulation. We will not express all of the details of this family of 
evaluators, but leave many of the details to the reader. 
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eval <= A[ [exp;env] 
[atom[exp] -+ form_name[getl[exp; 

(V AR CONST )]] [exp"env]; 
atomfjir st[exp]] -+ form_name[getl[fir st[exp ],. 

(EXPR 
F EX P R)]] [exp;env],· 

... ]] 

var <= A[[form;env] lookup[form,'env]] 
const <= A[[jorm"env] denote[form,·env]] 
expr <= A[fjorm;env] A[[dejJ eval[body[dejJ; 

mkenv[ vars[dejJ; 
evlist[args[form];env]] ] 

[get[func[form];EX P R]]] 

No substantial benefit is apparent after all this work. With a slight change, 
we could extract a small improvement: replace the explicit lists 
(VAR CONST) and (EXPR FEXPR) with idprop and appprop. Bind these 
variables globally to the respective lists. Then if we wished to define a new 
kind of calling sequence, say gexprs, we could add GEX P R to appprop and 
write a function named gexpr to handle the evaluation of gexpr forms. 
However with further analysis, we can do much better. 

Consider simple variables. Each instance of a simple variable has the 
same value property; when we see x we apply lookup through var; when we 
see y we apply lookup through var. However the association of a value 
property with each instance of a variable is discomforting. The value 
property is more a property of the class of variables than it is a property of 
an instance. That is, an instance inherits a property by being a member of a 
certain class. 

Let the atom V AR represent the class of variables; let the atom EV AL 
represent the property name describing value properties. The function 
lookup is therefore a property value of the atom V AR, and should be 
associated with the property name EV AL. 

X VAR 
VAR • E4 3 EVAL LOOKUP 

propl vall E3 A 

• • • El B 

I propn I vain I 
Now the evaluator should do a double get, looking down the property list of 
an object, for a class name which has an EV AL property. Finding EV AL, 
the evaluator applies the associated property value to the Object and the 
environment. 
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Before presenting the next evaluator we should settle one more point. 
In the preceeding eval we ignored the question of anonymous A-expressions; 
we assumed that the function-part of an application was an atom. We did 
this becaue we have implied that only atoms have property lists. We will 
remove this restriction for the next evaluator and assume that any object can 
have a property list. A A-expression will have a property list with (at least) 
property name LAMBDA and property value of the repesentation of the 
A-expression. The atom LAMBDA wi11 have an EV AL property whose value 
is the function eval_X; this function will evaluate applications who$e 
function-parts are A-expressions. 

Finally, since eval_X handles most of the evaluation of an applicatiqn, 
there is no need to make expr do it too. In fact, our previous distinction 
between V AR and EX P R is unnecessarily restrictive. We should be able to 
return functions as values just as we can return constants or simple values. 
So EX P R should be a property name. with property value being the 
A-expression, but EX P R should now have an EV AL property which is just 
lookup. 
For example: 

pi ist for FACT pi ist for (LAMBDA (X) 
({ZEROP X) ...») 

EXPR I · I' 'I LAMBDA I ~II-+·---+· (1~~BDA 
(COND {(ZEROP X) 

) ) ) 
• • • • • • 

pi ist for EXPR pi ist for LAMBDA 

EVAL LOOKUP I I EVAL EVALLAM . . . . . . 
With all this extra mechanism in place, eval does absolutely nothing! 

eval <= X[[exp;env] getget[exp;EV AL] [exp;env]], 

where getget looks at property names associated with exp until it finds one 
which itself has a property list containing EV AL. 

Now real progress has been made. The evaluation of any expression is 
controned by a function associated with the class to which that expression 
belongs. It is trivial to modify or extend such an evaluator: supply the class 
name and the appropriate EVAL property value. 

The technique is applicable to more general kinds of computation than 
just evaluation. With a class name we can associate arbitrary pairs of 
properties and functions. For example, we might wish to define special input 
or output conventions for classes; to do this we Simply associate a READ 



5.8 An eval for Property-lists 265 

property and a P RI NT property with the class name and supply routines to 
perform the special reading or printing. Similarly, we can associate a compile 
property, and a function describing how to compile instances of this 
construct. 18 

The net effect of this reworking of evaluation is to expose a much more 
general scheme for handling computation. Such a distributed eval is an 
example of a LISP technique ca11ed data-driven programming ([San 75a]). 19 

Property list representations have also found extensive use in data base 
applications (Section 2.5; see [San 75a]. 

5.9 Representation of Property-lists 

In discussing representations, we must keep the essential characteristics of 
property lists we11 in mind. A property list is similar to a local environment 
block; each property list is a sequence of names and values. However a 
property list can grow and shrink dynamically, whereas an environment 
block is created at a fixed size. Since we cannot predict the size of the block, 
a natural representation is that of a list. 

propl vall propl I.·~~ prop2 val2 
- - - r 

valnl propn propn I -+1 valnl/I 

Property list Representation 

The elements of the p-list are associated in pairs. The first element of a pair 
is the property, the next element is the property value. But atoms can't be 
represented as just any arbitrary list. We must be able to recognize the 
occurrence of an atom so that we can implement the predicate atom. 

There are at least two alternatives. We might partition memory as we 
began to do on page 248 with pointer space and atom space. Then the test 
of atom-ness is a test on the location being referenced. We might also 
preface the property list with an "atom header" which wilt signal the 

1 ~he language EL 1 ([EL 1 74]) incorporates a similar scheme, 
however only five deSignated properties can be associated with any class 
name. The techniques of syntax-directed input-output, developed in 
Section 9.4, are also appJicable to such an evaluator. 

19The author first saw this .technique used in a non-trivial way in 
[Dif 71] in the Stanford LISP compiler. 
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beginning of the atom. Here the test for atom-ness is a test on the contents of 
the location being referenced. In the first case we dedicate a section of 
memory for the storage of atoms; 20 in the second case we require an extra 
memory reference. 

A related efficiency consideration involves the use of property lists in 
the implementation of LISP. Since the evaluator will be making frequent 
examination of the p-list, it is often useful to store the system-related 
properties in specific positions relative to the beginning of the p-list; this will 
elimin ate a search. 

Using a separate "atom space", an atom wou1d be represented by its 
property list. In this case, property lists need not be stored in pointer space. 
Chapter 7 examines some of these techniques. In the text we will describe 
atoms using the "atom header" since it makes it clearer in pictures. Atoms 
will be special lists whose car-part contains an indicator used exclusively for 
the beginning of atoms. We wi11 use X to designate the beginning of an atom. 
The cdr of the representation of the atom is the representation of the 
property list. Such locations in pointer space containing X in their left-half 
and a pointer to a p-list in their right-half are called atom headers. 
For example, here is part of a representation for the atom for car: 

Ix I ·r,--I S_UBR---,--",·rqE··~ 
~ to machine code for car 

Part of the atom-structure for CAR 

An example of the distinction between get and getl in our 
representation may be useful. 

getl[FOO;(BAZ)] 

"' getl[FOO;(PNARF BAZ)] get[FOO,'PNARF] 

E t 
IXI ·~I BAl I .=t-+~ 

,"'-P-N-AR-F "'"T'I-·--,=t-+ ,-+-. "'---' 

20We need not dedicate a whole section of the machine to "atom 
space". Several techniques are available for "mapping" a conceptually 
contiguous space onto a scattered memory.[Ste 73], [Nor 76], [Pre 76a]. 
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and get[FOO;BAZ] = get[FOO;BAR] = NIL. Notice how both get and getl 
allow free access to the internal representation. 

The simple atom is becoming much more complex. It has a whole 
substructure attached to it. Thus each atom is like a word in a dictionary; 
many words can be used as different parts of speech and their dictionary 
entries wilt reflect this by having several alternative meanings. Similarly, an 
atom can have several different "meanings" attached to it and depending on 
the context, we will be interested in one of those interpretations. Just as we 
win find an meanings of a specific word in one location in the dictionary, our 
implementation of LISP becomes much simpler if we store each atom and its 
associated p-list uniquely. Every reference to the atom A is actually a pointer 
to the same location in memory. This location has a car-part which is the 
special atom indicator X, and a cdr-part which is the p-list for the atom A. 

Thus (A . A), which we have been writing as: 

A A 

might be represented as: 

U--'XI-'-+ p-list for A 
f I f 

The internal structures of this implementation of LISP are not L-trees, but 
list structure; that is, there are intersecting and circular branches. LISP 
implementations therefore involve binary list structure since each 
non-terminal node in our representation has exactly two branches. 

Assume we have the above dotted pair as a value of a variable x and 
we wish to print the value of x. We would expect that an output routine 
would be given a pointer to the dotted pair and we would hope to see 
"( A . At appear on the output device. The LISP output routine, named 
print, can recognize that "(A. A)" is a dotted pair since its car is not X. But 
how can print distinguish (A . A) from (B . B)? The pointer in the 
preceding diagram wilt point to A in one case and to B in the other, but 
nothing about the atom te11s us what to print. The Simplest thing to do is to 
store a representation of the name on each p-list. This is done with another 
indicator called P N AM E, standing for print-name. Each atom is guaranteed 
to have a print-name or "p-name". The print-name of the atom is what the 
LISP output routine will print as the name of the atom. 



268 Static Structure 5.9 

For example, the atom BAZ wilt have at least the fonowing: 21 

I PNAME I "BAZ" I 
where II SAZ" means a representation of the string of characters, B,. A, Z. 

When we represent such a property pair we must deal with 
representational problems of character strings. We desire strings of 
unbounded length, but must represent them in a rryachine with fixed word 
size. We wiJI discuss a more general representation in Section 7.3, but here 
we will represent the print name by using the basic dotted-pair data 
structure. 

qIZJ 
I BAZm I 

p-name representation for BAZ 

BAZr:u::r means a memory location containing some encoding of the letters B, A, 
and Z. The symbol, tI, represents some non-printing character; we are 
therefore assuming that a location can contain five characters. 
We represent the print-name as a list so that we may allow atoms with 
p-names of unbounded length. The p-name for BLETCH, would be: 

III · I 'qTI 
I BLETC I I HtttUJ I 

P-name structure for BLETCH 

With such print-names on each property-list print can now operate. The 
print routine needs the print name and, as we shall see shortly, the input 
routine also needs the print name, but otherwise an LISP calculation is done 
using the internal pointers to the property lists. Several implementations 
exploit this observation by placing the print names in slower memory than 
that used for the main computation. Since ,access to print names is infrequent, 

21Since every atom is guaranteed to have a print name, many 
implementations separate this property from the general p-list. 
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we can afford to spend more time in retrieving them. We will discuss more 
of the details of LISP input and output in Section 5.11. 

The print-names BAZm, BLETC, and HJ:ttltJ, should be stored in atom 
space since their encodings should not be interpreted as pointers. Since 
"atom space" is no longer an appropriate descriptor for that space, we will 
give it a new name. We will call that area of memory which contains 
information not to be interpreted as pointers, Full Word Space, and 
abbreviate it as FWS. 

In summary, we have discussed the details of a typical implementation 
of the class of S-exprs. Our non-atomic S-exprs have their branching 
structure stored in pointer space. Our initial discussion of atoms supposed a 
particular simple representation: simply store the encoding of the atom in a 
memory location in a separate space called atom space. Upon further 
reflection we decided that atoms should play a more active role in the 
implementation. Since identifiers are to be represented as atoms, we needed 
some way to represent those properties typically associated with identifiers. 
Identifiers in LISP are, among other things, used for names of functions and 
names of variables. We needed the abiUty to represent at least these two 
kinds of "values" with a LISP atom. We introduced the general scheme of 
property-lists and associated such a p-list with each LISP atom. All the 
things we know about a specific atom are stored on the p-list. We stored 
each atom uniquely; then to examine the properties of an atom only one 
structure need be located. Since all of our LISP programs must be read into 
the memory, we reqUired that the input function keep atoms stored uniquely. 
On reading a literal atom, the program checks the current table of atoms. If 
the atom appears, the program returns a pointer to the entry. If the atom 
does not appear it constructs a new table entry consisting of the print name. 
One effect unique storage was to turn our abstract LISP-trees into list 
structure. Ind~ed, the representation of a LISP expression is a complex net 
of pointers; even atoms are now pointers. The only LISP objects we have 
represented which are not pointers are the actual print-names like BAZr::n 

To reinforce our discussion we illustrate the abstract picture of NIL 
and, on the next page, one implementation of the atom NIL. In all of the 
resulting worms there are only three elements in Full Word Space; everything 
else is a pointer. 

f 

NIL 
fD--.a..._P_NA_M_E _ 

f 
I · I CONST 

I 



.1 A Pict~re of the Atom NIL 

We have peen writing the atom NIL as: 

Ixl -3-1 CONST I -3-~1 PNAME I "3-02] 
. Nfl ·CqJa 

INILanl 

where the atoms for PNAME and CONST are represented as: 

Ixl -3-1 PNAME I "3-4J2] 
J. 

03---1 PNAME I "3-cp2l 
qJa cp2l 

In full detail, NIL is represented as: 

! 
I X I "3-'---+--'---' 
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5.11 Input/Output: read and print 

..... T hus syntax is the servant of sematics, an appropriate 
relationship since the substance of the message is conveyed with the 
semantics, variations in syntax being an inessential trimming added 
on human-engineering grounds . ... " 

Vaughan Pratt, [Pra 73] 

The implementation of LISP is simplified dramaticatty since a very large 
part of that implementation can be written in LISP itself. We have already 
seen that the evaluation process is expressible this way, and we wilt exploit 
this property again in dealing with compilers (Chapter 6). 

In this section we wi1J show that the majority of the LISP input and 
output routines can be written as LISP functions catting a very few primitive 
routines. The primitive routines are also described in LISP, though they 
would normatty be coded in machine language. 

The primitive functions are ratom and patom. 

ratom[ ] is a function of no arguments. It reads the input string, constructing 
the next atom or special character (left paren, right paren or dot). It 
looks up that object in the atom table and returns a pointer to that 
table entry. 22 If no entry is found an appropriate entry is made. ratom 
skips over spaces and commas, only recognizing them as delimiters. It 
returns only atoms or special characters to read. 

patom[x] is a function of one argument expecting an atom, left paren, right 
paren, blank, or dot as the value of its argument. It wi11 print the 
p-name of that object on the output device. 

To simplify matters, we need to refer to atoms whose print-names are 
the characters .. ) .. , "(", ".", and " "(blank). We wi11 assume that RP AR, 
LP AR, P ERJOD, and BLANK denote such atoms. For example, if the next 
input character is "(" then 

eq[ratom[ ];LP AR] is true (and the input pointer is moved to the next 
ch aracter!). 

patom[PERIOD] wi1t have the effect of printing a "." on the output device. 
The LISP scanner is ratom. A scanner must negotiate with the actual 

input device for input characters. The scanner builds the most basic 

22Numerals are typicatty not stored uniquely; also they are given a 
simpler structure than the atomic p-list. See Section 7.9 for more details on 
LISP numbers. 
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ingredients, like identifiers or numbers, and only after such a basic block has 
been recognized is the next level of syntax analysis attempted. The units, also 
called tokens, which the scanner has built are passed to the parser. 

A parser determines whether or not the input stream is a' wel1-formed 
expression. The LISP parser is read; it builds a tree-representation of the 
input string, recognizing both S-expression and list-notation. 

read <=A[[ ] A[Y] [atom[j] -+ j; 
is_lpary] -+ read_head[ ]; 

t -+ err[ ]] 
[ratom[ ]]] 

The call on err will terminate the input scanning immediately. 
read_head will translate strings « acceptable in the context "( «". Thus 

« being "A)" or "A (B . C»" would be suitable for read_head; (A) and 
(A (B . C» are S-exprs or lists. . A) would not be acceptable since (. A) is 
neither an S-expr nor list. 
Therefore, if read_head sees: 

an atom, then « is <atom>~); 

a left parenthesis, then« is (~) 8); 

a dot, then « is . ~); this is an error; 

a right parenthesis, then « is ) 

read_head <= A[[ ]A[(}] [atomlj] -+ cons[j;read_taU[]]; 
is_lparfj] -+ cons[read_head[ ]; 

read_taU[ ]],. 
is_rparlj] -+ NIL,' 
t -+ err[ ]]] 

[ratom[ ]]] 

read_tail is looking for legal «'s in the context "( <sexpr> «". The structure 

of this function is that of read_head except for recognition of dots. If. (:J)" is 

plausible in the context "( <sexpr> «". It is up to read_cdr to see if its 
expectations are fulfi11ed. 

read_tail. <= A[[ ] A[y] [atomy] -+ cons[j;read_tail[]]; 
is_lpar[j] -+ cons[ read...,.head[]; 

read_taU[ ]],' 
is_dotlj] -+ read_cdr[]; 
is_rpar[j] -+ NIL; 
t -+ err[' ]]] 

[ratom[ ]]] 
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The only input legal after a dot is a S-expr or list followed by a right 
parenthesis. Therefore: 

read_cdr <= A[[ ] A[[j] [is_rpar[ratom[ ]] ... j,' 
t ... err[ ] ]] 

[read[ ]]] 
Finally, here are some of the pri~itive recognizers which these 

functions use. 
is_dot[x] <= eq[x,.p ERIOD] is_lpar[x] <= eq[x,.LP AR] 

The printing of an internalized LISP expression is straightforward. 
print <= A[[X] prinO[x],. terpri[ ]; x] 

terpri initiates a new output line. 

prinO <= A[[x][atom[x] ... patom[x]; 

t ... patom[LP AR],. prinbody[x]]] 
prinbody <= A[[X] prinO[car[x]],' 

[null[cdr[x)] ... patom[RP AR],. 
atom[cdr[x]] ... patom[BLAN K),. 

patom[P ERIOD]; 
patom[BLAN K); 
patom[cdr[x)]; 
patom[RP AR); 

t ... prinbody[cdr[x)]]] 

Notice that we have used the extended A-expressions and conditional 
expression as described in Section 4.3. 23 

The basic print routine allows us to print data structures and program 
representations. However the printer will print duplications for a list 
structure which has shared branches and, worse yet, will not terminate if it is 
given a circular structure. Some implementations of LISP remedy this 
ailment; see [Ter 75] or [lnt 75]. 

23Notice too that print[(A .(B . e»] prints as (A B . e). This is because 
print doesn't know that the structure is not a list until it sees the last 
dotted-pair. There are two ways of handling this: either require a type-code, 
telling whether the structure is a dotted pair or a list, represented as a dotted 
pair. Then all dotted pairs are printed in dot notation, and all lists are 
printed in list notation. The other alternative is to first examine the 
structure; if it is a list representation~' then print it that way,otherwise print it 
as a dotted pair. This problem is another indication of "pb ject vs. 
represen tation". 
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The output format is a simple linear string of atoms, numbers, spaces, 
and parentheses. For example a print-based program for printing function 
definitions might output the following as the definition of member: 

(MEMBER (LAMBDA (X L) (COND 
«NULL L) NIL) «EQ X (FIRST L» 
T) (T (MEMBER X (REST L»»» 

The print routine can break the text at the end of any atom; 24 the only 
restriction we place on printing of expressions is that what is print-ed must 
be read-able. 

Even with a small definition like this, we have difficulty deciphering 
the structure. When functions or lists become large and deeply nested then 
readability becomes impOSSible. Most implementations of LISP supply 
formatting programs called "pretty-printers" or "grinders" to supplement the 
basic print routine. 

A pretty-printer might print member as: 

(MEMBER 
(LAM BDA (X L) 
(COND «NULL L) NIL) 

«EQ X (FIRST L» T) 
(T (M EM BER X (REST L»»» 

See Section 9.2 for a mdre detailed description of such formatting 
functions. 

So far we have thrown all the I/O back on ratom and patom. Clearly 
Tatom wi11 be more interesting. All patom need do is get the p-name and print 
it. Tatom should perform an efficient search of the atom table and if the 
atom is not found, add it to the table. A11 ratom has to work with is the 
actual character string which will be the p-name of some atom. What Tatom 
could do is look at the p-name of each atom currently in the table of atoms; 
when it finds a match it returns a pointer to that atom; this is essentially the 
linear search scheme of assoc. If the appropriate atom is not found it can 
build a new one consisting of the p-name, add it to the table, and return a 
pointer to this new entry. In the next section we will introduce an alternative 
scheme called hashing. 

24Some implementations even a110w the printer to break in the middle 
of an atom. This is accomplished by designating a special character for 
carriage control, and the read routine knows to ignore the immediately 
following end-of-line sequence. 
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Problems 

1. You might have n?ticed that the d,efinitions of read_head and read_tail 
are almost identical: the difference involves treatment of dots. Write new 
versions of these functions utilizing a common routine and functional 
arguments. 

2. Write a set of BNF equations that generate the same set of sentences that 
read parses; 

3. Write a version of read which only accepts list notation. 

5.12 Table Searching: Hashing 

Table· lookup is analogous to the problem of looking up words in a 
dictionary. The scheme of assoc is analogous to beginning at the first page. 
of the dictionary and proceeding linearly,. word-by-word and page-by-page, 
through the book until the word in question is found. More usually, we look 
at the first character of the word and go immediately to the subsection of the 
dictionary which has the words beginning with that character. We know 
that if we cannot find the definition of our word in that subsection we need 
look no further. We delimit our search even further by keying on 
subsequent characters in the word. Finally we may resort to linear search to 
locate the word on a specific page or column. A machine might mimic the 
dictionary search and subdivide the table into 26 subsections. 25 However, 
since it is the machine which will subdivide and index into the table, there 
may be schemes which are computationally more convenient for the machine. 
The scheme should also result in rather even distribution of atoms in the 
subsections. If the majority of the atoms end up in the same partition of the 
table we will have gained little improvement in the search effiCiency. 

An algorithm used to determine which partition a particular element 
belongs in is called a hashing algorithm or hashing function. One obstacle 
in such schemes is the management of each partition. If more than one 
element "hashes" to a partition th~n we have a collision. There are two basic 
strategies available to resolve such a collision. The first, called open 
addressing involves re-hashing the elemerit, thus refining the partition, until 
no col1ision exists. In the second, called bucket hashing, the hashing function 
hashes to a "bucket". An the elements with the same hash number are stored 
in the same "bucket"; a separate search, perhaps linear search, is used to 
discover if an element is in the bucket; and an element wi11 appear in at most 
one bucket. Since most LISP implementations use bucket hashing, we win 
describe that scheme in more detail. . 

The search algorithms are applied within rat om after an identifier has 

25 Th at is, a base 26 sort. 
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been delimited. All ratom has at that time is the encoding of the actual name 
of the atom; call that string chr _str. The hashing function will use chr~str to 
determine which bucket must contain the atom. Given the bucket number, 
we examine the list of atoms in that bucket, comparing each print-name 
against chr _str. If a print-name matches, we return a pointer to the property 
list of that atom. If the atom with print-name chr _str does not appear in 
that bucket we are assured that it do¢s not appear anywhere in the table. In 
this case 'we create a new atom struc~ure, add it to that bucket, and the value 
of Tatom is a pointer to that new structure. 

Here is a simple hashing fun~tion: 

1. Assume that we have N+I buck.ets, numbered 0, I, 2 ... N. 
2. Take the numeric represen,~ation of chr-str and divide that number by 

N+1. 
3. Look at the remainder. It's a number between 0 and N. 

4. Use that remainder as the index to the appropriate bucket. 

The LISP atom table, usua])y ca])ed OBLIST (for object list), is a list 
of buckets. Each bucket is a list of the atoms which 'hash'to that bucket. 
We actually represent the object list as an array named oblist. Arrays are 
discussed in full in Section 7.2. but basical1y are an efficient storage 
representation for sequences of fixed length. In this case we can allocate a 
block of sequential cells and use the addressing structure of the hardware to 
do a rapid subscript calculation. The hash number will give us the array 
subscript and we can go to the correct bucket immediately; we won't have to 
cdr down the object list to locate the bucket. 
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1 ! I I : ,,' :~ 
(to bucket 2) 

I ~ cEfJ 
(to bucket 1) (to bucket n) 

L~ qTI L~. . .. -+~/ • • ••• -+ • / ... 
(to atom 1: (atom m: Ixl ·+(P-list of 

bucket 1) bucket 1) .. - atom 1: bucket n) 1 ~ 
l,.......,xlr--·--,+I PNAME I '+~,--l S_UB_R .£00-.1 .--.J+cp2l 

I I I 

1 • 1/1 
I ! I , 

ICARml 
Partial Object List; where atom 1:bucket 1 is CAR 

to primitive code 
for car 

Note: Though the top level of OBLIST is stored sequentially for fast access 
by the hasher, the cdr-parts are chained together in a sequential list so that 
the table wilt have the same structure as any other list. The chained 

representation is used by any LISP process other than the hasher. 26 

261n particular, the garbage col1ector uses this linking. As a further 
implementation note, the implementors of MACLISP noted the frequent use 
of single character atoms and added a special section to the top-level of the 
ob ject list. A contiguous block of ce11s, of size equal to the number of 
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Whether a linear search and storage technique, Uke assoc-pairlis, or a more 
complex technique like hashing should be employed depends on the 
application, and the speed and size of the machine. The hash table takes 
extra space both for storage and for program, but gives a faster search time. 
The linear technique requires less space, but can be quite slow. Several 
books cover searching and sorting in great detail ([Ori 71], [Knu 72]). 

MACLISP embellishes the basic OBLIST idea in an important way. 
That system wi11 al10w several object lists to exist simultaneously This is 
useful since several cooperating LISP subsystems may exist; for example the 
LISP editor, debugger, and compiler are all written in LISP and may aU be 
used within the same interactive session. There is a potential difficulty since 
each of those subsystems may use names which conflict with names in the 

user's programs. Multiple object lists are a way to overcome this problem. 27 
Only one object list is current at any time, but several may exist in the 
system. Object lists are swapped by A-binding to the identifier obarra,. 28 

Consider: A[[obarray]~][ob)] 

Assuming that obI is bound to an object Jist, then within the evaluation of ~ 
the symbols and bindings of obI would be accessible. 

Finatly, we want to present a version of ratom which uses a hash 
organization. In this discussion, we will restrict ourselves to literal atoms, 
leaving the reader to supply the necessary parts for recognition of numbers. 

We wilt recognize three classes of characters: 
1. The class of letters will include the alphabetic characters. 
2. The class of delimiters consists of those characters which signal the end of 

an atom. For this scanner we assume space and carriage control .are 
delimiters. 

3. The special characters will consist of "(", ")" and "." . 
Special characters also act as delimiters in LISP and this results in a 

slight complication. Consider the partial string "AB )C". Our scanner should 
scan the "A", scan the "B", and scanning the space, should recognize a 
delimiter. It should recognize the AB as an atom, and signal read. The string 
wilt be reduced to ")C". The next time read catls ratom the right parenthesis 
will be seen, recognized as a special character and an indication of that win 
be returned to read. 

Now consider the string "AB)C"; ratom wilJ scan "A" and "B" as before. 
It will then scan the ")". It now needs to do tlllO things; it must signal read 

characters, was added. On reading a single character atom, the corresponding 
entry in the table is examined. ANI L says the atom hasn't been seen before; 
otherwise its p-list representation resides there. 

27Static binding is another way to handle the problem. 
28An object list is called object array in MACLISPsince the table is 

represented as an array. We discuss arrays in Section 7.2. 
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about the atom it has seen, but it must also remember the ")" so that the next 
time read asks for information. it sees the ")" and not the "C". We handle 
this problem by using a global variable named lst_chr. This variable is 
initialized to N J L and remains that way until our anomalous situation 
occurs. At that time the special character is placed in lst_chr, and ratom exits 
normally. So, whenever ratom is ca1led, the first thing it does is check the 
contents of lst_chr. If it is non-empty, its contents is returned, as lst_chr is set 
empty again. 

rat om <=>..[[] prog[[chr] 
Ust_chr ~ swapUst_chr ,'chr ];return[chr ]]; 

a chr +- readch[]; 
[is_let[chr] ~ stu! _bujf.chr ];return[ratom J []]; 

is_delim[chr] ~ go[a]; 
is_spec[chr] ~ return[chr ]]]] 

This procedure uses tricks advertised in Section 5.5; it uses lst_chr as a 
predicate, knows that prog variables are initialized to NIL, and knows that 

the representation of f is NIL. With that knowledge, swap swaps the 
contents of ehr and lst_chr. 

The routine readch gets the next character, and stuf -buf is used to save 
the character string which is to become an atom. The character string is 
built up in buf 

ratom 1 <= >..[[] prog[[chr;chr _str] 
l chr +- readeh[]; 

[is_delim[chr] ~ return[intern[chr _str ]]; 
is_spec[chr] ~ lst_chr +- chr,' return[intern[chr _str]],· 

t ~ stuf _bujf.chr]; go[l]]]] 

If ratom 1 sees a special character it is saved in lst_chr. 

intern <= >..[[l] prog[[bucket] 
bucket +- oblist[hash[maknam[l]]],' 

a [null[bucket] ~ return[insert[l]]]; 
[right-one[get[fir st[bucket ],. 

P N AM E];l] ~ return[first[bucket]]]; 
bucket +- rest[bucket]; 
go[a]]] 

maknam takes our character string and converts it into an appropriate 
numeric representation; for example, the input string might exceed one 
machine word. hash returns the bucket number of its argument, and insert 
builds the atom and inserts it into a bucket. right-one is a predicate used to 
check if an atom has the right print-name. 

An implementation of ratom may be generalized so that the class of 
special characters and delimiters can be varied. This is done using a 
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representation of a character table whose name entries are characters, and 
whose value entries determine the ratom properties. This al10ws LISP users 
to define their own parsers and scanners. LISP's modifiable input routine, 
coupled with its data structures and extendible evaluator make LISP an 
excellent tool for building more sophisticated language systems. 

On page 211 we introduced the abbreviation 'x for quote[x]. This 
quote facility is an instance of a device called a read macro; it is the duty of 
rat om to recognize such constructs. Whenever ratom sees the prefix ' it reads 
the next S-expr Q and returns the list (QUOTE Q) as value. In some systems 
([M 00 74]) users may define their own read macros. For example a 
definition like: 

, <r= >..[[] list[QUOT E;read[)]] 

would signal LISP to change the character table entry for .,'" to be a 
read macro. If II , II appeared during an input operation, then the body of 
the read-macro would be evaluated; that would caU read, and then form a list 
with QUOTE and the result. The resulting list would be returned to within 
the original input process. 

M ACLISP also defines a comment facility using a read macro. The 
occurrence of a semi-colon signals the beginning of a comment; all characters 
to the end of the line are taken as commentary. 

Several implementations also include abbreviations to decrease the 
number of parentheses needed .. For example "[" and .. ] .. are often defined to 
be ;'super .. parentheses". The "(n act. like a 11(" but its scope runs to the neKt 
"]", constructing sufficient ")" to balance the intervening expression. 
Similarly, the scope of a "]" extends to the prior matching "["; if none exists, 
the expression is completed by supplying sufficient ")" to balance. 
For example: 

«A B) «e DE») = «A B) «e DE»] 
= [(A B) «e DE»] 
= «A B) «e D E] 

and (A [B (e]) = (A (B (e») 

Regardless of the specifics of the implementation, the input routines 
will read a list representation of a LISP expression and convert it into an 
S-expr. For example, let's see what happens if we want to evaluate 

eq[x;A] 
This will be presented to the machine as: 

(EQ X (QUOTE A» 
That input will be recognized with the read-eval-print loop: 

prog[[] 
a print[eval[read[);( )]]; 

go[a]] 
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read wi11 begin parsing the sequence ofcharactersj it will, depend on ratom to 
return indications of the special characters, and will depend on ratom to 
properly represent each occurrence of an atom. The parser knows about the 
representa.tion we have choaen for lilts -.nd will use cons to buUd up the 
S-expression form: 

The references to the atoms EQ, X, A, and QUOrE are actually pointers to 
the atoms. Each atom is located only once by the reader. After that we have 
direct access to atom and its property list. 

Since the input routines perform several cons operations; we should 
look at the details of cons. 

5.13 A First Look A t cons 

The cons operation is quite different from the other LISP primitives. The 
other primitives manipulate existing S-expressions, whereas cons must 
construct a new S-expression from two existing S-exprs. Given 
representations of two S-exprs, say x and y, cons[x;y] must get a new cetl, put 
a pointer to the representation of x in the car-part of the cell and a pointer to 
the representation of y in the cdr-part and return a pointer to the new celt: 

result of cons[x;yJ 

I 

rep. of x rep. of y 

Before co;mputation is begun, only. the ,atomic structure for the initial 
LISP system table uses cells in the pointer area. The remaining pointer cells 

are linked together and form the free space list or FS list. 29 Whenever cons 
needs a cell, the first ce11 in the FS list is used and the FS list is set to the rest 
of the FS list. 

29LISP free space is an instance of. "heap storage" ([Alg 75J). The 
rationale for heap storage is that storage usage is not sufficiently disciplined 
that its atlocation and deallocation can be predicted. Therefore some more 
global management scheme is reqUired. 
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For example the following represents the effect of cons[A;B] 

env dest 
J, J, 

~-... c:h 
r+.U-, JjJ 
, ' '1 L=1' , 

Ixl .+ ... Ixl .+ 
atom A 

Before 

After. 

atom B 

5.13 

As the computation continues, cells are taken from the FS list. When a 
cons operation needs a cen and the FS list is empty, the computation is 
suspended and a storage reclaimer is caned. The rectaimer is often known 
by a more colorful name: the gilrbage coJ1ector. The job of the garbage 
collector is to locate cells for a new FS Jist. 

5.14 Storage Management: Garbage CoJlection 

During the course of a computation, contents of cells which were taken from 
the" FS list often become unnecessary. For example, if we ask LISP to 
evaluate something as simple as:. . , 

(CONS (QUOTE A) (QUQTE B», many celts are used: 
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1. At least seven celts are needed just to read in the expression: 

CONS I · + "'--I---JL.--.I 

If some of the atoms are not present in the atom table, more cells will be 
needed. 

2~ One cell wilt be needed to perform the cons operation. See the previous 
example. 

After the computation is completed, LISP witt print n(A . B)" and wait 
for more input. After the print statement. is completed none of the eight 
mentioned cetts are needed. They are garbage. In the current example, these 
"garbage celts" could have been explicitly returned to the free list, but in 

general it is difficult to know exactly which celts are garbage. 3o In 
Section 7.7 we will see how these difficulties can arise. 

The responsibility for reclamation is therefore passed to the LISP 
system. The cons procedure removes celts from the FS list, and its FWS 
counterpart jwcons, removes cells from the FWS list when making numbers 
or print-names. These two functions are the only functions anowed to 
manipulate the free storage lists. When either list becomes empty, the 
garbage coltector is called. 

The fundamental assumption of garbage coHection is: 

At any point in a LISP computation, all cells which 
contain parts of the computation are reac~able (for 
example, through car-cdr chains) from a fixed set of 
known celts or base registers. 

The first phase of the garbage collector, called the marking phase, 
marks all of the list structure which is currently active. By definition, a cell is 
active if it is reachable from the base registers. The base registers include: 
pointers to the beginning of the atom table and the environment chain; a 
pointer to the control chain is also included since partial results are stored 
there. Active celts therefore include alt the atoms in the atom table and al1 
the associated elements on property lists. Any partial computations which 
have been generated wilt also be marked. 

30Experiments have been performed in which LISP programmers were 
allowed to return "garbage" to the FS, list themselves. The' results were 
disastrous; list structure thought to be garbage was returned to the FS 1ist 
even though the structure was stitt being used by other computations. 
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In terms of our implementation, we mark from the object list, from dest, 
and fron} control (see page 204). If deep binding is used, we mark the 
elements reachable through env. If sh~,now binding is used, then marking of 
oblist woylq capture an the values; even' the ones which may not be accessible 
as A-values. What we should do instead is mark the non-value properties on 
atoms using oblist; we then mark the values separately using the current env 
skeleton tree. 

A structure might be referenced several times in the marking proces~, 
since we allow shared structure, and since the implementation win be 
referencing structures also referenced by the user's program. We must take 
this into account since, though naive marking of an already marked structure 
is at wasteful, it is fatal if the structure is self-referential. Once an the active 
structure has been marked, we proceed to the sweep phase. 

