€y Data General

r—mn,

Software Documentation

e

¢»DataGeneral

62 T.W. Alexander Drive
Research Triangle Park
Norxth Carolina 27709
Telephone: 919-549-8421

September 17, 1985

Dr. Guy Steele

Thinking Machines Incorporated
245 First Street

Cambridge MA 02142

Bear Dr. Steele:

As promised, here is a courtesy copy of our derivative Common LISP Manual.
I would be very happy to receive your comments or suggestions on any aspect
of this book. Dan Oldman tells me that he senses a strong interest in
Common LISP among the user community.

Thanks for your help in making this excellent manuscript available to us
for publication.

Yours truly,

Cnl 2N o

Carl M. Lewis

CML:jp

Enclosure

Data General COMMON LISP Reference Manual

093-701017-00

This documentation is based on COMMON LISP: The Language, written by Guy L. Steele,
Jr., and published by Digital Press (copyright 1984 by Digital Equipment Corporation), 30 North
Avenue, Burlington, MA 01803. The original work constitutes the sole specification for COMMON
LISP and any departures from that standard are the sole responsibility of Data General Corporation.

Ordering No. 093-701017

© Data General Corporation, 1985

All Rights Reserved

Licensed Material —Property of Data General Corporation
Printed in the United States of America

Revision 00, March 1985

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes in specifications and other information contained in
this document without prior notice, and the reader should in all cases consult DGC to determine
whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PROD-
UCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE WRITTEN CONTRACT BETWEEN DGC AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOC-
UMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC
FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which
governs its use.

Data General COMMON LISP Reference Manual
Revision 00
March 1985

Copyright © Data General Corporation, 1985
All rights reserved, printed in USA

CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,
ECLIPSE MV/8000, ENTERPRISE, GENAP, INFOS, MANAP, microNOVA, NOVA, PROXI.,
PRESENT, SWAT, SUPERNOVA, and TRENDVIEW are U.S. registered trademarks of Data
General Corporation.

AZ-TEXT, BusiGEN, BusiPEN, BusiTEXT, DEFINE, DG/, DG/UX, DG/XAP,
ECLIPSE MV/10000, GDC/1000, GW/4000, microECLIPSE, MV/UX, REV-UP, SLATE and
XODIAC are U.S. trademarks of Data General Corporation.

Preface

This manual is the primary reference for the Data General Common Lisp system that runs under
the Advanced Operating System/Virtual Storage (AOS/VS) and its interface to the DG MV/UX™
operating system. DG Common Lisp comprises both a language system and an environment. The
language system includes an interpreter, a compiler, and runtime libraries for ComMon Lisp. The
environment is a set of program development tools, including a debugger and the EMACS text
editor.

This manual completely incorporates COMMON LISP: the Language by Guy L. Steele,
Ir., with contributions by Scott E. Fahlman, Richard P. Gabriel, David A. Moon, and
Daniel L. Weinreb; copyright held by Digital Equipment Corporation and published by
Digital Press, Burlington, MA. The Steele book is the de facto standard for Common Lisp; the
Data General Corporation {DGC) implementation, DG Common Lisp, supports most of this stan-
dard and provides some additional facilities. Within this book. descriptions of extensions and
comments that are not part of the standard work are written in colored ink. Common Lisp
features that are not supported in this implementation or comments that are not relevant are
shaded.

Who Should Read This Manual?
This is a reference manual for experienced Lisp programmers. It assumes that the reader has
enough experience with the AOS/VS Command Line Interpreter (CLI) or the MV/UX shell to

manipulate files and execute programs. Knowledge of the EMACS text editor for Common Lisp
is not assumed: EMACS users are referred to the appropriate manual below.

Manual Organization
This manual is designed to give quick access to needed information. It is not intended to be
read sequentially, except that later chapters do not redefine terms defined earlier (you can find
the definitions through the index). Each section is self-contained, with references to other relevant
sections.
The Common Lisp notational conventions are described in Chapter {. AOS/VS and MV/UX
commands use their standard notations.

Prerequisite Manuals

« Command Line Interpreter (CLI) User's Manual (AOS and AOS/VS) (093-000122) describes
the interactive interface to AOS and AOS/VS.

« MVIUX System User’s Manual (093-701001) explains the MV/UX system and how 1o use it.

Licensed material -~ Property of Data General Carporation

p-2

Other Related Manuals

Data General EMACS Text Editor User's Manual (093-701011) describes the text editor used
with the Data General ComMon Lisp system.

AOSIVS Programmer’s Manual Vol. 1{093-000335) and Vol. II (093-000241) introduces system
concepts and the AOS/VS functions for coding a program in assembly language. The system
calls are in Volume 11,

AOS/VS Link and Library File Editor (LFE) User's Manual {093-000245) describes two fun-

damental AOS/VS utilities. Link consolidates object modules and library files into executable
program files. LFE creates, edits, and analyzes library files.

Contacting Data General

To order any Data General manual, notify your sales representative and supply the manual
title and order number.

If you have hardware problems, please notify your Support Center.

If you have software problems, please notify your local Support Center or submit a Software
Trouble Report (STR}) to the Software Trouble Report Processing Center.

