

()

(j

()

n

3100186

Interlisp Reference Manual

October, 1983

L

BACKGROUND AND ACKNOWLEDGEMENTS

1 " A BRIEF m5TORY OF INTERLISP

Interlisp began with an implementation of the Lisp programming language for the PDP-l at Bolt. Beranek
and Newman in 1966. It was followed in 1967 by 940 lisp. an upward compatible implementation for
the SDS-940 computer. 940 Lisp was the first Lisp system to demonstrate the feasibility of using software
paging techniques and a large vinual memory in conjunction with a list-processing system [Bobrow & (-----\

) Murphy. 1967]. 940 Lisp was patterned after the Lisp 1.5 ~plementation for crss at MIT. with several")
!lew facilities added to take advantage of its timeshared. on-line environment. DWIM. the Do-What-I
Mean error correction facility, was introduced into this system in 1968 by Warren Teitelman rreitelman.
1969].

The SDS-940 computer was soon outgro~ and in 1970 BBN-Lisp. an upward compatible Lisp system
for the PDP-10, was implemented under the Tenex operating system. With the hardware paging and
256K of virtual memory provided by Tenex. it was practical to provide more extensive and sophisticated
user support facilities, and a library of such facilities began to evolve. In 1972. the name of the system was
changed to Interlisp. and its development became a joint effon of the Xerox Palo Alto Research Center
and Bolt. Beranek and Newman. The next few years saw a period of rapid growth and development of
the language, the system and the user support facilities. including the record package, the file package.
and Masterscope. TIlls growth was paralleled by a corresponding increase in the size and diversity of the
Interlisp user community.

In 1974. an implementation of Interlisp was begun for the X~rox Alto. an experimental microprogrammed
personal computer [Thacker et al.. 1979]. AltoLisp [Deutsch, 1973] introduced the idea of providing a
specialized.. microcoded instruction set that modelled the basic operations of Lisp more closely than a
general-purpose instruction set could - and as" such was the first true "Lisp machine". AltoLisp also r'-,
served as a deparrure point for Interlisp-D. the implementation of Interlisp for the Xerox 1100 Series of \. .~
single-user computers, which was begun in 1979 [Sheil & Masinter. 1983].

In 1976, partially as a result of the AltoLisp effort. a specification for the Interlisp ·'virtual machine"
was published (1vloore. 1976J. This attempted to specify a small set of "primitive" operations which
would suppon all of the higher level user facilities. which were nearly all written in Lisp. Although
incomplete and written at a level which preserved too many of the details of the Tenex operating systen
this document proved to be a watershed in the development of Interlisp. since it gave a clear definition
of a (relatively) small kernel whose implementation would suffice to pon Interlisp to a new environment.
This was decisive in enabling the subsequent implementations and preserving the considerable investment
that had been made in developing Interlisp's sophisticated user programming tools.

Most recently. the implementation of Interlisp on personal workstations (such as Interiisp-D) has extended
. Interlisp in major ways. Most striking has been the incorporation of interactive graphics and local area
network faciiities. Not only have these extensions expanded the range of applications for which Interlisp is
being used (to include interactive interface design. network protocol experimentation and the development
of specialized workstations. among others) but the personal machine capabilities have had a major impact
on the Interlisp programmin"g system itself. Whereas the original Interlisp user interface assumed a very
limited (teletype) channel to the user. the use of interactive graphics and the "mouse" pointing device has n

iii

~, u
Interlisp Implementations

radically expanded the bandwidth of communication between the user and the machine. This has enabled
completely new styles of interaction with the user (e.g .• the use of multiple windows to provide several
different interaction channels with the user) and these have provided both new programming tools and
new ways of viewing and using the existing ones. In addition. the increased use of local area networks
(such as the Ethernet) has expanded the horizon of the Interlisp user beyond the local machine to a
whole community of machines. processes and services. Large portions of this manual are devoted to
documenting the enhanced environment that has resulted from these developments.

2 INTERLISP Il\tIPLEJ.\1ENT A TIONS

\Development of Interlisp-10 was. until approximately 1978, funded by the Advanced Research Projects
~ _dministration of the Department of Defence (DARP A). Subsequent developmen~ which have

-- emphasized the personal workstation facilities. have been sponsored by the Xerox Corporation, with
some contributions from members of tLi.e Interlisp user community.

Interlisp is currently implemented on a number of different machines. Each distinct Interlisp
implementation is denoted by a suffix: Interlisp-10 is the implementation for the DEC PDP-10 family of
machines running either the TENEX or TOPS-20 operating systems. Interlisp-D is the implementation
~for the Xerox 1100 series of machines (1100. 1108, 1132). Interlisp-V AX is the implementation for
the DEC V AX family, under either the VMS or UNIX operating systems. Interlisp-Jericho is the
implementation for the BBN Jericho, a internal research computer built by Bolt. Beranek and Newman.
Other implementations of Interlisp have been reported (e.g. Interlisp-370. Interlisp-B5700). but are not
widely used or actively maintained.

This manual is a reference manual for all Interlisp implementations. Where necessary. notes indicate
when fearures are only available in certai.n implementations. For some'implementations, there is also a
companion "Users Guide" which documents features which are completely unique to that machine; for
example. how to turn on the system. logging on. and unique facilities which link Interlisp to the host
environment or operating system.

3 ACKNOWLEDGEMENTS

The Interlisp system is the work of many people - after nearly twenty years. too many even to lis~ much
less detail their contributions. Nevenheless. some individuals cannot go unacknowledged;

o

Warren Teitelman. more than anyone else. made Interlisp "happen", Warren designed and
implemented large pans of several generations of Interlisp. including the initial versions of most
of the user facilities. coordinated the system development and assembled and edited the first
four editions of the Interlisp reference manual.

Dan Bobrow was a principal designer of Interlisp's predecessors. has contributed to the
implementation of several generations of Interlisp, and (in collaboration with others) made
major advances in the underlying architecrure. including the spaghetti stack. the transaction
garbage collector. and the block compiler.

iv

BACKGROUND AND ACKNOWLEDGEMENTS

Larry Masinter is the principal architect of the current Interlisp syst~ has contributed
extensively to several implementations, and has designed and developed major extensions to
both the Interlisp language and the programming environment. .

Ron Kaplan has decisively shaped many of the programming language extensions and user
facilities of Interlisp, has played a key role in two implementations and has contributed
extensively to the design and content of the Interlisp reference manual..

Peter Deutsch designed the AltoLisp implementation of Interlisp which developed several key
design insights on which the current generation of personal machine implementations depend.

Alice Hanley and Daryle Lewis were key contributors to implementations of Interlisp at Bolt,
Beranek and Newmann.

-, No matter where one ends this list. one is tempted to continue. Many others who contributed to panicular
mplementations or revisions are acknowledged in the documentation for those systems. Following that
tradition. this manual which was prepared primarily to document" the extensions implemented by the
lnterlisp-D group at Xerox. Palo Alto, acknowledge~ in addition to those listed above, the work of

Dick Burton who designed and implemented most of the interactive display facilities

Bill van Melle who designed and implemented the local area network facilities and multiple
process extensions

and the contributions of Beau Sheil Alan Bell Steve Purcell. Steve Gadol. Jon! White. Don Charnley,
Willie Sue Haugeland and the many others who have helped and contributed to the development of
Interlisp-D.

Like Interlisp itself, the Interlisp Reference Manual is the work of many people, some of whom are
acknowledged above. This edition was designe~ edited and produced by Michael Sannella . of the
Interlisp-D group at Xerox, Palo Alto. It is a substantial revision of the previous edition [Teitelman et
al.. 1978] - it has been completely reorganize~ updated in most sections, and extended with a large
amount of new material. In addition to material taken from the previous edition. this edition contains
-najor extensions contributed by members of the Interlisp-D group and contributions from other Interlisp
developers at the Information Sciences Institute of the University of Southern California and Bolt Beranek
and Newman.

Interlisp is not designed by a formal committee. It grows and changes in response to the needs of those
who use it. Contributions and discussion from the user community remain. as they have always been.
wannly welcome.

v

(j

()

o

o
References

4 REFER.E.1\lCES

[Bobrow & Murphy, 1967] ~ .
Bobrow, D.G .. and Murphy, D.L. ''The Structure of a LISP System Using Two
Level Storage" - Communications of the AClvl, Vol. 10, 3. (March, 1967).

[Bobrow & Wegbreit. 1973]

[Deutsch. 1973]

01oore, 1976]

Bobrow, D.G .• and Wegbreit. B .• uA Model and Stack Implementation for Multiple
Environments" - Communications of the AC}d, VoL 16, 10. (October 1973).

Deutsch. L.P .• i&A Lisp machine with very compact programs" - Proceedings of
the Third I ntemational Joint Conference on Artificial I ntel1igenc~ Stanford. (l973).

Moore. J.S .• 'The Interlisp Virtual Machine Specification" - Xerox PARC, CSL-
76-5. (1976). .

[Sheil & Masinter, 1983]

rr eite~ 1969]

Sheil B .• and Masinter. L.M. (eds.), "Papers on Interlisp-D" - Xerox PARC,
CIS-5 (Revised), (1983).

Teite~ W .• "Toward a Programming Laboratory" - Proceedings of the
International Joint Conference on Artificial Intelligence. Wash.ingto~ (1969).

rr eitelm~ et al., 1972]
Teitelman.. W., Bobrow, D.G., Hanley. A.K. Murphy. D.L., BEN-LISP TE1VEX
Reference l\1anual- Bolt Beranek and Newm~ (July 1971, first revision February
197~ second revision August 1972).

[Teitelm~ et al .• 1978]
_ Teitel.m~ W .. et al., The Interlisp Reference Manual - Xerox PARCo (October

1978).

c.

c···· . 4~i·· .'

_ lThacker, et aL 1979] o Thacker. C., Lampso~ B .• and Sproull R .• "Alto: A personal computer" - Xerox ~ ..
PARC,CSL-79-11. (August. 1979). . '(.--.

o
vi

· (
(j

TABLE OF CONTENTS

Chapter 1 INTRODUCTION
1.1 Interlisp as a Programming Language 1.1
1.2 Interlisp as an Interactive Environment 1.2
1.3 Interlisp Philosophy 1.4
1.4 How to Use this Manual 1.6
1.5 References 1.7

-- Chapter 2 DATA TYPES I~
"

")
(2.1 Data Type Predicates 2.1

2.2 Data Type Equality 2.2
2.3 "Fast" and "Destructive" Functions 2.3
2.4 Litatoms 2.4

2.4.1 Using Litatoms as Variables 2.4
2.4.2 Function Definition Cells 2.6
2.4.3 Property Lists 2.6
2.4.4 Print Names 2.8-
2.4.5 Character Code Functions 2.12

2.5 Lists 2.14
2.5.1 Creating Lists 2.16
2.5.2 Building Lists From Left to Right 2.17
2.5.3 Copying Lists 2.19
2.5.4 Extracting Tails of Lists 2.19
2.5.5 Counting List Cells 2.21
2.5.6 Logical Operations 2.22
2.5.7 Searching Lists 2.23
2.5.8 Substirution Functions 2.23 () 2.5.9 Association Lists and Propeny Lists 2.25
2.5.10 Other List Functions 2.27

2.6 Strings 2.27
2.7 Arrays 2.32

2.7.1 Interlisp-lO Arrays 2.33
2.8 Hash Arrays . 2.35

2.8.1 Hash Overflow. 2.36
2.9 Numbers and Arithmetic Functions 2.36

2.9.1 Integer Arithmetic 2..38
2.9.2 Logical Arithmetic Functions 2.40
2.9.3 Floating Point Arithmetic 2.42
2.9.4 Mixed Arithmetic 2.44
2.9.5 Special Functions 2.45

Chapter 3 THE RECORD PACK.\GE
3.1 FETCH and REPLACE 3.1
3.2 CREATE 3.3

I () \:.---
vii

o

Chapter 4

Chapter 5

Chapter 6

o

3.3 TYPE? 3.4
3.4 WITH 3.4
3.5 Record Declarations 3.5
3.6 Defining New Record Types 3.10
3.7 Record Manipulation Functions 3.11
3.8 Changetran 3.11
3.9 User Defined Data Types 3.14

CONDmONALS AND ITERATIVE STATEl\1ENTS
4.1 The IF Statement 4.4
4.2 The Iterative Statement 4.5

4.2.1 I.s.types 4.6
4.2.2 Iteration Variable I.s.oprs 4.7
4.2.3 Condition I.s.oprs 4.10
4.2.4 Other I.s.oprs 4.10
4.2.5 Miscellaneous 4.11
4.2.6 Errors in Iterative Statements 4.13
4.2.7 Defining New Iterative Statement Operators 4.13

FUNCTION DEFINITION, MANIPULATION .. AND EVALUATION
5.1 Function Types 5.2

5.2
'5.3
5.4
5.5

5.1.1 Lambda-Spread Functions
5.1.2 Nlambda-Spread Functions
5.1.3 Lambda·Nospread Functions
5.1.4 Nlambda-Nospread Functions
5.1.5 Compiled Functions 5.5
5.1.6 SUBRs 5.5

5.2
5.3

5.4

5.1.7 Function Type Functions 5.6
Function Definition 5.8
Function Evaluation 5.10
Functional Arguments 5.15
Macros 5.17

5.5.1 MACROTRAN 5.19

INPUT IOUTPtJT
6.1 Files 6.1

6.1.1 File Naming and Recognition 6.3
6.1.2 Manipulating File Names 6.5
6.1.3 File Attributes 6.6
6.1.4 Randomly Accessible Files 6.8
6.1.5 Closing and Reopening Files 6.11
6.1.6 Dribble Files 6.12

6.2 Input Functions 6.12
6.3 Output Functions 6.16

6.3.1 Printlevel 6.18
6.3.:2. Printing numbers 6.19
6.3.3 User Defined Printing 6 . .23
6.3.4 Dumping Unusual Data 5rrucrures

6.4 READ FILE and WRITEFILE 6.2A

viii

6 • .23

(:

l;.

\..

6:5 PRINTOUT 6.25
6.5.1 Horizontal Spacing Commands 6.26
6.5.2 Venical SRacing Commands 6.27
6.5.3 Special Formatting Controls 6:1.7
6.5.4 Printing Specifications 6.28

6.5.4.1 Paragraph Format 6.28
6.5.4.2 Right-Flushing 6.29
6.5.4.3 Centering 6.29
6.5.4.4 Numbering 6.29

6.5.5 Escaping to LISP 6.30
6.5.6 User-Defined Commands 6.30
6.5.7 Special Printing Functions 6.31

6.6 Readtables 6.32
6.6.1 Readtable Functions 6.32
6.6.2 Syntax Classes 6.33
6.6.3 Read-Macros 6.36

6.7 Terminal Tables 6.40
6.7.1 Terminal Table Functions 6.41
6.7.2 Terminal Syntax Oasses 6.41
6.7.3 Terminal Control Functions 6.42
6.7.4 Line-Buffering 6.45

6.8 Prettyprint 6.47
6.8.1 Comment Feature 6.49
6.8.2 Comment Pointers 6.51
6.8.3 . Converting Comments to Lower Case 6.52
6.8.4 Special Prettyprint Controls 6.53
6.8.5 Font Package 6.55

6.9 ASKUSER 6.57
6.9.1 Stanup Protocol 6.57
6.9.2 Operation 6.59
6.9.3 Format of KEYLST 6.59
6.9.4 Completing a Key 6.61
6.9.5 Options 6.62
6.9.6 Special Keys 6.64

Chapter 7 VARlABLE BINDINGS AND THE [NTERLISP STACK
7.1 The Spaghetti Stack 7.2
7:2 Stack Functions 7.3
7.3 Releasing and Reusing Stack Pointers 7.10
7.4 The Push-Down List and the [nterpreter 7.10
7.5 Generators and Coroutines . 7.13

7.5.1 Generators 7.13
7.5.2 Coroutines 7.14
7.5.3 Possibilities Lists 7.16

Chapter 8 THE PROGRAlVUvIER'S ASSISTANT
8.1 Introduction 8.1

8.1.1 Input Fonnats 8.1
8.1.2 Examples 8.2

ix

f~
\)

(j

n

8.2 Programmer's Assistant Commands 8.5
8.2.1 Event Specification 8.S
8.2.2 Commands 8.7
8.2.3 P.A. Commands Applied to P.A. Commands 8.17

8.3 Changing Tne Programmer's Assistant 8.18
8.4 Statistics 8.21
8.5 Undoing 8.22

8.5.1 Undoing Out of Order 8.23
8.5.2 SA VESET 8.23
8.5.3 UNDONLSETQ and RESETUNDO 8.24

8.6 Format and Use of the History List 8.25
8.7 Programmer's Assistant Functions 8.28
8.8 The Editor and the Programmer's Assistant 8.35

ERRORS AND BREAK HANDLING
9.1 Breaks 9.1
9.2 When 10 Break 9.10
9.3 BREAKl 9.11
9.4 Error Functions 9.13
9.5 Error Handling by Error Type 9.16
9.6 Interrupt Characters 9.17
9.7 Changing and Restoring System State 9.18
9.8 Error List 9.21.

Chapter 10 BREAKING. TRACING .. AND ADVISING
10.1 Breaking Functions and Debugging 10.1
10.2 Advising 10.7

10.2.1 Implementation of Advising 10.8
10.2.2 Advise Functions 10.9

O
-'--'1laPter 11 FILE PACKAGE

11.1 Loading Files 11.4
11.2 Scoring Files' 11.6 .

11.2.1 Remaking a Symbolic File 11.10
11.3 Marking Changes 11.11
11.4 Noticing Files 11.12
11.5 Distributing Change Information 11.14
11.6 File Package Types 11.14

11.6.1 Functions for Manipulating Typed Definitions 11.16
11.6.2 Defining New File Package Types 11.19

11.7 File Package Commands 11.21
11.7.1 Exporting Definitions 11.28
11.7.2 File V ars 11.30
11.7.3 Defining New File Package Commands 11.30

11.8 Functions for Manipulating File Command Lists 11.32 .
11.9 Symbolic File Format 11.34

11.9.1 Copyright Notices 11.36
11.9.2 Functions Used Within Source Files 11.3i
11.9.3 File Maps 11.38

o x

(

,. "'~
~.

Chapter 12 THE COMPILER
12.1 Compiler Printout 12.2
12.2 Global Variables 12.3
12.3 LOCAL V ARS and SPECV ARS 12.4
12.4 Constants 12.5
12.5 Compiling Function Calls 12.6
12.6 FUNCI10N and Functional Arguments 12.8
12.7 Open Functions 12.8
12.8 COMPll..ETYPELST 12.8
12.9 Compiling CLISP 12.9
12.10 Compiler Functions 12.10
12.11 Block Compiling 12.13

12.11.1 RETFNS 12.13
U.1L2 BLKAPPL YFNS . 12.14
12.11.3 BLKLIBRAR Y 12.14
12.11.4 Block Declarations 12.14
12.11.5 Block Compiling Functions 12.16

12.12 Linked Function Calls 12.18
12.12.1 Relinking 12.19

12.13. .Compiler Error Messages 12.20

Chapter 13· MASTERSCOPE
13.1 Command Language 13.4

13.1.1 Commands 13.4'
13.1.2 Relations 13.7
13.1.3 Sets 13.10

13.1.3.1 Set Specifications 13.10
13.1.3.2 Set Determiners 13.12
13.1.3.3 Set Types 13.12

13.1.4 Conjunctions 13.13
13.2 Paths 13.13

13.2.1 Path Options 13.14
13.3 Error Messages 13.15
13.4 Macro Expansion 13.15
13.5 Affecting Masterscope Analysis 13.16
13.6 Data Base Updating 13.19
13.7 Masterscope Entries 13.19
13.8 Noticing Changes that Require Recompiling 13.21
13.9 Implementation N ores 13.22

Chapter 14
14.1
14.2
14.3

. 14.4
14.5
14.6
14.i
14.8

MISCELLANEOUS
Saving Interlisp State 14.2
Greeting and User Profiles 14.5
Manipulating File Directories 14.6
Soning Lists 14.8
Date/Time Functions 14.9
Timers and Duration Functions l4.10
GArNSPACE 14.13
Performance Measuring Functions 14.14

xi

o

o

(j

o

o
14.8.1 BREAKOOWN

14.9 Page Mapped Files
14.15

14.17

Chapter 15 DWIl\tI
15.1 Spelling Correction Protocol 15.3
15.2 Parentheses Errors Protocol 15.5
15.3 U.D.F. T Errors Protocol 15.5
15.4 DWIM Operation 15.6

15.4.1 DWIM Correction: Unbound Atoms 15.7
15.4.2 Undefined CAR of FOIlll 15.8
15.4.3 Undefined Function in APPLY 15.9

15.5 DWIMUSERFORMS 15.10
15.6 DWIM Functions and Variables 15.11

O IS.7 Spelling Correction 15.13
15.7.1 Synonyms 15.13
15.7.2 Spelling Lists 15.14
15.7.3 Generators for Spelling Correction 15.15
15.7.4 Speilmg Corrector Algorithm 15.16
15.7.5 Spelling Corrector Functions and Variables 15.17

Chapter 16 CLISP
16.1 CLISP Interaction with User 16.4
16.2 CLlS? Character Operators 16.5
16.3 Declarations 16.9

16.3.1 Local Declarations 16.10
16.4 CLlSP Operation 16.11
16.5 CLlSP Translations 16.13
16.6 DWlMIFY 16.14
16.7 CLISPIFY 16.17
16.8 Miscellaneous Functions and Variables 16.19
16.9 CLlSP internal Conventions 16.21

o
Chapter 17 THE TELETYPE EDITOR

17.1 Introduction 17.1
17.2 Commands for the New User 17.7
17.3 Local Attention-Changing Commands 17.9
17.4 Commands That Search 17.13

17.4.1 Search Algorithm 17.15
17.4.2 Search Commands 17.15
17.4.3 Location Specification 17.17

17.5 Commands That Save and Restore the Edit Chain 17.20
17.6 Commands That Modify Structure 17.22

17.6.1 Implementation of Structure tvlodification Commands
17.6.2 The A. B. and: Commands 17.24
17.6.3 Form Oriented Editing and the Role of CP 17.26
17.6.4 Extract and Embed 17.27
17.6.5 Tne :vfOVE Command 17.29

~ 17.6.6 Commands That YIove Parentheses 17.J1
17.6.7 TO and THRU 17.32

-0
xii

17.23

(

e-~ ..
,,- • o·

(J
(

17.6.8 The R Command 17.35
17.7 Commands That Print 17.37
17.8 Commands for Leaving the Editor 17.38
17.9 Nested Calls to Editor 17.40
17.10 Manipulating the Characters of an Atom or String 17.41
17.11 Manipulating Predicates and Conditional Expressions 17.42
17.12 History commands in the editor 17.42
17.13 Miscellaneous Commands 17.43
17.14 Commands That Evaluate 17.45
17.15 Commands That Test 17.46
17.16 Edit Macros 17.48
17.17 Undo 17.50

/

17.18 EDfIDEFAULT 17.51
17.19 Editor Functions 17.53
17.20 Time Stamps 17.60

n
Chapter 18 INTERLISP-n SPECIFICS

18.1 Interlisp-D Interrupt Characters 18.1
18.2 Garbage Collection 18.2
18.3 V mabIe Bindings 18.3
18.4 Stack Format lS.3
18.5 Saving Virtual Memory State IS.3
18.6 Error Types 18.4
18.7 Compiler 1~1.5
18.8 Linked Function Calls 18.5
18.9 HELPSYS lS.5
18.10 Operating System Dependent Functions 18.6
18.11 IDA TE Fonnat lS.6
18.12 Character Set 18.7
18.13 Read Tables 18.7
18.14 Keyboard Interpretation 18.8
18.15 Lispusers Packages 18.9
18.16 File System' 18.10

18.16.1 File Names lS.10
18.16.2 Renaming Files 18.10
18.16.3 End Of Line Convention 18.10
18.16.4 Using Files with Processes 18.11
18.16.5 Miscellaneous File Manipulation 18.11
18.16.6 Connecting to Directories 18.11
18.16.7 Binary I/O 18.12
18.16.8 Temporary Files and the CORE Device 18.12
18.16.9 Floppy Disks on the Xerox 1108 18.13
18.16.10 Page Mapping 18.13

18.17 File Servers 18.13
18.17.1 File Server File Names 18.14
18.17.2 Logging in 18.14
18.17.3 Abnormal Conditions 18.15
18.17.4 Caveats 18.15
18.17.5 New Functionality 18.16

18.18 HardCopy Facilities 18.16
(j

xiii

o
18.19 Performance Considerations 18.18

18.19.1 Variable Bindings 18.19
18.19.2 Garbage Collection 18.20
18.19.3 Datatypes 18.21
18.19.4 Incomplete Filenames 18.21
18.19.5 Turning Off the Display 18.22
18.19.6 Gathering Statistics 18.22

18.20 The Interlisp-D Process Mechanism . 18.25
18.20.1 Creating and Destroying Processes 18.26
18.20.2 Process Control Constructs 18.28
18.20.3 Events 18.29
18.20.4 Monitors 18.30
18.20.5 Global Resources 18.32

(J
18.20.6 Typein and the TrY Process 18.33

18.20.6.1 Switching the TIY Process 18.33
18.20.6.2 Handling of Interrupts 18.35

IS.20.7 Keeping the Mouse Alive 18.35
IS.20.8 Debugging Processes 18.36
18.20.9 Non-Process Compatibility 18.37

18.21 PROMPTFOR WORD 18.37

Chapter 19 INTERLISp·D DISPLAY FACILITIES
19.1 POSITION 19.2
19.2 REGION 19.2
19.3 BITIv1AP 19.3
19.4 BITBLT 19.4
19.5 TEXTURE 19.6
19.6 Saving BITMAPs 19.6
19.7 Screen Operation 19.6
19.8 Characters and FontS 19.7
19.9 Display Streams 19.10

19.9.1 Manipulating Display Streams 19.10
19.9.2 Drawing on Windows and Display Streams 19.12
19.9.3 Drawing Lines and Curves 19.13

19.10 Typescript Facilities: The "T' File 19.14
19.11 Cursor and Mouse 19.15

19.11.1 Mouse Bunon Testing 19.16
19.11.2 Low Level Access to Mouse 19.17

19.12 Windows 19.18
19.12.1 What are Windows? 19.19
19.12.2 Interactive Window Operations 19.20
19.12.3 Changing Entries on the Window Command Menus
19.12.4 Coordinate Systems 19.23
19.12.5 Scrolling 19.23
19.12.6 Programmatic Window Operations 19.25
19.12.7 Window Properties 19 . .28

19.12.7.1 y{ouse Function Window PropertleS 19.29
19.12.7.2 Event \Vindow Properties 19.30
19.12.7.3 y1iscellaneous Properties 19.32

19.12.8 Auxiliarv Functlons 1933 . .

o XIV

19.22

C·,

(~." ; - .

~ \. .'

c·

C)
c ..

19.U.9 Example: A Scrollable Window 19.34
19.13 Interactive Display Functions 19.36
19.14 Menus 19.38

19.14.1 Menu Fields 19.39
19.14.2 Miscellaneous Menu Functions 19.41
19.14.3 Examples of Menu Use 19.41

19.15 Grid Functions 19.42
19.16 Color Graphics 19.43

19.16.1 Color Bitmaps 19.43
19.16.2 Color Specifications 19.44
19.16.3 Color Maps 19.45
19.16.4 Turning the Color Display On and Off 19.47
19.16.5 Printing and Drawing in Color 19.48
19.16.6 Using the Cursor on the Color Screen 19.49
19.16.7 Miscellaneous Color Functions 19.49
19.16.8 Demonstration programs 19.49

Chapter 20 INTERLISP-n DISPLAY-ORIENTED TOOLS
20.1 DEdit 20.1

20.1.1 General Comments 20.1
20.1.2 Operation 20.1
20.1.3 Interactive Operation 20.2

20.1.3.1 Selection 20.2
20.1.3.2 Typein 20.3
20.1.3.3 Shift-Selection 20.3
20.1.3.4 Commands 20.3
20.1.3.5 Multiple Commands 20.6
20.1.3.6 Idioms 20.7

20.1.4 DEdit Parameters 20.8
20.2 Interactive Bitmap Editing 20.8
20.3 Display Break Package 20.10
20.4 The Inspector 20.12

\..., ,0- 20.4.1 Inspect Windows 20.12
(;

20.4.2 Calling the Inspector 20.13
20.4.3 Choices Before Inspection 20.14
20.4.4 Redisplaying an Inspect Window 20.14
20.4.5 Interaction With t.be Display Break Package 20.14
20.4.6 Controlling the Amount Displayed During Inspection 20.14
20.4.7 Inspect Macros 20.15
20.4.8 INSPECTWs 20.15

20.5 CHAT 20.17
20.6 The TEdit Text Editor 20.19

20.6.1 Selecting Text 20.21
20.6.2 Editing Operations 20.22
20.6.3 TEdit Functional Interface 20.23

20.6.3.1 TEdit Interface Functions 20.U
20.6.3.2 User-function "Hooks" in TEdit 20.27
20.6.3.3 ChangIng the TEdit Command Menu 20.28
20.6.3.4 Variables Which Control TEdh 20.28' r"

20.604 TEdit's Temllnal Table and Readtables 20.29 ()
xv

o
20.6.5 The TEdit Abbreviation Facility 20.31

20.7 The TIYIN Display Typein Editor 20.31
20.7.1 Entering Input With TIYIN 20.31
20.7.2 Mouse Commands [Interlisp-D Only] 20.33
20.7.3 Display Editing Commands 20.33
20.7.4 Using TTYIN for Lisp Input 20.37
20.7.5 Useful Macros 20.37
20.7.6 Programming With TIYIN 20.38
20.7.7 EE Interface 20.40
20.7.8 1= Handler 20.41
20.7.9 Read Macros 20.41
20.7.10 Assoned Flags 20.43
20.7.11 Special Responses 20.44

o 20.7.12 Display Types 20.45

Chapter 21 ETHERNET
21.1 Ethernet Protoco is 21.1

21.1.1 Protocol Layering 21.1
21.1.2 Level Zero Protocols 21.2
21.1.3 Level One Protocols 21.3
21.1.4 Higher Level Protocols 21.3
21.1.5 Connecting Networks: Routers and Gateways 21.3
21.1.6 Addressing Conflicts with Level Zero Mediums 21.4
21.1.7 References 21.4

21.2 Higher-level PUP Protocol Functions 21.4
21.3 Higher-level NS Protocol Functions 21.6

21.3.1 SPP Stream Interface 21.6
21.3.2 Courier Remote Procedure Call Protocol 21.i.

21.32.1 Courier Template Language 21.8
21.3.2.2 Manipulating Courier Representations 21.10
21.3.2.3 Using Bulk Data Transfer with Courier 21.10

21.3.3 NS Printing 21.10
21.3.4 Clearinghouse 21.12
21.3.5 NS Filing 21.13 o

21.3.5.1 Pathnames and NS Fileservers 21.13
21.4 Level One Ether Packet Format 21.14
21.5 PUP Level One Functions 21.15

21.5.1 Creating and Managing Pups 21.15
21.5.2 Sockets 21.15
21.5.3 Sending and Receiving Pups 21.16
21.5.4 Pup Routing Information 21.17
21.5.5 Miscellaneous PUP Utilities 21.17
21.5.6 PUP Debugging Aids 21.18

21.6 NS Level One Functions 21.21
21.6.1 Creating and ivlanaging XIPs 21.21
21.6.2 NS Sockets 21.12
21.6.3 Sending and Receiving XIPs 21.21
21.6.4 NS Debugging Aids 21.23

21. 7 Support for Other Level One Protocols 21.1.3
21.8 The SYSQl!ECE mechanism- 21.25

o XVI

~ , C
-~ -:

~
~6'"''

()

Chapter 22 INTERLISP-IO SPECIFICS
22.1 Interlisp-10 Intemlpt Characters 22.1
22.2 Type Number Functions 22.2
22.3 Validity of Definitions in Interlisp-lO 22.3
22.4 Reusing Boxed Numbers in Interlisp-10 - SETN 22.3

22.4.1 Caveats concerning use of SETN 22.4
22.5 Box and Unbox in Interlisp-lO 22.5
22.6 Miscellaneous Operating System Functions 22.5
22.7 Storage Allocation and Garbage Collection 22.7
22.8 The Assembler and LAP 22.11

22.8.1 Assemble n.12
22.8.1.1 Assemble Statements 22.12
22.8.1.2 CO REV ALs 22.14

22.8.2 LAP 22.15
22.8.2.1 LAP Statements 22.15

()
22.8.3 Using Assemble . 22.18

22.9 Interfork Communication in Interlisp-10 22.20
22.10 SUBSYS 22.21
22.11 JFN Functions in Interlisp-10 22.22
22.12 Display Tenninals 22.23

-22.13 The Interlisp-l0 Swapper 22.24
22.13.1 Overlays 22.24
22.13.2 Efficiency 22.25
22.13.3 Specifications 22.25

Chapter 23 LISPUSERS PACKAGES
23.1 Pattern Match Compiler 23.1

23.1.1 Pattern Elements 23.2
23.1.2 Element Patterns 23.2
23.1.3 Segment Patterns 23.3
23 .1.4 Assignments 23.5
23.1.5 Place-Markers 23.5
23.1.6 Replacements 23.6

(j
23.1.7 Reconstruction 23.6
23.1.8 Examples 23.7

23.2 Printing Reentrant and Circular List Structures 23.8
23.2.1 CIRCLPRI1';l 23.8
23.2.2 PR~1L 23.11

23.3 Indexing and Cross Referencing Files 23.12
23.3.1 SINGLEFlLEINDEX 23.12
23.3.2 MULTIFILEINDEX 23.13

23.4 Databasefns 23.15
23.5 Lambdatran 23.16
23.6 Permstatus 23.17
23.7 The Oed Package 23.18

23.7.1 Using Declarations in Programs 23.18
23.7.2 OLAMBOAs 23.20
23.7.3 DPROG 23.21
23.7.4 Declarauons in Iterative Statements 23.22
23.7.5 Declaring a Variable for a Restricted Lexical Scope 23.23

xvii

o
23.7.6 Declaring the Values of Expressions 23.23
23.7.7 Assertions 23.24
23.7.8 Using Type Expressions as Predicates 23.24
23.7.9 Enforcement 23.24
23.7.10 Decltypes 23.25
23.7.11 Predefined Types 23.25
23.7.12 Type Expressions 23.26
23.7.13 Named Types 23.28

23.7.13.1 Manipulating Named Types 23.29
23.7.14 Relations Between Types 23.29
23.7.15 The Declaration Database 23.30
23.7.16 Declarations and Masterscope 23.31

23.8 TRANSOR 23.31

o
23.8.1 Using TRANSOR 23.32
23.8.2 Translating 23.32
23.8.3 The Translation Notes 23.33
23.8.4 Errors and Messages 23.34
23.8.5 TRANSORSET 23.35
23.8.6 TRANSORSET Commands 23.36
23.8.i The RE.\AARK Feature 23.37
23.8.8 Controlling the Sweep 23.39

23.9 WHEREIS Package 23.40
23.10 Hash Files 23.41

23.10.1 Unstrucrured Pages and Symbol Tables 23.45
23.10.2 The Printing Region 23.46

23.11 EDIT A 23.46
23.11.1 Overview 23.47
23.11.2 Input Protocol 23.48
23.11.3 EDIT A Commands and Variables 23.49
23.11.4 Editing Arrays 23.52

23.12 Cjsys 23.53
23.13 Nobox 23.54

o 23.13.1 CONS Cells 23.54
23.13.2 Number Boxes 23.55
23.13.3 Cautions 23.56

23.14 Date fo rmat 23.57
23.15 Exec 23.59

23.15.1 Exec Commands 23.59
23.15.2 EXEC Functions 23.60

23.16 Passwords 23.62
23.17 Telnet 23.62
23.18 Ftp 23.62
23.19 Net 23.64

o xviii C-

(

...... 'r,'

;JHrHr~,j]~~rHTI;;,':;:; ~ ::fJr~iUEJIrH:l'
~:~.!~ {DKYL.UIII}<L: SPUSERS) GRAPHER . OCOIII: %9 .: iloSllstaf.
:.: .. ': COIIO' led on 1Z-::E:>-a:z e9' ~6: e6 :' 5ii1:Z8 oeo-s us." out. 0' seee In a"·.et.o,.,,
::,.,! FU.E ":REATED 12-SEP-e:z e9:34:!S : ell)
:.: :: GRAOK!:RCOII$:. 3857911 D.qas usea, 6161 lett In til. syst.e
.:;. " {P~"L.U.}<L.lSPUSE!'!S)&Itt'''SER. OCDIII;lS . floe lete (t, les) .,
:.:.:: 16- ~HO .. ALL. PATHS TO Ouolayet11 . I!!f " (' of ".,.s10ns)
:: NIL. .' ~II
:: 1l- ANAL. YIE FUNCTI ONS ON INTERCAL.C <OlllltunaI1>
{: ~~~~:~:~!!o ~ ~O(~~~~ ~,.~iS Yes.
:.; !'j e ~~. ~ 7. ~ ~~. ~:'~"~~~~ . ~~~~t .• ~ . ~ ~ ~~~ .? . yes (O::~;~~~~~ ~ ~;~:~~~snonf ,,.,.) yes.

.................. .. Clone ~:re"e'se2 tI", .. o!l [Cont1,.,.} yes.
(Ol!llltusseln

PRETTY:Z . PRESS! 1 [Conf ,,.,,) yes.
S%IIIPt..EG!lC (Con',,'., yes.

';;1

Interiisp·O ;!:I

:':": l&.RETRY
:~: .. :: ... !l ••

IJ/::j .1~ji:~:1;!il!I I': i:!i.ll!!i~!~!~~~:::::::::"
S % IfPL.£G! lS {Con'''''.) yes. :j;·Ji·· i~ :·:~~·:::;;:;:.i;·:::: 1~ .. ::i:i: ~<:~.:;:i: t i (:: ... ;.: ;; .. ';: :::. : ... ;. :'. :':. :': ~.::1

'" ·:::':::·.:~··'·:lJI!llil·:I;I!!:II!:~fIt~··~.·' :[' .[:'[,.!·11,

.. ' {CSKH2 PRE:SI NIL. \! 'j)

You Hoa_ ~ M&II - t

(QUOTE

: ,0. '0.:' ••••• : •••• '0 ',.. ::. '0 ... ~.: :. • •• 0' " ., "

n

()

(j

()

n

o

CHAPTER 1

INTRODUCTION

Interlisp is a programming system. A programming system consists of a programming language. a large
number of predefined programs (or fonclion~ to use the Lisp terminology) that can be used either
as direct user commands or as subroutines in user progr~ and an environment that suppons the
.programmer by providing a variety of specialized programming tools. The language and predefined
functions of Interlisp are rich. but similar to those of other modem programming languages. The Incerlisp

/'~T"ogramming environmen~ on the other hand. is very distinctive. Its most salient characteristic is an
Uegrated set of programming tools which know enough about Interlisp programming so that they can act

--as semi-autonomous. intelligent "assistants" to the programmer. In c..ddition. the environment provides a
completely self-contained world for creating, debugging and maintaining Interlisp programs.

This manual describes all three components of the Interlisp system. There are discussions about the
content and structure of the language, about the pieces of the system that can be incorporated into user
programs. and about the environment. The line between user code and the environment is thin and
changing. Most users extend the environment with some special fearures of their own. Because Interlisp
is so easily extendecL the system has grown over time to incorporate many cillferent ideas about effective
and useful ways to program. This gradual accumulation over many years has resulted in a rich and diverse
system. That is the reason this manual is so large.

\Vhereas the rest of this manual describes the individual pieces of the Interlisp system. this chapter attempts
to describe the whole system-language, environmen~ tools. and the otherwise unstated philosophies that
tie it all together. It is intended to give a global view of Interlisp to readers approaching it for the first
time.

0.1 INTERUSP AS A PROGRA1\1l\1ING LANGUAGE

This manual does not contain an introduction to programming in Lisp. Sadly. primers and teaching
materials for Lisp are few and quickly become dated. (Winston & Hom. 1981] discuss Lisp and its
applications. but focus on MacLisp. with only a limited section on Interlisp in an appendix. [Siklossy,
1976] and [\Veissman. 1967] are both sound. but a little dated. In this section. we simply highlight a few
key points about Lisp on which m}lch of the later material depends. .

The Lisp family of languages (e.g., Interlisp. UCI Lisp [Meehan. 1979]. FranzLisp [Foderaro. 1979].
MacLisp [Moon. 1974], Lisp Machine Lisp (\Veinreb & Moo~ 1979], etc.) shares a common structure
in which large programs (or functions) are built up by composing the results of smaller ones. Although
Interiisp, like most modern Lisps. allows programming in almost any style one can imagine. the natural
style of Lisp is functional and recursive. in that each function computes its result by selecting from or
building upon the values given to it and then passing that result back to its caller (rather than by producing
"side-effects" o,n external data structures. for example). A great many applications can be written in Lisp
in this purely functional style. which is encouraged by the simplicity with which Lisp functions can be
composed together.

o
1.1

r..;..
\.~ .f

G
·~

...... ~
<,'

"
i

Interlisp as an Interactive Environment

Lisp is also a list-manipulation language. The essential primitive data objects of any Lisp are "atoms"
(symbols or identifiers) and "lists" (sequences of atoms or lists), rather than the "characters" or "numbers"
of more conventional programming languages (although these are also present in all modem Lisps). Each
Lisp dialect has a set of operations that act on atoms and lists, and these operations comprise the core of
the language.

Invisible in the programs. but essential to the Lisp style of programming, is an automatic memory
management system (an uallocator" and a "garbage collector"). Allocation of new storage occurs
automatically whenever a new data object is created. Conversely, that storage is automatically reclmmed

, for reuse when no other object makes reference to it. Automatic allocation and deallocation of memory
is essential for rapid., large scale program development because it frees . the programmer from the task
of maintaining the details of memory administration. which change constantly during rapid program
evolution.

A key property of Lisp is that it can represent Lisp function definitions as pieces of Lisp list data.,
Each sub function 6&call" (or function application) is written as a list in which the function is written first.
followed by irs arguments. Thus, (PLUS 1 2) is a list structure representation of the expression 1 +
2. Each program can be written as a list of such function applications. This representation of program as
data allows one to apply the same operations to programs that one uses to manipulate data. which makes
it very straightforward to write Lisp programs which look at and change other Lisp programs. ~ in
rum makes it easy to develop programming' tools and translators. which was essential in enabling the
development of the Interlisp environment.

One result of this ability to have one program e~amine another is that one can extend the Lisp programm;ng
language'itself. If some desired programming idiom' is not suppone~ it can be added simply by defining
a function that translates the desired expression into simpler Lisp. Interlisp provides extensive facilities'
for users to make this type of language extension. ·In addition.. the eLlSP (Conversational LISP) package
provides definitions for several commonly used programming constructS (i f ... the n ... e 1 s e, for and
do loops. ere.) that make many programs easier to express. Using this ability to extend itself. Interlisp has
incorporated many of the constructs that have been developed in other modern programming languages.

1.2 INTERLISP AS ~~ INTERACITVE ENY1RONl\1ENT

Interlisp programs should not be thought of as autonomous. external files of source code. All Interlisp
programming takes place within the Interlisp environment. which is a completely self-sufficient environment
for developi..'1g and using Interlisp programs. Not only does the environment contain the obvious
programming facilities (e.g .. program editors. compilers. debuggers. etc.), but it also contains a variety of
tools which assist the user by ·'keeping track" of what happens. so the user doesn't have to. For example.
the Interlisp file package notices when programs or data have been changecL so that the system will
know what needs to be saved at the end of the session. The ·'residential" style. where one suys within
the environment throughout the development. from initial program definition through final debugging, is
essential for these tools to operate. Furthermore. this same environment is available to support the final
production version. some pans providing run time support and other parts ignored until the need arises
for further debugging or development.

For terminal inte:-action with the user, Interlisp provides a ··Read-Eval-Print" loop. Tha[is. whatever L'1e
user types in is READ by the system. executed (or ··EVAL"·uated) and the result is PRINT-ed onto the
terminal. (This interaction is also recorded by the programmer's assistant. described below, so the user

1.2

Cl

o

o

o
INTRODUCTION

can ask to do an action again. or even to undo the effects of a previous action.) Although each interactive
terminal listener (or "executive") defines a few specialized commands. most of the interaction will consist
of simple evaluations of ordinary Lisp expressions. Thus. instead of specialized terminal commands for
operations like manipulating the user's files, actions like this are carried out simply by typing the same
expressions that one would use to accomplish them inside a Lisp program. This creates a very rich. simple
and uniform set of interactive commands, since any Lisp expression can be typed at a command executive
and evaluated immediately.

In normal use, one writes a program (or rather, "defines a function") simply by typing in an expression
that invokes the "function defining" function (D E FIN E Q), giving it the name of the function being defined
and its new definition. The newly defined function can be executed immediately, simply by using it in
a Lisp expression. Although most Interlisp code is normally run compiled (for reasons of efficiency),
the initial versions of most programs, and all of the users terminal interactions. will be run interpreted.

O
EventuallY, as a function gets larger or is used in many places. it becomes more effective to compile it.

'sually, by that stage, the function has been stored on a file- and the whole file (which may ·contain many
' .. runctions) is compiled at once. DEFINEQ, the compiler (COMPILE), and the interpreter (EVAL), are all ("'.

themselves Lisp functions that use the ability to treat other Lisp expressions and programs as data.

In addition to these basic programming tools. Interlisp also provides a wide .variety of programming
. support mechanisms:

S trucrure editor

Pretty-printer

Break Package

o
DWIM

Since Interlisp programs are represented as list strucrure. Inter~ provides an editor
which allows one to change the list structure of a function's definition directly.

The pretty printer·.is a function that prints Lisp function definitions so that their
syntaCtic srrucrure is displayed by the indentation and fonts used.

When errors occur, the break package is called, allowing the user to examine and
modify ~e context at the point of the error. Often. this enables execution to
continue without staning over from the beginning. Within a break. the full power
of Interlisp is available to the user. Thus. the brGken function can be edited. data
strUcrures can be inspected and changed. other computations carried out. and so
on. All of this occurs in the context of the suspended computation. which will
remain available to be resumed.

The "Do What I Mean" package automatically fixes the user's misspellings and
errors in typing.

Programmer's Assistant

Masterscope

Interlisp keeps track of the user's actions during a session and allows each one to
be replayed.. undone. or altered.

Masterscope is a program analysis and management tool which can analyze users'
functions and build (and automatically maintain) a data base of the results.
This allows the user to ask questions like "\lJHO CALLS ARCTAN" or "\lJHO
USES COEF 1 FREELY" or to request systematic changes like "EDIT WHERE ANY
(function) F ETCHES ANY F I ElO OF (the data structure) FOO".

RecordlDatatype Package

o
Interlisp allows a programmer to define new data structures. This enables one co
separate the issues of data access from the details of how the data is actually stored.

1.3
(.. ~'.:.
\,£,;,.

(

File Package

Performance Analysis

InterIisp Philosophy

Files in Interlisp are managed by the syste~ removing the problem of ensuring
timely file updates from the user. The file package can be modified and extended
to accomodate new types of data.

These tools allow statistics on program operation to be collected and analyzed.

, . These facilities are tightly integrate~ so they know about and use each other. just as they can be used
by user programs. For example, Masterscope uses the structural editor to make systematic changes. By
combining the program analysis features of Masterscope with the features of the structural editor, large
scale system changes can be made with a single command. For example, when the lowest-level interface
of the InteriL«=p-D 1/0 system was changed to a new format. the entire edit was made by a single call
to Masterscopeofthe form EDIT WHERE ANY CALLS '(BIN BOUT ...). [Bunonetal.., 1980] This
caused Masterscope to invoke the editor at each point in the system where any of the functions in the list
, (B IN BOUT •..) were called. This ensured that no functions used in input or output were overlooked
during the ~odification.

The new. personal machine implementations of Interlisp. ,such as Interlisp-D. also provide some new user
facilities. and some new, interactive graphic interfaces to some of the older Interlisp programming tools:

Multiple Processes

Windows

Inspector

The multiple and independent processes allowed in Interlisp .. O simplify problems
which require logically separate pieces of code to operate in parrallel.

The ability to have multiple. independent windows on the display allows many
different processes or activities to be active on the screen at once.

The inspector is a display tool for examining complex data strucrures encountered
during debu&,aing.

The figure found at the beginning of this chapter shows a standard user display within Interlisp-D. One
window displays a list of messages available for browsing. using an experimental mail reading system.
This operates in parallel with the user's other activities. continually monitoring the remote mail server

(j

o

and watching for any new messages. The "DEdit" window is editing an Interlisp function. The "Chat"
window offers a direct connection to a remote machine (this one is a remote file server). There are two 0
nested break windows showing the environment of an interrupted evaluation. And in the lower right.
there is a Masterscope display showing all the possible execution paths to some function.

Some of the newer implementations of Interlisp have embedded within them an entire operating system
written in Interlisp. For the most pan. that is of no concern to the user (although it is nice to know that one
can write programs of this complexity and perfurmance within Interlisp!). However. some of the facilities
provided by this low level code allow the use of Interlisp for applications that would previously have
been forced into a relatively impoverished system programming environment. [n particular. Interlisp-D
provides complete facilities for experimenting with distributed machines and services on a local area
networL plus access to all the services that such networks provide (e.g .• maiL printing. filing, etc.).

1.3 INTERLISP PHILOSOPHY

The extensive environmental suppon that the Interiisp system provides has developed over the years
in order to suppon a particular style of programming called ··exploratory programming·' [Sheil. 1983].

1.4

o
INTRODUCTION

For many complex programming problems. the task of program creation is not simply one of writing a
program to fulfill pre-identified specifications. Instead. it is a matter of exploring the problem (trying
out various solutions expressed as panial programs) until one finds a good solution (or sometimes. any
solution at all!). Such programs are by their very nature evolutionary; they are transformed over time
from one realization into another in response to a growing understanding of the problem. This point of
view has lead to an emphasis on having the tools available to analyze. alter. and test programs easily.
One important aspect of this is that the tools be designed to work together in an integrated fashio~ so
that knowledge about the user's programs, once gained. is available throughout the environment.

The development of programming tools to suppon exploratory programming is itself an exploration.
Noone knows all the tools that will eventually be found useful. and not all programmers want all of the
tools to behave the same way. In response to this diversity, Interlisp has been shaped, by its implementors
and by its users, to be easily extensible in several different ways. First. there are many places in the system

r.,-.
\ ... ;

/ where its behavior can be adjusted by the user. One way that this can be done is by changing the value
O)f various uflags" or variables whose values are e~amined by system code to enable or suppress certain ('

- behavior. The other is where the user can provide functions or other behavioral specifications of what is to
happen in certain contexts. For example. the format used for each type of list strUcture when it is printed
by the pretty-printer is determined by specifications that are found on the list PRETTYPRINTMACROS.
Thus, this format can be changed for a given type simply by putting a printing specification for it on that
list.

Another way in which users can effect Interlisp's behavior is by redefining or changing system functions.
The "Advise" capability, for instance. permits the user to modify the operation of virtually any function
in the system by wrapping user code "around" the selected function. (This same philosophy extends
to the break package and tracing, so almost any function in the system can be broken or traCed.)
Experimentation is thus encouraged and actively facilitate<i which allows the user to find useful pieces of
the Interlisp system which can be configured to assist with application development. This is even easier
in systems like Interlisp-D, where the entire system is implemented in Interlisp. since there are extremely
few places where the system's behavior depends on anything outside of Interlisp (such as a low level
system implementation language).

While these techniques provide a fair amount of tailorability, the price paid is that Interlisp presents an
._< overall appearance of complexity. There are many flags. parameters and controls that affect the behavior U)ne sees. Because of this complexity, Interlisp tends to be more comfunable for expertS. rather than @.~

casual users. Beginning users of Interlisp should depend on the default settings of parameters until they ~. ,
learn what dimensions of flexibility are available. At that point. they can begin to .6tune" the system to
their preferences.

The various implementations of Interlisp share not only L"tis general philosophy. but a philosophy about
each other also. . Interlisp is available in highly compatible versions across several machines. The
community of Interlisp implementors is committed to maintain this level of compatibility. One testimony
to this is the existence of pieces of very old code in modern versions of rnterlisp that have been inherited
from the original BBN-Lisp system nearly 15 years ago. Many of the function definitions in the core of
the system have not changed since 1977, over many different versions of Interlisp.

Appropriately enough. even Interlisp's underlying .philosophy was itself discovered during Interlisp's
deveiopment. rather than laid out beforehand. The Interlisp environment and its interactive style were
first analyzed in Sandewall's exceilent paper (Sandewall. 1978]. The notion of ··~xploratory programming"
and the genesis of the Interlisp programming tools in terms of U.~e characteristic demands of this style of
programming was developed in [Sheil. 19831. The evolution and structure of the Interlisp programming
environment are discussed in greater depth in [T ~i(elman & ~vIasinter. 1981].

o L5
C'::·

""'"

How to Use this Manual

1.4 HOW TO USE THIS MANUAL

This document is a reference manual. not a primer. We have tried to provide a manual that is complete.
and that allows Interlisp users to find particular items as easily as possible. Sometimes, these goals have
been achieved at the expense of simplicity. For example, many functions have a number of arguments
that are rarely used. In the interest of providing a complete reference. these arguments are fully explained.
even though they would normally be defaulted. There is a lot of information in this manual that is only
of interest to expense

()

Users should not try to read straight through this manual. like a noveL In general, the chapters are
organized with overview explanations and the most useful functions at the beginning of the chapter. and
implementation details towards the end. If you are interested in becoming acquainted with Interlisp using ~
this manual. the best way would be to skim through the whole book, reading the beginning of each ~--)
chapter.

A few notes about the notational conventions used in this manual:

Lisp object notation: All Interlisp objects in this manual are printed in the same font: Functions
(AND, PI.:US. OEFINEQ, LOAD); Variables (MAX. INTEGER, fILELST, OFNFLG); and arbitrary Interlisp
expressions: (PLUS 2 3) t (P RCG « A 1» ...). etc.

Case is significant: An important piece of information. often missed by newcomers to Interlisp. is that
upper and lower case is significant. The variable Foa is not the same as the variable foo. which is not the

. same as the variable F 00. By convention. most Interlisp system functions and variables are all-uppercase,
but users are free to use upper and lower case for their own functions and variables as they wish.1

This manual contains a large number of descriptions of functions. variables. commands. etc, which are
printed in the following standard format:

(F 00 BAR BAZ -). [Function]
This is a description for the function named FOC. FOC has two arguments.. BAR and
BAZ. Some system functions have extra optional arguments that are not documented
and should not be used. These extra arguments are indicated by "-".

The descriptor [Function1 indicates that this is a function. rather than a [Variable].
[Prog. Asst. Command], etc .. For function definitions only. this can also indicate
the function "type": [NLambda Function]. [NoSpread Function], or [NLambda
NoSpread Function], which describes whether the function takes a fixed or variable
number of arguments. and whether the arguments are evaluated or not.

lOne exception to the case-significance rule is provided by the Inrerlisp CLISP facility. which allows
iterative statement operators and record operations to be typed in either all-uppercase or all-lowercase
letters: (for;,. from 1 to 5 ...) is the same as (FOR X FROM 1 TO 5 ...). The few situations
where this is the case are explicitly mentioned in the manual. Generally, one should assume that case is n
-;ignificant. \ /

1.6

o
INTRODUCTION

1.5 REFEREN"CES

[Bunon. et al.~ 19801 Bunon. R. R .• L M. Masinter. A. Bell D. O. Bobrow, W. S. Haugeland.. R.M.

[F oderaro9 1979]

(Meeh~ 1979]

[Moon., 1974]

o .
, LSandewall 1978]

[Sheil. 1983]

Kaplan and B.A. Sheil "'Interlisp-D: Overview and Status" - in [Sheil & Masinter.
1983].

Foderaro. John K .. The FRAlVZ LISP Manuol- University of California. Bekeley.
California (1979).

Meeh~ 1. R.. The New aCl Lisp Manual - Lawrence Erlbaum Associates.
Hillsdale. New Jersey (1979).

Moon. David.. kfACLISP Reference ~o/fanual- Version 0, Laboratory for Computer
Science, MIT, Cambridge. M~use~ (l974)

Sandewall Erik. "Programming in the Interactive Environmnet: The LISP
Experience" - ACAl Computing Surveys, vol 10, no t pp 35-72. (March 1978).

Sheil. B.A .• "Environments for Exploratory Programming" - Datamation. (February,
1983) - also in [Sheil & Masinter. 1983].

[Sheil & Masinter. 1983]

lSiklossy, 1976]

Sheil. B.A. and L. M. Masinter. "'Papers on Interlisp-D", Xerox PARC Technical
Report C1S-5 (Revised). (January, 1983).

*"

Siklossy. L .• LeI's Talk Lisp - Prentice-Hall, Englewood Cliffs. New Jersey (1976).

[Teitelman & Masinter. 1981]
Teitelmaa W. and L. M. Masinter. 'The Interlisp Programming Environment" -
Computer, vol 14, no 4, pp 25-34. (April 1981) - also in [Sheil & Masinter. 1983].

[Weinreb & Moon. 19791

()
\.J

[Weissman. 1967]

Weinreb. D. and D. Moon. Lisp .Machine lvfanual - Artificial Intelligence
Laboratory, MIT, Cambridge4 Massachusetts., (January 1979).

Weissmaa C .• LISP 1.5 Primer - Dickenson Publishing Company, Beimont.
California (1967).

[Winston & Horn. 19811

o

Winston. P. H .• and B.K.P. Horn. LISP - Addison-Wesley, Reading. Massachusetts
(l981).

1.7

,

C.~ .

c·····• , .

n
References

(
o

\
'- - .

(\
,--j

()
1.8

()-.

o

CHAPTER 2

DATA TYPES

Interlisp is a system for the manipulation of various kinds of data~ it provides a large set of built-in data
. type~ which may be used to represent a variety of abstract objects, and the user can also define new data

types which can be used exactly like built-in data types.

Each data type in Interlisp has an associated "type name," a litatom.1 Some of the type names of built-in
data types are: LITATOM, LIST?, STRINGP, ARRAY?, STACKP, SMALL?, FIX?, and FLOATP. For user
data types (page 3.14), the type name is specified when the data type is created..

(DATATYPES. :-) [Function]
Returns a list of all type names ctL.-rently defined..

(TYPENAME DATUM) [Function]
Rerurns the type name for the data type of DATUM.

(TYPENAMEP DATUM TYPENAME) [Function]
Returns T if DATUM is an object with type name equal to TYPENAME. otherwise
NIL. .

Note: TYPENAME and TYPENAMEP distinguish the logical data types ARRAYP. CCODEP and HARRAYP,
even though they may be implemented as ARRAYPs in some Interlisp implementations.

2.1 DATA TYPE PREDICATES

o Inrerlisp provides seperare functions for testing whether objects are of certain commonly-used types:

o

(LITATOM x)

(SMALLP x)

(FIXP x)

(FLOATP x)

[Function]
Returns T if x is a litatom. NIL otherwise. Note that a number is not a litatom.

[Function]
Returns x if x is a small integer: NI L otherwise. (Note that the range of small
integers is implementation-dependent. See page 2.36.)

[Function]
Returns x if x is a small or large integer (between MIN. FIXP and MAX. FIX?):
NIL otherwise.

[Function]
Returns x if x is a floating point number: NIL othervlise.

lln Inrerlisp-10. each dara type also has an associated ·'type number." See page 22.2.

2.1

(NUMBER? x)

(ATOM x)

(LIST? x)

(NLIST? x)

\STRINGP x)

(ARRAY? x)

(HARRAYP x)

Data Type Equality

[Function]
Returns x if x is a number of any type (FIX? or FLOAT?). NIL otherwise.

[Function]
Returns T if x is an atom (i.e. a litatom or a number); NIL otherwise.

Warning: (ATOM x) is NIL if x is an array. strin~ etc. In many dialects of Lisp.
the function ATOM is defined equivalent to the Inter!isp function NLIST?

[Function]
Returns x if x is a list cell e.g .• something created by CONS; NIL otherwise.

[Function]
{NOT (LIST? X». Returns T if x is not a list cell NIL otherwise.

[Function]
Returns x if x is a string, NIL otherwise.

[Function]
Returns x if x is an array, NIL otherwise.

Note: In some implementations of Interlisp, ARRA YP may also return x if it is of
type CCODE? or HARRAY?

[Function]
Returns x if x is a hash array, NIL otherwise.

Note: The empty list, () or NIL. is considered to be a litatom. rather than a list. Therefore. (LIT ATOM
NIL) = (ATOM NIL) = T and (LIST? NIL) = NIL. Care should be taken when using these functions
if the object may be the empty list NIL.

'.2 DATA TYPE EQUALITY

A common operation when dealing with data objects is to test whether two objects are equal. In some
cases. such as when comparing two small integers. equality can be easiiy detennined. However. sometimes
there is more than one type of equality. For instance. given two listS. one can ask whether they are
exactly the same object, or whether they are two distinct listS which contain the same elements. Confusion
between these two types of equality is often the source of program errors. Interlisp supplies an extensive
set of functions for testing equality:

(EQ x Y)

(NEQ x Y)

[Function}
Rerurns T if x and y are identical pointers~ NIL otherwise. EQ should not be used
to compare two numbers. unless they are small integers; use E Q P instead..

[Function1
(NOT (EQ x Y))

2.2

n
\.'"

\..-~ ..
~-

o
'.

---o

(NULL x)
(NOT x)

(EQP x y)

(EQUAL x y)

DATA TYPES

(EQ x NIL)

[Function]
[Function]

[Function]
Rerums T if x and y are EQ, or if x and y are numbers and are equal in value;
NIL otherwise. For more discussion of EQP and other number functions. see page
2.36.

Note: EQP also can be used to compare stack pointers (page 7.3) and compiled
code (page 5.8).

[Function]
EQUAL returns T if x and yare (1) EQ; or (2) EQP, Le., numbers with equal value;
or (3) STREQUAL, Le., strings containing the same sequence of characters: or (4)
lists and CAR of x is EQUAL to CAR of Y, and CDR of x is EQUAL to CDR of Y.
EQUAL returllS NIL otherwise. Note that EQUAL can be significantly slower than
EQ.

A loose description of EQUAL might be to say that x and Y are EQUAL if they
print out the same way.

(EQUALALL x y) [Function]
Like EQUAL, except it descends into the contents of arrays, hash arrays, user data
types., etc. Two non-EQ arrays may be EQUALALL if their respective componants
are EQUALALL.

Among the functions used for manipulating objects of various data types, there are a number of functions
which have "fast" and "destructive" versions. The user should be aware of what these functions do, and
when they should be used.

UFast" functions: By convention. a function named by prefixing an existing function name with F indicates
that the new function is a "fast" version of the old. These usually have the same definitions as the slower
versions, but they compile open and run without any "safety" error checks. For example, FNTH runs
faster than NTH. however, it does not make as many checks (for lists ending with anything but NIL.
etc). If these functions are given arguments that are not in the form that they expect, their behavior is
unpredictable: they may run forever. or cause a system error. In general. the user should only use "fast"
functions in code that has already been completely debugge~ to speed it up.

"Desouctive~' functions: By convention. a function named by prefixing an existing function with -0
indicates the new function is a "destructive" version of the old one. which does not make any new
soucture but cannibalizes its argument(s). For example, REMOVE returns a copy of a list with a particular
element removed., but DREMOVE acrually changes the list structure of the list. (Unfortunately. not all
destructive functions follow this naming convention: the destructive version of APPEND is NCONC.) Tne
user should be careful when using destructive functions that they do not inadvenantly change data
structures.

., ..

..... ,J

i
I.

Litatoms

2.4 UTATOl\1S

A 44ilitatom" (for Uliteral atom'·) is an object which conceptually consistS of a print name. a value .. a
function definition. and a propeny list. In some Lisp dialec~ litatoms are also known as usymbols."

A litatom is read as any string of non-delimiting characters that cannot be interpreted as a number.
The syntatic characters that delimit litatoms are called separator or break characters (see page 6.32) and
normally are space, end-of-line, line-feed. ((left paren),) (right paren). " (double quote), [(left bracket) ..
and] (right bracket). However. any character may be included in a litatom by preceding it with the
escape character %. Here are some examples of.litatoms:

A wxyz 23SKIDOOO %] 3.1415+17

~ ... ong% L i..t.atom% Wi th% Embedded% Spaces

Litatoms aJ;'~ printed by PRINT and PRIN2 as a sequence of characters with %'5 insened before all
delimiting characters (so that the litatom will read back in properly). Litatoms are printed by PRIN1 as a
sequence of characters without these extra %'s. For example. the litatom consisting of the five characters
A. B, C .. (, and 0 will be printed as ABC%(0 by PRINT and ABC (0 by PRIN1.

Litatoms can also be constrUcted by PACK. PACK-, SUBATOM, MKATOM, and GENSYM (which uses
MKATOMJ.

Litatoms are unique. In other words. if tw9 litatoms print the same .. they will always be EQ. Note that
this is not true for strings. large integers. floating point numbers..· and lists; they all can print the same 0

without being EQ. Thus if PACK or MKATOM is given a list of characters corresponding to a litatom that
already existS. they rerum a pointer to that litatom. and do not make a new litatom. Similarly. if the read
program is given as input a sequence of characters for which a litatom already exists .. it returns a pointer

. to that litatom. Note: Interlisp is different from other Lisp dialects which allow Uuninterned" litatoms.

Note: Litatoms are limited to 255 characters in Inrerlisp-D: U7 characters in Interlisp-10. Attempting to
create a larger litatom either via PAC K or by typing one in (or reading from a file) will cause an error.
D. TOM TOO LONG.

2.4.1 Using Litatoms as Variables

Litatoms are commonly used as variables. Each litatom has a "top level" variable binding. which can
be an arbitrary Interlisp object. Litatoms may also be given special variable bindings within P ROGs. or
function calls. which only exist for the duration of the function. When a litatom is evaluated.. the "current"
variable binding is returned. This is the most recent special variable binding, or the top level binding if
the litatom has not been rebound. SETQ is used to change the current binding. For more infonnation
on variable bindings in Interlisp. see page 7.1.

Note: The compiler (page 12.1) treats variables somewhat differently than the interpreter. and the user
has to be aware of these differences when writing functions that will be comoiled. For example, variable
references in compiled code are not checked for NOB I ND. so compiled cod~ will not generate unbound
atom errors. [n general. it is better to debug interpreted code. before compiling it for speed. The compiler
offers some facilities to increase the efficiency of variable use in compiled functions~ Glpbal variables
(page 12.3) can be defined so that the entire stack is not searched at each variable reference. Local
variables (page 12.4) allow compiled functions to access variable bindings which are not on the stack.

2.4

o co.

r)
C?, .

(\'
\ /~
~~

o
\.

o

o

DATA TYPES

which reduces variable conflicts. and also makes variable lookup faster.

By convention. a litatom whose top level binding is to the litatom NOB INO is considered to have no top
level binding. If a litatom has no local variable binding~ and its top level value is NOB I NO, attempting
to evaluate it will cause an unbound atom error.

The. two litatoms T and NIL always evaluate to themselves. Attempting to change the binding of T or
NIL with the functions below will generate the error ATTEMPT TO SET T or ATTEMPT TO SET r~ I L.

The following functions (except BOUNOP) will also generate the error ARG NOT LIT ATOM, if not given
a litatom.

(BOUNDP VAR) [Function]
Returns T if VAR has a special variable binding (even if bound to NOBINO), or
if VAR has a top level value other than .NOB I NO; otherwise NIL. In other words.
if x is a litatom, (EVAL x) will cause an UNBOUND ATOM error if and only if
(BOUND P x) returns NIL.

(SET VAR VALUE) [Function]
Sets the "current" variable binding of VAR to VALII"E. and returns VALUE.

Note that SET is a normal lambda spread function. so both VAR and VALUE are
evaluated before it is called. Thus. if the value of X is B, and the value of Y is C.
then (SET X Y) would result in B being set to C, and C being returned as the
value of SET.

(SETQ VA.~ VALUE) [NLambda NoSpread Function]
Nlambda version of SET; VAR is not evaluated., VALUE is.2 Thus if the value of X
is B and the value of Y is C, (SETQ X Y) would result in X (not B) being set to
C. and C being returned.

(SETQQ VAR VALUE) [NLambda Function]
Like SETQ except that neither argument is evaluated., e.g., (SETQQ X (A Be»
sets X to (A 8 C) .

(GETTOPVAL VAR) [Function]
Returns the top leyel value of VAR (even if NOB INO), regardless of any intervening
local bindings.

(SETTOPVAL VAR VALUE) [Function}
Sets the top level value of VAR to VALUE. regardless of any intervening bindings.
and returnS VAL crE.

A major difference between various Interlisp implementations is the way that variable bindings are
implemented.. lnterlisp-lO and Interlisp-Jerico use what is called ~'shallow" binding. Interlisp-D and
Interlisp-VAX use what is called "deep" binding.

2Since SETQ is an nlambda.. neither argument is evaluated during the calling process. However. SETQ itself
calls EVAL on its second argument. Note that as a result. typing (SETQ VAR FORM) and SETQ(VAR
FORM) to the Interlisp executive is equivalent: in both cases VAR is notevaluatecL and FORM is.

2.5

Function Definition Cells

In a deep binding syste~ a variable is bound by saving on the staCk the variable's new value. When a
variable is accessed.. its value is found by searching the stack for the most recent binding. If the variable is
not found on the stack. the top level binding is retrieved from a 64value cell'" associated. with the variable.

In a "shallow" binding syste~ a variable is bound by saving on the stack the variable name and the
variable's old value and putting the new value in the variable's value cell. When a variable is accessed..
its value is always found in its value cell.

GETTOPVAL and SETTOPVAL are less efficient in a shallow binding system. because they have to search
the staCk for rebindings; it is more economical to simply rebind variables. In a deep binding syste~
GETTOPVAL and SETTOPVAL are very efficient since they do not have to search the stack. but can simply
access the value cell directly.

GETATOMVAL and SETATOMVAL can be used to access a'variable's value ceIL in either a shallow or deep
, lding system.

(GETATOMVAL VAR) [Function]
Returns the value in the value cell of VAR. In a shallow binding system. this is the
same as (EVAL An!). or simply VAR. In a deep binding system. this is the same
as (GETTOPVAL VAR). ,

(SETATOMVAL ATM VALUE) [Function]
Sets the value cell of VAR to VALt.TE. In a shallow binding system. this is the same
as SET; in a deep binding system. this is the same as SETTOPVAL.

2.4.2 Function Definition Cells

Each litatom has a function definition celL which is accessed when a litatom is used as a function.' Tne
mechanism for accessing and setting the function definition cell of a litatom is described on page 5.8.

., .4.3 Property Lists

Each litatom has a property list. which allows a set of named objects to be associated with the litatom. A
propeny list associates a name. known as a "property name" or "property". with an abitrary object. the
"property value" or simply "value". Sometimes the phrase "to store on the property ;t' is used. meaning
to place the indicated information on a property list under the property name x. .

Property names are usually litatoms or numbers. although no checks are made. However. the standarc;1
property list functions all use EQ to search for property names. so they may not work with non-atomic
property names. Note that the same object can be used as both a property name and a property value.

Note: ~lany litatoms in the system already have property lists. with properties used by the compiler, the
break package. D\VI!v{. etc. Be careful not to clobber such system properties. The variable SY SP ROP S is
a list of propeny names used by the system.

The functions below are used to manipulate the propen listS of litatoms. Except when indicated. they
generate the error ARG t~OT LITATOM, if given an object that is not a litatom.

2.6

()
..... (- •.. :

()
I- . I v:. __ ~

n

o

o

DATA TYPES

(GETPROP ATM PROP) [Function]
Returns the property value for PROP from the property list of ATM. ReturnS NIL if
ATM is not a litatom. or PROP is not found. Note that GETPROP also returns NIL
if there is an occurrence of PROP but the corresponding property value is NIL;
this can be a source of program errors.

Note: GETPROP used to be called GET?

(PUTPROP ATM PROP VAL) [Function]
Puts the property PROP with value VAL on the property list of ATM. VAL replaces
any previous value for the property PROP on this property list. Rerums VAL.

(ADOPROP ATM PROP NEW FLG) [Function]
Adds the value NEW to the list which is the value of propeny PROP on the property
list of ATM. If FLG is T, NEW is COrlSed onto the front of the propeny value of
PROP, otherwise it is NCONCed on the end (using NCONC1). If ATM does not
have a property PROP, or the value is not a list, then the effect is the same as
(PUTPROP ATM PROP (LIST NEW». AODPROP rewms the (new) property
value. Example:

.. (PUTPROP 'POCKET 'CONTENTS NIL)
NIL
.. (ADDPROP 'POCKET 'CONTENTS 'COMB)
(COMB)
.. (ADDPROP 'POCKET 'CONTENTS 'WALLET)
(COMB WALLET)

(REMPROP ATM PROP) [Function]
Removes all occurrences of the property PROP (and its value) from the property
list of ATM. Returns PROP if any were founcL otherwise NIL.

93

(REMPROPLIST ATM PROPS) [Function]
Removes all occurrences of all properties on the list PROPS (and their corresponding o property values) from the property list of ATM. Returns NIL.

.0

(CHANGEPROP x PROPI PROP2) [Function]

(PROPNAMES ATM)·

Chang~ the property name of property PROPl to PROP2 on the property list of
X, (but does not affect the value of the property). Returns x, unless PROPI is not
found, in which case it returns NIL.

[Function]
Returns a list of the property names on the property list of ATM.

(DEFLIST L PROP) [Function]
Used to put values under the same property name on the propeny lists of several
litatoms. L is a list of two-element lists. The first element of each is a litatom. and
the second element is the propeny value for the property PROP. Returns NIL. For
example.

(OEFLIST I((FOO MA) (BAR CA) (BAZ RI)) 'STATE)

puts MA on FOO's STATE property, CA on BAR's STATE property, and RI on BAZ's

2.7

Print Names

STATE property.

Property lists are conventionally implemented as lists of the form

(NAMEl . VALVEl NAME2 VALUE.2 •••)

although the user can store anything as the property list of a litatom. However~ the functions which
manipulate property lists observe this convention by searching down the property lists two CDRs at a time.
Most of these functions also generate an eITor~ ARG HOT LITATOM~ if given an argument which is not a
litatom. so they cannot be used directly on lists. (LISTPUT~ LISTPUT1, LISTGET, and LISTGET1 are
functions similar to PUTPROP and GETPROP that work directly on lists. See page 2.26.) The property
lists of litatoms can be directly accessed with the following functions:

(GETPROPLIST ATM) . [Function]
Returns the propeny list of ATM'.

(SETPROPLIST ATM LST) [Function]
. . - If ATM is a non-N I L litatom, sets the property list of ATM to be LST, and returns LST

as its value. If ATM is NIL. generates the eITor, ATTEMPT TO RPLAC ~IL (unless
LST is also NIL).

(GETLIS x PROPS) [Function1

l.4.4 Print Names

Searches the property list of X. and returns the property list as of the first property
on PROPS that it finds. For example.

~ (GETPROPLIST 'X)
(PROPl A PROP3 B A C)
~ (GETLIS 'X '(PROP2 PROP3»
(PROP3 B A C)

ReturnS NIL if no element on PROPS is found. x can also be a list itself~ in which
case it is searched as described above. If x is not a litatom or a lis~ rerums NIL.

Each litatom has a print name. a string of characters that uniquely identifies that litatom. The term
"print name" has been extendecL however. to refer to the characters that are output when any object is
printed. In Interlisp. all objects have print names. although only litatoms and strings have their print name
explicitly stored. Tnis section describes a set of functions which can be used to access and manipulate the
print names of any object. though they are primarily used with the print names of litatoms.

The print name of an object is those characters that are output when the object is printed using PR IN 1.
e.g., the print name of the litatom ABC% (0 consists of the five characters ABC (D. The print name of the
list (A Be) consists of the seven characters (A B C) (two of the characters are spaces).

Sometimes we will have occasion to refer to a ··PRINZ-name." The PRINZ-name of an object is those
characters output when the object is printed using PRINZ. Thus the PRINZ-name of the litatom ABC~~(D
is the six characters ABC%(O. Note that the PRIN2-name depends on what readtable is being used (see
page 6.32). since mis determines where %'s will be inserted. ~lany of me functions below allow either
print names or P R I N Z-names to be used. as specified by FLG and RDTBL argumentS. If FLG is NIL. print
names are used. Othenvise. PRINZ-names are used. computed with respect to the readtable RDTBL (or

2.8

(~
\ h,
.~

o

o

o.

DATA TYPES

the current readtable, if RDTBL = NI L).

Note: The print name of an integer depends on the setting of RADIX (page 6.19). The functions described
in this section (UNPAC~ NCHARS, etc.) define the print name of an int~ger as though the radix was 10,
so that (PACK (UNPACK' X9) J will always be X9 (and not sometimes Xll) regardless of the setting
of RAD I X. However, integers will still be printed by PR IN 1 using the current radix. The user can force
these functions to use print names in the current radix by changing the setting of the variable PRXFLG
(see page 6.20).

(MKATOM x) [Function]
Creates and returns an atom whose print name is the same as that of the string x
or, if x isn't a string, the same as that of (MKSTRING x). Examples:

{MKATOM '(A B C» =) %(A% B% C%)

(MKATOM "1.5") =) 1.5

Note that the last example returns a number, not a litatom. It is a deeply-ingrained
feature of Interlisp that no litatom can have the print name of a number.

(SUBATOM x N M) [Function]

(PACK x)

Equivalent to (MKATOM (SUBSTRING x N M», but does not make a string
pointer (see page 2.29). Returns an atom made from the Nth through Mth characters
of the print name of x. If N or M are negative, they specify positions counting
backwards from the end of the print name. Examples:

(SUBATOM "F001.5BAR" 4 6) =) 1.5

(SUBATOM '(A B C) 2 -2) => A% B% C

[Functionl
If x is a list of atoms, PACK returns a single atom whose print name is the
concatenation of the print names of the atoms in x. If the concatenated print name

. is the same as that of a number, PACK will rerum that number. For example,

(PACK '(A BC DEF G» => ABCDEfG

(PACK '(1 3.4» => 13.4

(PACK '(1 E -2» =) .01

Although x is usually a list of atoms, it can be a list of arbitrary [nterlisp objects.
The value of PACK is still a single atom whose print name is the concatenation of
the print names of all the elements of x. e.g., •

(PACK '«A S) "CD"» =) %{A% B%)CD

If x is not a list or NIL. PACK generates an error. ILLEGAL ARG.

(PACK· Xl X2 .•• xN) [NoSpread Function]
Nospread version of PACK that takes an arbitrary number of arguments. instead of
a list Examples:.

2.9

Print Names

(PACK- 'A 'BC 'OEF 'G) =) ABCDEFG

(PACK- 1 3.4) =) 13.4

(UNPACK x FLG RDTBL) [Function]
Returns the print name of x as a list of single-characters atoms. e.g ...

(UNPACK 'ABC5D) =) (A B C 5 D)

(UNPACK "ABC(D") =) (A B C %(D)

If FLG=T, the PRIN2-name of x is used (computed with respect to RDT.BL), e.g • .,

(UNPACK "ABC(D" T) =) (%" ABC %(0 %")

(UNPACK 'ABC%{O" T) =) (A B C %% %(D)

Note: (UNPACK x) performs N CONSes., where N is the number of characters in
the print nam~ of x.

(DUNPACK x SCRATCHLIST FLG RDTBL) [Function]
A destructive version of UNPACK that does not perform any CONSes but instead
reuses -the list SCRATCHLIST. If the print name is too long to fit in SCRATCHLIST,

Dur~PACK will extend it. If SCRATCHLIST is not a list., OUNPACK returnS (UNPACK
x FLG RDTBL).

(NCHARS X FLG RDTBL) [Function]
Returns the number of characters in the print name of x. If FLG=T, the PRINZ
name is used.. For example.

(NCHARS "ABC") =) 3

(NCHARS "ABC" T) =) 5

-- (NTHCHAR x N FLG RDTBL) [Function]
Returns the Nth character of the print name of x as an atom. N can be negative.
in which case it counts from the end of the print name. e.g... -1 refers to the last
character, -2 next to last. etc. If N is greater than the number of characters in
the print name. or less than minus that number. or 0, NTHCHAR returns NIL.
Examples:

(NTHCHAR 'ABC 2) =) B

(NTHCHAR 15.6 2) =) 5

(NTHCHAR t ABC~'(0 -3 T) =) %%

(NTHCHAR "ABC" 2) =) B

(NTHCHAR "ABC" 2 T) =) A

Note: ~~THCHAR and NCHARS work much faster on objects that actually have an internal representation
of their print name, i.e .. litatoms and strings. than they do on numbers and listS. as they do not have to
simulate printing.

2.10

rJ
ff~ ". :-

Cj ..
\..:;

o
DATA TYPES

(L-CASE X FLG) [Function]

(U-CASEP x)

(GENSYM CliAR)

GEfHiUM

Returns a lower case version of x. If FLG is T, the first letter is capitalized. If x is
a string, the value of L -CASE is also a string. If x is a list, L -CAS E returns a new
list in which L -CASE is computed for each corresponding element and non-N I L
tail of the original list. Examples: '

(L-CASE 'FOO) => foc

(L-CASE 'FOa T) => Foo

(L-CASE "FILE NOT FOUND" T) => "File not found"

(L-CASE '(JANUARY FEBRUARY (MARCH "APRIL"» T)
=> '{January February (March "April"»

Similar to L-CASE~ except rerurns the upper case version of x.

,
Returns T if x contains no lower case ·letters; NIL otherwise.

[Function]

[Function]

[Function]
Returns a litatom of the form Xnnnn~ where X=CHA.R (or A if CHAR is NIL) and
nnnn is an integer. Thus. the first one generated is A0001, the second A0002, etc.
GENSYM provides a way of generating litatoms for various uses within the system .

. [Variable]
The value of GENNUM. initially 10000, determines the next GENSYM. e.g., if
GENNUM is set to 10023. (GENSYM) = AD 024.

Tne term "gensym" is used to indicate a litatom that was produced by the function GENSYM. Litatoms
generated by G EN SYM' are the same as any other litatoms: they have property lists, and can be given

. function definitions. Note that the litatoms are not guaranteed to be new. For example, if the user has

(
' -~~vi0U51Y created A 00 1 Z. either by typing it i~ or via PAC K or G ENS YM itself. when G E N N UM getS to

~ J J 11. the next litatOm returned by GE NSYM will be the ADO 12 already in existence.

(MAPA TOMS FN) [Function]

o

Applies FN (a function or lambda expression) to every litatom in the system.
Returns NIL

For example.

(MAPATOMS (FUNCTION (LAMBOA(X)
(if (GETD X) then (PRINT X)]

will print every litatom with a function definition.

Note: In some implementations of Interlisp. unused litatoms may be garbage
collecreci which can effect the action of MAPATOMS.

2.11

'.