The sweep phase proceeds linearly through memory, co11ecting a11 those 
cel1s which have not been marked. 31 These unmarked cells are chained 
together via their cdr-parts to form a new FS list. The FS ,pointer is set to the 
beginning of this list. The unmarked cells in FWS comprise ·the new FWS 
list. 

If there is sufficient room in a full word to contain a pointer, then we 
chain the words together; otherwise we must designate the FWS list some 
other way. 

Garbage co11ection is a very general storage management technique. It 
has become a standard tool for implementors of complex systems. It was 
invented by the original LISP implementation team. The basic ideas have 
been embe11ished over the years to account for larger real memories, virtual 
memories, different implementations of LISP data, and different machine 
architectures; but the basic ideas are simple. More complex algorithms will 
be discussed in Section 7.3 and on page 397. 

5.15 A Simple LISP Garbage Collector 

We will now write a garbage co11ector in LISP to mark and sweep nodes in 
FS and FWS. 

31The sweep phase is sometimes a good place to unmark the marked 
cells. This depends on the implementation. If each word carries a "mark bit" 
then, perform the unmarking; if the marked flags are an localized in a 
separate bit table (Section 7.5) then there is no advantage to doing the 
unmarking now. 
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The algorithm will have three main functions: 

initialize[x;y] initializes the marking device for each cell in the space between 
x . and y. initialize will be called twice; once for FS and once for FWS. 
The next algorithm does the actual marking. 

mark[l] wiH be ca11ed for each base register l which points to active list 
structure. If the word is in FWS mark will mark it and return; if the 
word has already been marked it simply return, since we are assured 
that any cells further down the structure have already been marked. 
Otherwise the word is in FS and thus has a car and a cdr; mark the 
word; recursively mark the car; recursively mark the cdr. 

sweep[x;y] collects all inaccessible cells in the space delimited by x and y. 
sweep will be called twice; once to generate a new free space list and 
once to generate a new full word space list. Elements of these free lists 
will be chained together by their cdr parts. The initialization and 
sweep phases of this garbage collector are very similar and, as we 
mentioned above, can sometimes be combined. Both these phases must 
be assured of reaching every node in the space. 

These main functions use several other functions and predicates: 

!tlJswrdp[x] is true just in the case that x is a word in FWS. This is used as 
one of the termination conditions of mark. 

markA[x] marks word x as accessible. 

markN A[x] marks word x as not accessible. 

Ap[x] is true if word x is marked "accessible". 

up [x]: If x is at location n then up[x] is location n+1. 

rplacd[x;y] modifies x by replacing its cdr-part with y. The value returned is 
the new x. 

dest 

L~ 
H-t-

I I I 

t1j 
Algorithm for rplacd 

,---? ..&..-I....,r -

env 

L 
x 

y • 

-+,-I __ ?_...J 
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Can you write rplacd as a LISP function? 

initialize <= A[(x;y] prog[[] 
a markN A[x]; 

x ~ up [x]; 

[eq[x;y] -+ return[t]]; 
go [a]]] 

mark <= A[[l] [Ap[l] -+ t; 
fwswrdp[l] -+ markA[l]; 

t -+ markA[l); 
mar k [car[l]]; 
mark[cdr[l]] ]] 

sweep <= A[[x;y] prog[[z] 
a [not[Ap[x]] -+ z ~ rplacd[ x,·z]],· 

x ~ up[x]; 
[eq[x;y] -+ return [z]]; 
go[a]]] 

5.15 

As indicated previously, there are alternatives to garbage collection. If 
the data-structure manipulations are particularly simple one might leave 
storage management to the ptogrammer. 32 There is an intermediate area 
between garbage collection and explicit management. First notice that 
storage management becomes quite simple if there is no sharing of sublists. 
However sharing substructures can sav~ space" and careful modification of 
shared structures can communicate' global .information between algorithms. 
A rich class of symbolic data manipulations fall into the category of shared, 
but non-circular, structures. In this case, storage can be managed by the 
reference counter method. 

Instead of using a garbage collector, we might associate a counter, caned 
a reference counter, with each list when it is built. In that counter we win 
store the number of references to that list. The counter will be initialized to 1 
when the list is created. Whenever the list is shared we increase the counter 
by 1; whenever the list is no longer to be shared by some list structure, we 
decrease the counter by 1. When the count goes to 0 we can put the cens of 
the list in the free" space list. 

A difficulty with the reference counter scheme is the inability to collect 

32Aside from these implementation considerations, one strong point of 
LIS P is the notion that storage management need not concern symbolic 
programmers to any larger extent than roundoff errors concern their 
numerical counterparts. 
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circular lists. A circular list is a list structure which is self-referentiat'33 
Consider the following seq uence: 
1. Manufacture a list, x: x ~ (B I 0 LIS T). Reference count is l. 
2. Circularize it: x ~ circle[x];. Reference count is now 2. 
3. Delete all references to x: X f- NIL. Reference count reverts to 1. 

The list is no longer referenced, but it is not on the free space list, and has 
thus been lost to the system. 

Two less serious considerations should be mentioned in conjunction 
with reference counters. First, each node which is to be collected with this 
scheme must have an associated reference field to contain the count. That 
requires extra space, and usually imposes a maximum size for the reference 
count. If that maximum is reached, either an additional space is allocated, or 
the filled count may never be decremented and the associated structure must 
be garbage collected. 

The second problem involves decrementing counts. Whenever a count 
goes to zero the coUnts associated with its immediate successors must also be 
decremented. This process is applied recursively until' non-zero counts are 
encountered. The bookkeeping for such a task is non-trivi'al. 

There are significant storage management problems which are 
amenable to reference counting. LISP generates very intertwined structures; 
therefore these alternative methods are insufficient in general. However, 
some parts of LISP implementations could use reference counting; we will 
discuss some of these aspects in Section 5.20. For an excellent discussion 
and analysis of storage management schemes see [Mul 76]. 

Problems 

1. This problem deals with what is known in LISP as hash consing 
([Got 74]). We have been storing atoms uniquely, but it should be clear 
from the behavior of cons that non-atomic S-exprs are not stored 
uniquely. Storing single copies of any S-expr would save space. For 
example, the non-atomic structure of ((A. B). (A . B» could be 
represented with two cells rather than three. Unique storage is not 
without its difficulties. What problems do you foresee in implementing 
such a scheme? 

2. We said on page 267 that many LISP computations generate list structure 
rather than true LISP-trees. Give an example. 

3. Can you write a LISP function circle <= A[[X] .. .] which will take a list x 
and make it circular. Thus: 

33LISP 1 ([McC60]) disallowed circular list, but succeeding LISP 
dialects have allowed arbitrary binary structure. 
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1 NOTHING I '+1 CAN I ·+11 GO I '+1 WRONG I .+1 
This Hst is circular on its "last two" elements. Printing such structures is 
not possible using the print function. 

4. What LISP operations generate structures such that a reference counter 
implementation would not suffice? 
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5.16 A Review of the Structure of the LISP Machine 

We have a good portion of the storage conventions for LISP set out. A 
difficult area involves the organization of the data structures to perform the 
correct binding and unbinding of variables. Before we tackle that, we give a 
diagram showing the basic structure of LISP memory . 

••• THE SUBCONSCIOUS ••• 
eval and fr i ends 
read and print 
the garbage col lector 
the base registers for marking; 

these include: 
FS pointer 
FWS pointer 
atom tab I e (OBL1ST) po inter 
registers for partial results 

dest, control 
the access chain 

••• POINTER SPACE ••• 
the free space list 
those parts of S-exprs containing 

car- and cdr-par ts • 

••• FULL WORD SPACE ••• 
the ful I word space list 
atom print names 
numbers 

Structure of LISP memory 

5.;17 Implementations of Binding 

In Section 3.5' and Section 3.11 we discussed deep binding and shallow 
binding respectively. That' discussion took place at a reasonably abstract 
level. The next few sections discuss these binding implementations in more 
detail. We first examine some of the possible pitfal1s in the implementation 
of LISP; then we give deep and shal10w implementations for an important 
subset of LISP. Finally, we sketch some of the methods available for 
implementing the full language in an efficient manner. 

Though much of this discussion deals with the binding stategies of 
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LIS P, and therefore with control structure, we are restricting ourselves to the 
data structure requirements. The next chapter shows how the control 
structures of LISP implementations manipulate these data structures. 

Consider the evaluation of a form: fial; ... ian] 

where: f <= A[[x I; ... ;xn] ... g[ ... ] ... ,'i[ ... ]], 

g <= A[[ ... ] ... h[ ... ] ], 

and i <= A[[ ... ] ... j[ .... ] ] 

Typically a picture like the following occurs, where the instance of function 
name means a block of ~-bindings necessary to begIn evaluation of -that 
function: 

We build up a stack of A-binding blocks as we continue to enter procedures, 
and as we leave a procedure we remove that block of bindings from the 
stack. When we wish to know the value of a variable we look down the 
stack for the first occurrence of that variable; the associated binding is the 
desired value. However, LISP allows functional arguments and functional 
values; these constructs reqUire modification of the behavior modelled in this 
simple blocks world. 

When we recognize a functional argument, we note the block which is 
currently on the top of the stack. When we apply that functional argument, 
intervening blocks will have been stacked; we change the environment such 
that the lookup of non-local variables takes place beginning with the saved 
block, rather than with the top of the stack. 

However, if h say, generated a functional value which is to be applied 
in the context of j then we must retain those values in the f-g-h stack in such 
a way that they may be used to restore the enviroment when we desire to 
app1y the functional value in the f-i-j stack. 

I ~ ~ bind ~ ! unbind 

We will discuss data structure reqUirements for implementation of these three 
LISP subsets: first, simple function application; then, functional arguments; 
and finally, functional values. 

The mechanism which we described in the initial blocks mogel occurs 
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quite naturally in computer science. It is called a stack. 34 The important 
characteristics of stacks are that they are lists such that additions and 
deletions can only be made at the front of the list. 

What is of interest to us now is that stacks have a particularly efficient 
implementation; due to the very regular way in which stacks are 
manipulated, the linked allocation implementation is not usually necessary. 35 
Instead a stack can be implemented as: 

1. A sequence of contiguous locations. 
2. A pointer initialized to point before the first of these locations. 
3. An operation, typical1y called push which places a new object in 

the stack. This can be accomplished by adding 1 to the value of 
the stack pointer, and then putting a representation of the object 
in the ce11 currently referenced by the pointer. 

4. An operation catted pop which gets the first value in the stack 
and then decrements the pointer by 1. 

5. Though the abstract structure of a stack does not involve 
limitations on the length of stack-space, any representation 
should include techniques for assuring that the stack pointer 
stays within its al10tted space. See the preceding footnote. 

Notice that the concat operation can be interpreted as pushing and the 
rest operation as popping. Indeed Our earlier manipulations of symbol tables 
effectively used such stack operations. This is particularly apparent in the 
representation of symbol tables given on page 124. 

34Stacks are closely related to a theoretical device called a push-down 
automaton. There, only the top element of the stack is accessible. We take a 
more pragmatic position, a110wing access to elements within the stack, and 
indeed modification of elements within the stack; but removal of elements 
from within the stack is not a11owed. To remove an element, we must first 
remove the elements above· it.· 

35The typical model for a stack is a contiguous block of memory but 
that ignores the question of exceeding the bounds of that memory allocation. 
A stack can be implemented in a discontinuous fashion ([Bis 74]) as long as 
the stack manipulating functions are able to cope with such behavior. The 
degenerate case of such discontinuous stacks is a linked al1ocation scheme. 
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We will discuss the binding process in terms of a sequence of three 
events: 

1. bind describes what the implementation does when we are ready to call a 
procedure. The actual parameters are evaluated and we are ready to 
add them to the environment and evaluate the body of the procedure. 

2. lookup will determine how values are located in the current environment. 

3. unbind wi11 describe what has to be done as we prepare to exit from a 
procedure. 

5.18 Stack Implementation of a LISP subset: Deep Bound 

The stack implementation of simple function application is a straightforward 
implementation of our blocks picture. We have two stacks which operate 
synchronously. One stack is caned the name stack; the other is cal1ed th~ 
value stack. The name stack maintains the A-vafiables (and generated 
nartH". if a primitive is called). The top of the name· staek defines the origin 
of the environment. When the value of a variable is requested lookup 
proceeds down the name stack, looking for the first occurrence of the 
variable. The corresponding position in the value stack contains the desired 
value. 

When: we recognize a function application, we begin the evaluation of 
the actual parameters. As each parameter is evaluated, the result is pushed 
into the value stack. When all the parameters have been evaluated, we are 
ready to evaluate the body of the expression. At that point bind pushes the 
A-variables onto the name stack. When ,we complete the eva1uation of the 
body of th~, expression unbind pops the A-variables from the name stack, and 
pops their values from the value stack. 

Since the A-variables are removed from the stack as a group we can 
sometimes speedup the operation by storing block sizes in the stack. Also, 
the word size of the machine may allow using one stack for both names and 
values. For example: . 

• 
, 

namen vain 
I 

• • • \ 

name2 val2 

name! vall 

~ 

where va 11 is furthest down the stack since it was pushed on first, and 
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where an references to name i and va I i are really pointers to appropriate 
S-expressions. (atoms or dotted pairs). The "back pointer" is used for 
removing blocks of bindings, but it is also a representation of the control link 
discussed in Section 3.8. 

A slight modification of this scheme is sufficient to support 
implementation of functional arguments. An additional piece of information 
is added to gUide lookup in its search for the next block of bindings. Instead 
of proceeding linearly down the stack, lookup proceeds linearly through a 
block and at the end of each block is information telling lookup where the 
next block of bindings is to be found. Recall that information is called the 
access link (Section 3.8). 

• • 
namen vain 

access links 
I 

• • • contro I links 
name2 val2 

namel vall 

.... +-
• • 

! ! 
In simple function application, the access links and control links are 

identical. The evaluation of a functional argument will generate an access 
link, pointing to the current stack. That is, the function-construct is 
responsible for saving the binding environment by saving a pointer to the 
current top of the name and value stack. When a functional argument is 
applied, the access link will be set to that saved binding environment 
(page 146). Since we are restricting attention to functional arguments, we are 
assured that the application of that argument will occur within an expression 
which dynamically surrounds the creation of the functional argument. This 
means that our environment pointer will indeed be a pointer down the stack. 
The use of functional values invalidates that assumption. Before examining 
that problem we will discuss shallow binding for these same LISP subsets. 

5.19 Stack Implementation of a LISP Subset: Shallow Bound 

A stack implementation of shallow binding allows some elegant economies. 
We can use a stack implementation for the first shallow binder of 
Section 3.11. There we had a collection of bindings associated with the 
identifier. Without loss of generality, we can organize mkenv such that the 
new binding is added in front of any previous binding. Now if we are only 
evaluating simple function applications, lookup will find the desired binding 
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provided the unbinding operation removes the first binding as it exits the 
procedure. In this way, binding and unbinding act on the value entries in a 
stack-like fashion. Instead of associating a separate stack with each variable 
and accessing the value through the top of the stack, we associate a single 
value cell with each variable and store the saved values of atlvariables on a 
common stack. The "shaltowest" of the shaltow schemes, which only used the 
value celt, can also be extended to handle functional arguments. 

The implementation of lookup will be simple for either shaltow scheme: 
take the value in the value cel1. Since the value cell will be maintained to 
always· contain the proper binding of a variable, the distinction between local 
and non-local variables vanishes. The contents of the value cell is the current 
value for any variable. 

We first review the process of shallow binding with the value cell, 
including the details we added in Section 4.6. When an app1ication is 
recognized we allocate a 'block to contain the values of the actual parameters; 
that is the dest block. As the arguments are evaluated, the. results are sent to 

the appropriate slots in the dest block. 36 Wh'~m all the arguments are 
evaluated, we link the dest block onto the front of the environment, but as 
we do that we swap the current contents of the affected value cells with the 
new values. This establishes the new values in the value cells while saving 
the prior bindings. We are now ready to evaluate the body of the 
application. When evaluation is completed we swap back, using the first block 
of the saved environment chain; then we remove that first block from the 
chain. Since we are assuming a simple function call, that old dest block is no 

longer accessible and can be coltected. 37 The altocation and de-allocation 
process is stack-like; we will develop our implementation using a stack called 
the Special Pushdown stack. This stack will be referenced by a stack pointer 
called SP or calted ENV when we wish to reinforce its relation to the more 
general environment structures. 

In the spirit of the evaluator of Section 4.6, we would evaluate 

A[[X;y] ~][C;D] as follows: 

1. A 1I0cate space for the parameters x and y. This space is reserved on the 
top of the ENV stack, and is referenced by a pointer named DEST. 

2. Evaluate the actual parameters and send the results to the dest block. 

3. Swap the contents of the value celts for x and, with the contents of the 
dest block. Move ENV to point to the dest block. 

36Th is scheme will also work with multi-valued functions. 

37Since the dest block is no longer accessible, it was unnecessary to 
swap back; we could have simply restored the value cel1s. The swap was 
described in preparation for more general implementations. 
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4. Evaluate t. Within t, lookup wi1t go to the value celts for all variable 
references. 

5. Restore the old environment. Swap the contents of the first block of ENV 
with the contents of the appropriate value cens. 

6. Set ENV to point at the prior block. 
To reinforce these notions we supply a more'detailed implementation. We 
will implement our value cells as elements of the property lists. The property 
name win be V ALU E, and the corresponding property value will be the value 
cell. Assume x and yare currently bound to A and B respectively; and 
assume we wish to evaluate: 

A[[X,'y] t][C,'D] 
We assume ENV is in some well-defined state: 

par't of atom for X part of atom for Y 

I VALUE I .+~~ ... I VALUE I .+~~. eo 

ENV 

c:::J--. *MARK* • - f-+-

last entry 

In this implementation, the stack is organized in blocks. The allocation 
operation claims space from the top of the stack and puts a special mark in 
the top of the ENV stack to delimit the block of i..-rebindings; that marked 
entry will also contain the dest pointer. The implementation will indicate the 
new block by pointing JO it by DEST. The allocation routine is also 
responsible for filling the name-entries of the dest block. Those entries will 
be represented as pointers to the value celJ entry on the property list of the 
atom. 
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part of atom for X part of atom for Y 

VALUE I .+~ ..... I VALUE I .+~ ..... 
1 

ENV ~to y~. 

~ *MARK* 
last entry 

I .::pi *MARK* _ 

The send operation will fill the dest entries for x and y. The next operation 
will increment the dest pointer so that after all entries have been made to the 
dest block, the dest pointer will indicate the next block of saved bindings. 

With x and y bound to C and D in the dest block, we are ready to swap 
the value cells. After the swap the picture is: 

part of atom for X part of atom for Y 

[VALUE I·+QI: .... · I VALUE I· .+~ ... · · 
1 

last entry 

I .::pi ~MARK* _ 
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Now X and y have values C and D respectively and the previous bindings 

are saved on the ENV stack. We may now begin the evaluation of ~ assured 
that we wilt get the expected values for x and y. We have also saved 
sufficient information to restore the previous values afterwards. Since we are 
assuming simple function composition, the unbind operation can simply 
"pop" entries off of the top of ENV into the value cens rather than swap them 
with the value cells. 

The unbinder restores the first block of saved values using the pointers 

to the value cells as destinations for the values. 38 This stack of previous 
values is also visited by the garbage col1ector; it may be that the only copy of 
some value is accessible only through the ENV stack. It would be most 
unfortunate if the garbage col1ector neglected to mark that entry and the 
unbinding mechanism later tried to restore the value. 

This implementation works quite wen for simple A-binding and lookup. 
Changing environments is a bit of work, but the access to the values of 
variables is relatively rapid, particularly if we make sure that the value celt is 
always stored at a known position relative to the beginning of the property 
list. In describing this implementation we have used more representation 
than might seem appropriate. In particular the representation of the value 
celt as a linked list seems unnecessarily explicit. This was done to Uluminate 
the pointer modifications involved in binding and unbinding. 

We would like to implement functional arguments in this shallow 
binder. Recall how deep binding coped. When we recognized an instance of 
a functional argument we say~d a pointer to the current environment. When 
we applied the functional argument we restored the symbol table in such a 
way that global variables were accessed in the saved environment while local 
variables were found in the current environment. We must try to do the 
same with the shallow-binding. The action taken when a functional 
argument is recognized' is quite similar to our previous solution: when 
junction is seen, save tge current ENV pOinter. This setting of ENV establishes 
th'e binding enVironment, and is therefore camed the binding context 
pointer.' The action therefore, manufactures a triple 
(FU NARC <function> <binding context pointer». 

However, the action reqUired whel1 we wish to apply the functional 
argument is much more complicated. In the deep binding implementation we 
just set up a new access chain such that the local table referred to binding 
environment saved by the FUN ARC construction. The problem with the 
sha1tow-binder is that ENV only reflects the incremental changes in the 
environments during the computation. To retrieve the environment current 

38An alternative implementation would only store the saved values, 
without explicitly saving the locations, and without marking the stack. In this 
implementation the unbinder would reqUire an argument describing which 
variables needed restoring. 
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when the functional argument was bound, we must unwind ENY back to the 
binding environment; we must also save the current activation environment 
so that we may return to it when finished with the functional argument. 
Since we are dealing with a functional argument, rather than a functional 
value, we can easily locate the binding context pointer. The pointer is below 
the current ENY in the stack. We search down the stack for that saved 
pointer, swapping back the saved value cells. When we reach the binding 
context pointer we stop. At that time the value celts have been restored to the 
binding environment and the segment of the stack between the activation 
environment and the binding environment accurately reflects the bindings 
which were made between binding and activation; that is, that segment of the 
stack is deep bound. That stack segment must be saved so that the 
activation environment can be restored, thus ENY is not restored to the 
binding context, but remains where it was. 

This process is complex enough to warrant an example. 

An example of shallow binding and FUN ARG 

I Assume that x initially has value 1 and the SP pointer is at location SP1, 
II then assume that a A-binding rebinds x to 2; 

III in this new context, assume a functional argument, g, is to be bound to a 
function-variable f 

IV· V As the computation continues x is rebound first to 3 and within that 
context rebound again to 4. 

VI Finally f is applied; thiswi11 resurrect g 39 requiring a restoration of the 
environment current at step III. 

• I. 

39From the value cell of f as (FUN ARG G SP2). 
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Steps I through V would lead to the following sequence. 

F: (FUNARG G·) 
X: 1 X: 2 

SPl ..... +icI1A~K* I =I1=> 
X:2C 

=1 I 1=> 
SP2 I X I 1 

SP2-+~ 
~ 

SPI -+1 • 

X: 3 X: 4 

=1 V=> SP3 ---+1 X 2 =V=> SP4~ l....+ X 3 

SP2 ---+1 X 1 

Now to apply the functional argument: (FUN ARG G SP2). This is 
accomplished by tracing down the SP stack with a pointer SP*, moving from 
SP4 --the current stack pOinter-- down to SP2 --the FUN ARC pointer--, 
reversing an the intervening bindings on SP and putting the saved values 
back into the value celt. The pattern of these reversals must be saved; we do 
this by swapping the values back into the stack segment between SP4 and 
SP2. 

Thus, steps VII and VIII: 

X:3 X: 2 . . . 
SP4 4 SP4 -+ t-I _X-f-_4-t 

. . . . . 
=VII=> SP3 -+1 X 2 I~ SP* =VIII=> SP3 -+1 X 1 3 . . . . . . 

SP2 -+1 X 1 1 SP2 -+1 X I 1 I~ SP* 

Now we are in a position to evaluate the can on g; when we are finished 
with g we will use the unbinding mechanism to reinstate the world as it 
existed at SP4. This process will restore the value cells using the areas of the 
stack between SP2 and SP4. 

Functional arguments are more difficult since there is only one symbol 
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table, not the stack of tables implicit in the deep binding implementation. 
True, the information necessary to recover an environment is present in SP, 
but now it is more expensive to retrieve it. 

Though the stack implementation of shallow binding will perform for 
functional arguments, it wUl involve even more complexity if we wish to 
handle functional values. The difficulty is the, same as that f,or the stack 
implementation of deep binding: the FUN ARC wilt point "up" the SP stack 
rather than "down". A straightforward application of the technique used for 
functional arguments wilt not work. At the time we wished to apply the 
functional value its saved SP-pointer witt be pointing into a section of the SP 
stack which no longer reflects the proper st~te.' For ~hen we leave the 
environment which created the functional value, the current unbinding 
mechanism wilt cut the stack back to the point which exi~ted when we 
entered that environment. " 

The generalization of this shallow binding scheme to functional values 
is possible. There are two problems to be solved. ~irst, the storage for ENV 
and DEST must be generalized to be tree-like rather than stack-like. This 
generalization is not simply a problem of shallow binding. The deep 
binding scheme builds a -tree isomorphic to the shallow tree; only the 
information saved in the respective trees differs. The problem which the 
shal10w binder must solve is how to rebind from the activation environment 
to the binding environment. The functional argument case was simplified 
since the binding environment was on the same branch of the environment 
tree. In the more general case the binding environment wilt be on a different 
branch. We will investigate some solutions to this problem in the next 
section. 

5.20 Strategies for Fun LISP ImpJementation 

The discussion of the last three sections should be related to the earlier 
discussion of binding strategies, Weizenbaum environments, functional 
arguments and the non-recursive evaluators. Our mapping of the binding 
implementations (shal1ow or deep) onto a stack is sufficient for the great 
majority of LISP programs. However as the LISP community explores new 
ways of using the language, they expect that the full powe'r of functional 
values be available; and have proposed extensions in the LISP control 
structure to allow non-recursive control. Since these topics are of current 
research interest it is not clear how lasti~g their impact witt be. We witt 
sketch a few of the ideas involved and indicate how the techniques we have 
discussed in this chapter can be applied. 

In the implementation of eval of Section 3.5 we represented symbol 
tables as list-structure. Later, when we introduced the function construct, this 
generality became necessary. As long as a FUN ARC construct accessed a 
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table, then that table was retained; symbol tables were then a garbage 
col1ectible commodity. Essentially we had removed the stack-like behavior of 
symbol-table accesses which occurs most of the time and replaced it with a 
general scheme which works for all cases but incurs a significant overhead in 
even the most simple of function calls. 

We would like an intermediate solution: one which works for all cases 
and minimizes overhead in the typical call. Such a scheme can indeed be 
implemented. Recall our discussion of garbage collection in Section 5.14. 
There we said that a garbage collector was used in LISP since the 
interrelationships which we generated in the data structure manipulations 
were sufficiently intertwined that it was not possible to use less sophisticated 
methods to determine whether a structure was still active. 

Symbol tables are data structures; the discussion of Weizenbaum 
environments in Section 3.8 should have convinced you of that. They are 
chained together in a manner reminiscent of that of our implementation of 
S~exprs; indeed as we have just mentioned LISP's attitude toward 
management of such tables was to garbage collect them. However the behavior 
of tables during the execution of a program is much less complex than that 
of arbitrary list structure. As we have just seen, the behavior is predictable 
except for procedure~valued variables. A solution giving a reasonable 
implementation based on the alternative storage management scheme of 
reference counters, which we described on page 286, is described in 
[Bob 73a). Several other generalized control schemes have been proposed; 
for example [Con 73], [Gre 74], [Mon 75], and [Wegb 75]. The intent of all 
these schemes is that minimal overhead be experienced if a program does not 
use the more exotic features: a stack-like device results. A larger toll is paid 
for use of more general control regimes. 

It is possible to combine the use of the value cell with either shallow or 
deep strategies. We have both a value cell and either name-value trees or 
shallow bound p-lists. We will try to use the value cell as much as possible. 
We associate an extra piece of information with each value attached to any 
value cell, telling the binding time of that variable. We have a global 
indicator telling the current context which we are using: Ecurrent' say. When 
we want the value of a variable, we first go to the augmented value cell; if 
the binding time indication is that of Ecurrent' then the value is correct and 
we take it. If the indicators disagree, we use the full lookup strategy; when 
we find the variable we update the value cell and change the binding time 
indicator to Ecurrent. This way we only search the stacks for the first access to 
a variable; after that we can justifiably use the value cell until we change 
context again. This scheme, called cache value ce))s, has been implemented 
in [Mud 75]. 

Finally, we describe a full shallow binding implementation of functional 
values ([Gre 74]). We identified the critical problem as that of discovering 
the path between the activation environment and the binding environment. 
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Let us call the two nodes Eact and Ebind~ With any node in the tree is 
associated a flag named active; only nodes on the currently active branch are 
marked active. It will be the responsibility of the binding and unbinding 
routines to maintain this flag. In the current situation, Eact is on the active 
branch and Ebind is not. We go to the node Ebind and search back down its 
branch, looking for a node marked active. Can this node Einter' Einter 
represents the intersection of the active branch with the branch tipped in 

Ebind· 

Eact Ebind 
~ -I-

~ -I-

~ -I-

~oJ. 

Einter 

! 

We now go Eact and unbind down to Einter' swapping the value cells as we 
go. At Einter we bind up to Ebind, still swapping value cells. When we reach 
Ebind the binding environment has been restored, and the path from Ebind 
through Einter to Eact contains the necessary information to allow us to rebind 
toEact if desired. 

The winding and unwinding of value cens is a time consqming process, 
much more so than the context swap used in a deep binding scheme. One 
ob jection to this implementation of the shallow scheme is that it optimized 
for the case that many of the references in the new environment will be to 
free variables: those variables which are non-local, but are not globally 
bound. If a variable js local or global, its access is trivial. If there are no free 
references in the new environment, then this shallow swap is not needed. 
Alternative schemes exist which allow the fast access of shallow binding and 
allow the fast context swap of deep binding. 

5.21 Epilogue 

Most programming languages are much less complex than LISP; they are far 
less flexible in their control regimes or their symbol accessing mechanisms. 
In Fortran there is a simple relationship between variables and memory 
locations which. will contain their values; a Fortran evaluator can assign 
fixed locations to the variables in a program. In Algol, there is a simple 
relationship between variables and positions in the run-time stack; an Algol 
evaluator cannot assign fixed locations, but it can replace the variable lookup 
with a simple address calculation. This is partly due to Algol's use of static 
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binding 40 and partly due to its restrictions on procedure-valued variables. 
These kinds of restrictions anow Fortran and Algol compilers to produce 
efficient code. 

In the most general uses of LISP, both the quality and the quantity of 
variables can change. Arbitrary properties can be associated with atoms at 
run-time. Indeed, the symbol table mechanism of LISP is more reminiscent 
of that associated with the compilers for other languages. For these 
languages it is the compiler which performs the mapping from source 
language to running machine code. It is the compiler's responsibility to 
discover the properties associated with each variable. The compiler can do 
this because the semantics of the language is such that at compile time an, or 
almost an, of the properties of the variables are known. This is not true for 
LISP. In general you cannot ten until run time what the attributes of a 
particular atom are. The situation is realty even worse than this. Since 
programs and data are indistinguishable, we can construct a list using the 
data structure facilities and the turn right around and evaluate that list as a 
representation of a LISP expression. 

However, a large majority of LISP computations fal1 into a much more 
disciplined set, and for those computations, some of the ideas available for 
Fortran or Algol translators are applicable. If we don't use all of the 
generality available in the language, we can reduce some of the run-time 
overhead. For these kinds of computations, it might be appropriate to 
compile out the unneeded generality. There are LISP compilers, typicaJty 
written in LISP. They can make many decisions at compile time about the 
properties of variables; and given comparable information about a program's 
characteristics can produce code comparable to that produced by Algol and 
Fortran ([Fat 73]). 

In the most general cases, the compiled code may be interspersed with 
calls on eval. This implies that compiled and interpreted code must be able 
to communicate with each other. A piece of compiled code can can a 
A-expression or conversely. The execution of the program should be totat1y 
transparent as to whether any, or an, or none of the functions are compiled. 
This means that the calling sequences for both kinds of functions must be 
compatible. Less obvious and by far more troublesome, is the communication 
of the values of free variables. The next chapter discusses the run-time 
behavior reqUired for implementations of LISP-like languages including a 
discussion of LISP compilers. 

40This is another benefit of referential transparency (page 171). 



CHAPTER 6 

The Dynamic Structure of LISP 

6.1 Introduction 

We have now developed the basic static structure of a LISP machine 
consisting of eval and its subfunctions; we have discussed the I/O routines, 
the garbage co11ector, and the organization of a symbol table. This table 
contains the primitive functions, constants like T and NIL, and a collection 
of utility functions like append, and reverse. We have also isolated two areas 
of memory: pointer space, and full word space. 

Expressions are read in, converted to list structure, and evaluated by 
eval. The evaluator traverses the S-expression representation of the form, 
interpreting the information found there as LISP "instructions", We have 
discussed some basic data structures for implementation of A-bindings and 
evaluation, but we have said little about how the actual execution of the 
expression takes place. The essential ingredient involved here is the handling 
of control -- the dynamiCS of LISP execution. For example, how can we 
implement ca11-by-value, parameter passing, recursion, and conditional 
expressions? At an abstract level, the original eval-apply pair of Section 3.5 
describes the evaluation mechanism. Given the data structure representation 
of an expression, we can mechanically perform the transformations implied 
in the eval-apply pair. Even more of the detail is made explicit in the later 
evaluators of Section 4.6 through Section 4.S. However we must still 
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implement these evaluators on a "real" machine and, unless the evaluator is 
built into the hardware, we must express the evaluator in terms of more 
primitive operations. For example, we cannot "implement" recursion by using 
recursion; we must express that idea in terms of lower level operations. 
Obviously this decomposition must stop somewhere. As J. McCarthy once 
said: "Nothing can be explained to a stone"; we must assume certain 
primitives are known. 

In this chapter we will discuss two layers of "primitive operations" or 
instructions. One layer will correspond to traditional hardware, and another 
layer wi11 correspond to the primitives which we derive from the evaluator of 
Section 4.8. Here we discuss the primitives of that section as the basis for a 
machine which executes LISP expressions. We can describe the evaluation 
of a LISP expression as the execution of a sequence of these instructions. 
Both operations are eqUivalent: either evaluate the expression or execute the 
instruction seq uence. 

There are common instances in which the execution of the instructions 
can be considered "more efficient" than the evaluation of the expression. For 
example, consider the access to a local variable. Each such access is to the 
same location relative to the local environment. That relative location can be 
computed easily, but the evaluator will use a version of lookup for every 
access. We resort to lookup for non-local variables, since LISP Uses dynamic 
binding and the activation environment will typically effect which binding is 
accessible, but since the location of any local variable is computable, we 
should exploit that knowledge when executing our programs. 

Several examples also arise in the evaluation of a prog. For example a 
loop typically consists of a static 1 sequence of statements. Each time around 
the loop an evaluator will execute the same sequence of instructions. It would 
be faster to simply execute the sequence of instructions rather than 
re-interpret each expression. A related efficiency involves the execution of go. 
We assumed in Section 4.8 that the evaluator will either lookup the label by 
searching the body of the prog or, perhaps more efficiently, searching a 
computed go_list. Either case reqUires a search. If we can replace the body 
of a loop with a sequence of primitive instructions, then we can replace a go 
with a transfer of control to the beginning of an appropriate block of 

instructions. Such a transfer operation should be one of our instructions. 2 

IBy static we mean that the actual expressions do not change during 
execution. Using the fact that LISP programs are data structures and using 
some marginal programming techniques rplaca and rplacd (Section 7.7) we 
can in fact write self modifying programs. However, such practice is not 
common. 

2 A problem related to the execution of loops is the recognition of a 
loop. The extent of --or even the presence of-- a loop which the user is 
controlling by tests and go's may be difficult to discover. If a loop is 
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The translation of an expression into a sequence of instructions is not 
without cost. If we wish to evaluate a simple expression only once, then direct 
evaluation is may be less time-consuming than translation plus execution. 
However expressions subjected to repeated evaluation can profitably be 
translated into instructions and then executed. 