End of Preface

Licensed materiai — Property of Data Generat Corporation

CONTENTS

20 21+ <SS GO p-1
ACKNOWIBAEEMENIS it e e e a-1
Chapter }—Introduction eir i e e 1-1
PP OSE . o oot ittt e e e 1-1
Notational ComvVentions ittt e et e e et e e e e I-3
Decimal NUmIDEIS ..\ttt ettt et e et 1-3
Nil, False, and the Empty LISt i i 1-3
Evaluation, Expansion, and Equivalence. i i 1-4
| 2R 4o - S UG RO 1-4
Descriptions of Functions and Other Entities............. .o, 1-6
The LisSp REAer oouuu e ittt e e s 1-7
Overview OF SYIIAXttt it e e i e 1-7
Chapter 2e—Data Ty PeS . oottt ettt it et e s a e s 2-1
N E D E £ o) =5 -3 2-3
B3 2 =) oS 2-3
|2 T - AP USSP 2-4
Floating-point NUIMbeErsttt it 2-5
CompleX NUMDETSottt et ittt e aaii e e nnns 2-7
CHATACTETS ottt in et ina v e em e ettt e s in s sranan e 2-8
S1andard CharaClerS vt v et ine i e e 2-8
B (T) 102 LT (I U 2-9
Non-standard CRaractersttt it ittt a s e e 2-10
Character AT DULES L .o it it e et e et i e 2-11
RSy 01T 0§ T2 Tl - T g 2-11
0241157 - 2-11
ListS AN COMSES . . oottt ettt ittt et e e 2-13
N . 2- S Y 2-14
BTt 1o) o T OGNS 2-15
o1 1 - 2-16
BtV CtOIS « .\ttt it ttee et e e e an e e e 2-17
Hash Tables .ottt it it o e oo e ettt e et ia it e e e i ia i 2-17
STV L2 13) [s R O 2-17
270 T P 2-17
YA 1T 1 7 =1: S 2-17
= 11 T-J0 S A RO 2-18
RN OIS EAEES oottt ittt ete et e et e e e 2-18
AT R4 11 o =% S 2-18
| 22T T o1 5 o ¢ - S A NSO 2-18
Unreadable Data ObJects.o oot e i e 2-19
Overlap, Inclusion, and Disjointness of Types........ ...t iiana.. 2-19
Chapter 3—Scope and EXtent ...t ii i 3-1

Licensed material — Property of Daia General Corporation

iv

Chapter 4—Type SpeCilers i ittt it in s 4-1
Type Specifier SYmMboOls i i i e e e e 4-1
Type Specifier Lists ittt i e ettt i e e, 4-1
Predicating Type Specifiers i i i e e 4.2
Type Specifiers that Combine. o i i i i e e 4-2
Type Specifiers that Specialize. i i e 4-4
Type Specifiers that Abbreviate. i i i i i i it 4-6
Defining New Type Speciflers i i e it e enannas 4-8
Type Conversion Function o i i et 4-9
Determining the Type of an Object. i i e 4-10

Chapter 5—Program StrUCIUrE e i it e it e ettt re i enanaeinnns 5-1
FOrms L e e e et 3-1

SeH-Evaluating Forms it i it i e e e 5-2
B - 5-2
Special Forms ... i 5-3
0 2] o 5-4
FunctionCalls i i e e e e e e e 5-4
B8 1ot (o - A A O A 5-5
Named Functionso i i i ettt et et 5-5
L ambda- B X Pres SIS . e e e e 5-5
Top-Level FOrmS ittt e e e et 5-11
Defining Named Functions. .. .o vt it et e et 5-11
Declaring Global Variables and Named Constants. ciiiiiran., 5-12
Control of Time of Evaluation ...ttt it it iine e iinaaans 5-13
Chapter 6— Predicates i i e i 6-1
Logical Valles i e e e et i 6-1
Data Type Predicalest ettt 6-2
General Type Predicates.o i et i 6-2
Specific Data Type Predicates........ ... oottt iinnas 6-2
Equality Predicateso i e e e 6-6
FI e To 1 T 10 SO 6-10
Chapter 7—Control StUCIUIEttt et e eae ettt iiannenriieeeennns 7-1
Constants and Variables o i e e e e 7-1
R erenCe o e e e i 7-2
L 14 11 1)+ A 7-6
Generalized Variables i e e e 7-7
FUnCHion InVoCationt i e i et et e e e e e 7-19
SIMIPIE S egUCTICE T . o o i e e e et 7-20
Establishing New Variable Bindings i, 7-21
Conditionalst e e e 7-25
Blocks and ExXItS o0t e et et e i 7-29
L4253 -1 4 T} A P 7-30
Indefinite HETAtiOnt i i it e e ae e et e e 7-30
General Heration ittt et e et e e e 7-31
Simple Iteration ConstrUCIS ... vttt it ittt enie e 7-34
L% 2 o) 3 ¢ 7-36

Licensed material — Propesty of Data General Corporation

The “*Program Feature’ i i i e 7-38

Multiple Valteso e e 7-41
Constructs for Handling Multiple Valueso o i, 7-41
Rules Governing the Passing of Multiple Values ...t 7-44

Dynamic Non-local EXitso it i s irnie e 7-46

Chapter 8= MACTOS . .\ ottt et e e it i i it e 8-1
LY Vs g =31 1L L 1 S O 8-1
Macro EXpansionou it e e 8-7

Chapter 9—Declarationsouit i i i e i i i 9-1

Declaration SYNLAX\ \ vt ettt et i s 9-1

Declaration Specifiers vt e e e e 9-4

Type Declaration for Forms i e 9-8

Chapter I0—Symbolst e e 10-1

The Property List.o e e i e e 10-1

The Prml NamIE . oottt ittt ettt a et e it et s 10-5

Creating Symbolso e e e 10-3

Chapter 11—Packages ...ttt i e it i 11-1

Consistency Rules i e 11-2

Package Names . . oo ittt et e e e 11-3

Translating Strings to Symbols o 11-3

Exporting and Importing Symbols ... i i 11-5

Name Contlictsottt e 1-6

BUilt-n PacKkages oottt it e e e e 11-9

Package System Functions and Variables o i 11-9

LY T4 11 1= e 11-15

AnExample. e e 11-16

Chapter 12— NUMDBETIS ittt it e it ai e e aa e iaans 12-1

Precision, Contagion, and COEIrCION.ttt it 12-1

Predicates on NUmMbDers . ..ttt ittt e a ettt 12-3

Comparisons on NUmbers i e e 124

Arthmetic OPerationsottt tt ettt et e ettt e iecme e i 12-6

Irrational and Transcendental Functionsiiiiiii i 12-9
Exponential and Logarithmic Functions i, 12-10
Trigonometric and Related Functions oo 12-11
Functions in the Complex Plane. o i i it s 12-15