... ~ . .: .. :

~~~! 
r;:'~~~ l .:,.!' 

r~ .~.~:~::;. 

". .... 

l: 
,. 

-- -_._-...,...=_.-.... -



,:. 

Otaracter Code Functions 

2.4.5 Character Code Functions 

Characters may be represented in two ways: as single-character atoms. or as integer character codes.3 In 
many situatio~ it is more efficient to use character codes. so Interlisp provides parallel functions for both 
representations. 

(PACKC x) [Function] 
SimilM to PACK except x is a list of character codes. For example. 

(PACKC· t(70 79 79») =) FOO 

(CHCON X FLG RDTBL) [Function] 
Like UNPACK. except returnS the print name of x as a list of character codes. If 
FLG=T. the PRIN2-name is used. For example., 

(CHCON 'FOO) =) (70 79 79) 

(OCH~ON x SCRAT~T FLG RDTBL) 
Similar to OUNPACK. 

[Function] 

(NTHCHARCOOE x N FLG RDTBL) [Function] 

(CHCONl x) 

. CHARACTER N) 

(FCHARACTER N) 

Similar to NTHCHAR, except returns the character code of the Nth. character of the 
print name of x. If N is negative. it is interpreted as a count backwards from the 
end of x. If the absolute value of N is greater than the number of characters in ~ 
or O. then the value of ~JTHCHARCODE is NIL. 

If FLG is T, then the PRIN2-name of x is used. computed with respect to the 
readtable RDTBL 

[Function] 
Returns the character code of the firSt character of the print name of X; equal to 
(NTHCHARCOOE Xl) • 

[Function] 
N is a character code. Returns the atom' having the corresponCiing single character 
as its print name. 

(CHARACTER 70) =) F 

[Function] 
Fast version of CHARACTER that compiles open. 

The following function makes it possible td gain the efficiency that comes from dealing with character 
codes without losing the symbolic advantages of character atoms: 

(CHARCODE c) [NLambda Function1 
Rerurns the character code structure specified. by c (unevaluated). If c is a 
l-character atom or string. the corresponding character code is simply returned. 

3Interiisp-D uses im 8-bit character set. so the legal character codes range from 0 to 255. Inrerlisp-10 uses 
standard i-bit ASCII. so the range is 0-127. 

2.12 

o 
(.~ 



o 

Q 

DATA TYPES 

Thus, (CHARCOOE A) is 65, (CHARCOOE 0) is 48. If c is a list strucrure, the 
value is a copy of. c with all the leaves replaced by the corresponding character 
codes. Forinst3nce. (CHARCOOE (A (8 C») =) (65 (66 67» 

CHARCODE permits easy specification of non-printable ASCII character codes: A 
multi-character litatom or string whose first character is 1" is interpreted as the 
control-character corresponding to its second character. ThUs. (CHARCODE 1"A) is 
1. the code for control-A. 

Also. if a multi-character litatom or string begins with #, this signifies a "meta
character". with a code between U8 to 255. # and 1" may be combined, so 
(CHARCODE #1"A) is 129. (Note: lnterlisp-l0 cannot directly represent meta
characters as c~acter litatoms, because it only supports 7-bit characters.) 

The following key litatoms are mapped into the indicated codes: CR (13), LF (10), 
SPACE or SP (32), ESCAPE or ESC (27). BELL (7), as (8), TAB (9), NULL (0), and 
DEL (127). The litatom EOL maps into the appropriate End-Qf-Line character code 
in the different Interlisp implementations (31 in Interlisp-l0, 13 in Interlisp-D, 10 
in Interlisp-V AX). 

Finally, CHARCODE maps NIL into NIL. This is included because some character
code producing functions sometimes return NIL (e.g. NTHCHARCODE); a test for 
that value can be included in a CHARCODE list along with true character-code 
values. . 

Charcode of litatomic arglunents can be used wherever a strUcrure of character 
codes would be appropriate. For example: 

(FMEMB [NTHCHARCODE X 1) (CHARCODE (CR LF SPACE») 
(EQ (BIN FOO) (CHARCODE ~C» 

There is a macro for CHARCODE which causes the character-code structure to be 
constructed at compile-time. Thus. the compiled code for these examples is exactly 
as efficient as the less readable: 

(FMEMB (NTHCHARCODE X 1) (QUOTE (13 10 32») 
( E Q (B I N F 00) 3) 

(SELCHARQ E CLAUSE1 ••. CLAUSEN DEFAULT) [NLambda NoSpread Function] 
Similar to SE LE CTQ (page 4.2), except that the selection keys are determined by 
applying CHARCODE (instead of QUOTE) to the key-expressions. If the value of E is 
a character code or N It and it is EQ or MEMB to the result of applying CHARCOD E 
to the first element of a clause, the remaining forms of that clause are evaluated. 
Otherwise. the default is evaluated.. 

Thus 

(SELCHARQ (BIN FOC) 
«SPACE TAB) (FUM» 
«~D NIL) (BAR» 
(a .( BAZ) ) 
(ZIP» 

2.13 



LISTS 

is exactly equivalent to 

(SELECTQ (BIN FOO) 
«32 9) (FUM» 
( (4 NIL) (BAR» 
(97 (SAZ»' 
(ZIP» 

Lists 

Furthermore9 SE LCHARQ has a macro such that it always compiles as an equivalent 
SELECTQ. 

One of the most useful datatypes in Interlisp is the list cell. a data structure which contains pointers to 
two other objects. known as the CAR and the CDR of the list cell (after the accessing functions). Very 
complicated structures can be built out of list ce~ including lattices and tre~ but list cells are most 
frequently used for representing simple linear lists of objects. 

The following functions are used to manipulate list cells: 

(CONS x Y) 

(CAR x) 

CDR x) 

[Function] 
CONS is the primary. list construction function. It creates and returns a new list 
cell containing pointers to x and Y. If y is a list this returnS a list with x added 
at the beginning of Y. 

[Function] 
Returns the first element of the list x. CA R of NIL is always NIL. For all other 
nonlists (e.g .• litatoms. numbers. strings, arrays), the value is undefined (and in 
some implementations may generate an error). 

[Function] 
Returns all but the first element of the list x. CD R of NIL is always NIL. The value 
of CD R is undefined for other nonlists. 

Often. combinations of the CAR and CDR functions are used to extract various components of complex 
list structures. Functions of the fonn C···R may be used for some of these combinations: 

(CAAR X) ==) {CAR (CAR X» 

(CAOR X) ==) {CAR (CDR X» 

(COODOR X) ==) (COR (CDR (CDR (CDR X»» 

All 30 combinations of nested CARs and CDRs up to 4 deep are included in the system. 

(R?LACD x y) [Function] 
Replaces the CDR of the list cell x with Y. This physically changes the internal 
structure of x. as opposed to CONS. which creates a new list cell. It is possible to 
construct a circu.lar list by using RPLACD to place a pointer to the beginning of II 
list in a Spot at the end of the list. 

2.14 

1\. 



o 
\.. " 

DATA TYPES 

The value of RPLACD is x. An attempt to RPLACD NIL will cause an error. 
ATTEMPT TO RPLAC NIL (except for (RPLACD NIL NIL». An attempt to 
RPLACD any other non-list will cause an error. ARG NOT LIST. 

(RPLACA x Y) [Function] 
Similar to RPLACO. but replaces the CAR of x with Y. The value of RPLACA is x. An 
attempt to RPLACA NIL will cause an error. ATTEMPT TO RPLAC NIL. (except 
for (RPLACA NIL NIL». An attempt to RPLACA any other non-list will cause 
an error, ARG NOT LIST. 

(RPLNODE x A D) [Function1 

(RPLNODE2 x Y) 

(FRPLACD x Y) 
(FRPLACA x Y) 
(FRPLNODE x A D) 
(FRPLNODE2 x Y) 

Performs (RPLACA x A), (RPLACO x D), and returns x. 

[Function] 
Performs (RPLACA x (CAR Y», (RPLACD x (CDR Y» and returns x. 

Faster versions of RPLACD. etc. 

[Function] 
[Function] 
[Function] 
[Function] 

Waming: In Interlisp-lO and Interlisp-V AX. these functions compile open with no 
error checks on the type of X. so a compiled F RP LACD can produce unpredictable 
effects. . 

Usually, single list cells are not manipulated in isolation. but in structures known as ·£lists". By conventio~ 
a list is represented by a list cell whose CAR.is the first element of the list. and whose CDR is the rest of 
the list (usually another list cell or the "empty list," NIL). List elements may be any Interlisp objec~ 
including other lists. 

The input syntaX for a list is 'a sequence of Interlisp data objects (litatoms. numbers. other lists. etc.) 
enclosed in parentheses or brackets. Note that () is read as the litatom NIL. A right bracket can be used 

!\ to match all left parenthesis back to the last left bracket. or terminate the lis~ e.g. (A (B (C J. 
~ )~ <-

o 

If there are two or more elements in a list. the final element can be preceded by a period delimited on 
both sides, indicating that CD R of the final list cell in the list is to be the element immediately following 
the period., e.g. ( A . B) or (A B C . D), otherwise CD R of the last list cell in a list will be NIL. 
Note that a list does not have to end in NIL. It is simply a suucrure composed of one or more list cells. 
The input sequence (A B C • NIL) is equivalent to (A B C). and (A B . (C D» is equivalent to 
(A BCD). Note however that (A B . CD) will create a list containing the five litatoms A. B. % •• 
C, and D. 

Lists are printed by printing a left parenthesis. and then printing the first element of the list. then printing 
a space, then printing the second element. etc. until the final list cell is reached. The individual elements 
of a list are printed by P R I ~ll if the list is being printed by P R I N 1, and by P R IN 2 if the list is being 
printed by PRINT or PRINZ. ListS are considered to tenninate when CDR of some node is not a list. If 
CDR of this terminal node is NIL (the usual c~e). CAR of the terminal node is printed followed by a 
right parenthesis. If CDR of the terminal node is not NIL. CAR of the terminal node is printed. followed 
by a space, a period. another space, CDR of the terminal node. and then the right parenthesis. Note that 
a list input as (A Be. NIL) will print as (A B C), and a list input as (A B . (C D) will print 
as (A BCD). Note also that PRINTLEVEL affects the printing of lists (page 6.18), and that carriage 

2.15 



Creating Lists 

retun:lS may be inserted where dictated by LINELENGTH (page 6.8). 

Note: One must be careful when testing the equality of list structures. EQ will be true only when the two 
lists are the exact same list. For exampie. 

~ {SETQ A '(1 2» 
(1 2) 
~ (SETQ B A) 
(1 2) 
~ (EQ A B) 
T 
~ (SETQ C '(1 2» 
(1 2) 

.' ".~, (EQ A C) 
( !L 

~ (EQUAL A C) 
T 

In the example above9 the values of A and B are the exact same ~t, so they are EQ. However. the value 
of C is a totally different list. although it happens to have the same elements. EQUAL should be used to 
compare the elements of two lists. In genetal one should notice whether list manipulation functions use 
EQ or EQUAL for comparing lists. This is a frequent source of errors. 

Interlisp provides an extensive set of list manipulation functions: 

2.5.1 Creating Lists 

(MKLIST x) [Function] 
'-Make List." If x is a·list or NIL. returns r. Otherwise. returns (L IST x). 

XN) [NoSpread Function] 
Rerurns a list of its arguments. e.g. 

(LIST 'A fB t(C D» =) (A B (C D» 

(APPEND Xl X2 .•• xN ) [NoSpread Function] 
Copies the top level of the list Xl and appends this to a copy of the top level of 
the list x2 appended to ... appended to x N' e.g .• 

(APPEND '(A'B) t(C 0 E) t(F G» =) (A BCD E F G) 

Note that only the first N-l lists are copied. However N= 1 is treated specially; 
(APPEND X) copies the top level of a single list. To copy a list to all levels. use 
COPY. 

The following examples illustrate the treatment of non-lists: 

(APPEND t(A B C) '0) =) (A B C 0) 

(APPEND 'A '(B CD» =) (B C D) 

2.16 

n 
C· 

n 
-".,,; c·.··.: 

() 
. . ~ . 



o 
\ 
'-

o 

DATA TYPES 

(APPEND t(A B C • 0) teE F G» =) (A B C E F G) 

(APPEND t (A B C 0» =) (A B C • D) 

(NCONC Xl X2 ..• XN) [NoSpread Function} 

(NCOrlCl LST x) 

(ATTACH XL) 

Returns the same value as APPEND, but acrually modifies the list structure of Xl 

... Xn-l' 

Note that NCONC cannot change NIL to a list: 

+-(SETQ FOO NIL) 
NIL 
+-(NCONC FOO '(A B C» 
(A B C) 
+-FOa 
NIL 

Although the value of the NCONC is (A B C), FOa has not been changed. The 
"problem" is that while it is possible to alter list structure with RPLACA and 
RPLACD, there is no way to change th~ non-list NIL to a list. 

[Function] 
• (NCONC LST (LIST x» 

[Function1 
uAn.aches"- X to the front of L by doing a RPLACA and RPLACD. The value is 
EQUAL to (CONS XL). but EQ to L. which it physically changes (except if L is 
NIL). (ATTACH X NIL) is the same as (CONS X NIL). Otherwise, if L is not 
a list, an error is generated, ARG NOT LIST. 

2.5.2 Building Lists From Left to Right 

o (TCONC PTR x) [Function] 
TCONC is similar to NCONC1; it is useful for building a list by adding elements one 
at a time at the end. Unlike NCONC1. TCONC does not have to search to the end 
of the list each time it is called. Instead. it keeps a pointer to the end of the list 
being assembled... and updates this pointer after each call. This can be considerably 
faster for long lists. The cost is an extra list cell. PTR. (CAR PTR) is the list being 
assembled, (CDR PTR) is (LAST (CAR PTR». TCaNC returns PTR. with its 
CAR and CDR appropriately modified. 

o 

PTR can be initialized in two ways. If PTR is NIL. T CON C will create and rerum a 
PTR. In this case. the program must set some variable to the value of the first call 
to TCONC. After that, it is unnecessary to reset the variable. since TCONC physically 
changes its value. Example: 

~(SETQ FOO (TCONC NIL 1» 
({1) 1) 
~(for I from 2 to 5 do (TCONC FOa I» 
NIL 
~FOO 

2.17 



(LCONC PTR x) 

Building Lists From Left to Right 

«1 2 3 4 5) 5) 

If PTR is initially (N I L). the value of TCONC is the same as for PTR= N IL. but 
TCONC changes PTR. This method allows the program to initialize the TCONC 
variable before· adding any elements to the list. Example: 

, .... { SETQ FOe (CONS» 
(r~IL) 
~(for I from 1 to 5 do (TCONC FOO I» 
NIL 
"'FOC 
«123 4 5) 5) 

[Function} 
Where TeONC is used to add elements at the end of a list. LeONC is used for 
building a list by adding lists at the end.. Le .• it is similar to Ncor.c instead of 
NCOr4C 1. Example: 

~(S6TQ FOa (CONS» 
(NIL) 
~{LCONC FOa '(1 2» 
«1 2) 2) 
~(LCONC FOO '(3 4 5» 
«1 2 3 4 5) 5) 
~(LCONC FOO NIL) 
«1 2 3 4 5) 5) 

LCONC uses the same pointer conventions as TCONC for eliminating searching to 
the end of the list. so that the same pointer can be given to TCONC and LCOrJC 
interchangeably. Therefore. continuing from above. 

4-(TCONC FOO NIL) 
«1 2 3 4 5 NIL) NIL) 
~(TCONC FOO '(3 4 5» 
«1 2 3 4 5 NIL (3 4 5» (3 4 5» 

The functions DOCOLLECT and ENDCOLLECT also permit building up lists from left-to-right like TeONC. 
but without the overhead of an extra list cell. The list being maintained is kept as a circular list. 
DOCOLLECT adds items: ENDCOLLECT replaces the tail with its second argument. and returns the full 
list. 

(DOCOLLECT ITEM LST) [FunctionI 
"Adds" ITEM to the end of LST. Returns the new circular list. Note that LST is 
modified. but it is not E Q to the new list. The new list should be stored and used 
as LST to the next call to DOCOLLECT. 

(ENDCOLLECT LST TAlL) [Function1 
Takes LST, a list returned by OOCOLLECT, and returns it as a non-circular list. 
adding TAlL as the teIminating CDR. 

Here is an example using OOCOLLECT and ENDCOLLECT. HPRINT is used to print the results because 
they are circular lists. Notice that FOO has to be set to the value of OOCOLLECT as each element is 

2.18 

n 
{. 
'" . 

(-) 
(..:.: .~ 



Q 

0' 

o 

o 

DAtA TYPES 

added. 

'-(SETQ FOO NIL] 
NIL 
'-(HPRINT (SETQ FOO {DOCOLLECT 1-FOO] 
1"(1. {1}) 
.-(HPRINT (SETQ FOO (DOCOLLECT 2 FOO] 
1"{2 1 . {1}) 
'-(HPRINT (SETQ FOO (DOCOLLECT 3 FOC] 
1'(3 1 2 • {1}) 
.-(HPRINT {SETQ FOO {DOCOLLECT 4 FOO] 
't{4 1 2 3 • {1}) 
'-(SETQ FOO (ENDCOLLECT FOO 5] 
(1 2 3 4 • 5) 

2.5.3 Copying Lists 

(COpy x) 

(COPYALL x) 

(HCOPYALL x) 

[Function] 
Creates and returnS a copy of the list x. All levels of x are copied down to non-lists. 
so that if x contains arrays and strings. the copy of x will contain the same arrays 
and strings, not copies. COpy is recursive in the CAR direction only. so very long 
lists can be copied. 

Note: To copy just the lop level of X, do (AP PEND x). 

[Function] 
Like COpy except copies down to atoms. Arrays. hash-arrays. strings, user data 
types, etc~ are all copied. Analagous to EQUALALL (page 2.3). Note that this 
'will not work if given a data st!Ucrure with circular pointers; in this case. use 
HCOPYALL. 

[Function] 
Similar to COpy ALL, except that it will work even if the data st!Ucrure contains 
circular pointers. 

2.5.4 Extracting Tails of Lists 

(TAIL? x Y) 

(NTH x N) 

[Function] 
Returns x. if x is a tail of the list Y: otherwise NIL. x is a tail of Y if it is E Q to 
o or more CDRs of Y. 

Note: If x is EQ to 1 or more CDRs of Y. x is called a "proper tail." 

[Function] 
Returns the tail of x beginning with the Nth element Returns NIL if x has fewer 
than N elements. Examples: 

(NTH '(A BCD) 1) =) (A BCD) 

2.19 



(FNTH x N) 

(LAST x) 

(FLAST ·X). 

Extracting Tails of Lists 

(NTH t(A BCD) 3) => (C D) 

(NTH tCA BCD) 9) => NIL 

(NTH '(A. B) 2) => 8 

For consistency. if N=O, tjTH remrns (CONS r~IL x): 

{NTH '(A B) 0) => (NIL A B) 

Faster version of NTH that terminates on a null-check. 
[Function] 

(Interlisp-lO) Interprete~ generates an error, BAD ARGUMENT ... FNTH. if x ends 
in other than NIL. 

[Function] 
ReturnS the last list cell in the list x. Returns NIL if x is not a list. Examples: 

(LAST t(A Be» =) (e) 

(LAST '(A B C» =) (8. e) 

(LAST tA) =) NIL 

Faster version of LAST that terminates on a null-check. 
[Function] 

(Interlisp-10) Interpreted.. generates an error. BAD ARGUMENT - FLAST, if x ends 
in other than NIL. 

(NLEFT L N TAlL) ~ [Function} 

(LASTN L N) 

NLEFT returns the tail of L that contains N more elements than TAlL. If L does 
not contain N more elements than TAlL. N L EFT returns NIL. If TAl!. is NIL or not 
a tail of L. NLE FT returns the last N·list cells in L. N LE FT can be used to work 
backwards through a list. Example: 

~(SETQ FOO t(A BCD E» 
(A BCD E) 
"'(NLEFT FOO 2) 
(0 E) 
"'(NLEFT FOO 1 (COOR FOO» 
(B C 0 E) 
"'{NLEFT FOO 3 (COOR FOO» 
NIL 

[Function] 
Returns (C O~J S X Y), where Y is the last N elements of L. and X is the initial' 
segment. e.g .• 

(LASTN ' (A BCD E) 2) =) «A B C) o E) 

(LASTN f (A 8) 2 ) =) (NIL A 8) 

2.20 

Cl 
'~': 



o 
\.-.-

o. 

o 

DATA TYPES 

Returns NIL if L is not a list containing at least N elements. 

2.5.5 Counting List Cells 

(LENGTH x) 

(FLENGTH x) 

[Function] 
Returns the length of the list X. where "length" is defined as the number of CD Rs 
required to reach a non-list. Examples: . 

(LENGTH '(A B C» =) 3 

(LENGTH '(A Be. D» =) 3 

(LENGTH 'A) =) o 

Faster version of LE NGTH that terminates on a null-check. 
[Function] 

(Interlisp-lO) InterpretecL generates an error, BAD ARGUMENT - FLE'~GTH, if x. 
ends in other than NIL. 

(EQLENGTH x N) [Function] 
Equivalent to (EQUAL (LENGTH x) N), but more efficient. because EQLENGTH 
Stops as soon as it knows that x is longer than N. Note that EQLENGTH is safe to 
use on (possibly) circular lists, since it is "bounded" by N. 

(COUNT x) [Function] 
Returns the number of list cells in the list x. Thus, COUllT is like a LEt~GTH that 
goes to all levels. courlT of a non-list is O. Examples: 

(COUNT '(A» =) 1 

(COUNT '(A. B» =) 1 

(COUNT I(A (B) C» =) 4 

In this last example, the value is 4 because the list (A xC) uses 3 list cells for 
any object x~ and (B) uses another list cell. 

(COUNTDOWN x N) [Fun~JanJ 
Counts the number of list cells in x. decrementing N far each one. Stops and 
returns N when it finishes counting, or whe:l N reaches O. COUNTDOWN can be 
used on circular structures since it is "bounded" by N. Examples: 

(COUNTDOWN '(A) 100) =) 99 

(COUNTDOWN '(A . B) 100) =) 99 

(COUNTDOWN '(A (8) C) 100) =) 96 

(COUNTDOWN '(DOCOLLECT 1 NIL) 100) =) 0 

2.21 

.... 



Logical Operations 

(EQUALN x Y DEPTH) [Function] 
Similar to EQUAL~ for use with (possibly) circular structures. Whenever the depth 
of CAR recursion plus the depth of CDR recursion exceeds DEPTH~ EQUALN does 
not search further along that chain. and returns the litatom ? If recursion never 
exceeds DEPTH. EQUALN returns T if the expressions x and Yare EQUAL; otherwise 
NIL. . 

(EQUALN '«(A» 8) '«(Z» 8) 2) =) ? 

(EQUALN '«(A)) 8) '«(Z» 8) 3) =) NIL 

(EQUALN" '( ( (A)) 8) '«(A» 8) 3) =) T 

~.6 Logical Operations 

(LDIFF x y z) [Function] 
y must be a tail of x~ Le.~ E Q to the result of applying some number of CD Rs to 
X. (LD IFF x Y) rerurns a list of all elements in x up to y. ' 

If z is not NIL~ the value of LDIFF is effectively {NCONC z (LDIFF x Y», 
i.e.~ the list difference is added at the end of z. 

If Y is not a tail of ~ LDIFF generates an error, LDIFF: t~OT A TAIL. LDIFF 
terminates on a null-check. so it will go into an infinite loop if x is a circular list 
and Y is not a tail. 

Example: 

~(SETQ FOO t(A 8 C 0 E F» 
(A BCD E F) 
~(CDOR FOO) 
(C 0 E F) 
~(LDIFF FOO (CDDR FOO» 
(A B) 
~(LDIFF FOO (COOR FOO) '(1 2» 
(1 2 A B) 
~(LDIFF FOO '(C 0 E F» 
LDIFF: not a tail 
(C 0 E F) 

Note that the value of LD IFF is always new list structure unless y= NIL. in which 
case the value is x itself. 

(LDIFFERENCE x Y) [Function] 
"List Difference.· f Returns a list of those elements in x that are not members of 
Y. 

( lUTE RSECT ION x Y) [Functionl 
Returns a list whose elements are members of both lists x and Y. Note that 
(INTERSECTION X X) gives a list of all members of X without any duplications. 

., .,., ... _-

() 
(>: 

(--") 
\~~~ . 



o 

(UflION x Y) 

DATA TYPES 

[Function] 
Returns a (new) list consisting of ail elements included on either of the two origmal 
lists. It is more efficient to make x be the shoner list. 

The value of UNION is Y with all elements of x not in Y CONSed on the front of 
it. Therefore, if an element appears twice in Y, it will appear twice in (UN ION x 
Y). Since (UNION '(A) '(A A» = (A A), while (UNION '(A A) '(A» 
= (A), UN I ON is non-commutative. 

2.5.7 Searching Lists 

(MEMB X Y) 

(FMEMB X Y) 

(MEMBER x Y) 

(EQMEMB x Y) 

[Function] 
Determines if x is a member of the list Y. If there. is an element of Y EQ to x. 
returns the tail of Y starting with that element. Otherwise, reruI'nS NIL. Examples: 

(MEMB tA '(A (W) C 0» =) (A (W) C D) 

(MEMB 'C ' (A (W) C D» =) (C D) 

(MEMB 'W '(A (W) C 0» =) NIL 

{MEMB '(W) '(A (W) CO» =) NIL 

[Function] 
Faster version of MEMB that terminates on a null-check. 

(Interlisp-lO) Interprete~ FMEMB gives an error, BAD ARGUMEUT - FMEMB, if Y 

ends in a non-list·other than NIL. 

[Function] 
Identical to MEMB except that it uses EQUAL instead of EQ to check membership 
of x in Y. Examples: 

(MEMBER 'C t(A (W) CD» =) (C 0) 

(MEMBER 'W '(A (W) CO» =) NIL 

(MEMBER '(W) '(A (W) CD» =) «W) CO) 

[Function1 
Returns T if either X is EQ to Y. or else Y is a list and x is an FMEMB of Y. 

~.8 Substitution Functions 

(SUBST NEW OLD EXP.R) [FunctionJ 
Returns the result of substituting NEW for all occurrences of OLD in the expression 
EXPR. Substitution occurs whenever OLD is EQUAL to CAR of some subexpression 
of EXPR. or when OLD is atomic and EQ to a non-N I L CDR of some subexpression 
of En'R. For example: 

2.23 



( 

Substitution Functions 

(SUBST 'A '8 '(C 8 (X • B») =) (C A (X • A» 

(SUBST 'A '( 8 C) '( (B C) 0 B C» 
=) (A 0 B C) nm (A 0 . A) 

SUBST returns a copy of EXPR with the appropriate changes. Furthermore, if NEw 
is a list. it is copied at each substitution. 

(OSUBST NEW OLD EXPR) [Funco0I1] 
Similar to SUBST, except it does not copy EXPR. but changes the list strucrure 
EXPR itself. Like SUBST, DSUBST substitutes with a copy of NEW. More efficient 
than SUBST. 

,( LSUBST NEW OLD EXPR) [Function] 
Like SUBST except NEW is substituted as a segment of the list EXPR rather than 
as an element. For instance, 

(LSUBST '(A B) 'Y '(X Y Z» =) (X A B Z) 

Note that if NEW is not a list. LSUBST returns a copy of EXPR with all OLD'S 
deleted: 

(LSUBST NIL 'Y '(X Y Z» =) (X Z) 

(SUBLIS ALST EXPR FLO) [Function] 
to ALST is a list of pairs: 

« OLDl • NEW1 ) (OLD2 • NEW2 ) ••• (OLDN • NEWN » 

Each OLDj is an atom" SUBLIS rerums the result of substituting each NEWj for 
the corresponding OLDi in Ea'R, e.g .• 

(SUBLIS '«A. X) (C • V»~ '(A B CO» =) (X B Y 0) 

',-.- .. - . 

If FLG = NIL. new structure is created only if needed. so if there are no substitutions. 
the value is E Q to EXPR. If FLO = T, the value is always a copy of EXPR. 

(OSUBLIS ALST EXPR FLG) [Function] 
Similar to SUBLIS. except it does not copy EXPR. but changes the list structure 
EXPR itself. 

(SUB PAIR OLD NEW EXPR FLO) [Function] 
Similar to SUB LIS. except that elements of NEW are substituted for corresponding 
atoms of OLD in EXPR. e.g.. . 

{SUBPAIR '(A C) '(X Y) '(A B CO» =) (X B Y 0) 

As with SUBLIS. new structure is created only if needed. or if FLG=T. e.g .• if 
FLG= N IL and there are no substitutions. the value is EO to EXPR. 

If OLD ends in an atom other than NIL. the rest of the elementS on NEW are 
substiruted for ¢at atom. For example. if OLD = CAB . C) and NEW= (U V X 
Y Z). U is substituteEi for A. V for B. and.CX Y Z) for C. Similarly. if OLD itself 

2.24 

(j 
C,' 

() 
\,.;.;.' 



o 
\. 

.\-. 
U 

() 

DATA TYPES 

is an atom (other than NIL), the entire list NEW is substituted for it. Examples: 

(SUBPAIR '(A B • C) '(W X Y Z) '(C A B BY» =) «Y Z) W X 
X Y) 

Note that SUBST, DSUBST, and LSUBST all substiOlte copies of the appropriate expressio~ whereas 
SUBLIS, .and DSUBLIS, and SUBPAI R substitute the identical structure (unless FLG= T). For example: 

.. (SETQ FOO '(A B» 
(A B) 
.. (SETQ BAR '(X Y Z» 
(X Y Z) 
.. (DSUBLIS (LIST ( COt~S 'X FOO) ) BAR) 
{(A B) Y Z) 
.. (DSUBLIS {LIST (CONS 'Y FOO» BAR T) 
«A B) (A B) Z) 
.. {EQ (CAR BAR) fOOl 
T 
.. (EQ (CADR BAR) FOO) 
NIL 

2.5.9 Association Lists and Property Lists 

(ASSOC KEY ALST) [Function] 
ALST is a list of lists. ASSOC returns the first sublist of ALST whose CAR is EQ to 
KEY. If such a list is not found. ASSOC returns NIL. Example: 

(ASSOC 'B '«A. 1) (B • 2) (C • 3») =) (B. 2) 

(FASSOC KEY·ALST) [Function] 
Faster v.ersion of ASSOC that terminates on a null-check. 

(Interlisp-10) Interpreted.. F ASSOC gives an error if ALST ends in a non-list other 
than NIL, BAD ARGUMENT - FASSOC. . 

(SASSOC KEY ALST) [Function] 
Same as ASSOC but uses EQUAL instead of EQ when searching for KEY. 

( PUT ASSOC KEY VAL ALST) [Function] 
Searches ALST for a sub list CAR of which is EQ to KEY. If one is' found. the CDR is 
replaced (using RPLACD) with VAL. If no such sublist is found.. (CONS KEY VAL) 
is added at the end of ALST. Rerurns VAL. If ALST-is not a lis~ generates an error. 
ARG NOT LIST. 

Note that the argument order for ASSOC, PUTASSOC. etc. is-different from that of LISTGET, LISTPUT, 
etc. 

(LISTGEi LST PROP) [Function] 
Similar to GEiPROP (page 2.7) but works on lists using property list format. 
Searches LST two elements at a time. by CDDR. looking for an element EQ to 
PROP. If one is found. returns the next element of LST. otherwise NIL. Returns 

2.25 



Association Lists and Property Lists 

NIL if r..ST is not a list. Example: 

(LISTGET '(A 1 B 2 C 3) 'B) =) 2 

(LISTGET '(A 1 B 2 C 3) 'W) =) NIL 

(LISTPUT LST PROP VAL) [Functionl 
Similar to PUTPROP. Searches LST two elements at a time. by CODR. looking for 
an element EQ to PROP. If PROP is found. replaces the next element of LST with 
VAL. Otherwise. PROP and VAL are added to the end of r..ST. If LST is a list with 
an odd number of elemen~ or ends in a non-list other than NIL. PROP and VAL· 
are added at its beginning. Returns VAL. If r..ST is not a list. generates an error. 

(-~ 
\ / 

( 

ARG NOT LIST. 'r 
(LISTGETt LST PROP_> [Function} \ ) 

Like LISTGET, but searches LST one CDR at a time. Le., looks at each element. C' 
Returns the next element after PROP. Examples: 

(LISTGETl '(A 1 B 2 C 3) 'B) =) 2 

(LISTGETl '(A 1 B 2 C 3) '1) =) B 

(LISTGETl '(A 1 B 2 C 3) 'W) =) NIL 

Note: LISTGETl used to be called GET. 

(LISTPUT1 LST PROP VAL) [Function] 
Like LISTPUT, except searches LST one CDR at a time. Returns the modified !-ST. 
Example: 

.-(SETQ FOa '(A 1 B 2» 
(A 1 8 2) 
+-(LISTPUT FOO '8 3) 
(A 1 B 3) 
+-(LISTPUT FOO 'e 4) 
(A 1 B 3 C 4) 
+-(LISTPUT FOO 1 'W) 
(A 1 W 3 C 4) 
4-FOO 
(A 1 W 3 C 4) 

Note that if LST is not a list. no error is generated.. However. since a non-list 
cannot be changed into a list. LST is not modified.. In this case. the value of 
LISTPUT 1 should be saved. Example: 

4-(SETQ FOO NIL) 
NIL 
"'(LISTPUT FOO fA 5) 
(A 5) 
"'FOO 
NIL 

2.26 

(---) 

~ .. . .... 

(j 
( -" 
~= 



C) 
.. " 

·0-, 

DATA TYPES 

2.5.10 Other List Functions 

(REMOVE x r.) 

(DREMOVE x L) 

(REVERSE L) 

(OREVERSE L) 

2.6 STRINGS 

[Function] 
Removes all top-level occurrences of x from list L~ returning a copy of L with all 
elements EQUAL to x removed. Example: 

(REMOVE fA '(A B C (A) A» => (8 C (A» 

(REMOVE '(A) '(A B C (A) A)} => (A B C A) 

[Function] 
Similar to REMOVE~ but uses EQ instead of EQUAL. and actually modifies the list 
L when removing X, and thus does not use any additional storage. More efficient 
than REMOVE. 

Note that OREMOVE cannot change a list to NIL: 

~(SETQ FOO '(A» 
(A) 
~(DREMOVE 'A FOO) 
NIL 
~FOO 

(A) 

The OREMOVE above returns· NIL. and does not perform any CONSes~ but the value· 
of F 00 is still (A). be"...ause there is no way to change a list to a non-list. See 
NCONC. 

[Function] 
Reverses (and copies) the top level of a list. e.g.. 

(REVERSE '(A B (C D») =) «C D) B A) 

If L is not a list. REVE RSE just returns L. 

[Function] 
Value is the same as that of REVERSE. but DREVERSE destroys the original list 
L and thus does not use any additional storage. More efficient than REVE RSE. 

A string is an object which represents a sequence of characters. Interlisp provides functions for creating 
strings, concatenating strings, and creating sub-strings of a string. 

The input syntax for a string is a double quote ("), followed by a sequence of any characters except 
double quote and %, tenninated by a double quote. The % and double quote characters may be included 
in a string by preceding them with the escape character %. 

Strings are printed by PRINT and PRIN2 with initial and final double quotes. and %5 inserted where 

2.27 



Strings 

necessary for it to read back in properly. Strings are printed by P R I N 1 without the delimiting double 
quotes and extra %s. 

A "null string" containing no characters is input as "". The null string is printed by P R IN T and P R I N 2 
as "". (PRI~Jl "") doesn't print anything. 

Strings are created by MKSTRING~ ALLOCSTRIr~G, SUBSTRING, and CONCAT. 

Internally a string is stored in two parts; a "string pointer" and the sequence of chaI'"CIoCters. Several string 
pointers may reference the same character sequence, so a substring can be made by creating a new string 
pointer, without copying any characters. It is not possible to directly access a character sequence, so 
functions that refer to '~strings" actually manipulate string pointers. In most cases, the user does not have' 
to be aware of string pointers. but there are some situations where it is imponant to understand them. n 
For example, suppose that x is a string pointer to a sequence of characters.. and y is another string pointer \ __ 
to a substring of IS, characters. If the characters of y are modified (with RPLSTRING or RPLCHARCODE), 
the corresponding characters of x will be modified too. C 
(STREQUAL x y) [Function] 

ReturnS T if x and y are both strings and they contain the same sequence of 
characters. otherwise NIL. EQUAL uses STREQUAL. Note that strings may be 
STREQUAL without being EQ. For instance. 

(STREQUAL "ABC" "ABC") =) T 

(EQ "ABC" "ABC") =) NIL 

STREQUAL returnS T if x andy are the same string pointer, or two different string 
pointers which point to the same character sequence. or two string pointers which 
point to different character sequences which contain the same characters. Only iIi 
the first case would x and y be EO. 

(ALLOC~TRI ~JG N rNITCHAR OLD) [Function1 
Creates a string of length N charaters of lNITCHAR (which can be either a character (') 
code or something coercible toa character}. If INITCHAR is NIL.. it defaults to 

character code O. if OLD is supplie~ it must be a string pointer .. which is re-used. 

(MKSTRING X FLG RDTBL) [Function} 
If X is a string, rerurns x. Otherwise. creates and returns a string containing the 
print name of x. Examples: 

(MKSTRING "ABC") => "ABC" 

(MKSTRING '(A B C» => "(A B C)" 

(MKSTRING NIL) => "NIL" 

Note that the last example returns the string" NIL It. not the atom NIL. 

[f FLG is T. then the PR I N2·name of x is used. computed with respect to the 
readtable P..DTBL. For example. 

(MKSTRING "ABC" T) => "%"ABC%"" 
r') 
\ / 

2.28 
G

-:· 
......... ~ .. .. ' 



0'-: 

o. 

6 

DATA TYPES 

(SUBSTRING X N M OLDPTR) [Function] 

- (GN~ x) 

(GLC x) 

Returns the substring of x consisting of the Nth through Mth characters of x. If .. \{ 
is NIL. the substring contains the Nth character rhru the end of x. N and M can be 
negative numbers, which are interpreted as counts back from the end of the string, 
as with NTHCHAR (page 2.10). SUBSTRIHG returns NIL if the substring is not well 
defined. e.g.. N or M specify character positions outside of x, or N corresponds to 
a character in x to the right of the character indicated by M). Examples: 

(SUBSTRING "ABCOEFG" 4 6) =) "OEF" 

(SUBSTRING "ABCDEFG" 3 3) =) "C" 

(SUBSTRING "ABCDEFG" 3 NIL) =) "CDEFG" 

(SUBSTRING "ABCDEFG" 4 -2) =) "OEF" 

(SUBSTRING "ABCDEFG" 6 4) =) NIL 

(SUBSTRING "ABCOEFG" 4 9) =) NIL 

If x is not a string, it is converted to one. For example, 

(SUBST~ING I(A B C) 4 6) =) "B C" 

SUBSTRING does not actually copy any characters. but simply creates a new string 
p-ointer to the characters in x. If OLDPTR is a string pointer, it is modified and 
returned. 

[Function] 
"Get Next Character." Returns the next character of the string x (as an atom); 
also removes the character from the string, by changing the string pointer. Returns 
NIL if x is the null string. If x isn't a string, a string is made. Used for sequential 

. access to characters of a string. Example: 

~(SETQ FOO "ABCOEFG") 
"ABCO"EFG" 
~(GNC FOO) 
A 
~(GNC FOO) 
B 
~FOO 

"COEFG" 

Note that if A is a substring of B, (GNC A) does not remove the character from 
B. GNC doesn't physically change the string of characters. just the string pointer. 

[Function] 
"Get Last Character." Returns the last character of the string x (as an atom); also 
removes the character from the string. Similar to GNC. Example: 

~(SETQ Faa "ABCDEFG") 
"ABCDEFG" 
~(GLC Faa) 

2.29 

! 

\ 

-I 



G 
... (GLC FOO) 
F 
"'FOO 
"ABCDE" 

Strings 

(CONCAT Xl X2 ••• XN) [NoSpread FunctionJ 
Returns a new string which is the concatenation of (copies of) its arguments. Any 
argumenTS which are not strings are trlUlSformed to strings. Examples: 

(CONCAT "ABC" 'DEF "GHI") => "ABCDEFGHI" 

(CONCAT '(A B C) "ABC") => "(A B C)ABC" 

( CONCA T) returns the null string, "". 

(COr~CATLIST ;C) [Function} 
X is a list of strings andl or other objects. The objects are transformed to strings if 
they aren't strings. Returns a new string which is the concatenation of the strings. 
Example: 

(CONCATLIST t(A B (C b) "EF"» => "AS(C D)Ef" 

(RPLSTRING X N Y) [Function] 
Replaces the characters of string x beginning at character position N with string 
Y. X and y are convened to strings if they aren't already. N may be positive or 
negative, as with SUBSTRING. Characters are smashed into (convened) x. Returns 
the string x. Examples: 

(RPLSTRING "ABCDEF" -3 "END") =) "ASCEND" 

(RPLSTRING "ABCDEFGHIJK" 4 '(A B C» =) "ABC(A ~ elK" 

Generates an error if there is not enough room in x for Y. Le.. the new string 
would be longer than the original. If y was not a string, X will already have been 
modiiied since RPLSTRING does not know whether Y will "fit't without actually 
attempting the transfer. 

Note that if x is a substring of Z. Z will also be modified by the action of 
RPLSTRING. Example: 

... (SETQ Foe "ABCDEFG") 
"ABCDEFG" 
... (SETQ BAR (SUBSTRING FOa 46) 
"OEF" 
... (RPLSTRING BAR 2 "XV") 
"OXY" 
... Faa 
"ABCDXYG" 

(RPlCHARCODE x N CHARCODE) [Function} 
Replaces the l'lth character of the string x widl the character code CH.-\RCODE. N 

may be positive or negative. Returns the new x. Similar to RPlSTRING. Example: 

2.30 



o 

DATA TYPES 

(RPLCHARCOOE "ABCOE" 3 (CHARCODE F» =) "ABFDE" 

(STRPOS PAT STRING START SKIP ANCHOR TAlL) [Function] 

(STRPOSL A STR 

STRPOS is a function for searching one string looking for another. PAT and 
STRING are both strings (or else they are convened automatically). STRPOS 
searches STRING beginning at character number START, (or 1 if START is rJ I L) 
and looks for a sequence of characters equal to PAT. If a match is found. the 
character position of the first marching character in STRING is returnec1 otherwise 
NIL. Examples: 

(STRPOS "ABC" "XYZABCDEF") =) 4 

(STRPOS "ABC" "XYZABCDEF" 5) =) NIL 

(STRPOS "ABC" "XYZABCDEFABC" 5) =) 10 

SKIP can be used to specify a character in PAT that matches 'any character in 
STRING. Examples: 

(STRPOS "A&C&" "XYZABCDEF" NIL '&) =) 4 

(STRPOS "DEF&" "XYZABCDEF" NIL '&) => NIL 

If ANCHOR is T, STRPOS compares PAT with the characters beginning at position 
START (or 1 if START is NIL). If that cOII?-parison fails, STI1.?OS returns ~JIL 
without searching any funher down STRING. Thus it can be used to compare one 
string with some portion of another string. Examples: 

(STRPOS "ABC" "XYZABCOEF" NIL NIL T) =) NIL 

(STRPOS "ABC" "XYZABCOEF" 4 NIL T) =) 4 

Finally, if TAlI. is T, the value returned by STRPOS if successful is not the starting 
position of the sequence of characters corresponding to PAT, bur the position of the 
first character after that, Le., the starting position plus (NCHARS PAT). Examples: 

(STRPOS "ABC" "XYZABCDEFA8C" NIL.NIL NIL T) => 7 

(STRPOS "A" "A" NIL NIL NIL T) =) 2 

If TAlL=NIL, STRPOS returns NIL. or a character position within STRING which 
can be passed to SUBSTRING. In panicular, (STRPOS "It "") => NIL. 
However, if TAlL=T, STRPOS may return a character position outside of STRING. 
For instance. note that the second example above returns 2, even though "A" has 
only one character. 

START NEG) [Function] 
STR is a string (or els~ it is convened automatically to a string), A is a list 
of characters or character codes. STRPOSL searches STR beginning at character 
number START (or else 1 if START = NIL) for one of the characters in A. If one is 
found.. STRPOSL returns as its value the.corresponding character position. other.vise 
NIL. Example: 

2.31 



Arrays 

(STRPOSL '(A B C) "XYZBCD") =) 4 

If NEG=T, STRPOSL searches for a character not on A. Example: 

(STRPOSL '(A B C) "ABCDEFft·NIL T) =) 4 

If any element of A is a number. it is assumed "to be a character code. Otherwise. 
it is convened to a character code via CHCON1. Therefore. it is more efficient to 
call STRPOSL with A a list of character codes. 

If A is a bit table. it is used to specify the characters (see MAKEBITTABLE below) 

STRPOSL uses a "bit table" data structure to search efficiently. If A is not a bit table. it is convened it to 
a· bit table using MAKES ITTABLE. If STRPOSL is to be called frequently with the same list of characters. (\~\ 

-. a considerabl~_savings can be achieved by converting the list to a bit table once. and then passing the bit _) 
table to STRPOSL as its first argument. ('.~ 

(ft1AKEBITTABLE L NEG A) [Function] 
Returns a bit table suitable for use by STRPOSL. L is a list of characters or 
character codes. NEG is the same as described for STRPOSL. If A is a bit table, 
MAKES ITTABLE modifies and returns it. Otherwise, it will create a new bit table. 

Note: if NEG=T, STRPOSL must call MAKEBITTABLE whether A is a list or a bit table. To obtain bit 
table efficiency with NEG=T, MAKEBITTABLE should be called with NEG=T, and the resulting '4invened" 
bit table should be given to STRPOSL with NEG=NIL. 

2.7 ARRAYS 

An array in Interlisp is an object representing a one-dimensional vector of objects. Arrays do not have 
input syntax; they can only be created by the function ARRAY. Arrays are printed by PRINT, PRINZ. 
md P R IN 1 as # followed by an integer. 

Note: Interlisp-IO and Interlisp-Vax provide a much more primitive version of arrays than other 
implementations of Interlisp. See page 2.33. 

(ARRAY SIZE TYPE INIT ORIG) [Function] 
Creates and returns a new array capable of containing SIZE objects of type 
TYPE. TYPE may be one of BIT, BYTE. WORD. FIXP. FLOATP. POINTER, or 
DOUBLEPOINTER.4 ARRAY also accepts any ·'type" which is legal in DATATYPE 
records (such as (BITS 7). FLAG. see page 3.7). (Note: DATATYPE types are 
coerced into the next "enclosing" array type. Therefore. users should not rely on 
truncation of values stored in arrays of these types.) 

-l For backward compatibility with Interlisp-10 arrays. TYPE can be NIL or 0 (meaning to create an array of 
type DOUSLEPOINTER) or SIZE (meaning an array of type FIXP). For arrays of type DOUBLEPOINTER. 
the functions ELTD and SETD are defined the same as in Interiisp-10 (page 2.34). For arrays of any 
other tyoe. ELTD and SETD are the same as ELT and SETD. Combined POINTER/FIXP arrays are not 
supponed. Interlisp-D users should avoid using Interiisp-10 arrays. . 

. 2.32 

n \ /' 

~ . 



0(;: 

(ELT A N) 

(SET,A A N vl 

(ARRAYTYP A) 

(ARRAYSIZE A) 

(ARRAYORIG A) 

(COPYARRAY A) 

DATA TYPES 

IN1T is the initial value in each element of the new array. If not specified. the array 
elements will be initialized with 0 (for number arrays) or NIL (all other types). 

Arrays can have either o-origin or I-origin indexing, as specified by the ORIG 
argument; if ORIG is not specified, the default is 1. 

[Function] 
Returns the Nth element of the array A. 

[Function} 
Sets the Nth element of the array A to v. SETA returns v. 

[FunctionI 
Returris a value corresponding to the second argument to ARRAY. 

Note: If ARRAY coerced the array type as described above, ARRAYTYP will return 
the new type. 

[Function] 
Returns the size of array A. Generates the error, ARG NOT ARRAY, if A is not an 
array. 

[Function1 
Returns the origin of array A.. which may be 0 or 1. Generates an -error, ARG tJOT' 
ARRAY, if A is not an array. 

[Function1 
Returns a new array of the same size and type as A. and with the same contents 
as A. GenerateS an ARG NOT ARRAY error, if A is not an array. 

2. 7.1 Interlisp-lO Arrays 

Interlisp-lO and Interlisp-Vax have a more primitive array facility than the other implementations of 
Interlisp. In Interlisp-IO, arrays are partitioned into four sections: a header, a section containing unboxed 
numbers. a section containing list cells (each with a CAR and CDR). and a section containing relocation 
information. The last three sections can each be of arbitrary length (including 0); the header is two words 
long and contains the length of the other sections. The unboxed number region of an array is used to 
store 36 bit quantities that are not Interlisp pointers. and therefore are not to be chased during garbage 
collections, e.g. machine instructions. The relocation informaion is used when the array contains the 
definition of a compiled functio~ and specifies which locations in the unboxed region of the array must. 
be changed if the array is moved during a garbage collection. 

ARRA Y returns an "array pointern to the beginning of the array, but it is also possible to create a pointer 
into the middle of an array>ARRAYP will accept a pointer into the middle of an array, but ELT. SETA. 
ELTO, and SETD generate an error, ARG NOT ARRAY, if A is not,an array pointer to the beginning of 
an array. 

. 
Array-pointers print as #NNNN. where NNNN is the octal representation of the pointer. Note that #NNNN 

will b~ read as a literal atom. and not an array pointer. 

The following functions are used to manipulate Interlisp-10 arrays: 

. 2.33 



(ARRAY N P v) 

(El.T A N) 

(SETA A N V) 

(El.TO A N) 

(SETD A N V) 

-I ARRAYTYP A) 

(ARRAYP X) 

(ARRAYBEG A) 

(ARRAYORIG A) 

n 
Interlisp-lO Arrays C-:. 

[Function] 
Allocates a block of N+ 2 words. of which the first two are header information. 
The next p « N) words contain unboxed numbers, and are initialized to unboxed 
O. The last N-P (> 0) words are list cells; both CAR and COR are available for 
storing information. and each is initialized to v. If p is NIl... 0 is used (i.e.~ an array 
containing all Interlisp pointers). ARRAY returns an "array pointer'~ to the array. 

If sufficient space is not available for the array, a garbage collection of array space is 
initiated. If this is unsuccessful in obtaining sufficient space, an error is generated. 
ARRAYS FULL. 

[Function] 
Returns the Nth element of the array A. (E L TAl) is the first element of the 
array (actually corresponds to the 3rd cell because of the 2 word header). 

If N corresponds to the unboxed number region of ~ E L T returns the full 36 bit 
word as a boxed integer. If N corresponds to the list cell region of A. E L T rerurns 
the CAR of the corresponding element. 

[Function] 
Sets the Nth element of the array A to v. If N corresponds to the unboxed number 
region of A. v must be a number. and is unboxed and stored as a full 36 bit word 
into the Nth element of A. If N corresponds to the list cell region of A. v replaces 
the CAR of the Nth element. SETA returns v. 

[Function1 
Same as EL T for the unboxed number region of ~ but rerurns the· CDR of the Nth 
element. if N corresponds to the list cell region of A. 

[Function1 
Same as SETA for the unboxed number region of A. but sets the CDR half of the 
Nth element. if N corresponds to the list cell region of A. SETD rerurns v. 

[Function] 
Returns the number of unboxed number words of array A. This value corresponds 
to the second argument to ARRAY. . 

[Function] 
Rerurns x if X is an array pointer. otherwise NIL. No check is made to ensure t.hat 
X actually addresses the beginning of an array. 

[Function] 
If A is a pointer into the middle of an array, returns the pointer to its beginning. 
Otherwise returns NIL. 

[Function] 
Rerurns 1. A dummy function provided for compatibility with other Interlisp 
arrays. 

2.34 

n 
C-~-'-;' -.. . ~ . 

I 

(~ 
\ / 

\.j. 



o::·~· 

o 

DATA ITPES 

2.8 HASH ARRAYS 

Hash arrays provide a mechanism for associating arbitrary lisp objects C'hash keys") with other objects 
("hash values"), such that the hash value associated with a particular hash key can be quickly obtained.. 
A set of associations eQuId be represented as a list or array of pairs, but these schemes are very inefficient 
when the number of associations is large. There are functions for creating hash arrays, putting a hash 
ke)t/value pair in a hash array, and quickly retrieving the hash value associated with a given hash key. 

Hash keys can be any lisp object, but is should be noted that the hash array functions use E Q for 
comparing hash keys. Therefore, if non-atoms are used as hash keys, the exact same object (not a copy) 
must be used to retrieve the hash value. 

In the description of the functions below, the argument HA.R.RAY has one of three forms: NIL, in which 
case a bash array provided by the syste~ SYSHASHARRAY, is used; a hash-array created by the function 
HARRAY: or a list. CAR of which is a hash array. The. latter form is used for specifying what is to be 
done on overflow, as described below. 

(HARRAY'LEN) [Function] 
Creates a hash array containing at least LEN hash keys. 

(HARRAYSIZE HARRAY) [Function} 
Rerurns the size of HARRAT. the number of hash keys it can hold before becoming 
"full" . 

(CLRHASH HARRAY) . [Function] 
Oears all hash keys/values from HARRAY. Returns RARRAY. 

(PUT HASH KEY VAL HARRAY) [Function] 
Associates the hash value VAL with the hash key KEY in H.A.RRAY. Replaces the 
previous hash value. if any. If VAL is NIL. any old association is removed (hence 
a hash value of NIL is not allowed). If HARRAY is full when PUTHASH is called 
with a key not already in the hash array, the function HASHOVERFLOW is callecL 
and the PUTHASH is done to the value returned (see below). Returns VAL. 

(GETHASH KEY HARRAY) . [Function] 
Returns t.he hash value associated with the hash key KEY in HARRAY. Rerurns NIL, 
if KEY is not found. 

(REHASH OLDHARRAY NEWHAR.RAY) [Function} 
Hashes all hash keys and values in OLDHARRAY into NE'WHA.RR.AY. The two hash 
arrays do not have to be (and usually aren't) the same size. Returps NE~Y. 

(MAPHASH HAR..RA.Y MAPHFN) [Function] 
MAPHFN is a function of two arguments. For each hash key in HARRAY, MAPHFN 

will be applied to (1) the hash value, and (2) the hash key. For example, 

[MAPHASH A 
(FUNCTION (LAMBDA (VAL KEY) 

(if (LISTP KEY) then (PRINT VAL)] 

will print the hash value for all hash keys that are lists. MAPHASH returns HAJlRAY. 

2.35 



Hash Overflow, 

(DMPHASH HA..R.RAY1 HARRAY2 ••• HARR.AYN ) [NLambda NoSpread Function] 
Prints on the primary,output file LOADable forms which will restore the hash-arrays 
contained as the values of the atoms HARRAY1, H.ARR.AY 2' ••• HARRAY N. Example: 
(OMPHASH SYSHASHARRAY) will dump the system hash-array. 

Note: all EO identities except atoms and small integers are lost by dumpiag 
and loading because R fAD will create new structUre for each item. Thus if two 
lists contain an E Q subStnlcmre, when they are dumped and loaded back in. the 
corresponding- substructures while EQUAL are no longer EQ. The HORRIBLEVARS 
file package command (page ILlS) provides a way of dumping hash tables such 
that these identities 'are preserved. -

2.8.1 Hash Overflow 

When a hash array becomes fulL attempting to add another hash key will cause the function 
HASHO\iERFLOW to be called. Tnis will either automatically ~nlarge the hash array, or cause the error 
HASH TABLE FULL How hash overflow is handled is determined by the form that was passed to 
PUTHASH: 

HA.RR.AY 

NIL 

(HARRAY • N) 

(IiARRAY • F) 

~ H.A1tR.A.Y • FN) 

(HARRAY) 

If a plain hash array is passed to a hash functio~ and it overflows, the error HASH 
ARRAY FULL is generated. 

. . 

If a hash function is passed MIL as its I:IARRA.Y argument. the system hash array 
SYSHASHARRAY is used. This array is not used by the syste~ but is provided for 
the user. If SYSHASHARRAY overflows, it is automatically enlarged by 1.5. 

N is a positive integer. This form specifies that upon hash overflow, a new 
hash-array is created with N more cells than the current hash-array. 

F is a floating point number. This form specifies that upon hash overfiow. the new 
hash array will be F times the size of the current hash-array. 

FN is a function name or a lambda expression. This form specifies that upon hash 
overflow, FN is called with (HARRAY • F'N) as its argument. If FN rerurns a 
number, the number will be the size of the new hash array. Otherwise. the new 
size defaults to 1.5 times the size of the old hash array. FN could be used to print 
a message, or perform some monitor function. 

Equivalent to (HARRAY • 1. 5 ) . 

If a list form is used. upon hash overflow the new hash-array is RPLACAed into the dotted pair~ and 
HASHOVERFLOW returns it. 

2.9 NUJVIBERS AND ARITHL\tIETIC FUNCI10NS 

Numerical arcms. or simply numbers. do not have value cells. function definition cells. property lists. 
or explicit print names. There are three different types of numbers in Interlisp: small integers. large 
inregers. and floating point numbers. Small integers are those integers that can be directly stored within a 

2.36 

n 
( 

() 
( 

n 
(;. 



o 

DATA TYPES 

pointer value. The range of small integers is implementation-dependent Since a large integer or floating 
point number can be (in value) any full word quantity (and vice versa), it is necessary to distinguish 
between those full word quantities that represent large integers or floating point numbe~ and other 
Interlisp pointers. We do this by "boxing" the number: When a large integer or floating point number is 
created (via an arithmetic operation or by READ), Interlisp gets a new word from "number storage·' and 
puts the large integer or floating point number into that word. Interlisp then passes around the pointer to 
that word, Leey the "boxed number", rather than the actual quantity itself. Then when a numeric function 
needs the acwal numeric quantity, it performs the extra level of addressing to obtain the "value" of the 
number. This latter process is called "unboxing". Note that unboxing does not use any storage, but that 
each boxing operation uses one new word of number storage. Thus, if a computation creates many large 
integers or floating point numbers, Leey does lots of boxes, it may cause a garbage collection of large 
integer space, or of floating point number space. Different implementations of Interlisp may use different 
boxing strategies. Thus, while lots of arithmetic operations may lead to garbage collections. this is not 
n~~ssarily always the case. . 

The following functions can be used to distinguish the different types of numbers: 

(SMALLP x) 

(FIXP x) 

(fLOATP x) 

(NUMBER? x) 

[Function] 
Returns X. if x is a small integer; NIL otherwise. Does not generate an error if x 
is not a number. 

[Function] 
Returns X. if x is an integer (between MIN. FIXP and MAX. FIX?); f~IL otherwise. 
Note that FIX? is true for both large and small integers .. Does not generate an 
error if x is not a number. 

[Function] 
Returns x if x is a floating point number; NIL otherwise. Does not give an error 
if x is not a number. 

[Function] 
Rewms x. if x is a number of any type (F IX? or FLOAT?); NIL otherNise. Does 
nal generate an error if x is not a number. 

Note that if (NUMBER? x) is true, then either (FIX? x) or (FLOAT? x) is 
true. 

Each small integer has a unique representation, so EQ may be used to check equality. Note that EQ 
should not be used for large integers or floating point numbers. EQP. lEQ?, or EQUAL must be used 
UasteacL . 

(EQ? x Y) [Function] 
Returns T, if x and y are E Q, or equal numbers: NIL otherwise. Note that E Q 
may be used if x and y are known to be small integers. EQP does not convert 
x and y to integers. e.g.. (E Q P 2000 2 000 . 3 ) = ) NIL. but it can be used 
to compare an integer and a floating point number, e.g., (E Q P 2 a a a 2 a 0 0 . 0 ) 
=) T. EQP does nat generate an error if x or yare not numbers. . 

Note: EQP can also be used to compare stack pointers (page 7.3) and compiled 
code objects (page 5.8). 

2.37 



Integer Arithmetic 

2.9.1 Integer Arithmetic 

The input syntax for an integer is an optional sign (+ or -) followed by a sequence of digits. followed 
by an optional Q, and terminated by a delimiting character. If the Q is present. the digits are interpreted 
in octal otherwise in d~ e.g. 77Q and 63 both correspond to the same integers, and in fact are 
indistinguishable internally since no record is kept of how integers were created. 

The' setting of RAO I X (page 6.19), determines how integers are printed: signed or unsigne~ octal or 
decimal. 

Integers are created by PACK and MKATOM when given a sequence of characters observing the above 
syntax. e.g. (PACK '( 1 2 Q) =) 10. Integers are also created as a result of arithmetic operations. 

. ___ -'"'1l~ _ range of integers of various types is implementation-dependent. This information is accessable to the 
. .5er through the following variables: 

Mlrf. SMALL? 
MAX. SMALL? 

MIN.FIXP 
MAX. F.IXP 

M"IN.INTEGER 
MAX. INTEGER 

The smallestl1argest possible small integer. 

The smallest/1argest possible large integer. 

[Variable] 
[Variable] 

[Variable] 
[Variable] 

[Variable] 
[Variable] 

The smallestl1argest possible integer representable. Currently. these variables 
are equal to MI~~. FIXP and MAX. F IXP; they may be different in future 
implementations with other methods for representing integers. 

In Interlisp-D, the action taken on integer overflow is determined with the following function: 

(J., 
(. .': : ".:1 . 

(OVERFLOW FLG) [Function] ) 
Sets a flag that determines the system response to integer overfiow~ returns the (, 
previous setting. If FLG = T, an error occurs on integer overflow. If FLG = NIL. the \:':"~~ . 
largest (or smallest) integer is returned as the result of the overflowed computation. 
If FLG = 0, the result is returned modulo 21'32 (the default action). 

All of the functions described below work on integers. Unless specified otherwise. if given a floating point 
number. they first convert the number to an integer- by truncating the fractional bitS. e.g., (I PLUS 2.3 
3.8) = 5; if given a non-numeric argumenL they generate an error. 'NON -NUME RI C ARG. 

XN ) 
Returns the sum Xl + X2 + ... + XN' (IPLUS) = o. 

(IMINUS x) 
-x 

(IDIFFERENCE x y) 
X-y 

2.38 

[NoSpread Function] 

[Function] 

[Function1 

() 
~ .. 



(J 

o 

(ADDl x) 

(SUBl x) 

(IQUOTIENT x Y) 

DATA TYPES 

x+l 

x- 1 

XN) 

Returns the product Xl • x 2 • 00' • XN0 (ITIMES) = 1. 

x / y truncated. Examples: 

(IQUOTIENT 3 2) =) 1 

(IQUOTIENT -3 2) =) -1 

[Function] 

[Function] 

[NoSpread Function] 

[Function] 

. (IREMAINDER x y) . [Function] 

(IMOD x y) 

(IGREATERP x y) 

(ILESSP x y) 

(IGEQ x y) 

(ILEQxy) 

Returns' the remainder when x is divided by Y. Example: 

(IREMAINDER 3 2) =) 1 

[Function] 
Computes the integer modulus; this differs from IREMAINOER in that the result 
is always a non-negative integer in the range [0 • Y). 

[Function] 
T, if x > r. NIL otherwise. 

[Function] 
T, if x < r, NIL otherwise. 

[Function] 
T, if x > r, NIL otherwise. 

[Function] 
T, if x < Y; NIL otherwise. 

X N ) [NoSpread Function1 
Returns the minimum of Xl' X 2t •• " xN0 (1M IN) rerurns the largest possible large 
integer. the value of MAX ° F I X P. 

(IMAX Xl X2 .•• XN ) [NoSpread Function] 

(IEQPNM) 

(ZEROP x) 

Returns the maximum of Xl' X 2, •••• XN0 (IMAX) returns the smallest possible 
large integer, the value of MIN. F I X P. 

[FunctionJ 
Returns T if N and M are EQ or equal integers: NIL otherwise. Note that EQ 
may be used if N and M are known to be small integers. IEQP convertS Nand M 

to integers. e.g., (lEQP 2000 2000.3) '=) T. Causes NON-NUMERIC ARG 
error if either N or M are not numbers. 

[Functionj 
(EQ x 0). 

2.39 



(MINUSP x) 

(FIX x) 

. {GCe x y) 

Logical Arithmetic Functions 

Note: ZEROP should not be used for floating point numbers because it uses EQ. 
Use (EQP x 0) instead. 

[Function] 
Returns T if x is negative: NIL otherwise. Does not convert x to an integer. but 
simply checks the sign bit. 

[Function] 
If x is an integer~ returns x. Otherwise. convertS x to an integer by truncating 
fractional bits, e.g.. (F I X 2.3) = > 2, (F IX -1. 7 ) =) -1. 

Since FIX is also a programmer's assistant command (page 8.10), typing FIX 
directly to Interlisp will not cause the function F I X to be called. 

[Function] 
ReturnS the greatest common divisor of x and Y, e.g., (GCD 72 64) = 8. 

2.9.2 Logical Arithmetic Functions 

(LOGAND Xl x:J ... xN ) [NoSpread Function] 
ReOlrns the logical AND of all its arguments, as an integer. Example: 

(LOGAND 7 5 6) =) 4 

(LOGOR Xl X2 .•. x N ) [NoSpread Function} 
ReOlrns the logical OR of all its arguments, as an integer. Example: 

(LOGOR 1 3 9) =) 11 

(LOGXOR Xl X2 .•. xN ) 'JIll [NoSpread Function] 

(LSH x N) 

(RSH x N) 

(LLSH x N) 

Returns the logical exclusive OR of its arguments, as an integer. Example: 

(LOGXOR 11 5) => 14 

(LOGXOR 11 5 9) <=) (LOGXOR 14 9) => 7 

[Functionl 
(arithmetic) "'Left Shift" Returns x shifted left N places. with the sign bit 
unaffected. x can be positive or negative. [f N is negative, x is shifted right -N 

places. 

[Function} 
(arithmetic) .6Right Shift:' Returns x shifted right N places. with the sign bit 
unaffected. and copies of the sign bit shifted into the leftmost bit. x can be 
positive or negative. If N is negative, x is shifted left -N places. 

Warning: Be careful if using RSH to simulate division: RSHing a negative number 
is not generally equivalent to deviding by a power of two. 

[Function1 
"Logical Left Shift.·· 

2.40 

() 
C·· 

()~. 
-C· 



DATA TYPES 

(LRSH x N) [Function] 
"Logical Right Shift." 

(INTEGERLENGTH N) [Function] 

(POW.EROFTWOP N) 

(EVENP x y) 

Rerurns the number of bits needed to represent N (coerced to a F IXP). This is 
equivalent to: l+fioorflog2[abs[N]]]. (INTEGERLEr~GTH 0) = o. 

[Function] 
Returns non-r~IL if N (coerced to a FIX?) is a power of two. 

[NoSpread Function] 
If y is not given. equivalent to (ZERO? (IMOO x 2»; otherwise equivalent to 
(ZEROP (IMOD x Y». 

00:, (OOOP x y) [NoSpread Function] 
Equivalent to (NOT (EVENP x Y». 

f
O 

o 

The difference between a logical and arithmetic right shift lies in the treatment of the sign bit. Logical 
shifting treats it just like any other bit; arithmetic shifting will not change it, and will "propagate" 
rightward when actually shifting rightwards. Note that shifting (arithmetic) a negative number "all the 
waf' to the right yields -1., not O. 

The following "logical" arithmetic functions are derived from Common lisp. and have both macro 
and function definitions (the macros are for speed in running of compiled code). The following code 
equivalences are primarily for definitional purposes. and should not be considered an implementation 
(especially since the real implementation tends to be faster and less "consy" than would be apparent from 
the code here). 

Note: The following logical functions are cun-ently only implemented in lnterlisp-D. 

(LOG1~OT N) 
(LOGXOR N -1) 

(BITTEST N MASK) 
(NOT (ZERO? (LOGAND N ~K») 

(BITCLEAR N ~K) 
. (LOGAND N (LOGNOT ~K» 

(BITSET N MASK) 

(LOGOR N MASK) 

(MASK.l'S PO~ON S~) 

(LLSH (SUBl (EX?T 2 SIZE» 

POSITION) 

(MASK.O' S POSITION SIZE) 

(LOGNOT (MASK. 1 t S POSITION SIZE» 

(LOADBYTE N POSITION SIZE) 

(LOGAND (LRSH N POSITION) 

2.41 

[.function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 



Floating Point Arithmetic 

(MASK.l'S 0 SUE» 

(DEPOSITBYTE N POSnITON S~E BYTE) [Function] 

(LOGOR (B ITCLEAR N (MASK. l' S POSITION SIZE» 
(LLSH (LOGAND BYTE (MASK.l'S 0 SUE» 

POSITION) ) 

(ROT x N FIELDSUE) [Function] 
uRowe bits in fieldn

• This is a slight extension of the CommonLisp ROT function. 
It performs a bitwise left-rotation of the integer ~ by N plac~ within a field of 
FIELDSIZE bits wide. Bits being shifted out of the position selected by (EXPT 2 
( SUB 1 FIELDSUE» will flow into the "units" position. 

The optional argument FIELDSIZE defaults to the "celr' size (the integerlength of 
the current maximum F I X P), and must either be a positive integer, or else be one 
of the litatoms CELL or WORD. In the latter two cases the appropriate numerical 
values are respectively substituted. A macro optimizes the case where FIELDSUE is 
WORD and N is L 

The notio.ns of position and size can be combined to make up a "byte. specifier''' which is constructed by 
the macro BYTE [note reversal of arguments as compare with above functions]: 

(BYTE SIZE POSITION) [Macro] 
Constructs and returns a "byte specifier" containing SIZE and POSITION. 

(BYTESIZE BYTESPEC) [NfacroJ 
Returns the SIZE componant of the "byte specifier" BYTESPEC. 

(BYTEPOSITION BYTESPEC) [Macro] 
Returns the POSITION componant. of the "byte specifier" BYTESPEC. 

(LDB BYTESPEC VAL) 

(LOAOBYTE VAL 

( D PB N BYTESPEC VAL) 

(BYTEPOSITION BYTESPEC) 
(BYTESIZE BYTESPEC» 

(DEPOSITBYTE VAL 

2.9.3 Floating Point Arithmetic 

(BYTEPOSITION BYTESPEC) 
(BYTESIZE BYTESPEC) 
N) 

[Macro] 

[Macro1 

A floating point number is input as a signed integer. followed by a decimal point followed by another 
sequence of digits called the fraction. followed by an exponent (represented by E followed by a signed 
integer) and terminated by a delimiter. 

2.42 

n 
r 
\.; 

n 
Q~ . ~ .. ~~;., . 

Cl . r·-' -.~ ... \lj-r. 



. i 0/ .\ 

o 

DATA TYPES 

Both signs are optional and either the fraction following the decimal point, or the integer preceding the 
decimal point may be omitted.. One or the other of the decimal point or exponent may also be omitted.. 
but at least one of them must be present to distinguish a floating point number from an integer. For 
example, the following will be recognized as floating point numbers: 

5. 
5EZ 

5.00 
5.1EZ 

5.01 
5E-3 

.3 
-5.ZE+6 

Floating point niImbers are printed using the format control specified by the function FL TFMT (page 
6.20). FL TFMT is initialized to T, or free format. For example, the above floating point numbers would 
be printed free format as: 

5.0 
500.0 

5.0 
510.0 

5.01 
.005 

.3 
-5.ZES 

Floating point numbers are created by the read program when a "." or an E appears in a number. 
e.g., 100 0 is an integer. 10 0 o. a floating point number, as are 1 E 3 and 1. E 3. Note that 1000 D, 
1000F, and lE3D are perfectly legaIliteral atoms. Floating point numbers are also created by PACK and 
MKATOM, and as a result of arithmetic operations. 

PRIt~TNUM (page 6.21) permits greater controls on the printed appearance of floating point numbers. 
allowing such things as left-justification, suppression of trailing decimals, etc. 

The floating point number range is stored in the following variables: 

MIN. FLOAT [Variable] .' 
The smallest possible floating point number. 

MAX. FLOAT [Variable] 
The largest possible floating point number. 

All of the functions described below work on floating point numbers. Unless specified otherwise, if given an 
integer, they first conven the number to a floating point number, e.g., (FPLUS 1 Z. 3) <=) (FPLUS 
1.0 Z. 3) =) 3.3; if given a non-numeric argument, they generate an error. NON-NUMERIC ARG. 

(FPLUS Xl X2 •.• X N ) 
. Xl + x 2 + ... + XN 

(FMINUS x) 
-x 

(FDIFFERENCE x y) 
X-y 

(FTIMES Xl X2 ... XN) 

Xl • X2 • .•. • XN 

(FQUOTIENT x y) 
X/y 

(FREMAIHDER x Y) 

[NoSpread Function] 

[Function] 

[Function] 

[NoSpread Function] 

[Function] 

[FunctionJ 
Returns the remainder when X is divided by Y. Equivalent to: 

2.43 



Mixed Arithmetic 

(FDIFFERENCE x (FTIMES Y (FIX (FQUOTIENT x Y»» 
Example: 

(FREMAINOER 7.5 2.3) =) 0.6 

(MINUSP x) [Function] 
T, if x is negative; NIL otherwise. Works for both integers and floating point 
numbers. 

(FGREATERP x Y) [Function] 

(FLESSP x y) 

(FEQP x Y) 

T, if x > Y, NIL otherwise. 

(Function] 
T t if x < Y, NIL otherwise. 

[Function] 
ReturnS T if N and M are equal Boating point numbers; NIL otherwise. FEQP 
convens N and M to floating point numbers.Causes NON-NUMERIC ARG error if 
either N or M are not numbers. ' 

(FMIN Xl X2 ••• X N ) [NoSpread Function] 

(FLOAT x) 

Returns the minimum of Xl' X 2t '.', XN. (FMIN) returns the largest possible 
floating point number. the value of MAX. F LOA T. 

X N ) [NriSpread Function] 
Returns the maximum of Xl' X2 t ••• , X N• (FMAX) returns the smallest possible 
floating point number, the value of MIN. FLOAT. 

[Function] 
ConvertS x to a floating po~t number. Example: 

(FLOAT 0) =) 0.0 

2.9.4 Mixed Arithmetic 

The functions in this section are "generic" floating point arithmetic functions. If any of the argumenrs 
are floating point numbers. they act exactly like floating poine functions. and float all argumentS, and 
rerum a floating point number as their value. Otherwise. they act like the integer functions. If given a 

. non-numeric argument, they generate an error. NON-NUMERIC ARG. 

(PLUS Xl X~ XN) [NoSpread Function] 
Xl + x2 + ... + X N · 

(MINUS x) [Function] 
-x 

(DIFFERENCE x y) [Function] 
X-y 

2.44 

() 
r· ".-

c) 
..... C·---· 



() 

(TIMES Xl X:z ••• X N ) [NoSpread Function] 
* X * * X Xl :2 ••• N 

(QUOTIENT x Y) [Function] 
If x and yare both integers, returns ( IQUOT I EnT x YL otherwise ( FQUOT I EN! 
x Y). 

(REMAINDER x Y) [Function] 

(GREATERP x y) 

Ifxand Yare both integers, returns (IREMAINDER x Y), otherwise (FREMAINDER 
x Y). 

[Function] 
. T, if x> Y, NIL otherwise. (j 

,r--,"-- (LESSP x Y) [Function1 
~..;~ 

:..:~ 

T if X < Y, NIL otherwise. 

(GEQ x Y) [Function] 
T, if x > Y, NIL otherwise. 

(LEQ x Y) [Function] 
T, if x :::; Y, NIL otherwise. 

(MIN Xl X:2 ••• xN ) [NoSpread Function] 
( MIN) returns the value of Returns the, minimum of Xl' X:z, 

MAX. It~TEGER. 
... , 

(MAX Xl X:z ••• XN) [NoSpread Function] 
( MAX) rerurns the value of 

(ABS x) 

Returns the maximLL.-:l of Xl' X:r 
MIN. INTEGER. 

[Function] 
X if x> O. otherwise ·x. ASS uses GREATERP and MINUS, (not IGREATERP and~ 
IMINUS). \ / 

2.95 Special Functions 

(EX?T M'N) 

(SQRT N) 

(LOG x) 

[Function] 
Returns M'tN. If M is an integer and N is a positive integer. returns an integer. 
e.g, (EXPT 3 4) =) 81. otherwise returns a floating point number. If M is 
negative and N fractional. an error is generated. ILLEGAL EXPONENT IAT ION. If 

. N is floating and either too large or too smalt an error is generated. V A L U E au T 
OF RANGE EX?T. 

[Function] 
Returns the square root of N as a floating point number. N may be fixed or floating 
point. Generates an error if N is negati;e. ' 

[Function} 
Returns the natural logarithm of x as a floating point number. x can be integer (/ ... _-\ 
or floating point. ) 

2.45 



o Special Functions 

(ANTILOG x) [Function] 
Returns the floating point number whose logarithm is x. x can be integer or floating 
point. Example: 

(ANTILOG 1) = e =) 2.71828 ... 

(SIN x RAD~SFLG) 
Returns the sine of x as a floating point number. 
RADIANSFLG = T. 

(COS X RAD~SFLG) 
Similar to SIN. 

(TAN X RAD~FLG) 
Similar to SIN. 

[Function] 
x is in degrees unless 

[Function] 

[Function] 

o /(ARCSIN X RAD~SFLG) [Function1 

o 

u 

x is a number between -1 and 1 (or an error is generated). The value of ARCS I N is 
a .floating point number. and is in degrees unless RADIANSFLG = T. In other words, 
if (ARCSIN x RADIANSFLG) =Z then (SIN Z RADIANSFLG) =x. The range of 
the value of ARCSIN is -90 to +90 for degrees, -:r/2 to 'fr/2 for radians. 

(ARCCOS X RAD~SFLG) [Function] 
Similar to ARCS IN. Range is 0 to 180, 0 to 'fr. 

(ARCTAN x RAD~SFLG) [Function] 0 

Similar to ARCSIN. Range is 0 to 180, 0 to 11". 

( ARCT AN 2 Y x RADLANSFLG) [Function] 
Computes (ARCT Af~ (FQUOT lENT y x) RADLANSFLG). and returns a correspond
ing value in the range -180 to 180 (or -:r to 1r), i.e. the result is in the proper 
quadrant as determined by the signs of x and Y. 

(RAr~D LOVIER UPPER) [Function] 

(RANDSET x) 

Returns a pseudo-random number between LOWER and UPPER inclusive,o i.e., 
RAND can be used to generate a sequence of random numbers. If both limits are 
integers: the value of RAND is an integer, otherwise it is a floating point number. 

'The algorithm is completely deterministic. i.e .. given the same initial state. RAND 
produces the same sequence of values. The internal state of RAND is initialized 
using the function RANDSET described below. 

[Function1 
Returns the internal state of RAr~D. If X= N I L~ just returns the current state. [f 
X= T. RAr~D is initialized using the clocks. and· RANDSET rerums the new state. 
Otherwise. x is inte!1'reted as a previous internal state. i.e .• a value of RANDSET. 
and is used to reset RAND. For example. 

~O(SETQ OLDSTATE (RANDSET)) 

~ (for X from 1 to 10 do (PRIN1 (RAND 1 10))) 
2847592748NIL. 
~ (RANDSET OLDSTATE) 

2.46 

(0 

( 

Co 



o 

o 

o 

DATA TYPES 

~ (for X from 1 to 10 do (PRIN1 (RAND 1 10») 
2847592748NIL 

2.47 



n 
Special Functions 

(:.: 

2.48 
Q-



o 
CHAPTER 3 

THE RECORD PACKAGE 

The advantages of "data abstraction" have iong been known: more readable code, fewer bugs. the ability 
to change the data strUcrure without having to make major modifications to the progra:n. etc. Tne record 
package e:lcourages and facilitates this good prograrr.Jlling practice by providing a uniform syntax for 
creating. accessing and storing data into many ci.L'1erent types of data struct"ures (arrays, list structures, 
association lis~ etc.) as well as removing from the user the task of writing the various manipulation 
routines. The user declares (once) the data structures used by his programs, and thereafter indicates 

O -he manipulations of the data in a ciata-stnlcrure-independent manner. Using the declarations. the 
- record package automatically computes the corresponding Interlisp expressions necessary to accomplish 

the indicated accessl storage operations. If the data strUcrure is changed by modifying the declaratio~ 
the programs automatically adjust to the new conventions. 

The user describes the format of a data structure (record) by making a "record declaration" (see page 
3.5). Tne record declaration is a description of the recorcl associating names with its various parIS. or 
·&fieldsn

• For example .. the record declaration (RECORD MSG (FROM TO • TEXT)) describes a data 
structure called MSG. which contains three fields: FROM. TO. and TEXT. Tne user can reference these fields 
by name. to retrieve their values or to store new values into the~ by using the FETCH and REPLACE 
cperato~ (page 3.1). The CREATE operator (page 3.3) is used for creating new instances of a record.. and 
TYPE? (page 3.4) is used for testing whether an object is an instance of a particular record. (note: all 
record operato~ can be in either upper or lower case.) 

Records may be implemented in a variety of different ways. as determined by the first element ("record 
type") of the record declaration. RECORD (used to specify elementS and tails of a list structure) is just 
one of several record types currently implemented. The user can specify a property list format by using 
the record type PROPRECORD, or that fields are to be associated with pans of a data structure via a 

_ specified hash array by using the record type HASHLINK. or that an entirely new data type be allocated o (as described on page 3.14) by using the record-type DATATYPE. 

o 

The record package is implemented throug.~ the DWIM/CLISP facilities. so it 'contains fear.lres such as 
spelling correction on field names. record types. etc. Record operations are translated using all CLISP 
declarations in effect (sr.andardlfastlundoable): it is also possible to declare local record declarations that 
override global ones (see page 16.9). 

The file package includes a RECORDS file package cOIIL.-nand for dumping record declarations (page 11.25). 
and FILES? and CLEANUP will inform the user about records that need to be dumped. 

3.1 FETCH AND REPLACE 

The fields of a record are accessed and changed with the FETCH and REPLACE operators. If the record 
MSG has the record declaration (RECORD MSG (FROM TO • TEXT). and X is a MSG data structure. 
(fetch FROM of X) will rerurn the value of the FROM field of X. and (rep 1 ace FROM of X wi th 

3.1 



... -" 
() 

FETCH and REPLACE 

Y) will replace t..i.is field with the value of Y. In general the value of a REPLACE operation is the same 
as the value stored into the field. 

Note that the form (fetch FROM of X) implicitly States that X -is an instance of the record MSG. or 
at least it should to be treated as such for t.ltis particular op:ration. In other words, the interpretation 
of (fetch FROM of X) never depends on the value of X. Therefore, if X is not a MSG recorcL t.ltis 
may produce incorrect results. The TYPE? record operation (page 3.4) may be used to test the types of 
objects. 

If there is another record declaration. (RECORD REPLY (TEXT • RESPONSE». then (fetch TEXT 
of X) is ambiguous. because X could be either a MSG or a REPLY record.. In this case, an error will 
occur, AMBIGUOUS RECORD FIELD. To clarify ~,is, FETCH and REPLACE can take a list for ~,eir "field" 
argument: (f etc h (MSG T E Xi) 0 f X) will fetch the TEXT field of an MSG record. 

Note that if a field has an identical interpretation in two declarations, e.g. if the field TEXT occurred lliQ 
the same location within the declarations of MSG and REPLY, then (fetch TEXT of X) would not be 
considered ambiguous. 

Another complication can occur if the fields of a record are themselves recorOs. The fields 0; a record 
can be funher broken down into sub-fields by a "subdeclaration" within the record declaration (see page 
3.10). For example. 

(RECORD NODE (POSITION. LABEL) (RECORD POSITION (XLOC • YLOC») 

permits the user to access the P'OSITION field with (fetch POSITION of X), or its subfield XLOC 
with (fetch XLOC of X). 

The user may also elaborate a field by declaring that field name in a separate record declaration (as 
opposed to an embedded subdeclaration). For instance, the TEXT field in the MSG and REPLY records 
above may be subdivided with the seperate record declaration (RECORD TEXT (HEADER • TXT)). 
Fields of subfield.s (to any level of nested subfields) are accessed by specifying the "data path" as a list 
of?ecordlfield na.ces~ where t..'ere is some path from each record to the next in the list. For instance. 
(fetCh (MSG TEXT HEADER) of X) indicates that X is to be treated as a MSG recor~ its TEXT 
~eld should be ~ess:d.. an~ iIS HEADE R field ~o~ld be ~ccessed. Only as much of the data path ~C) 
15 necessary to disambIguate It needs to be specmea. In this case, (fetch (MSG HEADE R) of X) 15 -

sufficient Tne recorci package interprets a data path by performing a tree search among all current record 
decl~tions for a paL.~ from each na.TIle to ~~e next. considering first local declarations (if any) and then 
global ones. The central point of separate declarations is that the (sub ) record is not tied to another record 
(as with embedded declarations), and therefore can be used in many different contexts. [f a data-path 
rather than a single field is ambiguous. {e.g., if there were yet another declaration (RECORD TO (NAME 
• HEADER)) and the user specified (fetCh (MSG HEADER) of X»), the error AMBIGUOUS DATA 
PAT H is generated. 

FE T CHand REP LA C E forms are translated using the CLISP declarations in effect F FE T CHand 
FREPLACE are versions which insure fast CLISP declarations will be in effect. IREPLACE insures undoable 
declarations. 

3.2 

(j 



o THE RECORD PACKAGE 

3.2 CREATE 

Record operations can be applied to arbitrary structures. Le.. the user can explicitely creating a data 
structure (using CONS. etc), and t.b.en manipulate it with FETCH and REPLACE. However. to be consistant 
with the idea of data abstraction. new data should be created using the same declarations that define its 
data paths. This can be done with an expression of the fonn: 

(CREATE RECORD-N..4.ME • ASSIGNMENTS) 

A CREATE expression translates into an appropriate Interlisp form using CONS. LIST, PUTHASH. ARRAY, 
etc .. that creates the new datum with the various fields initialized to the appropriate values. ASSrGNMEl'rrS 

is optional and may contain expressions of the following. form: 

FIELD-NAME .. FORM 

O~. Specifies initial value for FIELD-NAME. 

US lUG FORM Specifies that for all fields not explicitly given a value .. the value of the corresponding 
field in FORM is to be used. 

COPYING FORM 

REUSING FORM 

SMASHING FORM 

Similar to USING except the corresponding values are copied (with COPYALL). 

Similar to us I NG, except that wherever possible, the corresponding structure in 
FORM is used. 

A new instance of .. the record is not created at all: rather. the value of FOP .. \! is 
used and smashed. 

The record package goes to great pains to insure that the order of evaluation in the translation 
is the same as that given in the original CREATE expression if the side effects of one e~pression 
might affect the evaluation of another, For example. given the declaration (RECORD CONS (CAR . 
CDR», the expression. (CREATE CONS COR"X CAR .. Y) will translate to (CONS Y X), but (CREATE 
CONS COR"( FOO) CAR"( FIE» will translate to « LAMSDA (SS 1) (CONS (PROGN (SETQ 5S 1 
( FOa» (F IE» SS 1) » because FOO might set some vanables used by FIE. 

() Note that (CREATE RECORD REUSING FOa\{ ••• ) does not itself do any destructive operations on 
'---" the value of FOR..'vf. The distinction between USING and REUSING is that (CREATE RECORD REUSING 

FOP ... \{ ••• ) 'W'i11 L.'1corporace as much as possible of the old data suucrure into the new one being created. 
while (C R EAT E RECOP-D US I NG FORM ••• ) will create a completely new data Su."Uctllre. with only 
the contents of the fields re-used. For example. C REA TE REUS I NG a PROPRE CORD just CONSes the new 
property names ane. values onto the list. while C REA TE US I NG copies the top level of the list. Another 
example of this distinction occurs when a field is elaborated by a subdeclaration: US I NG will create a 
new instance of the sub-record. while REUS ING will use the old contents of the field (unless some field 
of L.'1e subdecla.-ation is assigned in the CREATE expression.) 

o 

[f the value of a field is neither explicitly specified. nor implicitly specified via US I NG. COpy I NG or 
REUSING, the default value in the declaration is used. if any, otherwise NIL. (Note: For BETWEEN fields 
in DATATYPE records. N z is used; for other non-pointer fields zero is used.) For example. following 
(RECORD A (6 C D) 0 - 3). 

(CREATE A B-T) ==> (LIST T NIL 3) 

(CREATE A B-i USING X) ==). (LIST T (CADR X) (CADDR X» 

3.3 



TYPE? 

(CREATE A B~T COPYING X») ==) [LIST T (COPYALL (CADR X» (COPYALL (CADDR XJ 

(CREATE A B~T REUSING X) ==) (CONS T (CDR X» 

3.3 ITPE?' 

.r-
The record package allows the·user to test if a given darum ulookslike

tt 

an instance of a record. This can. 
be done yia an expression of the form 

( TYPE? RECORD-NAJ4E FORM) 

TYPE? ismaiDly intended for records with a record type of DATA TYPE or TYPERECORO. For DATATYP[~ 
the TYPE? check is exact: i.e. the TYPE? expression will rerum non-NIL only if the value of FOR.'-! 
is an instance of the record !lamed by RECORD-NAME. For TYPERECORDs. the TYPE? expression will 
check that the value of FORM is a list beginning with RECORD-NAME. For ARRAYRECOROs, it checks that 
the value is an array of the correct siz~. For PROPRECORDs and ASSOCRECORDs, a TYPE? expression 
will make sure that the value of FORM is a property/association list with property names among the 
field-names of the declaration. 

Attempting to execute a TYPE? expression for a record of type ACCESSFNS, HASHLINK or RECORD 
will cause an error, TYPE? NOT IMPLEMENTED FOR THIS RECORD. The user can (re)define the 
interpretation of TYPE? expressions fer a particular declaration by inclusion of an expression of the form 
(TYPE? COM) in the record declaration (see page 3.9). 

3.4 WITH 

Often it is necessary to manipulate the values of the fields of a particular record. The WITH cOnStr~ct car---\ 
be used to talk about the fields of a record as if they were variables wiL.w a lexical ,scope: • \.) 

(WITH RECOR.D-NAJ..!E RECORD-INSTANCE FORM1 ••• FORMN ) 

RECORD-NAME is the name of a record. and RECORD-INSTANCE is an expression which evaluates to 'an 
instance of that recorc!. The expressions FORM1 •.. FORMN are evaluated so ts.'lat references to variabl-es 
which are field-names of RECORJ).NAME are implemented via fetch and SETQs of those variables are 
implemented via I"ep 1 ace. 

F or example. given 

(RECORD RECN (FL01 FLD2» 
{SETQ INST (CREATE RECN FLDl ~ 10 FLD2 ~ 20» 

Then the conStruct 

(with RECN INST (SETQ FLD2 (PLUS FLOl FLD2] 

is equivalent to 

3.4 

n 



o 

n '-.J. 

.-

r-.......... 
U 

o. 

THE RECORD PACKAGE 

(replace FLDZ of lUST with (PLUS (fetch FLDl of lUST) (fetch FLD2 of lNST] 

Note that the substitution is lexical: this operates by actually doing a substirution inside the forms. 

3.5 RECORD DECLARATIONS 

." -
A record is defined by evaluating a re:ord declaration.1 which is an expression of the form: 

( RECORD-TYPE RECORD-NAME FIELDS • RECORD- TAlI.. ) 

RECORD-TYPE sp~ifies the utype'· of ~ta being described by the record declaration. and thereby 
implicitly specifies how the corresponding access/storage operations arc performed. RECOIW-TYFE 

currently is either RECORD, TYPERECORD, ARRAYRECORD •. ATOMRECORD. ASSOCRECORD. PROPRECORD, 
DATATYPE, HASHLINK, ARRAYBLOCK or ACCESSFNS. RECORD and TYPERECORD are used to describe 
list structures, DATATYPE to describe user data-types. ARRAYRECORD to describe arrays. ATOMRECORO 
to describe (the property list of) litatoms. PROPRECORD to· describe lists in property list format. and 
ASSOCRECORD to describe association list forma:. HASHLlNK can be used with any type of data: it 
simply specifies the data path to be a hash-link. ACCESSFNS is also type-less: the user specifies the 
data-paths in the record declaration itself. as described below. 

RECORD-N~\!E is a litatom used to identify the record declaration for creating instances of the record 
via CREATE. testing via TYPE? and dumping to files via the RE CORDS file package command (page 
11.25). OAT ATYPE and TYPERECORD declarations also use RECORD-NAME to identify the data structure 
(as described below). 

FIELDS describes the s~cture of the record. Its exact interpretation varies with RECORD-TYPE: 

RECORD 

TYPE RECORD 

[Record Type] 
FIELDS is a list structure whose oon-N I L literal atoms are taken as field-names 
to be associated wiL.~ the corresponding elements and tails of a list strucrure. 
For example, with the record declaration (RECORD MSG (FROM TO . TEXT)) I 

(f etch F ROM of X) translates as (CAR X). 

NIL can be used as a place marker to fill an unnamed field. e.g.. (A NIL B) 
describes a three element list. with B corresponding to the third element. A number 
may be used to indicate a sequence of NILs. e.g. (A 4 B) is interpreted as (A 
NIL NIL NIL NIL B). 

[Record Type] 
Siinilar to RECORD. except that RECORD-NAME is also used as an indicator in CAR 
of the datum to signify what "type" of record it is. This type-field is used by 
the record package in the translation of TYPE? expressions. CREATE will insert 
an extra field containing RECORD-N~\!E at the beginning of the strUcrure. and 
the translation of the access and storage functions will take this extra field into 

1 Local record declarations are defined by including an expression of this form in the eLLS? declaration 
for that function. rather than evaluating the expression itself (see page 16.10). 

3.5 



,-

ASSOCRECORD 

PROPRECQRD 

Record Declarations 

account. For example, for (TYPERECORD MSG (FROM TO • TEXT». (fetch 
FROM of X) translates as (CADR X), not (CAR X). 

[Record Type] 
FIELDS is a list of literal atoms. The fields are stored in association-list format: 

( (FrELDNAME1 • VALUE 1) ( FIELDNAME2 • VALUE2 ) ••• ) 

Accessing is performed .. with ASSOC (or FASSOC, depending on current CllSP 
declarations). storing with PUT ASSOC. 

[Record Typej 
FIELDS is a list of literal atoms. The fields are stored in ·'propeny list" format: 

(FIELDNAME1_ YALtJE1 FIELDN.AME2 VA,t.VE, ••• ) 

Accessing is performed with lISTGET. storing with LISTPUT. 

Both ASSOCRECORD and PROPRECORD are useful for defining data structures in which it is often the 
case that many of the fields are NIL. A C R EA T E for these record types only stores those fields which are 
non-NIL. Note. however. that with the record declaration (PROPRECORD FIE (H I J» the expression 
(CREATE FIE) would still construct (H NIL), since a later operation of (replace J of X with 
Y) could not possibly change the instance of the record if it were NIL. 

ARRAYRECORD [Record Type] 
FIELDS is a list of field-names that are associated with the corresponding elements 
of an array. ON I L can be used as a place marker for an unnamed field (element). 
Positive integers can be used as abbreviation for the corresponding number of r~ I Ls. 
For example. (ARRAYRECORD (ORG DEST NIL IO 3 TEXT)} describes an 
eight element array, with ORG corresponding to the first element. 10 to t..'e fOUM. 
and TEXT to the eighth. 

Note that ARRA YRECORO only creates arrays of pointers. Other kinds of arrays 

n 

() 

must be implemented by the user with ACCESSFNS. n. 
HASHLINK 

ATOMRECORD 

[Record Type] 
FIELDS is either an atom FIELD-NAME. or a list (FIELD-NAME EARRAY.N'A...v.:E' 

HA..~.F..AYSlZE). EA.R.R.A.YNAME indicates the hash-array to be used; if not given. 
SYSHASHARRAY is used.. HARP..AYSIZE is used for initializ:L.ig the hash a..-ray: if 
HARRAYNAME has not been initialized at the time of the deciaration. it will be 
set to (LIST (HARRAY (OR HARRAYSIZE 100) ». HASHLINKs are useful as 
subdeclarations to other records to add additional fields to already existing data
structures. For example. suppose that Faa is a record declared with ( RE CORD FOO 
(A 8 C». To add an aditional field BAR, without modifying the already-existing 
data strutures., redeclare F 00 with: 

(RECORD FOO (A B C) (HASHLINK Faa (BAR BARHARRAY») 

Now, (fetCh BAR of X) will translate into (GETHASH X BARHARRAY). hash
ing off the existing list X. 

[Record TypeJ 
FrELDS is a list of propeny names. e.g., (ATOMRECORD (EXPR CODE ~ACRO 

3.6 

(~ 
\ J 



o 
,; " 

OATATYPE 

THE RECORD PACKAGE 

BLKLI8RARYDEF) ). Accessing is performed with GETPROP, storing with 
PUTPROP. As with ACCESSFNS, CREATE is not initially defined for ATOMRECORD 
records. 

[Record Type] 
Specifies that a new user data type with type name RECORD-NA..\!E be allocated 
via DECLAREDATATYPE (page 3.14). Unlike other record-types. the re=orcis of a 
DA T A TY P E declaration are represented with a completely new Interlis? type, and 
not in terms of other existing types. 

FIELDS is a list of fiela specifications., where each spedficaticn is either a list 
( FIELDNAME • FIELDTYPE), or an atom FIELDNAME. If FIELDTYPE is omitted, 
it defaults to PO I NT E R. Options for FIELDTYPE are: 

POINTER Field contains a pointer to any arbitrary Interlisp object 

BITS N Field contains an N-bit unsigned integer. 

BETWEEN Nl N2 A generalization of B ITS. Field may contain an integer 
X such that x is greater than or equal to N 1 and less 
than or equal to N ~ Enough bits are allocated to store a 
number between 0 and N 2-N1: NI is ~ppropriately added or 
subtracted when the field is accessed or stored into. 

INTEGER or FIX? Field contains a full word signed integer (the size is 
implementation-dependent). 

FLOATING orFLOATP 
Field. contains a full word Hoating point number. 

FLAG Field is a one bit field that ucontains" T or NIL. 

For example, the declaration 

(DATATYPE FOO 
«FLG BITS 12) 

TEXT 
(CNT BETWEEN 10 25) 
HEAD 
(DAiE BITS 18) 
(PRIO FLOATP) 
(READ? FLAG}» 

would define a" dara "type F 00 Which occupies (in" Interlisp-lO) three words of storage 
with two pointer fields (one word), a full word floating point number. fields for an 
18. 12. and 4 bit unsigned integer. and a flag (one bit), with 1 bit left over. Fields 
are allocated in such a way as to optimize the storage used and not necessarily in the 
order specified.. To store this information in a" conventional RECORD list struC:-..lre. 
e.g .. (RECORD MSG (FLG TEXT CNT DATE PRIO • HEAD», would rake 5 
words of list space and up to three number boxes (for FLG. DATE. and PRI~). 

Since the user data type must be set up at run-time. the RECORDS file package 
command will dump a DECLAREDATATYPE expression as well as the DATATYPE 

3.7 



ARRAYBLOCK 

ACCESSFNS 

Record Declarations 

declaration itself. The INITRECORDS file package command (page 11.25) will 
dump only the DECLAREDATATYPE expression. 

Note: DATATYPE declarations should be used with caution within local declarations.. 
since a new and different data type is allocated for each one with a different name. 

[Record Type] 
(Not implemented in Interlisp-D) Similar to a DATATYPE declaration. except that 
the objects it creates Cl."ld manipulates are arrays. As with DATA TY P E"s. the actual 
order of the fields of the ARRAYBLOCK may be shuffied around in order to satisfy 
garbage collector cor.5trainrs. 

For example. 

(ARRAYBLQCK FOO 
«F1 INTEGER) 

(F2 FLOATING) 
(F3 POINTER) 
(F4 BETWEEN -30 -2) 
(F5 BITS 12) 
(F5 FLAG») 

[Record Type] 
FrEI..DS is a list of elementS of the form (FIELD-NAME ACCESSDEF SETDEF). 
Le. for each fieldname, the user soeci.fies how it is to be a-""Ce5sed and set. 
ACCESSDEF should be a function of one argumenl . the datum.. and will be used 
for accessing. SETDEF should be a function of two .arguments. the datum and 
the new value, and will be used for storing. SETDEF may be omittecL in which 
case, no storing operations are allowed. ACCESSDEF and/or SETDEF may also be a 
LAMBDA expression or a form v,Titten in terms of variables DATUM and (in SETDEF) 
NEWVALUE. For example. given the declaration 

[ACCESSFNS ({FIRSTCHAR (NTHCHAR DATUM 1) 
(RPLSTRING DATUM 1 NEWVALUE» 

(RESTCHARS (SUBSTRING DATUM 2] 

(replace FIRSTCHAR of X with Y) would translate to (RPLSTRING X 1 
Y). Since no SeTDEF is given for the RESTCHARS fielcL anempting to perform 
(repl ace RESTCHARS of X with Y) would generate a.'l error. REPLACE 
UNDEFINED FOR FIELD. Note thatACCESSFNS do not have a CREATE definition. 
However. the user may supply one in the defaults and/or subdeclarations of me 
declaration. as described below. Attempting to CREATE an ACCESSFNS record 
without specifying a create definition will cause an error CREATE NOT DEF INfO 
FOR THIS RECORD. 

ACCESSDEF and SETDEF can also be a propeny list which specify FAST. STANDARD 
and UNDOABLE versions of the ACCESSFNS· fonns. e.g. 

[ACCESSFNS LITATOM «OEF (STANDARD GETD FAST FGETD) 
(STANDARD PUTO UNDOABLE IPUTD] 

means if FAST declaration is in effect. use FG ETO for fetching. if UNDOAB LE. use 

3.8 

n . / 

() 

(~ 
'. / 

n 



o 
THE RECORD PACKAGE 

o 

IPUTO for saving. 

Tne ACCESSFNS facUity allows the use of data-strUctures not specified by one of the built-in record 
types. For example. one possible representation of a data-structure is to store the fields in parallel arrays, 
especially if the number of instances required is known., and they" do not need to be garbage collected.. 
Thus. to implement a data structure called LIfJK with two fields FROM and TO, one would have tv-'o 
arrays FROMARRAY and TOARRAY. The representation of an "instance" of the record would be an integer 
whi~ is used to index into the arrays. This can be acco:nplished with the declaration: 

[ACCESSFNS LINK 
«FROM (ELT FROMARRAY DATUM) 

(SETA FROMARRAY DATUM NEWVALUE» 
{TO (ELT TOARRAY DATUM) 

(SETA TOARRAY DATUM NEWVALUE») 
(CREATE (PROGl (SETQ LINKCNT (ADDl LINKCNT») 

" (SETA FROMARRAY LINKCNT FROM) 
(SETA TOARRAY LINKCNT TO») 

lINIT (PROGN (SETQ FROMARRAY (ARRAY 100» 
(SETQ FROMARRAY (ARRAY 100»] 

. To CREATE a new LINK. a counter is incremented and the new elements stored (although the CREATE 
form given the declaration should actually include a test for overflow). 

RECORD-TAl!. ts optional. It may contain expressions of the form: 

FIELD-NAME ~ FORM 

(CREATE FORM) 

(INIT FORM) 

(TYPE? FOR-\!) 

Allows the user to specify within the record declaration the default value to be 
stored in FrELD-NAME by a CREAT E (if no value is given 'Nithin the CREATE 
expression itself). Note that FORM is evaluated at CREATE time, not when the. 
declaration is made. 

Defines the manner in which CREATE of this record shouId be "performed. Tnis 
provides a way of specifying how ACCESSFNS should be created or overriding the 
usual definition of C REA TE. If FORM contains the field-names of the declaration as 
variables. the forms given in the CREATE operation will be substituted in. Ifu~e 
word DA TUM appe~ in the create form. the on"ginal CREATE definition is inserted. 
This effectively allows the user to "advise" the create. 

Note: (CREATE FO&\f) may also' be specified as ··RECORD-NAM:E· ~ FOR..\£', e.g. 
C .. (CONS AD). 

Specifies that FOR-\{ should be evaluated when the record is declared.. FORM will 
also be dumped by the INITRECORDS file package command (page 11.23). 

For example. see the example of an ACCESSFNS "record declaration above. In this 
example. FROMARRAY and TOARRAY are initialized with an INIT form. 

Defines the manner in which TY P E? expressio"ns are to be translated. FOR-\{ may 
either be an expression in terms of DATUM or a function of one argument. 

Note: (TYPE? FORM) may also be specified as ··RECORD·NAJ.,{E @ FOP...v{', e.g. 
C @ LISTP, 

3.9 



(SUBRECORD NAME 

. Defining New Record Types 

• DEFAULTS) 

NAME must be a field that appears in the current declaration and the name of 
another record. This says mat. for the purposes of translating CREATE expressions, 
substitute the top-level declaration of NAME for the SUBRECORD form., adding Oil 

any defaults specified. 

() 

For example: Given (RECORD B (E F G», (RECORD A (8 CD) (SUBRECORn 
B»would be treated like (RECORD A (8 C D) (RECORD B (E F G») for 
the purposes of translatilig CREATE expressions. 

a subdeclaration (Leo.. a record declaration.) 
The RECORD-NAME of a . sub declaration must be either the RECORD-NAME of its 
immediately superior declaration or one of the superior's field-names. Instead of 
identifYing the declaration as with top level declarations. the record-name of a f\ 
subdeclaration identifies t."le parent field or record that is being described by the ~.. ) 
sub declaration. Sub declarations can be nested to an arbitrary depth. 

Giving a subdeclaration (RECORD NAMEl NAME,) is a simple way of defining a 
synonym for the field NAMEl • 

Note that. in a few cases, it makes sense for a given field to have more than one 
subdeclaration. For example, in 

(RECORD (A • 8) (P~OPRECORD 8 (FOC FIE FUM» (HASHLINK B C» 

B is elaborate~ by both a PROP RECORD and a HASHLlr~K. Similarly, 

(RECORD (A 8) (RECORD A (C D» (RECORD A (FOC FIE») 

is a.so acceptable. and essentially "overlays" (FOO FIE) and (C 0), Le. (fetch 
FOO of X) and (fetch C of X) would be equivalent. In such cases, rIle first 
sub declaration is the one used by CREATE. 

3.6 DEFINING NEW RECORD TYPES 

In addition to the built-in record types, users can declare their own record types by performing the 
following steps: 

(1) Add rIle new record-type to rIle value of CLISPRECORDTYPES;. 

(2) Penorm (MOVD 'RECORD RECORD-TYPE). Le. give the record-type the same definition as that of 
the function RECORD: 

(3) Put the name of a function which will rerum the translation on the property list of RECORD-TYPE. as 
the value of the property USERRECORDTYPE. Whenever a record· declaration of type RECORD-TYPE is 
encountered.. this function will be passed the record declaration as its argument. and should return a new 
record declaration which the record package will then use in its place. 

3.10 

~ 
( 1 
\ / 



o THE RECORD PACKAGE 

3.7 RECORD MM1PULA nON FUNCTIONS 

The user may edit (or delete) global record declarations with the function: 

(EDITREC NAME COMl ••• COMN ) [NLambda. NoSpread Function] 
Nospreaci niambda function timilar to EOITF or EOlTV. EDlTREC calls the eCitor 
on a copy of all declarations in which NAME is the record-name or a field name. 
On exit. it redeclares those that have changed and undeclares any tr.A3t r".ave been 
deleted.. If NAME is NIL. ali declarations are edited. 

COM 1 ••• COM N are (optional) edit commands. 

When the user redeclares a global record.. the translations of all expressions involving that record or any 
of its fields are automatically d~leted from CLISPARRAY, and thus will be recomputed using the new 

U~· ~ ".information. If the user changes a local record declaration. or changes some other CUSP declaration. e.g .. 
- STANDARD to FAST, and wishes the new information to affect record expressions already translatecl he 

must make sure :.he corresponding translations are removed. usually either by CllS? I FYing or applying 

o 

o 

the ! OW ecft macro. 

(RECLOOK RECOP..DNAME - - - -) [Function] 
Returns the entire declaration for the record named RECORDNAME: r~ I L if 
no record declaration with name RECORDNAME. Note that the record package 
maintatls internal state about current record declarations, so performing destructive 
operations (e.g. NCONC) on the value of RECLOOK .may leave the record package 
in an inconsiS~t state. To change a record declaratio~ use ED IT R E C. 

(FIELDLOOK F!ELDNAME) [Function] 
Returns the list of declarations in which FIELDNAME is the name ofa field. 

(RECOROFIELONAMES RECORDNAME) [Function] 
Retuws the list of fields declared in record RECORDNAME. RECORDNAME may 
either be a name or an entire declaration. 

(RECORDACCESS FIELD DATUM DEC TYPE ~r:VYVALVZ) [Function] 
rtPE is one of FETCH. REPLACE. FFETCH. FRE?LACE. IREPLACE or L.1.eir 
lowercase equivalents. TYPE = NIL means F ETCH. If TYPE corresponds to a fe~c~ 
operation. Le. is FETCH. or FFETCH. RECORDACCESS performs (TYPE FTZLD 

OF DArJM). If TYPE corresponds to a replace. RECORDACCESS performs (TY?E 
FIEL;) OF DAT!lM WITH l't'"EVVV'ALUZ) .• DEC is an optional declaration: if given. 
FIELD is interpreted as a field name of that declaration. 

Note that R E COROACCE 55 is relatively inefficient. although it is better than 
constructing the equivalent form and perfonning an EVAL. 

3.8 CHANGETRAN 

A very common programming construction consists of assigning a new value co some datum that is a 
function of the current value of that daruII"_ Some examples of such read-modify-write sequences include: 

3.11 



~-

(SETQ X (IPLUS Xl» 

(SETQ x (CONS Y X» 

(PROG1 (CAR X) (SETQ X (CDR X}» 

Changetran 

Incrementing a counter 

Pushing an item on the front of a list 

Popping an item off a list 

It is easier to express such computations when the datum in question is a simple variable as above than 
when it is an element of some larger data structure. For example. if the datum to be modified was (CAR 
X ), the above examples would be: 

(CAR (RPLACA X (IPLUS (CAR X) 1») 

(CAR (RPLACA X (CONS Y(CAR X») 

(PROG1 (CAAR X) (RPtACA X (CDAR X») 

and if the datum was an element in an array, (EL TAN) t the examples would be: 

(SETA A N (IPLUS (ELT A N) 1») 

{SETA A N (CONS Y (ELT AN»» 

{PRO~l (CAR (ELT A N» (SETA A N (CDR (ELT AN»» 

n 

The difficulty in expressing (and reacting) modification idioms is in part due to the well-known assymmetry 
-of setting versus accessing operations on structures: RP LACA is used to smash what CAR would rerum, 
SETA corresponds to ELT, and so on. 

The UChangetran" facility is designed to provide a more satisfactory notation in which to express r:ertain 
cOmInon (but user-extensible) structure modification operations. Changetran defines a set of CLISP words 
that e:lcode the kind of modification that is to take place, e.g. pushing on a list. adding to a number._ 
etc. More impor...ant, the expression that indicates the datum whose value is to be modiiied needs to be 
stated only once. Tnus. the ·'change word" ADO is used to increase the value of a datum by the sum or 
a set of numbers. Its arguments are an expression denoting the datum. and a set of items to be added tc, ) 
its current value. The datum expression must be a variable or an accessing expression (envolving fetch. -
CAR. LAST. EL T. etc) that can be transla~cd to the appropriate setting expression. 

For example. (ADD (CADDR X) (FOa» is equivalent to: 

(CAR (RPLACA (CDOR X) 
(PLUS (FOO) (CADDR X») 

If the datum expression is a complicated form·involving subsidiary function calls. such as (EL T (Faa X) 
( FIE Y)), Cha."lgetran goes to some lengths to make sure that those subsidiary functions are evaluated 
only once (it binds local variables to save the results). even though they logically appear- in bot..~ the 
setting and acceSSing parts of the translation. Thus. in thinking about both efficiency and possible side 
effectS. the user can rely on the fact that the forms will be evaluated only as often as they appear in the 
expression. 

For ADO and all other changewords. the lower-case version (add. etc.) may also be specified. Like other 
CLlSP words. change words are translated using all CLlSP declarations in effect (see page 16.9). 

:.. 
__ '. The · following is a list of those change words recognized by Chang e tran. Except for PO P, ~e value of all (~) 

3.12 



o 

o 

THE RECORD PACKAGE 

built-in changeword forms is defined to be the new value of the datum. 

(ADO DATUM ITEMI ITEM2 ••• ) [Change Word] 
Adds the specified items to the current value of the datum. stores the result back 
in the datum location. The translation will use IPLUS. PLUS. or FPLUS according 
to the CLISP declarations in effect. 

(PUSH DATUM ITEMI I'TEM2 ••• ) [Change Word1 
CONSes the items onto the front of the current value of the datum. and stores L.~e 
result back in the darum location. For example. (P US H X A B) would translate 

. as (SETQ X (CONS A (CONS B X»). 

(PUSHNEW DATUM ITEM) [Change Word} 
ille PUSH (with only one item) except that the item is not added if it is already 
FMEMB of the datum's value. 

Note that. whereas (CAR (PUSH X • FOO» will always be FOO. (CAR (PUSHNEW 
X 'FOO» might be something else if FOa already existed in the middle of the 
list. 

(PUSHLIST DATUM ITEMI ITEM2 ••. ) [Change Word] 

(POP DATUM) 

Similar to PUS.H. except that the items are APPENDed in.front of the current value 
of the datum. For example. (PUSHLIST X A B) would translate as (SETQ X 
(APPEND A B X». 

[Change Word] 
Rerurns CAR of the current value of the darum after storing its CDR into the datum. 
The current value is computed only once even though it is referenced twice. Note 
that this is the only built-in changeword for which the value of the form is not the 
new value of the datum. 

(SWAP DATUMl DATrJM2 ) . [Change Word] 
Sets DATUM1 to DATUM2 and vice versa. 

O(CHANGE DATUM FORM) [Change Word] 
Tnis is the most 'flexible of all change wores, since it enables the user to provide a:l 

arbitrary form describing what the new value should be. but it still highlights the 
fact that structure modification is to occur. and still enables the datum expression 
to appear only once. CHANG E sets DATUM to the value of FOF .... \!-. where FOR.\!# is 
constrUcted from FOR.\{ by substituting the datum expression for every occurrence 
of the lira tom DATUM. Forexampie. (CHANGE (CAR X) (ITIMES DATUM 5» 
translates as (CAR (RPLACA X (ITIMES (CAR X) 5 )'». 

o 

CHANG E is useful for expressing modifications that are not built-in and are not 
sufficiently common to justify defining a user-changeword. As for oilier cha.ngeword 
expressions. the user need not repeat the datum-expression and need not worry 
about multiple evaluation of the accessing form. 

It is possible for the user to define new change words. To define a change word. say sub. that 
subw.-acts items from the current value of L.'1e datum. the user must put the property C LIS PWO RD. value 
(CHANGETRAN . sub) on both the upper and lower-case versions of sub: 

3.13 



r
\ ) 

User Defined Data Types 

(PUTPRO? 'SUB 'CLISPWORD '(CHANGETRAN • sub» 
(PUTPROP 'sub 'CLISPWORD '(CHANGETRAN • sub)} 

. Then.. the user must put (on the lower-case version of sub only) the propeny CHANGEWORD, with value 
TN. FN is a function that will be applied to a single argument., the whole sub form. and must return a 
form that Cnangetran can translate into an appropriate expression. Tnis form should be a list strucrur~ 
with t.lle atom DATUM used whenever the user wants an accessing expression for the current value of the 
datum to appear. The form (DATUM'" FORM) (note that DATUM'" is a single atom) should occur once in 
the expression: this specifies that an appropriate stori..ng expression into the datum should occur at that 
point For example, sub could be defined with: 

(PUTPROP 'sub 'CHANGEWORD 
, (LAMBDA (FORr~) 

(LIST 'DATUM" 
'--"7~' •• ( LIST t IDIFFERENCE 

() 
'DATUM 
(CONS 'IPLUS (CDDR FORM»))) 

If the expression (s ub (CAR X) A B) were encountered, the arguments to SUB would fi...-ost be 
dwimified, and then the CHANGEWORD function would be passed the list (sub (CAR X) A B). and 
return (DATUM'" (IO!FFERENCE DATUM (IPLUS A 8»)), which Changetran would convento (CAR 
(RPLACA X (IDIFFERENCE (CAR X) (IPLUS A B»». 

Note: The sub changeword as defined above will always use IDIFFERENCE and IPLUS: add uses the 
correct addition operation depending on the current CLISP declarations. 

3.9' .USER DEFINED DATA TYPES 

Note: The most convenient way to define new user data types is via OAT ATY P E record declarations (see 
page 3.i). n 
In addition to· built-in data-types such as atoms, lists. arrays. etc.. Interlisp provides a way of defining 
completely new classes of objects, with a fixed number of fields determined by the definition of t.~e data 
type. Facilities are provided for declaring the name and type of the fIelds for a given class. creating 
objects of a given class, accessing and replacing the contents of each of the fields of such an objecl as 
wen as interrogating such objects. 

In order to define a new class of objects. the user must supply a name for the new data type and 
specifications for each of its fields. Each field may contain either a pointer (Le .• any arbitrary Interlisp 
datum). an integer. a floating point number, or an N-bit integer. This is done via the function 
DECLAREDATATYPE: 

(DECLAREDATATYPE TYPENAME FIELDSPECS) [Function] 
T'YPENAME is a literal atom, which specifies the name of the data type. FIELDS?ECS 
is a liSt ofufield specifications·'. Each field specification may be one of the following: 

POINTER 

FIX? 

Field may contain any Inrerlisp datum. 

Field contains an integer. 

3.14 

() 



o 

-0:-

FLOATP 

(BITS N) 

THE RECORD PACKAGE 

Field contains a floating point number. 

Field contains a non-negative integer less than 2N. 

DECLAREDATATY?E returns a list of <afield descriptors". one for each element of 
FIELDS?ECS. A field descriptor contains information about where within the datum 
the field is actually stored. 

If TYPENAME is already declared a datatype" it is re-declared. If FIELDSPECS is 
NIL" TYPENAME is '~undeclared". 

(FETCHFIELD D~CRIPTOR DATUM) [Function} 
Returns the contents of the field described by DESCRIPTOR from DATIDde 

DESCRIPTOR must be a "field descriptor" as returned by DECLAREOATATYPE.
If DATUM is not an instance of the datatype of which DESCRIPTOR is a descriptor~ 
causes error DATUM OF INCORRECT TYPE. 

In Interlisp-lO. if DESCRIPTOR is quoted.. FETCHFIELO compiles open. This 
capability is used by t.h~ record package. 

(REPLACEFIELO DESCRIPTOR. DATUM NEWVALOE) [Function1 
Store NEWVALl:i'E into the field of DATUM' described by DESCRIPTOR. DESCP..IPTOR 

must be a field descriptor as returned by DECLAREOATATYPE. If DATU~ is noean 
instance of the datatype of which DESCRIPTOR. is a descriptor, causes error DATUM 
OF INCORRECT TYPE.. Value is NEWVALUE. 

(NCREATE TY.?EN~~ FROM) [Function] 
Creates and returns a new instance of datatype TYPENAME. 

If FROM is also a darum of datatype TYPENAME, the fields of the new object are 
initialized to the values of the corresponding fields in FROM. . 

NCREATE will Dot work for built-in datatype~ such as ARRAY? STRINGP, etc. If 
TYPENAME is not the type name of a previously declared user data type. generates 
an error. ILLEGAL DATA TYPE. 

(GETFIELDSPECS TYPEN..A.ME) [Function1 
Returns a list which is EQUAL to the FrELDSPECS argument given to DECLAREDATATYPE 
for TYPENAME: if TYPENAME is not a currently declared data-type. returns NIL. 

(GETDESCRIPTORS TYPENAME) [Function] 

(USERDATATYPES) 

Returns a list of field descriptors. EQUAL to the value of DECLAREDATATYPE for 
TYPENAME. 

[Function} 
Returns list of names of currently declared user data types. 

~ote that the user can define how user data types are to be printed via DEFPRINT (page 6.23). how they 
are to be evaluated by the interpreter via bEFEVAL (page 5.11). and how they are to be compiled by the 
compiler via COMP I LETYPELST (page 12.9). 

The DATA TY P E facility in Incerlisp-D is an extension of that found in Interfisp-l:fJ. fnterlisp-D also 
accepts BYTE. WORD. and SIGUEDWORD as datarype field descriptors equivalent to SITS 8. SITS 16. 

3.15 



() 
User Defined Data Types 

and BETWEEN -215 and 215_1 respectively. Interlisp-D will not move fields around in a user declaration 
if they pack into words and pointers as specified. POINTER fields take 24 bits and must be 32-bit 
right-justified. 

.l""-

3.16 



o· 

CHAPTER 4 

CONDmONALS M1> ITERAm~ STATEMENTS 

In order to do any but the simplest computations, it is necessary to test values and execute expressions 
conditionally. and to execute expressions repeatedly. Interlisp supplies a large number of useful conditional 
and iterative constructs. 

(CONO CLAL"'SE1 CLAUSE:; ••• CLAUSEK) [NLambda NoSpread Function] 
The conditional function of Interlisp, CONO, takes an indefinite number of 
arguments, called clauses. Each CLAUSEj is.a list of the form (p j eil ... CiN ) , 

where Pj is the predicate. and e il •. ~:. eiN are the consequents. The operation of 
Co~o can be paraphrased as: 

IF Pl THEN ell .•. C1N ELSEIF P2 TIiEN C21 ••. c m ELSEIF P 3 .•• 

The clauses are considered in sequence as follows: the predicate P 1 of the clause 
CLAUSEi is evaluated. If the value of PI is "true" (non-NIL). the consequents eil 
. •. eiN are evaluated in order. and the value of the COND is the value of CiNt the 
last expression in the clause. If PI is '6fa1se" (EQ to NIL). then the remainder of 

. CLAUSEj is ignoreci and the next clause, CLAUSEi+l , is considered. If no Pi is true 
for any clause. the value of the COND is N IL~ 

Note: If a clause has no consequents, and has the form (Pi)' then if Pi evaluates 
to non-N I L, it is returned as the value of the CONDo It is only evaluated once. 

Example: 

~ (DEFINEQ (DOUBLE (X) 

(DOUBLE) 
... (DOUBLE 5) 
10 

(COND «NUMBERP X) (PLUS X X}) 
«SiRING? X) (CONCAT X X» 
{(ATOM .X) (PACK- X X» 
(T (PRINT "unknown") X) 
«HORRIBLE-ERROR»] 

... (DOUBLE "FOO") 
"FOOFOO" 
... (DOUBLE 'BAR) 
BARBAR 
~ {DOUBLE '(A B C» 
"unknown" 
(A B C) 

A few points about this example: Notice that 5 is both a number and an atom. 
but it is ··caught" by the NUMBER? clause before the ATOM clause. Also notice 
the predicate T. which is always true. This is the normal way to indicate a COND 

4.1 



( 

clause which will always be executed (if none of the preceeding clauses are true). 
(HORRIBLE-ERROR) will never be executecL 

Note: The I F statement (page 4.4) provides an easier and more readable way of 
coding conditional expressions than CONDo 

(AND Xl X~ ••• XN) [NLambda NoSpread Function] 
Takes an indefinite number of arguments (including zero), that are evaluated in 
order. If any argument evaluates to NIL. ArlO' immediately returns NIL (without 
evaiuating the remaining arguments). If all of the arguments evaluate to non-B I L. 
the value of t.~e last argument is returned. (AND) = > T. 

(OR Xl %2 ••• XN) [NLambda NoSpread Function] 
Takes an indefinite number of arguments (including zero). that are evaluated in 
oraer. If any argument is non-N IL, the value of that argument is returned by OR 
(without evaluating the remaining arguments). If all of the arguments evaluate to 
NIL. NIL is returned. (OR) =) NIL. 

AllD and 0 R can be used as simple logical connectives. but note that they may not evaluate all of their 
arguments. This makes a difference if the evaluation of some of the arguments causes side-effects. AnoL.'ler 
result of this implementation of AND and OR is that they can be used as simple conditional statements. 
For example: (AND (LISTP x) (COR x» returns the value of (CDR x) if x is a list cell· .otherwise 
it returns NIL without evaluating (COR x). In general this q,se of AND and OR should be avoided in 
favor of more explicit conditional statements in order to make programs more readable. 

(SELECTQ X C"'wA USE 1 CLAUSE2 ••• CLAUSEK DEFAt1L.T) [NLambda NoSpread Function] 
Selects a form or sequence of forms based on the value of. its first argument x. 
Each clause CLAUSEj is a list of the fonn (Sj Cil ••• CiN) where Sj is the selection 
key. The operation of SELECTQ can be paraphrased as: 

IF x = 51 THEN cll ... CIN ELSEIF x = 52 THEN ... ELSE DEFAULT. 

If Si is an atom. the value of x is tested to see· if it is EQ to Si (which is not 

n 

evaluated). If so, the expressions Cil ... CiN are evaluated in sequence. and the '.,'.-\ 
value of the SELECTQ is the value of the last expression evaluated. i.e •• CiN' ) 

If si is a list. the value of x is compared with each element (not evaluated) of Sit 

and if x is E Q to anyone of them. then Cil ... CiN are evaluated as above . 

. If CLAUSEi is not selected in one of the two ways described. CLAUSEi~l is tested.. 
etc .. until all the clauses have been tested.. If none is selected.. DEF.o\ULT is evaluated.. 
and its value is returned as the value of the SELECTQ. DEFAULT must be presenL 

An example of the form of a SELECTQ is: 

[SELECTQ MONTH 
(FEBRUARY (if (LEAPYEARP) then 29 else 28» 
«APRIL JUNE SEPTEMBER NOVEMSER) 30) 
31] 

[f the value of MONTH is the litatom FEBRUARY. the SELECTQ returns 28 or 29 
(depending on (LEAPYEARP )): otherwise if MONTH is APRIL. JUNE. SEPTEMBER. 

4.2 



o 

() 

::J 

o 

CONDmONALS AND ITERATIVE STATEMENTS 

or NOVEMBE~ the SELECTQ returns 30; othervrise it returns 31. 

SELECTQ compiles open.. and is therefore very fast; however. it will not work if 
the value of x is a list, a large integer, or floating point number, since SELECTQ 
uses EQ for all comparisons. 

Note: The function SELCHARQ (page 2.13) is a version of SELECTQ that recognizes CHARCODE litatoII'..s. 

(SELECTC x CLAUSEz CLAUSE2 ••• CLAUSEk DEFAULT) [NLambda NoSpread Function] 
44SELECTQ-on-Constant." Similar to SELECTQ except tha~ the selectio:l keys are 
evaluate~ and the result used as a SELECTQ-style selection key. 

SELECTC is compiled as a SELECTQ, with the selection keys evaluated at compile
time. Therefore, the selection keys act like compile-time constants (see page U.S). 
For example: 

[SELECTC NUM 
( (for X from 1 to 9 collect (TIMES X X» "SQUARE" ) 
"HIP"] 

compiles as: 

[SELECTQ NUM 
( (1 4 9 16 25 36 49 64 81) "SQUARE" ) 
"HIP"] 

(PROGl Xl X 2 ••• X N ) [NLambda NoSpread Function] 
EvaluateS its arguments in order. and returnS the value of its first argument Xl. For 
example, (PROG 1 X (SErQ X Y» sets X to Y. and returns X's original value. 

(PROGZ Xl X2 .•• XN) [Function] 
Similar to PROG 1. Evaluates its arguments in order, and rerurns the value of its 
second argument x2" 

(PROGN Xl X:2 ••• X N ) [NLambda NoSpread Function] 

( P ROG VARLST 

PROGN evaluates each of its arguments in order. and returns the value of its las: 
argument. P ROG N is used to specify more than one computation where the syntaX 
allows only one, e.g .• (SELECTQ ... (PROGN ... » allows evaluation of several 
expressions as the default condition for a SELECTQ. 

El E2 ... EN) [NLambda NoSpread Function] 
This function allows the user to write an ALGOL-like program containing Interlisp 

. expressions (forms) to be executed. The first argument VARLST. is a list of loc~ 
variables(must be NIL if no variables are used). Each atom in VARLST is treated 
as the name of a local variable and bound to NIL. VARLST can also contain lists 
of the form (a 'tom form). In this case. a tom is the name of ~e variable and is 
bound to the value of form. The evaluation takes place before any of the bindings 
are performecl e.g., (P ROG « X Y) (Y X) •.. ) will bind local variable X to 
the 'value of Y (evaluated outside the P ROG) and local variable Y to the value of 
X (outside the PROG). An attempt to use anything other than a literal atom as a 
PROG variable will cause an error. ARG NOT LITATOM. An attempt to use NIL 
or T as a PROG variable will cause an error. ATTEMPT TO BIND NIL OR T. 

4.3 



(GO x) 

(' ~RETURN x) 

The IF Statement 

The rest of the PROG is a sequence of non-atomic statements (forms) and litatoms 
(labels). The forms are evaluated sequentially; the labels serve oniy as markers. 
The two special functions GO and RETURN alter this flow of control as described 
below. The value of the PROG is usually specified by the function RETURN. If no 
RETURN is executed before the PROG ufalls off the end." the value of the PROG is 
NIL. 

[NLambda NoSpread Function) 
GO is used to cause a tr2.nSfer in a PROG. (GO L) will cause the PROG to evaluate 
forms starti.ng at the label L (GO does not evaluate its 3.l~.lII1e:lt). A GO can be 
used at any level in a PROG. If the label is not found. GO will search higJ.~er p:ogs 
within the same fv.nction. e.g., (P ROG ••• A ••• (PROG ••• (GO A»). If the 
label is not found in the function in which the PROG appears. an error is generated. 
UNDEFINED OR ILLEGAL GO. . 

[Function] 
. A RETURN is the normal exit for a PROG. Its argument is evaluated and is 

immediately rerumed the. value of the P RaG in which it appears. 

Note: If a GO or RETURN is executed in an interpreted function which is not a PROG. the GO or RETURN 
will be executed in the last interpreted P ROG entered if any, otherwise cause an error. 

GO or RETURN inside of a compiled function that is not a PROG is not allowed. and will cause an-error 
at compile time. 

As a coroll3J.-Y, GO or RETURN in a functional argument. e.g. .. to SORT. will not work compiled. Also, j 

since NLSETQ's and ERSETQ's compile as separate functions .. a GO or RETURN canna I be used inside of a 
compiled NLSETQ or ERSETQ if the corresponding PROG is outside, Le... above, the NLSETQ or ERSETQ. 

4.1 THE IF STATEMENT 

The ! F statement provides a way of way of specifying conditional expressions that is much easier and 
. readable than using the cor~o function directly. eLISP translates expressions employing IF, THEN. 

ELSEIF. or ELSE into equivalent COND expressions. In general. statements of the form: 

(IF AAA THEN BBB ELSEIF ccc THEN DDD ELSE EEE) 

are translated to: 

(CONO (AAA BBB) 
. (ccc DDD) 

(T EEE) ) 

The segment between I F or ELSE I F and the next THEN corresponds to the predicate of a CONO clause. 
and the segment between THEN and the next ELSE or ELSE IF as the consequent(s). ELSE is the same as 
ELSEIF T THEN. These words are spelling corrected using u.1.e spelling list CLISPIFWORDSPLST. Lower 
case versions (if. then. elseif. else) may also be used. 

If there is nothing following a THEN. or THEN is omitted entirely. then the resulting COND clause has a 

4.4 

o 

(') 
\ I 

(\ 
\ ) 



o ..... 

0 

,"\ 
U 

CONDmONALS AND ITERATIVE STATEMENI'S 

predicate but no coD.sequent For example~ (IF X THEN ELSEIF ... ) and (IF X ELSEIF •.• ) both 
translate to (COND (X) ... ) t which means that if X is not NIL, it is returned as the value of the CONDo 

CLISP considers IF t THE N. E LS E, and E LS ElF to have lower precedence than all infix and prefix 
opera.tors, as well as Internsp forms. so it is sometimes possible to omit parentheses around predicate or 
consequent forms. For example, (I F FOO X Y THEN ..• ) is equivalent to (I F (FOa X Y) THEtl 
... ), and (IF X THEN FOD X Y ELSE ... ) as equivalent to (IF X THEN (FOO X Y) ELSE ... ). 
Essentially, CLISP determines whether the segment between iHEN and the next ELSE or ELSEIF 
corresponds to one form or several and acts aCcordingly, occasionally interacting with the user to resolve 
?!Il0iguous cases. Note that if F 00 is bound as a vcu-iable. (I F F 00 THE N ... ) is translated as (COND 
( F 00 .•. », so if a call to the junction F 00 is desired. use (I F (F 00 ) THE N ... ) • 

4.2 THE ITERATIVE STATEMENT 

The iterative statement (i..s.) in its various forms permits the user to specify complicated iterative 
statements in a straightforward and visible manner. Rather than the user having to perform the mental 
transformations to an equivalent Interlisp form using PROG, MAPC, MAPCAR, etc~ the system does it for 
him. The goal was to provide a robust and tolerant facility which could "make sense" out of a wide class 
of iterative statements. Accordingly, the user should not feel obliged to read and understand in detail the 
description of each operator given below in order to use iterative statements. 

An iterative statement is a form consisting of a nUmber of special words (known as i.s. operators or 
i.s.oprs), followed by operands. Many i.s.oprs (FOR, DO, WHI LE, etc.) are similar to iterative statements 
in other programming languages; other Ls.oprs (COLLECT. JOIN, IN, etc.) specify useful operations in a 
Lisp environment. Lower case versions of Ls.oprs (do. co 11 ect, etc.) can also be used. Here are some 
examples of iterative statements: 

.. (for X from 1 to 5 do (PRINT 'FOO» 
~ 

FOO 
FOO 
FOO 
FOO 
FOO 
NIL 
~ (for X from 2 to 10 by 2 collect (TIMES X X» 
(4 16 36 64 100) 
.. (for X in '(AB 1C 6.5 NIL (45)) count (NUMBERP X)) 
2 

Iterative statements are implemented through CLlSP. which translates the fonn into the appropriate 
P ROG. MAPCAR. etc. Iterative statement forms are translated using all CLlSP declarations in effect 
(standardlfastlunc.oablel etc.): see page 16.9. Misspelled i.s.oprs are recognized and corrected using the 
spelling list CLISPFORWORD.SPLST. The order of appearance of operators is never important: CLISP 
scans the entire statement before it begins to construct the equivalent lnterlisp form. New i.s.oprs can be 
defined as described on page 4.13. 

If the user defines a function by the same name as an los.opr (WH I LE. TO. etc.). the Ls.opr wili no longer 
have the eLlSP interpretation when it appears as CAR of a fonn, although it will continue to be treated 

4.5 



I.s.types 

as an Ls.opr if it appears in the interior of an iterative statement. To alert the user, a warning message is 
printed. e.~ (WHILE DEFINED, THEREFORE DISABLED IN ClISP). 

4.2.1 Ls.types 

The following Ls.oprs are examples of a certain kind of iterative statement operator called an i.s.type. The 
Ls.type specifies what is to be done at each iteration. Its operand is called the "body" of the iterative 
statement. Each iterative statement must have one and only one Ls.type. 

DO FOIL\! 

COLLECT FORM 

JOIN FORM 

SUM FORM 

COUNT FORM 

ALWAYS FOR.\! 

NEVER FOP .... \! 

[I.S. Operator] 
Specifies what is to be done at each iteration. 00 with no other operator specifies 
an infinite loop. If some explicit or implicit terminating condition is specified, the 
value of the Ls. is NIL. Translates to MAPC or MAP whenever possible. 

[l.S. Operator] 
Specifies that the value of FORM at each iteration is to be collectf!d in a list. which 
is ret'..lrned as the value of the Ls. when it terminates. Translates to MAPCAR. 
MAPLISTor SUBSET whenever possible. 

When COLLECT translates to a PROG (e.g.. if UNTIL. WHILE, etc. appear in the 
Ls.), the translation employs an open TCONC using two pointers similar to that 
used by the compiler for compiling MAPCAR. To disable this translation. perform 
(CLDISABLE 'FCOLLECT). 

[I.S.' O'peratorJ 
Similar to COLLECT, except that the values of FORM at each iteration are NCONCed. 
Translates to MAPCONC or MAPCON whenever possible. INCONC,/MAPCONC, and 
IMAPCON are used when the CLISP declaration UNDOABLE is in effect. 

[1.5. Operator} 
Specifies that the values of FORM at each iteration be added together and returned 
as the value of the i.s~ e.g.. (FOR I FROM 1 TO 5 SUM I 1'2) is equal to 
1+4+9+16+25. IPLUS. FPLUS. or PLUS will be used in the translation depending 
on the CLI5P declarations in effect. 

[1.S. Operator] 
CountS the number of times that FORM is true. and returns that count as itS value. 

[1.5. Operator] 
Returns T if the value of FORM is non-NIL for all iterations. (Note: returns NIL 
as soon as the value of FOR.\{ is NIL). 

[1.5. Operator] 
Similar to ALWAYS. except rerurns T if the value of FORM is never true. (Note: 
returns NIL as soon as the value of FORM is non-N I L). 

The following Ls.types explicitly refer to the iteration variable (Lv.) of the iterative statement. which is a 
variable set at each iteration. This is explained below under FOR. 

THERE IS FOR:-.! [I.5. Operator} 
Returns the first value of the i. v. for which FORM is non-N I L .. e.g .• (F 0 R X IN Y 

4.6 

0., 

n 
\_J 

f"'
\ ). 



-

o 

o 

CONDITIONALS M1) ITERAID"E STATEMENTS 

THEREIS (NUMBERP X» returns the first number in Y. (Note: reOJrnS the value 
of the i. v. as soon as the value of FORM is non-N I L). 

LARGEST FORM [1.S. Operator] 
SMALLEST FORM [1.5. Operator] 

Returns the value of the i. v. that provides the largestlsmallest value of FORM. 
$SEXTREME is always bound to the current greates.tlsmallest value, SSVAL to t.~e 
value of the Lv. from which it came. . 

·1 -

4.2.2 Iterztion V mable Ls.oprs 

FOR VAR 

FOR VA.RS 

FOR OLD VAR 

BIND VAR 
. BIND· VARS 

[l.S. Operator] 
Specifies the iteration variable (i.v.) which is used in conjunction with IN, ON. 
FROM, TO, and BY. The variable is rebound within the i.s.. so the value of the 

.. variable outside the Ls. is not effected. Example: 

.. (SETQ.X 55) 
55 
.. (for X from 1 to 5 collect (TIMES X X» 
(1 4 9 ,16 25) 
.. X 
55 

[LS. Operator} 
VARS a list of variables. e.g.. (F 0 R (X Y Z) IN· •• ). The first variable is the 
Lv~ the rest are dummy variables. See BIND below. 

[l.S. Operator] 
Similar to FOR, except that VAR is not rebound within the Ls., so the value of tL'1e 
Lv. outside of the Ls. is changed. Example: 

+- (SETQ X 55) 
55 
~ (for old X from 1 to 5 collect (TIMES X X» 
(1 4 9 16 25) 
~ X 
6 

[LS. Operator] 
[1.5. Operator] 

Used to specify dummy variables, which are bound locally within the i.s. 

Note: FOR. FOR OLD, and BIND variables can be initialized by using the form VAR~FOR.M: 

(FOR OLD (X+-FORM") B I~lD (Y~FORM) ... ) 

IN FORM [I.5. Operator1 
Specifies that the Ls. is to iterate down a list with the' i. v. being reset to the 
corresponding element at each iteration. For example. (FOR X IN Y DO ... ) 
corresponds to (MAPC Y (FUNCT ION (LAMBDA (X) ... )). If no Lv. has 
been specified. a durnrny is supplied. e.g .. (I N Y COLLE CT CAD R) is equivalent 

4.7 



ON FOR.V 

Iteration Variable I.s.oprs 
..... 

,; 

to (MAPCAR Y (FUNCTION CADR». 

[I.S. Operator] 
Same as I N except that the Lv. is reset to the corresponding tail at each iteration. 
Thus IN corresponds to MAPC~ MAPCAR, and MAPCONC. while ON corresponds to 
MAP, MAPLIST,. and MAPCOtJ. 

Note: for both IN and ON, FORM is evaluated before the main pan of the Ls. is enterec1 Le. autrule of 
the scope of any of the bound variables of the i.s. For example, (FOR X BIND (Y"'(l 2 3» IN Y 
••• ) 'Will map down :he list which is the value of Y evaluated outside of the Ls.. not (1 2 3). 

IN OLD VAR [I.S. Operator] 
Specifies that the i.s. is to iterate down V~ with VAR. itself being reset to tbe 
corresponding tail at each iteration. e.g., after (FOR X IN OLD L 00 ... UNTIL 
... ) finishes, L will be some tail of its original value. 

IN OLD (VAB!-FORM) [I.S.Operator1 

ON OLD VAR 

Same as IN OLD VAR, except VAH is first set to value cf FORM. 

[I.S. Operator1 
Same as IN 0 LD VAH except the Lv. is reset to the current value of VAR at each 
iteration. instead of to (CAR VAR). 

ON OLD (VAR"FORM) [I.S. Operator] 

INSIDE FORM 

.. 
FROM FORM 

Same as ON OLD VAR, except VAR is first set to value of FORM. 

[I.S. Operator} 
Similar to I N, except treats first non-list. non-N I L tail as the last element of the 
iteration. e.g., INS IDE t (A BCD • E) iterates five times with the Lv. set to 
E on the last iteration. INSIDE 'A is equivalent to INSIDE '(A), which will 
iterate once . 

[1.5. Operator} 

() 

Used to specify an initial value for a numerical Lv. The i. v. is automatically 
incremented by 1 after each iteration (unless BY is specified). If no i. v. has been (j 
specified, a dummy i.v. is supplied and irJtialized. e.g.,. (FROM 2 TO 5 COLLECT 

TO FOP..M 

SQ R T) returns (1. 4 14 1. 7 3 2 2. a 2. 23 6 ). 

[1.5. Operator} 
Used to specify the final value for a numerical i. v. If F ROM is not specified.. the 
Lv. is initialized to L If no Lv. has been specified.. a dummy Lv. is supplied 
and initialized. If BY is not specified. the i. v. is automatically incremented by 1 
after each iteration.1 When the Lv. is definitely being incremented. i.e .. either BY is 
not specified.. or its operand is a positive number. the 1.5. temtinates when the i. v. 
exceeds the value of FORM e.g .• (FOR X FROM 1 TO 10 --) is equivalent to 
(FOR X FROM 1 UNTIL (X GT 10) --).Similarly,whentheLv.isdefinitely 

lexcept when both the operands to TO and F ROM are numbers. and TO's operand is less than F ROM"s 
operand. e.g .. FROM 1 0 T~ 1. in which case the i. v. is decremented by 1 after each iteration. [n this 
case. the 1.s. terminates when the i. v. becomes less than the value of FORM. 

4.8 n 



o 

o 

u 

o 

CONDmONAlS AND ITERAmrE STATEMENTS 

being decremented the Ls. terminates when the Lv. becomes less than the value of 
FOP..M (see description of BY). 

Note: FORM is evaluated only once, when the i.s. is first entered. and its value 
bound to a temporary variable against which the Lv. is checked each interation. If 
the user wishes to specify an i.s. in which the value of the boundary condition is 
recomputed each iteration. he should use WHILE or UNTIL instead of TO. 

BY FORM (with INION) '[l.S. Operator] 
If I N or ON have been specified, the value of FORM determines the tail for 
the next iteration. which in turn determines the value for the Lv. as described 
earlier, Le., the new i.v. is CAR of the tail for IN, the tail itself for ON. In 
conjunction with I N, the user can refer. to the current tail within FORM by using 
the Lv. or the operand for INION, e.g., (FOR Z IN L BY (COOR Z) ~ .. ) 
or (FOR Z IN L BY (COOR L) ... ). At translation time, the name of the 

. internal variable which holds the value of the current tail is ~ubstiruted for the Lv. 
throughout FORM. For example, (FOR X IN Y BY (CDR (MEMB 'FOO (CDR 
X) » CO LL E CT X) specifies that after each iteratioIL CO R of the current tail is 
to be searched for the atom FOO, and (CDR of) this latter tail to be used for the 
next iteration. 

BY FORM (without INION) [l.S. Operator] 

AS VAn 

If I N or Of4 have not been used. BY specifies how the Lv. itself is reset at each 
iteration. If F ROM or TO have been specified.. the Lv. is known to be numericaL 
so the new Lv. is compjlted by adding the value of FORM (which is reevaluated 
each iteration) to the current value of the Lv., e.g., (FOR N FROM 1 TO 10 BY 
2 COLLECT N) makes a list of the first five odd numbers. 

If FORM is a positive number,2 the Ls. terminates when the value of the Lv. exceeds 
the value of TO's operand. If FORM is a negative number. the Ls. terminates when 
the value of the Lv. becomes less than TO's operand, e.g .• (FOR I FROM N TO M 
BY - 2 UNT I L (I L T M) ••• ). Othenvise, the terminating condition for each 
iteration depends on the value of FORM for that iteration: if FOPX(O. the test is 
whether the Lv. is less than TO's operand, if FORM>O the test is whether the Lv. 
exceeds TO's operand, otherwise if FORM =0. the Ls. terminates unconditionally. 

If FROM or TO have not been specified and FORM is not a number. the Lv. is 
simply reset to the value of FORM after each iteratio~ e.g .• (FOR I FROM N BY 
M ••• ) is equivalent to (FOR I+-N BY (IPLUS 1M) ••• ). 

[1.S. Operator] 
Used to specify an iterative statement involving more than one iterative variable. 
e.g., (FOR X IN Y AS U IN V DO --) corresponds to MAP2C. The i.s. ter
minates when any of the terminating conditions are met. e.g .• (FOR X I~' Y AS 
I FROM 1 TO 10 COLLECT X) makes a list of the first ten elements of Y. or 
however many elements there are on Y if less than 10. 

The operand to AS. VAR. specifies the new Lv. For the remainder of the Ls .. 
or until another AS is encountered. all operators refer to the new i. v. For 

2 FOR.\! itself. not its value. which in general CLISP would have no way of knowing in advance. 

4.9 



OUTOF FORM 

o 
Condition Ls.oprs 

example~ (FOR I FROM 1 TO N1 AS J FROM 1 TO N2 BY 2 AS K FROM 
N3 TO 1 BY -1 --) terminates when I exceeds N19 or J exceeds tlZ. or K 
becomes less than L After each iteration.. I is incremented by L J by l and K by 
-1. 

[I.S. Operator] 
Far use with generators (page 7.13). On each iteration. ·the i.v. is set to successive 
values returned by the generator. The i.s. terminates when the generator runs out. 

.,- -

4.2.3 Condition I.s.oprs 

WHEN FORM 

UNLESS FORM 

WHILE FORM 

. UNTIL FORM 

[I.S. Operator1 
Provides a way of excepting certain iterations. For example9 (FOR X IN Y () 
COLLECT X WHEN (NUMBERP X» collects only the elements of Y that are . 
numbers. 

[I.S. Operator] 
Same as WHEN except for the difference in sign. i.e .• WHEN Z is the same as UNLESS 
(NOT Z). 

[1.5. Operator] 
Provides a way of terminating the i.s. WH I LE FORM evaluates FORM before each 
iteration. and if the value is NIL. exits. 

[I.S. Operator1 
Same as WHILE except for difference in si~ Le .. WHILE X is equivalent to UNTIL 
(NOT X). 

UNTIL N (N a number) [L5. Operator] 
Equivalent to UNTIL (LV. GT N). 

REPEATWHILE FORM [I.S. Operator] '\ 
Same as WHILE except the test is performed after the evalution of ~e body. but ( ).-
before the Lv. is reset for the next iteration. .~ 

REPEATUNTIL FORM [1.5. Operator} 
Same as UNTI L~ except the test is penormed after the evaluation of the body. 

REPEATUNTIL N (N a number) [1.5. Operator] 

4.2.4 Other I.s.oprs 

FIRST FO&'''f 

F I NALL Y FOR-\{ 

Equivalent to REPEATUNTIL (r.v. GT N). 

[1.5. Operator1 
FORM is evaluated once before the first iteratiolL e.g.~ (F 0 R X Y Z IN L FIR S T 
(FOO Y Z) ... ), and F 00 could be used to initialize Y and Z. 

[I.5. Operator] 
FORM is evaluated after the i.s. terminates. For example. (FOR X IN 

4.10 
o 



O-~· 
-

o 

CONDmONALS AND ITERATIVE STATE1\1~TS 

L BIND y~O DO (IF ATOM X THEN Y~Y+l) FINALLY (RETURN V»~ will 
return the number of ato,ms in L. . 

EACHT IME FOP-\! [I.s. Operator] 

DECLARE: DECL 

DECLARE DECI" 

FORM is evaluated at the beginning of each iteration before, and regardless of, any 
testing. For example. consider, 

{FOR I FROM 1 TO N 
DO {... (FOO rf···) 
UNLESS (... (FOO I) ••• ) 
UNT I L (... (FOO I) ... » 

The user might want to set a temporary variable to the value of (FOO I) in order 
to avoid computing it three times each iteration. However, without knowing the 
translation. he would not know whether to put the assignment in the operand to 
DO. UNLESS. or UNTIL, i.e .. which one would be executed first. He can avoid t.'1is 
problem by simply writing EACHT IME (SETQ J (FOO I». 

[I.5. Operator] 
Inserts the form (DECLARE DECL) immediately following the PROG variable list in 
the translation. or, in the case that the translation is a mapping function rather than 
a P ROG, immediately following the argument list of the lambda expression in the 
translation. This can be used to declare variables bound in the iterative statement 
to be compiled as local or special variables (see page 12.4). For example (FOR X 
IN Y DECLARE: (LOCALVARS X) ... ). Several DECLARE: s ,C2ll apppear in 
the same i.s.; the declarations are insened in the order they appear. 

[l.S. Operator} 
Same as DECLARE:. 

Note that since DECLARE is also the name of a function. DECLARE cannot be used 
as an ls. operator when it appears as CAR of a form. i.e. as the first Ls. operator 
in an iterative statement. However, dec 1 are (lower-case version) can be the first 
i.s. operator. 

ORIGINAL I.S.OFR OFERAND [I.S. Operator1 
LS.OPR will be translated using its original built·in interpretation. independent of 
any user defined Ls. operators. See page 4.13. 

There are also a number of is.oprs that make it easier to create iterative statements that use the cleck. 
looping for a given period of time. See Timers, page 14.11. 

4.2.5 Miscellaneous 

• Lowercase versions of all i.s. operators are equivalent to the uppercase, e.g.. (f 0 r X ; n Y ••• ). 

• Each Ls. operator is of lower precedence than all Interlisp forms. so parentheses around the operands 
can be omitted. and will be supplied where necessary, e.g .. BIND (X Y Z) can be written BIND X Y 
Z, OLD (X'-FOP.,.\f) as OLD X~FORM. WHEN (NUMB ERP X) as WHEN NUMBE RP X, etc. 

At 

• RETURN or GO may be used in any operand. (In this case. the translation of the iterative statement will 

4.11 



Miscellaneous 
... 0. 

,; 

always be in the fonn of a PROG. never a mapping function.) RETURN means return from the i.s. (with 
the indicated value), not from the function in which the i.s appears. GO refers to a label elsewhere in 
the function in which the i.s. appears. except for L.'e labels SSLP, SSITERATE, and SSOUT which are 
reserved, as described below. 

• In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the Ls.types. e.g .. DO, COLLECT, 
SUM. etc .. the operand can consist of more than one fc~ e.g .. COLLECT (PRINT X: 1) X: 2. in which 
case a PROGN is supplied. 

• Each operand can be the name of a function, in which case it is applied to the (last) i.v .• e.g .. (FOR X 
IN Y 00 PRINT WHEN NUMBERP) is the same as (FOR X IN Y DO (PRINT X) WHEN (NU~·1SERP. 

X». Note that the Lv. need not be explicitly specified. e.g .. (IN Y 00 PRINT WHEN NUMBER?) will 
work. 

~_ For Ls.~es. e.g.. DO. COLLECT, JOIN, the function is always applied to the first Lv. in the Ls .. whether (). 
explicity named or not. For example, (IN Y AS I FROM 1 TO 10 DO PRINT) prints elements on 0. 

Y, not integers between 1 and 10. 

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or ON, since they "operate" 
before the loop S~ when the i.v. may not even Qe bound. 

In the case of BY in conjunction with IN, the function is applied to the current tail e.g.. FOR X IN Y 
BY COOR ••• is the same as FOR X IN Y BY (CODR X) •••. 

• While the exact form of the tranSlation of an iterative statement depends on which operators are present. 
q. P ROG will always be used whenever the i.s. specifies dmr .... "l1y variables. i.e .. if a BIN 0 operator appears. 
or there is more than one variable specified by a FOR operator. or a GO. RETURN, or a reference to the 
variable SSVAL appears in any of the operands. When a PROG is used. the form of the translation is: 

( P ROG VARIABLES 
{initialize} 

SSLP {eachtime} 
{test} 
{body} 

SSITERATE 
{aftartast} 
{update} 
(GO SSLP) 

SSOUT {finalize} 
(RETURN SSVAL» 

where {t est} corresponds [0 that portion of the loop that tests for termination and also for those 
iterations for which {body} is not going to be executed. (as indicated by a WHEN or UNLESS): {body} 
corresponds to the operand of t".'e i.s.type. e.g .. DO. COLLECT. etc.: {aftertest} corresponds to those 
tests for termination specified by REPEATWHILE or REPEATUNTIL: and {update} corresponds to L.'1ac 
par: that resets the tail. increments the counter. etc. in preparation for the next iteration. {i nit; a 1 ; ze}, 
{final ;ze}, and {eachtime} correspond to the operands of FIRST. FINALLY. and EACHTIME. if 
any_ 

Note that since {bOdy} always appears at the top level of the PROG. the·usercan insert labels in {body}. 
and GO to them from within {body} or from other i.s. operands. e.g .. (FOR X. IN Y FIRST (GO A) 
DO (FOO) A (FIE». However. since {bOdy} is dwimified as a list of fOIms. the label(s) should be 

4.12 



!:=) 

CONDmONALS AND ITERATIVE STATEMENTS 

added to the dUIrmy variables for the iterative statement in order to prevent their being dwimUiedand 
possibly"corrected",e.g~(FOR X IN Y BIND A FIRST {GO A)·DO (FOO) A (FIE». The user 
can also GO to SSLP, SSITERATE. or SSOUT, or explicitly set SSVAL. 

4.2.6 Errors in Iterative Statements 

An error will be generated and an appropriate 'diagnostic printed if any of the following conditions hold: 

1. Operator with null operan~ Le .• two adjacent operators. as in FOR X IN Y UNTIL DO --

2. Operand consisting of more than one form (except as operand to FIRST. FINALLY. or one of the 

3. 

4. 

s. 
6. 

Ls.types), e.g., FOR X IN Y (PRINT X) COLLECT • 

IN: ON. FROM, TO. or BY appear twice in same i.s. 

Both IN and ON used on same Lv. 

FROM or TO used with IN or ON on same Lv. 

More than one i.s.type, e.g.~ a DO and a SUM. 

In 3, 4, or 5, an error is not generated if an intervening AS occurs. 

If an error occurs, the i.s. is left unchanged. 

If no DO, COLLECT, JOIN or any of the other Ls.types are specified. CUSP will first attempt to find an 
operand consisting of more than one form. e.g., FOR X IN Y (PRINT X) WH EN ATOM X, and in this 
case will insen a DO after the first form. (In this case, -condition 2 is not considered to be met. and an 
error is Dot generated.) If CLISP cannot find such an operand. and no WHILE or UNTIL appears in the 
L~ a warning message is printe~ NO DO, COLLECT, OR JOIN: followed by the Ls. 

Similariy, if no terminating condition is detected, Le., no IN. ON. WHILE. UNTI L. TO, or a RETURN or GO. 
a warning message is printed:3 POSSIBLE NON-TERMINATING ITERATIVE STATEMENT: followed o by the iterative Sta:emenL However. since the user may be planning to terminate the Ls. via an error, 
control-Eo or a RET F ROM from a lower function. the Ls. is still translated. 

o 

4.2.7 Defining New Iterative Statement Operators 

The following function is available· for defining new or redefining existing iterative statement operators: 

(l.S.OPR NAME FORM OTHERS EVALFLG) [Function] 
NAME is the name of the new Ls.opr. If FORM is a list. NAME will be a new 
i.s.lype (see page 4.6). and FORM its body. 

OTHERS is an (optional) list of additional Ls. operators and operands which will 
be added to the i.s. at the place where NAME appears. If FORM is NIL. NAME is 
a new i.s.opr defined entirely by OTHERS. 

3unless the value of CLISP I. S. GAG is T (initially NIL). 

4.13 



! 

Defining New Iterative Statement Operators 

In both FORM and OTHERS, the atom SSVAL can be used to reference the value to 
be returned by tL,e Ls ... I. V. to reference the current i.v .• and BODY to reference 
NAMES operand. In other words. the current Lv. will be substituted for all 
instances of I. V. and NAME'S operand will be substituted for all instances of 
BOD Y throughout FOR..'4 and OTHERS. 

If EVALFLG is T. FOP.M and OTHERS are evaluated at translation time. and their 
values used as described above. LSTVARS is a list of dmrmy variable names 
used by the iterative statement translator. If the user wishes' to obtain a dummy 
variable for use in translation. and be sure it does not clash with a dummy variabie 
already used by some ether i.s. operators. he can use CAR of LSTV ARS, and reset 
LSTVARS to (CDR LSTVARS). 

If NAME was previously an i.s.opr and is being redefined. the message (NAME 

./\ 
\... i:.. 

' ... Ii 

REDEFINED) will be printed (unless DFNFLG=T). and all expressions using the ('" 
i.s.opr NAME that have been translated will have their t..~atioDS discarded. \. ) 

For example. for COLLECT. FORM would be (SETQ SSVAL (NCONCl SSVAL BODY). 

For SUM. FORM would be ($SVAL+-SSVAL+BODY).4 OTHERS would be (FIRST SSVAL+-O). 

For NEVER .. FORM would be (IF .BOOY THEN SSVAL+-NIL (GO SSOUT» ).5 

For THEREIS. FORM would be (IF BODY THEN SSVAL+-I. V. (GO SSOUT». 

Examples: 

To define RCOLLECT. a version of COLLECT which uses CONS instead of NCONC1 and then reverses the 
list of values: 

(I.S.CPR 'RCOLLECT 
'(SSVAL+-(CONS BODY SSVAL») 
'(FINALLY (RETURN (OREVERSE SSVAL»)] 

. -- To define TCOLLECT, a version of COLLECT which uses TCONC: 

. (I.S.OPR 'TCOLLECT 
'(TCONC SSVAL BODY) 
'(FIRST SSVAL~(CONS) FINALLY (RETURN (CAR SSVAL»)] 

To define PRODUCT: 

(I.S.OPR 'PRODUCT 
'(SSVAL~SSVAL·BODY) 
'(FIRST S$VAL~l)] 

To define UPTO. a version of TO whose operand is evaluated only once: 

"SSVAL+60DY is used instea.d of (IPLUS SSVAL BODY) so that the choice of function used in the 
translation. i.e .. I PLUS. F PLUS. or PLUS. will be determined by the declarations then in effect. 

S ( I F BODY THEN RETURN NIL) would exit from the Ls. immediately and therefore not execute the 
operations specified via a F I NALL Y (if any). 

4.14 



t~_ 
- J '. 
\'---./ . 

0-

I 

(I.S.OPR 'UPTO 
NIL 

CONDmONALS AJ.~'TI ITERATIVE STATEMENTS 

'(BIND SSFOO~BODY TO SSFOO)] 

To redefine TO so that instead of recomputing FORM each iteration. a variable is bound to the value. of 
FO~ and then that variable is used: 

(I.S.OPR 'TO 
NIL ,I" 

'(SIND SSEND FIRST $$END~BODY ORIGINAL TO SSEND)] 

Note the use of ORIGINAL to redefine TO in terms of its original definition. ORIGINAL is intended 
for use in redefining built-in operators. since their definitions are not accessible. and hence not directly 
modifiable. Thus if the operator had been defined by the user via I. S.OPR. ORIGINAL would not 
obtain its original defuJition. In this case. one presumably would simply modify the Ls.opr definition. 

I . S .. OPR can also be used to define synonyms for already defined i.s. operators by calling I. S. OPR 
with FOP..M an atom. e.g .• (I. S. OPR 'WHERE 'WHEN) makes WHERE be the same as WHEN. Similarly, 
folloVring (I. S. OPR 'ISTHERE 'THERE IS), one can write (ISTHERE ATOM IN Y). and following 
(I.S.OPR 'FIND 'FuR) and (I.S.OPR 'SUCHTHAT 'THEREIS). one caD write (FIND X IN Y 
SUCHTHA T X MEMB E R Z). In the current system. WHE RE is synonymous with WHEN, SUCHTHA T and 
ISTHERE with THEREIS. FIND· with FOR, and THRU with TO. 

If FOIL\! is the atom MOD I FIE R. then NAME is defined as an Ls.opr which can immediately follow another 
Ls. operator (Le .. an error will not be generated.. as described previously). NAME will not terminate the 
scope of the previous operator. and will be stripped off when DWIMI FY is called on its operand.. OLD 
is an example of a MOD I FIE R type of operator. The MOD I FIE R feature allows the user to define i.s. 
operators similar to 0 LD. for use in conjunction with some other user defined Ls.opr which will produce 
the appropriate translation. 

The file package command 1.5. OPRS(page 11.25) will dump the definition of ks.oprs. (1.5. OPRS 
PRODUCT UPTO) as a file package command will print suitable expressions so that these iterative 
statement operators will be (re)d.efined when the file is loaded. 

4.15 



Defining New Iterative Statement Operators 

. .,..-

4.16 

n-

(\ -. 
\ ) 



o 

o 

() 

o 

CHAPTER 5 

FUNCTION DEFINITION, MANIPULATION, AND EVALUA-nON 

The Interlisp programming system is designed .·to help the user define and debug functions. DevelopL.,g 
an applications program in Intedisp involves defining a number of functions in terms of· the sysrern 
prJlIlitives and other user-defined functions. Once defined. the user's functions may be referenced exactly 
lil:e lnterlisp p~..mitive functions. so the progr~g process can be viewed as extending the Interlisp 
language to include the required functionality. . 

The user defines a function with a list expressions known as an EXPR. An EXPR specifies if the function 
has a fixed or variable number of arguments. whether these arguments are evaluated or not. the function 
argument names. and a series of forms which define the behavior of the function. For example: 

(LAMBDA (X Y) (PRINT X) (PRINT V»~ 

A function defined with this EX P R would have two evaluated argumen~ X and Y ~ and it would execute 
( P R I NT X) and (P R I NT Y) when evaluated. Other types of EX P Rs are described below. 

A function is defined by putting an EXPR in the function definition cell of a litatom. There are a number 
of functions for accessing and setting function definition cel~ but one usually defines a function wi~'1 
DE F tN EO (page 5.9). For example: 

~ (OEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT V»~ 
(FOO) 

The expression above will define the function FOO to have the EXPR definition (LAMBDA (X Y) (PRI NT 
X) (PRINT Y». After being defined.. tIlls function may be evaluated just like any system function: 

~ (FOO 3 (IPLUS 3 4») 
3 
7 
7 

All function definition cells do not contain EXPRs. The compiler (page 12.1) translates EXPR definitions 
into compiled code objects. which execute much faster. In Interlisp-lO. many primitive system functions 
are defined with machine code objectS known as SUB Rs. Interlisp provides a number of "function type 
functions" which determine how a given function is defined (EXPR/compiled code/SUBR). the number 
and names of function arguments. etc. See page 5.6. 

Usually. functions are evaluated automatically when they appear within another function or when typed 
into Int:erlisp .. However. sometimes it is useful to envoke the Interlisp interpreter explicitly to apply a 
given "functional argument" to some data. There are a number of functions which will apply a given 
function repeatedly. For example. MAPCAR will apply a function (or an EXPR) to all of the elements of 
a list.. and reru:n the values returned by the function: 

~ (MAPCAR '(1 234 5) '(LAMBDA (X) (ITIMES X X» 

5.1 



" f 

Function Types 

(1 4 9 16 25) 

Whe;l using functional argumen~ there are a number of problems which can arise. related with accessing 
free variables frem within a function argument. Many times these problems can be solved using the 
function FUNCTION to create a FUNARG object (see page 5.15). 

The macro facility provides another way of specifying the behavior of a function (see page 5.17). Macros 
are very .useful when developing code which should run very quick1y~ which should be compiled differently 
than it is interpreted.. or which should run differently in different implementations of Interlisp. 

5.1 FUNCrION TYPES 

lnterlisp functions are defined using list expressions called EXPRs. An EXPR is a list of the form 
( L..AM:SDA- wOP"!) A.RG-LlST FORM I ••• FOP..M N ). LAMBDA-WORD determines whether the argumentS to 
this function "!ill be evaluated or not. ARG-LIST determines the number and names of arguments. and 
FORMl ••• F'OR..".!N are a series of forms to be evaluated after the arguments are bound to the local 
variables in ARG-LIST. • 

If LAMBDA-WORD is the litatom LAMBDA. then the arguments to the function are evaluated. If L.AM13DA

WORD is the litatom NLAMBDA. then the arguments to the function are not evaluated. Functions which 
evaluate or don't evaluate their arguments are therefore known as "lambda" or '4nlambda" functions. 
respectively. 

If ARG-LIST is l. I L or a list of litatoms. this indicates a function with a fixed number of arguments. E:lch 
litatom is the name of an argument for the function defined by this expression. The process of binding 
these litatoms to the individual arguments is called "spreading'· the arguments. and the function is called 
a "spread" function. If the argument list is any litatom other than NIL. this indicates a function with a 
variable number of argumentS. known as a "nospread" function. 

