‘ %Computer Science Department Carnegie-Mellon University
(412) 578-2565 ' Pittsburgh, Pennsyivania 15213
: ‘ ‘ 22 November 1982

Greetings!

Enclosed is a copy of the latest draft (‘'Laser Edition") of the Common LISP Reference Ma‘nuél.
Please remember that this is only a draft and not a final version. ;

A serious error occurred in the fdrmatting of the document. Through a comedy of errors, the
chapter on Arrays was omitted during the final pass through SCRIBE. it was supposed to have been

» . Chapter- 17. It is enclosed separately as Chapter 16a, with page numbers 192a through 192j. You

. are asked to insert it between Chapters 16 and 17 (pages 192 and 193). Cross-references

occurring within the manuscript may be in error because of the inadvertent omission. o
It is my belief that the Common LISP Group is in essential agreement on the contents of this draft,
and that only minor corrections will be heeded. A few major language components that have been
previously discussed are not included here, such as the proposed ‘‘instances” featur'e.' the
complex 1oop macro, and the LetS construct, and of course the dispositions of thesg are n‘ot'
necessarily yet agreed upon. ’ '

| would like very much to freeze a version of this document by January 1983 and publish it as a
fixed reference to which we can point. This is necessary so that implementations may proceed
‘with confidence. This is not to say that Common LISP will be complete or fixed. It may be
expecteu to continue to evolve and have various aspects extended, included, or modified.
However, consideration of looping constructs or package systems should not be allowed to
impede the progress of implementations unnecessarily. Presumably a revised Common LISP
document will appear later, perhaps in 1984 or 1985. If there is doubt about the design of some
feature of the language, it probably should simply be omitted from this frozen version, in the
expectation that it can be added the second time around.

. It would be helpful if all interested parties would send corrections or comments to me as quickliy as
possible. The most helpful comments would be corrections of presentation, including indications

22 November 1982 Page2

of passages that are inconsistent or unclear, and minor improvements to. the language.
Suggestions for major changes to the language are also welcomed, but | ask that they be included
in separate messages or on separate pieces of paper.” Of course, if | have failed to reflect in this
edition the votes of the committee on é.ny previously balloted issues, this should be drawn to my
attention as quickly as possible.

Thank you for your help with and interest in Common LISP.

Sincerely,

/ [
GuyL. Steele 194

Assistant Professor of Computer Science .

ARPANET: Guy .Steele @ CMU-CS-A

CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

SPICE PROJECT

Common Lisp Reference Manual

Guy L. Stecle Jr.

16 November 1982

Laser Edition
Supposed to be Completely Coherent

Copyright © 1982 Guy L. Steele Jr.

Supported by the Defense Advanced Rescarch Projects Agency, Department of Defense, ARPA Order
3597, monitored by the Air Force Avionics Laboratory under coatract F33615-78-C-1551. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either cxpressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government. A

Would it be wonderful if, under the pressure of ail these difficulties,
the Convention should have been forced into some deviations from that
artificial structure and regular symmetry which an abstract view of the
subject might lead an ingenious theorist to bestow on a constitution
planned in his closet or in his imagination?

—~James Madison, The Federalist No. 37, January 11, 1788

TABLE OF CONTENTS

Table of Contents

1. Introduction

1.1. Purpose
1.2. Notational Conventions

2. Data Types

2.1. Numbers
2.1.1. Integers
2.1.2. Ratios
2.1.3. Floating-point Numbers
2.1.4. Complex Numbers
2.2. Characters
2.3. Symbols
2.4, Lists and Conses
2.5, Arrays
2.5.1. Vectors
2.5.2. Strings
2.5.3. Bit-vectors
2.6. Hash tables
2.7. Readtables
2.8. Packages
2.9. Pathnames
2.10. Streams
2.11. Random-states
2.12. Structures
2.13. Functions - ‘
2.14. Unreadable Data Objects

2.15. Overlap, Inclusion, and Disjointness of Types
3. Scope and Extent

4. Type Specifiers

4.1. Type Specificr Symbols
4.2, Predicating Type Specifier
4.3. Type Specifiers That Combine

4.4, Type Specifiers That Specialize

4.5. Type Speccifiers That Abbreviate

11
11
12
13
15
16
16
18
19
20
21
21
22
22
22

22

22
23
23"
23
23
24

27

31

31
K) |
32
32
35

i COMMON LISP REFERENCE MANUAL

4.6. Defining New Type Specificrs 36
4.7. Type Conversion Function 37
4.8. Determining the Tybc of an Object ' 38
5. Program Structure 39
5.1. Forms . 39
5.1.1. Scif-Evaluating Forms v 39
5.1.2. Variables 39

5.1.3. Special Forms 40
5.1.4. Macros ‘ 41
5.1.5. Function Calls 42
5.2. Functions 42
5.2.1. Named Functions 42
5.2.2. Lambda-Expressions 43
5.3. Top-Level Forms . ‘ 47
5.3.1. Defining Named Functions - 47
5.3.2. Declaring Global Variables and Named Constants . 48
5.3.3. Control of Time of Evaluation 49
6. Predicates 51
6.1. Logical Values 51
6.2. Data Type Predicates 52
6.2.1. General Type Predicate 52
6.2.2. Spccific Data Type Predicates 52
. 6.3. Equality Predicates 4 _ 55
L. 6.4. Logical Operators ‘ 58
7. Control Structure ' 61
7.1. Constants and Variables 62
7.1.1. Reference _ 62
7.1.2. Assignment o 64
7.2. Generalized Variables | ’ 65
7.3. Function Invocation ’ 71
7.4. Simple Sequencing 72
7.5. Environment Manipulation 73
7.6. Conditionals 76
7.7. Blocks and Exits 79

7.8. Iteration : ' » 80

TABLE OI' CONTENTS

7.8.1. Simplc Itcration

7.8.2. General iteration

7.8.3. Simple Iteration Constructs

7.8.4. Mapping

7.8.5. The “*Program Feature”
7.9. Multiple Values

7.9.1. Constructs for Handling Multiple Values

7.9.2. Rules for Tail-Recursive Situations
7.10. Dynamic Non-local Exits

7.10.1. Catch Forms

7.10.2. Throw Forms

8. Macros

8.1. Defining Macros
8.2. Expanding Macro Calls

9. Declarations

_ 9.1 Declaration Syntax
9.2. Declaration Forms
9.3. Type Dcclaration for Forms

10. Symbols
10.1. The Property List
10.2. The Print Name
10.3. Creating Symbols

4

11. Packages *

11.1. Built-in Packages
11.2. Package System Functions and Variables

12. Numbers

12.1. Predicates on Numbers

12.2. Comparisons on Numbers

12.3. Arithmetic Operations

12.4. Irrational and Transcendental Functions
12.4.1. Exponcntial and Logarithmic Functions
12.4.2. Trigonometric and Related Functions

iii

80
80
84
85
86
89
89
91
93
93
95

97

97
100

101
101
103
106

107

107
110
111

115

- 116

116

121

122
122
124
127
127
128

iv : COMMON LISP REFFERENCE MANUAL

12.4.3. Branch Cuts, Principal Valucs, and Boundary Conditions in the Complex Plane 130
12.5. Type Conversions and Component Extractions on Numbers ' A 133
12.6. Logical Opcrations on Numbers , ' 138
12.7. Byte Manipulation Functions 142
12.8. Random Numbers : 144
12.9. Implementation Parameters ' 146
13. Characters - 149
13.1. Predicates on Characters 150
13.2. Character Construction and Selection : 153
13.3. Character Conversions 155
13.4. Character Control-Bit Functions ‘ 156
14. Sequences 159
14.1. Simple Sequence Functions . 161
14.2. Catenating, Mapping, and Reducing Scquences _ . 162
14.3. Modifying Scquences ‘ 164
14.4. Searching Sequences for Items : 167
14.5. Sorting and Merging ' 169
15. Manipulating List Structure 173
15.1. Conses : 173
15.2. Lists | | ’ : 174
15.3. Alteration of List Structure 181
15.4. Substitution of Expressions . 182
15.5. Using Lists as Sets ‘ . . . 183
- 15.6. Association Lists * - ‘ w ' 185 -

16. Hash Tables | ‘ 189
16.1. Hash Table Functions . . 190
16.2. Primitive Hash Function ' 191
17. Strings . 193
17.1. String Access 193
17.2. String Comparison ' 194

17.3. String Construction and Manipulation ‘ » . 195

17.4. Type Conversions on Strings 197

TABLL OIF CONTENTS , A\

‘ 18. Structures " 199
18.1. Introduction to Structures 199
18.2. How to Use Defstruct _ 201
18.3. Using the Automatically Defined Constructor Function 202
18.4. defstruct Slot-Options 203
18.5. Options to defstruct _ . 204
18.6. By-position Constructor Functions ‘ 207
19. The Evaluator | 209
19.1. Run-Time Evaluation of Forms 209
19.2. The Top-Level Loop ‘ S 211
20. Streams : 213
20.1. Standard Streams ‘ _ 213
20.2. Creating New Streams o 214
20.3. Operations on Streams ‘ 216
21. Input/Output - , : 219
21.1. Printed Representation of LISP Objects , 219
. 21.1.1. What the read Function Accepts , ‘ 220 -
' 21.1.2. Parsing of Numbers and Symbols 221
21.1.3. Macro Characters 223
21.1.4. Sharp-Sign Abbreviations , 229
s 21.1.5. The Readtable | , 234
. 21.1.6. What the print Function Produces ‘ 238
21.2. Input Functions , , 243
21.2.1. Input from ASCII Streams ‘ ' 243
21.2.2. Input from Binary Streams : 247
21.3. Output Functions 248
21.3.1. Output to ASCII Streams . ' 248
21.3.2. Output to Binary Streams - - 250
21.4. Formatted Output 251
21.5. Querying the User 261
22. File System Interface . 263 .
22.1. File Names 263
22.1.1. Pathnames 264
22.1.2. Pathname Functions : : 266

vi) COMMON LISP REFERENCE MANUAL

22.1.3. Dcfaults and Merging 270

22.14. Logical Pathnames | 271
22.2. Opening and Closing Files . 272
22.3. Renaming, Deleting, and Other Operations 276
22.4. Loading Files 277
22.5. Accessing Directories 279
23. Errors 281
23.1. Signalling Conditions 281
23.2. Establishing Handlers ' 282
23.3. Error Handlers : _ 283
23.4. Signalling Errors 284
23.5. Standard Condition Names : _ 286
24. Miscellaneous Features ‘ 289
24.1. The Compiler 289
24.2. Documentation . : 290
24.3. Modules 291
24.4. Debugging Tools | 292
24.5. Environment Inquiries ' 295
24.5.1. Time Functions 295
24.5.2. Other Environment Inquiries 297
24.6. Identity Function - 299
COMMON Lisp Summary , , . 301
Index : : ' . 317
Index of Concepts * 4 . 319
Index of Variables and Constants : 323
Index of Keywords ' © 327

Index of Functions, Macros, and Special Forms : , 333

LIST OF* TABLES : x vii

. o | List of Tables

Table 1-1: Sample Function Description 6
Table 1-2: Sample Variable Description 6
Table 1-3: Sample Constant Description 6
Table 1-4: Sample Special Form Description 7
Table 1-5: Sample Macro Description 7
Table 2-1: Minimum Floating-Point Precision and Exponent Size Requirements 14
Table 4-1: Standard Type Specifier Symbols ' 32
Table 5-1: Names of All COMMON LISP Spccial Forms - 41
Table 21-1: Standard Character Syntax Attributes 222
Table 21-2: Syntax of Numbers 223
Table 21-3: Standard Constituent Character Attributes 224
Table 21-4: Standard Sharp-Sign Macro Character Syntax 230

viii

COMMON LISP REFERENCE MANUAL

Acknowledgements

COMMON L.iIsp was designed by a diverse group of people representing many institutions. The many
pecople who have contributed to the design of COMMON Lisp arc hereby gratefully acknowledged:

Alan Bawden!
Rodney A. Brooks!
Richard L. Bryan2

Glenn S. Burke!
Howard I. Cannon
George J. Carrette

David Dill3
Scott . Fahlman’
Richard J. Fateman
Neal Feinberg3
John Foderaro?

2
1

4

3

Jonathan Rees'!
William L. Scherlis?
Richard M. Stallman®
Barbara K. Steele?
William vanMelle©

Richard P. Gabriel>®
Joseph Ginder’®
Richard Greenblatt’
Martin L. Griss®
Charles L. Hedrick®

Karl A. Killian® Walter van Roggcn3
John L. Kulp2 Allan C. Wechsler?
Larry M. Masinter' - Daniel L. Weinreh?
John McCarthy® Jon L White!©
Don Morrison® Richard Zippel!
David A. Moon? Leonard Zubkof.f3

‘Kent M. Pitman!

1. Massachusetts Institute of Technology, 545 Technology Square, Cambridge, Massachusctts 02139
2. Symbolics, Inc., Cambridge, Massachusetts 02139
3. Computer Science Dcpartrhcnl. Carncgie-Mellon University, Schenley Park, Pittsburgh, Pennsylvania 15213

4, Computer Science Division, Department of EECS, University of California, Berkeley, California 94720
5. Computer Science Department, Stanford University, Stanford, California 94305

6. University of California, Lawrence Livermore National Laboratory, Livermore, California 94550

7. Lisp Machines Incorporated (Lmi), Cambridge, Massachusetts 02139
8. Department of Computer Scicnce, University of Utah, Salt Lake City, Utah 84112
9. Laboratory for Computcf Scicnce Research, Rutgers University, New Brunswick, New Jersey 08903

10. Xerox Palo Alto Research Center, Palo Alto, California 94306

11. Department of Computer Science, Yale University, New Haven, Connecticut 06520

Special thanks go to Jon Bentley, Scott Fahlman {and others???} for extraordinarily careful proofreading of

the final drafts of the manuscript.

The organization, typography, and content of this document were inspired in‘large part by the MacLISP
Reference Manual by David A. Moon and others (9], and by the LISP Machine Manual by Daniel Weinreb
and David Moon [15], which in turn acknowledges the efforts of Richard Stallman, Mike McMahon, Alan
Bawden, Glenn Burke, and “many people too numerous to list”. '

ACKNOWLEDGEMENTS e ; ix

Notes on This Edition
This edition is still in draft form. Plecase send remarks, corrections, and criticisms to:

Guy L. Steele Jr.

Computer Science Department
Carncgic-Mcllon University
Schenley Park

Pittsburgh, Pennsylvania 15213

The chapter on the evaluator docs not contain the proposed cvaluator code, which is still under review.
The package system is not yet fully designed. The specification given here is likely to be changed.

I deleted the functions array-Tength and array-active-length; for onc-dimensional arrays, the
functions array-dimension and 1ength may be used instead.

[couldn’t think of a good name for the defstruct array-leader type option, so 1 havc temporarily
flushed it, along with the :make-array option.

The function stream-element-type (page 227) was added so that you can tell what you got if you
specified : type :default to open (page 283).

The casc for a floating-point specifier, apparently mandated to be lower-case by the October 1982 ballot
(issuc 1), is not specified in this edition, While an upper-case “S” can be confusced with the digit “5”, so may
alower-case “'1” be confused with the digit “1”. '

The quote data type specifier mandated by the October 1982 ballot (issue 3) has been purposely omitted
from this edition. There is some question as to the inconsistency of requiring objects to be quoted in type
specifiers that need not be quoted in ordinary exccutable forms, such as numbers, strings, and keywords. This
inconsistency is not easily resolved, because t and ni1 mean something as type specifiers other than their
quoted selves.

Except for the above two issues, all issues from the October 1982 ballot have more or less been accounted
for in this edition. The results from the August 1982 meeting have been incorporated except as noted below.

- For August 1982 issue 56, the functions read-binary-object (page 257) and
write-binary-object (page 260) arc proposed.

For August 1982 issue 62, I could not find an appropriate dcfinition for the requested new version of
catch-al1l. In this edition I have instcad fixed up the old definitions of catch-al1 and unwind-all

(page 93).

X] COMMON LISP REFERENCE MANUAL

For August 1982 issuc 78, I am worried that a Texical declaration to shadow a global special
declaration will unduly slow down the interpreter. 1o we really need this in practice? (You can’t detect
whether to put one in until you have discovered that you are losing, in which casc renaming docs the job.)

For August 1982 issuc 88, function specs are still under debate and are not included here.
For August 1982 issuc 118, a new primitive for getting file information is not yet proposed.

For August 1982 issues 126, 127, and 128, the proposed f ormat floating-point, picture, and metric-prefix
dircctives arc omitted here.

For August 1982 issue 153, I am unconvinced that making trace and untrace (page 302) be functions
will be more convenient than their present definition as macros. No proposal has yet been made regarding
keyword arguments, ways to find out what is currently being traced, and a way to untrace all traced functions.
Therefore no change is reflected here.

There are probloms with the ﬁ"hﬂ@‘tt;:jl o‘f"%: ndex,

These Tnelvde Jov‘é/&‘} ’ft;t/e5) ‘ Q;(t/ja,ngous‘ blenk /Da.‘/fe5)
l ‘Fa-;/ore. Co ;h c[e,ﬂ‘t contthyortron Irnes Wée”
oamd .

references, These shoold net
there are ma?/ /oa(]e ‘ | a
be ‘o0 é/’ﬁ‘/cdf't to 7(/)<) vt L JIO(‘ hgrm:/:;‘i
fo delay t4is ed t ey fvre/)/ to TiIX FTeing

évﬁ‘c

Chapter 1

Introduction

This manual documents a dialect of LISP called “CoMMON LISP”, which is a successor to MACLISP [9],
influenced strongly by Lisp Machine Lisp {15] and also to some extent by SCHEME [12] and INTERLISP [14].

1.1. Purpose

COMMON LIsP is intended to meet these goals:

Commonality.

Consistency.

COoMMON [.ISP originated in an attempt to focus the work of several implementation
groups cach of which was constructing successor implementations of MACLISP for different
computers. These implementations had begun to diverge because of the differences in the
implementation environments: microcoded personal computers (Lisp Machine LiSp, SPICE
Lisp), commercial timesharcd computers (NIL), and supercomputers (S-1 LISP). While the
differences among the scveral implementation environments will of necessity force
.incompatibilitics among the implementations, nevertheless COMMON LISP can serve as a
common dialect of which cach implementation can be an upward-compatible superset.

CoMMON LIsP intentionally excludes featurcs that cannot easily be implemented on a -
broad class of machines. On the one hand, featurcs that are difficult or expensive to
implement on hardware without special micracode are avoided or provided in a more
abstract and efficiently implementable form. (Examples of this arc the forwarding
(invisiblc) pointers and locatives of Lisp Machine LisSP. Some of the problems that they
solve are addressed in different ways in COMMON LisP.) On the other hand, features that
arc useful only on certain “ordinary” or “commercial” processors are avoided or made
optional. (An example of this is the type declaration facility, which is useful in some
implementations and completely ignored in others; type declarations are completely
optional and for correct programs affect only efficiency, never semantics.) Moreover,
attention has been paid to making it easy to write programs in such a way as to depend as
Tlittle as possible on machine-specific characteristics such as word length, while allowing
some varicty of implementation techniques.

Most Lisp implementations arc internally inconsistent in that by default the interpreter and

Power.

Expressiveness.

Compatibility.

Efficiency.

Stability.

- COMMON LISP REFERENCE MANUAL

compiler may assign different semantics to correct programs; this stems primarily from the
fact that the interpreter assumes all variables to be dynamically scoped, while the compiler
assumes all variables to be local unless forced to assume otherwise. This has been done for
the sake of convenicence and cfficicncy, but can Icad to very subtle bugs. The definition of
COMMON L.ISP avoids such anomalics by explicitly requiring the interpreter and compiler
to imposc identical scmantics on correct programs. '

CoMMON Lisp is a descendant of MACLISP, which has always placed emphasis on
providing system-building tools. Such tools may in turn be used to build the user-level
packages such as INTERLISP provides; these packages arc not, however, part of the
COMMON LISP core specification. [t is expected such packages will be built on top of the
COMMON LISP core.

CoMMON LISP culls not only from MACLISP but from INTERLISP, other Lisp dialeets, and
other programming languages what we believe from experience to be the most useful and
understandable constructs. Constructs that have proved to be awkward or less uscful are
being eliminated (an example is the store construct of MACLISP).

Unless there is a good reason to the contrary, COMMON LISP strives to be combatiblc with
Lisp Machine Lisp, MACLISP, and INTERLISP, roughly in that order.

CoMMON LiSP has a number of features designed to facilitate the production of high-
quality compiled code in those implementations that care to invest cffort in an optimizing
compiler. One implementation of COMMON LISP (namely S-1 LisP) already has a compiler
that produces code for numerical computations that is competitive in execution speed to
that produced by a FORTRAN compiler [1]. (This extends the work done in MACLISP to
produce extremely efficient numerical code{4].)

It is intendéd that COMMON LISP, once defined and agreed upon, will change only slowly
and with due deliberation. The various dialects that are supersets of COMMON LISP may
serve as laboratories within which to test language extensions, but such extensions will be

added to COMMON LIsP only after careful examination and experimentation.

The goals of CoMMON LISP are thus very close to those of STANDARD Lisp [8]. COMMON LIsp differs from
STANDARD LISP primarily in incorporating more features, including a richer and more complicated set of
data types and more complex control structures. :

The COMMON LISP documentation is divided into four parts, known for now as the white pages, the yellow
pages, the red pages, and the blue pages. (This document is the white pages.)

e The white pages (this document) is a language specification rather than an implementation
specification. It defines a set of standard language concepts and constructs that may be used for
communication of data structures and algorithms in the COMMON LISP dialect. This is sometimes

INTRODUCTION . 3

referred to as the “corc COMMON LISP language™, because it contains conceptually necessary or
important featurcs. It is not necessarily implementationally minimal. -While some features could
be defined in terms of others by writing LISP code (and indeed may be implemented that way), it
was felt that these features should be conceptually primitive so that there might be agreement
among all uscrs as to their usage. (For cxample, bignums and rational numbers could be
implemented as LISP code given opcrations on fixnums. However, it is important to the
conceptual integrity of the language that they be regarded by the user as primitive, and they are
uscful enough to warrant a standard dcfinition.)

e The yellow pages is a program library document, containing documentation for assorted and
relatively independent packages of code. While the white pages are to be rclativcly stable, the
ycllow pages arc extensible; new programs of sufficient uscfulness and quality will routinely be
added from time to time. The primary advantage of the division into white and yellow pages is
this relative stability; a package written solely in the white-pages languagc should not break if
changcs arc made to the yellow-pages library.

The red pages is implementation-dependent documentation; there will be one set for each
implementation. Here arc-specified such implementation-dependent parameters as word size,
maximum array size, and sizes of floating-point cxponents and fractions, as wecll as
implementation-dependent information such as the nature of the file system, the mcthod of
invoking the implementation, and so on.

The blue pages constitutes an implementation guide in the spirit of the INTERLISP virtual machine
specification [10]. It specifies a subset of the white pages that an implementor must construct, and
indicates a quantity of LISP code written in that subsct that implements the remainder of the white
- pages. In principle there could be more than one set of bluc pages, each with a companion ﬁlc of
Lisp code. ’

1.2. Notational Conventions

In COMMON LISP, as in most LiSP dialects, the symbol ni1 (page 51) is used to represent both the empty
list and the “false” value for Boolean tests. An empty list may, of course, also be written “())”; this ‘normally
denotes the same object as “ni1”. (It is possible, by extremcly perverse manipulation of the package system,
to cause the sequence of letters “ni1” to be recognized not as the symbol that represents the erhpty list but as
another symbol with the same name. However, “()” always denotes the empty list. This obscure possibility
will be ignored in this document.) These two notations may be used interchangcably as far as the LISP system
is concerned. However, as a matter of style, this document will prefer the notation *“()” when it is desirable
to emphasize its use as an empty list, and will prefer the notation “ni1” when it is desirable to emphasize its
use as the Boolcan “false” or as a symbol, Morcover, an explicit quote mark is used to emphasize its use as a
symbol rather than as Boolean “false”. ‘

For example:

4 COMMON 1ISP REFERENCE MANUAL

(append () '()) => () ‘ ; Emphasize usc of empty lists.
(not nil) => t - ; Emphasize usc as Boolcan *“false”.
(get ’'nil ’color) . ; Emphasize usc as a symbol.

Any data object other than ni1 is construed to be Boolean “not false”, that is, “true”. The symbol t is
conventionally used to mean “truc” when no other value is more appropriate. When a function is said to
“return false” or to “be false” in some circumstance, this mcans that it returns nil. However, when a
function is said to “return (rue” or to “be frue” in some circumstance, this means that it rcturns some value
other than ni1, but not nccessarily t.

All numbers in this document are in decimal notation unless there is an cxplicit indication to the contrary.

Exccution of code in LISP is called evaluation, because exccuting a piece of code normally results in a data
object called the value produced by the code. The symbol “=>" will be used in examples to indicate
evaluation. For example: '

(+ 4 5) =>9

means “the result of evaluating the code (+ 4 5) is (or would be, or would have been) 97,

The symbol “==>" will be used in examples to indicate macro expansion. For example:
(push x v) ==> (setf v (cons x v)) '
means “the result of expanding the macro-call form (push x v)is (setf v (cons x v))”. This
implies that the two picces of code do the same thing; the second piece of code is the definition of what the
first does.

The symbol “<=>" will be used in examples to indicate code equivalence. For example:
(- xy) ==> (+ x (= ¥))
means “the value and effects of (- x y) is always the same as the value-and effects of (+ x (- y)) for

* any valucs of the variables x and y”. This implies that the two pieces of code do the same thing; however,
neither directly defines the other in the way macro-expansion does. :

~Za

When this document specifies that it “is an error” for some situation to occur, this means that:

¢ No valid CoMMON LISP program should cause this situation to occur. .

o If this situation occurs, the effects and results are completely undefined as far as adherence to the
COMMON LISP specification is concerned.:

e No COMMON LIsP implementation is required to detcct such an error.

This is not to say that some particular implementation might not define the effects and results for such a
situation; it is merely that no program conforming to thc COMMON LISP specification may correctly depend
on such effects or results.

On the other hand, if it is specified in this document that in some situation “an error is signalled’, this .

INTRODUCTION 5

means that:

e If this situation occurs, an crror will be signalled; scc error (page 294) and cerror (page 295).
e Valid COMMON LISP programs may rcly on the fact that an crror will be signalled.
¢ Every COMMON Lisp implementation is required to detect such an crror.

Functions, variables, named constants, special forms, and macros are described using a distinctive
typographical format. Table 1-1 illustrates the manner in which COMMON LISP functions arc documented.
The first line specifies the name of the function, the manner in which it accepts arguments, and the fact that it
is a function. Following indented paragraphs explain the definition and uses of the function and often
present examples or related functions. ‘

In general, actual code (including -actual names of functions) appears in this typeface: (cons a b).
Names that stand for picces of code (meta-variables) arc written in italics. In a function description, the
names of the parameters appear in italics for cxpository purposes. The word “&optional™ in the list of
parameters indicates that all arguments past that point arc optional; the default values for the parameters are
described in the text. Paramcter lists may also contain “&rest”, indicating that an indefinite number of
arguments imay appear, or “&key”, indicating that keyword arguments ar¢ accepted. (The
&optional/&rest/&key syntax is actuglly used in COMMON Lisp function definitions for these purposes.)

Table 1-2 illustrates the manner in which a global variable is documented. The first linc specifies the name
of the variable and the fact that it is a variable. Purcly as a matter of convention, all global variables used by
COMMON LISP have names beginning and ending with an asterisk.

Table 1-3 illustrates the manner in which a named constant is documented. The first line specifies the
name of the constant and the fact that it is'a constant. (A constant is just like a global variable, except that it is
4
an error ever to alter its value or to bind it to a new value.)

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros (which are closely related in
purposc). These are very different from functions. Functions are called according to a single, specific,
consistent syntax; the &optional/&rest/&key syntax specifies how the furiction uses its arguments
internally, but does not affect the syntax of a call. In contrast, each special form or macro can have its own
idiosyncratic syntax. It is by special forms and macros that the syntax of COMMON LISP is defined and
extended. :

In the description of a special form or macro, an italicized word names a corresponding part of the form
that invokes the special form or macro. Parentheses (“(” and “)”) stand for themselves, and should be
written as such when invoking the special form or macro. Brackets, braccs, stars, plus signs, and vertical bars
are metasyntactic marks. Square brackets (“[” and “]”) indicate that what they cnclose is optional (may
appear zero times or one time in that place); the square brackets should not be written in code. Curly braces
(“{” and “}") simply parcnthesize what they enclose, but may be followed by a star (“*") or a plus sign

6 : COMMON LISP REFERENCE MANUAL

sample-function argl/ arg? &optional arg3 argd ' [Function]
The function sample-function adds together arg/ and arg2, and then multiplies the result by
arg3. If arg3 is not provided or is ni1, the multiplication isn't donc. sample-function then
returns a list whose first element is this result and whose sccond clement is arg4 (which defaults to
the symbol foo).

For example:

(function-name 3 4) => (7 foo)
{(function-name 1 2 2 ’bar) => (6 bar)

Asarule, (sample-function x y) <=> (list (+ x p) ’'foo).

Table 1-1: Sample Function Description

sample-variable ‘ [Variable]
"The variablc *sample-variabie* spcciﬁes' how many times the special form
sample-special-form should iteratc. The value should always be a non-necgative integer or

ni1 (which means itcrate indefinitely many times). The initial value is 0.

Table 1-2; Sample Variable Description

sample-constant L ‘ ' [Constani]
The named constant sample-constant has as its value thec height of the terminal screen in
furlongs times the base-2 logarithm of the implementation’s total disk capacity in bytes, as a
floating-point number. .

Table 1-3: Sample Constant Description

(“+); a star indicates that what the braces enclose may appear any number of times (including zero, that is,
not at all), while a plus sign indicates that what the braces enclose may appear any non-zero number of times
(that is, must appear at least once). Within braces or brackets, vertical bars (“|””) scparate mutually exclusive
choices. In summary, the notation “{x}*” means zero or more occurrences of “x”, the notation “Ixpte

means one or more occurrences of “x”, and the notation “[x]” means zero or one occurrences of “x”. These
notations arc also used for syntactic descriptions expressed as BNF-like productions, for cxample in Table

INTRODUCTION _ 7

sample-special-form [name] ({var}*) {form}* [Special form]
This evaluates cach form in sequence as an implicit progn, and docs this as many times as specified
by the global variablc sample-variable. FEach variable var is bound and initialized to 43
before the first iteration, and unbound after the last iteration. The name name, if supplicd, may be
used in a return-from (page 79) form to exit from the loop prematurcly. If the loop ends
normally, sample-special~-formreturnsnil.

For cxample:

(setq sample-variable 3)
(sample-special-form () forml form2)

This evaluates forml, form2, forml, form2, forml, form2 in that order.

Table 1-4; Sample Special Form Dcscri‘pti(}n
\

This evaluates the statements as a prog body, with the variable var bound to 43.
. (sample-macro x (+ x x)) => 86 .

\
|
|
sample-macro var {lag | statement}* [Macro)

(sample-macro var . body) ==> (prog ((var 43)) . body)

- - Table 1-5: Sample Macro Description

22-2.

In the last example in Table 1-5, notice the use of “dot notation”. The “.” appearing in the expression
(sample-macro var . body) means that the name body stands for a list of forms, not just a single form, at
the end of a list. This notation is often used in examples.

The term “LISP reader” refers not to you, the reader of this document, nor to some person rcading LISP
code, but spccifically to a LISP program (the function read (page 233)) that reads characters from an input
stream and interprets them by parsing as representations of LISP objects.

Certain characters are uscd in special ways in the syntax of COMMON Lisp. The complete syntax is
. explained in detail in Chapter 22, but a quick summary here may be useful:

8 . ' COMMON LISP REFERENCE MANUAL

* An accent acute (“single quote™) followed by an expression form is an abbreviation for (quote form).
Thus ’foo mcans (quote foo) and '(cons 'a ’b) mecans (quote (cons (quote a)
(quote b))). ‘

; Semicolon is the comment character. It and all characters up to the end of the line are discarded.
" Double quotes surround character strings: "This is a thirty-nine character string.".

\ Backslash is an escape character. As a rule, it causes the next character to be treated as a letter rather
than for its usual syntactic purpose. For example, A\ (B dcnotes a symbol whose name is “A{B”, and
"\ "" denotes a character string containing one character, a double-quote.

The number sign begins a more complex syntax. The next character designates the precise syntax to
follow. For cxample, #0105 mcans 1058 (105 in octal notation); #\L denotes a character object for the
character “L™"; and #(a b c) denotes a vector of three elements a, b, and c.- A particularly important
casc is that #’ fumeans (function fir), in a manner analogous to ’ form meaning (quote form).

| Vertical bars surround the name of a symbol that has special characters in it.

* Accent grave (“backquote”) signals that the next expression is a template that may contain commas. The
backquote syntax represents a program that will construct a data structure according to the template,

, Commas are used within the backquote syntax.,

Colon is used tq indicate which package a symbol belongs to. For example, chaos:reset denotes the
symbol named reset in the package named chaos. A leading colon indicates a keyword, a symbol that
always cvaluates to itself,

The square brackets, braces, question mark, and exclamation point (that is, “[”, “1”, “{”, “}”, “?”, and “1”)
are not used for any purpose in standard COMMON LiSP syntax. These characters are explicitly reserved to the
user, primarily for use as macro characters for user-defined syntax cxtensions. Sec section 22.1.3 (page 233).

‘All code in this manual is written in lower case. COMMON LISP is gencrally inscnsitive to the case in which
code s written. Internally, names of symbols are ordinarily converted to and stored in upper-case form.
There are ways to force case conversion on output if desired. In this document, wherever an interactive
exchange between a user and the LISP system is shown, the ihput is exhibited in lower casc and the output in
upper case. |

Some symbols arc written with the colon (:) character apparently in their names. In particular, all keyword
symbols have names starting with a colon. The colon character is not actually part of the print name, but is a
package prefix indicating that the symbol belongs to the keyword package. This is all explained in Chapter
11; until you read that, just pretend that the colons are somewhat like quote marks, causing such symbols to
evaluate to themselves. '

Chapter 2

Data Types

COoMMON LIsP provides a varicty of types of data objects. It is important to note that in LISP it is data
objects that arc typed, not variables. Any variable can have any LISP object as its value. (It is possible to
make an explicit declaration that a variable will in fact take on one of only a limited sct of values. However,
such a declaration may always be omitted, and the program will still run correctly. Such a declaration merely
consititutes advice from the user that may be useful in gaining cfficiency. Sce declare (page 101).)

In ComMON LISP, a data type is a (possibly infinitc) sct of LISP objects. Many LISP objects belong to more
than onc such sct, and so it docsn’t always make sensc to ask what the type of an objcét is; instcad, one usually
asks only whether an object belongs to a given type. The predicate typep (page 52) may be used to ask the
latter question, and the function type-of (page 38) to ask the former. A

The data types defined in COMMON LISP are arranged into an almost-hicrarchy (a hierarchy with shared
subtrees) defined by the subsct relationship. Certain sets of objects are interesting enough to deserve labels
(such as the set of numbers or the sct of strings). Symbols arc used for most such labels (here, and throughout
this document, the word symbol refers to atomic symbols, one kind of LiSP object).. See Chapter 4 for a
complete description of type specifiers. ‘

The root of the hierarchy, which is the sct of all objects, is specified by the Symbol t. The empty data type,
which contains no objects, is denoted by nil. A type called common encompasses all the data objects
required by the COMMON LiSP language. A COMMON LISP implementation is free to provide other data types
that are not subtypes of common. .

COMMON LISP objects may be roughly divided into the following categorics: numbers, characters,
symbols, lists, arrays, structures, and functions. Some of these catdgories have many subdivisions. There are
also standard types that arc the union of two or more of these categories. The categories listed above, while
they are data types, are ncither more nor less “rcal” than other data types; they simply constitute a
particularly uscful slice across the type hicrarchy for expository purposes.

Each of these categories is described briefly below. Then one section of this chapter is devoted to each,
going into morc detail, and briefly describing notations for objects of each type. Descriptions of LISP
functions that operatc on data objccts are in later chapters. '

10 ‘ COMMON LISP REFERENCE MANUAL

e Numbers arc provided in various forms and: representations. COMMON LISP provides a true

- integer data type: any integer, positive or ncgative, has in principle a representation as a COMMON
Lisp data object, subject only to total memory limitations (rather than machine word width). A
truc rational data typc is provided: the quoticnt of two integers, if not an integer, is a ratio.
Floating-point numbers of various ranges and precisions arc also provided. Some
implementations may choose to provide Cartesian complex numbers.

o Characters represent printed glyphs such as letters or text formatting operations. Strings are
particular one-dimensional arrays of characters. COMMON LISP provides for a rich character set,
including ways to represent characters of various type styles.

e Symbols (sometimes called atomic symbols for emphasis or clarity) arc named data objccts. LISP
provides machinery for locating a symbol object, given its name (in the form of a string). Symbols
have property lists, which in cffect allow symbols to be trcated as record structures with an
extensible set of named components, cach of which may be any LIsP object.

e Lists arc scquences represented in the form of linked cells called conses. There is a special object
(the symbol ni1) that is the empty list. All other lists arc built recursively by adding a new
clement to the front of an existing list. This is done by creating a new cons, which is an object
having two components called the car and the cdr. The car may hold anything, and the cdr is
made to point to the previously existing list. (Conses may actually be used completely generally as
two-element record structures, but their most important use is to represent lists.)

» Arrays are dimensioncd collections of objects. An array ‘can have any non-negative number of
dimensions, and is indexed by a sequence of integers. General arrays can have any LISP object as
a component; others arc sbécialized for cfficiency, and can hold only certain types of LISP objects.

. It is possible for two arrays, possibly with differing dimension information, to share the same set
of clements (such that modifying one array modifies the other also), by causing one to be displaced
to the other. One-dimensional arrays of any kind are called vectors. One-dimensional arrays of
characters are called strings. One dimensional arrays of bits (that is, of integers whose values are 0
or 1) are called bit-vectors.

<5

o Hash tables provide an efficient way of mapping any LISP object (a key) to an associated object.
o Readtables arc used to control the built-in expression parser read (page 253).

o Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by
looking up character sequences in the “current package”.

e Pathnames represent names of files in a fairly implementation-independent manner. They are
used to interface to the external file system.,

e Streams represent sources or sinks of data (typically characters or bytes). They arc used to

DATA TYPES 11

perform 170, as well as for internal purposcs such as parsing strings.

e Randoni-states arc data structures used to encapsulate the state of the built-in random-number
gencrator.

e Structures arc uscr-defined record structurcs, objects that have named components. The
defstruct (page 211) facility is used to definc new structure types. Somc COMMON Lisp
implementations may choose to implement certain system-supplied data types as structures such
as bignums, readtables, streams, hash tables, and pathnames.

o l'unctions arc objects that can be invoked as procedures; these may take arguments, and return
values. (A1l Lisp procedures can be construed to return a value, and thercfore treated as
functions. Those that have nothing better to return usually return nil.) Such objects include
closures (functions that have retained bindings from some environment) and compiled-functions
(compiled code objects). Some functions arc represented as a list whose car is a particular symbol
such as Tambda. Symbols may also be uscd as functions.

These categorics are not always mutually cxclusive. The required relationships among the various data
types are explained in more detail in scction 2.15 (page 24).

2.1. Numbers

There are several kinds of numbers defined in COMMON LiSP. They are divided into rational numbers,
consisting of integers and ratios; floating-point numbers, with names provided for up to four different
precisions; and complex numbers. '

2.1.1. Integers | ‘

-

The integer data type is intended to represent mathematical integers. Unlike most programming languages,
CoMMON LISP in principle imposes no limit on the magnitudc of an integer; storage is automatically allocated
as necessary to represent large integers. '

In every COMMON LISP implementation there is a range of integers that are represented more cfficiently
thar others; each such integer is called a fixaum, and an integer that is not a fixnum is called a bignum. The
distinction between fixnums and bignums is visible to the user in only a few places where the efficiency of
representation is important; in particular, it is guaranteed that the rank of an array, as well as any dimension
of an array (and therefore any index into an array), can be represented as a fixnum. Exactly which integers
are fixnums is implementation-dependent; typically they will be those integers in the range —2" to 2"—1,
inclusive, for some # not less than 185. Sec most-positive-fixnum (page 146) and
most-negative-fixnum (page 146).

Integers arc ordinarily written in decimal notation, as a sequence of decimal digits, optionally preceded by

12 : COMMON LISP REFERENCE MANUAL

asign and optionally followed by a decimal point.
For cxample:

0 ;Zcro.

-0 ;'This always means the same as 0.

+6 ;'The firstperfect number,

28 ;'T'he sccond perfect number.,

1024. ;'Two to the tenth power.
-1 e .
15511210043330985984000000. ;25 factorial (25!). -Probably a bignum.

Compatibility note: MacLisp and Lisp Machine Lisp normally assume that integers are written in octa/ (radix-8) notation
unless a decimal point is present. INTERLISP assumes integers arc written in decimal notation, and uses a trailing Q to
indicate octal radix: however, a decimal point, even in trailing position, a/ways indicates a floating-point number. This is of
course consistent with FORTRAN; ADA docs not permit trailing decimal points. but instead requires them to be embedded. In
ComMon Lisp, integers writien as described above are always construed to be in decimal notation, whether or not the
decimal point is present; allowing the decimal point Lo be present permits compatibility with MACLIsp,

Integers may be notated in radices other than ten. The notation
#nnrddddd or #nnRddddd

means the integer in radix-nn notation denoted by the digits ddddd. More precisely, onc may write “#”, a
non-cmpty sequence of decimal digits representing an unsigned decimal integer i, “r” (or “R™), an optional
sign, and a scquence of radix-# digits, to indicate an integer written in radix n (which must be between 2 and
36, inclusive). Only legal digits for the spccified radix may be used; for example, an octal number may
contain only the digits 0 through 7. Letters of the alphabet of cither case may be used in order for digits
above 9. Binary, octal, and hexadecimal radices arc useful enough to warrant the special abbreviations “#b”
for“#2r”, “#0” for “#8r”, and “#x” for “#16r”,

For example:
#2r11010101 ; Another way of writing 213 decimal.
#011010101 _ ;Ditto.
#b+11010101 ;Ditto.
#0325 ;Ditto, in octal radix.
_ #xD5 ;Ditto, in hexadecimal radix. -
#16r+D5 ;Ditto. ’
#0-300 ;Dccimal -192, written in base 8.
#3r-12010 ;Same thing in base 3.
#25R-7H ;Same thing in base 25.
2.1.2. Ratios

A ratio is a number representing the mathematical ratio of two integers. Integers and ratios are collectively
called rationals. The canonical printed representation of a rational number is as an integer if its value is
integral, and otherwise as the ratio of two integers, the numerator and denominator, whose greatest common
divisor is one, and of which the denominator is positive (and in fact greater than 1, or else the value would be
integral), writtcn with “/” as a separator thus: “3/5”, It is possible to notatc ratios in non-canonical
(unreduced) forms, such as “4/6”, but the Lisp function prinl (page 258) always prints the canonical form
for a ratio. : '

Implementation note: While each implementation of ComMMON LisP will probably choose to maintain all ratios in reduced
form, there is no requirement for this as long as its effects are not visible to the user. Note that while it may at first glance

DATA TYPLS _ 13

appear to save computation for the reader and various arithmetic operations not to have to produce reduced forms, this
savings is likely 1o be counteracted by the increased cost of operating on larger numerators and denominators.

Rational numbers may be written as the possibly signed quotient of decimal numerals: an optional sign
followed by two non-empty sequences of digits separated by a **/”. This syntax may be described as follows:

ratio :: = [sign] {digit} * / {digit} "

The second scquence may not consist entircly of zeros.

For cxample:

2/3 ; This is in canonical form.

4/6 : A non-canonical form for the same number.
-17/23 :
-30517578125/32768 : This is (= 5/2)3.

10/5 : The canonical form for this is 2.

To notate rational numbers in radices other than ten, onc uscs the same radix specifiers (onc of #nnR, #0,
#B, or #X) as for integers. ’ '

For example:

#0-101/756 ; Octal notation for -65/61.
#3r120/21 ; Ternary notation for 15/7.
#Xbc/ad ; Hexadecimal notation for 188/173.

2.1.3. Floating-point Numbers

A floating-point number is a (mathematical) rational number of the form s*F*b° % where sis +1 or —1,
the sign; b is an integer greater than 1, the base or radix of the represcntation; p is a positive integer, the
Precision (in -base-b digits) of the floating-point number; fis a positive integer between ¥~ and p-1
(inclusive), the significand; and e is an integer, the exponent. The valuc of p and the range of e depends on the
implementation and on the typc of floating-point number within that implementation. In addition, there is a
floating-point zero; depending on the implementation, there may also be a “minus zero”. If there is no minus
zero, then “0.0” and “-0.0” are both interpreted as simply a floating-point zéro.

Implementation note: The form of the above description should not be construed to require the internal representation to
be in sign-magnitude form. Two's-complement and other representations are also acceptable. Note that the radix of the
internal representation may be other than 2, as on the 18M 360 and 370, which use radix 16; sce f1oat-radix (page 137).

Floating-point numbers may be provided in a variety of precisions and sizes, depending on the
implementation. High-quality floating-point software tends to depend critically on the precise nature of the
floating-point arithmetic, and so may not always be completely portable. To aid in writing programs that are
moderately portable, however, certain definitions arc made here:

e A short floating-point number is of the representation of smallest fixed precision provided by an
implementation.

e A Jong floating-point number is of the representation of the largest fixed precision provided by an
implementation. '

14 - COMMON LISP REFERENCE MANUAL

o [ntermediate bétween short and long formats arc two others, arbitrarily called single and double.

The precise definition of these categories is implementation-dependent. However, the rough intent is that
short floating-point numbers be precise at least to about five decimal places; single floating-point numbers, at
least to about scven decimal places; and double floating-point numbers, at lcast to about fourteen decimal
placcs. Thercfore the following minimum requirements arc suggested for these formats; the precision
(mcasured in “bits”, computed as p*logzb) and the exponent size (also mecasured in “bits”, computed as the
basc-2 logarithm of one plus the maximum cxponent value) must be at least as great as the values in Table
2-1.

Format Minimum Precision Minimum Exponent Size
Short 13 bits ' 5 bits
Single 24 bits 8 bits
Double 50 bits ' 8 bits
Long 50 bits 8 bits

Table 2-1: Minimum Floating-Point Precision and Exponent Size Requirements

In any given implementation the categories may overlap or coincide. For cxamplc short might mean the .
same as single, and long might mean the same as double.

Implementation note: Where it is feasible, it is rccommended that an implementation provide at least two types of
floating-point number, and preferably three. Ideally, short-format floating-point numbers should have an “immediate”
representation that does not require consing, single-format {loating-point numbers should approximate IEEE proposed
standard single-format floating-point numbers, and double-format floating-point numbers should approximate IEEE
proposed standard double-format floating-point numbers [6, 2, 3]. '

- Floating point numbers are written in“cither decimal fraction or “computerized scientific” notation: an
optional sign, then a non-empty sequence of digits with an embedded decimal point, then an optional decimal
exponent specification. The decimal point is required, and there must be digits either before or after it;
morcover, digits are required after the decimal point if there is no exponent specifier. The cxponent specifier
consists of an cxponent marker, an optional sign, and a non-empty sequence of digits. For preciseness, here is

a modified-BNF decription of floating-point notation.

Sloating-point-number :: = [sign) {digit}* . {digit}* [exponeni] | [sign] {digi} " [. {digi(}*] exponent
signii=+|-

digit::=0]1]2]314|5|6]7]|8]9

exponent :: = exponent-marker [sign] {digit}*

exponent-marker :=e|s|f|d|1]|b|E|]F|D|S|L]|B

u s

If no exponent specifier is present, or if the exponent marker (br “E™) is uscd, then the precise format to
be used is not specified. When such a floating-point number representation is read and converted to an ‘

DATA TYPES - ‘ 15

internal floating-point data object, the format specificd by the variable *read-default-float-format*
(pagc 253) is uscd; the initial valuc of this variablcis single. ‘

The letters “s™, “f™, “d”, and *“1" (or their respective upper-case cquivalents) specify cxplicitly the use of
short, single, double, and long format, respectively, The letters “b™ and “B™ are reserved for future definition.

Examples of floating-point numbers:

0.0 ; Floating-point zero in default format.
0E0 : Also floating-point zero in default format.
-.0 ; This may be a zero or a minus zcro,

‘ ;+ depending on the implementation.

0. ; The integer 7cro, not a floating-point number!
0.0s0 ; A floating-point zcro in short format.
0s0 ' : Also a floating-point zero in short format.
3.1415926535897932384d0 ; A double-format approximation to #.
6.02E+23 ; Avogadro’s number, in default format.
602E+21 ; Also Avogadro’s number, in default format.
3.1010299957f-1 ;log10 2, in single format,
-0.000000001s9 : ; €710 short format, the hard way.

2.1.4. Complex Numbers

Complex numbers may or may not be supported by a CoMMON Lisp implementation. They are
represented.in Cartesian form, with a real part and an imaginary part each of which is a non-complex number
(integer, floating-point number, or ratio). It should be emphasized that the parts of a complex number are
not necessarily floating-point numbers; in this COMMON LISP is like PL/I and differs from FORTRAN. In
gencral, these identities hold:

(eql (realpart (complex x y)) x)
(eql (imagpart (complex x y)) y)

Complex numbers may be notated by writing the characters “#C” followed by a list of the real and
imaginary parts. (Indeed, “#C(a b)” is equivalent to “#, (complex a b)”; sce the description of the
function complex (page 137).)

For example:
#C(3.0s1 2.0s-1) » ’
#C(5 -3) ; A Gaussian integer.
#C(5/3 7.0) .
#C(0 1) ; The imaginary unit.

Some implementations furthermore provide speciaiized representations of complex numbers for efficiency.
In such representations the real part and imaginary part are of the same specialized numeric type. The “#C”
construct will producc the most specialized representation that will correctly represent the two notated parts.

The type of a spccialized complex number is indicated by a list of the word complex and the type of the

components; for example, a specialized representation for complex numbers with short floating-point parts
would be of type (complex short-float). The type complex encompasses all complex
representations; the particular representation that allows parts of any numeric type is referred to as type

16 COMMON LISP REFERENCE MANUAL

(complex t).

2.2. Characters

Every character object has three attributes: code, bits, and font. The code attribute is intended to
distinguish among the printed glyphs and formatting functions for characters. The bits attributc allows extra
flags to be associated with a character. The font attribute permits a specification of the style of the glyphs
(such as italics). Each of thesc attributes may be understood to be a non-negative integer.

A character object can be notated by writing “#\” followed by the character itself. For example, “#\g”
means the character object for a lower-case “g”. This works well cnough for “printing characters”. Non-
printing characters have names, and can be notated by writing “#\” and then the name; for example,
“#\return” (or “#\RETURN” or “#\Return”, for cxample) means the <rcturn> character. The syntax for

character names after “#\ " is the same as that for symbols.

The font attribute may be notated in unsigned decimal notation between the “#” and the “\”. For
cxample, #3\A mcans the letter “A” in font 3. Note that not all COMMON LISP implementations provide for
non-zero font attributes; see char-font-1imit (page 149).

The bits attribute may be notated by preceding the name of the character by the names or initials of the
bits, separated by hyphens. The character itself may be written instead of the name, preceded if necessary by
“\”, For example: '

#\Control-Meta-Return
#\Hyper-Space
#\Control-A
#Meta-\B
#\C-M-Return

~ Note that not all COMMON LisP implementations provide for non-zero bits attributes; see

char-bits-Timit (page 149). -

Any character whose bits and font attributes are zero may be contained in strings. All such characters
together constitute a subtype of the characters; this subtype is called string-char. '

2.3. Symbols

Symbols are LISP data objects that serve scveral purposcs and have several interesting characteristics.
Every symbol has a name, called its print name. Given a symbol, one can obtain its name in the form of a
string. More interesting, given the name of a symbol as a string one can obtain the symbol itsclf. (More
precisely, symbols are organized into packages, and all the symbols in a package are uniquely identified by
name.)

Symbols have a component called the property list, or plist. By convention this is always a list whose .

DATA TYPES . 17

cven-numbered components (calling the initial onc component zcro) are symbols, here functioning as
property names, and whose odd-numbered components are associated property valucs. Functions are
provided for manipulating this property list; in cffect, these allow a symbol to be treated as an cextensible
rccord structure. *

Symbols are also used to represent certain kinds of variables in LISP programs, and there are functions for
dealing with the values associated with symbols in this role.

A symbol can be notated simply by writing its name. If its name is not cmpty, and if the namc consists only
of upper-case alphabetic, numeric, or certain “pscudo-alphabetic” special characters (but not declimiter
characters such as parcntheses or space), and if the name of the symbol cannot be mistaken for a number,
then the symbol can be notated by the sequence of characters in its name.

For cxample:

FROBBOZ : The symbol whose name is “FROBBQZ”.
frobboz ; Another way to notate the same symbol.
fRObBoz ; Yet another way to notate it.
unwind-protect ; A symbol with a “~” in its name.
+$; The symbol named “+$”,
1+ ; The symbol named “1+”,
+1 ; This is the integer 1, not a symbol.
pascal_style’ ; This symbol has an underscore in its name.
b~2-4*a*c ; This is a single symbol!

; It has several special characters in its name.
file.rel.43 ‘ ; This symbol has periods in its name.
/usr/games/zork ; This symbol has slashes in its name.

Besides letters and numbers, the following characters arc normally considered to be “alphabetic” for the
-purposes of notating symbols:

+-*/71@8%~&_=<>17"

_Some of these characters have conventjonal ptirposes for naming things; for example, symbols that name
functions having extremely implementation-dependent semantics generally have names beginning with “%”,

The last character, . ”, is considercd alphabetic provided that it does not stand alone. By itself, it has a role in
the notation of conses. (It also serves as the decimal point.)

A symbol may have upper-case letters, lower-case letters, or both in its print name. However, the LISP
reader normally converts lower-case letters to the corresponding upper-case letters when reading symbols,

The net effect is that most of the time case makes no difference when notating symbols. However, case does’

make a difference internally and when printing a symbol. Internally the symbols that name all standard
CoMMON Lisp functions, variables, and keywords have upper-casec names; their names appear in lower case
in this document for rcadability. Typing such names in lower case works becausc the function read will
convert them to upper case.

If a symbol cannot be notated simply by the characters of its name, because the (internal) name contains
special characters or lower-case letters, then there are two “escape” conventions for notating them. Writing a

18 . COMMON LISP REFERENCE MANUAL

“\" character before any character causes the character to be treated itself as an ordinary character for usc in a

symbol name. If any character in a notation is preceded by \, then that notation can ncver be interpreted as a
numbcr.

For ecxample:
\ (; The symbol whose name is “(”.
\+1 ; The symbol whose name is “+17.
+\1 : ; Also the symbol whose name is “+17,
\frobboz ; The symbol whosc name is “fROBBOZ”.
3.14159265\s0 ; The symbol whosc nameis “3.14159265s0”.
3.14159265\S0 ; The symbol whose name is “3.14159265S0”,
3.14159265s0 ; A short-format floating-point approximation to .
APL\\360 ; The symbol whose name is “APL\360".
ap1\\360 ; Also the symbol whose name is “APL\360”.
\(b~2\)\ -\ 4*a*c ;The nameis “(B~2) - 4*A*C”,

; It has parentheses and two spaces in it.

It may be tedious to inscrt a “\” before every delimiter character in the name of a syrhbol if there arc many
of them. An alternative convention is to surround the name of a symbol with vertical bars; these cause cvery
character between them to be taken as part of the symbol’s name, as if “\” had been written before each one,
cxcepting only | itsclf and \, which must nevertheless be preceded by \.

For cxample:
1" ; The same as writing \".
[(b~2) - 4*a*c| ;The nameis “(b~2) - 4*a*c”.
|frobboz|- ; The nameis “frobboz”, not “FROBBOZ”.
JAPL\360] ; The name is “APL360”, because
: the “\” quotes the “3”.
|APL\\360] . ; The name is “APL\360".
|ap1\\360| » ; The name is “ap1\360”.
ININT ;Same as \ |\ | : the name is “| | .

2.4. Lists and Conses

A cons is a record structure containing two components, called the car and the cdr. Conses are used
primarily to represent lists.

A list is recursively defined to be either the empty list (which is represented f)y the symbol ni1l, but can
also be written as “() ™) or a cons whose cdr component is a list. ‘A list is therefore a chain of conses linked by
their ¢dr components and terminated by ni1. The car components of the conses are called the elements of
the list. For each clement of the list there is a cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, scparated by blank space (space, tab, or return
characters) and surrounded by parentheses. '

For example:
(a b c) ; A list of three symbols.
(2.0s0 (a 1) #*) ; A list of three things: a short floating-point number,

; another list, and a character object.

DATA TYPES » 19

This is why the empty list can be written as * ()™ it is a list with no clements.

A dotted list is one whose last cons does not have ni1 for its ¢dr, but some other data object (which is also
not a cons, or the first-mentioned cons would not be the last cons of the list). Such a list is called “dotted”
because of the special notation used for it: the clements of the list arc written between parenthescs as before,
but after the last clement and before the right parenthesis are written a dot (surrounded by blank space) and

_ then the cdr of the last cons. As a special case, a single cons is notated by writing the car and the cdr between -

parcnthescs and scparated by a space-surrounded dot.

For example:

(a . 4) -+ A cons whosc caris a symbol
; and whosc ¢dris an integer.
(abc . d) ; A list with three elements whosc last cons

; has the symbol d in its cdr.

Compatibility note: In MACLIéP. the dot in dotted-list notation need not be surrounded by white space or other delimiters.
The dot is required to be delimited in CoMMoN Lisp, as in Lisp Machine Lisp.

It is legitimate to write something likc (a b . (c d)); this means thc same as (a b ¢ d). The
standard LISP output routines will never print a list in the first form, however; they will avoid dot notation
wherever possible.

Often the term /ist is used to refer cither to true lists or to dotted lists. The term “true list” will be used to
refer to a list terminated by ni1, when the distinction is important. Most functions advertised to operate on
lists will work on dotted lists and ignore the non-n1i1 c¢dr at the end.

Sometimes the term tree is used to refer to some cons and all the other conses transitively accessible to it
through car and cdr links until non-conses are reached; these non-conscs are called the /eaves of the tree.
<3 . ’ ’)
Lists, dqtzed lists, and trees are not mutually exclusive data types; they are simply uscful points of view
about strfxctures of conses. There arc yet other terms, such as association list. None of these are true LISP data
types. Conses arc a data type, and ni1 is the sole object of type nu11. The LiSP data typc 11ist is taken to
mean the union of the cons and nu11 data types, and therefore encompasses both truc lists and dotted lists.

2.5. Arrays : ° ,' .

An array is an object with components arranged according to a rectilinear coordinate system. In general,
thesc components may be any LISP data objects.

The number of dimensions of an array is called its rank (this terminology is borrowed from APL). This is a
non-ncgative integer; for convenience, it is in fact required to be a fixnum (an integer of limited magnitude).
Likewise, each dimension is itself a non-negative fixnum. The total number of elements in the array is the
product of all the dimensions. '

An implementation of COMMON LISP may impose a limit on the rank of an array, but this limit may not be

20 - A COMMON LISP REFERENCE MANUAL

smaller than 63. Thercfore, any COMMON LISP program may assume the use of arrays of rank 63 or less.
)

It is permissible for a dimension to be zero. In this case, the array has no clements, and any attempt to
access an clement in in crror. Howcver, other propertics of the array (such as the dimensions thermsclves)
may be used. If the rank is zero, then there are no dimensions, and the product of the dimensions is then by
definition 1. A zero-rank array thercfore has a single clement,

An array clement is specificd by a sequence of indices. The length of the sequence must equal the rank of
the array. Each index must be a non-negative intcger strictly less than the corresponding array dimension.
Array indexing is therefore zero-origin, not onc-origin as in (the default case of) FORTRAN.

As an example, supposc that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2,
and then sccond index may be 0, 1, 2, 3, or 4. Onc may refer to array clements using the function aref
(page 196): '

(aref foo 2 1)

refers to clement (2, 1) of the array. Note that aref takes a variable number of arguments: an array, and as
‘many indices as the array has dimensions. A zero-rank array has no dimensions, and thercfore aref would
take such an array and no indices, and return the sole clement of the array.

In general, arrays can be multi-dimensional, can share their contents with-other array objects, and can have
their size altered dynamically (either enlarging or shrinking) after creation. A one-dimensional array may also
have a fill pointer. '

Multidimensional arrays store their components in row-major order; that is, internally a multidimensional
array is'stored as a one-dimensional array, with the multidimensional index sets ordered lexicographically, last

index varying fastest. This is important in two situations: (1) when arrays with different dimensions share -
their contents, and (2) when accessing very large arrays in virtual-memory implementation. (The first

situation is a matter of scmantics; the second, a matter of efficiency.)

2.5.1. Vectors

One-dimensional arrays are called vectors in COMMON LISP. Vectors and lists are collectively considered to
be sequences. They differ in that any component of a one-dimensional array can be accessed in constant time,
while the average component access time for a list is lincar in the length of the list; on the other hand, adding
a new element to the front of a list takes constant time, while the same operation on an array takes time linear
in the length of the array. - .

A vector that is not displaced to another array, has no fill pointer, and is not to have its size adjusted
dyndmically after creation, is called a simple vector. Some implementations can handle simple vectors in an
especially efficient manner. The user may provide declarations that certain arrays will be simple vectors.
Simple vectors may have a more compact representation than non-simple vectors.

A general vector (a onec-dimensional array of S-expressions with no additional paraphernalia) can be

DATA TYPES : ‘ 21

notated by notating the components in order, scparated by whitespace and surrounded by “#(™ and *)”.
For cxample:

#(a b c) : A vector of length 3.
#(2 35 7 11 13 17 19 23 29 31 37 41 43 47)
; A vector containing the primes below 50.
#() ; An ecmpty vector.
When the function read parscs this syntax, it always constructs a simple general vector.

Rationale: Many people have suggested that square brackets be used to notate vectors: “[a b c]” instcad of “#(a b
¢)". 'This would be shorter, perhaps more readable, and certainly in accord with cultural conventions in other parts of
computer science and mathematics. However, to preserve the usefuiness of the user-definable macro-character feature of
the function read (page 253). it is necessary (o leave soime characters to the user for this purpose. Experience in MaclLisp
has shown that users, especially implementors of Al languages, often want to define special kinds of brackets. Therefore
ComMoN Lisp avoids using square brackets and braces for any purpose.

Implementations may provide certain specialized representations of arrays for cfficiency in the case where
all the components arc of the same specialized (typically numeric) type. All implementations provide
specialized arrays for the cases when the components arc characters (or rather, a special subsct of the
characters); the one-dimensional instances -of this specialization arc called strings. All implementations are
also required to provide specialized arrays of bits, that is, arrays of type (array bit); the one- dlmcnsmnal
instanccs of this specialization are called bit-vectors.

2.5.2. Strings

A string can be written as the sequence of characters-contained in the string, preceded and followed by a
“"” (double-quote) character. Any “"” or “\” character in the sequence must additionally have a “\”

character before it. , ’
For example:
-"Foo" : _ iA strmg with three characters i in it.
" ; An empty string,
"\"APL\\3607?\" he cried." . A string with twenty characters.
"Ix] = |-x|" ; A ten-character string.

Notice that any vertical bar “|” in a string need not be preceded by a “\”. Similarly, any double-quote in
the name of a symbol written using vertical-bar notation need not be preceded by a “\”. The double-quote
and vertical-bar notations are similar but distinct: double-quotes indicite a character string containing the
sequence of characters, while vertical bars indicate a symbol whose name is the contained scquence of
characters. The function prin1 will print any character vector using this syntax but the function read will
always construct a simple string from this syntax.

2.5.3. Bit-vectors

A bit-vector can be written as the sequence of bits contained in the string, preceded by “##*”; any delimiter
character (such as whitespace) will terminate the bit-vector syntax.

For example:

22 . COMMON LISP REFERENCE MANUAL

#*10110 " ; A five-bit bit-vector; bitOis a 1.
; An empty bit-vector.
The function prin1 will print any bit-vector using this syntax, but the function read will always construct
a simple bit-vector from this syntax.

2.6. Hash t;ibles

Hash tables provide an cfficicnt way of mapping any LISP object (a key) to an associated object. They are
provided as primitives of COMMON LISP because some implementations may need to usc internal storage
management strategics that would make it very difficult for the user to implement hash tables himsclf in a
portable fashion. Hash tables arc described in chapter 16 (page 189).

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the LISP ¢xpression parser. In
particular, a readtable indicates for cach character with syntax macro character what its macro definition is.
. This is a mechanism by which the user may reprogram the parser to a limited but useful extent. Sec section
22.1.5 (page 244).

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by looking
up character sequences in the “current package”. Packages can be used to hide names internal to a module
from other code. NMechanisms are. providéd for exporting symbols from a given package to the primary
“user” package. See chapter 11 (page 115). ‘

2.9. Pathnames

Pathnames arc the means by which a COMMQN Lisp program can interface to an external file system in a
reasonably implementation-independent manner. See section 23.1.1 (page 274). :

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly all function that perform I/0 do
so with respect to a specified stream. The function open (page 283) takes a pathname and returns a stream
connected to the file specified by the pathname. There are a number of standard streams that are used by
default for various purposes. See chapter 21 (223).

DATA TYPIS - ‘ 23

2.11. Random-states

For information about random-statc objccts and the random-number generator, see section 12.8 (page
144). '

2.12. Structures

Structures arc instances of uscr-defined data types that have a fixed number of named components. They
are analogous to rccords in PASCAL. Structurcs are declared using the defstruct (page 211) construct;
defstruct automatically defines access and constructor functions for the new data type.

Different structures may print out in different ways; the definition of a structure type may specify a print
procedure to usc for objects of that type (sec the :print-function (page 217) option to defstruct).
The default notation for structurcs is:

#S (structure-name
slot-name-1 slot-value-1 -
... Slot-name-2 slot-value-2

.)
where “#S” indicates structure syntax, structure-name is the name (a symbol) of the structure type, each
slot-name is the name (also a symbol) of a component, and cach corresponding slot-value is the representation
of the LISP object in that slot.

2.13. Functions

A function is anything that may be correctly given to the funcall (page 71) or apply “(.page
71) function, to be executed as code when arguments are supplied. ' '

J

A compiled-function is a compiled code object.
A list whose caris Tambda may serve as a function; see Chapter 5.

A symbol may serve as a function; an attempt to invoke a symbol as a function causes the contents of the
symbol’s function cell to be used. Sece symbol-function (page 63). (

2.14. Unreadable Data Objects

-~

Some objects may print in implementation-dependent wéys. As a rule, such objects cannot reliably be
reconstructed from a printed representation, and so they are printed usually in a format informative to the
user but not acceptable to the read function:

#<useful information>

A hypothetical example might be:

24 . ‘ . COMMON LISP REFFERENCE MANUAL

#<stack-pointer si:rename-within-new-definition-maybe 311037552>

The Lisp rcader will signal an crror on encountering “#<”. ‘

2.15. Overlap, Inclusion, and Disjointness of Types

The COMMON LIsP data type hierarchy is tangled, and purposely left somewhat open-ended so that
implementors may experiment with new data types as cxtensions to the language. This section states
explicitly all the defined relationships between types, including subtype/supertype rclatiohships, disjointncss,
and cxhaustive partitioning. The user of COMMON Lisp should not depend on any relationships not explicitly
stated here. For example, it is not valid to assume that because a number is not complex and not rational that
it must be a f1oat, becausc implementations are permitted to provide yet other kinds of numbers.

First we nced some terminology. If x is a supertype of y, then any object of type y is also of type x, and y is
said to be a subtype of x. If types x and y are disjoint, then no object (in any implementation) may be both of
type x and of type y. Types q through a, are an exhaustive union of type x if cach a; is a subtype of x, and

any object of type x is necessarily of at least one of the types a; a through a, are furthcrmore an exhaustive
partition if they arc also pairwise disjoint. '

o The type t is a supertype of every type whatsoever. Every object belongs to type t.

e The type ni1 is a subtype of every type whatsoever. No object belongs to type nil.

o The types cons, symbo1l, array, number, and character are pairwise disjoint.

e Thetypesrational, float, and complex are pairwise disjoint subtypes of number.

e The types integer and ratio arc disjoint subtypes of rational.

o The types f ixnum and b1ignum are disjoint subtypes of 1 hteger.

e The types short-float, single-float, double-float, and Tong-float are subtypes
of f1oat. Any two of them must be either disjoint or identical; if identical, then any other types
between them in the above ordering must also be identical to them (for example, if
single-float and long-float arc identical types, then double-float must be identical
to them also). ' '

e The type nul1 is a subtype of symbo1; the only object of type nul11isnil.

¢ The types cons and nu11 form an exhaustive partition of the type Tist.

o The type standard-char is a subtype of string-char; string-char is a subtype of
character. '

DATA TYPLES

e Thetype string is asubtype of vector, for string means (vector string-char).
o The type bit-vector is asubtype of vector, forbit-vector means (vector bit).

e The type vector is a subtype of array; for all types x, the type (vector x) is a subtype of

the type (array x (*)), the set of all onc-dimensional arrays.

e The types hash-table, readtable, package, pathname, stream, and random-state

arc pairwisc disjoint.

e Any two types created by defstruct (page 211) are disjoint unless one is a supertype of the

other by virtuc of the :include (page 215) option.

o An exhaustive union for the type common is formed by the types cons, symbol, (array x)

where x is a subtypc of common, fixnum, bignum, ratio, short-float, singlie-float,
double-float, long-float, (complex x y) where x and y arc subtypes of common,
standard-char, hash-table, readtable, package, pathname, stream,
random-state, and all types created by defstruct. No data type not mentioned in this
document may be a subtype of common. Note that a type such as number or array may or may
not be a subtype of common, depending on whether or not the given implementation has
extended the sct of objects of that type. ‘

25

26 - COMMON LISP REFERENCE MANUAL

Chapter 3

Scope and Extent

In describing various features of the COMMON LISP language, the notions of scope and extent are
frequently useful. These arise when some object or construct must be referred to from some distant part of a
program. Scope rcfers to the spatial or textual region of the program within which refercnces may OCCUr.
FExtent refers to the interval of time within which references may occur.

As a simple example, consider this program:
(defun copy-cell (x) (cons (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There is no way to refer to this
paramcter from any other place but within the body of the defun. Similarly, the extent of the parameter x
(for any particular call to copy-ce11) is the interval from the time the function is invoked to the time it is

exited. (In the general case, the extent of a parameter may last bcydnd the time of function cxit, but that

cannot occur in this simple case.)
Within COMMON LISP, a refercnceable entity is established by the exccution of some language construct,
and the scope and cxtent of the entity are described relative to the construct and the time (during cxecution of

the construct) at which the entity is established.- Thcre are a few kinds of scopc and cxtcnt that are -

particularly useful in describing COMMON LISP:

e Lexical scope. Here references to the established entity can occur only within certain program
portions that are lexically (that is, textually) contained within the establishing construct. Typically
the construct will have a part designated the body, and thc scope of all entitics cstabllshcd will be
(or include) the body.

Example: the names of parameters to a function normally are lexically scoped.

o Indefinite scope. References may occur anywhere, in any program.

e Dynamic extent. References may occur at any time in the interval between establishment of the
entity and the explicit disestablishment of the entity. As a rule, the entity is disestablished when
execution of the establishing construct completes or is otherwise terminated. Therefore entities

with dynamic cxtent obey a stack-like discipline, parallcling the nested cxecutions of their
establishing constructs.

-7 -

28 , COMMON LISP REFERENCE MANUAL

Example: the with-open-file (pagc 286) crcates opens a connection to a file and creates a
strcam object to represent the connection. The strcam object has indefinite extent, but the
connection to the open file has dynamic cxtent: when control exits the with-open-file
construct, cither normally or abnormally, the file is automatically closed.

Example: the binding of a *“‘special” variable has dynamic cxtent,

o Indefinite extent. The entity continucs to cxist so long as the possibility of reference remains. (An
implementation is free to destory the entity if it can prove that reference to it is no longer
possible.)

Example: most COMMON L.ISP data objects have indefinite extent.

Example: the names of lexically scoped paramcters to a function have indefinite extent. (By
contrast, in ALGOL the names of lexically scoped parameters to a procedure have dynamic extent.)
This function definition:

(defun compose (f g)
#'(1ambda (x) (f (g x))))
when given two arguments, immediately returns a function as its value. The parameter bindings
for f and g do not disappear, because the returned function, when called, could still refer to those
bindings. Therefore
(funcall (compose #’sqrt #’abs) -9.0)

produces the value 3.0. (An analogous proccdurc would not work correctly in typical ALGOL
implementations.)

In addition to thz above terms, it is convenient to define dynamic scope to mean indefinite scope and
dynamic extent. Thus we speak of “special” variables as having dynamic scope, or being dynamically scoped,
because they have indefinite scope and dynamic extent: a special variable can be referred to anywhere as long
as its binding is currently in effect.

The above definitions do not take into account the possibility of shadowing. Remote reference of entities is
accomplished by using names of one kind or another. If two entitics have the same name, then the second

(say) may shadow the first, in which case an occurrence of the name will refer to the second and cannot refer-

to the first.

In the case of lexical scope, if two constructs that cstablish entities with the same name are textually nested,
then references within the inner construct refer to the entity cstablished by the inner one; the inner one
shadows the outer onc. Outside the inner onc but inside the outer one, references refer to the entity
~ established by the outer construct. For example:

(defun test (x z) ,
(let ((z (* x 2))) (print z))
z)

SCOPE AND EXTENT -~ 29

The binding of the variable z by the Tet (page 73) construct shadows the parameter binding for the function
test. 'The reference to the variable z in the print form refers to the Tet binding. The reference to z at
the end of the function refers to the parameter nained z.

In the casc of dynamic extent, if the time intervals of two entitics with the same name overlap, then one
interval will necessarily be nested within the other one (this is a property of the design of COMMON LisP). A
reference will always refer to the entity that has been most recently established that has not ye't been
discestablished. For example:

(defun funl (x)
(catch “trap (+ 3 (fun2 x)))).

kdefun fun2 (y)
(catch 'trap (* 5‘(fun3 ¥))))

(defun fund (z)
(throw ’trap z))
Consider the call (fun1 7). The result will be 10. At the time the throw (page 95) is executed, there are
two outstanding catchers with the name trap: onc cstablished within procedure fun1i, and the other within
proecdure fun2. The latter is the more recent, and so the value 7 is returned from the catch form in fun2,
Viewed from within fun3, the catch in fun2 shadows the onc in funl1. (Had fun2 been defined as
(defun fun2 (y) - '
(catch ’snare (* 5 (fun3 y))))
then the two catchers would have different names, and therefore the one in fun1 would not be shadowed.
The result would then have been 7.)

As a rule this document will simply speak of the scope or extent of an entity; the possibility is shadowing
will be left implicit.

A list of the important scope and extent rules in COMMON, LISP:

-

e Variable bindings normally have lexical scope and indefinite extent.

¢ Variable bindings that are declarcd to be special have dynamic scope (indefinite scope and
dynamic extent).

e A catcher established by a catch (paée 93), catch-all (page 93), unwind-al 1 (page 93)
orunwind-protect {(page 94)speccial form has dynamic scope.

e An exit point established by a block (page 79) construct has lexical scope and dynamic extent.

(Such exit points are also established by do (page 80), prog (page 87), and other itcration
constructs.)

o The tags established by a prog (page 87) and referenced by go (page 89) have lexical scope and
dynamic extent.

30 , - COMMON LISP REFERENCE MANUAL

o Named constants such as ni1 (page 51) and pi (page 130) have indcfinite scopc and indcfinite
extent,

Constructs that usc lexical scope effectively generate a new name for cach cstablished entity on cach
exccution. Therefore dynamic shadowing cannot occur (though lexical shadowing may). This is of particular
importancc when dynamic extent is involved. For example:

(defun contorted-example (f g x)
(if (= x 0)
(funcall f)
(block here
{(+ 5 (contorted-example g
’ #'(lambda () (return-from here.4))
. (- x1)NN)
Consider the call (contorted-example nil nil 2). This produces the result 4. At the time the
funcall is exccuted there are threc block (page 79) exit points outstanding, each apparently named
here. However, the return-from (page 79) form exccuted refers to the outermost of the outstanding exit
points, not the innermost, as a consequence of the rules of lexical scoping: it refers to that exit point textually
visible at the point the function (page 62) construct (here abbreviated by the #° syntax) was cxecuted.

Chapter 4
Type Specifiers

In COMMON LISP, types are named by LISP objccts, specifically symbols and lists, called type specifiers.
Symbols name predefined classes of objects, while lists usually indicate combinations or specializations of
simpler types. Symbols or lists may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Symhols

The type symbols defined by the system include those shown in Table 4-1. In addition, when a structure
type is defined using defstruct (page 211), the name of the structure type becomes a valid type symbol.

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type
information. As a gencral convention, any subsidiary item may be replaced by *, or simply omitted if it is the
last item of the list; in any of these cases the item is said to be unspecified.

4.2. Prcdicating‘Typ.é Specifier

+ A type specifier list (satisfies predicate-name) denotes the set of all objects that satisfy the predicate
named by predicate-name, which must be a symbol whose global function definition is a one-argument
predicate. (A name is required; lambda-expressions are not allowed in order to avoid scoping problems.) For
example, the type (satisfies numberp) is the same as the type number. The call (typep x
'(satisfies p)) results in applying p to x and returning t if the result is true and ni1 if the result is *
false. '

As an example, the type string-char could be defined as
(deftype string-char () (and character (satisfies string-charp)))
See deftype (page 36).

As a rule, a predicate appcaring in a satisfies type specifier should not cause any side effects when
invoked.

-3l -

32 . e COMMON LISP REFERENCE MANUAL

4.3. Type Specifiers That Combine

The following type specificr lists define a data type in terms of other types or objects.

t nil common
null cons Tist symbol
array vector bit-vector string

- sequence simple-vector simple-bit-vector simple-string
function compiled-function pathname character
number rational -float string-char
integer ratio short-float standard-char
fixnum complex single-float package
bignum random-state double-float stream
bit readtable long-float hash-table

Table 4-1: Standard Type Specificr Symbols

(member object! object2 ...)
This denotes the set containing preciscly those objects named. An object is of this type if
and only if it is eq1 (page™56) to one of the specificd objects.

Compatibility note: This is approximately equivalent to what the INTERLISP DECL package calls
memq.

(not type) This denotes the sct of all those objects that are not of the specified type.

(or typel type2 ...)
‘ This denotes the union of the specified types. For example, the type 1ist by definition is
the same as (or null cons). Also, the valge returned by the function positidn
(page 168) is always of type (or null (d4nteger 0 *)) (either ni1 or a non-negative
integer).
Compatibility note: This is equivalent to what the INTERLisp DECL package calls oneof.

(and typel type? ...)
' : This denotes the intersection of the specified types.
Compatibility note: This is equivalent to what the INTERLisP DECL package calls a11of.

?7? Query: Should or and and type specifiers guarantece the order in which the types are
examined? This matters if a satisfies type specifier has side effects or if it relies on previous
type restrictions, as in writing (typep x '(and number (satisfties primep))).

4.4. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by symbols. These specializations may
be reflected by more cfficient representations in the underlying implementation. As an ¢cxample, consider the

TYPE SPECIFIERS ; _ ‘ 33

type (array short-float). Implementation A may choosc to provide a specialized representation for
arrays of short floating-point numbers, and implementation B may choose not to.

If you should want to create an array for the express purpose of holding only short-float objects, you may
optionally spccify to make-array (page 193) the clement type short-float. 'This docs not require
make-array to crcatc an object of type (array short-float); it merely permits it. The request is
construcd to mean “Produce the most specialized array representation capable of holding short-floats that the
implementation can provide.” Implementation A will then produce a specialized short-float array (of type
(array short-float)), and implementation B will produce an ordinary array (onc of type (array

t)).

[f onc were then to ask whether the array were actually of type (array short-float), implementation
A would say “yes”, but implementation B would say “no”. This is a property of make~-array and similar
functions: what you ask for is not necessarily what you get.

Types can thercfore be used for two different purposcs: declaration and discrimination. Declaring to
make-array that elements will always be of type short-float permits optimization., Similarly, declaring
that a variable takes on values of type (array short-float) amounts to saying that the variable will take -
on values that might be produced by specifying clement type short-float to make-array. On the other
hand, if the predicate typep is used to test whether an object is of type (array short-float), only
objects actually of that specialized type can satisfy the test; in implementation B no object can pass that test.

The valid list-format names for data types are:

(array element-type dimensions)
This denotes the set of specialized arrays whose clements are all members of the type
element-type and whose dimensions match dimensions. For declaration purposes, this type

¢ encompasscs those arrays that can result by specifying element-type as the element type to
the function make-array (page 193); this may bec different from what the type means
for discrimination purposes. element-type must be a valid type specifier or unspecified.
dimensions may be a non-negative integer, which is the number of dimensions, or it may be
a list of non-negative integers representing the length of each dlmcnsmn (any dimension
may be unspecificd instead), or it may be unspecified.

For example:
(array integer 3) ; Three-dimensional arrays of integers.
(array integer (* * *)) ;Three-dimensional arrays of integers.
(array * (4 5 6)) ; 4-by-5-by-6 arrays.

(array character (3 *)) ;Two-dimensional arrays of characters
; that have exactly three rows.
(array short-float ()) ;Zero-rank arrays of short-format
; floating-point numbers.

Notethat (array t) isapropersubsctof (array *).

(vector element-type size)

34

COMMON LISP REFERENCE MANUAL

This denotes the sct of specialized one-dimensional arrays whose clements are all of type
element-type and whose lengths match size. 'This is entircly cquivalent to (array
element-type (size)).

For cxample:
(vector double-float) ; Vectors of double-format
; floating-point numbers.
(vector * 5) ; Vectors of length S.
(vector t 5) ; General vectors of length 5.
(vector (mod 32) *) ; Vectors of integers between 0 and 31.

The specialized types (vector string-char) and (vector bit) areso useful that
they have the special names string and bit-vector. FEvery implementation of
CoMMON Lisp must provide distinct representations for these as distinct specialized data
types. '

(simple-vector element-type size)

This is the same as (vector element-type size) except that it includes only simple
vectors.

(complex riype itype)

Every clement of this type is a complex number whose real part is of type rfype and whose
imaginary part is of type itype. For declaration purposes, this type encompasscs those
complex numbers that can result by giving numbers of the specified type to the function
complex (page 137); this may be different from what the type means for discrimination
purposes. .

In'a break with the usual convention on omi'tte';d. items, if ifype is omitted (but not if it is
explicitly ynspecified) then it is taken to be the same as riype. As ex'amples, Gaussian
integers might be described as (complex integer), and the result of the complex
logarithm function might be described as beiné of type (complex float (float

#.(- pi) #.pi)).

(function (argl-type arg2-type ...) value-type)

This type may be used only for declaration and not for discrimination; typep (page
52) will signal an error if it encounters a specifier of this form. Every element of this type is
a function that accepts arguments at Jeast of the types specified by the argj-type forms, and
returns a value that is a member of the types specified by the value-type form. The
&optional, &rest, and &k ey keywords may appear in the list of argument types. The
value-type may be a values type specifier, to indicate the types of multiple values.

As an example, the function cons (page 174) is of type (function (t t) cons),
because it can accept any two arguments and always returns a cons. It is also of type
(function (float string) 1ist), because it can certainly accept a floating-point
number and a string (among other things), and its result is always of type 1ist (in fact a

“TYPE SPECIFIERS - . 35

cons and never nul1, but that does not matter for this type declaration). The function
truncate (page 135)isoftype (function (number number) (values number
number)),as well asof type (function (integer (mod 8)) integer).

(values valuel-type valuel-type ...)
This type specifer is extremely restricted: it may be used only as the value-type in a
function typc specifier or in a the (page 106) declaration. It is used to specify
individual types when multiple values are involved. The &optional, &rest, and &key
keywords may appcar in the value-type list; they thereby indicate the parameter list of a
function that, when given to multiple~value-call (page 90) along with the valucs,
would be suitable for receiving those values.

4.5. Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other type specifiers that would be far
too verbose to write out cxplicitly (using, for cxample, member).