Type Conversions and Component Extractions on Numbers 12-18

Logical Operations on NUMDbDEISouuiiinii i 12-24

Byte Manipulation FUnctionsr i iiiaiii i 12-28

RandomNUMbBEIS ...t i i it e i s 12-30

Implementation PATameterso. et ir e ittt it anar e, 12-33

Chapter 13- Characlers ..o vv vttt e ittt aiannns 13-1
Character AIIIDULES ittt ittt e e e et e i e 13-1

Licensed material - Property of Data General Carporation

vi

Predicates on Characters L. ...ttt 13-2
Character Construction and Selection i it 13-6
Character COMVETSIONSttt ettt e ettt e e e e 13-7
Character Control-Bit Functions. it i 13-9
Chapter [4-—SeqUeENCES\ttt ettt et et ettt e 14-1
Simple Sequence Functions e 14-3
Concatenating, Mapping, and Reducing Sequences ...t eennnnnnnn.. 14-4
Moo Y I SIS . . ittt et e 14-7
Searching Sequences for Items i 14-11
Sorting and METBINZttt e 14-12
Chapter L L IStS .ttt e e 15-1
LT T 15-1
LS L e e 15-3
Alteration of List SIrUCIUreo e 15-10
Substitution of EXpressions 15-11
Using Lists 88 SelS <. ..ttt et 15-12
ASSOCIatioN LListS .. e 15416
Chapter 16—Hash Tables 16-1
Hash Table FUnctions e et e e e 16-2
Primitive Hash Function. i e 16-4
Chapter 17— AITAYS ...t i e e e e 17-1
Array Creation i [7-1
AT A G TS . o oottt ettt e et e e e e 17-5
Armay Information e 17-6
Functions on Arrays of Bits i e 17-8
Bl P OImters . o 17-9
Changing the Dimensions of an Array i 17-11
Chapter LB— StrIES . .ottt it e e e 18-1
S A CESS w vttt ittt ettt e e e e e 18-1
String CoOmParisOn o e 18-2
String Construction and Manipulation. i i, 18-3
Chapter 19— S truCtUres e e ittt et 19-1
Introduction to SITUCIUNES it e i e e e 19-1
How to Use Defstruct.ottt e e e e e 19-3
Using the Automatically Defined Constructor Function 19-4
DS trUCt SOt OIS . . et e e 19-5
Defstriuct OPHONSttt e 19-5
By-position Constructor FURCHONSttt e 19-9
Explicitly Specified Representational Type Structuresooeivrnnn.... 19-10
Unnamed SIructIres e e 19-10
Named SITUCIUIES . ..o e e e e 19-11
Other Aspects of Explicitly Specified Structures e, 19-12

Licensed material — Property of Data General Corperation

vii

Chapter 20—The Evaluator.o oot i e 20-1
Run-Time Evaluation of FOrms i it aees 20-1
The Top-Level LoOP .. oo vvvr ittt e n e aae e 20-4

Chapter 21—SIrCamsu ittt et a et et 21-1
RS20 76 20t N30 42 W 6 ¢ S 21-1
Creating New SIFAIMS ...\ ttuur et ia ittt eanineneeeess 21-2
Operations on SIFEAMSttt it s am i 21-5

Chapter 22—Input/OUtPutot i e 22-1
Printed Representation of LispObjects. oo i o 22-1

What the Read FUunction ACCeplSottt ittt nes 22-2
Parsing of Numbers and Symbolso i 22-7
oY 0oy g T O § T2 15 £t T O OO 22-13
Standard Dispatching Macro Character Syntax i e, 22-18
The Readtable oottt i ettt e it 22-26
What the Print Function Produces o i it aa 22-30
INpUE FUNCHIONS ...ttt i e i it ettt e 22-38
Input from Character SIreamis.ottt i e e 22-38
Input from Binary SIreamsot 22-44
QUIPUE FUNCHIONSottt i i i a ittt e aeenn s 22-45
Output to Character Sreams. ...t iin i e inas 22-45
Output to Binary SIreamsuet et e 22-47
Formatted Output to Character SIreamso ittt een. 22-47
Querying the UServ it et it et aaa i esaes 22-67

Chapter 23—File System Interface i 23-1

B E Lol ¢ 1T OO 23-1
21T 117 AR U A 23-2
Pathname FUnCHOmS .« . it it it e i it i s 23-4

Opening and Closing Files i e es 23-8

Renaming, Deleting, and Other File Operationsooiiiiiiiiiiiiiinan s 23-13

Loading Files e i e 23-15

Accessing DIFeCIOTIESttt e i e 23-16

Chapter 24— ErrOrsottt e e e 24-1
General Error-Signalling FUNCHONSttt iiiiianen i ieneenes 24-1
L0007 T 110 ¢ - O U S N 24-5

Defining and Signalling Conditions. o i i 24-6
Examples of Error Signalling 24-7
Predefined Conditionsottt it e e e s 24-10

