
Programming Language Eulisp

Version ����

Programming Language EuLisp� version ����

Contents Page

Foreword �

Introduction �

� Language Structure �

� Scope �

� Conformance De�nitions �

� Error De�nitions �

� Compliance �

� Conventions �
�	� Layout and Typography �
�	� Meta�Language �
�	� Naming �

 De�nitions �

� Syntax �
�	� Whitespace and Comments �
�	� Objects �

� Modules ��
�	� Directives ��
�	� Export Directive ��
�	� Import Directive ��
�	� Expose Directive ��
�	� Syntax Directive ��
�	� De	nitions and Expressions ��
�	
 Module Processing ��
�	� Module De	nition ��

�
 Objects ��
�
	� System De	ned Classes ��
�
	� Single Inheritance ��
�
	� De	ning Classes ��
�
	� De	ning Generic Functions and Methods �

�
	� Specializing Methods ��
�
	� Method Lookup and Generic Dispatch ��
�
	
 Creating and Initializing Objects ��
�
	� Accessing Slots ��

�� Concurrency ��
��	� Threads ��
��	� Locks ��

�� Conditions ��
��	� Condition Classes ��
��	� Condition Handling ��

ii

Programming Language EuLisp� version ����

�� Expressions� De�nitions and Control Forms � � � � � � � � � � � � � � � � � � ��
��	� Simple Expressions ��
��	� Functions
 creation� de	nition and application � � � � � � � � � � � � � � � � � ��
��	� Destructive Operations ��
��	� Conditional Expressions ��
��	� Variable Binding and Sequences ��
��	� Events ��
��	
 Quasiquotation Expressions ��
��	� Summary of Level�� Expressions and De	nitions � � � � � � � � � � � � � � � ��

��	�	� Syntax of Level�� de	ning forms ��
��	�	� Syntax of Level�� expressions �

��	�	� Syntax of Level�� macros �

Annexes

A Level�
 Module Library ��
A	� Characters ��
A	� Collections ��
A	� Comparison ��
A	� Conversion �

A	� Copying ��
A	� Double Precision Floats ��
A	
 Elementary Functions ��
A	� Floating Point Numbers �
�
A	� Fixed Precision Integers �
�
A	�
Formatted�IO �
�
A	��Integers �

A	��Lists �
�
A	��Numbers �
�
A	��Streams ��
A	��Strings ��
A	��Symbols ��
A	�
Tables ��
A	��Vectors ��
A	��Syntax of Level�� objects ��

B Programming Language EuLisp� Level�� ��
B	� Classes and Objects ��
B	� Generic Functions �

B	� Methods ��
B	� Object Introspection ��
B	� Class Introspection ��
B	� Slot Introspection ��
B	
 Generic Function Introspection ��
B	� Method Introspection ��
B	� Class Initialization ��
B	�
Slot Description Initialization ��
B	��Generic Function Initialization ��
B	��Method Initialization ��
B	��Inheritance Protocol ��
B	��Slot Access Protocol ��
B	��Method Lookup and Generic Dispatch ��
B	��Low Level Allocation Primitives ��
B	�
Dynamic Binding ��
B	��Exit Extensions ��
B	��Summary of Level�� Expressions and De	nitions � � � � � � � � � � � � � � � �

B	��	�Syntax of Level�� de	ning forms �

B	��	�Syntax of Level�� expressions �

B	��	�Syntax of Level�� macros �

Indexes ��
Class Index ��
Condition Index ��
Constant Index ���
Function Index ���
Macro Index ���
Generic Function Index ���
Method Index ���

iii

Programming Language EuLisp� version ����

General Index ��

Figures

� Example of module directives ��

� Example module using expose ��

� Level�� initial class hierarchy ��

� Level�� initial condition class hierarchy ��

� Illustration of handler actions �

� Example using let�cc ��

 Interaction of unwind�protect with non�local exits � � � � � � � � � � � � � � � � ��

A	� Level�� number class hierarchy �
�

B	� Level�� class hierarchy ��

B	� Initialization Call Structure ��

Tables

� Modules comprising eulisp�level�� �

� Minimal character set �

� Syntax of objects for reading and writing �

� Module syntax ��

� defstruct syntax ��

� defgeneric rewrite rules ��

A	� Character Syntax ��

A	� Summary of comparison functions ��

A	� Floating Point Syntax �
�

A	� Integer Syntax �

A	� Pair and List Syntax �
�

A	� Examples of string literals ��

A	
 String Syntax ��

A	� Identi	er�Symbol Syntax ��

A	� Vector Syntax ��

iv

COMMITTEE DRAFT Programming Language EuLisp� version ����

Programming Language EuLisp� version ����

Foreword

The EULISP group 	rst met in September ���
 at IRCAM
in Paris to discuss the idea of a new dialect of Lisp� which
should be less constrained by the past than Common Lisp
and less minimalist than Scheme� Subsequent meetings for�
mulated the view of EULISP that was presented at the ����
ACM Conference on Lisp and Functional Programming held
at MIT� Cambridge� Massachusetts �� and at the Euro�
pean Conference on Arti	cial Intelligence �ECAI���� held
in Brighton� Sussex ��� Since then� progress has not been
steady� but happening as various people had su�cient time
and energy to develop part of the language� Consequently�
although the vision of the language has in the most part
been shared over this period� only certain parts were turned
into physical descriptions and implementations� For a nine
month period starting in January ����� through the support
of INRIA� it became possible to start writing the EULISP
de	nition� Since then� a�airs have returned to their previ�
ous state� but with the evolution of the implementations of
EULISP and the background of the foundations laid by the
INRIA�supported work� there is convergence to a consistent
and practical de	nition�

The acknowledgments for this de	nition fall into three cate�
gories
 intellectual� personal� and 	nancial�

The ancestors of EULISP �in alphabetical order� are Common
Lisp��� InterLISP��� LE�LISP �� LISP�VM �� Scheme �� and
T �� ��� Thus� the authors of this report are pleased to
acknowledge both the authors of the manuals and de	nitions
of the above languages and the many who have dissected and
extended those languages in individual papers� The various
papers on Standard ML �� and the draft report on Haskell
� have also provided much useful input�

The writing of this report has� at various stages� been sup�
ported by Bull S�A�� Gesellschaft f�ur Mathematik und Daten�
verarbeitung �GMD� Sankt Augustin�� Ecole Polytechnique
�LIX�� ILOG S�A�� Institut National de Recherche en Infor�
matique et en Automatique �INRIA�� University of Bath�
and Universit�e Paris VI �LITP�� The authors gratefully ac�
knowledge this support� Many people from European Com�
munity countries have attended and contributed to EULISP
meetings since they started� and the authors would like to
thank all those who have helped in the development of the
language�

In the beginning� the work of the EULISP group was sup�
ported by the institutions or companies where the partici�
pants worked� but in ���� DG XIII �Information technol�
ogy directorate� of the Commission of the European Com�
munities agreed to support the continuation of the work�
ing group by funding meetings and providing places to
meet� It can honestly be said that without this support
EULISP would not have reached its present state� In ad�
dition� the EULISP group is grateful for the support of

British Council in France �Alliance programme�� British
Council in Spain �Acciones Integradas programme�� British
Council in Germany �Academic Research Collaboration pro�
gramme�� British Standards Institute� Deutscher Akademis�
cher Austauschdienst �DAAD�� Departament de Llenguat�
ges i Sistemes Inform�atics �LSI� Universitat Polit�ecnica de
Catalunya�� Fraunhofer Gesellschaft Institut f�ur Software
und Systemtechnik� Gesellschaft f�ur Mathematik und Daten�
verarbeitung �GMD�� ILOG S�A�� Insiders GmbH� Institut
National de Recherche en Informatique et en Automatique
�INRIA�� Institut de Recherche et de Coordination Acous�
tique Musique �IRCAM�� Rank Xerox France� Science and
Engineering Research Council �UK�� Siemens AG� University
of Bath� University of Technology� Delft� University of Edin�
burgh� Universit�at Erlangen and Universit�e Paris VI �LITP��

The following people �in alphabetical order� have con�
tributed in various ways to the evolution of the language

Giuseppe Attardi� Javier B�ejar� Russell Bradford� Harry
Bretthauer� Peter Broadbery� Christopher Burdorf� J�er�ome
Chailloux� Thomas Christaller� Je� Dalton� Klaus D�a�ler�
Harley Davis� David DeRoure� John Fitch� Richard Gabriel�
Brigitte Glas� Nicolas Graube� Dieter Kolb� J�urgen Kopp�
Antonio Moreno� Eugen Neidl� Pierre Parquier� Keith Play�
ford� Willem van der Poel� Christian Queinnec� Enric Sesa�
Herbert Stoyan� and Richard Tobin�

The editors of the EULISP de	nition wish particularly to ac�
knowledge the work of Harley Davis on the 	rst versions of
the description of the object system� The second version was
largely the work of Harry Bretthauer� with the assistance of
J�urgen Kopp� Harley Davis and Keith Playford�

Julian Padget �jap�maths�bath�ac�uk�
School of Mathematical Sciences
University of Bath
Bath� Avon� BA� �AY� UK

Greg Nuyens �nuyens�ilog�com�
ILOG SA
�� Avenue Galli�eni
���
� Gentilly CEDEX� FRANCE

editors�

�

Programming Language EuLisp� version ����

Introduction

EULISP is a dialect of Lisp and as such owes much to the
great body of work that has been done on language design in
the name of Lisp over the last thirty years� The distinguish�
ing features of EULISP are �i� the integration of the classical
Lisp type system and the object system into a single class
hierarchy �ii� the complementary abstraction facilities pro�
vided by the class and the module mechanism �iii� support
for concurrent execution�

Here is a brief summary of the main features of the language�

� Classes are 	rst�class objects� The class structure
integrates the primitive classes describing fundamental
datatypes� the prede	ned classes and user�de	ned classes�

� Modules together with classes are the building blocks
of both the EULISP language and of applications written
in EULISP� The module system exists to limit access to
objects by name� That is� modules allow for hidden de	�
nitions� Each module de	nes a fresh� empty� lexical envi�
ronment�

� Multiple control threads can be created in EULISP
and the concurrency model has been designed to allow
consistency across a wide range of architectures� Access
to shared data can be controlled via locks �semaphores��
Event�based programming is supported through a generic
waiting function�

� Both functions and continuations are 	rst�class in
EULISP� but the latter are not as general as in Scheme
because they can only be used in the dynamic extent of
their creation� That implies they can only be used once�

� A condition mechanism which is fully integrated with
both classes and threads� allows for the de	nition of
generic handlers and which supports both propagation of
conditions and continuable handling�

� Dynamically scoped bindings can be created in
EULISP� but their use is restricted� as in Scheme� EULISP
enforces a strong distinction between lexical bindings and
dynamic bindings by requiring the manipulation of the
latter via special forms�

EULISP does not claim any particular Lisp dialect as its
closest relative� although parts of it were in�uenced by fea�
tures found in Common Lisp� InterLISP� LE�LISP� LISP�VM�
Scheme� and T� EULISP both introduces new ideas and takes
from these Lisps� It also extends or simpli	es their ideas as

necessary� But this is not the place for a detailed language
comparison� That can be drawn from the rest of this text�

EULISP breaks with LISP tradition in describing all its types
�in fact� classes� in terms of an object system� This is called
The EULISP Object System� or TELOS� TELOS incorporates
elements of the Common Lisp Object System �CLOS� �� Ob�
jVLisp �� Oaklisp �� MicroCeyx
� and MCS ��

� Language Structure

The EULISP de	nition comprises the following items

Level�� � comprises all the level�� functions� macros
and special forms� which is this text minus Annex B� The
object system can be extended by user�de	ned structure
classes� and generic functions�

Level�� � extends level�� with the functions� macros
and special forms de	ned in Annex B� The object system
can be extended by user�de	ned classes and metaclasses�
The implementation of level�� is not necessarily written or
writable as a conforming level�� program�

A level�� function is a �generic� function de	ned in this text
to be part of a conforming processor for level��� A function
de	ned in terms of level�� operations is an example of a level�
� application�

Much of the functionality of EULISP is de	ned in terms of
modules� These modules might be available �and used� at
any level� but certain modules are required at a given level�
Whenever a module depends on the operations available at
a given level� that dependency will be speci	ed�

EULISP level�� is provided by the module eulisp�level���
This module imports and re�exports the modules speci	ed
in Table ��

This de	nition is organized in three parts

Sections ���� � describes the core of level�� of EULISP�
covering modules� simple classes� objects and generic func�
tions� threads� conditions� control forms and events� These
sections contain the information about EULISP that char�
acterizes the language�

Annex A � describes the additional classes required at
level�� and the operations de	ned on instances of those
classes� The annex is organized by class in alphabetical
order� These sections contain information about the pre�
de	ned classes in EULISP that are necessary to make the
language usable� but is not central to an appreciation of
the language�

Annex B � describes the re�ective aspects of the object
system and how to program the metaobject protocol and
some additional control forms�

Prior to these� sections ��� de	ne the scope of the text and
error de	nitions and typographical and layout conventions
used in this text�

�

Programming Language EuLisp� version ����

Table � � Modules comprising eulisp�level��

Module Section�s�
character A��
collection A��
compare A��
condition ��
convert A��
copy A�

double�float A��
elementary�functions A��
event ����
fixed�precision�integer A��
formatted�io A���
function ����
lock ����
null A���
number A���
object�� ��
pair A���
stream A���
string A��

symbol A���
syntax�� ����
table A���
thread ����
vector A���

� Scope

This text speci	es the syntax and semantics of the computer
programming language EULISP by de	ning the requirements
for a conforming EULISP processor and a conforming EULISP
program �the textual representation of data and algorithms��

This text does not specify

a� The size or complexity of a EULISP program that will
exceed the capacity of any speci	c con	guration or pro�
cessor� nor the actions to be taken when those limits are
exceeded�

b� The minimal requirements of a con	guration that is
capable of supporting an implementation of a EULISP pro�
cessor�

c� The method of preparation of a EULISP program for
execution or the method of activation of this EULISP pro�
gram once prepared�

d� The method of reporting errors� warnings or excep�
tions to the client of a EULISP processor�

e� The typographical representation of a EULISP pro�
gram for human reading�

f� The means to map module names to the 	ling system
or other object storage system attached to the processor�

To clarify certain instances of the use of English in this text
the following de	nitions are provided

must � a verbal form used to introduce a required prop�
erty� All conforming processors must satisfy the property�

should � A verbal form used to introduce a strongly rec�
ommended property� Implementors of processors are urged
�but not required� to satisfy the property�

� Conformance De	nitions

The following terms are general in that they could be applied
to the de	nition of any programming language� They are
derived from ISO�IEC TR �����
 �����

��� con�guration� Host and target computers� any op�
erating systems�s� and software �run�time system� used to
operate a language processor�

��� conformity clause� Statement that is not part of
the language de	nition but that speci	es requirements for
compliance with the language standard�

��� conforming program� Program which is written in
the language de	ned by the language standard and which
obeys all the conformity clauses for programs in the language
standard�

��� conforming processor� Processor which processes
conforming programs and program units and which obeys all
the conformity clauses for processors in the language stan�
dard�

��� error� Incorrect program construct or incorrect
functioning of a program as de	ned by the language stan�
dard�

��� extension� Facility in the processor that is not spec�
i	ed in the language standard but that does not cause any
ambiguity or contradiction when added to the language stan�
dard�

��� implementation�de�ned� Speci	c to the proces�
sor� but required by the language standard to be de	ned
and documented by the implementer�

��	 processor� Compiler� translator or interpreter work�
ing in combination with a con�guration�

 Error De	nitions

Errors in the language described in this de	nition fall into
one of the following three classes

��� dynamic error� An error which is detected during
the execution of a EULISP program or which is a violation of
the de	ned dynamic behaviour of EULISP� Dynamic errors
have two classi	cations

a� Where a conforming processor is required to detect
the erroneous situation or behaviour and report it� This is
signi	ed by the phrase an error is signalled� The condition
class to be signalled is speci	ed� Signalling an error con�
sists of identifying the condition class related to the error
and allocating an instance of it� This instance is initial�
ized with information dependent on the condition class� A
conforming EULISP program can rely on the fact that this
condition will be signalled�

�

Programming Language EuLisp� version ����

b� Where a conforming processormight or might not de�
tect and report upon the error� This is signi	ed by the
phrase � � � is an error� A processor should provide a mode
where such errors are detected and reported where possi�
ble�

��� environmental error� An error which is detected
by the con	guration supporting the EULISP processor� The
processor must signal the corresponding dynamic error which
is identi	ed and handled as described above�

��� static error� An error which is detected during the
preparation of a EULISP program for execution� such as a
violation of the syntax or static semantics of EULISP by the
program under preparation�

NOTE � The violation of the syntactic or static semantic re�
quirements is not an error� but an error might be signalled by the
program performing the analysis of the EULISP program�

All errors speci	ed in this de	nition are dynamic unless ex�
plicitly stated otherwise�

� Compliance

An EULISP processor can conform at either of the two levels
de	ned under Language Structure in the Introduction� Thus
a level�� conforming processor must support all the basic
expressions� classes and class operations de	ned at level���
A level�� conforming processor must support all the basic
expressions� classes� class operations and modules de	ned at
level�� and at level���

The following two statements govern the conformance of a
processor at a given level�

a� A conforming processor must correctly process all pro�
grams conforming both to the standard at the speci	ed
level and the implementation�de�ned features of the pro�
cessor�

b� A conforming processor should o�er a facility to re�
port the use of an extension which is statically deter�
minable solely from inspection of a program� without ex�
ecution� �It is also considered desirable that a facility to
report the use of an extension which is only determinable
dynamically be o�ered��

A level�� conforming program is one which observes the syn�
tax and semantics de	ned for level��� A level�� conforming
program might not conform at level��� A strictly�conforming
level�� program is one that also conforms at level��� A level�
� conforming program observes the syntax and semantics
de	ned for level���

In addition� a conforming program at any level must not use
any extensions implemented by a language processor � but it
can rely on implementation�de�ned features�

The documentation of a conforming processor must include

a� A list of all the implementation�de�ned de	nitions or
values�

b� A list of all the features of the language standard
which are dependent on the processor and not imple�

mented by this processor due to non�support of a partic�
ular facility� where such non�support is permitted by the
standard�

c� A list of all the features of the language implemented
by this processor which are extensions to the standard
language�

d� A statement of conformity� giving the complete ref�
erence of the language standard with which conformity
is claimed� and� if appropriate� the level of the language
supported by this processor�

� Conventions

This section de	nes the conventions employed in this text�
how de	nitions will be laid out� the typeface to be used� the
meta�language used in descriptions and the naming conven�
tions� A later section ��� contains de	nitions of the terms
used in this text�

��� Layout and Typography

Both layout and fonts are used to help in the description of
EULISP� A language element is de	ned as an entry with its
name as the heading of a clause� coupled with its classi	�
cation� Examples of several kinds of entry are now given�
Some subsections of entries are optional and are only given
where it is felt necessary�

�	�	� a�special�form special form

�	�	�	� Syntax

�a�special�form form� � � � formn�

�	�	�	� Arguments

form�
 description of structure and r�ole of form��
���

formn
 description of structure and r�ole of formn�

�	�	�	� Result

A description of the result�

�	�	�	� Remarks

Any additional information de	ning the behaviour of
a�special�form�

�	�	�	� Examples

Some examples of use of the special form and the behaviour
that should result�

�	�	�	� See also
 Cross references to related entries�

Programming Language EuLisp� version ����

�	�	� a�function function

�	�	�	� Arguments

argument�a
 information about the class or classes of
argument�a�
���

	argument�n

 information about the class or classes of
the optional argument argument�n�

�	�	�	� Result

A description of the result and� possibly� its class�

�	�	�	� Remarks

Any additional information about the actions of a�function�

�	�	�	� Examples

Some examples of calling the function with certain argu�
ments and the result that should be returned�

�	�	�	� See also
 Cross references to related entries�

�	�	� a�generic generic function

�	�	�	� Generic Arguments

�argument�a �class�a��
 means that argument�a of
a�generic must be an instance of �class�a� and that
argument�a is one of the arguments on which a�generic
specializes� Furthermore� each method de	ned on
a�genericmay specialize only on a subclass of �class�a�
for argument�a�
���

argument�n
 means that �i� argument�n is an instance of
�object�� i�e� it is unconstrained� �ii� a�generic does not
specialize on argument�n� �iii� no method on a�generic
can specialize on argument�n�

�	�	�	� Result

A description of the result and� possibly� its class�

�	�	�	� Remarks

Any additional information about the actions of a�generic�
This will probably be in general terms� since the actual be�
haviour will be determined by the methods�

�	�	�	� See also
 Cross references to related entries�

�	�	� a�generic method

�A method on a�generic with the following specialized ar�
guments��

�	�	�	� Specialized Arguments

�argument�a �class�a��
 means that argument�a of the
method must be an instance of �class�a�� Of course� this
argument must be one which was de	ned in a�generic
as being open to specialization and �class�a� must be a
subclass of the class�
���

argument�n
 means that �i� argument�n is an instance of
�object�� i�e� it is unconstrained� �ii� a�generic does not
specialize on argument�n� �iii� no method on a�generic
can specialize on argument�n�

�	�	�	� Result

A description of the result and� possibly� its class�

�	�	�	� Remarks

Any additional information about the actions of this method
attached to a�generic�

�	�	�	� See also
 Cross references to related entries�

�	�	� a�condition a�condition�superclass

�	�	�	� Initialization Options

initarg�a value�a
 means that an instance of
�a�condition� has a slot called initarg�a which should
be initialized to value�a� where value�a is often the name
of a class� indicating that value�a should be an instance of
that class and a description of the information that value�
a is supposed to provide about the exceptional situation
that has arisen�
���

initarg�n value�n
 As for initarg�a�

�	�	�	� Remarks

Any additional information about the circumstances in
which the condition will be signalled�

�	�	� �class�name� class

�	�	�	� Initialization Options

initarg�a value�a
 means that �class�name� has an
initarg whose name is initarg�a and the description will
usually say of what class �or classes� value�a should be an
instance� This initarg is required�
���

	initarg�n value�n

 The enclosing square brackets de�
note that this initarg is optional� Otherwise the interpre�
tation of the de	nition is as for initarg�a�

�	�	�	� Remarks

A description of the r�ole of �class�name��

�

Programming Language EuLisp� version ����

��� Meta
Language

The terms used in the following descriptions are de	ned in
Annex ��

A standard function denotes an immutable top�lexical bind�
ing of the de	ned name� All the de	nitions in this text are
bindings in some module except for the special form opera�
tors� which have no de	nition anywhere� All bindings and
all the special form operators can be renamed�

NOTE � A description making mention of �an x� where �x� is
the name a class usually means �an instance of �x���

Frequently� a class�descriptive name will be used in the ar�
gument list of a function description to indicate a restric�
tion on the domain to which that argument belongs� In the
case of a function� it is an error to call it with a value out�
side the speci	ed domain� A generic function can be de	ned
with a particular domain and�or range� In this case� any
new methods must respect the domain and�or range of the
generic function to which they are to be attached� The use of
a class�descriptive name in the context of a generic function
de	nition de	nes the intention of the de	nition� and is not
necessarily a policed restriction�

If it is required to indicate repetition� the notation

expression� and expression� will be used for zero or more
and one or more occurrences� respectively� The arguments in
some function descriptions are enclosed in square brackets�
graphic representation �	� and �
�� This indicates that the
argument is optional� The accompanying text will explain
what default values are used�

The result�class of an operation� except in one case� refers to
a primitive or a de	ned class described in this de	nition� The
exception is for predicates� Predicates are de	ned to return
either the empty list�written ���representing the boolean
value false� or any value other than ��� representing true�
Although the class containing exactly this set of values is not
de	ned in the language� notation is abused for convenience
and boolean is de	ned� for the purposes of this report� to
mean that set of values� If the true value is a useful value�
it is speci	ed precisely in the description of the function�

��� Naming

Naming conventions are applied in the descriptions of prim�
itive and de	ned classes as well as in the choice of other
function names� Here is a list of the conventions and some
examples of their use�

�	�	� ��name�� wrapping� By convention� classes have
names which begin with ��� and end with ����

�	�	� �binary�� pre�x� The two argument version of a
n�ary argument function� There is not always a correspon�
dence between the root and the name of the n�ary function�
for example binary�plus is the two argument �generic� func�
tion corresponding to the n�ary argument
 function�

�	�	� ��class� su�x� The name of a metaclass of a set
of related classes� For example� �function�class�� which is
the class of �simple�function�� �generic�function� and
any of their subclasses and �condition�class� is the class of

all condition classes� The exception is �class� itself which is
the default metaclass� The pre	x should describe the general
domain of the classes in question� but not necessarily any
particular class in the set�

�	�	� �generic�� pre�x� The generic version of the
function named by the stem�

�	�	� hyphenation� Function and class names made up
of more than one word are hyphenated� for example

compute�specialized�slot�description�class�

�	�	� �p� su�x� A predicate function is named by a �p�
su�x if the function or class name �after removing the enclos�
ing � and �� is not hyphenated� for instance� consp� and is
named by a ��p� su�x if it is� for instance double�float�p�

 De	nitions

This set of de	nitions� which are be used throughout this
de	nition� is self�consistent but might not agree with notions
accepted in other language de	nitions� The terms are de	ned
in alphabetical rather than dependency order and where a
de	nition uses a term de	ned elsewhere in this section it
is written in italics� Some of the terms de	ned here are
redundant� Names in courier font refer to entities de	ned
in the language�

��� boolean� A boolean value is either false� which is
represented by the empty list�written �� and is also the
value of nil�or true� which is represented by any other value
than ���

��� class� A class is an object which describes the struc�
ture and behaviour of a set of objects which are its instances�
A class object contains inheritance information and a set of
slot descriptions which de	ne the structure of its instances�
A class object is an instance of a metaclass� All classes
in EULISP are subclasses of �object�� and all instances of
�class� are classes�

��� de�ning form� Any form or any macro expres�
sion expanding into a form whose operator is one
of defclass� defcondition� defconstant� defgeneric�
deflocal� defmacro� defstruct� defun� or defvar�

��� direct instance� A direct instance of a class class�
is any object whose most speci	c class is class��

��� direct subclass� A class� is a direct subclass of
class� if class� is a subclass of class�� class� is not identical
to class�� and there is no other class� which is a superclass
of class� and a subclass of class��

��� direct superclass� A direct superclass of a class
class� is any class for which class� is a direct subclass�

�

Programming Language EuLisp� version ����

��� dynamic environment� The inner and top dy�
namic environment� taken together� are referred to as the
dynamic environment�

��	 function� A function is either a continuation� a sim�
ple function or a generic function�

��� generic function� Generic functions are functions
for which the method executed depends on the class of its
arguments� A generic function is de	ned in terms of methods
which describe the action of the generic function for a speci	c
set of argument classes called the method�s domain�

���� indirect instance� An indirect instance of a class
class� is any object whose class is an indirect subclass of
class��

���� indirect subclass� A class� is an indirect subclass
of class� if class� is a subclass of class�� class� is not identical
to class�� and there is at least one other class� which is a
superclass of class� and a subclass of class��

���� inheritance graph� A directed labelled acyclic
graph whose nodes are classes and whose edges are de	ned by
the direct subclass relations between the nodes� This graph
has a distinguished root� the class �object�� which is a su�
perclass of every class�

���� inherited slot description� A slot description is
inherited for a class� if the slot description is de	ned for an�
other class� which is a direct or indirect superclass of class��

���� initarg� A symbol used as a keyword in an initlist to
mark the value of some slot or additional information� Used
in conjunction with make and the other object initialization
functions to initialize the object� An initarg may be declared
for a slot in a class de	nition form using the initarg slot
option or the initargs class option�

���� initform� A form which is evaluated to produce a
default initial slot value� Initforms are closed in their lexi�
cal environments and the resulting closure is called an init�
function� An initform may be declared for a slot in a class
de	nition form using the initform slot option�

���� initfunction� A function of no arguments whose
result is used as the default value of a slot� Initfunctions
capture the lexical environment of an initform declaration in
a class de	nition form�

���� initlist� A list of alternating keywords and values
which describes some not�yet instantiated object� Generally
the keywords correspond to the initargs of some class�

���	 inner dynamic� Inner dynamic bindings are cre�
ated by dynamic�let� referenced by dynamic and modi	ed
by dynamic�setq� Inner dynamic bindings extend�and can
shadow�the dynamically enclosing dynamic environment�

���� inner lexical� Inner lexical bindings are created by
lambda and let�cc� referenced by variables and modi	ed by
setq� Inner lexical bindings extend�and can shadow�the
lexically enclosing lexical environment� Note that let�cc
creates an immutable binding�

���� instance� Every object is the instance of some
class� An instance thus describes an object in relation to
its class� An instance takes on the structure and behaviour
described by its class� An instance can be either direct or
indirect�

���� instantiation graph� A directed graph whose
nodes are objects and whose edges are de	ned by the in�
stance relations between the objects� This graph has only
one cycle� an edge from �class� to itself� The instantation
graph is a tree and �class� is the root�

���� lexical environment� The inner and top lexical
environment of a module are together referred to as the lex�
ical environment except when it is necessary to distinguish
between them�

���� metaclass� A metaclass is a class object whose in�
stances are themselves classes� All metaclasses in EULISP
are instances of �class�� which is an instance of itself� All
metaclasses are also subclasses of �class�� �class� is a
metaclass�

���� method� A method describes the action of a
generic function for a particular list of argument classes
called the method�s domain� A method is thus said to add to
the behaviour of each of the classes in its domain� Methods
are not functions but objects which contain� among other in�
formation� a function representing the method�s behaviour�

���� method speci�city� A domain domain� is more
speci	c than another domain� if the 	rst class in domain�
is a subclass of the 	rst class in domain�� or� if they are the
same� the rest of domain� is more speci	c than the rest of
domain��

���� multi�method� A method which specializes on
more than one argument�

���� new instance� A newly allocated instance� which
is distinct� but can be isomorphic to other instances�

���	 re�ective� A system which can examine and mod�
ify its own state is said to be re�ective� EULISP is re�ective to
the extent that it has explicit class objects and metaclasses�
and user�extensible operations upon them�

���� self�instantiated class� A class which is an in�
stance of itself� In EULISP� �class� is the only example
of a self�instantiated class�

���� setter function� The function associated with the
function that accesses a place in an entity� which changes the
value stored in that place�

Programming Language EuLisp� version ����

���� simple function� A function comprises at least

an expression� a set of identi	ers� which occur in the expres�
sion� called the parameters and the closure of the expression
with respect to the lexical environment in which it occurs�
less the parameter identi	ers� Note
 this is not a de	nition
of the class �simple�function��

���� slot� A named component of an object which can
be accessed using the slot�s accessor� Each slot of an object
is described by a slot description associated with the class of
the object� When we refer to the structure of an object� this
usually means its set of slots�

���� slot description� A slot description describes a
slot in the instances of a class� This description includes the
slot�s name� its logical position in instances� and a way to de�
termine its default value� A class�s slot descriptions may be
accessed through the functionclass�slot�descriptions� A
slot description can be either direct or inherited�

���� slot option� A keyword and its associated value
applying to one of the slots appearing in a class de	nition
form� for example
 the accessor keyword and its value�
which de	nes a function used to read or write the value of a
particular slot�

���� slot speci�cation� A list of alternating keywords
and values �starting with a keyword� which represents a not�
yet�created slot description during class initialization�

���� special form� A special form is a semantic prim�
itive of the language� In consequence� any processor �for
example� a compiler or a code�walker� need be able to pro�
cess only the special forms of the language and compositions
of them�

���� specialize� A verbal form used to describe the cre�
ation of a more speci	c version of some entity� Normally
applied to classes� slot�descriptions and methods�

���	 specialize on� A verbal form used to describe re�
lationship of methods and the classes speci	ed in their do�
mains�

���� subclass� The behaviour and structure de	ned by
a class class� are inherited by a set of classes which are
termed subclasses of class�� A subclass can be either direct
or indirect or itself�

���� superclass� A class� is a superclass of class� i�
class� is a subclass of class�� A superclass can be either
direct or indirect or itself�

���� top dynamic� Top dynamic bindings are cre�
ated by defvar� referenced by dynamic and modi	ed by
dynamic�setq� There is only one top dynamic environment�

���� top lexical� Top lexical bindings are created in the
top lexical environment of a module by

defclass� defcondition� defconstant� defgeneric�
defmacro� defstruct� defun�

All these bindings are immutable� deflocal creates a muta�
ble top�lexical binding� All such bindings are referenced by
variables and those made by deflocal are modi	ed by setq�
Each module de	nes its own distinct top lexical environment�

�

Programming Language EuLisp� version ����

� Syntax

Case is distinguished in each of characters� strings and iden�
ti	ers� so that variable�name and Variable�name are dif�
ferent� but where a character is used in a positional num�
ber representation �e�g� ��x�Ad� the case is ignored� Thus�
case is also signi	cant in this de	nition and� as will be
observed later� all the special form and standard function
names are lower case� In this section� and throughout this
text� the names for individual character glyphs are those
used in ISO�IEC DIS ���
�����

The minimal character set to support EULISP is de	ned in
Table �� The language as de	ned in this text uses only the
characters given in this table� Thus� left hand sides of the
productions in this table de	ne and name groups of char�
acters which are used later in this de	nition
 decimal digit�
upper letter� lower letter� letter� other character and special
character�

Table � � Minimal character set

decimal digit
� ��� � ��� � ��� � �	� � �
� � ��� � ��� � �
�
� ��� � ����

upper letter
� �A� � �B� � �C� � �D� � �E� � �F� � �G� � �H�
� �I� � �J� � �K� � �L� � �M� � �N� � �O� � �P�
� �Q� � �R� � �S� � �T� � �U� � �V� � �W� � �X�
� �Y� � �Z��

lower letter
� �a� � �b� � �c� � �d� � �e� � �f� � �g� � �h�
� �i� � �j� � �k� � �l� � �m� � �n� � �o� � �p�
� �q� � �r� � �s� � �t� � �u� � �v� � �w� � �x�
� �y� � �z��

letter
� upper letter � lower letter�

other character
� ��� � ��� � ��� � ��� � ��� � ��� � ��� � ����

special character
� ��� � ��� � ��� � �� � ��� � ��� � ��� � ���
� ��� � ����

level � character
� decimal digit � letter � other character
� special character�

	�� Whitespace and Comments

Whitespace characters are space and newline� The newline
character is also used to represent end of record for con	gu�
rations providing such an input model� thus� a reference to
newline in this de	nition should also be read as a reference
to end of record� The only use of whitespace is to improve
the legibility of programs for human readers� Whitespace
separates tokens and is only signi	cant in a string or when
it occurs escaped within an identi	er�

A comment is introduced by the comment�begin glyph� called
semicolon ��� and continues up to� but does not include�
the end of the line� Hence� a comment cannot occur in the
middle of a token because of the whitespace in the form of
the newline� Thus a comment is equivalent to whitespace�

NOTE � There is no notation in EULISP for block comments�

	�� Objects

The syntax of the classes of objects that can be read by
EULISP is de	ned in the section of this de	nition correspond�
ing to the class as de	ned in Table �� The syntax for identi�
	ers corresponds to that for symbols�

Table � � Syntax of objects for reading and writing

object
� character �� A�� ��
� float �� A�	 ��
� integer �� A��� ��
� list �� A��
 ��
� string �� A��� ��
� symbol �� A��� ��
� vector �� A��	 ��

�

Programming Language EuLisp� version ����

� Modules

The EULISP module scheme has several in�uences
 LeLisp�s
module system and module compiler �complice�� Haskell� ML
��� MIT�Scheme�s make�environment and T�s locales�

All bindings of objects in EULISP reside in some module
somewhere� Also� all programs in EULISP are written as one
or more modules� Almost every module imports a number
of other modules to make its de	nition meaningful� These
imports have two purposes� which are separated in EULISP

	rstly the bindings needed to process the syntax in which
the module is written� and secondly the bindings needed to
resolve the free variables in the module after syntax expan�
sion� These bindings are made accessible by specifying which
modules are to be imported for which purpose in a directive
at the beginning of each module� The names of modules
are bound in a disjoint binding environment which is only
accessible via the module de	nition form� That is to say�
modules are not 	rst�class� The body of a module de	ni�
tion comprises a list of directives followed by a sequence of
de	nitions� expressions and export forms�

The module mechanism provides abstraction and security in
a form complementary to that provided by the object system�
Indeed� although objects do support data abstraction� they
do not support all forms of information hiding and they are
usually conceptually smaller units than modules� A module
de	nes a mapping between a set of names and either local
or imported bindings of those names� Most such bindings
are immutable� The exception are those bindings created by
deflocal which may be modi	ed by both the de	ning and
importing modules� There are no implicit imports into a
module�not even the special forms are available in a mod�
ule that imports nothing� A module exports nothing by de�
fault� Mutually referential modules are not possible because
a module must be de	ned before it can be used� Hence� the
importation dependencies form a directed acyclic graph�

NOTE � The issue of mutually referential modules will be ad�
dressed in a future version of the de
nition of EULISP�

The processing of a module de	nition uses three environ�
ments� which are initially empty� These are the top�lexical�
the external and the syntax environments of the module�
The top�lexical environment comprises all the locally de	ned
bindings and all the imported bindings� The external envi�
ronment comprises all the exposed bindings�bindings from
modules being exposed by this module but not necessarily
imported�and all the exported bindings� which are either
local or imported� Thus� the external environment might
not be a subset of the top�lexical environment because� by
virtue of an expose directive� it can contain bindings from
modules which have not been imported� This is the environ�
ment received by any module importing this module� The
syntax environment comprises all the bindings available for
the syntax expansion of the module� Each binding is repre�
sented as a pair of a local�name and a module�name� It is
a static error if any two instances of local�name in any one
of these environments have di�erent module�names� This is
called a name clash� These environments do not all need to
exist at the same time� but it is simpler for the purposes of
de	nition to describe module processing as if they do�

��� Directives

The list of module directives is a sequence of keywords and

forms� where the keywords indicate the interpretation of the
forms� This representation allows for the addition of fur�
ther keywords at other levels of the de	nition and also for
implementation�de	ned keywords� For the keywords given
here� there is no de	ned order of appearance� nor is there
any restriction on the number of times that a keyword can
appear� Multiple occurrences of any of the directives de	ned
here are treated as if there is a single directive whose form is
the combination of each of the occurrences� This de	nition
describes the processing of four keywords� which are now de�
scribed in detail� The syntax of all the directives is given in
Table � and an example of their use appears in Figure ��

��� Export Directive

This is denoted by the keyword export followed by a list of
names of top�lexical bindings de	ned in this module and has
the e�ect of making those bindings accessible to any mod�
ule importing this module by adding them to the external
environment of the module� A name clash can arise in the
external environment from interaction with exposed mod�
ules�

��� Import Directive

The purpose of this directive is to specify the imported bind�
ings which constitute part of the top�lexical environment of
a module� These are the explicit run�time dependencies of
the module� Additional run�time dependencies may arise as
a result of syntax expansion� These are called implicit run�
time dependencies�

The import directive is a sequence of module�descriptors� be�
ing module names or the 	lters except� only and rename�
which denotes the union of all the names generated by each
element of the sequence� A 	lter can� in turn� be applied to a
sequence of module descriptors� and so the e�ect of di�erent
kinds of 	lters can be combined by nesting them� An im�
port directive speci	es either the importation of a module in
its entirety or the selective importation of speci	ed bindings
from a module�

In processing import directives� every name should be
thought of as a pair of a module�name and a local�name�
Intuitively� a namelist of such pairs is generated by reference
to the module name and then 	ltered by except� only and
rename� In an import directive� when a namelist has been
	ltered� the names are regarded as being de	ned in the top�
lexical environment of the module into which they have been
imported� A name clash can arise in the top�lexical environ�
ment from interaction between di�erent imported modules�
Elements of an import directive are interpreted as follows

except� Filters the names from each module�descriptor
discarding those speci	ed and keeping all other names�
The except directive is convenient when almost all of the
names exported by a module are required� since it is only
necessary to name those few that are not wanted to ex�
clude them�

module�name� All the exported names from module�
name�

only� Filters the names from each module�descriptor
keeping only those names speci	ed and discarding all other
names� The only directive is convenient when only a few

��

Programming Language EuLisp� version ����

�defmodule a�module
�import

�module�� ��import everything from module��
�except �binding�a� module��� ��all but binding�a from module��
�only �binding�b� module�	� ��only binding�b from module�	
�rename
��binding�c binding�d� �binding�d binding�c�� ��all of module�
� but exchange
module�
�� ��the names of binding�c and binding�d

syntax
�syntax�module�� ��all of the module syntax�module��
�rename ��syntax�a syntax�b�� ��rename the binding of syntax�a
syntax�module��� ��of syntax�module�� as syntax�b

�rename ��syntax�c syntax�a�� ��rename the binding of syntax�c
syntax�module�	�� ��of syntax�module�	 as syntax�a

expose
��except �binding�e� module��� ��all but binding�e from module��
module��� ��export all of module��

export
�binding�� binding�� binding�	�� ��and three bindings from this module

���
�export local�binding�
� ��a fourth binding from this module
���
�export binding�c� ��the imported binding binding�c
����

Figure � � Example of module directives

�defmodule eulisp�level��
�expose
�character collection compare condition convert copy
double�float elementary�functions event
formatted�io fixed�precision�integer function list
lock number object�� stream string symbol syntax��
table thread vector���

Figure � � Example module using expose

names exported by a module are required� since it is only
necessary to name those that are wanted to include them�

rename� Filters the names from each module�descriptor
replacing those with old�name by new�name� Any name
not mentioned in the replacement list is passed unchanged�
Note that once a name has been replaced the new�name
is not compared against the replacement list again� Thus�
a binding can only be renamed once by a single rename
directive� In consequence� name exchanges are possible�

��� Expose Directive

This is denoted by the keyword expose followed by a list of
module�directives� The purpose of this directive is to allow
a module to export subsets of the external environments of
various modules without importing them itself� Processing
an expose directive employs the same model as for imports�
namely� a pair of a module�name and a local�name with the
same 	ltering operations� When the namelist has been 	l�
tered� the names are added to the external environment of
the module begin processed� A name clash can arise in the
external environment from interaction with exports or be�
tween di�erent exposed modules� As an example of the use
of expose� a possible implementation of the eulisp�level��
module is shown in Figure ��

It is also meaningful for a module to include itself in an
expose directive� In this way� it is possible to refer to all the
bindings in the module being de	ned� This is convenient�
in combination with except �see Section ����� as a way of
exporting all but a few bindings in a module� especially if
syntax expansion creates additional bindings whose names
are not known� but should be exported�

��� Syntax Directive

This directive is processed in the same way as an import
directive� except that the bindings are added to the syntax
environment� This environment is used in the second phase
of module processing �syntax expansion�� These constitute
the dependencies for the syntax expansion of the de	nitions
and expressions in the body of the module� A name clash
can arise in the syntax environment from interaction between
di�erent syntax modules�

It is important to note that special forms are considered part
of the syntax and they may also be renamed�

��� De
nitions and Expressions

De	nitions in a module only contain unquali	ed names�
that is� local�names� using the above terminology� A top�
lexical binding is created exactly once and shared with all
modules that import its exported name from the module that
created the binding� A name clash can arise in the top�lexical
environment from interaction between local de	nitions and
between local de	nitions and imported modules� Only top�
lexical bindings created by deflocal are mutable�both in
the de	ning module and in any importing module� It is a
static error to modify an immutable binding� Expressions�
that is non�de	ning forms� are collected and evaluated in or�
der of appearance at the end of the module de	nition process
when the top�lexical environment is complete�that is after

��

Programming Language EuLisp� version ����

Table � � Module syntax

module
� ���� �defmodule�� module name�
module directives� �module form�� ����

module name
� identifier� �� A��� ��

module directives
� ��� �module directive�� ����

module directive
� �export�� ���� �identifier�� ���
� �expose�� ���� �module descriptor�� ���
� �import�� ���� �module descriptor�� ���
� �syntax�� ���� �module descriptor�� ����

level � module form
� ���� �export�� �identifier�� ���
� level � expression �� �� ��
� defining form �� �� ��
� ���� �progn�� �module form�� ����

module descriptor
� module name
� module filter�

module filter
� ���� �except�� ���� �identifier�� ����
module descriptor� ���

� ���� �only�� ���� �identifier�� ����
module descriptor� ���

� ���� �rename�� ���� �rename pair�� ����
module descriptor� ����

rename pair
� ��� identifier� identifier� ����

the creation and initialization of the top�lexical bindings�
The exception to this is the progn form� which is descended
and the forms within it are treated as if the progn were
not present� De	nitions may only appear either at top�level
within a module de	nition or inside any number of progn
forms� This is speci	ed more precisely in the grammar for a
module given in Table ��

��� Module Processing

The following steps summarize the module de	nition pro�
cess

directive processing � This is described in detail in
Section ���� This step creates and initializes the top�
lexical� syntax and external environments�

syntax expansion � The body of the module is ex�
panded according to the operators de	ned in the syntax
environment constructed from the syntax directive�

NOTE � The semantics of syntax expansion are still under
discussion and will be described fully in a future version of
the EULISP de
nition� In outline� however� it is intended that
the mechanism should provide for hygenic expansion of forms
in such a way that the programmer need have no knowledge
of the expansion�time or run�time dependencies of the syntax
de
ning module�

static analysis � The expanded body of the module
is analyzed� Names referenced in export forms are added
to the external environment� Names de	ned by de	ning
forms are added to the top�lexical environment� It is a
static error� if a free identi	er in an expression or de	ning
form does not have a binding in the top�lexical environ�
ment�

NOTE � Additional implementation�de
ned steps may be
added here� such as compilation�

initialization� The top�lexical bindings of the module
�created above� are initialized by evaluating the forms in
the body of the module in the order they appear�

NOTE � In this sense� a module can be regarded as a gener�
alization of the labels form of this and other Lisp dialects�

��	 Module De
nition

�	�	� defmodule syntax

�	�	�	� Syntax

The syntax of a module and its constituents is de	ned in
Table ��

�	�	�	� Arguments

module�name
 A symbol used to name the module�

module�directive
 A form specifying the exported names�
exposed modules� imported modules and syntax modules
used by this module�

module�form�
 A sequence of de	ning forms� expressions
and export forms�

�	�	�	� Remarks

The defmodule form de	nes a module named by module�
name and associates the name module�name with a module
object in the module binding environment�

NOTE � Intentionally� nothing is de
ned about any relationship
between modules and
les�

�	�	�	� Examples

An example module de	nition with explanatory comments
is given in Figure ��

��

Programming Language EuLisp� version ����

�� Objects

In EULISP� every object in the system has a speci	c class�
Classes themselves are 	rst�class objects� In this respect
EULISP di�ers from statically�typed object�oriented lan�
guages such as C and �CEYX� The EULISP object sys�
tem is called TELOS� The facilities of the object system are
split across the two levels of the de	nition� Level�� sup�
ports the de	nition of generic functions� methods and struc�
tures� Level�� provides the re�ective system which supports
the meta�object protocol �MOP�� introspection� the de	�
nition of new metaclasses and the specialization of classes
other than structures� Metaclasses control the structure
and behaviour of their instances and the representation of
their metainstances� Extensions at level��� such as multi�
ple inheritance� support for the change�class functionality
of CLOS� and persistent objects can be supported through
metaclasses� In addition� metaclasses can provide new kinds
of classes with reduced power but increased e�ciency! the
class �structure�class� is an example� No metaclass nor
any operation which could return a metaclass as a result�
e�g� class�of� are accessible at level��� That supports the
clear distinction between object level and metaobject level
programming required for many optimizations�

Programs written using TELOS typically involve the design
of a class hierarchy� where each class represents a category of
entities in the problem domain� and a protocol� which de	nes
the operations on the objects in the problem domain�

A class de	nes the structure and behaviour of its instances�
Structure is the information contained in the class�s instances
and behaviour is the way in which the instances are treated
by the protocol de	ned for them�

The components of an object are called its slots� Each slot
of an object is de	ned by its class�

A protocol de	nes the operations which can be applied to in�
stances of a set of classes� This protocol is typically de	ned
in terms of a set of generic functions� which are functions
whose application behaviour depends on the classes of the
arguments� The particular class�speci	c behaviour is parti�
tioned into separate units called methods� A method is not
a function itself� but is a closed expression which is a com�
ponent of a generic function�

Generic functions replace the send construct found in many
object�oriented languages� In contrast to sending a message
to a particular object� which it must know how to handle�
the method executed by a generic function is determined by
all of its arguments� Methods which specialize on more than
one of their arguments are called multi�methods�

Inheritance is provided through classes� Slots and methods
de	ned for a class will also be de	ned for its subclasses but
a subclass may specialize them� In practice� this means that
an instance of a class will contain all the slots de	ned di�
rectly in the class as well as all of those de	ned in the class�s
superclasses� In addition� a method specialized on a particu�
lar class will be applicable to direct and indirect instances of
this class� The inheritance rules� the applicability of meth�
ods and the generic dispatch are described in detail later in
this section�

Classes are de	ned using the defstruct �������� and
defcondition �������� de	ning forms�

�object�
�character�
�condition�

���
�function�

�continuation�
�simple�function�
�generic�function�

�list�
�cons�
�null�

�lock�
�number�

�integer�
�fixed�precision�integer�

�float�
�double�float�

�stream�
�string�
�structure�
�symbol�
�table�
�thread�
�vector�

Figure � � Level�
 initial class hierarchy

Generic functions are de	ned using the defgeneric de	ning
form� which creates a named generic function in the top�
lexical environment of the module in which it appears and
generic�lambda� which creates an anonymous generic func�
tion� These forms are described in detail later in this section�

Methods can either be de	ned at the same time as the generic
function� or else de	ned separately using the defmethod
macro� which adds a new method to an existing generic func�
tion� This macro is described in detail later in this section�

���� System De
ned Classes

The basic classes of EULISP are elements of the object sys�
tem class hierarchy� which is shown in Figure �� Indentation
indicates a subclass relationship to the class under which the
line has been indented� for example� �condition� is a sub�
class of �object�� The names given here correspond to the
bindings of names to classes as they are exported from the
level�� modules� Classes directly relevant to the object sys�
tem are described in this section while others are described
in corresponding sections� e�g� �condition� is described in
the conditions section�

In this de	nition� unless otherwise speci	ed� classes declared
to be subclasses of other classes may be indirect subclasses�
Classes not declared to be in a subclass relationship are dis�
joint� Furthermore� unless otherwise speci	ed� all objects
declared to be of a certain class may be indirect instances of
that class�

�
	�	� �object� class

The root of the inheritance hierarchy� �object� de	nes
the basic methods for initialization and external represen�
tation of objects� No initialization options are speci	ed for
�object��

��

Programming Language EuLisp� version ����

�
	�	� �structure� class

The default superclass of structure classes� All classes de�
	ned using the defstruct form are direct or indirect sub�
classes of �structure�� Thus� this class is specializable by
user de	ned classes at level��� No initoptions are speci	ed
for �structure��

�
	�	� telos�condition condition

This is the general condition class for conditions arising from
operations in the object system�

���� Single Inheritance

TELOS level�� provides only single inheritance� meaning that
a class can have exactly one direct superclass�but indef�
initely many direct subclasses� In fact� all classes in the
level�� class inheritance tree have exactly one direct super�
class except the root class �object� which has no direct
superclass�

Each class has a class precedence list �CPL	� a linearized list
of all its superclasses� which de	nes the classes from which
the class inherits structure and behaviour� For single inher�
itance classes� this list is de	ned recursively as follows

a� the CPL of �object� is a list of one element containing
�object� itself!

b� the CPL of any other class is a list of classes beginning
with the class itself followed by the elements of the CPL
of its direct superclass which is �object� by default�

The class precedence list controls system�de	ned protocols
concerning

a� inheritance of slot and class options when initializing
a class�

b� method lookup and generic dispatch when applying a
generic function�

���� De
ning Classes

�
	�	� defstruct de�ning form

�
	�	�	� Syntax

The syntax for defstruct is given in Table
�

�
	�	�	� Arguments

class�name
 A symbol naming a binding to be initialized
with the new structure class� The binding is immutable�

superclass�name
 A symbol naming a binding of a class
to be used as the direct superclass of the new structure
class�

Table � � defstruct syntax

defstruct form
� ���� �defstruct�� class name� superclass name�
slot description list� �class option�� ����

class name
� identifier� �� A��� ��

superclass name
� identifier� �� A��� ��

slot description list
� ���� �slot decsription�� ����

slot description
� slot name
� ���� slot name� �slot option�� ����

slot name
� identifier� �� A��� ��

slot option
� �initarg� identifier �� A��� ��
� �initform� level � expression �� �� ��
� �reader� identifier �� A��� ��
� �writer� identifier �� A��� ��
� �accessor� identifier� �� A��� ��

class option
� �initargs�� ���� �identifier�� ���
� �constructor�� ���� identifier�
�initarg name�� ���

� �predicate� identifier� �� A��� ��

�slot�spec��
 A list of slot speci	cations �see below��
comprising either a slot�name or a list of a slot�name fol�
lowed by some slot�options�

class�option�
 A sequence of keys and values �see below�
which� taken together� apply to the class as a whole�

�
	�	�	� Remarks

defstruct creates a new structure class� Structure classes
support single inheritance as described above� Neither class
rede	nition nor changing the class of an instance is supported
by structure classes���

The slot�options are interpreted as follows

initarg identi�er
 The value of this option is an identi�
	er naming a symbol� which is the name of an argument to
be supplied in the init�options of a call to make on the new
class� The value of this argument in the call to make is the
initial value of the slot� This option must only be speci�
	ed once for a particular slot� The same initarg name may
be used for several slots� in which case they will share the
same initial value if the initarg is given to make� Subclasses
inherit the initarg� Each slot must have at most one ini�
targ including the inherited one� That means� a subclass
can not shadow or add a new initarg� if a superclass has
already de	ned one�

initform form
 The value of this option is a form� which
is evaluated as the default value of the slot� to be used if
no initarg is de	ned for the slot or given to a call to make�
The form is evaluated in the lexical environment of the call
to defstruct and the dynamic environment of the call to

��In combination with the guarantee that the behaviour of
generic functions cannot be modi
ed once it has been de
ned�
due to no support for method removal nor method combination�
this imbues level�� programs with static semantics�

�

Programming Language EuLisp� version ����

make� The form is evaluated each time make is called and
the default value is called for� The order of evaluation of
the initforms in all the slots is determined by initialize�
This option must only be speci	ed once for a particular
slot� Subclasses inherit the initform� However� a more
speci	c form may be speci	ed in a subclass� which will
shadow the inherited one�

reader identi�er
 The value is the identi	er of the vari�
able to which the reader function will be bound� The
binding is immutable� The reader function is a means to
access the slot� The reader function is a function of one
argument� which should be an instance of the new class�
No writer function is automatically bound with this op�
tion� This option can be speci	ed more than once for a
slot� creating several bindings for the same reader func�
tion� It is a static error to specify the same reader� writer�
or accessor name for two di�erent slots�

writer identi�er
 The value is the identi	er of the vari�
able to which the writer function will be bound� The bind�
ing is immutable� The writer function is a means to change
the slot value� The creation of the writer is analogous to
that of the reader function� The writer function is a func�
tion of two arguments� the 	rst should be an instance of
the new class and the second can be any new value for the
slot� This option can be speci	ed more than once for a
slot� It is a static error to specify the same reader� writer�
or accessor name for two di�erent slots�

accessor identi�er
 The value is the identi	er of the
variable to which the reader function will be bound� In ad�
dition� the use of this slot�option causes the writer function
to be associated to the reader via the setter mechanism�
This option can be speci	ed more than once for a slot�
It is a static error to specify the same reader� writer� or
accessor name for two di�erent slots�

The class options are interpreted as follows

initargs list
 The value of this option is a list of iden�
ti	ers naming symbols� which extend the inherited names
of arguments to be supplied in the init�options of a call
to make on the new class� Initargs are inherited by union�
The values of all legal arguments in the call to make are
the initial values of corresponding slots if they name a slot
initarg or are ignored by the default initializemethod�
otherwise� This option must only be speci	ed once for a
class�

constructor constructor�spec
 Creates a constructor
function for the new class� The constructor speci	cation
gives the name to which the constructor function will be
bound� followed by a sequence of legal initargs for the class�
The new function creates an instance of the class and 	lls
in the slots according to the match between the speci	ed
initargs and the given arguments to the constructor func�
tion� This option may be speci	ed any number of times
for a class�

predicate identi�er
 Creates a function which tests
whether an object is an instance of the new class� The
predicate speci	cation gives the name to which the predi�
cate function will be bound� This option may be speci	ed
any number of times for a class�

���� De
ning Generic Functions and Methods

�
	�	� defgeneric de�ning form

�
	�	�	� Syntax

defgeneric form
� ���� �defgeneric�� gf name� gf lambda list�
�level � init option�� ����

gf name
� identifier� �� A��� ��

gf lambda list
� specialized lambda list�

level � init option
� �method�� method description�

method description
� ���� specialized lambda list� �form�� ����

specialized lambda list
� ���� specialized parameter�
�specialized parameter��
����� identifier � ���� �� A��� ��

specialized parameter
� ���� identifier� class name� ��� �� A��� ��
� identifier� �� A��� ��

�
	�	�	� Arguments

gf�name
 One of a symbol� or a form denoting a setter
function or a converter function�

gen�lambda�list
 The parameter list of the generic func�
tion� which may be specialized to restrict the domain of
methods to be attached to the generic function�

level���init�option�
 Options as speci	ed below�

�
	�	�	� Remarks

This de	ning form de	nes a new generic function� The re�
sulting generic function will be bound to gf�name� The sec�
ond argument is the formal parameter list� The method�s
specialized lamba list must be congruent to that of the
generic function� Two lambda lists are said to be congru�
ent i�

a� both have the same number of formal parameters� and

b� if one lambda list has a rest formal parameter then the
other lambda list has a rest formal parameter too� and vice
versa�

An error is signalled �condition
class
 �non�congruent�lambda�lists�� if any method de�
	ned on this generic function does not have a lambda list
congruent to that of the generic function�

An error is
signalled �condition class
 �incompatible�method�domain��
if the method�s specialized lambda list widens the domain of
the generic function� In other words� the lambda lists of all
methods must specialize on subclasses of the classes in the
lambda list of the generic function�

An error is signalled �condition
class
 �method�domain�clash�� if any methods de	ned on

��

Programming Language EuLisp� version ����

Table � � defgeneric rewrite rules

�defgeneric identi�er gf lambda list
flevel � init optiong�

� �defconstant identi�er
�generic�lambda gf lambda list flevel � init optiong��

�defgeneric �setter identi�er� gf lambda list
flevel � init optiong�

� ��setter setter� identi�er
�generic�lambda gf lambdalist flevel � init optiong��

�defgeneric �converter identi�er� gf lambda list
flevel � init optiong�

� ��setter converter� identi�er
�generic�lambda gf lambda list level � init optiong��

this generic function have the same domain� These condi�
tions apply both to methods de	ned at the same time as the
generic function and to any methods added subsequently by
defmethod� An init�option is an identi	er followed by a cor�
responding value�

An error is signalled �condition class

�no�applicable�method�� if an attempt is made to apply
a generic function which has no applicable methods for the
classes of the arguments supplied�

The init�option is

method method�spec
 This option is followed by a
method description� A method description is a list com�
prising the specialized lambda list of the method� which
denotes the domain� and a sequence of forms� denoting
the method body� The method body is closed in the lex�
ical environment in which the generic function de	nition
appears� This option may be speci	ed more than once�

The rewrite rules for defgeneric are given in Table ��

�
	�	�	� Examples

In the following example of the use of defgeneric a generic
function named gf�� is de	ned with three methods attached
to it� The domain of gf�� is constrained to be �object�
� �class�a�� In consequence� each method added to the
generic function� both here and later �by defmethod�� must
have a domain which is a subclass of �object�� �class�a��
which is to say that �class�c�� �class�e� and �class�g�
must all be subclasses of �class�a��

�defgeneric gf�� �arg� �arg� �class�a���
method ���m��arg� �class�b�� �m��arg� �class�c��� ����
method ���m��arg� �class�d�� �m��arg� �class�e��� ����
method ���m	�arg� �class�f�� �m	�arg� �class�g��� �����

�
	�	�	� See also
 defmethod� generic�lambda�

�
	�	� defmethod macro

�
	�	�	� Syntax

defmethod form
� ���� �defmethod�� gf locator�
specialized lambda list�
�form�� ����

gf locator
� identifier
� ���� �setter�� identifier� ���
� ���� �converter�� identifier� ����

�
	�	�	� Remarks

This macro is used for de	ning new methods on generic
functions� A new method object is de	ned with the spec�
i	ed body and with the domain given by the specialized
lambda list� This method is added to the generic func�
tion bound to gf�name� which is an identi	er� or a form
denoting a setter function or a converter function� If
the specialized�lambda�list is not congruent with that of
the generic function� an error is signalled �condition class

�non�congruent�lambda�lists��� An error is signalled
�condition class
 �incompatible�method�domain�� if the
method�s specialized lambda list would widen the domain
of the generic function� If there is a method with the same
domain already de	ned on this gneric function� an error is
signalled �condition class
 �method�domain�clash���

�
	�	� generic�lambda macro

�
	�	�	� Syntax

generic lambda form
� ���� �generic�lambda�� gf lambda list�
�level � init option�� ����

�
	�	�	� Remarks

generic�lambda creates and returns an anonymous generic
function that can be applied immediately� much like the nor�
mal lambda� The gen�lambda�list and the init�options are in�
terpreted exactly as for the level�� de	nition of defgeneric�

�
	�	�	� Examples

In the following example an anonymous version of gf�� �see
defgeneric above� is de	ned� In all other respects the re�
sulting object is the same as gf���

�generic�lambda ��arg� �object�� �arg� �class�a���
method ���m��arg� �class�b�� �m��arg� �class�c��� ����
method ���m��arg� �class�d�� �m��arg� �class�e��� ����

��

Programming Language EuLisp� version ����

method ���m	�arg� �class�f�� �m	�arg� �class�g��� �����

�
	�	�	� See also
 defgeneric�

�
	�	� no�applicable�method telos�condition

�
	�	�	� Initialization Options

generic function
 The generic function which was ap�
plied�

arguments list
 The arguments of the generic function
which was applied�

�
	�	�	� Remarks

Signalled by a generic function when there is no method
which is applicable to the arguments�

�
	�	� incompatible�method�domain telos�condition

�
	�	�	� Initialization Options

generic function
 The generic function to be extended�

method method
 The method to be added�

�
	�	�	� Remarks

Signalled by one of defgeneric� defmethod or
generic�lambda if the domain of the method would not be
a subdomain of the generic function�s domain�

�
	�	� non�congruent�lambda�lists telos�condition

�
	�	�	� Initialization Options

generic function
 The generic function to be extended�

method method
 The method to be added�

�
	�	�	� Remarks

Signalled by one of
defgeneric� defmethod or generic�lambda if the lambda
list of the method is not congruent to that of the generic
function�

�
	�	
 method�domain�clash telos�condition

�
	�	
	� Initialization Options

generic function
 The generic function to be extended�

methods list
 The methods with the same domain�

�
	�	
	� Remarks

Signalled by one of defgeneric� defmethod or
generic�lambda if there would be methods with the same
domain attached to the generic function�

���� Specializing Methods

The following two operators are used to specialize more gen�
eral methods� The more specialized method can do some
additional computation before calling these operators and
can then carry out further computation before returning� It
is an error to use either of these operators outside a method
body� Argument bindings inside methods are immutable�
Therefore an argument inside a method retains its special�
ized class throughout the processing of the method�

�
	�	� call�next�method special form

�
	�	�	� Syntax

�call�next�method�

�
	�	�	� Result

The result of calling the next most speci	c applicable
method�

�
	�	�	� Remarks

The next most speci	c applicable method is called with the
same arguments as the current method� An error is signalled
�condition class
 �no�next�method�� if there is no next most
speci	c method�

�
	�	� next�method�p special form

�
	�	�	� Syntax

�next�method�p�

�
	�	�	� Result

If there is a next most speci	c method� next�method�p re�
turns a non��� value� otherwise� it returns ���

�
	�	� no�next�method telos�condition

�
	�	�	� Initialization Options

method method
 The method which called
call�next�method�

operand�list list
 A list of the arguments to have been
passed to the next method�

�
	�	�	� Remarks

Signalled by call�next�method if there is no next most spe�
ci	c method�

�

Programming Language EuLisp� version ����

���� Method Lookup and Generic Dispatch

The system de	ned method lookup and generic function dis�
patch is purely class based� eql methods known from CLOS
are excluded�

The application behaviour of a generic function can be de�
scribed in terms of method lookup and generic dispatch� The
method lookup determines

a� which methods attached to the generic function are
applicable to the supplied arguments� and

b� the linear order of the applicable methods with re�
spect to classes of the arguments and the argument prece�
dence order�

A class C� is called more speci�c than class C� with respect
to C� i� C� appears before C� in the class precedence list
�CPL� of C�

���

Two additional concepts are needed to explain the pro�
cesses of method lookup and generic dispatch
 �i� whether a
method is applicable� �ii� how speci�c it is in relation to the
other applicable methods� The de	nitions of each of these
terms is now given�

A method with the domain D� � � � ��Dm"� �list�# is ap�
plicable to the arguments a� � � � am"am�� � � � an# if the class
of each argument� Ci� is a subclass of Di� which is to say� Di

is a member of Ci�s class precedence list�

A method M� with the domain D�� � � � � �D�m"� �list�#
is more speci�c than a method M� with the domain
D�� � � � � � D�m"� �list�# with respect to the arguments
a� � � � am"am�� � � � an# i� there exists an i � �� � � �m� so that
D�i is more speci	c than D�i with respect to Ci� the class of
ai� and for all j $ � � � � i � �� D�j is not more speci	c than
D�j with respect to Cj� the class of aj�

Now� with the above de	nitions� we can describe
the application behaviour of a generic function �f
a� � � � am"am�� � � � an#�

a� Select the methods applicable to a� � � � am"am�� � � � an#
from all methods attached to f�

b� Sort the applicable methods M� � � � Mk into decreasing
order of speci	city using left to right argument precedence
order to resolve otherwise equally speci	c methods�

c� If call�next�method appears in one of the method
bodies� make the sorted list of applicable methods avail�
able for it�

d� Apply the most speci	c method on
a� � � � am"am�� � � � an#�

e� Return the result of the previous step�

��This de
nition is required when multiple inheritance comes
into play� Then� two classes have to be compared with respect
to a third class even if they are not related to each other via
the subclass relationship� Although� multiple inheritance is not
provided at level��� the method lookup protocol is independent
of the inheritance strategy de
ned on classes� It depends on the
class precedence lists of the domains of methods attached to the
generic function and the argument classes involved�

The 	rst two steps are usually called method lookup and the
	rst four are usually called generic dispatch�

���� Creating and Initializing Objects

Objects can be created by calling

� constructors �prede	ned or user de	ned� or

� make� the general constructor function or

� allocate� the general allocator function�

�
	
	� make function

�
	
	�	� Arguments

class
 The class of the object to create�

key� obj� ��� keyn objn
 Initialization arguments�

�
	
	�	� Result

An instance of class�

�
	
	�	� Remarks

The general constructor make creates a new object calling
allocate and initializes it by calling initialize� make re�
turns whatever allocate returns as its result�

�
	
	� allocate function

�
	
	�	� Arguments

class
 A structure class�

initlist
 A list of initialization arguments�

�
	
	�	� Result

A new uninitialized direct instance of the 	rst argument�

�
	
	�	� Remarks

The class must be a structure class� the initlist is ignored�
The behaviour of allocate is extended at level�� for classes
not accessible at level��� The level�� behaviour is not a�ected
by the level�� extension�

�
	
	� initialize generic function

�
	
	�	� Generic Arguments

�object �object��
 The object to initialize�

initlist
 The list of initialization arguments�

�
	
	�	� Result

The initialized object�

��

Programming Language EuLisp� version ����

�
	
	�	� Remarks

Initializes an object and returns the initialized object as the
result� It is called by make on a new uninitialized object
created by calling allocate�

Users may extend initialize by de	ning methods special�
izing on newly de	ned classes� which are structure classes at
level���

�
	
	� initialize method

�
	
	�	� Specialized Arguments

�object �object��
 The object to initialize�

initlist
 The list of initialization arguments�

�
	
	�	� Result

The initialized object�

�
	
	�	� Remarks

This is the default method attached to initialize� This
method performs the following steps

a� Checks if the supplied initargs are legal and signals
an error otherwise� Legal initargs are those speci	ed in
the class de	nition directly or inherited from a superclass�
An initarg may be speci	ed as a slot option or as a class
option�

b� Initializes the slots of the object according to the
initarg� if supplied� or according to the most speci	c
initform� if speci	ed� Otherwise� the slot remains �un�
bound��

Legal initargs which do not initialize a slot are ignored by
the default initializemethod� More speci	c methods may
handle these initargs and call the default method by calling
call�next�method�

���	 Accessing Slots

Object components �slots� can be accessed using reader and
writer functions �accessors� only� For system de	ned object
classes there are prede	ned readers and writers� Some of
the writers are accessible using the setter function� If there
is no writer for a slot� its value cannot be changed� When
users de	ne new classes� they can specify which readers and
writers should be accessible in a module and by which bind�
ing� Accessor bindings are not exported automatically when
a class �binding� is exported� They can only be exported
explicitly�

�� Concurrency

The basic elements of parallel processing in EULISP are pro�
cesses and mutual exclusion� which are provided by the
classes �thread� and �lock� respectively�

A thread is allocated and initialized� by calling make� The
initarg of a thread speci	es the initial function� which is
where execution starts the 	rst time the thread is dispatched
by the scheduler� In this discussion four states of a thread are
identi	ed
 new� running� aborted and �nished� These are for
conceptual purposes only and a EuLisp program cannot dis�
tinguish between new and running or between aborted and
	nished� �Although accessing the result of a thread would
permit such a distinction retrospectively� since an aborted
thread will cause a condition to be signalled on the access�
ing thread and a 	nished thread will not�� In practice� the
running state is likely to have several internal states� but
these distinctions and the information about a thread�s cur�
rent state can serve no useful purpose to a running program�
since the information may be incorrect as soon as it is known�
The initial state of a thread is new� The union of the two
	nal states is known as determined� Although a program can
	nd out whether a thread is determined or not by means of
wait with a timeout of t �denoting a poll�� the information
is only useful if the thread has been determined�

A thread is made available for dispatch by starting it� using
the function thread�start� which changes its state from new
to running� After running a thread becomes either 	nished
or aborted� When a thread is 	nished� the result of the
initial function may be accessed using thread�value� If a
thread is aborted� which can only occur as a result of a signal
handled by the default handler �installed when the thread is
created�� then thread�value will signal the condition that
aborted the thread on the thread accessing the value� Note
that thread�value suspends the calling thread if the thread
whose result is sought is not determined�

While a thread is running� its progress can be suspended
by accessing a lock� by a stream operation or by calling
thread�value on an undetermined thread� In each of these
cases� thread�reschedule is called to allow another thread
to execute� This function may also be called voluntarily�
Progress can resume when the lock becomes unlocked� the in�
put�output operation completes or the undetermined thread
becomes determined�

The actions of a thread can be in�uenced externally by
signal� This function registers a condition to be signalled
no later than when the speci	ed thread is rescheduled for
execution�when thread�reschedule returns� The condi�
tion must be an instance of thread�condition� Conditions
are delivered to the thread in order of receipt� This ordering
requirement is only important in the case of a thread sending
more than one signal to the same thread� but in other cir�
cumstances the delivery order cannot be veri	ed� A signal
on a determined thread has no discernable e�ect on either
the signalled or signalling thread unless the condition is not
an instance of �thread�condition�� in which case an error
is signalled on the signalling thread� See also Section ���

A lock is an abstract data type protecting a binary value
which denotes whether the lock is locked or unlocked� The
operations on a lock are lock and unlock� Executing a lock
operation will eventually give the calling thread exclusive
control of a lock� The unlock operation unlocks the lock so
that either a thread subsequently calling lock or one of the

��

Programming Language EuLisp� version ����

threads which has already called lock on the lock can gain
exclusive access�

NOTE � It is intended that implementations of locks based on
spin�locks� semaphores or channels should all be capable of sat�
isfying the above description� However� to be a conforming im�
plementation� the use of a spin�lock must observe the fairness re�
quirement� which demands that between attempts to acquire the
lock� control must be ceded to the scheduler�

The programming model is that of concurrently executing
threads� regardless of whether the con	guration is a multi�
processor or not� with some constraints and some weak fair�
ness guarantees�

a� A processor is free to use run�to�completion� timeslic�
ing and�or concurrent execution�

b� A conforming program must assume the possibility of
concurrent execution of threads and will have the same
semantics in all cases�see discussion of fairness which fol�
lows�

c� The default condition handler for a new thread� when
invoked� will change the state of the thread to aborted�
save the signalled condition and reschedule the thread�

d� A continuation must only be called from within its
dynamic extent� This does not include threads created
within the dynamic extent� An error is signalled �condi�
tion class
 �wrong�thread�continuation��� if a continu�
ation is called on a thread other than the one on which it
was created�

e� The lexical environment �inner and top� associated
with the initial function may be shared� as is the top�
dynamic environment� but each thread has a distinct
inner�dynamic environment� In consequence� any modi�
	cations of bindings in the lexical environment or in the
top�dynamic environment should be mediated by locks to
avoid non�deterministic behaviour�

f� The creation and starting of a thread represent
changes to the state of the processor and as such are not
a�ected by the processor�s handling of errors signalled sub�
sequently on the creating�starting thread �c�f� streams��
That is to say� a non�local exit to a point dynamically out�
side the creation of the subsidiary thread has no default
e�ect on the subsidiary thread�

g� The behaviour of i�o on the same stream by multiple
threads is unde	ned unless it is mediated by explicit locks�

The parallel semantics are preserved on a sequential run�to�
completion implementation by requiring communication be�
tween threads to use only thread primitives and shared data
protected by locks�both the thread primitives and locks will
cause rescheduling� so other threads can be assumed to have
a chance of execution�

There is no guarantee about which thread is selected next�
However� a fairness guarantee is needed to provide the il�
lusion that every other thread is running� A strong guar�
antee would ensure that every other thread gets scheduled
before a thread which reschedules itself is scheduled again�
Such a scheme is usually called �round�robin�� This could
be stronger than the guarantee provided by a parallel imple�
mentation or the scheduler of the host operating system and
cannot be mandated in this de	nition�

A weak but su�cient guarantee is that if any thread resched�
ules in	nitely often then every other thread will be scheduled
in	nitely often� Hence if a thread is waiting for shared data
to be changed by another thread and is using a lock� the other
thread is guaranteed to have the opportunity to change the
data� If it is not using a lock� the fairness guarantee en�
sures that in the same scenario the following loop will exit
eventually

�while �� data �� �thread�reschedule��

���� Threads

The de	ned name of this module is thread� This section
de	nes the operations on threads�

��	�	� �thread� class

The class of all instances of �thread��

��	�	�	� Initialization Options

init�function fn
 an instance of �function� which
will be called when the resulting thread is started by
thread�start�

��	�	� threadp function

��	�	�	� Arguments

object
 An object to examine�

��	�	�	� Result

The supplied argument if it is an instance of �thread�� oth�
erwise ���

��	�	� thread�reschedule function

This function takes no arguments�

��	�	�	� Result

The result is ���

��	�	�	� Remarks

This function is called for side�e�ect only and may cause the
thread which calls it to be suspended� while other threads
are run� In addition� if the thread�s condition queue is not
empty� the 	rst condition is removed from the queue and
signalled on the thread� The resume continuation of the
signal will be one which will eventually call the continuation
of the call to thread�reschedule�

��	�	�	� See also
 thread�value� signal and Section ��
for details of conditions and signalling�

��

Programming Language EuLisp� version ����

��	�	� current�thread function

This function takes no arguments�

��	�	�	� Result

The thread on which current�thread was executed�

��	�	� thread�start function

��	�	�	� Arguments

thread
 the thread to be started� which must be new� If
thread is not new� an error is signalled �condition class

�thread�already�started���

obj� � � �objn
 values to be passed as the arguments to the
initial function of thread�

��	�	�	� Result

The thread which was supplied as the 	rst argument�

��	�	�	� Remarks

The state of thread is changed to running� The values obj�
to objn will be passed as arguments to the initial function of
thread�

��	�	� thread�value function

��	�	�	� Arguments

thread
 the thread whose 	nished value is to be accessed�

��	�	�	� Result

The result of the initial function applied to the arguments
passed from thread�start� However� if a condition is sig�
nalled on thread which is handled by the default handler
the condition will now be signalled on the thread calling
thread�value�that is the condition will be propagated to
the accessing thread�

��	�	�	� Remarks

If thread is not determined� each thread calling thread�value
is suspended until thread is determined� when each will either
get the thread�s value or signal the condition�

��	�	�	� See also
 thread�reschedule� signal�

��	�	
 wait method

��	�	
	� Specialized Arguments

�thread �thread��
 The thread on which to wait�

�timeout �object��
 The timeout period which is spec�
i	ed by one of ��� t� and non�negative integer�

��	�	
	� Result

Result is either thread or ��� If timeout is ��� the result
is thread if it is determined� If timeout is t� thread sus�
pends until thread is determined and the result is guaran�
teed to be thread� If timeout is a non�negative integer� the
call blocks until either thread is determined� in which case
the result is thread� or until the timeout period is reached�
in which case the result is ��� whichever is the sooner� The
units for the non�negative integer timeout are the number
of clock ticks to wait� The implementation�de	ned constant
ticks�per�second is used to make timeout periods proces�
sor independent�

��	�	
	� See also
 wait and ticks�per�second �Sec�
tion ����

��	�	� thread�condition condition

��	�	�	� Initialization Options

current�thread thread
 The thread which is signalling
the condition�

��	�	�	� Remarks

This is the general condition class for all conditions arising
from thread operations�

��	�	� wrong�thread�continuation thread�condition

��	�	�	� Initialization Options

continuation continuation
 A continuation�

thread thread
 The thread on which continuation was
created�

��	�	�	� Remarks

Signalled if the given continuation is called on a thread other
than the one on which it was created�

��	�	�
 thread�already�started thread�condition

��	�	�
	� Initialization Options

thread thread
 A thread�

��	�	�
	� Remarks

Signalled by thread�start if the given thread has been
started already�

���� Locks

The de	ned name of this module is lock�

��

Programming Language EuLisp� version ����

��	�	� �lock� class

The class of all instances of �lock�� This class has no init�
options� The result of calling make on �lock� is a new� open
lock�

��	�	� lockp function

��	�	�	� Arguments

object
 An object to examine�

��	�	�	� Result

The supplied argument if it is an instance of lock� otherwise
���

��	�	� lock function

��	�	�	� Arguments

lock
 the lock to be acquired�

��	�	�	� Result

The lock supplied as argument�

��	�	�	� Remarks

Executing a lock operation will eventually give the calling
thread exclusive control of lock� A consequence of calling
lock is that a condition from another thread may be sig�
nalled on this thread� Such a condition will be signalled
before lock has been acquired� so a thread which does not
handle the condition will not lead to starvation! the con�
dition will be signalled continuably so that the process of
acquiring the lock may continue after the condition has been
handled�

��	�	�	� See also
 unlock and Section �� for details of con�
ditions and signalling�

��	�	� unlock function

��	�	�	� Arguments

lock
 the lock to be released�

��	�	�	� Result

The lock supplied as argument�

��	�	�	� Remarks

The unlock operation unlocks lock so that either a thread
subsequently calling lock or one of the threads which has
already called lock on the lock can gain exclusive access�

��	�	�	� See also
 lock�

�� Conditions

The de	ned name of this module is condition�

The condition system was in�uenced by the Common Lisp
error system �� and the Standard ML exception mechanism�
It is a simpli	cation of the former and an extension of the lat�
ter� Following standard practice� this text de	nes the actions
of functions in terms of their normal behaviour� Where an
exceptional behaviour might arise� this has been de	ned in
terms of a condition� However� not all exceptional situations
are errors� Following Pitman� we use condition to be a kind
of occasion in a program when an exceptional situation has
been signalled� An error is a kind of condition�error and
condition are also used as terms for the objects that rep�
resent exceptional situations� A condition can be signalled
continuably by passing a continuation for the resumption to
signal� If a continuation is not supplied then the condition
cannot be continued�

These two categories are characterized as follows

a� A condition might be signalled when some limit has
been transgressed and some corrective action is needed
before processing can resume� For example� memory zone
exhaustion on attempting to heap�allocate an item can
be corrected by calling the memory management scheme
to recover dead space� However� if no space was recov�
ered a new kind of condition has arisen� Another example
arises in the use of IEEE �oating point arithmetic� where
a condition might be signalled to indicate divergence of
an operation� A condition should be signalled continuably
when there is a strategy for recovery from the condition�

b� Alternatively� a condition might be signalled when
some catastrophic situation is recognized� such as the
memory manager being unable to allocate more memory or
unable to recover su�cient memory from that already al�
located� A condition should be signalled non�continuably
when there is no reasonable way to resume processing�

A condition class is de	ned using defcondition �see Sec�
tion �������� The de	nition of a condition causes the creation
of a new class of condition� A condition is signalled using
the function signal� which has two required arguments and
one optional argument
 an instance of a condition� a re�
sume continuation or the empty list�the latter signifying a
non�continuable signal�and a thread� A condition can be
handled using the special form with�handler� which takes a
function�the handler function�and a sequence of forms to
be protected� The initial condition class hierarchy is shown
in Figure ��

���� Condition Classes

��	�	� �condition� class

��	�	�	� Initialization Options

message �string�
 A string� containing information
which should pertain to the situation which caused the
condition to be signalled�

��	�	�	� Remarks

The class which is the superclass of all condition classes�

��

Programming Language EuLisp� version ����

�condition�
�execution�condition�

�invalid�operator�
�cannot�update�setter�
�no�setter�

�environment�condition�
�arithmetic�condition�

�division�by�zero�
�conversion�condition�

�no�converter�
�stream�condition�
�syntax�error�
�thread�condition�

�thread�already�started�
�wrong�thread�continuation�
�wrong�condition�class�

�telos�condition�
�no�next�method�
�non�congruent�lambda�lists�
�incompatible�method�domain�
�no�applicable�method�
�method�domain�clash�

Figure � � Level�
 initial condition class hierarchy

��	�	� execution�condition condition

This is the general condition class for conditions arising from
the execution of programs by the processor�

��	�	� domain�condition execution�condition

��	�	�	� Initialization Options

argument �object�
 An argument� which was not of the
expected class� or outside a de	ned range and therefore
lead to the signalling of this condition�

��	�	� range�condition execution�condition

��	�	�	� Initialization Options

result �object�
 A result� which was not of the ex�
pected class� or outside a de	ned range and therefore lead
to the signalling of this condition�

��	�	� environment�condition condition

This is the general condition class for conditions arising from
the environment of the processor�

��	�	� conditionp function

��	�	�	� Arguments

object
 An object to examine�

��	�	�	� Result

Returns object if it is a condition� otherwise ���

��	�	
 initialize method

��	�	
	� Specialized Arguments

�condition �condition��
 a condition�

initlist
 A list of initialization options as follows

message string
 A string� containing information
which should pertain to the situation which caused the
condition to be signalled�

��	�	
	� Result

A new� initialized condition�

��	�	
	� Remarks

First calls call�next�method to carry out initialization spec�
i	ed by superclasses then does the �condition� speci	c ini�
tialization� The following init�option is recognized by this
method

message string
 A string which should contain informa�
tion about the condition that has arisen�

��	�	� defcondition de�ning form

��	�	�	� Syntax

�defcondition condition�class�name superclass�name init�
option��

��	�	�	� Arguments

condition�class�name
 A symbol naming a binding to be
initialized with the new condition class�

superclass�name
 A symbol naming a binding of a class
to be used as the superclass of the new condition class�

init�option�
 A sequence of symbols and expressions
to be passed to then generic functions allocate and
initialize�

��	�	�	� Remarks

This de	ning form de	nes a new condition class� The 	rst
argument is the name to which the new condition class will
be bound� The second is the name of the superclass of the
new condition class and an init�option is an identi	er fol�
lowed by its �default� initial value� If superclass�name is
��� the superclass is taken to be �condition�� Otherwise
superclass�name must be �condition� or the name of one of
its subclasses�

��

Programming Language EuLisp� version ����

���� Condition Handling

Conditions are handled with a function called a handler�
Handlers are established dynamically and have dynamic
scope and extent� Thus� when a condition is signalled� the
processor will call the dynamically closest handler� This can
accept� resume or decline the condition �see with�handler
for a full discussion and de	nition of this terminology�� If it
declines� then the next dynamically closest handler is called�
and so on� until a handler accepts or resumes the condition�
It is the 	rst handler accepting the condition that is used
and this may not necessarily be the most speci	c� Handlers
are established by the special form with�handler�

��	�	� signal function

��	�	�	� Arguments

condition
 The condition to be signalled�

function
 The function to be called if the condition is
handled and resumed� that is to say� the condition is con�
tinuable� or �� otherwise�

	thread

 If this argument is not supplied� the condition
is signalled on the thread which called signal� otherwise�
thread indicates the thread on which condition is to be
signalled�

��	�	�	� Result

signal should never return� It is an error to call signal�s
continuation�

��	�	�	� Remarks

Called to indicate that a speci	ed condition has arisen during
the execution of a program�

If the third argument is not supplied� signal calls the dy�
namically closest handler with condition and continuation�
If the second argument is a subclass of function� it is the
resume continuation to be used in the case of a handler de�
ciding to resume from a continuable condition� If the second
argument is ��� it indicates that the condition was signalled
as a non�continuable condition�in this way the handler is
informed of the signaler�s intention�

If the third argument is supplied� signal registers the
speci	ed condition to be signalled on thread� The
condition must be an instance of the condition class
�thread�condition�� otherwise an error is signalled �condi�
tion class
 �wrong�condition�class�� on the thread calling
signal� A signal on a determined thread has no e�ect on
either the signalled or signalling thread except in the case of
the above error�

��	�	�	� See also
 thread�reschedule� thread�value�
with�handler�

��	�	� wrong�condition�class thread�condition

��	�	�	� Initialization Options

condition condition
 A condition�

Signalled by signal if the given condition is not an instance
of the condition class �thread�condition��

��	�	� with�handler special form

��	�	�	� Syntax

�with�handler handler�function protected�form�

��	�	�	� Arguments

handler�function
 A function or a generic function which
will be called if a condition is signalled during the dy�
namic extent of protected�forms� A handler function
takes two arguments�a condition� and a resume func�
tion�continuation� The condition is the condition object
that was passed to signal as its 	rst argument� The re�
sume continuation is the continuation �or ��� that was
given to signal as its second argument�

protected�form�
 The sequence of forms whose execution
is protected by the handler�function speci	ed above�

��	�	�	� Result

The value of the last form in the sequence of protected�forms�

��	�	�	� Remarks

A with�handler form is evaluated in four steps

a� The new handler�function is constructed and identi	es
the dynamically closest handler�

b� The dynamically closest handler is shadowed by the
establishment of the new handler�function�

c� The sequence of protected�forms is evaluated in order
and the value of the last one is returned as the result of
the with�handler expression�

d� the handler�function is disestablished� and the previ�
ous handler is no longer shadowed�

The above is the normal behaviour of with�handler� The
exceptional behaviour of with�handler happens when there
is a call to signal during the evaluation of protected�form�
signal calls the dynamically closest handler�function pass�
ing on the 	rst two arguments given to signal� The handler�
function is executed in the dynamic extent of the call to
signal� However� any signals occurring during the exe�
cution of handler�function are dealt with by the dynami�
cally closest handler outside the extent of the form which
established handler�function� A handler�function takes one
of three actions

a� Return� This causes the next�closest enclosing
handler�function to be called� passing on the condition
and the resume continuation� This is termed declining
the condition� The situation when there is no next closest
enclosing handler is discussed later�

b� Call the resume continuation� This action might be
taken if the condition is recognized by the handler function

�

Programming Language EuLisp� version ����

�let�cc accept
�with�handler
�generic�lambda
��condition �condition�� �resume �function���
method
���c �condition�� resume�
�cond
��seriousp c�
��serious error� exit from with�handler �accept�
�accept��
��fixablep c�
���xable error �resume�
�resume �fix c���
�t
��otherwise� by omission� let another handler deal
��with it �decline�
������

��the protected expression
�something�which�might�signal�an�error���

Figure � � Illustration of handler actions

and might be preceded by some corrective action� This is
termed resuming the condition�

c� Not return and not call the resume continuation� This
action might be taken if the condition is recognized by the
handler function and might be preceded by some corrective
action before some kind of transfer of control� This is
termed accepting the condition�

It is an error if the condition is declined and there is no next
closest enclosing handler� In this circumstance the identi	ed
error is delivered to the con	guration to be dealt with in an
implementation�de	ned way� Errors arising in the dynamic
extent of the handler function are signalled in the dynamic
extent of the original signal but are handled in the enclosing
dynamic extent of the handler�

��	�	�	� Examples

An illustration of the use of all three cases is given in Fig�
ure
�

��	�	�	� See also
 signal�

��	�	� error function

��	�	�	� Arguments

error�message
 a string containing relevant information�

condition�class
 the class of condition to be signalled�

init�option�
 a sequence of options to be passed to
initialize�instance when making the instance of con�
dition�

��	�	�	� Result

The result is ���

��	�	�	� Remarks

The error function signals a non�continuable error� It calls

signal with an instance of a condition of condition�class
initialized from init�options� the error�message and a resume
continuation value of ��� signifying that the condition was
not signalled continuably�

��	�	� cerror function

��	�	�	� Arguments

error�message
 a string containing relevant information�

condition�class
 the class of condition to be signalled�

init�option�
 a sequence of options to be passed to
initialize�instance when making the instance of con�
dition�

��	�	�	� Result

The result is ���

��	�	�	� Remarks

The cerror function signals a continuable error� It calls
signal with an instance of a condition of condition�class
initialized from init�options� the error�message and a resume
continuation value which is the continuation of the cerror
expression� A non��� resume continuation signi	es that the
condition has been signalled continuably�

��

Programming Language EuLisp� version ����

�� Expressions� De	nitions and Control
Forms

This section gives the syntax of well�formed expressions and
describes the semantics of the special�forms� functions and
macros of the level�� language� In the case of level�� macros�
the description includes a set of expansion rules� However�
these descriptions are not prescriptive of any processor and
a conforming program cannot rely on adherence to these ex�
pansions�

���� Simple Expressions

��	�	� constant syntax

There are two kinds of constants� literal constants and de�
	ned constants� Only the 	rst kind are considered here� A
literal constant is a number� a string� a character� or the
empty list� The result of processing such a literal constant
is the constant itself�that is� it denotes itself�

��	�	�	� Examples

�� the empty list
��� a 	xed precision integer
��a a character
�abc� a string

��	�	� defconstant de�ning form

��	�	�	� Syntax

defconstant form
� ���� �defconstant�� identifier� form� ����

��	�	�	� Arguments

identi�er
 A symbol naming an immutable top�lexical
binding to be initialized with the value of form�

form
 The form whose value will be stored in the binding
of identi�er�

��	�	�	� Remarks

The value of form is stored in the top�lexical binding of iden�
ti�er� It is a static error to attempt to modify the binding
of a de	ned constant�

��	�	� nil �null�

��	�	�	� Remarks

The symbol nil is de	ned to be immutably bound to the
empty list� which is represented as ��� The empty list is
used to denote the abstract boolean value false�

��	�	� t �symbol�

��	�	�	� Remarks

The symbol t is de	ned to be immutably bound to the sym�
bol t� This may be used to denote the abstract boolean value
true� but so may any other value than ���

��	�	� symbol syntax

The current lexical binding of symbol is returned� A symbol
can also name a de	ned constant�that is� an immutable
top�lexical binding�

��	�	� deflocal de�ning form

��	�	�	� Syntax

deflocal form
� ���� �deflocal�� identifier� form� ����

��	�	�	� Arguments

identi�er
 A symbol naming a binding containing the
value of form�

form
 The form whose value will be stored in the binding
of identi�er�

��	�	�	� Remarks

The value of form is stored in the top�lexical binding of iden�
ti�er� The binding created by a deflocal form is mutable�

��	�	�	� See also
 setq�

��	�	
 quote special form

��	�	
	� Syntax

quote form
� ���� �quote�� object� ����

��	�	
	� Arguments

object
 the object to be quoted�

��	�	
	� Result

The result is object�

��

Programming Language EuLisp� version ����

��	�	
	� Remarks

The result of processing the expression �quote object� is
object� The object can be any object having an external
representation� The special form quote can be abbreviated
using apostrophe�graphic representation ��so that �quote
a� can be written �a� These two notations are used to incor�
porate literal constants in programs� It is an error to modify
a literal expression�

���� Functions� creation� de
nition and appli

cation

��	�	� lambda special form

��	�	�	� Syntax

lambda form
� ���� �lambda�� lambda list� �form�� ����

lambda list
� identifier �� A��� ��
� simple list
� rest list�

simple list
� ���� �identifier�� ���� �� A��� ��

rest list
� ���� �identifier�� ���� identifier� ����

��	�	�	� Arguments

lambda�list
 The parameter list of the function conform�
ing to the syntax speci	ed in Table ���

form
 An expression�

��	�	�	� Result

A function with the speci	ed lambda�list and sequence of
forms�

��	�	�	� Remarks

The function construction operator is lambda� Access to the
lexical environment of de	nition is guaranteed� The syntax
of lambda�list is de	ned by the grammar in Table ���

If lambda�list is an identi�er� it is bound to a newly allocated
list of the actual parameters� This binding has lexical scope
and inde	nite extent� If lambda�list is a simple�list� the argu�
ments are bound to the corresponding identi�ers� Otherwise�
lambda�list must be a rest�list� In this case� each identi�er
preceding the dot is bound to the corresponding argument
and the identi�er succeeding the dot is bound to a newly
allocated list whose elements are the remaining arguments�
These bindings have lexical scope and inde	nite extent� It is
a static error if the same identi	er appears more than once
in a lambda�list� It is an error to modify rest�list�

��	�	� defmacro syntax

��	�	�	� Syntax

defmacro form
� ���� �defmacro�� macro name� lambda list�
�form�� ����

��	�	�	� Arguments

macro�name
 A symbol naming an immutable top�
lexical binding to be initialized with a function having the
speci	ed lambda�list and body�

lambda�list
 The parameter list of the function conform�
ing to the syntax speci	ed under lambda�

body
 A sequence of forms�

��	�	�	� Remarks

The defmacro form de	nes a function named bymacro�name
and stores the de	nition as the top�lexical binding of macro�
name� The interpretation of the lambda�list is as de	ned for
lambda �see Table ����

NOTE � A macro is automatically exported from the the module
which de
nes it� A macro cannot be used in the module which
de
nes it�

��	�	�	� See also
 lambda�

��	�	� defun syntax

��	�	�	� Syntax

defun form
� simple defun
� setter defun�

simple defun
� ���� �defun�� function name� lambda list�
�form�� ����

setter defun
� ���� �defun��

���� �setter�� function name� ����
lambda list� �form�� ����

��	�	�	� Arguments

function�name
 A symbol naming an immutable top�
lexical binding to be initialized with a function having the
speci	ed lambda�list and body�

�setter function�name�
 An expression denoting the
setter function to correspond to function�name�

lambda�list
 The parameter list of the function conform�
ing to the syntax speci	ed under lambda�

body
 A sequence of forms�

�

Programming Language EuLisp� version ����

��	�	�	� Remarks

The defun form de	nes a function named by function�name
and stores the de	nition �i� as the top�lexical binding of
function�name or �ii� as the setter function of function�name�
The interpretation of the lambda�list is as de	ned for lambda�
The rewrite rules for defun are given below�

�defun identi�er
lambda�list
body�

� �defconstant identi�er
�lambda lambda�list body��

�defun
�setter identi�er�
lambda�list body�

� ��setter setter� identi�er
�lambda lambda�list body��

��	�	� function call syntax

��	�	�	� Syntax

function call form
� ���� operator� �operand�� ����

��	�	�	� Arguments

operator
 This may be a symbol�being either the name
of a special form� or a lexical variable�or a function call�
which must result in an instance of �function��

An error is signalled �condition class

�invalid�operator�� if the operator is not a function�

operand�
 Each operand must be either an atomic ex�
pression� a literal expression or a function call�

��	�	�	� Result

The result is the value of the application of operator to the
evaluation of operand��

��	�	�	� Remarks

The operand expressions are evaluated in order from left to
right� The operator expression may be evaluated at any time
before� during or after the evaluation of the operands�

NOTE � The above rule for the evaluation of function calls was

nally agreed upon for this version since it is in line with one
strand of common practice� but it may be revised in a future
version�

��	�	�	� See also
 constant� symbol� quote�

��	�	� invalid�operator execution�condition

��	�	�	� Initialization Options

invalid�operator object
 The object which was being
used as an operator�

operand�list list
 The operands prepared for the oper�
ator�

��	�	�	� Remarks

Signalled by function call if the operator is not an instance
of �function��

��	�	� apply function

��	�	�	� Syntax

apply form
� ���� �apply�� function� �form�� ����

��	�	�	� Arguments

function
 An expression which must evaluate to an in�
stance of �function��

form� ��� formn��
 A sequence of expressions� which will
be evaluated according to the rules given in function call�

formn
 An expression which must evaluate to a proper
list� It is an error if objn is not a proper list�

��	�	�	� Result

The result is the result of calling function with the actual
parameter list created by appending formn to a list of the
arguments form� through formn��� An error is signalled
�condition class
 �invalid�operator�� if the 	rst argument
is not an instance of �function��

��	�	�	� See also
 function call� �invalid�operator��

���� Destructive Operations

An assignment operation modi	es the contents of a binding
named by a identi	er�that is� a variable�

��	�	� setq special form

��	�	�	� Syntax

setq form
� ���� �setq�� identifier� form� ����

��	�	�	� Arguments

identi�er
 The identi	er whose lexical binding is to be
updated�

form
 An expression whose value is to be stored in the
binding of identi�er�

��

Programming Language EuLisp� version ����

��	�	�	� Result

The result is the value of form�

��	�	�	� Remarks

The form is evaluated and the result is stored in the closest
lexical binding named by identi�er� It is a static error to
modify an immutable binding�

��	�	� setter function

��	�	�	� Arguments

reader
 An expression which must evaluate to an in�
stance of �function��

��	�	�	� Result

The writer corresponding to reader�

��	�	�	� Remarks

A generalized place update facility is provided by setter�
Given reader� setter returns the corresponding update func�
tion� If no such function is known to setter� an error is sig�
nalled �condition class
 �no�setter��� Thus �setter car�
returns the function to update the car of a pair� New up�
date functions can be added by using setter�s update func�
tion� which is accessed by the expression �setter setter��
Thus ��setter setter� a�reader a�writer� installs the
function which is the value of a�writer as the writer of
the reader function which is the value of a�reader� All
writer functions in this de	nition and user�de	ned writers
have the same immutable status as other standard functions�
such that attempting to rede	ne such a function� for exam�
ple ��setter setter� car a�new�value�� signals an error
�condition class
 �cannot�update�setter��

��	�	�	� See also
 defgeneric� defmethod� defstruct�
defun�

��	�	� no�setter execution�condition

��	�	�	� Initialization Options

object object
 The object given to setter�

��	�	�	� Remarks

Signalled by setter if there is no updater for the given func�
tion�

��	�	� cannot�update�setter execution�condition

��	�	�	� Initialization Options

accessor object�
 The given accessor object�

updater object�
 The given updater object�

��	�	�	� Remarks

Signalled by �setter setter� if the updater of the given
accessor is immutable�

��	�	�	� See also
 setter�

���� Conditional Expressions

��	�	� if special form

��	�	�	� Syntax

if form
� ���� �if�� antecedent� consequent�
alternative� ����

��	�	�	� Arguments

antecedent
 A form�

consequent
 A form�

alternative
 A form�

��	�	�	� Result

Either the value of consequence or alternative depending on
the value of antecedent�

��	�	�	� Remarks

The antecedent is evaluated� If the result is true the conse�
quence is evaluated� otherwise the alternative is evaluated�
Both consequence and alternative must be speci	ed� The
result of if is the result of the evaluation of whichever of
consequence or alternative is chosen�

��	�	� cond macro

��	�	�	� Syntax

cond macro
� ���� �cond��

����� antecedent� �consequent�� ����� ����

��	�	�	� Remarks

The cond macro provides a convenient syntax for collections
of if�then�elseif���else expressions� The rewrite rules for cond
are given below�

��

Programming Language EuLisp� version ����

�cond� � ��
�cond �antecedent� � � � � � �or antecedent �cond � � � ��
�cond
�antecedent��
�antecedent� form��
� � � �

� �or antecedent�
�cond
�antecedent� form��
� � � ��

�cond
�antecedent� form��
�antecedent� form��
� � � �

� �if antecedent�
�progn form��
�cond
�antecedent� form��
� � � ��

��	�	� and macro

��	�	�	� Syntax

and macro
� ���� �and�� �form�� ����

��	�	�	� Remarks

The expansion of an and form leads to the evaluation of the
sequence of forms from left to right� The 	rst form in the
sequence that evaluates to �� stops evaluation and none of
the forms to its right will be evaluated�that is to say� it is
non�strict� The result of �and� is ��� If none of the forms
evaluate to ��� the value of the last form is returned� The
rewrite rules for and are given below�

�and� � t
�and form� � form
�and form� form� � � �� � �if form�

�and form� � � � �
���

��	�	� or macro

��	�	�	� Syntax

or macro
� ���� �or�� �form�� ����

��	�	�	� Remarks

The expansion of an or form leads to the evaluation of the
sequence of forms from left to right� The value of the 	rst
form that evaluates to true is the result of the or form and
none of the forms to its right will be evaluated�that is to
say� it is non�strict� If none of the forms evaluate to true�
the value of the last form is returned� The rewrite rules for
or are given below� Note that x does not occur free in any
of form� � � � formn�

�or� � ��
�or form� � form
�or form� form� � � � � � �let ��x form���

�if x
x
�or form� � � � ���

���� Variable Binding and Sequences

��	�	� let�cc special form

��	�	�	� Syntax

let�cc form
� ���� �let�cc�� identifier� �form�� ����

��	�	�	� Arguments

identi�er
 To be bound to the continuation of the let�cc
form�

body
 A sequence of forms�

��	�	�	� Result

The result of evaluating the last form in body or the value of
the argument given to the continuation bound to identi�er�

��	�	�	� Remarks

The identi�er is bound to a new location� which is initial�
ized with the continuation of the let�cc form� This binding
is immutable and has lexical scope and inde	nite extent�
Each form in body is evaluated in order in the environment
extended by the above binding� It is an error to call the
continuation outside the dynamic extent of the let�cc form
that created it� The continuation is a function of one argu�
ment� Calling the continuation causes the restoration of the
lexical environment and dynamic environment that existed
before entering the let�cc form�

��	�	�	� Examples

An example of the use of let�cc is given in Figure �� The
function path�open takes a list of paths� the name of a 	le
and list of options to pass to open� It tries to open the 	le
by appending the name to each path in turn� Each time
open fails� it signals a condition that the 	le was not found
which is trapped by the handler function� That calls the
continuation bound to fail to cause it to try the next path in
the list� When open does 	nd a 	le� the continuation bound
to succeed is called with the stream as its argument� which
is subsequently returned to the caller of path�open� If the
path list is exhausted� map �section A��� terminates and an
error �condition class
 �cannot�open�path�� is signalled�

��	�	�	� See also
 block� return�from�

��

Programming Language EuLisp� version ����

�defun path�open �pathlist name � options�
�let�cc succeed
�map
�lambda �path�
�let�cc fail
�with�handler
�lambda �condition resume� �fail ����
�succeed �apply open

�format nil �!a�!a� path name�
options�����

pathlist�
�error
�format nil
�path�open" cannot open stream for �!a� !a�
pathlist name�

�cannot�open�path����

Figure � � Example using let�cc

��	�	� block macro

��	�	�	� Syntax

block macro
� ���� �block�� identifier� �form�� ����

��	�	�	� Remarks

The block expression is used to establish a statically scoped
binding of an escape function� The block variable is bound
to the continuation of the block� The continuation can be
invoked anywhere within the block by using return�from�
The forms are evaluated in sequence and the value of the
last one is returned as the value of the block form� See also
let�cc� The rewrite rules for block are given below�

The rewrite for block� does not prevent the block being ex�
ited from anywhere in its dynamic extent� since the function
bound to identi�er is a 	rst�class item and can be passed as
an argument like other values�

�block identi�er� � ��
�block identi�er form�� � �let�cc identi�er form��

��	�	�	� See also
 return�from�

��	�	� return�from macro

��	�	�	� Syntax

return from macro
� ���� �return�from�� identifier� �form � ����

��	�	�	� Remarks

In return�from� the identi�er names the continuation of the
�lexical� block from which to return� return�from is the
invocation of the continuation of the block named by identi�
�er� The form is evaluated and the value is returned as the
value of the block named by identi�er� The rewrite rules for
return�from are given below�

�return�from identi�er� � �identi�er ���
�return�from

identi�er form�
� �identi�er form�

��	�	�	� See also
 block�

��	�	� labels special form

��	�	�	� Syntax

labels form
� ���� �labels��

���� �function definition�� ����
�form�� ����

function definition
� ���� identifier� lambda list� �form�� ����

��	�	�	� Arguments

identi�er
 A symbol naming a new inner�lexical binding
to be initialized with the function having the lambda�list
and body speci	ed�

lambda�list
 The parameter list of the function conform�
ing to the syntax speci	ed below�

body
 A sequence of forms�

labels�body
 A sequence of forms�

��	�	�	� Result

The labels operator provides for local mutually recursive
function creation� Each identi�er is bound to a new inner�
lexical binding initialized with the function constructed from
lambda�list and body� The scope of the identi�ers is the entire
labels form� The lambda�list is either a single variable or
a list of variables�see lambda� Each form in labels�body is
evaluated in order in the lexical environment extended with
the bindings of the identi�ers� The result of evaluating the
last form in labels�body is returned as the result of the labels
form�

��	�	� let macro

��	�	�	� Syntax

��

Programming Language EuLisp� version ����

let macro
� ���� �let�� �identifier � ���� �binding�� ����
�form�� ����

binding
� identifier
� ��� identifier� form� ����

��	�	�	� Remarks

The optional identi�er denotes that the let form can be
called from within its body� This is an abbreviation for
labels form in which identi�er is bound to a function whose
parameters are the identi	ers of the bindings of the let�
whose body is that of the let and whose initial call passes
the values of the initializing form of the bindings� A bind�
ing is speci	ed by either an identi	er or a two element list
of an identi	er and an initializing form� All the initializing
forms are evaluated in order from left to right in the current
environment and the variables named by the identi	ers in
the bindings are bound to new locations holding the results�
Each form in body is evaluated in order in the environment
extended by the above bindings� The result of evaluating the
last form in body is returned as the result of the let form�
The rewrite rules for let are given below�

�let �� form�� � �progn form��
�let ��id� form��

�id� form��
id�
� � ��

form��

� ��lambda �id� id� id� � � � �
form��

form� form� �� � � � �

�let id�
��id� form��
id�
� � ��

form��

� �labels
��id� �id� id� � � � �
form���
�id� form� �� � � � ��

��	�	� let� macro

��	�	�	� Syntax

let star macro
� ���� �let��� ���� �binding�� ���� �form�� ����

��	�	�	� Remarks

A binding is speci	ed by a two element list of a variable and
an initializing form� The 	rst initializing form is evaluated
in the current environment and the corresponding variable is
bound to a new location containing that result� Subsequent
bindings are processed in turn� evaluating the initializing
form in the environment extended by the previous binding�
Each form in body is evaluated in order in the environment
extended by the above bindings� The result of evaluating
the last form is returned as the result of the let� form� The
rewrite rules for let� are given below�

�let� �� form�� � �progn form��
�let� ��var� form��

�var� form��
var�
� � � �

form��

� �let ��var� form���
�let� ��var� form��

var�
� � ��

form���

��	�	
 progn special form

��	�	
	� Syntax

progn form
� ���� �progn�� �form�� ����

��	�	
	� Arguments

form�
 A sequence of forms and in certain circum�
stances� de	ning forms�

��	�	
	� Result

The sequence of forms is evaluated from left to right� return�
ing the value of the last one as the result of the progn form�
If the sequence of forms is empty� progn returns ���

��	�	
	� Remarks

If the progn form occurs enclosed only by progn forms and
a defmodule form� then the forms within the progn can be
de	ning forms� since they appear in the top�lexical environ�
ment� It is a static error for de	ning forms to appear in
inner�lexical environments�

��	�	� unwind�protect special form

��	�	�	� Syntax

unwind protect form
� ���� �unwind�protect�� protected form�
�after form�� ����

��	�	�	� Arguments

protected�form
 A form�

after�form�
 A sequence of forms�

��	�	�	� Result

The value of protected�form�

��

Programming Language EuLisp� version ����

�progn
�let�cc k�
�labels
��loop

�let�cc k� �unwind�protect �k� ��� �k� ����
��continuation bound to k�
�loop����

�loop���
��continuation bound to k�
����

Figure
 � Interaction of unwind�protect with non�
local exits

��	�	�	� Remarks

The normal action of unwind�protect is to process protected�
form and then each of after�forms in order� returning the
value of protected�form as the result of unwind�protect� A
non�local exit from the dynamic extent of protected�form�
which can be caused by processing a non�local exit form�
will cause each of after�forms to be processed before con�
trol goes to the continuation speci	ed in the non�local exit
form� The after�forms are not protected in any way by the
current unwind�protect� Should any kind of non�local exit
occur during the processing of the after�forms� the after�
forms being processed are not reentered� Instead� control is
transferred to wherever speci	ed by the new non�local exit
but the after�forms of any intervening unwind�protects be�
tween the dynamic extent of the target of control transfer
and the current unwind�protect are evaluated in increasing
order of dynamic extent�

��	�	�	� Examples

The code fragment in Figure � illustrates both the use of
unwind�protect and of a di�erence between the semantics
of EULISP and some other Lisps� Stepping through the eval�
uation of this form
 k� is bound to the continuation of its
let�cc form! a recursive function named loop is constructed�
loop is called from the body of the labels form! k� is bound
to the continuation of its let�cc form! unwind�protect calls
k�! the after forms of unwind�protect are evaluated in or�
der! k� is called! loop is called! etc�� This program loops
inde	nitely�

���� Events

The de	ned name of this module is event�

��	�	� wait generic function

��	�	�	� Generic Arguments

obj
 An object�

�timeout �object��
 One of ��� t or a non�negative in�
teger�

��	�	�	� Result

Returns �� if timeout was reached� otherwise a non��� value�

��	�	�	� Remarks

wait provides a generic interface to operations which may
block� Execution of the current thread will continue beyond
the wait form only when one of the following happened

a� A condition associated with obj returns true!

b� timeout time units elapse!

c� A condition is raised by another thread on this thread�

wait returns �� if timeout occurs� else it returns a non�nil
value�

A timeout argument of �� or zero denotes a polling opera�
tion� A timeout argument of t denotes inde	nite blocking
�cases ��������a or ��������c above�� A timeout argument
of a non�negative integer denotes the minimum number of
time units before timeout� The number of time units in
a second is given by the implementation�de	ned constant
ticks�per�second�

��	�	�	� Examples

This code fragment copies characters from stream s to the
current output stream until no data is received on the stream
for a period of at least � second�

�labels
��loop ��

�when �wait s �round ticks�per�second��
�print �read�char s��
�loop����

�loop��

��	�	�	� See also
 threads �section ������ streams �sec�
tion A�����

��	�	� ticks�per�second �double�float�

The number of time units in a second expressed as a
double precision �oating point number� This value is
implementation�de	ned�

���� Quasiquotation Expressions

��	
	� quasiquote macro

��	
	�	� Syntax

quasiquote macro
� ���� �quasiquote�� skeleton� ����

��	
	�	� Remarks

Quasiquotation is also known as backquoting� A
quasiquoted expression is a convenient way of building a
structure� The skeleton describes the shape and� generally�
many of the entries in the structure but some holes remain

��

Programming Language EuLisp� version ����

to be 	lled� The quasiquote macro can be abbreviated by
using the glyph called grave accent ���� so that �quasiquote
expression� can be written �expression�

��	
	� unquote syntax

��	
	�	� Syntax

unquote syntax
� ���� �unquote�� form� ���
� ���� form�

��	
	�	� Remarks

See unquote�splicing�

��	
	� unquote�splicing syntax

��	
	�	� Syntax

unquotespliceing syntax
� ���� �unquote�splicing�� form� ���
� ��#�� form�

��	
	�	� Remarks

The holes in a quasiquoted expression are identi	ed by un�
quote expressions of which there are two kinds�forms whose
value is to be inserted at that location in the structure and
forms whose value is to be spliced into the structure at that
location� The former is indicated by an unquote expres�
sion and the latter by an unquote�splicing expression� In
unquote�splice the form must result in a proper list� The
insertion of the result of an unquote�splice expression is as if
the opening and closing parentheses of the list are removed
and all the elements of the list are appended in place of the
unquote�splice expression�

The syntax forms unquote and unquote�splicing can be
abbreviated respectively by using the glyph called comma
��� preceding an expression and by using the diphthong
comma followed by the glyph called commercial at ���� pre�
ceding a form� Thus� �unquote a� may be written �a and
�unquote�splicing a� can be written ��a�

��	
	�	� Examples

��a ��list � �� b� � �a �� �� b�
��a �#�list � �� b� � �a � � b�

���	 Summary of Level
� Expressions and Def

initions

This section gives the syntax of all level�� expressions and
de	nitions together� The syntax of data objects is given
in the section pertaining to the class and is summarized in
section A����

��	�	� Syntax of Level�
 de�ning forms

module
� ���� �defmodule�� module name�
module directives� �module form�� ����

module name
� identifier� �� A��� ��

module directives
� ��� �module directive�� ����

module directive
� �export�� ���� �identifier�� ���
� �expose�� ���� �module descriptor�� ���
� �import�� ���� �module descriptor�� ���
� �syntax�� ���� �module descriptor�� ����

level � module form
� ���� �export�� �identifier�� ���
� level � expression �� �� ��
� defining form �� �� ��
� ���� �progn�� �module form�� ����

module descriptor
� module name
� module filter�

module filter
� ���� �except�� ���� �identifier�� ����
module descriptor� ���

� ���� �only�� ���� �identifier�� ����
module descriptor� ���

� ���� �rename�� ���� �rename pair�� ����
module descriptor� ����

rename pair
� ��� identifier� identifier� ����

defstruct form
� ���� �defstruct�� class name� superclass name�
slot description list� �class option�� ����

class name
� identifier� �� A��� ��

superclass name
� identifier� �� A��� ��

slot description list
� ���� �slot decsription�� ����

slot description
� slot name
� ���� slot name� �slot option�� ����

slot name
� identifier� �� A��� ��

slot option
� �initarg� identifier �� A��� ��
� �initform� level � expression �� �� ��
� �reader� identifier �� A��� ��
� �writer� identifier �� A��� ��
� �accessor� identifier� �� A��� ��

class option
� �initargs�� ���� �identifier�� ���
� �constructor�� ���� identifier�
�initarg name�� ���

� �predicate� identifier� �� A��� ��

�

Programming Language EuLisp� version ����

defgeneric form
� ���� �defgeneric�� gf name� gf lambda list�
�level � init option�� ����

gf name
� identifier� �� A��� ��

gf lambda list
� specialized lambda list�

level � init option
� �method�� method description�

method description
� ���� specialized lambda list� �form�� ����

specialized lambda list
� ���� specialized parameter�
�specialized parameter��
����� identifier � ���� �� A��� ��

specialized parameter
� ���� identifier� class name� ��� �� A��� ��
� identifier� �� A��� ��

defmethod form
� ���� �defmethod�� gf locator�
specialized lambda list�
�form�� ����

gf locator
� identifier
� ���� �setter�� identifier� ���
� ���� �converter�� identifier� ����

defconstant form
� ���� �defconstant�� identifier� form� ����

deflocal form
� ���� �deflocal�� identifier� form� ����

defmacro form
� ���� �defmacro�� macro name� lambda list�
�form�� ����

defun form
� simple defun
� setter defun�

simple defun
� ���� �defun�� function name� lambda list�
�form�� ����

setter defun
� ���� �defun��

���� �setter�� function name� ����
lambda list� �form�� ����

��	�	� Syntax of Level�
 expressions

generic lambda form
� ���� �generic�lambda�� gf lambda list�
�level � init option�� ����

lambda form
� ���� �lambda�� lambda list� �form�� ����

lambda list
� identifier �� A��� ��
� simple list
� rest list�

simple list
� ���� �identifier�� ���� �� A��� ��

rest list
� ���� �identifier�� ���� identifier� ����

function call form
� ���� operator� �operand�� ����

quote form
� ���� �quote�� object� ����

setq form
� ���� �setq�� identifier� form� ����

if form
� ���� �if�� antecedent� consequent�
alternative� ����

let�cc form
� ���� �let�cc�� identifier� �form�� ����

labels form
� ���� �labels��

���� �function definition�� ����
�form�� ����

function definition
� ���� identifier� lambda list� �form�� ����

progn form
� ���� �progn�� �form�� ����

unwind protect form
� ���� �unwind�protect�� protected form�
�after form�� ����

apply form
� ���� �apply�� function� �form�� ����

��	�	� Syntax of Level�
 macros

cond macro
� ���� �cond��

����� antecedent� �consequent�� ����� ����

and macro
� ���� �and�� �form�� ����

or macro
� ���� �or�� �form�� ����

��

Programming Language EuLisp� version ����

block macro
� ���� �block�� identifier� �form�� ����

return from macro
� ���� �return�from�� identifier� �form � ����

let macro
� ���� �let�� �identifier � ���� �binding�� ����
�form�� ����

binding
� identifier
� ��� identifier� form� ����

let star macro
� ���� �let��� ���� �binding�� ���� �form�� ����

quasiquote macro
� ���� �quasiquote�� skeleton� ����

unquote syntax
� ���� �unquote�� form� ���
� ���� form�

unquotespliceing syntax
� ���� �unquote�splicing�� form� ���
� ��#�� form�

��

Programming Language EuLisp� version ����

Annex A

�normative�
Level�� Module Library

A�� Characters

The de	ned name of this module is character�

A	�	� character syntax

Character literals are denoted by the extension glyph� called
hash ���� followed by the character�extension glyph� called
reverse solidus ���� followed by the name of the character�
The syntax for the external representation of characters is
de	ned in Table A��� For most characters� their name is the
same as the glyph associated with the character� for example

the character �a� has the name �a� and has the external
representation ��a� Certain characters in the group named
special �see Table � and also Table ��� have symbolic names�
for example
 the newline character has the name newline and
has the external representation ��newline� These special
cases are the characters in the production special character
token in Table A���

Any character which does not have a name� and thereby an
external representation dealt with by cases described so far
is represented by ��x followed by up to four hexadecimal
digits� The value of the hexadecimal number represents the
position of the character in the current character set� Exam�
ples of such character literals are ��x� and ��xabcd� which
denote� respectively� the characters at position � and at po�
sition ����� in the character set current at the time of read�
ing or writing� The syntax for the external representation of
characters is de	ned in Table A���

NOTE � This text refers to the �current character set� but de�

nes no means of selecting alternative character sets� This is to
allow for future extensions and implementation�de
nedextensions
which support more than one character set�

A	�	� �character� class

The class of all characters�

A	�	� characterp function

A	�	�	� Arguments

object
 Object to examine�

A	�	�	� Result

Returns object if it is a character� otherwise ���

A	�	� equal method

A	�	�	� Specialized Arguments

�character� �character��
 A character�

Table A	� � Character Syntax

character token
� literal character token
� special character token
� control character token
� numeric character token�

literal character token
� ��$�� letter
� ��$�� decimal digit
� ��$�� non�alphabetic�

control character token
� ��$%� letter�

special character token
� ��$alert�
� ��$backspace�
� ��$delete�
� ��$formfeed�
� ��$linefeed�
� ��$newline�
� ��$return�
� ��$tab�
� ��$space�
� ��$vertical�tab��

numeric character token
� ��$x�� hex digit
� ��$x�� hex digit� hex digit
� ��$x�� hex digit� hex digit� hex digit
� ��$x�� hex digit� hex digit� hex digit�
hex digit�

�character� �character��
 A character�

A	�	�	� Result

If character� is the same character as character� the result
is character�� otherwise the result is ���

A	�	� binary� method

A	�	�	� Specialized Arguments

�character� �character��
 A character�

�character� �character��
 A character�

A	�	�	� Result

If both characters denote uppercase alphabetic or both de�
note lowercase alphabetic� the result is de	ned by alpha�
betical order� If both characters denote a digit� the result
is de	ned by numerical order� In these three cases� if the
comparison is true� the result is character�� otherwise it is
��� Any other comparison is an error and the result of such
comparisons is unde	ned�

A	�	�	� Examples

�

Programming Language EuLisp� version ����

�binary� ��A ��Z� � ��A
�binar� ��a ��z� � ��a
�binary� ��� ���� � ���
�binary ��A ��a� � unde�ned
�binary ��A ���� � unde�ned
�binary ��a ���� � unde�ned

A	�	�	� See also
 Method on binary� �A��� for strings
�A��
��

A	�	� as�lowercase generic function

A	�	�	� Generic Arguments

�object �object��
 An object to convert to lower case�

A	�	�	� Result

An instance of the same class as object converted to lower
case according to the actions of the appropriate method for
the class of object�

A	�	�	�
See also
 Another method is de	ned on as�lowercase for
strings �A��
��

A	�	
 as�lowercase method

A	�	
	� Specialized Arguments

�character �character��
 A character�

A	�	
	� Result

If character denotes an upper case character� a character
denoting its lower case counterpart is returned� Otherwise
the result is the argument�

A	�	� as�uppercase generic function

A	�	�	� Generic Arguments

�object �object��
 An object to convert to upper case�

A	�	�	� Result

An instance of the same class as object converted to upper
case according to the actions of the appropriate method for
the class of object�

A	�	�	�
See also
 Another method is de	ned on as�uppercase for
strings �A��
��

A	�	� as�uppercase method

A	�	�	� Specialized Arguments

�character �character��
 A character�

A	�	�	� Result

If character denotes an lower case character� a character de�
noting its upper case counterpart is returned� Otherwise the
result is the argument�

A	�	�
 generic�prin method

A	�	�
	� Specialized Arguments

�character �character��
 Character to be ouptut on
stream�

�stream �stream��
 Stream on which character is to be
ouptut�

A	�	�
	� Result

The character character�

A	�	�
	� Remarks

Output the interpretation of character on stream�

A	�	�� generic�write method

A	�	��	� Specialized Arguments

�character �character��
 Character to be ouptut on
stream�

�stream �stream��
 Stream on which character is to be
ouptut�

A	�	��	� Result

The character character�

A	�	��	� Remarks

Output external representation of character on stream in the
format ��name as described at the beginning of this section�

��

Programming Language EuLisp� version ����

A�� Collections

The de	ned name of this module is collection� A collec�
tion is de	ned as an instance of one of �list�� �string��
�vector�� �table� or any user�de	ned class for which a
method is added to any of the collection manipulation func�
tions� Collection does not name a class and does not form a
part of the class hierarchy� This module de	nes a set of oper�
ators on collections as generic functions and default methods
with the behaviours given here�

When iterating over a single collection� the order in which el�
ements are processed might not be important� but as soon as
more than one collection is involved� it is necessary to spec�
ify how the collections are aligned so that it is clear which
elements of the collections will be processed together� This
is quite straightforward in the cases of �list�� �string�
and �vector�� since there is an intuitive natural order for
the elements which allows them to be identi	ed by a non�
negative integer� Thus� when iterating over a combination
of any of these� all the elements at index position i will be
processed together� starting with the elements at position �
and 	nishing with those at position n � � where n is the
size of the smallest collection in the combination� The sub�
set of collections which have natural order is called sequence
and members of this set can be identi	ed by the predicate
sequencep� while collections in general can be identi	ed by
collectionp�

Collection alignment is more complicated when tables are in�
volved since they use explicit keys rather than natural order
to identify their elements� In any iteration over a combina�
tion of collections including a table or some tables� the set
of keys used is the intersection of the keys of the tables and
the implicit keys of the other collection classes present! this
identi	es the elements of the collections with common keys�
Thus� for an iteration to process any elements from the com�
bination of a collection with natural order and a table� the
table must have some integer keys and they must be in the
range "� � � � size� of the collection with natural order�

A conforming level�� implementation must de	ne methods
on these functions to support operations on lists �A�����
strings �A��
�� tables �A����� vector �A���� and any com�
bination of these�

A	�	� collection�condition condition

This is the condition class for all collection processing con�
ditions�

A	�	� accumulate generic function

A	�	�	� Generic Arguments

�function �function��
 A function of two arguments�

�obj �object��
 The object which is the initial value for
the accumulation operation�

�collection �object��
 The collection which is the sub�
ject of the accumulation operation�

A	�	�	� Result

The result is the result of the application of function to
the accumulated result and successive elements of collection�
The initial value of the accumulated result is supplied by obj�

A	�	�	� Examples

Note that the order of the elements in the result of the second
example depends on the hashing algorithm of the implemen�
tation and does not prescribe the result that any particular
implementation must give�

�accumulate � � ��� � � � ��� � ���
�accumulate
�lambda �a v� �cons v a��
��
�make �table�
�entries
���� � b� �� � a� �� � c����

� �c b a�

A	�	� accumulate� generic function

A	�	�	� Generic Arguments

�function �function��
 A function of two arguments�

�collection �object��
 The collection which is the sub�
ject of the accumulation operation�

A	�	�	� Result

The result is the result of the application of function to
the accumulated result and successive elements of collection
starting with the second element� The initial value of the ac�
cumulated result is the 	rst element of collection� The terms
	rst and second correspond to the appropriate elements of
a natural order collection� but no elements in particular of
an explicit key collection� If collection is empty� the result is
���

A	�	�	� Examples

�accumulate�
�lambda �a v�
�if �evenp v� �cons v a� a��

��� � � � ���

� �� ��

A	�	� anyp generic function

A	�	�	� Generic Arguments

�function �function��
 A function to be used as a pred�
icate on the elements of the collection�s��

�collection �object��
 A collection�

	more�collections

 More collections�

A	�	�	� Result

The function is applied to argument lists constructed from
corresponding successive elements of collection and more�
collections� If the result is true� the result of anyp is true
and there are no further applications of function to elements
of collection and more�collections� If any of the collections
is exhausted� the result of any is ���

��

Programming Language EuLisp� version ����

A	�	�	� Examples

�anyp even ��� � � ��� � true
�anyp
�lambda �a b� �� �� a b� ���
��� �� ��� ���

� true

A	�	� collectionp generic function

A	�	�	� Generic Arguments

�object �object��
 An object to examine�

A	�	�	� Result

Returns true if object is a collection� otherwise ���

A	�	�	� Remarks

This predicate does not return object because �� is a collec�
tion�

A	�	� concatenate generic function

A	�	�	� Generic Arguments

�collection �object��
 A collection�

	more�collections

 More collections�

A	�	�	� Result

The result is an object of the same class as collection�

A	�	�	� Remarks

The contents of the result object depend on whether collec�
tion has natural order or not

a� If collection has natural order then the size of the
result is the sum of the sizes of collection and more�
collections� The result collection is initialized with the
elements of collection followed by the elements of each of
more�collections taken in turn� If any element cannot be
stored in the result collection� for example� if the result is
a string and some element is not a character� an error is
signalled �condition class
 collection�condition��

b� If collection does not have natural order� then the
result will contain associations for each of the keys in col�
lection and more�collections� If any key occurs more than
once� the associated value in the result is the value of the
last occurrence of that key after processing collection and
each of more�collections taken in turn�

A	�	�	� Examples

�concatenate ���� ���� �bc�� � ��� � ��b ��c��
�concatenate �a� ����b�� � �ab�
�concatenate
�make �table��
��a b�
�c��

�
��table�
� �� �c��
� �� b�

A	�	
 do generic function

A	�	
	� Generic Arguments

�function �function��
 A function�

�collection �object��
 A collection�

	more�collections

 More collections�

A	�	
	� Result

The result is ��� This operator is used for side�e�ect only�
The function is applied to argument lists constructed from
corresponding successive elements of collection and more�
collections and the result is discarded� Application stops if
any of the collections is exhausted�

A	�	
	� Examples

�do prin ��� b ��c�� � �bc
�do write ��� b ��c�� � �b��c

A	�	� element generic function

A	�	�	� Generic Arguments

�collection �object��
 The object to be accessed or up�
dated�

�key �object��
 The object identifying the key of the
element in collection�

A	�	�	� Result

The value associated with key in collection�

A	�	�	� Examples

�element �abc� �� � ��b
�element ��a b c� �� � b
�element ��a b c� �� � b
�element
�make �table� �fill�value �b�
��

� b

A	�	� �setter element� setter

A	�	�	� Generic Arguments

�collection �object��
 The object to be accessed or up�
dated�

�key �object��
 The object identifying the key of the
element in collection�

�value �object��
 The object to replace the value asso�
ciated with key in collection �for setter��

A	�	�	� Result

The argument supplied as value� having updated the associ�
ation of key in collection to refer to value�

�

Programming Language EuLisp� version ����

A	�	�
 emptyp generic function

A	�	�
	� Generic Arguments

�collection �object��
 The object to be examined�

A	�	�
	� Result

Returns true if collection is the object identi	ed with the
empty object for that class of collection�

A	�	�
	� Examples

�emptyp ��� � true
�emptyp ��� � true
�emptyp ���� � true
�emptyp �make �table��� � true

A	�	�� fill generic function

A	�	��	� Generic Arguments

�collection �object��
 A collection to be �partially�
	lled�

�object �object��
 The object with which to 	ll collec�
tion�

	keys

 The keys with which object is to be associated�

A	�	��	� Result

The result is ���

A	�	��	� Remarks

This function side�e�ects collection by updating the values
associated with each of the speci	ed keys with obj� If no keys
are speci	ed� the whole collection is 	lled with obj� Other�
wise� the key speci	cation can take two forms

a� A collection� in which case the values of the collection
are taken to be the keys of collection to be associated with
obj�

b� Two 	xed precision integers� denoting the start and
end keys� respectively� in a natural order collection to be
associated with obj� An error is signalled �condition class

collection�condition� if collection does not have natu�
ral order� It is an error if the start and end do not specify
an ascending sub�interval of the interval "�� size�� where
size is that of collection�

A	�	�� map generic function

A	�	��	� Generic Arguments

�function �function��
 A function�

�collection �object��
 A collection�

	more�collections

 More collections�

A	�	��	� Result

The result is an object of the same class as collection� The
elements of the result are computed by the application of
function to argument lists constructed from corresponding
successive elements of collection and more�collections� Ap�
plication stops if any of the collections is exhausted�

A	�	��	� Examples

�map cons ��� �� ����� � ���� � ���
�map
�lambda �f� �f � ���
��
 � � ���

� ��� �� � ��

A	�	�� member generic function

A	�	��	� Generic Arguments

�object �object��
 The object to be searched for in col�
lection�

�collection �object��
 The collection to be searched�

�
test �function��
 # The function to be used to com�
pare object and the elements of collection�

A	�	��	� Result

Returns true if there is an element of collection such that the
result of the application of test to object and that element
is true� If test is not supplied� eql is used by default� Note
that true denotes any value that is not �� and that the class
of the result depends on the class of collection� In particular�
if collection is a list� the result of member is a list�

A	�	��	� Examples

�member ��b �abc�� � true
�member �b ��a b c�� � �b c�
�member �b ��a b c�� � true
�member
�b
�make �table�
�entries
���� � b� �� � a� �� � c����

� true

A	�	�� reverse generic function

A	�	��	� Generic Arguments

�collection �object��
 A collection�

A	�	��	� Result

The result is an object of the same class as collection whose
elements are the same as those in collection� but in the re�
verse order with respect to the natural order of collection� If
collection does not have natural order� the result is equal to
the argument�

A	�	��	� Examples

�reverse �abc�� � �cba�
�reverse ��� � ��� � �� � ��
�reverse ��a b c�� � ��c b a�

�

Programming Language EuLisp� version ����

A	�	�� sequencep generic function

A	�	��	� Generic Arguments

�object �object��
 An object to examine�

A	�	��	� Result

Returns true if object is a sequence �has natural order�� oth�
erwise ���

A	�	��	� Remarks

This predicate does not return object because �� is a se�
quence�

A	�	�� size generic function

A	�	��	� Generic Arguments

�collection �object��
 The object to be examined�

A	�	��	� Result

An integer which denotes the size of collection according to
the method for the class of collection�

A	�	��	� Examples

�size ��� � �
�size ��� � �
�size ���� � �
�size �make �table��� � �
�size �abc�� � �
�size �cons � ���� � �
�size �cons � � ��� � �
�size �cons � �cons � � ���� � �
�size ��� � ��� � �
�size ��a b c�� � �
�size �make �table� �entries ���� � a��� � �

A	�	�
 �converter �list�� method

A	�	�
	� Specialized Arguments

�collection �object��
 A collection to be converted into
a list�

A	�	�
	� Result

If collection is a list� the result is the argument� Otherwise
a list is constructed and returned whose elements are the
elements of collection� If collection has natural order� then
the elements will appear in the result in the same order as
in collection� If collection does not have natural order� the
order in the resulting list is unde	ned�

A	�	�
	� See also
 Conversion �A����

A	�	�� �converter �string�� method

A	�	��	� Specialized Arguments

�collection �object��
 A collection to be converted into
a string�

A	�	��	� Result

If collection is a string� the result is the argument� Other�
wise a string is constructed and returned whose elements are
the elements of collection as long as all the elements of col�
lection are characters� An error is signalled �condition class

conversion�condition� if any element of collection is not a
character� If collection has natural order� then the elements
will appear in the result in the same order as in collection�
If collection does not have natural order� the order in the
resulting string is unde	ned�

A	�	��	� See also
 Conversion �A����

A	�	�� �converter �table�� method

A	�	��	� Specialized Arguments

�collection �object��
 A collection to be converted into
a table�

A	�	��	� Result

If collection is a table� the result is the argument� Other�
wise a table is constructed and returned whose elements are
the elements of collection� If collection has natural order�
then the elements will be stored under integer keys in the
range "� � � � size�� otherwise the keys used will be the keys
associated with the elements of collection�

A	�	��	� See also
 Conversion �A����

A	�	�
 �converter �vector�� method

A	�	�
	� Specialized Arguments

�collection �object��
 A collection to be converted into
a vector�

A	�	�
	� Result

If collection is a vector� the result is the argument� Otherwise
a vector is constructed and returned whose elements are the
elements of collection� If collection has natural order� then
the elements will appear in the result in the same order as
in collection� If collection does not have natural order� the
order in the resulting vector is unde	ned�

A	�	�
	� See also
 Conversion �A����

�

Programming Language EuLisp� version ����

A�� Comparison

The de	ned name of this module is compare� There are four
functions for comparing objects for equality� of which � is
speci	cally for comparing numeric values and eq� eql and
equal are for all objects� The latter three are related in the
following way

�eq a b� � �eql a b� � �equal a b�
�eq a b� �� �eql a b� �� �equal a b�

There is one function for comparing objects by order� which
is called �� and which is implemented by the generic function
binary�� A summary of the comparison functions and the
classes for which they have de	ned behaviour is given in
Table A���

A	�	� eq function

A	�	�	� Arguments

object�
 An object�

object�
 An object�

A	�	�	� Result

Compares object� and object� and returns t if they are the
same object� otherwise ��� Same in this context means
�identi	es the same memory location��

A	�	�	� Remarks

In the case of numbers and characters the behaviour of eq
might di�er between processors because of implementation
choices about internal representations� Therefore� eq might
return t or �� for numbers which are � and similarly for
characters which are eql� depending on the implementation�

A	�	�	� Examples

�eq �a �a� � t
�eq �a �b� � ��
�eq � �� � t or ��
�eq � ���� � ��
�eq ��� ���� � t or ��
�eq �cons �a �b� �cons �a �c�� � ��
�eq �cons �a �b� �cons �a �b�� � ��
�eq ��a � b� ��a � b�� � t or ��
�let ��x �cons �a �b��� �eq x x�� � t
�let ��x ��a � b��� �eq x x�� � t
�eq ��a ��a� � t or ��
�eq �string� �string�� � t or ��
�eq ���a �b� ���a �b�� � t or ��
�let ��x ���a �b��� �eq x x�� � t

A	�	� eql function

A	�	�	� Arguments

object�
 An object�

object�
 An object�

A	�	�	� Result

If the class of object� and of object� is the same and is a
subclass of number� the result is that of comparing them
under �� If the class of object� and of object� is the same and
is a subclass of character� the result is that of comparing
them under equal� Otherwise the result is that of comparing
them under eq�

A	�	�	� Examples

Given the same set of examples as for eq� the same result is
obtained except in the following cases

�eql � �� � t
�eql ��� ���� � t
�eql ��a ��a� � t

A	�	� equal generic function

A	�	�	� Arguments

object�
 An object�

object�
 An object�

A	�	�	� Result

Returns true or false according to the method for the
class�es� of object� and object�� It is an error if either or
both of the arguments is self�referential�

A	�	�	� See also
 Class speci	c methods on equal are de�
	ned for characters �A���� lists �A����� numbers �A�����
strings �A��
� and vectors �A����� All other cases are han�
dled by the default method�

A	�	� equal method

A	�	�	� Specialized Arguments

�object� �object��
 An object�

�object� �object��
 An object�

A	�	�	� Result

The result is as if eql had been called with the arguments
supplied�

A	�	�	� Remarks

Note that in the case of this method being invoked from
equal� the arguments cannot be characters or numbers�

A	�	� � function

A	�	�	� Arguments

number� � � �
 A non�empty sequence of numbers�

�

Programming Language EuLisp� version ����

Table A	� � Summary of comparison functions

eq
 �object���object�
eql
 �object���object�

�character���character��equal
�fixed�precision�integer���fixed�precision�integer��binary�
�double�float���double�float��binary�

equal
 �object���object�
�character���character�
�null���null�
�number���number��eql
�cons���cons�
�string���string�
�vector���vector�

�
 �number���number��binary�
binary�
 �fixed�precision�integer���fixed�precision�integer�

�double�float���double�float�
�
 �object���object��binary�
binary�
 �character���character�

�fixed�precision�integer���fixed�precision�integer�
�double�float���double�float�
�string���string�

A	�	�	� Result

Given one argument the result is true� Given more than one
argument the result is determined by binary�� returning true
if all the arguments are the same� otherwise ���

A	�	� binary� generic function

A	�	�	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	�	�	� Result

One of the arguments� or ���

A	�	�	� Remarks

The result is either a number or ��� This is determined by
whichever class speci	c method is most applicable for the
supplied arguments�

A	�	�	� See also
 Class speci	c methods on binary� are de�
	ned for 	xed precision integer �A��� and double �oat �A����

A	�	
 � function

A	�	
	� Arguments

object� � � �
 A non�empty sequence of objects�

A	�	
	� Result

Given one argument the result is true� Given more than one
argument the result is true if the sequence of objects object�
up to objectn is strictly increasing according to the generic
function binary�� Otherwise� the result is ���

A	�	� binary� generic function

A	�	�	� Generic Arguments

�object� �object��
 An object�

�object� �object��
 An object�

A	�	�	� Result

The 	rst argument if it is less than the second� according to
the method for the class of the arguments� otherwise ���

A	�	�	� See also
 Class speci	c methods on binary� are
de	ned for characters �A���� strings �A��
�� 	xed precision
integers �A��� and double �oats �A����

A	�	� max function

A	�	�	� Arguments

object� � � �
 A non�empty sequence of objects�

A	�	�	� Result

The maximal element of the sequence of objects object� up to
objectn using the generic function binary�� Zero arguments
is an error� One argument returns object��

A	�	�
 min function

A	�	�
	� Arguments

object� � � �
 A non�empty sequence of objects�

Programming Language EuLisp� version ����

A	�	�
	� Result

The minimal element of the sequence of objects object� up to
objectn using the generic function binary�� Zero arguments
is an error� One argument returns object��

A�� Conversion

The de	ned name of this module is convert�

The mechanism for the conversion of an instance of one class
to an instance of another is de	ned by a user�extensible
framework which has some similarity to the setter mech�
anism�

To the user� the interface to conversion is via the function
convert� which takes an object and some class to which the
object is to be converted� The target class is used to access
an associated converter function� in fact� a generic function�
which is applied to the source instance� dispatching on its
class to select the method which implements the appropriate
conversion� Thus� having de	ned a new class to which it
may be desirable to convert instances of other classes� the
programmer de	nes a generic function

�defgeneric �converter new�class� �instance��

Hereafter� new converter methods may be de	ned for new�
class using a similar extended syntax for defmethod

�defmethod �converter new�class�
��instance other�class���

The conversion is implemented by de	ning methods on the
converter for new�class which specialize on the source class�
This is also how methods are documented in this text
 by
an entry for a method on the converter function for the tar�
get class� In general� the method for a given source class
is de	ned in the section about that class� for example� con�
verters from one kind of collection to another are de	ned in
section A��� converters from string in section A��
� etc��

A	�	� convert function

A	�	�	� Arguments

object
 An instance of some class to be converted to an
instance of class�

class
 The class to which object is to be converted�

A	�	�	� Result

Returns an instance of class which is equivalent in some
class�speci	c sense to object � which may be an instance of
any type� Calls the converter function associated with class
to carry out the conversion operation� An error is signalled
�condition
 no�converter� if there is no associated function�
An error is signalled �condition
 no�applicable�method� if
there is no method to convert an instance of the class of
object to an instance of class�

A	�	� conversion�condition condition

This is the general condition class for all conditions arising
from conversion operations�

�

Programming Language EuLisp� version ����

A	�	�	� Initialization Options

source �object�
 The object to be converted into an
instance of target�class�

target�class �class�
 The target class for the conver�
sion operation�

A	�	�	� Remarks

Should be signalled by convert or a converter method�

A	�	� converter function

A	�	�	� Arguments

target�class
 The class whose set of conversion methods
is required�

A	�	�	� Result

The accessor returns the converter function for the class
target�class� The converter is a generic�function with meth�
ods specialized on the class of the object to be converted�

A	�	� �setter converter� setter

A	�	�	� Arguments

target�class
 The class whose converter function is to be
replaced�

generic�function
 The new converter function�

A	�	�	� Result

The new converter function� The setter function replaces
the converter function for the class target�class by generic�
function� The new converter function must be an instance
of �generic�function��

A	�	�	� Remarks

Converter methods from one class to another are de	ned in
the section pertaining to the source class�

A	�	�	� See also
 Converter methods are de	ned for collec�
tions ����� double �oat �A���� 	xed precision integer �A����
string �A��
�� symbol �A����� vector �A�����

A�� Copying

The de	ned name of this module is copy�

A	�	� deep�copy generic function

A	�	�	� Generic Arguments

object
 An object to be copied�

A	�	�	� Result

Constructs and returns a copy of the source which is the same
�under some class speci	c predicate� as the source and whose
slots contain copies of the objects stored in the corresponding
slots of the source� and so on� The exact behaviour for each
class of object is de	ned by the most applicable method for
object�

A	�	�	� See also
 Class speci	c sections which de	ne meth�
ods on deep�copy
 list �A����� string �A��
�� table �A����
and vector �A�����

A	�	� deep�copy method

A	�	�	� Specialized Arguments

�object �object��
 An object�

A	�	�	� Result

Returns object�

A	�	� deep�copy method

A	�	�	� Specialized Arguments

�struct �structure�class��
 A structure�

A	�	�	� Result

Constructs and returns a new structure whose slots are ini�
tialized with copies �using deep�copy� of the contents of the
slots of struct�

A	�	� shallow�copy generic function

A	�	�	� Generic Arguments

object
 An object to be copied�

A	�	�	� Result

Constructs and returns a copy of the source which is the
same �under some class speci	c predicate� as the source� The
exact behaviour for each class of object is de	ned by the most
applicable method for object�

�

Programming Language EuLisp� version ����

A	�	�	� See also
 Class speci	c sections which de	ne meth�
ods on shallow�copy
 pair �A����� string �A��
�� ta�
ble �A���� and vector �A�����

A	�	� shallow�copy method

A	�	�	� Specialized Arguments

�object �object��
 An object�

A	�	�	� Result

Returns object�

A	�	� shallow�copy method

A	�	�	� Specialized Arguments

�struct �structure�class��
 A structure�

A	�	�	� Result

Constructs and returns a new structure whose slots are ini�
tialized with the contents of the correpsonding slots of struct�

A�� Double Precision Floats

The de	ned name of this module is double� Arithmetic op�
erations for �double�float� are de	ned by methods on the
generic functions de	ned in the number module �A����

binary
� binary�� binary�� binary�� binary�� binary��
mod� negate� zerop

the �oat module �A���

ceiling� floor� round� truncate

and the elementary functions module �A���

acos� asin� atan� atan�� cos� sin� tan� cosh� sinh� tanh�
exp� log� log��� pow� sqrt

The behaviour of these functions is de	ned in the modules
noted above�

A	�	� �double�float� class

The class of all double precision �oating point numbers�

The syntax for the exponent of a double precision �oating
point is given below� The general syntax for �oating point
numbers is given in section A���

double exponent
� ��d� � �D��� �sign � decimal integer� �� A��� ��

A	�	� double�float�p function

A	�	�	� Arguments

object
 Object to examine�

A	�	�	� Result

Returns object if it is a double �oat� otherwise ���

A	�	�	� See also
 floatp �A�����

A	�	� most�positive�double�float double��oat

A	�	�	� Remarks

The value of most�positive�double�float is that positive
double precision �oating point number closest in value to
�but not equal to� positive in	nity that the processor pro�
vides�

A	�	� least�positive�double�float double��oat

A	�	�	� Remarks

The value of least�positive�double�float is that positive

Programming Language EuLisp� version ����

double precision �oating point number closest in value to
�but not equal to� zero that the processor provides�

A	�	� least�negative�double�float double��oat

A	�	�	� Remarks

The value of least�negative�double�float is that negative
double precision �oating point number closest in value to
�but not equal to� zero that the processor provides� Even if
the processor provide negative zero� this value must not be
negative zero�

A	�	� most�negative�double�float double��oat

A	�	�	� Remarks

The value of most�negative�double�float is that negative
double precision �oating point number closest in value to
�but not equal to� negative in	nity that the processor pro�
vides�

A	�	
 equal method

A	�	
	� Specialized Arguments

�double� �double�float��
 A double precision �oat�

�double� �double�float��
 A double precision �oat�

A	�	
	� Result

The result of calling binary� on double� and double��

A	�	� �converter �string�� method

A	�	�	� Specialized Arguments

�x �double�float��
 A double precision �oat�

A	�	�	� Result

Constructs and returns a string� the characters of which
correspond to the external representation of x as produced
by generic�prin� namely that speci	ed in the syntax as
	sign
�oat format ��

A	�	� �converter �fixed�precision�integer�� method

A	�	�	� Specialized Arguments

�x �double�float��
 A double precision �oat�

A	�	�	� Result

A 	xed precision integer�

A	�	�	� Remarks

This function is the same as round� It is de	ned for the sake
of symmetry�

A	�	�
 generic�prin method

A	�	�
	� Specialized Arguments

�double �double�float��
 The double �oat to be out�
put on stream�

�stream �stream��
 The stream on which the represen�
tation is to be output�

A	�	�
	� Result

The double �oat supplied as the 	rst argument�

A	�	�
	� Remarks

Outputs the external representation of double on stream� as
an optional sign preceding the syntax de	ned by �oat for�
mat �� Finer control over the format of the output of �oating
point numbers is provided by some of the formatting speci�
	cations of format �see section A�����

A	�	�� generic�write method

A	�	��	� Specialized Arguments

�double �double�float��
 The double �oat to be out�
put on stream�

�stream �stream��
 The stream on which the represen�
tation is to be output�

A	�	��	� Result

The double �oat supplied as the 	rst argument�

A	�	��	� Remarks

Outputs the external representation of double on stream� as
an optional sign preceding the syntax de	ned by �oat for�
mat �� Finer control over the format of the output of �oating
point numbers is provided by some of the formatting speci�
	cations of format �see section A�����

�

Programming Language EuLisp� version ����

A�� Elementary Functions

The de	ned name of this module is elementary�functions�
The functionality de	ned for this module is intentionally
precisely that of the trigonmetric functions� hyperbolic func�
tions� exponential and logarithmic functions and power func�
tions de	ned for �math�h� in ISO�IEC ����
 ���� with the
exceptions of frexp� ldexp and modf�

A	
	� pi double��oat

A	
	�	� Remarks

The value of pi is the ratio the circumference of a circle to its
diameter stored to double precision �oating point accuracy�

A	
	� acos generic function

A	
	�	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	�	� Result

Computes the principal value of the arc cosine of �oat which
is a value in the range "�� �# radians� An error is signalled
�condition�class
 domain�condition� if �oat is not in the
range "��� �#�

A	
	� asin generic function

A	
	�	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	�	� Result

Computes the principal value of the arc sine of �oat which
is a value in the range "����� ���# radians� An error is
signalled �condition�class
 domain�condition� if �oat is not
in the range "��� �#�

A	
	� atan generic function

A	
	�	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	�	� Result

Computes the principal value of the arc tangent of �oat
which is a value in the range "����� ���# radians�

A	
	� atan� generic function

A	
	�	� Generic Arguments

��oat� �float��
 A �oating point number�

��oat� �float��
 A �oating point number�

A	
	�	� Result

Computes the principal value of the arc tangent of
�oat���oat�� which is a value in the range "��� �# radians�
using the signs of both arguments to determine the quadrant
of the result� An error might be signalled �condition�class

domain�condition� if either �oat� or �oat� is zero�

A	
	� cos generic function

A	
	�	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	�	� Result

Computes the cosine of �oat �measured in radians��

A	
	
 sin generic function

A	
	
	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	
	� Result

Computes the sine of �oat �measured in radians��

A	
	� tan generic function

A	
	�	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	�	� Result

Computes the tangent of �oat �measured in radians��

A	
	� cosh generic function

A	
	�	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	�	� Result

Computes the hyperbolic cosine of �oat� An error might be
signalled �condition class
 range�condition� if the magni�
tude of �oat is too large�

A	
	�
 sinh generic function

A	
	�
	� Generic Arguments

��oat �float��
 A �oating point number�

�

Programming Language EuLisp� version ����

A	
	�
	� Result

Computes the hyperbolic sine of �oat� An error might be sig�
nalled �condition class
 range�condition� if the magnitude
of �oat is too large�

A	
	�� tanh generic function

A	
	��	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	��	� Result

Computes the hyperbolic tangent of �oat�

A	
	�� exp generic function

A	
	��	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	��	� Result

Computes the exponential function of �oat� An error might
be signalled �condition class
 range�condition� if the mag�
nitude of �oat is too large�

A	
	�� log generic function

A	
	��	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	��	� Result

Computes the natural logarithm of �oat� An error is
signalled �condition class
 domain�condition� if �oat is
negative� An error might be signalled �condition class

range�condition� if �oat is zero�

A	
	�� log�� generic function

A	
	��	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	��	� Result

Computes the base�ten logarithm of �oat� An error is
signalled �condition class
 domain�condition� if �oat is
negative� An error might be signalled �condition class

range�condition� if �oat is zero�

A	
	�� pow generic function

A	
	��	� Generic Arguments

��oat� �float��
 A �oating point number�

��oat� �float��
 A �oating point number�

A	
	��	� Result

Computes �oat� raised to the power �oat�� An error is sig�
nalled �condition class
 domain�condition� if �oat� is nega�
tive and �oat� is not integral� An error is signalled �condition
class
 domain�condition� if the result cannot be represented
when �oat� is zero and �oat� is less than or equal to zero� An
error might be signalled �condition class
 range�condition�
if the result cannot be represented�

A	
	�� sqrt generic function

A	
	��	� Generic Arguments

��oat �float��
 A �oating point number�

A	
	��	� Result

Computes the non�negative square root of �oat� An error
is signalled �condition class
 domain�condition� if �oat is
negative�

��

Programming Language EuLisp� version ����

A�	 Floating Point Numbers

The de	ned name of this module is float� This module de�
	nes the abstract class �float� and the behaviour of some
generic functions on �oating point numbers� Further opera�
tions on numbers are de	ned in the numbers module �A����
and further operations on �oating point numbers are de	ned
in the elementary functions module �A���� A concrete �oat
class is de	ned in the double �oat module �A����

A	�	� float syntax

The syntax for the external representation of �oating point
literals is de	ned in Table A��� The representation used by
write and prin is that of a sign� a whole part and a fractional
part without an exponent� namely that de	ned by �oat for�
mat �� Finer control over the format of the output of �oating
point numbers is provided by some of the formatting speci�
	cations of format �section A�����

Table A	� � Floating Point Syntax

float
� �sign unsigned float �exponent �

sign
� ��� � ����

unsigned float
� float format �
� float format �
� float format 	�

float format �
� decimal integer� ���� �� A��� ��

float format �
� ���� decimal integer� �� A��� ��

float format 	
� float format �� decimal integer� �� A��� ��

exponent
� double exponent� �� A�� ��

A �oating point number has six forms of external represen�
tation depending on whether either or both the whole and
the fractional part are speci	ed and on whether an exponent
is speci	ed� In addition� a positive �oating point number
is optionally preceded by a plus sign and a negative �oat�
ing point number is preceded by a minus sign� For example

���� ��oat format � �� ����� ��oat format
 �� ������� ��oat
format � �! and with exponents

�������D��� �������D��
��������D��

A	�	� �float� class

The abstract class which is the superclass of all �oating point
numbers�

A	�	� floatp function

A	�	�	� Arguments

objext
 Object to examine�

A	�	�	� Result

Returns object if it is a �oating point number� otherwise ���

A	�	� ceiling generic function

A	�	�	� Generic Arguments

��oat �float��
 A �oating point number�

A	�	�	� Result

Returns the smallest integral value not less than �oat ex�
pressed as a �oat of the same class as the argument�

A	�	� floor generic function

A	�	�	� Generic Arguments

��oat �float��
 A �oating point number�

A	�	�	� Result

Returns the largest integral value not greater than �oat ex�
pressed as a �oat of the same class as the argument�

A	�	� round generic function

A	�	�	� Arguments

�oat
 A �oating point number�

A	�	�	� Result

Returns the integer whose value is closest to �oat� except in
the case when �oat is exactly half�way between two integers�
when it is rounded to the one that is even�

A	�	
 truncate generic function

A	�	
	� Arguments

�oat
 A �oating point number�

A	�	
	� Result

Returns the greatest integer value whose magnitude is less
than or equal to �oat�

��

Programming Language EuLisp� version ����

A�� Fixed Precision Integers

The de	ned name of this module is fpi� Arithmetic opera�
tions for �fixed�precision�integer�are de	ned by meth�
ods on the generic functions de	ned in the number module

binary
� binary�� binary�� binary�� binary�� binary��
binary�� binary�gcd� binary�lcm� mod� negate� zerop

and in the integer module

evenp

The behaviour of these functions is de	ned in the modules
noted above�

A	�	� �fixed�precision�integer� class

The class of all instances of 	xed precision integers�

A	�	� �fpi� class

A	�	�	� Remarks

A constant binding whose value is
�fixed�precision�integer��

A	�	� fixed�precision�integer�p function

A	�	�	� Arguments

object
 Object to examine�

A	�	�	� Result

Returns object if it is 	xed precision integer� otherwise ���

A	�	� most�positive�fixed�precision�integer
�xed�precision�integer

A	�	�	� Remarks

This is an implementation�de	ned constant� A conform�
ing processor must support a value greater than or equal
to ����� and greater than or equal to the value of
maximum�vector�index�

A	�	� most�negative�fixed�precision�integer
�xed�precision�integer

A	�	�	� Remarks

This is an implementation�de	ned constant� A conforming
processor must support a value less than or equal to �������

A	�	� equal method

A	�	�	� Specialized Arguments

�integer� �fixed�precision�integer��
 A 	xed preci�
sion integer�

�integer� �fixed�precision�integer��
 A 	xed preci�
sion integer�

A	�	�	� Result

The result of calling binary� on integer� and integer��

A	�	�	� Remarks

The di�erence between equal and � is that the former only
compares numbers of the same class� whereas the latter co�
erces the numbers to be of the same class before comparison�

A	�	
 �converter �string�� method

A	�	
	� Specialized Arguments

�integer �fixed�precision�integer��
 An integer�

A	�	
	� Result

Constructs and returns a string� the characters of which cor�
respond to the external representation of integer in decimal
notation�

A	�	� �converter �double�float�� method

A	�	�	� Specialized Arguments

�integer �fixed�precision�integer��
 An integer�

A	�	�	� Result

Returns a double �oat whose value is the �oating point ap�
proximation to integer�

A	�	� generic�prin method

A	�	�	� Specialized Arguments

�integer �fixed�precision�integer��
 An integer to
be output on stream�

�stream �stream��
 The stream on which the represen�
tation is to be output�

A	�	�	� Result

The 	xed precision integer supplied as the 	rst argument�

A	�	�	� Remarks

Outputs external representation of integer on stream in dec�
imal as de	ned by decimal integer at the beginning of this
section�

��

Programming Language EuLisp� version ����

A	�	�
 generic�write method

A	�	�
	� Specialized Arguments

�integer �fixed�precision�integer��
 An integer to
be output on stream�

�stream �stream��
 The stream on which the represen�
tation is to be output�

A	�	�
	� Result

The 	xed precision integer supplied as the 	rst argument�

A	�	�
	� Remarks

Outputs external representation of integer on stream in dec�
imal as de	ned by decimal integer at the beginning of this
section�

A��� Formatted
IO

The de	ned name of this module is formatted�io�

A	�
	� scan function

A	�
	�	� Arguments

format�string
 A string containing format directives�

	stream

 A stream from which input is to be taken�

A	�
	�	� Result

Returns a list of the objects read from stream�

A	�
	�	� Remarks

This function provides support for formatted input� The
format�string speci	es reading directives� and inputs are
matched according to these directives� An error is signaled
�condition
 scan�mismatch� if the class of the object read
is not compatible with the speci	ed directive� The second
�optional� argument speci	es a stream from which to take
input� If stream is not supplied� input is taken from the re�
sult of calling standard�input�stream� Scan returns a list
of the objects read in�

� a any
 any object

� b binary
 an integer in binary format�

� c character
 a single character

� d decimal
 an integer decimal format�

� 	n
e a exponential�format �oating�point number�

� 	n
f a 	xed�format �oating�point number�

� o octal
 an integer in octal format�

� r radix
 an integer in speci	ed radix format�

� x hexadecimal
 an integer in hexadecimal format�

� � newline
 matches a ��newline character in the
input�

A	�
	� scan�mismatch stream�condition

A	�
	�	� Initialization Options

format�string string
 The value of this option is the
format string that was passed to scan�

input list
 The value of this option is a list of the items
read by scan up to and including the object that caused
the condition to be signaled�

A	�
	�	� Remarks

This condition is signalled by scan if the format string does
not match the data input from stream�

��

Programming Language EuLisp� version ����

A	�
	� format function

A	�
	�	� Arguments

stream
 One of ��� t or a stream�

format�string
 A string containing format directives�

	object� � � �

 A sequence of objects to be output on
stream�

A	�
	�	� Result

Returns a list comprising those objects left in the sequence
after the last format directive was processed�

A	�
	�	� Remarks

Has side�e�ect of outputting objects according the formats
speci	ed in format�string� If stream is t the output is to
the current output stream� If stream is ��� a formatted
string is returned as the result of the call� Otherwise stream
must be a valid output stream� Characters are output as
if the string were output by the prin function with the ex�
ception of those pre	xed by tilde�graphic representation
 �which are treated specially as detailed in the following
list� These formatting directives are intentionally compat�
ible with the facilities de	ned for the function fprintf in
ISO�IEC ����
 �����

� a any
 uses prin to output the argument�

� b binary
 the argument must be an integer and is
output in binary notation �Table A����

� c character
 the argument must be a character and
is output using write �Table A����

� d decimal
 the argument must be an integer and is
output using write �Table A����

� 	m
	�n
e exponential�format �oating�point
 the
argument must be a �oating point number� It is output in
the style 	�
d�ddde�dd� in a 	eld of width m characters�
where there are n precision digits after the decimal point�
or � digits� if n is not speci	ed �Table A���� If the value
to be output has fewer characters than m it is padded on
the left with spaces�

� 	m
	�n
f 	xed�format �oating�point
 the argu�
ment must be a �oating point number� It is output in the
style 	�
ddd�ddd� in a 	eld of width m characters� where
the are n precision digits after the decimal point� or � dig�
its� if n is not speci	ed �Table A���� The value is rounded
to the appropriate number of digits� If the value to be
output has fewer characters than m it is padded on the
left with spaces�

� 	m
	�n
g generalized �oating�point
 the argument
must be a �oating point number� It is output in either
	xed�format or exponential notation as appropriate �Ta�
ble A����

� o octal
 the argument must be an integer and is
output in octal notation �Table A����

� nr radix
 the argument must be an integer and is
output in radix n notation �Table A����

� s s�expression
 uses write to output the argument
�Table ���

� 	n
t tab
 output su�cient spaces to reach the next
tab�stop� if n is not speci	ed� or the nth tab stop if it is�

� x hexadecimal
 the argument must be an integer
and is output in hexadecimal notation �Table A����

� � newline
 output a ��newline character using
newline�

� ! conditional newline
 output a ��newline char�
acter using newline� if it cannot be determined that the
output stream is at the beginning of a fresh line�

� tilde
 output a tilde character using prin�

�

Programming Language EuLisp� version ����

A��� Integers

module The de	ned name of this module is integer� This
module de	nes the abstract class �integer� and the be�
haviour of some generic functions on integers� Further opera�
tions on numbers are de	ned in the numbers module �A�����
A concrete integer class is de	ned in the 	xed precision in�
teger module �A����

A	��	� integer syntax

A positive integer is has its external representation as a se�
quence of digits optionally preceded by a plus sign� A nega�
tive integer is written as a sequence of digits preceded by a
minus sign� For example� ������"#��� �����
�����

Integer literals have an external representation in any base
up to base ��� For convenience� base �� base � and base ��
have distinguished notations��b� �o and �x� respectively�
For example
 ����� �b������������ �o���� and �x�d� all
denote the same value�

The general notation for an arbitrary base is �baser� where
base is an unsigned decimal number� Thus� the above ex�
amples may also be written
 ���r����� ��r������������
�#r����� ���r�d� or ���rya� The reading of any number
is terminated on encountering a character which cannot be
a constituent of that number� The syntax for the external
representation of integer literals is de	ned in Table A���

NOTE � At present this text does not de
ne a class integer
with variable precision� It is planned this should appear in a fu�
ture version at level�� of the language� The class will be named
�variable�precision�integer�� The syntax given here is appli�
cable to both
xed and variable precision integers�

A	��	� �integer� class

The abstract class which is the superclass of all integer num�
bers�

A	��	� integerp function

A	��	�	� Arguments

object
 Object to examine�

A	��	�	� Result

Returns object if it is an integer� otherwise ���

A	��	� evenp generic function

A	��	�	� Arguments

integer� �integer�
 An integer�

A	��	�	� Result

Returns t if two divides integer� otherwise ���

Table A	� � Integer Syntax

integer
� �sign unsigned integer�

sign
� ��� � ����

unsigned integer
� binary integer
� octal integer
� decimal integer
� hexadecimal integer
� specified base integer

binary integer
� ��b�� binary digit� �binary digit��

binary digit
� ��� � ����

octal integer
� ��o�� octal digit� �octal digit��

octal digit
� ��� � ��� � ��� � �	� � �
� � ��� � ��� � �
��

decimal integer
� decimal digit� �decimal digit��

hexadecimal integer
� ��x�� hexadecimal digit� �hexadecimal digit��

hexadecimal digit
� decimal digit
� hex lower letter
� hex upper letter�

hex lower letter
� �a� � �b� � �c� � �d� � �e� � �f��

hex upper letter
� �A� � �B� � �C� � �D� � �E� � �F��

specified base integer
� ���� base specification� �r��
specified base digit�
�specified base digit��

base specification
� decimal digit � ���� � ����
� � ��� � ��� �� decimal digit
� �	�� ���� � ��� � ��� � �	� � �
� � ��� � �����

specified base digit
� decimal digit � letter�

A	��	� oddp function

A	��	�	� Arguments

integer
 An integer�

A	��	�	� Result

Returns the equivalent of the logical negation of evenp ap�
plied to integer�

��

Programming Language EuLisp� version ����

A��� Lists

The name of this module is list� The class �list� is an ab�
stract class and has two subclasses
 �null� and �cons�� The
only instance of �null� is the empty list� The combination
of these two classes allows the creation of proper lists� since
a proper list is one whose last pair contains the empty list
in its cdr 	eld� See also section A�� �collections� for further
operations on lists�

A	��	� �� syntax

A	��	�	� Remarks

The empty list� which is the only instance of the class �null��
has as its external representation an open parenthesis fol�
lowed by a close parenthesis� The empty list is also used to
denote the boolean value false�

A	��	� �null� class

The class whose only instance is the empty list� denoted ���

A	��	� null function

A	��	�	� Arguments

object
 Object to examine�

A	��	�	� Result

Returns t if object is the empty list� otherwise ���

A	��	� generic�prin method

A	��	�	� Specialized Arguments

null
 The empty list�

stream
 The stream on which the representation is to
be output�

A	��	�	� Result

The empty list�

A	��	�	� Remarks

Output the external representation of the empty list on
stream as described above�

A	��	� generic�write method

A	��	�	� Specialized Arguments

null
 The empty list�

stream
 The stream on which the representation is to
be output�

A	��	�	� Result

The empty list�

A	��	�	� Remarks

Output the external representation of the empty list on
stream as described above�

A	��	� pair syntax

A pair is written as �object� � object��� where object� is called
the car and object� is called the cdr� There are two special
cases in the external representation of pair� If object� is the
empty list� then the pair is written as �object��� If object�
is an instance of pair� then the pair is written as �object�
object� � object��� where object� is the car of object� and
object� is the cdr with the above rule for the empty list ap�
plying� By induction� a list of length n is written as �object�
� � �objectn�� � objectn�� with the above rule for the empty
list applying� The representations of object� and object�
are determined by the external representations de	ned in
other sections of this de	nition �see �character� �A����
�double�float� �A���� �fixed�precision�integer� �A����
�string� �A��
�� �symbol� �A���� and �vector� �A����� as
well as instances of �cons� itself� The syntax for the external
representation of pairs and lists is de	ned in Table A�
�

Table A	� � Pair and List Syntax

null
� ���� ����

pair
� ���� object� ���� object� ����

list
� empty list � proper list � improper list�

empty list
� �����

proper list
� ���� �object�� ����

improper list
� ���� �object�� ���� object� ����

A	��	�	� Examples

�� the empty list
��� a list whose car is � and cdr is ��
�� � �� a pair whose car is � and cdr is �
�� �� a list whose car is � and cdr is ���

A	��	
 �cons� class

The class of all instances of �cons�� An instance of the class
�cons� �also known informally as a dotted pair or a pair� is
a ��tuple� whose slots are called� for historical reasons� car
and cdr� Pairs are created by the function cons and the slots
are accessed by the functions car and cdr� The major use of
pairs is in the construction of �proper� lists� A �proper� list
is de	ned as either the empty list �denoted by ��� or a pair
whose cdr is a proper list� An improper list is one containing
a cdr which is not a list �see Table A�
��

��

Programming Language EuLisp� version ����

It is an error to apply car or cdr or their setter functions
to anything other than a pair� The empty list is not a pair
and �car ��� or �cdr ��� is an error�

A	��	� consp function

A	��	�	� Arguments

object
 Object to examine�

A	��	�	� Result

Returns object if it is a pair� otherwise ���

A	��	� atom function

A	��	�	� Arguments

object
 Object to examine�

A	��	�	� Result

Returns object if it is not a pair� otherwise ���

A	��	�
 cons function

A	��	�
	� Arguments

object�
 An object� pair�

object�
 An object� pair�

A	��	�
	� Result

Allocates a new pair whose slots are initialized with object�
in the car and object� in the cdr�

A	��	�� car function

A	��	��	� Arguments

pair
 A pair�

A	��	��	� Result

Given a pair� such as the result of �cons object� object���
then the function car returns object��

A	��	�� cdr function

A	��	��	� Arguments

pair
 A pair�

A	��	��	� Result

Given a pair� such as the result of �cons object� object���
then the function cdr returns object��

A	��	�� �setter car� setter

A	��	��	� Arguments

pair
 A pair�

object
 An object�

A	��	��	� Result

Given a pair� such as the result of �cons object� object���
then the function �setter car� replaces object� with object�
The result is object�

A	��	�� �setter cdr� setter

A	��	��	� Arguments

pair
 A pair�

object
 An object�

A	��	��	� Result

Given a pair� such as the result of �cons object� object���
then the function �setter cdr� replaces object� with object�
The result is object�

A	��	��	� Remarks

Note that if object is not a proper list� then the use of
�setter cdr� might change pair into an improper list�

A	��	�� equal method

A	��	��	� Specialized Arguments

pair�
 A pair�

pair�
 A pair�

A	��	��	� Result

The result is the conjunction of the pairwise application of
equal to the car 	elds and the cdr 	elds of the arguments�

A	��	�� deep�copy method

A	��	��	� Specialized Arguments

�pair �cons��
 A pair�

A	��	��	� Result

Constructs and returns a copy of the list starting at pair
copying both the car and the cdr slots of the list� The list
can be proper or improper� Treatment of the objects stored
in the car slot �and the cdr slot in the case of the 	nal pair
of an improper list� is determined by the deep�copymethod
for the class of the object�

�

Programming Language EuLisp� version ����

A	��	�
 shallow�copy method

A	��	�
	� Specialized Arguments

�pair �cons��
 A pair�

A	��	�
	� Result

Constructs and returns a copy of the list starting at pair but
copying only the cdr slots of the list� terminating when a
pair is encountered whose cdr slot is not a pair� The list
beginning at pair can be proper or improper�

A	��	�� list function

A	��	��	� Arguments

	object� ��� objectn

 A sequence of objects�

A	��	��	� Result

Allocates a set of pairs each of which has been initialized
with objecti in the car 	eld and the pair whose car 	eld
contains objecti�� in the cdr 	eld� Returns the pair whose
car 	eld contains object��

A	��	��	� Examples

�list� � ��
�list � � �� � �� � ��

A	��	�� generic�prin method

A	��	��	� Specialized Arguments

�pair �cons��
 The pair to be output on stream�

�stream �stream��
 The stream on which the represen�
tation is to be output�

A	��	��	� Result

The pair supplied as the 	rst argument�

A	��	��	� Remarks

Output the external representation of pair on stream as de�
scribed at the beginning of this section� Uses generic�prin
to produce the external representation of the contents of the
car and cdr slots of pair�

A	��	�
 generic�write method

A	��	�
	� Specialized Arguments

�pair �cons��
 The pair to be output on stream�

�stream �stream��
 The stream on which the represen�
tation is to be output�

A	��	�
	� Result

The pair supplied as the 	rst argument�

A	��	�
	� Remarks

Output the external representation of pair on stream as de�
scribed at the beginning of this section� Uses generic�write
to produce the external representation of the contents of the
car and cdr slots of pair�

��

Programming Language EuLisp� version ����

A��� Numbers

The de	ned name of this module is number� Numbers can
take on many forms with unusual properties� specialized for
di�erent tasks� but two classes of number su�ce for the
majority of needs� namely integers �A���� A��� and �oat�
ing point numbers �A��� A���� Thus� these only are de	ned
at level���

In Figure A�� shows the initial number class hierar�
chy at level��� The inheritance relationships by this
diagram are part of this de	nition� but it is not de�
	ned whether they are direct or not� For example�
�integer� and �float� are not necessarily direct sub�
classes of �number�� while the class of each number class
might be a subclass of number�class� Since there are
only two concrete number classes at level��� coercion
is simple� namely from �fixed�precision�integer� to
�double�float�� Any level�� version of a library module� for
example� elementary�functions� need only de	ne methods
for these two classes� Mathematically� the reals are regarded
as a superset of the integers and for the purposes of this def�
inition we regard �float� as a superset of �integer� �even
though this will cause representation problems when vari�
able precision integers are introduced�� Hence� �float� is
referred to as being higher that �integer� and arithmetic
involving instances of both classes will cause integers to be
converted to an equivalent �oating point value� before the
calculation proceeds�� �see in particular binary�� binary�
and binary�mod��

Figure A	� � Level�
 number class hierarchy

�number� 	�number�class�

�float� 	�number�class�

�double�float� 	�number�class�

�integer� 	�number�class�

�fixed�precision�integer� 	�number�class�

A	��	� �number� class

The abstract class which is the superclass of all number
classes�

A	��	� numberp function

A	��	�	� Arguments

object
 Object to examine�

A	��	�	� Result

Returns object if it is a number� otherwise ���

A	��	� arithmetic�condition condition

A	��	�	� Initialization Options

operator object
 The operator which signalled the con�
dition�

��This behaviour is popularly referred to as �oating point
contagion

operand�list list
 The operands passed to the operator�

A	��	�	� Remarks

This is the general condition class for conditions arising from
arithmetic operations�

A	��	� division�by�zero arithmetic�condition

Signalled by any of binary�� binary� and binary�mod if
their second argument is zero�

A	��	�
 function

A	��	�	� Arguments

	number� number� ���

 A sequence of numbers�

A	��	�	� Result

Computes the sum of the arguments using the generic func�
tion binary
� Given zero arguments�
 returns � of class
�integer�� One argument returns that argument� The ar�
guments are combined left�associatively�

A	��	� � function

A	��	�	� Arguments

number� 	number� ���

 A non�empty sequence of num�
bers�

A	��	�	� Result

Computes the result of subtracting successive arguments�
from the second to the last�from the 	rst using the generic
function binary�� Zero arguments is an error� One argument
returns the negation of the argument� using the generic func�
tion negate� The arguments are combined left�associatively�

A	��	
 � function

A	��	
	� Arguments

	number� number� ���

 A sequence of numbers�

A	��	
	� Result

Computes the product of the arguments using the generic
function binary�� Given zero arguments� � returns � of class
integer� One argument returns that argument� The argu�
ments are combined left�associatively�

A	��	� � function

A	��	�	� Arguments

number� 	number� ���

 A non�empty sequence of num�
bers�

��

Programming Language EuLisp� version ����

A	��	�	� Result

Computes the result of dividing the 	rst argument by its suc�
ceeding arguments using the generic function binary�� Zero
arguments is an error� One argument computes the recip�
rocal of the argument� It is an error in the single argument
case� if the argument is zero�

A	��	� � function

A	��	�	� Arguments

number� 	number� ���

 A non�empty sequence of num�
bers�

A	��	�	� Result

Computes the result of taking the remainder of dividing the
	rst argument by its succeeding arguments using the generic
function binary�� Zero arguments is an error� One argument
returns that argument�

A	��	�
 gcd function

A	��	�
	� Arguments

number� 	number� ���

 A non�empty sequence of num�
bers�

A	��	�
	� Result

Computes the greatest common divisor of number� up to
numbern using the generic function binary�gcd� Zero argu�
ments is an error� One argument returns number��

A	��	�� lcm function

A	��	��	� Arguments

number� 	number� ���

 A non�empty sequence of num�
bers�

A	��	��	� Result

Computes the least common multiple of number� up to
numbern using the generic function binary�lcm� Zero ar�
guments is an error� One argument returns number��

A	��	�� abs function

A	��	��	� Arguments

number
 A number�

A	��	��	� Result

Computes the absolute value of number�

A	��	�� zerop generic function

A	��	��	� Generic Arguments

number
 A number�

A	��	��	� Result

Compares number with the zero element of the class of num�
ber using the generic function binary��

A	��	�� negate generic function

A	��	��	� Generic Arguments

�number �number��
 A number�

A	��	��	� Result

Computes the additive inverse of number�

A	��	�� signum function

A	��	��	� Arguments

number
 A number�

A	��	��	� Result

Returns number if zerop applied to number is true� Oth�
erwise returns the result of converting �� to the class of
number with the sign of number�

A	��	�� positivep function

A	��	��	� Arguments

number
 A number�

A	��	��	� Result

Compares number against the zero element of the class of
number using the generic function binary��

A	��	�
 negativep function

A	��	�
	� Arguments

number
 A number�

A	��	�
	� Result

Compares number against the zero element of the class of
number using the generic function binary��

��

Programming Language EuLisp� version ����

A	��	�� binary
 generic function

A	��	��	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	��	��	� Result

Computes the sum of number� and number��

A	��	�� binary� generic function

A	��	��	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	��	��	� Result

Computes the di�erence of number� and number��

A	��	�
 binary� generic function

A	��	�
	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	��	�
	� Result

Computes the product of number� and number��

A	��	�� binary� generic function

A	��	��	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	��	��	� Result

Computes the division of number� by number� expressed as
a number of the class of the higher of the classes of the two
arguments� The sign of the result is positive if the signs the
arguments are the same� If the signs are di�erent� the sign
of the result is negative� If the second argument is zero� the
result might be zero or an error might be signalled �condition
class
 division�by�zero��

A	��	�� binary� generic function

A	��	��	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	��	��	� Result

Computes the value of number��i�number� expressed as a
number of the class of the higher of the classes of the two
arguments� for some integer i such that� if number� is non�
zero� the result has the same sign as number� and magnitude
less then the magnitude of number�� If the second argument
is zero� the result might be zero or an error might be signalled
�condition class
 division�by�zero��

A	��	�� binary�mod generic function

A	��	��	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	��	��	� Result

Computes the largest integral value not greater than
number� number� expressed as a number of the class of the
higher of the classes of the two arguments� such that if
number� is non�zero� the result has the same sign as number�
and magnitude less than number�� If the second argument is
zero� the result might be zero or an error might be signalled
�condition class
 division�by�zero��

A	��	�� binary�gcd generic function

A	��	��	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	��	��	� Result

Computes the greatest common divisor of number� and
number��

A	��	�� binary�lcm generic function

A	��	��	� Generic Arguments

�number� �number��
 A number�

�number� �number��
 A number�

A	��	��	� Result

Computes the lowest common multiple of number� and
number��

��

Programming Language EuLisp� version ����

A��� Streams

The de	ned name of this module is stream�

Level�� streams only o�er the most basic functional�
ity� supporting character input and output on 	les via
�char�file�stream� and character input and output on
strings via �string�stream�� This functionality is imple�
mented by the two generic functions input and output�

The behaviour at end�of�stream is governed by an option to
open� This option takes a eos�action� which is a continua�
tion� or some function of one argument� as its value� Upon
attempting to read beyond the end of stream the value of
the stream�s eos�action is called with the stream as its argu�
ment� and the result of the call of eos�action is returned as
the value of the input operation� This allows special actions
to be performed� special values to be returned� or transfers
of control via continuations� The default action is signal an
error �condition class
 end�of�stream��

A	��	� �stream� class

The abstract class of streams�

A	��	� streamp generic function

A	��	�	� Generic Arguments

�object �object��
 The object to be examined�

A	��	�	� Result

Returns object if it is a stream� otherwise ���

A	��	� file�stream�p generic function

A	��	�	� Generic Arguments

�object �object��
 The object to be examined�

A	��	�	� Result

Returns object if it is a stream held on some external
medium� otherwise ���

A	��	� character�stream�p generic function

A	��	�	� Generic Arguments

�object �object��
 The object to be examined�

A	��	�	� Result

Returns object if it is a character stream� otherwise ���

A	��	� �char�file�stream� class

The class of the default character 	le stream� Often instances
of this stream type are positionable� It is an error to make
an instance of this class by any other means than by the use
of open�

A	��	�	�See also
 input� output methods on
�char�file�stream��

A	��	� �string�stream� class

The class of the default string stream�

A	��	�	� See also
 The converter method �A������� for
�string�stream� to �string��

A	��	
 standard�input�stream function

This function takes no arguments�

A	��	
	� Result

A stream� which is the standard input stream�

A	��	
	� Remarks

This stream is often the default for input functions�

A	��	� standard�output�stream function

This function takes no arguments�

A	��	�	� Result

A stream� which is the standard output stream�

A	��	�	� Remarks

This stream is often the default for output functions�

A	��	� standard�error�stream function

This function takes no arguments�

A	��	�	� Result

A stream� which is the standard error stream�

A	��	�
 open function

A	��	�
	� Arguments

name
 A string�

��

Programming Language EuLisp� version ����

	options

 A sequence of options�

A	��	�
	� Result

A stream�

A	��	�
	� Remarks

Options are input� output� update� append� and
eos�action�

If no options are speci	ed input is assumed and
the eos�action will signal an error �condition class

end�of�stream�

The eos�action option takes a stream action �a continua�
tion or a function of one argument� as an argument� Upon
an attempt to read beyond the end of the stream this stream
action is called with the stream as argument� and the value
returned by the stream action is the value returned by the
reading operation� If the eos�action is omitted� the de�
fault stream action is to signal an error
 �condition class

end�of�stream��

It is an error to combine the input option with output�
update or append� It is an error to combine the output
option with input�

A	��	�
	� Examples

�open �foo�� Open the 	le foo for
input�

�open �bar� �output �append� Open bar for output�
appending to its end�

�open �	le�c�
�eos�action
�lambda �s�
��setter stream�position� s ��
�read s���

A self�resetting stream

A	��	�� end�of�stream stream�condition

A	��	��	� Initialization Options

stream �stream�
 A stream�

A	��	��	� Remarks

Signalled by the default end of stream action� as a conse�
quence of an input operation on stream� when it is at end of
stream�

A	��	�� close generic function

A	��	��	� Generic Arguments

�stream �stream��
 A stream�

A	��	��	� Result

Returns t if the close operation was successful� otherwise ���

A	��	��	� Remarks

Closes the stream� It is an error to try to output to or input
from a closed stream�

A	��	�� flush generic function

A	��	��	� Generic Arguments

�stream �stream��
 A stream�

A	��	��	� Result

Returns t if the �ush operation was successful� otherwise ���

A	��	��	� Remarks

flush causes any bu�ered data for the stream to be written
to the stream� The stream remains open�

A	��	�� stream�position generic function

A	��	��	� Generic Arguments

�stream �stream��
 A stream�

A	��	��	� Result

Returns a non�negative integer indicating the current posi�
tion within the stream� or �� if it cannot be determined�

A	��	��	� Remarks

The value returned by stream�position increases mono�
tonically as input�output operations are performed� Gen�
erally� this value may be used in a call of �setter
stream�position� on the same stream�

A	��	�� �setter stream�position� generic function

A	��	��	� Generic Arguments

�stream �stream��
 A stream�

�position �object��
 An integer� or the symbol
stream�end�

A	��	��	� Result

Returns t if the positioning operation was successful� other�
wise ���

A	��	��	� Remarks

If position is an integer� this sets the position of the stream to
be that value� If position is stream�end� this sets the position
of the stream to be the end of the stream� The value �� is
returned if the stream is not positionable� If the value of posi�
tion is too large� or is otherwise inappropriate� an error is sig�
nalled �condition class
 inappropriate�stream�position��

��

Programming Language EuLisp� version ����

A	��	�� end�of�stream�p function

A	��	��	� Arguments

stream
 A stream�

A	��	��	� Result

Returns t if stream is exhausted� otherwise ���

A	��	�
 input generic function

A	��	�
	� Generic Arguments

�stream �stream��
 A stream�

A	��	�
	� Result

Reads and returns a single object from the stream� The type
of the object returned depends on the type of the stream�

A	��	�
	� Remarks

This module de	nes two methods on input� one for character
	le streams and one for string streams� Both methods return
characters�

A	��	�� uninput generic function

A	��	��	� Generic Arguments

�stream �stream��
 A stream�

�object �object��

A	��	��	� Result

Returns t�

A	��	��	� Remarks

Replaces object back onto the input stream� It is an error if
the object was not the last thing to be returned by input�

This module de	nes two methods on uninput� one for char�
acter 	le streams and one for string streams� Both methods
specialize on characters for the second argument�

A	��	�� output generic function

A	��	��	� Generic Arguments

�stream �stream��
 A stream�

�object �object��
 An object�

A	��	��	� Result

Returns object�

A	��	��	� Remarks

Outputs the object to stream�

This module de	nes four methods on output� two for char�
acter 	le streams and two for string streams� In each case
the methods specialize on characters or sequences�

A	��	�
 read�line generic function

A	��	�
	� Generic Arguments

�stream �stream��
 A stream�

A	��	�
	� Result

A string�

A	��	�
	� Remarks

Reads a line �terminated by a newline character or the end
of the stream� from the stream of characters which is stream�
Returns the line as a string� discarding the terminating new�
line� if any� If the stream is already at end of stream� then
the stream action is called
 the default stream action is to
signal an error
 �condition class
 end�of�stream��

A	��	�� prin function

A	��	��	� Arguments

object
 An object to be output on stream�

	stream

 A character stream on which object is to be
output�

A	��	��	� Result

Returns object�

A	��	��	� Remarks

Outputs the external representation of object on the output
stream stream using generic�prin� If stream is not speci	ed
the standard output stream is used�

A	��	��	�See also
 standard�output�stream�
generic�prin�

A	��	�� print function

A	��	��	� Arguments

object
 An object to be output on stream�

	stream

 A character stream on which object is to be
output�

A	��	��	� Result

Returns object�

�

Programming Language EuLisp� version ����

A	��	��	� Remarks

Outputs the external representation of object on the output
stream stream using generic�prin� followed by a newline
character� If stream is not speci	ed the standard output
stream is used�

A	��	��	�See also
 standard�ouptut�stream�
generic�prin�

A	��	�� write function

A	��	��	� Arguments

object
 An object to be output on stream�

	stream

 A character stream on which object is to be
output�

A	��	��	� Result

Returns object�

A	��	��	� Remarks

Outputs the external representation of object on the output
stream stream using generic�write� If stream is not speci�
	ed the standard output stream is used�

A	��	��	�See also
 standard�output�stream�
generic�write�

A	��	�� newline function

A	��	��	� Arguments

	stream

 A stream on which the newline is to be out�
put�

A	��	��	� Result

Returns ��newline�

A	��	��	� Remarks

Outputs a newline character on stream� If stream is not
speci	ed the standard output stream is used�

A	��	��	� See also
 standard�output�stream�

A	��	�� generic�prin generic function

A	��	��	� Generic Arguments

�object �object��
 An object to be output on stream�

�stream �stream��
 A stream on which object is to be
output�

A	��	��	� Result

Returns object�

A	��	��	� Remarks

Outputs the external representation of object on the output
stream stream�

A	��	��	� See also
 methods on generic�prin are de	ned
for �character� �A���� �double�float�
�A���� �fixed�precision�integer� �A���� �list� �A�����
�string� �A��
�� �symbol� �A���� and �vector� �A�����

A	��	�� generic�write generic function

A	��	��	� Generic Arguments

�object �object��
 An object to be output on stream�

�stream �stream��
 A stream on which object is to be
output�

A	��	��	� Result

Returns object�

A	��	��	� Remarks

Outputs the external representation of object on the output
stream stream�

A	��	��	� See also
 Methods on generic�write are de�
	ned for �character� �A���� �double�float�
�A���� �fixed�precision�integer� �A���� �list� �A�����
�string� �A��
�� �symbol� �A���� and �vector� �A�����

A	��	�
 �converter �string�� method

A	��	�
	� Specialized Arguments

�stream �string�stream��
 A string stream�

A	��	�
	� Result

The current value of the string associated with stream�

A	��	�
	� Remarks

The current value is reset to the empty string after the call
to converter�

��

Programming Language EuLisp� version ����

A��� Strings

The de	ned name of this module is string� See also sec�
tion A�� �collections� for further operations on strings�

A	��	� string syntax

String literals are delimited by the glyph called quotation
mark ���� For example� �abcd��

Sometimes it might be desirable to include string delimiter
characters in strings� The aim of escaping in strings is to ful�
	ll this need� The string�escape glyph is de	ned as reverse
solidus ���� String escaping can also be used to include cer�
tain other characters that would otherwise be di�cult to
denote� The set of named special characters �see sections �
and A��� have a particular syntax to allow their inclusion in
strings� To allow arbitrary characters to appear in strings�
the hex�insertion digram is followed by an integer denoting
the position of the character in the current character set�
Some examples of string literals appear in Table A��� The
syntax for the external representation of strings is de	ned in
Table A���

NOTE � At present this document refers to the �current char�
acter set� but de
nes no means of selecting alternative character
sets� This is to allow for future extensions and implementation�
de
ned extensions which support more than one character set�

Table A	� � Examples of string literals

Example Contents
�a�nb� ��a� ��newline and ��b
�c��� ��c and ���
��x� � ��x� followed by ��space
��xabcde� ��xabcd followed by ��e
��x��x�� ��x� followed by ��x�
��x��
� ��x�� followed by ��

��xabcg� ��xabc followed by ��g
��x��abc� ��xab followed by ��c

The function write outputs a re�readable form of any es�
caped characters in the string� For example� �a�n��b� �input
notation� is the string containing the characters ��newline�
��a� ��� and ��b� The function write produces �a�n��b��
whilst prin produces

a
�b

The function write outputs characters which do not have
a glyph associated with their position in the character set
as a hex insertion in which all four hex digits are speci	ed�
even if there are leading zeros� as in the last example in
Table A��� The function prin outputs the interpretation
of the characters according to the de	nitions in section A��
without the delimiting quotation marks�

A	��	� �string� class

The class of all instances of �string��

A	��	�	� Initialization Options

Table A	
 � String Syntax

string token
� ��� �string constituent� ����

string constituent
� normal string constituent
� digram string constituent
� numeric string constituent�

normal string constituent
� level � character � � ��� � �$� �

digram string constituent
� �$a� �� alert ��
� �$b� �� backspace ��
� �$d� �� delete ��
� �$f� �� formfeed ��
� �$l� �� linefeed ��
� �$n� �� newline ��
� �$r� �� return ��
� �$t� �� tab ��
� �$v� �� vertical tab ��
� �$�� �� string delimiter ��
� �$$� � �� string escape ��

numeric string constituent
� �$x� hex digit
� �$x� hex digit� hex digit
� �$x� hex digit� hex digit� hex digit
� �$x� hex digit� hex digit� hex digit�
hex digit�

size �fixed�precision�integer�
 The number
of characters in the string� Strings are zero�based and
thus the maximum index is size��� If not speci	ed the size
is zero�

fill�value �character�
 A character with which to
initialize the string� The default 	ll character is ��x��

A	��	�	� Examples

�make �string�� � ��
�make �string� �size �� � ��x�����x�����
�make �string� �size � � �aaa�
�fill�value ��a�

A	��	� stringp function

A	��	�	� Arguments

object
 Object to examine�

A	��	�	� Result

Returns object if it is a string� otherwise ���

A	��	� �converter �symbol�� method

A	��	�	� Specialized Arguments

�string �string��
 A string to be converted to a sym�
bol�

��

Programming Language EuLisp� version ����

A	��	�	� Result

If the result of symbol�exists�pwhen applied to string is a
symbol� that symbol is returned� If the result is ��� then a
new symbol is constructed whose name is string� This new
symbol is returned�

A	��	� equal method

A	��	�	� Specialized Arguments

�string� �string��
 A string�

�string� �string��
 A string�

A	��	�	� Result

If the size of string� is the same �under �� as that of string��
then the result is the conjunction of the pairwise application
of equal to the elements of the arguments� If not the result
is ���

A	��	� deep�copy method

A	��	�	� Specialized Arguments

�string �string��
 A string�

A	��	�	� Result

Constructs and returns a copy of string in which each ele�
ment is eql to the corresponding element in string�

A	��	
 shallow�copy method

A	��	
	� Specialized Arguments

�string �string��
 A string�

A	��	
	� Result

Constructs and returns a copy of string in which each ele�
ment is eql to the corresponding element in string�

A	��	� binary� method

A	��	�	� Specialized Arguments

�string� �string��
 A string�

�string� �string��
 A string�

A	��	�	� Result

If the second argument is longer than the 	rst� the result
is ��� Otherwise� if the sequence of characters in string� is
pairwise less than that in string� according to binary� the
result is t� Otherwise the result is ��� Since it is an error
to compare lower case� upper case and digit characters with
any other kind than themselves� so it is an error to compare
two strings which require such comparisons and the results
are unde	ned�

A	��	�	� Examples

�� �a� �b�� � t
�� �b� �a�� � ��
�� �a� �a�� � ��
�� �a� �ab�� � t
�� �ab� �a�� � ��
�� �A� �B�� � t
�� ��� ���� � t
�� �a�� �a��� � t
�� �a�� �bb�� � t
�� �a�� �ab�� � unde�ned

A	��	�	� See also
 Method on binary� �A��� for characters
�A����

A	��	� as�lowercase method

A	��	�	� Specialized Arguments

�string �string��
 A string�

A	��	�	� Result

Returns a copy of string in which each character denoting an
upper case character� is replaced by a character denoting its
lower case counterpart� The result must not be eq to string�

A	��	�
 as�uppercase method

A	��	�
	� Specialized Arguments

�string �string��
 A string�

A	��	�
	� Result

Returns a copy of string in which each character denoting an
lower case character� is replaced by a character denoting its
upper case counterpart� The result must not be eq to string�

A	��	�� generic�prin method

A	��	��	� Specialized Arguments

�string �string��
 String to be ouptut on stream�

�stream �stream��
 Stream on which string is to be
ouptut�

A	��	��	� Result

The string string�

Output external representation of string on stream as de�
scribed in the introduction to this section� interpreting each
of the characters in the string� The opening and closing quo�
tation marks are not output�

�

Programming Language EuLisp� version ����

A	��	�� generic�write method

A	��	��	� Specialized Arguments

�string �string��
 String to be ouptut on stream�

�stream �stream��
 Stream on which string is to be
ouptut�

A	��	��	� Result

The string string�

Output external representation of string on stream as de�
scribed in the introduction to this section� replacing single
characters with escape sequences if necessary� Opening and
closing quotation marks are output�

A��� Symbols

The de	ned name of this module is symbol�

A	��	� symbol syntax

The syntax of symbols also serves as the syntax for identi�
	ers� Identi	ers in EULISP are very similar lexically to iden�
ti	ers in other Lisps and in other programming languages�
Informally� an identi	er is a sequence of alphabetic� digit and
other characters starting with a character that is not a digit�
Characters which are special �see section �� must be escaped
if they are to be used in the names of identi	ers� However�
because the common notations for arithmetic operations are
the glyphs for plus �
� and minus ���� which are also used
to indicate the sign of a number� these glyphs are classi	ed
as identi	ers in their own right as well as being part of the
syntax of a number�

Sometimes� it might be desirable to incorporate characters
in an identi	er that are normally not legal constituents� The
aim of escaping in identi	ers is to change the meaning of
particular characters so that they can appear where they are
not otherwise acceptable� Identi	ers containing characters
that are not ordinarily legal constituents can be written by
delimiting the sequence of characters by multiple�escape� the
glyph for which is called vertical bar �$�� The multiple�escape
denotes the beginning of an escaped part of an identi	er and
the next multiple�escape denotes the end of an escaped part
of an identi	er� A single character that would otherwise not
be a legal constituent can be written by preceding it with
single�escape� the glyph for which is called reverse solidus
���� Therefore� single�escape can be used to incorporate the
multiple�escape or the single�escape character in an identi	er�
delimited �or not� by multiple�escapes� For example� $���$
is the identi	er whose name contains the three characters
���� ��� and ���� and ab is the identi	er whose name
contains the characters ��a and ��b� The sequence $$ is
the identi	er with no name� and so is $$$$� but $�$$ is the
identi	er whose name contains the single character $� which
can also be written �$� without delimiting multiple�escapes�

Any identi	er can be used as a literal� in which cases it de�
notes a symbol� Because there are two escaping mechanisms
and because the 	rst character of a token a�ects the inter�
pretation of the remainder� there are many ways in which to
input the same identi	er� If this same identi	er is used as a
literal the results of processing each token denoting the iden�
ti	er will be eq to one another� For example� the following
tokens all denote the same symbol

$���$� ����� $�$��� $$���� $$$$���

which will be output by the function write as $���$� If out�
put by write� the representation of the symbol will permit
reconstruction by read�escape characters are preserved�
so that equivalence is maintained between read and write
for symbols� For example
 $a�b$ and abc�def are two sym�
bols as output by write such that read can read them as
two symbols� If output by prin� the escapes necessary to
re�read the symbol will not be included� Thus� taking the
same examples� prin outputs a�b and abc�def� which read
interprets as the symbol a followed by the start of a list� the
symbol b and the symbol abc�def�

The syntax of the external representation of identi	ers and

��

Programming Language EuLisp� version ����

Table A	� � Identi�er�Symbol Syntax

symbol
� identifier�

identifier
� normal identifier � peculiar identifier�

normal identifier
� normal initial� �normal constituent��

normal initial
� letter �� 	 ��
� other character � ���� �� 	 ��

normal constituent
� letter �� 	 ��
� digit �� 	 ��
� other character� �� 	 ��

peculiar identifier
� ���� � ����� �peculiar constituent�
�normal constituent�

� ���� peculiar constituent� �normal constituent��
peculiar constituent

� letter �� 	 ��
� other character� �� 	 ��

symbols is de	ned in Table A���

Computationally� the most important aspect of symbols is
that each is unique� or� stated the other way around
 the re�
sult of processing every syntactic token comprising the same
sequence of characters which denote an identi	er is the same
object� Or� more brie�y� every identi	er with the same name
denotes the same symbol�

A	��	� �symbol� class

The class of all instances of �symbol��

A	��	�	� Initialization Options

string string
 The string containing the characters to
be used to name the symbol� The default value for string
is the empty string� thus resulting in the symbol with no
name� written $$�

A	��	� symbolp function

A	��	�	� Arguments

object
 Object to examine�

A	��	�	� Result

Returns object if it is a symbol�

A	��	� gensym function

A	��	�	� Arguments

	string

 A string contain characters to be prepended to
the name of the new symbol�

A	��	�	� Result

Makes a new symbol whose name� by default� begins with
the character ��g and the remaining characters are generated
by an implementation�de	ned mechanism� Optionally� an
alternative pre	x string for the name may be speci	ed� It
is guaranteed that the resulting symbol did not exist before
the call to gensym�

A	��	� symbol�name function

A	��	�	� Arguments

symbol
 A symbol�

A	��	�	� Result

Returns a string which is equal to that given as the argu�
ment to the call to make which created symbol� It is an error
to modify this string�

A	��	� symbol�exists�p function

A	��	�	� Arguments

string
 A string containing the characters to be used to
determine the existence of a symbol with that name�

A	��	�	� Result

Returns the symbol whose name is string if that symbol has
already been constructed by make� Otherwise� returns ���

A	��	
 generic�prin method

A	��	
	� Specialized Arguments

�symbol �symbol��
 The symbol to be output on stream�

�stream �stream��
 The stream on which the represen�
tation is to be output�

A	��	
	� Result

The symbol supplied as the 	rst argument�

A	��	
	� Remarks

Outputs the external representation of symbol on stream as
described in the introduction to this section� interpreting
each of the characters in the name�

A	��	� generic�write method

A	��	�	� Specialized Arguments

�symbol �symbol��
 The symbol to be output on stream�

�stream �stream��
 The stream on which the represen�
tation is to be output�

��

Programming Language EuLisp� version ����

A	��	�	� Result

The symbol supplied as the 	rst argument�

A	��	�	� Remarks

Outputs the external representation of symbol on stream as
described in the introduction to this section� If any charac�
ters in the name would not normally be legal constituents of
an identi	er or symbol� the output is preceded and succeeded
by multiple�escape characters�

A	��	�	� Examples

�write �make �symbol� �string �abc��� � abc
�write �make �symbol� �string �a c��� � $a c$
�write �make �symbol� �string ������� � $���$

A	��	� �converter �string�� method

A	��	�	� Specialized Arguments

�symbol �symbol��
 A symbol to be converted to a
string�

A	��	�	� Result

A string�

A	��	�	� Remarks

This function is the same as symbol�name� It is de	ned for
the sake of symmetry�

A��� Tables

The de	ned name of this module is table� See also sec�
tion A�� �collections� for further operations on tables�

A	�
	� �table� class

The class of all instances of �table��

A	�
	�	� Initialization Options

comparator �function�
 The function to be used to
compare keys� The default comparison function is eql�

fill�value �object�
 An object which will be returned
as the default value for any key which does not have an
associated value� The default 	ll value is ���

hash�function �function�
 The function to be used to
compute an unique key for each object stored in the table�
This function must return a 	xed precision integer� The
hash function must also satisfy the constraint that if the
comparison function returns true for any two objects� then
the hash function must return the same key when applied
to those two objects� The default is an implementation
de	ned function which satis	es these conditions�

A	�
	� tablep function

A	�
	�	� Arguments

object
 Object to examine�

A	�
	�	� Result

Returns object if it is a table� otherwise ���

A	�
	� clear�table function

A	�
	�	� Arguments

table
 A table�

A	�
	�	� Result

An empty table�

A	�
	�	� Remarks

All entries in table are deleted� The result is eq to the argu�
ment� which is to say that the argument is modi	ed�

�

Programming Language EuLisp� version ����

A��	 Vectors

The de	ned name of this module is vector� See also sec�
tion A�� �collections� for further operations on vectors�

A	��	� vector syntax

A vector is written as ��obj� � � �objn�� For example

��� � �� is a vector of three elements� the integers �� � and
�� The representations of obji are determined by the exter�
nal representations de	ned in other sections of this de	ni�
tion �see �character� �A���� �fixed�precision�integer�
�A���� �float� �A���� �list� �A����� �string� �A��
� and
�symbol� �A����� as well as instances of �vector� itself� The
syntax for the external representation of vectors is de	ned
in Table A���

Table A	� � Vector Syntax

vector
� ����� �object�� ����

A	��	� �vector� class

The class of all instances of �vector��

A	��	�	� Initialization Options

size �fixed�precision�integer�
 The number of ele�
ments in the vector� Vectors are zero�based and thus the
maximum index is size��� If not supplied the size is zero�

fill�value �object�
 An object with which to initial�
ize the vector� The default 	ll value is ���

A	��	�	� Examples

�make �vector�� � ���
�make �vector� �size �� � ���� ���
�make �vector� �size � � ����a ��a ��a�
�fill�value ��a�

A	��	� vectorp function

A	��	�	� Arguments

object
 Object to examine�

A	��	�	� Result

Returns object if it is a vector� otherwise ���

A	��	� maximum�vector�index integer

A	��	�	� Remarks

This is an implementation�de	ned constant� A conforming

processor must support a maximum vector index of at least
������

A	��	� equal method

A	��	�	� Specialized Arguments

�vector� �vector��
 A vector�

�vector� �vector��
 A vector�

A	��	�	� Result

If the size of vector� is the same �under �� as that of vector��
then the result is the conjunction of the pairwise application
of equal to the elements of the arguments� If not the result
is ���

A	��	� deep�copy method

A	��	�	� Specialized Arguments

�vector �vector��
 A vector�

A	��	�	� Result

Constructs and returns a copy of vector� in which each ele�
ment is the result of calling deep�copy on the corresponding
element of vector�

A	��	
 shallow�copy method

A	��	
	� Specialized Arguments

�vector �vector��
 A vector�

A	��	
	� Result

Constructs and returns a copy of vector in which each ele�
ment is eql to the corresponding element in vector�

A	��	� generic�prin method

A	��	�	� Specialized Arguments

�vector �vector��
 A vector to be ouptut on stream�

�stream �stream��
 A stream on which the representa�
tion is to be output�

A	��	�	� Result

The vector supplied as the 	rst argument�

A	��	�	� Remarks

Output the external representation of vector on stream as de�
scribed in the introduction to this section� Calls the generic
function again to produce the external representation of the
elements stored in the vector�

�

Programming Language EuLisp� version ����

A	��	� generic�write method

A	��	�	� Specialized Arguments

�vector �vector��
 A vector to be ouptut on stream�

�stream �stream��
 A stream on which the representa�
tion is to be output�

A	��	�	� Remarks

Output the external representation of vector on stream as de�
scribed in the introduction to this section� Calls the generic
function again to produce the external representation of the
elements stored in the vector�

A��� Syntax of Level
� objects

This section repeats the syntax for reading and writing of
the various classes de	ned in Annex A�

object
� character �� A�� ��
� float �� A�	 ��
� integer �� A��� ��
� list �� A��
 ��
� string �� A��� ��
� symbol �� A��� ��
� vector �� A��	 ��

character token
� literal character token
� special character token
� control character token
� numeric character token�

literal character token
� ��$�� letter
� ��$�� decimal digit
� ��$�� non�alphabetic�

control character token
� ��$%� letter�

special character token
� ��$alert�
� ��$backspace�
� ��$delete�
� ��$formfeed�
� ��$linefeed�
� ��$newline�
� ��$return�
� ��$tab�
� ��$space�
� ��$vertical�tab��

numeric character token
� ��$x�� hex digit
� ��$x�� hex digit� hex digit
� ��$x�� hex digit� hex digit� hex digit
� ��$x�� hex digit� hex digit� hex digit�
hex digit�

float
� �sign unsigned float �exponent �

sign
� ��� � ����

unsigned float
� float format �
� float format �
� float format 	�

float format �
� decimal integer� ���� �� A��� ��

float format �
� ���� decimal integer� �� A��� ��

float format 	
� float format �� decimal integer� �� A��� ��

exponent
� double exponent� �� A�� ��

double exponent
� ��d� � �D��� �sign � decimal integer� �� A��� ��

�

Programming Language EuLisp� version ����

integer
� �sign unsigned integer�

sign
� ��� � ����

unsigned integer
� binary integer
� octal integer
� decimal integer
� hexadecimal integer
� specified base integer

binary integer
� ��b�� binary digit� �binary digit��

binary digit
� ��� � ����

octal integer
� ��o�� octal digit� �octal digit��

octal digit
� ��� � ��� � ��� � �	� � �
� � ��� � ��� � �
��

decimal integer
� decimal digit� �decimal digit��

hexadecimal integer
� ��x�� hexadecimal digit� �hexadecimal digit��

hexadecimal digit
� decimal digit
� hex lower letter
� hex upper letter�

hex lower letter
� �a� � �b� � �c� � �d� � �e� � �f��

hex upper letter
� �A� � �B� � �C� � �D� � �E� � �F��

specified base integer
� ���� base specification� �r��
specified base digit�
�specified base digit��

base specification
� decimal digit � ���� � ����
� � ��� � ��� �� decimal digit
� �	�� ���� � ��� � ��� � �	� � �
� � ��� � �����

specified base digit
� decimal digit � letter�

null
� ���� ����

pair
� ���� object� ���� object� ����

list
� empty list � proper list � improper list�

empty list
� �����

proper list
� ���� �object�� ����

improper list
� ���� �object�� ���� object� ����

string token
� ��� �string constituent� ����

string constituent
� normal string constituent
� digram string constituent
� numeric string constituent�

normal string constituent
� level � character � � ��� � �$� �

digram string constituent
� �$a� �� alert ��
� �$b� �� backspace ��
� �$d� �� delete ��
� �$f� �� formfeed ��
� �$l� �� linefeed ��
� �$n� �� newline ��
� �$r� �� return ��
� �$t� �� tab ��
� �$v� �� vertical tab ��
� �$�� �� string delimiter ��
� �$$� � �� string escape ��

numeric string constituent
� �$x� hex digit
� �$x� hex digit� hex digit
� �$x� hex digit� hex digit� hex digit
� �$x� hex digit� hex digit� hex digit�
hex digit�

symbol
� identifier�

identifier
� normal identifier � peculiar identifier�

normal identifier
� normal initial� �normal constituent��

normal initial
� letter �� 	 ��
� other character � ���� �� 	 ��

normal constituent
� letter �� 	 ��
� digit �� 	 ��
� other character� �� 	 ��

peculiar identifier
� ���� � ����� �peculiar constituent�
�normal constituent�

� ���� peculiar constituent� �normal constituent��
peculiar constituent

� letter �� 	 ��
� other character� �� 	 ��

vector
� ����� �object�� ����

�

Programming Language EuLisp� version ����

Annex B

�normative�
Programming Language EuLisp� Level��

B�� Classes and Objects

B	�	� defclass de�ning form

B	�	�	� Syntax

defclass form
� ���� �defclass��
class name� �� ������ ��
superclass list�
defclass slot description list�
�defclass class option�� ����

superclass list
� ���� �superclass name�� ���� �� ������ ��

defclass slot description list
� ���� �defclass slot description�� ����

defclass slot option
� �initform�� level � expression
� identifier� level � expression
� defstruct slot option� �� ������ ��

defclass class option
� �class�� class name
� identifier� level � expression
� defstruct class option� �� ������ ��

B	�	�	� Arguments

class�name
 A symbol naming a binding to be initialised
with the new class�

�superclass��
 A list of symbols naming bindings of
classes to be used as the superclasses of the new class�
This is di�erent from defstruct at level��� where only
one superclass may be speci	ed�

�slot�description��
 A list of slot speci	cations �see be�
low�� comprising either a slot�name or a list of a slot�name
followed by some slot�options� One of the class options
�see below� allows the speci	cation of the class of the slot
description�

class�option�
 A sequence of keys and values �see below��
One of the class options �class� allows the speci	cation
of the class of the class being de	ned�

B	�	�	� Remarks

This de	ning form de	nes a new class� The resulting class
will be bound to class�name� The second argument is a list of
superclasses� If this list is empty� the superclass is �object��
The third argument is a list of slot�descriptions� The remain�
ing arguments are class options� All the slot options and class
options are exactly the same way as for defstruct ���������

The slot�options are interpreted as follows

initarg symbol
 The value of this option is a identi	er
naming a symbol� which is the name of an argument to be
supplied in the init�options of a call to make on the new
class� The value of this argument in the call to make is the

initial value of the slot� This option must only be speci	ed
once for a particular slot� The same initarg name may be
used for several slots� in which case they will share the
same initial value if the initarg is given to make�

initform form
 The value of this option is a form� which
is evaluated as the default value of the slot� to be used if
no initarg is de	ned for the slot or given to a call to make�
The form is evaluated in the lexical environment of the call
to defstruct and the dynamic environment of the call to
make� The form is evaluated each time make is called and
the default value is called for� The order of evaluation of
the initforms in all the slots is determined by initialize�
This option must only be speci	ed once for a particular
slot�

reader symbol
 The value is the identi	er of the variable
to which the reader function will be bound� The reader
function is a means to access the slot� The reader func�
tion is a function of one argument� which should be an
instance of the new class� No writer function is automati�
cally bound with this option� This option can be speci	ed
more than once for a slot� creating several readers� It is an
error to specify the same reader� writer� or accessor name
for two di�erent slots�

writer symbol
 The value is the identi	er of the variable
to which the writer function will be bound� The writer
function is a means to change the slot value� The creation
of the writer is analogous to that of the reader function�
This option can be speci	ed more than once for a slot� It
is an error to specify the same reader� writer� or accessor
name for two di�erent slots�

accessor symbol
 The value is the identi	er of the vari�
able to which the reader function will be bound� In ad�
dition� the use of this slot�option causes that the writer
function is associated to the reader via the setter mech�
anism� This option can be speci	ed more than once for a
slot� It is an error to specify the same reader� writer� or
accessor name for two di�erent slots�

identi�er expression
 The symbol named by identi�er
and the value of expression are passed to make of the slot
description class along with other slot options� The values
are evaluated in the lexical and dynamic environment of
the defclass� For the language de	ned slot description
classes� no slot initargs are de	ned which are not speci	ed
by particular defclass slot options�

The class�options are interpreted as follows

initargs list
 The value of this option is a list of iden�
ti	ers naming symbols� which extend the inherited names
of arguments to be supplied in the init�options of a call
to make on the new class� Initargs are inherited by union�
The values of all legal arguments in the call to make are the
initial values of corresponding slots if they name a slot or
are ignored by the default initializemethod� otherwise�
This option must only be speci	ed once for a class�

constructor constructor�spec
 Creates a constructor

Programming Language EuLisp� version ����

function for the new class� The constructor speci	cation
gives the name to which the constructor function will be
bound� followed by a sequence of legal initargs for the class�
The new function creates an instance of the class and 	lls
in the slots according to the match between the speci	ed
initargs and the given arguments to the constructor func�
tion� This option may be speci	ed more than once�

predicate symbol
 Creates a predicate function for the
new class� The predicate speci	cation gives the name to
which the predicate function will be bound� This option
may be speci	ed any number of times for a class�

class class
 The value of this option is the class of the
new class� By default� this is �class�� This option must
only be speci	ed once for the new class�

identi�er expression
 The symbol named by identi�er
and the value of expression are passed to make on the class
of the new class� This list is appended to the end of the
list that defclass constructs� The values are evaluated
in the lexical and dynamic environment of the defclass�
This option is used for metaclasses which need extra in�
formation not provided by the standard options�

B�� Generic Functions

B	�	� generic�lambda macro

B	�	�	� Syntax

generic lambda form
� ���� �generic�lambda�� gf lambda list�
�level � init option�� ����

level � init option
� �class�� class name
� �method�class�� class name
� �method� level � method description
� identifier� level � expression�
� level � init option�

level � method description
� ���� �method init option��
specialized lambda list� �� ������ ��
�form�� ����

method init option
� �class�� class name
� identifier level � expression

B	�	�	� Arguments

gf�lambda�list
 As level��� See section �������

level���init�option�
 Format as level��� but with addi�
tional options� which are de	ned below�

B	�	�	� Result

A generic function�

B	�	�	� Remarks

The syntax of generic�lambda is an extension of the level�
� syntax allowing additional init�options� These allow the
speci	cation of the class of the new generic function� which
defaults to �generic�function�� the class of all methods�

which defaults to �method�� and non�standard options� The
latter are evaluated in the lexical and dynamic environment
of generic�lambda and passed to make of the generic func�
tion as additional initialization arguments� The additional
init�options over level�� are interpreted as follows

class gf�class
 The class of the new generic function�
This must be a subclass of �generic�function�� The de�
fault is �generic�function��

method�class method�class
 The class of all methods to
be de	ned on this generic function� All methods of a
generic function must be instances of this class� The
method�classmust be a subclass of �method� and defaults
to �method��

identi�er expression
 The symbol named by identi�er
and the value of expression are passed to make as initargs�
The values are evaluated in the lexical and dynamic envi�
ronment of the defgeneric� This option is used for classes
which need extra information not provided by the stan�
dard options�

In addition� method init options can be speci	ed for the indi�
vidual methods on a generic function� These are interpreted
as follows

class method�class
 The class of the method to be de�
	ned� The method class must be a subclass of �method�
and is� by default� �method�� The value is passed to make
as the 	rst argument� The symbol and the value are not
passed as initargs to make�

identi�er expression
 The symbol named by identi�er
and the value of expression are passed to make creating
a new method as initargs� The values are evaluated in the
lexical and dynamic environment of the generic�lambda�
This option is used for classes which need extra informa�
tion not provided by the standard options�

B	�	�	� Examples

In the following example an anonymous version of gf�� �see
defgeneric� is de	ned� In all other respects the resulting
object is the same as gf���

�generic�lambda �arg� �arg� �class�a���

class �another�gf�class�
class�key�a class�value�a
class�key�b class�value�b

method�class �another�method�class�a�

method �class �another�method�class�b�
method�class�b�key�a method�class�b�value�a
��m��arg� �class�b�� �m��arg� �class�c���
����

method �method�class�a�key�a method�class�a�value�a
��m��arg� �class�d�� �m��arg� �class�e���
����

method �class �another�method�class�c�
method�class�c�key�a method�class�c�value�a
��m	�arg� �class�f�� �m	�arg� �class�g���
����

�

B	�	�	� See also
 defgeneric�

�

Programming Language EuLisp� version ����

B	�	� defgeneric de�ning form

B	�	�	� Syntax

defgeneric form
� ���� �defgeneric��
gf name� �� ������ ��
gf lambda list� �� ������ ��
�level � init option�� ����

B	�	�	� Arguments

gf name
 As level��� See section �������

gf lambda list
 As level��� See section �������

init option�
 As for generic�lambda� de	ned above� be�
low�

B	�	�	� Remarks

This de	ning form de	nes a new generic function� The re�
sulting generic function will be bound to gf�name� The sec�
ond argument is the formal parameter list� An error is sig�
nalled �condition
 non�congruent�lambda�lists� if any of
the methods de	ned on this generic function do not have
lambda lists congruent to that of the generic function� This
applies both to methods de	ned at the same time as the
generic function and to any methods added subsequently by
defmethod or add�method� An init�option is a identi	er fol�
lowed by its initial value� The syntax of defgeneric is an
extension of the level�� syntax� The rewrite rules for the
defgeneric form are identical to those given in Table � ex�
cept that level � init option replaces level � init option�

B	�	�	� Examples

In the following example of the use of defgeneric a generic
function named gf�� is de	ned� The di�erences between this
function and gf�� �see ������� are

a� The class of the generic function is speci	ed
��another�gf�class�� along with some init�options re�
lated to the creation of an instance of that class�

b� The default class of the methods to be attached to the
generic function is speci	ed ��another�method�class�a��
along with an init�option related to the creation of an in�
stance of that class�

c� In addition� some of the methods to be attached are
of a di�erent method class ��another�method�class�b�
and �another�method�class�c�� also with method spe�
ci	c init�options� These method classes are subclasses of
�another�method�class�a��

�defgeneric gf�� �arg� �arg� �class�a���

class �another�gf�class�
class�key�a class�value�a
class�key�b class�value�b

method�class �another�method�class�a�

method �class �another�method�class�b�
method�class�b�key�a method�class�b�value�a
��m��arg� �class�b�� �m��arg� �class�c���
����

method �method�class�a�key�a method�class�a�value�a
��m��arg� �class�d�� �m��arg� �class�e���
����

method �class �another�method�class�c�
method�class�c�key�a method�class�c�value�a
��m	�arg� �class�f�� �m	�arg� �class�g���
����

�

B�� Methods

B	�	� method�lambda macro

B	�	�	� Syntax

method lambda form
� ���� �method�lambda��
�method init option�� �� B�
�� ��
specialized lambda list�
�form�� ����

B	�	�	� Arguments

method init option
 A quoted symbol followed by an ex�
pression�

specialized lambda list
 As de	ned under
generic�lambda�

form
 An expression�

B	�	�	� Result

This syntax creates and returns an anonymous method with
the given lambda list and body� This anonymous method
can later be added to a generic function with a congruent
lambda list via the generic function add�method� Note that
the lambda list can be specialized to specify the method�s do�
main� The value of the special initarg class determines the
class to instantiate! the rest of the initlist is passed to make
called with this class� The default method class is �method��

B	�	�	� Remarks

The additional method�init�options includes class� for speci�
fying the class of the method to be de	ned� and non�standard
options� which are evaluated in the lexical and dynamic en�
vironment of method�lambda and passed to initialize of
that method�

B	�	� defmethod macro

B	�	�	� Syntax

�

Programming Language EuLisp� version ����

defmethod form
� ���� �defmethod�� gf name�
�method init option�� �� B�
�� ��
specialized lambda list�
�form�� ����

B	�	�	� Remarks

The defmethod form of level�� extends that of level�� to ac�
cept method�init�options� This allows for the speci	cation of
the method class by means of the class init option� This
class must be a subclass of the method class of the host
generic function� The method class otherwise defaults to
that of the host generic function� In all other respects� the
behaviour is as that de	ned in level���

B	�	� method�function�lambda macro

B	�	�	� Arguments

lambda�list
 A lambda list

form�
 A sequence of forms�

This macro creates and returns an anonymous method func�
tion with the given lambda list and body� This anony�
mous method function can later be added to a method using
�setter method�function�� or as the function initializa�
tion value in a call of make on an instance of �method�� A
function of this type is also returned by the method acces�
sor method�function� and can be called using the special
method function calling functions call�method�function
and apply�method�function� Only functions created using
this macro can be used as method functions� Note that the
lambda list must not be specialized! a method�s domain is
stored in the method itself�

B	�	� call�method function

B	�	�	� Arguments

method
 A method�

next�methods
 A list of methods�

arg�
 A sequence of expressions�

This function calls the method method with arguments args�
The argument next�methods is a list of methods which are
used as the applicable method list for args! it is an error if this
list is di�erent from the methods which would be produced
by the method lookup function of the generic function of
method� If method is not attached to a generic function�
its behavior is unspeci	ed� The next�methods are used to
determine the next method to call when call�next�method
is called within method�fn�

B	�	� apply�method function

B	�	�	� Arguments

method
 A method�

next�methods
 A list of methods�

form� � � � formn��
 A sequence of expressions�

formn
 An expression�

This function is identical to call�method except that its last
argument is a list whose elements are the other arguments
to pass to the method�s method function� The di�erence is
the same as that between normal function application and
apply�

B	�	� call�method�function function

B	�	�	� Arguments

method�fn
 A method function�

next�methods
 A list of method functions

form�
 A sequence of expressions�

This function calls the method function method�fn with ar�
guments args� The method�fn must have been created by
method�function�lambda� The argument next�methods is a
list of method functions which are used as the applicable
method list for the forms! it is an error if this list is di�erent
from the method functions in the list of methods which would
be produced by the method lookup function of the generic
function of the method to which the method function is at�
tached� These method functions are used to determine the
next method to call when call�next�method is called within
method�fn�

B	�	
 apply�method�function function

B	�	
	� Arguments

method�fn
 A method function�

next�methods
 A list of method functions�

form� � � � formn��
 A sequence of expressions�

formn
 An expression�

This function is identical to call�method�function except
that its last argument is a list whose elements are the other
arguments to pass to the method function� The di�erence is
the same as that between normal function application and
apply�

Programming Language EuLisp� version ����

B�� Object Introspection

The only re�ective capability which every object possesses is
the ability to 	nd its class�

B	�	� class�of function

B	�	�	� Arguments

object
 An object�

B	�	�	� Result

The class of the object�

B	�	�	� Remarks

The function class�of can take any LISP object as argument
and returns an instance of class representing the class of
that entity�

B�� Class Introspection

Standard classes are not rede	nable and support single in�
heritance only� General multiple inheritance or mixin in�
heritance can be provided by extensions� Nor is it possi�
ble to use a class as a superclass which is not de	ned at
the time of class de	nition� Again� such forward reference
facilities can be provided by extensions� The distinction
between metaclasses and non�metaclasses is made explicit
by a special class� named �metaclass�� which is the class
of all metaclasses� This is di�erent from ObjVlisp� where
whether a class is a metaclass depends on the superclass list
of the class in question� It is implementation�de	ned whether
�metaclass� itself is specializable or not� This implies that
implementations are free to restrict the instantiation tree
�excluding the sel	nstantiation loop of �metaclass�� to a
depth of three levels�

The minimum information associated with a class metaob�
ject is

a� The class precedence list� ordered most speci	c 	rst�
beginning with the class itself�

b� The list of �e�ective� slot descriptions�

c� The list of �e�ective� initargs�

Standard classes support local slots only� Shared slots can be
provided by extensions� The minimal information associated
with a slot description metaobject is

a� The name� which is required to perform inheritance
computations�

b� The initfunction� called by default to compute the
initial slot value when creating a new instance�

c� The reader� which is a function to read the correspond�
ing slot value of an instance�

d� The writer� which is a function to write the corre�
sponding slot of an instance�

�object� 	�abstract�class�

�class� 	�class�

�abstract�class� 	�class�

�function�class� 	�class�

�slot�description� 	�abstract�class�

�local�slot�description� 	�class�

�function� 	�abstract�class�

�generic�function� 	�function�class�

�method� 	�class�

Figure B	� � Level�� class hierarchy

e� The initarg� which is a symbol to access the value
which can be supplied to a make call in order to initialize
the corresponding slot in a newly created object�

The metaobject classes de	ned for slot descriptions at level��
are shown in Table B���

B	�	� class�precedence�list function

B	�	�	� Arguments

class
 A class�

B	�	�	� Result

A list of classes� starting with class itself� suc�
ceeded by the superclasses of class and ending with
�object�� This list is equivalent to the result of calling
compute�class�precedence�list�

B	�	�	� Remarks

The class precedence list is used to control the inheritance
of slots and methods�

B	�	� class�slot�descriptions function

B	�	�	� Arguments

class
 A class�

B	�	�	� Result

A list of slot�descriptions� one for each of the slots of an
instance of class�

B	�	�	� Remarks

The slot�descriptions determine the instance size �number of
slots� and the slot access�

B	�	� class�initargs function

B	�	�	� Arguments

class
 A class�

�

Programming Language EuLisp� version ����

B	�	�	� Result

A list of symbols� which can be used as legal keywords to
initialize instances of the class�

B	�	�	� Remarks

The initargs correspond to the keywords speci	ed in the
initarg slot�option or the initargs class�option when the
class and its superclasses were de	ned�

B�� Slot Introspection

B	�	� �slot�description� class

The abstract class of all slot descriptions�

B	�	� �local�slot�description� class

The class of all local slot descriptions�

B	�	�	� Initialization Options

name string
 The name of the slot�

reader function
 The function to access the slot�

writer function
 The function to update the slot�

initfunction function
 The function to compute the
initial value in the absence of a supplied value�

initarg symbol
 The key to access a supplied initial
value�

The default value for all initoptions is false�

B	�	� slot�description�name function

B	�	�	� Arguments

slot�description
 A slot description�

B	�	�	� Result

The symbol which was used to name the slot when the class�
of which the slot�description is part� was de	ned�

B	�	�	� Remarks

The slot description name is used to identify a slot descrip�
tion in a class� It has no e�ect on bindings�

B	�	� slot�description�initfunction function

B	�	�	� Arguments

slot�description
 A slot description�

B	�	�	� Result

A function of no arguments that is used to compute the
initial value of the slot in the absence of a supplied value�

B	�	� slot�description�slot�reader function

B	�	�	� Arguments

slot�description
 A slot description�

B	�	�	� Result

A function of one argument that returns the value of the slot
in that argument�

B	�	� slot�description�slot�writer function

B	�	�	� Arguments

slot�description
 A slot description�

B	�	�	� Result

A function of two arguments that installs the second argu�
ment as the value of the slot in the 	rst argument�

B�� Generic Function Introspection

The default generic dispatch scheme is class�based! that is�
methods are class speci	c� The default argument precedence
order is left�to�right�

The minimum information associated with a generic function
metaobject is

a� The domain� restricting the domain of each added
method to a subdomain�

b� The method class� restricting each added method to
be an instance of that class�

c� The list of all added methods�

d� The method look�up function used to collect and sort
the applicable methods for a given domain�

e� The discriminating function used to perform the
generic dispatch�

B	
	� generic�function�domain function

B	
	�	� Arguments

generic�function
 A generic function�

B	
	�	� Result

A list of classes�

�

Programming Language EuLisp� version ����

B	
	�	� Remarks

This function returns the domain of a generic function� The
domains of all methods attached to a generic function are
constrained to be within this domain� In other words� the
domain classes of each method must be subclasses of the
corresponding generic function domain class� It is an error
to modify this list�

B	
	� generic�function�method�class function

B	
	�	� Arguments

generic�function
 A generic function�

B	
	�	� Result

This function returns the class which is the class of all meth�
ods of the generic function� Each method attached to a
generic function must be an instance of this class� When
a method is created using defmethod� method�lambda� or by
using the method generic function option in a defgeneric
or generic�lambda� it will be an instance of this class by
default�

B	
	� generic�function�methods function

B	
	�	� Arguments

generic�function
 A generic function�

B	
	�	� Result

This function returns a list of the methods attached to the
generic function� The order of the methods in this list is
unde	ned� It is an error to modify this list�

B	
	� generic�function�method�lookup�function
function

B	
	�	� Arguments

generic�function
 A generic function�

B	
	�	� Result

A function�

B	
	�	� Remarks

This function returns a function which� when applied to the
arguments given to the generic function� returns a sorted list
of applicable methods� The order of the methods in this list
is determined by compute�method�lookup�function�

B	
	� generic�function�discriminating�function
function

B	
	�	� Arguments

generic�function
 A generic function�

B	
	�	� Result

A function�

B	
	�	� Remarks

This function returns a function which may be applied
to the same arguments as the generic function� This
function is called to perform the generic dispatch oper�
ation to determine the applicable methods whenever the
generic function is called� and call the most speci	c ap�
plicable method function� This function is created by
compute�discriminating�function�

B�	 Method Introspection

The minimal information associated with a method metaob�
ject is

a� The domain� which is a list of classes�

b� The function comprising the code of the method�

c� The generic function to which the method has been
added� or �� if it is attached to no generic function�

The metaobject classes for generic functions de	ned at level�
� are shown in Table B���

B	�	� method�domain function

B	�	�	� Arguments

method
 A method�

B	�	�	� Result

A list of classes de	ning the domain of a method�

B	�	� method�function function

B	�	�	� Arguments

method
 A method�

B	�	�	� Result

This function returns a function which implements the
method� The returned function which is called when method
is called� either by calling the generic function with appro�
priate arguments� through a call�next�method� or by using
call�method� A method metaobject itself cannot be applied
or called as a function�

B	�	� method�generic�function function

B	�	�	� Arguments

method
 A method�

��

Programming Language EuLisp� version ����

B	�	�	� Result

This function returns the generic function to which method
is attached! if method is not attached to a generic function�
it returns ���

B�� Class Initialization

B	�	� initialize method

B	�	�	� Specialized Arguments

�class �class��
 A class�

�initlist �list��
 A list of initialization options as fol�
lows

name symbol
 Name of the class being initialized�

direct�superclasses list
 List of direct superclasses�

direct�slot�descriptions list
 List of direct slot
speci	cations�

direct�initargs list
 List of direct initargs�

B	�	�	� Result

The initialized class�

B	�	�	� Remarks

The initialization of a class takes place as follows

a� Check compatibility of direct superclasses

b� Perform the logical inheritance computations of

�� class precedence list

�� initargs

�� slot descriptions

c� Compute new slot accessors and ensure all �new and
inherited� accessors to work correctly on instances of the
new class�

d� Make the results accessible by class readers�

The basic call structure is laid out in Figure B��

Note that compute�initargs is called by the default
initialize method with all direct initargs as the second
argument
 those speci	ed as slot option and those speci	ed
as class option�

B	�	� compute�predicate generic function

B	�	�	� Generic Arguments

�class �class��
 A class�

B	�	�	� Result

Computes and returns a function of one argument� which is
a predicate function for class�

B	�	� compute�predicate method

B	�	�	� Specialized Arguments

�class �class��
 A class�

B	�	�	� Result

Computes and returns a function of one argument� which
returns true when applied to direct or indirect instances of
class and false otherwise�

B	�	� compute�constructor generic function

B	�	�	� Generic Arguments

�class �class��
 A class�

�parameters �list��
 The argument list of the function
being created�

B	�	�	� Result

Computes and returns a constructor function for class�

B	�	� compute�constructor method

B	�	�	� Specialized Arguments

�class �class��
 A class�

�parameters �list��
 The argument list of the function
being created�

B	�	�	� Result

Computes and returns a constructor function� which returns
a new instance of class�

B	�	� allocate generic function

B	�	�	� Generic Arguments

�class �class��
 A class�

�initlist �list��
 A list of initialization arguments�

B	�	�	� Result

An instance of the 	rst argument�

B	�	�	� Remarks

Creates an instance of the 	rst argument� Users may de	ne
new methods for new metaclasses�

��

Programming Language EuLisp� version ����

compatible�superclasses�p cl direct�superclasses � boolean
compatible�superclass�p cl superclass � boolean

compute�class�precedence�list cl direct�superclasses � �cl��
compute�inherited�initargs cl direct�superclasses � ��initarg����
compute�initargs cl direct�initargs inherited�initargs � �initarg��
compute�inherited�slot�descriptions cl direct�superclasses � ��sd����
compute�slot�descriptions cl slot�specs inherited�sds � �sd��

either
compute�defined�slot�description cl slot�spec � sd
compute�defined�slot�description�class cl slot�spec � sd�class

or
compute�specialized�slot�description cl inherited�sds slot�spec � sd
compute�specialized�slot�description�class

cl inherited�sds slot�spec � sd�class
compute�instance�size cl e	ective�sds � integer
compute�and�ensure�slot�accessors cl e	ective�sds inherited�sds � �sd��
compute�slot�reader cl sd e	ective�sds � function
compute�slot�writer cl sd e	ective�sds � function
ensure�slot�reader cl sd e	ective�sds reader � function
compute�primitive�reader�using�slot�description

sd cl e	ective�sds � function
compute�primitive�reader�using�class cl sd e	ective�sds � function

ensure�slot�writer cl sd e	ective�sds writer � function
compute�primitive�writer�using�slot�description

sd cl e	ective�sds � function
compute�primitive�writer�using�class cl sd e	ective�sds � function

Figure B	� � Initialization Call Structure

B	�	
 allocate method

B	�	
	� Specialized Arguments

�class �class��
 A class�

�initlist �list��
 A list of initialization arguments�

B	�	
	� Result

An instance of the 	rst argument�

B	�	
	� Remarks

The default method creates a new uninitialized instance of
the 	rst argument� The initlist is not used by this allocate
method�

B��� Slot Description Initialization

B	�
	� initialize method

B	�
	�	� Specialized Arguments

�slot�description �slot�description��
 A slot descrip�
tion�

�initlist �list��
 A list of initialization options as fol�
lows

name symbol
 The name of the slot�

initfunction function
 A function�

initarg symbol
 A symbol�

reader function
 A slot reader function�

writer function
 A slot writer function�

B	�
	�	� Result

The initialized slot description�

B��� Generic Function Initialization

B	��	� initialize method

B	��	�	� Specialized Arguments

�gf �generic�function��
 A generic function�

�initlist �list��
 A list of initialization options as fol�
lows

name symbol
 The name of the generic function�

domain list
 List of argument classes�

method�class class
 Class of attached methods�

method method�description
 A method to be attached�
This option may be speci	ed more than once�

B	��	�	� Result

The initialized generic function�

B	��	�	� Remarks

This method initializes and returns the generic�function�
The speci	ed methods are attached to the generic func�
tion by add�method� and its slots are initialized from

��

Programming Language EuLisp� version ����

the information passed in initlist and from the re�
sults of calling compute�method�lookup�function and
compute�discriminating�function on the generic function�
Note that these two functions may not be called during the
call to initialize� and that they may be called several times
for the generic function�

The basic call structure is
 add�method gf method �� gf

compute�method�lookup�function gf domain �� function
compute�discriminating�function gf domain lookup�fn methods
�� function

B��� Method Initialization

B	��	� initialize method

B	��	�	� Specialized Arguments

�method �method��
 A method�

�initlist �list��
 A list of initialization options as fol�
lows

domain list
 The list of argument classes�

function fn
 A function� created with
method�function�lambda�

generic�function gf
 A generic function�

B	��	�	� Result

This method returns the initialized method metaobject
method� If the generic�function option is supplied�
add�method is called to install the new method in the
generic�function�

B��� Inheritance Protocol

B	��	� compatible�superclasses�p generic function

B	��	�	� Generic Arguments

�class �class��
 A class�

�direct�superclasses �list��
 A list of potential direct
superclasses of class�

B	��	�	� Result

Returns t if class is compatible with direct�superclasses� oth�
erwise ���

B	��	� compatible�superclasses�p method

B	��	�	� Specialized Arguments

�class �class��
 A class�

�direct�superclasses �list��
 A list of potential direct
superclasses�

B	��	�	� Result

Returns the result of calling compatible�superclass�p on
class and the 	rst element of the direct�superclasses �single
inheritance assumption��

B	��	� compatible�superclass�p generic function

B	��	�	� Generic Arguments

�subclass �class��
 A class�

�superclass �class��
 A potential direct superclass�

B	��	�	� Result

Returns t if subclass is compatible with superclass� otherwise
���

B	��	� compatible�superclass�p method

B	��	�	� Specialized Arguments

�subclass �class��
 A class�

�superclass �class��
 A potential direct superclass�

B	��	�	� Result

Returns t if the class of the 	rst argument is a subclass of
the class of the second argument� otherwise ���

If the implementation wishes to restrict the instantiation tree
�see introduction to B���� this method should return false if
superclass is �metaclass��

B	��	� compatible�superclass�p method

B	��	�	� Specialized Arguments

�subclass �class��
 A class�

�superclass �abstract�class��
 A potential direct su�
perclass�

B	��	�	� Result

Always returns t�

B	��	� compatible�superclass�p method

B	��	�	� Specialized Arguments

�subclass �abstract�class��
 A class�

�superclass �class��
 A potential direct superclass�

B	��	�	� Result

Always returns ���

��

Programming Language EuLisp� version ����

B	��	
 compatible�superclass�p method

B	��	
	� Specialized Arguments

�subclass �abstract�class��
 A class�

�superclass �abstract�class��
 A potential direct su�
perclass�

B	��	
	� Result

Always returns t�

B	��	� compute�class�precedence�list generic function

B	��	�	� Generic Arguments

�class �class��
 Class being de	ned�

�direct�superclasses �list��
 List of direct superclasses�

B	��	�	� Result

Computes and returns a list of classes which represents the
linearized inheritance hierarchy of class and the given list
of direct superclasses� beginning with class and ending with
�object��

B	��	� compute�class�precedence�list method

B	��	�	� Specialized Arguments

�class �class��
 Class being de	ned�

�direct�superclasses �list��
 List of direct superclasses�

B	��	�	� Result

A list of classes�

B	��	�	� Remarks

This method can be considered to return a cons of class
and the class precedence list of the 	rst element of direct�
superclasses �single inheritance assumption�� If no direct�
superclasses has been supplied� the result is the list of two
elements
 class and �object��

B	��	�
 compute�slot�descriptions generic function

B	��	�
	� Generic Arguments

�class �class��
 Class being de	ned�

�direct�slot�speci�cations �list��
 A list of direct slot
speci	cation�

�inherited�slot�descriptions �list��
 A list of lists of in�
herited slot descriptions�

B	��	�
	� Result

Computes and returns the list of e�ective slot descriptions
of class�

B	��	�
	�
See also
 compute�inherited�slot�descriptions�

B	��	�� compute�slot�descriptions method

B	��	��	� Specialized Arguments

�class �class��
 Class being de	ned�

�slot�specs �list��
 List of �direct� slot speci	cations�

�inherited�slot�description�lists �list��
 A list of lists
�in fact one list in single inheritance� of inherited slot de�
scriptions�

B	��	��	� Result

A list of e�ective slot descriptions�

B	��	��	� Remarks

The default method computes two sublists

a� Calling
compute�specialized�slot�description with the three
arguments �i� class� �ii� each inherited�slot�description as
a singleton list� �iii� the slot�spec corresponding �by having
the same name� to the slot description� if it exists� other�
wise ��� giving a list of the specialized slot descriptions�

b� Calling compute�defined�slot�description with
the three arguments �i� class� �ii� each slot�speci�cation
which does not have a corresponding �by having the same
name� inherited�slot�description�

The method returns the concatenation of these two lists as
its result� The order of elements in the list is signi	cant�
All specialized slot descriptions have the same position as
in the e�ective slot descriptions list of the direct superclass
�due to the single inheritance�� The slot accessors �computed
later� may rely on this assumption minimizing the number of
methods to one for all subclasses and minimizing the access
time to an indexed reference�

B	��	��	�
See also
 compute�specialized�slot�description�
compute�defined�slot�description�
compute�and�ensure�slot�accessors�

B	��	�� compute�initargs generic function

B	��	��	� Generic Arguments

�class �class��
 Class being de	ned�

�initargs �list��
 List of direct initargs�

�inherited�initarg�lists �list��
 A list of lists of inher�
ited initargs�

�

Programming Language EuLisp� version ����

B	��	��	� Result

List of symbols�

B	��	��	� Remarks

Computes and returns all legal initargs for class�

B	��	��	� See also
 compute�inherited�initargs�

B	��	�� compute�initargs method

B	��	��	� Specialized Arguments

�class �class��
 Class being de	ned�

�initargs �list��
 List of direct initargs�

�inherited�initarg�lists �list��
 A list of lists of inher�
ited initargs�

B	��	��	� Result

List of symbols�

B	��	��	� Remarks

This method appends the second argument with the 	rst
element of the third argument �single inheritance assump�
tion�� removes duplicates and returns the result� Note
that compute�initargs is called by the default initialize
method with all direct initargs as the second argument
 those
speci	ed as slot option and those speci	ed as class option�

B	��	�� compute�inherited�slot�descriptions
generic function

B	��	��	� Generic Arguments

�class �class��
 Class being de	ned�

�direct�superclasses �list��
 List of direct superclasses�

B	��	��	� Result

List of lists of inherited slot descriptions�

B	��	��	� Remarks

Computes and returns a list of lists of e�ective slot descrip�
tions�

B	��	��	� See also
 compute�slot�descriptions�

B	��	�� compute�inherited�slot�descriptions method

B	��	��	� Specialized Arguments

�class �class��
 Class being de	ned�

�direct�superclasses �list��
 List of direct superclasses�

B	��	��	� Result

List of lists of inherited slot descriptions�

B	��	��	� Remarks

The result of the default method is a list of one element
 a
list of e�ective slot descriptions of the 	rst element of the
second argument �single inheritance assumption�� Its result
is used by compute�slot�descriptions as an argument�

B	��	�� compute�inherited�initargs generic function

B	��	��	� Generic Arguments

�class �class��
 Class being de	ned�

�direct�superclasses �list��
 List of direct superclasses�

B	��	��	� Result

List of lists of symbols�

B	��	��	� Remarks

Computes and returns a list of lists of initargs� Its result is
used by compute�initargs as an argument�

B	��	��	� See also
 compute�initargs�

B	��	�
 compute�inherited�initargs method

B	��	�
	� Specialized Arguments

�class �class��
 Class being de	ned�

�direct�superclasses �list��
 List of direct superclasses�

B	��	�
	� Result

List of lists of symbols�

B	��	�
	� Remarks

The result of the default method contains one list of legal
initargs of the 	rst element of the second argument �single
inheritance assumption��

B	��	�� compute�defined�slot�description
generic function

B	��	��	� Generic Arguments

�class �class��
 Class being de	ned�

�slot�spec �list��
 Canonicalized slot speci	cation�

B	��	��	� Result

Slot description�

��

Programming Language EuLisp� version ����

B	��	��	� Remarks

Computes and returns a new e�ective slot description� It
is called by compute�slot�descriptions on each slot spec�
i	cation which has no corresponding inherited slot descrip�
tions�

B	��	��	�
See also
 compute�defined�slot�description�class�

B	��	�� compute�defined�slot�description method

B	��	��	� Specialized Arguments

�class �class��
 Class being de	ned�

�slot�spec �list��
 Canonicalized slot speci	cation�

B	��	��	� Result

Slot description�

B	��	��	� Remarks

Computes and returns a new e�ective slot descrip�
tion� The class of the result is determined by calling
compute�defined�slot�description�class�

B	��	��	�
See also
 compute�defined�slot�description�class�

B	��	�
 compute�defined�slot�description�class
generic function

B	��	�
	� Generic Arguments

�class �class��
 Class being de	ned�

�slot�spec �list��
 Canonicalized slot speci	cation�

B	��	�
	� Result

Slot description class�

B	��	�
	� Remarks

Determines and returns the slot description class correspond�
ing to class and slot�spec �

B	��	�
	� See also
 compute�defined�slot�description�

B	��	�� compute�defined�slot�description�class
method

B	��	��	� Specialized Arguments

�class �class��
 Class being de	ned�

�slot�spec �list��
 Canonicalized slot speci	cation�

B	��	��	� Result

The class �local�slot�description��

B	��	��	� Remarks

This method just returns the class
�local�slot�description��

B	��	�� compute�specialized�slot�description
generic function

B	��	��	� Generic Arguments

�class �class��
 Class being de	ned�

�inherited�slot�descriptions �list��
 List of inherited
slot descriptions �each of the same name as the slot be�
ing de	ned��

�slot�spec �list��
 Canonicalized slot speci	cation or
���

B	��	��	� Result

Slot description�

B	��	��	� Remarks

Computes and returns a new e�ective slot description� It is
called by compute�slot�descriptions on the class� each list
of inherited slots with the same name and with the special�
ising slot speci	cation list or �� if no one is speci	ed with
the same name�

B	��	��	�
See also
 compute�specialized�slot�description�class�

B	��	�� compute�specialized�slot�description
method

B	��	��	� Specialized Arguments

�class �class��
 Class being de	ned�

�inherited�slot�descriptions �list��
 List of inherited
slot descriptions�

�slot�spec �list��
 Canonicalized slot speci	cation or
���

B	��	��	� Result

Slot description�

B	��	��	� Remarks

Computes and returns a new e�ective slot descrip�
tion� The class of the result is determined by calling
compute�specialized�slot�description�class�

B	��	��	�
See also
 compute�specialized�slot�description�class�

��

Programming Language EuLisp� version ����

B	��	�� compute�specialized�slot�description�class
generic function

B	��	��	� Generic Arguments

�class �class��
 Class being de	ned�

�inherited�slot�descriptions �list��
 List of inherited
slot descriptions�

�slot�spec �list��
 Canonicalized slot speci	cation or
���

B	��	��	� Result

Slot description class�

B	��	��	� Remarks

Determines and returns the slot description class correspond�
ing to �i� the class being de	ned� �ii� the inherited slot de�
scriptions being specialized �iii� the specializing information
in slot�spec�

B	��	��	�
See also
 compute�specialized�slot�description�

B	��	�� compute�specialized�slot�description�class
method

B	��	��	� Specialized Arguments

�class �class��
 Class being de	ned�

�inherited�slot�descriptions �list��
 List of inherited
slot descriptions�

�slot�spec �list��
 Canonicalized slot speci	cation or
���

B	��	��	� Result

The class �local�slot�description��

B	��	��	� Remarks

This method just returns the class
�local�slot�description��

B��� Slot Access Protocol

The slot access protocol is de	ned via accessors �readers and
writers� only� There is no primitive like CLOS�s slot�value�
The accessors are generic for standard classes� since they
have to work on subclasses and should do the applicability
check anyway� The key idea is that the discrimination on
slot�descriptions and classes is performed once at class de	�
nition time rather than again and again at slot access time�

Each slot�description has exactly one reader and one writer
as anonymous objects� If a reader�writer slot�option is speci�
	ed in a class de	nition� the anonymous reader�writer of that

slot�description is bound to the speci	ed identi	er� Thus� if
a reader�writer option is speci	ed more than once� the same
object is bound to all the identi	ers� If the accessor slot�
option is speci	ed the anonymous writer will be installed as
the setter of the reader� Specialized slot�descriptions refer
to the same objects as those in the superclasses �single in�
heritance makes that possible�� Since the readers�writers are
generic� it is possible for a subclass �at the meta�level� to add
new methods for inherited slot�descriptions in order to make
the readers�writers applicable on instances of the subclass�
A new method might be necessary if the subclasses have a
di�erent instance allocation or if the slot positions cannot
be kept the same as in the superclass �in multiple inheri�
tance extensions�� This can be done during the initialization
computations�

B	��	� compute�and�ensure�slot�accessors
generic function

B	��	�	� Generic Arguments

�class �class��
 Class being de	ned�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

�inherited�slot�descriptions �list��
 List of lists of in�
herited slot descriptions�

B	��	�	� Result

List of e�ective slot descriptions�

B	��	�	� Remarks

Computes new accessors or ensures that inherited accessors
work correctly for each e�ective slot description�

B	��	� compute�and�ensure�slot�accessors method

B	��	�	� Specialized Arguments

�class �class��
 Class being de	ned�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

�inherited�slot�descriptions �list��
 List of lists of in�
herited slot descriptions�

B	��	�	� Result

List of e�ective slot descriptions�

B	��	�	� Remarks

For each slot description in slot�descriptions the default
method checks if it is a new slot description and not an
inherited one� If the slot description is new�

a� calls compute�slot�reader to compute a new slot
reader and stores the result in the slot description!

�

Programming Language EuLisp� version ����

b� calls compute�slot�writer to compute a new slot
writer and stores the result in the slot description!

Otherwise� it assumes that the inherited values remain valid�

Finally� for every slot description �new or inherited�
it ensures the reader and writer work correctly on in�
stances of class by means of ensure�slot�reader and
ensure�slot�writer�

B	��	� compute�slot�reader generic function

B	��	�	� Generic Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�description�list �list��
 List of e�ective slot de�
scriptions�

B	��	�	� Result

Function�

B	��	�	� Remarks

Computes and returns a new slot reader applicable to in�
stances of class returning the slot value corresponding to
slot�description� The third argument can be used in order to
compute the logical slot position�

B	��	� compute�slot�reader method

B	��	�	� Specialized Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	�	� Result

Generic function�

B	��	�	� Remarks

The default method returns a new generic function of one
argument without any methods� Its domain is class�

B	��	� compute�slot�writer generic function

B	��	�	� Generic Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	�	� Result

Function�

B	��	�	� Remarks

Computes and returns a new slot writer applicable to in�
stances of class and any value to be stored as the new slot
value corresponding to slot�description� The third argument
can be used in order to compute the logical slot position�

B	��	� compute�slot�writer method

B	��	�	� Specialized Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	�	� Result

Generic function�

B	��	�	� Remarks

The default method returns a new generic function of two
arguments without any methods� Its domain is class �
�object��

B	��	
 ensure�slot�reader generic function

B	��	
	� Generic Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

�reader �function��
 The slot reader�

B	��	
	� Result

Function�

B	��	
	� Remarks

Ensures function correctly fetches the value of the slot from
instances of class�

��

Programming Language EuLisp� version ����

B	��	� ensure�slot�reader method

B	��	�	� Specialized Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

�reader �generic�function��
 The slot reader�

B	��	�	� Result

Generic function�

B	��	�	� Remarks

The default method checks if there is a method in the
generic�function� If not� it creates and adds a new one� oth�
erwise it assumes that the existing method works correctly�
The domain of the new method is class and the function is

�method�function�lambda ��object class��
�primitive�reader object��

compute�primitive�reader�using�slot�description is
called by ensure�slot�readermethod to compute the prim�
itive reader used in the function of the new created reader
method�

B	��	� ensure�slot�writer generic function

B	��	�	� Generic Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

�writer �function��
 The slot writer�

B	��	�	� Result

Function�

B	��	�	� Remarks

Ensures function correctly updates the value of the slot in
instances of class�

B	��	�
 ensure�slot�writer method

B	��	�
	� Specialized Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�description�list �list��
 List of e�ective slot de�
scriptions�

�writer �generic�function��
 The slot writer�

B	��	�
	� Result

Generic function�

B	��	�
	� Remarks

The default method checks if there is a method in the
generic�function� If not� creates and adds a new one� oth�
erwise it assumes that the existing method works correctly�
The domain of the new method is class � �object� and the
function is

�method�function�lambda ��obj class�
�new�value �object���

�primitive�writer obj new�value��

compute�primitive�writer�using�slot�description is
called by ensure�slot�writermethod to compute the prim�
itive writer used in the function of the new created writer
method�

B	��	�� compute�primitive�reader�using�slot�description
generic function

B	��	��	� Generic Arguments

�slot�description �slot�description��
 Slot
description�

�class �class��
 Class�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	��	� Result

Function�

B	��	��	� Remarks

Computes and returns a function which returns a slot value
when applied to an instance of class�

B	��	�� compute�primitive�reader�using�slot�description
method

B	��	��	� Specialized Arguments

�slot�description �slot�description��
 Slot
description�

�class �class��
 Class�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

��

Programming Language EuLisp� version ����

B	��	��	� Result

Function�

B	��	��	� Remarks

Calls compute�primitive�reader�using�class� This is the
default method�

B	��	�� compute�primitive�reader�using�class
generic function

B	��	��	� Generic Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	��	� Result

Function�

B	��	��	� Remarks

Computes and returns a function which returns the slot value
when applied to an instance of class�

B	��	�� compute�primitive�reader�using�class
method

B	��	��	� Specialized Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	��	� Result

Function�

B	��	��	� Remarks

The default method returns a function of one argument�

B	��	�� compute�primitive�writer�using�slot�description
generic function

B	��	��	� Generic Arguments

�slot�description �slot�description��
 Slot
description�

�class �class��
 Class�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	��	� Result

Function�

B	��	��	� Remarks

Computes and returns a function which stores a new slot
value when applied on an instance of class and a new value�

B	��	�� compute�primitive�writer�using�slot�description
method

B	��	��	� Specialized Arguments

�slot�description �slot�description��
 Slot
description�

�class �class��
 Class�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	��	� Result

Function�

B	��	��	� Remarks

Calls compute�primitive�writer�using�class� This is the
default method�

B	��	�
 compute�primitive�writer�using�class
generic function

B	��	�
	� Generic Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

B	��	�
	� Result

Function�

B	��	�
	� Remarks

Computes and returns a function which stores the new slot
value when applied on an instance of class and new value�

B	��	�� compute�primitive�reader�using�class
method

B	��	��	� Specialized Arguments

�class �class��
 Class�

�slot�description �slot�description��
 Slot
description�

�slot�descriptions �list��
 List of e�ective slot descrip�
tions�

��

Programming Language EuLisp� version ����

B	��	��	� Result

Function�

B	��	��	� Remarks

The default method returns a function of two arguments�

B��� Method Lookup and Generic Dispatch

B	��	� compute�method�lookup�function
generic function

B	��	�	� Generic Arguments

�gf �generic�function��
 A generic function�

�domain �list��
 A list of classes which cover the do�
main�

B	��	�	� Result

A function�

B	��	�	� Remarks

Computes and returns a function which will be called at
least once for each domain to select and sort the applicable
methods by the default dispatch mechanism� New meth�
ods may be de	ned for this function to implement di�erent
method lookup strategies� Although only one method lookup
function generating method is provided by the system� each
generic function has its own speci	c lookup function which
may vary from generic function to generic function�

B	��	� compute�method�lookup�function method

B	��	�	� Specialized Arguments

�gf �generic�function��
 A generic function�

�domain �list��
 A list of classes which cover the do�
main�

B	��	�	� Result

A function�

B	��	�	� Remarks

Computes and returns a function which will be called at least
once for each domain to select and sort the applicable meth�
ods by the default dispatch mechanism� It is not de	ned�
whether each generic function may have its own lookup func�
tion�

B	��	� compute�discriminating�function
generic function

B	��	�	� Generic Arguments

�gf �generic�function��
 A generic function�

�domain �list��
 A list of classes which span the do�
main�

�lookup�fn �function��
 The method lookup function�

�methods �list��
 A list of methods attached to the
generic�function�

B	��	�	� Result

A function�

B	��	�	� Remarks

This generic function computes and returns a function which
is called whenever the generic function is called� The re�
turned function controls the generic dispatch� Users may de�
	ne methods on this function for new generic function classes
to implement non�default dispatch strategies�

B	��	� compute�discriminating�function method

B	��	�	� Specialized Arguments

�gf �generic�function��
 A generic function�

�domain �list��
 A list of classes which span the do�
main�

�lookup�fn �function��
 The method lookup function�

�methods �list��
 A list of methods attached to the
generic�function�

B	��	�	� Result

A function�

B	��	�	� Remarks

This method computes and returns a function which is called
whenever the generic function is called� This default method
implements the standard dispatch strategy
 The generic
function�s methods are sorted using the function returned
by compute�method�lookup�function� and the 	rst is called
as if by call�method� passing the others as the list of next
methods� Note that call�methodneed not be directly called�

B	��	� add�method generic function

B	��	�	� Generic Arguments

�gf �generic�function��
 A generic function�

�method �method��
 A method to be attached to the
generic function�

B	��	�	� Result

This generic function adds method to the generic function
gf� This method will then be taken into account when gf
is called with appropriate arguments� It returns the generic
function gf� New methods may be de	ned on this generic
function for new generic function and method classes�

��

Programming Language EuLisp� version ����

B	��	�	� Remarks

In contrast to CLOS� add�method does not remove a method
with the same domain as the method being added� Instead�
a noncontinuable error is signalled�

B	��	� add�method method

B	��	�	� Specialized Arguments

�gf �generic�function��
 A generic function�

�method �method��
 A method to be attached�

B	��	�	� Result

The generic function�

B	��	�	� Remarks

This method checks that the domain classes of the
method are subclasses of those of the generic function�
and that the method is an instance of the generic func�
tion�s method class� If not� signals an error �condition

incompatible�method�and�gf �� It also checks if there
is a method with the same domain already attached to
the generic function� If so� a noncontinuable error is sig�
naled �condition
 methods�exists�� If no error occurs�
the method is added to the generic function� Depending
on particular optimizations of the generic dispatch� adding
a method may cause some updating computations� e�g��
by calling compute�method�lookup�function and compute�
discriminating�function�

B��� Low Level Allocation Primitives

This module provides primitives which are necessary to im�
plement new allocation methods portably� However� they
should be de	ned in such a way that objects cannot be de�
stroyed unintentionally� In consequence it is an error to use
primitive�class�of� primitive�ref and their setters on
objects not created by primitive�allocate�

B	��	� primitive�allocate function

B	��	�	� Arguments

class
 A class�

size
 An integer�

B	��	�	� Result

An instance of the 	rst argument�

B	��	�	� Remarks

This function returns a new instance of the 	rst ar�
gument which has a vector�like structure of length
size� The components of the new instance can be ac�
cessed using primitive�ref and updated using �setter
primitive�ref�� It is intended to be used in new allocate
methods de	ned for new metaclasses�

B	��	� primitive�class�of function

B	��	�	� Arguments

object
 An object created by primitive�allocate�

B	��	�	� Result

A class�

B	��	�	� Remarks

This function returns the class of an object� It is similar to
class�of� which has a de	ned behaviour on any object� It is
an error to use primitive�class�of on objects which were
not created by primitive�allocate�

B	��	� �setter primitive�class�of� setter

B	��	�	� Arguments

object
 An object created by primitive�allocate�

class
 A class�

B	��	�	� Result

The class�

��

Programming Language EuLisp� version ����

B	��	�	� Remarks

This function supports portable implementations of

a� dynamic classi	cation like change�class in CLOS�

b� automatic instance updating of rede	ned classes�

B	��	� primitive�ref function

B	��	�	� Arguments

object
 An object created by primitive�allocate�

index
 The index of a component�

B	��	�	� Result

An object�

B	��	�	� Remarks

Returns the value of the objects component corresponding
to the supplied index� It is an error if index is outside the
index range of object� This function is intended to be used
when de	ning new kinds of accessors for new metaclasses�

B	��	� �setter primitive�ref� function

B	��	�	� Arguments

object
 An object created by primitive�allocate�

index
 The index of a component�

value
 The new value� which can be any object�

B	��	�	� Result

The new value�

B	��	�	� Remarks

Stores and returns the new value as the objects component
corresponding to the supplied index� It is an error if index is
outside the index range of object� This function is intended
to be used when de	ning new kinds of accessors for new
metaclasses�

B��� Dynamic Binding

B	�
	� dynamic special form

B	�
	�	� Syntax

dynamic form
� ���� �dynamic�� identifier� ����

B	�
	�	� Arguments

identi�er
 A symbol naming a dynamic binding�

B	�
	�	� Result

The value of closest dynamic binding of identi�er is returned�
If no visible binding exists� an error is signaled �condition

unbound�dynamic�variable��

B	�
	� dynamic�setq special form

B	�
	�	� Syntax

dynamic setq form
� ���� �dynamic�setq�� identifier� form� ����

B	�
	�	� Arguments

identi�er
 A symbol naming a dynamic binding to be
updated�

form
 An expression whose value will be stored in the
dynamic binding of identi�er�

B	�
	�	� Result

The value of form�

B	�
	�	� Remarks

The form is evaluated and the result is stored in the closest
dynamic binding of identi�er� If no visible binding exists� an
error is signaled �condition
 unbound�dynamic�variable��

B	�
	� unbound�dynamic�variable execution�condition

B	�
	�	� Initialization Options

symbol symbol
 A symbol naming the �unbound� dy�
namic variable�

B	�
	�	� Remarks

Signalled by dynamic or dynamic�setq if the given dynamic
variable has no visible dynamic binding�

��

Programming Language EuLisp� version ����

B	�
	� dynamic�let special form

B	�
	�	� Syntax

dynamic let form
� ���� �dynamic�let��
�binding�� �� �� ��
�form�� ����

B	�
	�	� Arguments

binding�
 A list of binding speci	ers�

body
 A sequence of forms�

B	�
	�	� Result

The sequence of forms is evaluated in order� returning the
value of the last one as the result of the dynamic�let form�

B	�
	�	� Remarks

A binding speci	er is either an identi	er or a two element
list of an identi	er and an initializing form� All the initial�
izing forms are evaluated from left to right in the current
environment and the new bindings for the symbols named
by the identi	ers are created in the dynamic environment to
hold the results� These bindings have dynamic scope and
dynamic extent� Each form in body is evaluated in order in
the environment extended by the above bindings� The result
of evaluating the last form in body is returned as the result
of dynamic�let�

B	�
	� defvar de�ning form

B	�
	�	� Syntax

defvar form
� ���� �defvar�� identifier� expression� ����

B	�
	�	� Arguments

identi�er
 A symbol naming a top dynamic binding con�
taining the value of form�

form
 The form whose value will be stored in the top
dynamic binding of identi�er�

B	�
	�	� Remarks

The value of form is stored as the top dynamic value
of the symbol named by identi�er� The binding created
by defvar is mutable� An error is signaled �condition

dynamic�multiply�defined�� on processing this form more
than once for the same identi�er�

NOTE � The problems engendered by cross�module reference
necessitated by a single top�dynamic environment are leading to

a reconsideration of the de
ned model� Another unpleasant as�
pect of the current model is that it is not clear how to address
the issue of importing �or hiding� dynamic variables�they are in
every sense global� which con�icts with the principle of module
abstraction� A model� in which a separate top�dynamic environ�
ment is associated with each module is under consideration for a
later version of the de
nition�

B	�
	� dynamic�multiply�defined execution�condition

B	�
	�	� Initialization Options

symbol symbol
 A symbol naming the dynamic variable
which has already been de	ned�

B	�
	�	� Remarks

Signalled by defvar if the named dynamic variable already
exists�

B��	 Exit Extensions

B	��	� catch macro

B	��	�	� Syntax

catch macro
� ���� �catch�� tag� �form�� ����

tag
� symbol� �� A��� ��

B	��	�	� Remarks

The catch operator is similar to block� except that the scope
of the name �tag� of the exit function is dynamic� The catch
tagmust be a symbol because it is used as a dynamic variable
to create a dynamically scoped binding of tag to the contin�
uation of the catch form� The continuation can be invoked
anywhere within the dynamic extent of the catch form by
using throw� The forms are evaluated in sequence and the
value of the last one is returned as the value of the catch
form� The rewrite rules for catch are

�catch� � Is an error
�catch tag� � �progn tag ���
�catch tag form�� � �let�cc tmp

�dynamic�let ��tag tmp��
form���

Exiting from a catch� by whatever means� causes the restora�
tion of the lexical environment and dynamic environment
that existed before the catchwas entered� The above rewrite
for catch� causes the variable tmp to be shadowed� This is
an artifact of the above presentation only and a conforming
processor must not shadow any variables that could occur in
the body of catch in this way�

B	��	�	� See also
 throw�

�

Programming Language EuLisp� version ����

B	��	� throw macro

B	��	�	� Syntax

throw macro
� ���� �throw�� tag� �form�� ����

B	��	�	� Remarks

In throw� the tag names the continuation of the catch from
which to return� throw is the invocation of the continuation
of the catch named tag� The form is evaluated and the value
are returned as the value of the catch named by variable� The
tag ia a symbol because it used to access the current dynamic
binding of the symbol� which is where the continuation is
bound� The rewrite rules for throw are

�throw� � Is an error
�throw tag� � ��dynamic tag� ���
�throw tag form� � ��dynamic tag� form�

B	��	�	� See also
 catch�

B��� Summary of Level
� Expressions and Def

initions

This section gives the syntax of all level�� expressions and
de	nitions together� Any productions unde	ned here appear
elsewhere in the de	nition� speci	cally
 the syntax of most
expressions and de	nitions is given in the section de	ning
level���

B	��	� Syntax of Level�� de�ning forms

level � module form
� level � expression �� �� ��
� level � module form�

defclass form
� ���� �defclass��
class name� �� ������ ��
superclass list�
defclass slot description list�
�defclass class option�� ����

superclass list
� ���� �superclass name�� ���� �� ������ ��

defclass slot description list
� ���� �defclass slot description�� ����

defclass slot option
� �initform�� level � expression
� identifier� level � expression
� defstruct slot option� �� ������ ��

defclass class option
� �class�� class name
� identifier� level � expression
� defstruct class option� �� ������ ��

defgeneric form
� ���� �defgeneric��
gf name� �� ������ ��
gf lambda list� �� ������ ��
�level � init option�� ����

defmethod form
� ���� �defmethod�� gf name�
�method init option�� �� B�
�� ��
specialized lambda list�
�form�� ����

defvar form
� ���� �defvar�� identifier� expression� ����

B	��	� Syntax of Level�� expressions

dynamic form
� ���� �dynamic�� identifier� ����

dynamic setq form
� ���� �dynamic�setq�� identifier� form� ����

dynamic let form
� ���� �dynamic�let��
�binding�� �� �� ��
�form�� ����

generic lambda form
� ���� �generic�lambda�� gf lambda list�
�level � init option�� ����

level � init option
� �class�� class name
� �method�class�� class name
� �method� level � method description
� identifier� level � expression�
� level � init option�

level � method description
� ���� �method init option��
specialized lambda list� �� ������ ��
�form�� ����

method init option
� �class�� class name
� identifier level � expression

method lambda form
� ���� �method�lambda��
�method init option�� �� B�
�� ��
specialized lambda list�
�form�� ����

catch macro
� ���� �catch�� tag� �form�� ����

tag
� symbol� �� A��� ��

throw macro
� ���� �throw�� tag� �form�� ����

��

Programming Language EuLisp� version ����

References

"�# Alberga� C�N�� Bosman�Clark� C�� Mikelsons� M��
Van Deusen� M�� and Padget� J�A� Experience with an
Uncommon Lisp� In Proceedings of ���� ACM Sym�
posium on Lisp and Functional Programming� ACM
Press� New York ������ ���
�� Also available as IBM
Research Report RC�������

"�# Bobrow� D�G�� DeMichiel� L�G�� Gabriel� R�P��
Keene� S�E� Kiczales� G�� and Moon� D�A� Common
Lisp Object System Speci	cation� SIGPLAN Notices�
��� � �September ������

"�# Bretthauer� H� and Kopp� J� The Meta�Class�
System MCS� A Portable Object System for Common
Lisp� �Documentation�� Arbeitspapiere der GMD

��
Gesellschaft f�ur Mathematik und Datenverarbeitung
�GMD�� Sankt Augustin �July ������

"�# Chailloux� J�� Devin� M�� and Hullot� J�M� LELISP

A Portable and E�cient Lisp System� In Proceedings
of ���	 ACM Symposium on Lisp and Functional Pro�
gramming� ACM Press� New York ������ ��������

"
Chailloux� J�� Devin� M�� Dupont� F�� Hullot� J�M��
Serpette� B�� and Vuillemin� J� Le�Lisp de l
INRIA�
Version ���
� Manuel de r�ef�erence� INRIA� Rocquen�
court �������

"�# Clinger� W� and Rees� J�A� �editors�� The Revised�

Report on Scheme� SIGPLAN Notices� ��� �� �Decem�
ber ������

"�# Cointe� P� Metaclasses are First Class
 the ObjVlisp
model� In Proceedings of OOPSLA
��� ACM Press
�December ����� �
������ published as SIGPLAN No�
tices� Vol ��� No ���

"�# Hudak� P� and Wadler� P� �editors�� Report on
the Functional Programming Language Haskell� SIG�
PLAN Notices� ��� � �May ������

"�# Lang� K�J� and Pearlmutter� B�A� Oaklisp
 An
Object�Oriented Dialect of Scheme� Lisp and Symbolic
Computation� �� � �June ����� ���
��

"��# MacQueen� D� Modules for Standard ML� In Pro�
ceedings of ���	 ACM Symposium on Lisp and Func�
tional Programming� ACM Press� New York ������
��������

"��# Milner� R� et al� Standard ML� Technical Report�
Laboratory for the Foundations of Computer Science�
University of Edinburgh �������

"��# Padget� J�A� et al� Desiderata for the Standard�
isation of Lisp� In Proceedings of ���� ACM Sym�
posium on Lisp and Functional Programming� ACM
Press� New York ������
�����

"��# Pitman� K�M� An Error System for Common Lisp�
������� ISO���WG�� document N���

"��# Rees� J�A� The T Manual� Technical Report� Yale
University �������

"�
Shalit� A� Dylan� an object�oriented dynamic lan�
guage� Apple Computer Inc� �������

"��# Slade� S� The T Programming Language� a Dialect
of Lisp� Prentice�Hall �������

"��# Steele Jr� G�L� Common Lisp the Language� Digital
Press ������� Second edition� Digital Press� �����

"��# Stoyan� H� et al� Towards a Lisp Standard� In Pro�
ceedings of ���� European Conference on Arti�cial In�
telligence ������ ���
��

"��# Teitelman� W� The Interlisp Reference Manual� Xe�
rox Palo Alto Research Center �������

��

Programming Language EuLisp� version ����

Class Index
�character� �character�� ��
�char�file�stream� �stream�� ��
�class�name� ���

�condition� �condition�� ��
�cons� �list��
�
�double�float� �double�� ��
�fixed�precision�integer� �fpint��
�
�float� ��oat��
�
�integer� �integer��

�local�slot�description� �level���� ��
�lock� �lock�� ��
�null� �list��
�
�number� �number��
�
�object� �level���� ��
�slot�description� �level���� ��
�stream� �stream�� ��
�string� �string�� ��
�string�stream� �stream�� ��
�structure� �level���� ��
�symbol� �symbol�� ��
�table� �table�� ��
�thread� �thread�� ��
�vector� �vector�� ��

�

Programming Language EuLisp� version ����

Condition Index
a�condition ���

arithmetic�condition �number��
�
�cannot�update�setter� �level���� ��
cannot�update�setter �level���� ��
collection�condition �collection�� ��� ��
conversion�condition �collection�� ��� �

division�by�zero �number�� ��� ��� ���
�
domain�condition �elementary�functions�� ��� ��� ���
��

��
��
�� ��
dynamic�multiply�defined �level���� ��� ��
end�of�stream �stream�� ��� ��� ��� ��� ��
environment�condition �condition�� ��
execution�condition �condition�� ��
inappropriate�stream�position �stream�� ��
incompatible�method�and�gf �level���� ��
incompatible�method�domain �level���� �
� ��� ��
invalid�operator �level���� ��� ��� ��
method�domain�clash �level���� �
� ��� ��
method�exists �level���� ��
no�applicable�method �convert�� �
� ��� ��
no�converter �convert�� �

non�congruent�lambda�lists �level���� �
� ��� ��� ��
no�next�method �level���� ��� ��
no�setter �level���� ��� ��
range�condition �elementary�functions�� ���
��
��
��

�� ��
scan�mismatch �formatted�io��
��
�
telos�condition �level���� ��
thread�already�started �thread�� ��� ��
thread�condition �thread�� ��
unbound�dynamic�variable �level���� ��� ��� ��
wrong�condition�class �condition�� ��� ��
wrong�thread�continuation �threads�� ��� ��

��

Programming Language EuLisp� version ����

Constant Index
�fpi� �fpint��
�
least�negative�double�float �double�� ��
least�positive�double�float �double�� ��
maximum�vector�index �vector�� ��
most�negative�double�float �double�� ��
most�negative�fixed�precision�integer �fpint��
�
most�positive�double�float �double�� ��
most�positive�fixed�precision�integer �fpint��
�
nil �level���� ��
pi �elementary�functions�� ��
t �level���� ��
ticks�per�second �event�� ��

��

Programming Language EuLisp� version ����

Function Index
� �number��
�

 �number��
�
� �number��
�
� �number��
�
� �compare�� ��
� �compare�� ��
� �number�� ��
abs �number�� ��
a�function ��� �
allocate �level���� ��
apply �level���� ��
apply�method �level���� ��
apply�method�function �level���� ��
atom �list��
�
call�method �level���� ��
call�method�function �level���� ��
car �list��
�
cdr �list��
�
cerror �condition�� �

characterp �character�� ��
class�initargs �level���� ��
class�of �level���� ��
class�precedence�list �level���� ��
class�slot�descriptions �level���� ��
clear�table �table�� ��
conditionp �condition�� ��
cons �list��
�
consp �list��
�
convert �convert�� �

converter �convert�� ��
current�thread �thread�� ��
double�float�p �double�� ��
end�of�stream�p �stream�� ��
eq �compare�� ��
eql �compare�� ��
error �condition�� �

fixed�precision�integer�p �fpint��
�
floatp ��oat��
�
format �formatted�io��
�
gcd �number�� ��
generic�function�discriminating�function �level����

��
generic�function�domain �level���� ��
generic�function�method�class �level���� ��
generic�function�method�lookup�function �level���� ��
generic�function�methods �level���� ��
gensym �symbol�� ��
integerp �integer��

lcm �number�� ��
list �list��
�
lock �lock�� ��
lockp �lock�� ��
make �level���� ��
max �compare�� ��
method�domain �level���� ��
method�function �level���� ��
method�generic�function �level���� ��
min �compare�� ��
negativep �number�� ��
newline �stream�� �

null �list��
�
numberp �number��
�
oddp �integer��

open �stream�� ��
positivep �number�� ��
primitive�allocate �level���� ��
primitive�class�of �level���� ��

primitive�ref �level���� ��
prin �stream�� ��
print �stream�� ��
scan �formatted�io��
�
setter �level���� ��
�setter car� �list��
�
�setter cdr� �list��
�
�setter converter� �convert�� ��
�setter element� �collection�� ��
�setter primitive�class�of� �level���� ��
�setter primitive�ref� �level���� ��
signal �condition�� ��
signum �number�� ��
slot�description�initfunction �level���� ��
slot�description�name �level���� ��
slot�description�slot�reader �level���� ��
slot�description�slot�writer �level���� ��
standard�error�stream �stream�� ��
standard�input�stream �stream�� ��
standard�output�stream �stream�� ��
stringp �string�� ��
symbol�exists�p �symbol�� ��
symbol�name �symbol�� ��
symbolp �symbol�� ��
tablep �table�� ��
threadp �thread�� ��
thread�reschedule �thread�� ��
thread�start �thread�� ��
thread�value �thread�� ��
unlock �lock�� ��
vectorp �vector�� ��
write �stream�� �

���

Programming Language EuLisp� version ����

Macro Index
and �level���� ��
block �level���� ��
catch �level���� ��
cond �level���� ��
defmethod �level���� ��
defmethod �level���� ��
generic�lambda �level���� ��
generic�lambda �level���� �

let� �level���� ��
let �level���� ��
method�function�lambda �level���� ��
method�lambda �level���� ��
or �level���� ��
quasiquote �syntax���� ��
return�from �level���� ��
throw �level���� ��

���

Programming Language EuLisp� version ����

Generic Function Index
accumulate �collection�� ��
accumulate� �collection�� ��
acos �elementary�functions�� ��
add�method �level���� ��
a�generic ���

allocate �level���� ��
anyp �collection�� ��
asin �elementary�functions�� ��
as�lowercase �character�� ��
as�uppercase �character�� ��
atan �elementary�functions�� ��
atan� �elementary�functions�� ��
binary� �number�� ��
binary
 �number�� ��
binary� �number�� ��
binary� �number�� ��
binary� �compare�� ��
binary� �compare�� ��
binary� �number�� ��
binary�gcd �number�� ��
binary�lcm �number�� ��
binary�mod �number�� ��
ceiling ��oat��
�
character�stream�p �stream�� ��
close �stream�� ��
collectionp �collection�� ��
compatible�superclasses�p �level���� ��
compatible�superclass�p �level���� ��
compute�and�ensure�slot�accessors �level���� ��
compute�class�precedence�list �level���� ��
compute�constructor �level���� ��
compute�defined�slot�description �level���� �

compute�defined�slot�description�class �level���� ��
compute�discriminating�function �level���� ��
compute�inherited�initargs �level���� �

compute�inherited�slot�descriptions �level���� �

compute�initargs �level���� ��
compute�method�lookup�function �level���� ��
compute�predicate �level���� ��
compute�primitive�reader�using�class �level���� ��
compute�primitive�reader�using�slot�description

�level���� ��
compute�primitive�writer�using�class �level���� ��
compute�primitive�writer�using�slot�description

�level���� ��
compute�slot�descriptions �level���� ��
compute�slot�reader �level���� ��
compute�slot�writer �level���� ��
compute�specialized�slot�description �level���� ��
compute�specialized�slot�description�class �level����

��
concatenate �collection�� ��
cos �elementary�functions�� ��
cosh �elementary�functions�� ��
deep�copy �copy�� ��
do �collection�� ��
element �collection�� ��
emptyp �collection�� ��
ensure�slot�reader �level���� ��
ensure�slot�writer �level���� ��
equal �compare�� ��
evenp �integer��

exp �elementary�functions��
�
file�stream�p �stream�� ��
fill �collection�� ��
floor ��oat��
�
flush �stream�� ��

generic�prin �stream�� �

generic�write �stream�� �

initialize �level���� ��
input �stream�� ��
log �elementary�functions��
�
log�� �elementary�functions��
�
map �collection�� ��
member �collection�� ��
negate �number�� ��
output �stream�� ��
pow �elementary�functions��
�
read�line �stream�� ��
reverse �collection�� ��
round ��oat��
�
sequencep �collection�� ��
�setter stream�position� �stream�� ��
shallow�copy �copy�� ��
sin �elementary�functions�� ��
sinh �elementary�functions�� ��
size �collection�� ��
sqrt �elementary�functions��
�
streamp �stream�� ��
stream�position �stream�� ��
tan �elementary�functions�� ��
tanh �elementary�functions��
�
truncate ��oat��
�
uninput �stream�� ��
wait �event�� ��
zerop �number�� ��

���

Programming Language EuLisp� version ����

Method Index
acos �double�� ��
add�method �level���� ��
a�generic ���

allocate �level���� ��
asin �double�� ��
as�lowercase �character�� ��
as�lowercase �string�� ��
as�uppercase �character�� ��
as�uppercase �string�� ��
atan �double�� ��
atan� �double�� ��
binary� �double�� ��
binary� �fpint��
�
binary
 �double�� ��
binary
 �fpint��
�
binary� �double�� ��
binary� �fpint��
�
binary� �double�� ��
binary� �fpint��
�
binary� �character�� ��
binary� �double�� ��
binary� �fpint��
�
binary� �string�� ��
binary� �double�� ��
binary� �fpint��
�
binary� �fpint��
�
binary�gcd �fpint��
�
binary�lcm �fpint��
�
ceiling �double�� ��
compatible�superclasses�p �level���� ��
compatible�superclass�p �level���� ��
compatible�superclass�p �level���� ��
compatible�superclass�p �level���� ��
compatible�superclass�p �level���� ��
compute�and�ensure�slot�accessors �level���� ��
compute�class�precedence�list �level���� ��
compute�constructor �level���� ��
compute�defined�slot�description �level���� ��
compute�defined�slot�description�class �level���� ��
compute�discriminating�function �level���� ��
compute�inherited�initargs �level���� �

compute�inherited�slot�descriptions �level���� �

compute�initargs �level���� �

compute�method�lookup�function �level���� ��
compute�predicate �level���� ��
compute�primitive�reader�using�class �level���� ��
compute�primitive�reader�using�class �level���� ��
compute�primitive�reader�using�slot�description

�level���� ��
compute�primitive�writer�using�slot�description

�level���� ��
compute�slot�descriptions �level���� ��
compute�slot�reader �level���� ��
compute�slot�writer �level���� ��
compute�specialized�slot�description �level���� ��
compute�specialized�slot�description�class �level����

��
�converter �double�float�� �fpint��
�
�converter �fixed�precision�integer�� �double�� ��
�converter �list�� �collection�� ��
�converter �string�� �collection�� ��
�converter �string�� �double�� ��
�converter �string�� �fpint��
�
�converter �string�� �stream�� �

�converter �string�� �symbol�� ��
�converter �symbol�� �string�� ��
�converter �table�� �collection�� ��

�converter �vector�� �collection�� ��
cos �double�� ��
cosh �double�� ��
deep�copy �copy�� ��
deep�copy �copy�� ��
deep�copy �list��
�
deep�copy �string�� ��
deep�copy �vector�� ��
ensure�slot�reader �level���� ��
ensure�slot�writer �level���� ��
equal �character�� ��
equal �compare�� ��
equal �double�� ��
equal �fpint��
�
equal �list��
�
equal �string�� ��
equal �vector�� ��
evenp �fpint��
�
exp �double�� ��
floor �double�� ��
generic�prin �character�� ��
generic�prin �double�� ��
generic�prin �fpint��
�
generic�prin �list��
�
generic�prin �list��
�
generic�prin �string�� ��
generic�prin �symbol�� ��
generic�prin �vector�� ��
generic�write �character�� ��
generic�write �double�� ��
generic�write �fpint��
�
generic�write �list��
�
generic�write �list��
�
generic�write �string�� ��
generic�write �symbol�� ��
generic�write �vector�� ��
initialize �condition�� ��
initialize �level���� ��
initialize �level���� ��
initialize �level���� ��
initialize �level���� ��
initialize �level���� ��
input �stream�� ��
log �double�� ��
log�� �double�� ��
mod �double�� ��
mod �fpint��
�
negate �double�� ��
negate �fpint��
�
output �stream�� ��
pow �double�� ��
round �double�� ��
shallow�copy �copy�� ��
shallow�copy �copy�� ��
shallow�copy �list��
�
shallow�copy �string�� ��
shallow�copy �vector�� ��
sin �double�� ��
sinh �double�� ��
sqrt �double�� ��
tan �double�� ��
tanh �double�� ��
truncate �double�� ��
uninput �stream�� ��
wait �thread�� ��
zerop �double�� ��
zerop �fpint��
�

���

Programming Language EuLisp� version ����

General Index
��
���
�
�converter �double�float���
�
�converter �fixed�precision�integer��� ��
�converter �list��� ��
�converter �string��� ��� ���
�� �
� ��
�converter �symbol��� ��
�converter �table��� ��
�converter �vector��� ��
�setter car��
�
�setter cdr��
�
�setter converter�� ��
�setter element�� ��
�setter primitive�class�of�� ��
�setter primitive�ref�� ��
�setter stream�position�� ��
��
�

�
�
��
�
��
�
�� ��
�char�file�stream�� ��
�character�� ��
�class�name��

�condition�� ��
�cons��
�
�double�float�� ��
�fixed�precision�integer��
�
�float��
�
�integer��

�local�slot�description�� ��
�lock�� ��
�null��
�
�number��
�
�object�� ��
�slot�description�� ��
�stream�� ��
�string�stream�� ��
�string�� ��
�structure�� ��
�symbol�� ��
�table�� ��
�thread�� ��
�vector�� ��
�� ��
a�function� �
a�generic�

a�special�form� �
abs� ��
accumulate� ��
accumulate�� ��
acos� ��� ��
add�method� ��� ��
allocate� ��� ��
and� ��
anyp� ��
apply� ��
apply�method� ��
apply�method�function� ��
as�lowercase� ��� ��
as�uppercase� ��� ��
asin� ��� ��
assignment� ��
atan� ��� ��
atan�� ��� ��
atom�
�
backquoting� ��

base�

arbitrary base literals�

limitation on input�

binary literals�

binary�� ���
�� ��
binary
� ���
�� ��
binary�� ���
�� ��
binary�gcd�
�� ��
binary�lcm�
�� ��
binary�mod� ��
binary�� ���
�� ��
binary�� ��� ��� ���
�� ��
binary�� ��� ���
�
binary��
�� ��

dynamically scoped� �
module� ��
of module names� ��� ��
top dynamic� ��

block� ��
see also let�cc� ��

boolean� �
call�method� ��
call�method�function� ��
call�next�method� ��
car�
�
case sensitivity� �
catch� ��
cdr�
�
ceiling� ���
�
cerror� �

character� ��
character� ��

character�extension glyph� ��
module� ��

character�stream�p� ��
characterp� ��
class� �� �

primitive� �
self�instantiated� �

class�initargs� ��
class�of� ��
class�precedence�list� ��
class�slot�descriptions� ��
clear�table� ��
CLOS� �
close� ��
coercion�
�
collection� ��

alignment� ��
module� ��

collection�condition� ��
collectionp� ��
comment� �

comment�begin glyph� �
Common Lisp Error System� ��

module� ��
compatible�superclass�p� ��
compatible�superclasses�p� ��
compliance� �
compute�and�ensure�slot�accessors� ��
compute�class�precedence�list� ��
compute�constructor� ��
compute�defined�slot�description� �
� ��
compute�defined�slot�description�class� ��
compute�discriminating�function� ��
compute�inherited�initargs� �

compute�inherited�slot�descriptions� �

��

Programming Language EuLisp� version ����

compute�initargs� ��� �

compute�method�lookup�function� ��
compute�predicate� ��
compute�primitive�reader�using�class� ��
compute�primitive�reader�using�slot�description� ��
compute�primitive�writer�using�class� ��
compute�primitive�writer�using�slot�description� ��
compute�slot�descriptions� ��
compute�slot�reader� ��
compute�slot�writer� ��
compute�specialized�slot�description� ��
compute�specialized�slot�description�class� ��� ��
concatenate� ��
cond� ��
condition� ��

continuable� ��
non�continuable� ��

conditionp� ��
con	guration� �
conformance� �

level��� �
level��� �

conforming processor� �
conforming program� �
conformity clause� �

least negative double precision �oat� ��
least positive double precision �oat� ��
maximum vector index� ��
most negative double precision �oat� ��
most negative 	xed precision integer�
�
most positive double precision �oat� ��
most positive 	xed precision integer�
�

cons�
�
consp�
�
constant� ��

de	ned� ��
literal� ��

continuation� ��� �

conventions� �
convert� �

module� �

converter� ��� ��
cos� ��� ��
cosh� ��� ��
current�thread� ��
deep�copy� ���
�� ��� ��
defclass� ��
defcondition� ��
defconstant� ��
defgeneric� ��� �
� �

de	ning form� �

defclass� ��
defcondition� ��
defconstant� ��
defgeneric� �
� �

de�ocal� ��
defstruct� ��
defvar� ��

deflocal� ��
defmacro� ��
defmethod� ��� ��
defmodule� ��
defstruct� ��
defun� ��
defvar� ��
direct instance� �
direct subclass� �
direct superclass� �

do� ��
double �oat� ��

module� ��
double�float�p� ��
dynamic� ��
dynamic environment� �
dynamic error� �
dynamic�let� ��
dynamic�setq� ��
element� ��
elementary functions� ��� ��
emptyp� ��
end�of�stream�p� ��
ensure�slot�reader� ��
ensure�slot�writer� ��
environmental error� �
eq� ��

implementation�de	ned behaviour� ��
eql� ��
equal� ��� ��� ���
��
�� ��� ��
error� �� �
error� �

can be signalled� �
dynamic� �
environmental� �
handler� ��
signalled� �
static� �

evenp�
��

exp� ���
�
extension� �

�oating point�
�
integer�

list�
�
null �empty list��
�
pair�
�
string� ��
vector� ��

external representation �see also prin and write�� ��
false� �
file�stream�p� ��
fill� ��
	xed precision integer�
�

module�
�
fixed�precision�integer�p�
�
�oat�
�
float�
��
�
floatp�
�
floor� ���
�
flush� ��
format�
�
formatted�io�
��
�
function� �

calling� ��
reader� ��
standard function� �
writer� ��

function call� ��
gcd� ��
generic arithmetic�
�
generic function� �

lambda�list� �

generic�function�discriminating�function� ��
generic�function�domain� ��
generic�function�method�class� ��
generic�function�method�lookup�function� ��
generic�function�methods� ��
generic�lambda� ��� ��� �

���

Programming Language EuLisp� version ����

generic�prin� ��� ���
��
��
�� �
� ��� ��� ��
generic�write� ��� ���
��
��
�� �
� ��� ��� ��
gensym� ��
Haskell� �� ��
hexadecimal literals�

identi	er� ��

de	nition of� ��
peculiar identi	ers� ��
syntax� �

if� ��
implementation�de	ned� �

behaviour of eq� ��
least negative double precision �oat� ��
least positive double precision �oat� ��
maximum vector index� ��
module directives� ��
most negative double precision �oat� ��
most negative 	xed precision integer�
�
most positive double precision �oat� ��
most positive 	xed precision integer�
�
time units per second� ��
unhandled conditions� �

indirect instance� �
indirect subclass� �

single� ��
inheritance graph� �
inherited slot description� �
init�list� �
initarg� �
initform� �
initfunction� �
initialization� ��
initialize� ��� ��� ��� ��� ��� ��
inner dynamic� �
inner lexical� �
input� ��
instance� �

direct� �
indirect� �

instantiation graph� �
integer�

integer�

integerp�

labels� ��
lambda� ��
lcm� ��
LeLisp� ��
let� ��
let�� ��
let�cc� ��

see also block and return�from� ��
level��� ��

�character�� ��
�char�file�stream�� ��
�double�float�� ��
�float��
�
�fixed�precision�integer��
�
�integer��

�lock�� ��
�null��
�
�object�� ��
�cons��
�
�stream�� ��
�string�� ��
�string�stream�� ��
�structure�� ��
�symbol�� ��
�table�� ��

�thread�� ��
�vector�� ��
character� ��
collection� ��
compare� ��
condition� ��
convert� �

copy� ��
double��oat� ��
elementary�functions� ��
eulisp�level��� �
�oat�
�
formatted�io�
�
fpi�
�
integer�

lock� ��
number�
�
stream� ��
string� ��
symbol� ��
table� ��
thread� ��
vector� ��

lexical environment� �
list�
�
list�
�

module�
�
literal� ��

arbitrary base�

binary�

character� ��
hexadecimal�

modi	cation of� ��
octal�

quotation� ��

lock� ��� ��
lock� ��
lockp� ��
log� ���
�
log��� ���
�
macro� ��

de	nition by defmacro� ��
macro expansion�see also syntax� ��
macros�see also syntax� ��
make� ��
map� ��
max� ��
MCS� �
member� ��
metaclass� �
method� �

bindings� ��
speci	city� �

method speci	city� �
method�domain� ��
method�function� ��
method�function�lambda� ��
method�generic�function� ��
method�lambda� ��
MicroCeyx� �
min� ��
mod� ���
�
module� �� ��

directives� ��
environments� �
export� ��
expose� ��
import� ��

���

Programming Language EuLisp� version ����

name bindings� ��� ��
syntax� ��

multi�method� �
negate� ���
�� ��
negativep� ��
new instance� �
newline� �

next�method�p� ��
null�
�
null�
�
number�
�

coercion�
�
module�
�

numberp�
�
Oaklisp� �
object� ��

syntax� ��
ObjVLisp� �
octal literals�

oddp�

open� ��
or� ��
output� ��
pair�
�
pair�
�
positivep� ��
pow� ���
�
primitive�allocate� ��
primitive�class�of� ��
primitive�ref� ��
prin� ��
print� ��

constants� ��
symbols� ��

processor� �
gensym names� ��

progn� ��
quasiquotation� ��
quasiquote� ��

abbreviation with �� ��
quote� ��

abbreviation with �� ��
range�condition�
�
read�line� ��
re�ective� �
return�from� ��

see also let�cc� ��
reverse� ��
round� ���
�
scan�
�

in labels expressions� ��
of dynamic�let bindings� ��
of lambda bindings� ��
of let�cc binding� ��

self�instantiated class� �
sequencep� ��
setq� ��
setter� ��
setter function� �
shallow�copy� ��� ���
�� ��� ��
signal� ��
signum� ��
simple function� �
sin� ��� ��
single inheritance� ��
sinh� ��� ��
size� ��
slot� �

slot description� �
slot option� �
slot speci	cation� �
slot�description�initfunction� ��
slot�description�name� ��
slot�description�slot�reader� ��
slot�description�slot�writer� ��
special form� �� �

a�special�form� �
call�next�method� ��
dynamic� ��
dynamic�let� ��
dynamic�setq� ��
if� ��
labels� ��
lambda� ��
let�cc� ��
next�method�p� ��
progn� ��
quote� ��
setq� ��
unwind�protect� ��
with�handler� ��

specialize� �
specialize on� �
sqrt� ���
�
Standard ML� �� ��� ��
standard module� �
standard�error�stream� ��
standard�input�stream� ��
standard�output�stream� ��
static error� �
stream� ��

module� ��
stream�position� ��
streamp� ��
string� ��
string� ��

escaping in� ��
module� ��
string�escape glyph� ��

stringp� ��
subclass� �

direct� �
indirect� �

superclass� �
direct� �

symbol� ��
symbol� ��� ��

module� ��
symbol�exists�p� ��
symbol�name� ��
symbolp� ��
syntax� �

���
�� ��� ��
character� ��
constant� ��
defmacro� ��
defmodule� ��
defun� ��
�oat�
�
function call� ��
generic function lambda�list� �

identi	er� �
integer�

pair�
�
string� ��
symbol� ��� ��

��

Programming Language EuLisp� version ����

unquote� ��
unquote�splicing� ��
vector� ��

syntax expansion� ��
T� �� �
table� ��

module� ��
tablep� ��
tan� ��� ��
tanh� ���
�
thread� ��� ��
thread�reschedule� ��
thread�start� ��
thread�value� ��
threadp� ��
throw� ��
top dynamic� �
top lexical� �
true� �
truncate� ���
�
uninput� ��
unlock� ��
unquote� ��

abbreviation with �� ��
unquote�splicing� ��

abbreviation to ��� ��
unwind�protect� ��
vector� ��
vector� ��� ��
vectorp� ��
wait� ��� ��

de	nition of� �
with�handler� ��
write� �

zerop� ���
�� ��
�� ��
Common Lisp� �� �

level��� �
level��� �
libraries� �

InterLISP� �� �
LE�LISP� �� �
LISP�VM� �� �

���

