CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Votes on the First Draft Common Lisp Manual

Guy L. Steele Jr.
with contributions by
Alan Bawden Charles L. Hedrick
Howard 1. Cannon Earl A. Killian
George J. Carrette John McCarthy
David Dill Don Morrison
Scott E. Fahlman David A. Moon
Neal Feinberg William L. Scherlis
John Foderaro Richard M. Stallman
Richard P. Gabriel Daniel L. Weinreb
Joe Ginder Jon L White
18 November 1981
Spice Document Sxxx

Keywords and index categories: PE Lisp & DS External
Location of machine-readable file: FEEDBACK.MSS.103 @ CMU-20C

Copyright © 1981 Guy L. Stecle Jr.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order 3597,
monitored by the Air Force Avionics laboratory under contract F33615-78-C-1551. ‘The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing

the officiat policies, cither expressed or implied, of the Defense Advanced Rescarch Projects Agency or the
U.S. Government. '

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

Table of Contents
*x*x [sone 1: What Dover font should be used for LISP code?
*** [ssue 2: Policy for naming functions in COMMON LISP

1. INTRO .

1.1. Purpose

*** Issue 3: Purposes of Common LISP

**» [scue 4: Division of Common LISP into a core plus modules
1.2. Notational Conventions

*** [ssue 5: Syntax for description of special forms

2. Data Types

*»% [ssiie 6: What useless value should side-effecting functions return?
2.1. Numbers
[esue 7: Should the type “scalar” be called “reai™?
2.1.1. Integers
2.1.2. Floating-point Numbers
»** [sque 8: Bigfloats (arbitrary-precision floating-point numbers)
»e* Jsoie 9: Terminology “single” and “double” for fleating-point numbers
»»» [ssue 10: Should radix-specifier syntax be immediate or pervasive?
2.1.3. Ratios _
Jecue 11: Should rationals be kept in canonical form?
2.1.4. Complex Numbers '
*** Jssue 12: Representation of complex numbers
2.2. Characters
»»* Issue 13: Definition of string-char data type
2.3. Symbols
==+ Issue 14: Definition of “property list”
=== jscue 15: Preserving of case in symbols, with case-insensitive interning
2.4. Lists and Conses
= [ssue 16: {) still a symbol in some implementations?
2.5. Vectors
*** [ssue 17: Vector notation
2.6. Arrays
#*»* [ssue 18: Vectors and one-dimensional arrays?
2.7. Structures
2.8. Functions
2.9. Randoms
*++ Issue 19: Does #<...> syntax imply a random type?

3. Program Structure

3.0.1. Stuff I'm Not Sure Where to Put It Yet
=+ [ssue 20: What about the patch facility?
x Jscue 21: Allow defvar to provide documentation without initialization?
=xx [ssue 22; What does defconst really mean?

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

4. Predicates

*** [ssue 23: Terminology: “pseudo-predicates”
4.1. Data Type Predicates : :
*** [ssue 24: Have a type symbol for “sequence”
=*# Issue 25: Functional data types
**=* [ssue 26: typep of a structure
4.1.1. Specific Data Type Predicates
**#* [ssue 27: Standard truth value returned by predicates
=»# [ssue 28: Are all the specialized type predicates really necessary?
*** [ssue 29: Second {optional) argument to functionp?
4.2, Equality Predicates
»** [ssue 30: Definition of equalp
4.3. Logical Operators
*** [ssue 31: Judgements of style

5. Program Structure

5.1. Constants and Variables
5.1.1. Reference
5.12. Assignment
**» [ssue 32: Value returned by psetq
5.2. Function Invocation
5.3. Simple Sequencing
Jssue 33: Declarations in every implicit progn
5.4. Environment Manipulation
*** [csue 34: Macros or special forms?
*==# [ssue 35: Variables without inif forms ina 1et?
*** [ssue 36: The “obvious” macro definition of 1et*
5.5. Conditionals
*** [ssue 37: The select special form
**#* [ssue 38: Optional predicate function to select and selectq
=** [ssue 39: What does a null seVectq clause return?
=## [ssue 40; What numbers are acceptable to selectqand caseq?

»==* [scue 41: Should selectq and caseq signal an error if no clause succeeds?

wex [ssue 42: The “q” in “typecaseq”
5.6. Iteration
5.6.1. General iteration
[ssue 43; Initial values for “uninitialized” do variables

*** [csue 44: What about the MACLISP (do varspecs ()} ...) syntax?

»** [ccure 45: Result returned by do for a singleton end-fest clause

*** [scue 46: Inciude Toop in the COMMON LISP core
5.6.2. Simpie Tteration Constructs

w** [gsue 47: The result form in do1ist and friends

=== [squc 48: Zero or negative count to dotimes

»+* [ssuc 49: Effcct of modifying the dotimes control variable
5.6.3. Mapping

== josuc 50: Change to mapc not to return the first argument

. 30

30
30
k) |
i1
32
32
33
35
36
37
3
37

39

39
39
39
39

41
41
43
43

45

47
47

50

50
51
52
53
55
55
535
56
57
57

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

*** [ssue 51: Use of return within a forxxx construct
*** [ssue 52: All the forxxx constructs

5.6.4. The Program Feature
*** Issue 53: &-keywords in prog and elsewhere
» [ssue 54: Permissible scope of go

5.7. Multiple Values

5.7.1. Constructs for Handling Muitiple Values
=** [ssue 55: Semantics of multiple-value “let” and “satq” forms.
*** Jssue 56: Syntax of multiple-value “1et” and “setq” forms.
*** Issue 57: Resultof multipte-value-setq

5.7.2. Rules for Tail-Recursive Situations
» [ssue 58: Restrictions on behavior of multiple values

5.8. Non-local Exits

5.8.1. Catch Forms
*** Jsgue 59: A catch may or must have a tag?
»=* Jssue 60: Must a catch tag be a symbol?
*** [ssue 61: Flush special meanings of ¢ and () as catch tags
=#* [ssue 62: What to do about catch and *catch?
*** [ssue 63: Lexical catch and throw?
=== [ssue 64: Funny extra values from *catch
*** Issue 65: Names for catchall and unwindall

5.8.2, Throw Forms
== Jssue 66; Error-handling for throw
#»* [ssue 67: Keep *unwind-stack in the core language?

6. FUNC .
7. MACRO
8. Declarations

8.1. Declaration Syntax
+ [ssue 68: Change the name of global-declare?
*** [ssue 69: Pervasiveness of declarations
**» Issue 70: Declarations and top-level code
8.2. Declaration Keywords
+ [ssue 71: Are names of declarations keywords?
==+ [ssue 72: Should there be a converse for special declarations?
== Tecie 73: Provision for more concise type declarations
*** Jssue 74: Syntax for declaration of types of functions
=== [gsue 75: Should compilers be required to warn of ignored declarations by default?
*** Jssue 76: May implementation-dependent declarations exist?

9. Symbols

9.1. The Property List
9.2, The Print Name
9.3. Creating Symbols
**+=* [ecuie 77: Does make-symbol copy the given string?
= Issuc 78: Fxistence of si:*gensym-prefix and si:*gensym-counter

iii

51
58
59
59
59

60
60
63

65
65
67
67
67
68
69
69
70
n
71
72
72
72

73
74
75

75
75
15
78
79
79
79
80
80
81
82

83
&3
83
83
84

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

*** [ssue 79: What is gentemp for?
#=# [ssue 80: Rename get-package to be symbol-package?

10. Numbers

11.

*** [ssue 81: Complex numbers

=»+ [ssue 82: Branch cuts and boundary cases in mathematical functions

10.1. Predicates on Numbers
10.2. Comparisons on Numbers

*** [ssue 83: Fuzzy numerical comparisons

*** [scue 84: Should = take more than two arguments?
10.3. Arithmetic Operations

» [ssue 85: Make rational a'required data type for all impiementations

*+¥ Jssue 86: Why do add1 and sub1 stll exist?
*** [ssue 87: Add the function s ignum?
=** Jsque 88; Add numerator and denominator to the language?
+ [ssue 89: Add least-common-multipie function?
»»* [ssue 90: Extend gcd to complex numbers?
10.4. Irrational and Transcendental Functions

=== [esue 91: Arguments and results of irrational and transcendental functions

*** [ssue 92: Should 10g take two arguments?
==+ [ssue 93: Complete set of trigonometric functions?
»*# [ssue 94: Degree-style trignometric functions
*** Jssue 95: Hyperbolic functions
= [ssue 96: Are several versions of pi necessary?
=+* [ssue 97: Other constants besides pi?
10.5. Type Conversions on Numbers
»=* [ssue 98: Optional second argument to f1oat
»** [ssue 99: [s the function rational useful, given rational ize?

==+ Jssue 100: Optional argument to rational ize to specify precision

»** [ssue 101: Rename remainder to be rem?
#»% [ssue 102: Optional precision argument for mod and remainder?
s** [ssue 103: Extend f1oor and friends to complex numbers?
10.6. Logical Operations on Numbers
*** Issue 104: Restore boo1le to the language?
10.7. Byte Manipulation Functions
*=# [sque 105: Reverse the order of arguments to byte?
10.8. Random Numbers
**+= [ssue 106: Definition of random of one argument
**x Issue 107: Random floating-point numbers
=** Issue 108: Random number initialization and sceding

Characters

w** [ssue 109: Character set and represcntation independence

**# [ssue 110: Having bits and font components in the same character
11.1. Predicates on Characters

*** Issuc 111: Choice of standard character sct

+ |gque 112: Should font 0 be specified to be fixed-width?

iv

101
101
101
102
102
103
103
104
105
105
106
106
107
107
107
108

109

109
110
110
110
111

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

11.2. Character Construction and Selection
*** [ssue 113: Null arguments to character and code~char
»** Jssue 114: Make code-char a generic function?
#** [ssue 115: Change the meaning of the character function?
11.3. Character Conversions
x [ssue 116: Should digit-char be allowed to return ()?
*=** [ssue 117: What are eof objects?
11.4. Character Control-Bit Functions
*** Jociie 118: Names for character control-bit functions

12. Sequences

»** Jssue 119: Generic sequence coercions

*=** [ssue 120: Sequence functions and multidimensional arrays

*%# [ssue 121: All those ridiculous sequence functions!

#x% [ssue 122: Use index/ count pair instead of siart/ end?

#+* Issue 123: Reorder arguments to replace?

»*x [scne 124: An end argument of () is the same as unsupplied?

**= [ssue 125; Define what rep1ace does for overlapping regions?

==+ [ssue 126: Arrange for result of nreversae to be aq to its argument?
»** [ssye 127: Rename concat to be concatenate?

=** [ssue 128: May concat take arguments of mixed type?

=== Tssue 129: Who likes reduce?

»** [ssue 130: Should map and friends be allowed to take zero sequences?
»»* Tosue 131: Nice way to say do-forever

*** [ssue 132: Sequences of mixed type to map, and result type?

»** [ssue 133: Getrid of scan-over and friends?

»x* [ssue 134: Eliminate sortslot by adding optional argument to sort?
fcone 135: Have stabie-sort as well as sort?

==* [ssue 136: Should there be only a destructive merge?

» [ssue 137: What does merging do?

13. Manipulating List Structure

13.1. Conses
13.2. Lists
»=* [ssue 138: Treatment of dotted lists by list and sequence operations
»* Jssue 139: Add setnth function?
»** [gsue 140; Letmake-11ist take keyword arguments
==+ Jssue 141: Treatment of circular structures
**x [ssue 142: [s revappend generic?
*=# [scye 143: Rename nconc tobe Tist-nconc?
*** [coie 144: Second argument form to pop?
*«» fssue 145: Optional sccond argument to butlast and nbutlast
*x% Jssue 146: Do we really want firstn, 1astn, and 1dif f?
13.3. Alteration of List Structure
13.4. Substitution of Expressions
*** [ssuc 147: Substitution functions
13.5. Using L.ists as Sets

112
112
112
113
113
113
113
114
114

116

116
117
117
131
132
133
133
134
134
135
135
136
136
137
138
138
139
139
140

141

141
141
141
142
142
143
143
144
144
145
145
145
145
146
146

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

=+ [ssue 148: A cross of push and adjoin
#** [ssue 149: A function to eliminate duplicates
#*== Jssue 150: Let “sets” be sequences of any form?
**x [scue 151: Are destructive functions also guaranteed to be non-consing?
13.6. List-Specific Sequence Operations
13.7. Association Lists
*** [ssue 152: Flush the function acons?
13.8. Hash Tables
13.8.1. Hashing on EQ
» [ssue 153 Rehash threshold for hash arrays
=«* [ssue 154: Add the function swaphash?
13.8.2. Hashing on EQUAL
=*= Jssue 155: Have only one set of hash functions?
13.8.3. Primitive Hash Function
*** [ssue 156: Resuit of sxhash

14, Strings

*** [ssue 157: Strings and fill pointers
=== [ssue 158: Control of case dependency in string operations
14.1. String Access and Modification
14.2. String Comparison
#»* [ssue 159: Have start/ end arguments for string< and friends?
14.3. String Construction and Manipulation
=+ [ssue 160: Keyword arguments for make-string
#+= [osue 161: Generalization of string-repeat
=*=* Jssue 162: Should string-upcase and friends be required to copy the argument?
14.4, Type Conversions on Strings
14.5. Sequence Functions on Strings
= [ssue 163: Is st ring-reduce really useful?
»»» [ssue 164: Add the string-. . .~set series of functions from Lisp Machine Lisp?

15, Vectors

15.1. Creating Vectors)
=+ Jssue 165: Keyword arguments for make-vector?
15.2. Functions on General Vectors (Vectors of LISP Objects)
»«* [ssue 166: Argument order for aref, vref, setelt, and others
15.3. Functions on Bit-Vectors
s [ssue 167: May sequence operations call a predicate on a non-clement?
15.4. Functions on Vectors of Explicitly Specified Type

16. Arrays

16.1. Array Creation
*** Issuc 168: Grammar of keywords for make-array
»** [ssuc 169: Second result value from make-array
16.2. Array Access
16.3. Array Information
*** [ssuc 170: Argument types for array-in-bounds-p

vi

146
147
147
148
148
148
149
149
149
149
150
150
150
151
151

152

152
153
154
154
154
154
154
155
156
156
156
156

158

158
158
158
158
159
159
160

161
161
161
161
162

162
162

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL vii

16.4. Array Leaders 163
16.5. Fill Pointers 163
*** [ocue 171: Should array fill pointers live in the leader? 163

*** Jscue 172: Shall array-push and array-pop accept multidimensional arrays? 164

#** [seue 173: Should array-push and array-pop be uninterrruptible? 164

16.6. Changing the Size of an Array 165
»*# Issue 174: Growing displaced artays 165

=** [ssue 175: Compatible (but ugly) extension of array-grow 166

17. Structures 167
17.1. Introduction to Structures 167
17.2. How to Use Defstruct 167
**x [ssue 176: defstruct slot-option keyword format 167

17.3. Using the Automatically Defined Macros ' 168
17.3.1. Constructor Macros 168
17.3.2. Alterant Macros 168
17.4. defstruct Slot-Options 168
17.5. Options to defstruct 168
[ssue 177: Default for defstruct :conc-name option 168

*** [osue 178: defstruct structure types which are not data types 168

*=»x Jssue 179: The default defstruct structure type 169

w#* [ssue 180: Default for named/unnamed defstruct option 169

»## Jssue 181: May specialized arrays be named? 170

*** [ssue 182: The defstruct type : fixnum 170

»=x [cane 183: Consistency of : read-only and : invisible properties 171

**=* [ssue 184: The :size-variable optionto defstruct 172

+ [ssue 185; How to print structures 172

»** [ssue 186; Add inspect and describe to the COMMON LISP core 173

» lesue 187: callable~accessors optionto defstruct 173

17.6. By-position Constructor Macros 173
« Jesue 188: By-position constructor functions? 173

17.7. The si:defstruct-description Structure 174
*** Iesue 189: si:defstruct-description description 174

+ Jssue 190: Flush the default-pointer option 174

18. EVAL 176
19. Input/Qutput 177
19.1. Printed Representation of ISP Objects 177
19.1.1. What the read Function Accepts 177

=% [esue 191: Non-token-terminating macro characters 178

=** Josue 192: Is *: " a symbol constituent character? 178

*** [ssue 193: Why does <rubout> have ignored syntax? 179

19.1.2. Sharp-Sign Abbreviations 179

*** [ssue 194: Should the case of a letter after # matter? 179

% [ssue 195: Syntax of characters 1380

*** [ssue 196: Why have ignored characters? 181

==+ |ssue 197; Terrible proposed syntax for arrays, vectors, and structures!!! 181

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL viii

*** jssue 198 Circular list syntax 183

*** Issue 199: Testing of features 183

19.1.3. The Readtable 186

=** [ssue 200: Defining character syntaxes by copying 186

#»# Jesue 201: Dispatch macro character setup 186

19.1.4. What the print Function Produces 187

*** [ssue 202; Must everything print? 187

19.2. Input Functions 188
19.2.1. Input from ASCII Streams 188

*** [ssue 203: Allowing t as a synonym for terminal-io 188

*xx Jecue 204: Global variable read-preserve-delimitars 188

*** [ssue 205: Useless eof-optionto read-del imited-1ist 189

w»* [ssue 206: Eliminate read-delimited-11ist? 190

=»* [ssue 207: Can one unty i anything, or many things? 150

»** [ssue 208: Action of inch-no-hang at end of file 191

+ Issue 209: Let read-f rom-string take start/end arguments? 191

*** [ssue 210: New function parse~-number 192

=» [ssue 211: End of string in the middle of an object 192

19.2.2. Input from Binary Streams 192
19.2.3. Input Editing 192
19.3. Output Functions : 193
16.3.1. Qutput to ASCIl Streams _ 193

*** [esue 212: Add the *nopoint switch? 193

[csue 213: Result returned by print and friends 193

»## [ssue 214: Flush string-out and 1ine-out? 194

19.3.2. Output to Binary Streams 194
19.4. Formatted Qutput 194
s** Issue 215: Behavior of format ~P on floating-point arguments 194

*** [ssue 216: Floating-point output in format 194

*** [ssue 217: Mnemonic for ~X in format 195

» Jssue 218: Should the format iteration constructs be retained? 195

[ecue 219: What should format ~C (no flags) do? 196

»x* [ssue 220: Control list in place of string for format 197

19.5. Querying the User 198
*#** Issue 221: Help characters to fquery 198

**x [ssue 222: Meaning of the term “beep™ 198

19.6. Streams 198
19.6.1. Standard Strcams 199

*** [ssue 223: Arc bidirectional strcams necded? 199

19.6.2. Creating New Streams 199

»** [csuc 224: Add start/end arguments to make-string-input-stream? 199

» [ssuc 225: Add with-input-from-string and with-output-to-string? 200

19.6.3. Operations on Streams 200
19.7. File System interface 200
*xx [sauc 226: Should the COMMON 1.1SP manual specify a file system interface? 200

** [ssuc 2271 Should files be sequences? 201

19.7.1. File Names 201

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

*** [ssue 228: Pathnames and namelists

*** [gsue 229: Parsc termination in parse-namestring
19.7.2. Opening and Closing Files
19.7.3. Renaming, Deleting, and Other Operations

+ [ssue 230: Names of file-inquiry functions
19.7.4. Loading Files

*=** [ssue 231: 1o0ad, fasload, and readfile

*** [ssue 232: Flush readf ile and fasoad functions?
19.7.5. Accessing Directories :

20. Errors
20.1. Signalling Conditions
20.2. Establishing Handlers
20.3. Error Handlers
20.4. Signalling Errors
20.5. Break-points
20.6. Standard Condition Names

21. The Compiler

**% Tossue 233: ¢1 and disassemble
22, STORAG
23. LOWLEY

201
202
203
203
203
204
204
205
206

207

207
207
207
207
207
207

208
208
209
210

VOTES ON TIHE FIRST DRAFT COMMON LISP MANUAL 1

Introduction

In August, 1981, the first draft of the COMMON LisP Manual was distributed to a number of potential
implementors and other interested parties. This draft was dated 13 August 1981, and is known as the “Swiss
Cheese Edition” (and was incorrectly identified on its title page as the “SPICE LiSP Manual™?).

Comments on this draft were collected and collated into a document whose title was Discussion of the First
Drafi Common Lisp Manual. The comments were grouped by topic, and nearly all were put under the
heading of one or another “issue”, each issue being a question or suggested change about which there might
be debate. For each issue there was a heading, the relevant comments from the respondents, and a set of
suggested courses of action (supplied by me). At the end of the document was a ballot. In October, 1981, the
collated document was distributed to the commentators, who were asked to vote on the 233 issues and return
the ballot.

This document contains the entire original text of the Discussion document (with minor typographical
corrections), and in addition records the results of the balloting and additional comments received.

One important typographical change: a heading was inadvertently omitted from the Discussion document for
issue number 226. This heading is included here. As a result, issues numbered 226 through 232 in the
Discussion document are here numbered 227 through 233,

The people who commented on the draft manual and/or submitted a ballot are identified herein by a short
identifier as follows:

ALAN Alan Bawden CLH Charles L. Hedrick
HIC Howard I. Cannon EAK Earl A. Kiilian

GIC George J. Carrette MC John McCarthy
DILL David Dill DM Don Moftrison

SEF Scott E. Fahiman MOON David A. Moon
CHIRON Neal Feinberg wLs William L. Scherlis
JKF John K. Foderaro RMS Richard M. Stallman
RPG Richard P. Gabriel DLW Daniel L. Weinreb
GINDER Joe Ginder JONL Jon L. White

The ballot asked that each vote be a single letter: *Y™ or “N™ for yes/no questions, or a letter for one of
several explicitly labelled choices, or *X™ if no choice was acceptable. The intent was to keep the procedure
simple, but of course complex issucs never fit into a simple mold. Soon after distribution of the Discussion
document, the following message was broadcast by Scott Fahiman:

I was just looking over Guy's discussion ducument, and it occurred to me that there were a lot of

issues on which 1 might vote differently from the rest of you, but about which [really don't care
very much. As an aid in resolving the major outstanding issucs without undue dclay and in

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL - 2

knowing which things should be given priority in any meeting, it might be very uscful to know
which issues people really care about. At the risk of slightly complicating the feedback procedure,
I would suggest that in addition to making a choice on each question you also give it an
importance rating from 0 to 5 as follows:

Profound indifference.

I am indicating a choice, but I really don’t care much.

Minor preference for the indicated choice.

Definite preference for one choice.

1 think this issue is very important.

A make-or-break issue. The wrong decision here will either be impossible to implement or
totally unacceptable to my group.

W B W b e O

This info can just be filled in on the feedback form. It is optional, but will help a lot in deciding
where the real problems are,

Some respondents used this system and some did not; some simply marked issues important to them with a
“4*. or used other symbols. Also, in the case of multiple-choice questions some respondents indicated more
than one choice, sometimes even assigning different weights to the different choices. In a few cases there
were even responses such as “D” for a yes/no question, or “Y” for a multiple-choice question, most probably
indicating a clerical error in filling out the ballot. Debugging such errors and converting all the reponses into
a uniform format has required some subjective interpretation; I can only apologize for any misrepresentation
of anyone’s intentions.

Each vote is recorded here as one or more letters followed by some number of exclamation points. The
numerical scale outlined above was converted as follows: a vote of 0 is simply not shown and otherwise a vote
of n is shown as n— 1 exclamation points. Thus a vote of “A3" is transcribed here as “All". For other systems
of preference I have tried to translate the sense of importance indicated by the respondent into this form.

For some issues, where there is a clear consensus, I have indicated (in 30-point type!) the conclusive answer (I
counted 111 of them). For some other issues, where there is a preponderance of votes for one choice but also
either significant opposition or new commentary which I think should be considered before a final decision, [
have indicated the preponderant answer followed by a question mark (I counted 56 of these). Where there is
no consensus, no conclusion is indicated (I counted 66 of these). In determining consensus I have applied
some judgement; as a rule a single dissenting vote is discounted unless quite vehement (at least three
exclamation points), and more than one dissenting vote may be discounted if they have no exclamation points
atall.

Following the vote for each issue are any additional remarks received on the subject with the ballots or since
distribution of the Discussion document.

—Guy L. Steele Jr.
November, 1981

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 3

Introduction to “Discussion of the First Draft Common Lisp Manual”

This document is a collation of comments on the first draft (“Swiss Cheese Edition™} of the COMMON Lisp
Manual (incorrectly identified on its title page as the “SPICE LiSP Manual™?) dated 13 August 1981. Also
contained here are my suggestions for specific changes to the COMMON Lisp Manual, based on my perception
of the consensus of the commentators, or on my own technical judgement where there appears to be no
consensus. Sometimes several alternative suggestions are presented where I cannot make up my mind either.

This document is intended to aid in the resolution of problems in the first draft by brining together for
inspection the reactions of the several commentators. A second draft will be produced after discussion of the
points of disagreement has taken place,

This document is parallel in structure to the first draft manual, containing verbatim all the chapter, section,
and subsection headings from the manual. The comments are therefore grouped under the relevant section
headings. All of the paragraphs labeiled “??? Query:” from the draft manual are also included here.

Numbers appearing in square brackets (for example, “[43]") refer to page numbers in the first draft COMMON
LiSP Manual. Such numbers with a decimal fractional part “{m.n]" refer to page m, about 0.n of the way
down the page; thus “{43.7]" refers to a place on page 43 about 2 or 3 inches from the bottom. Square
brackets are also used for bibliographic references. Other material in square brackets represents editorial
interpolations of the usual sort, or contextual quotations from the manual,

I am responsible for all text in this document not specifically marked as being written by another person.
Comments by other persons are labelted by an identifier as follows:

ALAN Alan Bawden MOON David A. Moon

HIC Howard I. Cannon RMS Richard M. Stallman
GIC George J. Carrette DLW Daniel L. Weinreb
SEF Scott E. Fahiman IONL Jon L White

Most of these comments, however, I have transcribed from terse handwritten notations, and so [have taken
the liberty of making such editorial corrections as introducing punctuation, adding font specifications, and
correcting grammar. Occasionally, when pictorial devices such as arrows from the comments to the original
text were used by a commentator, [have found it expedient to paraphrase the entire remark; in these cases the
entire paraphrase is enclosed in square brackets. [apologize if in doing this I have inadvertently
misinterpreted or mislabelled anyone’s remarks.

My responses to specific questions raised by a commentator, and text which [consider to represent my
personal biases rather than matters of fact, are explicitly flagged by “GLS”.

The comments are more or less arranged according to the structure of the draft manual, but are also organized
by topic. Fvery topic on which there may be a question of consensus is flagged by a heading proclaiming it to
be an “issue”:

**% {osue 0: Do pigs have wings?

Following this heading are arranged the relevant comments, and then one or more suggestions for resolving
the issue. If the comments all point to a single solution, then a single suggestion is made, which appears as a
paragraph flagged by the word “** Suggestion™. If there are multiple suggestions. the word “*% \lternatives”

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 4

appears, followed by suggestions labelled by letters of the alphabet. For example:
** Alternatives:
A. Pigs should have wings.
B. Pigs should not have wings, but give them antlers instead.
C. Status quo: pigs should not have wings.

In either case, [have frecly added suggestions of my own, especially when other commentators have remarked
on problems but specified no solutions. Frequently when there are several possible choices [have added an
additional choice or two which is particularly radical or off-the-wall, if only not to restrict the collection to too
nartow a point of view.

I would like to resolve these issues tenfatively by a balloting process, voting on the suggestions offered for
each issue. This is not meant to force a choice among the given alternatives or to cut off debate, but simply to
limit the clerical work required to coilate the responses and determine a tentative consensus (or lack thereof)
for each issue. If a choice mentioned here reflects more or less what you think is best for COMMON LIsP, then
you can support that choice with absolute minimum of redundant verbiage.

The results of this balloting will be used to guide a revision of the draft COMMON LISP manual. The cycle will
then be repeated: a second draft will be distributed for comments (this time to a larger set of people), a second
set of comments collated, and a second ballot taken (or perhaps simply a meeting called, if the set of
remaining issues is small). The current ballot is not the last chance to comment; therefore I would prefer not
10 receive extensive commentary or have new issues raised with the ballot, but rather to wait until the next
draft comes out. (Similarly, please don’t bother to tell me that some of the offered alternatives are stupid.
Just vote against them. I will confess that a few jokes have been inserted to amuse you while you wade
through the morass.)

This ballot is not intended to produce final decisions on the issues contained herein, but to determine where
there is consensus and where there is disagreement. Therefore where there is significant disagreement on an
issue, majority rule will not obtain; instead, such issues will be recorded and deferred until a meeting can be
held. The purpose here is to identify those issues where we all agree so that valuable meeting time need not
be wasted on them.

Feedback on this document would be most useful in the following form: a list of issue numbers, each paired
with a vote. For a single suggestion, vote “Y™ or “N"; for a multiple suggestion, vote the appropriate letter. If
none of the choices even approximately reflects your best judgement, then vote “X™, and in that case attach
English text describing your alternative,

Some comments are not listed under an Isswe heading, because they seemed not to raise a point of
controversy or to identify merely typographical errors. 1f you wish to remark on such comments, attach such
additional remarks (suitably identified) to the ballot.

At the end of this document is a ballot that you can simply fill in and send via U.S. mail; the address is on the
ballot, Staple additional sheets of commentary w it if necessary, Alternatively, you may send a facsimile
ballot via ARPANIT mail to Guy ., Steele 8 CMU-10A.

Thank you for your help in this project.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL ‘ 5

—Guy L. Steele Ir.
October, 1981

VOTES ON TUE FIRST DRAFT COMMON LISP MANUAL]

General Questions

*+% [caue 1: What Dover font should be used for LISP code?

MOON: [1.4] Use the LPT font family, available from MOON. This will be in the next Xerox font release, I'm
told.

RMS: Why not use the LPT series of fonts for code, instead of GACHA. It has all the M.LT. character set except
possibly the characters hidden under CR, LF, TAB, RUBOUT, €IC.

GLS: LPT does correct the problems with underscore, accent acute, and accent grave. The tilde is still really a
swung dash, but this is within the variation permitted by the ASCII standard, I think. In any case, it's better
than anything else available.

** Suggestion: Use LPT as soon as it becomes available. (Anything better around?)
** Responses X
MOON: Y SEF: Y GINDER: Y!

DLW: Y! HiC: 'Y CHIRON: Y
Gls: Y RPG: Y

MOON: The file MOON2 ; LPT FONTS @ MIT-MC is a binary file containing a PrePress fonts dictionary.

MOON: There are numerous usefu! things from Lisp Machine Lisp missing. Some examples are errset,
third, with-output-to-string, string-search-set. It would be interesting to know whether
this is intentional, an oversight, due to the incompleteness of the draft manual, or a result of using the black
Chine Nual rather than the red one (o, better, the gray one).

