CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Spice Lisp User’s Guide

Edited by Scott E. Fahlman and Monica J. Cellio

9 November 1983

Companion to the Excelsior Edition -
of the Common Lisp Manual

Copyright © 1983 Carnegie-Mellon University

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order
3597, monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing
the official pelicies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

Chapter 1

Introduction

Common Lisp is a new dialect of Lisp, closely related to Maclisp and Lisp Machine Lisp. Common Lisp
was developed in response to the need for a modern, stable, well documented dialect of Lisp that can be
implemented efficiently on a variety of machine architectures.

Spice Lisp is the implementation of Common Lisp for microcodable personal machines running CMU’s
Spice computing environment, At present, Spice runs only on the Three Rivers Computer Corporation's
PERQ); implementations for other machines are planned but not yet under way. Compatible versions of
Commeon Lisp will soon be available for the DEC Vax, under both VMS and Unix, the Decsystem-20 with
extended addressing, and the Symbolics 3600.

The central document for users of any Common Lisp implementation is the Commion Lisp Reference
Manual, by Guy L. Steele Ir, All implementations of Common Lisp must conform to this standard.
However, a number of design choices are left up to the implementor, and implementations are free to add to
the basic Commeon Lisp facilites, This document covers those choices and features that are specific to the
Spice Lisp implementation. The Common Lisp Reference Manual and Spice Lisp User’s Guide, taken
together, should provide everything that the user of Spice Lisp needs to know.

For now, a number of documents describing useful library modules that run in Spice Lisp are included
here. Once there are enough of these, the documents will be moved into a separate document on the Spice
Lisp Program Library.)

Spice Lisp is currently undergoing intensive tuning and development. For the next year or so, at least, new
releases will be appearing frequently. This document will be modified for each major release, so that it is
always up to date. Users of Spice Lisp at CMU should watch the SPICE and CLISP bulleting boards for
release announcements, pointers to updated documentation files, and other information of interest to the user
community.

1.1. Obtaining and Running Spice Lisp

In order to run Spice Lisp, you must have a Perq 1a or Perq 2 with 16K control store. You must also have
an up-to-date Accent systemn. Use the update program to get the current release of Accent. Then, decide

2 SPICE LISP USER’S GUIDE

where you want the Spice Lisp files to live. There must be at least 3500 pages free in the partition you wish to
put Spice Lisp in. It is suggested that you make a subdirectory called slisp in the user partition. Path to the
directory you want to put Spice Lisp in, then run the update program on the directory /usr/spice/slisp/run.
When Spice Lisp is on your Perq, put the directory that it resides in on your search Jist and then just type lisp
to the Accent shell.

Chapter 2

Implementation Dependent Design Choices

Several design choices in Common Lisp are left to the individual implementation. This chapter contains a
partial list of these topics and the choices that are implemented in Spice Lisp.

2.1. Numbers

Currently, short-floats and single-floats are the same, and long-floats and double-floats are the same. Short
floats use an immediate (non-consing) representation with 8 bits of exponent and a 21-bit mantissa. Long
floats are 64-bit consed objects, with 12 bits of exponent and 53 bits of mantissa. All of these figures include
the sign bit and, for the manitssa, the "hidden bit". The long-float representaiton conforms to the 64-bit
IEEE standard, except that we do not support all the exceptions, negative 0, inifinities, and the like.

Fixnums are stored as 28-bit two’s complement integers, including the sign bit. The most positive fixnum is
2%7 - 1, and the most negative fixnum is 227 An integer outside of this range is a bignum.

2.2. Characters

Spice Lisp characters have 8 bits of code, 8 bits of font, and 8 control bits. The font bits are not used,
and only 4 of the control bits are used: (control, meta, super, and hyper).

'The control bit functions Control, Meta, Super, and Hyper are defined as in the Common Lisp
Manual. The Perq keyboard does not produce these and Accent does not pass them to Spice Lisp, but
programs can use these internally. '

2.3. Vector Initialization

Ifno :initial-value is specified, vectors of Lisp objects are initialized to n1i 1, and vectors of integers
are initialized to 0.

4 SPICE LISP USER'S GUIDE

2.4, Packages

Common Lisp requires four built-in packages: Tisp, user, keyword, and system. In addition to these,
Spice Lisp has separate packages for hem1ock (the editor} and compiler.

2.5. The Editor

The ed function will invoke the Hemlock Editor.

2.6. Time Functions

There are at present no time functions in Spice Lisp, due to the difficulty of getting such information from
Accent. This is being worked on.

2.77. System Dependent Constants

The following constants are defined in Spice Lisp.

boole-clr 0
boole-set 1
boole-1 2
boole-2 3
booIe-ql 4
boole-c2 | 5
boole-and 6
boole-ior - 7
boole-xor 8
boole-eqv 9
boole-nand 10
boole-nor . 11
boole-andcl 12
boole-andc2 13

boole-orcl 14

IMPLEMENTATION DEPENDENT DESIGN CHOICES

boole-orc2
most-positive-fxaum
most-ﬂegativé-ﬁxnum
most-positive-short-float
least-positive-short-float
least-negative-short-float
most-negative-short-float
most-positive-single-float
least-positive-single-float
least-negative-single-float
most-negative-single-float
most-positive-double-float
least-positive-double-float
leasi—negative-doﬁble-ﬂoat
most-negative-double-float
most-positive-long-float
least-positive-long-float
least-negative-long-float
most-negative-long-float
short-float-epsilon
single-float-epsilon
double-float-epsilon
long-float-epsilon
short-float-negative-epsilon

single-float-negative-epsilon

15
134217727
-134217728
1.7014e38
0.0

0.0

-1.7014e38

1.701411e38
0.0

0.0
-.85071e38

0.0d0

- 0.0d0

0.0d0

0.0d0

0.0d0

0.0d0

0.0d0

0.0d0

4,76837e-7

4.76837e-7
0.0d0
0.0d0
4.76837¢-7

4.76837e-1

double-float-negative-epsilon
long-float-negative-epsilon
char-code-litnit
char-font-limit
char-bits-limit
char-control-bit
char-meta-bit

char-super-bit

char-hyper-bit
array-rank-limit

internal-time-units-per-second

0.0d0

6.0d0

256

256

256

8

134217727

1

SPICE LISP USER’'S GUIDE

Chapter 3
Debugging Tools

By Jim Large

3.1. The Break Loop

‘The break loop is a read-eval-print loop which is similar to the normal lisp top level. It can be called from
any lisp function to allow the user to interact with the lisp system. When the user gives the command to exit
the break loop. he may choose an arbitrary value for it to return.

When a lisp expression is typed in at the break loop's prompt, it is usually evaluated and printed. However,
there are three special expressions which are recognized as break loop commands, and which are not
evaluated.

3G Typing this symbol causes a throw to the lisp top level: The current computation is
aborted, and all bindings are unwound.

$p Typing this symbol causes the break loop to return ni1.

(RETURN form) Typing this expression causes the break loop to evaluate form and return the result(s).

The dollar sign character in the symbols $P and $G is intended to be the (escape) character -- ascii 27. For
compatibility with the VAX VMS operating system, real doHar signs will be recognized also.

When the break loop is called, it tries to make sure that terminal interaction will be possible. All of the
standard input output streams, *standard-input*, *standard-output*, *error-output*,
query-io, and *trace-output* are bound to *terminal-io* for the duration of the break
loop; and the state of the single stepper is bound to "off".

break g &optional condition : [Macro]
The break macro returns a form which prints the message "Breakpoint fag” to *terminal-io*
and then invokes the break loop. If condition is present, then the form evaluates it and tests the
result. If the result is ni1, then the form returns ni1; otherwise, the form prints the tag and
invokes the break loop. fag is never evaluated.

8 SPICE LISP USER'S GUIDE

3.1.1. Cleaning Up

The break loop is called by the system error handlers. Since errors can happen unexpectedly, the break
loop provides a mechanism for cleaning up any unusuai state that a program may have caused.

error-cleanup-forms [Variable]
A list of lisp forms which will be evaluated for side effect when a break loop is invoked. Whenever
a break Ioop is entered, *error-cleanup~-forms* will be bound to nil, and then the forms
which were its previous value will be evaled for side effect. There is no way to have the side
effects undone when the break loop returns, and if any of the cleanup forms causes an error, the
result can not be guaranteed.

As an example, a program that puts the terminal in an unusual mode might want to do something
like this.

{iet ({*error-cleanup-forms*
{cons ’'(progn <code fo restore terminal))
grror-cleanup-forms)))
<code to mess up terminal)

»

+

:)

3.2. Function Tracing

The tracer causes selected functions to print their arguments and their results whenever they are called.
Options allow conditional printing of the trace information and conditional breakpoints on function entry.

trace &rest specs [Macro)
Invokes tracing on the specified functions,! and pushes their names onto the global list in
traced-function-1ist. Each specis either the name of a function, or the form

(function-name
trace-option-name value
frace-option-name value

-}

If no specs are given, then trace will return the list of &l cumrently traced f{unctions,
traced-function-list.

If a function is traced with no options, then each time it is called, a single line containing the name
of the function, the arguments to the call, and the depth of the call will be printed on the stream
trace-output. After it returns, another line will be printed which contains the depth of the
call and ail of the return values. The lines are indented to highlight the depth of the calls,

Trace options can cause the normal printout to be suppressed, or cause extra information to be
printed. Each traced function carries its own set of options which is independent of the options

lTrace does not work on macros or special forms yet,

DEBUGGING TOOLS 9

given for any other function. Every time a function is specified in a call to trace, all of the old
options are discarded. The available options are: .

:condition A form to eval before before each call to the function, Trace printout will be
suppressed whenever the form returns ni1.

:break A form to eval before each call to the function. If the form returns non nil,
then a breakpoint loop will be entered immediately before the function call.

:break-after Like :break, but the form is evaled and the break loop invoked after the

function call,

:break-all A form which should be used as both the :break and the :break-after
args.

:wherein A function name or a list of function names. Trace printout for the traced

function will only occur when it is called from within a call to one of the
:wherein functions,

iprint A list of forms which will be evaluated and printed whenever the function is
called. The values are printed one per line, and indented to match the other
trace output. This printout will be suppressed whenever the normal trace
printout is suppressed.

:print-after Like :print except that the values of the forms are printed whenever the
function exits.

:print-all The arg is used as the arg toboth :print and :print-after.

untrace &rest function-names ' [Macro)
Turns off tracing for the specified functions, and removes their names from
traced-function-1ist. If no function-names are given, then all functions named in
traced-function-11ist will be untraced. '

traced-function-1ist [Variable)
A Iist of function names which is maintained and used by trace, untrace, and untrace-all,
This list should contain the names of all functions which are currently being traced.

trace-prinlevel : [Variable)

trace-prinlength [Variable]
Printevel and “*prinlength* are bound to *trace-prinievel* and
trace-prinlength when printing trace output. The forms printed by the :print options
are affected also. *Trace-prinlevel* and *trace-prinlength* areinitially setto ni1.

max~-trace-indentation [Variable]
The maximum number of spaces which should be used to indent trace printout. This variable is
initially set to some reasonable value.