Specialized Error-Signalling Forms and Macros, 24-10

Special Forms for Exhaustive Case Analysiso i 24-12

Chapter 25-—Miscellaneous Features i iiiiiiiiiiiiiiiiiiaeaaaa, 25-1
The COMPIlErttt i i i et e 25-1
DOCUMERIAIION ittt ittt e e 25-3
Debugeing Tools . ..t e e e 25-4

Licensed mazerial — Property of Data General Corporation

viii

Environment Inguiries ot i 25-10
Time FUnCt oS . . oo e 25-10
Storage Managementttt e e 25-14
Other Environment Inquiries i e e 25-15
Identity FUnCtion o e e 25-16
Chapter 26—Foreign Calling it e e 26-1
Representation Types .. .oout i e e e e 26-2
Predefined Representation Typest 26-2
Representation Type Attribules i e, 26-5
Defauit Attributes of Representation Types....... ..., 26-7
Defining New Representation Types .. ooov it e 26-8
BTN S IUCIULES . vttt ettt e e e e e e 26-9
Foreign Structure Options e e 26-10
Forelgn Entrieso i 26-11
Building a Foreign Code Region. i i, 26-13
Errors and Signals in Foreign Code i i 26-13
Sharing Process Resources with LISP i, 26-13
Sharing Address Space and Memory. i 26-14
Chapter 27—0Operating System Interface i, 27-1
L OgEIng ON LS ..ottt e e e 27-1
WIS L .. e e e e 27-1
Heap Flles ..ot e e i e e 27-2
Interrupt Handlingo o e e 27-2
Interacting with the Operating System it e, 27-3
Chapter 28— References oo ov ittt e 28-1

Licensed material - Property of Data General Corporation

Acknowledgements

Common Lisp was designed by a diverse group of people affiliated with many institutions. Contributors
to the design and implementation of Common Lise and to the polishing of this manual are hereby

gratefully acknowledged:

Paul Anagnostopoulos
Dan Aronson

Alan Bawden

Eric Benson

Jon Bentley

Jerry Boetje

Gary Brooks
Rodney A. Brooks
Gary L.. Brown
Richard L. Bryan
Glenn S. Burke
Howard I. Cannon
George I. Carrette
Robert Cassels
Monica Cellio
David Iill

Scott E. Fahlman
Richard J. Fateman
Neal Feinberg
Ron Fischer

John Foderaro
Steve Ford
Richard Gabriel
Joseph Ginder
Bernard S. Greenberg
Richard Greenblatt
Martin L. Griss
Steven Handerson
Charles L. Hedrick
Gail Kaiser

Earie A. Killian
Steve Krueger
John L. Kulp

Jim Large

Rob Maclachian
William Maddox
Larry M. Masinter
John McCarthy

Digital Equipment Corporation

Carnegie-Mellon University

Massachusetts Institute of Technology

University of Utah, Stanford University, and Symbolics,
Incorporated

Carnegie-Mellon University and Bell Laboratories
Digital Equipment Corporation

Texas Instruments

Stanford University

Digital Equipment Corporation

Symbolics, Incorporated

Massachusetts Institute of Technology

Symbolics, Incorporated

Massachusetts Institute of Technology

Symbolics, Incorporated

Carnegie-Mellon University

Carnegie-Mellon University

Carnegie-Mellon University

University of California, Berkeley

Carnegie-Melon University

Rutgers University

Einiversity of California, Berkeley

Texas Instruments

Stanford University and Lawrence Livermore National Library
Carnegic-Mellon University and Perq Systems Corp.
Symbolics, Incorporated

Lisp Machines Incorporated (LMI)

University of Utah and Hewlett-Packard, Incorporated
Carnegie-Mellon University

Rutgers University

Carnegie-Melion University

Lawrence Livermore National Laboratory

Texas Instruments

Symbolics, Incorporated

Carnegie-Mellon University

Carnegie-Mellon University

Carnegie-Mellon University

Xerox Corporation

Stanford University

Licensed material - Property of Datz Generzl Corporation

a-2

Michael E. McMahon
Brian Milnes
David A. Moon
Beryl Morrison
Don Moirison

Dan Pierson

Kent M. Pitman
Jonathan Rees
Walter van Roggen
Susan Rosenbaum
William L. Scherlis
Lee Schumacher
Richard M, Stallman
Barbara K. Sieele
Guy L. Steele Ir.
Peter Szolovits
William vanMelle
Ellen Waldrum
Allan C. Wechsler
Daniel L. Weinreb
Jon L. White

Skef Wholey
Richard Zippel
Leonard Zubkoff

Symbolics, Incorporated

Carnegie-Mellon University

Symbolics, Incorporated

Digital Equipment Corporation

University of Utah

Digital Equipment Corporation

Massachusetts Institute of Technology

Yale University

Digital Equipment Corporation

Texas Instruments

Carnegie-Mellon University

Carnegie-Mellon University

Massachusetts Institute of Technology
Carnegie-Mellon University

Carnegie-Mellon University and Tartan Laboratories Incorporated
Massachusetts Institute of Technology

Xerox Corporation, Palo Alto Research Center
Texas Instruments

Symbolics, Incorporated

Symbolics, Incorporated

Xerox Corporation, Palo Alto Research Center
Carnegie-Mellon University

Massachusetts Institute of Technology
Carnegie-Mellon University and Tartan Laboratories Incorporated

Some contributions were relatively small; others involved enormous expenditures of effort and
great dedication. A few of the contributors served more as worthy adversaries than as benefactors
{and do not necessarily endorse the final design reported here), but their pointed criticisms were
just as important to the polishing of Common Lisp as all the positively phrased suggestions. All
of the people named above were helpful in one way or another, and I am grateful for the interest
and spirit of cooperation that allowed most decisions to be made by consensus after due discussion.