GLS: Fach of these is correct in some situations.

*** [ssue 2: Policy for naming functions in COMMON LIsSP

MOON: Many common English words, especially ones which are likely to be used by programmers, are used
up for new system functions. I don't think thesc words should be used for these functions. The most
egregious cxample is control..

ALAN: [107.6] [On the names of the generic sequence functions:] In ten years there won't be a word left in the
dictionary that isn’t the name of a standard 1.1SP function.

GiS: This is a constant problem whenever a language is cxpanded. Sussman has complained loud and long
about the fuct that a standard (at that time) Lise wtility was named index: he wanted that name. On the
other hund. “good™ names are also desirable for sysiem functions (search is nicer than srchq, for
example). Any other specific suggestions?

VOTES ON THE FIRST DRAIFT COMMON LISP MANUAL 7

MOON: We also need to consider the need to make it continue to be possible to write programs which work in
bath CoMMON LisP and MacLise. Thus for instance if the meaning of assoc is changed the name should
be also.

SEF: I hate to cede to MACLISP all the good names just because it managed to make some small error in how
to use them. Maybe we continue to redefine things where needed, but provide a source-to-source translation
package. Ithink MACLISP is just about dead anyway.

** Suggestion: Make COMMON LISP the best language we can; shall this include choosing nice names, even
though they are English words likely to be desired by a user?

i ons
MOON: X RMS: Y! SEF: Y! GINDER: Y!!! DM: X!
DLW: X HIC: X wLs: Y! CHIRON: Y!!

GLS: Y! RPG: Y!! DILL: Y!

WwLS: Yes, but leave me “foo0”.

RMS: Use common words only if they are specifically semantically appropriate. That is, “search” is very
appropriate for a searching function, but “index” can only be specifically appropriate for a function to index
into an array, and even then it doesn’t clearly say what it will do with the index. Does it do indexing? Return
an index as a value?

MOON: While we should make COMMON LiSP the best language we can, 1 think there is an important
portability constraint. We should not make it unnecessarily difficult to write portable programs. We should
not make incompatible changes that are not mechanically detectable, and we should avoid using the same
function name to mean something different than what it means in MACLISP, unless there arc overriding good
reasons to do so. By “portability”, here I am referring both to conversion from the current Lisp Machine Lisp
system to the future, COMMON LisP-compatible one, and also to portability between COMMON Lisp dialects
and MacLisp-compatible dialects (PDP-10, Multics, and FRANZ LisP). Since there is no COMMON Lisp
implementation for the PDP-10 in sight, and probably will never be one, MACLisp will unfortunately
continue to be used on PDP-10's for some time. Since PDP-10’s are wide-spread now, and at least two
companies are designing future implemecntations of that architecture, PDP-10s will unfortunately still be
around for some time to come. MACLISP compatibility should not be an overriding consideration for
CoMMON LIsP, but it should not be slighted.

DLW: It has to be handled on a case-by-case basis.

VOTES ON TTIE FIRST DRAFT COMMON LISP MANUAL . 8

Chapter 1
INTRO

1.1. Purpose

=% [goue 3: Purposes of Common LISP

pLW: You might mention the basic idea, namely that this is supposed to be a common subset for many
upward-compatible dialects.

SEF: Mention stability as a goal for COMMON LISP: once it’s defined, we expect it to change only slowly and
with due deliberation.

MOON: [3.8] [Features which are useful only on certain processors are avoided or made optional.] Not done to
the extent that I would prefer.

GLS: Examples?
** Suggestion: Add two paragraphs to this section as follows:

Commonality. At least four implementation groups already actively at work on LISP
implementations for various machines are considering supporting this dialect.
While the differing implementation environments will of necessity force
incompatibilities among the implementations, nevertheless COMMON LISP can
serve as a common dialect of which each implementation can be an upward-
compatible superset.

Stability. It is intended that COMMON LISP, once defined and agreed upon, will change
only slowly and with due deliberation. The various dialects which are superscts
of COMMON LISP may serve as laboratories within which to test language
extensions, but such cxtensions will be added to COMMON LiSP only after
carcful examination and experimentation.

** Responses Y_..
MOON: Y SIT: Y GINDER: Y! DM: Y!

DIw: YN me: Y wi1s: Y! CHIRON: Yt

ALANI Y GIS: Y! rPG: Y!! DL Y!

MOON: Some of the features useful only on certain processors which are not avoided in the draft COMMON

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 9

Lisp manual, and which I find the most objectionable, include:

o The vector/array distinction. !
o The profusion of type declarations, especially in the sequence functions.
» Miscellaneous other kludges here and there to make it easier to open-code things on the VAX.

A great deal of my work over the past five years has been directed at killing off exactly this sort of constraint
on the language, through the Lisp Machine LisP approach (which includes SPICE LISP).

DM: [Several paragraphs by DM follow.] A few random flames:

There seems to be some confusion as to what exactly this COMMON LISP standard is. Is it a definition (albeit
informal) for a core language, or is it a user manual? It certainly doesn't seem to be a “core” language; it's
even bigger than the INTERLISP VM spec (though not so convoluted, I hope).

I think there are two different issues to be addressed here. One is what is the class of rclatively primitive
operations which define LisP? The other is a library of standard function names to facilitate program
interchange. I would rtahers ee them separated, a la red, white, and yellow pages. In principle I suppose
there is no reason to do this, but [think it would make discussion much easier. The core will never be gotten
right if its semantics are hidden in a morass of complicated names for simple functions 1ist-nreverse.
There is definitely a need for such a library; it should just be done in parallel to a standard core.

T'd rather see about one-tenth of the current “core” defined as a real core. Implementors could share code for
the remainder, at least at first. They might tune it to their implementation. The idea is that there would be
definitions of all the rest built out of only the basic core. This sounds like it has no part in a definition; after
all, implementors can do that anyway. Well, I think such a partition should be made early on. It will help
people trying to understand what COMMON LISP is even more than the implementors. It will especially help
the people actually defining the language to know what it is they are defining!

The profusion of data types doesn’t really belong in a core. Just simple objects, like vectors. Build more
complicated ones like arrays and structures out of the simple ones. This requires having some more
mechanism for adding new types (okay, that’s acknowledged hair; maybe just a predefined collection of them,
rather like the way some antique LISPs had tags for bignums and all the hooks, but they weren’t really there
till you added a bignum package), with appropriate hooks into the various generic functions (including 1/0).
With an appropriately flexible package facility each of these guys could reside in a different package.

Sorry, but the current version really gives a feeling of “Well, what’s the largest subset of Lisp Machine Lisp
can we try to force down everyone else’s throat, and call a standard?” It would seem far better to try to make
the best language possible, especially given that it will be frozen. Folks have lived with cnough mistakes of
carlicr 1.15Ps long enough. Why perpetuate it some more. all in the name of compatibility? [suspect that any
goud LISP can have MACLISP compatibility mode and the like living in packages, which will do just as well as
keeping musty, old definitions around in a supposcdly clean, new LiSP.

‘The very notion of “cverything clse being cqual. we'll be compatible with x™ is a crock. If you can cven
consider doing it differently than you've done it for ycars in x, there’s obviously something at least slightly
wrong with the way x does it.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 10

*** [scue 4: Division of Common LISP into a core plus modules

MOON: [4.2] [On the division into a core language and independent modules:] This seems weird, Motivate it.
Maybe these modules are optional at the implementation’s choice?

SEF: Mention the division into white, ycllow, and red pages.

GLs: The intention, originated by SEF, was to impose a discipline to prevent the complicated interweaving of
packages which has occurred in INTERLISP. The impression one gets from the INTERLISP manual is that
nearly every part of the system has its fingers in some other part, via various global variables, switches, and
hooks. The proposed discipline for COMMON LISP is to divide the world into a core language and a set of
peripheral packages. The core is described in the COMMON Lisp manual; these SEF terms the “white pages”.
The “yellow” pages describe implementation-independent packages, such as trace ora scientific subroutine
package. The “red” pages are similar, but document implementation-dependent routines, such as device
drivers. Ideally the packages would be theoretically as independent as possible, although one probably would
not want to make them arbtrarily optional. Cases of non-independence should be minimized and carefully
documented.

** Suggestion: Does this discipline make sense?

** Responges m

MOON: N RMS: NI SEF: Y'! GINDER: Y!! DM: Y!
DLW: Y!! HIC:Y wLS: Y! CHIRON: Y!!!
ALAN: X! GLs: Y RPG: Y!! DILL: YN

ruMs: Keeping things modular is a good goal but don't expect to succeed completely. For example, a winning
trace facility requires encapsulations, which defun or its subroutines must know about.

ALAN: The division only makes a little sense. What good are the red pages? The claim is that they document
“implementation dependent” routines. How are they dependent on the implementation? If they have an
interface that is the same for all implementations, then they at least belong in the yellow pages. If the
interface is different, or if they only exist in some implementations, then why are they documented in the
COMMON LISP manual at all? This should be clarified. The reasoning behind the yellow pages is even less
clear. Why have these packages been singled out to have their documentation printed on a different color of
paper? Again, I just need clarification before I can judge the merits of this idea.

1.2. Notational Conventions

VOTES ON THE FIRST DRAI'T COMMON LISP MANUAL . 11

**# [ssue 5: Syntax for description of special forms

MOON: [5.5] I think using & keywords in [the descriptions of] special forms is grossly confusing. See new
syntax in Chinual version 4.

pLw: | strongly agree! This aggravates the confusion of thinking that special forms are function calls! Please
fix!

GLS: Well, defmacro allows &optional and &rest. Nevertheless, [think the idea is a good one to use
some form of BNF.

** Suggestion: Modify the descriptions of macros and special forms not to use &-keywords.

** Responses Y

MOON: Y1 RMS: NIt GINDER: Y DM: Y!
DLW: Y'I! HIC: Y wLs: Y!
ALAN: Y! GLS: Y RPG: Y

RMS: Many special forms are function calls, whether philosophers like it or not. This does not imply that the
special forms should be described by giving the arglist of a definition for the function, but BNF is confusing
and hard to understand. 1 definitely prefer the arglists to standard BNF. An extended BNF might make the
grade.

CLH: [November] About comments: your convention makes it almost impossible to read in a function with
comments. I realize that MACLISP tends not to do that, but some users might like to use a structure editor,
and have comments show up. R/UCI LisP uses {; ... } asacomment, allowing it to be put more or less
anywhere in the code. { is defined as a read macro that reads all characters up to the next }, turns them into a
string, etc., so that {; abc }readsas (; "abec"). ; is defined as a function that returns (). The pretty-
printer puts this back into the original form.

GLS: [November] Of cousre, such a comment can be put “more or less anywhere” only if you are writing
FORTRAN-style LISP code. If you use a highly applicative style, such comments can be put more or less
nowhere. To meet the goal of truly transparent comments which don't evaperatc at read time, more
cooperation from the interpreter and compiler is needed. or a2 more clever scheme such as hashing.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 12

Chapter 2
Data Types

*=** [ssue 6; What uscless value should side-effecting functions return?
MOON: [8.6] [Those functions which have nothing better to return generally retrn t or {).] Not zero values?

GLS: Well, that's an interesting point. Theoretically, that is nicest; however, in certain implementation
strategies that might impose unnecessary overhead (strangely enough), because it might require going through
some part of a more complicated multiple-value protocol rather than the normal single-value one. (Having a
third, specialized, zero-value protocol is probably not worth the trouble.)

** Suggestion: Let the current specification stand: return () for a useless value.

** Responses Y_
MOON:Y RMS: Y! SEF: Y!!! GINDER: YIU! DM: Y!

DLW: Y!! HIC:Y WwLS: Y! CHIRON: Y!!

ALAN: Y! RPG: Y!

RPG: Perhaps we should make the printing primitives return 0 values, because this is a pure side-effect issue, it
is the one thing you don’t want to return a value from, and printing is slow anyway so the overhead shouldn’t
be too bad in most implementations compared to the fixed cost.

MOON: The suggestion disagrees with the quoted statement [3.6], which is not a specification and says “t or

)"

2.1, Numbers

*4% [goue 7: Should the type “scalar™ be called “real™?
ptw: Shouldn't the type named scalar be called real?

G1$: Mathematically speaking, 1 would agree. However, there are two problems with using the word “real”
for this data type.

VOTES ON THE FIRST DRAFT COMMON LIS MANUAL 13

» The usual problem that digital computers can't really implement real numbers, but only a
countable subset of them (typically the rationals or a subset thereof) and so the term “real” would
be incorrect in this application.

¢ Most other languages which use the term “real”, however incorrectly, use it to mean “floating-
point number™, and 50 to use “real” to mean floating-point numbers, integers, and ratios would be
doubly confusing.

Except for this possibility of user confusion, I do not object to the term “real”. As for “scalar”, I have
consulted a number of mathematical dictionaries, and could reach no definite conclusion regarding it. The
term connotes componentlessness or directionlessness, and is usually contrasted with vectors or tensors. Some
dictionaries, however, specifically noted that a scalar is often restricted to be real, listing “real or complex” (as
apposed to a tensor) as a separate definition. In some applications complex numbers are construed to have
direction or components, and in others are taken to be scalars.

** Suggestion: Change the name of the data type scalar to be real.

** Responses
MOON: Y RMS: Y! SEF: N! GINDER: Y! DM: N!
DLW: N! HIC: N wLS: N! CHIRON: N

ALAN: Y! GLS: Y! RPG: N!

WLS: scalar loses, but real is worse.

RMS: It is true that scalars are sometimes restricted to be real, but this is a special case of restricting scalars to a
particular field, which can be any field. They are also sometimes restricted to be rationals, or to be integers
mod p. In some contexts, scalars can be taken from a ring instead.

Gis: I now agree with RMS. Also, it might be useful to use the term scalar to mean a non-sequence, but
that is another story.

2.1.1. Integers

ALAN: {10.1] Does anybody have #B now? I took it out of Lisp Machine LISP ycars ago.

2.1.2. Floating-point Numbers

*** [ssue 8: Bigfloats (arbitrary-precision floating-point numbers)

SEF: Define bigfloats. Are they optional?

G1.S: Currently a syntax is defined for bigfloats, but nothing clsc is said about them.
** Alternatives:

A. Remove bigfloats from the language.

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL ' 14

B. Add definitions of operations on bigfloats to the language.
C. Require bigfloats to be a defined data type, and require bigfloat [/0, but leave bigfloat arithmetic

to an optional package.
** Responses
MOON: A RMS: X! SEF: All GINDER: C! DM: X!
pLw: C!! HIC: B wLs: C! CHIRON: B!

GLS: Bl RPG: B!

RMS: Make bigfloats an optional feature of the language, and someday define the syntax and operations that
people should use if they are going to have bigfloats at all. Do not mention them in the core.

MOON: Bigfloats should be deferred.

wLS: Perhaps allow bogfloat 1/0 to map to a long-float representation, as controlled by a global variabie.

CLH: [November]

I think €, F, D, S, L, and B is going a bit far. Is anyone going to remember which is which? Maybe you
should adopt the standard sequence S, P, D, F, ... from quantum mechanics? If you are going to specify this
many levels of precision, why not do more like PL/1 and let the user specify the exact number of digits he
wants, and then round up to the nearest thing you supply. The easiest way to do this would be to look at the
number of digits he types, but you could also provide some syntax like #11F13 . 2 to mean 13.2 with 11 digits
of precision. If you want to have multiple letters, then I think you would be better off to specify an exact
precision which each is to supply, and let the implementation round up to what it can provide. [think I
would prefer a contiguous set of letters, with increasing precision, for example 12.2B12 being least,
12.2C12 next, etc.

GLS: [November] Great! Short, Plain, Double, Fourpie, Giant?

*#% [scue 9: Terminology “single” and “double” for floating-point numbers

777 Query: [11.9] There has been some objection to the use of the words single and double, as they may be misleading to the
user or 100 confining for the implementor. Any suggestions?

MOON: Should the words which are the same as those used in the IEEE standard mean the same things?

GLS: As noted in the draft manual, the terms are meant to encourage implementors to provide floating-point
precisions and ranges at least roughly cquivalent to 1EEE standard. If true 1EEE standard floating-point is
supported by host hardware, it would scem to be desirable to support them dircctly for the sake of portability.
There would remain many issucs of supporting rounding, exceptional values, and so on which are not
addressed by the draft manual.

** \lternatives:

A. Status quo: retain the terms “single™ and “double™.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 15

B. Retain the terms, but also requirc COMMON LisP implementations to support the IEEE floating-
point standard.

C. Rename the terms so as not to cause confusion with the IEEE standard. (In this case, someone
please suggest new terminology.)

** Responses A__Q_.)
MOON: A SEF: AC! DM: C!
DLW: Al HIC: X wLS: A! CHIRON: Al

: GLS: A RPG; Bl

MOON: COMMON LisP should specify that the “single” and “double™ floating-point formats will be as close to
the IEEE standard “single” and “double” numbers as the underlying hardware of the implementation permits
to be done efficiently. But otherwise we should leave the complex and subtle business of standardizing
floating-point arithmetic to people like Kahan.

wis: Of course implementations should be encouraged to conform, but true support for the IEEE standard
seems to be implementation dependent. Could conformity be revealed by astatus request?

5 [scue 10: Should radix-specifier syntax be immediate or pervasive?

ALAN: [12.3] [The proposed non-decimal floating-point representation] will screw the Lisp Machine Lisp
reader’s versions of #R, etc. We just bind base and call read so that #3R(120 222) will work. But
floating-point read can’t look at base because it is usually 8.

GLS: By way of explanation, Lisp Machine LiSP allows #R, #0, and other radix specifiers to precede any §-
expression, and any integers in the S-expression will be interpreted by that specifier unless an inner specifier
shadows it or an explicit decimal point appears. Floating-point numbers are always read in decimal radix.
Ni1L has suggested that non-decimal floating-point input may be useful for very specialized applications. In
an attempt to minimize confusion, the COMMON LISP draft requires a radix specifier to immediately precede
the representation of a number; it could be argued that this also makes code easier to read by eliminating the
possibility that the value of a number might be drastically altered by something very distantly preceding it.
However, the pervasive version also has its uses, such as notating a list or array of several hundred octal values
(in an assembler, perhaps). (By “pervasive”, I mean that the specifier pervades an entire S-expression,
affecting all numbers within it.)

** Alternatives:

A. Fliminate non-decimal floating-point numbers: require radix specifiers to immediately precede a
number.

B. Kliminate non-decimal floating-point numbers; permit pervasive radix specifiers to affect all
integers {cxcept those with a decimat point).

C. Eliminate non-decimal floating-point numbers: permit pervasive radix specifiers to affect all
integers (except those with a decimal point) and ratios. but never integers forming the argument
for a # construct.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

rMs: Complicated. [like several of the ideas, but only with modifications. Here is the order, best to worst:

|
H
C

D. Retain non-decimal floating-point numbers; require radix specifiers to immediatcly precede a
number.

E. Retain non-decimal floating-point numbers; require radix specifiers to immediately precede a
floating-point number, but permit radix specifiers to pervasively affect all integers (except those
with a decimal point).

F. Retain non-decimal floating-point numbers; require radix specifiers to immediately precede a
floating-point number, but permit radix specifiers to pervasively affect all intcgers (except those
with a decimal point) and ratios, but never integers forming the argument for a # construct.

G. Retain non-decimal floating-point numbers; permit radix specifiers to pervasively affect all
integers (except those with a decimal point), ratios, and floating-point numbers, but never integers
forming the argument for a # construct. (The objection to this in Lisp Machine LiSP doesn’t arise
in COMMON LISP because the default input radix for integers as well as floating-point numbers is
ten.)

H. Eliminate all radix specifiers!

I. Eliminate #-style radix specifiers, and use the following bizarre scheme. The usual way to indicate
a non-decimal radix is by writing the radix in decimal as a subscript. Use square brackets, as is
traditional in computer science, to indicate such subscripting. Thus instead of the integer #0105
one would write 105[8]; the same number in hexadecimal is 45[167]]. Similarly, FOO[32]
would be read as the (decimal) value 16185. This is of course harder to implement, because one
can't just bind base and do the read, but it is closer to standard notation. If the LISP reader is
organized so that it first scans over some alphanumeric token and only then decides what kind of
token this is, this is no problem (the current COMMON LISP reader specification will allow this).
Now, for compatibility, let *.” mean the same as “[10]" in this context, so that a trailing decimal
point always means decimal radix. Now back-generalize this to floating-point numbers: « in
decimal notation is either 3.14159266 or 3[10]14159265, and in octal notation is
3{8]11037562.

16

** Responscs

MOON: Cil! RMS: X! SEF: CH GINDER: D! DM: Al
pLw: X HiC: C wLs: F CHIRON: I}

ALAN: 1! GLS: I RPG: G! DILL: ADI!!

but don't necessarily eliminate other kinds of radix specifiers.

but keep the default radix 8. H is no good otherwise because octal number are vital,

but I'm not sure cxempting arguments to all # constructs is right. Exempting radixes is right, but not

array sizes in #A.

mic: | vote C. but choice 1 has some merit.

GINDER: | lean slightly towards retaining non-decimal floating point: and | strangly prefer immediate radix

specifications. Alternative | doesn’t seem all that bizarre to me!

MOON: COMMON LISP should reserve a syntax for impicmentation-dependent non-decimal floating-point;

YOTES ON THE FIRST DRAFT COMMON LISP MANUAL) 17

programs using that syntax are non-transportable. #F might be a good choice. Alternatively, there could be
no syntax and implementations could have a functian that converted a character string to a flonum, to be used
to set up implementation-dependent floating-point constants.

DLW: We should make #0, #X, ef al. be immediate, so that you can say #xFF instead of #x+FF, but only if we
provide some way to be pervasive in cases where you really want pervasion with its action-at-a-distance (e.g.,
Lisp Machine Lisp patch files). Suggestion “I” is actually not bad, although #xFF is rather easier to type than
FF[16]. 1don’t feel strongly about inclusion of non-decimal floating.

DILL: My primary desire here is to see #0, etc., not be pervasive (radix should be a lexical property, not a
syntactic one).

2.1.3. Ratios

= [ssue 11: Should rationals be kept in canonical form?
MOON: [Most arithmetic functions produce rational results in canonical form.] ?
DLW: ? indeed.

** Sugpestion: Remove this remark from the manual. Implementations may represent raionals however they
choose. However, add functions numerator and denominator which are specified to return the
appropriate components of the reduced form of a rational number.

** Responses X

MOON: Y RMS: Y! SEF. Y!! GINDER: Y! DM: Y!
DLW: Y!! HC: Y wLS: Y! CHIRON: NI
ALAN: Y! GLS: Y! RPG: Y!

2.1.4. Complex Numbers

+ [ssue 12: Representation of complex numbers

ALAN: [7.8] Why specify [that complex numbers are Cartesian]? Say just “complex numbers” and leave the
representation up to the implementation. I might want to use base i— 1. for example!

ALAN: [13.4] Why in Cartesian form? I might prefer poiar or base i—1. This spec should be written to allow
other representations than those that store a real and imaginary part.

G1S: ‘This casc is not quite parallel to that of rationals, if only because of programming-language tradition. |
suspect that there are numerical analysts out there who really depend on knowing the round-off
characteristics of floating-point complex arithmetic. Also, if only to be able to interface to other languages, we

VOTES ON TUE FIRST DRAFT COMMON LISP MANUAL 18

want to have type declarations that can speak of Cartesian floating-point complex representations.

** Ajternatives:

A. Remove this remark from the manual. Implementations may represent complex numbers
however they choose. However, add functions real and imag which are specified to return the
appropriate (presumably approximate) components of a complex number.

B. Retain the remark. Moreover, specify that

{(eql x (real (complex x y¥)))
(eql y (imag (complex x y)))
This implies that complex numbers have two components, each of which may be any scalar. This

allows one to have “Gaussian bignums”, complex rationals, and tighter control over numerical
issues in the case of complex floating-point numbers.

o>

** Responses

MOON: B RMS: B! SEF. B GINDER: B DM: Bl
DLw: B wLs: B! CHIRON: B!

ALAN: B! GLs: Bt RPG: B

wLS: If not “B”, [think complex deserves no special status in the language.

2.2. Characters

wek Josue 13: Definition of string-char data type

777 Query: [14.3] There is a strong assumption implicit in the definition of the st ring-char type about the way character
objects are implemented. Is everyone concerned willing to live with that?

** Sugaestion: No one has objected to this, so let it stand as in the manual.

** Responses Y_?_

MOON: X RMS: X! SEF: Y!! GINDER: Y! DM: Y!
DLW Y! wLS: Y! CHIRON: Y
ALAN: X! GLS: Y! RPG: Y

RMS: Please explain?? How does this impact Lisp Machine LIsp, which docs not have character objects?

ALAN: Well, just what /s this “strong assumption™ about the way character objects are implemented? | would
rather know what it was before | agreed to live with it.

MOON: What is the “strong assumption™?

G1S: Clearly | wasn't being clear. The main implication is that character objects cannot have any more code
possibilitics than will fit into a string clement.

VOTES ON THE FIRST DRALIT COMMON LISP MANUAL ‘ 19

2.3. Symbols

*+% [ssue 14: Definition of “property list™

DLW: The definition of property list differs from that in the Lisp Machine LisP Manual; sce Revision 3, pages
66-67, which is dealing with issues of disembodied plists.

GLS: It seems to me that, while the Lisp Machine LISP manual made a valiant effort to generalize the notion
of property lists in a consistent manner in such as to emphasize the fact that property lists have state in a way
that a-lists do not, nevertheless it misappropriated the term “property list” and forced upon it a meaning in
conflict with its usual usage.

*+ Suppestion: Alter the COMMON LISP manual to use the term “property list” in a way consistent with the
usage in the Lisp Machine LISP manual.

** Responses

MOON: Y SEF: Ni!I GINDER: N1 pM: X!
DLW: X HIC: Y CHIRON: NI

ALAN: Y! GLS: N RPG: Y! DILL: N}

DLW: The criticism of MOON's explanation in the Lisp Machine LISP manual is valid, but we should do
something to correctly gencralize the notion of property lists to inciude “disembodied™ ones, and until we
think of a better terminology, I'll push for MOON;’s.

GLS: How about the following arrangement: have three special forms getf, putf, and remf. Each is like
the corresponding property-list function,. but instead of a symbol takes a setf -able location which contains
the property list. Then

(get x y) <=> (getf (plist x) y)

(putprop x y z) <=> (putf (plist x) y 2}

(remprop x y) <=> (remf (plist x) y)
So one can use disembodied property lists by saying such things as

(putf {cdr d-p-1) x 'foo)
getf actually doesn’t alter the first argument, and so may be a function rather than a special form; it is
essentially what is otherwise known as memg-alternate.

DM: [Several paragraph§ by DM follow.] It doesn't scem right to specify the implementation of a property list
(i.e.. as a list of alternating indicators and valucs). 1t should sinip]y be defined as a mapping symbols x
symbols => anything. The implementor should be free to do his job however he sces fit: as an a-list or
hashtable, perhaps. And it would make much more sense for things which deal with disembodied property
lists (i.c.. what p11ist returns, no matter how it's “really™ stored) to usc a-lists.

It would also be nice to sce something like SSTANDARD lasP's flag/flagp/remflag. These have

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 20

generally proven to be of great utility. 1 believe this is why STANDARD Lisp implementations have generally
used a-lists to implement property lists: an atomic element must be a flag, while a pair (cons) is an (indicator
value). This would be an appropriate format for p1ist to return.

)

The order of arguments to putprop seems wrong. Shouldn'tit be new value last, like most set functions? In
fact, the whole language should probably be combed for similar instances to make sure they’re all consistent.

And finally, ﬁe names get/putprop don't strike me as dovetailing as nicely as get/put.

*+% [gsue 15 Preserving of case in symbols, with case-insensitive inteming

277 Query: [16.2] How do peopie feel about the following plan?

Some programmers, particularly INTERLIsP people, like to use case in interesting ways, and insist on case being preserved.
For example, they like to use names such as GrossMeQut, (This is hearsay; the INTER LISP manual certainly shows no
examples of this.)

Anyway, it has been proposed that the internal form of 2 symbol’s print name be not upper-case, but whatever case the
symbol was first interned in (and therefore in whatever form it was first typed). Soif one says

(Dafun GrossMeQut (Hackp) (Cond ...})

and later types (grossmeout t), this will correctly access the defined function, and { print *grossmeout) will print
GrossMeQut, not GROSSMEQUT.

There is a st of implications here: intern must do string-equal hashing rather than string=. Can use of vertical
bars force the existence of distinct symbols differing only in case, and if so which one gets chosen when a symbol is typed
whose capitalization differs from any existing one? I think all this can be worked out: what do people think of it?

ALAN: It cannot work.
HIC: T am against it. I agree that the subtleties here are too much to deal with.

MOON: I don't see how this can work. If you have typed in both Foo and \foo, then how do these print?
With or without [backlslashes? And if you have a list (Foo \foo) and read back in its printed
representation, do you always get a list of two non-eq symbols? Regardless of the order they are first seen?
There are a lot of subtleties to this. It cannot work, because it is impossible for print to decide when to
slashify in such a way that things always read back in equally.

SEF: Guess we have reached the same conclusion. Too bad.

GLS: SEF and I have dcecided it probably cannot be made to work. We were worricd about INTERLISP people,
some of whom (rumor has it} are used to writing code in mixed casc and having it preserved. We tried for a
compromise and failed.

MOON: All INTERLISP system functions are uppercase but you must shift for yourself [GLS: 11 or let DWIM
correct it, as { understand.

*% Syppestion: Fliminate this idea from COMMON 1i1sP. and revert to the MacLisp style of normally
accepting cither case in symbols but converting to upper-case those letters not under the influence of a
backslash or vertical bar.

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 21

** Responses

MOON: Y RMS: NI SEF: Y!! GINDER: X! DM: X!
DLW: X HIC: Y! WwLS: Y! CHIRON: Y

ALAN: Y! GLS: YU RPG: Y

RMS: Perhaps. It can work, Symbols with backslashes in them have to read in as distinct from symbols with
no backslashes, always. So FOO and Foo and foo and f0O read in eq, regardless of which of them is seen
first, and \FOO, \Foa, F\O\O, etc., are never eq to them. I'm still not sure that this is the right thing to do,
but it deserves more consideration based on the fact that it can be made consistent.

GINDER: I don't like reverting to upper case. However, I don’t have an alternative that 1 think deserves to be
the standard for COMMON LISP. (Maybe I'll come up with a non-standard package later.)

