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Preface

This manual is the primary reference for the Data General Common Lisp system that runs under
the Advanced Operating System/Virtual Storage (AOS/VS) and its interface to the DG MV/UX™
operating system. DG Common Lisp comprises both a language system and an environment. The
language system includes an interpreter, a compiler, and runtime libraries for ComMon Lisp. The
environment is a set of program development tools, including a debugger and the EMACS text
editor.

This manual completely incorporates COMMON LISP: the Language by Guy L. Steele,
Ir., with contributions by Scott E. Fahlman, Richard P. Gabriel, David A. Moon, and
Daniel L. Weinreb; copyright held by Digital Equipment Corporation and published by
Digital Press, Burlington, MA. The Steele book is the de facto standard for Common Lisp; the
Data General Corporation {DGC) implementation, DG Common Lisp, supports most of this stan-
dard and provides some additional facilities. Within this book. descriptions of extensions and
comments that are not part of the standard work are written in colored ink. Common Lisp
features that are not supported in this implementation or comments that are not relevant are
shaded.

Who Should Read This Manual?
This is a reference manual for experienced Lisp programmers. It assumes that the reader has
enough experience with the AOS/VS Command Line Interpreter (CLI) or the MV/UX shell to

manipulate files and execute programs. Knowledge of the EMACS text editor for Common Lisp
is not assumed: EMACS users are referred to the appropriate manual below.

Manual Organization
This manual is designed to give quick access to needed information. It is not intended to be
read sequentially, except that later chapters do not redefine terms defined earlier (you can find
the definitions through the index). Each section is self-contained, with references to other relevant
sections.
The Common Lisp notational conventions are described in Chapter {. AOS/VS and MV/UX
commands use their standard notations.

Prerequisite Manuals

« Command Line Interpreter (CLI) User's Manual (AOS and AOS/VS) (093-000122) describes
the interactive interface to AOS and AOS/VS.

« MVIUX System User’s Manual (093-701001) explains the MV/UX system and how 1o use it.
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Other Related Manuals

Data General EMACS Text Editor User's Manual (093-701011) describes the text editor used
with the Data General ComMon Lisp system.

AOSIVS Programmer’s Manual Vol. 1{093-000335) and Vol. II (093-000241) introduces system
concepts and the AOS/VS functions for coding a program in assembly language. The system
calls are in Volume 11,

AOS/VS Link and Library File Editor (LFE) User's Manual {093-000245) describes two fun-

damental AOS/VS utilities. Link consolidates object modules and library files into executable
program files. LFE creates, edits, and analyzes library files.

Contacting Data General

To order any Data General manual, notify your sales representative and supply the manual
title and order number.

If you have hardware problems, please notify your Support Center.

If you have software problems, please notify your local Support Center or submit a Software
Trouble Report (STR}) to the Software Trouble Report Processing Center.

End of Preface
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Chapter 1
Introduction

CommMon Lisp is a new dialect of Lisp, a successor to MacLisp {12,15], influenced strongly by
ZeraLlise [21, 13] and also to some extent by Scueme [18] and InTerRLisP [20].

Purpose

Common Lisp is intended to meet these goals:

Commonality

Common Lisp originated in an attempt to focus the work of several implementation groups, each
of which was constructing successor implementations of MacLisp for different computers. These
implementations had begun to diverge because the differences in the implementation environments;
microcoded personal computers (Zeral.ise, SPICE Lisp) commercial timeshared computers (NIL.),
and supercomputers (S-1 Lisp). While the differences among the several implementation environments
of necessity will continue to force certain incompatibilities among the implementations, Common
Lisr serves as a common dialect to which each implementation makes any necessary extensions.