10 SPICE LISP USER'S GUIDE

3.2.1. Encapsulation Functions

The encapsulation functions provide a clean mechanism for intercepting the arguments and results of a
function.2 Encapsulate changes the function definition of a symbol, and saves it so that it can be restored
later. The new definition normally calls the original definition.

The original definition of the symbol can be restored at any time by the unencapsulate function.
Encapsulate and unencapsulate allow a symbol to be multiply encapsulated in such a way that
different encapsulations can be completely transparent to each other.

Each encapsulation has a type which may be an arbitrary lisp object. If a symbol has several encapsulations
of different types, then any one of them can be removed without affecting more recent ones. A symbol may
have more than one encapsulation of the same type, but only the most recent one can be undone,

encapsulate symbol type body {Function]
Saves the current definition of symbol, and replaces it with a function which returns the result of
evaluating the form, bedy. Type is an arbitrary lisp object which is the type of encapsulation.

‘When the new function is called, the following variables will be bound for the evaluation of body:

argument-Tist
A list of the arguments to the function,

basic-definition
The unencapsulated definition of the function.

The unencapsulated definition may be called with the original arguments by including the form
{(apply basic-definition argument-list)

Encapsulate always returns symbol.

unencapsulate symbol type [Function]

Undoes symbols most recent encapsulation of type fype. Type is compared with eq.
Encapsulations of other types are left in place.

encapsulated-p symbol type [Function}
Returns t if symbel'has an encapsulation of type fype. Returns ni1 otherwise. fype is compared
with eq.

2Em:apsulation does not work for macros or special forms yet.

DEBUGGING TOOLS 11
3.3. Single Stepper

step form [Function}
Evaluates form with single stepping enabled, or if form is t, enables stepping until explicitly
disabled. Stepping can be disabled by quitting to the lisp top level, or by evaluating the form
(step (}).

While stepping is enabled, every call to eval will prompt the user for a single character command,
The prompt is the form which is about to be evaled. It is printed with *prinlevel®* and
printength bound to *step-prinlevel* and *step-prinlength*. All interaction is
done through the stream *query-io*.

The commands are:
n (next) Evaluate the expression with stepping still enabled,
s {skip) Evaluate the expression with stepping disabied.
q (quit) Evaluate the expression, but disable ali further stepping inside the current cafl to
step.
p (priat) Print current form. {does not use *step-prinlevel* or
step-prinlength)
b (break) Enter break loop, and then prompt for thé command again when the break loép
returns,
e (eval) Prompt for and evaluate an arbitrary expression. The expression is evaluated
with stepping disabled.
7 (help) Prints a brief list of the commands.
r (return) Prompt for an arbitrary value to return as result of current call to eval.
g Throw to top level.
step-prinlevel® [Variabie)
step-prinltength [Variable]

*Prinlevel® and *Prinlength* are bound to these values when the current form is printed.
Step-prinlevel® and *step-prinlength* are initially bound to some smail value,

max-step-indentation® : [Variable]
Step indents the prompts to highlight the nesting of the evaluation. This variable contains the
maximum number of spaces to use for indenting. It is initially set to some reasonable number.

3.4. The Debugger

The debugger is an interactive command lpop which allows a user to examine the active call frames on the
Lisp function call stack. Ifit is invoked from an error breakpoint, it can show the function calls which led up

12 SPICE LiSP USER'S GUIDE

to the error.

Only one stack frame, the current frame, can be inspected at any given time. The command loop prints the
frame number of the current frame as a prompt, and then reads a lisp expression from the terminal. debug
tries to use the expression as a command, but if it fails, then it evals and prints the expression like a
breakpoint loop. Terminal input and output are done by binding *standard-input* and
standard-output to *terminal-io*.

3.4.1. Movement Commands

These commands move to a new stack frame, and print out the nanﬁe of the function and the values of its
arguments in the style of a lisp function call. *debug-printevel* and *debug-prinlength* affect
the style of the printing, '

Up is toward the most recent function invocation, and lower frame numbers. Down is toward older
function calls and higher frame numbers.

Visible frames are those which have not been hidden by the hide command which is described below. The
special variable *debug-ignored-functions* contains a list of function names which are hidden by

default.

The commands are:

U Move up to the next higher visible frame.

d Move down to the next lower visible frame,

t Move to the highest visible framg.

b Move to the lowest visible frame.

(frame n) Move to frame number » whether it is visible or not,

3.4.2. Inspection Commands

These commands print information about the current frame and the current function.

? describe’s the current function.

a Lists the arguments to the current function. The values of the arguments are printed along
with the argument names.

i Lists the local variables in the current function. The values of the locals are printed, but

their natnes are no longer available.

p Redisplays the current function call as it would be displayed by moving to this frame,

DEBUGGING TOOLS 13

pp : Redisplays the current function call using *prinlevel* and *prinlength* instead of
debug-prinlevel and *debug-prinlength*.

(value symbol) Prints the value of symbol in the current binding context. symbol is ecither a special
variable, or the name of an argument to the current function.

(local n) Prints the value of the sth local variable in the current frame.
3.4.3. Other Commands

h Prints a brief list of commands on the terminal.

q Causes debug to return nil.

(return &rest values)
Forces the current function to return zero or more values. If the function was not called
for multiple values, then attempts to return other than one value will be prevented.

(backtrace options)
Prints a history of function calls. The printing is controlled by *debug-prinlevel*
and *debug-prinlength*. Only those frames which are considered visible by the
frame movement commands will be shown. Currently, there are no options.

(hide options) Makes the stack frames described by options be invisible to the frame movement
commands. The first option is a subcommand which may be one of?:

package Followed by one or more package names. Calls to functions in the
named packages will not be visible,

function Followed by one or more function names, Calls to the named functions
will not be visible.
compiled Calls to compiled functions will not be visible.

interpreted ~ Callsto interpreted functions will not be visible.
Tambdas Calls to lambda expressions will not be visible.

(show options) ~ Options are the same as for the hide command. Show is the inverse operation. Showing a
' particular set of functions does not necessarily make them all visible; some of them may
still be hidden for other reasons,

debug ’ [Function)
Invokes the debugger. Always returns nil,

14

SPICE LISP USER'S GUIDE
debug-prinlevel ' : [Variable]
debug-prinlength o [Variable}

Prinlevel and *prin1en§th* are bound to these values during the exccution of some
debug commands. When evaluating arbitrary expressions in the debugger, the normal
Prinlevel and *priniength* arein effect. These variables are initially set to some small
number,

debug-ignored-functions Variable]
g-1g

A list of functions which are hidden by default. These functions can be made visible with the
debug command show.

3.5. Random Features

describe object - [Function]

The describe function prints useful information about object on *standard-output*. For -
any object, descr ibe will print out the type. Then it prints other information based on the type
of ab ject. The types which are presently handled are:

function describe prints a list of the function’s name (if any) and its formal parameters.
If the function has documentation, then the documentation string will be
printed.

symbol The symbol’s value, properties, and documentation are all printed. If the symbol

has a function definition, then the function is described.

Chapter4
The Compiler

4.1. Calling the Compiler

Functions are compiled using either the compile or compile-file functions. Both operate as
documented in the Common Lisp Reference Manual, The compile-file function takes the following
keyword arguments: :output-file, :cold-file, :1ap-file, and :error-file. These take cither
the name of a file, as a string, or the symbol t, which tells the system to make up an appropriate name by
replacing the type field of the input file name. If any of these arguments is NIL, no output of that type is
created. By default, only the output file and error file are created.

4.2, Open and Closed Coding

When a function call is "open coded,” inline code whose effect is equivalent to the function call is
substituted for that function call. When a function call is "closed coded", it is usually Ieft as is, although it
might be turned into a call to a different function with different arguments. As an example, if nthcdr were
to be "open coded” then

{nthcdr 4 foobar)
might turn into
{cdr {(cdr (cdr {cdr foobar}}))
or even
(do ({1 O {1+ 1))
{(1ist foobar (cdr foobar}))
({= 1 4) list)).

Ifnthis "closed coded”
{(nth x 1)

might stay the same, or turn into something like;
(car (nthedr x 1)).

- 15 —

16 SPICE LISP USER'S GUIDE

4.3. Compiler Switches

Several compiler switches are available which are not documented in the Common Lisp Manual Eachis a
global special. These are described below.

*peep-enable*If this switch is non-nil, the compiler runs the peephole optimizer. The optimizer makes
the compiled code faster, but the compilation itself is slower. *peep-enable* defaults
to t.

*peep-statistics®
If this switch is non-nil, the effectiveness of the peephole optimizer (number of bytes

before and after optimization) will be reported as each function is compiled.
*peep-statistics® defaulisto t.

inline-enable
If this switch is non-nil, then functions which are declared to be inline are expanded inline.

It is sometimes useful to turn this switch off when debugging. *inline-enable*
defaults to t.

open-code-sequence-functions

If this switch is non-nil, the compiler tries to translate calls to sequence functions into do
loops, which are more cfficient. It defaults to t.

nthedr-open-code-1imit
This is the maximum size an nthcdr can be to be open coded. In other words, if nthedr
is called with n equal to some constant less than or equal to the-

nthcdr-open-code-Timit, it will be open coded as a series of nested cdr’s,
nthcdr-open~code-11im1it defauits to 10.

complain-about-inefficiency
If this switch is non-nil, the compiler will print a message when certain things must be done

in an inefficient manner because of lack of declarations or other problems of which the
user might be unaware. This defaultstoni1,

*a@liminate-tail-recursion?
If this switch is non-nil, the compiler attempits to turn tail recursive calls (from a function to
itself) into recursion. This defaults to t.

all-rest-args-are-Tlists
If non-nil, this has the effect of declaring every &rest arg to be of type list. (They all start
that way, but the user could alter them,) It defanltstonil.

verbose If this switch is ni1, only true error messages and warnings go to the error stream, If
non-nil, the compiler prints a message as each function is compiled. It defaults to t.

check-keywords-at-runtime

If non-nil, compiled code with &key arguments will check at runtime for unknown
keywords. This is usually left on and defaults to t.

THE COMPILER . 17

S 4.4. Declare switches -

Not all switches for declare are processed by the compiler., The ftype and function declarations are
currently ignored.