MOON: Provide a way to set up the readtable to be like INTERLISP’s, which I believe means that there is no
case-mapping and names of system symbols must be typed in upper case.

pLW: Paul Martin has a new scheme that he explained to me and RPG. It has some features that we may not
like, but it should be considered. RPG can telt you about it.

puM: I think the basic idea is a good one. The problem seems to be arising solely because print name and
intern name are (implicitly) considered to be the same. I think the idea shouid simply be that the name used
for interning is always raised and the name as typed is retained solely for printing. This latter form should
probably contain any escape characters necessary; alternatively, it might be used only by princ. intern,
when encountering a new symbol, would enter the raised version of the name in the symbol’s interned-name
field, and its as-printed name in the print-name field. On encountering a symbol whose intern-name is
already present, it would either do nothing (essentially retaining the eldest printing form, particularly useful if
it was first used in a carefully put together file but is now being used from the TTY by a harried typist who
can’t be bothered to deal with a shift key) or enter the new print-name. There should probably be some sort
of switch controlling which action takes place, probably on a per-package basis.

JKF: [Several paragraphs by JKF follow.] DLW said that COMMON LIsP will not distinguish cases in function
names. This, I feel, is a big mistake and means that I won’t be able to run some of my programs on .
implementations of COMMON LISP (which don't extend the standard). | am sure that you will ail agree that
existing hardware can support lower case completely. The only reasons I've heard for not atlowing multiple
case is that:

1) Pcople don’t talk in cases so they couldn't possibly communicate about programs written in both
cases.

{2) I've had a bad experience on MULTICS.

(1) is absurd; UNIX systems have multiple case commands, the C language has multiple case variables and
functions, and I've yot to hear a complaint about problems with case. People have no problems discussing
their programs.)

(2) MULTICS did a bad job in sclecting names and/or the people who complain about the cases in MULTICS are

YOTES ON THE FIRST DRAFT COMMON LISP MANUAL) 22

so used to single case systems that they get confused.

Given a multiple case system, it is trivial to change the reader to single-cascify input, thus allowing old
programs written in single-case systems to be read in.

CLH: Your documentation seems ambiguous on whether \ is part of the name, when it is used to indicate
case. It is fairly easy to show that it has to be included in the internal representation. and thus presumably
returned by explode, etc. From a first reading of your manual, I thought that \ was not included in the
name. However that would lead to the following odd resuit:

(remob abc)

(eq 'AB\C 'abc) --> T :AB\C creates an atom with name "ABC"
:abc matches ignoring case, so it fits
(remob abc) '

(eq 'abc 'AB\C) --> () ;abc creates an atom with name "abc®

;AB\C requires upper case C, which fails

I find the method used in R/UCI LISP quite sufficient: intern requires the case to match. Lower case is
automatically converted to upper case in read, except inside strings or when the character is quoted
{equivalent to \).

2.4. Lists and Conses

pDM: [November] “Cons” as a noun is hideous, especially in the plural. Why not the euphonious, or at least
blander, “pair’*?

*3% [scue 16: () still a symbol in some implementations?

DLW: [17.6] Please put in a note saying that (symbolp ()) may be t in some implementations. Maybe put
this in small type and explain the history. Otherwise you'll confuse many people.

DLW: [26.9] Please note that in some implementations of COMMON LIsP, (symbolp '(}) may bet.

GLS: Sigh. This has implications for typep as well. Okay, so this means that the types null and symbol
may not be disjoint. Can such implementations nevertheless arrange for this symbol to print as “()", and for
the string *ni 1" to read as some symbol other than that one?

** Alternatives:

A. Permit () also to be a symbol, at least in some implementations. Nevertheless require it to print
as II()!!.

B. Permit () also to be a symbol, at least in some implementations. Make no reguirement on how it
prints.

C. Forbid () to bc asymbol in any implcmentation.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 23

** Responses

MOON: BIl RMS: Al SEF: Al GINDER: Y DM: Bl
DLW: All HIC: B! wis: Cl CHIRON: CIY

ALAN: B! GLs: C RPG: C DiLL: Ci!

MOON: Presumably a mode switch to force nil to print as either “ni1” or “()” or the implementation-
preferred string is required for portability of data files.

GLs: I don't know of any LiSP that won’t accept () in the read stream and treat it as the empty-list/false
object, so always printing it as (} should work.,

CLH: Why make () be different from ni1? This is such an inherent piece of LISP tradition that [don’t see
how you could possibly be gaining enough to justify the change. This could lead to the worst kind of subtle
conversion problems.

2.5. Vectors

*** [osue 17: Vector notation

pLW: [17.9] [A general vector is notated just like a list, except for the leading #] And you can’t use dots, of
course.

¥ Suggestion: Correct the manual to make this clear.

** Resnonses X
MOON: Y SEF: Y1 pM: Y!

DLW: Y! HC: Y . WLS: Y! CHIRON: Y!I!

ALAN: Y! Gis: C! RPG: Y! piLL: Y

GLS: Yes, I really wrote “C” on my ballot. I probably meant “Y™,

RMS: This assumes my change to vector syntax is not made, doesn't it? It was very disturbing to see this, since
it suggested that my suggestion had been discarded. 1immediately searched through and found it

GLS: Many of the issues interact, and a decision on one may affect others. Many comments applied to more
than one issue, and [tried to place cach comment where it was most applicable, occasionally inscrting a
comment under more than one issue. Unfortunately, | did not have time to cross-index ail the issues. As you
observed, your suggestion is included later in the document, and if it is accepted then the outcome of this
issue will not be relevant.

pM: How about [1 feo (3 2 1) ()]instcadof‘thcEathcrugly#(1 foo (3 2 1) ())?

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 24

2.6. Arrays

*++ [soue 18: Vectors and one-dimensional arrays?

MOON; {19.7] Vectors and one-dimensional arrays will be the same in Lisp Machine LISP, contrary to this
manual. : '

GLS: Could not Lisp Machine Lisp arrange to distinguish between arrays being used to represent vectors, and
those which are “really” arrays? SPICE LISP does just the opposite: it views vectors as primitive, and uses
them to build arrays. Hence an array is just a specially tagged vector used to contain dimension information
and a pointer to a data vector. The COMMON Lisp definition tries to avoid requiring this particular model;
however, it is important that vectors and arrays be distinguished, because there are performance gains to be
had on non-microcoded architectures. A vector is a bare-bones one-dimensional array; it has a dimension
and data, and that's all: no leader, no fill pointer, no displacing feature, no multiple dimensions. If you want
any of that, you use an array.

** Suggestion: Maintain the linguistic distinction between arrays and vectors. An implementation may take
either as primitive and use it to implement the other as long as the language semantics are preserved.

** Responses Y

T

MOON: Y RMS: YIN SEF: Y!! GINDER: Y! DM: Y!
DLW: Y! HIC:Y wLS: Y! CHIRON: Y
GLs: Y! RPG: YU DILL: Y'!!!

RMS: Lisp Machine LisP should not attempt to distinguish vectors from arrays, because this would be
unnecessary complexity for Lisp Machine LISP users. The “vectors” would be an unnecessary extra data type
that precisely duplicates a subcase of another data type.

MOON: I don't see how vectorp and arrayp being different would be useful to an implementation-
independent program. Presumably the only reason to distinguish vectors from arrays in a program is for the
benefit of some implementations where some operations only work on one or the other.

GLS: RMS's comment indicates to me that there is an unfortunate ambiguity in the statement of the suggestion,
and so the apparent consensus may be an illusion at best. The suggestion could be interpreted in at least two
ways, depending on whether the term “linguistic distinction™ implies the truth of

(not (typep {make-vector ...) 'array))
and

(not (typep (make-array ...) 'vector))
My intention was that typep could distinguish the resuits from make~vector and make-array. but RMS
apparently thinks otherwise and yet has voted in favor of the suggestion. As for MOON's question, the
proposal is that arrays have fill pointers and leaders and can be displaced, but vectors cannot (and so the
overhead for those features is saved). T apologize for alt the ambiguity. Clearly more discussion is nceded. Tt
should be noted. however. that his remark that vectors are a strict subcase of arrays is truc only if arrays as
well as vectors arc acceptable to the generic sequence operations,

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL - 25

DILL: Of course, if the language semantics require that one-dimensional arrays and vectors be distinguishable
at run time, they have to be different types.

2.7. Structures
2.8. Functions

2.9. Randoms

**2 Issue 19: Does #<...> syntax imply a random type?

MOON: Does what is said here mean { typep x ‘'random) is required to be true of all objects that print
with a “#{""?

GLS: It was not so intended. What was intended was that implementors be encouraged to use the syntax
#<...> to print unreadable objects of type random. However, non-random objects might also use this
syntax, and not all random objects need use it.

** Supgestion: Amend the manual to clarify this issue according to GLS's remarks above,

= ons X

MOON: Y RMS: Y! SEF: Y!! GINDER: Y! DM: Y!
DLW: Y HIC: Y wLsS: Y! CHIRON: YI!!
ALAN: Y! GLs:'Y RPG: Y!

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 26

Chapter 3

Program Structure

cLH: [November] R/UCI LisP defaults unspecified arguments to (). That turns out to be sufficient for most
purposes and is easier to implement. Have you considered using

(defun x (a b . ¢) ...)
instead of

(defun x {a b &rest c) ...}

9 1 know MACLISP people tend not to care about specd of the interpreter, but I do, and I don’t like having to
check every atom in the formal list for various magic & tags. If you insist, I will probably make defun
preanalyze the formal list.

3.0.1. Stuff I’'m Not Sure Where to Put It Yet

*4% [ssue 20: What about the patch facility?
SEF: Should the patch facility be mentioned? It's not defined in COMMON LisP yet.

** Syggestion: Eliminate the reference from the manual unless and until a patwh facility is defined for
COMMON LISP.

** Respons Y

MOON: Y SEF: Y!!
DLW: Y HIC:Y WwLS: Y! CHIRON: Y
ALAN: Y! GLS: Y RPG: Y DILL: Y!!

cLH: On defvar: [would much rather sce a separate function where the initialization always happens than
have the semantics depend upon whether it is in a patch file or not. Shades of INTERLISP: (setq defvar-
always-happens t).

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 27

*+# [ccue 21: Allow defvar to provide documentation without initialization?

MOON: It would be nice to have a way to give defvar documentation without an initial value, while rctaining
the important simple syntax (defvar var val).

GLS: It sure would! Others have mentioned this. [have no good solution. I do have a very bad one: let
(defvar foo '() "Foo") initialize foo to (), butlet {defvar foo () "Foo") not initialize it. (I
don't like this because I make stylistic use of the distinction between {) and ' ().)

** Suggestion: Here is an even more bizarre idea:

(defvar mwf 8 "Maximum warp factor™) ;Initalizesto8.
(defvar mwf . "Maximum warp factor”) ;Doesnot initialize.

Yes or no?
** Responses
MOON: Y RMS: N! SEF: NIt GINDER: X! DM: X!
DLW: X HIC: Y wLS: Y! CHIRON: NIt
ALAN: N! GLs: Y! RPG: NI! DILL: X

GINDER: Use a keyword (e.g., : ini tial-val ue, or :documentation).

DLW: The ' () idea is truly unacceptable. The bizarre suggestion is barely okay, but it “closes off” the syntax.
I have no good suggestions (sorry).

GLS: Another problem with the bizarre suggestion is that it isn’t “Lispy”.

DM: How about changing the defvar syntax to
(defvar (var init) documentation)
This parallels other initialization constructs, and allows

(defvar (mwf 8) "Maximum warp factor") :Initializes to 8
(defvar (mwf) "Maximum warp factor") :Does not initialize

The form suggested in the commentary seems rather kludgey, though [suppose it does get the job done,

DILL: Here is a proposal that I mentioned earlier: make defvar follow the convention used in let-binding:
the first argument should be a list, the car a symbol, and the cadr its initial value. Then the documentation
string can be the second argument. If the variable has no initial value, the first argument to defvar can be a
singleton list. If compatibility with Lisp Machine LISP is desired, the old syntax can be retained without
ambiguity (and uninitialized variables can be written as

(defvar {foo) "this is a documentation string.”)

G1S: Applause! Two great minds thinking alike, obviously, My only reservation is that in most initialization
constructs omitting the valuc means (), not undefined. Nevertheless, this is the best | have seen so far, and it
is upward-compatible for smooth change-over.

VOTES ON TIE FIRST DRAFT COMMON LISP MANUAL ' 28
277 Query: [21.9] Actually, the rules for this need to be worked out better? Maybe two kinds, one which always initializes
and one which doesn’t?

MOON: Seems confused.

GLS: I was.

*** [ccue 22: What does defconst really mean?

ALAN: [22) How about specifying a proceedable error [when defconst is about to alter a value]? It’s nice to
be able to change constants.

MOON: defconst is not a declaration to the compiler that the value will never change and it may be wired
into compiled code. If that is desired, there should be a separate declaration for it.

HIC: Yes, currently defconst means exactly the opposite. Unlike defvar, val is evaluated every time!
Maybe Lisp Machine LiSP should change this, maybe not.

MOON: What it says about def const checking for changing the value is terribly confused. defconst is not
a declaration to the compiler that the value of this variable will never change and the constant value may be
bound into compiled code. Perhaps there should be another special form which does that. defconst is a
declaration that the value of this variable will not be changed by the program, only by changes fo the
program; thus changes to the program should be allowed to change it, whereas with defvar changes to the
program should not reset the variable to its initial value, losing the state of the program.

GLs: Hm. This is an interesting distinction, But the only way to change a defconst variable by changing
the program is to change the defconst itself. Therefore a sophisticated implementation might arrange for
defconst to recompile things whenever it changes the value. Nevertheless, you're right that [
misunderstood the purpose of defconst.

SEF: Well, if that's what people think it means, that's okay by me, but defconst is definitely a bad name in
this case.

RMS: defconst should not cause an error if the symbol already has a different value. The only reason this
would happen in normal operation is that the user has edited his program and wants a different value. He
should be obeyed. The only case in which a defconst with a different value represents an error is when
there are several monagrecing defconst declarations for one variable. It might be reasonable for a
programming system which keeps track of what was defined where to wamn about defining the same constant
(or function) in different files. Aside from that, there should be no warning or even query, since this ¢vent
will occur legitimately too often.

Quogestion: Define defconst 1 be consistent with its Lisp Machine Lisp definition.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 29

** Responses : Y__!_‘)

MOON: YN RMS: Y! SEF: Y! GINDER: Y DM: Y!
pLW; Y uic: Y wis: NI CHIRON: Y!
ALAN: Y! GLS: Y! RPG: Y! DILL: NI

WwLS: No. The semantics and pragmatics scem too fuzzy.

RMS: I think it is legitimate for the compiler or even the interpreter to refuse to allow a setq of a symbol that
has been defconst’d. set must be allowed {since defconst will use it). defconst is not a bad name,
because it really does mean that the symbol value is a constant as far as the program is concerned, just not that
it is so constant even in the programmer'’s mind that he would never wish to change it. If a simple name that
says this more specifically can be found, it is okay with me, but “constantness” is accurate. The distinction is,
constant with respect to whom?

HIC: Maybe come up with a better name?

pILL: The complaints here mystify me. Why should defconst behave any differently from macro
definitions or in1ine declarations of procedures? If you compile things and then change them, you should
generally expect to re-compile. The ability to use symbolic constants that get expanded by a compiler is
important if you want people to write maintainable code that also runs fast.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL ' 30

Chapter 4

Predicates

** [scue 23: Terminology: “pseudo-predicates™
MOON: Didn’t “pseudo-predicates” used to be cailed “semi-predicates™?

GLS: No, I cannot find a reference for either! I thought a pseudo-predicate was one which returns (} or non-
() (as opposed to () or t), and a semi-predicate was one which returns t or else never returns. Maybe I'm
wedged.

** Suggestion: Just eliminate both terms from the COMMON LISP manual.

** Responses Y_?_

MOON: Y SEF: N
DLW:Y HIC:Y wis: N CHIRON: Y!
ALAN: Y! GLS: Y! RPG: N!

4.1. Data Type Predicates

**% [scue 24: Have a type symbol for “sequence”
SEF: [24.6] sequence should be another type symbol.

** Sugeestion: Add sequence to the list on page 24.

=

** Responses

MOON: Y SEF: Yt GINDER: Y! DM: Y!
DLW: Yl HC:Y wis: Y! CHIRON: Y!

ALAN: Y! G1S: Y! RPG: YI! DIiL:Y

MOON: [24.7] Unclear to me why it's useful to have onc-dimensional bit vectors but not 213 oncs. I gucss this

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL ' 3l

is an implementation kludge.

GLS: All vectors are 1D. However, the intention was that for any kind of vector there is a corresponding array
type. Thus one can have 2D bit arrays.

*** Issue 25: Functional data types

rMS: [25.8] Function subtypes, such as (function (1ist symbol) 1ist), seem to be useless since
there is no way to determine the truth of

(typep '(lambda (x y) ...) '(function {1ist symbol) list))
If these are intended only for declarations to help the compiler optimize, there should be a comment in the
manual to that effect, where these types are defined.

GLS: Right you are, and this is nasty. Bill Scherlis and David Dill here at CMU are working on a consistent
and rigorous treatment of data types. Tentatively we can divide data types into three kinds: primitive data
types, derived types (which map onto primitive types, as for example a request for a vector of integers mod 9
might actually get you a vector of integers mod 16), and undecidable types. The first kind is what typep of
one argument might return; the second kind is what you can give as the second argument to typep; and the
third kind can be reasoned about formally but membership cannot always be effectively tested.

** Suggestion: Specify all this in the manual.

** Responses Y_,
MOON: Y RMS: Y! SEF: Y!! GINDER: Y! DM: Y!

pLw: YU HIC: Y wLS: Y! CHIRON: Y!!

ALAN: Y! GLS: Y! RPG: Y DILL: Y1

**# [ssue 26: typep of a structure
MOON: [26.3] What does typep return for a structure, or is that undefined?

GLS: In the defstruct character I believe it says that one-argumeni typep must rcturn the name of the
structure type, not structure.

** Suggestion: Clarify this issue at this point in the manual also.

¥* Responses Y___
MOON: Y RMS: Y! SEFF: YN GINDER: Y1 nM: Y!
DILw: Y!H nme:y wis: Y! CHIRON: YIN

ALANIY! GLs: YU RPG: Y!! i i

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 32

MOON: rational type [GLS: ratio?] splits into irat and bigrat in Lisp Machine Lisp for the L-
machine (this affects the value of onc-argument typep in a system-dependent way).

GLs: | think this is okay. One-argument typep is inplementation-dependent. The ways in which it may so
depend should be more carefully specified, though.

4,1.1. Specific Data Type Predicates

¥ goue 27: Standard truth value returned by predicates

JoNL: Don’t specify that the result of a predicate is the symbol t. Virtually nothing is lost by merely
specifying that it is some non-null constant value; but if losers know that it’s supposed to be some particular
value, then they will take advantage of that fact in a non-mechanically-detectible way, and poor NIL will lose
since predicates return #t there. Note that it would even be okay to return something like 1, and Tom
Binford used to do that all the time (i.e., substitute “1” for “t").

GLS: You need some way to distinguish it sometimes. How about specifying that, whatever the special value
is, normally the symbol t has it as its value?

** Quogestion: Specify that system predicates that simply return true or false return for true some particular
non-() value which depends on the implementation. Moreover specify that t initially has this value as its
top-level value.

** Responses

MOON: Y RMS: X! SEF: Nl GINDER: Y! DM: X!
DLW: Y HC:Y wLs: Y! CHIRON: N

ALAN: Y! GLS: N RPG: Y! pILL: Y

rMS: Complicated. The symbol t is a perfectly good value for things to return to mean “true”. t and ()} are
not analogous! The reason it is good to have () and ni1 be different is so that truth versus falschood can be
determined by the data type only, which is clean. This goal does not require use of anything other than t (or
any other symbol) for truth. So actually there is no good reason why any implementation should return
anything other than t! But, there is also no terrible reason to prohibit this. Except: what do I put in a
selectq to compare against the value t? For “nil”, [can write () and win in all dialects. What do I write
for “comparc against the standard true value™ Do [have to use “#,t™? Alternatively, #t could be a
standard syntax for “the standard true value™. But | think it is casicr if all dialccts return t.

MOON: All right, but why not just fix the bug in NII that t and #t arc different?

DM: We would rather it be even less restrictive. Any (possibly non-constant) non-nil vaiue for t. Forcing it
to be a constant kills some possible optimizations on conventional architectures, and buys you very little in
return.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 13

GLS: I speculate that DM thinks that we want (and 3 4) => t, which is of course not the case. In any case,
perhaps nothing should be said about any kind of standard value for “true” delivered by a predicate.

SEF: Lots of code breaks if we don’t go with t. I think NIL should conform here. The funny type issues that
surrounded () versus ni1 do not come up here.

*#% [scue 28: Are all the specialized type predicates really necessary?

MOON: There are a large number of type predicates; evidently typep has been made so hairy that it is
considered to be too expensive to use. This optimization would better be left to a compiler than be done by
the program writer; it isn't difficult. The separate predicates do have the possible advantage that they can be
used as arguments to the large number of functionals introduced, e.g., (ass-if ‘double-floatp
1ist).

SEF: The separate type predicates such as f1oatp and rationalp are merely included for (imagined?)
human convenience. The SPICE LisP compiler does in fact open-code all instances of typep that correspond
to the separate predicates: (typep x ':rational) and (rationalp x) generate the same code. 1
would not object to flushing the separate predicates, though we would want to keep those already in use
(1istp, etc.).

cLs: 1 don’t think typep is too expensive to use. Certainly with a constant second argument the compiler
can figure things out. The separatc predicates were included primarily for completeness, since some of them
have to be there for compatibility (certainly atom and numbe rpl). Having only about half of them wouldn’t
be bad, but having almost all of them would be significantly worse than having all of them, because that
makes it harder for the user to remember which ones don’t exist, The point about uscfulness in functionals is
good. I think these names should be retained.

SEF: [27.8] Should bigp be renamed b ignump to preserve the pattern (xxxp z) <=> (typep z ' xxx)?
GLS: The only disadvantage I can see with renaming b igp is incompatibility with MACLISP.
MOON: {28.6] Maybe it would be better not to introduce short-floatp and friends, and leave it to typep.

RMS: Why is there a need for individual new predicate functions for all the new types? typep does the job
well enough. In principle, there is no need for 1istp or symbo1p cither, but they may be used frequently
enough 1o justify individual names, and also the names are used in existing code. For rationalp, neither
reason applies.

sEF: Good point. Just keep the ones already in use, usc typep for the rest.

% Alternatives:

A. Eliminate all type predicates in section 4.1.1. Instruct programmers to use typep with two
arguments.

B. Retain null, symbolp. atom, numberp. and perhaps stringp. consp. and 1istp. out of
respect for tradition: but eliminate all others,

C. Retain all except bigp, fixnump, ratiop. short-floatp, single-floatp. double-

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL ' 34

floatp, and long-floatp, the gencral rule being to retain those which make conceptual
distinctions and eliminate those which make distinctions of format or representation.

D.If (typep foo 'xxx) works for'some symbol xxx, then xxxp should be a defined predicate of
COMMON LISP. As a consequence, rename bigp to be bignump.

** Responses

MOON: C! RMS: BC! SEF: BD!! GINDER: X! DM: X!
pLw: C! HIC: C wLs: BC! cHIRON: CD1!

ALAN: Bl GLS: DI RPG: D DILL: DY

wLs: B or C, but definitely not A or D.

rMs: [vote (/ (+ B C) 2). Ithink all the ones in reasonably common use now should be retained. By
the way, consp and symbolp should return their arguments if they are true. People who use dialects in
which that is the case tell me it is very useful to operate on the vatue of (or (symbolp foo) default-
thing).

GLS: Note that if symbolp is to return its argument if the argument is a symbol, then () may notbe a
symbol, or else symbo1p will lie about the symbolness of that symbol!

GINDER: I lean towards D (or at least C) with the following addition: atomp. Keep atom for consistency
with MACLISP, but don't encourage its use.

DM: [Several paragraphs by DM follow.] I don’t think you can honestly single out which predicates are kicking
around 6l there is a better notion of types. Exactly which should be available as individual predicates is
closely related to this issue of primitive versus derived types, and may be implementation-dependent (I don’t
like that implementation-dependent business, though). Certainly, however, a definite form for the predicates
can be given now, and just which ones are around can be decided later.

The question of functionals is a vacuous issue. IUs trivial (and probably desirable) to have an anonymous

functional generator around to build up whatever type-checking functions you need to pass. Thus instead of
(mapc 'intermediate-foobaric-floatp z)

or

(mapc #'(lambda {x)
(typep x ':intermediate-foobaric-floatp))
z)

one would write something like

{mapc {typefn ':intermediate-foobaric-floatp) 2z)
Such a functional generator could be used for lots of other name explosion cases, like the zillions of sequence-
specific functions. It might be worth trying to formulate a general (about the same gencrality as setf)

functional builders for many classes of operations. Of course, | have no concrete suggestions about such a
thing: probably a ridiculous idca.

VOTES ON THE FIRST DRAFF COMMON LISP MANUAL 35

MOON: 27.5] Lisp Machine Lisp will change 1istp to be true of ().

DLW: I can’t wait!

**% [ssue 29: Second (optional) argument to functionp?
MOON: [29.8] In Lisp Machine LiSP, functioap takes a second optional argument.

GLs: This appears in [Weinreb 81a] but not [Weinreb 81b], so it is fairly new. The second argument is a flag,
default (), which if t says that macros and special forms count as “functions”. Is this really the right way to
kludge that test in?

** Suggestion: Allow functionp to take two arguments.

** Responses

MOON: Y! RMS: Y! SEF: NIt GINDER: N! DM: NI
pLW: YI! HC: Y wLS: N CHIRON: N1l

ALAN: Nt GLs: NI RPG: Y DILL: NIt}

SEF: Provide two distinct functions.
WLS: No, but give a way of testing if you have a macro or special form.

DILL: | have a great deal of difficulty understanding exactly what functionp is supposed to do (and what it
is good for) from reading the draft COMMON LiSP manual and particularly the Lisp Machine Lisp manual.
Maybe if it were defined more precisely, this issue could be resolved directly. In general, I cringe when
people try to put switches into functions because they can’t decide what they should do.

CLH: [Several paragraphs by CLH follow.] What is the functional value of a variable? Is this the same as
fsymaval? Clearly something is missing here. You talk about it being the same as if it had appeared in the
functional position of a function invocation, but don’t define that. Nor do you define what a functional value
is. In page 36fF [of the draft COMMON LISP manual), the following concepts are mentioned. I hope they are
not all different!

o functional value of a variable

o current value of a dynamic (special) variable

o current global function definition named by a symbol

o local function name (= local function definition, presumably)
o local variable

o static instance of a variable

¢ dynamic instance of a variable

o lexical variable

I.ct me say what ELISP does, as | think it is fairly reasonable. A symbol (literal atom) is really a record. with

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 36

several fields. Among these fields are its value, and its function definition. These can be sct and looked at
independently, the value by set, setq, and eval, the function definition by alias and fundef (which
should be changed to getd and putd, for INTERLISP compatibility). When an atom occurs as an argument,
only its value is looked at. The expression in the functional position is supposed to be a 1ambda or subr. If
it is not, fundef and eval are used repeatedly as necessary until a 1ambda or subr is found. In compiled
code, variables not declared special are handled as lexicals. Function calling works the same as in the
interpreter, except for one case (which will probably be fixed eventually): (foo ‘'bar), where fooisa
special variable bound to something other than the name of a function or special variable (c.g., to a Tambda
expression or an expression that must be evaluated to find the functional object). As far as I know, the only
difference between quote and function is that '(Tambda ...) would give you the lambda form
unchanged, whereas (function (lambda ...)) (normally abbreviated (f:1 ...)) would compile
the lambda as a function with a gensym'ed name, and would be equivalent to ' gensym. It is unclear from
your documentation whether you are doing something more complex or not.

I do have one suggestion to make, based on experience with ELISP, and that is to get rid of the concept of
fsubr's. I haven’t done this yet, but my view is now that there are only four kinds of functional objects
(ignoring closures, labels, etc.):

args bound to names args put on stack
interpreted normal 1ambda@\filambda] in 1exp r format
compiled subr Tsubr

(Actually the Texpr/1subr is probably a hack that should be flushed.) The distinction among expr,
fexpr, and macro seems fairly clearly to involve the way arguments are bound, not the object itself. To
generate code for a function, all you have to know is that it received its arguments in accumulators 3, 6,
You don’t have to know whether it is an expr, fexpr, or macro. (Of course to compile a cail to something,
you obviously have to know what kind of thing it is.) Thus I would propose that getd and putd should put
forms of the following sort into the function definition cell:

{expr lambda (...) ...)
(fexpr lambda (...) 2)
(expr subr #01001453 2) sfora subr of 2 args
(fexpr subr #01001676 1)

In that case, (function (lambda ...)) should compile code for the 1ambda, and compile into
'(subr addr #args).

HIC: [29.9] Does subrp have to be called that? 1f so, put a hysterical (historical) note here.

4.2. Equality Predicates

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL ' 37

*** {csue 30: Definition of equalp

RMS: {32.0] I can’t tell from the documentation whether equalp calls itself or equal on its recursions. The
wording makes it sound as if it looks like:

(cond ({stringp x) ...) ({numberp x) ...) (t (equal x y)))
I hope not, because (1) and (1.0) ought to be equalp if 1 and 1.0 are.

GLS: This was a result of laziness and confusion on my part. equalp is intended to call itself and not equal
when comparing recursively.

** Suggestion: Correct the documentation of equalp.

** Responses Y_
MOON: Y RMS: Y! SEF: YII GINDER: Y! DM: Y!
DLW: YN HIC: Y wLS: Y! CHIRON: Y!!
ALAN: Y! GLS: Y!! RPG: Y! DILL: Y
4.3. Logical Operators

** [ssue 31: Judgements of style

HIC: [33.3] [The style note on use of and] is 2 matter of yourtaste. I would leave this value judgement out.
GLS: There are notes of style elsewhere in the document. Should they be eliminated also?

MOON: [44.0] Some of the style judgements on use of cond are debatable.

** Syuogestion: Eliminate notes on programming style?

** Responses N?_

MOON: Y RMS: N! SEF; N! GINDER: N! pM: Nt
DLW N! HiIC:Y wLS: N! CHIRON: NI
ALAN: Y! GLS: N RPG: N DILL: X

rMS: Tone them down. Do mention alternatives that you think might be preferable, so that people will not
use the “bad” one out of ignorance of the other one; but don’t pressure them.

MOON: Defer the writing of a book on COMMON LisP style until after the language is defined.
GLS: Touche!

bM: Well. whether these really belong here or not depends on what this document really is. As noted above,
it scems rather schizoid: is it a uscr's manual or a language definition {no matter how informal)? If the
former. the comments belong there: if the latter, they don't (and then, ncither do the historical notes).