Counsiderable encouragement and moral support were also provided by:

Norma Abel

Roger Bate

Harvey Cragon
Dennis Duncan

Sam Fuller

A. Nico Habermann
Berthold K. P. Homn
Gene Kromer

Gene Matthews
Allan Newell

Dana Scoit

Harry Tennant
Patrick H. Winston
Lowell Wood
William A. Wulf

Digital Equipment Corporation

Texas Instruments

Texas Instruments

Digital Equipment Corporation

Digital Equipment Corporation
Carnegie-Mellon University
Massachusetis Institute of Technology
Texas Instruments

Texas Instruments

Carnegie-Mellon University
Carnegie-Mellon University

Texas Instruments

Massachusetts Institute of Technology
{.awrence Livermore Nafional Laboratory
Carnegie-Melion University and Tartan Laboratories Incorporated

I am very grateful to each of them.

Jan Zubkoff of Carnegie-Mellon University provided a great deal of organization, secretarial
support, and unfailing good cheer in the face of adversity.

l.icensed material - Property of Data Gengral Corporation

a-3

The development of Common Lise would most probably not have been possible without the
electronic message system provided by the ARPANET. Design decisions were made on several
hundred distinct points, for the most part by consensus, and by simple majority vote when
necessary. Except for two one-day face-to-face meetings, all of the language design and discussion
was done through the ARPANET message system, which permitted effortless dissemination of
messages to dozens of people, and several interchanges per day. The message system also
provided automatic archiving of the entire discussion, which has proved invaluable in the preparation
of this reference manual. Over the course of thirty months, approximately 3000 messages were
sent {an average of three per day), ranging in length from one line to twenty pages. Assuming
5000 characters per printed page of text, the entire discussion totaled about 1100 pages. It would
have been substantially more difficult to have conducted this discussion by any other means,
and would have required much more time.

The ideas in Common Lisp have come from many sources and been polished by much
discussion. I am responsible for the form of this manual, and for any errors or inconsistencies
that may remain; but the credit for the design and support of Common Lisp lies with the individuals
named above, each of whom has made significant contributions.

The organization and content of this manual were inspired in large part by the MacLISP
Reference Manual by David A. Moon and others [12], and by the Lisr Machine Manual {fourth
edition) by Daniel Weinreb and David Moon [21], which in turn acknowledges the efforts of
Richard Stallman, Mike McMahon, Alan Bawden, Glenn Burke, and “‘'many people too numerous
to list.”

I thank Phyllis Keenan, Chase Duffy, Virginia Anderson, John Osborn, and Jonathan Baker
of Digital Press for their help in preparing this book for publication. Jane Blake did an admirable
job of copy-editing. James Gibson and Katherine Downs of Waldman Graphics were most
cooperative in typesetting this book from my on-line manuscript files.

1 am grateful to Carnegie-Mellon University and to Tartan Laboratories Incorporated for
supporting me in the writing of this manual over the last three years.

Part of the work on this book was done in conjunction with the Carnegie-Mellon University
Spice Project, an effort to construct an advanced scientific software development for personal
computers. The Spice Project is supported by the Defense Advanced Research Projects Agency,
Department of Defense, ARPA Order 3597, monitored by the Air Force Avionics Laboratory
under contract F33615-78-C-1551. The views and conciusions contained in this book are those
of the author and should not be interpreted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the U. 5. Government.

Most of the writing of this book took place between midnight and 5 A M. I am grateful to
Barbara, Julia, and Peter for putting up with it, and for their love.

Guy L. Steele Jr.

Pittsburgh, Pennsylvania
March 1984

Data General Corporation wishes to thank Carpegie-Mellon University and the Spice Project
for providing the public domain software that was used as a basis for the DG Common Lisp
project.

End of Acknowledgements

Licensed material — Property of Dass General Corporation

Chapter 1
Introduction

CommMon Lisp is a new dialect of Lisp, a successor to MacLisp {12,15], influenced strongly by
ZeraLlise [21, 13] and also to some extent by Scueme [18] and InTerRLisP [20].

Purpose

Common Lisp is intended to meet these goals:

Commonality

Common Lisp originated in an attempt to focus the work of several implementation groups, each
of which was constructing successor implementations of MacLisp for different computers. These
implementations had begun to diverge because the differences in the implementation environments;
microcoded personal computers (Zeral.ise, SPICE Lisp) commercial timeshared computers (NIL.),
and supercomputers (S-1 Lisp). While the differences among the several implementation environments
of necessity will continue to force certain incompatibilities among the implementations, Common
Lisr serves as a common dialect to which each implementation makes any necessary extensions.

Portability

Common Lise intentionally excludes features that cannot be implemented easily on a broad class
of machines. On the one hand, features that are difficult or expensive to implement on hardware
without special microcode are avoided or provided in a more abstract and efficiently implementable
form. (Examples of this are the invisibie forwarding pointers and locatives of ZrTal.isp. Some
of the problems that they solve are addresssed in different ways in Common Lisp.) On the other
hand, features that are useful only on certain “‘ordinary™ or “‘commercial’’ processors are avoided
or made optional. (An example of this is the type declaration facility, which is useful in some
impitementations and completely ignored in others. Type declarations are completely optional
and for correct programs affect only efficiency, not semantics.} Common Lise is designed to make
it easy to write programs that depend as little as possible on machine-specific characteristics,
such as word length, while allowing some variety of implementation techniques.