The translation part of the process which we have been describing is 
called compilation; the translator is catted a compiler. The compiler is a 
mapping from the LISP expressions to a sequence of instructions. A 
compiler is a useful tool for increasing the 'speed of execution. J. McCarthy 
says a compiler allows you to look before you leap; we will show that we can 
look as we leap. That is, we can compile instructions as we evaluate 
expressions; if the expression is evaluated again then we execute the faster 
compiled version. 

The relationship between compilation and interpretation should be 
more apparent now: the interpreter performs the evaluation; the compiler 
emits instructions which when executed produce the same· computational 
effect as the evaluator. Since the code produced by the compiler is either in 
machine language or in a form closer to the machine than the source 
program, we can execute the code much faster. A speed-up factor of thirty to 
fifty is not uncommon. Compilation may also reduce storage req uirements; 
interpreted programs are stored as S-expressions, but compiled code will be 
machine language. The machine code will reqUire significantly less space 
than the interpreted version, the S-expr storage may be reclaimed, and 
garbage col1ection time wi11 be decreased since the compiled code is not in 
free space. 

Why not compile all programs? We already have seen that we can 
cons-up new expressions to be evaluated while we are running. Even so, we 

can compile those expressions before execution. 3 The answer, rather, is that 
for debugging and editing of programs it is extremely convenient to have a 
structured representation of the program in memory. This structured 
representation also simplifies the discussion of compilation. It is true that 
compilers can translate directly from M-expression representation to internal 
machine code. 4 Conventional compiler discussions include description of the 

controlled by language constructs (while, do, repeat, etc.) then the interpreter 
should have some chance of improving the execution of the loop. This, 
perhaps, is reason for removing control of iteration from the hands of the 
programmer. 

3There are, however, programs which simply cannot be compiled. The 
most obscene examples involve self-modifying programs; that is, programs 
which modify their representation in order to affect the course of 
interpretation. An example is reluctantly given on page 388. 

o4The compilers which perform in this manner are called sytnax 
directed compilers. They are an instance of a computational scheme called 
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syntax analysis problems, for we cannot compile code until we know what the 
syntactic structure of the program is. However, syntax analysis is realty 
irrelevant for a clear understanding of the behavior of a compiler. 
Assuming the existence of the structured representation, the compiler is 
conceptually very simple. The S-expr representation in LISP and resembles 
the parse tree of other language processors. When we wish to run the 
program at top speed, we can compile the programs. The compiler can then 
translate the abstract representation of the program into machine code. We 
shall say more about this view of programming later. 

We shall exploit the analogy between compilers and evaluators when 
we write the function, compile, which will implement the compiler. We will 
.1$0 lb.trac;t from the 'pc<:ifi(; compiler, th~ euer'lce of all LISP c:;ompilen. 
We will have to separate two representations from the specific compiler; we 
are representing one specific compiling algorithm, and we are also dealing 
with the representation of a specific machine. The task is worth pursuing 
since we wish to write different compilers for a specific machine and also 
would like a single compiler capable of easy transportation to other machines. 

The input to compile is the representation of a LISP function; the 
output is a list which represents a sequence of machine instructions. Assume 
that we have LISP running on Brand X machine, and we have written 
compile which produces code for Brand X machine. Then perform the 
following sequence of steps: 

1. Create the S-expression form of compile. 
2. Introduce this translation into the machine, defining compile. 
3. Ask LISP to evaluate: compile[COM P I LEJ. 

Since compile compiles code for Brand X machine, it translates the 
S-expression representation of its argument into machine code. Therefore the 
output of step 3 is a list of instructions representing the translation of 
compile. That is, step 3 compiles the compiler. 

A technique called bootstrapping is closely related to the process just 
described. To illustrate this idea, assume that we have LISP and its compiler 
running on Brand X, and we wish to implement LISP on Brand Y. If we 
have been careful in our encoding of the compile function then most of 
compile is machine independent; that is, it deals mostly with the structure of 
the LISP expression and only in a few places deals with the structure of a 
particular machine architecture; this is not an unrealisitc assumption. Notice 
that this is one of our early programming admonitions: encode algorithms in 

syntax directed computation; the idea is based on the observation that many 
algorithms parallel the underlying data structure. We have seen this 
behavior frequently in our data structure algorithms. For application to 
compiling and parsing see [Gri 71] or [Aho 72]. 
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a representation-independent style and then include representation-dependent 
routines as the interface. Changing representations simply requires changing 
those simpler subfunctions. Here the representations are machines and the 
algorithm is a compiling algorithm for LISP functions. 

Let us call those parts of the compiler which deal with the machine, the 
code generators or instruction generators. Now if we understand the machine 
organization of brands X and Y then for any instruction on Brand X we 
should be able to give a sequence of instructions having the equivalent effect 
on Brand Y. We can change the instruction generators in compile to generate 
instructions which run on Brand Y. We would have a compile function, can 
it compile*, running on X and producing instructions for Y. Take the S-expr 
representations of eval, apply, read, print, compile*,. .. etc. and compile these 
with compile*; we will generate a large segment of code for a LISP system 
which will run on Y. Certain primitives will have to be supplied to run these 
instructions on Y, but a very large part of LISP can be bootstrapped from X 
to Y. 

Given a compiler and interpreter for a language A) we can often 

bootstrap A) to a language A2. We express the interpreter for A2 as a 

program in A J. We can then execute programs in A2 by interpreting the A2 

interpreter. We can improve efficiency by compiling the A2 evaluator. 

Perhaps we can express the A2 compiler in A 1 or A2; in either case we can 

then compile that compiler. 5 

The purpose of this chapter is to discuss implementation of control 
structures for LISP, yet most of this introduction has been a description of 
compilers. These positions can reconciled easily. 
1. The instructions generated by the compiler will reference the control 

primitives of the machine. The control structures of the evaluator will 
also be implemented from these primitives. The machine code produced 
by an implementor might be more highly optimized than that produced 
by a compiler, by the essential structure of the code will win be quite 
similar. We are initially interested in understanding. It is easier to 
understand an abstract general algorithm than to understand the 
implementation of one specific evaluator. 

2. It will clearly show the relationship between compilation and evaluation. 
That is, the LISP function representing the compiler will very closely 
paral1el the structure of the interpreter, eval. If you understand eval, then 
the compiler is easy. 

The design of the compiler will also illustrate another non-trivial 
application of abstract computation, showing how simple it is to describe an 

5The first bootstrapped compiler was the LISP compiler for the 
IBM704. Bootstrapping is a common practice in A.I. now, using LISP as a 
base language and extending it to any number of specialized A.1. languages. 
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a.ppa.rently complex algorithm. As in the previous chapter, we wilt remain as 
abstract as possible without losing the necessary details. A meaningful 
description of compilers entails an understanding of a machine, so before the 
actual construction of the compilers, we will describe a simple machine with a 
sufficient instruction set to handle the control structures of LISP. First we 
will review and expand the primitives of Section 4.8, emphasizing their 
interpretation as machine instructions. 

6.2 Primitives for LISP 

In our discussion of the evaluators in Section 4.6 through Section 4.8 we 
uncovered more details involved in evaluation of LISP expressions. In the 
final evaluator we identified a dozen or so actions. The underlying idea was 
to remove recursion and replace that implicit control structure with very 
explicit actions, controned by a simple loop: 

loop <= ).,[[]prog[[] 
l cont[] 

go[l] ]] 

The variable cont was a functional variable, bound to states and set to the 
next state· by the action of the current state. This observation marks the 
beginning of a traditional machine description. It remains to separate the 
actions of the machine from the instructions it is executing. That is, some of 
the details of the state transformations deal with the bookkeeping which the 
machine is doing to discover what the expression is, and some of the 
transformations perform the actual evaluation of the expression. For 
example, the manipulation of fun and args is part of the activity to discover 
the form of the expression. The execution of send and receive are involved 
with the evaluation. The parts of the evaluator involved with the execution 
of the expression wi11 become the instructions of the machine. Supplied with 
an appropriate execution device, a sequence of these instructions captures the 
meaning of the evaluation of an expression. It is the business of this section 
to review the evaluators and extract a sufficient set of instructions. We 
begin that task with some examples, using peval of Section 4.8 as the basic 
interpreter. 

First, the evaluation of a constant A involves the recognition that we 
have seen a constant; that is part of the control of the evaluator. We 
evaluate that constant by send[denote[]J. The denote operation is still part of 
the evaluator, but the send operation is an instruction. The execution of 
send[A] performs the evaluation. The restore operation returns the evaluator 
to its previous state. We must anow for some state-saving in our repertoire of 
instructions. The evaluation of a function application, like g[A], involves the 
evaluation of A, the calling of g, and a means of returning to the 
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computation surrounding g[A]. Function cal1s involve several things: we need 
space to contain the evaluated arguments; we need a control mechanism to 
describe which argument is being evaluated; we need to suspend a 
computation such that we can execute the function with the evaluated 
arguments; and we must be able to return to the suspended computation 
when the function has completed its task. 

The necessary ingredients are already present in peval; we need only 
extract and package them. Clearly alloc_dest is involved in getting new space 
for the evaluated arguments. There is a second required activity since 
alloc_dest always occurs in conjunction with a save of the current dest. 
Therefore we define an instruction named alloc which saves the current 
destination and intitializes a new dest block. 

Each slot of the destination block is fiHed by an appropriate send 
operation. Examination of the sub-states of evalargs (page 215) reveals 
another machine instruction: next[] is used to increment the destination 
pointer. 

Finally, after all the arguments are evaluated, the destination block 
must become the local environment, and the function can be called. Thus two 
more instructions: link wilt attach the destination block as the local 
environment and restore the previous dest block; call wilt call the function 
after saving sufficient control information so that we may return after 
execution of the function is completed. 

For example, consider jtg[A],·h[B]]. Assuming f and g are A-definitions 
with formal parameters [x;y] and [z] respectively, and It is a primitive, then 
an instruction sequence might be: 

alloc[(X Y)],' alloc[(Z)],' send[A]; 
Link[]; call[G]; next[]; 

alloc[(Gl)],· send[B]; link[]; 
call[H]; link[]; call[F] 

There are two classes of instructions to break the sequential flow of a 
machine program: we transfer control when we cal1 or return from a 
function; and we transfer control when we execute a conditional expression. 

Examination of ev2, ev5, and ev6 (page 214) reveals some of the details 
of a function ca11-return sequence. After saving the current environment, 
restoring the saved destination, and saving a continuation point, we passed 
control to the body of the function. The instruction sequence, representing 
the body of the function, wilt be terminated by a caU on ret. This instruction 
will restore the saved environment and return control to the instruction 
immediately following the call instruction. The saved information is 
governed by the variable named control, with call adding information, and 
ret removing information. Before showing how instructions are executed and 
how control is manipulated, we will describe the primitives for conditional 
expressions. 
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Examination of the details of evcond and its associated functions 
(page 215), exhibits more instructions. We use the evaluator to evaluate a 
predicate; we then receive the result from the dest-block. If that answer is 
true, we evaluate one path; otherwise we evaluate another path. We see two 
instructions here: a test and jump instruction, which we shall call receive_test, 
which tests the contents of the current destination slot and jumps to one 
instruction sequence if the result is true, and jumps to (usually) another 
instruction sequence if the result is false. The second instruction is a means 
of jumping unconditionally to a prescribed instruction sequence. This second 
instruction is named goto. 

For example, a conditional expression [PI -+ eli ... iPn -+ en] has a code 
seq uence like: 

aO 

<instructions for PI> 
[receive_test[] -+ <code for el >igoto[aO]] 
<instructions for P2> 

<instructions for Pn> 
[receive_test[] -+ <code for en>;goto[aO]] 
err[NO_T RU E_CON D_CLAU SE] 

Whenever receive_test is true we execute a sequence of instructions and then 
transfer out of the conditional using the goto. We could have treated 
conditional expressions like special function cat1s, saving' aO as the 
continuation and restoring it from control instead of using goto. However 
conditional expressions don't require that extra generality. 6 

We can now give a more detailed picture of a device which can execute 
this instruction set. A program will be represented as a sequence of 
instructions. Some of these instructions may be prefaced with labels. These 
labels either represent function names or names used within a conditional 
expression. Given a sequence of instructions named inst_seq, we expect that 
they be executed in sequence, unless some transfer of control occurs. For 
example, the following program suffices for the execution of such instruction 
sequences: 

SOur treatment of conditionals is an instance of "open coding" a 
function call. That means we replace a possible call-ret with the "in-line" 
instruction sequence which makes up the body of the function. This trick 
gives faster execution, but takes more space. We will see another instance of 
"open-coding" when we compile macros in Section 6.1S. 
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loop <= A[[inst_seq]prog[[i_s,·pc] 
i_s ~ inst_seq; 

l [null[i_s] ~ return[' Izalt]],· 
pc ~ jirst[i_s]; 
i_s ~ rest[i_s ],. 
[not[is_label[pc)] ~ pc[]]; 
go[l] ]] 

6.2 

If loop returns HALT, then the result of our computation is found in dest. 
Labels are not executable instructions, and are therefore ignored. The effect 
of goto is to replace the current instruction sequence with the sequence which 
begins immediately after the label which is the argument to the goto. The 
effect of call-ret is a bit more complex. We describe only the control aspects 
of call, leaving the other details until later. Let an instance caU[jn] be the 

current instruction; and let is' be the current instruction sequence. Note that 

is' is the sequence immediately after the cal1. We save is' on control by 

control ~ concat[is';control]; then we set i_s to the sequence beginning at fn. 
Execution of go[l] sends us to labell and we begin executing the body of fn. 

We leave fn by executing ret. This instruction performs 

i_s ~ jirst[control],' control ~ rest[control]; 

and we are back at the instruction fonowing the call. 
Part of the execution of call and goto involves locating the desired 

label. Since we have saved the original instruction sequence we can search 
that list for the desired label. We will see more effective ways for locating 
labels in Section 6.5. 

6.3 8M: A Simple Machine 

This section describes a simple machine which has a sufficient instruction set 

to describe the LISP primitives in terms of a more conventional machine. 7 

Note that this machine is not necessary for our understanding of eval. The 
evaluator is self-descriptive. We need describe a machine only to discuss 
lower level implementation and compilation. Indeed, this is an objection to 
describing meaning of programming languages in terms of a compiler: you 
must then understand two things, the language and a machine. 

The simple machine. SM, has a slight similarity to the organh:ation of 
the PDP-IO [DEC 69], however we need very few features to illuminate the 
interesting facets of our primitives. If we were to implement a production 
LISP, many more instructions would be necessary. Similarly, our SM suffices 
for a description of compilation algorithms, but if we wished to perform 

7See also [Deu 73]. 
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highly efficient compilation for a production LISP system, we would require 
a full instruction set. The pOint now is to understand basic algorithms. 
When that is accomplished it is reasonable to examine problems of efficiency 
and details of implementation. We address some of the techniques available 
for optimization of compiler code in later sections. 

8M has a conventional addressable main memory, including registers, 
AC1, AC2, ... , ACn addressable as memory locations 0 through n. These 
registers, called accumulators, will be used as pointer registers. Each memory 
location is assumed to be large enough to contain two addresses. For sake of 
discussion, assume the word size is' 36 bits. One mapping of a dotted-pair 
onto an 8M location is straightforward: the car maps to the left-half of the 
word; the cdr, to the right. The addressing space for dotted pairs is therefore 
218. A memory area is set aside to contain such dotted pairs. A memory area 
is also dedicated to full-word space; all p-names and numbers are stored 
there. 

Parts of SM memory can be designated as stacks. Each stack is a 
contiguous area of memory, and the current top of a stack is referenced by 
one of the registers, PI, ... , Pj; these registers are called stack-pointers. 8 The 
stacks will be used to contain the partial results of calculations and will 
contain the information necessary to implement the function exit sequence. 
In our compilers, a single stack will suffice for saving partial computations, 
environments, as well as control information. This single stack will be 
referred to by P. 

There are only three classes of instructions necessary to describe our 
implementation: instructions for constant· generation, instructions for stack 
manipulation, and instructions for flow of control. 

The control instructions and some of the stack instructions refer to the 
program counter of SM. This counter is deSignated as PC. In the following, C 
means "contents of ... "; ac must denote an accumulator; loc means any memory 
location. 

Here are the instructions: 

MOVEI ac const C(ac) ~ const 

PUSH Pac 

POP P ac 

C(P) ~ C(P )+1 
C(C(P» ~ C(ac) 

C(ac) ~ C(C(P» 
C(P) +- C(P)-l 

Increment stack pointer. 
Copy contents of ac to top of stack. 

Copy top of stack into ac. 
Decrement stack pointer. 

80n the PDP-lO a stack pointer must be one of the AC registers. 
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The next two instructions implement a function calling mechanism. 

PUSHj P loc C(P) ~ C(P)+1 Increment stack pointer. 
C(C(P» ~ C(PC) Place address following the PUSHj. 
C(PC) ~ loc in the stack. Then change control to 

location loco 

POP j P C(PC) ~ C(C(P» Copy top of stack into PC. 
C( P) ~ C( P )-1 Decrement stack pointer. 

We have ignored some of the details of stack operations; each stack 
operations must consider boundary conditions on the storage allocated for the 
stack. Any condition which would violate these bounds must be detectable. 
If a stack is al10cated in a discontinuous fashion ([Bis 74]) then a storage 
management decision must be made; if the stacks are of fixed size, then an 
error must be signaled. 

MOVE ac loc C( ac) ~ C(loc) This is an instruction to load a specified 
ac with the contents of loco Note loc may 
be an ac; e.g. MOVE ACt AC2. 

MOVEM ac IDe C(loc) ~ C(ac) Copy contents of ac into IDe. For 
example, 
MOVEM ACt AC2=MOVE AC2 ACt. 

SU B ac loc C( ac) ~ C( ae) - C(loc) 

JUMP loc C(PC) ~ loc Go to location IDe. 

jU M P F ac loc if C( ac)=f then C(PC) ~ loc 

jUMPT ac loc if C(ac);I!f then C(PC) ~ iDe. Note that jUMPT 
implements the coding trick of 

Section 5.5 which maps tonto 
everything which is not false. 

These instructions are executed by a machine whose basic execution 
cycle is essential1y: 

I: C(IR) ~ C( C(PC» 
C(PC) ~ C(PC) + 1 
execute C(IR) 

go to) 

The IR, or Instruction register, is an internal register used to hold the 
current instruction. Note that the PC register is incremented before execution 
of the instruction. If we incremented PC after the execution of the 
instruction, and the instruction were a JUMP-type instruction, then the PC 
would get a spurious incrementation. 

A critical part of LISP evaluation involves procedure calls and returns. 
Since we expect to handle recursive calling sequences, the call-ret pair 
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(page 310), represented as CALL and RET, must take this into account. 
However, there is a more fundamental requirement of this pair: they must 
make sure that, on completion of a CALL, the RET can return to the 
instruction which directly foHows the CALL. This requirement can be 
accomplished by a less comprehensive can, say JSR, (for Jump SubRoutine), 
which stores the current value of the PC in a known location. Then the 
return, j RT H, (for Jump THrough), need only pick up that saved value 
and restore it into the PC. We could implement this instruction on our 
machine. Recall that in the basic machine cycle the PC was incremented 
before the execution of the instruction. Thus if we were about to execute a 
j S R the PC is already pointing at the next instruction; all we need to do is 
save the current PC. So let's assume that J SR loe stores the PC in loc and 
begins execution in location loc+1. Then: 

j SR loc CUoe) f- C(PC) Save the PC in loe. 
C(PC) f- loc + 1 Jump to location loe + 1. 

j RT H loc C(PC) f- CUoe) 

This pair is sufficient to implement simple non-recursive calling sequences. 
It's fast and efficient; however it is not sufficient for recursive control. If we 
always store in a fixed location, only the result of the last store would be 
available and previous values set by prior recursions would have been lost. 9 
What we need is an implementation of the actions of control. For purpose of 
our discussion we can assume that control operates in a stack-like fashion. 10 
What the CALL will do is push the current contents of the PC onto the 
control stack; and RET will pop off the top element and put it into the PC 
register. 11 

The behavior we have just described is that attributed to the 
PUSHj-POP j pair when they are applied to the control stack. We have 
separated out the CALL-RET pair since the calling process is not always as 
simple as PUSHJ-POP j. Several things impinge on our decision: 

1. We want to be able to supply detailed debugging information to the 
user. How this will be accomplished will be the topic of 
Section 6.23. 

2. We want to be able to freely replace functions with new definitions. 

9The programmer could have saved and restored the return points in 
an internal stack, but that is wasteful of programmer time, memory space, 
and succeptible to errors. 

lOUnless we consider extensions of LISP, a stack is sufficient for 
LISP's control environment. 

l1What will be found on the control stack is a time-sequence of those 
procedures which have been entered but have not yet been completed. Such 
information is exceptionally useful in debugging programs. 
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A PUSH j transfers control to a particular seq uence of 
instructions. 

3. We want to be able to intermix compiled and interpreted programs. 
Compiled programs may can interpreted programs, and vice versa. 
Indeed we may even wish to replace an interpreted (compiled) 
definition with a compiled (interpreted) version. 

4. In dealing with functional arguments, we must be able to transfer 
control to a function variable. We cannot know where the PUSH J 
should transfer. 

When an interpreted function calls a compiled (or primitive) function, 
eval will look for the indicator, SU BR; then retrieve the machine address of 
the code and enter via a PUSH]. That code should exit (back to eval) via a 
POP j, after assuring that any internal stacks have been appropriately 
restored. 

Compiled functions call other functions via CALL. The CALL must 
discover how to caU the function: is it a SU BR, EX P R, an F EX P R, etc? 
The function is called and on completion control is returned to the address 
immediately foHowing the CALL. For example, CALL can be implemented 
as (PUSH] P DECODE), where P represents the control stack pointer, and 
DECODE represents a routine to decode the actual procedure call. Within 
decode we know that C(C(P)-J) is the actual call instruction; decode then can 
access the function definition associated with In, set up the call, and then 
return via a POP j. 

Within any CALL or PUSH] we may call any function, including that 
function itself. This brings us to one of the most important conventions for 
any stack-like caU-return sequence: Whatever we push onto a stack within the 
bod y of a function must be popped off before we exit from the function 
bod y. That is, the state of any stack must be transparent to any computations 
which occur within the function. This is caned stack synchronization. 

Usually the effect of RET is identical to POP J, however it is 
conceivable that we might expect that complex returns require special care. 
The basic idea in this discussion is that we wiJ) supply two similar, 
compatible, but not identical caU·return sequences: PUSH J -POP J is fast 
and simple; the other, CALL-RET, is more general but more costly to invoke. 

In the next section we will reconcile LISP primitives with the 
instruction set supplied on SM. 

6.4 Implementation of the Primitives 

As with any representation problem, several choices are available. We will 
begin our use of SM with a study of cal1-by-value function calls; later we will 
discuss other caning sequences. We will discuss two general implementation 
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techniques. The first is applicable to machines without the special AC's of the 
SM. 

First, we will assume only that we are able to simulate a stack. All the 
operations occur on the stack. Constants will be generated by pushing the 
representation on the top of the stack, essentially creating a dest block. A 
function call, fitt; ... ;tn], expects its arguments as the top n elements of the 
stack, with the value of tn on the top of the stack, and the other values below. 
As the function is called, the dest block on the top of the ·stack becomes the 
local environment. The function replaces the top n elements with the value of 
the function, thus send-ing its value to the destination of the ca11er. This 
model is a restricted, but very useful, subset of LISP. It will develop into a 
more robust example as the chapter progresses. The technique is extendible 
to support the implementation model we developed in Section 5.18. 

Here's an example of the implementation for the expression 
j(g[A ];C; A[B ]]: 

(PUSH P (QUOTE A» 
(CALL 0) 
(PUSH P (QUOTE C» 
(PUSH P (QUOTE B» 
(CALL H) 
(CALL F) 

; make argument for call on g 
; call the function 
; place second argument 

; A only uses (and removes) B 
; after the call, j[g[AJ;C;h[B]] is 

on the top of the stack. 

Now we will give implementations of the LISP primitives which result 
in reasonably efficient code on the SM, and which also reflect several 
practices applied in current LISP implementations. We will take advantage 
of the existence of the special AC's; the usual hardware implementation of 
such special registers al10ws access to their contents in less time than typical 
stack references. 12 

Since the creating, saving, and restoring of destination blocks can be 
expensive, we will try to minimize those kinds of activities. We will use our 
special registers ACl, through ACn to build parameter lists and pass 
parameters. This entails several conventions. We will try to use the 
accumulators as the destination block. Our early compilers wilt be 
sufficiently weak that this desire can be met. Later we wilt have to modify 
our stand slightly. 

The actual parameters for a function can, fit 1" ... ;tn], will be developed 

t2There is a question whether such special registers should be 
considered good architecture or a trick. The Burroughs 6700-7700 uses 
special hardware to decrease access time to the initial stack segment. The 
PDP-IO uses special registers. One can argue that such special tricks belong 
in the hardware, and that the machine presented to the programmer be 
correspondingly more uniform [Dor 76]. 
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in ACI through ACn. In the early compi1ers we wiU also pass the evaluated 
parameters to the called function using the accumulators. Thus values wiH 
tend to stay in the AC's unless forced out. They can be forced out by alloc 
since a can to altoc is supposed to save the current dest. The interplay 
between ntxt, link, and send requires care. 

We wi11 assume that we are compiling for single valued functions, and 
therefore we must resolve the question of where to put the value of a 
function. Again consider fit); ... ;tn); we might expect that each tj be 
responsible for placing its result in the proper ACi. Indeed that is the spirit 
of .the send operation; it knows where the result should be placed. This 
strategy req uires some careful register allocation if it is to be carried out 
successful1y. We wi11 postpone this discussion for a while. 

There is a. simpler solution available: a function always returns its 
value in ACI and leaves the register allocation up to the calting function. 
There are at least two strategies here: 

We try to build the dest block in the AC's and also use the AC's to pass 
parameters and values. 

A function can, fit}; ... ;tn), expects its arguments to be 
presented in ACI through ACn. We try to compute the 
values of tj directly in ACi. This is easy if tj is a constant; 
if tj is a function can on g, we save ACI through ACt-I; set 
up the arguments to g; perform the can, returning the 
result in ACI; move the result to ACi; and restore the saved 
values of the t's. 

Con ven Hon 1 

We try to build the dest block in the top of the stack, using the AC's for 
passing parameters and returning values. 

A function can, fit); ... ;tn), expects its arguments to be 
presented in ACI through ACn. As we compute each tj, we 
store the result on the stack P. Thus the execution 
sequence should be: 

compute value of t, push onto stack P. 

compute value of tn-]I push onto stack P. 
compute value of tn' move into ACn. 

After this computation the values, V n-), ... , V.' of the 
arguments are stored from top to bottom in P with V n in 
ACn. Thus to complete the function invocation, we need 
only pop the arguments into the AC's in the correct order 
and can f. We did not push V h since we expected to pass 
the parameters to f in ACI through ACn. 

Convention 2 
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When a function completes evaluation, it is to place its 
value in ACI. Nothing can be assumed about the contents 
any other AC. If an AC contains information we need then 
it must be saved on the stack before calling the function. 
Instead of referring to ACl, AC2, ... , ACn we wilt simply 
use the numbers, 1, 2, ... , n in the instructions. 

General con ven tions 

We now give an example of both conventions for the expression 
j(g[A];C;h[BJ]. We use a Ust representation of the in.structions and code 
sequences in preparation for future discussions. 

«MOVEll (QUOTE A» ; make argument for can on g 
(CALL 0) ; can the function 
(MOVEI 2 (QUOTE C» ; place second argument 
(PUSH P 1) ; but now we have to save the values 
(PUSH P 2) ; since we must compute h[B] 
(MOVEll (QUOTE B» 
(CALL H) 
(MOVE) 1) 
(POP P 2) 
(POP P 1) 
(CALL F) ) 

Example of Convention 1 

«MOVEll (QUOTE A» 
(CALL 0) 
(PUSH P 1) 
(MOVEll (QUOTE C» 
(PUSH P 1) 
(MOVEll (QUOTE B» 
(CALL H) 
(MOVE) 1) 
(POP P 2) 
(POP P 1) 
(CALL F) ) 

Example of Convention 2 

; move the result to AC) 
; restore AC2 and ACI in the correct order 

; make argument for can on g 
; call the function 
; save the value 

; save the value 

j don't need to save the value 
since this is the last argument 

Neither compiling convention produces optimal code for all occasions. If the 
parameter list to a function call contains only constants, then the first 
convention produces better code. If there are many nested function caUs then 
it may produce very bad code. We will worry more about efficiency after we 
develop the basic compiling algorithms. 
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At the highest level, our compiler wil1 generate code for the 
alloc-link~call-... machine; but frequently we will express the code in terms of 
one of our more traditional representations. 

The output from the compiler is to be a list of instructions, in the order 
which we would expect to execute them. Each instruction is a list: an 
operation fot1owed by as many elements as are reqUired by that operation. 
We can execute the compiled code by simulating the actions of our machine 
on each element of the sequence. However it is more efficient to translate this 
compiler output further, producing a sequence of actual machine instructions, 
placed in memory and suitable for execution by the hardware processing 
unit. 1n preparation for this, we wilt allocate an area of memory which can 
receive the processed compiler output. This area is usually called Binary 
Program Space (BPS). The translation program which takes the output 
from the compiler and converts it into actual machine instructions in BPS is 
called an assembler. 

6.5 Assemblers 

In Section 6.2 we gave an abstract description of an algorithm for executing 
seq uences of instructions. In this section we discuss the mechanism for 
translating the LISP list, which represents instructions, into machine 
instructions in Binary Program Space. Part of the process involves the 
actual instructions; before a machine can execute an instruction it must be 
transformed into a numerical code which the machine understands. Part of 
the process involves establishing a link between the BPS code and the LISP 
evaluator; before the evaluator can can the compiled code, it must know 
where to find it. A program which performs these operations is called an 
assembler. 

There are two alternatives available to solve the first problem. We 
might add the assembly phase to the end of the compiler. Then the output 
from the compiler would go directly to locations in BPS. The alternative is 
to compile the functions onto an external medium, and perform the assembly 
phase later; this has some advantages. The assembly phase is significantly 
less time consuming than the earlier phases of a compiler. Therefore several 
programmers may take advantage of assembly code without the necessity of 
recompilation. In either case, the assembler must complete the translation to 
machine code and link that code into the object list such that it may be 
accessed. 

One of the arguments to the assembler is the representation of the 
program. One of its arguments should describe where in BPS we Wish the 
assembled code to begin loading; this second argument becomes the initial 
value for the assembly counter. The assembler can sequence through the 
program list, looking up each definition, manufacturing the numerical 
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equivalent of each instruction, and then depositing that number in the 
location referenced by the assembly counter. The assembley counter is 
incremented, and the next element of the program list is examined. 

We must also have access to an initial symbol table, describing the 
pre-defined symbol names. These pre-defined names include information 
about the actual machine locations for the utility functions, the values of 
special stacks or registers which the compiler uses internally. We must also 
have an instruction list which gives a correspondence between the names like 
ALLOC or PUSH] and the actual numbers which the hardware uses in 
interpreting the instruction. 13 

Below is a low level representation of a code sequence for jlg[A],.It[B]] 
assuming that It is a primitive routine. 

((MOVE I 1 (QUOTE A)) ; make argument for call on g 
(CALL 0) ; call the function 
(PUSH P 1) ; save the value 
(MOVEI1 (QUOTE B)) 
(PUSH] P H) 14 
(MOVE 2 1) 
(POP P 1) 
(CALL F) ) 

The machine representations of these instructions are encodings of specific 
fields of specific machine locations with specific numbers. For example, the 
operation PUSH is represented as a certain number, called its operation 
code or op code, and which will occupy a certain area of a machine word so 
that the CPU can interpret it as an instruction to push something onto a 
stack. Other fields in the instruction are to be interpreted as references to 
stacks, to memory locations, to accumulators, constants or external references 
to other routines. 

We must exercise a bit of care in handling QUOTEd expressions. 
Assembling a construct like (MOVEI 1 (QUOTE (A B C»)) should have the 
effect of constructing the list (A B C) in free space and placing an instruction 
in memory to load the address of this list into AC1. We must notice that this 
list is subject to garbage collection and, if left unprotected, could be 
destroyed. The garbage col1ector could look through compiled code for any 
references to free-space or full-word-space; or we could make a list of all of 
these constants and let the garbage collector mark the list. Looking through 
compiled code is expensive; that expense can be minimized by compiling 
referneces to constants into an initial block in in the prolog of the code. 

13A hardware machine is just another interpreter like eval. It is usually 
not recursive, but performs more like loop in the prog-evaluator. 

14Note that we use P; this assumes we use P to save both value and 
control information. 
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(JUMP loc) 
<const1> 
<const2> 

<constn> 
loc <code> 

... ) 
Then the garbage coHector need only search well-defined positions. 

6.5 

Keeping a QUOTE-list is a compromise; it is a compromise since that 
strategy might retain unnecessary structures in case functions were redefined 
or recompiled. 

The assembler also needs to recognize that there are different 
instruction formats. That is, some instructions use an opcode and a memory 
reference: (JUMP L); some use an opcode, accumulator, and an address: 
(PUSH P 1); and some use a LISP construct: (MOVEI1 (QJJOTE A». 
Therefore, the assembler has to have an initial symbol table of opcodes and 
stack numbers. 
Here is a sample op-code table with their machine equivalents: 

sym bol value 
MOVE 200 
MOVEI 201 
SUB 274 
JUMP 254 
JUMPE 322 
JUMPN 326 
PUSH 261 
POP 262 
PUSHJ 260 
POP J 263 
RET 263 
CALL 034 
P 14 
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And here's what the code for jlg[A];C,.h[B]] might resemble after being 
assembled: 

100 201 1 405 

034 1107 

261 14 1 

201 1 406 

260 14 11121 

200 2 1 

262 14 1 

034 1051 

where A is located at 405; the atom F begins at 1051, and the instruction 
sequence for It begins at 11121, etc. 

6.6 Compilers for Subsets of LISP 

We wilt examine compilers for increasingly complex subsets of LISP; we 
begin with functions, composition and constant arguments, and gradually 
include more features. Though each subset is a simple extension of its 
predecessor, each subset introduces a new problem for the compiling 
algorithm. If the corresponding evaluator (tgmoaf, tgmoafr, and the most 
simple eval) is well understood, then the corresponding additions to the 
compilation algorithm are easy to make. 

The first compiler will handle representations of that subset of LISP 
forms defined by the following BNF equations: 

<form> 
<arg> 

::= <constant> I <function>[ <arg>; ... ; <arg>] 
::= <form> 

<constant> ::= <sexpr> 
<function> ::= <identifier> 

This LISP subset corresponds closely to that of tgmoaf, handling only 
function names, composition, and constant arguments. In the interest of 
readability and generality, we will write the functions using constructors, 
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selectors, and recognizers and supply the necessary bridge to our specific 
representation by simple sub-functions. 