(integer low high)
This denotes the inicgcrs.bctwecn low and high. The limits Jow and high must cach be an
integer, a list of an integer, or unspecified. An integer is an inclusive limit, a list of an
integer is an exclusive limit, and * means that a limit docs not exist and so effectively
denotes minus or plus infinity, respectively. The type fixnum is simply a name for
(integer smallest largest) for implementation-dependent values of smallest and
largest. The type (integer 0 1) isso uscful that it has the special name b1it.

(mod n) The set of non-ncgative integers less than n. This is equivalent to (integer 0 n—1) or
to (integer 0 (n)). o

4
- o

(signed-byte s) .
' The sct of integers that can be represented in two’s-complement form in a byte of s bits.
This is equivalent to (integer —2"7 2°7/_1). Simply signed-byte or
(signed-byte *)isthesameas integer.

(unsigned-byte s)
The set of non-negative integers that can be represented in a byte of s bits. This is
equivalent to (mod 2°), that is, (integer 0 2°—1). Simply unsigned-byte or
(unsigned-byte *) is the same as (integer 0 .()), the sct of non-necgative
integers.

(rational low high)
This denotes the rationals between Jow and high. The limits Jow and high must each be a
rational, a list of a rational, or unspecified. A rational is an inclusive limit, a list of a

36 . COMMON LISP REFERENCE MANUAL

rational is an cxclusive limit, and * mecans that a limit docs not cxist and so cffectively
denotes minus or plus infinity, respectively.

(ﬂoat low high)
The set of floating-point numbers between low and Aigh, The limits Jow and high must
cach be a floating-point number, a list of a floating-point number, or unspccified; a
floating-point numbecr is an inclusive limit, a list of a floating-point number is an cxclusive
limit, and * mcans that a limit does not cxist and so effectively denotes minus or plus
infinity, respectively.

In a similar manner onc may use:

(short-float low high)

(single-float low high)

(doubte-float low high)

(long-float low high)
In this case, if a limit is a floating-point number (or a list of one), it must be onc of the
appropriate format.

(string-size) This mecans the same as (array string-char (size)): the sct of strings of the
indicated size. One may also usc the name simple-string to include only simple
strings.

(hit-vector size) .

This means the same as (array bit (size)): the sct of bit-vectors of the indicated size.
One may also usc the name simple-bit-vector to include only simple bit-vectors.

4.6. Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defihing a new structure type with
defstruct (page 211) automatically causes the name of the structure to be a new type specifier symbol.
Second, the def type special form can be used to define new type-specifier abbreviations.

deft ype name lambda-list {declaration | doc-string}y* {form}* [Mdcro]
This is very similar to a defmacro (page 99) form: name is the symbol that identifies’ the type
specificr being defined, varfist is similar in form to a lambda-list (and may contain &optional and
&rest tokens), and body is the body of the expander function. If we view a type specifier list as a
list containing the type spccifier name and some argument forms, the argument forms
(unevaluated) are bound to the corresponding parameters in varlist. Then the body forms are
evaluated as an implicit progn, and the value of the last form is interpreted as a new type specifier
for which the original specifier was an abbreviation.

deftype differs from defmacro in that if no initform is specified for an &optional parameter,

TYPE SPECIFIERS 37

the default valucis *, not nil.

If the optional documentation string doc-string is present, then it is attached to the name as a
documentation string of typc type; secc documentation (page 301).

For example:

{(deftype mod (n) ‘(integer 0 (,n)))

(deftype 1ist () '(or null cons))

(deftype square-matrix (&optional type size) v
"SQUARE-MATRIX dincludes all square two-dimensional arrays."
*(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))
(square-matrix bit) mecans (array bit (* *))
If the type name defined by deftype is used simply as a type specifier symbol, it is interpreted as a
type specifier list with no argument forms. Thus, in the example above, square-matrix would
mean (array * (* *)), the set of two-dimensional arrays. This would unfortunately fail to
convey the constraint that the two dimensions be the same; (square-matrix bit) has the
same problem. A better definition is:

(defun equidimensional (a)
" (or (< (array-rank-.a) 2)
(apply #’= (array-dimensions a))))

(deftype square-matrix (&optional type size)
‘{and (array ,type (,size ,size))
~ (satisfies equidimensional)))

4.7. Type Conversion Function

.

‘coerce object resull-type. . [Function]

" Thé result-type must be a type spccifier; the object is converted to an “cquivalent™ object of the

specificd type. As a rule, if object is alrcady of the specified type, as determined by typep .(page

52), then it is simply returned. It is not gencrally possible to convert any object to be of any type
whatsoever; only certain conversions are permitted:

e Any sequence typc may be converted to any other sequence type, provided that the new
sequence can contain all actual elements of the old scquence (it is an error if it cannot).
If the result-type is specified as simply array, for example, then (array t) is
assumed. A specialized type such as string or (vector (complex
short-float)) may be specified; of course, the result may be of cither that type or
some more general type, as determined by the implementation. If the sequence is
already of the specified type, it may be returned without copying it; in this (coerce
type sequence) differs from (concatenate type sequence), for the latter is required -
to copy the argument sequence. In particular, if one specifies sequence, then the
argument may simply be returncd, if it alrcady is a sequence. '

38 €OMMON LISP REFERENCE MANUAL

(coerce '(a b c) ’'vector) ,=> #(a b c) .

¢ Some strings, symbols, and intcgers may be converted to characters. 1f object is a string
of length 1, then the sole clement of the string is returned. If object is a symbol whose
print name is of length I, then the sole clement of the print name is returned. If object
is an integer a, then (int-char #n) is returned. Sce character (page 154).
. (coerce "a" ’'character) => #\a

¢ Any non-complex number can be converted to bc a short-float, single-float,
double-float, or Tong-float. If simply float is specified, and object is not
alrcady a fToat of some kind, then the object is converted tobe asingle-float.

(coerce 0 ’short-float) => 0.0S0
(coerce 3.5L0 'float) => 3.5L0
(coerce 7/2 ’'float) => 3.5

e Any number can be converted to be a complex number. If the number is not already
complex, then a zero imaginary part is provided by cocrcing the integer zero to the type
of the given real part.

(coerce 4.5s0 'complex) => #C(4.5S0 0.0S0)

(coerce 7/2 ’complexy) => #C(7/2 0)

(coerce #C(7/2 0) ’(complex double-float))
=> #C(3.5D0 0.0D0) '

Cocrcions from floating-point numbers to rationals and from ratios to integers are purposely not
provided, because of rounding problems. The functions rational (page 134), rationalize,
floor (page135),ceiling, truncate, and round may be used for such purposes.

4.8. Determining the Type of an Object

type-of object [Function]
(type-of object) returns an implementation-dependent result: some fype of which the object is
a mcmber. Implementations are cncouraged to return the most specific type that can be
conveniently computed and is likely to be uscful to the user. If the argument is a user-defined
named structure created by defstruct then type-of will return the type name of that structure.
Because the result is implementation-dependent, it is usually better to use type-of of one
argument primarily for debugging purposes; however, therc are a few situations where portable
code requires the use of type-of, such as when the result is to be given to the coerce (page
37) or map (page 163) function. On the other hand, often the typep (page 52) function or the
typecase construct is more appropriate for some purpose than type-of.

Compatibility note: In MAcLIsP this function is called t ypep, and anomalously so, for it is not a predicate.

Chapter 5

Program Structure

In the previous chapter the syntax was sketched for notating data objects in COMMON LIsP. The same
syntax is used for notating programs, becausc all COMMON LISP programs have a representation as COMMON
Lisp data objects.

5.1. Forms

The standard unit of interaction with a COMMON Lisp implementation is the form, which is simply an
S-expression meant to be evaluated as a program to produce onc or more values (which arc also data objects).
Onc may request evaluation of any data object, but only certain ones (such as symbols and lists) are
meaningful forms, while others (such as most arrays) arc not. Examples of meaningful forms are 3, whose
valucis 3, and (+ 3 4), whose value is 7. We write “3 => 3”7 and “(+ 3 4) => 7” to indicate these facts.
(*=>" means “cvaluates t0”.)

Meaningful forms may be divided into three categorics: self-cvaluating forms, such as numbers; symbols,
which stand for variables; and lists. The lists in turn may be divided into three categories: special forms,
macro calls, and function calls. (Any COMMON Lisp data object not explicitly defined to be a valid form is
not a valid form, and attempting to evaluate such an object will cause an error to be signalled.)

5.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are selfevaluating forms. When such an object is
- evaluated, that object itself (or possibly a copy in the case of numbers) is returnicd as the value of the -form.
The empty list (), which is also the false value n1i1, is also a sclf-evaluating form: the value of ni1is ni1l,
Keywords (symbols written with a leading colon) also evaluate to themselves: the value of :start is
:start.

5.1.2. Variables

Symbols are used as names of variables in COMMON LISP programs. When a symbol is evaluated as a form,
the valuc of the variable it names is produced. For example, after doing (setq items 3), which assigns
the value 3 to the variable named items, then items => 3. Variables can be assigned to, as by setq (page:

-39 —

40 COMMON LISP REFERENCE MANUAL

64), or bound, as by Tet (pagc 73). Any program construct that binds a variable cffectively saves the old
value of the variable and causes it to have a new value, and on cxit from the construct the old value is
reinstated.

There are actually two kinds of variables in COMMON LISP, called /exical (or static) variables and special (or
dynamic) variables. At any given time cither or both kinds of variable with the same name may have a current
value. Which of the two kinds of variablc is referred to when a symbol is evaluated depends on the context of
the evaluation. The general rule is that if the symbol occurs textually within a program construct that creates
a binding for a variable of the same name, then the reference is to the variable specified by the binding; if no
such program construct textually contains the reference, then it is taken to refer to the special variable of that
name.

The distinction between the two kinds of variable is onc of scope and access. A lexically bound variable
can be referred to only by forms occurring at any place textually within the program construct that binds the
variable. A dynamically bound (special) variable can be referred to at any time from the time the binding is
made until the time cvaluation of the construct that binds the variable terminates. Therefore lexical binding
imposes spatial limitations on occurrences of references, whercas dynamic binding imposes temporal
limitations.

The value a special variable has when there arc currently no bindings of that variable is called the global
value of the variable. A global value can be given to a variable only by assignment, because a value given by
binding by dcfinition is not global.

The symbols t and ni1 are reserved. One may not assign a value to t or ni1, and one may not bind t or
nil. The global valuc of t is always t, and the global value of’n i1 is always ni1. Constant symbols defined
by defconstant (page 48) alsd became reserved and may not be further assigned to or bound.

thionale: It would scem appropriate-for the compiler to be justified in issuing a warning if one docs a setq on a constant
defined by defconstant. If one cannot assign, one should not be able to bind, cither.

.

5.1.3. Special Forms

If a list is to be cvaluated as a form, the first step is to examine the first element of the list. If the first
element is one of the symbols appearing in Table 5-1, then the list is called a special form. (This use of the
word “special” is unrelated to its use in the phrase “special variable”.)

Special forms are generally environment and control constructs. Every special form has its own
idiosyncratic syntax. An cxample is the if special form: “(if p (+ x 4) 5)” in COMMON LISP means

what “if p then x+4 else 5 would mean in ALGOL.

The evaluation of a special form normally produces a value or values, but it may instead call for a non-local
exit; see return-from (page79), go (page 89), and throw (page 95).

The set of special forms is fixed in COMMON LISP; no way is provided for the user to define more. The

PROGRAM STRUCTURE - 41

and (page 58) return-from (pagc 79)
or (page 59) tagbody ' (page 87)

quote (page 62) "~ go (page 89)

function (pagc 62) multiple-value-call (pagc 90)

setq (page 64) multiple-value-progl (page 90)

progn (page 72) catch (page 93)

Tet* (page 74) catch-all (page 93)

progv (page 75) unwind-all (page 93)

flet (page 75) unwind-protect (page 94)

labels (pagc 75) throw (page 95)

macrolet (page 75) - declare (page 101)
if : (page 77) the . (page 106)
block (page 79)

(The page numbers indicate where the definitions of these special forms appear.)

Table 5-1: Names of All COMMON LisP Special Forms

user can create new syntactic constructs, however, by defining macros.

The sct of special forms in COMMON LISP is purposcly kept very small, because any program-analyzing
program must have special knowledge about every type of special form. Such a program needs no special
knowledge about macros, because it is simple to cxpand the macro and operate on the resulting expansion.
('This is not to say that many such programs, particularly compilers, will not have such special knowledge. A
compiler may be able to produce much better code if it recognizes such constructs as typecase and
multiple-value-bind and gives them customized trcatment.)

An implementation is free to implement as a macro any construct described herein as being a special form.
Conversely, an implementation js free to implement as a special form any construct described herein as being -
a macro, provided that an equivalent macro definition is also provided.

| 5.1.4. Macros

If a form is a list and the first clement is not the name of a special form, it may be the name of a macro; if
so, the form is said to be a macro call. A macro is esscntially a function from forms to forms that will, given a
call to that macro, compute a new form to be cvaluated in place of the macro call. (This computation is
sometimes referred to as macro expansion.) For example, the macro named return (page 79) will take a
form such as (return x) and from that form compute a new form (return-from nil x). We say
that the old form expands into the new form. The new form is then evaluated in place of the original form;
the value of the new form is returned as the value of the original form, ' :

There are a number of standard macros in COMMON Lisp, and the user can define more by using
defmacro (page99). ‘

42 v COMMON LISP REFERENCTE MANUAL

Macros provided by a CoMMON Lisp implementation as described hercin may cxpand into code that is not
portable among differing implementations. That is, a macro call may be implementation-independent by
virtue of being so defined in this document, but the cxpansion need not be.

5.1.5. Function Calls

If a list is to be evaluated as a form and the first clement is not a symbol that namcs a special form or
macro, then the list is assumed to be a firnction call. The first clement of the list is taken to name a function.
Any and all remaining clements of the list arc forms to be cvaluated; onc value is obtained from cach form,
and these valucs become the arguments to the function. The function is then applied to the arguments. The
functional computation normally produccs a value, but it may instcad call for a non-local exit; scc throw
(page 95). A function that docs return may produce no value or several values; see values (page 89). If
and when the function returns, whatever valucs it returns become the values of the function-call form.

For cxample, consider the cvaluation of the form (+ 3 (* 4 5)). The symbol + names the addition
function, not a spccial form or macro. Therefore the two forms 3 and (* 4 5) are cvaluated to produce
arguments. The form 3 cvaluates to 3, and the form (* 4 5) is a function call (to the multiplication
function). Therefore the forms 4 and 5 are cvaluated, producing arguments 4 and 5 for the multiplication.
The multiplication function calculates the number 20 and returns it. The valucs 3 and 20 arc then given as
arguments to the addition function, which calculates and returns the number 23. Therefore we say (+ 3 (*
4 5)) => 23.

5.2. Functions

‘There are two ways to indicate a function to be used in a function call form. One is to use a symbol that
names the function. This use of symbols to name functions is completely independent of their use in naming
special and lexical variables. The other way is to use a lambda-expression; which is a list whose first element is
the symbol 1ambda. A lambda-expression is not-a form; it cannot be meaningfully evaluated. Lambda-
expressions and symbols as names of functions can appear only as the first element of a function-call form, or
as the second element of the function (page 62) special form.

5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be given to a function by using
the defun (page 47) special form. A Jocal name can be given to a function by usmg the Tabels (page
75) special form. If a symbol appears as the first element of a function-call form, then it refers to the
definition cstablished by the innermost Tabels construct that textually contains the reference, or if to the
global definition (if any) if there is no such containing 1abe1s construct.

thn a function is named, a lambda-expression is associated with that name (in effcct) Sec defun (page
47)and Tabels (page 75) for an explanation of these lambda-expressions.

PROGRAM STRUCTURE 43

5.2.2. Lambda-Expressions

A lambda-expression is a list with the following syntax:
(1ambda /ambda-list . body)

The first clement must be the symbol Tambda. The second clement must be a list, It is called the lambda-list,
and spccifies names for the parameters of the function. When the function denoted by the lambda-cexpression
is applied to arguments, the arguments arc matched with the parameters specified by the lambda-list. The
body may then refer to the arguments by using the parameter names. The body consists of any number of
forms (possibly zero). These forms are cvaluated in scquence, and the value(s) of the last form only are

returncd as the value(s) of the application (the value ni1 is returned if there arc zero forms in the body).

The complete syntax of a lambda-cxpression is:

(1ambda ({var}*
[koptional {var | (var [zmlform [svar]]) }*]
[&rest var]
[&key {var | ({var | (keyword var)} [uulfarm [svar]]) }*
[&allow-other-keys]]
[&Raux {var | (var [initform])}*])
{declaration | documentation-string}*

. {form}*)
Each clement of a lambda-list is cither a parameter specifier or a lambda-list keyword, lambda-list keywords
begin with “&”. (Note that lambda-list keywords arc not keywords in the usual sense; they do not belong to
the keyword package. They are ordinary symbols whose name begins with an ampersand.)

In all cascs a var must be a symbol, the name of a variable, and similarly for svar also; each keyword must
be a keyword symbol, such as “:start”. An initform may be any form.
. _’& - - - E

A lambda~list has five parts, any or all of which may be empty:

» Specifiers for- the required parameters. These arc all the parameter specifiers up to the first
lambda-list keyword; if there is no such lambda-list keyword, then all the specifiers are for
requirced parameters,

o Speccifiers for optional parameters. If the lambda-list Keyword &optional is present, the
optional paramcter specifiers are those following the lambda-list keyword &optional up to the
next lambda-list keyword or the end of the list.

CeA specificr for a rest parameter. The lambda-list keyword &res t, if present, must be followed by
a single rest parameter spccifier, which in turn must be followed by another lambda-list keyword
or the end of the lambda-list. ‘

e Spccifiers for keyword parameters. If the lambda-list keyword &k ey is present, all specifiers up to
the next lambda-list keyword or the end of the list are keyword parameter specifiers, The keyw_ord
parametcr specifiers may optionally be followed by the lambda-list keyword

44 COMMON LISP REFERENCLE MANUAL

&allow-other-keys.

e Spccificrs for aux variables. These are not really paramcters. If the lambda-list keyword &aux is
present, all specifiers after it arc auxiliary variable specifiers.

When the function represented by the lambda-cexpression is applied to arguments, the arguments and
paramcters arc processed in order from left to right. In the simplest case, only required parameters are
prescnt in the lambda-list; cach is specificd simply by a namc var for the parameter variable. When the
function is applicd, there must be exactly as many arguments as there arc parameters, and cach parameter is
bound to onc argument. Here, and in gencral, the parameter is bound as a lexical variable unless a
declaration has been made that it should be a special binding (scc declare (page 101)).

In the more general case, if there are # required paramecters (# may be zero), there must be at least
arguments, and the required parameters are bound to the first # arguments. The other paramcters arc then
processed using any remaining arguments.

If optional parameters are specified, then cach one is processed as follows. If any unprocessed arguments
remain, then the parameter variable var is bound to the ncxt remaining argument, just as for a required
parameter. If no arguments remain, however, then the initform part of the parameter specificr is evaluated,
and the parameter variable is bound to the resulting value (or to ni1 if no initform appears in the parameter
specifier). If another variable name svar appears in the specifier, it is bound to #ué if an argument was
available, and to fulse if no argument remaincd (and therefore initform had to be cvaluated). The variable
svar is called a supplied-p parameter; it is not bound to an argument, but to a value indicating whether or not
an argument had been supplied for another parameter.

After all optional parameter specifiers have been processed, then there may or may not be a rest parameter. k

If there is a rest parameter, it is bound to a list of all as-yct-unprocessed arguments. (If no unprocessed
arguments remain, the res¢ parameter is botund to the empty list.) If therc is no rest parameter and there are
no keyword parameters, then there should be no unprocessed arguments (it is an error if there are).

Next any keyword parameters are processed. For this purpose the same arguments are processed that
would be made into a list for a rest parameter. (Indeed, it is permitted to specify both &rest and &key; in
this casc the arguments are uscd for both purposes. This is the only situation in which an argument is used in
the processing of more than one parameter specifier.) If &key is specified, there must remain an even
numbecr of arguments; these arc considercd as pairs, the first argument in cach pair being interpreted as a
keyword name and the sccond as the corresponding value. It is an error for the first object of cach pair to be
anything but a keyword. ‘

Rationale: 'This last restriction is imposed so that a compiler may issue warnings about malformed calls to functions that
take keyword arguments,

In each keyword parameter specifier must be a name var for the parameter variable. If an explicit keyword
is specified, that is the kcyword name for the parameter. Otherwise the name var serves to indicate the
keyword name, in that a keyword with the same name (in the keyword package) is used as the keyword.

PROGRAM STRUCTURE _ 45

Thus
(defun foo (&key radix (type 'integer)) ...)
means cxactly the same as
(defun foo (&key ((:radix radix)) ((:type type) ’'integer)) ...)

The keyword parameter specifiers are, like all paramecter specificrs, effectively processed from left to right.
For cach keyword parameter specificr, if there is an argument pair whose keyword name matches that
specifier’s keyword name (that is, the names arc e(j). then the parameter variable for that specificr is bound to
the sccond item (the valuc) of that argument pair. If more than one such argument pair matches, it is not-an
crror; the leftmost argument pair is used. If no such argument pair cxists, then the initform for that specifier
is evaluated and the paramcter variable is bound to that value (or to ni1 if no initform was specified). The
variable svar is trcated as for ordinary optional paramcters: it is bound to frue if there was a matching
argument pair, and to false otherwisc. It is an error if an argument pair has a keyword name not matched by
any paramcter specificr, unless &allow-other-keys was spccified, in which case the argument pair is
simply ignored (but such an argument pair is accessible through the &rest parameter if one was specified).

After all paramcter specifiers have been processed, the auxiliary variable specificers (those following the
lambda-list keyword &aux) arc processed from left to right. FFor each one the initform is cvaluated and the
variable var bound to that value (or to ni1 if no initform was specified). (Nothing can be done with &aux
variables that cannot be done with the special form 1et (page 73):

(Tambda (x y &aux (a (car x)) (b 2) c) ...)
<=> (lambda (x y) (let ((a (car x)) (b 2) c) ...))
Which to usc is purely a matter of style.) '

As a rule, whenever any initform is evaluated for any parameter specifier, that form may refer to any
parameter variable to the left of the specifier in which the initform appears, including any supplied-p
variables, and may rely on no other paramecter variable having yet been bound (incldding its own parameter
variable). . ' \

Once the lambda-list has been processed, the forms in the body of the lambda-expression arc executed.
These forms may refer to the arguments to the function by using the names of the parameters. On ¢xit from
the function, cither by a normal return of the function’s value(s) or by a non-local cxit, the parameter
bindings, whether lexical or special, are no longer in-effect (but are not necessarily permanently discarded, for
a lexical binding can later be reinstated if a closure over that binding was created and saved before the exit”
occurred).

Examples of &optional and &rest parameters:

46

lTambda
Tambda
Tambda
Tambda
= (2
((Tambda
=> (6
((Tambda
=> (6
((1ambda
. 6 3 8)
=> (6
((vambda
6389
=> (6

((
((
((
((

(ab) (+a(*b
(a &optional (b
(a &optional (b
(&optional (a 2
nil 3 nil nil)
(&optional (a 2
t 3 nil nil)
(&optional (a 2
t 3 tnil)
(&optional (a 2

t 3t (8))

~—

45
(+ a
(+ a
C

b) (¢ 3 d)
b) (c 3 d)

b) (c 3 d)

(&optional
10 11)

(a 2 b) (c3 d)

t 3t (89 10 11))

&rest x)
&rest

&rest

&rest

Examples of &k ey parameters:

((Tambda b &key
((1ambda &key
((Tambda &key
((Tambda &key
((lambda &key
((1ambda &key
((7ambda &key

=> (:a :d nil

(a
(a
(a
(a
(a
(a
(a-
:b

Examples of mixtures:

((lambda (a &optional (b
" (list a b ¢ d x))
=> (1 3 () nil 1)

T o oTooCOoO

1)

((1ambda (a &optional (b
(list a b cd x))
12) => (1 2 () ni1l 1

((tambda (a &optional (b
(1ist a'b cd x))
:c 7) => (:c 7 () nil

((1ambda (a &optional (b
(1ist a b c d x))
16 :¢c7) => (1 6 (:c

({1ambda (a &optional (b
(lTist a b ¢ d x))
16 :d 8) => (1 6 {:d
((1ambda (a &optional (b
(list a b ¢ d x))

16 :d8 :c9 :d 10)

(1ist
(Tist
(list
(Tist
(1ist
(list
(list

[sVR e R o VNS s VIR s VS « I o V)
TCTCToToTOoCoO
O0O0O0O00OO0n

3) &rest

3) &rest
) S

55 &rest
:C)

3) &rest
7) 7 1)
3)'&rest X
8) nil 8)

3) &rest x

coocooaoo
Nt e Nst” et et e ait?®
Nt N’ e e’ vt “nd e’

RS NN N Y

&key

&key

&key

&key

&key

&key

(d

(d

(d

(d

c (d

(d

COMMON LISP REFERENCE MANUAL

a))

x)))
x)) 6)
x)) 6 3)

x))

X))

nil nil)

> (1 2 6 nil)

> (1 2 nil 8)

8) => (12 6 8)
6) => (1 2 6 8)

. c 6) => (:a 1 6 8)
:d)

a))

a))
a))
a))

a))

=> (16 (:d 8 :c 9 :d 10) 9 8)

All lambda-list keywords are permitted, but not terribly useful, in lambda-expressions appcaring explicitly

as the first element of a function-call form, as shown in the examples above. They are extremely uscful,

however, in functions given global names by defun (page 47).

PROGRAM STRUCTURE - 47

All symbols whose names begin with “&” arc conventionally rescrved for usc as lambda-list keywords and
should not be used as variable names. Implementations of COMMON LisP arc free to provide additional
lambda-list keywords. ‘ ‘

lambda-list-keywords [Constand]
The valuc of Tambda-Tist-keywords is a list of all the lambda-list. keywords used in the
implementation, including the additional oncs used only by defmacro (page 99). 1t must contain
at lcast the symbols &opt1ona1 &rest, &key, &allow-other-keys, &aux, &body, and
&whole.

5.3. Top-Level Forms

The standard way for the user to interact with a COMMON LISP implementation is via what is called a
read-eval-print loop: the system repeatedly reads a form from some input source (such as a keyboard or a disk
file), evaluates it, and then prints the value(s) to some output sink (such as a display screen or another disk
file). As a rule any form (cvaluable S-expression) is acceptable. However, certain special forms are
specifically designed to be convenient for use as top-level forms, as opposed to forms embedded within other
forms, as “(+ 3 4)” is cmbedded within “(if p (+ 3 4) 6)”. These top-level special forms may be
used to dcfine globally named functions, to define macros, to make declarations, and to define global values
for spcc1a1 variables.

It is not illegal to use these forms at other than top level, but whether it is meaningful to do so depends on
context. Compilers, for example, may not recognize these forms properly in other than top-level contexts.
(As a spccial case, however, if a- progn (page 72) form appears at top level, then all forms within that progn
arc con51dcrcd by the compxlcr to be top-level forms.)

Compatibility note: In MacLisp, a top-level progn is considered to contain top-level forms only if the first form is
“(quote compile)”. This odd marker is unneccssary in COMMON Lisp. P

- o

Macros are usually defined by using the special form defmacro (page 99). This facility is fairly
complicated, and is described in Chapter 8.

5.3.1. Defining Named Functions

defun name lambda-list {declaration | doc-string}* {form}* [Macro]
Evaluating this special form causes the symbol name to be a global name for the function specified
by the lambda-expression
(1Tambda lambda-list {declaration}* {form}*)

defined in the lexical environment in which the defun form was executed (because defun forms
normally appear at top level, this is normaily the null lexical environment).

If the optional documentation string doc-string is present (if not followed by a declaration, it may be

48

COMMON LISP REFERENCE MANUAL

present only if at lcast onc formn is also specified, as it is otherwisc taken to be a formn), then it is
attached to the name as a documentation string of type function; scc documentation (page
301).

The body of the defined function is implicitly enclosed in a block (page 79) construct whose
name is the same as the name of the function, Thercfore return (page 79) and return-from
(page 79) may be used to exit from the function.

Other implementation-dependent bookkeeping actions may be taken as well by defun. The name
is returned as the value of the defun form.

For cxample:

(defun discriminant (a b ¢)
(declare (number a b c))
"Compute the discriminant for a quadratic equation.
Given a, b, and ¢, the value b~2-4*a*c is calculated.
The quadratic egquation a*x~2+b*x+c=0 has real, multiple,
or complex roots depending on whether this calculated
value 1is positive, zero, or negative, respectively."
(- (*bb) (*4ac)))
=> discriminant
andnow (discriminant 1 2/3 -2) => 76/9

It is permissible to redefine a function (for example, to install a corrected version of an incorrect
definition!).

5.3.2. Declaring Globall Variables and Named Constants

defvar name [initial-value [documentation]] ‘ _) . [Macro] -
defparameter name initial-value [documentation] ') [Macro]
defconstant namé initial-value [documentation) : [Macro]

defvar is the recommended way to declare the use of a special variable in a program. It is
normally used only as a top-level form.

(defvar variable)

declares variable to be special (scc declare (page 101)), and may perf’orm other system-
dependent bookkeeping actions. If a second “argument” is supplied: '

(defvar variable initial-value)

then variable isinitialized to the result of evaluating the form initial-value unless it alrcady has a

. value. The initial-value form is not evaluated unless it is used; this is useful if it docs something

expensive like creating a large data structure. The initialization is performed by assignment, and so
assigns the variable a global value unless there are currently special bindings of that variable, = -

defvar should be used only at top level, never in ﬁmctibn definitions.

defvar also provides a good place to put a comment describing the meaning of the variable
(whereas an ordinary special declaration offers-the temptation to- declare several variables at

PROGRAM STRUCTURE : ; 49

once and not have room to describe them all).
(defvar tv-height 768 "Height of TV screen in pixels")

defparameter is similar to defvar, but requires an initial-value form, and always cvaluatcs it
and assigns the result to the variable. The semantic distinction is that defvar is intended to
declare a variable changed by the program, whereas defparameter is intended to declare a
variable that is normally constant, but can be changed (possibly at run time), considered as a change
{o the program. défpar‘ame ter therefore does not indicate that the quantity never changes; in
particular, it docs not license the compiler to build assumptions about the value into programs
being compiled. : '

defconstant is like defparameter, but does assert that the value of the variable name is fixed,
and docs license the compiler to build assumptions about the valuc into programs being compiled.
It is an crror if there are any special bindings of the variable at the time the defconstant form is
exccuted (but implementations may or may not check for this). If the variable is alrcady has a
value, an error occurs unless the existing value is equalp (page 57) to the specified initial-value.

Once a name has been declared by defconstant to be constant, any further assignment to or
binding of that special variable is an error. This is the case for such system-supplicd constants as t
(page S1) and most-positive-fixnum (page 146). A compllcr may also choosc to issuc
warnings about bindings of the lexical variable of the same name,

For any of these constructs, the documentation should be a string. It is attached to the name of the
variable, parametcr, or constant under the variable documentation type; sce documentation
(page 301).

5.3.3. Control of Time of Evaluation.

. -

eval-when ({situation}*) {form}*) ' [Function)

The body of an eval-when form is processed as an unplmt progn, but only in the situations
listed. A situation may be compile, 1oad, oreval.

eval specifies that the interpreter should process the body. - compile specifies that the compiler
should evaluate the body at compile time in the compilation context. load spccifies that the
compiler should arrange to evaluate the forms in the body when the compiled file containing the
eval-when form is loaded.

The default interpretation is that top-level forms are cffectively processed in eval and load
situations. eval-when is occasionally uscful to get different effects. For example, if the compiler
is to be able to read a file properly that uses user-defined reader macro characters, it is necessary to
write
(eval-when (compile load eval)
(set macro-character #\$ #'(lambda (stream char)

(dec1are (ignore char))
(1ist 'dollar (read stream)))))

50 COMMON LISP REFERENCE MANUAL

Chapter 6

Predicates

A predicate is a function that tests for some condition involving its arguments and returns nil if the
condition is false, or some non-ni1 value if the condition is true. Onc may think of a predicate as producing
a Boolecan value, where ni1 stands for false and anything clse stands for frue. Conditional control structures
such as cond (page 76), if (pagc 77), when (page 77), and unless (page 77) test such Boolean values,
We say that a predicate is frue when it returns a non-ni1 value, and is false when it returns ni1; that is, it is
truc or falsc according to whether the condition being tested is true or false.

“ "

By convention, the names of predicates usually end in the letter {which stands for “predicate”).

The control structures that test Boolecan values only test for whether or not the value is ni1, which is
considcered to be false. Any other value is considered to be true. A function that returns ni1 if it “fails” and
some useful value when it “succceds” is called a pseudo-predicate, because it can be used not only as a test but

also for the uscful value provided in case of success. An cxample of a pscudo-predicate is member (page
183).

If no better non-ni1 value is available for the purpose of indicating success, by convention the symbol t is
used as the “standard” non-false value.

L4

6.1. Logical Values

nil . ' - [Constani]
The value of ni1 is always ni1. This object represents the logical false value and also the cmpty
list. [t can also be written “()”."

t ' [Constani]
The value of t is always t. '

—51 -

52 ‘ COMMON LISP REFERENCE MANUAL

6.2. Data Type Predicates

Perhaps the most important predicates in LISP arc thosc that deal with data types; that is, given a data
object one can determine whether or not it belongs to a given type, or one can compare two type specificrs.

6.2.1. General Type Predicate

typep object type ' ‘ [Function]
typep is a predicate that is true if object is of type type, and is falsc otherwise. Note that an object
can be “of” more than one typc, since one type can include another. The fype may be any of the
type specifiers mentioned in Chapter 4 except that it may not be or contain a type specifier list
whose first clementis function. A specifier of the form (satisfies jfi) is handled simply by
applying fn to object; the object is considered to be of the specified type if the result is not ni 1.

subtypep typel type2 [Function]

. The argumcrits must be type specificrs that are acceptable to typep (page 52). The two type

specifiers are compared; this predicate is true if fypel is definitely a (not necessarily proper) subtype

of type2. If the resultis ni1, however, then fypel may or may not be a subtype of fype2 (sometimes

it is impossible to tell, especially when satisfies type specifiers are involved). A second

returncd value indicates the certainty of the result; if it is true, then the first value is an accurate
indication of the subtype relationship. Thus there arc three possible result combinations:

t ot typel is definitely a subtype of fype2
nilt typel is definitely not a subtype of type2 .
. : o
[niTnid subtypep could nét determine the relationship

. -

© 6.2.2. Specific Data Type Predicates

The following predicates are for testing for individual data types.

null object ' : [Function)
nu11 is true if its argument is (), and otherwise is false. This is the same operation performed by
the function not (page 58); however, not is normally used to invert a Boolean value, while nul11
is normally used to test for an empty list. The programmer can therefore expressAinlent by the
choice of function name. ' '

(nul1 x) <=> (typep x 'null) <=> (eq x '{())

PREDICATES . - 53

. symbolp object . [Function]

symbo1p is truc if its argument is a symbol, and otherwisc is false.
‘ (symbolp x) <=> (typep x ’'symbol)

atom object [Function]
The predicate atom is true if its argument is not a cons, and otherwisc is false. Note that (atom
"()) is truc, because ()=nil.

(atom x) <=> (typep x ‘'atom) <=> (not (typep x ’cons))

consp object ‘ [Function]
The predicate consp is truc if its argument is a cons, and otherwise is false. Note that the empty
list is not a cons, so {consp '()) <=>(consp ’'nil) =>nil.
~ (consp x) <=> (typep x ’cons) <=> (not (typep x ’atom))

Compatibility note: Some Lisp implementations call this function pairp or 1istp. The name pairp was
rejected for CoMMON Lisp because it emphasizes too strongly the dotted-pair notion rather than the usual usage
of conscs in lists, On the other hand, 1istp too strongly implies that the cons is in fact part of a list, which
after all it might not be; morcover, () is a list, though not a cons. The name consp scems to be the
appropriate compromise,

listp object ' [Function]
‘ 11istp is true if its argument is a cons or the empty list (), and otherwise is falsc. It does not check
for whether the list is a “true list” (onc terminated by n1i1) or a “dotted list” (onc terminated by a

non-null atom),

(1istp x) <=> (typep x '1ist) <=> (typep x ’(cons null))

numberp object ' ' " ' [Function]

numberp is true if its argument is any kind of number, and otherwise is false.
(numberp x) <=> (typep xb’number)

integerp object [Function]
integerp is truc if its argument is an integer, and otherwise is false.
(integerp x) <=> (typep x ’integer)

Compatibility note: In MAcLIsP this is called fixp. Users have been confused as to whether this meant
“integerp” or “fixnump”, and so these names have been adopted here.

rationalp object ' [Function]
rationalp is true if its argument is a rational number (a ratio or an integer), and otherwise is
false.

. (rationalp x) <=> (typep x ’rational)

54 COMMON LISP REFERENCE MANUAL

floatp object ‘ | [Function]
floatp is true if its argument is a floating-point number, and otherwisc is false.

(floatp x) <=> (typep x ’'float)

complexp object ‘ [Function]
comp Texp is true if its argument is a complex number, and otherwise is false.
(complexp x) <=> (typep x 'complex)

characterp object o : [Function]
characterp is truc if its argument is a character, and otherwise is false. ‘

(characterp x) <=> (typep x ’'character)

stringp object » [Function]
stringp is true if its argument is a string, and otherwise is false.
{stringp x) <=> (typep x 'string)

bit-vector-p object [Function]
bit-vector-p is true if its argument is a bit-vector, and otherwise is false.

(bit-vectorfp x) <=> (typep x 'bit-vector)

vectorp object A : ' [Function]
vectorp is true if its argument is a vector, and odlepwise is false.
{vectorp x) <=> (typep x ’'vector)
simple-string-p object " [Function]
simple-string-p is true if its argument is a simple string, and otherwise is false.
(simple-string-p x) <=> (typep x ’simple-string)

simple-bit-vector-p object [Function)
simple-bit-vector-p is true if its argument is a simple bit-vector, and otherwise is false.
(simple~-bit-vector-p x) <=> (typep x ’'simple-bit-vector) ‘

simple-vector-p object [Function] -
simple-vector-p is true if its argument is a simple vector, and otherwise is false.
(simple-vector-p x) <=> (typep x ’'simple-vector)

PREDICATES 55

arrayp object’ . © [Function]
arrayp is true if its argument is an array, and otherwise is false.
(arrayp x) <=> (typep x ’'array)

functionp object ‘ [Function)
functionp is true if its argument is suitable for applying to arguments, using for cxample the
funcall or apply function. Otherwise functionp is false.

compiled-function-p object' A [Function]
compiled-function-p is true if its argument is any compiled code object, and otherwise is
false.

(compiled-function-p x) <=> (typep x ‘'compiled-function)

commonp object [Function]
commonp is true if its argument is any common data type, and otherwise is false.
(commonp x) <=> (typep x ’'common)

Secc also standard-charp (page 150), string-charp (page 150), st‘reamp (pagc 227), packagép
(page 117), random-state-p (page 146), readtablep (page 245), hash-table-p (page 191), and
pathnamep (page 278). ‘

<3

6.3. Equality Predicates

-~

CoMMON LisP provides a spectrum of predicates for testing for equality of two objects: eq (the most
specific), eq1, equal, and equalp (the most general). eq and equal have the meanings traditional in
LISP. eq1l was added because it is frequently necded, and equalp was added primarily to have a version of
equal that would ignore type differences when comparing numbers and case differences when comparing
characters. If two objects satisfy any one of these equality predicates, then they also satisfy all those that are
more general, .

eq x y ‘ ‘ [Function]
(eq x y) is truc if and only if x and y are the same identical object. (Implementationally, x and y
are usually eq if and only if they address the same identical memory location.)

It should be noted that things that print the same are not necessarily eq to each other. Symbols
with the same print name usually are eq to cach other, because of the use of the intern (page
117) function. However, numbecrs with the same value need not be eq, and two similar lists are
usually not eq. '

For example:

56

eql xy

COMMON LISP REIFERENCE MANUAL

(eq a by is false

(eq 'a 'a) istruc

(eq 3 3) might be truc or false, depending on the implementation

(eq 3 3.0) isfalse ‘

(eq (cons 'a 'b) (cons 'a ’'c)) isfalse

(eq (cons ’a 'b) (cons 'a 'b)) isfalse

(setg x "(a . b)) (eq x x) istrue ,
(eq #\A #\A) might be truc or false, depending on the implementation
(eq "Foo" "Foo") is falsc

(eq "FOO" "foo") isfalsc

Implementation note: eq simply compares the two pointers given it, so any kind of object that is represented in
an “immediate” fashion will indeed have like-valued instances satisfy eq. In some implemnctations, for
example, fixnums and characters happen to “work”. Ilowever, no program should depend on this, as other
implementations of COMMON 1.1sP might not use an immediate represcntation for these data types.

[Function]
The eq1 predicate is true if its arguments arc eq, or if they are numbers of the same type with the
same valuc (that is, they are = (page 122)), or if they are character objects that represent the same
character (that is, they are char= (page152)).

For example:

(eql ’a ’b) isfalse , i
(eql 'a ’a) istrue :
(eql 3 3) istruc

(eql 3 3.0) isfalse

(eql (cons 'a 'b) (cons 'a ’'c)) isfalse
(eql (cons ’a 'b) (cons 'a ’'b)) isfalse
(setq x '(a . b)) (eql x x) istrue

(eql #\A #\A) istrue

(eql "Foo" "Foo") is false

(eql "FOOQ”" "foo") is false

-

equal x y) ' [Function)

The equal predicate is true if its arguments are similar (isomorphic) objects. A rough rule of
thumb is that two objects arec equa?l if and only if their printed representations are the same.

Numbers and characters are compared as for eq1. Symbols are compared as for eq. This can
violate the rule of thumb about printed representations, but only in the case of two distinct symbols
with the same print name, and this dces not ordinarily occur (orﬂy if uninterned symbols are
involved).

Most objects that have components are equal if they are of the same type and corresponding
components are equal. This test is implemented in a recursive manner, and may fail to terminate
for circular structures. For conses, equal is defined recursively as the two car’s being equal and
the two cdr's being equal. '

Two arrays are equal only if they arc eq, with one exception: strings and bit-vectors are
compared element-by-clement. Upper-case and lower-case letters in strings are considered to be

PREDICATES _ : 57

-equalp

distinct by equal.

Compatibility note: In Lisp Machine Lisp, equa?l ignores the difference between upper and lower casce in
strings. ‘This violates the rule of thumb about printed representations, however, which is very useful, especially
to novices. It is also inconsistent with the trcatment of single characters, which in Lisp Machine Lisp are
represented as fixnums.

Two pathname objects arc equal iff corresponding components (host, device, and so on) are
cquivalent. Whether or not casc is considered cquivalent in strings depends on the file name
conventions of the file system. The intent is that pathnames that arc equal should be functionally
cquivalent.

For cxample:

(equal ’a 'b) isfalse
(equal 'a 'a) istrue
(equal 3 3) istrue
(equal 3 3.0) isfalse
(equal (cons 'a ’'b) (cons ’a ’'c)) isfalse
(equal (cons 'a 'b) (cons 'a 'b)) istrue
(setq x '(a . b)) (equal x x) istrue
(equal #\A #\A) istrue
(equal "Foo" "Foo") istrue
(equal "FOQ" "foo") is false
To comparc a tree of conses, using eql (or any other desired predicate) on the leaves, use

tree-equal (page 174).

Xy v ’ [FFunction]
Two objects are equatp if they are equal; if they are characters and satisfy char-equal (page
153), which ignores alphabetic case and certain other attributes of characters; if they are numbers
and have the samec numerical value, even if they are of different types; or if they have components
that are all equalp. ‘ ’

+Objects that have components are equalp if they are of the same type and corresponding
components are equalp. This test is implemented in a recursive manner, and may fail to terminate
for circular structures. For conses, equalp is defined recursively as the two car’s being equalp
and the two cdr's being equalp. ‘

Two arrays are equalp if and only if they have the same number of dimensions, the dimensions
match, and the corresponding components are equalp. The specializations nced not match; for
example, a string and a general array that happens to contain the same characters will be equalp
(though definitely not equal). '

Two symbols can be equalp only if they are eq, that is, the samc identical object.

For example:

58

COMMON LISP REFERENCE MANUAL

(equalp ’a 'b) isfalse

(equalp ’a ’'a) istrue

(equalp 3 3) istruc

(equalp 3 3.0) istrue

(equalp (cons 'a 'b) (cons 'a 'c)) isfalse
(equalp (cons ’a 'b) (cons 'a 'b)) istrue
(setqg x "(a . b)) (equalp x x) istrue
(equalp #\A #\A) istrue

(equalp "Foo" "Foo") istrue

(equalp "FOO" "foo") istrue

6.4. Logical Operétors

COMMON LIsp provides three operators on Boolean values: and, or, and not. Of these, and and or are
also control structures, because their arguments arc cvaluated conditionally. not necessarily examines its
singlc argument, and so is a simple function.

not x : [Function]
not returns t if xis ni71, and otherwise returns ni7. It therefore inverts its argument, interpreted
as a Boolean value. '
null (page 52) is the same as not; both functions are included for the sake of clarity. As a matter
of style, it is customary to use nu17 to check whether something is the empty list, and to use not to
invert the scnsc of a logical value.

and {form}* . - ~.[Special form]

(and jforml form2 ...) evaluates e;f:h Jform, one at a time, from left to right. If any form
evaluates to ni 71, the value ni1 is immediately returned without evaluating the remaining forms. If
every form but the last evaluates to a non-ni1 value, and returns whatever the last form returns.
Therefore in general and can be used both for logical operations, where ni1 stands for false and
non-n1i1l values stand for true, and as a conditional expression:

For ¢xample:
(if (and (>= n 0)
(lessp n (length a-simple-vector))
(eq (vref a-simple-vector n) 'foo))
(princ "Fool"))
The above expression prints “Fool” if element n of a-simple-vector is the symbol foo,
provided also that n is indeed a valid index for a-simple-vector. Becausc and guarantees
left-to-right testing of its parts, vref is not performed if n is out of range. (In this example writing
(and (>= n 0) '
(1essp n (length a-simple-vector))
(eq (vref a-simple-vector n) 'foo)
(princ "Fool"))

would accomplish the same thing; the difference is purely stylistic.) Becausc of the guaranteed

~ PREDICATES ‘ 59

left-to-right ordering, and is like the and then operator in ADA, or what in some PASCAL-like
languages is called cand, rather than the and opcrator.

Sce also if (page 77) and when (page 77), which are sometimes stylistically more appropriate
than and for conditional purposcs.

From the general definition, one can deduce that (and x) <=> x. Also, (and) is true, which is
an identity for this operation.

and can be defined in terms of cond (page 76) as follows:

(and x y z ... w) <=> (cond ((not x) nil)
. ((not y) nil)
((not z) nil)
(t w))
or {form}* ' [Special form}
(or forml form2 ...) evaluatcs cach form, one at a time, from left to right. If any form other

than the last cvaluates to something other than n1i1, or immediately returns that non-ni1 value
without evaluating the remaining forms. If every form but the last cvaluates to ni1, or returns
whatever evaluation of the last of the forms returns. Therefore in general or can be used both for
logical opcrations, where nil stands for false and non-nil values stand for frue, ,and as a
conditional expression. Because of the guaranteed left-to-right ordering, or is like the or else
operator in ADA, or what in some PASCAL-like languages is called cor; rather than the or operator.

Sec also if (page 77) and unless (page 77), which are sometimes stylistically more appropriate
than or for conditional purposes

From the general definition, one can deduce that (or x) <=> x. Also, (or) is false which is the
identity for this opération. :

4

or can be defined in terms of‘ cond (page 76) as follows:

(or Xy z ... w) <=> (cond (x) (¥) (2) ... (t w))

COMMON LISP REFERENCE MANUAL

Chapter 7

Control Structure

LIsP provides a varicty of special structures for organizing programs. Some have to do with flow of control
(control structures), while others control access to variables (environment structures). Most of these features
are implemented either as special forms or as macros (which typically expand into complex program
fragments involving special forms).

Function application is the primary mcthod for construction of LISp programs. Operations ar¢ written as
the application of a function to its arguments. Usually, ISP programs arc written as a large collection of small
functions, each of which implements a simple operation. These functions operate by calling one another, and
so larger operations are defined in terms of smaller ones. LISP functions may call upon themselves
recursively, either dircctly or indircctly.

Lisp, while more applicative in style than statement-oricnted, nevertheless provides many operations that
produce side-cffects, and consequently requires constructs for controlling the sequencing of side-cffects. The
‘construct progn (page 72), which is roughly equivalent to an ALGOL begin-end block with all its semicolons,
" executes a number of forms sequentially, discarding the values of all but the last. Many LISP control
constructs include sequencing implicitly, in which case-they are said to provide an “implicit progn”. Other
sequencing constructs include prog1 (page 72) and prog2 (page 72).

For looping, COMMON LISP provides the general iteration facility do (page 80), as well as a variety of
special-purposc itcration facilities for itcrating or mapping over various data structures.

CoMMON LisP provides the simplc one-way conditionals when and unless, the simple two-way
conditional if, and the more general multi-way conditionals such as cond and case. The choice of which

form to usc in any particular situation is a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplincs are provided: block (page 79),
return (page79), catch (page93), and throw (page995).

The multiple-value constructs provide an efficient way for a function to rcturn more than one value; see
values (page 89). '

— 61 —

62 ' COMMON LISP REFERENCIEMANUAL

7.1. Constants and Variables

7.1.1. Reference'

quote object ' [Special form]
(quote x) simply returns x. The argument is not evaluated, and may be any ISP object. This
construct allows any LISP objcct to be written as a constant value in a program,

For example:

(setq a 43) .

(1ist a (cons a 3)) => (43 (43 . 3))

(1ist (quote a) {quote (cons a 3)) => (a (cons a 3))
Since quote forms arc so frequently useful but somewhat cumbersome to type, a standard
abbreviation is defined for them: any form preceded by a single quote (*) character is assumed to
have “(quote)” wrapped around it.
For example:) .

(setqg x '(the magic quote hack))
is normally intcrpreted by read (page 253) to mean

(setq x (quote (the magic quote hack)))

function fn ' [Special form]
The value of function is always the functional interpretation of fi; fi is interpreted as if it had
appeared in the functional position of a function invocation. In particular, if fi is a symbol, the
~ functional value of the variable whose name is that symbol is returned. If fi is a lambda expression,

then -a lexical closure is returned.

Since function forms are so frequently useful (for passing functions as arguments 10 other
function) but somewhat cumbersome to -type, a standard abbreviation is defined for them: any
form preceded by a sharp sign and then a single quote (#') is assumed to have “{(function)”
wrapped around. it. ’ »

For example:
(remove-if #’humberp (1 ab 3))

is normally interpreted by read (page 253) to mean
(remove-if (function numberp) *(1 a b 3))

symbol-value symbol ‘ [Function]
symbo1-value recturns the current value of the dynamic (special) variable named by symbol. An
error occurs if the symbot has no value; sce boundp (page 63) and makunbound (page 65). Note
that constant symbols are really variables that cannot be changed, and so symbol-value may be
uscd to get the value of a named constant. In particular, symbol-value of a keyword will

CONTROIL. STRUCTURE _ .63

(normally) return that kecyword.
symbol-value cannot access the value of a lexical variable.

This function is particularly uscful for implementing interpreters for languages embedded in LISp.
The corresponding assignment primitive is set (page 64).

symbol-function symbol ‘ \ [Function]
symbol-function returns the current global function definition named by symbol. An crror
occurs if the symbol has no function definition; sce fboundp (page 63). Note that the definition
may be a function, or may be an object representing a special form or macro.- See macro- p (page
63)and special-form-p (pagc 63).

symbol-function cannot access the value of a lexical function name produced by flet (page
75)or 1abels (page 75).

This function is particularly useful for implementing interpreters for languages cmbedded in Lisp,
The corresponding assignment primitive is fset (page 65).

boundp symbol [Function]
fboundp symbol : [Function)

boundp is true if the dynamic (special) variable named by symbol has a value; otherwise, it returns
nil. fboundp is the analogous predicate for the global function definition named by symbol.

See also set (page 64), fset (page 65), makunbound (page 65), and fmakunbound (page

65).
macro-p symbol (' - [Function]
special-forp-p symbol ‘ - [Function].

The function macro-p takes a symbol. If the symbol globally names a macro, then thc eXxpansion
function (a function of one argument, the macro-call form) is returned; otherwise ni1 is returned.
(The function macroexpand (page 100) is the best way to invoke the expansion function.)

The function special-form-p also takes a symbol. If the symbol globally names a special form
(example: quote (page 62)), then a non-nil value is rcturned, typically a function of
implementation-dependent nature that can be used to interprét a special form; otherwise nil is
returned.

It is possible for both macro-p and special-form-p to be truc of a symbol. This is possible
because an implementation is permitted to implement any macro also as a special form for speed.
On the other hand, the macro definition must be available for usc by programs that understand
only the standard special forms listed in Table 5-1.

64 ' COMMON LISP REFERENCE MANUAL

7.1.2. Assignment’
setq {var form}* [Special form)
The special form (setq var! forml var2 form2 ...) is the “simple variable assignment

statcment” of Lisp. First form/ is cvaluated and the result is assigned to var/, then form?2 is
evaluated and the result is assigned to var2, and so forth. The variables are represented as symbols,
of coursce, and arc interpreted as referring to static or dynamic instances according to the usual rules.
setq returns the last valuc assigned, that is, the result of the evaluation of its last argument. As a
boundary case, the form (setq) is Iegal and returns ni1. As a rule there must be an even number
of argument forms.

For cxample:
(setqg x (+ 3 2 1) y (cons x nil))

X is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment was
performed before the second form was evaluated, allowing that form to use the new value of x.

See also the description of setf (page 66), which is the “general assignment statement”, capable of
assigning to variables, array clements, and other locations.

psetq {var form}* [Macro)
A psetq form is just like a setq form, except that the assignments happen in parallel; first all of
the forms arc evaluated, and then the variables are set to the resulting values. The value of the
psetq formisnil.

For example: . : -
(setq a 1) .
(setgq b 2)

(psetqg a b b a) .
a => 2
b =>1

In' this example, the values of a and b are exchanged by using parallel assignment. (If several
variables are to be assigned to in parallel in the context of a loop, the do (page 80) construct may
be appropriate.)

set symbol value , ' _ [Function]
set allows alteration of the value of a dynamic (special) variable. set causes the dynamic variable
named by symbol to take on value as its value. Only the value of the current dynamic binding is
altered; if there are no bindings in effect, the most global value is altered.

For example:
(set (if (eq a b) 'c 'd) ’'foo)
will either set ¢ to foo or set d to foo, depending on the outcome of the test (eq a b). .

CONTROL STRUCTURE ' o 65

Both functions return value as the result value.

set cannot alter the value of a local (lexically bound) variable. The special form setq (page 64) is
usually uscd for altering the values of variables (lexical or dynamic) in programs. set is
particularly uscful for implementing interpreters for languages embedded in Lisp. Sce also progv
(page 75), a construct that performs binding rather than assignment of dynamic variables.

fset symbol value [Function]
‘fset allows altcration of the global function definition named by symbol to be value. fset rcturns
value. ’

fset cannot alter the value of a local (lIexically bound) function definition, as made by f1et (page
75) or 1abels (page75). fset is particularly uscful for implementing interpreters for languages
cmbedded in LiSp.

makunbound symbol , _ [Function]

fmakunbound symbol [Function)
makunbound causes the dynamic (special) variable named by symbol to become unbound (have no
value). fmakunbound does the analogous thing for the global function definition named by
symbol,

For example:

(setq a 1)

a => 1

(makunbound ’a)

a => causes an error .
(defun foo (x) (+ x 1))

(foo 4) => 5°
(fmakunbound .’ foo) . .
(foo 4) => causesan error Coe .

Both functions return symbol as the result value.

7.2. Generalized Variables

In LISP, a variable can remember one piece of data, a LISP object. The main operations on a variable are to
recover that picce of data, and to alter the variable to remember a new object; these operations are often
called access and update operations. The concept of variables named by symbols can be gencralized to any
storage location that can remember one piece of data, no matter how that location is named. Examples of
such storage locations are the car and cdr of a cons, elements of an array, and components of a structure. ‘

For each kind of gencralized variable, there are iypically two functions that implement the conceptual
access and update operations. For a variable, mercly mentioning the name of the variable accesses it, while
the setq (pagc 64) special form can be used to update it. The function car (page 173) accesses the carof a
cons, and the function rplaca (page 181) updates it. The function symbol-value (page 62) accesses the

66 ' COMMON LISP REFERENCE MANUAL -

dynamic valuc of a variable named by a given symbol, and the function set (pagc 64) updates it.

Rather than thinking about two distinct functions that respectively access and update a storage location
somchow deduced from their arguments, we can instcad simply think of a call to the access function with
given arguments as a name for the storage location. Thus, just as x may be considered a name for a storage
location (a variable), so (car x) is a name for the car of some cons (which is in turn named by x). Now,
rather than having to remember two functions for cach kind of generalized variable (having to remember, for
cxample, that rplaca corrcsponds to car), we adopt a uniform syntax for updating storage locations named
in this way, using the setf spccial form. 'This is analogous to the way we use the setq special form to
convert the name of a variable (which is also a form that accesses it) into a form that updates it. The
uniformity of this approach may be scen from the following table:

Access function Update function Update using setf

X (setqg x newvalue) (setf x newvalue)

(car x) (rplaca x newvalue) (setf (car x) newvalue)
(symbol-value x) (set x newvalue) (setf (symbol-value x) newvalue)

setf is actually a macro that examines an access form and produces a call to the corresponding update
function.

Given the cxistence of setf in COMMON LISP, it is not necessary to have setq, rplaca, and set as well;
they are redundant. They are retained because of their historical importance in Lisp. However, most other
update functions (such as putprop, the update function for get (page 108)) have been climinated in the
expectation that setf be uniformly used in their place. ’

setf {place newvalue}* , ’ [Macro]
(setf place newvalue) takes a form place that when evaluated accesses a data object in some
- location, and “inverts” it to produce a corresponding form to update the location. A call to the
setf macro therefore expands into an update form that stores the result of evaluating the form
newvalue into the place referred to by the access-form. '

If more than one place-newvalue pair is specified, the pairs are processed sequentially:
(setf placel newvaluel
place? newvalue?)
placen "newvaluen)
is precisely equivalent to

(progn (setf placel newvaluel)
(setf place2 newvaluel)

D

(setf placen newvaluen))

For consistency, it is legal to write (setf), which simply returns ni1.

The form place may be any one of thé following:

e The namec ofa variable (either lexical dr dynamic). .

CONTROIL. STRUCTURE

e A function call form whose first clement is the name of any onc of the following
functions:

car (pagc 173) caaaar (pagcl174) cadddr (page 174)
cdr (pagc 173) cdaaar (pagc 174) cddddr (pagc 174)
caar (page174) cadaar (pagel74) elt (page 161)
cdar (page 174) cddaar (page 174) aref (page 196)
cadr (page 174) caadar 4 (page 174) svref (page 197)
cddr (page 174) cdadar (pagc 174) sgvref (page 197)

caaar (pagcl74) caddar (pagel74) symbol-value (page 62)
cdaar (pagc174) cdddar (pagc174) symbol-function (pagc63)

cadar (pagcl74) caaadr (pagcl74) get (page 108)
cddar (pagc174) cdaadr (pagcl74) symbol-plist (pagce 109)
caadr (pagel174) cadadr (pagel74) gethash (page 191)
cdadr (pagc174) cddadr (pagcl74) documentation (page 301)
caddr (page 174) caaddr (pagel74) nth (page 175)

cdddr (page 174) cdaddr (page 174)

A function call form whose first clement is the name of a sclector function constructed
by defstruct (page21l). '

A function call form whose first element is the name of any onc of the following
functions, provided that the new value is of the specified type so that it can be used to
replace the specified “location” (which is in each of these cases not really a truly
generalized variable):

Function name chuireg type
char (page 203) string-char
bit (page 197) . + (mod 2)
subseq (page 161) sequence

In the casc of subseq, the replacement value must be a sequence whose clements may
be contained by the sequence argument to subseq.

A function call form whose first clement is the name of any one of the following
functions, provided that the specificd argument to that function is in turn a place form;
in this casc the new place has stored back into it the result of applying the specified
“update” function (which is in each of these cases not a true update function):

Function name Argument that is a place Update function.used
char-bit (page 157) First set-char-bit (page 157)
1db (page 143) Second dpb : (page 143)

mask-field (page143) Second deposit-field (page 144)

67

68

COMMON LISP REFERENCE MANUAL,

o A call on getf (page 109), in which casc (setf (getf x y) z) cxpands into
(putf x y z).

o A the (page 106) typc declaration form, in which case the declaration is transferred to
the newvalue form, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were
. (setf (cadr x) (the integer (+ y 3)))

e A macro call, in which casc setf cxpands the macro call and then analyzes the
resulting form.

setf carcfully arranges to preserve the usual left-to-right order in which the various subforms are
cvaluated. On the other hand, the exact expansion for any particular form is not guaranteed and
may cven be implementation-dependent; all that is guarantced is that the cxpansion of a
setf-form will be an update form that works for that particular implementation, and that the
left-to-right evaluation of subforms is prescrved.

The ultimate result of evaluating a setf form is the value of newvalue. (Thercfore (setf (car
x)} y) does not expand into precisely (rplaca x y), butinto something more like

(Tet ((G1 x) (G2 y)) (rplaca x y) y)
the precisc expansion being implementation-dependent.)

The user can define new setf cxpansions by using defsetf (page 70).

psetf {place newvaluet* ‘ ' . . [Macro)

psetf is like setf except that if more than one place- newvalue pair is spccified then the
assignments of new values to places is done in parallcl More precisely, all subforms that are to be
evaluated are evaluated from left to rlght after all evaluations have been performed, all of the
assignments are performed.

psetf always returns nil.

shiftf place {blace}* newvalue : [Macro]

Each place form may be any form acceptable as a gencralized variable to setf (page 66). In the
form (shiftf placel place? ... placen newvalue), the values in placel through placen are
accessed and saved, and newvalue is cvaluated, for a total of n+1 values in all. Values 2 through
n+1 arc then stored into placel through placen, and value 1 (the original value of placel) is
returnce. [t is as if all the places form a shift register; the newvalue is shifted in from the right, all
values shift over to the left one place, and the value shifted out of placel is returned.

For example:

CONTROL STRUCTURE ‘ 69

(setqg x '(a b c)) -
. (shiftf (cadr x) 'z) => b
andnow x => {(a z c)

The effect of (shiftf placel place2 ... placen newvalue) is roughly cquivalent to

(progl placel
(setf placel place2)
(setf place? place3)

(setf placen newvalue))

cxcept that the latter would cvaluate any subforms of each place twice, while shiftf takes care to
cvaluate them only once. :

For cxample:

(setg n 0)
(setg x "(a b c d))
(shiftf (nth (setg n (+ n 1)) x) z)
andnow x => (a z c d)
but
(setq n 0) .
(setqg x '(a b c d))
(progl (nth (setgq n (+ n 1)) x)
(setf (nth (setq n (+ n 1)) x) 'z))
andnow x => {(a b z d)

Moreover, for certain place forms shiftf may be significantly more cfficient than the prog1

. version
Rationale: shiftf and rotatef (below) have been included in ComMMON LisP as generalizations of
two-argument versions formerly called swapf and exchf. The two-argument versions have been found to be
very useful, but the names were easily confused. The gencralization to many argument forms and the changg of
names were both inspired by the work of Suzuki [13], which indicates that use of these primitives can make
certain complex pointer-manipulation programs clearer and easier Lo prove correct,

t

rotatef {place}* [Macro]
Each place form may be any form acceptable as a generalized variable to setf (page 66). In the
form (rotatef placel place? ... placen), the valucs in placel through placen arc accessed
and saved. Values 2 through # and value 1 arc then stored into placel through placen. It is as if all
the places form an end-around shift register that is rotated one place to the left, with the value of
placel being shifted around the end to placen. Note that (rotatef placel place2) ¢xchanges’
the contents of place and place2.

The effect of (rotatef placel place2 ... placen newvalue) is roughly equivalent to
(psetf placel place2
‘ ' place2 place3
placen placel)
} except that the latter would cvaluate any subforms of each place twice, while rotatef takescare to

evaluate them only once. Moreover, for certain place forms exchf may be significantly more
‘ cfficient than the prog1 version.

7Q ‘ COMMON LISP REFERENCE MANUAL

rotatef always rcturns nil.

Other macros that manipulate generalized variables include getf (page 109), putf (page 109), remf
(page 110), incf (page 126), decf (page 126), push (page 179), and pop (pagc 180).

defsetf access-fir {update-fn [doc-string] |
lambda-list lambda-list {declaration | doc-string}* {form}*} [Macro]
A defsetf declaration may take onc of two forms. In cither form, access-fir must be a symbol, the
name of a function or macro for which a se tf-inverse is to be defined.

The simplc form of defsetf is
(defsetf access-fn update-fu [doc-string])

The update-fih must name a function or macro that takes one more argument than access-fi does.
When setf (page 66) is given a place that is a call on access-fi, it cxpands into a call on the
update-fn that is given all the arguments to the access-fn and also, as the last argument, the new
value. For cxample, after :

(defﬁetf getfrob putfrob)

the form (setf (getfrob ’a 3) foo) wouldexpandinto (putfrob 'a 3 foo).

The complex form of defsetf has the same form as defmacro (page 99) except that there are
two lambda-lists, the first rcpresenting the argument forms to the access-fn and the second
representing the value(s) of the newvalue form given to setf. The body of the defsetf
definition must then compute a replacement form for the setf form, just as for any other macro.

The body is responsible for ensuring that the expansion causes subforms to be evaluated cxactly
once each and'in the correct (left-to-right) order. *

If the second lambda-list spcciﬁcs other than a single required argument, setf will effectively
arrangc tousemultiple-val ue-céﬂ 1 (page 90) to receive the valucs from the newvalue form.
For example, consider this simple function:

(defun uncons (cell) (values (car cell) (cdr cell)))
An appropriate defsetf definition would be: ' '

(defsetf uncons (cell) (a &optional (d ."foo))
‘(values (setf (car ,cell) ,a) (setf (cdr ,cell) ,d)))
The result of cxpanding (setf (uncons (reckon g)) (floor 5 3)) would then be
something like:
(Tet ((GO001 (reckon q)))
(multiple-vaiue-call #’'(lambda (G0002 &optional (GO003 ’'foo))
(values (setf (car G0001) G0GO2)
(setf (cdr GO001) G0003)))
(floor 5 3))) . ‘
Note that the values of parameters in the second lambda-list will be names of variables by means of
which the cxpansion may refer to the valucs returned by newvalue.

CONTROL STRUCTURE . i |

7.3. Function Invocation

The most primitive form for function invocation in LISP of course has no name; any list that has no other
interpretation as a macro call or special form is taken to be a function call. Other constructs arc provided for
less common but nevertheless frequently useful situations.

apply function arg &rest more-args - [Function]
' This applics fiunction to a list of arguments. function may be a compiled-code object, or a lambda-
expression, or a symbbl; in the latter case the global functional value of that symbol is used (but it is
illegal for the symbol to be the name of a.macro or special form). The arguments for the finction
consists of the last argument to app1y appended to a list of all the other arguments to apply but

the fitnction itself. »

For cxample:
(setqg f '+) (apply f ’(1 2)) => 3
(setqg f '-) (apply f '(1 2)) => -
(apply #'max 3 5 (2 7 3)) =>
(apply ’'cons '((+ 2 3) 4)) =
((+ 2 3) . 4) not(5 . 4)
After the function argument there may be any number of individual arguments (possibly none)
followed by a list of all the rest of the arguments. If no individual arguments arc spccified and the
final lista rgument is cmpty, then the function reccives no arguments. Note that if the function
takes keyword arguments, the keywords as well as the corresponding values must appear in the
argument list;
(apply #'(lambda (&key a b) (Tist a b)) "(:b 3)) => (nil 3)
This can be very useful in conjunction with the &a11ow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other- keys)
(Tet ((v (apply # make-simple- vector size keys)))
(if double (concatenate v v) v))) ‘

(foo 4 :initial-contents '(a b ¢ d) :double t)
=> #abcdabc d)

777 Query: The above example looks like the right thing, but conflicts with the specification that it is an error
to pass an incorrect keyword to a function. What shall we do to preserve the utility of &a1low-other-keys?

funcall fn &rest arguments [Function]
(funcall fn al aZ ... an) applics the function fi to the arguments al, a2, ..., an. fh may not
be a special form nor a macro; this would not be meaningful.

For example:

(cons 1 2) => (1 . 2)

(setq cons (symbol-function ’+))

(funcall cons 1 2) => 3
The difference between funcall and an ordinary function call is that the function is obtamed by
ordinary LISP evaluation rather than by the special interpretation of the function position that

72

COMMON LISP REFERENCE MANUAL

normally occurs.

Compatibility note: This corresponds roughly to the INTERLASP primitive apply*.

7.4. Simple Sequencing

progn {form}* ' [Special form]

progl first {form}*

The progn construct takes a number of forms and cvaluates them scquentially, in order, from left
to right. The values of all the forms but the last are discarded; whatever the last form returns is
returncd by the progn form. One says that all the forms but the last are evaluated for effect,
because their exccution is useful only for the side effects causcd, but the last form is exccuted for
value.

progn is the primitive control structure construct for “compound statements”; it is analogous to
begin-end blocks in ALGOL-like languages. Many LISP constructs arc “implicit progn” forms, in
that as part of their syntax cach allows many forms to be written that are to be cvaluated
sequentially, discarding the results of all forms but the last, and returning the results of the last
form.

If the last form of the progn returns multiple vatues, then those multiple values are returned by the
progn form. If there arc no forms for the progn, then the result is ni1. These rules generally
hold for implicit progn forms as well.

; [Macro)
progl is similar to progn, but it returns the value of its first form. All the argument forms are
exccuted sequentially; the value the first form produces is saved while all the others are executed,
and is then returned. ' '

prog1 is most commonly used to evaluate an expression with side effects, and return a value that -

must be computed before the side effects happen.
For example:

(progl (car x) (rplaca x 'foo))
alters the car of x to be foo and returns the old car of x.

progl always returns a single value, ¢ven if the first form tries to return multiple vélues. A
consequence of this is that (progl x) and (progn x) may behave differently if x can produce
multiple values. Scemultiple-value-progl (page90).

prog2 first second {form}* [Macro]

prog2 is similar to prog1, but it returns the value of its second form. All the argument forms are
exccuted sequentially; the value of the sccond form is saved while all the other forms are executed,
and is then returned. ‘)

CONTROL STRUCTURE) 73

prog?2 is provided mostly for historical compatibility. »

(prog2 a b c ... z) <=> (progn a (progl bc ... 2))
Occasionally it is desirable to perform once side cffect, then a valuce-producing operation, thcﬁ
another side cffect; in such a peculiar case prog?2 is fairly perspicuous.
For cxample:

(prog2 (open-a-file) (compute-on-file) (close-the-file))

; value is that of compute-on-file

prog2, likec prog1, always rcturns a single value, even if the second form tries to return multiple
values. A conscquence of this is that (prog2 x y) and (progn "x y) may behave differently if
ycan produce multiplc' values.

7.5. Environment Manipulation

let ({vaf | (var value)}*) {form}* » | [Macro]

A et form can be used to cx_eéutc_a series of forms with specified variables bound to specified
values,

For example:

(let ((varl valuel)
(var2 value2)

{ varm valuem))
bodyl
body2

~

l;c;ciytz) : : Y

- first evaluates the cxpressions valuel, value2, and so on, jn that order, saving the resulting values.

Then all of the variables varj are bound to the corresponding values in parallel; cach binding will be
a local binding unless therc is a spéciaf declaration to the contrary. The expressions bodyj are
then evaluated in order; the values of all but the last are discarded (that is, the body of a 1et form
is an implicit progn). The 1et form returns what evaluating bodyn produces (if the body is empty,
which is fairly useless, Tet returns ni1 as its value). The bindings of the variables disappear when
the 1et form is exited.

Instead of a list (varj valuej) one may write simply varj. In this case varj is initialized to ni1. Asa
matter of style, it is rccommended that varf be written only when that variable will be stored into
(such as by setq (pagc 64)) before its first use. Ifit is important that the initial value is ni1 rather
than some undcfined value, then it is clearer to write out (varj nil) (if the initial value is
intended to mean “false™) or (varj ' ()) (if the initial value is intended to be an empty list).

Dcclarations may appear at the beginning of the body of a Tet; they apply to the code in the body

“and to the bindings made by 1et, but not to the code that produces values for the bindings.

The 1et form shown above is entirely equivalent to:

74

COMMON 1ISP REFERENCIE MANUAL

((Yambda (var! var2 | ... varm)

bodyl body2 ... bodyn)
valuel value? ... valuem)

but Tet allows cach variable to be textually close to the expression that producces the corresponding
valuc, thereby improving program readability.

let* ({var | (var value)}‘*) {form}* [Special form]

Tet* is similar to Tet (page 73), but the bindings of variables are performed scquentially rather
than in parallcl. This allows-the cxpression for the valuc of a variable to refer to variables
previously bound in the Tet* form.

More preciscly, the form:

(let* ((varl valuel)
(var2 value2)

i varm valuemy))
bodyl
body?

bodyn) ‘
first evaluates the expression valuel, then binds the variable var! to that value] then its evaluates
value2 and binds var2; and so on. The cxpressions bodyj arc then cvaluated in order; the values of
all but the last arc discarded (that is, the body of a Tet* form is an implicit progn). The Tet*

form returns the results of evaluating bodyn (if the body is empty, which is fairly uscless, Tet*
returns ni1 as its value). The bindings of the variables disappear when the Tet* form is exited.

Instead of a list (varj valuej) one may write simply varj. In this case varj is initialized to ni1. Asa
matter of style, it is reccommended that varj be written only when that variable will be stored into
(such asby setq (page 64)) before its first use. If it is important that the initial value is ni1 rather
than some undefined value, then it is clearer to write out (varj nil) (if the initial valug is
intended to mean “false”) or (varj * ()) (if the initial value is intended to be an empty list).

Declarations may appear at the beginning of the body of a 1et; they apply to the code in the body
and to the bindings made by 1et, but not to the code that produces values for the bindings.

compiler-let ({var | (var value)}*) {form}* ’ [Macro]

When executed by the LISP interpreter, compiler-1et behaves exactly like Tet (page 73) with
all the variable bindings implicitly declarcd special. When the compiler processes this form,
however, no codc is compiled for the bindings; instead, the processing of ihe body by the compiler
is donc with the special variables bound to the indicated values in the execution context of the
compiler. This is primarily uscful for communication among complicated macros.

v

CONTROL STRUCTURE ‘ 75

progv symbols values {form}* 4 [Special form]
progv is a special form that allows binding onc or more dynamic variables whose names may be
determined at run time. The sequence of forms (an implicit progn) is cvaluated with the dynamic
variables whose names are in the list symbols bound to corresponding values from the list values. (If
too few values are supplied, the remaining symbols are bound and then madc to have no valuc; sce
makunbound (pagc 65). If too many valucs arc supplicd, the excess values are ignored.) The
results of the progv form arc those of the last form. The bindings of the dynamic variables are
undonc on cxit from the progv form. The lists of symbols and values arc computed quantities;
this is what makes progv diffcrent from, for example, 1et (page 73), where the variable names
arc stated cxplicitly in the program text.

progv is particularly uscful for writing interpreters for languages embedded in LISP; it provides a
handle on the mechanism for binding dynamic variables.

flet ({(name lambda-list {declaration | doc-string}* {form}*)}*) {form}* [Special form]

labels ({(name lambda-list {declaration | doc-siring}t* {form}*)}*) {form}* [Special form]
macrolet ({(name varlist {declaration | doc-string}* {form}*)}*) {form}* [Special form]

f1et may be used to define locally named functions. Within the body of the f1et form, function
names matching those defined by the f1et refer to the locally defined functions rather than to the
global function dcfinitions of the same name.

Any number of functions may be simultancously defined. Each definition is similar in format to a
defun (pagc 47) form: first a name, then a parameter list (which may contain &optional,
&rest, or &k ey parameters), then optional declarations and documentation strjng, and finally a
body. '

The Tabe1s construct is identical in form to the f1et construct. It differs in that the scope of the
- defined function names for f1et epcompasses only the body, while for Tabels it encompasses .
the function definitions themsclves. That is, Tabels can be used to define mutually recursive
functions, but flet cannot. This distinction is useful. Using flet one can locally redefine a
gldbal function name, and the new definition can refer to the global definition; the same
construction using 1abe1s would not have that effect.

(defun integer-power (n k) ;A highly "bummed” integer
(declare (integer n)) ; exponentiation routine.
(declare (type (integer 0 *) k))

(Tabels ((expt0 (x k a)
(declare (integer x a) (type (integer 0 *) k))
{(cond ((zerop k) a)
((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a)))))
(exptl (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a))))))
(expt0 n k 1))) oo

76

COMMON LISP REFERENCE MANUAL

macrolet is similar in form to flet, but defines local macros, using the same format used by
defmacro (pagc99).

7.6. Conditionals

cond {(

test {form}*)}* : _ - [Macro]
The. cond special form takes a number (possibly zero) of clauses, which are lists of forms. Each
clausc consists of a test followed by zero or more consequents.

For example:
(cond (test-1 consequent-1-1 consequent-1-2 ...)
(test-2)
(test-3 consequent-3-1 ...)
)

The first clause whose fest evaluates to non-ni1 is sclected; all other clauses are ignored, and the
conscquents of the sclected clause are evaluated in order (as an implicit progn).

More specifically, cond processes its clauses in order from left to right. For cach clause, the test is
evaluated. Ifthe resultis ni1, cond advances to the next clause. Otherwise, the cdr of the clause is
treated as a list of forms, or conscquents, which are evaluated in order from left to right, as an
implicit progn. After evaluating the consequents, cond rcturns without inspecting any remaining
clauses. The cond special form returns the results of evaluating thc last of the selected
conscquents; if there were no consequents in the selected clause, then the single (and necessarily
non-null) value of the fest is returned. If cond runs out of clauses (cvery test produced ni1, and
therefore no clause was selected), the value of the cond formis ni1.

- . - - . & T
If it is desired to select the last clause unconditionally if all others faib, the standard convention is to

usc t for the fest. Asamatter of style, it is desirable to write a last tlause “(t ni1)” if the value of

the cond form is to be used for something. Similarly, it is in questionable taste to let the last clause

of a cond be a “singleton clause”; an explicit t should be provided. (Note morcover that (cond
(x)) may behave differently from (cond ... (t x)) if x might produce multiple

values; the former always returns a single value, while the latter returns whatever values x returns.)

For example:
(setq z (cond (a 'foo) (b ’'har))) ; Possibly confusing.
(setqg z (cond (a 'foo) (b ’bar) (t nil))) ;Better.
(cond (a b) (c d) (e)) ; Possibly confusing.
(cond (a b) (c d) (t e)) ; Better.
(cond (a b) (c d) (t (values e))) ; Better (if one value nceded).
(cond (a b) (c)) ; Possibly confusing.
(cond (a b) (t c)) ; Better.,
(if a b ¢) ; Also better.

- A Lisp.cond form may be compared to a continued if-then-elseif as found in many algebraic

programming languages:

CONTROL STRUCTURE » 77

(cond (p ...) if p then .
(g ...) roughly else if g then ...
(r ...) corresponds clse if r then ...
e to Ce e
(t ...)) clse ..
if pred then [else] [Special form]

The if special form corresponds to the if-then-clse construct found in most algebraic programming
languages. First the form pred is cvaluated. If the result is not ni 1, then the form then is sclected;
otherwise the form efse is selected. Whichever form is sclected is then cvaluated, and if returns
whatever evaluation of the selected form returns.

(if pred then else) <=> (cond (pred then) (t else))

but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of predis ni1 then nothing is done and
the value of the if form is ni1. If the valuc of the if form is important in this situation, then the
and (page 58) construct may be stylistically preferable, depending on the context. If the value is
not important, but only the cffect, then the when (page 77) construct may be stylistically
preferable.

when pred {form}* : [Mucro]

(when pred forml form2 ...) first cvaluates pred. If the result is nil, then no form is
evaluated, and ni1l is returncd. Otherwise the forms coustitute an implicit progn, and so are
evaluated sequentially from left to right, and the value of the last one is returned.
(and p (progn a b ¢))

(cond (p a b ¢))

(if p (progn a b c) ’nil)

(unless (not p) a b ¢)

(when. p a b ¢)
(when pa b ¢).
(when p a b ¢)
(when p a b ¢)

A AAA
vVVVY

-

As a matter of style, when is normally used to conditionalljf produce some side effects, and the
value of the when-form is normally not used. If the value is relevant, then and (page 58) or if
(page 77) may be stylistically more appropriate. ' ’

unless pred {form}*) . [Macro]

(unless pred forml form2 ...) first evaluates pred. If the resultis not ni1, then the forms
arc not evaluated, and ni1 is returned. Otherwise the forms constitute an implicit progn, and so
are evaluated sequentially from left to right, and the value of the last one is returned.

(unless p a b ¢) <=> (cond ((not p) a b ¢))

(unless p a b ¢) <=> (if p nil (progn a b c))

(unless p a b ¢) <=> (when (not p) a'b c)
As a matter of style, unless is normally used to conditionally produce some side effects, and the
value of the unless-form is normally not uscd. If the value is rclevant, then or (page 59) or if
(page 77) may be stylistically more appropriate.

78 ' COMMON LISP REFERENCE MANUAL

case keyform {(({key}*) {form}*)}* ' [Aacro]
case is a conditional that chooses one of its clauses to cxecute by comparing a value to various
constants, which are typically keyword symbols, integers, or characters (but may be any objects). Its
form is as follows: ‘

(case keyform
(keylist-1 consequent-1-1 consequent-1-2 . ..)
(keylist-2 consequent-2-1 . ..)
(keylist-3 consequent-3-1 ...)
L) :
Structurally case is much like cond (pagce 76), and it bchaves like cond in sclecting one clausc
and then exccuting all consequents of that clause. It differs in the mechanism of clause selection.

The first thing case does is to cvaluate the form keyform to produce an object called the key object.
Then case considers cach of the clauses in turn. If key is in the keylist (that is, is eq1 to any item
in the keylist) of a clause, the conscquents of that clause are evaluated as an implicit progn, and
case rcturns what was returncd by the last consequent (or ni1 if there are no consequents in that
clause). If no clausc is satisficd, case returns nil.

It is an error for the same key to appear in more than one clause.

Instead of a keylist, onc may writc one of the symbols t and otherwise. A clause with such a
symbol always succeeds, and must be the last clause.

Compatibility note: Lisp Machine Lisp uses eq for the comparison. In Lisp Machine LisP case therefore
works for fixnums but not bignums. In the intcrest of hiding the fixnum-bignum distinction, case uses eql in
COMMON Lisp. :

If there is only one key for a clause, then that key may be written in place of a list of.that key,
provided that no ambiguity results (the key should not be a cons or one of ni1 (which is confusable
with (), alist of no keys), t, or otherwise).

typecase keyform {(type {form}*)}* _ ’ [Macro]
typecase is a conditional that chooses one of its clauses by examining the type of an object. Its
form is as follows: ‘
(typecase keyform

(type-1 consequent-1-1 consequent-1-2 ...)

(type-2 consequent-2-1 ...)

(type-3 consequeni-3-1 ...)
Structurally typecase is much like cond (page 76) or case (page 78), and it behaves like them
in sclecting onc clause and then cxecuting all consequents of that clause. It differs in the
mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce an object called the key
object. Then typecase considers cach of the clauses in turn. The first clause for which the key is
of that clausc’s specified ype is sclected, the consequents of this clause are evaluated as an implicit
progn, and typecaseq returns what was returned by the last consequent (or ni1 if there are no

CONTROL STRUCTURE : 79

conscquents in that clause). If no clause is satisfied, typecase returns nil.

As for case, the symbol t or otherwise may bec written for ¢ype to indicate that the clause
should always be sclected.

It is permissible for more than one clause to specify a given type, particularly if onc is a subtype of
another; the carlicst applicable clause is chosen.

For example: .

(typecase an-object |
(string ...) ; This clause handles strings. |
((array t) ...) ' ; This clausc handles general arrays.
((array bit) ...) ; This clause handles bit arrays.
(array ...) ; This handices all other arrays.
((or 1ist number) ...) : This handlcs lists and numbers.
(t ...)) ; This handles all other objects.