_ If ARG-LIST is anything other than a litatom or a list of litatoms. such as (LAMB DA "F 00" ... ). 
attempting to use this EXPR will generate an ARG NOT LITATOM error. In addition. if NIL or T is used· 

',,- as an argunent name. the error ATTEMPT TO B IUD NIL OR T is generated. 

These two parameters (lambdalnlambda and spreadinospread) may be specified independently. so there 
are four inain f.rnction types. known as lambda-spread. nlarnbda-spreacL la..'l1bda-nospreaci. and nlambda
nospread functions. Each one has a different form. and is used for a different purpose. These four 
function types are described more fully below. 

Note: The Lambdatran lispusers package provides facilities for creating new function types which 
evaluate/spread their arguments in different ways than those provided by Interlisp. See page 23.16. 

5.1.1 Lambda-Spread Functions 

Lambda-spread functions take a fixed number of evaluated arguments. This is the most common function 
type. A lambda-spread EXPR has the fann: 

(LAMBDA (A.r~GI •.. ARGM ) FORMl .•• FORMN ) 

5.2 

n 
\ . J.",,-

(\-
\ ) 

(j 



o 

··0 

o 

FUNCTION DEFINITION, l\1ANIPULATION, AND EVALUATION 

The argument list (ARG 1 ••• ARGM ) is a list of litatoms that gives the number and names of ~,e formal 
arguments to the function. If the argument list is () or NIL, this indicates that the function takes no 
arguments. When a lambda-spread function is applied to some arguments.. the arguments are evaluated.. 
and bound to the local variables ARG1 .•• ARGM. The~ FORMl ••• FORMN are evaluated in order, and 
the value of the function is the value of FORM N. 

~ (DEFINEQ {FCC (LAMBDA (X Y) (PRINT X) (PRINT V»~) ) 
( FOO) 
~ (FOO 99 (PLUS 3 4» .,-
99 
7 
7 

In the above example. the function FOC defined by (LAMBDA (X Y) (PRINT X) (PRINT V»~ is 
applied to the arguments 99 and (PLUS 3 4), these arguments are evaluated (giving 99 and 7). the local 
variable X is bound to 99 and Y to 7. (P R I NT X) is evaluated. printing 99. (P R I NT Y) is eva1.uated. 
printing 7. and i (the value of (PRINT Y» is returned as the value of the function. 

A standard feature of the lnterlisp system is that no error occurs if a spread function is called with too 
many or too few arguments. If a function is called "with too many arguments, the extra arguments are 
evaluated but ignored. If a function is called with too few arguments. the unsupplied ones will be delivered 
as NIL. In fac~ a spread function cannot distinguish between being given NIL as an argument. and not 
being given that argument. e.g., (F 00) and (F 00 NIL) are exactly the same for spread functions. If it 
is necessary to distinguish between these two cases, use an nlambda function and explicitly evaluate the 
argumentS with the EVAL function (page 5.11). . 

5.1.2 ~1ambda·Spread Functions 

Nlambda-spread functions take a fixed number of unevaluated arguments. An nlambda-spread EX~R has 
the form: . 

{NLAMBDA (ARGl .•• ARGM) FORM1 ••• FORMN ) 

Nlambda-spread functions are evaluated similarly to lambda-spread functions. except that the arguments 
are Dot evaluated before being bound to the variables ARG 1 .•• ARGM • 

~ (DEFINEQ (FOC (NLAMBDA (X Y) (PRINT X) (PRINT y).» ) 
(FOC) 
~ (FOO 99 (PLUS 3 4» 
99 
(PLUS 3 4) 
(PLUS 3 4) 

In the above example. the function FOC defined by (NLAMBDA (X Y) (PRINT X) (PR INT Y» is 
applied to the arguments 99 and (PLUS 3 4). these arguments are bound unevaluated to X and Y. 
(PRINT X) is evaluated. printing 99, (PRINT Y) is evaluated. printing (PLUS 3 4). and the list 
(PLUS 3 4) is returned as the value of the function. 

Note: Functions can pe defined so that all of their arguments are evaluated (lambda functions) or none 

5.3 



( 

Lambda-Nospread Functions 

are evaluated (nlambda functions). If it is desirable to write a function which only evaluates some of itS 
arguments (e.g. SETQ). the function should be defined as an nlambda. with some arguments explici:ly 
evaluated using the function EVAL (page 5.11). If this is done. the user should put the litatom EVAL on 
the property list of the function under the property IN F O. This infonns various system packages such as 
D\\'Th1. CLISP. and Masterscope that 'this function in fact does evaluate its argumen~ even though it is 
an nlambda. 

5.1.3 

Lambda-nospreaci functions take a variable number of evaluated arguments. A lambda-nospread EX P R 
has the form: 

,.,.,,( LAMBDA VAR FOPwV1 ••• FORMN) 

VAR may be any litatom. except NIL and T. When a lambda-nospread function is applied to some 
arguments. each of these arguments is evaluated and the values stored on the pushdown list. VAR is 
then bound to the number of arguments which hcwe been evaluated. For example .. if FOC is aefined by 
(LAMBDA X ••. ). when (FOC ABC) is evaluated. A .. B. and C are evaluated and X is bound'to 3. 
YAR should never be reset. 

The following functions are used for accessing the arguments of lambda-nospread functions: 

(ARG YAR M) [NLainbda Function] 
Returns the Mth argument for the lambda-nospread function whose argument list 
is YAR. VAR is the name of the atomic argument list to a lambda-nosPread functio~ 
and is not evaluated: M is the number of the desired argument. and is evaluated. 
The value of ARG is undefined for M less than or equal to 0 or greater than the 
value of VAR. 

( SET ARG VAR M x) [NLambda Function1 
Sets the Mth argument for the lambda-nospread function whose argument list is 
VAR to X. VAR is not evaluated: M and x are evaluated. M should be betv;een 1 
and the value of VAR. 

In the example below, the function Faa is defined to Prh"'lt all of the evaluated arguments it is given.. and 
rerum NIL (the value of the for statement). 

4- (OEFINEQ (FOa 
(LAMBDA X 

(for ARGNUM from 1 to X do (PRINT (ARG X ARGNUM»»} ) 
(FOO) 
4- (FOC 99 (PLUS 3 4)} 
99 
7 
NIL 
4- (FOa 99 (PLUS 3 4) (TIMES 3 4» 
99 
7 
12 
NIL 

5.4 

n 



o 

o. 

FUNCTION DEFmITION, MANIPULATION, AND EVALUATION 

.. 
5.1.4 N1ambda-Nospread Functions 

Nlambda-nospread functions take a variable number of unevaluated arguments. An nlambda-nospread 
EXPR has the form: 

. ( NLAMBDA VAR FORM1 ••• FORMN ) 
...... 

VAR may be any litatom. except NIL and T. Thoug..ll similar in form to lambda-nospread EX P Rs.. an 
niambda-nospread is evaluated quite differently. When an nlambda-nospread function is applied to some 
arguments.. VAR is simply bound to a list of the unevaluated arguments. The user may pick apan this list., 
and evaluate different arguments. 

In the example below, F 00 is defined to print (and then return) the reverse of list of arguments it is given 
(unevaluated): 

~ (DEFINEQ (FOC (NLAMBDA X (REVERSE X»» 
(FOO) 
~ (FOO 99 (PLUS 3 4» 
«PLUS 3 4) 99) 
«PLUS 3 4) 99) 
.. (FOO 99 (PLUS 3 4) (TIMES 3 4» 
{(TIMES 3 4) (PLUS 3 4) 99) 
«TIMES 3 4) (PLUS 3 4) 99) 
~ 

5.1.5 Compiled Functions 

Functions defined by EXPRs can be compiled by the lnterlisp compiler (page 12.1), which produces 
compiled code objects. which execute more quickly than the corresponding EX P R code. Functions defined 

. by com;Ji1ed code objects may have the same four types as EXPRs (lambdalnolambda spreadJnospread). 
Functions created by the compiler are referred to as compiled functions. 

5.1.6 SUBRs 

In Interlisp-10, basic built-in functions such as CONS. CAR. and COND are handcoded in machine language. 
These functions are known as "SUB Rs:' Functions defined as SUB Rs can be lambdalnolambda or 
spreadlnospread. the same four function types as EX P R functions. 

SUBRs are called in a special way, so their definitions are stored differently than t..~ose of compiled 
or interpreted functions. GETD of a SUSR returns a dotted pair. CAR of which is an encoding of the 
ARGTYPE and number of arguments of the SUBR. and CDR of which is the address of the first insrruction. 
Note that each GETO of a subr performs a CONS. Similarly. puro of a definition of the form (."lUMBER . 

ADDRESS). where ."lUMBER and ADDRESS are in the appropriate ranges. stores the definition 2.S a SUBR. 

5.5 



Function Type Functions 

S.l. 7 Function Type Functions 

There are a variety of functions used for examining the type • .argument list. etc. of functions. These 
functions may be given either a litatom.. in which case they obtain the function definition from the 
litatom's definition cell or a function definition itself. 

(FUTY? FN) 

(EX?RP FN) 

[Function] 
Returns NIL if FN is not a function definition or the name of a defined function. . 
OtheI"VIlse FNTY? returns one of the following twelve litatoms: 

Expressions Compiled Built-In 

Lambda-Spread EX?R CEXPR SUBR 

Nlambda-Spread. FEXPR CFEXPR FSUBR 

Lambda-Nospread EXPR- CEXPR- SUBR-

Nlambda-Nospread FEXPR- CFEXPR- FSUBR-

The types· iIi the first column are all defined by EX P Rs. The types in the second 
column are compiled versions of the types in the first column. as indicated by the 
prefix C. In the third column are the p~--allel types for built-in subroutines (only 
in Interlisp-10). Functions of types in the first two rows have a fixed number of 
arguments.. i.e .. are spread functions. Functions in the third and fourth rows have 
an indefinite 'number of arguments. as indicated by the suffix •. Tne prefix F 
indicates unevaluated arguments. Tnus. for example. a CF EXPR- is a compiled 
nospread-nlambda function. 

FNTYP returns the litatom FUNARG if FN is a FUNARG expression. See page 5.1S. 

('y-
, / ... 

[Function] 
Returns T if (FNTY? FN) is either EXPR. FEXPR. EXPR-. or FEXPR*, i.e .. first 
column of FNTYPs: NIL otherwise. However. (EXPRP FN) is also true if ;:ON is 0 .. 
(has) a list definition that is not a SUBR, even if it does not begin with LAMBDA or 
NLAMBDA. In other words, EX?RP is not quite as selective as FNTYP. 

(CCOOEP FN) 

(SUBRP FN) 

(ARGTYPE FN) 

. [Function] 
Returns T if (FNTYP FN) is either CEXPR. CFEXPR. CEXPR-, or CFEXPR-. Le .. 
second column of FNTYPs; NIL otherwise. 

[Function] 
Returns T if (FNTYP FN) is either SUBR, FSUBR, SUBR-, or FSUBR-, i.e •• the 
third column of FNTYPs; NIL otherwise. 

[Function} 
FN is the name of a function or its definition.' ARGTYPE returns 0, 1. 2. or 3, or 
NIL if FN is not a function. Tne interpretation of this value is: 

o lambda-spread functions (EXPR, CEXPR. SUBR) 

5.6 



o 

o 

o 

,"-- .. 

o 

(NARGS FN) 

(ARGLIST FN) 

-.. 

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 

1 nlambda-spread functions (FEXPR, CFEXPR. FSUBR) 

2 lambda-nospread functions (EXPR-, CEXPR-, SUBR-) 

3 nlambda-nospread functions (FEXPR·, CFEXPR-, FSUBR-) 

Le., ARGTYPE corresponds to the rows of FNTYP's. 

." - [Function] 
Returns the number of arguments of FN. or NIL if FN is not a function. If FN is 
a nospread function. the value of NARGS is 1. 

[Function] 
Returns the uargument list" for FN. Note that the I.&argument list" is a litatom 
for nospread functions. Since NIL is a possible value for ARGLIST, an error is 
generated., ARGS NOT AVAILABLE, if FN is not a function. 

If FN is a compiled function. the argument list is constructed., i.e., each call to 
ARGLIST requires making a new list. For EXPRs. whose definitions are lists 
beginning with LAMBDA or NLAMBDA. the argument list is simply CADR of GETD. 
If F'N has a list definition. an~ CAR of the definition is not LAMBDA or NLAMBDA. 
ARGLIST will check to see if CAR of the definition is a member of LAMBDASPLST 
(page 15.U). Ifit is. ARGLIST presumes this is a function object the user is defining 
via DWIMUSERFORMS (page 15.10), and simply returns CACR of the definition as 
its argument list. OtheI"'Nise ARGLIST generates an error as described above. 

(Interlisp-10) If FN is a spread SUB R. the ARGL 1ST returns (u). (U V). (U V 
\II), etc. depending on the number of arguments: if a- nospread SUBR. it returns 
U. This is merely a "feature" of ARGLIST; SUBRs do not actually store the names 
of their arguments(s) on the stack. 

( SMART ARGLIST FN EXPLAINFLG TAIL) [Function] 
A "smart" version of ARGLIST that tries various strategies to get the arglist of FN. 

If FN is not defined as a function. SMARTARGLIST attempts spelling correction 
on FN by calling FNCHECK (page 15.19). passing TAIL to be used for the call to 
FIXSPELL. If unsuccessful. an error will be generated. FN NOT A FUNCTIOrt 

If FN is known to the file package (page 11.1) but not loaded in, SMARTARGLI ST 
will obtain the arglist infomlation from the file. 

[n Interiisp-10. if the HELPSYS help system is installed. SMARTARGLIST may 
use it to look up the arguments to FN in the Interlisp· manual files. Specifically, 
HELPSYS will be used if EXPLAINFLG= T and FN is a nospread function. or 
if FN is a spread SUB R. regardless of the value of EXPl..A!NFLG. For all other 
cases. and when HELPSYS is undefined or unsuccessful in finding the arguments. 
SMARTARGLIST ·simply returns (ARGLIST FN). 

In order to avoid repeated calls to HELPSYS. and also to provide the user with an 
override. SMARTARGLIST stores the arguments returned from HELPSYS on the 
property list of FN under the property ARGNAMES and checks for this property 
before calling HE LPSY S. For spread functions. the argument list itself is stored. 

5.7 



Function Definition 

For nospreacL the form is (NIL ARGLISTl • ARGLIST2) where A.RGLISTl is the 
value of SMARTARGLIST when EXPLAlNFLG=T. and ARGLIST2 the value when 
ra'L.A.IN7LG=NIL. For example. (GETPROP 'OEF INEQ 'ARGNAMES) = (N IL 
(Xl XI ... XN) . X). 

SMARTARGLIST is used by BREAK (page 10.4) and ADVISE (page 10.9) with EXPLAlNFLG= NIL for 
constructing equivalent EXPR definitions. and by the programmer's assistant command 1= (page 9.s)~ with 
EXPLAINFLG= T • 

. y 

5.2 FUNCfION DEFINITION 

Function definitions are stored in a "function definition cell" associated with each litatom. This cell is n..
directly accessible via the cwo functions PUTD and GETD, but it is usually easier to define functions with 
OEFINEQ (page 5.9). 

• (GETD FN) 

(FGE~O FN) 

[Function1 
Returns the function definition of FN. Returns NIL if FN is not a litato~ or has 
no definition. 

GETD of a compiled function constructs a pointer to the definition. with the result 
that two successive calls do not produce EQ results. EQP or EQUAL must be used 
to compare compiled definitions. I 

(Interlisp-lO) GETD of a SUBR performs a CONS. 

[Function} 
Faster version of GETD. Interpreted.. generates an error, BAD ARGUMENT -
FGETD. if FN is not a litatom. 

FGETD is intended primarily to check whether a function has a definition. rather 
than to obtain the definition. Therefore. in [nterlisp-10. F G ETD of a SUS R rerurns (j 
just the address of the function definitioI4 not the dotted pair returned by G £TD. 
thereby saving the CONS. 

(PUTO FN DEE' -) [Function] 
Puts DEF into ms function cell. and returns DEF. Generates an error. ARG NOT 
LITATOM. if FN is not a litatom. Generates an error, ILLEGAL ARG. if DEF is a 
string, number, or a litatom other than NIL. 

(PUTOQ FN DEF) [NLambda FunctionI 
Nlambda version of PUTe; both arguments are unevaluated. Returns FN. 

(PUTOQ? FN DSF) [NLambda Function] 
If FN is not defined.. same as PUTDQ. Otherwi~e. does nothing and returns NIL. 

(MOVO FROM TO COPY7LG) [Function] 
Moves r....~e definition of FROM to TO. i.e .. redefines TO. If COPYFLG = T. a COpy 
of the definition of FRO:\( is used. COPYFLG = T is only meaningful for EX? Rs. . 
although MOVD works for compiled functions and SUB Rs as welL MOVD rerurns 

5.8 

r\ 
\. ). 



o 

a 

o 

o. 

FUNCTION DEFIl'ITrION, MANIPtJLATION, AND EVALUATION 

TO. 

( MOVO? FROM TO COPYFLG) [Function] 
If TO is not defined, same as (MOVD FROM TO COPYFLG). Otherwise, does 
nothing and returns NIL. 

(OEFINEQ Xl X2 ••• XN) [NLambda NoSpread Function] 

(DEFINE X -) 

DEFINEQ is the function normally used for defining functions. It takes an indefinite 
nth-nber of arguments which are not evaluated. Each Xi must be a list definmg one 
functio~ of ~~e form (N.AJ.t!E DEFINITION). For example: 

(DEFINEQ (DOUBLE (LAMBDA (X) (IPLUS X X») ) 

The above expression will define the function DOUBLE with the EXPR definition 
(LAMBDA (X) (I PLUS X X). Xj may also have the form (NAME ARGS • 
DEF-BODY), in which case an appropriate Lambda EXPR will be constructed. 

. Therefore. the above expression is exactly the same as: 

(DEFINEQ (DOUBLE (X) (IPLUS X X») ) 

Note that this alternate form can only be used for Lambda functions. The first 
form must be used to define an Nlambda function. 

DEF INEQ returns a list of the names of the functions defined. 

[Function] 
Lambda-spread version of DE FINEQ. Each element of the list x is itself a list either 
of the form (NAME DEFINITION) or (NAME ARGS • DEF-BODY). DEFINE will 
generate an error, INCORRECT DEFINING FORM, on encountering an atom where 
a defining list is expected. 

Note: DEF«INE and DEFINEQ will operate correctly if the function is already defined and BROKEN. 
ADVISED, or BROKEN-IN. 

For ex?rec:...sions involving type-in only, if the time stamp facility is enabled (page 17.60), both DEFIr~E 
and 0 E FlU E Q will stamp the definition with· the user' 5 initials and date. 

DFNFLG 

(SAVEDEF FN) 

[Variable] 
DFNFLG is a global variable that effects the operation of DEFINE (and DEFlriEQ. 
which calls DEFINE). If DFNFLG=NIL, an attempt to redefine a function FN 

will cause DEFINE to print the message (FN REDEFINED) and to save L.'e 
old definition of FN using SAVEDE F before redefining it. except if the old and 
new definitions are the same (Le. EQUAL), the effect is simply a no-cpo If 
DFNFLG=T. the function is simply redefined. IfDFNFLG=PROP or ALLPROP. the 
new definition is stored on the property list under the property EXPR. ALLPROP 
affectS the operation of RPAQQ and RPAQ (page 11.37). DFNFLG is initially NIL. 

DFNFLG is reset by LOAD (page 11.4) to enable various ways of handling the 
defining of functions and setting of variables when loading a file. For most 
applications. the user will not reset DFNFLG directly. 

[Function} 
Saves the definition of FN on itS propeny list under the property EXPR. CODE. 

5.9 

I 
I 

" i 



o· Function Evaluation 

or SUBR depending on itS FNTYP. Returns the property name used.. If (GETD 
FN) is non-NIL. but (FNTYP FN)=NIL~ SAVEDEF saves the definition on the 
propeny name LIST. Tnis situation can arise when a function is redefined which 
was originally defined with LAMB DA misspelled or omitted. 

If FN is a list. SAVEDE F operates on each function in the list, and rerurns a list of 
the individual values. 

(UNSAV~DEF FN PROP) ." . [Function] 
Restores the definition of FN from its property list under property PROP (see 
SAVEDEF above). Returns PROP. If nothing is saved under PROP, andFN is ciefine~ 
returns (PROP NOT FOUND). otherwise generates an error, NOT A FUNCTION. 

If PR.OP is not given, Le~ NIL. UNSAVEDEF looks under the properties EXPR, 
CODE. and SUBR, in that order. The value of UNSAVEOEF is the property name. 
or if nothing is found and FN is a function. the value is (NOTH ING FOU~JD): 
othenvise generates an error, NOT A FUNCTION. 

If OFNFLG=NIL. the current definition of FN, if any, is saved using SAVEDEF. 
Thus one can use UNSAVEDE F to switch back and forth between two definitions 
of the same function. keeping one on its property list and the other in the function 
definition cell. 

If FN is a list. UNSAVEDEF operates on each function of the list. and its value is a 
list of the individual values. 

Both SAVEDEF and UNSAVEDEF are redefined in more general terms (see page 11.18) to operate on 
typed definitiot:.S of which a function definition is but one example. Tn~ their actual argument lists in 
Interlisp are different than given here. However. when their extra arguments are defaulted to NIL. they 
operate as described above. 

: _______ 5.3 FUNCTION EVALUATION 
(~ 

o. 

US"ually. function application is done automatically by the Interlisp interpreter. If a form is typed into 
Interlisp whose CAR is a function. this function is applied to the arguments in the CDR of the form. These 
a~..lmentS are evaluated or not. and bound to the function parameters. as detemtined by the type of the 
function. and the body of the function is evaluated. Tnis sequence is repeated as each fonn in ~,e bedy 
of the function is evaluated. 

There are some situations where it is necessary to explicitly call the evaluator. and [nterlisp supplies a 
number of functions that will do this. These functions take "functional arguments". which may either be 
litatoms with function definitions. or EXPR fonns such as (LAMBDA (X) ... ), or FUNARG expressions 
(see page 5.15). 

The following functions are useful when one wants to supply a functional argument which will always 
rerum NIL. T. or O. 

(NILL) [NoSpread Function] 
RetumsNIL. 

5.10 

,. t 

'-.-~ 

. ",--

\ ....... 



..-. 

FUNCTION DEFINITION~ MANIPULA nON, A!"ID EV ALUA nON 

(TRUE) [NoSpread Function] 
Returns T. 

(ZERO) [NoSpread Function] 
Returns O. 

Note: When using EXPR expressions as functional arguments, they should be enclosed within the function 
FUNCT ION (page 5.15) rather than QUOTE. so that they will be compiled as separate functions. FUNCTION 
can also be used to create FUNARG.expressions~ which can be used to solve some problems with referencing 
free variables. or to create functional arguments which carry "state" along with them. 

(EVAL x-) 1J • [Function] 
EVAL evaluates the expression x and returns this value. i.e~ EVAL provides a way 
of calling the Interlisp interpreter. Note that EVAL is itself a lambda functio~ so 
its argument is first evaluate~ e.g., 

~(SETQ Foa '{ADDl 
(ADO! 3) 
~(EVAL FOO) 
4 
~(EVAL 'FOO) 
(ADDl 3) . 

. 
l 

3) ) 

inter lisp functions can either evaluate or not evaluate these arguments. For those cases where it is 
desirable to specify arguments unevaluate~ one may uSe the QUOTE function: 

(QUOTE x) [NLambda NoSpread Functionl 
This is a: function that prevents its arguments from being evaluated. Its value is x 
itself. e.g., (QUOTE FOO) is FOO. 

Note: Since giving QUOTE more than one argument is almost always a parentheses 
error. and one that would other'Nise go undetecte~ QUO T E itself generates an error 
in this case, PARENTHESIS ERROR. 

(j 

(KWOTE x) [Function] () 
Value is an expression which when evaluated yields x. If x is NIL or a number. ' , 
this is x itself. Otherwise. (LIST (QUOTE QUOTE) x). For example. if the 
value of X is A and the value of Y is B. then (KWOTE (CONS X Y» = (QUOTE 
(A • B». 

(OEFEVAL TYPE FN) [Function} 
Specifies how a datum of a panicular type is to be evaluatecL1 Intended prL~arily 
for user defined data types. but works for all data types except lists. literal atoms •. 
and numbers. TYPE is a type name. F'N is a function object. i.e. name of a. 
function or a lambda expression. Whenever the interpreter encounters a datum of 
the indicated type. F'N is applied to the datum and its value returne~ as the result 
of the evaluation. DEFEVAL returns the previous evaling function for u,1.is type. If 
FN=NIL, DEFEVAL returns the current evaling function without changing it. If 

I. COMP I LETYPE LST (page 12.9) permits the user to specify how a datum of a particular type is to be 
co:npilecL 

5.11 (j 



o 

Function Evaluation 

FN= T. the evaling function is set back to the system default (which for all data 
types except lists is to rerum the datum itself). 

( AP PLY FN ARGLlST -) [Function] 
Applies the function FN to the argllIIlents in the list ARGLIST. and rerums its value. 
APPLY is a lambda function. so its arguments are evaluated, but the individual 
elements of ARGLIST are not evaluated. Therefore. lambda and nlambda functions 
are treated the same by APPLY; lambda functions take their arguments from 
ARGLlST without evaluating them. Note that FN may still explicitly evaluate one 
or more of its argaments itself. as SETQ does. ThUs. (APPLY' SETQ '( FOD 
(ADOl 3») will set FDO to 4, whereas (APPLY 'SET '( FOa (ACOl 3») 
will set FOO to the expression (ADDl 3). 

APPLY can be used for manipulating EXPRs. for example: 

~(APPLY '(LAMBDA (X Y) (ITIMES X Y» 
'(3 4» 

12 

(APPLY· FN ARGl ARG2 AR(iN) [NoSpread Function] 

(EVALA x A) 

Nospread version of APPLY, equivalent to (APPLY FN (LIST ARG l ARG2 ••• 

ARGN) ). 

[Function1 
Simulates a-list evaluation as in USP 1.5. x is a foI1Il. A is a list of the form: 

( (NAMEI • VALl) (NAME2 • VAL2 ) ••• (NAMEN • VALN ) ) 

The variable names and values in A are "spread" on the stack. and then x is 
evaluated. Therefore, any variables appearing free in ~ that also appears as CAR 
of an element of A will be given the value in the CO R of that element. 

The functions below are used to evaluate a form or apply a function repeatedly. RPT, RPTQ, and FRPTQ 
__ . evaluate a given form a specified number of times. MAP. MAPCAR. MAPLIST. etc. apply a given function 

10' :-epeatedly to different elements of a list. possibly constructing another list. These functions allow efficient 
iterative computations. but they are difficult to use. For programming iterative computations. it is usually 
better to use the CLISP Iterative Statement facility (page 4.5), which provides a more general and complete 
facility for expressing iterative statements. Whenever possible, CLISP translates iterative statements into 
expressions using the functions below. so there is no efficiency loss. 

/~ 

U 

(RPT N FORM) [Function) 
Evaluates the expression FORM. N times. Returns the value of the last evaluation. 
If N :::; O. FORM is not evaluated. and R P T returns NIL. 

Before each evaluation. the local variable RPTN is bound to the number of 
evaluations yet to take place. This variable can be referenced within FOR.'.,!. For 
example, (RPT 10 • (PR I NT RPTN» will print the numbers 10. 9 •... 1. and 
rerum L 

(RPTQ N FOR.l.,{l FOR~l.,{2 .•. FORMN ) [NLambda NoSpread Function} 
Nlambda-nospread version of RPT: N is evaluated. FORMj are not Returns U.'e 
value of the last evaluation of FOR.'v! N' 

5.12 

.. ; ,/ 

' ... 



-

(j 
FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 

(FRPTQ N FORM! FORM2 ••• FORMN ) [NLambda NoSpread Function] 
Faster version of RPTQ. Does not bind RPTN. 

(MAP M.A.PX MAPFNl MAPFN2) • [Function] 
If MAPFN2 is N I L~ MAP applies the .function MAPFNl to successive tails of the 
list MAPX. That is, first it computes (MAPFNl MAPx). and then (MAPFNl (CDR 
MAPx) >.. etc •• until MAPX becomes a non-list. If MAPFN~ is provided, (MAPFN2 
MAPx) is used instead of -C CDR MAPx) for the next call for MAPFNI. e.g., if. 
MAPFN2 were CODR. alternate elements of the list would be skipped. MAP returns 
NIL. 

(MAPC MAPX MAPFNl MAPFN2) [Function] 
Identical to. MAP, except that (MAPFNl (CAR MAPx» is computed at each 
iteration instead of (MAPFNl MAPx) t Le., MAPC works on elements, MAP on 
tails. MAPC returns NIL. n 

(MAPLIST MA.PX MAPFNi MAPFN2) [Function] 
Successively computes the same values that MAP would compute. and rewrns a list 
consisting of those values. 

(MAPCAR MAPX MAPFNl MAPFN:J) [FunctionJ 
Computes the same values that MAPC would compute. and returns a list consisting 
of those values, e.g., (MAPCAR X 'FNTYP) is a list of FNTYPs for each element 
on X. 

·(MAPCON MAPX MAPFNl MAPFN2) [Function} 
Computes the same values as MAP and MAPLI$T but NCONCs these values to form 
a list which it returns. . 

(MAPCONC MAPX MAPFNl MAPFN2) • [Function} 
Computes the same values as MAPC and MAPCAR. but NCONCs the values to form 

- a list which it returns. 

Note that MAPCAR creates a new list which is a mapping of the old list in that each element of the new ( 
list is the result of applying a function to the corresponding element on the original list. MAPCONC is used\ __ ) 
when there are a variable number of elementS (including none) to be inserted at each iteration. Examples: 

(MAPCONC '(A B C NIL 0 NIL) 
'(LAMBDA (Y) {if (NULL Y) then NIL else (LIST V»~»~ 

==) (A BCD) 

This MAPCONC returns a list consisting of MAPX with all NILs removed. 

. (MAPCONC '{ (A 8) C (O E F) (G) H I) 
'{LAM8DA (Y) (if (LISTP Y) then Y else NIL») 

==) (A 8 D E F G) 

This MAPCONC returns a linear list consisting of all the lists on MAPx. 

Since MAPCONC uses NCONC to string the corresponding lists together. in this example the original list will 
be altered to be ( (A 8 D E F G) C (D E F G) (G) HI). If this is an undesirable side effect. t.he 
functional argument to MAPCONC should return instead a top level copy of the lists. i.e. (LAMBDA (Y) 
(if (LISTP Y) then (APPEND Y) else NIL»). 

5.13 
.Cj 



Function Eyaluation 

(MAP2e MAPX MAPY MAPFNI MAPFN2) [Function] 
Identical to MAPC except MAPFNI is a function of two arguments~ and (MAPFNl 

(CAR MAPX) (CAR MAPY» is computed at each iteration. Temtinates when 
either MAPX or MAPY is a Don-list. 

MAPFN2 is still a function of one argumen4 and is applied twice on each iteration: 
(MAPFN2 MAPx) gives the new M.AP~ (MAPFN2 MAPY) the new MAPY. COR is 
used if MAPFN2 is not sup~lied. Le •• is NIL. 

(MAP2CAP. M.APX MAPY MAPFNI MAPFN2) [Function] 
Identical to MAPCAR except MAPFNl is a function of two arguments and (MAPFNl 

(CAR M.APx) (CAR MAPY» is used to assemble the new list. Terminates when 
either MAPX or MAPY is a non-list. ' 

(SUBSET MAPX MAPFNI MAPFN2) [Function] 
Applies MAPFNI "to elements of MAl'X and returns a list of those elements for 
which this application is non-N I L. e.g~ 

(SUBSET '(A B 3 C 4) 'NUMBERP) = (3 4). 

MAPFN2 plays the same role as with MAP. MAPe, et a1. 

(EVERY EVER1"X EVERY7Nl EVERYFN2) [Function] 
Returns T if the result of applying EVERYFNI to each element in EVERYX is true. 
otherwise NIL. For example, (EVERY t (X Y Z) t ATOM) =) T. 

EVE RY operates by evaluating (EVERYFNl (CAR EVERYX) EVERYX'). The 
second argument is passed to EVERYFNl so that it can look at the next element 
on EVERYX if necessary. If EVERYFNl yields NIL. EVERY immediately returns 
NIL. OtheI'VIise, EVERY computes (EVERYFN2 EVE'RYX). or (CDR E"IER'YX) if 
EVERYFN2= NIL. and uses this as the "new" EVERYX. and the. process continues. 
For example. (EVE RY x 'ATOM t CDOR) is true if every other element of x is 
atomic. 

(~ (SOME 
U 

SOMEX SOMEFNI SOMEFN2) [Function] 
Returns the tail of SOMEX beginning with the first element that satisfies SOMEFN1. 

Le .• for which SOMEFNl applied to that element is true. Value is NIL if no such 
element exists. (SOME X • (LAMBOA (Z) (EQUAL Z Y») is equivalent to 
(MEMB E R Y X). SOME operates analogously to EVE RY. At each stage. (SOMEFNI 

(CAR SOMEX) SOMEX) is computed.. and if this is not NIL. SOMEX is returned as 
the value of SOME. Otherwise. (SOMEFN2 SOMEX) is computed. or (CDR SOMEX) 

if SOMEFN2 = NIL. and used for the next SOMEX. 

(NOTANY SOMEX SOMEFNI SOMEFN2) [Function1 
(NOT (SOME SOMEX SOMEFNI SOMEFN2» 

(NOTEVERY EVERYX EVERYFNI EVE'RYFN2) [FunctionJ 
(NO! (EVE RY EVERYX' EVERYFNZ EVERYFN2» 

(MAPRINT LST FILE LEFT RIGHT SEP PFN LISPXPRINTFLG) [FunctionJ 
A general printing function. [t cycles through LST applying PFN (or P R IN 1 if FFN 

not given) to each element of LST. Between each application. MAPRINT performs 

5.14 



- I· ... ·~ 

FUNCTION DE~TI10N, MANIPULATION. AND EVALUATION 

PRIN1 of SEP (or" " if SEP=NIL). If L.EFT is given. it is printed (using PRINl) 
initially: if RIGHT is given it is printed (using PRIN1) at the end. 

For example. (MAPRINT X NIL '~( '~» is equivalent to PRI N 1 for lists. To 
print a list with commas between each element and a final "." one could usc 
( MA P R I NT X T N I 1. ' ~ • ' %, ). 

If LISPXPRINTFLC=T, LISPXPRINl (page 8.20) is used instead of PRIN1. 

5.4 FUNCI10NAL ARGU1\1ENTS 

When using functional arguments. the following function is very useful: 

(FUNCTION FN ENV) [NLambdll Function} 
If ENV=NIL. FUNCTION is the same as QUOTE. except that it is treated dilfercntly 
when compiled.. Consider the function definition: 

( 0 E FIN E Q (F 00 ••• 
(FIE LST (FUNCTION (LAMBDA (Z) (ITIMES Z Z»)} 

) ) 

FOO calls thc function FIE with the value of L5T and the EX PR expression 
{LAMBDA (Z) (LIST (CAR Z»). 

If FOO is run interpreted. it doesn't mnKe any difference whether FUNCT ION or 
QUOTE is used. However, when FOO is compiled. if FUNCT I ON is used the compiler 
will define and compile the EXPR as an auxiliary function (See page 12.8). The 
compiled EXPR will run considerably faster. which can make a big difference if it 
is applied repeatedly. 

(j 

(j 

Note: Compiling FUNCTION will not create an auxiliary function ifit is a functional n 
.argumcnt to a function that compiles open. such as most of the mapping functions: 
(MAPCAR, MAPL I ST, etc.). 

If ENV is not NIL. it can be a list of variables that are (presumab ly) used freely by 
FN. In "this case. the value of FUNCT ION is an expression of the form (FUNARG iN 
pos). where pos is a stack pointer to a framc that contains the variable bindings 
for those variables on ENV. ENV can also be a stack pointcr itself. in WhICh ca$e 
the value of rUNCT ION is (FUNARG FN ENV). Finally, ENV can be an atom .. in 
which case it is evaluated. and the value interpreted as described above. 

As explained above. one of the possible values that FUNCTION can return is the fonn (FUNARG FN 

pos), where FN is a function and pos is a stack pointer. FUNARG is not a function itself. Like LAMBDA 
and NLAMBDA. it has meaning and is specially recognized by Interlisp only in the context of applying a 
function to arguments. In other words, the expression (FUNARG F'N pos) is used exactly like a function. 
\Vhen. a FUNARG expression is applied or is CAR of a form being EVAL'ec. the APPLY or EVAL takes 
place in the access environment specified by ENY (see page 7.1). Consider the following example: 

~ (OEFINEQ (DO. TWICE (FN VAL) 

5.15 



o 
Functional Arguments 

(APPLY· FN (APPLY· FN VAL») ) 
(DO.TWICE) 
.. (DO. TWICE (FUNCTION (LAMBDA (X) (IPLUS X X»] 

5) 
20 
.. (SETQ VAL 1) 
1 
.. (DO. TWICE (FUNCTION (LAMBDA (X) (IPLUS X VAL»] 

6) 
20 
.. (OO.TWICE (FUNCTION (LAMBDA eX) (IPlUS X VAL» (VAL)] 

5) 
7 

O DO. TWICE is defined to apply a function FN to a value VAL. and apply FN again to the v~ue returned: 
in other word, it cillcu)ates {FN (FN VAL». Given the EXPR expres.'iion (LAMBDA (X) (IPLUS X 
X) ). whu;h dnuhle:s n given v:duc, it cnn'C'Ctly culculalcj (FN (FN 6» • (F N 10) 4!1 ~O. lluwcver. 
when l-1i\'(~n (LAMBDA (X) (r Pl. US X V I\L) ). whit.:h !tluHlld ,add lhe vnluo ur the gloh:II vnrt.lblc VAL h) 

the .USIII1U."nt X. it doe~ 'OItJC'thinil tlUCXPt"l:tClJ. rctulnhlK :!() .,~:"n. nathC"r lhan S+, 1 +- 1 ~ 7, '11\C' prohl~'ll 
i!) lhal when the EXPR Is e::v.\lu.llc:d, It Is eV~lluaLct1 in lh~ context ur DO. TW ICE, where VAL I~ bound 
to the st'Cond argument of DO. TW 1 C E, namely S. In this case, one solution is to use the ~NV .ugument 
to FUNCT ION to construct a FUNARG expression which contains the value of VAL at the time that the 
FUNCT ION is executed.. Now, when (LAMBDA (X) (I PLUS X VAL» is evaluated.. it is evaluated in 
an environment where the global value of VA-L is accessable. Admittedly. this is a somewhat contrived 
example (it would be e3SY enough to change the argument names to DO. TWICE so there would be no 
conflict), but this situation arises occasionally with large systems of programs that construct functions. and 
pass them around.. 

Note: System functions with functional arguments (APPLY, MAPCAR, etc.) are compiled so that their 
ar~mc:nls :Ire loc:li. and not acccssahic (see pa~e 12.4). This rcduces problems with conflicts with free 
vari:lblcs 'Ised in functional argumentl1, 

_ f UNAHG cxpression5 can be used for more than just circumventing the cIa:ihinR of variahlc:s. For example. 

0 :1 FUrlAHG cxpres$jon can be:: returned as the vuluc of a Cmnpl1l~ltiun .. and then used "higher up". 
FunlH!rmorc. if the fUnction in a FUNARG expression selS :my of the: variables cont~uncd in the fr~l.'ne, 
only tht! tr:une would be changed. For example. consider the following function: 

/~ 

U 

(MAKECOUNTER (CNT) 
(FUNCTION (LAMBDA NIL 

(PROGl CNT (SETQ CNT ,{ADDl CNT] 
(eNT») 

Tne function MAKECOIINTER returns a FUNARG that increments and returns the previous value of the 
counter CNT. However, tilic; is done within the e~vironment of the call to MAKECOUNTER where FUNCTION 
W~IS c:<~c\ltt!d. which tilC F UNI\HG . t::<prcssion '\:arrics around" with It. t!ven .ancr MAKE COUN T E R h:JS 
nni'ihc-d ('xl'cuting. Note (h.tl t"at:h c~lll to MAK (COUN J f. n l:re~Hes ..t F UNAIlG eXprC'iSlOll wllh .l new, 
\Jldc-pe'%1{ktH cnvlronmcn~ '0 lhal multIple: l:lHllller'i can he:: gencrated" .tud used: 

~ (5E10 Cl (MAKECOUNTER 1)} 
(FUNARG {LAMBDA NIL (PROGl CNT (SETQ CNT (ADDl CNT»» Nl,13724/-FUNARG) 
~ (APPLY Cl) . 
1 

5.16 



FUNcrION DEFINITION, MANIPULA nON, AND EV ALUA nON 

.... (APPLY el) 
2 
.... (SETQ C2 (MAKECOUNTER 17» 
(FUNARG (LAMBDA NIL (PROGl eNT (SETQ eNT (AOOl eNT»» 61,13736/-FUNARG) 
ot:" (APPLY C2) 
17 
.. (APPLY C2) 
18 
.. (APPLY Cl) 
3 
.. (APPLY C2) 
19 

(j 

By creating a FUNARG expression with FUNCT ION. a program can create a function object which has () 
updatcable binding(s) associated with the object which last belw~en calls to it. but are only accessible 
through that instance of the function. For example. using the FUNARG device. a program could 
maintain two different instances of the same random number generator in different states. and run them 
independently. 

", 

Notc': I,n Intcrlisp-lO. environment switching is expensive because it is a shallow-binding system (see page 
7.1), so this may restrict the applications of FUNARG expressions. 

5.5 MACROS 

Macros provide an alternative way of specifying the action of a function. Whereas function definitions are 
evaluated with a "function caU'·. which involves binding variables and other housekeeping tasks. macros 
are evaluated by lranslaling one Interlisp form into another, which is then eyaluated. 

A litatom may have both a function definition and a macro definition. When a form is evaluated by 
the interpreter. if the CAR has a function definition. it is used (with a function call). otherwise if it has n 
a macro definition. then that is used. However. when a fonn is compilecL the CAR is checked for a 
macro definition first.. and only if there isn't one is the function definition compiled. This allows functions 
that behave differently when compiled and interpreted. For example. it is possible to define a function 
that. when interpreted. has a function definition that is slow and has a lot of error checks. for use when 
debugging a system. This function could also have a macro definition that defines a fast version of the 
function. which is used when the debugged system is compiled. 

Macro definitions are represented by lists that are stored on the property list of a litatom. Macros are 
often used for functions that should be compiled differently in different Interlisp implementations. and 
the exact property name a macro definition is stored under determines whether it should be used in a 
panicular implementation. The global variable MACROPROPS contains a list of all possible macro propeny 
names which should be saved by the MACROS file package command. _ Typical macro property names 
are 1 OMAC RO for Interlisp-lO. DMAC RO for Interlisp-O.2 and MAC RO for "implementation independent" 
macros. The global -variable COMPILERMACROPROPS is a list of macro property names. lnterlisp 
determines whether a litatom has a macro definition by checking these propeny names, in order. and 

2also VAXMACRO for [nterlisp-VAX. and JMACRO "for Intcrlisp-Jerico, 

5,17 



o 
Macros 

using the fi~t non-N I L property value as the macro definition. In Interlisp-D this list contains DMAC RO and 
MACRO in that order so that DMACROs will override the implementation-independent MACRO properJes. 
In general use a DMACRO property for macros that are to be used only in Interlisp-D. use 10MACRO for 
macros that are to be used only in Interlisp-lO, and use MACRO for macros that are to affect both systems. 

Macro definitions can take the following forms: 

(LAMB.OA ••• ) or (NLAMBOA ••• ) 
A function can he made to compile open by giving it a mru:ro definition of the fonn (LAMBDA 
"0) or (NLAMBDA ... ), e.g., (LAMBDA (X) (COND «GREATER? X 0) X) (T (MINUS 
X) ) » for ASS. The effect is. as if the macro definition were written in pl~ce of the function 
wherever it appe~ in a function being compiled. i.e., it compiles as 3 l.lffib~ or nlamhda 
expression. This saves the time necessary to call the {unction at the price of more compiled code 
generated in-line. 

O'~ (NIL EXPRESSION) or (LIST EXPRESSION) 

o 

"Substitution" macro. Each argument in the fonn being evaluated or compiled is substituted for 
the corresponding atom in LIST, and the result 'Jf the substitution is used instead of the form. For 
example. if the macro definition of ADDl is ( (X) (IPLUS Xl». then. (ADO 1 (CAR Y» is 
compiled as (IPLUS (CAR Y) 1). 

Note that ABS could be defined by the substitution macro « X) (COND « GREATERP X 0) 
X) (T (MINUS X»», In this ~e, however. (ABS (FOC X» would compile as 

(COND «GREATER? (FOa X) 0) 
(FOC X» 

(T (MINUS (FOa X»» 

and (FOO X) would be evaluated two times. (Code to evaluate (FOO X) would be generated 
three times.) 

(OPENLAMBOA ARGS BODY) 

T 

Tnis is a cross between substitution and LAMBDA macros. When the compiler processes an 
OPE NLAMBDA. it attempts to substitute the actual arguments for the formals wherever this preserves 
the frequency and order of evaluation that would have resulted from a LAMBDA expression. and 
produces a LAMBDA binding only for those that require it. 

When a macro definition is the atom T, it means that the compiler should ignore the macro. and 
compile the function definition: this is a simple way of turning off other macros. For example. 
the user may have a function that runs in both Inccrlisp-O and Interlisp-10. but has a macro 
definition that should only be used whcn compiling in Interlisp-10. If the MACRO property has . 
the macro specification. a OMACRO or'T will cause it to be ignored by the Interiisp-O compiler. 
Note that this DMACRO would not be necessary if the macro were specified by a 10MACRO instead 
of a MACRO. . 

(= • OTHER-FUNCTION) 

A simple way co tell the compiler to compile one function exactly as it would compile J.nother. 
For example. when compiling in Interlisp-O. FRPLACAs are treated as RPLACAs. This is achieved 
by having F RP LACA have a DMAC RO of (= • RP LACA). 

(~ITATOM EXPRESSION) 

5.18 



,,- .... . ' , 
' .. : .... " 

C) 
FUNCTION DEFINITION. MANIPULATION. AND EVALUATION 

If a macro definition begins with a litatom other than those given above. this allows computation 
of the Interlisp c:xpression to he evaluated or compiled in place of the form. LrrATOM is bound 
to the CDR of the calling fonn. EXPRESSION is evaruated.. and the result of this cvaluarjon is 
evaluated or compiled in place of the fonn. For example. LIST could be compiled using the 
computed macro: 

[X (LIST 'CONS 
(CAR X) 
(AND (CDR X) 

(CONS 'LIST 
(COR X] 

~ This would cause (LIST X Y Z) to compile as {CONS X {CONS Y (CONS Z NIL»). Note (\, 
the recursion in the macro expansion. _ ) 

If the re~ult of the evaluation is the litatom I GNOREMACRO. the macro is ignored and the 
compil;)Uun of U\~cxprc~~um prncC'ed~ U~ ir lht"re were no mucro defintuun. If the litauun in 
question is nonnally trented spcdally by the compiler (CAR, COR, CONO, AND, etc.). and C!lso has 
a macro. if the macro expansion returns IGNOREMACRO, the litatorn will still be treated specially. 

In Intcrlisp-10. if the result of the evaluation is the atom INSTRUCTIONS, no code will be 
generated by the compiler. It is then assumed the evaluation was done for effect and the 
nccessary codc. if any, has been added. This is a way of giving direct instructions to the compLIer' 
if you understand it. 

Note: It is often useful when constructing complex macro expressions. to use the BQUOTE facility (see 
page 6 • .39). 

The following function is quite useful for debugging macro definitions: 

(EXPANDMACRO FORM QumTrLo -) rFunctionl 
Takes a fonn whose CAR has tl mncro definition and expands the form as it would 
be compiled. The result is prettypnnteci unless QumTFLG = T. in which case the 
result is simply returned. 

5.5.1 MACROTRAN 

Interpreted macros are implemented by the function MAC ROT RAN. When the interpreter encounters a 
form CAR of which is an undefined function.3 MACROTRAN is called. If CAR of the form has a m:lcro 
definition. the macro is expanded. and the result of this expansion is evaluated in place of the original 
fonn. CLISPTRAN (page 16.19) is used to save the result of this expansion so that the expansion only has
to be done once. On subsequent occasions. the translation (expansion) is retrieved from CLISPARRAY 
the S4JlT1e as for other eLlSP constructs: MACROTRAN never even ha.'i to be invoked. 

Sometimes. macros cont41in calls to functions that nS5ume that the macro is being compiled. lnc 
variable SHOULDCOMP ILEMACROATOMS is a list of functions that" 5hould be compiled to work correctl~· 
(initi:lIly (OPCODES) in Intcrlisp-D. (ASSEMBLE LOC) in Intcrtisp-lO). UNSAF EMACROATOMS is a list 

:qn other words, if you have a macro on FOO. then typing (FOO • A I B) will work. but FOO( A B) will 
not work. • (j 

5.19 



o 

-o~ 

o 

o 

MACROTRAN 

of functions which effect the operation of the compiler. so such macro fonns shouldn't even be exp3.4~ded 
except by the compiler (initially NIL in Interlisp-D, (C2EXP STORIN CEXP COMP) in Interlisp-lO). If 
MACROTRAN encounters a macro containing calls to functipns on these two lis~ instead of the m:lcro 
being expanded. a dummy function .is created with the form as its definition. and the dummy function is 
then compiled. A form consisting of a c:lll to this dummy function with no arguments is then evaluated 
in place of the origjnal fann. and CL I SPTRAN is used to save the translation ~ described above. There 
are some situations for which this procedure is not amenable. e.g. a GO insjde the fonn which is being 
compiled will cause the compiler to give an UNO E FIN ED TAG error message because it is not compiling 
the entire function, just a part of it 

Note: MACROTRI\N is an entry on OWIMUSERFORMS (page 15.10) and thus will not ~ork if DWIM is not 
enablc!ti 

S.20 



o 
~.". 

Q - -/ 

o 

o 

CHAPTER 6 

INPUT/OUTPUT 

6.1 FILES 

All input! output functions in Interlisp can specify their source/destination file with an optional extra 
argument. which is the name of the file. given as a litatom. These functions generally require that the file 
be open. Files are opened and manipulated by the functions described below. The name T designates 
terminal input and output. and is always considered open. It is also possible to supply a string as an 
input ·'file", without needing to open ite input operations remove successive characters from the string. 
Note that because of this feature, file names must always be specified as litatoms, not strings. 

(OPENFILE FILE ACCESS RECOG BYTESIZE MACHINE.DEPENDENT.PARAMETERS) [Function] 
Opens FILE with access rights as specified by ACCESS. one of INPUT. OUTPUT, 
BOTH, or APPEND. and rerurns the full name of the file. Causes error FILE NOT 
FOUND if FILE is not recognized by the file system, or other errors if FILE is 
'recognized but cannot be opened.. e.g. FILE WON'T O'P E N if the file is already 
opened by someone else or is protected against the operatio~ FILE SYSTEM 
RESOURCES EXCEEDED if there is no more room in the file system . 

. For ACCESS = INPUT, only input operations are permiued on the file: for 
ACCESS=OUTPUT or ACCESS=APPEND, only output operations are permitted.. 
Note: in Interlisp-10 and Interlisp-D, ACCESS=OUTPUT implies that one intends 
to write a new or different file, even if a version number was specified and 
the corresponding file already exists. Thus any previous contents of the file are 
discarded, and the file is empty immediately after the OPENFILE. If it is desired 
to write on an already existing file while preservmg the old conten~ the file must 
be opened for access BOTH or APPEND. 

RECOG specifies the recognition mode of FILE. as described on page 6.4. If 
RECOG= NIL. it defaults according to the value of ACCESS: for ACCESS= INPUT, 
RECOG=OLD is used: for ACCESS = OUTPUT. RECOG=NEW is used: for the other 
values of ACCESS. RECOG=OLD/NEW is used. 

BY'TESIZE. if supplied.. is the byte size in which to open the file. If BYTESIZE = NIL. 
the bytesize used is the default for the implementation (8 for Interiisp-D. 7 for 
Interlisp-10) .. 

MACHINE.DEPENDENT.P~\fETERS is a list specifying additional opening parameters. 
In Interlisp-lO. this list may contain the following litatoms: 

WAIT Wait if file is busy. 

DON'T.CHANGE.DATE 

6.1 

I 

. i 

I 
I 

i 



Files 

Don't change the: access dates. 

THAWED Open file in "thawed" mode. 

In Interiisp-D, MACHINE.DEPENDENT.PARAMETERS should be a list of pairs 
(ATTRl13 VALUE), where ATTRIB is any file attribute that the file system is willing 
to allow the user to set (see SETFILEINFO, page 6.7). 

If the FILE argument to an input (output) function is not given (has value NIL), the file specified as 
"primary" for input (output) is used. Normally these are both T. for terminal input and output. However. 
the primary input or output file may be changed with the functions below. 

(INPUT FILE) 

(OUTPUT FILE) 

(INFILE FILE) 

(OUTFILE FILE) 

(IOFILE FILE) 

[Function1 
Sets FILE as the primary input file; returns the name of the old primary input 
file. FILE must be open for input. I N PUT can also be given a string as argument. 
interpreted as described above~ 

( I N PUT) returns the current primary input file, which is not changed. 

[Function} 
Sets FILE as the primary output file; returns the name of the old primary output 
file. FILE must be open for output. A string -cannot be used as an output file. 

(OUTPUT) returns the current: primary output file. which is not changed. 

[Function] 
Opens FILE for inpu~ and sets it as the primary input file. Equivalent to (INPUT 
(OPENFILE FILE 'INPUT 'OLD» 

[Function1 
Opens FILE for output, apd sets it as the primary output file. Equivalent to 
{OUTPUT (OPENFILE FILE 'OUTPUT 'NEW». . ' 

{Function1 
(OPENFILE FILE 'BOTH 'OLD); opens FILE for both input and output. Does 
not affect the primary input or OUtput file. 

(OPENP FILE ACCESS) [Function] 

(CLOSEF FILE) 

If ACCESS = NIL. returns the full name of FILE if FILE is open either for input or 
for output: otherwise NIL. 

If ACCESS is INPUT. OUTPUT or BOTH. returns the full name of FILE if it is open 
in that access mode; otherwise NIL. 

Note: If FILE is not recognized,OPENP returns NIL without generating an error. 

(OPENP) returns a list of all files open for input or outpu~ excluding T and the 
current typescript (dribble) file. if any (page 6.12). 

[Functionj 
Closes FILE. Generates an error. FILE NOT OPEN. if FILE is not open. [f FILE is 
NIL. it attempts to crose the primary input file if other than terminal. Failing that. 
it attempts to close the primary output file if other than terminal. Failing both. it 

6.2 

() 
( 

o 
C'·· 

(l 
tJ 



----------------~--~---=------~-~---~. I 

/' ~'-

o 

(CLOSEF? FILE) 

INPUT IOUTPUT 

returns NIL: If it closes any file, it returns the name of that file. If it closes either 
of the primary files, it resets that primary file to terminal. 

WHENCLOSE (page 6.11) allows the user to "advise" CLOSEF to perform various 
operations when a file is closed. 

[Function] 
Ooses Fn..E if it is ope~ otherwise does nothing. Returns FILE. 

(CLOSEALL ALLFLG) [Function] 

(OELFILE FILE) 

Coses all open files, except T and the current typescript file, if any. Rerurns a list 
of the files closed. 

WHENCLOSE (page 6.11) allows certain files to be "protected" from CLDSEALJ=>o 
(CLOSEALL T) overrides this protection. 

[Function] 
Deletes FILE if possible. Returns Fn..E if deleted, else NIL. 

(RENAMEFILE OLDFILE NEW'Fn..E) [Function] 
Renames OLDFILE to be NEWFILE. Returns NEWFILE if successfuL else NIL. 

6.1.1 File Naming and Recognition 

In Interlisp. a file name is a literal atom composed of one or more fields.. separated by suitable 
punctuation. The precise fields and their interpretation is dependent on the implementation; the functions 
PACKFILENAME and UNPACKFILENAME (page 6.6) are used to construct and take apan filenames in an 
implementation-independent way:-

Depending on the file system implementatio~ file names given to input/output functions may be 
incompletely specified. with the file system handling the task of obtaining a specific file from a panial 
name, or recognizing the file. For example, in file sYStems that suppon version numbers. one can call 
OPE N F I L E giving a file name without a version number, and the file system will supply a default version 
number based on the context (opening a new file for output vs. an old file for input). Internally, however. 
each open file has associated with it a completely-specified filename, one that uniquely identifies the file 
to the file system in any context. It is this ··full" file name that is returned from OPENFILE and other 
functions that return names of open files. For example, (OPENFILE 'FOO 'OUTPUT) might return 
< LIS P > F 00. : 3. Any time that an input! output function is called with a file name other than the full 
file name. Interlisp must perform recognition on the panial file name in order to determine which open 
file is intended. Thus if repeated operations are to be perfonned. it is considerably more efficient to use 
the full file name returned from OPENFILE than to repeatedly use the possibly incomplete name that 

. was used to open the file. 

In Interlisp-lO. filenames follow the conventions of the operating system (either TENEX or TOPS-20). 
Le., FILE can be prefixed by a directory name enclosed in angle bracketS. can contain <esc>s or control
Fs. and can include suffixes and/or version numbers. When a file is opened for input and no version 
number is give~ the highest existing version number is used. Similarly. when a file is opened for 
output and no version number is given. a new file is created with a version number one higher than the 
highest one currently in use with that file name. The full filename in Interlisp-10 consists of directory. 
name. extension. and version. In Interlisp-D. it also includes a device or host name in brackets. i.e. 

6.3 

\ 

\ 

\ 

\ 
I 

\ 
\ 
l 



File Naming and Recognition 

{PHYLUM}<LISP)FOO.:3~ 

The following functions can be used to perform file recognition without opening a file: 

Warning: In some implementations of I nterlisp (such as, I nterlisp-D). it may not be possible to detennine 
lhe full name of a new file wi/hOUI trying to open iL In this case. OUTF ILEP and FULLNAME may not 
always return the con-eel value. These functions s~ould not be used in general. because the idea "what a file 
would be named if it were opened" is not well defined in some file systems. 

(INFILEP FlLE) 

\OUTFILEP FILE) 

[Function] 
Returns full file name of FILE if 'FILE is recognized as specifying the name of an 
existing file that could potentially be opened for inpu~ NIL otherwise. Recognition 
is in input .contex~ i.e .. in Interllsp-lO, if no version number is given.. the highest 
existing version number is returned. 

[Function] 
Similar to IN F I L E P, except recognition is in output context. i.e •• in Interlisp-lO. if 
no version number is given.. a verSion number one higher than the highest existing 
version number is returned. Roughly speaking, OUTFILEP returns the full name 
of the file that would be created if OUTF ILE were called with the same argument. 

A more general version of INFILEP and OUTFILEP is provided by the function FULLNAME: 

(FULLNAME x RECOG) [FunctionJ. 
If x is recognized in the recognition mode specifiea by RECOG as an abbreviation 
for some file. returns the file's full name, otherwise NIL. RECOG can be OLD. 
meaning choose the (newest) existing version of the file: NEW. meaning make the 
full file name one which does not yet exist (version number one higher than 
highest existing version); OLDEST. meaning choose the existing file with the lowest 
version number; or OLD/NEW. meaning to recognize an existing version if possible. 
otherwise a new version (useful only for writing a file). RECOG = NIL defaults to 
OLD. For all other values of RECOG, generates an error ILLEGAL ARG. If x is not 
a literal atom. generates an error. ARG NOT LITATOM. 

For example. ·INFILEP could be defined as (FULLNAME FILE 'OLD) and 
OUTFILEP as (FULLNAME FILE r NEW). 

The RECOG argument is used only for defaulting unspecified parts of the filename 
(in Interlisp-lO and Interlisp-D. the version). not to pass judgment on the specified 
parts. In particular. RECOG= NEW does not require that the file be new. For 
example. (FUlLNAME • Faa. : 2 • NEW) may return (MASINTER)FOO. : 2 if that 
file already existS. even though (FULLNAME • FOO 'NEW) would default the 
version to a new number. perhaps returning < MAS I NT E R) F 00. ; 5. 

Note that IoN FILE p. OUTF I LE P and FUlLNAME do not open any files. or change the primary files: they 
are pure predicates. In general they are also only hintS. as they do not necessarily imply that the caller 
has access rights to the file. For example. INFILEP might rerum non-NIL. but OPENFILE might fail for 
the same file because the file is read-protected against the user. or the file happens to be open for output 
by another user at the time. Similarly. OUTFILEP could return non-NIL. but OPENF!LE could fail with 
a FILE SYSTEM RESOURCES EXCEEDED error. Note also that in a multi-user file svstem. intervening 
file operations by another user could contradict the information rerurned by recognition. For example~ 
a file that was INFILEP might be deleted. or between an OUTFILEP and the subsequent OPENFILE. 

6.4 



o c 

w 

o 

o 

INPUT/OUTPUT 

another user .might create a new version or delete the highest version, causing the names rerurned by 
OUTFILEP and OPENFILE to have different version numbers. Thus, in genera!, the "truth" about a file 
can only be obtained by acrually opening the file; in particular, creators of files should rely on the name 
rerumed from OPENFILE, not from OUTFILEP. 

If the file system does not successfully recognize an incomplete file name, a FILE NOT FOUND error 
is generated (except for INFILEP, OUTFILEP, FULLNAME and OPENP, which in this case return NIL). 
As described on page 9.16, before a FILE NOT FOUND error occurs, it is intercepted via an entry on 
ERRORTYPELST, which causes SPELLFILE (page 15.20) to be called. SPELLFILE will search alternate 
directories and possibly attempt spelling correction on the file name. Only if S PEL L F I LEis unsuccessful 
will the error actually occur. -

Note that recognition is performed on the user's entire directory, not just the open files. which can result 
in cenain anomalies. Thus, even if only one file is open, say FOO. : 1, the name F $ (F<esc» will not 
be recognized if the user's directory also contains the file FIE. : 1. Similarly, it is- possible for a file 
name that was previously recognized to become ambiguous. For example, a program performs (INFILE 
, FOO), opening FOO. ; 1, and reads several expressions from FOO. Then the user inteITUpts the program. 
creates a FOO. ; 2 and reenters his program. Now a call to READ giving it FOO as its FILE argument will 
generate a FILE NOT OPEN error. because FOO will be recognized as FOO. :2. 

6.1.2 Manipulating File Names 

Different operating systems have different conventions for naming files. However. it is desirable· for 
Interlisp to be as implementation independent as possible. Therefore. all programs that need to reference 
pans of a filename, or construct new file names from existing ones, should use the functions described 
below. The implementation of these functions obviously is dependent on the operating system they will 
run under. but as far as th~ programs that use them are concerned, they permit expressing operations 
that are implementation independent.1 

Every file name is composed of a collection of fields which have different semantic interpretations. A 
field name is a literal atom which is the name of a file-name field. Interlisp assumes that NAME and 
EXTENSION are valid field names~ the implementor is free to allow other fields. In Interiisp-lO, allowable 
field names are: DEVICE, DIRECTORY, -NAME, EXTENSION, VERSION. PROTECTION, ACCOUNT, and 
TEMPORARY. Interlisp-D allows HOST, DIRECiORY, NAME, EXTENSION, and VERSION. 

(FILENAMEFIELD Frr£NAME FmLDNAME) 
Rerums the contents of the FIELDNAME field of FILENAME. 

(UNPACKFILENAME F~ENAME -) 
Returns a list of alternating field names and field contents. 

Examples from Interlisp-D: 

~ (UNPACKFILENAME 'FOO.BAR) 
(NAME FOO EXTENSION BAR) 

[Function] 

[Function] 

~ (UNPACKFILENAME '{PHYLUM}<SANNELLA)LISP)IMTRAN.DCOM;21) 

1 In particular. the interlisp-lO implementation recognizes file names in both Tenex and TOPS-20 fonnat 
and builds new names as appropriate. 

6.5 



File Attributes 

(H(}ST P.HYLUM DIRECTORY SANNELLA)LISP NAME IMTRAN 
EXTENSION DeOM VERSION 21) 

Examples from Interlisp-lO on Tenex: 

~ (UNPACKFILENAME '<LISP)MAC.COM;3) 
(DIRECTORY LISP NAME MAC EXTENSION COM VERSION 3) 
~ (UNPACKFILENAME 'WORK.:T) 
(NAME WORK EXTENSION NIL TEMPORARY T) 

Note: In Interlisp-lO. (UNPACKFILENAME 'DSK: FOO) returns (DEVICE DSK: 
NAME FOO), i.e. the : is left in. This is so (DEVICE NIL:) may be distinguished 
from (DEVICE NIL). 

( PACKF I LENAME FIELDN~l FIELDCONTENTS1 ••• FIELDNAMEN FIELDCONT$NTSN) 
[NoSpread Function] 

Takes a list of alternating field names and field contents (atoms or strings), 
and returns the corresponding file name. For example.. (PACKFILENAME 
• DIRECTORY 'LISP 'NAME r NET) returns <LISP)NET. 

If the same field name is given twice, the first occurrence is used. 

If the "field name'" BODY is given. this means that the operand ta BODY should 
itself be unpacked and spliced into the argument list at that point. TIlls is useful 
.for providing. default field name~ or to change just one field in an existing name. 

For example. to take a rue name FrLE and change the 0 I RECTORY fielcL perform 
(PACKF ILENAME r DIRECTORY NEWDIRECTORY 'BODY FILE). Alternatively, 
ta provide a default for the EXTENSION field. perform (·PACKFILENAME 'BODY 
FILE 'EXTENSION DEFAULT). This uses DEFAULT as the extension unless one is 
already specified in FILE. 

Note that a null field is a field that has been specifiecL e.g., if FILE= FOO ; 1 in the 
above example, the default extension will be usecL but if FILE = F 00. : 1. it will 
nat. because a null extension has been specified. 

If the first argument to PACKFILENAME is a list. PACKFILENAME is called on that 
argument. Thus PACKF ILENAME! and UNPACKFILENAME operate as inverses. 

6.1.3 File Attributes 

. . 

Any file has a number of "file attributes", such read date. protection, and bytesiZe. The exact attributes 
that a file can have is implementation-dependent. The functions GETFILEINFO and SETFILEINFO 
allow the user to conveniently access rue attributes: 

(GETFILEINFO FILE ATTRm) [Function] 
Returns the current setting of the ATTRlB attribute of FILE. In Interlisp-10. FILE 

may also be a JFN as returned by GTJFN (page 22.22). 

In Interlisp-10. GET FILE IN F 0 takes an optional third argument. SCR.4.TCH. which 
is analogous to the third argument of GOA T E (page 14.10): a string pointer to reuse 

6.6 

o 
(-

c() 



INPUT/OUTPUT 

for those ATTRlB'S which return string values. 

(SETFILEINFO FILE ATTRlB VALUE) [Function] 
Sets the attribute ATTRLB of FILE to be VALUE. SETFILEINFO returns T if it 
is able to change the attribute ATTRlB, and NIL if uIl.:,"'Uccessful (some attributes 
cannot be changed, e.g. it doesn't make sense to change the SIZE of a file without 
writing something on it). 

GETFILEINFO and SETFILEINFO currently recognize the following values for ATTRIB: 

ACCESS The current access mode of FILE (e.g. INPUT, OUTPUT, BOTH, APPEND) or NIL 
if FILE is not open. 

BYTESIZE 

O~"1 LENGTH 

The byte size of the file. 

The byte position of the end-of-file. Like (GETEOFPTR FILE), but FILE does not 
have to be open. 

SIZE The size of FILE in pages. 

WRITEDATE, READDATE, CREATIONDATE 
The date (and time) as a string that FILE was respectively last writte~ last read., 
and originally created. 

IWRITEDATE. IREADDATE, ICREATIONDATE 

TYPE 

OPENBYTESIZE 

PROTECTION 

The respective date in integer fo~ as IDATE (page 14.10) would retum. 

(Interlisp-D) Either TEXT or BINARY. 

(Interlisp-lO) It is possible that the byte size for the "opening" of a file might differ 
from the "permanent" bytesize. For example. a 7-bit text file can be opened in 
36-bit mode. To obtain the "open" byresize, use attribute OPENBYTESIZE. 

(Interlisp-10) The "protection code" of FILE. as an integer. 

o ) '. 'DELETED (Interlisp-10) T if FILE is the name of a deleted file, NIL otherwise. 

( . 

'0 

Additional attributes which are available for Interlisp-lO on TOPS-20 systems (DEC release 4 or later) 
are: 

INV.IS IBLE 

ARCHIVED 

OFF-LINE 

T if FILE has the invisible attribute. NIL othenvise. 

T if FrLE has been archived. NIL otherwise. 

T if the contents of Frr..E are off-line (Le. FILE has been archived and its contents 
flushed), NIL otherwise. 

(POSITION Prr..E N) [Function1 
Returns the column number at which the next character will be 'read or printed. 
After a end of line. the column number is O. If N is nori-N I L. resets the column 
number to be N. 

Note that (POSITION PILE) is not the same as (GETFILEPTR FILE) which 
gives the position in the file. not on the line. 

6.7 



Randomly Accessible Files 

(LINELENGTH N FILE) [Function] 
Sets the length of the print line for the output file FILE to rr, returns the former 
setting of the line length. FILE defaults to the primary output file. (LINELENGTH 
NIL FILE) rerurns the current setting for FILE. When a file is first openeti its 
line length is set to the value of the variable FILELINELEr~GTH. 

Whenever printing an atom or string would increase a file's position beyond the 
line length of the file. an end of line is automatically insened first. This action can 
be defeated by using PRIN3 and PRIN4 (page 6.17). 

(SETLINELENGTH N) 1 [Function] 
If N is NIL; mterrogates the operating system for the line length of the terminal 
device. and sets the variable TTYLINELENGTH to this value. If N is not NIL 
instructs the operating system to set the terminal line length to N, and also sets 
TTYLINELENGTH to N. Then. in either case. SETLINELENGTH pertbrms (and 
returns as its value) (LINELENGTH TTYLINELENGTH T). 

Both AFTERSYSOUTFORMS and RESETFORMS (page·8.19) contain a (SETLINELENGTH) so that when 
the user first runs a SYSOUT, or types control-D, the system obtains the latest information about the 
terminal. 

6.1.4 Randomly Accessible Files 

For most applications. files are read starting at their beginning and proceeding sequentially. i.e .• the 
next character read is the one immediately following the last character read. Similarly, files are written 
sequentially. However. it is also possible to read/write characters at arbitrary pOSitions in a file. essentially 
treating the file as a large block of auxiliary storage. For example. one application might involve writing 
an expression at the beginning of the file. and then reading an expression from a specified point in its 
middle. Tnis particular example requires the file be open for both input and output H.owever. random 
file input or output can also be pe~ormed on files that have been opened for only input or only output 

Associated with each file is a "file pointer" that points to the location where the next character is to be 
read from or written to. The file pointer to a file is automatically advanced after each input or output 
operation. This section describes functions which can be used to reposilion the file pointer on those files 
that can be randomly accessed. A file used in this fashion is much like an array in that it has a certain 
number of addressable locations that characters can be put into or taken from. However~ unlike arrays. 
files can be enlarged.. For example. if the file pointer is positioned at the end of a file and anything is 
written. the file "'grows." It is also possible to position the file pointer beyond the end of file and then 
to write. (If the program attempts to read beyond the end of file. an END OF FILE error occurs.) In 
this case. the file is enlarged. and a 'Ohole" is createti which can later be written into. Note that this 
enlargement only takes piace at the end of a file: it is not possible to make more room in the middle of 
a file. In other words. if expression A begins at position 1000. and expression B at' 1100. and the program 
attemptS to overwrite A with expression C. which is 200 characters long, part of B will be altered. 

The address of a character (byte) is the number of characters (bytes) . that precede it in the file. i.e .. 0 is 
the address of t..'e beginning of the file. However. the user should be careful about computing the space 
needed for an expression. since end·ot-line may be represented by a different number of characters in 
different implementations. even though NCHARS only counts it as one: e.g .. end-of-line in fnterlisp-lO 
files is represenI:ed as the two characters carriage-return. line-feed. Output functions may also introduce 
end-of-line's as a result of LINE LENGTH considerations .. 

6.8 

(j 
(! 

n 
C"': .: .~ 

'~"'.:'. () 
!.( ~ ;- , 
\; ~"!.,.; 



.oc 

-

0-> 

/\ u-

INPtIT/OUTPUT 

(GETFILEPTR FILE) [Function] 
Returns the current position of the file pointer for FILE, Le.. the byte address a;. 
which the next input/output operation will commence. 

(SETFILEPTR FILE ADR) [Function) 
Sets the file pointer for FILE to the position ADR: rerurns ADR. The special value 
ADR = -1 is interpreted to mean the address of the end' of file. 2 

(GETEOFPTR FILE) [Function] 

(EOFP FILE) 

Returns the byte address of the end of file, i.e.. the number of bytes in the file. 
Equivalent to performing (SET FI LEPTR FILE -1) and returning (GETF ILE PTR 
FILE) except that it does not change the current file pointer. 

[Function] 
Returns T if the file pointer to FILE is pointing to the end of file: NIL otherwise. 
FILE must be open for (at least) inpu~ or an error is generatecL FILE NOT OPEN. 

("RANDACCESSP FILE) [Function1 
Returns FILE if FILE is randomly accessible. NIL otherwise. The file T is not 
randomly accessible. nor are the files LPT :. NIL: in Interlisp-10. or certain network 
file connections in Interiisp-D. FILE must be open or an error is generated., FILE 
NOT OPEN. 

(COPYBYTES SRCFIL DSTFIL START El'm) ~ [Function1 
Copies bytes (characters) from SRCFIL to DSTFIL. starting from position START 

and up to but not including position END. Both SRCFIL and DSTFIL must be open. 
Returns T. 

If END = NIL, START is interpreted as the number of bytes to copy (starting at the 
current position). If START is also NIL. bytes are copied until the end of the file 
is reached. . 

(FILEPOS PATTERN FILE START END SKIP TAIL CASE.ARR.AY) [Function1 
Analogous to STRPOS (page 2.31). but searches a file rather than a string. FILEPOS 
searches FILE for the string PATTERN. Search begins at START (or the current 
position of the file pointer. if START= NI L), and goes to END (or the end of FII.E. 
if END= NIL). Rerums the address of the stan of the match. or NIL if not found. 

SKIP can be used to specify a character which matches any character in the file. If 
TAIL is T. and the search is successful. the value is the address of the first character 
after the sequence of characters corresponding to PATTERN. 'instead of the starting 
address of the sequence. In either case. the file is left so that the next i/o operation 
begins at the address returned as the value of FILEPOS. 

2Note: If a file is opened for output only. the end of file is initially zero. even if an old file by the same 
name had existed (see OP EN FILE. page 6.1). If a file is opened for both input and output. the initial file 
pointer is the beginning of the file. but (SETFILEPTR ~r:'rr..E -1) will set it to the end of the file. If 
the file had been opened in append mode by (OPENF ILE FILE 'APPEND). the file pointer right after 
opening would be set to the end of the existing file. in which case a SET F I L E P T R to position the file at 
the end would be unnecessary. 

6.9 

.' 



,/ . 

'-... 

Rando~ly Accessible Files 

CASE.A.RR.AY should be a "casearray" that specifies that certain characters should 
be transformed to other characters before matching. Casearrays are returned by 
CASEARRAY or SEPRCASE below. CASEARRAY=NIL means no transfurmation 
will be performed.. 

A casearray is an implementation-dependent object that is logically an array of 
character codes with one entry for each possible character. F I LEPOS maps 
each character in the file uthrough" CASEARRAY in the sense that each character 
code is transformed into the corresponding character code from CASEARRAY 
before matching. Thus if two characters map into the same value. they are 
treated as equivalent by FILEPQS. CASEARRAY and SETCASEARRAY provide an 
implementation-independent interface to casearrays. 

For example. to search without regard to upper and lower case differences, 
CASEARRAY would be a casearray where all characters map to themselves, except 
for lower case characters. whose corresponding elements would be the upper case 
characters. To search for a delimited atom. one could use " ATOM .. as the pattern. 
and specifY a CASEARRAY in which all of the break and separator :haracters 
mapped into the same code as space. 

For applications calling for extensive file searches. the function FFILEPOS is often faster than FILEPOS. 

(FFILEPOS PATTERN FILE START END SKIP TAlL CASEAR.RAY) [Function] 
Like FILEPOS, except much faster in most applications.3 . FFILEPOS is an 
implementation of tL'1e Boyer-Moore fast string searching algorithm. This algorithm 
preprocesses the string being searched for and then scans through the file in steps 
usually equal to the length of the string. Thus, FFILEPOS speeds up roughly in 
proportion to the length of the string, e.g .• a string of length 10 will be found twice 
as fast as a string of length. 5 in the same position. 

Because of certain fixed overheads. it is generally better to use FILE POS for short 
searches or short strings. 

(CASEARRAY OLDARRAY) [Function] 
Creates and returns a new casearray, with all elements set to themselves. to indicate 
the identity mapping. 

(Interlisp-D) If OLDARRAY is given. it is· reused. 

(SETCASEARRAY CASEARRAY FROMCODE TOCODE) . [Function] 
Modifies the casearray CASEARRA Y so that character code FROMCODE is mapped 
to character code TO CODE. 

(SEPRCASE CLFLG) [Function} 
Returns a new casearray suitable for use by FILEPOS or FFILEPOS in which all 
of the break/separators of FILEROTBL are mapped into character code zero. If 
CI..FLG is non-N I L. then all eLISP characters will be mapped into mis character as 
well. This is useful for finding a delimited atom in a file. For example. if PATTERN 

.J In Inreriisp-10. a speedup of 10 to 50 times is typical. [n Interiisp-D me speedup is much smaller. 

6.10 

n 
\.:: ~:: 



--------~~~ ...... -~-.--=--.... -~.---.-=-.-.-.--=-.-.--.~\ 

o C···:, 
.... :' 

6J 

/ . .;.. 

o· 

INPtJT /OUTPUT 

is " FOO ", and (SEPRCASE T) is used for CASiARRAy, then F ILEPOS will 
find "( F OO+- " . 

6.1.5 Closing and Reopening Files 

The function WHENCLOSE permits the user to associate certain operations with open files that govern how 
and when the file will be closed., and how the file's status will be restored when a SY SOUT is staned up. 
The user can specify that cenain functions will be executed before CLOSEF closes the file and/or after 
CLOSE F closes the file. The user can make a particular file be invisible to CLOSEALL. so that it will 
remain open across user invocations of CLOSEALL. Finally. the user can associa~a status-saving function 
with a file which will be called before SYSOUT and which can specify what to do when a SYSOUT is 
restarted. 

(WHENCLOSE FILE PROP 1 VALl ••• PROPN VALN ) [NoSpread Function} 
FILE must specify the name of an open file other ~ T (N I L defaults to the 
primary input file, if other than T. or primary output file if other than T). The 
remaining arguments specify propenies to be associated with the full name of FILE. 
WHENCLOSE rerurns the full name of FILE as its value. 

WHENCLOSE recognizes the following property names: 

BEFORE 

AFTER 

STATUS 

CLOSEALL 

EOF 

VAL is a function that CLOSE F will apply to the full name of FILE just before it is 
closed. This· might be used. for example. to copy information about the file from an 
in~ore data structure to the file just before it is closed. 

VAL is a function that CLOSEF will apply to the full name of FILE just after it is 
closed. This capability permitS in-core data structures that know about the file to be 
cleaned up when the file is closed. 

BEFORE and AFTER differ in their behavior with respect to SYSOUT. If a file that 
was open before SY SOUT does not have a STATUS function associated with. it that 
causes the file to be successfully restored after the SY SOUT is started. then me file 
is considered to have been ·'closed" by the SY SOUT. and itS AFT E R function will be 
executed after the SY SOUT starts. 

This property provides a way of restoring the status of files when a SY SOUT is 
resumed. VAL is a function that will be applied to the full name of FILE just before 
a SYSOUT. VAL is expected to return a list. CAR of which is a function which will 
be APPL Y'd to the COR when the SYSOUT is started up and which will restore the 
status of FILE. If the value of the APPL Y is NIL. it is assumed the file could not be 
successfully restored. a warning message is printed. and then any AFTER functions 
associated with the file are executed. 

The function PE RMSTATUS (page 23.1 j) produces an expression for re-opening a file 
after SYSOUT and restoring as many of itS attributes as possible. 

VAL is either YES or NO and detennines whether FILE will be closed by CLOSEALL 
(YES) or whether CLOSEALL will ignore it (NO). CLOSEALL uses CLOSEF. so that 
any AFTER functions will be .executed if tile file is in fact closed. 

VAL is a func·tion that will be applied to the full name of FILE when an end-of-file 

6.11 

\ 

\ 

\ 
\ 



I 

Dribble Files 

error occurs. and the ERRORTYPELST entry for that error. if any, returns NIL. The 
function can examine the context of the error, and can decide whether to close the 
file, RETF ROM some functio~ or perform some other computation. If the function 
supplied returns normally (Le. does not RETFROM some function), the normal error 
machinery will be invoked (but FILE will not be automatically closed if the EOF 
function did not close it). . 

Note that multiple AFTER and BEFORE functions may be associated with a file: they are executed 
in sequence with the most recently associated function executed first. However. a second STATUS 
specification will supercede an earlier one. The CLOSEALL and EOF values will also override earlier 
values, so only the last value specified will have an effect. Files are initialized with CLOSEALL - YES. 
EOF - CLOSEF. 

r 6.1.6 Dribble Files 

A dribble file is a "transcript" of all of the input and output on a temrinal. The following function 
enables dribble files for Interlisp: 

(DRIBBLE FILENAME APPENDF7..G THAWEDFLG) [FunctionJ 

(DRIBBLEFILE) 

Opens F1LENAME and begins recording the typescript. Returns the oLd dribbie 
file if any, otherwise NIL. [f APPENDFLG=T. the typescript will be appended to 
the end of FILENAME. If THAWEDFLG = T. the file will be opened in "!1lawed" 
mode. for those implementations that support it. ( 0 RI B B L E) closes the dribble 
file. Only one dribble file can be active at anyone time. so (DRIBBLE FILEl) 
followed by (DRIBBLE FILE2) will cause FILEl to be closed. 

In Interlisp-D. DRIBSLE opens a dribble file for. the current proces~ recording the 
input and output for that process. Multiple processes can have separate dribble 
files open at the same time .. 

[Function I 
Returns the name of the current dribble file. if any. otherwise NIL. 

-, Tenninal input is echoed to the dribble file a line buffer at a time. Thus. the typescript produced is 
somewhat neater than that appearing on the user's terminal. because it does not show characters that were 
erased via concrol-A or control-Q. Note that the typescript file is not included in the list of files returned 
by (OPENP). nor will it be closed by a call to CLOSEALL or CLOSE F. Only (DRIBBLE) closes the 
typescript file. 

6.2 INPUT FUNCTIONS 

Most of the functions described below have an argument F'ILE. which specifies the name of the file on 
which the op'eration is to take place. ff F'ILE is Nt L. the primary input file will be used. [f the file 
argument is a string, input will be taken from chat string (and che string pointer reset accordingly). 

Most input functions also have a RDTBL argument. which specifies· che readtable to be used for input ff 
RDTBL is NIL, the primary readtable will be use;i. Readtables are described on page 6.32. 4 

6.12 

(j 

n 

n 

(j 
l. 



()c,:· 

o· 

o 

INPUT/OUTPUT 

Note: in all Interlisp-lO symbolic files. end-of-line is indicated by the characters carriage-return and 
line-feed in that order. Accordingly, on input from files. Interlisp-lO skips all1ine-feeds that immediately 
follow carriage-returns. On input from the terminal Interlisp echos a line-feed whenever a carriage-rerum 
is input. 

When reading from the terminal the input is buffered a line at a time (unless buffering has been inhibited 
by (CONTROL T), or the input is being read by READC or PEEKC) and can be backed up over using 
specified editing characters. The user can erase a character at a time. the whole line. or, in Interlisp-D, a 
word at a time. The keys that perform these editing functions are assignable via the SET SYNT AX function 
(page 6.34), with the intial settings chosen to be those most narqral for the given operating system: 
characters are deleted one at a time by control-A under Tenex, Delete under Tops20. and BackSpace in 
Interlisp-D: the whole line is erased by control-Q under Tenex and in Interlisp-D. and control-U under 
Tops20: words are erased by control-W in Interlisp-D. 

The character-deleting action on normal terminals is to .echo a \ followed-by the erased character. on the 
lnterlisp-D display the character is physically erased from the screen (this action can also be specified for 
display terminals in other Interlisps; see page 6.43). The line-deleting action is normally to print ## and 
stan over on a new line. Neither will back up beyond the previous carriage-rerum. 

When reading from a file. and an end of file is encountered, all input functions close the file and generate 
an error, END OF FILE (unless WHENCLOSE has been used to alter this behavior; see page 6.11). 

(READ FILE RDTBLFLG) [Function] 
Reads one expression from FILE. Atoms are delimited by the break and separator 
characters as defined in RDTBL. To include a break or separator character in an 
ato~ the character must be preceded by the input escape character %, e.g .• AB% ( C 
is the atom AS (C. %% is the atom %, %control-A is the atom control-A. For input 
from the terminal. an atom containing an intem.lpt character can be input by tYPing 
instead the corresponding alphabetic character preceded by control-V, e.g., ,.VC for 
control-C. 

Strings are delimited by double quotes. To input a string containing a double 
quote or a %, precede it by %, e.g., "AB%" C" is the string AS" C. Note that % can 
always be typed even if next character is not "special", e.g., %A%B%C is read as 
ABC. 

If an atom is interpretable as a number. READ creates a number. e.g .. 1 E 3 reads as 
a floating point number. 103 as a literal atom. 1. 0 as a number. 1,0 as a literal 
atom. etc. An integer can be input in octal by terminating it with a Q, e.g., 1 7 Q 
and 15 read in as the same integer. The setting of RAD I X (page 6.19) determines 
in which base integers are printed. 

When reading from the tenninal. all input is line-buffered to enable the action 
of the backspacing control characters (unless inhibited by (CONT ROL T) (page 
6.45). Thus no characters are actually seen by the program until a carriage-rerum is 
typed. 04 However. for reading by READ. when a matching right parenthesis is 
encountered. the effect is the same as though a carriage-rerum were typed. i.e .. the 

~ Actually. the line buffering is tenninated by the character with terminal syntaX class EO L (see page 6.33), 
which in most cases is carriage-return. 

6.13 



Input Functions 

characters are transmitted..5 To indicate this, Interlisp also prints a carriage-rerum 
line-feed on the terminal. 

In Interlisp-lO, the character control-W is defined as an IMMEDIATE read macro 
that erases the last expression rea~ echoing a \ \ and the erased expression. e.g., 
(NOW IS THE TIME1"W \\ TIME) returns (NO\1j IS THE). Control-\V can be 
used repeatedly, and can also back up and erase expressions on previous lines. 
However, since control-W is implemented as an IMMEDIATE read-macro character, 
(page 6.36), once it is typeci then individual characters typed before it cannot be 
deleted by control-A or control-Q, since they will already have passed through the 
line buffer. 

In Interlisp-D, control-W is instead defined as an editing character that deletes the 
last "word" of input. Le ... back to the first non-OTHER character precedirig the first (j 
non-SEPR character, essentially a repeated BackSpace. The character performing 
this function is assignable using the WORDOELETE syntax (page 6..14). ( 

FLG= T suppresses the carriage-rerum normally typed by READ following a 
matching right parenthesis. (However, the characters are still given to READ; 
Le.. the user does not have to type the carriage-return.) 

(RATOM FILE RDTBL) [Function] 
Reads in one atom from FILE. Separation of atoms is defined by RDTBL. % is 
also an escape character for RATOM. and the remarks concerning line-buffering and 
editing control characters also apply. 0 

If the characters comprising the acorn would normally be interpreted as a number 
by READ, that number is returned by RATOM. Note however that RATOM takes no 
special action for " whether or not it is a break ch&-acter. i.e .• RAT OM never makes 
a string. 

(RSTRING FILE RDTBL) [Function] 
Reads characters from FILE up to. but not including, the next break or separator 
character, and returns them as a string. Control-A. control-Q, control-V, and % 
have the same effect as with READ. . 

Note that the brea;k or separator character that terminates a call to RATOM or RSTRING is not read by 
that ca.l.L but remains in the buffer to become the first character seen by the next reading function that is 
called.. If that function is RSTRING. it will rerum the null string. This is a common source of progra.rn 
b~gs. 

(RATOMS A F'ILE RDTBL) [Function} 

(RATEST FLG) 

Calls RATOM repeatedly until the atom A is reac:L Returns a list of the atoms read.. 
not including A. 

[Function] 
[f FLG = T. RATEST returns T if a separator was encountered immediately prior 
to the last atom read by RA TOM. NIL omeIVIise. 

5Tne lineo buffer is also transmitted to READ whenever an IMMED IA TE read-macro character is typed 
(page 6.36). 

6.14 



o ''--

INPUT IOUTPUT 

If FLG = NIL. RATEST returns T if last atom read by RATOM or READ was a, 
break character. NIL otherwise. 

If FLG = 1, RATEST returns T if last atom read (by READ or RATOM) contained 
a % (as an escape character. e.g., %[ or %A%8%C), NIL otherwise. 

(READC FILE RDTBL) [Function] 
Reads and rerums the next character, including %. ", etc, Le., is not affected 
by break. separator, or escape character. The action of READC is subject to line
buffering, Le .• READC does not rerum a value until the line has been terminated 
even if a character has been typed. Thus. the editing control characters have their 
usual effect RDTBL does not directly affect the value returned, but is used as usual 
in line-buffering, e.g .• determining when input has been terminated. If (CONTROL 
T) has been executed (page 6.45), defeating line-buffering, the P.DTBL argument is 
irrelevant. and READC returns a value as soon as a character is typed (even if the 
character typed is one of the editing characters, which ordinarily would never be 
seen in the input buffer). 

(PEEKC FILE RDTBL) . [Function1 

(lASTC FILE) 

Returns the next character. but does not actually read it and remove it from the 
buffer. If RDTBL=NIl. PEEKC is not subject to line-buifering.6 Le., it returns 
a value as soon as a character has been typed. Otherwise. PEEKC waits until the. 
line has been terminated before returning its value. This means that control-A. 
control-Q, and control-V will be able to perform their usual editing functions. 

[FunctionJ 
Returns the last character read from FILE. 

READ. RATOM, RATOMS, PEEKC. READC all wait for input if there is none. The only way to test whether 
or not there is input ~ to use READP: 

(READP FrLE FLG) [FunctionJ 
Returns T if there is anything in the input buffer of FILE, NIL otherwise. Note 
that b~-ause of line-buffering, READ P q:tay return T. indicating there is input in 
the buffer, but READ may still have to wait. 

Frequently, the tenninal's input buffer contains a single EOl character left over 
from a previous input. For most applications. this situation wants to be treated 
as though the buffer were empty, and so (READP T) returns NIL in this case. 
However. ifFLG=T, READP also returns T in this case. Le .• (READP T T) returns 
T if there is any character in the input buffer. ' 

(WAIrFORlNPUT FII.:E) [Function] 
Waits until input is available from FILE or from the tenninal. i.e. from T. 
WA lTFORI NPUT is functionally equivalent to (un t ; 1 (OR (READP T) (READP 

ti If reading from the terminal. the character is echoed as soon as PEE K C reads it even though it is then 
"put back" into the system burrer. where a subsequent del (or control-Z on TOPS-20) before the character 
is read can clear it and where subsequent line buffer backspacing could change it. Thus it is possible for 
the value returned by PEEKC to ··disagree" in the first character with a subsequent READ. 

6.15 



Output Functions 

F I L E )) doN I L ), except that it does not use up' machine cycles while waiting. 
Returns the device for which input is now available. Le. FILE or T. 

FILE can also be an integer, in which case WAITFORINPUT waits until there is 
input available from th~ tenIlinal. or until FILE milliseconds have elapsed. Value 
is T if input is now available. NIL in the case that ~"'AITFORI~~PUT timed out. 

In Interlisp-10, WAITFORINPUT operates by dismissing, checking for. av.ailable 
input. and then. if there is none. dismissing ag~ each time for an increasingly 
larger interval. The initial interval is 0 I SM I SS I NIT milliseconds (initially 
500), .and the interval grows by 1/16 for each dismissal up to a maximum of 
o I SM I SSMAX milliseconds (initially 10.000). 

(SKREAD FILE RER.EA..DSTRING) [Function] 
"Skip Read". It moves the file pointer for-FILE ahead as if one call to READ had 
been performe~ without paying the storage and compute cost to really read in the 
structure. REREADSTRlNG is for the case where the user has already performed 
some READe's and RAT OM's before deciding to skip this expression. In this case .. 
REREADSTlUNG should be the material already read (as a string), and SKREAD 
operates as though it had seen that material first. thus getting its paren-coun~ 
double-quote coun~ etc. set up properly. 

SKREAD always uses FILERDTBL for its ieadtable. SKREAD may have difficulties if 
unusual read-macros have been added to F ILERDTBL. SKREAD will not recognize 
read-macro characters in REP..EA.DSTFUNG. nor SPLICE or INF IX read macros. 
This is only a problem if the read-macros are defined to parse subsequent input in 
the file which does not follow the normal parenthesis and string-quote conventions 
in FILERDTBL 

SKREAD returns %) if the read terminated on an unbalanced closing parenthesis; 
%] if the read terminated on an unbalanced %], i.e .• one which also would have 
closed any extant open left parentheses; otherwise NIL 

6.3 OUTPUT FUNCTIONS 

Most of the functions described below have an argument FILE. which specifies the name of the file on 
which the operation is to take place. If FILE is ~~ I L. the primary output file is used. Some of the 
functions have a RDTBL argument. which specifies the readtable to be used for output. If RDTBL is NIL. 

. the primary readtab.le is used. . 

Unless otherwise specified by DEFPRINT (page 6.23). pointers other than lists. strings. atoms. or numbers. 
are printed in the form {DATAT"YPe} followed by the octal representation of the address of the pointer 
(regardless of radix). For example. an array pointer might print as {ARRAYP}#43.2760, This printed 
representation is for compactness of display on the user's terminal. and will not read back in correctly: if 
the form above is read. it will produce the acorn "{ARRAYP}#43, 2760", 

Note: the term end-offine appearing in the description of an outPUt function me:lns the character or 
characters used to terminate a line in the file system being used by the given implementation of Interlisp, 
For example. in Interiisp-10 end-of-line is indicated by the characters carriage-rerum and line-feed in that 

6.16 

n 
( 

(---j 

~ 

(~\ 

. \ ) 
l'-



Oc 

"O'/~" . 
~ .... 

.~ 

o 

INPUT/OUTPUT 

order. 

(PRINl X FILE) [Function] 
Prints x on FILE. 

(PRINZ x FILE RDTBL) [Function] 
Prints x on FILE with %'5 and "'s insened where required for it to read back in 
properly by READ, using RDTBL. 

Both PRIN1 and PRIN2 print lists as well as atoms and strings; PRINl is usually used only for explicitly 
printing formatting characters, e.g., (P R I N 1 ( QUO T E % [ » might be used to print a left square bracket 
(the % would not be printed by PRIN1). PRIN2 is used for printing S-expressions which can then be 
read back into Interlisp with READ; i.e .. break and separator characters in atoms will be preceded by %'s. 
F or example, the atom "( ).. is printed as % ( %) by P R IN 2. If RAD I X = 8 (page 6.19), P R I N 2 prints a 
Q after integers but P R I N 1 does not (but both print the integer in- octal). 

(PRIN3 x FILE) [Function} 
(PRIN4 X FILE RDTBL) [Functionl 

PRIN3 and PRIN4 are the same as PRINl and PRIN2 respectively, except that 
they do not increment the horizontal position cOijIlter nor perform any line length 
checks. They are useful primarily for printing control characters. 

(PRINT x FILE RDTBL) [Function] 
Prints the expression x using PRlr~2 followed by an end-of-line. Returns. x. 

(SPACES N FILE) [Function] 
Prints N spaces. Rerurns NIL. 

(TERPRI FILE) [Function] 
Prints an end-of-line. Returns NIL. 

( T AS POS MINSPA<;:ES FILE) [Function] 
Prints the appropriate number of spaces to move to position POSe MINSPACES 
indicates how many spaces must be printed (if NIL. 1 is used). If the curreIit 
position plus MINSPACES is greater than POS. T AS does aTE RP R I and then 
(SPACES pos). If MINSPACES is T, and the current position is greater Ehan pos. 
then T AS does nothing. 

Note: A sequence of PRINT, PRIrJ2. SPACES. and TERPRI expressions can often be more conveniently 
coded with a single- PRINTOUT statement (page 6.25). 

(SHOWPRIN2 x FILE IWTBL) [Function] 
Like PRIN2 except if SYSPRETTYFLG= T. prettyprints x instead. Returns x. 

(SHOWPRnlT x FILE RDTBL) [FunctionJ 
Like PRINT except if SYSPRETTYFLG = T. prettyprints x instead.. followed by an 
end-of-line. Returns x. 

SHOWPRHIT and SHOWPRIN2 are used by the programmer's assistant (page 8.1) for printing the values 
of expressions and for printing the history list. by various commands of the break package (page 9.1). 
e.g. ? = and S T commands. and various other system packages. The idea is that by simply settting or 
binding SYS?RETTYFLG to T (initially NIL). the user instructs the system when interacting with the user 

6.17 



PrintJevel 

to PRETTYPRINT expressions (page 6.47) instead of printing them.. 

(PRINTBELLS) 

(DOBE) 

6.3'.1 Printlevel 

[Function] 
Used by DWIM (page 15:1) to print a sequence of bells to alert the user to stop 
typing. Can be advised or redefined for special applications. e:g .• to flash the screen 
on a display terminal. 

[Function] 
(Interlisp-lO) Dismiss until Output Buffer is Empty, i.e .• until all of the characters 
that have been printed by Interlisp functions have actually been printed on the 
user's terminal. For example~ it is important to perform a DaB E after printing 
an error message before clearing. the input buffers to make sure that the user has 
actually seen the error message. 

In systems that do not handle output- to the display asynchronously with user 
computatio~ such as Interlisp-D, OOBE is a no-ope 

When using Interlisp one often has to handle large, complicated lists. which are difficult to understand 
when printed out. PRINTLEVEL allows the user to specify in how much detail lists should be printed. 
The print functions PRINT, PRIN1. and PRINZ are all affected by level parameters set by: 

(PRINTLEVEL CARVAL CDRVAL) [Function] 
Sets the CA R ·print level to CARVAL. and the CO R print level to CDRVAL. Rerurns a 
list cell whose CAR and CDR are the- old settings. PRINTLEVEL is initialized with 
the value (1 0 0 0 • -1) . 

In order that PRINTLEVEL can be used with RESETFORM or RESETSAVE. i~ 
CARVAL is a list cell it is equivalent to (PRINTLEVEL (CAR CARVAL) (CDR 
CARVAL) ). 

(PRINTLEVEL N NIL) changes the CAR printlevel without affecting the CDR 
printlevel. (PRINTLEVEL NIL N) changes the CDR printlevel with affecting the 
CAR prinrlevel. (PRI"NTLEVEL) gives the current setting without changing eicher. 

The CAR printlevel specifies how "deep" to print a list. Specifically, it is the number of unpaired left 
parentheses which will be printed. Below that leveL all lists will be printed as &. For example. suppose 
x = (A (8 C (D (E F) G) H) K). If CARVAL=3. (PRINT x) would print (A (8 C (D & G) 
H) K), if CARVAL = 2. (A (8 C & H) K). if CARVAL = 1. (A & K), and if CARVAL = O. just &. 

[f the CAR printlevel is negative. the action is similar except that an end-of-line is inserted after each right 
parentheses chat would be immediately followed by a left parenthesis. 

The CDR printlevel specifies how "long" to pnnt a list. It is the number of cop level list elementS that 
will be printed before the printing is terminated with - -. For example, if CDRVAL = 2. (A 8 C DE) 
will print as (A 8 - - ). For subiists. the number of list elements printed is also affected by the depth 
of printing in the CAR direction: Whenever the sum of the depth of the sublist (i.e. .the number of 
unmarched left parentheses) and the number of elements is greater than the CDR printleveL - - is printed. 
This gives a ··triangular" effect in that less is printed the farther one goes in either CAR or CDR direction. 
For example, if CD RYAL = 2. then (A (B C (0 (E F) G) H) K L) will print as (A (B - -) --) 

6.18 

f\ 
\ ) 

() 
c= 

n 
~~. 



--

0: 

b 

INPtJT /OUTPUT 

and if CDRVAL=3, as (A (B C --) K --). 

If the CDR printlevel is negative, then it is the same as if the CDR printlevel were infinite. 

The printlevel setting can be changed dynamically, even while Interlisp is printing, by typing control-P 
followed by a number, Le., a string of digits, followed by a period or exclamation point. As soon as 
control-P is typecL Interlisp clears and saves the input buffer, clears the output buffer, rings the bell 
indicating it has seen the control-P, and then waits for input, which is terminated by any non-number. 
The input buffer is then restored and the program continues. If the input was terminated by a period or 
an exclamation point, the CAR printlevel is immediately set to this number; otherwise, the input is ignored. 
Characters cleared from the output buffer will have been lost in either case, and printing continues with 
the (possibly new) printleveL If the print routine is currently deeper than the new level., all unfinjshed 
lists above that level will be terminated by "--)". Thus. if a circular or long list of atoms. is being printed 
out. typing "control-PO." will cause the list to be terminated immediately. 

If the string of digits following a control-P is terminated by a comma. another number may be typed 
terminated by a period or exclamation point. The CAR printlevel will then be set to the first number, the 
CD R printlevel to the second number. 

In either case. if a period is used to terminate the printlevel setting, the printlevel will be returned to 
its previous setting after the current printout has finished. If an exclamation point is used. the change is 
permanent and the printlevel is not restored (until it is changed again). 

PLVLFILEFLG [Variable] 
Normally,. PRINTLEVEL only affects terminal output. Output to all other files 
acts as though the print level is infinite. However, if P L VL F I L E F L GisT (initially 
NIL), then PRINTLEVEL affects output to files as well. 

6.3.2 Printing numbers 

How the ordinary printing functions (PRIrll. PRINZ, etc.) print numbers can be affected in several ways. 
RADIX influences the printing of integers, and FL TFMT influences the printing of floating point numbers. 
The setting of the variable PRXFLG determines how the symbol-manipulation functions handle numbers. 

. The PRINTNUM package permits greater controls on the printed appearance of numbers, allowing such 
things as left-justification. suppression of trailing decimals. etc. 

(RADIX N) [Function] 
Resets the output radix for integers to the absolute value of N. If N is neg~tive, 
integers are interpreted by the print routines as unsigned numbers: Le .. the actual 
two's complement representation of the integer in the integer size of the particular 
implementation is interpreted as if it were a positive number on a machine of 
infinite integer size. Thus. numeric output under a negative radix varies with the 
implementation. and numbers printed in this way by one implementation will not 
read correctly in an implementation whose integers are of a different size. 

For example. in Interlisp-10. whos~ integer size is 36 bits. -9' will print as shown 
with the following radices: 

6.19 



r· 

(RADIX) 

10 

8 

-10 

-8 

Printing numbers 

(PRINT -9) 

-9 

-11Q 

68719476727 (Le. 236_9) 

777777777767Q 

The value of RAD I X is its previous setting. (RAO I X) gives the current setting 
without changing it The initial setting is 10. 

Note that RAO I X affects output only_ There is no input radix; on .input, numbers 
are interpreted as decimal unless tliey end in Q, in which case they are interpreted 
as octal. Thus READ and PRINT are inverses, independent of any radix setting. 
RADIX also does not affect the behavior of UNPACK~ etc., unless the value of 
PRXFLG (below) is T; e.g .. with (RADIX 8), the value of (UNPACK 9) is (9), 
not (i 1). 

(FLTFMT FORMAT) . [Function] 
Resets the output format for floating point numbers to the F LOA T format FORMAT 

(see PRINJNUM below for a description of FLOAT formatS). FORMAT=T specifies 
the default '&free" formatting: some number of significant digits (a function of 
the implementation) are printed.. with trailing zeros suppressed; numbers with 
sufficiently large or small exponents are instead printed in exponent notation. 

FL TFMT returns its current setting. (FL TFMT) returns the current setting without 
changing it. The initial setting is T. 

In Interlisp-10, FORMAT may also be a machine-dependent F LOA T format-code as 
returned by NUMFORMATCOOE (page 6.23). 

Whether print name manipulation functions (UNPACKy NCHARS y etc.) use the values of RADIX and 
FL TFMT is determined by the variable PRXFLG: 

PRXFLG . [VariabIe] 
If PRXFLG=NIL (the initial setting), then the uPRIN1" name used by PACK, 
UNPACK, MKSTRING. etc .. is computed using base 10 for integers and the system 
default floating format for floating point numbers. ind~pendent of the current 
setting of RADIX or FLTFMT. If PRXFLG=T, then RADIX and FLTFMT do dictate 
the "PRINt" name of numbers. Note that in this case. PACK and UNPACK are nOl 

inverses. 

Examples with (RADIX 8), (FLTFMT '( FLOAT 4 2»): 

With PRXFLG=NIL. 

(UNPACK 13) =) (1 3) 

(PACK '(A 9) =) A9 

6.20 



uc"" 

0" 

INPUT/OUTPUT 

(UNPACK 1.Z345) => (1 %. 2 3 4 5) 

With PRXFLG=T. 

(UNPACK 13) => (1 5) 

(PACK '(A 9» =) All 

(UNPACK 1.Z345) => (1 %. Z 3) 

Note that PRXFLG does not effect the radix of "PRINZ" name~ so with (RADIX 
8). (NCHARS 9 T). which uses PRINZ names, would return 3, (since 9 would 
print as llQ) for either setting of PRXFLG. 

Warning: Some system functions will not work correctly if P RX F LG is not NIL 
Therefore. resetting the global value· of P RX F L G is not recommended. It is much 
better to rebind PRXFLG as a SPECVAR for that part of a program where it needs 
to be non-N I L. " " 

The basic function for printing numbers under format control is PRINTNUM. Its utility is considerably 
enhanced when used in conjunction with the PRINTOUT package (page X.xx), which implements a 
compact language for specifying complicated sequences of elementary printing operations. and makes 
fancy output formats easy to design and simple to program. 

(PRI~lTNUM FORMAT NUMBER FILE) [Function1 
Prints NUMBER on FILE according to the format FORMAT. FORMAT is a list structure 
with one of the forms described below. FORMAT can also be a machine dependent 
format-code as rewmed by NUMFORMA TeODE (page 6.23). 

(Interlisp-10) If NUMBER does not fit in the field specified by FORMAT. the full 
print name is printed. Then a T AS is executed so that the line position of the file 
after PRINTNUM is always the position prior to printing plus the indicated width. 

If FORMAT is a list of the form (FIX WIDTH RADZX PADO LEFTFLUSH). this specifies a FIX 
format. NUMBER is rounded to the nearest integer. and then printed in a field WIDTH characters long with 
radix set to RADZX (or 10 if P..ADzx"= NIL; note that the setting of RAD I X is not used as the default). If 
PADO and LEFTFLUSH are both NIL. the number is right-justified in the field.. and the padding characters 
to the left of the leading digit are spaces. If PADO is T. the character ·'0" is used for padding. If 
LEFTFLUSE is T. then the number is left-justified in the field.. with trailing spaces to fill out WIDTH 

characters. 

The following examples illustrate the effects of the F I X format options (the vertical bars indicate the field 
width): 

6.21 



FORMAT 

(FIX 2) 

(FIX 2 NIL T) 

(FIX 12 8 T) 

(FIX 5 NIL NIL T) 

Printing numbers 

NUMBER 

3 

7 

14 

2 

PRINTNUM prints 

I 31 

107 1 

10000000000161 

12 

If FORMAT is a list of the form (FLOAT WIDTH DECPART EXPPART PADO ROUND), this specifies a 
F LOA T format. NUMBER is printed as a decimal number in a field WIDTH characters wide, with DECPART' 

digits to the right of the decimal point. IfEXPPART is not 0 (or NIL), the number is printed in exponent 
notatio~ with the exponent occupying EXPPA..RT characters in the field.. EXPPART should allow for the n 
character E and an optional sign to be printed before -the exponent digits. As with F I X forma~ padding 
on the left is with spaces, unless PADO is T. If ROUND is give~ it indicates the digit position at which 
rounding is to take place. counting from the leading digit of the number.1 

FLOAT format examples: 

FORMAT NUMBER. PRINTNUM prints 

(FLOAT 7 2) 27.689 27.691 

(FLOAT 7 2 NIL T) 27.689 ) 10027.691 

(FLOAT 7 2 2) 27.689 2.77E11 

(FLO~T 11 2 4) 27.689 2.77E+011 8 

(FLOAT 7 2 NIL NIL 1) 27.689 30.001 

(FLOAT 7 2 NIL NIL 2) 27.689 28.001 r) 
NILNUMPRINTFLG [Variable} l< 

If PRINTNUM's NUMBER argument is not a number and not NIL. a NON-NUMERIC 
ARG error is generated. If NUMBER is NIL. the effect depends on the setting of the 
variable NILNUMPRI NTFLG. If N ILNUMPR INT FLG is NIL. then the error occurs as 
usual. If it is non-NIL. then no error occurs. and the value of N rLNUMPRINTFLG 
is printed right-justified in the field described by FOR.WAT. This option facilitates 
the printing of numbers in aggregates with missing values coded as NIL. 

~The interpretation of WIDTH = NIL and DECPART= N IL are not specified.. and are currently a function 
of the implementation. [nteriisp-10 prohibits WIDTH = NIL. and treats DECPA.RT= NIL as equivalent to 
DECPART= 0: Intertisp-D interprets WIDTfI= N IL to mean no padding, i.e .. to u'se however much space 
the number needs. and interprets DECPART = NIL to m~an as many decimal places as needed. 

8 As of this writinE:. the [nterliso-10 imnlementation actually does somethinE: less intuitive with the EXPPART 
field: the placement of the decimal p'oint is affected by DECPART. and padding never occurs. These two 
examples in Inrerlisp-10 would actually print as I . 28 E +02 I and I 27 . 69 E + 0000 I . 

6.22 

... ----



o (~. 

o 

INPUT/OUTPUT 

In some implementations, formatted printing of numbers receives assistance from the operating system.. 
provided that the format is specified in some son of special code. PRINTNUM works by converting the 
machine-independent format specifications described above into machine-dependent codes the exact fOml 

of which may vary from implementation to implementation. This conversion process takes place on each 
call to PRINTNUM. For efficiency purposes, if the user is going to be performing a panicular call to 
PRINTrJUM frequently, he may wish to separate the conversion from the actual printing, performing the 
conversion process just once and saving the result The function NUMF ORMA TCODE is available for this 
purpose: NUMFORMATCODE takes a format, performs the conversion and returns a machine dependent 
format-code, which can be given to PRINTNUM in place of a list structure format as described above. In 
this case, PRINTNUM will not have to perform the COD version. but can simply use the machineadependent 
format code directly. 

(NUMFORMATCODE FORMAT SMASHCODE) [FuDction} 
Converts the F I X or F LOA T format FORMAT to a machine-dependent format .. 
code. If SMASHCODE is recogIiized as a fonnat-code data-structure, then the 
new format-code is smashed into that structure instead of allocating new storage. 
(NUMFORMATCODE) returns an uninitialized d9.tum that can later be smashed. 

In Interlisp-D, this function is a no-op, as there is no special internal representation 
for number formats. 

6.3.3 User Defined Printing 

(OEFPRINT TYPE FN) [Function} 
TYi'E is a type name (see page 2.1). Whenever a printing function (PRINT. PRIN1. 
PRINZ. etc.) encounters an object of the indicated type. FN is called with the item 
to be printed as its argument. If it returns NIL. the datum is printed in the manner 
the system defaults: for user data types. it is printed as {d a tat y p e } #n n n n n n. If 
FN wishes to specify how the datum should be printed. it should return a list of 
the form (ITEMl • ITEM2). ITEMl is printed using P R I N 1 (unless it is " I L). and 
then ITEM~ printed using PRIN2 with no spaces between the two items. (Typically. 
ITEMl is a read macro character.) 

In Interlisp-10. TYPE may also be a type number (see page 22.2). Note that the 
user can specify different action for type names ARRAYP, HARRAYP. TERMTA8LEP. 
READTABLEP, and eeODEP, even though they all have the same type number. 

Note that OEFPRINT also affects internal calls to print from PACK. CONCAT. etc., Le. any operation that 
involves obtaining a print name (see page 2.8). A consequence of this fact is that in implementations 
that do not have reentrant printing code (in particular, Interlisp-10), the user's DE F PR I NT function must 
not call any print name manipulating functions itself. or the results of the whole printing operation are 
undefined. 

6.3.4 Dumping Unusual Dam Strucrures 

HP R I NT (for ;'Horrible Print") and HR EAD provide a mechanism for printing and reading back in general 
data structures that cannot normally be dumped and loaded easily. such as (possibly "e-enrranc or circular) 
structures containing user datatypes. arrays. hash tables. as well as list structures. HPRINT will correctly 
print and read back in any structure containing any or all of the above. chasing all pointers down to the 

6.23 

\ 

\ 

\ 

\ 

\ 

\ 
! 

\ 
I 



READ FILE and WRITEFILE 

level of literal atoms. numbers or strings. H P R I NT currently c.annot handle compiled code arrays. stack 
positions. or arbitrary unboxed numbers. 

HPRINT operates by simulating the Interlisp PRINT routine for normal list structures. When it encounters 
a user datatype (see page 3.14), or an array or hash array, it prints the data contained therein. surrounded 
by special characters defined as read·macro characters (see page 6.36). While chasing the pointers of a 
structure, it also keeps a hash table of those items it encounters, and if any item is encountered a second 
time. another read-macro character is inserted before the first occurrence (by resetting the file pointer with 
SETFILEPTR) and all subsequent occurrences are printed as a back reference using an appropriate macro 
character. Thus the inverse function. H~EAD merely calls the Interlisp READ routine with the appropriate 
readtable. 

(HPRIr~T EXPR FILE UNCIRCVI.A.R DATATl'l'ESEEN) [Function] 

(HREAO FILE) 

(HCOPXALL x) 

Prints EXPR. on FILE. If UNCIRCVI..AR is non·NIL. HPRINT does no checking for 
any circularities in EXPR (but is still useful for dumping arbitrary structures of 
arrays, hash arrays, lists, user data types. etc., that db not contain circularities). 
Specifying UNcmCULAR as non-N I L results in a large speed and intemal-storage 
advantage. 

Normally. when HPRINT encounters a user data type for the first time, it outputs 
a summary of the data type's declaration. When this is read ~ the data type is 
redeclared. If DATATYPESEEN is non-NIL, HPRINT will assume that the same data 
type declarations will be in force at read time as were at HPRINT time. and not 
output declarations. 

HPRINT is· intended primarily for output to disk files, since the algorithm depends 
on being able to reset the file pointer. If FILZ is not a disk file (and UNC1R.CULAR 
= NIL). a temporary file, HPRINT .SCRATCH, is opened.. EXPR is HPRINTed on 
it. and then that file is copied to the final output file and the temporary file is 
deleted. 

[Function] 
Reads and returns an HPRINT-ed expression from FILE. 

[Function] 
Copies data structure x. x may contain circular pointers as well as arbitrary 
structures. 

Note: HORRIBLEVARS and UGL YVARS (page 11.25) are two file package commands for dumping and 
reloading circular and re-enU'ant data structures. Tney provide a convenient interface to H P R IN T and 
HREAD. 

6.4 READ FILE AND WRlTEFILE 

For those applications where the user simply wants to simply read all of the expressions on a file. and 
not evaluate them. the function READFILE is available: 

(READFILE FILE) . [Function} 
Reads successive expressions from file using READ (with FILE ROTS L as readtable) 

6.24 

.. 

I~ 
\ / 

( 



O r.· 
': ~ 

, ' 
Il'WlIT IOUTPUT 

until the single atom STOP is read, or an end of file encountered. Returns a list 
of these expressions. . 

(WRITEFILE X FILE) . [Function] 

(ENDFILE FILE) 

Inverse of READFILE. Writes a date expression onto FILE, followed by successive 
expressions from x. using FILERDTBL as a readtable. If xjs atomic, its value is 
used. If FILE is not ope~ it is opened. If FILE is a list, (CA R FILE) is used and 
the file is left opened. Otherwise~ when x is finished. a STOP is printed on FILE 
~d it is closed. Returns FILE. 

[Function] 
Prints STOP on FILE and closes it. 

, Cj) 6.5 PRINTOUT 

0') 

( o 

Interlisp provides many facilities for controlling the format of printed output. By executing various 
sequences of PRIN1, PRIN2, TAB, TERPRI, SPACES. PRINTNUM. and PRINTDEF. almost any effect can 
be achieved. P ~ I UTOUT implements a compact language for specifying complicated sequences of these 
elementary printing functions. It makes fancy output formats easy to design and simple to program. 

PRINTOUT is a CLISP word (like fo r and ; f) for interpreting a special prillting language in which 
the user can describe the kinds of printing desired. The description is tranSlated by DWIMI FY to the 
appropriate sequen:e of P R I N 1. TAB. etc.. before it is evaluated or compiled. P RI NTOUT printing 
descriptions have the following general form: 

(PRINTOUT FILE PRINTCOM1 PRINTCOM2 •.. PRINTCOMN) 

FILE is evaluated to obtain the name of the file to which the output from this specification is directed. 
The PRI~JTOUT commands are strung together. one after the other without punctuation, after FILE. Some 
commands occupy a single position in this list. but many commands expect to find arguments following the 
command name in the list. The commands fall intO several logical groups: one set deals with. horizontal 
and vertical spacing, another group provides controls for certain formatting capabilities (font changes and 
subscripting). while a third set is concerned with various ways of actually printing items. Finally, there is 
a command that pemrits escaping to a simple Lisp evaluation in the middle of a PRINTOUT form. The 
various commands are described below. The following examples give a general flavor of how PRINTOUT 
is used: 

Example 1: ·Suppose the user wanted to print oue on the tenninal the values of three variables. X. Y. and 
Z. separated by spaces and followed b.y a carriage return. This could be done by: 

(PRINl X T) 
(SPACES 1 T) 
(PRIN1 Y T) 
(SPACES 1 T) 
(PRINl Z T) 
(TERPRI T) 

or by the more concise PRINTOUT fonn: 

6.25 



,---

Horizontal Spacing Commands 

(PRINTOUT T X , Y , Z T) 

Here the first T specifies output to the temtinaL the commas cause single spaces to be printed. and the 
final T soecifies- a TERPRI. The variable names are not recognized as special PRINTOUT commands. so 
they are ·printed using P R I N 1 by default. 

Example 2: Suppose the values of X and Y are to be pretty-printed lined up at position 10. preceded by 
identifying strings. If the output is to go to the primary output file. the user could write either. 

(PRIN1 "X =") 
(PRINTDEF X 10 T) 
(TERPRI ) 
(PRINl tty =") 
(PRINTDEF Y 10 T) 
(TERPRI) 

or the equivalent: 

(PRINTOUT NIL "X =" ·10 .PPV X T "Y =" 10 .PPV Y T) 

Since strings are not recognized as special comman~ "X =" is also printed with P R I N 1 by default. 
The positive integer means T AS to position 10~ where the . P PV command causes the value of X to be 
prettyprinted as a variable. By convention., special atoms used as PRINTOUT commands are prefixed with 
a period. The T causes a carriage rerum, so the Y information is printed on the next line. 

Example 3. As a final example~ suppose that the· value of X is an integer and the value of Y is a 
floating-paint number. X is to be printed right-flushed in a field of width 5 beginning at position 15. 
and Y is to be printed in a field of width 10 also staning at position 15 with 2 places to the right of the 
decimal point. Funhermore. suppose that the variable names are to appear in the font named BOLD FONT 
and the values in font SMALLFONT. The program in ordinary Lisp that would accomplish these effects is 
too complicated to include here. WithPR INTOUT. one could write: 

(PRINTOUT NIL 
.FONT BOLDFONT "X =" 15 
.FONT SMALLFONT .IS X T 
.FONT SOLDFONT "Y :" 15 
.FONT SMALLFONT .Fi0.l Y T 
.FONT BOLDFONT) 

The . FONT commands do whatever is necessary to change the font on a multi-font output device. The 
. I5 command sets up a F IX format for a call to the function PRINTNUM (page 6.21) to print X in the 
desired format. The . FlO. 2 specifies a F LOA T format for P R I NT NUM. 

6.5.1 Horizontal Spacing Commands 

The horizontal spacing commands provide convenient ways of callirig TAB and SPACES. In the following 
descriptions. N stands for a literal positive integer. 

N Used for absolute spacing. It results in a TAB to position N (literally, a (TAB 
N). If the line is currently at position N or beyon<i me file will be positioned at 
position N on the next line. 

6.26 

(--j 

(j 
l,· 



o 

.TAB pos 

.TABO pos 

-N 

, " '" 

• S P DISTANCE 

INPUT/OUTPUT 

Specifies T AS to pOSition (the value of) POS. This is one of several commands 
whose effect could be achieved by simply escaping to Lisp, and executing the 
corresponding form. It is provided as a separate command so that the PRINTOUT 
fonn is more concise and is prettyprinted more compactly. Note that • TAB Nand 
Nt where N is an integer, are equivalent. 

Like . TAB except that it can result in zero spaces (i.e. the call to T AS specifies 
MINSPACES= 0). . 

Negative integers indicate relative (as opposed to absolute) spacing. Translates as 
(SPACES INI). 

Provides a shon-hand way of specifying 1. 2 or 3 spaces, i.e., these commands are 
equivalent to -1, -2, and -3, respectively. , 

Translates as {SPACES DISTANCE}. Note that . SP N and -Nt where N is an 
integer, are equivalent. 

r RESET Resets the current line by causing a carriage-rerum to be printed without a line
feed. Useful for overprinting, or for regaining control of a line on which characters 
have b~.n printed in a variable pitched font. . . 

6.5.2 Vertical Spacing Commands 

Vertical spacing is obtained by calling T E R P R I or printing form-feeds. The relevant commands are: 

T 

.SKIP LINES 

Translates as (T E R P R I ), This command is functionally equivalent to the integer 
command 0; they both move to position 0 (= coiumn 1) of the next line. To print 
the letter T, use the string "T", 

Equivalent to a sequence of LINES (TERPRI) ·s. The . SKIP command allows for 
skipping large constant distances and for computing the clistan~e to be s~ipped.. 

OJ - .PAGE Purs a form-feed (control-L) out on the file. Care is taken to make sure that 
Interlisp:s view of the current line position is correctly updated.. 

6.5.3 Special Formatting Controls 

There are a small number of commands for invoking some of the formatting capabilities of multi-font 
output devices. The available commands are: 

• FONT FONTSPEC 

.SUP 

Puts out a control sequence that causes a change to font FONTSPEC (the association 
between FONTSPEC and a specific font must be defined in the user's font profile. as 
described in page 6.55), FONTSPEC may be a font-name variable or an, expression 
th~t evaluates to the value of a font-name variable. F'ONTSPEC may also be a 
positive integer N, which is taken as an abbreviated reference to the font named 
FONTN (e.g, 1 = > FONT 1). . 

Specifies ?uperscripting. All subsequent characters are printed above the base of 
the current line. Note that this is absolute. not relative: a . SUP following a . SUP 

6.27 



- .......... .. - ----. .--;"'"---~ 

Printing Specifications 

is a no-oPe 

• SUB Specifies subscripting. Subsequent printing is be!ow the base of the current line. 
As with superscripting, the effect is absolute. . 

• BASE Moves printing back to the base of the current line. Un-does a previous. SUP or 
.• SUB; a no-op, if printing is currently at the base. 

6.5.4 Printing Specifications 

The value of any expression in a PRINTOUT form that is not recognized as a command itself or as a 
command argument is printed using PRINt by default. For example, title strings can be printed by 
si±nply including the string as a separate PRINTOUT command, and the values of variables and forms can 
( ~rinted in much the same way. Note that a literal integer~ say Sl~ cannot be printed by· including it as. 
a' command.. since it would be interpreted as a TAB; the desired effect can be obtained by using instead 
the string specification ··Sl", or the form (QUOTE 51). 

For those instances when PRINl is not appropriate, e.g., PRIN2 is required, or a list structures must be 
prettyprinted. the following commands are available: 

. P2 THING 

• PPF THING 

• PPV TmNG 

.PPFTL THING 

"-; l' PVT L THING 

Causes THING to be printed using P R I N 2: translates as (P R I N 2 TmNG )-• 

Causes THING to be prettyprinted at the current line position via PRINTDEF (page 
6.49). The call to PRINTDEF speCifies that THING is to be printed as if it were part 
of a func~on definition. That is, SELECTQ, PROG, etc~ receive special treatment. 

Prettyprints THING as a variable: no special interpretation is given to SELECTQ, 
PROG~ etc. 

Like . P P F, but prettyprints THING as a tail, that is, without the initial and final 
parentheses if it is a list. Useful for prenyprinting sub-lists of a list whose other 
elements are formatted with other commands. 

Like . pPV. but prettyprintS 'FHING as a tail. 

6.5.4.1 Paragraph Format 

Interlisp's prettyprint routines are designed to display the structure of expressions. but they are not really 
suitable for fonnatting unstructured text. If a list is to be printed as a textual paragraph: its internal 
structure is less important than controlling its left and right margins. and the indencation of its first line. 
The . PARA and . PARA2 commands allow these parameters to be conveniently specified. 

• PARA L~\!ARG R .. \!ARG LIST 

Prints LIST in paragraph format. using PRIN 1. Translates as (PR HlTPARA 
LMARG &.\fARG LIST) (see page 6.31). Example: (PRINTOUT T 10 . PARA 
5 -5 LST) will print the elements of LST as a paragraph ·with left margin at 5. 
right margin at (LINELENGTH )-5. and the first line indented to 10 . 

• PARA2 L.~G RMARG L~T 

6.28 

(J 
.( 

\.. 

(\ 
j 

(~) 
(?Ji ' 



o 
'. INPUT/OUTPUT 

Print as paragraph using PRIN2 instead of PRIN1. Translates as (PRINTPARA 
LMARG RMARG LIST T). 

6.5.4.2 Right-Flushing 

Two commands are provided for printing simple expressions flushed-right against a specified line position. 
using the function FLUSHRIGHT (page 631). They take into account the current position. the number 
of characters in the print-name of the expression, and the position the expression is to be flush against. 
and then print the appropriate number of spaces to achieve the desired effect. Note that this might entail 
going to a new line before printing. Note also that right-flushing of expressions longer than a line (e.g. a 
large list) makes little sense. and the appearance of the output is not guaranteed. 

• FR POS EXPR 

• F R2 P~S EXPR 

6.5.4.3 Centering 

Flush-right using P R I N 1. The value of pos determines the position that the 
right end of EXPR will line up at. As . with the horizontal spacing commands .. 
a negative position number means I pos I columns from the current position. a 
positive number specifies the positiGn absolutely. pos=O specifies the right-margin. 
Le. is interpreted as (LINELENGTH). 

Flush-right using PRIN2 instead of PRIN1. 

Commands for centering simple expressions between the current line position and another specified 
position are also available. As with right flushing, centering of large expressions is not guaranteed. 

.CENTER P~S EXPR 
Centers EXPR between the current line position and the position specified by 
the value of POSe A positive P~S is an absolute position number. a negative pos 
specifies a position relative to the current position.. and 0 indicates the right-margin. 
Uses P R I N 1 for printing. 

()-' .• CENTER2 POS EXPR 

o 

Centers using P R I N 2 instead 0 f P R I N 1. 

6.5.4.4 Numbering 

The following commands provide FORTRAN-like formatting capabilities for integer and Boating-point 
numbers. Each command specifies a printing format and a number to be printed. The format specification 
translates into a format-list for the function PRINTNUM (see page 6.21) . 

. I FORMAT NUMBER 

Specifies integer printing. Translates as a call to the function PRINTNUM with 
a F I X format-list constructed from FORMAT. The atomic format is broken apart 
at internal periods to form the format-list. For example. . 15 . - 8. T yields the 
format-list (FIX 5 -8 T). and the command- sequence (PRINTOUT T .15.-
8. T FOO) will translate as {PRINTNUM • (FIX 5 -8 T) FOO). It will cause 
the value of FOO to be printed with radix -8 right-flushed in a field of widLl'l 5. 

6.29 



• F FORMAT NU~ER 

Escaping to USP 

with O'sused for padding on the left. Internal NIL's may be omitted. e.g. the 
commands • I5 .. T and . I5 . NIL. T are equivalent. 

Specifies floating-number printing. Like the • I format command. except translates 
with a F LOA T format-list. . 

• N FORMAT NUMBER 

6.5.5 

The • I and • F commands specify calls to PRINTNUM with quoted format 
specifications. The . Ncommand translates as (PRINTNUM FORMAT NUMBER), 
Le~ it permits the fonnat to be the value of some expression. Note that. unlike 
the . I and . F commands. FORMAT is a separate element in the command list. not 
pan of an atom beginning with . N. 

Escaping to LISP 

There are many reasons for taking control away from pqINTOUT in the middle of a long printing expres
sion. Common situations involve temporary changes to system printing parameters (e.g. LINELENGTH). 
conditional printing (e.g. print F 00 only if FIE is T), or lower-level iterative printing within a higher-level 
print speciiication. . 

# FORM The escape command. FORM is an arbitJ.""arY Lisp expression that is evaluated 
within the context established by the PRINTOUT form. i.e .• FORM can assume that 
the primary output file has been set to be the FILE argument to P R I NT OUT. Note 
that nothing is done with the vtilue of FOR~ any printing desired is accomplished 
by FORM itself. and the value is discarded. 

Note: Although PRINTOUT logically encloses its translation in a RESETFORM (page 9.20) to change the 
primary output file to the FILE argument (if non-N I L), in most cases it can acrually pass FILE (or a locally 
bound variable if FILE is a non-trivial expression) to each printing function. Thus. the RE SET FORM is only 
generated when the # command is used. orouser-defined commands (below) are used. If many such occur 

. in repeated PRINTOUT forms. it may be more efficient to embed them all in a single RESETFORt>1 which 
;hanges the primary output file, and then specify FILE=NIL in the PRINTOUT expressions themselves. 

6.5.6 User-Defined Commands 

The collection of commands and options outlined abQve is aimed at fulfilling all common pnnong 
needs. However. cenain applications might have other. more specialized printing idioms. so a facility is 
provided whereby the user can define new commands. This is done by adding entries to the global list 
PR INTOUTMACROS to define how the new commands are to be translated. 

PRINTOUTMACROS (Variable] 
PRINTOUTMACROS is an association· list whose elements are of the form (COMM 

F'N). Whenever COMM appears in command position in the sequence of PRINTOUT 
commands (as opposed to an argument position of another command). FN is applied 
to the tail of the command-list (including the command). 

After~inspecting as much of the tail as necessary, the function must return a list 
whose CAR is the translation of the user·defined command and its arguments. and 

6.30 

(j 
(-

c() 



o 

o 

o 

o 

INPUT /OUTPUT 

whose CD R is the list of commands still remaining to be translated in the normal 
way. 

For example, suppose the user wanted to define a command "'7", which will cause its single argument to be 
printed with PRINl only ifit is not t~ I L. This can be done by entering (7 7TRAN) on PRINTOUTMACROS, 
and defining the function ?TRAN as follows: 

(LAMBDA (COMS) 
(CONS (SUBST (CADR COMS) 'ARG 

'(PROG «TEMP ARG» 
(COND {TEMP (PRINl TEMP»») 

(COOR COMS») 

Note that ?TRAN does not do any printing itself: it returns a form whic~ when evaluated in the proper 
context, will perform the desired action. This form should direct all printing to the pr-imary output file. 

6.5.7 Special Printing Functions 

The paragraph printing commands are translated into calls on the function PRINTPARA, which may also 
be called directly: 

(PRINTPARA LMARG RMARG LIST P2FLAG PARENFLAG FILE) [Function1 
Prints LIST on FILE in line-filled paragraph format with its first element beginning at. 
the current line position and e"nding at or before RM.A..RG. and with subsequent line~ 
appearing between LMARG and RMARG. If P2FLAG is non-NIL. prints elements 
using PRIN2, otherwise PRIN1. If PARENFLAG is non-NIL, then parentheses will 
be printed around the elements of LIST. 

If !..MARG is zero or positive, it is interpreted as an absolute column position. 
If it is negative, then the left margin will be at I LMARG 1+ (POSITION). If 
LMA.R.G = NIL. the left margin will be at (POS I T I ON), and the paragraph will 
appear in block formaL 

If RMARG is positive, it also is an absolute column position (which may be greater 
than the current (LIrIELENGTH». Otherwise. it is interpreted as relative to 
(LINELENGTH). i.e .• the right margin will be at (LINELENGTH) + I RMARG I. 
Example: (TAB 10) (PRINTPARA 5 -5 LST T) will PRIN2 the elements of 
LST in a paragraph with the first line beginning at column 10. subsequent lines 
beginning at column 5. and all lines ending at or before (LINELENGTH )-5. 

The current (LINE LENGTH) is unaffected by PRINTPARA. and upon completion. 
FILE will be positioned immediately after the last character of the last item of LIST. 

PRINTPARA is a no-op if LIST is not a list. 

The right-flushing and centering commands translate as calls to the function FLUSHRIGHT: 

(FLUSHRIGHT p~s X MIN P2FLAG CENTERFLAG FILE) [Function} 
If CENTERFLAG = NIL. prints x right-flushed against position pos on FILE: 
otherwise. centers x between the current line position and pos. Makes sure that it 
spaces over at least MIN spaces before printing by doing a TE RPR I if necessary; 
MIN= NIL is equivalent to MIN= 1. A positive pos indicates an absolute position.. 

6.31 



Readtables 

while a negative pos signifies the position which is I pos I to the right of the 
current line position. pos=O is interpreted as (LINELENGTH), the right margin. 

6.6' READTABLES 

Many Interlisp input functions treat cenain characters in special ways. For example. READ recognizes that 
the right and 1.eft parenthesis characters are used to specify list structures. and that the quote character is 
used to delimit text strings. The Interlisp input and (to a cenain extent) output routines are table driven 
by reacitables. Readtables are objects that specify the syntactic propenies of characters for input routines. 
Since the input routines parse character sequences into objec~ the readtable in use determines which 
sequences are recognized as literal at9ms. strin~ list structures, etc. 

fost Interlisp input functions take an optional readtable argument. which specifies the readtable to use 
- wheu reading an expression. If NIL is given as the readtable. the "primary readtable" is used.. If T is 

specified. thesyste.m terminal readtable is used. Some functions will also accept the atom ORIG (not the 
value' of OR I G) as indicating the "original" system readtable. Some output functions also take a readtable 
argument. For example. PRIN2 prints an expression so that it would be read in correctly using a given 
readtable. 

The Interlisp system uses three readtables: T for input/output from terminals. the value of FILERDTBL for 
input/output from files. and the value of EDITRDTBL for input from terminals while in the editor. These 
three tables are initially copies of the ORIG readtable, with changes made to some of them to provide 
read macros (page' 6.36) that are specific to tenninal input or file input. Usmg the functions described 
below, the user may funher change, reset. or copy these tables. The user can also create new readtables. 
and either explicitly pass them to input/output functions as argumen~ or install them as the primaI)' 
readtable~ via SETREAOTABLE. ~d then not specify a RDTBL argument. Le .• use NIL. 

6.6.1 Readtable Functions 

, REAOTABLEP RDTBL) [Function] 
"-- Returns RDTBL if RDTBL is a real readtable (not T or ORIG), otherwise NIL. 

(GETREAOTABLE RDTBL) [Function] 
If RDTBL = NIL. returns the primary read table. If RDTBL = T t rerurns the system 
terminal readtable. If RDTBL is a real readtable. returns RDTBL. Otherwise. 
generates an ILLEGAL REAOTABLE error. 

(SETREADTABLE RDTBL FLG) [Function} 
Sets the primary readtable to RDTBL. If FLG= T. SETREADTABLE sets the system 
terminal readtable. T. Note that the user can reset the other system readtables with 
SETQ, e.g .• (SETQ FILERDTBL (GETREADTABLE». 

Generates an ILLEGAL READTABLE error if RDTBL is not NIL. T. or a 
real readtable. Returns the previous setting' of the primary readtable. so 
SETREADTABLE is suitable for use with RESETFORM (page 9.20). 

6.J2 

(n 

C:·i\n .. -,...:::;.: - --' 



() 
l..:. 

(J 

o 

b 

INPlJT /OUTPIJT 

(COPYREADTABLE RDTBL) [Function] 
Returns a copy of RDTBL. RDTBL can be a real readtable, NIL, T. or OR I G (in 
which case COPYREADTABLE returns a copy of the original system readtable), 
otherwise COPYREADTABLE generates an ILLEGAL READTABLE error. 

Note that COPYREADTABLE is the only function that creates a readtable. 

(RESETREADTABLE RDTBL FROM) .' [Function] 
Copies (smashes) FROM into RDTBL. FROM and RDTBL can be NIL. T. or a real 
readtable. In addition. FROM can be ORIG, meaning use the system's original 
readtable. 

6.6.2 Syntax Classes 

A readtable is an object that contains information about the "syntax class" of each character. There are 
nine basic syntax classes: LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET. STRINGDELIM. 
ESCAPE, BREAKCHAR. SEPRCHAR, and OTHER, each associated with a primitive syntactic property. In 
addition. there is an unlimited assortment of user-defined syntax classes. known as "read-macros". The 
basic syntaX classes are interpreted as follows: 

LEFTPAREN 

RIGHTPAREN 

LEFTBRACKET 

RIGHTBRACKET 

STRINGDELIM 

ESCAPE 

BREAKCHAR 

SEPRCHAR 

OTHER 

(normally left parenthesis) Begins list structure. 

(normally right parenthesis) Ends list structure. 

(normally left bracket) Begins list structure. Also matches RIGHTBRACKET 
characters. 

(normally left bracket) Ends list structure. Can close an arbitrary numbers of 
LEFTPAREN lists, back to the last LEFTBRACKET. 
~ 

(normally double quote) Begins and ends text strings. Within the string, all 
characters except for the one(s) with class :SC .. ~PE are treated as ordinary, i.e .. 
interpreted as if they were of syntax class O'i HE;". To include the string d.elimiter 
inside a string, prefix it with the ESCAPE character. 

(normally percent sign) Inhibits any special interpretation of the next character. i.e .. 
the next character is interpreted to ·be of class OTHER. independent of its normal 
syntax class. 

(None initially) Is a break character. i.e.~ delimitS atoms. but is otherwise an 
ordinary character. 

(space, carriage rerum. etc.) Delimits atoms. and is otherwise ignored. 

Characters that are not otherwise special belong to the class OTHE R. 

Characters ofsynrax class LE FTPAREN. RIGHTPAREN. LE FTBRACKET, RIGHTBRACKET. and STR INGDE LIM 
are all break characters. Tnat is. in addition to their intel1'retation as delimiting list or string structures. 
L.1ey also terminate the reading of an atom. Characters of class BREAKCHAR serve only to terminate atoms. 
with no other special meanin~. In addition. if a break character is the first non-seoarator encountered bv • - .' I"l 
RA TOM. it is read as a one-character atom. In order for a break character to be included in an atom. it 

6.33 



Syntax Gasses 

must be preceded by the ESCAP E character. 

Characters of class SEPRCHAR also temtinate atoms, but are otherwise completely ignored: they can be 
thought of as logically spaces. As with break characters., they must be preceded by the ESCAPE character 
in order to appear in an atom. 

For example, if S were a break character and • a separator character, the input stream ABC· ·DE FSGH8$S 
would be read by 6 calls to RATOM returning respectively ABC, DEF, $, GH, $, S. 

Although normally there is only one character in a readtable having ~h of the list- and string-delimiting 
syntax classes (such as LEFTPAREN), it is perfectly acceptable for any character to have any syntax class, 
and for more than one to have the same class. 

Note that a "syntax class" is an abstraction: there is no object referencing a collection of characters called 
-- a syntax ciass. Instead. a readtable provides the associalion between a character. and its syntax class, and 

the input! output routines enforce the abstraction by using readtables to drive the parsing. 

The functions below are used to obtain and set the syntax class of a character in a readtable. CH can 
either be a character code (a number), or a character (a singlt:-character atom); those Interiisp objects 
that happen to be both. viz .• one-digit numbers., are interpreted as character codes. For example, in 
Interlisp-10, 1 indica.tes control-A, and 49 indicates the character l. 

Note: Tenninal tables. described in page 6.40, also associate characters with syntax classes, and they can 
also be manipulated with the functions below. 'The set of readtable and terminal table syntax classes are 
disjoint. so there is never any ambiguity about which type of table is· being referred to. ' 

(GETSYNT AX CH TABLE) [Function] 
Returns the syntaX class of CH, a character or a character code. with respect to 
TABLE. TABLE can be NIL. T tOR I G. or a real readtab Ie or terminal tab Ie. 

CH can also be a syntax class, in which case GET SYNTAX returns a list of the 
character codes in TABLE that have that syntax class. 

(SETSYNTAX CHAR CLASS TABLE) [Function] 
Sets the syntaX class of CHAR. a character or character code, in TABLE. TABLE can 
be either NIL. T. or a real readtable or terminal table. SETSYNT AX rerums the 
previous syntax class of CHAR. CLASS can be anyone of the following: 

• The name of one of the basic syntax classes. 

• A list. which is interpreted as a read macro (see page 6.36). 

• NIL. T. ORIG. or a real readtable or terminal table. which means to give CHAR 
the syntax class it has in the table indicated by CLASS. For example. (SE T SYNT AX 
'%( 'ORIG TABLE) gives the left parenthesis character in TABLE the same syntax 
class that it has in the original system readtable. . 

• A character code or character. which means to give CHAR the same syntax class 
as the character CHAR in TABLE. For example. (SETSYNT AX • { '%[ TABLE) 

gives the left brace character the same syntax class as the left bracket. 

(SYNT AXP CODe CLASS TABLE) [Function] 
CODe is a character code: TABLE is ~~ I L. T, or a"real readtable or terminal table. 

6.34 

n 
(-

/~ 

(~~ ) 



INPUT/OUTPUT 

Returns T if CODE has the syntax class ~s in TABLE; NIL othenvise. 

CLASS can also be a read-macro type (MACRO, SPLICE, INFIX), or a read-macro
option (F IRST. IMMEDIATE~ etc.), in which case SYNTAXP returns T if the syntaX 
class is a read-macro with the specified property. 

Note: SYNTAXP will not accept a character as an argument. only a character code. 

For convenience in use with SYNTAXP, the atom BREAK may be used to refer to all break characters. 
Le., it is the union of LEFTPAREN. RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET, STRINGDELIM, 
and BREAKCHAR. For purely symmeaical reasons, the atom SEPR corresponds to all separator characters. 
However, since the only separator characters are those that also appear in SEPRCHAR, SEPR and 
SEPRCHAR are equivalent. 

Note that GETSYNTAX never returns BREAK or SEPR as a value although SE..!.SYNTAX and SYNTAX? 
accept them as arguments. Instead, GETSYNTAX returns one of the disjoint basic syntax classes that 
comprise BREAK. BREAK as an argument to SETSYNTAX is interpreted to mean BREAKCHAR if the 
character is not already of one of the BREAK classes. Thus, if%( is of class LEFTPAREN, then (SETSYNT AX 
'%( 'BREAK) doesn't do anything, since %( is already a break ch~acter, but (SETSYNTAX '%( 
'BREAKCHAR) means make %( be just a break character. and therefore disables the LEFTPAREN 
function of % (. Similarly, if one of the format characters is disabled completely, e.g~ by (SET SYNTAX 
'%( 'OTHER), then (SETSYNTAX· I %( I BREAK) would make %( be only a break character: it would 
not restore %( as LEFTPAREN. 

The following functions provide a way of collectively accessing and setting the separator and break 
characters in a readtable: 

(GETSEPR .R.DTBL) [Function} . 
Returns a list of separator character codes in RDTBL. Equivalent to (GET SYNTAX . 
r S E P R RDTBL). 

(GETBRK RDTBL) [Function] 
Returns a list of break character codes in RDTBL. Equivalent to (GETSYNTAX 
'BREAK RDTBL). 

FLG RDTBL) [Function] 
()J 
~~ (SETSEPR LST 

Sets or removes the separator characters for RDTBL. LST is a list of charactors or 
character codes. FLG detennines the action of SET S EP R as follows: If FLG = NIL 
makes RDTBL have exactly the elemencs of LST as separators. discarding from 
RDTBL any old separator characters not in LST. If FLG = O. removes from RDTBL 
as separator characters all elements of LST. This provides an "UNSETSEPR". If 
FLG = 1. makes each of the characters in '["ST be a separator in RDTBL. 

If LST= T. the separator characters are reset to be those in the system's readtable 
for tenninals. regardless of th~ value of FLG. i.e .. (SETSEPR T) is equivalent to 
(SETSEPR (GETSEPR T». If RDTBL is T. then the characters are reset to those 
in the original system table. -

Rerurns NIL. 

(SETBRK LST FLG RDTBL) [Function} 
Sets the break characters for RDTBL. Similar to ·SETSEPR. 

6.35 



Read-Macros 

As with SETSYPlT AX to the BREAK class. if any of the list- or string-delimiting break characters are 
disabled by an appropriate SETBRK (or by making it be a separator character), itS special action for READ 
will not be restored by simply making it be a break character again with SETBRK. However. making these 
characters be break characters when they alieady are will have .no effect. 

The action of the ESCAPE character (normally %) is not affected by SETSEPR or SETBRK. It can be 
disabled by setting itS syntax to the class OTHE R, and other characters can be used for escape on input 
by assigning them the class ESCAPE. As of this. writing, however. there is no way to change the output 
escape character; it is "hardwired" as %. That is. on output, characters of special syntax that need to 
be preceded by the E SCA? E character will always be preceded by %, independent of the syntax of % or 
which, if any characters. have syntax ESCAPE. 

The following function can be used for defeating the action of the ESCAPE character or characters: 

(ESCAPE .FLG· RDTBL) [Function] 

6.6.3 Read-wlacros 

If FLG= NIL, makes characters of class ESCAPE behave like characters of class 
OTHER on input. Nonnal setting is (ESCAPE T). ESCAPE returns the previous 
setting. 

Read-macros are user-defined syntax classes that can cause complex operations when certain characters 
are read. Read-macro characters are defined by specifying as a syntax class an expression of the form: 

(TYPE OPTION1 •.. OPTIONN FN) 

where TYPE is one of MACRO. SPLICE, or INFIX, and FN is the name of a function or a lambda 
expreSSion. Whenever READ encounters a read-macro character. it calls the associated function. giving it 
as arguments the input file and readtable being used for that call to READ. The interpretation of the value 
returned depends on the type of read-macro: 

MACRO 

SPLICE 

INFIX 

This is the simplest type of read macro. The result returned from the macro is 
treated as the expression to be read. instead of the read-macro character. Often 
the macro reads more input itself. For example. in order to cause -EXPR to be 
read as (NOT EXPR). one could define - as 

[MACRO (lAMBDA (Fl ROTBl) (LIST 'NOT (READ FL RDTBLJ 

The result (which should be a list or NIL) is spliced into the input using NCONC. 
For example. if S is defined by: 

(SPLICE (LAMBDA NIL (APPEND FOO)}) 

and the value of FOO is (A Be), then when the user inputs (X S y). the result 
will be (X ABC Y) . 

The associated function is called with a third argument. which is a list in TeO N C 
format (page 2.17), of what has been read at the current level of list nesting. The 
function's value is taken as a new TCONC list which replaces the oid one. For 
example. + could be defined by: 

6.36 

() 
( 



O':~" ..... " 

o 

(INFIX (LAMBDA 

INPUT /OlJTPUT 

(FL RDTBL Z) 
(RPLACA (CDR Z) 

Z» 

(LIST (QUOTE IPLUS) 
(CADR Z) 
(READ FL RDTBL») 

If an IN F I X read-macro character is encountered not in a list. the third argument to 
its associated function is NIL. If the function returns rl I L. the read-macro character 
is essentially ignored and reading continues. Otherwise. if the function returns a 
TCONC list of one element. that element is the value of the READ. If it returns a 
TCONC list of more than one element. the list is the value of the READ. 

The specification for a read-macro character can be augmented to specify. various options OPTION 1 ••• 
OPTIONN• e.g., (MACRO FIRST IMMEDIATE FN). The following three disjoint options specify when 
the read-macro character is to be effective: " 

AL~JAYS 

FIRST 

ALONE 

The default The read-macro character is always effective (except when preceded 
.by the escape character), and is a break character. Le .• a member of (GET SYUT AX 
, 8 REAK RDTBL). 

The character is interpreted as a read-macro character only when it is the first 
character seen after a break or separator character: in all other situations. the 
character is treated as having class OTHER. The read-macro character is not a break 
character. For example, the quote character is a FIRST read-macro character. so 
that DON'T is read as the single atom Carl' T, rather than as DON followed by 
(QUOTE T). 

The read-macro character is no! a break character. and is interpreted as a read
macro character only when the character would have been read as a separate atom 
if it were not a read-macro character. i.e., when its immediate neighbors are both 
break or separator characters. For example, • is an ALONE read-macro character 
in order to implement the comment pointer feature (see page 6.51). 

Making a FI RST or ALONE read-macro character be a break character (with SETBRK) disables the 
read-macro interpretation. i.e., convertS it to syncax class BREAKCHAR. Making an ALWAYS read-macro 
character be a break character is a no-ope . 

The following two disjoint options control whether the read-macro character is to be protected by the 
ESCAP E character on output: 

ESCQUOTE or ESC The default. When printed with PRIN2. the read-macro character will be preceded 
by the OUtput escape character (%). 

NOESCQUOTE or NOESe 
The read-macro character will be printed without an escape. e.g.. ' is a 
NOESCQUOTE character." Unless you are very careful what you are doing. read
macro characters in F ILERDTBL should never be NOESCQUOTE. since symbols 
that happen to contain the read-macro .character will not read back in correctly. 

The following two disjoint options concrol when the macro's function is actually executed: 

6.37 



Read-l\tlacros 

lMMED lATE or lMMED 
The read-macro character is immediately activated. i.e'9 the. current line is 
terminated9 as if an EOl had been typecL a carriage-rerum line-feed is printed. and 
the entire line (including the macro character) is passed to the inpu: function: 

IMMED lATE read-macro characters enable the user to specify a character that will 
take effect immediately, as soon as it is encountered in the inpu~ rather than 
waiting for the line to be terminated. Note that this is not necessarily as soon as 
the character is typed Characters that cause action as soon as they are typed are 
interrupt characters (see page 9.17). \ 

Note that since an IMMED lATE macro causes any input before it to be sent to the 
reader, characters typed before an IMMED lATE read-macro character cannot be 
erased by control-A or control-Q once the IMMEDIATE character has been typed. 
since they have already passed through the line bttffer. However9 an I r4 F I X read 
macro can still alter some of what has been typed earlier. via its third argument. 

NONlMMEOlATEorNONIMMEO 
The default. The read-macro character is a normal character with respect to the 
line buffering, and so will not be activated until a carriage-rerum or matching right 
parenthesis or bracket is seen. 

Making a read-macro character be both ALONE and IMMEDIATE is a contradiction. since ALONE requires 
that the next character be input in order to see if it is a break or separator character. Thus. ALONE 
read-macros are always NON lMMEO lATE. regardless of whether or not IMMED lATE is specified. 

Read-macro characters can be "nested". For example. if = is defined by 

(MACRO (lAMBDA (Fl ROTBl) (EVAL (READ FL RDTBL»» 

and! is defined by 

(SPLICE (LAMBDA (Fl RDTBL) jREAD FL RDTBl») 

then if the value of Foa is (A B C), and (X = FOC Y) is input. (X (A B C) Y) will be returned.. If (\ 
(X ! = F 00 Y) is inpu~ (X ABC Y) will be returned. ' ) 

If a read-macro's function calls READ, and the READ returns NIL. the function cannot distinguish the 
·case where a RIGHTPAREN or RlGHTBRACKET followed the read-macro character. (e.g. "CA B ')"). 
from the case where the atom NIL (or .. ( )"') actually appeared. Therefore. in Interlisp-10. reading a 
single RIGHTPAREN or RIGHTBRACKET via a READ inside of a read-macro function is disallowed. [f L.~is 
occurs. the paren/bracket is put back into the input buffer. and a READ-MACRO CONTEXT ERROR is 
generated. The following two functions are useful for avoiding this error: 

( INREADMACROP) [Function} 
Returns NIL if currently not under a read-macro function. otheI"VIise the number 
of unmatched left parentheses or bracketS. 

(SETREAOMACROFLG FLO) [Function] 

'. ~.:-:~. 

ResetS the "read-macro" flag, Le.. the internal system flag that informs READ 