VOTES ON TI{E FIRST DRAFT COMMON LISP MANUAL 38

seF: | think comments Jike the note on and belong in a scparate document. But less controversial style notes,
especially where they affect portability, can stay in.

DILL: The note on programming style here is necessitated by the use of the example, which is there to
illustrate the behavior of and. If you use a disgusting example to illustrate the semantics of a program
construct, you should also explain why it's the wrong thing to do.

WLS; Maybe soften them a bit so as not to offend.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 39

Chapter 5

Program Structure

5.1. Constants and Variables

5.1.1. Reference

DLW: [36.5] There needs to be a paragraph of English explaining the concept of “functional interpretation ofa

form”,

cLH: [November] I would like to try to do COMMON LISP on TOPS-20 if I can get enough COMMON LIsP code
that all I have to do is an assembly language kernel. (But we are probably talking about next summer before I
could put significant time into it.) The only two things I see that would give me trouble are closures (though I
can’t really comment on them since I haven’t yet read the details, if they are there at all) and lexical binding in
the interpreter. We tried lexical binding in the interpreter in an experimental LISP implementation, for the
same reason you have stated, to provide compatibility with the compiler. It was considered to be an
unmitigated disaster. Some of this is due to the implementation, as it was a warmed-over R/UCI Lisp, where
a rewrite was really needed. But our users generally considered the cure to be worse than the disease. What
they really want is a flag to cause all variables to be special in the compiler, which gets compatibility in a
different way. If I announced that I were working on a LisP that had lexical binding in the interpreter, I
suspect I would be tarred and feathered. I am curious what implementation you have in mind. Obviously we
know a way to do it (since we have a running LISP interpreter that works (ignoring a large number of bugs)
that way). But it was a real kludge, and maybe you have thought of something better.

5.1.2. Assignment

**¥ Issue 32; Value returned by psetq

HIC: [38.1] Why docs psetq return ()7 Why not be same as setq? A little random. I suppose, but surely
more useful than ().

GLS: In both MACLISP and Lisp Machine LiSP, the value rewrned is the firss value computed, not the last.
This is a conscquence of the implementation:

(psetq x1 vl x2 v2 ... xn vn) ==
(setq x1 {progl vl (setq x2 (progl v2 ... (setq xn vin)...))))

The Lisp Machine LisP manual [Weinreb 81a] does not specify what the returned value is. However, the

VOTES ON TIE FIRST DRAFT COMMON LISP MANUAL - 40

following comment appears in the Lisp Machine LIsP code for psetq:
::: Note that the return value of PSETQ is -not- guaranteed.

** Suggestion: Retain specification that psetq returns ().

** Responses Y .
MOON: N! SEF: Y!! GINDER: X! DM: Y!

DLW: Y!! HIC: N wLS: Y! CHIRON: Y!!!

ALAN: X! GLS: Y RPG: Y! DiLL: X

ALAN: I would vote that the return value from psetq be undefined.

GINDER: How about returning t (or the “truth vaiue™)? This seems to more intuitively indicate success (in
some sense) to the naive user more than {) does. Admittedly this is not all that inportant.

MOON: Specify that it is undefined.

DILL: psetq should return the first argument. In general, we should minimize unspecified things when they
will be user-visible.

RMS: [39.3] makunbound in Lisp Machine LISP does not act on local variables.

GLS: Okay, | was misinformed. I do believe that (value-cell-location 'foo) does “work” though
(does it not?), even if foo is local in compiled code (although
(let ((x 'foo}) (value-cell-location x})

does not “work” in the same way).

5.2. Function Invocation

MOON: [39.6] Applying of special forms is used internally in things like trace and advise. I'm not sure
what ought to be said here; certainly the naive reader can only be confused by it. Butit’s wrong to provide no
way at all to doit.

ALAN: [40.0] Lisp Machine LISP calls this [funcal1*]*1expr-funcall”. Lousy name.
GLS: Which is the lousy name?

MOON: funcal1* requires at Jeast two arguments (args may not be null).

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 41

5.3. Simple Sequencing

+ Issue 33: Declarations in every implicit progn

MOON: This is somewhat bogus, since everything else with declarations in its body applies those declarations
to the variable bindings it is doing around the body.

DLW: Indeed. In fact, the compiler has to go through pain to make this work. I see how, by trying to put this
into progn, you are trying to simplify things, but it doesn’t work!

RMS: MACLISP-style local declarations are not as good as 1ocal-declare for two reasons. One, they are
bad-nesting, in that a subconstruct modifies the meaning of the construct that contains it. Two, they are
inconvenient to check for; each function which is an implicit progn has to check for the existence of
declarations. 1ocal-declare need be handled only by the definition of Tocal-declarae itself. Three,
what about the cdr of a cond-clause? Does it allow local declarations there? It is an implicit progn. What
about the cddr of an i¥? The fact that MACLISP-style local declarations resemble ALGOL is a point against
them. Otherwise, why not get rid of 1et and provide a bind function which can be used at the front of any
implicit progn?

SEF: We are not proposing that a declaration is allowed by any progn, are we? [think the proper
characterization is that the declaration can be the first thing in any binding form. I admit that the nesting is
backwards, but allowing arbitrary local declares means that the declaration context is neither global nor
associated with a particular function. This makes big trouble for the scheme to make the interpreter handle
locals and speciais as the compiler does.

MOON: So how am [supposed to do:

(1ocal-declare ((special ...))
(defun funcl ...)
(defun func2 ...)

.e)

if there is no 1ocal-declare? Is there some awful variant of (progn 'compile ...)?

GLS: Okay, | was trying to do something here; maybe it’s not what we want, but I still think it's a pretty good
idea. Yes, the intent was to draw a closer parallel between progn and the ALGOL begin-end construct, which
allows declarations at the front. (I feel that COMMON LISP will be the better for it whenever, other things
being equal, it can parallel existing programming-language ideas, features, and culture; but only if other
things are equal, of course!) Granted, as DLW points out, this doesn't really simplify the implementation:
however, | suggest that it may nevertheless simplify the user’s model of the language. The rule is: any
implicit progn may have declarations, and if this implicit progn is the body of some construct that binds
variables then the declarations apply to those bindings too. As RMS points out, they aren't properly nested in
the S-expression sense. However, they do preserve the property that a defun stays against the left margin,
and doesn't have to be embedded in a ocal-declare (which | find a bit ugly). On the other hand, one
can get the effect of any 1ocal-deciare by writing, for example: '
(progn (declare (...)) (1ocal-declare ((...) (...))

(declare (...}) for body)
body)

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 42

For MOON's specific case, one might write:

(eval-when (load eval)
(declare (special ...))
(defun funcl ...)
(defun func2 ...)})
if you really want to. (Recall that eval-when has an implicit progn for its body.) Now, if the progn is not
part of a binding form then non-pervasive declarations don’t make sense. Another possible use is:

(cond {(numberp x)
(declare (type (mod 8) x))

ve))
which allows one to say that if x is a number then in fact it is known to be one of the integers 0 through 7.
This could be done with a 1ocal-declare too, but with greater nesting depth, 1 agree it is not very
“Lispy”, but it does allow easier deletion, insertion, and commenting-out of declarations using most text
editors (a weak argument, granted). 'm not rabid about this idea, but I did want to point out the motivation
and few merits.

** Suggestion: Shall this idea of declarations in every progn be retained?

** Responses

MOON: Y RMS: NI SEF: NIt!! GINDER: N! DM: Nt
DLW: N!! HIC: X wLS: Y

ALAN: Y! GLs: Y RPG: Y!! DILL: Y

RMS: [Several paragraphs by RMS follow.] I think that local declarations whose contexts are neither global nor
the entire function are desirable, and I have designed how to make them work in the new lexical Lisp
Machine LiSp interpreter I am writing,

I think that a 1ocal-declare at top level surrounding multiple functions is indeed ugly. The right
solution, I think, is to provide an alternative to defun that provides a placc to put the local declaration, and
also an alternative to Tambda. The scope of a local declaration (no matter how notated) should be lexical, so
that strictly speaking (1ocal-declare (...} (defun ...)) should not work! And neither should
(progn (declare ...) (defun ...)) if yoursyntax were used. I think that defun-declare and
1ambda-dec1lare are necded, as a way to sandwich a declaration fexically outside the lambda variables but
within the new lexical context of the function or lambda. I plan to make this work in the new Lisp Machine
LISP interpreter too.

There is some value in having a declaration insertable at the front of a cond clause. but why only at the front?
Why not anywhere within an explicit progn, and applying to all the rest of it? And it is cqually convenient,
for the same reasons, to have a bind function to introduce a new local for the scope of the implicit progn.
because a bind is casier to insert or delete, or comment out, than a Tet would be. So if we have this kind of
declaration, we should have bind as well. bind isto 1et asdeclare isto Tocal-declare.

Just suppose that bind were allowed in o cond condition. and would apply for the duration of the cond
{Gls: clause?]!

VOTES ON TIHE FIRST DRAFT COMMON LISP MANUAL . 43

(cond ({symbolp (bind x (fo0)))
(print x)))

or

(and (1istp (bind x (foo)})
(eq (car x) 'foo)
(1istp (bind y (cdr x)))
do-something)

GLS: These last examples are not analogous because the bind forms do not appear at the top level of the
implicit progn. However, the analogy between declare and bind is in general well-taken. I don’t
understand why you assume that { 1ocal-declare ... (defun ...)) would not work: the defun is
lexically within the Tocal-declare. Apparently we disagree about the precise effects of a “new lexical
contour”. I assume that declarations are precisely as pervasive as bindings, and would also expect

(let ((x 43))
(defun add43 (y) (+ x ¥)))
to define add43 to be a function that adds 43 to its argument; therefore I would expect that defun within
the 1ocal-declare to work.

MOON: Isn’t there a big confusion here between declarations about variables and declarations about values?
(I'm not sure what would be better, though)

SEF: This whole issue of local declarations needs to be totally re-thought, especially how it will interact witht
the notion that specials and locals are observed by the interpreter. Arbitrary nesting of local-declare
makes this so hairy that we may have to abandon this goal for the interpreter. Generally, I favor the use of a
declaration form just inside each binding form in order to get declarations out of the variable or lambda list,
However, I don’t like the idea of putting declarations in non-binding progn’s. I disagree strongly with the
idea that we should emulate ALGOL.

5.4. Environment Manipulation

*** [ssue 34: Macros or special forms?

MOON, DI.W: Whether 1et {for example) is a macro or special form can be left up to the implementation. As
far as this definition is concerned, 1et is a special form.

GLS: The same might be said of push or setf. While in some sense the user shouldn’t care, the user who is
writing a program-transforming programn does care in the following way. A program (such as the compiler,
or perhaps an indexer (MASTERSCOPE?)) which operates on other LISP programs does not have to know about
any particular macro, but only how to perform macro-expansion. On the other hand, it must know about
each and cvery non-macro special form specially: it must understand quote. cond. 1ambda. return, and
so on. all as primitives. "The smaller the set of such primitive special forms, the casier the task of writing such
a program. ‘Thus | would urge a policy of lcaning towards documenting forms as macros wherever possible.

** Qugpestion: Document let as being a special form rather than a macro. and more generally document

VOTES ON TIHE FIRST DRAFT COMMON LISP MANUAL 44

most system-provided macros as special forms also.

** Responses

MOON: Y RMS: Y! SEF: N GINDER: N! DM: X!
DLW; X HIC: X wLs: Y! CHIRON: N

ALAN: Y! GLS:N RPG: Y DILL:Y

pM: 1 gather that the reason for preferring “special forms” to “macros” is that macros are considered
something confusing for the novice Lisper. Surely special forms are at least as confusing! You can’t pass
special forms around as functional values, and their semantics are very complicated: when, if ever, do you
evaluate their arguments, and in what environment, etc. Perhaps you need two levels of tags: a general one
which simply says this guy is a non-function, and one for the more sophisticated user which promises that this
is a macro, so he needn't worry his little head about it when he writes a program transformation tool.
Absolutely, keep the number of special forms to a minimum. Twenty sounds like about the right sort of
upper limit. You don't have to specify the definition of the macro (that's up to the implementor), but you
should guarantee that programs that grind on LISP programs don’t all have to know about 273 different
special forms. And the definition of COMMON LISP has to spell out just which 20 these are, so these programs
are portable.

pLw: [understand GLS’s point, but the counterpoint is that it is desirable to give the implementor flexibility
regarding whether to implement various special forms as macros or not. We recently changed 1et from a
macro to an fsubr, for example. Tough issue.

GLS: Why not have it both ways? Presumably an implementor chooses to use an fsubr rather than a macro
pﬁmarily to speed up the interpreter (except for that irreducible few such as quote). Typically the compiler
uses macros for do and let even when the interpreter uses an fsubr; the only problem is that the fsubr
definition is the “public” one, and the compiler has a private stash of macros. I suggest that things be
arranged so that the fsubr and macro can coexist in the function cell, combined into a single object. If the
interpreter inquires of this object “are you an fsubr?”, it says “yes”; if anyone ingquires of it “are you a
macro?”, it also says “yes”. The interpreter simply checks for fsubr-ness before checking for macro-ness; all
other comers will get the macro definition. Given this strategy, we can define all but a very small number of
special forms to be macros as far as the user manual is concerned; the implementation is free, however, to
provide fsubrs for as many of these macros as it chooses.

**% Jocue 35: Variables without inif forms ina Tet?
VOON: What about variables alone without inits in 1et? Pecople seem to use that a lotin Lisp Machine LISP.

GiS: Pretty much the only use of that is to be able o setq it later. [find such programming style (let me not
say “abominablc™} dishcartening. Such use undermines what | understand to be the main intent of a Tet:
“let this variable have his value, throughout its scope™. | suspect such lone varfables usually get tossed in as
afterthought patches. to avoid the work of introducing a new Tet where appropriate. (Ind of flame.)

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 45

GLS: Should 1et* also permit such lone variables?

** Supgestion: Allow a variable to appear in a 1et where normally a variable-value 2-list appears, meaning to
let that variable have the value ().

i Y?

MOON: Y RMS: YII SEF: Y!! GINDER: NI DM: Y!
DLW: YU HIC: Y! WLS: Y! CHIRON: NI
ALAN: Y! GLS: NIl RPG: Y! DILL: X

RMS: I disagree with GLS’s taste about binding a variable and setq’ing it later. In addition, there are cases
where this is the only way. If the setq is inside a condition, and the value is wanted in one or both arms of
the conditional, there is no way to bind the variable where the value is produced. Also, [have used this in lots
of code and I don’t want to flush it.

DILL: If you allow uninitialized variables in a 1et, they should be unbound until someone explicitly se tqQ’s
them. Unspecified &optional parameters should also be unbound.

DLW: You may not have the same variable bound twice in a 1et, but youmay in a 1at®,

GLS: 'l clarify the documentation.

% [ssue 36: The “obvious™ macro definition of 1et*

777 Query: [42.9] There is a problem with the interaction of this definition of 1et* with declarations; if one does things in
the obvious manner, declarations cannot apply to any variables except varm. This seems unfortunate. Any suggestions?

pLW: Indeed! This definition is no good. I went through this whole thing while writing the L-machine
compiler. My suggestion is that you not define it this way.

seF;: I vote to flush the description of 1et* in terms of nested lambda-expressions.
MOON: Don’t call it a macro.

** Suggestion: Flush the description of Tet* as a macro.

** Responses y_
MOON: Y SFF: Y!! GINDFR: Y! DM: X!
DLW YN nme: Y Ww1S: Y! CHIRON: YN

ALAN: Y! GLs: Y RPG: Y! LY

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL . 46

5.5. Conditionals

*** [ooue 37: The select special form -
MOON: [45.4] Where did select go?

GLs: I think 1 thought that

(select foo ((si:gross-out si:confusioen) ...) ...)
might be replaceable by

(selectq foo ((#,si:gross-out #,si:confusion) ...) ...)
but perhaps I am wrong.

** Suggestion: Add select as in Lisp Machine LISP.

** Responses

MOON: N RMS: NI SEF: N GINDER: Y! DM: NI
Hc:'yY wis: Y CHIRON: Y!

ALAN: N! GLS: N RPG: Y!

rRMS: I think select is ugly. I'm not sure whether it is very useful. The main uses seem to be in inner parts
of the Lisp Machine LISP system where it is necessary to compare numeric byte values against names for
particular values. The #, alternative would work for this. [f there are important applications I don't know of,
that exist for users in general, put in select, but my expectation is that there are not.

MOON: I don’t think it would hurt to flush select, it seems to have been a mistake. Also see issue 42.

. #%% [ssue 38: Optional predicate function to select and selectq

MOON: {45.4] I would suggest that selector be flushed, and both select and selectq allow an optional
predicate between the key and the clauses. It defaults to eq].

GLs: { don’t understand how this could be disambiguated:

(selectq foo (function ...) ...)
sure looks like I'm checking whether foo has function as its value. Could we see a more concrete
proposal?

** Quaapestion: Table this idea pending a more concrete proposal.

** Responses X

MOON: X STl Y GINDER: Y] DM: Y!
DLW Y! me: Y wis: Y! CINIRON: YII!
Aban: Y! Gls Y RIG: YH! DIy

VOTES ON THE FIRST DRAIT COMMON LISP MANUAL

47

MOON: I was assuming the predicate would only be a symbol, not a functional expression. That was dumb, of

course.

#+* [ssue 39: What does a null se1ectq clause returm?

ALAN: [45.6] Lisp Machine LisP returns t [when a selectq clause has no consequents, because the clause

expands into the cond clause:} (cond .

** Alternatives:

A. Require a null setectq clause to return t.

B. Permit a null se Tectq clause to return an arbitrary value.

C. Status quo: require a null selectq clause to return ().

.o ((eq ..0)) L)

GLS: Unfortunately the “test” is not apparent to the {human) reader.

** Responses

MOON: B RMS: C! SEF; AC! DM: C!
DLW: C HIC: A wLs: B CHIRON: Cl!

ALAN: B! Gls: C RPG: C! DILL: A

*** [ssue 40; What numbers are acceptable to selectq and casaq?

MOON: [46.3] Should selectq and caseq accept any numbers, or only integers?

GLS: Well, rationals are exact, but the presumption is that floating-point numbers are not. My inclination
would be to discourage bugs by not permitting floating-point numbers. And what of complex numbers?

** Alternatives:

A. Permit only symbols, {), and integers in caseq and selectq.

B. Permit symbols, (), and rationals.
C. Permit symbols, (), and complex rationals.
D. Permit symbols, {), and all scalars.

E. Permit symbuls, { }, and all numbers.

** Responses

MooN: C RMS: Al St ABY GINDER: C! M Al
Hc: B wis: Bt CILRON: B

AlAN: C! Gls: Xt RG: C! DIt X

rMS: | don't think types which attempt or pretend to model continuous data are uscful for this sort of

VOTLES ON THE FIRST DRAFT COMMON LISP MANUAL 48

comparison. Allowing rationals is not too bad, as long as 4 equals 4/1.
MOON: You forgot characters.

GLs: I forgot that, in the all above suggestions, characters should also be permitted! 1 will interpret the votes
as if this had been understood.

DILL: selectq should accept any LISP object, and use eql comparisons with the clauses. Ambiguity
problems will have to be dealt with anyway.

*** [ssue 41: Should selectq and caseq signal an error if no clause succeeds?

aMs: [don’t think that a se1ectq ought to err if the tests all fail. Itis true that it is useful to be able to get
that behavior, but that is true of cond as well; so whatever is done to make it easier to get that behavior when
it is desired ought to be something which applies also to cond, especially since selectq is strictly less
flexible, so a program written using selectq may have to be changed to use a cond. I find that I write
selectq rarely, and much more often I write a cond most but not all of whose clauses could be turned into
clauses of a selectq. Here is a way of providing the feature conveniently for use in selectq and cond:
use '
(error-restart (cond ... (t (error-in-value x "info"))))

which says that if the user continues from the error, set x to the value he supplies and then throw back to the
arror-restart, -

SEF: My vote is to flush the whole silly thing and just let these guys return () if they drop through. I just
can’t get excited about having an easy way to restart with a different key: I can always do this from the
debugger if I am running interpreted code. On the other hand, [don't violently object to Guy’s scheme, I just
don’t like it much.

MOON: I don't at all like the proposed change to selectq which signals an error if it drops off the end
(instead of returning {)). I would much prefer that the default be left the way it is, and some uniform
syntactic way be found to tell cond, selectq, caseq, and typecaseq (and any gther similar forms) to do
this. This could be something you write in place of a clause, or it could be a different function name (e.g.,
prefixing it with the letter e). RWK (Robert W. Kerns) suggests that if the last clause is a string (instead of a
list), then that is the error message, and if that clause is reached an error is signalled. This scems pretty
flavorful to me. The important point is that the error is proceedable and if proceeded, starts over at the top
with a new value for the key (except in cond where there is no key) (if it is a variable, does the variable
change? This is desirable, at least for typecaseq, isn'tit?), which is a littie hard for the user to write himself.
The other important point is that it be consistent across all the “dispatching”™ special forms.

st 1.ooks like this is nearly unanimous. Just iet these fall through.

GiS: The idea from RWK isn't bad. but will it grind well? Ideally one could provide a format string, with
arguments (maybe the fatled thing would be an implicit first argument). How abouta keyword instead?

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL ’ 49

(caseq (car x)

({2 35 7) 'prime)

({1 4 9) '"square)

{((6) ‘'perfect)

((8) 'cube)

(error "~S not a known digit"))
Note that error and otherwise are mutually exclusive options. This may need more polishing. I'm not
sure that cond really belongs in this class with the others; cond, unlike the others, does not have a single
item which is “obviously” at fault about which to complain and replace for a retry. I would definitely
recommend some simple way (other than programming it yourself, which is not simple) to get a correctable
error that can retry the dispatch. It is very easy to cause bugs by blithely assuming that one of the cases must
hold, and when an error check is put in it is harder to make it correctable than not.

** Alternatives:
A. Forget the whole idea; require the user to program a retry for failed dispatch constructs.
B. Let failed dispatch constructs automatically signal a correctable error.

C.Let failed dispatch constructs produce (), but let a keyword :error (an alternative to
:otherwise) take an error message and use that to signal an error.

** Responses

MOON: X RMS: ACIN SEF: All GINDER: C! DM: Al
HIC: Al wis: Cl CHIRON: CIl!

ALAN: C! GLS; BCH RPG: C! DILL: All

rMs: | think it is important to provide an easy way to request a correctable error, and that my previous
suggested way is not easy enough, but it is important to include cond. Yes, the cond does not intrinsically
imply that there is one variable being examined, but that is true nonetheless for many uses of cond. Hereis
my way: define

(bad-value format-string varname . additional-args)

to report the error, allow the user to set the specificd variable, and if he does so, return to the beginning of the
innermost containing selectq, caseq, typecaseq, or cond.

MOON: T don’t understand what “will it grind well?” is worrying about. There is no reason to provide
claborate crror facilities in selectq, such as format strings. since nothing stops you from writing an
explicit calt to error (or whatever the name of the general error function is). The goal is to have something
which is so simple and easy and inexpensive-looking that you don't fail to provide for the crror case. That’s
why I'd almost prefer to call it somthing like eselectq, but probably putting a string in place of a clause is
better.

GLS: The point is to make it casy not just to signal an crror, but to make the error correctable and retry the
dispatch in the obvious manner. Calling error isn’t cnough to do this.

MOON: The syntactic words for selectq (mainly otherwise) do not have colons any more than names of
special forms do.

VYOS ON THE FIRST DRAFT COMMON LISP MANUAL 50

*** [ssue 42: The “q” in “typecaseq”

(L. L]

MOON: By the way, why does typecaseq have a “q” in its name? Oops, I got faked out by the inconsistency
[myself am responsible for (at least for inheriting from INTERLISP), namely that in these functions *q” means
“guoted” whereas in most other functions with a suffix “q” it means “aq”. Do we want to do anything to
remove this inconsistency?

GLS: I'd love to get rid of all the “q” names by flushing non-"'q” constructs and then removing the letter *q”
from the names. What primarily prevents this is se1ect and seTectq in Lisp Machine LIsp.

o 1%

** Suaoestion: Remove the “q” from the names of selectq, caseq, and typecaseq.

** Responses Y

MOON: Y RMS: Y! SEF: Y!! GINDER: Y! pM: Y!
HIC: Nt wLS: Y! CHIRON: Y1
ALAN: Y! GLs: Y RPG: Y! DILL: Y

MOON: How about making a new form
(selact predicate item clause ...)

and define selectq as an abbreviation for (setect 'eql ...)or (select 'eg ...), and call the
type-dispatch one typecase or typeselect. It doesn’t make sense to give a user-supplied predicate for
casedq, since it's whole point is that the system decides whether the predicate is eq or =. [think it’s all right
to get rid of the Lisp Machine LISP select. This issue nceds more thought, however.

5.6. Iteration

5.6.1. General iteration

=¥ [ccue 43: Initial values for “uninitialized” do variables

ALAN: [47.7) Well, [if the init form is omitted for a do variable and] if you declare it f ixnum then it defaults
to 0 in compiled code. Perhaps it is really undefined?

ALAN: [56.4] prog has the same problem as do vis-a-vis declarations. [That is. should a prog variable
without an aif form be considered undefined, because of a problematical interaction with type declarations?]

Gls: Well. it scems to me that that hack to do in MACT ISP was intended to compensate for the fact that prog
did not altow cxplicit init forms. | don’t think we want local variables with no values floating around. Beuter
to require the user to initialize the variable explicitly to 0 if he is going to declare it ixnum.

** Suagestion: Retain the currently documented (and slightly MacT.i1sp-incompatible) semantics: no init

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 51

forms always means the initial value is {). If that implies a type conflict, the compiler should complain.

** Responses

MOON: Y RMS: Y! SEF; Y!! GINDER: X! DM: Y!
DLW: Y HIC:Y wis: Y! CHIRON: Yt

ALAN: NI GLs: YU RPG: Y! DILL: Y

GINDER: Require an init form to be specified, as in the 1et proposal.

*5#% [ssue 44: What about the MACLISP (do varspees () ...) syntax?

DLW: {48.6] [An end-test clause of () meaning one itcration has been flushed as a crock.) But it is upward-
compatible, right? I'd like to keep this stupid crock, for compatibility, though I could be convinced
[otherwise].

GLs: Well, I wouldn’t want to encourage it in new code. What it does is effectively let the user have prog
with initialized variables. But it was easier to modify do this way in MACLISP than to modify prog.
*#+ Alternatives:

A. Make the single-iteration do syntax part of COMMON LIsP.

B. Do not make it part of COMMON LiSP, but add an implementation note that implementations may
also accommodate this syntax for the sake of MACLISP compatibility.

C. Status quo: forget the single-iteration do syntax.

** Responses .jl::jl

MOON: C RMS: C! SEF: Clt GINDER: C! pMm: C!
pLW: Bl! HIC: C wLs: C! CHIRON: Ci!!
ALAN: C! GLS: B! RPG: CH! pILL: C!

GLs: For the record, I dug up the original announcement of this feature from the old LISP ARCHIV file:

MONDAY OCT 15,1973 FM+4D.34.22M.30S. LISP 623 - GLS -
THERE IS A THIRD FORMAT FOR DO NOW:
(DO <VAR-SPECS> NIL
BODY...)
THIS IS EXACTLY LIKE A NEW-STYLE DO (MULTIPLE INDICES)
EXCEPT THAT THE PREDICATE/RETURN VALUE CLAUSE IS NIL.
(NOT (NIL), BUT NIL!!!) THE MEANING OF THIS IS THAT
THE VARIABLES SHOULD BE INITIALIZED AND THE BODY
PERFORMED EXACTLY ONCE. NOTE THAT STEPPERS FOR THE VARIABLES
ARE TLLEGAL IN THIS MODE, SINCE STEPPERS CAN NEVER BE
EXECUTED. EXAMPLE:
(DO ((A 0) (B 1)) NIL
(PRINT ‘A=)
(PRIN1 A)

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL) 52

(PRINT 'B=)
(PRIN1 B))
PRINTS THE FOLLOWING:
A=0
B=1
AND THEN RETURNS NIL. IN THIS WAY ONE GETS THE EFFECT OF
THE FAMOUS "PROG WITH INITIALIZED VARIABLES" FEATURE.

&+ [ccue 45: Result returned by do for a singleton end-fest clause

MOON: [48.2] [On do returning the value of the end-fest in a singleton end-test clause:] Many users will be
unhappy at this, since their code will stop working with no error indication from the syetem. This is just the
sort of change which causes the most wecping, wailing, and gnashing of teeth.

MOON: The reason end-test is not returned [in MACLISP and Lisp Machine LISP] was probably only that the
current behavior is much easier to implement with a macro.

ALAN: [48] [For total compatibility, if you adopt the rule that the value of the end-fest is returned if there are
no result forms for a do, then it really takes four pairs of parentheses to convert old-style to new-style: (do
var init step test . body) ==> (do ((var init step)) (fest ()} . body)l]

GLs: Well, many users have complained about the failure to behave like a cond clause. Does any code really
depend on the MACLISP/Lisp Machine LISP behavior? (We’ll probably never know.)

** Sueaestion: Make do with a singleton end-test clause return (), as in MACLISP and Lisp Machine LIsp,
rather than the value of the end-test.

= Responses

MOON: Y RMS: N1 SEF: Y! GINDER: NI DM: N!
DLwW: Y! HIC: Y wLs: NIl CHIRON: Y!