. A CoMMON Lisp compiler may choose to issue a warning if a clausc cannot be selected because it is
completely shadowed by earlicr clauses.

7.7. Blocks and Exits

block name {form}* [Special form]
The b1ock construct exccutes each form from left to right, rcturning whatever is returned by the
last form. If, however, a return or return-from form is executed during the exccution of some
Jform, then the results specified by the return or return-from arc immediately returned as the
value of the b1ock construct, and exccution proceeds as if the b1ock had terminated normally. In
this b1ock differs from progn (page 72); the latter has nothing to do with return.)

The name is not evaluated; it must-be a symbol. The scope of tht name is lexical; only a return or
return-from textually contained in somg form can exit from the block. The extent of the name
is dynamic. Thercfore it is only possible to exit from a given run-time incarnation of a block once,
either normally or by ¢xplicit return.

The defun (page 47) form implicitly puts a b1ock around the body of the function defined; the
block has the same name as the function. Therefore one may use return-from to return
prematurely from a function defined by defun. '

return-from name [resul] ' [Special form]
return [resuli] ' [Macro)
return-from is used to return from a block or from such constructs as do and prog that
implicitly establish a block. The name is not evaluated, and must be a symbol. A block
construct with the same name must lexically enclose the occurrence of return-from; whatever
the evaluation of result produccs is immediately rcturned from the block. (If the result form is
omitted, it defaults to ni1. As a matter of style, this form ought to be used to indicate that the

80 , COMMON LISP REFERENCE MANUAL

particular value returned doesn’t matter.)

The return-from form itself never returns, and cannot have a value; it causes results to be
returned from a block construct. If the cvaluation of result produces multiple valucs, those
multiple valucs arc returned by the construct exited.

(return form) is identical in mcaning to (return-from nil form); it returns from a block
named nil. As a rule, blocks established implicitly by itcration constructs such as do arc named
ni1,so that return will exit properly from such a construct.

7.8. Iteration

CoMMON LS provides a number of iteration constructs. -The Toop (page 80) construct provides a trivial
iteration facility; it is little more than a progn (page 72) with a branch from the bottom back to the top. The
do (pagc 80) and do* (page 80) constructs provide a general iteration facility for controlling the variation of
several variables on cach cycle. For specialized iterations over the clements of a list or # consccutive integers,
dolist (page 84) and dotimes (page 84) arc provided. The tagbody (page 87) construct is the most
general, permitting arbitrary go (page 89) statements within it. (The traditional prog (page 87) construct is
a synthesis of tagbody, block (page 79), and 1et (page 73).) All of the iteration constructs permit
statically defined non-local exits in the form of the return-from (page 79) and return statements.

7.8.1. Simple Iteration

loop {form}* ' ’ [Macro)
" Each form is evaluated in turn, from left to right. When the last form has been evaluated, then the
first fom% is evaluated again, and so on, in a néver—ending cycle. The Toop construct never returns
a value. It mustbe explicitly terminated, for ekample by establishing'a block (page 79) around it

and using a return-from statement, or by using throw (page 95).

Toop does not establish an implicit block named ni1.
Rationale: This construct is included primarily as a primitive building block for more complicated iteration
macros that is perhaps more easily understood by a compiler than a full-blown tagbody (page 87).
A 1oop construct has this meaning only if every form is non-atomic (a list). The case where one or
more than one form is a symbol is reserved for future extensions.

7.8.2. General iteration

- do ({(var [init [step]])}*) (end-test {form}*) {declaration}* {tag | statement}* [Macro]
do* ({(var [init [step]]))}*) (end-test {form}*) {declaration}* {tag | statemeni}* [Macro]
The do spccial form provides a generalized iteration facility, with an arbitrary number of “index
variables”. These variables arc bound within the iteration and stepped in parallel in specificd ways.

CONTROL STRUCTURE 4 31

They may be used both to gencrate successive values of interest (such as successive integers) or to
accumulate results. When an end condition is met, the itcration terminates with a specified value.

In general, a do loop looks like this:

(do ((var! initl stepl)
(var2 init2 step2)

(varn initn stepn))
(end-test . result)
{declaration}*

tagbody)

The first item in the form is a list of zero or more index-variable specifiers. Each index-variable
specifier is a list of the name of a variable var, an initial value init (which defaults to ni1 if it is
omitted) and a stepping form step. If step is omitted, the var is not changed by thc do construct
between repetitions (though code within the do is free to alter the valuc of the variable by using
setq (page 64)).

An index-variable specificr can also be just the name of a variable. In this case, the variable has an
initial value of ni1, and is not changed between repetitions.

Before the first itcration, all the init forms are evaluated, and then each var is bound to the value of
its respective init. This is a binding, not an assignment; when the loop terminates the-old values of
thosc variables will be restored. Note that all of the inir forms are cvaluated before any var is
bound; hence init forms may refer to old valucs of the variables.

The sccond element of the do-form is a list of an end-testing predicate form end-test, and zero or
more forms, called the result forms. This resembles a cond clause. At the beginning of each
iteration, after processing the variables, the end-test is evaluated. If the result is ni1, execution
proceeds with the body of the do. If the result is not ni1, the result forms are evaluated in order as

- an implicit progn (page 72), and then do returns. do returns the results of evaluating the last '*

result form. If there are nd result forms, the value of do is ni1; note that this is not quite analogous
to the treatment of clauses in a cond (page 76) special form.

At the beginning of cach iteration other than the first, the index variables are updated as follows.
First every step form is evaluated, from left to right. Then the resulting values are.assigned (as with
psetq (page 64)) to the respective index variables. Any variable that has no associated step form
is not affected. Becausc all of the step forms are cvaluated before any of the variables are altered,
when a step form is evaluated it always has access to the old values of the index variables, even if
other step forms precede it. After this process, the end-test is cvaluated as described above.

If the end-test of a do form is ni1, the test will never succeed. Therefore this provides an idiom for
“do forever”: the body of the do is executed repeatedly, stepping variables as usual, of course.
(The Toop (page 80) construct performs a “do forever” that steps no variables.) The infinite loop
can be terminated by the use of return (page 79), return-from (page 79), go (page 89) to an
outer level, or throw (page 95).

- For example:

82

COMMON LISP REFERENCE MANUAL

(do ((3 0 (+3J 1)))
(nil) ; Do forever.
{(format t "“%Input "D:" j)
(Tet ((item (read)))
(if (null ditem) (return) ; Process items until ni1 scen.
(format t "7&0utput "D: TS" j (process item)))))

The remainder of the do form constitutes an implicit tagbody (page 87). Tags may appcar
within the body of a do loop for use by go (page 89) statements appearing in the body (but such
go statcments may not appear in the variable specificrs, the end-test, or the result forms). When the
end of a do body is reached, the next iteration cycle (beginning with the cvaluation of step forms)
occurs.

An implicit block (page 79) named nil surrounds the cntire do form. A return (page
79) statement may be used at any point to exit the loop immediately.

declare (page 101) forms may appcar at the beginning of a do body. They apply to code in the
do body, to the bindings of the do variables, to the step forms (but. not the init forms), to the
end-test, and to the result forms.

Compatibility note: “Old-style” MACLISP do loops, of the form (do var init step end-test . body), are not
supported. They are obsolete, and are easily converted to a new-style do with the insertion of three pairs of
parentheses. In practice the compiler can catch nearly all instances of old-style do loops because they will not
have a legal format anyway.

Here are some examples of the use of do:

(do ((i 0 (+ i 1)) ; Sets every null element of a-vector to zero.
(n (array-dimension a-vector 0)))
((= 1 n))

(when (null (aref a-vector i))
(setf (aref a-vector i) 0)))
The construction L R R
(do ((x e (cdr x)) - - R
’ (oldx x x))

((nul1 x)) ' ‘
body)

exploits parallel assignment to index variables. On the first iteration, the value of 01dx is whatever
value x had before the do was entered. On succeeding itcrations, o1dx contains the value that x
had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entirely in the step forms of a do,
and the body is cmpty.

For example:

(do ((x foo (cdr x))
(y bar (cdr y))
(z '() (cons (f (car x) (car y)) z)))
({or (null x) (null y))
(nreverse z))) :
does the same thing as (mapcar #'f foo bar). Note that the step computation for z exploits .

the fact that variables are stepped in parallel. Also, the body of the loop is empty. Finally, the use

CONTROL STRUCTURE . ; 83

of nréeverse (page 162) to put an accumulated do loop result into the correct order is a standard
idiom.

Other cxamples:
(defun Tist-length (1ist) _
(do ((x list (cdr x))
(J 0 (+3] 1)))
((endp x) j)))

(defun 1ist-reverse (1list)
(do ((x 1list (cdr x))

(y "() (cons (car x) y)))
((endp x) y)))

Note the usc of endp (page 175) rather than nul1 (page 52) to test for the end of a list in the
abovce two examples. This results in more robust code.

As an example of nested loops, suppose that env holds a list of conses. The car of each cons is a list
of symbols, and the cdr of cach cons is a list of equal length containing corresponding valucs. Such
a data structure is similar to an association list, but is divided into “frames™; the overall structure

rescmblcs a rib-cage. A lookup function on such a data structurce might be:
(defun ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r}))) -
((null r) nil)
(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))

((pull s))
(when (eq (car s) sym)
(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to.sct off the bodics of the do loops.)

‘A do loop may be expléined in terms of the more primitive constructs block (page79), return
(page 79), 1et (page 73), 1oop (page 80), tagbody (pagc:z 87), and psetq (page 64) as follows:

(block nil
(let ({(varl initl)
(var2 init2)

(varn initn))
{declaration}* o
(Toop (when end-test (return (progn . result)))
(tagbody . tagbody)
(psetq varl stepl
var2 step2

;a'r;z stepn)))) |

do* is exactly like do except that the bindings and steppings of the variables arc performed
sequentially rather than in parallel. At the beginning cach variable is bound to the value of its init
form before the init form for the next variable is evaluated. Similarly, between iterations each
variable is given the new value computed by its step form before the step form of the next variable is
evaluated. Itis as if, in the above explanation, Tet were replaced by Tet* (page 74) and psetq

84 , COMMON LISP REFERENCE MANUAL

were replaced by setq (page 64).

7.8.3. Simple Iteration Constructs

The constructs dolist and dotimes perform a body of statements rcpéatcdly. On cach iteration a
specificd variable is bound to an eclement of interest that the body may cxaminc. dolist examines
successive clements of a list, and dotimes examinces integers from 0 to n—1 for some specified positive
integer n.

The valuc of any of these constructs may be specified by an optional result form, which if omitted defaults
to the value ni 1.

The return (page 79) statement may be used to return immediately from a dolist or dotimes form,
discarding any following itcrations that might have been performed; in effect, a block named nil
surrounds the construct. The body of the loop is implicitly a tagbody (page 87) construct; it may contain
tags to serve as the targets of go (page 89) statements. Declarations may appear before the body of the loop.

dolist (var listform [resultform)) {declaration}* {tag | statement}* [Macro}
dolist provides straightforward itcration over the clements of a list. First do11ist cvaluates the
form listform, which should produce a list. It then executes the body once for cach element in the
list, in order, with the variable var bound to the element. Then resultform (a single form, not an
implicit progn) is cvaluated, and the result is the value of the do11ist form. (When the resultform
is evaluated, the control variable var is still bound, and has the value ni1.) If resultform is omitted,
the resultis ni1. ' " '

- For example:

(dolist (x ’(a b c d)) (prini x) (princ " ")) => nil
after printing“a b ¢ d ”

An explicit re turn statement may bc used to terminate the loop and return a specified value.

Compatibility.note: The resultform part of a do1ist is not currently supported in Lisp Machine Lisp. It seems
to improve the utility of the construct markedly.

dotimes (var countform [resultform]) {declaration}* {tag | statement}* [Macro]
dotimes provides straightforward itcration over a sequence of integers. The expression
(dotimes (var countform resultform) progbody) evaluates the form countform, which should
produce an integer. It then performs progbody once for each integer from zero (inclusive) to count
-(exclusive), in order, with the variable var bound to the integer; if the integer is zero or negative,
then the progbody is performed zero times. Finally, resultform (a single form, not an implicit
progn) is evaluated, and the result is the value of the dotimes form. (When the resultform is
evaluated, the control variable var is still bound, and has as its value the numbcr of times the body
was executed.) If resultform is omitted, the resultis ni7.

Altering the value of var in the body of the loop (by using setq (page 64), for example) will have

CONTROL STRUCTURL ; : ' 85

unpredictable, possibly implementation-dependent results. A COMMON LISP compiler may choose
to issuc a warning if such a variable appcars in a setq.

For example:

(defun string-posq (char string &optional
(start 0)
(end (string-length string)))
(dotimes (k (- end start) nil)
(when (char= char (char string (+ start k)))
(return k))))

An explicit return statcment may be used to terminate the loop and return a specified value.

Sccalso do-symbols (page 119) and related constructs.

7.8.4. Mapping

Mapping is a type of iteration in which a function is successively applied to pieces of onc or more
scquences. The result of the iteration is a sequence containing the respective results of the function
applications. There are several options for the way in which the picces of the list are chosen and for what is
done with the results returned by the applications of the function.

The function map (page 163) may be used to map over any kind of sequence. The following functions
operate only on lists.

mapcar function list &rest more-lists - [Function]
maplist fiunction list &rest more-lists R [Function]
mapc function list &rest more-lists * [Function]
mapl function list &rest more-lists) [Function]
mapcan function list &rest more-lists . . - [Function]
mapcon function list &rest more-lists [Function]

For each these mapping functions, the first argument is a function and the rest must be lists. The
function must take as many arguments as there are lists.

mapcar opcrates on successive elements of the lists. First the function is applied to the car of each -
list, then to the cadr of cach list, and so on. (Ideally all the lists are the same length; if not, the
iteration terminates when the shortest list runs out, and excess ¢lements in other lists are ignored.)
The valuc returned by mapcar is a list of the results of the successive calls to the function.

For example:

(mapcar #'abs (3 -4 2 -5 -8)) => (3 4 2 5 6) ‘
(mapcar #'cons ‘(a b c) '(123)) => ((a. 1) (b . 2) (¢ . 3))

maplist is like mapcar except that the function is applied to the list and successive cdr’s of that
list rather than to successive clements of the list.

For example:

86 . COMMON LISP REFERENCE MANUAL

(maplist #’(lambda (x) (cons 'foo x)) ‘
(a b c d))
=> ((foo a b c d) (foo b c d) (foo c d) {(foo d))
(maplist #'(lambda (x) (if (member (car x) (cdr x)) 0 1)))
'(abacdbc))
=> (001011 1)
: An entry is 1 iff the corresponding clcmcnt of the input
; list was the last instance of that element in the input list.
map1 and mapc arc like maplist and mapcar rcspcctwcly, cxcept that they do not accumulate
the results of calling the function. '

Compatibility note: In all Lisp systems since Lisp 1.5, map1 has been called map. In the chapter on sequences
it is explained why this was a bad choice. Here the name map is used for the far more uscful generic sequence
mapper, in closer accordance to the computer science literature, especially the growing body of papers on
functional programming.

Thesc functions are used when the function is being called merely for its side-effects, rather than its
returncd values. The value returned by map1 or mapc is the sccond argument, that is, the first
sequence argument. ‘ ’

mapcan and mapcon are like mapcar and map1ist respectively, except that they combine the
results of the function using nconc (page 178) instecad of 1ist. That is,
(mapcon f xI ... xn)
<=> (apply #’'nconc (maplist fxI ... xn)) -
and similarly for the rclationship between mapcan and mapcar. Conccptually, these functions
allow the mapped function to return a variable number of items to be put into the output list. This
is particularly useful for effectively returning zero or one item:

(mapcan #’(lambda (x) (and (numberp x) (1i$t x)))
(a1 bc34d5))
=> (1 3 4 5)
In this case the function serves as a filter; this is a standard Lisp idiom using mapcan. (The
function remove-if-not (page 165) might have been useful in this particular context, however.)
Remember that nconc is a destructive operation, and therefore so are mapcan and mapcon; the ¢
lists returned by the function are altered in order to concatenate them.

Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the
mapping functions should be uscd wherever they naturally apply because this increases the clarity
of the code. '

The functional argument toa mapping function must be acceptable to app1y; it cannot be a macro
or the name of a special form. Of course, there is nothing wrong with using functions that have
&optional and &rest parameters.

7.8.5. The “Program Feature”

Lisp implementations since LiSP 1.5 have had what was originally called “the program feature”, as if it were
impossible to write programs without it! The prog construct allows onc to write in an ALGOL-like or
FORTRAN-like statement-oriented style, using go statements, which can refer to tags in the body of the prog.

CONTROL. STRUCTURE 87

Modern LISP programming style tends to use prog rather in f'réqucmly. The various iteration constructs, such
as do (page 80), have bodics with the characteristics of a prog. '

prog actually performs three distinct operations: it binds local variables, it permits usc of the return
statement, and it permits usc of the go statement. In COMMON LISP, these three operations have been
scparated into three distinct constructs: Tet (page 73), block (page 79), and tagbody (page 87). These
three constructs may be used independently as building blocks for other types of constructs,

tagbody {rag | statemens}* : [Special form]
The part of a prog after the variable list is called the body. An item in the body may be a symbol
or an integer, in which case it is called a tag, or a list, in which case it is called a statement.

Each clement of the body is processed from left to right. A tag arc ignorcd; a statement is

evaluated, and its results are discarded. If the end of the body is reached, the tagbody returns
il

If (go tag) is evaluated, control jumps to the part of the body labelled with the tag. The go tagis

not evaluated.

Compatibility note: The “computed go” feature of MACLISP is not supported. The syntax of a computed go is
idiosyncratic, and the feature is not supported by Lisp Machine Lisp, NiL, or INTERLISP.

The scope of the tags cstablished by a tagbody is lexical, and the extent is dynamic. Once a
tagbody construct has been exited, it is no longer legal to go to a tag in its body. It is permissible
for a go te jump to a tagbody that is not the innermost tagbody construct containing that go;
the tags established by a tagbody will only shadow other tags of like name in an outer tagbody.

prog ({var | (var [ini}j}*) {declaration}* {tag | statement}* , ' [Macro]

prog* ({var-| (var [inif])}*) {declaration}* {tag | statement}* [Macro] -
A typical prog looks like: ’ ’
(prog (varl var2 (var3 init3) vard (varS init5))
{declaration}*
statementl
tagl
statement2
statement3
statement4
tag?
statements
)

The list after the keyword prog is a sct of specifications for binding varl, var2, etc., which are
temporary variables, bound locally to the prog. This list is processed exactly as the list in a Tet
(page 73) statement: first all the init forms are evaluated from left to right (where ni1 is used for
any omitted init form), and then the variables are all bound in parallel to the respective results. Any
declaration appearing in the prog is used as if appearing at the top of the Tet body.

88 COMMON LISP REFERENCE MANUAL

The body of the pro‘g is exccuted as if it were a tagbody (page 87) construct; the go (page
89) statement may be used to transfer control to a fag.

A prog implicitly cstablishes a block (page 79) named ni1 around the entire prog construct, so
that return (page 79) may be uscd at any time to exit from the prog construct.

Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)

{(prog (x y z) ; Initialize x, y, zto nil
(setq y (car w) z (cdr w))

Toop
(cond ((null y) (return x))

((null z) (go err)))

rejoin
(setq x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr z))

(go Toop)
err

(error "Mismatch - gleepl")
(setq z y)
(go rejoin))

which is accomplished somewhat more perspicuously by:

(defun prince-of-clarity (w)
(do ((y (car w) (cdr y))
(z (cdr w) (cdr z))
(x ’() (cons (cons (car y) (car z)) x)))

((null y) x)
(when (null z)

(error "Mismatch - gleep!")
(seta z ¥))))

. . - - - P
The prog construct may be expldined in terms of the simpler constructs block (page 79), Tet
(page 73), and tagbody (page 87) as follows: o
(prog variable-list {declaration}* . body) : ‘
<=> (block nil (let variable-list {declaration}* (tagbody . body)))

The prog* special form is almost the same as prog. The only difference is that the binding and
initialization of the temporary variables is done sequentially, so that the init form for each one can
use the values of previous ones. Therefore prog* is to prog as Tet* (page 74) isto Tet (page
73). '

For cxample:

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

CONTROL STRUCTURE : 89

go lag ' ' [Special form]
The (go tag) special form is used to do a “go to” within a tagbody (page 87) construct. The tag
must be a symbol or an integer; the rag is not cvaluated. go transfers control to the point in the
body labelled by a tag eq1 to the onc given. If there is no such tag in the body, the bodies of
lexically containing tagbody constructs (if any) are examined as well. It is an error if there is no
matching tag.

The go form does not ever return a value.

As a matter of style, it is recommended that the user think twice before using a go. Most purposes
of go can be accomplished with onc of the iteration primitives, nested conditional forms, or
return-from (page 79). If the use of go seems to be unavoidable, perhaps the control structure
implemented by go should be packaged up as a macro definition. '

7.9. Multiple Values

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes, however, it is convenient
for a function to compute several objccts and return them. COMMON LISP provides a mechanism for handling
multiple values dircctly. This mechanism is cleaner and more cfficicnt than the usual tricks involving
returning a list of results or stashing results in global variables.)

7.9.1. Constructs for Handling Multiple Values

Normally multiple values arc not used. Special forms arc required both to produce multiple values and to
receive them. If the caller of a function does not request multiple values, but the called function produces

_ multiple values, then the first valuc is given to the caller and all others are discarded (dnd if the called

function produces zero values then the caller gets ni1 as a value).

The primary primitive for producing multiple values is values (page 89), which takes any number of
arguments and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will return three values. Other special forms also produce multiple
values, but they can be described in terms of values. Some built-in CoMMON LISP functions (such as
floor (page 135)) return multiple values; those that do are so documented.

The special forms for receiving multiple values are multiple-value-bind (page 90),
muitiple-value (page9l), and multiple-value-1ist (page 90). These spccify a form to evaluate
and an indication of wherc to put the values returned by that form.

values &rest args c [Function]
' Returns all of its arguments, in order, as values.

For example:

90 COMMON LISP REFERENCE MANUAL

(defun polar (x y)

(values (sqrt (+ (* x x) (* y y))) (atan y x)))
(multiple-value-let (r theta) (polar 3.0 4.0)
(1ist r theta))
=> (5.0 0.9272952)

The expression (values) returns zero values.

values-Tlist [ist [Function]
Returns as multiple values all the clements of list,

For example:
(values-1ist (list a b ¢)) <=> (values a b ¢)

multiple-value-1ist form ‘ [Macro]
muitiple-value-1ist evaluates form, and returns a list of the multiple values it returned.
For example: o
(multiple-value-1ist (floor -3 4)) => (-1 1)

multiple-value-call function {form}* ' [Special form} -

multiple-value-call first evaluates fitnction to obtain a function, and then cvaluates all of the
Jorms. All the the values of the forms are gathered together (not just one value from each), and
given as arguments to the function. The result of muitipie-value-call is whatever is
returncd by the function. ‘

For example:

(muitiple-value-call #'+ (floor 5 3) (floor 7 3))
<=> (+ 12 21) => 6 .
(multiple-value-Tist fom}) <=> (multiple-value-call #’list form)

multiple-value-progl form {form}* [Special form]
multiple-value-progl cvaluates the first form and saves all the values produced by that form.
It then evaluates the other forms from left to right, discarding their values. The values produced by
the first form are returncd by multiple-value-progl. See progl (page 72), which always
returns a single value.

"multiple-value-bind ({var}*) values-form {déclarazion}* {form}* [Macro)
The values-form is evaluated, and each of the variables var is bound to the respective value returned
by that form. If therc are more variables than values returned, extra values of ni1 are given to the
remaining variables. If there are more values than variables, the excess values are simply discarded.

The variables are bound to the values over the execution of the forms, which make up an implicit
progn. '

Compatibility note: This is compatible with Lisp Machine Lisp.

CONTROL STRUCTURE ; _ : ' 91

‘ For cxample:
(multiple-value-bind (x) (floor 5 3) (1list x)) => (1)
(multipie-value-bind (x y) (floor 5 3) (list x y)) => (1 2)
(multiple-value-bind (x y z) (floor 5 3) (list x y z))
=> (1 2 nil)

multiple-value variables form , [Macro]
The variables must be a list of variables. Thce form is ¢valuated, and the variables are set (not
bound) to the values returned by that form. If there arc morce variables than valuces returned, cxtra
values of ni1 arc assigned to the remaining variables, [f there are more values than variables, the
excess values are simply discarded. '

Compatibilily note: This is compatible with Lisp Machine Lisp.

multiple-value always rcturns a single value, which is the first value returned by form, or nil
if form produces zero values.

7.9.2. Rules for Tail-Recursive Situations

It is often the case that the value of a special form is defined to be the value of onc of its sub-forms. For
example, the valuc of a cond is the value of the last form in the selected clause. In most such cases, if the
sub-form produces multiple values, then the original form will also produce all of those values. This
passing-back of multiple values of course has no effect unless eventually one of the special forms for receiving

‘ multiple values is reached. ‘

To be explicit, multiple values can result from a special form under precisely these circumstances:

e eval (page 219) returns multiple values if the form given it to evaluate produées myltiple values.
‘e apply (page 71), funcall (page 71), and mul ti ple-value-call (page 90), pass back
multiple valucs from the function applied or called.

e When a lambda-expression is invoked, the function passes back multiple values from the last form
of the Tambda body (which is an implicit progn). ‘

e Indeed, progn (page 72) itsclf passes back multiple values from its last subform, as does any
construct some part of which is defined to be an “implicit progn”;" these include progv (page
75), Tet (page 73), Tet* (page 74), when (page 77), uniess (page 77), case (page 78),
typecase (page 78), multiple-value-bind (page 90), multiple-value (page 91),
catch (page93),and catch-all (page 93).

emultiple-value-progl (page 90) passes back multiple values from its first subform.
However, prog1 (page 72) always returns a single value.

e unwind-protect (page 94) returns multiple values if the form it protects docs.

92 ,) COMMON LISP REFERENCE MANUAL

e catch (pagc 93) rcturns multiple values if the result form in 4 throw (page 95) cxiting from .
such a catch produces multiplc values.

e cond (page 76) passcs back multiple valucs from the last subform of the implicit progn of the
sclected clause. If, however, the clause selected is a singleton clause, then only a single value (the
non-ni1 predicate value) is returned. ‘This is true even if the singleton clause is the last clause of
the cond. [tis nof permitted to treat a final clause *“(x) as being the same as “(t x)” for this
reason; the latter passes back multiple values from the form x.

e if (page 77) passcs back multiple values from whichever subform is sclected (the then form or
the else form). '

e and (page 58) and or (page 59) pass back multiple values from the last subform, but not from
subforms other than the last.

e block (page 79) passes back multiple values from its last subform when it exits normally. If
return-from (page 79) is usced to terminate the block prematurely, then return-from
passcs back multiple values from its subform as the values of the terminated block. Other
constructs that create implicit blocks, such as do (page 80), dotist (pagc 84), dotimes (page
84), prog (page 87), and prog* (pagc 87), also pass back multiple values specificd by
return-from(or return (page79)). In addition, do passes back multiple values from the last
form of the exit clause, cxactly as if the exit clause were a cond clause. Similarly, dolist and .
dotimes pass back multiple values from the resultform if that is executed.

Among special forms that never pass back multiple values are setq (page 64), multiple-value (page
~91), and progl (page 72). A good way to force only one value to be returned from a form x is to write
(values x). '

The most important rule about multiple values is:

< No matter how many values a form produces,
if the form is an argument form in a function call,
then exactly ONE value (the first one) is used.

For cxaruple, if you write (cons (foo x)), then cons will receive exactly one argument (which is of
course an error), even if foo returns two values. To pass both values from foo to cons, onc must use a
special form, such as (multiple-value-call #'cons (foo x)). In an ordinary function call, each
argument form produces exactly one argument; if such a form returns zero values, nil is used for the
- argument, and if more than one value, all but the first are discarded. Similarly, conditional constructs that test
the value of a form will use exactly onc value (the first) from that form and discard the rest, or use ni1 if zero
values are returned.

CONTROL. STRUCTURE , 93

7.10. Dynamic Non-local Exits

CoMMON LIsP provides a facility for cxiting from a complex process in a non-local, dynamically scoped
manner. There are two classes of special forms for this purpose, called catch forms and throw forms, or simply
catches and throws. A catch form cvaluates some subforms in such a way that, if a throw form is exccuted
during such evaluation, the cvaluation is aborted at that point and the catch form immediately returns a value
specified by the throw. Unlike block (page 79) and return (page 79), which allow for so exiting a block
form from any point Iexically within the body of the b1ock, the catch/throw mechanism works cven if the
throw form is not textually within the body of the catch form. The throw need only occur within the extent
(time span) of the cvaluation of the body of the catch. This is analogous to the distinction between
dynamically bound (spccial) variables and lexically bound (local) variables. '

7.10.1, Catch Forms

catch tag {form}* . [Special form]
The catch special form is the simplest catcher. The tag is cvaluated first to produce an object that
namcs the catch; it may be any LLISP object. The forms arc cvaluated as an implicit progn, and the
results of the last form are returned, except that if during the evaluation of the forms a throw should
be exccuted, such that the tag of the throw matches (is eq to) the ag of the catch, then the
evaluation of the forms is aborted and the results specified by the throw are immediately returned
from the catch expression.

The tag is used to match up throws with catches (using eq, not eql; therefore numbers and
characters should not be used as catch tags). (catch 'foo form) will catch a (throw foo
form) butnota (throw 'bar form). Itis an errorif throw is done when there is no suitable
catch (or one of its variants) ready to catch it.

catch-all caitch-function {form}* [Special form]
unwind-all catch-function {form}* [Special form]
catchall behaves roughly like catch, except that instead of a tag, a catch-function is provided.
If no throw occurs during the evaluation of the forms, then this bchaves just as for catch:. the
catchall form returns what is returncd from evaluation of the last of the forms. catch-all
will catch any throw not caught by some inner catcher, however; if such a throw occurs, then the

function is called, and whatever it returns is returned by catch-al1. The catch-function will get

onc or more arguments; the first argument is always the throw tag, and the other arguments are the
thrown results (there may be more than one if the result form for the throw produces multiple
values).

The catch-a11 is not in force during exccution of the carch-function. If a throw occurs within the
catch-function, it will throw to some catch exterior to the catch-all. This is useful because the
catch-function can examine the tag, and if it is not of interest can relay. the throw.

94 v ‘ COMMON LISP REFERENCE MANUAL

(catch-all #'(lambda (tag &rest results)

{(caseq tag : Check tag.
(win (values-Tist results)) ;Ifwin, return results,
(Tose (cleanup) ; Iflose, clean up
(ferror "Lose lose!")) ; andsignal an crror.
(otherwise ; Otherwise relay throw.

(throw tag (values-Tlist results)))))
(determine-win-or-lose))

- Note that an attempt to usc. go (page 89) or return-from (page 79) to exit from a catch-al1
will also be trapped by the catch-function; the tag given to the catch function will be some internal
implementation-dependent object that can nevertheless be given to throw to continue the go or
return-from opcration.

unwind-all is just like catch-al1 cxcept that the carch-function is always called, even if no
throw occurs; in that case the first argument (the “tag”) to the catch-function is ni1, and the other
arguments are the results from the last of the forms. Often unwind-protect is more suitable for
a given task than unwind-all, however; the choicc should be weighed for any particular
application.

Compatibility note: In MacLIsP, a go from within a MacLisp catchall (note the different speiling) quietly
breaks up the catchall frame without invoking the catchall function, which means that it catches all
throws but not all exits! In CommoN Lisp, catch-al1 traps a/l attempts to exit.

unwind-protect protected-form {cleanup-form}* [Special form]
Sometimes it is necessary to evaluate a form and make sure that certain side-effects take place after
the form is-cvaluated; a typical example is:

(progn (start-motor)
(drill-hole)
N (stop-motor)) o ’ ' -
- The non-local exit facility of Lisp creates a situation in which the above code won’t werk, however:
' if dri11-ho7e should do a throw to a catch that is outside of the progn form (perhaps because
the drill bit broke), then (stop-motor) will never be evaluated (and the motor will presumably
be left running). This is particularly likely if dri17-ho1e causes a LISP error and the user tells the
error-handler to give up and abort the computation. (A possibly more practical example might be:
(prog2 (open-a-file) -
(process-file)
(close-the-file))

where it is desired always to close the file when the computation is terminated for whatever reason.)

In order to allow the above program to work, it can be rewritten using unwind-protect as
follows:

(unwind-protect
(progn (start-motor)
(drill-hole))
(stop-motor))
If drill1-hole does a throw that attempts to quit out of the unwind-protect, then
(stop-motor) will be exccuted. '

CONTROL STRUCTURE . 95

‘ As a general rule, unwind-protect guarantees to cxecute all the cleanup-forms before cxiting,
whether it terminates normally or is aborted by a throw of some kind. unwind-protect rcturns
whatever results from evaluation of the protected-form, and discards all the results from the
cleanup-forms.

7.10.2; Throw Forms

throw tag result : [Special form)
The throw special form is the only cxplicit thrower in COMMON Lisp. (However, errors may cause
throws to occur also.) The rag is evaluated first to produce an object called the throw tag. The most
recent outstanding catch whose tag maltches the throw tag is cxited. Some catches; such as a
catch-all, will match any throw tag; a catch matches only if the catch tag is eq to the throw
tag.

In the process dynamic variable bindings are undone back to the point of the catch, and any
intervening unwind-protect cleanup code is executed. The result form is cvaluated before the
unwinding process commences, and whatever results it produces are returned from the catch (or
given to the catch-function, if appropriate).

If there is no outstanding catch whose tag matches the throw tag, no unwinding of the stack is
. performed, and an crror is signalled. When the error is signalled, the outstanding catches and the
-dynamic variable bindings arc those in force at the point of the throw.

Implementation note: These requirements imply that throwing should typically make two passes over the
control stack. In the first pass it simply scarches for a matching catch. In this search every catch,
catch-all, and unwind-al1 must be considered, but every unwind-protect-should be ignored. On the
second pass the stack is actually unwound, one frame at a time, undoing dynamic bindings and outstanding
unwind-protetct constructs in reverse order of creation until the matching catch is reached.

96

COMMON LISP REFERENCE MANUAL

Chapter 8

Macros

The CoOMMON LISP macro facility allows the user to define arbitrary functions that convert certain LISP
forms into different forms before evaluating or compiling them. This is done at the S-expression level, not at
the character-string level as in most other languages. Macros arc important in the writing of good code: they
make it possible to write code that is clear and clcgant at the user level, but that is converted to a more
complex or more cfficient internal form for execution.

When eval (page 219) is given a list whose car is a symbol, it looks for local definitions of that symbol (by
flet (page75), 1abels (page75), and macrolet (page75)); if that fails, it looks for a global definition.
If the definition is a macro definition, then the original list is said to be a macro call. Associated with the
definition will be a function of onc argument, called the expansion function. This function is called with the
entire macro call as its onc argument; it must return some new LISP form, called the expansion of the macro
call. This cxpansion is then evaluated in place of the original form.

When a function is being compiled, any macros it contains are expandcd at compllatlon time. This means
that a macro definition must be seen by the compiler before the first use of the macro. Macros cannot be used
as functlonal arguments to such things as apply (page71), funcall (page7l), ormap (page 163); in such
sitdations, the list reprcscntmg the “original macro call” does not exist, so the expansion function would not
know what to work on.

8.1. Defining Macros

macro name (var) {declaration}* {form}* [Macro]
The primitive special form for establishing a global macro dcumuon is macro. Note, however, that
the use of macro is often very awkward, and it is preferable to use defmacro (page 99) in almost
all circumstances. A call to macro has the following form:

(macro name (var} . body)

This is very siimilar to a defun form: name is the symbol whose macro-definition we are creating,
var is a single required paramcter name that is bound to the entire calling form, and body is the
body of the expansion function, which is executed as an implicit progn. The last form in body
produces, as its value, the form that will be passed back to eval as the macro expansion; the

- 97 —

98 , COMMON 1.ISP REFERENCE MANUAL

cxpansion is then evaluated in place of the macro call. (Note that the expansion could itself be a .
macro call, and the cycle would repeat.)

The if (page 77) construct could be defined in terms of cond (page 76) as a macro:

(macro if (call-form)
*(cond (,{cadr call-form) ,(caddr call-form))
(t ,(cadddr call-form))))

If the above form is cxecuted by the interpreter, it-will cause the definition of the symbol if to be a macro -
associated with which is a onc-argument expansion function cquivalent to:

(lambda (calling-form)
(1ist ’'cond
(1ist (cadr calling-form) (caddr calling-form))
(list 't (cadddr calling-form))))

(The lambda-cxpression is produced by the macro construct. The calls to 1ist are the (hypothetical) result
of the backquote () macro character and its associated commas.) '

Now, if eval encounters
(if (null1 foo) bar (plus bar 3))
this will b¢ expanded into ‘ .

(cond ((null foo) bar)
(t (plus bar 3)))

and eval tries again on this new form.

As you can see in the above example, the main disad@antagc of using macro to define macros is that the
uscr must decompose the argument into its constituents using car and cdr. Inacomplex macro, this process
is confusing and error-prone. The us¢ of defmacro (page 99) alleviates' this problem. It should also be
clear that the backquote facility (page 237) is very useful in writing macros, ‘since the form to be returned is
normally a complex list structure, mostly constant but with a few evaluated forms scattered through the
structure. '

Note that when macro is encountered by the compiler, the normal action is to add the definition to the
compilation environment and also to place a compiled version of the expander-function into the load file, so
that the macro will be defined at runtime as well as during the current compilation, If the macro is to be used
only during the current compilation and not at runtime, this can be achieved by using the eval-when (page
* 49) construct: .

(eval-when (compile)

(macro name (var)
body))

MACROS . 99

. defmacro name lambda-list {declaration | doc-string}* {form}* ' [Macro]
defmacro is a macro-defining macro that, unlikc macro, decomposcs the calling form in a more
clegant and uscful way. defmacro has the same syntax as defun (page 47): name is the symbol
whosce macro-definition we are creating, varlist is similar in form to a lambda-list, and body is the
body of the expander function. If we view the macro call as a list containing a function name and
some argument forms, in cffect the expander function and the list of (unevaluated) argument forms
is given to apply ({page 71). The paramcter specifiers arc processcd as for any lambda-cexpression,’
using the macro-call argument forms as the arguments. Then the body forms arc cvaluated as an
implicit progn, and the valuc of the last form is returned as the expansion of the macro call.

1f the optional documentation string doc-string is present (if not followed by a declaration, it may be
present only if at least onc formn is also specified, as it is otherwise taken to be a form), then it is

attached to the name as a documentation string of type function; sce documentation (page
301).

Like the lambda-list in a defun, a defmacro lambda-list may contain the lambda-list keywords
&optional, &rest, &key, &allow-other-keys, and &aux. For &optional and &key
paramctcrs, initialization forms and “supplicd-p” parameters may be specified, just as for defun.
Two additional tokens are allowed in definacro variable lists only:

&body This is identical in function to &rest, but it informs certain pretty-printing and
editing functions that the remainder of the form is treated as a body, and should

. be indented accordingly. (Only one of &body or &rest may be used.)
&whole This is followed by a single variable that is bound to the entire macro call form;

this is the same value that the single paramcter in a macro definition form
would receive.

Compatibility note: Some LisP implementations, notably MacLisp and Lisp Machine Lisp, allow a
“destructuring” pattern to be used instead of, or mixed with, the defun-like arglist specified here. Prior to the
appearance of &optional, the pattern may cogtain not only top-level symbols, but an arbitrary list structure
built from cons cells and symbols; this is matched against the macro call cell by cell, prodﬁcing a binding
whercver the defmacro pattern contains a symbol. This is not supported by ComMmoN Lisp; it does not
support destructuring in defun, and defmacro needs to parallct defun as closely as possible to minimize
confusion in what is already a difficult area for new users. Some COMMON Lisp implementations may choose to
provide destructuring defmacro as an extension.

Using defmacro, a definition for three-argument 1if in terms of cond would look like this:

(defmacro if (pred result else-resuit)
‘(cond (,pred ,result)
(t ,else-result)))
This would produce the same macro-definition for if as the definition using macro above. If if
is to accept two or three arguments, with the e1se-result defaulting to ni1, as in fact it does in
COMMON LISP, the definition might look like this:

(defmacro if (pred result &optional (else-result ’'nil))
‘(cond (,pred ,result) :

‘ (t ,else-result)))

If the compiler encounters a defmacro, the normal effect is that same as for a macro form: the

100 , COMMON LISP REFERENCE MANUAL

new macro is added to the compilation cnvironment, and a compiled form of the expansion ‘
function is also added to the output file so that the new macro will be operative at runtime. If this is
not the desired effect, the defmacro form can be wrapped in an eval-when,

Sce alsomacrolet (page 75), which establishes macro definitions over a restricted Iexical scope.

8.2. Expanding Macro Calls

macroexpand jform &rest environment : [Function]
macroexpand-1 form &rest environment [Function]

If form is a macro call, then macroexpand-1 will expand the macro call once and rcturn two
valucs: the expansion and t. If form is not a macro call, then the two values form and nil are
returned.

A form is considered to be a macro call only if it is a cons whose car is a symbol that names a macro.
The environment is similar to that used within the evaluator and made visible via evalhook (page
220); any local macro definitions established within the environment by macrolet (page 75) will
be considered. If only form is given as an argument, the environment is null, and only global macro
definitions (as cstablished by defmacro (page 99)) will be considered.

Macro expansion is carried out as follows. Once macroexpand-1 has determined that a symbol
names a macro, it obtains the expansion function for that macro. The value of the variable
macroexpand-hook (pagc 100) is then called as a function of two arguments: the expansion
function and the form. The value returnced from this call is taken to be the expansion of the macro
call. The initial value of *macroexpand-hook* is funcall (page 71), and the nct effect is to
invoke thc expansion function, giving it the, form as its single argument. (The pl#rpose of
maCroexpaﬁd-hook is to facilitate various techniques for improving interpretation speed by
caching macro expansions.)

. .

macroexpand is similar to macroexpand-1, but repeatedly expands form until it is no longer a
macro call. (In effect, macroexpand simply calls macroexpand-1 rcpeatedly until the second
value returned is ni1.) A sccond valuc of t orni1 is returned as for macroexpand-1, indicating
whether the original form was a macro call. '

macroexpand-hook ’ [Variable]
The value of *macroexpand-hook* is used as "the expansion interface hook by
macroexpand-1 (page 100).

Chapter 9

Declarations

Declarations allow you to specify extra information about your program to the LISP system. All
declarations arc completely optional and correct declarations do not affect the meaning of a correct program,
with one cxccptioh: special declarations do affect the interpretation of variable bindings and references,
and so must be specificd where appropriate. All other declarations are of an advisory nature, and may be used
by the LISP system to aid you by performing extra error checking or producing more efficient compiled code.
Declarations are also a good way to add documentation to a program.

Note that it is considered an error for a program to violate a declaration (such as a type declaration), but
an implementation is not required to detect such crrors (though such detection, where feasible, is to be
encouraged).

9.1. Declaration Syntax

declare {declaration-form}*) _ ' ' : [Special fb}'rn]
A declare form is known as a declaration. Declarations may occur only at top levél, er at the
beginning of the bodies of certain special forms; that is, a declaration not at top level'may occur
only as a statement of such a special form, and all statements preceding it (if any) must also be

declare forms (or possibly documentation strings, in-some cases). Declarations may occur in .

lambda-expressions, and in the following forms:

deftype (page 36) dolist (page 84)
defun (page 47) dotimes (page 84)
defsetf (page 70) prog (page 87)
let (page 73) prog* (page 87)
Tet* ' (page 74) multiple-value-bind (page90)
- flet (page 75) macro (page 97)
labels (page 75) defmacro (page 99)
" macrolet (page 75) locally (page 103)
do (page 80) do-symbols (page'119)
‘do* (page 80) do-all-symbols (page 119)

If a declaration is found anywhere else an error will be signalled.

It is permissible for a macro call to expand into a declaration and be recognized as such, provided

- 101 -

102

COM MON 1ISP REFERENCE MANUAL

that the macro call appears where a declaration may legitimately appear.

Fach declaration-formn is a list whose car is a keyword specifying the kind of declaration it is.
Declarations may be divided into two classes: those that concern the bindings of variables, and
those that do not. Those that concern variable bindings apply only to the bindings madc by the
special form at the head of whose body they appear. For example, in

(defun foo (x)
(declare (type float x))

(1e§ ((x *a)) ...)

the type declaration applics only to the outer binding of x, and not to the binding made in the Tet.

Compatibility note: This is different from MAcLisp, in which type declarations are pervasive.

If a declaration that applics only to variable bindings appears at top level, it applies to the dynamic
value of the variable. For example, the top-level declaration

(declare (type float tolerance))

specifies that the dynamic value of toTerance should always be a floating-point number.

Declarations that do not concern themselves with variable bindings are pervasive, affecting all code
in the body of the special form. As an example of a pervasive declaration,

(defun foo {(x y) (declare (notinline floor)) ...)

advises that everywhere within the body of foo the function f1oor should not be open-coded, but
called as an out-of-line subroutine.

As a rule, code in any initialization forms used to compute initial values for bound variables is not
affected by pervasive decclarations in that special form, with one exception: lambda-list
initialization forms, which appear in lambda-cxpressions as well as defun (page 47), defmacro
(pagé 99), macro (page 97), deftype (page 36), and defsetf (page 70) forms, arc affected by
special declarations for variables not bound by that form; so is every initialization form in a

* let* excep! for the first initialization form. .
For example:
(defun foo (x (y *princircle*)) ; This reference to *princircle* is
(declare (special *princircle*)) ; special because of this declaration.
ces)

‘Any pervasive declaration made at top level constitutes a universal declaration, always in force

unless locally shadowed.
For example:
(declare (inline floor))

adviscs that f1oor should normally be open-coded in-line by the compiler (but within foo it will
be compiled out-of-line anyway, because of the shadowing local declaration to that effect),

For example:

DECLARATIONS , 103

. ' (defun nonsense (k x)
(declare (type integer k))
(let ((j (foo k x})
(x (* k k)))
(declare (inline foo) (special x))
(foo x j)))

In this rather nonsensical example, k is declared to be of type integer. The inl1ine declaration
applies to the inner call to foo, but not to the one to whose valuc j is bound, because that is code in
the binding part of the Tet. The special declaration of x causcs the Tet form to make a special
binding for x, and causes the reference to x in the body of the Tet to be a special reference.
However, the reference to x in the first call to foo is a local reference, not a special one.

Compatibility note: In MacLisp, declare docs nothing in interpreted code. and is defined to simply evaluate
all the argument forms in the compilation environment. . In ComMon Lise, declare docs useful things for
both interpreted code and compiled code, and therefore arbitrary forms are not permitted within it. The tricks
played in MAcLisp with declare are better done using eval-when (page 49).

locally {declaration}* {form}* ’ [Macro]
This special form may be used to make local pervasive declarations where desired. It does not bind
any variables, and so cannot be used meaningfully for declarations of variable bindings.

For example:
(lTocally (declare (inline floor))

(declare (notinline car cdr))
. (optimize space)
(floor (car x) (cdr y)))

9.2. Declaration Forms N

Here is a list of valid declaration forms for use in declare. A construct is said to be “affected” by a
declaration if it occurs within the scope of a declaration.

. .

special (special varl var2 ...) declares that ali of the variables named are to be considered
special. This declaration affects variable bindings, but also pcrvasivély affects references.
All variable bindings affected are made to be dynamic bindings, and affected variable

references refer to the current dynamic binding rather than the current local binding.

For example:

(defun hack (thing *mod*)
(declare (special *mod*)) ;Thcbinding of *mod* is visible to
(hackl (car thing))) ; hack1, but not that of thing.

(defun hackl (arg)
(declare (special *mod*)) ;Decclarc that references to *mod*
; within hack1 are special.
(if (atom arg) *mod*

. 4 : (cons (hackl (car arg)) (hack1l (c‘dr arg)))))

Note that it is conventional, though not required, to give special variables names that begin

104

type

type

- ftype

function

COMMON LISP REFERENCE MANUAL

and end with an asterisk.

This declaration does not pervasively affect bindings unless it occurs at top level (this latter
exception arising from convenicnce and compatibility with MACLISP). Inncr bindings of a
variable implicitly shadow a special declaration, and must be explicitly re-declared to be
special. » :

For example:

(declare (special x)) - ; x is always special.
(defun example (x y) .
(declare (special y))

(Tet ((y 3))

(print (+ y (locally (declare (special y)) y)))

(Tet ((y 4)) (declare (special y)) (foo x))))
In the contorted code above, the outermost and innermost bindings of y are spccial, and
therefore dynamically scoped, but the middle binding is lexically scoped. The two
arguments to + are different, one being the value (which is 3) of the lexically bound
variable y, and the other being the value of the special variable named y (a binding of
which happens, coincidentally, to lexically surround it at an outer level). -

(type type varl var? ...) affects only variablc bindings, and declares that the
specified variables will take on values only of the specified type. In particular, values
assigned to the variables by setq (page 64); as well as the initial values of the variables,
must be of the specified type.

(type varl var2 ...) is an abbrev'iation for (type type varl var2 ...) provided
that fype is one of the symbols appearing in Table 4-1 (page 32). .

(ftype type function-name-1 ﬁznction-hame-2 ...) declares that the named functions.
will be of the functional type type. ” -
For example:

(declare (ftype (function (1ntegér Tist) t) nth)
(ftype (function (number) float) sin cos))

(function name arglist result-typel result-type2 .. .) is entirely cquivalent to
(ftype (function name arglist result-typel result-type? ...) name)
but may be more convenient for some purposes.

For example:

(declare (function nth (integer list) t)
’ (function sin (number) float)
(function cos (number) float))

- The syntax mildly resembles that of defun (page 47): a function name, then an argument

list, then a specification of results.

DECLARATIONS

inline

notinline

ignore

optimize

declaration

105

(inline functionl function? ...) declares that it is desirable for the compiler to
open-code calls to the specificd functions; that is, the code for a specified function should
be integrated into the calling routine, appearing “in line”, rather than a procedure call
appearing there. This may achicve extra speed at the cxpense of debuggability (calls to
functions compiled in-line cannot be traced, for example). This declaration is pervasive.
Remember that a compiler is frece to ignore this declaration,

(notinline function! function? ...) declares that it is undesirable to compile the
specified functions in-linc. This declaration is pervasive. Remember that a compiler is free
to ignorce this declaration.

(ignore varl var2 ... varn) affects only variable bindings, and declares that the
bindings of the specificd variables arc never used. It is desirable for a compiler to issue a
warning if a variable so dcclared is cver referred to or is also declared special, or if a
variable is lexical, never referred to, and not declared to be ignored.

(optimize (qualityl valuel) (quality? value?)...) adviscs the compiler that each

quality should be given attention according to the specified corresponding value. A quality 4
is a symbol; standard qualitics include speed (of the objcct code), space (both code size
and run-time spacc), safety (run-time error checking), and compilation-speed
(speed of the compilation process). Other qualitics may be recognized by particular
implementations. A value should be a non-negative integer, normally in the range 0 to 3.
The value 0 means that the quality is totally unimportant, and 3 that the quality is
extremcly important; 1 and 2 are intermediate values, with 1 the “normal” or “usual”
value. One may abbreviate “(quality 3)” to simply “quality”. This declaration is
pervasive. '

For example:

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check 'x y) '
(hairy-setup x)

{(Tocally
;3 This inner loop really needs to burn. :
(declare (optimize speed)) - '
(do ((i C (+ i 1))
(z x (cdr z)))
((null z))
(declare (fixnum i)))))

(declaration namel name2 ...) advises the compiler that each namejis a valid but
non-standard declaration name. The purpose of this is to tell one compiler not to issue
warnings for declarations meant for another compiler or other program processor.

For example:

106 » COMMON LISP REFERENCIE: MANUAL

(declare (declaration author target-language
target-machine)) '

(declare (target-language ada) (target-machine IBM-650))

(declare (author "Harry Tweeker"))

An implementation is free to support other (implementation-dependent) declaration forms as well. On the
other hand, a COMMON LISP compiler is free to ignore entire classes of declaration forms (for example,
implementation-dependent declaration forms not supported by that compiler’s implementation!), except for
the declaration declaration form. Compiler implementors are encouraged, however, to program the
compiler by default to issuc a warning if the compiler finds a declaration form of a kind it never uses. Such a
warning is required if a declaration form is not one of those defined above and has not been declared in a
declaration declaration. ’

9.3. Type Declaration for Forms

Frequently it is uscful to declare that the value produced by the evaluation of some form will be of a
particular type. Using declare onc can declare the type of the value held by a bound variable, but there is

- no casy way to declare the type of the value of an unnamed form.” For this purpose the the special form is -

defined: (the fype form) means that the valuc of form is declared to be of type fype.

the value-type form , [Special form]
The form is evaluated; whatever it produces is returned by the the form. In addition, it is an error
if what is produced by the form docs not conform to the data type specified by value-type (which is
not evaluated). (A given implementation may or may not actually check for this error.
Implementations are encouraged to make an cxplicit error check when running interpretively.), In

effect, this declares that the user undertakes to guarantee that the values of the form will always be

of the specified type.

For example: v
(the string (concatenate x y)) ;concatenate will produce a string.
(the integer (+ x 3)) ; The result of + will be an integer.
(+ (the 1integer x) 3) ; The value of x will be an integer.

(the (complex rational) (* z 3))
(the (unsigned-byte 8) (logand x mask))

The values type specifier may be used to indicate the types of multiple vatues:

- (the (values integer integer) (floor x y))
(the (values string t) (gethash the-key the-string-table))
Compatibility note: This construct is borrowed from the INTERLISP DECL package: INTERLISP, however, allows

an implicit progn after the type specifier rather than just a single form. The MACLIsP fixnum-identity
and flonum-identity constructs can be expressed as (the fixnum x)and (the single-float x).

LY

Chapter 10
Symbols

A LISp symbol is a data object that has three user-visible components:

o The properity list is a list that effectively provides each symbol with many modifiable named
components.

e The print name must be a string, which is the scquence of characters used to identify the symbol.
Symbols arc of great usc because a symbol can be located given its name (typed, say, on a
keyboard). Itis ordinarily not permitted to alter a symbol’s print name.

e The package cell must refer to a package object. A package is a data structurc uscd to locate a
symbol given its name. A symbol is uniquely identificd by its name only when considered relative
to a package. A symbol may be in many packages, but it can be owned by at most one package.
The package cell points to the owner, if any.

A symbol may actually havc other components as well for use by the implementation. One of the more
important uses of symbols is as names for program vanablcs it is frequently desirable for the implementor to
use certam components of a symbol to implement the semantics of variables. However, thcre are seveml
p0551b1e implementation strategies, and so such possible components are not described here.

<

10.1. The Property List

Since its inception, LISP has associated with each symbol a kind of tabular data structure called a property
list {plist for short). A property list contains zero or more entrics; each entry associates with a symbol (called
the indicator) a LISP object (called the value or, sometimes, the property). There are no duplications among
the indicators; a property-list may only have one property at a time with a given name. In this way, given a
symbol and an indicator (another symbol), an associated value can be retrieved.

A property list is very similar in purpose to an association list. The difference is that a property list is an
object with a unique identity; the operations for adding and removing property-list entrics arc destructive
operations that alter the property-list rather than making a new one. Association lists, on the other hand, are
normally augmented non-destructively (without side effects), by adding new entrics to the front (see acons

- 107 -

108 COMMON LISP REFERENCE MANUAL

(pagc 186) and pairlis (page 186)).

A property list is implemented as a memory cell containing a list with an cven number (possibly zcro) of
clements. (Usually this memory ccll is the property-list cell of d symbol, but any memory cell acceptable to
setf (page 66) can be usced if certain special forms arc used.) Each pair of elements in the list constitutes an
entry; the first item is the indicator and the sccond is the value. Because property-list functions arc given the
symbol and not the list itsclf, modifications to the property list can be recorded by storing back into the
property-list cell of the symbol.

When a symbol is created, its property list is initially empty. Propertics arc created by using get (page
108) within a setf (page 66) form.

CoMMON LisP docs not use a symbol’s property list as extensively as earlier LISP implementations did.
Less-used data, such as compiler, debugging, and documentation information, is kept on property lists in
CoMMON LISP.

Compatibility note: In older Lisp implementations, the print name, value, and function definition of a symbol were kept on
its property list. The value cell was introduced into MAcLisp and INTERLISP to speed up access to variables: similarly for the
print-name cell and function ccll (MAcLisp does not use a function cell). Recent Lisp implementations such as SpICE Lisp,
‘Lisp Machine Lisp, and N, have introduced all of these cells plus the package cell. None of the MACLISP system property
namgcs (expr, fexpr, macro, array, subr, Isubr, fsubr, and in former times vatue and pname) cxist in COMMON
Lisp.

Compatibility note: In ComMmoN Lisp, the notion of “disembodied property list™ introduced in MAcCLisp is climinated. It
tended to be used for rather kludgy things, and in Lisp Machine LiSP is often associated with the use of locatives (to make it
“off by one” for searching alternating keyword lists). In Common Lisp special setf-like property list functions are
introduced: getf (page 109), putf (page 109), and remf (page 110). '

get symbol indicator &optional default [Function)
get searches the property list of symbol for an indicator eq to indicator. 1If one is found, then the
corresponding value is returned; otherwise default is returned. If default is not specified, then nil
is used for default. Note that there is no way to distinguish an absent property from one whose
value is default. _ '
(get x y) <=> (getf (symboi—p1ist x)y)
Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then, for example:
(get 'foo ’baz) => 3

(get 'foo 'hunoz) => "Huh?"
(get ’'foo 'zoo) => nil

777 Query: In MACLIsP, get of a non-symbol quietly returns ni1. What about ComMMoN Lisp?

setf (page 66) may be used with get to create a new property-value pair, possibly replacing an
old pair with the same property name.

For example:

(get 'clyde 'species) => nil
(setf-(get 'clyde ’'species) 'elephant) => elephant
andnow (get ’'clyde ’species) => elephant

SYMBOLS ‘ : 109

. remprop symbol indicator [Function)
This removes from symbol the property with an indicator eq to indicator, by splicing it out of the
property list. It returns ni1 if no such property was found, or non-ni1 if a property was found.

(remprop x y) <=> (remf'(symbo1—p1ist X} y)
For cxample:

If the property list of foo was
(color blue height 6.3 near-to bar)
then
(remprop 'foo 'height) => t
and foo’s property list would have been altered to be
(color blue near-to bar)

symbol-plist symbol [Function]
This returns the list that contains the property pairs of symbol; the contents of the property list cell
arc extracted and returned.

Note that using get on the result of symbol1-p1ist does not work. Onec must give the symbol
itsclf to get, or usc the function getf (page 109).

setf (page 66) may be used with symbo1-p1ist to destructively replace the entire property list
of a symbol. Care must be taken that the new property list is in fact a list of even length.

getf place indicator &optional default [Function)
getfscarches the property list stored in place for an indicator eq to indicator. If onc is found, then
the corresponding value is returned; otherwise default is returned. If default is not specified, then
nil is used for default. Note that there is no way to distinguish an absént property from one whose
valucis'default. Often place is computed from a generalized variable acceptable to setf (page
66). See get (page 108). '

setf (page 66) may be used with getf, in which case the place must indecd be acceptable as a
placeto setf. The effect is to perform a putf opcration.

putf place indicator newvalue [Macro]
This causcs the property list stored in place to have a property whose indicator is indicator and '
whose vatue is newvalue. If the property list alrcady alrcady had a property with an indicator eq to
z'ndicator, then the value previously associated with that indicator is removed from the property list
and replaced by newvalue. The property list is destructively altered by using side cffects. After a
" putf isdone, (getf place indicator) will return value. putf returns the new value. The form
place may be any gencralized variable acceptable to setf (page 66).

110 _ COMMON 11SP REFERENCE MANUAL

remf place indicator ’ [Macro]
This removes from the property list stored in place the property with an indicator eq to indicator,
by splicing it out of the property list. It returns ni1 if no such property was found, or t if a
property was found. The form place may be any gencralized variable acceptable to setf (page
66). Scc remprop (page 109). C

get-properties place indicator-list [Function]
' get-properties islike getf (pagc 109), except that the second argument is a list of indicators.
get-properties scarches the property list stored in place for any of the indicators in
indicator-list, until it finds a property whose indicator is onc of the clements of indicator-list.

Normally place is computed from a gencralized variable acceptable to setf (page 66).

get-properties rcturns three values. The third value is t if any property was found, in which
case the first two values are the indicator and value for some property whose indicator was in
indicator-list; if no property was found, all three values are nil.

When more than one of the indicators in indicator-list is present in the property list, which one

get-properties returns depends on the implementation. All that is guaranteed is that if there
arc one or more properties whose indicators arc in indicator-list, some one such property will be
chosen and returned. '

10.2. The Print Name

Every symbol has an associated string called the 'print-name. This string is used as the external
representation of the symbol: if the characters in the string are. typed in to read (with suitable escape
conventions for certain characters), it is interpreted as a reference to that symbol (if it is interned); and if the
symbol is printed, print types out the print-name. For more information, sec the sectiori on the reader (see
section 22.1.1; page 230) and printer (see section 22.1.6, page 248).

symbol-print-name sym . [Function]
This returns the print-name of the symbol sym.

For example:

(symbol-print-name ’'XYZ) => "XYZ"
It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a
modification may canfuse the function read (page 253) and the package system tremendously.

samepnamep syml.sym2 [Function]
This predicate is true if the two symbols sym/ and sym2 have equal print-namcs; that is, if their
printed representation is the same. Upper and lower case letters arc considered to be different.

Compatibility note: In Lisp Machine Lisp, samepnamep normally considers upper and lower case to be the
same. .However, in MACLISP, which originated this function, the cases are distinguished; Lisp Machine Lisp

SYMBOLS » 111

introduced the incompatibility. ComMon 1.1sp is compatible with MACLISP here,

If cither or both of the arguments is a string instead of a symbol, then that string is used in place of
the print-name. samepnamep is uscful for determining if two symbols would be the same except
that they are not in the same package.

For cxample:

(samepnamep ’xyz (make-symbol "XYZ")) istrue
(samepnamep ’'xyz (make-symbol "WXY")) is false

10.3. Creating Symbols

Symbols can be used in two rather different ways. An interned symbol is onc that is indexed by its
print-namec in a catalog called a package. Every time anyone asks for a symbol with that print-name, he gets
the samc (eq) symbol. Every time input is rcad with the function read (page 253), and that print-name
appears, it is read as the same symbol. This property of symbols makes them appropriate to usc as names for
things and as hooks on which to hang permanent data objccts (using the property list, for example; it is no
accident that symbols arc both the only LISP objccts that are cataloged and the only LISP objects that have
property lists).

Interned symbols arc normally created automatically; the first time somecone (such as the function read)
asks the package system for a symbol with a given print-name, that symbol is automatically crcated. The
function to usc to ask for an interncd symbol is intern (page 117), or one of the functions related to
intern.

Although interned symbols are the most commonly used, they will not be discussed further here. For more
information, see chapter 11 (page 115).

An uninterned symbol is a symbol used simply as a data object, with no special cataloging (it belongs to no
particular package). An uninterned symbol prints in the same way as an interned symbol with the same
print-name, but cannot be read back in. The following are some functions for creating uninterned symbols.

make-symbol print-name , [Function]
(make-symbol prini-name) creates a new uninterned symbol, whose print-name is the string
print-name. The valuc and function bindings will be unbound and the property list will be cmpty.

The string actually installed in the symbol’s print-name component may be the given string
print-name or may be a copy of it, at the implementation’s discretion. The user should not assume
that (symbol-print-name (make-symbol x)) is eq to x, but also should not alter a string
once it has been given as an argument to make-symbol.

Implementation note: An implementation might choose, for example, to copy the string to some read-only
area, in'the expectation that it will never be altered.

Compatibility note: Lisp Machine Lisp uses the second drgument for an odd flag related to areas. It i$ unclear
what NiL does about this.

112 _ COMMON LISP REFERENCE MANUAL

copy-symbol sym &optional copy-props [Function]
This returns a new uninterned symbol with the same print-name as sym. If copy-props is non-nil,
then the initial value and function-definition of the new symbol will be the same as those of sym,
and the property list of the new symbol will be a copy of sym’s. 1f copy-props is ni1 (the default),
then the new symbol will be unbound and undcfined, and its property list will bc empty.

gensym &optional x [Function]
gensym invents a print-name, and crcates a new symbol with that print-name. It returns the new,
uninterned symbol.

The invented print-name consists of a prefix (which defaults to "G"), followed by the decimal
representation of a number. The number is increased by onc every time gensym is called.

If the argument x is present and is an integer, then x must be non-negative, and the internal counter
is set to x for future use; otherwise the internal counter is incremented. If x is a string, then that
string is made the dcfault prefix for this and future calls to gensym. After handling the argument,
gensym creates a symbol as it would with no argument.

For example:

(gensym) => G7

(gensym "F00-") => F00-8

(gensym 32) => F00-32

(gensym) => F00-33

(gensym "GARBAGE-") => GARBAGE-34
gensym is usually used to create a symbol that should not normally be seen by the user, and whose
print-name is unimportant, except to allow easy distinction by cye between two such symbols. The
optional argument is rarely supplicd. The name comes from “generate symbol”, and the symbols
produced by it are often called “gensyms”. '

-2

If it is crucial that nd two generafed symbols have the same print name (rather than merqu being
. distinct data structures), or if it is desirable for the generated symbols to be interned, then the
function gentemp (page 112) may be more appropriate to use.

genf,emp prefix &optional package ' [Function]
gentemp, like ge}ls ym (page 112), creates and rcturns a ncw symbol. gentemp differs from
gensym in that it interns the symbol (sce intern (page 117)) in the package (which defaults to
the current package; sce *package* (page 117)). gentemp guarantces the symbol will be a new
one not already existing in the package; it does this by using a counter as gensym docs, but if the
generated symbol is not really new then the process is repeated until a new one is created. There is
no provision for resctting the gentemp counter. Also, the prefix for gentemp is not remembered
from one call to the next; if prefix is omitted, the default prefix T is used.

SYMBOLS , 113

. . symbol-package sym ' : [Function)
Given a symbol sym, symbol-package returns the contents of the package cell of that symbol.
"This will be a package object or nil. '

keywordp symbol [Function]

The argument must be a symbol. The predicate keywordp is true if the symbol is a keyword (that
is, belongs to the keyword package).

114 ‘ COMMON LISP REFERENCE MANUAL

Chapter 11

Packages

Onc problem with most [LISP systems is the use of a single name space for all symbols. In large Lisp
systems, with modules written by many different programmers, accidental name collisions become a serious
problem. In the past, this problem has been_addressed by the use of a prefix on each symbol name ina
modulce or by some sort of clumsy “obarray” switching to keep the names separated.

CoMMON LISP addresses this problem through the package system, derived from an carlier package system
developed for Lisp Machine Lisp [15]. The proper design of a package system for LISP is still a subject of
rescarch; COMMON LISP thercfore defines only a minimal facility purposely designed to accommodate
experimentation with extensions by implementors. Certain desirable features and facilitics have been
omitted. What is dcfined here is intended to be just cnough to allow modules in the yellow pages library to
hide most intcrnal symbols and make names of external functions and variables visible to the user, without
making any commitment on such issues as nested packages and hicrarchical inheritance.

A package is a data structure that establishes a mapping from print names (strings) to symbols. (The
package thus replaces the “oblist” or “obarray” of carlier LISP systems.) A symbol 'may appear in niany
packages, but will always have the same name. On the other hand, the same name may refer to different
symbols in different pa'ckages: No two symbols‘in the same package may have the same name,

The value of the special variable *package* (page 117) must always be a package object or the name of a
package object; this is referred to as the current package. Each package is named by a symbol.

When the LISP reader has, by parsing, determined a string of characters thought to name a symbol; that
name looked up in the current package. If the name is found, the corresponding symbol is returned, If the
namc is not found there, a new symbol is created for it and is placed in the current package as an internal
symbol; if the name is scen again while this same package is current, the same symbol will then be returned.
When a new symbol is created, a pointer to the package in which it is initially placed is stored in the package
cell of that symbol the package is said to be the symbol s home package, and is said to own the symbol.
(Some symbols arc not owned by any package; they are said to be uninterned.)

Often it is desirable, when typibng an expression to be read by the LiSP reader, to refer to a symbol in some

package other than the current one. This is done through the use of a qualified nane, which consists of the
package name, followed by a colon, followed by the print name of the symbol. This causes the symbol’s name

- 115 -

116 o COMMON LISP REFERENCE MANUAL

to be looked up in the specified package. For example, “editor:buffer™ refers to the symbol named
“buffer” in the package named “editor”, rcgardless of whether there is a symbol named “buffer” in
the current package. If “buffer™ docs not exist in package “editor™, it i created there as a new internal
symbol. (If, on the other hand, there is no package named “editor™, an crror is signalled.)

The package named keyword contains all keyword symbols. Because keyword symbols are used so
frequently, COMMON LISP permits “keyword:foo™ to be abbreviated to simply “:foo”. (The keyword
package is also trcated specially in that whencver a symbol is added to.the keyword package, the symbol is
automatically declared to be a constant and is made to have itself as its value. This is why every keyword
cvaluates to itself.)

All other uses of colons within names of symbols arc not defincd by COMMON LisP, but arc reserved for
experimentation by implementors; this includes names that end in a colon, contain two or more colons, or
consist of just a colon. :

Each symbol contains a package slot that is used to record the home package of the symbol. When the
symbol is printed, if it is in the keyword package then it is printed with a preceding colon; otherwise, if it is
present in the current package, it is printed without any qualification; otherwise, it is printed with the name of
the home package as the qualifier. A symbol that is uninterned (has no home package) is printed preceded by
“H#i,

11.1. Built-in Packages

.

The following packages are built into the COMMON LISP system:

user The user paékage is, by default, the current package at the time a COMMON LISP system
_starts up. The standard symbols used by COMMON LISP as function names, variable names,
ahd forother purposcs are available in this package.

keyword This package contains all of the keywords used by built-in or user-defined LISP functions.
si This package name is reserved to the implementation. (The name is an abbreviation for

“system internals”.) Normally this is used to contain names of functions and variables that
. are needed to implement the user-level COMMON LISP facilities. -

11.2. Package System Functions and Variables

make-package package-hame &optional copy-from [Function]
Creates and returns a new package with the specified package name. The package-name should be »
a symbol or a string. '

PACKAGES ‘ 117

If a package of this name alrcady cxists, a correctable error is signalled. The copy- Fom argument
may specify another package of which the new one will initially be a copy; that is, the new package
will logically contain (but not own) all symbols in the copy-from package. If copy-fromiis nil (the
default), the new package is empty. '

package [Variable]
The value of this variable must be cither a package or a symbol that names a package; this package
is said to be the current package. The initial valuc of *package* is thc user package.

packagep object [Function]
packagep is true if its argument is a package, and otherwise is false.
(packagep x) <=> (typep x 'package)

package package [Function]
This converts its argument to be a package object. If the argument is alrcady a package, it is a
returned. If it is a symbol, the package it names is returned (it is an crror if it does not name a
package).

package-name package [Function]
This returns a symbol that names a package. If the argument is a package. its name is returned. If
the argument is a symbol, it is returned if it names a package, but an crror is signalled if it does not.

intern string-or-symbol &option al package . [Function]
The package may be a package or a symbol that names a package, and defaults to the current .
. package. ‘It is secarched for a symbol with the name specificd by the first argument. If one is found,
it is returned; note particularly that if the argument was symbol, and a different symbol with the
same name is found in already in the package, the latter is returned and the argument is discarded.

If one is not found, then if the first argument is a string a symbol with that name is created; then the
given or created symbol is installed in the package as an internal symbol and returned. Moreover, if
the symbol has no home package, then package becomes its home package.

If package is the keyword package and a symbol of the spccificd name is not already in the package,
then as the symbol is installed in the keyword package it will be given itself as its value; see
symbol-value (page 62). If the argument is a symbol rather than a string, then it must not
already have a home package other than the keyword package.

118

COMMON LISP REFERENCE MANUAL

unintern string-or-symbol &optional package [Function]

If the first argument is a string, the package is scarched for a symbol of that name; if the first
argument is a symbol, that symbol is used directly. If the symbol given or found is in fact in the
package, it is removed from the package. Morcover, if package is the home package for the symbol,
the symbol is made to have no home package. The package defaults to the current package.

unintern returns t if it actually removed a symbol, and ni1 othcrwise.

Compatibility note: The equivalent of this in MACLISP is remob.

internedp string-or-symbol &optional package : [Function]

export

shadow

This is a predicate. If the first argument is a string, then internedp is truc if the package contains
a symbol whose name is the string. If the first argument is a symbol, then internedp is truc if the
package contains that very symbol. Otherwise internedp is false. The package may be a package
or a symbol that names one, and defaults to the current package.

symbols [Function]
'[‘pe argument should be a list of symbols or strings, or possibly a single symbol or string. It is

arranged for symbols of the specified names to be available in both the current package and the

user package; for each name, the same symbol must be in both packages. If a name is in neither
package, a symbol is created and interncd in both. If a name is in just one, it is interned in the
other. If the two packages have different symbols of the same name, the one in the current package
is first removed by using unintern (page 118). In any case, the owner of the symbol is changed
to be the user package. export returns t.

By convention, a call to export listing all exported symbols is placed near the start of a file to
advertise which of the symbols used mentioned the file are intended to be used by othér programs.

symbols ' [Punction]
The argument should be a list of symbols or ystrings, or possibly a single symbol or string. For each
specificd name, it is arranged that the current package, if it is not the user package, will contain a
symbol of that name that is different from the symbol of that name in the user package. If the
current package and the user package share a symbol whose name has been specified, that symbol
is first removed from the current package.

The purpose-of shadow is to provide a means for declaring that a particular symbol is to be used

“locally” in the package, even though it might have imported from some other package. For

example, suppose onc were writing an INTERLISP compatibility package for COMMON LisP. One
difference between the two is the definition of the function nth (page 175). Onc might write:

B

PACKAGES) 119

‘(provide 'interlisp)

(export '(masterscope helpsys dwimify ...))
(shadow ’(nth ...))

(require ’'odd-utilities)

(defun nth (x n) ;InterLISP NTH function.
cen) :

shadow rcturns t.

do-symbols (var [package] [result-form]) {declaration}* {tag | statement}* [Macro)

do-symbols provides straightforward iteration over the symbols of a package. The body is
performed once for cach symbol in the package, in no particular order, with the variable var bound
to the symbol. Then resultform (a single form, not an implicit progn) is cvaluated, and the result is
the valuc of the do-symbols form. (When the resultform is cvaluated, the control variable var is
still bound, and has the value ni1.) If resultform is omitted, the resultis nil. return (page
79) may be used to terminate the iteration prematurely. If exccution of the body affects which
symbols are containced in the package, other than possibly to remove the symbol currently the value
of var by using unintern (page 118), the cffects are unpredictable,

do-all-symbols (var [result-form]) {declaration}* {tag | statement}* ' [Macro)

This is similar to do-symbo1s, but exccutes the body once for cvery symbol contained in “cvery”
package. (This may not get all symbols whatsoever, depending on the implementation.) Itis not in
general the case that each symbol is processed only once, since a symbol may appear in many
packages. .

120 COMMON LISP REFERENCE MANUAL

Chapter 12

Numbers

CoMMON Lisp provides several different representations for numbers. These representations may be
divided into four catcgorics: integers, ratios, floating-point numbers, and complex numbers. Many numeric
functions will accept any kind of number; they are generic. Thosc functions that accept only certain kinds of
numbers are so documented below.

In gcncral numbers in COMMON LISP arc not truc objects; eq cannot be counted upon to opcratc on them
reliably. In particular, it is possible that the cxpression

(let ((x z) (y z)) (eq x y))
may be falsc rather than true, if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers allows the implementor enough design freedom to produce
exceptionally efficient numerical code on conventional architectures. MACLISP requires this freedom, for example, in order
to produce compiled numerical code cqual in speed to FORTRAN. If not for this freedom, then at least for the sake of
compatibility, CoMMON Lisp makes this same restriction.

If two objects are to be compared for “identity”, but either m:ght be a number, then the predicate eql (page
56) is probably appropriate; if both objects are known to be numbers, then = (page 122) may be preferable.

As a rule, computations with floating-point numbers are only approximate. The precz'sibn of a floating-
"point number is not necessarily correlated at all with the accuracy of that number. For instance,
3.142857142857142857 is a more precise approximation to « than 3.14159, but the latter is more accurate. The
precision refers to the number of bits retained in the representation. When an operation combines a short
floating-point number with a long onc, the result will be a long floating-point number, This rule is made to
ensure that as much accuracy as possible is preserved; however, it is by no means a guarantee. COMMON LISP
numerical routines do assume, however, that the accuracy of an argument does not exceed its precision.
Therefore when two small floating-point numbers are combined, the result will always be a small floating-
point number. This assumption can be overridden by first explicitly converting a small floating-point number
to a larger representation. (COMMON LISP never converts automatically from a larger size to a smaller one in
an effort to save space.)

Rational computations cannot overflow in the usual sense (though of course there may not be enough

storage to represent one), as integers and ratios may in principle be of any magnitude. Floating-point
computations may get exponent overflow or underflow, in which case an error is signalled.

- 121 -

122 - COMMON LISP REFERENCE MANUAL

12.1. Predicates on Numbers

zerop number - [Function]
This predicate is truc if number is zero (cither the integer zero, a floating-point zero, or a complex
zero), and is false otherwise. It is an crror if the argument number is not a number.

plusp number : _ [Function]
This predicate is true if number is strictly greater than zcro, and is falsc otherwise. It is an error if
the argument number is not a non-complex number.

minusp number : [Function]
This predicate is true if number is strictly less than zero; otherwise ni1 is returned. It is an crror if
the argument number is not a non-complex number.

oddp integer A [Function]

This predicate is true if the argument infeger is odd (not divisible by two), and otherwise is false. It
is an error if the argument is not an integer.

evenp integer : [Function]
This predicate is true if the argument integer is even (divisible by two), and otherwise is false. It is
an error if the argument is not an integer.

See also the data-type predicates integerp (page 53), rationalp (paéc 53) floatp (page 54),
complexp (page 54), and numberp (page 53).

12.2. Comparisons on Numbers)

All of the functions in this section require that their arguments be numbers, and signal an error if given a
non-number. They work on all types of numbers, automatically performing any required coercions. '

= number &rest more-numbers o [Function]

/= number &rest more-numbers : : : [Function]
< number &rest more-numbers - [Function]
> number &rest more-numbers : [Function]
<= number &rest more-numbers . ' [Function]
>= number &rest more-numbers [Function]

These functions each take one or more arguments. If the sequence of arguments satisfies a certain
condition: ‘ ‘ :

NUMBERS : . 123

all the same

/= all different

< monotonically increasing

> monotonically decreasing
<= monotonically nondecreasing
>= monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may be compared using = and
/=, but the others requirc non-complex arguments.

For cxample:

(= 3 3) istrue (/= 3 3) isfalse

(= 3 5) isfalse (/= 3 5) istrue

(= 3 3 3 3) istrue (/= 3 3 3 3) isfalse

(= 3 3 5 3) isfalse (/= 3 3 5 3) isfalse

(= 3 6 5 2) isfalse (/= 3 6 5 2) istrue

(= 3 2 3) isfalse (/7= 3 2 3) isfalse

(< 3 5) istrue (<= 3 5) istrue

(< 3 -5) isfalse (<= 3 -5) isfalse

(< 3 3) isfalse (<= 3 3) istrue

(<0346 7) istrue (<= 03 46 7) istrue

‘(< 03 4 4 6) isfalse (<= 0 3 4 46) istrue

(> 4 3) istrue ~ (>= 4 3) istrue

(> 4 3210) istrue (>= 4 3 2 1 0) istrue

(> 4 3'3 2 0) isfalse (>= 4 3 3 2 0) istruc
4 3 12 0) isfalse (>= 4 3 12 0) isfalse

With two arguments, these functions perform the usual arithmetic comparison tests. With three or
more arguments, they are uscful for range checks.

For example:

(<= 0 x 9) o s true iff x is between 0 and 9, inclusive

(< 0.0 x 1.0) ; truc iff x is between 0.0 and 1.0, exclusive

(< -1 j (Tength s)) ; true iff j is a valid indéex for s

(<= 0 j k (- (length s) 1)) ; true iff j and k are each valid

; indices for s and also j<k

Rationale: The “unequality” relation is called “/=" rather than “<>" (the name used in PASCAL) for two
reasons. First, /= of more than two arguments is not the same as the or of < and > of those same arguments.

Second, unequality is meaningful for complex numbers even though < and > are not. For both reasons it
would be misleading to associate uncquality with the names of < and >. :

Compatibility note: In CoMMON LisP, the comparison operations perform “mixed-mode” comparisons: (= 3
3.0) is true. In MAcLIsp, there must be exactly two arguments, and they must be cither both fixnums or both
floating-point numbers. To compare two numbers for numerical equality and type equality, use eql (page
56).

max number &rest more-numbers [Function]
The arguments may be any non-complex numbers. max returns the argument that is greatest
(closest to positive infinity). '

‘ “For example:

—~
\"

124 _ COMMON LISP REFERENCE MANUAL

(max 1 3 2 -7)
(max -2 3 0 7)
(max 3) => 3 .
(max 3.0 7 1) => 7 or 7.0

If the arguments arc a mixture of integers and floating-point numbers, and the largest is a rational,
then the implementation is free to produce cither that rational or its floating-point approximation.

> 3
> 7

min number &rest more-numbers [Function]
The arguments may be any non-complex numbers. min returns the argument that is Icast (closest

to ncgative infinity).

For examplcv:

(max 1 3 2 -7) => -7
(max -2 3 0 7) => -2
(min 3) => 3

(min 3.0 7 1) => 1 or 1.0

If the arguments arc a mixture of rationals and floating-point numbers, and the smallest is a
rational, then the implementation is free to produce either that rational or its floating-point
approximation.

12.3. Arithmetic Operations

All of the functions in this section require that their 'arguments be numbers, and signal an error if given a
non-number. They work on all types of numbers, automatically performing any required cocrcions.

2

+ &rest numbers * [Function]
Returns the sum of the arguments. If there are no arguments, the result is 0, which is an identity
. for this operation. ’

Compatibility note: While + is compatible with its use in Lisp Machine Lisp, it is incompatible with MACLIsP,
which uses + for fixnum-only addition.

- number &rest more-numbers [Function]
The function -, when given one argument, returns the negative of that argument.

The function -, when given more than one argument, successively subtracts from the first argument
all the others, and returns the result. For example, (- 3 4 5) => -6,

Compatibility note: While - is compatible with its use in Lisp Machine Lisp, it is incompatible with MAcLisp,
which uses - for fixnum-only subtraction. Also, - differs from difference as used in most Lisp systems in
the case of one argument.

NUMBIRS ' 125

% &rest numbers [Function]
Returns the product of the arguments. If there are no arguments, the result is 1, which is an
identity for this operation,

Compaltibility note: While * is compatible with its use in Lisp Machine Lisp, it is incompatible with MacLisp,
which uses * for fixnum-only multiplication.

/ number &rest more-numbers [Function]
The function 7/, when given more than onc argument, successively divides the first argument by all
the others, and returns the result.

With onc argument, / reciprocates the argument.

/ will produce a ratio if the mathematical quotient of two integers is not an cxact integer.

For example:
(/ 12 4) => 3
(/7 13 4) => 13/4
(/ -8) => -1/8
(/7 3 4 5) => 3/20
To divide one integer by another producing an integer result, use one of the functions f1oor,

ceiling, truncate, orreund (page 135).

If any argument is a floating-point number, then the rules of floating-point contagion apply.

Compatibility note: What / does is totally unlike what the usual 7/ or qudtient operator does. In most Lisp
systems, quotient behaves like / cxcept when dividing integers, in which case it behaves like truncate
(page 135) of two argumenits; this behavior is mathematically intractable, leading to such anomalics as

(quotient 1.0 2.0) => 0.5 but (quotient 1 2) => 0

. In practice quotient is used only when one is sure that both argument are integers, or when one is sure that
at least onc argument is a floating-point number. / is tractable for its purpose, and “works” for any numbers.
For “integer division”, truncate (page 135), f1oor (page 135), ceiling (page 135), and round . (page
135) are gvailable in CoMMON Lise. '

4

1+ number [Function]
1- number ’ : {Function]
(1+ x) isthesameas (+ x 1).