All the compilers we develop will be derived from the second compiling 
convention, saving the results on the top of the stack. Our compilers will 
incorporate some knowledge of the 8M machine, and we will try to note 
places where substantial assumptions about machine structure have been 
made. The remainder of this section describes the main components of the 
first compHer. 

compexp expects to see either a constant or a function followed by a list of 
zero or more arguments. The appearance of a constant should elicit the 
gen.eration of a list containing a single instruction to send back the 
representation of that constant; mksend[dest;exp) is a can on the 
constructor to generate that instruction. Since values are always found 
in ACl, that should be the destination for the send. Since we are 
assuming the expression is a constant, the operation can be a MOV EI. 
If' the expression is not a constant, we can assume it is a cal1-by-value 
application. We should generate code to evaluate each argument, and 
follow that with code for a function ca11. 

com pexp <= A[[exp) [isconst[exp) -+ list[mksend[l ;exp )),. 
t -+ ).,[[z)compapplylfunc[exp); 

complis[z],· 
length[z))) 

[arglist[exp)] ]]] 

complis gets the representation of the argument list; it must generate a code 
sequence to evaluate each argument and increment the destination. 
After we have compiled the last argument we should not increment the 
destination. Notice that we have used append with three arguments; 
this could be justified by defining append as a macro (Section 3.12). 

complis <= ).,[[u) [null[u) -+ ( ); 
null[rest[u]] -+ compexp[jirst[u)]; 
t -+ append[compexp[jirst[u]]; 

list[mkalloc[J]]; 
complis[rest[u]]]] ] 

compapply has a simple task: it generates code for allocation of the values; it 
takes the list of instructions made by complis and adds instructions at 
the end of the list to generate a function call on fn. Here's com pappi,: 

compapply <= A[[fn;vals,'n] append[ vals; 
mklink[n]; 
list[mkcall[fn]]]] 
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Finally, here are the constructors, selectors, and recognizers: 

Recognizer 
isconst <= ~[[x) or[numberp[x),. 

eq[xjt]j 

eq[x;f]; 
and[not[atom[x]];eq[jir st[x];QU OT E]]]] 

Selectors 
June <= ~[[x] Jirst[x]] 
arglist <= ~[[x) rest[x]] 

Constructors 
mksend <= ~[[dest;val] list[MOV El,'dest;val]] 
mkalloc <= ~[[dest] list[PU S H ,.p ;dest]] 

mkeall <= ~[lfn] list[CALL;fn]] 

mklink <= ~[[n][eq[n;J] ~ ( ); t ~ concat[mkmove[n;J];mklinkl[subl[n]]]] 

mklinkl <= ~[[n][zerop[n] ~ ( ); t ~ concat[mkpop[n];mklinkl[subl[n]]]]; 

mkpop <= ~[[n] list[POP;P;n]] 
mkmove <= ~[[dest;val] list[MOVE;dest;val]] 

Note that compexp is just a complex tn-mapping whose image is a sequence 
of machine language instructions. 

The code generated by this compiler is inefficient, but that is not our 
main concern. We wish to establish an intuitive and correct compiler, then 
worry about effiCiency. Premature concern for efficiency is folly; we must first 
establish a correct and clean algorithm. 

Problems 

1. Write compexp to generate code for option 1 as discussed on page 318. 
Compare the two versions of compexp; now write a more abstract version 
which encompasses both as special cases. 

2. Write compexp and associated functions for a stack-only machine using 
the techniques outlined on page 317. 

6.7 Compilation of Conditional Expressions 

Recall tgmoaJr of Section 2.8; the innovation in tgmoaJr was the evaluation 
of conditional expressions. The BNF equations were augmented by: 

<form> ::= [<form> ~ <form> ; ... ;<form> ~ <form>] 

The compilation of conditional expressions wilt mean an extra piece of 
code in compexp to recognize CON D and a new function (analogous to evcond 



326 Dynamic Structure 6.7 

in tgmoafr) to generate the code for the COND-body. )5 In fact, the major 
difference between evcond and its counterpart in compexp, which we shall call 
comcond, is that comcond generates code for each of the branches of a 
conditional whereas evcond only evaluates one branch. 

The effect of comcond on the form: 

COND 

can be surmised from the discussion of receive_test on page 311. First 
generate code for p); then generate a test for truth, going to the code for e) if 
true, and going to the code for P2 if not true. The code for e) must be 
fol1owed by an exit from the code for the conditional, and we should 
generate an error condition to be executed in the case that Pn is false. 

We represent the code as: 

<code for PI> 

j\ 
T NIL 

j \ 
<code for e) > <code for P2> 

~ 
T NIL 

'" \, <code for e2> <code for P3> 

.A 
~ ~ 

T NIL 

j \ 
<code for en> <code for error> 

) 5If we had designed the compiler like the evaluators in Section 5.8 we 
would need only attach a compile-property to the atom COND, and make the 
property-value COMCOND. 
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Expressing comcond in terms of SM primitives requires more 
conventions in our compi1er. 

We must be able to test for t (or n. Previous conventions 
imply that the value of a predicate will be found in ACl. 

We can test for the occurrence of t or f using the JU M PT 
or JUMP F instruction (see Section 6.3) respectively. 16 

More Compiling Conventions 

Since our code is to be a sequence of instructions, we must linearize the 
graph-representation of the generated code. We can generate a sequence 
representation by appropriately interspersing labels and JUMPs between the 
blocks of instructions for the pj'S and ej's. We will generate: 

( <code for PI> 

(JUMPF 1 LJ) 
<code for e 1 > 
(JUMP LO) 

Ll <code for P2> 

(JUMPF 1 L2) 

Ln-l <code for Pn> 

(JUMPF 1 Ln) 
<code for en> 

(JUMP LO) 
Ln (JUMP ERROR) 
LO ) 

We need to construct the labels, Li. These labels should be atomic and 
should be distinct. LISP has a function named gensym which is used for this 
task. gensym is a function of no arguments whose value is an identifier called 
a generated symbol, or "gensym". Gensyms are not true atoms since they are 
not placed in the object list; they are usual1y used only for their unique 
name. If it is desired to use them as atoms, they must be placed on the object 
list using the function intern (page 279). Gensyms are distinct from each 
other and will be distinct from all other atoms. 17 

We want to write a recursive version of comcond; therefore we must 
determine what code gets generated on each recursion and what code gets 
generated at the termination case. 

16In this implementation any value other than f wilt be 

considered t. See Section 5.5. 
17In many versions of LISP, gensyms are of the form On where n is a 

four digit number beginning at 0000. Thus the first call of gensym[ ] would 
give 00000; succeeding calls would give 00001, 00002, etc. 
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Looking at the example, we see that the block 

«code for Pi> (jUMPF 1 Li) <code for ej> (JUMP LO) Li) 

is the natural segment for each recursion and that: 

«JUMP ERROR) LO) 

8.7 

should be generated for the termination case. Within each block we need a 
"loca1" label, Li; and within each block, including the terminal case, we refer 
to the label LO which is "global" to the whole conditional. We can now add 
the recognizer for CON D to comptxp and construct comcond. 

Add the clause: 
iscond[exp) -+ comcond[argsc[exp);gensym[ ]]; 

to compexp where: 
comcond <= >,,[[u,-glob] [null[u] -+ list[mkerror[ ],-glob],-

t -+ append[comclause[first[u],­
gensym[]; 
glob],­

comcond[rest[u]; glob] ] 

comclause <=>..[[p,-loc,-glob] append[ compexp[ante[p]); 
list[mkjumpfiloc]]; 

Recognizer 
iscond <= >..[[x] eq[jirst[x]; CON D]] 

Selectors 
argsc <= >..[[x) rest[x]] 

ante <= >..[[c] jirst[c]] 

conseq <= >..[[c) second[c]] 18 

Constructors 
mkerror <= >..[[] (JUMP ERROR)] 

mkjumpj <= >..[[l] ltst[jU M P F ,-l,-l]] 
mkjump <= >..[[1] list[JUMP;l]] 

com pexp[conseq[p ]],­
list[mkjump[glob),'loc) )] 

1 Srrhis definition of conseq does not anow extended conditional 
expressions. See problem 2 on page 329. 



6.7 Compilation of Conditional Expressions 329 

The partially exposed recursive structure of comcond would show: 

comcond[«p leI) ... (Pn en»;LO]= 

( <code for PI> 

(JUMPF 1 Ll) 
<code for e I > 

(JUMP La) 
Ll comcond[«p2 e2) ... (Pn en»; La]) 

We need to extend our assembler to handle the generated labels and 
jumps which appear in the conditional expression code. 

Problems 

1. Evaluate: compexp[(COND «EQ (QUOTE A)(QUOTE B»)(QUOTE C» 
«NULL (QUOTE A»)(QUOTE FOO»)) 

2. Extend comcond to handle extended conditional expressions. 

6.8 One-pass Assemblers and Fixups 

Compilation of conditional expressions requires that the assembler handle 
the generated label constructs. On page 327 we illustrated the general form 
for conditional expression code. The symbols, La, Ll, and L2 in that 
example are generated symbols, representing labels. Though the gensyms are 
not true atoms, they will satisfy the test for atom. Therefore we can represent 
the recoginzer is_label as the predicate atom. 

When the assembler recognizes a label, it adds information to a symbol 
table, associating that label with the current value of the assembly counter. 
References to that label will be translated into references to the associated 
machine location. The only problem is that references to labels may occur 
before we have come across the label definition in the program. Such 
references are catted forward references. For example, alt references in the 
CO N D-code are forward references. J 9 

There are two solutions to the forward reference problem: 

) 9If we. scan the instruction sequence in the order in which the code 
would be executed, we always refer to a label before we come across its 
definition. We could skirt the forward reference problem by loading the 
program in reverse order: rather than beginning with the first instruction 
and loading upward in memory, we could begin with the last instruction and 
load downward. However, this would only be a temporary expedient: an 
assembler must also handle progs, and the label structure of progs is not 
restricted to such predictable behavior. 
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1. Make two passes through the program being assembled. The first pass 
builds a symbol table of pairs, each pair consisting of a label and the 
value of the assembly counter .which will be assigned to it. No code is 
generated; a second pass uses this symbol table to assemble the code. 

2. The other solution is to make one pass through the input. Whenever we 
come across a forward reference we update the symbol table with a triple 
consisting of the label name, the assembly counter, and an indication that 
the entry is a forward reference. We assemble as much of the instruction 
as we can, expanding the other fields. When a label is defined, we check 
the table for forward references pending on that label. If there are 
entries posted, we fix-up those instructions to reference the location now 
assigned to the label. 

Some minor programming restrictions are imposed by one-pass 
assemblers, but particularly for assembling compiled code, one-pass 
assemblers are usually sufficient and are quite fast. 20 

There are at least two ways to handle the fixup problem. If the fixups 
are simple, say only requiring fixups to the address-part of a word, then we 
may link those pending forward references together, chaining them on their, 
as yet, un-fixed-up field. 

/ i+-

• 
+-

~ 

• 
+-

~ 

pointer from 
entry in object list 

• 

A Simple Fixup Scheme 

200ne such restriction reqUires that any quantities which specify 
storage allocation, must be resolved before that storage allocation statement is 
executed. 
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Each time a forward reference is seen it is added to the linked list; when the 
label is finally defined and given an address in memory, then the address 
replaces each reference link. No extra storage 1s used since the linked list is 
stored in the partia11y assembled code. This assumes a word size is sufficient 
to contain fixup information as well as partially assembled code. If this is not 
the case, there is an alternative. 

Another solution, which is potentially more general is to store the 
information about each fixup in the symbol table under each label. This 
solution solves the previous problem and would also allow fixup information 
for arbitrarily small fields in instructions. 

from object I ist entry 

L I- -

fixup 

fixup 

fixup 

- . . . . 
Another Fixup Scheme 

The additional information te11s the fixup routine how to modify the 
referenced location. 

Both methods are useful. Both have been used extensively in 
assemblers and compilers. We now sketch a simple one-pass assembler. The 
assembler will need two functions: 

deposit[x;y]: x represents a machine address; y is a list, representing the 
instruction to be deposited. 'j could be a list of elements: (opcode, 
accumulator number, memory address) The value of deposit is the 
value of y. 

examine[x]: x represents a machine address. The value of examine is the 
contents of location x in the form of a list as specified above. 

We use our fixup mechanism, combined with examine, deposit, and putprop 
and remprop from page 261 to write the parts of the assembler which deal 
with forward references and labels. If the label h as been assigned a location 
then the property list of the label will contain the indicator SY M and an 
associated value representing the assigned location. If the label has not been 
previously defined but has been referenced then the atom will have an 
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indicator UN DEF; the value-part wi11 be a list of a1t those locations which 
reference that label. Since we wi11 only be doing simple fixups, this will be 
sufficient. The contents of any location referenced from such a fixup list will 
be a partially assembled word with the memory address portion set to O. 
When the label finally is defined we must perform the' fixups, delete the 
UN DEF pair, and add a SY M pair. There are two main functions. 

defloc is called when a label has been defined; if there are no pending 
forward references then the SY M pair is simply added, otherwise the 
fixup mechanism is exercised. 

defloc <= >..[[lab;loc] prog[[z] [null[z +- get[lab;U N DEF]) -+ go[a)); 
fixup deposit[car[z); 

fixit[examine[car[z]);loc)]; 
[z +- cdr[z] -+ go[fixuP]]; 
rempropUab;U N DEF]; 

a return[putpropUab;loc;SY M]]]] 

fixit <= >..[[x;l] mkinstr[op[x];ac[x];add[x];l]] 

gval is called when a label is referenced. If the label is already defined then 
it simply returns the SY M value; otherwise it adds a forward reference 
to the list. 

gval <= >..[[lab] [get[lab;SY M]; 

t -+ put prop [lab;cons[loc;getUab;U N DEF)];U N DEF];O]) 

Notes: these functions use lots of tricks. 
1. In defloc we use get as a predicate, relying on our convention 

that a non-NIL value represents truth (Section 5.5). 
2. In that same conditional, we also rely on the fact that the value 

of an assignment statement is the value of its right hand side. 
We appeal to points 1 and 2 in the second conditional of defloc. 

3. In gval, there is no el; recalling (Section 5.5) that if PI evaluates 
to something non-NIL, then that value is the value of the 
conditional expression. 

4. We also use an extended conditional in gval, executing the 
putprop and then returning O. 

5. Note also that loc is a non-local variable in gval. 

6.9 A compiler for Simple eval: The Value Stack 

The major failing of the previous compexp (Section 6.5) is its inability to 
handle variables. A related failing is its inability to compile code for 
A-definitions. This section addresses both problems. 
From page 321, we know what compexp will do with: 
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(MOVE 1 (QUOTE A» 
(CALL 0) 
(PUSH P 1) 
(MOVE 1 (QUOTE B» 
(PUSH] P H) 
(MOVE 2 1) 
(POP P 1) 
(CALL F) 
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jtg[A];h[B)) 

; get A into 1. 
; can the function named g 
; save the value 
; get B into 1 
; can h 
; restore the arguments in 
; preparation for 
; calling f 

No suprises yet. What would we expect to see for a compiled version of: 
jtg[x);h[y)) ? 

We should expect to see the same code except we would have instructions to 
send the values of x and y into accumulator 1 at the appropriate time. So the 
first problem is how to find the values of variables. Assume we are really 
interested in compiling: 

j <= A[[X;y) jtg[x];h[y]]] 

This added problem makes our question easier. Consider a can on j: j[A;B], 
for example. We know that the execution of the call occurs after the values A 
and B have been set up in ACI and AC2. Thus at that time we do indeed 
know what the values of x and yare supposed to be. For sake of simplicity, 
assume that the variables x and yare strictly local. That is, no one within the 
bodies of either g or h uses x or y free; we will worry about compilation of 
free references later. Since x and yare local, only j needs to find their values. 
We cannot leave the values in the ACs since those registers are needed for 
other computa.tions. Rather, we wi11 save x and y in the top of the stack P. 

Since P contains the values of partial computations, and now also 
contains the values of the local A-variables, P is also called the value stack. 
This is a value stack similar to that described in deep-binding (Section 5.18); 
however we do not need the name stack here. The compiler will know where 
on the stack values of local variables can be found; it wi11 put them there so 
it should know. This lack of a name stack is a mixed blessing; we save space, 
but we have lost the names; the names are useful when we are debugging 
code, and necessary for a fun LISP implementation. Note that P is not solely 
a value stack; it also contains the control information. We are not always 
able to mix access and control information on one stack; in fact, we know 
that a stack is not always a sufficent vehicle for describing LISP's access 
reqUirements. However, a very large subset of LISP does allow a Single-stack 
implementation, and we wilt be compiling within that subset for most of this 
chapter. 

Addressing the task at hand, the instructions for the body of j witt be 
very similar to those displayed for jtg[A];h[BJJ. We will generate instructions 
to save the values on the actual parameters by prefixing the compexp-code 
with two PUSH operations: 
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(PUSH P 1) 
(PUSH P 2) 

6.9 

After execution of this pair of instructions, ca11ed the prolog, the value of y 
is on the top of the stack, and the value of x is the next element down. 21 

Now that we have saved the values, we need instructions to send them 
to AC1 when the value is needed. We will implement send@ using the MOVE 
instruction (Section 6.3). In this case our memory reference will be relative to 
the top of the P stack. Relative addressing is described in our machine as an 
address field of the form"n p", where n designates the offset into P and 
referenc;es the nth element, counting backwards from zero. Thus in our 
current example "0 p" refers to the value for y and "-1 P" refers to x at the 
time j is entered. Be sure to reaHze also that our addressing is relative; 
though "0 P" refers to y at entry time, 0 P wi11 not refer to y when we have 
pushed something onto the stack. Be sure to realize that we cannot change 
our relative addressing to hard machine locations in the assembler. The 
addressing must always be relative. We will be compiling code for recursive 
functions. Each recursive can must get a fresh segment of the value stack in 
which to store its results. A similar problem appeared when we examined the 
CALL-RET mechanism on page 311:. There we were dealing with control 
information stored on a stack. 

Finally, we cannot leave the code for j as it stands. If the prolog pushes 
two entries onto the stack then we had better construct an epilog to remove 
them; otherwise the stack will not be in the state expected by the calling 
program .. As we leave j we subtract 2 from the pointer P to synchronize the 
stack. The constant 2 is designated as (C2). Finally we exit via RET. 

One further embellishment is needed: since we are defining a function 
and turning it into compiled code, we must preface the code sequence with 
information to our assembler to designate j as a machine-coded ca1t-by-value 
function. The assembler wilt make a new property-value pair consisting of 
the property name SU BR and an associated value part which is the value of 
the assembly counter when the assembly was begun. That pair is placed· on 
the p-list of the atom representing the function name. 

2tThe observant reader will note that the PUSH for x is unnecessary. 
Since we have assumed that x and yare strictly local, and since no one else 
needs the value of x except for g[x], we can simply compute g[x] directly. 
One might also think that we could leave B in AC2 while we calculated g[x]; 
we cannot do that, as g[x] might use AC2. We must PUSH y. 
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(LAP] SUBR) 
(PUSH P 1) 
(PUSH P 2) 
(MOVE 1 -1 P) 
(CALL 0) 
(PUSH P 1) 
(MOVE 1 -1 P) 
(PUSH] P H) 
(MOVE 2 1) 
(POP P 1) 
(CALL F) 
(SUB P (C 2» 

(RET) 
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; says j is a function 
; save the input args 

j get x 
; call the function named g 
; save the value 
j get y 
; call h 
j set up the arguments in 
; preparation for 
; calling f 
; synchronize the stack by removing 
; the two saved args 
; exit with AC1 containing the value of j[x;y] 

As you read the code and as you study its execution you should remember 
that the addressing in the code is relative to the top of the stack: 
(MOVE 1 -1 P) gets x in one instance and finds y in another, because the top 
of the stack changes. Here is a picture of the execution of the code: 

AC1: x ; AC2: y AC1: x " AC2: y 
I I (PUSH P 1) I x I (PUSH P 2) I y I (MOVE 1 -1 P) 

=> => I x I => 

AC1: x ; AC2: 'J 
I y ,(CALL 0) 
I x I => 

AC1: y " AC2: ? 
Ig[x]j (PUSH] P H) 
I y I => 
I x , 

ACl: g[x] ; AC2: hey] 
I y I (CALL 2 F) 
I x , => 

ACl: g[x] ; AC2:·~ 
I y ,(PUSHPl) 
I x I => 
I x I 
ACl:' h[y] ; AC2: ? 
Ig[x]1 (MOVE 2 1) 
I y I => 
I x , 

ACl: jlg[x];h[y]] 

Ig[x] I (MOVE 1 -1 P) 
I y I => 

AC1: h[y] ; AC2: h[y] 
Ig[x]1 (POP P ACl) 
I y I => 
I x , 

I y I (SUB P (C 2» => (RET) 
, x , 

6.10 A Compiler for Simple eval 

Now that we know what the runtime code for local variable references could 
be, we must describe an algorithm which will generate similar code. We shall 
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simulate the behavior of the runtime stack while we are compiling the code. 
The compiler cannot know what the values of the variables will be at run 
time but it can know where to find the values. We wilt carry this 
information through the compiler in a manner reminiscent of the assoc-style 
symbol table of the eval in Section 3.5: Instead of posting the current values 
in the stack, the compiler wi11 post information about the pOSitions of the 
variables relative to the top of the stack at the time we enter the function. 
The variable-position Jist, vpl, contains this information. If we are to 
compile a function with A-variables, [x;y;z] then vpl wi11 begin with: 

(( X . 1), (Y . 2), (Z . ) ... 
When we set up vpl we also set the offset, called off, to minus the number of 
arguments added to vpl, in this case -3. Now if we come across a reference, 
say to Y, while compiling code, we use cdr[assoc[Y;vplJ] to retrieve 2. The 
offset plus this retrieved value gives us the relative position of Y in the 
stack: -3 + 2 = -1. Thus to refer to the location of Y we use ( ... -1 P). 

What happens as we add elements to the stack? Or to be more precise, 
what happens as we generate code which when executed will add elements to 
the stack? Clearly we must modify the offset. If we add one element, we 
would set off to -4. Then to reference Y now use -4 + 2 = -2; that is, a 
reference to Y is now of the form: 

( ... -2 P) 
But that's right. Y is now further down in the run time stack. Thus the 
'symbol table' is reatly defined by off plus the current vpl. Here's a sketch of 
the proposed compexp in its performance of local variable recognition. 

islocalvar[exp] ... list[mkvarU ;loc[exp ;off;vplJ]] 
where: loc <= >..[[x;off;vplJ Plus[off;cdr[assoc[x;vpl]]]] 
and, mkvar <= >..[[ac;mem] list[MOV E;ac;mem,·P]] 

Next, when will the compiler make modifications to the top of the stack? We 
push new elements when we are compiling the arguments to a function caU. 
We know that com pUs is the function which compiles the argument list. 
Thus our new com pUs must know about of! and vpl, and since compUs 
changes the state of the stack, then it must change of! appropriately: 

com pUs <= >..[[u,·off;vpl] [null [u] ... ( ); 
null[rest(u]] ... compexp[first[u];off; vpl]; 
t ... append[compexp [!irst[u]; off; vpl],· 

list[mkalloc[J]]; 
complis [rest[u],' sub1[off],' vpl]]]] 

Notice that complis compiles the arguments from left to right, following each 
with (PUSH P 1) and recurring with a new offset which reflects the effect of 
the PUSH. This function is analogous to evlis. 
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Here's a brief description of the rest of the new compiler. 22 

compilelfn;vars;expJ: fn is the name of the function to be compiled. vars is 
the list of lambda variables. exp is the lambda-body. 

compile <.:: A[ [fn;vars,·exp] 
A[[n] append[ mkprolog[fn;n],· 

compexp[exp; -n,' prup[vars,·J]]; 
mkepilog[n]]] 

[lengtlz[vars]] ] 

mkprolog <= A[[f;n] concat[list[LAP ;f;SU BR];mkpuslzs[n;J]]] 

mkpuslzs <= A[[n,'m][ lessp[n,'m] -+ ( ); 

t -+ concat[mkalloc[m],' mkpuslzs(n;addl(m]]]]] 

mkepilog <= A[[n] list(mksync[n];mkret(]]] 

mksync <=A[[n] list[SU B,'P;list[C;n]]] 

mkret <=A[[] (RET)] 

prup[vars;n]: vars is a lambda list, n is an integer. prup builds a 
variable-position list. 

prup ::= A[[vars,'n][null[vars) -+ ( ),. 

t -+ concat[cons[jirst(vars); n],· 
prup[rest[var s ];addl[n]]])] 

22This compiler was adapted from one written by J. McCarthy 
([McC 76]), and proved correct by R. London ([Lon 71)) and M. Newey 
([New 75]). 
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compexp[exp;off;vPlJ: This function generates the code for constants and for 
references to variables. If the variable is local, a simple send is 
generated, otherwise a call on lookup results. If a conditional 
expression is recognized, comcond is ca11ed to produce the code. If exp 
does not fit one of these categories, it is assumed to be an application of 
a call-by-value function. In this case, complis compiles the argument 
list, leaving the arguments in the stack; loadac loads the appropriate 
AC's. and then we generate a caU on the function, and finally generate 
the SUB to synchronize the stack. 

compexp <= A[ [exp;off;vplJ 
[isconst[expJ -+ list[mkconst[J,'expJ]; 
islocalvar[expJ -+ list [mkvar[J;loc[exp,·off,-vpl]]]; 
isnonlocal[exp J -+ list[mklookup[exp ]J; 
iscond[exp] -+ comcond[argsc[exp]; 

gensym[ ]; 
off,' 
vpl],· 

iSfun+args[exp] -+ ~.[[z] compapply[func[exp],· 

[arglist[exp]] ]] 

compapply is found on page 324. 

com plis[z,'off;vpl]; 
length[z]] 

comcond[u;glob;off;vpl]: this compiles the body of conditional expressions. u 
is the Pi - ei list; glob will be bound to a generated symbol name; off and 
vpl will always be the offset and the variable-position list. 

comcond <= A[[u;glob,'off;vplJ [null[u] -+ list[mkerror[ ];globJ; 
t -+ append[comclause[jirst[u]; 

gensym[]; 
glob; 
off; 
vpl]; 

comcond[rest[u]; glob;off,-vpl] ]] 

com clause <=A[[p;loc;glob;off;vpllappend[compexp[ante[p]; 
off; 
vpl); 

list[mkjum pfl.loc]J,· 
com pexp[ conseq[p]; 

off; 
vpLJ,· 

list[mkjum p[glob ];ioc]]] 

Here is a partial sketch of compile operating on 

j <= A[[x;y:vtg[x];h[y]]] 

Compare the code it generates with the code we saw on page 335. 
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compile[J;(X Y);(F (0 X) (H V))] 
gives: 

append [«LAP J SU BR»; 
(PUSH P 1) 
(PUSH P 2) 
compexp[(F (0 X) (H Y»;-2,·prup[(X Y);J]]; 
«SU B P (C 2)) 
(RET))] 

where: prup[(X Y),·1] gives «X . 1) (Y . 2)) 

compexp[(F (0 X) (H Y));-2,.«X .'1) (Y .2))] 
results in: append [complis[«O X) (H Y»;-2;«X . 1) (Y . 2))]; 

mklink[2]; 
«CALL F))] 

and mklink[2] evaluates to: « MOVE 2 1) (POP PI)). 
Thus the code we're getting looks like: 

« LAP J SU BR) 
(PUSH P 1) 
(PUSH P 2) 
complis[«O X) (H V))" -2; «X .1) (Y . 2))] 
(MOVE 2 1) 
(POP P 1) 
(CALL F) 
(SUB P (C 2)) 
(RET) ) 

complis is interesting since it actually uses the vpl we have been carrying 
along. It gives rise to: 

append [compexp[( 0 X );-2;«X . 1) (Y . 2))]; 
«PUSH PI)); 
complis[«H Y)),.-3;«X . 1) (Y . 2))]] 

and the compexp computation involves, in part: 

append[complis[(X);-2;«X .1) (Y . 2»)]; 
«CALL 0))] 

Finally this compUs generates the long awaited variable reference using: 

compexp[X"-2;«X . 1) (Y . 2»] giving, «MOVE 1 -1 P» 
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So our code is: 
((LAP J SUBR) 
(PUSH P 1) 
(PUSH P 2) 
(MOVE 1-1 P) 
(CALL 0) 
(PUSH P 1) 
complis[«H V»~; -); «X .1) (Y .2»] 
(MOVE 2 1) 
(POP P 1) 
(CALL F) 
(SUB P (C 2)) 
(RET) ) 

Notice that the offset is different within the ca11: 
complis[«H Y»;-);«X . 1) (Y . 2))] 

But that is as·it should be: now there is an extra value on the stack. 

Problems 

1. Complete the code generation for the above example. 

6.10 

2. Extend the compiling algorithm to recognize anonymous A-expressions. 

6.11 Efficient Compilation 

"At the risk of slight exaggeration, we must chastiu, in today's 
programming environment, the process of compilation and the very 
word itself, which is the grand euphemism of computer science. 
Compilation is like an alchemistic art of transforming gold into 
lead, to obtain pencils and hence to communicate information. The 
task of a compiler is to take programs of a high-level, relatively 
problem-oriented language, and mutilate them beyond recognition, 
distorting them finally into sequences of unrecognizable codes 
com prehensible only to elements of electronic circuitry capable of 
actual execution. Incredibly, the high-level intent is simulated in this 
world of tlJires, and the program is executed as desired. The 
compilation process is magic. A translation has been made between 
two representations with no apparent similarity of form or content, 
yet those representations are in a global sense equivalent in their 
execution. " 

M ark Elson, Concepts of Programming Languages [Els 73] 
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We have discussed compilation at two different levels: we can translate LISP 
expressions into sequences of the LISP control primitives of Section 6.2; or 
we can translate into the instructions of the SM machine of Section 6.3. We 
conceptualized the compilers in terms of higher level abstractions, but biased 
many of our choices towards implementation on the SM instruction set. Our 
choices influenced the efficiency of the resulting compiler. 

We should first clarify what we mean by efficiency in this context. If 
the compiler produces code for the LISP primitives and then we encode the 
LISP primitives in terms of the SM instruction set, then we get a simple 
compiler which tends to produce inefficient code; inefficent, in terms of the 
SM machine, not in terms of the LISP primitives. Such a compiler would be 
efficient in terms of compilation time and might suffice for debugging runs 
or student projects. 

M ore likely, efficient compilation is taken to mean production of code 
which we could expect from a reasonably bright machine-language 
programmer. It should run reasonably fast, not have obviously redundant 
instructions, and not take too much space in the machine. It is this second 
interpretation of efficiency which we shall use. In this interpretation we don't 
simply implement the LISP primitives, but take a more global view of the 
underlying machine. We take advantage of more of the hardware features, 
incorporating them deeper into the structure of the compiler. This process is 
called optimization. Optimization defies the mismatch between the 
programming language and the hardware machine. The result is a compiler 
which is much more machine dependent, may require more processing time, 
but produces much better code for that specific machine. 

Our current compilation algorithm has many opportunities for 
improvement. A major inefficiency occurs in saving and restoring quantities 
on the stack. This is a symptom of a more serious disease: the compiler does 
not remember what wi11 be in the AC's at run-time. Since we are assuming 
that the arguments to a function call are to be passed through the AC's, and 
since it is expensive to save and restore these registers, we should make a 
concerted effort to remember which quantities are in which AC and not 
reload them unnecessarily. This optimization is dependent on the hardware 
of our machine;, if we had only one AC, the trick would not be applicable. 

6.12 Efficiency: Primitive Operations 

We should be able to generate references into AC's other that ACI. This is 
particularly useful for compiling constant arguments. 



342 Dynamic Structure 

For example, the can on filiA] should be generated as: 

(MOVE/II) 
(MOVE/2 (QUOTE A)) 
(CALL F) 

There is no reason to save constants in the stack. 

6.12 

We also expect that the LISP primitive operations, car, cdr, cons, eq, 
and atom should occur rather frequently in compiled code; 23 and we should 
expect that a reasonable compiler be cognizant of their existence and compile 
more efficient code for their execution. In this section we will enlarge the 
instruction set of our machine, adding plaUSible operations for some of these 
primitives. 24 

CAR is an instruction, taking two arguments: an ac and aloe 
respectively. The car operation is performed from loc to ac. For example 
when compiling the can, fiI;car[x]], we want the value car[x] in AC2. If x 
were in -5 P then we could accomplish the loading with: (CAR 2 -5 P) 
instead of: 

(MOVE 1 -5 P) 
(CALL CAR) 
(MOVE 2 1) 

Since the second argument to CAR can be an accumulator, the second 
argument to fil;car(car(x]]] can be compiled as: 

(CAR 2 -5 P) 
(CAR 2 2) 

We will assume the existence of an analogous CDR instruction. With these 
two instructions we can significantly improve the code for car-cdr-chains. 

Another source of efficiency is available to us. Consider the clause: 

[eq[x;A] -+ B; .. .] 

23Though we program at an abstract level, the code passed to the 
compiler may have many car-cdr references;. see Section 6.18. 

24Some of these instuctions exist on the poP-tO. HLRZ and HRRZ 
are used for car and cdr, respectively; and the PDP-6 which was delivered to 
Stanford had a hardware cons operation. 
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Assuming that x were on the top of the stack, our current compiler would 
generate: 

(MOVE lOP) 
(MOVEI 2 (QUOTE A» 
(CALL EQ) 
(jUMPF 1 Ll) 
(MOVEll (QUOTE B» 
(JUMP LOUT) 

Ll ... 

The use of predicates in this context does not require construction of the 

constants t and f. All we need to do is implement the eq test as a jump to one 
of two locations. 

We will introduce an instruction CAME taking two arguments; first, an 
ac and the second, a loco CAME compares the contents of the two arguments, 
and if they are equal, it skips the next instruction. 
Thus the above example could be compiled as: 

(MOVEll (QUOTE A» 
(CAME lOP) 
(JUMP Li) 
(MOVEll (QUOTE B» 
(JUMP LOUT) 

Ll ... 

Notice that we have added an extra piece of knowledge to the compi1er; it 
knows that eq 'is commutative in this instance. 25 We still reqUire some 
artifacts in the compiler to generate full procedure calls on predicates 

particularly since predicates may return values other than t and f. But in 
many instances, particularly within ~omcond, we can generate tighter code. 

6.13 Efficiency: Calling Sequences 

We want to integrate the new compiling techniques into our compiler. Since 
LISP depends heavily on procedure calls, the computation of parameter lists 
and procedure calls is an area of great concern to the designer of a LISP 
compi1er. 

Here is the code which the current compiler will produce for the 
expression j[l"g[J]; car[x]]: 

25If there are side-effects in the computation of the arguments, the 
order can make a difference. However unless explicitly stated our compilers 
do not have to r:onsider side-effects. 
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(MOVE/II) 
(PUSH P 1) 
(MOVE/I J) 
(CALL 0) 
(PUSH P 1) 
(MOVE 1 -2 P) 
(CALL CAR) 
(MOVE J 1) 
(POP P 2) 
(POP P 1) 
(CALL F) 

6.13 

By way of motivation and introduction, here is what our next compiler does 
for the same call: 

(MOVE/I J) 
(CALL 0) 
(MOVE 2 1) 
(CAR J 0 P) 
(MOVE/II) 
(CALL F) 

Examination of the code shows the results of several optimization techniques. 
We are using the CAR instruction of the last section. We are also doing 
operations into AC's other than ACI. This al10ws us to remove some of the 
obnoxious PUSH-POP sequences. 

The major modification involves an analysis of the arguments being 
compiled for ·a function can. The function complis is responsible for that 
analysis. Within our new compUs we wi11 divide the arguments into two 
classes: trivial and complex. Since most of our worry is about the 
optimization of the AC's, we will make complis the major state of the 
compiler. We can define compexp as: 

compexp <= A[[exp;vpl,·off) complis[list[exp);vpl;offJ) 

com pUs is the natural place to deal with register allocation since it is 
responsible for the compilation of the actual parameters. The alternative 
would be to pass the AC destination to compexp. That scheme becomes quite 
complex if dealt with consistently. So com pUs becomes the kernel function 
and mlist examine each argument to a function call. 

Trivial arguments are those which need make no demands on the 
runtime stack; the computation they entail can all be done in the AC registers. 
Thus the code that the compiler generates need not involve PUSH-POP 
sequences. For example, references to constants need not be generated and 
then pushed onto the stack; we can compile the other arguments first and 
then, just before we call the function, load the appropriate AC with that 
constant. A similar argument can be used for postponing the loading of 
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variable references. 26 The third trivial construct for this compUs is the 
handling of car-cdr chains. We will use our augmented instruction set to 
perform computation of cars and cdrs directly to a specified AC. Complex 
arguments are those which require some non-trivial computation; each 
non-trivial computation will be prefaced with a PUSH to save the current 
contents of ACl. 

Besides the compilation of efficient code we would also like to make the 
compiler efficient. We would like to make the compiling process as one-pass 
as possible. Our basic tasks in the new complis are classification of the 
arguments and compilation of the code. With a little care we can do both at 
the same time. There is nothing problematic about the compilation of the 
trivial code. 27 We thus turn to the complex code. 

