
r 

46 

TOWARDS A LI SP STAtf>ARD 
======================= 

Herbert Stoyan%, Jerome Chai I loux•, john Fitch¢, Tim Krumnack#, Eugen Neidl?, 
Julian Padget¢, 

Guiseppe Attardi•, Thomas Christal ler$, Jeff Dalton=, Mathieu Devin*, Bernard 
Lang•, Ramon Lopez de Mantaras:, Eric Papon7, Stephen Pope@, Christian Quiennec[, 

Luc Steels+ 

Abstract 

This paper reports work in progress within the European LISP conrnunlty on ef­
forts to bring the LISP language to national and international standardization. 
The paper discusses the situation as seen by the authors and some of the conclu­
sions that have been drawn. 

1. lntroduct ion 

The main impetus for the work reported here presently comes from Europe. So far, 
most activities have also take11 place In Europe. It was the Idea of j.Challloux, 
T.Christal ler and S.Pope to form a group of European LISP Implementers or LISP 
experts for starting to prepare for a LISP-standardization. 

It is not our Intention that this effort should continue to be a local European 
activity. It Is yet relatively early in the standardization process and at the 
time of writing it has only been in progress for a few months. Already, howe­
ver, a significant part of the US LISP research and implementatlon conmunlty has 
become Interested, as wel I as several individuals working for conmercial organi­
sations. 

Standardization is an active process and so, necessarily, the target wl II become 
clearer In the future time. This may also entail a revision of some of the mate• 
rial presented below. The product of standardization shouldn't be a new dialect 
nor a faml ly of dialects but a criterion for dialect classification. The stan­
dard should contain the minimal requirements for a LISP implementation for cal­
ling it •fol lowing the standard•. 

% IM'il)6, University of Erlangen, °'"852 Erlangen, Germany 
• INRIA, Domaine de Voluceau, Rocquencourt, BP 105, F-78153 Le Chesnay, France 
¢ School of Mathemati'5, University of Bath, Bath Avon, BA2 7AY, United Kingdom 
1 Lab de Marcoussls, CRCXiE, Route de Nozay, F-91460 Marcoussls, France 
H Krupp-Atlas Elektronlk, PSF 448545, D-28 Bremen, Germany 

DELPHI SPA, vi a de 11 e Vetra I a 11, 1-55049 VI are gal o, I ta Ii a 
$ GlD Birl inghoven, PSF 1240, D-5205 St.Augustin, Germany 

AIAI, University of Edinburgh, 80 South Bridge, Edinburgh, EH8 9NW, 
United Kingdom 
Centre d'Estudls Avancats, CSIS, Cami de Snta Barbara, Blanes, Girona, Espana 

@PCS QnbH, Pfaelzer Wald Str. 36, 0--8 Munich 90, Germany 
[ STEI, Fort d'lssy, F-92131 lssy-Les-Moullneaux, France 
+Al Lab., Vrye Universltelt, Pleinlaan 2, B-1050 Brussels, Belgium 



2. The development of LISP (or: Wi I I a standard get accepted ?) 

The LISPl and LISPl .5 systems were implemented at one site. McCarthy's design of 
the LISP-description in LISP helped to maintain a de-facto LISP standard unti I 
1965. LISPl.5 was still an important dialect at least until 1969. Afterwards re­
ally incompatible implementations were created - to mention only BBN:LISP (later: 
JnterLISP [Te)) and LISPl.6 (later MacLISP). They were mere local dialects ha­
ving at most 50 users each. The users were fond of their local implementation 
wizards and used a kind of sectarian pride. 

There is some reason that McCarthy did not care much about the deficiencies 
of LISPl.5 (1962 he argued against the divergence between "normal" value and 
"functional" value [Mc]) and the spreading dialects because he hoped in LISP2. 
The dialect problem became pressing when this project failed. 

Most of the existing dialects contained a second problem: They were in fact two 
dialects in one - an interpreter dialect and a compiler dialect. With the second 
LISP compiler a static binding scheme was used as semantics for compi Jed pro­
grams. It was a great achievement when the BBN-LISP-Compiler produced code which 
was semantically constistent with the interpreted program. This was done by u­
sing the dynamic binding scheme. 