The optimize declaration controls some of the above switches:
s *peep-enable* is on unless cspeed is greater than speed and space.
s *inline-enable* is on unless space is greater than speed.
* *open-code-sequence-functions* is on unless space is greater than speed.

s *eliminate-tail-recursion* is onif speed is greater than space.

18

SPICE LISP USER’S GUIDE

Chapter 5
Efficiency

By Rob Maclaclan

In Spice Lisp on the Perq, as is any language on any computer, the way to get efficient code is to use good
algorithms and sensible programming techniques, but to get the last bit of speed it is helpful to know some
things about the langnage and its implementation, This chapter is a summary of various hidden costs in the
implementation and ways to get around them.

5.1. Compile Your Code

In Spice Lisp, compiled code typically runs at least sixty times faster than interpreted code. Another benefit
of compiling is that it catches many typos and other minor programming errors. Many lisp programmers find
that the best way to debug a program is to compile the program to catch simple errors, then debug the code
interpreled, only actually using the compiled code once the program is debugged. .

Another benefit of compilation is that compiled {sfas]) files load significantly faster, so it is worthwhile
compiling files which are loaded many times even if the speed of the functions in the file is unimportant.

Do Not be concerned about the performance of your program until you see its speed compiled -- some
techniques that make compiled code run faster make interpreted code run slower.

5.2. Avoid Unnecessary Consing

Consing is the Lispy naine for allocation of storage, as done by the cons function, hence its name. cons is
by no means the only function which conses -- so does make-array and many other functions. Even worse,
the Lisp system may decide to cons furiously when you do some apparently innocent thing,.

Consing hurts performance in the following ways:
» Consing reduces your program’s memory access locality, increasing paging activity,

» Consing takes time just like anything else.

» Any space allocated eventually needs to be reclaimed, either by garbage collection or killing your

- 19 -

20 SPICE LISP USER’S GUIDE

Lisp.

Of course you have to cons sometimes, and the Lisp implementors have gone to considerable trouble to
make consing and the subsequent garbage collection as efficient as possibic. In some cases strategic consing
can improve speed. It would certainly save time to allocate a vector to store intermediate results which are
used hundreds of times.

5.3. Do, Don’t Map

One of the programming styles encouraged by Lisp is a highly applicative one, involving the use of
mapping functions and many lists to store intermediate results, To compute the sum of the square-roots of a
list of numbers, one might say: '

(apply #°'+ (mapcar #'sqrt list-of-numbers))

This programming style is clear and elegant, but unfortunately results in slow code. There are two reasons
why: '

¢ The creation of lists of intermediate results causes much consing (see 5.2).

¢ Each level of application requires another scan down the list. Thus, disregarding other effects, the
above code would probably take twice as long as a straightforward iterative version.

An example of an iterative version of the same coder

{(do {{num tist-of-numbers {cdr num))
{(sum 0 (+ (sqrt (car num)) sum)))
{(pulT num) sum))

Once you feel in you heart of hearts that iterative Lisp is beautiful then you can join the ranks of the Lisp
efficiency fiends.

5.4. Think Before You Use a List

Although Lisp’s creator seemed to think that it was for LISt Processing, the astuie observer may have
noticed that the chapter on list manipulation makes up less that ten percent of the COMMON LISP manual.
The language has grown since Lisp 1.5, and now has other data structures which may be better suited to tasks
where lists might have been used before.

5.4.1. Use Vectors

Use Vectors and use them often. Lists are often used to represent sequences, but for this purpose vectors
have the following advantages:

e A vector takes up less space than a list holding the same number of elements. The advantage may
vary from a factor of two for a general vector to a factor of sixty-four for a bit-vector. Less space
means less consing (see 5.2).

« Vectors allow constant time random-access. You can get any element out of a vector as fast as you

EFFICIENCY 21

can get the first out of a list if you make the right declarations.

The only advantage that lists have over vectors for representing sequences is that it is easy to change the
length of a list, add to it and remove items from it. Likely signs of archaic, slow lisp code are nth and
nthcdr - if you are using these function you should probably be using a vector,

54.2. Use Structures

Another thing that lists have been used for is the representation of record structures. Often the structure of
the list is never explicitly stated and accessing macros are not used, resulting in impenetrable code such as:
(rplaca {caddr {cadddr x)) (caddr y}) '

The use of defstruct structures can result in much clearer code, one might write instead:
(setf (beverage-flavor (astronaut-beverage x)) (beverage-flavor y))
Great! But what does this have to do with efficiency? Since structures are based on vectors, the defstruct
version would likewise take up less space and be faster to access. Don't be tempted to try and gain speed by
trying to use vectors directly, since the compiler knows how to compile faster accesses to structures than you
could easily do yourself. Note that the structure definition should be compiled before any uses of accessors so
that the compiler will know about them.

5.4.3. Use Hashtables

In many applications where association lists (alists) have been used in the past, hashtables would work much
better. An alist may be preferable in cases where the user wishes to rebind the alist and add new values to the
front, shadowing older associations. In most other cases, if an alist contains more than a few clements, a
hashtable will probably do the job faster. If the keys in the hashtable arc objects that can be compared with
eq or better yet eq, then hashtable access will be speeded up by specifying the correct function as the
:test argument to make~hashtable. '

‘5.4.4. Use Bit-Vectors

Another thing that lists have been used for is set manipulation. In some applications where there is a
known, reasonably small universe of items Bit-Vectors could be used instead. This is much less convenient
than using lists, because instead of symbols, each element in the universe must be assigned a numeric index
into the bit vector, If the universe is vary smail -- twenty-eight items or less -- then you can represent your set
as bits in a fixnum and use logior and so on, to get immense speed improvements.

Note: right now, boolean opeartions on bit-vectors are very slow, since one bit is processed at a time instead
of 16 or 32 bits at once, This will be fixed soon. In the meantime, boolean operations on bignums are faster
than those on bit-vectors.

22 SPICE LISP USER’S GUIDE

5.5. Simple Vs Complex Arrays

Spice Lisp has two different representations for arrays, one which is accessed rapidly in microcode and one
which is accessed much more slowly in Lisp code. The class of arrays which can be represented in the fast
form corresponds exactly to the one dimensional simple-arrays, as defined in the COMMON LISP manual.
Included in this group are the types simple-string, simple~vector and simplie-bit-vector,

Declare Your Vector Variables - If you don’t the compiler will be forced to assume you are using the
inefficient form of vector, Example: '

{defun iota (n)

(let ({(res {(make-vector n)))
(declare (simple-vector n))
{dotimes (i n) _

{setf (aref res i) 1))
res))

Warning: if you declare things to be simple when they are not, incorrect code will be generated and
hard-to-find bugs will result. It is worthwhile to note, however, that system functions which create vectors
will always create simple-arrays unless you force them to do otherwise.

5.6. To Call or Not To Call

The usual Lisp style involves small functions and many function calls; for this reason Lisp implementations
strive to make function calling as inexpensive as possible. Spice Lisp is fairly successful in this respect. -
Function calling is not vastly more expensive than other instructions, and is certainly faster than procedure
calling in Perq Pascal.

For this reason you should not be overly concerned about function-call overhead in your programs.
However, function calling does take time, and thus is not the kind of thing you want going on in the inner
loops of your program. Where removing function calling is desirable you can use the following techniques:

Write the code in-line .
This is not a very good idea, since it results in obscure code, and spreads the code for a
single logical function out everywhere, making changes difficult.

Use macros A macro can be used to achieve the effect of a function call without the function-call
overhead, but the extreme generality of the macro mechanism makes them tricky to use. If
macros are used in this fashion without some care, obscure bugs can result.

Use inline functions
This often the best way to remove function call overhead in COMMON LISP. A function
may be written, and then declared inline if it is found that function call overhead is
excessive. Writing functions is casier that writing macros, and it is easier to declare a
function inline than to convert it to a macro. Note that the compiler must process first the
inline declaration, then the definition, and finally any calls which are to be open coded for
the inline expansion to take place. '

EFFICIENCY 23

Note that any of the above techniques can result in bloated code, since they have the effect of duplicating
the same instructions many places. If code becomes very large, paging may increase, resulting in a significant
slowdown. Inline expansion should only be used where it is needed. Note that the same function may be
called normally in some places and expanded inline in other places.

5.7. Keywords and the Rest

CoMMON LiSP has very powerful argument passing mechanisms. Unfortunately, two of the most powerful
mechanisms, rest arguments and keyword arguments, have a serious performance penalty in Spice Lisp.

The main problem with rest args.is that the microcode must cons a list to hold the arguments. If a function
is called many times or with many arguments, large amounts of consing may occur.

Keyword arguments are built on top of the rest arg mechanism, and so have all the above problems plus the
problem that a significant amount of time is spent parsing the list of keywords and values on each function
call.

Neither problem is serious unless thousands of calls are being made to the function in question, so the use
of argument keywords and rest args is encouraged in user interface functions.

Another way to avoid keyword and rest-arg overhead is to use a macro instead of a function, since the
rest-arg and keyword overhead happens at compile time and not necessarily at runtime. If the macro-
expanded form contains no keyword or rest arguments, then it is perfectly acceptable to use keywords and
rest-args in macros which appear in inner loops.

Note: the compiler open-codes most heavily-used system functions which have keyword or rest arguments,
so that no run-time overhead is involved. '

Optional arguments have no significant overhead.

5.8. Numbers

Spice Lisp provides five types of numbers for your enjoyment:

» fixnums bignums ratios short-floats long-floats

Only short-floats and fixnums have an immediate representation; the rest must be consed and garbage-
collected later. In code where speed is important, you should use only fixnums and short-floats unless you
have a real need for something else. Since most-positive-Tixnum is more than one hundred million,
you shouldn’t necd to use bignums unless you are counting the reasons to use Lisp instead of Pascal.
Unfortunately the amount of floating point precision that will fit in 1weniy-eight bits is severely limited, so
there are reasonable problems which require the use of long-floats.

24 SPICE LISP USER’S GUIDE

Another feature of ratios and bignums which will keep you entertained for hours is that operations on these
numbers are written in Lisp, not microcode; this results in orders of magnitude slower execution.

Printing of long-floats is painfuily slow -- around three seconds. While you wait, consider that the float
printing algorithm is the only known correct float printing method. Other methods run in real time, but they
lose precision in the low-order digits.

5.9. Timing

Everyone knows that the first step in improving a program’s perfoﬁnance is to make extensive timings to
find which code is time-critical. Unfortunately Spice Lisp currently has no timing functions. The
recommended timing method is to write a compiled driver function which calls the function to be tested a few
hundred times. If one measures the total time with a watch or by a systat and divides try the number of
iterations, then fairly accurate statistics can be collected.