(1- x)isthesamecas (- x 1). Note that the short name may be confusing: (1- x) does not
mean 1— x; rather, it means x—1.
Rationale: These are included primarily for compatibility with MacLisp and Lisp Machine Lisp.

Implementation note: Compiler writers are very strongly encouraged to ensure that (1+ x) and (+ x 1)
compile into identical code, and similarly for (1- x) and (- x 1),to avoid pressure on a Lisp programmer
to write possibly less clear code for the sake of efficiency. This can easily be done as a source-language
transformation.

126 COMMON LISP REFERENCE MANUAL

incf place [delta] [Macro]

decf place [delta) [Macro]
The number produced by the form delta is added to (incf) or subtracted from (decf) the number
in the generalized variable named by place , and the sum is stored back into place and returned.
The form place may be any form acceptable as a gencralized variable to setf (page 66). If delta is
not supplicd, then the number in place is changed by 1.

For example:
(setq n 0)
(incf n) => 1 andnow n => 1
(decf n 3) => -2 andnow n => -2
(decf n -5) => 3 andnow n => 3
(decf n) => 2 andnow n => 2

The cffect of (incf place delta) is roughly equivalent to
(setf place (+ place delta))
except that the latter would cvaluate any subforms of place twice, while incf takes care to evaluate

them only once. Morcover, for certain place forms incf may be significantly more efficient than
the setf version.

conjugate number , ’ [Function]
This returns the complex conjugate of number. The conjugate of a non-complex number is itself.
For a complex number z,

(conjugate z) <=> (complex (realpart z) (- (imagpart z)))

gcd &rest integers _ [Function]

Returns the greatest common divisor of all the arguments, which must be integers. The result is

. always a non-negative integer. If no arguiments are given, gcd returns 0, which is an identity for
this operation. :) ’)

For example:
(gcd 91 -49) => 7

Tcm integer &rest more-integers [Function]
This returns the least common multiple of its arguments, which must be integers. For two
arguments, ’

(Tcm a b) <=> (/ (* e b) (gcd a b))
For one argument, Tcm returns that argument. For three or more argumen_ts,
(lecmabe ... z) <=> (lcm (lcm a b) ¢ ... z) ‘

For example:
(Tcm 14 35) => 70

NUMBERS _ _ : 127

. 12.4. Irrational and Transcendental Functions

CoMMON LiSP provides no data type that can accurately represent irrational values. The functions in this
scction arc described as if the results were mathematically accurate, but actually they all produce floating-
point approximations to the truc mathematical result. In some places mathematical identitics are sct forth
that arc intended to clucidate the meanings of the functions; however, two mathematically identical
expressions may be computationally different because of crrors inherent in the floating-point approximation
process.

12.4.1. Exponential and Logarithmic Functions

exp number [Function]
Returns e raised to the power number, where e is the base of the natural logarithms.

expt base-number power-number [Function]

v Returns base-number raised to the power power-number. 1f the base-number is rational and the

power-number is an integer, the calculation will be exact and the result will be rational; otherwise a
floating-point approximation may result.

Implementation note: If the exponent is an integer a repeated-squaring algorithm may be used, while if the
. ’ exponent is a floating-point number or complex the resuit may be calculated as:

(exp (* power-number (1og base-number)))

or in any other reasonable manner.

log number &optPonal base h ; , [Function]
Returns the logarithm of number in the base base, which defaults to e, the base of the natural
_ logarithms.

For example:

(log 8.0 2) => 3.0
(log 0.01 10) => -2.0

sqrt number : [Function)
Returns the principal square root of number.

isqrt integer [Function]
Integer square-root: the argument must be a non-negative intcger, and the result is the greatest
integer less than or equal to the exact positive square root of the argument.

128 ’ COMMON LISP REFERENCE MANUAL

12.4.2. Trigonometric and Related Functions

abs number [Function]
Returns the absolute value of the argument. For a non-complex number,
(abs x) <=> (if (minusp x) (- Xx) x)
For a complex number z, the absolute value may be computed as
(sqrt (+ (expt (realpart z 2)) (expt (imagpart z 2))))
For non-complex numbers, abs is a rational function, but it may be irrational for complex
arguments,

phase number , [Function]
The phase of a number is the angle part of its polar representation as a complex number. That is,
(phase x) <=> (atan (realpart x) (imagpart x))
The result is in radians, in the range — o (exclusive) to = (inclusive). The phase of zero is defined to
be zero.

signum number [Function]

By definition, '
(signum x) <=> (if (zerop x) x (/ x (abs x)))

For a rational number, signum will return one of -1, 0, or 1 according to whether the number is
negative, zero, or positive. For a floating-point number, the result will be a floating-point number
of the same format with one of the mentioned three values. For a complex number z, (signum
z) is a complex number of the same phase but with unit magnitude, unless z is a complex zcro, in
which case the result is z. ' '

4

For non-complex numbers, signum is a rational function, but it may be irrational for complex

arguments.
sin radians [Function]
cos radians , ' [Function]
tan radians [Function]

s1in returns the sine of the argument, cos the cosine, and tan the tangent. The argument is in
radians. The argument may be complex.

cis radians ' , [Function]
This computes ¢ 4%, The name “cs” means “cos + isin”, because ¢ = cos @ + isin §. The
argument is in radians, and may be any non-complex number. The resuilt is a complex number
whose real part is the cosine of the argument, and whose imaginary part is the sine. Put another
way, the result is a complex number whose phase is the argument and whose magnitude is unity.

NUMBERS - 129

Implementation note: Ofien it is cheaper to calculate the sine and cosine of a single angle together than to
perform two disjoint calculations.

asin number ' [Function)

acos number » [Function]

"~ asin returns the arcsine of.thc argument, and cos the arccosine. The result is in radians. The
argument may be complex.

atan y &optional x _ [Function)
An arctangent is calculated and the result is returned in radians.

With two arguments y and x, neither argument may be complex. The result is the arctangent of the
quantity y/x. The signs of y and x arc used to derive quadrant information; morcover, x may be
zero provided y is not zero. The value of atan is always between — o (exclusive) and # (inclusive).
The following table details various special cases.

Condition Cartesian locus Range of result
y=0 x>0 Positive x-axis _ 0

y>0 x>0 Quadrant I 0 < result < w/2
y>0 x=0 Positive y-axis , w/2

y>0 x<0 Quadrant II w/2 < result < 7
y=0 x<0 Negative x-axis g

y<0 x<0 Quadrant I1I - —m<result< —n/2
y<0 x=0 Negative y-axis —a/2

y<0 x>0 Quadrant IV ' —a/2 <result <0
y=0 x=0 Origin error

Actually, the < signs in the above table ought to be < signs, because of rounding effects; if yis .
greater than zero but nevertheless very small, then the floating-point approximation to #/2 might
be a more accurate result than any other floating-point number. (For that matter, when y = 0 the
exact value #/2 cannot be produced anyway, but instcad only an approximation.)

With only one argument y, the argument may be complex. The result is the arctangent of y. For
non-complex arguments the result lies between — #/2 and #/2 (both exclusive).

Compatibility note: MACLISP has a function called atan whose range is from 0 to 2#. Every other language in
the world (ANSI FORTRAN, IBM PL/I, InterlISP) has an arctangent function with range —« to #. Lisp
Machine Lisp provides two functions, atan (compatible with MaCLisp) and afan2 (compatible with everyone
else). ‘

COMMON Lisp makes atan the standard one with range —= to #. Obscrve that this makes the one-argument
and two-argument versions of atan compatible in the sense that the branch cuts do not fall in diffcrent places,
which is probably why most languages use this definition. (An aside: the INTERLISP one-argument function
arctan has a range from 0 to #, while every other language in the world provides the range —#/2 to #/2!
Nevertheless, since INTER LISP uses the standard two-argument version, its branch cuts are inconsistent anyway.)

130

pi

COMMON LISP REFERENCE MANUAL

[Constani]

This global variable has as its value the best possible approximation to « in Jong floating-point
format.

For example:

(defun sind (x) ; The argument is in degrees.
{(sin (* x (/ (float pi x) 180))))

An approximation to « in some other precision can be obtained by writing (f1oat pi x), where
x is a floating-point number of the desired precision; see f1oat (page 134).

sinh number
cosh number
tanh number
asinh number
acosh number
atanh number
These

- [Function]

[Function]

[Function]

[Function]

[Function]

[Function]

functions computc the hyperbolic sine, cosine, tangent, arcsine, arccosine, and arctzmgent

functions, which are mathematically defined as follows:

Hyperbolic sine (f~e 572
Hyperbolic cosine (e*+e %72
Hyperbolic tangent (F—e /(" +e™)
Hyperbolic arcsine log (x+V1+x)
Hyperbolic arccosine log (x+(x+ 1)V (x=1)/(x+1))
Hyperbolic arctangent log (1+ HV1-= 1/ X)
. . B : .

-~ .
Implementation note: These formulae are mathematically correct, assuming completely accurate computation.
They may be terrible methods for floating-point computation! Implementors should consult a good text on -

numerical analysis. The formulas given above are not necgssarily the simplest oncs for real-valued

computations, either; they are chosen to define the branch cuts in desirable ways for the complex case.

12.4.3. Branch Cuts, Principal Values, and Boundarx Conditions in the Complex Plane

Many of the

irrational and transcendental functions are multiply-defined in the complex domain; for

example, there are in general an infinite number of complex values for the logarithm function. In each such
case a principal value must be chosen for the function to return. In general, such values cannot be chosen so
- as to make the range continuous; lines of discontinuity called branch cuts must be defined.

COMMON LISP defines the branch cuts, principal values, and boundary conditions for the complex
functions following a proposal for complex functions in APL [11]. The contents of this scction are borrowed
largely from that proposal.

Compatibility note: The branch cuts defined here differ in a'few very minor respects from those advanced by W. Kahan,
who considers not only the “usual” definitions but also the special modifications necessary for IEEE proposed floating-point
arithmetic, which has infinitics and minus zero as explicit computational objects. For example, he proposes that

—4+0i

=2ibut VvV —-4-0i =-2i

NUMBIRS - 131

It is likely that the differences between the APL proposal and Kahan's proposal will be ironed out, perhaps in 1983, 1f so,
CommoN Lisp will be changed is necessary to be compatible with these other groups. Any changes {rom the specification
below are likely to be quite minor.

An implementation of CoMMON Lisp is not required to support complex numbers before January I, 1984, 1t is expected that
the compatibility problems will have been resolved by then. As of that date, every ComMoN Lisp implementation will be
expected to support complex numbers as then defined.

sqrt The branch cut for square root lics along the negative real axis, continuous with quadrant
Il. The range consists of the right half-plane, including the non-negative imaginary axis
and excluding the negative imaginary axis.

phase - The branch cut for the phasc function lics along the negative real axis, continuous with
quadrant II. The range consists of that portion of the real axis between — o (exclusive) and
« (inclusive).

Tog The branch cut for the logarithm function of one argument (natural logarithm) lies along | ‘
the negative real axis, continuous with quadrant II. The domain excludes the origin. For a |
complex number z=x+y i, log z is defined to be (log |z|)+ i phase(z). Therefore the range
of the one-argument logarithm function is that strip of the complex plane containing
numbers with imaginary parts between — 7 (exclusive) and « (inclusive).

The two-argument logarithm function is defined as log, z=(log z)/(log b). This defines the
principal values precisely. The range of the two-argument logarithm function is the entire
complex plane. Itis an crror if zis zero. If zis nonzero and b is zero, the logarithm is taken

to be zero.
exp . The simple exponential function has no branch cut.
expt The twe-argument exponential function'is defined as b*=e" g b This defines the

principal values precisely. The range of the two-argument exponential function is the
entire complex plane. Regarded as a function of x, with b fixed, there is no branch cut.
Regarded as a function of b, with x fixed, there is, in general, a branch cut along the
negative real axis, continuous with quadrant II, and the domain excludes the origin. By
definition, 0°=1. If 5=0 and the real part of x is strictly positive, then 5*=0. For all other
values of x, 0% is an error. '

asin The following definition for arcsine determines the range and branch cuts:

arcsin z=—ilog (i z+ V1—22)

The branch cut for the arcsine function is in two pieces: one along the negative real axis to
the left of —1 (inclusive), continuous with quadrant II, and onc along the positive real axis
to the right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the
complex plane containing numbers whose real part is between —=/2 and #/2. A number

132 COMMON LISP REFERENCE MANUAL

with rcal part cqual to —=/2 is in the range iff its imaginary part is non-negative; a number ‘
with recal part equal to #/2 is in the range iff its imaginary part is non-positive.

acos The following definition for arccosine determines the range and branch cuts:

arccos z= —ilog (z4+iV1-2)
or, which is cquivalent,
arccos z=(w/2)— arcsin z

The branch cut for the arccosine function is in two picces: onc along the negative real axis
to the left of —1 (inclusive), continuous with quadrant I, and onc along the positive real
axis to the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut
as for arcsine. The range is that strip of the complex plane containing numbers whose real
part is between 0 and #. A number with rcal part equal to 0 is in the range iff its imaginary
part is non-ncgative; a number with real part equal to « is in the range iff its imaginary part
is non-positive. '

atan The following definition for (one-argument) arctangent determines the range and branch
cuts: '

arctan z=—ilog (1+i2) VI/(1+72))

Beware of simplifying this formula; “‘obvious” simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the arctangent
function is in two pieces: one along the positive imaginary axis above i (exclusive),
continuous with quadrant II, and one along the ncgative imaginary axis below —i
(exclusive), continuous with quadrant IV. The points 7 and —i arc excluded from the .
domain. The range is that strip of the complex planc containing numbers whose real part
is between —=/2 and #/2. A number with real part cqual to —=/2 is in the range iff its
imaginary part is strictly positive; a number with real part equal to »/2 is in the range iff its
imaginary part is strictly negative. Thus the range of arctangent is identical to that of
arcsine with the points —#/2 and #/2 excluded. '

asinh The following definition for the ifiverse hyperbolic sine determines the range and branch
cuts: '

arcsinh z=log (x+V1+x2)

The branch cut for the inverse hyperbolic sine function is in two pieces: one along the
positive trnaginary axis above i (inclusive), continuous with quadrant I, and one along the
negative imaginary axis below — i (inclusive), continuous with quadrant III. The range is
that strip of the complex plane containing numbers whose imaginary part is between —«/2

NUMBERS

acosh

atanh

133

and #/2. A number with imaginary part cqual to —=/2 is in the range iff its real part is
non-positive; a number with imaginary part cqual to #/2 is in the range iff its imaginary
part is non-ncgative.

The following definition for the inverse hyperbolic cosine determines the range and branch
cuts:

arccosh z=log (x+(x+ DV(x=1)/(x+1))

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left
of 1 (inclusive), extending indcfinitely along the ncgative rcal axis, continuous with
quadrant IT and (between 0 and 1) with quadrant 1. The range is that half-strip of the
complex plane containing numbers whose real part is non-negative and whose imaginary
part is between —« (exclusive) and « (inclusive). A number with real part zero is in the
rangge iff its imaginary part is between zero (inclusive) and # (inclusive).

The following definition for the inverse hyperbolic tangent dctermines the range and

. branch cuts:

arctanh z=log (1 +x)V1— /2)

Beware of simplifying this formula; “obvious” simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly., The branch cut for the inverse hyperbolic
tangent function is in two pieces: one along the negative real axis to the left of —1
(inclusive), continuous with quadrant 111, and onc along the positive real axis to the right of

1 .(inclusive), continuous with quadrant I. Th¢ range is that strip of the complex plane
containing numbers whose imaginary part is between —#/2 and #/2. A number with
imaginaryQp'art equal to —#/2 is in the range iff its real part is strictly negative; a number
with imaginary part equal to #/2.is in the rangé iff its imaginary part is strictly positive.
Thus the range of arctangent is identical to that of arcsine with the points —7i/2 and #i/2
excluded.

With these definitions, the following uscful identities are obeyed throughout the applicable portion of the
complex domain, even on the branch cuts:

siniz = isinh z . sinhiz=isinz arctan i/ z = i arctanh z
cosiz = coshz coshiz=cosz arcsinh i z = [arcsin z

tan iz = itanh z arcsin i z = {arcsinh z arctanh i z = iarctan z

12.5. Type Conversions and Component Extractions on Numbers

. While .most arithmetic functions will operate on any kind of number, cocrcing types if necessary, the
following functions are provided to allow specific conversions of data types to be forced, when desired.

134) ‘COMMON LISP REFERENCE MANUAL

float number &optional other [Function]
Converts any non-complex number to a floating-point number. With no sccond argument, then a
single-float is produced. If the argument other is provided, then it must be a floating-point
number, and number is converted to the same format as other. Scec also coerce (page 37).

rational number ' - 4 [Function)

rationalize number : [Function]
Each of these functions converts any non-complex number to be a rational number. If the
argument is alrcady rational, that argument is returned. The two functions differ in their treatment
of floating-point numbers.

rational assumes that the ﬂoating-point number is completely accurate, and returns a rational
number mathematically equal to the precise value of the floating-point number. This is (probably)
much faster than rationalize.

rationalize assumes that the floating-point number is accurate only to the precision of the
floating-point representation, and may return any rational number for which the floating-point
number is the best available approximation of its format; in doing this it attempts to keep both
numerator and denominator small. It is always the case that '

(eql (float (rationalize x) x) x)
That is, rationalizing a floating-point number and then converting it back to a floating-point
number of the same format produces the original number,

numerator rational . : [Function]
denominator rational . ' ‘ [Function)

These functions take a rational number (an integer or ratio) and return as an integer the numerator
or denominator of the canonical reduced form of the rational. The numerator of an integer is that
integer, and the denominator of an integer is 1. Note thaf

(gcd (numerator x) (denominator x)) => 1

The denominator will always be a strictly positive integer; the numerator may be any integer.

For example:

(numerator (/ 8 -86)) => -4
(denominator (/ 8 -6)) => 3

There is no fix function in COMMON LISP, because there are several interesting ways to convert non-
integral values to integers. These are provided by the functions below, which perform not only type-
conversion but also some non-trivial calculations.

NUMBERS

floor number &optional divisor
ceiling number &optional divisor
truncate number &optional divisor

135

[Function)
[FFunction]
[Function]

round nwmber &optional divisor ' [Function]

In the simple, onc-argument case, cach of these functions converts its argument aumber (which may
not be complex) to be an integer. If the argument is already an integer, it is retu rned directly. Ifthe
argument is a ratio or floating-point number, the functions use different algorithms for the
conversion. '

floor converts its argument by truncating towards necgative infinity; that is, the result is the largest
integer that is not larger than the argument. '

ceiling converts its argument by truncating towards positive infinity; that is, the result is the
smallest integer that is not smaller than the argument.

truncate converts its argument by truncating towards zero; that is, the result is the integer of the
same sign as the argument and which has the greatest integral magnitude not greater than that of
the argument,

round converts its argument by rounding to the nearest integer; if number is exactly halfway
between two integers (that is, of the form integer+0.5) then it is rounded to the one that is even
(divisible by two).

Here is a table showing what the four functions produce when given various arguments.

Argument floor ceiling truncate round
2.6 2 3 2 3
2.5 2 -3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0

-0.3 -1 0 0 0

-0.7 -1 0 0 -1

-2.4 -3 -2 -2 -2

-2.5 -3 -2 -2 -2

-2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate type of rounding or
truncation applied to the result of dividing the number by the divisor. For example, (f1oor 5 2)
= (floor (/ 5 2)), butis potentially more efficient. The divisor may be any non-complex
number. The one-argument case is exactly like the two-argument case where the second argument
is 1. '

Each of the functions actually returns ¢wo values; the second result is the remainder, and may be
obtained using multiple-value-bind (page 90) and related constructs. If any of these
functions is given two arguments x and y and produces results g and r, then g*y+r=x. The
remainder r is an integer if both arguments are integers, is rational if both arguments are rational,
and is floating-point if either argument is floating-point. (In the one-argument case the remainder
is a number of the same type as the argument.) The first result is always an integer.

136

COMMON LISP REFERENCE MANUAL

Compatibility note: The names of the functions f1oor, ceiling, truncate, and round arc more accurate
than namcs like fix that have heretofore been used in various 1iasp systems. The names used here are
compatible with standard mathematical terminology (and with pis1, as it happens). In FORTRAN 1f ix means
truncate. ALGOL 68 provides round, and uscs entier to mean floor. In Maclisp, Fix and ifix both
mean f1oor (one is generic, the other flonum-in/fixnum-out). In INTERLISP, fix means truncate. In Lisp
Machine Lisp, fix means f1oor and fixr mcans round. STANDARD Lisp provides a fix function, but docs
not accuralely specify what it does exactly. The existing usage of the name fix is so confused that it seems best
to avoid it altogether.

The names and definitions given here have recently been adopted by Lisp Machine Lisp, and MAcLisp and NiL
seem likely to follow suit.

mod rnumber divisor ' [FFunction]
remainder number divisor [Function]

mod performs the operation fl1oor (page 135) on its two arguments, and returns the second result
of f1oor as its only result. Similarly, rem pcrforms the operation truncate (page 135) on its
arguments, and returns the second result of truncate as its only result. '

mod and rem arc therefore the usual modulus and remainder functions when applicd to two integer
arguments. In gencral, however, the.arguments may be integers or floating-point numbers.

(mod 13 4) => 1 (rem 13 4) => 1

(mod -13 4) => 3 (rem -13 4) => -1

(mod 13 -4) => -3 (rem 13 -4) => 1

(mod -13 -4) => -1 (rem -13 -4) => -1

(mod 13.4 1) => 0.4 (rem 13.4 1) => 0.4

(mod -13.4 1) => 0.6 (rem -13.4 1) => -0.4
ffloor number &optional divisor ’ [Function]
fceiling number &optional, divisor Tt 7 [Function)
ftruncate number &optional divisor ' ‘ [Function]
fround number &optional divisor [Function]

These' functions are just like f1oor, ceiling, truncate, and round, except that the result (the
first result of two) is always a floating-point number rather than an integer. It is roughly as if
ffloor gave'its arguments to f1oor, and then applied f1oat to the first result before passing
them both back. In practice, however, ffloor may be implemented much more efficiently.
Similar remarks apply to the other three functions. If the first argument is a floating-point number,
and the sccond agrument is not a floating-point number of shorter format, then the first result will
be a floating-point number of the same type as the first argument.

For example:

(ffloor -4.7) => -5.0 and 0.3
(ffloor 3.5d0) => 3.0d0 and 0.5d0

NUMBERS

float-s
float-e
scale-f
float-r
float-s

137
i gnificand float [Function]
xponent float . [Function]
Toat float integer ' [Function)
adix float ' [Function)
ign floatl &optional float2 [Function]

The function float-fraction takes a floating-point number and returns a new floating-point
number of the same format. lLet b be the radix for the floating-point representation; then
float-significand divides the argument by an integral power of b so as to bring its value
between 1/b (inclusive) and 1 (exclusive), and recturns the quotient. [If the argument is zero,
however, the result cquals the argument,

The function float-exponent performs a similar operation, but then returns the integer
exponent e to which b must be raised to producec the appropriate power for the division. If the
argument is zcro, any integer value may be returned, provided that the identity shown below for
scale-float holds.

The function scale-float takes a floating-point number fand an integer k, and returns (* f
(expt (float b f) k)). (Thc use of scale-float may bc much more cfficient than using
cxponentiation and multiplication, and avoids intermcdiate overflow and underflow if the final
result is representable.) -

Notc that (scale-float (float-fraction f) (float-exponent f)) <=>f
The function float-radix returns (as an integer) the radix b of the floating-point argument.

The function float-sign rcturns a floating-point number z such that z and float/ have the same
sign and also such that z and float2 have the same absolute value. The argument floas2 defaults to

_the value of (float 1 floatl); (float-sign x) thercfore always producesa 1.0 or -1.0

according to the sign of x.

Rationale: These functions allow the writing of machine-i.ndcpendént, or at least machine-parameterized,
floating-point software of reasonable efficiency.

complex realpart &optional imagpart [Function]

The arguments must be non-complex numbers; a complex number is returned that has realpart as
its real part and imagpart as its imaginary part. If imagpart is not specified then (* realpart 0) is
cffectively used (this definition has the effect that in this case the two parts will be both rational or
both floating-point numbers of the same format).

realpart number ' [Function]

imagpar

t number : [Function]
These return the real and imaginary parts of a complex number. If number is a non-complex
number, then realpart returns its argument number and imagpart returns (* number 0)
(this has the effect that the imaginary part of a rational is 0 and that of a floating-point number is a
floating-point zcro of the same format).

138 COMMON LISP REFERENCE MANUAL-

12.6. Logical Operations on Numbers

The logical opcrations in this scction treat integers as if they were represented in two’s-complcmcnt
notation.

Implementation note: Internally, of course, an implementation of COMMON LisP may or may not usc a two's-complement
representation, All -that is necessary is that the logical operations perform calculations so as to give this appearance to the
user.

The logical operations provide a convenient way to represent an infinitc vector of bits, Let such a

conceptual vector be indexed by the non-ncgative integers. Then bit j is assigned a “weight” 2. Assume that
only a finitc number of bits arc ones, or that only a finitc number of bits are zcros. A vector with only a finite
number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with
only a finitc number of zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a ncgative
integer.

This method of using integers to represent bit vectors can in turn be used to represent sets. Suppose that
some (possibly countably infinite) universe of discourse for sets is mapped into thc non-negative integers.
Then a set can be represented as a bit vector; an element is in the set if the bit whosc index corresponds to
that clement is a one-bit. In this way all finite sets can be represented (by positive integers), as well as all sets
whose complements are finite (by negative integers). The functions Togior, Togand, and 1ogxor defined
below then compute the union, intersection, and symmetric difference operations on sets represented in this
way.

logior &rest integers ' T B [Function]
Returns the bit-wise logical inclusive or of its arguments. If no argument is glven, then the result is
zero, which is an identity for this operation,

t

logxor &rest integers : [Function]
Returns the bit-wise logical exclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.

Togand &rest integers | [Function]
Returns the bit-wise logical and of its arguments. If no argument is given, then the result is -1,
which is an identity for this operation,

logeqv &rest integers . [Function]
Returns the bit-wise logical equivalence (also known as exclusive nor) of its arguments. If no
argument is given, then the result is -1, which is an identity for this operation.

NUMBERS

lognand integerl integer?
lognor integerl integer2
logandcl integer! integer?
lTogandc2 integer! integer?
logorcl integerl integer2
Togorc?2 integerl integer2

139

[Function)
[Function]
[Function)
[Function]
[Function]
[Function]

These arc the other six non-trivial bit-wise logical operations on two arguments. Because they are
not commutative or associative, they take cxactly two arguments rather than any non-negative

number of arguments,

(lognand
(lognor
(logandcl
(logandc?2
(logorcl
(Togorc?2

nl
nl
nl
nl
nl
nl

n2)
n2)
n2)
n2)
n2)
n2)

LT I TR T TR T}
VVVYVYVYV

AANANAAA

(1ognot (logand nl n2))
(lognot (logor nl n2))
(Togand (lognot nl) n2)
(lTogand nl (lognot n2))
(1Togor (lognot nl) n2)
(logor sl (lognot n2))

The ten bit-wise logical operations on two integers are summarized in this table:

Argument [

equivalence (exclusive nor)

. and-complement of argl with arg2

and argl with complement of arg2

or complement of argl with arg2

0 0 1 1 A
Argument 2 0 1 0 1 Operation name

Togand 0 0 0 1 and
logior 0 1 1 1 inclusive or
Togxor 0 1 1 0 exclusive or
logeqv 1 0 0 1
Tognand 1 1 1 0 not-and
lognor 1 0 0 - 0 not-or
logandcl 0 1 0 0
logandc2 % <o 1 0
logorcl 1. 1 0 1

1 0 1 1

Togorc2

or argl with complement of arg2

boole op integerl integer2
boole-clr
boole-set
bocle-1
boole-2
boole-c1l
boole-c2
boole-and
boole-ior
boole-xor
boole-eqv
boole-nand -
boole-nor

[Function]
[Constani]
[Constani]
[Constand]
[Constani]
[Constand]
[Constani]
[Constani]
[Constani]
[Constand]
[Constani]
[Constani]
[Constani]

140

boole-andcl
boole-andc2
boole-orcl
boole-orc2

oM M\éN LISP REFERENCE MANUAL

[Constani]
[Constanid]
[Constani]
[Constani]

The function boole takes an operation op and two integers, and returns an integer produced by

performing the logical operation specified by op on the two integers. The precise values of the
sixteen variables are implementation-dependent, but they are suitable for use as the first argument
to boole:

integerl
integer?

Operation performed

boole-clr
boole-set
boole-1
boole-2
boole-c1
boole-c2
boole-and
boole-ior
boole-xor
boole-eqv
boole-nand
boole-nor
boole-andcl
boole-andc2
boole-orcl
boole-orc2

0
0
0
1
0
0
1
1
0
0
0
1
1
1
0
0
1
1

O O R OFROMMEMOORE PO OIO

P ORFRP OOROFR FPORPROORMFEOI -

SR, OO OROREOORE O -

always 0

always 1

integerl

integer2

complement of integerl

complement of integer2

and

inclusive or

exclusive or

equivalence (¢xclusive nor)

not-and

not-or .

and complement of integer! with integer2
and integerl with complement of integer2
or complement of integer! with integer2
or integer! with complement of integer?

boole can thcrefore»cémputc all sixteen logical functions on two arguments. In general,

(boole boole-and x y) <=> (logand x y)

and the latter is more perspicuous. However, boo1e is useful when it is neccssary to parameterize
. - . . -
a procedure so that it can use one of several logical operations.

lognot

integer

[Function]

Returns the bit-wise logical not of its argument. Every bit of the result is the complement of the

corresponding bit in the argument,

(Togbitp j (lognot x)) <=> (not (logbitp j x))

logtest integerl integer2
logtest is a predicate that is true if any of the bits designated by the 1’s in integer/ are 1's in
integer2.

(logtest x y) <=> (not (zerop (logand x y)))

[Function]

NUMBERS a 141

logbitp index integer _ [Function]
logbitp is truc if the bit in integer whose index is index (that is, its weight is 2indexy is a one-bit;
otherwisc it is false.

For example:

(logbitp 2 6) istrue
(Togbitp 0 6) isfalse
(logbitp k n) <=> (1db-test (byte 1 k) n)

ash integer count [Function]
Shifts integer arithmetically left by count bit positions if count is positive, or right -count bit
positions if count is negative. The sign of the result is always the same as the sign of integer.

Arithmetically, this operation performs the computation floor(integer*2°°*™).

Logically, this movces all of the bits in integer to the left, adding zcro-bits at the bottom, or moves
them to the right, discarding bits. (In this context the question of what gets shifted in on the left is
‘irrelevant; integers, viewed as strings of bits, are “half-infinitc”, that is, conceptually extend
infinitely far to the left.) '

For example:

(Togbitp j (ash n k))
<=> (and (>= j k) (logbitp (- j k) n))

logcount integer . _ : [Function}
The number of bits in integer is dctermined and returned. If integer is positive, then 1 bits in its
binary representation are counted. If integer is negative, then the 0 bits in its two’s-complement

binary representation are counted. The result is always a non-negative integer.

For example:
(logcount 13) => 3 : Binary representationis ...0001101
(logcount -13) => 2 ; Binary representationis ...1110011
(logcount 30) => 4 ; Binary representationis ...0011110

(1Togcount -30) => 4 ; Binary representationis ...1100010
The following identity always holds: '
(Togcount x) <=> (logcount (- (+ x 1)))

integer-length integer [Function}
This function performs the computation
i[ceiling](logz(if integer < 0 then — integer else in téger+ 1)

This is useful in two different ways. First, if integer is non-ncgative, then its value can be
represented in unsigned binary form in a field whose width in bits is at least (integer-length
integer). Second, rcgardless of the sign of integer, its valuc can be represented in signed binary

142 COMMON LISP REFERENCE MANUAL

two’s-complement form in a ficld whose width in bits is at least (+ (integer-1 ength integer)
1).

For example:

(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
{(integer-length

nowonon
VVVYV
WWN = O

PN Wee O
v

P e N e e e
v

v

|
~
N N

U T
vV Vv
WwnNh o

i
(o]
~

Compatibility note: This function is similar to the MACLISP function haulong. One may define haulong as
(haulong x) <=> (integer-length (abs x))

12.7. Byte Manipulation Functions

Several functions are provided for dcaling with an arbitrary-width field of contiguous bits appearing
anywhere in an integer. Such a contiguous sct of bits is called a byte. Here the term byte does not imply some
fixed number of bits (such as eight), but a ficld of arbitrary and user-specifiable width.

The byte-manipulation functions usc objects called byte specifiers to designate a specific byte position
within an integer. The representation of a byte specifier is implementation-dependent; it is sufficient to know
that the function byte will construct one, and that the byte-manipulation functions will accept them. The
function byte accepts two integers representing the position and size of the byte, and returns a byte specifier.

Such a specifier designates a byte whoge width is size, and whose bits have weights 2°0sifion+size=1 1y 0h
o . LY
* oposition :

e -

byte size position ' [Function)
byte takes two integers representing the size and position of a byte, and returns a byte specifier
suitable for use as an argument to byte-manipulation functions.

byte-size bytespec : . ' [Function]
byte-position bytespec [Function]

Given a byte specifier, byte-size returns the size specified as an integer; byte-position
similarly returns the position.
For example:

(byte-size (byte j k)) <=>j
(byte-position (byte j k)) <=> k

NUMBERS . 143

1. db bytespec i}lleger [Function]
bytespec specifics a byte of integer to be extracted. The result is returned as a positive integer.
For cxample:
(logbitp j (1db (byte s p) n)
<=> (and (< j s) (logbitp (+ j p) n))
The name of the function “1db” means “load byte”.

Compatibility note: The MAcLIsp function haipart can be implemented in terms of 1db as follows:
(defun haipart (integer count)
(let ((x (abs dinteger)))
(if (minusp count)
(1db (byte (- count) 0) x) .
(1db (byte count (max (- (integer-length x) n) 0)) x))))
setf (page 66) may be used with 1db, provided that the argument integer is specified by a form
that is a place form acceptable to setf, to modify a byte within the integer that is stored in that
" place. The cffect is to perform a dpb (page 143) operation and then store the result back into the

place.

1db-test bytespec integer [Function]
1db-test is a predicate that is true if any of-the bits designated by the byte spccifier bytespec are
I’sin integer; that is, it is true if the designated field is non-zero.

(1db-test bytespec n) <=> (not (zerop (1db bytespec n)))

mask-Tield bytespec integer [Function]
This is similar to 1db; however, the result contains the specificd byte of integer in the position
specified by bytespec, rather than in position 0 as with 1db. The result therefore agrees with integer
in the'byte specificd, but has,zero bits everywhere else.

Pl
@

For example:
(1db bs (mask-field bs n)) <=> (1db bs n)
(logbitp j (mask-field (byte s p) n))

<=> (and (>=j p) (< js) (logbitp j n))
(mask-field bs n) <=> (logand n (1db bs -1))
setf (page 66) may be used with mask-field, prpvidcd that the argument integer is specified _
by a form that is a place form acccptable to setf, to modify a byte within the integer that is stored
in that place. The effect is to perform a deposit-field (page 144) operation and then store the
result back into the place.

dpb newbyte bytespec integer . [Function]
Returns a number that is the same as integer except in the bits specified by bytespec. Let s be the
size specified by bytespec; then the low s bits of newbyte appear in the result in the byte specified by
bytespec. The integer newbyte is therefore interpreted as being right-justified, as if it were the result
of 1db.

144 COMMON LISP REFERENCE MANUAL

For cxample: ' .

(logbitp j (dpb m (byte s p) n))
<=> (if (and (>=jp) (<j (+ ps)))
(Yogbitp (- j p) m)
(Togbitp j n))

The name of the function “dpb” mcans “deposit byte”.

deposit-field newbyte bytespec integer ' [Function]
This function is to mask-field as dpb is to 1db. The result is an integer that contains the bits of
newbyte within the byte specificd by bytespec, and elsewhere contains the bits of integer.

For examplec:

(logbitp j (dpb m (byte s p) n))
<=> (if (and (>=jp) (< Jj (+ ps)))
(logbitp j m)
(Togbitp j n)) .
Implementation note: If the byrespec is a constant, one may of course construct, at compile time, an equivalent
mask m, for example by computing (deposit-field -1 byrespec 0). Given this mask m, one may then
compute

(deposit-fie]d newbyte bytespec integer)
by computing
(logor (logand newbyte m) (logand integer (lognot m)))

where the result of (1ognot m) can of course also be computed at compile time. [However, the following
expression (which I got indirectly from Knuth) may also be used, and may require fewer temporary registers in
some situations:

(1ogxor integer (logand m (logxor integer rewbyte)))
A related, though possibly less useful, trick is that

(let ({(z (logand (logxor x y) m)))
(setg x (logxor z x))
. (setg y (logxor z y)))

. interchanges those bits of x and y for which the mask m is 1, and leaves alone those bits of x and y for'whlch m
is 0.
12.8. Random Numbers)
random number &optional state [Function]

(random #) accepts a positive number # and returns a number of the same kind between zero
~(inclusive) and n (exclusive). The number n may be an integer or a floating-point number. An
approximately uniform choice distribution is used: if z is an integer, each of the possible results
occurs with (approximate) probability 1/a. (The qualifier “approximate” is used because of
implementation considerations; in practice the deviation from uniformity should be quite small.)

The argument state must be an object of type random-state; it defaults to the value of the
variable *random-state*. This object is used to maintain the state of the pscudo -random-
number generator, and is altered as a side effect of the random operation.

NUMBERS 145

“Compatibility note: random of zero arguments as defined in MACLISP has been omitted because its value is too
implementation-dependent (limited by fixnum range).

Implementation note: In general, it is not adequate to define (random n) for integral # to be simply (mod
(random) n): this fails to be uniformly distributed if n is larger than the largest number produced by
random, or cven if 7 merely approaches this number. Assuming that the underlying mechanism produces
“random bits” (possibly in chunks such as fixnums). the best approach is to produce cnough random bits to
construct an integer k some number d of bits larger than (integer-length n) (scc integer-length
(page 141)), and then compute (mod & n). The quantity dshould be at least 7, and preferably 10 or more.

To produce random floating-point numbers in the range [A4, B), accepted practice (as determined by a quick
look through the Collected Algorithms from the ACAM, particularly algorithms 133, 266, 294, and 370) is to
compute X*(B— 4)+ A, where X is a floating-point number uniformly distributed over [0.0, 1.0) and computed
by calculating a random integer N in the range [0, AN (typically by a multiplicative-congrugntial or linear-
congruential method mod M) and then sctting X=N/M. Sce also [7]. 1f onc takes M = 2/, where f'is the
length of the significand of a floating-point number (and it is in fact common to choose M to be a power of
two), then this mcthod is cquivalent to the following assembly-language-level procedure. Assume the
representation has no hidden bit. Take a floating-point 0.5, and clobber its entire significand with random bits.
Normalize the result if necessary.

For cxample, on the PDP-10, assume that accumulator T is completely random (all 36 bits are randomi). Then
the code sequence

LSH T,-9 ; Clear high 9 bits; low 27 are random.
FSC T,128. ; Install exponent and normalize,

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0). (Instcad of the LSH,
one could do “TLZ T,777000; but if the 36 random bits came from a congrucntial random-number
gencrator, the high-order bits tend to be “more random™ than the low-order oncs, and so the LSH would be a
bit better for uniform distribution. Ideally all the bits would be the result of high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing with the hidden bit is. The
method can be adapted as follows. Take a floating-point 1.0 and clobber the explicit significand bits with
random bits; this produces a random floating-point number in the range (1.0, 2.0). Then simply subtract 1.0.
In effect, we let the hidden bit crecp in and then subtract it away again.

For example, on the VAX, assume that register T is completely random (but a little less random than on the
PDP-10, as it has only 32 random bits). Then the code sequence

INSV #~X81,#74#9,T ; Install correct sign bit and exi)orient.
SUBF #~F1.0,T * ; Subtract 1.0,

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0). Again, if the low-order
bits arc not random enough, then “ROTL #7, T" should be performed first.

random-state ‘ . [Variable]

~ This variable holds a data structure, an object of ‘type random-state, that encodes the internal

state of the random-number gencrator that random uses by default. The nature of this data

structure is implementation-dependent. It may be printed out and successfully read back in, but

may or may not function correctly as a random-number state object in another implementation. A

. call to random will perform a side effect on this data structure. Lambda-binding this variable to a
different random-number state object will correctly save and restore the old state object, of course.

make-random-state &optional state ' [Function]
This function returns a new object of type random-state, suitable for use as the value of the
variable *random-state*. If siate is ni1 or omitted, random-state returns a copy of the
current random-number state object (the value of the variable *random-state*). If state is a
state object, a copy of that state object is returned. If state is t, then a new state object is returned

146 ' COMMON LISP REFERENCE MANUAL

that has been “randomly” initialized by some means (such as by a time-of-day clock).

random-state-p object : [Function]
random-state-p is truc if its argument is a random-state object, and otherwise is false.

(random-state-p x) <=> (typep x ’'random-state)

*12.9. Implementation Parameters

The values of the named constants defined in this section are implementation-dependent. They may be
useful for parameterizing codc in some situations.

most-positive-fixnum [Constani]

most-negative-fixnum - [Constant]
The value of most-positive-fixnum is that fixnum closest in value to positive infinity
provided by the implementation. ‘

The value of most-negative-fixnum is that fixnum closest in value to negative infinity
provided by the implementation.)

most-positive-short-float : [Constani]
least-positive-short-float ' [Constani]
least-negative-short-float ” [Constani]
most-negative-short-float . ‘ [Constani)

The value of most-positive-short-float is that short-format ﬂoatmg point number closest
in value to positive infinity provided by the implementation.

4

The value of least-positive-short-float is that positive‘ short-format floating-point
number closest in value to zero provided by the implementation.

The value of least-negative-short-f1 oat is that negative short-format floating-point
number closest in value to zero provided by the implementation.

The value of most-negative-short-float is that short-format floating-point number closest
in value to negative infinity provided by the implementation.

most-positive-single-float [Constani]
least-positive-single-float [Constani]
least-negative-single-float : [Constani]
most-negative-single-float : [Constani]
most-positive-double-float ‘ [Constand]

least-positive-double-float) [Constani]

NUMBERS . a 147

least-negative-double-float [Constani]
most-negative-double-float - ' [Constani]
most-positive-long-float [Constani}
least-positive-long-float [Constand]
least-negative-long-float , [Constani]
most-negative-long-float [Constani]

These arc analogous to the constants defined above for short-format floating-point numbers.

short-float-epsilon ‘ [Constani]
single-float-epsilon ' k [Constani]
double-float-epsiion [Constani]
long-float-epsilon [Constani]

These constants indicate, for each floating-point format, the smallest positive number e of that
format such that

(not (= (float 1 e) (+ e (float 1 e))))

short-float-negative-epsilon [Constani]
single-float-negative-epsilon [Constani]
double-float-negative-epsilon . [Constani]
long-float-negative-epsilon [Constani]

Thesc constants indicate, for each floating-point format, the smallest positive number e of that
format such that

(not (= (float 1 e) (- e (f1da£ 1¢€))))

148 : COMMON LISP REFERENCE MANUAL

<3

Chapter 13

Characters

CoMMON Lisp provides a character data type; objects of this type represent printed symbols such as letters.
Every character has three attributes: code, bits, and font. The code attribute is intended to distinguish

among the printed glyphs and formatting functions for characters. The bits attribute allows extra flags to be
associated with a character. The font attribute permits a specification of the style of the glyphs (such as

char-code-1limit [Constani]

The value of .char-code-11imit is a non-negative integer that is the upper cxclusive bound on
values produced by the function char-code (page 154), which returns the code component of a
given character; that is, the valucs returned by char-code are non-negative and strictly less than
the value of char-code-1imit.

char-font-1imit [Constand]

The value of char-font-1 imi tisa non-negative integer that is the upper exclusive bound on -
values produced by the function char-font (i)agc 154), which recturns the font component of a
given character; that is, the values returned by char-font are non-negative and strictly less than
the value of char-font-1imit.

Implementation note: No CoMMON LIsP implementation is required to support non-zero font attributes; if it
does not, then char-font-11imit should be 1.

char-bits-T1imit [Constani]

The value of char-bits-1imit is a non-negative integer that is the upper exclusive bound on
values produced by the function char-bits (page 154), which returns the bits component of a
given character; that is, the values returned by char-b1its are non-negative and strictly less than
the value of char-bits-1imit. Note that the value of charfbits'ﬂ imit will be a power of
two.

Implementation note: No ComMON Lisp implementation is required to supportv non-zero bits attributes; if it
does not, then char-bits=-11imit should be 1.

— 149 —

150

COMMON LISP REFERENCE MANUAL

13.1. Predicates on Characters

The predicate characterp (page 54) may be usced to determine whether any LISP object is a character

object. .

standard-charp char : [Function]

The argument char must be a character object. standard-charp is truc if the argument is a
“standard character”, that is, one of the nincty-five ASCII printing characters or <rcturn>. If the
argument is a non-standard character, then standard-charp is false.

Note in particular that any character with a non-zero bils or font attribute is non-standard.

graphic-charp char [Function]

The argument char must be a character object. graphic-charp is true if the argument is a
“graphic” (printing) character, and falsc if it is a “non-graphic” (formatting or control) character.
Graphic characters have a standard textual representation as a single glyph, such as “A” or “*” or
“=". By convention, the space character is considered to be graphic. Of the standard characters (as
defined by standard-charp), all but <return> arc graphic. If an implementation provides any of
the semi-standard characters <backspace>, <tab>, <rubout>, <lincfced>, and <page>, they are not
graphic.

Graphic characters of font 0 may be assumed all to be of the same width when printed; programs
may depend on this for purposes of columnar formatting. Non:graphic characters and characters of
other fonts may be of varying widths. ‘

Any character with a non-zero bits attribute is non-graphic.

t

string-tharp char ' " [Function]

The argument char must be a character object. string-charp is true if char can be stored into a
string, and otherwise is false. Any character that satisfies standard-charp also satisfies
string-charp; others may also.

alpha-charp char [Function]

The argument char must be a character object. al pha—"char‘p is true if the argument is an
alphabetic character, and otherwise is false.

Of the standard characters (as defined by standard-charp), the letters “A” through “Z” and “a”

through “z” are alphabetic.

CHARACTERS : : 151

. uppercasep char ' [Function]
lowercasep char [Function]
bothcasep char . [Function]

The argument char must be a character object. uppercasep is true if the argument is an upper-
case (majuscule) character, and otherwise is false. lowercasep is truc if the argument is an
lower-casc (minuscule) character, and otherwisc is false.

bothcasep is truc if the argument is upper-case and there is a corresponding lower-casc character
(which can be obtained using char-downcase (page 155)), or if the argument is lower-case and
there is a corresponding upper-case character (which can be obtained using char-upcase (page
155)). : '

If a character is cither upper-case or lower-case, it is necessarily alphabetic. However, it is
permissible in theory for an alphabetic character to be neithcr uppercase nor lowercase.

Of the standard characters (as defined by standard-charp), the letters “A” through “Z” are
upper-case and “a” through “z” are lower-case.

digit-charp char &optional (radix 10.) ‘ [Function)
The argument char must be a character object, and radix must be a non-negative integer.
digit-charp is a pscudo-predicate: if char is not a digit of the radix specificd by radix, then it is
. false; otherwise it returns a non-negative integer that is the “weight” of char in that radix.

Digits are necessarily graphic characters.

' Of the standard characters (as defined by standard-charp), the characters “0” through “9”, “A”
through “Z”, and “a” through “z” are digits. The weights of “0” through “9” are the integers 0
through 9, and of “A” through “Z” (and also “a” through “z”) are 10 through 33. digit-charp

| returns the weight for one of these digits if and only if its weight is strictly less than radix. Thus, for
| example, the digits for radix 16 are “0123456789ABCDEF” '
(defun convert-string- to- 1nteger (str &optional (radix 10))

"Given a d1g1t str1ng and opt1ona1 radix, return an integer.’

(do ((j 0 (+] 1))
| (n 0 (+ (* n radix)
| (or (digit-charp (char str j) radix)
| (ferror "Bad radix-~D digit: ~C"
| radix

(char str i))))))
((- j (string- 1ength str)) n)))

alphanumericp char) [Function]
The argument char must be a charactcr object. alphanumericp is true if char is either alphabetic
or numeric. By definition,
(alphanumericp x) <=> (or (alpha-charp x) (digit-charp x))
‘ Alphanumeric characters arce therefore necessarily graphic (as defined by graphic-charp (page

152

COMMON LISP REFERENCE MANUAL

150)).

Of the standard characters (as defined by standard-charp), the characters “0” through “9”, “A”

e,

through “z” arc alphanumeric.

[PR1)

through *Z”, and “a

char= character &rest more-characters . [Function]
char/= character &rest more-characters [Function)
char< character &rest more-characters [Function]
char> character &rest more-characters [Function]
char<= character &rest more-characters [Function]
char>= character &rest more-characters [Function]

The arguments must all be character objects. These functions compare the objects using the
implementation-dependent total ordering on characters, in a manner analogous to numeric
comparisons by = (page 122) and related function.

The total ordering on characters is guaranteed to have the following properties:

¢ The alphanumeric characters obey the following partial ordering:

A<B<C<D<E<F2G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z
a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<g<r<s<t<u<v<w<x<y<z
0<1<2<3<4<5<6<7<8<9
either 9<A or 1<0
either 9<a or z<0
This implies that alphabetic ordering holds, and that the digits as a group are not
intcrleaved with letters, but that the possible interleaving of upper-case letters and

lower-case letters is unspecified.

o If two characters have the same bits and font attributes, then their ordering by char< is
Consistent with the numerical, ordering by the predicate < (page. 122) on their co@e
attributes.

Notice that the total ordering is not necessarily the same as the total ordering on the integers
produce by applying char-int (pagec 155) to the characters. Also, while alphabetic characters of

a given casc must be properly ordered, they need not be contiguous; therefore (char<= #\a x

#\z) is not a valid way of determining whether or not x is a lower-case letter, for example; that is
why a separate Towercasep (page 151) predicate is provided. '

For example:

CHHARACTIERS 153

(char/= #\d #\d) is false

(char/= #\d #\x) istrue

(char/= #\d #\D) istruc

(char/= #\d #\d #\d #\d) is false
(char/= #\d #\d #\x #\d) is false
(char/= #\d #\y #\x #\c) istrue
(char/= #\d #\c #\d) is false
(char<= #\d #\x) istruc

(char<= #\d #\d) istrue

(char<= #\a #\e #\y #\z) istrue
(char<= #\a #\e #\e #\y) istrue
(char>= #\e #\d) istrue :
(char>= #\d #\c #\b #\a) istrue
(char>= #\d #\d #\c #\a) istrue
(>= #\e #\d #\b #\c #\a) is false
(> #\Z #\a) may be true or false

(char= #\d #\d) istruc

(char= #\d #\x) is falsc

(char= #\d #\D) is falsc

(char= #\d #\d #\d #\d) istrue
(char= #\d #\d. #\x #\d) is falsc
(char= #\d #\y #\x #\c) isfalsc
(char= #\d #\c #\d) is falsc
(char< -#\d #\x) istrue

(char< #\d #\d) is falsc

(char< #\a #\e #\y #\z) istrue
(char< #\a #\e #\e #\y) isfalse
(char> #\e #\d) istrue

(char> #\d #\c #\b #\a) istrue
(char> #\d #\d #\c #\a) isfalse
(> #\e #\d #\b #\c #\a) is falsc
(> #/z #\A) may be true or false

There is no requirement that (eq c1 c¢2) be true mercly because (char= c1 c2) is true.
While eq may distinguish two character objcéts that char= does not, it is distinguishing thcm not
as characters, but in some sense on the basis of a lower-level implementation characteristic. (Of
course, if (eq ¢1 c2) is truc then one may expect (char= c¢1 ¢2) to be true.) However, eql
(page 56) and equal (page 56) compare character objects in the same way that char = does.

char-equal character &rest more-characters [FFunction]
char-not-equal character &rest more-characters [Function]
char-lessp character &rest more-characters [Function]
char-greaterp character &rest more-characters [Function]
char-not-greaterp character &rest more-characters [Function]
char-not-lessp character &rest more-characters " [Function]

The predicate char-equal is like: char=, and similarly for the others, except according to a
different ordering such that differences of bits attributes and case are ignored, and font information
is taken into account in an implementation-dependent manner. For the standard characters, the

ordering is such that A=a, B=b, and so on, up to Z=z, and furthcrmore either 9<A or Z<0.

For example:

(char-equal #\A #\a) istrue
(char= #\A #\a) is false
(char-equal #\A #\Control-A) istrue

The ordering may depend on the font information. For example, an implementation might decree
that (char-equal #\p #\p) betruc, but that (char-equal #\p #\«) be falsc (where #\

is a lower-case

[T 1)

p

in some font).

13.2. Character Construction and Selection

154 COMMON LISP REFERENCE MANUAL

character object’ [Function]
The function character cocrccs its argument to be a character if possible; sce coerce (page
37).

(character x) <=> (coerce x 'character)

char-code char [Function]
The argument char must be a character object. char-code returns the code attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-code-1imit (pagc 149).

.char-bits char [Function]
The argument char must be a character object. char-bits returns the bifs attribute of the
character object; this will be a non-ncgative integer less than the (normal) value of the variable
char-bits-1imit (page 149).

char-font char [Function]
The argument char must be a character object. char-font returns the foa¢ attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-font-T1imit (page 149).

code-char code &optional (bits 0) (font 0) [Function]
All three arguments must be non-negative integers. If it is possible in the implementation to
construct a character object whose code attribute is code, whose bits attribute is bits; and whose font
attribute is fons, then such an object is returned; otherwise ni1 is returned.

For any integers ¢, b, andﬁlf(code-char ¢ b f)isnotnil then

(char-code (code-char ¢ b f)) => ¢
(char-bits (code-char ¢ b f)) => b
(char-font (code-char ¢ b f)) => f -

If the font and bits attributes of a character object x are zero, then it is the case that

(char= (code-char (char-code c¢)) c) istrue

make-char char &optional (bits 0) (font 0) ' [Function]
The argument char must be a character, and bifs and font must be non-ncgative integers. If it is
possible in the implementation to construct a character object whose code attribute is that of char,
whose bits attribute is bits, and whose font attnbute is font, then such an object is rcturned;
otherwise ni1 is returned.

If bits and font are zero, then make-char cannot fail. This implies that for every character object
one can “turn off” its bits and font attributes. ‘

CHARACTERS ‘ 155

13.3. Character Conversions

char-upcase char : [Function]

char-downcase char [l'unction]
The argument charmust be a character object. char-upcase attempts to convert its argument to
an upper-case cquivalent; char-downcase attempts to convert to lower case.

char-upcase rcturns a character object with the same font and bits attributes as char, but with
possibly a different code attribute. If the code is different from char's,-then the predicate
lowercasep (page 151) is truc of char, and uppercasep (page 151) is truc of the result
character. Morcover, if (char= (char-upcase x) x) is nottruc, then it is true that

(char= (char-downcase (char-upcase x)) x)

Similarly, char-downcase returns a character object with the same font and bits attributes as

char, but with possibly a different code attribute, If the code is different from char's, then the

predicatc uppercasep (page 151) is true of char, and Towercasep (page 151) is truc of the

result character. Morcover, if (char= (char-downcase x) x) is nof true, then it is true that
(char='(char—upcase (char-downcase x)) x)

digit-weight weight &optional (radix 10.) (bits 0) (font 0) [Function)

All arguments must be integers. digit-weight determines whether or not it is possible to

. construct a character object whose bits attribute is bits, whosc font attribute is font, and whose code

is such that the result character has the weight weight when considered as a digit of the radix radix

(sec the predicate digit-charp (page 151)). It returns such a character if that is possible, and
otherwise returns ni 1. : '

digit-weight cannot return nil if bits and font are zero, radix is between 2 and 36 inclusive, ..
and weight is non-negative and less than radix. - .

If more than one character object can encode such a weight in the given radix, one shall be chosen
consistently by any given implementation; moreover, among the standard characters upper-case
letters are preferred to lower-case letters.

For example:

(digit-char 7) => #\7

(digit-char 12) => nil

(digit-char 12 18) => #\C ;not #\c¢
(digit-char 6 2) => nil :
(digit-char 1 2) => #\1

char-int char ’ [Function]
The argument char must be a character object. char-1int returns a non-negative integer encoding
the character object.

156 ' COMMON LISP REFERENCE MANUAL

If the font and bits attributes of char are zero, then char-int returns the samc integer
char-code would. Also, '
(char= c¢1 c2) <=> (= (char-int cl1) (char-int c2))

for characters c¢1 and ¢2.

This function is provided primarily for the purpose of hashing characters.

int-char integer [Function]
The argument must be a non-negative integer. int-char returns a character object ¢ such that
(char-int c) is equal to integer, if possible; otherwise int-char is false.

char-name char : [Function]
The argument char must be a character object. . If the character has a name, then that name (a
symbol) is rcturned; otherwise nil is returned. All characters that have zero font and bits
attributes and that are non-graphic (do not satisfy the predicate grvaphic—charp (page 150))
have names. Graphic characters may or may not have names.

The standard characters <rcturn> and <spacc> have the respective names return and space. The
optional characters {tab>, <page>, <rubout>, <linefeed>, and <backspace> have the respective names
tab, page, rubout, 1inefeed, and backspace.

Characters-that have names can be notated as “#\” followed by the name: #\Space.

name-char sym [Function]
The argument sym must be a symbol. If the symbol is the name of a character ObjCCt that gbject is
returned; otherwise ni1 is returned.

13.4. Character Control-Bit Functions
CoMMON Lisp provides explicit names for four bits of the bits attribute: Control, Meta, Hyper, and Super.

The following definitions are provided for manipulating these. Each COMMON LISP implementation provides
these functions for compatibility, even if it does not support any or all of the bits named below.

char-control-bit [Constani]

char-meta-bit . [Constani]
char-super-bit ’ . - [Constani]
char-hyper-bit : [Constani]

The values of these named constants are the “weights” (as integers) for the four named control bits.
The weight of the control bit is 1; of the meta bit, 2; of the super bit, 4; and of the hyper bit, 8.

If a given implementation of COMMON LISP does not support a particular bit, then the

| CHARACTERS : _ 157
|

‘ . corresponding variable is zero instcad.

char-bit char name [Function]

char-bit takes a character object char and the name of a bit, and returns non-ni1 if the bit of
that name is set in char, or nil if the bit is not set in char. Valid values for name are
implementation-dependent, but typically are :control, :meta, :hyper, and : super.

For example:
(char-bit #\Control-X :control) => frue

setf (page 66) may be used with char-bit, provided that the argument char is specified by a
form that is a place form acceptable to setf, to modify a bit of the character stored in that place.
The effect is to perform a set-char-bit (page 157) operation and then store the result back
into the place. '

set-char-bit char name newvalue [Function]
char-bit takes a character object char, the name of a bit, and a flag. A character is returned that
is just like char except that the named bit is set or resct according to whether newvalue is non-nil
or nil, Valid values for name arc implementation-dependent, but typically are :control,
:meta, :hyper,and :super.

For example: _
. (set-char-bit #\X :control t) => #\Control-X
(set-char-bit #\Control-X :control t) => #\Control-X
(set-char-bit #\Control-X :control nil) => #\X

158 A COMMON LISP REFERENCE MANUAL

Chapter 14

Sequences

The type sequence encompasses both lists and vectors (onc-dimensional arrays). While thesc are
different data structures with different structural properties leading to different algorithmic uses, they do have
a common property: cach contains an ordered set of clements.

There are some operations that arc uscful on both lists and arrays because they deal with ordered sets of
clements. One may ask the number of clements, reverse the ordering, extract a subsequence, and so on. For
such purposcs COMMON LISP provides a set of generic functions on sequences:

elt reverse map remove remove-duplicates
subseq’ nreverse some delete delete-duplicates
copy-seq concatenate every : position find

fill length notany mismatch search

replace sort notevery maxprefix substitute

count merge reduce maxsuffix nsubstitute

Some of these operations come in more than one version. Such versions are indicated by adding a suffix to
the basic name of the operation. In addition, many operations accept one or more optional keyword
arguments that can modify the operation in various ways.

If the operation requires testing sequence elements according to some criterion, then the criterion may be
specified in one of two ways. The basic operation accepts an item, and elements are tested for being eq1 to
that item. (A test other than eql can be specified by the :test or :test-not keyword.) The variants
formed by adding “~if” and “-if-not” to the basic operation name do not take an item, but instcad a
one-argument predicate, and elements are tested for satisfying or not satisfying the predicate. As an ¢cxample,

(remove item sequence)

returns a copy of sequence from which all elements eq1 to item have been removed;
(remove item sequence :test # equal)

returns a copy of sequence from which all elements equa? to item have been removed;
(remove-if #'numberp sequence)

returns a copy of sequence from which all numbers have been removed.

If an operation tests clements of a scquence in any manner, the keyword argument :key, if not nil,
should be a function of onc argument that will extract from an element the part to be tested in place of the

~ 159 —

160 COMMON 1.ISP REFERENCE MANUAL

whole clement. For example, the cffect of the MACLISP expression (assq item seq) could be 6btaincd
by
(find item sequence :test #'eq :key #'car)

"This scarches for the first element of sequence whose caris eq to item.

For some operations it can be uscful to specify the direction in which the sequence is processed. In this
casc the basic operation normally processes the sequence in the forward direction, and processing in the
reverse direction is indicated by a non-ni1 value for the keyword argument : from-end.

Many operations allow the spccification of a subsequence to be operated upon. Such opcrations have
xeyword arguments called : start and :end. These arguments should be integer indices into the sequence,
with start<end; they indicate the subscquence starting with and including element start and up to but
excluding clement end. The length of the subsequence is therefore end— start. 1f start is omitted it defaults to
zero, and if end is omitted or ni1 it defaults to the length of the scquence; thercfore if both are omitted the
entire sequence is processed by default. For the most part this is permitted purely for the sake of efficiency;
one can simply call subseq instcad to extract the subsequence before operating on it. However, operations
that producc indices return indices into the original scquence, not into the subsequence.

(position #/b "foobar" :start 2 :end 5) => 3
(position #/b (subseq "foobar" 2 5)) => 1

If two sequences are involved, then the keyword arguments :start1, :end1, :start2, and :end2 are
used to specify scparate subsequences for each sequence.

For some functions, notably remove and delete, the keyword argument : count is used to specify how
many occurrences of the item should be affected. If this is ni1 or is not supphed all matching items are
affected.

In the following function descriptions, an element x of a sequence “satisfies the test” if either of the
following holds:

e A basic function was called, festfn was spec1f'1ed by the keyword test, and (funcall (estfn
item (keyfn x)) is true.

e A basic function was called, festfn was specified by the keyword :test-not, and (funcall
testfn item (keyfn x)) is false. ’

e An “-1if” function was called, and (funcall predicate (keyfn x)) istrue.

e An “-if-not” function was called, and (funcall predicate (keyfn x)) is false.

In each case keyfi is the value of the :key keyword argument (the default being thc identity function). See,
for example, remove (page 165).

In the following function descriptions, two elements x and y taken from sequences “match” if cither of the

SEQUENCES , N 161

. following holds:

e tesifin was specified by the keyword :test, and (funcall tesifn (keyfn x) (keyfn y)) is
true.

o testfit was specified by the keyword :test-not, and (funcall festfn (keyfn x) (keyfn
»)) is false. '

Sec, for cthplc, search (pagc 169).

As a rule, whenever a scquence function must construct and return a new vector, it is always a simple
vector. ‘

14.1. Simple Sequence Fuﬁctions

elt sequence index ; [Function]
This returns the element of sequence specified by index, which must be a non-negative integer less
than the length of the sequence. The first clement of a sequence has index 0.

setf (page 66) may be used with e1t to destructively replace a scquence clement with a hew

. value,

subseq sequence start &optional end - [Function]
This returns the subsequence of sequencé specified by start and end. subseq always allocates a
new scquence for a result; it never shares storage with an old sequence. The result subsequence is
always of the same type as the argument sequence.

setf (page 66) may be used with subseq to destructively replace a subsequence with a sequence
of new values; see also replace (page 165).

copy-seq sequence » [Function]
‘A copy is made of the argument sequence; the result is equal to the argument but not eq to it.
(copy-seq x) <=> (subseq x 0)

but the name copy-seq is more perspicuous when applicable.

length sequence [Function]
The number of elements in sequence is returncd as a non-negative integer. If the sequence is a
vector with a fill pointer, the “active length” as specified by the fill pointer is returned. See section

‘ 17.6 (page 199).

162 COMMON LISP REFERENCE MANUAL

reverse sequence [Function]
The result is a new sequence of the same kind as sequence, containing the same clements but in
reverse order. The argument is not modificd.

nreverse sequence [Function]
The result is a sequence containing the same clements as sequence but in reverse order. The
argument may be destroyed and re-used to produce the result. The result may or may not be eq to
the argument, so it is usually wisc to say somcthing likc (setq x (nreverse x)), because
simply‘ (nreverse x) is not guarantced to leave a reversed value in x.

make-sequence lype size &ey :initial-element [Function]
This returns a scquence of type zype and of length size, cach of whose clements has been initialized
tothe :initial-element argument. Ifspecified, the :initial-element argument'mﬁst be

_ an object that can be an clement of a sequence of type type.

For example:
(make-sequence '(vector double-float) 100 :initial-element 1d0)

Ifan :initial-element argument is not specified, then the sequence will be initialized in an
implementation-dependent way.

14.2. Catenating, Mapping, and Reducing Sequences

concatenate result-type &rest sequences ' [Function]

 The result is a new sequence that contains all the elements of all the sequences in order. All of the

sequences are copied from; the result does not share any structure with any of the argument

sequences (in this concatenate differs from append). The type of the result is specified by

_result-type, which must be a subtype of sequence, as for the function coerce (page 37). It must

be possible for every element of the argument sequences to be an element of a sequence of type
result-type.

The implementation must be such that concatenate is associative, in the sense that the clements
of the result sequence are not affected by reassociation (but the type of the result sequence may be
affected). If no arguments are provided, concatenate returns a-new empty sequence of type
result-type.

If one argument is provided, and it has the type specificd by result-type, concatenate is required
to copy the argument rather than simply returning it. If a copy is not required, but only possible
type-conversion, then the coerce (page 37) function may be appropriate.

SEQUENCTS 163

. map result-type function sequence &rest more-sequences [Function]
The function must take as many arguments as there are scquences provided; at least one sequence
must be provided. T'he result of map is a scquence such that clement j is the result of applying
Sunction to clement j of cach of the argumcnt scquences. ‘The result sequence is as long as the
shortest of the input sequences.

“If the function has side-effects, it can count on being called first on all the clements numbered 0,
then on all those numbered 1, and so on.

The type of the result sequence is specificd by the argument result-type, as for the function coerce
(pagce 37). In addition, one may specify ni1 for the result type, meaning that no result sequence is
to be producced; in this case the function is invoked only for cff’cct, and map rcturns n1i1. This gives
an effect similar to that of mapc (page 85).

Compatibility note: In MacLisp, Lisp Machine Lisp, INTERLISP, and indced even Lisp 1.5, the function map
has always meant a non-value-returning version. However, standard computer science literature, and in
particular the recent wave of papers on “functional programming”, have come to use map to mean what in the
past Lisp people have called mapcar. To simplify things henceforth, Common Lisp follows current useage,
and what was formerly called map is named map1 (page 85) in CoMMON Lisp.

For example:

(map *Tist #- '(1 2 3 4)) => (-1 -2 -3 -4)
(map ’string #'(lambda (x) (if (oddp x) #\1 #0)) '(1 2 3 4))

= "1010"
some predicate sequence &rest more-sequences : [Function)
every predicale sequence &rest more-sequences [Function]
notany predicate sequence &rest more-sequences [Function]
notevery predicate sequence &rest more-sequences [Function]

These are all predicates. The predicate must take as many arguments as there are sequences

provided. The predicate is first applied to the elements with index 0 in cach of the sequences, and

possibly then to the elements with index 1, and so on, until a termination criterion is met or the end
of the shortest of the sequences is reached.

some returns as soon as any invocation of predicate returns a non-ni1 value; some returns that
value. If the end of a sequence is reached, some returns ni1. Thus as a predicate it is true if some
invocation of predicate is true.

every returns nil as soon as any invocation of predicate returns ni1. If the end of a sequence is
reached, every returns a non-nil value. Thus as a predicate it is true if every invocation of
predicate is true.

notany returns nil as soon as any invocation of predicate returns a non-n1i1 value. If the end of
a sequence is reached, notany returns a non-ni1 value. Thus as a predicate it is true if no
invocation of predicate is true.

‘ notevery returns a non-n1il value as soon as any invocation of predicate returns ni1. If the end
of a sequence is reached, notevery returns nil. Thus as a predicate it is true if not every

 le4 COMMON LISP REFERENCE MANUAL

invocation of predicate is truc.

Compatibility note: 'The order of the arguments here is not compatible with InTirRLISP and Lisp Machine 1isp.
"This is to stress the similarity of these functions to map. The functions are therefore extended here to functions
of more than ong¢ argument, and multiple scquences.

reduce function sequence &key :from-end :start :end :initial-value [Function)

The specified subsequence of the sequence is “reduced” using the fiunction, which must accept two
arguments. The reduction is left-associative, unless the : from-end argument is true (it defaults to
ni1), in which casc it is right-associative. Ifan :initial-value argument is given, it is logically
placed before the subscquence (after it if : from-end is truc) and included in the reduction
operation. If no :initial-value is given, and the specificd subscquence is empty, then the

‘function is called with zero arguments, and reduce rcturns whatever the function doces. (This is
the only case where the finction is called with other than two arguments.)

For example:

(reduce #'+ °(1 2 3 4)) => 10

(reduce #'- ’(1 2 3 4)) <=> (- (- (- 12) 3) 4) => -8

(reduce #’- "(1 2 3 4) :from-end t) ; Alternating sum,
<=> (= 1 (- 2 (- 3 4))) => -2

(reduce #'1ist "(1 2 3 4)) => (((1 2) 3) 4)

(reduce #'1ist *(1 2 3 4) :from-end t) => (1 (2 (3 4)))

(reduce #’1ist (1 2 3 4) :initial-value ’foo)
=> ((((foo 1) 2) 3) 4))

(reduce #’1ist *(1 2 3 4) :from-end t :initial-value ’'foo) .
- => (1 (2 (3 (4 foo))))

14.3. Modifying Sequences

£i11 sequence item &k ey :start :end : [Function]
The sequence is destructively modified by replacing the elements of the subsequence specified by
the :start and :end parameters with the item. The item may be any LISP object, but must be a
suitable element for the sequence. The item is stored into all specified components of the sequence,
beginning at the one specified by the :start index (which defaults to zero), and up to but not
including the one specified by the :end index (which defaults to the length of the sequence).
f1i17 returns the modified sequence.

For example:

(setq x (vector 'a 'b 'c 'd 'e)) => #(a b c d e)
(fi11 x 'z :start 1 :end 3) => #(a z z d e)
andnow x => #(a z z d e)

(fi11 x 'p) => #(p p p p P)
andnow x => #(p p p P P)

SEQUENCIS o 165

replace sequencel sequencel &key :startl :endl :start2 :end2 [Function]

‘The sequence sequencel is destructively modified by copying successive clements into it from
sequencel. The clements of sequence2 must be of a type that may be stored into sequencel. The
subscquence of sequence2 specified by :start2 and :end2 is copicd into the subscquence of
sequencel specified by :startl and :end1. (The arguments :startl and :start2 default to
tstart, which defaults to zero. The arguments :end1 and :end2 default to :end, which
defaults to ni1, meaning the end of the appropriate sequence.) If these subscquences are not of
the samc length, then the shorter length determines how many clements are copied; the extra
clements near the end of the longer subscquence are not involved in the operation. The number of
clements copied may be expressed as:

(min (- endl startl) (- end? start2))
The value returned by replace is the modified sequencel.
If sequencel and sequence2 arc the same object and the region being modified overlaps with the

region being copied from, then it is as if the entire source region were copicd to another place and
only then copied back into the target region.

remove ilem sequence &key :from-end :test :test-not :start :end [Function}

. :count :key
remove-if fest sequence &key :from-end :start :end :count :key [Function]
remove-if-not test sequence &key :from-end :start :end :count :key [Function]

The result is a sequence of the same kind as the argument sequence that has the same elements
except that thosc in the subsequence delimited by :start and :end and satisfying the test (see
above) have been removed. This is a nondestructive operation; the result is a copy of the input
sequence, save that some elements arc not copied.

The :count argument, if supplied, limits the number of elements removed; if more than : count
elements satisfy the test, only the leftmost : count such are removed.

A non-nil :from-end specification matters only when the :count argument is provided; in
that case only the rightmost : count elements satisfying the test are removed.

For example:
(remove 4 '(1 2 413 45)) =>(121325)
(remove 4 (1 2 413 45) :count 1) => (1 2 1 3 4 5)
(remove 4 (1 2 413 45) :count 1 :from-end t)
= (1 2 1 3 5)
~(remove 3 (1 2 4 13 4 5) :test #'>) => (4 3 4 5)

(remove-if #’oddp
(remove-if #'evenp
=> (12 4135)
The result of remove and related functions may share with the argument sequence; a list result may
share a tail with an input list, and the result may be eq to the input sequence if no elements need to
be removed.

3
(12413 45)) =>(244)
(12413 45) :count 1 :from-end t)

166 COMMON LISP REFERENCE MANUAL
delete item sequence &key :from-end :test :test-not :start :end [unction]
:count :key
delete-1if test sequence &key :from-end :start :end :count :key [Function]
delete-if-not test sequence &ey :from-end :start :end :count :key [Function]
This is the destructive counterpart to remove. The result is a sequence of the same kind as the
argument sequence that has the same clements except that those in the subsequence delimited by
:start and :end and satisfying the test (sce above) have been deleted. This is a destructive
operation. The argument sequence may be destroyed and used to construct the result; however, the
result may or may not be eq to sequence.
The :count argument, if supplicd, limits the number of clements dcleted; if more than : count
clements satisfy the test, only the leftmost : count such are deleted.
A non-nil1 :from-end spccification matters only when the :count argument is provided; in
that case only the rightmost : count elements satisfying the test are deleted.
For example: | /
(delete 4 *(1 2 413 45)) =>(121325)
(delete 4 '(1 2 413 45) :count 1) => (12 13 45)
(delete 4 '(1 2 41 3 4 5) :count 1 :from-end t)
=> (12 41 35) ‘
(delete 3 '(1 2 4 1 3 4 5) :test #'>) => (4 3 4 5)
(delete-if #’0ddp *(1 2 4 1 3 4 5)) => (2 4 4)
(delete-if #'evenp (1 2 4 1 3 4 5) :count 1 :from-end t)
=> (12413 5)
Compatibility note: In MAcCLISP, the delete function uses an equal comparison rather than éq1, which is
the default test for delete in Common Lisp. Where in MAcLISP one would write (deiete x y) one must
in ComMoN Lisp write (delete x y :test #'equal).
remove-duplicates sequence &key :test :test-not :start :end [Function]
delete-duplicates seguence &key :test :test-not :start :end [Function]
The elements of sequence arc examined, and if any two match then one is discarded. The resultis a
sequence of the same kind as the argument sequence with enough elements removed so that no two
of the remaining elements match. remove-duplicates is the non-destructive version of this
operation, whereas delete-dup1icates may destroy the argument sequerce. '
remove-duplicates is useful for converting a scquence into a canonical form suitable for
representing a set.
(remove-duplicates '(a b c b dd e))
=> (achde)or (abcde)
substitute newitem olditem sequence &key :from-end :test :test-not _ [Function]
‘ :start :end :count :key
substitute-if newitem test sequence &key :from-end :start :end [Function]

:count. :key

substitute-if-not newitem test sequence &key :from-end :start :end [Function]

.

SEQULENCES , . 167

:count :key
The result is a scquence of the same kind as the argument sequence that has the same clements
cxcept that those in the subscquence delimited by :start and :end and satisfying the test (see
above) have been replaced by newiten. This is a nondestructive opceration; the result is a copy of
the input sequence, save that some clements are changed.

The :count argument, if supplicd, limits thc number of clements altered; if more than :count
clements satisfy the test, only the leftmost : count such are replaced.

A non-nil :from-end specification matters only when the :count argument is provided; in
that casc only the rightmost : count clements satisfying the test are removed.

For example:
(substitute 9 4 (1 2 413 45))=>(12913895)
(substitute 9 4 (1 2 413 45) :count 1) => (12913 4 5)
(substitute 9 4 (1 2 413 4 5) :count 1 :from-end t)
=> (124139 5)
(substitute 9 3 (12 413 4 5) :test #'>) => (9 9 4 9.3 4 5)

(substitute-if 9 #'oddp (12 413 45)) => (92499 409)
(substitute-if 9 #'evenp (1 2 4 1 3 4 5) :count 1 :from-end t)
=> (124139 5)
The result of substitute and related functions may share with the argument sequence; a list
result may share a tail with an input list, and the result may be eq to the input sequence if no
- clements need to be changed.

nsubstitute newitem olditem sequence &key :from-end :test :test-not [Function]
:start :end :count :key

nsubstitute-if newitem test sequence &key :from-end :start :end [Function]
:count :key _

nsubstitute-if-not newitem lest sequence &key :from-end :start :end [Function]

:count :key
This is the destructive counterpart to substitute. The result is a sequence of the same kind as
the argument sequence that has the same elements except that those in the subsequence delimited
by :start and :end and satisfying the test (sec above) have been replaced by newitem. This is a
destructive operation. The argument sequence may be destroyed and used to construct the result;
however, the result may or may not be eq to sequence.

14.4. Searching Sequences for Items

find item sequence &key :from-end :test :test-not :start :end :key [Function]
find-if test sequence &key :from-end :start :end :key [Function]
find-if-not fest sequence &key :from-end :start :end :key [Function]

If the sequence contains an element satisfying the test, then the leftmost such element is retumed
otherwise ni1 is returned.

168 COMMON 1ISP REFERENCE MANUAL

If :start and :end keyword arguments arc given, only the specified subsequence of sequence is
scarched.

Ifanon-nil :from-end keyword argument is specificd, then the result is the rightmost element
satisfying the test.

position ilem sequence &key :from-end :test :test-not :start :end :key b[l"unction]

position-if (test sequence &key :from-end :start :end :key [Function]

position-if-not fles/ sequence &key :from-end :start :end :key [Function]
If the sequence contains an clement satisfying the test, then the index within the sequence of the
leftmost such clement is returned as a non-ncgative integer; otherwise ni1 is returned.

If :start and :end keyword arguments are given, only the specified subsequence of sequence is
scarched. However, the index returned is relative to the entire sequence, not to the subsequence,

If a non-ni1 :from-end keyword argument is specificd, then the result is the index of the
rightmost element satisfying the test. (The index returned, however, is an index from the left-hand
end, as usual.) '

count item sequence &key :from-end :test :test-not :start :end :key [Function)
count-if tlest sequence &key :from-end :start :end :key [Function] ‘
count~if-not (lest sequence &key :from-end :start :end :key [Function] .

The result is always a non-negative integer, the number of elements in the specified subsequence of
sequence satisfying the test (sce above).

mismatch sequencel sequence2 &key :from-end :test :test-not :key [Function]
:startl :start2 :endl :end2 '
The specificd subsequences of sequencel and sequencéz are compared clement-wise. If they are of
equal length and match in every clement, the result is ni1. Otherwise, the result is a non-negative
integer, the index within sequencel of the leftmost position at which they fail to match; or, if one is
shorter than and a matching prefix of the other, the index within sequence/ beyond the last position
tested is returned.

Ifanon-nil :from-end keyword argument is given, then the index of the rightmost position in
which the sequences differ is returned. The (sub)sequences are aligned at their right-hand ends; the
last elements are compared, the penultimate clements, and so on. The index returned is again an
index into sequencel.

maxprefix sequencel sequence? &key :from-end :test :test-not :key [Function]

:startl :start2 :endl :end2
maxsuffix sequencel sequence2 &key :from-end :test :test-not :key [Function]

:startl :start2 :endl :end2

_ SEQUENCES , : _ 169

search

The arguments sequencel and sequence? arc compared clement-wise. The result is a non-negative
integer, which for maxprefix is the index of the leftmost position at which they fail to match; or,
if onc is shorter than and a matching prefix of the other, the length of the shorter sequence is
returned. If they arc of equal length and match in every clement, the result is the length of each.

The keyword arguments :start1 and :end1 delimit a subscquence of sequencel to be matched,
and :start2 and :end2 dclimit a subscquence of sequence2. The comparison proceeds by first
aligning the left-hand cnds of the two subsequences; the index returned is an index into sequencel.
maxpref ix is therefore not commutative if : startl and : start2 are not equal.

The suffix versions differ in that 1 plus the index of the rightmost position in which the
sequences differ is returned. The (sub)scquences are aligned at their right-hand cnds; the last
clements are compared, the penultimate elements, and so on. The index returned is again an index
into sequencel.) ’

The implementation may choose to match the sequences in any order; there is no guarantce on the
number of times the test is made. For example, maxsuf fix might match lists from left-to-right
instcad of from right-to-left. Therefore it is a good idca for a user-supplied predicate to be free of
side-cffects. ' '

sequencel sequence? &key :from-end :test :test-not :key = [Function]
: :startl :start2 :endl :end2

A search is conducted for a subscquence of sequence2 that element-wise matches sequencel. If

there is no such subsequence, the result is ni1; if there is, the result is the index into sequence? of

the leftmost element of the leftmost such matching subsequence.

If a non-ni1 :from-end keyword argument is given, the index of the leftmost element of the
rightmost matching subsequence is returned.

The implementation may choose to search the sequence in any order; there is no guarantee on the

number of times the test is made. For example, search-from-end might search a list from
left-to-right instead of from right-to-teft. Therefore it is a good idea for a user-supplied predicate
be free of side-effects. ‘

14.5. Sorting and Merging

sort sequence predicate &key :key : [Function]

stable-

sort sequence predicate &key :key [Function]
The sequence is destructively sorted according to an ordering determined by the predicate. The
predicate should take two arguments, and return non-n1i1 if and only if the first argument is strictly
less than the second (in some appropriate sense). If the first argument is greater than or equal to the
second (in the appropriate sense), then the predicate should return nil.

The sort function determines the relationship between two elements by giving keys extracted

170

COMMON LISP REFFERENCE MANUAL

" from the clements to the predicate. The function k, when applied to an clement, should return the

key for that element; & defaults to the identity function, thereby making the clement itself be the
key.

The :key function should not have any side cffects. A useful cxample of a :key function would
be a component selector function for a defstruct (page 211) structure, for sorting a sequence of
structures. ‘
(sort a p :key)
<=> (sort a #'(lambda (x y) (p (s x) (s ¥y))))

While the above two cxpression arc equivalent, the first may be more efficient in some
implementations for certain types of arguments. For example, an implementation may choose to
apply k to each item just once, putting the resulting keys into a scparate table, and then sort the
pafal]cl tables, as opposcd to applying 4 to an item cvery time just before applying the predicate.

If the k and predicate functions always return, then the sorting operation will always terminate,
producing a sequence containing the same clements as the original scquence (that is, the result is a
permutation of sequence). 'This is guaranteed cven if the predicate docs not really consistently
represent a total order. If the 4 consistently returns meaningful keys, and the predicate does reflect
some total ordering criterion on those keys, then the elements of the result sequence will conform to
that ordering.

The sorting operation performed by sort is not guaranteed stable, however; elements considered
equal by the predicate may or may not stay in their original order. The function stable-sort
guarantecs stability, but may be somewhat slower.

The sorting operation may be destructive in all cases. In the case of an array argument', this is
accomplished by permuting the clements in place. In the case of a list, the list is destructively
reordered in the same manner as for nreverse (page 162). Thus if the argument should not be
destroyed, the user must sort a copy of the argument.

Should execution of k or predicate cause an error, the state of the list or array being sorted is
undefined. However, if the error is corrected the sort will, of course, proceed correctly.

Note that since sorting requires many comparisons, and thus many calls to the predicate, sorting will
be much faster if the predicate is a compiled function rather than interpreted.