The old com pUs generated a block <code argj>-PUSH on each cycle. 
That code was followed by a MOVE to move the last value from ACI to ACn. 
In the previous compiler compexp was the major function; it hand led the 
bulk of the code generation. Here complis wiU be the major function. The old 
com pUs had three states: empty argument list, Singleton argument list, and 
otherwise condition. The new com pUs has two states; this is done to make 
compUs shorter. On each cycle through complis we generate a 
PUSH-<code argj> sequence. Now we have a spurious PUSH on the front of 
the sequence; one rest will take care of that. 

We must also generate a list of POPs to suffix to the complex code to 
get the saved values back into the proper AC's: one pop for each argument. 
The last POP should be modified to be a MOVE since we have not 
generated the corresponding PUSH. The memory field of the last POP has 
the needed information; it tens us where the MOVE we want to make should 
go: 

(POP P N) => (MOVE N 1) 

This modified list of POPs is added to the code sequence, followed by any 
trivial code which we may have generated. Note that this reordering is 
strictly an efficiency consideration under the assumption that the AC's are 
being used to simulate a temporary dest block, which witl immediately 
become a block of local bindings, and which are subject to local use only. 
With this introduction, here is complis and friends: 

complis <= >.,[[u;off;vpl] complis'[u;off;off;vpl;();();();J] 

26But note that the argument for variables is shaky; if our compiler 
handled programs with side-effects then we could not be sure that the 
postponed value would be the same as that fetched at the "proper" time. 

27Th at's why it's trivial! 
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complis' <= )..[[u,·org;off;vpl;triv;cmplx;pop;ac] 
[null[u] -+ [null[cmplx] -+ triv; 

t -+ append[rest[cmplx],' 
list[mkmove[mem[jir st[pop ]],'1]]; 
rest[pop]; 
triv]]; 

isconstfJir st[u]] -+ complis'[ restful,· 
org; 
off; 
vpl; 
concat[mkconst[ac,fir st[u]];triv]; 
cmplx,· 
pop; 
addl[ac]]; 

isvar[first[u]] -+ compUs'[rest[u],' 
org; 
off; 
vpl; 
concat[mkvarfac; 

triv]; 
cmplx,· 
pop; 
addl[ac]],' 

iscarcdr[jirst[u]] -+ complis'[rest[u); 
org; 
off,' 

loc[jir st(u];off;vpl]],· 

vpl,· 
append[reverse[compcarcdrbc; 

6.13 

first[u] 
off; 
vpll]; 

triv]; 
cmplx; 
pop,' 
addl[ac)]; 
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iscond[first[u] -+ complts'[ rest[u]; 

t -+ complis'[ rest[u],· 
org; 
subl[off],' 
vpl; 

org; 
subl[ofjJ; 
vpl; 
triv; 
append[cmplx,· 

concat[mk PUS h[J]; 
comcond[argsclfirst[u]] 

gensym[]; 

con~at[mk pop[ac];pop]; 
addl[ac]],' 

off; 
vpl]]]; 

triv,' 
append[cmplx; 

concat[mk PUS h[J); 
>..[[z] compapply[func[fir st[u]]; 

complis[z; 
off; 
vpl),· 

length[z]]] 
[arglistlfirst[u]] ]]; 

concat[mk pop[ac];pop]; 
addl[ac]]] 

mkmove <= >..[[ac;loc][eq[ac;loc] -+ 0,' t -+ list[MOV E;ac;loc]]] 

compcarcdr <= >..[[ac,·exp;off;vpl] 
[isvar[arg[exp]] -+ list[mkcarcdr[func[exp],' 

ac,' 
loc[ar g[exp ],'off;vPl]]] 

t -+ concat[ mkcarcdr _aclfunc[exp];ac;ac]; 
com pcarcdr[ac;ar g[exp ];off, -upl]]]] 

iscarcdr <=>..[[u] [iscar[u] -+iscarcdr[arg[u]] 
iscdr[u] -+iscarcdr[~rg[u]] 
atom[u] -+ or[isvar[u];isconst[u]],' 

t -+ f ]] 
iscar <= >..[[x] eq[func[x];CAR]] 
iscdr <= >..[[x] eq[func[x];CDR]] 
mkcarcdr <=>..[[carcdr;ac;loc] ltst[carcdr;ac;loc]] 
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6.14 Efficiency: Predicates 

We have already noted in Section 6.12 that some efficiencies are possible 
when predicates occur within conditional expressions. Here we will examine 
more possibilities. The first point of contention is that the current comclause 
is not good enough. We want to be able to use the Boolean special forms: 
and[u); ... ;un] and or[u); ... ;unl The definition of these constructs requires 
they not evaluate any more arguments than necessary. We can exploit this 
property when and and or appear as predicates in conditional expressions. 
We will add recognizers for and and or inside com clause and wilt add a new 
section to the compiler to deal with their compilation. 

First, here is the structure of typical code sequences: 

and[u J; ... un] -+ e; 
gives: 

<code for u) > 
(jUMPF JUnO 
<code for U2> 
(JUMPF JlinO 

<code for Un> 
(jUMPF 1 lint) 
(JUMP loc) 

ioc 
<code for e> 

(JUMP lout) 
lint 

or[uJ; ... un] -+ e; 
gives: 

<code for u 1 > 

(JU M PT lloc) 
<code for U2> 
(jUMPT lioc) 

<code for Un> 
(jUMPT lioe) 
(JUMP lint) 

loc 
<code for e> 

(JUMP lout) 
lint 

The label lint indicates the next clause in the conditional expression. Note 
the symmetry between the code for and and the code for or. There is a slight 
inefficiency in and with (jUMP loc) immedately followed by loe, but we can 
easily remove that. 

Here is a compclause which will generate it: 

compclause <=>"[[P;loc;glob;off,'VPl] appendr&ompred[ ante[p]; 
ioc; 
off; 
vpll,· 

compexp[conseq[p ]; 
off,' 
vpl]; 

lis t[mk jum P[glob ];loc ]]] 
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compred <= A[[p,·Unt;off,·vpl][isand[p] ... compandor[args[p]; 
off; 
vpl; 
list[mkjumpnil[lint]]; 
0]; 

isor[p]'" A [[loc] compandor[args[p],' 

[gensym[]]; 

off; 
vpl; 
list[mkjumpt[loc]],· 
list[mkjm p[lint]; 

loc]]] 

t ... append[compexp[p;off;vpl]; 
list[mkjumpfilint]]] ]] 

compandor <=A[[u;off;vpl,·inst;fini] [null[u] ... fini; 
t ... append[compexp[first[u];off,-vpl]; 

inst; 

Problems 

com pandor[r est[u]; 
off; 
vpl; 
inst; 
flni]] ]]] 

1. We should recognize the construct t ~ej in conditional expressions and 
compile special code for it. We should also realize that in the construct: 

[p 1 ... el ... t ~ ej; ···Pn ... en] 

we can never reach any part of the conditional after the t-predicate; 
therefore no code should be generated. Rewrite the compiler to handle 
these additional observations about conditionals. 

The second point, above, is a special instance of a general compiling 
question. How clever should the compiler be? If it can recognize that a 
piece of program can never be reached, should it tell the user or should it 
compile minimal code? 

2. Write a new compile including all the efficiency considerations discussed 
so far. 

3. When we apply the convention that anything non-N J L is a representation 
of truth, it is often convenient to evaluate and and or for "value". That 
is their value is either NIL or non-NIL. Extend our compiler to handle 
such uses of these functions. 

4. Extend the compiler to compile efficient code for compositions of the 
predicates and, or, and not. 
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6.15 A Compiler for progs 

The compiler of this section will not compile an progs; it is only intended to 
demonstrate some of the salient features of a prog compiler. They are: 
1. Handling of assignments. Since we are assuming local variables, then 

storage to the value stack is sufficient. 
2. The go-label pair. We wilt assume that this can be passed off to the 

assembler. 
3. On leaving a prog-body we have to remove the prog-variables from the 

top of the stack. This is done by comparing the current off with vpl. 

compprog <aA[[locals;body;off;vpl] 
A[[n]append[mkpushlistnil[n]; 

compbody[ body; 
labels[body]; 
difference [off,-n],· 
pru ploc[locals ;-off;vpl]; 
n,' 
gensym[]]] 

[length[locals]] 

pruploc <= A[[locals;off;vpl][null[locals] ~ vpl; 
t ~ pruploc[r-est[locals],' 

addl[ofjJ,· 
concat[cons[fir s t[locals ];ofj1;vpl]]]] 

labels <= A[[body] [null[body] ~ 0; 
islabel[first[body]] ~ concat[first[body];labels[rest[body]]]; 
t ~ labels[rest[body]]]] 

compbody <= A[[body;labels,·off;vpl;n,·exit] 
[null[body] ~list[mkconst[J;N I L];exit;mksync[n]],' 
islabellfir st[body]] ~ concat[fir st[body],'com pbody[rest[body],' 

labels,· 
off; 
vpl; 
n,' 
exit]]; 

isgo[jirst[body]] ~ append[list[compgo[ arg[first[bod,]],. 
labels]],' 

compbody[ rest[body],' 
labels; 
off; 
vpl; 
n,' 
exit]]; 
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isret[jir st[body]] -+ append[ com pexp[ar glistlfir st[body]]; 
off; 
vplJ; 

syndoff;vplJ; 
list[mkjump[exit]]; 
compbody[ rest[body]; 

labels,' 
off; 
vpl,· 
n; 
exit]]; 

issetq[jirst[body)] -+ append[compexp[rlu[jirst[body]),'off,'VPl); 
list[mk movem[J; 

loc[ lhs[jirst[body)]; 
off; 
vplJ)),· 

compbody[ rest[body]; 
labels,' 
off; 
vpl,· 
n; 
exit]]; 

iscondlfir st[body]] -+ append[ compcondprog[ar g[fir st[body]]]; 
compbody[ rest[body],' 

labels; 
off; 
vpl; 
n; 
exit]]; 

t -+ append[ compexp[first[body];off;vPl]; 
com pbody[rest[body],'labels ,'off;vPl ;n;exit ]]]] 

compgo <= A.[[x,·l][member[x;l] -+ mkjump[x],· t -+ err[UNDEFINED_T AG]]]; 

This compprog only handles a subset of the semantics of prog. We do not 
handle any non-local jumps; a new list of labels is made up on entry to a 
prog and only that set of labels is accessible for gos. As a further restriction, 
we also assume that the prog variables are used in a strictly local fashion. 

Problem 

1. Write compcondprog. 
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6.16 Further Optimizations 

This section is in the nature of hints and possibilities for expansion of the 
basic compiling algorithms. 

One of the first things to note about the compiling algorithm is its lack 
of knowledge about what it has in the various AC's. Frequently the compiled 
code wiH load up one of the registers with a quantity that is already there. 
Thus the first suggestion: build a list of what's in various registers. We know 
what's there when we enter the function; whenever we perform an operation 
which destroys a register then we have to update the compiler's memory. 
Whenever we heed a quantity, we check the memory. If the object is already 
in the AC's then we use it. Clearly there is a point at which the complexity of 
the object stored is too complicated to be worth remembering. However, the 
idea can be used quite profitably for variable references and simple 
computations. This idea is a simple form of common sub expression 
elimination. For example, assuming that the compiler knows x is in AC1, 
here's code for: 

jIcar[x ],'cdr[car[x ]]] 
(CAR 11) 
(CDR 2 1) 
(CALL F) 

This idea can be extended. There is nothing sacred about knowing only the 
contents of the special registers. We could keep a history of the partial 
computations in the stack. Then if we need a partial result we might find it 
already computed in the ACs or stored on the stack. We might also keep 
track of whether stack or AC contents are still needed. For example, in our 
compi1ed function j on page 335 we might have noticed that after the call on 
g, the value of x was no longer needed; therefore we need not save x. 
Similarly we don't need the value of y after the caB on h. If we build this 
kind of information into a compiler, we can generate more efficient code. 
However, many of these ideas must be used with some care. Side-effects can 
destroy the validity of partial results. 

Notice that we are comparing the symbolic values in the AC's or stack; 
we cannot look for actual values. This idea of symbolic processing can be 
exploited at a much more sophisticated level in LISP compilers. In 
particular, we can perform program transformations. For example, the 
compiler can rewrite program segments taking advantage of transformations 
it knows. These transformations typically involve equivalence preserving 
operations which might lead to more efficient compiled code. 

For example several LISP compilers have the ability to perform 
recursion removal, replacing recursive programs with equivalent iterative 
versions. 28 Here's a case: 

28All these transformations should be invisible to the user. 
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rev <= ),,[[x;y][null[x] ~ y; t ~ rev[rest[x];concat[jirst[x],,]]]] 

This program is automatical1y rewritten as: 
rev <= ),,[[x;y] prog[[] l [null[x] ~ return[y]]; 

y ~ concatlfirst[x],j],· 
x ~ rest[x]; 
go[l] ]] 

This second version makes no demands on the run-time stack; it does not 
stack its partial computation like the recursive version. Each recursive call 
pushes the values for x and y; the iterative version uses two fixed locations. 
Typically the second version on rev wilt execute faster. 

A major obstacle to most kinds of optimization is the unrestricted use 
of labels and gos. Consider a piece of compiler code which has a label 
attached to it. Before we can be assured of the integrity of an AC we must 
ascertain that every possible path to that label maintains that AC. This is a 
very difficult task. The label and goto structure reqUired by compile is quite 
Simple. However if we wished to build an optimizing compiler for LISP with 
progs we would have to confront this problem. 

Problems 

1. Extend the compiling algorithm to remember what it has in its AC 
registers. How much of the scheme is dependent on lack of side-effects? 

2. Titled: " If we only had an instruction ... " We advocate an instruction, 
EXCH ac loc, which will exchange the contents of the ac and the loco 
This instruction could be used effectively on the code for j on page 334 
to save a PUSH-POP pair. 
Here's EXCH, in action, I;lsing the results 9f the previous exercise: 

(( LAP J SU BR) 
(PUSH P 2) 
(CALL 0) 
(EXCH lOP) 
(CALL H) 
(MOVE 2 1) 
(POP P 1) 
(CALL F) 
(RET» 

; says j is a function 

; ca1l the function named g 
; save the value and dredge up y 
; call h 

; preparation for 
; calling f 
; exit. ACI still has the value from f. 

Look for general situations where EXCH can be used. Try to notice other 
areas of the compiler which would benefit form new instructions. 

3. Write code for the factorial function, and simulate the execution on 21. 
4. Write a LISP function to take recursive schemes into equivalent iterative 

ones in the style of the rev example on page 353. Your first version need 
not be as efficient as the one advertized there, but try to make it better as 
you proceed. See [Dar 73] for this and related transformations. 
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6.17 Functional Arguments 

Function variables add more complication to the compiling algorithms. We 
will address the simpler cases of functional arguments. There are two issuses 
involved: what to compile when a Junction construct is recognized; and what 
to do when the function position of an application is a variable. 
Consider an example: 

foo[ .. ·;function[ 4J ];~..] 

We generate (MOVEI } 4J) and compile 4J if it is a A-definition; otherwise we 
essential1y generate (MOVEI} (QUOTE 4J». 
Assume foo is defined as: 

foo <= >..[[ ... ;g; .. .] .... g[t l ; ... ;tn]] 

The instance of g in g[t j; ... ;tn]], is a special case of a computed function 
(page 158); in this case, the computation is only a variable lookup. We will 
display the more general code for a computed function call of the form: 

exp[t j ; ••• ;tn] 

We get: append[ <compexp[exp;oJJ"vpl]; 
list[mkalloc[J]]; 
<complis[(t1; ... ;tn);off-l;vPl]> 
list[mkalloc[J]]; 
«CALLF n 0 P» 
«SU B P (C 1»] 

The calling structure for a functional argument is slightly different. The 
arguments are on the stack but, more importantly, note that the call must 
always be trapped and decoded. We cannot replace that call with a PUSH] 
to some machine language code for the function because the function 
referred to can change. We use a CALLF instruction to designate a can on a 
functional argument. Since the value of the expression may very well change 
during execution we can never replace the CALLF with a PUSH]. 

Often, unneeded generality allowed by the functional notation can be 
removed by the compiler. Production LISP compilers,like the MACLISP 
compiler, produce very efficient code for many uses of the mapping 
functions, like maplist. 

The problems of compiling efficient code become magnified if 
generalized control structures are anticipated. The problem is similar to that 
of recognizing an implied loop construct in a program using labels and go's 
to control the algorithm. Control constructs like catch and throw (page 198) 
have some advantages here; rather than using evaluation relative to 
arbitrary access and control environments ([Bob 7Sa]), these constructs do 
impose some regularity which the compiler and the programmer can exploit. 
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6.18 Macros and Special Forms 

We wish to extend our compiling algorithm to handle macro definitions. 
Consider the example of defining plus of an indefinite number of arguments 
given on page 156. A compiler can make execution of macros much more 
efficient than their special form counterpart. Macros usua11y involve 
transformations which can be executed at' compile time, whereas a special 
form may involve run time information. For example, consider the case of 
the macro definiton of plus. When plus is caned we know the number of 
arguments, and can simply expand the macro to a nest of cal1s on *Plus. For 
example: 

plus[x;addl[y];z] expands to *plus[x;*plus[addl[y];z]] 

The second expression may be compiled into machine code which uses the 
hardware arithmetic unit. 

Macros can also be used effectively in implementing abstract data 
structures and control structures. For example, the constructors, selectors, and 
recognizers which help characterize an abstract data structure can be 
expressed as very simple S-expr operations. These operations are performed 
quite frequently so any improvement in their running efficiency would have 
dramatic impact. Recall that on page 77 we defined coe! as car. For speed of 
execution it would be better to use car instead of coef. Compiled ca11s on coe! 
would invoke the function-ca11ing mechanism, whereas many compilers can 
substitute actual hardware instructions for caUs on car; the code executes 
faster and reqUires less space. However, good programming style dictates 
that we stay abstract and use coef. Compiled macros can resolve this tension, 
giving both abstraction and fast compiled code. Define: 

coef <m= A[[l] cons[CAR;cdr[l]]] 

The user writes (COEF ... ); the evaluator sees (COEF ... ) and evaluates 
(CAR ... ); the compiler sees (COEF .. .) and compiles code for (CAR ... ). With 
macros, we can get the efficient code, the readibility, and flexibility of 
representation. 

Macros can also be used to perform most of the operations which 
special forms are meant to do. Since eval handles caUs on special forms, we 
should examine the extensions to compile to generate such code. We have 
seen that in compiling arguments to (normal) functions, we generate the code 
for each, followed by code to save the result in the run-time stack, P; The 
argument to a special form is unevaluated, by definition. All we can thus do 
for a can of the form fiLJ, where f is a special form, is pass the argument, 
compiling something like: . 

(MOVEI AC} (fR[ l ])) 
(CALL} (E F» 
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We have already mentioned some of the dangers in using special forms; 
the fact that a compiler cannot do much with them either, makes them even 
less attractive. 

Problems 

1. Extend the last compile function to handle macros. 
2. Define and as a macro in terms of condo Compare the code produced in 

the two cases. How could you improve the compiler to make the two sets 
of code more nearly alike? 

6.19 Compilation and Variables 

Our compilers translate the formal parameter list into a block of storage 
allocated in the stack, P. The body of the function definition references 
those local variables as the corresponding stack entries. This scheme suffices 
only for lambda or prog variables which are used in a strictly local fashion. 
We have said that A-expressions may refer to global or free variables. The 
lookup mechanism finds the latest active binding of that variable in the 
current symbol table; this is the dynamiC binding strategy. Care is reqUired 
in extending the compiling algorithms to handle dynamic binding. The 
problem involves reference to variables which are currently A-bound but are 
non-local. Such variables are called special variables. 

Assume that we are implementing a deep binding algorithm. If all we 
store on the stack is the value of a variable, then another program which 
expects to use that value will have no way of finding that stored value. One 
scheme is to store pairs on the stack: name and value; then we can search the 
stack for the latest binding. This scheme is compatible with the stack 
implementation of deep binding given in Section 5.18. The compiler can still 
"know" where all the local variabl~s are on the stack and can be a bit clever 
about searching for the globals or special variables. ., 

Shallow binding implement~tions offer an alternative. "'{e can still store 
variables on the stack 29 if we are sure that the variable is used in a strictly 
local fashion. If a variable is to be used as a special variable then the 
compiled code should access the value cell of that variable. The compiler 
recognizes a variable as special by looking for the property name SP ECI AL 
on the property list of the atom; if the property exists and its value is t then 
the variable is a special variable and the compiler generates different code. 
When a variable, say x, is declared special the compiler wilt emit a reference 
to x as (GETV ACj X) or (PUTV ACj X) rather than the corresponding 

29We assume throughout this discussion that we are compiling code for 
the stack implementation of shallow binding as given in Section 5.19. 



6.19 Compilation and Variables 357 

reference to a location on the stack. GETV and PUTV are instructions to 
access or modify the contents of the value cell. 

When the LISP assembler sees one of these instructions, it wi11 locate 
the value cell of atom and assemble a reference to that cell. Since the 
location of the value cell does not change, we can always find the current 
binding. Any interpreted function can also sample the value cell so non-local 
values can be passed between compiled and interpreted functions. 

Assume a function f catts a function g, and assume that g uses some of 
Is A-variables. The usual compilation for f would place the A-variables in 
the stack and they would not be accessible to g. Our compiler must therefore 
be modified to generate different prolog and epilog code for special 
variables. The code must save the old contents of each special value cel1 on 
entry to the function, and the compiler must generate code to restore those 
celts at function exit. Any references in either f or g to those special 
variables will involve GETV-PUTV rather than references into the stack P. 
In this scheme, lookup[x;env] is given by getv[x]. 

Non-local variables cause several problems in LISP. The simple 
mechanism we used for referencing local variables is no longer applicable. 
Other programming languages al10w the use of non-local variables, some, like 
APL ([lve 62]), only al10w global variables; others, like Algol60 and its 
successors ([Alg 63] and [Alg 75]), allow free as wel1 as global variables. 
However, Algol compilers are much simpler to construct than LISP 
compilers, and we should explore some of the reasons. 30 One simplicity of 
Algol is its treatment of procedure valued variables. Algol dialects typically 
restrict themselves to what LISP calls functional arguments. Algol dialects do 
not allow arbitrary procedures to be returned as values. Their restrictions 
allow the run time environment to be modelled in a stack, as described in 
Section 5.18. 

The difference between LISP and Algol, which is more to the point 
here, is their binding strategies (Section 3.11). A typical LISP uses dynamic 
binding whereas Algol uses static binding. The difference is that Algol 
translators determine the bindings of variables at the time the definition is 
made whereas LISP determines bindings at the time the function is applied. 
That is, definitions in Algol always imply an application of function, binding 
up all non-local variables. The net effect is that Algol does not have free 
variables in the sense that there is any choice of bindings; al1 choices have 
been made when a procedure is declared. That binding decision has 
dramatic results when we come to implement language translators. As a 
result, Algol can effectively compile all variable references to be references 
into the run time stack, and need not retain the name stack for variable look 
up at run time. It is not at all clear yet which binding strategy wilt dominate. 

30For reasons other than those we are addressing here, APL compilers 
are difficult to construct. 
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Counterexamples to exclusive use of either strategy exist. Recent work 
([Ste 76b], [Sus 75], [Hew 76]) points to the use of static binding in LISP-like 
languages. 

A typical preserve of dynamic binding is that of interactive 
programming, where programs are created as separate entities to be 
connected into a cohesive whole at some later time. Frequently one wants the 
bindings of the free variables to be postponed until such a grouping is made. 

6.20 Compiling and Interpreting 

We have discussed the similarities between compilers and interpreters. Now 
that we have seen compilers in some detail we should reexamine the 
relationships. The compilation of conditional expressions introduces an 
interesting dichotomy between the action of an interpreter and that of a 
typical compiler. 

We wi11 restrict ourselves to a simple form of the conditional 

expression: ifip;then;otherwise], where p is a an expression giving t or f; 
then is the expression to be evaluated if p gives t; otherwise the expression, 
otherwise, is to be evaluated. It is an easy exercise to express a LISP 
conditional in terms of if expressions. 

When an interpreter evaluates a conditional expression or an if, it will 
evaluate either then or otherwise; not both. When a compiler compiles code 
for an if expression, it compiles both branches. Certainly, we cannot only 
compile one branch of the if; we expect different input values to use different 
branches, otherwise the conditional expression should not have appeared. 
For example, if a particular evaluation never takes the otherwise branch of a 
conditional,31 then we need not compile code for that branch; compiling 
code for program segments which are not executed is disconcerting. At a later 
date, a different evaluation might take the other branch, and at that time, we 
should be able to compile the branch. 

We wi11 show that it is possible to interpret and compile at the same 
time. 32 The relevant observation is that large parts of compiling and 
interpreting algorithms are identical; they deal with decoding the input 
expression and understanding which constructs are present. It is only after 
the interpreter or compiler has discovered the nature of the expression that 
the specifics of compilation or interpretation come into play. 

We wi11 build an evaluator/compiler named evcom based on the explicit 
access evaluator of Section 4.6. It will handle compilation and interpretation 
of applicative forms involving either primitive functions or named 
A-definitions; it wi11 recognize the difference between local and non-local 

31That does not imply that the otherwise-branch will never be visited. 
32See [Mit 70] for a similar idea applied to a different language. 
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variable references, compiling (and executing) cans on lookup for non-local 
references, and use a faster relative addressing technique for local variables. 
Finally it will "incrementally compile" if expressions, execu,ting (and 
generating code for) the branch designated by the predicate; and will leave 
sufficient information available such that if the other branch is ever 
executed, then code is compiled for it. 

Before sketching evcom, one other implementation detail is worth 
mentioning. We cannot simply replace a LISP expression with compiled 
code; LISP expressions are data structures and we must be able to operate on 
that data structure representation without being aware that a compilation has 
occurred. For example the LISP editor (Section 6.22) must be able to 
manipulate the S-expr representation. So rather than replace expressions 
with code we associate the code with the expression using an association list 
whose name-entries are LISP expressions and whose value-entries are 
sequences of instructions. 33 The variable code is used to hold the association 
list or code buffer. 

Finally here is the sketch. We have left out many of the subsidiary 
functions and have left out an of the execution mechanism involved in xct 
and execute; xct executes a single instruction and execute is the combined 
assembler and execution device. 

evcom <= 
A[exp] 

prog[[z] 
return[ [z ~ hascode[exp] -+ execute[z]; 

isconst[exp] -+ xctl[list[mksend[exp ]]]; 
z ~ isvar[exp] -+ [islocal[z] -+ xct1[send_code[list[mklocal[z]]],' 

isfun[z] -+ send_code[evcoml[dej1z];( )]]; 
issubr[z] -+ send_code[list[mkpushj[z]]]; 

t -+ xctl[send_code[list[mkglob[z]]]]]; 
isifl.exp] -+ send_code[evifiexp ]]; 

t -+ send_code[mkcode[ xctl[list[mkalloc[vars[fun[exp]]]]]; 
evcomlist[ar g s[exp ]]; 

evcoml <= A[[expjcode] evcom[exp]] 
xct! <= A[[X] xct[x]; x] 

xct l[list[mkcall[fun[ex p ]]]]]. ]]] ]] 

Here's the essence of evcom: if the expression has code in the current code 
buffer, then we execute it. A constant is executed and produces code, since 
that constant may be a subexpression of a larger expression being compiled; 
we do not save the constant code in the co~e buffer. Two types of variables 
are recognized: a local variable is recognized by its presence in the local table; 

331h actual practice, such a representation would be prohibitively 
expensive and we would substitute a hash array technique; see Section 7.14. 
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a relative address reference can be given for that entry. If the variable 
reference is non-local, then we compile a version of lookup; the actual form of 
that code will depend on the binding implementation (shallow or deep). 
Either type of variable reference saves the code using send_code. 

If the variable references a function name, then we must compile and 
execute code for that function definition. 34 We use the function evcoml since 
the code buffer, code, must be re-initialized within the compilation of the 
function body since code in the outer environment won't be valid within the 
function body. Finally, the variable might be a reference to a primitive 
function, in which case we just return the call and let the function 
application execute it. 

If the expression is an application, we generate and execute code to 
al10cate space, compile and execute the argument list, and if necessary 
compile, but always execute, the function call. 

hascode <= ~[[exp] prog[[z] 
return[ [z ~ findcode[exp] -+ cdr[z]; 

t -+ f]]]] 

evcomlist <= ~[[l] [null[l] -+ (); 
null[rest[l]] -+ evcom[first[l]]; 

t -+ mkcode[evcom[fir st[l]]; 
xctl[(( NEXT »]; 
evcomlist[rest[l]]]]] 

The compilation and execution of if expressions is interesting. When 
compiling the first reference to an if instance, we compile the predicate and 
one of the branches; we associate a structure with the instance; that structure 
has either the name if a or ifb depending on which branch was compiled. If 
we come across this instance of if again (either in a loop or in a recursion) 
then we find the if a or ifb entry in code. If we pick the same branch of the if 
then nothing new happens; but if the (compiled) predicate evaluated to the 
other truth value, then we compile the other branch and associate a 
completely compiled program with the original if expression. 

evif <= ~[[expJ prog[ [l p a b] 
l ~ body[exp]; 
p ~ pred[l]; 
a ~ ante[l]; 
b ~ ow[l]; 
p ~ evcom[pJ; 
return[list[ [receive[] -+ mkifa[exp;p,'evcdm[a];b]; 

t -+ mkifb[exp;p ;a;evcom[b ]]]]] ]] 

The construction of the completed conditional code is the business of the 

34We assume the variable is being used as a function; we make no 
attempt to handle funtional objects referenced as data. 
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next function, mkifeodt. A call to this function is manufactured within mkifa 
and mfifb. 

mkifcodt <= ~[[p;a;b] 
~[[l;ll] mkcode[ p; 

list[mkjum pfil]]; 
a; 
list[mkjump[ll]]; 
list[l]; 
b; 
list[ll]]] 

[gensym[];gensym[]] ] 

Recognizers 
isloeal <= ~[[x]in[x;local[env]]] 

iSif <= ~[[x] eq[jirst[x] IF]] 
is prim <= ~[[ins] get[ins;INST]] 
isfun <= ~[[x] get[x,· EXPR]] 

Constructors 
mklocal <= ~[[var] list[SEND@;var]] 
mkglob ,<~ ~[[x] list[LOOKU PiX]] 
mkalloc <= ~[[vars] list[ALLOC,'vars]] 
mkcall <= ~[[fn] list[CALL;fn]] 

We have left out a significant amount of detail and we have only covered a 
subset of LISP, but the result should be understandable; and it should 
further clarify the relationships between compilation and interpretation. 
Typical discussions of compilers and interpreters lead one to believe that 
there is a severe flexibility/efficiency tradeoff imposed in dealing with 
compilers. If you compile programs you must give up a lot of flexibility in 
editing and debugging. With a properly designed language and flexible 
machine architecture, that is not true. 
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6.21 Interactive Programming 

..... What is actually happening, I am afraid, is that we all tell each 
other and ourselves that sOftware engineering techniques should be 
improved considerably, because there is a crisis. But there are a few 
boundary conditions which apparently have to be satisfied. I will list 
t hem for you: 

1. We may not change our thinking habits. 
2" We may not change our programming tools. 
3., We may not change our hardware. 
4. We may not change our tasks. 
5. We may not change the organizational set-up in which the work 

has to be done. 

N ow under these five immutable boundary conditions, we have to try 
to improve matters. This is utterly ridiculous. Thank you. 
( Applause). 

E. Dijkstra, Conference of Software Engineering, 1968. 

6.21 

We have talked about the constructs of LISP; we have talked about 
interpreters and compilers for LISP; and we have talked a little about input 
and output conventions for the language. The combination of these 
properties leads us to a most interesting practical aspect of LISP: its use as an 
interactive programming language. A programming language is a tool for 
building programs. LISP's representation of programs as data structures 
coupled with the availablilty of display terminals offers the LISP 
programmer unique opportunities for the interactive construction of 
programs. Historically, machines have been oriented towards the rapid 
execution of wen-defined numerical algorithms. This perspective over-looks 
two important points. 

First, the actual process of discovering, debugging, refining, and 
encoding the algorithm is a complex process. In the early days of 
computation, the programmer performed the analysis on the algorithm on 
paper, transcribed the algorithm to a programming language, encoded that 
program on coding sheets and keypunched a card deck. That deck was 
supplied with data cards and presented to the machine. If some abnormal 
behavior was detected in the program, an uninspiring octal dump of the 
contents of memory was presented. Often the state of the machine at the time 
the dump was taken had only a casual relationship with the actual bug. 
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M emory dumps were an appalling debugging technique, even then. As 
higher level languages became more popular, memory dumps became even 
less attractive; the dump gave little insight unless the programmer knew 
where the prog'ram and data resided in memory, and understood what code 
was produced by the compiler. 

The programmer had a slightly more appealing alternative called 
tracing. A program could be embellished with print statements whose 
purpose was to determine access behavior by printing values of variables, 
and to discover control behavior by printing messages at entry and exit from 
procedures. This tracing technique was frequently available as an operating 
system option. Then the programmer would supply control cards which 
expressed what kind of output was desired. In either case, unless this 
technique was used with resolute precision, the output would either be 
voluminous or uninformative, or both. 

When the cause of a bug was discovered the offending cards were 
replaced and the deck was resubmitted for execution. This cycle was repeated 
until an acceptable program was developed. This approach is still followed 
by a majority of programmers. What is missed is that much of the detail and 
tedium of these early phases of program development can be aided by a 
welt-constructed interactive programming system. The major difficulty is the 
emphasis on program execution rather than program debugging and 
development. Most architectures and languages assume that a program runs. 
If one assumes that "programs never run", and designs a "debugging 
architecture ll then a LISP-like machine appears. 

The second point which is overlooked is that a large class of interesting 
problems are not included in the range of IIwell-defined numerical 
algorithms ll

• In fact most of the problems which are traditionally attacked by 
LISP programs fan into this class: language design, theorem proving, 
compiler writing, and of course, artificial intelligence. In such "exploratory 
programming" it is often the case that no well-defined algorithm is known, 
and it will be the final program which is. the algorithm. Such exploratory 
programming reqUires that the programming language be usable as a 
sophisticated IIdesk calculator". It requires' experimentation With, and 
execution of, partiatly specified programs; that is, the ability to develop and 
run pieces of programs; to build up a larger program from pieces; to quickly 
modify either the program text or the computational results themselves, 
before the programmers have lost their train of thought. 

An important outgrowth of such exploratory programming is a LISP 
technique called "throw-away implementation". In developing a large 
programming system one begins with a few simple ideas and incrementally 
develops the larger system. If some of the ideas are inadequate they are 
replaced. At some stage an adequate model is developed; it may be lacking in 
some aspects, but it does model the desired phenomenon. At that pOint, the 
programmer's understanding has been sufficiently improved, that the 
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implementation should be thrown away and a new, more enlightened verSion, 
created. Certainly this kind of programming can be accomplished with 
languages other than LISP; the point is that an interactive LISP 
environment is sufficiently responsive that an implementation cyete is qUite 
short and relatively painless. The effect is that the programmer does not 
invest so much effort in an implementation that he feels a compulsion to 
patch an inferior implementation, rather than start afresh. 

The development of an interactive programming system has several 
important implications. The usual partitioning of program preparation into 
editing, running, and debugging is no longer adequate. The text editor and 
the debugger are integral parts of the system. A programming "environment" 
is established in which an facets of programming are integrated. The tasks 
which are usuany performed by an operating system are subsumed by the 
programming language. The idea of a separate file system becomes obsolete, 
and all programs and data are accessible from within the "enVironment". 
This has an important advantage in LISP-like representations of programs: 
the conversion from internal representation to "text file" format is eliminated. 
The technique puts added burden on naming facilities so that a 
programmer's definitions are a:tcessible, but are unambigiously addressible. 
The effect is to structure the interactive environment as a very large data 
base containing programs and data structures. The programmer has accessing 
procedures to manipulate 'the elements in the base. All the items in the base 
are accessible as data structures; the editor can modify any objects in the 
base. Some of the objects can be executed as procedures; the evaluator is 
responsible for this. 