that it is under a read macro function. and causes it [Q generate a READ-MACRO 
CONTEXT ERROR. if an unmatched) or ] is encountered. Returns the previous 

6.38 

. ... _ ... - .. ~ ..... :.' .... 

--------" -~. -~ .... "'~. [-------~.~ .. ,... i .. 



·0 C·· 

c·~· 
(-~ :. 

\--..J - .. 

( .. :-" 

INPUT/OUTPUT 

value of the flag. The main use for this is when debugging read-macro functions: to 
avoid spurious READ-MACRO CONTEXT error messages when typing into breaks. 
the user can put (SETREADMACROFLG) on BREAKRESETFORMS (page 9.13). 

The READ-MACRO CONTEXT error does not occur in Interlisp-D; a READ inside of a read-macro when 
the next input character is a RIGHTPAREN or RIGHTBRACKET eats the character and returns NIL. JUSt 
as if the READ had not occurred inside a read-macro. 

If a call to READ from within a read-macro encounters an unmatched RIGHTBRACKET within a list. the 
bracket is simpiy put back into the buffer to be read (again) at the higher level. Thus. inputting an 
expression such as (A B '( CD] works correctly. 

(READMACROS FLG RDTDL) [Function] 
If FLG = NIL. turns off action of read-macros. If FLG = T, turns them on. Returns 
previous setting. 

In Interlisp-D, turns off/on action of read-macros in readtable RDT13L. 

The following read macros are standardly defi:ned in Interlisp: 

, (single-quote) 

control-Y 

Currently defined only in T and EDITRDTBL. Returns the next expression. wrapped 
in a call to QUOTE; e.g., 'FOO reads as (QUOTE FOO). The macro is defined as 
a FIRST read macro. so that the quote character has no effect in the middle of a 
symbol. The macro is also ignored if the quote character is immediately followed 
by a separator character. 

Defined in T and ED ITRDTBL. Returns the result of evaluating the next expression. 
For example. if the value of FOO is (A B). then (LIST 1 conlrol- YFOO 2) is
read as (1 (A B) 2.), but note that no structure is copied: the CADR of that 
input expression is still EQ to the value of FOD. Control-Y can thus be used to read 
structures that ordinarily have no read syntaX. For example. the value returned 
from reading (KEYl control- Y( ARRAY 10» has an array as its second element. 
Control-Y can be thought of as an "un-quote" character. The choice of character 
to perfonn this function is changeable with SETTERMCHARS (page 17.59). 

o · (back-quote) Back-quote makes it easier to write programs to construct complex data structures. 
Back-quote is like quote, except that within the back-quoted expreSSion. forms c~., 
be evaluated. The general idea is that the back-quoted expression is a "template" 
containing some constant pans (as with a quoted form) and some pans to be filled 
in by evaluating something. 

( .. 

o 

Within the back-quoted expression. the character " ... (comma) introduces a form 
to be evaluated. A form preceded by " • @" is· to be spliced in.. using A P P E NO. and 
a fonn preceded by" •. '. is to be spliced in. using NCONC. Unlike with contra 1-Y. 
however. the evaluation occurs not at the time the fOIm is read. but at the time 
the back-quoted expression is evaluated. That is. the back-quote macro returns an 
expression which. when evaluated. produces. the desired structure. 

For example. if the value of F 00 is (1 2 3 4). then the form' (A • (CAR F 00) 
• @( COOR FOO) 0 E) evaluates to (A 1 3 4 0 E): it is logically equivalent to 
wri ting (C 0 N S • A (C 0 N S (C A R F 00 ) (A P PEN 0 (C 0 0 R F 00 ) t (D E»)). 
Back-quote is panicularly useful for writing compiler macros. For example. 

6.39 

------.,-.--~-----------------.---!..------.-.--. 

\ 
! 
! 
! 
I 

\ 

\ 
i 

\ 



? 

• 

control-W 

I (vertical bar) 

Terminal Tables 

'( CONO 
( ( F I X? . ( CA R X» 

. (CADR X» 
(T ,@(CoDR X») 

is equivalent to writing 

(LIST 'COND 
(LIST (LIST 'FIX? (CAR X» 

(CADR X» 
(CONS 'T (CoOR X») 

Note that comma does not have any special meaning outside of a back~quote 
context. 

For users without a back-quote character on their keyboards, back-quote can also 
be written as I' (vertical-bar, quote). In Interlisp-D, back-quot~ is typed as 
shift-linefeed.. 

. Defined in T and EDITRDTBL. Implements the ?= command for on-line help 
regarding the function currently being "called" in the typein (see page 9.5). 

Defined in F ILEROTBL only. Implements the comment pointer feature for saving 
space by keeping the text of comments outside memory (page 6.51). 

Defined in T and EDITRDTBL, Interlisp-10 only. An IMMEDIATE read macro that 
. deletes the previous expression. In Interlisp-D. control-W is an editing character 

that deletes the previous .. word" . . 

When followed by • (quote). is a synonym for back-quote: followed by cenain 
other characters. it is used by HPRINT and HREAD to print and read in unusual 
expressions; otherwise is ignored.. Le .• treated as a separator character. enabling the 
editor's CHANGECHAR feature (page 6.55). 

6.7 TE~'\1INAL TABLES 

A readtable contains input/output infonnation that is media-independent. For example. the action of 
parentheses is the same regardless of the device from which the input is being performed. A terminal 
cable is an object that contains information that pertains to lerminai input/output operations only. such 
as the character to type to delete the last character or to delete the last line. In addition. terminal tables 
contain such information as how line-buffering is to be performed. how control characters are to be 
echoed/printed.. whether lower case input is to be convened to upper case. etc. 

Using the functions below. the user may change. reset. or copy terminal tables. or create a new terminal 
table and install it as the primary terminal cab Ie via S E TT E RMT AS L E. However. unlike readtables. terminal 
tables cannot be passed as arguments to input/output functions. 

6.40 



(:le--\ "" ............... 0' 

INPUT/OUTPUT 

6.7.1 Terminal Table Functions 

(TERMTABLEP TTBL) [Function] 
Returns TTBL, if TTBL is a real terminal table, r~ I L otherwise. 

(GETTERMTABLE TTBL) [Function] 
If TTBL = NIL, returnS the primary (Le., current) terminal table. If TTBL is a 
real terminal table, rerum TTBL. Otherwise, generates an ILLEGAL TERMINAL 
T AS LE error. 

(SETTERMTASlE TTBL) [Function] 
Sets the primary terminal table to be TTBL. Returns the previous T'rnL. Generates 
an ILLEGAL TERMINAL TABLE error if TTBL is not a real terminal table. 

U ~ (COPYTERMTABlE TTBL) " [Function] 
Returns a copy of TTBL. TTBL can be a real terminal table. NIL. or ORIG. in 
which case it returns a copy of the original system terminal table. Note that 
COPYTE RMT ABLE is the only function that creales a terminal table. 

( 

o 

(RESETTERMTABLE TTBL FROM) [Function] 
Copies (smashes) FROM into TTBL. FROM and TTBL can be NIL or a real tetminal 

"table. In addition. FROM can be ORIG, meaning to use the system's original 
terminal table. 

6.7.2 Terminal Syntax Classes 

A terminal table associates with each character a single "terminal syntax class", one of CHARDELETE. 
LINEDELETE, WOROOELETE (Interlisp-D only), RETYPE. CTRLV. EOl. and NONE. Unlike readtable 
classes. only one character in a particular terminal table can belong to each of the classes (except for the 
default class NONE). When a new character is assigned one of these syntax classes by SETSYNTAX. the 
previous character is disabled (i.e., reassigned the syntax class NO~JE). and the value of SET SYNT AX is the 
code for the previous character of that class. if any. otherwise NIL. 

The terminal syntax classes are interpreted as follows: 

CHARDELETE or DELETE CHAR 
(Initially control-A under Tenex. del under Tops20. BackSpace in [nterlisp-D) 
Typing this character deletes the previous character typed. Repeated use of this 
character deletes successive characters back to the beginning of the line. 

LINEDELETE or OELrTELINE 

WORDDELETE 

RETYPE 

(Initially control-Q in [nterlisp-10 under Tenex and in lnterlisp-D. control-U under 
Tops20) Typing this character deletes the whole line: it cannot be used repeatedly, 

(Interlisp-D only: initially control-W) Typin"g this character deletes the previous 
"word", Le .. sequence of non-separator characters, 

([nitially control-R) Causes the line to be retyped as Interlisp sees it (useful when 
repeated deletions make it difficult to see what remains). 

6.41 

\ 

\ 



Terminal Control Functions 

CTRLV or CNTRLV (Initially control-V) When followed by A, B, ... Z. inputs the corresponding control 
character control-A, control-B •... control-Z. This allows interrupt characters to be 
input without causing an interrupt. 

EO L On input from a tenninaL the EO L character signals to the line buffering routine 
to pass the input back to the calling function. It also is used to terminate inputs to 
REAOLINE (page 8.30). In general., whenever the phrase carriage-rerum linefeed 
is used. what is meant is the character with terminal syntax class EO L. 

NONE The terminal syntax class of all other characters. 

GETSYNTAX, SETSYNTAX, and SYNTAX? all work on terminal tables as well as readtables (see page 
6.34). When given NIL as a TABLE argument, GETSYNTAX and SYNTAX? use the primary readtable or 

n 

primary terminal table depending on which table contains the indicated CLASS argument. For example.. (~ 
(SETSYNTAX CH 'BREAK) refers to the primary readr.able, and (SETSYNTAX CH t CHARDELETE) ) 
refers to the primary terminal table. In the absence of such information, all three functions default to the . (/ 
primary readtable; e.g .• (SET SYNTAX '{ '%[) refers to the primary read table. If given incompatible 
CLASS and table argumen~ all three functions generate errors. For example. (SETSYNTAX CH t BREAK 
TTBL). where TTBL is a terminal table: gen~rates an ILLEGAL READTABLE error, and (GETSYNTAX 
'CHA~DELETE RDTBL) generates an ILLEGAL TERMINAL TABLE error. 

6.7.3 Terminal Control Functions 

(ECHOCONTROL CHAR MODE TTBL) . [Funcnon] 
Used to indicate how control characters are to be echoed or printed. CHAR is 
a character or character code. MODE may be one of the atoms IGNORE. REAL. 
SIMULATE. or INDICATE~9 which specify how the control character should be 
printed: 

IGNORE 

REAL 

. SIMULATE 

INDICATE 

CHAR. is never printed. 

CHAR itself is printed: i.e.. the raw control character is 
sent to the terminal. Some terminals. particularly <lisp lays. 
respond to certain control characters in interesting ways. 

Output of CHAR is simulated. For example. control-I (tab) 
may be simulated by printing spaces. The simulation is 
machine-specific and beyond the control of the user. 

CHAR is printed as 1" followed by the corresponding al
phabetic character. 

The value of ECHOCONTROL is the previous output ·mode for CHAR. If MODE' = NIL. 
ECHOCONTROL returns the current output mode without changing it 

Note that although the name of this function suggests echoing only, it affects Ill! 
output of the control character. both echoing of input and printing qf· output. 

qUPARROW is an obsolete synonym of INDICATE. 

6.42 

.... 

..... ' ........ .....l.'-:. ........ --.-. _ ............... .:.-..... ____ ~~;~: ... ::. -=-;....:...~.~. ___ : __ ": •• " __ .. '.0'; •. _ ~_. - ..... :.... 
-

Q 



0-' 

o 

~-PlJT /OUTPUT 

The two cannot be specified independently, which can lead to some trickiness in 
DELETE CONTROL messages (below). 

In Interlisp-lO, echoing infonnation can be specified only for control characters 
(although all echoing can be disabled using ECHOt·10D~. below). Therefore: if CHAR 

is an alphabetic character (or code), it refers to the corresponding control character. 
e.g .. (ECHOCONTROL 'Z 'ItJDICATE) makes control-Z echo as 'tZ. All ot.:.'1er 
values of ~d.AR generate ILLEGAt PlRG errors. In Interlisp-D and Interlisp-V AX 
it is possible to specify echoing information for all characters, using the function 
ECHOCHAR. 

( E CHOCHAR CRARCODE MODE TTBL) [Function] 
(Interlisp-D, Interlisp-V AX only) Like ECHOCONTROL. but CHARCODE must be a 
character code. and can specify any character-no coercions are performed. The 
IND ICATE mop.e for "meta" characten:, r.e .• characters whose codes are in the 
range 200Q through 377Q, causes the character to be printed fonowing a #, For 
example, meta-A would print as #A. meta-control-B as #"'8 . 

. CHARCODE can also be a list of characters. in which case ECHOCHAR is applied to 
each of them' with arguments MODE and TTBL. 

(ECHOMODE FLG TTBL) [Function} 
If FLG = T. tums echoing for terminal table T~L on. If FLG = NIL. turns echoing 
off. Returns the previous setting. 

(GETECHOMODE TT.aL) [Function] 
Returns the current echo mode for TTBL. 

(DEL.:ETECOflTROL TYPE MESSAGE TTBL) [Function] 
Specifies the output protocol when a CHARDELETE or LINEDELETE is typed. In 
the case of character deletion. Interlisp-10 is initially set up for hardcopy terminals: 
it echos the characters being deleted,· preceding the first by a , and following the 
last by a \. so that it is easy to see exactly what was deleted. viz... the characters 
between the "5. Interlisp-D and Interlisp-V AX are initially set up to physically 
erase the deleted characters from the display, backing up over them. The various 
values of TYPE specify different phases of the deletion. as follows: 

lSTCHDEL 

tJTHCHDEL 

POSTCHDEL 

EMPTYCHDEL 

ECHO 

MESSAGE is the message printed the first tL!le CHARDELETE 
is typed. Initi~ly .• ," in Interlisp-lO. 

MESSAGE is the message printed on subsequent CHARDELETE's 
(without intervening characters). Initially'''' in Interlisp-lO. 

MESSAGE is the message printed when input is resumed 
following a sequence of one or more CHARDELETE '5. 

Initially U," in Interlisp-10. 

MESSAGE is .the message printed when a CHARDELETE is 
typed and there are no characters in the buffer. Initially 
.• ## :r" in Interlisp-10. 

The characters deleted by CHARDELETE are echoed . . \{ESSAGE 

6.43 



Terminal Control Functions 

NOECHO 

LINEDELETE 

is ignored. 

"'!1le characters deleted by CHARDELETE are not echoed 
MESSAGE is ignored. 

MESSAGE is the message printed when LINEDELETE charac
ter is typed. Initially "##cr". 

Note: In Interlisp-lO. the LINEDELETEy lSTCHDEL, NTHCHDEL .. POSTCHDEL, 
and EMPTYCHOEL messages must be 4 characters or fewer in length. 

OELETECONTROL returns the previous message as a string. If MESSAGE = NIL. 
the value returned is the previous message without changing it. For ECHO and 
NOECHO, the value of DELETECONTROL is the previous echo mode. i.e ... ECHO or 
NOECHO. . 

(GETDELETECONTROL TYPE TTBL) [Function] 
Rerurns the current DELETECONTROL mode for TYPE in TTBL. 

If t.he user's terminal is a display, OELETECONTROL and ECHOCONTROL can be used to make it really 
delete the last character by performing the following: 

(ECHOCONTROL 8 'REAL) 
8 is the code for control-H. which is backspace; we want the terminal to really 
backspace when we send .,.H. 

(DELETECONTROL 'NOECHO) 
Do not ~ho the deleted characters. 

(OELETECONTROL 'lSTCHDEL "1"H .,.H") 
(DELETECONTROL 'NTHCHDEL ""'H 1"H") 

Erase each character by backspacing over it. printing a space, then backspacing 
again to put the carriage in the right place. 

n 

() 
( 

The following functions manipuiate the RA I S E mode. which determines whether lower case characters n 
are converted to upper case when input from the tenninal. (There currently is no "raise" mode for input G:~ 

j from files.) 

(RAISE FLG TTBL) (Function] 
Sets the RAISE mode for tenninal table TTBL. [f FLG= NIL. all characters are 
passed as typed. If FLG = T, input is echoed as typed.. but lowerc~e letters are 
converted to upper case. If FLG = 0, input is convened to upper case be/ore it is 
echoed. Returns the previous setting. to 

LOIn [nterlisp-l0, both (RA I S E) and· ( RA I SET) execute TenexlT ops20 JSYS calls corresponding to the 
Executive command NORAISE. while ( RA IS EO) executes the lSYS calls corresponding to the Executive 
command RAISE. Thus with (RA IS E T), the conversion to uppercase is performed by [ncerlisp. while 
with (RA r S EO) the conversion is performed at the operating system level. i.e .. before Incerlisp- LO even 
sees the characters. Tne initial setting of RA I SE in Interliso- LO is determined bv the termmal mode at 
the time the user first Stans up the system. \Vhen J SY SOU'T is started. the RAI'SE mode is restored to 
whate~er it was prior co the SY sour. 

6.44 



Oc 
INPUT/OUTPUT 

(GETRAISE TTBL) [Function] 
Returns the current RA I S E mode for TTBL. 

6.7.4 Line-Buffering 

Characters typed at the terminal are stored in two buffers before they are passed to an input function. All 
characters typed in are put into the low-level "system buffer'" which allows -type-ahead.. When an input 
function is enterecL characters are transferred to the "line buffer" until a character with terminal syntax 
class EOl appears (or. for calls from READ, when the count of unbalanced open parentheses reaches 0).11 
Until this time. the user can delete characters one at a time from the line buffer by typing the current 

CHARDElETE character. or delete the entire line buffer back to the last carriage-return by typing the 
current LINEDELETE. 

a .,: Note that this .line editing is not performed by READ or RATOM, but by Interlisp, ie., it does not maner 
(nor is it necessarily known) which function will ultimately process the characters, only that they are still 
in the Interlisp line buffer. However. the function that is requesting input at the tim~ the buffering starts 
does detemtine whether parentheses counting is observed. For example, if a program performs (PROGN 
(RATOM) (READ» and the user types in ··A (B CD)", the user must type in the carriage-rerum 
following the right parenthesis before any action is taken. because the line buffering is happening under 
RATOM. If the program had performed (PROGN (READ) (READ». the line-buffering would be under 
READ. so that the right parenthesis would terminate line buffering, and no terminating carriage-return 
would be required. 

Once a carriage-rerum has been typecL the entire line is "available" even if not all of it is processed by the 
function initiating the request for input. If any characters are "left over", they are returned immediately 
on the next request for input. For example. (L IS T (RA T OM ) (R EAD C ) (RA T OM» when the input is 
"A 8 ern returns the three-element list (A % B) and leaves the carriage-rerum in the buffer. 

If a carriage-rerum is typed when the input under READ is not "complete" (the parentheses are not 
balanced or a string is in progress), line buffering continues. but the lines completed so far are not 
available for editing with CHARDELETE or lINEDELETE. 

,~ o The function CONTROL is available to defeat line-buffering: 

o 

(CONTROL MODE TTBL) [FunctionJ 
If MODE = T. eliminates Interlisp's normal line-buffering for the terminal table TTBL. 
If MODE = NIL. restores line-buffering (normal). When operating with a terminal 
table in which (CONTROL T) has been performed.. characters are returned to the 
calling function without iine-buffering as described below. 

CONTROL returns its previous setting. 

(GETCONTROl TTBL) [Function} 
Returns the current control mode for TTBL. 

The function that initiates the request for input detennines how the line is treated when (CONTROL T) 
is in effect: 

.( 

11 PEE K C is an exception: it returns the character immediately when its second argument is NIL. 

6.45 



READ 

RATOM 

READC or ~EEKC 

Line-Buffering 

If the expression being typed is a list. the effect is the same as though done with 
(CONTROL NIL). Le .• line-buffering continues until a carriage-rerum or matching 
parentheses. If the expression being typed is not a list. it is rerurned as soon 
as a break or separator character is encountered. e.g.. (R EAD) when the input 
is '6ABC(space)" immediately returns ABC. CHAROELETE and LINEDELETE are 
available on those characters still in the buffer. Thus. if a program is performing 
several reads under (CONTROL T), and the user types "NOW IS THE TIME" 
followed by controi-Q. only TIME is deleted. since the rest of the line has already 
been ttansmitted to READ and processed. 

An exception to the above occurs when the break or separator character is an 
opening parenthesis~ bracket or double-quote. since returning at this point would 
leave the line buffer in a U funny" state. Thus if the input to (R EAD) is U AS C (", 
the AS C is not read until a carriage-rerum or matching parentheses is encountered. 
In this case the user could LINEDELETE the entire line~ since all of the characters 
are still in the buffer. 

Characters are rerurned as soon as a break or separator chamcter is encountered. 
Until then. LINEOELETE and CHAROELETE may be used as with READ. For 
example. (RATOM) followed by .6ASC(contro!-AXspace)" returns AB. (RATOM) 
followed by U( <control-A)" returns ( and types ## indicating that conrrol-A was 
attempted with nothing in the buffer, since the ( is a break character and would 
therefore already have been read. 

The character is returned immediately; no line editing is possible. In particular.· 
(READC) is perfectly happy to return the CHARDELETE or LINEDELETE 
characte~ or the ESCAPE character (%). 

The system buffer and line buffer can be directly manipulated using the following functions. 

(CLEARiUF FILE FLG) [Function] 

(SYS8UF FLC) 

Clears the input buffer for FILE. If FILE is T and FLG is T. the contents of Interlisp's 
system buffer and line buffer are saved (and can be obtained via SY S8U F and 
LINBUF described below). 

When concrol-D or control-E is typed. or any of the intemIpc characters that 
require terminal interaction is typed (control-H. control-Po or control-S). [nterlisp 
automatically perfurms (CLEARBUF T T). For conuol-P. control-So and... when 
the break is exited normally, control-H. Interlisp restores the buffer after the 
interaction. 

The action of (C LEA RB U F T), Le .. clearing of typeahead. is also available JS the 
RUB OUT intemIpt character. initially assigned to the del key in Interlisp-D and in 
Interlisp-10 under Tenex. control-Z under Tops20. Note that this interrupt clears 
both buffers at the time it is typed. whereas the action of the CHARDELETE and 
LINEDELETE character occur at the time they are read. 

[Function) 
If FLC = T. returns the contentS of the system buffer (as a string) that was saved at 
the last (CLEARBUF T T). If FLG=NIL. clears this internal buffer. 

6.46 

~) 
C 

r) 
(-;.,; 
\.:;:.~ 



0,-·· 
\. ,z' 

o· 

o 

INPUT/OUTPUT 

(LINBUF FLG) [Function1 
Same as SYSBUF for the line buffer. 

If both the system buffer and Interlisp's line buffer are empty, the internal buffers associated with LlllBUF 
and SYSBUF are not changed by a (CLEARBUF T T). 

(BKSYSBUF X FLG P..DT.BL) [Function I 
BKSYSBUF sets the system buffer to the PRIN1-name of x. The effect is the same 
as though the user typed x. Some implementations have a limit on the length of 
~ in which case characters in x beyond the limit are ignored. Returns x. 

If FLG is T. then the PRI1J2-name of x is useci computed with respect to the· 
readtable RDTBL. . 

Note that if the user is typing at the same time as the BKSYSBUF is being performecL 
the relative order of the type-in and the characters of x is unpredictable. 

Compatibility note: Some implementations of B~SYSBUF (Interlisp-lO) use a 
"system" buffer. from which keyboard interrupts are also processed. In this 
case, BKSYSBUF of an interrupt character actually invokes the interrupt at some 
(asynchronous) time after the BKSYSBUF is initiated. In other implementations 
(Interlisp-D), the characters are not processed for interrupts. and it is possible to 
BKSYSBUF charac~ers which would otherwise be impossible to type. 

(BKLINBUF STR) [Function} 
STR is a string. BKLINBUF sets Interlisp's line buffer to STR. Some implementations 
have a limit on the length of sm, in which case characters in STR beyond the 
limit are ignored. Rerums ~rn.. 

BKLINBUF, BKSYSBUF, LINBUF, and SYSBUF provide a way of "undoing" a CLEARBUF. Thus to 
"peek" at various"characters in the buffer. one could perform (CLEARBUF T T), examine the buffers 
via LINBUF and SYSBUF, and then put them back .. 

The more common use of these functions js in saving and restoring typeahead when a program requires 
some unanticipated (from the user's standpoint) input The function RESETBUFS provides a convenient 
way of simply clearing the input .buffer, performing an interaction with the user. and then restoring the 
input buffer. 

(RESETBUFS FORMI FORM2 ... FORMN) [1':Lambda NoSpread FunctionI 
Clears any typeahead (ringing the temtinal's bell if there was. indeed. typeahead). 
evaluates FORMI • FORM2,·· FORMN , then restores the typeahead. Returns the. 
value of FORMN• Compiles open. 

6.8 PRETIYPR.I1\7 

Tne standard way of printing out function definitions (on the tenninal or into files) is to use P RETTYPRINT. 

(PRETTYPRINT FNS PRETTYDEFLG -) [FunctionI 
FNS is a list of functions. If FNS is atomic. its value is used). "The definitions of 

6.47 



Prettyprint 

the functions are printed in a pretty· format on the primary output file using the 
primarj readtable. For example, if FACTORIAL were defined by typing 

(DEFINEQ (FACTORIAL [LAMBDA (N) (COND «ZERO? N) 1) 
(T (ITIMES N (FACTORIAL {SUB1 N] 

{?RETTYPRINT '( FACTORIAL» would print out 

(FACTORIAL 
[LAMBDA ("N) 

(CONO 
«ZERO? N) 

1) 
(T (ITIMES N (FACTORIAL (SUB1 N]) 

PRETTYDEFLG is T when called from PRETTYDEF (and hence MAKEFILE). Among 
other actions taken when this argument is true. PRETTYPRINT indicates its progress 
in writing the current output file: whenever it starts a new function. it prints on 
the terminal the name of that function if more than 30 seconds (real time) have 
elapsed since the last time it printed the name of a function. 

PRETTYPRINT operates correctly on functions that are BROKEN. BROKEN-IN. ADVISED. or have been 
compiled with their definitions saved on their property lists: it prints the original pristine definition. but 
does not change the current state of the function. If a function is not defined but is known to be on 
one of the file:; noticed by the file package. PRETTYPRINT loads in the definition (using LOADFNS) and 
prints it (except when called from PRETTYDEF). If PRETTYPRINT is given an atom which is not the 
name of a function. but has a value, it prettyprints the value. Othenvise. PRETTYPRINT attempts spelling 
correction. If all fails, PRETTYPRINT returns (FN NOT PRINTABLE). 

(PP FNz ••• FNN ) [NLambda NoSpread Function] 
For prettyprinting functions to the tenninaI. P P calls PRE TTY P R I NT with the 

. primary output file set to T and the primary read table set to T. The primary 
output file and primary readtable are restored after printing. 0 

(PP FOO) is equivalent to (PRETTYPRINT '(FOO»); (PP FOO FIE) is • 
equivalent to (PRETTYPRINT '( FOa FIE». 

As described above, when PRETTYPRINT, and hence pP. is called with the name of a function that is 
not defined. but whose definition is on a file known to the file package, the definition is automatically 
read in and then prettyprinted. However. if the user does not intend on editing or running the definition. 
but simply wants to see the definition. the function PF described below can be used (Q simply copy the 
corresponding characters from the file to the terminal. This results in a savings in both space and time. 
since it is not necessary to allocate storage to actUally read in the definition. and it is not necessary to 
re-prettyprint it (since the function is already in prettyprint format on the file). 

(PF FN FROMFILES TOFILE) [NLambda NoSpread Function} 
Copies the definition of FN found on each of the files in FROMFILES to TOFILE. 

If TOFILE = NIl. detaults to T. If FROMFlLES = NIL. defaults to (WH ERE IS FN 
NIL T) (see page ll.lO).-The typic:ll usage of PF is simply (0 type .ofJF Fl'/'. 

When printing to the terminal. P F pertonns several transformations on the characters in the file that 
comprise the definition for FN: (1) font infurmation (page 6.55) is stripped out (except in Interlisp-D. 

6,48 

(j 
(-:,;0 

r) 
@ 

Cj 
r~ 
~ .•. 



o 

u' . ' 

o 

o 

INPUT/OUTPUT 

whose display supports multiple fonts): (2) occurrences of the CHANGECHAR (page 6.55) are not printed: 
(3) since functions typically tend to be printed to a file with a larger linelength than when printing to 
a terminal. the number of leading spaces on each line is cut in half;12 and (4) comments are elided, if 
**COMMENT**FLG is non-NIL (see page 6.50). 

While the function PRETTYPRINT prints entire function definitions. the function PRINTDEF can be used 
to print parts of functions, or arbitrary Interlisp structures: 

(PRINTDEF EXPR LEFT DEl" TAILFLG FNSLST F1I.E) [Function] 
Prints the expression EXPR in a pretty format on FILE using the primary readtable. 
LEFT is the left hand margin (LINELENGTH determines the right hand margin.}13 

DEF= T means EXPR is a function definiti.o~ or a piece of one. If DEF= N I L~ 
no special action is taken for LAMBOA's~ PROG's, CONO's. comments, eLlSP. etC. 
DEF is NIL when PRETTYDEF calls PRETTYPRlrlT to print variables and property 
lists, and when P R I N TO E F is called from the editor via ui.e command P PV . 

TAILFLG = T means EXPR is inte!1'reted as a tail of a list. to be printed without 
parentheses. 

FNSLST is for use with the Font package (page 6.55). PRINTOEF prints occurrences 
of any function in the list FNSLST in a different font. for emphasis. MAKE FILE 

. passes as FNSLST the list of all functions on the file being made. 
,. 

6.8.1 Comment Feature 

A facility for annotating Interlisp functions is provided in PRETTYPRIr~T. Any expression beginning with 
the atom * is interpreted as a comment and printed in the right margin. Example: 

(FACTORIAL 
[LAMBDA (N) 

(COND 
({ZEROP N) 

1) 
(T 

{ITIMES N (FACTORIAL (SUBt NJ) 

(* COMPUTES N!) 

(- 0!=1) 

(* RECURSIVE DEFINITION: 
N!=N*N-1!) 

These comments actually form a pan of the function definition. Accordingly, III is defined as an nlambda 
nospread function that returns its argument. similar to QUOTE. When running an interpreted function. • is 
entered the same as any other Interlisp function. Therefore. comments should only be placed where they 
will not harm the computation. i.e .• where a quoted expression could be placed. For example. writing 

{ITIMES N (FACTORIAL (SUBl N» (* RECURSIVE DEFINITION)) 

12Unless PFDEFAULT is T. PFDEFAULT is initially flIL. 

13PRINTDEF initially performs (TAB LEFT T). which means to space to position LEFT. unless already 
beyond this position. in which case it does noming. 

6.49 



Comment Feature 

in the above function would cause an error when ITIMES attempted to multiply N, N-l!, and RECURSIVE. 

For compilation puq>oses, • is defined as a macro which compiles into no instructions (unless the comment 
has been placed where it has been used for value. in which case the compiler prints an appropriate error 
message and compiles • as QUOTE). Thus. the compiled fOIm of a function with comments does not use 
the extra atom and list structure storage required by the comments in the source (interpreted) code. This 
is the way the comment feature is intended to be used. 

A comment of the form (. E x) causes x to be evaluated at prettyprint time, as well as printed as a 
comment in the usual way. For example, (. E (RAD IX 8» as a comment in a function containing 
octal numbers can be used to change the radix to produce more readable printout. 

The comment character • is stored in the variable COMMENTF,LG. The user can set it to some other value, 
e.g. "; n t and use this to indicate comments. 

;OMMENTFLG [Variable] 
If CAR of an expression is EQ to COMMENTFLG, the expression is treated as a 
comment by PRETTYPRINT. COMMENTFLG is initialized to •. Note that whatever 
atom is chosen for COMMENTFLG should also have an appropriate function definition 
and compiler macro, for example, by copying those of •. 

Comments are designed mainly for documenting listings. Therefore, when prettyprinting to the terminal. 
comments are suppressed and printed as the string ··COMMENT··. The value of ··COMMENT *. F LG 
determines the action. 

.. ··COMMENT··FLG [Variable] 
If ··COMMENT··FLG is NIL. comments are printed. Otherwise, the value of 
··COMMENT··FLG is printed. Initially" ··COMMENT·· ". 

The functions P p. and P F * are provided to easily print functions. including their comments. 

(Pp· x) [NLambda NoSpread Function] 
pp. operates exactly like PP except it first sets ··COMMENT*·FLG to NIL. so 
comments are printed in full. 

(PF* FN FROMFILES TOFILE) [NLambda NoSpread Function] 
PF· operates exactly like PF except it first sets ·-COMMENT--FLG to NIL. so 
comments are printed in full. 

( COMMENT 1 L -) [Function1 
Prints the comment L. COMMENT 1 is a separate function 14 to permit the user to 
write prenyprint macros (page 6.54) that use the regular comment printer. For 

. example. to cause comments to be printed at a larger than nonnal iinelength. one 
could put an entry for * on PRETTYPRINTMACROS; 

(. LAMBDA (X) (RESETFORM (LINELENGTH 100) (COMMENTl X») 

l4COMMENTl is an encrv to the PRETTYPRINT block. However. it is called internally by PRETTYPRINT 
so that advising or redefining it will not affect the action of PRETTYPRINT. COMMENTl should nol be 
called when not under a PRINTDEF. ' 

6.50 

(j 
(-

c() 



u· 

o· 

( .0, 

INPlJT /OUTPUT 

This macro resets the line length. prints the comment, and then restores the line 
length. 

COMME flT 1 expects to be called from within the environment established by 
PRINTDEF, so ordinarily the user should call it only from within prettyprint macros. 

6.8.2 Comment Pointers 

For a well-commented collection of programs, the list structure, atom, and pname storage required to 
represent the comments in core can be significant. If the comments already appear on a file and are 
not needed for editing, a significant savings in storage can be achieved by simply leaving the text of the 
comment on the file when the file is loaded, and instead retaining in core only a poinler to the comment. 
This feature has been implemented by defining • as a read-macro in FILERDTBL which. insteac;i of 
reading in the entire text of the comment, constructs an expression containing (1) the name of the file in 
which the text of the comment is contained, (2) the address of the first character of the comment, (3) the 
number of characters in the comment, and (4) a flag indicating whether the comment appeared at the right 
hand margin or centered on the page. For cutput purposes. • is defined on PRETTYPRINTMACROS (page 
6.54) so that it prints the comments represented by such pointers by simply copying the correspondi.1'lg 
characters from one file to another. or to the temtinal. NOImal comments are processed the same as 
before. and can be intermixed freely with comment pointers. 

The comment pointer fearure is controlled by the value of NORMALCOMMENTSFLG. 

NORMALCOMMENTSFLG [Variable] 
Tne comment pointer feature is enabled by setting NORMALCOMMENTSFLG to NIL. 
NORMALCOMMENTSFLG is initially T. 

NORMALCOMMENTSFLG can be changed as often as desired. Thus. some files can be 
loaded normally, and others with their comments convened to comment pointers. 

For convenience of editing selected comments. an edit macro, GET·, is included, which loads in the 
text of the corresponding comment. The editor's P p. commanci in contrast. prints the comment without 
reading it by simply copying the corresponding characters to the temrinal. GET· is defined in tetmS of 
GETCOMME~lT: 

(GETCOMMENT X DESTFL -) [Function] 
If x is a comment pointer. replaces x with the actual text of the comment. which 
it reads from its file. Returns x in all cases. If DESTFL is non-N I L. it is the 
name of an open file. to which GETCOMMENT copies the comment: in this case. 
x remains a comment pointer. but it has been changed to point to the new file 
(unless NORMALGOMME NT SfLG = DONTUPDATE). 

(PRINTCOMMENT x) [Function] 
Defined as the prettyprint macro for .: copies the comment to the primary output. 
file by using GETCOMMENT. 

(READ COMMENT FL RDTBL LST) [Function] 
Defined as the read macro for· in FILERDTBL: if rJORf·1ALCOMMENTSFLG is NIL. 

6.51 



Converting Comments to, Lower Case 

it constructs a comment pointer.15 

Note that a certain amount of care is required in using the comment pointer feature. Since the text of the 
comment resides on the file pointed to by the comment pointer~ that file must remain in existence as long 
as the comment is needed. GETCOMMENT helps out by changing the comment pointer to always point 
at the most recent file that the comment lives on. However, if the user has been performing repeated 
MAKE FILE's (page 11.6) in which differing functions have changed at each invocation of MAKE FILE, it is 
possible for the comment pointers in memory to be pointing at several versions of the same file. since a 
comment pointer is only updated when the function it lives in is prettyprinted, not when the function has 
been copied verbatim to the new file. This can be a problem for file systems. such as Tenex and Tops20~ 
that have a built-in limit on the number of versions of a given file that will be made before old versions 
are expunged. In such a case, the user should set the version retention count of any directories involved 
to be infinite. GETCOMMENT prints an error message if the file that the comment pointer points at has 
'disappeared. 

::iimilarly, one should be cognizant of comment pointers in SYSOUTs. and be sure to retain any files thus 
pointed to. 

When using comment pointers. the user ,should also not set PRETTYFLG (page G.54) to NIL or call 
MAKE FILE with option FAST. since this will prevent functions from being prettyprinted, and hence not 
get the text of the comment copied into the new file. 

If the user changes the value of COMMENTFLG but still wishes to use the comment pointer fearure. 
the new COMMENTFLG should be given the same read-macro definition in FILERDTBL as • has. and 
the same entry be put on PRETTYPRINTMACROS. For example. if COMMENTFLG is reset to be "; '\ 
then (SETSYNTAX '; '. FILERDTBL) should be performed. and (; • PRINTCOMMENT) added to 
PRETTYPRINTMACROS 

6.8.3' Converting Comments to Lower Case 

This section is for users operating on terminals without lower case, e.g. model 33 teletypes. who 
i "evenheless would like their comments to be converted to lower case for more readable line-printer 

.lStings. If the second atom in a comment is %%. the text of the comment is converted to lower case so 
that it looks like English instead of LISP. Note that comments are converted only when they are actually 
written to a file by PRETTYPRINT. 

The algorithm for conversion to lower case is the following: If the first character in an atom is 1', do not 
change the atom (but remove the 1"). If the first character is %. convert the atom to lower case. L6 If the 
atom (minus any trailing punctuation marks) is an Interlisp word. 17 do not change it. OtheIVIise. convert 
the atom to lower case. Conversion only affects the upper case alphabet. i.e .. atoms already convened 
to lower case are not changed if the comment is convened again. When converting, the first character 
in the comment and the first character following each period are left capitalized. After con version. the 
comment is physically modified to be the lower case text minus the %% flag. so that conversion is thus 

15Unless it believes the expression beginning with • is not actually a comment. e.g .. if the next atom is 
.•. '~ or E. 

lijUser must type %% as % is the escape character. 

1 ~i.e .. is a bound or free variable for the function containing the comment. or:bas a top level value. or is 
a defined function. or has a non-N I L property list. . 

6.52 

(j 
( .. 

f' 

\ ) 
( ... ' .. ~ 

." 

c() 



o 
\. ,.-' INPur/OUTPUT 

only performed once (unless the user edits the comment inserting additional upper case text and anot..'1er 
%% flag). 

LCASELST 

UCASELST 

[Variable] 
Words on LCASELST will always be converted to lower case. LCASELST is 
initialized to contain words which are Interlisp functions but also appear frequently 
in comments as English words (A~:D, EVERY, GET, GO, LAST, LENGTH, LIST, etc.). 
Therefore. if one wished to type a comment including the lisp fuction GO. it would 
be necessary to type 'tGO in order that it might be left in upper case. 

[Variable} 
Words on UCASELST (that do not appear on LCASELST) will be left in upper 
case. UCASELST is initialized to NIL. 

0, ABBREVLST [¥ariable1 
ABS REVLST is used to distinguish between abbreviations and words that end in 
periods. Normally, words that end in periods and occur more than halfway t6 the 
right marfin cause carriage-returns. Funhermore. during conversion to lowercase. 
words ending in periods. except for those on ABBREVLST, cause the first character 
in the next word to be capitalized. ABBREVLST is initialized to the upper and 
lower case forms of ETC •• I. E., and E.G •. 

o 

6.8.4 Special Prettyprint Controls 

PRETTYTABFLG 

#RPARS 

FIRSTCOL 

PRETTYLCOM 

#CAREFULCOLUMNS 

[Variable] 
In order to save space on files. tabs are used instead of spaces for the inital spaces 
on each line. assuming that each tab corresponds to 8 spaces. This results in a 
reduction of file size by about 30%. Tabs are not used if PRETTYTA8FLG is set to 
NIL (initially T). 'Il 

[Variable] 
Controls the number of right parentheses necessary for square bracketing to 
occur. If #RPARS=~JIL. no brackets are used. #RPARS is initialized to 4. 

[Variable] 
The starting column for comments. Initial setting is 48. Comments run between 
FIRSTCOL and LIllELEr~GTH. If a word in a comment ends with a "." and 
is not on the list ABBREVLSi, and the position.is greater than halfvvay between 
FIRSTCOL and LINELENGTH. the next word in the comment begins on a new 
line. Also. if a list is encountered in a comment. and the position is greater than 
halfWay. the list begins on a new line. 

[VariableI 
If a comment is bigger (using COUNT) than PRETTYLCOM in size. it is printed 
starting at column 10. instead of F IRSTCOL. PRETTYLCOM is initialized to "14 
(anived at empirically). Comments are also printed starting at column 10 if their 
second element is also a·. i.e .. comments of the form (. • - - ). 

. [Yariabie] 
In the interests of efficiency. PRETTYPRINT approximates the number of characters 

6.53 



Special Prettyprint Controls 

in each atom, rather than calling NCHARS. when computing how much will fit on 
a line. This procedure works satisfactorily in most cases. However, users with. 
unusually long atoms in their programs, e.g .• such as produced by C LIS PI F Y. may 
occasionlly encounter some glitches in the output produced by PRETTYPRINT. The 
value of #CAREFULCOLUMNS tells PRETTYPRINT how many columns (counting 
from the right hand margin) in which to actually compute NCHARS instead of 
approximating. Setting #CAREFULCOLUMNS to 20 or 30 will eliminate the glitches. 
although it will slow down PRETTYPRINT slightly. #CAREFULCOLUMNS is initially 
O. 

(WIDEPAPER FLG) [Function1 
(WIDEPAPER T) sets FILELINELENGTH to 120, FIRSTCOL to 80. and PRETTYLCOM 
to 28. These are useful settings for prettyprinting files to be listed on wide paper. 
(WIDE PAP E R) restores these parameters to their initial values. The value of 
WID EPA PER is irs previous setting. 

PRETTYFLG [Variable] 
If PRETTYFLG is NIL. PRINTDEF uses PRIN2 instead of prettyprinting. This is 
useful for producing a fast symbolic dump (see FAST option of MAKE FILE. page 
11.6). Note that the file loads the same as if it were prettyprinted. PRETTYFLG is 
initially set to T. PRE TTY F LG should not be set to NIL if comment pointers (page 
6.51) are being used. 

CLISP IFYPRETTYFLG [Variable] 
Used to inform PRETTYPRINT to call CLISP I FY on selected function definitions 
before printing them (see page 16.20). 

PRETTYPR INTMACROS [Variable] 
An association-list that enables the user to control the fonnatting of selected 
expressions. CAR of each expression being PRETTY~RINTed is looked up on 
PRETTYPRINTMACROS. and if found. CDR of the corresponding" enu}, is applied 
to the expression. If the result of this application is NIL. PRETTYPRINT ignores 
the expression: i.e.. it prints nothing7 assuming that the preuyprintmacro has 
done any desired printing. If the result of applying the prettyprint :nacro is 
non-N I L. the result is prettyprinted in the normal fashion. This gives the user 
the option of computing some other expression to be prettyprinted in its place. 
PRETTYPRINTMACROS is initially NIL. 

Note: "prettyprinted in the normal fashion" includes processing prettyprint macros. 
unless the prettyprint macro returns a structure E Q to the one it was hande~ in 
Which case the potential recursion is broken. 

P RETTYP-R INTYPEMAC ROS (V mabie) 
A list of elements of the form (TYPENAME • FN). For types other than lists 
and atoms. the type name of each datum to be prettyprinted is looked up on 
PRETTYPRINTYPEMACROS. and if founcL the corresponding function is applied 
to the datum about to be printed. instead of simpiy printing it with P R I N 2. 
PRETTYPRINTYPEMACROS is initially NIL. 

PRETTYEQUIVLST [Variablel 
An association-list that tells PRETTYPRINT to treat a CAR-of-fonn the same 
as some other CAR-of-fonn. For example. if (QLAMBDA . LAMBDA) appe~ 

6.54 



o 
'-...• 

CHANGECHAR 

INPUT/OUTPUT 

on PRETTYEQUIVLST, then expressions beginning with QLAMBDA are pret-. 
typrinted the same as LAMBDAs. PRETTYEQUIVLST is initially NIL. Currently, 
PRETTYEQUIVLST only allows (Le., supports in an interesting way) equivalences 
to forms that PRETTYPRINT internally handles. Equivalence to fonns for which 
the user has specified a prettyprint macro should be made by adding funher entries 
00 PRETTYPRINTMACROS 

[Variable] 
Ifnan-NIL, and PRETTYPRINT is Pr"~ting to a file or display tenninaL PRETTYPRlfl.T 
prints CHANGECHAR in the right hand margin while printing those expressions 
marked by the editor as having been changed (see page 17.22). CHANGECHAR is 
initially I. 

Q;. 6.8.5 Font Package 

PRETTYPRINT contains a facility for printing elements of various classes (user functio~ system functions. 
clisp words. comments. etc.) in different fonts to emphasize (or deemphasize} their imponance. and in 
general to provide for more pleasing printout when printing to a file. Of course. in order to be useful. 
this facility requires that the user has access to a printer which supports multiple fonrs, such as an XGP. 

Prettyprint signals font changes by inserting a user-defined escape sequence, e.g. 1"F1"C meaning change 
to font 3, 1"F-rA change back to font 1. etc. It is convenient if these sequences can consist of control 
characters. because by making these characters. be separator charactors in F ILERDTBL, a file with font 
changes in it can also be loaded back in. Otherwise, the user would have to dump two files, one for 
listing, and one for loading. 

Currently, the user can specify fonts for each of the following eight classes. each different, or the same 
for several classes. 

LAMBDAFOUT The font for printing the name of the function being prettyprinted, before the 
actual definition (usually a large font). 

o CLISPFONT If CLISPFLG is on. the font for printing any clisp words. Le. atoms with property 
CLISPWORD. 

u 

COMMENTFor~T 

USERFONT 

SYSTEMFONT 

CHANGEFONT 

P RETTYCOMF O~JT 

DEFAULTFONT 

The font for everything inside of a comment 

The font for the name of any function in the file. or any member of the list 
F.ONTFNS. 

The font for any other (defined) function. 

The font for anything in an expression marked by the editor as having been 
changed. 

The font used in printing the operand of a file package command. 

The font for everything else. or any of the above classes for which a font is no! 
specified. 

!'iote: the output primitives PRI NT. PRI N 1. etc .. currently do not know about variable width fonts. so 

6.55 



Font Package 

the user may have to experiment to find a compatible (pleasing) set of fontS. Note also that the user does 
not set- LAMBDAFONT, CLISPFONT, et al, but indicates what font to be used by including an appropriate 
entry in FONTPROFILE. FONTSET will then set LAMBDAFONT, CLISPFONT, et al, to a data structure 
that contains the necessary information for perfozming the font change. -

FONTPROFILE [Variable] 
A list of elemenrs of the form (FONTCLASS NIL FONT#:) , 18 where FONTCLASS 

is one of the eight font classes and FONT#: is the font number for that class. it is 
assumed that the user has some way of communicating to the printing device the 
correspondence between font numbers and fonts. For each fo ntc lass. the escape 
sequence consists of FONTESCAPECHAR followed by the character code for the 
font number, i.e. for font number I. 1"A. for font number 2. 1"8. etc. 

If FONT#: is NIL for any fontclass. the DEF AUL TFONT is used.. Note that the 
DEFAULTFONT must be specified or an error is generated. 

The operation of the font package is affected by a large number of parameters .. e.g. FILELINELENGTH, 
LISTF ILESTR etc. plus the various fontnames themselves. To facilitate switching back and forth between 

. various configurations, the font package allows the user to set the various parameters to their desired 
values, and then use the.function FONTNAME to package up and save chis configuration. Subsequently. 
the user invokes this configuration by performing (F 0 N T SET NA.\!E). 

Note that the user may also want to reset FILELINELENGTH (page 23.14), PRETTYLCOM (page 6.53), 
and FIRSTCOL (page 6.53) as a pan of various font configurations. . 

(FONTNAME NAME) [Function] 
Performs some processing on FONTPROF ILE, and then collects names and values 
of variables on FONTDEFSVARS, and saves them on FONTDEFS. 

(FONT SET NAME) [Function] 
Restores font c;t;>nfiguration for NAME. Generates an error if NAME not previously 
defined. 

n .. C·
,--~ 

.' C-) 
(-;0 

1:0NTDEF SVARS . . . . [Variable] (~ 
The list of vanables to be packaged by a FONTNAME • .Iruoally FONTCHANG E f LG. (:"~; \ ) 
FILELINELENGTH. COMMENTLINELENGTH, FIRSTCOL, PRETTYLCOM. LISTFILESTR. \~. 
and fONTPROF ILE. 

FONTESCAPECHAR [Variable] 
The character or string used to signal the Start of a font escape sequence. 

FONTCHANGE F LG [Variable1 
If T, enables fonrs. if NIL. disables fontS. Le. no font changes are performed when 
prettyprinting. 

laThe NIL is a place marker. FONTNAME replaces (RPLACA) CADR when the font configuration is 
defined. 

6.56 

. (\ c··\ -! 



o 

o 

LISTFILESTR 

INPur/OUTPUT 

[Variable] 
Passed to the operating system by LISTFILES (page 1l.9). Can be used to specify 
sub commands to the LIS T command., e.g. to establish correspondance between 
font number and font name. 

COMMENTLINELENGTH [Variable] 
Since comments are usually printed in a smaller font, COMMENTLINELENGTH is 
provided to . offset the fact that Interlisp does not know about font widths. When 
FONTCHANGEFLG= T, CAR of COMMENTLI~JELENGTH is the linelength used to 
print shon comments, i.e. those printed in the right margin. and CD R is the 
line length used when printing full width comments. 

(CHANGEFONT FONTCLASS) [Function) 

FONTDEFS 

6.9 ASKUSER 

Prints the font escape sequence to change to FONTCLASS. Note that FONTCLASS 
is not a font name. so one should use (CHANGE FONT LAMBDAFONT), not 
(CHANGE FONT 'LAMBDAFONT). For use in PRETTYPRI~~TMACROS. 

[Variable] 
The dictionary of font configurations. FONTDEFS is a list of elements of form 
(NAME • PARAMETER-PAlRS). To save a configuration on a file after performing 
a FONTNAME to define it, the user could either save the entire valu,e of FONTDE FS • 

. or simply use an ALISTS file package command (page 11.23) to dump out just the 
one configuration. . 

DWIM. the compiler. the editor. and many other system packages all use ASKUSER. an extremely general 
user interaction package. for their interactions with the us~r at the terminal. ASKUSER takes as its principal 
argument KEYLST which is used to drive the interaction. KEYLST specifies what the user can type at 
any given point, how ASKUSER should respond to the various inputs. what value should be returned by 
ASKUSER. and is also used to present the user at any given point with a list of the possible responses. 
ASKUSER also takes other arguments which permit specifying a wait time. a default value, a message 
to be printed on entry. a Hag indicating whether or not typeahead is to be pennittecL a Hag indicating 
whether the ~tion is to be stored on the history list (page 8.1), a default set of options. and an 
(optional) input file/string. 

6.9.1 Startup Protocol 

Interlisp perrrjts and encourages the user to typeahead: in actual practice. the user frequently does this. 
This presents a problem for ASKUSER. When ASKUSER is entered and there has been typeahead. was 
the input intended for ASKUSE R. or was the interaction unanticipated. and the user simply typing ahead 
to some other program, e.g. the programmer's assistant? Even where there was no typeahead. i.e .. the 
user startS typing afier the call to AS KUS E R. the question remains of whether the user had time to see 
the message from ASKUSE R and react to it or simply began typing ahead at an inauspicious moment. 
Thus. what is needed is an interlock mechanism which warns the user to stOP typing. gives him a chance 
to respond to the warning, and then allows him to begin typing to ASKUSER. 

6.5i 



Startup Protocol 

Therefore, when ASKUSER is first entered. and the interaction is to take place with a tenninal. and 
typeahead to ASKUSE R is not pennitted. the following protocol is observed: 

(1) If there is typeahead. ASKUSE R clears and saves the input buffers and rings the bell to warn the user 
to stop typing. The buffers will be restored when ASKUSE R completes operation and returns. 

(2) If MESS, the message to be printed on entry. is not NIL (the typical case). ASKUSER then prints MESS· 

if it is a string, otherwise CAR of MESS, if MESS is a list. 

(3) After printing MESS or CAR of MESS. ASKUSER waitS until the output has actually been printed on the 
terminal to make sure that the user has actually had a chance to see the output. This also give the user 
a chance to react. ASKUSE R then checks to see if anything additional has been typed in the intervening 
period since it first warned the user in (1). If something has been typed. ASKUSER clears it out and 
again rings the bell. This latter material i.e~ that typed between the entry to ASKUS E R and this point. 
;$ discarded and will not be restored since it is not certain whether the user simply -reacted quickly to 

,_,__ the first warning (bell) and this input is intended for ASKUSER, or whether the user was in the process 
I of typing ahead when the call to ASKUSE R occurred. and did not stop typing at the ·first warning, and 
j therefore this input is a continuation of input intended for another program. 
i. 

Anything typed after (3) is considered to be intended for ASKUSER, Le .• once the user sees MESS or CAR 
of MESS, he is free to respond. For example, UNDO (page 8.11) calls ASKUSER when the number 
of undosaves are exceeded for an event with. MESS= (LIST NUMBER·UNDOSAVES "undosaves. 
con tin u e s a v i n 9 " ). Thus, the user can type a response as soon as NUMBER. UNDOSA YES is typed. 

(4) ASKUSER then types the rest of MESS, if any. 

(5) Then ASKUSER goes into await loop until something is typed. If \.VAIT, the wait time. is not N IL~ 
and nothing is typed in WAlT seconds. ASKUSER will type" ... '. and treat the elements of DEFAULT, 

the default value, as a list of characters. and begin processing them exactly as though they had been 
typed. If the user does type anything within WAIT seconds, he can then wait as long as he likes. i.e., once 
something has been typed. ASKUSER will not use the default value specified in DEFAULT. 

If the user wants to consider his response for more than WAIT seconds. and does not want ASKUSER to 
default. he can type a carriage return or a space, which are ignored if they are not specified as acceptable 

',-_- inputs by KEYLST (see below) and they are the first thing typed. 

If the calling program knows that the user is expecting an interaction with ASKUSER. e.g. another 
interaction preceded this one. it can specify in the call to ASKUSER that typeahead is permitted. In this 
case. ASKUSER simply notes whether there is any typeaheacL 19 then prints .V!ESS and goes into a wait 
loop as described above. 

(6) Finally. if the interaction is not with the terminal. Le .. the optional input file/string is specified. 
ASKUSER simply prints MESS and begins reading from the file/string. 

19ln this case. if the typeahead turns out to contain unacceptable input. ASKUSER will assume that the 
typeahead was not intended for ASKUSER. and will restore the type~ead when it completes operation 
and returns. 

6.58 

c; (: --,-



u -_. 

(J 

INPUT/OUTPUT 

6.9.2 Operation 

All input operations are executed with the terminal table in the variable AS KUS E RTTB L., in which (1) 
(CONTROL· T) has been executed, so that ASKUSER can interact with the user after each character 
is typed; and {2} (ECHOMODE NIL) has been executec1 so that ASKUSER can decide after it reads a 
character whether or not the character should be echoed, and with what, e.g. unacceptable inputs are 
never echoed. 

As each character is typed., it is matched against KEYLST, and appropriate echoing and.! or prompting is 
performed. If the user types an unacceptable character, ASKUSE R simply rings the bell and allows him 
to try again. 

At any point, the user can type 1 and receive a list of acceptable ,responses at that point (generated from 
KEYLST) , or type a control-A, control-Q, control-X, or <deD, which causes ASKUSER.. to reinitialize, and 
start over. 

Note that 1, Control-A, Control-Q, and Conn-ol-X will not work if they are acceptable inputs, Le .• they 
match one of the keys on KEYI..ST. <deD will not work if it is an interrupt character, in which case it is 
not seen by ASKUSER. 

When an acceptable sequence is completed, ASKUSER returns the indicated value. 

6.9.3' Format of KEYLST 

KEYLST is a list of elements of the form (KEY PROMPTSTRING • OPTIONS), where KEY is an atom 
or a string (equivalent), PROMPTSTPJNG is an atom or a string, and OPTIONS a list, of options in 
property list format. The following options are recognized and explained below: KEYLST, CON F I RMF LG .. 
PROMPTCONFIRMFLG. NOCASEFLG. RETURN,EXPLAINSTRING.NOECHO FLG,KEYSTRING.PROMPTON. 
COMPLETEON, AUTOCOMPLETEFLG. If an option is specified in OPTIONS. the value of the option is the 
next element. Otherwise. if the option is specified in OPTIONSLST (the seventh argument to ASKUSE R). 
its value is the next element on OPTIONSLST. Thus. OPTIONSLST can be used to provide default options 
for an entire KEYLST. rather than having to include the option at each leveL If an option does not appear 
on either OPTIONS or OPTIONSLST. itS value is NIL. 

. . 
For convenience, an entry on KEYLST of the form (KEY • ATOM/STRING), can be used as an 
abbreviation for (KEY ATOM/STF.ING CONFIRMFLG T), and an entry of just the fonn "-r,. Le .. a 
non-list. as an abbreviation for (KEY NIL CONF I RMFLG T). 

As each character is reacl it is matched against the currently active keys. ,A character matches a key if it 
is the same character as that in the corresponding position in the key, or. if the character is an alphabetic 
character. if the characters are the same without regard for upper/lower case differences, Le. .. A" matches 
U a" ~d vice versa. 20 In other words. if two characters have already been input and matched. the third 
character is matched with each active key by comparing it with the third character of that key. If the 
character matches with one or more of the keys, the entries on KEYLST corresponding to the remaining 
keys are discarded. If the character does not match with any of the keys. the character is not echoed. and 
a bell is rung instead. . 

20Unless the ~~OCASEFLG option (page 6.62) is T. 

6.59 



Format of KEl:i.ST 

When a key is complete. PROMPTSTRING is printed (N I L is equivalent to u" t the empty string, Le .. nothing 
will be printed). The~ if the value of the CONFIRMFLG option is T. ASKUSER waits for confirmation of 
the key by acr2"l or space. Otherwise, the key does not require confirmation. 

The~ if the value of the KEY LST option is not NIL. its value becomes the new KEYLST. and the process 
recurses. Otherwise, the key is a "leaf." i.e •• it terminates a particular path through the original. top-level 
KEYI..ST, and ASKUSER returns the result of packing all the keys that have been matched and completed 
along the way (unless the RETURN option is used to specify some other value, as described below). 

For example, the following KEYLST is the default KEYLST, Le., is used when ASKUSER is called with 
KEYLST= NIL: { (V "e s cr") (N " 0 Cf'" ) ) 

This KEYLST specifies that if (as soon as) the user types Y (or y), ASKUSERechoes with V, prompts with 
"e s cr'" and returns V as its value. Similarly, if the user types N, ASKUSE R echoes the N, prompts with. 

,J er", and returns N. If the user types?, ASKUSER prints: 

Yes 
No 

to indicate his possible responses. All other inputs are unacceptable, and. ASKUSE R will ring the bell and 
not echo or print anything. 

Here is a more complicated example, the KEYLST used for the compiler questions (page 12.1): 

«ST "ore and redefine" KEYLST ("~ (F . "orgat exprs")} 
(S . "arne as last time") 
(F • "File only") 
(T • "0 terminal") 
1 
2 
(Y .0 "as") 
(N . "0"» 

. "{¥hen ASKUSER is called with this KEYLST, and the user types an S. two keys are matched: ST and S . 
. the user can then type aT. which matches only the S T key, or confirm the S key by typing at!!'" or space. 
If the user confirms the S key. ASKUSER prompts with "arne as last t ima", and returns S as its 
value. (Note that the confuming character is not included in the value.) If the user types aT, ASKUSE R 
prompts with "ore and redafine·'.andmakes("" (F . "orget exprs"»betheneWKEYLST. 
and waits for more input. The user can then type an F. or confirm the u" (which essentially stans out 
with all of its characters matched). If he confirms the ..... ASKUSER returns ST as its value the result of 
packing ST and "". [fhe types F. ASKUSER prompts with "orget exprs", and waits for confirmation 
again. If the user then confirms. ASKUSER returns STF. the result of packing ST and F. 

As mentioned earlier. at any point the user· can type a ? and be prompted wirh the possible responses. 
For example. if the user types S and then? ASKUSER will type: 

STore and redefine Forget exprs 
STore and redefine 
Same as last time 

21c!'" is used throughout the discussion to denote carriage rerum. 

6.60 



o 

INPUT /OUTPUT 

6.9.4 Completing a Key 

The decision about when a key is complete is more complicated than simply whether or not all of its 
characters have been matched. In the example above. all of the characters in the S key are matched as 
soon as the S has been typed. but until the next character is typed, ASKUSE R does not know whether the 
S completes the S key, or is simply the first character in the ST key. Therefore, a key is considered to 
be complete when: 

(1) All of its characters have been matched and it is the only key left. i.e., there are no other keys for 
which this key is a substring; or 

(2) All of its characters have been matched and a confinning character is typed; or 

(3) All of its characters have been matched, and the value of the CON F I RMF LG op'tion is NIL, and the 
value of the KEYLST option is not NIL. ~d the next character matches one of the keys on the value of 
the KEYLST option; or 

(4) There is ouly one key left and a confirming character is typed. Note that if the value ofCONFIRMFLG 
is T, the key still has to be confirmed. regardless of whether or not it is complete. For example, if the 
first entry in the above example were instead 

(ST "ore and .redefine " CONFIRMFLG T KEYLST ("" (F . "orget exprs"» 

and the user wanted to specify the ST F path. he would have to type ST. then confirm before typing F, 
even though the ST completed the ST key by the rule. in case (1). However. he would be prompted with 
"ore and redefine" as soon as he typed the T, and completed the ST key. 

Case (2) says that confirmation can be used to complete a key in the case where it is a substring of another 
key, even where the value ofCONFIRMFLG is NIL. In this case, the cohfuming character doubles as both 
an indicator that the key is complete, and also to confirm it, if necessary. This situation corresponds to 
typing S cr in the above example. 

Case (3) says that if there were another entry whose key was ST X in the above example, so that after 
the user typed ST. two keys, ST and STX, were still active, then typing F would complete the ST key. 
because F matches the (F . "orget exprs") entry on the value of the KEYLST option of the ST 
entry. In this case. "ore and redefine" would be printed before the F was echoed:. 

Finally. case (4) says that the user can use confirmation to specify completion when only one key is left, 
even when all of its characters have not been matched. For example, if the first key in the above example 
were STORE. the user could type ST and then confirm, and ORE would be echoed. followed by whatever 
prompting was specified. In this case, the confirming character also confirms the key if necessa..ry. so that 
no funher action is required, even when the value of CONFI~MFLG is T. 

Case (4) permits the user not to have to type every character in a key when the key is the only one left. 
Even when there are several active keys, the user can type type $ (the ESC key. or on some terminals. 
the key labelled AL T) to specify the next N)O common characters among the currently active keys. The 
effect is exactly the same as though these characters had been typed. If there are no common characters 
in the active keys at thst point. Le. N=O, the S is treated.as an incorrect input. and the bell is rung. 
For exampie. if KEYLST is (CLISPFLG CLISPIFYPACKFLG CLISPIFTRANFLG), and the user types 
C followed by S. ASi(USER will supply the L, I, S. and P. TIle user c;m then type F followed bycr or 
space to complete and confinn CLISPFLG. as per case (4). or type I. followed by $. and ASKUSER will 
supply the F. etc. Note that the characters supplied do not h~lVe to correspond to a tenninal segment of 

6.61 



Options 

any of the keys. Note also that the S does not confirm the key, although it may complete it in the case 
that there is only one key active. 

If the user types a confimling character when several keys are left. the next N>O common characters are 
still suppliecL the same as with $. However, ASKUSER assumes the intent was to complete a key. i.e., 
case (4) is being invoked. Therefore, after supplying the next N characters. the bell is .rung to indicate 
that the operation was not completed. In other words, typing a confirming character has the same effect 
as typing an S in that the next N common characters are supplied. Then, if there is only one key left. 
the key is complete (case 4) and confirmation is not required. If the ~ey is not the only key left. the bell 
is rung. 

6.9.5 Options 

( 

KEYLST When a key is complete, if the value of the KEYLST option is not NIL. this value C ... r.) 
becomes the new KEYLST and the process recurses. Oth~rwise. the key terminates 
a path through the original, top-level KEYI.ST, and ASKUSER returns the indicated 

CONFIRMFLG 

PROMPTCONFIRMFLG 

NOCASEFLG 

RETURN 

value. 

If T. the key must be confumed with either acr or a space. If the value of 
CONFIRMFLG is a list, the confuming character may be any member of the list. 

If T, whenever confinnation is requirecL the user is prompted with the Strh'"lg .. 
["confi rm] ". . . 

If T. says do not perform case independent matching on alphabetic characters. If 
NIL. do perform case independent matching, i.e. •• A" matches with "a" and vice 
versa. 

If non-NIL, EVAL of the value of the RETURN option is returned as the value 
of ASKUSER. Note that different RETURN options can be specified for different 
keys. The variable ANSWER is bound in ASKUSER to the list of keys that have 
been matched. In other words. RETURN (PACK ANS\vER) would be equivalent 
to what ASKUSERnormally does. 

EXPLAINSTRING If the value of the EXPLAIf~STRING option is non-NIL. its value is printed when 
the user types a 1, rather than KEY + PROMPTSTR.ING. EXPLAItJSTRING enables 
more elaborate explanations in response to a 1 than what the user sees when he 
is prompted as a result of simply completing keys. See example below. 

NOECHOFLG . If non-NIL. characters that are matched (or automatically supplied as a result of 
typing S or confirming) are not echoecL nor- is the confuming character. if any. 
The value of NOECHOFLG is automatically NIL when ASKUSER is reading from a 
file or string. The decision about whether or not to echo a character that matches 
several keys is determined by the value of the NOECHOFLG option for the first key. 

Example: one of the entries on the KEYLST used by ADDTOF ILES? (page 11.8) is: 

(] "Nowhere~" NOECHOFLG T 
EXPLAINSTRING "] - nowhere, item is marked as a dummy~") 

6.62 



INPUT /OUTPUT . 

When the user types], ASKUSER just prints "Nowherecr", Le., the] is not echoed.. If the user types? 
the explanation corresponding to this entry will be: 

-
] - nowhere. item is marked as a dummy 

KEYSTRING 

PROMPTON 

COMPLETEON 

If non-N I L, characters that are matched are echoed as though the value of 
KEYSTRING were used in place of the key. KEYSTRING is also used for computing 
the value rerurned. The main reason for this feature is to enable echoing in 
lowercase. 

If non-N I L, PROMPTSTRING is printed only when the key is confirmed with a 
member of the value of PROMPTON. See example below. 

When a confirming character is typed, the N characters that are automatically 
supplied, as specified in case (4), are echoed only when the key is confirmed with 
a member of the value of PROMPTON. 

The PROMPTON and COMPLETEON options enable the user to construct a KEYLST which will cause 
ASKUSER to emulate the action of the TENEX exec. The protocol followed by the TENEX exec is 
that the user can type as many characters as he likes in specifying a command.. The cOII".I;Iland can be 
completed with acr or space, in which case no funher output is fonhcoming. or with a S. in which case 
the rest of the characters in the command are echoed, followed by some prompting information. The 
following KEYLST would handle the TENEX COpy and CONt~ECT comands: 

«COPY" (FILE LIST) " 
PROMPTON (S) 
COMPLETEON ($) 
CONF IRMFLG (S» 

(CONNECT" (TO DIRECTORY) " 
PROMPTON ($) 
COMPLETEON (S) 
CONFIRMFLG ($») 

~~ AUTOCOMPLEiEFLG 

MACROCHARS 

EXPLAIt~DEL IMITER 

If the value of the AUTOCOMPLETEFLG option is not tlIL, ASKUSER will 
automatically supply unambiguous characters whenever it can, i.e .• ASKUSER acts 
as though $ were typed after each character (except that it does not ring the bell 
if there are no unambiguous characters). 

value is a list of dotted pairs of fonn (CHARACTER • FORM). When CHAR..A.CTER 
is typed. and it does not match any of the current keys. FORM is evaluated and 
nothing else happens. i.e. the matching process stays where it is. For example. ? 
could have been implemented using this option. Essentially MACROCHARS provides 
a read macro facility while inside of ASKUSE R (since ASKUSE R does READe's. read 
macros defined via the readtable are never invoked). 

value is what is printed to delimit explanation in response to ? Initially "cr" but 
can be reset. e.g. to '0. ". for more linear output. 

6.63 



Special Keys 

6.9.6 Special Keys 

& can be used as a key to match with any single character~ provided the character does not match with 
some other key at that level. For the purposes of echoing and returning a va1ue~ the effect is the same as 
though the character that were matched actually appeared as the key. 

$ (esc) can be used as a key to match with the result of a single call to READ. For example. if the first 
entry in the TENEX KEYLST above were: 

(COPY" (FILE LIST) " 
PROMPTON ($) 
COMPLETEON ($) 
CONFIRMFLG ($) 
KEYLST «S NIL RETURN ANSWER))) 

then if the user typed COP FOC cr, (COpy FOC) would be returned as the value of ASKUSER. One 
advantage of using S, rather than having the calling program perform the READ. is that the call to READ 
from inside ASKUSER is ERRORSET protecte~ so that the ~er can back out of this pam and reinidalize 
ASKUSER. e.g. to change from a COpy command to a COrJNECT command, simply by typing control-E. 

SS can be used as a key to match with the result of a single call to RfADLINE. 

A list can be used as a key, in which case the list/form is evaluated and its value "matches" the key. 
This fearure is provided priIruuily as an escape hatch for including arbitrary input operations as pan of 
an ASKUSER .sequence. For example. the effect of SS could be achieved simply by using (READLINE T) 
as a key.22 

un can. be used as a key. Since .it has no characters. all of its characters are automatically matched. 
.. " essentially functions as a place marker. For example. one of the entries on the KEYLST used by 
ADDTOFILES? is: 

("" "File/list: " 
EXPLAINSTRING "a file name or name of a function list" 
KEYLST ($» 

Thus, if the user types a character that does not match any of the other keys on the KEYI..ST, then the 
character completes the 04., key, by vinue of case (4), since the character will match with the S in the 
inner KEYLST. ASKUSER then prints "F; 1 e/l i st: .• before echoing the character. then calls READ. 
The character will be read as pan of the READ. The value returned by ASKUSER will be the value of the 
READ. 

(ASKUSE R WAIT DEFAUJ..T MESS KEYLST TYPEAHEAD LISPXPRNTFLG OPTIONSLST FILE) 
[Function} 

WAIT is either NIL or a number (of seconds). DEFAULT is a single character or 
a sequence (list) of characters to be used as the default inputS for the case when 
WAIT is not NIL and more than WAIT seconds elapse without any input. In this 

2!lFor $, SS, or a list. if the last character read by the input operation is a separator. the character is 
treated as a confirming character for the key. However. if the last character is a break character. it will 
be matched againSt the next key. 

6.64 

( ) -c- -----. 

."..--~\ 

C-,,;!'-- ) 

) 
/ 



/ .--,.\ 
",- ~; 

(MAKEKEYLST LST 

INPtIT/OUTPUT 

case. the character(s) from DEFAULT are processed exactly as though they had been 
typed. except that AS KUS E R first types " ... ". 

MESS is the initial message to be printed by ASKUSER. if any, and can be a string, 
or a list. In the latter case, each element of the list is printe~ separated by spaces, 
and temtinated with a " ? ". KEYLST and OPTIONSLST were described earlier. 
TYPEAHEAD is T if the user is pemtined to typeahead a response to ASKUSER. NIL 
means any typeahead should be cleared and saved. LISPXPRNTFLG determines 
whether or not the interaction is to be recorded on the history list. FILE can be 
either NIL (in which case it is set to T), the name of a file, or a string.23 All input 
operations take place from FILE until an unacceptable input is encountered. i.e., 
one that does not conform to the protocol defined by KEYLST. At that point. FII.E 

is set to T, DEFAULT is set to NIL. the input buffer is cleared, and a bell is rung. 
Unacceptable inputs are not echoed.. 

The value of ASKUSER is the result of packing all the keys that were matched. 
unless the RETURN option is specified (page 6.62). 

DEFAULTKEY LCASEFLG -) [Function] 
LST is a list of atoms or strlllgS. MAKEKEYLST returns an ASKUSER KEYLST which 
will permit the user to specify one of the elements on LST by either typing enough 
characters to make the choice unambiguous. or else typing a number between 1 
and Nt where N is the length of LST • 

. For example. if ASKUSER is called with KEYLST = .( MAKEKEYLST '( CONNECT 
SUPPORT COMP ILE», then the user can type C-O-?l. S, C-O-M, 1. 2. or.3 to 
indicate one of the three choices. 

If LCASEFLG=T. then echoing of upper case elements will be in lower case (but 
the value returned will still be one of the elementS of LST). If DEFAULTKEY is 
non-N I L, it will be the last key on the KEYLST. Otherwise. a key which permits 
the user to indicate UNo - none of the above" choices. in which case the value 
returned by ASKUSER will be NIL. 

:.!3If FILE is a string. and all of its characters are read before ASKUSER finishes. FILE wilhbe reset to T. 
and the interaction will continue with ASKUSER reading from the terminal. 

6.65 



Special Keys 

6.66 

~
- . 

.... -
-~,-... ' 

\ 
/ 



o 

CHAPTER 7 

VARIABLE BINDINGS AND THE INTERLISP STACK 

A number of schemes have been used in different implementations of USP for storing the values of 
variables. These include: 

(1) Storing values on an association list paired with the.variable names. 

(2) Storing values on the property list of the atom which is the name of the variable. 
~~" 

:'0)) Storing ;ilues in a special value cell associated with the atom name, putting old values on a pushdown 
. list, and res~o.ring these values when exiting from a function. 

(4) Storing values on a pushdown list. 

Interlisp-lO uses the third scheme. so called "shallow binding". When a function is entere~ the value 
of each variable bound by. the function (function argument) is stored in a value cell associated with that 
variable name. The value that was in the value cell is stored in a block of storage called the basic 
frame for this function call. In addition. on exit from the function each variable must be individually 
unbound: that is. the old value saved in the basic frame must be restored to the value cell Thus there is a 
higher cost for binding and unbinding a variable than in the fourth scheme, "deep binding", However. to 
find the current value of any variable. it is only necessary to access the variable's value cell. thus making 
variable reference considerably cheaper under shallow binding than under deep binding, especially for free 
variables. However. the shallow binding scheme used does require an additional overhead in switching 
contexts when doing "spaghetti stack" operations. . 

- Interlisp-D uses the forth scheme, "deep binding." Every time a function is enterecl a basic frame 
containing the new variab les is put on top of the stack. Therefore, any variable reference requires 

/ .. - "earching the stack for the first instance of that variable, which makes free variable use somewhat more 
~,;xpensive than in a shallow binding scheme. On the other hand, spaghetti stack operations are considerably 

faster. Some other tricks involving copying freely-referenced variables to higher frames on the stack are 
also used to speed up the search. . 

The basic frames are allocated on a stack or pushdown list; for most user purposes. these frames should 
be thought of as containing the variable names associated with the function call. and the current values 
for that frame. The descriptions of th~ stack functions in below are presented from this viewpoint. Both 
interpreted and compiled functions store both the names and values of variables so that interpreted and 
compiled functions are compatible and can be freely intermixe~ i.e.. free variables can be used with 
no SPECVAR declarations necessary. However. it is possible to suppress storing of names in compiled 
functions. either for efficiency or to avoid a c1as~ via a LOCALVAR declaration (see page 12.4). The 
names are also very useful in debugging, for they make possible a complete symbolic backtrace in case 
of error. . 

In addition to the binding information. additional information is associated wit.f1 each function call: access 
infonnation indicating the path to search the basic frames for variab Ie bindings. control information. and 
temporary resuits are also stored on the stack in a block called the frame extension. The interpreter also 
stores information about partially evaluated expressions as described on page 7.10. 

o 7.1 

.( 

c· 

C··:\.·' .. ) .. 



c .. 
The Spaghetti Stack 

7.1 THE SPAGHETTI STACK 

The Bobrow/Wegbreit paper, "A Model and Stack Implementation for Multiple Environments",l describes 
an access and control mechanism more general than the simple pushdown stack. The access and control 
mechanism used by Interlisp is a slightly modified version of the one proposed by Bobrow and Wegbreit. 
This mechanism is called the "spaghetti stack." 

The spaghetti system presents the access and control stack as a data structure composed of "frames." The 
functions described below operate on this structure. These primitives allow user functions to manipulate 
the stack in a machine independent way. Backtracking, coroutines, and more sophisticated control schemes 
can be easily implemented with these primitives. 

(j 

The evaluation of a function requires the allocation of storage to hold the values of its local variables n 
during the computation. In addition to variable binding~ an activation of a function requires a return, _. 
link (indicating where control is to go after the completion of the computation) ·and room for temporaries 
needed during the computation. In the spaghetti system, one "stack" is used for storing all this informatio~ 
but it is best to view this stack as a tree of linked objects called frame extensions (or simply frames). 

A frame extension is a variable sized block of storage containing a frame name, a pointer to some variable 
bindings (the BLINK), and two pointers to other frame extensions (the ALINK and CLINK). In addition 
to these componen~ a frame extension contains other information (such as temporaries and reference 
couIits) that does not interest us here. 

The block of storage holding the variable bindings is called a basic frame. A basic frame is essentially 
an array of pairs, each of which contains a variable name and its value. The reason frame extensions 
point to basic frames (rather than just having them "built in") is so that two frame extensions can share 
a common basic frame. This allows twO processes to communicate via shared variable bindings. 

The chain of frame extensions which can be reached via the successive ALINKs from a given frame is 
called the "access chain" of the frame. The first frame in the access chain is the starting frame. The chain 
through successive CLINKs is called the "control chain". . 

A frame extension completely specifies the variable bindings and control information necessary for the U. J 

~./ evaluation of a function. Whenever a function (or in fact. any form which generally binds local variables) 
is evaluated, it is associated with some frame extension. 

In the beginning there is precisely one frame extension in existence. This is the frame in which the 
top-level call to the interpreter is being run. This frame is called the Htop-Ievel" frame. 

Since precisely one function is being executed at any instant. exactly one frame is distinguished as having 
the "control bubble" in it. This frame is called the active frame. Initially, the top-level frame is the active 
frame. If the computation in the active frame invokes another functio~ a new basic frame and frame 
extension are built. The frame name of this basic frame will be the name of the function being called. 
The ALINK BLINK. and CLINK of the new frame all depend on precisely how the function is invoked.. 
The new function is then run in this new frame by passing control to that frame, i.e .• it is made the active 
frame. 

1 Communications 0/ the AC}'{, Vol. 16. 10. October 1973. 

7.2 
n 



o 
V ARIABLE BINDINGS AND THE INTERLISP STACK 

Once the active computation has been completed. control normally rerurns to the frame pointed to by 
the CLINK of the active frame. That is, the frame in the CLINK becomes the active frame. 

In most cases, the storage associated with the basic frame and frame extension just abandoned can be 
reclaimed. However, it is possible to obtain a pointer to a frame extension and to "hold on" to this 
frame even after it has been exited. This pointer can be used later to run another computation in that 
environment. or even "continue" the exited computation. . 

A separate data type, called a stack pointer, is used for this purpose. A stack pointer is just a cell that 
literally points to a frame extension. Stack pointers print as #ADR/FRAMENAME, e.g., #1, 13636/COND. 
Stack pointers are returned by many of the stack manipulating functions described below. Except for 
cenain abbreviations (such as "the frame with such-and-such a name"), stack pointers are the only way 
the user can reference a frame extension. As long as the user has a stack pointer which references a frame 

,__ extension, that frame extension (and all those that can be reached from it) will not be garbage collected. 

V Note th~ two stack pointers referencing the same frame extension are not nece~y EQ, Le., (EQ 
(STKPOS. 'FOC) (STKPOS 'FOO»=NIL. However, EQP can be used to test if two different stack 
pointers reference the same frame extension (page 2.3). 

It is poSsible to evaluate a form with respect to an access chain other than the current one by using a staCk 
pointer to refer to the head of the access chain desired. Note, however, that this can be very expensive 
when using a shallow binding scheme such as that in Interlisp-10. When evaluating the foIm. since all 
references to variables under the shallow binding scheme go through the variable's value cell the values 
in the value cells must be adjusted to refiect the values appropriate to the desired access chain. This 
is done by changing all the bindings on the current access, chain (all the nam~~alue pairs) so that they 
contain the value current at the time of the call. Then along the new access path. all bindings are made 
to contain the previous value of the variable, and the current value is placed in the value cell. For that 
pan of the access path which is shared by the old and new chain, no work has to be done. The context 
switching time, i.e. the overhead in switching from the current. active, access chain to another one, is 
directly proportional to the size of the two branches that are not shared between the access contexts. This 
cost should be remembered in using generators and corouti:iles (page 7.13). 

°7.2 STACK FUNCITONS 

o 

In the descriptions of the stack functions below, when we refer to an argument as a stack descriptor, we 
mean that it is either a stack pointer or one of the following abbreviations: 

• NIL means the active frame; that is. the frame of the stack function itself. 

• T means the top-level frame. 

• Any other literal atom is equivalent to (STKPOS ATOM -1). 

o A number is equivalent to (STKNTH NUMBER). 

In the stack functions described below, the following errors can occur: Tne error ILLEGAL STACK 
ARG occurs when a stack descriptor is expected and the supplied argument is either not a legal stack 
descriptor (Le .. not a stack pointer. litatom. or number), or is a litatom or number for which there 
is no corresponding stack frame. e.g.. (STKNTH -1 'Faa) where there is no frame named FOO 

7.3 

( ,-
'" 



Stack Functions 

in the active control chain or (STKNTH ..:10 'EVALQT). The error STACK POINTER HAS BEEN 
RELEASED occurs whenever a released stack pointer is supplied as a stack descriptor argument for any 
purpose other than as a stack pointer to re-use. 

Note: The creation of a siIigle stack pointer can. result in the retention of a large amount of stack space. 
Therefore, one should try to release stack pointers when. they are no longer needed. See page 7.10. 

(STKPOS NAME N POS OLDPOS) [Function1 
Returns a stack pointer to the Nth frame wit4 frame name NAME. The search 
begins with (and includes) the frame specified by the stack descriptor pos. The 
search proceeds along the control chain from pos if N is negative, or along the 
access chain if N is positive. If N is NIL. -1 is used. Rerurns a stack pointer to 
the frame if such a frame exists, otherwise returns NIL. If OLDPOS is supplied and 

o 

is a stack pointer. it is reused. If OLDPOS is supplied and is a stack pointer and () 
STKPOS returns NIL. OLDPOS is released. If OLDPOS is not a stack pointer it is -
ignored. 

Note: (STKPOS 'STKPOS) causes an error, ILLEGAL STACK ARG; it is not 
permissible to create a stack pointer to the active frame. 

(STKflTH N POS OLDPOS) [Function] 

(STKNAME pos) 

. Rerums a stack pointer to the Nth frame back from the frame specified by the 
stack descriptor pos. If N is negative, the control chain from pos is followed. If 
N is positive the access chain is followed. If N equals 0, STKNTH returns a stack 
pointer to pos (this provides a way to copy a stack pointer). Returns NIL if there 
are fewer than N frames in the appropriate chain. If OLDPOS is supplied and is a 
stack po~ter, it is reused. If OLDPOS is not a stack pointer it is ignored. 

Note: (STKNTH 0) causes an error. ILLEGAL STACK ARG; it is not possible to 
create a stack pointer to the active frame. 

[Function1 
Rerums the frame name of the frame specified by the stack descriptor POSe 

~;.:) (SETSTKNAME POS NAME) [Function] 
Changes the frame name of the frame specified by pos to be NAME. Returns NAME. 

(STKNTHNAME N pos) [Function] 
Returns the frame name of the ;..Lh frame back from pos. Equivalent to (STKNAME 
(STKNTH N pos» but avoids creation of a stack pointer. 

In summary, STKPOS convertS function names to stack pointers, STKNTH converts numbers to stack 
pointers. STKNA'~E convertS stack pointers to function names, and STKNTHNAMt converts numbers to 
function names. 

(DUMMYFRAMEP pos) [Functio~ 
Rerurns T if the user never wrote a call to the· function at POSt e.g. in Interlisp-10. 
DUMMYFRAMEP is T for ·PROG*LAM, *ENV*, and FOOBLOCK frames (see block 
compiler. page 12.13). 

REALF RAMEP and REALSTKNTH can be used to write functions which manioulate the stack and work on 
either interpreted or compiled code: . 

7.4 

(j 

() 



o 
VARIABLE BINDINGS AND THE INTERLISP STACK 

(REALFRAMEP P~S ~TERPFLG) [Function] 
Returns p~s if p~s is a "real" framey i.e. if p~s is not a dummy frame and pos 
is a frame that does not disappear when compiled (such as CONO): otherwise NIL. 
If INTERPFLG=T y returns p~s if p~s is not a dummy frame. For example, if 
(STK~:AME pos) =COrJDy (REALFRAt.1EP pos) is r!IL~ but (REALFRAMEP pos 
T) is POSe 

(REALSTKNTH N pos INTERPFLG OLDPOS) [Function] 
ReturnS a stack pointer to the Nth (or -Nth) frames for which (REALFRAMEP p~s 
INTERPFLG) is POSe 

The following functions are used for accessing and changing bindings. Some of functions take an 
argument. N, which specifies a particular binding in the basic frame. If N is a literal ato~ it is assumed 
to be the name of a variable bound in the basic frame. If N is a number, it is, assumed to reference the 

0_- Nth binding in the basic frame. The first binding is 1. If the basic frame contains no binding with the 
_. given name or if the number is too large or too small, the error ILLEGAL ARG occurs. 

(STKSCAN VAR IPOS op~s) [Function] 
Searches beginning at !pos for a frame in which a variable named VAR is bound. 
The search follows the access chain. ReOlrns a stack pointer to the frame if found. 
otherwise returns NIL. If OPos is a stack pointer it is reuse~ otherwise it is ignored. 

(FRAMESCAN ATOM POS) [Function] 
Returns the relative position of the binding of ATOM in the basic frame of POSe 

ReturnS NIL if ATOM is not found. . 

(STKARG N POS -) [Function] 
Returns . the value of the binding specified by N in the basic frame of the frame 
specified by the stack dec'.ai.ptor POSe N can be a literal atom or number. 

(STKARGNAME N pos) [Function] 
Returns the name of the binding specified by Ny in the basic frame of the frame 
specified by the stack descriptor POSe N can be a literal atom or number. 

c 

(:J (SETSTKARG N POS VALUE) [Function] C-' 
Sets the value of the binding specified by N in the basic frame of the frame specified ., 
by the stack descriptor POSe N can be a literal atom or a number. Returns value. 

(SET STKARG~JAME N POS NAhm) [Function] 
Sets the NAME of the binding specified by N in the basic frame of the frame 
specified by the stack descriptor pos. N can be a literal atom or a number. Returns 
NAME. 

(STKNARGS p~s -) [Function] 

(VARIABLES pos) 

ReOlrns the number of arguments bound in the basic frame of the frame specified 
by the stack descriptor POSe 

[Function] 
Returns a list of the variables bound at POSe 

As an example of the use of STKNARGS and STKARGNAME. VARIABLES could be 
defined by: 

7.5 



(STKARGS POS -) 

Stack Functions 

(VARIABLES 
[LAMBDA (POS) 

(for N from 1 to (STKNARGS POS) 
collect (STKARGNAME N POS]) 

Returns a list of the values of variables bound at POSe 

(~) 

[Function] 

The following functions are used to evaluate an expression in a different environment. andl or to alter the 
flow of control. 

(ENVEVAL FORM APOS CPOS AFLG CFLG) [Function] 
Evaluates FORM in the environment specified by APOS and cpos. That is. a new 
active frame is created with the frame specified by the stack descriptor .APOS as its (~ 
AUNK. and the frame specified by the stack descriptor CPOS as its CLINK. Then ,) 
FORM is evaluated. If AFLG is not NIL. and APOS is a stack pointer, then APOS 
will be released. Similarly, if CFLG is not NI L. and CPOS is a stack pointer, then 
CPOS will be released. 

(ENVAPPLY FN ARGS APOS CPOS AFLG CFLG) [Function] 
APPLYs FN to ARGS in the environment specified by .APOS and cpos. AFLG and 
CFLG have the same interp~eta.tion as with ENVEVAL. 

(STKEVAL POS FORM FLG -) [Function] 
Evalu~tes FORM in the access environment of the frame specified by the stack 
descriptor POSe If FLG is not NIL and pos is a stack pointer. releases POSe The 
definition of STKEVALis (ENVEVAL FORM POS NIL FLG). 

( STKAPPL Y POS FN ARGS FLG -) [Function] 
Similar to STKEVAL but applies FN to ARGS. 

(RETEVAL POS FORM FLG -) [Function] 
Evaluates FORM in the access environment of the frame specified by the stack _ 
descriptor POS, and then returns from POS "-/lth :hat value. If FLG is not NIL () 
and pos is a stack pointer. then pos is released. The definition of RETEVAL is "'-' 
equivalent to (ENVEVAL FORM POS (STKNTH -1 pos) FLG T). except that 
RETEVAL does not create a stack pointer. 

( RET APPL Y POS FN ARGS FLG -) [Function} 
Similar to RET E V A L except applies FN to ARGS. 

(RETFROM P~S VAL FLG) [Function] 
Return from the frame specified by the stack descriptor POSt with the value VAL. 

If FLG is not N I L~ and P~S is a stack pointer. then pos is released. An attempt to 
RETFROM the top level (e.g., (RETF ROM T» causes an error. I LLEGAL STACK 
ARG. RETFROM can be written in terms of ENVEVAL as follows: 

(RETFROM 
(LAMBDA (POS VAL FLG) 

(ENVEVAL (LIST 'QUOTE VAL) 
NIL 

. (if (STKNTH -1 POS (if FlG then POS» 

7.6 



o 
V ARIABLE BINDINGS AND THE Il'ITERLISP STACK 

else (ERRORX (LIST 19 ~OS») 
NIL 
T») 

(RETTO POS VAL FLO) 
Like RET FROM, except returnS to the frame specified by pos. 

[Function] 

(EVALV VAR pos) [Function] 
Evaluates VAR. where VAH is assumed to be a litatom. in the access environment 
specifed by the stack descriptor POSe If VAR is unbound. EVALV returns 
NOBIND and does not generate an error. ·While EVALV could be defined as 
(ENVEVAL VAH pos) it is in fact a SUBR which is somewhat faster. EVALV 
compiles open when pos=UIL. 

(~5 The following functions and variables are used t~ manipulate stack pointers. 

[Function] (STACK? x) . 

(RELSTK pos) 

(RELSTK? x) 

Returns x if x is a stack pointer. otherwise returns NIL. 

[Function] 
Release the stack pointer pos (see page 7.10). If pos is not a stack pointer. does 
nothing. Returns POSe 

[Function] 
Returns· T is x is a released stack pointer, r: I L otherwise. 

(CLEARSTK FLO) [Function] 

CLEARSTKLST 

NOCLEARSTKLST 

If FLO is NIL. releases all active stack pointers. and returns N 1. L. If FLO is T. 
returns a list of all the active (unreleased) stack pointers. 

[Variable] 
A variable used by top-level EVALQT. Every time EVALQT is· re-entered (e.g .• 
following eITO~ or control-D), CLEARSTKLST is checked. If its value is T, all 
active stack pointers are released using CLEARSTK. If its value is a list. then all 
stack pointers on that list are released. If its value is rJ I L, nothing is released. 
CLEARSTKLST is initially T. . 

[Variable] 
A variable used by top-level EVALQT. If CLEARSTKLST is T (see above) all active 
stack pointers except those on NOCLEARSTKLST are released. NOCLEARSTKLSi 
is initially NIL. 

Thus if one wishes to use multiple environments that survive through control-D. either CLEARSTKLST 
should be set to NIL. or else those stack pointers to be retained should be explicitly added to 
NOCLEARSTKLST. 

( COpy STK POSl POS2) [Function] 
(Interlisp-lO) Copies the stack. including basic· frames. from the frame specified 
by the stack descriptor POSl to the frame specified by the stack descriptor POS2. 

That is. copies the frame extensions and basic frames in the access chain from 
POS2 to POSl (inclusive). POSl must be in the access chain of POS2. Le .. "above·' 
POS2. Returns the new POS2. This provides a way to save an entire environment 

7.7 

( 



( -.' 

(- \ 
(---- ) 
,-~y 

·' 

Stack Functions 

. including variable bindings. 

(MAPDl MAPDLFN MAPDLPOS) [Function] 
StartS at MAPDLPOS and applies MAPDLFN, a function of two arguments, to the 
function name at each frame. and the frame (stack pointer) itself, until the top of 
the stack is reached. Returns NIL. For example, 

[MAPDl (FUNCTION (lAMBDA (X POS) 
(if (IGREATERP (STKNARGS POS) 2) 
then (PRINT X)] 

will print all functions of more than two arguments. 

(SEARCHPDl SRCHFN SRCHPOS) [Function) 
Similar to MAPDl9 except searches tbepushdown list starting at position SRCHPOS 

until it finds a frame for which SRCHFN, a function of two arguments applied to the 
name of the frame and the frame itself. is not NIL. Returns (NAME • FRAME) 

if such a :rame is found. otherwise NIL. 

(BACKTRACE !POS EPOS FLAGS FILE PRINTFN) [Function1 
Performs a backtrace beginning at the frame specified by the stack descriptor !FOS. 

and ending with the frame specified by the stack descriptor EPOS. FLAGS is a 
number in which the options of the BACKTRACE are encoded. If a bit is set, the 
corresponding information is included in the b~ktrace. 

bit 0 - print arguments of non-SUBRs. 

bit 1 - print temporaries of the interpreter. 

bit 2 - print SUBR arguments and local variables. 

bit 3 - omit printing of UNTRACE: and function names. 

bit 4 • follow access chain instead of control chain. 

bit 5 - print temporaries. Le. the blips. 

For example: if FLAGS = 47Q, everything is printed: if FLAGS = 21Q, follows the 
access chain. prints arguments. 

FILE is the file that the backtrace is printed to. FILE must be open. PRINTFN is 
used when printing the values of variables. temporaries, blips, etc. PRINTFN= NIL 
defaults to PRINT. 

(BAKTRACE IPOS EPOS SKlPFNS FLAGS FILE) [Function] 
Prints a backtrace from !POS to SP~S onto FILE. FLAGS specifies the options of 
the backtrace. e.g., do/don't print arguments, do/don't print temporaries of the 
interpreter, etc .• and is the same as for BACKTRACE.2 

2BAKTRACE calls BACKTRACE with a PR1NTFN of SHOWPRI ~~T (page 6.17), so that if SYSPRETTY F LG = T. 
the values will be prettyprinted. 

7.8 

o 

o 

/~ 
I \ 

/ 

() 



o 

."--',,. u-
BAKTRACELST 

VARlABLE BINDINGS AND THE INTERLlSP STACK 

SKIPFNS is a list of functions. As BAKTRACE scans down the stack. the stack name 
of each frame is passed to each function in SKIPFNS. and if any of them rerum 
non-N I L. POS is skipped (including all variables). 

BAKTRACE collapses the sequence of several function calls corresponding to a call 
to a system package into a single "function" using BAKTRACELST as described 
below. For example, any call to the editor is printed as eeEDITOR··, a break is 
printed as aOBREAK··, etc. 

BAKTRACE is used by the Bi, BTV, BTV+, BTV· t and STV 1 commands. with 
FLAGS=O. 1,5,7, and 47Q respectively. 

[Variable] 
Used for .telling BAKTRACE (therefore. the BT, BTV. etc. commands) to abbreviate 
various sequences of function calls on the stack by a single key, e.g. ·-BREAK··, 
··EDITOR··, etc. 

The operation of BAKTRACE and format of BAKTRACELST is described so that the user can add his 
own entries to BAKTRACELST. Each entry on BAKTRACELST is a list of the form (FRAMENAME KEY 
• PATTERN) or (FRAMENA.~ (KEYl • PATTERNl ) '" (KEYN • PATTERNN»)' where a pattern 
is a list of elements that are either atoms. which match a single frame, or lists. which are interpreted 
as a list of alternative patte~ e.g. (PROGN .aBREAK·· EVAL « ERRORSET BREAK1A BREAK1) 
(BREAK1))) 

BAKTRACE operates by scannjng up the stack and, at e~h poin4 comparing the current frame name. with 
the frame n'ames on BAKTRACELST. Le. it does an ASSOC. If the frame name does appear. BAKTRACE 
attempts to match the stack as of that point with (one of) the patterns. If the match is successful 
8AKTRACE prints the corresponding key, and continues with where the match left off. If the frame name 
does not appear, or the match fails, BAKTRACE simply prints the n-ame name and continues with the next 
higher frame (unless the SKIPFNS applied to the frame name are non-NI L as described above). 

Matching is performed by comparing atoms in the pattern with the current frame name. and matching 
lists as patte~ i.e. sequences of function calls. always wor!ting up the stack. For example, either of 

c':-· 

,....~ the sequence of function calls " ... BREAKl BREAKlA ERRORSET EVAL PROGN •.. tt or " ... BREAKl 
U EVAL PROG1~ ... " would match with the sample entry given above, causing **BREAKOO to be printed. (,.~ . 

Special features: 

• The litatom & can be used to match any frame . 

• . The pattern ,,_ .. can be used to match nothing. - is useful for specifying an optional match. e.g. the 
example above could also have been written as (PROGN *·BREAK·· EVAL « ERRORSET BREAK1A) 
-) BREAK1). 

o It is not necessary to provide in the pattern for matching dummy frames, i.e. frames for which 
DUr-1MYFRAMEP (see page 7.4) is true. e.g. in,Interlisp-10. *PROG*LAM, *ENV·, NOLINKDEFl. etc. When 
working on a match, the matcher automatically skips over these frames when they do not match. 

o If a match succeeds and the K-ry is NIL. nothing is printed. For example. (*PROG*LAr-.1 NIL EVALA 
• E NV). This sequence will occur following an error which then causes a break if some of the function's 

7.9 
, '. 



Releasing and Reusing Stack Pointers 

arguments are LOCAL VARS. 

7.3 RELEASING AND REUSIl'lG STACK POIl'ITERS 

The creation of a single stack pointer can result in the retention of a large amount of stack space. 
Furthermore. this space Will not be freed until the next garbage collection, even if the stack pointer is no 
longer being used, unless the stack pointer is explicitly released or reused. If there is sufficient amount 
of stack space tied up in this fashion. a STACK OVERFLOW condition can occur, even in the simplest of 
computations. For this reason. the user should consider releasing a stack pointer when the environment 
referenced by the stack pointer is no longer needed. 

The effects of releasing a stack pointer are: 

(1) The link between the stack pointer and the stack is broken by setting the contents of the stack pointer 
to the £'released mark" (currently unboxed 0). A released stack pointer prints as #ADR/#O . . 
(2) If this stack pointer was the last remaining reference to a frame extension; that is. if no other stack 
pointer references the frame extension and the extension is not contained in the active control or access 
chain. then the extension may be reclaimed., and is reclaimed immediately. The process repeats for the 
access and control chains of the reclaimed extension so that all stack space that was reachable only from 
the released stack pointer is reclaimed. 

A stack pointer may be released using the function RELSTK,1lut there are some cases for which RELSTK 
is not sufficient. For example, if a function contains a call to RETFROM in which a stack pointer was used 
to specify where to return to, it would not be possible to simultaneously release the stack pointer. (A 
REL.STK appearing in the function following the call to RET FROM would not be executed!) To permit 
release of a stack pointer in this situation. the stack functions that relinquish control have optional flag 
arguments to denote whether or not a stack pointer is to be released (AFLG and CFLG). Note that in this 
case releasing the stack pointer will not cause the stack space to be reclaimed immediately because the 
frame referenced by the stack pointer will have become pan of the active environment 

(j 

Another way of avoiding creating new stack pointers is to reuse stack pointers that are no longer needed. (l 
The stack functions that create stack pointers (STKPOS. STKNTH, and STKSCAN) have an optional . 
argument which is a stack pointer to reuse. When a stack pointer is reused, two things happen. First the 
stack pointer is released (see above). Then the pointer to the new frame extension is deposited in the 
stack pointer. The old stack pointer (with its new contents) is the value of the function. Note that L.1.e 
reused stack pointer will be released even if the function does not find the specified frame. 

Note that even if stack pointers are explicitly being released. creation of many stack pointers can cause 
a garbage collection of stack pointer space. Thus. if the user's application requires creating many stack 
pointers. he definitely should take advantage of reusing stack pointers. 

7.4 THE PUSH-DOWN LIST A .. ND THE INTERPRETER 

In addition to the names and values· of arguments for functions. information regarding panially-evaluated 
expressions is kept on the push-down list. For example. consider the following definition c;>f the function 

7.10 
(j 



o V ARIABLE BINDINGS Al'ID THE INTERLISP STACK 

F ACT (intentionally faulty): 

(FACT 
[LAMBDA (~J) 

(COND 
«ZERO? U) 

L) 
(T (ITIMES N (FACT (SUBl U]) 

In evaluating the form (FACT 1), as soon as FACT is entere~ the interpreter begins evaluating the 
implicit ?ROGN following the LAMBDA. The first function entered in this process is CONDo COND begins 
to process its list-of clauses. After calling ZEROP and getting a NIL value~ COND proceeds to the next 
clause and evaluates T. Since T is true. the evaluation of the implicit PROGN that is the consequent of the 
T clause is begun. This requires calling the function ITIMES. However before ITIMES can be calle~ 

(. 

. 0- its argumentS must be evaluated.. The first argument is evaluated by retrieving the current binding of U 
6Tom its value cell; the second involves a re::ursive call to FACT~ and another implicit PROGU, etc. f't. 
Note that at each stage of this process. some portion of an expression has been evaluated, and another 
is awaiting evaluation. The output below (from Interlisp-lO) illustrates this by showing the state of the 
push-down list at the point in the computation of ( FACT 1) when the unbound atom L is reached.. 

"'FACT(1) 
u.b.a. L {in FACT} in «ZEROP N) L) 
(L broken) 
:BTVI 

-TAIL~ (l) 

-ARG1 «(ZERO? N) l) (T (ITIMES N (FACT (SUB1 N»») 
COND . 

-FORM- (COND «ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»») 
-TAIL* «COND «ZEROP N) l) (T (ITIMES N (FACT (SUB1 N»»» 

;--') r~ 0 
U FAcr 

o 

-FORM- (FACT (SUB1 N» 
*FN* ITIMES 
*TAIL* «FACT (SUB1 N») 
*ARGVALo 1 
*FORM- (ITIMES N (FACT (SU81 N») 
*TAIL~ «ITIMES N (FACT (SUB1 N»» 

*ARG1 «(ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»») 
CONO 

*FORMU (CONO «ZERO? N) L) (T (ITIMES N (FACT (SUBl N»») 
~TAIL~ «CONO «ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»»» 

7.11 

" 

(":., 

c-.. 



COO: 

N 1 
FACT 

**TOP** 

The Push-Down List and the Interpreter 

Internal calls to EVAL, e.g., from COND and the interpreter, are marked on the push-down list by a special 
mark or blip which the backtrace prints as * FORM*. The genealogy of * FORM-'s is thus a history of Lt:le 
computation. Other temporary information stored on the stack by the interpreter includes the tail of a 
partially evaluated implicit PROGN (e.g .• a cond clause or lambda expression) and the tail of a partially 
evaluated form (Le., those arguments not yet evaluated), both indicated on the backtrace by - TAl L • , 
the values of arguments that have already been evaluated, indicated by *ARGVAL -, and the names of 
functions waiting to be called, indicated by -FHa. *ARG1,' ", -ARGn are used by the backtrace to 
in:Jicate the (unnamed) arguments to SUBRs. 

p.. Note that a function is not ac~a1ly entered and does not appear on the stack, until its arguments ha\c-J 
IS-j been-evaluated (except for nlambda functions, of course). Also note that the -ARG1, *FORMa, aTAIL'", 

etc. ubindings" comprise the actual working storage. In other words. in the above example, if a (lower) 
function changed the value of the - ARG 1 binding, the COND would continue interpreting the new binding 

1'- -. 

n.eri . 

as a list of COND clauses. Similarly, if the -ARGVAL" binding were changed, the new value would be 
given to ITIMES as its first argument after its second argument had been evaluated, and ITIMES was 
actually called. 

Note that -FORM-, *TAIL-, *ARGVAL-, etc •• do not actually appear as variables on the stack.. Le., 
evaluating -FORM- or calling STKSCAN to search for it will not work. However, the functions BLIPVAL, 
SETBLIPVAL, and BLIPSCAN described below are available for accessing these internal blips. These 
functions currently know about four different types of blips: -

aARGVAL- -

*FORM* 

*TAIL-

the name of a function about to be called 

an argument for a function about to be called 

a form in the process of evaluation 

the tail of a COND clause, implicit PROGr~, PROG, etc. (j 
( B L I PVAL BLIPTn' !POS FLG ) [Function] 

Returns the value of the specified blip of type BLIPTYP. If FLG· is a number N, 
finds the Nth blip of the desired type, searching the control chain beginning at the 
frame specified by the StaCk descriptor IPOS. If FLO is NIL. 1 is used. If FLG is T. 
returns the number of blips of the specified type at IPOS. 

(SETBLIPVAL BLIPTYP IPOS N VAL_) [Function] 
Sets the value of the specified blip of type BLIPTYP. Searches for the Nth blip of 
the desired type. beginning with the frame specified by the stack descriptor IPOS, 
and following the control chain. 

(BLIPSCAN BLIPTYP !pos) [Function} 
Returns a stack pointer to the frame in which a blip of type BLIPTY1' is located. 
Search begins at the frame specified by the stack descriptor !pos and follows the 
control chain. 

(j 
7.12 



0-
V ARIABLE BINDINGS AND THE INTERLISP STAG{ 

7.5 GENERATORS AND CORO~'"ES 

This section describes an application of the spaghetti stack facility to provide mechanisms for creating 
and using simple generators, generalized coroutines, and Conniver style possibility lists. 

7.5.1 Generators 

A generator is like a subroutine except that it retains information about previous times it has been called. 
Some of this state may be data (for example, t..l].e seed in a random number generator), and some may be 
in program state (as in a recursive generator which finds all the atoms in a list structure). For example, 
if LISTGEN is defined as: 

r-\. 
\"-.J'. (LISTGEfd (L) 

o 

o 

{IF L THEN (PRODUCE (CAR L» 
(LIS!GEN (CDR L»» 

we can use the function G ENE RA TOR ( described below) to create a generator that uses LIS T G E N to 
produce the elements of a list one at a time, e.g., 

(SETQ GR (GENERATOR (LISTGEN I(A B C») 

creates a generator. which Cml be called by 

(GE~JERA iE GR) 

to produce as values on successive calls, A. B, C. \Vhen GE~lERATE (not GENERATOR) is called the first 
time, it simply starts evaluating (LISTGEN '( ABC) ). PRODUCE gets called from LISTGEN. and 
pops back up to G ENE RA T E with the indicated value after saving the state. When G ENE RA T E gets called 
a~ it continues from where the last PRODUCE left off. This process continues until finally LISTGEN 
completes anti returns a value (it doesn't matter what it is). GEtJE RATE then returns G R itself as its value, 
so that the program that called G E l~ ERA T E can tell that it is finished, Le., there are no more values to be 
generated. 

(GENERATOR FOR."J## COMVAR##) [NLambda Function] 

(PRODUCE VAL) 

An nlambda function that creates a generator which uses FORM## to compute 
values. GENERATOR returns a generator handle which is represented by a dotted 
pair of stack pointers. 

COMYAR## is optional. [f its value (EVAL of) is a generator handle, the list 
structure and stack pointers will be reused. Otherwise. a new generator handle will 
be constructed. 

G E r~ E RA TOR compiles open. 

[Function] 
USed from within (below) a generator to rerum VAL as the value of the 
corresponding call to GEr~ERAiE. 

( G ENE RA T E HA .. 'IDLE v"!.L) [F unction J 
Restarts the generatOr represented by HANDLE. VAL is returned as the value of 

7.13 

( 

( 



- ___ __ -- t:_/,._ 

Coroutines 

the PRODUCE which last suspended the operation of the generator. When the 
generator runs out of value~ G ENE RA T E returns HANDLE itself. 

Examples: 

The following function will go down recursively through a list structure and produce the atoms in the list 
structure one at a time. 

[lEAVESG {l} 
(if (ATOM l) 
then (PRODUCE l) 
else (lEAVESG (CAR l)} 

(if (CDR l) 
then (lEAVESG {CDR l}] 

The following function prints each of these atoms as it appears. It illustrates how a loop can be set up to 
use a generator. 

(PLEAVESGl (l) 
{PROG (X lHANDlE) 

(SETQ lHANDlE (GENERATOR (lEAVESG l}» 
lP (SETQ X (GENERATE lHANDlE» 

(if (EQ X lHANDlE) 
then (RETURN NIL» 

(PRINT X) 
(GO ~P») 

Note that the loop terminates when the value of the generator is EQ to the dotted pair which is the value 
proq.uced by the call to GENERATOR. A eLISP iterative operator. OUTOF. is provided which makes it 
much easier to write the loop in PlEAVESG1. OUTOF (or outof) can precede a form which is to be 
used as a generator. On each iteration. the iteration variable will be set to successive values rerurned 
by the generator; the loop will be terminated automatically when the generator runs out. TIlerefore. the 
following is equivalent to the above program PlEAVESG1: 

(PLEAVESG2 (l) 
{for X outof (~EAVESG l) do (PRINT x» 

Here is another example; the following form will print the first N atoms. 

(for X outof (MAPATOMS (FUNCTION PRODUCE» 
as I from 1 to N do (PRI~T X}) 

7.5.2 Coroutines 

This package provides facilities for the creation and use of fully general coroutine structures. It uses 
a stack pointer to preserve the state of a coroutine. and allows arbitrary switching between N different 
coroutines, rather than just a call to a generator and return. This package is slightly more efficient than 
the generator package described above, and allows more flexibility on specification of what to do when a 
coroutine terminates. 

7.14 

() 



- .... -_ ... -.. -------------~~--~".-.,.---. -_ .. _ .. _. 

VARIABLE BINDINGS AND THE INTERLlSP STACK 

(COROUTlrJE CALLPTR## COROUTPTR## COROUTFORM## ENDFORM##) 

(RESUME FROMPTR 

[NLambda Function] 
This nlambda function is used to create a coroutine and initialize the linkage. 
CALLPTR## and COROUTPTR## are the names of two variables. which will be 
set to appropriate stack pointers. If the values of CALLPTR## or COROUTPTR,## 
are already stack pointers. the stack pointers will be reused. COROUTFORM## is 
the form which is evaluated to start the coroutine; ENDFORM## is a fonn to be 
evaluated if COROUTFORM## actually returns when it runs out of values. 

COROUTINE compiles open. 

TOPTR VAL) [Function] 
Used to transfer control from one coroutine to another. rnOMPTR should be the 
stack pointer for the current coroutin~ which will be smashed to preserve the 
current state. TOPTR should be the stack pointer which has preserved the state of 
the coroutine to be transferred to. and VAL is the value that is to be returned to 
the latter coroutine as the value of the RESUME which suspended the operation of 
that coroutine. 

For example. the following is the way one might write the lEAVES program using the coroutine package: 

{lEAVESC (l COROUTPTR CALLPTR) 
{if (ATOM l) 

then (RESUME COROUTPTR CALLPTR l) 
else (LEAVESC (CAR L) COROUTPTR CALLPTR) 

(if (CDR L) then (LEAVESC (CDR L) COROUTPTR CALLPTR»» 

A function PLEAVESC which uses LEAVESC can be defined as follows: 

(PLEAVESC (l) 
(bind PLHANDLE LHANDLE 
first (COROUTINE PLHANDLE LHANDLE 

(LEAVESC L LHANOLE PLHANDLE) 

l'~\ (RETFROM 'PLEAVESC» 
~ do {PRINT (RESUME PLHANOLE LHANDLE»» 

By RESUMEing LEAVESC repeatedly, this function will print all the leaves of list L and then return out 
of PLEAVESC via the RETFROM. The RETFROM is necessary to break out of the non-terminating do·loop. 
This was done to illustrate the additional flexibility allowed through the use of ENDFORM##. 

o 

We use two coroutines working on two trees in the example EQlEAVES9 defined below. EQLEAVES tests 
to see whether two trees have the same leaf set in the same order. e.g •• {EQLEAVES • (A B C) • (A B 
( C ) » is uue. -

(EQLEAVES (ll L2) 
(bind lHANDLEl LHANOLE2 PE ELl EL2 
first (COROUTINE PE LHANOLEI (LEAVESC Ll LHANDLEI PE) 'NO-MORE) 

(COROUTINE PE LHANOLE2 (LEAVESC L2 LHANDLE2 PE) 'NO-MORE) 
do (SETQ ELI (RESUME PE LHANOLE1» 

(SETQ EL2 (RESUME PE LHANOLE2» 
(if (NEQ ELI EL2) 
then (RETURN NIL» 

7.15 

c .. 

( .. ; 



Possibilities Lists 

repeatuntil (EQ ELI 'NO-MORE) 
finally (RETURN T») 

7 .5.3 Possibilities Lists 

A possibilities list is the interface between a generator and a consumer. The possibilities list is initialized 
by a call to POSSIBILITIES. and elements are obtained from it by using TRYNEXT. By using the 
spaghetti stack to maintain separate environments. this package allows a regime in which a generator can 
put a few items in a possibilities list, suspend itself until they have been consumed, and be subsequently 
aroused and generate some more. 

(POSSIBILITIES FORM##) [NLambda Function] 
This nlambda function is used for the initial creation of a possibilities list. FORM#:# 
will be evaluated to create the list. It should use the functions NOTE and AU
REVOIR described below to generate possibilities. Normally. one would set some 
variable to the possibilities list which is returned, so it can be used later. e.g.: 

(SETQ PLIST (POSSIBILITIES (GENERFN Vl V2») . 

. POSSIBILITIES compiles open. 

(NOTE VAL LSTFLG) [Function] 
Used ·within a generator to put items on the possibilities list being generated. If 
LSTFLG is. equal to iN I L. VAL is treated as a single item. I~ LSTFLG is non-N I L. 
then the list VAL is NCONCed on the end of the possibilities list. Note that it 
is perfectly reasonable to create a possibilities list using a second generator. and 
NOTE that list as possibilities for the current generator with LSTFLG equal to T. 
The lower generator will be resumed at the appropriate point 

(AU-REVOIR VAL##) [NoSpread Function] 

CJ 

o 

Puts VAL#:# on the possibilities list if it is given. and then suspends the generator 
and returns to the consumer in such a fashion that control will return to t.l1e 
generator at the AU-REVOIR if the consumer exhausts the possibilities lisr.. () 

- -- ./ 

(ADIEU VAL:#:#) 

(TRYNEXT PLST## 

Note: NIL is not put on the· possibilities list unless it is explicitly given as an 
argument to AU-REVOIR. Le .• (AU-REVOIR) and (AU-REVOIR NIL) are not 
the same. AU-REVOIR and ADIEU are lambda nospreads to enable them to 
distinguish these two cases. 

~oSpread Function1 
Like AU-REVOIR except releases the generator instead of suspending it. 

ENDFORM## VAL=#:#) [NLambda Function} 
This nlambda function allows a consumer to use a possibilities list. It removes 
the first item from the possibilities list named by PLST## (Le. PLST## must 
be an atom whose value -is a possiblities list). and returns that item. provided it 
is not a generator handle. If a generator handle is encountered.. the generator is 
reawakened. When it returns a possibilities list. this list is added to the front of the 
current list When a call to TRYNEXT causes a generator to be awakened.. VAL## 
is returned as the value of the AU-REVOIR which put that generator to sleep. If 
PLST## is empty. it evaluates ENDFORM## in the caller's environment 

7.16 
(j 



o 

o 

o 

() 

V ARIABLE BINDINGS .-\!'fO THE INTERLISP STACK 

TRY NEXT compiles open. 

(CLEANPOSLST PLST) _ [Function] 
This function is provided to rele3Se any ~~k pointers which may be left in the 
PLST which was not used to exhaustion. 

For example. FIB is a generator for fibonnaci numbers. It ~~ out by NOTEing its two arguments. then 
suspends itself. Thereafter, on being re-awakeneci. it will NOTE two more terms in the series and suspends 
again. PRINTFIB uses FIB to print the first -N fibonacci numbers. 

[FIB (F1 FZ) 
(do (PJOTE F 1 ) 

(r~OTE F2) 
(SETQ F1 (.IPLUS 
(SETQ F2 (IPLUS 
(AU-REVOIR)] 

F1 F2» 
F1 F2» 

Note that this AU-REVOIR just suspends the generator and adds nothing to the possibilities list except 
the generator. • 

[PRINTFIB (N) 
(PROG «FL (POSSIBILITIES (FIB a 1»» 

(RPTQ N (PRINT (TRYNEXT FL») 
(CLEANPOSLST FL)] 

Note that FIB itself will never terminate. 

7.17 

( 

c··· 



(j 
Possjbiliti~s Lists 

(~ 
7.18 



o 

o 

CHAPTER 8 

THE PROGRAMMER'S ASSIST ~l 

8.1 INTRODUCTION 

With any interactive computer language, the user interacts with the system through an uexecutive", which 
interpretS -and executes typed-in commands. In most implementations of Lisp, the executive is a simple 
"read-eval-print" loop, which repeatedly reads a Lisp expressio~ evaluates it, and prints out the value of 
the expression. Interlisp has an executive which allows a much greater range of inpu~ other than just 
regular Interlisp expressions. 

In particular, the Interlisp executive implements a facility known as the "programmer's assistant" (or 
"p.a."). The central idea of the programmer's assw..ant is that the user is addressing an active intermediary, 
namely his assistant. Normally, the assistant is invisible to the user. and simply carries out the user's • 
requests. However. the assistant remembers what the user has done, so the user can give commands to 

. repezt a panicular operation or sequence of operations, with possible modifications. or. to undo the effect 
of specified operations. Like DW1M, the programmer's assistant embodies an approach to system design 
whose uitimate goal is to construct an environment t..'1at "cooperates" with the user in the development of 
his progr'cUIlS. and frees him to concentrate more fully on the conceptual difficulties and creative aspects 
of the problem at hand. 

We will first discuss the various input fOImars, then the use of commands to the programmer's assistant, 
and finally how to modify the programmer's assistant for specialized uses. 

o 8.1.1 Input Formats 

0 

The Interlisp executive accepts inputs in the following formats: 

(1) A single litatom, followed by a carriage-rerum. The value of the litatom is returned. For the purposes 
of this discussion. we will call this EVALV-format. 

(2) A reguiar Interlisp expression. beginning with a left parenthesis or square bracket and terminated by 
a matching right parenthesis or square bracket A right bracket matches any number of left parentheses~ 
back to the last left bracket or the entire expression. Such an input is known as an 'lEV AL-format" inpu~ 
since the form is simply passed to EVAL for evaluation. Notice that it is not necessary to type a carriage 
rerum at the end of such a form: Interlisp will supply one automatically. If a carriage-return is typed 
before the final matching right parenthesis or bracke~ it is treated as a space, and input continues. The 
following examples are all interpreted the same: 

+-( PLUS' 1 (TIMES 2 3) ) 

+-(PLUS 1 (TIMES 2 3] 

8.1 



+-( PLUS 1 (TIMES c" 

2 3] 

Examples 

(3) Often., the user. typing at the keyboard, calls functions with constant argument values. which would 
have to be quoted if the user typed it in "EV AL-format". For convience. if the user types a litatom 
immediately followed by a list form. the litatom is AP P L Yed to the elements within the list.. unevaluated. , 
For example, typing LOAD( FOO) is equivalent to typing (LOAD • FOO), and GETPROP( X COLOR) is 
equivalent to (. GETPROP 'X 'COLOR). The input is terminated by the matching right parenthesis or 
bracket. We will call such input uAPPLY-format." APPLY-format input is useful in some situations .. '"but 
note that it may produce unexpected results when an nlambda function is called that explicitly evaluates 
its arguments. For example, typing SETQ{ FOO BAR) will set FOa to the value of BAR, not to BAR itself • 

.. However, there are times when a user does not want to ternrinate the input when a closing parenthesis 
" typed - especially when giving a command to the programmer's assistant. This leads us to our fourth 

(ormat. 

(4) A sequence of litatoms cu:d lists beginning with a litatom and a space (to distinguish it from APPLY· 
format), terminated by a carriage rerurn or an extra right parenthesis or bracket. If a list is terminated 
then Interlisp will type a carriage-return and " ... " to indicate that funher input will be accepted. The 
user can type funher expressions or terminate the whole expression by a carriage-rerum. 

Once the input is terminated. the programmer's assistant decides how to e~""'·~:tte the expression. This 
determination relies on a heuristic that says "If there is only expressio:". ~.3sume EV AL V -format. 
If there are two expressio~, ~en assume APPLY-format. If there are ~ ... ~ ..,.- more expressions. then 
assume EV AL-format." The following inputs are examples of this rule: 

+-FOO<space) C~ 
same as FOOC" - EV ALV-Jormat 

+-LIST (A B) 
c" 

same as LIST(A B) - APPLY-Ionnat 

·---PLUS (TIMES 2 3) 
. . . 1 c;" 

same as (PLUS (TIJ{ES 2 3) l) - EVAL-jonnal 

8.1.2 Examples 

So far. we have dealt only with how the executive instructs Interlisp to evaluate input. However. the same 
scheme also allows the user to give commands directly to the programmer's assistant. In fact. in each 
of the above cases, it is first determined whether the initial litatom is a command to the programmer's 
assistant. If so. the normal lisp evaluation process is bypassed. Note that this means that a function or 
variable with the same name as a programmer's assistant command will not be evaluated (in the normal 
lisp sense) if it is the first litatom of an expression input to the executive. 

The programmer's assistant facility features the use of memory structures called "history lists.·' A his(Qry 
list is a list of the information associated with each of the individual ·'events'· that have occurred in the 

8.2 

o 
( 

(~ 
\, ). 

\: .. :./ .. 



Q 
THE PROGRA1\1J\.1ER'S ASSISTANT 

system, where each event corresponds to one user input. Associated with each event on the history list is 
the input and its value, plus other optional information such as side-effects~ formatting information. etc. 

The following dialogue, taken from an acrual session at the terminal, contains illustrative (but not 
necessarily useful) examples and gives the flavor of the programmer's assistant facility in Interlisp. The 
number before each prompt is the "event number" (see page 8.26). 

12+-(SETQ Faa 5) 
5 
13+-(SETQ Faa 10) 
(Faa reset) 
10 

The p.a. notices that the user has reset the value of FOO and infonns the user. 

14+-UNOO 
SETQ . .undone. 
15+-FOOel" 
5 

This is the first example of direct communication with the p.a. The user has said to UNDO the previous 
input to the executive. 

25+-SET(LSTl (A B C» 
(A B C) 
2S+-(SETQ LST2 '(0 E F» 
(0 E F) 
27+-(FOR X IN LST1 DO (REMPROP X 'MYPROP] 
NIL o 'The user asked to remove the property MYPROP from the atoms A. B. and C. Now lets assume that is not 

o 

what he wanted to do. but rather use the elements of LST2 . 

2S'-UfdOO FOR 
FOR undone. 

First he undoes the REMPROP. by undoing the iterative statement. Notice the UNDO accepted an 
"argument. •• although in this case UN DO by itself would be sufficient. . 
29'-USE LST2 FOR LSTl IN 27 
NIL 

The user just instructed to go back to event number 27 and substitut~ LST2 for LSTI and then reexecute 
the expression. The user could have also specified· 2 instead of 27 to specify a relative address. 

8.3 



Examples 

47~(PUTHASH 'FOO (MKSTRING 'FOO) MYHASHARRAY) 
"FOO" 

If M KSTRING was a computationally expensive /unction (which it is no!), then the user might be cacheing 
its value for later use. 

48~USE FIE FUM FOE FOR Faa IN MKSTRING 
"FIE" 
"FUM" 
"FOE" 

The user now decides he would like to redo the PUTHASH several times with different values. He specifies 
the event by ··IN },tIKSTRING" rather than PUTHASH. 

~.9..~?? USE 

48 __ USE FIE FUM FOE FOR FOO IN MKSTRING 
~(PUTHASH 'QUOTE FI~) (MKSTRING (QUOTE FIE» MYHASHARRAY) 
"FIE" 
~(PUTHASH (QUOTE FUM) (MKSTRING (QUOTE FUM) ) MYHASHARRAY) 
"FUM" " 
+-(PUTHASH (QUOTE FOE) (MKSTRING (QUOTE FOE» MYHASHARRAY) 
"FOE" 

Here we see the user ask the p.a. (using the ?? command) what it has on its history list for the last input 
to the executive. Since the event con-esponds to a programmer's assistant command that evaluates several 
forms, these forms are saved as the input. although the user's actual input. the p.a. command. is also saved 
in order to clarify the printout of that event. 

As stated earlier. the most common interaction with the programmer's assistant occurs at the top level 
read-eval-print loop, or in a break. where the user types in expressions for evaluation. and sees the values 
printed out. In this mode. the assistant acts much like a standard Lisp executive. except that before 

.- attempting to evaluate an input, the assistant first stores it in a new entry on the history list. Thus if 
.he operation is aboned or causes an error. the input is still saved and available for modification and/or (~" 

. .'"-- reexecution. The assistant also notes new functions and variables to be added to its spelling lists to enable ~~." 
future corrections. Then the assistant executes the computation (i.e .• evaluates the fOIm or applies the 
function to its arguments). saves the value in the entry on the history list corresponding to the input, and 
prints the result. followed by a prompt character to indicate it is again ready for input. 

If the input typed by the user is recognized as a p.a. "command. the assistant takes special action. 
Commands such as UNDO and ?? are immediately penormed. Commands that involved reexecutiQn of 
previous inputs. such as REDO and USE. are achieved by computing the corresponding input expression(s} 
and then unreading them. The effect of this unreading operation is to cause the assistant's input routine. 
LISPXREAD. to act exactly as though these expressions were typed in by the user. These expressions are 
processed exactly as though they had been typed. except that they are not saved on new and separate 
entries on the history ·list. but associated with the history command that generated them. 

The net effect of this implementation of the programmer's assistant is to provide a facility which is easiJ.y 
inserted at many levels. and embodies a consistent set of commands and conventions for talking about 
past events. This gives the user the subjective feeling that a single agent is watching everything he does 
and says, and is always available to help. 

8.4 

n 
'- /~"; ,-"-



o 
'( 

o 

THE PROGRAl\1l\1ER'S ASSISTANT 

8.2 PROGRAMMER'S ASSISTANT COMMANDS 

The programmer's assistant recognizes a number of comrilan~ which usually refer to past events on the 
history list. These commands are treated specially; for example, they may not be put on the history list.. 

Note: If the user defines a function by the same name as a p.a. command, a warning message is printed 
to remind him that the p.a. command interpretation will take precedence for type-in. 

All programmer's assistant commands use the same conventions and syntax for indicating which event 
or events on the history list the command refers to, even though different commands may be concerned 
with different aspects of the corresponding event(s), e.g., side-effec~ value, input. etc. Therefore, before 
dis..~sing the various p.a. commands, tIle following section d~..cribes the types of event specificztions 
currently implemented. 

8.2.1 Event Specification 

An event address identifies one event on the history list. It consists of a sequence of "commands" for 
moving an imaginary cursor up or down the history list. much in the manner of the arguments to the 
@ break command (see page 9.3). The event identified is the one "under" the imaginary cursor when 
there are no more commands. (If any command fails, an error is generated and the history command is 
aboned.) For example, the event address 42 refers to the event with event number 4~ 42 Faa refers to 
the first event (searching back from event 42) whose input contains the word. FOO, and 42 FOO -1 refers 
to the event preceeding that event. Usually, an event address will contain only one or two commands. 

Most of the event address commands perfoI!Il searches for events which satisfy some condition. Unless 
the ~ command is given (see below), this search always goes backwards through the history list from the 
most recent event specified to the oldest Note that each sear-~ skips the current event For e~ample. if 
F 00 refers to event N, F 00 FIE will refer to some event before event N, even if there is a FIE in event 
N. 

The event address commands are interpreted as follows: 

N (an integer) 

~LITATOM' 

F 

If N is the first command in an event address, refers to the event with event number 
N. Otherwise, refers to the event N events forward (in direction of increasing event 
number). If N is negative, it always refers to the event -N events backwards. 

For example, -1 refers to the previous event 42 refers to event number 42 (if 
the first command in an event address), and 42 3 refers to the event with event 
number 45. 

Specifies the iast event with an APPLY-format inpqt whose junction matches 
LITATOM. 

Note: There must not be a space between ~ and LITATOM. 

Specifies that the next search is to go forward instead of backward~ If given as the 
first event address command. L.1.e next search begins with last (oldest) event on the 
history list. . 

I'> 

Specifies that the next object in the event address is to be searched for. regardless 

8.5 



= 

\ 

SUCHTHAT PRED 

PAT 

Event Specification 

of what it is. For example~ F -2 looks for an event containing -2. 

Specifies that the next object (presumably a pattern) is to be matched against the 
values of events, instead of the inputs. 

Specifies the event last located. 

Specifies an--event for which the function PRED returns true. PRED should be a 
function of two argumen~ the input portion of the event. and the event itself. See 
page 8.25 for a discussion of the format of events on the history list. 

Any other event address command specifies an event whose input contains an 
expression that match.es PAT as described in page 17.13. 

The matching is performed by the function HISTORYMATCH (page 8.33), which is (') 
initially defined to call EOITFINDP but can be advised or redefined for specialized '- /-,. 
applications. . \,. 

Note: Symbols used below of the form EVe1ltAdd9Of: •• i refer to event addresses. described above. Since an 
event address may contain multiple wor~ the . event address is parsed by searching for the words which 
delimit it. For example. in FROM EventAddru.I THRU Evel1tAddres.~ the symbol EVe1ltAddreu1 corresponds 
to all words between FROM and THRU in the event specificatian~ and EventAddrtn.2 to all words from THRU 
to the end of the event specification. 

FROM EVl!11tAddreul THRU EventAddres.2 
EventAddreuI TH RU EventAddrea2 

Specifies the sequence of events from the event with address EventAddre •• I through 
the event with address EventAddreu2' For example, FROM 47 THRU 49 specifies 
events 47, 48. and 49. EventAddreal can be more recent than EventAddrf!U2o For 
example, FROM 49 THRU 47 specifies events 49, 48, and 47 (note reversal of 
order)_ 

FROM EventAddreal TO EventAddres.2. 

EventAddreuI TO EVeJltAddre •• 2 
Sam~ as T H R U but does not include event EventAdcires.2" 

FROM EventAddreul Same as FROM Event.Addres.l THRU -1. For example, if the current event is 
number 53, then FROM 49 specifies events 49, 50, 51. and 52. 

THRU EVeJltAddrea2 Same as FROM -1 THRU Even tA ddrea2_ For example. if the current event is 
number 53. then TH RU 49 specifies events 52. 51 50. and 49 (note reversal of 
order)_ 

TO EventAddreu2 Same as FROM -1 TO EventAddre"2_ 

empty 

Specifies all events satisfying EventAddres.l_ For example, ALL LOAD. ALL 
SUCHTHAT FOO. 

If nothing is specifiecL it is the same as specifying -1. 

Note: In the special case that the last event was an UNDO. it is the same as 
specifying - 2. For example. if the user types (NCONC F 00 FIE). he can then 
type UNDO. followed by USE rJCONC 1. 

8.6 



·0 
'- .' 

0·· 
--.. .. 

THE PROGRAM1VIER'S ASSISTANT 

EventSpecl. AND EVfUltSpec2 AND ••. AND EventSpecN 

Each of the EventSpecj is an event specification. The lists of events are concatenated. 
For example, FROM 30 THRU 32 AND 35 THRU 37 is the same as 30 AND 31 
AND 32 AND 35 AND 36 AND 37. 

@ LITATC1.f 

@@ EventSpec 

If LITATOM is the name of a command defined via the NAME command (page 8.12), 
specifies the event(s) defining LITATOM. 

EventSpec is an event specification interpreted as above, but with respect to the 
archived history list (see page 8.13). 

If no events can be found that satisfy the event specification, spelling correction on each word in the event 
specification is performed using LISPXFIr~DSPLST as the spelling list. For example, REDO 3 THRUU 
6 will work correctly. If the event specification still fails to specify any events after spelling correction, 
.an error is generate~ 

·8.2.2 Commands 

All programmer's assistant commands can be input as list forms. or as lines (see page 8.30). For example, 
typing REDO 5 cr and (REDO 5) are equivalent. . 

EventSpec is used to denote an event specification. Unless specified otherwise, omitting EVClltSpec is the 
same as specifying EventSpec=-l. For example, REPO and REDO -1 are the same. 

REDO E'VelltSplJc [Frog. Asst. Command] 
Redoes the event or events specified by E'Ve!ltSpec. For example, REDO FROM -3 
redoes the last three events. 

REDO EvezltSpec N TIMES [prog. Asst. Command] 
Redoes the event or events specified by E'VelltSpec N times. For example, REDO 10 
TIMES redoes the last event ten times. 

[). REDO EventSpec WH I LE FORM [Prog. Asst. Command] 
~. Redoes the specified events as long as the value of FORM is true. FORM is evaluated 

before each iteration so if its initial value is NIL, nothing will happen. 

o 

REDO E'Ve!ltSpec Ur~TIL FOP.!! [Frog. Asst. Command] 
Same as REDO EventSpec WHILE (~OT FORM). 

REPEAT EventSpec [prog. Asst. Command] 
Same as REDO EventSpec WHILE T. The event(s) are repeated until an error occurs, 
or the user types control-E or control-D. 

REPEAT E.-entSpec WHILE FORM 

REPEAT EventSpec UNTIL FORM 

Same as REDO. 

[prog. Asst. Command] 
[prog. Asst. Command] 

, For all history commands that perform multiple repetitions. the variable REDOCNT is initialized to 0 and 
incremented each iteration. If the event tern-jnates gracefully, i.e .. is not aborted by an error or control-D. 
the number of iterations is printed. 

8.7 

;. 



I, 

RETRY EV'fUltSpee 

Commands 

[Prog. Asst. Command] 
Similar to REDO except sets HELPCLOCK (page 9.11) so that any errors that occur 
while executing EvtmCSpee will cause breaks. 

US E EXPRS FOR ARGS IN EventSpec [prog. Asst. Command] 
Substitutes EXPRS for ARGS in EventSpec., and redoes the result. Substitution is 
done by ESUBST (page 17.57), and is carried out as described below. EXPp.s and 
ARGS can include non-atomic members. 

For example, USE LOG (MINUS X) FOR Ar~TILOG X IN -2 AND -1 will 
substitute LOG for every occurrence of ANTILOG in the previous two events. and 
substinlte (MIliUS X) for every occurrence of X, and reexecute them. Note that 
these substitutions do not change the information saved about these events on ttle 
history list. (\, 

\ J 

Any expression to be substituted can be preceded by a !, meaning that the'---('" 
expression is to be substituted as a segmen~ e.g., LIST (A Be) followed by USE 
1 (X Y Z) FOR B will produce LIST(A X Y Z C)9 and USE ! NIL FOR B 
will produce LIST (A C). 

If IN EventSpec is omitted.. the first member of ARGS is used for EventSpec. For 
example9 USE PUTO FOR @UTD is equivalent to USE PUTO FOR @UTD IN F 
@UTD. The F is insened to handle correctly the case where the first member of 
ARGS could be interpreted as an event address command. 

US E EXPRS I N E~tSpec [Prog. As5t. Command] 
If ARGS are omitted.. and the event referred to was itself a USE command. the 
arguments and expression substituted into are the same as for the indicated US E 
command. In effect, this USE command is thus a continuation of the previous USE 
command. For example. following USE X FOR Y IN 50. typing USE Z IN -1 
is equivalent to USE Z FOR Y IN 50. 

If ARGS are omitted and the event referred to was not a USE ccmman<i substitution 
is for the "operator' in that command. For example ARGLIST (FF) followed by 
USE CALLS IN -1 is equivalent to USE CALLS FOR ARGLIST IN -1. 

If IN EvenCSpec is omitted. it is the same as specifying IN -1. 

USE EXPP..51 FOR ARGSl AND .•• AND EXPRSN FOR ARGSN IN EvelltSpec 

[Prog. Asst. Command1 
More general form of US E command. See description of the substitution algorithm 
below. 

Note: The USE command is parsed by a small finite state parser to. distinguish the 
expressions and arguments. For example, USE FOR FOR AND AND AND FOR 
FOR will be parsed correctly. 

Every US E command involves three pieces of information: the expressions to be substituteci the arguments 
to be substituted. ror. and an event specification. which defines the input expression in which the substitution 
take·s place. If the US E command has the same number of expressions as arguments. the substitution 

8.8 

n. 
\ .. ~~~ 



() 
\:: 

THE PROGRAMMER'S ASSIST.L\NT 

procedure is straightforward} For example, USE X Y FOR U V means substitute X for U and Y for v, 
and is equivalent to USE X FOR U AND Y FOR V. However, the USE command also pemtits distributive 
substitutions. for substituting several expressions for the same argument. For example, US E ABC FOR 
X means first substitute A for X then substitute B for X (in a new copy of the expression), then substitute 
C for X. The effect is the sanle as three separate USE cOIl".mancis. Similarly, USE ABC FOR 0 AND X 
Y Z FOR W is equivalent to USE A FOR D AND X FOR \'1. followed by USE B FOR 0 AUD Y FOR 
W, followed by USE C FOR D AND Z FOR oW. USE ABC FOR D AND X FOR Y also corresponds 
to three substitions. the first with A for 0 and X for Y, the second with B for 0, and X for Y. and the third 
with C for D. and again X for Y. However, USE ABC FOR 0 AND X Y FOR Z is ambiguous and will 
cause an error. Essentially, the USE command operates by proceeding from left to right handling each 
uAND" separately. Whenever the number of expressions exceeds the number of expressions available, 
multiple USE expressions are generated.. Thus USE ABC 0 FOR E F means substiOlte A for E at the 
same time as substlmting B for F, then in another copy of the indicated expression, substitute C for E 

() and 0 for F. Note that this is also equivalent to USE A C FOR E AND B 0 FOR F. 

VARS [Prog. Asst. Command] 
Similar to USE except substitutes for the (first) operand. 

For example. EXPRP( FOO) followed by ... FIE FUM is equivalent to USE FIE 
FUM FOR FOO. 

Note: In the following discussion. $ is used to represent the character <esc>. since this is how <esc> is 
echoed. 

S x FOR yIN Eve:JtSpee [Frog. Asst. Conu;n~d] 

s y x IN Evel1tSpec 

$ is a special form of t..lJ.~ USE command for conveniently specifying character 
substitutions in litatoms or strings. In addition, it has a number of useful properties 
in connection with events that involve errors (see below). 

Equivalent to USE SXS FOR $YS Ir~ EventSpec., which will do a character 
substiOltion of the characters in x for the characters in Y. 

For example, if the user types MOVD( FOO FOOSAVE T), he can then type S FIE 
FOR FOO IN MOVe to perform MOVD ( FIE F I ESAVE T). Note that USE FIE 
FOR FOO would perform MOVD( FIE FOOSAVE T). 

$ y TO x If~ EventSpec 

$ Y = x IN EventSpec 

S y - > x IN EventSpec 

[Prog. Asst. Command} 
[prog. Asst. Command] 
[prog. Asst. Command] 
[prog. Asst. Command] 

Abbreviated forms of U.~e $ command: 
which changes 1'5 to xs. 

the same as $ x FOR yIN EveneSpec.. 

S does event location the same as the USE command.. i.e., if IN EventSpec is not specified.. $ searches for 
y. However. unlike USE. $ can only be used to specify one substitution at a time. After $ finds the even~ 
it looks to see if an error was involved in that even~ and if the indicated character substitution can be 
performed in the object of the error message. called the offender. If so, $ assumes the substitution refers 

lExcept when one of the argumentS and one of the expressions are the same. e.g .. USE X Y FO~ Y X. 
or USE X FOR Y AND Y FOR X. This siruation is noticed when parsing the command, "and handled 

/) correctly. 

',,--/ 
8.9 



Commands 

to the offender, performs the indicated character substitution in the offender only, and then substitutes the 
result for the original offender throughout the event. For example, suppose the user types CPRETTYOE F 

j FOOFNS I FOO FOOOVARS) causing a U.8. A. FOOOVARS error message. The user can now type S 
00 0, which will change FOOOVARS to FOOVARS, but nol change FOOFNS or FOO. 

If an error did occur in the specified event. the user can also omit specifying the object of the substitution. 
Y, in which case the offender itself is used. Thus, the user could have corrected the above example by 
simply typing S FOOVARS. Since ESUBST is used for performing the substitution (see page 17.57), S can 
be used in x to refer to the characters in Y. For example, if the user types LOAD( PRSTRUC PROP), 
causing the error FILE NOT FOUND PRSTRUC, he can request the file to be loaded from LISP's 
directory by simply typing S <LISP>S. This is equivalent to performing (R PRSTRUC <LISP>S) on 
the event, and therefore replaces PRSTRUC by <LISP>PRSTRUC. 

Cl 
(-
'-.-

_ Note that $ never searches for an error. Thus, if the user types LOAD( PRSTRUC PROP) causing a FILE (') 
'lOT FOUND error, types CLOSEALL( ), and then types S <LISP>S. LISPX will complain that there is \ / 
no error in CLOSEALL(). In this case, the user would have to type S <LISP>S IN LO~D, or S PRS --(" I 

<LISP>PRS (which would cause a search for PRS). 

Note also that S operates on input., not on programs. If the user types FOO( ), and within the call to FOO 
gets aU. D. F. CONDO error, he cannOl repair this by S CONDo LISPX will type CONDO NOT FOUND 
I.N FOO{). 

F I X EveJltSpec [Prog. Asst. Command] 
Envokes the default program editor (Dedit or the teletype editor) on a copy of the 

, input(s) for EVe!1tSpec. Whenever the user exits via OK. the result is unread and 
reexecuted exactly as with REDO. 

F I X is provided for those cases when the modifications to the input(s) are not simple substitutions of the 
type that can be specified by USE. For example, if the default editor is the teletype editor, then: 

~(DEFINEQ FOO (LAMBDA (X) (FIXSPELL SPELLINGS2 X 70] 
INCORRECT DEFINING FORM 
FOO 
""FIX 

- £OIT 
.p 
(OEFINEQ FOC (LAMBDA & &) 
*(LI 2) 
.p 
(OEFINEQ (FOa &») 
·OK 
(FOO) 
~ 

Tne user can also specify the edit command(s) to LISP X. by typing - followed by the command(s) after 
the event specification. e.g., F I X - (L I 2). In this case, the editor will not type ED I T ,or wait for an 
OK after executing the commands. 

Note: F I X calls the editor on the "input sequence" of an event. adjusting the editor so it is initially 
editing the expression typed.. However. the entire input sequence is being edited. so it is possibie to give 
editor commands that examine this suucture funher. For more information on the format of an event's 
input, see page 8.25. 

8.10 



o 

o 

o 

71 EventSpec 

UNDO EventSpec 

TIlE PROGRAMrvtER'S ASSISTANT 

[prog. Asst. Command1 
Prints the specified events from the history list. If EVe!ltSpec is omitted. ?? prints 
the entire history list. beginning with most recent events. Otherwise ?? prints only 
those events specified in EventSpec (in the order specified). For example, ?? -1, 
11 10 THRU 15, e~. 

For each event specified. 11 prints the event number, the prompt, the input line(s), 
and the value(s). If the event input was a p.a. command that "unread" some other 
input lines, the p.a. command is printed without a preceding prompt. to show that 
they are not stored as the input, and the input lines are printed with prompts. 

Events are initially stored on the history list with their value field equal to the 
character "bell" (control-G). Thefore, if an operation fails to complete for any 
reason, e.g., causes an error, is aborted. e~., ? 1 will print a bell as its "value". 

1 1 commands are· not entered on the history list. and so do not affect relative 
event numbers. In other wor~ an event specification of -1 typed following a ?? 
command will refer to the event immediately preceding the ?? cOIIllI!and. 

11 is implemented via the function PRIrlTHISTORY, page 8.35, which can also be 
called directly by the user. Printing is performed via the function SHOWPRIN2 (page 
6.17), so that if tt;e value of SY S PRE TTY F LG = T. events will be prettyprinted. 

[?rog. Asst. Command] 
Undoes the side effects of the specified events. For each event undone. UNDO 
prints a message: RPLACA UNDONE, REDO UNDONE etc. If nothing is ·undone 
because nothing was saved, UNDO types NOTHING SAVED. If nothing was undone 
because the event(s) were already undone, UNDO types ALREADY UNDONE. 

If EventSpee is not give~ UNDO searches back for the last event that contained side 
'IS effects, was not undone, and itself was not an UNDO command. Note that the 

user can undo UNDO commands themselves by specifying the corresponding event 
address, e.g~ Ur~DO -7 or UriDO UNDO. 

In order to restore all pointers correctly, the user should UNDO events in the reverse order from which 
they were executed. For example, to undo all the side effects of the last five events, perform UNDO 
THRU -5, not UNDO FROM -5. Undoing out of order may have unforseen effects if the operations 
are dependent. For example, if the user performed (rJCONCl FOa FIE). followed by (NCONCl FOO 
FUM). and then undoes the (NCONCl FOO FIE). he will also have undone the (flCONCl FOa FUM). 
If he then undoes the (NCONC1 FOO FUM), he will cause the FIE to reappear, by virrue of restoring 
Foa to its state before the execution of (NCONC 1 FOa FUM). For more details, see page 8.23. 

UNDO EvelltSpec : Xl ••• xN [prog. Asst. Command] 
Each Xj is a pattern that is matched to a message printed by D\VIM in the event(s) 
specified by EventSpee. The side effects of the corresponding DWIM corrections, 
and only those side effects, are undone. 

For example, if DWIM printed the message PRINTT [IN FDD] -) PRINT, 
then UNDO : PRI~JTT or UNDO : PRINT would undo the correction. 

Some portions of the messages printed by DWUvl are strings. e.g., the message 
FOa UNSAVED is printed by printing FOO and then" UNSAVED". Therefore, if 

8.11 



Commands 

the user types UNDO : UNSAVED, the DWIM correction wUl not be found. He 
should instead type Uf~Da : FOa or UNDO SUNSAVEDS «eSC>UNSAVED<esc>. 
see R command in editor. page 17.35). 

NAME LITATOM EVfUltSpec [prog. Asst. Command] 
Saves the event(s) (including side effects) specified by EYeIltSpec on the propeny list 
of LITATOM (under the property HISTORY). For example, NAME FOa 10 THRU 
15. NAME commands are undoable. 

Events saved on a litatom can be retrieved with the event specification @ LITATOM. 
For example, 11 @ FOO, REDO @ FOO, etc. 

Commands defined by NAME can also be typed in directly as though they were 
built-in commands, e.g., FOOC1' is equivalent to REDO @ FOO. However, if FOO is 
the name of a variable, it would be evaluated. Le~ F 00 <:1' would return the. value (~t-
ofFOO. ~ 

Commands defined by NAME can also be defined to take arguments: 

NAME LITATOM (ARG1 ••• ARGN ) : EventSpec [prog. Asst. Command] 
NAME LITATOM ARG1 ••• ARGN' : EventSpec [Frog. Asst. Command] 

The arguments ARGi are interpreted the same as the arguments for a US E command. 
When LITATOM is invoked, the argument values are substituted for ARG1 .•• ARGN 
using the same.substitution algorithm as for USE. 

NAME FOC EV'elJtSpec is equivalent to NAME FOO : E"nzltSpec. In either case, if 
F 00 is invoked with arguments, an error is generated. 

For example, following the event (PUTe 'FOO (COpy (GETPROP 'FIE 'EXPR»), the user types 
NAME MOVE FOC FIE : PUTD. Then typing MOVE TEST1 TEST2 would cause (PUTe I TEST1 
(COpy (GETPROP 'TEST2 'EXPR») to be executed. Le., would be equivalent to typing USE TEST 1 
TEST2 FOR FCO FIE IN MOVE. Typing MOVE ABC e would cause two PUTD's to be executed. 
Note that! '5 and S's can also be employed the same as with USE. For example~ if following 

~PREPINDEX«MANUAL)14LISP.XGP) 

~FIXFILE«MANUAL>14LISP.XGPIDX) 

the user perfonned NAME FOO $14$ : -2 AND -1, then FCC $15$ would perform the indicated two 
operations with 14 replaced by 15. 

RETRIEVE LITATOM [prog. Asst. Command] 
Retrieves and reenters on the history list the events named by LITATOM. Causes 