ALAN: Y! GLS: N! RPG: N! DILL: NI

rMS: [know I have written lots of code that depends on this. Every time I write some sort of search function,
it tends to return a valuc of () with a singleton end-test clause in a do. The end-test and value forms of a do
are not really a cond clause. They are a condition followed by things to put inside a {return (progn

cea))

GLS: | belicve that RMS. at least, meant to vote yes rather than no, probably confused because the title of the
issue states the casc backwards from the way the suggestion states it. This was bad writing on my part, for
which 1 apologize,

GLS: Here's the evidence on whether or not the endrest clause of a do is “really” a cond clausc. Not only
[Weinreb 81a), [Weinreh 81b), and [Weinreb 78], but also [Moon 74] note the resemblance of this clause to a
cond clause. The original announcement of new-style do in MACELISP was as follows (this and following
quotations were culled from the file LSPMAI;LISP QARCHI @ MIT-MC, which contains the oldest parts of

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 53

the old LISP ARCRIV file):

3/17/72 - JONL -
AN EXPANDED FORM THE MULTIPLE-INDEX DO HAS BEEN ADDED TO THE SYSTEM
(DO INDEXLIST (ENDTEST RETURNVALUE) DOBODY)
THE ITEMS OF AN INDEXLIST MAY BE OF FORMS:
(X XINIT XSTEPPER) WHERE X IS INITIALIZED TO XINIT
AND MODIFIED AFTER EACH PASS THROUGH
DOBODY BY (SETQ X XSTEPPER)

(X XINIT) X IS INITIALIZED TO XINIT,
AND MAY BE USED LIKE A PROG VAR
(X) LIKE (X NIL)

AN ALTERNATE FORM FOR (ENDTEST RETURNVALUE) IS (ENDTEST), WHICH IS
TAKEN TO BE (ENDTEST NIL). :

Note that no mention of an implicit progn is made here. The next note about do is:

11/14/72 - JONL -
DO AND I0G HAVE SLIGHTLY MORE GENERAL FORMATS NOW.
(106 C £1 €2 . . . EN) WORKS AS BEFORE, BUT ALL OF £1 TO EN
ARE EVALUATED, WITH THE VALUE OF EN BEING RETURNED.
(D0 ((Z INITIALVALUE STEPPERFUN) . . .)
(ENDTEST E1 E2 . . .EN))
WORKS LIKE THE USUAL EXTENDED DO FORMAT, EXCEPT THAT THE ENDTEST-
RETURNVALUE PAIR NOW LOOKS LIKE THE GENERALIZED COND CLAUSE.

Note here that the new format is simply described as being like a cond clause, and the result of (ENDTEST)
is not explicitly stated.

*** [ssue 46: Include 100p in the COMMON LISP core
ALAN: [49.5} [Regarding the use of nreverse asa “standard idiom” with do:] Use 1oop!

Moon: I would like to see 1oop, extended to support sequences, adopted as a standard package in COMMON
Lisp, with roughly the same status as defstruct. Not everyone likes this sort of syntax, but it does make
sequence iterations much easier to write and a clear readable style for using it seems to be evolving.

GLs: Is this style a matter of syntax only (indentation, for example)? Or does the style involve avoidance of
certain features or combinations of features? I've known some users to be frightened off by Toop, cven
though the simple cases are indeed casy. (defstruct has the same problem, as does format {mea culpa).)

SEF: From what I have seen of 1oop, | consider it an abomination and a blight on mankind. It belongs in the
yellow pages, along with CGOL, MLISP, and the FORTRAN simulator.

GLS: I'd be happier with 1oop if there were some defined intermediate form a program could casily
manipulate, halfway between the surface syntax (which requires some hair to parsc) and the full expansion
(which is a hairy prog whosc looping structure is difficult to analyzc from scratch).

G1S: For those unfamiliar with the Lisp Machinc LISP 100p construct: the documentation is 24 pages long,
because the construct is quite complex and quite powerful. Here is an example of its use (in the Lisp Machine

VOTES ON THE FIRST DRAFT COMMORN LISP MANUAL 54

LISP definition of the psetg macro):

(DEFMACRO-DISPLACE PSETQ (&REST REST)
(LOOP FOR (VAL VAR) ON (REVERSE REST) BY 'CDDR
WITH SETQS = NIL WITH PSETQS = NIL
DO (IF (AND {NULL PSETQS)
(LISTP VAL)
(MEMQ (CAR VAL) '(1+ 1- CDR CDDR))
(EQ (CADR VAL) VAR)
(NOT (MEMQ VAR SETQS)))
(SETQ SETQS (CONS VAR (CONS VAL SETQS)))
(SETQ PSETQS (CONS VAR (CONS VAL PSETQS))))
FINALLY
(SETQ PSETQS (PSETQ-PROGIIFY PSETQS))
(RETURN (COND ((NULL SETQS) PSETQS)
((NULL PSETQS) (CONS 'SETQ SETQS))
(T *(PROGN ,PSETQS (SETQ . ,SETQS)))))))

** Suggestion: Add Joop to the core of COMMON LISP.

** Responses]F‘I:Z

MOON: Y RMS: X! SEF: N1ttt GINDER: N DM: X!
DLW: N! HIC: N! WwLS: NI CHIRON: NtH
ALAN: Y1 GLS: NIt RPG: N! DILL: N!!!

rMS: [hate loop, and find it unclear. But given that it exists, we might as well teil pcople how it works so that
they don’t create incompatible ones. It should not be part of the core, but could be documented as an add-on
package.

HIC: | never did like Yoop...

DM: [Several paragraphs by DM follow.] 1oop certainly doesn’t belong in a core, any more than defstruct
does. But the functionality of 100p should be avialable somewhere, and standardized. It eliminates the need
for all those zillions of different mapping functions which no one will remember.

The current definition of 1oop leaves much to be desired, however. The semantics are just great, but the
syntax is too much. It's ridiculous to have to really parse LISP. That's one of LISP’s great strengths. I'd much
rather the various iterators like “for U in L” were cach their own little sublist (maybe “(in u 1)7), and they
were themselves collected into a list of some sort. The only place for a keyword is in the function position
right after a left parenthesis. It would be nice if the “body™ of the thing were an implicit progn. too. Not
sure how to specify the means of handling the return valuc (a al do, collect, etc.).

In general. sticking syntax into LISP is a bad idca. Another place where COMMON 1.1SP sticks too much syntax
in is declarations (which should follow the usual scope rules instead of going up and diddling their parents in
the trec). Another case of too much syntax was a suggestion for function types incorporating the diphthing -
>. Bletch.

Syntax is not just ugly. Program transformation tools or programs which cmit 1ISP code are much happeirs
dealing with something which fecls tike a parse tree. And mixing semantics and syntax just leads t trouble

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL) 55

whenever you try to extend something. That’s a frequently recurring probiem at Utah where folks scem to
like faying ALGOL syntax on top of LisP. If somebody’s already forced some complicated syntax down your
throat it just makes it that much harder to put what you want on top. And this is a real issue. While most
Lispers may (rightly) prefer syntax-free (or, I guess, it's actually syntax-simple) LISP, any effort to try to get
LisP used [outside?] its traditional areas of application is sure to meet resistance based solely on what is
perceived as an arcane syntax. At Utah much effort has been spent interesting CAGD and VLSI fols to use
LisP. A major selling point has been the claim that it’s trivial (well, one does have to exaggerate) to put
whatever syntax is desired on top of LISP. Just think how many MACSYMA users have been [un?]able to hack
at the LiSP level simply because they're put off by the syntax. It may be a stupid bias, but it’s there.

SEF: The 1o0p construct will not become part of the core of SPICE Lisp. This is not negotiable.

5.6.2. Simple Iteration Constructs

[soue 47: The result form in do1ist and friends
ALAN: [51.2] [On the result part of do11ist:] I guess.

MOON: Is the result just one form, leaving space for possible future expansion (I am dubious), or is it an
implicit progn? Say explicitly because users (and implementorst) might easily assume one or the other.

GLS: I had intended it to be a single form, but am amenable to change.

*% Suggestion: Document the result part of do11st and friends to be a single form, not an implicit progn.

** Responses A
MOON: Y SEF: Y11 DM: X1

pLw: YI! WwLS: Y! CHIRON: YIH

ALAN: Y! GLs: Y! RPG: Y

pM: Document the result part of do11st and friends to be an implicit progn.

*** [ocue 48: Zero or negative count to dot imes

MOON: [51.7) What about a zero count in dotimes? Should a ncgative count be defined to iterate no times?
Probably better than error.

DIL.W: Zero and negative should be defined to iterate no times.

GIS: I'd prefer to signal an crror for a neestive anmber of iterations, but I'd settie for leaving the effect of a
negative count undefined: an implementation can optionally signal an crvor, or iLerate no times. or whatever.,
This is to encourage the programmer to think carcfully about boundary cases.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 56

** Alternatives:
A. Define dotimes to iterate zero times if the count is zero or negative.
B. Define dot imes to iterate zero times if the count is zero; signal an error if the count is negative.

C. Define dot imes to iterate zero times if the count is zero; the behavior is undefined if the count is
negative,

D. Define dotimes to iterate once if the count is zero or negative, for compatibility with FORTRAN

66.
** Responses A?

MOON: A RMS: Al SEF: AB GINDER: BC! DM: Al
DLW: Al HIC: A wLs: Bl CHIRON: A
ALAN: Al GLS: CI! RPG: B! DILL: All

DILL: BLISS decided to do this with incr/decr because such loops were frequently generated by macros,
which would otherwise have to deal with all the boundary cases explicitly. I suspect the same argument
applics here.

=% Issue 49 Effect of modifying the dotintes control variable

ALAN: [51.8] [On the specification that altering the var of a dot imes will not affect the number of iterations:]
Well, OK, sigh.

MOON: Complete loss; define it to be undefined. This complicates the implementation to provide something
useless to the user.

GLS: Thinking about it, I agree.
** Suggestion: Define the effect of setq’ing a dotimes control variable to be unpredictable.
** Responses Y_
MOON: Y RMS: Y! SEF: Y! GINDER: Y! DM: Y?
DLw: Y!! HIC:Y WwLS: Y! CHIRON: YU
ALAN: Y! GLs: Y! RPG: Y!

RMS: What happens if you setq something used in computing how many times to do it? Docs that change
the number of times? Probably in Lisp Machine LiSP now, it does.

GLs: | would certainly not like for obscure side effects on the count expression to change the number of
iterations! According to [Weinreh 81a], page 42. in Lisp Machine 1.1SP the count is computed exactly once
and saved in a hidden variable.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL) 57

5.6.3. Mapping

*** Issue 50: Change to mapc not to return the first .argument

ALAN: [53.2] [On the incompatible change to map ¢ not to return the first argument:] Right!
MOON: This seems like a pointtess incompatibility. |

GLS: The motivation is explained in a compatibility note in the draft manual.

** Suogestion: Retain the COMMON LISP specification that map¢ (and map1) return t.

¥* Responses m

MOON: N SEF: Y!! GINDER: Y! DM: X!
DLW: N! wLS: Y! CHIRON: YUt
ALAN: Y! GLs: YI! RPG: Y1

GLS: Maybe this whole thing matters a little less now that do11ist exists.

DM: Why t instead of ()? This goes for a lot of other functions, too. I get the feeling it's simply a case of “it’s
always been this way”, or am I missing something? I think it'’s weli worth changing so that everything which
can’t find somthing useful to return, returns (). In any case, don’ return a functional from mapc and map1.

GLS: Oops! The term “first argument”” should have been “first sequence argument”.

CLH [53.6] [November] You seem to have a tautology: “‘the mapping functions should be used wherever they
are clearer, since they are clearer in such cases”.

GLs: [November]} Well, aren’t they?

#% [cone 51: Use of return within a forxxx construct

ALAN: [54.2] [On the body of a forxxx being a progn rather than a prog body:] Why not? Seems like a
likely thing to want to do.

GLS: The intent was to reserve these constructs to mean “we are mapping down a sequence straightforwardly,
and do not intend to abort early”. If you want to abort early, use do, or use throw from within the for.

** Suggestion: Allow return to exit a forxxx construct.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 58

** Responses

MOON: Y SEF: NIt GINDER: NI DM: NI
DLW: N HIC:Y . wLs: N! CHIRON: N!
ALAN: Y! GLS: N! RPG: Y! DILL: Y

** Tegue 52: All the forxxx constructs

DLW: [On forlist and friends:] really think the keyword-oriented “1oop” is preferable to having all these
random special cases. Butif you really want them in, it's okay.

MOON: [54.3] Requiring the result of forvector to be a general vector seems like an unnecessary restriction.

MOON: [On forvector and friends:] In general, these are crocks. Suppose I want to map down a string and
return a bit vector? (Certainly a frequent thing to want to do.)

MOON: What's the point of having for1ist and for3lists? There shouldn’t be both; this is worse than
old-style do. These are a crock anyway since you don’t get to control the type of the return sequence {
propose changing them and map so that you do). Is it worth having both forlist (and related things) and
map?

SEF: I kind of like the idea that we supply the map series (tradition!) and forlist (a simple and useful
form), but that we flush for1ists and let the user write a do. We can’t anticipate every possible control
structure that anyone will ever want to use, and this looks to me like it’s a good place to draw the line.

GLS: The reason for forlist was Lisp Machine LiSP compatibility, and forlists because [, at least, who
code lots of interpreters, frequently want to write

{dotists ({(var (lambda-vars fn))
{(val args))
(crock-out var val))
Now I forgot to stick in dolists, but forlists was added for parallelism. It seems to me that this
explosion is as ridiculous as that of the sequence functions, and ought to be resolved in a similar fashion. For
example, if all the type-specific sequence functions go away, then so should the type-specific looping
functions? '

** Suggestion: Do not have both forlist and forlists. Resolve the type probiems (both argument and
result) in a manner compatible with the resolution of the map function.

** Responses Y

MOON: Y SEF: YN GINDER: Y! M: Y1
DLW Y! wLs: Y! CHIRON: YU
ALAN: Y! Gis: Y! RPG: Y!?

MOON: forlist can't be for Lisp Machine LISP compatibility; there is no such function in 1.isp Machine

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 59

Lisp.

GLS: My explanation was confused. I meant to add dolist for compatibility, then also dolists; then
added forlist and forlists by analogy and actually edited them into the draft manual; then forgot to
editin do1ists! Oh, well.

5.6.4. The Program Feature

*** [ssue 53: &-keywords in prog and elsewhere

RMS: [55.3] There is an example of a prog with a lambda-list keyword in its variable list. [think it is bad for
prog to look at lambda-list keywords. For that matter, they are bad in lambdas too, but it is harder to get rid
of them there. Right now lambda-list keywords are not meaningful anywhere but in lambda lists, in Lisp
Machine LisP; in particular, they are not meaningful in 1et. I think it would be an unimprovement to add
them,

GLS: The keyword involved was &spacial. The alternative to writing the keyword there would have been a
declare form in the prog body.

** Sugpestion: Tentatively disallow &-keywords in prog lists. (The final decision must await development of
the documentation on declarations and on lambda-expressions.)

** Responses Y_
MOON: Y RMS: Y! SEF: Y1 DM: Y!

DLW: Y!! HIC: Y wLS: Y! CHIRON: Y!

ALAN: Y! GLS: Y! RPG: Y!H!

*** [ssue 54: Permissible scope of go
MOON: [55.8] What about a 1abe1s function returning from a prog in its parent?

GLS: Well, Tabels isn’t in the draft COMMON LISP document (though I would like to sce it in COMMON
Lisp). However, a similar case is:

(prog () (map #'(lambda (x) (if x (car x) (return 3))) berfi))
In either case, the point is that while it is a necessary condition for legality is that a go be lexically within its
prog, this is not a sufficient condition.

** Supgestion: Clarify these problems in the manual.

VOTES ON TIE FIRST DRAFT COMMON LISP MANUAL | 60

** Responses . Y_
MOON: X . SEF: Y!! GINDER: Y! DM: Y!

DLW: Y HC: Y wLS: Y CHIRON: YU

ALAN: Y! GLS: YU RPG: YII

MOON: The sentence just before the suggestion makes no sense in terms of the example given. Note that in
Lisp Machine LIsP, when there are lexically enclosed functions, go’s and return’s from those functions to
prog’s in their parent will work in all cases.

GLS: How about this case:

(declare (special x))
{defun lose ()
(prog ()
(setq x #'(lambda {) (go 2}))
{return)
a
(print ‘barf!)))
(progn (lose) {(funcall x))

Will that last form actually cause the printing of “barf1™? How about when the new lexical-closure
construct is used?

5.7. Multiple Values

5.7.1. Constructs for Handling Multiple Values

**% [ssue 55: Semantics of multiple-value “1et” and “se tq” forms.

SEF: I would like the Lisp Machine LISP versions of multiple-value and multiple-value-bind
instead of, or in addition to,multiple-value-let andmultiple-value-setq.

MOON: It does not say explicitly in the manual, and it took me three readings to get this, but I suspect that the
intention is that if the callee returns fewer values than the caller expects, an crror is signalled, and the caller
must use the &optional keyword to prevent this. If so, this is a major change, since it means that the caller
cannot be written as

(and predicate (values ...))

relying on returning as many {)}'s as the caller expects when the predicate is not satisfied, which is very
common now. It also doesn’t say what happens if the callee returns more values than the caller expects,
except in the case where the caller was expecting onc value. This needs to be cleared up. Pocs value-
recciving behave like lambda-binding, or docs it hchave as in the Lisp Machine 1Isp at present hut
augmented by &-keywords? The manual must be extremely explicit about this, both hecause it is casy to get
confused and because there are lots of different preconceived notions already going around.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 61

MOON: I feel that while erring if too few values are rcturned superficially sounds good, the analogy of
function returning to function calling is a false one, because the syntax in the callee of a function return is not
at all like the syntax in the caller of a function call. Not allowing values to defauit to () leads to clumsier
code when conditionals are involved. I think that making all values optional leads to a clearer programming
style, even though you might naively expect just the opposite.

** Alternatives:

A. Provide Lisp Machine LisP-style multiple-valuc-receiving forms. These ignore extra values, and
default missing ones to {).

B. Provide the forms specified in the draft COMMON LISP manual, which have a variables-list like a
lambda-list: one can use &optional to specify default values, and &rest to get a list of all extra
values. It is possible to get wrong-number-of-values error.

C. Provide both kinds.
** Responses
MOON: AC RMS: All! SEF: X111} DM: B!
Hic: C wLS: B! CHIRON: C!
ALAN: Al GLs: B! RPG: Bil! DILL: ABIl}

DLW: This is just plain to hard for me to decide. Argh!
wis: Definitely don’t default missing values, but perhaps allow extras to be ignored.

SEF: | favor providing only the Lisp Machine LISP formsmu1tiple-vajue andmultiple-value-b ind,
plus a multiple-value-call form. The latter takes a function as its first argument, then a values-
returning form. The function is called with the values as arguments. This gives checking for minimum and
maximum numbers of arguments and default values without adding much hair. Now that I have thought
about the implementation problems, I am adamantly opposed to including multiple-val ue-let and
multiple-value-setq as described in the manual. I swallowed multiple values only on the condition
that they would be kept simple.

MC; [Several paragraphs by JMC follow.] The proposals for multiple valued functions in the draft COMMON
LiSP manual outlaw the neatest ways of writing certain muitiple-valued functions by virtue of the restriction
that only the first argument is used when such a function is used as an argument. it would be best not 10
define the multiple-value conventions yet until the issues can be decided. We give some examples to illustrate
the point.

(1) The following function compuies the ged of two numbers m and n with n the smaller. It also computces the
cocfficients a and b such that the ged is am+bn.
gcd{m,n) <=
if n=0 then m,1,0
else {m/n}[lambda q r.
{gcd(n,r)}[1ambda g a b. g,b,a-qb]]}

‘T'his is in internal notation: in list notation, this is

VOTES ON THE FIRST DRAIT COMMON LISP MANUAL 62

(defun gcd (m n)
(if (zerop n)
(values m 1 0)
((lambda (q r)
({1ambda (g a b) (values g b (- a (* q b))))
(gcd n r))) .
(/7 mn})))

Herein the fucntion / is considered to produce two values (quotient and remainder), and the gcd itself
produces three (the ged itself and the two coefficients).

(2) The function (mapalong f 1 u) like (mapcar f 1) in making a list obtained by applying the
function ¥ successively to the elements of the list 1. However, f has two arguments, the second of which is a
state u, and two outputs, the second of which is a new state. Thus we have

(defun mapalong (f 1 u)
(if (nul1 1) {values nil u)
{(1ambda {e ul)
({(1ambda (11 u2) {(values {cons e 11) u2))
(mapalong f (cdr 1) ul)))
(f (car 1) u)}))

(3) mapalong is used to make an expression rewriter that keeps a list of subexpressions that can't be
rewritten any more. We have

(defun rewrite (e u)
(if (member @ u)
(values e u)
{(if (atom @)
((Yambda (el) (if (= el e)
{values e {cons e u))
(rewrite el u)))
(rewtop e))
((1ambda (1 ul)
((1ambda (el)
((1ambda (e2)
(if (= e2 el)
(values a1 ut)
(rewrite e2 ul)))
(rewtop e1)))
(mkexp (op e} 1)))
(mapalong (components e) rewrite u)))))

In the above, { rewtop e) rewrites the expression e at the top level, (component e) is a list of the
subexpressions of e, (op &) is the operation or function part of e, and (mkexp op 1) makes an
expression with given op and components.

(4) (count x n u) counts the number of cells in a possibly re-entrant list structure x considering the cells
listed in u to have alrcady been counted and n to have been found. We have

(defun count (x n u)
(if (memg x u)
(values n u)
(atom x)
(values (addl n) (cons x u))
(count (car x) (count (cdr x) n u)}))

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL L 63

Notice that the inner occurrence of count serves as two of the arguments of the outer occurrence.

Note of September 24: I am no longer sure that the examples prove my point. In fact, it now seems to me
that only the last example is excluded as written, and it can be made acceptable to the COMMON Lisp
conventions by a small modification. On the other hand, the restrictions still seem inelegant,

GLS: Note that, in IMC's notation, if of more than three forms is defined as follows:

(if pl el p2 €2 ... pn en éelse)
{=>
(cond (pi el) {p2 €2} ... (pn en) (t else))

I explained to IMC that one can get the effect of
((1ambda vars body) mvform)

by writing
(multiplae-value-let vars myform body)

This is a bit awkward in the last example, though. [would propose to generalize multipie-value-call
as outlined above by SEF to allow more than one multiple-value-producing form; their collective results are
concatenated and passed to the function. Then one would write

(multiple-value-call #'count (car x)} (count (cdr x) n u))
instead of the more awkward (?)

(multiple-vaiue-let ($ %) (count (cdr x) n u)
(count (car x) $ %))

**% [ssue 56: Syntax of multiple-value “1et”™ and “setq” forms.

MOON: Instead of multiple-value-let, I would prefer (with~-values ((var/ var2 ...) form)
body).

MOON: The namemu1tiple~value-setq is not an improvement!

MOON: Rather than the present
(multiple-value-bind (var! var2 ...) form . body)

or the same syntax with the name multiple-value-let {which loses because it docs not have the same
syntax as 1et), | would prefer to follow the with~ convention and intreduce the new special form

(with-values ((var! var2 ...) form) . body)
GLS: It scems to me that the answer to this question depends on the outcome of the semantics issue.

** Supuestion: If the semantics are like those of Lisp Machine LISP. use the Lisp Machinc LISP syntax for
compatibility; otherwise defer the question.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 64

** Rosponses ﬂ
MOON: Y RMS: X! SEF: Y! GINDER: Y! DM: Y!

DLW: Y Hc:Y - WLS: X! CHIRON: Y!

ALAN: Y! GLs: Y RPG: YU

RPG: About multiple values: I think that the analogy between multiple values returning and function caliing
is legitimate, though there are obvious asymmetries (of course, with the right tail-recursion rules it isn’t tie
that you know who has returned the values). The name multiple-value-Tlet was chosen, I thought,
because we didn’t realize enough that to the Lisp Machine LISP crowd let isn’t a macro on 1ambda, which
meant a 18t binds less powerfully than 1ambda. multipie-value-setq is a bad name, but there has to
be some name that a naive user relates to assignment rather than to binding.

RMsS: Neither. (1et (({values a b) form)) body) is better.

**% [ssue 57; Resuit of multiple-value-setq
777 Query: [59.7] Fooey. Why not just say it [nuitiple-value-setq] returns () [rather than that assigned to the first
variable]?
RMS: multiple-value-setq should return the first value, always, unless the called function returned
none. This is regardless of which of those values the user puts into variables. This is what muitiple-
value and (setf (values ...) ...} cumently do on the Lisp machine, and is much simpler than the
proposed definition.

GLS: The confusion is entirely due to my laziness or losiness; [said “first value assigned” when I really meant
“first retarned value”. If the value returned is not always (), then it should be the first returned value.

** Suggestion: Let multiple-value-setq (or whatever replaces it) return the first value returned by the
multiple-value-supplying form, or {) if it returns zero values.

** Responses Y_
MOON: Y SEF: Y!! GINDER: Y! DM: Y

DLwW: Y!! mc: 'Y wLS: Y! CHIRON: YIH

ALAN: Y! GLS: YN RPG: Y! DILL: Y

pM: | think a carcful comparison should be made of all the various setgq-style constructions. It would be
nice if they were all cognates of one another, and returned “the same thing™, whatever that may mean.

VOTES ON TLIE FIRST DRAFT COMMON LISP MANUAL 65

5.7.2. Rules for Tail-Recursive Situations

*+# [scue 58: Restrictions on behavior of multiple values

777 Query: [60.2] The Lisp Machine LisP manual states: "The exact rule governing passing-back of multiple values is as
follows: If X is a form, and Y is a sub-form of X, then if the value of Y is unconditionally returned as the value of X, with no
intervening computation, then ail the multiple values returned by ¥ are returned by X. Inall other cases, muitiple values or
only single values may be returned at the discretion of the implementation; users should not depend on this. The reason we
don't guarantee non-iransmission of muitiple values is because such a guarantee would not be very useful and the efficiency
cost of enforcing it wouid be high. Even setq'ing a variable 10 the result of a form, then returning the value of that variable
might be made 1o pass multiple values by an optimizing compiler which realized that the setqging of the variable was
unnecessary.”

I'm not sure the implementation should be allowed this caprice. In particular, a compiler smart enough to optimize out a
setq can just as well leave behind code o0 enforce the single-value-returning semantics. I believe it is more important to
have a dependable definition here.

Opinions? For now the following documentation makes some clear requirements. These are not incompatible with Lisp
Machine Lisp, but merely requirements on implementations to make certain choices which Lisp Machine Lisp leaves open.

MOON: Does this mean no implementation is allowed to have an optimizing compiler? IU's debatable that
these restrictions are useful.

GLS: You can optimize all you want, as long as the language semantics are preserved. In any case, I don't
think the tail should wag the dog.

777 Query: [60.7) Should prog1 and prog2 return multiple values or not? It can be tricky to compile. Lisp Machine Lisp
catises them to return single values only. In SPICE LisP it happens to be easier to return multiple values. On the S-1 the issue
is unclear.

MOON: This is an example of why it should be undefined.
ser: [vote for prog1 to return multiple values.

JONL: {60.9] Multiple values should be permitted from singleton cond clauses. I'm sure that the
implementation will have no trouble receiving many values back, but making the predicate check by merely
testing the nullity of the first one. Not only does this prevent the singleton case from being an anomaly, but it
shows that we must consider a!/ functions as returning multiple values even though predicate actions still test
only the first return value. (But I'm not sure what to say about a predicate that returns zero values: probably
an error.)

MOON: I don't like the changes to multiple values being considered, to force exactly one value to be returned
in certain situations, and to return multiple values from the first subform of prog1. These seem to put tight
restraints on the implementation, and certainly the first of the two gives no corresponding benefit to the user,
This is something I will have to think about more. (Having thought about it more, | still don't like it.)

GLS: Well, you don't mention which are the “certain situations™. Tcan only think of one offhand. namely the
case of a terminal singleton clausc in a cond. so I'l respond to that. 1 proposed that such a clause {foo)
return exactly one value, and therefore not be equivalent to (t foo), for consistency: this way. the number of
values returned by a cond clause is independent of its position in the cond, and does not change if more
clauses are appended. Morcover, there is a trivial way to get multiple values returned: write (t foo)
explicitly. (An ulterior motive is that 1. perhaps somewhat tyrannically, would like to strongly discourage the
slovenly habit of omitting that “t”, which makes code harder to read for two reasons: first. it obscures the

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL ' 66

fact that there is no drop-through case; second, it is harder to see that there is in fact only one itcm there,
causing the value of the predicate to be returned. Those two extra characters “t " make both of these issues
immediately clear.) :

sEF: | consider the restriction that just one value be returned when the values end up in an argument or
predicate test to be essential to the sanity of the world. I can’t imagine how it would cause trouble to return
multiples from prog1 or prog2, but don’t care much eiother way.

GLs: I don’t much care whether prog1 returns a single or multiple value, but I think it is very important that
it not be left undefined. Worrying about blocking a small compiler optimization is putting a (probably small)
efficiency ahead of the consistency of compiled code with interpreted code. I for one consider such
consistency for correct programs to be paramount (programs in error need not be as rigorously consistent).

** Alternatives:
A. Require singleton cond clauses and prog1 to return a single value.
B. Require singleton ¢ond clauses and prog1 to return multiple values.

C. Permit singleton cond clauses and prog1 to return single or multiple values at the implementor’s
(and even compiler's) discretion.

D. Require prog1 to be single-valued, and singleton cond clauses to be multiple-valued.
E. Require prog1 to be multiple-valued, and singleton cond clauses to be single-valued.
F.Require progl to be single-valued, but leave singleton cond clauses to the implementor’s

discretion.
G. Require progi to be multiple-valued, but leave singleton cond clauses to the implementor's
discretion.
H. Require singleton cond clauses to be single-valued, but leave progl to the implementor’s
discretion.
1. Require singleton cond clauses to be multiple-valued, but leave progl to the implementor’s
discretion.
** Responses
MOON: CIt!! RMS: I SEF: EItlt GINDER: E! pM: C!
DLW: E!! Hic: X wLs: B! CHIRON: Al!!
ALAN: C1 GLS: Al RPG: EIl DiLL: X!

RMS: | am assuming that by “singleton cond clauses™ you mean only when they are at the end of the cond.
A singlcton cond clause at the end is fundamentaily different from onc in the middle, because it is not in fact
aconditional. (or a b c) ought to be equivalentto (cond (a) (b) (c)). or rewrns muitiple values
only from ¢, and so should the cond.

Gl1S: If or treats its last argument form differently, then there is no reason why its translation to cond-form
should be the same, So the correct model for (or a b c¢) isnot {cond (a) (b) {c)).which implics
cquivalent treatment of the three argument forms, but rather (cons (a) (b} (t ¢) }. which indicates
the special (multiple-value) treatment of the last form.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 67

MOON: unwind-protect is an “expensive” construct and prog1 is a “cheap” one. We could change that
or put in 2 variant. The issue is that you cannot tell from context whether multiple valucs are expected when
evaluating a form, when you are compiling code for it. When the value of the form is being returned from a
function, it depends on the caller of the function at run-time. The reason for the Lisp Machine LISP rules on
multiple values is that alternative rules, while apparently simpler and more consistent [T think this is partly
only apparent], would require that code always be compiled for the most expensive case, which in practice is
almost never used. Thus for any and at top level in a function, code would have to be compiled to save the
extra values of a clause somewhere while the first value was tested. I think it’s much better not to compromise
efficiency for consistency when the consistency does not actually provide any benefits to users. Similarly 1
don't think it is worth generating extra code to throw away possible extra values from final clauses of cond,
since this is not going to benefit anyone. I haven't worked out the details, but I think it is possible to define
the semantics in a simple, consistent way that makes all this natural. Thus and can be defined in terms of if
and a primitive andp which is only allowed to be used as a predicate, for example.

pM: I don’t think I understand the subtleties of multiple value returns. I can certainly see their use, though.
Modulo what I really don’t understand, [think the version proposed we (Utah) can live with, but [wouldn’t
want to stake my life on it. Whether people here can really be persuaded to put them in is another question,
but 1 would like to see it. The full Lisp Machine LISP version (with automatic defaulting of missing values to
()) is totally out of the question. I don’t think we can do it efficiently on a wide variety of conventional
machines. I believe that inclusion of Lisp Machine LISP-style multiple value returns would probably pretty
much shoot down all hopes of us following the COMMON LisP drummer. The mechanism should certainly be
kept as simple as possible. For instance, funny business with cond and progn will probably also screw us.

seF: I cannot live with any decision requiring singleton cond clauses to be multiple-valued. It would screw
SPICE LISP totally. I prefer to bind both of these issues and to allow prog1 to pass multiple values, but the
importance is much lower: “1!” and *'!” respectively.