For example:
(defun mostcar (x)
(if (symbolp x) x (mostcar (car x))))
(sort foovector #’étring-]essp :key #'mostcar)
If foovector contained these items before the sort:

(Tokens (The lion sleeps tonight))
(Carpenters (Close to you))
((Ro11ing Stones) (Brown sugar))
((Beach Boys) (I get around)))
(Beatles (I want to hold your hand))

SEQUENCES 171

then after the sort foovector would contain:

((Beach Boys) (I get around)) :
(Beatles (I want to hold your hand))
(Carpenters (Close to you))
((Ro11ing Stones) (Brown sugar))
(Tokens (The 1ion sleeps tonight))

merge sequencel sequence? predicate &key :key . [Function]

The sequences sequencel and sequence? arce destructively merged according to an ordering
determined by the predicate. The predicate should take two arguments, and return non-ni1 if and
only if the first argument is strictly less than the second (in some appropriate sense). If the first
argument is greater than or cqual to the second (in the appropriate sensc), then the predicate should
return nil. ' '

The merge function determines the relationship between two elements by giving keys extracted
from the clements to the predicate. The function &, when applied to an element, should return the
key for that element; the k function defaults to the identity function, thercby making the element
itsclf be the key. '

The :key function should not have any side effects. A useful example of a :key function would
be a component selector function for a defstruct (page 211) structure, for merging a sequence
of structures. ’

If the k and predicate functions always rcturn, then the merging operation will always tcrminate.
The result of merging two sequences x and.y is a ncw sequence z such that the length of z is the sum

- of the lengths of x and y, and z contains the all the elements of x and y. If x/ and x2 are two

clements of x, and- x/ precedes x2 in x, then x/ precedes x2 in z; similarly for clements of y. In
other words, z is an interleaving of x and y.

Moreover, if x and y were correctly sorted according to the predicate, then z will also be correctly
sorted. If x or yis not so sorted, then z will not be sorted, but will nevertheless be an interleaving of
xand y. '

The merging operation is guaranteed stable; if two or more elements are considered equal by the
predicate, then the elements from sequence! will precede those from sequence? in the result.

For example:
(merge '(1 3 467) '(258) #<)=>(12345¢6738)

172 COMMON LISP REFERENCE MANUAL

Chapter 15
Manipulating List Structure

A cons, or dotted pair, is a compound data object having two components, called the car and cdr. Each
component may be any LISP object. A list is a chain of conscs linked by cdr ficlds; the chain is terminated by
some atom €a non-cons object). An ordinary list is terminated by ni1, the empty list (also written “OO"). A
list whose cdr-chain is terminated by some non-ni1 atom is called a dotted list.

The recommended predicate for testing for the end of alist is en dp (page 175).

15.1. Conses

car x

cdr x

[Function]
Returns the car of x, which must be a cons or (); that is, x must satisfy the predicate 1istp (page
53). By definition, the car of () is (). If the cons is regarded as the first cons of a list, then car
returns the first elcment of the list.
For example:

(car ’(a b c)) => a _

See first (page 176). The car of a cons may be altered by using rplaca (page 181) or setf
(page 66).

[Function]
Returns the cdr of x, which must be a cons or () ; that is, x must satisfy the predicate 1Tistp (page
53). By dcfinition, the cdr of () is (). If the cons is regarded as the first cons of a list, then cdr
returns the rest of the list, which is a list with all elements but the first of the original list.
For example:

(cdr *(a b c)) => (b c)

See rest (page 176). The cdr of a cons may be altered by using rplacd (page 181) or setf
(page 66). - : .

-173 -

174 COMMON LISP REFERENCE MANUAL

C..." X [Function)
All of the compositions of up to four car’s and cdr's are defined as functions in their own right. The

(Y31

namecs of these functions begin with “c¢” and end with “r”, and in between is a sequence of “a” and
“d” letters corresponding to the composition performed by the function.

For example:
(cddadr x) isthcsamcas (cdr (cdr (car (cdr x))))

If the argument is regarded as a list, then cadr returns the sccond element of the list, caddr the
third, and cadddr the fourth. If the first clement of a list is a list, then caar is the first clement of
the sublist, cdar is the rest of that sublist, and cadar is the second element of the sublist; and so
on, '

As a matter of style, it is often preferable to define a function or macro to access part of a
complicated data structure, rather than to usc a long car/cdr string:

(defmacro Tambda-vars (Tambda-exp) °‘(cadr ,lambda-exp))
;then use Tambda-vars everywhere instcad of cadr

Sec also defstruct (page 211), which will automatically define new record data types and access
functions for instances of them.

Any of these functions may be used to specify a place for setf (page 66).

cons x y [Function]
cons is the primitive function to create a new cons, whose car is x and whose cdr is y.

For example:

(cons 'a 'b) => (a . b)
(cons 'a (cons 'b (cons ’c '()))) => (a b c)
(cons 'a (b c d)) => (a b c d) :

cons may be thought of as creating a cons, or as adding a new element to the front of a list.

tree-equal x y &key :test :test-not [Function]
This is a predicate that is true if x and y are isomorphic trees with identical leaves; that is, if x and y
are atoms that satisfy the test (by default eql), or if they arc both conses and their cars are
tree-equal and their cdrs are tree-equal. Thus tree-equal recursively compares conses
(but not any other objects that have components). See equal (page 56), which does recursively
compare other structured objects. '

15.2. Lists

MANIPULATING LIST STRUCTURE ' 175

. endp object [Function]

The predicate endp is the recommended way to test for the end of a list. 1t is true of conses, false of
ni1, and an crror for all other arguments.

Implementation note: Implementations are encouraged to signal an error, cspecially in the interpreter, for a
non-list argument. The endp function is defined so as to allow compiled code to perform simply an atom
check or a null check if speed is more important than safety.

list-length list &optional [limit [Function}
Tist-Tength rcturns, as an integer, the length of list. The length of a list is the number of
top-level conses in it. If the argument /imit is supplicd, it should be an integer; if the length of the
list is greater than limit (possibly becausc the list is circular!), then limit is returned.

For cxample:

(tTist-Tength '()) => 0

(1ist-length *(a b c d)) => 4

(Tist-length ’(a (b c) d)) =>

(1ist-length *(a b ¢ d e f g)) => 4
Tist-Tength could be implemented by:

(defun Tist-length (x &optional (limit nil Timitp))
(declare (integer limit))
(do ((n O (+ n 1))
(y x (cdr y)))
((endp y) n) ,
, (when (and limitp (>= n limit))
. (return 1imit))))
See 1ength (page 161), which will return the length of any sequence.

nth n list ' [Function]
(nth n list) returns the n’th element of /ist, where the zeroth element is the car of the list. » must
be a non-negative integer. If the length of the list is not greater than n, then the result is ('), that is,
ni1. (This is consistent with the idea that the car and cdr of () are each ().)

For example:

(nth 0 ’'(foo bar gack)) => foo
(nth 1 "(foo bar gack)) => bar
(nth 3 '(foo bar gack)) => () .

Compalibility note: This is not the same as the INTERLISP function called nth, which is similar to but not
exactly the same as the CoMMON Lisp function nthcdr. This definition of nth is compatible with Lisp
Machine Lisp and NIL. Also, some people have used macros and functions called nth of their own in their old
MACLIsP programs, which may not work the same way. ’

nth may be used to specify a place to setf (page 66); when nth is used in this way, the argument
nmust be less than the length of the list.

176 COMMON LISP REFERENCE MANUAL

first list [Function]
second [ist ' [Function]
third list [Function]
fourth list ' [Function]
fifth list | [Function]
sixth list ' : [Function]
seventh [ist ' [Function]
eighth list [Function]
~ninth [ist [Function]
tenth list : [Function]

These functions are sometimes convenicent for accessing particular clements of a list. first is the

same as car (page 173); second is the same as cadr; and so on. Note that the ordinal

numbering used here is one-origin, as opposed to the zcro-origin numbering used by nth (page

175): | ,
(fifth x) <=> (nth 4 x)

777 Query: Should these be general sequence functions?

rest list V ‘ [Function]
rest means the same as cdr, but mnemonically complements first.

nthcdr n list [Function]
(nthcdr n list) performs the cdr operation # times on /ist, and returns the rcsult.

For example:
(nthecdr 0 ’(a b ¢c)) => (a b ¢c)
(nthcdr 2 '(a b c)) =
(nthedr 4 ’(a b ¢)) => ()

In other words, it returns the #’th cdr of the list.

Compatibility note: This is similar to the INTERLISP function nth, except that the INTERLISP function is
one-based instead of zero-based.

(car (nthcdr n x)) <=> (nth n x)

last list [Function]
Tast returns the last cons (not the last element!) of Jist. If listis (), it returns ().

For example:

(setq x "(a b ¢ d))

(last x) => (d)

(rplacd (last x) ’'(e f))

x =>"'(abcdef) v
(last '(a b c . d)) => (c . d)

MANIPULATING LIST STRUCTURE 177

list &rest args ' [Function]

11st constructs and rcturns a list of its arguments.

For cxample:
(1ist 3 4 'a (car (b . c)) (+ 6 -2)) => (3 4 ab 4)

list* arg &rest others [Function]

Tist* is like Tist cxcept that the last cons of the constructed list is “dotted”. The last argument
to Tist* is used as the ¢dr of the last cons constructed; this nced not be an atom. If it is not an
atom, then the effect is to add several new clements to the front of a list.

For example:
(Tist* 'a 'b 'c 'd) => (a b c . d)
This is like
(cons 'a (cons 'b (cons 'c 'd)))
Also:

(1ist* 'a 'b 'c '(d e f)) => (a b c d e f)
(Tist* x) <=> x

make-1ist size &ey :initial-element [Function]

append

This creates and returns a list containing size clements, each of which is initialized to the
:initial-element argument (which defaults to ni1). size should be a non-negative integer.

For example:
(make-Tist 5) => (nil nil nil nil nil)
(make-1ist 3 ’rah) => (rah rah rah)

Compatibility note: The Lisp Machine Lisp function make~-11ist takes arguments area and size. Areas are not
relevant to CoMMON Lisp. The argument order used here is compatible with NiL.

&rest lists : - [Function]
The arguments to append are lists. The result is a list that is the concatenation of the arguments.
The arguments are not destroyed.

For example:

(append '(a b c) '(de f) "() '(g)) => (abcdefg)
Note that append copies the top-level list structure of cach of its arguments excep! the last. The
function concatenate (page 162) can perform a similar operation, but always copies all its
arguments. Sce also nconc (page 178), which is like append but destroys all arguments but the
last.

The last argument actually need not be a list, but may be any LISP object, which becomes the tail
end of the constructed list. For example, (append '(a b ¢) 'd)=>(a b ¢ . d).

~(append x ’()) is an idiom once frequently used to copy the list x, but the copy-1ist

function is more appropriate to this task.

178 COMMON LISP REFERENCE MANUAL

copy-tist list [Function)
Returns a list that is equa?l to /ist, but not eq. Only the top level of list-structure is copicd; that is,
copy-1list copics in the edr direction but not in the car direction. If the list is “dotted”, that is,
(cdr (last list)) is a non-nil atom, this will be true of the returned list also. Sce also
copy-seq (page 161). ‘

copy-alist list [Function]
copy-alist is for copying association lists. The top level of list structurc of /ist is copicd, just as
copy-1list does. In addition, cach clement of /ist that is a cons is replaced in the copy by a new
cons with the same car and cdr.

copy-tree object _ v [Function}
copy-tree is for copying trees of conscs. The argument object may be any LISP object. Ifit is not
a cons, it is returned; otherwise the result is a new cons of the results of calling copy-tree on the
car and cdr of the argument. In other words, all conses in the trec are copied recursively, stopping
only when non-conses are encountered. Circularitics and the sharing of substructui'e are not
preserved.

revappend x y : [Function]
(revappend x y) is exactly the same as {(append (reverse x) y) except that it is
potentially more efficient. Both x and y should be lists. The argument x is copied, not destroyed.
Compare this with nreconc (page 179), which destroys its first argument, '

nconc &rest lists [Function]

_ nconc takes lists as arguments. It returns a list that is the arguments concatenated together. The

arguments are changed, rather than copied. (Compare this with append (page 177), which copies
arguments rather than destroying them.)

For example:
(setq x '(a b c))
(setq y '(d e f))

(nconc x y) => (abcdef)

x => (abcdef)
Note, in the example,that the value of x is now different, since its last cons has been rplacd’d to
the value of y. If one wcre then to evaluate (nconc x y) again, it would yield a piece of
“circular” list structure, whose printed representation wouldbe (a b ¢ d e f d e f d e f
...), repeating forever; if the *princircle* (page 248) switch were non-nil, it would be
printedas (a b ¢ . #1=(d e f . #1#)).

MANIPULATING LIST STRUCTURE .) 179

nreconc x y [Function)

(nreconc x y) is cxactly the same as (nconc (nreverse x) y) except that it is more
efficient. Both x and y should be lists. The argument x is destroyed. Compare this with
revappend (pagc 178). '

push item place : [Macro]

The form place should be the name of a generalized variable containing a list; ifem may refer to any
Lisp objcct. The item is consed onto the front of the list, and the augmented list is stored back into
place and returned. The form place may be any- form acceptable as a generalized variable to setf
(page 66). If the list held in place is viewed as a push-down stack, then push pushes an element
onto the top of the stack.

For example:

(setq x ’(é (b c) d))
(push 5 (cadr x)) => (5 b c) andnow x => (a (5 b c) d)

" The effect of (push item place) is roughly equivalent to

(setf place (cons item place))

except that the latter would evaluate any subforms of place twice, whilc push takes care to cvaluate
them only once. Moreover, for certain place forms push may be significantly more cfficient than
the setf version.

pushnew item place o [Macro]

The form place should be the name ofa generalized variable containing a list; item may refer to any
LISP object. If the item is already a member of the list (as detecrmined by comparisons using the
: test predicate, which defaults to eq1), then the item is consed onto the front of the list, and the
augmented list is stored back into place and returned; otherwise the unaugmented list is returned.
The form place may be any form acceptable as a generalized variable to setf (page 66). If the list
held in place is viewed as a set, then pushnew adjoins an element to the set; see adjoin (page
184). pushnew returns nil. '

For éxample:

(setqg x "(a (b c) d))
(pushnew 5 (cadr x)) => (5 b c) andnow x => (a (5 b c) d)
(pushnew ’'b (cadr x)) => (5 b c) and x is unchanged _

The effect of (pushnew item place :test p) is roughly equivalent to
(setf place (adjoin item place :test p))

except that the latter would evaluate any subforms of place twice, while pushnew takes care to
evaluate them only once. Morcover, for certain place forms pushnew may be significantly more
efficient than the setf version.

180 . | COMMON LISP REFERENCE MANUAL

pop place [Macro]
The form place should be the name of a gencralized variable containing a list. The result of pop is
the car of the contents of place, and as a side-cffect the cdr of the contents is stored back into
place. The form place may be any form acceptable as a genceralized variable to setf (page 66). If
the list held in place is viewed as a push-down stack, then pop pops an clement from the top of the
stack and returns it.

For example:

(setq stack '(a b c))

(pop stack) => a andnow stack => (b c)
The effect of (pop place) is roughly cquivalent to '

(progl (car place) (setf place (cdr place)))
except that the latter would evaluate any subforms of place thrice, while pop takes care to evaluate
them only once. Morcover, for certain place forms pop may be significantly more efficicnt than the
setf version.

butlast /ist &optional n ' : ' [Function]
This creates and returns a list with the same elements as /ist, excepting the last n clements, n
defaults to 1. The argument is not destroyed. If the list has fewer than n elements, then () is
returned.

For example:
(butlast ’(a b c d)) => (a b c)
(buttast '((a b) (c d)) => ((a b))
(butlast '(a)) => ()
(butlast nil) => ()

The name is from the phrase “all elements but the last”.

nbutlast list &optional n [Function]
This is the destructive version of butlast; it changes the cdr of the cons n+1 from the end of the
listto nil. ndefaults-to 1. If the /ist has-fewer than n elements, then nbutlast returns (), and
the argument is not modified. (Thcrefore one normally writes (setq a (nbu’ﬂ ast a)) rather
than simply (nbutlast a).)

For example:

(setq foo '(a b c d))-

(nbutlast foo) => (a b c)
foo => (a b c)
(nbuttast '(a))
(nbutlast ’'nil)

>

()
> ()

MANIPULATING LIST STRUCTURE - 181

1diff list sublist [Function]
list should be a list, and sublist should be a sublist of list, i.c., onc of the conses that make up list.
1diff (mecaning “list difference™) will return a new list, whose clements are those clements of Jist
that appcar before sublist. 1 sublist is not a tail of lis/, then a copy the entire list is returned. The
argument /ist is not destroyed. :

For example:

(setq x '(a b c d e))

(setq y (cdddr x)) => (d e)

(1diff x y) => (a b c)

but

(1diff *(a b c d) '(c d)) => (a b c d)
since the sublist was not eq to any part of the list.

15.3. Alteration of List Structure

The functions rplaca and rplacd may be uscd to make alterations in alrcady-existing list structure; that
is, to change the cars and cdrs of existing conses. One may also use setf (page 66) in conjunction with car
and cdr (page 173). :

The structure is not copied but is physically altercd; hence caution should be exercised when using these
functions, as strange side-cffects can occur if portions of list structure become shared unbeknownst to the
programmer. The nconc. (page 178), nreverse (page 162), nreconc (page 179), and nbutlast (page
180) functions already described, and the. delete (page 166) family described later, have the same property.
However, they are normally not used for this side-effect; rather, the list-structure modification is purely for
efficiency and compatible non-modifying functions are provided.

S

rplaca x y : [Function]
(rplaca xy) changes the car of x to y and returns (the modified) x. x must be a cons, but y may
be any Lisp object.
For example:

(setq g ’(a b c))
(rplaca (cdr g) 'd) => (d c)
Now g => (a d c) :

rplacd x y ' [Function]
(rplacd xy) changes the cdr of x to y and returns (the modified) x. x must be a cons, but y may
‘be any Lisp object. - '
For example:

(setq x ’(a b c))
(rplacd x 'd) => (a . d)
Now x => (a . d)

182 _ COMMON LISP REFERENCE MANUAL,

15.4. Substitution of Expressions

A number of functions arc provided for performing substitutions within a tree. All take a tree and a
description of old sub-cxpressions to be replaced by new oncs. ‘They come in non-destructive and destructive
varictics, and specify substitution cither by two arguments or by an association list.

subst new old tree &ey :test :test-not :key [Function]
subst-if predicate new tree &key :key o [Function]
subst-if-not predicate new tree &key :key [Function]

(subst new old tree) substitutes new for every leaf of tree (whether a car or a cdr) such that old
and the leaf satisfy the test, and returns the modified copy of tree. The orlgmal tree is unchanged,
but the result trec may share with parts of the argument tree.

.Compatibility note: In MACLISP, subst is guaranteed 7ot to share with the free argument, and (subst nil
nit x) was used as an idion for copying the tree x. In ComMMON Lisp, the function copy-tree (page
178) should be used to copy a tree, as the subst idiom will not work.

For example:

(subst 'tempest ’hurricane
'(shakespeare wrote (the hurricane)))
=> (shakespeare wrote (the tempest))
(subst 'foo ’'nil ’'(shakespeare wrote (twelfth night)))
=> (shakespeare wrote (twelfth night . foo) . foo)

This function is not destructive; that is, it does not change the car or cdr of any alrcady-exxstmg list
structure. One possible definition of subst:

(defun subst (o1d new tree &rest x &key test test- not key) -
(cond ((atom tree)

(1f (satisfies-the-test o1d tree :test test
:test-not test-not :key key)
. new tree))

(t (let ((a (apply #’subst old new (car tree) x))

(d (apply #’subst old new (cdr tree) x)))

(if (and (eq a (car tree)) (eq d (cdr tree)))
tree

(cons a d))))))
For example:
See also substitute (page 166), which substitutes for top-level elements of sequence.

nsubst new old tree &ey :test :test-not :key [Function]
nsubst-if predicate new tree &key :key , [Function]
nsubst-if-not predicate new tree &key :key [Function]

nsubst is a destructive version of subst. The list structure of tree is altered by destructively
replacing with new each leaf of the free such that o/d and the leaf satisfy the test.

MANIPULATING LIST STRUCTURE 183

sublis alist tree &key :test :test-not :key [Function]
sub1is makes substitutions for symbols in a tree (a structure of conses). The first argument to
sub1is is an association list. Thc sccond argument is the tree in which substitutions arc to be
made, as for subst (pagc 182). sub11is looks at all leaves in the tree; if a leaf appears as a key in
the association list (that is, the key and the lcaf satisfy the test), it is replaced by the object it is
associated with. This operation is non-destructive. In effect, sub11is can perform scveral subst
operations simultaneously.

For example:

(subTis "((x . 100) (z . zprime))
"(plus x (minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

nsublis alist tree &ey :test :test-not :key - [Function]
nsublisislike sub11is but destructively modifies the relevant leaves of the tree.

15.5. Using Lists as Sets

COMMON LISP includes functions that allow a list of items to be treated as a sef. Some of the functions
uscfully allow the set to be ordered; others specifically support unordered sets. There are functions to add,
remove, and scarch for items in a list, based on various criteria. There are also set union, intersection, and
difference functions.

* The naming conventions for these functions and for their keyword arguments gencrally follow the
conventions for the generic sequence functions. See Chapter 14.

member item list &ey :test :test-not :key [Function]
member-if predicate list &key :key " [Function]
member-if-not predicate list &ey :key [Function]

The Iist is searched for an clement that satisfies the test. If none is found, ni1 is returned:
otherwise, the tail of /ist beginning with the first clement that satisfied the test is returned. The list
is searched on the top level only. These functions are suitable for use as predicates.

For example:

(member 'snerd '(a b ¢ d)) => nil

(member-if #'numberp ’'(a #\Space 5/3 foo)) => (5/3 foo)

(member ’'a (g (a y) cadeaf)) =>(adeaf))
Note, in the last example, that the value returned by member is eq to the portion of the list
beginning with a. Thus rplaca on the result of member may be used, if you first check to make
sure member did not return n1i1, to alter the found list element.

See also find (page 167)and position (page 168).

Compatibility note: In MAcLISP, the member function uses an equal comparison rather than eq1, which is

184 ' COMMON LISP REFERENCE MANUAL

the default test for member in ComMON Lisp. Where in MacLisp one would write (member x y) one must
in COMMON Lisp writc (member x y :test #'equal).

tailp sublist list : [Function]
This predicate is truc if sublist is a sublist of /list (i.c., onc of the conses that makes up liss).
Otherwise it is false. Another way to look at this is that tailp is true if (nthcdr n list) is
sublist, for some value of n. Sce 1diff (page 181).

adjoin item list &ey :test :test-not :key) [Function]
adjoin is used to add an element to a sct, provided that it is not alrcady a member. The equality
test defaults to eql. ”

(adjoin item list) <=> (if (member item list) list (cons item list))

See pushnew (page 179). . o

union listl list2 &key :test :test-not :key [Function]

nunion [istl list2 &ey :test :test-~not :key [Function]

union takes two lists and returns a new list containing everything that is an clement of either of the
lists. If there is a duplication between two lists, only one of the duplicate instances will be in the
result. If cither of the arguments has duplicate entrics within it, the redundant entries may or may
not appear in the result.

For example:
(union '(a b c) '(fad)) = (abc fd)
There is no guarantee that the order of elements in the result will reflect the ordering of the

arguments in any particular way. The implementation is therefore free to usc any of a variety of
strategies. '

nunion is the destructive version of union. It performs the same operation, but may destroy the
argument lists, using their cells to construct the result.

intersection listl list2 &ey :test :test-not :key [Function]

nintersection list/ list2 &ey :test :test-not :key [Function]
intersection takes two lists and returns a new list containing everything that is an element of
both argument lists. If either list has duplicate entries, the redundant entries may or may not
appear in the result.

RS

For example: ,
(intersection '(a b c) '(f a d)) => (a)
There is no guarantee that the order of elements in the result will reflect the ordering of the

arguments in any particular way. The implementation is therefore free to use any of a variety of
strategies.

MANIPULATING LIST SFRUCTURE ' 185

nintersection is the destructive version of intersection. It performs the same operation,
but may destroy /list/ using its cells to construct the result. (The argument /is2 is not destroyed.)

set-difference list/ list2 &ey :test :test-not :key ‘ [Function]

nset-difference list/ list2 &key :test :test-not :key : [IF'unction]
set-difference rcturns a list of clements of /ist/ that do not appear in /ist2. This operation is
not destructive.

nset-difference is the destructive version of setdifference. This operation may destroy

listl.
set-exclusive-or listl list2 &key :test :test-not :key [Function]
‘nset-exclusive-or [list] list2 &ey :test :test-not :key » [Function]

set-exclusive-or returns a list of elcments that appcar in exactly one of list/ and list2. This
operation is not destructive. '

nset~-exclusive-or is the destructive version of set-exclusive-or. Both lists may be
destroyed in producing the result. ’

subsetp list/ list2 &key :test :test-not :key [Function]
subsetp is a predicate that is true iff cvery element of /ist/ appears in list2.

15.6. Association Lists

An association list, or a-list, is a data structure used very frequently in LISP. An a-list is a list of pairs
(conscs); each pair is an association. The car of a pair is called the key, and the cdr is called the datum.

An advahtage of the a-list representation is that an a-list can be incrementally augmented simply by adding
new entrics to the front. Moreover, because the searching function assoc (page 186) searches the a-list in
order, new entries can “shadow” old entries. If an a-list is viewed as a mapping from keys to data, then the
mapping can be not only augmented but also altered in a non-destructive manncr by adding new entries to
the front of the a-list.

Sometimes an a-list represents a bijective mapping, and it is desirable to retricve a key given a datum. For
this purpose the “reverse” scarching function rassoc (page 187) is provided. Other variants of a-list

searches can be constructed using the function find (page 167) or member (page 183).

It is permissible to let ni1 be an element of an a-list in place of a pair.

acons key datum a-list [Function]

COMMON LISP REFERENCE MANUAL

acons constructs a new association list by adding the pair (key . ddtum) to the old a-/ist.
(acons x y a) <=> (cons (cons x y) a) '

-

pairlis keys data &optional a-list . [Function]

pairlis takes two lists and makes an association list that associates clements of the first list to
corresponding clements of the sccond list. It is an crror if the two lists keys and data are not of the
same length. If the optional argument a-/ist is provided, then the new pairs arc added to the front
of it. :

For example:

(pairlis '(beef clams kitty) ’'(roast fried yu-shiang))

=> ((beef . roast) (clams . fried) (kitty . yu-shiang))
(pairlis '(one two) (1 2) *((three . 3) (four . 19)))

=> ((one . 1) (two . 2) (three . 3) (four . 19))

assoc item a-list &ey :test :test-not ' - [Function]
assoc-if predicate a-list : : [Function]
assoc-if-not predicate a-list [Function]

Each of these scarches the association list a-fist. The value is the first pair in the a-list such that the
car of the pair satisfies the test, or ni1 if there is none such.

Forexample: _

(assoc ’'r '((a . b) (c . d) (r . x) (s . y) (r. 2)))

=> (r . X)
(assoc goo '((foo . bar) (zoo . goo))) => nil
" (assoc ' ((1abc)(2bcd)(7xyz)))-—>(2bcd)

It is possible to rplacd the result of assoc provided that it is not ni1, if your intention is to
“update” the “table” that was assoc’s second argument. (However, it is often better to update an
a-list by adding new pairs to the front, rather than altering old pairs.)

For example:

(setq values '((x . 100) (y . 200) (z . 50)))
(assoc 'y values) => (y . 200) -
(rplacd (assoc 'y values) 201)
(assoc 'y values) => (y . 201) now
A typical trick is to say (cdr (assoc x y)). Because the cdrof'nil is guaranteed to be nil,
this yiclds n1i1 if no pair is found or if a pair is found whose cdris ni1. This is useful if ni1 serves
its usual role as a “default value”.

Compatibility note: This is of course not compatible with MAcLisp, which uses equal, not eq1, as the default
comparison test.

(assoc item list :test fn) :
<=> (find item list :test fn :key #'car)

See find (page 167)and position (page 168). .

Compatibility note; In MACLISP, the assoc function usés an equal comparison rather than eq1, which is the

MANIPULATING LIST STRUCTURE 187

“default test for assoc in CommoN Lisp. Where in MacLisp one would write (assoc x y) one must in
COMMON LIsp write (assoc x y :test #'equal). ’

rassoc item a-list &key :test :test-not [Function]
rassoc-if predicate a-list ‘ [Function]
rassoc-if-not predicate a-list [Function]

rassoc is the reverse form of assoc; it searches for a pair whose cdr satisfics the test, rather than
the car. If the a-list is considered to be a mapping, then rassoc treats the a-/ist as representing the
inverse mapping. '
For example: _

(rassoc 'a "((a . b) (b . c) (c . a) (z . a))) => (c . a)

(rassoc item list :test fn)
<=> (find item list :test fn :key #'cdr)

188 COMMON LISP REFERENCE MANUAL

Chapter 16
Hash Tables

A hash table is a LISP object that can cfficiently map -a given LISP object to another 1.ISP. object. Each hash
table has a sct of entries, cach of which associates a particular key with a particular value. The basic functions
that deal with hash tables can create entries, delete entrics, and find the value that is associated with a given
key. Finding the valuc is very fast even if there are many entries, because hashing is used; this is an important
advantage of hash tables over property lists.

A given hash tablc can only associate one value with a given key; if you try to add a second value it will
replace the first. Also, adding a value to a hash table is a destructive operation; the hash table is modified. By
contrast, association lists can be augmented non-destructively.

Hash tables come in three kinds, the difference being whether the keys are compared with eq, eql, or
“equal. In other words, there are hash tables that hash on Lisp objects (using eq or eq1) and there are hash
tables that hash on abstract S-expresszons (using equal).

Hash tablés of the first kind are created with the function make-hash-table, which takes various
options. New entries are added to hash tables with the puthash function. To look up a key and find the
associated value, use gethash; to remove an entry, use remhash. Here is a simple example.

(setq a (make-hash-table))
(puthash ’color ’brown a)
(puthash ’'name ’'fred a)
(gethash ’'color a) => brown
(gethash ’'name a) => fred
(gethash ’'pointy a) => nil

In this example, the symbols color and name arc being used as keys, and the symbols brown and fred
are being used as the associated valucs. The hash table has two items in it, one of which associates from

color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any LISP object. Likewise values can be any LISP object.

Hash tables are properly interfaced to the relocating garbage collcctor so that garbage collection will have no.

perceptible effect on the functionality of hash tables.

When a hash table is first created, it has a size, which is the maximum number of entries it can hold.

- 189 -

190 : COMMON LISP REFERENCE MANUAL

Usually the actual capacity of the table is somewhat less, since the hashing is not perfectly collision-frec. With
the maximum possible bad luck, the capacity could be very much less, but this rarcly happens. If so many
entrics are added that the capacity is exceeded, the hash table will automatically grow, and the entrics will be
rehashed (new hash values will be recomputed, and ceverything will be rearranged so that the fast hash lookup
still works). This is transparcnt to the caller; it all happcné automatically.

Compatibility note: This hash table facility is compatible with Lisp Machine Lisp. It is similar to the hasharray facility of

INTER ISP, and some of the function names are the same.. However, it is nor compatible with INTERLisP. The exact details
and the order of arguments are designed to be consistent with the rest of MAcLisp rather than with INTERLISP. For instance,
the order of arguments to maphash is different, there is no “system hash table™, and there is not the INTERLISP restriction
that keys and valucs may not be nil, i)

16.1. Hash Table Functions

This scction documents the functions for hash tables, which usc objects as keys and associate other objects
with them. '

make-hash-table &key :test :size :rehash-size :rehash-threshold - [Function]
This function creates and returns a new hash table. The : test argument determines how keys are
comparcd; it must be one of the three values #'eq, #’eql, or #’equal, or one of the three
symbols eq,eql, orequal.

The : s ize argument scts the initial size of the hash table, in entrics, as a fixnum. The default is 64.
(The actual size may be rounded up from the size you specify to the next “good” size, for example
to make it a prime number.) You won’t necessarily be able to store this many entrics into the table
before it overflows and becomes bigger; but except in the case of extreme bad luck you will be able
to storc almost this many.

The :rehash-size argument specifies how much to increase the size of the hash table when it
becomes full. This can be an integer greater than zero, which is the number of entries to add, or it
can be a floating-point number greater than one, which is the ratio of the new size to the old size.
The default value for this argument is implementation-dependent.

The :rehash-threshold argument specifies how full the hash table can get before it must’
grow. This can be an integer greater than zero and less than the rchash-size (in which case it will be
scaled whenever the table is grown), or it can be a floating-point number between zero and one.
The default value for this argument is implementation-dependent.

For example:

(make-hash-table :rehash-size 1.5
: :size (* number-of-widgets 43))

HASH TABLES ' 191

. hash-table-p object [Function]
hash-table-p is truc if its argument is a hash table, and otherwisc is falsc.

(hash-table-p x) <=> (typep x 'hash-table)

gethash key hash-table &optional default [Function]
Find the entry in hash-table whose key is key, and return the associated value. If there is no such
entry, return default, which is ni1 if not spccified.

gethash actually returns two valucs, the sccond being a predicate value that is truc if an entry was
found, and falsc if no entry was found.

setf (page 66) may be used with gethash to make new entrics in a hash table. In this context,
the default argument should not be spccified to gethash. If an entry with the specified key
alrcady exists, it is removed before the new entry is added.

remhash key hash-table . [Function]
Remove any entry for key in hash~table Thn is a predicate that is truc if there was an entry or false
if there was not.

maphash function hash-table [Function]
. For each entry in hash-table, call function on two arguments: the key of the entry and the valuc of
the entry. If entries are added to or deleted from the hash table while amaphash is in progress, the

results are unpredictable. maphash returns ni 1.

clrhash hash-table [Function)
Remove all the entries from hash-table. Returns the hash table itself. :

hash-table-count hash-table [Functzon]
This returns the number of entries in the hash- zable When a hash table is ﬁrst created or has been
cleared, the number of entrics is zero.

16.2. Primitive Hash Function

sxhash S-expression [Function]
sxhash computes a hash code of an S-expression, and returns it as a non-negative fixnum. A
property of sxhash is that (equal x y) implies (= (sxhash x) (sxhash y)).

The manner in which the hash code is computed is implementation-dependent, but is independent
. of the particular “incarnation” or “core image”. -Hash values may be written out to files, for
example, and read in again into an instance of the same implementation.

[y

~

192 COMMON LISP REFERENCE MANUAL

Chapter | | ba

Arrays

An array is an object with components arranged according to a rectilinear coordinate system. Arrays in
COMMON LISP may have any number of dimensions, including zero. (A zero-dimensional array has exactly
one element.) Every COMMON LISP implementation must support arrays with up to 63 dimensions. Each
dimension is a non-negative integer; if any dimension of an array is zero, the array has no elements.

An 'arréy may be a general array, meaning each element may be any LISP object, or it may be a specialized
array, meaning that each element must be of a given restricted type.

One-dimensional arrays are called vectors. General vectors may contain any LISP object. Vectors whose
clements are retricted to type string-char arecalled strings. Vectors whose elements are restricted to type
b1t are called bit-vectors.. :

17.1. Array Creation

make-array dimensions &key :element-type :initiaP-element . [Function]

:initial-contents :adjustable :fill-pointer
:displaced-to :displaced-index-offset

This is the primitive function for making arrays. The dimensions argument should be a list: of

non-negative integers (in fact, fixnums) that are to be the dimensions of the array; the length of the

list will be the dimensionality of the array. Note that if dimensions is ni1 then a zero-dimensional

array is created. For convenience when making a one-dimensional array, the single dimension may

be provided as an integer rather than a list of one integer.

An implementation of COMMON LISP may impose a limit on the rank of an array, but this limit may
not be smaller than 63. Therefore, any COMMON LISP program may assume the use of arrays of
rank 63 or less. In any case, the rank of an array must be a fixnum. The implementation-
dependent limit on array rank is reflected in array-rank-1imit (page 195).

The :element-type argument should be the name of the type of the elements of the array; an
array is constructed of the most specialized type that can nevertheless accommodate elements of the
given type. The type t specifies a general array, one whose elements may be any LISP object; this is

192 a
’

.

- |92} ' : CONMON LISP REFERENCE MANUAL

the default type. _ ' o .

The :initial-element argument may be used to initialize each element of the array. The
value must be of the type specified by the :element-type argument. If the
:initial-element option is omitted, the initial values of the array elements are undefined
(unless the :initial-contents or- :displaced-to option is used). The
:initial-element option may not be used "with the :initial-contents or
:displaced-to.option.

The :initial-contents argument may be used to initialize the contents of the array. The
value is a nested structure of sequences. If the array is zero-dimensional, then the value specifies
the single element. Otherwise, the value must be a sequence whose length is equal to the first
dimension; each element must be a nested structure for an array whose dimensions are the
remaining dimensions, and so on.

For example:
(make-array °'(4 2 3) :initial-contents
"(((abc) (1.23))
((def) (312))
((g h 1) (231))
((J k1) (000))))

The numbers of levels in the structure must equal the rank of the array. Each leaf of the nested

structure must be of the type specified by the : type option. Ifthe : initial-contents option -

is omitted, the initial values of the array elements are undefined (unless the : initial-element .
or :displaced-to option is used). The :initial-contents option may not be used w1th

the :initial-element or :displaced-to option.

The : adjustable argument, xf specified and not ni1, indicates that it must be possnble to alter
the array’s size dynamically after it xs created.

The :fi11-pointer argument spe_cxﬁes that the array should have a fill pointer. If this option is
specified and not ni1, the array must be one-dimensional. The value is used to initialize the fill
pointer for the array. if the value t is specified, the length of the array is used; otherwise the value
must be an integer between 0 (inclusive) and the length of the array (inclusive).

The :displaced-to argument, if not ni1, specifies that the array will be a displaced array. The
argument must then be an array; make-array will create an indirect or shared array that shares its
contents with the specified array. In this case the :displaced-index-offset option may be
useful. The :displaced-to option may not be used with the :initial-element or
:initial-contents option.
777 Query: A long, extended discussion of displaced arrays is clearly needed here.

The :displaced-index-offset argument may be used only in conjunction with the
displaced-to option. This argument should be a non-negative fixnum (it defaults to zero); it is
made to be the index-offset of the created shared array.

For examj)le:

ARRAYS > _ 192. ¢ @B

. :; Create a one-dimensional array of five elements.
- (make-array 5) A

' Create a two-dimensional array, 3 by 4, with four-bit elements. /
(make-array °'(3 4) ’:type ’(mod 16))

- :; Create an array of single-floats.
(make-array 5 ':type ’':single-float))

;3 Making a shared array.

(setq a (make-array ’'(4 3)))

(setq b (make-array 8 ’':displaced-to a
':displaced-index-offset 2))

; s Now it is the case that:

(aref b 0) <=> (aref a 0 2)
(aref b 1) <=> (aref a 1 0)
(aref b 2) <=> (aref a 1 1)
(aref b 3) <=> {(aref a 1 2)
(aref b 4) <=> (aref a 2 0)
(aref b 5) <=> (aref a 2 1)
" (aref b 6) <=> (aref a 2 2)
"(aref b 7) <=> (aref a 3 0)

The last example depends on the fact that arrays are, in effect, stored in row-major order for
purposes of sharing. Put another way, the sequences of indices for the elements of an array are
’ ordered lexicographicaily. _
. Compatibility note: Both Lisp Machine LisP and FORTRAN store arrays in column-major order.

array-rank-1imit o IR ’ [Constani]

The value of array-rank-1imit is a positive integer that is the upper exclusive bound on the _

rank of an array. This value will not be smaller than 64; therefore. every COMMON Lisp
implementation supports arrays whose rank is betwen 0 and 63 (inclusive).

make-simple-vector length &key :element-type :initial-element [Function}
tinitial-contents
make-vector is like make-array (page 193), but guarantees to return a simple vector.
Depending on the implementation, use of a vector (and declaration of such use to the compiler)
may result.in significantly more efficient code. One may not specify a list of dimensions, but only a
single integer, the length. The :type, :initial-element, and :initial-contents
keyword argtinlents are as for make-array.

The function make-array in fact always returns. a simple vector if requested to make a one-
dimensional array that is not displaced, has no fill pointer, and does not have adjustable size.
However, make-s imp1e-vector may be easier for clearer to use in some situations.)

3 ' 72J - COMMON 1ISP REFERENCE MANUAL

vector &rest objects ' [Function} . .
The function vector is a convenient means for creating a slmple general vector w1th spccxﬁed
initial contents. It is-analogous to the function 11 st
(vector a; a, ... a))

<=> (make- s1mp1e vector n type t

:initial-contents '(a, a, ... a,))

17.2. Array Access

aref array &rest subscripts [Function]
This accesses and returns the element of array specified by the subscripts. The number of subscripts
must equal the rank of the array, and each subscript must be a non-negative integer less than- the
corresponding array dimension. :

aref is unusual among the functions that operate on arrays in that it completely ignores. fill
pointers. aref can access without error any array element, whether active or not.

setf (page 66) may be used with aref to destructively replace an array element with a new value.

17.3. Array Information

array-e] ement-type array) : . [Function]
array-element-type returns a type speclﬁer for the set of objects that can be stored in the
array. This set may be larger than the set requested when the array was created; for example, the
result of)
(array-element-type (make-array 5 :element-type '(mod 5))) .
could be (mod 5), (mod 8), fixnum, t, or any other supertype of (mod 5).

array-rank array [Function]
Returns the number of dxmensxons (axes) of array. This will be a non-negative integer. See
array-rank-limit (page 195).

Compatibility note: In Lisp Machine Lisp this is called array-#-dims. This name causes problems in
MacLisp because of the # character. The problem is better avoided.

array-mmens ion array axzs-number [Function]
The length of dimension number axis-number of the array is returned. array may be any kind of
array, and axis-number should be a non-negative integer less than the rank of array. If the arrayisa
vector with a fill pointer, array-dimens ion returns the total size of the vector, including inactive
elements, not the size indicated by the fill pointer. .
Compatibility note; This is similar to the Lisp Machine Lisp function array-dimension-n, but takes its

ART

/.a
,,'
(

v | |92¢ =

arguments in the other order. and is zero-origin for consistency instead of one-origin. In Lisp Machine Lisp
(array~-dimension-n 0) returns the length of the array leader.

array-dimensions array » o [Function]
- array-dimensions returns a list whose elements are the dimensions of array.

array-in-bounds-p array &rest subscripts ‘ " [Function]
This predicate checks whether the subscripts are all legal subscripts for array, and is true if they are;
otherwise it is false. The subscripts must be integers.

17.4. Access Functions for Simple Vectors

The functions in this section are equivalent in operation to aref (page 196) corresponding more general
functions, but require arguments to be simple vectors (of general or specialized type). These ﬁmcuons are
provided primarily for reasons of efficiency and convenience. '

sV ref simple-vector mdex ‘ : © [Function]
The element of the simple-vector specified by the integer index is returned. The index must be
non-negative and less than the length of the vector.

setf (page 66) may be used with svref to .destmctively'replace. a simple-vector element with a
" newvalue. »

sgvref general-vector index . : [Function}
The element of the general-vector specified by the integer index is returned. The vector must be a
simple general vector, not a non-simple or speéialized one. The index must be non-negative and
less than the length of the vector.

setf (page 66) may be used with sgvref to destructively replace an element with a new value.

17.5. Functions on Arrays of Bits

bit bit-array &rest subscripts ' [Functwn]
bit is exactly like aref (page 196) but requires an array of bits, that is, one of type (array
bit). The result will always be 0 or 1.

setf (page 66) may be used with bit to destructively replace a bit-array element with a new
value. o

- |/ =f COMMON TISP REFERENCE MANUAL

-

bit-and bit-array bit-array-2 &optional result-bit-array [Function]

bit-ior bit-array bit-array-2 &optional result-bit-array , [Function]
bit-xor bit-array bit-array-2 &optional result-bit-array ' - [Function]
bit-eqv bit-array bit-array-2 &optional result-bit-array [Function]
bit-nand bit-arrayl bit-array2 &optional result-bit-array [Function]
bit-nor bit-arrayl bit-array? &optional result-bit-array [Function]
bit-andcl bit-arrayl bit-array? &optional result-bit-array [Function)
bit-andc2 bit-arrayl bit-array? &optional result-bit-array : [Function]
bit-orcl bit-arrayl bit-array?2 &optional result-bit-array _ [Function]
bit-orc2 bit-arrayl bit-array2 &optional resuli-bit-array [Function]

These functions perform bit-wise logical operations on bit-arrays. All of the arguments to any of
these functions must be bit-arrays of the same rank and dimensions. The result is a bit-array of
matching rank and dimensions, such that any given bit of the result is produced by operating on
corresponding bits from each of the arguments, ‘

If the third argument is ni1 or omitted, a new array is created to contain the result. If the third
argument is a bit-array, the result is destructively placed into that array. If the third argument is t,
then the first argument xs also used as the third argument; that is, the result is placed back in the
first array. - ‘

The following table indicates what the result bit is for each 6perat.ion when two arguments are
given. (Those operations that accept an indefinite number of arguments are commuitative and
associative, and require at least one argument.)

argument! 0 0 1 1
areument2 0 1 0 1 _ Operation name
bit-and 0 0 0 1 and
bit-ior 0 1 1 1 inclusiveor
bit-xor 0 t 1 0 exclusiveor
bit-eqy 1 0 0 1 -equivalence{(exclusive nor)
bit-nand 1 1 1 0 notand
bit-nor 1 0 0 0 notor
bit-andct 0 1 0 0 andcomplement of argumentl with argument2
bit-andc2 0 0 1 0 andargument! with complement of argument2
‘bit-orcl 1 1 0 1 orcomplement of argument! with argument2
bit-orc2 1 0 1 1 orargument! with complement of argument2
For example:

‘(bit-and #*1100 #*1010) => #*1000
(bit-xor #*1100 #*1010) => #*0110
(bit-andcl #*1100 #*1010) => #*0100

See 1ogand (page 138) and related functions.

.

ARRAYS ‘ ,72j -

. bit-not bir-array &optional result-bit-array [Function]
The first argument must be an array of bits. A bit-array of matching rank and dimensions is
returned that contains a copy of the argument with all the bits inverted. Sec 1ognot (page 140).

If the second argument is ni71 or omitted, a new array is created to contain the result. If the second
argument is a bit-array, the result is destructively placed into that array. If the second argument is
t, then the first argument is also used as the second argument; that is, the result is placed back in
the first array. ‘

17.6. Fill Pointers

A set of functions for manipulating a fill pointer are provided in COMMON LISP to make it easy to
incrementally fill in the contents of a vector, and more generally to allow efficient varying of the length of a
vector. For example, a string with a fill pointer has most of the characteristics of a PL/I varying string.

The fill pointer is a non-negative integer no larger than the total number of elements in the vector (as
returned by array-dimension (page 196)); it is the number of “active” or “filled-in” elements in the
vector. The fill pointer constitutes the “active length” of the vector; all vector elements whose index is less
than the fill pointer are active, and the others are inactive. Nearly all functions that operate on the contents of
a vector will operate only on the active elements. An important exception is aref (page 196), which can be

. used to access any vector element whether in the active region of the vector or not. It is important to note that
vector elements not in the active region are still considered part of the vector. (An implication of this for
implementors is that vector elements outside the active region may not be garbage-collected.)

Only vectors (one-dimensional arrays) may have fill pointers; multi-dimensional arrays may not. (Note,
however, that one can create a multi-dimensional arrays that is displaced to a vector that has a fill pointer.)

reset-fill-pointer vector &optional index [Function]
The fill pointer of vector is reset to index, which defaults to zero. The index must be a non-negative
integer not greater than the dimension of the vector; see array-dimension (page 196).

vector-push vector new-element [Function]
vector must be a one-dimensional array that has a fill pointer, and new-element may be any object.
vector-push attempts to store new-element.in the element of the vector designated by the fill
pointer, and increase the fill pointer by one. If the fill pointer does not designate an element of the
vector (specifically, when it gets too big), it is unaffected and vector-push returns nil. .
Otherwise, the store and increment take place and vector-push returns the former value of the
fill pointer (one less than the one it leaves in the vector); thus the value of vector-push is the
index of the new element pushed.

-

-, /92) : COMMON LISP REFERENCE MANUAL

vector-push-extend veclor x &optional extension ' [ﬁunclion]
vector-push-ex tend is just like vector-push except that if the fiil pointer gets too large, the
vector is extended (using adjust-array (page 200)) so that it can contain more clements; it
never “fails” the way vector-push does, and so never returns nil. The optional argument
extension, which must be a positive integer, is the minimum number of elements to be added to the
vector if it must be extended. '

vector-pop vector [Function]
vector must be a one-dimensional array that has a fill pointer. It is an error if the fill pointer is zero.
The fill pointer is decreased by one, and the vector element designated by the new value of the fill
pointer is returned. :

17.7. Changing the Dimensions of an Array

-

adjust-array array new-dimensions &key :type :initial-element [Function]
’ ‘ :initial-contents :fill-pointer
:displaced-to :displaced-index-offset
adjust-array takes an array and a number of other arguments as for make-array (page 193).
The nﬁmber of dimensions specified by new-dimensions must equal the rank of array.

adjust-array returns an array of the same:'type and rank as array, with the specified
new-dimensions. In effect, the array argument itself is modified to conform to the new
specifications, but this may be achieved either by modifying the array or by creating a new array
and modifying the array argument to be displaced to the new array.

In the simplest case, one specifies only the new-dimensions and possibly an :initial-element
argument. Those elements of array that are still in bounds appear in the new array. The elements
of the new array that are not in the bounds of array are initialized to the : initial-element; if

this argument is not provided, then the initial contents of any new elements are undefined. '

If : type is specified, then array must be such that it could have been originally created with that
type; otherwise an error is signalled. Specifying : type to ad just-array serves only to require
such an error check. '

If:initial-contents or :displaced-to is specified, then it is treated as for make-array..
In this case none of the original contents of array appears in the new array.

If : fi11-pointer is specified, the fill pointer of the array is reset as specified. An error is
signalled if array had no fill pointer already.

‘ad just-array may, depending on the implementation and the arguments, simply alter the given
array or create and return a new one. In the latter.case the given array will be altered so as to be
displaced to the new array and have the given new dimensions.

ARRAYS

1921 =

It is not permitted to call adjust-array on an array that was not created with the
:adjustable option.

If adjust-array is applied to an array that is displaced to another array. x, then afterwards

" neither array nor the returned result is displaced to x unless such displacement is explicitly re-

specified in the call to ad just~array.

Example: suppose that the 4-by-4 array m has the following contents:

alpha beta gamma delta

epsilon zeta eta theta

iota kappa Tambda mu

nu - xi omicron pi P
Then the result of

(adjust-array m (3 5) :initia'l-eiement 'baz)

is a 3-by-5 array with contents

alpha beta gamma delta haz
epsiton zeta eta theta " baz
iota kappa Tambda mu baz

Note that if array a is created displaced to array b and subsequently array b is given to

adjust-array, array a will still be displaced to array b; the effects of this displacement and the
rule of row-major storage order must be taken into account.

y I?ZJ : COMMON ISP FEFFRENCE MANUAL

Chapter 17

Strings

A string is a specialized kind of vector (one-dimensional array) whose elements arc characters. Specifically,
the type string is identical to the type (vector string-char), which in turn is the same as (array
string-char (*)) ‘

As a rule, any string-specific function whose name begins with the prefix “string” will acccpt a symbol
instcad of a string as an argument provided that the operation never modifies that argument; the print-name of
the symbol is used. In this respect the string-specific scquence operations are not simply spccializations of the
gencric versions; the generic sequence operations never accept symbols as sequences. This slight inclegance is
permitted in COMMON LISP in the name of pragmatic utility. Also, there is a slight non-parallelism in the
names of string functions. Where the suffixcs equalp and eql would be more appropriate, for historical
compatibility the suffixes equal and = are used instcad to indicate case-insensitive and case-sensitive
character comparison, respectively.

Any LISP object may be tested for being a string by the predicate stringp (page 54).

Note that strings, like all vectors, may have fill pointers (though such strings are not simple). String
operations generally operate only on the active portion of the string (below the fill pointer). See
reset-fill-pointer (page199)and related functions.

17.1. String Access

char string index ‘ [Function]
The given index must be a non-negative integer less than the length of string, which must be a (not
necessarily simple) string. The character at position index of the string is returned as a character
object. (This character will nccessarily satisfy the predicate string-charp (page 150).) As with
all sequences in COMMON LISP, indcexing is zero-origin.

For example:

(char "Floob-Boober-Bab-Boober-Bubs" 0) => #\F
(char "Floob-Boober-Bab-Boober-Bubs" 1) => #\1

See aref (page 196) and e1t (page 161). In effect,

-193 -

194

COMMON LISP REFERENCE MANUAL

(char s j) <=> (aref (the string s) j)

setf (page 66) may be used with char to destructively replace a character within a string.

17.2. String Cdmparison

string= stringl string? &key :startl :endl :start2 :end2 [Function]

string= comparcs two strings, and is true if they arc the same (corresponding characters are
identical) but is false if they are not. The function equal (page 56) calls string= if applied to
two strings.

The keyword arguments :startl and :start2 arc the places in the strings to start the
comparison. The arguments :end1 and :end2 arc the places in the strings to stop comparing;
comparison stops just before the position specified by a limit. The start arguments dcfault to zero
(beginning of string), and the end arguments (if cither omitted or n1i1) default to the lengths of the
strings (end of string), so that by default the entirety of cach string is examined. These arguments
are provided so that substrings can be compared cfficiently. ' :

" string= is necessarily false if the (sub)strings being compared are of uncqual length; that is, if

(not (= (- endl startl) (- end2 start2)))
is truc then string= is false.

For example:

(string= "foo" "foo") istrue

(string= "foo" "Foo") is false

(string= "foo" "bar") is false

(string= "together" "frog" :startl 1 :endl 3 :start2 2)
is true

string-equal stringl string? &key :startl :endl :start2 :end2 [Function]

string-equal is just like string= except that differences in case are ignored; two characters
are considered to be the same if char-equal (page 153) is true of them.

For example:
(string-equal "foo" "Foo") istrue

string< stringl string? &key :startl :endl :start2 :end2 ‘ "~ [Function]
string> stringl string2 &key :startl :endl :start2 :end2 [Function]
string<= stringl string? &key :startl :endl :start2 :end2 [Function]
string>= stringl string? &key :startl :endl :start2 :end2 [Function]
string/= stringl string2 &key :startl. :endl :start2 :end2 [Function]

The two string arguments are compared lexicographically, and the result is ni1 unless stringl is
(less than, greater than, less than or equal to, greater than or equal to, not equal to) string2,
respectively. If the condition is satisfied, however, then the result is the index within the strings of

STRINGS

string-
string-
string-
string-
string-

195

the first character position at which the strings fail to match; put another way, the result is the
length of the longest common prefix of the strings.

A string a is less than a string b if in the first position in which they differ the character of a is less
than the corresponding character of b according to the function char< (page 152), or if string a is
a proper prefix of string b (of shorter length and matching in all the characters of a).

The optional arguments start/ and start2 arc the places in the strings to start the comparison. The
optional arguments endl and end? places in the strings to stop comparing; comparison stops just
before the position specificd by a limit. The start arguments default to zero (beginning of string),
and the end arguments (if cither omitted or ni1) default to the lengths of the strings (end of string),
so that by default the entircty of each string is cxamined. These arguments are provided so that
substrings can be compared efficiently. The index returned in case of a mismatch is an index into
stringl.

Tessp stringl string2 &key :startl :endl :start2 :end2 [Function]

greaterp stringl siring? &key :startl :endl :start2 :end2 [Function]
not-lessp stringl string2 &key :startl :endl :start2 :end2 * [Function]
not-greaterp stringl' string? &key :startl :endl :start2 :end2 [Function]
not-equal stringl string? &key :startl :endl :start2 :end2 [Function]

These are cxactly like string<, string>, string<=, string>=, and string<>, respectively,
except that distinctions between upper-case and lower-case letters are ignored. It is as if
char-lessp (page 153) were used instead of char< (page 152) for comparing characters.

.

17.3. String Construction and Manipulation

make-string size &key :initial-element ~ [Function]

string-
string-
string-

This returns a string of length size, each of whose characters has been initialized to the
:initial-element argument. Ifan :initial-element argument is not specified, then the
string will be initialized in an implementation-dcpendent way.

Implementation note: It may be convenient to initialize the string to null characters, orto spaces, or.to garbage
(“whatever was there”).

trim character-bag string : , ' - [Function]
left-trim character-bag string [Function]
right-trim character-bag string ' [Function]

string-trim rcturns a substring of string, with all characters in character-bag stripped off of the
beginning and end. The function string-left-trim is similar, but strips characters off only
the beginning; string-right-trim strips off only the end. The argument character-bag may
be any sequence containing characters.

777 Query: Should this be generalized to any sequence, calling them trim, Teft-trim, and right-trim?
Or just one function trim, also taking a : from-end keyword?

196 : COMMON LISP REFERENCE MANUAL

For cxample:

(string-trim ’(#\Space #\Tab #\Return) " garbanzo beans
") => "garbanzo beans"

(string-trim " (*)" " (*three (silly) words*) ")
=> "three (silly) words"

(string-left-trim " (*)" " (*three (silly) words*) ")
=> "three (silly) words*) "

(string-right-trim " (*)" " (*three (silly) words*) ")
=> " (*three (silly) words"

string-upcase string &key :start :end [Function]
string-downcase string &key :start :end [Function]
string-capitalize swring &key :start :end [Function]

string-upcase recturns a string just like string with all lower-casc alphabetic characters replaced

- by the corresponding upper-case characters. More precisely, each character of the result string is
produced by applying the function char-upcase (page 155) to the corresponding character of
string, '

string-downcase is similar, except that upper-casc characters are converted to lower-case
characters (using char-downcase (page 155)).

The keyword arguments :start and :end delimit the portion of the string to be affected. The
result is always of the same length as string, however. :

The argument is not destroyed. However, if no characters in the argument require conversion, the
result may be cither the argument or a copy of it, at the implementation’s discretion.

For example:

(string-upcase "Dr. Livingston, I presume?")
=> "DR. LIVINGSTON, I PRESUME?"
(string-downcase "Dr. Livingston, I presume?")
=> "dr. livingston, i presume?"
(string-upcase "Dr. Livingston, I presume?" 6 10)
=> "Dr. LiVINGston, I presume?"

string-capitalize produces a copy of string such that every word (subsequence of case-

modifiable characters or digits delimited by non-case-modifiable non-digits) has its first character, if
case-modifiable, in upper-case and any other case-modifiable characters in lower-case.

For example:

(string-capitalize " hello ") => " Hello "
(string-capitalize

"occlUDeD cASEmenTs FOreSTA11 iNADVertent DEFenestraTION")
=> "Occluded Casements Forestall Inadvertent Defenestration"
(string-capitalize 'kludgy-hash-search) => "Kludgy-Hash-Search"
(string-capitalize "DON'T!") => "Don'TI" ;not "Don'tl"
(string-capitalize "pipe 13a, fool6c") => "Pipe 13a, Fool6¢c"

197

nstring-upcase string &key :start :end [Function]
nstring-downcase string &key :start :end [lunction]
nstring-capitalize string &key :start :end ' [Function]

These functions are just like string-upcase, string-downcase, and
string-capitalize (page 196), but destructively modify the argument string by altering case-
modifiable characters as necessary.

The keyword arguments :start and :end delimit the portion of the string to be affected. The
argument string is returned as the result. '

17.4. Type Conversions on Strings

string x _ ‘ [Function]

string cocrces x into a string. Most of the string functions apply this to such of their arguments
as arc supposed to be strings. If x is a string, it is returned. If x is a symbol, its print-name is
returncd. If x cannot be coerced to be a string, an error occurs.

To get the string representation of a number or any other LISP object, use prinl-to-string
(page 259), princ-to-string (page259), or format (page 261).

198 COMMON LISP REFERENCE MANUAL

Chapter 18

Structures

CoMMON LisP provides a facility for creating named record structurcs with named components. In effect,
the user can define a new data type; every data structure of that type has components with specified names.
Constructor, access, and assignment constructs arc automatically defined when the data type is defined.

This chapter is divided into two parts. The first part discusses the basics of the structure facility, which is
very simple and allows the user to take advantage of the type-checking, modularity, and convenience of
user-defined record data types. The second part discusses a number of specialized features of the facility that
have advanced applications. These features arc completely optional, and you needn’t even know they exist in
order to take advantage of the basics. '

Rationale; It is important not to scare the novice away from defstruct wnh a multiplicity of features. The basic idea is
very simple, and we should encourage its use by providing a very simple description. The hairy stuff, including all options,
is shoved to the end of the chapter.

18.1. Introduction to Structures

The structure facility is embodied in the defstruct macro, which allows the user to create and use.
aggregate datatypes with named elements. These are like “structures” in PL/I, or “records” in PASCAL.

As an example, assume you are writing a LISP program that deals with space ships in a two-dimensional
plane. In your program, you need to represent a space ship by a LISP object of some kind. The interesting
things about a space ship, as far as your program is concerned, are its position (represented as x and y
coordinates), velocity (represented as components along the x and y axes), and mass.

A ship might therefore be represented as a record structure with five components: x-position, y-position,
x-velocity, y-velocity, and mass. This structure could in turn be implemented as a LISP object in a number of
ways. It could be a list of five elements; the x-position could be the car, the y-position the cadr, and so on.
Equally well it could be a vector of five elements: the x-position could be element 0, the y-position element 1,
and so on. The problem with either of these representations is that the components occupy places in the
object that are quite arbitrary and hard to remember. Someone looking at (cadddr shipl) or
(vref shipl 3) in a piece of code might find it difficult to determine that this is accessing the y-velocity
component of ship1. Moreover, if the representation of a ship should have to be changed, it would be very

-199 -

200 » : COMMON LISP REFERENCE MANUAL

difficult top find all the places in the code to be changed to match (not all occurrences of cadddr are
intended to extract the y-velocity from a ship).

Idcally components of rccord structures should have names. Onc would like to writc something like
(ship-y-velocity shipl) instead of (cadddr ship1). Onc would also like a more mnemonic way
to create a ship than this:

(1ist 0 0 0 0 0)

Indeed, one would like ship to be a new data type, just like other LISP data types, that one could test with
typep (page 52), for example. The defstruct facility provides all of this.

defstruct itsclf is a macro that defines a structure. For the space ship example one we might define the
structure by saying:

(defstruct ship
x-position
y-position
x-velocity
y-velocity
mass) A
This declares that every ship is an object with five named components. The evaluation of this form does

several things:

o It defines ship-x-position to be a function of one argument, a ship, that returns the
x-position of the ship; ship-y-position and the other components are given similar function
definitions. These functions are called the access fiunctions, as they are used to access elements of
the structure. B ' ‘

e The symbol ship becomes the name of a data type, of which instances of ships are elements.
‘This name becomes acceptable to typep (page 52), for example; (typep x 'ship) is true iff
x is a ship. Moreover, all ships are instances of the type structure, because ship is a subtype
of structure.

o A function named ship-p of one argument is detined,; it is a predicate that is true if its argument
is a ship, and is false otherwise.

o A function called make-ship is defined that, when invoked, will create a data structure with five
components, suitable for use with the access functions. Thus executing

(setq ship2 (make-ship))
sets ship2 to a newly-created ship object. One can specify the initial values of any desired
component in the call to make-ship in this way:

(setq ship2 (make-ship :mass *default-ship-mass*
:x-position 0
iy-position 0))

This constructs a new ship and initializes three of its components. This function is called the

STRUCTURES 201

constructor function, because it constructs a new structure.

e Onc may usc setf to alter thc components of a ship:
(setf (ship-x-position ship2) 100)
This alters the x-position of ship2 to be 100. This works because defstruct generates an
appropriate defsetf (page 70) form for cach access function. -

This simple example illustrates the power of defstruct to provide abstract record structures in a
convenicnt manner. defstruct has many other features as well for specialized purposes.

18.2. How to Use Defstruct

defstruct name-and-options [doc-string] {slot-description}™ : [Macro]
Defines a record-structure data type. A general call to defstruct looks like this:
(defstruct (name option-1 option-2 ...)
doc-string
slot-description-1
slot-description-2
vel)
name must be a symbol; it becomes the name of a new data type consisting of all instances of the
structure. The function typep (page 52) will accept and use this name as appropriate.

Usually no options are necded at all. If no options arc specified, then one may write simply name
instead of (name) after the word defstruct. The syntax of options and the options provided are
discussed in scction 19.5 (page 214). ' '

If the optional documentation string doc-string is present, then it is attached to the name as a
documentation string of type structure; see documentation (page 301).

- Each slot-description-j is of the form

(slot-name default-init ;
slot-option-name-1 slot-option-value-1
slot-option-name-2 slot-option-value-2
_ ved)
Each slot-name must be a symbol; an access function is defined for each slot. If no options and no
default-init are spccified, then one may write simply slot-name instead of (slot-name) as the slot
description. The defuult-init is a form that is evaluated each time a structure is to be constructed;
the value is used as the initial value of the slot. If no default-init is specified, then the initial
contents of the slot are undefined and implementation-dependent. The available slot-options are
described in Section 19.4.

Compatibility note: Slot-options are not currently provided in Lisp Machine Lisp, but this is an upward-
compatible extension,

Besides defining an access function for each slot, defstruct arranges for setf to work properly

202 COMMON LISP REFERENCE MANUAL

on such access functions, defincs a predicate named name-p, and defines a constructor function
named make - name. All names of automatically created functions arc symbols of the same package
(if any) to which the structurc name itsclf belongs. Also, all such functions may be declared
inline at the discretion of the implementation to improve cfficiency; if you do not want some
function declared inline, follow the defstruct form with a notinline decclaration to
overrride any automatic in11ine declaration.

Because evaluation of a defstruct form causes many functions to be defined, one must take care that
two defstruct forms do not definc the same name (just as onc must take care not to use defun to define
two distinct functions of the same name). For this reason, as well as for clarity in the code, it is conventional
to prefix the names of all of the slots with some text that identifics the structure. In the example above, all the
slot names start with “sh1i p-". The :conc-name (pagc 214) option can be used to provide such prefixes
automatically. ' :

18.3. Using the Automatically Defined Constructor Function

After you have defined a new structure with defstruct, you can create instances of this structure by
using the constructor function. "By default, defstruct defines this function automatically. For a structure
named foo, the constructor function is normally named make-foo; you can specify a different name by
giving it as the argument to the :constructor (page 215) option, or specify that you don’t want a normal
constructor function at all by using ni1 as the argument.

A call to a constructor function, in general, has the form

(name-of-constructor-function
slot-keyword-1 form-1
slot-keyword-2 form-2
ved)
All arguments are keyword arguments. Each slot-keyword should be a keyword whose name matches the
name of a slot of the structure (defstruct determines the possible keywords simply by interning each

slot-name in the keyword package). All the keywords and forms are evaluated.

If slot-keyword-j names a slot, then that element of the created structure will be initialized to the value of
Jorm-j. If no slot-keyword-j/ form-j pair is present for a given slot, then the slot will be initialized by evaluating
the defaulr-init form specified for that slot in the call to defstruct. (In other words, the initialization
specified in the defstruct defers to any specified in a call to the constructor function.) If the default
initialization form is used, it is evaluated at construction time, but in the lexical environment of the
defstruct form in which it appeared. If the defstruct itsclf also did not specify any initialization, the
element’s initial value is undefined. You should always specify the initialization, either in the defstruct or
in the call to the constructor function, if you care about the initial value of the slot.

Compatibility note: The Lisp Machine Lisp documentation is slightly unclear about when the initialization specified in the
defstruct form gets evaluated: at defstruct evaluation time, or at constructor time? The code reveals that it is at
constructor time, which causes problems with referential transparency ‘with respect to lexical variables (which currently

STRUCTURES _ 203

don't exist officially in Lisp Machine Lisp anyway). The above remark concerning the lexical environment in effect requires
that the initialization form is treated as a thunk: it is evaluated at constructor time, but in the environment where it was
written (the defstruct cnvironment). Most of the time this makes no difference anyway, as the initialization form is
typically a quoted constant or refers only to special variables. ‘The requirement is imposed here for uniformity, and to
ensure that what look like special variable references in the initialization form are in fact always treated as such.

The order of cvaluation of the initialization forms is snot neccssarily the same as the order in which they
appear in the constructor call or in the defstruct form; code should not depend on the order of evaluation.
The initialization forms are re-evaluated on every constructor-function call, so that if, for example, the form
(gensym) were uscd as an initialization form, cither in the constructor-function call or as the default form in
the defstruct declaration, then every call to the constructor function would call gensym once to generate
a new symbol.

18.4. defstruct Slot-Options

Each slot-descriptionin a defstruct form may specify one or more slot-options. A slot-option consists of
a pair of a keyword and a value (which is not a form to be evaluated, but the value itself).

For example:

(defstruct ship
(ship-x-position 0.0 :type short-float)
(ship-y-position 0.0 :type short-float)
{ship-x-velocity 0.0 :type short-float)
(ship-y-velocity 0.0 :type short-float)
(ship-mass *default-ship-mass* :type short-float :read-only t))
This specifies that the first four slots will always contain short-format floating-point numbers, that the last
three slots are “invisible” (will not ordinarily be shown when a ship is printed), and that the last slot may not

be altered once a ship is constructed.

The available slot-options are:

:type The option (:type fype) specifies that the contents of the slot will always be of the
specified data type. This is entirely analogous to the declaration of a variable or function;
indeed, it effectively declares the result type of the access function. An implementation
may or may not choose to check the type of the new object when initializing or assigning to
aslot.

:invisible The option :invisible specifies that the contents of this slot should not be printed
when an instance of the structure is printed..

:read-only The option :read-only specifics that this slot may not be altcred; it will always contain
the value specified at construction time. setf (page 66) will not accept the access
function for this slot. ' ‘

204

COMMON LISP REFERENCE MANUAL

18.5. Options to defstruct

The preceding description of defstruct is all that the average user will nced (or want) to know in order
to usc structures. The remaindcr of this chapter discusses more complex features of the defs truct facility.

This section cxplains each of the options that can be given to defstruct. As with slot-options, a
defstruct option may be cither a keyword or a list of a keyword and arguments for that keyword.

sconc-name

:type

This provides for automatic prefixing of names of access functions. It is conventional to- -
begin the names of all the access functions of a structure with a specific prefix, the name of
the structure followed by a hyphen. This is the default behavior.,

The argument to the : conc-name option specifics an alternate prefix to be used. (If a
hyphen is to be used as a separator, it must be specified as part of the prefix.) If nil is
specified as an argument, then no prefix is used; then the names of the access functions are
the same as the slot names, and it is up to the uscr to name the slots reasonably.

Note that no matter what is specified for :conc-name, with a constructor function one
uses slot keywords that match the slot names, with no prefix attached. On the other hand,
one uses the access-function name when using setf. Here is an example:

(defstruct (door (:conc-name nil))
knob-color width material) v
(setq my-door (make-door :knob-color ’'red :width 5.0))
(door-knob-color my-door) ==> red
(alter-door my-door :knob-color ’green :material 'wood)
(door-material my-door) => wood
(setf (door-width my-door) 43.7)
(door-width my-door) => 43.7

The :type option specifies what kind of LISP object will be used to implement the
structure. It takes one argument, which must be one of the types enumerated below.

Specifying this option has the effect of forcing a specific representation, and of forcing the
components to be stored in successive elements of the specified representation,

Normally this option is not specified, in which case the structure is represented in an
implementation-dependent manner, and the : named option is assumed unless : unnamed
is explicitly specified. ” ‘

vector Use a general vector, storing components as vector elements. This is
normally :named. The first component is vector element 1 if the
structure is : named, and element Q if it is : unnamed.

(vector element-type)
A specialized vector may be used, in which case every component must

STRUCTURES

-

:named

205

be of a type that can be stored in such a vector. The first component is
vector clement 1 if the structure is :named, and clement 0 if it is
:unnamed. ‘

Tist Use a list. A structure of this type cannot be distinguished by typep,
even if the :named option is used. By default this is :unnamed. The
first component the cadr if the structure is : named, and the car if it is
:unnamed.

The :named option specifies that the structure is “named”; this option takes no argument.

" A named structurc has an associated predicate for determining whether a given LisP object

:unnamed

:constructor

:predicate

:include

is a structure of that name. Somc named structures in addition can be distinguished by the
predicate typep (page 52). If neither :named nor :unnamed is specified, then the
default depends on the : type option.

The :unnamed option specifies that the structure is not named; this option takes no -
argument. ‘

This option takes one argument, a symbol, which specifies the name of the constructor
function. If the argument is not provided or if the option itself is not provided, the name
of the constructor is produced by concatenating the string "make-" and the name of the
structure, putting the name in the same package as the structure name. If the argument is
provided and is ni1, no constructor function is defined.

This option actually has a more general syntax that is explained in section 19.6 (page 217).

This option takes one argument, which specifies the name of the type predicate. If the
argument is not provided or if the option itself is not provided, the name of the predicate is
made by concatenating the name of the structure to the string "-p", putting the name in
the same package as the structure name. If the argument is provided and is nil1, no
predicate is defined. A predicate can be defined only if the structure is :named (page
215).

This option is used for building a new structure definition as an extension of an old
structure definition. As an example, suppose you have a structure called person that
looks like this: '

(defstruct person name age sex)

Now suppose you want to make a new structure to represent an astronaut. Since astronauts
are people too, you would like them to also have the attributes of name, age, and sex, and
you would like LISP functions that operate on person structures to operate just as well on
astronaut structures. You can do this by defining astronaut with the :include
option, as follows: '

206

COMMON LISP REFERENCE MANUAL

(defstruct (astronaut (:include person)
(:conc-name ’'astro))
helmet-size
(favorite-beverage 'tang))

The :include option causcs the structure being defined to have the same slots as the
included structure, in such a way that the access functions for the included structure will
also work on the structure being defined. In this example, an astronaut will therefore
have five slots: the three defined in person, and the two defined in astronaut itself.
The access functions defined by the person structure can be appliced to instances of the
astronaut structure, and they will work corrcctly. Morcover, astronaut will have its
own access functions for components defined by the person structure. The following
cxamples illustrate how you can use astronaut structures:

(setq x (make-astronaut :name 'buzz
:age 45.
:sex t
thelmet-size 17.5))

(person-name x) => buzz
(astro-name x) => buzz
(astro-favorite-beverage x) => tang

The difference between the access functions person-name and astro-name is that
person-name may be correctly applied to any person, including an astronaut, while
astro-name may be correctly applied only to an astronaut. (An implementation may
or may not check for incorrect use of access functions.)

The argument to the :include Option is required, and must be the name of some
previously defined structure. The included structure must be of the same : type as this
structure. The structure name of the including structure definition becomes the name of a
data type, of course; morcover, it becomes a subtype of the included structure. In the
above example, astronaut is a subtype of person; hence R

(typep (make-astronaut) ’'person)

is true, indicating that all operations on persons will work on astronauts.

The following is an advanced teature of the :include option. Somctimes, when one
structure includes another, the default values or slot-options for the slots that came from
the included structure arc not what you want. The new structure can specify default values
or slot-options for the included slots different from those the included structure specifies,
by giving the : include option as:

(:include name slot-description-1 slot-description-2 ...)

Each slot-description-j must have a slot-name or slot-keyword that is the same as that of
some slot in the included structure. If slot-description-j has no default-init, then in the new

- structure the slot will have no initial value. Otherwise its initial value form will be replaced

~ STRUCTURES , _ 207

‘ by the default-init in ‘s'lot-descriplion-j. A normally writable slot may be made rcad-only,
and a normally visible slot may be made invisible in the dcfined structure. If a slot is
invisible or read-only in the included structure, then it must also be so in the including
structure. If a type is spccified for a slot, it must be a the samc as or a subtype of the type
specified in the included structure. fit is a strict subtype, the implementation may or may
not choose to crror-check assignments.

For example, if we had wanted to define astronaut so that the default age for an
astronaut is 45, then we could have said:

(defstruct (astronaut (:include person (age 45)))
helmet-size .
(favorite-beverage 'tang))

:print-function
This option may be used only with :n amed structures. The argument to this option
should be a function of three arguments to be used to print structures of this type. When a
structure of this type is to be printed, the function is called on the structure to be printed, a
stream to print to, and an integer indicating the current depth (to be compared against
prinlevel (page 252)). The printing function should observe the values of such
printer-control variables as *prinescape* (page 248)and *prinpretty* (page 248).

‘ :initial-offset

This allows you to tell defstruct to skip over a certain number of slots before it starts
allocating the slots described in the body. This option requires an argument, a non-
negative integer, which is the number of slots you want defstruct to skip. To make use
of this option requires that you have some familiarity with how defstruct is
implementing your structure; otherwise, you will be unable to make use of the slots that
defstruct has left unused.

:eval-when Normally the functions defined by defstruct are defined at eval time, compile time,
and load time. This option allows the user to control this behavior. The argument to the
:eval-when option is just like the list that is the first subform of an eval-when (page
49) special form. For example,
(:eval-when (:eval :compile))
will causc the functions to be defined only when the code is running interpreted or inside
the compiler.

18.6. By-position Constructor Functions

If the :constructor (page 205) option is given as (:constructor name arglist), then instead of
. making a keyword driven constructor function, defstruct defines a “positional” constructor function,
taking arguments whose meaning is determined by the argument’s position rather than by a keyword. The

208 COMMON LISP REFERENCE MANUAL

arglist is usced to describe what the arguments to the constructor will be, In the simplest case something like
(:constructor make-foo (a b c)) defines make-foo to be a three-argument constructor function
whose arguments arc uscd to initialize the slots named a, b, and c.

In addition, the keywords &optional, &rest, and &aux arc recognized in the argument list. They work
in the way you might expect, but there arc a few finc points worthy of explanation.

For example:
(:constructor create-foo
(a &optional b (c ’'sea) &rest d &aux e (f 'eff)))

‘This defines create-foo to be a constructor of onc or more arguments. The first argument is uscd to
initialize the a slot. The second argument is used to initialize the b slot. If there isn’t any second argument,
then the default value given in the body of the defstruct (if given) is used instcad. The third argument is
used to initialize the ¢ slot. If there isn’t any third argument, then the symbol sea is uscd instcad. Any
arguments following the third argument arc collected into a list and uscd to initialize the d slot. If there are
three or fewer arguments,-then ni1 is placed in the d slot. The e slot is not initialized, its initial value is
undefined. Finally, the f slot is initialized to contain the symbol ef f.

The actions taken in the b and e cases were carcfully chosen to allow the user to specify all possible
behaviors. Note that the &aux “variables” can be used to completely override the default initializations given
in the body.

With this definition, one can write
(create-foo 1 2)

instead of
(make-foo a 1 b 2)

and of course create-foo provides defaulting different from that of make-foo.

It is permissible to use the : constructor option more than once, so that you can define several different
constructor functions, cach taking different parameters.

Because a constructor of this type operates By Order of Arguments, it is sometimes known as a BOA
constructor. : '

Chapter 19
The Evaluator

19.1. Run-Time Evaluation of Forms

eval form 3 [Function]
The form is cvaluated in the current dynamic environment and a null lexical environment,
Whatever results from the evaluation is returned from the call to eval.

Note that when you write a call to. eval two levels of evaluation occur on the argument form you

write. First the argument form is evaluated, as for .arguments to any function, by the usual

argument evaluation mechanism (which involves an implicit use of eval). Then the argument is
. passed to the eval function, where another evaluation occurs.

For example:

(eval (1ist ’cdr (car "((quote (a . b)) c)))) => b
The argument form (1ist ’cdr (car ’((quote (a . b)) c))) isevaluated in the usual
way to produce the argument (cdr (quote (a . b))); this is then given to eval because

eval is being called explicitly, and eval evaluates its argument (cdr (quote (a . b))) to
produce b,

If all that is required for some appliéation is to obtain the current dynamic value of a given symbol,
the function symbol1-value (page 62) may be more efficient than eval.

evalhook ' [Variable]
If the value of *evathook* is not ni1, then eval behaves in a special way. The non-ni1 value
of *evalhook* should be a function that takes arguments according to a lambda-list that looks
like (form &rest env); this is called the hook function. When a form is to be cvaluated (any
form at all, cven a number or a symbol), whether implicitly or via an explicit call to eval, no
attempt is made to evaluate the form. Instead, the hook function is invoked, and passed the form to
be evaluated as its first argument. The hook function is then responsible for evaluating the form;
whatever is returncd by the hook function is assumed to be the result of evaluating the form.

. The other arguments passed to the hook function contain information about the lexical
environment in an implementation-dependent format. These arguments are suitable for the

- 209 -

210) . COMMON LISP REFERENCE MANUAL

function *eval (pagc 220) and evalhook (pagc'220).

The *evalhook* feature is provided as an aid to debugging. The step (page 303) facility is
implemented around this hook.

If a non-local exit causcs a throw back to the top level of LiSP, perhaps because an error could not
be corrected, then *evaThook* is automatically resettonil,

*eval form &rest env ' [Function)
"This function is just like eval, but trcats env as a specification of the Iexical environment in which
to cvaluate the form. The format of env is implementation-dependent, and may be required to
consist of a certain number of arguments, but anything that is passcd to a hook function because of
the *evalhook* feature will be acceptable. ’

Note that if a hook function simply calls *eval to evaluate the form, an endless loop may occur,
because *eval will invoke the hook function on its argument if *evalhook* is not nil1. Sce
evalhook (page 220).

evalhook form hookfn &rest env ' : [Function]
The evalhook function is provided to make it casier to ¢xploit the *evalhook* feature. The
form is evaluated with *evaTlhook* bound to hookfi, which should be a hook function or ni1.
The env arguments arc uscd as the lexical environment, as for *eval (page 220). The check for a
hook function.is bypassed for the evaluation of the form itsclf, but not for subsidiary evaluations,
such as of subforms. It is this one-shot bypass that makes evalhook so useful.

Here is an example of a very simple tracing routine that uses the *evalhook* feature:
(defvar *hooklevel* 0)

(defun hook (x)
(let ((*evalhook* ’'hook-function))
(eval x)))

(defun hook-function (form &rest env)
(1et ((*hooklevel* (+ *hooklevel* 1)))
(format trace-output "~%~V@TForm: ~S"
(* *hooklevel* 2) form)
(Tet ((values (multiple-value-list
(apply #'evalhook form ‘env))))
(format trace-output "7%7V@TValue: {~S ~}"
(* *hooklevel* 2) values))))

Using these routines, one might sce the following interaction:

THE EVALUATOR ‘ 211

"(hook ’(cons (floor *base* 2) 'b))
Form: (CONS (FLOOR *BASE* 2) (QUOTE B))
Form: (FLOOR *BASE* 3)
Form: *BASE*

Value: 10
Form: 3
Value: 3

Value: 3 1 »

Form: (QUOTE B)

Value: B

Value: (3 . B)
(3 ..B)
constantp object [Function}

The predicate constantp is truc of any LiSP object that may be considered to have a constant
value. This includes all sclf-evaluating objects (numbers, characters, strings, bit-vectors, and
keywords) as well as constant symbols declared by defconstant (page 48) such as nil1 (page
51), t (page 51), and pi (page 130).

19.2. The Top-Level Loop

Normally one interacts with LISP through a “top level read-eval-print loop”, so called because it is the
highest level of control and consists of an endless loop that reads an expression, evaluates it, and prints the
results. One has an effect on the state of the LISP system only by invoking actions that have side effects.

The precise nature of the top-level loop for COMMON LISP is purposely not specified rigorously here, so
that implemcntbrs can experiment to improve the user interface. For example, an implementor may choose
to require line-at-a-time input, or may provide a fancy cditor or complex graphics-display interface. An
implementor may choose to prompt explicitly for input, or may choose (as MACLISP does) not to clutter up
the transcript with prompts.

The top-level loop is required to trap all throws and recover gracefully. Itis also required to print all values
. resulting from evaluation of a form, perhaps on separate lines. If a form returns zero values, as little as
possible should be printed.

The following variables are maintained by the top-level loop as a limited safety net, in case the user forgets
to save an interesting input expression or output value. (Note that the names of some these variables violate
the convention that names of global variables begin and end with an asterisk.) These are intended primarily
for user interaction, which is why they have short names. Use of these variables should be avoided in
programs,

212

++

+++

* %

% ok

//
/r7/

-

COMMON LISP REFERENCE MANUAL

[Variable]

[Variable]

[Variable]

While a form is being evaluated by the top-level loop, the variable + is bound to the previous form

rcad by the loop. The variable ++ holds the previous value of + (that is, the form cvaluated two
interactions ago), and +++ holds the previous value of ++.

[Variable]
While a form is being cvaluated by the top-level loop, the variable - is bound to the form itself; that
is, it is the value about to be given to + once this interaction is done.