The first who became confronted with the situation was A.C.Hearn who had a evol­
ving computer algebra system and hundreds of users all over the world using dif­
ferent machines running different LISP dialects. In consequence he proposed a 
"StandardLISP" already in 1969 [He). But the problem of porting big application 
was not yet recognized. It would have been easy to standardize LISP in 1969. 

Jn the seventies the scene changed. The dialects had to be ported. Only XEROX 
started a new approach by designing a "Virtual Machine" [Mo). This was intended 
to be usable as basis for a new JnterLISP-Standard and could have been used as 
model for a common LISP standardization. But it proved to be of restricted value 
because it was not usable as basis for a re-implementation of JnterLISP. This 
dialect turned out to be nearly not transportable [BO). The standardization pro­
blem was recognized now locally. 

1978 Hearn and his col loborators in Salt Lake City made another step [Mea] in 
order to overcome the pressing dialect problem by defining a small basis as 
StandardLISP and by developing an implementati~n technique for it. The 2nd Stan­
dardLISP was ignored by the Al-connected LISP community again. 

Al I the various dialects brought in new features whose pros and cons could be 
studied by using the dialects. A dialect which went In the direction of concep­
tual consolidation was SCHEME [Su) by taking a clear decision for static scoping 
and - in the spirit of McCarthy's ideas - by dropping the separation between a 
normal and a functional value of symbols. [Fr) and [Cea) represent the current 
state of development of that dialect. Another approach towards a complete revi­
sion and refinement of LISP was B.Smith's 3-LJSP [Sm]. Smith argued not only for 
static scoping a.' cleaner evaluation (to be understood as normalization) but 
offered a way to understand F~XPR 1 s. 

The definition of CommonLJSP [Sea] was done for overcomin( the diversification 
In MacLISP. It was based on the LISP culture of the MIT '.1early exclusively. 

47 



48 

3. Implementation techniques 

Concurrently, there has been a lot of progress on implementation methods for 
LISP. The definition of virtual machines (progranming environment and interface 
to host operating system), abstract machines (target code for compilers, so that 
only an assembly phase is needed to complete the process) and machine descripti­
ons (aids automation of the generation of an assembler) have been instrumental 
in this process. Practical evidence of this is the PSL dialect [Gr] for which a 
very sophisticated new compiler has been developed [KE] and from which the Por­
table Conmon LISP Subset (PCLS) [KU] is being built, and LeLISP [Ch] with its 
combined virtual and abstract machine LLM3 [IN]. 

A LISP standard should be easily transportable by using such methods. 

4. The question of semantical description 

LISPl .5 was described by McCarthy's famous APPLY-EVAL-functions as a kind of 
meta-linguistic interpreter. A description of the growing LISP dialects with 
their large sets of special functions has become increasingly difficult. Obvi­
ously, SOiEME is easier in this respect [Mu], [Cea], and subsequently a compiler 
based on a denotational semantic description of SCHEME was written [Cl]. If we 
use as basis of the LISP standard a similar language, then the formal descripti­
on should be possible. That would be a safe basis. 

5. The question of different power 

LISP systems and their environments vary from very large (lnterLISP [Te], 
ZetaLISP [\\M]) to very small (UOLISP [Marti, 198?]). The former require speci­
alized hardware or at least dedicated hardware of about a VAX power, whi 1st the 
latter exist on Z-80s (or comparable machines). Such a linear spectrum, how­
ever, fai Is to capture the essence of the differences in power between these 
systems which I ive on such widely differing scales. 

This problem suggests that the 'measurement' or classification ordering should 
be done using at least two comparisons: one compares the set of features of the 
language implementation and the other the features of the support environment. 
It seems that the different LISP-systems form a lattice. The bottom of the lat­
tice corresponds to a LISP system with a minimal set of functions, simple para­
meter passing conventions and only file/teletype input/output. 

The main reason for es tab I ishing a consistent relationship between adjacent 
nodes of this lattice Is, of course, portabi I ity and coml)atlbi I ity. 

It is interesting to move up In the lattice because different people have diffe­
rent facilities and the transition from one system to another ought to be as 
painless as possible. Given that an important part of research and development 
is collaboration and teamwork an homogeneous software environment is considerably 
important. 