Portability

Common Lise intentionally excludes features that cannot be implemented easily on a broad class
of machines. On the one hand, features that are difficult or expensive to implement on hardware
without special microcode are avoided or provided in a more abstract and efficiently implementable
form. (Examples of this are the invisibie forwarding pointers and locatives of ZrTal.isp. Some
of the problems that they solve are addresssed in different ways in Common Lisp.) On the other
hand, features that are useful only on certain “‘ordinary™ or “‘commercial’’ processors are avoided
or made optional. (An example of this is the type declaration facility, which is useful in some
impitementations and completely ignored in others. Type declarations are completely optional
and for correct programs affect only efficiency, not semantics.} Common Lise is designed to make
it easy to write programs that depend as little as possible on machine-specific characteristics,
such as word length, while allowing some variety of implementation techniques.
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Consistency

Most Lisp implementations are internally inconsistent in that by default the interpreter and
compiler may assign different semantics to correct programs. This semantic difference stems
primarily from the fact that the interpreter assumes all variable to be dynamically scoped, whereas
the compiler assumes all variables to be local unless explicitly directed otherwise. This difference
has been the usual practice in Lisp for the sake of convenience and efficiency, but can lead to
very subtle bugs. The definition of Common Lisp avoids such anomalies by explicitly requiring
the interpreter and compiler to impose identical semantics on correct programs so far as possible.

Expressiveness

Common Lisp culls what experience has shown to be the most useful and understandable constructs
from not only MacLisp, but also INTERL1sp, other Lisp dialects, and other programming languages.
Constructs judged to be awkward or less nseful have been excluded. (An example is the store
construct of MacLisr.)

Compatibility

Unless there is a good reason to the contrary, Common Lisp strives to be compatible with
Zeralise, MacLise, and InTeRLISP, roughly in that order.

Efficiency

Common Lise has a number of features designed to facilitate the production of high-quality
compiled code in those implementations whose developers care to invest effort in an optimizing
compiler. One implementation of Common Lise, namely S-1 Lisp, already has a compiler that
produces code for numerical computations that is competitive in execution speed with that
produced by a FORTRAN compiler [3]. The S-1 Lisr compiler extends the work done in MacLisp
to produce extremely efficient numerical code [7].

Power

Common Lisp is a descendant of MacLise, which has traditionaily placed emphasis on providing
system-building tools. Such tools may in turn be used to build the user-level packages such as
InrerLIsP provides; these packages are not, however, part of the CoMMon Lisp core specification.
it is expected such packages will be built on top of the Common Lisp core.

Stability

it is intended that Common Lisp will change only slowly and with due deliberation. The various
dialects that are supersets of CoMmMoN Lisp may serve as laboratories within which to test language
extensions, but such extensions will be added to ComMon Lise only after careful examination
and experimentation.

The goals of Common Lisp are thus very close to those of Stanparp Lisp [11] and PortaBLE
StanparD Lisr [16]. Common Lisp differs from Stanparp Lisp primarily in incorporating more
features, including a richer and more complicated set of data types and more complex control
structures.
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This book is intended to be a language specification rather than an implementation specification
(although implementation notes ae scattered throughout the text). It defines a set of standard
language concepts and constructs that may be used for communication of data structures and
algorithms in the Common Lisp dialect. This set of concepts and constructs is sometimes referred
to as the “‘core CommoN Lisp language’ because it contains conceptually necessary or important
features. It is not necessarily implementationally minimal. While many features could be defined
in terms of others by writing Lisp code, and indeed may be implemented that way, it was felt
that these features should be conceptually primitive so that there might be agreement among all
users as to their usage. (For example, bignums and rational numbers could be implemented as
Lisp code given operations on fixnums. However, it is important to the conceptual integrity of
the language that they be regarded by the user as primitive, and theory are useful enough to
warrant a standard definition.)

For the most part, this book defines a programming language, not a programming environment.
A few interfaces are defined for invoking such standard programming tools as a compiler, an
editor, a program trace facility, and a debugger, but very little is said about their nature or
operation. It is expected that one or more extensive programming environments will be built
using Common Lisp as a foundation, and will be documented separately.

Notational Conventions

A number of special notational conventions are used through this book.

Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit indication to the
contrary. (Decimal notation is normally taken for granted, of course. Unfortunately, for certain
other dialects of Lisp, MacLisp in particular, the default notation for numbers is octal (base 8)
rather than decimal, and so the use of decimal notation for describing Common Lisp is, taken
in its historical context, a bit unusual!)