DILL: Any of alternatives not allowing the implementor to decide is fine.

MOON, DLW: [61.4] Lisp Machine LISP is upward compatible with COMMON LISP as of a month ago on the
matter of a multiple-valued form in a return.

5.8. Non-local Exits

5.8.1. Catch Forms

*%% [ssue 59: A catch may or must have a tag?
MOON: Must?

DI.W: Must!

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 68

**k Suggestion: Must.

<

** Responses

MOON: Y SEF: Y!It pM: Y!
DLW: Y HIC: Y! wLS: Y! CHIRON: Y

ALAN: Y! GLs: Y! RPG: Y! DILL: Y

*** Issue 60: Must a catch tag be a symbol?
MOON: Why must a catch tag be a symbol?
DLW: I'd prefer to restrict it to symbols if there’s no reason not to.

MOON: What about catch tags that aren’t symbols? I am thinking mostly of structures and instances being
used as tags. Also, MACLISP allows a (possibly-empty?) list of catch tags: Lisp Machine LISP currently does
not. Does COMMON LISP want to accept this? And are catch tags compared with eq or with eq1, i.e,, can
numbers be used as catch tags?

SEF: Let’s just go with symbols and eq. It's a big enough pain already, and the tag searcher certainly doesn’t
want to do arithmetic or grovel structures.

GLs: I think the intent was to do eq comparisons on structures. It's just that sometimes you want to have a
catch keyed on something no one else has access to, and often a structure that is hanging around anyway is
just the ticket.
** Alternatives:

A. Require catch tags to be symbols.

B. Let catch tags be anything, but specify that throwing does aq tests.

C. Let catch tags be anything, but specify that throwing does eq1 tests,

D. Let catch tags be anything, but specify that throwing does samepnamep tests.

** Responses B Py
MOON: B RMS: BCH1 SEF: AR GINDER: B! DM: Al

DLW: Bl! mc: B wLS: C! CHIRON: B!

ALAN: C! GLS: B! RPG: Bl DiLL: A

rMS: Lisp Machine 1ISP makes use of this in the implementation of prog and return m the interpreter.

MOON: MACIL.ISP allows a list of catch tags and does memq on it during throw. The reason Lisp Machine
1ise doesn'L have this is not a conscious decision. but simply that no one told us when the idea was dreamed
up and put into MACLISP, and no one ever asked for it later. The list of catch tags thing should cither he put
intw COMMON L.IsP or tossed out. with a compatibility note in the manual. 1 don’tcare which.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 3 69

+ Issue 61: Flush special meanings of t and () as catch-tags

MOON: Flush the special meanings for t and ()} as catch tags. This is a historical accident of Lisp Machine
Lisp.

GLS: Well, the ability to catch anything seems worthwhile. Or are you saying that unwind-protect and
similar things should identify themselves by some mechanism other than special tags?

** Suggestion: Flush the special meanings for t and () as catch tags.

** Responses Y

MOON: Y SEF: X1 DM: Y!
DLW: Y!! HIC: Y wLs: Y! CHIRON: Y!!
ALAN: Y! GLS: Y RPG: Y! DILL: Y

SEF: Allow t and () internally as tags, but maybe flush them at user level in favor of catch-all , etc.

[ssue 62: What to do about catch and *catch?
MOON: catch and *catch seems like a pointless duplication of functions.

DLW: I agree,

MOON: I think having both catch and *catch, and both throw and *throw, with the difference that the
non-* ones don’t evaluate their first argument, is a total crock. I would propose to have only the non-*
versions; make them evaluate their argument. (How hard is it to type a “’ " mark, versus remembering this
special case?) Also the behavior with respect to multiple values has been changed (catch now returns all the
values of the body if exited normally, or all the values of the second subform of throw if thrown to). The *
versions could be kept around for a while in Lisp Machine LisP, working the old way, to lessen the shock of
this change. The new multiple valucs behavior may not be implementabie on the A-machine; 1 will have o
think about this. I will accept the new multiple values behavior for the L-machine, as opposed to the less
consistent thing I was planning to do.

SEF: | agree about catch versus *catch. Justevaluate the tag and forget about compatibility.

ALAN: [62] | would prefer that catch also evaluate the tag and we can then flush the losing name *catch.
[64] Similarly for *throw,

#* Suuocstion: Flush *catch and *throw, and let catch and throw always cvaluate the /ag.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 70

** Resnonses Y_
MOON: 'Y RMS: Y! SEF: Y!!! GINDER: Y!! DM: Y!

DLW: Y!! HIC: Y - wLs: Yl CHIRON: Y!!!

ALAN: Y! GLs: YN RPG: Y!! DILL: Y

=% [ssue 63: Lexical catch and throw?

rMS: Wild idea: get rid of named prog and friends, and re-introduce catch and throw with lexical tags!
scatch and *throw would be the same as now, with dynamic tags, and catch and throw would replace
named prog and return-from. Ithink it was a mistake that [connected the named escape operation with
prog atall. For that matter, I think that it is a shame that prog needs to be used so often just to do return.
1t would be nice if there were something else, just like progn but allowing return.

GLS: 1 like the idea. The proposed naming convention might be a bit confusing, however. How aboutblock
and ex it for the lexical versions?

sEF: I tend to favor prog as in the current manual. There is this implicit weird assumption that prog costs
more than progn,

GLS: I happen to believe that prog is cognitively more expensive than progn. When [see 2 progn in
someone’s code, I know what’s going on. When I see a prog, anything goes; I must stop and psyche out
whether he’s “really” doing a do, a cond in some odd form, something really clever like a doubly-nested
search loop with two exit points, or just transcribing FORTRAN code.
** Alternatives:

A. Introduce some kind of lexical catch and throw, in addition to named prog and do.

B. Introduce some kind of lexical catch and throw to replace named prog and do.

C. Have no lexical catch and throw. -

** Responses

MOON: C RMS: Al SEF: CH GINDER: B! DM B!
DLw: Bl HIC: A wLs: B! CHIRON: B!t

ALAN: B! GLsS: A RPG: All DILL: Al!

sEr: [would be interested in sceing a more concrete proposal for lexical catch and throw. Ifit's clean cnough,
[would probably prefer it to named prog and do. Until I sce this, { vote for the status guo.

gMs: Document the named prog and return-f rom as required but obsolete. Do not introduce named do.
which is not in any cxisting code, and can casily be cxpressed using named prog and unnamed do.

wis: Only if a concise syntax is possible.

DM: | iike it. However, 1 expeet I'm the only one in Utah who will. 1t can certainiy be lived with, however.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 71

After all, you can always build a prog (modulo go and labels) from catch and let. The notions of go,
return, and variable should be factored out from onc another. One should also have a construct which
exists solely to hold go’s and labels. If you want to do a go inside some new bindings you have to stick one of
these jiggers in a 1et, and similarly for a do.

#*% [ssuc 64: Funny extra values from *catch

MOON: The third and fourth arguments remarned by *catch in Lisp Machine LiSP are a result of historical
accident and irrelevant. They are no longer documented.

** Qupoestion: Eliminate them from the COMMON LISP manual.

** Responses Y—
MOON: Y SEF: Y1t GINDER: Y! DM: Y!

DLW: YI! HIC: Y CHIRON: Y1!!

ALAN: Y! GLS: YU RPG: Y! DILL: Y

777 Query: [64.3] The Lisp Machine Lisp manual regards it as a bug that Lisp Machine Lisp doesn’t handle multiple vailues
from unwind-protect.]agree. Soif we can doit for unwind-protect, why not for prog1?

MOON: The unwind-protect problem was fixed in Lisp Machine LISP some time ago.

*** [scue 65: Names for catchall and unwindall

MOON: By the way, spelling these catchall and unwindal1 rather than catch-all and unwind-all
is inconsistent with the general naming conventions.

GLs: 1 agree, but what is in the COMMON LISP manuat is more like the catchal 1 of NiL than the catch-
a11 of Lisp Machine LisP; was just trying to prevent confusion.

** Sugnestion: Rename catchall and unwindall tobe catch-all and unwind-all.

** Responses Y_
MOON: X DM: Y!

DLW: Y! HiCc: 'Y CHIRON: NI

ALAN: Y1 GLS: Y RPG: Y! DILL: Y

Moon: Rename catchall to catch-al1 but flush unwindal1 (! can't think of a use for it, and on page
63 of the draft COMMON L.ISP manual it says essentially that you shouldn’t usc it).

VOTES ON THE FIRST DRAFT COMMON LEISP MANUAL ' 72

5.8.2. Throw Forims

*## [ssue 66: Error-handling for throw

MOON: The draft COMMON LISP manual is very unclear about error checking in throw. Unseen-throw-tag
errors should be signalled in the environment of the throw, not in an environment where the entire program
state has been unwound. Thus throwing needs to be a two-pass operation. Clearly the first pass succeeds
when it finds a catch for the specified tag, and ignores unwind-protect. What about catchall and
unwindal1? Does a catchall satisfy the first pass of all throws inside it, or of none of them? Does
unwindall behave like catchall or like unwind-protect?

** Suagestion: Adopt MOON’s rules above for error-checking in throw. The search for a tag ignores
unwind-protect, but considers catchall or unwindall to satisfy it.

#* Responses Y_
MOON: Y RMS: Y! SEF: Y!! DM: Y!

DLW: Y HIC: Y WwLS: Y! CHIRON: Y!!

ALAN: Y! GLs: Y! RPG: Y!! DILL: Y

MOON: [The requirement on throw and muitiple values] makes throw not a function and introduces a
possible hidden efficiency cost. I want to think about this before agreeing to it. The analogy with return
makes some sense.

MOON: [November] It's okay for throw not to be a function.

2% [soue 67: Keep *unwind-stack in the core language?

277 Query: [65.1) Perhaps this {*unwind-stack] belongs not here but in a chapter on semi-compatible low-level stuff?

MOON: This does not belong in the core language, especially when you see what else you need to make it
useful.

SEF: Get rid of it. (Move it to red pages?)

** Suggestion: Flush *unwind-stack.

** Responses Y

MOON: Y SEF: YI! DM: Y!
DLW: Y!! HIC: Y wLs: Yt CHIRON: Yi!
ALAN: Y! GLs: YU RPG: Y! DILL: Y

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

Chapter 6
FUNC

13

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL

Chapter 7
MACRO

74

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL . 75

Chapter 8

Declarations

8.1. Declaration Syntax

*#% [ssue 68: Change the name of global-declare?
MOON: global-declare isa fairly poor name.
GLS: [agree; it is at least as bad as Yocat-declare.

* Suggestion: Rename global-decTare. But to what? How about renaming it back to declars, and
renaming what the COMMON LISP draft now calls declare to be dcl (thereby confusing all PL/I
programmers)?

** Responses
MOON: X RMS: Y! SEF: Nitt GINDER: N! DM: X1

DLW: N! HIC: X wLS: Y!
: RPG: Y1

wLS: Yes. Nice! Ifit's concise, people will use it.

DM: global-declare is definitely ugly. Even declare-globally sounds better. But a squinty little
name like d¢1 is even worse.

MOON: [think it is better for the global and the enclosed-in-contour forms of declare to have the same
name, and for the distinction to be made by whether or not it is enclosed in a body. A global declaration is
just one whose enclosing contour is the whole universe. Also, referring to the cxample on page 23, 1 don't
think eval-when should constitute an enclosing contour (however, progn should). What are we doing
about (progn 'compile ...)?

=* |scue 69: Pervasiveness of declarations

MOON: There is an important issuc with local declarations which has been ignored up to now. The COMMON
LISP manual is ambiguous about this also. To use an example,

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 76

(let ((x 1})

(declare (:type :fixnum x))
&iét ((x (append a2 b)))
eee))

does the declaration apply to the inner x (as well as the outer one), or does it not? Suppose the inner let
started life as an open-codable function which was then bodily incorporated as a lambda-combination, and
just happened to call its argument x, the same symbol as its caller was using for something else? After talking
this over with some people, I've decided that you have to have your choice, of whether the declaration is truly
local or applies to all instances of variables with this name inside here. I'm not sure of the best syntax for
distinguishing them. The default probably wants to be truly local, unfortunately the opposite of the (only)
choice that MACLISP provides. Except for special the default wants to be the other way. But having it
default one way for some declarations and the other way for the rest is clearly a bad idea. In addition there
should be a declaration that turns off inherited declarations, This is related to the thing you put around a
form to make it not be inside the lexical environment where it appears, which is used for such things as
defstruct slot initializations (forms which are copied from where the user wrote them (o some other place
by a macro).

GLs: If you are being really careful, then you need one kind of special declaration which makes a binding
special, and another kind which makes references legitimately special. The latter is needed when the binding
is not lexically apparrent.

SEF: It seems to me that a dec1are just inside a local binding context applies to that instance of the varaible,
but does not establish a lexical declaration scope for nested instances. Then we provide global-declare
to set up a default for instances without such an immediately-embedded declaration. The default default for
bindings is Tocal, but for unbound variables it is special. References look at the lexical binding context
to see if they are local or special references.

GLS: special and 1ocal declarations are not the only kinds there are. While a type declaration probably
ought to apply only to the immediately present binding of a variable, an inline declaration probably ought
to be pervasive, applying to all subexpressions within its scope. One idea is to divide declarations into two
types, immediate and pervasive; however, those in a global-declare are always pervasive,

** Alternatives:

A. Specify that special, Tocal, type. and ftype declarations are immediate in scope, and that
inline and notinline arc (lexically) pervasive in scope. Declarations appearing in a
global-declare are always pervasive, in effect cstablishing defaults. As a special case, a
special declaration for a variablc not bound in the construct containing the declaration is
pervasive.

B. Specify that special, Tocal, type. and ftype declarations arc immediate in scope, and that
inline and notinline arc (lexically) pervasive in scope. Declarations appearing in a
global-declare arc always pervasive, in effect establishing defaults. Introduce a pervasive
specref declaration for declaring references to free variables.

C. Usc declare to effect immediate declarations, and proclaim to effect pervasive ones.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 77

** Responses
MOON: C RMS: X! SFF; X! GINDER: A DM: C!
DLW: X HIC: A wLs: B! CHIRON: C

GLs: C RPG: B! DILL: X

RMs: Complicated. All local declarations should be pervasive, but open-codable functions should contain
declarations sufficient to override anything that may come in from outside. This could be cither a single
declaration which says “block any declarations from outside”, or simply no-op declarations of all variables
used.

GLS: It would be naive to assume that one can open-code a function simply by plopping the text of its
definition into the place of reference. This is the very substitution problem which eluded such logicians as
Tarski and for the elucidation of which Church invented the lambda-calculus. The blocking of irrelevant
declarations should not be the task of the author of such a function, but of the open-coding mechanism itself.

pLw: The existing L-machine compiler implements my favorite scheme: declare forms are completely
local, and 1ocal-declare is pervasive. I vote for this.

DM: The whole business of declarations going up a level and goosing the surrounding construct seems totally
wrong. A declaration should apply to what’s contained in it. I get the feeling it's simply a case of “this is the
way we did it in MACLISP, so why not here, too”. That's probably not a fair assessment, but it's the first thing
I think when I see

(prog (n)
(deciare (:fixnum n})

-

or whatever it is. I think my vote would be for proc1aim at top level, and dec1are for a pervasive declare-
locally. To turn it off you need another, inner declare which declares it something else. This requires a
declare keyword corresponding to “nothing special about this guy”.

SEF: This needs to be re-thought into a coherent proposal that allows the interpreter to win.

DILL: After reading this chapter of the manual carefully for the first time, I think that it is going to be
necessary to take out some time and think about redoing the whole thing. Some of this awaits elaboration of
the type system, but there are a number of other problems here. declare is being used for at least three
different purposes: indication to the interpreter what type of binding to use, making assertions about types
(which should be checked at run-time in the interpreter), and offering advice to the compiler. There is no
particular reason to believe that these things want to appear in the same places in various constructs, or have
the same scope. Making incremental changes to the MACLISP declaration stuff is probably not going to do
the trick.

BAK: | think using (declare ...) is wrong because of the known problems with macros. Can’t you put
the information in the lambda list?

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL) 78

£ [scue 70: Declarations and top-level code

MOON: What happens with code typed in at top level? 1f1do

(setq x {frobboz *))

(setq z {nthcdr (- (length x) 2) x))
and things like that, do I get a lot of “undeclared variable assumed to be special” warnings from the
interpreter, as | would from the compiler, since they now behave identically? (Perhaps this issue is trivial?
Then again, perhaps it isn't? 1t’s fairly easy to see what to do with setq typed in at top level, but will it be
really convenient with 1et typed in at top level? And in what environment are forms evatuated by break
evaluated? The best thing would be to have them evaluated in the lexical (as well as dynamic of course)
environment of the guy who called break, whether he is interpreted or compiled. This could be difficult in
some implementations.)

GLS: Well, it's not that the interpreter and compiler are truly identical, but that they impose the same
semantics on correct programs, which is another matter. Anyway, we clearly do not want to get gobs of error
messages when typing interactively. On the other hand, it may be reasonable to require (at least in principle)
declaration of variables used free in top-level forms in files to be compiled; the compiler may or may not
choose to check this.

** Alternatives;

A. The interpreter as well as the compiler should give a warning on reference to an undeclared
special variable.

B. The interpreter should never give a warning, but the compiler should be permitted to warn about
undeclared references in top-level forms.

C. Status quo: The interpreter never gives error messages for undeclared special variables, and
neither does the compiler for top-level forms.

** Responses

MOON: C RMS: CIN SEF: X111 GINDER: C! DM: X!
DLw: B! HIC: X WwLS: B! CHIRON: C

ALAN: B! GLS: B! RPG: B! DILL: BC

HIC: Can the interpreter give a warning if inside an interpreted function, but not if evaluating the top-level
form?

DM: The compiler and interpreter should behave the same, and in general give messages about undeclared
free variables. However, there should be some sort of switch controlling these (of course), and it should
normally be suppressed when reading from the terminal. When reading from a file, one can assumnc the
programmer has had time to figure out who's used freely and to declare it After all, why wait until he
compiles it to tell him what's wrong: he can usc the information much morc when he's debugging his code
interpretively!

VOTES ON TIE FIRST DRAFT COMMON LISP MANUAL 79

8.2. Declaration Keywords

&% [ssue 71: Are names of declarations keywords?

777 Query: [72.6] It seems to be that declaration types shoutd be keywords. The old MacLisp crock of just evaluating
declaration forms is not mecessary now that eva'l-when exists, and it may not be desirable because it makes it harder to deal
with arbitrary implementation-dependent declarations. On the other hand, all those colons are preity ugly. What do people
think?

MOON: If you don’t want the colons, have declarations names looked up by string-equal.

GLS: Then, by the same token, perhaps all keyword-style applications should use string-equal. (1
suppose one difference here is that the lookup only occurs at compile time, not run time.)

ALAN: [think the colons are ugly. (declare (foo ...)) should examine the property list of foo for
something and funcail that on (foo ...). Things inside a declare are pseudo-special-forms and should
look that way. Flush the colons.
** Alternatives:

A. Keep the colons; declaration names are keywords.

B. Flush the colons; use st ring-equal to determine what a declaration is.

C. Flush the colons: think of declarations as a kind of special form, like cond (which also has no

colon).
** Responses Q

MOON: C RMS: Al SEF; AC!! GINDER: C! DM: A!
DLW: A HIC: C wLS: BC! CHIRON: Al
ALAN: C! GLs: C1 RPG: C! DILL: C

RMS: Names of local-declarations are already keywords in Lisp Machine Lisp. However, the typical ones
require no colons since they are names of global functions.

*% [csue 72: Should there be a converse for special declarations?
MOON: There should be an unspecial declaration.
SEF: Should there be a : Tocal declaration to complement : special?

** Alternatives:
A. Introduce a 1ocal declaration, meaning “not special”.
B. The same, but call it unspecial,

C. Status qua: introduce no such declaration.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 30

** Responses A_Q_

MOON: A RMS: Al SEF; Al DM: A!
DLW: X HIC: A wis: Al CHIRON: A!
ALAN: A! GLS: A RPG: A DILL: Al

DLW: The same, butcall it Texical.

#** [ssue 73: Provision for more concise type declarations

MOON: The word type in a type declaration should probably be clidable when the type name does not
conflict.

** Quagestion: If (declare {(type xxx ...)) isa valid type declaration, and xxx is a symbol, then
make (declare (xxx ...)) alsobe avalid type declaration.

** Responses

MOON: Y RMS: N! SEF: N GINDER: N DM: N!
DLW: Y!! HIC:Y wLs: Y CHIRON: Y!!

ALAN: Y! GLs: Y! RPG: YU! DIiLL: X

rMS: This would be convenient for the user but rules out the easy kinds of implementations.

GLS: Ooops, I just realized that the suggestion as stated blithely encompasses type names created by
defstruct, which would indced get hairy. 1 had meant to include only built-in type names such as
integer.

**##* [ssue 74: Syntax for declaration of types of functions

SEF: [would prefer a more pictorial declaration form for functional types. Rather than
(declare (:ftype (:function (:integer :1ist) t) nth nthedr))
something more like
(declare (:function (nth :integer :1ist) t)
(:function (nthcdr :integer :list) t))
Also, or instead. how about a little arrow to make the mapping clearer?

(declare (:ftype (:function (:scalar :scalar) -> :scalar :scalar)
trunc round floor ceil})

Gis: By the way, note that the functional type syntax was designed t atfow one 0 dectare individual types for
the several multiple values a function might return. However, perhaps as a convenicnce the Macl.isp style of
declaration should also be permitted: '

VOTES ON THE FIRST DRAIFT COMMON LISP MANUAL) 81

(declare (:type :integer {ackermann :integer :integer)))
instead of

(declare (:ftype (:function (:integer :integer) :integer) ackermann))
** Alternatives:
A. Provide an alternative syntax as suggested above by SEF.
B. Replace the ftype syntax with SEF’s suggestion.
C. Allow the MACLISP-style functional type declaration in addition to ftype.

D. Allow the MacCLIsP-style functional type declaration and SEF’s suggestion; flush fiype.
E. Allow all three kinds.

F. Status quo: retain the ftype declaration and omit the others.

G. Eliminate all three kinds. A compiler that wants to be that smart can just darn well look at ail the
functions before generating any code. (This makes a one-pass file compiler hard.)

3* Responses.

MOON: BD!! RMS: X! SEF: B! GINDER: B! DM: F!
DLW: A wLS: F1 CHIRON: B!

ALAN: C} Gis:D RPG: Al DILL: X

RMS: The user or the system can provide macros that take SEF’s syntax and expand into the standard one.

DM: All the fancy syntax is a real loser. Ithink I know what
(:function (:scalar :scalar) -> :scalar :scalar)

really is (as an S-cxpression), but there is a string temptation not to think of “~>" as a symbol, but just a
syntactic bracket, like “(”.

*** [ssue 75: Should compilers be required to warn of ignored declarations by default?
MOON: Yes, the defauit mode should be for a compiler to provide warnings of ignored declarations.

** Sugoestion: Impose this requirement, but note that a compiler may provide a switch to override this
defauit.

** Responses Y...
MOON: Y SEF: NIt GINDER: Y! DM: Y!

DLW: Y Hc:'Y wis: Y1 CIIIRON: Y

ALAN: Y! GLS: Y! RPG: YN DI Y

str: 1 would encourage compilers to warn by default, with an override switch, but not require it. It may be
hard to warn in SomMe cascs.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL a2

**% [scue 76: May implementation-dependent declarations exist?
MOON: Note that implementations will add their own declaration keywords in most cases.
GLS: If so, then the warning mode proposed above becomes even more important.

** Quonestion: Permit implementation-dependent declaration types.

** Responses Y

MOON: Yt SEF: YN GINDER: Y! DM: Y!
DLW: Y!! Hic:'Y wLs: Y! CHIRON: Y
ALAN: Y! GLs: Y RPG: Y!! DILL: Y

VOTES ON THE FIRST DRAI'T COMMON LISP MANUAL

Chapter 9
Symbols

9.1. The Property List
9.2. The Print Name

9.3. Creating Symbols

Issue 77: Does make-symbol copy the given string?

ALAN: [79.8] [Is the string argument to make~symbo1 copied?]

83

GLS: An advantage of not copying is to save run time and space, maybe; a disadvantage is the danger of later
clobbering the string. An advantage of copying is that it gives the implementation a chance to put the string

in a better place (such as read-only storage).

** Alternatives:

A. Define make-symbo1 not to copy its string argument, but to use it directly as the print name.

B. Define make-symbo1 always to copy its string argument.

C. Leave it undefined and at the implementor’s option; therefore the programmer may not depend

onit.
** Responses
MOON: C rRMS: C! SEF: A
pLw: C! HiC: A wLs: C! CHIRON: B!
ALAN: C! GLs: C! RPG: B! DILL: B

pil 1.: Pnames of symbols should be read-only, so any writeable string should be copicd. If a string is already

read-only (tike another pname), it would be okay not to copy.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL B4

#** [ssue 78: Existence of si:*gensym-prefix and si:*gensym-counter

MOON: [80.2] Do you really want to document the names si:*gensym-prefix and si:*gensym-
counter?

GLS: No.
** Alternatives:
A.Document si:*gensym-prefix and $1i:*gensym-counter as the official way to get at the
insides of gensym,
B. Allow gensym to take an argument as now to reset the counter or prefix, but don’t document the
insides.
C. Provide no way to reset the gensym counter or prefix.
¥* Responses B
MOON: B SEF: BCH! GINDER: B! DM: B!
DLW: B HIC: B wLs: B! CHIRON: Bt
ALAN: C! GLs: B! RPG: B!!

*** [ssue 79; What is gentemp for?
SEF: What is gentemp?

GLS: Gensyms tend to be used in two different ways. In one usage, they serve as data objects, usuaily in order
to use the property list as a structure. The different names are uscful primarily for debugging, so that a person
can recognize them by sight. However, it is not algorithmically crucial that the names be distinct. In the other
usage, they may be interned. Therefore the names must be distinct. To this end it is desirable both that the
counter not wrap around and that an arbitrary prefix be specifiable. It is also desirable that the name be easy
to type, so it shouldn’t require vertical bars to type. gentemp is intended for this second type of usage, as
gensym is for the first.

** Sugaestion: Add gentemp to the language. It is similar to gensym: one may reset the count or prefix.
However, gentemp permits an arbitrary prefix, and will not wrap the count around.

** Responses Y

MOON: Y RMS: Y1 SEF: Y!! GINDER: Y! pM: X!
pDLwW: Y uic: X wis: Y! CIIRON: Y1
ALAN: Y! GLS: Y! RPG: Y!I

me: Why not just ftush gensym then?

DM: Just have gensym, but give it the semantics of gentemp.

VOTES ON THE FIRST DRAI'T COMMON LISP MANUAL 85

MOON: The gentemp prefix should not be an optional argument and should not be remembered from call to
call.

#+# [scue 80: Rename get-package to be symbol-package?

MOON: [80.7] Should get-package be called symbol-package? That's what Lisp Machine Lise calls it.
(We'll probably be changing this name, though.)

** Suggestion: Rename get-package to be symbo1-package.

** Responses

MOON: Y RMS: Y! SEF:; NI DM: N!
DLW: Y! HIC: Y CHIRON: N

ALAN: X!

ALAN: Well, I don't like get-package if it isn't what Lisp Machine LisP calls it. ButIdon't like symbo1-
package either if Lisp Machine LISP is going to change its mind later. I would prefer to put the issue off
until Lisp Machine LISP makes up its mind (or until Lisp Machine LISP agrees to something concrete). 1
wonder what's wrong with symbo1-package anyway?

MOON: Lisp Machine LISP will be renaming this function, probably. Packages in COMMON LisP should be
deferred completely until Lisp Machine LISP gets its act together, which is predicted to be soon.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL ’ a6

Chapter 10

Numbers

% Issue §1: Complex numbers

MOON: [82.2] What do p1usp and minusp do for complex numbers?
MOON: [83] Whatdo <, >, <=, >=,max, and min do for complex numbers?
MOON: [84] What does abs do for complex numbers?

ALAN: [85.9] Complex works [as an argument to exp], I assume?

MOON: [86.0) Does expt of an integer to a negative integer return a ratio? Does expt of a ratio to a positive
integer return a ratio, or a flonum?

ALAN: [86.8] Do these [s in and friends] work for complex? How about sinh and cosh in that case? (You
can lose using (€' — e~ ¥)/2, or whatever it is.)

SEF: [87.0] For atan, y and x should be scalars.

GLS: [The following paragraphs are all by GLS.] There are two approaches one can take to adding complex
numbers to LISP. One is to try to separate the real and complex domains, to prevent the user from
accidentally stumbling across complex numbers. The other approach is simply to make everything generic.

A particularly subtle point is illustrated by the following example:
(expt -8 1/3)

Should this produce -2 (or =2.0) or should this produce the principal complex root
#C(1.0 1.732050808) = l+sgri(3)i 7 If one were confined to the real domain, one might want -2.
However, this is inconsistent with the usual definition for complex numbers (and is in fact horribly
discontinuous). This question actually doesn’t arise in most programming languages, becausc if the result is to
be real, a negative number can only be raised to a rational power with an odd denominator, and languages
using binary represcntations cannot represent any such rational cxactly. (In APL, however, the expression
~g+1+3 actually does vicld ~2 in some implementations; the exponentiation function “*”, when confronted
with a negative left argument and a right argument which is not (approximately) integral, will ry t
approximate the right argument by a rational with a small odd denominator. On the other hand, a study of all
APl programs ever published in AP Quote Quad and in proceedings of APL conferences (1704 funcuions
containing 12.434 lines of code) found nut one use of this feature {Penficld 79].)