[Variable]

[Variable]

[Variable]
Whilc a form is being evaluated by the top-level loop, the variable * is bound to the result printed
at the end of the last time through the loop: that is, it is the valuc produced by evaluating the form
in +. If several values were produced, * contains the first value only (or ni1 if zero values were
produced). - The variable ** holds the previous value of * (that is, the rcsult printed two
interactions ago), and *** holds the previous valuc of **,

If the evaluation of + was aborted for some reason, * will have the value n1i1; this is so that + and
* ++and **, and +++ and *** will be correspond properly.

[Variable]

[Variable]

[Variable]
While a form is being evaluated by the top-level loop, the variable / is bound to a list of the results
printcd at the end of the last time through the loop; that is, it is a list of all values produced by
evaluating the form in +. The value of * should always be equal to the car of the value of /. The
variable // holds the previous value of / (that is, the results printed two interactions ago), and ///
holds the previous value of //.

If the evaluation of + was aborted for some reason, / will have the value ni1; this is so that + and
/,++and //, and +++ and /// will be correspond properly.

Chapter 20

Streams

Streams are objccts that serve as sources or sinks of data. Character strcams produce or absorb characters;
binary streams produce or absorb integers. The normal action of a COMMON LISP system is to read characters
from a character input stream, parse the characters into successive S-expressions, cvaluate cach S-cxpression
in turn, and print the results to an output character stream.

Typically streams are connected to files or to an interactive terminal. Streams, being LISP objects, serve as
the ambassadors of external devices by which input/output is accomplished.

A stream may be input-only, output-only, or bidirectional. What operations may be performed on a stream
depends on which of the three types of stream it is.

20.1. Standard Streams

There are several variables whose values are streams used by many functions in the LISP system. These
variables and their uses are listed here. By convention, variables that are expected to hold a stream capable of
input have names ending with “~input”, and similarly “-output” for output streams. Those expected to
hold a bidirectional stream have names ending with “~i0”. » ' '

standard-input , [Variable]
In the normal LISP top-level loop, input is read from *standard-input* (that is, whatever
stream is the value of the global variable *standard-input*). Many input functions, including
read (page 253) and read-char (page 255), take a stream argumcnt that defaults to
standard-input.

*standard-output® [Variable]
In the normal LISP top-level loop, output is sent to *standard-output* (that is, whatever
stream is the value of the global variable *standard-output*). Many output functions,
including print (page 258) and write-char (page 259), take a stream argument that defaults

to *standard-output®.

-213 -

214 ‘ COMMON LISP REFERENCE MANUAL

error-output [Variable]
The value of *error-output* is a strcam to which crror messages should be sent. Normally this
is the same as *standard-output*, but *standard-output* might be bound to a filec and
error-output left going to the terminal or a separate file of crror messages.

query-io | [Variable]
The valuc of *query-io* is a strcam to be used when asking questions of the user. The question
should be output to this strecam, and the answer read from it. When the normal input to a program
may be coming from a file, questions such as “IDo you really want to delete all of the files in your
dircctory??” should be sent directly to the user, and the answer should come from the user, not
from the data file. *query-io* is used by such functions as yes-or-no-p (page 271).

terminal-io ' [Variable]
The value of *terminal-1io* is ordinarily the stream that connects to the user’s console.

trace-output - : [Variable]

The value of *trace-output* is the stream on which the trace (page 302) function prints its
output. '

standard-input®, *standard-output*, *error-output*, *trace-output*, and
query-io are initially bound to synonym streams that pass all operations on to the stream that is the
value of *terminal-io*. (Sec make-synonym-stream (page 224).) Thus any operations performed
" on those streams will go to the terminal.

No user program should ever change the value of *terminal-io*. A program that wants (for example)
to divert output to a file should do so by binding the value of *standard-output*; that way error
messages sent to *error-output* can still get to the user by going through *terminal-io*, which is
usually what is desired. :

20.2. Creating New Streams

Perhaps the most important constructs for creating new streams are those that open files; see
with-open-file (page 286) and open (page 283). The following functions construct streams without
reference to a file system. '

make-synonym-stream symbol ‘ [Function]
make-synonym-stream creates and returns a “synonym stream”, Any operations on the new
stream will be performed on the stream that is then the value of the dynamic variable named by the
symbol. If the value of the variable should change or be bound, then the synonym stream will

STREAMS ' | _) 215

. opcrate on the new stream.

make-broadcast-stream &rest streams [Function]
Returns a strcam that only works in the output dircction. Any output sent to this strcam will be
scnt to all of the streams given. The sct of operations that may be performed on the new strecam is
the intersection of those for the given streams. The results returned by a strecam operation are the
valucs returned by the last strcam in streams; the results of performing the opcration on all
preceding strcams arc discarded. '

make-concatenated-stream &rest streams [Function]
Returns a strcam that only works in the input direction. Input is taken from the first of the streams
until it reaches end-of-file; then that stream is discarded, and input is taken from the next of the
streams, and so on. If no arguments are given, the result is a strcam with no content; any input
attempt will result in end-of-file.

make-two-way-stream inpul-stream oulpul-stream [Function]
Returns a bidirectional stream that gets its input from input-stream and sends its output to
oulput-stream.

make-echo-stream input-stream output-stream [Function]
Returns a bidirectional stream that gets its input from input-stream and sends its output to
output-stream. In addition, all input taken from input-stream is cchoed to output-stream.

make-string-input-stream string &optional start end , [Function]
Returns an input strcam that will supply the characters the substring of string delimited by start and
end in order and then signal end-of-file.

make-string-output-stream &optional line-length : [Function]
Returns an output stream that will accumulate all output given it for the benefit of the function
get-output-stream-string.

get-output-stream-string string-output-stream [Function]
Given a stream produced by make-string-ou tput stream, this returns a string containing all
the characters 'output to the stream so far. The stream is then resct; thus each call to
get-output-stream-string gets only the characters since the last such call (or the creation of
the stream, if no such previous call has been made).

216 _ _ COMMON LISP REFERENCE MANUAL,

with-input-from-string (var siring {keyword value}*) {declaration}* {form}* [Macro]

The body is exccuted as an implicit progn with the variable var bound to a character input strcam
that supplics successive characters from the value of the form string.
with-input-from-string rcturns the results from the last form of the body.

The input stream is automatically closed on exit from the with-input-from-string form. It
is best to regard the stream as having dynamic extent.

The following keyword options may be uscd:

;index The form after the : index keyword should be a place acceptable to setf. If
the with-input-from-string form is cxited normally, then the place will
have stored into it the index into the string indicating the first character not read
(the length of the string if all characters were used). The place is not updated as
rcading prbgresscs, but only at the end of the opcration.

:start The :start keyword takes an argument indicating, in the manner usual for
sequence functions, the beginning of a substring of string to be used.

rend The :end keyword takes an argument indicating, in the manner usual for
sequence functions, the end of a substring of string to be used.

For example:

(with-input-from-string (s "Why a Duck?" :index j :start 6)
(read s)) => duck? ' ~

As a side effect, the variable j is set to 10.

with-output-to-string (var [string]) {declaration}* {form}* [Macro}
The body is executed as an implicit progn with the variable var bound to a character output
stream. All output to that stream is saved in a string. If no string argument is provided, then the
value of with-output-from-string is a string containing all the collected output. If string is
- specified, it must be a string with a fill poirter, the output is incrementally appended to the string
~(see vector-push (page 199)); in this case with-output-to-string returns the results
from the last form of the body.

The output stream is automatically closed on exit from the with-output-from-string form.
It is best to regard the stream as having dynamic extent.

20.3. Operations on Streams

STREAMS 217

streamp object [Function)
streamp is truc if its argument is a strcam, and otherwise is falsc.

(streamp x) <=> (typep x ’'stream)

input-stream-p stream [Function]
This predicate is true if its argument (a strcam) can handlc input operations, and otherwise is false.

output-stream-p stream [Function)
This predicate is true if its argument (a strcam) can handle output operations, and otherwise is false.

stream-element-type stream : [Function]
A type specifier is rcturned to indicate what objects may be read from or written to the stream.
Strcams crcated by open (page 283) will have an clement type restricted to a subset of

character or integer, but in principle a strcam may conduct transactions using any LISP
objects.

close stream &key :abort , . ' [Function]
The strcam is closed. No further input/output operations may be performed on it.. However,
certain inquiry operations may still be performed, and it is permissible to close an already-closed
stréeam.

If the :abort paramcter-is not ni1 (it defaults to ni1), it indicates an abnormal termination of
the use of the stream. An attempt is made to clean up any side effects of having created the stream
in the first place. For example, if the stream performs output to a file, the file is deleted and any
previously existing file is not superseded.

218 COMMON LISP REFERENCE MANUAL

Chapter 21
Input/Output

21.1. Printed Representation of Lisp Objects

Lisp objects are not normally thought of as being text strings; they have very different propertics from text
strings as a conscquence of their internal representation. However, to make it possible to get at and talk about
Lisp objects, LISP provides a representation of objects in the form of printed text; this is called the printed
representation, which is used for input/output purposes and in the cxamples throughout this manual.
Functions such as print (page 258) take a LISP object and send the characters of its printed representation
to a strcam. The collection of routines that does this is known as the (LISP) printer. The'read function takes
characters from a stream, interprets them as a printed representation of a LISP object, builds a corresponding
object, and returns it; the collection of routines that does this is called the (LISP) reader.

Idcally, one could print a LISP object and then read the printed representation back in, and so obtain the
same identical object. In-practice this is difficult, and for some purposes not even desirable. Instead, reading
a printed representation produces an object that is (with obscure technical exceptions) equal (page 56) to
the originaily printed object. :

Most LISP objects have more than one possible printed representation. For example, the integer twenty-
seven can be written in any of these ways:

27 27. #033 #x1B #b11011 #.(* 3 3 3)
A list of two symbols A and B can be printed in many, many ways:

(A B) (a b) (a b)) (\A |B])
; (INA '

) ,
The last example, which is spread over three lines, may be ugly, but it is legitimate. In general, wherever
_.Whitespace is permissible in a printed representation, any number of spaces, tab characters, and newlines may
appear.

When print produces a printed representation, it must choosc arbitrarily from among many possible

printed representations. It attempts to choose one that is readable. There are a number of global variables
that can be used to control the actions of pr int, and a number of different printing functions.

-219 -

220 COMMON LISP REFERENCE MANUAL

This section describes in detail what is the standard printed representation for any Lisp object, and also
describes how read opcrates.

21.1.1. What the read Function Accepts

The purposc of the reader LISP is to accept characters, interpret them as the printed representation of a
Lisp object, and construct and return such an object. The reader cannot accept cverything that the printer
produccs; for example, the printed representations of compiled code objects and closurcs cannot be read in.
However, the reader has many features that are not used by the output of the printer at all, such as comments,
alternative representations, and convenient abbreviations for frequently-used unwicldy constructs. The

~ recader is also parameterized in such a way that it can be uscd as a lexical analyzer for a more general

uscr-written parser.

When the reader is invoked, it reads a character from the input strcam and dispatches according to the
attributes of that character. Every character that can appcar in the input strcam can have one of the following
attributes: whitespace, constituent, escape character, or macro character. In addition, a macro character may
be terminating or non-terminating (of tokens). ‘

Supposing that the first character has been read; call it x. The reader then performs the following actions:

o If x is a whitespace character, then discard it and start over, reading another character.

o If x is a macro character, then execute the function associated with that character. The function
may return zcro values or one value (see values (page 89)). If one value is returned, that object
is returned by the reader. If zero values are returned, the reader starts anew, reading a character
from the input stream and dispatching. The function may of coursc read characters from the
input stream,; if it does, it will see those characters following the macro character.

o If x is an escape character, then read the next character and pretend it is a constituent, ignoring its
usual syntax. Drop into the following case.

o If x is a constituent, then it begins an extended token, representing a symbol or a number. The
reader reads more characters, accumulating them until a whitespace character or a macro character
that is ferminating is found, or until end-of-file is rcached. However, whenever an escape
character is found during the accumulation, the character after that is treated as a pure constituent
and also accumulated, no matter what its usual syntax is. Similarly, any non-terminating macro
character is simply accumulated as if it were a constituent. Call the eventually found whitespace
character or macro character y. All characters beginning with x up to but not including y form a
single extended token. (If cnd-of-file was encountered, the characters beginning with x up to the
end of the file form the extended token.) This token is then interpreted as a number if possible,
and otherwise as a symbol. The number or symbol is then returned by the reader.

‘Compatibility note: What MACLISP calls a “single character object” (tokens of type single) are not porvided for explicitly in
CommoN Lisp. They can be viewed as simply a kind of macro character. That is, the effect of (setsyntax '$ 'single

INPUT/OUTPUT ' 22 l

‘ ni1) in MacClisp can be achieved in ComMON Lisp by

(set-macro-character '$ #'(lambda (stream char)
(declare (ignore stream char))

'$))

The characters of the standard character set initially have the attributes shown in Table 22-1. Note that the
squarc brackets, braces, question mark, and exclamation point (that is, “[”, 77, “{”, “}", “?", and “17) are
normally defined to be constitucnts, but arc not used for any purpose in standard COMMON LISP syntax and
do not occur in the names of built-in COMMON LISP functions or variables. These characters are explicitly
reserved to the user, primarily for usc as macro characters if desired. '

21.1.2. Parsing of Numbers and Symbols

When an extended token is read, it is interpreted as a number or symbol. As a rule, letters not preceded by
escape characters arc converted to upper case. If the token can be interpreted as a number according to the
BNF syntax in Table 22-2, then a number object of the appropriate type is constructed and returned. It should
be noted that in a given implementation it may be that not all tokens conforming to the syntax for numbers
can actually be converted into number objects. For example, specifying too large or too small an exponent for
a floating-point number may make the number impossible to représent in the implementation. Similarly, a
ratio with denominator zero (such as “-35/0007) cannot be represented in any implementation. The

~ exponent markers “b” and “B” are undcfined, but arc reserved for future cxtension of the floating-point type.

In any such circumstance where a token with the syntax of a number cannot be converted to an internal

. number object, an error is signalled. (On the other hand, an error cannot be signalled for specifying too many
significant digits for a floating-point number.)

Note that a token representing a number may not contain any escape characters. An escape character robs
the following character of all syntactic qualities, forcing it to be strictly alphabetic.

If the token consists solely of dots (with no escape characters), then an error is signalled, except in one
circumstance: if the token is a single dot, and occurs in a situation appropriate to “dotted list” syntax, then itis
accepted as a part of such syntax. (Signalling an error catches not only inisplaced dots in dotted list syntax,
but also lists that were truncated by *prinlength* (page 252) cutoff.)

In all other cases the token is construed to be the name of a symbol. If there are any package markers
(colons) in the token, they divide the token into pieces used to control creation of the symbol. The cases
where there are two or more colons, or where a colon appears at the end of the token, presently do not mean
anything in COMMON LISP and are reserved for future use; sce chapter 11 (page 115). If there is a single
non-final colon, it divides the token into two parts. The first part spccifies a package. A null first part
indicates the keyword package; otherwise it is interpreted as the name of a symbol in the current package,
and that symbol must name a package. The second part is the name of the symbol.

If a symbol token contains no packagé markers, then the entire token is the name of the symbol. The
‘ symbol is looked up in the default package; see *package* (page 117).

222 » COMMON LISP REFERENCE MANUAL

{tab> whitespace <{page> whitespace <return> whitespace

<{space> whitespace @ constituent * . terminating macro character

! constituent A constituent a conslituent

" terminating macro character B constituent b constituent

terminating macro character C constiluent C constituent

$ constituent D constituent d constituent

% constituent E constituent e constituent

& constituent F constituent f constituent

' terminaling macro character G constituent g conslituent

(terminating macro character ~ H constituent h constituent

) terminating macro character 1 constituent i constituent
constiluent J constituent j constituent

+ consliluent K constituent k constituent

, lerminating macro character L constituent 1 constituent

- conslituent M constituent m constituent

. conslituent N constituent n constituent

/ constituent 0 constituent 0 constiluent

0 constituent P constituent p constituent

1 constituent Q constituent q constituent

2 constituent R constituent r constituent

3 constituent S constituent S constituent

4 constituent T constituent t constituent

5 constituent U constituent u constituent

6 conslituent V constituent v constituent

1 constituent W constituent W constituent

8 constituent X constituent X conslituent

9 constituent Y constituent _ Y constituent

. conslituent Z constituent z constituent

; lerminating macro character [constituent “{ constituent

< constituent \ escape character | terminating macro character

= conslituent] constituent } constituent

> constiluent ~ constituent =~ constituent

? constituent . constituent <rubout> constituent

<backspace> constituent <linefeed> whitespace

Table 21-1: Standard Character Syntax Attributes

INPUT/OUTPUT 223

number 1= integer | ratio | floating-point-number

integer ::= [sign] {digit} * [.]

ratio : = [sign] {digit} T 7 {digit}

Aoating-point-number :: = [sign] {digity* . {digit}™ [exponend | [sign] {digit} * [. {digit}*] exponent

signii=+|-
digit::=0]1}2]3|4]|5]|6]718]9
exponent ::= exponent-marker [sign] {digit} *

exponent-marker::=e|s|f|d|1|b|]E|JF|D|S|L|B

The notation “{x}*” means zero or more occurrences of “x”, the notation “{x}*” means onc or more
occurrences of “x”, and the notation “{x]” means zero or onc occurrences of “x”.

Table 21-2: Syntax of Numbers

The interpretation of standard characters within extended tokens is shown in Table 22-3. These
interpretations can be uscd, of course, only for characters defined to be constituent characters. For characters
of type whitespace, macro character, or escape character, the interpretations in Table 22-3 are cffectively
shadowed. (The interpretation of “superdigits” is relevant to the rcading of rational numbers in a radix
greater than ten.) ' '

21.1.3. Macro Characters

If the reader encounters a macro character, then the function associated with that macro character is called,
and may produce an object to be returned. This function may recad following characters in the stream in
whatever syntax it likes (it may even call read recursively) and returns the object represented by that syntax.
Macro characters may not be recognized, of course, when read as part of other special syntaxes (such as for
strings).

The reader is therefore organized into two parts: the basic dispatch loop, which also distinguishes symbols
and numbers, and the collection of macro characters. Any character can be reprogrammed as a macro
character; this is a means by which the reader can be extended. The macro characters normally defined are:

(The left parenthesis character initiates reading of a pair or list. The function read (page 253) is called
recursively to read successive objects, until a right parenthesis is found to be next in the input stream. A
list of the objects read is returned. Thus ’

(abc)
is read as a list of three objects (the symbols a, b, and c). The right parenthesis need not follow the
printed representation of the last object immediately; whitespace characters may precede it. This can be
useful for putting one object on cach line and making it casy to add new objects:

224

COMMON LISP REFERENCE MANUAL

<tab> alphabetic * { alphabetic

<{lincfeced> alphabetic * | alphabetic *

<page> alphabctic * 3} alphabetic

<return> alphabctic *) alphabetic *

<spacc> alphabetic * @ alphabetic

! alphabetic A, a alphabetic, superdigit

" alphabetic * - B, b alphabetic, supecrdigit, reserved cxponent
alphabetic * C,c alphabetic, superdigit A '

$ alphabetic D,d alphabetic, superdigit, double-float exponent
% .alphabetic E, e alphabetic, superdigit, float cxponent

& alphabetic F, f alphabetic, superdigit, single-float exponent
! alphabetic * G, g alphabetic, superdigit

(alphabetic * H, h alphabetic, superdigit

) alphabetic * I,i alphabetic, superdigit

* alphabetic J,j alphabetic, superdigit

+ alphabetic, plus sign K, k alphabetic, superdigit

, ‘ alphabetic * o L, 1 = alphabetic, superdigit, long-float exponent -
- alphabetic, minus sign M, m_ alphabetic, supcrdigit

. alphabetic, dot, decimal point N, n alphabetic, superdigit

/ alphabetic, ratio marker 0, 0 alphabetic, superdigit

0 digit P,p alphabetic, superdigit

1 digit Q,q alphabetic, superdigit

2 digit R, r alphabetic, supcrdigit

3 digit : S,s alphabetic, superdigit, short-float exponent
4 digit T,t alphabetic, superdigit

5 digit U, u alphabetic, superdigit

6 digit V,v alphabetic, superdigit

7 digit ’ W,w alphabetic, superdigit

8 digit ' X, x alphabetic, superdigit

9 digit ' Y,y alphabetic, superdigit

: package marker Z,z alphabetic, superdigit

; alphabetic * [alphabetic

< alphabetic \ alphabetic *

= alphabetic] alphabetic

> alphabetic ~ alphabetic

? alphabetic - alphabetic

<{rubout> alphabetic ~ alphabetic

<backspace> alphabetic

* The interpretations in this table apply only to characters determined to have the constituent attribute.
Entries marked with an asterisk are normally shadowed because the indicated characters have whitespace,
macro character, ot escape character syntax.

Table 21-3: Standard Constituent Character Attributes

INPUT/QUTPUT) , 225

. (defun traffic-light (color)

(caseq color
(green)
{red (stop))
(amber (accelerate)) ; Insert more colors after this line.

))

[t may be that no objects precede the right parenthesis, as in “()” or *()”; this rcads as a list of z¢ro
objects (the cmpty list).

.lf a token is read between objects that is just a dot “.”, not preceded by an escape character, then exactly
one more object must follow (possibly followed by whitespace), and then the right parenthesis:
(abc.d) ' '

This means that the cdr of the last pair in the list is not ni1, but rather the object whose representation
followed the dot. The above example might have been the result of evaluating

(cons 'a (cons 'b (cons ’'c 'd))) => (a b c . d)
Similarly, we have
(cons ’'znets 'wolg-zorbitan) => (znets . wo]d-zorbitan)
It is permissible for the object following the dot to be a list: '
(abcd. (ef . (g))) isthesameas (a b c de f g)

but this is a non-standard form that print will never produce.

.) The right-parenthesis character is part of various constructs (such as the syntax for lists) using the
left-parenthesis character, and is invalid except when used in such a construct.

l - The single-quote (accent acute) character providcs an abbreviation to make it easier to put constants in
programs. ’foo reads the same as (quote foo): alist of the symbol quote and foo.

l ; Semicolon is used to write comments. The semicolon and everything up through the next newline are
ignored. Thus a comment can be put at the cnd of any line without affecting the reader (except that
semicolon, being a macro character and therefore a delimiter, will terminate a token, and so cannot be
put in the middle of a numbe; or symbol),

For example:

226

- COMMON LISP REFERENCE M/\NUAL

;:;; COMMENT-EXAMPLE and related nonsense.
;+: This function 1is useless except to demonstrate comments.
:3; Notice that there are several kinds of comments.

{(defun comment-example (x y) ;X is anything; Y is an a-list.
(cond ((listp x) x) ;If.X is a list, use that.
;3 X is now - not a list. There are two other cases.
((symbolp x) o
;; Look up a symbol in the a-list.

(cdr (assq x y))) ;Remember, (cdr nil) is nil.
;; Do this when all else fails:
(t (cons x ;Add x to a default 1ist.
"((Tisp t) ;LISP is okay.
(fortran nil) ; FORTRAN is not.
(p1/i -500) ;Note that you can put comments in
(ada .001) ; "data" as well as in "programs".
;3 COBOL??

(teco -1.0e9))))))

This example illustrates a few conventions for comments in common use. Comments may begin with

one to four semicolons.

e Single-semicolon comments arc all aligned to the same column at the right; usually cach
comments about only the line it is on. Occasionally two or three contain a single sentence
together; this is indicated by indenting all but the first by a space.

e Double-semicolon comments are aligned to the level of indentation of the code. A space
follows the two semicolons. Usually each describes the state of the program at that point, or
describes the scction that follows. ’

e Triple-semicolon comments are aligned to the left margin. Usually they are not used within
S-expressions, but precede them in large blocks.

¢ Quadruple-scmicolon comments are interpreted as subheadings by some software such as the
ATSIGN listing program. '

The double-quote character begins the printed representation of a string. Characters are read from the
input stream and accumulated until another double-quote is encountered, except that if an escdpe
character is scen, it is discarded, the next character is accumulated, and accumulation continues. When a
matching double-quote is seen, all the accumulated characters up to but not including the matching
double-quote are made into a simple string and returned.

The vertical-bar character begins one printed representation of a symbol. Characters are read from the
input strcam and accumulated until another vertical-bar is encountered, cxcept that if an escape
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a
matching vertical-bar is seen, all the accumulated characters up to but not including the matching
vertical-bar are made into a symbol and returned. In this syntax, no characters are ever converted to
upper case; the name of the symbol is precisely those characters between the vertical bars (allowing for

4

INPUT/OUTPUT . 227

. any cscapc characters).

The backquote (accent grave) character makes it casier to write programs to construct complex data
structures by using a templatc.As an example, writing

‘(cond {(numberp ,x) ,@y) (t (print ,x) ,@y))
is roughly cquivalent to writing
(1ist ’cond
(cons (1ist ’numberp x) y)
(list* *t (1ist ’print x) y)) v .
The general idea is that the backquote is followed by a template, a picture of a data structure to be built.
This template is copied, except that within the template commas can appear. Where a comma occurs,
the form ﬂ)]lowing the comma is to be evaluated to produce an object to be inserted at that point.
Assume b has the value 3, for cxamplc,'thcn cvaluating the form denoted by “*(a b ,b ,(+ b 1)
b)” producestheresult (a b 3 4 b).

If a comma is immediately followed by an at-sign (“@"), then the form following the at-sign is evaluated
to produce a list of objects. These objects are then “spliced” into place in the template. For example, if
x has the value (a b c), then " ’

‘(x ,x ,@x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x))
=> (x (abc) abc foo b bar (b c) baz b c)

backquote can be used, a possible interpretation of that situation as an cquivalent form is given. Note
that the form is equivalent only in the sense that when it is evaluated it will calculate the correct result.
An implementation is quite free to interpret backquote in any way such that a backquoted form, when
evaluated, will produce a result equal to that produced by the interpretation shown here.

‘ The backquote syntax can be summarized formally as follows. For each of several situations in which

e ‘simple is the same as ' simple, thatis, (quote simple), for any form simple that is not a list
or a general vector.

e ', form is the same as form, for any form, provided that the representation of form does not

“ 9

begin with “@” or “.”. (A similar caveat holds for all occurrences of a form after a comma.)
e ', @form is an error.

e '(xI x2 x3 ... xn . atom) may be interpreted to mcan (append xI x2 x3 ...
xn (quote atom)), where the underscore indicates a transformation of an xj as follows:

_ o form is interpreted as (1ist ‘form), which contains a backquoted form that must
‘ then be further interpreted.

o, formisinterpreted as (1ist jform).

| . o ,@formis interpreted simply as form.

228

COMMON LISP REFERENCE MANUAL

o ‘(xI x2 x3 ... xn) may be interpreted to mean the sameas “(x/ x2 x3 ... xn .
nil).
e ‘(x/ x2 x3 ... xn . ,form) may be interpreted to mean (append x/ x2 x3 ...

xn form), where the underscore indicates a transformation of an xj as above.

o ‘(x] x2 x3 ce.oxn . ,@form) is an error.
e ‘#(x] x2 x3 ... xn) may be interpreted to mean (make-simple-vector nil
zinitial-contents ‘(x/ x2 x3 ... xn)).

No other uscs of comma arc permitted; in particular, it may not appear within the #A or #S syntax.

Anywhere “,@” may be used, thg syntax ““, .” ‘'may be used instcad to indicate that it is permissible to
destroy the list produced by the form following the “, .”; this may permit morc efficient code, using
nconc (page 178) instecad of append (page 177), for example.

If the backquote syntax is nested, the innermost backquoted form should be expanded first. Thlb means
that if several commas occur in a row, the leftmost one belongs to the innermost backquote.

Once again, it is emphasized that an implementation is frec to interpret a backquoted form as any form
that, when evaluated, will producc a result that is equal to the result implied by the above dcfinition.
In particular, no guarantees arc madec as to whether the constructed copy of the template will or will not
share list structure with the template itself. As an example, the above definition implies that * ((,a b)
,C ,@d) will be interpreted as if it were

(append (1ist (append (list a) (list.’b) ’'nil)) (list c) d ’'nil)
but it could also be legitimately interpreted to mean any of the following:

(appénd (1ist (append (1ist a) (list 'b))) (1ist c) d)

(append (1ist (append (Tist a) '(b))) (list c) d)

(append (1ist (cons a ’'(b))) (1ist c) d)

(1ist* (cons a '(b)) c d)

(1ist* (cons a (1ist 'b)) c d)

(1ist* (cons a '(b)) c (copy-list d))

(There is no good reason why copy-11st should be performed, but it is not prohibited.)

The comma character is part of the backquote syntax and is invalid if used other than inside the body of
a backquote construction as described above. ‘

‘The sharp-sign character is a dispatching macro character. It reads an optional digit string and then one

more character, and uses that character to select a function to run as a macro-character function. See the
next section for predefined sharp-sign macro characters.

INPUT/OUTPUT 229

21.1.4. Sharp-Sign Abbreviations

The standard syntax includes forms introduced by a sharp sign (“#7). 'Thesc take the genceral form of a
sharp sign, a sccond character that identifics the syntax, and following arguments in some form. If the second
character is a letter, then casc is not important; #0 and #o arc considered to be cquivalent, for example.

Certain sharp-sign forms allow an unsigned dccimal number to appear between the sharp sign and the
second character: some other forms even require it.

The currently-defined sharp-sign constructs arc described below and summarized in Table 22-4; more are
likely to be added in the future. However, the constructs “#17, “#?7, “#[”, “#]7, “#{", and “#}” are
explicitly reserved for the user and will never be defined by the COMMON LISP standard.

#\ #\x rcads in as a character object that represents the character x. Also, #\name rcads in as the
character object whose name is name. Note that the backslash *“\” allows this construct to be parsed
easily by EMACS-like editors.

In the single-character case, the character x must be followed by a non-constituent character, lest a
name appear to follow the “#\”. A.good model of what happens is that after “#\™ is read, the rcader
backs up over the “\” and then reads an extended token, treating the initial “\” as an escape
character (whether it really is or not in the current readtable). '

Upper-case and lower-case letters are distinguished after “#\; “#\A” and “#\a” denotc different
character objects.. Any character works after #\, cven those that are normally special to read, such
as parcntheses. Non-printing characters may be used after #\, although for them names are
gencrally preferred.

#\name reads in as a character object whose name is name (actually, whosc name is
(string-upcase name); therefore the syntax is case-insensitive). The following names are
standard across all implementations: .

return The carriage return or newline character.

space The space or blank character.

The following names are semi-standard; if an implementation supports them, they should be used for
the described characters and no others.

rubout The rubout or delete character.

page The formfeed or page-separator character.
tab The tabulate character.

backspace The backspace character..

linefeed The line feed character.

The name should have the syntax of a symbol.

When the LISP printer types out the name of a special character, it uses the same table as the #\

230 . : COMMON LISP REFERENCE MANUAL

#<tab> signals error #<pagc> signals error #<rcturn> signals crror
#<space> signals error #@ undcfined #° undcfined

#! undcfined #A array o #a array

#" undefined #B binary rational #b binary rational
reference to label #C complex number ~ #c complex number
#$ undcfined #D undcfined #d undcfined

#% undcfined #E undecfined #e undefined

#& undcfined #F undefined #f undcfined

#' function abbreviation #G undcfined #g undefined

#(general vector #H undcfined #h undefined

#) signals error ‘ - #I undefined - #i undefined

#* Dbit-vector #J undefined #j undcfined N
#+ rcad-time conditional ‘#K undefined - #k undefined

#, load-time cvaluation #L undecfined #1 undefined

#- rcad-time conditional #M undefined : #m undefined

#. rcad-time evaluation #N undefined #n undefined

#/ undefined #0 octal rational ' #0 octal rational

#0 (infix argument) #P . undefined #p undecfined

#1 (infix drgument) #Q undefined #q undefined

#2 (infix argument) - #R radix-n rational #r radix-n rational
#3. (infix argument) ‘ #S structure , #s structure

#4 (infix argument) #T undefined #t undefined

#5 (infix argument) #U undefined #u undefined

#6 (infix argument) #V undefined #v undefined

#7 (infix argument) #W undefined #w undefined

#8 (infix argument) ‘ #X hexadecimal rational - #x hexadecimal rational
#9 (infix argument) #Y undefined #y undefined

#: undefined #Z undefined #z undefined

#; undefined #[undcfined #{ undefined

#< signals error #\ named character #| undefined

#= labels LISP object #] undefined ' #} undefined

#> undefined #~ undefined #~ undefined

#? undefined ' #_ undefined #<rubout> undefined
#<backspace> undefined #<backspace> signals error

" Table 21-4: Standard Sharp-Sign Macro Character Syntax

INPUT/OUTPUT o 231

#’

#(

#*

rcader; therefore any character name you see typed out is acceptable as input (in that
implementation). Standard names arc always preferred over non-standard names for printing.

The following conveéntion is used in implementations that support non-zero bits attributes for
character objects. I1f a name after #\ is longer than onc character and has a hyphen in it, then it may
be split into the two parts preceding and following the first hyphen; the first part (actuaily,
string-upcase of the first part) may then be interpreted as the name or initial of a bit, and the
sccond part as the name of the character (which may in turn contain a hyphen and be subject to
further splitting).

For example:

#\Control-Space #\Control-Meta-Tab

#\C-M-Return . #\H-S-M-C-Rubout
If the character name consists of a single character, then that character is uscd. Another “\” may be
necessary to quote the character.

#\Control-@ ~ #\Control-Meta-\"

#\Control-\a #\Meta-> '
If an unsigned decimal integer appears between the “#” and “\”, it is interpreted as a font number,
to become the char-font (page 154) of the character object.

Compatibility note: Formerly, Lisp Machine Lisp and MACLISP used #\ to mean only the #\ name version of this
syntax, using #/ for the #\x version. Lisp Machine LiSP has recently changed to allow #/ to handle both
syntaxes. The incompatibility is a result of the general exchange of the / and \ characters.

Also, MacLisp and Lisp Machine Lisp definc #\ and #/ to be a syntax for numbers, integers that represent
characters. Here they are a syntax for character objécts. Code conforming to the “Character Standard for Lisp”
will not depend on this distinction; but non-conforming code (such as code that docs arithmetic on bare character
values) may not be compatible.

#' foo is an abbreviation for (function foo). foo may be the printed representation of any LiSp
object. This abbreviation may be remembered by analogy with the ' macro-character, since the
function and quote special forms are similar in form.

A series of representations of objects enclosed by “#(™ and “)” is read as a simple general vector of
those objects. This is analogous to the notation for lists.

If an unsigned decimal integer appears between the “#” and “(, it specifies explicitly the length of
the vector. In that case, it is an error if too many objects are specificd before the closing “)”, and if
too few are specified the last one is used to fill all remaining clements of the vector.

For example:

#(a b cccc)
#6(a b c c c c)
#6(a b c)
#6(a b c c)

all mean the same thing: a vector of length 6 with elements a, b, and four instances of c.

A series of binary digits (0 and 1) preceded by “#*” is read as a simple bit-vector containing those
bits, the leftmost bit in the series being bit 0 of the bit-vector.

232 COMMON LISP REFERENCE MANUAL

If an unsigned decimal integer appears between the “#" and “*”, it specifies explicitly the length of .
the vector. In that case, it is an crror if too many bit arc specified, and if too few arc specificd the last
one is used to fill all remaining clements of the bit-vector. ‘

For example:

#*101111

#6*101111

#6*101
#6*1011

all mcan the same thing: a vector of length 6 with clements a, b, and four instances of c.

#: #: foo rcquires foo to have the syntax of an unqualified symbol name (no embedded colons). It
- denotes an uninterned symbol whose name is foo. Every time this syntax is encountered a different
uninterned symbol is created. :

#. # . foo is read as the object resulting from the evaluation of the LISP object represented by foo, which
may be the printed representation of any LISP object. The cvaluation is donc during the read
process, when the #. construct is encountered. This, thercfore, performs a “read-time” evaluation of
Jfoo. By contrast, #, (sec below) performs a “load-time” evaluation.

This allows you, for example, to include in your code complex list-structure constants that cannot be
written with quote. Note that the reader does not put quote around the result of the evaluation.
You must do this yourself if you want it, typically by using the * macro-character. An example of a
case where you do not want quote around it is when this object is an element of a constant list.

#, #, foo is read as the object resulting from the evaluation of the LISP object represented by foo, which
may be the printed representation of any LISP object. The evaluation is done during the read
process, unless unless the compiler is doing the rcading, in which case it is arranged that foo will be
evaluated when the file of compiled code is loaded. - This, therefore, performs a “load-time”
evaluation of foo. By contrast, #. (sec above) performs a “read-time” evaluation. In a sense, #, is
like specifying (eval load) to eval-when (page 49), while #. is more like specifying (eval
compile). It makes no diffcrence when loading interpreted code, but when code is to be compiled,
. specifies compile-time evaluation and #, specifies load-time evaluation.

#, allows you, for example, to include in your code complex list-structure constants that cannot be
written with quote. Note that the reader does not put quote around the result of the evaluation.
You must do this yourself if you want it, typically by using the ’ macro-character. An example of a
case where you do not want quote around it is when this object is an element of a constant list.

#B #brational reads rational in binary (radix 2). For example, #81101 <=> 13, and #b101/11 <=>
5/3.

#0 #orational reads rational in octal (radix 8). For example, #037/15 <=> 31/13, and #0777 <=>
- 511,

INPUT/OUTPUT . 233

#X

#nR

#nA

#S

##

#+

#x rational reads rational in hexadecimal (radix 16). The digits above 9 arc the letters A through F
(the lower-case letters a through f arc also acceptable). For example, #xF00 <=> 3840,

 #radixr rational rcads rational in radix radix. radix must consist of only digits, and it is rcad in

decimal; its value must be between 2 and 36 (inclusive).

For example, #3102 is another way of writing 11, and #11R32 is another way of writing 35. For
radices larger than 10, letters of the alphabet arc used in order for the digits after 9.

The syntax #nAform constructs an n-dimensional array, using form as the value of the
:initial-contents argument to make-array (page 193).

“The syntax #s(name slotl. valuel slot2 value? . ..) denotes a structure. This is legal only if

name is the name of a structure alrcady defined by defstruct (page 201), and if the structure has a
standard constructor macro, which it normally will. Lct ¢m stand for the name of this constructor
macro; then this syntax is equivalent to '

#.(cm slotl ’valuel slot2. ’value? ...)

That is, the constructor macro is called, with the specified slots having the specified values (note that
one does not writc quote-marks in the #S syntax).. Whatever objcct the constructor macro returns is
returned by the #S syntax.

The syntax #n=object reads as whatever LISP object has object as its printed representation. However,
that object is labelled by n, a required unsigned decimal integer, for possible reference by the syntax
#n# (below). The scope of the label is the S-expression being rcad by the outermost call to read.
Within this S-expression the same label may not appcar twice.

The syntax #n#, where n is a required unsigned decimal integer, serves as a reference to some object
labelled by #n=; that is, #n# represents a pointer to the same identical (eq) object labelled by #n=. -
This permits notation of structures with shared or circular substructure. For example, a structure

" created in the variable y by this code:

(setq x (1ist 'p ’q))
(setq y (list (1ist 'a 'b) x 'foo x))
(rplacd (last x) (cdr x)) :

. could be represented in this way:

((a b) . #1=(#2=(p q) foo #2# . #1#))
Without this notation, but with *prinlength* (page 252) sct to 10, the structure would print in
this way:
((a b) (p.q) foo (p a) (p q) foo (p q) (p q) foo (p q) ...)
A reference #n# may only occur after a label #n=; forward references are not permitted.

The #+ syntax provides a read-time conditionalization facility. The general syntax is “#+feature
Jorm”. If feature is “truc”, then this syntax represents a LISP object whose printed representation is
Jorm. If feature is “false”, then this syntax is effectively whitespace; it is as if it did not appear.

234

#<

COMMON LISP REFFERENCE MANUAL

The feature should be the printed representation of a symbol or list. 1f Sfeature is a symbol, then it is
true iff it is a member of the list that is the value of the global variable *features* (page 308).

Compatibility note: MAcCI1sP uses the status special form for this purpose, and Lisp Machine Lise duplicates
status cssentially only for the sake of (status features). The usc of a variable allows one to bind the
features list, for cxample when compiling,

Otherwise, feature should be a boolcan expression composed of and, or, and not opecrators on
(rccursive) feature expressions.

For example, suppose that in implementation A the features spice and perq are true, and in
implementation B the feature 1ispm is true. Then the expressions on the left below are read the
same as those on the right in implementation A:

(cons #+spice "Spice" #+lispm "Lispm" x) (cons "Spice" x) '

(setq a "(1 2 #+perq 43 #+(not perq) 27)) (setq a '(1 2 43))

(let ((a 3) #+(or spice lispm) (b 3)) (let ((a 3) (b 3))

(foo a)) (foo a))

In implementation B, however, they are read in this way: '

(cons #+spice "Spice" #+lispm "Lispm" x) (cons "Lispm" x)
(setq a (1 2 #+perq 43 #+(not perq) 27)) (setq a '(1 2 27))
(tet ((a 3) #+(or spice lispm) (b 3)) (tet ((a 3) (b 3))
(foo a)) (foo a))
The #+ construction must be used judiciously if unreadable code is not to result. The user should
make a careful choice between rcad-time conditionalization and run-time conditionalization.

#-feature formis equivalent to #+(not feature) form.
This is not legal reader syntax. It is used in the printed representation of objects that cannot be read

back in. Attempting to read a #< will cause an error, (More precisely, it is legal syntax, but the
macro-character function for it signals an error.)

#<space>, #<tab>, #<return>, #<{page>

A # followed by a standard whitespace character is not legal reader syntax. This is so that
abbreviated forms produced via *prinlevel® (page 252) cutoff will not read in again; this serves
as a safeguard against losing information. (More precisely, it is legal syntax, but the macro-character

function for it signals an error.) '

#) This is not legal rcader syntax. This is so that abbreviated forms produced via *prinievel* (page
252) cutoff wil] not read in again; this serves as a safeguard against losing information. (More
preciscely, it is legal syntax, but the macro-character function for it signals an error.)

21.1.5. The Readtable

Previous scctions have described the standard syntax accepted by the read function. This section
discusses the advanced topic of altering the standard syntax, either to provide extended syntax for LISP objects
or to aid the writing of other parsers. _ -

INPUT/OUTPUT ‘ 235

There is a data structure called the readtable that is used to control the reader. 1t contains information
about the syntax of cach character cquivalent to that in Table 21-1. Initially it is sct up exactly as in Table
21-1 to give the standard COMMON LISP meanings to all the characters, but the user can change the meanings
of characters to alter and customize the syntax of characters. It is also possible to have scveral rcadtables
describing different syntaxcs and to switch from one to another by binding the variable *readtable*.

Even if an implementation supports characters with non-zero bits and font attributes, it need not (but may)
allow for such characters to have syntax descriptions in the rcadtable. Howcver, every character of type
string-char must be represented in the readtable.

readtable " [Variable]
. The value of *readtable* is the current recadtable. The initial value of this is a readtable set up
for standard COMMON LISP syntax. You can bind this variable to temporarily change the readtable

being used. ' '

To program the rcader for a different syntax, a set of functions are provided for manipulating readtables.
Normally, you should begin with a copy of the standard COMMON LISP readtable and then customize the
individual characters within that copy. '

copy-readtable &optional from-readtable to-readtable : [Function)
A copy is made of from-readtable, which defaults to the current readtable (the valuc of the global
variable *readtable*). If from-readtable is nil, then a copy of a standard COMMON LISP
readtable is made; for example,
(setq readtable (copy-readtable nil))

will restore the input syntax to standard COMMON LISP syntax, even if the original readtable has
been clobbered (assuming it is not so badly clobbered that you cannot type in the above
expression!).

If to-readtable is unsupplied or ni1, a fresh copy is made. Otherwise fo-readtable must be a
readtable, which is clobbered with the copy.

readtablep object | , [Function]
readtablep is true if its argument is a readtable, and otherwise is false.
(readtablep x) <=> (typep x 'readtable)

set-syntax-from-char {to-char from-char &optional .to-readtable from-readtable [Function]
Makes the syntax of to-charin to-readtable be the same as the syntax of from-char in from-readtable.
The to-readtable defaults to the current readtable (the value of the global variable *readtable*
(page 245)), and from-readtable defaults to ni1, meaning to use the syntaxes from the standard LISP
readtable.

236

COMMON LISP REFERENCE MANUAL

Only attributes as shown in Table 21-1 are copied; morcover, if a macro character is copicd, the
macro definition function is copicd also. However, attributes as shown in Table 21-3 arc not
copied; they are “hard-wired” into the extended-token parser. For example, if the definition of *S”
is copicd to **”, then “*” will become a constituent, but will be simply alphabetic and cannot be
used as an exponent indicator for short-format floating-point number syntax.

It “works™ to copy a macro dcfinition from a character such as *|” to another character; the
standard definition for *“|” looks for another character that is the same as the character that invoked
it. It doesn’t “work™ to copy the definition of (™ to “{", for examplc; it can be done, but it lets
onc write lists in the form “{a b c)”, not “{a b c}”, becausc the definition always looks for a
closing “)”. Sce the function read-delimited-1ist (page 254), which is useful in this
connection. '

set-macro-character char function &optional non-terminating-p readtable [Function]
get-macro-character char &optional readtable [Function]

set-macro-character causcs chqr to be a macro character that when seen by read causes)
Junction to be called. If non-terminating-p is not nil (it dcfaults to ni1), then it will be a
non-terminating macro character: it may be cmbedded within extended. tokens.
get-macro-character returns the function associated with char, and as a sccond value returns
the non-terminating-p flag; it returns ni1 if char does not have macro-character syntax. In each
case, readtable defaults to the current readtable.

Sfunction is called with two arguments, stream and char. The stream is the input stream, and char is

- the macro-character itself. In the simplest case, function may rcturn a LISP object. This object is

taken to be that whose printed representation was the macro character and any following characters
rcad by the function. As an example, a plausible definition of the standard single-quote character
is:
(defun singlte-quote-reader (stream char)
(declare (ignore char))
(1ist 'quote (read stream)))
(set-macro-character #\' #’single-quote-reader)
The function reads an object following the single-quote and returns a list of the symbol quote and
that object. The char argument is ignored.

The function may choose instead to return zero values (for example, by using (values) as the
return expression). In this case the macro character and whatever it may have read contribute
nothing to the object being read. As an example, here is a plausible definition for the standard
semicolon (comment) character:

INPUT/OUTPUT _ 237

(defun semicolon-reader (stream char)
(declare (ignore char))
;; First swallow the rest of the current input line.
(do () ((char= (read-char stream) #\Return)))
;; Return zero values.
(values))

(set-macro-character #\; #'semicolon-reader)

The finction should not have any side-effects other than on the stream. Front ends (such as editors
and rubout handlers) to the reader may cause function to be called repeatedly during the reading of
a single cxpression in which the macro character only appears once, because of backtracking and
restarting of the read operation. o

make-dispatch-macro-character char &optional non-terminating-p readtable [Function]

This causes the character char to be a dispatching macro character in readtable (which defaults to
the current readtable). If non-terminating-p is not ni1 (it defaults to ni1), then it will be a
non-terminating macro character: it may be embedded within extended tokens.

Initially every charactér in the dispatch table has a character-macro function that signals an error.
Use set-dispatch-macro-character to define cntrics in the dispatch table.

set-dispatch-macro-character disp-char sub-char function &optional readtable [Function]
get-dispatch-macro-character disp-char sub-char &optional readtable [Function]

set-dispatch-macro-character causes finction to be called when the disp-char followed by
sub-char is read. The readtable defaults to the current readtable. The arguments and return values
for function are the same as for normal macro characters, documented above under
set-macro-character (page 236), except that function gets sub-char as its sccond argument,
and also receives a third argument that is the non-ncgative integer whose decimal representation
appeared between disp-char and sub-char, or ni1 if there was none. The sub-char may not be one
of the ten decimal digits; they are always reserved for specifying an infix integer argument.

get-dispatch-macro-character returns the macro-character function for sub-char under
disp-char.

As an example, suppose one would like #$ 00 to be read as if it were (do171ars foo). One might
say:)
(defun sharp-dollar-reader (stream subchar arg)
(declare (ignore subchar arg))

(1ist 'dollars (read stream)))
(set-dispatch-macro-character #\# #\$ #'sharp-dollar-reader)

Compatibility note: This macro-character mechanism is different from those in MAcLisp, INTERLISP, and Lisp Machine
Lisp. Recently Lisp systems have implemented very general readers, even readers so programmable that they can parse
arbitrary compiled BNF grammars. Unfortunately, these readers can be complicated to use. This design is an attempt to
make the reader as simple as possible to understand, use, and implement. Splicing macros have been climinated; a recent
informal poll indicates that no one uses them to produce other than zcro or one value. The ability to access parts of the

<

238 COMMON LISP REFERENCE MANUAL

object preceding the macro character have been climinated. ‘The single-character-object feature has been climinated,
because it is scldom used and trivially obtainable by defining a macro.

The user is encouraged to turn off most macro characters, turn others into single-character-object macros, and then use
read purcly as a lexical analyzer on op of which to build a parser. 1t is unnecessary, however, to cater to more complex
lexical analysis or parsing than that nceded for COMMON Lisp.

21.1.6. What the print Function Produces

The COMMON LISP printer is controlled by a number of special variables; *prinescape* is one of the
most important. ‘

prinescape ~ _ [Variable]
When this flag is ni1, then escape characters are not output when an S-expression is printed. In
particular, a symbol is printed by simply printing the characters of its print name. The function
princ (page 258) cffectively binds.*prinescape* tonil.

When this flag is not ni1, then an attempt is made to print an S-cxpression in such a way that it can
be read again to produce an equal structure. The function prin1 (page 258) effectively binds
*nrinescape*tot.

Compatibility note: This flag controls what was called slashification in MACLisP.

The initial value of this variable is t.

prinpretty | ‘ - [Variable]
When this flag is ni1, then only a small amount of whmspace is output when printing an
expression, as described below.

When this flag is not ni1, then the printer will endeavor to insert extra whltespace where
appropriate to make the expression more readable.

princircle [Variable]
When this flag is ni1 (the default), then the printing process proceeds by recursive descent; an
attempt to print a circular structure may lead to looping behavior and failure to terminate.

~ When this flag is not ni1, then the printer will endeavor to detect cycles in the structure to be
printed, and to use #n= and #n# syntax to indicate the circularities.

How an expression is printed depends on its data type.

Integers. If appropriate, a radix specifier may be printed; see *prinradix* below. If an integer is
negative, a minus sign is printed and then the absolute value of the integer is printed. Non-ncgative integers
are printed in the radix specified by *base* in the usual positional notation, most significant digit first. The
number zero is represented by the single digit 0, and never has a sign. A decimal point may then be printed.

INPUT/OUTPUT ' ' 239

base [Variable]
The valuc of *base* determines in what radix the printer will print rationals. This may be any
intcger from 2 to 36, inclusive; the default value is 10 (decimal radix). For radices above 10,
letters of the aiphabet are used to represent digits above “9”.

Compatibility note: MacLisp calls this variable base, and its default value is 8, not 10.

Floating-point numbers arc always printed in decimal, no matter what the value of *base*,

prinradix , : ['Variable]
If the variable *prinradix* is non-ni1, the printer will print a radix spccifier to indicate the
radix in which it is priming a rational number. To prevent confusion of the letter “0” and the digit
“07, and of the letter *B” with the digit "“b”, the radix specificr is always printed using lower-case
letters. For cxample, if the current basc is twenty-four (decimal), the decimal integer twenty-three
would print as “#24rN”. If *base* is 2, 8, or 16, then the radix specifier used is #b, #0o, or #x.
For integers, base ten is indicated by a trailing decimal point, instcad of using a leading radix
specifier; for ratios, “#10r” is used. The default value of *prinradix*isnit.

Ratios. If appropriate, a radix spccifier may be printed; sec *prinradix*. If the ratio is ncgative, a
minus sign is printed. Then the absolute value of the numerator is printed, as for an integer; then a “/”; then
the denominator. The numerator and denominator are both printed in the radix specified by *base*; they
are obtained as if by the numerator (page 134) and denominator (page 134) functions, and so ratios are
always printed in lowest form.

Floating-point numbers. Floating point numbers are printed in one of two ways. If the floating point
number is between 1073 (inclusive) and 107 (exclusive), it may be printed as the integer part of the number,
then a decimal point, followed by the fractional part of the number; there is always at least one digit on each
side of the decimal point. Outside of that range, it will be printed in “computerized scientific notation”, with -
the exponent character indicating the precision of the number. For example, Avogadro’s number as a
short-format floating-point number would be printed as “6.02S23”. If the format of the number matches
that specified by *read-default-float-format* (page 253), however, then the exponent marker “E”
is used. '

Characters. When *prinescape* (page 238)is ni1, a character prints as itself; it is sent directly to the
output strcam. When *prinescape* is not nil, then #\ syntax is used. For exampiec, the printed
represcntation of the character #\ a with control and meta bits on would be #\CONTROL-META-\a.

Symbols. When *prinescape* (page 238)is ni1, the only characters of the print name of the symbol
are output. When *prinescape* is not nil, backslashes “\” and vertical bars “|” are included as

required, and package prefixes may be printed (using colon “:” syntax) if necessary. As a special case, ni1
may sometimes be printed as “()” instead, when *prinescape* and *prinpretty* arecachnotnil.

The rules for package qualifiers arc as follows. When the symbol is printed, if it is in the keyword package

240 - COMMON LISP REFERENCE MANUAL

then it is printed with a preceding colon; otherwise, if it is present in the current package, it is printed without .
any qualification; otherwise, it is printed with qualification. Sce *package* (page 117).

Implementation note: The syntax “foo: | sering| ™ presently has no defined meaning in ComMon s, If a package qualifier

must be printed, then vertical-bar syntax may not be used for cither the name of the package or the name of the symbol;

instead, individual escape characters must be used. This means that one must print “si:\(\ \.\ \)"instcad of “s1i: I(
) |7, for example. ‘This unpleasant form of output should not occur very often in practice.

A symbol that is uninterned (has no home package) is printed preceded by “#:

Implementation note: Becausc the “#:” syntax docs not intern the following symbol, it is neccessary to use circular-list
syntax if *princircle* (page 238)is not nil and the same uninterned symbol appears several times in an cxpresslon to
be printed. For example, the result of -

(let ((x (make-symbol "FO0"))) (1list x x))

would be printed as “(#:foo #:Too)” if *princircle* were nil, butas“(#l =#:foo #1#)"if *princircle*
werenotnil.

The case in which symbols arc printed is controlled by the variable *princase* (page 250).

princase ‘ : [Variable]
The read (page 253) function normally converts lower-case letters appcaring in symbols to upper
casc, so that internally print names normally contain only upper-case characters. Howcver, users
may prefer to see output in lower case or mixed case. This variable controls the case (upper or
lower) in which to print any upper-case characters in the names of symbols when vertical-bar syntax
is not used. The valuc of *princase* should be one of the keywords :upcase, :downcase, or
:capitalize.

Lower-case characters in the internal print name arc always printed in lower case, and are prcceded
by an escape character. Upper-case characters in the internal print name are printed in upper case,
lower cése, or in mixed case so as to capitalize words, according to the valuc of *princase*. The
convention for what constitutes a “word” is the same as for the function string-capitalize
(page 196).

Strings. The characters of the string are. output in order. If *prinescape* (page 238)is not nil, a
double quote “"” is output beforchand and afterward, and all and double quotes and escape characters are
preceded by “\”. The printing of strings is not affected by *prinarray* (page 252).

Conses. Wherever possible, list notation is preferred over dot notation. Therefore the following algorithm
is used: '

1. Print an open parenthesis “(”.

2. Print the carof the cons.

3. If the cdris a cons, make is the current cons, print a space, and go to step 2.
4, If the cdr is not null, print a space, a dot . ”, a space, and the cdr.

5. Print a close parenthesis “(”.

INPUT/QUTPUT _ 241

This form of printing is clcarcr than showing cach individual cons cell. Although the two S-expressions
below are cquivalent, and the reader will accept cither one and produce the same data structure, the printer
will always print such a data structure in the second form.

(a . (b. ({(c . (d.nil)) . (e . nil))))

(ab (c d) e) :
The printing of conscs is affected by the variables *prinlevel* (page 252) and *pm nlength* (page
252).

Bit-vectors. A bit-vector is printed as “#*” followed by the bits of the bit-vector in order, If
prinarray (page 252)is ni1, however, then the bit-vector is printed in a format (using “#<”) that is
concise but not rcadable. '

Vectors. Any vector other than a string or bit-vector is printed using gencral-vector syntax; this means that
information about spccialized vector representations will be lost. The printed representation of a zero-length
vector is “#(). The printed representation of a non-zero-length vector begins with a #(. Following the #(
is printed the first clement of the vector. If there are any other elements, they are printed in turn, with a space
printed before cach additional clement. A close parenthesis after the last clement terminates the printed
representation of the vector. The printing of vectors is affected by the variables *prinlevel™ (page
252) and *prinlength* (page 252). If *prinarray* (page 252) is ni1l, however, then the vector is
printed in a format (using “#<") that is concisc but not recadable.

Arrays. Normally any array other than a vector is printed using “#nA” .format. Let n be the rank of the
array. Then “#” is printed, then 7 as a decimal integer, then “A”, then n left parentheses. Next the eclements
arc scanned in row-major order. Imagine the array indices being enumerated in odometer fashion. Every
time the index for dimension j is incremented, first a right parenthesis is printed; then if dimension j has
overflowed, dimension j—1 is incremented; then a left parenthesis is printed. Finally, n right parentheses are -
printed. This causes the contents to be printed in a format suitable for the :initial-contents argument
to make-array (page 193). The lists effectively printed by this procedure are subject to *prinlevel*
(page 252) and *prinlength* (page 252). If *prinarray* (page 252)is nil, however, then the array
is printed in a format (using “#<”) that is concise but not readable. .

Structures defined by defstruct (page 201) are printed under the control of the :printer option to
defstruct.

Any other types arc printed in an implementation-dependent manner. It is recommended that printed
representations of all such objects begin with the characters “#<” and end with “>” so that the reader will
catch such objects and not permit them to be read under normal circumstances.

When debugging or when frequently dealing with large or deep objects at toplevel, the user may wish to
restrict the printer from printing large amounts of information. The variables *prinlevel* and
prinlength allow the user to control how deep the printer will print, and how many elements at a given
level the printer will print. Thus the user can see enough of the object to identify it without having to wade
through the entire expression.

242 V COMMON LISP REFERENCE MANUAL

prinlevel ‘ [Variable]
prinlength : [Variablel
The *prinlevel* variable controls how many levels deep a nested data object will print. If

“*prinlevel* is nil (the initial value), then no control is exercised. Otherwise the value should
be an integer, indicating the maximum level to be printed. An object to be printed is at level 0; its
components (as of a list or vector) arc at level 1; and so on. If an object to be recursively printed
has components and is at a level equal or greater to the valuc of *prinlevel*, then the object is
printed as simply “#”.

The *prinlength* variable controls how many clements at a given level are printed. A value of
nil (the initial valuc) indicates that there be no limit to the number of components printed.
Otherwisc the value of *prinlength* should be an integer. Should the number of elements of a
data object cxceed the value *prinlength*, the printer will print three dots “. . ." in place of
those clements beyond the number specified by *prinlength*. (In the case of a dotted list, if
- the list contains exactly as many clements as the value of *prin1 ength*, and in addition has the
non-null atom terminating it, that tcrminating atom is printed, rather than printing . . .”.)

As an example, here are the ways the objcct ‘
- (if (member x items) (+ (car x) 3) ’(foo . #(a b c d "Baz")))
would be printed for various values of *prinlevel* =vand *prinlength*=n.

v_n _ Quiput
1 #

(if ...)

(if # ...)
(if # # ..
(if # # #)
(if ...)

(if (member
(if (member
(if (member
(if (member
(if (member

2)

R A |

items) (+ # 3) ...)

items) ...) _

items) (+ (car x) 3) ...)

items) (+ (car x) 3) '(foo . #a b cd ...)))

BWNOLON R DON

WWWNNN R RO
X X X X X

Another way to cut down on the volume of printing is to disable the printing of array contents.

prinarray : [Variable]
If prinarray is nil, then the contents of arrays other than strings are never printed. Instead,
arrays are printed in a concise form using “#<” that gives enough information for the user to be
able to identify the array, but does not include the entirc array contents. If prinarray isnotnil,
non-string arrays are printed using “#(”, “#*”, or “#nA” syntax.

INPUT/OUTPUT | , 243

. 21.2.‘ Input Functions

21.2.1. Input from AScll Streams

Many input functions takc optional arguments called input-siream, eof-errorp, and eof-value. The
input-stream argument is the strcam from which to obtain input; if unsupplied or ni1 it defaults to the value
of the special variable *standard-input* (page 213). Onc may also specify t as a strcam, mcaning the
valuc of the spccial variable *terminal-io* (page 214). '

Rationale: Allowing the use of t provides some semblance of MACLISP compatibility.

The eof~errorp argument controls what happens if input is from a file (or any other input source that has a
‘definite end) and the end of the file is reached. If eoferrorp is truc (the default), an crror will be signalled at
end of file. If it is false, then no error is signalled, and instcad the function returns eof-value.

Functions such as read (page 253) that read an “object” rather than a single character will always signal
an error, regardless of eof-errorp, if the file ends in the middle of an object. For example, if a filc docs not
contain enough right parentheses to balance the left parentheses in it, read will complain. If a filc ends in a
symbol or a number immediately followed by end-of-file, read will read the symbol or number successfully
and when called again will sce the end-of-file act according to eaf~errorp. Similarly, the function read-Tine
(page 255) will successfully read the last line of a file even if that line is terminated by cnd-of-file rather than
the newline character. If a file contains ignorable text at the end, such as blank lines and comments, read

. will not consider it to end in the middle of an object.

read &optional input-stream eof-errorp eof value 4 ' [Function]
read rcads in the printed representation of a LISP object from input-stream, builds a corresponding
Lisp object, and returns the object. The details are explained above.

read-default-float-format . [Variable]
The value of this variable must be a type specifier symbol for a specific floating-point format; these
include short-float, single-float, double-float, long-float, and may include
implementation-specific types as well. The default valueis single-f1 oat.

read-default-float-format indicates the floating-point format to be used for reading
floating-point numbers that have no exponent marker or have “e” or “E” for an exponent marker.
(Other exponent markers explicitly prescribe the floating-point format to be used.) The printer also

uses this variable to guide the choice of exponent markers when printing floating-point numbers.

read-preserving-whitespace &optional input-stream eof-errorp eof-value [Function]

Certain printed representations given to read, notably those of symbols and numbers, require a

delimiting character after them. (Lists do not, because the close parenthesis marks the end of the

. list) Normally read will throw away the delimiting character if it is a whitc-space character, but

244

COMMON LISP REFERENCE MANUAL

will preserve it (using unread-char (page 255)) if the character is syntactically meaningful, since
it may be the start of the next expression.

The function read-preserving-whitespace is provided for some spccialized situations
where it is desirable to determine preciscly what character terminated the extended token.

As an cxample, consider this macro-character definition:

(defun slash-reader (stream char)
(declare (ignore char))
(do ((path (1ist (read-preserving-whitespace stream))
(cons (progn (read-char stream)
(read-preserving-whitespace
stream))

path))) ,
((not (char= (peek-char stream) #\/))

(cons ’'pathname (nreverse path)))))
(set-macro-character #\/ #'slash-reader)

Consider now calling read on this cxpression:

(zyedh /usr/games/zork /usr/games/boggle)
The “/” macro reads objects scparated by more “/” 'characters; thus /usr/games/zork is
intended to rcad as (pathname usr games zork). The entire example expression should
therefore be read as

(zyedh (pathname usr games zork) (pathname usr games baggle))
However, if read had been used instead of read-preserving-whitespace, then after the
reading of the symbol zork, the following space would be discarded, and then the next call to
peek-char would sce the following *“/”; and the loop would continue, producing this
interpretation:

(zyedh (pathname usr games zork usr games boggle))
On the other hand, there are times when whitespace should be discarded. If one has a command
interpreter that takes single-character commands, but occasionally reads a LISP object, then if the
whitespace after a symbol were not discarded it might be interpreted as a command some time later
after the symbol had been read.

read-delimited-1ist char &optional input-stream [Function]

This rcads objects from stream until the next character after an object’s representation (ignoring
whitespace characters) is char. (The char should not have whitespace syntax in the current
readtable.) A list of the objects read is returned. '

This function is particularly uscful for deﬁning new macro-charactc_:rs.’ Suppose one were to want
“#{a b ¢ ... z}”toread asa list of all pairs of the elements g, b, ¢, . . ., z; for example:

#{p q z a} readsas ((p gq) (p z) (p a) (g z) (q a) (z a))
This can be done by specifying a macro-character definition for “#{” that does two things: read in

all the items up to the “}”, and construct the pairs. read-delimited-11st performs the first
task. '

INPUT/OUTPUT ‘ _ 245

. (defun sharp-leftbrace-reader (stream char arg)
(declare (ignore char arg))
(mapcon #’'(lambda (x)
(mapcar #°'(lambda (y) (1ist x y)) (cdr x)))
(read-delimited-11ist #\} stream)))
(set-dispatch-macro-character #\# #\{
#'sharp-leftbrace-reader)
Note that read-delimited-11ist does not take an eof-value argument. The reason for this is

that it is always an crror to hit end-of-file during the operation of read-delimited-T1ist.

read-1ine &optional input-siream eof-errorp eof value : {Function]
read-11ne rcads in a line of text, terminated by the implementation’s usual way for indicating
end-of-line (typically a <return> character). It returns the linc as a character string (without the
<return> character). This function is usually used to get a linc of input from the user. A second
returned valuc is a flag that is false if the line was terminated normally, or true if end-of-file
terminated the (non-empty) line. Seewrite-1ine (page 259).

read-char &optional input-stream eof-errorp eof-value ’ [Function]
read-char inputs one character from input-stream and returns it as a character object.

‘ unread-char character &optional input-stream : ' [Function]
| unread-char puts the character onto the front of input-stream. The character must be the same
| character that was most recently read from the input-stream. The input-stream “backs up” over this
i character; when a character is next read from input-stream, it will be the specified character,
followed by the previous contents of input-stream. unread-char returns nil.

\ .

) One may only apply unread-char to the character most recently recad from input-stream;
‘ moreover, one may not invoke unread-char twice consecutively without an intervening
‘ read-char operation. The result is that one may back up only by one character, and one may not
insert any characters into the input strecam that were not already there.

\ Rationale: This is not intended to be a general mechanism, but rather an efficient mechanism for allowing the
| Lisp reader and other parsers to perform one-character lookahead in the input stream. This protocol admits a
| wide variety of efficient implementations, such as simply decrementing a buffer pointer. To have to specify the
‘ character in the call to unread-char is admittedly redundant. since there at any given time is only one
‘ character that may be legally specified. The redundancy is intentional, again to give the implementation
| latitude.

‘ .peek-char &optional peek-type input-stream eof-errorp eof-value [Function]
| What peek-char does depends on the peek-type, which defaults to nil. With a peek-type of
i nil, peek-char returns the next character to be read from input-stream, without actually

_ removing it from the input stream. The next time input is donc from input-stream the character will
‘ . still be there. It is as if one had called read-char and then unread-char in succession.

If peek-type is t, then peek-char skips over whitespace characters, and then performs the peeking

246

Tisten

COMMON LISP REFERENCE MANUAL

operation on the next character. This is uscful for finding the (possible) beginning of the next
printed representation of a Lisp object. As above, the last character (the one that starts an object) is
not removed from the input stream.

If peek-type is a character object, then peek -char skips over input characters until a character that
is char= (page 152) to that objcct is found; that character is left in the input strcam.

Characters passed over by peek-char arc echoed if input-stream is interactive.

&optional input-stream o [Function]

~The predicate 11isten is true if there is a character immediately available from input-stream, and is

false if not. This is particularly useful when the stream obtains characters from an interactive device
such as a keyboard; a call to read-char (pagc 245) would simply wait until a character was
available, but 11isten can sense whether or not input is available and allow the program to decide
whether or not to attempt input. On a non-interactive stream, the gcncral rulc is that Tisten is
true except when at end-of-file.

read-char-no-han g &optional z'nput-stream eof-errorp eof-value [Function]

This function is exactly like read-char (page 245), cxcept that if it would be necessary to wait in
order to get a character (as from a keyboard), ni1 is immediately returncd without waiting., This
allows one efficiently to check for input being available and get the input if it is. This is different
from the Tisten (page 256) operation in two ways. First, these functions potentially actually read

‘a character, while 11isten never inputs a character. Second, 1isten does not distinguish between

end-of-file and no input being available, while these functions do make that distinction, returning
eof value at end-of-file (or signalling an crror if no eof~value was given), but always returning ni1 if
no mput is available.

clear-input &optional input-stream [Function]

This clears any buffered input associated with input-streani. It is primarily useful for clearing
type-ahead from keyboards when some kind of asynchronous error has occurred. If this operation
doesn’t make sense for the stream involved, when clear-input docs nothing. clear-input
reurns nil. '

read-from-string string &optional start end preserve-p eof-errorp eof-value [Function]

The characters of string are given successively to the LISP reader, and the LISP object built by the
reader is returned. Macro characters and so on will all take effect.

The arguments start and end delimit a substring of string beginning at the character indexed by start
and up to but not including the character indexed by end. By default szart is 0 (the beginning of the
string) and endis (1ength string). This is as for other string functions.

The flag preserve-p, if provided and not nil, indicates that the operation should preserve

INPUT/OUTPUT . : . 247

whitespace as for read-preserving-whitespace (page243).

The arguments eoferrorp and eof~value control the action if the end of the (sub)string is reached
before the operation is completed, as with other reading functions; reaching the end of the string is
treated as any other end-of-file event.

read-from-string rcturns two values; the first is the object read and the second is the index of
the first character in the string not rcad. If the entire string was read, this will be cither the length of
the string or onc greater than the length of the string. The parameter preserve-p may affect this
sccond value.
For cxample:

(read-from-string "(a b c)") => (a b c) and 7

parse-number string &optional start end radix no-junk-allowed [Function]

This function examinces the substring of string delimited by start and end (which default to the
beginning and end of the string). It skips over whitespace characters and then attempts to parse a
number, in the syntax for <number> given in Table 21-2. The radix defaults to 10, and must be an
intcger between 2 and 36. If the radix is not 10, then floating-point numbers will not be permitted
by the parse. '

If no-junk-allowed is ni1 (the default), then the first valuc returned is the number parsed, or ni1 if
no syntactically correct number was seen. The sccond value is the index into the string of the
delimiter that terminated the parse, or the index beyond the substring if the parse terminated at the
end of the substring.

If no-junk-allowed is not ni1, then the cntire-substring is scanned. An error is signalled if the
substring docs not consist entirely of the representation of a number, possibly surrounded on either
side by whitespace characters. The returned value is the number parsed, or 0 if no number was
found (the substring was blank).

21.2.2. Input from Binary Streams

read-byte binary-input-stream &optional eof-errorp eof-value [Function]

read-byte reads onc bytc from the binary-input-stream and returns it in the form of an integer.

read-binary-object type binary-input-stream &optional eoferrorp eof-value ' [Function]

read-binary-object reads an object of the specified type from the binary-input-stream. The
object is assumed to be encoded in the manner used by write-binary-object (page 260); the
object is guaranteed to be read properly only if the exact same tfype is specified to
read-binary-object as was specificd to write-binary-object to originally encode the
object, and if the : type (page 283)option for the input stream matches that for the output stream
giventowrite-binary-object.

248 COMMON LISP REFERENCE MANUAL

The eof-errorp and eof-value options apply only if the binary-input-stream is at the end of file before
the operation is begun. If the type requircs more than onc byte to be recad and end-of-file is
cncountered before enough bytes have been read, an crror is signalled.

21.3. Output Functions

21.3.1. Output to Asci Streams

These functions all take an optional argument called oufpui-stream, which is where to send the output. If
unsupplicd or n1i1, output-stream defaults to the value of the variable *standard-output* (page213). If
it is t, the value of the variable *terminal-io* (page 214) is uscd.

write object &key :stream :prinescape :prinradix :base [Function]
:princircie :prinpretty :prinlevel :prinlength
:princase :prinarray
The printed representation of object is written to the output stream specified by : stream, which
defaults to the value of *standard-output* (page213).

The other keyword arguments specify values used to control the generation of the printed
representation. Each defaults to the global variable of the same name; sce *prinescape* (page
238), *prinradix* (page 239), *base* (page 239), *princircle* (page 238),
prinpretty (page 238), *prinlevel* (pagc 242), *prinlength* (page 242),
princase (page 240), and *prinarray* (page 242). (This is the means by which these
variables affect printing operations: supplying default values for the write function.) Note that
the printing of symbols is also affected by the value of the variable *package* (page 117).

prinl object &optional output-stream [Function]
print object &optional output-stream , . [Function]
pprint object &optional output-stream _ [Function]
princ object &optional output-stream ' [Function]

prin1 outputs the printed representation of object to output-stream, using escape characters. As a
rule, the output from prin1 is suitable for input to the function read (page 243). prin1 rcturns
object.

(prinl object output-stream)
<=> (write object :stream output-stream :prinescape t)

print isjust like prin1 except that the printed representation of object is preceded by a <return>
character and followed by a <space>. print returns object.

pprint is just like print except that the trailing space is omitted, and the object is printed with
the *prinpretty* (page 238) flag non-ni1 to produce “pretty” output. pprint rcturns object.

princ is just like prin1 except that the output has no escape characters. A symbol is printed as

%

INPUT/OUTPUT _ ‘ 249

simply the characters of its print-name; a string is printed without surrounding double-quotes; and
there may be differences for other data types as well. The gencral rule is that output from princ is
intended to look good to people, while output from prinl is intended to be acceptable to the
function read (page 243). princ rcturns object.
(prinl object output-stream)
<=> (write object :stream output-stream :prinescape nil)

Compatibility note: In MAclisp, these three functions return t, not the argument object. There is some old
code that depends on the value being non-ni1, such as in:

(and condition (print x) (print y) (print z))
_ which should have been written as
(cond (condition (print x) (print y) (print 2)))
but someonc was too lazy to do it that way (when didn't exist in those days). Ugh. ComMoON Lisp does not

support this bad style.
write-to-string object &ey :prinescape :prinradix :base [Function]
:princiﬁc1e :prinpretty :pb1n1eve1 :prinlength
:princase :prinarray
prinl-to-string object ' [Function]
princ-to-string object ' [Function]

The object is effectively pri_'ntcd,’as ifby write (page248), prinil (page 248), or princ (page
248), and the characters that would be output are made into a string and returned.

write-char character &optional output-stream) [Function]
wr ite-char outputs the character to output-stream, and returns ni1.

write-string string &optional output-stream [Function]

write-Tine string &optional output-stream [Function]
write-string writes the characters of the string to the output-stream. write-11ine docs the
same thing, but then outputs a newline afterwards. (See read-line (page 245).) In some
implementations these may be significantly more efficient than an explicit loop using
write-char. }

terpri &optional oufput-stream - [Function]
fresh-1ine &optional output-stream [Function] .

terpri outputs a newline to output-stream; this may be simply a carriage-return character, a
return-linefecd sequence, or whatever else is appropriate for the stream. terpri rcturnsnil.

fresh-1ine is similar to terpr1i, but outputs a newline only if the stream is not already at the
start of a line. (If for some reason this cannot be determinced, then a newline is output anyway.)
This guarantees that the strcam will be on a “fresh line” while consuming as little vertical distance
as possible. fresh-11ine is a (side-effecting) predicate that is true if it output a newline, and

250 COMMON LISP REFERENCE MANUAL

otherwisc false.

finish-output &optional output-stream [Function)
force-output &optional output-stream _ [Function]
clear-output &optional output-stream [Function]

Some strcams may be implemented in an asynchronous. or buffered manner. The function
finish-output attcmpts to cnsurc that all output sent to outpui-stream has rcached its
destination, and-only then returns nil. force-output initiates the emptying of any internal
buffers, but returns ni1 without waiting for completion or acknowledgement. '

The function clear-output, on the other hand, attempts to abort any outstanding output
operation in progress, to allow as little output as possible to continue to the destination. This is
uscful, for example, to abort a lengthy output to the terminal when an asynchronous error occurs.
clear-output returns nil. '

The precise actions of all three of thesc operations ar¢ implementation-dependent.

The function format (page 261) is very useful for producing nicely formatted text, producing good-
looking messages, and so on. format can generate a string or output to a strecam.

21.3.2. Output to Binary Streams

write-byte integer binary-output-stream [Function]
write-byte writes onc byte, the value of inreger. It is an error if integer is not of the type
specified as the : type argument to open (page 283) when the stream was created.

write-binary-object object type binary-output-stream [Function]
The object is encoded as a strecam of bytes and written to the binary-output-stream. The object must
be of the type specified by zype. The encoding used may depend on the : type (page 283)of the
stream and on the specified fype. For example, the integer 126 may be encoded in different ways
depending on whether the fype specified is integer or (byte 8).

The type specified must be one of the following types or a subtype of one: number, character,
or (array x) where xis asubtype of integer or character.

The encoding is implementation-dependent. However, the function read-binary-object
(page 247) may be used in the same implementation to read back an object encoded by
write-binary-object. (These functions are intended to provide efficient storage of data in an
implementation-depdent format.)

INPUT/QUTPUT) ' ' 251
. 21.4. Formatted Output

format destination control-string &rest arguments [Function]
format is used to produce formatted output. format outputs the characters of control-string,
except that a tilde (“~) introduccs a directive. The character after the tilde, possibly preceded by
prefix parameters and modificrs, specifies what kind of formatting is desired. Most directives use
onc or more clements of args to create their output; the typical directive puts the next element of
args into the output, formatted in some special way.

The output is sent to destination. If destination is ni1, a string is created that contains the output;
this string is returned as the value of the call to format. In all other cases format returns nil,
performing output to destination as a side cffect. 1f destination is a stream, the output is sent to it.
If destination is t, the output is sent to the stream that is the value of the variable
standard-output (page213).

6 mey

A format directive consists of a tilde (**~”), optional prefix parameters scparated by commas, optional
colon (**:”) and atsign (*@”) modificrs, and a single character indicating what kind of directive this is. The
alphabetic casc.of the directive character is ignored. The prefix parameters are gencrally decimal numbers.
Examples of control strings: ‘ o

‘ -orTse ; This is an S dircctive with no parameters or modifiers.
"~3,4:0s" ; This is an S directive with two parameters, 3 and 4,
: and both the colon and atsign flags.
"=,4S8" ; Here the first prefix parameter is omitted-and takes
; on its default value, while the second parameter is 4.

The format function includes some extremely complicated and specialized features. It is not necessary to
understand all or even most of its features to use format ecffectively. The beginner should skip over -
anything in the following documentation that is not immediately uscful or clear. The more sophisticated
features arc there for the convenicence of programs with complicated formatting requirements.

Somctimes a prefix parameter is used to specify a character, for instance the padding character in a right- or
left-justifying operation. In this case a single quote (* *) followed by the desired character may be used as
a prefix parameter, so that you don’t have to know the dccimal numeric valucs of characters in the character
set. - For example, you can use “~5, *0d” tc print a dccimal number in five columns with leading zeros, or
“~5, ' *d” to get leading asterisks.

In place of a prefix parameter to a dircective, you can put the letter “V”, which takes an argument from
arguments as a parameter to the directive. Normally this should be an integer (but in gencral it doesn’t really
have to be). This feature allows variable column-widths and the like. Also, you can use the character “#” in
place of a parameter; it represents the number of arguments remaining to be processed.

Here are some relatively simple examples to give you the general flavor of how format is used.

252 » . , COMMON LISP REFERENCE MANUAL

(format nil "foo") => "foo"
(setgq x 5) .
(format nil "The answer is "D." x) => "The answer is 5."
(format nil "The answer is 73D." x) => "The answer is 5."
(format nil "The answer is 73,°'0D." x) => "The answer is 005."
(format nil "The answer is 7:D." (expt 47 x))

=> "The answer is 229,345,007."

(setq y "elephant")

(format nil "Look at the TA!" y) => "Look at the elephant!"”

(format nil "Type T:C to TA." (control #\D) "delete all your files")
=> "Type Control-D to delete all your files.”

(setq n 3) : .
(format nil "7D item™:P found.™ n) => "3 items found."
(format nil "7R dog™:[s are™; is™] here." n (= n 1))
- => "three dogs are here."

(format nil "7R dog™:*7[T1; is™:;s are™] here." n)

=> "three dogs are here." :
(format nil "Here “[T1;is™:;are™] T:*7R pupp™:@P." n)
: => "Here are three puppies.” ’ :

The directives will now be described. The term arg in general refers to the next item of the set of
arguments to be processed. The word or phrase at the beginning of each description is a mnemonic word for
the directive.

~A Ascii. An arg, any LISP object, is printed without escape characters (as by princ (page 248)). In
particular, if arg is a string, its characters will be output verbatim. Normally all occurrences of ni1
in the printed object will be printed as “ni17, but the colon modifier (7 : A) will cause them to be .
printed as “()”. ‘ '

~mincolA inserts spaces on the right, if necessary, to make the width at least mincol columns. The @
‘modifier causes the spaces to be inserted on the left rather than the right.

~mincol, colinc, minpad , padcharA is the full form of ~A, which allows claborate control of the
padding. The string is padded on the right with at least minpad copies of padchar, padding
characters are then inserted colinc characters at a time until the total width is at least mincol. The
defaults are 0 for mincol and minpad, 1 for colinc, and the space character for padchar.

~S S-expression. This is just like ~A, but arg is printed with escape characters (as by prin1 (page
248) rather than princ). The output is therefore suitable for input to read (page 243). ~S can
accept all the arguments and modifiers that ~A can.)

D Decimal. An arg, which should be an integer, is printed in decimal radix. ~D will never put a
decimal point after the number.

~mincolD uses a column width of mincol; spaces are inserted on the left if the number requires
fewer than mincol columns for its digits and sign. If the number doesn’t fit in mincol columns,
additional columns are used as needed.

“mincol , padcharD uses padchar as the pad character instead of spzice.

~

INPUT/OUTPUT - 253

~0

~R

If arg is not an integer, it is printed in ~A format and decimal base.

The @ modificer causes the number’s sign to be printed always; the default is only to print it if the
number is negative. The : modifier causes commas to be printed between groups of three digits;
the third prefix parameter may be used to change the character used as the comma. Thus the most
general form of ™D is “mincol , padchar, commacharD.

Binary. This is just like ~D but prints in binary radix (radix 2) instcad of decimal. The full form is
therefore ~mincol , padchar , commachar8.

Octal. This is just like ~“D but prints in octal radix (radix 8) instcad of decimal. The full form is
therefore ~mincol , padchar, commacharQ. '

Hexadecimal. This is just like ~D but prints in hexadecimal radix (radix 16) instead of decimal.
The full form is therefore "mincpl , padchar , commacharX.

Radix. ~nR prints arg in radix n. The modifier flags and any remaining parameters are used as for
the ~D dircctive. Indeed, ~D is the same¢ as ~10R. The full form here is therefore

“radix , mincol , padchar, commacharR.

If no arguments are given to ~R, then an entircly different interpretation is given. The argument
should be an integer; suppose it is 4.

*~R prints &rg as a cardinal English number: "four".

e ~: R prints arg as an ordinal English-number: "fourth".
e “@R prints arg as a Roman numeral: "IV",

e ~: @R prints arg as an old Roman numeral: "TITII".

Plural. 1f arg is not eq1 to the integer 1, a lower-case “s” is printed; if arg is eq1 to 1, nothing is
printed. (Notice that if arg is a floating-point 1. 0, the “s” is printed.)

~: P does the same thing, after doing a ~: * to back up one argument; that is, it prints a lower-case
“s” if the last argument was not 1. This is uscful after printing a number using ~D.

~@P prints “y” if the argument is 1, or “ies” if it is not. ~:@P does the same thing, but backs up
first. ,
(format nil "™D tr~:@P/"D win™:P" 7 1)
(format nil ""D tr™:@P/"D win™:P" 1 0)
(format nil "™D tr™:@P/™D win™:P" 1 3)

> "7 tries/1 win",
> "1 try/0 wins"
> "1 try/3 wins"

Floating-point.
277 Query: Is this really what we want?