Nil, False, and the Empty List

In Common Lisp, as in most Lisp dialects, the symbol nil is used to represent both the empty
list and the ““false” value for Boolean tests. An empty list may, of course, also be written ();
this normally denotes the same object as nil. (It is possible, by extremely perverse manipulation
of the package system, to cause the sequence of letters nil to be recognized not as the symbol
that represents the empty list but as another symbol with the same name. This obscure possibility
will be ignored in this manual.) These two notations may be used interchangeably as far as the
Lisp system is concerned. However, as a matter of style, this manual uses the notation () when
it is desirable to emphasize the use of an empty list, and uses the notation nil when it is desirable
to emphasize the use of the Boolean *‘false.” The notation 'nil (note the explicit quotation mark)
is used to emphasize the use of a symbol. For example:

(defun three {} 3) ;Emphasize empty parameter list.
(append ‘() ‘() = () :Emphasize use of empty lists

{not nit} > t :Emphasize use as Boolean ““false™
{get 'nil ‘color) :Emphasize use as a symbol
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Any data object other than nit is construed to be Boolean “*not false,” that is, “‘true.”” The
symbol tis conventionally used to mean ““true’’ when no other value is more appropriate. When
a function is said to “‘return false’” or to “"be false” in some circumstance, this means that it
returns nil. However, when a function is said to “‘return frue’ or to **be true™ in some circumstance,
this means that it returns some value other than nil, but not necessarily 1.
Evaluation, Expansion, and Equivalence
Execution of code in Lisp is called evaluation because executing a piece of code normally results
in a data object called the value produced by the code. The symbol = is used in examples to
indicate evaluation. For example,
(+ 45)>9
means ‘‘the result of evaluating the code (+ 4 3} is (or would be, or would have been) 9.
The symbol — is used in examples to indicate macro expansion. For example,
(push x v) — (setf v (cons x v})
means “‘the result of expanding the macro-call form (push x v) is setf v (cons x v)).”" This implies
that the two pieces of code do the same thing: the second piece of code is the definition of what
the first does.
The symbol = is used in examples to indicate code equivalence. For example,
(god x (ged v z)) = (ged (ged x v) z}
means “‘the value and effects of evaluating the form (ged x (ged y z)) are always the same as
the value and effects of (ged x v) 2) for any values of the variables x, vy, and z.”’ This implies
that the two pieces of code do the same thing; however, neither directly defines the other in
the way macro expansion does.
Errors
When this manual specifies that it ““is an error’ for some siluation to occur, this means that:

+ No valid Common Lisp program should cause this situation to occur.

+ If this situation occurs, the effects and results are completely undefined as far as adherence
to the Common Lise specification is concerned.

*+ No ComMmon Lisp implementation is required to detect such an error. Of course. implementors
are encouraged to provide for detection of such errors wherever reasonable.

This is not to say that some particular implementation might not define the effects and results

for such a situation; the point is that no program conforming to the Common Lisp specification
may correctly depend on such effects or results.
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On the other hand, if it is specified in this manual that in some situation “‘an error is
signalled” this means that:

+ If this situation occurs, an error will be signalled (see error and cerror).
+ Valid Common Lisp programs may rely on the fact that an error will be signalied.

+ Every Common Lisp implementation is required to detect such an error.

Table 1-1: Sample Function Description

sample-function argl arg? &optional argd argd [Function]

The function somple-function adds together argl and arg2, and then multiplies the resuit by
arg3. If arg3 is not provided or is nil, the multiplication isn’t done. sample-function then returns
a list whose first element is this result and whose second element is arg4 (which defaults to the
symbol foo}. For example:

(sample-function 3 4} = {7 foo}
{sample-function 1 2 2 ‘bar) = (6 bar)

In general, (sample-function x y) == (list (+ x ¥} 'foo).

Table 1-2: Sample Variable Description

*sampie-variable* [Variable]

The variable *sample-variatie* specifies how many times the special form sample-special-form
should iterate. The value should always be a non-negative integer or nil {which means iterate
indefinitely many times). The initial value is 0.

Table 1-3: Sample Constant Description

sample-constant [Constant]

The named constant sample-constant has as its value the height of the terminal screen in furlongs
times the base-2 logarithm of the implementation’s total disk capacity in bytes, as a floating-
point number.

In places where it is stated that so-and-so “‘must’” or “‘must not’’ or ““may not”" be the
case, then it “‘is an error’’ if the stated requirement is not met. For example, if an argument
“must be a symbol,” then it *‘is an error’’ if the argument is not a symbol. In all cases where
an error is to be signalled, the word *‘signalled’ is always used explicitly in this manual.