VOTES ON THE IFIRST DRAFT COMMON LISP MANUAL 87

I have found four other widely-known programming languages that have supported complex numbers in a
big way; FORTRAN, ALGOL 68, PL/I, and APL. It is instructive to examine them.

The FORTRAN 77 full (not subset) standard [ANSI 76a, ANSI 78] allows the following generic operations to
apply to complex numbers: +, -, *, /, ** (exponentiation), .EQ., .NE., REAL, ABS, SQRT, EXP, LOG, SIN,
and COS. The four arithmetic operators and the two relationals may take operands of mixed type, provided,
however, that one may not combine a complex quantity with a double-precision quantity (there being no
double-precision complex numbers in the language). The type-specific opcrations CABS, CSQRT, CEXP,
CLOG, CSIN, and CCOS are also provided; they bchave identically to the generic ones but restrict the
argument and result types. In addition, AIMAG and CONJG are non-generic operations requiring a complex
argument. (Note that therefore the real-part operator is generic, and may apply to non-complex numbers, but
the imaginary-part operator is not.) There is no phase function on complex numbers. Exponentiation does
not permit the exponent to be complex; if the base is complex, the exponent must be an integer (this of course
completely avoids the issue of principal values). The other logarithmic, trigonometric, and hyperbolic
functions do not permit complex arguments or results, even where they would be mathematically well-
defined; examples are LOG10, TAN, ASIN, and SINH. Complex numbers are always pairs of *“real” numbers;
there are no complex integers.

The revised version of ALGOL 68 [van Wijngaarden 77] allows the following generic operations to take
complex numbers: +, -, *, /, =, #, 1eng (convert to the format of next-higher precision), shorten (convert
to the format of next-lower precision), abs, and ** (exponentiation). Exponentiation of integer, real, and
complex operands is restricted to integral exponents; the definition causes 0**0 to be 1, and zero to a
negative power causes a division by zero. It is not permitted to raise an integer to a negative power. The four
arithmetic operators and the two relationals may combine a complex with an integer or real. The following
non-generic operations are provided on complex numbers: re (real part), im (imaginary part), arg
(argument, or phase), and conj (conjugate). The phase of zero is undefined. The trigonometric functions
are restricted to real operands, as are exp and /n; no hyperbolic functions are provided. Complex numbers are
always pairs of “real” numbers; there are no complex integers.

In PL/1 [IBM 70, ANSI 76b] the following generic operations may take complex numbers: +, -, *, /, **
(exponentiation), ABS, ATAN, ATANH, COS, COSH, EXP, LOG, SIN, SINH, SQRT, TAN, and TANH. In
addition, REAL, IMAG, and CONJG are non-generic operations requiring a complex argument. {In FORTRAN,
REAL converts any argument to be a floating-point number; for a complex number, the real part is taken. In
pL/1, FLOAT is used for conversion, and REAL is used only to extract a real part.) ACOS and ASIN (which
exist in [ANST 76b] only), LOG10, L0G2, COSD, SIND, and TAND forbid complex arguments. Complex
numbers may have fixed-point (including integral) or floating-point parts, as long as both parts are of the
same format.

The following rules apply to exponentiation x** y of real numbers in PL/L:

x**y=0if x=0and y>0.

x**y = crror if x=0 and y<0.

x**y = | if x20 ang y=0.

x**y = x"if x>0and y>0.
x**y=1/x"Yif x>0 and y<0.

x**y = crror if x<0 and y not integral.

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 88

For complex numbers the PL/I rules are:

x**y = 0if x=0 and realpart(y)>0 and imagpar(y)=0.
x**y = error if x=0 and realparfy)<0 or imagpari(y)=0.
x**y = cexp{y*clog(x)} if x=0,

APL did not originally include ‘complex numbers. Various extensions were proposed over the years, and
between 1977 and 1979 a series of articles [Penfield 77, Penfield 78a, Penfield 78b} explored possible design
alternatives. Comments from the APL community were solicited and summarized [Penfield 78c]. Finally, a
complete and coherent proposal for complex APL appeared [Penfield 79]; it is this proposal that I will describe
here. I. P. Sharp Associates, a vendor of time-shared APL, has implemented this proposal with minor changes .
[McDonnell 81}, '

Because there is no agreeable way to order the complex plane, such functions as monadic 4 and ¥ (sort),
dyadic [(max) and L {min), and dyadic <, £, 2, and >, are all restricted to non-complex operands.

The following mathematical functions have extensions to the complex domain which are either well-known or
easily derived:

Monadic functionsg Dyadic functions
- negation - subtraction
$+ reciprocation + division
! factorial ! choose
o muitiplication by = O trignometric/hyperbolic
B matrix inversion B matrix division
| magnitude + additon
*= antilogarithm *x multiplication
L base encoding

The generalization of ! is based on the gamma function of a complex variable (see [Kuki 72], for exampie).
For obscure reasons, the unary | function (magnitude) may also be written as 140 [Penfield 79] or 100
[McDonnell 81].

For dyadic * (exponentiation), the negative-numbers-to-rational-powers crock is eliminated; the result is
always the principal complex value. The precise rules are:

0*0 <+ 1. _
O*Y < 0 provided that the real part of Y is positive.
X*Y <> *Yx®X otherwisc (thatis, e* %8 %),

A new function, arc or phase, written as 130 [Penficld 79] or as 120 [McDonnell 81]), returns the principal
value for the angle part of the polar form. in the range (— . #]: the phasc of zcro is defined to be zero. The
real-part function is 120 {Penficld 79] or 90 [MclDonnell 81]: the imaginary-part function is 110 [Penficld 79]
[McDonnell 81].

Monadic @ (natural logarithm) returns the principal compicx value. always. with an imaginary part in the
range (—=. #). Dyadic @ is defined by X*Y <> (@)X, that is. (Jog 3)/(log x). Principal valucs for the
trignometric and hyperbolic functions are not discussed in the proposal: Penfield tells me, however, that he
has a paper in the APL 81 conference on the subject of consistent choices of principal values and branch cuts

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL] 89

for all these functions, and will send me a copy.

Another new function, nameless (written as ~130 in {Penfield 79] and as ~120 in [McDonnell 81]), computes
#* given x. [have always known this function as cis, an acronym for “cosine-i-sine”, because é* = cosx +
i sin x; however, 1 have not located a source for this name. For real x, cis x is a complex number with unit
magnitude and phase x mod 2w.

Monadic + (unary plus: a no-op) is compatibly extended and renamed “complex conjugate”; for obscure
reasons this may also be written as ~120 [Penfield 79] or ~100 [McDonnell 81]. Monadic x (signum) is
compatibly extended and renamed “direction™; the result is 0 if the argument is 0, and otherwise xX <>
X+|X, thatis, {(/ x (abs x)), acomplex number with unit magnitude and pointing in the same direction
as X within the complex plane (that is, argument and result have the same phase). Another way to write this
(for a non-zero argument) is as ~130130%, that is, (¢cis (phase x)), but thisis probably slower and less
accurate for floating-point computation,

Note that in APL the real-part, imaginary-part, conjugate, and phase functions are completely generic, as are
all APL operations; APL goes to great lengths to hide internal representations from the user, converting back
and forth as necessary.

Having discussed these four languages, let me now make some observations about the nature of numerical
functions in COMMON LISP so far. They are generic, in the sense of accepting all numeric types that make
sense. They do not discriminate by type except to determine result type, in the sense that if a function accepts
integers and also floating-point numbers, then giving the function equalp arguments produces equalp
results. Thus (sin 3) and (sin 3.0) produce the same numerical result; (+ 3 4) produces 7 and (+
3.0 4.0) produces 7.0,and 7 and 7.0 are equalp. (This property is not true of quotient in MACLISP
(and indeed most LISP systems): {quotient 3.0 2.0) => 1.5, but (quotient 3 2)=>1,and 1.5
and 1 are not equalp! COMMON LISP has of course fixed this for good reasons, and this, I argue, should be
consistently maintained.)

Now let us consider, for example, what {sqrt -1.0) or (1Tog -1.0) should do in CoMMON Lisp. Ican
suggest four ways to handle this:

** Alternatives:

A.Let sqrt and 10g accept scalars only, and produce scalar results. Provide no irrational functions
on complex numbers.

Pro: This is casy to implement, and shiclds the naive user from unwanted complex
results when working in the scalar domain. The expert uscr can write his own
complex irrational functions or open-code them. This is the attitude of ALGOL
68, and to a lesser extent of FORTRAN (regarding the trigonometric and
hyperholic functions).

Con: It is counterintuitive not to implement mathematical functions where they are
well-defined in a language which is otherwise generic. It is inconvenient for
users to have to write their own mathematical functions; morcover. coding such
functions is tricky. and ought to be done once and correctly,

B. et sqrt and Jog accept scalars only, and produce scalar results. Require use of the functions

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 90

csqrt and ¢1og to accept complex arguments or to produce complex results.

Pro: This helps to shield the naive user from unwanted complex results when
working in the scalar domain.

Con: This introduces two copies of many functions, including potentially all the
trigonometric and hyperbolic functions. Admittedly, FORTRAN and PL/I in
effect take this approach, but it is not user-visible because the user can write
simply SQRT or LOG and compile-time type analysis (usually) determines
which run-time routine to use. However, COMMON LISP is not a strongly typed
language.

C.Let sqrt and 1og accept scalars and complex numbers. However, if the argument is a scalar,
then the result must be scalar or an error is signalled. The user can force a complex result from a
scalar argument by explicitly converting the argument to be a complex number. Thus {sqrt -
1.0) => error, but (sgrt (complex -1.0)) => #C(0.0 1.0).

Pro: This helps to shield the naive user from unwanted complex results when
working in the scalar domain, and also avoids having two versions of every
function. This is how FORTRAN and PL/1 effectively behave for most purposes.
(One cannot, however, in FORTRAN pass LOG as a functional argument, to be
applied to a real or a complex with the caller not knowing which; the caller
must name ALOG or CLOG explicitly.)

Con: This spoils the principle of type-nondiscrimination. If sqrt accepts 3 even
though the result cannot be expressed as an integer, why should it not also
accept -1. 0 even though the result cannot be expressed as a scalar?

D. Allow sqrt and log to produce results in whatever form is necessary to deliver the
mathematically defined result. Thus (sqrt -1.0) => #C(0.0 1.0) and (log -1.0) =>
#C(0.0 3.14159266).

Pro: This preserves the principle of type-nondiscrimination, and does not produce
multiple copies of functions. This is most in the spirit of genericism. APL takes
this approach. A survey of APL programs indicate that such functions as
logarithm and sine are litile-used anyway, and those who use them know what

they’re doing,
Con: This may have pitfalls for the unwary user. Also, it may be harder to compile
(consider the S-1, which has a floating-point 10g instruction!).
*% Responses D ®
MOON: CD RMS: D! SEF: All GINDER: DI
DLW: X nic: D wLs: D CHIRON: X
ALAN: D! cls: D RPG: DI

RPG: This has to be done right first. consistent with other languages second. The mathematical result should
be the genceric situation. but perhaps there should be special purpose operators for language compatability.

MOON: Provide a global variable which selects between aiternatives C and D, with € being the default, 1

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 91 -

guess, since it is less surprising. Idon't think it is possible to win without a mode on this issue.
GLS: See [Penficld 78b] and {Penfield 78¢] for reasons why a mode switch was deemed not desirable for APL.
pLw: | discussed this with Gosper at length; as of 15 November we still don’t know what to recommend.

DM: Does anyone reaily understand all this stuff? I get a strong feeling of deja vu: feels just like PL/1, we're
going to solve everyone’s problems. All this stuff doesn't belong in a core language, but rather as a
standardized add-on package, at the level of 1oop or defstruct. [also doubt that Lispers are really the
people to decide how to do this sort of thing. Get some outside opinions from the non-LISP community. The
concern with matching APL is, [guess, a step in that direction.

CHIRON: Hmm... seems what you really want to do is have a complex math package which you can optionally
place between the current package and the usual LiSP package. I think while a complex data type should
exist, and simple operators should know about them (+, -, ®, /), trgi, log, and power functions shouid ask you
to load the complex part of the system. I think complex arithmetic should indeed be coded, but not specified
in COMMON LisP. Let the implementor decide. Perhaps haveitbea (status feature) entry. Keeping
things simple and efficient are my primary reasons for wanting this, and also to keep the implementations
flexible.

SEF: Complex numbers are not going into SPICE LisP for a long time (as long as I can make it). I don’t care
what is done about them as long as they never bother the user who does not bother them. Also, the less they
clutter up the manual, the better. [GLS: Since this was written, SEF told me verbally that he would be happy to
take complex-number code if someone else would write it and hand it to him free.]

*% [ssue 82: Branch cuts and boundary cases in mathematical functions

GLS: Questions arise in the definition of the irrational and transcendental functions: where shall branch cuts
occur, and how shall boundary conditions be handled? The conservative approach to boundary cases, taken
typically by FORTRAN and ALGOL 68, is that odd cases such as 0® and phase(0) shall be undefined. The
advantage of this is catching as many program errors as possible. The liberal approach, taken typically by
APL, is to define useful, if not unique, values for these cases; thus APL assigns the values 1 and 0O to the given
example cases. The advantage of this is that many (though not all) useful identities continue to hold for
boundary cases; also, this allows vector operations to succeed even though a few components may be odd
cases. Penficld has written a paper on consistent choices of branch cuts for mathematical functions, intended
for adoption by APL. [suggest we take a look at that and decide whether or not to adopt it,

** Supgestion: Tentatively consider compatibility with APL on the subject of branch cuts and boundary cases.

** Responscs

MOON: Y RMS: Y! S Y GINDER: Y! DM: Y!
DLw: YN mc:y wis: Y! CINRON: Y!
ALAN: Y! Gls: Ym RPG: YU

VOTES ON THE FIRST DRAIFT COMMON LISP MANUAL : 92

GLS: Penfield’s paper has appeared [Penficld 81]. Itis also available as an MIT VLSI Memo.

10.1. Predicates on Numbers

10.2. Comparisons on Numbers

=% [ssue 83: Fuzzy numerical comparisons
SEF: Make “fuzzy equal” a function distinct from =.

pLW: Bill Gosper really wants = to work on more than two arguments. Maybe that would be more useful,
You could have a separate function called fuzzy=?

GLS: Should there be other operations as well: fuzzy<, fuzzy>, fuzzy-floor, and so on?

** Alternatives:

A.Have a new function fuzzy= which takes three arguments: two numbers and a fuzz (relative
tolerance).

B. The same, but the third argument is optional and defauits to some constant.

C. The same, but the optional third argument defaults in a way that depends on the precision of the
first two arguments.

D. Have no fuzzy comparison functions.

** Responses C:Z

MOON: C SEF: Al GINDER.: C! DM: BCt
pLw: X HIC: B wLs: B! CHIRON: C!!
ALAN: C1 GLs: C! RPG: C!

pLw: Consider (fuzzy= tolerance &rest numbers)?

% [coue 84: Should = take more than two arguments?
pLw: Bill Gosper really wants = to work on more than two arguments. Maybe that would be more uscful,

ser: 1 don't much care for the idea of extending = to multiple arguments, to about the same cxtent that |
didn't like doing it with >. Tl go along if everyone clse wants this. Then there's eq, eql. ...

G1S: If we had a # function as well, that could be extended w more than two arguments as well. However, the
current model would probably have to change. Right now. we think of {7 a & ¢ J) as mecaning

(and (? a b) (? bec) (7 ¢ d))

VOTES ON T1iE FIRST DRAFT COMMON LISP MANUAL 93

for 7 being any of the five relationals =, <, >, <=, and >=. However, this is not a suitable interpretation for #:
we would probably like (» 3 4 3) to yield (), not t. The solution is that a/l pairs of elements must be
compared, not just adjacent ones. Happily, this extends to the other five relationals as well; the adjacent-pairs
rule is just an optimization made possible by transitivity.

** Suggestion: Allow = to take more than two arguments, in which case it is true if and only if the arguments
are pairwise equal,

** Responses Y_
MOON: Y RMS: Y! SEF: N! GINDER: Y! DM: Y!

DLW: Y! HC: Y wLs: Y! CHIRON: N

ALAN: Y! GLs: Y! RPG: Y!!

DM: If equal takes more than two arguments, then make sure eq, eq1, etc., do too!
EAK: Is COMMON LISP going to be sensible and provide a <> function, or is it going to lose like NIL?

GLs: [Several paragraphs by GLS follow.] Well, I assume that you mean for (<> x y) to mean the same as
(not (= x y)). Thisis as in PASCAL. However, when you make the extension to complex numbers, the
name becomes inappropriate. On a totally ordered domain such as the reals, “not =" and “< or >” do happen
to mean the same thing, by the law of trichotomy. However, complex numbers are not ordered, and so < and
> are not well-defined, and so <> should also not be well-defined (although “not =" is well-defined).

Similar problems arise with [EEE proposed standard floating-point. The result of a floating-point comparison
is tetrachotomous: the result may be <, >, =, or unordered (the laiter may arise because the domain includes
objects designated “not a number” which are produced by such situations as dividing by zero). In this
domain <> and not= are distinct predicates, because the former is false and the latter true when the
relationship is in fact unordered. (The S-1 supports this kind of arithmetic, although it is not true [EEE
standard.)

PASCAL itself runs afoul of this problem! It allows = and <> to be used on sets, even though < and > are not
defined on sets!

In conclusion, I would lock very favorably on including a “not =" predicate in COMMON LISP, but I would be
greatly opposed to calling it “<>”. Perhaps “/=" would be an acccptable name? (This is one of three names
for this operation permitted by ALGOL 68 [van Wijngaarden 77], the other two being a true not-cquals symbol
and the reserved word “ne”.)

EAK: As you might expect, Pve no great love for the name <>, but [do care about having the brevity of a
simple form for the function. Besides <>, and /= which you suggest, there's PL/I's =, and C's 1=,

G1S: Of course, the t= of PI/ and !'= of C make sense within those languages because + and | are the
respective logical negation operators for those languages. However, there is no precedent for this in ISP,
(PLA's 1 has the additional disadvantage that its logical-not character is not in ASCH! It is transliterated into
ASC11 as a circumflex, and so appcears as one here.)

BAK: Gee, if we weren't stuck with such losing terminals, we could use =<backspace>/. | wonder if that's why

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 94

they left # out of ASCII in the first place? (very unfortunate that they did). Following the t= and 1=
reasoning, there's not= for LISP. Sigh. As1said, pick for favorite {/= is fine with me), and document it.

ALAN: [83.3] Please find a better description [for <= and >=] than “monotonically nondecreasing” and
“monotonically nonincreasing”. [stitl can’t figure out if these are correct.

10.3. Arithmetic Operations

*+% [ssue 85: Muke rational a required data type for all implementations

MOON: [85.2] Division of two integers should never produce a flonum, The result should always be a rational.
Make rationals a required language feature rather than an optional one; they are at least as easy as bignums.
In fact they were recently implemented for the Lisp Machine in three half-days.

DLW: Yeah!
SEF: Make rationals required. If someone will program them, I'll take them.

pLW: [7.8] I think it [provision of rational numbers [GLS: and also complex?]] should be required! It's very
easy to do and quite valuable; if it's optional, it is far less useful.

GLS: The only reason for allowing (/ 3 5) => 0.6 was to avoid requiring implementations to support
rationals. If everyone will support rationals, there is no problem with /. (By the way, ALGOL 68 [van
Wijngaarden 77] always produces a real result when dividing two integers; you have to feed that to round or
entier 1o get an integer out.)

** Suggestion: Make rationals (actually, ratios) a required data type of the language.

** Responses Y

MOON: YIIH RMS: N! SEF: YI! GINDER: Y! DM: N!
DLW: Y'!! HIC: Y! wLs: Y! CIIRCON: Y!!!
ALAN: Y! GLS: YI! RPG: Y1 DILL: Y

RMS: | vote no because bignums shouldn’t be required either!

** [gsuc 86: Why do add1 and sub still exist?
\OON: Why arc add1 and sub1 present if pTus and friends arc flushed?

GLS: | suppose 1 left them in because, after alf these years. 1 still find 1- incredibly tasteless and confusing.
Every |.15r manual including it has had to explain carcfully that (1~ x} compuics x=landnot 1-x. 1

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL : 95

suspect that LISP 1.5 had add1 and sub1 more for cfficiency than cognitive reasons, but I may be wrong. 1
would be glad to eliminate all four of them. '
** Alternatives: :

A. Eliminate all four of add1, subl, 1+,and 1-.

B. Keep add1 and sub1; climinate 1+ and 1-.

C. Keep 1+ and 1-; climinate add1 and sub1.

D. Keep all four of them.

E. Eliminate all four, and replace them with inc and dec.

*+ Responses

mMooN: CEN RMS: D! SEF: CDiItt GINDER: E! DM: El
DLW: A HIC: C wLs: Y! CHIRON: B!

ALAN: C! GLS; A! RPG: E pIiLL: ABCE!

RMS: I vote D, but I now agree with you that add1 is nicer than 1+. inc does not subsume add1.

*** [ssue 87: Add the function s ignum?

GLS: Add s ignum to the language. For ascalar, the definition is:

(defun signum (x)
(cond ((zerop x) 0) ((plusp x) 1) (t -1)))

Following Penfield [Penfield 78a, Penfield 73c, Penfield 79), one can extend this to complex numbers as
follows:

(defun signum (x) (if (zerop x) x (/ x (abs x))))
{Another way to define it is:
(defun signum (x) (if (zerop x) x (cis (phase x)}))
where (cis z) computes &% but I suspect this is numerically less accurate.) Penfield calls this function

“direction”; it yields a unit vector in the direction of x, or zero if x is zero. Hence the range of the function is
the union of the origin and the unit circle. [propose to retain the name s ignum.

** Suggestion: Add signum to the language as described above.

** Responses Y_

MOON: Y RMS: Y! SCF: Y DM:Y!
DLw: Y!! HIC: Y wis: Y! CHIRON: Y!! -
ALAN:Y! GLS: Y! RPG: YU

MOON: T'wo-argument s ignum a Ja FORTRAN?

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 96

GLS: MOON evidently means the “transfer of sign” function called SIGN.
(SIGN a b) <=> (* (ABS a) (SIGNUM b))
except that this would define (SIGN a 0) to be 0, but in FORTRAN it is not defined in that case.

**% [soue 88; Add numerator and denominator to the language?

MOON: There should be functions numerator and denominator which accept rationals (ratios and
integers) and return the appropriate component of the lowest-terms representation. The value of
denominator is always plusp.

GLS: Define “lowest terms” to mean that (gcd (numerator x) (denominator x)) => 1, always.
(Among other things, this implies that (denominator 0) => 1))

** Suggestion: Add functions numerator and denominator.

** Responses X
MOON: Y RMS: Y! SEF: Y! GINDER: Y! DM: Y!

DLW: YI! HIC: Y wLS: Y! CHIRON: Y11

ALAN: Y! GLs: Y!! RPG: Y DILL: Y

#+ [scue 89: Add least-common-multiple function?

GLS: Add 1cm, defined to be equivalent to:

{(Tecm x) <=> x
(lem x y) <=> (/ (* x y) (g¢d x y))
(1ecm x y . more) <=> (1cm {lcm x y) . more)

** Suggestion: Add the function 1cm of one or more arguments.

** Responscs !

MOON: Y RMS: Y! SEF: YH! GINDFR: Y!
DLW: Y1 HIC: Y WwLS: Y! CIHIRON: Y!!
ALAN: Y! GLS: Y! RPG: Y! DILL: Y

*4¥ [scuc 90: Fxtend gcd to complex numbers?

G1S: For any two Gaussian integers, there exist four Gaussian integers such that they are largest in magnitude
of all Gaussian integers which cevenly divide the two given ones. (A Gaussian integer is a complex aumber
whose real and imaginary parts are both integers. A Gaussian integer evenly divides another if the quotient is

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 97

a Gaussian integer.) These four numbers moreover are distributed one per quadrant, any three being equal o
the fourth times some power of i. One can define the ged of two Gaussian integers to be the one in the first
quadrant (including the real axis and excluding the imaginary one). This can also be extended to rationals
and complex rationals.
** Alternatives:

A. Extend gcd to Gaussian integers.

B. Extend gcd to rationals,

C. Extend gcd to complex rationals.

D. Status quo: gcd accepts only integers.

** Responses
MOON: AD rMs: (! SEF: D! GINDER: X1
pDLW: X HIC: A CHIRON: D

GLs: C) RPG: C!

GINDER: I'd like to be able to get gcd of complexes when I want them, but not have to worry about getting
them unexpectedly. '

GLS: The properties of gcd are such that you can’t get a ratio out if you put in only integers, and you can't get
a complex number unless you put a complex in,

MOON: Factorization is meaningless for rationals.

GLS: Sort of, but the function is “greatest common divisor”, not “greatest common factor” (a quibble).
Anyway, the gcd of two rationals x and y is that rational z of largest possible magnitude such that x/z and
y/z are both integers. Example: (gcd 12/6 9/4) => 3/20.

DLW: You must realize that we’re getting into PL/ disease here. These things are nice, but their presence will
discourage people from writing new COMMON LisP implementations because it will look too hard to do all
this stuff. Can we say that we'll provide a “virtual machine”™ specification so that you can get all this stuff
from us for free on a tape, written in COMMON LISP, or something?

GLS: Yes, such a specification and program data base is desirable; but it doesn’t belong in the language
definition as such, [think.

10.4. Irrational and Transcendental Functions

*5£ |coue 91: Arguments and resuits of irrational and transcendental functions

MOON: Except as noted, these functions accept any kind of arguinents, but always return a floating-point
result. If the argument is floating, the result will be of the same precision. (What about multi-argument
casc?)

VOTES ON TLE FIRST DRAFT COMMON LISP MANUAL ' 93

GLS: If the argument is rational, to what floating-point format shall it be converted? [would suggest single
format, on the grounds that that is probably adequate. for the naive user, and expert users can insert an
appropriate coercion function where apptopriate: {sqrt (double-float x)).

GLS: In the multi-argument case, the rule given on page [81} should probably be followed: convert the shorter

numbers to the precision of the longest one. Thus:
{atan 3.0s0 3.0d0)
<=> {atan (double-float 3.0s0) 3.0d0)

<=> (atan 3.0d0 3.0d0)
<{=> 0.7853981673974483d0

** Qugaestion: Specify that, for irrational and transcendental functions: (1) arguments not in floating format
are converted to single floating format; (2) ail arguments are converted to the format and precision of the
argument whose precision is largest; (3) the result has the precision of the arguments.

* Responses X

MOON: Y SEF. Y GINDER: Y! DM: N!
DLW: Y! HIC: N wLs: Y! CHIRCON: Y!!
ALAN: Y! GLs: Y!! RPG: Y1

Hic: Am [confused? When is it ever okay to get extra precision?

*** [ssue 92: Should 1og take two arguments?

727 Query: [86.5] Most Lisp implementations, as well as other programming languages (such as FORTRAN), call the natural-
logarithm function log. Mathematicians usually call this Tn, however. It wouid be useful io have a two-argument
logarithm function. One could let 10g serve for both the one-argument and two-argument versions. but then &optional
arguments could not be used in the obvious way if one puts the arguments in the order normally used in mathematical
notation, because it would be the first argument which is optional. Opinions?

ALAN: T haven't figured it out, but is it likely that {1og b x) is going to lose less accuracy than (/ (7og
x)} (log b)) (or (/ (1n x) (In b)))? Ifso. then having the order of arguments be (1og scalar
&optional base) with base defaulting to 10 would seem best to me. If not, then I would say to punt the
issue and have 1o0g be only base 10.

GLS: The only other programming language ['ve found with a two-argument logarithm function is APL, which
puts the base argument first: 28 <> 3. However, T would still argue for it on the grounds of convenience,
so the user doesn't have to remember the formula, and so we don't have to provide 1og10 and 1og2 as
separate functions.

GLs: [have discovered that ALGOL. 68 [van Wijngaarden 77) calls the natural-logarithm function /» and not
log. By the way. if 10g is to accept two arguments, then an advantage of not letting one be optional is to help
catch the incompatibility with MACLISP.

#* Suoscstion: Retain the definitions on the draft manual: 1n is the natural logarithm, and 1og takes two
required arguments.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 99

*% Roasponses Y?
MOON: N RMS: Y! SEF: Y GINDER: Y! DM: Y!

DLW: Y!! HIE: Y wLSs: Y! CHIRON: Y!!

ALAN: N! GLS: Y! RPG: Y!!

Jgcue 93: Complete set of trigonometric functions?

GLS: How about the missing trig functions? For example, (/ (sin x) (cos x)) is a terrible way to
compute a tangent.

** Suggestion: Add asin, acos, and tan.

** Responses X
MOON: Y SEF: YU . GINDER: Y! DM: Y!

DLw: Yt HICY wLS: Y! CHIRON: Y!!

ALAN: Y! GLs: Y! RPG: YU! DILL: Y

*+% [ssue 94: Degree-style trignometric functions

MOON: Lisp Machine Lisp introduced the degree-style trig functions, but I think they probably ought to be
flushed.

DLW: Not clear.
SEF: Harmless enough to keep them.
GLS: PL/I and LOGO have them.

** Alternatives:
A. Flush trig functions that take arguments in degrees.
B. Status quo: retain cosd and sind.
C. Retain cosd and sind, and add tand also.

D. Have all of cosd, sind, tand, acosd, asind, and atand.

** Responses D?.

MOON: AN RMS: A! SEF: AD! GINDER: D! DM: DI
biw: DI tic: D wis: D CHIRON: I
ALANT Al GlLs: 1! rRPG: Cl!

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 100

rMS: [think providing p i is good enough.

*** Issue 95: Hyperbolic functions

ALAN: [86,8] How about sinh and cosh? (You can lose using (e*— e~ *)/2, or whatever it is.)

GLS: Actually, I belicve it is tanh that is very subtle to do correctly using floating-point numbers. If we can
get them right, it might save some loser some grief.
** Alternatives:

A. Status quo: no hyperbolic functions.

B. Add sinh, cosh, and tanh to the language.

C. Add sinh, cosh, tanh, asinh, acosh, and atanh.

** Responses C
MOON: AC! rRMS: C! GINDER.: C! DM: C!

DLw: C! HIC:C wLs: BC! CHIRON: C

ALAN: C! GLs: Cl ~ RPG! cH

+ [scue 96: Are several versions of pi necessary?

MOON: [87.8] I short-pi notequal to (short-float pi)? I would assume that if the rounding is done
properly, these would be =, in which case the other four variable names are superfluous. Flush all these
variables for p1; just have one. If you aren’t going to have variables for pi/2 and so forth, the user needs to
assume these constant computations are done at compile time anyway.

SEF: Sounds good to me.