A procedur~ object can be further expanded into machine instructions 
for faster execution; this may either be done by an explicit call on a compiler 
or be done invisibly by a compiler/interpreter. If an evaluation is not 
performing as expected, yet another data structure manipulating program is 
available. The debugger is able to manipulate both the program structure 
and the run time data structures which the evaluator has created. Any of 
these data structure manipulating programs is able to can any other program. 
The effect is a programming philosophy sometimes characterized as 
"middle-out" rather than "top-down" or "bott~m-up". The emphasis is on the 

programming process rather than on the final product. 35 This view of 
program development is in direct conflict with the traditional approach 
which grew from the card deck philosophy, and assumed that machine time 
was more 'valuable than programmer time. Several current research projects 
are developing along these lines; amon,g them are [Hew 75], [lnt 75J, and 
[Win 75]. All of these projects are based on LISP. 

35Compare the term "structured programming". The emphasis is also 
on the action. The application of a methodology should aid in the 
development of an object with the desired characteristics. In programming, 
that implies the existence of a programming environment. 
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It is not accidental that LISP is the major language for these kinds of 
programming tasks; it is the features of the language which make it 
amenable to such programming tasks. In the next two sections we will discuss 
two of the ingredients of interactive programming systems; this will 
illuminate the features of LISP which make it important for interactive 
programming. 

First we wilt sketch some basic features of LISP text editors. This will 
show some of the benefits of having the program structure available as a 
data structure. The succeeding section wi11 discuss a few features of a typical 
LISP debugging system; this witl further demonstrate the advantages of 
having a natural program representation available at run time. 

There is no standard LISP editor or debugger. 36 Therefore the next 
sections witt contain general information rather than an abundance of 
concrete examples. The design of such devices is a subject of very personal 
preferences and prejudices. Some characteristics are common and those we 
will stress. A related difficulty is that editing and debugging devices are best 
done as interactive display programs, rather than as key-punch or teletype 

programs. 37 Interactive programming is a very visual and dynamic 
enterprise; teletype-oriented interaction is not sufficient; it results in a 
presentation more like a comic strip than a movie. 

6.22 LISP Editors 

A LISP editor is just another LISP program; it operates on a data structure. 
In this case the data structure represents a program. A simple editor could be 
constructed along the lines of the subst function: 

subst' <~ >..[[x;y;z) [atom[z) -+ [equal[y;z) -+ X; t -+ z); 

t -+ cons[subst'[x;y;car[z)); 

subst'[x ;y;cdr[z]])]) 

That is, we would let z be the program; y, the piece of text to be replaced; 
and x, the new text. Such global editing is useful sometimes, but text editing 
is a more local and controlled action, better accomplished as a interactive 
process. 

A typical editor will take an expression as input and will then enter a 
"listen-loop", waiting for commands from the user. The input expression 
may either be a list representing a constant data structure, or a list 
representing a (constant) function. There are commands for the selection of 
a subexpression of the input expression; and there are commands for the 
replacement of expressions with other expressions. 

36Indeed, ther is no standard LISP. The language is dynamic, flexible, 
and still developing after twenty years. 

37That is one of the author's many preferences and prejudices. 
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The mechanics of presenting list structure to the user are interesting. 
Since a list may be deeply nested, we need a convenient way of designating 
subexpressions. A display device might i11uminate the selected expression 
more brightly than the containing expression. M ore structured 
representations of text are required, however. A "pretty-printed" (see 
Section 9.2 or page 274) version of the text may be presented. If the text 
is too extensive to fit on the display face, then abbreviational devices are 
available. 

If the text is deeply nested it is often difficult to perceive the top level 
structure even in pretty-printed form. Consider the S-expr representation of 
the definition of member: 

(MEMBER 
(LAMBDA (X L) 
(COND «NULL L) NIL) 

«EQ X (FIRST L» T) 
(T (MEMBER X (REST L»»» 

In this case the structure of the CON D is clear; but it is clearer if we express 
it as: 

(LAMBDA (X L) (COND & & &» 

Or given a linear list: (a fj X 8 e • 'Y '1 & " I( ") 

it may be more instructive to display it as: 

(afjx8e.'Y'1& ... ) 

or ( ... 8 e • 'Y '1 & ... ). 

where the focus of attention is controlled by the user. 
There should be commands to move selected subexpressions to different 

locations within the same structure and move expressions to other structures. 
Since a common text error in LISP is the misplacing of parentheses, there 
are commands to move parentheses. 

There are at least two reasons for text editors: programmers make 
errors, and programs whith are correct need to be modified to perform other 
tasks. Particularly in exploratory programming, the "try-it-and-see" attitude 
must be supported. Thus we demand", a flexible editor which can "undo" 
changes to functions or constant data structure. LISP editors have the ability 
to save the current edit structure such that' an "undo" can restore to that state 
if needed. 

Regardless of the idiosyncrasies of a particular editor the common 
feature is that LISP editors are structure-oriented editors. They operate on 
S-expressions, not text strings or card images. A program is not a linear 
string of characters; it is a structured entity, whose parts are distinguishable 
as representations of instances of programming language constructs. The 
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editing process should take cognizance of that structure. 38 

6.23 Debugging in LISP 

Few areas of computer science field are as primitive as the art of debugging; 
few areas of the field are as important. The development of a correct 
prog'ram is the. point of our programming activity. The power of our 
debugging techniques has been directly related to the sophistication of the 
hardware/software interface which is available. Not until the advent of 
sophisticated on-line systems has there really been any hope for practical 
"correct-program" construction. 

Several pieces of information are required to do interactive debugging. 
We need an indication of the error condition; we need the current state of 
the computation; we need to have some indication of how the computation 
arrived at the error condition; and, if interactive debugging is to be 
meaningful, we need the ability to modify the computation and resume 
execution in that modified environment. This last point is qijite important; 
it has implications for programming style. First, we should hope to modify 
an errant calculation rather than restart the entire computation. To start over 
is like repunching a whole card deck because one card was wrong. We 
repunch the offending cards and retain the rest. Similar·ly, we should expect 
to throwaway offending computations and retaining the remainder. 
Typically, computation is not as local and exciseable as removing a single 
card; a primary purpose of most computation is to pass a result to some other 
procedure. However, if we try to localize the effects of each procedure to 
simple parameter passing and value returning then we have a better chance 
of discovering a point in the computation history which is prior to the error; 
return the control stack to that point; modify the erring procedure and restart 
the computation from that point. This implies that procedures should 
minimize their use of side-effects; for it is side-effects which spoil the nice 
applicative behavior and wi11 reqUire the programmer to make explicit 
modifications in the computational environment before a computation can be 
restarted. This attention to program interaction is another manifestation of 
the modular programming style; each procedure is a module, or black box, 
dependent on other procedures only through well-defined input and output 
considerations. It is this style of modular programming which will enhance 
the use of interactive debugging tools. 

This section wi1l deal only with the primitive mechanisms which 
underlie LISP debugging techniques. The discussions of more complex tools 
which are available or are comtemplated are well-documented in other 
sources; [Int 75], [Moo 74J. 

38 A case can be made for believing that the program construction 
process should also be driven by that structure [Han 71J. 
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A debugging system for an applicative language like LISP is based on 
the following kinds of information:. which functions are being entered; what 
are the actual parameters; and what are the values being returned. With an 
open implementation, like that provided by LISP, such information is readily 
available. 

Assume that we wish to monitor the behavior of the function, foo.We 
wilt place the real definition of foo on another symbol table entry (using 
gensym[]) and redefine foo such that, when it is called, it wiJ1: 

1. Print the values of the current actual parameters. 

2. Use apply to caU the real defintion of foo with the actual parameters. 

3. Print the value of the caH on foo. 
4. Return control and the value to the calling program. 

Since foo may be recursive we should also give some indication of the depth 
of recursion being executed. 

Now every caU on foo wit1 give us the pertinent statistics. This 
technique is caIJed tracing. The current description is similar to many 
implementations on teletype-like devices. Given an interactive display and a 
we11-defined "LISP machine" description like that in peval (Section 4.8), a 
much more satisfactory trace can be given. 

The trace mechanism can be used for both interpreted and compiled 
function calls, but some care needs be taken. Interpreted calls on foo will go 
through eval, and if (CALL ... FOO) is being used in the compiled code the 
CALL decoder can pass control to the tracing mechanism. If the can is a 
PU S H], control passes directly to the machine language code and we will 
not intercept the can. 

In most implementations of LISP the programmer may selectively 

replace a CALL by a PUSH]. 39 A PUSH] wiH be executed at machine 
speed, transfering to known location; whereas the CALL is passed to 
decode (page 316) and the function definition is looked up; therefore after a 
program is debugged, the programmer may replace the CALL with the 
PUSH] and the programs will execute faster. On some implementations this 
action is reversible ([Ste pcJ); a table, relating the CALLs to the PUSH ]s, is 

built; when tracing is desired, the CALL version is made available. 40 

39 As we have seen, CALLs to functional variables won't be replaced. 

40 ActuaHy, the scheme is as foHows: instead of assembling the CALL 
into a memory location, an XCT is assembled; the XCT references a copy of 
a table which contains the actual CALL. The user may replace the CALLs by 
PUSH], but also has the original table avai1able to replace the modified 
version when tracing is desired. This XCT trick has the additional benefit 
of a110wing several users to share a "pure" piece of program, while some 
people are tracing and some people are not. The added flexibility more than 
compensates for the slight decrease in speed. 
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A variant of this tracing scheme can be used to monitor SETs and 
SETQs. We can modify their definitions to print the name of the variable 
and the new value, perform the assignment, and return. This technique can 
be lost in some compiled code. If we compile local variables as references into 
the value stack, we have lost both the names and the ability to trace their 
behavior. Variable references which use PUTV and GETV can be traced 
like CALL. In fact, on SM, we have an operation analogous to PUSH J, so 
the CALL-PUSH J technique is open to us. PUTV and GETV can be 
implemented as hardware MOV EM and MOVE instructions. 

The trace facility is a debugging feature which has been adapted from 
the batch-processsing versions of LISP. There is a related, but more 
interactive, version of this technique called the break package. In this mode 
of tracing, the, user can specify that the program should halt on recognition 
of certain conditions. If that halt occurs, the break package is entered and the 
user may then type commands which survey the state of the computation. 
Expressions may be evaluated, which may themselves enter the break 
package recursively. If desired, the LISP editor may be called either to edit 
function definitions or to edit an expression on the actual control stack of the 
current computation. 

Since it is difficult to predetermine when a computation may reqUire 
debugging, .several systems' supply an interrupt system analogous to that 
found in hardware machines. Striking certain keys may then cause interrupts 
to the break package, just as if a break condition were pre-programmed. 
Such a feature is useful in conjunction with the trace package. If a trace 
indicates to the user that the computation is not performing according to 
expectation then an interrupt key can be struck and the computation will be 
suspended. , 

User-definable interrupt systems apply to other areas of computation 
than that of debugging. The most well-developed system is that of MacLISP. 
The ability to selectively trace the execution, coup ted with the ability to 
interrupt a computation, allows the user to examine computations which are 
suspected of divergence. 
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Storage Structures and Efficiency 

7.1 Introduction 

This chapter reconciles some of the generality of LISP with the realities of 
contemporary data structures and machine organization. Though any 
algorithm can be coded in terms of manipulations of binary trees, often there 
are more efficient organizations of data. For example, our numerical 
algorithms could be expressed as list algorithms using ( ), « )), « ) ( )), and 
so on, as representations for 0, I, 2, respectively. Most machines supply 
hardware arithmetic representations and operations, making such list 
representations unnecessary. 

At the next level of data organization are vectors and arrays of 
numerals. These data structures could also be stored in a list-structure 
format .and individual components could be accessed by car-cdr chains. 
However, most machines have a hardware organization which can be 
explOited to increase accessing efficiency over the list representation. 
Seq uential storage for elements, often cOllpled with hardware index registers 
for fast access to elements, makes a more effective representation. . 

Similarly, strings can be represented as lists. of characters. The string 
processing operations are expreSSible as LISP algorithms; again, this is 
usually not the most reasonable representation. Some machines supply special 
hardware aids for string operations. 

370 
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Even at the level of list-structure operations, simple binary trees might 
not be the most expeditious representation. Also many of the algorithms we 
have presented in LISP are overly wasteful of computation time. 

There are no general rules for selecting data representations and 
chosing programming style. Efficiency must be balanced against, generality. 
The chosen representation must match the machine and the problem domain 
being studied. If the problem is· strictly numerical, then list-structure is 
overly general. If simple string manipulation is sufficient, then list processing 
also may be too general. There are many applications of list processing which 
are so sufficiently well behaved that complex devices like garbage collectors 
are unnecessary. However, understanding the programming art in a rich 
environment such as LISP, prepares the programmer to apply these 
techniques in a meaningful way. Many times a representation in LISP is all 
that is needed; a "throw-away implementation" may answer the question. A 
clean representation with comprehensible algorithms is developed. Once a 
representation is developed, it is easy to get better ones. 

7.2 Vectors and Arrays 

Vectors. Vectors, also known as one-dimensional arrays, are usually stored 
sequential1y in memory. Simple vectors are usual1y stored one element to a 
memory location though this is not a necessity; for example, a vector 
representation of a complex number may be stored as pairs of cells. If 
vectors of nonhomogeneous data modes are contemplated, each element 
would include type information. Also, we have seen a representation of a 
stack as a (sequential) vector with access made via a global pointer to the 
vector. In any case, most languages make some restrictions on the behavior 
of vectors such that efficient accessing of elements can be made. Vectors are 
an attractive representation when the size of data objects will not vary. 
Given such a static behavior, machines can perform access and updating of 
the elements rapidly. 

Arrays. Arrays are vectors which allow vectors as elements. For example, a 
two-dimensional array is a vector, whose elements are vectors of individuals. 
We will restrict attention to array whose elements are all of the same 
dimensions; efficient representation of more general arrays, caned ragged 
arrays, will be examined in Section 7.13. We will restrict our attention 
further to two-dimensional arrays, though most of the discussion generalizes 
very naturally. Since most machine memories are organized as linear devices, 
we map arrays onto a linear representation. A common implementation 
stores the array by rows; that is, each row is stored sequentially - first, row 1; 
then row 2,... and so on. A simple calculation finds the location of an 
arbitrary element, A[i;j], given the location of the first element AU; 1] and 
the length of each row of the array. For an array A[l:M; l:N], 
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loc[A[i;j]] = loc [A[1; 1]] + (i- I)~:(N + (j-l) 

In languages like Fortran which require that the size of the array be known 
at compile-time the compiler can generate the accessing code as references to 
specific memory locations. Languages, like Algol 60 and some versions of 
LISP, allow the size of an array to be determined at run-time. Algol 60, for 
example, reqUires the declaration of the type (real, boolean, etc.) of the array 
and specification of the number of dimensions in the array, but the size 
specification of each dimension can be postponed until run-time. To 
implement this flexibility, a dope vector is introduced. A dope vector is a 
header or descriptor associated with the area containing the actual array 
elements. The information in the dope vector tells the functions which access 
the array how to treat the data. Type and dimensionality are typical entries 
in dope vectors. 

The compiler can determine the size of the dope vector, but cannot 
determine its contents. The dope vector is filled in when the array 
declaration is executed; at that time the array bounds are known. The 
compiler cannot allocate space for the array elements; the al1ocation must be 
done at run-time. At that time we allocate space and complete the dope 
vector. All references to array elements must use the dope vector. 

Assume that the array elements are stored by rows. Look at the 
calculation of the location of element A[i;j]. For specific execution of an 
array declaration much of this information is constant; the location of the 
array elements, in particular, A[l;JJ and the number of columns N are fixed. 

Thus we rewrite the calculation as: 

constant part 
[toc [A[1;l]]-N-I] + 

variable part 
(h:<,N+j) 

The constant part is stored in the dope vector. When we wish to 
reference an element A[i;j] we need only compute the variable part and add 
it to the constant part. 

The dope vector for A [1:M; I:N] perhaps might contain 

2 
I 1 M 

1 N 

constant part 

. . . 
array elements 
I ... I 

There is another scheme for storing arrays which is used in some of the 
Burroughs machines ([Org 71], [Dor 76]). Each row is stored sequentially 
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and access to separate rows is made through a device called a mother-vector. 
The mother-vector is a vector of pointers to the rows. 

Thus, 

A1N 

~ ___ -_-~--~JI~_A_M_l ___ A_M_2 ________ _ 

Notice that the accessing computation is very inexpensive. 1 On a 
virtual memory machine this array organization can be helpful; all rows need 
not be in memory at once. If an access to a row not in core is made, a 
"page fault" is raised; the monitor brings the row into memory and the 
computation continues. The mother-vector scheme generalizes to 
multidimensional arrays, and can also be used in conjunction with a dope 
vector. 

An implementation of an array facility in LISP might include a 
declaration: 

array[ <identifier>;<type>;<bounds>; ... ;<bounds>], where the identifier names 
the array; the type could be numeric or S-expr; and finally a declaration 
of upper and lower bounds for each dimension would be needed. array 
is a special form whose effect is to make the array name a SU BR, 
whose code is the calculation of the dope vector. Thus, 

SUBR dope vector 
calculation 

array 
elements 

If we are to store S-exprs in the array, then the garbage collector must be 
able to mark the entries. This is the reason for including type information. 

When an array element is to be referenced, the subscripts are evaluated 
(since the array name was declared as a SU BR) and the dope vector code is 
executed. That computation results in a reference to the appropriate cell. 

We also must be able to store information in the array. 

storer <name>[ <subscr>; ... ;<subscr> ];<value>] : store is a special form whose 
effect is to store the value of <value> in the designated array element. 

lHowever access by array columns can be expensive. If each row is on 
a separate page in the machine, the access overhead can be substantial. 
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We have discussed storage allocation and accessing of array elements. 
Important distinctions ih language design appear in discussing deallocation 
of array space. Typical Algol-like languages impose a stack diSCipline on 
storage management. ThiS imples that the arrray elements may be allocated 
in the run-time stack. It also implies that the elements become inaccessible 
once the block which allocated that array has been exited. This is 
implemented by popping the array from the stack. There are two ways for a 
language to assure that no references to "inaccessible" elements can occur 
(such references are called dangling references.) Either restrict the semantics 
of the language such that no such references can occur (Algol 60), or allow 
constructs which may cause dangling references, but declare any occurrence to 
be an error (Algol 68). 

LISP-Hke languages suppose that data structures are to be retained as 
long as they are accessible; that treatement is also given to LISP arrays. 
Therefore arrays are allocated and deal10cated in a manner similar to the 
cons operation for S-exprs; sequential blocks are maintained in a free list; we 
wilt say more about this in Section 7.13. 

The two management philosophies for deallocation of data structures 
are characterized as the deletion strategy and the retention strategy; see 
[Ber 71]. 

Problem 

1. Implement a stack in LISP first using lists or dotted pairs, then using an 
array. Include implementations of the stack operations. 

7.3 Strings and Linear LISP 

On page 268 we discussed one representation for LISP print names: a linked 
list of full words; each fu11 word contained a segment of the atom name. Print 
names are a special instance of a data structure named strings; our use of 
strings in LISP has been restricted to manipulating string constants. In this 
section we wiH discuss alternative representations for strings, and discuss 
further operations on string objects. Most production LISP systems have a 
comprehensive set of string operations. As with numbers and vectors, string 
operations could easily be represented as operations on S-exprs; however it is 
frequently more efficient to represent strings as a separate abstract data 
structure. 

Each string object is a sequence of characters. The elements of a string 
may not be strings; this is the essential difference between sequences and 
strings. That simplification of data structures introduces some different 
aspects of storage management. It is these issues which we wil1 emphasize in 
this section. 
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The primitive string manipulations -- constructors selectors, recognizers, 
and equality -- are similar to those for sequences. Therefore we use LISP 
M -expression syntax when describing the operations; for that reason we call 
the string language, linear LISP. The implementation allows the creation of 
strings of arbitrary length; it allows the generation of new strings and the 
decomposition of existing strings. Since arbitrary length strings are to be 
created, an organization similar to free space will be used. The storage area 
for strings will be called string space. 

String space is a linear sequence of cells; each cell can contain one 
character. A string wi11 be represented as a sequence of contiguous character 
cells. The value of a string variable will be represented as a pair, containing 
character count and a pointer to the beginning of the character seq uence in 
string space. 

Thus, 

A B B 1 0 string space 

encodes the string ABB. 
There are two primitive selector functions: first anq rest. 

first[x) is the first character of the string represented by x. first is undefined 
for the empty string, E. For example, 

first[ABC) is A; first[E) = .L. 

rest[x) is the string of characters which remains when the first character of 
the string is deleted. rest is also undefined for the empty string. For 
example, 

rest[ABC) is BC 

There is one constructor primitive. 

concat[x;y) creates a new string. x is a character; y is a sering. con cat forms a 
string consisting of the concatenation of x with y. For example, 

concat[A,;BC) is ABC 

There are two primitive recognizers: 

char[x): is x a single character? 
null[x]: is x the empty string? 

For example: char[A] is t 
char[AB) is f 
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Finally, we include a version of the equality predicate which will determine if 
two characters are identical. 

x = y: are x and y the same character? 

AB = AB is.L 

The implementation of these string primitives is less complex than that of 
LISP primitives. first generates a character count of one and a pointer to 
the first character of the parent string. rest generates a character count of 
one less than that of the parent and a pointer to the second character of the 
parent string. Therefore, this implementation shares substrings, just as car 
and cdr share substructure. 

The implementation of the recognizers and the equality predicate is 
straightforward. We will blur the distinction between characters and strings 

of length one. Thus char need only check the character count. null gives t if 
the count is zero. To implement equality, we note that characters are not 
stored uniquely, so we must make an actual character comparison. 

As with fun LISP, the implementation of the constructor reqUires more 
care. Since our implementation reqUires that string components be 
contiguous, we must copy the arguments to concat. To evaluate concat[x;yJ. 
we copy x, then copy y so that y follows x in free string space; we generate a 
character count of one plus the count of y, and generate a pointer to the copy 
of x. The copies are made in the free string space in a manner similar to 
that used in cons. 

The storage management is somewhat different from that of a simple 
LISP implementation. Since the copying operation within concat allocate 
space, we must include some method for deal10cating space. Though simpler 

methods may suffice we us a garbage collector. 2 The marking phase is much 
simpler than that for LISP; it is not recursive. We use the descriptor in the 
symbol table to mark each character string. However, we cannot stop 
marking simply because we have encountered a previously marked character. 
Since we are sharing substrings, we must visit each character in the string 
item. 

The sweep phase needs to be more comprehensive for string col1ection. 
Since strings are stored sequential1y, a fragmented string space is of little use. 
We must compact all the referenceable strings into one end of string space, 
and free a linear block for the new free string space. Since we are sharing 
substrings, a little care must be exercised. When we move a string, the 
descriptor of any variable referencing any part of that parent string must be 
changed to reflect the new location. So before we begin the relocation of 
strings, we sort the string descriptors on the basis of their pointers into string 

2Since string operations are quite well-behaved, a reference counter 
could be used. We use a garbage collector for its elegance and its pedagogical 
value for the next section. 
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space. We then recognize each parent string, moving it down into freed 
locations an~update the address pointers in the descriptors of any substrings. 
Eventually all strings wi11 be compacted; the string space pointer can be set 
and the computation continued. Next, we adapt the compacting garbage 
col1ectors for use in LISP. 

7.4 A Compacting Collector for LISP 

We can combine the simplicity of the original mark-sweep garbage collector 
with the sophistication of the collection phase of string garbage collector and 
produce a compacting garbage collector for LISP. 

There are several motivations for compacting storage. First, besides 
making the active storage contiguous, we also make the free locations 
contiguous. Thus the free lists can be handled as vectors rather than as lists. 
This simplifies storage allocation: to allocate the next free element, take the 
next element in the free space vector. 

Another reason for concern with compacting is related to hardware. If 
the underlying machine is using a paging scheme, then we can try to 
minimize page-faults by keeping the LISP structures localized. In the worst 
case, we could have every element of a list on a separate page; this could 

require that the memory manager retrieve a new page for every reference. 3 

However, we cannot restrict the operations of the LISP programmer. The 
underlying hardware must be invisib1e to the user. The next best thing is to 
try to keep the structures as local as pOSSible; compaction of spaces is a first 
attempt at this. We witt discuss other lower-level tricks later. 

Compaction is important in languages other than LISP. If the 
language al10cates storage in a manner similar to LISP but the constructs 
al10w different-sized blocks to be specified (a string processor is a simple 

example), then compaction may be necessary. 4 

Granted that compaction is a worthwhile endeavor, we proceed. We 
can't simply mark an the active cells and then move them into unmarked 
cens to compact the space. We must also maintain the original topological 
relationships between the elements. 

iii 
204 12041204 1 is not the same as 

I , , 

iii 
100 120412041 

I I , 

Besides moving the cells, we must also . update each reference to a 
moved location: 

3Yery little empirical work· has been done on the actual storage 
requirements and running environment of LISP. A start is made in [CI 76]; 
much more should be done. 

4As we shall soon see, t~e rationale is applicable in LISP as well. 
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204 120412041 is the same as 

To handle these problems, we expand the sweep phase into two phases: the 
relocating phase and the updating phase. 

The relocating phase begins after all active structure is marked. 
Assume we are to compact all active structure down to the bottom· of the 
space. First we initialize two pointers: a free pointer to the lowest cell in the 
space; and an active pointer to the top of the space. We move the active 
pointer down until we come across a marked location; we move the free 
pointer up until we locate an unmarked cel1. We want to move that marked 
cell down into the free location; but we must also supply enough information 
to maintain the original relationships in the transformed structure: The cell 
we move may reference other cells which will be moved. 

Here's a picture: 

77 65 402
1 

100 +-free poin ter 

155 

204 14021 771 

402 120414021 +-active pointer 

Cell 77 was active so we left it alone; it references ~el1 85, which has already 
been visited; and also references cell 402 which is about to move. We move 
the contents of cell .402 into cell 100, and to let everyone know where the 
contents has gone, we leave a forwarding address of 100 in location 402. 
Thus, 

402 11001 +-active pointer 

The active pointer, having writ, moves on; it skips over any unmarked ce11s, 
looking for the next marked location. Assume the next marked location is 
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204. It stops there and waits for the free pointer to discover that location 155 
is the next free location. In its search the free pointer wi11 skip over any 
marked cells. The same relocation operation occurs: the contents of 204 is 
moved to location 155, and the forwarding address of 155 is placed in 
location 204. The process continues until the two pointers co11ide. Call that 
collision point col. When they meet, all locations above col either will be 
free or will contain forwarding addresses. An addresses, col and below, will 
contain. marked words or relocated ce11s. We are now ready to enter the 
update phase. 

Here is the picture: 

77 1 6514021 

lee 120414(2) 

155 
1
4e2

1 771 
~ col 

204 1155 1 

4e2 11eel 

We examine the initial segment of our space from the bottom to col looking 
for any references to that area above col A reference to that area must be 
changed. What is found in the referenced cell is not the desired information, 
but is the forwarding address of the desired information. What to do is 
obvious: ten the sender what the change of address is. Thus the cdr-part of 
cen 77 becomes lee; the car-part doesn't change. Cen 10e refers to two 
relocated cells; we find their forwarding addresses, and cell 1 e0 becomes 

Similar treatment is given to cell 155, modifying the car-part. When all cells 
below col are updated, the garbage collection is finished. The cells above col 
are an available for the free-list. 
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Problems 

1. Is col in the free space list after the update phase? 
2. Write a LISP algorithm for compacting garbage collection in LISP. 

7.5 Bit-tables 

In the marking phase of a garbage collector it is necessary to record the 
visitation of each word. Frequently it is not possible to place a mark in the 
actual word. This might occur for several reasons: 

1. For a word in FS, there is no room if each word contains exactly two 
addresses. 

2. For a word in FWS, the information would be changed if we modified a 
bit. 

3. In structures, more complex than dotted pairs, there may not be room for 
marking bits. 

4. If a mark bit is assigned in each word, then the initialize phase requires 
that we visit each word. This violates "Iocalitr of reference". 5 

An alternative solution designates a separate section of memory called a 
hit-table. The bit-table is a sequence of binary flags such that t~ere is a 
one-to-one correspondence between a flag anq a markable memory location. 
Whenever we wish to record the visiting of a word, we set the corresponding 
flag in the bit table. A bit table is represented as a sequence of machine 
locations with several flags represented in each word. The initialization 
phase is improved since it is faster to initialize a whole table rather than 
initialize single bits in separate words. The mark phase is rapid if there is a 
simple calculation to relate each bit in a word with its corresponding 
markable location. 

5Locality refers to the relative distance between memory locations 
assigned in a particular structure. In some machine organizations, memory is 
divided into "pages" of a relatively sman size. There is significant overhead 
involved in crossing page boundaries. Therefore memory referencing which 
entails many scattered references is said to violate "locality of reference." 
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7.6 Representations of Complex Data Structures 

In our discussion of abstract context-free data structures in Section 2.1. we 
isolated three kinds of structures: 

~::=~l'" ~l 
e.g., <seq> ::= «seq elem>, ... , <seq elem>) 

e.g., 

e.g., 

~ ::= ~l I ~2 I ~3 
<seq elem> ::= <indiv> I <seq> 

~ ::= ~ 1 ~2 ~3 ... ~n 
<sexpr> ::= «sexpr> . <sexpr» 

We have discussed the behaviorial characteristics of algorithms which 
operate on these structures. Now we wish to examine the storage structure 
aspects of these data structures. 

Corresponding to these three data structures are three "natural" storage 
representations. By "natural" we mean that even though all these structures 
can be represented as LISP S-expressions, for example, there are 
representations which might better suit the operations which we expect to 
perform on those structures. Since "natural" is not a well-defined term, we 
will clarify its meaning using examples of context-free data structures. 

The first type of data structure given above, maps natural1y onto a 

representation which contains information that the object is of type ~ and 

contains space for the storage instance of this data type. Elements of type ~ 

are homogeneous, being all of type ~I; however, the size of a type ~ element 
is indefinite. Depending on the operations which are to be performed on the 
representation, either a list representation or an array representation is 
reasonable for the storage structure. Unless the operations are quite complex, 
a sequential allocation scheme suffices. 

The second type of data structure is frequently represented as a pointer. 
There really isn't any storage allocated for objects of this type. Instances 
which satisfy this equation have their storage reqUirements set by one of the 

~i alternatives. We will discuss pointer manipulation in LISP in the next 
section. 

This section will discuss the third abstract data structure. The essential 
characteristic here is that instances of this structure have a fixed number of 
components, and those components need not be of homogeneous type. Those 
components are typically referenced by name. These characteristics form a 
natural distinction between this third class and the first class, even though an 
appropriate encoding would make it possible to represent either class in the 
other. 

For example, in equations like 

<sexpr> ::= «sexpr> . <sexpr» 

or <form> ::= <function>[ <arg-list>] 

we reference components by selectors like car. cdr, Junc, and argUst. 
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LISP represents instances of the above equations as objects of the first 
and second types of data structure: variable-length lists of pointers. As a 
result, we have thought of these selectors as operations which might require 
some nontrivial amount of computation to discover the desired component, 
but as we saw in Section 1.8 what is algorithm and what is data depends on 
your point of view. For example, we could. think of a dotted pair as an array 
which has two components, one referenced by car, one referenced by cdr. We 
say "array," since the number of components is known; but the element 
references are done by nonnumerical names. 

The natural storage requirements for such objects imply a fixed 
amount of storage. That storage cali be sequentially allocated since the size of 
the element will not vary~ The representation must also encode the scheme 
for associating external selector with internal representation. 

For example, 

~.R· 
~ 

Notice that the array-referencing mechanisms have to solve a similar 
problem. However, array representation is such that the dope vector can 
perform a calculation to locate the element. 

The storage element which we are developing is called a record 
([Pop 68]), or a structure ([Alg 75], [EL 1 74]), or a plex ([Han 69]). 6 

Besides the usual constructors, selectors and recognizers, records may be 
supplied with a function to modify components of a structure. This function 
is called an updater. Just as we can write A[ 4 J] ~ 56 where A is an array, 
an updater function would implement a statement like car[x] ~ (A . B). 

Updating of simple variables is called assignment. A discussion of 
"updating" of more general data structures requires a deeper understanding 
of the implementation and storage structures. In the case of LISP, it reqUires 
a discussion of pointers. That is the topic of the next section. 

7.7 rplaca and rplacd 

The discussion in Chapter 5 developed an implementation of the LISP 
operations in terms of the manipulation of pointers. Those manipulations 
al10wed the creation of new structure or allowed sharing of an existing 
structure. None of these operations involved the modification of an existing 

6A similar device, called a hunk, has been implemented in MacLISP 
[Ste pc]. 
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structure. In this section we wilt discUss some LISP coding trick.s which do 
involve modification operations. 
First, consider 

append <= >..[[x;y][null[x] ~ y; t ~ concat[first[x];append[rest[x];y]]]] 

This function copies x onto the front of y. 7 Or recal1 the subst function: it 
generates a copy with the correct substitutions made; the substitutions are not 
made in the original S-expr. Since it is the constructors which carry out the 
copying operations, and since the application of a constructor may initiate the 
expensive operation of garbage collection, we should examine the possible 
ways of reducing copying. 

Consider the expression append[(A B C),.(D E)). It appears that we 
could get the effect of append by rest-ing down the list (A B C) until we 
found the terminator; then we could replace that terminator with a pointer to 
the list (D E). Thus, 

1 A I -+1 B I -+1 c I /~ · · .. 1 0 I -+1 E 1/1 
The resulting structure does indeed look like one we would have obtained 
from append. The operation we want to perform modifies the existing 
structure, instead of copying it as append would have done. Such 
modifications can cause serious difficulties. 

Let us can the modifying version of append, nconc; and consider the 
execution of the following seq uence of statements: 

first 

then 

and final1y, 

i+-(ABC) 

j+-(DE) 

It +- nconc[i,j] 

After execution of the third statement, It would have the expected value 
(A BCD E). However i would also have this value since we modified the 
structure assigned to i. Also, any value which was sharing part of the 
structure of i wilt also be changed. nconc is a pointer modification procedure; 
its effect can be quite far-reaching and unexpected. Exclusion of such 
features is one solution. However a programming language is a tool, and 
used carefully, such features are valuable for decreasing storage reqUirements 
and execution time. Inclusion of such features must be done with care, 
however. The chance for inadvertent application must be minimized. 

With the preceding adminitions, we introduce the LISP pointer 
modification primitives. Their appearance at this position in this text 

7Note: , is not copied. 
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indicates that such operations are not critical to an understanding of 
programming languages, and also that such features should not be used 
without a reasonable understanding of that language. 

Pointer modification functions for LISP are defined in terms of two 
primitive operations; rplaca replaces the car pointer; rplacd replaces the cdr 
pointer. 

The expression rplaca[x;y] replaces the car-part of x with y. 

dest 

L ~ m-
• • • 

t!j 

Algorithm for rplaca 

-+t 

J, 

env 

L 
)( 

y • 

The AMBIT/G description of rplacd was given on page 285. 
Now neone c~n be defined as: 8 . 

neonc <= A[[X;y] prog[[z] 

Consider: 

[null[x] -+ return[y]],. 
z ~ X; 

a [null[cdr[z]] -+ rplacd[z,"j]; return [x]]; 
z ~cdr [z],' 
go[a] ]] 

prog[[x] x ~ (NOTHING CAN GO WRONG); 
r placd[cdddr[x ];cddr[x ]]; 
print[x]] 

This expression wi1l generate a circular list. Circular lists cannot be 
generated in LISP without functions like rplaca and rplacd. See the problem 

Ssince we're rea1Jy involved with the representation we use car and cdr 
rather than first and rest. 
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on page 287. In general. to circularize a nonempty list. x. rplacd[last[x],'X] 
suffices where 

last <=~.[[xJ[null[cdr[xJJ -+ X,' t -+ last[cdr[xJJJJ 
Problems 

1. What is the effect of evaluating rplacd[x;cdr[xJJ? 
2. Recall the problem on hash consing on page 287. There we were 

contemplating unique storage for all S-exprs. Can such a scheme be 
reconciled (efficiently) with functions like rplaca and rplacet? 