254

~c

~%
o

~&

COMMON LISP REFERENCE MANUAL

arg is printed in floating point. ~#nF rounds arg to a precision of n digits. The minimum valuc of n
is 2, sincc a decimal point is always printed. [f the magnitude of arg is too large or too small, it is
printed in exponential notation. If arg is not a number, it is printed in A format. Notc that the
prefix parameter # is not mincol; it is the number of digits of precision desired. Examples:

(format nil "72F" 5) => "5,0"

(format nil "74F" 5) => "5.0"

(format nil "74F" 1.5) => "1.5"

(format nil "74F" 3.14159265) => "3.142"
(format nil "73F" 1el0) => "1.0elQ"

Compatibility note: This is not the same as FORTRAN “F” format.

77?7 Query: Sigh. If I had my druthers, ~E, ~F, and ~G would be the same as FORTRAN E, F, and G formats;
they are widely known and understood.

Exponential. arg is printed in exponential notation. This is identical to ~F, including the use of a
prefix paramcter to specify the number of digits, except that the number is always printed with a
trailing exponent, even if it is within a rcasonable range.

Compatibility note: This is not the same as FORTRAN “E" format.

Character. The next arg should be a character; it is printed according to the modifier flags.

~C prints the character in an implementation-dependent abbreviated format. This format should
be culturally compatible with the host environment. fi ™ :C spells out the names of the control bits,
and represents non-printing characters by their names: “Control-Meta-F”,

2% 66

“Control-Return”, “Space”. Thisis a “pretty” format for printing characters.

~:@C prints what ~: C would, and then if the character requires unusual shift keys on the keyboard
to type it, this fact is mentioned: “Contro1-8 (Top-F)”. This is the format used for telling the
user about a key he is expected to type, for instance in prompt messages. The precise output may
depend not only on the implementation, but on the particular [7O devices in use.

~@C prints the character in a way that the LISP reader can understand, using “#\” syntax,

Rationale: In some implementations the ~S directive would accomplish this also, but the ~C directive is
compatible with Lisp dialects that do not have a character data type.

Outputs a newline (see terpri (page 249)). ~n% outputs n newlines. No arg is used. Simply
putting a newline in the control string would work, but ~% is often used because it makes the

control string look nicer in the middle of a LISP program. -

Unless the stream knows that it is already at the beginning of a line, this outputs a newline (see
fresh-line (page249)). “n& doesa : fresh-11ine operation and then outputs n— / newlines.

Outputs a page separator character, if possible. ~n| does this n times. | is vertical bar, not capital
L

Tilde. Outputs a tilde. ~n™ outputs » tildes.

INPUT/OUTPUT ‘ 4 255

. ~<return>Tilde immediately followed by a <rcturn> ignores the <rcturn> and any following non-<rcturn>
whitespace. With a :, the <rcturn> is ignored but any following whitespace is left in place. With an
@, the <rcturnd is left in place but any following whitespacc is ignored. 'This dircctive is typically
uscd when a format control string is too long to fit nicely into onc linc of the program:

(defun pet-rock-warning (rock friend amount)
(unless (equalp rock friend) ,
(format t "“&Warning! Your pet rock TA just
bit your friend "A,”% and ~
~:[he”;she™] is suing you for $7DI!"
, rock friend (femalep friend) amount)))
(pet-rock-warning "Fred" "Susan" 500) prints:
Warning: Your pet rock Fred just bit your friend Susan,
and she is suing you for $500!

~

~T Tabulate. Spaces over to a given column. ~colnum, colincT will output sufficient spaces to move
the cursor to column colnum. If the cursor is alrcady past column colnum, it will output spaces to
move it to column colnum+ k*coline, for the smallest non-negative integer & possible. colaum and
colinc default to 1. -

~:Tis like ~T, but colnum and colinc are in units of pixels, not characters; this makes sense only for
streams that can set the cursor position in pixel units.

If for some reason the current column position cannot be determined or set, any ~T operation: will
. simply output two spaces. When format is creating a string, ~T will work, assuming that the first
character in the string is at the left margin (column 0). :

| ~@T performs relative tabulation. ~colrel, colinc@T is equivalent to ~curcol+ colrel, colinc@T
‘ ' where curcol is the current output column. If the current output column cannot be determined,
however this outputs colrel spaces, not two spaces.

‘ . ~:@T performs relative tabulation in units of pixels instead of columns,

} T The next arg is ignored. ~n* ignores the next n arguments.

} ~:* “ignores backwards”; that is, it backs up in the list of arguments so that the argument last
[processed will be processed again. ~n: * backs up n arguments.

| When within a ~{ construct (see below), the ignoring (in either direction) is relative to the list of
’ arguments being processed by the iteration,

This is a “relative goto”; for an “absolute goto”, see ~G.

~G Goto. Goes to the nth arg, where 0 means the first one; defaults to 0, so ~G goes back to the first
arg. Directives after a “nG will take arguments in sequence beginning with the one gone to.

| When within a ~{ construct, the “goto” is relative to the list of arguments being processed by the
iteration.

. This is an “absolute goto™; for a “relative goto”, see ~*.

256

COMMON LISP REFERENCE MANUAL

~? Indirection. 'T'he next arg must be a string; it is processed as part of the control string as if it had
appearcd in placc of the ~7? construct.

The format dircctives after this point arc much more complicated than the foregoing; they constitute
“control structures” that can perform case conversion, conditional sclection, iteration, justification, and non-
local exits. Used with restraint, they can perform powerful tasks. Used with wild abandon, they can produce
completcly unreadable and unmaintainable code.

“(strT)

“[str07 s stri”™ ;..

‘Conditional Case conversion. The contained control string str is processed, and what it

produces is subject to casc conversion. With no flags, all casc-modifiable characters are
forced to lower case. ~;:(capitalizes all words, as if by string-capitalize (page
196). ~;@(capitalizes just the first word, and forces the rest to lower case. ~; : @(forces
all case-modifiable characters to upper case.

For example:

(format nil "7@R T(TEGRT)" 14 14) => "XIV xiv" :
(defun f (n) (format nil "7“@("R™) error™:P detected.” n))
(f 0) => "Zero errors detected.”

(f 1) => "One error detected." .

(f 23) => "Twenty-three errors detected."

T strn”™]

Conditional expression. This is a set of control strings, called clauses, one of which is
chosen and used. The clauses are separated by ~; and the construct is terminated by ~].
For example, '
"~[Siamese™;Manx~;Persian~] Cat"

The argth clause is selected, where the first clause is number 0. If a prefix parameter is
given (as ~n[), then the parameter is used instead of an argument (this is uscful only if the
parameter is specified by “#™). If arg is out of range then no clause is sclected. After the
selected alternative has been processed, the control string continues after the ~ 7.

“[str0~ ; strl™;...~ ; strn”™ : s defaul(™] has a default case. If the last “~;” used to separate
clauses is instead “~: ;”, then the last clause is an “else” clause, which is performed if no
other clause is selected. Forexample: ’

"”[Siamese“;Manx“;Persian“ﬁ;A11ey"] Cat"

~["tag00, tagll, . . . ;str0" tagl0,tagll, . .. ;strl...”] allows the clauses to have
explicit tags. The parameters to cach ~;-are numeric tags for the clausc that follows it.
That clause is processed that has a tag matching the argument. If ~a/,a2,b1,52,...:;
(note the colon) is used, then the following clausc is tagged not by single values but by
ranges of values a/ through a2 (inclusive), b/ through b2, etc. ™ :; with no parameters may
be used at the end to denote a default clause. For example:

[T+, -, *, " /;operator T'A,’Z,’a,’'z:;letter T
~'0,'9:;digit T:;other T]"

~: [false™ ; true™] selects the false control string‘ if arg is n11, and selccts the true control

INPUT/OUTPUT
"1

257

string otherwise.

~@[true™] tests the argument. If it is not ni1, then the argument is not used up by the
~@[command, but remains as the next one to be processed, and the one clause true is
processed. If the arg is ni1, then the argument is used up, and the clause is not processed.
The clause thercfore should normally use cxactly one argument, and may cxpect it to be
non-nil. For cxample:

(setq prinievel nil prinlength 5)

(format nil "~@[PRINLEVEL="D"]7@[PRINLENGTH="D~]"

prinlevel prinlength)
=> " PRINLENGTH=5"

The combination of ~[and # is uscful, for example, for dealing with English conventions
for printing lists: '
(setq foo "Items: #[none™; ~S™; 7S and ~
ST Te{T#[T1; andT] TSTA,TITILM)
(format nil foo)
=> " "Items: none."
(format nil foo ’'foo)
=> "Items: F0O."
(format nil foo 'foo ’bar)
=> "Items: FOO and BAR."
(format nil foo 'foo 'bar ’'baz)
=> "Items: FOO, BAR, and BAZ."
(format nil foo 'foo ’'bar ’'baz ’quux)
=> "Items: FOO, BAR, BAZ, and QUUX."

Separates clauses in ~[and ~< constructions. It is undefined elsewhere.
Terminates a “[. It is undefined clsewhere.

Tteration. This is an iteration construct. The argument should be a list, which is used as a '
set of arguments as if for a recursive call to format. The string str is used repeatedly as
the control string. Each itcration can absorb as many clements of the list as it likes as
arguments; if str uses up two arguments by itself, then two clements of the list will get used
up each time around the loop. If before any iteration step the list is empty, then the
iteration is terminated. Also, if a prefix parameter 7 is given, then there will be at most n
repetitions of processing of str. Finally, the ~~ directive can be used to terminate the
iteration prematurely.

Here are some simple examples:

(format nil "The winners are:™{ “S7}."
'(fred harry jill))
=> "The winners are: FRED HARRY JILL."
(format nil "Pairs:™{ <7S,7S>"}." '(a 1 b 2 ¢ 3))
=> "Pairs: <A,1> <B,2> <C,3>."

~:{str"} is similar, but the argument should be a list of sublists. At each repetition step
one sublist is used as the set of arguments for processing str; on the next repetition a new

258

COMMON LISP REFERENCE MANUAL

sublist is uscd, whether or not all of the last sublist had been processed. Example:
(format nil "Pairs:7:{ <7S,7S>7}."
"((a 1) (b 2) (c 3)))
=> "Pairs: <A,1> <B,2> <C,3>."
~@{str~} is similar to ~{str~}, but instcad of using onc argument that is a list, all the
remaining arguments arc uscd as the list of arguments for the itcration. Example:
(format nil "Pairs:7@{ <7S,7S>"3}."
'al’b 2 'c 3)
=> "Pairs: <A,1> <B,2> <C,3>."
~:@{str"} combines the features of ~:{str~} and ~@{st"}. All the rcmaining
arguments arc uscd, and cach one must be a list. On each itcration the next argument is
used as a list of arguments to s¢z. Example:
(format nil "Pairs:™:@{ <7S§,7S>7}."
"(a 1) '(b 2) '(c 3))
=> "Pairs: <A,1> <B,2> <C,3>."
Terminating the repetition construct with ~:} instead of ~} forces sir to be processed at
least once even if the initial list of arguments is null (however, it will not override an
explicit prefix parameter of zero).
If str is empty, then an argument is used as s&r. It must be a string, and precedes any
arguments processed by the iteration. As an example, the following are cquivalent:
(funcall* #'format stream string args)
(format stream "71{7:}" string args)
This will use string as a formatting string. The ~1{ says it will be processed at most
once, and the ~:} says it will be processed at least once. Therefore it is processed exactly '

‘once, using args as the arguments. This case may be handled more clearly by the ~?

directive, but this general feature of ~{ is more powerful than ~7?.

As another (rather sophisticated) example, the format function itself uses
format-error (a routine internal to the format package) to signal error messages,
which in turn uses ferror, which uses format recursively. Now format-error takes
a string and arguments, just like format, but also prints the control string to format
(which at this point is available in the variable ct1-string) and a little arrow showing
where in the processing of the control string the error occurred. The variable ct1-index
points onc character after the place of the crror.

(defun format-error (string &rest args)
(ferror nil "~1{7:} % VTL™%3X\" A\ "~%"
string args (+ ctl-index 3) ctl-string))
This first processes the given string and arguments using ~1{~:}, then goes to a new line,
tabs a variable amount for printing the down-arrow, and prints the control string between -
double-quotes. The effect is something like this:

INPUT/OUTPUT 259

. ' (format t "The item is a “[Foo™;Bar™;Loser™]." ’'quux)
>>ERROR: The argument to the FORMAT "7[" command
must be a number.
v

"The item is a "[Foo™;Bar™;Loser™]."

~} Terminates a ~{. [tis undcfined clsewhere.

“mincol , colinc , minpad , padchar<str~>
Justification. This justifics the text produced by processing str within a ficld at least mincol
columns wide. str may be divided up into scgments with ~;, in yvhich case the spacing is
cvenly divided between the text segments.

With no modificrs, the leftmost text segment is left justificd in the ficld, and the rightmdst
text segment right justified; if there is only one, as a special casc, it is right justified. The :
modifier causes spacing to be introduced before the first text scgment; the @ modifier
causes spacing to be added after the last. The minpad parameter (default 0) is the
minimum number of padding characters to be output between cach 'segment. The padding
character is specified by padchar, which defaults to the space character. If the total width
necded to satisfy these constraints is grcater than mincol, then the width used is
mincol+ k*colinc for the smallest possible non-negative integer value &; colinc defaults to

. _ 1, and mincol defaults to 0.
Exampies:
(format nil "710<foo™;bar™>") => "foo bar"
(format nil "710:<foo™;bar™") => " foo bar"
(format nil "710:@<foo0™;bar™>") => " foo bar "
(format nil "710<foobar™>") = " foobar"
(format nil "710:<foobar™>") = " foobar"
(format nil "~10@<foobar™>") => "foobar "
(format nil "710:@<foobar™") => " foobar "

Note that str may include format directives. All the clauses in str are processed in order;
it is the resulting pieces of text that are justified. = .

The ~~ directive may be used to terminate processing of the clauses prematurely, in which
case only the completely processed clauses are justified.

If the first clause of a ~< is terminated with ~: ; instead of ~;, then it is used in a special
way. All of the clauses are processed (subject to ~~, of course), but the first one is not used
in performing the spacing and padding. When the padded result has been determined,
then if it will fit on the current line of output, it is output, and the text for the first clause is
discarded. If, however, the padded text will not fit on the current line, then the text
segment for the first clause is output before the padded text. The first clause ought to
contain a newline (such as a ~% directive). The first clause is always processed, and so any
. arguments it refers to will be used; the decision is whether to use the resulting segment of
text, not whether to process the first clause. If the ~:; has a prefix parameter n, then the

260

COMMON LISP REFERENCE MANUAL

padded text must fit on the current line with n character positions to sparc to avoid
outputting the first clause’s text. For example, the control string
"%y T{T<T%;y T1l:; TSTSTATYLTRT

can be used to print a list of items scparated by commas, without breaking items over line
boundarics, and beginning cach line with “;; . The prefix parameter 1 in ~1:;
accounts for the width of the comma that will follow the justificd itcm if it is not the last
element in the list, or the period if it is. If ~:; has a sccond prefix parameter, then it is
used as the width of the line, thus overriding the natural line width of the output stream.
To make the preceding example usc a line width of 50, onc would write

"%y T{T<"%:;; T1,60:; TST>TA,T}LTR"
If the sccond argument is not specified, then format uses the line width of the output

stream. If this cannot be determined (for example, when producing a string result), then
format uscs 72 as the linc length.

Terminates a ~<. It is undefined elsewhere.

Up and out. This is an cscape construct. If there are no more arguments remaining to be
processed, then the immediately enclosing ~{ or ~< construct is terminated. If thereis no
such enclosing construct, then the entire formatting operation is terminated. In the ~<
case, the formatting is performed, but no more segments are proccssed before doing the
justification. The ~~ should appear only at the beginning of a ~< clause, because it aborts
the entire clause it appcars in (as well as all following clauses). ~~ may appear anywhere in
a ~{ construct. ‘

(setq donestr "Done.™ 7D warning™:P.”~ "D error™:P.")

(format nil donestr) => "Done."

(format nil donestr 3) => "Done. 3 warnings."
(format nil donestr 1 5) => "Done. 1 warning. 5 errors."

If a prefix paramecter is given, then termination occurs if the parameter is zero. (Hence ~~
is equivalent to ~#~.) If two parameters are given, termination occurs if they are equal. If
three are given, termination occurs if the second is between the other two in ascending

order. Of course, this is uscless if all the prefix parameters are constants; at least one of
them should be a # or a V parameter.

If =~ is used within a ~: { construct, then it merely terminates the current iteration step
(because in the standard case it tests for remaining arguments of the current step only); the
next iteration step commences immediately. To terminate the entire iteration process, use

~ oA
P

Here are some examples of the use of ~~ within a ™ < construct.

INPUT/OUTPUT ‘ 261

(format nil "715<7S™;7~78§7;7~7S™>" 'foo0)
= " Foo"
(format nil "715<7S™;7~7ST;7~7S™>" 'foo ’bar)
=> "F0O BAR"
(format nil "715<7S™;7~7S7;7~7S7>" 'foo 'bar ’baz)

=> "FOO BAR BAZ"

Compatibility note: The ~Q directive and user-defined directives have been omitted here, as well as control lists (as opposed
to strings), which are rumored (o be changing in meaning. ’

21.5. Querying the User

The following functions provide a convenient and consistent interface for asking questions of the user.
Questions are printed and the answers are rcad using the strecam *query-io* (page 214), which normally is
synonymous with *terminal-io* (page 214) but can be recbound to another strcam for special
applications.

y-or-n-p &optional message stream _ [Function]
This predicate is for asking the uscr a question whose answer is either “yes” or “no”. It types out
message (if supplied and not ni1), reads an answer in some implementation-dependent manner
(intended to be short and simple, like reading a singlc character such as “Y"" or “N”), and is true if]
the answer was “yes” or false if the answer was “no”.

If the message argument is supplied and not ni1, it will be printed on a fresh line (sce
fresh-1ine (page 249)). Otherwise it is assumed that a message has already been printed. If
you want a question mark and/or a space at the ecnd of the message, you must put it there yourself;
y-or-n-p will not add it. stream defaults to the value of the global variable *query-io* (page
214).

For example:
(y-or-n-p "Cannot establish connection. Retry? ")

y-or-n-p should only be used for questions that the user knows are coming. If the user is
unlikely to anticipate the question, or if the conscquences of the answer might be grave and
irreparable, then y-or-n-p should not be used, because the user might type ahcad and thereby
accidentally answer the question. For such questions as “Shall I delcte all of your files?”, it is better
to use yes-or-no-p.

yes-or-no-p &optional message stream : [Function]
This predicate, like y-or-n-p, is for asking the user a question whose answer is either *“Yes” or
“No”. It types out message (if supplicd and not ni 1), attracts the user’s attention, and reads a reply
in some implementation-dependent manner. It is intended that some thought have to go into the
reply, such as typing the full word “yes™ or “no” followed by a <return>.

If the message argument is supplied, it will be printed on a fresh line (sce fresh-Tine (page

262

.) » COMMON LISP REFERENCE MANUAL

249)). Otherwisc the caller is assumed to have printed the message already. If you want a question
mark and/or a spacc at the end of the message, you must put it there yoursclf; yes-or-no-p will
not add it. stream defaults to the value of the global variable *query-io* (page 214).

To allow the user to answer a ycs-or-no question with a single character, use y-or-n-p.
yes-or-no-p should be used for unanticipated or momentous questions; this is why it attracts
attention and why it requircs thought to answer it.

Chapter .22

File System Interface

A frequent use of streams is to communicate with a file system to which groups of data (files) can be written
and from which files can be retrieved.

COMMON LIsP defines a standard interface for dealing with such a file system. This interface is designed to
be simple and gencral cnough to accommodate the facilities provided by “typical” operating system
environments within which CoMMON LISP is likely to be implemented. The goal is to make COMMON LISP
programs that perform only simple operations on filés reasonably portable.

To this end COMMON LISP assumes that files are named, that given a name one can construct a stream
connected to a file of that name, and that the names can be fit into a certain canonical, implementation-
independent form called a pathname.

Facilitics are provided for manipulating pathnames, for creating strcams connected to files, and for
manipulating the file system through pathnames and streams.

22.1. File Names

COMMON LISP programs need to use names to designate files. The main difficulty in dealing with names of
files is that different file systems have different naming formats for files. For example, here is a table of
several file systems (actually, operating systems that provide file systems) and what the “same” file name
might look like for each one: ' |

System Filc name

TOPS-20 <LISPIO>FORMAT.FASL.13
TOPS-10 FORMAT.FAS[1,4]

ITS LISPIO; FORMAT FASL
MULTICS >udd>LispIO>format.fasl
TENEX <LISPIO>FORMAT.FASL;13
VAX VMS [LISPIO]FORMAT.FAS;13
UNIX /usr‘/h‘spio/format.fas]

- 263 -

264 _ - COMMON LISP REFERENCE MANUAL

It would be impossible for cach program that decals with file names to know about cach different file name
format that cxists; a ncw COMMON LISP implementation might usc a format different from any of its
predecessors. Therefore COMMON LISP provides /wo ways to represent file names: namestrings, which are
strings in the implementation-dependent form customary for the file system, and pathnames, which are
special data objects that represent file names in an implementation-independent way. Functions are provided
to convert between thesc two representations, and all manipulations of files can be cxpressed in machine-
independent terms by using pathnames.

In order to allow COMMON LIsp prograkns to operate in a network cnvironment that may have more than
one kind of file system, the pathname facility allows a file name to spccify which file system is to be used. In
this context, each file system is called a host, in kecping with the usual networking terminology.

22.1.1. Pathnames

All file systems dealt with by COMMON LISP are forced into a common framework, in which- files are
named by a LISP data objcct of type pathname. ‘

A pathname always has six components, described below. These components are the common interface
that allows programs to work the same way with different file systems; the mapping of the pathname
components into the concepts peculiar to cach file system is taken care of by the COMMON Lisp
implementation.

host The name of the file system on which the file resides.

device Corresponds to the “device” or “file structure” concept in many host file systems: the
name of a (logical or physical) device containing files.

directory Corresponds to the “directory” concept in many host file systems: the name of a group of
related files (typically those belonging to a single user or project).

name The name of a group of files that can be thought of as conceptually the “same” file.

type Corresponds to the “filetype” or “extension” concept in many host file systems. This says
what kind of filc this is. Files with the same name but different type are usually related in
some specific way, such as one being a source file, another the compiled form of that
source, and a third the listing of errors messages from the compiler.

version Corresponds to the “version number” concept in many host file systems. Typically this is a
number that is incremented every time the file is modified.

Note that a pathname is not necessarily the name of a specific file. Rather, it is a specification (possibly
only a partial specification) of how to access a file. A pathname nced not correspond to any file that actually
exists, and more than one pathname can refer to the same file, For example, the pathname with a version of

FILE SYSTEM INTERFACE ' ' 265

“newest” may réfer to the same file as a pathname with the same components except a certain number as the
version. Indeed, a pathname with version “newest”™ may refer to different files as time passes, because the
meaning of such a pathname depends on the state of the file system. In file systems with such facilities as
“links”, multiplc file namcs, logical devices, and so on, two pathnames that look quite different may turn out
to address the same file. To access a file given a pathname onc must do a file system operation such as open
(page 283).

Two important operations involving pathnames arc parsing and merging. Parsing is the conversion of a
namestring (which might be something supplicd interactively by the user when asked to supply the name of a
file) into a pathname object. This operation is implementation-dependent, because the format of namestrings
is implementation-dependent. Merging takes a pathname with missing components and supplics values for
those components from a source of defaults.

Not all of the components of a pathname necd to be specified. If a component of a pathname is missing, its
value is ni1, Before the file system interface can do anything interesting with a file, such as opening the file,
all the missing components of a pathname must be filled in (typically from a'sct of defaults). Pathnames with
missing components may used internally for various purposes; in particular, parsing a namestring that does
not specify certain components will result in a pathname with missing components.

A component of a pathname can also be the keyword :wil1d. This is only useful when the pathname is
being used with a directory-manipulating operation, where it means that the pathname component matches
anything. The printed represcntation of a pathname typically designates :wi1d by an asterisk; however, this
is host-dependent.

What values arc allowed for components of a pathname dcpends, in general, on the pathnamc’s host.
However, in order for pathnames to be usable in a system-independent way certain global conventions are
adhered to. These conventions are stronger for the type and version than for the other components, since the
typc and version arc explicitly manipulated by many programs, while the other components are usually
treated as something supplied by the user that just needs to be remembered and copiced from place to place.

The type is always a string or ni1 or :wild. Many programs that deal with files have an idea of what type
they want to use.

The version is either a positive integer or a special symbol. The meanings of ni1 and :wi1d have been
explained above. The keyword :newest refers to the largest version number that already exists in the file
system when reading a file, or that number plus onc when writing a new file. The keyword :oldest refers
to the smallest version number that exists. Some COMMON LIisp implementations may choose to define other
special version symbols, such as : installed, for example, if the file system for that implementation will
support them.

The host may be a string, indicating a file system, or a list of strings, of which the first names the file system
and the rest may be used for such a purpose as inter-network routing.

266 ‘ - * COMMON LISP REFERENCE MANUAL

The device, directory, and name also can cach be a simple string (with host-dependent rules on allowed
characters and length) or a list of strings (in which case such a component is said to be structured). Structured
components arc uscd to handle such file system features as hicrarchical directorics. COMMON LISP programs
do not nced to know about structured components unless they do host-dependent operations. Specifying a
string as a pathname component for a host that rcquires a structured value will cause conversion of the string
to the appropriate form. Specifying a structured component for a host that does not provide for that
component to be structured causes conversion to a string by the simple expedicnt of taking the first clement
of the list and ignoring the rest.

Some host file systéms have features that do not fit into this pathname model. For instance, dircctories
might be accessible as files, there might be complicated structure in the directorics or names, or there might
be relative dircctories, such as the “<” syntax in MULTICS or the special *“. .” file name of UNIX. Such
features are not allowed for by the standard COMMON LISP file system interface. An implementation is free to
accommodate such fcatures in its pathname representation and provide a parscr that can process such
specifications in namestrings; such features are then likely to work within that single implcmentation.

However, notc that once your program depends explicitly on any such features, it will not be portable.

22.1.2. Pathname Functions

Thesc functions are what programs use to parse and default file names that have been typed in or otherwise
supplied by the user.

As a rule, any argument called pathname may actually be a pathname, a string or symbol, or a stream, and
any argument called defauits may be a pathname, a string or symbol, a strcam, or a pathname defaulls a-list.

In the examplcs, it is assumed that the host named CMUC runs the TOPS-20 operating system, and therefore
uses TOPS-20 file system syntax; furthermore, an explicit host name is indicated by following it with a double
colon. Remember, however, that namestring syntax is implemeritation-dependent, and this syntax is used
purely for the sake of examples.

pathname thing | [Function]
The pathname function converts its argument to be a pathname. The argument may be a
pathname, a string or symbol, or a stream.

truename thing ’ [Function]
The truename function converts thing to be a pathname, and then endeavors to discover the “true
name” of the file associated with that pathname within the file system. The truename function
may be used to account for any file-name translations performed by the file system, as opposed to
logical-pathname translations performed by COMMON LISP (sec translated-pathname (page
282)). '

For example, suppose that “DOC:” is a TOPS-20 logical device name that is translated by the TOPS-20

FILE SYSTEM INTERFACE ‘ . 261

file system to be “PS: <DOCUMENTATION>".

(setq file (open "CMUC::DOC:DUMPER.HLP"}))
(namestring (pathname file)) => "CMUC::DOC:DUMPER.HLP"
(namestring (truename file))

=> "CMUC::PS:<DOCUMENTATION>DUMPER.HLP.13"

7?77 Query: If the filc is not found, should truename signal an error, return a1, or just quictly return an
untranslated pathname?

parse-namestring thing &optional convention defaults break-characters start end [Function]

This turns thing into a pathname. The thing is usually a string (that is, a namestring), but it may be
a symbol (in which casc the print name is uscd) or a pathname or stream (in which casc no parsing
is nceded, but an error check may be made for matching hosts).

This function does not do defaulting of pathname components; it only does parsing. The
convention and defaults arguments are prcscn‘t because in some implementations it may be that a
namestring can only be parsed with refcrence to a particular file name syntax of scveral available in
the implementation. If convention is non-ni1, it must be a string naming the file name syntax
(using a host name will indicate that the conventions peculiar to that host should be used if that is
meaningful), or a list of strings, of which the first is used. If convention is ni1 then the host name is
extracted from the default pathname in defaults and used to determine the syntax convention. The
defaults argument dcfaults to the value of *default-pathname-defaults* (page 281).

For a string (or symbol) argument, parse-namestring parscs a file name within it in the range
delimited by start and end (which are integer indices into string, defaulting to the beginning and
end of the string). Parsing is terminated upon reaching the end of the specified substring or upon
reaching a character in break-characters, which may be a string or a list of characters; this defaults
to an empty set of characters.

Two values are returned by parse-namestring. If the parsing is successful, then the first value
is a pathname object for the parsed file name, and otherwise the first value is ni1. The sccond
value is an integer, the index into string one beyond the last character processed. This will be equal
to end if processing was tcrminated by hitting the end of the substring; it will be the index of a
break character if such was the reason for termination; it will be the index of an illegal character if
that was what caused processing to (unsuccessfully) terminate. If thing is not a string or symbol,
then start is always returned as the second value.

Parsing an empty string always succeeds, producing a pathnanie with all components (cxcept the
host) :unspecific.

Note that if convention is specified and not n1i1, and thing contains a manifest host name, an error
is signalled if the conventions do not match.

268 COMMON LISP REFERENCE MANUAL

merge-pathname-defaults pathname &optional defaults default-type default-version [lunction]
This is the function that most programs should call to process a file name supplied by the user. It
fills in unspecified components of pathname from the defaults, and returns a new pathname.
pathname can be a pathname, string, or symbol. The returned valuc will always be a pathname.

defaults defaults to the valuc of *default-pathname-defaults* (page 281). default-type
defaults to :unspecific. default-version defaultsto :newest.

The rules for merging can be rather compilicated in some situations; they are described in detail in
scction 23.1.3 (page 280). An approximate rule of thumb is simply that any components missing in
the pathname are filled in from the defaults.

For example:

(merge-pathname-defaults "CMUC::FORMAT"
© "CMUC: :PS:<LISPIO>"
"FASL")
=> a pathname objcct that re-expressed as a namestring would be
"CMUC: :PS:<LISPIO>FORMAT.FASL.O"

make-pathname &key :host :device :directory :name [Function]
:type :version :defaults ‘

Given some components, make-pathname constructs and returns a pathname. Missing
components default to ni1, except the host (all pathnames must have a host). The :defaults
option specifies what defaults to get the host from if the :host option is ni1 or not specified;
however, no other components arc supplied from the :defaults. The default value of the
:defaults option is the value of *default-pathname-defaults* (page 281): All other
keywords specify components for the pathname.

Whenever a pathname is constructed, whether by make-pathname or some other function, the
components may be canonicalized if appropriate. For example, if a file system is insensitive to case,
then alphabetic characters may be forced to upper case or lower case by the implementation.

pathnamep object [Function]
This predicate is true if object is a pathname, and otherwise is false.

(pathnamep x) <=> (typep x ’pathname)

pathname-host pathname ' ' [Function]
pathname-device pathname ' [Function]
pathname-directory pathname [Function]
pathname-name pathname ' : [Function]
pathname-type pathname ' _ [Function]
pathname-version pathname ‘ [Function]

These return the components of the argument pathname, which may be a pathname, string, or
symbol. The returned values can be strings, special symbols, or lists of strings in the case of

FILE SYSTEM INTERFACE ‘ 269

. structurcd components. The type will alwinys be a string or a symbol. 'The version will always be a
number or a symbol.

pathname-plist pathname [Function]
These return the property list of the argument pathname, which may be a pathname, string, or
symbol (scc symbol-plist (page 109)).

namestring pathname [Function]
file-namestring pathname . ' A [Function]
directory-namestring pathname ' [Function]
host-namestring pathname [Function]
enough-namestring pathname &optional defaults ' ' [Function]

The pathname argument may be a namelist, a namestring, or a strcam that is or was open to a file.
The name represented by pathname is returncd as a nameclist in canonical form.

If pathname is a stream, the name returncd represents the name used to open the file, which may
not be the actual name of the file (see truename (page 266)).

namestring returns the full form of the pathname as a string. file-namestring returns a
string representing just the name, type, and version components of the pathname; the result of

‘ directory-namestring represents just the directory-name portion; and host-namestring
returns a string for just the host-name portion. Note that a valid namestring cannot necessarily be
constructed simply by concatenating some of the three shorter strings in some order.

enough-namestring takes another argument, defaults. It returns an abbreviated namestring

that is just sufficient to identify the file named by pathname when considered relative to the defaults

(which defaults to the value of *default-pathname-defaults* (page281)). Thatis,
(merge-pathname-defaults (enough-namestring pathname defaulls)

defaults)
<=> (parse-pathname pathname)

user-homedir-pathname &optional host [Function]
Returns a pathname for the user’s “home directory” on host, which defaults in some appropriate
implementation-dependent manner. The concept of “home directory” is itself somewhat
implementation-dependent, but from the point of view of COMMON LISP it is the dircctory where
the user keeps personal files such as initialization files and mail. This function returns a pathname
without any name, type, or version component (those components arc all ni1).

init-file-pathname program-name &optional host [Function]

Returns the pathname of the user’s init file for the program program-name (a string), on the host,

. which defaults in some appropriate implementation-dependent manner. Programs that load init
' files containing user customizations call this function to determine where to look for the file, so that

270 » ‘ COMMON LISP REFERENCE MANUAL

they nced not know the scparate init file name conventions of cach host operating system.

22.1.3. Defaults and Mergfng

Defaulting of pathname components is donc by filling in components taken from another pathname; this
filling-in is called merging. This is especially uscful for cascs such as a program that has an input filc and an
- output file, and asks the user for the name of both, letting the unsupplied components of one name default
from the other. Unspcecified components of the output pathname will come from the input pathname, cxcept
that the type should default not to the type of the input but to the appropriate default type for output from
this program. ‘ ’

The pathname merging operation takes as input a given pathname, a defaults pathname a default type, and
a default version, and returns a new pathname. Basically, the missing components in the given pathname are
filled in from the defaults pathname, cxcept that if no type is specificd the default type is used, and if no
version is specified the default version is used. Programs that have a default type for the files they manipulate
usually will supply it to thc merging operation. The default version is usually :newest; if no version is
specified the newest version in cxistence should be used. The default type and version can be nil, to
preserve the information that they were missing in the input pathname.

The full details of the merging rules are as follows. First, if the given pathname explicitly specifics a host
and does not supply a device, then the device will be the default file device for that host. Next, if the given
pathname docs not specify a host, device, directory, or name, each such component is copied from the

defaults.

The merging rules for the type and version are more complicated, and depend on whether the pathname
specifics a name. If the pathname doesn’t specify a name, then the type and version, if not provided, will
come from the defaults, just like the other components. However, if the pathname does specify a name, then
the type and version are not affccted by the defaults. The reason for this is that the type and version “belong
to” some other filename, and are unlikely to have anything to do with the new one. Finally, if this process
leaves the type or version missing, the default type or default version is used (these were inputs to the merging
operation). ’

The effect of all this is that if the user supplies just a name, the host, device, and directory will come from
the defaults, but the type and version will come from the default type and default version arguments to the
merging operation. If the user supplies nothing, or just a directory, the name, type, and version will come
over from the defaults together. If the host’s file name syntax provides a way to input a type or version
without a name, the user can let the name default but supply a diffcrent type or version than the one in the
defaults. N

FILE SYSTEM INTERFACE ' ‘ 271

default-pathname-defaults [Variable]
This is the default pathname-defaults pathname; if any pathname primitive that nceds a sct of
defaults is not given one, it uses this one. As a general rule, however, cach program should have its
own pathnamc dcfaults a-list rather than using this onc.

Scc also *1oad~pathname-defaults* (page 289). 7

22.1.4. Logical Pathnames

Logical pathnamecs, unlike ordinary pathnames, do not correspond to any particular file server. Like every

. pathname, however, a logical pathname must have a host, in this casc called a “logical” host. Every logical

pathname can be translated into a corresponding “actual” pathname; therc is a mapping from logical hosts
into actual hosts used to cffect this translation.

The reason for having logical pathnames is to make it casy to keep bodies of software on more than one file

system. A program may nccd to have a suite of files at its disposal, but different file systems may have

different conventions about what directories may be used to store such files. Ideally, it should be easy to write
a program in such a way that it will work correctly no matter which site it is run at. This is easily done by
writing the program to use a logical name; this logical namc can then be provided with a customized
translation for each implementation, thereby centralizing the implementation dependency.

Here is how translation'is done. For each logical host, there is a mapping that takes a directory name and
produces a corresponding actual host name, device name, and dircctory name. To translate a logical
pathname, the system finds the mapping for that péthnar'nc’s host and looks up that pathname’s dircctory in
the rﬁapping. If the directory is found, a new pathname is created whosc host is the actual host, and whose
device and directory names come from the mapping. The other components of the new pathname taken from
the old pathname. There is aiso, for each logical host, a “default device”. If the directory is not found in the
mapping, then the new pathname will have the same directory name as the old one, and its device will be the
default device for the logical host.

This means that when you invent a new logical device for a certain sct of files, you also make up a set of
logical directory names, one for each of the directories that the set of files is stored in. Now when you create
the mappings at particular sites, you can choose any actual host for the files to reside on, and for each of your
logical dircctory names, you can specify the actual directory name to use on the actual host. This gives you
flexibility in setting up your dircctory names; if you used a logical directory name called fred and you want
to move your set of files to a new file server that already has a directory called fred, being used by someone
else, you can translate fred to some other name and so avoid getting in the way of the existing directory.
Furthermore, you can set up your directories on each host to conform to the local naming conventions of that
host.

272 N COMMON LISP REFERENCE MANUAL

add-logical-pathname-host logical-host actual-host default-device translations [FFunction]
This creates a new logical host named logical-host. Its corresponding actual host (that is, the host to
which it will forward most operations) is named by actual-host. logical-host and actual-host should
both be strings. The default-device should be a string naming the default device for the logical host.
The translations should be a list of translation specifications. Each translation specification should
be a list of two items. The first should be a string naming a dircctory for the logical host. The
sccond is a pathnamc (or string, symbol, or strcam) whose device component and directory
component provide the translation for the logical directory.

translated-pathname pathname ‘ [Function]
This converts a logical pathname to an actual pathname. If the pathname already refers to an actual
host rather than to a logical host, the argument is simply returned.

back translated-pathname logical-pathname actual-pathname [Function]
This converts an actual pathname to a logical pathname. actual-pathname should be a pathname
whose host is the actual host corresponding to the logical host of logical-pathname. This returns a
pathname whosc host is the logical host and whose translation (as by translated-pathname
(page 282)) is actual-pathname. ’ :

An example of how this would be used is in connection with truenames. Given a stream s that was
obtained by opcnmg a logical pathname,

(pathname s)
returns the logical pathname that was opened;
(truename s)
returns the true name of the file that is open, which of course is a pathname on the actual host. To
get this in the form of a logical pathname, one would do
(back-translated-pathname (pathname s) (truename s)) _
If the argument logical-pathname is actually an actual pathname, then the argument

-actual-pathname is simply returned. Thus the above example will work no matter what kind of
pathname was opened to create the stream.

The namestring corresponding to a logical pathname is, like all namestrings, of implementation-dependent
format. As a rule, however, there is no way to specify a device; parsing a logical-pathname string always
returns a pathname whose device componentisnil.

22.2. Opening and Closing Files

When a file is opened, a stream object is constructed to serve as the file system’s ambassador to the LISP
environment; operations on the stream are reflected by operations on the file in the file system. The act of -
closing the file (actually, the stream) ends the association; the transaction with the file system is terminated,

FILE SYSTEM INTERFACE _ _ 273

and input/output may no longer be performed on the stream. The stream function close (page 217) may
be used to close a file; the functions described below may be used to open them. The basic operation is
open,butwith-open-file is usually more convenient for most applications.

open filename &key :direction :type :if-exists :if-does-not-exist [FFunction]
Returns a strcam that is connected to the file specificd by filename. The keyword arguments specify
what kind of strcam to produce and how to handle errors:

:direction This argument specifics whether the stream should handle input, output, or

both.

rinput The result will be an input stream. This is the default.

:output The result will be an output stream.

tio The result will be a bidirectional stream.

:probe The result will be a no-directional stream (in effect, the stream
is created and then closed). 'This is useful for determining
whether a file exists without actually setting up a complete
stream.

:type This argument specifies the type of the unit of transaction for the stream. As a

rule, anything that can be recognized as being a finite subtypc of character or
integer is acceptable. In particular, the following types arc recognized:

string-char The unit of transaction is a string-character. The functions -
read-char (page 245) and/or write-char (page
249) may be used on the stream. This is the default.

character The unit of transaction is any character, not just a string-
character. The functions read-char (page 245) and/or
wm‘ te-char (page 249) may be used on the stream,

standard-char
The unit of transaction is a standard character. The functions
read-char (page 245) and/or write-char (page
249) may be used on the stream. This option may be used to
guarantee that no non-standard character will be read from an -
input source. '

(unsigned-byte n)
The unit of transaction is an unsigned byte (a non-ncgative
integer) of size n. The functions read-byte (page
247) and/or write-byte (page 250) may be used on the
stream.

~p

274 : COMMON LISP REFERENCE MANUAL

unsigned-byte
The unit of transaction is an unsigned byte {(a non-ncgative
integer); the size of the byte is determined by the file system.
The functions read-byte (page247)and/orwrite-byte
(page 250) may be used on the stream.

(signed-byte n)
The unit of transaction is a signed byte of size n. The
functions read-byte (pagec 247) and/or write-byte
(page 250) may be used on the stream.

signed-byte The unit of transaction is a signed byte of size n. the size of
‘ the byte’ is determined by the file system. The functions
read-byte (page 247) and/or write-byte (page

250) may be usced on the stream.

bit The unit of transaction is a bit (values 0 and 1). The
' functions read-byte (page 247) and/or write-byte
(page 250) may be used on the stream.

(mod n) The unit of transaction is a non-negative integer less than n.
The functions read-byte (page 247) and/orwrite-byte
(page 250) may be used on the stream.

;default The unit of tfansaction is to be determined by the file system,
based on the file it finds. The type can be determined by
using the function stream-element-type (page217).

:if-exists This argument specifies the action to be taken if the :direction is :output
or : io and a file of the specified name alrcady exists. If the directionis : input
or : probe, this argument is ignored.

zerror Signal an error. This is the default when the version
component of the filename is not : newest.

:new-version Create a new file with the same file name, but with a larger
version number, This is the default when the version
component of the filecname is : newest.

:rename Rename the existing file to some other name, and then create
a new file with the specified name.

:rename-and-delete
Rename the existing file to some other name and then delete
it (but don’t expunge it, on those systems that distinguish
deletion from expunging). Then crcate a new file with the
specified name.

FILE SYSTEM INTERFACE

:overwrite

:append

tsupersede

nil

:if-does-not-exist

275

The existing file is used, and output operations on the strcam
will destructively modify the file. Ifthe :directionis :io,
the filc is opened in a bidirectional mode that allows both
rcading and writing. 'The file pointer is initially positioncd at
the beginning of the file. This mode is most useful when the
file-position (page 287) function can be used on the
stream. '

The existing filc is used, and output operations on the stream
will destructively modify the file. The file pointeris initially
positioned at the end of the file. Ifthe :directionis :io0,
the file is opened in a bidirectional modc that allows both
reading and writing.

Supersede the existing file. If possible, the implementation
should arrange not to destroy the old file until the new stream
is closed, against the possibility that the stream will be closed
in “abort” mode. ‘

Do not create a file or even a stream. Instead, simply return
ni1 to indicate failure.

This argument specifies the action to be taken if a file of the specified name does

not already exist.

serror

:create

nil

Signal an error. This is the default if the :direction is
:input, or if the :if-exists argument is :overwrite
or :append.

Create an empty file with the specified name, and- then
proceed as if it had already existed. This is the default if the
:direction is :output or :1i0, and the :if-exists
argument is anything but ;overwrite or :append.

Do not create a file or even a stream. Instead, simply return
nil to indicate failure, This is the default if the
:directionis :probe.

When the caller is finished with the stream, it should close the file by using the close (page
217) function. The with-open-file (page 286) special form does this automatically, and so is
preferred for most purposes. open should be used only when the control structure of the program
necessitates opening and closing of a file in some way more complex than provided by
with-open-file. It is suggested that any program that uses open directly should use the
special form unwind-protect (page 94) to close the file if an abnormal exit occurs.

276 A COMMON LISP REFERENCE MANUAL

with-open-file bindspec {form}* [Macro)
(with-open-file (stream filename . optionsy . body) cvaluates the forms of body (an

implicit progn) with the variable srream bound to a stream that rcads or writes the file named by
the valuc of filename. 'The options arc evaluated, and arc usced as keyword arguments to the
function open (page 273).

When control leaves the body, cither normally or abnormally (such as by usc of throw (page 95)),
the file is automatically closed. If a new output file is being written, and control leaves abnormally,
the file is aborted and the file system is left, so far as possible, as if the file had never been opencd.
Because with-open-file always closes the file, even when an error exit is taken, it is preferred
over open for most applications. '

filename is the name of the file to be opencd; it may be a string, a pathname, or a strecam.

For example:

(with-open-file (ifile name :direction :input)
(with-open-file (ofile (merge-pathname-defaults ifile
’ ’ nil
. Ilout")
:direction :output
:if-exists :supersede)
(transduce-file ifile ofile)))

Implementation note: While with-open-file tries to automatically close the stream on exit from the construct, for
robustncss it is helpful if the garbage collector can detect discarded streams and automatically close them.

22.3. Renaming, Deleting, and Other Operations

Conipalibility note: The MacLisp/Lisp Machine Lisp names renamef, deletef, etc, are explicitly avoided here because
they are not sufficiently mnemonic and because the trailing-f convention conflicts with a similar convention for forms
related to setf (page 66).

rename-Tile file new-name &optional errorp ' [Function]
file can be a filename or a stream that is open to a file. The specified file is renamed to new-name (a
filename). If error-p is true (the default), then if a file-system error occurs it will be signalled as a
LISP error. If error-p is false and an errur occurs, the error message will be returned as a string. If
no error occurs, renamef returns nil.

-« delete-file file &optional errorp [Function]
file can be a filename or a stream that is open to a file. The specified file is deleted. If error-p is true
(the default), then if a file-system ecrror occurs it will be signalled as a LISP error. If errorp is false
and an error occurs, the error message will be returned as a string. If no error occurs, deletef
returns ni 1.

FILE SYSTEM INTERFACE . . 7 277

probe-file filename [Function)
This pscudo-predicate is false if there is no file named filename, and otherwise returns a filename
that is the truc name of the file (which may be different from filename becausc of file links, version
numbers, or other artifacts of the file system; scec truename (page 266)).

file-creation-date file : : . [Function]
file can be a filcname or a strcam that is open to a file. This returns the creation date of the file as
an integer in universal time format, or ni1 if this cannot be determined.

file-author file [Function]
file can be a filename or a stream that is open to a file. This returns the name of the author of the
file as a string, or n1i1 if this cannot be determined.

file-position file-stream &optional position ' [Function]
file-position returns or sets the current position within a random-access file.

(file-position file-stream) recturns a non-negative integer indicating the current position
within the file-stream, or ni1 if this cannot be determined. Normally, the position is zero when the
stream is first created. For a character strcam, the position is in units of characters; for a binary file,
the position is in bytes. " ' '

(file-position file-stream position) sets the position within file-stream to be position. The
position may be an integer, or ni1 for the beginning of the stream, or t for the end of the stream.
If the integer is too large, an error occurs (the file-Tength (page 287) function returns the
length beyond which file-position may not access). - With two arguments, file-position
is a (side-effecting) predicate that is true if it actually performed the operation, or false if it could
not.

file-length file-stream [Function]
file-stream must be a stream that is open to a file. The length of the file is returned as a non-
negative integer, or ni1 if the length cannot be determined. For a character stream, the position is
in units of characters; for a binary stream, the position is in bytes.

22.4. Loading Files

To load a file is to rcad through the file, evaluating each form in it. Programs are typically stored in files;
the expressions in the file arc mostly special forms such as defun (page 47), defmacro (page 99), and

- defvar (page 48), which define the functions and variables of the program.

Loading a compiled (“fasload”) file is similar, except that the file docs not contain text, but rather- pre-

278 COMMON LISP REFERENCE MANUAL

digested expressions created by the compiler that can be loaded more quickly.

load &optional filename &key :verbose :print :if-does-not-exist [Function)
:set-default-pathname
This function loads the file named by filename into the Lisp environment. [t is assumed that a text
(character filc) can be automatically distinguished from an object (binary) file by somc appropriate
implementation-dependent means, possibly by the file type. If the filename docs not cxplicitly
specify a type, and both text and object types of the file are available in the file system, load
should try to select the more appropriate file by some implementation-dependent means.

If the first argument is a stream rather than a pathname, then Toad determines what kind of stream
it is and loads dircctly from the stream.

The :verbose argument (which defaults to the value of *1oad-verbose* (page 283)), if true,
permits Toad to print a message in the form of a comment to *standard-output* (page
213) indicating what file is being loaded and other useful information.

The :print argument (default ni1), if true, causes the value of cach cxpression loaded to be
printed to *standard-output* (page213). Ifa binary file is being loaded, then what is printed

“may not reflect precisely the contents of the source file, but nevertheless some information will be
printed, including the name of each function loaded.

If a file is successfully loaded, 1oad always returns a non-ni1 value. If : if-does-not-exist
is specified and is ni1, Toad just returns n1i1 rather than signalling an error if the file does not
exist. '

load maintains a default filename in the variable *1oad- pathname-defaults* (page 289),
used to default missing components of the filename argument; thus (Toad) will load the same file
previously loaded. (The function compile-file (page 300) also uses and sets these pathname
defaults) The :set-pathname-defaults argument (which defaults to the value of
1oad-set-pathname-defaults), if true, causes load to update
Toad-pathname-defaults from its first argument. - '

1ogad-verbose _ [Variable]
This variable provides the default for the :verbose argument to 1oad (page 288). Its initial
value is implementation-dependent.

load-set-default-pathname [Variable]
This variable provides the default for the :set-default-pathname argument to 1oad (page
288). Itsinitial value is implementation-dependent.

Seec also *compile-file-set-default-pathname* (page 300).

FILE SYSTEM INTERFACE ' ' 279

1oad-pathname-defaults [Variable]
This is the pathname-defaults pathname for the Toad (page 278) and compile-file (page
300) functions. Other functions may share these defaults if they deem that to be an appropriate
user interface. '

22.5. Accessing Directories

directory pathname ' [Function]
A list of pathnames is returncd, one for cach file in the file system that matches the given pathname.
For cach such file, the truename (page 266) for that file appears in the result list. Keywords such
as :wild and :newest may be used in : pathname to indicate the scarch space.

280

COMMON LISP REFERENCE MANUAL

Chapte'r 23

Errors

CoMMON LispP handles errors through a system of conditions. One may cstablish handlers that gain control
when conditions occur, and signal a condition when an crror actually occurs. When the system or a user
function detects an error it signals an appropriatcly named condition and some handler cstablished for that
condition may deal with it,

The condition mechanism is completely general and can be uscd for purposcs other than “error’ handling.

Every condition is named by a symbol, typically a keyword. When an unusual situation occurs, such as an
error, a condition is signalled. Handlers are cstablished with dynamic scope, and so the most recently
established handler for the condition will be invoked.

23.1. Signalling Conditions

signal condition-name &rest args - : [Function]
This searches through all currently established condition handlers, starting with the most recent. If
it finds one established to handle condition-name or to handle any condition, then it calls that
handler, giving it preciscly the arguments that were given to signal, including the condition-name
as the first argument. The dynamic environment (such as catchers and special variable bindings) is
not unwound; the handler is invoked in the dynamic environment of the call to signal.

If a handler returns values, and the first value returned by the handler is not ni1, the handler is
said to be willing; all the values it returns are returned from the call to signal. Otherwise,
signal will continue searching for another matching handler. If no matching and willing handler
is found, then signal returnsnit.

It is possible for a handler to effectively handle the¢ error other than by returning values; it may, for
example, call throw (page 95).

- 281 -

282 - ‘ COMMON LISP REFERENCE MANUAL

23.2. Establishing Handlers

condition-bind bindings {form}* [Macro]
This is used to establish handlers for conditions, then perform the body in that cstablished handler
environment. The handlers established have dynamic scope. The format is:

(condition-bind ((condition-name-1 handler-1)
(condition-name-2 handler-2)

ic"o.ndition-name-m handler-m))
Jorml
form2

Sformn)) _
Each condition-name-j is cither the name of a condition or a list of names of conditions. Each
handler-j is a form that is cvaluated to produce a handler function; they are cvaluated in order from
handler-1 to handler-m; only after all the handler-j forms arc evaluated is any handler established.
The condition handlers are cstablished in the order shown, such that if a condition is signalled
handler-m, as the most recently established, will be the first one examined.

?7? Query: This dilfers from Lisp Machinc Lise. However, if shadowing within a single condition-bind is to
be permitted, this is the more logical definition. Perhaps it would be better not to allow such shadowing?

The expressions formj are then cvaluated as an implicit prog n. The condition-bind form
returns whatever formn returns (ni1 if there are no forms in the body). The established conditions
become disestablished when the condition-bind form is exited.

condition-bind also establishes a context limiting the extent of effectiveness of
condition-psetq. ’

condition-psetq {spec}* [Macro]
The condition-psetq form is used to establish condition handlers as a side effect. It takes the
form: '
For example:

(condition-psetq condition-name-1 handler-1
condition-name-2 handler-2

condition-name-n handler-n)
Each condition-name-j is either the name of a condition or a list of names of conditions. Each
handler-j is -a form that is evaluated to produce a handler function. The handler-j forms are all
evaluated in order, and only then are the results established as condition handlers, in such an order
that handler-! is examined first when a condition is signalled.

The conditions established by condition-psetq remain established until execution is unwound
(either normally or by being thrown) past the most recent condition-bind. (If no
condition-bind is in effect, condition-psetq: effectively cstablishes globally defined
handlers. Multiple uses of condition-psetq cause the most recently established handler to be

ERRORS

283

e

tricd first when a condition is signalled. For example, consider:

For cxample:

(condition-psetq :wrong-type-argument 'default-wta-handler)

(+ 23 nil)

(condition-psetq :wrong-type-argument ’hairy-wta-handler)

(+ 105 nil)
When the first :wrong-type-argument crror is signalled (because of the attempt to add 23 to
ni1) the function default-wta-handler will bc given first chance at handling the crror.
When the sccond crror is signalled (because of the attempt to add 105 to ni1) the function
hairy-wta-handler will be given first chance. Ifit declines (by returning ni1 as its first result)
then default-wta-handler will be given achance.

777 Query: Need to have a way to discstablish a handler established by condition-psetq?

condition-case form {(condition-names {form}*)}* . ' [Macro)

This is a form sometimes more convenient than condition-bind (page 282) for executing a

form with certain condition handlers established. The handlers established have dynamic scope.

The format is: -
(condition-case form

clausel
clause2

s

clausen)

Each clause is similar to a case (page 78) clause; it is a list whose first element specifies keys, in
this case a list of condition names or a single condition name. The remainder of each clause is a
body, a list™of forms constituting an implicit progn. For each condition mentioned a handler is
established, such that if the condition occurs a throw (page 95) is performed to unwind the
dynamic environment back to the point of the condition-case; the body of the corresponding
clause is then executed, and whatever is produced by the last form in the body is returned as the
value of the condition-case form. Notc that when the body of any condition-case clause
is executed, all the handlers established by that condition-case have already been
disestablished.

Once thesc handlers are established, the form is evaluated. If evaluation of the form does not cause
a condition to invoke one of the handlers, the established handlers become disestablished, and
whatever the form producced is returned from the condition-case form.

23.3. Error Handlers

Certain conditions names are used by the COMMON LISP system to signal error conditions. Like all
condition handlers, an error handler will receive as arguments all the arguments given to signal. By
. convention, however, the arguments for a signalled error have the following interpretation:

o condition-name. As for any condition handler, the first argument is the name of the condition.

Ay

~5

284 : COMMON LISP REFERENCE MANUAL

o proceed-flag. 1f this is not ni1, then the handler can expect to correct the error by returning
suitable values (sce below); the signaller will be prepared to retry the failed operation or otherwise
recover, If this is ni1, then if the handler returns a value (other than ni1 to decline handling of
the condition) a : failed-handler error will be signalled.

o function-name. If thisis not ni1, it is the name of the function that signalled the crror.

7?7 Query: Here is an odd idca: let cvery defun implicitly bind a lexical variable named, say,
name-of-this-function to the name of the function, in much the same way that it cstablishes an
implicit block for use by return. Then ferror could be a macro such that (ferror ...) expanded
into v .

(*ferror name-of-this-function ...)

and thereby capture the function name automatically.
e control-string. A string suitable for use with the remaining arguments for format (page 251).
e other-arguments. Other arguments; these vary with the condition involved.

An crror handler can do some processing and then make one of three responses to the error. It can return
nil to decline handling the error, in which case some other handler will be given the opportunity. It can call
throw or signal in an attempt to make a non-local exit. Finally, it can return several values of which the
- first is :return, in an attempt to correct the error. If the handler returns values and the first value is not
nil or :return, or if the first value is : return and the signaller is not prepared to correct the error, then
(by convention) a : failed-handler error will be signalled.

The function cerror (page 295) is the primary means for signalling a correctable error. If a handler
returns several values of which the firstis :return, then cerror will return all the values except the first
(the :return keyword) as the values from the call to cerror.

23.4. Signalling Errors

LISP programs can signal errors by using one of the functions error (for “trivial errors”), ferror (for
fatal error) or cerror (for correctable error). error is the easiest way to signal an error, but it provides for
neither distinguishing types of errors nor recovering from errors. ferror distinguishes among various types
of errors, and cerror further allows recovery from the error. High-quality software packages should
endcavor to use cerror or ferror whenever appropriate.

error control-string &rest args [Function]
error takes a control-string and other arguments suitable for format (page 251). It signals an
error using the condition name :error.

(error s x y ...) <=> (ferror :error sxy ...)

[ERRORS

ferror
cerror

assert

285

condition-name control-string &rest args : [Function]
condition-name control-string &rest args [FFunction]
ferror signals the error condition condition-name. The remaining arguments to ferror should
be suitable for format (page 251). The error condition signalled is not correctable; function:
ferror never returns. (A call to ferror may be terminated by a non-local exit, such as a throw,
however.)

If no handler can be found for condition-name, then a :missing-handler crror is recursively
signalled. ’

If a handler attempts to correct the error (by returning as first value the keyword : return), then
ferror signals an uncorrectable : failed-handler crror.

cerror is similar to ferror, but signals a correctable error (the sccond argument given to
signal is t). If a handler attempts to correct the crror (by returning as first value the keyword
:return), then cerror returns as its values all values rcturned by the handler but the first (that
is, the keyword :return is not returncd by cerror). '

test &optional control-string &rest args [Macro]
The test is evaluated. If the resultisnot nil ,assertreturnsnil.

If the result is ni1, then a correctable :failed-assertion error is signalled; see cerror
(page 295). If a control-string is supplicd, it and the args are used in signalling the érror; otherwise a
default message is provided. The control-string and args are not evaluated unlcess the festis nil. If
the handler “corrects” the crror, then the fest is re-evaluated; thus assert itcrates until the fest is
satisfied. (If the test is evaluated several times, then control-string and the args may also be
evaluated multiple times, so it is best if they are free of side effects.)

For example:

(assert {(<=-2 base 36))
(assert (apply #’'= (array-dimensions a))
"The array ~S is not equidimensional." a)

check-type place typespec &optional string [Macro]

The place must be a form acceptable to setf (page 66). If the value of place is of the type .
spesified by fypespec, then check-type -simply returns t. Otherwise, it signals a
:wrong-type-argument correctable error. The message will mention the string, which should
be an English name or phrase for the type; if string is omitted (as it frequently is), a name is derived
automatically from the typespec. If a correction value is returned, then setf is used to install the
correction valic in place, and the test is then repeated. Thus check-type will not terminate until
place contains a value of the specified type.

The typespec is not evaluated, but the string (if supplied) is.

For example:

286 v COMMON LISP REFERENCE MANUAL

(check-type *readtable* readtable) ‘ .

(defun primep-the-hard-way (x)
(check-type x integer)
(do ((J 1 (+ 3] 1)))
((> J x) t)
(when (> (gcd j x) 1) (return nil)))

23.5. Standard Condition Names

Some condition names arc used by the COMMON LISP system itsclf. They are listed below along with the
arguments they expect and the conventions followed in use of these conditions. The arguments listed are
those that are to follow the control-string as arguments to the handler.

If an error is signalled correctably, the term “correction values™ refers to the values returned by the handler |
along with the keyword :return. The signaller may use these values in any manner, but the conventional
use is described below. A handler may not return valid correction values, of course; a prudent signaller will
re-check correction values using mé same test that led to the signalling of the original error.

ierror This catch-all condition name is used by the error (page 284) function. There is no
particular convention regarding arguments or correction values.

:wrong-type-argument'
Requires zype and value, where the first is a type specifier indicating what type of value is
required, and the second is the value being complained about. The correction value should
be a new object to be used in place of the one that was of the wrong type.

:contradictory-arguments _
Requires function and a list of all the arguments given to that function. This condition is
signalled when the arguments to a function are inconsistent with each other, but the fault
does not lie with any particular one of them. The correction value should be a list
containing a new set of arguments to the same function.

?7? Query: This differs from the Lisp Machine Lisp : inconsistent-arguments error, where
the correction value is simply used as the return value from the function that got the bad arguments.

:too-few-arguments .
Requires finction and a list of all the arguments given to that function. This condition
indicates that not enough arguments were passed to satisfy the required parameters. The
correction value should be a list containing a new set of arguments to the same function.

:too-many-arguments
Requires finction and a list of all the arguments given to that function. This condition
indicates that too many arguments were passed to a function. The correction value should
be a list containing a new sct of arguments to the same function.

ERRORS a . 287

:unexpected-keyword
Requires function and keyword, the latter being the purported name of a keyword passed as
a keyword argument. The keyword-is not a valid keyword for fitnction. Correction valucs
arc ignored; correcting the crror causes the keyword and its associated value to be ignored.

:invalid-form
' Requires onc argument form. The so-called form was not a meaningful form for eval.
Probably it was of a bad data type. Ifthe crror is procceded, the value returned should be
a new form to be cvaluated in place of the bad form.

:unbound-variable
Requires a symbol. The symbol has no dynamic value associated with it (sce
symbol-value (page 62) and set (page 64)). The correction value is uscd to satisfy
the request for the symbol’s value as a dynamic variable.

:invalid-variable
Requires an object. An attempt was made to bind or assign to objec! as a variable, but it is
not a symbol, or is a symbol but is a constant such as ni1 (page 51) or pi (page 130).
The correction value should be a symbol to be used in place of object as the name of the
variable.

tundefined-function
Requires function-name. The symbol function-name had no function definition. The first
correction value is used as a function instead. (If this correction value is not a function
after all, presumably an invalid-function error should ensue, but this check is the
responsibility of the signaller.)

:invalid-function
Rcquires an object. An attempt was made to invoke object as a function, but it is not
suitable for calling. If the object is a symbol, then perhaps it has no function definition, or
is the name of a macro or special form rather than of a function. The correction value is
used in place of object as a function to be invoked. '

:failed-assertion
There is no particular convention on arguments. This is signalled correctably when the test
for an assert (page 285) form fails. The correction values are ignored.

:failed-handier A
Requires a condition-name and all the other arguments given to the handler. The
handler that handled the condition returned the keyword :return for an uncorrectable
error, or returned a first value other than :return or nil. This error is normally
signalled uncorrectably. '

288 COMMON LISP REFERENCIE MANUAL .

:missing-handler '

Requires a condition-name and all the other arguments given to the handler. One of
the crror-signalling functions error (page 284), cerror (page 285), or ferror (page
285) could not locate a handler for the specified condition-name. 'This crror is normally
signalled correctably; the correction value is the handler to use.

A

Chapter 24

‘Miscellaneous Features

24.1. The Compiler

The compiler is a program that may make code run faster, by translating programs into an implementation-
dependent form that can be executed more cfficiently by the computer. Most of the time you can write
programs without worrying about the compiler; compiling a file of code should produce an equivalent but
more cfficient program. When doing more esoteric things, onc may necd to think carefully about what
happens at “compile time” and what happens at “load time”. Then the difference between the syntaxes “#.”
and “#,” becomes important, and the eval-when (page 49) construct becomes particularly useful.

Most declarations are not used by the COMMON LISP interpreter; they may be used to give advice to the
compiler. The compiler may attempt to check your advice and warn you if it is inconsistent.

Unlike most other LISP dialects, COMMON LISP recognizes special declarations in interpreted code as
well as compiled code. This potential source of incompatibility between interpreted and compiled code is
thereby eliminated in COMMON LISP. :

The internal workings of a compiler will of course be highly implementation-dependent. The following
functions provide a standard interface to the compiler, however.

compile name &optional definition : [Function]
If definition is supplied, it should be a lambda-expression, the interpreted function to be compiled.
If it is not supplied, then name should be a symbol with a definition that is a lambda expression or
select expression; that definition is compiled and the resulting compiled code is put back into the
symbol as its function definition.

- The definition is compiled and a compiled-function object produced. If name is a symbol, then the
compiled-function object is installed as the global function definition of the symbol and the symbol
is returned. If nameis ni1, then the compiled-function object itself is returned.

For example:

- 289 -

290 : COMMON LISP REFERENCE MANUAL -

(defun foo ...) => foo ; A function definition. .
(compile ’'foo) => foo - ; Compile it.
; Now foo runs faster.
(compile nil '(lambda (a b c) (- (* b b) (* 4 a c))))
=> acompiled function of three arguments that computes b°—4ac

compile-file &optional input-pathname &key :output-file [Function]
:set-default-pathname '
The input-pathname must be a valid file specifier, such as a pathname. The defaults for
input-filename are taken from the variable *1oad-pathname-defaults* (page 279). The file
should be a LISP source file; its contents are compiled and written as a binary object (“FASL”™) file.

The :output argument may be used to spccify an output pathname; it defaults in a manner
appropriate to the implementation’s file system conventions.

If the :set-default-pathname argument is true, then compile-file will set
load-pathname-defaults (page 279) in such a way that (load) will load thc newly
compiled filc and (compile-file) will recompile the source for that file.

compile-file-set-default-pathname , : [Variable]
This variable provides the default for the :set-default-pathname argument to
compile-file (page 300). Its initial value is implementation-dependent.

disassemble name-or-compiled-function : [Function]
The argument should be cither a function object, a lambda-expression, or a symbol with a function
definition. If the relevant function is not a compiled function, it is first compiled. In any case, the
_compiled code is then “reverse-assembled” and printed out in a symbolic format. This is primarily
useful for debugging the compiler, but also often of use to the novice who wishes to understand the

workings of compiled code.

Implementation note: Implementors are encouraged to make the ‘output readable, preferably with helpful
comments. ’

24;2. Documentation

A simple facility is provided for attaching strings to symbols for the purpose of on-line documentation..
Rather than using the property list of the symbol, a separate function documentation is provided so that
implementations can optimize the storage of documentation strings.

MISCELLANEOUS FEATURES _ _ 291

documentation symbol doc-type [Function]

This function rcturns the documentation string of type doc-type for the symbol, or nil if none
exists. Both arguments must be symbols. Some kinds of documentation arc provided automatically
by certain COMMON LISP constructs if the user writes an optional documentation string within
them:

Construct Documentation Type
defvar (page48) variable
defparameter (page48) variable
defconstant (page48) variable

defun (page47) function
defmacro (page 99) function
defstruct (page20l) structure
deftype (page 36) type

defsetf (pagc70) setf

In addition, names of special forms may also have function documentation. (Macros and special
forms are not really functions, of course, but it is convenient to group them with functions for
documentation purposes.) ’

setf (page 66) may be used with documentation to update documentation information.

24.3. Modules
provide module-name [Function]
require module-name &optional pathname - [Function]

A module-name should be a string or a symbol. Calling provide notes the fact that a program -
module of the specified name has been loaded or otherwise instantiated. This is used in
conjunction with require,

Calling require does nothing if the indicated package has alrecady been “provided”. If it has not,
then the pathname is given to Toad (page 278) in an attempt to obtain the necessary module from
the file system. After the loading process is done, if the module still has not been provided, then an
error is signalled. The pathname dciaults in an implementation-dependent way that may depend on
the module-name. (Typically, the name of the module might be used as a file name to access a
directory where the yellow-pages modules are stored.)

Here is-an example of what a yellow-pages module might look like. The timestamp module
exports three functions: timestamp, moonprinc, and sunprinc. (The purpose of the module
is to provide facilities to print timestamps to a stream; a timestamp includes the time, date, day of
week, phase of the moon, and position of the sun. This module is whimsical, but based on one
actually provided in the MACLISP library.) The timestamp module requires two other modules
for its operation, moonphase and suncalc; one is a standard library module, and the other is

292

COMMON LISP REFERENCE MANUAL

private. For reasons best ignored here, the t imestamp module has its own function named sqrt
that differs from the standard sqrt (page 127).

(setq *package* (make-package ’'timestamp))
(provide ’'timestamp)

(export '(timestamp moonprinc sunprinc))
(require ’'moonphase) -

(require 'suncalc "/usr/gls/chutzpah/suncalc")
(shadow ’sqgrt)

:3; Location of University of Southern North Dakota at Hoople.
(defconstant latitude 48.503 "Latitude of U. of S.N.D. at H.")
(defconstant longitude 97.61 "Longitude of U. of S.N.D. at H.")

(defun timestamp ...)
(defun moonprinc ...)
(defun sunprinc ...)

(defun stamp-utility ...)

It is important that the call to provide precede the calls to require. For suppose that the
moonphase module needs to use timestamp! When timestamp is loaded, if moonphase is
loaded as a result, it had better find by that point that timestamp has already been provided (or
will be véry 'soon!), lest timestamp be recursively and redundantly loaded, causing an infinite
loop.

24.4. Debugging Tools

The utilities described in this section are sufficiently complex and sufficiently dependent on the host
environment that their complete definition necessarily belongs to cither the yellow pages or the red pages.
However, they are also sufficiently useful as to warrant mention here, to ensure that every implementation
provides some version of them, however clever or however simple.

trace {function-name}* : [Macro]
untrace {function-name}* [Macro]

Invoking trace with one or more function names (symbols) causes the functions named to be
“traced”. Henceforth, whenever such a function is invoked, information about the call, the
arguments passcd, and the eventually returned values, if any, will be printed to the stream that is
the value of *trace-output* (page214).
For example:

(trace fft gcd chase-pacman)
If a function call is open-coded (possibly as a result of an in11ine declaration), then such a call may
not produce trace output.

Invoking untrace with one or more function names will cause those functions not to be traced

MISCELLANIEOUS FEATURES 293

‘ any more.

Tracing an alrcady-traced function, or untracing a function not currently being traced, should
produce no harmful cffects, but may produce a warning message.

Calling trace with no argument forms will return a list of functions currently being traced.

Calling untrace with no argument forms will cause all currently traced functions to be no longer
traced.

trace and untrace may also accept additional implementation-dependent argument formats.,
The format of the trace output is implementation-dependent.

step form , [Macro]
This cvaluates form, and returns what form rcturns. However, the user is allowed to interactively
“single-step” through the evaluation of form, at least through those evaluation steps that are
performed interpretively. The nature of the interaction is implementation-dependent. However,
implementations arc encouraged to respond to the typmg of the character “?” by providing help
including a list of commands.

time form : [Macro]
. This evaluates form, and returns what form returns. However,-as a side effect, various timing data
and other information is printed to the stream that is the valuec of *trace-output* (page 214).

The nature and format of the printed information is implementation-dependent. However,
implementations are encouraged to provide such information as elapsed real time, machine run
time, storage management statistics, and so on. '

Compatibility note: This facility is inspired by the INTERLiSP facility of the same name. Note that the
MacLisp/Lisp Machine Lisp function time does something else entirely, namely return a quantity indicating
relative clapsed real time,

describe object : : [Function]
describe prints, to the stream in the variable *standard-output*®* (page 213), information
about the object. Sometimes it will describe something that it finds inside something else; such
recursive descriptions are indented appropriately. For instance, describe of a symbol will exhibit
the symbol’s value, its definition, and each of its properties. describe of a floating-point number
will exhibit its internal representation in a way that is useful for tracking down roundoff errors and
the like. The naturc and format of the output is implementation-dependent.

describe always returns its argument.

~#

294 COMMON LISP REFERENCE MANUAL

inspect object [Function]
inspect is an intcractive version of describe. The naturc of the interaction is implementation-
dependent, but the purposc of inspect is to make it casy to wander through a data structure,
cxamining and modifying parts of it. Implementations arc encouraged to respond to the typing of
the character “?” by providing help, including a list of commands.

room &optional x v [Function]
room prints, to the strcam in the variable *standard-output* (page 213), information about
the state of internal storage and its management. This might include descriptions of the amount of
memory in usc and the degree of memory compaction, possibly broken down by internal data type
if that is appropriate. The nature and format of the printed information is implementation-
dcbcndent. The intent is to provide information that may help a user to tune his program to a
particular implementation.

(room nil) prints out a minimal amount of information. (room t) prints out a maximal
amount of information. Simply (room) prints out an intcrmediate amount of information that is
likely to be useful.

ed &optional x A ’ [Function]
If the implementation provides a resident editor, this function should invoke it. '

(ed) or (ed nil) simply enters the editor, leaving you in the same state as the last time you were
in the editor. '

(ed pathname) edits the contents of the file specified by pathname. The pathn_amgz may be an
actual pathname or a string.

(ed symbol) tries to let you edit the text for the function named symbol. The means by which the
function text is obtained is implementation-dependent; it might involve searching the file system,
or pretty-printing resident interpreted code, for example. :

dribble &optional pathname [Function]
(dribble pathname) rebinds *standard-input* (page 213) and *standard-output*
(page 213) so as to send a record of the input/output interaction to a file named by pathname. The
primary purpose of this is to create a rcadable record of an interactive session.

(dribble) terminates the recording of input and output and closes the dribble file.

apropos string &optional package . [Function]
(apropos string) tries to find all symbols whose print-names contain string as a substring.
Whenever it finds a symbol, it prints out the symbol’s name; in addition, information about the
function definition and dynamic value of the symbol, if any, is printed. If package is specified and
not nil, then only that package is searched; otherwise “all” packages are searched, as if by

»
A3

.

MISCELLANEOUS FEATURES 295

. : do-all-symbols (page 119). The information is printed to the strcam that is thc value of
standard-output (pagc213). apropos rcturns t.

24.5. Environment Inquiries

24.5.1. Time Functions

Time is represented in three different ways in COMMON LisP: Decoded Time, Universal Time, and
Internal Time. The first two representations are used primarily to represent “real” (calendar) time, and are.
precise only to the second. Internal Time is used primarily to represent measurcments of “computer” time
(such as run time), and is precisc to some implementation-dependent fraction of a sccond, as specified by
internal-time-units-per-second (page 306). Decoded Time format is used only for absolute time
indications. Universal Timc and Internal Time formats are used for both absolute and relative times.

Decoded Time format represents time of day as a number of components:

e Second: an integer between 0 and 59, inclusive,
e Minute: an integer between 0 and 59, inclusive.
: . e Hour: an integer between 0 and 23, inclusive..

e Date: an integer between 1 and 31, inclusive (the upper limit actually depends on the month and
year, of course).)

o Month: an integer between 1 and 12, inclusive; 1 means January, 12 means December.

e Year: an intcger indicating the year A.D. However, if this integer is between 0 and 99, the
“obvious” year is used; more preciscly, that year is assumed that is cqual to the integer modulo
100 and within fifty years of the current year (inclusive backwards and exclusive forwards). Thus,
in the year 1978, year 28 is 1928 but year 27 is 2027. (Functions that return time in this format
always return a full year number.) '

Compatibility note: This is incompatible with the Lisp Machine Lisp definition in two ways. First, in Lisp
Machine LisP a ycar between 0 and 99 always has 1900 added to it. Second, in Lisp Machine Lisp time
functions return the abbreviated year number between 0 and 99, rather than the full year number. The
incompatibility is prompted by the imminent arrival of the tweny-first century. Note that (mod year 100)
always reliably converts a year number to the abbreviated form, while the inverse conversion can be very
difficult. ’

o Day-of-week: an integer betwen 0 and 6, inclusive; 0 means Monday, 1 means Tuesday, and so on,
and 6 means Sunday.
777 Query: How did this happen? One would expect Sunday to be either Q or 1.

o Daylight-savings-time-p: a flag that, if not ni1, indicates that daylight savings time is in effect.

296 COMMON LISP REFERENCE MANUAL

e Time-zone: an integer specified as the number of hours west of GMT (Greenwich Mcan Time).
For cxample, in Massachusetts the time-zone is 5, and in California it is 8. Any adjustment for
daylight savings timgc is scparate from this.

Universal Time represents time as a single integer. For relative time purposcs, this is a number of seconds.
For absolute time, this is the number of scconds since midnight, January 1, 1900 GMT. Thus the time 1 is
00:00:01 (that is, 12:00:01 AM) on January 1, 1900 GMT. Similarly, the time 2398291201 corresponds to time
00:00:01 on January 1, 1976 GMT. Rccall that the ycar 1900 was not¢ a leap ycar; for the purposes of
COMMON LISP, a year'is a lcap ycar iff its number is divisible by 4, except that ycars divisible by 100 are not
leap years, except that ycars divisible by 400 are leap years. Universal Time format is used as a standard time
representation within the ARPANET; sce [5].

Internal Time also represents time as a single integer, in terms of an implementation-dependent unit.
Relative time is measured as a number of these units. Absolute time is relative to an arbitrary time base,
typically the time at which the system began running,. ’

internal-time-units-per-second [Constani]
This valuc is an integer, the implementation-dependent number of internal time units in a second.
(The internal time unit must be chosen so that one second is an integral multiple of it.)

Rationale: The reason for allowing the internal time units to be implementation-dependent is so that
get-internal-time (page 306) can execute with minimum overhead. The idea is that it should be very
likely that a fixnum will suffice as the returned value from get-internal-time. This probability can be
tuned to the implementation by trading off the speed of the machine against the word size. Any particular unit
will be inappropriate for some implementations: a microsecond is oo long for a very fast machine such as an
S-1, while a much smaller unit would force m'any implementations to return bignums for most calls to
get-internal-time, rendering that function less useful for accurate timing measurements.

get-decoded-time : [Function)
The current time is returned in Decoded Time format. Nine values are returned: second, minute,
hour, date, month, year, day-of-week, daylight-savings-time-p, and time-zone.

Compatibility note: In Lisp Machine Lisp the zime-zone is not currently returned. Consider, however, the use
of CoMMON LisP in some mobile vehicle. It is entirely plausible that the time-zone might change from time to
time.

get-universal-time [Function]
The current time of day is returned as a single integer in Universal Time format.

get-internal-time ‘ [Function]
The current time is returned as a single integer in Internal Time format. The precise meaning of
this quantity is implementation-dependent; it may measure real time, run time, CPU cycles, or
some other quantity.
277 Query: How can this notion be made meaningful and portable?

MISCELLANEOUS IFEATURES . ’ 297

sleep seconds [Function]
(sleep n) causcs cxecution to ccase and become dormant for approximately 1 scconds of real
time, whercupon exccution is resumed. The argument may be any non-negative non-complex
number. sleep rcturnsnil. '

decode-universal-time universal-time &optional (time-zone [Function]
The time specified by universal-time in Universal Time format is converted to Decoded Time
format. Nine values -are returned: second, minute, hour, date, month, year, day-of-week,
daylight-savings-time-p, and time-zone. '

Compatibility note: In Lisp Machine Lisp the fime-zone is not currently returned. Consider, however, the use ‘
of CoMMON Lisp in some mobile vehicle. It is entirely plausible that the time-zone might change from time to
time.

The time-zone argument defaults to the current time-zone.

encode-universal-time second minute- hour date month year &optional time-zone [Function]
The time specified by the given components of Decoded Time format is encoded into Universal
Time format and rcturned. If you don’t spccify time-zone, it defaults to the current time-zone
adjusted for daylight savmgs time. If you provxdc time-zone explicitly, no adjustment for daylight
savings time is pcrformed '

24.5.2. Other Environment Inquiries

For any of the following functions, if no appropriate and relevant result can be produced, ni1 is returned
instead of a string,.

Rationale: These inquiry facilities are functions rather than variables against the possibility that a COMMON LisP process
might migrate from mnachine to machine. This need not happen in a distributed environment; consider, for example,
dumping a core image file containing a compiler and then shipping it to another site.

lisp-implementation- type [Function]
A string is returncd that identifies thz gencric name of the particular COMMON LISP
implementation. Examples: "Spice LISP","Zetalisp".

lisp-implementation-version [Function]
A string is returned that identifies the version of the particular COMMON LISP implementation; this
information should be of use to. maintainers of the implementation. Examples: "1192", "53.7
with complex numbers", "1746.9A, NEWIO 53, ETHER 5.3".

298 COMMON LISP REFIRENCE MANUAL

machine-type [Function]
A string is returned that identifics the generic name of the computer hardware on which COMMON
ISP is running. Examplcs: "DEC PDP-10", "DEC VAX-11/780".

machine-version [Function)
A string is returned that identifies the version of thc computer hardwarc on which COMMON LISP is
running. Example: "KL10, microcode 9".

machine-instance [Function)
A string is rcturncd that identifies the particular instance of the computcr hardware on which
COMMON Lisp is running; this might be a local nickname, for example, and/or a serial number.
Examples: "MIT-MC", "CMU GP-VAX". '

host-software-type ' [Function)
A string is returned that identifies the generic name of any rclevant host software. Examples:
"Spice", "TOPS-20", "ITS".

host-software-version - ' [Function]
A string is returned that identifies the version of the particular COMMON LISP xmplcmentatmn this
information should be of use to maintainers of the implementation.

short-site-name ' [Function]

long-site-name » [Function]

A string is returned that identifics the physical location of the computer hardware. Examples of
short names: "MIT AI Lab", "CMU-CSD". Examples of long names:

"MIT Artificial Intelligence Laboratory”

"Massachusetts Institute of Technology

Artificial Intelligence Laboratory"

"Carnegie-Mellon University Computer Science Department"”

Seealso user-homedir-pathname (page269)and init~file-pathname (page 269).

features ' [Variable]
The value of the variable *features* should be a list of symbols that name “features” provided
by the implementation. Most such symbols will be implementation-specific; typically a name for
the implementation will be included. One standard feature name is ieee-floating-point,
which should be present if and only if full IEEE proposed floating-point arithmetic [6] is supported.

The value of this variable is used by the #+ and #- rcader syntax; sce page 233.

MISCELLANEOUS FEATURES 299

. 24.6. Identity Function

identity object k [Function]
The object is returncd as the value of identity. This function is uscful primarily as an argument
to other functions.

300 COMMON LISP REFERENCE MANUAL

References

1. Brooks, Rodney A.; Gabricl, Richard P.; and Steele, Guy 1. Jr. “An Optimizing Compiler for [.exically
Scoped LISP.” Proceedings of the 1982 Symposium on Compiler Construction. ACM SIGPLAN (Boston,
June 1982), 261-275. Procecedings published as ACM SIGPLAN Notices 17, 6 (June 1982).

2. Coonen, Jerome T. “An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic.”
Computer 13, 1 (Jan. 1980), 68-79. Errata for this paper appcared as [3].

3. Coonen, Jerome T. *“Frrata for ‘An Implementation Guide to a Proposed Standard. for Floating-Point
Arithmetic’.” Computer 14, 3 (March 1981), 62. These arc crrata for [2].

4. Fateman, Richard J. “Reply to an Editorial.” ACM SIGSAM Bulletin 25 (March 1973), 9-11.

5. Harrensticn, Kenneth L. Time Server. Request for Comments (RFC) 738 (NIC 42218), ARPANET
Network Working Group (Oct. 1977). Available from thec ARPANET Network Information Center.

6. IEEE Computer Socicty Standard Committee, Microprocessor Standards Subcommittce, Floating-Point
Working Group. “A Proposed Standard for Binary Floating-Point Arithmetic.” Computer 14, 3 (March
1981), 51-62.