GLS: The one language that gives you = in a choice of precisions is ALGOL 68 (one may write “long long long
pi", for example). So in effect onc does have just a single variable, and one writes a precision modifier in
front of it if necessary. A difference is that pi is by default the shorrest one available, and you have to medify
it to get longer ones. However, the longer ones are required to be accurate to their format's precision. APL
also provides = if you write 01 (= times 1), but precision is not controllabie in APL.

** Syaaestion: Eliminate the variables short-pi. single-pi, double-pi,and 1ong-p1. retaining only
pi. Encourage the user to write such thingsas (short-float pi), (single-float (/ pi 2)}). ctc,
when appropriate.

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL) 101

** Responses Y_

MOON: Y . " SEF: Y1 GINDER: Y! pM: X!
pLW: Y! HIC; Y wLs: X! CHIRON: Y!
ALAN: Y! GLS: Y! RPG: Y1

*** Issue 97: Other constants besides pi?
ALAN: [87.9] How about e fas well as piJ?

GLS: Shall we also have other constants, such as Euler’s constant and the fine-structure constant? Where do
we stop? Also, @ seems to be too good a name to gobble.

Suggestion: Define the variable e to be 2.718281828. . .L0.

** Responses N
MOON: N RMS: N! SEF: N GINDER: Y! DM: X1

DLW: Nit Hic: Nt wLS: X! CHIRON: N

ALAN: NI GLS: N RPG: Y!

HIC: What about something like (constant key formatr)? Then, since the constant is identified by a
keyword, we can add as many different constants as we want without eating up names.

MOON: A variable for e would be all right if it had a better name. Otherwise #. (exp 1) will probably
suffice.

pM: Instead of having the variables (what's going to happen when somebody transcribes his physics
calculation that uses a (free) variable named pi to hold a matrix or something?), and all the other interesting
constants, why not have a constants function? Thus instead of pi you use (const ':pi). Perhaps
dimensional quantities could be handled, too, where you supply optional arguments to specify the units you
want. For example, (const ':¢ '(/ :m :s)) for the speed of light in meters per second, or some such.

10.5. Type Conversions on Numbers

*** [ssue 98: Optional sccond argument to f1oat

MOON: [88.2] f10at should take an optional sccond argument. If present, the first argument is floated to the
same precision as the sccond. Among other things, this is used for functions which are supposed to return
results of the same precision as their argument (but do the intermediate computations in cxtended precision}.

#* Sugpestion: Allow F1oat to take an optional second argument as described.

VOTLES ON TUE FIRST DRAFT COMMON LISP MANUAL 102

** Responses Y_ﬁ

MOON: Y SEF: Y! GINDER: Y! DM: Y!
DLw: Y!! HIC:Y - wLs: Y! CHIRON: Y!!
GL5: YU RPG: Y!!

MOON: Gosper suggests calling it (coerce x y) instead of (float x y), and have it fix x if y is fixed,
rationalize if rational, etc. The name coerce is too general, but this does sound like an improvement.

#x% [ssue 99; Is the function rational useful, given rationalize?
MOON: [88.7}Is rational useful for anything vis-a-vis rationalize?
GLS: It's faster, and closer to the idea of straightforward type coercion.

** Suggestion: Retain rational.

** Responses Y__._Q_?

MOON: Y SEF: Y GINDER: Y!
DLW: X me:Y wLS: Y!
ALAN: NI GLS: Y! RPG: YI!

pLW: Gosper points out that rational and rationalize need to be defined more strongly and carefully,
For example, what happens for (f1oat (rational[ize] x))? Doesit = x?

#* [ssue 100: Optional argument to rat ionalize to specify precision

MOON: [88.7] Should rationalize take an optional second argument of the number of bits of precision?
(If negative, the number of least-significant bits to discard.) It would very often be used with a second
argument of -1 for rationalizing results of floating computations,

GLS: Why -1 rather than ~2? Also, 1 am a fittle suspicious of measuring floating-point numbers in “bits”.
While that may be easy to implement, it would scem to be more general to specify a relative tolerance.

siF: Hmmm. I am reluctant to get into the business of diddling precision bits within a particular flonum
format. Maybe provide an optional package that reaily does all this stuff right, carrying around the precision
of everything and allowing big flonums, etc.
** Alternatives:

A. Status quo: let rationalize take no sccond argument.

B. Allow rationalize to takc an optional sccond argument. an integer, which is the number of
bits of precision to observe (if negative, a number of bits of precision to ignore).

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL : 103

C. Allow rationalize to take an optional second argument, a relative tolerance. The cffect of a
negative number of bits can be obtained if one assumes that one can obtain from the system the
relative tolerance for the precision of a given floating-point format.

** Responses

MOON: Bil! SEF: Al DM: C!
DLW: X Hic: C CHIRON: C

ALAN: B! GLs: C RPG: C!

MOON; Maybe provide both alternatives B and C, where a fixnum is a number of bits and a flonum is a
relative tolerance. This applies to issue 102 also. B is the usually desired case, since the reason you want
rationalize rather than rational is to compensate for lack of perfect accuracy in the floating-point
computations, not because there is some particular desired precision in your program, usually.

DLW: See remark on previous issue.

SEF: Specify that rationalize returns a rational number for which the given floating-point number is the
best available approximation of its format.

*#% ssue 101: Repame remainder to be rem?

MOON: I sure wish rema inder could be called rem.

SEF: What's wrong with remainder? Use auto-abbreviation if you don’t like to type.
GLS: PASCAL and ADA both call this operation rem.

** Suggestion: Rename remainder to be rem, conditional on the sequence functions being juggled so that
the name rem is not needed there.

** Responses Y_‘Z

MOON: Y RMS: Y! SEF: Y GINDER: N! DM: N!
pLw: Y HIC: Y! WwLS: Y1 CHIRON: NIt
ALAN: Y! GLS: Y! RPG:Y DILL: NI

rMs: This by itself is not important enough to be considered a reason for flushing the cxisting function rem.
Besides, I'd rather change \ to \\,

*x% [gone 102: Optional precision argument for mod and remainder?

MOoON: In the Lisp Machine LisP proposal, mod and remainder also take an optional argument which is the
minimum number of bits of precision acceptable in the result. An crror is signailed if the result would have

VOTES ON TIHE FIRST DRAFT COMMON LISP MANUAL 104

fewer. The comparison is allowed to be approximate (e.g., simple comparison of exponents). Consider sin,
which starts by mod'ing its argument with 2«. Note that this number of bits is not an implementation-
dependent parameter. This got dropped somehow from my proposal which was the source of f1oor and so
forth. '

SEF, GLS: May have same problems as for rationalize above?

** Alternatives:
A. Status quo: let mod and remainder take no second argument.

B. Allow mod and remainder to take an optional second argument, an integer, which is the
number of bits of precision to observe (if negative, a number of bits of precision to ignore).

C. Allow mod and remainder to take an optional second argument, a relative tolerance. The effect
of a negative number of bits can be obtained if one assumes that one can obtain from the system
the relative tolerance for the precision of a given floating-point format.

** Responses

MOON: B! SEF: All pM: C!
DLW: C! HIC: C CHIRON: C

ALAN: B! GLs: C RPG: C!

pLw: C, I guess, but please make it very clear in the manual just what this means; I don’t grok it. How is the
“amount of precision” in the answer determined so that you can compare it?

+% [ssue 103: Extend f 100 and friends to compiex numbers?

GLS: The APL community has been exploring extensions to f1oor and friends to complex numbers. If xis
complex, then (f1oor x) is a Gaussian integer (a complex number whose real and imaginary parts are both
integers). Given floor, then ceiling and mod are easily defined. There are two proposals outstanding:
{McDonnell 73] and a paper by Forkes to appear in the APL 81 conference proceedings. McDonnell omitted
extension of floor in his complex APL implementation [McDonnell 81] pending resolution of these
conflicting proposals.

** Suggcstion: Extend floor and friends to complex numbers in a manner compatible with APL, as and
when the APL community gets its act together and presents a non-bogus proposal.

** Responses Y

MOON: Y SEIT Y GINDER: Y! DM: Y!
Dw: Yt merY wIS: Y! CUHRON: N
ALANIY! GIS: Y RPG: YN

G1S: The paper by Forkes has appeared [Forkes 81}, The results do not appear to be at all conclusive, so 1
would recommend punting this issuc for now, and watching the APL community fight this out.

VOTES ON TIIE FIRST DRATT COMMON LISP MANUAL 105

10.6. Logical Operations on Numbers

+ [ssue 104: Restore boale to the language?

RMS: [91.5] It looks like you plan to flush boole and replace it with explicit names for all the two-argument
logical operations that are useful to write into source code. However, it is very useful that boole operations
include the trivial ones, so that a graphics operation can provide a parameter which is a boole code ("ALU
function”) and one value of the parameter says to copy the new data onto the screen, ignoring the old data
entirely. If there is no boole, it is necessary to pass a function such as Togior as an arg instead, so there
must be functions provided for all six two-argument logical operations which don't really use both arguments.
In addition, (funcall alu-fuaction x y) islikely to be alot slower than (boole al u-function-
code x y). Sol think it is better to keep boote, and provide standard names for all the possible first
arguments; and keep only 1ogand, Togior and logxor. I'm not sure Tognot is needed since (1ogxor
-1 ,..) issoeasy.

GLS: Indeed, I was only thinking of writing fixed constants in the code, and not of parametrized applications.
I agree: bring back baole.

SEF: Sounds good to me. However, we should keep Yognot, since it is more perspicuous than { Togxor -1
x}. I would enjoy flushing and¢2 and friends, replacing them with a boo1e whose arguments are keywords,
not numbers.

** Suggestion: Define boole as in MACLISP, but let it apply to all integers. Do not specify what the values
for the first argument are, however. Instead, define sixteen global variables:

Togelr logset logxor logeqv
logand logior Jognand jognor
logandcl Togandc2 logorcl logorc?2
log1l log2 logcl logc2

whose values are implementation-dependent but cause specified things to happen when given as a first
argument to boole.

** Responses Y

——

MOON: Y RMS: Y! SEF: Y!! GINDER: Y! DM: Y!
DLW: Yl HIC: Y! wiS: X! CHIRON: Y!!
ALAN: Y! GLS: Y RPG: YU pDILL: Y

rRMS: It is better to define what the valucs of the keywords are. One should not leave something undcfined
just out not sceing offhand why anyone would want to know. 1 agree that it will be better for programmers to
use the keyword names. and whenever they write a fixed one they should use the name: but it may be uscful
to compute one. Consider a PDP-10 simulator that wanis w do (boole (1db ...) ...) W simulatc the
togical instructions! In other words, do not be o quick to ask "does the user need 10 know”, Instead ask,
“does it do much good not to tell him™. ' '

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL - 106

GLS: The reason I left it undefined is that it may be good not to tell the user on the grounds that the
implementation may be able to exploit the freedom. If I recall correctly, the PDP-10 and the standard TTL
74181 ALU do not use the same codes!" Let the PDP-10 simulator written in COMMON LISP use the more
transparent

(setq pdp-10-bocle-table {vector logcir ... logset))
(boole (vref pdp-10-boole-table (1db ...)) ...)

MOON: I don’t like the names 10g1 and 10g2. I don't have a better suggestion yet. Why not make the first
argument to boo1e a symbol rather than a number?

GLS: I don't like the names either. The suggestion doesn’t say the first argument is a number; it says the
values are implementation-dcpendent. The reason for that in turn is so that they can be numbers if desired,
for speed (as for graphics).

MOON: [93.8] [haulong performs the computation ceiling(log2(abs(integer)+1)).] Maybe this expression
should be written in L1SP? The expression is in fact correct, but unnecessarily obscure?

GLS: This was written before ce i1 was added. Now it can be written as
(ceil (log 2 (+ (abs integer) 1)))
This may be obscure, but it is accurate, and I haven't found a better way to express it. (Actually, maybe [

shouldn't write it in LISP form. That implies the use of floating-point numbers of potentially insufficient
precision, whereas hauloang always produces an accurate result.)

10.7. Byte Manipulation Functions

**# [ssue 105: Reverse the order of arguments to byte?

MOON: The arguments to byte should be size, position rather than position, size. There is a typo at the top of
page 94 which supports my contention that this is a morc natural order.

** Suggestion: Reverse the order of arguments to by te.

** Responses Y

MOON: Y1!! SEF: Y GINDER: Y! DM: Y!
wis: Y! CINRON: N1
RPG: Y! DILL: N?

VOTES ON TIE FIRST DRAFT COMMON LISP MANUAL ' 107

10.8. Random Numbers

**% [ssue 106 Definition of random of one argument
MOON: Is it the case that (random n) <=> (mod (random) n)?

GLs: I don’t see why this restriction needs to be imposed. It may be a valid way to implement it, but the user
needn't know that.

** Suggestion: Define (random n) <=> (mod (random) n}, always.

** Responses NZ

MOON: N SEF; N GINDER; N! DM: N!
DLW: N HIC: Y wLs: Y! CHIRON: N
ALAN: N! GLS: N! RPG: Nt

DM: (random (* 0.66 largest-fixnum)) has a rather different distribution from (mod (random) (*
0.66 largest-fixnum)). Idon’t suppose many implementors currently take note of that, but they should. If
the argument to random is larger than some tolerance {say 1% of the largest fixnum) something sexy should
be done to try to keep the distribution reasonably flat.

GLS: DM is quite right. Indeed, inasmuch as the draft COMMON Lisp manual specifies that (random) may
return an integer from some limited range, and (random n) must draw with approximately equai
probability from the integers from zero to n—1, (mod (random) n) cannot possibly be a valid
implementation if n is greater than the range of (random), because some numbers between zero and n—1
would never be chosen.

4% [ssue 107: Random floating-point numbers

GLS: Perhaps (random x) where x is a positive floating-point number should return a floating-point
number of the same format, between zero (inclusive) and the number (exclusive).

** Sugoestion: Allow random to accept a floating-point number as described.

** Responses Y P4
MOON: Y SEF: NIt pM: NI

pDLw: Y HIC:Y wLS: Y! CHIRON: N

ALAN: Y! GLS: Y RPG: Y!

SEF: Actuaily, | am happy to accept this. but only if somecone hands me a working implementation before this
2ocs into the manual.

MOON: Should also gencrate random complex numbers, presumably within a specified circle.

VOTES ON TIIE FIRST DRAFT COMMON LISP MANUAL 108

GLS: Or square? 1 don’t know what FORTRAN people use. I do know that in the FORTRAN world random
floating-point numbers with either uniform or Gaussian distribution are much more used than random
integers.

*** [ssue 108: Random number initialization and secding

MOON: Need a way to reset the random number generator to a known state, and a way to seed it from a
random source, to do anything non-trivial with it.

DLW: The names for resetting and seeding in Lisp Machine LISP are losers but the idea is right.

** Suggestion: 777777
** Respon
MOON: Y SEF: ?
DLW: X HIC: X wLS: Y! CHIRON: X

GLS: Y RPG: N1

pLw: I'll try to have a proposal ready at the meeting.

CHIRON: By seeding to a number x, you are resetting it to a known state. Have a function makeseed which
reads the clock, the process number, and other implementation-specific information to make an arbitrary
seed; and a function seed-generator to seed the generator with.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL) 109

Chapter 11

Characters

% [ssue 109: Character set and representation independence

DLW: Mention that no particular character set is needed and that some implementations may use fixnums to
represent characters.

MOON: [The predicate characterp may be used to determine whether any LISP object is a character object.]
Even in implementations that don't have them?

MOON: [29.0] In Lisp Machine LiSP characterp will be the same as f ixnump.

GLS: Well, the document “Character Standard for LISP” which I wrote allowed for characters not to be a
separate data type. The COMMON LISP manual as it stands is at best silent on the issue. Can Lisp Machine
LISP not be persuaded to implement a character data type? Lisp Machine LiSP (though not COMMON LISP in
general) could permit arithmetic on such objects, if upwards compatibility is a problem. Not having character
be a separate data type has ramifications for typep and typecasa that I would rather avoid.

** Suggestion: Do not require charactar to be a distinguishable data type, but make it a “virtual” data
type, like “a-tist”. Continue to permit (typep x 'ch aracter); in some versions of COMMON LISP this
might be true of integers or even of conses.

** Responses Y_._
MOON: X RMS: Y SEF: Y! GINDER: N! pM: Y!

DLW: Y!I!! HIC: Y! wLS: Y! CIIRON: NIt!

ALAN: Y! GLS: NI RPG: Y! DILL:; NI

RMS: Character objects are entirely unnecessary.

GLs: | worry that users will be seduced into writing non-portable code by performing arithmetic on fixnum-
represented characters without using the appropriate conversion functions as interfaces,

MOON: My main objection t character objects is that there have 1o be two copics of every function and cvery
array type. as well as that you can’t do arithmetic on them. If those crocks could be gotten rid of. | wouldn't
mind pulting them inte Lisp Machine Lisp.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 110

*+% [ssue 110: Having bits and font components in the same character

MOON: It really does not make sense to have bits and fonts in the same character; keyboard characters and
display characters are two rather different things.

GLS: A counterexample: consider an editor somewhat like Stanford’s E, which uses the META key to
distinguish inserting from overwriting. Now suppose the keyboard aiso has an Italic or Greek key, which
might be most conveniently interpreted by the keyboard interface as a font specification, say 1 for italic, 2 for
Greek, and 3 for italic Greek [is there such a thing??? if not, then say APL characters]. Then the character
#1\K would be a command to overwrite the current character with a “X™, but #1\Meta-K would be a
command to insert a “X”.

** Syggestion: Do not have bits and fonts in the same character; have two kinds of character as in Lisp
Machine LISP, one with bits and the other with fonts.

** Responses N
MOON: N RMS: N1 SEF: NIl GINDER: N! DM: X!

DLW: N! WwLS: Y! CHIRON: NIt

ALAN: Y! GLS: N!! RPG: NI

RMS: Implementations must be permitted not to allow bits and font in the same character, but I don’t think it
does much harm to allow them. It also doesn’t do much good to allow them. So, if the whole system of
character functions can be made simpler if this is not allowed, then do that. Otherwise, continue to allow
them.

MOON: What I said about bits and fonts in the same character wasn't very reasonable; 1 guess the real issue
was packing into 16-bit bytes, which can be handled and anyway shouldn't be a consideration at this level.

pM: This whole sort of extended character notion rather bothers me. It seems wrong that implementation
considerations force us into the bizarre situation of saying that only a subset of the possible characters may
occur in strings. I'd rather view characters as the simple, old-fashioned things, and build up to these nifty new
things with extra shift keys or fancy fonts as structures which contain a “primitive” character.

11.1. Predicates on Characters

#4% [osue 111; Choice of standard character set

vioon: | don't understand the motivation for picking those four special characters [to be standard: <tab>.
{form>, <return, and <rubout>.]

G1S: Those four characters have equivalents in FBCDIC, ¢xcept posibly <form>. The first three are a minimal
set. with <spaced. of whitespace characters for formatting programs mto pages, and <rubout> s needed for
input editing. <backspacc> scemed less useful, as terminals disagree on whether or not one can usc it to do

VOTES ON TIE FIRST DRAFT COMMON LISP MANUAL i1l

overstriking.

DLW: Do you mean to say that all implementations, ASCII or not, must have these characters in their character
sets, and the others are optional?

GLS: Right. An implementation must provide the standard characters, or transliterations of them; one needs
to know the minimum number of distinguishable characters in which to write code, and what their purposes
are. Additional characters may be provided; the code/font/bits organization provides a framework for their
inclusion.

Suggestion: Retain the current definition of standard characters for COMMON LISP.

* Responses Y_Z

MOON: Y SEF: Y! GINDER: Y! DM: Y!
DLW: X HIC: X wLS: Y! CHIRON: Y
ALAN: Y! GLS: Y! RPG: Y!!

pLw: I don’t understand what these are for and how they are defined; in particular, what is <tab>? Systems
vary in how many columns wide they are. <backspace> is hard to define, too. <space> is clear enough. More
important, can we arrange things so that things like #/Abort can be defined to read without error in all
COMMON LISP implementations, so I can run-time conditionalize its use?

GLS: This does need clarification, but I think it isn't hard. We can define <tab> to be a whitespace character
other than <space>, which has implementation-dependent effect on the cursor when printed; the main reason
for making it standard is to ensure compatibility of program text files, which are likely to contain <tab>
characters (and likewisc for <form> characters). <backspace> is not a standard character. <{space> is perfectly
clear, and indeed absolutely transparent.

=% [scue 112: Should font 0 be specified to be fixed-width?

MOON: Isn’t the specification that font-0 graphic characters are all the same width rather outside the domain
of a Tanguage definition?

GLs: The possibly misguided intention was that programs couid depend on this property in order to do
tabular formatting, as with format.

** Suaacstion: Remove the specification that font 0 be fixed-width from the language.

** Responses Y_?_

MOON: Y S Y! GINDIR: Y! DM: N!
DLw: NI me:Y CIIRON: Y
Al AN: Nt GIS: N RPCG: Y? nl:Y

VOTES ON THLE FIRST DRAFT COMMON LISP MANUAL 112

11.2. Character Construction and Selection

*4% [ooue 113: Null arguments to character and code-char

MOON: [102.1} For both code-char and character, it would be better to signal an error than to return
(). both for better robusiness of carelessly-written programs and to permit type declaration and associated
optimization on conventional machines.

GLs: The intent was to have a way to discover whether the implementation could support a given combination
of character components; thus these two functions serve as predicates. Maybe this was a bad idea? Perhaps
the three components should be made completely orthogonal.

** Suagestion: Disallow results of () from character and char-code.

** Responses

MOON: Y RMS: N! SEF: Y! DM: Y!
DLW: Y! HC: Y wLs: Y! CHIRON: Y!!

ALAN: Y! GLs: N RPG: NU! DILL: Y

RMS: I agree with your reasoning. Docs this become any easier if characters cannot have both bits and font?

*=** [ssue 114: Make code-char a generic function?
MOON: Why not just let code-char accept either a number or a character as its first argument?

GLS: The intent was that code-char and character be easy to open-code. Maybe code-char should
just be generic, as most of the language is turning out to be (but then the name should be changed, as it is then
even less symmetric with code-font and code-bits?).

** Suggestion: Make code-char be generic.

** Responses

MooN: Y RMS: Y! SEF; NIt GINDER: Y! DM: Y!
DLW: N HIC:Y wLS: Y CILIRON: N
ALAN: Y! GLS: N RPG: Y! DILL: Y

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 113

*%#% [ssue 115: Change the meaning of the character function?

MOON: The function character is incompatible with the usual interpretation as a type-coercion function.
character of a non-character is an error and furthermore character of a character does not necessarily
return the same character.

** Suppestion: Make character be a type-coercion function which converts arguments of certain types to

be a character.
** Responses Y

MOON: Y RMS: Y! SEF: N GINDER: Y!
DLW: Y! HIC: Y WwLS: Y CHIRON: NI
ALAN: Y! Gis: Y RPG: Y!

11.3. Character Conversions

+ [scue 116: Should digit-char be allowed to return ()?
MOON: As with code-char, digit-char should produce an error rather than return ().

GLs: I think the argument that digit-char is a useful predicate is very strong here, stronger than for
character.

** Suggestion: Require digit-char to error rather than produce ().

** Responses

MOON: Y RMS; N! SEF: N! GINDER: N! DM: Y!
DLW Y! HIC: Y " wis: Y! CHIRON: Y!!

ALAN: Y! GLS: N! RPG: N!! DILL: N

#+* [ssuc 117: What are cof objects?
DLW: What is #\eof? What is its type? Can there be more than one of them?

GLS: #\eof is a picce of nonsense whose purpose | have forgotten. | think the idea was that it would be ~1
in MACLISP and somcthing clse in Lisp Machine LISP; it was a compatible way of referring to the
implementation’s standard cof value. and pandered to MacCLisP’s nceds for limited numeric type
declarations. 1 think the whole concept is best climinated from COMMON LISP.

** Suguestion: Fliminate #\eof from COMMON LISP.

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 114

** Responses Y
MOON: Y RMS: Y! SEF. Y!! GINDER: Y! DM: N!

DLW: YN HIC: Y wLs: Y! CHIRON: Y!!

ALAN: Y! GLS: YU RPG: Y! DILL: Y

11.4. Character Control-Bit Functions

*+# [ooue 118: Names for character control-bit functions
ALAN: [104.8] [cont ro1 and friends are] fairly good names to gobble down for such trivial functions.

MOON: Many common English words, especially ones which are likely to be used by programmers, are used
up for new system functions. I don’t think these words should be used for these functions. The most
egregious example is control, a function which sets the control-shift bit in a character. This function
should have “char” or “character” in its name: use char-control or control-char, etc. Maybe
there should be one function which takes multiple arguments rather than a separate function for each key.

MOON: Why do control and friends produce () if given () as an argument?
DLW: [bet it’s so you can nest two of these! But I agree that this is a job for exceptional conditions.

GLS: The main reason I had for using control instead of control-char was that a nice syntax was
needed for reading and printing control characters. Because we can’t count on every CoMMON Lisp
implementation having Greek characters available, [had thought that perhaps something like #, {control
#\A) would be acceptable for Control-A, or #, (control (meta #\Space)) for C-M-Space (DLW's
guess is therefore quite correct). With the invention of the much better syntax #\Control-Meta-Space,
this reason disappears. We could rename these functions control-char, meta-char, eic.; or we could
get rid of some names by using a two-argument function (controi-bit char integer): integer should be
0 or 1, which is installed as the control-bit of char and returned.

** Alternatives:

A. Rename control, uncontrol, and controlp to be control-char, uncontrol-char,
and control-charp. Similarly for meta, etc.

B. Replace them by a single function control-bit: (control-bit c) rewrns 0 or 1
according to whether the control bit of ¢ is clear or set, and (control-bit ¢ n) sets the
control bit of ¢ to be n.

** Responses B ®

MOON: X RMS: I3t SE1F Al GINDER: A! nM: Al
w3 nc: B wis: Al CIHIRON: B}
ALAN: 13! Gls: B! kpG: B DILLD A

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL - 115

’RMS: The user does not need to know about two-arg control-bit, since he can use setf on the one-arg
form.

MOON: I would prefer (control-char ¢) => tor (),and (control-char ¢ z) =>cl, where zis t
or (). Let’s avoid multiple representations for true and false.

WLS: Why not separate one-argument control-bit-p and two-argument controli-bit?

VOTES ON THE I'TRST DRAFT COMMON LISP MANUAL 116

Chapter 12

Sequences

3% [gue 119: Generic sequence coercions

SEF: Various conversion functions are missing, such as vector-to-string, 1ist-to-bit-vector,
to-1ist, and soon.

JONL: Regarding generic coercions. Regardless of whether or not we have functions like <typel>-to-
<type2> (e.g., vector-to-1ist), we will have to have the general coercion to each type, which does the
straightforward things for converting from one sequence type to another (we can fight later about how to
convert a fixnum into a vector!). Since MACLISP and NIL already have to-11ist, to-vector, to-
string, to-bits, to-symbol, to-character, to-upcase (and a few other "internal” ones), then it is
trivial to make something like vactor-to-1ist:

(defun vector-to-list (v)
(check-type v #'vectorp 'vector-to-1ist)
{to-list v))

Analogously, subseq (or “subsequence” if you must) can subsume all the sub-<type> functions.
GLs: It is unfortunate that two conflicting conventions have become somewhat well-established: for non-

decomposable objects, the name of the type is a coercion function (float, rational), while for
decomposable objects the name of the type is a constructor (11st, vecto r).

#* Suggestion: Define generic coercion functions to-1ist, to-vector, to-bit-vector, to-string,
and so on.

** Responses Y__
MOON: Y SEF: Y!! GINDER: Y! DM: Y!

DLW: Y! HIC:Y wLs: Y! CHIRON: Y

ALAN: Y! GLs: Y!! RPG: Y!

pM: ‘They are a little (7!) excessive. On the other hand. they're all things somebody or other needs at some
time or other. Rather than having cach guy that needs one writing it himself, and giving them some totally
random name (how many functions do you know with people’s initials embedded in them like dfmappend
or nice mnemonics like foofun?), it would be nice to have some fairly standard function he could use. here
again. | think the idea of a standardized library wins. In fact. with a suitably flexible package system, you

VOTES ON THE FIRST DRAFT COMMON LISP MANUAL 117

could ac':z:omplish wonders.

*** [ssue 120: Sequence functions and multidimensional arrays

ALAN: [107.4] [On sequence functions handling multidimensional arrays in row-major order:] This gross
“sequence” generalization has always made me uncomfortable, but including 2D arrays this way secms more
squarec-peg-in-round-hole than the rest. The operations are frequently going to be very useless. [108.9] What
does subseq do with a 2D array?

GLS: While subseq may be useless on 2D arrays, position or map may be more useful. There is a
counsistent model for what's going on which is similar to that in APL, and people have found APL’S row-major
order convenient {though you have to explicitly ravel an array before you can treat it asa vector). The model
is that an array is a pair of two things: a linear vector of data items, and a linear vector of dimensions. To
select an array element, one provides an index vector which matches the dimension vector in a certain way (in
particular being of the same length), performs a mathematical calculation to determine a single integer index,
and uses that to index into the data vector. Thus linear vectors are, in this model, more primitive than arrays.
Indeed, a simple vector is a pair of a linear vector of data and a single dimension which is an integer rather
than a vector. Just as an array subscript must be a vector conforming to the array’s dimension vector, so a
vector subscript must be an integer conforming to the vector’s dimension integer. (This is why it is sensible
theoretically, as well as implementationally, to distinguish vectors from 1D arrays.)

** Suggestion: Continue to permit generic sequence functions to operate on multidimensional arrays by
effectively using the underlying row-major order data vector.

** Responses

MOON: N SEF: Y!! GINDER: Y! DM: NI
DLW: Y!! HIC: N wLS: Y! CHIRON: Y

ALAN: N! GLS: Y! RPG: Y!! DILL: N

wLS: Yes, but only if you say what subseq, remove, and concat do.
MOON: Provide a ravel function.

GLS: Call it bolero? Seriously, that sounds great to me. I'd change my vote to no if that were added. More
robust. Maybe specify that when given a multidimensional array it just creates a displaced array so that they
sharc data?

5 [ccuc 121: All those ridiculous sequence functions!

MOON: | sent a message some time back suggesting that there are too many names. the namc-abhreviation is
not always consistent crough to be casy o use, and optional arguments can be used [to pass flags and
predicates). | repeat the suggestion {although [can see arguments against it).

VOTTS ON TIIE FIRST DRAFT COMMON LISP MANUAL) 118

]

MOON: The hundreds of functions which are the same as the general sequence functions except for a built-in
data type declaration are ridiculous. Optimizing special cases like this should be the business of the compiler
and the implementation, not the programmer. There should be