Licensed material — Property of Data General Corporation



1-6

Descriptions of Functions and Other Entities

Functions, variables, named constants, special forms, and macros are described using a distinctive
typographical format. Definition 1-1 illusirates the manner in which ComMon Lise functions are
documented. The first line specifies the name of the function, the manner in which it accepts
arguments, and the fact that it is a function. If the function takes many arguments, then the
names of the arguments may spill across two or three lines. The paragraphs following this
standard header explain the definition and uses of the function and often present examples or
related functions.

Table 1-4: Sample Special Form Description

sample-special-form [rame] (fvart*) {form}* [Special form)

This evaluates each form in sequence as an implicit progn, and does this as many times as
specified by the global variable *sample-variable*. Each variable var is bound and initialized to
43 before the first iteration, and unbound after the last iteration. The name name, if supplied,
may be used in a return-from form to exit from the loop prematurely. If the loop ends normally,
sample-special-form returns nil. For example:

(setg "sample-variable* 3)
{sample-special-form {) forml forml)

This evaluates forml, form2, forml, form2, forml, form2 in that order.

Table 1-5: Sample Macro Description

sample-macro var {tag | statement}* [Macro]
This evaluates the statements as a prog body, with the variable var bound to 43.

{sample-macro x (return [+ x x })) = 86
(sample-macto var . body} — (prog ([ var 43)) . body)

Sometimes two or more related functions are explained in a single combined description.
In this situation the headers for all the functions appear together, followed by the combined
description.

In general, actual code (including actual names of functions) appears in this typeface: {cons
a b}, Names that stand for pieces of code (metavariables) are written in italics. In a function
description, the names of the parameters appear in italics for expository purposes. The word
&optional in the list of parameters indicates that all arguments past that point are optional; the
default values for the parameters are described in the text. Parameter lists may also contain
&rest, indicating that an indefinite number of arguments may appear, or &key, indicating that
keyword arguments are accepted. {The &optional/&rest/&key syntax is actually used in Common
Lasp function definitions for these purposes.)
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Definition 1-2 illustrates the manner in which a global variable is documented. The first line
specifies the name of the variable and the fact that it is a variable. Purely as a matter of convention,
all global variables used by Common Liser have names beginning and ending with an asterisk.

Definition 1-3 illustrates the manner in which a named constant is documented. The first
line specifies the name of the constant and the fact that it is a constant. (A constant is just like
a global variable, except that it is an error ever to alter its value or to bind it to a new value.)

Definitions 1-4 and i-5 illustrate the documentation of special forms and macros, which are
closely related in purpose. These are very different from functions. Functions are called according
to a single, specific, consistent syntax; the &optional/&rest/&key syntax specifies how the function
uses its arguments internally, but does not affect the syntax of a call. In contrast, each special
form or macro can have its own idiosyncratic syntax. It is by special forms and macros that
the syntax of Common Lisp is defined and extended.

In the description of a special form or macro, an italicized word names a corresponding
part of the form that invokes the special form or macro. Parentheses stand for themselves, and
should be written as such when invoking the special form or macro. Brackets, braces, stars,
plus signs, and vertical bars are metasyntactic marks. Brackets, [ and ], indicate that what they
enclose is optional (may appear zero times or one time in that place); the square brackets should
not be written in code. Braces, { and }, simply parenthesize what they enclose, but may be
followed by a star, *, or a plus sign, *; a star indicates that what the braces enclose may appear
any number of times (including zero, that is, not at all), whereas a plus sign indicates that what
the braces enclose may appear any non-zero number of times (that is, must appear at least once).
Within braces or brackets, a vertical bar, |, separates mutually exclusive choices. In summary,
the notation {x}* means zero or more occurrences of x, the notation {x}* means one or more
occurrences of x, and the notation [x] means zero or one occurrence of x. These notations are
also used for syntactic descriptions expressed as BNF-like productions, as in Table 22-2.

In the last example in Definition 1-5, notice the use of dot notation. The dot appearing in
the expression (sample-macro var . body) means that the name body stands for a list of forms,
not just a single form, at the end of a list. This notation is often used in examples.