Licensed material - Property of Data General Corporation

1-2

Consistency

Most Lisp implementations are internally inconsistent in that by default the interpreter and
compiler may assign different semantics to correct programs. This semantic difference stems
primarily from the fact that the interpreter assumes all variable to be dynamically scoped, whereas
the compiler assumes all variables to be local unless explicitly directed otherwise. This difference
has been the usual practice in Lisp for the sake of convenience and efficiency, but can lead to
very subtle bugs. The definition of Common Lisp avoids such anomalies by explicitly requiring
the interpreter and compiler to impose identical semantics on correct programs so far as possible.

Expressiveness

Common Lisp culls what experience has shown to be the most useful and understandable constructs
from not only MacLisp, but also INTERL1sp, other Lisp dialects, and other programming languages.
Constructs judged to be awkward or less nseful have been excluded. (An example is the store
construct of MacLisr.)

Compatibility

Unless there is a good reason to the contrary, Common Lisp strives to be compatible with
Zeralise, MacLise, and InTeRLISP, roughly in that order.

Efficiency

Common Lise has a number of features designed to facilitate the production of high-quality
compiled code in those implementations whose developers care to invest effort in an optimizing
compiler. One implementation of Common Lise, namely S-1 Lisp, already has a compiler that
produces code for numerical computations that is competitive in execution speed with that
produced by a FORTRAN compiler [3]. The S-1 Lisr compiler extends the work done in MacLisp
to produce extremely efficient numerical code [7].

Power

Common Lisp is a descendant of MacLise, which has traditionaily placed emphasis on providing
system-building tools. Such tools may in turn be used to build the user-level packages such as
InrerLIsP provides; these packages are not, however, part of the CoMMon Lisp core specification.
it is expected such packages will be built on top of the Common Lisp core.

Stability

it is intended that Common Lisp will change only slowly and with due deliberation. The various
dialects that are supersets of CoMmMoN Lisp may serve as laboratories within which to test language
extensions, but such extensions will be added to ComMon Lise only after careful examination
and experimentation.

The goals of Common Lisp are thus very close to those of Stanparp Lisp [11] and PortaBLE
StanparD Lisr [16]. Common Lisp differs from Stanparp Lisp primarily in incorporating more
features, including a richer and more complicated set of data types and more complex control
structures.

Licensed material — Property of Data General Corporatior

i-3

This book is intended to be a language specification rather than an implementation specification
(although implementation notes ae scattered throughout the text). It defines a set of standard
language concepts and constructs that may be used for communication of data structures and
algorithms in the Common Lisp dialect. This set of concepts and constructs is sometimes referred
to as the “‘core CommoN Lisp language’ because it contains conceptually necessary or important
features. It is not necessarily implementationally minimal. While many features could be defined
in terms of others by writing Lisp code, and indeed may be implemented that way, it was felt
that these features should be conceptually primitive so that there might be agreement among all
users as to their usage. (For example, bignums and rational numbers could be implemented as
Lisp code given operations on fixnums. However, it is important to the conceptual integrity of
the language that they be regarded by the user as primitive, and theory are useful enough to
warrant a standard definition.)

For the most part, this book defines a programming language, not a programming environment.
A few interfaces are defined for invoking such standard programming tools as a compiler, an
editor, a program trace facility, and a debugger, but very little is said about their nature or
operation. It is expected that one or more extensive programming environments will be built
using Common Lisp as a foundation, and will be documented separately.

Notational Conventions

A number of special notational conventions are used through this book.

Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit indication to the
contrary. (Decimal notation is normally taken for granted, of course. Unfortunately, for certain
other dialects of Lisp, MacLisp in particular, the default notation for numbers is octal (base 8)
rather than decimal, and so the use of decimal notation for describing Common Lisp is, taken
in its historical context, a bit unusual!)

Nil, False, and the Empty List

In Common Lisp, as in most Lisp dialects, the symbol nil is used to represent both the empty
list and the ““false” value for Boolean tests. An empty list may, of course, also be written ();
this normally denotes the same object as nil. (It is possible, by extremely perverse manipulation
of the package system, to cause the sequence of letters nil to be recognized not as the symbol
that represents the empty list but as another symbol with the same name. This obscure possibility
will be ignored in this manual.) These two notations may be used interchangeably as far as the
Lisp system is concerned. However, as a matter of style, this manual uses the notation () when
it is desirable to emphasize the use of an empty list, and uses the notation nil when it is desirable
to emphasize the use of the Boolean *‘false.” The notation 'nil (note the explicit quotation mark)
is used to emphasize the use of a symbol. For example:

(defun three {} 3) ;Emphasize empty parameter list.
(append ‘() ‘() = () :Emphasize use of empty lists

{not nit} > t :Emphasize use as Boolean ““false™
{get 'nil ‘color) :Emphasize use as a symbol

Lécensed materiad - Property of Data General Corporation

1-4

Any data object other than nit is construed to be Boolean “*not false,” that is, “‘true.”” The
symbol tis conventionally used to mean ““true’’ when no other value is more appropriate. When
a function is said to “‘return false’” or to “"be false” in some circumstance, this means that it
returns nil. However, when a function is said to “‘return frue’ or to **be true™ in some circumstance,
this means that it returns some value other than nil, but not necessarily 1.
Evaluation, Expansion, and Equivalence
Execution of code in Lisp is called evaluation because executing a piece of code normally results
in a data object called the value produced by the code. The symbol = is used in examples to
indicate evaluation. For example,
(+ 45)>9
means ‘‘the result of evaluating the code (+ 4 3} is (or would be, or would have been) 9.
The symbol — is used in examples to indicate macro expansion. For example,
(push x v) — (setf v (cons x v})
means “‘the result of expanding the macro-call form (push x v) is setf v (cons x v)).”" This implies
that the two pieces of code do the same thing: the second piece of code is the definition of what
the first does.
The symbol = is used in examples to indicate code equivalence. For example,
(god x (ged v z)) = (ged (ged x v) z}
means “‘the value and effects of evaluating the form (ged x (ged y z)) are always the same as
the value and effects of (ged x v) 2) for any values of the variables x, vy, and z.”’ This implies
that the two pieces of code do the same thing; however, neither directly defines the other in
the way macro expansion does.
Errors
When this manual specifies that it ““is an error’ for some siluation to occur, this means that:

+ No valid Common Lisp program should cause this situation to occur.