Chapter 6
The Alien Data Type

By Jim Large and Dan Aronson

A problem that arises in many Common Lisp implementations is dealing with the complex structured
records or messages that are exchanged at the interface between Lisp and the outside world. Such alien data
structures will typically be collections of integers, floating point numbers, strings, boolean flags, bit vectors,
enumerated types represented as small integers, and so on. All of these types have some rough
correspondence with internal Lisp data-types, but at the time of their arrival and departure they will be in
whatever implementation-dependent format is expected by the alien sofiware, and the Lisp garbage collector
must treat the alien object as an unstructured vector of bits or bytes. '

Given a knowledge of the structure of an alien record, it is relatively easy for the Lisp-level code to convert
each field of the message into the corresponding Lisp form, but we want this knowledge to be concentrated in
one place so that changes in the external message format can be easily accommodated by the Lisp code. What
is needed is a convenient form for specifying how the alien record is to be parsed and packed and how each of
its fields is to be interpreted as a Lisp object. In a manner similar to defstruct, this specification will be
processed to create a family of field-accessing and field-altering macros that perform the proper translations,
in addition to doing the access. Thus, once the structure of the alien record has been specified, it is no harder
to access than the fieldsof a defstruct.

This new facility is built into Vax Common Lisp and Spice Lisp.

6.1. The Alien-Structure Data Type

There is a new data-type called alien-structure. This is just a new structure-type defined by
defstruct. The alien structure contains a name (a lisp symbol), a length (number of 8-bit bytes in the data
vector), and a pointer to the actual blob of uninterpreted bits. In Spice Lisp and Vax Common Lisp, this blob
is an packed-fixnum vector (a U-Vector, in our internal parlance) of 8-bit bytes; other implementations might
have to use a bit-vector for this. One could ask typep if an object is an alien-structure, and could
access the innards via alien-structure-name and alien-structure-data. One can also find the
length of the data area (in bytes) using the macro alien-structure-length,

* Alien structures are created by amacro, def-alien-structure, that parallel§ defstruct in form:

— 25 —

26 ' SPICE LISP USER'S GUIDE

{def-alien~-structure (name optionl option2z ...)
field-description-1 4
field-description-2

)

where the field descriptions are of the form

(field-name alien-field-type start end
field-option-name-1 field-option-value-1
field-option-name-2 field-option-value-2

-)

The options in def-alien-structure arc a subset of those allowed in defstruct: :conc-name,
:constructor, :predicate, :print-function, and :evai-when, Alien structures are always
named and the user cannot specify a : type option or any of the array options.

In addition, there is a : Tength option that takes as its argument the length of the data area in 8-bit bytes.
This is used when new instances of this structure-type are created within Lisp by the constructor macro. If
: Tength is not specified, the length defaults to the maximum of the end values of the fields making up the
structure, ignoring any fields with end values of ni1. When alien structures are read in from outside the Lisp,
:length controls the allocated length of the data vector, but the actual length (as reported by
alien-structure-Tength) is set by the size of the incoming block of data. An error will be signalled if
the incoming data block does not fit within the allocated length. If no : Tength is specified in this case, the
default is to allocate a vector the same size as the incoming data block.

Each field has a name, perhaps modified by :conc-name. The field options are :invisible and
:read-only, asin defstruct, plus

rdefault-value, The latter is a value that is placed into the slot at the time the alien structure is
created, if no other value is specified at that time. This value is inserted into the alien structure as if by setf,
and it is thercfore processed by the field-type conversions (see below). If no :default-value is specified,
the field is initialized to 0. (This initialization is only done if the data block is created within the Lisp; if it
arives from outside, the bits are left alone unless specifically altered by the user.)

The start and end values for a field indicate where, in the alien structure’s data area, the field is to be found.
These numbers are in terms of bytes. As usual, they are zero-based, start is inclusive and end is exclusive, If
the end value is niT, the field has no fixed length, but runs from the specified star! to the ernd of the data
block, as indicated by alien-structure-length., When such a field is written into, the
alien-structure-length will be adjusted to reflect the new end of the field; however, any attempt to
extend the field beyond the allocated length of the data vector will signal an error.

It is possible for two fields to overlap; sometimes this will be useful when one field wants to be interpreted
in two different ways. Obviously, if two overlapping fields are written into, the later write clobbers the results
of the earlier one. It is also possible to have gaps between the defined fields; these would correspond to parts
of an incoming message that are uninteresting to the Lisp program, for example. Such gaps are initialized to 0

THE ALIEN DATA TYPE 27

when the alien structure is created within the Lisp, unless the block of data comes in from outside. If the
block comes from the outside, the bits in the inter-field gaps are not altered. Fields may appear in any order
within def-alien-structure.

In the rare cases where the boundaries of a field do not land on byte-boundaries, rational numbers may be
supplied as the start and end values. So most of the time you can pick up a string from (16 32) or an integer
from (0 2), but sometimes you would get a boolean from (3/8 4/8) or an integer from (1/2 3/2). An error is
signalled if the rational does not specify an integral bit-address.

The alien-field-type argument is a symbol that teils how the field is to be interpreted by the Lisp system.
Fach alien field type associates a pérticular alien-format representation with some internal Lisp data-type;
functions exist for turning the contents of the field into the internal object and for packing an internal object
of the right type back inio the ficld. Some of these types will be built-in:

string On access, the field is interpreted as a string, one character per byte, and the corresponding
Lisp string is returned. The setf form accepts a Lisp string and puts the characters into
the field.

perg-string Like string except that the first byte in the field is the number of characters, and the
remaining bytes are the characters. On access, the length of the Lisp string will be
determined by the first byte of the field. The setf form will set the first byte according to
the length of the Lisp string. The size of the field may not be greater than 256 bytes.

signed-integer
The field is interpreted as a signed, two’s complement integer, and the corresponding Lisp
integer is returned, On write, the process is reversed.

unsigned-integer .
The field is interpreted as an unsigned, positive integer, and the corresponding Lisp integer
is returned.

bit-vector The field is returned as a bit-vector.

port The field contains an Accent IPC port specified as a 32-bit integer. The internal"Lisp
format is a port structure, with the integer value hidden inside.

(selection s0sl s2..)
The Sr are evaluated (at access or setf time) to produce arbitrary Lisp objects. On access
the alien field is interpreted as an unsigned integer, and the corresponding S» value is
returned inside the Lisp. On output, the setting function receives one of the values and
stores the corresponding integer into the field. Comparison of items against Sn values is
done with eq1.

ieee-single-flonum
The field is interpreted as containing a 32-bit IEEE-format flonum, and this is returned as
the internal Lisp flonum type that most closely matches this type. This will vary from one
implementation {o another, but will be constant within a given implementation. An

28 : SPICE LISP USER'S GUIDE

implementation would provide whatever floating formats are important in its host
environment -- the VAX might provide D, F, G, and H formats rather than IEEE formats.

In each case, the setf form will signal an error if the specified field is too small to hold the item coming
from Lisp. For integers, the error will occur if significant bits would be lost in doing the write,

6.2. Defining Other Field Types

In addition to these built-in primitive alien field types, the user can define his own via
def-alien-field-type, a macro with the following arguments:
(def-atien-field-type name internal-type primitive-type
access-fn setf-fn)

internal-type is a Common Lisp type specifier indicating the type of internal Lisp object that the field will
be mapped to. primitive is any pre-defined alien-ficld-type: one of the primitives defined above or a field
type defined ecarlier by def-alien-field-type. On access, this is applied to the alien object to extract a
Lisp object; then this object is passed to the access function, usually a function of one argument, for further
processing. For a setf, the new value is first passed through the setf function, also usually a function of
one argument; the result of this is then packed into the alien structure as indicated by primitive-type.

For example, suppose we wanted to create a new field-type named backwards-stri ng, in which the
alien field is treated as a reversed string. This would be done as follows:
{(def-alien-field-type reverse-string

'string i Turns to string internaily.
*string ; Primitive access to get a string.
#'(lamhbda {x) (reverse x)) ; Reverse string on access.

#’(lambda (x) (reverse x))) ; Also reverse string on setf.

Once this is done, the reverse-string field type can be used in def-alien-structure-type and as a
primitive in defining still more complex field types.

Sometimes, it is desirable to create an alien field type in which the access and setf conversion functions
can take additional parameters. The selection field-type, listed above among the primitives, is one such type.
To achieve this effect, one defines an alien field type whose access and setf functions take more than one
argument. The additional arguments should be optional. When a field-type expression in
def-alien-field is a list rather than a symbol, the car of the list is the type name, and the remaining
elements are expressions which are evaluated at access and setf time. The results of these ¢valuations are
passed to the access and setf functions as additional arguments. This all sounds more complex than it really
is. To produce the selection field type, if this were not built in as a primitive, one would do the following:

THE ALIEN DATA TYPE _ 29

(def-alien-field-type selection

't . ; Produces any kind of Lisp object.
‘unsigned-integer : ;: Primitive access as unsigned integer.
#'{lambda (n &rest s-Tist)

{nth n s-1ist)) ;: Select Nth value in 1ist of choices.
#'{lambda (x &rest s-1ist)

{position x s-Tist}))) ; Find index of item in list, EQL test.

6.3. Variable-Format Structures

The machinery described above is optimized for dealing with alien structure types whose fields are fixed in
size and position at the time the structure-type is defined. Given the nature of software outside the Lisp
world, this is the sort of thing we v;'ill.be seeing the most of. However, it would also be nice to be able to use
the alien field type translation for packing and unpacking variable-format records. To handle this variable
case without getting too complicated, the following simple packing and unpacking macros are provided:

{alien-field alien-structure alien-field-type start end)

This form can be used to access an arbitrary field in any type of alien structure, using the specified
alien-field-type, start, and end. 'This form pays no attention to any fixed-position fields that may have been
defined for structures of this type; it just does what you tell it to do. The alien-field-type may be any
pre-defined type. The start and end arguments are expreséed in terms of 8-bit bytes, and may be ratios if it is
necessary to reference a field that does not lie on even byte boundaries. This form may be used within a
setf toalter a field.

(pack-alien-structure name Tength
{(value alien-field-type start end)
{(value alien-field-type start end)

.)