an error if LITATOM was not named by a NAME command. 

For example. if the user performs NAME FOa 10 THRU 15. and at some ~e later types RETRIEVE 
. FOO. 6 new events will be recorded on the history list (whether or not the corresponding events have been 

forgotten yet). Note that RE TR I EVE does not reexecute the events. it simply retrieves them. The user 
can then REDO. UNDO. FIX, ere. any or all of these events. Note that the user can combine the effects 
of a RETR I EVE and a subsequent history command in a single operation. e.g .. REDO FOO is equivalent 
to RETRIEVE Faa. followed by an appropriate REDO. Actually. REDO FOO is better than RETRIEVE 
followed by REDO since in the latter case. U.~e corresponding events would be entered on the history list 
twice. once for th.e RETR I EVE and once for the REDO. Note that UNDO FOO and?? FOO are permitted. 

8.12 

r~ 
\. j'--

... ~. 



-~. 

THE PROGRAMMER'S ASSISTANT 

BE FOR E LI'I'ATOM [Prog. Asst. Command] 
Undoes the effects of the events named by LI'I'ATOM. 

AFTE R LI'!'.ATOM [prog. Asst. Command] 
Undoes a BEFORE LlTATOM. 

BEFORE and AFTER provide a convenient way of flipping back and forth between two state~ nameiy 
the state before a specified event or events were executed, and that st2.te after execution. For example. if 
the user has a complex data structure which he wants to be able to interrogate before and after certain 
modifications, he can execute the modifications, name the corresponding events with the NAME command., 
and then can tum these modifications off and on via BEFORE or AFTER commands. Both BEFORE and 
AFTER are no-ops if the LZTATOM was already in the corresponding state; both generate errors if LITATOM 

was not named by a NAME command. 

i0 The alternative to BEFORE and AFTER for repeated switching back and forth involves typing UNDO. UNDO 
of the UNDO, UNDO of that etc. At each stage, the user would have to locate the correct event to undo. 
and furthermore would run the risk of that event being "forgotten" if he did not switch at least once per 
time-slice. 

(J 

(J 

Note: Since UNDO. tJAME. RETRIEVE, BEFORE, and AFTER are recorded as inputs they can be referenced 
by REDO. USE, etc. in the normal way. However, the user must again remember that the context in 
which the command is reexecuted is different than the original context. For example. if the user types 
NAME FOO OEF INEQ THRU COMP ILE, then types. .• F IE. the input that will be reread will be NAME 
FIE DEFlrJEQ-THRU COMPILE as was h.,tendecL but both DEFINEQ and COMPILE. will· refer to the 
most recent event containing those atoms. namely the event consisting of NAME FOO DEFINEQ THRU 
COMPILE. 

ARCH IVE EVe:ltSpec 

FORGET EventSpec 

[?rog. Asst. Command] 
Records the events specified by EVe1ltSpec: on a permanent history list. This history 
list can be referenced by preceding a standard event specification with @@. For 
example, 11 @@ prints the archived history list, REDO @@ -1 will recover L.~e 

corresponding event from the archived histOry list and redo it, etc. 

The user can also provide for automatic archiving of selected events by appropriately 
defining ARCHIVEFr~, or by putting the property -ARCHIVE-, value T, on the 
event Events that are referenced by history commands are automatically marked 
for archiving in this fashion (See page 8.19). 

[Prog. Asst. Command] 
Permanently erases the record of the side effects for the events specified by EventSpec. 

If EVe1ltSpec is omitted. forgets side effects for entire history list. 

FORGET is provided for users with space problems. For example. if the user has just 
performed SETs. RPLACAs. RPlACDs, PUTD, REMPROPs, etc. to release storage. 
the old pointers would not be garbage collected until the corresponding events age 
sufficiently to drop off the end of the history list and be forgotten. F 0 RG E T can 
be used to force i.nL"TIediate forgetting (of the side-effects only). F 0 RG E T is not 
undoable (obviously). 

REMEMB E R EventSpec [prog. Asst. Command.} 
Instructs L.~e file package to "remember" Lt)e events specified by EventSpec. These 
events will be marked as changed objects of file package type EXPRESSIONS. which 

8.13 



PL LITATOM 

PB LIT-ATOM 

FOR.\! 

SHH FOR.\! 

Commands 

can be written out via the file package command P. For example. after the user 
types: 

~MOVO?(OELFILE IDELFILE) 
OELFILE 
"REMEMBER -1 
(MOVO? (QUOTE DELFILE) (QUOTE IDELFILE» .. 
If the user calls FILES?, MAKEFILES, or CLEANUP, the command (P (MOVD?· 
(QUOTE OELFILE) (QUOTE IDELFILE») will be constructed by the file 
package and added to the filecoms indicated by the user, unless the user has 
already explicitly added the corresponding expression to some P command himself. 

~ 

Note that "remembering" an event like (PUTPROP 'FOO 'CLISPTYPE EXPRESSION)~ ). 
will not result in a (PROP CLISPTYPE FOC) command. because this will save \...~ 
the current (at the time of the MA KEF I L E) value for the C LIS P TY P E property, 
which mayor may not be EXPRESSION. Thus, even if there is a P RC P command 
which saves the CLISPTYPE property for FOO in some FILECOMS. remembering 
this event will still require a (P (PUTPROP 'FOC 'CLISPTYPE EXPRESSION» 
command to appear.: 

[prog. Asst. Command] 
"Print Property List.'· Prints out the property list of LITATOM in a nir.e fotmat. 
with PRINTLEVEL reset to (Z • 3). For example .. 

~PL + 
CLISPTYPE: 
ACCESSFNS: 

12 
(PLUS IPLUS FPLUS) 

PL is implemented via the function PRINTPROPS. 

[prog. Asst. Command] 
"Print Bindings." Prints the value of LITAT01.~ wi:h PRINTLEVEL reset to (2 • 
3). If LITATOM is not bound.. does not attempt spelling correction or generate an 
error. PB is implemented via the function PRINTBINDINGS. 

PB is also a break command (page 9.5). As a break command. it ascends the stack 
and. for each frame in which LlTATOM is bound. prints the frame name and value 
of L1TATOM. If typed in to the programmer's assistant when not at the top level 
e.g. in the editor. a lower US ERE X E C. etc .• PB will also ascend the stack as it does 
with a break. However. as a programmer's assistant command. it is primarily used 
to examine the top level value of a variable that mayor may not be bound. or to 
examine a variable whose value is a large list. 

[prog. Asst. Command] 
Allows the user to type aline of text without having the programmer's assistant 
process it Useful when linked to other users. or to annotate a dribble file (page 
6.12). 

[prog. Asst. Command] 
Allows the user to evaluate an expression without having the programmer's assistant 

8.14 
C) 



o 

o· 

o 

THE PROGRAi\1l\1ER~S ASSIST~-r 

process it or record it on a history list. Useful when one wants to bypass a 
programmer's assistant command or to keep the evaluation off the history list. 

EXEC [prog. Asst. Command] 
(Interlisp-lO) Calls SUBSYS (page 22.21) to descend to lower exec. 

Rather than start up a new fork each time the user types EX E C. the EX E C command 
will save the old fork handle upon return from an EX E C comman~ an~ if the fork 
handle is still active, reuse it for the next EXEC comman~ Le. an EXEC followed 
by another EXEC is equivalent to an EXEC followed by a COr~TIN. 

CONTIr~ [prog. Asst. Command] 
(Interlisp-lO) Performs (SUBSYS T) to continue the last call to SUBSYS (page 
22.21). 

TYPE-AHEAD [Prog. Asst. Command] 
A cOlIlII'.and that allows the user to type-ahead an indefinite number of inputs. 

The assistant responds to TYPE-AHEAD with a prompt character of >. The user can now type in an 
indefinite number of lines of input, under ERRORSET protection. The input lines are saved and unread 
when th.e user exits the type-ahead loop with the command SGO « esc >GO). While in the type-ahead loop, 
11 can be used to print the type-ahead, FIX to edit the type-ahead, and SQ «esc>Q) to erase the last 
input (may be used repeatedly). The TYPE-AHEAD command may be aboned by SSTOP «esc>STOP); 
control-E simply aborts the current line of input. 

.. 
For example: 

"'TYPE-AHEAD 
>SYSOUT(TEM) 
)MAKEFILE(EDIT) 
>BRECOMPILE«(EDIT WEDIT» 
)F 
)SQ 
\\F 
)SQ 
\\BRECOMPILE 
>LOAD(WEDIT PROP) 
)BRECOMPILE«EDIT WEOTT» 
>F 
>MAKEFILE(BREAK) 
)LISTFILES(EDIT BREAK) 
>SYSOUT (CURRErJT) 
>LOGOUTJ 
)11 

>S'lSCUT(TEM) 
>MAKEFILE(EDIT) 
>lOAD(WEDIT PROP) 
>BRECOMPILE((EDIT WEDIT») 
>F 
>MAKEFILE(BREAK) 
>LISTFILES(EDIT BREAK) 
>S'(SQUT (CURREr~T) 

8.15 



>FIX 
EDIT 

>LOGOUT] 

Commands 

-(R BRECOMPILE BCOMPL) 
-p 
«LOGOUT) (SYSOUT &) (LISTFIL.ES Bt) (MAKEFILE &) (F) (BCOMPL &) 
(LOAD &) (MAKEFIlE &) (SYSOUT &» 
-(DELETE LOAD) 
~OK 
>$GO 

Note that type-ahead can be addressed to the compiler. since it uses LISPXREAD for input. Type-ahead 
can a1s~ be directed to the editor. but type-ahead to the editor and to LISPX cannot be intermixed. 

The following are some useful functions and variables: 

(VALUEOF LINE) 

IT 

concrol-U 

[NLambda NoSpread Function1 
An nlambda function for obtaining the value of a particular event. e.g •• (VALUE 0 F 
-1), (VALUEOF +-FOO - 2). The value of an event consisting of several operations 
is a list of the values for each of the individual operations. 

Note: The value field of a history entry is initialized to bell (control-G). Thus a 
value of bell indicates that the corresponding operation did not complete. i.e •• was 
aborted or caused an error (or else it returned. bell). 

Note: Although the input for VALUEOF is entered on the history list before 
VALUEOF is called. (VALUEOF -1) still refers to the value of the expression 
immediately before the VALUEOF input. because VALUEOF effectively backs the 
history list up one entry when it r~trieves the specified event. Similarly, (V A LU E 0 F 
FOO) will find the first event before this one that contains a FOO. 

[Variable] 
The value of the variable IT is always the value of the last event executed. i.e. 
(VALUEOF -1). For example, 

+-(SQRT 2) 
1.414214 
"'(SQRT IT) 
1.189207 

If the last event was a multiple event. e.g. REDO -3 THRU -1, IT is set to value 
of the last of these events. Following a ?? command. IT is set to value of the last 
event printed. In other words. in all cases, I T is set to the last value printed on 
the temrinal. 

When typed in at any point during an input being read by LISPXREAD, pem,its 
the user to edit the input before it is returned to the calling function. 

Note: control-N for Interlisp on TOPS-20. 

This feature is useful for correcting mistakes noticed in typing before the input is executed. instead of 
waiting till after execution and then performing an UNDO and a F IX. For example. if the user types 

8.16 

(j. 
. '-.;.. 



, ; 

THE PROGRAl\11\1ER'S ASSISTANT 

U( DEF If~EQ FOO (LAMBDA (X) (FIXSPELL X" and at that point notices the missing left parenthesi~ 
instead of completing the input and allowing the error to occur, and then fixing the input, 'he can simply 
type control-U. and finish typing normally. Control-U can be typed at any point, even in the middle of 
an atom; it simply sets a variable checked by LISPXREAD. 

When the line is finished. the editor is-called on (OEF Ir~EQ FOO (LAMBDA (X) (F IXSPELL X .•• ], 
which the user can then fix. If the user exits from the editor via OK, the (corrected) expression will be 
returned to whoever called LISPXREAD exactly as though it had been typed. If the user exits via STOP, 
the expression is returned so that it can be stored on the history list. However it will not be executed. In 
other words, the effect is the same as though the user had typed control-E at exactly the right instant. 

Control-U also works for calls to READLIr~E (page 8.30), i.e., for line commands. 

O'~" 8.2.3 P_!J,... Commands Applied t~ P.A. Commands 

o 

Programmer's assistant commands that unread expressions, such as REDO, USE, etc. do not appear in 
the input portion of events, although they are stored elsewhere in the event. They do not interfere with 
or affect the searching operations of event specifications. As a result, p.a. commands themselves cannot 
be recovered for execution in the normal way. For example, if the user types USE ABC FOR 0 and 
follows this with USE E FOR 0, he will not produce the effect of USE ABC FOR E, but instead will 
simply cause E to be substituted for 0 in the last event containing a D. To produce the desired effect. the 
user shnuld type USE 0 FOR E IN USE. The appearance of the word REDO, USE or FIX in an event 
address specifies a search for the corresponding programmer's assistant command. It also specifies that 
the text of the programmer's assistant command itself be treated as though it were the input. However. 
the user must remember that the context in which a history command is reexecuted is that of the current 
history, not the original context. For example, if the user types USE FOO FOR FIE IN -1. and then 
later types REDO USE. the -1 will refer to the event before the REDO, not before the USE. 

The one exception to the statement that programmer's assistant commands "do not interfere with or 
affect the searching operations of event specifications" occurs when a p.a. command fails to produce 
any input. For example, suppose the user types USE LOG FOR ANTILOG Ar~D AtJTILOG FOR LOGG, 
mispelling the second LOG. This will cause an error, LOGG ? Since the USE command did not produce 
any input. the user can repair it by typing USE LOG FOR LOGG. without having to specify IN USE. 
This latter USE command will invoke a search for LOGG, which will find the bad USE command. The 
programmer's assistant then perfoIlIlS the indicated substitution. and unreads USE LOG FOR ANTILOG 
AND AUTILOG FOR LOG. In tu~ this USE command invokes a search for ANTILOG, which, because it 
was not typed in but rereacl ignores the bad US E command which was found by the earlier search for 
LOGG. and which is still on the history list. In other words. p.a. commands that fail to produce input 
are visible to, searches arising from event specifications typed in by the user. but not to secondary event 
specifications. 

In addition, if the most recent event is a history command which failed to produce input, a secondary 
event specification will effectively back up the history list one event so that relative event numbers for 
that event specification will not count the bad p.a. command. For example. suppose the user types 
USE LOG FOR AtJTILOG AND ANTILOG FOR LOGG IN -2 .. ~riD -1. and after the p.a. types LOGG 
?, the user types USE LOG FOR LOGG. He thus causes t.t'1e cornmand USE LOG FOR ANTILOG AND 
ANTI LOG FOR LOG IN -2 AND -1 to be constructed and unread.. In the normal case. -1 would refer 
to the last event. Le .. the "bad" USE command. and - 2 to me event before it However. in this case. -1 
refers to the event before the bad USE corr..mand. and the -2 to the event before LL"lat. In shon. the caveat 
above l1lat ""the user must remember that the context in which a history command is reexecuted is that of 

8.17 



Changing .The Programmer's Assistant 

the current history, not the original context" does not apply if the correction is performed immediately. 

8.3 CH..-\i'lGING THE PROGRAL~IER'S ASSIST.-\J.Vf 

(CHANGESLICE N HISTORY -) [Function] 
Changes the time-slice of the history list HISTORY to N (see page 8.25). If HISTORY 

is NIL. changes both the top level history list LI S P X HIS TOR Y and the edit history 
list EOITHISTORY. 

Note: The effect of increasing the time-slice is gradual: the history list is simply 
allowed to grow to the corresponding length before any events are forgotten. 
Decreasing the time-slice will immediately remove a sufficient number of the older 
events to bring the history list down to the proper size. However. CHANGESLICE is 
undoable, so that these events are (temporarily) recoverable. Therefore, if the user 
wants to recover the storage associated with these events without waiting N more 
events until the CHANGESLICE event drops oft· the history list. he must perform a 
FORGET command (page 8.13). 

PROMPT#FLG [Variable] 
When this variable is set to T, the current event number to be printed before each 
prompt character. See PROMPTCHAR, page 8.31. PROMPT#FLG is initially T. 

PROMPTCHARFORMS . [Variable] 
The value of PROMPTCHARFORMS is a list of expression which are evaluated 
each time PROMPT CHAR (page 8.31) is called to print the prompt character. If 
PROMPTCHAR is going to print something, it first maps down PROMPTCHARFORMS 
evaluating each expression under an ERRORSET. 

These expressions can access the special variables HISTORY (the current history 
list), ID (the prompt character to be printed), and PROMPTSTR. which is what 
PROMPTCHAR will print before 10, if anything. When PROMPT#FLG is T, 
PROMPTSTR will be the event number. The expressions on PROMPTCHARFORMS 
can change the shape of a cursor, update a clock. check for mail. etc~ or change 
what PROMPTCHAR is about to print by resetting 10 and/or PROMPTSTR. After the 
expressions on PROMPTCHARFORMS have been evaluated. PROMPTSTR is printed 
if it is (still) ncn-N I L, and tJ.'1en IO is printed. if it is (still) non-N I L. . 

HISTORYSAVEFORMS (Variable] 
The value of HISTORYSAVEFORMS is a list of expressions that are evaluated under 
errorset protection eaCh time HISTORYSAVE (page 8.32) creates a new event. This 
happens each time there is an interaction with the user, but not when performing 
an operation that is being redone. 

The expressions on HISTORYSAVEFORMS are presumably executed for effec~ and 
can access the special variables H I STORY (the current history list). 10 (the current 
prompt.character). and EVENT (the current event which HISTORYSAVE is going 
to rerum). 

. ~ 
Note t..'1at PROMPTCHARFORMS and HISTORYSAVEFORMS together enable bracketing each interaction 

8.18 

.(~. 
\.- . 



o 

o 

o 

o 

THE PROGRAl\1l\1ER'S ASSIST ANT 

with the user. These can be used to measure how long the user takes to respon~ to use a different 
readtable or terminal table, etc. ' 

RESETFORMS 

ARCHIVEFN 

ARCHIVEFLG 

LISPXMACROS 

[Variable] 
Tne value of RESETFORMS is a list of forms that are evaluated at each RESET. i.e. 
when user types control-D, calls function RESET, or types control-C followed by 
START. 

[Variable] 
If the value of ARCHIVEFN is T; and an event is about to drop off the end of 
the history list and be forgotten, ARCHIVEFN is called as a function with two 
arguments: the input portion of the event, and the entire event (see page 8.25 
for the format of events). If ARCHIVEFN returns T, the event is archived on a 
permanent history list (see page 8.13). Note that ARCHIVEFr~ must be both set 
and defined.. ARCHIVEFr~ is initially NIL and undefined. 

Forexample,definingARCHIVEF~~as(LAMBDA (X Y) (EQ (CAR X) 'LOAD» 
will keep a record of all calls to LOAC. 

[Variable] 
If the value of ARCHIVEFLG is non-NIL, the system automatically marks all events 
that are referenced by history commands so that they will be archived when they 
drop off the history list. ARCHIVEFLG is initially T, so once an event is redone, it 
is guaranteed to be saved.. 

An event is "marked for archiving" by putting the property l'IIARCHIVE-, value T, 
on the event (see page 8.25). The user could do this by means of an appropri~tely 
defined LISPXUSERFN (see below). 

[Variable] 
LISPXMACROS provides a macro facility that allows the user to define his own 
programmer's assistant commands. It is a list of elements of the form (coJo.!MANr) 
DEF). Whenever COMMAND appears as the first expression on a line in a LIS P X 
input. the variable LISPXLI~JE is bound to the rest of the line, the event is 
recorded on the history list. DEF is evaluated. and DEF'S value is stored as the 
value of the event. Similarly, whenever COl.!MA.ND appears as CAR of a form in a 
LISPX input. the variable LISPXLINE is bound to CDR of the fonn, the event is 
recorded. and DEF is evaluated. 

An· element of the fonn (COM~"D NIL DEF) is interpreted to mean bind 
LIS P X LIN E and evaluate DEF as described· above, except do not save the event 
on the history list. 

LISPXHISTORYMACROS [Variable] 
LISPXHISTORYMACROS allows the user to define programmer's assistant com
mands that re-execute other events. LISPXHISTORYMACROS is interpreted the 
same as LISPXMACROS. except that the result of evaluating DEF is treated as a list 
of expressions to be unread. exactly as though the expressions had been ret..rieved 
by a REDO command.. or computed by a USE command. Note that rerurning 
NIL means nothing else is done. This provides a mechanism for defining LIS P X 
commands which are executed for effect only. 

8.19 



Changing The Progrnmmer's Assistant 

Many programmer's assistant commands. such as RETRIEVE, BEFORE. AFTER. etc. are implemented 
through LISPXMACROS or· LISPXHISTORYMACROS. 

Note: Definitions of commands on LISPXMACROS or LISPXHISTORY1~ACROS can be saved on files with 
the file package command LISPXMACROS (see page 11.24). 

LISPXUSERFN [Variable] 
When LISPXUSERFN is set to T, It IS applied as a function to all inputs 
not recognized as a programmer's assistant command, or on LISPXMACROS or 
LISPXHISTORYMACROS. If LISPXUSERFN decides to handle this inpu~ it simply 
processes it (the event was already stored on the history list before LISPXUSERFN 
was called), sets LISPXVALUE to the value for the even~ and returns T. The . 
programmer's assistant will then know not to call EVAL or APPL Y, and will simply 
store LISPXVALUE into the value slot for the event. and print it. If LISPXUSERFN 
returns NIL. EVAL or APPLY is called in the usual way. Note that LISPXUSERFN 
must be both set: and defined. 

LISPXUSERFN is given two arguments: x and LINE. x is the first expression typeeL 
and LINE is the rest of the line, as read by READLINE (page 8.30). For example. if 
the user typed F 00 (A Be), x= F 00, and LINE= ( (A Be»; if the user typed 
(FOO ABC). X= (FOO ABC), and LlNE=N~L: and if the user typed FOO 
ABC. x= FOO and LINE= (A B C). 

By appropriately defining (and setting) LISPXUSERFN. the user can with a 
minimum of effort incorporate the features of the programmer's assistant into his 
own executive' (actually it is the other way around). For example, LI SP XUSE RF N 
could be defined to parse all input (other than p.a. commands) in an alternative 
way. Note that since LISPXUSERFN is called for each input (except for p.a. 
commands), it can also be used to monitor some condition or gather statistics. 

(LISPXPRINT x Y Z NODOFLG) [Function1 
(LISPXPRlf~l x Y Z NODOFLG) [Function] 
(LISPXPRIN2 x Y Z NODOFLG) [Function1 
~ LIS?XSPACES x Y Z NODOFLG) [Function] 

- (LISPXTERPRI x Y Z NODOFLG) [Function] 
(LISPXTAB x Y Z NODOFLG) [Function] 
(LISPXPRINTDEF EXPRFILE LEFT DEF TAlI. NODOFLG) [Function] 

In addition to saving inputs and values, the programmer's assistant saves most 
system messages on the history list. For example. FILE CREATED ...• (FN 

REDEFINED). (VAR RESET), output of TIME. BREAKDOWN. STORAGE. OWL\-! 
messages. etc. When ?? prints the event. the output is also printed. This facility 
is implemented via these functions. 

These functions print exactly the same as their non-L I 5 P X counterparts. Then. 
they put the output on the history list under the property -LIS?XPRINT- (see 
page 8.25). 

If NODOFLG is non-N I L. these fuctions do not print. but only put their output on 
the histo ry . list. 

To perform OUtput operations from user programs so that the output will appear 
on the history list. the program needs simply to call the corresponding LIS?X 

8.20 

(~) 
'{ 

\. 

(); 
~-- --: 



Q 

o 

TIlE PROGRAMI\1ER'S ASSIST ANT 

printing function. 

(USERLISPXPRINT x FILE Z NODOFLG) [Function] 

LISPXPRlnTFLG 

The function USERLISPXPRINT is available to pemtit the user to define additional 
LISPX printing functions. If the user has a function FN that takes three or fewer 
argumen~ and the second argument is the file name.. he can define a LIS P X 
printing function by simply giving LISPXFN the definition of USERLISPXPRINT, 
for example, with MOVD(USERLISPXPRINT LISPXFN). USERLISPXPRINT is 
defined to look back on the stac~ find the name of the calling functio~ strip off 
the leading ~~LISPX". perfonn the appropriate saving information.. and then call 
the function to do the actual printing. 

[Variable] 
If LISPXPRINTFLG= NIL9 the LISPX printing functions will not store their output 
on the history list. LISPXPRINTFLG is initially T. 

8.4 STATISTICS 

The programmer's assistant keeps various statistics about system usage. e.g., number of user inputs. 
number of undo saves, number of calls to editor, number of edit commands, number of p.a. commancis. 
cpu time. console time~ etc. The$e can be viewed via the function LISPXSTATS. The user can define add 
new statistics to the p.a. statistics via the function ADDSTATS, and increment them with LISPXWATCH. 

Note: The collection of programmer's assistant statistics is not supponed in Interlisp-D. ADDSTATS and 
LISPXWATCH are defined with null definitions. so programs can be transferred.. 

(LISPXSTATS RETU~NVALUESFLG) '13 [Function1 
Prints programmer's assistant statistics. If RETtT.RNV.ALUESFLG= T, rewms the 
statistics as a list of elements of the form (VALUE • EXPLANATION). 

(AODSTATS STAT! •.• STATN ) [NLambda NoSpread Function] 
Each STATj is a list of the form (STAT-NAME • MESSAGE). Each STAT-NAME is 
defined as the name of a new statistic. 

For example. (ADOSTA T 5 ('ED IiCALLS CALLS TO ED ITOR) ( UNDOST Ai S 
CHANGES UNDONE) will define two new statistics. named EDITCALLS and 
UNDOSTATS. 

(LISPXWATCH STAT N) [Function] 
Increments the statistic with name STAT by N (or 1 if N=NIL). 

LISPXWATCH has a BLKLIBRARYDEF (see page 12.14). 

The user can 'save his statistics for loading into a new system by performing MAKEFILE(DUMPSTATS). 
After the file DUMP ST A T 5 is loaded. the statistics printed by LISP XST AT S will be the same as those that 
would be printed following the MAKE FILE. 

8.21 



Undoing 

8.5 UNDOING 

Note: This ~"1lSSion only applies to undoing under the executive and break; the editors handles undoing 
itself in a slightly different fashion. 

The U~JDO c:3.pability of the programmer's assistant is implemented by requiring that each operation that 
is to be undoable be responsible itself for saving on the history list enough information to enable reversal 
of its side effects. In other words. the assistant does not "know" when it is about to perform a desttUctive 
operation. i.e.. it is not constantly checking or anticipating. Instead. it simply executes operations. and 
any undoable changes that occur are automatically saved on the history list by the responsible functions. 
The U~JOO command. which involves recovering the saved information and performing the corresponding 
inverses. works the same way, so that the user can Ut~DO an Uf~DO, and ur~DO that etc • 

. -'-. o\t each point, until the user specifically requests an operation to be undone, the assistant does not know, 
or care" whether information has been saved to enable the undoing. Only when the user attempts to 
undo an operation does the assistant check to see whether any information has been saved. If none has 
been saved. and the user has specifically named the event he wants undone, the assistant types NOTHlr~G 
SAVED. (When the user simply types UNDO. the assistant searches for the last undoable event, ignoring 
events already undone as well as UNDO operations themselves.) . 

This implementation minimizes the overhead for undoing. Only those operations which. actually make 
changes are affected. and the overhead is small: two or three cells of storage for saving the information. and 
an extra function call. However. even this small price may be too expensive if the operation is sufficiently 
primitive and repetitive, Le., if the extra overhead may seriously degrade the overall perfonnance of" 
the progr-.:.::l. Hence not everY destructive operation in a program should neCesSarily be undoable; the 
programmer must be allowed to decide each case individually. 

Therefore for each primitive destructive function. Interlisp has defined an undoable version which always 
saves information. By convention. the name of the undoable version of a function is the function name, 
preceeded by "I." For example, there is RPLACA and IRPLACA, REMPROP and IREMPROP. etc. The 
"slash" functions that are currently implemented can be found as the value of I FNS. • 

The various system packages use the appropriate undoable functions. Fer example, BREAK uses IPUTD and 
. '. IREMPROP so as to be undoable, and DWIM uses IRPLACA and IRPLACD. when it makes a correction.2 

Similarly, the user can simply use the corresponding I function if he wants to make a destructive 
operation in- his own program undoable. When the I function is called.. it will save the UNDO information 
in the current event on the history list. 

The programmer's assistant cannot know whether efficiency and overhead are serious considerations for 
the execution of an expression in a user program, so the user must decide if he wants these operations 
undoable by explicitly calling IMAPCONC, etc. However. lyped-in expressions rarely involve iterations or 
lengthy computations directly. Therefore, before evaluating the user input. the programmer's assistant 
substitutes the corresponding undoable function for any destructive function (see LIS P X I. page 8.34). 
For example. if the user types (MAPCONC NASD I C ... ). it is actually (/MAPCONC NASD I C .•. ) that"
is evaluated. Obviously. with a more sophisticated analysis of both user input and user programs. the 

2The effects of the following functions are always undeab Ie: 0 E FIN E. 0 E FIN E Q. 0 E Fe (used to give 
a function a compiled cede definition). DEFLIST. LOAD. SAVEDEF. UNSAVEDEF. BREAK. UNBREAK. 
REBREAK. TRACE. BREAKIN. UNBREAKIN. CHANGENAME. EDITFNS. EDITF. EDITV. EDITP. EDITE. 
EDITL~ ESUBST. ADVISE. UNADVISE. READVISE. plus any changes caused by DWU"L 

8.22 

n 
( 

(j 
\....: 



o 
THE PROGRAMl\1ER'S ASSISTANT 

decision concerning which operations to make undoable could be better advised.. However, we have 
found the configuration described here to be a very satisfactory one. The user pays a very small price for 
being able to undo what he types in, and if he wishes to protect himself from malfunctioning in his own 
programs. he can have his program explicitly call undoable functions. 

8.5.1 .Undoing Out of Order 

IRPLACA operates undoably by saving (on the history fut) the list cell. that is to be changed and its 
original CAR. Undoing a IRPLACA simply restores the saved CAR. This implementation can produce 
unexpected results when multiple IRPLACAs are done on the same list cell, and then undone out of order. 
For example, if the user types (RPLACA FOO 1), followed by (RPLACA FOO 2), then undoes both 
events by undoing the most recent event firs~ then undoing the older event. F 00 will be restored to its 

(~\ state before either RPLACA operated.. However if the user undoes the first event. then the second event. 
U (CAR FOD) will be 1, since this is what was in CAR of FOO before (RPLACA FOO 2) was executed. 

Similarly. if the user types (NCONCl FDO 1). followed by (NCONCl FOO 2), undoing just (NCOrlC 1 
FOD 1) will remove both 1 and 2 from FOO. The problem in both cases is that the two operations are 
not "independent." In generaL operations are always independent if they affect different lists or different 
sub lists of the same list. Undoing in reverse order of execution, or undoing independent operations, is 
always guaranteed to do the "right" thing. However, undoing dependent operations out of order may not 
always have the predicted effect. 

Property list operations. (i.e .. PUTPROP, ADOPROP and REMPROP) are handled specially. so that operations 
that affect different propenies on the same property list are always independent. For example, if the user 
types (PUTPROP 'FOO 'BAR 1) then (PUTPROP 'FOa 'BAZ 2). then undoes the first event. the 
B AZ property will remain, even though it may not have been on the property list of F 00 at the time the 
first event was executed.. 

8.5.2 SA VESET 

Typed-in SETs are made undoable by substiruting a call to SAVESET. SETQ is made undoable by 
substituting SAVESETQ, and SETQQ by SAVESETQQ, both of which are implemented in terms of 
SAVESET. 

In addition to saving enough information on the history list to enable undoing, SAVESET operates in a 
'manner analogous to SAVEDEF (page 11.18) when it resets a top level value: when it changes a tOp level 
binding from a value other than NOBIND to a new value that is not EQUAL to the old one, SAVESET 
saves the old value of the variable being set on the variable's property list under the property VALUE. and 
prints the message (VARLABLE RES E T ). The old value can be restored via the function UN SET. which 
also saves the current value (but does not print a message), Thus UNSET can be used to flip back and 
forth between two values. . • 

Of course, UNDO can be used as long as the event containing this call to SAVESET is still active. Note 
however that the old value will remain on the property list. and therefore be recoverable via UNSET, even 
after the original event has been forgonen. 

RPAQ and RPAQQ are implemented via calls to SAVESET. Thus old values will be saved and messages 
printed for any variables that are reset as the result of loading a file. 

For top level variables, SAVESET also adds the variable to the appropriate spelling list. thereby noticing 

8~23 



1Q 

UNDONLSETQ and RESETUNDO 

variables set in files via RPAQ or RPAQQ~ as well as those set via type-in. 

C SAVESET NAME VALUE TOPFLG FLG) [Function] 
An undoable SET. SAVESET scans the stick looking for the last binding of NA..\!E. 

sets NAME to VALUE. and rerums VALUE. 

If the binding changed was a top level binding, NAME is added to the spelling list 
SPELLIr~GS3 (see. page 15.14). Furthermore. if the old value was not NOB INC~ 
and was also not EQUAL to the new value~' SAVESET calls the file package to 
update the necessary file records. Then. if CFl~FLG is not equal to T, SAVESET 
prints (NAME RES E T ). and saves the old value on the propeny list of NAME, 

under the property VALUE. • 

If TOPFLG=T~ SAVESET operates as above except that it always uses NAMES 

top-level value cell When TOPFLG is T, and CFNFLG is ALLPROP and the old () 
value was not NOB INC, SAVESET sim~ly stores VALVE on the property list of NAME -(7.' 

(UNSET NAME) 

under the property VALUE~ and rerurns VALVE. Tnis option is used for loading files 
, without disturbing the current value of variables (see page 5.9). 

If FLG=NOPRINT, SAVESET saves the old value, but does not print the message. 
This option is used by UN SET. 

If FLG=NOSAVE. SAVESET does-not save the old value on the property list. 
nor does it add NAME to SPELLINGS3. However, the call to SAVESET is still 
undoable. This .option is used by /SET. 

If FLG= ~JOSTACKUrJDO, SAVESET is undoable only ift..'1e binding being changed is 
a top-level binding. Le. this says when resetting a variable that has been rebouncL 
don't bother to make it undoable. This option is used by RPAQ, RPAQQ, and 
ADCTOVAR. 

[Function] 
If NAME does not contain a property VALUE. UNSET generates an error. Otherwise 
UNSET calls SAVESET with NAME, the propeny value, TOPFLG= T, and FLG= ~JOPRI NT (\ 

\ ) 
(>.:: .; 

8.5.3 UNDONLSETQ and RESETUNDO 

The function UNDONLSETQ provides a limited fonn of backtracking: if an error occurs under the 
UNDONLSETQ, all undoable side effects executed under the UNDONLSETQ are undone. RESETUNOO. used 
in conjunction with RESETLST and RESETSAVE (page 9.19), provides a more general undo capability 
where the user can specify that the side effects be undone after the specified computation finishes. is 
aborted by an error, or by a control-D. 

(UNOONLSETQ UNDOFORM· -) [NLambda Function1 
An nlambda function similar to NLSETQ (page 9.15). UNOONLSETQ evaluates 
UNDOFORM. and if no error occurs during the evaluation. returns (L I ST (EVAL 
UNDOFORM) ) and passes the undo information from UNDOFORM (if any) upwards. 
If an error does occur. the UNDONLSETQ returns NIL. and any undoable changes 
made during the evaluation of UNDOFORM are undone. 

Any undo information is stored directly on the history event (if LISP X HIS T is 

8.24 

n. \ J: 
'-



(J 
\:. 

TIlE PROGRAl\1TVIER'S ASSISTANT 

not NIL), so that if the user control-D's out of the UNDOr~L~ETQ, the event is still 
undoable. 

Ur~DONLSETQ will operate correctly if #UNDOSAVES is or has been exceeded for 
this event. or is exceeded while under the scope of the UNDOi~LSETQ. 

Note: Caution must be exerciSed in using coroutines or other non-standard me3llS 
of exiting while under an UNDONLSETQ. See discussion in page 9.19. 

(RESETUr~DO x STOPFLG) [Function] 
For use in conjunction with RESETLST (page 9.19). (RESETUNOO) initializes 
the saving of undo information and returns a value which when given back 
to RESETUrJOO undoes the intervening side effects. For example, (RESETLST 

.(~\_. (RESETSAVE (RESETUNDO» • FORMS) will undo the side effects of FOFU.,fS 

\~ on normal exit. or if an. error occurs or a control-Dis typed. 

. '-

If STOPFLG=T. RESETU1JDO stops accumulating undo information it is saving on 
x. Note that this has no bearing on the saving of undo information on higher 
RESETUNDO's. or on being able to undo the entire event. 

For example, 

(RESETLST 
(SETQ Foe (RESETUNDO» 
(RESfTSAVE NIL (LIST 'RESETUNOO FOO» 
(ADVISE ... ) 
(RESETUHDO FOO T) 
• FORMS) 

would cause the advice to be undone, but not any' of the side effects in FORMS • 

o 8.6 FORl\1AT AND USE OF THE mSTORY LIST 

o 

The system currently uses three history lists, LISPXHISTORY for the top-level Interlisp executive. 
EDITHISTORY for the editors, and ARCHIVELST for archiving events (see page 8.13). All history 
lists have the same forma~ use the same functions. HI STORYSAVE. for recording events. and use the 
same set of functions for implementing commands that refer to the history list. e.g .• HI STORYF IND. 
PRINTHISTORY, UNDOSAVE, e~. 

Each history list is a list of the form (L EVENT# SIZE MOD), where L is the list of events with 
the most recent event first.. EVENT# is the event number for the most recent event on L, SIZE is 
the size of the time-slice (below), Le., the maximum length of L, and MOD is the highest possibie 
event number. LISPXHISTORY and EDITHISTORY are both initialized to (NIL a 100 100). 
Setting LISPXHISTORY or EOITHISTORY to NIL disables all history features. so LISPXHISTORY 
and ED ITHISTORY act like £lags as well as repositories of events. 

Each.history list has a maximum length. called its .. time-slice." As new events occur. existing events are 
aged. and the oldest events are "forgonen." For efficiency. the storage used to represent the forgotten 
event is reused in the representation of the new even~ so the history list is actually a ring buffer. Tne 

8.25 



( 

Format and Use of the History List 

time-slice of a history list can be changed with the function CHANGESLICE, page 8.18. Larger time-slices 
enable longer "memory spans," but tie up correspondingly greater amounts of storage. Since the user 
seldom needs really "ancient history," and a facility is provided for saving and remembering selected 
events (see NAME and RETRIEVE, page 8.12), a relatively small time-slice such as 30 events is more than 
adequate. although some users prefer to set the time-slice as large as 100 events, . 

If PROrt1PT#F"LG (page 8.18) is set to T, an '6event number" will be printed before each prompt. More 
recent events have higher numbers. When the event'number of the current event is 100, the next event 
will be given number 1. If the time-slice is greater than 100, the '·roll-over" occurs at the next highest 
hundred, so that at no time will two events ever have the same event number. For example, if t..1e 
time-slice is 150, event number 1 will follow event number 200. 

Each individual event on L is a list of the form (INPUT ID VALOE • PROPS). ID is the prompt character 
for this event. e.g., .. , :, ., etc. VALUE is the value of the event. and is initialized to bell. 3 PROPS is a 
~roperty list used to associate other information with the event (described below). 

INPUT is the input sequence for the event" Normally, this is just the input that the user typed-in. For an 
APPLY format input, this is a list consisting of two expressions; for an EVAL format input. this is a list 
of just one expression; for an input entered as list of ato~, INPUT is simply that list. For example, 

User Input 

PLUS(l 1] 

(PLUS 1 1) 

PLUS 1 1 er 

INPUT is: 

(PLUS (1 1» 

(PLUS 1 1» 

(PLUS 1 1) 

If the user types in a programmer's assistant command that uunreads" and reexecutes other events (REDO. 
USE" etc.), INPfJT contains a "sequence" of the inputs from the redone events. Specifically, the INPUT 
fields from the specified events are concatenated into a single list. seperated by special markers called 
"pseudo-carriage rerums." which print out as the string "< c . r . > ":' When the result of this concatenation 
is "reread," the pseudo-carriage-rerurns are treated by LISPXREAD ane riEAOLINE exactly as real carriage 
:erurns. i.e .• they serve to distinguish between APPLY and EVAL fCr::lats on inputs to LISPX,and to 

--" " delimit line commands to the editor. . . 

The same convention is used for representing multiple inputs when a USE command involves sequential 
substitutions. For example. if the user types GETD ( FOO) and then USE FIE FUM FOR FOO. the input 
sequence that will be constructed is (GETD (FIE) "<c. r. >" GETD (FUM». which is the result of 
substituting FIE for FOO in (GETD (FOO» concatenated with the result of substituting FUM for FOO in 
(GETD (FOO». 

Note that once a multiple input has been entered as the input portion of a new event, that event can 
be treated exactly the same as one resulting from type-in. In other words. no special checks have to 
be made when referencing ~ event. to see if it is simple or multiple. This implementation permits an 

30n EDITHISTORY. this field is used to save the side effectS of each command. See page 8.35. 

4Tne value of the variable HISTSTRO is used to represent a pseudo-carriage rerum. This is initially 
the string .. < c . r. > ". Note that the functions that recognize pseudo-carriage returns compare them to 
HISTSTRO using EQ, so this marker will never be confused with a string that was typed in by the user. 

8.26 

(1"" 
... :··1.": 

\.. " 

-~" ( , 
- ./: 

'-... .. "~ 

(--). 
-



o 
\., 

0.·· 

o 

THE PROGR.Al\1MER'S ASSISTANT 

event specification to refer to a single simple event, or to several events. or to a single event originally 
constructed from several events (which may themselves have been multiple input events, etc.) without 
having to treat each case separately. 

REDO, RETRY, USE, ••• , and F IX comman~ Le., those commands that reexecute previous events, are 
not stored as inpu~ because the input portion for these events are the expressions to be ureread". The 
history commands UNDO, NAME, RETRIEVE, BEFORE, and AFTER are recorded as inpu~ and 11 prints 
them exactly as they were typed. 

PROPS is a propeny list of the form (PROPERTYl VALUEl PROPERTY2 VALUE2 ••• ), that can be used 
to associate arbitrary information with a particular event. Currently, the following properties are used by 
the programmer's assistant: 

SIDE 

·PRINT-

USE.-ARGS 
.•• ARGS 

-ERROR* 
*CONTEXT* 

-LrSPXPRlr~T-

*GROUP* 
*HISTORya 

A list of the side effects of the event. See UNDOSAVE, page 8.33. 

Used by the ? 1 command when special formatting is requireci for example, when 
printing events corresponding to the break commands O~ GO, EVAL, and 1=. 

The USE -ARGS and ... ARGS properties are used to save the arguments and 
expression for the corresponding history command. 

*ERROR*·and -CONTEXT* are used to save information when errors occur for 
subsequent use by the $ command. Whenever an error occurs, the offender is 
automatically saved on that event's entry in the history list, under the * E R RO R· 
propeny. 

Used to record calls to LISPXPRINT, LISPXPRIN1, etc. (see page 8.20). 

The property *ARCHIVE* on an event causes the event to be automatically archived 
when it "falls off the end" of the history list (see page 8.13). 

The *HISTORY· and eGROUP* properties are used for commands that reexecute 
previous events, Le., REDO, RETRY, USE, ... , and FIX. The value of the 
-HISTORY* property is the history command that the user actually typed. e.g .• 
REDO FROM F. This is used by the ?? command when printing the event. TIle 
value of the *GROUP· propeny is a structure containing the side effects. etc. for 
the individual inputs being reexecutecL This structure is described below. 

When LISPX is given an input. it calls HISTORYSAVE (page 8.32) ·to record the input in a new event.5 

Normally. HISTORYSAVE creates and returns a new event. LISPX" binds the variable LISPXHI ST to 
the value of HISTORYSAVE, so that when the operation has completeci LISPX knows where to store 
the value. Note that by the time it completes. the operation may no longer correspond to the most 
recent event on the history liSt.. For example. all inputs typed to a lower break will appear later on the 

5Tne commands ?? FORGET, TYPE-AHEAD, S8UFS. and ARCHIVE are executed immediately. and are 
not recorded on the history list. 

8.27 



Progr:unmer's Assistant Functions 

history list. After binding LISPXHIST, LISPX executes the input. stores its value in. the value field of 
the LISPXHIST event. prints the value, and returns. 

When the input is a REDO, RETRY, USE, ••• , or FIX command, the procedure is similar, except that 
the event is also given a *GROUp· propeny, initially NIL, and a *HISTORY* property, and LISPX 
simply unreads the input and returns. When the input is U reread" , it is HISTORYSAVE. not LISPX, 
that notices this fact. and finds the event from which the input originally came.6 HISTORYSAVE then 
adds a new (INPUT ID VALUE • PROPS) entrY to the *GROUP* propeny for this event. and returns 
this entry as the "new event." LISPX then proceeds exactly as when its input was typed directly, Le ... 
it binds LISPXHIST to the value of HISTORYSAVE, executes the input. stores the value in CADDR of 
LISPXHIST, prints the value, and returns. In fact. LISPX never notices whether it is working on freshly 
typed input, or input that was reread. Similarly, UNOOSAVE will store undo information on LISPXHIST 
the same as always, and does not know or care that LISPXHIST is- not the entire event. but one of the 

"elements of the *GROUP* property. Thus when the event is finished, its entrY will look like: 

, , (INPUT ID VALUE 

·*HISTORY· 
COMMAND 

*GROUP· 
«INPUT1 101 VALUE1 SIDE SIDE1) 

( INPUT 2 lD2 VALUE2 SID E SIDE2 ) 
... ) ) 

In this case, the value field or the event with the *GROUP* property is not being used; VALUEOF instead 
rerums a list of the values from the *GROUP* property. Simiiarly, UNDO operates by collecting the SIDE 
properJes from each of the elements of the *GROUP* property, and then undoing them in reverse order. 

This implementation removes the burden from the function calling HISTORYSAVE of distinguishing 
between new input and reexecution of input whose history entry has already been set up. 

8.7 PROGRAlvlMER'S ASSISTA1~1 FUNCTIONS 

(LISPX LISPXX LlSPXID LISPXXM.ACROS LISPX:XUSERFN LISPXFLG) [Function] 
LISPX is the primary function of the programmer's assistant. LISPX takes 
one user input. saves it on the history list. evaluates it. saves its value, and 
prints and returns it. LISPX also interpretes p.a. commands. LISPXMACROS. 
LISPXHISTORYMACROS. and LISPXUSERFN. 

If LISPXX is a list. it is interpreted as the input. expression. Othenvise. LIS P X 
calls READLINE. and uses LISP;CC plus the value of READLINE as the input for 
the event. If LISPXX is a list CAR of which is LAMBDA or NLAMBDA. LISPX calls 
LISPXREAD to obtain the arguments. . 

LISPXID is the prompt character to print before' accepting user input. A user can 
call LISP X specifying any prompt character as LISPXID except for *, 'since in 

", 6If HISTORYSAVE cannot find the event. for example if a user program unreads the input directly, and 
not via a histOrj cOlTh"TIand. HISTORYSAVE proceeds as though the input were typed. 

8.28 

o 
( 

(1 
~

. '. ;, .-=" . . -

n 
'-



o 

o 

o 

THE PROGRAl\1MER'S ASSISTANT 

certain cases LISPX must use the value of LISPXID to tell whether or not it was -
called from the editor. 

If LISP:ccMACROS is not NIL. it is used as the list of LIS P X macros. otherwise the 
top level value of the variable LISPXMACROS is used. 

If LISPXXUSEPJ'N is not r~IL, it is used as the LISPXUSERFN. In this case, it is 
not necessary to both set and define LISPXUSERFfJ as described on page 8.20. 

LISPXFLG is used by the E command in the editor (see page 8.35). 

Note that the history is not one of the arguments to LISPX, i.e., the editor must 
bind (reset) LISPXHISTORY to EDITHISTORY before calling LISP;:: to carry out 
a history command. LISPX will continue to operate as an EVAL/APPLY function 
if LIS?XHISTORY is NIL. Only those functions and commands that involve the 
history list will be affected. , 

LIS P X performs spelling corrections using LIS P X C OMS. a list of its commands. as 
a spelling list whenever it is given an unbound atom or undefined function, before 
attempting to evaluate the input. . 

LISPX is responsible for rebinding HELPCLOCK. used by BREAKCHECK (page 9.10) 
for computing the amount of time spent in a computation, in order to determine 
whether to go into a break if and when an error occurs. 

(USEREXEC LISPXID LISP:ccMACROS LISPXXUSERFN) fFunction] 
Repeatedly calls LIS P X under errorset protection specifying LISPXXMACROS and 
LISPXXUSERFN, and using LISPXID (or ~ if LISPXlD= r~IL) as a prompt character. 
USEREXEC is exited via the command OK, or else with a RETFROM. 

(LISPXEVAL L~XFOR.M LISPXID) [Function] 
Evaluates LISPXFORM (using EVAL) the same as though it were typed in to LISPX, 
Le., the event is recorde~ and the evaluation is made undoable by substituting 
the slash functions for the corresponding destructive functions (see page 8.22). 
LISPXEVAL returns the value of the form, but does not print it. 

When LISPX recieves an "input.." it may come from the user typing it in, or it may be an input that 
has been "unread." LISPX handles these two cases by getting inputs with LISPXREAD and READLINE. 
described below. These functions use the variable READBUF to store the expressions that have been 
unread. When READBUF is not r~IL. READLINE and LISPXREAD "read" expressions from READBUF 
until R EAD8U F is NIL, or until they read a pseudo-carriage return (see page 8.26). Both functions return 
a list of the expressions that ha~e been uread." (The pseudo-carriage return is not included in the list.) 

When READBUF is r~IL. both LISPXREAD and READ~INE actually obtain their input by performing. 
(APPL Y· LISPXREADFN FlLE). where LISPXREADFN is initially set to READ. The user can make 
LIS P X. the editor, break, etc. do their reading via a different input function by simply· setting 
LISPXREADFN to the name of that function (or an appropriate LAMBDA expression). 

Note: The user should only add expressions to READOUF using the function LISPXUNREAD (page 8.31). 
which knows about the format of READBUF. 

8.29 



. ' 

Programmer's Assistant Functions 

(READLINE RDTBL - -) [Function1 
Reads a line from the terminaL returning it as a list. If (READP T) is NIL. 
REAOLINE rerurns NIL. Otherwise it reads expressions by perfomring (APPLY· 
LISPXREAD FN T) (LISPXREADFN is initially set to READ) until it encounters 
either: 

• a carriage-rerum (typed by the user) that is not preceded by any spaces. e.g~ 

A 8 Cc:1' 

and READLINE returns (A B C) 

• a list terminating in a "] ", in which case the list is included in the value of 
READLI NE. e.g.. 

A B (C DJ 

and READLINE returns (A B (C D». 

• an unmatChed right parentheses or right square bracket, which is not included in 
the value of READLINE, e.g., 

ABC] 

and READLINE returns (A B C). 

In the case that one or more spaces precede a carriage-rerum, or a list is terminated 
with a '6),_, READLINE will type " .•. " and continue reading on the next line. 
e.g., 

A B Cc:r 
••• (0 E F) 
... (X Y Z] 

and READLINE rerurns (A B C (0 E F) (X Y Z». 
If the user types another carriage-rerum after the " ... ". the line will terminate. 
e.g .• 

A B CC:1' 
C:1' 

and READLINE returns (A Be). 

Note thatcamage-rerurn. i.e., the EOL character. can be redefined with SETSYNTAX 
(page 6.34). REAOLINE acrually checks for the EOL character. whatever that may 
be. The same is true for right parenthesis and right bracket. 

When READLINE is called from LISPX, it operates differently in twO respects: 

(1) If the line consists ofa single) or], REAOLINE returns (NIL) instead of 
N I L~ i.e .• the ) or ] is included in the line. This permitS the user to type F 00 ) 
or FOO], meaning call the function Foa with no arguments. as opposed to FOO c1' 

8.JO 

n,· -(",:" 



C) 
c· 

o 

THE PROGRAl\1MER'S ASSISTANT 

(FOO(carriage-rettL."n», meaning evaluate the variable FOO .. 

(2) If the first expression on the line is a list that is not preceded by any spaces, 
the list terminates the line regardless of whether or not it is terminated by ]. This 
permits the user to type ED I T F ( F 00) as a single input. 

Note that if any spaces are inserted between the atom and the left parentheses or 
bracket. READLlr~E will ~sume t..l}at the list does not terminate the line. This is to 
enable the user to type a line command such as USE (FOO) FOR FOC. Therefore, 
if the user accidentially puts an extra space between a function and its argumen~ 
he will have to comp lete the input with another carriage rerum. e.g. .. 

.-EDITF (FOO) 
cr 

EDIT 
• 

(LISPXREAD FILE RDTBL) [Functit')Il] 
A generalized READ. IfREADBUF = NIL, LISPXREAD performs ( APPLY· LISPXREADFf~ 
FlLE), which it returns as its value. If READBUF is not NIL. LISPXREAD "reads" 
and returns the next expression on READBUF. 

Note: If the user types control-U during the call to READ, LISPXREAD calls the ... 
editor and returns the edited value. 

LISPXREAD also sets REREADFLG to NIL when it reads via READ, and se!S 
REREADFLG to the value of READBUF when rereading. 

(LISPXREADP FLG) [Function] 
A generalized READP. If FLG= T, LISPXREADP returns T if there is any input 
waiting to be "read", in the manner of LISPX"'AEAD. If FLG=NIL. LISPXREAOP 
returns T only if there is any input waiting to be "read" on this line. In both cases. 
leading spaces are ignored, Le •• skipped over with READC, so that if only spaces 
have been typed, LISPXREADP will return NIL. 

(LISPXUNREAD LST -) [Function] 
Unreads LST, a list of expressions. 

(PROMPTCHAR m FLG HISTORY) [Function] 
Called by LISPX to print the prompt character ID before each input. PROMPTCHAR 
will not print anything when the next input will be "reread", i.e., when READB U F 
is not rl I L. 

PROMPTCHAR will not print when (READP) = T, unless FLG is T. The editor calls 
PROMPTCHAR with FLG=NIL so that extra ·'s are not printed when the user 
types several commands on one line. However, EVALQT calls PROMPTCHAR with 
FLG= T, since it always wants the ... printed (except when "rereading"'). 

If PROMPT#FLG (page 8.18) is T and HISTORY is not NIL, PROMPTCHAR prints 
the current event number (of .. :rrSTORY) before printing rD. 

r., 
The value of PROMPTCHARFORMS (page 8.18) is a list of expressions L.1at are 
evaluated by PROr·1PTCHAR before. and if. it does any printing. 

8.31 

I • 



Programmer's Assistant Functions 

(HISTORYSAVE HISTORY ID INPUTl INPUT2 INPUT3 PROPS) 

Records one event on HISTOR.Y. 

[Function] 

If INPUTl is Dot N I L~ the input is of the fonn (INPUT 1 INPUT 2 • INPUT 3). If 
INPUT! is N I L~ and INPUT 2 is not N I L~ the input is of the form (INPUT 2 • 

INPUT 3). Otherwise, the input is just INPUT 3. 

HISTORYSAVE creates a new event with the corresponding input, ID, value field 
initialized to bell. and PROPS. If the HISTORY has reached its full size~ the last 
event is removed and cannibalized. 

The value of HISTORYSAVE is the new event. However, if REREADFLG is not 
N I L~ and the most recent event on the history list contains· the history command 
that produced this input. HISTORYSAVE does not create a new event. but simply 
adds an (INPUT ID be 11 • PROPS) entry to the -GROUp· property for that 
event and returnS that entry. See discussion on page 8.28. 

HISTORYSAVEFORMS (page 8.18) is a list of expressions that are evaluated under 
errorset protection each time HISTORYSAVE creates anew event. 

(LISPXSTOREVALUE EVENT VALUE) [Function] 
Used by LISPX for storing the value of an event. Can be advised by user to watch 
for particular values or perform other monitoring functions. 

( LIS P X F I NO HISTORY LINE TYPE BACKUP -) [F unction1 
LINE is an event specificatio~ TYPE specifies the format of the value to be returned ° 
by LISPXFIND. and can be either ENTRY. ENTRIES, COpy, COPIES, INPUT, or 
REDO.oLISPXF IND parses LINE, and uses HISTORYFINO to find the corresponding 
events. LISPXFINO then assembles and returns the appropriate structure. 

LISPXF INO incorporates the following special features: 

(1) if BACKU?=T, LISPXFINO interprets LINE in the context of the history list 
before the current event was added. This feature is used. for example, by VALUEOF, 
so that (VALUEOF -1) will not refer to the VALUEOF event itself. 

(2) if LINE= N IL and the last event is an UNDO, the next to the last event is taken. 
This permits the user to type UNDO followed by REDO or USE. 

(3) LISPXFIND recognizes @@. and substitutes ARCHIVELST for HISTORY (see 
page 8.13). 

(4) LISPX FIND recognizes @, and retrieves the corresponding event(s) from the 
property list of the atom following @ (see page 8.12). 

(HISTORYFIUD LST INDEX MOD EVENT ADDRESS -) [Function] 
Searches LST and returns the tails of LST beginning with the event corresponding 
to EVENTADDRESS. LST. INDEX. and MOD are th°e first three elements of a "history 
list" structure (see page 8.25). EVENT ADDRESS is an event address (see page 8.5) 
e.g .. (43), (-1). (FOO FIE). (LOAD'" FOO). etc. If HISTORYFIND cannot 
find EVENT ADDRESS. it generates J..,.'1 error. 

8.32 



o \: _ .. -

THE PROGRAlvlMER'S ASSISTANT 

(HISTORYMATCH INPUT PAT EVEN~) [Function] 
Used by HISTORYFIND for "matching" when EVENTADDRESS specifies a pattern. 
Matches PAT against INPUT, the input ponion of the history event EVENT, as 
matching is defined on page 17.13. Initially defined as (ED ITF I:JDP INPUT PAT 
T ). but can be advised or redefined by the user. 

(ENTRY# HIST x) [Function] 
HIST is a history list (see page 8.25). x is EO to one of the events on I!IST. ENTRY# 
rewms the event number for x. 

(UNDO SAVE UNDOFORM HISTENTRY) [Function] 
UNDOSAVE adds the "undo information" UNDOFOP..!\! to the SIDE property of the 
history event HISTENTRY. If there is no SID E property, one is created. If the value 

/-~----, of the SIDE property is NOSAVE, the information is not saved. 
~) 

,.----

HISTENTRY specifies an event. If mSTENTRY=~JIL, the value of LISPXHIST is 
used. If both HISTENTRY and LISPXHIST are NIL, UNDOSAVE is a no-ope Note 
that HISTENTRY (or LISPXHIST) can either be a "real" event, or an event within 
the -GROUP- property of another event (see page 8.28). 

The form of UNDOFORM is (FN • ARGS).'T Undoing is done by perform
ing {APPLY (CAR UNDOFORM) (CDR UNDOFORM». For example, if the 
definition of FOO is DEF, (/PUTe FOO NEWDEF) will cause a call to UNDOSAVE 
with UNDOFORM'= (/PUTe FOO DEF). 

CAR of the SIDE propeny of an event is a count of the number of UNDOFOP.1.!S 
saved for this event. Each call to UNDOSAVE increments this count. If this count 
is set to -1. then it is never incrementecL and any number of UNDOFORMS can 
be saved. If this count is a positive number, UNDOSAVE' restricts the number of 
UNDOFORMS saved to the value of #UrJDOSAVES, described below. LOAD initializes 
the count to -1 so that regardless of the value of #UNDOSAVES. no message will 
be printed, and the LOAD will be undoable. 

U ·#UNDOSAVES [Variable] 
The value of #U NOO SA VE S is the maximum number of UNDOFORMS to be saved for 
a single event. When the count of UNDOFORMS reaches this number~ UNDOSAVE 
prip.ts the message CONTINUE SAVING?, asking the user if he wants to continue 
saving. If the user answers NO or defaults.. UNOOSAVE discards the previously 
saved information for this event, and makes NOSAVE be the value of the p~operty 
SIDE, which disables any further saving for this event. If the user answe~ YES, 
UNDOSAVE changes the count to -t which is then never incremented. and continues 
saving. The purpose of this feature is to avoid tying up large quantities of storage -
for operations that will never need to be undone. 

o 

If #UNDOSAVES is negative, then when the count reaches -/JUNDOSAVES, 
UNDOSAVE simply stops saving without printing any messages or interacting with the 

71n the special case of IRPLNODE and IRPLNODEZ. the format of UNDOFORM is (x OLDCAR . 
OLDCDR). When UNDOFORM is undone. this form is recognized and handled specially. This 
implementation saves space. 

8.33 



(NEW/FN FN) 

Programmer's Assistant Functions 

user. #UNDOSAVES=NIL is equivalent to #UNDOSAVES=infinity. #UNDOSAVES 
is initially NIL. 

[Function] 
NEW/FN performs the necessary housekeeping operations to make FN be translated 
to the undoable version IFN when typed-in. For example. RADIX can be made 
undoable when typed-in by performing: 

~ (DEFINEQ (/RADIX (X) 
(UNDOSAVE (LIST '/RADIX (RADIX X» 

(/RADIX) 
~ (NEW/FN 'RADIX) 

(LISPXI x FN VARS) [Function] 
LISPXI performs the substitution of I functions for destru:tive functions that are 
typed-in. If FN is not NIL .. it is the name of a function. and x is its argument list. 
If FN is NIL .. x is a form. In both cases, LIS P X I returns x with the appropriate 
substitutions. VARS is a list of bound variables (optional). 

LISPXI incorporates information about the syntax and semantics of Interlisp 
expressions. For example. it does not bother to make undoable operations involving 
variables bound in x. It does not perform substitution inside of expressions CAR of 
which is an nlambda function (unless CAR of the form has the property INFO value 
EVAL. see page 5.4). For example, (BREAK PUTD) typed to LISPX, will break on 
PUTD. not IPUTD. Similarly. substirution should be performed in the arguments 
for functions like MAPC, RPTQ, etc., since these contain expressions that will be 
evaluated or applied. For example, if the user types (MAPC '( FOOl F002 
F003) 'PUTO) the PUTO must be replaced by IPUTO. 

(UNDOLISPX LINE) [Function] 
LDlE is an event specification. UNDOLISPX is the function thar executes UNDO 
commands by calling UNDOLISPX 1 on the appropriate entry(s). 

(UNDOLISPX 1 EVENT FLG -) [Function] 
Undoes one event. UNOOLISPX 1 returns NI L if there is nothing to be undone. 
If the event is already undone. UNDOLISPXl prints ALREADY UNDONE and 
returns T. Otherwise, UNDOLISPX 1 undoes the event, prints a message. e.g •• SETQ 
UNDONE. and returns T. 

If FLG=T and the event is already undone. or is an undo command. UNoOLISPX.1 
takes no action and rerums NIL. UNOOLISPX uses this option to search for the 
last event to undo. Thus when LINE=NIL. UNDOLISPX simply searches history 
until it finds an event for which UrJDOLISPXl returns T. 

Undoing an event consists ofinapping down (COR of) the property value for SIDE. 
and for each element. applying CAR to CDR. and then marking the event undone 
by attaching (with IATTACH) a NIL to the fro~t of its SIDE property. Note that 
the undoing of each element on the SIDE propeny will usually cause undosavesto 
be added to the currenl LISPXHIST. thereby enabling the effects of UNDO LISP X 1 
to be undone. 

8.34 
(J. 

-- ........ 



0" -. 

o 

o 

THE PROGRAM1v!ER'S ASSIST ANT 

(PRINTHISTORY HISTORY LINE SKIPFN NOVALUES FILE) [Function1 

8 () . 
• 0 

LINE is an event specification. PRINTHISTORY prints the events on HISTOR.Y 
specified by LINE. e.g., (-1 THRU -10). Printing is performed via u,e 
function SHOWPRIN2, so that if the value of SYSPRETTYFLG=T, events will 
be prettyprinted. 

SKIPFN is an (optional) functional argument that is applied to each event before 
printing. If it returns non-r~ I L, the event is skipped, Le .• not printed. 

If NOVALUES= T, or NOVALUES applied to the corresponding event is true, the 
value is not printed. For example, NOVALUES is T when printing events on 
EDITHISTORY. 

For example, the followipg LISPXMACRO will define 71' as a command for 
printing the history list while skipping all "large events" and not printing any 
values. 

(71' (PRINTHISTORY 
LISPXHISTORY 
LISPXLlr~E 

(FUNCTION (LAMBDA eX) 

T 
T» 

(IGREATERP (COUNT (CAR X» 5») 

THE EDITOR AND THE PROGRAMMER'S ASSISTANT 

As mentioned earlier, all of the remarks concerning "the programmer's assistant" apply equally well to 
user interactions with EVALQi, BREAK or the editor. The differences between the editor's implementation 
of these features and that of LISPX are mostly obvious or inconsequential. However. for completeness, 
this section discusses the editor's implementation of the programmer's assistant. . 

The editor uses PROMPTCHAR to print its prompt character, and LIS?XREAD. LISPXREADP, and 
READLINE for obtaining inputs. When the editor is given an input. it calls HISTORYSAVE to record the 
input in a new event on its history list. EDITHISTORy.8 EDITH:STORY follows the same conventions 
and format as LISPXHISTORY. However, since edit commands have no value. the editor uses the value 
field for saving side effects.. rather than storing them under the property SID E. 

The editor recognizes and precesses the four commands DO. ! E. ! F, and ! r~ which refer to previous 
events on ED ITHI STORY. The editor also processes UNDO itself .. as described below. All other history 

8Except that the atomic commands OK. STOP. SAVE. P, ? PP and E are not recorded. In addition. 
number cornmands are grouped together in a single event. For example. 3 3 -1 is considered as one 
command fer changing position. 

8.35 



The Editor and the Programmer's Assistant 

commands9 are simply given to LIS?X for execution. after first binding (resetting) LISPXHISTORY to 
EDITHISTORY. The editor also calls LISPX when given an E command (page 17.45). In this case, the 
editor uses the fifth argument to LIS? X, LISPXFLG, to specify t..'1at any history commands are to be 
executed by a recu~ive call to LISPX, rather than by unreading. For example, if the user types E REDO 
in the editor, lie wants the last event on LIS?XHISTORY processed as LISPX input, and not to be unre3d 
and processed by the editor. 

The major implementation difference between the editor and LISPX occurs in undoing. EDITHISTORY 
is a list of only the last N commands, where N is the value of the time-slice. However the editor provides 
for undoing ail changes made in a single editing sesSion. even if that session consisted of more than N 
edit commands. Therefore, the editor saves undo information independently of the EDITHISTORY on 
a list called U~JDOLST, (although it also stores each entry on UNDOLST in the field of the corresponding 
event on EDITHISTORY.) Thus, the commaIlds UNDO, ! UNDO, and UNBLOCl<~ are not dependent on 
EDITHISTORY, and in fact will work if EDITHISTORY=NIL~ or even in a system which does not 
:ontain LISPX at all. For example, UNDO specifies undoing the last command on UNDOLST, even if that 
event no longer appears on ED ITHISTORY. The only interaction between UNDO and the history list occurs 
w hen the user types UNDO followed by an event specification. In this case, t..'le editor calls LIS P X FIN D 
to find the event, and then undoes the corresponding entry on UNDOLST. Thus the user can only undo 
a specified command within the scope of the EDITHISTORY. (Note that this is also the only way UNDO 
commands themselves can be undone~ that is. by using the history feature~ to specify the corresponding 
event, e.g., UNDO UNDO.) 

The implementation of the actual undoing is similar to the way it is done in LISPX: each command that 
makes a change in the structure being edited does so via a function that records the change on a variable. 
After the command has completed, this variable contains a list of all the pointers that have been changed 
and their cri~..nal contents. Undoing that command simply involves mapping down that list and restoring 
the pointers. 

9as indicated by their appearance on HI STORYCOMS. a list of the history commands. ED ITDE FAUL T in
terrogates HISTORYCOMS before attempting spelling correction. (All of the comrn~nds on HISTORYCOMS 
are also on EDITCOMSA and EDITCOMSL so that they can be corrected if misspelled in the editor.) Tnus 
if the user defines a LISPXMACRO and wishes it to operate in the editor as well. he need Simply add it 
to HISTORYCOMS. For example. RETRIEVE is implemented as a LISPXMACRO and works equally well 
in LIS P X and the editor. 

8.36 

o --(" 
.... " 

'. 

o~_ " .: 

'r)·, 
'- . 



CHAPTER 9 

ERRORS .A..ND BREAK HM1)LING 

Occasionally, while a program is running, an error may occur which will stop the computation. A coding 
mistake may have caused the wrong arguments to be passed to a function, or the programmer may have 
not forseen a particular unusual siruation which came up, causing a function to try doing something 
illegal. Interlisp provides extensive facilities for detecting and handling error conditions, to enable testing, 
debugging,and revising of imperfect programs. o ,. Errors can be caused in different ways. As mentioned above, an Interlisp primitive function may signal an 
error if given illegal arguments: for e~ample, PLUS will cause an error if its arguments are not numbers. It 
is also possible to interrupt a computation at any time by typing one of the uinterrupt characters," such as 

0-

• control-D or control-E (the Interlisp-D interrupt characters are listed on page 18.1: those for Interlisp-lO 
on page 22.1). Finally, as an aid to debugging. the programmer can specify that certain functions should 
cause an error automatically whenever they are entered (see page 10.1). This allows examination of t.'1e 
context within the computation. 

When an error occurs, the system can eitherl reset and unwind the stack. or go into a "break", an 
environment where the user can examine the srate of the system at the point of the error, and attempt to 
debug the program.. Within a br~ Interlisp offers an extensive set of "break commands", which assist 
with debugging. 

This chapter explains what happens when errors occur. Breaks and break commands are given which 
allow the user to handle program errors. Finally. advanced facilities for modifying and extending the 
error mechanism are presented. 

BREAKS 

One of the most useful debugging facilities in Interlisp is the ability to put the system into a "break". 
stopping a computation at any point and allowing the user to interrogate the state of the world and affect 
the course of the computation. A break appears to the user like a top-level executive, except that a break 
uses the prompt character":" to indicate it is ready to accept input(s), in the same way that " .. " is used 
at the top-leveL However. a break saves the environment where the break Occurred, so that the user may 
evaluate variables and expressions in the environment that was brok"en. In addition, the break program 
recognizes a number of useful "break commands''. which provide an easy way to interrogate me state of 
the broken computation. 

Note: In Interlisp-D, the break package has been extended to include ~dow operations (see page 20.10). 

IThe mechanism used for deciding; whether to unwind the stack or to g;0 into a break is described on 
page 9.10. Tne user can modify this mechanism. .... 

9.1 



Breaks 

Breaks may be entered in several different ways. Some interrupt characters (page 9.17) automatically 
cause a break to be entered whenever they are typed. Functions errors may also cause a br~ depending 
on the depth of the computation (see page 9.10). Finally, Interlisp provides functions which make it 
easy to "break" suspect functions so that they always cause a break whenever they are entere~ to allow 
examination and debugging (see page 10.4). 

Within a break the user has access to all of the power of Interlisp; he can do anything that he can do at 
the top-level executive. For example, the user can evaluate an expression. see that the value is incorrect. 
call the editor, change the function. and evaluate the expression again. all without leaving the break. The 
user can even type in commands to the programmer's assistant (page 8.1), e.g. to redo or undo previously 
executed eventS. including break commands. 

Similarly, the user can prettypnnt functions, define new functions or redefine old ones, load a file, compile 
functions, time a computation, etc. In shon,anything' that he can do at the top level can be done while 

- inside of the break. In addition the user can examine the stack (see page 7.1), and even force a return f"'. 
Jack to some higher function via the function RETFROM or RETEVAL \_ ~:) 

It is important to emphasize that once a break oc~ the user is in complete control of the flow of 
the computation. and the computation will not proceed without specific instruction from him. If the 
user types in an expression whose evaluation causes an error, the break is maintained. Similarly if the 
user abortS a computation initiated from within the break (by typing control-E), the break is maintained. 
Only if the user gives one of the commands that exits from the break. or evaluates a form which does a 
RETFROM or RETEVAL back out of BREAK1~ will the computation continue.2 

The basic function of the break package is BREAK1. Note that BREAKl is just another Interlisp function. 
not a special system feature like the interpreter or the garbage collector.It has arguments, and returns a . 
value, the same as any other function. The value returned by BREAKl is called .. the value of the break." 
The user can specify this value explicitly by using the RETUR~j command described below. But in most 
cases. the value of a break. is given implicitly, via a GO or OK command, and is the result of evaluating 
"the break expression," BRKcXP. which is one of the arguments to BREAK1. For more information on 
the function BREAK1~ see page 9.11. 

The break expressio~ stored in the variable BRKEX?, is an expression equivalent to the computation that 
would have taken place had no break occurred. For example~ if the user breaks on the function FOO. the 
break expression is the body of the definition of FOO. When the user types OK or GO, the body of Foa is (~), 
evaluated. and its value returned as the value of the break, Le.~ to whatever function called FOO. BRKEXP 
is set up by the function that created the call to BREAK1. For functions broken with BREAK or TRACE, 
BRKEXP is equivalent to the body of the definition of the broken function (see page IDA). For functions . 
broken with BREAKIN, using BEFORE or AFTER, BRKEXPis NIL. For BREAKIN AROUND, BRKEXP is 
the indicated expression (see page lQ.5). 

BREAK 1 recognizes a large set of break commands. These are typed in without parentheses. In order 
to facilitate debugging of pr.9grams that perform input operations~ the carriage rerum. th~t is typed to 

2Except that BREAKl does not "tum off' control-D, i.e .. a control-D will force an immediate rerum back 
to L.~e top leveL 

9.2 

... : .. ~ ;"'.-~.':'---:.I_." · .. ·1 .. • ....... , ...... ____ ,""" ••••••• " •.. '.~ '.' ., .' -' •• _ '.' ....... _ .••.• '. "I. ••.• i .... _ ...... __ •. ,-, ...... -,.; .. '."'_ ..... _ ... _;; :-_ ...... '._. "': __ ~ ~._'.''' ... -.. ... _ •••• • .•• 



o 

o 

ERRORS AND BREAK HANDLING 

complete the GO, OK. EVAL, etc. commands is discarded by BREAK1. so that it will not be pan of the 
input stream after the break. 

GO 

OK 

EVAL 

RETURN FOP_\! 

[Break Command] 
Evaluates BRKEXP, prints this value. and rewms it as the vaiue "of the break. 
Releases the break and allows the computation to proceed. 

[Break Command1 
Same as GO except that the value of BRKEXP is not printed. 

[Break Command] 
Same as OK except that the break is maintained after the evaluation. The value 
of this evaluation is bound to the local :variable ! VALUE. which the user can 
interrogate. Typing GO or OK following EVAL will not cause BRKEXP to be 
reevaluated, but simply return the value of !VALUE as the value of the break. 
Typing another EVAL will cause reevaluation. EVAL is useful when the user is not 
sure whether the break will produce the correct value and wishes to examine it 
before continuing with the computation. 

[Break Command] 
FOR-\! is evaluated. and returned as the value of the break. For example, one could 
use the EVAL command and follow this with RETUR~l (REVERSE ! VALUE). 

[Break Command] 
Calls ERROR 1 and aborts the bre~ making it "go away" without returning a value. 
This is a useful way to unwind to a higher level break. All other errors. includL'lg 
those encountered while executing the GO. OK. EVAL, and RETURN commands, 
maintain the break. 

The following four commands refer to .. the broken function." This is the function that caused the break. 
whose name is stored in the BREAKl argument BRKFN. 

!EVAL 

!GO 

!OK 

us 

@ 

[Break Command] 
The broken function is first unbroken, then the break expression is evaluated (and 
the value stored in ! VALUE), and then the function is rebroken. This command is 
very useful for dealing with recursive functions. 

[Break Command] 
Equivalent to ! EVAL followed by GO. The broken function is unbroken. the break 
expression is evaluated, the function is rebroken, and then the break is exited with 
the value typed. 

[Break Command} 
Equivalent to ! EVAL fonowed by OK. The broken function is unbroken. the break 
expression is evaluated, the function is rebroken. and then the break is exited. 

[Break Command] 
Unbreaks the broken function. 

[Break Corr...rn::.nd] 
Resets the variable LASTPOS. which establishes a context for the commands? =. 
ARGS. BT. STV. BTV*. EDIT, and IN? described below. LASTPOS is the position 

9.3 



Breaks 

of a function call on the stack. It is initialized to the function just before the call 
to BREAK1, i.e., (STKNTH -1 'BREAKl ).3 

@ treats the rest of the teletype line as its argument(s). It first resets LAST POS to 
(STKNTH -1 'BREAK1) and then for each atom on the line, @ searches down 
the stack for a call to that atom. Tne following atoms are treated specially: 

@ Do not reset LASTPCS to (STKNTH -1 'BREAK!) but leave it as it was, 
"and continue searching from that point. 

a number N 
If negative, move LASTPOS down the stack N frames. If positive, move 
LASTPOS up the stack N frames. 

/ The next atom on the line (which should be a number) specify that the 
previous atom should be searched for that many times. For example, '6@ 

FOC / 3" is equivalent to "@ FOO FOC FOC". 

= Resets LAST pas to the value of the next expressio~ e.g., if the value 
of F 00 is a stack pointer, "@ = F 00 FIE" will search for FIE in the 
environme:lt" specified by (the value of) FOC. 

For example, if the push-down stack looks like: 

BREAKl [9} 
FOO [8} 
COND [7J 
FIE [6} 
COND [51 
FIE [4} 
COND [3} 
FIE [2} 
FUM [I} 

then u@ FIE COND" will set LASTPOS to the position corresponding to [5}; "@ @ 

COND" will then set LASTPOS to [3}; and "@ FIE / 3 -1" to [lJ. 

If @ cannot successfully complete a search for function FN, it searches the stack 
again from that point looking for a call to a function whose name is close to that 
of FN. in the sense of the spelling corrector (page 15.13). If the search is still 
unsuccessfuL @ types (FN NOT FOUND). and then aborts. 

When @ finishes. it types the name of the function at LASTPOS~ Le .• (STKNAME 
LASTPOS). 

@ can be used on BRKCOMS (see page 9.12). In this case, the next command on 
BRKCOMS is treated the same as the rest of the teletype line. 

3When control passes from BREAK1. e.g. as a result of an EVAL. OK. GO. REVERT • .,. COIlLT!1and... or via 
a RETFROM or RETEVAL typed in by the user, (RELSTK LASTPOS) is executed to release this stack 
oointer. 

9.4 

c)~ 
~ .. 



o 
1= 

o· 

-

ERRORS AND BREAK HANDLING 

[Break Command] 
This is a multi-purpose command.. 4 Its most common use is to interrogate the 
value(s) of the arguments of the broken function. For" example. if FOO has t.~ree 
arguments (X Y Z), then typing ? = to a break on F 00 will produce: 

. : 
:?= 
X = value of X 
Y = value of Y 
Z = value of Z 

1= operates on the rest of the teletype line as its arguments. If the line is empty, 
as in the above case, it operates on all of the arguments of the broken function. If
the user types ? = X (CAR Y), he will see the value of X. and the value of ( CAR 
y).5 The difference between using ?= and typing X and (CAR Y) directly to 
BREAK1 is that 1= evaluates its inputs as of the stack frame LASTPOS. Le .• it uses 
STKEVAL. This provides a way of examing variables or performing computations 
as of a particular point on the stack. For example. @ FOO / 2 followed by 1= X 
will allow the user to examine the value of X in the previous call to F 00, etc. 

? = also recognizes numbers as referring to the correspondingly numbered argument. 
Le .. it uses STKARG in this case. Thus 

:@ FIE 
FIE 
:?= 2 

will print the name and value of the second argument of FIE. 

?= can also be used on BRKCOMS (page 9.U in which case the next command 
on BRKCOMS is treated as the rest of the teletype line. For example, if BRKCOMS 
is (EVAL ?= (X Y) GO), BRKEXP will be evaluated, the values of X and Y 
printed, and then the function exited with its value being printed.. 

o PB [Break Command1 
Prints the bindings of a given variable. Similar to 1 =, except ascends the stack 
starting from LASTPOS, an~ for each frame in which the given variable is bound.. 
prints the frame name and value of the variable (with PRINTLEVEL reset to (2 

u 

• 3). e.g. ' 

:PB FOO 
@ FN1: 3 
@ FN2:· 10 
@ • TOP: NOBIND 

4In fac~ 7. = is a universal mnemonic for displaying argument names and their corresponding values. In 
addition to being a break command,. 7 = is an edit macro which prints the argument names and values 
for the current expression (page 17.37), and a read-macro (actually 7 is the read-macro character) which 
does t.~e same for the current level list being read.. 

sThe val{.fe of each variable is printed with the function SHOWPRINT (page 6.17), so that if 
SYSPRETTYFLG=T, the value will be prettyprinted.. 

9.5 



ST 

STV 

STV+ 

STY· 

STY! 

Breaks 

PB is also a programmers assistant command (page 8.14) that can be used when 
not in a break. PB is implemented via the function PRINTBINOINGS. 

[Break Command} 
Prints a backtrace of function names only starting at LASTPOS. The several nested 
calls in system packages such as break, edit. and the top level executive appear as 
the single entries ·-BREAK··, ··EDITOR··, and ··TOp·· respectively. 

[Break Command1 
Prints a backtrace of function names with variables beginning-at LAST?OS. 

The value of each variable is printed with the function SHOWPRINT (page 6.17), 
so that if SYSPRETTYFLG=T, the value will be prettyprinted. 

[Break Command] 
Same as B TV except also prints local variables .and arguments to SUB Rs. 

[Break Command] 
Same as STV except prints argumentS to SUBRs, local variables, and temporaries 
of the interpreter. Le. eva! blips (see page 7.10). 

~reak Command] 
Same as B TV except prints everything on the stack. 

BT, BTV. STV+, STV·, and STV! all take optional functional arguments. These arguments are used to 
choose functions to be skipped on the backtrace. As the backtrace scans down the stack. the name of 
each stack frame is passed to each of the functional arg-..l::lentS to the backtrace command. If any of 
these functions rerums a non-NIL value, then that frame is skipped. and not shown in the backtrace. For 
example. BT SUBRP will skip all SUBRs. STV (LAMBDA (X) (NOT (MEMB X FOOFNS») will skip 
all but those functions on FOOFNS. If used on SRKCOMS (page 9.U) the functional argume!lt is no longer 
optional, Le .• the next element on BRKCOMS must either be a list of functional arguments. or NIL if no 
functional argument is to be applied. 

For BT, STY, BTV+, STV·, and STY!, if control-P is used to chanf:e a printlevel during the backrrace, 
the printlevel will be restored after the backtrace is completed. 

The value of BREAKDELIMITER. initially" c:r", is printed to delimit the output of ?= and backtrace 
commands .. This can be reset (e.g. to " t ") for more linear output. 

ARGS 

REVERT 

[Break COI!h~andl 
PrintS the names of the variables bound at LASTPOS. Le., (VARIABLES LASTPOS) 
(page 7.5). For most cases, these are the argumentS to the function entered at that 
position. i.e .• (ARGLIST (STKNAME LASTPOS». 

[Brei\: Command] 
Goes back to position LAST?OS on stack and reenters the fu~ction called at that 
point with the arguments found on the stack. If the function is not already broken. 
REVERT first breaks it. and then unbreaks it after it is reentered. 

REVERT can be given the position using the conventions described for @. e.g .• 
REVERT Faa -1 is equivalent to @ FaO -1 ,followed by REVERT. 

REVERT is useful for restaning a computation in the situation where a bug is 

9.6 

(;. 
-'-. 



o 

0, 

() 
~. 

o 

ORIGIP-!AL 

ERRORS AND BREAK HANDLING 

discovered at some point below where the problem actually occurred. REVE RT 
essentially says "go back there and stan over in a break." REVE~T will work 
correctly if the names or arguments to the function., or even its function type, have 
been changed. 

[Break Command] 
For use in conjunction with BREAKMACROS (see page 9.12). Form is (ORIGINAL 
• COMS). COMS are executed without regard for BREAKMACROS. Useful for 
redefining a break command in terms of itself. 

The following two commands are for use only with unbound atoms or undefined function breaks. 

= FORlJ 

-) EXPR 

[Break Command] 
Can only be used in a break following an unbound atom error. Sets the atom to 
the value of FOP.M, exits from the break returning that value. and continues the 
computation., e.g., 

UNBOUND ATOM 

(FOa BROKEN) 
:= (COpy FIE) 

sets Faa and goes on. 

Note: FORM may be given in the form FN[ARGS]. 

[Break Command] 
Can be used in a break following either with unbound atom error, or an undefined 
function error. Replaces the expression containing the error with EXPR (not the 
value of EXPR), and continues the computation. -) does not just change BRKEXP: 
it changes the function or expression containing the erroneous fOIm. In other 
words, the user does not have to perform any additional editing. 

For example, 

~NDEFINED CAR OF FORM 

(FOOl BROKE~J) 
:-) FOa 

changes the FOal to Foa and continues the computation. EXPR need not be 
atomic. e.g., 

UNBOUND ATOM 

(FOa BROKEN) 
:-) (QUOTE FOO) 

For undefined function breaks. the user can specify a function and initial arguments. 
e.g .. 

UNDEFINED CAR OF FORM 

. 9.7 



EDIT 

(MEMBERX BROKEN) 
:-) MEMBER X 

Breaks 

Note that in the case of a undefined function error occurring immediately following 
a call to APPLY (e.g., (APPLY X Y) where the value of X is FOO and Foa is 
undefined), or a unbound atom error immediately following a call to EVAL (e.g .. 
(EVAL X), where the value of X is FOC and FOO is unbound), there is no 
expression containing the offending atom. In this case, -) cannot operate, so ? is 
printed and no action is taken. 

[Break Command] 
Designed for use in conjunction with. breaks caused by errot'S. Facilitates editing 
the expression causing the break: 

NON-NUMERIC ARG 
NIL 
(IPLUS BROKEN) 
:EDIT 
IN FOO ... 
(IPLUS X Z) 
EDIT 
·(3 Y) 
·OK 
Foa 

and the user can continue by typing OK, EVAL, etc. 

This command is very simple conceptually, but complicated in its implementation by all of the exceptional 
cases involving interactions with compiled functions, breaks on user functions. error breaks, breaks within 
breaks, et ale Therefore, we shall give the following Simplified explanation which will account for 90% of 
the situations arising in actual usage. For those others. ED IT will print an appropriate failure message 
nd rerum to the break. 

ED IT begins by searching up the stack beginning at LASTPOS (set by @ command. initially position of the 
break) looking for a fonn.. Le., an internal call to EVAL. Then EDIT continues from that point looking for 
a call to an interpreted function, or to EVAL. It then calls the editor on either the EXPR or the argument 
to EVAL in such a way as to look for an expression EQ to the form that it first found.. It then prints 
the form. and permits interactive editing to begin. Note that the user can then type successive O's to the 
editor to see the chain of superforms for this computation. 

If the user exits from the edit with an OK. the break expression is reset., if possible. so that the user can 
continue with the computation by simply typing OK. (Note that evaluating the new BRKEXP will involve 
reevaluating the form that causes the break. so that if (PUTO (QUOTE (FOO)) BIG-CO!tfPUT..1..TION) 

were handled by ED IT, BIG-COMPUTATION would be reevaluated.) However. in some situations. the 
break expression cannot be reset. For example, if a compiled function FOO incorrectly called PUTO and 
caused the error ARG NOT ATOM followed by a break on PUTD. ED IT might be able to find the form 
headed by F 00. and also find that fonn in some higher interpreted function. But after the user corrected 
the problem in the FOO-fonn. if any, he would still not have in any way informed ED IT what to do about 
the immediate proble~ i.e .• the incorrect call to PUTD. However. if FOO were interpr=eted ED IT would 

~ 
find the PUTD fonn itself. so that when the user corrected that form. ED IT could use the new corrected 

9.8 

n 
\. \.}:~. ~. 

(-" 
\ -
\. / .'. 
'-' -" 

(\ 
\. /':,. 

-'-. . 



C) 
\: 

ERRORS Al'ffi BREAK HANDLING 

form to reset the break expression. The two cases are shown below: 

If FOO is compiled: 

FOO compiled 

ARG NOT ATOM 
(FUM) 
(PUiD BROKEN) 
:EDIT 
IN FIE ... 
(FOO X) 
EDIT 

F 00 interpreted 

ARG i·lOT ATOM 
(PUTD BROKEt~) 
:EDIT 
IN FOO ••• 
(PUTO X) 
EDIT 

/.r-'~; ° (2 (CAR X» 
U ·OK 

NOTE: BRKEXP NOT CHANGED 

0(2 (CAR X» 
·OK 
:OK 
PUTO 

FIE 
. :? = 

--o 

o 

U = (FUM) 
:(SEiQ U (CAR U» 
FUM 
:OK 
PUTD 

IN? [Break COII1mand] 
Similar to EDIT, but just prints parent fo~ and superfo~ but does not call 
editor, e.~ 

ATTEMPT TO RPLAC NIL 
T 
(RPLACD BROKE~J) 
:IN? 
FOO: (RPLACO X Z) 

Although EDIT and IN? were designed for error breaks, they can also be useful for user breaks. For 
example, if upon reaching a break on his function FOO. the user determines that there is a problem in 
the call to F 00, he can edit the calling form and reset the break expression with one operation by using 
EDIT. The following two protocol's with and without the use of EDIT, illustrate this: 

Without ED IT: 

(FOO BROKEN) 
:?= 
X = (A B C) 
Y = 0 
:BT 

Foa 
SETQ 
COND 
PROG 
FIE 

vVith EDIT: 

(FOO BROKEN) 
:?= 
X = (A B C) 
Y = 0 
:EDIT 
O(SW 2 3) 
·OK 
FIE6 
:OK 
FOO 

9.9 



cor~D 

:EDITF(FIE) 
EDIT 
-F FOD P 
(FDD V U) 
*(SW 2 3) 
*OK 
FIE 
: (SETQ Y X) 
(A B C) 
:(SETQQ X 0) 
r) 

1= 
X = 0 
Y = (A B C) 
:DK 
FOa 

find which jUnction 
FOO is called from 
(aboned with 'f E) 

edit it 

reset X and Y 

check them 

9.2 WHEN TO BREAK 

When to Break 

(\ 
, ) --,r 
~. 

When an error occurs, the system has to decide whether to reset and unwind the stac~ or go into a 
break. In the middle of a complex computatio~ it is usually helpful to go into a br~ so that the 
user may examine the state of the computation. However, if the computation has only proceeded ,a little 
when the error occurs. such as when the user mistypes a function name, the user would normally just 
terminate a break. and it would be more convenient for the system to simply cause an error and unwind 
the stack in this siruaruation. The decision over whether or not to induce a break depends on t..~e depth 
of computatio~ and the amount of time invested in the computation. The actual algorithm is described 
'1. detail below; suffice it to say that the parameters affecting this decision h~~ve been adjusted empirically () 

··;)0 that trivial type-in errors do not cause breaks, but deep errors do. ( . 

(8REAKCHECK ERRORPOS ERXN) [Function] 
BREAKCHECK is called by the error routine to decide whether or not to induce 
a break when a error occurs. ERRORPOS is the stack position at which the error 
occurred; ERXN is the error number. Rerums T if a break should occur; NIL 

. otherwise. 

BREAKCHECK rerurns T (and a break occurs) if the "computation depth" is greater 
than or equal to HELPDEPTH. HELPDEPTH is initially set to 7. arrived a.t empirically 
by taking into account the o\Cerhead due to LISPX or BREAK. 

If· the depth of the computation is less than .HELPDEPTH. BREAKCHECK next 
. calculates the length of time spent in the computation. If d"'Js time is greater than 

6X and Y have not been changed. but BRKEXP has. 

9.10 



o 

0-

o 

ERRORS AND BREAK HANDLING 

HELPTIME milliseconds, initially set to 1000, then BREAKCHECK returns T (and a 
break occurs), otherwise NIL. . 

. 
BREAKCHECK determines the "computation depth" by searching back up the stack looking for an 
ERRORSET frame (ERRORSETs indicate how far back unwinding is to take place when an error OC=U!S. 

see page 9.15). At the same time, it counts the number of internal calls to EVAL. As soon as (if) 
the numb-er of calls to EVAL exceeds HELPOEPTH, BREAKCHECK immediately stops searching for an 
ERRORSET and returnS T. Otherwise, BREAKCHECK continues searching until either an ERRORSET is 
found or the top of the stacx is reached. (Note: If the second argument to ERRORSET is INTERNAL. the 
ERRORSET is ignored by BREAKCHECK during this search.) BREA~CHECK then counts the number of 
function calls between the error and the last ERRORSET, or the top of the stack. The number of function 
calls plus the number of calls to EVAL (already counted) is used as the "computation depth". 

BREAKCHfCK determines the computation time by subtracting the value of the variable HELPCLOCK from 
the value of (CLOCK 2), the number of milliseconds of compute time (see page 14.10). HELPCLCCK 
is rebound to the current value of (CLOCK 2) for each computation typed in to LISPX or to a break. 
The time criterion for breaking can be suppressed by setting HELPTIME to NIL (or a very big number), .. 
or by setting HELPCLOCK to NIL. Note that setting HELPCLOCK to NIL will not have any effect beyond 
the CUlTent computation, because HELPCLOCK is rebound for each computation typed in to LISPX and 
BREAK. 

The. user can suppress all error breaks by setting the top level binding of the variable HELPFLAG to 
NIL using SETTOPVAL (HELPFLAG is bound as a local variable in LISPX, and reset to the global value 
of HELPFLAG on every LISPX line, so just SETQing it will not work.) If HELPFLAG = T (the initial 
value), the decision whether to cause an error or break is decided based on the computation time- and 
the computation depth, as described above. Finally. ifHELPFLAG=BREAKl, a break will always occur 
following an error. 

9.3 BREAK.! 

The basic function. of the break package is BREAK1, which creates a break. A break appears to be a 
regular executive, with the prompt": ''. but BREAKl also detects and interpretes break commands (page 
9.3). 

(B REAKl BRKEXP BRKWFIEN BRKFN BRI{COMS BRKTYPE ERRORN) [NLambda Function] 
If BRK"WHEN is NIL~ BR.KEX1' is evaluated and returned as the value of BREAK1. 
Otherwise a break occurs and commands are then taken from BRKCOMS or t.he 
terminal and interpreted. All inputs not recognized by BREAK 1 are simply passed 
on to the programmer's assistant. 

When a break occurs, if ERRORN is a list whose CAR is a number. ERRORMESS 
is called to print an identifying message. If ERRORN is a list whose CAR is not 
a number. E RRORMESS 1 is called. Otherwise. no preliminary message is printed. 
Following this. the message (BRKFN broken) is printed. . 

Since BREAK 1 itself calls functions. when one of these is broken. an infinite loop 
would occur. B~EAKl detects this siruation. and prints Break within a break 

9.11 

I 



BREAK! 

on FN, and then simply calls the function without going into a break. 

The commands GO, ! GO, OK~ ! OK~ RETURN and 1" are the only ways to leave 
BREAK1. The command EVAL causes l3R.KEXP to be evaluatecL and saves the 
v2Jue on the variable! VALUE. Other commands can be defined for BREAK1 via 
BREAKMACROS (below). 

BRKT'YPE is NIL for user breaks. INTERRUPT for control-H breaks. and 
ERRORX for error breaks. For breaks when BRKTYPE is not NIL~ BREAKl will 
clear and save the input buffer. If the break returns a value (i.e~ is not aborted 
via 1" or control-D) the input buffer will be restored. 

The fourth argument to BREAK1 is BRKCOMS" a list of break commands that BREAKl interpretS and 
executes as though they were keyboard input. One can think of BRKCOMS as another input file which 
always has priority over the keyboard. Whenever BRKCO.MS=NI~ BREAKl reads its next command from 
the keyboard.. Whenever BRKCOMS is not NIL .. BREAKl takes (CAR BRKCOMS) as its next command 
and sets BRKCOMS to (COR BRKCOMS). For example, suppose the user wished to see the value of the 
var~ble X after a function was evaluated. He could set up a break with BRKCOMS= {EVAL (PRINT 
X) OK). which would have the desired effect. Note that if BRKCOMS is not NIL. the value of a break 
command is not printed. If you desire to see a value, you must print it yourself. as in the above example. 
The function TRACE (page 10.4) uses BRKCOMS: it sets up a break with two commands; the first one 
printS the arguments of the function.. or whatever the user specifies .. and the second is the command GO. 
which causes the function to be evaluated and its value printed. 

Note: If an error occurs while interpreting the BRKCOMS ~ommands. BRKCOMS is set to NIL .. and a full 
interactive break occurs. 

The break package has a facility for redirecting ouput to a file. All output resulting from BRKCOMS will 
be output to the value of the variable BRKF ILE, which should be the name of an open file. Output due 
to user cypein is not affected. and will always go to the terminal. BRKFILE is initially T. 

BREAKMACROS (Variable] 
BREAKMACROS is a list of the form ( (NAMEl COMU .•• COM111 ) (NAME2 
COM21 ••• COM211 ) ••• ). Whenever an atoIric command is given to B.REAK 1. it n 
first searches the list BREAKMACROS for the command. If the command is equal \.. 
to NAMEj, BREAK1 simply appends the corresponding commands to the front of 
BRKCOMS, and goes on. If the command is not found on BREAKMACROS. BREAK1 
then checks to see if it is one of the built in commands. and finally, treats it as a 
function or variable as before.1 

Example: The command ARGS could be defined by including on BREAKMACROS 
thefOIm: (ARGS (~RINT (VARIABLES LASTPOS T») 

(B REAKREAD TYPE) [Function} 
Useful within BREAKMACROS for reading arguments. If BRKCOMS is non-N IL (the 
command in which the call to BREAKREAD appears was not typed in), returns the 

. next break command from BRKCOMS. and sets· BRKCOMS to (.CDR BRKCOMS). 

rrf the command is not the name of a defined function. bound variable. or L! S P X command., B R EA K 1 will 
attempt spelling correction using 8REAKCOMSLST as a spelling list. If spelling correction is unsuccessfuL 
BREAKl will go ahead and call LIS?X anyway, since the atom may also be a misspelled history command. 

9.12 
n 

'-



o 

o 

ERRORS AND BREAK HANDLING 

If BRKCOMS is NIL (the command was typed in), then BREAKREAD returns either 
the rest of the commands on the line as a list (if TYPE= LINE) or just the next 
command on the line (if TYPE is not LINE) • 

. 
For example. the BT command is defined as (BAKTRACE LASiPOS r~IL (SREAKREAD 
'LINE) 0 T). Thus, if the user types BT, the third argument to BAKTRACE will 
be NIL. If the user types BT SUBRP, the third argument will be (SUBR?). 

BREAKRESETFORMS [Variable] 
If the user is developing programs that change the way a user and Interlisp normally 
interact (e.g~ change or disable the interrupt or line-editing characters. tum off 
echoing, etc.), debugging them by breaking or tracing may be difficult, because 
Interlisp might be in a "funny" state at the time of the break. BREAKRESETFORMS 
is designed to solve this problem. The user puts on BREAKRESETFORMS 
expressions suitable for use in conjunction with RESET FORM ali RESETSA'.fE 
(page 9.19). When a break occurs, BREAK 1 evaluates each expression on 
BREAKRESETFORMS before any interaction with the terminal. and saves the
values. When the break expression is evaluated via an EVAL. OK. or GO. BREAK! 
first restores the state of the system with respect to the various expressions on 
BREAKRESETFORMS. When (if) control returns to BREAKl. the expressions on 
BREAKRESETFORM'S are again evaluated. and their values saved. When the break 
is exited with an OK, GO. RETURN, or 1" command. by typing control-D. or by a 
RETFROM or RETEVAL typed in by the user,s BREAKl again restores state. Thus 
the net ·effect is to make the break invisible with. respect to the user's programs. 
but nevenheless allow the user to interact in the break in the normal fashion. 

As mentioned earlier. BREAKl detects "Break within a break" situations. and avoids 
infinite loops. If the loop occurs because of an error, BREAK! simply rebinds 
BREAKRESETFORMS to r.IL, and calls HELP. This situation most frequently occurs 
when there is a bug in a function called by BREAKRESETFORMS. 

Note: SETQ expressions can also be included on BREAKRESETFORMS for saving 
and restoring system parameters, e.g. (SETQ LISPXHISTORY NIL). (SETQ 
DWIMFLG r-JIL). etc. Tnese are handled specially by BREAKl in that the current 
value of the variable is saved before the SETQ is executed.. and upon restoration. 
the variable is set back to this value. 

9.4 ERROR FUNCTIONS 

( E RRORX ERXM) [Function] 
The entry to the error routines. If ERXM= NIL. (ERRORN) is used to determine 
the error-message. Otherwise. (SETERRORN (CAR ERXM) (CADR ERXM» is 
performed.. "setting" the error number and argument. Thus following either 

8 All user type-in is scanned in order to make the operations undoable as described on page 8.22. At 
tllis poinL RETFROMs and RETEVALs are also noticed. However. if the user types in an expression 
which calls a function that then does a RETFROM. this RETFROM will not be noticed. and the effects of 
BREAKRESETFORMS will not be reversed. 

9.13 



Error Functions 

(ERRORX '(10 T» or (PLUS T), (ERRORN) ~ (10 T). ERRORX c~ 
BREAKCHECK. and either induces a break or prints the message and unwinds to 
the last ERRORSET (page 9.10). Note that ERRORX can be called by any program 
to intentionally induce an error of any type. However, for most applications. the 
function ERROR will be more usefuL 

(ERROR MESSl MZSS:1 NOBREAK) [Function1 
Prints MESSl (using PRIN1), followed by a space if MESSl ~ an atom. otherwise a 
carriage return. Then MESS:1 is printed (using P R IN 1 if MESS:J ~ a string, otherwise 
PRINT). For example, (ERROR "NON-NUMERIC ARG" T) prints 

NON-NUMERIC ARG 
T 

and (ERROR 'FOa "NOT A FUr~CTION") prints FOa NOT A FUNCTION. If (). 
both MESSl and MESS2 are NIL, the message printed ~ simply E R RO R. \... ' 

If NOBREA.K=T, ERROR prints its message and then calls ERROR 1.9 Otherwise it 
calls (ERRORX '( 17 (MESSl • MESS:1»), ·i.e .• generates error number 17. in 
which case the decision as to whether or not to break. and whether or not to print 
a message, is handled as per any other error. . 

(HELP MESSl MESS2 BRKTYPE) [Function] 
Prints MESSl and .-a5S:1 similar to ERROR, and then calls BREAKl passing BRKTYPE 
as the BRKTYPE argument. If both MESSl and A!ESS2 are NIL. HELP! is used 
for the message. HELP is a convenient way to program a default conditioti or to 
terminate some portion of a program which the computation is theoretically never 
supposed to reach. 

(SHOULDNT M:ESS) [Function] 

' __ (ERROR!) 

(RESET) 

(ERRORN) 

Useful in those situations when a program detects a .ondition that should 
never occur. Calls HE L P with the message arguments MESS and "S h 0 U 1 d n ' t 
happen!" and a BRKTYPE argument of 'ERRORX. 

[Function] 
Programmable concrol-E; immediately returns from last ERRORSET or resets. 

[Function} 
Programmable control-D; immediately returns to the top leveL 

[Function] 
Returns information about the last error in the form (NUM EXP) where NUM is 
the error number (page 9.22) and EXP is the 'expression which was (would have 
been) printed out after the error message. For example. following (PLUS T), 
(ERRORN) would return (10 T). 

(SETERRORN HUM MESS) [Function] 
Sets the value returned by ERRORN to (NUM MESS). 

9unless the value of HELPFLAG is BREAK 1. in which case a break will always occur (see page 9.11). 

9.14 

(j 
\ ," 

'«: 



o 

o 

o 

(ERRORMESS u) 

ERRORS AND BREAK HANDLING 

[Function] 
Prints message corresponding to an ERRORN that yielded u. For exampl~, 
(ERRORMESS '( 10 T» would print 

P~ON-NUMERIC ARG 
T 

(ERRORMESS1 MESSl MESS2 MESS3) [Function] 
Prints the message corresponding to a HELP or ERROR break. 

(ERRORSTRI1~G -N) [Function] 
Returns as a new string the message corresponding to error number N, e.g., 
(ERRORSTRING 10) = "t~ON-NUMERIC ARG". 

(ERRORSET FORM FLAG -) [Function] 

(ERSETQ FORM") 

"( NLSETQ FORM) 

NLSETQGAG 

Performs (EV AL FORM). If no error occurs in the evaluation of FORM, the value 
of ERRORSET is a list containing one element, the value of (EVAL FORM). Iran 
error did occur, the value of ERRORSET is NIL. 

Note that ERRORSET is a lambda function. so its arguments are evaluated bejore 
.it is entered.. Le .. (ERRORSET X) means EVAL is called with the value of X. In 
most cases, ERSETQ and NLSETQ (described below) are more useful 

The argument FLAG controls the printing of error messages if an error occurs: 
J 

If FLAG = T, the error message is printed; if FLAG = NIL it is not (unless 
NLSETQGAG is NIL. see below). Note that if a break occurs below an ERRORSET, 
the message is printed regardless of the value of FLAG. 

If FLAG = INTERNAL, this ERRORSET is ignored for the pUIl'ose of deciding 
whether or not to break or print a message (see page 9.10). However. the 
ERRORSET is in effect for the purpose of How of control. i.e., if an error occurs, 
this ERRORSET returns NIL. 

If FLAG = NOB REAK, no break will occur, even if the time criterion for breaking 
is met. Note that FLAG=NOBREAK will not prevent a break from occurring if 
the error occurs more than HELPDEPTH function calls below the errorset, since 
BREAKCHECK will stop searching before it reaches the ERRORSET. To guarantee 
that no break occurs, the user would also either have to reset HE L P DE P THor 
HELPFLAG. 

[NLambda Function] 
Performs (ERRORSET 'FORM T), evaluating FORM and printin'g error messages. 

[NLambda Function] 
Performs (ERRORSET 'FORM NIL). evaluating FORM without printing error 
messages. 

[Variable] 
If rJLSETQGAG is NIL. error messages will print regardless of the FLAG 

argument of ERRORSET. NLSETQGAG effectively changes all NLSErQs to ERSETQs. 
NLSETQGAG is initially T. 

9.15 



Error Handling by Error Type 

9.5 ERROR HANDLING BY ERROR TYPE 

Occasionally the user may want to treat certain types of errors differently from othe~ e.g ... always bre~ 
never break., or perhaps take some corrective action. This can be accomplished via ERRORTYPELST: 

ERRORTYPELST 

/--. 

(Variable] 
ERRORTYPELST is a list of elements of the form (NUM FORM1 ••• FORMN) , 
where NUM is one of the error numbers (page 9.22). During an error, 
after BREAKCHECK has been completed. but before any other action is taken.. 
ERRORTYPELST is searched for an element with the same error number as that 
causing the error. If one is found, the corresponding forms are evaluated.. and if 
the last one produces a non-N I L value, this value is substiruted for the offender, 
and the function causing the error is reentered. 

(( lithin ERRORTYPELST entries, the following variables may be useful: 

ERRORMESS 

ERROR?OS 

BREAKCHK 

PRINTMSG 

[V3.riable] 
CA R is the error number, CAD R the 16 offender", e.g... (10 NIL) corresponds to a 
NON-NUMERIC ARG NIL error. 

[Variable] 
Stack pointer to the function in which the error occurred, e.g., (STKNAME 
ERRORPOS) might be IPLUS, RPLACA, INFILE. etc. 

Note: If the error is going to be bandied by a RET FROM, RETTO, or a RETEVAL 
in the ERRORTYPELST ent.J'. it probably is a good idea to first release the stack 
pointer ERRORPOS, e.g. by performing (RELSTK ERRORPOS). 

[Variable] 
Value of B REAKCHECK, i.e., T means a break will occur, NIL means one will not. 
This may be reset within the ERRORTYPELST entry. 

[Variable] 

n 
'-

(~~ 
'" J;-' 
~-- ... - . 

If T, means print error message, if NIL, don't print error message, Le., corresponds (\-. 
to second argument to ERRORSET. The user can force or suppress the printing of '- _j. 

error message for various errortypes by including on ERRORTY?ELST an expression 
which explicitly sets PRINTMSG. 

For example, putting 

[10 (AND (NULL (CADR ERRORMESS» 
(SELECTQ (STKNAME ERRORPOS) 

«IPLUS ADD1 SUB1) 0) 
(ITIMES 1) 
(PROGN (SETQ BREAKCHK T) NIL] 

on ERRORTYPELST would specify that whenever a NON-NUMERIC ARG - NIL error occurrecL and the 
function in question was I PLUS, ADD 1. or SUB 1. 0 should be used for the NIL. If the function was 
ITIMES. 1 should be used. Otherwise. always break. Note that the latter case is achieved not by the 
value returned.. but by the effect of the evaluation. i.e .. setting BREAKCHK to T. Similarly, (16 (SETQ 
B REAKCHK NIL» would prevent END OF FILE errors from ever breaking. 

9.16 



o \:, . 

o 

o 

ERRORS AND BREAK HANDLING 

ERRORTYPELST is initially «23 (SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG))), 
which causes SPELLFILE to be called in case of a FILE NOT Four~D error (see page 15.20). If 
SPELLFILE is successful, the operation will be reexecuted with the new (corrected) file name. 

9.6 INTERRUPT CHARACfERS 

Errors and breaks can be caused by errors within functions, or by explicitly breaking a function. The user 
can also indicate his desire to go into a break at while a program is running by typing certain control 
characters known as "interrupt characters". The interrupt characters in Interlisp-D are listed on page 18.1; 
those in Interlisp-l0 are listed on page 22.1. 

The user can disable and! or redefine Interlisp interrupt characters, as well as define new mterrupt 
characters. Interlisp-l0 is initialized with 9 interrupt channels: RESET (control-D), ERROR (control-E), 
BREAK (control-B), HELP (control-H), PRIr~TLEVEL (control-P), CONTROL-T (control-n, RuaOUT (del), 
STORAGE (control-S), and OUl PUTBUFFER (control-o). Interlisp-D does not have the STORAGE and 
OUTPUTBUFFER interrupt channels, and has the additional channel RAID (control-C). Each of these 
channels independently can be disabled, or have a new interrupt character assigned to it via the function 
INTERRUPTCHAR described below. In addition, the user can enable up to 9 new interrupt channels, and 
associate 'With each channel an interrupt character and an expression to be evaluated when that character 
is typed. 

User interrupts can be either "hard" or "soft". A "hard" interrupt is like control-E or control-D: it takes 
place as soon as it is typed. A soft interrupt is like control-H; it does not occur until the next function 
call. Soft interrupts can always be safely continued from. Hard interrupts rip the system out of the 
function currently being executed and unwind back to the last function call, Le. pan of the computation 
that was interrupted is lost and cannot be continued. 

Hard interrupts are implemented by generating error number 43. and retrieving the corresponding form 
from the list USERIUTERRUPTS once inside of ERRORX. Soft interrupts are implemented by calling 
INTERRUPT with an appropriate third argumen~ and then obtaining the corresponding form from 
USERINTERRUPTS. As soon as a soft interrupt character is typed. Interlisp clears and saves the input 
buffers. and then rings the bell. After the interrupt form is evaluated, the input buffers are restored. 
In either case. if a character is enabled as a user interrupt. but for some reason it is not found on 
USERINTERRUPTS. an UNDEFIr~ED USER INTERRUPT error will be generated. 

(INTERRUPTCHAR CHAR TYP/FORM HARDFLG) [Function] 
Defines CHAR as an interrupt character. If CHAR was previously defined ~ an 
interrupt character, that interpretation is disabled. 

CHAR is either a character or a character c~e (as rerurned by CHCON 1). TENE-X 
requires that interrupt characters be one of control-A. B, ...• Z, space. esc(alt-mode). 
rubout(delete), or break. . . 

If TYP /FORM = NIL. CHAR is disabled. 

If TYP /FORM= T. the current state of CHAR is returned without changing or 
disabling it. 

If TIP/FORM is one of the 81iteral atoms HELP. PRINTLEVEL. STORAGE. RUB OUT. 

9.17 



Changing and Restoring System State 

ERROR, RESET, OUTPUTBUFFER~ or BREAK, then INTERRUPTCHAR assigns CHAR 
to the indicated Interlisp intemIpt channe4 (reenabling the channel if previously 
disabled). 

If TYP/FORM is any other literal ato~ CHAR is enabled as an interrupt character 
that when typed causes the atom TYP /FORM to be immediately set to T. 

If TYP /FORM is a list. CHAR is enabled as a user interrupt character, and TYP /FORM 

is the form that is evaluated when CHA.R is typed. The interrupt will be hard if 
HARDFI.G = T, otherwise soft. 

(INTERRUPTCHAR T) restores all Interlisp channels to their original state, and 
disables all user interrupts. 

INTERRUPTCHAR returns an expression whic~ when given as an argument to (~. 
INTERRUPTCHAR will restore things as they were before the call to INTERRUPTCHAR. \- j::: '. 

Therefore, INTERRUPTCHAR can be used in conjunction with RESET FORM or "-
RESETLST (page 9.20). 

INTERRUPTCHAR is UIidoable. 

(RESET. INTERRUPTS PE&.\!ITTEDIN'I'ERR.UPTS SAVEcr.rRRENT?) [Function] 
PERMITTEDINTERRUPTS is a list of interrupt character settings to be performed.. 
each of the form (CHAR. TYPjFORM). The effect of RESET. INTERRUPTS 
is as if (INTERRUPTCHAR CHA.R TYF/FORM) were performed for each item 
on PERMITTEDINTERRUPTS, and (INTERRU~TCHAR OTHERCIiAR NIL) were 
performed on every other existing interrupt character. 

If SAVECURRENT? is non-NIL .. then RESET. INTERRUPTS returns the current state 
of the interrupts in a form that could be passed to RESET. INTERRUPTS, otherwise 
it returns NI L. This can be used with a RESET. INTERRUPTS that appears in a 
RESETFORM, so that the list'is built at "entry", but not upon ueXit". 

(INTERRUPTABLE FLAG) [Function] 
if FLAG = NIL, turns interrupt off. If FLAG = T, turns interrup t on. Value is 
previous setting. INTERRUPTABLE compiles open. . 

Note: Any interrupt character typed while interrupts are off is treated the same as any other character. 
i.e. placed in the input buffer. and will not cause an interrupt when interrupts are turned back on. 

(INTERRUPTABLEP) [Function] 
(Interlisp-10) Returns T if intemIpts are enabled; NIL if disabled. 

9.7 CHAl~GING AND RESTORING SYSTEM STATE 

In Interlisp. a computation can be interrupted/aborted at any point due to an error, or more forcefully. 
because a conrrol-D was typed.. causing return to the cop level. This situation creates problems for 
programs that need to perfonn a computatipn with the system in a "different state", e.g .• different radix. 
input file, readtable. etc. but want to "protect" the calling environmen~ i.e .• be able to restore the state 

9.18 

(),. : 
'- •.. , 



C) 

o 

ERRORS AND BREAK HANDLING 

when the computation has completed. While program errors and control-E can be "caught" by errorsets. 
control-D is not.10 Thus the system may be left in its changed state as a result of the computation being 
aboned. The following functions address this problem. 

Note that these functions do not and cannot handle the situation where their environment is exited via 
anything other than a normal retu~ an error. or a reset. E.g. a RETEVAL, RETFROM, RESUME. etc .• wiil 
never be seen. 

(RESETLST FORM1 ••• FORMN) [NLambda NoSpread Function] 
RESETLST evaluates its arguments in order, after setting up an ERRORSET so that 
any reset operations performed by RESETSAVE (see below) are restored when the 
forms have been evaluated (or an error occurs. or a conttol-D is typed). If no 
error occurs, the value of RESETLST is the value of FORMN, otherwise RESETLST 
generates an error (after performing the necessary restorations). 

RESETLST compiles open. 

(RESETSAVE x y) . [NLambda NoSpread Function] 
RESETSAVE is used within a call to RESETLST to change the system state by calling 
a function or setting a variable, while specifying how to restore the original syste::l 
state when the RESETLST is exited (normally, or with an error or control-D). 

If x is atomic, resets the top level value of x' to the value of Y. For 
example. (RESETSAVE LISPXHISTORY EDITHISTORY) resets the value of 
LISPXHISTORY to the value of EDITHISTORY~ and provides for the original 
value of LISPXHISTORY to be restored when L.'1e RESETLST completes operation, 
(or an error occurs. or a control-Dis typed). This use is somewhat anachronistic in 
Interlisp-lO in that in a shallow bound syste~ it is sufficient to simply rebind the 
variable. Funhermore. if there are any rebindings, the RESETSAVE will not affect 
the most recent binding but will change only the top level value. and therefore 
probably not have the intended effect. . 

If x is not atomic. it is a form that is evaluated. If Y is NIL. x must rerum as its 
value its "former state;', so that tl:le effect of evaluating the form can be reverse~ 
and the system state can be restored. by applying CAR of x to the value of x. 
For example. (RESETSAVE (RADIX 8» performs (RADIX 8). and provides 
for RAD IX to be reset to irs original value when the RESETLST completes by 
applying RAD I X to the value returned by (RAO I X 8). 

In the special case that CAR of x is' SETQ. the SETQ is transparent for the purposes 
of RESETSAVE. i.e. the user could also have written (RESETSAVE (SETQ X 
( RAD I X 8»), and restoration would be performed by applying RAD I X. not 
SETQ, to the previous value of RAD IX. 

If Y is not NIL. it is evaluated (before x). and its value is used as the restorLJ.~g 
expression. This is useful for functions which do not rerum their "previous setting". 
For examp Ie, 

lONote that the program couid redefine control-D as a user interrupt (page 9.17), check for it. reenable 
it. and call RES E T or something similar. 

9.19 



Changing and Restoring System State 

[RESETSAVE (SETBRK ••. ) (LIST 'SETBRK (GETBRK] 

will restore the break characters by applying S;TBRK to the value returned 
by (G E T B R K ) 9 which was computed before the (S E T B R K ••• ) expression was 
evaluated. Note that the restoration expression is still '&evaluatedU by applying irs 
CAR to itS CDR. 

If X is NIL. Y is still treated as a restoration expression. Therefore. 

(RESETSAVE NIL (LIST 'CLOSEF FILE» 

will cause FILE to be closed when the RESETLST that the RESETSAVE is under 
completes (or an error occurs or a control-D is typed). 

Note: RESETSAVE can be called when not under a RESEiLST. In this case. the 
restoration will be performed at the next RESET, i.e .• control-D or Can to RESET. 
In other words. there is an uimplicit" RESETLST at the top-level e;<~utive. 

RESETSAVE compiles open. Its value is not a uusefuln quantity. 

(RESETVAR VAR NElVVALUE' FORM) [NLambda Function] 
Simplified form of RESETLST and RESETSAVE for resetting and restoring 
global variables.ll Equivalent to (RESETLST (RESETSAVE VAR NEWVALt.TE) 

FORM). For example. (RESETVAR LISPXHISTORY EDITHISTORY (FOO» 
resets LISPXH ISTORY to the value of ED ITH ISTORY while evaluating (FOD). 
RES ETV AR compiles open. If no error occurs. its value is the value of FORM. 

(RESETVARS VARSLST EI E:z ••• EN) [NLambda NoSpread Function] 
Similar to P RCG, except the variables in VARSLST are global variables. In a shallow 
bound system (Interlisp-lO) RESETVARS and PROG are identical.12 In a deep bound 
syste~ each variable is :&rebound" using RESETSAVE. 

RESETVARS, like GETATOMVAL and SETATDMVAL (page 2.6), is provided to permit compatibility (Le. 
transponablility) between a shallow bound and deep bound system with respect to conceptually global 
variables. 

(RESETFORM RESETFOR.\{ FOR..\{z FOR.\{2 ••• FORMN ) [NLambda NoSpread Function] 
Simplified form of RESETLST and RESETSAVE for resetting a system state when 
the corresponding function returns as 'its value the "previous setting." Equivaient 
to (RESETLST (RESETSAVE RESETFOR..\f) FOR.\!z FORM2 ... FORMN ). For 
example. (RESETFORM (RADIX 8) (FOC». RESETFORM compiles open. If 
no error occ~. it returns the value returned by FORM N' 

For some applications. the restoration operation must be different depending on whether the computation 
completed successfully or was aborted by an error or control-D. To facilitate this. while the restoration 
operation-is be~g performed. the value of RESETSTATE will be bound to NIL. ERROR. or RESET. 

11 Unnecessarily expensive in a shallow bound system as the variable can simply be rebound. 

12Except that the compiler insures that variables bound in a RESETVARS are declared as SPECVARS (see 
page UA). . 

9.20 

("-, ) 
--_..r 
~ 

~). --



() 

o 

o 

o. 

ERRORS AND BREAK HANDLING 

depending on whether the exit was normal. due to an error. or reset (Le .• control-D, or in Interlisp-lO. 
control-C followed by reenter). For example. 

(RESETlST 
(RESETSAVE (INFIlE X) 

(lIST' '[LAMBDA (Fl) __ 
(COND ( (EQ RESETSTATE 'RESET) 

(ClOSEF Fl) 
(DELFILE FL] 

X» 
FORMS) 

will cause X to be closed and deleted only if a control-D was typed during the execution of FORJ.!S. 

When specifying complicated restoring expressions. it is often necessary to use the old value of the saving 
expression. For example, the following expression will set the primary input file (to FL) and execute 
some forms. but reset the primary input file only if an error or control-D occurs. 

(RESETlST 
(SETQ TEM (INPUT FL» 
(RESETSAVE NIL 

{LIST '{LAMBDA (X) (AND RESETSTATE (INPUT X») 
TEM) ) 

FO&\!S) 

So that you will not have to explicitely save the old value, the variable OLDVAlUE is bound at the time the 
restoring operation is performed to the value of the saving expression. Using this, the previous example 
could be receded as: 

(RE$ETlST 
(RESETSAVE (INPUT Fl) 

'{AND RESETSTATE (INPUT OLDVALUE») 
FORMS) 

As mentioned earlier. resto'ring is perfomied by applying CA R of the restoring expression to the 
CDR. so RESETSTATE and (INPUT OLDVALUE) will not be evaluated by the APPLY. This particular 
example works because AND is an nlambda function that explicitly evaluates its arguments. so APPLYing 
AtcD to (RESETSTATE (INPUT OlDVALUE» is the same as EVALing (AND RESETSTATE (H~PUT 
OLDVALUE) ). PROGN also has this property, so you can use a lambda function as a restoring form by 
enclosing it within a PROGN. 

The function RESETUNDO (page 8.25) can be used in conjunction with RESETlST and RESETSAVE to 
provide a way of specifying that the system be restored to its prior state by undoing the side effects of 
the computations performed under the RESETlST. 

9.8 ERROR LIST 

There are currently fifty-plus types of errors in the Interiisp system. Some of these errors are 
implementation dependent. i.e.. appear in Interlisp-10 but may not appear in other Interlisp systems. 

9.21 



Error List 

The error number is set internally by the code that detects the error before it calls the error handling 
functions. It is also the value returned by ERRORN if called subsequent to that type of error. and is used 
by ERRORMESS for printing the error message. 

Most errors will print the offending expression following the message, e.g., NON-NUMERIC ARG NIL is 
very common. Error number 18 (control-B) always causes a break (unless HELPFLAG is NIL). All other 
errors cause breaks if BREAKCHECK returns T (see page 9.10). 

The errors are listed below by error number: 

o - JSYS ERROR 

1 

(Interlisp-lO) Occurs following a trap in a JSYS. As described on page 22.6, TRAP 
AT LOCATION is printe~ followed by the JSYS diagnostic, and control rerurns 
to the operating system executive. The user can then safely CONT I NUE, and the 
Interlisp error, JSYS ERROR is then generated. A TRAP AT LOCATION can 
also occur if an illegal instruction is executed. In this case, the operating system 
also prints ILLEGAL INSTRUCTIOrt This can happen for example if the user is 
programming directly in ASS EMS LE code, or if his system somehow got smashed.e 
In the latter case, it is quite possible that random programs or data stnlcrures might 
have already been smashed. Unless he is sure he knows what the problem is, the 
user is best advised to abandon this system as soon as possible. (If the user does 
elect to CONTINUE, Interlisp will (try to) generate a JSYS ERROR and unwind. In' 
some cases. however, the system may be so badly smashed that the error message 
won't even print.) Note that in some cases. e.g. illegal instruction trap while in the 
g(1J.-bage collector, Interlisp will print out CAN t T CONTlr~UE~ because traps under 
those con<:titions are fatal Tne user may be able to reenter his sytem via the ST ART 
command. and. if lucky. dump some data or functions before the system totally 
collapses. 

In Interlisp-D, this error is named SYSTEM ERROR. 

No longer used. 

2 - STACK OVERFLOW . 
Occurs when computation is too deep. either with respect to number of function 
calls, or number of variable bindings. Usually ber-...ause of a non-terminating 
recursive computation., i.e., a bug. 

In Interlisp-l0. the garbage collector uses the same stack as the rest of the system .. 
so that if a garbage collection occurs when deep in a computation., the stack can 
overflow (panicularly if there is a lot of list strucv . .lfe that is deep in the CAR 
direction). If this does happen.. the garbage collector will flush the stack used by 
the computation in order that the garbage collection can complete. Afterwards. 
the error message STACK OVERFLOW IN GC - COMPUTATION LOST is printed.. 
followed by a (RESET). i.e., return to top leve!.o 

3 - ILLEGAL RETURN 
Call to RETURN when not inside of an interpreted PROG. 

4 - ARG NOT LIST E.g., RPLACA called on a non-list. 

S - HARD OISK ERROR 
(Interlisp-D) An error with the local disk drive. 

9.22 

r 
f)'-' 
\ 

r O ·.-

~ ... .. 

/----- ~\. .... ~.' 

( oJ 



fJ 
\.-
'---

() 

C) 

ERRORS AND BREAK H&~LING 

6 - ATTEMPT TO SET NIL 
Via SET or SETQ 

7 - ATTEMPT TO RPLAC ~JIL 
Attempt either to RPLACA or to RPLACD r~IL with something other than NIL. 

8 - UNDEFINED OR ILLEGAL GO 
GO when not inside of a P ROG, or GO to nonexistent label. 

9 - FILE WON'T OPEN 
From INFILE otOUTFILE, page 6.2. 

10 - NON-NUMERIC ARG 

11 - ATOM TOO LONG 

A numeric function e.g., IPLUS, ITIMES, IGREATERP, expected a number. 

Attempted to create a litatom(via PACK, or typing one in, or reading from a file) 
with too many characters. In Interlisp-D, the maximum number of characters in a 
litatom is 255. In Interlisp-l0, the maximum is 127 characters. 

U . ATO:·1 HASH TABLE FULL 

13 - FILE NOT OPEN 

No room for any more (new) atoms. 

In Interlisp-l0. the atom hash table will automatically expand by a specified number 
of pages each time it fills up until an upper limit of 32K atoms is reached.. 

From an I/O function. e.g., READ, PRIrJT. CLOSEF. 

14 - ARG NOT LIT ATOM 
E.g., SETQ, PUTPROP, GETTOPVAL, etc., given a non-atomic argo 

15 - TOO MANY FILES OPEN . 
> 30, excluding the tenninal. 

16 - END OF FILE From an input function, e.g •• READ, READe, RATOM. After the error, the file will 

17 • ERROR 

18 - BREAK 

then be closed.. . 

Note: The entries on ERRORTYPELST (page 9.16) are processed before the file 
is closed.. so that the user can intercept and process this error via an enrry on 
ERRORTYPELST, thereby preventing the file from being closed.. It is also possible 
to use an ERRORTYPELST entry to return a character as the value of the call 
to E RRORX. and the program will continue, e.g. returning "]" may be used tq 
complete a read operation. 

Call to ERROR (page 9.14). 

Control-B was typed.. 

19 - ~LLEGAL STACK ARG 
A SLack function expected a stack position and was given something else. Tn is 
mi~~t occur if the anrumenrs to a stack function are reversed. Also occurs if user 
sp;cified a stack pOSition with a function name. and that function was not found 

9.23 

; 



Error List 

on the stack. See page 7.1. 

20 - FAULT IN EVAL 
Artifact of bootstrap. Never occurs after FAUL TEVAL has been defined as described 
earlier. 

21 - ARRAYS FULL System will first initiate a garbage collection of array space. and if no array space 
is reclaimed. will then generate this error. 

22 - FILE SYSTEM RESOURCES EXCEEDED 
(Interlisp-lO) Includes no more disk space. disk quota exceeded, directory full. too 
many jtb~ job full. 

23 - FILE NOT Four~D 
FIle name does not correspond to a file in the corresponding directory. Can also 
occur if file name is ambiguous. 

Interlisp is initialized with an entry on ERRORTYPELST (page 9.16) to call 
SPELLF ILE for error 23. SPELLFILE will search alternate directories or perform 
spelling correction on the connected directory. If SPELLFILE fails. then the user 
will see this error. 

24 - BAD SYSOUT FILE • 
Date does not agree with date of MAKESYS. or file is not a sysout file at all (see 
page 14.3). 

25 - UNUSUAL CDR ARG LIST 
A form ends in a non-list other than NIL. e.g .• (CONS T • 3). 

26 - HASH TABLE FULL 
See hash array functions. page 2.35. . . 

27 - ILLEGAL ARG Catch-all error. Currently used by PUTD. EVALA. ARG. FUNARG. ALLOCATE. 

() 
( 

(~ 
\ / Co;: 

RPLSTRING. etc. n 
~ 28 - ARG NOT ARRAY t:~~: . 

E L T or SETA given an argument that is not a pointer to the beginning of an array 
(see page 2.33). 

29 - ILLEGAL OR IMPOSSIBLE BLOCK 
(Interlisp-lO) From GETBLK or RELBLK (see page 22.20). 

30 - STACK PTR HAS BEEN RELEASED __ 

31 • STORAG E FULL 

A released stack pointer was supplied as a stack descriptor for a purpose other than 
as a stack pointer to be re-used (see page 7.1). 

Following a garbage collection. if a sufficient' amount of words has not been 
collected. and there is no un-allocated space left in the system. this error is 
gener~ted. 

32 • ATTEMPT TO USE ITEM OF INCORRECT TYPE 
Before a field of a user data type is changed. the type of the item is first checked 

9.24 

(j 
~. 



o 
\ ... , 

o 

------. - -~ ._-_.- - ----- .. --._---. _._-- .-------.:.~---,~------. 

ERRORS AND BREAK HANDLING 

to be sure that it is of the expected type. If not, this error is generated (see page 
3.14). 

33 - ILLEGAL DATA TYPE NUMBER 
The argument is not a valid user data type number (see page 3.14). 

34 - OAT A TYPES FULL 
All available user data types have been allocated. (see page 3.14). 

35 - ATTEMPT TO BIND NIL OR T 
In a PROG or LAMBDA expression. 

36 - TOO MANY USER INTERRUPT CHARACTERS 
Attempt to enable a user intemlpt character when all 9 user channels are currently . 
enabled (see page 9.17). 

37 - READ-MACRO CONTEXT ERROR 
(Interlisp-10) OCCUI'S when a READ is executed from within a read-macro function 
and the next token is a ) or a ] (see page 6.36). 

38 - ILLEGAL READT ABLE 
The argument was expected to be a valid readtable (see page 6.32). 

39 - ILLEGAL TERMINAL TABLE . 
The argument was e~pected to be a valid terminal table (see page 6.40). 

40 - SWAPBLOCK TOO BIG FOR BUFFER 
(Interlisp-10) An attempt was made to swap in a function/array which is too large 
for the swapp~g buffer. See SETSBSIZE, page 22.26. 

41 - PROT-ECTION VIOLATION 
(Interlisp-10) Attempt to open a file that user does not have access to. Also 
reference to unassigned device. 

o 42 - BAD FILE NAME • . 
megal character in file specificatio~ illegal syntax. e.g. in Interlisp-lO. two :·s etc. 

43 - USER BREAK Error corresponding to "hardn user-interrupt character. See page 9.17. 

44 - UNBOUND ATOM 
Unbound atom error. When this occurs. a variable (atom) was used which had 
neither a stack binding (wasn't an argument to a function nor a PROG variable) 
nor a top' level value. The "culprit" {( CADR ERRORMESS) is the atom. Note 
that if DWIM corrects the error. no error OCCUI'S and the error number is not set 
However. if an error is going to occur. whether or not it will cause a break. the 
error number will be set. 

45 - UNDEF IrJED CAR OF FORM 
Undefined function error. \Vhen is OCCUI'S. a fonn was evaluated whose function 
position (CAR) does not have a definition as a function. Culprit is the fonn. 

46 - UtlDEF IUED FUNCTION 
This error is generated if A P PLY is given an undefined function. Culprit is (L 1ST 

9.25 



- .-~ ... _ .--' .-. ........ __ .-4_ •. ,_ .... _" •.• _____ .,',. __ , ____ .• ~. ___ ~_ ~ ... _ 

Error List 

FN ARGS) 

47 - CONTROL-E The user typed Control-E. 

48 - FLOATING UNDERFLOW 
(Interlisp-D) Underflow during floating"point operation. 

49 - FLOATING OVERFLOW 
(Interlisp-D) Overflow during floating-point operation. 

50 .. OVERFLOW (Interlisp-D) Overflow during integer operation. 

51 - ARG NOT HARRAY 
(Interlisp-D) Signaled by hash array operations when given an argument that is not 

f a hash array. (In Interlisp-lO. this still triggers error 28, ARG NOT ARRAY). 

~ 52 - TOO MANY ARGUMENTS 

l-

(Interlisp-D) Signaled when too many arguments are given to a lambda-spreaci. 
lambda-nospreaci. or nlambda-spread function. 

In add.itio~ many system functions, e.g .• DE FINE, ARGLIST, ADVISE, LOG, EX?T, etc, also generate 
errors with appropriate messages by calling ERROR (see page 9.14) which causes error number 17. 

9.26 

o 
( 

n c1 



CHAPTER 10 

BREAKING, TRACING, AND ADVISING 

It is frequently useful to be able to modify the behavior of a function without actually editing its definition. 
Interlisp provides several different facilities for doing this. By "breaking'· a function. the user can cause 
breaks to occur at various times in the running of an incomplete ·progr~ so that the program state can 
be inspected. ''Tracing'· a function causes information to be printed every time the function is entered or 
exited. These are very useful debugging tools. 

"Advisingn is a facility for specifying longer-term function modifications. Even system functions can be 
changed through advising. 

10.1 BREAKING FUNCTIONS AND DEBUGGING 

Debugging a collection of LISP functions involves isolating problems within particular functions andlor 
determining when and where incorrect data are being generated and transmitted. In the Interlisp system~ 
th~re are three facilities which allow the. user to (temporarily) modify selected function definitions so that 
he can follow the Bow of control in his programs~ and obtain this debugging information. All three 
redefine functions in terms of a system function. BREAK 1 (see page 9.11). 

BREAK modifies the definition of a function FN, so that whenever FN is called and a break condition 
(defined by the user) is satisfied. a function break occurs. The user can then interrogate the state of the 
machine, perform any computation. and continue or return from the call. 

T RAC E modifies a definition of a function FN so that whenever FN is called. its arguments (or some other 
values specified by the user) are printed. When the value of FN is computed it is printed also. (TRACE 
is a special case of BREAK). 

BREAKIN allows the user to insert a breakpoint inside an expression defining a function. When the 
breakpoint is reached and if a break condition (defined by the user) is satisfied. a temporary halt occurs 
and the user can again investigate the state of the computation. 

The following two examples illustrate these facilities. In the first example, the user traces the function 
FACTORIAL. TRACE redefines FACTORIAL so that it print its arguments and value, and then goes on 
with the computation. When an error occurs on the fifth recursion, a full interactive break occurs. The 
situation is then the same as though the user had originally perfonned BREAK( FACTORIAL) instead of 
TRACE (FACTORIAL), and the user can evaluate various Interlisp fonns and direct the course of the 
computation. In this case, the user examines the variable N, and instructs BREAK 1 to return 1 as the 
value of this cell to FACTOR IAL. The rest of the tracing proceeds without incident The user would then 
presumably edit FACTOR IAL to change L to 1. 

+-pp FACTORIAL 

(FACTORIAL 

10.1 



Breaking Functions and Debugging 

[LAMBDA (N) 
(COND 

«ZEROP N 
L) 

(T (ITIMES N (FAC!ORIAl (SUB1 N]) 
FACTORIAL 
~TRACE(FACTORIAl) 
(FACTORIAL) 
~FACTORIAl(4) 

FACTORIAL: 
N = 4 

FACTORIAL: 
N = 3 

FACTORIAL: 
N = 2 

FACTORIAL: 
N = 1 

FACTORIAL: 
N = 0 

U.B.A. 
L 
(FACTORIAL BROKEN) 
:N 
o 
:RETURN 1 

FACTORIAL = 1 
FACTORIAL = 1 

FACTORIAL = 2 
FACTORIAL = 6 

FACTORIAL = 24 
24 

In the second example, the user has constructed a non-recursive definition of FACTOR IAl. He uses 
BREAKIN to insert a call to BREAK1 just after the PROG label LOOP. This break is to occur only on the 
last two iterations, when N is less than 2. When the break occurs, the user tries to look at the value of 
N, but mistakenly types NN. The break is maintained, however, and no damage is done. After examining 
N and M the user allows the computation to continue by typing OK. A second break occurs after the next 
iteration, this time with N = O. When this break is released, the function FACTOR IAl returns its value of 
120. 

"'PP FACTORIAL 
(FACTORIAL 

[LAMBDA (N) 

10.2 



---

BREAKING, TRACING, AND ADVISING 

(PROG « M 1» 
LOOP (CONO 

FACTORIAL 

«ZEROP N) 
(RETURN M») 

(SETQ M (ITIMES M N» 
(SETQ N (SUBl N» 
(GO LOOP]) 

~BREAKIN(FACTORIAL (AFTER LOOP) (ILESSP N 2] 
SEARCHING ... 
FACTORIAL 
~FACTORIAL(5) 

«FACTORIAL) BROKEN) 
:NN 
U.B.A. 
NN 
(FACTORIAL BROKEN AFTER LOOP) 
:N 
1 
:M 
120 
:OK 
(FACTORIAL) 

«FACTORIAL) BROKEN) 
:N 
o 
:OK 
(FACTORIAL) 
120 

Note: BREAK and TRACE can also be used on CLISP words which appear as CAR of fonn, e.g. FETCH, 
REPLACE, IF, FOR, DO, etc., even though these are not implemented as functions. For conditional 
breaking, the user can refer to the entire expression via the variable EXP, e.g. BREAK « FOR (MEMB 
'UNTIL EXP»). 

(BREAKO FN WHEN COMS - -) [Function] 
Sets up a break on the function FN: returns FN. If FN is not definecL returns (FN 

NOT DEF INED). 

BREAKO redefines FN as a call to BREAK1 (page 9.11), with an equivalent definition 
of FN as BRKEXP, and WHEN, FN, COMS as BRKWHEN, BRKFN, BRKCOMS. Puts a 
G E NSYM defined with the original definition of FN on the property list of FN under 
the property BROKEN. Puts (BREAKO WHEN COMS) on the ptoperty list of FN 

under the property BRKINFO (for use in conjunction with RE~REAK). Adds FN to 
the front of the list BROKENFNS. 

If FN is non-atomic and of the form (FNl IN FN2), BREAKO breaks every call 

10.3 



(BREAK x) 

(TRACE x) 

Breaking Functions and Debugging 

to FNl from within FN2. This is useful for breaking on a function that is called 
from many places, but where one is only interested in the call from a specific 
function, e.g., (RPLACA IN FOO), (PRINT IN FIE), etc. It is similar to 
BREAKIN described below, but can be performed even when FN2 is compiled or 
blockcompiled. whereas B R E AK I N only works on interpreted functions. If FNl is 
not found in FN2, BREAKO returns the value (FNl NOT .FOUND IN FN2). 

BREAKO breaks one function inside another by first calling a function which changes 
the name of FNl wherever it appears inside of FN2 to that of a new function, FN1-

IN-FN2, which is initially given the same function definition as FN1. Then BREAKO 
proceeds to break on FN1- IN - FN2 exactly as described above. In addition to 
breaking FN1- IN-FN2 and adding FN1- IN-FN2 to the list BROKENFNS, BREAKO 
adds FNl to the property value for the property NAMESCHANGED on the property 
list of FN2 and puts (FN2 • FN1) on the property list of FN1- IN - FN2 under the 
property ALIAS. This will enable UNBREAK to recognize what changes have been 
made and restore the function FN2 to its original state. 

If FN is non atomic and not of the above fo~ BREAKO is called for each member 
of FN using the same values for WHEN, COMS, and FILE. This distributivity permits 
the user to specify complicated break conditions on several functions. For example, 

(BREAKO '(FOOl «PRINT PRINl) IN (F002 F003») 
, (NEQ X T) 
'{EVA~ 1= (Y Z) OK) ) 

will break on FOOl, PRINT-IN-F002, PRINT-IN-F003, PRINt-IN-F002 and 
PRINl- IN-F003. 

If FN is non-atomic, the value of BREAKO is a list of the functions broken. 

[NLambda NoSpread Function] 
Nlambda nospread function. For each atomic argument, it performs (BREAKO 
ATOM T). For each list, it performs (APPLY 'BREAKO LIST). For ex
ample, (BREAK FOOl (F002 (GREATERP N 5) (EVAL») is equivalent to 
(BREAKO 'FOOl T) and (BREAKO 'F002 '( GREATERP N 5) '( EVAL) ). 

[NLambda NoSpread Function] 
Nlambda nospread function. For each atomic argument, it performs (BREAKO 
ATOM T '(TRACE 1= NIL GO»! 

For each list argument, CAR is the function to be traced, and CDR the forms the 
user wishes to see, I.e., TRACE performs: 

(BREAKO (CAR LmT) T (LIST 'TRACE '?= (CDR LmT) 'GO» 

For example, (TRACE FOOl (F002 Y» will cause both FOOl and F002 to be 
traced. All the arguments of F 00 1 will be printed; only the value of Y will be 
printed for F002. In the special case that the user wants to see only the value, 

IThe flag TRACE is checked for in BREAKl and causes the message "FUNCTION :" to be printed instead 
of (FUNCTION BROKEN). 

10.4 



BREAKING, TRACING, AND ADVISING 

he can perform (TRACE (FUNCTION». This sets up a break with commands 
(TRACE ?= (NIL) GO). 

Note: the user can always call BREAKO himself.to obtain combination of options of BREAK 1 not directly 
available with BREAK and TRACE. These two functions merely provide convenient ways of calling BREAKO, 
and will serve for most uses. 

(BREAKIN FN WHERE WHEN COMS) [NLambda Function] 
BREAKIN is an nlambda function. WHEN and COMS are similar to WHEN and 
COMS for BREAKO, except that if WHEN is NIL, T is used. WHERE specifies where 
in the definition of FN the call to BREAK 1 is to be inserted (see below). 

If FN is a compiled function, BREAKI N returns (FN UNBREAKABLE) as its value. 

If FN is interpreted, BREAKIN types SEARCHING. •• while it calls the editor. 
If the location specified by WHERE is not found, BREAKIN types (NOT FOUND) 
and exits. If it is found, BREAKIN puts T under the property BROKEN-IN and 
(WHERE WHEN COMS) under the the property BRKINFO on the property list of 
FN, and adds FN to the front of the list BROKENFNS. 

Multiple break points, can be inserted with a single call to BREAKIN by using a list 
of the fonn « BE FORE ... ) ... (AROUND ... » for WHERE. It is also possible 
to call BREAK or TRACE on a function which has been modified by BREAKIN, and 
conversely to BREAKIN a function which has been redefined by a call to BREAK 
or TRACE. 

BREAKIN enables the user to insert a break, i.e., a call to BREAK1, at a specified location in an interpreted 
function. For example, if FOO calls FIE, inserting a break in FOO before the call to FIE is similar to 
breaking FIE. However, BREAKIN can be used to insert breaks before or after PROG labels, particular 
SETQ expressions, or even the evaluation of a variable. This is because BREAKIN operates by calling the 
editor and actually inserting a call to BREAK1 at a specified point inside of the function. 

The user specifies where the break is to be inserted by a sequence of editor commands. These commands 
are preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to determine what to do once the 
editor has found the specified point, i.e., put the call to BREAK1 BEFORE that point, AFTER that point, 
or AROUND that point For example, (BEFORE COND) will insert a break before the first occurrence 
of COND, (AFTER COND 2 1) will insert a break after the predicate in the first COND clause, (AFTER 
BF (SETQ X &» after the last place X is set Note that (BEFORE TTY:) or (AFTER TTY:) permit 
the user to type in commands to the editor, locate the correct point, and verify it for himself using the 
P command if he desires, and exit from the editor with OK.2 BREAKIN then inserts the break BEFORE, 
AFTER, or AROUND that point 

For BREAKIN BEF9RE or AFTER, the break expression is NIL, since the value of the break is irrelevant 
For breakin AROUND, the break expression will be the indicated fonn. In this case, the user can use the 
EVAL command to evaluate that form. and examine its value, before allowing the computation to proceed. 
For example, if the user inserted a break after a COND predicate, e.g., (AFT E R (EQUAL X Y». he 
would be powerless to alter the flow of computation if the predicate were not true, since the break would 

2A STOP command typed to TTY: produces the same effect as an unsuccessful edit command in the 
original specification, e.g., (BEFORE CONDO). In both cases, the editor aborts, and BREAKIN types (NOT 
FOUND ). 

10.5 



r 

Breaking Functions and Debugging 

not be reached. However, by breaking (AROUND (EQUAL X Y», he can evaluate the break expression, 
i.e., (EQUAL X Y), look at its value, and return something else if he wished. 

The message typed for a BREAKIN break, is «FN) BROKEN), where FN is the name of the function 
inside of which the break was inserted. Any error, or typing control-E, will cause the full identifying 
message to be printed, e.g., (FOO BROK'EN AFTE R COND 2 1). 

A special check is made to avoid inserting a break inside of an expression headed by any member of the 
list NOBREAKS, initialized to (GO QUOTE *), since this break would never be activated. For example, 
if (GO L) appears before the label L, BREAKIN (AFTER L) will not insert the break inside of the GO 
expression, but skip this occurrence of L and go on to the next L, in this case the label L. Similarly, for 
BfFORE or AFTER breaks, BREAKIN checks to make sure that the break is being inserted at a "safe" 
place. For example, if the user requests a break (AFTER X) in (PROG ... (SETQ X &) ... ), the 
break will actually be inserted AFTER (SETQ X &), and a message printed to this effect, e.g., BREAK 
INSERTED AFTER (SETQ X &). 

(UNBREAK x) [NLambda NoSpread Function] 
Nlambda nospread function. It takes an indefinite number of functions modified 
by BREAK, TRACE, or BREAKIN and restores them to their original state by calling 
UNBREAKO. Returns list of values of UNBREAKO. 

(UNBREAK) will unbreak all functions· on BROKENFNS, in reverse order. It first 
sets BRKINFOLST to NIL. 

(UNBREAK T) unbreaks just the first function on BROKENFNS, i.e., the most 
recently broken function. 

(UNBREAKO FN -) [Function] 
Restores FN to its original state. If FN was not broken, value is (NOT BROKEN) 
and no changes are made. If FN was modified by BREAKIN, UNBREAKIN is called 
to edit it back to its original state. If FN was created from (FNl IN FN2), (Le., 
if it has a property ALIAS), the function in whichFN appears is restored to its 
original state. All dummy functions that were created by the break are eliminated. 
Adds property value of BRKINFO to (front of) BRKINFOLST. 

Note: (UNBREAKO '( FNl IN FN2» is allowed: UNBREAKO will operate on 
( FN1- IN - FN2) instead. 

(UNBREAKIN FN) [Function] 
Performs the appropriate editing operations to eliminate all changes made by 
BREAKIN. FN may be either the name or definition of a function. Value is FN. 

UNBREAKIN is automatically called by UNBREAK if FN has property BROKEN-IN 
with value T on its property list. 

(REBREAK x) [NLambda NoSpread Function] 
Nlambda nospread function for rebreaking functions that were previously broken 
without having to respecify the break information. For each function on x, 
REB REA K searches B R KIN F 0 L 5 T for break( s) and performs the corresponding 
operation. Value is a list of values corresponding to calls to BREAKO or BREAKIN. 
If no information is found for a particular function, returns (FN - NO BREAK 

10.6 



• 
BREAKING, TRACING, AND ADVISING 

INFORMATION SAVED). 

(REBREAK) rebreaks everything on BRKINFOlST, so (REBREAK) is the inverse 
of (UNBREAK). 

(REBREAK T) rebreaks just the first break on BRKINFOlST, i.e.~ the function 
most recently unbroken. 

(CHANGENAME FN FROM TO) [Function) 
Changes all occurrences of FROM to TO in FN. FN may be compiled or 
blockcompiled. Value is FN if FROM was found., otherwise NIL. Does not perform 
any modifications of property lists. Note that FROM and TO do not have to be 
functions~ e.g.~ they can be names of variables, or any other literals. 

(VIRGINFN FN FLG) [Function] 

10.2 ADVISING 

The function that knows how to restore functions to their original state regardless 
of any amount of breaks~ breakins~ advising, compiling and saving exprs~ etc. 
It is used by PRETTYPRINT, DEFINE~ and the compiler. If FLG=NIL, as for 
PRETTYPRINT, it does not modify the definition of FN in the process of producing 
a "clean" version of the definition; it works on a copy. If FLG = T, as for the 
compiler and DE FIN E, it physically restores the function to its original state, and 
prints the changes it is making, e.g.~ FOO UNBROKEN, FOO UNADVISED, FOO 
NAMES RESTORED, etc. Returns the virgin function definition. 

The operation of advising gives the user a way of modifying a function without necessarily knowing how 
the function works or even what it does. Advising consists of modifying the interface between functions as 
opposed to modifying the function definition itself: as in editing. BREAK~ TRACE, and BREAKDOWN~ are 
examples of the use of this technique: they each modify user functions by placing relevant computations 
between the function and the rest of the programming environment 

The principal advantage of advising, aside from its convenience, is that it allows the user to treat functions~ 
his or someone else's, as "black boxes~" and to modify them without concern for their contents or details 
of IJperations. For example, the user' could modify SYSOUT to set SYSDATE to the time and date of 
creation by (ADVISE 'SYSOUT '( SETQ SYSDATE (DATE»). 

As with BREAK, advising works equally well on compiled and interpreted functions. Similarly, it is 
possible to effect a modification which only operates when a function is called from some other specified 
function, i.e., to modify the interface between two particular functions~ instead of the interface between 
one function and the rest of the world. This latter feature is especially useful for changing the internal 
workings of a system function. 

For example, suppose the user wanted TIME (page 14.14) to print the results of his measurements to the 
file FOO instead of the teletype. He could accomplish this by (ADVISE '( (PRINl PRINT SPACES) 
IN TIME) 'BEFORE '(SETQQ U FOO» 

Note that advising PRIN1, PRINT, or SPACES directly would have affected all calls to these very 
frequently used function, whereas advising «PRINl PRINT SPACES) IN TIME) affects just those 

10.7 



,I 

Implementation of Advising 

calls to PRINl, PRINT, and SPACES from TIME. 

Advice can also be specified to operate after a function has been evaluated. The value of the body of the 
original function can be obtained from the variable! VALUE, as with BREAK!. For example. suppose the 
user wanted to perform some computa,tion following each SYSIN, e.g., check whether his files were up 
to date. He could then: (ADVISE 'SYSOUT 'AFTER '( COND « LISTP ! VALUE) --» ).3 

10.2.1 Implementation of Advising 

After a function has been modified several times by ADVISE, it will look like: 

(LAMBDA arguments 
(PROG (!VALUE) 

(SETQ !VALUE 
(PROG NIL 

advicel 

advicen 

advice before 

(RETURN BODY») 

advicel 

advice after 

advicem 
(RETURN !VALUE») 

where BODY is equivalent to the original definition.4 Note that the structure of a function modified by 
ADVISE allows a piece of advice to bypass the original definition by using the function RETURN. For 
example, if (COND «ATOM X) (RETURN Y») were one of the pieces of advice BEFORE a function, 
and this function was entered with X atomic, Y would be returned as the value of the inner P ROG, 
! VALUE would be set to Y, and control passed to the advice, if any, to be executed AFTER the function. 
If this same piece of advice appeared AFT E R the function. Y would be returned as the value of the entire 
advised function. 

l1!e advice (COND « ATOM X) (SETQ ! VALUE Y») AFTER the function would have a similar effect, 
but the rest of the advice AFT E R the function would still be executed. 

Note: Actually, ADVISE uses its own versions of PROG, SETQ, and RETURN, (calledADV-PROG, ADV
SETQ, and ADV-RETURN) in order to enable advising these functions. 

3 After the SY SIN,. the system will be as it was when the SY SOUT was performed, hence the advice must 
be to SYSOUT, not SYSIN. See page 14.3 for complete discussion of SYSOUT. 

4If FN was originally an EXPR, BODY is the body of the definition, otherwise a form using a GENSYM 
which is defined with the original definition. 

10.8 



BREAKING, TRACING, AND ADVISING 

10.2.2 Advise Functions 

ADV I S E is a function of four arguments: FN, WHEN, WHERE, and WHAT. FN is the function to be modified 
by advising, WHAT is the modificatio~ or piece of advice. WHEN is either BE FORE, AfTE R, or AROUND, 
and indicates whether the advice is to operate BEFORE, AFTER, or AROUND the body of the function 
definition. WHERE specifies exactly where in the list of advice the new advice is to be placed. e.g., FIRST, 
or (BEFORE PRINT) meaning before the advice containing PRINT, or (AFTER 3) meaning after the 