+ If this situation occurs, the effects and results are completely undefined as far as adherence
to the Common Lise specification is concerned.

*+ No ComMmon Lisp implementation is required to detect such an error. Of course. implementors
are encouraged to provide for detection of such errors wherever reasonable.

This is not to say that some particular implementation might not define the effects and results

for such a situation; the point is that no program conforming to the Common Lisp specification
may correctly depend on such effects or results.

Licensed material ~- Property of Data General Carporation

1-5

On the other hand, if it is specified in this manual that in some situation “‘an error is
signalled” this means that:

+ If this situation occurs, an error will be signalled (see error and cerror).
+ Valid Common Lisp programs may rely on the fact that an error will be signalied.

+ Every Common Lisp implementation is required to detect such an error.

Table 1-1: Sample Function Description

sample-function argl arg? &optional argd argd [Function]

The function somple-function adds together argl and arg2, and then multiplies the resuit by
arg3. If arg3 is not provided or is nil, the multiplication isn’t done. sample-function then returns
a list whose first element is this result and whose second element is arg4 (which defaults to the
symbol foo}. For example:

(sample-function 3 4} = {7 foo}
{sample-function 1 2 2 ‘bar) = (6 bar)

In general, (sample-function x y) == (list (+ x ¥} 'foo).

Table 1-2: Sample Variable Description

sampie-variable [Variable]

The variable *sample-variatie* specifies how many times the special form sample-special-form
should iterate. The value should always be a non-negative integer or nil {which means iterate
indefinitely many times). The initial value is 0.

Table 1-3: Sample Constant Description

sample-constant [Constant]

The named constant sample-constant has as its value the height of the terminal screen in furlongs
times the base-2 logarithm of the implementation’s total disk capacity in bytes, as a floating-
point number.

In places where it is stated that so-and-so “‘must’” or “‘must not’’ or ““may not”" be the
case, then it “‘is an error’’ if the stated requirement is not met. For example, if an argument
“must be a symbol,” then it *‘is an error’’ if the argument is not a symbol. In all cases where
an error is to be signalled, the word *‘signalled’ is always used explicitly in this manual.

Licensed material — Property of Data General Corporation

1-6

Descriptions of Functions and Other Entities

Functions, variables, named constants, special forms, and macros are described using a distinctive
typographical format. Definition 1-1 illusirates the manner in which ComMon Lise functions are
documented. The first line specifies the name of the function, the manner in which it accepts
arguments, and the fact that it is a function. If the function takes many arguments, then the
names of the arguments may spill across two or three lines. The paragraphs following this
standard header explain the definition and uses of the function and often present examples or
related functions.

Table 1-4: Sample Special Form Description

sample-special-form [rame] (fvart*) {form}* [Special form)

This evaluates each form in sequence as an implicit progn, and does this as many times as
specified by the global variable *sample-variable*. Each variable var is bound and initialized to
43 before the first iteration, and unbound after the last iteration. The name name, if supplied,
may be used in a return-from form to exit from the loop prematurely. If the loop ends normally,
sample-special-form returns nil. For example:

(setg "sample-variable* 3)
{sample-special-form {) forml forml)

This evaluates forml, form2, forml, form2, forml, form2 in that order.

Table 1-5: Sample Macro Description

sample-macro var {tag | statement}* [Macro]
This evaluates the statements as a prog body, with the variable var bound to 43.

{sample-macro x (return [+ x x })) = 86
(sample-macto var . body} — (prog ([var 43)) . body)

Sometimes two or more related functions are explained in a single combined description.
In this situation the headers for all the functions appear together, followed by the combined
description.

In general, actual code (including actual names of functions) appears in this typeface: {cons
a b}, Names that stand for pieces of code (metavariables) are written in italics. In a function
description, the names of the parameters appear in italics for expository purposes. The word
&optional in the list of parameters indicates that all arguments past that point are optional; the
default values for the parameters are described in the text. Parameter lists may also contain
&rest, indicating that an indefinite number of arguments may appear, or &key, indicating that
keyword arguments are accepted. {The &optional/&rest/&key syntax is actually used in Common
Lasp function definitions for these purposes.)

Licensed material — Property of Data Genera) Corporation

1-7

Definition 1-2 illustrates the manner in which a global variable is documented. The first line
specifies the name of the variable and the fact that it is a variable. Purely as a matter of convention,
all global variables used by Common Liser have names beginning and ending with an asterisk.

Definition 1-3 illustrates the manner in which a named constant is documented. The first
line specifies the name of the constant and the fact that it is a constant. (A constant is just like
a global variable, except that it is an error ever to alter its value or to bind it to a new value.)

Definitions 1-4 and i-5 illustrate the documentation of special forms and macros, which are
closely related in purpose. These are very different from functions. Functions are called according
to a single, specific, consistent syntax; the &optional/&rest/&key syntax specifies how the function
uses its arguments internally, but does not affect the syntax of a call. In contrast, each special
form or macro can have its own idiosyncratic syntax. It is by special forms and macros that
the syntax of Common Lisp is defined and extended.