This creates and returns a new alien-structure object with the specified name and length (in bytes), The
name may or may not be an alien-structure-type that has already been defined; in any event, the name is
simply stored away and has no cffect on how this object is filled. Each of the values is evaluated (to produce a
Lisp object) and then is packed into the specified place in the new alien structure using the setf-transform
of the specified alien field type. For example, to send a variabie-length string from Lisp to wherever,
something like the following function might be employed:

(defun export-string (s)
{(send-external-message wherever
(pack-alien-structure 'string-message (+ (length s) 4)
{({1ength s) ‘unsigned-integer 0 4)
(s 'string 4 (+ 4 (length 5))})))

To receive a string of the same format:
(defun import-string ()
(let* ((foo {receive-external-message wherever})
(string-length (alien-field foo '"integer 0 4)})
(alien-field foo 'string 4 (+ string-tength 4})))

30

SPICE LISP USER'S GUIDE

THE ALIEN DATA TYPE

Index

i1

32

SPICE LISP USER’S GUIDE

Index of Concepts

w33

34

SPICE LISP USER’S GUIDE

Index of Variables

A X
B Y
C Z
D

debug-ignored-functions® 14
debug-printength 4
*debug-prinievel® 14

E
*error-cleanup-forms® 8

F

G
H

L

K

L

M
max-step-indentation 11
max-trace-indentation 9

N

0

]
step-prinlength n
*step-prinlevei® 1

T
trace-prinlength 9
trace-prinlevel 9
traced-function-1ist 9
u

v

— 35—

36

SPICE LISP USER'S GUIDE

O - - ™o mom m g N oW

-

-

ww oo g

Index of Constants

— 37 —

38

SPICE LISP USER’S GUIDE

s - m 6 "9 = U O oW

-t

" o W O Z Z

-

“ =

Index of Keywords

-39 —

40

SPICE LISP USER'S GUIDE

LuaB = - B > N T B~ E o I

[l

® O v © Z 2

N < ® g < o = o®m

Index of Functions, Macros, and Special Forms

— 4] —

42

+

SPICE LISP USER'S GUIDE

TABLE OF CONTENTS

Table of Contents

1. Introduction . o

L.1. Obtaining and Running Spice Lisp

2.1. Numbers

2.2. Characters

2.3, Vector Initialization

2.4, Packages

2.5. The Editor

2.6. Time Functions

2.7. System Dependent Constants

3. Debugging Tools

3.1. The Break Loop
3.1.1. Cleaning Up
3.2. Function Tracing
3.2.1. Encapsulation Functions
3.3. Single Stepper
3.4. The Debugger
3.4.1. Movement Commands
3.4.2. Inspection Commands
34.3. Other Commands
3.5. Random Features

4. The Compiler

4.1. Calling the Compiler
4.2. Open and Closed Coding
4.3. Compiler Switches

4.4. Declare switches

5. Efficiency

5.1. Compile Your Code
5.2, Avoid Unnecessary Consing
5.3. Do, Don’t Map -~
5.4. Think Before You Use a List
5.4.1. Use Vectors
5.4.2. Use Structures
54.3. Use Hashtables
54.4, Use Bit-Vectors
5.5. Simple Vs Complex Arrays
5.6, To Call or Not To Call
5.7, Keywords and the Rest

2. Implementation Dependent Design Choices

[

B b W W

o0 00 ~3 =~

10
11
11
12
12
13

14

15

15
15
16
17

19

19
19
20
20

21
21
21
22
22
23

ii SPICE LISP USER'S GUIDE

5.8. Numbeis) ' 23
5.9. Timing - 24
6. The Alien Data Type 25
6.1. The Alien-Structure Data Type 25
6.2. Defining Other Field Types 28
6.3. Variable-Format Structures 29
Index 31
Index of Concepts 33
Index of Variables | A 35
Index of Constants ' 37
Index of Keywords 39

Index of Functions, Macros, and Special Forms 41

LIST OF TABLES

List of Tables

iii

STERLE on UMU-US-C

Printer Ruby

Spruce version 12.0 - spooler version 12.0

File; PRYARKSLISPRIADCLMWIZ.MSS.]

Creation date: 23-Nov-83 12:36 (Wed pm.)

Printing date: 23-MNov-83 13:00:46 EST

For: STEELE on CMU-U5-C

20 total sheets = 19 pages, 1 copy.

o o, R T e T

| g
f—
e s
[
e
LTI,

Index

% function 162 * variable 266 ** variable 200

EEE variable 266 + function 162
+ variable 266 ++ variable 266
b variable 266 - function 162

- variable 266 / function 162
/ variable 267 // variable 267
/17 variable 267 /= function 160
1+ function 163 1- function 163
< function 160; 190 <= function 160
= function 160; 65, 157, 190 > function 160
>= function 160 Compatibility note 11, 21,
36, 37, 43, 55, 61, 66, 86, 89, 97, 102, 106, 107,
112, 115, 116, 126, 127, 131, 134, 137, 150,
151, 161, 162, 168, 169, 174, 131, 182, 184,
201, 202, 204, 214, 215, 220, 222, 226, 230,

235, 237, 251, 252, 278, 282, 286, 293, 297,

301, 302, 311, 317, 319, 320, 327, 343, 344,
345, 347, 348, 350, 351, 358, 360, 361
Implementation note 12, 13, 15, 17, 18, 22,
31, 45, 48, 64, 100, 116, 137, 148, 163, 164,
166, 167, 168, 169, 177, 183, 184, 187, 188,
213, 240, 245, 299, 323, 341, 342, 344, 348,
351, 352, 356 Ratienale 23, 27, 28, 51, 81, 85,
93, 100, 157, 161, 163, 176, 185, 187, 308, 316,
347, 354, 361, 362 ~% (new linc) format
directive 321 ~& (fresh line) format
directive 321 ~((casc conversion) formzﬁ
directive 323 ~* (ignore argument) forinat
directive 322 ~< (justification) format
directive 325 ~cnewline> {ignore
whitespace) format directive 321 ~7
{(indirection) format directive 322 ~~ (Tilde)
format directive 321 ~A (Asci) format

directive 314 ~B (Binary) format

~ 365 -

directive 315 ~C (Character) format
directive 316 D {Decimaly format
directive 315 ~E {Fxponential
Sloating-poinf) format dircctive 318 ~F
{Fixed-format floating-point) format
directive 316 ™G {Dollarsy format
directive 320 ~G (General floating-point)
format directive 319 ~0 (Ocfal) format
dircctive 315 ~p (Plural) format
directive 316 ~R {Radix) format
directive 315 ~S (S-expression) format
directive 315 T {(Tabulatey format
dircctive 321 ~X {(heXadecimal) format
directive 315 ~[(conditional) format
directive 323 ~~ (loop escape) format
directive 326 ~{ (iteration) format
dircctive 324 ~| (new page) format
directive 321 " macro character 286 #
macro character 283 ' macro character 285
(macro character 285) macro
character 285 , macro character 288
macro character 285 * macro character 286
ADA 11, 68 arn 22, 169, 202 aLGol 30, 47,
107, 174 ¢ language 17, 294 FORTRAN 2, 11,
16, 107, 119, 168, 174, 317, 318, 319, 320
InrerLise 1, 2, 11, 36, 37, 89, 107, 131, 134,
168, 174, 201, 202, 214, 215, 230, 282, 297,
358 Keywords for defstruct
slot-descriptions 253 1Lise 1.5 106, 201 Lisp
Machine Lise 1, 2, 11, 21, 66, 86, 97, 100,
107, 112, 134, 137, 139, 147, 162, 163, 168,
174, 201, 202, 214, 230, 235, 237, 251, 252,
293, 297, 317, 319, 320, 322, 343, 344, 345,
347, 348, 350, 351, 358, 360, 361 MacLisp 1,

366

2, 11, 21, 23, 43, 55, 59, 61, 97, 102, 107, 115,
116, 126, 127, 128, 131, 134, 150, 151, 157,
161, 162, 163, 168, 174, 131, 182, 184, 193,
201, 204, 214, 220, 222, 226, 230, 237, 266,
273, 280, 282, 286, 293, 297, 301, 302, 311,
317, 318, 319, 320, 343, 344, 345, 347, 348,
350, 358 Muliiple values
read-from-string 310 NI (New
Implementation of 118 1, 107, 134, 137, 174,
214 pisi 16, 168, 174, 240, 294 PASCAL 26,
68, 161 PORTABLE STANDARD LISP 276 5-1

returned by

Tasp 1, 2 Seice Lisp 1, 134 STANDARD
Lisr 2, 174 a-list 225
abort keyword for close 273

abs function 166 access functions 250

acons function 225; 133
acos function 167; 158
acosh function 169; 158
adjoin function 222; 218

adjust-array function 241
adjustablécyword fomake-array 234
adjustable-array-p function 238; 242
function 188: 193
alphanumericp function 190
and macro 68; 37, 95, 113
function 216; 217, 287

append keyword for if-exists

alpha-char-p

append

option to open 341 apply function 89;
26, 49, 112, 117, 118, 237, 264

applyhook function 264
applyhook variable 263
apropos function 359

apropos-list function 359
areT function 236: 22, 79, 199, 238, 239,

240, 244 array 22 predicate 63

array keyword for write 311
for write-lo-string 312
function 237; 240

array-dimansion-Timit constant 236;

array-dimension
233 array-dimensions function 237
array-element-type function 237; 38
array-has-fillt-pointer-function 241
array-in-hcunds-p function 238
function 237
array-rank-timit constant 236; 22,
233, 237

array-row-major-index function 238

array-rank

array-total-size function 237; 235
array-total-size-1imitconstant 236;.
233 arrayp function 63 ash function 180
asin function 167; 158
asinh function 169 assert macro 351,
82, 349 assoc function 226; 225, 227
assoc-if function 226
assoc-if-not function 226 association
list 103, 225 as a substivution table 221
table 229

atan function 167 atanh [function 169;

compared to hash

158 atom predicate 61

atom function 61; 22, 102

hase keyword for write 311

for write-to-string 312
bignum 11 bit function 239; 79 bit
string infinite 177 integer

represention 177 bit-and function 239

bit-andcl function 239
bit-andc2 function 239
bit-eqv fumction 239
bit-ior function 239
bit-nand function 239

INDEX

bit-nor
bit-not
bit-orct
bit~orc2

bit-vector

bit-vector-p

function 239
function 240
function 239
function 239
predicate 62

function 62

bit-xor Function 239 block special
form 98; 32,47, 55,71, 99, 102, 103, 107, 108,

109, 113,
boole-1
hoole-2

hoole-and

boole~andcil

hoole-andc?