third piece of advice, or even (: TTY:). If WHERE is specified. ADV I SE first checks to see if it is one of 
LAST, BOTTOM, END, FIRST, or TOP, and operates accordingly. Otherwise, it constructs an appropriate 
edit command and calls the editor to insert the advice at the corresponding location. 

Both WHEN and WHERE are optional arguments, in the sense that they can be omitted in the call 
to ADVISE. In other words, ADVISE can be thought of as a function of two arguments (ADVISE FN 

WHAT), or a function of three arguments: (ADV I S E FN WHEN WHAT), or a function of four arguments: 
(ADVISE FN WHEN WHERE WHAT). Note that the advice is always the last argument If WHEN=NIL, 
BEFORE is used. If WHERE = NIL, LAST is used. 

(ADVISE FN WHEN WHERE WHAT) [Function] 
FN is the function to be advised. WHEN=BEFORE, AFTER, or AROUND, WHERE 

specifies where in the advice list the advice is to be inserted. and WHAT is the piece 
. of advice. 

If FN is of the form (FNl IN FN2), FNl is changed to FN1- IN-FN2 throughout 
FN2, as with break, and then FN1- IN - FN2 is used in place of FN. If FNl and! or 
FN2 are lists, they are distributed as with B REAKO, page 10.3. 

If FN is broken, it is unbroken before advising. 

If FN is not defined. an error is generated. NOT A FUNCTION. 

If FN is being advised for the first time, i.e., if (GETP FN 'ADVISED) =NIL, 
a GENSYM is generated and stored on the property list of FN under the property 
ADVISED, and the GENSYM is defined with the original definition of FN. An 
appropriate S-expression definition is then created for FN.5 Finally, FN is added 
to the (front of) ADVISEDFNS, so that (UNADVISE T) always unadvises the last 
function advised (see page 10.10). 

If FN has been advised before, it is moved to the front of ADVISEDFNS. 

If WHEN=BEFORE or AFTER, the advice is inserted in FNS definition either 
BEFORE or AFTER the original body of the function. Within that context, its 
position is determined by WHERE. If WHERE = LAST, BOTTOM, END, or NIL, the 
advice is added following all other advice, if any. If WHERE= FIRST or TOP, 
the advice is inserted as the first piece of advice. Otherwise, WHERE is treated 
as a command for the editor, similar to BREAKIN, e.g., (BEFORE 3), (AFTER 
PRINT). 

5Using private versions of PROG, SETQ, and RETURN, so that these functions can also be advised. 

10.9 



Advise Functions 

.... . .. - If WHEN= AROUND, the body is substituted for • in the advice, and the 
result becomes the new body, e.g .• (ADVISE 'FOa 'AROUND '( RESETFORM 
(OUTPUT T) .». Note that if several pieces of AROUND advice are specifie<L 
earlier ones will be embedded inside later ones. The value of WHERE is ignored 

Finally (LIST WHEN WHERE WHAT) is added (by ADDPROP) to the value of 
property ADV ICE on the property list of FN, so that a record of all the changes is 
available for subsequent use in readvising. Note that this property value is a list 
of the advice in order of calls to ADVISE, not necessarily in order of appearance 
of the advice in the definition of FN. 

The value of ADVISE is FN. 

If FN is non-atomic, every function in FN is advised with the same values (but 
copies) for WHEN, WHERE, and WHAT. In this case, ADVISE returns a list of 
individual functions. 

Note: advised functions can be broken. However if a function is broken at the time it is advised, it is first 
unbroken. Similarly, advised functions can be edited, including their advice. UNADVI SE will still restore 
the function to its unadvised state, but any changes to the body of the definition will survive. Since the 
advice stored on the property list is the same structure as the advice inserted in the function, editing of 
advice can be performed on either the function's definition or its property list. 

(UNADVISE x) 

(READVISE x) 

[NLambda NoSpread Function] 
An nlambda nospread like UNBREAK. It takes an indefinite number of functions and 
restores them to their original unadvised state. including removing the properties 
added by ADVISE. UNADVISE saves on the list ADVINFOLST enough infol1l1ation 
to allow restoring a function to its advised state using READVISE. ADVINFOLST 
and READVISE thus correspond to BRKINFOlST and REBREAK. If a function 
contains the property READVICE, UNADVISE moves the current value of the 
property ADVICE to READVICE. 

(UNADVISE) unadvises all functions on ADVISEDFNS in reverse order, so that 
the most recently advised function is unadvised last. It first sets ADVINFOlST to 
NIL. 

(UNADVISE T) unadvises the first function of ADVISEDFNS, i.e., the most recently 
advised function. . 

[NLambda NoSpread Function] 
An nlambda nospread like REBREAK for restoring a function to its advised state 
without having to specify all the advise information. For each function on x, 
READVISE retrieves the advise information either from the property READVICE 
for that function, or from ADVINFOLST, and performs the corresponding advise 
operation(s). In addition it stores this information on the property READVICE if 
not already there. If no information is found for a particular function, value is 
(FN - NO ADVICE SAVED). 

(READVISE) readvises everything on ADVINFOLST. 

(READVISE T) readvises the first function on ADVINFOLST, i.e., the function 
most recently unadvised. 

10.10 



BREAKING, TRAONG, AND ADVISING 

A difference between ADVISE, UNADVISE, and READVISE versus BREAK, UNBREAK, and REBREAK, is 
that if a function is- not rebroken between successive (UNBREAK )'s, its break information is forgotten. 
However, once READVISE is called on a function, that function's advice is permanently saved on its -
property list (under READVICE); subsequent calls to UNADVISE will not remove it. In fact, calls to 
UNADVISE update the property READVICE with the current value of the property ADVICE, so that the 
sequence READVISE, ADVISE, UNADVISE causes the augmented advice to become permanent. Note 
that the sequence READVISE, ADVISE, READVISE removes the "intermediate advice" by restoring the 
function to its earlier state. 

(ADVISEDUMP X FLG) [Function] 
Used by PRETTYDEF when given a command of the form (ADVISE ... ) or 
(ADVICE···). If FLG=T, ADVISEDUMP writes both a DEFLIST and a 
READVISE (this corresponds to (ADVISE···)}. If FLG=NIL, only the DEFLIST 
is written (this corresponds to (ADVICE ... ». In either case, ADVISEDUMP copies 
the advise information to the property READVICE, thereby making it "permanent" 
as described above. 

10.11 



p 

Advise Functions 

10.12 



CHAPTER 11 

FILE PACKAGE 

Most implementations of Lisp treat symbol~c files as unstructured text. much as they are treated in most 
conventional programming environments. Function definitions are edited with a character-oriented text 
editor, and then the changed definitions (or sometimes the entire file) is read or compiled to install those 
changes in the running memory image. Interlisp incorporates a different philosophy. A symbolic file 
is considered as a database of information about a group of data objects-function definitions. variable 
values. record declarations. etc. The text in a symbolic file is never edited directly. Definitions are edited 
only after their textual representations on files have been convened to data-structures that reside inside 
the Lisp address space. The programs for editing definitions inside Interlisp can therefore make use of the 
full set of data-manipulation capabilities that the environment already provides, and editing operations 
can be easily intermixed with the processes of evaluation and compilation. 

Interlisp is thus a "resident" programming environment. and as such it provides facilities for moving 
definitions back and forth between memory and the external databases on _symbolic files. and for doing 
the bookkeeping involved when definitions on many symbolic files with compiled counterparts are being 
manipulated. The file package provides those capabilities. It removes from the user the burden of keeping 
track of where things are and what things have changed. The file package also keeps track of which files 
have been modified and need to be updated and recompiled. 

The file package is integrated into many other system packages. For example, if only the compiled version 
of a file is loaded and the user attempts to edit a function, the file package will attempt to load the 
source of that function from the appropriate symbolic file. In many cases, if a datum is needed by some 
program, the file package will automatically retrieve it from a file if it is not already in the user's working 
environment 

Some of the operations of the file package are rather complex. For example, the same function may 
appear in several different files. or the symbolic or compiled files may be in different directories. etc. 
Therefore, this chapter does not document how the file package works in each and every situation. but 
instead makes the deliberately vague statement that it does the "right" thing with respect to keeping 
track of what has been changed, and what file operations need to be performed in accordance with those 
changes. 

For a simple illustration of what the file package does. suppose that the symbolic file FOO contains the 
functions FOOl and F002, and that the file BAR contains the functions BARl and BAR2. These two files 
could be loaded into the environment with the function LOAD: 

.. (LOAD 'FOO) 
FILE CREATED 4-MAR-83 09:26:55 
FOOCOMS 
{DSK}FOO.:1 
•. (LOAD 'BAR) 
FILE CREATED 4-MAR-83 09:27:24 
BARCOMS 
{DSK}BAR.:1 

11.1 



r 

Now, suppose that we change the definition of F002 with the editor, and we define two new functions, 
NEWl and NEW2. At that point, the file package knows that the in-memory definition of F002 is no 
longer consistent with the definition in the file FOO, and that the new functions have been defined but 
have not yet been associated with a symbolic file and saved on permanent storage. The function F I L E S? 
summarizes this state of affairs and enters. into an interactive dialog in which we can specify what files 
the new functions are to belong to. 

+- (FILES?) 
FOO ... to be dumped. 

plus the functions: NEW1,NEW2 
want to say where the above go ? Yes 
(functions) 
NEWl File name: BAR 
NEW2 File name: ZAP 

new file? Yes 
NIL 

The 'file package knows that the file F 00 has been changed, and needs to be dumped back to permanent 
storage. This can be done with MAKE FILE. 

+-(MAKEFILE 'FOO) 
{DSK}FOO. ;2 

Since we added NEWl to the old file BAR and established a new file ZAP to contain NEW2, both BAR and 
ZA P now also need to be dumped. This is confirmed by a second call to F I L E S ?: 

+- (FILES?) 
BAR, ZAP ... to be dumped. 
FOO ... to be listed. 
FOO ... to be compiled 
NIL 

We are also informed that the new version we made of FOO needs to be listed (sent to a printer) and 
that the functions on the file must be compiled. . 

Rather than doing several MAKEFILEs to dump the files BAR and ZAP, we can simply call CLEANUP. 
Without any funher user interaction, this will dump any files whose definitions have been modified. 
CLEANUP will also send any unlisted files to the printer and recompile any files which need to be 
recompiled. CLEANUP is a useful function to use at the end of a debugging session. It will call FILES? 
if any new objects have been defined, so the user does not lose the opportunity to say explicitly where 
those belong. In effect, the function CLEANUP executes all the operations necessary to make the user's 
permanent files consistent with the definitions in his current core-image. 

+- (CLEANUP) 
FOO ... compi1ing {DSK}FOO.;2 

BAR ... compi1ing {DSK}BAR.;2 

11.2 



FILE PACKAGE 

ZAP ••• compiling {DSK}ZAP.;l 

In addition to the definitions of functions. symbolic files in Interlisp can contain definitions of a variety 
of other types. e.g. variable values. property lists. record declarations, macro definitions, hash arrays, etc. 
In order to treat such a diverse assortment of data uniformly from the standpoint of file operations, the 
file package uses the concept of a typed definition. of which a function definition is just one example. A 
typed definition associates with a name (usually a litatom), a definition of a given type (called the file 
p~ckage type). Note that the same name may have several definitions of different types. For example. a 
litatom may have both a function definition and a variable definition. The file package also keeps track of 
the files that a particular typed definition is stored on, so one can think of a typed definition as a relation 
between four elements: a name, a definition, a type, and a file. 

Symbolic files on permanent storage devices are referred to by names that obey the naming conventions 
of those devices, usually including host. directory, and version fields. When such definition groups are 
noticed by the file package, they are assigned simple root names and these are used by all file package 
operations to refer to those groups of definitions. The root name for a group is computed from its full 
permanent storage name by applying the function ROOTF ILENAME; this strips off the host. directory, 
version, etc., and returns just the simple name field of the file. For each file, the file package also has a 
data sttucture that describes what definitions it contains. This is known as the commands of the file, or 
its "filecoms". By conv~ntion, the filecoms of a file whose root name is x is stored as the value of the 
litatom xCOMS. For example, the value of FOOCOMS is the filecoms for the file FOO. This variable can 
be directly manipulated, but the file package contains facilities such as F I L E S? which· make constructing 
and updating filecoms easier. and in some cases automatic. See page 11.32. 

The file package is able to maintain its databases of information because it is notified by various other 
routines in the system when events take place that may change that database. A file is "noticed" when it 
is loaded, or when a new file is stored (though there are ways to explicitly notice files without completely 
loading all their definitions). Once a file is noticed, the file package takes it into account when modifying 
filecoms, dumping files, etc. The file package also needs to know what typed definitions have been changed 
or what new definitions have been introduced, so it can determine which files need to be updated. This 
is done by "marking changes". All the system functions that perform file package operations (LOAD, 
TCOMPL, PRETTYDEF, etc.), as well as those functions that define or change -data., (EDITF, EDITV, 
ED ITP, DWIM corrections to user functions) interact with the file package. Also, typed-in assignment 
of variables or property values is noticed by the file package. (Note that modifications to variable or 
property values during the execution of a function body are not noticed.) In some cases the marking 
procedure can be subtle, e.g. If the user edits a property list using ED I T P, only those. properties whose 
values are actually changed (or added) are marked. 

All file package operations can be disabled with FILE PKG F LG. 

FILEPKGFLG [Variable] 
The file package can be disabled by setting F I L E P KG F L G to NIL. This will tum 
off noticing files and marking changes. F I LEPKGFLG is initially T. 

The rest of this chapter goes into further detail about the file package. Functions for loading and storing 
symbolic files are presented first. followed by functions for adding and removing typed definitions from 
files. moving typed definitions from one file to another. determining which file a particular definition is 
stored in. and so on. 

11.3 



Loading Files 

11.1 LOADING FILES . 

The functions below load infonnation from symbolic files into the Interlisp environment A symbolic file 
contains a sequence of Interlisp expressions that can be evaluated to establish specified typed definitions. 
The expressions on symbolic files are read' using FILE RDTBL as the readtable. 

The loading functions all have an argument LDFLG. LDFLG affects the operation of DE FIN E, DE FIN E Q, 
RPAQ, RPAQ?, and RPAQQ. While a source file is being loaded, DFNFLG (page 5.9) is rebound to LDFLG. 
Thus, if LDFLG = NIL, and a function is redefined, a message is printed and the old definition saved. 
If LDFLG = T, the old definition is simply overwritten. If LDFLG = PRO P, the functions are stored as 
"~ved" definitions on the property lists under the property EX P R instead of being installed as the active 
derlnitions. If LDFLG=ALLPROP, not only function definitions but also variables set by RPAQQ, RPAQ, 
RPAQ? are stored on property lists (except when the variable has the value NOBIND~ in which case they 
are set to the indicated value regardless of DFNFLG). 

Another option is available for users who are loading systems for others to use and who wish to suppress 
the saving of infonnation used to aid in development and debugging. If LDFLG=SYSLOAD, LOAD will: 
(1) Rebind DFNFLG to T, so old definitions are simply overwritten; (2) Rebind LISPXHIST to NIL, 
thereby making the LOAD not be undoable and eliminating the cost of saving undo infonnation (See page 
8.22); (3) Rebind ADDSPELLFLG to NIL, to suppress adding to spelling lists; (4) Rebind FILEPKGFLG to 
NIL, to prevent the file from being "noticed" by the file package; (5) Rebind BU I LDMAP F LG to NIL, 
to prevent a file map from being constructed; (6) After the load has completed, set the filecoms variable 
and any filevars variables! to NOBIND; and (7) Add the file name to SYSFILES rather than FILELST. 

Note: All functions that have LDFLG as an argument perfonn spelling correction using LOADOPT IONS 
as a spelling list when LDFLG is not a member of LOADOPTIONS. LOADOPTIONS is initially (NIL T 
PROP ALLPROP SYSLOAD). 

(LOAD FILE LDFLG PRINTFLG) [Function] 
Reads successive expressions from FILE (with F ILERDTBL as readtable) and 
evaluates each as it is read, until it reads either NIL, or the single atom STOP. Note 
that LOAD can be used to load both symbolic and compiled files. Returns FILE 

(full name). 

If PRINTFLG = T, LOAD prints the value of each expression; otherwise it does not. 

(LOAD? FILE LDFLG PRINTFLG) [Function] 
Similar to LOAD except that it does not load FILE if it has already been loaded, in 
which case it returns NIL. 

Note: The test is whether the root name of FILE has a FILEDATES propeny (page 
11.13). 

1 A filevars variable is any variable appearing in a file package command of the fonn (FILECOM • 
VARIABLE) (see page 11.30). Therefore, if the filecoms includes (FNS • FOOFNS), FOOFNS is set to 
NOB I NO. If the user wants the value of such a variable to be retained, even when the file is loaded with 
LDFLG = SY SLOAD, then he should replace the variable with an equivalent, non-atomic expression, such 
as (FNS • (PROGN FOOFNS». 

11.4 



FILE PACKAGE 

(LOADFNS FNS FILE LDFLG VARS) [Function] 
Permits selective loading of definitions. FNS is a list of function names, a single 
function name, or T, meaning to load all of the functions on the file. FILE can be 
either a compiled or symbolic file. If a compiled definition is loaded, so are all 
compiler-generated sub functions. The interpretation of LDFLG is the same as for 
LOAD. 

If FILE = NIL, LOADFNS will use WHEREIS (page 11.10) to determine where the 
first function in FNS resides, and load from that file. Note that the file must 
previously have been "noticed" (see page 11.12). If WHE RE I S returns NIL, and 
the WHEREIS package (page 23.40) has been loaded, LOADFNS will use the 
WHEREIS data base to find the file containing FN. 

VARS specifies which non-D E FIN E Q expressions are to be loaded (Le., evaluated): 
T means all, NIL means none, VA RS means to evaluate all variable assignment 
expressions (beginning with RPAQ, RPAQQ, or RPAQ?, see page 11.37), and any 
other atom is the same as specifying a list containing that atom. 

If VARS is a lis~ each element in VARS is "matched" against each non-DE F INEQ 
expression, and if any elements in VARS "match" successfully, the expression 
-is evaluated. "Matching" is defined as follows: If an element of VARS is an 
atom, it matches an expression if it is EQ to either the CAR or the CADR of 
the expression. If an element of VARS is a lis~ it is treated as an edit pattern 
(page 17.13), and matched with the entire expression (using ED IT 4 E, page 
17.57). For example, if VARS was (FOOCOMS DECLARE: (DEFLIST & (QUOTE 
MA C RO ) ) ), this would cause (R P AQQ F OOC OMS ... ), all 0 E C LA R E : s, and all 
DEFLISTs which set up MACROs to be read and evaluated. 

If VARS is a list and (FNTYP VARS) is true (VARS is a function definition), 
then LOADFNS will invoke that function on every non-DEFINEQ expression being 
considered, applying it to two arguments, the first and second elements in the 
expression. If the function returns NIL, the expression will be skipped; if it returns 
a non-N I L litatom (e.g. T), the expression will be evaluated; and if it returns a 
lis~ this list is evaluated instead of the expression. Note: The file pointer is set to 
the very beginning of the expression before calling the VARS function definition, 
so it may read the entire expression if necessary. If the function returns a litatom, 
the file pointer is reset and the expression is READ or SKREAD. However, the file 
pointer is not reset when the function returns a list, so the function must leave it 
set immediately after the expression that it has presumably read. 

LOADFNS returns a list of: (1) The names of the functions that were found; (2) A 
list of those functions not found (if any) headed by the litatom NOT - FOUND:; (3) 
All of the expressions that were evaluated; (4) A list of those members of VARS 

for which no corresponding expressions were found (if any), again headed by the 
litatom NOT -FOUND:. For example, 

~ (LOADFNS '(FOO FIE FUM) F~E NIL '(BAZ (DEFLIST &}» 
(FOO FIE (NOT-FOUND: FUM) (RPAQ BAZ ... ) (NOT-FOUND: (DEFLIST 
&) ) ) 

(LOADVARS VARS FILE LDFLG) [Function] 
Same as (LOADFNS NIL FILE LDFLG VARS). 

11.5 



r 
Storing Files 

(LOADFROM F~E FNS LDFLG) [Function] 
Same as (LOADFNS FNS F~E LDFLG T). 

Once the file package has noticed a file, the user can edit functions contained in the file without explicitly 
loading them. Similarly, those functions which have not been modified do not have to be loaded in order 
to write out an updated version of the file. Files are normally noticed (Le., their contents become known 
to the file package; see page 11.12) when either the symbolic or compiled versions of the file are loaded. 
If the file is not going to be loaded completely, the preferred way to notice it is with LOADFROM. Note 
that the user can also load some functions at the same time by giving LOADFROM a second argument, but 
it is normally used simply to inform the file package about the existence and contents of a particular file. 

(L. OADBLOCK FN F~E LDFLG) [Function] 
Calls LOADFNS on those functions contained in the block declaration containing 
FN (See page 12.14). LOADBLOCK is designed primarily for use with symbolic files, 
to load the EXPRs for a given block. It will not load a function which already has 
an in-core EX P R definitio~ and it will not load the block name, unless it is also 
one of the block functions. 

(LOADCOMP F~E LDFLG) [Function] 
Performs all operations on F~E associated with compilation. Le. evaluates all 
expressions under a DECLARE: EVAL@COMPILE (see page 11.26), and "notices" 
the function and variable names by adding them to the lists NOF IXFNSLST and 
NOF IXVARSLST (see page 16.16). 

Thus, if building a system composed of many files with compilation information 
scattered among them, all that is required to compile one file is to LOADCOMP the 
others. 

(LOADCOMP? F~E LDFLG) [Function] 
Similar to LOADCOMP, except it does not load if file has already been loaded, in 
which case its value is NIl. 

11.2 STORING FILES 

(MAKEFILE F~E OPTIONS REPRlNTFNS SOURCEF~E) [Function] 
Makes a new version of the file F~E. storing the information specified by F~E'S 
filecoms. Notices F~E if not previously noticed (see page 11.12). Then, it adds 
F~E to NOTLISTEDFILES2 and NOTCOMPILEDFILES.3 

OPTIONS is a litatom or list of litatoms which specify options. By specifying certain 
options, MAK E F I L E can automatically compile or list F~E. Note that if F~E does 
not contain any function definitions, it is not compiled even when OPTIONS specifies 

. 2 Except if FILE has on its property list the property F I LET Y P E with value DON'T LIS T, or a list containing 
DON'TLIST. 

3Except if FILE has on its property list the property FILETYPE with value DON I TCOMPILE, or a list 
containing DON I TCOMPILE. Also, if FILE does not contain any function definitions, it is not added to 
NOTCOMPILEDFILES, and it is not compiled even when OPTIONS specifies C or RC. 

11.6 



r 
I 

I 

I 

I 
I 
I 
~ 

FILE PACKAGE 

C or R C. The· options are, spelling corrected using the list MA KEF I LEO P T ION S. If 
spelling correction fails, MAK E F I L E generates an error. The options are interpreted 
as follows: 

C 
RC 

LIST 

CLISPIFY 

NOCLISP 

FAST 

REMAKE 

NEW 

After making FILE, MAKE FILE will compile FILE by calling 
TCOMPL (if C is specified) or RECOMPILE (if RC is specified). 
If there are any block declarations specified in the filecoms for 
FILE, B C OM P L or B R E COM P I L E will be called instead. 

If F, S T, S T F, or S is the next item on OPTIONS following C or 
RC, it is given to the compiler as the answer to the compiler's 
question LISTING? (see page 12.1). For example, (MAKEFILE 
'FOO '( C F LIST» will dump FOO, then TCOMPL or BCOMPL 
it specifying that functions are not to be redefined, and finally list 
the file. 

After making FILE, MAKEFILE calls LISTFILES to print a 
hardcopy listing of FILE. 

MAKEFILE calls PRETTYOEF with CLISPIFYPRETTYFLG=T 
(see page 16.20). This causes CLISPIFY to be called on each 
function defined as an EX P R before it is prettyprinted. 4 

MAKEFILE calls PRETTYDEF with PRETTYTRANFLG=T (see page 
16.20). This causes CLISP translations to be printed, if any, in place 
of the corresponding CLISP expressions, e.g., iterative statements, 
record expressions, P R IN T OU T forms, etc. 

MAKEFILE calls PRETTYOEF with PRETTYFLG=NIL (see page 
6.54). This causes data objects to be printed rather than 
prettyprinted, which is much faster. 

MAKE FILE "remakes" FILE: The prettyprinted definitions of 
functions that have not changed are copied from an earlier version 
of the symbolic file. Only those functions that have changed are 
prettyprinted. See page 11.10. 

MAKEFILE does not remake FILE. If MAKEFILEREMAKEFLG=T 
(the initial setting), the default for all calls to MA KEF I LEis to 
remake. The NEW option can be used to override this default 

REPRlNTFNS and SOURCEFILE are used when remaking a file, as described on 
page 11.10. 

4 Alternatively, if FILE has the property FILETYPE with value CLISP or a list containing CLISP, 
PRETTYOEF is called with CLISPIFYPRETTYFLG reset to CHANGES, which will cause CLISPIFY to 
be called on all functions marked as having been changed. If FILE has property F I L E TY P E with value 
C LIS P, the compiler will OW I M IF Y its functions before compiling them (see page 12.9). 

11.7 



Storing Files 

If a remake is not being performeci MAKE FILE checks the state of FILE to make sure that the entire source 
file was actually LOADed. If FILE was loaded as a compiled file, MAKEFILE prints the message CAN'T 
DUMP: ONLY THE COMPILED FILE HAS BEEN LOADED. Similarly, if only some of the symbolic 
definitions were loaded via LOADFNS or LOADFROM, MAKEFILE prints CAN'T DUMP: ONLY SOME OF 
ITS SYMBOlICS HAVE BEEN LOADED. In both cases, MAKEFIlE will then ask the user if it should 
dump anyway; if the user declines, MAKE F r'lE does not call PRETTYDE F, but simply returns (FILE NOT 
DUMPED) as its value. 

The user can indicate that FILE must be block compiled together with other files as a unit by putting a list 
of those files on the property list of each file under the property F I lEG ROU P. If FILE has a F I LEG ROU P 
property, the compiler will not be called until all files on this property have been dumped that need to 
be 

MAKEFIlE operates by rebinding PRETTYFlG, PRETTYTRANFlG, and CLISPIFYPRETTYFLG, evaluat
ing each expression on MAKEFIlEFORMS (under errorset protection), and then calling PRETTYDEF. The 
user can add expressions to MAKEFIlEFORMS to implement his own options. 

(MAKEFILES OPTIONS FILES) [Function] 
Performs (MAKE FILE FILE OPTIONS) for each file on FILES that needs to be 
dumped. If FILES = NIL, FILELST is used. For example, (MAKEFILES 'LIST) 
will make and list all files that have been changed. In this case, if any typed 
definitions for any items have been defined or changed and they are not contained 
in one of the files on FILELST, MAKEFILES calls ADDTOFILES? to allow the 
user to specify where these go. MAK E F I L E S. returns a list of all files that are made. 

(CLEANUP FILE 1 FILE2 '" FILEN ) [NLambda NoSpread Function] 

(FTLES?) 

(ADDTOFIlES? -) 

Dumps, lists, and recompiles (with RECOMPILE or BRECOMPILE) any of the 
specified files (unevaluated) requiring the corresponding operation. If no files are 
specified, FILELST is used. CLEANUP returns NIL. 

CLEANUP uses the value of the variable CLEANUPOPTIONS as the OPTIONS 

argument to MAKEFILE. CLEANUPOPTIONS is initially (LIST RC), to indicate 
that the files should be listed and recompiled. If CLEANUPOPTIONS is set to (RC 
F ), no listing will be perfoIlIleci and no functions will be redefined as the result 
of compiling. Alternatively, if FILE 1 is a list. it will be interpreted as the list of 
options regardless of the value of C LEANUPOPT IONS. 

[Function] 
Prints on the terminal the names of those files that have been modified but not 
dumpeci dumped but not listed, dumped but not compiled, plus the names of any 
functions and other typed definitions (if any) that are not contained in any file. 
If there are any, FILES? then calls ADDTOFILES? to allow the user to specify 
where these go. 

[Function] 
Called from MAKEFILES, CLEANUP, and FILES? when there are typed definitions 
that have been marked as changed which do not belong to any file. ADDTOFILES? 
lists the names of the changed items, and asks the user if he wants to specify where 
these items should be put. If user answers N(o), ADDTOFILES? returns NIL 
without taking any action. If the user answers ], this is taken to be an answer 
to each question that would be asked, and all the changed items are marked as 
dummy items to be ignored. Otherwise, ADDTOF ILES? prints the name of each 

11.8 



FILE PACKAGE 

changed item, and accepts one of the following responses: 

A file name or a variable whose value is a list 
Adds the item to the corresponding file or list, using ADOTOF I LE. 

If the item is not the name of a file on F I L E LS T, the user will be asked 
whether it is a new file. If he says no, then AODTOF ILES? will check 
whether the item is the name of a list, i.e. whether its value is a list. If 
not, the user will be asked whether it is a new list. 

line-feed 
Same as the user's previous response. 

space or carriage return 
Take no action. 

] The item is marked as a dummy item by adding it to NILCOMS. This tells 
the file package simply to ignore this item. 

[ The "definition" of the item in question is prettyprinted to the terminal, 
and then the user is asked again about its disposition. 

( ADO T 0 F I L E S? prompts with .. LIS T NAME: ( ", the user types in the name 
of a list, i.e. a variable whose value is a list, terminated by a ). The item 
will then only be added to (under) a command in which the named list 
appears as a filevar. If none are found, a message is printed, and the user 
is asked again .. For example, the user defines a new function F003, and 
when asked where it goes, types (FOOFNS). If the command (FNS * 
FOOF.NS) is found, F003 will be added to the value of FOOFNS. If instead 
the user types (FOOCOMS), and the command (COMS * FOOCOMS) is 
found, then F003 will be added to a command for dumping functions that 
is contained in FOOCOMS. 

Note: If the named list is not also the name of a file, the user can simply 
type it in without parenthesis as described above. 

ADDTOFILES? prompts with "Near: (", the user types in the name 
of an object, and the item is then inserted in a command for dumping 
objects (of its type) that contains the indicated name. The item is inserted 
immediately after the indicated name. 

(LISTFILES FILE 1 FILE2 .,. FILEN ) [NLambda NoSpread Function] 
Lists each of the specified files (unevaluated). If no files are given, NOTL I STEDF I LE S 
is used. Each file listed is removed from NOTLISTEDFILES if the listing is com
pleted. For each file not found, LIST FILES prints the message" FILENAME NOT 
FOUND" and proceeds to the next file. LISTFILES calls the function LISTFILESl 
on each file to be listed. The user can advise or redefine LIS T F I L E S 1 for more 
specialized applications. 

(Interlisp-10) LISTF ILES uses the function TENEX (page 22.6) to tell the operating 
system to print the file. LIS T F I L E S calls LIS T F I L E S 1 which calls TEN EX 
with (CONCAT I LISTS FILENAME LISTFILESTR), where LISTFILESTR is 

11.9 



r 

{COMPILEFILES 

Remaking a Symbolic File 

initially "er". The user can reset LISTF ILESTR to specify subcommands for the 
list commancL or advise or redefine LIST F I L E S 1. 

(Interlisp-D) LISTFILESl is initially defined as EMPRESS (page 18.17). 

FILEl FILE2 ... FILEN) [NLambda NoSpread Function] 
Executes the RC and C options of MAKE FILE for each of the specified files 
(unevaluated). If no files are given, NOTCOMPILEDFILES is used. Each file 
compiled is removed from NOTCOMPILEDFILES. If FILEl is a list, it is interpreted 
as the OPTIONS argument to MAKEFILES. This feature can be used to supply 
an answer to the compiler's LISTING? question, e.g., (COMPILEFILES (STF» 
will compile each file on NOTCOMPILEOFILES so that the functions are redefined 
without the EX P Rs definitions being saved. 

(WHEREIS NAME TYPE FILES FN) [Function] 
TYPE is a file package type. WHE RE I S sweeps through all the files on the list FILES 

and returns a list of all files containing NAME as a TYPE. WHERE IS knows about 
and expands all file package commands and file package macros. TYPE= NIL 
defaults to FNS (to retrieve function definitions). If FILES is not a list, the value 
of FILE LST is used. 

If FN is given, it should be a function (with arguments NAME, FILE, and TYPE) 
which is applied for every file in FILES that contains NAME as a TYPE. In this case, 
WHE RE I S returns NIL. 

If the WHEREIS package (page 23.40) has been 10adecL WHEREIS is redefined so 
that FILES = T means to use the whereis package data base, so WH ERE I S will find 
_NAME even if the file has not been loaded or noticed. FILES = NIL always means 
use FILELST. 

11.2.1 Remaking a Symbolic File 

Most of the time that a symbolic file is written using MAK E F I L E, only a few of the functions that it 
contains have been changed since the last time the file was written. Rather than prettprinting all of 
the functions, it is often considerably faster to "remake" the file, copying the prettprinted definitions of 
unchanged functions from an earlier version of the symbolic file, and only prettyprinting those functions 
that have been changed. 

MAKE FILE will remake the symbolic file if the REMAKE option is specified. If the NEW option is given. 
the file is not remade, and all of the functions are prettprinted. The default action is specified by the value 
ofMAKEFILEREMAKEFLG: ifT (its initial value), MAKEFILE will remake files unless the NEW option is 
given; if NIL, MAKEFILE will not remake unless the REMAKE option is given. 

Note: If the file has never been loaded or dumped. for example if the filecoms were simply set 
up in memory, then MAKE F I L E will never attempt to remake the file, regardless of the setting of 
MAKE FILE REMAKE FLG, or whether the REMAKE option was specified. 

When MAKE FILE is remaking a symbolic file, the user can explicitly indicate the functions which are 
to be prettyprinted and the file to be used for copying the rest of the function definitions from via the 
REPRINTFNS and SOURCEFILE arguments to MAKE FILE. Normally, both of these arguments are defaulted 
to NIL. In this case, REPRINTFNS will be set to those functions that have been changed since the last 

11.10 



FILE PACKAGE 

version of the file was written. For SOURCEFILE, MAKE FILE obtains the full name of the most recent 
version of the file (that it knows about) from the FILEDATES property of the file, and checks to make 
sure that the file still exists and has the same file date as that stored> on the F I L E DA T E S propeny. If it 
does, MAKEFILE uses that file as SOURCEFILE. This procedure pennits the user to LOAD or LOADFROM a 
file in a different directory, and still be able to remake the file with MAKE FILE. In the case where the most 
recent version of the file cannot be found, MAKEF ILE will attempt to remake using the original version of 
the file (Le., the one first loaded), specifying as REPRINTFNS the union of all changes that have been made 
since the file was first loaded, which is obtained from the F I L E CHANG E S property of the file. If both of 
these fail, MAKEFILE prints the message "CAN'T FINO EITHER> THE PREVIOUS VERSION OR THE 
ORIGINAL VERSION OF FILE, SO IT WILL HAVE TO BE WRITTEN ANEW", and does not remake 
the file, Le. will prettyprint all of the functions. 

When a remake is specified, MAKEF I LE also checks to see how the file was originally loaded (see page 
11.12). If the file was originally loaded as a compiled file, MAKE FILE will automatically call LOADVARS 
to obtain those DECLARE: expressions that are contained on the symbolic file, but not the compiled 
file, and hence have not been loaded. If the file was loaded by LOADF NS (but not LOAD F ROM), then 
LOADVARS will automatically be called to obtain any non-DEFINEQ expressions. 

Note: Remaking a symbolic file is considerably faster if the earlier version has a file map indicating where 
the function definitions are located (page 11.38), but it does not depend on this infonnation. 

11.3 MARKING CHANGES 

The file package needs to know what typed definitions have been changed, so it can detennine which 
files need to be updated. This is done by "marking changes". All the system functions that perform file 
package operations (LOAD, TCOMPL, PRETTYDE F, etc.), as well as those functions that define or change 
data, (EDITF, EDITV, EDITP, DWIM corrections to user functions) interact with the file package by 
marking changes. Also, typed-in assignment of variables or property values is noticed by the file package. 
(Note that if a program modifies a variable or property value, this is not noticed.) In some cases the 
marking procedure can be subtle, e.g. if the user edits a property list using ED I T P, only those properties 
whose values are actually changed (or added) are marked. 

The various system functions which create or modify objects call MARKASCHANGED to mark the object as 
changed. For example, when a function is defined via DEFINE or DEFINEQ, or modified via EDITF, or 
a DWIM correction, the function is marked as being a changed object of type FNS. Similarly, whenever a 
new record is declared, or an existing record redeclared or edited, it is marked as being a changed object 
of type RECORDS, and so on for all of the other file package types. 

The user can also call MARKASCHANGED directly to mark objects of a particular file package type as 
changed: 

(MARKASCHANGED NAME TYPE REASON) [Function] 
Marks NAME of type TYPE as being changed. REASON is a litatom that indicated 
how NAME was changed. MARKASCHANGED recognizes the following values for 
REASON: 

DEFINED 

CHANGED 

Used to indicate the creation of NAME, e.g. from DE FINE. 

U sed to indicate a change to NAME, e.g. from the editor. 

11.11 



Noticing Files 

DELETED Used to indicate the deletion of NAME, e.g. by DELDEF. 

CLISP Used to indicate the modification of NAME by CLISP translation. 

For backwards compatibility, MARKASCHANGED also accepts a REASON of T 
(=DEFINED) and 'NIL (=CHANGED). New programs should avoid using these 
values. 

MARKASCHANGED returns NAME. MA"RKASCHANGED is undoable. 

(UNMARKASCHANGED NAME TYPE) [Function] 
Unmarks NAME of type TYPE as being changed. Returns NAME if NAME was 
marked as changed and is now unmarked, NIL otherwise. UNMARKASCHANGED is 
undoable. 

(F ILEPKGCHANGES TYPE LST) [NoSpread Function] 
If LST is not specified (as opposed to being NIL), returns a list of those objects 
of type TYPE that have been marked as changed but not yet associated with their 
corresponding files (See page 11.14). If LST is specified, FILEPKGCHANGES sets 
the corresponding list (F ILEPKGCHANGES) returns a list of ail objects marked 
as changed as a list of elements of the form (TYPENAME • CHANGEDOBJECTS). 

Some properties (e.g. EXPR, ADVICE, MACRO, I. S. OPR, etc .. ) are used to implement other file package 
types. For example, if the user changes the value of the property I. S. OPR, he is really changing an object 
of type I. S. OPR, and the effect is the same as though he had redefined the i.s.opr via a direct call to the 
function I. S. OPR. If a property whose value has been changed or added does not correspond to a specific 
file package type, then it is marked as a changed object of type PRO P S whose name is (VARIABLENAME 

PROPNAME) (except if the property name has a property PROPTYPE with value IGNORE). 

Similarly, if the user changes a variable which implements the file package type ALISTS (as indicated by 
the appearance of the property VARTYPE with value ALIST on the variable's property list), only those 
entries that are actually changed are marked as being changed objects of type AL 1ST S. and the "name" 
of the object will be (VARIABLENAME KEY) where KEY is CAR of the' entry on the alist that is being 
marked. If the variable corresponds to a specific file package type other than ALISTS, e.g. USERMACROS, 
LISP XMAC ROS, etc., then an object of that type is marked. In this case, the name of the changed object 
will be CAR of the corresponding entry on the alist. For example, if the user edits LISPXMACROS and 
changes a definition for PL, then the object PL of type LISPXMACROS is marked as being changed. 

11.4 NOTIONG FILES 

Already existing files are "noticed" by LOAD or LOADFROM (or by LOADFNS or LOADVARS when the 
VARS argUment is T. New files are noticed when they are constructed by MAKE F I L E, or when definitions 
are first associated with them via FILES? or ADDTOFILES? Noticing a file updates certain lists and 
properties so that the file package functions know to include the file in their operations. For example. 

'CLEANUP will only dump files that have been noticed. , 

The file package uses information stored on the property list of the root name of noticed files. The 
following propeny names are used: 

11.12 



FILE 

FILECHANGES 

FILEDATES 

FILEMAP 

FILE PACKAGE 

[property Name] 
When a file is noticed, the property F I L E,value ( (FILECOMS • LOADT¥PE» is 
added to the property list of its root name. FILECOMS is the variable containing 
the filecoms of the file (see page 11.21). LOADTYPE indicates how the file was 
loaded, e.g., completely loaded, only partially loaded as with LOADFNS, loaded as 
a compiled file, etc. 

The property F I LEis used to determine whether or not the corresponding file 
has been modified since the last time it was loaded or dumped. CDR of the 
F I L E property records by type those items that have been changed since the last 
MAKEFILE. Whenever a file is dumped, these items are moved to the property 
FILECHANGES, and CDR of the FILE property is reset to NIL. 

[property Name] 
The property FILECHANGES contains a list of all changed items since the file was 
loaded (there may have been several sequences of editing and rewriting the file). 
When a file is dumped, the changes in CDR of the FILE property are added to the 
FILECHANGES property. 

[property Name] 
The property FILEDATES contains a list of version numbers and corresponding file 
dates for this file. These version numbers and dates are used for various integrity 
checks in connection with remaking a file (see page 11.10). 

[property Name] 
The property F I LEMAP is used to store the filemap for the file (see page 11.38). 
This is used ~o directly load individual functions from the middle of a file. 

To compute the root name, ROOTF I LENAME is applied to the name of the file as indicated in the 
F I L E C REA TED expression appearing at the front of the file, since this name corresponds to the name 
the file was originally made under. The file package detects that the file being noticed is a compiled file 
(regardless of its name), by the appearance of more than one FILECREATED expressions. In this case, 
each of the files mentioned in the following F I LECREATED expressions are noticed. For example, if the 
user perfonns (BCOMPL '( FOO FIE», and subsequently loads FOO. DCOM, both FOO and F IE will be 
noticed. 

When a file is noticed, its root name is added to the list F I L E L S T : 

FILELST 

LOADEDFILELST 

[Variable] 
Contains a list of the root names of the files· that have been noticed. 

(Variable] 
Contains a list of the actual names of the files as loaded by LOAD, LOADFNS, 
etc. For example, if the user perfonns (LOAD '(NEWLISP)EDITA. COM; 3), 
EDITA will be added to FILELST, but (NEWLISP)EDITA.COM;3 is added 
to LOADEDFILELST. LOADEDFILELST is not used by the file package; it is 
maiI;ltained solely for the user's benefit. 

11.13 



r , 
r 

Distributing Change Information 

11.5 DISTRIBUTING CHANGE INFORMATION 

Periodically, the function UPOATEFILES is called to find which file(s) contain the elements that have 
been changed. UPDATE FILE 5 is called by F I L E S?, CLEANUP, and MAKE FILE 5, Le., any procedure that 
requires the F I L E property to be up to date. This procedure is followed rather than update the F I L E 
property after each change because scanning FILE LST and examining each file package command can be 
a time-consuming process, and is not so noticeable when performed in conjunction with a large operation 
like loading or writing a file. 

UPOATEFILES operates by scanning FILELST and interrogating the file package commands for each file. 
When (if) any files are found that contain the corresponding typed definition, the name of the element 
is added to the value of the property FILE for the corresponding file. Thus, after UPOATEFILES has 
completed operating, the files that need to be dumped are simply those files on FILE LST for which COR 
of their FILE property is non-N I L. For example, if the user loads the file FOO containing definitions for
FOOl, F002, and F003, edits F002, and then calls UPOATEFILES, (GETPROP 'FOO 'FILE) win be 
« FOOCOMS . T) (FNS F002». If any objects marked as changed have not been transferred to the 
FILE property for some file, e.g., the user defines a new function but forgets (or declines) to add it to the 
file package commands for the corresponding file, then both FILES? and CLEANUP will print warning 
messages, and then call AOOTOF ILES? to permit the user to specify on which files these items belong. 

The user can also invoke UPOATEFILES directly: 

(UPOATEFILES - -) [Function] 
(UPOATEFILES) will update the FILE properties of the noticed files. 

11.6 FILE PACKAGE TYPES 

In addition to the definitions of functions and values of variables, source files in Interlisp can contain a 
variety of other information, e.g. property lists, record declarations, macro definitions, hash arrays, etc. 
In order to treat such a diverse assortment of data uniformly from the standpoint of file operations, the 
file package uses the concept of a typed definition, of which a function definition is just one example. A 
typed definition associates with a name (usually a litatom), a definition of a given type (called the file 
package type). Note that the same name may have several definitions of different types. For example, a 
litatom may have both a function definition and a variable definition. The file package also keeps track of 
the file that a particular typed definition is stored on, so one can think of a typed definition as a relation 
between four elements: a name, a definition, a type, and a file. 

A file package type is an abstract notion of a class of objects which share the property that every object 
of the same file package type is stored, retrieved, edited, copied etc., by the file package in the same way. 
Each file package type is identified by a litatom, which can be given as an argument to the functions that 
manipulate typed definitions. The user may define new file package types, as described in page 11.20. 

FILEPKGTYp,ES [Variable] 
The value of FILEPKGTYPES is a list of all file package types, including any that 
may have been defined by the user. 

The file package is initialized with the following built-in file package type~: 

11.14 



FNS 

VARS 

PROPS 

ALISTS 

EXPRESSIONS 

MACROS 

USERMACROS 

LISPXMACROS 

ADVICE 

FILEPKGCOMS 

FILE PACKAGE 

Function definitions. 

(top-level) Variable values. 

Property name/value pairs. When a property is changed or adde<L an object of 
type PROPS, with "name" (LITATOM PROPNAME) is marked as being changed. 

Note that some properties are used to implement other file package types. For 
example, the property MAC RO implements the file package type MAC ROS, the 
property ADVICE implements ADVICE, etc. This is indicated by putting the 
property PROPTYPE, with value of the file package type on the property list 
of the property name. For example, (GETPROP 'MACRO 'PROPTYPE) =) 

MAC ROS. When such a property is changed or adde<L an object of the corresponding 
file package type is marked. If (GETPROP PROPNAME 'PROPTYPE) =) 

IGNORE, the change is ignored. The FILE, FILEMAP, F ILEDATES, etc. properties
are all handled this way. (Note that IGNORE cannot be the name of a file package 
type implemented as a property). 

Alists (association lists); a list of dotted pairs accessed via ASSOC and PUT ASSOC. 

A variable is declared to have an association list as its value by putting on its 
property list the property VARTYPE with value ALIST. In this case, each dotted 
pair on the list is an object of type ALISTS. When the value of such a variable 
is change<L only those entries in the a-list that are actually changed or added 
are marked as changed objects of type ALISTS (with "name" (LITATOM KEY». 

Objects of type ALISTS are dumped via the ALISTS or ADDVARS file package 
commands. 

Note that some alists are used to "implement" other file package types. For 
example, the value of the global variable USERMACROS implements the file package 
type USERMACROS and the values ofLISPXMACROS and LISPXHISTORYMACROS 
implement the file package type LISPXMACROS. This is indicated by putting on 
the property list of the variable the property VARTYPE with value a list of the form 
(ALIST FILEPKGTYPE). For example, (GETPROP 'LISPXHISTORYMACROS 
'VARTYPE) =) (ALIST LISPXMACROS). 

Expressions. 

Objects of type EXPRESS IONS are written out via the P file package comman<L 
and marked as being changed via the REMEMBER programmers assistant command 
(page 8.13). 

Compiler macros. See page 5.17. 

User edit macros. See page 17.48. 

(values in) LISPXMACROS and LISPXHISTORYMACROS. See page 8.19. 

Advice. See page 10.7. 

File package commands/types. New file package types and commands can be 
defined as explained on page 11.20 and page 11.32. 

11.15 



RECORDS 

FIELDS 

I.S.OPRS 

TEMPLATES 

FILES 

FILEVARS 

Functions for Manipulating Typed Definitions 

Record declarations. See page 3.1. 

Fields of records. The "definition" of an object of type FIE LOS is a list of all the 
record declarations which contain the name. See page 3.1. 

Iterative statement operators. See page 4.5. 

Masterscope templates. See page 13.1. 

Files. -Files may be treated like other typed definitions. 

Filevars. See page 11.30. 

11.6.1 Functions for Manipulating Typed Definitions 

The functions described below can be used to manipulate typed definitions, without needing to know -how 
the manipulations are done. For example, (G E T D E F 'F 00 'F NS) will return the function definition of 
FOO, (GETDEF 'FOO 'VARS) will return the variable value of FOO, etc. All of the functions use the 
following conventions: 

(1) Any argument that expects a list of litatoms will also accept a single litatom, operating as though it 
were enclosed in a list. For example, if the argument FILES should be a list of files, it may also be 
a single file. 

(2) TYPE is a file package type. TYPE = NIL is equivalent to TYPE = FNS. The singular form of a file 
package type is also recognized, e.g. TYPE=VAR is equivalent to TYPE=VARS. 

(3) FILES = NIL is equivalent to FILES= F I LELST. 

(4) SOURCE is used to indicate the source of a definition, that is, where the definition should be found. 
SOURCE can be one of: 

CURRENT 

SAVED 

FILE 

? 

Get the definition currently in effect. 

Get the "saved" definition, as stored by SAVEDE F (page 11.18). 

Get the definition contained on the (first) file determined by WHE RE I S (page 11.10). 

Note: WHERE IS is called with FILES = T, so that if the WHEREIS package (page 
23.40) is loaded, the WHEREIS data base will be used to find the file containing the 
definition. 

Get the definition currently in effect if there is one, else the saved definition if there 
is one, otherwise the definition from a file determined by WH ERE I S. Like specifying 
CURRENT, SAVED, and FILE in order, and taking the first definition that is found. 

a file name or list of file names 
Get the definition from the first of the indicated files that contains one. 

NIL In most cases, giving SOURCE = NIL (or not specifying it at all) is the same as giving 
?, to get either the current, saved, or filed definition. However, with HASD E F. 
SOURCE=NIL is interpreted as equal to SOURCE = CURRENT, which only tests if 

11.16 



FILE PACKAGE 

there is a current definition. 

(5) All functions which make destructive changes are undoable. 

The operation of most of the functions described below can be changed or extended by modifying 
the appropriate properties for the corresponding file package type using the function F I L E P KG T Y P E, 
described on page 11.20. 

(GETOEF NAME TYPE SOURCE OPTIONS) [Function] 
Returns the definition of NAME~ of type TYPE, from SOURCE. For most types, 
GE TOE F returns the expression which would be prettyprinted when dumping 
NAME as TYPE. For example, for TYPE = FNS, an EXPR definition is returned. for 
TYPE=VARS, the value of NAME is returned. etc. 

OPTIONS is a list which specifies certain options: 

NOERROR 

a string 

NOCOPY 

NOOWIM 

GETOEF causes an error if an appropriate definition cannot be 
found, unless OPTIONS is or contains NOERROR. 

If OPTIONS is or contains a string, that string will be returned if 
no definition is found. The caller can thus determine whether a 
definition was found, even for types for which NI L or NOB I NO 
are acceptable definitions. 

GETOEF returns a copy of the definition unless OPTIONS is or 
contains NOCOPY. 

A F NS definition will be dwimified if it is likely to contain CLISP 
unless OPTIONS is or contains NOOW I M. 

( PUTOE F NAME TYPE DEFINITION) [Function] 
Defines NAME of type TYPE with DEFINITION. For TYPE = FNS, does a DEFINE; 
for TYPE=VARS, does a SAVEsET, etc. 

For TYPE = FILES, PUTOEF establishes the command list, notices NAME, and then 
calls MAK E F I L E to actually dump the file NAME, copying functions if necessary 
from the "old" file (supplied as part of DEFINITION). 

(J-l~SOEF NAME TYPE SOURCE SPELLFLG) [Function] 
Returns NAME if NAME is the name of som~thing of type TYPE. If not, attempts 
spelling correction if SPELLFLG = T, and returns the spelling-corrected NAME. 

Otherwise returns NIL. 

(HASOE FN I L TYPE) returns T if NIL has a valid definition. 

Note: if SOURCE = NIL, HASDEF interprets this as equal to SOURCE=CURRENT, 
which only tests if there is a current definition. 

(TYPEsOF NAME POSSIBLETYPES IMPOSSIBLETYFES SOURCE) [Function] 
Returns a list of the types in POSSIBLETYPES but not in IMPOSSIBLETYPES for 
which NAME has a definition. F I L E P K G T Y PES is used if POSSIBLETYPES is NIL. 

11.17 



Functions for Manipulating Typed Definitions 

(COPYOE F OLD NEW TYPE SOURCE OPTIONS) [Function] 
Defines NEW to have a copy of the definition of OLD by doing PUTOE F on a copy 
of the definition retrieved by (G E TOE F OLD TYPE SOURCE OPTIONS). NEW is 
substituted for OLD in the copied definition, in a manner that may depend on the 
TYPE. 

For example, (COPYOE F 'PDQ 'RST 'F I LES) sets up RSTCOMS to be a copy of 
PDQCOMS, changes things like (VARS • PDQVARS) to be (VARS • RSTVARS) 
in RSTCOMS, and performs a MAKE FILE on RST such that the appropriate 
definitions get copied from PDQ. 

Note: COPYOE F disables the NOCOPY option of GETOE F, so NEW will always have 
a copy of the definition of OLD. 

(OELOEF NAME TYPE) [Function] 
Removes the definition of NAME as a TYPE that is currently in effect 

( SHOWOE F NAME TYPE FILE) [Function] 
Prettyprints the definition of NAME as a TYPE to FILE. This shows the user how 
NAME would be written to a file. Used by AOOTOF ILES? (page 11.8). 

(EDITOEF NAME TYPE SOURCE EDITCOMS) [Function] 
Edits the definition of NAME as a TYPE. Essentially performs (PUTOE F NAME 

TYPE (EDITE (GETOEF NAME TYPE SOURCE) EDITCOMS». 

( SAVEDE F NAME TYPE DEFINITION) [Function] 
Makes DEFINITION (or if DEFINITION = NIL, the definition of NAME as a TYPE that 
is currently in effect) be the "saved" definition for NAME as a TYPE. If TYPE= FNS 
(or TYPE = NIL), this consists of storing DEFINITION on NAME'S property list under 
property EXPR, CODE, or SUBR. For TYPE=VARS, the definition is stored as the 
value of the VALUE property. For other types, DEFINITION is stored in an internal 
data structure, from where it can be retrieved by GET 0 E F or UN S A V E 0 E F. 

(UNSAVEDEF NAME TYPE -) [Function] 
Makes the "saved" definition of NAME as a TYPE be the definition currently in 
effect IfTYPE=FNS (or TYPE = NIL), UNSAVEOEF will unsave the EXPR propeny 
if any, else CODE or SUBR. UNSAVEDEF also recognizes TYPE = EXPR, CODE, or 
SUBR, meaning to unsave the corresponding definition only. 

( LOADDE F NAME TYPE SOURCE) [Function] 
Equivalent to (PUTOEF NAME TYPE (GETOEF NAME TYPE SOURCE». LOADOEF 
is essentially a generalization of LOADFNS, e.g. it enables loading a single record 
declaration from a file. Note that (LOAOOE F FN) will give FN an EXPR definition, 
either obtained from its property list or a file, unless it already has one. 

(CHANGECALLERS OLD NEW TYPES FILES METHOD) [Function] 
Finds all of the places where OLD is used as any of the types in TYPES and changes 
those places to use NEW. For example, (CHANGECALLERS 'NLSETQ 'ERSETQ) 
will change all calls to N L SET Q to be calls to E R SET Q. Also changes occurrences of 
OLD to NEW inside the filecoms of any file, inside record declarations, properties, 
etc. 

11.18 



FILE PACKAGE 

CHANGECALLERS attempts to determine if OLD might be used as more than one 
type; for example, if it is both a function and a record field. If so, rather than 
performing the transformation OLD - > NEW automatically, the user is allowed 
to edit all of the places where OLD occurs. For each occurrence of OLD, the 
user is asked whether he wants to make the replacement. If he responds with 
anything except Ye s or No, the. editor is invoked on the expression containing that 
occurrence. 

Currently there are two different methods for detenitining which functions are to be 
examined. If METHOD = EDITCALLERS, EDITCALLERS is used to search FILES 

(see page 17.59). If METHOD=MASTERSCOPE, then the Masterscope database 
is used instead. METHOD=NIL defaults to MASTERSCOPE if the value of the 
variable DEFAUL TRENAMEMETHOD is MASTERSCOPE and a Masterscope database 
exists, otherwise it defaults to EDITCALLERS. 

(RENAME OLD NEW TYPES FILES METHOD) [Function) 
First performs (COPYDE F OLD NEW TYPE) for all TYPE inside TYPES. ·It then 
calls CHANGECALLERS to change all occurrences of OLD to NEW, and then "deletes" 
OLD with DELDEF. For example, if the user has a function FOO which he now 
wishes to call FIE, he simply performs (R E NAM E 'F 00 'F IE), and FIE will be 
given FOO's definition, and all places that FOO are called will be changed to call 
FIE instead. 

(COMPARE NAME1 NAME2 TYPE SOURCE1 SOURCE2) [Function] 
Compares definiton of NAME1 with that of NAME2, i.e. performs (COMPARELISTS 
(GETDEF NAME1 TYPE SOURCE1) (GETDEF NAME2 TYPE SOURCE2» 

(COMPAREDEFS NAME TYPE SOURCES) [Function] 
Calls COMPARELISTS on all pairs of definitions of NAME as a TYPE obtained from 
the various SOURCES. 

11.6.2 Defining New File Package Types 

All manipulation of typed definitions in the file package is done using the type-independent functions 
GETDEF, PUTDEF; etc. Therefore, to define a new file package type, it is only necessary to specify what 
these functions should do when dealing with a typed definition of the new type. Each file package type 
has the following properties, whose values are functions or lists of functions: 

Note: These functions are defined to take a TYPE argument so that the user may have the same function 
for more than one type. 

GETOEF Value is a function of three arguments, NAME, TYPE, and OPTIONS, which should 
return the current definition of NAME as a type TYPE. Used by GETDEF (which 
passes its OPTION argument). 

If there is no GETDEF property, a file package command for dumping NAME is 
created (by MAKENEWCOM). This command is then used to write the definition of 
NAME as a type TYPE onto the file F I LEPKG. SCRATCH (in Interlisp-D, this file is 
created on the {CORE} device). This expression is then read back in and returned 
as the current definition. 

11.19 



FILEGETDEF 

PUTDEF 

DELDEF 

NEWCOM 

WHENCHANGED 

WHENFILED 

WHENUNFILED 

DESCRIPTION 

Defining New File Package Types 

This enables the user-to provide a way of obtaining definitions.from a file that is more 
efficient than the default procedure used by GETDE F. Value is a function of four 
arguments, NAME, TYPE, FILE, and OPTIONS. The function is applied by GETDE F 
when it is detennined that a typed definition is needed from a particular file. The 
function must open and search the given file and return any TYPE definition for 
NAME that it finds. 

Value is a function of three arguments, NAME, TYPE, and DEFINITION, which should 
store DEFINITION as the definition of NAME as a type TYPE. Used by PUTD E F. 

Value is a function of two arguments, NAME, and TYPE, which removes the definition 
of of NAME as a TYPE that is currently in effect Used by DE LDE F. 

Value is a function of four arguments, NAME, TYPE, LISTNAME, and FILE. Specifies 
how to make a new (instance of a) file package command to dump NAME; an object. 
of type TYPE. The function should return the new file package command. Used by 
ADDTOFILE and SHOWDEF. 

If LISTNAME is non-N I L, this means that the user specified LISTNAME as the filevar 
in his interaction with ADDTOFILES? (see page 11.30). 

If no NEWCOM is specified, the default is to call DE FAUL TMAKENEWCOM, which will 
construct and return a command of the form (TYPE NAME). DE FAUL TMAKENEWCOM 
can be advised or redefined by the user. 

Value is a list of functions to be applied to NAME, TYPE, and REASON when NAME, 

an instance of type TYPE, is changed or defined (see MA RKASC HANG ED, page 11.11). 
Used for various applications, e.g. when an object of type I • S. OPRS changes, it is 
necessary to clear the corresponding translatons from C LIS PAR RA Y. 

The WHENCHANGED functions are called before the object is marked as changed, so 
that it can, in fact, decide that the object is not to be marked as changed, and execute 
(RETFROM 'MARKASCHANGED). 

Note: For backwards compatibility, the REASON argument passed to WHENCHANGED 
functions is either T (for DE FINED) and NIL (for CHANGED). 

Value is a list of functions to be applied to NAME, TYPE, and FILE when NAME, an 
instance of type TYPE, is added to FILE. 

Value is a list of functions to be applied to NAME, TYPE, and FILE when NAME, an 
instance of type TYPE, is removed from FILE. 

Value is a string which describes instances of this type. For example, for type 
RECORDS, the value of DESCRIPTION is the string "record declarations". 

The function F ILEPKGTYPE is used to define new file package types, or to change the attributes of 
existing types. Note that it is possible to redefine the attributes of system file package types, such as FNS 
or PROPS. 

(FILEPKGTYPE TYPE PROP I VALl·" PROPN VAL N ) [NoSpread Function] 
Nospread function for defining new file package types, or changing attributes of 
existing file package types. PROPj is one of the property names given above; VALj 

11.20 



FILE PACKAGE 

is the value to be given to that property. Returns TYPE. 

(FILEPKGTYPE TYPE PROP) returns the value of the property PROP, without 
changing it 

(F ILEPKGTYPE TYPE returns an alist of all of the defined properties of TYPE, 

using the property names as keys. 

11.7 FILE PACKAGE COMMANDS 

The basic mechanism for creating symbolic files is the function MAKE FILE (page 11.6). For each file, 
the file package has a data structure known as the "filecoms", which specifies what typed descriptions are 
contained in the file. A filecoms is a list of file package commands, each of which specifies objects of a 
certain file package type which should be dumped. For example, the filecoms 

( (FNS FOO) 
(VARS FOO BAR BAZ) 
(RECORDS XYZZY) ) 

has a FNS, a VARS, and a RECORDS file package command. This filecoms specifies that the function 
definition for FOO, the variable values of FOO, BAR, and BAZ, and the record declaration for XYZZY 
should be dumped. 

By convention, the filecoms of a file x is stored as the value of the litatom xCOMS. For example, 
( MAK E F I LE' F 00. : 27) will use the value of F OOC OMS as the filecoms. This variable can be directly 
manipulated, but the file package contains facilities which make constructing and updating filecoms easier, 
and in some cases automatic (See page 11.32). 

A file package command is an instruction to MA KEF I L E to perform an explicit, weU·defined operation, 
usually printing an expression. Usually there is a one· to-one correspondence between file package types 
and file package commands; for each file package type, there is a file package command which is used 
for writing objects of that type to a file, and each file package command is used to write objects of a 
particular type. However, in some cases, the same file package type can be dumped by several different 
file package commands. For example, the file package commands PROP, IFPROP, and PROPS all dump 
out objects with the file package type PROPS. This means if the user changes an object of file package 
type PROPS via EDITP, a typed-in call to PUTPROP, or v'ia an explicit call to MARKASCHANGED, this 
object can be written out with any of the above three commands. Thus, when the file package attempts to 
determine whether this typed object is contained on a particular file, it must look at instances of all three 
file package commands PROP, I FPROP, and PROPS, to see if the corresponding atom and property are 
specified. It is also permissible for a single file package command to dump several different file package 
types. For example, the user can define a file package command whieh dumps both a function definition 
and its macro. Conversely, some file package comands do not dump any file package types at all, such as 
the E command . 

• 
For each file package command, the file package must be able to determine what typed definitions the 
command will cause to be printed so that the file package can determine on what file (if any) an object 
of a given type is contained (by searching through the filecoms). Similarly, for each file package type, 
the file package must be able to construct a command that will print out an object of that type. In other 
words, the file package must be able to map file package commands into file package types, and vice 

11.21 



I 

I 
t 

I 

File Package Commands 

versa. Information can be provided to the file package about a particular file package command via the 
function F I LEPKGCOM (page 11.32), and information about a particular file package type via the function 
FILE PKGTYPE (page 11.20). In the absence of other information, the default is simply that a file package 
command of the form (x NAME) prints out the definition of NAME as a type x, and, conversely, if NAME 

is an object of type x, then NAME can be written out by a command of the form (x NAME). 

If a file package function is given a command or type that is not defined, it attempts spelling corrections 
using FILE PKGCOMSPLST as a spelling list. If successful, the corrected version of the list of file package 
commands is written (again) on the output file.s IfunsuccessfuL generates an error, BAD FILE PACKAGE 
COMMAND. 

File package commands can be used to save on the output file definitions of functions, values of variables, 
property lists of atoms, advised functions, edit macros. record declarations. etc. The interpretation of each 
file package command is as follows: 

(FNS FNl ... FNN ) [File Package Command] 
Writes a 0 E FIN E Q expression with the function definitions of FN 1 ••. FN N' 

The user should never print a 0 E FIN E Q expression directly onto a file himself (by 
using the P file package command, for example), because MAKE FILE generates 
the filemap of function definitions from the F NS file package commands (see page 
11.38). 

(VARS VARI ... VARN) [File Package Command] 

(INITVARS VAR l 

For each VARj. writes an expression to set its top level value when the file is loaded. 
If VARj is atomic. VARS writes out an expression to set VARj to the top-level value 
it had at the time the file was written. If VARj is non-atomic, it is interpreted as 
(VAR FORM), and VARS write out an expression to set VAR to the value of FORM 

(evaluated when the file is loaded). 

VARS prints out expressions using RPAQQ and RPAQ, which are like SETQQ and 
SETQ except that they also perform some special operations with respect to the file 
package (see page 11.37). 

Note: VARS cannot be used for putting arbitrary variable values on files. For 
example, if the value of a variable is an array (or many other data types), a litatom 
which represents the array is dumped in the file instead of the array itself. The 
HORRIBLEVARS file package command (page 11.25) provides a way of saving and 
reloading variables whose values contain re-entrant or circular list strucrure, user 
data types, arrays, or hash arrays. . 

. .. VAR N ) [File Package Command] 
. I N I TVA RS is used for initializing variables, setting their values only when they are 

currently NOB IND. A variable value defined in an INITVARS command will not 
change an already established value. This means that re-Ioading files to get some 
other information will not automatically revert to the initialization values. 

Sunless DWIMFLG or NOSPELLFLG=NIL. See page 15.12. 

6since at this point, the uncorrected list of file package commands would already have been printed on 
the output file. When the file is loaded, this will result in FILEC OMS being reset, and may cause a message 
to be printed, e.g., (F OOC OMS RES E T ).' The value of F OOC OMS would then be the corrected version. 

11.22 



FILE PACKAGE 

The format of an INITVARS command is just like VARS. The only difference is 
that if VARj is atomic, the current value is not dumped; instead NIL is defined as 
the initialization value. Therefore, (I N I TV A R S F 00 (F UM 2» is the same as 
(VARS (FOO NIL) (FUM 2», if FOO and FUM are both NOBIND. 

INITVARS writes out an RPAQ? expression on the file instead of RPAQ or RPAQQ. 

(ADDVARS {VARl • LSTl )··· (VARN • LSTN» [File Package Command] 
For each (VARj • LSTj ), writes an ADDTOVAR to add each element of LSTj to 
the list that is the value of VARj at the time the file is loaded. The new value of 
VARj will be the union of its old value and LSTj • If the value of VAHj is NOB I NO, 
it is first set to NIL. 

For example, (ADDVARS (DIRECTORIES LISP LISPUSERS» will add LISP 
and LISPUSERS to the value of DIRECTORIES. 

If LSTj is not specified. VARj is initialized to NIL if its current value is NOB I NO. 
In other words, (ADDVARS (VAH» will initialize VAH to NIL if VAR has not 
previously been set. 

(ALI STS (VAHl KEYl KEY2 ... ) ... (VARN KEY3 KEY4 ... ) ) [File Package Command] 
VARj is a variable whose value is an alist, such as EDITMACROS, BAKTRACELST, 
etc. For each VAH j , A LIS T S writes out expressions which will restore the values 
associated with the specified keys. For example, (AlISTS (BREAKMACROS BT 
BrV» will dump the definition for the BT and BTV commands on BREAKMACROS. 

Some alists (USERMACROS, LISPXMACROS, etc.) are used to implement other file 
package types, and they have their own file package commands. 

( PRO P PROPNAME LITATOM 1 ... LITATOM N ) [File Package Command] 
Writes a PUTPROPS expression to restore the value of the PROPNAME property of 
each litatom LITATOMj when the file is loaded. 

If PROPNAME is a list, expressions will be written for each property on that list. If 
PROPNAME is the litatom ALL, the values of all user properties (on the property 
list of each LITATOMj ) are saved. SYSPROPS is a list of properties used by system 
functions. Only properties not on that list are dumped when the ALL option is 
used. 

If LITATOMj does not have the property PROPNAME (as opposed to having the 
property with value NIL), a warning message "NO PROP NAME PRO PER T Y FOR 
LITATOMj " is printed. The command I F PROP can be used if it is not known 
whether or not an atom will have the corresponding property. 

( IF PROP PROPNAME LITATOM 1 ... LITATOM N ) [File Package Command] 
Same as the PROP file package command. except that it only saves the properties 
that actually appear on the property list of the corresponding atom. For example, 
if FOOl has property PROPI and PROP2, F002 has PROP3, and F003 has 
property PROPI and PROP3, ilien (IFPROP (PROPI PROP2 PROP3) FOOl 
F002 F003) will save only those five property values. 

11.23 



File Package Commands 

( PRO P S (LITATOM 1 PROPNAME 1) .. , ( LITATOM N PROPNAME N ) ) [File Package Command] 
Similar to PROP command. Writes a PUT PROPS expression to restore the value of 
PROPNAMEj for each LITATOMj when the file is loaded. 

As with the PROP comman<i if LITATOMj does not have the property PROP NAME 

(as opposed to having the property with NIL value), a warning message "NO 
PROPNAMEj PROPERTY FOR LITATOMj " is printed. 

(P EXf'1 ... EXPN ) [File Package Command] 
Writes each of the expressions EXPl ... EXPN on the output file, where they will 
be evaluated when the file is loaded. 

(E FORM 1 ... FORM N) [File Package Command] 

(COMS COM1 

( •• TEXT) 

Each of the forms FORM1 .•. FORMN is evaluated at output time, when MAKEFILE 
interpretes this file package command. 

COM N) [File Package Command] 
Each of the commands COMl ... COMN is interpreted as a file package command. 

[File Package Command] 
Used for inserting comment in a file. The file package command is simply written 
on the output file; it will be ignored when the file is loaded. 

If the first element of TEXT is another ., a form-feed is printed on the file before 
the comment. 

(ADVISE FNl ... FNN) [File Package Command] 
For each function FNj,· writes expressions to reinstate the function to its advised 
state when the file is loaded. See page 10.7. 

(ADVICE FNl .. , FNN ) [File Package Command] 
For each function FNj, writes a PUTPROPS expression which will put the advice 
back on the property list of the function. The user can then use READVISE to 
reactivate the advice. 

(USE RMAC ROS LITATOM1 ... LITATOMN ) [File Package Command] 
Each litatom LITATOMj is the name of a user edit macro. Writes expressions to 
add the edit macro definitions of LITATOMj to US E RMAC ROS, and adds the names 
of the commands to the appropriate spelling lists. 

If LITATOMj is not a user macro, a warning message "n 0 ED I T MAC RO for 
LITATOMj " is printed. 

(FILEPKGCOMS LITATOM1 ··· LITATOMN ) [File Package Command] 
Each litatom LITATOMj is either the name of a user-defined file package command 
or a user-defined file package type (or both). Writes expressions which will restore 
each command/type. 

If LITATOMj is not a file package command or type, a warning message "n 0 F I L E 
PACKAGE COMMAND for LIT ATOM/, is printed. 

(LISPXMACROS LITATOM1 ... LITATOMN ) [File Package Command] 
Each LITATOMj is defined on LISPXMACROS or LISPXHISTORYMACROS (see page 

11.24 



FILE PACKAGE 

8.19). Writes expressions which will save and restore the definition for each macro, 
as well as making the necessary additions to LISPXCOMS 

(RECORDS RECl ... RECN ) [File Package Command] 
Each RECj is the name of a record (see page 3.1). Writes expressions which will 
redeclare the records when the file is loaded. 

(INITRECORDS RECl ... RECN ) [File Package Command] 
Similar to RECORDS, INITRECORDS writes expressions on a file that will, when 
loaded, perfonn whatever initialization/allocation is necessary for the indicated 
records. However, the record declarations themselves are not written out This 
facility is useful for building systems on top of Interlisp, in which the implementor 
may want to eliminate the record declarations from a production version of the 
system, but the allocation for these records must still be done. 

( I • S .OPRS OPRl ... OPRN ) [File Package Command] 
Each OPR j is the name of a user-defined i.s.opr (see page 4.13). Writes expressions 
which will redefine the i.s.oprs when the file is loaded. 

(TEMPLATES LITATOMl ... LITATOMN ) [File Package Command] 
Each LITATOMj is a litatom which has a Masterscope template (see page 13.18). 
Writes expressions which will restore the templates when the file is loaded. 

(BLOCKS BLOCKl ... BLOCKN ) [File Package Command] 
For each BLOCKj• writes a DECLARE: expression which the block compile functions 
interpret as a block declaration. See page 12.14. 

( MAC ROS LITATOM 1 .... LITATOM N ) [File Package Command] 
Each LITATOMj is a litatom with a MACRO definition (and/or a DMACRO, lOMACRO, 
etc.). Writes out an expression to restore all of the macro properties for each 
LITATOMj. embedded in a DECLARE: EVAL@COMPILE so the macros will be 
defined when the file is compiled. See page 5.17. 

(SPECVARS VARl ... VARN ) 

(LOCALVARS VAR l ... VARN ) 

(GLOBALVARS VAR l ... VARN ) 

Outputs the corresponding compiler declaration 
DOEVAL@COMPILE DONTCOPY. See page 12.3. 

[File Package Command] 
[File Package Command] 
[File Package Command] 

embedded in a DECLARE: 

(UGL YVARS VAR l ... VARN)' [File Package Command] 
Like VARS, except that the value of each VARj may contain structures for which 
READ is not an inverse of PRINT, e.g. arrays, readtables, user data types, etc. Uses 
HPRINT (page 6.24). 

(HORRIBLEVARS VAR l ... VARN ) [File Package Command] 
Like UGl YVARS, except structures may also contain circular pointers. Uses HPRI NT 
(page 6.24). The values of VAR1 ' .. VARN are printed in the same operation, so 
that they may contain pointers to common substructures. 

UGL YVARS does not do any checking for circularities, which results in a large speed 
and internal-storage advantage over HORRIBLEVARS. Thus, if it is known that the 
data structures do not contain circular pointers, UGL YVARS should be used instead 

11.25 



.... 

File Package Commands 

of HORRIBLEVARS. 

(DECLARE: • FILEPKGCOMSjFLAGS) [File Package Command] 
Normally expressions written· onto a symbolic file are (1) evaluated when loaded; 
(2) copied to the compiled file when the symbolic file is compiled (see page 12.1); 
and (3) not evaluated at compile time. DECLARE: allows the user to override these 
defaults. 

FILEPKGCOMSjFLAGS is a list of file package commands, possibly interspersed with 
"tags". The output of those file package commands within FILEPKGCOMSjFLAGS is 
embedded in a DECLARE: expression, along with any tags that are specified. For ex
ample, (DECLARE: EVAL@COMPILE DONTCOPY (FNS ... ) (PROP ... » would 
produce (DECLARE: EVAL@COMPILE DONTCOPY (DEFINEQ ... ) (PUTPROPS 
... ) ). DECLARE: is defined as an nlambda nospread function, which processes 
its arguments by evaluating or not evaluating each expression depending on the 
setting of internal state variables. The initial setting is to evaluate, but this can be 
overridden by specifying the DONTEVAL@LOAD tag. 

DECLARE: expressions are specially processed by the compiler. For the purposes 
of compilation, DECLARE: has two principal applications: (1) to specify forms 
that are to be evaluated at compile time, presumably to affect the compilation, 
e.g., to set up macros; and/or (2) to indicate which expressions appearing Ln the 
symbolic file are not to be copied to the output file. (Normally, expressions are not 
evaluated and are copied.) Each expression in CDR of a DECLARE: form is either 
evaluated/not-evaluated and copied/not-copied depending on the settings of two 
internal state variables, initially set for copy and not-evaluate. These state variables 
can be reset for the remainder of the expressions in the DECLARE: by.means of 
the tags DONTCOPY, EVAL@COMP I LE, etc. 

The tags are: 

EVAL@LOAD 
DOEVAL@LOAD 

DONTEVAL@LOAO 

EVAL@LOAOWHEN 

COpy 
DOCOPY 

DONTCOPY 

COPYWHEN 

Evaluate the following forms when the file is loaded (unless 
overridden by DONTEVAL@LOAD). 

Do not evaluate the following forms when the file is loaded. 

This tag can be used to provide conditional evaluation. 
The value of the expression immediately following the 
tag determines whether or not to evaluate subsequent 
expressions when loading. . .. EVAL@LOADWHEN T ... is 
equivalent to ... EVAL@LOAO ... 

When compiling, copy the following forms into the compiled 
file. 

When compiling, do not copy the following forms into the 
compiled file. 

When compiling, if the next form evaluates to non-N I L, 
copy the following forms into the compiled file. 

11.26 



FILE PACKAGE 

EVAL@COMPILE 
DOEVAL@COMPILE When compiling, evaluate the following forms. 

DONTEVAL@COMPILE 

EVAL@COMPILEWHEN 

fIRST 

NOTfIRST 

When compiling, do not evaluate the following forms. 

When compiling, if the next form evaluates to non-N I L, 
evaluate the following forms. 

For expressions that are to be copied to the compiled 
file, the tag fIRST can be used to specify that the fol
lowing expressions in the DECLARE: are to appear at 
the front of the compiled file, before anything else ex
cept the fILECREATED expressions (see page 11.35). For 
example, (DECLARE: COpy fIRST (P (PRINT MESSl 

T» NOTf IRST (P (PRINT MESS2 T) ) ) will cause (PRINT 
MESSl T) to appear first in the compiled file, followed by 
any functions, then (P R I NT MESS2 T). 

Reverses the effect of fIRST. 

The value of DECLARETAGSLST is a list of all the tags used in DECLARE: 
expressions. If a tag not on this list appears in a DEC LA R E: file package command, 
performs spelling correction using DEC LA RET AG S L S T as a spelling liSL 

Note that the function LOADCOMP (page 11.6) provides a convenient way of 
obtaining information from the DECLARE: expressions in a file, without reading 
in the entire file. This information may be used for compiling other files. 

(EXPORT COMl ... COMN ) [File Package Command] 
This command is used for" exporting" definitions. Like C OM, each of the commands 
COM 1 ... COM N is interpreted as a file package command. The commands are also 
flagged in the file as being "exported" commands, for use with GATHE REXPORTS 
(see page 11.29). 

(CONSTANTS VAR l ... VAR N ) [File Package Command] 
Like VARS, for each VARj writes an expression to set its top level value when the 
file is loaded. Also writes a CONSTANT S expression to declare these variables as 
constants (see page 12.6). Both of these expressions are wrapped in a (DECLARE: 
EV A L@COMP I L E ... ) expression, so they can be used by the compiler. 

Like VARS, VARj can be non-atomic, in which case it is interpreted as (VAR 

FORM), and passed to CONSTANTS (along with the variable being initialized to 
FORM). 

(ORIGINAL COM1 ... COMN ) [File Package Command] 
Each of the commands COMj will be interpreted as a file package command without 
regard to any file package macros (as defined by the MACRO property of the 
fILE PKGCOM function, page 11.32). Useful for redefining a built-in file package 
command in terms of itself. 

11.27 



Exporting Definitions 

Note that some of the "built-in" file package commands are defined by file package 
macros, so interpreting them (or new user-defined file package commands) with 
ORIGINAL will fail. ORIGINAL was never intended to be used outside of a file 
package command macro. 

(F ILES • FILES/LISTS) [File Package Command] 
Used to specify auxiliary files to be loaded in when the file is loaded. FILES/LISTS 

is a list of files, possibly interspersed with lists, which may be used to specify 
certain loading options. Within these lists, the following tokens are recognized: 

The elements of the FILES command are the (namefield) of the files to load. There 
are actually several other ways to load in files; the F I L E S command interprets 
LISTP elements of the commands as a series of tokens which change its state. 
Those tokens can be: 

FROM DmECTORY Pack the given directory onto the beginning of the file. For 
example, (FILES (FROM LISPUSERS) CJSYS). If this 
is not specified, the default is to use the same directory as 
the file containing the F I L E S command. 

SOU RC E Load the source version of the file rather than the compiled 
version. 

COMPILED 

LOAD 

LOADCOMP 

LOADFROM 

SYSLOAD 

PROP 

ALLPROP 

Load the compiled version of the file (the default). 

Load the file with by calling LOAD? (the default). 

Load the file with LOADCOMP? rather than LOAD? Automatically 
implies SOU RC E. 

Load the file with LOADFROM rather than LOAD? 

Load the file with LDFLG=SYSOUT. This is mainly used 
when loading system files. 

Load the file with LDFLG = PRO P, so function definitions 
loaded will be stored on property lists. 

Load the file with LDFLG=ALLPROP, so both function 
definitions and variable values loaded will be stored on 
property lists. 

These tokens can be joined together in a single lisL For example, an actual 
command in the FTP package is: 

(FILES (LOADCOMP) NET (SYSLOAD FROM LISPUSERS) CJSYS) 

11.7.1 Exporting Definitions 

When building a large system in Interlisp, it is often the case that there are record definitions, macros and 
the like that are needed by several different system files when running, analyzing and compiling the source 

11.28 



FILE PACKAGE 

code of the system, but which are not needed for running the compiled code. By using the DEC LA R E : 
file package command with tag DONTCOPY (page 11.26), these definitions can be kept out of the compiled 
files, and hence out of the system constructed by loading the compiled files files into Interlisp. This saves 
loading time, space in the resulting system. and whatever other overhead might be incurred by keeping 
those definitions around, e.g., burden on the record package to consider more possibilities in translating 
record accesses, or conflicts between system record fields and user record fields. 

However, if the implementor wants to debug or compile code in the resulting system, the definitions are 
needed. And even if the definitions had been copied to the compiled files, a similar problem arises if 
one wants to work on system code in a regular Interlisp environment where none of the system files had 
been loaded. One could mandate that any definition needed by more than one file in the system should 
reside on a distinguished file of definitions, to be loaded into any environment where the system files are 
worked on. Unfortunately, this would keep the definitions away from where they logically belong. The 
E X PO R T mechanism is designed to solve this problem. 

To use the mechanism, the implementor identifies any definitions needed by files other than the one 
in which the definitions reside, and wraps the corresponding file package commands in the EXPORT 
file package command (page 11.27). Thereafter, GATHEREXPORTS can be used to make a single file 
containing all the exports. 

(GATHEREXPORTS FROMFILES TOFILE FLG) [Function] 
FROMFILES is a list of files containing EXPORT commands. GATHEREXPORTS 
extracts all the exported commands from those files and produces a loadable file 
TOFILE containing them. If FLG = EVAL, the expressions are evaluated as they 

. are gathered; i.e., the expons are effectively loaded into the current environment 
as well as being written to TOFILE. 

( IMPORTF ILE FILE RETURNFLG) [Function] 
If RETURNFLG is NIL, this loads any exported definitions from FILE into the 
current environment If RETrm,NFLG is T, this returns a list of the exported 
definitions (evaluable expressions) without actually evaluating them. 

(CHECKIMPORTS FILES NOASKFLG) [Function] 
Checks each of the files in FILES to see if any exists in a version newer than 
the one from which the exports in memory were taken (GATHEREXPORTS and 
IMPORT FILE note the creation dates of the files involved), or if any file in the 
list has not had its exports loaded at all. If there are any such files, the user is 
asked for permission to IMPORTFILE each such file. If NOASKFLG is non-NIL, 
IMPORT FILE is performed without asking. 

For example, suppose file FOO contains records Rl, R2, and R3, macros BAR and BAl, and constants 
CONl and CON2. If the definitions of Rl, R2, BAR. and BAl are needed by files other than FOO, then 
the file commands for F 00 might contain the command -

{DECLARE: EVAL@COMPILE DONTCOPY 
{EXPORT (RECORDS Rl R2) 

(MACROS BAR BAl» 
(RECORDS R3) 
(CONSTANTS BAl» 

None of the commands inside this DECLARE: would appear on FOO's compiled file, but {GATHEREXPORT S 
, ( FOO) 'MYEXPORT S) would copy the record definitions for Rl and R2 and the macro definitions for 

11.29 



FiIeVars 

BAR and BAZ to the file MYEXPORTS. 

11.7.2 FileVars 

In each of the file package commands described above, if the litatom • follows the command type,7 

the form following the ., Le., CADDR of the command, is evaluated and its value used in executing 
the command, e.g., (FNS • (APPEND FNSl FNS2». When this form is a litatom, e.g. (FNS· 
FOOFNS), we say that the variable is a "filevar". Note that (COMS • FORM) provides a way of 
computing what should be done by MAKEFILE. 

Example: 

~ (SETQ FOOFNS '(FOOl F002 F003» 
(FOOl F002 F003) 
~ (SETQ FOOCOMS 

'( (FNS • FOOFNS) 
(VARS FIE) 
(PROP MACRO FOOl F002) 
(P (MOVD 'FOOl 'FIEl»] 

~ (MAKEFILE 'FOO) 

would create a file F 00 containing: 

(FILECREATED "time and date thefile was made" . "other information") 
(PRETTYCOMPRINT FOOCOMS) 
(RPAQQ FOOCOMS « FNS • FOOFNS L···) 
(RPAQQ FOOFNS (FOOl F003 F003» 
(DEF INEQ "definitions of FOOl. F002, and F003") 
( R P AQQ FIE "value of FIE" ) 
(PUTPROPS FOOl MACRO PROPVALUE) 
(PUTPROPS F002 MACRO PROPVALUE) 
(MOVD (QUOTE FOOl) (QUOTE FIEl» 
STOP 

11.7.3 Defining New File Package Commands 

A file package command is defined by specifying the values of certain properties. The user can specify 
the various attributes of a file package command for a new command, or respecify them for an existing 
command. The following properties are used: 

MACRO Defines how to dump the file package command. U sed by MAK E F I L E. Value 
is a pair (ARGS • COMS). The "arguments" to the file package command are 
substituted for ARGS throughout COMS, and the result treated as a list of file package 
commands. For example, following (F I LEPKGCOM 'FOO 'MACRO '( (X Y) . 

7Except for the PROP and IF PRO P commands, in which case the • follows the property name, e.g., 
(PROP MACRO • FOOMACROS). 

11.30 



ADD 

DELETE 

CONTENTS 
CONTAIN 

FILE PACKAGE 

COMS).) ,- the file package command (FOa A B) will cause A to be substituted for 
X and B for y throughout COMS, and then COMS treated as a list of commands. 

The substitution is carried out by SU B P A I R (page 2.24), so that the "argument list" 
for the macro can also be atomic. For example, if (X • COMS) was used instead 
of « X Y) • COMS), then the command (FOO A B) would cause (A B) to be 
substituted for X throughout COMS. 

Note: Filevars are evaluated before substitution. For example, if the litatom 
• follows NAME in the commancL CADD R of the command is evaluated substituting 
in COMS. 

Specifies how (if possible) to add an instance of an object of a particular type to a 
given file package command. Used by ADDTOF I LE. Value is FN, a function of three 
arguments, COM, a file package command CAR of which is EO to COMMANDNAME, 

NAME, a typed object, and TYPE, its type. FN should return T if it (undoably) adds 
NAME to COM, NIL if not. If no ADD property is specified, then the default is (1) if 
(CAR COM) = TYPE and (CADR COM) =., and (CADDR COM) is a filevar (Le. 
a literal atom), add NAME to the value of the filevar, or (2) if (CAR COM) = TYPE 
and (CADR COM) is not ., add NAME to (CDR COM). 

Actually, the function is given a fourth argument, NEAR, which if non-N I L, 
means the function should try to add the item after NEAR. See discussion of 
ADDTOF ILES?, page 11.8. 

Specifies how (if possible) to delete an instance of an object of a particular type from 
a given file package command. Used by DELFROMFILES. Value is FN, a function 
of three arguments, COM, NAME, and TYPE, same as for ADD. FN should return T 
if it (undoably) deletes NAME from COM, NIL if not. If no DELETE property is 
specified, then the default is (1) (CAR COM) = TYPE and (CADR COM) = •. and 
(CADDR COM) is a filevar (Le. a literal atom), and NAME is contained in the value 
of the filevar, then remove NAME from the filevar, or (2) if (CAR COM) = TYPE 
and {CADR COM) is not ., and NAME is contained in (CDR COM), then remove 
NAME from (CDR COM). 

If FN returns the value of ALL, it means that the command is now "empty", and 
can be deleted entirely from the command list. 

Specifies whether an instance of an object of a given type is contained in a given 
file package command Used by WHEREIS and INF ILECOMS? Value is FN, a 
function of three arguments, COM; a file package command CAR of which is EO 
to COMMANDNAME, NAME, and TYPE. The interpretation of NAME is as follows: 
if NAME is NIL, FN should return a list of elements of type TYPE contained in 
COM. If NAME is T, FN should return T if there are any elements of type TYPE in 
COM. If NAME is an atom other than T or NIL, return T if NAME of type TYPE is 
contained in COM. Finally, if NAME is a list, return a list of those elements of type 
TYPE contained in COM that are also contained in NAME. 

Note that it is sufficient for the CONTENTS function to simply return the list of 
items of type TYPE in command COM, i.e. it can in fact ignore the NAME argument. 
The NAME argument is supplied mainly for those sit1:Iations where producing the 

11.31 



l _~ 

Functions for Manipulating File Command Lists 

entire list of items involves significantly more computation or creates more storage 
than simply determining whether a particular item (or any item) of type TYPE is 
contained in the command. 

If a CONTENTS property is specified and the corresponding function application 
returns NIL and (CAR COM) = TYPE, then the operation indicated by NAME is 
performed (1) on the value of (CADDR COM), if (CADR COM) = *, otherwise (2) 
on (CDR COM). In other words, by specifying a CONTENTS property that returns 
NIL, e.g. the function NIL L, the user specifies that a file package command of 
name F 00 produces objects of file package type F 00 and only objects of type F 00. 

If the CONTENTS property is not provided, the command is simply expanded 
according to its MAC RO definition, and each command on the resulting command 
list is then interrogated. 

Note that if COMMANDNAME is a file package command that is used frequently, 
its expansion by the various parts of the system that need to interrogate files can 
result in a large number of CONSes and garbage collections. By informing the 
file package as to what this command actually does and does not produce via the 
CONTENTS property, this expansion is avoided. For example, suppose the user 
has a file package command called GRAMMARS which dumps various property lists 
but no functions. Thus, the file package could ignore this command when seeking 
information about F N S. 

The function FILE PKGCOM is used to define new file package commands, or to change the attributes of 
existing commands. Note that it is possible to redefine the attributes of system file package commands, 
such as FNS or PROPS, and to cause u'npredictable results. 

(FILEPKGCOM COMMANDNAME PROP1 VALl··· PROPN VAL N ) [NoSpread Function] 
Nospread function for defining new file package commands, or changing attributes 
of existing file package commands. PROPj is one of of the property names described 
above; VALj is the value to be given that property of the file package command 
COMMANDNAME. Returns COMMANDNAME. 

(FILEPKGCOM COMMANDNAME PROP) returns the value of the property PROP, 

without changing it 

(FILEPKGTYPE COMMANDNAME returns an alist of all of the defined properties 
of COMMANDNAME. using the property names as keys. 

11.8 FUNCTIONS FOR MANIPULATING FILE COl\1MAND LISTS 

The following functions may be used to manipulate filecoms. Note that the argument COMS does not have 
to correspond to the filecoms for some file. F or example, COMS can be the list of commands generated 
as a result of expanding a user defined file package command. 

(INFILECOMS? NAME TYPE COMS -) [Function] 
COMS is a list of file package commands., or a variable whose value is a list of 
file package commands. TYPE is a file p~ckage type. INFILECOMS? returns T if 

11.32 



FILE PACKAGE 

NAME of type TYPE is "contained" in COMS. 

If NAME = NIL, INF ILECOMS? returns a list of all elements of type TYPE. 

If NAME = T, IN F I L E C OMS? returns T if there are any elements of type TYPE in 
COMS. 

(ADDTOFILE NAME TYPE FILE - -) [Function] 
Adds NAME of type TYPE to the file package commands for FILE. Uses ADDTOCOMS 

(DELFROMFILES 

and MAKENEWCOM. Returns FILE. ADDTOFILE is undoable. . 

NAME TYPE FILES) [Function] 
Deletes all instances of NAME of type TYPE from the filecoms for each of the files on 
FILES. If FILES is a non-N I L litato~ (L 1ST FILES) is used. FILES = NIL defaults 
to FILELST. Returns a list of files from which NAME was actually removed. Uses 
DELFROMCOMS. DELFROMF ILES is undoable. 

Note: Deleting a function will also remove the function from any BLOCKS 
declarations in the filecoms. 

(ADDTOCOMS COMS NAME TYPE - -) [Function] 
Adds NAME as a TYPE to COMS, a list of file package commands or a variable 
whose value is a list of file package commands. Returns NIL if ADD T OC OMS was 
unable to find a command appropriate for adding NAME to COMS. ADDTOCOMS is 
undoable. 

Note that the exact algorithm for adding commands depends the particular 
command itself. See discussion of the ADD property, in the description of 
FILEPKGCOM, page 11.32. 

Note: ADDTOCOMS will not attempt to add an item to any command which is 
inside of a DECLARE: unless the user specified a specific name via the LISTNAME 
or NEAR option of ADDTOFILES? 

(DELFROMCOMS COMS NAME TYPE) [Function] 
Deletes NAME as a TYPE from COMS. Returns NIL if DELFROMCOMS was unable 
to modify COMS to delete NAME. DELFROMCOMS is undoable. 

(MAKENEWCOM NAME TYPE - -) [Function] 
Returns a file package command for dumping NAME of type TYPE. Uses the 
procedure described in the discussion of N E WC OM, page 11.20. 

( MOV E TO F I L E TOFILE NAME TYPE FROMFILE) [Function] 
Moves the definition of NAME as a TYPE from FROMFILE to TOFILE by modifying 
the file commands in the appropriate way (with DEL FROM F I L E S and ADD T 0 F I L E). 

Note that if FROMFILE is specified, the definition will be retrieved from that file, 
even if there is another definition currently in the user's environment 

(FILECOMSLST FILE TYPE -) [Function] 
Returns a list of all objects of type TYPE in FILE. 

TYPE can also be the name of a file package command. For example, 

11.33 



Symbolic File Format 

-( F I LECOMSLST FILE 'BLOCKS) will return the list of all BLOCKS declaration in 
FILE. F ILECOMSLST knows about expanding user defined file package commands. 

(FILEFNSLST FILE) [Function] . 
Same as (F ILECOMSLST FILE 'FNS). 

(F ILECOMS FILE TYPE) [Function] 
Returns (PACK- FILE (OR TYPE 'COMS». Note that (FILECOMS 'FOO) 
returns the litatom FOOCOMS, not the value of FOOCOMS. 

( SMASHF I LE COMS FILE) [Function] 
Maps down ( F I LECOMSLST FILE 'F I LEVARS) and sets to NOB I NO all filevars (see 
page 11.30), i.e. any variable used in a command of the form (COMMAND -

VARIABLE). Also sets (FILECOMS FILE) to NOBINO. Returns FILE. 

11.9 SYMBOLIC FILE FORMAT 

The file package manipulates symbolic files in a particular format This format is defined so that the 
information in the file is easily readable when the file is listed, as well as being easily manipulated by the 
file package functions. In general, there is no reason for the user to manually change the contents of a 
symbolic file. However, in order to allow users to extend the file package, this section describes some of 
the functions used to write symbolic files, and other matters related to their format. 

(PRETTYOEF PRTTYFNS PRTTYFILE PRTTYCOMS REPRINTFNS SOURCEFILE CHANGES) 

[Function] 
Writes a symbolic file in PRETTYPRINT format for loading, using FILEROTBL as 
its readtable. PRETTYOE F returns the name of the symbolic file that was created. 

PRETTYOEF operates under a RESETLST (see page 9.19), so if an error occurs, 
or a control-D is typed, all files that PRETTYOEF has opened will be closed, the 
(partially complete) file being written will be deleted, and any undoable operations 
executed will be undone.8 

PRTTYFNS is an optional list of function names. It is equivalent to including ( F NS 
- PRTTYFNS) in the file package commands in PRTTYCOMS. PRTTYFNS is an 
anachronism from when PRE TTYOE F did not use a list of file package commands, 
and should be specified as NIL. 

PRTTYFILE is the name of the file on which the output is to be written. If 
PRTTYFILE = NIL, the primary output file is used. If PRTTYFILE is atomic the file 
is opened if not already open, and it becomes the primary output file. PRTTYFILE 

is closed at end of PRE TTYOE F, and the primary output file is restored. Finally, 
if PRTTYFILE is a list, CAR of PRTTYFILE is assumed to be the file name, and is 
opened if not already open. In this case. the file is left open at end of PRETTYOE F. 

8Since PRETTYOEF operates under a RESETLST, any RESETSAV~s executed in the file package commands 
will also be protected. For example. if one of the file package commands executes a (RESETSAVE 
( RAO I X - 8) ), the RAO I X will atomatically be restored. 

11.34 



FILE PACKAGE 

. PRTTYCOMS is a list- of file· package commands interpreted as described on page 
11.21. If PRTTYCOMS is atomic, its top level value is used and an R P AQQ is written 
which will set that atom to the list of commands when the file is subsequently loaded. 
A PRETTYCOMPRINT expression (see below) will also be written which informs 
the user of the named atom or list of commands when the file is subsequently 
loaded.9 

REPRINTFNS and SOURCEFILE are for use in conjunction with remaking a file 
(see page 11.10). REPRINTFNS can be a list of functions to be prettyprinted, or 
EXPRS, meaning prettyprint all functions with EXPR definitions. or ALL meaning 
prettyprintall functions either defined as EXPRs, or with EXPR properties. Note that 
doing a remake with REPRINTFNS= NIL makes sense if there have been changes 
in the file. but not to any of the functions. e.g., changes to variables or property 
lists. SOURCEFILE is the name of the file from which to copy the definitions 
for those functions that are not going to be prettyprinted, i.e., those not specified 
by REPRINTFNS. SOURCEFILE = T means to use most recent version (Le., highest 
number) of PRTTYFILE, the second argument to PRETTYDEF. If SOURCEFTLE 

cannot be found, PRETTYDE F prints the message "FILE NOT FOUND. SO IT 
WI LL BE WRITTEN ANEW". and proceeds as it does when REPRINTFNS and 
SOURCEFILE are both NIL. 

PRETTYDEF calls PRETTYPRINT with its second argument PRETTYDEFLG=T, so 
whenever PRETTYPRINT starts a new function, it prints (on the terminal) the 
name of that function if more than 30 seconds (real time) have elapsed since the 
last time it printed the name of a function. 

Note that normally if PRETTYPRINT is given a litatom which is not defined as 
a function but is known. to be on one of the files noticed by the file package. 
PRETTYPRINT will load in the definition (using LOADFNS) and print it. This is 
not done when PRETTYPRINT is called from PRETTYDEF. 

(PRINTFNS x -) [Function] 
x is a list of functions. PRINTFNS prettyprints a DEFINEQ epression that defines 
the functions to the primary output file using the primary readtable. Used by 
PRETTYDEF to implement the FNS file package command. 

(PRINTDATE FILE CHANGES) [Function] 
Prints the F I LECREATED expression at beginning of PRETTYDE F files. CHANGES 

used by the file package. 

(FILECREATED x) [NLambda NoSpread Function] 
Prints a message (using LIS P X P R I N T) followed by the time and date the file 
was made, which is (CAR x). The message is the value of PRE TTYHEADE R, 
initially" FILE CREA TED". If PRE TTYHEADE R = NIL. nothing is printed. (CDR 
x) contains information about the file, e.g., full name, address of file map, list of 
changed items, etc. F I L E C REA TED also stores the time and date the file was made 

9In addition, if any of the functions in the file are Nlambdas. PRETTYDEF will automatically print 
a DECLARE: expression suitable for informing the compiler about these functions, in case the user 
recompiles the file without having first loaded the nlambda functions. See page 12.6. 



Copyright Notices 

on the property list of the file under the property F I L E DA T E 5 and perfonns other 
initialization for the file package. 

(PRETTYCOMPRINT x) [NLambda Function] 

PRETTYHEADER 

Prints x (unevaluated) using LISPXPRINT, unless PRETTYHEADER= NIL. 

[Variable1 
Value is the message printed by F I LECREATED. PRETTYHEADER is initially" FILE 
CREATED". IfPRETTYHEADER= NIL, neither F ILECREATED nor PRETTYCOMPRINT 
will print anything. Thus, setting PRETTYHEADE R to NIL will result in "silent 
loads". PRETTYHEADER is reset to NIL during greeting (page 14.5). 

(F ILECHANGES FILE TYPE) [Function] 
Returns a list of the changed objects of file package type TYPE from the 
FILECREATED expression of FILE. If TYPE = NIL, returns an alist of all of the 
changes, with the file package types as the CA Rs of the elements .. 

(FILEDATE FILE -) [Function] 
Returns the file date contained in the F I L E C R EA TED expression of FILE. 

11.9.1 Copyright Notices 

The system has a facility for automatically printing a copyright notice near the front of files, right after 
the FILECREATED expression, specifying the years it was edited and the copyright owner. The fonnat 
of the copyright notice is: 

(* Copyright (e) 1981 by ·Foo Bars Corporation) 

Once a file has a copyright notice then every version will have a new copyright notice inserted into the 
file without user intervention. (The copyright infonnation necessary to keep the copyright up to date is 
stored at the end of the file.). 

Any year the file has been edited is considered a "copyright year" and therefore kept with the copyright 
infonnation. For example, if a file has been edited in 1981, 1982, and 1984, then the copyright notice 
would look like: 

(* Copyright (e) 1981,1982,1984 by Foo Bars Corporation) 

When a file is made, if it has no copyright infonnation, the system will ask the user to specify the copyright 
owner (if COPYRIGHTFLG=T). The user may specify one of the names from COPYRIGHTOWNERS, or 
give one of the following responses: 

(1) Type a left-SQuare-bracket The system will then prompt for an arbitrary string which will be used as 
the owner-string 

(2) Type a right-sQuare-bracket, which specifies that the user really does not want a copyright notice. 

(3) Type "'NONE" which specifies that this file should never have a copyright notice. 

For example, if COPYRIGHTOWNERS has the value 

11.36 



FILE PACKAGE 

((BBN "Bolt Beranek and Newman Inc.") 
(XEROX "Xerox,Corporation"» 

then for a new file F 00 the following interaction will take place: 

Do you want to Copyright FOO? Yes 
Copyright owner: (user typed ?) 
one of: 
BSN - Bolt Beranek and Newman Inc. 
XEROX - Xerox Corporation 
NONE - no copyright ever for this file 
[ - new copyright owner -- type one line of text 
] - no copyright notice for this file now 

Copyright owner: BSN 

Then "Foo Bars Corporation" in the above copyright notice example would have been "Bolt Beranek and 
Newman Inc." 

The following variables control the operation of the copyright facility: 

COPYRIGHTFLG [Variable] 
If COPYRIGHTFLG=NIL (default), the system will preserve old copyright infor
mation, but will not ask the user about copyrighting new files. 

IfCOPYRIGHTFLG=T, then when a file is made, if it has no copyright infonnation, 
the system will ask the user to specify the- copyright owner. 

If COPYRIGHTFLG=NEVER, the system will neither prompt for new copyright 
information nor preserve old copyright information. 

COPYRIGHTOWNERS [Variable] 
COPYRIGHTOWNERS is a list of entries of the form (KEY OWNERSTRlNG), where 
KEY is used as a response to ASKUSE R and OWNERSTRlNG is a string which is the 
full identification of the owner. ' 

OEFAULTCOPYRIGHTOWNER [Variable] 
If the user does not respond in OW I MWA I T seconds to the copyright query, the 
value of OEFAUL TCOPYRIGHTOWNER is used. 

11.9.2 Functions Used Within Source Files 

The following functions are nonnally only used within symbolic files, to set variable values, property 
values, etc. Most of these have special behavior depending on file package variables. 

(RPAQ VAR VALUE) [NLambda Function1 
An nlarnbda function like SETQ that sets the top level binding of VAR (unevaluated) 
to VALUE. 

(RPAQQ VAR VALUE) . [NLambda Function1 
An nlarnbda function like SETQQ that sets the top level binding of VAR 

11.37 



File Maps 

(unevaluated) to VALUE (unevaluated). 

(RPAQ'? VAR VALUE) [NLambda Function] 
Similar to RPAQ, except that it does nothing if VAR already has a top level value 
other than NOB IND. Returns VALUE if VAR is reset, otherwise NIL. 

RPAQ, RPAQQ, and RPAQ? generate errors if x is not a litatom. All are affected by the value of DFNFLG 
(page 5.9). IfOFNFLG=ALLPROP (and the value ofvAR is other than NOBINO), instead of setting x, the 
corresponding value is stored on the property list of VAR under the property VALUE. All are undoable. 

(AOOTOVAR VAR Xl X2 ... X N ) [NLambda NoSpread Function] 
Each Xj that is not a member of the value of VAR is added to it, i.e. after ADO T OV A R 
completes. the value of VAR will be (UNION (LIST Xl X 2 ... X N ) VAR). 

AOOTOVAR is used by PRETTYOEF for implementing the AOOVARS command. 
It performs some file package related operations, i.e. "notices" that VAR has been 
changed. Returns the atom VAR (not the value of VAR). 

(PUTPROPS ATM PROPl VALl .. ~ PROPN VALN) [NLambda NoSpread Function] 
Nlambda nospread version of PUTPROP (none of the arguments are evaluated). For 
i = 1· .. N, puts property PROP i' value VAL j, on the property list of ATM. Performs . 
some file package related operations, i.e., "notices" that the corresponding properties 
have been changed. 

( SAVE PUT ATM PROP VAL) [Function] 

11.9.3 File Maps 

Same as PUTPROP, but marks the corresponding property value as having been 
changed (used by the file package). 

A file map is a data structure which contains a symbolic 'map' of the contents of a file. Currently, this 
consists of the begin and end byte address (see GETFILEPTR, page 6.9) for each OEFINEQ expression in 
the file, the begin and end address for each function definition within the 0 E FIN E Q, and the begin and 
end address for each compiled fu~ction. 

MAKEFILE. PRETTYDEF, LOAOFNS, RECOMPILE, and numerous other system functions depend heavily 
on the file map for efficient operation. For example, the file map enables LOAOFNS to load selected 
function definitions simply by setting the file pointer to the corresponding address using SETFILEPTR, 
and then performing a single READ. Similarly, the file map is heavily used by the "remake" option of 
MAKE F I L E (page 11.10): those function definitions that have been changed since the previous version 
are prettyprinted; the rest are simply copied from the old file to the new one, resulting in a considerable 
speedup. 

Whenever a file is written by MAKE FILE, a file map for the new file is built Building the map in this 
case essentially comes for free. since it requires only reading the current file pointer before and after each 
definition is written or copied. However, building the map does require tha! PRE TTY P R I NT know that 
it is printing a 0 E FIN E Q expression. For this reason, the user should never print a 0 E FIN E Q expression 
onto a file himself, but should instead always use the FNS file package command (page 11.22). 

The file map is stored on the property list of the root name of the file, under the property F I LEMAP. In 
addition, MA KEF I L E writes the file map on the file itself. F or cosmetic reasons, the file map is written 
as the last expression in the file. However, the address of the file map in the file is (over)written into the 

11.38 



FILE PACKAGE 

F I LECREATED expression that appears at the beginning of the file so that the file map can be rapidly 
accessed without having to scan the entire file. In most cases, LOAD and LOADFNS do not have to build 
the file map at all, since a file map will usually appear in the corresponding file, unless the file was written 
with BUILDMAPFLG=NIL, or was written outside of Interlisp. 

Currently, file maps for compiled files are not written onto the files themselves. However, LOAD and 
LOAD F NS will build maps for a compiled file when it is loaded, and store it on the property F I LEMAP. 
Similary, LOADF NS will obtain and use the file map for a compiled file, when available. 

The use and creation of file maps is controlled by the following variables: 

BlJILDMAPFLG 

USEMAPFLG 

[Variable] 
Whenever a file is read by LOAD or LOADFNS, or written by MAKEFILE, a file map 
is automatically built unless BUILDMAPFLG=NIL. (BUILDMAPFLG is initially T.) 

While building the map will not help the first reference to a file, it will help in 
future references. For example, if the user performs (LOAD FROM 'FOO) where 
FOO does not contain a file map, the LOAD F ROM will be (slightly) slower than if 
FOO did contain a file map, but subsequent calls to LOADFNS for this version of 
FOO will be able to use the map that was built as the result of the LOADF ROM, 
since it will be stored on FOO's F I LEMAP property. 

[Variable] 
If USEMAP F LG = T (the initial setting), the functions that use file maps will first 
check the F ILEMAP property to see if a file map for this file was previously 
obtained or built If not, the first expression on the file is checked to see if it is a 
FILECREATED expression that also contains the address of a file map. If the file 
map is not on the F I LEMA P property or in the file, a file map will be built (unless 
BUI LDMAPFLG= NIL). 

If USEMAPFLG=NIL, the FILEMAP property and the fiie will not be checked for 
the file map. This allows the' user to recover in those cases where the file and its 
map for some reason do not agree. For example, if the user uses a text editor 
to change a symbolic file that contains a map (not recommended), inserting or 
deleting just one character will throw that map off. The functions which use file 
maps contain various integrity checks to enable them to detect that something is 
wrong, and to generate the error FILEMAP DOES NOT AGREE WITH CONTENTS 
OF FILE. In such cases, the user can set USE MA P F L G to NIL, causing the map 
contained in the file to be ignored, and then. reexecute the operation. 

11.39 



File Maps 

11.40 



o 
c".~· 

CJ 
\.;;. 

o· 

CHAPTER 12 

THE COMPILER 

The compiler is contained in the standard lnterlisp system. It may be used to compile functions defined 
in the user's Interlisp system, or to compile definitions stored in a file. The resulting compiled code may 
be stored as it is compiled, so as to be available for immediate use. or it may be wrinen onto a file for 
subsequent loading. 

The most common way to use the compiler is to use one of the file package functions. such as MAKEFILE 
(page 11.6), which automatically updates source files. and produces compiled versions. However, it is 
also possible to compile individual functions defined in the user's Interlisp system, by directly calling 
the compiler usffig functions such as COMP I LE (page U.IO). No maner how the compiler is called, the 
function COMPSET is called which asks the user certain questions concerning the compilation. (COMPSET 
sets the free variables LAPFLG, STRF. SVFLG. LCFIL and LSTFIL which determine various modes of 
operation.) Those that can be answered "yes" or "no" can be answered with YES, Y, or T for "yes"; and 
NO, N. or NI L for "no". The questions are: 

LISTING? 

FILE: 

REDEFINE? 

. SAVE EXPRS? 

This asks whether to generate a listing of the compiled code. The LAP and machine 
code are usually not of interest but can be helpful in debugging macros. Possible 
answers are: 

1 Prints output of pass L the LAP macro code. 

2 Prints output of pass 2. the. machine code. 

YES Prints output of both passes. 

NO Prints no listings. 

The variable LAP FLG is set to the answer. 

This question (which only appears if the answer to LISTING? is affirmative) ask 
where the compiled code listing(s) should be written. Answering T will print the 
listings at the terminal. The variable LSTF IL is set to the answer. 

This question asks whether the functions compiled should be redefined to their 
compiled definitions. If this is answered YES. the compiled code is stored and the 
function definition changed, otherwise the function definition remains unchanged. 

The variable STRF is set to T (if this is answered YES) or NIL. 

This question asks whether the original defining EX P Rs of functions should be 
saved. If answered YES. then before redefining a function to its compiled definition. 
the EXPR definition is saved on the property list of the function name. OtheI"\\'ise 
they are discarded. 

It is very useful to save the EXPR definitions. just in case the compiled function 
needs to be changed. The editing functions will retrieve this saved definition if it 

12.1 



. OUTPUT FILE? 

Compiler Printout 

exists. rather than reading from a source file. 

The variable SVFLG is set co T (if this is answered YES) or NIL. 

This question asks whether (and where) the compiled definitions should be written 
into.a file for later loading. If you answer with the name of a file~ that file will be 
used. If you answer Y or YES. you will be asked the name of the file. If the file 
named is already ope~ it will continue to be used. If you answer T or TTY : ~ the 
output will be typ~d on the teletype (not particularly useful). If you answer N, NO, 
or NIL. output will not bE; done. 

The variable LCFIL is set to the name of the file . 

. In order to make answering these questions easier~ there are four other possible answers to the LISTIfJG? 
luestion. which specify common compiling modes: 

S Same as last setting. Uses the same answers to compiler questions as given for the 
last compijation. 

F 

ST 

STF 

Compile to File, without redefining functions. 

STore new definitions, saving EXPR definitions. 

STore new definitions: Forget EXPR definitions. 

Imp licit in these answers are the answers to the questions on disposition of compiled code and EX P R 
definitions. so the questions RED E FIN E? and SA VEE X P R S? would not be asked if these answers were 
given. OUTPUT FILE? would still be asked. however. For example: 

~COMPILE«FACT FACT1 FACT2» 
LISTING? ST 
OUTPUT FILE? FACT.DeOM 
(FACT COMPILING) 

(FACT REDEF I~JED) 

(FACT2 REDEFINED) 
(FACT FACTl FACT2) 

This process caused the functions FACT, FACT1. and-FACT2 to be compiled. redefined.. and the compiled 
. definitions also written on the 'file FACT. DCOM for subsequent loading. 

12.1 COrVIPILER PRINTOUT 

In Inrerlisp-D. for each function FN compiled. whether by TCOMPL. RECOMPILE. or COMPILE. the 
compiler printS: 

12.2 

() 
\ , .. . \) 

(j 
-'-. 



THE COMPILER 

{FN (ARG1 ••• ARGN ) (uses: VAR1 .•. VARN ) (calls: FNl ••• FNN» 

The message is printed"at the beginning of the second pass of the compilation of FN. (ARG1 ••• ARGN) 

is the list of arguments to FN; following "us e s :" are the free variables referenced or set in FN (not 
including global variables); following "ca 11 s:" are the undefined functions called within FN. 

In Interlisp-lO, for every function compilec1 the compiler prints (FN (ARG 1 ... ARGN) (FREEl ... 
FREEN»' where FREEl'" FREEN are the free variables referenced or set in FN. 

If the compilation of FN causes the generation of one or more auxilary functions (see page 12.8), a 
compiler message will be printed for these functions before the message for FN, e.g., 

(FOOA0027 eX) (uses: XX» 
(FOO (A B» 

(J' 
~ .. When compiling a bloc~ the compiler first prints (BLKNAME BLKFN 1 BLKFN:2 ••. ). Then the normal 

message is printed for the entire block. The names of the arguments to the block are generated 
by suffixing "#" and a number to the block name, e.g., (FOOBLOCK (FOOBLOCK#O FOOBLOCK#l) 
FREE-VARlABLZS). Then a message is printed for each entry to the block. 

_. 

(J 
"=:-

o 

In addition to the above outpu~ both RECOMPILE and SRECOMPILE print the name of each function 
that is being copied from the old compiled file to the new compiled file. The normal compiler message 
is printed for each function that is actually compiled.. 

The compiler prints out error messages when it encounters problems compiling a function." For example: 

----- In SAZ: 
••••• (BAZ - illegal RETURN) 

The above error message indicates that an "; 11 eg a 1 RETURN" compiler error occurred while trying to 
compile the function BAZ. Some compiler errors cause the compilation to terminate, producing nothing; 
however, there are other compiler errors which do not stop compilation. The compiler error messages are 
described on page 12.20. 

Compiler printout and error messages go to the file COUTFILE, initially T. COUTFILE can also be set to 
the name of a file opened for output, in which case all compiler printout will go to COUTFILE, Le. the 
compiler will compile ··silently." However. any error messages will be printed to both caUT FILE as well 
as T. 

12.2 GLOBAL V ARlABLES 

Variables that appear on the list GLOBAL VARS. or have the property GLOBALVAR with value T. or are 
declared with the GLOBALVARS file package command (page 11.25). are called global variables. Such 
variables are always accessed through their top level value when they are used freely in a comp'iled 
function. In other words, a reference to the value of this variable is equivalent to (G ETTOPVAL (QUOT E 
VARlABLE) ), regardless of whether or not it is bound in the current access chain. Similarly. (SETQ 
VARIABLE VALtTE) will compile as (SETTOPVAL (QUOTE VARlABLE) VALUE). 

12.3 



LOCAL V ARS and SPECV ARS 

All system parameters, unless otherwise specified. are declared as global variables. Thus, rebinding these 
variables in a deep bound system (like Interlisp-D) will not affect the behavior of the system: instead. the 
variables must be reset to their new values, and if they are to be restored to their original values. reset 
again. For example, the user might write 

(SETQ GLOSALVA.RIABLE NEWVALUE) 
FORM 
(SETQ GLOBALV~LE OLDVALUE) 

Note that in this case, if an error occurred during the evaluation of FORM, or a conttol-D was typed, the 
global variable would not be restored to its original value. The function RESETVAR (page 9.20) provides, 
a convenient way of resetting global variables in such a way that their values are restored even if an error 

. occurred or control-Dis typed. 

'~ote: Interlisp-10 employs a shallow binding scheme as described on page 7.1. There is no distinction 
oetween global variables and other types of variables: all variable references are to the variable's value ... 
cell. Thus. the cost of accessing a variable is small and independent of the depth of computation. whereas' 
in a deep bound system., it can be expensive to search the stack for the most recent binding of a variable. 
hence the need for a mechanism like global variables. 'Note however that in a shallow bound system., the 
cost of rebinding a variable is somewhat higher than in a deep bound system (except when the variable 
is a LOCALVAR). For the purposes of compilation. global variables are treated the same as SPECVARS, 
Le. their names are always visible on the stack when they are rebound. 

12.3 LOCAL V ARS AND SPECV ARS 

In normal compiled and interpreted code. all variable bindings are accessible by lower level functions 
b~...ause the variable's name is associated with its value. We call such variables special variables, or 
specvars. As mentioned earlier, the block compiler normally does not associate names with variable 
values. Such unnamed variables are not accessible from outside the function which binds them and are 
therefore local to that function. We call such unnamed variables loc~i variables, or localvars. 

The time. economies of local variables can be achieved without block compiling by use of declarations. 
Using local variables will increase the speed of compiled code: the price is the work of writing the 
necessary specvar declarations for those variables which need to be accessed from outside the block. 

LOCALVARS and SPECVARS are variables that affect compilation. During regular compilation. SPECVARS 
is normally T. and LOCALVARS is NIL or a Ust. This configuration causes all. variables bound in the 
functions being compiled to be treated as special except those that appear on LOCALVARS. During block 
compilation. LOCALVARS is normally T and SPECVARS is NIL or a list.. All variables are then treated as 
local except those that appear on SPECVARS. 

Declarations to set LOCALVARS and SPECVARS to other values. and therefore affect how variables are 
treated. may be used at several levels in the compilation process with varying scope. 

(1) The declarations may be included in the filecoms of a file. by using the LOCALVARS and SPECVARS 
file package commands (page 11.25). The scope of the declaration is then the entire file: 

... (LOCALVARS • T) (SPECVARS X 'f) .". 

12.4 

n 
\. ~ 

'-

( ) 



(). 

o 

THE COMPILER 

(2) The declarations may be included in block declarations; the scope is then the block~ e.g.~ 

{BLOCKS «FOOBLOCK FOO FIE (SPECVARS • T) (LOCALVARS X») 

(3) Tne declarations may also appear in individual function~ or in PROG's or LAMBDA's within a functio~ 
using the DECLARE function. In this casey the scope of the declaration is the function or the PROG or 
LAMBDA in which it appears. LOCALVARS and SPECVARS declarations must appear immediately after the 
variable list in the functio~ PROG, or LAMBDA, but intervening comments are permitted. For example: 

(DEFINEQ «FOC 
(LAMBDA (X Y) 

(DECLARE (LOCALVARS V)} 
(PROG (X Y Z) 

(DECLARE (LOCALVARS X» . .. ] 

If the above function is compiled (non-block), the outer X will be special, the X bound in the P ROG will 
be !ocaL and both bindings of Y will be local. 

Declarations for LOCALVARS and SPECVARS can be used in two ways: either to cause variables to 
be treated the same whether the function(s) are block compiled or compiled normally, or to affect one 
compilation mode while not affecting the default in the other mode. For example: 

(LAMBDA (X Y) 
. {DECLARE (SPECVARS • T» 

(PROG (Z) ••• ] 

will cause X. Y, and Z to be specvars for both block and normal compilation while 

(LAMBDA (X Y) 
(DECLARE (SPECVARS X}) 
. .. ] 

-
will make X a specvar when block compilingy but when regular compiling the declaration will have no 
effect., because the default value of specvars would be T. and therefore both X. and Y will be specvars by 
defatilt 

Although LOCALVARS and SPECVARS declarations have the same form as other components of block 
declarations such cs (LINKFNS • T), their operation is somewhat different because the two variables 
are not independent. (SPECVARS • T) will cause SPECVARS to be set to T, and LOCALVARS to be 
set to NIL. (SPECVARS Vl V2 ••• ) will have no effect if the value of SPECVARS is T. but if it is a 
list (or NIL), SPECVARS will be set to the union of its prior value and (Vl V2 ••• ). The operation. 
of LOCALVARS is analogous. Thus. to affect both modes of compilation one of the two (LOCALVARS or 
SPECVARS) must be declared T before specifying a list for the other. 

12.4 CONSTANTS 

The function CONSTANT enables the user to define certain expressions as descriptions of their ··constant'· 
values. For example. if a user program needed a scratch list of length 30. the user could specify 

12.5 



Compiling Function Calls 

(CONSTANT, (to 30 collect NIL» instead of (QUOTE (NIL NIL .•• ». The former is more 
concise and displays the important parameter much more directly than the latter. CONSTANT can also be 
used to denote values that cannot be quoted directly, such as (CONSTANT (PACK NIL», (COr~STANT 
(ARRAY 10»" It is also useful to parameterize quantities that are constant at run time but may differ at 
compile time, e.g. (CONSTANT BITSPERWORD) in a program is exactly equivalent to 36, if the variable 
BITSPERWORD is bound to 36 when the CONSTANT expression is evaluated at compile time. 

When intemreted, the expression occuring as the argument to CONSTANT is evaluted each time it is 
encountered. If the CONSTANT form is compiled, however, the expression will be evaluated only once: 

If the value of the expression has a readable print-name, then it will be evaluated at compile-time, and the 
value will be saved as a literal in the compiled function's definition. as if (QUOTE VALUE-OF.ZX:PP..ESSION) 

had appeared instead of (CONSTANT EXPRESSION). ° 
/~ 

;," the value does not have a readable printname (e.g. the PACK and ARRAY examples above), then l,_) 
'" the expression itself will be saved with the function, and it will be evaluated when the function is first (" 

executed.. The value will then be stored in the function's lite~ and will be retrieved on future references. 

Wher~as the function CONSTANT attempts to evaluate the expression as soon as possible (compile-time, 
load-time, or first-run-time). the function DE FERREDCONST ANT will always defer the evaluation until first 
running. Tnis is useful when the storage for the constant is excessive so that it shouldn't be allocated 
until (unless) the function is actually invoked. 

Note: The function SELECTC (page 4.3) provides a mechanism for conparing a value to a number of 
constants. 

(CONSTANTS VAR1 VAR2 •.• VARN) [NLambda NoSpread Function] 

1., -
-~ 

Defines VAR 1, ••• VARN (unevaluated) to be compile-time constants. Whenever the 
compiler encounters a (free) reference to one of these constants. it will compile the 
form (CONSTANT VARj) instead. 

If VARi is a list of the form (VAR FORM). a free reference to the variable will 
compile as (CONSTANT FO&\!). 

Constants can be saved using the CONSTANTS file package command (page 11.27). 

COMPILll'lG FUNCTION CALLS 

When compiling the call to a function. the compiler must know the type of the function. to determine how 
the arguments .should be prepared (evaluatedlunevaluated.. spread/nospread). There are three seperate 
cases: lambda. nlambda spread.. and nlambda° nospread functions. 

To determine which of these three cases is appropriate. the compiler will first look for a definition among 
the functions in the file that is being compiled. The function can be defined anywhere in any of the files 
given as argu~ents to BCOMPl. TCOMPL. BRECOMPILE or RECOMPILE. If the function is not contained 
in the file. the compiler will look for other infonnation in the variables NLAMA. NLAML. and LAMS. which 
can be set by the user: 

12.6 



o 
'- : .. 

o \- .. : 
......... :. 

o 

NLAMA 

NLAML 

LAMS 

THE COMPILER 

[Variable] 
(for N LAMbda Atoms) A list of functions to be treated as nlambda nospread functions 
by the compiler. 

[Variable] 
(for N LAMbda List) A list of functions to be tteated as nlambda spread functions 
by the compiler. 

[Variable] 
A list of functions to be treated as lambda functions by the compiler. Note 
that including functions on LAMS is only necessary to override in-core nlambda 
definitio~ since in the absence of other information.. the compiler assumes the 
function is a lambda. 

If the function is not contained in a fil~ or on the lists NLAMA, ~JLAML, or LAMS, the compiler wi11100k 
for a current definition in the Interlisp system, and use its type. If t."ere is no current definition. next 
COMPILEUSERFN is called: 

COMPILEUSERFN [Variable] 
When compiling a function call if the function type cannot be found by looking 
in files. the variables NLAMA, NLAML. or LAMS. or at a current definition. then 
if the value of COMPILEUSERFN is not NIL. the compiler calls (the value of) 
COMPILEUSERFN giving it as arguments CDR of the form and the form itself. 
i.e .• the compiler does (APPLY· COMPILEUSERFN (CDR FOP..M) FORM). Ifa 
non-N I L value is returned, it is compiled instead of FORM. If NIL is returned. the 
compiler compiles the original expression as a call to a lambda spread that is not 
yet defined. 

Note that COMPILEUSERFN is only called when the compiler encounters a list CAR 
of which is not the name of a defined function. The user can instruct the compiler 
about.how to compile other data types via COMP ILETYPELST, page 12.9. 

CUSP uses COMPILEUSERFN to tell the compiler how to compile iterative 
statements. IF-THEN-ELSE statements. and pattern match constructs (See page 
12.9). 

If the compiler cannot detemtine the function type by any of the means above, it assumes that the 
function is a lambda functio~ and its arguments are to be evaluated. The function is also added to U.~e 
value of ALAMS: 

ALAMS [Variable] 
(for Assumed LAMbdaS) A list of functions to that the compiler has assuPled to 
be lambda functions. ALAMS is not used by the compiler; it is maintained for the 
.user's benefit so that the user can- check to see whether any incorrect assumpti.ons 
were made. 

If there are nlambda functions called from the functions being compiled. and they are only defined in 
a separate file, they must be included on N LAMA or N LAML. or the compiler will incorrectly assume that 
their arguments are to be evaluated. and compile the calling function correspondingly. Note that this is 
only necessary if the comoiler does not aknow" about the function. If the function is defined at comoile 
time. or is handled via a macro. or is contained in the same group of files as the functions that call it. . t.~e 

12.7 



FUNCTION and Functional Arguments 

compiler will automatically handle calls to that function correctly. 

12.6 FUNCTION AND FUNCTIONAL ARGUl\1ENTS 

Compiling the function FUNCTION (page 5.15) may involve creating and compiling a seperate "auxiliary 
function", which will be called at run time. An auxiliary function is named by attaching a GENSYM 
(page 2.11) to the end of the name of the function in which they appear~ e.g., FOOAO 0 03. For example, 
suppose FOO is defined as (LAMBDA (X) ... (FOOl X (FUNCTION ..• » ... ) and compiled. When 
FOO is ru~ FOOl will be called with two argumen~ X, and FOOAOOON and FOOl will call FOOAOOON 
each time it uses its functional argument. 

~ompiling FUN CT ION will not create an auxiliary function if it is a functional argument to a function that 
compiles ope~ such as most of the mapping functions (MAPCAR, MAPLIST, etc.). Note that a considerable 
savings in time could be achieved by making FOOl compile open via a computed macro (page 5.17), e.g. 

(Z (LIST (SUBST (CADADR Z) 
(QUOTE FN) 
DEF} 

(CAR Z») 

DEF is the definition of FOOl as a function of just itS fint argument. and F.N is the name used for itS 
functional argument in its definition. In this case, (FOOl X (FUNCTION ••. » would compile as an 
expression, containing the argument to FUNCTION as an open LAMBDA expression. Thus you save not 
only the function call to FOOl. but also each of the function calls to its functional argument. For example. 
if FOOl operates on a list of length ten, eleven function calls will be saved. Of course, this savings in 
time costs space, and the user must decide which is more important. 

l2.1 OPEJ.'f F1JNCITONS 

When a function is called from a compiled function. a system routine is invoked that sets up the parameter 
and control push lists as necessary for variable bindings and return information. If the amount of time 
spent inside the function is small this function calling time will be a significant percentage of the total 
time required to use the function. Therefore. many "small" functions. e.g., CAR. CDR. EQ, NOT. CONS are 
always compiled "open", Le., they do not result in a function call. Other larger functions such as P ROG. 
SELECTQ, MAPC, etc. are compiled open because they are frequently used. The user can make other 
functions compile open via MAC RO definitions (see page 5.11). The user can also affect the compiled code 
via COMPILEUSERFN (page ll.1) and COMPILETY?ELST (page 12.9). 

12.8 COiVIPILETYPELST 

Most of the compiler's mechanism deals with how to handle forms (lists) and variables (literal atoms). 
The user can affect the compiier"s behaviour with respect to lists and literal atoms in a number of ways. 

11.8 

n ',
\.. 

(~ 
\ /~ (0) 



(~ 
c··· THE COMPILER 

e.g. macros. declarations, COMPlLEUSERFN (page ~2.7), etc. COMPlLETYPElST allows the user to tell 
the compiler what to do when it encounters a data type other than a list or an atom. It is the facility in 
th~ compiler that corresponds to DEFEVAL (page 5.11) for the interpreter. 

COMPlLETYPELST [Variable] 
A list of elements of the form (TYPENAME • FUNCTION). Whenever the compiler 
encounters a datum that is not a list and not an atom (or a number) in a context 
where the daOlm is being evaluated. the type name of the datum is looked up on 
COMPIlETYPElST. If an entry appears CAR of which is equal to the type name. 
CDR of that entry is applied to the datum. If the value returned by this application 
is not EQ to the da~ then that value is compiled instead. If the value is EO to 
the datum. or if there is no entry on COMPlLETYPELST for this type name. the 
compiler simply compiles the dawm as (QUOTE DATUM). 

12.9 COMPILING CLISP 

Since the compiler does not know about CLISP, in order to compile functions containing CLISP constructs • 
. the definitions must first be DWlMl FYed (page 16.14). The user can automate this process in several ways: 

(1) If the variable DWIMlFYCOMPFlG is T, the compiler will always OWIMIFY expressions before compiling 
them. DWIMIFYCO~1PFLG is initially NIL. . 

(2) If a file has the property FIlETYPE with value CllSP on its propeny list. TCOiriPl. BCONPL. 
RECOMPILE. and BRECOMPILE will operate as though DWIMlFYCOMPFLG is T and OWlMlFY all 
expressions before compiling. 

(3) If the function definition has a local CLlS? declaration (see page 16.10). including a null declaration.. 
i.e .. just (eLlS?: ), the d~finition will be automatically DWIMlFYed before compiling. 

Note: COMPILEUSERFN (page 12.7) is defined to call DWlMIFY on iterative statements. IF-THEN 
statements.. and f etch, rep 1 ace, and rna tch expressions. Le., any CLISP construct which can be 
recognized by its CAR of form. Thus. if the only CLISP constructs in a function appear inside of iterative 
statements. I F statements, etc., the function does not have to be dwimified before compiling. . 

IfDWlMlFY is ever unsuccessful in processing a CLlS? expression. it will print the error message UNABLE 
TO DWIMIFY followed by the expression. and go into a break.8 The user can exit the break h"l several 
different ways: (1) type OK to the bre~ which will cause the compiler to try again. e.g. the user could 
define some missing records while in the break. and then continue; or (2) type 1", which will cause the 
compiler to simply compile the expression as is. i.e. as though CLISP had not been enabled in the first 
place; or (3) rerum an expression to. be compiled in its place by using the RETURN break command (page 

. 9.3). 

o 

Note: TCOMPL. BCOMPL. RECOMPILE. and BRECOMPILE all scan the entire file before doing any 
compiling, and take note of the names of all functions that are defined in the file as well as ·the names 
of all variables that are set by adding them to NOFIXFNSLST and NOFIXVARSLST. respectively. Thus. 

Sunless DWn·'ESSGAG = T. In this case. the expression is just compiled as is. Le. as though clisp had not 
been enabled. 

12.9 



Compiler Functions 

if a function is not currently defined, but is defined in the file being compiled. when DWIMI FY is called 
before compilin~ it will not attempt to interpret the function name as CLISP when it appears as CA R 
of a form. DWIMI FY also takes into account variables that have been declared to be LOCALVARS, or 
SPECVARS, either via block declarations or DECLARE expressions in the function being compiled.. and 
does not attempt spelling correction on these variables. The declaration USEDFREE may also be used to 
declare variables simply used freely in a function. These variables will also be left alone by DWIMI FY. 
Finally, NOSPELLFLG (page 15.12) is reset to T when compiling functions from a file (as opposed to from 
their in-core definition) so as to suppress spelling correction. 

12.10 COlVIPlLER FUNCI10NS 

30rmally, the compiler is envoked through file package commands that keep track of the state of functions. 
and manage a set of files. such as MAKE FILE (page 11.6). However. it is also possible to explicitly call the 
compiler using one of a number of functions. Functions may be compiled from in-core definitions (via 
COMPILE), or from definitions in files (TCOMPL), or from a combination of in-core and file definitions 
(RECOMP ILE). 

TCOMPL and RECOMPILE produce l6compiled~' files. Compiled files usually have the same name as the 
symbolic file tqey were made fro~ suffixed-with DCOM (Interlisp-D) or COM (Interlisp-10).9 The file name 
is constructed from the name field only, e.g., (TCOMPL t <BOBROW) FOO. TEM; 3) produces FOO. DCOM 
on the connected directory. The version number will be the standard default. 

A "compiled file" contains the same expressions as the original symbolic file, except that (1) a special 
FILECREATED expression appears at the front of the file which contains information used by the file 
package, and which causes the message COMPILED ON DATE to be printed when the file is loaded: 1o (2) 
every DE F INEQ in the symbolic file is replaced by the corresponding compiled definitions in the compiled 
file; and (3) expressions following a D.oNTCOPY tag inside of a DECLARE: (page 11.26) that appears in 
the symbolic file are not copied to the compiled file. The compiled definitions appear at the front of the, 
compiled file, Le., before the other expressions in the symbolic file, regardless of where they appear in the 
,;ymbolicfile. The only exceptions are expressions that follow a FIRST tag inside ofa DECLARE: (page 
11.26). This '·compiled" file can be loaded into any lnterlisp system with LOAD (page 11.4). 

Note: When a function is compiled from its in-core definition (as opposed to being compiled from a 
definition in a file), and the function has been modified by BREAK. TRACE. BREAKI~~, or ADVISE. it is 
first restored to its original state. and a message is printed out. e.g., FOO UNBROKEN. If the function is 
not defined as an EX?R. the value of the function's EXPR propertY is used for the compilation. if there is 
one. If there is no EX?R propertY, and the compilation is being performed by RECOMP I LE. the definition 
of the function is obtained from the file (using LOADFNS). Otherwise, the compiler prints .(FN NOT 
COM? ILEA8LE). and goes on to the next function. · 

(COMPILE x FLG) [Function1 
x is a list of functions (if atomic. (LIST x) is used). COMPILE first asks the 
standard compiler questions. and then compiles each function on x. using its in-core 
definition. Returns x. 

qThe compiled file suffix is stored as the value of the variable COMPILE. EXT. 

lOThe actual string printed is the value of COMPILE HEADER. initially "compiled on". 

12.10 

(~ 
\ J:. \ .~ 

o 
'-



C) 
\.~. THE COMPILER 

If compiled definitions are being written to a file, the file is closed unless FLG = T. 

(COMPILE! FN DEF -) [Function] 

(TCOMPL FILES) 

Compiles DEF, redefining FN if STRF = T (STRF is one of the variables set by 
COMPSET, page 12.1). COMPILE! is used by COMPILE, TCOMPL, and RECOMPILE. 

If DWIMIFYCO,MPFLG is T, or DEF contains a CLlSP declaratio~ DEF is dwimified 
before compiling. See page 12.9. 

[Function] 
·TCOMPL is used to "compile files"; given a symbolic LOAD file (e.g., one created 
by MAKEFILE), it produces a "compiled file". FILES is a list of symbolic files to be 

. compiled (if atomic, (LIST FILES) is used). TCOMPL asks the standard compiler 
questio~ except for "OUTPUT FILE:". The output from the compilation of 
each symbolic file is written on a file of the same name suffixed with DGOM, e.g.., 
(TCOMPL I (SYMl SYM2» produces two files, SYM1. DCOM and SYM2 • DCOM. 

TCOMPL processes the files one at a time, reading in the entire file. For each 
FILECREATED expressio~ the list of functions that were marked as changed by 
the file package is noted, and the FILE CREATED expression is written onto the 
output file. For each DEFINEQ expression.. TCOMPL adds any nlambda functions 
defined in the ·OEFINEQ to NLAMA or NLAML, and adds lambda functions to 
LAMS. so that calls to these functions will be compiled correctly (see page 12.7).11 
Expressions beginning with DECLARE: are processed specially (see page 11.26). 
All other expreSSions are collected to be subsequently written onto the output file. 

After processing the file in this fashion. TCOMPL compiles each function. except 
for those functions which appear on the list DONTCOMPILEFNS.12 and writes the 
compiled definition onto the output file. TCOMPL then writes onto the output file 
the other expressions found in the symbolic file. 

Note: If the rootname of a file has the propeny FILETYPE with value CLlS? 
or value a list containing CLlSP, TCOMPL rebinds OWIMlFYCOMPFLG to T while 
compiling the functions on FILE, so the compiler will OWIJ.,l FY all expressions 
before compiling them. See page 12.9 .. 

TCOMPL returns a list of the names of the .output files. All files are properly 
tenninated and closed. If the compilation of any file is aborted via an error or 
control-D. all files are properly closed, and the (partially complete) compiled file' 
is deleted. 

(RECOMPILE PFILE CFILE FNS) [Function] 
The purpose of RECOMP I LE is to allow the user to update a compiled file without 
recompiling every function in the file. RE COMP I LE does this by using the results of 

IlNLAMA. NLAML. and L~MS are rebound to their top level values (using RESETVAR) by TCOMPL. 
RECOMPILE. BCOMPL. BRECOMPILE. COMPILE. and BLOCKCOMPILE. so that any additions to these 
lists while inside of these functions will not propagate outside. 

12Initially t~IL. OONTCOMPILEFNS might be used for functions that compile open. since their definitions 
would be superiiuous when operating with the compiled file. Note that DONTCOMP I LE FNS can be set 
via block declarations (see pag~ 12.14). 

12.11 



Compiler Functions 

a previous compilation. It produces a compiled file similar to one that would have 
been produced by TCOMPL, but at a considerable savings in time by only compiling 
selected functions, and copying the compiled definitions for the remainder of the 
functions in the file from an earlier TCOMP.L or RECOMP I LE file. 

PFILE is the name of the Pretty file (source file) to be compiled; CFILE is the name 
of the Compiled file containing compiled definitions that may be copied. FNS 
indicates which functions in PF'ILE are to be recompiled. e.g~ have been changed 
or defined for the first time since CFILE was made. Note that PFILE. not FNS. 
drives RE-C OMP I LE. 

RECOMPILE asks the standard compiler questio~ except for "OUTPUT FILE:". 
As with TCOMPL. the output automatically goes to PFlI.E. DCOM. RECOMP ILE 
processes PFILE the same as does T C OM P L except that DE FIN E Q expressions are 
not actually read into core. Instead. RECOMP I LE uses the filemap (see page 
11.38) to obtain a list of the functions contained in PFILE. The filemap enables 
RECOMPILE to skip over the DEFINEQs in the file by simply resetting the file 
pointer, so that in most cases the scan of the symbolic file is very fast (the only 
processing required'is the reading of the non-DEFINEQs and the processing of the 
DECLARE: expressions as with TCOMPL). A map is bUilt if the symbolic file does 
not already contain one, for example if it was written in an earlier system, or with 
BUILDMAPFLG=NIL (page 11.39). 

After this initial scan of PFILE, RECOMPILE then processes the functions defined 
in the file. For each function in PFrLE. RECOMPILE detennines whether 
or not the function is to be (re)compiled. Functions that are members of 
DONTCOMPILEFNS are simply ignored. Otherwise. ~ function is recompiled if 
(1) FNS is a list and the function is a member of that list; or (2) FNS = T or 
EXPRS and the function is an EXPR; or (3) FNS= CHANGES and the function is 
marked as having been changed in the FILECREATED expression W PFILZ: or (4) 
FNS= ALl:..13 If a function is not to be recompiled. RE COMP I LE obtains its compiled 
definition from CFILE. and copies it (and all generated subfunctions) to the output 
file. PFZLE.DCOM. If the function does not appear on CFILE. RECOMPILE simply 
recompiles it. Finally. after processing all functions .. RECOMPILE writes out all 
other expressions that were collected in the prescan of PFILE. 

If CFILE= NIL, PFILE. DCOM (the old version of the output file) is used for 
copying from. If both FNS and CFILE 'are NIL. FNS is set to the value of 
RECOMPILEDEFAULT. which is initially EXPRS. This is the most common usage. 
Typically. the functions the user has changed will have been UNSAVEDEFed by the 
editor. and therefore will be EXPRs. Thus the user can perform his edits. dump 
the file. and then simply (RECOMPILE 'FILE) to update the compiled file .. 

The value of RECOMP I LE is the new compiled file. PFILE. DeOM. [f RECOMP ItE 
is aborted due to an error or control-D. the new (partially complete) compiled file 
will be closed and deleted. 

13[f FNS=ALL. CFILE is superfluous. and does not have to be specified. This option may be used to 
compile a symbolic file that has never been compiled before. but which has already been loaded (since 
'lsing TCOMPL would require reading the file in a second time). 

12.12 

() 
( .. 

(] 
'-



o 
~.,. 

o 

(J 

o 

THE COMPILER 

RECOMPILE is designed to allow the user to conveniently and efficiently update a compiled file, even 
when the corresponding symbolic file has not been (completely) loaded. . For example, the user can 
perform a LOADFROM (page 11.6) to "notice" a symbolic file, edit the functions he wants to change (the 
editor will automatically load those functions not already loaded), call MAKE FILE (page 11.6) to update 
the symbolic file (MAKE FILE will copy the unchanged functions from the old symbolic file), and then 
perform (RECOMPILE PFILE). 

Note: Since PRETTYDEF automatically outputs a suitable DECLARE: expression to indicate which 
functions in the file (if any) are defined as NLAMBDAs. 'Calls to these functions will be handled correctly, 
even though the NLAMBDA functions themselves may never be loade~ or even looked at. by RECOMPILE. 

12.11 . BLOCK COlVIPILING 

Block compiling provides a way of compiling several functions into a single block. Function calls between 
the component functions of the block are very fast. Thus. compiling a block consisting of just a single 
recursive function may be yield great savings if the function calls itself many times, e.g., EQUAL, COPY, 
and COUNT are block compiled in Interlisp-10. 

The output of a block compilation is a single, usually large, function. Calls from within the block to 
functions outside of the block look like regular function calls, except that they are usually linked (see page 
12.18). A block can be entered via several different functions, called entries. 14 These must be specified 
when the block is compiled.. For example, the error block has three entries. ERRORX, INTERRUPT; and 
FAUL T 1. Similarly, the compiler block has nine entries. 

Note: In Interlisp-D, block compiling is handled somewhat differently: block compiling provides a 
mechanism for hiding function names internal to a block, but it does not provide a performance 
improvement. Block compiling in Interlisp-D works by automatically renaming the block .functions with 
special names, and calling these functions with the normal function-calling mechanisms. Specifically, a 