3. It has been pointed out that rplaca and rplacd are closely related to 
assignment statements [And 76J. Extend one of our evaluators to 
recognize expressions like: 

car[ <form>] ~ <form.> 
as abbreviations for: 

rplaca[ <form>; <form> J 
This extension of assignment is obviously not restricted to rplaca but 
could allow arbitrary forms on the left-hand side of an assignment. 

7.8 Applications of rplaca and rplacd 

We begin with rather simple examples. Consider the problem of 
inserting an element into the middle of a Hst. For example let X be the list (A 
B C). If we wished to insert an atom, say D, between Band C, we could 
perform 

X ~ cons[car[xJ;cons[cadr[x];cons[D;cddr[xJ]]] 

We recopy the initial segment of x, adding D at the appropriate place. 
In appropriate circumstances. we can use rplacd to insert elements into 

lists, using fewer cons operations. For example. given the list (A B C) with 
pointers X and 'J into it as follows: 
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we could insert the element D after the first element in y by 
rplacd[y;cons[D;cdr[y]]], giving: 9 

But note that the value of x has also been changed, and any S-expr sharing 
the list x or y as a sublist has also been affected. 

We could delete the element D by 

x ~ cons[car[x]; cons[car[y],'cddr[y]]] 

We can also use rplacd to delete D without using cons; we delete not the 
first element of y, but the next element in y by 

rplacd[y;cddr[y]] 

Similarly, we can use rplaca to modify an element in a list (or S-expr). To 
change the first element in the list, y, to the S-expr z use 

rplaca[y;z] 

Notice that the uses of rplacd for insertion and deletion are couched in 
terms of insert after and delete after, rather than insert at or delete at. If 
you look at a diagram you will see why. 

x 

L, A , '-+-I----+JI B I -rl c )/1 
To delete the element B requires modifying the cdr-part of the predecessor 
cel1; a similar remark applies to insertion at a specified cell. A simple, 
perhaps inefficient scheme, to support such modification would be to start a 
second pointer from the beginning of the list, looking for the cell whose cdr 
pointed to the desired spot; then make the modification. 

If these "modification-at" functions were to be performed very 
frequently, then it might be worth starting two pointers down the list, one at 
x, one, say y, at cdr[x], as above. Then testing could be done using y and the 
modification could be done using x. When we move y to cdr[yJ, we move x to 

9Notice that one application of cons is unavoidable. 
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cdr[x]. If we wanted to modify before rather than at, we could proliferate the 
"back pointers," but if this kind of generality is required a change of 
representation is caned for. We might resort to the double-linking scheme 
introduced on page 247; more complex representations are also discussed in 
detail in [Knu 68] Chapter 2. 

A LISP implementation which stores p-lists as list structure would use 
rplaca and rplacd heavi1y; for example, functions which modify properties on 
the p-lists would use these functions. Here are the two p-list manipulating 
functions, putprop and rem prop. 

putprop· was introduced on page 261. Recall that the effect of putprop is to 
attach an indicator-value pair to an atom. If the indicator is already 
present, then we will simply change its value; if the indicator is not 
present, then we will add the indicator-value pair to the front of the 
p-list. In the definition n is an atom, i is an indicator, and v is the value 
to be stored. 

putprop <= A[[n,-v;i] prog[[m] 
m f- cdr[n]; 

a [eq[car[m];i] -+ rplaca[cdr[m];v];return[v)); 
m f- cddr[m]; 
[null[m] -+ rplacd[n;cons[i,'cons[v;cdr[n]]));return[v]]; 
go[a] ]] 

Note that extended conditional expressions are used in the definition. 

remprop was also introduced on page 261. remprop is a predicate used to 
remove attribute-value pairs from the property list of an atom. We will 
capitalize on the LISP "NIL-non NIL" trick for predicates and return 
the removed property value if one is found. The following 
implementation of remprop does that. 

remprop <= A[[n;i] prog[[m] 
m f- n; 

a [eq[cadr[m];i] -+ return[progl[ caddr[m]; 
rplacd[m;cdddr[m]]]; 

m f- cddr[m]; 

[null[cdr[m]] -+ return[f]] 
go[a]]] 

where progl evaluates its arguments from left to right and returns the value 
of its first argument. 

Applications of rplacd occur inside ratom when p-lists are built and 
added to the object list. On page 394 we will develop a version of LISP's 
parser which uses pointer modification to gain efficiency when building the 
internal representation. Pointer modification is also used inside the garbage 
col1ector; examine the sweep phase of the col1ector on page 286. 
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Finally, pointer modification aHows the construction of self-modifying 
programs. This technique is similar to the machine language tricks of 
self-modifying code and should be used with simi1ar care. The freedom to 
hang yourself should not be construed as an invitation to do so, but it again 
points out the similarities of LISP to machine language and highlights the 
differences between LISP and its contemporary high-level languages. 

LISP's central processor eval operates by traversing and interpreting the 
data structure representation of the program; that data structure is also open 
for inspection by LISP's data structure manipulating functions. Since we 
now have list-modifying functions, we could modify a program by changing 
its internal structure. Indeed we can write a program which modifies its own 
structure. 
Here's one: 

foo <= A[[X] prog[[y;z] 
z4:-1; 
y4:-sixt Mbodylf 00 ]]; 

a print[x); 
rplaca[rest[y);z4:-addl[z]]; 
go[a] ]] 

The mystery created by y is a pointer into the representation of the statement 
print[x); that representation is (P RI NT X). Therefore the effect of the first 
rplaca is to change (PRINT X) to (PRINT 2). Subsequent passes through 
the loop will change the statement to print 3, 4, and so on. There really isn't 
much that can be said about such a program. 

Problems 

1. More on ratom. Recall the discussion of ratom in Section 5.11 and 
Section 5.12. Now that you know about rplaca and rplacd write a more 
detailed version of ratom. 

2. On page 48 and page 49 we wrote various styles of reverse. All these 
functions used concat; however, we should be able to reverse a list 
without using any new ceHs. Express this algorithm as a LISP function. 
If you use prog, don't use any prog-variables. 
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7.9 Numbers 

In many implementations of LISP, numbers are stored as very simple kinds 
of atoms: they are not stored uniquely, and do not need print names. Most 
implementations anow fixed- and floating-point representation; therefore, 
indicators for these properties are needed. Thus: 

fixed-point 1 

l I FIXNUM I 
floating-point 1 

l I FLONUM i <machine rep of 1.0> 

The .number is stored in FWS and the type is indicated by a minimal 
property list. This representation is expensive in space and adds significant 
overhead to the execution of arithmetic operators. Several techniques have 
been used to improve LISP arithmetic. 

Assume that the addressing space of the machine is 218 and that the 
usual size of a LISP memory image is N; within the LISP system, all 
references to memory locations greater than N are illegal. We wilt use these 
illegal addresses to encode some of the smaller positive and negative integers, 
mapping zero on the middle address, the positive numbers to lower addresses 
and the negatives onto the higher addresses. These smaller integers, called 
INUMS, are represented by pointers outside of the normal LISP addressing 
space. This trick can considerably decrease the storage reqUirements for 
applications which use small numbers extenSively. 
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m < (3 

m = (3 

m > (3 

N 

(3 

Picture of INUM Space 

The INUM representation adds some complexity since the arithmetic 
operators now have to recognize these illegal pointers as encoded numbers. 

The MACLISP ([Moo 74]) implementation Uses a different 
representation for numbers. 10 In that implementation, two spaces are 
allocated for number storage: FIXNUM space and FLONUM space. This 
makes a more compact representation since the type information is implied in 
the address of the' ob ject rather than being expUcitly stored. To those basic 
spaces we add two temporary stack areas: FIXPDL and FLOPDL. These 
areas are used for temporary arithmetic computation. 

The temporary areas work in conjunction with a type declaration 
option used to aid the MACLISP compiler. If we know that certain 

IOMuch care went into the the representation of numbers in 
MACLISP. That LISP system is used as the implementation language for 
MACSYMA ([MAC 74), [Wan 75], [Mos 74]), a large algebraic and 
symbolic mathematics system. MACLISP's efficient number facilities, coupled 
with its optimizing compiler, have resulted in the production of compiled 
code which is more efficient than that produced by DEC's FORTRAN 
compiler ([Fat 73]). 
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variables are always going to be used as numbers in a p~rticular function, 
then we can compile better code. Assume x and yare to be used only as 
FIXNUMs within a function f; we would make such declarations for the 
MACLISP compiler just as we can declare some variables as "special" to 
other LISP compilers. When we allocate space for x and y, we allocate space 
on the top of FIXPDL. Within f the arithmetic operations use the hardware 
arithmetic and reference the stack elements. The stack elements can be passed 
to other arithmetic functions caned within f, and no permanent storage need 
be allocated in FIXNUM space until later. The efficiency of arithmetic 
operations is dependent on the existence of special hardware instructions for 
such arithmetic. However, special hardware also places limits on the 
arithmetic capabilities of most languages: arithmetic is usually limited by the 
word size of the machine. 

There are several versions of LISP which wi11 automatically change 
representation when faced with overflow. This scheme is called arbitrary 
precision arithmetic and has been implemented for both fixed-point and 
floating-point numbers. We wi11 describe a representation for fixed-point 
numbers called BIGNUMSj they could have the fonowing structure: 

Structure of a BIGNUM 
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The value of a BIGNUM is given by: 

n(No + aN 1+ ... + anNn) 

where fJ is either + or - and a-I is the largest number representable in one 
machine word. The translations between BIGNUMS and the other numeric 
representations are done automatically. 

On most implementations of LISP, no attempt is made to store numbers 
uniquely. Thus eq will not work on numbers other than INUMs; either equal 
is extended for numbers or a special equality predicate for numbers is 
provided. 

7.10 Stacks and Threading 

Though recursive algorithms are usually more illuminating than their 
machine-oriented counterparts, it is frequently more efficient to encode those 
algorithms in manners which can take advantage of the hardware. This 
section witl discuss two techniques which "unwind" the recursion and 
typically lead to faster execution. 

Recall the marking phase of a garbage collector in Section 5.14. There 
we wrote mark as a recursive algorithm. We could equally well write mark 
using an explicit stack: 

mark <= X[[tr]prog[[st] 
lOOp [is_marked[tr) ~ go[chk_st); 

is_full_wd[tr] ~ markA[tr );go[chk_st]; 

is_fr.ee_wd[tr] ~ st~push[cdr[tr ];st],· 
markA[tr ],. 
tr~car[tr );go[loop ]]; 

t ~ go[chk_st)),· 11 

chk_st [null[st] ~ return[t)),. 
tr~top[st); 
st~pop[st],· 
go[looP] ]] 

push <= X[[i;st] concat[i;st]] 

top <= X[[st] first[st]] 

pop <= X[[st] rest[st]] 

Notice that we save only the cdr-node in the stack; even at that, the stack 
grows proportionally to the depth of the tree being traversed. See the 

IIThis branch of the conditional could be omitted and the effect would 
be the same. 
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problem on page 393. The technique of using an explicit stack sometimes is 
more intuitive and sometimes wi11lead to faster execution. 

The second technique is more tricky but wil1lead to significant pay-offs 
in execution time. 12 The technique is ca11ed threading. The basis for 
threading is a desire to traverse tree structures in a more efficient fashion 
than that typically available implicitly in recursion, or explicitly via stacks. 
Recall that on page 247 we surmised that double-linking might be 
advantageous in moving up and down the "spine" of a tree structure. 
Double links would a110w us to find the successors and predecessors of nodes 
easily. However the extra link gives us no help if we wish to descend into the 
substructure. It is this area to which threading addresses itself: descent into 
tree structure. 

Examination of the new mark algorithm will reveal that for a fixed tree 
and a fixed order of traversal; any two applications of marking will have the 
same pattern of behavior. The order of visitation to each node will be the 
same, but more importantly, the dynamiC changes in the state of the stack will 
also be the same. Instead of replicating the portion of the stack, it might be 
possible to store the stack information in the structure itself. Threading 
hides the control structure in the data structure. Typically, threading 
reqUires a more complex data structure since we must store both threads and 
links. The traversal algorithms also become more complex since we must 
recognize the difference between control threads and data links. Care must 
also be taken if we wish to share threaded list structure. See [Knu 68] for a 
complete discussion of the techniques and tricks. 

We do not wish to complicate the LISP structures, but dispensing with 
a stack, be it implicit or explict, does influence storage reqUirements. We can 
strike a compromise; instead of permanently storing the threads in the 
structure, we can temporarily store threads as we traverse trees. The first 
application is in the design of a nonrecursive read program. The second 
application we will describe is in the mark phase of a garbage collector. 

Problem 

1. With a little more testing before stacking we can significantly cut down 
the number of pushes we have to do. Namely, if some of the branches 
point immediately to atoms we might as we11 mark them at that time and 
proceed without doing a stack operation. On ly when both branches are 
"non atomic" do we need stack the cdr. Write such an algorithm. Further, 
is it better to stack the cdr nodes or the cdr nodes? 

12But there will be a proportionalloss in clarity in the code. 
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7.11 A Non-recursive read 

The original read algorithm of Section 5.11 is a good example of a clear 
recursive algorithm; it is reasonably straightforward to follow the flow of the 
algorithm. However, now that we understand what the run-time behavior of 
such a recursive program is, we see that read is a drain on two resources: it 
uses free-space to construct the internal representation of the input; it uses 
the run-time stack in the implementation of the recursion and for saving 
parameters and intermediate computations. A deeply nested expression win 
use a lot of the run-time stack. Clearly, there is nothing we can do about the 
drain on the free lists, 13 but threading can dispense with the run-time stack. 
We can in fact do so without a proportional increase in the use of free space; 
indeed we need only one additional free cell, regardless of the complexity of 
the input! The algorithm will be much more complex that the recursive 
parser, but that's why this section on storage and efficiency is where it is. We 
now understand the purpose and intent of read. Now that the basic 
algorithm is well understood we can be clever and efficient. 

First we describe the basic ideas of the algorithm, then we give the 
algorithm. The main idea in the algorithm is the realization that we can 
determine the storage requirements for a complex S-expr or list structure as 
we read it in. For example, consider the input string "(A (B G) D)". As we 
start our left-to-right scan of the input, we see "(". This immediately tells us 
that we need at least one cons. We read "A"; that tells us what the car of the 
expression is. Notice that we don't yet know whether the expression is 
"dotted" or "listed," but the storage requirements will be the same. On 
reading the next open parenthesis we know we need to add a new level in 
the developing representation. The "B" and "G" add elements to that level, 
and the closing parenthesis finishes it off. The closing parenthesis also 
should signal our parser to return to the prior level and continue scanning 
the input. The "D" goes on that level and the final closing parenthesis 
completes the input. To implement this informal idea, we keep a thread in 
the cdr-part of the last cell on every level. When we go down a level we 
manufacture a new cell with the cdr pointing to the cell we just carne from in 
the previous level; this happens when we see a left parenthesis. We go up a 
level when we see a right parenthesis; that is done by following up the 
thread in the current level, after doing appropriate cleanup. 

There are thtee basic states in the reader: 
1. The next input should go into the car-part of the current cell. This state 

is entered when we go down a level. It is labeled head in the following 
program. 

2. The next input should go on the current level. This is the typical state in 

13We probably will be drawing on the fun word area for print name 
storage as well as on the free space area for list structure storage. 
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the building of a list-input. Here we add a new cell in the current level 
and put the input in the car-part of that cell; then stay in this state. This 
state corresponds to label tail. 

3. The other main state occurs on reading a dot when in tail state. 14 In 
dot state we check the next input; if it is an atom we store it on the 
thread and follow the thread. If the input is a left parenthesis we add a 
new cell and go down. 

There are some anomalies in the algorithm since it must recognize both 
S-expr notation and list notation. To handle both kinds of input, we add a 
parenthesis counter; it increments for left parentheses and decrements for 
right parentheses. A legal input has been recognized when we are back at the 
top level and the count is zero. 

The final difference between the old parser and the new one involves 
the scanner ratom. We assume a new ratom which reads () and returns NIL. 
If the scanner sees an open parenthesis, it looks ahead to the next 
meaningful character. t 5 If the character is a closing parenthesis, the scanner 
takes it; if the character is not, it is left for the next call on rat om and ratom 
returns with an indication that it has seen a left parenthesis. 

14Dots seen in any other context are errors. 
151t ignores spaces and the like. 
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With this introduction, here is the new read: 

read <= ~[[] prog[[j;cp;count;top;temp) 
count+-init[]; cp+-count; top+-cp; 

head j+-ratom[]; 
[or[is_dot[j);is_rpar[j)) -+ err[]; 
is_lpar[j) -+ incr[count); 

cp+-down[cp ); 
gO[head),' 

atom~jJ -+ stufflcP,jl,· go[ckend]); 
tail j+-ratom[],· 

[atom[j] -+ cp+-insert_move[cp,j),· go[ckend),' 
is_rpar[j) -+ decr[count]; 

[eq[top ;cp) -+ go[ckJ]; 

t -+ cP+-stuff_up[cp;NIL]; go[ckend]],. 

is-1par[j] -+ incr[count); 
cp+-down[insert_move[cp"N I L)),' 
go [head]; 

is_doty] -+ j+-ratom[]; 
[orUs_doty];is_rpar[j]] -+ err[]; 
is_lpar[j) -+ incr[count],' 

cp+-insert_move[cp;N I L],· 
go[head],' 

atom[j) -+ cP+-stuff _up[cp,j),. 
go[ckend]]),' J 6 

ckend [eq[cp;top] -+ go[ckJ],' 

t -+ go[tail]]; 
ckl temp+- cnt[top]; 
end2 [zerop[temp] -+ return[exp[top]); 

j+-ratom[]; 
[is_rpar[j] -+ temp+-subl[temp),' go[end2]; 
t -+ err[] ]]] 

t 6This go is superfluous, but makes the flow more apparent. 

?11 
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init <= ~[[] cons[N I L,-o]] 
stuff <a:: ~[[x,,] rplaea[x;y]] 
tncr <l1li ~[[z] rplacd[z,'addl[cdr[z]]]] 
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insert_move <= A[[CP;vcU] rplacd[cp;cons[val;cdr[cp]]]; cdr[cp]] 

down <= A[[CP] rplaca[cp;cons[N I L,'cp ]];~ar[cp]] 

stuff-uP <- A[[CP,j] prog[[temp] 

ent <= ~[[x] cdr(x]] 
exp <= ~((x] car(x]] 

temp ~ cdr[cp]; 
r placd[c p ,j]; 
return[temp ]]] 

The development and understanding of this algorithm requires most of what 
we have covered in the course. We use our knowledge of the parser, read; we 
use our familiarity with S-exprs stored as linked lists; we have to understand 
the run-time control of recursive cal1ing sequences; we have to understand 
pointer manipulation; we have to understand pointer modification; and 
finally we have to be wickedly clever. With that understanding we were able 
to apply threading at a level higher than a "once only" trick. 

Problem 

1. Write a version of read which uses an explicit stack to remember where it 
is in the parse. 

7.12 More Applications of Threading 

A Link.Bending Garbage Collector for LISP 

The use of a stack is one of the difficulties associated with garbage collection. 
Garbage coUection is Invoked when available space has become exhausted, 
but here we are asking for more space to use for stacking. The usual solution 
to such a problem is to allocate a separate area for stack storage. This has its 
drawbacks. If we don't allocate enough stack space the depth of a piece of 
structure may become too great, and the marker will fail. The amount of 
stack space can become large - proportional to the depth of a list. We can 
apply threading here, modifying the structure as we traverse it; as usual the 
threads will be used as control information. As we finish marking a branch 
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we restore the structure to its original topology. Several versions of such 
threaded collectors are available; see [Chr 68] for a version written in 
AMBIT/G; a more traditional description is found in [Sch 67]; 17 and see 
[Knu 68] for several alternatives. 

Binding Implementations 

Threading can be used in the shallow binder described in Section 5.20 to 
remember the path through the environment tree ([Urm 76]). We thread 
from E bind to Einter when we are looking for Einter. This consists of reversing 
the access links as we proceed toward Einter' Then, as we swap back the 
value cells, we will unthread from Einter to E bind• 

7.13 Storage Management and LISP 

There are two basic areas of LISP which reqUire attention: the 
implementation of data stuctures, and the implementation of a LISP 
machine. We wi11 discuss applications in that order. 

LISP's typical data object is a dotted pair; however, dotted pairs are 
frequently used to represent more structured objects. For example, many 
common LISP programs involve list operations on list representations. But 
lists, we know, are representations of sequences. From Section 7.2 we now 
also know that arrays are efficient representations of sequences. Ind,eed array 
representations are typically more efficient than the general LISP linked-list. 
We would like to capitalize on this more efficient representation without 
jeopardizing the LISP operations. 

An analysis of the LISP operations shows that we share substructures, 
and if using rplaca or rplacd, we modify existing structures. Any proposed 
economies in storage layout must take cognizance of these facts. Fortunately 
these reqUirements are compatible. 
Consider the typical representation of the seq uence: 

(LAMBDA (X) (F X V»~ 

17The correctness of [Sch 67] has been proved by de Roever. 
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This representation takes seven words. The car-part of each cell contains the 
information; the cdr-part tens where the rest of the expression is to be found. 
That is, we have dedicated 14 half-words to represent the structure; only 
seven of which contain the actual information we wish to store. Using some 
extra encoding we can carry the same information in seven slightly larger 
cells. 

J, LAMBDA 

J, -+-~ ...... I I __ X-J 

I • 

§.

, .. 'F' 
J, X 

I Y 

The intent of the special characters is to encode type ihformation about the 
next cell in the representation. It thus is called cdr-coding. The J, means the 
next ce11 is the cdr; I means the cdr is N I L~ 

The typical LISP cell is a third variety of cdr-coding: the code ~ says 
the next cell contains a pointer to the cdr. With that, we introduce the final 
code: * means this cell is the cdr-half of a LISP word. Thus (A B) could be 
expressed in any of the following forms: 

[DJ 
~ 

ED 
E3---+t~ 
~ 

A . I / 

However this encoding scheme is not sufficient as it stands. Consider 
the following example: Given internal pOinters x and % into 
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)( Z 

L, F I .-t---'-!--+tl X I -rl y 1/1 
and assume we wish to perform rplacd[x;(A B C)]. Using our standard 
implementation, We would have: 

However, a problem arises if (F X Y) is represented in its compact form. We 
can't replace the cell 

i 
1.1, X by 

j , 

1* --++ to (A B C) 
I II 

since the value of z would change. The solution is an application of the 
forwarding address scheme we introduced on page 377 in the compacting 
garbage col1ector. We put a forwarding address in the cell referenced by x; 
then allocate a new pair of half-cens, putting F in the first and a pointer to 
(A Be) in the second. 

i -
.I, X 

/ y 

These forwarding addresses are an instance of Invisible pointers used by R. 
Greenblatt in his LISP machine; he has also implemented hardware 
cdr-COding. Between invisible pointers and cdr-coding, we can effect all LISP 
operations using this potentially more compact representation. 

We must be able to maintain that compact representation whi1e the 
program is running. This requires more care in the management of storage. 
We cannot simply garbage col1ect and fragment space; we cannot use the 
simple compacting garbage collector discussed in Section 7.4 since it does not 
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attempt to maintain the compact representation. Several algorithms with the 
desired properties exist ([Che 70], [CIa 76]). One feature of this data 
representation is its use of variable-sized linked blocks of sequential storage. 
The management of these storage blocks is more complex than that of simple 
dotted pairs, but the additional overhead may be acceptable if it gives better 
locality of reference and faster access to Jist elements. 18 

There is less conflict about the use of more comp lex storage 
management techniques in the area of LISP's dynamic implementation. The 
original versions of LISP 1.5 used dotted pair structure to represent the 
access environments. 19 This generality gave a correct solution to the 
implementation of function, but experience with LISP implementations has 
shown that it is quite expensive to maintain this generality when most 
applications are of a less general nature. Implementation techniques, 
patterned after our Weizenbaum diagrams, allow some economies without 
loss of generality. Again, storage would be allocated in sequential blocks; 
each block would be of a size sufficient to hold the representation of the 
name-value entries along with the additional areas to link the block to the 
environment. The storage blocks need not be allocated sequentially; indeed, 
in the general case blocks cannot be allocated sequentially. The de-allocation 
problems are somewhat different from those experienced by data structure 
representations. The environment structures are much more "well behaved" 
than general list-structures. Therefore an "environment garbage collector" 
may not be needed. 

The most general techniques for management of LISP's dynamic 
environment are based on [Bob 7Sa] and succeeding papers. 20 

At a lower level of implementation, LISP has much to say about 
machine organization. The implementation of efficient 
enVironment-swapping algorithms is a problem which any operating system 
must face. The traditional solutions impose severe restrictions on 

18Notice that the cdr-coded representations of (A B) and (A . B) are 
eq ually expensive. In the typical linked-list representation, (A B) req uires 
more space than (A . B). 

19The control information did use a stack implementation coded in 
machine language. 

20There is something contradictory about LISP implementors' attitudes 
toward storage and dynamics. Much effort is expended in attempting to 
minimize the overhead involved in the dynamic operation of LISP; it is 
frequently stated that users should not be penalized for access/control 
constructs which they do not use. However, that attitude is not extended to 
LISP's data structures. There are very generous subsets of LISP applications 
in which the data structure operations are suitably well-behaved, that storage 
reclamation techniques less general than garbage col1ection are applicable. 
Analysis of this area of LISP should lead to profitable results. 
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interprocess communications. The algorithms developed for LISP show 
promise for giving efficient implementations of more general scope. 

LISP's organization of memory also has lessons for machine 
architecture. The management of large variable-sized memory spaces like 
[Ste 73] or [Wegb 70] can be supported in hardware. The allocation and 
de-allocation of such large spaces also require care; LISP implementors have 
begun to address these problems ([Ste 7Ga], [Bis 7-ta]). 

7.14 Hash Techniques 

One phenomenon of LISP is the sheer size of data structures which a large 

LISP program generates. Many LISP projects approach 107 bits of program 
and data. Several techniques have been developed to help shrink data 
representation; cdr-coding (Section 7.13) is one technique. Another technique 
stems from the observation that LISP tends to copy structures rather than 
share them. We know that the sharing of structures must be done with great 
care if modification operations like rplaca and rplacd are present, but 
sharing of structure can mean a significant saving in space. In fact, the 
saving can also improve the algorithms which manipulate the structures. For 
example if every list structure is stored uniquely, then the time for the 
equality test equal is a constant rather than being proportional to the depth 
of the structure. 

We present two techniques for maintaining unique structure: either 
maintain list space such that unique representations are always present or 
supply an algorithm which wilt "uniquize" structures upon request. The first 
alternative is usually called hash consing; the second technique is caned Jist 
condensation ([Lin 73]). A condensation algorithm must remove an 
duplicated structure from within a list. Since condensation is a component of 
many hashed LISP implementations, we will concentrate our attention on 
hash consing. 

Hash consing is an extension of the LISP technique for generating 
unique atoms. Since list structure is created only by the cons operation, 21 we 
place the responsibility for maintaining unique structure within cons. If the 
result of a pending cons is already present, we return a pointer to that 
structure, otherwise we perform the cons and record the result so that it will 
be retrieved if the same cons happens again. The adjective "hash" is applied 
to this version of cons since the typical implementation uses a hashing 
algorithm to maintain the uniqueness. Hash consing imposes restrictions on 
the programmer's use of list modification operations. If unique copies are 
available, severe difficulties result if modifications are made. One either 
may disallow list modification or may supply additional operations to copy 

21 However, list structure may be modified by rplaca and rplacd. 
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structure, modify it, and "uniquize" the result, or an implementation may 
supply different kinds of structures, some modifiable and some not 
modifiable. 

A hash cons was proposed for LISP 1.75 on the IBM M44, but the 
implementation was never completed. A limited version of hash consing was 
implemented as an extension of LISP 1.6 at Stanford. 

Impressive and extensive applications of hashing appear in HLISP 
([Got 74], [Ter 75]). That implementation of LISP supplies two different 
kinds of structures: ordinary list structure and "monocopy" structures. 
Operations are also supplied for conversion between types. Extensive analysis 
of hashing effects on algorithm performance has also been done ([Got 76]). 
HLISP also employs hashing in its implementation of property lists. 
Property lists are not stored explicitly, but rather the atom name and the 
property name are used to form a hash index; the property value is 
associated with that hash index. For example, get[x;i] hashes with both x 
and i to retrieve the property value. 

The other major implementations of LISP also offer specialized 
operations for dealing with hashed quantities; see [Moo 74], [lnt 75], and 
[Bob 75]. 



CHAPTER 8 

Implications of LISP 

Any text which is of the size and extent of this book certainly owes a word 
of explanation to its readers; after 404 pages it is not fair to turn the page 
and find the index. This section will try to summarize what we have 
accomplished in this book and will address some of the current research 
related to LISP-like languages. 

It is the author's belief that LISP should be the first language learned 
by persons interested in computer science. As a language for studying 
algorithms for data structures, it is presently without peer. As you have seen, 
the problems of language implementation and their solutions are describable 
quite natural1y in the implementation of LISP. As a programming language, 
LISP has powerful features possessed by few languages, in particular the 
uniform representation of program and data. 

We have developed several areas of programming languages and data 
structures in this book and have hinted at future possibilities in several of 
those areas: 

404 
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1. Mathematical models: This refers to some of the theoretical areas which 
use LISP as the basis for mathematical studies of algorithms, equivalence 
of programs, and program synthesis from formal specifications. These 
are not of purely theoretical interest: correctness of non-trivial programs 
is an important practical problem. The issue of programming language 
semantics also needs clarification. This branch of semantics seeks a 
descriptive tool for the meaning of constructs of a language; in particular, 
a tool of the power and clarity of BNF descriptions of the syntax of 
languages. We have talked a bit about semantic issues in Section 3.13. 
The close relationship between LISP evaluators and denotational models 
is encouraging. 

2~ Generalized control structures: We hinted at some of the options under 
consideration for control of algorithms. The work on generalized access 
and control, also known as "spaghetti stacks" ([Bob 73a]), is of current 
interest and many of its motivations and implications should be more 
understandable now. The devices which are reqUired for such general 
control also come directly from the LISP experience. Devices like 
"spaghetti stacks" serve for implementation of higher level language 
constructs like pattern directed invocation. 

3. Interpreter/compilers: This is an interesting area which begins to resolve 
the dichotomy between compilation and interpretation. Work was done in 
[Mit 70], but little has been done since. Again, LISP is a natural vehicle 
for discussing this topiC. 

4. Implementation tricks and machine organization: In the past LISP has 
been the originator of several, now every-day, programming tricks. 
Current production versions of LISP continue to develop sophisticated 
techniques for management of very large spaces, representation of data 
structures, and execution of complex algorithms. M any of those ideas 
have direct implications for the development of hardware for LISP like 
languages. 

5. Languages for Artificial Intelligence research: Though LISP is thought of 
primarily .as the language for Artificial Inte11igence programming, we 
have barely touched on those applications. In the last decade, LISP has 
really become a systems programming language, rather than a research 
tool. It is the systems language for developing more powerful languages 
for A.I. They are "more powerful" in the sense of descriptive power, 
rather than computational power. LISP is also used exclusively as the 
systems programming language on the M.I.T. LISP machine. 
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6. Interaction and personal computation. Though LISP developed in the late 
1950's, contemporary implementations are finally exploiting the true 
interactive nature of the language. A LISP machine is a sophisticated 
and powerful calculator. The language is the most interactive of the 
major programming languages, and as such, should attract the interest of 
the personal computer field. This should see the development of 
sophisticated ",-computer LISP implementations. The combination of 
LISP, inexpensive hardware, and creative minds should be interesting to 
watch. 

The main purpose of this epilog is to tie together most of the material 
we have studied. The underlying thread in our study has been the internal 
and external behavior of LISP. A rather natural vehicle to unify these topicS 
is the design of a new LISP-like language. Language design is not a pastime 
to be entered into lightly; we wi11 therefore sketch an existing LISP extension 
named EL 1. The name EL 1 is derived from Extensible Language/I. 

There are two basic views in programming language design: one 
approach is to design a small language, called a base language, which has 
sufficent expressive power to allow its user to mold a special language from 
that base. This is called the "core" approach and such base languages are 
caned extensible languages. The alternative, called the "shell" approach, is to 
design a full language, capable of covering a specific area. That area may 
only cover a special domain of algorithms or might encompass all algorithmic 
processes. 

The "shell" approach to general purpose languages is best exemplified 
by PL/l. This approach attempts to build a language ,which encompasses all 
the PlIt is an The approach gives rise to many problems. Of necessity, the 
language is large; unless care is taken a programmer wiIJ have difficulties in 
learning the language. Even if a small subset is presented to a beginner, the 
occurrence of bugs in a user program may cause mysteriOUS results if those 
bugs happen to invoke features outside the subset. Also the language 
implementor is in for a hard time; language processors will have to be 
cognizant of all the language features even if the user wishes to work within 
a small subset. The problems of optimization are compounded immensely, 
since the interaction of language features may well lead to torturous code. 
Though the "shen" approach presents severe problems, the "core" approach 
of extenSibility is not without flaw. There are non-trivial research areas 
involved in developing smooth and efficient means of describing the syntax, 
pragmaticS and semantics of user defined data structures, control structures 
and operations. 

An extensible language is designed to supply a base language, which 
has sufficient handles such that a user can describe new data structures, new 
operations, and new control structures. These new objects are described in 
terms of combinations of constructs in the base language. Extensibility is 
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implicitly committed to the premiss that the power of high level languages is 
primarily notational rather than computational. That is apparent from our 
experience with high level numerical languages. Their notations allow us to 
express our problems in mathematics-like statements, rather than coding in 
machine language. 

Like LISP, the extensible language EL 1 maps programs onto data 
structures. EL 1 has richer data types induding integers, characters, pointers, 
and structures. Its syntax is described in BNF and a mapping from 
we11-formed syntactic units to data structures is given. The EL 1 evaluator is 
written in EL 1 and manipulates the data-structure representation of EL 1 
programs in a manner totally analogous to the LISP eval function. 

The syntax of EL 1 is similar to that of M-expression LISP. The 
details are not relevant and are best left to the user's manual, [EL 1 74J. 
What is important is the interrelationships between the constucts of the 
language and their data structure representations. That is, we wish to 
develop a representation of the abstract syntax of EL 1 using the data 
structures available in EL 1. Our approach here is the other way round: to 
motivate the data structures of a language by the reqUirements for expressing 
a realistic evaluator. J 

Consider this fragment of the LISP syntax from page 17: 

<form> ::= <constant> I <application> I <variable> 
<application> ::= <function-part>[ <arg-list>] 
<arg-list> ::= <arg> I <arg-list>;<arg> 

These equations demonstrate the three kinds of BNF equations. We will 
concentrate our attention on the last two equations. 

The LISP M-to-S-expression mapping will map an <application> like 
fix;y;z] onto (F X Y Z). For all intents and purposes, LISP has little choice; 
LISP has few representations available and since we wish to use the S-expr 
representation as the programming language, the representation must be 
readable. In the typical implementations of LISP, the representation of 
flx;y;z] is (F. (X . (Y . (X NIL»». That reqUires a lot of space, and 
reqUires some decoding by any program which is to use this representation. 
If we look closely at the storage reqUirements for <application>'s and 
<arg-list>'s, we see that there are differences. 

The representation of an <application> has fixed storage reqUirements; 
it demands space for two components: a <function-part> component, and a 
<arg-list> component. We have seen such storage structures before in 
Section 7.6; they are called record structures. The name components of the 
record structure can be fun and args, and the selector functions are 
implemented by matching the name components. Note that the use of record 

lCompare the following discussion with Section 7.S. 
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structure is a bit freer than LISP's list representation; we need not make a 
commitment to the position of the fun component in the representation. 