boole-cl
boole-c2
hoole-clr
boole-eqv
boole-ioyp
boole-nand
hoole-nor
boole~orci
boole-orc?
boole~set

hoole-xor

both~case-p

boundp

break

break-on-warnings
function 219
byte function 181 byte

hutlast

byte-position

byte-size
caaaar

caaadr

function 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179
constant 179

constant 179

_constant 179

funetion 189

function 75; 74

function 350
variable 350
byte 181

specifiers 181

function 181

function 181

function 212; 18
function 212; 78

367
caaar function 212; 78
caadar function 212, 78
caaddr function 212; ' 78
caadr function 212; 78
caar function 212; 78
cadaar function 212: 78
cadadr function 212; 78
cadar function 212; 78
caddar function 212; 78
cadddr function 212; 78
caddr function 212; 778
cadr function 212; 78

call-arguments-limit constant 90;
54, 111 car 21, 211 car function 211; 77,
78, 214 case function 98
case keyword for write 311
for’ write-to-string 312
case macro 96; 97, 98, 113, 352, 353, 354
catch 114 catch special form 114; 31, 47,
71, 113 ccase macro 353; 82, 97, 113

cdaaar function 212; 78
cdaadr function 212; 78
cdaar function 212; 78
cdadar function 212; 78
cdaddr function 212; 79
cdadr function 212; 78
cdar function‘ 212 78
cddaar function 212; 78
cddadr function 212; 78
cddar function 212; 18
cdddar function 212; 78
cddddr function 212; 78
cdddr function 212; 79

cddr function 212; 78 codr 21, 211
cdr function 211; 78, 219

368

ceiling function "173; 163
cerror function 348; 4, . 350
char function 243; 79, 239
char-bit function 195; 79
char-hits function 192; 188

char-bits-1imit constant 188; 18, 192
function 192; 43, 187
constant 187; 192

. constant 195

char-code
char-code-Timit
char-control-bit
char~downcase [unction 193; 189, 246
function 191; 67, 244
function 192; 187, 290
char-font-1imit constant 187; 18, 192

char-equal
char-font
char-greaterp function 191
constant 195
function 194; 43, 190

function 191; 210, 245

char-meta-bit

char-hyper-bit
char-int
char-lessp
constant 195
char-name _ function 194
char-not-equal function 191
char-not-greaterp function 191
char-not-lessp function 191
consiant 195
function 193; 189, 246
function 190

char< function 190: 17, 245

char-super-bit
char-upcase

char/=

function 190
char= function 199 309

char<=

char> function 190 char>= function 190
character coercion to string 247

predicate 62 character function 192;
42 character syntax 288
function 62; 188

macro 351

characterp
check-type

circte keyword for write 311

for write-to-string 312
cis function 167 cleanip handier 115
clear-input function 309
function 312

close function 273; 339, 341, 342

clear-output
c¢lrhash function 231
function 192
coerce function 42; 43, 172, 192, 200, 201,

code~char

209, 247 comments 285 common data

type predicate 63
commong function 63
compile function 335

compile-file function 356 compiled

function predicate 63
compiled-function-p function 63
compiler-let spccial form 92; 47
complex function 176; 16, 39 complex
number nredicate 62
complexp function 62; 159
fordafstruct 253
function 200; 216
cond macro 95; 59, 68, 69, 97, 101, 113

conditional and 68 or 68

conc-namekeyword

concatenate

duting read 293
conjugate function 163 cons 21, 211
predicate 61 cons function 213; 39
cansp function 61
constantp function 265; 138 constructor
function 250
consktructokeyword fudefstruct 254:
252, 257 control structure 71 copier
function 250
for defstruct 254
function 216

copier keyword
copy-alist

copy-Tist function 216

INDEX

copy-readtable funciion 295
copy-saq function 199; 216
copy-symbol function 137

copy-tree function 217; 216, 220

cos function 167 cosh function 169

count function 207

count keyword for delete 204
for delete-if 204
for delete-if-not 204
for nsubstitute 206
for nsubstitute-if 206
for nsubstitute-if-not 206
for remove 203
for remove-if 203
for remove-if-not 203
for substitute 205
for substitute-if 205
for substitute-if-not 205

count-if function 207

count-if-not function 207

creatdeyword foif-does-not-exist
option to open 341

ctypecase macro 353; 82, 98, 113 data

type predicates 60
debug~io variablc 270
decf macre 163; 82
declaration . declaration 130
function 129 function type 129
ignore 130 inline 129
notinline 129 optimize 130
special 128 type 128 declaration

declarations 125
declare spccial form 125; 9, 47, 50, 92,
102 decode~float function 175

declaration 130

decode~universal-time function 361

369

cdefault keyword for type option
to ' open 340
*default-pathname-defauhtialile 338;
335, 336, 337, 345, 356

defaultkeyword farake-pathname 336
defconstant macro 56; 46, 142, 265, 356
define-modify-macro macro 84
define-setf-method macro 87; 80, 84
defmacro macro 118; 41, 48, 54, 55, 85, 87,
94, 113, 123, 125, 345, 356
defparameter macro 56; 127, 356
defsetf macro 84; 80, 125, 251, 356
defstruct 249 defstruct macro 251; 10,
206, 28, 35, 41, 79, 208, 209, 212, 292, 301, 356
deftype macro 41; 36, 113, 125, 356
defun function 117 defun macro 55; 206,
49, 53, 93, 98, 113, 118, 125, 129, 345, 356
defvar macro 56; 50, 127, 128, 345, 356

delete function 204; 219
detete-duplicates function 205
delete-file function 343
delete-if function 204
delete-if-not function 204

denominator 12
function 173; 208
deposit-field function 183; 79, 182

describe function 358 destructuring 119

denominator

device (pathname component) 332
devicdeyword fomake-pathname 330
digit-char function 193
digit-char-p function 189; 193, 194 :
direction keyword for open 339;
343 directory (pathname component) 332
directory function 346
directorkgyword fwake-pathname 336

370

directory-namestring funciion 337
disassembie function 356 displaced

array 234

displaced-index-d&fpfitd-array 241
for make-array 234

displaced-keyword &djust-array 241

for make-array 234 do macro 100;
32,71, 76,99, 107, 113, 125 do* macro 100;
99,125 do-a11-symbols macro 152; 105,
125, 359
do-external-symbols macro 152; 105,
125 do-symbols macro 152; 105, 125
documentation function 356; 41, 55, 57,
79, 118, 251 dolist macro 104; 99, 113,
119, 125 dotimes macro 104: 99, 113, 125
dotted list 211
doubte-float-epsilon constant 186

doubie-float-negative-equaitad 186

dpb fuaction 182; 79, 132
dribble function 359 dynamic exit 114
ecase macro 353; 97, 113

gd function 358 eighth function 214; 78

element-tybmyword &djust-array 241
for make-array 233
for open 339 eit function 195-.); 79,
214, 236, 244 cmpty list predicate 61

encode-universal-time function 361

rand keyword for count 207
for count-1if 207
for couni-if-not 207
for delete 204
for delete-duplicates 205
for delete-if 204
for delete-if-not 204

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
rendl
for
for
for
for
for
for

for

Fi11 203 for find
find-if

find-if-not
nstring-capitalize
nstring-downcase
nstring-upcase
nsubstitute
nsubstitute-if
asubstitute-if-not
parse-integer

position

position-if
position-if-not
read-from-string
reduce 202 for remove
remove-duplicates
remove-if
remove-if-not
string-capitalize
string-downcase
string-upcase
substitute
substitute-if
substitute-if-not
write-1ine
write-string
with-input-from-string
keyword for mismatch
replace 203 for search
string-equal
string-greaterp
sﬁringwiessp
string-not-equal
string-not-greaterp

string-not-lessp

206
206
206
247
247
247
206
206
206
310
206
206
206
309
203
205
203
203
246
246
246
205
205
205
312
312
272
207
207
244
245
245
245
245
245

INDIEX

for ' string/= 245
for strj’ng< 245
for string<= 245
for string= 244
for string> 245
for string>= 245

end2 keyword for mismatch 207
for reptace 203 for search 207
for string-equal 244
for string—gt.‘eaterp 245
for string-tessp 245
for string-not-equal 245
for string-not-greaterp 245
for string-not-lessp 245
for string/= 245
for string< 245
for string<= 245
for string= 244
for ' string> 245
for string>= 245

endp function 213; 22, 102, 211

enough-namestring function 337

environment structure 71 eq function , 63;
63 compared to equal 63
eql funciion 65; 36, 157, 161, 187, 191
equal function 66; 191, 213, 244, 275, 334
equalp function 67; 223
error function 348; 4 _
errorkeyword forif-does-not-exist
option to open 341 for if-exists
option to open 340
*arpror-output® variable 270; 350
escape keyword for write 311
for write~to-string 312
etypecase macro 353; 98, 113

n

eval function 263; 112, 17
eval-when special form 57; 47, 113, 119,
127, 148, 292, 355 evathook f{unction 264:
123, 264 *evalhook® variable 263
evenp function 159 every fuaction 201;
68 exp function 165
gxport function 151; 144, 145
expt function 165; 158 extent 29

false when a predicate s 59
fboundp function 75
fceiling function 175
features variable 363; 293
ffloor function 175
fifth function 214; 78
file-author function 344
fite-length function 344
file-namastring function 337

file-position function 344 340
file-write-date function 344
111 function 203 Al pointer 240
fill-pointer function 241: 79, 243
fill-pointeryword fulbjusti-array 241

for make~-array 234
find function 206; 222, 225, 226
find-all-symbols function 152
find~-if function 206
find-if-not function 206

find-package function 149; 141
find-symbol function 150
finish-output function 312
first function 214; 78, 211 fixnum 11
flet special form 93; 47, 49, 75, 117, 125,
129 fioat function 172; 168
float-digits function 175

float-precision function 175

372

float-radix function 175; 13

float-sign function 175; 159, 298
floating-point numiber 13 predicate 62
floatp function 62; 159
floor function 173; 43, 118, 163, 174 flow
of control 71 fmakunbound function 77;
function 312
format Function 313:; 247, 313, 328, 347,
349, 350, 351 formatted output 313
function 214: 78
fresh-Tine function 312; 321, 327, 328 :

for count 207

75 force-output

fourth

from-end keyword

for count-if 207
for count-if-not 207
for delete 204
for daleto-duplicates 205
for delete-if 204
for delete-iT-not 204
for Tind 206 for find-if 206
for find-if-not 206
for mismatch 207
for nsubstitute 206
for nsubstitute-if 206
for nsubstitute-if-not 206
for _ position 206
for position-if 206
for position-if-not 206
for reduce 202 for remove 203
for remove-duplicates 205
for remove-if 203
for remove-if-not 203
for search 207
for _substitute 205
for substitute—if. 205
for substitute-if-not 205

fround function 175
function 175
funcall fanction 89: 26, 49, 60, 112, 117,

123, 264 function

ftruncate

predicate 63 function
function 26
function special form 72 33, 47, 49, 52

declaration 129 Tunction
function type declaration 129
functionp function 63; 49
gcd function 164 gencral array 233

gensym function 138; 85, 86, 120, 138 :

gensym keyword for write 311
for write-to-string 312
gentemp function 138; 85, 86, 138

get function 134; 78, 79, 134, 135
get-decoded-time function 361
get-dispatch-macro-charfmatiéon 297
get-internal-real-time function 362
get-internal-run-time function 361
get-macro-character function 295
get-output-stream-ste infgnciion 272
get-proparties function 136
get-setf-method function 88
get-setf-method-multipldunctione 88
function 361
getf function 135; 79, 82, 134, 135, 136
gethash function 231; 79 go special
form 109; 32, 47, 99, 101, 103, 108, 115
graphic-char-p function 188; 190, 194
hash table 229, 232