Moving down might be important in the future as more comnercial applications of 
LISP become apparent because there wi I I be a need for 'delivery systems' which 
are I imited capabi I ity environments containing a just sufficient subset of the 
faci I ities of the development environment. 

6. Our Conclusions 

(i) It is possible to describe LISP in a clean formal way and the standardizati­
on of the language should take advantage of that. This could be done by en­
suring that the lowest level of standardisation has a formal definition and 
is therefore self-consistent. Then this property wi I I be inherited by later 
levels of the standard if they are properly related. 

(ii) LISP is needed to run on a variety of machines with widely differing requi­
rements for the degree of support environment that standardization on a 
sing.le level is unreasonable. The standardization of LISP should encompass 
several levels of complexity in both the language and the environment. 
The highest level of conformance with the standard, at least along the 
language axis, could correspond closely to CommonLISP. 

(iii) The sophistication of the run-tinIB support environment is so intimately 
bound to the language that it is just as much a matter for the application 
of standards as the langauge itself. 

Such a programme wi 11 not necessarily be easy; for example there may be ope rat i­
ons which cannot be accepted as defined in the CommonLISP reference, because the 
specified behaviour contravenes the formal specification of the language. In 
some ca s es th i s may mean that the f o rma I de f i n i t i on i s too I i mi t e d , i n o the r 
cases it may mean that something is inconsistent in CommonLISP, thus the revisi­
on wi I I be a two way process. It has already been observed that parts of the 
Common LISP reference are unsatisfactory [Se] as experience with implementation 
increases, and so it is being revised. 

Each level of the standard should be viewed as the implementation language for 
the next and so any program which works at level n wi 11 also work at level n+i, 
but not necessarily at level n-i (i=l..). 

7. The situation of the standardization effort 

Programming language standardization is an international matter. The ISO creates 
working groups which design a language description and this is proposed as a 
standard to the national standardization organisations. If they agree, a vote is 
made and the standard wi I I formally accepted. 

At present, the ISO has agreed with the existence of an "ad-hoc working comnit­
tee11 headed by R.F.Mathis. He planned to submit a "New Work Item Proposal" in 
March. For forr.dng an regular Working Group two ballots had to be made. At pre­
sent, the plan seems not to be fol lowed. Instead, an ANSI working group has been 
founded in March (1986) for proposing a CommonLISP standard. The members are: 
A.Bawden, O.G.Bobrow, S.Fahlman, R.P.Gabriel, M.Griss, O.Moon, ].A.Rees, 
G.L.Steele, and D.Weinreb. 

49 



r 

50 

In Apri I, ~NOR (the French standardizations organization) has proposed to orga­
nize a new work item for LISP in ISO and take the technical secretariat. 

As it stands, there are two I ines of work: The ANSI group intends to standardize 
ConmonLISP on the basis of the "aluminium book" [Sea). The European group propo­
ses a general revision of LISP resulting in a standardization of sound and clean 
concepts. The result can be ConmonLISP but has not to be. 

It is clear that the standardization of LISP - which has to be done in coopera~ 
tion between LISP people in the USA and in other countries (including Europa) 
suffers from the bad experiences of past standardization efforts. The PEARL­
standardization was cancel led by means of bad tricks of the US ISO members. Af)A 
is anything but a success. The fight for a PASCAL standard is sti I I going on. 
The idea of making an 11 ConmonLISP standard" is a hint. We know that for a world­
wide LISP standard we need the support of our friends in the USA. We hope that 
our friends see the picture from a similar view. The question should not be how 
much money was invested but how reasonable the standard wi I I be! 

8. The European Proposal 

At present, the European group is developing a proposal [SCFKNP) for the discus~ 
sion with the ANSI group which is featuring a 3 levels standard. The basic level 
is a minimal LISP in the spirit of SCHEME; the first level is a medium sized 
LISP with a wel l~choosen set of basic functions and the second level is a "big" 
LISP in the spirit of Conmon,LISP. The language levels are intended to be comple­
ted by environment levels. 