The requirements for <arg-list> are different. An arbitrary <arg-list> 
has a variable number of components. Each component has the same 
characteristic: it's an <arg>. We can represent a homogeneous object like 
<arg-list> as a sequence whose length is fixed. A natural storage c1ass for 
such sequences is a linear array, each component of which is an item of the 
seq uence. Information about the length of the seq uence, and the c1ass to 
which elements of the sequence belong, can be stored in the "dope vector" of 
the representation. 

What we are developing is a description of a c1ass of storage 
representations for language constructs. This class of structures covers the 
space which LISP covers, but partitions it differently. More information is 
stored explicitly, and the representations are more discriminating in their 
storage requirements. Assuming that the resulting structures are made data 
structures of the language, we can then write a LISP-like eval which runs on 
these data structures. 

Our refinement is not without penalty. We are in fact imposing a type 
structure on the language. We know that such restrictions ar'e not always 
desireable. The type structure becomes more ~pparent when we consider the 
remaining syntax equation: 

<form> ::= <constant> I <application> I <variable> 

Consistent with our treatment of record structures and sequences, we should 
develop some representation for <form>. In LISP, no storage was al10cated 
for the representation of such alternative BNF equations; the recognition was 
done by recognizers embedded in a conditional expression: 

[is-const[x] ~ .. . 
is-app[x] ~ .. . 
is-var[x] ~ 

t ~ ... what to do if x is not a form ... 

In EL 1. every data item has an associated type. Since we are 
representing language constructs as data structures they will also have 
associated types. To determine if something is an <application> requires only 
that we examine the associated type. The question then arises: what kind of 
ob ject is to be associated with an object like <form>? At anyone time an 
ob ject of type <form> is one of the three alternatives. The EL 1 solution is to 
assign a pOinter-like data object as the representation of s~ch objects. The 
type of the pointer is constrained to point at one of the alternatives. 

Let's compare LISP: Given an application fix;A;lJ we represent it as a 
constant (F X (Q!JOT E A) 1). That is: 

!RusplIfix,'A;lJ] = (F X (QUOTE A) 1) 

We wish to represent this application as a constant in ELI as wen. We need 



8. Implications of LISP 409 

some notation for record structures and sequence constants. A record 

constant of type t will be represented as <t cl; ... jCn>. 2 A sequence of type t 
wi11 be represented as (tSl; ... jSn)' 

Then !REul[fix,-AilJ] = <app mElt [r]; 
(erg-list mEL 1 [x]; 

fREU[A]; 
fR EL1 [1] ) > 

We have suppressed much of the detail because each of the components of 
the representation must also have type information. 

The structured items in LISP are bui1t from dotted pairs; the structured 
items in EL 1 are built from sequences (or lists), from records (or structures), 
and from pointers (or references). The difference is that the EL I user has 
more choice over the underlying representation. This can lead to more 
efficient utilization of storage and perhaps more efficient programs. Since 
the evaluator is just an EL 1 program, these considerations carryover to the 
evaluation process. EL 1 al10ws us to represent the data structures of the 
evaluation process in terms closer to actual implementation. Both LISP and 
EL 1 al10w us to express realistic implementations, however LISP may 
ultimately represent its structures as dotted pairs. 

This realism of representation carries over to the evaluation process 
which runs on the representation. The language is capable of accurately 
representing more of the techniques which occur in a language 
implementation. The language supplies storage management primitives which 
allow the creation of stack-like objects as well as the heap-stored items of 
LISP. 

The language offers the user the ability to define abstract data 
structures in a manner similar to that we have been advocating informally. 
Given the finer partition of storage structures, the user can map those 
structures onto more frugal representations than LISP, and since the 
type-checking is built into the language, the language processors can check 
the consistency of the parameter passing. Relating the abstract with the 
representation requires some care. Supplying a comfortable interface between 
these two domains is a non-trivial problem. EL 1 supplies "lifting" and 
"lowering" mechanisms to aid in this problem; the result is not completely 
satisfactory. 

We have frequently seen how easy it has been to extend LISP by 
modifying eval. This is particularly easy because we are making 
modifications at the level of data-structure representation of programs. In 
EL 1 we wish to make the extensions at the level of concrete syntax, rather 

2We have suppressed the explicit naming of each component of the 
record. We assume that a "template" of each type t is available. That 
template can be consulted to determine which component is referenced. 
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than abstract syntax as LISP does. 3 EL 1 can do this by using a parser 
which is table-driven, and operates on a modifiable set of productions. To 
introduce a new construct into the language we need to supply the concrete 
syntax for the item, its abstract systax, a mapping from concrete to abstract, 
and its pragmatiCS expressed as additions to the evaluator. However there 
may be wider implications in the language and more general features are 
required. LI The field of language design is stilt quite young and tentative. 

Though LISP is a full twenty years old, it is stilt a fertile research area. 
Projects are extending LISP in several directions. [Car 76] investigates the 
possibilities of adding a type-structure to LISP, giving a strong-typed 
programming language and a precise formalism in which properties of 
Typed LISP programs can be discussed. This project supplies an Algol-like 
user language as wel1 as develops interesting theoretical results. 

Several people have supplied parsers which give the user an Algol-like 
syntax ([MJi 73], [Pra 76]). Extensions to the ideas of SDIO Section 9.4 
are being pursued. 

Programming language semantics is being coupled with the realities of 
programming language design in a successor of [LCF 72]. This is being 
built on the LISP experience. 

LISP is the direct source of inspiration for two current MIT projects. 
For several years C. Hewitt has been developing an interesting philosophy of 
computation. Building on his experience with LISP, he developed 
PLANNER [Hew 72], and more recently refined thse ideas in a methodology 
cal1ed Actors ([Hew 74], [Hew 76]). One of the aims of these investigations 
is to develop a self-sufficient description of modern computation much in the 

way that the ~-ca1culus gave a foundation to the notion of computable 
function. The goal therefore is much higher than to develop just another 
programming language. Along the way, however, these projects have 
developed some of the most notable ideas of advanced programming 
languages. From the PLANNER experience, partial1y implemented in 
[M ic 71], evolved the ideas of pattern-directed invocation; see Section 2.5. 
This gave PLANNER a new way to can procedures, and its implementation 
in Micro-PLANNER gave researchers new power of expression much in the 
way that LISP improved over machine language several years before. These 
investigations generated much controversy and stimulated more research in 
language design for artificial intelligence; see [Bob 74], [Con 73], [Q..A 4 72]. 
The lessons of PLANNER led to Actors and a study of the control aspects of 
programming languages. From these investigations Hewitt has developed a 

3To program in the abstract syntax would be pOSSible, but messy. We 
would be writing constants consisting of pointers, records, and sequences, 
rather than the list notation of LISP. 

LlFor example, if new control structures are desired, major revision of 
the inner structure of the language may be necessary ([Pre 7Gb]). 
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model which looks on control as an activity of passing message between 
program modules. Recently, Hewitt's efforts have again stimulated others to 
examine programming languages more closely. 

C. Sussman and C. Steele have been developing a language named 
SCHEME ([Sus 75], [Ste 76b], and [Ste 76c]) which was begun as an 
experiment to understand and implement several of the ideas of Hewitt. The 
result is a dialect of LISP which uses static binding rather than dynamic 
binding. The interpreter is built in the spirit of [Con 73] and is similar to 
the evaluator of Section 4.8. The result is an interpreter which makes the 
control aspects of the language much more explicit. Using SCHEME, Steele 
and Sussman have been able to illuminate many of the control and access 
problems of programming languages. 

In these two projects we see two views of computation: the 
philosophical and the tool builder. Both are important; together they are 
developing an impressive array of knowledge. 

Finally, LISP is being used as an effective tool for the design of 
interactive programming systems. The successful development of 
programming systems which integrate all phases of program creation, 
debugging and optimization, wi1l be based on LISP user's experience. 

M any people find it curious that LISP has survived so long and so 
wen. It is not supported by any organization or computer manufacturer yet it 
flourishes and continues to attract many of the most exceptional computer 
science talents. LISP does a lot of things wen. As a programming language, 
it is an exceptional tool for developing sophisticated applications. The 
artificial intetligence community has always been one of the most demanding 
and creative builders of programming tools. LISP's treatment of program 
and data supports this kind of behavior. 

Until we can develop a tool which handles any of these areas as well as 
LISP, LISP witt survive. 



CHAPTER 9 

Projects 

This chapter consists of a set of non·trivial projects which either apply LISP 
or extend LISP by adding new language features. 

9.1 Extensions to eval 

This first project was derived from the syntax of MUDDLE [Mud 75], 
CONNIVER [Con 73J, and MICRO·PLANNER [Mic 71]. 

We have seen that LISP ca11ing sequences are of two varieties: either 
evaluate all of the arguments; or evaluate none of the arguments. To 
generalize this regime we might allow the evaluation of some selection of the 
actual parameters; the formal parameter list could specify which parameters 
are to be evaluated. We have also specified that the number of formal 
parameters must agree with the number of actual parameters; yet it is 
sometimes useful in practice to allow such a discrepancy. Some 
implementations allow a mis-match, supplying default values when too few 
are given, and discarding the excess actual parameters after their evaluation. 
We might partition the formal parameters into required parameters, optional 
parameters, and an excess collector to handle any actual parameters left over. 
Required parameters must have corresponding actual parameters; optional 
actual parameters are used if present, otherwise default values are used. If 
there are more actual parameters than the formals encompassed by the first 
two classes, then they are associated with the excess collector. 

412 
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To be more precise consider the following possible BNF equations: 

<varlist> ::=[<required> <optional> <excess>] 

<required> ::= <par>; ... ;<par> leI 

<optional> ::= "optional" <opn>; ... ; <opn> Ie 
<excess> ::= "excess" <par> I e 
<par> ::= <variable> I' <variable> 
<opn> ::= <par> I <par> ~ <form> 

1. The formal parameters are bound to the actual parameters from left to 
right as usual. 

2. There must be an actual parameter for each required parameter, and if 
there is no excess col1ector there may not be more actual parameters than 
formals. (There may be fewer if we have optionals.) 

3. If a <variable> in a formal parameter is preceded by a "''', then the 
corresponding actual parameter is not evaluated. This is implements the 
quote-jng read macro. 

4. If we exhaust the actual parameters while binding the optionals, we look 
at the remaining formal optionals. If a formal parameter is simply a 
<par> then we bind it to ( ); if a formal is '<variable> ~ <form> then we 
bind the <variable> to the <form>. 
If the formalAs <variable> ~ <form>, we bind <variable> to the value of 
<form>, where the evaluation is to take place after the required 
parameters have been bound. 

5. Finally, the excess collector is bound to a list of any remaining actual 
parameters: if <par> is <variable> then using the catting environment, 
form a list of the values of the remaining arguments; if <par> is 

'<variable>, bind <variable> to the actual list. If there is no excess, bind 
to NIL. 

We will also extend prog-variables slightly, allowing them to be 
initialized explicitly. If a prog-variable is atomic, intialize it to ( ), as usual. If 
it is of the form <variable> ~ <form> then initialize it to the value of the 
<form>. 

Here are some examples: 

1. In the initialization of length on page 186, we could write: 

... prog[[l ~ Xi C ~ OJ ... 

2. list could now be defined as: A[["excess" x]x]. 

1 The symbol "e" stands for the empty string. 
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3. Consider the fol1owing definition: 

b [[ ' ''' I" 0 " "] az <= A x; y,' optlona z; u +- ,. excess v 
print[x): 
print[y); 
print[z]; 
print[u],' 
print[v] ] 

Then a can of: 
eval[ (BAZ 2 (CAR (QUOTE (X V))) 4 5 6 7 (CAR (QUOTE (A . B»»; 

NIL] 
would print: 2 

(CAR(QUOTE (X Y»)) 
4 
5 
(67 A) 

and return value: (6 7 A). 
Similarly, defining: 

and calling: 
prints: 

fli <= A[ [x,·y;"optional" Z,' u +- 0,' "excess" v] 
print[x]; 
print[y]; 
print[z]; 
print[u]; 
print[v]] 

eval[(FIl 2 (CAR (QUOTE (X Y))),'NIL] 
2 
X 
NIL 
o 
NIL 

Problem 

9.1 

Design simple S-expr representations of these proposed constructs. Make the 
necessary extensions to eval. 

9.2 Pretty-printing 

This project expands on the basic notion of "pretty-printing" which was 
introduced on page 274.2 This section presents several considerations 
involved in designing such a pretty printer. Take these suggestions and 

2Pretty printers are called "grinders" at MIT. 
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develop a suitable program based on the suggestions and your experience 
with your locally available pretty printer. In [Gol 73] several pretty printing 
formats are discussed. 

I. Linear format: The minimal acceptable output format is that produced by 
print. Acceptability is judged by whether that output can be read back into 
the machine and have a structure equal the the structure printed out. 3 

II. Standard format: Given a list (Q fJ X 00. &) the standard format will 
assume that we are trying to print a function application and will produce: 

(Q fJ 
X 

&) 
Thus (FOO (CAR (CONS (QUOTE A) B» (0 (H A) 4» would produce: 

(FOO (CAR (CONS (QUOTE A) 
B» 

(O(H A) 
4» 

Note that the "standard format" is recursively applied, and thus may become 
too wide for the output device. It that case we can resort to the following 
format. 

III. Miser format: Write a list (<< fJ X 00' 8) as: 

(a 

fJ 
X 

8) 

Again, the recursive application of this format can overflow the output 
Width. In that case we may have to resort to "linear format". 

3We must hedge that a bit, since gensym atoms are not placed on the 
ob ject list. Also structure made by rplaca or rplacd may not be re-readable. 
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Typical pretty printers also recognize certain LISP constructs and 
"grind" them differently. That is, we build some semantic knowledge into the 
grinder. Block format is useful in many of these contexts. 

IV. Block format: A list (a l ... ai-I' ... an) has the block format: 

(a l ••• a i_1 

ai'" an) 
For example, the list representation of a prog might be "ground II with its 
prog variables in block format and special indenting would be used in the 
prog body to emphasize the label and statement structure. The 
representation of length given on page 192 illustrates the special format for 
progs, though the prog variable list is not sufficently long to require block 
format. 

Another list format which is treated specially is the representation of a 
A-expression. 

(LAM BDA <A-list ground in block format> 
<body ground as a block» 

The example on page 192 also ittistrates this. This format will allow 
multiple-bodied A-expressions. For 'example: 

(LAMBDA (X Y Z) 
(CONS X 

(QUOrE A» 
(H 1 2» 

Notice that we decided to write (H 1 2) in linear format rather than standard 
format; somehow it "looks better". Personal taste plays a strong role in pretty 
printing, so several grinders give the users the ability to describe their own 
formats. We will see a similar, but more general device in Section 9.4. 
Another possibility for user extension lies with our property Hst evaluator of 
Section 5.8. Part of the definition of the various LISP constructs would 
allow the specification of outpUt conventions for instances of those constructs; 
thus besides specifying evaluation properties for LAMBDA, P ROG, and 
CON D, we would also the grinding routines for outputting instances of those 
constructs. 

Since lists beginning with CON D are representations of conditional 
expressions they too are handled specially by the grinding routines. 

(COND <grind clause» 

<grind clausen» 

These selected formats should give a reasonable idea of the techniques 
available for pretty printers. More techniques can be extracted from your 
local grinder. 



9.2 Pretty-printing 417 

Your pretty printer may assume the existence of patom, print, and 
terpri of Section 5.11; and you may assume the existence of the usual class of 
arithmetic operations. In addition, the following primitives may be used: 

1. linelength: If linelength[ ] is evaluated, the value returned is the number 
of characters allowed on a line of the current output device. If 
linelength is called with a numeric argument, then the line length of the 
current output device is set to that number. 

2. ehret: This is a nullary function, and returns a number representing the 
number of character positions remaining on the current line. For 
example, just after terpri[] has been executed 
ehret[] = linelength[] 
and prog2[patom[ABC]; dijjerence[linelength[];chrct[]]] = 3 

3. Ilatsize: A simple count of the atoms and special characters in an 
expression won't give an accurate picture of the requirements for 
printing an expression. Special characters take one character position, 
but literal atoms and numbers may req uire more. To determine whether 
or not a special format can be used on an expression requires 
knowledge of its character count. The number of characters in the atom 
x js given by Ilatsize[x]; for example, jlatsize[ABCD] is 4. Actually 
ilatsize is defined for non-atomic arguments, giving the number of 
character positions reqUired to print its argument. Thus, jlatsize[( A.B)] 
is 7 rather than 5 since print will surround the dot with spaces. 

9.3 Syntax-directed Processes 

This project is only an introduction to the very important area of 
syntax-directed processes. As the name imp1i.es, there is a close relationship 
between the syntax specification of an object, and the computational rules 
which we wish to apply. Syntax-directed techniques are used extensively in 
compiler construction, relating the syntax equations to the code generation. 
We shalt begin by applying syntax-directed techniques to evaluation. 

We know that there are alternatives to the call-by-value evaluation 
scheme; and we know there are alternatives to the prefix notation which we 
chose to represent function application. 

For example, in grade school we all learned infix notation and its 
implied precedence relations, say for + and >:c. Simply because infix notation is 
the first representation we see doesn't mean that it is the most convenient for 
evaluation either by us or by machine. 

Let's take as example the expression: 2+3~.5. The grade school 
precedence relations say that ~< takes precedence over +. That is, the 
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expression represents 2+(3f.<5) rather than (2+3)~:<5. When we write the 
expression in prefix notation: +[2;~<[3;5)), the precedence of operations is made 
explicit. Similarly, postfix notation (where the operators follow rather than 
precede the operands) is easy: [2;[3;5)~<)+. 

Some notational schemes lend themselves to mechanical evaluation 
better than others. There is a certain amount of implied intelligence 
required in the usual infix scheme. We have already seen one very 
mechanical method for evaluating some prefix expressions: the value 
function in Section 2.7. 

A strong point of postfix string notation is its ease of evaluation. First, 
since we know that plus and times are both binary operations, the 
punctuation, ], [, and;, is redundant (this is also true for prefix notation). 
Thus the string, 2 3 5 * +, contains the same information as [2;[3;5J:c]+. 

Using ".1," to point to the current position in the string and using the 
"I ... I"-notation of page 124 to represent the stack, the following is a trace of 
the evaluation of the above string, 2 3 5 * +. 

2 3 5 * +;1 I => 3 5 * + ;1 2 I => 5 f,c + ; 1 3 1 => 
121 

.1, 

* + ; 1 5 1 

/31 
/21 

.1, 

=> +; 1 15 I => 1 17 I 
1 2/ 

It is a very simple task to program this scheme in LISP, and it is qUite 
simple to extend this evaluation scheme to n-ary operators. 

Given an arbitrary arithmetic expression involving constants, and the 
binary operations of plus and times, we have a straightforward mechanical 
evaluation scheme. It is intuitively clear how to translate infix expressions 
into postfix notation. If we could mechanize this process then we would 
have an algorithm for the evaluation of infix expressions. First let's attempt 
to describe precisely the class of infix expressions which we wish to evaluate. 
The BNF notation is a good vehicle. Perhaps the following: 

<exp> ::= <exp><binop><exp> 
::= <integer> 

<binop> ::= + 1 * 
There are many difficulties with this grammar. First, many expressions have 
more than one possible description or parse tree; the grammar is said to be 
ambiguous. Second, this grammar doesn't express our usual precedence 
relations. The next attempt is successful: 
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<exp> ::= <exp> + <term> 
::= <term> 

<term> ::= <term> >'.e <factor> 
::= <factor> 

<factor> ::= ( <exp> ) 
::= <integer> 

<integer> ::= 0 I 1 I 2 ... 

For example the (only) parsing of 2+3~c5 is: 

<exp> 
I 

<exp> + <term> 
I 

<term> <term >~:c<factor> 
I I 

<factor> <factor> <integer> 
I I I 

<integer> <integer> 5 
I I 
2 3 

Our next step is based on the fonowing: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

Assumption: Given an arbitrary, weB-formed, arithmetic expression, e, of our 
above class, we can find the left-most wen-formed subexpression, s, 
such that s is an instance of the RHS of one of the rules, (1)-(7). Let 

e' be the expression obtained from e, by replacing the occurrence of 
the RHS by the LHS; then our assumption is also applicable to e'. 

For example, 

ese' rule 
2+3~c5 2 <integer>+3~:c5 (7) 

<integer>+3>:c5 <integer> <factor>+3~c5 (6) 
<factor>+ 3>:c 5 <factor> <term>+3>:c5 (4) 
<term>+3~c5 <term> <exp>+3>:c5 (2) 
<exp>+3>:c5 3 <exp>+<integer>~c5 (7) 
<exp>+<integer>*5 <integer> <exp>+<factor»:c5 (6) 
<exp>+<factor»:c5 <factor> <exp>+<term>~c5 (4) 
<exp>+<term»:c5 5 <~xp>+<term>*<integer>(7) 
<exp>+<term>~«integer> <integer> <exp>+<term»:c<factor> (6) 
<exp>+<term>*<factor> <term>*<factor> <exp>+<term> (3) 
<exp>+<term> <exp>+<term> <exp> (1) 

Now we associate an action with each of the rules (1)-(7) such that whenever 
we apply one of the rules in the above reduction technique, we will also 
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execute the corresponding action. We will also designate an initialization 
routine which will be executed at the beginning of the reduction. 

Initialization: Let V[O:NJ be a vector indexed from 0 to N, where N is at 
least as long as the input character string. Let i be an integer variable, 
initialized to O. 

<exp> 
rule 
::= <exp> + <term> 
::= <term> 

<term> ::= <term>~:~<factor> 
::= <factor> 

<factor> ::= «exp» 
::= <integer> 

<integer> ::= 0 I 1 I ... 

action 
V(i) ~ '+'; i ~ i+l 
do nothing 

V(i) ~ \:/j i ~ i+I 
do nothing 
do nothing 
do nothing 

V(i) ~ 0 I VO) ~ 11 ... ; i ~ i+ 1 

Again performing the reduction of the expression, 2+3~c5, but now executing 
the action routines as well we find the contents of V will contain the 
following: 

V: 0 1 234 
2 
23 
235 
2 35):< 
235~(+ 

That is, the postfix form of the arithmetic expression is formed in V. 
So combining the algorithms for infix-to-postfix translation, with 

postfix evaluation, we could obtain an infix evaluator. However, we can do 
better. By a simple change to the action routines we can perform infix 
evaluation as we reduce the expression. 

Initialization: Let V[O:NJ be a vector and let i be an integer-valued variable, 
initialized to O. 

<exp> 

rule 
::= <exp>+<term> 
::= <term> 

<term> ::= <term>*<factor> 
::= <factor> 

<factor> ::= «exp» 
::= <integer> 

<integer> ::= 0 I 1 I ... 

action 
V(i-2) ~ V(i.l)+ V(i·2); i ~ i-I 
do nothing 

V(i-2) ~ V(i-1)*V(i-2); i ~ i-I 
do nothing 
do nothing 
do nothing 

V(i} ~ 0 I V(i) ~ 11 ... ; i ~ i+l 

When the arithmetic expression has been recognized, V(O) will contain the 
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value of that expression. Notice that the combination of V and its index i, is 
performing as a stack in this translator. That is: when we see an integer, we 
push it into the stack; when we see a binary operator we pop the two 
operands, perform the operation and push the result back on the stack. 

This technique of associating action routines (also called semantic 
routines) with the BNF (or syntax) equations is extreme1y powerful. Such 
processes are ca11ed syntax-directed. 

Project 

W rite a LISP program to perform infix to postfix translation; and then 
modify it to perform infix evaluation. Write your programs two ways: first 
use anexplidt stack; then use recursion to operate with an imp1icit stack. 

Project 

As a further example of syntax-directed processes recall the set of expressions 
evaluated by tgmoaf: the five primitives under composition of functions, an 
with constant arguments. Write syntax equations and action routines to 
effect the evaluation of such expressions. 

9.4 Syntax-directed I/O 

It is frequently quite convenient to enter input and receive output in 
something other than list notation. Recall our diagram on page 56. We wish 
to mechanize the encoding of the input and the decoding of the output. 

Consider for example, the problem of simplification of algebraic 
expressions. Many rather sophisticated simplifiers have been written 
([Hea 68], [MAC 74]). Assume that we have one named simplify which 
expects list input and gives list output. Thus for example: 

(3+4)*x + x =1 => (PLUS (TIMES (PLUS 34) X) X) 
=simplify=> (TIMES 8 X) =0 => 8*x 

We would like transformations I and 0 done automatically. M-expr notation 
is a candidate for such a task. Then we could write algorithms in M -expr 
notation and have them executed by eval. 

cons[A;B] =1 => (CONS (QUOTE A) (QUOTE B» 
=eval=> (A . B) =0 => (A . B) 

Transformation 0 is the identity in this case. 
Frequent1y, the input and output transformations can be generated 

automatically. We describe one such program, called SDIO for 
Syntax-Directed Input-Output ([Qua 68J.) It was the forerunner of the 
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MLISP2 project; see [MU 73]. We wi11 assume that the input and output 
syntax is specified in BNF. With each BNF equation we win associate 
semantics describing the S-expr representation. The input transformation 
(parser) wi11 use this information to build the representation; and the output 
transformation (unparser) wi11 map the internal representation back. 

Syntax directed I/O is more than a cosmetic. Assume we wish to 
represent a structure as a particularly horrible list structure. We can give 
augmented BNF equations specifying the external representation and the 
translation to the underlying representation. Clearly when outputting these 
structures we do not want to see the internal representation. This can be 
particularly annoying when we are debugging; we wish to concentrate on the 
misbehavior of the algorithm; we do not want to be distracted by 
incomprehensible output. Syntax directed output, or unparsing, can aid 
significantly. 

The easiest introduction to SDIO is to examine an example. Consider 
the proposed simplification task above. The "natural" input syntax can be 
described in BNF. We have given closely related syntax equations on 
page 419. We wi11 display a few equations augmented by SDIO semantics. 
For example: 

<EXP> ::= <EXP> + <TERM> =>(PLUS EXP TERM) 
::=<TERM> =>* 

<TERM> ::= <NUMBER> =>~! 

To the input parser the first BNF equation means: whenever the right hand 
side is recognized, reduce that occurrence to the left hand side and associate 
with it the list consisting of the atom PLUS, the S-expr associated with the 
occurrence of <EXP>, and the S-expr associated with the occurrrence of 
<TERM>. The second equation means reduce <TERM> to <EXP> 
associating whatever S-expr is attached to <TERM> with that occurrence of 
<EXP>. In the third equation we assume that <NUMBER>.is a syntactic 
type recognized by the scanner, and return that number as the semantic 
value. For example, if such a parser were given 2+3+44 it should return the 
list (PLUS (PLUS 2 J) 44). 

The unparser uses these equations in the inverse manner. It will see a 
S-expr and will attempt to match that to the description of the semantics, 
outputting an instance of the BNF if successful. 

The SDIO program will take such an augmented set of BNF equations 
and generate a parser and an unparser for the language. This project 
involves writing such a SDIO program. We describe a basic SDIO program 
and suggest extensions and improvements. 

The best way to describe the format of SDIO input is to give an SDIO 
description. 
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<RULES> 

<RULE> 
<RTLST> 

<LFPT> 
<RTPT> 

<RPELEM> 

<SEXPR> 
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::= END =>NIL 
::=<R ULE><R ULES> =>(RULE . RULES) 

::= <LFPT><R TLST> =>(LFPT RTLST) 
::= ::=<RTPT><SEXPR><RTLST> 

=>((RTPT SEXPR). RTLST) 

::= e =>NIL 
::= «ID» =>* 
::= "=> =>NIL 
::= <RPELEM><RTPT> 

::= «ID» 
::= <ID> 
::= IIII<CHAR> 
::= <CHAR> 
::= <ATOM> 
::= «SEXPRLIST» 

=>(RPELEM . RTPT) 

=>(SPWD ID) 
=>(Q.,CH CHAR) 
=>(CH CHAR) 

<SEXPRLIST> ::= <ATOM> =>~:c 
::= <SEXPR> <SEXPRLIST> 

=>(SEXPR . SEXPRLIST) 

::= e =>NIL 

END 
The expressions (SPWD ID), (QCH CHAR), and (CH CHAR) are S-expr 
representations of cans on rotintines to process special or reserved words, 
quoted characters or special characters, respectively. 

The input to SDIO is a sequence of augmented BNF equations 
terminated with END. What the SDIO program sees is a S-expr 
representation of these equations. The sample equations for <EXP> above 
would pass the following to the SDIO program: 

( (EXP ( «EXP (CH +) TERM) (PLUS EXP TERM» 
((TERM) NIL») 

(TERM «((NUMBER) NIL») ) 

The SDIO program generates the parser and unparser. 
The elements of the BNF equations in SDrO are rather standard: 

syntactic variables, which are identifiers bracketed by "<" and ">"; and 
special words, which are identifiers; and special characters, which are 
preceeded by II if they conflict with the special characters of the BNF. 

The elements of the semantics are: unbracketed syntactic variables 
occurring in the RHS of the associated BNF equation; other identifiers, 
taken as constants; NIL, the LISP atom; notation for cons-ing, ( . ); 
notation for making a list, (el ... en); the character *, described above. 
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Project 

Write such a SDIO program. You should consult local LISP documentation 
when building the basic I/O routines like <NUMBER>, <CHAR>, or <ID>. 

First Extension 

You may have noticed already that the basic SDIO program fails to 
distinguish two occurrences of the same syntactic variable on the RHS of an 
equation. Thus an equation like: 

<ZIP> ::- <ZAP> <FOO> <ZAP> must be replaced by the pair: 
<ZIP> ::= <ZAP> <FOO> <ZAPI> 
<ZAP1> ::=<ZAP> 

This trick is caned stratification. It is a syntactic trick, adding nothing to the 
semantics. 

Add notation to the semantics of your SDIO program to handle RHS 
with multiple occurrences of syntactic variables. Modify your parser 
generators accordingly. 

Second Extension 

Besides building a S-expr representation of the input, it is frequently 
desirable to generate other information during the input parse. Lists of 
occurrences of operators or other tables are commonly needed. The additional 
information could be discovered by examination of the completed parse tree, 
but that reqUires reexamination of the tree. It is much more efficient to do as 
much as possible on a single pass. 

Introduce notation which will al10w execution of arbitrary LISP code as 
the parse progresses. That code should be able to manipulate any of the 
semantic properties associated with the syntactic variables appearing in the 
RHS of the associated syntax equation. 

Third extension 

While it is obviously advantageous to produce output in the language 
described by the BNF equations rather than the S-expr form, formatting of 
the output can be equally beneficial. We should like to be able to specify 
formatting information in SDIO such that spacing and line-length are 
controlled. 

One proposal is to embed s.pacing and line-feed control characters in 
the BNF equations. The spacing character is "~" and the line-feed is "J,". 
The "i" sets the indentation point for the string on its right; and the "-/' 
followed by a digit says space over than number of spaces from the last 
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indentation point if the remaInIng space on the line is not sufficient to 
contain all text specified by the remaining RHS of the equation. "0-+", 
meaning go to the indentation point can be written "-+", 
For example consider the following: 

<EXPR> ::= <ID>{ J. <EXPR-LIST» 
::= dD> 

<EXPR_LIST> ::= f<EXPR> , -+<EXPR-LIST> 
::= f<EXPR> 

These eq uations, when used to drive an unparser, could give: 

mumf( a, 
foobaz(garp(b», 
bletch( a,b,c), 
d) 

as the formatted version of: 

mumf( ajoobaz( garp(b) ),bletch( a,b,c),d) 

Extend SDIO to handle formatting of output. 
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label 136 
list 35 
LPAR 271 
map list 148 
mkent 109 
NIL 33,270 
null 28,375 
OBLlST 276 
or 154 
patom 271 
PERIOD 271 
PNAME 267 
prinO 273 
print 273 
prog 186 
putprop 387 
ratom 271, 276, 278, 387 
read_head 272 
read_tail 272 
read 272 
read macro 280 
remprop 262, 387 
rest 29, 375 
RPAR 271 
rplaca 384 
seq 30 
store 373 
tgmoaf 91, 323 
tgmoaf 421 
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tgmoafr 91, 323 
throw 198 
a-rule 171 

~-rule 171 
a-lists 108 
access chain 132 
access link 132 
accumulators 47 
activation environment 146 
actual parameters 15 
AMBIT/G 253 
analytic syntax 164 
applicative language 15 
Assemblers 320 
association lists 108 
atom header 266 
atom space 246 
auxiliary function 47 
base language 406 
Binary Program Space 320 
binding 15 
binding environment 146 
binding strategy 149 
bootstrapping 307 
bound occurrence 170 
bound variable ,130 
box -notation 9 
BPS 320 
bucket hashing 275 
cache value cells 30 I 
call-by-name 100,221 
call-by-need 221 
call-by-value 100 
case statement 193 
case statemen t 157 
closure 141, 192 
code generators 308 
coercion 242 
collision 275 
compiler 332, 335 
computed function 158 

concrete syntax 165 
conditional expression 18, 19, 115 
CONNIVER 412 

constructor 12 
continuation 207 
control environment 142 
control structures 39 
deep binding 152 
definition by recursion 43 
denotational 167 
differentiation 57 
discriminator 18 
dope vector 372 
dotted-pairs 6 
double-linking 393 
doubly-linked list structure 247 
dynamic binding 131 
ELI 406 
evaluation 13, 97 
examples of eval 118 
expr 224 
extensible language 406 
fexpr 224 
Fibonacci seq uence 46 
fix-up 330 
fixed points 232 
fixed-point operator 234 
fluid variable 131 
form 12, 17, 111 
formal parameter 14 
forward reference 329 
free space list 281 
free variable 130, 170 
Fun Word Space 269 
funarg 141 
function 111 
function application 15 
functional argument 137 
functional composition 14 
functional value 143 
FWS 269 
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garbage collector 282, 373, 387 
generalized control structures 197 
generative definition 3 
global variable 129, 131 
halting problem 181 
hash consing 287, 385, 402 
hashing 275 
hashing algorithm 275 
inductive definition 3 
internal lambdas 113 
invisible pointers 400 
lambda list 111 
length 186 
lexical binding 150 
linear search 108 
linked allocation 291 
linked list structure 246 
LISP machine 289 
list terminator 33 
list-notation 33 
lists 31 
1iteral atoms 5 
local binding 129 
local symbol table 129 
local variable 187 
M-expr LISP 107 
M-expressions 236 
macros 355 
mapping functions 148 
marking phase 283 
match-variable 6 
meta-language 107,236 
meta-variables 6 
MICRO-PLANNER 412 
mother -vector 373 
MUDDLE 412 
n arne stack 292 
non-local 129 
non-local variables 356 
non-strict 21 

numbers 389 
ob ject list 276 
offset 336 
open addressing 275 
open function 232 
operation code 321 
operation al 167 
p-list 267 
parser 272 
partial application 160 
partial function 11, 13 
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pattern directed invocation 73 
PLII 406 
pointer 245 
pointer space 246 
polymorphic functions 29 
precedence 417 
predicates 18 
prefix notation 58 
pretty printing 20 
print-name 267 
property-list 256 
recognizer 18, 28 
record 382 
reduction rule 173 
reference counter 286, 301 
S-expr LISP 107 
S-expressions 5 
S-exprs 5 
scanner 271 
SDIO 421 
selector 13 
self-applicative 175 
self-applicative functions 149 
shallow binding 152 
singly linked 247 
Special Form 154 
special forms 115 
special variable 356 
stack 291 
stack synchronization 316 
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static binding 150 
storage rec1aimer 282 
stratification 424 
strict functions 12 
string processor 374 
~weep phase 284 
symbol tables 107 
Symbolic expressions 5 
syntax-directed 417 
table-driven 191 
termination conditions 45 
threading 393 
total function 11 
type fault 23 
unbound variable 130 
universal function 181 
value stack 292, 333 
value cen 152 
variables 128 
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