hash-table-count

get-universal-time

predicate 230

function 232
hash-table-p function 230; 63 home
directory 337 host {pathname
component} 332
host keyword formake-pathname 336

host-namestring function 337

INDEX

identity function 363 if spccial
form 95; 47, 39, 68, 69, 95, 113, 121

if-does-not-exislteyword [droad 345

for open 341
if-exists keyword for open 340
ignore | declaration 130
imagpart function 177 implicit

progn 71, 91, 92, 93, 95, 96, 101
import function 151; 142, 143, 145
in-package function 149
incf macro 163; 82, 84
include keyword fordefstruct 254;
28, 260
inkgvomlith - input-from-string 272
index offset 235 indicator 133 indirect
array 234
init-file-pathname function 363
initial-contduywadgust-array 241
for make-array 234; 300
initial-elemkayvordjust-array 241

for make-1ist 216
for make-sequence 200
for make-string 245
for make-array 234

initial-of fskdyword flafstruct 257;
260

initial~valudkeyword foreduce 202

inline declaration 129

input keyword for direction
option to open 339
input-stream-p function 273
inspect function 358
int-char function 194 integer 11

predicate 61

integer-decode-float function 175

373
integer-Tength - funciion 181; 3¢
integerp function 61; 159

intern function §50; 63, 137, 138, 140, 145
internal-time-units-pecomtaunidl;
359, 362 intersection function 223
io keyword for direction option
to open 339 disqgrt function 166
itcration 99

junk-allodedwordfarse-integer 310

tkey keyword for adjoin 222
for count 207 for count-if 207
for count-if-not 207
for delete 204
for delete-duplicates 205
for delete-if 204
for delete-if-not 204
for find 206 for find-if 206
for find-if-not 200
for intersection 223
for member 222
for member-if 222
for member-if-not 222

for merge 209 for mismatch 207

for nintersection 223
for nset-difference 224
for nset-exclusive-or 224

for nsublis 222 for nsubst 221

for nsubst-if 221
for nsubst-if-not 221
for nsubstitute 206
for nsubstitute-if 206
for nsubstitute-if-not 206
for nunion 223
for position 206

for " position-if 206

374

for position-if-not 206
for remove 203
for remove~duplicates 203
for remove-if 203
for remove-if-not 203
for search 207
for set-difference 224
for set-exclusive-or 224
for sort 208
for stab]e-s-ort 208
for sublis 221 for subsetp 225
for subst 220 for subst-if 220
for subst-if-not 220
for substitute 205
for substitute-if 205
for substitute-if-not 205
for union 223
keywordp function 138 labels special
form 93; 49, 75, 117, 125, 129

Tambda-1ist-keywords

constant 54;

119

Tambda-parameters-1imitconstant 54,
o0, Tast function 215
Tem function 164 1db function 182; 79, 87
1db-test Function 182
1diff function 219; 222

Tength keyword for wirite 311
for write-to-string 312
Tet special form 91; 31, 46, 47, 92, 93, 99,
103, 107, 108, 109, 113, 135
Tet* function 86 let* special form 92;
47, 52, 109, 113, 125
level keyword for write 311
for write-to-string 312
lisp-implementat ion- typlanction 362
Tisp-imptementation-verfmotion 362
fisg 21, 211
also:dotted list Vist

Jist®

predicate 61 Sce
function 215 st
function 215; &9
function 150

syntax 285
1ist-ali-packages
list-Tength function 213
Tisten function 309 1istp function 61;
211 load function 345; 148, 343
*load-pathname-defaultsariable 338

Toad~verbose variable 345

least-negative-double-fdomstnt 186
least-negative-long-TTowstant 186
least-negative-short-flamstant 185
least-nagative-single-fdmatnt 186
least-positive-double-fGmatunt 186
least-positive-long-floanstant 186
teast-positive-short-flomstant 185
Teast-positive-single-fdmatant 186
length function 200; 199, 213, 214, 237 :

Tocally macro 127; 125
Tog function 165; 158
Togand function 17§; 240
logandel function 178
logandc? function 178
Toghitp function 180
Togcount, function 180
Togeqv function 178 i-()gical
operators on nil and non-nil

values 67

logior function 177

lognand function 178
Tognor function 178
lognot function 180; 240
Togorcl function 178
logorc? function 178

logtest

function 180

INDEX

togxor function 177
fong-float-epsiton cuﬁstant 136
long-float-negative-epsdhutant 186
Tong-site-name function 363
Toop macre 1006; 99, 101, 103
lower-case~p Function 189; 190, 193,
297 machine-instance function 362
machine-type : function 362
machine-version function 362 macro
character 284

macro-function [unction 118; 47, 75
macroexpand function 123; 48, 118, 264
macroexpand-1 function 123
macroexpand-hook variable 123
macrolet special form 93; 47, 117, 8,
119, 123, 125 make-array function 233;
37, 38, 54, 241, 245, 292
make-broadcast-stream function 271
make-char function 193
make-concatenated-streafunction 271
make-dispatch-macro-chismtibarl9s;

297 make-echo-stream function 271

make-hash-table function 230
make-1ist function 216
make-package function 149
make-pathnams function 336

make-random~state function 184; 301
make-sequence function 200
make-string functicn 245
make-string~input-streafunction 271
make~strirg-output-strefnction 271
make-symbhol fumction 137
make-synonym-stream funqtion 271;
270

make-two-way-stream function 271

375

makunbound function 77; 46, 74, 75, 93
map function 201; 43, 165, 117, 264

mapc function 105; 201
MAPCan function 105
mapcar function 105
mapcon function 105
maphash function 231
map1 function 103; - 201
maplist function 105 mapping 105
mask-field function 182; 79

max function 161 member function 222;
59, 225 member-if function 222
member-if-not function 222
merge function 209

marge-pathnames function 336; 343

merging of pathnames 332 sorted
sequences 209 min function 161
minusp function 159
mismatch function 207, 223
mod function 174
modules variable 153

most-negative-double-flambtant 186
most-negative-fixnum constant 185;
11, 40
most-negative-long-floadonstant 186
most-negative-short-f1omnstant 185
most-negative-single-flgmstant 1836
most-positive-double-Tlexmbtant 186
most-positive-fixnum constant 185;
11, 40, 57
most-positive-long-floadpnstant 186
most-positive-short-1lowastant 185
most-positive-single-fleoastant 186
mullipte values 110

multiple-value~bind macro 1{2; 110,

376

113, 125, 174
multiple-value-call special
form 111; 39, 47, 110, 112
multiple-value-list macro 111; 110
muttiple-value-progl special
form 112; 47, 9%, 110, 13
multipie~value-setq macro [12; 110,
114

multiple~values~Timit constant 111;
90 name {pathname component) 332
name keyword formake~pathname 336

function 195

for defstruct 257;

name-char

named keyword
254 namestring function 337 naming
conventions predicates 59
nbutlast function 219
ncenc function 217; 106, 216, 219, 287
new-versionkeyword forif-exists
optivn to open 340041 constant 60; 3, 32,
265 nintersection function 223
ninth [unction 214; 78 nou-local exit 114
not function 67; 61 nota.ny function 201
notevery function 201 notinline
declaration 129 nreconc function 217, 219
nreverse function 200; 102, 208,. 219
nset-difference function 224
nset-excliusive-or function 224
nstring-capitalize ' function 247
nstring-downcase function 247

pstring-upcase function 247

nsubylis function 222
nsubst function 221
nsubst-if function 221

function 221

function 206

nsubst-if-not

nsubstitute

nsubstitute-if function 206
function 206
nth function 214; 79, 214
nthedr function 215 aull function 61:
67, 102 number , 157

predicare 61 numberp function 61; 159

nsubstitute-if-not

floating-point 13

numcerator 12 numerator function 173;
298 nunion function 223
oddp function 159 open function 339; 25,
271, 273, 313, 332, 342, 344 optimire
declaration 130 or macro 68; 113
output keyword for direction
option to open 339
output-fikeyword foompile-fiie 356
cutput-stream-p function 273
overwrite keyword for if-exists
option ' to open 340
package predicate 63 package cell 133
*package® variable 148; 138, 251, 254,
281, 299, 311
function 149; 141

package-nicknames function 149; 141

package-pame

package-shadowing-symboflnction 150
function 150

function 150

package-use-list
package-used-by-Tist
function 63
function 225; 133
function 310

packagep
pairtis
parse-integer
parse-namestring function 335
parsing 284 of pathnames 332
pathname function 334
pathname-device function 336
pathname-directory function 336
pathname-host function 336

pathname-name function 336

INDIEX 3

pathname-type ' function 336 300, 311 *ppint-pretty® variable 302;
pathname-version fm,icti(m 336 256, 311 *print-radix® variable 302;
pathnamep function 336, 63 298, 311 printed representation 275
peek-char function 303 printer 275, 293
phase funclion 166 pi constant 168; 32, probe keyword for direction
265 plist 133 plusp function 159 option to open 339
pop macro 218; 82 position of a probe-file function 343
byte 181 position function 206; 37, 222, proclaim function 127; 50, 56
226 position-if function 206 proclamation 127 prog macro 108; 32, 99,
position-if-not ‘ function 206 113, 125 prog* macro 108; 113, 125
pprint function 311 predicate 59 progt macre 99; 71, 112, 113, 114
predicatekcyword fordefstruct 254 prog2 macro 91; 71, 114 progn special
predicates true and false 539 form 90; 47, 55, 71, 98, 99, 101, 113
preserve-whitdsydfc®hom-string 309 progv special form 93; 47, 77, 113
ipretty keyword for write 311 property 133 property list 133 compared
for write-to-string 312 to association list 133 compared to hash
printl function 311; 12, 301, 312, 315, 317, table 229 provide Function 153
318 prinl-to-string function 312; 247 psetf macro 80; 76 psetq macro 76;
princ function 311; 301, 312, 314 01, 103 push macro 217, 82
princ-to-string function 312; 247 pushnew miacro 218; 222
print [unction 311; 185, 269, 275 : #guery-io* variable 270, 327, 328
print keyword for Toad 345 print querying the user 327 quote character 285
name 133, 136, 243 coercion to quote special form 72; 47, 64, 75
string 247 *print-array* variable 304; radixkeyword forparse-integer 310
299, 300, 311 *print-base* variable 302; for write 311
298,299, 311 *print~case* variable 302; for write-to-string 312
299, 311 *print-c¢ircle* variable 302; random function 183
217, 299, 311 random-state predicate 185
*print-escape™ variable 301; 256, 298, *random-state® variablc 184
299, 311 : random-state-p function 185; 63
print-functibkayword fwfstruct 256; rank 22 rassoc function 227; 225
26 *print-gensym* variable 303; 299, rassoc-if function 227
311 *print-Tength* variable 303; 231, rassoc-if-not function 227 ratio 12
293, 300, 311 rational 12 predicate 62