The intention of this level approach is to enable the standardization of LISPs 
suitable for teaching, of LISPs implementable on minicomputers as wel I as large 
LISPs which are thought to be necessary for industrial applications. We believe 
that there are at least three different user groups which could be served this 
way. (One might have doubt that a very big language is the best for industrial 
application; there are negative examples (LISP2, PLl, Af)A). A smaller thing 
seems to be more handy and understandable.) It would be a good thing if the lan­
guage learned in LISP courses is a real part of the language used in big appl i­
cat ions. 

The relation between the levels is not only upwards compatibility. We hope to 
be able to describe in a level all features of the next higher level - somehow, 
not necessarily in an efficient way. This should help to have a clear level 2. 
If the level O is described in a formal manner - what we believe is important -
then level 1 and level 2 should be as clean as possible. There was the idea 
that the level O interpreter has already all of the important features. In this 
case the standardization effort for the higher levels would be smaller - they 
could be regarded to be extensions only. But we believe this approach would de­
stroy our hope in a clean minimal level O. 

We propose to standardize as level 0 a smal I minimal LISP. It contains only a 
few data types (numbers ~ integers and floats, characters, symbols, conses, vec­
tors and strings, functions, streams). For each of them only a minimum of func­
tions (classified into: type checking, construction, selection, modification, 
comparison, conversion) Is part of the standard. To make the level~O~language 



really useful a device for introducing new user data types Is proposed. This 
device enables not only the introduction of a new type (via a kind of QEFSTRUCT) 
but additionally a means to put the new types into the type system. 

The type system maintains a (circle free) graph of types. Types with subtypes 
are union-types. The type system does not provide inheritance of any kind. What 
is inherited is rather the set of functions which has to be implemented at some 
point than function definitions. One can introduce new union types, add new merr~ 
ber types to an union typ, delete a type, ask for inherited required functions, 
ask for implemented functions. 

The control part of the level-0-language is chara.cterized by the lexical scoping 
mecha i sm, thr usual "structured" control structures (IF or COND, ANr, OR, 
PRCXiN, LET, CATCH and THROW). The "cal 1-with-current-contionuation" would be an 
alternative for gloabl exits. 

The question has been asked, why SCME~lf itself was not taken for level o. We be-
1 ieve the Scheme of the RRRS [Cea] should not taken: 

1. because of its strange arithmetics (the exact-inexact dichotomy), 
2. because functions are not first-class-objects (a FUNCTIONP is missing and 

selector/modifiactor functions), 
3. because its strange access to the environment (only during function defini­

tion; there's no EVAL, variable names don't matter - which is a problem 
in LISP and therefor the name "lexical binding" seems to be a misnomer -
"static binding" that's what it is), 

4. because it is not minimal (a lot of functions is called "essential" which 
in fact might be defined), 

5. because you can't expand the type system, 
6. because there should be Macros. 

There are points were Scheme is cleaner than our level O proposal. \'le are still 
in discussion and hope for further discussion rounds. We didn't take: 

a. a Boolean data type, 
b. a· difference between the empty I ist and false, 
c. a difference between any data except false and true, 

Moreover, we thought about following B.Smith [Sm] in some way but didn't find a 
good compromise (the upward compatibi I ityl). 

Level 1 could be seen as a "kernel" of a modern LISP. It should have the size 
of LeLISP [Ch] or PSL [Gr]. The important things which are added to the level-0-
langage: More data structures, more basic functions (e.g. property I is ts for 
symbols), dynamic binding, multiple values etc. Adding dynamic binding with 
going up a level seems to achieve more cleaness. This topic was hardly discussed 
and sti I I some of us have the feeling that dynamic binding should discarded corT>­
pletely. At present, the introduction of dynamic binding is planned to be re­
stricted to a special form: DYNAMIC-LET. This enables a lexical detection of dy­
namic variables. 

At this point we want to make a short statement on name spaces. In ConmonLISP, 
symbols can be used for at least 15 different purposes and one con construct a 
program which culminates in an area where one and the same symbol carries at 
least 9 meanings: 2 functional (function/special form/macro), block name, tag, 
catcher, variable, data type, package name, pathname, datum, p-list name, 

51 



52 

We believe the language should not permit this: there should be always only one 
(static visible) meaning, 

Level 2 is a luxurious LISP of the size of CorrmonLISP. It could be a cleaned 
ConmonLISP - with the open questions answered, the incomplete descriptions made 
complete, the dark spots I I luminated, the unclear points made clear and the con­
tradict ions resolved, At present this level is thought to introduce packages, 
the complete lambda-keyword-list, and a voluminuous 1/0 subsystem (including 
formats, window basic functions etc.). 