The Lisp Reader

The term **Lisp reader’’ refers not to you, the reader of this manual, nor to some person reading
Lisp code, but specifically to a Lisp procedure, namely the function read, that reads characters
from an input stream and interprets them by parsing as representations of Lisp objects.

Overview of Syntax

Certain characters are used in special ways in the syntax of Common Lisp. The complete syntax
is explained in detail in Chapter 22, but a quick summary here may be useful:

{ A left parenthesis begins a list of items. The list may contain any number of items, including
zero. Lists may be nested. For example, (cons (car x) (cdr y)} is a list of three things, of
which the last two are themselves lists.

) A right parenthesis ends a list of items.

An acute accent (also called single quote or apostrophe) followed by an expression form

is an abbreviation for (quote form). Thus foo means [guote foo) and ‘(cons ‘a ‘b) means
(guote (cons (guote a) (quote b))
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Semicolon is the comment character. It and all characters up to the end of the line are
discarded.

Double quotes surround character strings: “This is a thirty-nine character string.”

Backslash is an escape character. It causes the next character to be treated as a letter
rather than for its usual syntactic purpose. For example, A~( B denotes a symbol whose
name consists of the three characters A, [, and B. Similarly, “~\."" denotes a character
string containing one character, a double quote, because the first and third double quotes
serve to delimit the string, and the second double quote serves as the contents of the string.
The backslash causes the second double quote to be taken literally, and prevents it from
being interpreted as the the terminating delimiter of the string.

Vertical bars are used in pairs to surround the name (or part of the name) of a symbol
that has many special characters in it. It is roughly equivalent to putting a backslash in
front of every character so surrcunded. For example, JA(B)], Al{|B]}], and AN (B\) all mean
the symbol whose name consists of the four characters A, (, B, and ).

The number sign signals the beginning of a complicated syntactic structure, The next
character designates the precise syntax to follow. For example, #0165 means 105; (105 in
octal notation); #x105 means 105, (105 in hexadecimal notation); #b1041 means 1011, (1011
in binary notation); #>L denotes a character object for the character L; and #(a b ¢)
denotes a vector of three elements o, b, and c. A particularly important case is that #fh
means (function fi), in a manner analogous to ‘form meaning (quote form).

Grave accent (‘*backquote’) signals that the next expression is a template that may contain
commas. The backquote syntax represents a program that will construct a data structure
according to the template.

Commas are used within the backquote syntax.

Colon is used to indicate which package a symbol belongs to. For example, network:reset
denotes the symbol named reset in the package named network. A leading colon indicates
a keyword, & symbol that always evaluates to itself. The colon character is not actually
part of the print name of the symbol. This is all explained in Chapter 11; until you read
that, just keep in mind that a symbol notated with a leading colon is in effect a constant
that evaluates to itsell.

Brackets, braces, question mark, and exclamation point (that is, [, }, {, }, 7, and 1) are not

used for any purpose in standard Common Lisp syntax. These characters are explicitly reserved
to the user, primarily for use as macro characters for user-defined lexical syntax extensions.
See ‘“Macro Character,”” Chapter 22.

All code in this manual is written using lowercase letters. Common Lise is generally insensitive

to the case in which code is written. Internally, names of symbols are ordinarily converted to
and stored in uppercase form. There are ways to force case conversion on output if desired;
see *print-case*. In this manual, wherever an interactive exchange between a user and the Lisp
system is shown, the input is cxhibited with lowercase letters and the output with uppercase
letters.

End of Chapter
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Chapter 2
Data Types

Common Lisp provides a variety of types of data objects. It is important to note that in Lisp it
is data obiects that are typed, not variables. Any variable can have any Lisp object as its value.
(It is possible to make an explicit declaration that a variable will in fact take on one of only a
limited set of values. However, such a declaration may always be omitted, and the program will
still run correctly. Such a declaration merely constitutes advice from the user that may be useful
in gaining efficiency. See declare.)

In Common Lisp, a data type is a set (possibly infinite) of Lisp objects. Many Lisp objects
belong to more than one such set, and so it doesn't always make sense to ask what the type
of an object is; instead, one usually asks only whether an object belongs to a given type. The
predicate typep may be used to ask whether an object belongs to a given type, and the function
type-of returns « type to which a given object belongs.

The data types defined in Common Lisp are 