orint-level® variable 303; 256, 294, rational function 172; 43

378

function 172
function 62; 159
read function 3056, 10, 23, 57, 72, 74, 136,
137, 185, 269, 270, 276, 282, 285, 301, 302,
304, 311, 315 *read-base® variable 282;
J80, 282, 299 read-byte function 310;
339, 340 read-char function 308; 269,
270, 309, 339, 344
function 309
*read-default-float-forvadblile 305;
14, 298, 318
function 307;

rationalize

rationalp

read-char-no-hang

read-delimited-1ist
function 309
read-T1ine function 308; 304, 312

read-only keyword

295 read-from-string

for defstruct
slot-descriptions 253
read-preserving-whitesfaweion 306;
277,309 *read-suppress® variable 282;
293, 305 reader 275, 276 readtable 294
predicate 295
rgadtable variable 294; 295
readtablep function 295, 63
realpart function 177 record
structure 249 reduce function 202; 264

rehash-s kepwordike-hash-tablie 230

rehash-thredegigdfdehash~tahle 230
rem function 174 remf macro 136; 82,
134 remhash function 231
function 203; 198
function 205
function 203
function 203; 106
function 135, 136

rename keyword for if-exists

remove
remove-duplicates
remove-if
remove-if-not

remprop

open 340

rename-and-delekeyword ff-exists

option to

option 4] open 340
function 343

function 149; 141

rename-file

rename-package

replace function 203; 79, 199
require function 153
rest function 215; 78, 21.1
return macro 99; 48, 71, 100, 1031, 102,
103, 108, 113, 114, 152

return-from special form 99; 4, 32, 47,
55, 7%, 99, 104, 110, 113, 115
revappend function 217
reverse function 200 room function 358
rotatef macro 82 round function 173;
162, 163 rplaca function 220; 77, 85, 211
rplacd function 220; 211
sample -constant constant 4
samplie-function function 4
sample-macro macto 4
sample~special-form special form 4
variable 4
sbit function 239; 79, 238
function 175
schar function 243; 79, 238, 239

SCHEME 1 scope 29 search function 207;

sample-variable

scale~float

199 second function 214; 78 set list
representation 222 set function 76; 74, 75,
77 set-char-bit function 195; 79, 195
set~-difference function 224
set-dispatch-macro-charfnttion 297

function 224
function 295;
58, 276, 297

set-syntax-from-char function 295;

set-exclusive-or

set-macro-character

INDEX

276 setf wmacro 78; 74, 75, 76, 81, 82, 118,
134, 135, 136, 163, 182, 195, 199, 211, 213,
214, 215, 217, 218, 219, 229, 231, 236, 238,
239, 241, 244, 253, 343, 351, 357
setq macro 101 setq special form 76;
46, 47, 76, 77, 91, 92, ‘1‘00, 105, 114, 128
sets bit-vector representation 177
infinite 177 integer
representation 177 seventh f{unction 2i4;
78 shadow function 151; 141, 145
shadowing 30
shadowing-import function 151; 14I,
143, 145 shared array 234 sharp-sign macro
characters 288 shiftf macro §1
short-float-epsilon constant 186

short-float-negative-epmibomnt 186

short-site-name function 363
signum function 166 simple
bit-vector predicate 62 simple
string predicate 62
simple-bit-vector-p function 62
simple-string-p function 62
simple-vector-p function 62
sin function 167

single-float-epsilon _constant 186
s1‘ng1e—ﬂoatﬂ]egative"em;ni&mh 186
sinh function 169 sixth function 214;
78 size of a byte 181

sizékeyword fomake-hash-table 230

sleep function 362
software-type function 363
software-version function 363

some function 201; 69 sort function 208
sorting 208 special declaration 128

special-Torm-p function 75, 118

319

specialized array 233 sqrt Tunction 165;
158 stable-sort function 208
standard-char-p function 188; 63
*standard-input® variable 269; 304,
359 =*standard-output* variable 269;
310, 311, 313, 345, 358, 359

start keyword for count 207
for count-it 207
for count-if-not 207
for delete 204
for detete-duplicates 205
for deltete-if 204
for delete-if-not 204
for 411 203 for find 206
for find-if 206
for find-if-not 206
for nstring-capitalize 247
for nstring-downcase 247
for nstring-upcase 247
for nsubstitute 206
for nsubstitute-if 206
for nsubstitute-if-not 206
for parse-integer 310
for position 206
for position-if 206
for position-if-not 206
for readwﬂonrstring 309
for reduce 202 for remove 203
for remove-duplicates 205
for remove~if 203
for remove-if-not 203
for strfngwapitah‘ze 246
for string-downcase 246
for string-upcase 246
for ' substitute 205

380

startl keyword

start2 keyword

264

for
for
for
for

for

for replace 203

for
for
for
for
for
for
for
for
for
for
for

for

for
for
for
for
for
for
for
for
for
for
for
for

for

replace 203

substitute-if .

stubstitute-if-not .

write~tine

write-string

with-input-from-string

string-not-greaterp

for mismatch

for search
string-equal
string_grea£erp
string-tessp
string-not-equal
string-not-lessp
string/-

string<

string<=

string=

string>

string>= 245

string-not-greaterp

for mismatch

for search
string-equal
string-greaterp
string-lessp
string-not-equal
string-not-lessp
string/=

string<

string<=

string=

string>

207
207
244
245
245

245

245
245
245
245
245
244
245

207
207
244
245
245
245
245
245
245
245
245
244
245

string>= 245 step macro 357;

stream

keyword

stream-elament-type

for

write 311

function 273;

340 streamp function 273, 63 string , 243

predicate 62 string function 247; 243

string

string-capitalize

302, 323 string-char-p

syntax 286

function 246; 247,

function 188;

63, 243 string-downcase function 246

string-equal

string-greaterp

string-lefi-trim

string-Tessp

string-nect-equal

string-not-greaterp

string-not-tessp

string-right-trim

string-trim

string-upcase

string/=
stringx<
string<=
string=
string>

string>=

function 244;

function 244, 65

function 245
function 246
function 245
function 245
function 245
function 245
function 246
function 246
function 246
function 245
function 245
function 245

65, 149
function 245

function 245

stringp function 62; 243 structure 249

structured
sublis
subseq
subsetp
subst
subst-if

function 220;

subst-if-not

substitute

pathname components 333
function 221
function 199; 79

function 225

221
function 220
function 220

function 205; 221

substitute-if

substitute-if-not

function 205

function 205

INDIX 381

substitution 220 subtypep functicn 60; for rassoc 227 for remove 203
237 : for . remove-duplicates 205
supersede keyword for if-exists for search 207
option to open 31l svref FRunction 238; for set-difference 224
79 sxhash function 232 symbol 9, 133 for set-exclusive-or 224
cocrcion to a string 243 cocrcion to for sublis 221 for subsetp 225
string 247 -~ predicate 61 for subst 220
symbol-functioen function 75; 26, 72, for substitute 205
75, 79, 133 symbol-name function 136 for tree-equatl 213
symbol-package function 138;. 142- for union 223
symbol-plist function 135; I test-not keyword for adjoin 222
symbol-value function 74; 77, 79, 133, for assoc 226 for count 207
263 symbotp function 61 t constant 60; for detete 204
57, 265 tagbody special form 107; 32, 47, for delete-duplicates 205
99, 106, 101, 103, 107, 108, 109 for find 206
tailp function 222 tan function 167 for intersection 223
tanh function 169 tenth function 214; for member 222
18 *terminal-io* variable 270; 304, for - mismatch 207
310, 327 terpri function 312; 311, 321 : for nintersection 223
test keyword for adjoin 222 for nset-difference 224
for assoc 226 for count 2067 for nset-exclusive-or 224
for delete 204 for nsublis 222 for nsubst 221
for delete-duplicates 205 for nsubstitute 206
for find 206 for nunion 223
for . intersection 223 for position 206
for make-hash-table 230 for rassoc 227 for remove .203
for member 222 for remove-duplicates 205
for mismatch 207 for search 207
for nintersection 223 ‘ for set-difference 224
for nset-difference 224 for set-exclusive-or 224
for nset-exclusive-or 224 for sublis 221 for subsetp 225
for nsublis 222 for nsubst 221 for subst 220
for nsubstitute 206 for substitute 205
for nu'm'on 223 for tree-equal 213

for position 206 for union 223 the special form 131;

332

39, 47,19, 113 third function 214; 78
throw 114 throw special form Ha; 31, 47,
48, 71, 1o, 101, 113, 115, 342
time macro 358 trace wmacro 357; 270
®trace-output® variable 270; 357, 358
tree 22 tree-equal ﬁmr:.tion 213: 66
true when a predicate s 59
truename funcdon 334; 337, 343, 346
truncate function 173; 39, 162, 163, 174
type {(pathname component) 332 type
declaration 128
typekeyword formake-pathname 336

for defstruct slot-descriptions 253

for defstruct 256; 254, 256, 258 type
specifiers 35 type-of function 43; 9, 259
typecase macro 97; 43, 113, 352, 353
typep function 60; 9, 37, 39, 42, 43, 60,
250, 251, 255, 256, 259
function 151; 144

unintern function 150; 140, 141, 142, 144

unexport

union function 223 uniess mucro 95;
59, 69, 113, . 350
unread-char function 308; 277, 306
untrace macro 357
unuse-package function 152 = unwind
protection 115 unwind-protect épccial
form 115; 31, 47, 113, 342

function 189; 193
function 152; 144, 145
gser-homedir~pathname function 337,
363 vatues function 110; 48, 71, 90, 96,

116, 276 wvalues-Tist

upper-case-p

use-package

function 111
vector predicate 62
vector function 236

vector-pop function 241

vector-push function 241; 273, 313

vector-push-axtend function 241
vectorp function 62

verbose keyword for Toad 345
version {pethname component) 332
versiokeyword fomake-pathname 336
warn function 350 when macro 95; 59, 68,
9s, 113, 350
with-input-from-string macro 272
with-open-file macro 342; 30, 271, 342
with-open-streanm MAacro 272-
with-output-to-string macro 272
write function 311; 312
function 313; 339, 340
write-char function 312: 269, 308, 339,
344 write-Tine function 312; 308
function 312

function 312

write-byte

write-string

write-to-string
y~or-n-p function 327 YeS-O1-no
functions 327 yes-or-no-p function 328;

278 zerop function 159

INDEX

365

Index