In the description of a special form or macro, an italicized word names a corresponding
part of the form that invokes the special form or macro. Parentheses stand for themselves, and
should be written as such when invoking the special form or macro. Brackets, braces, stars,
plus signs, and vertical bars are metasyntactic marks. Brackets, [and], indicate that what they
enclose is optional (may appear zero times or one time in that place); the square brackets should
not be written in code. Braces, { and }, simply parenthesize what they enclose, but may be
followed by a star, *, or a plus sign, *; a star indicates that what the braces enclose may appear
any number of times (including zero, that is, not at all), whereas a plus sign indicates that what
the braces enclose may appear any non-zero number of times (that is, must appear at least once).
Within braces or brackets, a vertical bar, |, separates mutually exclusive choices. In summary,
the notation {x}* means zero or more occurrences of x, the notation {x}* means one or more
occurrences of x, and the notation [x] means zero or one occurrence of x. These notations are
also used for syntactic descriptions expressed as BNF-like productions, as in Table 22-2.

In the last example in Definition 1-5, notice the use of dot notation. The dot appearing in
the expression (sample-macro var . body) means that the name body stands for a list of forms,
not just a single form, at the end of a list. This notation is often used in examples.

The Lisp Reader

The term **Lisp reader’’ refers not to you, the reader of this manual, nor to some person reading
Lisp code, but specifically to a Lisp procedure, namely the function read, that reads characters
from an input stream and interprets them by parsing as representations of Lisp objects.

Overview of Syntax

Certain characters are used in special ways in the syntax of Common Lisp. The complete syntax
is explained in detail in Chapter 22, but a quick summary here may be useful:

{ A left parenthesis begins a list of items. The list may contain any number of items, including
zero. Lists may be nested. For example, (cons (car x) (cdr y)} is a list of three things, of
which the last two are themselves lists.

) A right parenthesis ends a list of items.

An acute accent (also called single quote or apostrophe) followed by an expression form

is an abbreviation for (quote form). Thus foo means [guote foo) and ‘(cons ‘a ‘b) means
(guote (cons (guote a) (quote b))

Licensed material - Property of Data Genersl Corporation

Semicolon is the comment character. It and all characters up to the end of the line are
discarded.

Double quotes surround character strings: “This is a thirty-nine character string.”

Backslash is an escape character. It causes the next character to be treated as a letter
rather than for its usual syntactic purpose. For example, A~(B denotes a symbol whose
name consists of the three characters A, [, and B. Similarly, “~\."" denotes a character
string containing one character, a double quote, because the first and third double quotes
serve to delimit the string, and the second double quote serves as the contents of the string.
The backslash causes the second double quote to be taken literally, and prevents it from
being interpreted as the the terminating delimiter of the string.

Vertical bars are used in pairs to surround the name (or part of the name) of a symbol
that has many special characters in it. It is roughly equivalent to putting a backslash in
front of every character so surrcunded. For example, JA(B)], Al{|B]}], and AN (B\) all mean
the symbol whose name consists of the four characters A, (, B, and).

The number sign signals the beginning of a complicated syntactic structure, The next
character designates the precise syntax to follow. For example, #0165 means 105; (105 in
octal notation); #x105 means 105, (105 in hexadecimal notation); #b1041 means 1011, (1011
in binary notation); #>L denotes a character object for the character L; and #(a b ¢)
denotes a vector of three elements o, b, and c. A particularly important case is that #fh
means (function fi), in a manner analogous to ‘form meaning (quote form).

Grave accent (‘*backquote’) signals that the next expression is a template that may contain
commas. The backquote syntax represents a program that will construct a data structure
according to the template.

Commas are used within the backquote syntax.

Colon is used to indicate which package a symbol belongs to. For example, network:reset
denotes the symbol named reset in the package named network. A leading colon indicates
a keyword, & symbol that always evaluates to itself. The colon character is not actually
part of the print name of the symbol. This is all explained in Chapter 11; until you read
that, just keep in mind that a symbol notated with a leading colon is in effect a constant
that evaluates to itsell.

Brackets, braces, question mark, and exclamation point (that is, [, }, {, }, 7, and 1) are not

used for any purpose in standard Common Lisp syntax. These characters are explicitly reserved
to the user, primarily for use as macro characters for user-defined lexical syntax extensions.
See ‘“Macro Character,”” Chapter 22.

All code in this manual is written using lowercase letters. Common Lise is generally insensitive

to the case in which code is written. Internally, names of symbols are ordinarily converted to
and stored in uppercase form. There are ways to force case conversion on output if desired;
see *print-case*. In this manual, wherever an interactive exchange between a user and the Lisp
system is shown, the input is cxhibited with lowercase letters and the output with uppercase
letters.

End of Chapter

Licensed material — Propesty of Data General Corporation

Chapter 2
Data Types

Common Lisp provides a variety of types of data objects. It is important to note that in Lisp it
is data obiects that are typed, not variables. Any variable can have any Lisp object as its value.
(It is possible to make an explicit declaration that a variable will in fact take on one of only a
limited set of values. However, such a declaration may always be omitted, and the program will
still run correctly. Such a declaration merely constitutes advice from the user that may be useful
in gaining efficiency. See declare.)

In Common Lisp, a data type is a set (possibly infinite) of Lisp objects. Many Lisp objects
belong to more than one such set, and so it doesn't always make sense to ask what the type
of an object is; instead, one usually asks only whether an object belongs to a given type. The
predicate typep may be used to ask whether an object belongs to a given type, and the function
type-of returns « type to which a given object belongs.

The data types defined in Common Lisp are