7. Knuth, Donald E.. The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison-
Wesley (Reading, Massachusetts, 1969). '

8. Marti, J.; Hearn, A.C.; Griss, M.L.; and Griss, C. “Standard LISP Report.” SIGPLAN Notices 14, 10
(Oct. 1979), 48-68.

9. Moon, David. MacLISP Reference Manual Revision 0. M.IT. Project MAC (Cambridge, Massachusetts,
April 1974).

10. Moore, J. Strother II. The InterLISP Virtual Machine Specification. Tech. Rept. CSL 76-5, Xerox Palo
Alto Research Center (Palo Alto, California, Sept. 1976).

11. Penficld, Paul, Jr. “Principal Values and Branch Cuts in Complex APL.” APL 81 Conference
Proceedings. ACM SIGAPL (San Francisco, Sept. 1981), 248-256. . Proceedings published as APL Quofe
Quad 12, 1 (September 1981).

12. Steele, Guy Lewis Jr., and Sussman Gerald Jay. The Revised Report on SCHEME: A Dialect of LISP.
Al Memo 452, MIT Artificial Intelligence Lab. (Cambridge, Massachusetts, Jan. 1978).

13. Suzuki, Norihisa. “Analysis of Pointer ‘Rotation’.” Comm. ACM 25, 5 (May 1982), 330-335.

14. Teitelman, Warren, et al. InterLISP Reference Manual. Xerox Palo Alto Research Center (Palo Alto,
California, 1978). Third revision. ' '

15. Weinreb, Daniel, and Moon, David. LISP Machine Manual, Fourth Edition. MIT Artxﬁc1a1 Intelhgence
Lab. (Cambridge, Massachusetts, July 1981).

COMMON LiSP SUMMARY

CommoN Lisp Summary

COMMON Lisp Summary

sample-function argl arg2 &optional argl argd
sample-variable

sample-constant

sample-special-form [name] ({var}*) {for’m}+
sample-macro var {tag | statément}"

deftype name lambda-list {declaration | doc-string}* {form}*
coerce object result-type ’
type-of ébject

-lambda-1ist-keywords

defun neme lambda-list {declaration | doc-string}* {form}*
defvar name [initial-value [documentation]}
defparameter name initial-value {documentation}
defconstant name initial-value [documentation)
eval-when ({situation}*) {form}*

nil

t

typep object type

subtypep typel type?

null object

symbolp object

atom object

consp object

Tistp object

numberp object

integerp object

rationalp object

floatp object

complexp object

characterp object

stringp object

bit-vector-p object

vectorp object

simple~-string-p object
simple-bit-vector-p object.
simple-vector-p object

arrayp object

functionp object

compiled-function-p object

commonp object

301

[Function}
[Variable)
[Constani]
[Special form}
[Macro)
[Macro]
[Function]
[Function}
[Constani]
[Macro)
[Macro)
[Macro}
[Macro)
[Function]
[Constani]
[Constani]
[Function}
[Function]
[Function]
[Function]
[Function) .
[Function]
[Function)
[Function]
[Function}
[Function}
[Function]
[Function)
[Function]
[Function]
[Function]
[Function]
[Function]
. [Function}
[Function]
[Funetion]
[Function]
[Function]

[Function]

302

eq x y
eql xy

equal x y

equalp x y

not x

and {form}*

or {form}*

quote object

function Jn

symbol-value symbol
symbol-function symbol
voundp symbol

fboundp symbol

macro-p symbol
special~form-p symbol
setq {var form}*

psetd {var form}*

set symbol value

fset symbol value
makunbound symbol
fmakunbound symbol

setf {place newvalue}*

psetf {place newvalue}*
shiftf place {place}* newvalue
rotatef {place}*

defsetf access-fn {update-fn [doc-string] |

lambda-list lambda-list {declaration | doc-string}* {form}*}.

apply function arg &rest more-args

funcall fn &rest arguments

progn {form}*

progl first {form}*

prog2 first second {form}*

let ({var | (var value)}*) {form}*

let* ({var | (var value)}*) {form}*

compiler-let ({var | (var value)}*) {form}*

progv symbols values {form}*

fiet ({(name lambda-list {declaration | doc-string}* {form}*)}*) {form}*
labels ({(name lambda-list {declaration | doc-string}* {form}*)}*) {form}*
macrolet ({(name varlist {declaration | doc-string}* {form}*)}*) {form}*
cond {(rest {form}*)}*

if pred then [else]

when pred {form}*

uniess pred {form}*

COMMON LISP REFERENCE MANUAL

[Function]
[Function]
[Function]

. [Function)
[Function]
[Special form]
[Special form]
[Special form}
[Special form]
‘ [Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Special form)
[Macro)
[Function]

[Function)

[Function] .

[Function}
[Macro}
[Macro)
[Macro}
[Macro]

[Macro)
(Function]
[Function]

[Special form]
[Macro]
[Macro]
[Macro}
[Special form]

[Macro]
[Special form}
[Special form

[Special form}.

[Special form]
[Macro}
[S’pecial form]
[Macro}
[Macro}

COMMON LISP SUMMARY

case keyform {(({key}*) {form}*)}*
typecase keyform {(oype {form}*)}*
block name {form}*

return-from name [resul]

return [resulf]

loop {form}*

do ({(var [init [step]])}*) (end-test {form}*) {declaration}* {tag | statement}*

do* ({(var [init [step]])}*) (end-test {form}*) {declaration}* {tag | statement}*

dolist (var listform [resultform]) {declaration}* {tag | statement}*

dotimes (var countform [resultform]) {declaration}* {tag | statement}*

mapcar function list &rest more-lists

maplist function list &rest more-lists

mapc fuhction list &rest more-lists

map function list &rest more-lists

mapcan function list &rest more-lists

mapcon function list &rest more-lists

tagbody {rag | statemeni}* ‘

prog ({var | (var [init])}"‘) {declaration}* {rag | staremens}*
prog* ({var | (var [ini})}*) {declaration}* {tag | statement}*
go fag '

values &rest args

values-list [ist

multiple-value-list form

multiple-value-call function {form}*
multiple-value-progl form {form}*
multiple-value-bind ({var}*) values-form {declaration}* {form}*
multiple-value variables form

catch g {form}*

catch-all catch-function {form}*

unwind-all catch-function {form}*

unwind-protect protected-form {cleanup-form}*

throw rag result

macro name (var) {declaration}* {form}*

defmacro name lambda-list {declaration | doc-string}* {form}*
macroexpand form &rest environment

macroexpand-1 form &rest environment
macroexpand-hook™

declare {declaration-form}*

locally {declaration}* {form}*

the value-type form

get symbol indicator &optional defauit

remprop symbol indicator

symbol-plist symbol

303

[{Macro)
[Macro)
[Special form]
[Special form)
[Macro)
[Macro}
[Macro}
[Macro]
[Macro)
[Macro)
[Function]
[Function)
[Function]
[Function]
[Function]
[Function]
[Special form}
[Macro]
[Macro]
[Special form]
[Function]
[Function}
[Macro}
[Special form]
[Special form)
[Macro)
[Macro]
[Special form]
[Special form]
[Special form)
[Special form}
[Special form]
[Macro)
[Macro]
[Function]
[Function]
[Variable]
[Special form]
[Macro}
[Special form]
[Function]
[Function}

[Function)

304 . COMMON LISP REFERENCE MANUAL

getf place indicator &optional default [Function}
putf place indicator newvalue ‘ . [Macro)
remf place indicator [Macro}
get-properties place indicatorlist [Function}
symbol-print-name sym _ [Function)
samepnamep syml sym2 . [Function]
make-symbal print-name [Function]
copy-symbol sym &optional copy-props [Function}
gensym &opti‘onal x [Function)
gentemp prefix &optional package ' . [Function]
' symbol-package sym _ [Function}
keywordp symbol ' [Function]
make- package package-name &optional copy-from [Function]
package » . [Variable]
packagep object ’ ’ {Function]
package package ' ‘ [Function]
package-name package . [Function}
intern string-or-symbol &optional package [Function]
unintern string-or-symbol &optional package [Function)
internedp string-or-symbol &optional package . » [Function)
export symbols : [Function)
shadow symbols [Function]
do-symbols (var {package] [result-form]) {declaration}* {tag | starement}* [Macro)
do-all-symbols (‘var [result-form)) {declaration}* {1ag | statemens}* - ' [Macro)
zerop number _ [Function}
plusp number) V , [Function]
minusp number [Function]
oddp integer ‘ [Function]
evenp integer) ' [function]
= number &rest more-numbers . ’ [Function]
/= number &rest more-numbers : [Function)
< number &rest more-numbers o ' [Function]
> number &rest more- number:s [Function}
<= number &rest more-numbers [Function]
>= number &rest more-numbers ’ [Function}
max number &rest more-numbers ’ [Function]
min number &rest more-numbers [Function}
+ &rest numbers [Function]
- number &rest more-numbers [Function}
* &rest numbers _ [Function)
! number &rest more-numbers [Function]
1+ number [Function]

1- number [Function}

COMMON L.ISP SUMMARY

incf place [delta}

decf place [delta)

conjugate number

gcd &rest integers

lcm integer &rest more-integers
exp number

expt base-number power-number
log number &optional base
sqrt number

isqrt integer

abs number

phase number

signum number

sin radians

cos radians

tan radians

cis radians

asin number

acos number

atan y &optioﬁal X

pi ,

sinh number

cosh number

tanh number

asinh number

acosh number

atanh number

float number &optional other
rational number

rationalize number

numerator rational

denominator rational

floor number &optional divisor
ceiling number &optional divisor
truncate number &optional divisor
round number &optional divisor
mod number divisor

remainder number divisor
ffloor number &optional divisor
fceiling number &optional divisor
ftruncate number &optional divisor
fround number &optional divisor

float-significand float

305

[Macro)

[Macro]
[Function]
[Function)
[Function)
[Function]
[Function}
[Function)
[Function]
[Function)
[F unction}
[Function]
[Function]
{Function]
[Function)
[Function]
[Function]
[Function]

[Function)

[Function]

[Constani]
[Function]
[Function]
{Function]
{Function)
[Function]
[Function)
[Function]

[Function)

_ [Function]

[Function]
[Function]
[Function}
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function)
[Function]
[Function}

{Function]

306 COMMON LISP REFERENCE MANUAL

float-exponent float [Function]
scale-float float integer {Function]
float-radix float [Function}
- float-sign floar! &optional floar2 ' [Function]
complex realpart &optional imagpart i [Function)
realpart number : [Function]
imagpart number ’ [Function]
logior &rest integers) [Function]
logxor &rest integers N [Function)
10 gand &rest integers ‘ [Function]
logeqv &rest integers A [Function]
lognand integérl integer2) [Function]
lognor integer! integer2 ' [Function]
logandcl integer! integer2 : [Function]
logandc2 integerl integer2 ' [Function]
Yogorcl integerl integer? : ' [Function)
logorc2 integerl integer? . ' g \ [Function]
boole op integerl integer2 ' [Function]
boole-clr ’ ' [Constani]
‘boole-set ‘ [Constani]
boole-1 _ [Constani]
boole-2 " [Constand)
boole-c1 ' [Constani)
boole-c2 [Constani]
boole-and [Constani}
boole-ior ; [Constani]
boole-xor ' [Constant]
boole-~eqv _ [Constani]
boole-nand [Constant]
boote-nor . [Constani]
boole-andcl [Constani]
boole-andc2 l [Constani]
boole-orcl [Constani]
boole-orc2 [Constani]
lognot integer [Function]
logtest integerl integer? ‘ [Function]
logbitp index integer : [Function]
ash integer count) ; [Function]
logcount integer [Function]
integer~-length integer . [Function]
byte size position [Function)
byte-size 'byfespec ‘ ’ T , [Function)

byte-position bytespec [Function]

COMMON LISP SUMMARY

1db bytespec integer

1db-test bytespec integer
mask-field byrespec integer

dpb newbyte bytespec integer
deposit-field newbyte bytespec integer
random number &optional state
random-state
make-random-state &optional srare
random-state-p object
most-positive-fixnum
most-negative-fixnum
most-positive-short-float
least-positive-short-float
least-negative-short-float
most-negative-short-float
most-positive-single-fioat
1east-positive-sing1e-f]oat
Teast-negative-single-float
most-negative-single-float
most-positive-double-float
least-positive-double-float
Teast-negative-double-float
most-negative~-double-float
most-positive-long-float
least-positive-long-float
least-negative-long-float
most-negative-long-float
short-float-epsilon
single-float-epsilon
double-float-epsilon
Tong-float-epsilon
'short-f1oat-negative-épsi1on
-single-f1oat-negati§e-epsi1on
double~float-negative-epsilon
long-float-negative-epsilon
char-code-1imit
char-font-limit
char-bits-1imit
standard-charp char
graphic-charp char
string-charp char

alpha-charp char

uppercasep char

307

[Function)
[Function]
[Function]
[Function]
[Function]
[Function)
[Variable}
[Function]
[Function]
{Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani}
[Constani]
[Constani]
[Constani]
[Constani]
[Constans]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
(Constani)
[Constani]
[Constani]
[Constani]
[Constani]
[Function]
[Function]
{Function]
[Function}

[Function]

308 . COMMON LISP REFERENCE MANUAL

lowercasep char ' [Function]
bothcasep char ‘ [Function]
digit-charp char &optional (radix 10.) : [Fdnclion]
alphanumericp char {Function]
char= character &rest more-characters : [Function]
char/= character &rest more-characters : [Function]
char< character &rest more-characters ' {Function]
char> character &rest more-characters . [Function]
char<= character &rest more-characters [Function]
char>= character &rest more-characters [Function]
char-equal character &rest more-characters . - [Function]
char-not-equal character &rest more-characters [Function]
char-lessp character &rest more-characters [Function]
char-greaterp character &rest more-characters ' [Function)
char-not-greaterp character &rest more-characters [Function]
char-not-lessp character &rest more-characters [Function)
character object ‘ A ‘ [Function]
char-code char ' [Function]
char-bits char . [Function]
char-font char [Function)
code-char code &optional (bits 0) (font 0) : [Function]
make-char char &optional (bits 0) (font 0) [Function]
char-upcase char : [Function]
char-downcase char ; E ‘ [Function]
digit-weight weight &optional (radix 10.) (bits 0) (font 0) ' [Function]
char-int char . ' [Function]
int-char integer . [Function]
char-name char [Function]
name-char sym ' [Function]
char-control-bit ‘ . [Constani]
char-meta-bit ' [Constant]
char-super-bit ‘ [Constani)
char-hyper-bit v [Constant}
char-bit char name [Function]
set-char-bit char name newvalue . ' [Function]
elt sequence index [Function]
subseq sequence start &optional end , [Function]
copy-seq Sequence v ’ [Function}
length sequence ' ‘ [Function]
reverse Sequence ,] _ [Function]
nreverse sequence [Function]
make-sequence fype size &key :initial-element ’ [Function)

concatenate result-type &rest sequences [Function)

COMMON L.ISP SUMMARY

map resulr-tvpe function sequence &rvest more-sequences
some predicate sequence &rest more-sequences
every predicate sequence &rest more-sequences
notany predicate sequence &rest more-sequences
notevery predicate sequence &rest more-sequences
reduce function sequence &key :from-end :start :end :initial-vaiue
fi11 sequence item &key :start :end
replace sequencel sequence? &key :startl :endl :start2 :end2
remove item sequence &key :from-end :test :test-not :start :end
:count :key '
remove-if fest sequence &key :from-end :start :end :count :key
remove-if-not test sequence &key :from-end :starﬁ :end :count :key
delete ifem sequence &key :from-end :test :test-not :start :end
:count :key . _
delete-if rest sequence &kéy :from-end :start :end :count :key
delete-if-not test sequence &key :from-end :start :end :count :key
remove-duplicates sequence &key :test :test-not :start :end ‘
delete-duplicates sequence &key :test :test-not :start :end
substitute newitem olditem sequence &key :from-end :test :t.est-not
s :start :end :count :key
substitute-if newitem ftest sequence &key :from-end :start :end
tcount :key
substitute-if-not newitem test sequence &key :from-end :start :end
ccount :key
nsubstitute newitem olditem sequence &key :from-end :test :test-not
:start :end :count :key
nsubstitute-if newitem fest sequence &key :from-end :start :end
:count :key
nsubstitute-if-not newitem test sequence &key :from-end :start :end
scount :key
find item sequence &key :from-end :test :test-not :start :end :key
find-if test sequence &key :from-end :start :end :key

find-if-not rest sequence &key :from-end :start :end :key

position item sequence &key :from-end :test :test-not :start :end :key

position-if (test sequence &key :from-end :start :end :key

position-if-not rest sequence &key :from-end :start :end :key

count item sequence &key :from-end :test :test-not :start :end :key

count-if test sequence &key :from-end :start :end :key

count-if-not frest sequence &key :from-end :start :end :key

mismatch sequencel sequence? &key :from-end :test :test-not :key
:startl :start2 :endl :end2

maxprefix sequencel sequence? &key :from-end :test :test-ndt :key
:startl :start2 :endl :end2

309

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function}

(Function]

[Function}

[Function}
[Function]

[Function}

[Function]
[Function]
[Function)
[Function]

[Function)
[Function)
[Function)
[Function]
[Function}
[Function]

[Function)
[Function]
[Function]
[Function}
[Function]
[Function]
[Function}
[Function)
[Function]

{Function] .

[Function}

310

maxsuffix sequencel sequence? &key :from-end :test :test-not ikey
:startl :start2 :endl :end2

search sequencel sequence? &key. :from-end :test :test-not :key
:startl :start2 :endl :end2

sort sequence predicate &key :key

stable-sort sequence predicate &key :key

merge sequencel sequence? predicate &key :key

car x

cdr x

C...T X

cons x y

tree-equal x y &key :test :test-not

endp object

list-length list'&optional limit

nth n list

first list

second list

third list

fourth st

fifth list'

sixth list

seventh list

eighth list

ninth list

tenth list

rest list

nthedr n list

last list

Tist &rest args

Tist* arg &rest others

make-1ist size &key :initial-element

appénd &rest lists

copy-tist list

copy-alist list

copy-tree object

revappend x y

nconc &rest lists

nreconc x y

push item place

pushnew item place

pop place

butlast list &optional n

nbutlast /st &ptional n

COMMON LISP REFERENCL: MANUAL

{Function)
[Function]

[Function]
[Function}
{Function]
[Function]
[Function}
[Function]
[Function]
[Function}
[Function}
[Function]
[Function] .
[Function]
[Function]
[Function}
[Function]
[Function]
[Function}
[Function]
[Function]
[Function}
[Function}
[Function]
[Function}
[Funcrion]
[Function]
[Function}
[Function]
[Function]
[Function}
[Function)
[Function]
[Function]
[Function}
[Function}
[Macro]
[Macro)
[Macro]
[Function}

[Function)

COMMON LISP SUMMARY

Vdiff list sublist

rplaca x y

rplacd x y

subst new old tree &key :test :test,-not":key
subst-if predicate new tree &key :key

subst-if-not predicate new tree &key :key

nsubst new old tree &key :test :test-not :key:
nsubst~if predicate new tree &key :key

nsubst-if-not predicate new tree &key :key

.subh’s alist tree &key. :test :test-not :key

nsublis alist tree &key :test :test-not :key

member item list &ey :test :test-not :key
member~if predicate list &key :key

member-if-not predicate list &ey :key

tailp sublist list

adjoin item list &ey :test :test-not :key

union listl list2 &key :test :test-not :key

nunion [listl lise2 &key :test :test-not :key
intersection list] list2 &key :test :test-not :ikey
nintersection list! list2 &ey :test :test-not :key
set-difference listl list2 &key :test :test-not :key
nset-difference listl list2 &key :test :test-not :key
set-exclusive-or [list! list2 &key :test :test-not :key
nset-exclusive-or [ist] list2 &key :test :test-not :key
subsetp list! list2 &key :test :test-not :key

acons key datum a-list

pairlis keys data &optional a-list

assoc item alist &key :test :test-not

assoc-if predicate a-list

assac-if-not predicate a-list

rassoc ifem a-list &key :test :test-not

rassoc~-if predicate a-list

rassoc-if-not predicate a-list

make-hash-table &key :test :size :rehash-size :rehash-threshold
hash-table-p object

gethash key hash-rable &optional default

remhash key hash-table

maphash function hash-table

clrhash hash-table

hash-table-count hash-table

sxhash S-expression

char string index

string= stringl string2? &key :startl :endl :start2 :end2

311

[Function)
[Function}
[Function]
[Function]
[Function]
[Function]
[Function)
[Function)
[Function]
[Function]
[Function)
[Function]
[Function)
[Function]
[Function]

[Function}

- [Function]

[Function]
[Function}
[Function]
[Function]
[Function}
[Function]
[Function]
[Function)
[Function}
[Function}
[Function)
[Function]
[Function}
[Function}
[Function]
[Function)
[Function]
[Function}
[Function]
[Function]
[Function)
[Function]
[Function]
[Function]
[Function]

[Function}

string-equal srringl string2 &key :startl :endl :start2 :end2
string< srringl string2? &key :startl :endl :start2 :end2

string> swring! string2 &key :startl :endl :start2 :end?2
string<= srringl string? &key :startl :endl :start2 :end2
string>= stringl swring2 &key :startl :endl :start2 :end2
string/= string/ string2 &key :startl send1 :start? rend2
string-lessp stringl string2 &key :startl :end'l :start2 :end2
string-greaterp stringl string? &key :startl :endl :start2 :end?2
string-not-lessp stringl string? &key :startl :endl :start2 :end2
string-not-greaterp string! siring2 &key :startl :endl :start2 :end?2
string-not-equal swringl string? &key :startl :endl :start2 :end2
m‘ake-string_ size &key :initial-element

string—trim character-bag string

string-left-trim character-bag string

string=right-trim character-bag string

string-upcase siring &key :start :end

string~downcase st}ing &key :start :end

string-capitalize swring &key istart :end

nstring-upcase siring &ey :start :end

nstring-downcase string &key :start :end

astring-capitalize swring &key :start :end
string x)

defstruct name-and-options [doc-string] {sIot—descrtption}+
eval form

evalhook

*eval form &rest env

evalhook form hookfn &reét eny

constantp object

+

++

+++

%

o

/

//

17/
standard~-input
standard-output
error-output
query-io

terminal-io

2 ' COMMON LISP REFERENCE MANUAL

[Function]
[Function]
[Function)
[Function]
[Function]
[Function]
[Function)
[Function}
[Function}
[Fuﬁction]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function}
[Function]
[Function]
[Function)
[Function]
[Function]
[F dnction]

[Macro}

“[Function]

[Variable)
[Function]
[Function}

[Function}

[Variable]

[Variable]
[Variable)
[Variable)
[Variable]
[Variable)
[Variable]
[Variable)
[Variable]
[Variable]
[Variable]

[Variable]

[Variable]
[Variable)
[Variable]

COMMON LISP SUMMARY

trace-output

make~-synonym-stream symbol

make-broadcast-stream &rest streams

make-concatenated-stream &rest streams

make-two-way-stream input-stream output-stream

make-echo-stream input-stream output-stream
make-string-input-stream string &optional start end
make-string-output-stream &optional line-length
get-output-stream-string string-output-stream
with-input-from-string (var string {keyword value}*) {declaration}* {form}*
with-output-to-string (var [string]) {declaration}* {form}*

streamp object

input-stream~-p stream

output-stream-p stream

Stream-element-type stream

close stream &key :abort

readtable

copy-readtable &optional from-readtable to-readtable

readtablep object

set-syntax-from-char to-char from-char &optional to-readtable from-readtable
set-macro-character char function &optional non-terminating-p readtable
get-macro-character char &optional readtable ‘
make-dispatch-macro-character char &optional non-terminating-p readtable
set-dispatch-macro-character disp-char sub-char function &cptional readtable
get-dispatch-macro-character disp-char sub-char &optional readtable
prinescape

prinpretty

princircle

base

prinradix

princase

' *prinievel®*

prinlength

prinarray

read &optional input-stream eof-errorp eof-value
read-default-float-format

read-preserving-whitespace &optional inpur-stream eoferrorp eof-value
read-delimited-1ist char &optional input-stream

read-1ine &optional input-stream eof-errorp eof-value

read-char &optional input-stream eof-errorp eof-value

unread-char character &optional input-stream

peek-char &optional peek-type input-stream eof-errorp eof-value

Tisten &optional input-stream

313

[Variable}
[Function] -
[Function]
[Function]
[Function)
[Function]
[Function)
[Function]
[Function]
[Macro)
[Macro]
[Function)
[Function}
[Function]

[Function}

‘ [Function]

[Variable]
[Function]
[Function]
[Function]
{Function]
[Function}
[Function]
[Function]
[Function}
[Variable]
[Variable]
[Variable}
{Variable]
[Variable}
[Variable]
[Variable}
[Variable]
[Variable}
[Function]
[Variable]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

[Function)

314 COMMON LISP REFERENCE MANUAL

read-char-no-hang &optional input-stream eof-errorp eof-value) [Function]
clear-input &optional inpur-stream - [Function]
read-from-string string &optional swart end preserve-p eof-errorp eof-value ' [Function)
parse-number srring &optional swart end radix no-junk-allowed [Function}
read-byte "binary-input-stream &optional eof-errorp cof value . [Function)
read-binary-object uype binary-input-stream &optional qof-errorp eof-value [Function]
write object &key : stream :pr inescape :prinradix :base. [Function]

:princircle :prinpretty :prinlevel :prinlength

:princase :prinarray

prinl object &optional output-stream ’ [Function]
print object &optional oufput-stream : [Function)
ppr in t object &optional output-stream [Function]
princ object &optional output-stream : , ' [Function}
write-to-string object &key :prinescape :prinradix :base [Function}

:princircle :prinpretty :prinlevel :prinlength

iprincase :prinarray

prinl-to-string object ; ' [Furzction.]
princ-to-string object - [Function]
write-char character &optional output-stream : [Function)
write~string swing &optional output-stream [Function]
write-1line string &optional output-stream - , [Function]
terpri &optional output-stream. ‘) [Function]
fresh-line &optional outpur-stream ’ [Function]
finish-output &optional output-stream ’ [Function]
force-output &optional output-stream _ [Function]
clear-outp uf &optional output-stream [Function]
write-byte integer binary-butput-slream ' : ~ [Function}
write-binary-object object type binary-output-stream ‘ [Function}
fo r“mat destination control-string &rest arguments) . [Function]
y-or-n-p &optional message stream ' . [Function}
yes-or-no-p &optional message stream [Function}
pathname thing ' [Function]
truename thing ‘ [Function)
parse-namestring thing &optional convention defaults break-characters start end [Funetion}
merge-pathname-defaults pathname &optional defaults default-type default-version [Function}
make-pathname &key :host :device :directory :name : [Function]

:type :version :defaults

pathnamep object [Function}
pathname-host pathname ') [Function]
pathname-device pathname v ‘ [Function]
pathname-directory pathname [Function]
pathname-name pathname ~ [Function]

pathname-type pathname [Function)

L

COMMON LISP SUMMARY

pathname-version pathname

pathname-plist pathname

namestring pathname

file-namestring pathname
directory-namestring pathname
host-namestring pathname

enough-namestring pathname &optional defaults
user-homedir-pathname &optional host
init-file-pathname program-name &optional host
default-pathname-defaults
add-logical-pathname-host logical-host actual-host de/bult-devicé translations
translated-pathname pathname

back-translated-pathname logical-pathname actual-pathname

open filename &key :direction :type :if-exists :if-does-not-exist

with-open-file bindspec {form}*

rename-file file new-name &optional errorp

delete-file file &optional errorp '

probe~file filename

f-i'le—creétion-date Sile

file-author file

file-position file-stream &optionél position

file-length file-stream

load &optionatl filename &key :verbose :print :if-does-not-exist
:set-default-pathname

load-verbose

load-set-default-pathname

Joad-pathname-defaults

directory pathname

signal condition-name &rest args

_condition-bind bindings {form}*

condition-psetq {spec}*

condition-case form {(condition-names {form}*)}*

error control-string &rest args

ferror condition-name control-string &rest args

cerror condition-name control-string &rest args

assert ftest &optional control-string &rest args

chec.k-type place typespec &optional string

compile name &optional definition

compile-file &optional input-pathname &key :output-file

:set-default-pathname-
compile-fite-set-default-pathname
disassemble name-or-compiled-function

documentation symbol doc-type

315

[Function]
{Function}
[function]
[Function]
[Function]
[Function]
[Function]

[Function]

[Function]

[Variable]
[Function}
[Function]
[Function)
[Function]

[Macrol
[Function]
[Function]
[Function]
{Function)
[Function}
[Function)
[Function}

[Function]

[Variable]
[Variable]
[Variable]
[Function]
[Function}
[Macro]
[Macro}
[Macro]
[Function]
[Function}
[Function]
[Macro}
[Macro]
[Function]
[Function)

[Variable)
[Function]

{Function}

316

provide module-name [Function)
require module-name &optional pathname [Function]
trace {function-name}* [Macro)
untrace {function-name}* [Macro]
step form [Macro] A
time form [Macro]
describe object [Function]
inspect object [Function] -
room &6pt1’onal X [Function)
ed &optional x [Function]
dribble &optional pathname [Funcrion]
apropos string &optional package [Function}
internal-time-units~-per-second [Constani]
get-decoded-time [Function]
get-universal-time [Function]
get-internal-time [Function]
sleep seconds [Function)
decode-universal-time universal-time &optional time-zone [Function]
encode~universal-time second minute hour date month year &optional timezone [Function]
lisp-implementation-type [Function]
lisp-implementation-version [Function]
machine-type [Function]
machine-version [Function]
machine-instance [Function}
host-software-type [Function]
host-software-version [Function]
short-site-name [Function]
long-site-name [Function]
features [Variable] -
identity object [Function] .

(End of CoMMoON Lisp summary.)

COMMON LISP REFERENCE MANUAL

INDEX OFF CONCEPTS . 317

. Index

318 ' COMMON 1ISP REFERENCE MANUAL

INDEX OIF CONCEPTS

. Index of Concepts

Index of Concepts

Compatibility note 12, 19, 32, 38, 47, 53, 57, 72, 78, 82, 84,
86, 87, 90. 91, 94, 99, 102, 103, 106, 108, 110, 111, 118, 123, 124,
125, 129, 130, 135, 142, 143, 144, 163, 164, 166, 175, 176, 177,
182, 183, 186, 190, 201, 202, 220, 231, 234, 237, 238, 239, 249,
254, 261, 276, 293, 295, 296, 297
Implementation note 12, 13, 14, 56, 95, 111, 125, 127, 128,
130, 138, 144, 145, 149, 175, 195, 240, 276, 290
Query 32, 71, 108, 176, 195, 253, 254, 267, 282, 283, 284,
286, 295, 296
Rationale 21, 40, 44, 69, 80, 121, 123, 125, 137, 199, 243,
245,254, 296, 297
~% (new linc) format directive 254
~& (fresh linc) format directive 254
~((case conversion) format dircctive 256
~* (ignore argument) format directive 255
~< (justification) format directive 259 -
~<return> (ignore whitespace) format directive 254
~? (indircction) format directive 255
~~ (Tilde) format directive 254
~[(conditional) format directive ~ 256
~~ (loop escape) format directive 260
~A (Ascii) format directive 252
. ~B (Binary) format directive =~ 253
~C (Character) format directive 254
~D (Decimal) format directive ~ 252
~E (Exponential) format dircctive 254
~F (Floating-point) format directive 253
~G (Goto argument) format directive 255
~0 (Octal) format directive 253
~P (Plurai) format directive 253
~R (Radix) format directive ~ 253
~S (S-expression) format directive 252
~T (Tabulate) format directive 255
~X (heXadecimal) format directive 253
~{ (iteration) format directive 257
~1- (new page) format directive 254
" macro character 226
macro character 229 .
* macro character 225
(' macro character 223
) macro character 225
, macro character 228
; macro character 225
* macro character 227
| macro character 226

A-list 185

Access functions 200
ADA 12,58, 59
ALGOL 28, 40, 86, 136

o I
Array 19

predicate S5

Association list 83, 185
as a substitution table 183
compared to hash table 189
Atom
predicate 53

Bighum 11

Bit string

infinite 138

intcger represention 138
Bit-vector]
predicate 54

Byte 142

Byte specifiers 142

Car 18,173
Catch 93

Cdr 18,173
Character

predicate 54
Character syntax 229
Cleanup handler 94
Comments 225
Common data type
predicate 55
Compiled function

. predicate 55
Complex number
predicate 54
Conditional

and 58

or 59

during read 233
Cons 18,173
predicate 53

_ Constructor function 200

Control structure 61

Data type
predicates 52
Declaration
declaration 105
function 104
function type 104
ignore 105
inline 10§
notinline 105
optimize 105
special = 103
type 104
Declaration declaration | 105
Declarations 101

. Defstruct 199

Denominator 12

[y

319

320

Device (pathname comporient) 264
Directory (pathname component) 264
Dotted list 173

Dynamicexit 93

Empty list

predicate 52
Environment structure 61
Ixtent 27

False - -
when a predicateis 51 |
Fixnum 11
Floating-point number 13
predicate 54
Flow of control 61
Formatted output 251

FORTRAN 2, 12, 15, 86, 136, 254
Function
predicate. 55

Function declaration 104
Function type declaration 104

Hash table 189, 191

predicate 191

Home directory 269

Host (pathname component) 264

Ignore declaration 105
Implicit progn 61,73, 74,75, 76, 77, 81
Indicator =~ 107 '
Init file 269
Inline declaration 105
Integer 11

predicate 53
INtErLISP 1,2, 3,12, 32,72, 87, 106, 108, 118, 129, 136, 163,
164, 175, 176, 190, 237, 293
Iteration 80

Keywords
for defstruct slot-descriptions 203

Lisp 15 86,163
Lisp Machine Lise 1,2, 12, 19, 57, 78, 84, 87, 90, 91, 99, 108,
110, 111, 115, 124, 125, 129, 136, 163, 164, 175, 177, 190, 201,
202, 231, 234, 237, 276, 282, 286, 293, 295, 296, 297
List - 18,173

predicatc 53

See aiso dotted list -

List syntax 223
Logical operators ;

onnilandnon-nilvalues 58
Logical pathnames 271

MacLise 1,2,12,19, 21, 38, 47, 53, 82, 87,'94,\ 99, 102, 103,
104, 106, 108, 110, 118, 121, 123, 124, 125, 129, 136, 142, 143,

144, 159, 163, 166, 175, 182, 183, 186, 190, 211, 220, 231, 234,

237, 238, 239, 243, 249, 276, 291, 293
Macro character 223
Mapping - 85

. Print name

~

COMMON LISP REFERENCE MANUAL

Merging
of pathnames 265
sorted scquences 171
Multiple values 89
returned by read-from-string 247

Name (pathname component) 264
Naming conventions

predicates 51
N 1,87,108, 111, 136, 175, 177
Non-local exit 93

_ Notinline declaration 105

Number 121
floating-point 13
predicate 53

Numerator 12

Optimize declaration 105

Package

predicate 117
Package cell 107
Parsing 223

of pathnames 265
PASCAL 23,58, 59,123

PL/1 15,136 _
Plist 107
Position

ofabyte 142

Predicate 51

Predicates

true and false 51

107, 110, 193
Print-name

cocrcion to string 197
Printed representation 219
Printer 219, 238

Property. 107

Property list 107
compared to association list 107
compared to hash table 189
Pseudo-predicate 51, 151

Querying the user 261
Quote character 225

Random-state
predicate 146
Rank 19
Rational

predicate 53
Reader 219,220
Readtable 234
predicate 235
Record structure 199

S-1Llise 1,2
SCHEME 1
Scope 27
Set

INDEX Ol CONCEPTS - 321

list representation 183

Sets

bit-vector representation 138
infinite 138

integer representation 138
Shadowing 28

Sharp-sign macro characters 229
Simple bit-vector

predicate 54

Simple string

predicate 54

Simple vector

predicate 54

Size

ofabyte 142

Sorting 169

Special declaration 103
Seice Lisp 1,108
STANDARD LisP 2,136
String 193

predicate 54

String syntax 226

Structure 199

Structurcd pathname components 265
Substitution 182

Symbol 9, 107

coercion toastring 193
coercion tostring 197
predicate 53

Symbol syntax 226

Throw 93
Tree 19
True

when a predicateis 51
Type (pathname component) 264
Type declaration 104
Type specifiers 31

Unwind protection 94
Vector
predicate 54

Version (pathname component) 264

Yes-or-no functions 261

322 ' _ COMMON LISP REFERENCE MANUAL

INDEX OF VARIABLES AND CONSTANTS . 33

o ~ Index of Variables and Constants

Index of Variables and Constants

= 22 » " boole-orcl 140

> 212 boole-orc2 140

e 212 boole-set 139

+ 212 . boole-xor 139

++ 212 .

+++ 212 C

- 212 : char-bits-Timit 16, 149, 154
/22 - char-code-1imit 149, 154
/7 212 char-control-bit 156

177/ 212 : char-font-1imit 16,149, 154

base 239,248
compile-file-set-default-pathname 278,290
default-pathname-defaults - 267, 268, 269, 271
error-output 214

evalhook 209 D

features 234,298 double-float-epsiion 147
load-pathname-defaults 271,278,279, 290 double-float-negative-epsilon 147
1oad-set-default-pathname 278 .
load-verbose 278,278 : E

char-hyper-bit 156
char-meta-bit 156
char-super-bit. 156

macroexpand-hook /00, 100

package 112,115,117, 221, 240, 248 F
prinarray 240, 241,242, 248

princase 240,240, 248 -G
princircle 178,238, 240, 248

prinescape 207,238, 239, 240, 248 H
prinlength 221,233 241,242, 248

prinlevel 207, 234, 241, 242, 248 I :
prinpretty 207,238,248 internal-time-units-per-second
prinradix 239, 248 :

query-io 214, 261, 262 J
random-state 145

read-default-float-format 15,239,243 K
readtable 235,235

sample-variable 5

*standard-inp

standard-output 213, 248, 251, 278, 293, 294, 295

terminal-io

ut* 213,243,294

214, 243, 248, 261

trace-output 214, 292, 293

A

D

boole-1 139
boole-2 139

boole-and 139

boole~andcl
boole-andc2

140
1490

boole-c1 139
boole~c2 139
boole-cir 139
boole-eqv 139
boole-ior 139

boole-nand

139

boole-nor 139

L
lambda-1ist-keywords 47
least-negative-double-float 147
least~negative-long-float 147
least-negative-short-float 146
least-negative-single-float 146
least-positive-double-float 146
least-positive-long-float 147
least-positive-short-float 146
least-positive-single-float 146
long-float-epsilon 147
long-float-negative-epsilon 147

M

most-negative-double-float 147
most-negative-fixnum 1/,146
most-negative-long-float 147
most-negative-short-float 146
most-negative-singie-float 146
most-positive-double-float 146
most-positive-fixnum 17,49, 146

324 _ COMMON LISP REFERENCE MANUAL

most-positive-long-float 147
most-positive-short-float 146 »
most-positive-single-float 146
N
nil 3,29,51,2/1, 287
0.
P
pi 29,130, 211, 287
Q
R
S

sample-constant’ §
short-float-epsilon 147
short-float-negative-epsilon 147
single-float-epsilon 147
single-float-negative-epsilon 147

T
t 49,5121

U

v .

oI~

<

INDEX OI' KEYWORDS 325

326 COMMON LISP REFERENCE MANUAL

327

Index of Keywords

Index of Keywords

INDEX OF KEYWORDS
A
:abort
for close 217
:append

for if-exists optionto open 275

B
:base
for write 248
for write-to-string 249

C

:conc-name

for defstruct 202, 204
:constructor

for defstruct 202, 205, 207
:contradictory-arguments

for signal =~ 286
:count

for delete 166 _

for delete-if 166

for delete-if-not 166

for nsubstitute 167

for nsubstitute-if 167

for nsubstitute-if-not 167

for remove 165

for remove-if 165

for remove-if-not 165

for substitute 166

for substitute-if 166

for substitute-if-not 167
:create .

for if-does-not-exist optionto open 275

D

:default

for type optionto open 274
:defaults .

for make-pathname 268
:device

for make-pathname 268
:direction

for open 273
:directory

for make-pathname - 268

E
:endl
for maxprefix 168
for maxsuffix 168
for mismatch 168 °
for replace 165
for search 169

for
for
for
for
for
for
for
for
for
for

string-equal 194
string-greaterp 195
string-lessp 195
string-not-equal 195
string-not-greaterp 195
string-not-lessp 195
string/= 194

string< 194

string<= 194

string= 194

for string> 194
for string>= 194
rend2

for
for
for
for
for
for
for
for
for
for
for
for
for

. for

for
for
for
:end
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

maxprefix 168
maxsuffix 168
mismatch 168
replace 165

search 169
string-equal 1%
string-greaterp 195
string-lessp 195
string-not-equal 195
string-not-greaterp 195
string-not-lessp 195
string/= 194

string< 194
string<= 194
string= 194
string> 194
string>= 194

count 168

count-if 168
count-if-not 168
delete 166
delete-duplicates 166
delete-if 166
delete-if-not 166-
fill 164

find 167

find-if 167
find-if-not 167
nstring-capitalize 197
nstring-downcase 197
nstring-upcase 197
nsubstitute 167
nsubstitute-if 167
nsubstitute~if-not 167
position 168
position-if _ 168
position-if-not 168
reduce 164

remove 165
remove-duplicates 166

328

for remove-if 165

for remove-if-not 165

for string-capitalize 196

for string-downcase 196

for string-upcase 196

for substitute 166

for substitute~if 166

for substitute-if-not 167

for with-input-from-string 216
:error

for if-does-not-exist optionto open 275

for if-exists optionto open 274

for signal 286
:eval-when

for defstruct 207

F
:failed-assertion
for signal 287
:failed-handter
for signal = 287
:from-end
for count 168
for count-if 168
for count-if-not 168
for delete 166
for delete-if 166
for delete-if-not 166
for find 167
for find=-if 167
for find-if-not 167
for maxprefix 168
for maxsuffix 168
" for mismatch 168
for nsubstitute 167
for nsubstitute~if 167
for nsubstitute-if-not 167
for position 168 :
for position-if 168
for position-if-not 168
for reduce 164
for remove 165
for remove-if 165
for remove~if-not 165
for search 169
" for substitute 166
for substitute-if 166
for substitute-if-not 167

G

_ H
thost
for make-pathname 268

1
:if-does-not-exist
for 1oad 278
for open 275
:if-exists

COMMON LISP REFERENCE MANUAL

for open 274

sinclude

for defstruct 25,205

:index

for with-input-from-string

:initial-element

for make-T1ist 177
for make~-sequence 162
for make-string 195

rinitial-offset

for defstruct 207

:initial-value

for reduce 164

input

for direction optionto open

sinvalid-form

for signal 287

tinvalid-function

for signal 287

invalid-variabie

for signal 287

:invisible

for defstruct slot-descriptions

rio

for direction optionto open
J

K

:key

for adjoin 184

for count 168

for count-if 168 -
for count-if-not 168
for delete 166

for delete~if 166

for delete-if-not 166
for find 167

for find-if 167

for find-if-not 167

for intersection 184
for maxprefix. 168

for maxsuffix 168

for member 183

for member-if 183

for member-if-not 183
for merge 171

for mismatch 168

for nmintersection 184
for nset-difference 185
for nset-exclusive-or 185
for nsublis 183

for nsubst 182

for nsubst-if - 182

for nsubst-if-not 182
for nsubstitute 167

for nsubstitute~if 167
for nsubstitute-if-not 167
for nunion 184

for position 168

216

273

203

273

INDEX OF KEYWORDS

for position-if 168

for position-if-not 168
for remove = 165

for remove-if 165

for remove-if-not 165

for search 169

for set-difference 185
for set-exclusive-or 185
for sort 169

for stable-sort 169

for sublis . 183

for subsetp 185

for subst 182

for subst-if 182

for subst-if-not 182

for substitute 166

for substitute-if 166

for substitute-if-not 167
for union 184

L

M
:missing-handler
for signal 287

N
:name
for make~-pathname 268
:named
for defstruct 205, 205
:new-version
for if-exists optionto open 274

0
:output-file
for compite-file 290
:output
for direction optionto open 273
:overwrite
for if-exists optionto open 274

P

:predicate

for defstruct 205
tprinarray

for write 248

for write-to-string 249
:princase

for write 248

for write~to-string 249
:princircle

for write 248

for write-to-string 249
:prinescape

for write 248

for write-to-string 249
:prinlength

for write 248

for write-to-string 249

:prinievel

for write 248

for write-to-string 249 -
:prinpretty

for write 248

for write-to-string 249
:prinradix

for write 248

for write-to-string 249
cprint-function

for defstruct 23,207
iprint

for 1Toad 278
:probe .

for direction optionto open 273

Q

R

:read-only

for defstruct slot-descriptions 203
:rehash-size

for make-hash~-table 190
:rehash-threshold

for make-hash-table 190
:rename-and-delete

for if-exists optionto open 274
:rename

for if-exists optionto open 274

S
:set-default-pathname
for compile-file 290
for 1Toad 278
:size
for make-hash-table 190
:startl
for maxprefix 168
for maxsuffix 168
for mismatch 168
for replace 165
-for search - 169
for string-equal 194
for string-greaterp 195
for string-lessp 195
for string-not-equal 195
for string-not-greaterp 195
for string-not-lessp 195
for string/= 1%
for string< 194
for string<= 1%
for string= 194
for string> 194
for string>= 194
:start2
for maxprefix 168 .
for maxsuffix 168
for mismatch 168
for replace 165
for search 169

329

d

330 _ COMMON LISP REFERENCE MANUAL

for string-equal 194 for maxsuffix 168
for string-greaterp 195 . for member 183
for string-lessp 195 for mismatch 168
for string-not-equal 195 for nintersection 184
for string-not-greaterp 195 for nset-difference 185
for string-not-lessp 195 for nset-exclusive-or 185
for string/= 194 for nsublis 183
for string< 194 for nsubst 182
for string<= 194 for nsubstitute 167
for string= 194 for nunion 184
for string> 194 for position 168
for string>= 194 for rassoc 187
:start for remove 165 .
for count 168 for remove-duplicates 166
for count-if ~ 168 ' for search 169
for count-if-not- 168 . . for set-difference 185
for delete 166 ' for set-exclusive-or 185
for delete-duplicates 166 for sublis 183
for delete-if 166 for subsetp 185
for detete-if-not 166 ' for subst 182
for fi11 164 . for substitute 166
for find 167) for tree-equal 174
for find-if 167 for union 184
for find-if-not 167 ttest
for nstring-capitatize 197 for adjoin 184
for nstring-downcase 197 : for assoc 186
for nstring-upcase 197 for count 168
for nsubstitute 167 for delete 166
for nsubstitute-if 167 ' for delete-duplicates 166
for nsubstitute-if-not 167 _ for find 167
for position 168 for intersection 184
for position-if 168 for make-hash-table 190
for position=-if-not 168 : for maxprefix 168
for reduce 164 for maxsuffix 168
for remove 165 ' : for member 183
for remove-duplicates 166 for mismatch 168
for remove-if . 165 for nintersection 184
for remove-if-not 165 for nset-difference 185
for string-capitalize 196 for nset-exclusive-or 185
for string-downcase 196 for nsublis 183
for string-upcase 196 for nsubst 182
for substitute 166 for nsubstitute 167
for substitute-if 166 for nunion = 184
for substitute-if-not 167 for position 168
for with-input-from-string 216 for rassoc 187
:stream for remove 165
for write 248 for remove-duplicates = 166
:supersede for search 169
for if-exists optionto open 275 for set-difference 185
for set-exclusive-or 185
T for sublis 183
:test-not for subsetp 185
for adjoin 134 for subst 182
for assoc 186 for substitute 166
for count 168 for tree-equal 174
for delete 166 for union 184
for detete-duplicates 166 :too-few-arguments
for find 167) for signal 286
for intersection 184 ~ :too-many-arguments

for maxprefix 168 - for signal . 286

INDEX OI' KEYWORDS

:type
for make-pathname 268
for defstruct slot-descriptions 203
for defstruct 204
for open 247, 250,273

U

sunbound-variable

for signal 287
:undefined-function

for signal 287
:unexpected-keyword

for signal 286
:unnamed

for defstruct 205

v
:verbose
for toad 278
:version
for make-pathname 268

w
:wrong-type-argument
for signal 286
X

Y

331

332

COMMON LISP REFERENCE MANUAL

INDEX OF FUNCTIONS, MACROS, AND SPECIAL FORMS

Index of Functions, Macros, and Special IFforms

Index of Functions, Macros, and Special Forms

* 125
*eval 209, 210, 210
+ 124
- 124
= 122
/125
1+ 125
1- 125
<= 122
< 122,152
= 56,121,122, 152
>z 122
> 122

A

abs 128

acons 107,186
acos 129

acosh 130
add-logical-pathname-host 272
adjoin 179,184 .
alpha-charp 150
alphanumericp 151
and 40,58, 77,92
append 177, 178, 228
apply 23,71,91,97,99
apropos 294

aref 20,67, 193
arrayp 55

ash 141

asin 129

asinh 130

assert 285, 287
assoc-if-not 186
assoc-if 186
assoc 185,186

atan 129

atanh 130

atom 53
B

back-translated-pathname 272
bit-vector-p 54

bit 67

block 29,30,40,48,61,79, 80, 82, 83, 87,88, 92, 93
boole 139

bothcasep 151

boundp 62,63

butlast 180

byte-position 142
byte-size 142

byte 142

C

c...r 174

caaaar 67,174
caaadr 67,174
caaar 67,174
caadar 67,174
caaddr 67,174
caadr 67,174

caar 67,174
cadaar 67,174
cadadr 67,174
cadar 67,174
caddar 67,174
cadddr 67,174
caddr 67,174

cadr 67,174
car 65,67,173,176
case 78,7891, 283
catch-all 29,40, 91,93
catch 29,40,61,91,93
cdaaar 67,174
cdaadr 67,174
cdaar 67,174
cdadar 67,174
cdaddr 67,174
cdadr 67,174

cdar 67,174
cddaar 67,174
cddadr 67,174
cddar 67,174
cdddar 67,174
cddddr 67,174
cdddr 67,174

cddr 67,174

cdr 67,173, 181
ceiling 125135 -
cerror 5, 284,285, 285, 288
char-bit 67, 157
char-bits 149,154
char-code 149,154

char-downcase 151,155, 196

char-equal 57,153, 194
char-font 149,154, 231
char-greaterp 153
char-int 152,155
char-lessp 153,195
char-name 156
char-not-equal 153
char-not-greaterp 153
char-not-lessp 153
char-upcase /51,155, 196
char/= 152

char<= 152

~ char< 152,195

char= 56,152, 246

334

char>= 152
char> 152
char - 67,193

character 38,154
characterp 54,150
check-type 285

cis 128

clear~-input 246
clear-output 250
close 217,272,275
clrhash 191
code-char 154

- coerce 37,38,134,154, 162, 163
commonp 55
compile-file 278,279, 290, 290
compile 289
compiled-function-p 55
compiler-let 74
complex 15,34,137
complexp 54,122
concatenate 162,177
cond 51,59,76,78, 81,92 98
condition-bind 282, 283
condition-case - 283
condition-psetq 282
conjugate 126

cons 34,174

consp 53

constantp 211
copy-alist 178
copy-list 178
copy-readtable 235
copy-seq 161,178

© copy-symbol 112
copy-tree 178, 182
cos 128

cosh . 130
count-if-not 168
count-if 168

count 168
D
decf 70,126

declare 9,40,44.48, 82,101
decode-universal-time 297
defconstant 40,48, 211, 291

defmacrc 36, 41,47, 70, 76, 97, 98, 99, 100, 101, 102, 277,

291 v
defparameter 48, 29/
defsetf 68,70, 101, 102, 201, 291

defstruct 11, 23, 25, 31, 36, 67, 170, 171, 174, 201, 233,

241,291
deftype 31,36, 101, 102, 291

defun 42,46,47,75,79,99, 101, 102, 104, 277, 291

defvar 48,277,291
delete-duplicates 166
delete-file 276
delete-if-not 166
delete-if 166
detlete 166, 181

COMMON LISP REFERENCE MANUAL

denominator 134, 239
deposit-field 67,143, 144
describe 293
digit-charp 151, 155
digit-weight 155
directory-namestring 269
directory 279
disassemble 290

do* 80,80, 101
do-all-symbols 101,119, 294
do-symbols - 85, 101,119
do 29,61, 64, 80,80, 87, 92, 101
documentation 37,48, 49,67, 99, 201, 291
dolist 80, 84,92, 101
dotimes 80, 84, 92, 101

dpb 67, 143,143

dribble - 294

E

ed 294

eighth 176

elt 67,161, 193)
encode-universal-time = 297
endp 83,173,175
enough-namestring 269
eq 55

compared to equal 55
eql 32,56, 121, 123, 153

equal 56, 153, 174, 194, 219
equalp 49,57

error 5,284, 286, 288
eval-when 49, 98, 103, 207, 232, 289

. eval 91, 97, 209

evathook 100, 209, 210, 210
evenp 122

every - 163

exp 127

export 118

expt 127

F

fboundp 63,63
fceiling 136
ferror 285, 288
ffloor 136

fifth 176
file-author 277
file-creation-date 277
file-length 277,277
file-namestring 269
file-position 275,277
fi11 164
find-if-not 167

- find-if 167

find 167, 183, 185, 186

finish-output 250

first 173,176

flet 40,63, 65,75, 97, 101
float-exponent 137
float-radix 13,137

INDEX OIF FUNCTIONS, MACROS, AND SPECIAL FORMS ‘ 335

float-sign 137 : o keywordp 113
float-significand 137
float /130,13 L '
floatp 54,722 labels 40,42,63.65,75,97, 101
floor 38,89, 125,135, 136 tast 176
fmakunbound 63,65 ' lcm 126
force-output 250 ldb-test 143
format 197, 250, 251, 284, 285 _1db 67,143
fourth 176 1diff 181, 184
fresh-line 249, 254, 261 length 161,175
fround 136 .) Tet* 40,74, 83, 88,91, 101
fset 63,65 ‘ - let 28, 39,4573,74,75, 80, 83,87, 88, 91, 101
ftruncate 136 i o lisp-implementation-type 297 -~
funcall 23,71, 91,97, 100 tisp-implementation-version 297
function 30, 40, 42, 62 list* 177
functionp . 55 ' 1ist-length 175
’ list 177
G ’ v lTisten 246, 246
ged 126 listp 53,173
gensym 112,712 : load 278, 278, 279, 291
gentemp 112,112 , locally 101,103
get-decoded-time 296 log 127
get-dispatch-macro-character 237 . logand 138
get-internal-time 296,296 ‘ logandcl 139
get-macro-character 236 logandc2 139
get-output-stream-string 215 logbitp 14l
get-properties . 110 logcount 141 N
get-universal-time 296 : logeqv 138
get 66,67, 108,108, 109 ' logior 138
getf 67,70, 108, 109,109, 110 lognand 139
gethash 67,191 lognor 139
go 29,40,80, 81,82, 84,8789, 94 lognot 140
graphic-charp 150, 151,156 logorcl 139
’ logorc2 . 139
H logtest 140
hash-table-count 191 Jogxor 138
hash-table-p 55,191 long-site-name 298
host-namestring 269 loop 80,80,81,83
- host-software-type 298 ' lowercasep 151,152, 155
host-software-version 298
M
I machine-instance 298
identity 299 ' machine-type 298 ‘
if 40,51,59,77,77,92,98 _ machine-version 298
imagpart 137 macro-p 63,63
incf 70, 126 macro 97, 101, 102
init-file-pathname 269, 298 macroexpand-1 100, 700
input-stream-p 217 macroexpand 63,100
inspect 294 . macrolet 40,75, 97, 100, 101
int-char 156 make-array 33,233,241
integer-length 141, 145 make-broadcast-stream 215
integerp 53,122 ' make-char = 154
intern 55,111, 112,117 make-concatenated-stream 215
internedp 118 make~dispatch-macro-character 237
intersection 184 make-echo-stream 215
isqrt 127 . make-hash-table 190
make-1ist 177
J make-package 116

make-pathname 268
K : make~random-state 145

336

make-sequence: 162 ‘v i e
make-string-input-stream 215 .3g
make-string-output-stream 215 <=
make-string 195 :
make-symbol 111)
make-synonym-stream 2/4,214
make-two-way-stream 215
makunbound 62, 63,65, 75

map 38, 85,97, 163

mapc 85, /163 i
mapcan 85 VR T
mapcar 85

mapcon 85

maphash 191

mapl 8§, 163

maplist 85 4 _
mask-field 67,143 I

max 123
maxprefix 168

maxsuffix 168

member-if-not 183

member-if 183

member 51,183,185 Lt
merge-pathname- defaults 268
merge 171 -

min 124

minusp 122 -

mismatch 168

mod 136 4 .
multiple-value-bind 89,90, 91, 101, {35
multiple-value-call - 35,40, 70,90, 91
multipie-value-list *89,90
multiple-value-progd: 40,72,90,91
multiple-value 89,91,91, 92 -

N . ey
name-char 156
namestring - 269 ;
nbutlast 180, 181
‘nconc 86, 177,178, 181, 228 .
nintersection 184 R

ninth 176
not 52,58
notany 163

notevery 163

nreconc 178,179, 181
nreverse 82,162, 170, 181
nset-difference 185
nset-exclusive-or 185
nstring-capitalize 197
" nstring-downcase 197
nstring-upcase 197
nsublis 183
nsubst-if-not 182 .
nsubst-if 182

nsubst 182
nsubstitute-if-not 167
nsubstitute-if 167 ’
nsubstitute 167

nth 67,118,175, 176 i

O

COMMON LISP REFERENCE MANUAL

nthcdr 176
null 52, 58, 83
numberp 53,122

~ numerator 134, 239

nunion 184

0
oddp 122
open ix, 22, 214 217 250 265 273 276
or 40,59,77,92 : i
output-stream-p 217 C

P
package-name 117
package - 117

- packagep - 55,117

pairlis 107,186
parse-namestring = 267
parse-number 247
pathname-device 268
pathname-directory 268
pathname-host 268
pathname-name 268
pathname-plist 269
pathname-type 268
pathname-version 268
pathname 266
pathnamep 55,268
peek-char 245

phase 128
plusp 122
pop 70, 180

position-if-not 168
position~if 168
position 32,168, 183, 186.
pprint 248
prinl-to-string 797,249
prinil 12, 238,248, 249, 252
princ-to-string 197,249
princ 238,248, 249, 252
print 213,219,248
probe-file 277

prog* - 87,92, 101

progl . 61,72,90,91,92
prog2 61,72

prog 29, 80,87, 92, 101
progn 40,47,61,72,79,80,81,91
progv 40,65,75,91
provide 291

psetf 68
psetq 64,81,83
push 70,179

pushnew 179, 184

Cputf 70,708,109

quote 40,62,63 : L e

:R L
random-state-p 55,146

INDEX OF FUNCTIONS, MACROS, AND SPECIAL FORMS

random 144

rassoc-if-not 187

rassoc-if 187

rassoc 185,187

rational 38, 134

rationalize 134

rationalp 53,1722
read-binary-object ix, 247, 250
read-byte 247,273,274 -
read-char-no-hang 246 3
read-char 213,245, 246, 273.
read-delimited=1ist 236,244
read-from-string 246

read-line 243,245,249 i
read-preserving-whitespace 243,246

read 7,10, 21, 62, 110, 111, 213,223, 240, 243, 243, 248,

249,252 _

readtablep 55,235

realpart 137 i SRR
reduce 164 SRR
remainder 136

remf 70, 108,110

remhash 191

remove-duplicates 166
remove-if-not 86,165

remove-if 165

remove 160, 165

remprop 109, /10

rename-file 276

replace 161,165

require 291

reset-fill-pointer /93

rest 173,176

return-from 5, 30, 40,48,79, 80,81, 89, 92, 94
return 41,48,61,79, 81, 82, 83, 84, 88, 92,93, 119
revappend 178,179

reverse 162

room 294

rotatef 69

round . 125,135

rplaca 65,173,181

rplacd 173,181

S
samepnamep 110
sample~function 5§
sam2le-macro S
samcle-special-form 5§
scale-float 137
search 161,169
second 176
set-char-bit 67,157,157
set-difference 185
set-dispatch-macro-character 237
set-exclusive-or 185
set-macro-character 236, 237
set-syntax-from-char 235
set 63, 64,65, 287

setf 64, 66, 68, 69, 70, 108, 109, 110, 126, 143, 157, 161,
173, 174, 175, 179, 180, 181, 191, 194, 203, 276, 285, 291 >+,

337

setq 39,40.64,65,73,.74,81, 83,84, 92, 104
seventh 176 - - .

sgvref 67

shadow 118

shiftf 68

short-site-name 298
" signal 281 s

signum 128

simple-bit-vector-p 54
simple-string-p 54
simple-vector-p. 54

sin 128
sinh 130
sixth 176
sleep 297
some 163
sort 169

special-form-p 63,63 $

sqrt 127,292

stable-sorf 169

standard-charp 55,150

step 210,293 :
stream-element-type ix, 217,274
streamp 55,217 R R 0
string-capitalize 196, /97, 240,256 -
string-charp 35,150, 193
string-downcase 196

string-equal 194

string-greaterp 195

string-left-trim - 195 »
string-Tessp 195 .. BN
string-not-equal “ 195 - Tt
string-not-greaterp 195 :-: -6l
string-not-lessp » 195%
string-right-trim 195

string-trim 195

string-upcase 196

- string/= 194

string<= 194 o S T
string< 194 R R L
string= 194 v
string>= 194 RN
string> 194 w0 i
string 197 o can AU
stringp 54,193 Ty
sublis 183 LT AT R
subseq 67,161 C o G ey
subsetp 185 R pmes o Yamiedeln
subst-if-not 182 :
subst-if 182 S
subst 182,183 3 PSS
substitute~-if-not 167 ;
substitute-if 166
substitute 166, /82 3¥.
subtypep 52

svref 67

sxhash 191
symbol-function 23,63,67
symboi-package 113
symbol-plist 67,109, 269

338

symbol-print-name 110
symbol-value 62,65, 67, 117, 209, 287
symbolp 53

T
tagbody 40, 80,82, 83. 84, 87, 87, 88, 89
tailp 184
tan 128
tanh 130
tenth 176
terpri = 249, 25¢
the 35, 40, 68, 106
third 176 :

throw 29.40,42,61. 80,81, 91,95, 276, 281, 283

time 293

trace 2/4,292
translated-pathname 266, 272, 272
tree-equal 57,174

truename 266, 269, 277, 279
truncate 35,125,138, 136

type-of 9,38 i

typecase 78,9/

typep 9,34, 37, 38,52, 52, 200, 201, 205

U

unintern 118, 18, 119

union 184

unless 51,59,77,91
unread-char = 243,245

untrace Xx, 292

unwind-all ix, 29,40,93
unwind-protect 29, 40,91,94,275
uppercasep 151, 155 :
user-homedir-pathname 269, 298
A

values-list 90

values 42,61 89,89,220
vector-push = 2/6

vectorp 54

w

when 51,59,77,77,91
with-input-from~string 216
with-open-file 27, 214, 275,276
with-output-to-string 216
write-binary-object ix, 247,250
write-byte 250,273, 274
write-char 213,249, 273
write-1ine 245,249
write-string 249
write-to-string 249

write 248,249

X
Y

y-or-n-p 261
yes-or-no-p. 214,261

Z
zerap

122

COMMON LISP REFERENCE MANUAL

L

	Steele_CLRM-Laser-Nov_19820001_a
	Steele_CLRM-Laser-Nov_19820001_b
	Steele_CLRM-Laser-Nov_19820002_a
	Steele_CLRM-Laser-Nov_19820002_b
	Steele_CLRM-Laser-Nov_19820003_a
	Steele_CLRM-Laser-Nov_19820003_b
	Steele_CLRM-Laser-Nov_19820004_a
	Steele_CLRM-Laser-Nov_19820004_b
	Steele_CLRM-Laser-Nov_19820005_a
	Steele_CLRM-Laser-Nov_19820005_b
	Steele_CLRM-Laser-Nov_19820006_a
	Steele_CLRM-Laser-Nov_19820006_b
	Steele_CLRM-Laser-Nov_19820007_a
	Steele_CLRM-Laser-Nov_19820007_b
	Steele_CLRM-Laser-Nov_19820008_a
	Steele_CLRM-Laser-Nov_19820008_b
	Steele_CLRM-Laser-Nov_19820009_a
	Steele_CLRM-Laser-Nov_19820009_b
	Steele_CLRM-Laser-Nov_19820010_a
	Steele_CLRM-Laser-Nov_19820010_b
	Steele_CLRM-Laser-Nov_19820011_a
	Steele_CLRM-Laser-Nov_19820011_b
	Steele_CLRM-Laser-Nov_19820012_a
	Steele_CLRM-Laser-Nov_19820012_b
	Steele_CLRM-Laser-Nov_19820013_a
	Steele_CLRM-Laser-Nov_19820013_b
	Steele_CLRM-Laser-Nov_19820014_a
	Steele_CLRM-Laser-Nov_19820014_b
	Steele_CLRM-Laser-Nov_19820015_a
	Steele_CLRM-Laser-Nov_19820015_b
	Steele_CLRM-Laser-Nov_19820016_a
	Steele_CLRM-Laser-Nov_19820016_b
	Steele_CLRM-Laser-Nov_19820017_a
	Steele_CLRM-Laser-Nov_19820017_b
	Steele_CLRM-Laser-Nov_19820018_a
	Steele_CLRM-Laser-Nov_19820018_b
	Steele_CLRM-Laser-Nov_19820019_a
	Steele_CLRM-Laser-Nov_19820019_b
	Steele_CLRM-Laser-Nov_19820020_a
	Steele_CLRM-Laser-Nov_19820020_b
	Steele_CLRM-Laser-Nov_19820021_a
	Steele_CLRM-Laser-Nov_19820021_b
	Steele_CLRM-Laser-Nov_19820022_a
	Steele_CLRM-Laser-Nov_19820022_b
	Steele_CLRM-Laser-Nov_19820023_a
	Steele_CLRM-Laser-Nov_19820023_b
	Steele_CLRM-Laser-Nov_19820024_a
	Steele_CLRM-Laser-Nov_19820024_b
	Steele_CLRM-Laser-Nov_19820025_a
	Steele_CLRM-Laser-Nov_19820025_b
	Steele_CLRM-Laser-Nov_19820026_a
	Steele_CLRM-Laser-Nov_19820026_b
	Steele_CLRM-Laser-Nov_19820027_a
	Steele_CLRM-Laser-Nov_19820027_b
	Steele_CLRM-Laser-Nov_19820028_a
	Steele_CLRM-Laser-Nov_19820028_b
	Steele_CLRM-Laser-Nov_19820029_a
	Steele_CLRM-Laser-Nov_19820029_b
	Steele_CLRM-Laser-Nov_19820030_a
	Steele_CLRM-Laser-Nov_19820030_b
	Steele_CLRM-Laser-Nov_19820031_a
	Steele_CLRM-Laser-Nov_19820031_b
	Steele_CLRM-Laser-Nov_19820032_a
	Steele_CLRM-Laser-Nov_19820032_b
	Steele_CLRM-Laser-Nov_19820033_a
	Steele_CLRM-Laser-Nov_19820033_b
	Steele_CLRM-Laser-Nov_19820034_a
	Steele_CLRM-Laser-Nov_19820034_b
	Steele_CLRM-Laser-Nov_19820035_a
	Steele_CLRM-Laser-Nov_19820035_b
	Steele_CLRM-Laser-Nov_19820036_a
	Steele_CLRM-Laser-Nov_19820036_b
	Steele_CLRM-Laser-Nov_19820037_a
	Steele_CLRM-Laser-Nov_19820037_b
	Steele_CLRM-Laser-Nov_19820038_a
	Steele_CLRM-Laser-Nov_19820038_b
	Steele_CLRM-Laser-Nov_19820039_a
	Steele_CLRM-Laser-Nov_19820039_b
	Steele_CLRM-Laser-Nov_19820040_a
	Steele_CLRM-Laser-Nov_19820040_b
	Steele_CLRM-Laser-Nov_19820041_a
	Steele_CLRM-Laser-Nov_19820041_b
	Steele_CLRM-Laser-Nov_19820042_a
	Steele_CLRM-Laser-Nov_19820042_b
	Steele_CLRM-Laser-Nov_19820043_a
	Steele_CLRM-Laser-Nov_19820043_b
	Steele_CLRM-Laser-Nov_19820044_a
	Steele_CLRM-Laser-Nov_19820044_b
	Steele_CLRM-Laser-Nov_19820045_a
	Steele_CLRM-Laser-Nov_19820045_b
	Steele_CLRM-Laser-Nov_19820046_a
	Steele_CLRM-Laser-Nov_19820046_b
	Steele_CLRM-Laser-Nov_19820047_a
	Steele_CLRM-Laser-Nov_19820047_b
	Steele_CLRM-Laser-Nov_19820048_a
	Steele_CLRM-Laser-Nov_19820048_b
	Steele_CLRM-Laser-Nov_19820049_a
	Steele_CLRM-Laser-Nov_19820049_b
	Steele_CLRM-Laser-Nov_19820050_a
	Steele_CLRM-Laser-Nov_19820050_b
	Steele_CLRM-Laser-Nov_19820051_a
	Steele_CLRM-Laser-Nov_19820051_b
	Steele_CLRM-Laser-Nov_19820052_a
	Steele_CLRM-Laser-Nov_19820052_b
	Steele_CLRM-Laser-Nov_19820053_a
	Steele_CLRM-Laser-Nov_19820053_b
	Steele_CLRM-Laser-Nov_19820054_a
	Steele_CLRM-Laser-Nov_19820054_b
	Steele_CLRM-Laser-Nov_19820055_a
	Steele_CLRM-Laser-Nov_19820055_b
	Steele_CLRM-Laser-Nov_19820056_a
	Steele_CLRM-Laser-Nov_19820056_b
	Steele_CLRM-Laser-Nov_19820057_a
	Steele_CLRM-Laser-Nov_19820057_b
	Steele_CLRM-Laser-Nov_19820058_a
	Steele_CLRM-Laser-Nov_19820058_b
	Steele_CLRM-Laser-Nov_19820059_a
	Steele_CLRM-Laser-Nov_19820059_b
	Steele_CLRM-Laser-Nov_19820060_a
	Steele_CLRM-Laser-Nov_19820060_b
	Steele_CLRM-Laser-Nov_19820061_a
	Steele_CLRM-Laser-Nov_19820061_b
	Steele_CLRM-Laser-Nov_19820062_a
	Steele_CLRM-Laser-Nov_19820062_b
	Steele_CLRM-Laser-Nov_19820063_a
	Steele_CLRM-Laser-Nov_19820063_b
	Steele_CLRM-Laser-Nov_19820064_a
	Steele_CLRM-Laser-Nov_19820064_b
	Steele_CLRM-Laser-Nov_19820065_a
	Steele_CLRM-Laser-Nov_19820065_b
	Steele_CLRM-Laser-Nov_19820066_a
	Steele_CLRM-Laser-Nov_19820066_b
	Steele_CLRM-Laser-Nov_19820067_a
	Steele_CLRM-Laser-Nov_19820067_b
	Steele_CLRM-Laser-Nov_19820068_a
	Steele_CLRM-Laser-Nov_19820068_b
	Steele_CLRM-Laser-Nov_19820069_a
	Steele_CLRM-Laser-Nov_19820069_b
	Steele_CLRM-Laser-Nov_19820070_a
	Steele_CLRM-Laser-Nov_19820070_b
	Steele_CLRM-Laser-Nov_19820071_a
	Steele_CLRM-Laser-Nov_19820071_b
	Steele_CLRM-Laser-Nov_19820072_a
	Steele_CLRM-Laser-Nov_19820072_b
	Steele_CLRM-Laser-Nov_19820073_a
	Steele_CLRM-Laser-Nov_19820073_b
	Steele_CLRM-Laser-Nov_19820074_a
	Steele_CLRM-Laser-Nov_19820074_b
	Steele_CLRM-Laser-Nov_19820075_a
	Steele_CLRM-Laser-Nov_19820075_b
	Steele_CLRM-Laser-Nov_19820076_a
	Steele_CLRM-Laser-Nov_19820076_b
	Steele_CLRM-Laser-Nov_19820077_a
	Steele_CLRM-Laser-Nov_19820077_b
	Steele_CLRM-Laser-Nov_19820078_a
	Steele_CLRM-Laser-Nov_19820078_b
	Steele_CLRM-Laser-Nov_19820079_a
	Steele_CLRM-Laser-Nov_19820079_b
	Steele_CLRM-Laser-Nov_19820080_a
	Steele_CLRM-Laser-Nov_19820080_b
	Steele_CLRM-Laser-Nov_19820081_a
	Steele_CLRM-Laser-Nov_19820081_b
	Steele_CLRM-Laser-Nov_19820082_a
	Steele_CLRM-Laser-Nov_19820082_b
	Steele_CLRM-Laser-Nov_19820083_a
	Steele_CLRM-Laser-Nov_19820083_b
	Steele_CLRM-Laser-Nov_19820084_a
	Steele_CLRM-Laser-Nov_19820084_b
	Steele_CLRM-Laser-Nov_19820085_a
	Steele_CLRM-Laser-Nov_19820085_b
	Steele_CLRM-Laser-Nov_19820086_a
	Steele_CLRM-Laser-Nov_19820086_b
	Steele_CLRM-Laser-Nov_19820087_a
	Steele_CLRM-Laser-Nov_19820087_b
	Steele_CLRM-Laser-Nov_19820088_a
	Steele_CLRM-Laser-Nov_19820088_b
	Steele_CLRM-Laser-Nov_19820089_a
	Steele_CLRM-Laser-Nov_19820089_b
	Steele_CLRM-Laser-Nov_19820090_a
	Steele_CLRM-Laser-Nov_19820090_b
	Steele_CLRM-Laser-Nov_19820091_a
	Steele_CLRM-Laser-Nov_19820091_b
	Steele_CLRM-Laser-Nov_19820092_a
	Steele_CLRM-Laser-Nov_19820092_b
	Steele_CLRM-Laser-Nov_19820093_a
	Steele_CLRM-Laser-Nov_19820093_b
	Steele_CLRM-Laser-Nov_19820094_a
	Steele_CLRM-Laser-Nov_19820094_b
	Steele_CLRM-Laser-Nov_19820095_a
	Steele_CLRM-Laser-Nov_19820095_b
	Steele_CLRM-Laser-Nov_19820096_a
	Steele_CLRM-Laser-Nov_19820096_b
	Steele_CLRM-Laser-Nov_19820097_a
	Steele_CLRM-Laser-Nov_19820097_b
	Steele_CLRM-Laser-Nov_19820098_a
	Steele_CLRM-Laser-Nov_19820098_b
	Steele_CLRM-Laser-Nov_19820099_a
	Steele_CLRM-Laser-Nov_19820099_b
	Steele_CLRM-Laser-Nov_19820100_a
	Steele_CLRM-Laser-Nov_19820100_b
	Steele_CLRM-Laser-Nov_19820101_a
	Steele_CLRM-Laser-Nov_19820101_b
	Steele_CLRM-Laser-Nov_19820102_a
	Steele_CLRM-Laser-Nov_19820102_b
	Steele_CLRM-Laser-Nov_19820103_a
	Steele_CLRM-Laser-Nov_19820103_b
	Steele_CLRM-Laser-Nov_19820104_a
	Steele_CLRM-Laser-Nov_19820104_b
	Steele_CLRM-Laser-Nov_19820105_a
	Steele_CLRM-Laser-Nov_19820105_b
	Steele_CLRM-Laser-Nov_19820106_a
	Steele_CLRM-Laser-Nov_19820106_b
	Steele_CLRM-Laser-Nov_19820107_a
	Steele_CLRM-Laser-Nov_19820107_b
	Steele_CLRM-Laser-Nov_19820108_a
	Steele_CLRM-Laser-Nov_19820108_b
	Steele_CLRM-Laser-Nov_19820109_a
	Steele_CLRM-Laser-Nov_19820109_b
	Steele_CLRM-Laser-Nov_19820110_a
	Steele_CLRM-Laser-Nov_19820110_b
	Steele_CLRM-Laser-Nov_19820111_a
	Steele_CLRM-Laser-Nov_19820111_b
	Steele_CLRM-Laser-Nov_19820112_a
	Steele_CLRM-Laser-Nov_19820112_b
	Steele_CLRM-Laser-Nov_19820113_a
	Steele_CLRM-Laser-Nov_19820113_b
	Steele_CLRM-Laser-Nov_19820114_a
	Steele_CLRM-Laser-Nov_19820114_b
	Steele_CLRM-Laser-Nov_19820115_a
	Steele_CLRM-Laser-Nov_19820115_b
	Steele_CLRM-Laser-Nov_19820116_a
	Steele_CLRM-Laser-Nov_19820116_b
	Steele_CLRM-Laser-Nov_19820117_a
	Steele_CLRM-Laser-Nov_19820117_b
	Steele_CLRM-Laser-Nov_19820118_a
	Steele_CLRM-Laser-Nov_19820118_b
	Steele_CLRM-Laser-Nov_19820119_a
	Steele_CLRM-Laser-Nov_19820119_b
	Steele_CLRM-Laser-Nov_19820120_a
	Steele_CLRM-Laser-Nov_19820120_b
	Steele_CLRM-Laser-Nov_19820121_a
	Steele_CLRM-Laser-Nov_19820121_b
	Steele_CLRM-Laser-Nov_19820122_a
	Steele_CLRM-Laser-Nov_19820122_b
	Steele_CLRM-Laser-Nov_19820123_a
	Steele_CLRM-Laser-Nov_19820123_b
	Steele_CLRM-Laser-Nov_19820124_a
	Steele_CLRM-Laser-Nov_19820124_b
	Steele_CLRM-Laser-Nov_19820125_a
	Steele_CLRM-Laser-Nov_19820125_b
	Steele_CLRM-Laser-Nov_19820126_a
	Steele_CLRM-Laser-Nov_19820126_b
	Steele_CLRM-Laser-Nov_19820127_a
	Steele_CLRM-Laser-Nov_19820127_b
	Steele_CLRM-Laser-Nov_19820128_a
	Steele_CLRM-Laser-Nov_19820128_b
	Steele_CLRM-Laser-Nov_19820129_a
	Steele_CLRM-Laser-Nov_19820129_b
	Steele_CLRM-Laser-Nov_19820130_a
	Steele_CLRM-Laser-Nov_19820130_b
	Steele_CLRM-Laser-Nov_19820131_a
	Steele_CLRM-Laser-Nov_19820131_b
	Steele_CLRM-Laser-Nov_19820132_a
	Steele_CLRM-Laser-Nov_19820132_b
	Steele_CLRM-Laser-Nov_19820133_a
	Steele_CLRM-Laser-Nov_19820133_b
	Steele_CLRM-Laser-Nov_19820134_a
	Steele_CLRM-Laser-Nov_19820134_b
	Steele_CLRM-Laser-Nov_19820135_a
	Steele_CLRM-Laser-Nov_19820135_b
	Steele_CLRM-Laser-Nov_19820136_a
	Steele_CLRM-Laser-Nov_19820136_b
	Steele_CLRM-Laser-Nov_19820137_a
	Steele_CLRM-Laser-Nov_19820137_b
	Steele_CLRM-Laser-Nov_19820138_a
	Steele_CLRM-Laser-Nov_19820138_b
	Steele_CLRM-Laser-Nov_19820139_a
	Steele_CLRM-Laser-Nov_19820139_b
	Steele_CLRM-Laser-Nov_19820140_a
	Steele_CLRM-Laser-Nov_19820140_b
	Steele_CLRM-Laser-Nov_19820141_a
	Steele_CLRM-Laser-Nov_19820141_b
	Steele_CLRM-Laser-Nov_19820142_a
	Steele_CLRM-Laser-Nov_19820142_b
	Steele_CLRM-Laser-Nov_19820143_a
	Steele_CLRM-Laser-Nov_19820143_b
	Steele_CLRM-Laser-Nov_19820144_a
	Steele_CLRM-Laser-Nov_19820144_b
	Steele_CLRM-Laser-Nov_19820145_a
	Steele_CLRM-Laser-Nov_19820145_b
	Steele_CLRM-Laser-Nov_19820146_a
	Steele_CLRM-Laser-Nov_19820146_b
	Steele_CLRM-Laser-Nov_19820147_a
	Steele_CLRM-Laser-Nov_19820147_b
	Steele_CLRM-Laser-Nov_19820148_a
	Steele_CLRM-Laser-Nov_19820148_b
	Steele_CLRM-Laser-Nov_19820149_a
	Steele_CLRM-Laser-Nov_19820149_b
	Steele_CLRM-Laser-Nov_19820150_a
	Steele_CLRM-Laser-Nov_19820150_b
	Steele_CLRM-Laser-Nov_19820151_a
	Steele_CLRM-Laser-Nov_19820151_b
	Steele_CLRM-Laser-Nov_19820152_a
	Steele_CLRM-Laser-Nov_19820152_b
	Steele_CLRM-Laser-Nov_19820153_a
	Steele_CLRM-Laser-Nov_19820153_b
	Steele_CLRM-Laser-Nov_19820154_a
	Steele_CLRM-Laser-Nov_19820154_b
	Steele_CLRM-Laser-Nov_19820155_a
	Steele_CLRM-Laser-Nov_19820155_b
	Steele_CLRM-Laser-Nov_19820156_a
	Steele_CLRM-Laser-Nov_19820156_b
	Steele_CLRM-Laser-Nov_19820157_a
	Steele_CLRM-Laser-Nov_19820157_b
	Steele_CLRM-Laser-Nov_19820158_a
	Steele_CLRM-Laser-Nov_19820158_b
	Steele_CLRM-Laser-Nov_19820159_a
	Steele_CLRM-Laser-Nov_19820159_b
	Steele_CLRM-Laser-Nov_19820160_a
	Steele_CLRM-Laser-Nov_19820160_b
	Steele_CLRM-Laser-Nov_19820161_a
	Steele_CLRM-Laser-Nov_19820161_b
	Steele_CLRM-Laser-Nov_19820162_a
	Steele_CLRM-Laser-Nov_19820162_b
	Steele_CLRM-Laser-Nov_19820163_a
	Steele_CLRM-Laser-Nov_19820163_b
	Steele_CLRM-Laser-Nov_19820164_a
	Steele_CLRM-Laser-Nov_19820164_b
	Steele_CLRM-Laser-Nov_19820165_a
	Steele_CLRM-Laser-Nov_19820165_b
	Steele_CLRM-Laser-Nov_19820166_a
	Steele_CLRM-Laser-Nov_19820166_b
	Steele_CLRM-Laser-Nov_19820167_a
	Steele_CLRM-Laser-Nov_19820167_b
	Steele_CLRM-Laser-Nov_19820168_a
	Steele_CLRM-Laser-Nov_19820168_b
	Steele_CLRM-Laser-Nov_19820169_a
	Steele_CLRM-Laser-Nov_19820169_b
	Steele_CLRM-Laser-Nov_19820170_a
	Steele_CLRM-Laser-Nov_19820170_b
	Steele_CLRM-Laser-Nov_19820171_a
	Steele_CLRM-Laser-Nov_19820171_b
	Steele_CLRM-Laser-Nov_19820172_a
	Steele_CLRM-Laser-Nov_19820172_b
	Steele_CLRM-Laser-Nov_19820173_a
	Steele_CLRM-Laser-Nov_19820173_b
	Steele_CLRM-Laser-Nov_19820174_a
	Steele_CLRM-Laser-Nov_19820174_b
	Steele_CLRM-Laser-Nov_19820175_a
	Steele_CLRM-Laser-Nov_19820175_b
	Steele_CLRM-Laser-Nov_19820176_a
	Steele_CLRM-Laser-Nov_19820176_b
	Steele_CLRM-Laser-Nov_19820177_a
	Steele_CLRM-Laser-Nov_19820177_b
	Steele_CLRM-Laser-Nov_19820178_a
	Steele_CLRM-Laser-Nov_19820178_b
	Steele_CLRM-Laser-Nov_19820179_a
	Steele_CLRM-Laser-Nov_19820179_b
	Steele_CLRM-Laser-Nov_19820180_a
	Steele_CLRM-Laser-Nov_19820180_b
	Steele_CLRM-Laser-Nov_19820181_a
	Steele_CLRM-Laser-Nov_19820181_b
	Steele_CLRM-Laser-Nov_19820182_a
	Steele_CLRM-Laser-Nov_19820182_b