There is a document describing our proposals which is still not complete. It 
contains at present a good overview on level 0, a short draft for level 1 and 
some hi n ts for I eve I 2, 

9. Li teratur. 

[BD] R.L.Bates, D.Dyer, , 
2nd ACM LISP Confer~ 

M.Koonen: Implementation of lnterLISP on the VAX 
1982 

[Ch] j.Chailloux et al.: le LISP, Portable and Efficient LISP System. 
INRIA Rocquencourt, Jui I. 1~84 

[Cea] W.CI Inger (Ed.): The Revised Revised Report on Scheme. MIT Al Memo 848, 
Cambridge, Aug. 1985 

[Cl] W.CI Inger: The Scheme 311 Compiler - An Exercise in Denotational Semantics. 
3rd ACM LISP Conference, 1984 

[Fr] D.Friedman et al.: Scheme84 Interim Reference Manual. Indiana University 
Computer Science Techn. Rep. 137, Feb. 1985 

[Gr] M.Griss et al.: PSL - a portable LISP system. 2nd ACM LISP conference, 1982 
[He] A.C.Hearn: StandardLISP. 1st LISP Bui let in, SIGPLAN Notices, 1969 
[IN] J .Chai 1 loux: la Machine LLM3. INRIA Rapport Technique No.55, juin 1985 
[KE] R.Kessler et al.: EPIC - a Retargetable Highly Cptimizing LISP-Compi !er. 

to app.: ACM SIGPLAN Conference on Compiler Construction, 1986 
[KU] R.Kessler et al.: A Portable CornnonLISP Subset with High Performance. 

to appear: 4.ACM LISP Conference, 1986 
[Ma] j.Marti: LO-LISP Reference Manual, Nordwest Computer Algorithms, 

Los Angeles, 1984 
[Mea] j.Marti et al.: Standard LISP Report. University of Utah, Salt Lake City, 1978 
[Mc] ].McCarthy: A New Eva! Function. MIT Al Memo 34, Cambridge, 19~2 

[Mo] J.S.Moore, The lnterLISP Virtual Machine Specification, XEROX Pare, CSL-76-~ 
Palo Alto, Mar. 1976 

[Mu] S.Muchnick, U.Pleban: A Semantic Comparison of LISP and Scheme. 
1st LISP Conference, 1980 

[Sm] B.Smith: Reflection and Semantics in a Procedural Language. MIT PhD Thesis, 
Dept. of EE and CS, LCS TR 272, Cambridge, 1983 

[Sea) G.L.Steele (Ed.): CQrrmonLISP - The Language. Burlington,, 1984 
[Se] G.L.Steele: Private COl1'fllunication with J.Padget on COl1'fllonLISP, 1986 
[St) H.Stoyan: Early LISP History. 3.ACM LISP Conference, 1984 
[SCFKNP) H.Stoyan, J.Chailloux, j.Fltch, T.Krumnack, E.Neidl, ].Padget: A Propo­

sal for an lsoLISP Standard. Draft. May 1986 
[Su] G.j.Sussman, G.L.Steele: Scheme, an Interpreter for Extended Lambda Calcu­

lus. MIT Al Memo 349, Cambrige, 1975 
[Te) W.Teitelman: lnterLISP Reference Manual. XEROX Part, 1978 
[\\M) D.Weinreb, D.Moon: LISP Machine Reference Manual. MIT, Cambridge, 1980 


	Stoyan_et_al-Towards-600dpi-001
	Stoyan_et_al-Towards-600dpi-002
	Stoyan_et_al-Towards-600dpi-003
	Stoyan_et_al-Towards-600dpi-004
	Stoyan_et_al-Towards-600dpi-005
	Stoyan_et_al-Towards-600dpi-006
	Stoyan_et_al-Towards-600dpi-007