function FN is renamed to \BLOCK-NAME/ FN. For example, function F 00 in block BAR is renamed to 
"\BAR/FOO". Note that it is possible with this scheme to break functions internal to a block. 

12.11.1 RETFNS 

Another savings in block compilation arises from omitting most of the information on the stack about 
internal calls between functions in the block. However. if a function's name must be visible on the stack. 
e.g .• if the f~nction is to be returned from RETFROM, RETTO, RETEVAL. etc., it must be included on the 
list RETFNS. 

14 Acrually the block is entered the same as every other function. i.e .. at .the top. However. the entry 
functions call L~e main block with their name as one of its arguments. and the block dispatches on the 
name. and jumps to the portion of the block corresponding to that entry point. The effect is thus the 
same as though there were several different entry points. 

12.13 



BLKAPPLYFNS 

12.11.2 BLKAPPL YFNS 

Normally, a call to APPL Y from inside a block would be the same as a call to any other function outside 
of the black. If the first argument to APPLY turned out ta be one of the entries ta the block. the block 
would have to be reentered. BLKAPPLYFNS enables a program to compute the name of a function in 
the block to be called next. without the overhead of leaving the block and reentering it. This is done by 
including on the list BLKAPPL YFNS thase functions which will be called in this fashion. and by using 
BLKAPPL Y in place of APPLY, and BLKAPPLY* in place of APPL Y*. If BLKAPPLY or BLKAPPL y* 
is lriven a function not on BLKAPPL YFNS. the effect is the same as a call to APPLY or APPLY· and 
no -error is generated.. Note however, that B L KA P PLY F N S must be set at compile time, not run time. 
and furthermore, that all functions on BLKAPPL Y FNS must be in the block. or an error is generated (at 
compile time), NOT ON BLKFNS. . 

12.11.3 BI.KT ,lBRARY 

Compiling- a function open via a macro provides a way of eliminating a function call. For block compiling, 
the same eff~t can be achieved by including the function in the block. A funher advantage is that the 
code for this function will appear only once in the block. whereas when a function is compiled open. its 
code appears at each place where it is called.. 

The block lil1rary feature provides a convenient way of including functions in a block. It is just a 
convenience -since the user can always achieve the same effect by specifying the function(s} in question as 
one of the block functions, provided it has an EX? R definition at compile time. The block library feature 
simply eliminates the burden of supplying this definition. 

To use the block library feature, place the names of the functions of interest on the list BLKLIBRARY. 
and their EXPR definitions on the propeny list of the functions under the propeny BLKLIBRARYDEF. 
\Vhen the block compiler compiles a form, it first checks to see if the function being called is one of the 
block functions. If not, and the function is on BLKLIBRARY, its definition is obtained from the property 
value of BLKLIBRARYDEF. and it is automatically included as part of the block. The functions ASSOC. 
EQUAL, GETPROP. LAST, LENGTH, LISPXWATCH, MEMB. MEMBER~ ~JCONC1. NLEFT. NTH, IRPLNOOE. 
and TAIL? already have BLKLIBRARYDEF propenies. 

12.11.4 Block Declarations 

Block compiling a file frequently involves giving the compiler a lot of infonnation about the nature and 
strucrure of the compilation. e.g .• block functions. entries. specvars. linking, etc. To help with chis. there 
is the BLOCKS file package command (page 11.25). which has the fonn: 

, (BLOCKS BL,OCx1 BLOcK2 ..•. BLC?CKN ) 

where each BLOCK: is a block declaration. The BLOCKS command outouts a DECLARE: exnression. which 
is noticed by BCOMPL and BRECOMPILE. BCOMPl and BRECOMPILE are sensitive to these declarations 
and take the appropri~te action. 

Note: :Vlasterscope includes a facility for checking the block declarations of a file or frIes for various 
anomalous conditions. e.g. functions in block declarations which aren't on the file(s), functions in 
ENTRIES not in the block. variables that may not need to be SPECVARS because they are not used freely 

1.2.14 

(-)::\ 
\.. ", 



o 
\..~ .. 

THE COMPILER 

below the places they are bouncL etc. See page 13.1 

The form of a block declaration is: 

(BLKNAME BLKFNl ••• BLKFNM (VARl • VALVEl ) .•• (VARN • VALVEN» 

BLKNAME is the name of a block. BLKFNl ••• BLKFNM are the functions in the block and correspond to 
BLKFNS in the call to BlOCKCOMPILE. 11le (VARj' VALUEj ) expressions indicate the settings for variables 
affecting the compilation of that block. If VALUEj is atomic. then VARj is set to VALUEj (e.g. (l I t~ KF N S 
. T», otherwise VARj is set to the ur~ION of VALUEj and the current value of the variable VARi • Also. 
expressions of the form (VAR * FORM) will cause FORM to be evaluated and the resulting list used as 
described above (e.g. (GlOBAlVARS • MYGLOBALVARS ». 

(Y. As an examole. one of the block definitions for the editor is shown below. The block name is ED ITS LOCK. 
\...J it includes ~ number of functions (EDITlO, EDITll •... EDITH), and it sets the variables ENTRIES, 

....... SPECVARS, RETFNS, GL.OBAlVARS, BlKAPPlYFNS, BLKLIBRARY, and r~OLINKFNS: 

(EDITBlOCK 
EDITlO EDITll UNDOEDITl EDITCOM EDITCOMA EDITCOMl 
EDITMAC EDITCOMS EDIT]UNDO UNDOEDITCOM UNOOEDITCOMl 
EDITSMASH EDITNCONC EDIT1F EDIT2F EDITNTH BPNT SPUTO 
BPNT1 RI RO LI LO BI BO EDITDEFAULT ## EDUP EDIT· EDOR 
EDRPT EDLOC EDLOCl EDIT: EDITMBD EDITXTR EDITELT 
EDITCONT EDITSW EDITMV EDITTO EDITBELOW EOITRAN TAIL? 
EDITSAVE EDITH . 
(ENTRIES EDITlO ## UNDOEDITL) 
(SPECVARS L COM lCFlG #1 #2 #3 LISPXBUFS ··COMMENT**FlG 

PRETTYFLG UNDOLST UNDOLST1) 
(RETFNS EDITLO) 
(GLOBALVARS EDITCOMSA EDITCOMSl EDITOPS HISTORYCOMS 

EDITRACEFN) 
(BLKAPPLYFNS RI RO LI LO BI BO EDIT: EDITMSD EDITMV 

EDITXTR) 
(BLKlIBRARY lENGTH NTH LAST) 
(NOlINKFNS EDITRACEFN» 

Whenever BCOMPL or BRECOMPILE encounter a block declaratioa they rebind RETFNS. SPECVARS. 
GLOBALVARS. BLKLIBRARY. NOLINKFNS. LINKFNS. and DONTCOMPIlEFNS to their top level values. 
bind BLKAPPLYFNS and ENTRIES to NIL. and bind BLKNAME to the first element of the declaration. 
They then scan the rest of the declaration. setting these variables as described above. When the declaration 
is exhausted. the block compiler is called and given BLKNAME. the list of block functions. and ENTRI ES. 

If a function appears in a block declaration. but is not defined in one of the files. then if it has 
an in-core definition. this definition is used and a message printed NOT ON FILE. COMPILING IN 
CORE DEFINITION. Otherwise. the message NOT COMPILEABLE. is printed and the block declaration 
processed as though th°e function were not on it. i.e. calls to the function will be compiled as external 
function calls. 

Note that since all compiler variables are rebound for each block declaration. the declaration only has to 
set those variables it wants changed. Furthermore, setting a variable in one declaration has no effect on 
the variable's value for another declaration. 

12.15 



Block Compiling Functions 

After finishing all blocks~ BCOMPL and BRECOMPILE treat any functions in the file that did not appear 
in a .block declaration in the same way as do TCOMPL and RE COMP I LE. If the user wishes a function 
compiled separately as well as in a bloc~ or if he wishes to compile some functions (not blockcompile), 
with some compiler variables change~ he can use a special pseudo-block declaration of the form 

(r~IL BLKFNl ••• BLKFNM (VARl • VALUEl ) ••• (VARN • VALUEN» 

which means that BLKFNl ••• BLKFNM should be compiled after first setting VAR1 ••• VARN as described 
above. For example, 

(NIL CGETD FNTYP ARGLIST NARGS NCONCl GENSYM (LINKFNS • T» 

appeat~g as a '·block declaration" will cause the six indicated functions to be compiled while LINKFNS=T 
so that all of their calls will be linked (except for those functions on NOLINKFNS). 

/'- •. ~\ n··· ,( 

~- 12.11.5 Block Compiling Functions \. ".-

There are three user level functions for block compiling, BLOCKCOMPILE, BCOMPL, and BRECOMPILE. 
corresponding to COMPILE, TCOMPL. and RECOMPILE. All of them ultimately call the same low level 
functions in the compiler. Le., there is no "block compiler" per see Instead, when block compiling, a flag 
is set to enable special treatment for SPECVARS. RETFNS, BLKAPPL YFNS. and for determining whether 
or not to link a function call. Note that all of the remarks on macros. globalvars. compiler messages, 
etc." all apply equally for block compiling. Using block declarations. the user can intermix in a single 
file functions compiled normally, functions compiled nonnally with linked 'Calls. and block compiled 
functions. 

(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG) [Function] 
BLKN~\fE is the name of a block. BLKFNS is a list of the functions comprising tb.e 
block. and ENTRIES a list of entries .to the block. 

Each of the entries must also be onBLKFNS or an error is generated, NOT ON 
BLKFNS. If only one entry is specified.. the block name can also be one of the ("' 
BLKFNS, e.g., (BLOCKCOMPILE 'FOO '( FOO FIE FUM) '( FOO»). However. \) 
if more than one entry is specified, an error will be generated.. CAN t T BE BOTH ""C:··} 
AN ENTRY AND THE BLOCK NAME. 

If ENTRlES is NIL .. (LIST BLKN~'JE) is used. e.g., (BLOCKCOMPILE 'COUNT 
, (COUNT COUNT 1) ) 

,If BLKFNS is NIL. (LIST BLKNAME) is used.. e.g .• (BLOCKCOMPILE 'EQUAL) 

BLOCKCOMP I LE asks the standard compiler questions and then begins compiling. 
As with COMP I LE. if the compiled code is being written to a file. the file is 
closed unless FLG = T. The value of 8LOCKCOMP I LE is a list of the entries. or if 
ENTRIES = NIL. the value is BLKNAME. 

The output ofa call to BLOCKCOMPILE is one function definition for BLKNAME. 

plus definitions for each of the functions on ENTRIES if any. These entry functions 

12.16 



() 

o 

THE COMPILER 

are very shon functions which immediately call BLKNAME. 

(BCOMPL FILES CFILE - -) [Function] 
FILES is a list of symbolic files (if atomic. (LIST FILES) is used). BCOMPL 
differs from TCOMPL in that it compiles all of the files at once~ instead of one 
at a time, in order to permit one block to contain functions in several files. (If 
you have several files to be BCOMPLed separately, you must make several calls to 
BtOMP L.) Output is' to CFILE if given. otherwise to a file whose name is (CAR 
FILES) suffixed with DCOM. For example, {BCOt>1Pl '( ED IT WED IT) ) produces 
one file, ED IT • DCOM. 

BCOMPL asks the standard compiler questions, except for uQUTPUT FILE: .', then 
processes each file exactly the same as TCOMPL (page U.ll). BCOMPL next 
processes the block declarations as described above. Finally, it compiles those 
functions not mentioned in one of the block declarations, and then writes out all 
other expressions. 

If any of·the files have property FILETYPE with value ClIS?, or a list containing 
CLISP, then DWIMIFYCOMPFLG is rebound to T for all of the files. See page 12.9. 

The value of BCOMPl is the output file (the new compiled file). If the compilation 
,is aboned due to an error or control-D, all files are closed and the (partially 
co~plete) output file is deleted. 

Note that it is permissible to TCOMPL files set up for BCOMPL; the block declarations 
will simply have no effect. Similarly, you can BCOMPL a file that does not contain 
any block declarations and the result will be the same as having TCOMPled it. 

(BRECOMPILE FILES CFILE FNS -) [Function] 
BRECOMPILE plays the same role for BCOMPL that RECOMPILE plays for TCOMPL. 
Its purpose is to allow the user to update a compiled file without requiring an 
entire BCOMPL. 

FILES is a list of symbolic files (if atomic, (LIST FILES) is used). CFILE is 
the compiled file produced by BCOMPl or a previous BRECOMPILE that contains 
compiled definitions that may be copied. The interpretation of FNS is the same as 
with RECOMPILE. 

BRECOfr1PILE asks the standard compiler questions except for "OUTPUT FILE: ". 
As with BCOMPL. output automatically goes to FILE. DCOM, where FILE is the first 
file in FILES. 

BRECOMPILE processes each file the same 'as RECOMPILE (page 12.11), then 
processes each block declaration. If any 'of the functions in the block are to be 
recompiled. the entire block must be (is) recompiled. Otherwise. the block is' copied 
from CFILE as with RECOMPILE. For pseudo-block declarations 'of the form (NIL 
FNI ... ). all variable assignments are made. but only those functions indicated by 
FNS are recompiled. 

After completing the block declarations. BRECOMPILE processes all functions that 
do not appear in a block declaratio~. recompiling those dictated by FNS. and 
copying the compiled definitions of the remaining from CFILE. 

12.17 



Linked Function Calls 

Finally. B RE COMP I LE writes onto the output file the "other expressions" collected 
in the initial scan of FILES. 

The value of BRECOMP I LE is the output file (the new compiled file). If the 
compilation is aborted due to an error or control-D. all files are closed and the 
(partially complete) output file is deleted. 

If CF1LE=NIL. the old version of FILE. DeOM is used. as with RECOMPILE. 
In addition. if FNS and CFiLE are both NIL. FNS is set to the value of 
RECOMPILEDEFAULT. initially EXPRS. 

'2.12 LINKED FUNCI10N CALLS 

N ole: Linked function calls are not implemented in I nterlisp-D. 

Conventional (non-linked) function calls from a compiled function go through the function definition cell. 
Le., the definition of the called function is obtained from its function definition cell at call time. Thus. 
when the user breaks. advises. or otherwise modifies the definition of the function FOC, every function 
that subsequently calls it instead calls the modified function. For calls from the system functions. this 
is clearly nol a desirable feature. For example. suppose that the user wishes to break on basic functions 
such as PRINT, EVAL. RPLACA. etc .. which are used by the break package. We would like to guarantee 
that the system packages will survive through user modification (or destruction) of basic functions (unless 
the user specificclly requests that the system packages also be modified). This protection is achieved by 
linked function calls. 

F or linked function calls. the definition of the called function is obtained at link time, i.e., when the calling 
function is defined., and stored in the literal table of the calling function. At call time. this denmtion is 
retrieved from where it was stored in the literal table. not from the function definition. cell of the called 
function as it is for non-linked calls. 

l'iote that while function calls from block compiled functions are usually linked (Le. the default for 
blocks is to link).lS and those from standardly compiled functions are usually non-linked, linking function 
calls and blockcompiling are independent features of the [nterlisp compiler. i.e .• linked function calls are 
possible. and frequently employed., from standardly compiled functions. 

Note that normal function calls require only the called function's name in the literals of the compiled code. 
whereas a linked function call uses two litex:als and hence produces slightly larger compiled functions. 

The compiler's decision as to whether to link a panicular function call is determined by the variables 
LINKFNS and NOLINKFNS as follows: 

(1) If the functiori appears on NOL I NKF NS. the call is not linked: 

l5 In Interlisp-10, linked function calls are actually a little slower and take more space than non-linked 
calls. so that the user might want to include (NOLINKFNS • T) in block declarations to ovemde the 

n 
c 

iefuult ,/\.. 
'-- ) 

"--
12.13 



C) 
c··~ 

o '- ,-

o· 

THE COMPILER 

(2) If block compiling and the function is one of u'1e block functions, the call is internal as described 
earlier; . 

(3) If the function appears on Llr~KFNS, the call is linked; 

(4) If NOLINKFNS=T,.the call is not linked; 

(5) If block compiling, the call is linked; 

(6) If LINKFNS=T, the call is linked; 

(7) Otherwise the call is not linked. 

Note that (1) takes precedence over (2), Le., if a function appears on tJOLINKFNS. the call to it is not 
linked, even if it is one of the functions in the block. Le .• the call will go outside of the block. 

NOLINKFt~S is initialized to various system functions such as ERRORSET. BREAK1. etc. LINKFNS is 
initialized to NIL. Thus if the user does not specify otherwise. all calls from a block compiled function 
(except for those to functions on NOLINKFNS) will be linked; all calls from standardly compiled functions 
will not be linked. However. when compiling system functions such as HELP. ERROR, ARGLIST, FNTYP, 
BREAK1, et aL LINKFNS is set to T so that even though these functions are not block compiled, all of 
their calls will be linked. 

If a function is not defined at link time, Le .• when an attempt is made to link to it, it is linked instead to 
the function ~JOLINKDEF. When the function is later defined. the link can be completed by relinking the 
calling function using RELINK described below. Otherwise. if a function is run which attempts a lin.'<ed 
call that was not complete~ NOLINKDEF is called. If the function is now defined.. i.e .• it was defined 
at some point after the attempt was made to link to it, NOLlr~KDEF will quietly perfonn the link and 
continue the call. Otherwise, it will c~ FAUL TAPPL Y and proceed as described in page 15.6. 

CALLS, BREAK on FN1- IN-FN2 and ADVISE FN1- IN-FN2 all work correctly for linked function calls. 
e.g., (BREAK '( FOO IN FIE». where FOO is called from FIE via a linked function call. Note that 
control-H will not interrupt at linked' function calls. 

12.12.1 Relinking 

The function RELINK is available for relinking a compiled function. i.e., updating all of its linked calls 
so that they use the definition extant at the time of the relink operation. 

(RELINK FN) [Function] 
FN is either the name of a function. a list of functions. an atom whose value is a list 
of functions. or the atom WORLD. RELINK perfonns the corresponding relinking 
operations. R ELI N K returns FN. 

(RELINK 'WORLD) is possible because the compiled code reader maintains on 
LINKEDFNS a list of all user functions containing any linked calls. SYSLINKEDFNS 
is a list of all system functions that have any linked calls. (RELINK 'WORLD) 
performs both (RELINK LINKEDFNS) and (RELINK SYSLINKEDFNS). 

12.19 



Compiler Error Messages 

Note: To relink a function in a_bloc~ one should relink the bloc~ not the function. 

. It is important to stress that linking takes place when a function is defined. Thus. if F 00 calls FIE via a 
linked call and a bug is found in FIE. changing FIE is not sufficient; FOO must be relinked. Similarly. if 
FOOl. FOOl, and F003 are defined (in that order) in a file, and each call the others via linked calls. when 
anew version of the file is loaded. FOOl will be linked to the old F002 and F003, since those definitions 
will be extant at the time it is read and defined. Similarly, F002 will link to the new FOOl and old F003. 
Only F003 will link to the new FOOl and F002. The user would have to perfoIlI1 (RELINK '( FOOl 
F002 F003» following the LOAD. 

12.13 COMPILER ERROR rvmsSAGES 

Messages describing errors in the function being compiled are also printed on the teletype. These messages 
are always preceded by·····. Unless otherwise indicated below. the compilation will continue. 

(FN NOT ON FILE, COMPILING IN CORE DEFINITION) 
From calls to BCOMPL and BRECOMPILE. 

(FN NOT COMPILEABLE) 
An EXPR definition for FN could not be found. In this case, no code is produced 
for FN. and the compiler proceeds to the next function to be compiled. if any. 

(FN NOT FOUrJD) Occurs when RECOMPILE or BRECOMPILE try to copy the compiled definition of 
FN from CFrLE. and cannot find it In this case. no code is copied and the compiler 
proceeds to the next function to be compiled. if any. 

(FN NOT ON BLKFNS) 
FN was specified as an entry to a bloc~. or else was on BLKAPPLYF~~S. but did 
not appear on the BLKFNS. In this case, no code is produced for the entire block 
and the compiler proceeds to the next functicn to be compiled. if any. 

. - - (FN CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME) 
In this case. no code is produced for the entire block and the compiler proceeds 
to the next function to be compiled. if any. 

(SLKNAME - USED BLKAPPLY WHEN NOT APPLICABLE) 
BLKAPPL Y is used in the block BLKNAME. but there are no BLKAPPL YFNS or 
ENTRIES declared for the block. 

(VAH SHOULD BE A SPECVAR - USED FREELY BY FN) 

In Interiisp-10. while compiling a block~ the compiler has already generated code 
to bind VAH as a LOCALVAR, but now discovers that FN uses VAR freely. VAR 

should be declared a SPECVAR and the block recompiled. 

(C- --) COMMENT USED FOR VALUE) 
A comment appears in a context where its value is being usecL e.g. (L I ST X (. 
--) Y). The compiled function will run. but the value at the point where the 
comment was used is ··undefined." 

12.20 

( 

(-) 
<- -:,:": .. 



0·· 

o 

THE COMPILER 

«FORM) - NON-ATOMIC CAR OF FORM) 
If user intended to creat the value of FORM as a function. he should use A P PLY· 
(page 5.12). FORM is compiled as if APPL Y· had been used. 

{(SETQ VAR EXPR --) BAD SETQ) 
SETQ of more than two arguments. 

.: (FN - USED AS ARG TO NUMBER FN?) 
The value of a predicate, such as GREATERP or EQ, is used as an argument to a 

. function that expects numbers. such as I PLUS. 

(FN - NO LONGER INTERPRETED AS FUNCTIONAL ARGUMEllT) 
The compiler has assumed FN is the name of a function. If the user intended to 
treat the value of FN as a functio~ he must use APPL yo (page 5.12). 

This message is printed when FN is not defined.. and is also a local variable of the 
function being compiled. Note that earlier versions of the Interlisp-10 compiler 
did treat FN as a functional argument, and compiled code to evaluate i~ 

(FN - ILLEGAL RETURN) 
RETURN encountered when not inPROG. 

(TG - ILLEGAL GO) 
GO encountered when not in a PROG. 

(TG - MULTIPLY DEFINED TAG) 
TG is a PROG label that is defined more than once in a single PROG. The second 
definition is ignored. 

(TG - UNDEFINED TAG) 
~G is a P ROG· label that is referenced but not defined in a P ROG. 

(VAR - NOT A BIr~DABLE VARIABLE) 
VAR is NIL, T, or else not a literal ato.m. 

(VAR VAL -- BAD PROG BINDING) 
Occurs when there is a prog binding of the form (VAR VALl 

(TG - MULTIPLY DEFINED TA·G. ASSEMBLE) 
TG is a label that is defined more than once in an assemble form. 

(TG - UNDEFINED TAG. ASSEMBLE) 
TG is a label that is referenced but not defined in an ASSEMBLE form. 

(TG - MULTIPLY DEFINED TAG. LAP) 
TG is a label that was encountered twice during the second pass of the compilation. 
If this error occurs with no indication of a multiply defiried tag during pass one, 
the tag is in a LAP macro. 

(TG - UNDEFINED TAG. LAP) 
TG is a label that is referenced during the second pass of compilation and is 
not defined. LAP treats TG as though it were a COREVAL. and continues ·the 
compilation. 

12.21 



Compiler Error Messages 

(op - OPCODE? - ASSEMBLE) 
Op appears as CAR of an assembie statement. and is illegal. See page 22.12 for 
legal assemble statements. 

(NO' BINARY CODE GENERATED OR LOADED FOR FN) • 
A previous error condition was sufficiently serious that binary code for FN cannot 
be loaded without causing an error. 

(~-), -
\.... 

12.22 
(j. 

\",.... 



o 

o 

o 

CHAPTER 13 

MASTERSCOPE 

Masterscope is an interactive program for analyzing and cross referencing user programs. It contains 
facilities for analyzing user functions to determine what other functions are caHed. how and where 
variables are bound. set. or referenced. as well as which functions use panicular record declarations. 
Masterscope is able to analyze definitions directly from a file as well as in-core definitions. 

(: 

Masterscope maintains a database of the results of the analyses it perforII'ts. Via a simple command 
language. the user may inteI'!ogate the database. call the editor on those expressions in functions that were 
analyzed which use variables or functions in a particular way. or display the tree strUcture of function C:·": 
calls among any set of functions. 

Masterscope is interfaced with the editor and file package so that when a function is edited or a new 
definition loaded ~ Masterscope knows that it must re-analyze that function. 

'The following sample session illUSL-ates some of these facilities. 

~. ANALYZE FUNCTIONS ON RECORD 

NIL 
~. WHO CALLS RECFIELDLOOK 
(RECFIELDLOOK ACCESSDEF ACCESSDEF2 EDITREC) 
~. EDIT WHERE ANY CALL RECFIELDLOOK 
RECFIELDLOOK : 
(RECFIELDLOOK (COR Y) FIELD) 
tty: . . 
-OK 
ACCESSDEF : 
(RECFIELDLOOK DECLST FIELD VAR1) 
-OK 
(RECFIELDLOOK USERRECLST FIELD) 
-N VARl 
-OK 
ACCESSDEF2 : 
(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD) 
tty: 
(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD) 
-N (CAR TAIL] 
-OK 
EDITREC : 
(RECFIELDLOOK USERRECLST (CAR EDITRECX» 
·OK 
NIL 
~ WHO CALLS ERROR 

13.1 

[I} 
[2] 

[3] 

[4] 

[5} 

.. ~ c······· 

c· 



I 

I 

'( -.-.... : 

~--. 

(EDITREC) 
~. SHOW PATHS TO RECFIELDLOOK FROM ACCESSDEF 
(inverted tree) 

1. RECFIELDLOOK RECFIELDLOOK 
2. ACCESSDEF 
3. ACCES~DEF2 ACCESSDE~2 
4. ACCESSDEF 
5. RECORDCHAIN ACCESSDEF 
NIL 
~. WHO CALLS WHO IN 
RECORDSTATEMENT -
RECORDECLl -
RECREDECLAREl -
UNCLISPTRAN -
RECORDWORD 
RECORD1 
EDITREC --

IFNS 
IRPLNOOE 
INCONC, IRPLACD, IRPLNODE 
IPUTHASH 
/PUTHASH, IRPLNODE2 
IRPLACA 
JRPLACA, ISETTOPVAL 
/SETTOPVAL 

[6} 

[7} 

[I} The user directs that the functions on file RECORD be analyzed. The leading period and space specify 
that this line is a Masterscope command.l 

[2J Masterscope prints a • whenever it (re)analyzes a function. to let the user know what it is happening.2 

[3) The user asks which functions call RECFIELDLOOK. Masterscope responds with the list. 

{4} The user asks to edit the expressions where the function RECF IELDLOOK is called. Masterscope calls 
EDITF 'In the functions it had analyzed that call RECFIELDLOO~ directing the editor to the appropriate 
expressions. The user then edits some of those expressions.3 • 

[5} Next the user asks which functions call ERROR. Since some of the functions in the database have 
been changed., Masterscope re-analyzes the changed definitions (and prints out . 's for each function it 

o 

analyzes). Masterscope responds that EDITREC is the only analyzed function that calls ERROR. ::-J 
{6} The user asks to see a map of the ways in which RECFIELDLOOK is called from ACCESSDEF. A tree 
structure of the calls is displayed. 

IThe user may also call Masterscope directly· by typing (MASTE RSCOPE). Masterscope prints a greeting 
and prompts with ..... ". Within the top-level executive of Masterscope, the user may issue Masterscope 
commands. programmer's assistant commands. (e.g .• REDO. F IX). or run programs. The user can exit 
from the Masterscope executive by typing OK. The function . is defined as a nlambda nospread function 
which interprets its argument as a Masterscope comman~ executes the command and returns. 

2The feedback when Masterscope analyzes a function is controlled by the flag MSPRINTFLG: if 
MSPRINTFLG is the atom". n. Masterscope will print out a period. (If an error in the function is 
detected. U?" is printed instead.) If MSPRINTFLG is a number N, Masterscope will print the Dame of the 
function it is analyzing every Nth function. If MSPRINTFLG is NIL, Masterscope won't print anything. 
Initial setting is " . n. Note that the function name is printed when Masterscope starts analyzing, and L~e 
comma is printed when it finishes. 

3In this example, the teletype editor is used. In lnterlisp-D, if Dedit is enabled as the primary editor. it 
would be called to edit the appropriate functions (see page 20.1). 

13.2 



() 

(J 

o 

o 

1'VIASTERSCOPE 

{7] The user then asks to see which functions call which functions in the list / FNS. Masterscope responds 
with a structured printout of these relations. 

Below is a summary of the Masterscope commands. similar to what would be printed out by the HE L P 
command (page 13.7). Optional elements are shown in brackets []; Cllternatives are shown in braces {} 
separated with vertical bars I or are listed on separate lines; words in angle bracke~ <> are "~eia-objects"; 
other lower-case words are "noise words" and may be omitted. . 

----------------------------------------------------------~---~----. 
a <command> is: 

[RE]ANALYZE <functions> 
ERASE <functions) 
show PATHS <pathoptions> 
<set> {<relation> I IS I ARE} <set> 
EDIT where <functions) [<relation> <set)] [ - <edit commands>] 
SHOW where <functions> <"relation> <set> 
CHECK <files> 
FOR <variable> <set) <iterative statement tail> 

-~---------------------------~-------------------------------------
a <set> is (at least one of): 
a determiner + a type + a specification 

THE 
ANY 
WHICH 
WHO 

FUNCTIONS 
VARIABLES 
PROPERTY NAMES 
RECORDS 
FIELDS 
FILES 
I.S.OPRS 

FIELDS OF <records> 

[']{atom I list} 
• @ <predicate> 

IN <expression> 
<re1ation>ING <set> 
<relation>ED {BY I IN} <set> 
THAT <relation> <set> 
LIKE <edit-pattern) 
ON <files> 
ON PATH <pathoptions> 

<blockword> {ON <files> I OF (functions>} 
<functions>, <files>, etc. are <set>s whose type is implied. 

a <relation> is a 
ve rbs: 

CALL 

USE 
USE 
USE 
SET 

verb and optional modifier: 
mOdifiers (anywhere after the verb): 
{SOMEHOW I FOR EFFECT I FOR VALUE I 

DIRECTLY I INDIRECTLY} 
AS a {RECORD I PROPERTY I record FIELD} name 
AS a ClIS? word 
{FREELY I LOCALLY} 
{FREELY I LOCALLY} 
{FREELY I LOCALLY} 

·{FREELY I LOCALLY} 
{FREELY I LOCALLY} 
AS a {LOCALVAR I SPECVAR} 

SMASH 
TEST 
REFERENCE 
DECLARE 
BIND 
FETCH 
REPLACE .----------------------------~---------------------

13.3 

("";.~ 
''':-



i 

:("~ 
i 

! 
I 

i \...:"" 

Command Language 

CREATE 
CONTAIN 

I <blockword>: ENTRIES. GLOBALVARS. FREEVARS. 
SPECVARS, LOCALFREEVARS, BLKFNS or BLOCKFNS 

<pathoptions>: 

FROM <functions> 
TO (functions> 
AVOIDING·<functions> 
NOTRACE (functions> 
SEPARATE <functions> 
LINELENGTH <number> 

I abbreviations & synonyms: 
I 
I FNS = FUNCTIONS PROPS = PROPERTIES 
I VARS = VARIABLES 
1·(& singular FN, VARIABLE. etc) 
I FREE ~ FREELY LOCAL = LOCALLY 
I AMONG = ~VOIDING NOT 
I 

<sets> may be joined by AND or OR or preceded by NOT. 
Any command can be followed by OUTPUT <filename> . . ----~--~---~--------~------------------~~~~--------~--~------~~---. 

13.1 CO"Ml\1AND LANGUAGE 

The user communicates with Masterscope using an English-like command language, e.g .• WHO CALLS 
P~INT. With these commands. the "user can direct that functions be analyzed.. interrogate Masterscope's 
database. and perform other operationS. The commands deal' with sets of functions. variables, etc., and 

" relations between them (e.g., call bind). Sets correspond to English nouns. relations to verbs. 

A set of atoms can be specified in a variety of ways, either explicitly. e.g., F U NC T ION S ON FIE specifies 
the atoms in (FILEFNSLST 'FIE), or implicitly. e.g .• NOT CALLING Y, where the meaning must be 
determined in the context of the rest of the command. Such sets of atoms are the basic building blocks 
which the command language deals with. 

Masterscope also deals with relations between sets. For example. the relation CALL relates functions and (\~" 
other functions~ the relations BIND and USE FREELY relate functions and variables. These relations ,) 
are what get stored in the Masterscope database when functions are analyzed. In addition. Masterscope 
"knows" about file package conventions: CONT AI N relates files and various types of objects (functions. 
variables). 

Sets and relations are used (along with a few additional words) to form sentence-like commands. For 
example, the command WHO ON 'FOC USE 'X FREELY will print out the list of functions contained 
in the file FOO which use the variable X freely. The command EDIT WHERE ANY CALLS 'ERROR will 
call EDITF on those functions which have previously been analyzed that directly call ERROR, pointing at 
each successive expression where the call to ERROR actually occurs. 

13.1.1 Commands 

The nonnal mode of communication with Masterscope is via "co~ands". These are sentences in 
the Masterscope command language which direct Masterscope to answer questions or perform various 
operations. The syntaX of Masterscope commands is described below: 

13.4 



o 

o 

o 

ANALYZE SET 

REANALYZE SET 

ERASE "SET 

MASTERSCOPE 

[Masterscope CommandJ 
Analyze the functions in SET (and any functions called by them) and include ~he 
information gathered in the database. Masterscope will not re-analyzing a function 
if it thinks it already has valid information about that function in its database. Tne 
user may use the cotn.'Plland REANALYZE (below) to force re-analysis. 

Note that whenever a function is referred to in a command as a "subject" of one 
of the relations, it is automatically analyzed; the user need not give an explicit 
ANALYZE coIrimand. Thus. \vHO IN MYFNS CALLS FIE will automatically 
ana1yz~ the functions in MYFNS if they have not already been anaiyzed. 

Note also that only EXPR definitions will be analyzed: that is, Masterscope win 
not analyze compiled code. If there is no m-core definition for a function (either 
in the definition cell or an EX P R property), Masterscope will attempt to read in 
the definition from a file:' If necessary. the definition will be D'il I M I F Yed before 
analysis. 

[Masterscope Command] 
Causes Masterscope to reanalyze the functions in SET (and any functions called 
by them) even if it thinks it already has valid information in its database. For 
example. this would be necessary if the user had disabled or subvened the file 
package, e.g. performed PUTD's to change the definition of functions. 

. [Masterscope Command} 
Erase all information about the functions in SET from the database. ERAS E by 
itself clears the entire database. 

SHOW PATHS PATHOPTIONS [Masterscope Command} 

SET RELATION SET 

SET IS SET 

SET ARE SET 

Displays a tree of function calls.. PATHOPTIONS are described on page 13.14. 

[Masterscope Commapd] 
[Masterscope Command] 
[Masterscope Command] 

This command has the same fonnat as an English sentence with a subject (the first 
SET). a verb (the RELATION or IS or ARE), and an object (the second SET). Any 
of the SETS within the command may be preceded by the question determiners 
WHICH or WHO (or just WHO alone). For example. WHICH FUNCTIONS CALL X 
prints the list .of functions that call the function X. RELATION may be one of L.1.e 
relation words in present tense (CALL. BIND, TEST. SMASH. etc.) or used as a 
passive (e.g., WHO IS CALLED BY WHO). Other variants are allowed. e.g. WHO 
DOES X CALL, IS Faa CALLED BY FIE. e~. 

The interpretation of the comm~d depends on the number of question elementS 
present: 

"Files which have been expiicitly mentioned previously in some command are searched first. If the 
definition ca.llnot be found on any of those files. Mas'Lerscope looks among the files on F ILELST for a 
definition. If a function is found in this manner. Master!cope will print a message .• ( re ad; ng from 
FILENA..\!E) n. If no definition can be found at all. Masterscope will print a message ··FN can I t be 
an a 1 yze d". If the function previously was known, the message HFN di sappeared r' is printed. 

13.5 

c·: 

('1. 

c 



, , 
.... '-

,'- ' 

.'- ' 

Commands 

(1) If there is no question element. the command is treated as an assenion and 
Masterscope returns either T or NIL. depending on whether that assertion is true. 
Thus. ANY IN MYFNS CALL HELP will print T if any function in MYFNS call the 
function HE L P, and tJ I L otherwise. 

(2) If there is one .question element. Masterscope returns· the list of items for which 
the assertipn would be true. For example MYFN BINDS WHO USED FREELY BY 
YOURFN prints the list of variables bound by MYFN which are' also used freely by 
YOURFN. 

(3) If there are two question elements, Masterscope will print a doubly indexed 
list: 

~. WHO CALLS WHO IN 
RECORDSTATEMENT -
RECORDECLl -
RECREDECLAREl -
UNCLISPTRAN -
RECORDWORD 
RECORDl 
EDITREC --

IF~lS Cf' 

IRPLNODE 
INCONC, IRPLACD, IRPLNODE 
IPUTHASH • 
IPUTHASH. IRPLNODEZ 
IRPLACA 
IRPLACA, ISETTOPVAL 
ISETTOPVAL 

ED IT WHE RE SET RELATION SET [- EIJITCOMS} [Masterscope Command] 
(WHERE may be omitted.) The first SET refers to a set of functions. The 
ED I T command calls the editor on each expression' where the RELATION actually 
occurs. For example, EDIT WHERE ANY CALL ERROR will call EDITF on eaCh 
(analyzed) function which calls ERROR stopping within a TTY: at each call to 
ERROR. Currently one cannot EDIT WHERE a file which CONTAINS a datum. nor 
where one function CALLS another SOMEHOW. 

EIJITCOMS, if given, are a list of commands passed to ED IT F to be performed at 
each expression. For example. EDIT WHERE AtlY CALLS MYFN DIRECTLY -
(SW 2 3) P will switch the first and second arguments to MY F N in every call 
to MYFN and print the result. EDIT WHERE ANY ON MYFILE CALL ANY NOT 
@ GETD will call the editor on any expression involving a call to an undefined 
function. Note that EDIT WHERE X SETS Y will point only at those expressions 
where Y is actually set. and will skip over places where Y is othervrise mentioned. 

SHOW WHE RE SET RELATION SET [Masterscope Command] 
Like the ED IT command except merely prints out the expressions without calling 
the editor. 

EDIT SET [- EDITCOMS] [Masterscope Command1 

DESCRIBE SET 

Calls ED I T F on each function in SET. EDITCOMS~ if given. will be passed as a list 
of editor commands to be executed. For example EDIT ANY CALLING FNl -
(R FNl FNZ) will replace FNl by FNZ in those functions that call FN1. 

[Masterscope Command] 
Prints out the BIND. USE FREELY and CALL information about the functions in 
SET. For example. the command DESCRIBE PRINTARGS might print out: 

PRINTARGS[N,FLG] 

13.6 

() 

(~ 
", ) 



o 

o 

binds: 
calls: 
called by: 

MASTERSCOPE . 

TEM,LST,X 
MSRECORDFILE,SPACES,PRINl 
PRINTSENTENCEtMSHELP.CHECKER 

Tnis shows that PRINTA.RGS has two arguments, N and FLG. binds internally the 
variables TEM, LST and X. calls MSRECORDFILE, SPACES and PRINl and is called 
by PRINTSENTENCE, MSHELP, 'and CHECKER. ' 

The user can specify additional information to be included in the descriptio~. 
DESCRIBELST is a list each of whose elements is a list containing a' de~riptive 
string and a form. The form is evaluated (it can refer to the name of the 
fimtion being described by the free variable F N); if it returns a non-N I L value. the 
description string is printed followed by the value. If the value is a list, its elements 
are printed with commas between them. For example, the entry (" types: " 
(GETRELATION FN '(USE TYPE) T)wouldincludealistingofthetypesused 

c· 

by each function. ( -

CHECK SET [Masterscope Command] 
Checks for various anomolous conditions (mainly in the compiler declarations) for 
the files in SET (if SET is not given.. F I LELST is used). For example, this command 
will warn about variables which are bound bui never referenced, functions in 
BLOCKS delarations which aren't on the file containing the declaration. functions 
declared as ENTRIES but not in the block. variables which may not need to be 
declared SPECVARS because they are not used freely below the places where they 
are bound.. etc. 

FOR VARlABLE SET LS. TAlL [Masterscope Command] 
This command provides a way of combining CLISP iterative statements with 
Masterscope. An iterative statement will be consmIcred in which VARlABLE is 
iteratively assigned to each element of SET, and then the iterative statement tail 
LS. TAlL is executed. For example, 'IS 

FOR X CALLED BY FOO WHEN CCODEP DO (PRINTOUT T X '0' (ARGLIST 
X) T) 

will print out the name and argument list of all of the compiled functions which 
are called by F 00. 

. -CO;', • 

HELP [Masterscope Command] 
Prints out a summary of ?\.1asterscope commands as shown on page 13.3. Optional 
elements are shown in brackets []; alternatives are shown in braces {} separated 
with vertical bars I or are listed on separate lines: words in angle brackets < > are 
"meta-objects"; other lower-case words are "noise words" and may be omitted.. 

Note: any command may be followed by OUTPUT FILENAME to send output to the given file rather than 
the terminal. e.g. WHO CALLS WHO OUTPUT CROSSREF. 

13.1.2 Relations 

A relation is specified by one of the keywords below, Some of these "verbs" accept modifiers. For 

13.7 

I 
'1 
I 
I 
I 

1 



(-, --~ \.:...:,. 

Relations 

example. USE, SE.T, SMASH and REFERENCE all may be modified by FREELY. The modifier may occur 
anywhere within the command.s Verbs can occur in the present tense (e.g .• USE. CALLS. B I NOS. USES) 
or as present or past participles (e.g .• CALLING. BOUND, TESTED). The relations (with their modifiers) 
recognized by Masterscope are: . 

CALL 

CALL SOMEHOW 

USE 

SET 

SMASH 

TEST 

REFERENCE 

--

[Maste!SCope Relation} 
Function Fl calls F2 if the definition of·Fl contains a form (F2 --yo (APPLY 
(QUOTE F2) --). (FUNCTION F2), etc. 

[Maste!SCope Relation] 
One function calls another SOMEHOW if there is some path from the first to the 
other. That is, if Fl calls F2, and F2 calls F3, then Fl CALLS F3 SOMEHOW. 

This infonnation is not stored directly in the database; instead, Maste!SCope stores 
only infonnation about direct function calls, and (re)computes the CALL SOMEHOW n 
relation as necessary. 

[Maste!SCope Relation] 
If unmodified .• the relation USE denotes variable usage in any way; it is the :mion 
of the relations SET, SMASH, TEST, and REFERENCE. 

[Masterscope Relation] 
A function SETs a variable if the function contains a form (S E T Q va r - - ) , 
(SETQQ var. --),etc. 

[Masterscope 'Relation] 
A function SMASHes a variable if the function calls a destructive list operation 
(RPLAC~ RPLACD, DREMOVE, SORT, etc.) on the value of that variable. 
Masterscope will also find instances where the operation is performed on a "pan" 
of the value of the variable: for example, if a function contains a form (RPLACA 
(NTH X 3) T) it will be noted as SMASHING X. 

Note that if the function contains a sequence (SETQ Y X), (RPLACA Y T) then 
Y is noted as being smashed, but not x. (~) 

[Masterscope Relation] 
A variable is TESTed by a function if its value is only distinguished between NIL 
and non-N IL. For example. the form (COND « AND X --) --» lests the value 
of x. 

This relation includes all variable usage except for SET. 
[Masterscope Relation] 

The verbs USE. SET, SMASH. TEST and REFERENCE may be modified by the words FREELY or 
LOCALLY. A variable is used FREELY if it is not bound in the function at the place of its use; alternatively. 
it is used LOCALLY if the use occurs within a PROG or LAMBDA that binds the variable. 

SIf there is more than one verb. any modifier between two verbs is assumed to modify the first one. For 
exampie, in USING ANY FREELY OR SETTING X. the FREELY modifies USING but not SETTlr~G
the entire phrase is interpreted as the set of all functions which either Alseany variable freely or set the 
variable. X. whether or not X is set freely. I • 

13.8 



o 

1.0 

MASTERSCOPE 

Masterscope also distinguishes between CALL DIRECTLY and CALL INDIRECTLY. A function is called 
DIRECTLY if it occurs as CAR-of-form in a normal evaluation context. A function is called INDIRECiLY 
if its name appears in a context which does not imply its immediate evaluatio~ for example (SEiQ Y 
(LIST (FUNCTION FOO) 3) }.6 In addition, CALL FOR EFFECT (where the value of the function is 
not used) is distinguished from CALL FOR VALUE. 

SINO . • • [Masterscope Relation] . 
The B I NO relation between functions and' variables includes both variables bound 
as function arguments and those bound in an internal PROG or LAMBDA expression. 

USE AS A FIELD [Masterscope Relation] 

FETCH 

REPLACE 

Masterscope notes all uses of record field names within FETCH, REPLACE or 
CREATE expressions. 

[Masterscope Relation] 
Use of a field within a FETCH expression. 

[Masterscope Relation] 
Use of a record field name within a REPLACE or CREATE expression. 

USE AS A RECORD [Masterscope Relation] 
Masterscope notes all uses of record names within CREATE or TYPE? expressions.7 

CREATE [Masterscope Relation] 
Use of a record name within a CREATE expression. 

USE AS A PROPERTY NAME [Masterscope Relation1 
Masterscope notes the propertY names used in GETPROP, PUTPROP. GETLIS. etc. 
expressions if the name is quoted. E.g. if a function contains a form (GETPROP 
X (QUOTE INTERP»), then that function USEs INTERP as a property name. 

USE AS A eLISP WORD [Masterscope Relation] 
Masterscope notes all iterative statement operators and user defined CLISP words 
as being used as a CLISP word. 

C~) . CONTAIN [Masterscope Relation] 
Files contain functions. records. and variables. This relation is not stored in the 
data~ase but is computed using the file package. 

o 

DECLARE AS LOCALVAR [Masterscope Relation] 
DECLARE AS SPECVAR [Masterscope Relation] 

Masterscope notes internal "calls" to DECLARE from within functions. 

The following abbreviations are recognized: FREE=FREELY, LOCAL=LaCALLY. PROP=PROPERTY, 
REF = REFERENCE. Also, the words A, AN and NAME (after AS) are "noise" words and may be omitted. 

6The distinction· is whether or not the comoiled code of the caller would contain a direct call to the callee. 
Note that an occurrence of (FUNCTION FOOD) as the functional argument to one of the built-in mapping 
functions which compile open is considered to be a direct call. 

7Additionally. in X: FOa. FIE, Foa is used as a record name. 

13.9 

(-.. ~ : 



\.... 

Sets 

Note: Masterscope ·uses "templates" (page 13.16) to decide which relations hold between functions and 
their arguments. For example, the information that SORT SMASHes its first argument is contained in the 
template for SORT. Masterscope initially contains templates for most system functions which set variables, -
test their arguments, or perform destructive operations. The user may change existing templates or insen 
new ones in Masterscope's tables via the SETTEMPLA TE function (page .13.19). 

13.1.3 Sets. 

A 6·set" is a collection of things (functions, variables, etc.). A set is specified by a set phrase, consisting 
of a determiner (e.g., ANY, WHICH, WHO) followed by a type (e.g., FUNCTIONS .. VARIABLES) followed 
by a specification (e.g., IN MYFNS, @ SUBRP). The determiner, type and specification may be used 
alone or in combination. For example, ANY FUNCTIONS IN MYFr~S, ANY @ SUBRP, VARIABLES IN 
GLOBALVARS, and WHO are all acceptable set phrases. Set specifications, types and determiners are 
explained below: 

13.1.3.1 Set Specifications 

'ATOM 

, LIST 

[Masterscope Set Specification} 
The Simplest way to specify a set consisting of a single thing is by the name of 
that thing. For example, in the command- WHO CALLS 'ERROR, the function 
ERROR is referred to by its name. Although the 'can be left out, to resolve 
possible ambiguities names should usually be quoted: e.g., WHO CALLS 'CALLS 
will return the list of functions which call the function CALLS. 

[M.asterscope Set Specification1 
Sets consisting of several atoms may be specified by naming the atOms. For 
example, the cOl!Jlnland WHO USES '( A B) returns the list of functions that use 
the variables A or B. 

I N EXPRESSION [Masterscope Set Specification] (\ 
The fonn EXPRESSION is evaluated, and its value is treated as a list of the elements \.) 

@ PREDICATE 

LIKE ATOM 

of a set. For example, IN _ GLOBALVARS specifies the list of variables in the value 
of the variable GLOBALVARS. 

[Masterscope Set Specification] 
A set may also be specified by giving a predicate which the elements of that 
set must satisfy. PREDICATE is either a function name, a LAMBDA expression, 
or an expression in terms of the variable X. The specification @ PREDICATE 
represents all atom for which the value of PREDICATE is non-N I L. For example. 
@ EXPRP specifies all ~~ose atoms which have EXPR defintions: @ (STRPOSL 
X CLISPCHARRAY) specifies those atoII'..s which contain CLISP characters. The 
universe to be searched is either determined by the context within the command 
(e.g.,_ in WHO IN FOOFNS CALLS ANY NOT @ GETD, the predicate is only 
applied to functions which are called by any functions in the list FOOFNS). or 
in the extreme case, the universe defaults to the entire set of things which have 
been noticed by Masterscope, as in the command WHO IS @ EXPRP. 

[Masterscope Set Specification] 
ATOM may contain ESCs; it is used as a panem to be matched (as in the.i editor). 

13.10 

(j 



o 

CJ 

} . 

o 

o 

MASTERSCOPE 

For example. WHO LIKE IRS IS CALLED BY ANY would find both IRPLACA 
and IRPLNODE. 

A set may also be specified by giving a relation its members must have with the members of another set: 

RELATIONING SET . [Masterscope Set SpeCification] 
RELATIONI NG is used here generically to mean any of the relation words in 
the present participle fOIm (possibly with a modifier), e.g., USING. SETTIUG, 
CALLING, BINDING. RELATIONING SET specifies the set of all objects which have 
that relation with some element of SET. For example. CALLING X specifies the 
set of functions which call the function X; USING ANY IN FOOVARS FREELY 
specifies the set of functions which uses freely any variable in the value of FOOVARS. 

RELATIONED BY SET [Masterscope Set Specification] 
RELATIONED I N SET [Masterscope Set Specification] 

This is similar to the RELATIONIr~G construction. For example, CALLED BY ANY C···· 
IN FOOFNS represents the set of functions which are called by any element of 
FOOFNS; USED FREELY BY ANY CALLING ERROR is the set of variables which 
are used freely by any function which also calls the function ERROR. 

BLOCKTYPE 0 F FUNCTIONS [Masterscope Set Specification] 
BLOCKTYPE ON FILES [Masterscope Set Specification] 

FIELDS OF SET 

KNOWN 

THOSE 

These phrases allow the user to ask about BLOCKS declarations on files (see page 
12.14). BLOCKTYPE is one of LOCALVARS, SPECVARS, GLOBALVARS, ENTRIES, 
BLKFNS, BLKAPPL YFUS, or RETFNS. 

BLOCKTYPE 0 F FTJNCTIONS specifies the names which are declared to be BLOCKTYP:; 
in any blocks declaration which contain any of FUNCTIONS (a "set" of func
tions). The .6functions" in FUNCTIONS can either be block names or just functions 
in a block. For example, WHICH ENTRIES OF ANY CALLING 'Y BIND Ar~Y 
GLOBALVARS ON 'FOO. 

BLOcr£TYPE ON FILES specifies all names which are declared to be BLOCKTYPE 
on any of the given FILES (a "set" of files). 

[Masterscope Set Specification] Co}" 
SET is a set of records. This denotes the field names of those records. For 
example, the command WHO USES ANY FIELDS OF BRECORD returns the list 
of all functions which do a f etc h or rep 1 ace with any of the field names 
declared in the record declaration of BRECORD. 

[Masterscope Set Specification] 
The set of all functions which have been analyzed. For example, the command 
WHO I S KNOWN will print out the list of functions which have been analyzed. 

[Masterscope Set Specification] 
The set of things printed out by the last Masrerscope question. For example, 
following the command WHO IS USED FREELY BY PARSE. the user could ask 
WHO B n~DS THOSE to find out where LL\olOse variables are bound. 

ON PATH PATHOPTIONS . [Masterscope Set Specification] 
Refers to the set of functions which would be printed by the command SHOW PAT HS 

13.11 c 



Set Determiners 

PATHOPTIONS. For example, IS FOO BOUND BY ANY ON PATH TO 'PARSE 
tests if Faa might be bound "above" the function PARSE. PATHOPTIONS are 
explained in detail on page 13.14. 

Note: sets may also be specified with "relative clauses" introduced by the word THAT, e.g. THE 
FUNCTIONS THAT BIND 'x. 

13.1.3.2 Set Determiners 

Set phrases may be preceded by a determiner. A detemriner is one of the words THE. ANY, WHO orWHICH. 
The "question" determiners (WHO and WHICH) are only meaningful in some of the comman~ namely 

( ~, 
\ ) 

those that take the form of questions. ANY and WHO (or WHOM) can be used alone; they are ··wild-card" (--") 
elements. e.g., the command WHO USES ANY _ fREEL Y, will print out the names of all (known) functions \ / 

" . which use any variable freely. If the detenniner is omitted. ANY is assumed: e.g. the command WHO 
CALLS '( PRINT PRINl PRINZ) will print the list of functions which call any of PRINT, PRIN1. 
PRINZ. THE is also allowed, e.g. WHO USES THE RECORD FIELD FIELDX. 

~. 

"-.- . 

13.1.3.3 Set Types 

Any set phrase has a type: that is. a set may specify either functions. variables. files. record names. record 
field names or prope~ names. The type may be determined by the context within the command (e.g., 
in CALLED BY ANY ON FOO. the set ANY ON FOO is interpreted as meaning the jUnctions on FOO 
since only functions can be CALLED), or the type may be given explicitly by the user (e.g., FUNCTIONS 
ON FIE). The following types are recognized: FUNCTIOr~S, VARIABLES, FILES, PROPERTY NAMES.
RECORDS, FIELDS, I.S.OPRS.8 

The type is used by Masterscope in a variety of ways when interpreting the set phrase: 

(1) Set types are used to disambiguate possible parsings. For example, both commands WHO SETS ArlY 
BOUND IN X OR USED BY Y and WHO SETS ANY BOUND IN X OR CALLED BY Y have the same r) 
general form. However, the first case is parsed as WHO SETS ANY (SOU'ND BY X OR USED BY Y) \ 
since both BOUND BY X and USED BY Y refer to variables; while the second case as WHO SETS ANY 
BOU'~D IN (X OR· CALLED BY Y), since CALLED BY Y and X must refer to functions. Note that 
parentheses may be used to group phrases. ' 

(2) The type is used to determine the modifier for USE: FOO USES WHICH RECORDS is equivalent to 
FOO USES WHO AS A RECORD FIELD. 

(3) The interpretation of CONTAIN depends on the type of its object: the command WHAT FUNCTIONS 
ARE CONTAINED IN MYFILE prints the list of functions in MYFILE; WHAT RECORDS ARE ON 
MY FILE printS the list of records. 

(4) The implicit "universe" in which a set expression is interpreted depends on the type: ANY VARIABLES 
@ GETD is in~erpreted as the set of all variables which have been noticed by Masterscope (Le .• bound or 

Bor abbreviations FNS. VARS. PROPNAMES or the singular forms FUNCTIO:~, FN. VARIABLE. VAR, FILE. 
PROPNAME. RECORD, FIELD. Note that most of these types correspond to built-in "file package types·' 
(see page 11.14). n 

13.U 



o 

C) 

o 

·0 

MASTERSCOPE 

used in any function which has been analyzed) that also have a definition. ANY FUNCTIONS @ (NEQ 
(GETTOPVAL X) 'NOSIND) is inteI1'reted as the set of all functions which have been noticed (either 
analyzed or called by a function which has been analyzed) that also have a top-level value. 

13.1.4 Conjunctions 

Sets may be joined by the conjunctions AND and OR or preceded by NOT to form new sets. AND is always 
interpreted as meaning "intersection": OR as "union", while NOT means "complement". For example, 
the set CALLING X AND NOT CALLED BY Y specifies the set of all functions which call the function 
X but are not called by Y. 

Masterscope's interpretation of AND and OR follow LISP conventions rather than the conventional English 
interpretation. For example "calling X and ytf. would, in English. be interpreted as the intersection of 
(CALLING X) and (CALLING Y); but Masterscope interprets CALLING X AND Y as CALLING (' X (' .... , 
AND 'Y); which is the null set. Only sets may be joined with conjunctions: joining modifiers, as in \.. 
USING X AS A RECORD FIELD OR PROPERTY NAME~ is not allowed: in this case~ the user must say 
USING X AS A RECORD FIELD OR USING X AS A PROPERTY NAME. 

As described above. the type of sets is used to disambiguate parsings. The algorithm used is to first try to 
match the type of the phr-ases being joined and then try to join with the longest preceding phrase. In any 
case, the user may group phrases with parentheses to specify the manner in which c·onjunctions should 
be parsed. 

13.2 PATHS 

In trying to work with large programs, the user can lose track of the hierarchy of functions. The 
Masterscope SHOW PATHS command aids the user by providing a map showing the calling structure of 
a set of functions. SHOW PATHS prints out a tree structure showing which functions call which other 
functions. For example, the command SHOW PATHS FROM MSPARSE will print out the strUcture of 
Masterscope's parser: 

1.MSPARSE 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

MSINIT MSMARKINVALID 
I MSINITH MSINITH 
MSINTERPRET MSRECORDFILE 
I MSPRINTWORDS 
I PARSE COMMAND GETNEXTWORD CHECKADV 
I I PARSERELATION {a} 
I I PARSESET {b} . 
I I PARSEOPTIONS {c} 
I I MERGECONJ GETNEXTWORD {5} 
I GETNEXTWORD {5} 
I FIXUPTYPES SUSJTYPE 
I I OBJTYPE 
I FIXUPCONJUNCTIONS MERGECONJ {9} 
I MATCHSCORE 
MSPRINTSENTENCE 

------------------------------------------------------ overflow - a 

13.13 

c··· 



i. 
I 
I -

I' 
"-.. :~. 

( .. '- .' 

t : .. :0: 
~. 

() 
Path Options 

16.PARSERELATION GETNEXTWORD {5} 
17. CHECKADV 

------------------------------------------------------ overflow - b 
19.PARSESET PARSESET 
20. GETNEXTWORD {5} 
21. PARSERELATION {6} 
22; • SUBPAR.SE GETNEXTWORP {5} 

------------------------------------------------------ overflow - c 
23.PARSEOPTIONS GETNEXTWORD {5} 
24. PARSESET {19} 

The above printout displays that the function MSPARSE calls MS IN IT \ MS I NTE RPRET, and MSPRI NTSENTENCE. 
MSINTERPRET in tum calls MSRECORDFILE. MSPRINTWORDS, PARSECOMMAND, GETNEXTWORD, FIXUPTYPfj 
and FIXUPCOr~JUNCTIONS. The numbers in braces {} after a function name are backward references: \ __ / 
they indicate that the tree for that function was expanded on a previous line. The lowercase letters in 
braces are forward references: they indicate that the tree for that function will be expanded below, since 
there is no more room on the line. The vert!cal bar is used to keep the output aligned.. 

Note: In Interlisp-D. the Browser Lispusers package modifies the SHOW PATHS command so the 
command's output is displayed as an undirected graph (see page 18.9). 

13.2.1 Path Options 

The SHOW PATHS command takes the fo;m: SHOW PATHS followed by some combination of the 
following path options: 

FROM 5.ZT [Masterscope Path Option} 
Display the function calls from the elements of SET. 

TO SET [Masterscope Path Option] 
Display the function calls leading 10 c~ements of SET. If TO is given before FROM n 
(or no FROM is given), the tree is "invenedtt and a message, (; nve rted tree) 
is printed to warn the user that if F N 1 appears after F N 2 it is because F N 1 is caIied 
by FN2. 

When both F ROM and TO are given. the first one indicates a set of functions which are to be displayed 
while the second restricts the paths that will be traced: Le .. the command SHOW PATHS FROM X TO Y 
will trace the elements of the set CALLED SOMEHOW BY X AND CALLING Y SOMEHOW. 

If TO is not given. TO KNOWN OR NOT @ GETD is assumed: that is. only functions which have been 
analyzed or which are undefined will be included.. Note that Masterscope will analyze a function while 
printing out the tree if that function has not previously been seen and it c'urrently has an EX P R definition: 
thus, any function which can be analyzed will be displayed.. 

AVOIDING SET [Masterscope Path Option] 
Do not display any function in SET. AMONG is recognized as a synonym 
for AVOIDING NOT. For example, SHOW PATHS TO ERROR AVOIDING ON 
FILE2 will not display (or trace) any function on FILE2. 

13.14 

(j 



o 

o 

NOTRACE SET 

SEPARATE SET 

LINELENGTH N 

lVIASTERSCOPE 

[Masterscope Path Option] 
Do not trace from any element of SET. NOTRACE differs from AVOIDING in that 
a function which is marked NOTRACE will be printed. but the tree beyond it will 
not- ·be expanded; the functions in an A VOl DIN G set will not be printed at all. 
For example. SHOW PATHS FROM A~~Y ON FILEl NOTRACE ON FILE2 will 
display the tree of calls eminating from FILE1. but will.not expand any function 
on FILE2. 

[Masterscope Path Option] 
Give each element of SET a separate tree. Note that F ROM and TO only insure L1.at 
the designated functions will be displayed. SEPARATE can be used to guarantee 
that certain functions will begin new tree structures. SE PARA TE functions are 
displayed in the same manner as overflow lines; i.e., when one of the functions 
indicated by SEPARATE is found. it is printed followed by a forward reference ~a 
lower-case letter in braces) and the tree for that function is then expanded below. 

[Masterscope Path Option] 
Resets LINE LENGTH to N before displaying the tree. The linelength is used to 
determine when a pan of the tree should "overfio~" and be expanded lower. 

13.3 ERROR MESSAGES 

When the user gives Masterscope a command. the command is first parsed. i.e. translated to an internal 
representatio~ and then the internal representation is interpreted. If a command cannot be parsed. e.g. 
if the user typed SHOW WHERE CALLED BY X, the message "Sorry, I can't parse that!" is 
printed and an error is generated. If the command is of the correct form but cannot be interpreted (e.g., 
the command EDIT WHERE ANY CONTAINS ANY) Masterscope will print the message "Sorry. that 
i so' t imp 1 emented!" and generate an error. If the €ommand requires that some functions having 
been analyzed (e.g., the command WHO CALLS X) and the database is empty, Masterscope will print the 
message "Sorry, no functions have been analyzed!" and generate an error. 

13.4 1\'IACRO EXPANSION 

As pan of analysis, Masterscope will expand the macro definition of called functions. if they are 
not otherwise defined (see page 5.17). Masterscope macro expansion is controlled by the 'variable 
MSMAC ROPROP S; 

MSMACROPROPS [Variable] 
Value is an ordered list of macro-propeny names that Masterscope will search to 
find a macro definition. Only the kinds of macros that appear on MSMACROPROPS 
will be expanded. All others will be treated' as function calls and left unexpanded. 

Initially (MAC RO). 

Note: MSMACROPROPS initially contains only MACRO (and not 10MACRO, DMACRO, 

13.15 

Co:. 
- . 



\:.: 

'. -, ~.; 
...... -.. 

Affecting Masterscope Analysis 

etc.) in the theory that the machine-dependent macro definitions are more likely 
·'optimizers" . 

Note that if you edit a macro, Masterscope will know to reanalyze the functions which call that macro. 
However, if your macro is of the "computed"macro'" style, and it calls functions' which you edit. 
Masterscope will not notice. You must be careful to tell masterscope to REANALYZE the appropriate 
functions (e.g.. if you edit FOOEXPANDER which is used to expand FOO macros, you have to·. REAffAL YZE 
ANY CALLING FOO. 

13.5 AFFECrING MASTERSCOPE ANALYSIS 

Masterscope analyzes the EXPR definitions of functions and notes in its database the relations that function 
has with other functions and with variables. To perform this analysis, Masterscope uses templates which 
describe the behavior of functions. Fot example. the information that SORT SMASHes its first argument 
is contained in the template for SORT. Masterscope initially contains templates for most system functions 
which set variables, test their arguments, or perform destructive· operations. 

A template is a list strucwre containing any of the following atoms: 

PPE 

NIL 

SET 

SMASH 

TEST 

PROP 

FUtJCTIO~J 

[in Masterscope template] 
If an expression appears in this location. there is most likely a parenthesis error. 

Masterscope notes this as a "caIr' to the function 6&ppe" (lowercase). Therefore. 
SHOW WHERE ANY CALLS ppe will print out all possible parenthesis errors. 
When Masterscope finds a possible parenthesis error in the course of analyzing a 
function definition. rather than printing the usual ... ", it prints out a "199 instead. 

[in Masterscope template] 
The expression occuring at this location is not evaluated. 

[in Masterscope template] 
A variable appearing at this place is set. 

[in Masterscope template] 
The value of this expression is smashed. 

[in Masterscope template] 
This expression is used as a predicate (that is, the only use of the value of the 
expression is whether it is NIL or nonOoN I L). 

[in Masterscope template] 
Tne value of this expression is used as a property name. If the expression is 
of the form (QUOTE ATOM). Masterscope will note that ATOM is USED AS A 
PROPERTY NAME. For example, the template for GETPROP is (EVAL PROP . 
PPE ). 

[in Master-.,cope template] 
The expression at this point is used as a functional argument For example. the 
·template for MAPC is (SMASH FUNCT ION FUNCTION . PPE). 

13.16 

(j 

() 
'-- / 

() 
\ / 



(~ u 

FUNCTIONAL 

EVAL 

RETURN 

(J TESTRETURN 
"-.;. 

EFFECT 

FETCH 

REPLACE 

RECORD 

l\'IASTERSCOPE 

[in Masterscope template] 
The expression at this point is used as a functional argument This is like 
FUNCTION. except that Masterscope distinguishes between functional arguments to 
functions which "compile open" from those that do not. For the latter (e.g. SORT 
and APPLY), FUNCTIONAL should be used rather than FUNCTION. 

.. : [in Masterscope template]. 
The expression at this location is evaluated (but not set. smashed. tested. used as a 
functional argument. etc.). 

[in Masterscope template] 
The value of the function (of which ulll$ is the template) is the value of this 
expression. 

[in Masterscope template] 
A combination of TEST arid RETURN: If the value of the function is non-N I L. C" 
then it is rerumed. For instance, a one-element COND clause is this way. 

[in Masterscope template] 
The expression at this location is evaluated. but the value is not used. 

[in J\lasterscope template] 
An atom at this location is a field which is fetched. 

[in Masterscope template] 
An atom at this location is a field . which is replaced. 

[in Masterscope template] 
An atom at this location is used as a record name. 

CREATE [in Masterscope template] 

BIND 

o 
CALL 

CLIS? 

,~ 

U 

An atom at this location is a record which is created.. -n 

[in Masterscope template] 
An atom at this location is a variable which is bound. 

[in Masterscope template] 
An atom at this location is a function which is called. 

[in Masterscope template] 
An atom at this location is used as a CLISP word. 

[in. Masterscope template} 
This atom. which can only occur as the first element of a template. allows one to 
specify a template for the CAR of the function form. If! doesn't appear. the CAR 
of the form is treated as if it had a CALL specified for it. In other words. the 
templates ( •. EVAL) and (! CALL .. EVAL) are equivalent. 

If the next atom after a! is NIL. this. specifies that the' function name should 
not be remembered. For example. the template for AND is (! NIL 4. TE ST 
RETURN). which means that if you see an "'ANO", don't remember it as being 
called. This keeps the Masterscope database from being cluttered by too many 
uninteresting relations; Masterscope also throws away relations for COND, CAR. 

I3.Ii 

c·::·' 

c 



I' 
\. '" '- .. 

Affecting Masterscope Analysis 

CDR. and a couple of others. 

In addition to the above atoms which occur in templates, there are some "special forms" which are lists 
keyed by their CAR. 

TEMPLATE [in Masterscope template] 
Any pan of a template may be preceded by the atom .. (tWo periods) which 
specifies that the template should be repeated an indefinite number (N~ 0) of times 
to fill out the expr~ssion. For example. the template for COND might be { .. 
(TEST •• EFFECT RETURN» while the template for SELECTQ is (EVAL •• 
(NIL •• EFFECT RETURN) RETURN). 

(BOTH TEMPLATEl TEMPLATE2 ) [in Masterscope template1 
Analyze the current expression twice, using the each of the templates in rum. 

( I F EXPRESSION TEMPLATEI TEMPLATE2 ) . [in Masterscope template} 
Evaluate EXPRESSION at analysis time (the variable EXPR will be bound to the 
exp ression which corresponds to the IF). and if the result is non-N I L. use 
TEMPLATE1, otherwise TEMPLATEzo If EXPRESSION is a literal atom. it is APPL Y'd 
to EXPR. For example, (IF LISTP-( RECORD FETCH) FETCH) specifies that if 
the current expression is a list, then the first element is a record name and the 
second element a field name, otherwise it is a field name. 

(@ EXPR..-='ORM TEM2'LATEFORM) [in Masterscope template] 
Evaluate EXPRFORM giving EXPR., evaluate TEMPLATEFORM giving TEMPLATE. 
Then analyze EXPR with TEMPLATE. @ lets the user compute on the fiy both a 
template and an expression to analyze it with. The forms can use the variable 
EXPR, which.is bound to the current expression. 

(MACRO • MACRO) [in Masterscope template] 
MACRO is interpreted in the same way as a macro (see page 5.17) and the resulting 
form is analyzed. If the template is the atom MACRO alone, Masterscope will use 
the MAC RO property of the function itself. This is useful when analyzing code 
which contains calls to user-defined ma...'!'os. If the user changes a macro property (-~) 
(e.g. by editing it) of an atom which has template of MACRO, Masterscope will 
mark any function which used that macro as needing to be reanalyzed. 

Some examples of templates: 

function 

DREVERSE 

AtJD 

MAPCAR 

COtlO 

template 

(SM~SH • PPE) 

(! NIL TEST •• RETURN) 

(EVAL FUNCTION FUNCTION) 

(! NIL •• (IF CDR (TEST •• EFFECT RETURN) (TESTRETURN • PPE») 

Templates may be changed and new templates defined using the functions: 

(GET~EMPLA TE FN) [Function] 
Returns the current template of FN. 

13.18 



/\ 
~J 

o 

o 

o 

MASTERSCOPE 

(SETTEMp·LATE FN TEMPLATE) [Function] 
Changes the template for the function FN and returns the old value. If any 
functions in the database are marked as calling FN, they will be marked as needing 
re-analysis. 

13.6 DATA BASE UPDATING 

c·· 

Masterscope is interfaced to the editor and file package so that it notes whenever a function has been 
changed.. either through editing or loading in a new definition. Whenever a command is given which 
requires knowing the information about a specmc functio~ if that function has been noted as being 
changed. the function is automatically re-analyzed before the command is interpreted. If the command 
requires that all the information in rne database be consistent (e.g., the user asks WHO CALLS X) then ( .. , ... 
all functions which have been marked as changed are re-analyzec_ 

13.i MASTERSCOPE ENTRIES 

(CALLS FN USEDATABASE -) [Function] 
FN can be a function name, a definition.. or a form. Note: CALLS will also work 
on compiled code. CALLS returnS·a list of four elements: a list of all the functions 
called by FN. 9 a list of all the variables bound in FN. a list of all the variables 
used freely in FN, and a list of the variables used globally in FN. For the purpose 
of CALLS. variables used freely which are on GLOBALVARS or have a property 
GLOBALVAR value T are considered to be used globally, If USEDATA.BASE is NIL 
(or FN is not a litatom), CALLS will perform a one-time analysis of FN. Otherwise 
(Le. if USEDATABASE is non-NIL and FN a function name), CALLS will use the 
infonnation in Masterscope's database (FN will be analyzed first if necessary). 

(CALLSCCODE FN -). [Function] C·.:. 
The sub-function of CALLS which analyzes compiled code. CALLSCCODE returns 
a list of jive elements: a list of all the functions called via "linked" function c~ 
a list of all functions called regularly, a list of variables bound in FN, a list of 
variables used freely. and a list of variables used globally. 

(FREEVARS FN USEDATABASE) [Function] 
Equivalent to (CADDR (CALLS FN US.E'DATABASE)). Returns the list of variables 
used freely within FN. 

(MASTERSCOPE COMMAND -) [Function] 
Top level entry to Masterscope. If COMMAND is NIL. will enter into a USEREXEC 
in which the user may enter commands. If COMMAND is not NIL. the command 

9F~nctions called via "linked" calls from compiled code are indicated by semicolons PACKed around 
theIr name: e.g. (CALLS 'MASTE RSCOPE) might return « ; MASTE RSCOPEXEC; ; MS INTERPRE i : 
;PRINT; HELP) --). This feature can be suppressed by setting NOPACKCALLSFLG to T. 

13.19 



:~~-

Masterscope -Entries 

is interpreted and MASTERSCOPE will return the value that would be printed by 
the command. Note that only the question commands return meaningful values. 

(SET-SYNONYM PHRASE MEANING -) [Function] 
Defines a new synonym for Masterscope's parser. Both PHRASE and MEAJ"w7NG 

are lists of words; anywhere PHRASE is seen in a command. MEANING will be sub
stituted. For example. (SETSYNONYM 'G,LOBALS '(VARS IN GLOBALVARS 
OR @(GETPROP X 'GLOBALVAR))) would allow the user to refer with the single 
word GLOBALS to the set of variables which are either in GLOBALVARS or have ~ 
GLOBALVAR property. 

The following functions are provided for users who wish to write their own routines using Masrerscope's 
database: 

(PARSERELATION RELATION) . [Function] 
RELATION is a relation phrase; e.g.. (PARSERELATION '( USE FREELY»). 
PARSERELATION returns an internal representation for RELATION. For use in 
conjunction with GETRELATION. 

(GETRELATION ITEM RELATION INVERTED) [Function] 
RELATION is an internal representation as rerurned by PARSERELATION (if not, 

• GETRELATION will first perform (PARSERELATION RELATION»); ~-M is an 
atom..; GETRELATION rerurns the list of all atoms which have the given relation 
to ITEM. For example. (GETRELATION 'X '(USE FREELY» rerums the list of 
variables that X uses freely. If INVERTED is T, the inverse relation is used; e.g. 
(GETRELATION 'X '(USE FREELY) T) rerumsthe list of functions which use 
X freely, . 

If ITEM is NIL. GETRELATION will rerum the list of atoms which have RELATION 

with any other item; Le., answers the question WHO RELATIONS ANY. Note that 
GETRELATION does not check to see if"TEM has been analyzed, or that other 
functions that have been changed have been re-analyzed. 

.. 

(j 

(TESTRELATION ITEM RELATION ITEM2 IN"VERTED) [Function] n 
equivalent to (MEMB ITEM2 (GETRELATION ITEM RELATION IN'VERTED»). that 
~ tests if ITEM and I'I'EM2 are related via RELATION. If ITEM2 is NIL. the call 
is equivalent to (NOT (NULL (GETRELATION ITEM RELATION IN'VE'RTED))). 
Le .• TESTRELATION tests if ITEM has the given RELATION with any other item. 

(MAPRELATION RELATION MAPFN) [Function] 
Calls the function MAPFN on every pair of items related via RELATION. If (NARGS 
MAPFN) is 1. then MAPFN is called on every item which has the given RELATION 
to any other item. . 

(MSNEEDUNSAVE FNS MSG MARKCHANGEFLG) [Function] 
Used to mark functions which depend on a changed record declaration (or macro. 
etc.), and wruch must be LOADed or UNSAVEd (see below). FNS is a list of 
functions to be marked, and MSG is a string describing the records. macros, etc, 
on which they depend. If MARKCHANGEFLG is non-NIL. each function in the list 
is marked as needing re-analysis. 

13.20 



o 

o 

l\1ASTERSCOPE 

(UPDATEFN FN EVENIFVALID -) [Function] 
Equivalent to the command ANALYZE 'FN: that is. UPOATEFN will analyze FN if 
FN has not been analyzed before or if it has been changed since the time it was 
analyzed.. If EVEN1FVALID is set. UPDATEFN will re-analyze FN even if Masterscope 
thinks it has a valid analysis in the database. 

(UPDATECHANGED) [Function] 
Performs (UPDATE FN FN) on every function which has been marked as changed.. 

(MSMARKCHANGED FN TYPE REASON) [Function] 
Mark that FN has been changed and needs to be reanalyzed.. See MARKASCHANGEO. 
page 11.11. 

(DUMPDAT ABASE FNLST) [Function] 
Dumps the current Masterscope database on the current output file in a LOADable 
form. If FNLST is not NIL. DUMPDATABASE will poly dump the information ("-~': . 
for the list of functions in FNLST. The variable DATABASECOMS is initialized 
to « E (DUMPDATABASE»)); thus. the user may merely perform (MAKEF-ILE 
'DATABASE .,EXTENSION) to save the current Masterscope database. If a 
Masterscope database already exists when a OAT ABASE file is loaded.. the database 
on the file will be merged with the one in core. Note that functions whose 
definitions are different from their definition when the database was made must be 
REANAL YZEd if their new definitions are to be noticed.. 

Tpe Databasefns package (page 23.15) provides a more convenient way of saving 
data bases along with the source files which they correspond to. 

13.8 NOTICING CHANGES THAT REQUIRE RECOMPILING 

When a record declaratio~ iterative statement operator or macro' is changed.. and Masterscope has 
"noticed" a use. of that declaration or macro (Le. it is used by some function known about in the data 
base), Masterscope will alert the user about those functions which might need to be re-compiled (e.g. 
they do not currently have EXPR definitions).lO The functions which need recompiling are added to the 
list MSNEEDUNSAVE and a message is printed out: 

The functions FNl, FN2 •••• use macros which have changed. 
Call UNSAVEFNS() to load and/or unsave them. 

In this situation. the following function is useful: 

(UNSAVEFNS -) [Function] 
Uses LOAOFNS or UUSAVEDEF to make sure that all functions in the list 
MSNEEOUNSAVE have EXPR definitions. and then sets MSNEEDUfJSAVE to NIL. 

l°Exua functions may be noticed; for ex amp le if F 00 contains (f etc h (R E C X) - - ). and some 
declaration other than REC which contains ~ is change~ ty1asterscope will still think that Faa needs to 
be loaded/unsaved.. 

13.21 

C"~ 



i 
i\.· 

Implementation Notes 

13.9 IMPLEMENTATION NOTES 

Masterscope keeps a database of the relations noticed when functions are analyzed. The relations are 
intersected to form "'primitive relationships" such that there is little or no overlap of any of the primitives. 
For example, the relation SET is stored as the union of SET LOCAL and SET FR'E E. The BIND relation is 
divided into 8 IND AS ARG, 8 IND AND NOT USE. and SET LOCAL. SMASH LOCAL: etc. Splitting the 
relations in this manner reduces the size of the database considerably, to the point where it is reasonable 
to maintain a Masterscope database for a large system of functions during a nOImal debugging session. 

Each primitive relationship is stored in a pair of hash-tables. one for the U forward" direction and one for 
the "reverse". For example, there are two hash table~ USE AS PROPERTY and USED AS PROPERTY. 
To retrieve the information from the database, Masterscope performs unions of the hash-values.' For 
example, to answer FOO 8 INDS WHO Masterscope will look in all of the tables which make up the 8 I NO n 
relation. The ·'intemal representation" returned by PARSERELATION is just a list of dotted pairs of 
hash-rabIes. To perfonn GETRELAT ION requires only mapping down that list. doing GETHASH's on the 
appropriate hash-tables and UNIONing the result. 

Hash tables are used for a variety of reasons: storage space is smaller, it is not necessary to maintain separate 
lis~ of which functions have been analyzed (a special table. DOESN'T DO ANYTHING is maintained for 
functions which neither call other functions nor bind or use any variables); and accessing is relatively fast. 
Within any of the tables. if the hash-value would be a list of one atom, then the atom itself, rather than. 
the list. is stored as the hash-value. This also reduces the size of the database significantly. 

13.22 

n 



o \ .... 

o 

o 

(SYSTEMTYPE) 

CHAPTER 14 

l\1ISCELLANEOUS 

[Function] 
The SYSTEMTYPE function is intended to allow programmers to write system
dependent code. SYSTEMTYPE rerurns a litatom corresponding to the implemen
tation of Interlisp: 0 (for Interlisp-D), TOPS-ZO. TEfdEX, JERICO, or VAX. 

In Interlisp-D (and Interlisp-lO), (SELECTQ (SYSTEMTYPE) ... ) expressions 
are expanded at compile time so that this is an effective way to perform conditional 
compilation. 

(USE RNAME A FLG) [Function] 
If A = NIL. returns login directory name; if A = T, returns connected directory 
name; if A is a number, USERNAME returns the user name corresponding to that 
user number. 

The value is usually returned as a string. If FLG is a string ptr, it is smashed. If 
FLG is not a string pointer and is non-NIL, USERNAME rewrns the value as an 
atom. 

(STORAGE FLG GCFLG) [Function] 
Prints the amount of storage used for various data types. The exact printout is 
implementation-dependent. STORAGE returns NIL. 

In Interlisp-lO. the storage used by a panicular type is only accurate immediately 
following a garbage collection of a related type. If GCFLG = T. S TO RAG E will 
perform the necessary garbage collections before printing its results. If FLG = T, 
includes storage used by and assigned to the system. 

( 0 I SM I SS MSECSWAlT TIMER) [Function] 

(APROPOS STRING 

In Interlisp-lO. dismisses the program for MSECSWAIT milliseconds. during which 
time the program uses no CPU time. Can be aboned by control-D. control-E. or 
control-B. 

In Interlisp-D. dismisses the current process for MSECSWAIT milliseconds. using the 
timer TIMER if given (see page 14.11). 

ALLFLG) [Function1 
(Currently only in Interlisp-D) Prints information about alilitatoms in the Interiisp 
system which contain the string STRING. APROPOS will print the argument lists 
of litatoms with function definitions. the values of litatoms with variable bindings. 
and the property names defined for litatoms with property lists. If ALLFLG is N I L~ 
this scan does not include "system internal" litatoms: otherwise. all litatoms are 
scanned.. 

14.1 



(NEGATE x) 

Saving Interlisp State 

Returns the negation of x. For example: 

(NEGATE '(MEMBER X V»~ =) (NOT (MEMBER X V»~ 

(NEGATE '(EQ X V»~ =) (NEQ X Y) 

[Function] 

(NEGATE '(AND X (NlISTP X») =) (OR (NUll X) (lISTP X» 

The following two functions are useful writing programs that wish to reuse a scratch list to collect together 
some result (Both of these compile open): 

(SCRATCHlIST LST X1 X2 ••• xN ) ~bda NoSpread Function] 
SCRATCHlIST sets up a context in which the value of LST is used as a 66scrarch" 
list. The expressions Xl' X 2t ••• XN are evaluated in turn. During the course of 
evaluation. any value passed to ADDTOSCRATCHlIST will be save~ reusing CONS 
cells from the value of LST. If the value of LST is not long enough. new CONS 
cells will be added onto its end. If the value of LST is NIL, the entire value of 
SCRATCHLIST will be "new'· (i.e. no CONS cells will be reused). 

(ADOTOSCRATCHLIST VALUE) [Function] 
For use under calls to SCRATCHLIST. VALUE is added on to the end of the value 
being collected by SCRATCHLIST. When SCRATCHlIST returns. its value is a list 
containing all of the things that AODTOSCRATCHlIST has added. 

14.1 SAVING INTERLISP STATE 

(LOGOUT FAST) [Function] 
Stops Interlisp, and returns· control to the operating system. From there, it is 
possible to continue Interlisp as of the LOGOUT. LOGOUT will not affect the state 
of open files. 

In Interlisp-D. LOGOUT writes out all altered pages from real memory to the file 
L; s p . vi rtua 1 memo This usually takes about 30 seconds on the Xerox 1100. If 
FAST is non-N I L. Interlisp is stopped without updating L ; s p . v i rt u a 1 memo Note 
that it will not be possible to restart Interlisp from the point of the LOGOUT, and 
it may not be possible to restart it at all. Typing (LOGOUT T) is preferable to 
just booting the machine. because it also does other cleanup operations (closing 
network connections. etc.). 

In Interlisp-lO. if Interlisp was started as a subsidiary fork (see SUBSY S. page 
22.21), control is returned to the higher fork. 

The function SY SOUT saves the current state of the Interlisp ~inual memory on a file. The file package 
(page 11.1) can be used to save particular function definitions and other arbitrary objectS on files. but 
SYSOUT saves the total state of the system. 

The file produced by SY SOUT (known as ··a sysout file", or simply ·'a sysout") can be restarted from the 
operating system (by typing LISP SYSOUTFILE in Interlisp-D or RUN SYSOUTFrLZ in Interlisp-10). Tnis 

14.2 

r) 
r· .. · 
'"- . 

n 
\ /....::;,. 



(9 l\1ISCELLANEOUS 

will restan Interlisp, and restore the vinual memory to the exact state that it had when the sysout file was 
made. 

(SYSOUT FILE) [Function] 
Saves the current state of the Interlisp virtual memory on the file FILE. in a form 
that can be subsequently restaned. The current State of program execution is saved 
in the sysout file. so (PROGN (SYSOUT 'Faa) (PRINT 'HELLO» will cause 
HE LLO to be printed after the sysout file is restarted. 

If FILE is non-NIL, the variable SYSOUTFILE is set to the body of FILE. If FILE 
is NIL, then the value of SYSOUTFILE instead. Therefore, (SYSOUT) will save 
the current state on the next higher version of a file with the same name as the 
previous SYSOUT. Also, if the extension for FILE is not specified, the value of 
SY SOUT . EXT is used. This is initially SY SOUT in Interlisp-D, SAV in Tenex 
Interlisp-lO, and EXE in !ops-20 Interlisp-10 .. 

SYSOUT sets SYSOUTDATE to (DATE), the time and date that the SYSOUT was 
performed. 

If SY SOUT was not able to create the sysout file. because of disk or computer error. 
or because there was not enough space on the directory, SYSOUT returns NIL. 
Otherwise it" returns the full file name of FILE. 

Actually. SYSOUT "rerums" twice: when the sysout file is first created, and 
when it is subsequently resr.a.ned. In the latter case, SY SOUT. returns the list 
(FILE • MAKESYSFILE). where FILE is the sysout file. and MAKESYSFILE is the 
original Interlisp makesys file (see MAKESYS. below). For example, (; f (LISTP 
(SYSOUT 'FOO» then (PRINT 'HELLO» will cause HELLO to be printed 
when the sysout file is restarted, but not when SYSOUT is initially performed. 

Note: SYSOUT does not save the state of any open files. WHENCLOSE (page 6.11) 
can be used to associate certain operations with open files so that when a SYSaUT 
is started up. these files will be reopened, and file pointers repositioned. 

In Interlisp-lO. a sysout file only contains the parts of the virtual memory that the user has changed. 
When the sysout file is restaned, the other pages are taken from the makesys file of the Interlisp system 
within which the sysout file was made (see MAKESY S. below). Therefore, whenever the Interlisp system 
is reassembled and/or reloaded, old sysout files are not compatible with the new system. 

In Interlisp-D, a sysout file con~ns a copy of the entire allocated virtual memory, so it is very large. A 
normal sized sysout file contains about 4000 pages. Unlike in Interlisp-l0. a sysout file is copied into the 

. virtual memory when it is restaned.. to it is perfectly pennissible to overwrite a sysout file' on top of the 
currently running sysour.. for example, (SY SOUT '{DSK} F 00. SY SOUT : 1) to overwrite F 00. SY SOUT 
on the local disk .. Not·only is this pemtissible. it is much faster than making a new sysout file (almost 
twice as fast. due to less disk overhead). Making a sysout file on the Xerox 1100 currently takes at least 
5~oo~ -

SYSOUT evaluates the expressions on BE FORESY SOUTFORMS before creating the sysout file. This variable 
initially includes expressions to: (1) Set the variables SYSOUTDATE and SYSOUTFILE as described 
above: (2) Default the sysout file name FIT..E according to the values of the variables SY SOUT FILE and 
SYSOUT. EXT. as described above: and (3) Perform any necessary operations on open files as specified 
by calls to WHENCLOSE (page 6.11). 

14.3 



( 

Saving Interlisp State 

After a sysout file is resraned (but not when ,it is initially created), SYSOUT evaluates the expressions 
on AFTERSYSOUTFORMS. This initially includes expressions to: (1) Perform any necessary operations on 
previously-opened files as specified by calls to WHENCLOSE (page 6.11): (2) [Interlisp-10 only] Reset the 
terminal line length with SETl INElENGTH (page 6.8); (3) [Interlisp-10 only] Reset the terminal control 
characters using SETTERMCHARS (page 17.59) if the operating system has changed from Tenex to Tops-20 
or vice versa: (4) Possibly print a message, as determined by the value of SYSOUTGAG (see below); and 
(5) Call SETINITIALS to reset the initials used for time-stamping (page 17.60). 

SYSOUTGAG 

(SYSIN FILE) 

(SYSOUTP FILE) 

[Variable] 
The value of SYSOUTGAG determines what is printed when a sysout file is restarted. 
If the value of SYSOUTGAG is a list. the list is evaluatecl and no additional message 
is printed. This allows the user to print a message. If SYSOUTGAG is non-NIL 
and not a list. no me~ge is printed. Finally, if SYSOUTGAG is NIL (its initial 
value), and the sysout file is being restarted by the same user that made the sysout . 
originally, the user is greeted by printing the value of HERALDSTRING (see below) 
followed by a greeting message. If the SYSOUT file was made by a different user. a 
message is printecl warning that the user profiles may be different (see page 14.5); 

[Function] 
[Interlisp-lO only] Restores the state of Interlisp from a sysout file. This is essentially 
the same as exiting Interlisp, and restaning a' sysout file from the operating system 
executive. If SY SIN returns NIL., there was a problem in reading the file. If FILE 
was not foun~ generates a FILE NOT FOUND error. 

. [Function] 
[Interlisp-10 only] ReOlrns the name of the original Interlisp makesys file (see 
MAKESYS, below) if FILE is a sysout file, otherwise NIL. 

FILE may also be a lFN. 

( MAK E SY S FILE NAME) [Function] 
Used to store a new Interlisp system on the "makesys file" FILE. Before this is 
done. the system is "initialized" by undoing the greet history, and clearing the 
display [Interlisp-D]. 

When the system is first started up. a "herald" is printed identifying the system. 
typically "Interl i SP-JC{ DATE ••• ". If NAME is non-NIL. MAKESYS will use 
it instead of Interl i SP-JC{ in the herald.. MAKESYS sets HERALDSTRING to the 
herald string printed out. 

MAKESYS also sets the variable MAKESYSDATE to (DATE). Le. the time and date 
the system was made. 

[n [nter1~sp-D. MAKESYS is almost the same as SYSOUT. except that it d<?es some cleaning-up operations 
(such as clearing the screen). In [nterlisp-10. however. MAKESYS is considerably different from SYSOUT. 
because it saves all of the pages in the Interlisp virrual memory, and allows the makesys file to be shared 
between multipie users. 

The Interlisp-10 system initially obtained by the 'user is shared: that is. all active users of Interiisp-10 
are actually using the same pages of memory. As a user adds to the system. private pages are added to 
his memory. Similarly. if the user changes anything in the original shared Interlisp-10. for example. by 
advising a system function. a private copy of the changed page is created. 

14.4 

(~ 
\ /' 

C"·--·"'·· '.,. 
, .' 



{) 
MISCELLANEOUS 

In addition to the swapping time saved by having several users accessing the same memory. the sharing 
mechanism pemlits a large saving in garbage collection time, since it is not necessary to garbage collect 
any data in the shared system. and thus Interlisp-10 does not need to chase from any pointers on shared 
pages during garbage collections. 

This reduction in garbage collection time is possible because the shared system usually is not modified 
very much by the user. If the shared system is changed extensively, the savings in time will vanish. 
because once a page that was initially shared is made private. every pointer on it must be assumed active. 
because it may be pointed to by something in the shared system. Since every pointer on an initially 
shared but now private page can also point to private data.. they must always be chased. 

A user may create his own shared system with the function MAKE SY S. If several people are using the 
same system. making the SYStem be shared will result in a savings in swapping ~e. Similarly. if a system 
is large and seldom modified, making it be shared will result in a reduction of garbage collection time, o and may therefore be wonhwhile even if the system is only being used by one user. 

One problem with using MAKESY S in Interiisp-10 is that it may protect large amounts of useless data from 
being garbage collected. For example, suppose that during the course of building an Interlisp system. 
a large number of list cells are used and discarded. If MAKESYS is now executed to store the system. 
all of that list cell space· is stored. and protected from garbage collection (unless the user changes those 
pages. making a personal copy). To solve this problem, it is necessary to make sure that as little storage 
as possible is allocated while creating a new system. perhaps by setting MIN F S (page 22.10) to a very low 
value. Of course, this will slow down Interlisp considerably, so making a new system will take a long 
time. 

14.2 GREETING AND USER PROFILES 

Many of the features of Interlisp are parameterized to allow the user to adjust the system to his or her own 
taStes. Among the more commonly adjusted parameters are PROMPT#FLG (page 8.18), DWIMWAIT (page 

. 15.11), CHANGESLICE (page 8.18), LOWERCASE (page 16.21), #UNDOSAVES (page 8.33), It~ITIALSLST 
(j (pag~ 17.60). etc. I~ additioIL the user can modify the action of system functions in ways not specifically 

. ~ . prOVided for by usmg ADVISE (page 10.9). 

In order to encourage this procedure, and to m'iike it as painless and automatic as possible. the 
programmeer's assistant includes a facility for both a site-defined profile and a user-defined profile. 
When Interlisp is first run. it calls the function GREET (see below). This provides a way of setting defaults 
for a particular community of users, patching bugs. etc. 

Greeting (Le .. the initialization) is undoable. and is stored as a separate event on the history list (page 
8.25). The user can explicitly invoke the greeting operation at any time via the function GREET. This can 
also be use to effect another user's initialization. 

(GREET NAME -) [Function] 
Performs the greeting for the user whose username is NAME (if NAME = NIL. uses 
the login name). When Interlisp first starts up, it perfonns (GREET). 

Before GREET performs the indicated initialization. it first undoes the effects of the 
previous greeting. The side effects of the greeting operation are stored on a global 
variable as well as the history list. thus enabling the prevlous greeting to be undone 

14.5 



Manipulating File Directories 

even ~f it is no longer on the history list. In addition, MA;~ESYS is advised to undo 
the effects of the previous greeting, thereby returning the system to a pristine state. 

GREET initializes in the following way: It first evaluates each item in the list 
PREGREETFORMS. then it loads the file returned from (GREETF ILEUAME' T), 
then it loads the file returned from (GREETF ILENAME USERNAME), then it 
evaluates each item on POSTGREETFORMS, and finally it prints a greeting such 
as uHe 110, xxx. ", where xxx is the FmsTNAME component of the user's entry 
on INIT IALSLST (page 17.60). The loads are performed "silently" by rebinding 
PRETTYHEADER (page 11.36) to NIL. 

(GREETFILENAME USER) [Function] 

GREETDATES 

GREETF ILENAME is a system-dependent function. Its purpose is to locate existing 
files used for greeting and return them. If USER is T, then it returns the filename 
of the site-defined profile (if it exists). Otherwise, USER is interpreted to be a user's O"~ 
system name" and it returns the filename for the user-defined profile (if it exists). \;..::. 

[Variable] 
The value of GREETDATES can be used to specify special greeting messages for 
various dates. GREETDA TES is a list of elements of the form (DATESTRING . 
STRING), e.g. ("25-DEC" . "Merry Ch ri stmas"). The user can add entries 
to this list in hislher INIT • LISP file by using a ADDVARS file package command 
like (ADDVARS (GREETDATES ("S-FEB" . "Happy Birthday"»). On 
the specified date. the G R E E T will use the indicated salutation. 

14.3 MAl'lIPULATING FILE DIRECTORIES 

The .following function allows the user to conveniently specify and/or program a variety of directory 
operations: 

(DIRECTORY F~ES CO~S DEFAULTEXT DEFAULTVERS) [Function] 
FILES is either [11 NIL (which is equivalent to •.• ; .); or [2] an atom which can 
contain S's or ·'5 (equivalent) which match any number of characters or ?'s which 
match a single character. or else [3] FILES is a list of the form (F~ES + FILES). 

(F~ES - FILES), or (FILES • FILES), 1 e.g., (T S + S l) will match with any 
file beginning with T or ending in L~ (TS - •• DCOM) matches all files that begin 
with T and are not. DCOM files. . 

For each file that matches. each command in COMMANDS is executed with the following interpretation: 

p 

PP 

a string 

Print file name. 

Print file name (except for version number). 

Prints the string. 

lOR can be used for +. and AND for *. 

14.6 



(9 

0 ~~. 

· . 

MISCELLANEOUS 

READDATE. WRITEDATE. CREATIONDATE 
SIZE, LENGTH,BYTESIZE 
PROTECTION, AUTHOR, TYPE 

COLLECT 

COUNTSIZE 

PAUSE 

PROMPT MESS 

OLDERTHAN N 

OLDVERSIONS 

BY USER 

@ X 

DELETED 

OUT FILE 

COLUMNS N 

N 

Prints the appropriate information returned by GETFILEINFO (page 6.6). 

The value of DIRECTORY wilJ be a list of file names; add the complete file name 
of this file to that list. 

The value of DIRECTORY will be a sum; add the size of this file to that sum. 

Wait until the user types any char before proceeding with the rest of the commands 
(good for display if you want to ponder). 

Prompts with MESS; if user responds with No, abon command processing for this 
file. 

Continue command processing if the file hasn't been referenced (read or written) 
in N days. 

Continue command processing if there are at least N more recent versions of the 
same file. 

Continue command processing if the file was last written by the given user. 

x is either a function of one argument (JF'N), a function of two arguments (JFN 
FILENAME) or an arbitrary expression which uses the variablers J FN andlor the 
variables FILENAME freely. If x returns NIL, abon command processing for this 
file. 

Allows DIRECTORY to examine deleted files (normally, they are not mapped over. 

Directs output to FILE. 

~ 

V TRIMTO N 

Attempt to format output in N columns (rather than just 1). 

Deletes all but N versions of file (N2:0). 

DELETE 

UNDELETE 

Deletes file. If this is specified. the value of DIRECTORY is NIL if no COLLECT 
command is specified. otherwise the list of files deleted. 

Undeletes the indicated files that have been deleted. 

DIRE CTORY uses 0 I RCOMMANDS to correct spelling, which also provides a way of defining abbreviations 
and synonyms (page 15.13). Currently the following abbreviations are recogniIed: 

AU 

COLLECT? 

DA 
TI 

=) AUTHOR 

=) PAUSE 

=) PROMPT " ? " COLLECT 

=) WRITEDATE 

14.7 



DEL 

DEL? 
DELETE? 

OLD 

PR 

SI 

=) 

=) 

=) 

=) 

=) 

Sorting Lists 

DELETE 

PROMPT" delete? " DELETE 

OLDERTHAN 90 

PROTECTION 

SIZE 

( F I LD I R FILEGROUP -) [Function] 
FILEGROUP is a file group descriptor. Le.. it can contain stars. F I LD I R returns 
a list of the files which match FILEGR 0 up. a la the DIRECTORY function., e.g .• 
( F I LD I R ' •• COM; 0). 

There is also a programmer's assistant command DIR which calls the function DIRECTORY: 

D I R FILES • COMMANDS [prog. Asst. Command] 
Calls the function DIRE C TORY with (P . COMMANDS) as the command list and 
• and • as the default extension and default version respectively. 

For example. to DELVER only those files which you o~ do D IR FILES PROMPT "1" TRIMTO 1. 

14.4 SORTING LISTS 

(SORT DATA COMPAREFN) [Function] 
DATA is a list of items to be sorted using COMPAREFN, a predicate function of two 
arguments which can compare any two items on DATA and return T if the first 
one belongs before the second. If COMPAR.EFN is NIL, ALPHORDER is used; thus 
(SORT DATA) will alphabetize a list. If COMPAREFN is. T. CAR's of items that 
are lists are given to ALPHORDER, otherwise the items themselves; thus (SORT 
A-LIST T) will alphabetize an assoc list by the CAR of each item. (SORT X 
, ILESSP) will sort a list of integers. 

The value of SORT is t.~e sorted list. The sort is destructive and uses no extra 
storage. The value rerurned is E Q to DATA but elements have been switched 
around. Interrupting with concrol D. E. or B may cause loss of data. but control 
H may be used at any time. and SORT will break at a clean state from which l' or 
control characters are safe. The algorithm used by SORT is such that the maximum 
number of compares is N*1og2'N. where N is (LENGTH DATA). 

Note: if (COMPAREFN A 8) = (COMPAREFN B A), then the ordering of A and 
B mayor may not be preserved. 

For example. if (FOe . FIE) appears before (FOO . FUM) in X. (SORT X T) 
mayor may not reverse the order of these twO elements. Of course. the user can 
always specify a more precise COMPAREFN. 

14.8 

o r 
~ 

'-

,f\. 
'. /. '" ~ .. 



() 
c:· MISCELLANEOUS 

(MERGE A B COMPAREFN) [Function] 

(ALPHORDER A B) 

A and B are lists which have previously been soned using SORT and COMPAREFN. 

Value is a destructive merging of the two lists. It does not matter which list is 
longer. After merging both A and B are equal to the merged list. (In fact. (CDR 
A) is EQ to (CDR B»). MERGE may be aboned after control-H. 

[Function] 
A predicate function of two arguments, for alphabetizing. Returns T if its arguments 
are in order, i.e .• if B does not belong before A. Numbers come before literal atoms, 
and are ordered by magnitude (using G REA TE RP). Literal atoms and strings are 
ordered by comparing the character codes in their pnames. Thus (ALPHORDER 23 
123) is T, whereas (ALPHORDER 'A23 'A123) is NIL, because the character 
code for the digit 2 is greater than the code for 1. 

Atoms and strings are ordered before all other data types. If neither A nor B are 
atoms or strings, the value of ALPHCRDE R is T, Le~, in order. 

Note: ALPHORDER does no UNPACKs, CHCONs, CONSes or NTHCHARs. It is several 
times faster for alphabetizing than anything that can be written using these other 
functions. 

(MERGEI1JSERT NEW LST ONEFLG) [Function] 
LST is NIL or a list of partially saned items. MERGEINSERT tries to find the 
"b .. est" place to (destrUctively) insen NEW, e.g., 

{MERGEINSERT 'FIE2 '(FOC FOOl FIE FUM» 
=> (FOC FOOt FIE FIE2 FUM) 

Returns LST. MERGEINSERT is undoable. 

If ONEFLG=T and NEW is already a member of LST, MERGEINSERT does nothing 
and rerums LST. 

,./'\ MERGEINSERT is used by ADDTOFILE (page 11.33) to insen the name of a new function into a list of 
\..~ functions. The algorithm is essentially to look for the item with the longest common leading sequence of 

characters with respect to NEW. and then merge NEW in starting at that point. 

o 

(COMPARELISTS x Y) [Function] 
Compares x and yand prints their differences, i.e .• COMPARELISTS is essentially 
a SRCCCM for list structures. 

14.5 DA TEITI1\1E FUNCfIONS 

(DATE -) [Function] 
Obtzins date and time. returning it as a single string with format "DD- ."JM- YY 

HE: MUM: 55'·. where DD is day. MM is month. YY year. Em hours. MM¥ minutes. 
SS seconds. e~g.. "14 - MA Y - i 1 14: 26 : 08". 

In Interiisp-10. DATE will accept FORMATBITS as"an argument. which can be used 

14.9 



(IOATE STR) 

Timers and Duration Functions 

·to specify other formats. e.g.. day of wee~ time zone. etc.. as described in the 
JSYS manual. 

[Function1 
STR is a date and time string. Value of IDATE is STR convened to a number 
such that if DATEl is before (earlier than) DATE20 then (IDATE DATE 1 ) < (IDATE 
DATE2 ). (IDATE) returns (IOATE (DATE». -. 

( GOA T E DATE FORMATBI'I'S STRPTR) [Function] 
Interlisp-lO function for obtaining time-date formatted string, DATE is in internal 
date-and-time format. If NIL. current time and date is used. i.e. value of 
( IDA T E ). FORMATBITS is 36 bit quantity to be passed to TENEXITOPS 20 
time-date conversion routines (see JSYS manual). For example. FORMATBITs=-l 
gives a "long" date, e.g. "FRIDAY, JUN 16, 1978, 23:41:52-POT". If 

( FORMAT BITS = NIL. defaults to a value which will produce the same fonnat as that 
of (DATE), Le. "DD-MM-YY 1m: MUM: 5S". STRPTR is an optional string pointer 
to be reused. In this case. the string characters are stored in an internal scratch 
string, MACSCRATCHSTRING. so that a subsequent call to GOATE will overwrite 
the characters returned by this one. Note that this internal scratch string is also 
used by several other functions in this section. 

(CLOCK N -) 

The dateformat package (page 23.57) provides a convenient way of specifying the 
format birs in terms of keywords. 

For N=O. 

For N=2. 

For N=3, 

[Func~on] 

returns the current value of the time of day clock i.e.. number of 
milliseconds since last system start up. 

returns the value of the time of day clock when the user started up 
this Inter-lisp. Le .• difference between (CLOCK 0) and (CLOCK 
1) is number of milliseconds (real time) since this Interlisp was 
started. 

returns the number of milliseconds of compute- time since user 
started up this Interlisp (garbage collection time is subtracted off). 

returns the number of milliseconds of compute time spent in 
garbage collections (all types).2 

14.6 11lVIERS AND DURA nON FUNCTIONS 

Often one needs to loop over some code, stopping when a cenain interval of time has passed. Some 
systems provide an "alarmclock" facility, which provides an asynchronous interrupt when a time interval 
runs out. This is not particularly feasible in the current Interlisp-D envirornment so the following facilities 
are supplied for efficiently testing for the expiration of a time interval in a loop context. 

2In Interlisp-lO, this number is directly accessible via the COREVAL GCTIM. 

14.10 

--' 

r.· '\... ~r 



() 
C.·.::. 

o 

lVllSCELLANEOUS 

Three functions are provided: SETUPTIMER, SETUPTIMER.DATE, and TIMEREXPIRED? Also several 
new Ls.oprs have been defined: forDuration, during, untilDate. timerUnits, usingTimer, 
and resourceName (reasonable variations on upper/lower case are permissible). 

These functions use an object called a Timer. which encodes a future clock time at which a signal is 
desired.. A Timer is constrUcted by the functions SETUPTIMER and SETUPTIMER. DATE. and is created 
with a basic clock "unit" selected from among SECONDS, MILLISECONDS, or TICKS. The first two timer 
units provide a machine/system independent interface. and the latter provides access to the "real". basic 
strobe unit of the machine's clock on which the program is running. The default unit is MILLISECONDS. 

Currently. the rICKS unit is the same as the MILLISECONDS unit for Interlisp-lO and Interlisp/VAX. 
In Interllsp-D, the TICKS unit is a function of the particular machine that Interlisp-D is running on: The 
Xerox 1100 and 1132 have about 0.5952 microseconds per tick (1680 ticks per millisecond): The Xerox 
1108 has about 28.78 microseconds per tick (34.746 ticks per millisecond). The advantage of using TICKS 
rather than one of the· uniform interfaces is primarily speed; e.g .• on a Xerox 1100. it may take as much as 
400 microseconds to interface the milliseconds clock (a software facility acOlally based over the real clock), 
whereas reading the real clock itself should take less than about ten microseconds. The disad.vantage 
of the TICKS unit is its short roil-over interval (about 20.minutes) compared to the MILLISECO~~DS 
roll-over interval (about about two weeks), and also the dependency on particular machine parameters. 

(SETUPTIMER lNTERVAL OLDTIMER? TIMERUNITS INTERVALUNITS) [Function] 
SETUPTIMER returns a Timer that will "go off' (as tested by TIMEREXPIRED?) 
after a specified time-interval measured from the current clock time. SETUPTIMER 
has one required and three optional arguments: 

INTERVAL must be a integer specifying how long an interval is desired.. TIMERUNITS 
specifies the units of measure for the interval (defaults to MILLISECONDS) .. 

If OLDTIMER.? is a Timer. it wiil be reused and returned, rather than allocating 
a new Timer. INTERVALtJ'7m'S specifies the units in which the OLDTIMER? is 
expressed (defaults to the yalue of TIMERUNTTS. 

(SETUPTIMER .DATE DTS OLDTIMER?) [Function] 
SETUPTIMER.DATE returns a Timer (using the SECONDS time unit) that will "go 
ofr' at a specified date and time. DTS is a DatelTime string such as IDA T E accepts 
(page 14.10). If OLD TIMER? is a Timer, it will be reused and returned, rather than 
allocating a new Timer. 

SETUPTIMER. DATE operates by first subtracting (IDATE) from (IDATE DTS), 

so there may be some large integer creation involved. even if OLDTIMER? is given. 

(TIMEREXPIRED? TIMER CLOCK'VALUE.OR.T1MERUNITS) [Function] 
If TIJ4R is a Timer, and CLOCKVALUE.OR. TIMER~TI'S is the time-unit of TIMER, 
TIMEREXPIRED? returns true if TIMER has "gone off". 

CLOCKVALUE.OR.TIMERUNITS can also be a Timer. in which case TIMEREXP IRED? 
compares the two timers (using the same time units). If X and Y are Timers. then 
(TIMEREXPIRED? X' Y) is true if X is set for a later time than Y. 

There are a number of Ls.oprs that make it easier to use Timers in iterative statements (page 4.5). These 
i.s.oprs are given below in the ··canonicar' form. with the second ·.'word" capitalized, but the allWaps and 
ali-lower-case versions are also acceptable. 

14.11 



Timers and Duration Functions 

forDuration ~RVAL 
duri n9 INTERVAL 

[1.5. Operator] 
[1.5. Operator1-

INTERVAL is an integer specifying an interval of time during which the iterative 
statement will loop. 

timerUnits UNITS [LS. Operator] 
UNITS specifies the time units of the INTERVAL specified in forO u rat; 0 n. 

unt; 1 Oa te DTS [1.5. Operator1 
DTS is a DatelTime string (such as IDATE accepts) specifying when the iterative 
statement should stop looping. . 

us ; n 9 T ; me r TIMER [LS. Operator] 
If us; n 9 T ; me r is given., TIMER is reused as the timer for forD u rat; 0 n or (1. 
unt i 1 Date, rather than creating a new timer. This can reduce allocation if one ' 
of these i.s.opI'S is used within another loop. ~-G;~1 

resourceName RESOURCE [1.S. Operator] 
RESOURCE specifies a GLOBALRESOURCES name to be used as the timer storage. 
If RESOURCE = T, it will be converted to a common internal name. 

Some examples: 

(during 6MONTHS timerUnits 'SEeS 
until (TENANT-VACATED? HouseHolde~) 
do (DISMISS (for-about-a-day» 

(HARRASS HouseHolder) 
finally (if (NOT (TENANT-VACATED? HouseHolder» 

then (EVICT-TENANT HouseHolder») 

This humorous little example shows that how is is possible to have two termination condition: (1) when the 
time interval of 6MONTHS has elapse<i or (2) when the predicate (TENANT-VACATED? HouseHol der) 
becomes true. Note that the '~finally" clause is executed regardless of which termination 'condition caused 
it. 

(do (forDuration (CONSTANT (ITIMES 10 24 60 60 1000» 
do (CARRY.ON.AS.U5UAL) 
finally (PROMPTPRINT "Have you- had your lO-day check-up?"») 

This infinite loop breaks out with a warning message every 10 days. One could question whether the 
millisecond clock, which is used by defaul~ is appropriate for this loop. since it rolls-over about every 
two weeks. 

CSETQ \RandomTimer (5ETUPTIMER 0» 
(untilDate "31-DEC-83 23:59:59" usingTimer \RandomTimer 

when (WINNING?) do (RETURN) 
finally (ERROR "You've been losing this whole year!"» 

Here we see a usage of an explicit date for the time intervat also. the user has squirreled away some 
storage (as the value of\RandomTimer) for use by the call to SETUPTIMER in this loop. 

(forDuration SOMEI~TERVAL 
resourcename '\INNERLOOPBOX 

14.12 



() c ... 

;------... 
l ) 

~. 

MISCELLAl\"EOUS 

timerunits 'TICKS 
do (CRITICAl.INNER.LOOP» 

For this loop, the user doesn't want any CONSing to take place, so \INNERLOOPBOX will be defined as 
a GLOBALRESOURCES which "caches" a timer cell (if it isn't already so defined), and wraps the entire 
statement in a GlOBALRESOURCE call. Funhetmore, he has specified a time unit of TICKS, for lower 
overhead in this critical inner loop. In fact specifying are sou rc en arne of T would have been the same as 
specifying it to be \ForDurat ionOfBox; this is just a simpler way to specify that a GLOBALRESOURCE 
is wanted. without having to think up a name. 

14.7 GAmSPACE 

For users with large programs and data bases, the user mal' sometimes find himself in a situation where 
he needs to obtain more space, and is willing' to pay the price of eliminating some or all of the context 
information that the various user-assistance facilities such as the programmer's assistant. file package, 
CLISP, etc., have accumulated during the course of his session. The following function is available for 
this purpose. 

(GAINSPACE) 

For example: 

.. (GAINSPACE) 

[Function] 
Prints a list of deletable objects, allowing the user to specify at each point what 
should be discarded and what should be retained. . 

purge history 1 ists ? Yes 
purge e~erything, or just the properties, e.g., SIDE, LISPXPRINT t etc. ? 
just the properties 
discard definitions on property lists? Yes 
discard old values of variables? Yes 
erase properties? No 
erase ClISP translations? Yes 

GAINSPACE is driven by the list GAINSPACEF.ORMS. Each element on GAlNSPACEFORMS is of the 
form (PRECHECK MESSAGE FORM KEYLST). If PRECHECK. when evaluated. returns NIL. GA I NS PAC E 
skips to the next entry. 'For example. the user will not be asked whether or not to purge the history 
list if it is not enabled. Otherwise, ASKUSER (page. 6.57) is called ~ith the indicated MESSAGE and the 
(optional) KEYLST. If the user responds No. i.e .. A$KUSER returns N. GAl NSPACE skips to the next entry. 
Otherwise. FORM is evaluated with the variable RESPONSE bound to the value of ASKUSER. In the 
above example. the FORM for the "purge history 1 ists" question calls ASKUSER to ask "purge 
everyth i ng I ••• n only if the user had responded Yes. If the user had responded with Everything. the 
second question would not have been asked. . 

The "erase properties" question is driven by a list SMASHPROPSMENU. Each element on this list 
is of the fonn (MESSAGE-. PROPS). The user is prompted with MESSAGE (by ASKUSER). and if he 

14.13 



Performance Measuring Functions 

responds Yes~ PROPS is added to the list SMASHPROPS. The udiscard definitions on property 
1 ists" and "discard old values of variables" questions also add to SMASHPROPS. The user 
will not be prompted for any entry on SMASHPROPSMENU for which all of the corresponding propenies 
are already on SMASHPROPS. SMASHPROPS is initially set to the value of SMASHPROPSLST. This pennits 
the user to specify in advance those properties which he always wants to be discarded. and not be asked 
about them subsequently. After finishing all the entries on GAINSPACEFORMS. GAINSPACE checks to 
see if the value of SMASHPROPS is non-NIL. and if so, does a MAPA TOMS. i.e .. looks at every atom in 
the system., and erases the indicated properties. 

Note that the user can change or add new entries to GAINSPACEFORMS or SMASHPROPSMENU. so that 
GAINSPACE can also be used to purge structures that the user's programs have accumulated. 

14.8 PERFORMANCE MEASURING FUNCTIONS 

(CONSCOUNT N) [Function] 
(CONSCOUNT) returns the number of CONSes since Interlisp staned up. If N is 
not NIL., resets CONSCOUNT to N. 

(BOXCOUNT'TYPE N) [Function] 

(PAGEFAULTS) 

Returns the number of boxing operations for the data type TYPE (see page 2.36) 
since Interlisp staned up. If N is not NIL .. the corresponding counter is reset to N. 

In Interlisp-10. if TYPE = NIL., BOXCOUNT returns the number of large integer 
boxes; if TYPE is non-N I L. it returns the number of floating boxes. These counters 
are directly accessible via the COREVALs IBOXCN and FBOXCN. 

In Interlisp-D, TYPE can be any datatype name. in addition to FI~P and FLOATP. 

[Function] 

() 
E'~: 

\. / 

(~:'~:. 

Returns the number of page faults since Interlisp started up. (--"j 
\ 

(TIME TIMEX TIMEN TIMETYPE) [NLambda Function] C~ 
An nlambda function. It executes the computation TIMEX. and prints out the 
number of conses and computation time. Garbage collection time is subtracted 
out. For example, in Inreriisp-10: 

~TIME(LOAD (QUOTE PRETTY) (QUOTE PROP] 
FILE CREATED 1-AUG-78 14:56:12 
PRETTYCOMS 
collecting lists 
582, 10291 free cells 
13169 CONSES 
29.484 SECONDS 
PRETTY 

If TIMEN is greater than 1 (TL\1EN=NIL is equivalent to TTMEN= 1). TD.!EX 

is executed TIMEN times. and TIME prinrs out (number of conses}/TruEN. and 
(computation time}/TIMEN. This is useful fur more accurate measurement on small 
computations. e.g. 

14.14 



MISCELLAl'lEOUS 

~TIME«COPY (QUOTE (A B C») 10) 
30/10 = 3 CONSES 
.055/10 = .0055 SECONDS 
(A B C) 

If TIMETYPE is 0, TIME measures and prints total real time as well as computation 
time, e.g. 

~TIME«LOAD (QUOTE PRETTY) (QUOTE PROP» 1 0] 
FILE CREATED 7-MAY-71 12:47:14 
GC: 8 
582, 10291 FREE WORDS 
PRETTYFNS 
PRETTYVARS 
3727 CONSES 
11.193 SECONDS 
27.378 SECONDS, REAL TIME 
PRETTY 

If TIMETYPE = 3, T Uti E measures and prints garbage collection time as well as 
computation time, e.g. 

~TIME«LOAD (QUOTE PRETTY) (QUOTE PROP» 1 3] 
FILE CREATED 7-MAY-71 12:47:14 
GC: 8 
582, 1091 FREE WORDS 
PRETTYFNS 
PRETTYVARS 
3727 CONSES 
10.597 SECONDS Q 

1.487 SECONDS, GARBAGE COLLECTION TIME 
PRETTY 

Another option is TlMETYPE=T. in which case TIME measures and printS· the 
number of pagefaults. 

The value of TIME is the value of the last evaluation of TIMEX. 

14.8.1 BREAKDOWN 

TIME collects statistics for whole computations. BREAKDOWN is available to analyze the breakdown of 
computation time (or any other measureable quantity) function by function. 

(BREAKDOWN FNl ... FNN) [NLambda NoSpread Function] 
The user calls BREAKDOWN giving it a list of function names (unevaluated). These 
functions are m0Ciified so that they keep track of various statistics. 

To remove functions from those being monitored. simply UNBREAK (page 10.6) 
the functions. thereby restoring them to their original state. To add functions. 
call BREAKDOWN on the new functions. This will not reset the counters for any 
functions not on the new list. However (BREAKDOWN) will zero the counters of 

14.15 



BREAKDOWN 

all functions being monitored. 

The procedure used for measuring is such that if one function calls other and both 
are "broken ~own", then the time (or whatever quantity is tieing measured) spent· 
in the inner function is nOl charged to the outer function as well. 

Note: BREAKDOWN will not give accurate results if a function being measured is 
not returned from normally, e.g .• a lower RETFROM (or ERROR) bypasses it. In this 
case, all of the time (or whatever quantity is being measured) between the time 
that function is entered and the time the next function being measured is entered' 
will be charged to the first function. 

(B RKDWN RESULT S RETURNVALUESFLG) [Function1 

(\ 

\_- -) 
r'·:: "::.:. .... ~-

BRKDWNRESUL TS prints the analysis of the statistics requested as well as the number (----\ 

Example: . 

of calls to each function. If RETURNVALUESFLG is nonoNIL. BRKDWNRESUL TS \ J 

will not to print the results, but instead retum them in the form of a list of elements l ":) 
of the form (FNNAMB #CALLS VALUE). 

~ (BREAKDOWN SUPERPRINT SUBPRINT 
(SUPERPRINT SUBPRINT COMMENT1) 

COMMEr~Tl ) 

~ (PRETTYDEF '(SUPERPRINT) 'FOO) 
FOa. : 3 
~ (BRKDWNRESULTS) 
FUNCTIONS TIME #CALLS 

365 
141 
8 
514 

PER CALL % 
SUPERPRINT 8.261 0.023 20 
SUBPRINT 31.910 0.226 76 
COMMENTl 1.612 0.201 4 
TOTAL 41.783 0.081 
NIL 
~ (BRKDWNRESULTS T) 
«SUPERPRINT 365 8261) (SUBPRINT 141 31910) (COMMENTl 8 1612» 

B R EAKDO~JN can be used to measure other statistics, by setting the following variables: 

BRKDWNTYPE 

BRKDWNTYPES 

[Variable} 
To use BREAKDOWN to measure other statistics. before calling BREAKDOWN. set the 
variable BRKDWNTYPE to the quantity of interest. e.g .• TIME. CONSES. etc. or a 
list of such quantities. Whenever BREAKDOWN is called with BRKDWNTYPE not 
NIL .. BREAKDOWN perfonns the necessary changes to its internal state to conform 
to the new analysis. [n particular. if this is the first time an analysis is being run 
with a p~cular statistic. a measuring function will be defined. and the compiler 
will be called to compile it. The functions being broken down will be redefined 
to call this meaSuring- function. When BREAKDOWN is through initializing, it sets 
BRKDWNTYPE back to NIL. Subsequent calls to BREAKDOWN will measure the new 
statistic until BRKDWNTYPE is again set and a new BREAKDOWN performed. 

[Variable} 
The list B RKDWNTY PES contains the information used to analyze new statistics. 
Each entry on BRKDWNTYPES should be of the form (TYPE FORM FUNCTION). 

where TYPE is a Statistic name (as would appear in B RKDWNTYPE). FOR.\! 

14.16 



MISCELLANEOUS 

computes the statistic. and FUNCTION (optional) converts the value of form to 
some more interesting quantity. For example. (TIME (CLOCK 2) (LAMBDA 
(X) (FQUOT I ENT X 1000») measures computation time and repons the result 
in seconds instead of milliseconds. BRKDWNTYPES currently contains entries for 
TIME, COr~SES, PAGEFAUL TS. BOXES, and FBOXES. 

'Example: 

~ (SETQ BRKDWNTYPE '(TIME CONSES» 
(TIME CONSES) 
~ (BREAKDOWN MATCH CONSTRUCT) 
(MATCH CONSTRUCT) 
~ (FLIP '(A BCD E F G H C Z) , ( •• $1 #2 .. ) , ( .• #3 •• » 
(A B 0 E F G H Z) i:=J' ~ (BRKDWNRESULTS) t.- .. ~ FUNCTIONS TIME #CALLS PER CALL % 
MATCH 0.036 1 0.036 54 
CONSTRUCT 0.031 . 1 0.031 46 
TOTAL 0.067 2 0.033 
FUNCTIONS CONSES IICALLS PER CALL % 
MATCH 32 1 32.000 40 
CONSTRUCT 49 1 49.000 60 
TOTAL 81 2 40.500 
NIL 

Occasionally, a function being analyzed is sufficiently fast that the overhead involved in measuring it 
obscures the actual time spent in the function.. If the user were using TIME. 'he would specify a value 
for TIMEN greater than 1 to give greater accuracy. A similar option is available for BREAKDOWN. The 
user can specify that a function(s) be executed a multiple number of times for each measurement.. 
and the avera~e value reponed. by including a number in the list of functions given to BREAKDOWN, 
e.g., BREAKDOWN(EDITCOM EDIT4F 10 EOIT4E EQP) means normal breakdown for EDITCOM and 
ED IT 4F but executes (the body of) ED IT 4E and EQP 10 times each time they are called.. Of course. the 
functions so measured must not cause any harmful side effec~ since they are executed more than once 

(~), for each call. The printout from BRKDWNRESUL TS will look the same as though each function were run 
~ only once. except that the measurement will be more accurate. 

Another way of obtaining more accurate measurement is to expand the call to the measuring function 
in-line. If the value of BRKDWNCOMP F LG is non-N I L (initially NIL), then whenever a function is broken
dow~ it will be redefined to call the measuring function. and then recompiled. The measuring function is 
expanded in-line via an appropriate macro. In addition. whenever B RKDWNTYP E is reset. the compiler is 
called for'all functions for which BRKDWNCOMPFLG was set at the time they were originally broken-down. 
Le. the, setting of the flag at the time a function is broken-down determines whether the call to th~ 
measuring code is compiled in-line. 

14.9 . PAGE MAPPED FILES 

This facility allows paged access to files. It manages a set of paging buffers as a least-recently-used queue. 
with each buffer being a full-page block. Facilities are provided for allocating and deallocating buffers. 

14.17 



Page wlapped Files 

locking down pages. mapping a given page of the file into core. and getting the in-core location to which 
a given word of the file has been mapped. Any number of files can be mapped in at one time. 

Note: Interlisp-D implements the page-mapping primitives of Interlisp-lO with some notable differences 
that might reo quire major reworking of programs that rely on these facilities. The major difference is that 
an Interlisp-D page contains 256 16-bit words. rather than the 512 36-bit words of Interlisp-lO. A given 
page number or file address for MAPPAGE or MAPWORD will correspond to a very different number of 
bits from the beginning of the file. and WORDCONTENTS and SETWOROCONTENTS mov"e smaller amounts 
of information. A second difference is that buffers are completely integrated into the Interlisp-D storage 
management system so that a page is guaranteed to be locked down as long as the user holds a pointer to 
it. The functions LOCKMAP and UNLOCKMAP are therefore unnecessary, but for compatibility are defined 
with dummy definitions . 

. -"1le following scenario illustrates the use a f these facilities: The user first opens the file (or files) that 
·,le wants to access by page-mapping using any of the ordinary fileoopening functions. Then. to examine 
a particular word in one of the files. the user simply gives the word number and the file's name to the 
function MAPWORD, which returns a pointer to the in-core location that that word is mapped to (Le. the 
address as an unboxed number). When he has finished processing, the user simply closes the file (e.g. 
using CLOSEF) and the buffers are automatically unmapped. . I 

The basic functions are: 

(ADDMAPBUFFER TEMP ERRORFLG) [Function] 
Initially, a single buffer is allocatecL so that page-mapping may be done without 
funher initialization. More buffers can be allocated by ADDMAPBUF FER. which may 
help to avoid thrashing. ADDMAPBUFFER attempts to allocate a single new buffer. 
and returns non-N I L if successful. If there is not enough space to allocate a new 
buffer. then ifERRORFLG is NIL. ADDMAPBUFFER simply returns NIL. Otherwise. 
ADDMAPBUFFER causes an error UNABLE TO ALLOCATE PMAP BUFFER. 

If TEMP = T. the buffers are allocated on a "temporary" basis: allocation takes place 
via a RESETSAVE whose restoration form will de-allocate the buffers. 

(MAPBUF F ERCOUNT ONLYUNLOCKED) [Function] 
Returns the number of buffers currently allocated. If ONLYUNLOCKED= T. counts 
only unlocked buffers: otherwise. counts all buffers. - Thus. to insure that at 
least 3 (unlocked) buffers are allocated. the user could perform (wh; 1 e (LESSP 
(MAPBUFFERCOUNT T) 3) do (ADOMAPBUFFER NIL T». 

(MAPPAGE PAGE=#: FILE -) [Function] 
The primitive function for mapping in pages from FILE into the queue of buffers. 
PAGE=#: is a page number in FILE. The value of MAPPAGE is a pointer to the word 
in memory at which the first word of the page is 10~atecL which will always be at 
a page-boundary. 

If FILE is NIL. the value of DEFAULT MAP FILE is used. 

MAP PAG E searches me buffers to see if the given page for the given file has already 
been mapped in. [f so. it returns the core address to which it was previously 
mapped. Otherwise. it replaces me previous contentS of the ieast-recently-used 
buffer with the specified file page. [t is imporunt to note that the contentS of a 
given core buffer are not guaranteed across calls to MAP PAG E. unless the page has 

14.13 

(' 
., ) 
(:.:': 
........ , 

(~ 
'-- "~.' 



MISCELLAl~OUS 

been locked down via LOCKMAP. MAPPAGE compiles ope~ and in the case where 
the desired page ~ already in the buffer it is quite efficient. 

MAPPAGE will allocate an additional buffer if no unlocked buffers are available 
(and the desired page is not already mapped in). 

In Interlisp-l0, FILE may also be a fork handle (i.e. a value of SUBSY S. page 
22.21), in which case the specified page from that fork will be mapped in. 

(MAPWORD FILEADR FILE) [Function] 
Uke MAP P AG E, except that it allows the specification of a word-address in FILE. 
not just a page number. MAPWO RD determines what page that address is on, maps 
that page into a buffer (using MAPPAGE). and rerurns a pointer into the middle 
of the buffer where the indicated word appears. The rest of the words on the . 
same file page appear at the appropriate word offsets from the value returned by 
MAPWORD. 

(WORDOF F SET PTR N) [Function1 
If PTR is a pointer into a buffer as returned by MAPPAGE, or MAPWORD. 
WORDOFFSET returns a pointer to the Nth following word. WORDOFFSET compiles 
open. 

(WORDCONTENTS PTR) [Function] 
Returns the contents of the word atPTR as an integer. For example. (WORDCONTENTS 
(MAPWORD 10 FILE» wilL,rerurn the value stored in word 10 of a (binary) file. 
WORDCONTENTS compiles open. 

(SET\~ORDCONTENTS PTR N) [Function] 
Sets the contents of the word pointed to by PTR to be the number N. Interpreted. 
SETWOROCONTENTS checks that PTR actually is a pointer as returned by MAP PAGE 
or MAPWORD. SETWORDCONTENTS compiles open with no error'checks. 

(CLEARMAP FILE PAGES RELEASE) [Function] 

(LOCKMAP PTR) 

FILE specifies a file or fork as for MAPPAGE. or it is T. PAGES is a single page number 
or a list of page numbers. CLEARMAP unmaps any of those pages that are currently 
mapped in. making those buffers available for oilier mappiI?-gs. F1:.E= T means all 
files; PAGES=NIL means all pages. Thus (CLEARMAP T) will completely clear 
the buffers. 

Note that CLEARMAP unmaps any pages. whether or not they are currently locked. 
i.e .• CLEARMAP takes precedence over LOCKMAP. 

If RELEASE = T, then not only will the buffers containing the specified pages be 
unmapped. but the buffers themselves will be releasecL i.e. returned to the Interlisp 
storage manager. 

[Function] 
For those situations in which a program needs prolonged access to a panicular file 
page. LOCKMAP can be used to prevent MAPPAGE from shifting or unmapping t..~e 
contentS of the given core page .. PTR is a pointer into a mapped page (i.e. a value 
or MAPWORD or MAPPAGE). LOCKMAP locks the indicated page in core until a 
corresponding UNLOCKMAP has been performed. If a page has been locked. twice. 

14.19 



· Page Mapped Files 

it must be unlocked twice before it is available for reuse. Returns PTR. 

(UNLOCKMAP PTR) [Function] 
PTR is a pointer into a mapped page. UNLOCKMAP removes the most recent lock 
for that page. 

14.20 

(l, 
C·: . 

n. 
, I 

~.:~~. ~: 



CHAPTER 15 

D\VIl\1 

A surprisingly large percentage of the errors made by Interlisp users are of the type that could be 
corrected by another LISP programmer without any information about the purpose of the program or 
expression in questio~ e.g., misspellings, cenain kinds of parentheses errors, etc. To correct these types 
of errors we have implemented in Interlisp a DWIM facility, shon for Do-What-I-Mean. DWIM is called 
autOmatically whenever an error occurs in the evaluation of an Interlisp expression. (Currently, DWIM 
only operates on unbound atoms and undefined function errors.) DWIM then proceeds to try to correct 
the mistake using the current context of computation plus information about what the user had previously 
been doing, (and what mistakes he had been making) as guides to the remedy of the error. If DWIM 
is able to make the CQrrectio~ the computation continues as though no error had occurred. Otherwise. 
the procedure is the same as though DWIM had not intervened: a break occurs, or an unwind to the last 
ERRORSET (page 9.15). The following protocol illustrates the operation of DWIM. 

For example, suppose the user defines the factorial function (FACT tl) as follows: 

~DEFINEQ«FACT (LAMBDA (N) (COND 
«ZEROP N9 1) «T (ITIMS N (FACCT 8SUB1 N] 
(FACT) 
~ 

Note that the definition of FACT contains several mistakes: ITIMES and FACT have been misspelled; the 
9 in N9 was intended to be a right parenthesis, but the shift key was not depressed; similarly, the 8 in 
8SUB 1 was intended to be a left parenthesis; and finally, there is an extra left parenthesis in front of the 
T that begins the final clause in the conditional. 

~PRETTYPRNT«FACCT] (J. =PRETTYPRINT 
\:::::... =FACT 

(FACT 
[LAMBDA (N) 

(COND 
«ZEROP N9 1) 

«T (ITIMS N (FACCT 8SUB1 N]) 
(FACT) 

After defining FACT, the user wishes to look at its definition using PRETTYPRINT. which he unfortunately 
misspells. Since there is no function PRETTYPRNT in the system. an undefined'function error occurs. and 
OWIM is called. OWIM invokes its spelling corrector. which searches a list.of functions frequently used 
(by this user) for the best possible match. Finding one that is extremely close. OWUvl proceeds on the 
assumption that PRETTYPRNT meant PRETTYPRINT, notifies the user of this. and calls PRETTYPRINT. 

At this point PRETTYPRINT would normally print (FACeT NOT PRlt~TABLE) and exit since FAceT 
has no definition. Note that this is no! an lnterlisp error condition. so that O\VIM would not be called 

15,1 



as described above. However. it is obviously not what the user meant. 

This son of mistake is corrected by having PRETTYPRINT itself explicitly invoke the spelling corrector 
portion of D\\111.1 whenever given a function with no EXPR definition. Thus. with the aid of DWIM 
PRETTYPRINT is able to determine that the user wants to see the definition of the function FACT, and 
proc·eeds accordingly. 

~FACT(3] 
N9 [IN FACT] -) N )? YES 
[IN FACT] (COND -- «T --») -> 

. (COND -- (T --» 
ITIMS [IN FACT] -> ITIMES 
FACCT [IN FACT] -> FACT 
8SUBl [IN FACT] -> (SUB1? YES 

.. pp FACT 
(FACT 

[LAMBDA (N) 
(COND 

«ZEROP N) 
1) 

(T (ITIMES N (FACT (SUB1 N]) 
FACT 

The user now calls FACT. During its execution. five errors occur. and DWIM is called five times. At 
each point. the error is correctecL a message is printed describing the action taken, and the computation 
is allowed to continue as if no error had occurred. Following the last correction. 6 is printed. the value 
of (FACT 3). Finally, the user prettyprints the new. now correct. definition of FACT. 

In this particular example. the user was shown operating in T RUST I NG mode. which gives DWIM cane 
blanche for most corrections. The user can also operate in CAUTIOUS mode, in which case DWIM will 
inform him of intended corrections before they are made. and allow the user to approve or disapprove of 
~lem. If DWIM was operating in CAUT IOUS mode in the examp.le above .. it would proceed as follows: 

+-FACT(3) 
N9 [IN FACT] -> N )? YES 

.U.D.F. T [IN FACT] FIX? YES 
[IN FACT] (COND -- «T --») -) 

(COND -- (T --» 
ITIMS [IN FACT] -) ITIMES? ... YES 
FACeT [IN FACT] -) FACT? ... YES 
aSUBl [IN FACT] -) (SUB1? NO 
U.S.A. 
(aSUSl BROKEN) 

, 

For most corrections. if the user does not respond in a specified interval of time. DWI?vl automatically 
proceeds with the correction. so that the user need intervene only when he does not approve. Note that 
the ~ser responded to the first. second. and fifth questions: D\VIM responded for him on the third and 

15.2 
0.: \: .. 



o (. .. 

DWIM 

fourth. 1 

A great deal of effort has gone into making DWIM "sman", and experience with a large number of users 
indicates that DWIM works very well; DWIM seldom fails to correct an error the user feels it should 
have, and almost never mistakenly corrects an error. However, it is important to note that even when 
DWIM is wrong, no harm is done: 2 since an error had occurrecL the user would have had to intervene 
anyway if DWIM took no action. Thus, if DWIM mistakenly corrects an error, the user simply interrupts 
or aborts the computation. UNDOes the DWIM change using UNDO (page 8.11), and makes the correction 
he would have had to make without DWIM. It is this benign quality of DWIM that makes it a valuable 
pan of Interlisp. 

(OWIM x) [Function] 
Used to enable/ disable DWIM. If x is the litatom C, DWIM is enabled in 
CAUTIOUS mode, so that DWIM will ask the user before making corrections. If x 
is T, DWIM is enabled in TRUSTING mode, so DWIM will make most corrections 
automatically. If x is NIL. DWIM is disabled. Interlisp initially has DWIM 
enabled in CAUT IOUS mode. 

DWIM returns CAUTIOUS, TRUSTING or NIL, depending to what mode it has just 
been put into. 

For corrections to expressions typed in by the user for immediate execution, 3 DWllvi always acts as 
though it were in TRUSTING mode, Le .• no approval. necessary. For certain types of corrections, e.~ 
run-on spelling corrections, 8-9 errors, etc., DWIM always acts like it was in CAUTIOUS mode. and asks 
for approval. In either case, DWIM always informs the user of its actio"n as described below. 

15.1 SPELLING CORRECTION PROTOCOL 

One type of error that DWIM can correct is the misspelling of a function or a variable name. When 
;~) an unbound litatom or undefined function error occurs, DWIM tries to correct the spelling of the bad 
~ litatom. If a litatom is found whose spelling is "close" to the offender, DWIM proceeds as follows: 

If the correction occurs in the typed-in expression, DWIM prints =CORRECT-SPELLINGcr and continues 
evaluating the expression. For example: 

1 DWIM uses ASKUSE R for its interactions with the user (page 6.57). Whenever an interaction.is about 
to ~e place and the user has typed ahead.. ASKUSE R types several bells to warn the user to stOP typing, 
then clears and saves the input buffers. restoring them after the interaction is complete. Thus if the user 
has typed ahead before a DWIM interaction. DWIM will not confuse his type ahead with the answer to 
its question. nor will his typeahead be lost. The bells are printed by the function P R IN T 8 ELL S. which 
can be advised or redefined for specialized applications. e.g. to flash the screen for a display tenninal. 

2Except perhaps if DWIM's correction mistakenly caused a destructive computation to be initiated.. and 
information was lost before the user could interruot We have not vet had such an incident OCCl1lr. 

• 4 • 

3Typed into LISPX (see page 8.28). 

15.3 



~(SETQ FOO (IPLUSS 1 2») 
=IPLUS 
3 

Spelling Correction Protocol 

If the correction does not occur in type-~ DWIM prints' 

BAD-SPELLING [I N FUNCTION-NAME] - > CORRECT· SPELLING 

The~ ifDWTh! is in TRUSTING mode, it prints a carriage returIl. makes the correction. and continues the 
computation. If DWIM is in CAUT IOUS mode, it prints a few spaces and ? and then wait for approvaL 
The user then has six options: 

(1) Type Y. D\VIM types as, and proceeds with the correction. 

. .,) Type N. DWIM types 0, and does not make the correction. 
/' 

(3) Type 1'. DWIM does not make the correctio~ and funhennore guarantees that the error will not 
cause a break. . 

(4) Type control-E. For error correction. this has the same effect as typing N~ 

(5) Do nothing. In this case DWTM waitS for OWIMWAIT seconds, and if the user has not responded. 
DWIM will type ... followed by the default answer. 

The default on spelling corrections is determined by the value of the variable FIXSPELLDEFAULT. whose 
top level value is initially Y. J 

(6) Type space or carriage-rerum. In this case DWIM will wait indefinitely. This option is intended for 
those cases where the user wantS to think about his answer, and wants to insure that DWIM does not get 
uimpatient" and answer for him. 

The procedure for spelling correction on other than Interlisp errors is analogous. If the' correction is 
being handled as type-in, DWIM prinrs = followed by the correct spelling, and rerurns it to the function 
that called DWIM. Othenvise. DWIM prints the incorrect spelling, followed by the correct spelling. 

hen. if DWIM if in TRUST I NG mode~ DWIM prints a carriage-rerum and returns the correct spelling. () 
"- Otherwise. DWIM prints a few spaces and a? and waits for approval. The user can then respond with ~~;'.:' 

Y. N, control-E. space, carriage retum. or do nothing as described above. 

Note that the spelling corrector itself is not ERRORSET protected like the DWIM error correction routines. 
Therefore. cypingN and typing control-E may have different effects when the spelling corrector is called 
directly. The former simply instructs the spelling corrector to return NIL. and lets the calling function 

4The appearance of - > is to call attention to the fact that the user's' function will be or has been changed. 

15.4 



DWIM 

decide what to do next; the latter causes an error which unwinds to the last ERRORSET. however far back 
_that may be. 

15.2 PARENTHESES ERRORS PROTOCOL 

When an unbound litatom or undefined error occurs. and the offending litatom contains 8 or 9. DWIM 
tries to correc,t errors caused by typing B for left parenthesis and 9 for right parenthesis. ~ In these cases. 
the interaction with the user is similar to that for spelling correction. If the error occurs in type-~ DWIM 
types =CORRECTIONc", and continues evaluating the expression. For example: 

:~ .(SETQ FOO BIPLUS 1 2] 
(.'?--- = ( IPLUS 

-, 

~J 

I. :0""-

3 

If the correction does not occur in type-in, DWIM prints 

BAD-ATOM [I N FUNCTION-NAME] - > CORRECTION ? 

and then waits for approval. The user then has the same six options as for spelling correctioa except 
the waiting time is 3*DWIMWAIT seconds. If the user types Y, DWIM then operates as if it were in 
TRUST I NG mode. i.e., it makes the correction and prints its message. 

15.3 U.D.F. T ERRORS PROTOCOL 

When an undefined function error occurs, and the offending function is T, DWIM tries- to correct cer~ 
types of parentheses errors involving a T clause in a conditional. DWIM recognizes errors of the following 
forms: 

(CONO --) (T --) 

(CONO 

(CONO 

(-- & (T --») 
«T --}}) 

The T clause appears outside and immediately 
following the CONO. 

The T clause appears inside a previous clause. 

The T clause has an extra pair of parentheses 
around it. 

For U. O. F. T errors that are not one of these three types, DWIM takes no ,corrective action at all, and 
the error will occur. . ' 

5Acrually. DWIM uses the value of the variables LPARKEY and RPARKEY to determine the corresponding 
lower case character for left and right parentheses. LPARKEY and RPARKEY. are initially 8 and 9 
respectively. but they can be reset for other keyboard layoutS., e.g .. on some tenninals left parenthesis is 
over 9. and right parenthesis is over O. 

15.5 



DWIM Operation 

If the error occurs in type-in.. DWIM simply types T. FIXED and makes the correction. Otherwise if 
DWIM is in TRUST I NG mode. DWIM makes the correction and prints the message: 

[IN FUNCTION-NAME] {BAO-CONO} -) 
{CO R RE C TED -CO ~:D} 

If DWIM is in CAUT IOUS mode. DWIM prints 

U.O.F. T 
[IN FUNCTION-NAME] FIX? 

and waits for approval The user then has the same options as for spelling corrections and parenthesis 
errors. If the user types Y or defaults. DWIM makes the correction and prints its message. 

"-taving made the correction. DWIM must then decide how to p.roceed with the computation. In the ("\ 
j. ' .•• rst case. (COr~O --) (T --), DWIM cannot know whether the T clause would have been executed . /~ 

if it had been inside of the CONDo Therefore DWIM asks the user CONTINUE WITH T CLAUSE (with a \..~.;: 
default of YES). If the user types N, DWIM continues with the form after the COND, Le., the form that 
originally followed the T clause. . 

In the second case. (CONO -- (-- & (T --»). DWIM has a different problem. After moving the 
T clause to its proper place. DWIM must return as the value of & as the value of the CONDo Since this 
value is no longer around, DWIM asks the user, OK TO REEVALUATE and then prints the expression 
corresponding to &. If the user types Y, or defaults, DWIM continues by reevaluating &. otherwise DWIM 
abo~ and aU. D. F. T error will then occur (even though the COND has in fact been £ixed).6 

In the third case, (COND -- « T --»), there is no problem with continuation, so no funher interaction 
is necessary. 

15.4 DWIl\1 OPERATION 

'<;..,- #henever the interpreter encounters an atomic form with no binding, or a non-atomic form CAR of which 
is not a function or function object, it calls the function F AUL TEVAL. Similarly, when APPL. Y is given an 
undefined function. FAUL TAPPL Y is called. When DWIM is enabled.. FAUL TEVAL and FAUL TAPPL Y are 
redefined to first call the OWIM package, which tries to correct the error. If DWIM cannot decide how 
to fix the error, or the user disapproves of DWIM's correction (by typing N). or the user types controi-£ 
then FAULTEVAL and FAULTAPPLY cause an error or break.7 

If DWIM can (and is allowed to) correct the error, it exits by perfotming RETEVAL of the corrected form. 
as of the position of the call to FAULTEYAL or FAULTAPPLY. Thus in the example at the beginning 
of the chapter, when DWIM determined that ITIMS was ITIMES misspelled.. DWIM called RETEVAL 

SIf DWIM can determine for itself that the form can safelv be reevaluated.. it does not consult the user 
before reevaluating. O\VUvf can do this if the fonn is atomic. or CAR of the form is a member of the 
list OKREEVALST. and each of the arguments can safely be reevaluated. For example. (SETQ X (CONS 
(IPLUS Y Z) W» is safe to reevaluate because SETQ. CONS. and IPLUS are ail on OKREEVALST. 

iIf the user types'" to DWIM. DWIM exits by performing (RETEVAL I FAUL TEVAL '( ERROR! », so 
rna! an error will be generated at the position of the call to F AUL T EVAL. 

15.6 



(j 
C·:: .• ~ 

DWTh1 

with (ITIMES N (FACCT aSUBl N». Since the interpreter uses the value returned by FAULTEVAL 
exactly as though it were the value of the erroneous fo~ the computation will thus proceed exactly as 
thou~ no error had occurred. 

In addition to continuing the computation. DWIM also r:epairs the cause of the error whenever possible: 
in the above example, DWUvl also changed (with RPLACA) the expression C-ITIMS t~ (FACCT ·aSUBl 
N» that caused the error. Note that if the user's program had computed the form and called EVAL, it 
would not be possible to repair the cause of the error, although DWIM could correct the misspelling each 
time it occurred. 

Error correction in DWIM is divided into three categories: unbound atoms, undefined CAR of foI'IIl. and 
undefined function in APPLY. Assuming that the user approves DWL.VI's corrections. the actien taken by 
DWIM for the various types of errors in each of these categories is summarized below. p .:. 

J~' 15.4.1 D\VIl\1 Correction: Unbound Atoms 

If DWIM is called as the result of an unbound atom error, it proceeds as follows: 

(1) If the first character of the unbound atom is " DWIM assumes that the user (intentionally) typed 
'ATOM for (QUOTE ATOM) and makes the appropriate change. No message is typed, and no approval 
is requested. 

If the' unbound atom is just ' itself,' DWIM assumes the user wants the next expression quoted:. e.g .. 
(CONS X '( ABC» will be changed to (CONS X (QUOTE (A B C»). Again no message will be 
printed or approval asked. If no expression follows the '. DWIM gives Up.8 

(2) If CUSP (page 16.1) is enabled. and the atom is pan of a CUSP construct, the CUSP transformation 
is performed and the result returned. For example, N-l is transformed to (SUB 1 N), and ( ... FOO.-3 
... ) is transformed into (... (SETQ FOa 3) ... ). 

(3) If the atom contains an 8 (actually LPARKEY, see page 15.12), DWIM assumes the a was intended n . to be a left parenthesis. and calls the editor to make appropriate re'pai~ on the expression containing 
(:::-/ the atom. DWIM assumes that the user did not notice the mistake, i.e., that the entire expression was 

affected by the missing left parenthesis. For example, if the user types (SETQ X (LIST (-CONS aCAR 
Y) (CDR Z» Y),theexpressionwillbechangedto(SETQ X (LIST (CONS (CAR Y) (CDR Z» 
Y». Note that the a does not have to be the first character of the atom: DWIM will handle (CONS 
XaCAR Y) correctly. 

(4) If the atom contains a 9 (actually RPARKEY, see page 15.12), DWIM assumes the 9 was intended to 
. be a right parenthesis and operates as in the case above. 

(5) If the atom begins with a 7, the 7 is treated as a '. For example, 7FOa becomes' FOO. and then 
(QUOTE FOO) .. 

(6) If the atom is an edit command (a member of ED ITCOMSA), and the error occurred in type-in. the 
effect is the same as though the user typed ED ITF (), followed by the atom. i.e., DWnv! assumes the 
user wantS to be in the editor editing the last thing he referred to. Thus. if the user defines the function 

. 8' is nonnally defined as a read-macro character which convertS 'FOO to (QUOTE Faa) on input. so o D\VIM will not see the I in the case of expressions that are typed-in. 

15.7 



Undefined CAR of Form 

F 00 and then types P, he will see = F 00. followed by ED IT. followed by the printout associated with the 
execution of the P command. followed by ., at which point he can continue editing F 00. 

(7) The expressions on DWIMUSERFORMS (see page 15.10) are evaluated in the order that they appear. If 
any of these expressions returns a non-N I l value, this value is treated as the form to be used to continue 
the computation. it is ev~uated and its value is returned by DWIM. 

(8) If the unbound atom occurs in a function. DWIM attempts spelling correction using the LAMBDA and 
P ROG variables of the function as the spelling list. 

(9) If the unbound atom occurred in a type-in to a bre~ -DWIM attempts spelling correction using the 
lAMBDA and PROG variables of the broken function as the spelling list. 

J10) Otherwise, DWIM attempts spelling correction using SPElLlr~GS3 (see page 15.14). 

\11) If all of the above fail DWIM gives up. 

15.4.2 Undefined CAR of Form 

- . 
If DWIM is called as the result of an undefined CAR of form error, it proceeds as follows: 

(1) If CAR of the form is T, DW~ assumes a misplaced T clause and operates as described on page 15.5. 

{2} If CAR of the form is F fl. DWIM changes the "F fl" to uFUr~CTION{ lAMBDA". For example, 
(Ffl (Y) (PRINT (CAR V»~) is changed to (FUNCTION (LAMBDA (V) (PRINT (CAR V»~). 
No message is printed and no approval requested. If the user omits the variable list. DWIM supplies (X), 
e.g., (F/L (PRINT (CAR X») is changed to (FUNCTION (LAMBDA (X) (PRINT (CAR X»». 
DWIM determ..ines that the user has supplied the variable list when more than one expression follows 
F fl. CA R of the first expression is not the name of a function. and every element in the first expression 
is atomic. For example. DWIM will supply (X) when correcting (F IL (PRINT (CDR X» {PRINT 
(CAR X»). 

J) If CAR of the form is a CLISP word (IF. FOR. DO. FETCH. etc.), the indicated CLISP transformation n 
-is performecL and the result is returned as the corrected form. See page 16.1. t-:~{ 

(4) If CAR of the form has a function definition. DWIM attemptS spelling correction on CAR of the 
definition using as spelling list the value of LAMBDASPLST. initially (LAMBDA NLAMBDA). 

(5) If CAR of the form has an EXPR or CODE property, DWIM printS CAR-OF-FORM UNSAVED, performs 
an UN SA VE 0 E F. and continues. No approval is requested. 

(6) If CAR of the form has a FILEOEF propeny, the definition is loaded from a file. 9 If the value of 
the property is atomic, the entire file is to be loaded.. If the value is a list. CAR is the name of the file 
and CDR the relevant functions. and LOADFNS will be used. For both cases. LDFLG will be SYSLOAD 
(see page 11.4). DWIM uses FINDFILE (page 15.20); so that the file can be on any of the directories 
on DIRECTORIES. initially (NIL NEWLISP LISP LISPUSERS). If the file is found.. D\VIM types 
SHALL I LOAD followed by the file name or list of functions. If the user approves, DWIM loads the 
function(s) or file. and continues the computation. 

--'!xcept when DWIMIFYing. 

15.8 

n 
'- .c"-~ ... 



C:J 
(,0, 

D'WIM 

(7) If CLISP is enabled, and CAR of the fOIlIl is pan of a CUSP construct, the indicated transformation 
is performed, e.g., (N+-N-l) becomes (SETQ N (SUBl N». 

(8) If CAR of the fOIlIl contains an 8, DWIM assumes a left parenthesis was intended e.g., (CONS8CAR 
X). 

(9) If CAR of the fOIlIl contains a 9, DWIM assumes a right parenthesis was intended. 

(10) If CAR of the fOIlIl is a list, DWIM attempts spelling correction on CAAR of the form using 
LAMBOASPLST as spelling list. If successful. DWIM returns the corrected expression itself. 

(11) If CAR of the fOIlIl is a smail number. and the error occurred in type-in, DWIM assumes the form 
is really an edit command and operates as described for unbound atom errors above. 

roo 
i~ '(U) If CAR of the form is an edit command (a member of.;O ITCOMSL), DWIM operates as in the 
~> previous case. 0 • 

(13) The expressions on DWIMUSERFORMS are evaluated in the order they appear. If any returns a 
non-NIL value, this value is treated as the corrected form. it is evaluated, and DWIM returnS its value. 

(14) Otherwise, DWIM attempts spelling correction using SPELLINGS2 as the spelling list (~ee page 
15.14). When DWIMIFYing, DWIM also attemps spelling correction on function names not defined but 
previously encountered, using NOFIXFt~SLST ~ a spelling list (see page 16.16). 

(15) If all of the above fail, DWIM gives up. 

15.4.3 Undefined Function in APPLY 

If DWIM is called as the result of an undefined function in A P PLY error. it proceeds as follows: 

(1) If the function has a definition. DWllvI attempts spelling correction on CAR of the definition using 
(_.)- LAMBDASPLST as spelling list. 

'-- (2) If.the function has an EXPR or CODE propeny, DWIM prints FN UNSAVED, performs an UNSAVEDEF 
and continues. No approval is requested. 

U 

(3) If the function has a property FILEDEF, DWIM proceeds as in case 6 of undefined CAR of form. 

(4) If the error resulted from type-in. and CLISP is enabled. and the function name contains a CLISP 
operator. DWIM perfonns the indicated transformation. e.g .• the user types FOO+-(APPEND FIE FUM). 

(5) If the function name contains an 8, DWIM assumes a left parenthesis was intended.. e.g .• ED IT8FOO]. 

'(6) If the "functi~n" is a lisi DWIM a~tempts spelling correction on CAR of the list using LAMBDASPLST as 
spelling list. 0 

(7) If the function is a number and the error occurred in type-in. DWIM assumes the function is an edit 
command.. and operates as described in case 6 of unbound atoms. e.g .. the user· types (on one line) 3 - 1 
P. 0 

(8) If the function is the name of an edit cornmand (on either ED ITCOMSA or ED ITCOMSL). DWL\tl 
operates as in the previous case. e.g.. user types F CON D. 

15.9 



; 
\. 

DWIMUSERFORl\1S 

(9) The expressions on DWIMUSERFORMS are evaluated in the order they appear, and if any returns a 
non-N I L value, this value is treated as the function used to continue the computation. i.e., it will be 
applied to its arguments. 

(10) DWIM attemptS spelling correction using SPELLINGSl as the spelling list. 

(11) DWIM attempts spelling.correction using SPELLINGS2 as the spelling list. 

(12) If all fail, DWIM gives up. 

15.5 nWIlVIUSERFORMS 

The variable DWIMUSERFORMS provides a convenient way of adding to the transformations that DWIM 
performs. For example, the user might want to change ·atoms of the form SX to (QA4LOOKUP X). 
Before attempting spelling correction. but after perfonning other transformations (F IL. 8, 9, CLISP. etc.), 
DWIM evaluates the expressions on OWIMUSERFORMS in the order they appear. If any expression returns 
a non-NIL value, this value is treated as the transformed form to be used. If DWIM was called from 
F AUL TEVAI- this form is evaluated and the resulting value is rerurned as the value of F AUL TEVAL. If 
DWIM is called from FAULTAPPLY, this form is treated as a function to be applied to FAULTARGS, and 
the resulting value is rerurnedas the value of FAULTAPPLY. If all of the expressions on OWIMUSERFORMS . 
return NIL. DWIM proceeds as though DWIMUSERFORMS=NIL, and attempts spelling correction. Note 
that DWllvt Simply takes the value and returns it; the expressions on OWIMUSERFORMS are responsible 
for making any modifications to the original expression.10 

In order for an expression on OWIMUSERFORMS to be able to be effective, it needs to know various 
things about the context of the error. Therefore, several of DWIM's internal variables have been made 
SPECVARS (see page 12:4) and are therefore "visible" to DWIMUSERFORMS. Below are a list of those 

- variables that may be useful 

FAULTX 

FAULTARGS 

FAULTAPPLYFLG 

[Variable] 
For unbound atom and undefined car of form errors, FAUL TX is the atom or form. 
-For undefined fi,mction in APPLY errors, FAULTX is the Dame of the function. 

[Variable] 
For undefined function in APPLY errors, FAUL TARGS is the list of argumentS. 
FAULTARGS may be modified or reset by expressions on DWIMUSERFORMS. 

[Variable] 
Value is T for undefined function in A P PLY errors: NIL otheIVIise. The value 
of FAUL TAPPL YFLG after an expression on OWIMUSERFORMS returns a non
NIL value determines how the latter value is to be treated. Following an' 
undefined function in APPLY error, if an expression on OWn"USERFORMS setS 
FAULTAPPLYFLG to NIL. the value rerurned is treated as a form to be evaluated.. 
rather than a function to be applied. 

lOTne expressions on DWIMUSERFORMS·should make the transformation permanent. either by associating 
it with FAULTX via CLISPTRAN. or by physically smashing FAULTX. 

15.10 
(~\ 

J; ....,:..;.. 



() 

TAIL 

PARENT 

TYPE-IN? 

FAULTFN 

DWIMIFYFLG 

EXPR 

D\VIl\1 

FAUL T APPL YFLG is necessary to distinguish between unbound atom and undefined 
function in APPLY erro~ since FAULTARGS may be NIL and FAULTX atomic in 
both cases. 

[Variable] 
For unbound atom errors, TAIL is the tail of the expression CAR of which is the 
unbound atom. DWIMUSERFORMS expression can replace the atom by another 
expression by performing (/RPLACA TAIL EXPR) 

[Variable] 
For unbound atom errors, PARENT is the form in which the unbound atom appears. 
TAIL is a tail of PARENT. 

[Variable] 
True if the error occurred in type-in .. 

[Variable] 
Name of the function in' which error occurred. F AU L T F N is TY P E - I N when the 
error occurred in type-~ and EVAL or APPLY when the error occurred under an 
explicit call to EVAL or APPLY. 

[Variable] 
True if the error was encountered while O\vIMI FYing (as opposed to happening 

. while running a program). 

[Variable] 
Definition of FAULTFN, or argument to EVAL. Le., the superform in which the 
error occurs. 

The initial value ofDWIMUSERFORMS is «MACROTRAN) (DWIMLOAOFNS?». MACROTRAN is a package 
for running interpreted programs containing ASS EMS LE statements or calls to ufunctions" defined only 
by MACRO properties (see page 5.19). OWIMLOAOFNS? is a function for automatically loading functions 
from files. If OWIMLOAOFNSFLG is T (its initial value), and CAR of the form is the name of a functio~ 
and the function is contained on a file that has been noticed by the file package, the function is loaded, 
and the computation continues. 

15.6 D\VI1\1 FUNCTIONS AND VARIABLES 

OWIMWAIT (Variable] 
Value is the number of seconds that DWIM will wait before it assumes tha't 
the user is not going to respond to a question and uses the default response 
FIXSPELLDEFAUL T. 

DWIM operates by dismissing for 250 milliseconds. then checking to see if anyth;ng 
has been typed. If not it dismisses again. etc. until DWIMWAIT seconds have 
elapsed. Thus. there will be a delay of at most 1/4 second before DWIM responcis 
to the user's answer. 

15.11 



, 
., 

DWIM Functions and Variables 

FIXSPELLDEFAULT [Variable] 
If approval is requested for a spelling correction, and user does not respond., defaults 
to value of FIXSPELLDEFAULT, initially Y. FIXSPELLDEFAULT is rebound to N 
when OWIMI FYing. 

ADOSPELLFLG [Variable] 

NOSPELLFLG 

RUNONFLG 

OWIMLOADFNSFLG 

LPARKEY 
RPARKEY 

OKREEVALST 

DWIMFLG 

APPROVEFLG 

LAMBDASPLST 

If NIL, suppresses calls to AOOSPELL. Initially T. 

[Variable] 
If T, suppresses all spelling correction. If some other non-N I L value, suppresses . 
spelling correction in programs but not type-in. NOSPELLFLG is initially NIL. It 
is rebound to T when compiling from a file. 

[Variable] 
If NIL, suppresses run-on spelling corrections. Initially T. 

[Variable] 
If T, tells DWIM that when it encounters a call to an undefined function contained 
on a file that has been noticed by the file package, to simply load the function. 
DWIMLOADFNSFLG is initially T. See page 15.11. 

[Variable] 
[Variable] 

DWIM uses the value of the variables LPARKEY and RPARKEY (initially 8 and 9 
respectively) to determine the corresponding lower case character for left and right" 
parentheses. LPARKEY and RPARKEY can be reset for other keyboard layouts .. 
For example, on' some terminals left parenthesis is over 9, and right parenthesis is 
over o. 

[V" ariab Ie] 
The value of OKREEVALST is a list of functions that DWIM can safely reevaluate. 
If a form is atomic, or CAR of the form is a member of OKREEVALST. and each of 
the aigumentS can safely be reevaluated., then the form can be safely reevaluated. 
For example, (SETQ X (CONS (I PLUS Y Z) W» is safe to reevaluate because 
SETQ, CONS, and IPLUS are all on OKREEVALST. 

[Variable] 
DWIMFLG =NIL, all DWIM operations are disabled. (OWIM 'C) and (DWIM T) 
set.DWIMFLG to T; (OWIM NIL) sets DWIMFLG to NIL 

[Variable1 
APPROVEFLG=T if DWIM should ask the user for approval before making a 
correction that will modify the definition of one of his functions; NIL otherwise. 

When DWIM is put into CAUTIOUS mode with (OWIM 'C). APPROVEFLG is set 
to T; for TRUST ING mode, APPROVE FLG is set to NIL. 

. [Variable1 
DWIM uses the value of LAMBOASPLST as the speHing list when correcting "bad" 
function definitions. Initially (LAMBDA NLAMBOA). The user may wish to add 
to LAMBDASPLST if he elects to define new "function types" via an appropriate 
DWIMUSERFORMS entry. For example. the QLAMBDAs of SRI's QLISP are handled 

15.12 

() . 

C~:· 

r). 
l}'-> 

r) 
\...1;-



(j 
C
'~ 

,01 

DWIl\1 

in this way. 

15.7 SPELLING CORRECI10N 

The spelling corrector is given as arguments a misspelled word (word means literal atom), a spelling list (a 
list of words), and a number: XWORD, SPLST, and REL respectively. Its task is to find that word on SPLST 
which is closest to XWORD, in the sense described below. This word is called a respeiling of XWORD. REL 
specifies the minimum "closeness" between XWORD and a respelling. If the spelling corrector cannot find 
a word on SPLST closer to XWORD than .RJ:."""L, or if it finds two or more words equally close, its value is 
NIL, otherwise its value is the respelling. The spelling corrector can also be given an optional functional o argument, FN. to be used for selecting out a subset of SPLST, Le., only those members of SPLST that c.... satisfy FN will be considered as possible respellings. ~ . 

The exact algorithm for computing the spelling metric is described later. but briefly "closeness" is inversely 
proponional to the number of disagreements· between the two words, and directly proponional to the 
length of the longer word. For example. PRTTYPRNT is ucloser" to PRETTYPRINT than CS is to CONS 
even though both pairs of words have the same number of disagreements. The spelling corrector operates· 
by proceeding down SPLST. and computing the closeness between each word and XWORD, and keeping 
a list of those that are closest. Certain differences between words are not counted as disagreements. for 
example a single transpositio~ e.g., CONS to CNOS, or a doubled lener. e.g., CONS to CONSS, etc. In the 
event that the spelling corrector finds a word on SPLST with no disagreements. it will stop' s~~g and 
return this word as the respelling. Otherwise. the spelling corrector continues through the entire spelling 
list. Then if it has found one and only one "closest" worti it returns this word as the respelling. For 
example. if XWORD is VaNS. the spelling corrector will probably return CONS as the respelling. However. 
if XWORD is CONZ. the spelling corrector will not be able to return a respelling, since CONZ is' equally 
close to both CONS and COr~D. If the spelling corrector finds an acceptable respelling, it interacts with the 
user as described earlier. 

, In the special case that the misspelled word contains one or more Ss «esc>s, alt-mode on some 
(-\ terminals), the spelling corrector searches for those words on SPLST that match XWORD. where a S can 
~"/ match any number of characters (including 0), e.g., FOOS matches FOOl and FOO. but not NEWFOO. 

SFOOS matches all three. Both completion and correction may be involved, e.g. RPETTYS will match 
PRETTYPRINT. with one mistake. The entire spelling list is always searcheti and if more than one 
respelling is founcL the spelling corrector prints AMB IGUOUS. and returns NIL. For example. CONS would 
be ambiguous if both CONS and COND were on the spelling list. If the spelling corrector finds one and 
9nly one respelling, it interacts with the user as described earlier. 

For both spelling correction and spelling completion, regardless of whether or not the user approves of . 
the spelling corrector's choice. the respelling is moved to the front of SPLST. Since many respellings are of 
the type with ·no disagreements. this procedure has' the effect of considerably reducing the time required 
to correct the spelling of frequently misspelled words. 

15.7.1 Synonyms 

Spelling lists also provide a way of defining synonyms for a panicular context. If a dotted pair appears 
on a spelling list (instead of just an atom), CAR is inte!1'reted as the correct spelling of the misspelled 

/-'\ word. and CDR as .the antecedent for that word. If CAR is identical with the misspelled word. the to 
15.13 



Spelling Lists 

antecedent is returned without any' interaction or approval being necessary. If the misspelled word 
con-eets to CAR of the dotted pair, the usual interaction and approval will take place, and then the 
antecedent, Le~ CDR of the dotted pair, is returned. For example., the user could make IFLG synonymous 
with CLISPIFTRANFLG by adding (IFLG • CLISPIFTRANFLG) to SPELLI~~GS3, the spelling list 
for unbound atoms. Similarly, the user could make OTHERWISE mean the same as ELSEIF by adding 
(OTHERWISE • ELSE IF) to CLlSP I FWORDSPLST. or make L be synonymous with LAMBDA by adding 
(L • LAMBDA) to LAMBDASPLST. Note that L could also be used as a variable without confusion. since 
the association of L with LAMBDA occurs only in the appropriate context. . 

15.7.2 Spelling Lists 

, 
Any list of atoms can·be used as a spelling list, e.g~ BROKENFNS, FILELST, etc. Various system packages 

t . - lye their own spellings lists, e.g •• LlSPXCOMS, CLiSPFORWOROSPLST, EDITCOMSA, etc. These are 
'~:' -.4ocumented under their corresponding sections, and are also indexed under uspelling lists." In addition 

to these spelling lists. the system maintains. Le •• automatically adds to, and occasionally prunes, four lists 
used solely for spelling correction: SPELLINGS1, SPELLlNGS2. SPELLINGS3, and USE RWORDS. These 
spelling lists are maintained only when ADOSPELLFLl:i is non-NIL. ADDSPtLLFLG is initially T. 

SPELLINGS1 

'PELLINGS2 

SPELLINGS3 

[Variable] 
SPELLINGS1 is a list of functions used for spelling correction when an input 
is typed in apply format, and the function is undefined, e.g., EDT I F ( F 00 ) . 
SPELLINGS1 is initialized to contain DEFINEQ, BRE"AK, MAKEFILE, EDITF. 
TCOMPL, ~OAD, etc. Whenever LISPX J is given an input in apply format, Le., a 
function and arguments, the name of the function is added to SPELLINGS! if the 
function has a definition. 

For example, typing CALLS( EDITF) will cause CALLS to be added to SPELLINGS1. 
Thus if the user typed CALLS( EDITF) and later typed CALLLS(EDITV), since 
SPELLINGS1 would then contain CALLS, DWIM would be successful in correcting 
CALLLS to CALLS. 

[Variable] 
SPELLINGS2 is a list of functions used for spelling correction for all other 
undefined functions. It is initialized to contain functions such as ADO 1, APPE NO. 
CONO, CONS, GO, LIST. NCONC. PRINT. PROG, RETURN, SETQ, etc. Whenever 
LISPX is given a non-atomic fo~ the name of the function is added to 
SPELLINGS2. For example. typing (RETFROM (STKPOS (QUOTE FOe) 2» 
to a break would add RETFQOM to SPELLINGS2. Function names are also added 
to SPELLINGS2 by DEFINE. DEFINEQ. LOAD (when loading compiled code), 
UNSAVEDEF, EDITF, and PRETTYPRINT. 

. . [Variable] 
SPELLINGS3 is a list of words used for spelling correction on all unbound atoms. 
SPELLINGS3 is initialized to EDITMACROS. BREAKMACROS. BROKENFNS. and 
AOVISEDFNS. Whenever LISPX is given an atom to evaluate. the name of the 
atom is added to SPELLINGS3 iI the atom has a value. Atoms are also added 
to SPELLINGS3 whenever they are edited by EDITV. and whenever they are set 
via RPAQ or RPAQQ. For example. when a file is loaded.. all of the variables set in 
the file are added to' SP&.J-LINGS3. Atoms are also added to SPELLINGS3 when 
they are set by a LISPX input. e.g., typing (SETQ FOa (REVERSE .(SETQ FIE 

15.14 

0·., 
C:~ .j 



i~ 
\J 
\: .. ' 

~ f \ 

U 
~-... 

USERWORDS 

D\VIM 

... ») will add both FOO and FIE to SPELLINGS3. 

[Variable] 
USERWORDS is a list containing both functions and variables that the user has 
referred to, e.g., by breaking or editing. USE RWORDS is used for spelling 
correction by ARGLIST, UNSAVEDEF, PRETTYPRINT, BREAK, EDITF, ADVISE, 
etc. USE RWORDS is initially NIL. Function names are added to it by DE FINE, 
DEFINEQ, LOAD, (when loading compiled code, or loading exprs to property 
lists) UNSAVEDEF, EDITF, EDITV, EDITP, PRETTYPRINT, etc. Variable names 
are added to USERWORDS at the same time as they are added to SPELLINGS3. 
In addition, the variable LASTWORD is always set to the last word added to 
USERWORDS, i.e., the last function or variable referred to by the user, and the 
respelling of NIL is defined to be the value of LASTWORD. ThUs. if the user 
has just defined a function, he can then edit it by simply typing EDITF (), or 
prettyprint it by typing PP ( ) .. 

Each of the above four spelling lists are divided into two sections separated by a special marker. The first 
section contains the "permanent" words; the· second section contains the temporary words: New words are 
added to the corresponding spelling list at the front of its temporary section (except that functions added 

·to SPELLINGSl or SPELLINGS2 by LISPX are always added to the end of the .permanent section. If 
the word is already in the temporary section, it is moved to the front of that section; if the word is in 
the permanent section, no action is taken. If the length of the temporary section t.~en exceeds a specified 
number, the last (oldest) word in the temporary section is forgotten, i.e., deleted. This procedure prevents 
the spelling lists from becoming cluttered with unimportant words that are no longer being used, and 
thereby slowing down spelling correction time. Since the spelling corrector usually moves each word 
selected as a respelling to the front of its spelling list. the word is thereby moved into the permanent 
section. Thus once a word is misspelled and corrected, it is considered important and will never be 
forgotten. 

#SPELLINGSl 
#SPELLINGS2 
#SPELLINGS3 
#USERWORDS 

[Variable] 
[Variable] 
[Variable1 
[Variable] 

The maximum length of the temporary section for SPELLINGS1, SPELLINGS2, 
SPELLINGS3 and USERWORDS is given by the value of#SPELLINGS1, #SPELLINGS2, 
#SPELLINGS3, and #USE RWORDS, initialized to 30, 30, 30, and 60 respectively. 

Users can alter these values to modify the performance behavior of spelling 
correction. 

15.7.3 Generators for Spelling Corre~tion 
.. 

For some applications, it is more convenient to generate candidates for a respelling one by one. rather 
than construct a complete list of all possible candidates. e.g .• spelling correction involving a large directory 
of files. or a narural language data base. For these purposes. SPLST can be an array (of any. size). The 
first element of this array is the generator function. which is called with the array itself as its argument. 
Thus the function can use the remainder of the array to store "state" infonnation. e.g., the last position 
on a file, a poi~ter into a data structure, etc. The value returned by the function is the next candidate 
for respelling. If NIL is rerurned.. the spelling "list" is considered to be exhausted.. and the closest match 
is returned. If a candidate is found with no disagreements. it is returned immediately without waiting for 

15.15 



Spelling Corrector Algorithm 

the "list" to exhaust. 

SPLST can also be a generator, Le. the value of the function GENERATOR (page 7.13). The generator 
SPLST will be started up whenever the spelling corrector needs the next candidate. and it should rerum 
candidates via the function PRODUCE. For example. the following could be used as a "spelling list" which 
effectively contains all functions in the system: 

[GENERATOR 
(MAPATOMS (FUNCTION (LAMBDA (X) (if (GETD X) then (PRODUCE X] 

15.7.4 Spelling Corrector Algorithm 

The basic philosophy of DWIM spelling correction is to count the number of disagreements between two 
words, and use this number divided by the length of the longer of the two words as a measure of their 
relative disagreemenLOne minus this number is then the relative agreement or closeness. For example. 
CONS and CONX differ only in their last character. Such substitution errors count as one disagreement. 
so that the two words are in 75% agreement. Most calls to the spelling corrector specify a relative 
agreement of 70, so that a single substirution error is permitted in words ·of four characters or longer. 
However, spelling correction on shorter words is possible since certain types of differences such as single 
transpositions are not counted as disagreemenrs. For example, AND and NAD have a relative agreement 
of 100. Calls to the spelling corrector from DWIM use the value of F IXSPELLREL which is initially 
70. Note that by setting FIXSPELLREL to 100. only spelling corrections with "zero" mistakes. will be 
considered.. e.g., transpositions, double characters, etc. . 

The central function of the spelling corrector is CHOOZ. CHeOZ takes as arguments: a word. a minimum 
relative agreement, a spelling list. and an optional functional argument. XWORD, REL, SPLST, and FN 
respec~vely . 

CHeoz proceeds down SPLST examjning each word. Words not satisfying FN (if FN is non-NIL), or those 
obviously too long or too shon to be sufficiently close to XWORD are immediately rejected. For example. 
if REL = 70, and XWORD is 5 characters long, words longer than 7 characters will be rejected. 

Special treatment is necessary for words shoner than XWORD. since doubled letters are not counted as 
disagreements. For example, CONNSSS and CONS have a relative agreement of 100. (keyboard bounce 
on many different kindS of keyboards actually produce this son of stuttering.) CHeez handles this by 
counting the number of doubled characters in XWORD before it begins scanning SPLST, and taking this 
into account when deciding whether to reject shoner words. 

If TWORD, the current word on SPLST. is not rejected. CHOaZ computes the number of disagreemencs 
between it and XWORD by calling a subfunction. SKOR. 

SKOR operates by scanning both words from left to right one character at a time. SKOR operates on the 
list of character codes for each word. This list is computed by CHOaZ b.efore calling SKOR. Characters 
are considered to agree if they are the same characters: or appear on the same key (Le., a shift mistake). 
for example. • agrees with :, 1 with!, etc.; or if the character in XW'ORD is a lower case version of the 
character in TWORD. Characters that agree are discarded. and the SKORing continues on the rest of the 
characters in XWORD and TWORD. 

If the first character in XWORD and TWORD do not agree. SKOR checks to see if either character is the 
same as one previously encountered. and not accounted-for at that time. (In other words. transpositions 

15.16 



o 

(J 

DWIM 

···are not handled by lookahea~ but by Iookback.) A displacement of two or fewer positions is counted 
as a tranposition: a displacement by more than two positions is counted as a disagreement.In either case. 
both characters are now considered as accounted for and are d.iscarde~ and SKORing continues. 

If the first character in XWORD and TWORD do not agree, and neither agree with previously unaccounted
for characters. and TWORD has more characters remaining than XWORD, SKOR removes and saves the first 
character of TWORD. and continues by comparing the rest of TWORD with XWORD as described above. If 
TWORD has the same or fewer characters remaining than XWORD. the procedure is the same except that 
the character is removed from XWORD. In"this case, a special check is first made to see if that character 
is equal to the previous character in XWORD, or to the next character in XWORD, i.e •• a double character 
typo. and if so, the character is considered accounted-for, and not counted as a disagreement. In this 
case, the "length" of XWORD is also decremented. Otherwise making XWORD sufficiently long by adding 
double characters would make it be arbitrarily close to TWORD, e.g.. XXXXXX would correct to PP. 

When SKOR has finished processing both xwoRI7and TWORD in this fashion. the value of SKOR is the 
number of unaccounted-for characters. plus the number of disagreements. plus the number oftranpositions. 
with two qualifications: (1) if both XWORD and ·TWORD have a character unaccounted-for in the same 
position. the two characters are counted only once, Le., substitution errors count as only one disagreement, 
not two: and (2) if there are no unaccounted-for characters and no disagreements, tranSpositions are not 
counted. This permits spelling correction on very shon words, such as edit commands, e.g., X RT - > XT R. 
Transpositions are also not counted when FASTYPEFLG=T, for example, IPULX and IPLUS will be in 
80% agreement with FASTYPEFLG=T, only 60% with FASTYPEFLG=NIL. The rationale behind this is 
that transpositions are much more common for fast typists, and should not be counted as disagreements, 
whereas more deliberate typists are not as likeiy to combine tranpositions and other mistakes in a single 
word, and therefore can use more conservative metric. FASTYPEFLG is initially NIL. 

15.7.5 Spelling Corrector Functions and Variables 

(ADDSPELL X SPLST N) [Function] 
Adds x to one of the four spelling lists as follows: 

If x is already on the spelling list. and in its temporary sectio~ ADDSPEl.L moves 
x to the front of that section. 

If SPLST=NIL, adds x to USERWORDS and to SPELLINGS2. Used by DEFINEQ. 

If SPLST=O, adds x to USERWORDS. Used by LOAD when loading EXPRs to 
propeny lists. 

If SPLST= 1, adds x to SPEL~INGS 1 (at end of permanent section). Used by 
LISPX. 

If SPLST=2, adds ~ to SPELLINGS2 (at end of permanent section). Used by 
LISPX. 

If SPLST=3. adds x to USERWORDS and SPELLINGS3. 

SPLST can also be a spelling list. in which case N is the (optional) length of the 
temporary section. 

ADDSPELL sets LASTWORD to x when SPLST=NIL. 0 or 3. 

15.17 



Spelling Corrector Functions and Variables 

If x is not a literal atom. ADDSPELL takes no action. 

Note that the various systems ~ to ADDSPELL. e.g. from DEFINE. EDITF, LOAD, etc •• can all be 
suppressed by setting or binding ADDSPELLFLG to NIL (page 15.12). 

(MISSPELLED? XWORD REL SPLST FLG TAlL FN) [Function] 
If XWORD=NIL or S «esc», MISSPELLED? prints = followed by the value 
of LASTWORO, and returns this as the respelling, without asking for approval. 
Otherwise, MISSPELLED? checks to see if XWORD is really misspelled, Le .. if FN 
applied to XWORD is true, or XWORD is already contained on SPLST. In this case, 
MISSPELLED? simply returns XWORD. Othe;wise MISSPELLED? computes and 
returns (FIXSPELL XWORD REL SPLST FLG TAlL FN). 

(FIXSPELL XWORD .REI. SPLST FLG TA..lL FN TIEFLG DONTMOVETOPFLG - -) [Function] 
The value of FIXSPELL is either the respelling of XWORD or NIL. If for some 
reason XWORD itself is on SPLST, then FIXSPELL ahotts and calls ERROR!. If 
there is a possibility that XWORD is spelled correctly, MISSPELLED? should be 
used instead of F I XS P E LL. F I XS P ELL performs all of the interactions described 
earlier, including requesting user approval if necessary. 

If XWORD=NIL or S «esc», the respelling is the value of LASTWORD, and no 
approval is requested. 

If XWORD contains lowercase characte~ and the corresponding uppercase word. 
is correct, Le. on SPLST or satisfies FN. the uppercase word is rerumed and no 
interaction is perfonned. . 

If REL=NIL. defaults to the value of FIXSPELLREL (initially 70). 

If FLG = NIL, the correction is handled in type-in mode, i.e.. approval is never 
requested, and XWORD is not typed. If FLG = T. XWORD is typed (before the =) and 
approval is requested if APPROVEFLG=T. If FLG=NO-MESSAGE. the correction 
is returned with no funher processing. In this case, a run-on correction will be 
returned as a dotted pair of the two partS of the word, and a synonym correction 
as a list of the form (WORD1 WORD2), where WORDl is (the corrected version of) 
XWORD, and WO.RD2 is the synonym. Note that the effect of the function CHOOZ 
can be obtained by callingFIXSPELL with FLG=NO-MESSAGE. 

If TAlL is not NIL. and the correction is successful. CAR of TAlL is replaced by 
the respelling (using IRPLACA). rn addition, F IXSP E LL will correct misspellings 
caused by running two words rogether.ll rn this case. CAR of TAlL is replaced 
by the two words. and the value of FIXSPELL is the first one. For example. 
if FIXSPELL is called to correct the edit command (MOVE TO AFTERCOND 3 
2) with TAlL = (AF-TERCOND 3 2). TAlL would be changed ~o (AFTER COND 

11 In this case. user approval is always requested. In addition. if the first word contains either fewer than 
3 characters. or fewer characters than the second word. the default will be N. 'Run-on' spelling corrections 
can be suppressed by setting the variable RUNON F LG to NIL (initially T). 

V 
15.18 

(~ 
\ f-

",--" 



DWIM 

2 3), and FIXSPELL would return AFTER (subject to user approval where 
necessary ).1 ~ 

If TIEFLG = NIL and a tie occurs, i.e.. more than one word on SPLST is found 
with the same degree of "closeness'" FIXSPELL returns NIL. i.e .. no correction. 
If TlEFLG=PICKONE and a tie occurs, the first word is taken as the correct 
spelling. If TIEFLG=LIST, the value of FIXSPELL is a list of the respellings 
(even if there is only one), and F IXSPELL will not perform any interaction with 
the user. nor modify TAlL. the idea being. that the calling program will handle those 
tasks. Similarly, if TIEFLG= EVERYTHING, a list of all candidates whose degree 
of closeness is above REL will be returned, regardless of whether some are better 
than others. No interaction will be performed. 

If DONTMOVETOPFLG = T and a correction occurs, it will not be moved to the 
front of the spelling list.-

The time required for a call to FIXSPELL with a spelling list of length 60 when the entire list must be 
searched is .5 seconds. If F IXSPELL determines that the first word on the spelling list is the respelling 
and does not need to search any funher, the time required is .02 seconds. In other .words. the time 
required is proportional to the number of words with which XWORD is compared, with the time for one 
comparison, Le., one call to SKOR takes roughly .01 secongs (varies slightly with the number of characte:s 
in the words being compared). 

(FNCHECK. FN NOERRORFLG SPELLFLG PROPFLG TAlL) [Function] 
The task of FNCHECK is to check whether FN is the name of a function and if 
not. to correct its spelling. If FN is the name of a function or spelling correction 
is successful. FNCHECK adds the (corrected) name of the function to USERWORDS 
using ADDSPELL. and returns it as its value. 

Sitlce FNCHECK is called by many low level functions such as ARGLIST. 
UNSAVEDEF, etc .. spelling correction only takes place when DWIMFLG=T, so that 
these functions can operate in a small Interlisp system which does not contain 
DWIM. 

NOERRORFLG informs FNCHECK whether or not the calling function wants to 
handle the unsuccessful case: if NOERRORFLG is T, FNCHECK simply returns NIL. 
otherwise it prints fn NOT A FUNCTION and generates a non-breaking error. 

If FN does not have a definition. but does hav.e an EX? R property, then 'spelling 
correetion is not attempted. Instead, if PROPFLG = T, FN is considered to be the 
name of a function, and is returned. If PROPFLG = NIL. FN is not considered to 

be the name of a function. and r~ I L is returned or an error generated. depending 
on the value of NOERRORFLG. 

FNCHECK calls MISSPELLED? to perform spelling correction. so that if FN= NIL. 
the value of LAST WORD will be returned. SPELLFLG corresponds to MISSPELLEDTs 

12If TAlL=T. FIXSPELL will also perform run-on corrections. returning a dotted pair of the twO words 
in the event the correction is of this type. 

15.19 



" 

\, 

Spelling Corrector Functions and Variables 

-.fourth argument. FLG. If SPELLFLG = T, approval will be asked if DWIM was en
abled in CAUTIOUS mode. Le .• if APPROVEFLG=T. T.A.1L corresponds to the fifth 
argument to MISSPELLED? 

FNCHECK is currently used by ARGLIST. UNSAVEDEF, PRETTYPRINT, BREAKO. BREAKlN. ADVISE. 
CALLS, and EOlTA. For example. BREAKO calls FNCHECl( with NOERRORFLG=T since if'FNCHECl< 
cannot produce a function. BREAKO w~ts to define a dummy one. CALLS however calls FNCHECK with 
NOEBRORFLG= r~ I L, since it cannot operate without a function. 

Many other system functions call MISSPELLED? or FIXSPELL directly. For example. BREAKl calls 
F IXSPELL on unrecognized atomic inputs before attempting to evaluate them. using as a spelling list a 
list of all break commands. Similarly, LISPX calls FIXSPEL1.. on atomic inputs using a list of all LISPX 
commands. When UNBREAK is given the name of a function that is not broken, it calls FIXSPELL with 
two different spelling lists, first with BROKENFNS, and if that fails. with USERWOROS. MAKEFILE calls 
l,··-t;SPELLED? using FILELST as a spelling list. Fmally, LOAD. BCOMPL, BRECOMPILE. TeOMPL. and 

~.'. ___ ~OMPILE all call MISSPELLED? if their input file(s) won't open.. 

(SPELLFILE FILE NOPRINTFLG NSFLG DmLST) [Function] 
If FILE does not have a directory fielcL SPELLFILE look~ on the directories given 
by the value of 0 I RECTORI ES, initially (N IL LISP). (N I L corresponds to login 
directory.) This correction will not require user approval (but SPELLFILE will 
indicate the correction in the usual way, by printing = followed by the new file 
name). Otherwise, SPELLFILE attempts spelling correction against the files in the 
directory. In this case: user approval will be requested (except if NOPRINTFLG = T, 
s~e below). Returns corrected file, if any, otherwise NIL. 

If NOPR1NTFLG=T. SPELLFILE does not do any printing, nor.ask for approyal. 

If NSFLG=T (or NOSPELLFLG =T), no spelling correction is attempted. though 
searching through DIRECTORI.ES will still be performed. 

If DIRLST is non-NIL. it is used instead of the value of DIRECTORIES. 

~ RRORTYPELST (page 9.16) is initially 

~1{23 (SPELLFILE (CADR ERRORMESS) NIL.NOFILESPELLFLG») 

\ . 

. 
This causes SPELLFILE to be called in case of a FILE NOT FOUND error. If the variable 
NO F I L ESP ELL F L GisT (its initial value). then spelling correction is not done on the file name. but 
DIRECTORIES is still searched. If SPELLFILE is successfuL the operation will be reexecuted with the 
new (corrected) file name. 

(FINDFILE FILE NSFLG DIRLST) • [Function] 
If FILE is not the name of a file. calls S PEL L F I L E specifying ncr interaction or 
printing. FIN 0 F I L E could be defined as: 

(if (INFILEP F~E) 
else (SPELLFILE FILE T NSFLG DffiLST» 

15,20 

- ...... _- -----------"...~.i:--.- ~-. --_-_-*"=-_).~~ 

(-.(\ . 

\_~ 

C·· -
C~) 

, -



0-' 

CHAPTER 16 

CLISP 

The syntax of LISP is very simple, in the sense that it can be described concisely, but not in the sense that 
LISP programs are easy to read or write! This simplicity of syntax is achieved by, and at the expense of. 
extensive use of explicit structuring, namely grouping through parenthesization. Unlike many languages, 
there are no reserved words in LISP such as IF, THEN, FOR, ~O, etc., nor reserved characters like +, -, =, 
~, etc. The only special characters are left and right parentheses and periocL which are used for indicating 
structure, and space and end-of-line, which are used for delimiting identifiers. This eliminates entirely the 

/"-- -

I '\ need for parsers and precedence rules in the LISP interpreter and compiler. and thereby makes program 
V__ manipulation of LISP programs straightforward. In other words, a program that "looks at" other LISP 

o 

programs does not need to incorporate a lot of syntactic information. For example, a LISP interpreter can 
be written in one or two pages of LISP code. It is for this reason that LISP is by far the most suitable, 
and frequently use~ programming language for writing programs that deal with other programs as data., 
e.g., programs that analyze, modify, or construct other programs. 

However, it is precisely this same simplicity of syntax that makes LISP programs difficult to read and write 
(especially for beginners). 'Pushing down' is something programs do very well, and people do poorly. As 
an example, consider the following two "equivalent" sentences: 

'The rat that the cat that the dog that I owned chased caught ate the cheese." 

versus 

"lawn the dog that chased the cat that caught the rat that ate the cheese." 

Natural language contains many linguistic devices such as that illustrated in the second sentence above 
for minimizing embedding, because embedded sentences are more difficult to grasp and understand than 
equivalent non-embedded ones (even if the latter sentences are somewhat longer). Similarly. most high 
level programming languages offer syntactic devices for reducing apparent depth and complexity of a 
program: the reserved words and infix operators used in ALGOL-like languages simultaneously delimit 
operands and operations. and also convey meaning to the programmer. They are far more inruitive 
than parentheses. In fact. since LISP uses parentheses (i.e., lists) for almost all syntactic forms~ there is 
very little information contained in the parentheses for the person reading a LISP program. and so the 
parentheses tend mostly to be ign()red: the meaning of a particular LISP expression for people is found 
almost entirely in the words. not in the structure. For example, the expression 

(CO~~O (EQ NO) 1) (T TIMES f~ FACTORIAL «SUB1 Nf» 

is recognizable as factorial even though there are five misplaced 'or missing parentheses. Grouping words 
together in parentheses is done more for LISP's benefit. than for the programmer's. 

CLISP is designed to ma,ke Interlisp programs easier to read ·arid write by permitting the user to 
employ various infix operators. I F statements (page 4.4). and iterative statements (page 4.5). which are 
automatically convened to equivalent Interlisp expressions when they are first interpreted. For example, 
factorial could be written in CLISP: 

16.1 



(IF N=O THEN 1 ELSE N-(FACTORIAL N-l» 

Note that this expression would become an equivalent CONO after it had been interpreted once, so that 
programs that might have to analyze or otherwise process this expression could take advantage of tile 
simple syntax. 

There have been similar efforts in other LISP systelns. CLISP differs from these in that it does not 
attempt to replace the LISP syntax so much as to augment it In fact. one of the principal criteria in the 
design of CLISP was that users be able to freely intermix LISP and CLISP without having to identify 
which is which. Users can write programs, or type in expressions for evaluation, in LISP, CLISP, or a 
mixture of both. In this way, users do not have to learn a whole new language and syntaX in order to be 
able to use selected facilities of CLISP when and where they find them useful. 

CLISP is implemented via the error correction machinery in Interlisp (see page 15.1). ThUs. any expression 
r' that is well-formed from Interlisp's standpoint will never be seen by CLISP (i.e., if the user defined a 
'- function IF, he would effectively tum off that pan of CLISP). This means that interpreted programs 

- that do not use CLISP constructs do not pay for its availability by slower execution time. In fact. the 
Interlispinterpreter does not "know" about CLISP at all. It operates as before, and when an erroneous 
form is encountered, the interpreter calls an error routine which in tum invokes the Do-What-I-Mean 
(DWI1vI) analyzer which contains CLISP. If the expression in question turns out to be a CLISP construct. 
the equivalent Interlisp form is returned to the interpreter. In addition. the original CLISP expression. is 
modified so that it becomes the correctly translated Interlisp form. In this way, the analysis and translation 
are done only once. 

Integrating CLISP into the Interlisp system (instead of. for example. implementing it as a separate 
preprocessor) makes possible Do-What-I-Mean features for CLISP constructs as well as for pure LISP 
expressions. For example, if the user has defined a function named GET-PARENT, CLISP would know not 
to attempt to interpret the form (GET -PARENT) as an arithmetic infix operation. (Actually, CLISP would 
never get to see this form. since it does not contain any errors.) If the user mistakenly writes (G E T -
PRAENT), CLISP would know he meant (GET-PARENT), and not (DIFFERENCE GET PRAENT). by 
using the information that PRAENT is not the name of a variable, and that GET-PARENT is the name of 
a user function whose spelling is "very close" to that ofGET-PRAENT. Similarly, by using infonnation 
about the program's environment not readily available to a' preprocessor, CLISP can successfully resolve 

(- - ~e following sorts of ambiguities: 

(I) (LIST X-FACT N), where FACT is the name of a variable. means (LIST (X-FACT) N). 

(2) (LIST X-FACT N), where FACT is not the name of a variable but instead is the name of a function. 
means (LIST X*( FACT N», i.e .• N is FACT's argument 

(3) (LIST X*FAC.T(N», FACT the name ofa functiori (and not the name ofa variable), means (LIST 
X-(FACT N». 

: 
(4) cases (1), (2) and (3) with FACT misspelled! 

The first expression is correct both from the standpoint of CLISP syntax and semantics and the change 
would be made without the user being notified. In the other cases. the user would be informed or 
consulted about what was taking place. For example. to take an extreme case. suppose the expression 
(LIST X-FCCT N) were encountered. where there was both a function named FACT and a vari:!ble 
named FCT. Tne user would first be asked if FCCT were a misspelling of FCT. If he said YES. ~~e 
expression would be interpreted as (L I S T (X * F CT) N). If he said NO, tile user would be asked If 
FCCT were a misspelling of FACT. i.e .• if he intended X*FCCT N to mean X-( FACT N). Ifhe said YES 

16.2 
() 
\ .' 



./'------.......; 

0\~-~· 

eLISP 

to this question~ the indicated transformation would be performed. If he said NO, the system would then 
ask if X*FCCT should be created as eLISP, since FCCT is not the name of a (bound) variable. l Ifhe said 
YES, the expression would be transforme~ if NO, it would be left alone, Le., as (LIST X * FCCT N). 
Note that we have not even considered the case where X*FCCT is itself a misspelling of a variable name, 
e.~ a variable named XFCT (as with GET-PRAENT). This son of transformation would be considered 
after the user said NO to X * FCC T N - > X * ( FA C TN) • 

Note: Through the discussion above, we speak of CLISP or DWIM asking the user. Actually, if the 
expression in question was typed in by the user for immediate execution. the user is simply infonned of 
the tranSformation. on the grounds that the user would prefer an occasional misinterpretation rather than 
being continuously bothere~ especially since he can always retype what he intended if a mistake occurs, 
and ask the programmer's assistant to UNDO the effects of the mistaken operations if necessary. For 
transformations on expressions in user programs, the user can inform CLISP whether he wishes to operate 
in CAUTIOUS or TRUSTING mode. In the former case (most typical) the user will be asked to approve 
transformations, in the latter, eLISP will operate as it does on type-~ i.e .• perform the cransformation 
after informing the user. 

eLlSP can also handle parentheses errors caused by typing S or 9 for U (9t or ") ". (On most terminals, 8 
and 9 are the lower case characters for "(" and ")", Le., "(" and S appear on the same key, as do ")" 
and 9.} For example, if the user writes N*SFACTORIAL N-l. the parentheses error can be detected and 
fixed before the infix operator * is convened to the Interlisp function TIME S. eLISP is able to distinguish 
this situation from cases like N * S * X meaning (T I M E 5 N S X), or N * S X. where 8 X is the name of a 
variable, again by using information about the programming environment. In fact. by integrating eLISP 
with "DWIM, eLISP has been made sufficiently tolerant of errors that almost everything can be misspelled! 
For example, CLISP ean successfully tranSlate the definition of FACTORIAL: 

(IFF N=O THENNl ESLE N*SFACTTORIALNN-l) 

to the corresponding CONDo while making 5 spelling corrections and fixing "the parenthesis error.2 

This son of robustness prevails throughout eLlSP. For example. the iterative statement permits the user 
to say things like: 

(FOR OLD X FROM M TO N DO (PRINT X) WHILE (PRIMEP X» 

However. the user can also write OLD (X.-M). (OLD X.-M), (OLD (X.-M», permute the order of the 
operators. e.g., (DO PRINT X TO N FOR OLD X.-M WHILE PRIMEP X). omit either or both sets of 
parentheses. misspell any or all of the operators FOR. OLD, F ROM. TO. DO, or WH I LE. or leave out the 
word DO entirely! And.. of course, he can also misspell PRINT, PRIMEP, M or N! In this example, the 
only thing the user could not misspell is the first X. since it specifies the name of the variable of iteration. 
The other two instances of X could be misspelled. 

: 

IThis question is important because Interlisp users may have programs that employ identifiers containing 
CLISP operators. Thus. if CLlSP encounters the expression AlB in a context where either A or B are not 
the names of variables, it will ask the user if AlB is intended to be eLlSP. in case the user really does 
have a free variable named A/B. 

2CLISP also contains a facility for converting from Interlisp back to eLlSP. so that after running the 
above incorrect definition of FACTORIAL. the user could "clispify'~ the now correct version to obtain ( IF 
N=O THEN .1 ELSE N*(FACTORIAL N-l») . 

16.3 



CLISP Interaction with User 

CLISP is well integrated into the Interlisp system. For example. the above iterative statement translates 
into an following equivalent Interlisp form using PROG. COND~ GO. etc. When the inteJ1)reter subsequently 
encounters this CLISP expression. it automatically obtains and evaluates the translation. Similarly, the 
compiler "knows" to compile the translated form. However. if the user PRETTYPRINTs his progr~ 
PRETTYPRINT "knows" to print the original CLISP at the corresponding point in his function. Similarly. 
when the user edits his pro~ the editor keeps the translation invisible to the user. If the user modifies 
the CLlSP, the translation is automatically discarded and recomputed the next time the expression is 
evaluated. 

In short, CLISP is not a language at all but rather a system. It plays· a role analagous to that of the 
programmer's assistant (page 8.1). Whereas the progruII1.IIler's assistant is an invisible intermediary agent 
between the user's console requests and the Interlisp executive, CLISP sits between the user's programs 
and the Interlisp interpreter. 

-~ ( )-. 

--- -" :. 

(
--- Only a small effort has been devoted to defining the core syntax of CLISP. Instead, most of the etton has ('\ 
... oeen concentrated on providing a facility which "makes sense" out of the input expressions using context .~{.~: 

r-

information as well as built-in and acquired information about user and system programs. It has been 
said that communication is based on the intention of the speaker to produce an effect in the recipient. 
CLISP operates under the assumptioJ1 that what the user said was intended to represent a meaningful 
operation. and therefore tries very hard to make sense out of it. The motivation behind CLISP is not 
to provide the user with many different ways of saying the same thing, but to enable him to worry less 
about the syntactic aspects of his communication with the system. In other words. it gives the user a 
new degree of freedom by permitting him to concentrate more on the problem at hand, rather than on 
translation into a formal and unambiguous language. 

DWIM and CLISP are invoked on iterative statements because CAR of the iterative statement is not the 
name of a function. and hence generates an error. If the user defines a function by the same name as 
an Ls. operator, e.g.~ WH I L.E, T 0, etc.~ the operator will no longer have the CLISP interpretation when it 
appears as CAR of a form. although it will continue to be treated as an Ls. operator if it appears in the 
interior of an i.s. To alen the user. a warning message is printed. e.g.~ (WHILE DEF INED, THEREFORE 
DISABLED IN eLISP). 

-16.1 CUSP INTERACTION WITH USER 

Syntactically and semantically well formed CLISP transformations are always performed without infonning 
the user. Other CLISP transformations described in the previous section. e.g .• misspellings of operands. 
infix operators, parentheses errors, unary minus - binary minus errors, all follow the same protocol as 
other OWnv! transformations (page 15.1). That is. if D\VIM has been enabled in TRUST I NG mode. or 
the transformation is in an expression typed in by the user for immediate execution. user approval is not 
requested. but the user is informed.3 However, if the transformation involves a user program. and D\Vl~l 
was enabled in CAUT rous mode. the user will be asked to approve. If he says NO. the transformation is 
not performed. Thus, in the previous section. phrases such as "one of these (transformations) succeeds" 
and "the transformation LAST-ELL -> LAST-EL would be found" etc .• all mean if the user is in 

3However. in certain situations. D\VI~1 will ask for approval even if D\VL\I is enabled in TRUST ING 
~ode. For example. the user will always be asked to approve a spelling correction that might also be 
Interpreted as a. eLISP transfonnation. as in LAST-ELL -> LAST-El. 

16A 

( "'- )Ii 

n 



.~. 

\ ) 
\:::"'!-

eLISP 

CAUT I CUS mode and the error is in a program. the corresponding transformation will be performed only 
if the user approves (or defaults by not respon.d.ing). If the user says NO. the procedure followed is the 
same as though the transformation had not been found.. For example. if A -8 appears in the function 
FOO, and a is not bound (and no other transformations are found) the user would be asked A-a [IU 
FOC] TREAT AS elISP ?4 

If the user approve~ A· 8 would be transformed to (I TIM E S A B), which would then cause aU. B . A . 
B error in the event that the program was being run (remember the entire discussion also applies to 
DWIMI FYing). If the user said NO, A -S would be left alone.s 

16.2 CLISP CHARACfER OPERATORS 

eLISP recognizes a number of special characters operators. both prefix and infix. which are translated 
into common expressions. For example, the character + is recognized to represent addition. so eLISP 
translates the litatom A+S to the form (IPLUS AS). Note that eLlSP is envoked. and this translation 
is made, only if an error occurs. such as an unbound atom error or an undefined function error for the 
perfectly legitamate litatom A+8. Therefore the user may choose not to use these facilities with no penalty, 
similar to other eLISP facilities. 

The user has a lot of fiexability in using eLISP character operators. A list., can always be substituted for 
a litatom. and vice ve~ without changing the interpretation of a phrase. For example, if the value of 
(FCO X) isA.andthevalueof(FIE Y) isB.then (LIST (FOC X)+(FIE V»~ has the same value as 
(lIST A+S). Note that the first expression is a list of four elements: the atom "'lIST", the list "( FOO 
X) tt, the atom "+", and the list "( FIE X)", whereas the second expression. (l I 5T A+8), is a list 
of only two elements: the litatom "LIST" and the litatom "A+8". Since (LIST (Faa X)+( FIE Y» 
is indistinguishable fioin (L I S T (F 00 X) u+u ( FIE Y)} because spaces before or after parentheses 
have no effect on the Interlisp READ program. 6 to be consistent, extra spaces have no effect on atomic 
operands either. In other words. eLISP will treat (LIST A+US). (lIST AU+8), and (LIST AU+UB) 
the same as (LIST A+8). 

• 
I 
l' 

[eLISP Operator1 
[eLISP Operator] 
[eLISP Operator] 
[eLISP Operator] 
[eLISP Operator] 

eLISP recognizes +, -, ., I, and l' as the normal arithmetic infix operators. - is 
also recognized as the prefix operator. unary minus. These are converted to IPLUS. 
IDIFFERENCE (or in the case of unary minus. IMINUS). ITIMES. IQUOTIENT. 
and EXPT. . 

4The waiting time on such interactions is three times as long as for simple corrections. Le .• 3*OWIMWAIT . 

. sIf the value of CLISPHELPFLG=NIL (initally T), the user will not be asked to approve any clisp 
transformation. InsteJ.d. in those situations where approval would be required. the effect is the same as 
though the user had been asked and said NO. 

O· 
6CLISP does not use its own special READ program because this would require the user to explicitly 
identify eLISP expressions. instead of being able to intermix Interlisp and CLISP. 

16.5 



( 

= 
GT 
LT 
GE 
LE 

eLISP Character Operators 

The I in IPLUS denotes integer arithmetic9 Le'9 IPLUS convertS its arguments 
to integers, and rewrns an integer value. Interlisp also contains floating point 
arithmetic functions as well as mixed arithmetic functions. Floating point arithmetic 
functions are used in the translation if one or both of the operands are themselves 
floating point numbers9 e.g .• X+l. 5 translates as (FPLUS X 1.5). In addition. 
CLISP contains a facility for declaring which type of arithmetic is to be used. 
either by making a global declaration. or by separate declarations about individual 
functions or variables (see page 16.9). 

The usual precedence rules apply (although these can be easily changed by the 
user), i.e .. * has higher precedence than + so that A+8·C is the same as A+ (8 $·C ), 
and both * and I are lower than 1" so that 2· X l' 2 is the same as 2 * ( X l' 2 ) • 
Operators of the same precedence group from left to right. e.g .• AlBIC is equivalent 
to (AlB) IC. Minus is binai"y whenever possible. i.e .• except when it is the first 
operator in a list. as in (-A) or (-A), or when it immediately follows another 
operator, as in A*-B. Note that grouping with parentheses can always be used 
to override the normal precedence grouping, or when the user is not sure how 
a particular expression will parse. The complete order of precedence for CLISP 
operators is given below. 

Note that + in front of a number will disappear when the number is read. e.g .• 
( Faa X + 2) is indistinguishable from (Faa X 2) • This means that (F 00 X 
+2) will not be interpreted as CLlSP, or be converted to (Faa (IPLUS X 2». 
Similarly. (F 00 X - 2) will not be interpreted the same as (F 00 X - 2 ) • To 
circumvent this. always type a space between the + or - and a number if an infix 
operator is intended. e.g., write (F 00 X + 2) • 

[CLISP Operator] 
[CLISP Operator) 
[CLISP Operator) 
[CLISP Operator] 
[CLlSP· Operator] 

These are infix operators for "Equaf', "Greater Than", "less Than'" uGreater 
Than or Equal", and "Less Than or Equal". 

GT. L T, GE. and LE are all affected by the same declarations as + and *. with the 
initial default to use IGREATERP and ILESSP. 

Note that only single character operators. e.g .• +. +-. =. etc .• can appear in the 
interior of an atom. All other operators must be set off from identifiers with spaces. 
For example. XL TY will not be recognized as CLISP. In some cases. O\VUvl will 
be able to diagnQse Chis situation as a run-on spelling error. in which case after the 
atom is split apait. eLISP will be able to perform the indicated transformation. 

A number of lisp functions. such as' EQUAL. MEMBER. AND. OR. etc .. can also be treated as ClISP infix 
operators.1 AND is higher than OR. and both AND and OR are lower than the other infix operators. so 

rCurrently the complete list is MEMBER. MEMB. FMEMB. ILESSP. IG.REATERP. LESSP. GREATER? FGTP. 
EQ. NEQ. EQP. EQUAL. OR. and AND. ~ew infix operacors can be easily added. as described in page 16.2l. 
Spelling correction On misspelled infix operators is peformed using ellSP INF IXSPLST as a spelling 
list 

16.6 

n 
\. / :" 
-~. 



I , 0
,,- . 

CLISP 

(X OR Y AND Z) is the same as (X OR (Y AND Z», and (X AND Y EQUAL Z) is the same as (X 
AND (Y EQUAL Z». All of the infix predicates have lower precedence than Interlisp forms, since it is 
far more common to apply a predicate to two forms, than to use a Boolean as an argument to a function. 
Therefore, (Faa x GT FIE Y) is translated as «Faa X) GT (FIE V»~, rather than as (FOO (X 
GT (FIE Y»). However, the user can easily change this. 

[CLlSP Operator] 
X: N extracts the Nth element of the list X. F 00: 3 specifies the third element of 
FOa, or (CADDR· Faa). If N is less than zero, this indicates elements counting 
from the end of the list; Le. Faa: -1 is the last element of F 00. : operators can 
be nestetL so F 00: 1 : 2 means the second element of the first element of F 00, or 
(CADAR FOO). . 

The : operator can also be used for extracting substructures of records (see page 
3.1). Record operations are implemented by replacing expressions of the form 
X: Faa by' (fetch Faa of X). Both lower and upper case are acceptable. 

: is also used to indicate operations in the pattern match facility (page 23.1). 

[CLISP Operator] 
x: N, rewrns the Nth tail of the list x. For example. Faa: : 3 is (CDDDR FOO), 
and FOO: : -1 is (LAST Faa). 

. [CLISP Operator] 
+- is used to indicate assignment. For example, X+-Y translates to (S E T Q X Y). If 
X does not have a value, and is not the name of one of the bound variables of the 
function in which it appears, spelling correction is attempted. However. since this 
may simply be a case of assigning an initial value to a new free variable, DWIM 
will always ask for approval before making the correction. 

In conjunction with : and ::. +- can also be used to perform a more general 
type of assignment, involving structure modification. For example, X: 2+-Y means 
"make the second element of X be Y", in Interlisp terms (RPLACA (CDR X) Y). 
Note that the value of this operation is the value of RPLACA. which is (CDR X), 
rather than Y • Negative numbers can also be usetL e.g.. X: - 2 +-Y, which translates 
to (R P LA C A (r~ L EFT X 2) Y) • 

The user can indicate he wants IRPLACA and IRPLACD used (undoable version 
of RPLACA and RPLACD, see page 8.22), or FRPLACA and FRPLACD (fast versions 
of RPLACA and RPLACD, see page 2.15), by means of CLlSP declarations (page 
16.9). The initial default is to use RPLACA and RPLACD. 

+- is also used to indicate assignment in record operations (X: FOO+-Y translates to 
(repl ace .FOO of X with Y).), and pattern march operations (page 23.~). 

+- has different precedence on the left from on the right. On the left ... is a "tight" 
operator, i.e .. high precedence. so that A+8'-C is the same as A+ ( B'-C). On the 
right. ... has broader scope so that A4-8+C is the same as A+-( 8+C ). 

On typein. S4-FORM «esc>+-FoR.\1) is equivalent to set the "last thing men-

16.7 ' 



( 
i 

CLlSP Character Operators 

() 
-C· 

tioned".8 For example. immediately after examining the value ofLONGVARIA8LENAME. 
the user could set it by typing S+- followed by a fOIm. 

Note that an atom of the form X+-Y, appearing at the top level of a PROG. will not be recognized as 
an assignment statement because it will be interpreted as a P ROG label by the Interlisp interpreter. and 
therefore will not cause an error. so DWIM and CLISP will never get to see it. Instead. one must write 
(X+-Y). 

< 
) 

[CLISP Operator] 
[CLlSP Operator) 

Angle brackets are used in CLlSP to indicate list construction. The appearance of 
a "<" corresponds to a "(" and indicates that a list is to be constructed containing 
all the elements up to the corresponding U)". For example, <A B <C) > translates 
to {L I S TAB (L I S T C» . ! can be used to indicate that the next expression 
is to be inserted in the list as a segment. e.g .• <A B ! C) translates to (CONS A 
(CONS 8 C» and <! A ! B C) to (APPEND A B (LIST e». ! 1 is used 
to indicate that the next expression is to be inserted as a segment. and funhermore. 
all list structure to its right in the angle brackets is to be physically attached to 
it. e.g .• <!! A B) translates to (NCONC 1 A B), and <! ! A ! 8 ! C) to (NCONC 
A (APPEND B C». Not (NCONe (~PPEND A B) C), which would have the 
same value. but would attach C to 8. and not attach either to A. Note that <. 
!, I! • and ) need not be separate atoms. for example .. <A 8 ! C) may be 
written equally well as < A B ! C >. Also. arbitrary Interlisp or CLlSP forms 
may be used within angle brackets. For example. one can write < F OO+- ( FIE X) ! 
Y> which translates to (CQ.NS {SETQ FOa (FIE X» V). CLISPIFY converts 
expressions in CONS. LIST. APPEND, NCONe, NCONC1, INeONe, and INCONC 1 
into equivalent CLISP expressions using <, ), !, and ! !. 

Note: brackets differ from other CLlSP operators. For example, <A B 'C> 
translates to (LIST A B (QUOTE C» even though following' , all operators are 
ignored for the reSl of the identifier. (This is true only if a previous unmatched < 
has been seen, e.g., (PRINT 'A)B) will print the atom A)B.} Note however that 
<A B 'UC) D) is equivalent to (LIST A B (QUOTE C» D). 

\'._-' , [CLISP Operator] 
CLISP recognizes ' as a prefix operator. ' means QUOTE when it is the first 
character in an identifier. and is ignored when it is used in the interior of an 
identifier. Thus, X='Y means (EQ X (QUOTE Y», but X=CAN'T means (EQ 
X CAN'T), not (EQ X CAN) followed by (QUOTE T). This enables users to 
have variable and function names with ' in them (so long as the ' is not the first 
character). 

Following '. all operators are ignored for the rest of the identifier. e.g.. ,-A means 
(QUOTE -A). and 'X=Y means (QUOTE X=Y). not (EQ (QUOTE X) V). To 
write (EQ (QUOTE X) Y). one writes Y = ' X. or 'X =Y. This is one place where 
an extra space does make a difference. 

aLe ... is equivalent to (SET LASTWORD FOR.\l). See page 15.15. 

16.3 

r--", .... 
\ L:= 



CLISP 

On typein. '$ (Le., '<esc» is equivalent to (QUOTE VALUE-OF-LASTWORD) (see 
page 15.15). For example. after calling PRETTYPRINT on LONGFUNCTION, the 
user could move its definition to FOO by typing (MOVD '$ 'FOa).9 

[eLlSP Operator] 
eLISP recognizes - as a prefix operator meaning NOT. - can negate a form. as in 
_( ASSOC X Y), or - X, or negate an infix operator, e.g., (A -G T B) is the same 
as (A LEQ B). Note that -A=8 means (EQ (NOT A) B). 

When - negates an operator, e.g., -=, -LT. the two operators are treated as a 
single. operator whose precedence is that of the second operator. When - negates 
a function. e.g., (-F 00 X Y). it negates the whole form. Le., (- ( F 00 X Y». 

Order of Prededence of eLISP Operators: 
r}' . 
\. , . \::>-.. • 

.... (left precedence) 
- (unary), -

o· 

., I 
+, - (binary) 
+- (right precedence) 

= 
Interlisp forms 
LT,GT, EQUAL,MEMBER,e~. 

AND 
OR 
IF, THEN, ELSEIF, ELSE 
iterative statement operators 

16.3 DECLARATIONS 

eLISP declarations are used to affect the choice of Interlisp function used as the translation of a particular 
operator. For example, A+B can be translated as either (IPLUS A B), (FPLUS A B), or (PLUS A 
8). depending on the declaration in effect. Similarly X: l+-Y can mean (RPLACA X V), (FRPLACA X 
V), or (/RPLACA X V). and <!!A B> either (NCONCl A B) or (/NCONCl A B). Note that the . 
choice of function on all eLISP transfonnations are affected by the eLISP declaration in effect.. i.e., 
iterative statements, pattern matches, record operations, as well as infix and prefix operators. 

(CLISPOEC DECLST) . [Function] 
Puts into eff~t the declarations in DECLST. CLISPOEC perfonns spelling corrections 
on words not recognized as declarations. CLISPOEC is' undoable. 

gNot (MOVD S 'FOO). which would be equivalent to (MOVD LONGFUNCTION · FOO), and would 
(probably) cause a U.B.A. LONGFUNCTION error. nor MOVD(S FOO), which would actually move the 
definition of S to FOO. since D\VIM and the spelling corrector would never be invoked. 

16.9 



i 

Local Declarations 

The user can makes (changes) a global declaration by calling ClISPOEC with DECLST a list of declarations. 
e.g .• (ClISPOEC t (FLOATING UNDOABLE». Changing a global declaration does not affect the speed 
of subsequent CLlSP transformations. since all eLISP transformation are table driven (Le., property list). 
and global declarations are accomplished by making the appropriate internal changes to eLlSP at the time 
of the declaration. If a function employs local declarations (described below), there will be a slight loss 
in efficiency owing to the fact that for each eusp transformation. the declaration list must be searched 
for possibly relevant declarations. 

Declarations are implemented in the order that they are given. so that later declarations override earlier 
ones. For example, the declaration FAST specifies that FRPlACA, FRPLACD, FMEMB. and FLAST be used 
in place of RPlACA. RPLACD, MEMB, and LAST; the declaration RPLACA specifies that RPLACA be used. 
Therefore, the declarations (FAST RPLACA RPLACD) will cause FMEMB, FLAST, RPLACA, and RPLACD 
to be used. 

~:--

l fhe initial global declaration is INTEGER and STANDARD. 

f-~' 

The table below gives the declarations available in CLlSP. and the Interlisp functions they indicate: 

Declaration 

INTEGER or FIXED 

FLOATING 

MIXED 

FAST 

UNDOABLE 

STANDARD 

RPlACA, RPLACD, IRPlACA, 
etc. 

16.3.1 Local Declarations 

Interlisp Functions to be used 

IPLUS, IMINUS, IDIFFERENCE, ITIMES, IQUOTIENT, ILESS?, 
IGREATERP 

FPlUS. FMINU5, FDIFFERENCE. FTIMES. FQUOTIENT. LESSP, 
FGREATERP 

PLUS, MINUS. DIFFERENCE, TIMES, QUOTIENT, LESSP,GREATERP 

FRPLACA, FRPlACD, FMEMB. FLAST, FASSOC 

IRPLAC~ IRPlAC~ INCONC, INCONCl, IMAPCONC, IMAPCON 

RPLACA, RPLACD,MEMB, LAST. ASSOC, NCONC. NCONCl.MAPCONC. 
MAPCON 

corresponding function 

The user can also make local declarations affecting a selected function or functions by inserting an 
expression of the form (ellS?: • DECLARATIONS) immediately following the argument list. i.e .. as 
CADOR of the definition. Such local declarations take precedence over global declarations. Declarations 
affecting selected variables can be indicated by lists. where the first element is the name of a variable. 
and the rest of the list the declarations for that variable. For example. (elISP: FLOATING (X 
INTEGER» specifies that in this function integer arithmetic be used- for computations involving X. and 

16.10 

() .. 
c-; 



C5 

o· 

CLISP 

floating arithmetic for all other computations.10 The user can also make local record declarations by 
inserting a record declaration~ e.g., (RECORD --). (ARRAYRECORD --), etc., in the local declaration 
list In addition~ a local declaration of the form (RECORDS ABC) is equivalent to having copies of 
the global declarations A, B; and C in the local declaration. Local record declarations override global 
record declarations for the function in which they appear. Local declarations can also be used to override 
the global setting of certain DWIM/CLISP parameters effective only for transformations within that 
function, by including in the local declaration an expression of the form (VARIABLE = VALUE), e.g., 
(PATVARDEFAULT = QUOTE). 

The CLISP: expression is converted to a comment of a special form recognized by CLlSP.\Vhenever a 
CLlSP transformation that is affected by declarations is about to be performed in -a function. this comment 
will be searched for a relevant declaration, and if one is found, the corresponding function will be used. 
Otherwise, if none are found, the global declaration(s) currently in effect will be used. 

Local declarations are effective in the order that they are given~ so that later declarations can be used to 
override earlier ones, e.g., (eLISP: FAST RPLACA RPLACD) specifies that FMEMB. F LAST, RPLACA~ 
and RPLACO be used. An exception to this is that declarations for specific variables take precedence of 
genera!, function-wide declarations, regardless of the order of appearance, as in (CLIS?: (X INTEGER) 
FLOATING). 

CLISPIFY also checks the declarations in effect before selecting an infix operator to ensure that the 
corresponding CLlSP consU'Uct would in fact translate back to this form. For example, if a F LOA T I NG 
declaration is in effect, CLISPIFY will convert (FPLUS X Y) to X+Y, but leave (IPLUS X Y) as is. 
Note that if (FPLUS X Y) is CLISPIFYed while a FLOATING declaration is under effect, and then the 
declaration is changed to INTEGER, when X+Y is translated back to Interlisp, it will become (IPLUS X 
V). 

16.4 CUSP OPERATION 

CLlSP is a part of the basic Interlisp system. Without any special preparations~ the user can include CLlSP 
constructs in programs~ or type them in directly for evaluation (in EVAL or APPL Y fonnat), then. when the 
u error" occurrs, and DWIM is called, it will destructively transform the CLlSP to the equivalent Interlisp 
expression and evaluate the Interlisp expression. CLISP transformations, like all DWIM corrections. are 
undoable. User approval is not requested, and no message is printed.ll 

However. if a CLISP construct contains an error, an appropriate diagnostic is generate~ and the form 
is left unchanged. For example, if the user writes (LIST X+Y·), the error diagnostic MISSING 
OPERAND AT X+Y· IN (LIST X+Y·) would be generated. Similarly, if the user writes (LAST+EL 
X). CLISP knows that ( ( I PLUS LAST E L) X) is not a valid Interlisp expression. so the error diagnQstic 
MISSING· OPERATOR IN (LAST+EL X) is generated. (For example, the user might have meant to 

lO"invo}ving" means where t~e variable itselfis an operand. For example. with the declaration ( F LOA T I NG 
(X I NT E G E R ») in effect. (FOO X) + ( FIE X) would translate to F PLUS. i.e .. use floating arithmetic. 
even though X appears somewhere inside. of the operands. whereas X+( FIE X) would translate to I PLUS. 
If there are declarations involving bOlh operands. e.g.. X +Y. with (X FLOAT I NG) (Y I NT EGE R). 
whichever appears first in the declaration list will be used. 

llThis entire discussion also applies to eLlSP transformation initiated by calls to DWI1-1 from OW 1M I FY. 

16.11 



CLISP Operation 

say( LAST+El·X ).) Note that if LAST+El were the name of a defined function. CLISP would never see 
this form. 

Since the bad CLISP transformation might not be CLISP at all. for example, it might be a misspelling 
. of a user function or variable, DWlj\-l holds all CLISP error messages until after trying other corrections. 
If one of these succeeds, the CLISP message is discarded. Otherwise. if all fail. the message is printed 
(but no change is made}.12 For example. suppose the user types (R/PLACA X V). CLISP generates 
a diagnosti~ since «IQUOTIErJT R PLACA) X Y) is obviously not right. However, since R/PLACA 
spelling corrects to IRPLACA, this diagnostic is never printed. 

If a CLISP infix construct is well formed from a syntactic standpoint. but one or both of its operands are 
atomic and not bound.13 it is possible that either the operand is misspelled. e.g., the user wrote X+YY for 
X + Y, or that a CLISP transformation operation was not intended at all but that the entire expression is 
a misspelling. For example, if the user has a variable named LAST-El. and writes (LIST LAST-E~L). 

-., Therefore, CLISP computes, but does not actually perfonn. the indicated infix transformation. DWIM 
l then continues, and if it is able to make another correction. does so, and ignores the CLISP interpretation. 

For example, with LAST-ELL. the transformation LAST-ELL -) LAST-El would be found. 

If no other transformation is found. and D\VlM is about to interpret a construct as CLISP for which 
one of the operands is not bound. DWIM will ask the user whether CLISP was intended. in this case by 
printing LAST-ELL TREAT AS ClISP 114 

The same sort of procedure is followed with 8 and 9 errors. For example. suppose the user writes FOOS - X 
where FOOS is not bound. The CLISP transformation is noted. and DWIM proceeds. It next asks the 

. user to approve FOOS-X -> FOO' { -x. (For example. this would make sense if the user has (or plails 
to define) a function named *X.) If he refuses. the user is asked whether FOOS-X is to be treated as 
CLISP. Similarly, if FOOS were the name of a variable. and the user writes FOOOSsX. he will first be 
asked to approve FOOOS-X -) FOOO ( XX,lS and if he refuses. then be offered the FOOOS -) FOOS 
correction. 

CLISP also contains provision for correcting misspellings of infix operators (other than single characters), 
I F words, and i.s. operators. This is implemented in such a way that the user who does not misspell them 
is not penalized. For example. if the user writes IF N=O THEN 1 ElSSE N* (FACT N-l) CLISP does 

r not operate by checking each word to see if it is a misspelling of IF, THEN. ELSE. or ELSEIF, since 
__ this would seriously degrade CLISP's performance on all IF statements. Instead. CLISP assumes that all 

of the I F words are spelled correctly. and transforms the expression to (COND « ZERO? N) 1 ELSSE 
N- (FACT N-l»). Later, after DWI~I cannot find any other interpretation for ELSSE. and using the 

12Except that CLISP error messages are not printed on type-in. For example. typing X+-Y will just 
produce aU. B . A. X +- Y message . 

. 13For the purpose of DWIM I FYing, "not bound" means no top level value, not on list of bound variables 
built up by OW IMI FY during its analysis of the expression, ~d not on ~JO F I XVARSlST, Le., not previously 
seen. 
14If more than one infix operator was involved in the CLISP construc~ e.g., X+Y+Z. or the operation 
was an assignment to a variable already noticed... or TREATASCLISPFLG is T (initially NIL). the user will 
simply be inronned of the correction. e.g .. X+Y+Z TREATED AS ClISP. Othenvise, even if D\VI~l was 
enabled in TRUSTING mode. the user will be asked to approve the correction. 

15The 8-9 transtonnation is tried before spelling correction since it is empirically more likely that an 
unbound atom or undefined function containing an 8 or a 9 is a parenthesis error. rather than a spelling 
error. 

16.12 



0-
c.~ .... -.· CLISP 

fact that this atom originally appeared in an IF statement. DWIM attempts spelling correction. using (I F 
THEN ELSE ELSEIF) for a spelling list. When this is successful DWIM "fails" all the way back to the 
original IF statement. changes ElSSE to ELSE, and starts over. Misspellings of AND. OR, IT, GT, etC . 

. are handled similarly. 

/\._-, 

CLISP also contains many Do-What-I-Mean features besides spelling corrections. For example. the form 
(lIST +X Y) would generate a MISSING OPERATOR error. However, (lIST -X Y) makes sense. if 
the minus is unary. so DWIM offers this interpretation to the user. Another common error. especially for 
new users, is to write (LI ST X * F 00 ( Y)} or (L I ST X * F 00 Y). where FOa is the name of a function. 
instead of ( lIST X * (FOO Y». Therefore. whenever an operand that is not bound is also the name of 
a function (or corrects to one), the above interpretations are offered. 

\~./ 16.5 CUSP TRANSLATIONS 

The translation of CLISP character operators and the CLISP word I F are handled by rep/acing the CLISP 
expression with the corresponding Interlisp expression. and discarding the original CLISP.l6 This is done 
because (1) the CLISP expression is easily recomputable (by C LIS PI F Y) and (2) the Interlisp expressions 
are simple and straightforward. Another reason for discarding the original CLISP is that it may contain 
errors that were correcteCi in the course of translation (e.g., FOO"'FOOO: 1. N*SFOO X). etc.}. If the 
original CLISP were retained, either the user would have to go back and fix these errors by hand. thereby 
negating the advantage of having DWIM perfoIlIl these corrections. or else DWIM would have to keep 
correcting these errors over and over. 

Note that C LIS PI FY is sufficiently fast that it is practical for the user to configure his Interlisp system so 
that all expressions are automatically CLISPIFYed immediately before they are presented to him. For 
example, he can define an edit macro to use in place of P which cans ClISP IFY on the current expression 
before printing it. Similarly, he can inform PRETTYPRINT to call CLISP I FY on each expression before 
printing it. etc. 

/~- Where (1) or (2) are not the case, e.g., with iterative statements, pattern matches. record expressions, etc. lJ the original CLISP is retained (or a slightly modified version thereof), and the translation is storedl 
j 

elsewhere, usually in the hash array CLISPARRAY.18 The interpreter automaticany checks this array when 

o 

l6IfCLISPIFTRANFLG is T, the original CLISP for IF statements (modified to correct errors) is retained. 
See page 16.20. 

l7by the function CLISPTRAN (page 16.19). 

l8The user can also indicate that he wants the original CLlSP retained by embedding it in an expression 
of the fOrIn (CLISP . CLISP.EXPRESSION). e.g .. (CLISP X:5:3) or (ClISP (A Be! D». In 
such cases. the translation will be stored remotely as described in the· text. Furthermore. such expressions 
will be treated as eLlSP even if infix and prefix transformations have been disabled by setting C LIS P F l G 
to NIL (page 16.19). In other words. the user can instruct the system to interpret as eLlSP infix or ;:>refix 
constructs only those expressions that are specifically flagged as such. The user can also include eLLS? 
declarations by writing (CLlSP DECLARATIONS. FORM). e.g .. (CLISP (ClIS?: FLOATING) ... 
). These declarations will be used in place of any CLISP declarations in the function definition. Note 
this fearure provides a way of including eLISP declarations in macro definitions. 

16.13 



D \VIl\tIIFY 

given a form CAR of which is not a function.19 Similarly, the compiler performs a GETHASH when given 
a fonn it does not recognize to see if it has a translation~ which is then compiled instead of the form. 
Whenever the user changes a CLISP expresson by editing it. the editor automatically deletes its translation 
(if one exists), so that the next time it is evaluated or dwimifieci. the expression will be retranslated. 20 The 
function PPT and the edit commands PPT and CllSP: are available for examining translations (page 
16.20). If PRETTYTRANFlG is T .. PRETTYPRlNT will print the translations instead of the corresponding 
CLISP expression (see page 16.20). This can be used for exporting programs to systems that do not 
provide CLISP, and to examine translations for debu&:,aing purposes. 

16.6 DWllYllFY 

l JlIMIFY is effectively a preprocessor for CLISP. DWIMIFY operates by scanning an expression as though 
it were being interpreted, and for each form that would generate an error, calling DWI1tl to "fix" 
it. DWIMI FY performs all DWIM transformations, not just CLISP transformations, so it does spelling 

. correction. -fixes 8-9 errors. handles F Il. etc. Thus the user will see the same messag~ and be asked for 
approval in the same situations~ as he would if the expression were actually run. If DWIM is unable to 
make. a correction, no message is printed. the form is left as it was, and the analysis proceeds. 

OWIMIFY knows exactly how the interpreter works. It knows the syntax of PROGs, SELECTQs .. LAMBDA 
expressions, SETQs, et ale It knows that the argument of NLAMBDAs are not evaluated.21 It also knows 
how variables are bound.22 In the course of its analysis of a particular expression.. OWIMI FY builds a list· 
of the bound variables from the LAMBDA expressions and PROGs that it encounters. It uses this list for 
spelling corrections. OWIMI FY also knows not to try to "correct" variables that are on this list since they 
would be bound if the expression were acrually being run. However~ note that OWlMIFY cannot. a priori. 
know about variables that are used freely but would be bound in a hiiher function if the expression were 
evaluated in its normal context. Therefore~ OW IM I FY will try to "correct" these variables.23 Similarly, 
OWIMIFY will attempt to correct forms for which CAR is undefined. even when the form is not in error 
from the user's standpoint. but the corresponding function has simply not yet been defined. 

19CLISP translations can also be used to supply an interpretation for function objects~ as well as forms .. 
either for function objects that are used openly, Le .• appearing as CAR of form .. function objects that are 
explicitly APPLYe~ as with arguments to mapping functions. or function objects contained in function 
definition cells. In all cases. if CAR of the object is not LAMBDA or NLAMBDA, the interpreter and compiler 
will check CLlSPARRAY. .,;-

2°If the value of ClISPRETRANFLG is T, OWIMIFY will also (re)translate any expressions which have 
translations stored remotely. See page 16.16. . 

21The user can inform OWI1 .. IFY that an NLAMBDA function does evaluate its arguments (presumably by 
direct calls to EVAL)~ by including on its property list the property INFO with value EVAL or a list which 
contains the atom EVAL. 

22The user can inform OWIM I FY that a particular function or construct binds variables by including the 
atom BINDS on the INFO property for CAR of the fOnD. fn this case, DWIMIFY assumes that CADR of 
the form is the variable list.. i.e. a list of atoms. or lists of the form (VAL VALUE). LAMB DA. N LAfy1B DA. 
PROG, and RESETVARS are handled in this fashion. 

23QWIMIFY rebinds FIXSPELLDEFAULT to N. so that if the user is not at the terminal when dwimifying 
(or compiling), spelling corrections will not be performed. 

16.14 



CLISP 

·DWIMI FY will-also inform the user when it encounters an expression with too many arguments.24 because 
such an occurrence9 although does not cause an error in the Interlisp interpreter, nevenheless is frequently 
symptomatic of a parenthesis error. For example. if the user wrote (CONS (QUOTE Faa X» instead 
of (CONS (QUOTE FOO) X), DWIMIFY will print: -

POSSIBLE PARENTHESIS ERROR IN 
(QUOTE FOO X) 
TOO MANY ARGUMENTS (MORE THAN 1) 

DWIMIFY will also check to see if a PROG label contains a clisp character.2s and if so, will alert the user 
by printing the message SUSP ICIOUS PROG LABEL, followed by the label. The PROG label will not be 
treated as CLISP. 

Note that in most cases, an attempt to transform a form that is already as the user intended will have 
no effect (because there will be nothing to which that form could reasonably be transformed). However .. -
in order to avoid needless calls to DWIM or to avoid possible confusion9 the user can inform DWIMI FY 
not to attempt corrections or transformations on certain functions or variables by adding them to the list 
NOFIXFNSLST or NOFIXVARSLST respectively. Note that the user could achieve the same effect by' 
simply' setting the corresponding variables, and giving the functions dummy definitions. 

D\I/IMI FY will never attempt corrections on global variables.. Le., variables that are a member of the 
list GLOBALVARS, or have the propeny GLOBALVAR with value T, on their propeny list. Similarly, 
DWIMIFY will not attempt to correct variables declared to be SPECVARS in block declarations or via 
DECLARE expressions in the function body. The user can also declare variables that are simply used 
freely in a function by using the USED FREE declaration. 

DWIMIFY and DWIMIFYFNS (used to DWIMIFY several functions) maintain two intemallists of those 
functions and variables for which corrections were unsuccessfully attempted. These lists are initialized to 
the values of ~~OFIXFNSLST and NOFIXVARSLST. Once an attempt is made to fix a panicular function 
or variable. and the attempt fails. -the function or variable is added to the corresponding list. so that 
on subsequent occurrences (within this call to DWIMI FY or DWIMIFYFNS). no attempt-at correction is 
made. For example, if FOO calls FIE several times. and FIE is undefined at the time Faa is dwimified. 
DWIMIFY will not bother with FIE after the first occurrence. In other words. once OWIMIFY "notices" 

,-::- a function or variable. it no longer attempts to correct it. DWIMI FY and DWIMI FYFNS also "notice" (J.,- free variables that are set in the expression being processed. Moreover. once DWIMI FY "notices" such 
functions or variables. it subsequently treats them the same as though they were actually defined or set. 

Note that these internal lists are local to each call to DWIMI FY and DWIMI FYFNS. so that if a function 
containing FOOO. a misspelled call to Faa, is DWIMI FYed before Faa is defined or mentioned. if the 
function is OWIMI FYed again after FOO has been defined.. the correction will be made. 

The user can undo selected transformations performed by DWIMIFY. as described on page 8.1l. 

(DWIMIFY x QUIETFLG L.) . [Function] 
Performs all DWIM and eLlSP corrections and transformations on x that would 
be performed if x were run. and prints· the result unless QUIETFLG = T. 

24unless DWIMCHECKhARGSFLG=NIL (initially T). 

2sunless DWIMCHECKPROGLABELSFLG=NIL (initially T), or the label is a member of NOFIXVARSLST. 

16.15 



,.r 
: 

(DWIMIFYFNS FNl 

DWIl\'IIFY 

If x is·an atom and L is NIL. x is treated as the name of a function. and its entire 
definition is dwimifiecL If x is a list or L is not NIL. x is the expression to be 
dwimifiecL If L is not NIL. it is rpe edit push-down list leading to x. and is used 
for determining context. Le ... what bound variables would be in effect when x was 
evaluated. whether x is a form or sequence of forms. e.g .• a COND clause. etc. 

If x is an iterative statement and L is NIL. DWIMIFY will also print the translation. 
i.e., what is stored in the hash array • 

••• FNN) [NLambda NoSpread Function1 
"Dwimifies each of the functions given. If only one argument is give~ it is evalued. 
If its value is a list. the functions on this list are dwimifiecL If enly one argument 
is given. it is atomic, its value is not a list. and it is the name of a known 
file, DWIMIFYFNS will operate on (FILEFNSLST FN1 ), e.g. (DWn"IFYFNS 
FOa. LSP) will dwimify every function in the file FOa. LSP. . -(\r-

NOFIXFNSLST 

NOFIXVARSLST 

NOSPELLFLG 

ClISPHELPFLG 

DWIMIFYCOMPFLG 

Every 30 seconds, DWIMIFYFNS prints the name of the function it is processing, . 
. a la PRETTYPRINT. 

Value is a list of the functions dwimifiecL 

[Variable] 
List of functions that DWIMI FY will not try to correct. 

[Variable] 
List of variables that DWIMI FY will not try to correct. 

[Variable] 
1fT, OWIMI FY will not perform any spelling corrections. Initially NIL. NOSPELLFLG 
is reset to T when compiling functions whose definitions are obtained from a file, 
as opposed to being in core. 

[Variable] 
If NIL, DWIMIFY will not ask the user for approval of any CLISP transformations. 
Instead, in mose situations where approval would be required. the effect is the 
same as though the user had been asked and said NO. Initially T. 

[Variable] 
If T, DWIMIFY is called before compiling an expression. Initially NIL. 

DWIMCHECK#ARGSFLG [Variable] 
If T, causes OW I M I F Y to check for too many arguments in a fonn. Initially ~. 

O.WIMCHECKPROGLABELSFLG [Variable] 
If T. causes OWIM I FY to check whether a PROG label contains a CLISP character. 
Initially T. . 

OWIMESSGAG [Variable] 
If T, suppresses all OWIMIFY error messages. Initially NIL. 

CLISPRETRANFLG [Variable] 
If T, infonns OWIMIFY to (re)translate all expressions which have remote 

16.16 

'-(): 



0' 

0"· 

o 

CLISP 

translations in the CLlSP hash array. Initially NIL. 

16.7 CLISPIFY 

CllSPIFY converts Interlisp expressions to CLISP. Note that the expression given to CLlSPlFY need not 
have originally been input as CLISP. i.e., CLlSPIFY can be used on functions that were written before 
CLISP was even implemented. C lIS PI F Y is cognizant of declaration rules as well as all of the precedence 
rules. For example. ClISPlFY will convert (lPLUS A (ITIMES B C» into A+a-C, but (ITIMES 
A (lPLUS B C» into A-{B+C). ClISPIFY handles such cases by first DWIMIFYing the expression. 
CllS? I FY also knows how to handle expressions consisting of a mixture of Interlisp and CLlSP, e.g., 
(lPLUS A B-C) is converted to A+B-C, but (ITIMES A B+C) to (A-(B+C». ClISPIFY convertS 
calls to the six basic mapping functions, MAP. MAPC, MAPCAR. MAPLIST. MAPCONC, and MAPCON. into 
equivalent iterative statements. It also convertS certain easily recognizable internal PROG loops to the 
corresponding iterative statements. ClISPIFY can convert all iterative statements input in CLlSP back 
to CLlSP. regardless of how complicated the translation was, because the original CLlSP is saved. 

CllSP I FY is not destructive to the original Interlisp expression. Le .• CllSP I FY produces a new expression 
without changing the origina1.26 ClISP I FY will not convert expressions appearing as arguments to 
NlAMBDA functions.27 

Note: Disabling a eLlSP operator with ClD I SAB LE (page 16.19) will also disable the corresponding 
ClISPIFY transformation. Thus. if +- is "turned off'. A+-a will not transform to (SETQ A B), nor vice 
versa. 

(CllSPIFY x L) [Function] 
Oispifies x. If x is an atom and L is NIL. x is treated as the name of a function, 
and its definition (or EXPR property) is clispified. After CLISPIFY has finished, X 
is redefined (using /PUTD) with its new CLISP definition. The value of ell SP I FY 
is x. If x is atomic and not the name of a function, spelling correction is attempted. 
If this fails. an error is generated. 

If x is a list. or L is not NIL, x itself is the expression to be clispified. If L is not 
NIL. it is the edit push-down list leading to x and is used to determine context 
as with DWIMI FY, as well as to obtain the local declarations, if any. The value of 
ClISPIFY is the clispified version of x. 

(CLISPIFYFNS FNl .•• FNN ) . [NLambda NoSpread Function] 
Like DWIMIFYFNS (page 16.16) except calls ClISPIFY instead of DWIMIFY. 

26The new expression may however contain some "pieces" of the original. since CLISPIFY attempts to 
minimize the number of CONSes by not copying structure whenever possible. 

27Except for those functions whose INFO propeny is or contains the atom EVAL. CLISPIFY also contains 
built in information enabling it to process special forms such as PROG. SELECTQ, ere. If the INFO 
propeny is or contains the atom LAB E LS. eLI S PI F Y will never create an atom (by packing) at L.'e top 
level of the expression. P ROG is handled in this fashion. 

16.17 



CL:FLG 

CLREMPARSFLG 

CLISPIFY 

[Variable1 
Affects CLISPIFY's handling of forms beginning with CAR, CDR, ... CDDDOR, as 
well as pattern match and record expressions. If C L : F l G is NIL, these are not 
transformed into the equivalent : expressions. This will prevent C lIS P IF Y from 
constructing any expression employing a : infix operator, e.g .• (CAOR X) will not 
be transfoxmed to X:2. IfCL:FlG is T, CLISPIFY will convert to : notation 
only when the argument is atomic or a simple list (a function name and one atomic 
argument). If CL: FLG is ALL. CLISPIFY will convert to : expressions whenever 
possible. 

CL: FlG is initially T. 

[Variable] 
If T, CLISPIFY will remove parentheses in certain cases from simple forms, 
where "simple" means a function name and one or two atomic arguments. For 
example, (COND « ATOM X) --» will ClISP I FY to (I F ATOM X THEN -
). However, ifCLREMPARSFLG is set to NIL, CLISPIFY will produce (IF (ATOr~ 
X) THEN --). Note that regardless of the setting of this flag, the expression 'can 
be input in either form. 

CLREMPARS FLG is initially NIL. 

CLISPIFYPACKFLG [Variable] 

CLISPIFYUSERFN 

FUNNYATOMlST 

CLISPIFYPACKFLG affects the treatment of infix operators with atomic operands. 
If CLISPIFYPACKFLG is T, CLISPIFY will pack these into single atoms, e.g .• 
{IPlUS A (ITIMES B C» becomes A+S-C. If CLISPIFYPACKFLG is NIL, 
no packing is done, e.g., the above becomes AU+UBU·UC. 

CLISPIFYPACKFLG is initially T. 

,. [Variable] 
If T, causes the function CLISP I FYUSERF~I, which should be a function of one 
argument. to be called on each form (list) not otherwise recognized by C LIS PI F Y. 
If a non-N I L value is retumecL it is treated as the clispified form. Initially NIL 

Note that CLISPIFYUSERFN must be both set and defined to use this feature. 

[Variable1 
Suppose the user has variables named A, B. and A-B. IfCLISPIFY were to convert 
(ITIMES A B) to A·B. A-8 would not translate back correctly to (ITIMES A 
B). since it would be the name of a variable. and therefore would not cause 
an error. The user' can prevent this from happening by adding A- 8 to the list 
FUNNYATOMLST. Then. (.ITIMES A B) would·CLIS?IFY to AU·US. 

Note that A-8's appearance on FUNNYATOMLST would not enable O\VIM and 
eLISP to decode AOB+C as (IPLUS A-S C); FU~JNYATOMLST is used only by 
eLISP I FY. Thus. if an identifier contains a eLISP character. it should always be 
separated (with spaces) from other operators. For example. if X· is a variable. (he 
user should write (SE TQ X- FOR.W) in ellSP as X -U+-FOR.W. not X" +-F'OR.W. In 
general. it is best to avoid use of identifiers containing elISP character operators 

16.18 



0' 

CLISP 

as much as possible. 

16.8 l\IIISCELLANEOUS FUNCTIONS AND VARIABLES 

CLISPFLG [Variable] 
If set to NIL, disables all CLISP infix or prefix transformations (but does not affect 
IF /THEN/ELSE statements, or iterative statements). 

If CLISPFLG= TYPE- IN, CLISP transformations are performed only on expres
sions that are typed in for evaluatio~ i.e., not on user programs. 

If C LIS P F L G = T, CLISP transfonnations are performed on all expressions.- -

The initial value for CLISPFLG is T. CLISPIFYing anything will cause CLISPFLG 
to be set to T. 

CLISPCHARS [Variable] 
A list of the operators that can appear in the interior of an atom. Currently (+ -
• / l' - ' = ....: < > +- -= @ !) . 

CLISPCHARRAY [Variable] 
A bit table of the characters on CLISPCHARS used for calls to STRPOSL (page 
2.31). CLISPCHARRAY is initialized by performing (SETQ CLISPCHARRAY 
(MAKEBITTABLE CLISPCHARS». 

CLISPINFIXSPLST [Variable] 

CLISPARRAY 

A list of infix operators used for spelling correction. 

[Variable] 
Hash array used for storing CLISP translations. CL I SPARRA Y is checked by 
FAUL TEVAL and FAULTAPPL Yon erroneous forms before calling DWIM, and by 
the compiler. 

(CLISPTRAN X TRAN) [Function] 
Gives x the translation TRAN by storing (key x. value TRAN) in the hash array 
CLISPARRAY. CLISPTRAN is called for all CLISP translations. via a non-linked. 
external function call, so it can be advised. 

(CLISPDEC DECLST) [Function1 

(CLDISABLE oP) 

Puts into effect me 'declarations in DECLST (see page 16.9). CLISPDEC perfonns 
spelling corrections on words not recognized as declarations. C LIS POE C is 
undoable. 

[Function] 
Disabl~s the CLISP operator OPe For example. (CLD I SAB LE '-) makes - be 
just another character. C LD I SAB L E can be used on all CLISP operators. e.g .. 
infix operators. prefix operators. iterative statement operators. etc. CLDISABLE is 

16.19 



Miscellaneous Functions and Variables 

undoable. 

Note: Simply removing a character operator from CLISPCHARS will prevent it 
from being treated as a CLISP operator when it appears as pan of an atom. but it 
will continue to be an operator when it appears as a separate atom. e.g. (FOa + 
X) vs FOO+X. 

CLISPIFTRANFLG [Variable] 
Affects handling of translations of I FITHEr~IELS E statements (see page 4.4). If T. 
the translations are stored elsewhere~ and t.he (modified) CLISP retained. If N I L~ 
the corresponding COND expression replaces the CLISP. Initially T. 

eLISP I FYPRETTY FLG [Variable] 
Ifnon-NIL. causes PRETTYPRINT (and therefore PP and MAKEFILE) to CLlSPIFY 
selected function definitions before printing them according to the following· inter-

l pretations of CLISP I FYPRETTYFLG: 

ALL 

T or EXPRS 

CHAr~GES 

a list 

ClispifY all functions. 

ClispifY all functions currently defined as EXP Rs. 

ClispifY all functions marked as liaving been changed. 

ClispifY all functions in that list. 

CLISPIFYPRETTYFLG is (temporarily) reset to T when MAKEFILE is called with 
the option CLISPI FY. and reset to CHANGES when the file being dumped has the 
property FILETYPE value CLISP. CLlSPIFYPRETTYFLG is initially NIL. 

Note: If CLISPIFYPRETTYFLG is non-NIL. and the only transformation per
formed by DWIM are well formed CLISP transformations. i.e .• no spelling correc
tions. the function will not be marked as change~ since it would only have to be 
re-clispified and re-prenyprinted when the file was written out. .. 

n~·,: 
-- "--. 

PRETTYTRANFLG r [Variable] r.~~~ 
If T. causes PRETTYPRINT to print translations instead of CLISP expressions. \ _/'J 

(PPT x) 

CllSP: 

Cl 

This is useful for exporting to a LISP system that does not have CLlSP. 
PRETTYTRANFLG is (temporarily) reset to T when MAKE FILE is called with the 
option rJOCLISP. PRETTYTRANFLG is initially NIL. 

[NLambda NoSpread Function] 
Both a function and an edit macro for prettyprinting translations. It performs a 
PP ,!fter first resetting PRETTYTRANFLG to T, thereby causing any translations to 
be printed instead of the corresponding CLISP. - . 

[Editor Command] 
Edit macro that obtains the translation of the correct expression. if any, from 
ClISPARRAY, and calls EDITE on it. 

[Editor Command1 
Edit macro. Replaces current expression with ClISPIFYed current expression. 
Current expression can be an element or tail. 

16.20 



ow 

CLISP 

[Editor Command] 
Edit macro. DWIM.I FYs current expression, which can be an element (atom or list) 
or tail. 

Both C L and OW can be called when the current expression is either an element or a tail and will work 
properly. Both consult the declarations in the function being edited., if any, and both are undoable. 

(LOWERCASE FLG) [Function] 
If FLG = T, LOWE R CAS E makes the necessary internal modifications so that 
CLISP I FY will use lower case versions of AND, OR, I F, THEN, ELSE. ELSE I F, and 
all i.s. operators. This produces more readable output. Note that the user can 
always type in either upper or lower case (or a combination), regardless of the 
action of LOWERCASE. If FLG=NIL, CLISPIFY will use uppercase versions of 
AND. OR, et ale The value of LO\vERCASE is its previous "setting". LOWERCASE is 
undoable. The'initial setting for LOWERCASE is T. 

16.9 CLlSP INTERNAL CONVENTIONS 

CLISP is almost entirely table driven by the property lists of the corresponding infix or prefix operators. 
For example, much of the information used for translating the + infix operator is stored on the property 
list of the litatom "+". Thus it is relatively easy to add new infix or prefix operators or change old ones. 
simply by adding or changing selected propeny values. (There is some built in information for handling 
minus, :, " and -, i.e., the user could not himself add such "special" operators, although he can disable 
or redefine them.) 

Global declarations operate by changing the LISPFN and CLISPI'~FIX properties of the appropriate 
operators. 

CLISPTYPE 

UNARYOP 

[propeny Name1 
The propeny value of the property CLISPTYPE is the precedence number of the 
operator: higher values have higher precedence, i.e., are tighter. Note that the 
actual value is unimportant. only the value relative to other operators. For example. 
CLISPTYPE for :, 1", and • are 14, 6, and 4 respectively. Operators with the 
same precedence group left to right. e.g., I also has precedence 4, so A/B·C is 
(AlB) -C. 

An operator can have a different left· and right precedence by making the value 
of CLISPTYPE be a dotted pair of two Iiumbers, e.g.~ CLISPTYPE of+- is (8 • 
-12). In this case, CAR is the left precedence. and CDR the right. Le .•. CAR is used 
when comparing with operators on the left, and CD R with operators on the right. 
For example, A-B+-C+8 is parsed as A-(B+-(C+O» because the left precedence 
of +- is 8. which is higher than that of -, which is 4. The right precedence of ... is 
-12, which is lower than that of +. which is 2. 

If the CLISPTYPE property for any operator is removed. the corresponding ellS? 
transformation is disabled. as well as the inverse C LIS PI F Y transfonnac.ion. 

. [Property ~ame] 
The value of property UNARYOP must be T for unary operators or bracketS. The 

16.21 



BROADSCOPE 

LISPFN 

/ 

" SETFN 

ClISPINFIX 

ClISPWORO 

CLISP Internal Conventions 

operand is always on the right. i.e .• unary operators or brackets are always prefix 
operators. 

[property Name] 
The value of property BROADSCO?E is T if the operator has lower precedence 
than Interlisp forms, e.g., L T, EQUAL, AND, etc. For example, (FOO X AND Y) 
parses as « Faa X) AND Y). If the BROADSCOPE property were removed from 
the property list of AND, (Faa x AND Y) would parse as (FOO (X AND Y». 

(Property Name] 
The value of the property LISPFN is the name of the function to which the infi."( 
operator translates. For example. the value of LISPFN for 't is EX?T, for' QUOTE. 
etc. If the value of the property LISPF~~ is NIL, the infix operator itself is also 
the function. e.g., AND, OR, EQUAL. 

[property Name] 
If FOO has a SETF~~ property FIE, then (FOO --) .... X translates to (FIE -
X). For example, if the user makes El T be an infix operator, e.g. n, by putting 
appropriate CLISPTYPE and LISPFN properties on the property list of # then he 
can also make # followed by .. translate to SETA, e.g., X#N .... Y to (SETA X NY), 
by putting SETA on the property list of EL T under the property SETFN. Putting 
the list (ELT) on the property list of SETA under property SETFN will enable 
SETA forms to CLISPIFY back to ELI's. 

[propertY N arne 1 
The value of this property is the CLISP infix -to be used in ClI S? I FYing.This 
property is stored on the property list of the corresponding Interlisp function. e.g., 
the value of propertY CLIS?INFIX for EX?T is 't. for QUOTE is ' etc. 

[property Name] 
Appears on the property list of clisp operators which can appear as CAR of a form. 
such as FETCH, REPLACE. IF. iterative statement operators. etc. Value of pro perry 
is of the form (KEYWORD • NAME). where NAME is the lowercase version of the 

(\"j. 
\. 1--' 

operator. and KEYWORD is its type, e.g. FORWORD. I FWORD. RECORDWORD. etc. (--"1\ 
\. /-1: 

KEYWORD can also be the name of a function. When the atom appears as CAR 
of a form~ the function is applied to the form and the result taken as the correct 
form. [n this case, the function should either physically change the form. or call 
CLISPTRAN (page 16.19) to store the translation. 

As an example, to make & be an infix character operator meaning OR, the user could do the following: 

~(PUTPROP '& 'CLISPTYPE (GETPROP 'OR 'CLIS~TYPE» 
~(PUTPROP '& 'LISPFN 'OR) 
~(PUTPROP '& 'BROAOSCOPE T) 
~(PUTPROP 'OR 'CLISPINFIX '&) 
~(SETQ CLISPCHARS (CONS '& CLISPCHARS)) 
~(SETQ CLISPCHARRAY (MAKEBITTABLE CLISPCHARS») 

16.22 



o 
..... ; ..... 

..... ,: .. 

0) 

CHAPTER 17 

THE TELETYPE EDITOR 

The InterlLc:p teletype editor allows rapicL convenient modification of list structures. Most often it is 
used to edit function definitions, (often while the function itself is running) via the function ED ITF, e.g., 
EDITF{FOO). However, the editor can also be used to edit the value of a variable, via EDITV, to edit a 
property list, via EDITP, or to edit an arbitrary expression, via EDITE. It is an imponant feature which 
allows good on-line interaction in the Interlisp system. 

In Interlisp-D, most editing is done using the display editor DEdit (page 20.1), which is an extended. 
display-oriented version of the teletype editor. The teletype editor is still available. as it offers a facility 

. for doing complex modifications of program structure under program control. For example. BREAKIN 
(page 10.5) calls the teletype editor to insen a function break within the body of a function. By calling 
the function EDITMODE (page 20.2) it is possible to set the "default editor" (TELETYPE or DISPLAY) 
called by Masterscope, the break package, etc. 

This chapter begins with· a lengthy introduction intended for the new user. The reference portion begins 
on page 17.9. 

17.1 INTRODUCTION 

Let us introduce some of the basic editor commands. and give a flavor for the editor's language structure 
by guiding the reader through a hypothetical editing session. Suppose we are editing the following 
incorrect definition of APPEND: 

[LAMBDA (X) 
Y 
(COND 

«NUL X) 
Z) 

(T (CONS (CAR) 
{APPEND (CDR X Y] 

We call the editor via the function ED ITF: 

+-EDITF(APPEND) 
EDIT 
• 

The editor responds by typing ED IT followed by •. which is the editor's prompt character. This signifies 
that the editor is ready to accept commands. In the examples in this chapter. all lines beginning with • 
were typed by the user. the rest by the editor. 

At any given moment the editor's attention is centered on some substructure of the expression being 

17.1 



/ 

Introduction 

edited. This substructure is called the current expression.. and it is what the user sees when he gives the 
editor the command p. for print. Initially. the current expression is the top level one. Le.. the entire 
expression being edited. Thus: 

ep 
{LAMBDA (X) Y (COND & &)} 
* 
Note that the editor prints the current expression as though printlevel (page 6.18) were set to (2 . 20). 
i.e .• sublists of sublists are printed as &. tails of long lists printed as --. The command 1 will print the 
current expression as though prindevel were 1000. 

*1 
{LAMBDA (X) Y (COND ({NUL X) Z} (T (CONS (CAR) {APPEND (CDR X V»~})}} 
* 

and the command P P will prettyprint the current expression. 

A positive integer is interpreted by the editor as a cominand to descend into the correspondingly numbered 
element of the current expression. Thus: 

*2 
*p 
(X) 
* 

A negative integer has a similar effect. but counting begins from the end of the current expression and 
proceeds backward.. i.e.. -1 refers to the last element in the current expression. - 2 the next to the last. 
etc. For either positive integer or negative integer. if there is no such element. an error occurs. "Editor 
errors" are not the same as Interlisp function errors. Le .• they never cause breaks or even go through the 
error machinery but are direct calls to ERROR! indicating that a command is in some way faulty. What 
happens next depends on the context in which1!fue command was being executed. For example. there are 
conditional commands which branch on errors. In most situations. though. an error will cause the editor 
to type the faulty command followed by a? and wait for more input. Note that typing control-E while 
a command is being executed aborts the command exactly as though it had caused an error. The current 
expression is never changed when a command causes an error. Thus: 

*p 
(X) 
*2 

2 ? 
*1 
*p 
X 
* 

A phrase of the form Uthe current expression is changed" or "the current expression becomes t. refers to a 
shift in the editor's attention. not to a modification of the structure being edited. 

When the user changes the current expression by descending into it. the old current expression is not lost. 
Instead.. the editor actually operates by maintaining a chain of expressions leading to the current one. The 

17.2 

r\" \ ,;,~~, 
. '-.. " 

().~ 
-- -.~ 



·0,:; 
. " .. 

THE TELETYPE EDITOR 

.. current expression is simply the last link in the chain. Descending adds the indicated subexpression onto 
the end of the ch~ thereby making it be the current expression. The command 0 is used to ascend the 
chain: it removes the last link of the chain, thereby making the previoZls link be the current expression. 
Thus: 

.p 
X 
·0 P 
(X) 
·0 -1 P 
{COND (& Z) (T &» 
• 
Note the use of several commands on a single line in the previous output The editor operates in a line 
buffered mode. the same as EVALQT. Thus no command is actually seen by the editor, or executed. until 
the line is terminated. either by a carriage rerum. or a matching right parenthesis. The user can thus use 
controi-A and control-Q for line-editing edit commands, the same as he does for inputs to the Interlisp 
executive. 

In our editing session. we will make the following corrections to APPEND: delete Y from where it appears. 
add Y to the end of the argument 1is~ change ~JUL to NULL, change Z to Y, add X after CAR, and insert 
a right parenthesis following CD R X. 

First we will delete Y. By now we have forgotten where we are in the function definition. but we want to 
be at the "top" so we use the command 1", which ascends through the entire chain of expressions to the 
top level expression. which then becomes the current expression, i.e., 1" removes all links except the first 
one . 

• .,. P 
(LAMBDA (X) Y (COND & &» 
• 

Note that if we are already at the top, 1" has no effect. i.e., it is a no-op. However. 0 would generate an 
error. In other words, 1" means "go to the top," while 0 means --ascend one link." 

The basic structure modification commands in the editor are: 

(N) (N~ 1) [Editor Command1 
Deletes the corresponding element from the current expression. 

(N E1 ..• E~) (N~ 1 ) [Editor Command] 
Replaces the Nth element in the current expression with E 1 .:. EM' 

( - N E1 ••• EM) (N~ 1 ) [Editor Command1 
Insens E1 ... EM before the Nth element in the current expression. 

Thus: 

.p 
(LAMBDA (X) Y (COND & &» 
·(3) 
·(2 (X V»~ 
.p 

17.3 



Introduction 

(LAMBDA (X Y) (CONO & &» 
* 
All structure modification done by the ediJor is destructive, i.e. .. the editor uses RPLACA and RPLACD to 
physically change the structure it was given. 

Note that all three of the above commands perform their operation with respect to the Nth element from 
the front of the current expression; the sign of N is used to specify whether the operation is replacement 
or insertion. Thus. there is no way to specify deletion or replacement of the Nth element from the 
end of the current expression. or insertion before the Nth element from the end without counting out 
that element's position from the front of the list. Similarly. because we cannot specify insertion after 
a particular element. we cannot attach something at the end of the current expression using the above 
commands. Instead, we use the command N (for NC01JC). Thus we could have performed the above 
changes instead by: 

*p 
(LAMBDA (X) Y (CONO & &» 
*(3) 
*2 (N Y) 
*p 
(X Y) 
*1' P 
*(LAMBDA (X Y) (CONO & &» 
* 

Now we are ready to change NUL to NULL. Rather than specify the sequence of descent commands 
necessary to reach NUL. and then replace it with rJULL. e.g .• 3 2 1 (1 NULL). we will use F. the find 
command, to find NUL: 

*P 
(LAMBDA (X Y) (CONO & &» 
*F NUL 
*p 
(NUL X) 
*(1 NULL) 
*0 P 
«NULL X) Z) 
* 

Note that F is special in that it corresponds to two inputs. In other words. F says to the editor. "treat 
your next command as an expression to be searched for." The search is carried out in printout order in 
the current expressi"on. If the target expression is not found there. F automatically ascends and searches 
those portions of the higller expressions that would appear after (in a printout) the. current expression. If 
the search is successful. the new current expression will be the structure where the expression was fOWld.. 1 

and the chain will be the same as one resulting from the appropriate sequence of ascent and descent 

1(f the search is for an acom. e.g., F NUL. the current expression will be the structure containing the 
atom. 

17...1. 



lJ' --~ 
\~ .. 

o 

THE TELETIPE EDITOR 

. commands. If the search is not successful. an error occurs, and neither the current expression nor the 
chain is changed:2 

*p 
«NULL X) Z) 
*F COND P 

COND ? 
*P 
*«NULL X) Z) 
* 

Here the search failed to find a COND following the current expressio~ although of course a COND does 
appear earlier in the structure. This last example illustrates another facet of the error recovery mechanism: 
to avoid funher confusion when an error occurs, all commands on the line beyond the one which caused 
the error (and all commands that may have been typed ahead while the editor was computing) are 
forgotten. 

We could also have used the R command (for Replace) to change NUL to NULL. A command of the form 
(R EI E2) will replace all occurrences of EI in the current expression by E2• There must be at least one 
such occurrence or the R command will generate an error. Let us use the R command to change all Z's 
(even though there is only one) in APPEND to Y: 

*1' (R Z Y) 
*F Z 

Z ? 
*PP 
[LAMBDA (X Y) 

(COND 
«NULL X) 

Y) 
{T (CONS (CAR) 

(APPEND (CDR X Y] 
* 

The next task is to change (CAR) to (CAR X). We could do this by (R (CAR) (CAR X», or by: 

*F CAR 
*(N X) 
*p 
(CAR X) 
* 

. .. . 
The expression we now want to change is the next expression after the current expression. i.e .. we are 
currently looking at (CAR X) in {CONS (CAR X) (APPEND (CDR X V»~). We could get to the 

2F is never a no-opt i.e .. if successful. the current expression after the search will never be the same as the 
current expression before the search. Thus F EXPR repeated without intervening commands that change 
the edit chain can be used to find successive instances of EXPR. 

17.5 



Introduction 

APPEND expression by typing a and then 3 or -1, or we can use the command NX, which does both 
operations: 

*p 
(CAR X) 
-NX P 
(APPEND (CDR X V»~ 

-
Finally, to change (APPEND (CDR X V»~ to (APPEND (CDR X) Y), we could perform (2 (CDR 
X) Y), or (2 (CDR X» and eN Y}, or 2 and (3), deleting the Y, and then a (N V). However. if 
Y were a complex expression. we would not want to have to retype it. Instead, we could use a command 
which effectively inserts and/or removes left and right parentheses. There are six of these commands: 8 I 
("Both In"), 80 ("Both Out"), LI ("Left In"), LO ("Left Out"), RI ("Right In"), and RO ("Right Out"). 
Of course, we will always have the same number of left parentheses as right parentheses. because the (l:~· 
parentheses are just a notational guide to structure that is provided by our print program. Herein lies one 
of the principal advantages of a LISP oriented editor over a text editor: unbalanced parentheses errors 
are not possible. Thus. LI. LO, RI, and RO actually do not insert or remove just one parenthesis. but this 
is very suggestive of what actually happens. 

. In_ this case, we would like a right parenthesis to appear following X in (CD R X Y). Therefore. we use 
the command (R I 2 2), which means insert a right parentheses after the second element in the second 
element (of the current expression): 

*p 
(APPEND (CDR X V»~ 
-(RI 2 2) 
-P 
(APPEND (CDR X) Y) 

-
We have now finished our editing, and can exit from the editor, to test APPEND. or we could test it while 
still inside of the editor, by using the E command: 

*E APPEND«A B) (C 0 E» 
(A BCD E) 
• 
The E command causes the next input to be evaluated -by Interlisp. If there is another input following 
it. as in the above example. the first will be applied (with APPLY) to the second. Otherwise. the input is 
evaluated (with EVAL). . 

We prenyprint APPEND, and leave the edito~ . 

• pp 

[LAMBDA (X Y) 
{COND 

«~JULL X) 
Y) 

(T (C a ~J s (C A R X) 
(APPEND (CDR X) Y] 

·OK 

17.6 



THE TELETYPE EDITOR 

APPEND 

17.2 COlVI1\1ANDS FOR THE NEW USER 

As mentioned earlier, the Interlisp manual is intended primarily as a reference manual and the remainder 
of this chapter is organized and presented accordingli. While the commands introduced in the previous 
scenario constirute a complete set, i.e.. the user could perfoI1Il any and all editing operations using just 
those commands, there are many siruations in which knowing the right comm:md(s) can save the user 
considerable effort. We include here as pan of the introduction a list of those commands which are not 
only frequently applicable but also easy to use. They are not presented in any panicular order, and are 
all discussed in detail in the reference ponion of the chapter. 

UNDO 

BK 

BF 

\ 

\P 

[Editor Command] 
Undoes the last modification to the structure being edite~ e.g., if the user deletes 
the wrong element. UNDO will restore it The availability of UNDO should give the 
user confidence to experiment with any and all editing commands. no matter how 
comple~ because he can always reverse the effect of the command. 

[Editor Command] 
Like N X, "except makes the expression immediately be/ore the current expression 
become current. 

[Editor Command] 
Backwards Find. Like F, except searches backwards. Le., in inverse print order. 

[Editor Command] 
Restores the current expression to the expression before the last "big jump", e.g .• 
a find command, an 1", or another \. For example. if the user types F CO~~D. and 
then F CAR. \ would take him back to the CONDo Another \ would take him back 
to the CAR. 

[Editor Command] 
Like \ except it restores the edit chain to its state as of the last print, either by p. 
?, or P P. If the edit chain has not been changed since the last print. \ P restores it 
to its state as of the printing before that one, Le .• two chains are always saved.. 

Thus if the user types P followed by 3 2 1 P, \P will take him back to the first p. Le .• would be 
equivalent to 0 0 O. Another \ P would then take him back to the second P. Thus the user can use \ P 
to flip back and fonh between two current expressions. 

The search expression given to' the F or B F command need nor be a literal expression. Instead, it can be 
a pattern. The symbol & can be used anywhere within this pattern to match with any single element of a 
list. and -- can be used to match with any segment of a list. Thus. in the incorrect definition of APPEND 
used earlier. F (NUL &) could have been used to find (NUL X) ," and F (CDR --) or F (CDR & &). 
but not F (CDR &). to find (CDR X V). 

Note that & and -- can be nested arbitrarily deeply in the pattern. For example. if there are many places 
where the variable X is set, F SETQ may not find the desired expression, nor may F (SETQ X &). It 

17.7 



Commands for the New User 

. may be necessary to use F (SETQ X (LIST --». However~ ·the usual technique in such a case is to 
pick out a unique atom which occurs prior to the desired expression~ and perform two F commands. This 
"homing in" process seems to be more convenient than ultra-precise specification of the pattern. 

S «esc» is equivalent to -- at the character level e.g.~ VER$ will match with VERYLONGATOM~ as will 
$ATOM, SLOrJGS. (but not SLONG) and $V$NSMS. $ can be nested inside of a pattern. e.g~ F (SETQ 
VERS (CONS --». 
If the search is successfu4 the editor will print = followed by the atom which matched with the $-atom. 
e.g .• 

*F (SETQ VERS &) 
=VERYLONGATOM 
• 
Frequently the user will want to replace the entire current expressio~ or insen something before it. In 
order to do this using a command of the form (N El ..• EM) or (-N El .•• EM)' the user must be 
above the current expression. In other wor~ he would have to perform a 0 followed by a command 
with the appropriate number. However~ if he has reached the current expression via an F command, he 
may not know what that number is. In this case. the user would like a command whose effect would be 
to modify the edit chain so that the current expression became the first element in a new, higher current 
expression. Then he could perform the desired operation via (1 El EM) or (-1 El ..• EM)' UP 
is provided for this purpose. 

UP [Editor Command] 
After UP operates. the old current expression is the first element or-the new current 
expression. Note that if the current expression happens to be the first element 
in the next higher expressio~ then UP is exactly the same as O. Otherwise. UP 
modifies the edit chain so that the new current expression is a proper tail (page 
2.19) of the next higher expression: 

·F APPEND P 
(APPEND (CDR X) Y) 
·UP P 
.•• (APPEND & Y» 
·0 P 
(CONS (CAR X) (APPEND & V»~ 
• 
The ... is used by the editor to indicate that the current expression is a tail of 
the next higher expression as opposed to being an element (Le .• a member) of the 
next higher expression. Note: if the current expression is already a tail. UP has no 
effect. 

[Editor Command) 
InsertS El .•• EM before the current expression. i.e .• does an UP and then J. (-1 
EI ... EM)' 

[Editor Command] 
InsertS EI ... EM after the current expression. i.e .. does an UP and then either a 
( - 2 E 1 ..• EM) or an (N E 1 EM)' if the current expression is the last one 
in the next higher expression. . 

17.8 



0·, 

DELETE 

THE TELETYPE EDITOR 

[Editor Command] 
Replaces the current expression by El ..• EM' i.e .• does an UP and then a (1 El 

••• EM)· 

[Editor Command] 
Deletes the current expression; equivalent to ( : ). 

Earlier. we introduced the RI command in the APPEPJD example. The rest of the commands in this 
family: B I. BO. LI, LOt and RO. perfonn similar functions and are useful in cenain situations. In addition. 
the commands MBO and XTR can be used to combine the effects of several commands of the B I -BO 
family. MBD (page 17.28) is used to embed the current expression in a larger expression. For example. 
if the current expression is (P R I NT bigexpreuioa). and the user wants to replace it by (COND (F lG 
(PRINT bigexpre .. joa»), he could accomplish this by (lI 1), (-1 FLG), (lI 1), and (-1 CONO). 
or by a single MBD command. 

XTR (page 17.27) is used to eXTRact an expression from the current expression. For example, extracting 
the PRINT expression from the above COND could be accomplished by (1). (lO 1), (1). and (LO 1) 
or by a single XTR command. The new user is encouraged to include XTR and MBO in his repenoire as 
soon as he is familiar with the more basic commands. 

17.3 LOCAL ATIENTION-CHANGING COMl\1ANDS 

This section describes commands that change the current expression (Le., change the edit chain) thereby 
"shifting the editor's attention." These commands depend only on the structure of the edit chain.. as 
compared to the search commands (presented later). which search the contents of the structure. 

UP [Editor Command] 
UP modifies the edit chain so that the old current expression (Le., the one at the 
time UP was called) is the first element jn the new current expression. If the 
current expression is the first element in the next higher expression UP simply does 
a o. Otherwise UP adds the corresponding tail to the edit chain. 

If a P command would cause the editor to type··· before typing the current 
expression. ie., the current expression is a tail of the next higher expression. UP 
has no effect. 

For Example: 

·PP 
(CONO «NUll X) (RETURN V»~) 
·1 P 
COND 
·up P 
(COND (& &» 
·-1 P 
«NULL X) (RETURN V»~ 
·UP p 

«NULL X) (RETURN V»~ 
·UP P 

17.9 



Local Attention-cbanging Commands 

«NULL X) (RETURN V»~) 
·F NULL P 
(NULL X) 
·UP P 
«NULL X) (RETURN V»~ 
·UP P 
••• «NULL X) (RETURN V»~) 

The execution of UP is straightforward., except in those cases where the current expression appears more 
than once in the next higher expression. For example, if the current expression is (A NIL B NIL C 
NIL) and the user performs 4 followed by UP, the current expression should then be ••• NIL C NIL). 
UP can determine which tail is the correct one because the commands that descend save the last tail on an 
internal editor variable, LASTAIL. Thus after the 4 command is executed, LASTAIL is (NIL C NIL). 
When UP is called. it first determines if the current expression is a tail of the next higher expression. If it 
is, UP is finished. Otherwise, UP computes (MEMB CURRENT-EXPRESSION NEXT-HIGHER-EXPRESSION) 

to obtain a tail beginning with the current expression.3 If there are no other instances of the current 
expression in the next higher expression. this tail is the correct one. Otherwise UP uses LAST A I L to select 
the correct tail.4 

N (N2: 1) 

-N (N2:1) 

a 

[Editor Command1 
Adds the Nth element of the current expression to the front of the edit ch~ 
thereby making it be the new current expression. Sets LASTAIL for use by UP. 
Generates an error if the current expression is not a list that contains at least N 

elements. 

[Editor Command) 
Adds the Nth element from the end of the current expression to the front of the 
edit chain. thereby making it be the new current expression. Sets LAS T A I L for 
use by UP. Generates an error if the current expression is not a list that contains 
at least N elements. 

[Editor Command1 
Sets the edit chain to CD R of the edit chain, thereby making the next higher 
expression be the new current expression. Generates an error if there is no higher 
expression, i.e., CD R of edit chain is NIL. 

Note that a usually corresponds to going back to the next higher left parenthesis, but not always. For 
example: 

3The current expression should a/ways be either a tail or·an element of the next higher expression. If it 
is neither. for e~arnple the user has directly (and incorrectly) manipulated the edit chain. UP generates· an 
error. 

40ccasionaily the user can get the edit chain into a state where LAST A I L cannot resolve the ambiguity. 
for example if there were two non-atomic structures in the same expression that were EQ. and the user 
descended more than one level into one of them and then tried to come back out using UP. In this c~se. 
UP prints LOCATION UNCERTAIN Jnd generates an error. Of course. we could have solved this problem 
completely in our implementation by saving at each descent both elements and tails. However. this would 
be J costly solution to a situation that arises infrequently. and when it does. has no detrimental effects. 
The LAST A I L solution is cheap and resolves 99% of the ambiguities. 

17.10 



o,~ 

.p 
(A 8 C 0 E F 8) 
·3 UP P 
••• C 0 E F G) 
*3 UP P 
• •• E F G) 
·0 P 
••• C 0 E F G) 

THE TELETYPE EDITOR 

If the intention is to go back to the next higher left parenthesis, regardless of any intervening tails, the 
command ! a can be used. 

! a 

NX 

BK 

[Editor Command1 
Does repeated a IS until it reaches a point where the current expression is not a 
tail of the next higher expression, Le., always goes back to the next higher left 
parenthesis. 

[Editor Command1 
Sets the edit chain to LAST of edit chain. thereby making the top level expression 
be the current expression. Never generates an error. 

[Editor Command1 
Effectively does an UP followed by a 2, thereby making the current expression be 
the next expression. Generates an error if the current expression is the last one in 
a list. (However. ! NX described below will handle this case.) 

[Editor Command] 
Makes the current expression be the previous expression in the next higher 
expression. Generates an error if the current expression is the first expression 
in a list. 

For example, 

*pp 
(CONO «NULL X) (RETURN V»~) 
*F RETURN P 
(RETURN Y) 
·BK P 
(NULL X) 

Both N X and 8 K operate by performing a ! a followed by an appropriate number. Le.. there won't be 
an extra tail above the new current expression. as there would be if N X operated by performing an UP 
followed by a 2. 

(NX N) 

(BK N) 

[Editor Command1 
(N ~ 1) Equivalent to N N X commands. except if an error occurs. the edit chain 
is not changed. 

[Editor Command1 
(N ~ 1) Equivalent to N B K commands. except if an error occurs. the edit chain 
is not changed. 

17.11 



Loc~l Attention-changing Commands 

Note: (NX -N) is equivalent to (BK N), and vice versa. 

!NX [Editor Command1 
Makes the current expression be the next expression at a higher level, Le.. goes 
through any number of right parentheses to get to the next expression. For 
example: 

-PP 
{PROG «L L) 

(UF L» 
LP (COND 

«NULL (SETQ L (CDR L}» 
(ERROR!» 

([NULL {CDR (FMEMB {CAR L} (CADR L] 
(GO LP») 

(EDITCOM (QUOTE NX» 
(SETQ UNFIND UF) 
(RETURN L» 

-F CDR P 
(CDR L) 
-NX 

NX 1. 
-!NX P 
(ERROR!) 
- U~X P 
«NULL &) (GO LP» 
-!NX P 
(EDITCOM (QUOTE NX» 

-
! NX operates. by doing a's until it reaches a stage where the current expression is not the last expression 
in the next higher expression. and then does a NX. Thus! NX always goes through at least one unmatched 
right parenthesis. and the new current expression is always on a different level. Le .• ! NX and NX always 
produce different results. For example using the previous current expression: 

-F CAR P 
(CAR L) 
-!NX P 
(GO LP) 
*'P P 
(CAR L) 
-NX P ... 
(CAOR L) -
(r~TH N) [Editor Command) 

(N i: 0) Equivalent to N followed by UP. Le .. causes the list starting with the ,vth 
element of the current expression (or Nth from the end if N < 0) to become the 
current expression. Causes an error if current expression does not have at least N 

elementS. 

17.12 



(~), 
\ ; 
~ .. 

.. 

(~i ~ :i 

" 

o 

THE TELETYPE EDITOR 

. (NTH 1) is a no-op, as is (NTH - L) where L is the length of the current 
expression. 

line-feed [Editor Command] 
Moves to the "next" expression and prints it, i.e. performs a NX if possible, 
otherwise performs a ! NX. (The latter case is indcated by first printing ")".) 

control-X [Editor Command] 
Control-X5 moves to the "previous" thing and then prints it, Le. performs a BK if 
possible, otherwise a 1 0 "followed by a B K. 

control-Z [Editor Command] 
Control-ZS moves to the last expression and prints it, Le. does -1 followed by P. 

Line-feed, control-X, and control-Z are implemented as immediaie read macros; as soon as they are read. 
they abort the current printout. They thus provide a convenient way of moving around in the editor. 
In order to facilitate using different concrol characters for those macros, the function SETTERMCHARS is 
provided (see page 17.S9). 

17.4 COl\1l\1ANDS THAT SEARCH 

All of the editor commands that search use the same pattern matching routine (the function ED IT 4E, page 
17.S7). We will therefore begin our discussion of searching by describing the pattern match mechanism. 
A pattern PAT matches with x if any of the following conditions are true: 

(1) 

'(2) 

(3) 

(4) 

(S) 

(6) 

If PAT is EQ to x. 

If PAT is &. 

If PAT is a number and EQP to x. 

If PAT is a string and (STREQUAL PAT x) is true. 

If (CAR PAT) is the atom ·ANY·, (CDR PAT) is a list of patterns, and one of the patterns on 
(CDR PAT) matches x. 

If PAT is a literal atom or string containing one or more $5 «esc)s), each $ can match an 
indefinite number (including 0) of contiguous characters in the atom or string ~ e.g .. VE RS 
matches both VERYLONGATOM and "VERYLONGSTRING" as do SLONGS (but not SLONG). 
and SV$LSTS. Note: the atom S «esc» matches only with itself. . 

(7) If PAT is a literal atom or string ending in two <esc>s. PAT matches with the atom or string x 
if it is "close" to PAT, in the sense used by the spelling corrector (page IS.13). E.g. CO~~SSSS 
matches with CONS, CNONC$$ with NCONC or NCONC 1. 

5Concrol-A in Interlisp on TOPS-20. 

6Concrol-L in Interlisp on TOPS-20. 

17.13 



Commands That Search 

The pattern matching routine always' types a message of the fOIm =MATCHmG-ITEM to inform the user 
of the object matched by a pattern of the above two types. unless EDITQUIETFLG= T. For example, if 
VE RS matches VERYLONGATOM. the eiiitor would print =VE RYLONGATOM. 

(8) If (CAR PAT) is the atom --, PAT matches x if (CDR PAT) matches with some tail of x. 
For example, (A -- (&» will match with (A 6 C (0», but not (A 6 CO), or (A 6 C 
(D) E). However, note that (A -- (&) --) will match with (A 6 C (0) E). In other 
words. - - can match any interior segment of a list. 

If (COR PAT) = NIL. i.e., PAT=(--), then it matches any tail ofa list. Therefore, (A --) 
matches (A), (A B C) and (A • 6). 

(9) If (CAR PAT) is the atom ==. PAT matches x if and only if (CDR PAT) is EQ to x. 

This pattern is for use by programs that call the editor as a subroutine, since any non-atomic r) 
expression in a command typed in by the user obviously cannot be E Q to already existing \.. '~ 
structure. 

(10) If (CADR PAT) is the atom •. (two·periods), PAT matches x if (CAR PAT) matches (CAR 
x) and (COOR PAT) is contained in X. as described on page 17.20. 

(11) Otherwise if x is a list, PAT matches x if (CAR PAT) matches (CAR x), and (COR PAT) 
matches (CO R x). 

When the editor is searching. the pattern matching routine is called to match with elements in the structure. 
unless the pattern begins with ••• (three· periods), in which case CDR of the pattern is matched against 
proper tails in the structure. Thus. 

*p 
(A 8 e (8 C» 
*F (B --) 
.p 
(6 C) 
·0 F ( ... 8 --) 
.p 
••. 6 e (8 e» 

Matching is also attempted with atomic tails (except for NIL). Thus. 

*p 
(A (6 • C» 
*F C 
*P 
•• : • C) 

Although the current expression is the atom C after the final command, it is printed as ... . C) to 
alert the user to the fact that C is a !ail. not an element. Note that the pattern C will match with either 
instance of C in (A C (B • C». whereas ( . .. . C) win match· only the second C. The pattern NIL 
will only match with NIL as an element. Le .. it will not match in (A 6). even though COO R of (A B) 
is NIL. However. ( . .. . NIL) (or equivalently ( ... » may be used to specify a NIL tail. e.g .• ( ... 

17.14 



THE TELETYPE EDITOR 

; NIL) will match with CDR of the third sub expression of ( (A . B) (C . D) (E». 

17.4.1 Search Algorithm 

Searching begins with the current expression and proceeds in print order. Searching usually means find 
the next instance of this pattern. and consequently a match is not attempted that would leave the edit 
chain unchanged. At each step, the pattern is matched against the next element in the expression currently 
being searched, unless the pattern begins with .•. (three periods) in which case it is matched against 
the next tail of the expression. 

If the match is not successfuL the search operation is recursive first in the CA R direction. and then in the 
CDR direction, i.e., if the element under examination is a lis~ the search descends into that list before 

C--)-'.',' attempting to match with other elements (or tails) at the same level. Note: A find command of the form 
'- (F PATTERN NIL) will only attempts matches at the top level of the current expressio~ Le .• it does not 

descend into elements. or ascend to higher expressions. 

/~i 

\"J 

However. at no point is the total recursive depth of the search (sum of number of CA Rs and CD Rs 
descended into) allowed to exceed the value of the variable MAXLEVEL. At that point, the search of 
that element or tail is abandoned, exactly as though the element or tail had been completely searched 
without finding a match. and the search continues with the element or tail for which the recursive depth is 
below MAXLEVEL. This fearure is designed to enable the user to search circular list structures (by setting 
MAXlEVEl small), as well as protecting him from accidentally encountering a circular list strUcrure in the 
course of normal editing. MAXlEVEl can also be set to NIL. which is equivalent to infinity. MAXlEVEL 
is inioally set to 300. 

If a successful match is not found in the current expression. the search automatically ascends to the next 
higher expression. and continues searching there on the next expression after the expression it just finished 
searching. If there is none. it ascends again, etc. This process continues until the entire edit chain has 
been searched, at which point the search fails. and an error is generated. If the search fails (or is aborted 
by control-E). the edit chain is not changed (nor are any CONSes performed). 

If the search is successfuL Le .• an expression is found that the pattern matches, the edit chain is set to the 
value it would have had had the user reached that expression via a sequence of integer commands. 

If the expression that matched was a list. it will be the final link in the edit chaia i.e., the new current 
expression. If the expression that matched is not a list. e.g.. is an atom, the current expression will be 
the tail beginning with that atom. unless the atom is a tail. e.g.. B in (A . B). In this case. the current 
expression will be B, but will print as . .. • B). In other words. the search effectively does an UP.; . 

17.4.2. Search Commands 

. .' 

All of the commands below set lASTAIL for use by UP, set UNFIND for use by \ (page 17.21). and dC? 
not change the edit chain or perform any CONSes if they are unsuccessful or aborted. 

F PATTERN [Editor Command1 
Actually two commands: the F informs the editor that the next command is to be 

rUnless UPFINDFLG=NIL (initially set to T). For disc.ussion. see "Form Oriented Editing", page 17.16. 

17.15 



Search Commands 

interpreted as a pattern. This is the most common and useful form of the find 
command. If successful, the edit chain always changes, Le.9 F PATTERN means 
find the next instance of PATTERN. 

If (MEMB PATTERN CtlRRENT-EXPRESSION) is true, F does not proceed with 
a full recursive search. If the value of the MEMB is NIL, F invokes the search 
algorithm described on page 17.15. -. 

Note that if the current expression is (PROG NIL LP (COr~D (-- (GO LP1») ... LPl ... ), then 
F LPl will find the PROG label, not the LPl inside of the GO expressio~ even though the latter appears 
first (in print order) in the current expression. Note that typing 1 (making the atom PROG be the current 
expression) followed by F LPl would find the first LP1. 

F PATTERN N 

F PATTERN T 

(F PATTERN N) 

(F PATTERN) 

F PATTERN NIL 

[Editor Command1 
Same as F PATTERN, i.e., Finds the Next instance of PATTERN, except that the 
MEMB check of F PATTERN is not performed. 

.[Editor Command] 
Similar to F PATTERN, except that it may succeed without changing the edit ch~ 
and it does not perform the MEMB check. 

For example, if the current expression is (COND ... ), F cor~o will look for the 
next CONO, but (F CONO T) will "stay here". 

[Editor Command1 
(N ~ 1) Finds the Nth pl~e that PATTERN matches. Equivalent to (F PATTERN 

T) followed by (F PATTERN N) repeated N-1 times. Each time PATTERN 

successfully matches. N is decremented by 1. and the search continues. until N 

reaches O. Note that PATTERN does not have to match with N identical expressions: 
it just has to match N times. Thus if the current expression is (FOOl F002 
F003}9 (F FOeS 3) will find F003. 

If PATTERN does not match successfully N times, an error is generated and the edit 
chain is unchanged (even if PATTERN matched N-1 times). 

[Editor Command] 
[Editor Corrunand] 

Similar to F PATTERN. except that it only matches with elements at the top level of 
the current expression~ Le .• the search will not descend into the current expression. 
nor will it go outSide of the current expression. May succeed without changing the 
edit chain. 

For example. if the current expression is (PROG NIL (SETQ X (CONO & &» (COND &) ••• ). the 
command F CONO will find the CONO inside the SETQ, whereas (F (COND --» will find the top level 
CONDo i.e ... the second one. . 

(FS PATTERN1 ••• PATTERNN ) [Editor Command1 
Equivalent to F PATTERN1 followed by F PATTERN2 ··· followed by F PATTERN:-.;. 

so that if F PATTERNU fails. the edit chain is left at the place PATTERN.\f_Z 
matched. 

17.16 
(J. 

- _'-::._7 



0"· 
"" •.•• 1 

THE TELETYPE EDITOR 

( F = "EXPRESSION X) [Editor Command] 
Equivalent to (F (= = • EXPRESSION) x), Le., searches for a structure E Q to 
EXPRESSION (see page 17.13). 

(ORF PATTERN1 ••• PATTERNN) [Editor Command] 

BF PATTERN 

Equivalent to (F (-ANY-PATTERN1 .•• PATTERNN ) N), Le., searches for an 
expression that is matched by either PATTERN1, PATTERN2, ••• or PATTERNN (see 
page 17.13). 

[Editor Command] 
"Backwards Find". Searches in reverse print order, beginning with the expression 
immediately before the current expression (unless the current expression is the top 
level expressio~ in which case B F searches the entire expression, in reverse order). 

SF uses the same pattern match routine as F, and MAXLEVEL and UPFINDFLG 
have the same effect but the searching begins at the end of each list. and descends 
into each element before attempting to match that element. If unsuccessful, the 
search continues with the next previous element, etc .• until the front of the list is 
reached, ~t which point B F ascends and backs up. etc. 

For example, if the current expression is 

(PROG NIL (SETQ X (SETQ Y (LIST Z)~) (COND «SETQ W --) --» --). 
the command F LIST followed by SF SETQ will leave the current expression as (SETQ Y (LIST Z», 
as will F COND followed by SF SETQ. 

BF PATTERN T [Editor Command1 
Similar to SF PATTERN, except that the search always includes the current 
expression, Le.. statts at the end of current expression and works backward, then 
ascends and backs up, etc. 

Thus in the previous example. where F COND followed by SF SETQ found (SETQ Y (LIST Z». F 
COND followed by (S F SETQ T) would find the (SETQ W --) expression. 

(B F PATTERN) 

SF PATTERN NIL 

(GO LABEL) 

Same as B F PATTERN. 

[Editor Command] 
[Editor Command1 

[Editor Command1 
Makes the current expression be the first thing after the P ROG label LABEL. i.e. 
goes where an executed GO would go. 

17.4.3 Location Specification 

Many of the more sophisticated commands described later in this chapter use a more general method of 
specifying position called a location specification. A location specification is a list of edit commands that 
are executed in the normal fashion with two exceptions. First. all commands not recognized by the editor 
are interpreted as though they had been preceded by F; normally such commands would cause errors. 
For example, the location speci~cation (COND 2 3) specifies the Jrd element in the first clause of the 

17.17 



Location Specification 

next COND.s 

Secondly. if an error occurs while evaluating one of the commands in the location specification. and the 
edit chain had been changed, i.e.. was not the same as it was at the beginning of that execution of the 
location speci:ficatio~ the location operation will continue. In other words. the location operation keeps 
going unless it reaches a state where it $1etects that it is "looping", at which point it gives uP.. Thus. if 
(COND 2 3) is being located, and the first clause of the next cor~D contained only two elements, the 
execution of the command 3 would cause an error. The search would then continue by looking for the 
next CONDo However. if a point were reached where the.re were no further CONDs. then the first command. 
COND, would cause the error; the edit chain would not have been changed. and so the entire location 
operation would faiL and cause an error. 

The I F command (page 17.46) in conjunction with the ## function (page 17.46) provide a way of using 
arbitrary predicates applied to elements in the current expression. I F and ## will be described in detail 
later in the chapter. along with examples illustrating their use in location specifications. 

Throughout this chapter. the meta-symbol @ is used to denote a location specification. Thus @ is a list of 
commands interpreted as described above. @ can also be atoinic. in which case it is interpreted as (L I ST 
@). 

(LC. @) 

(lCL. @) 

(2ND • @) 

(3ND. @) 

(+- PATTERN) 

[Editor Command1 
Provides a way of explicitly invoking the location operatio~ e.g., (LC COND 2 
3) will perform the the search d~..cribed above. 

[Editor Command] 
Same as LC except the search is confined to the current expression. i.e .• the edit 
chain is rebound during the search so that it looks as though the editor were called 
on just the curre~t expression. For example. to find a COND containing a RETURN. 
one might use the location specification (COND (LeL RETURN) \) where the 
\ would reverse the effects of the LCl command. and make the final current 
expression be the CONDo 

[Editor Command] 
Same as (lC • @) followed by another (lC • @) except that if the first succeeds 
and second fails. no change is made to the edit chain. 

[Editor Command] 
Similar to 2ND. 

[Editor Command1 
Ascends the edit chain looking for a link which matches PATTERN. In other words. 
it keeps doing O's until it gets to a specified point If PATTERN is atomic. it is 
matched with the first element of each link\ otherwise with the entire link. If no 
match is found.. an error is generated.. and the edit chain is unchanged. 

Note: If PATTERN is of the form (I F EXPRESSION), EXPRESSION 'is' evaluated 
at each link. and if its value is NIL. or the evaluation causes an error. the ascent 
continues. See page 17.46. 

SNoce thac the user could always write F eDND followed by 2 and 3 for (eONO 2 3) if he were not 
sure whether or noc CDND was the name of an atomic command. 

17.18 

() 
--C··::: 

.' 

()::, 
\.... 

f~" 
\. ) :.~. 

-'- - ,_ .. 



o 

For example: 

.pp 
[PROG NIL 

(COND 

THE TELETYPE EDITOR 

[(NULL (SETQ L (CDR L») 
(COND 

(FLG (RETURN L] 
([NULL (CDR (FMEMB (CAR L) 

{CAOR L]] 
·F CADR 
'.(4- CONO) 
.p 
(CONO (& &) (& &» 
• 
Note that this command differs from B F in that it does not search inside of each link. it simply ascends. 
Thus in the above example, F CAOR followed by BF CONO would find (CONO (FLG (RETURN L}», 
not the higher CONDo 

(BELOW COM x) 

(BELOW COM) 

[Editor Command] 
Ascends the edit chain looking for a link specified by COM, and stops x links below 
that (only links that are elements are counted. not tails). In ,other words BELOW 
keeps doing O's until it gets to a spec~ed point, and then backs off x O's. 

Note that x is evaluateci so one can type (B E L OW COM (I PLUS X Y» • 

[Editor Command] 
Same as (BELOW COM 1). 

For example, (BELOW CONO) will cause the CONO clause containing the current expression to become 
the new current expression. Thus if the current expression is as shown above, F CAD R followed by 
(BELOW CONO) will make the new expression be ([NULL (CDR (FMEMB (CAR L) {CADR L] (GO 
LP) ), and is therefore equivalent to 0 0 0 o. 

The BEL OW command is' useful for locating a substrucwre by specifying something it contains. For 
example, suppose the user is editing a list of lists. and wants to find a sublist that contains a FOO (at any 
depth). He simply executes F Faa (BELOW \). 

(NEX COM) [Editor Command] 
Same as (BELOW COM) followed by NX. 

For example, if the user is deep inside of a SELECTQ clause. he can advance to the next clause with 
(NEX SELECTQ). : 

NEX [Editor Command] 
Same as (NEX +-). 

The atomic form of NEX is useful if the user will be performing repeated executions of (NEX COM). By 
simply MARKing (see page 17.21) the chain corresponding to COM. he can use NEX to step through the 

17.19 



sublists. 

-(NTH COM) 

Commands That Save and Restore the Edit Chain 

[Editor Command] 
GeneraJized NTH command. Effectively performs (LCL • COM), followed by 
(BELOW \), fcUlowed by UP. 

If the search is unsuccessful, NTH generates an error and the edit chain is not 
changed. 

Note that (NTH NUMBER) is just a special case of (NTH COM), and in fact. no 
special check is made for COM a number; both commands are executed identically. 

In other wor~ NTH locates _ COM, using a search restricted to the current expression, and then backs up 
to the current level, where the new current expression is the tail whose first element contains, however 
deeply, the expression that was the terminus of the location operation. For example: 

.p 
(PROG (& &) LP (CONO & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L» 
·(NTH UF) 
.p 
••• (SETQ UNFIND UF) (RETURN L» 
• 
PATTERN [Editor Command1 

E.g., (COND RETURN). Finds a COlJD that contains a RETURN. at any deprb. 
Equivalent to (but more efficient than) (F PATTERN N L (LCL • @) followed 
by ( .. PATTERN). 

An infix command, " .. " is not a meta-symbo!, it is the name of the command. @ 

is COO R of the command. Note that (PATTERN •• @) can also be used directly 
as an edit pattern as described on page 17.13, e.g. F (PATTERN •• @). 

For example, if the current expression is 

(PROG NIL [COND «NULL L) (COND (FLG (RETURN L] --), 

then (CONO •• RETURN) will make (CONO (FLG (RETURl. L») be the current expression. Note 
that it is the innennost CO NO that is found, because this is the first CONO encountered when ascending 
from the RETURN. In other words, (PATTERN •• @) is not always equivalent to (F PATTERN N): 
followed by (LCL • @) followed by \. 

Note that @ is a location specification. not just a pattern. Thus {RETURN •• CONO 2 3) can be used 
to find the RETURN which contains a CONO whose first clause contains (at least) three elements. Note also' 
that since @ pennits any edit command, the user can write commands of the fonn (COllO •• (RETURN 

CONO) ), which will locate the first CONO that contains a RETURN that contains a CONO. 

17.5 CO~1l\1ANDS THAT SAVE AND RESTORE THE EDIT CHAIN 

Several facilities are available for saving the current edit chain and later reuieving it: MARK. which marks 

17.20 



THE TELETYPE EDITOR 

the current chain for future reference, +-, which returns to the last mark without destroying it, and ...... 
which returns to the last mark and also erases it. 

MARK [Editor Command] 
Adds the current edit chain to the front of the list MARKLST. 

[Editor Command] 
Makes the new edit chain be (CAR MARKLST). Generates an error if MARKLST 
is NIL, Le~ no MARKs have been performecL or all have been erased. 

This is an atomic command; do not confuse it with the list command (+
PATTERN). 

[Editor Command] 
Similar to +- but also erases the last MARK, Le., performs (SETQ MARKLST (CDR._ 
MARKLST) ). 

Note that if the user has two chains markecL and wishes to rerum to the first chain. he must perform ....... 
which removes the second mark, and then +-. However, the second mark is then no longer accessible. If 
the user wants to be able to rerum to either of two (or more) chains, he can use the following generalized 
MARK: 

(MARK LlTATOM) [Editor Command1 
Sets LITATOM to the current edit chain. 

(\ LlTATOM) [Editor Command] 
Makes the current edit chain become the value of LITATOM. 

If the user did not prepare in advance for returning to a particular edit chain. he may still be able to 
return to that chain with a sing!e command by using \ or \P. 

\ . [Editor Command] 
Makes the edit chain be the value of UN FIN O. Generates an error if UN FIN 0 = NIL. 

UNFIND is set to the current edit chain by each command that makes a "big jump'\ Le., a command that 
usually performs more than a single ascent or descent, namely 1", ... , ..... , ! NX, all commands that invoive 
a search, e.g., F, LC, •• , BELOW, et al and \ and \P themselves. One exception is that ur~FIND is not 
reset when the current edit chain is the top level expression, since this could always be returned to via 
the 1" command. 

For example, if the user types F COr~D. and then F CAR, \ would ~ke him back to the CONDo Another 
\ would take him back to the CAR, etc. 

\P [Editor Command1 
Restores the edit chain to its state as of the last print operation. Le.. p. ? or P P. 
If the edit chain has not chCUlged since the last printing. \ P restores it to its· state 
as of the printing before that" one, Le., two chains are always saved. 

For example. if the user types P followed by 3 2 1 p. \ P will rerum to the first p. i.e.. would be 
equivalent to 0 0 O. Another \P would then take him back to the second p. i.e .. the user could use \P 
to flip back and forth between the two edit chains. 

Note that if the user had typed P followed by F CONDo he could use either \ or \ P to return to the p. 

17.21 



Commands That Modify Structure 

i.e .• the action of \ and \P are independent. 

S LITATOM @ [Editor Command1 
Sets LITATOM (using SETQ) to the current expression after performing (LC • @). 
The edit chain is not changed. 

Thus (S F 00) will set F 00 to the current expression. and (S F 00 -1 1) will set F 00 to the first 
element in the last element of the current expression. 

17.6 COl\1l\1ANDS THAT MODIFY STRUcruRE 

The basic structure modification commands in the editor are: 

(N) (N) 1) . [Editor Command1 
Deletes the corresponding element from the current expression. 

(N E 1 . • 0. EM) (N~l) [Editor Command] 
Replaces the Nth element in the current expression with E1 ••• EM. 

( - N E1 0" EM) ( N~ 1 ) [Editor Command1 
Inserts E1 •• 0 EM before the Nth element in the current expression. 

[Editor Command1 
Attaches E1 00' EM at the end of the current expression .. 

As mentioned earlier: all structure modification done by the editor is destructive. i.e.. the editor uses 
RPLACA and RPLACD to physically change the structure it was given. However. all structure modification 
is undoable. see UNDO (page 17.50). 

All of the above commands generate errors if the current expression is not a list. or in the case of the first 
three commands, if the list contains fewer than N elements. In addition. the command (1). Le.. delete 
the first element. will cause an error if there is only one element. since deleting the first element must 
be done by replacing it with the second element. and then deleting the second element. Or. to look at it 
another way, deleting the first element when there is only one element would require changing a list to 
an acorn (Le., to NIL) which cannot be done. However, the command DELETE will work even if there is 
only one element in the current expression, since it will ascend to a point where it can do the deletion. 

If the value of CHANGESARRAY is a hash array, the editor will mark all structures that are changed 
. by doing (PUTHASH STRUCTURE FN CHANGESARRAY), where FN is the name of the function. The 

algorithm used for marking is as follows: (D If the expression is inside of another expression already 
marked as being changed. do nothing. (2) If the change is an insertion of or replacement wiill. a list. 
mark the list as changed. (3) If the change is an i.nsertion of or replacement with an atom. or a deletion. 
mark the parent as changed. . 

CHANGESARRAY is primarily for use by PRETTYPRHJT (page 6.47). ·When the value of CHANGECHAR is 
non-NIL. PRETTYPRINT. when printing to a file or display teI1I1inal. prints CHANGECHAR in the right 
margin while printing an expression marked as having been changed. CHANGECHAR is initially I. 

17.22 

\... .. 

(\ 
\ ~ .. /.,., 

,-, . 



0., 

o 

THE TELETYPE EDITOR 

17.6.1 Implementation of Structure Modification Commands 

Note: Since all commands that insert, replace. delete or attach structure use the same low level editor 
functions. the remarks made here are valid for all structure changing commands. 

For all replacemen~ insenion. and attaching at the end of a list. unless the command was typed in directly 
to the editor.9 copies of the corresponding structure are used, because of the possibility that the exact 
same command, (i.e~ same list strllcrure) might be used again. Thus if a program constructs the command 
(1 (A 6 C» e.g .• via (L I S T 1 F 00). and gives this command to the editor. the (A 6 C) used for 
the replacement will not be EQ to FOO.10 

The rest of this section is included for applications wherein the editor is used to modify a data structure. 
and pointers into that data structure are stored elsewhere. In these cases. the actual mechanics of structure 
modification must be known in order to predict the effect that various commands may have on ~se 
outside pointers. For example. if the value of FOD is CDR of the current expression. what will the 
commands (2), (3), (2 X Y Z), (- 2 X Y Z) • etc. do to F DO? 

Deletion of the fust element in the current expression is performed by replacing it with the second 
element and deleting the second element by patching around it. Deletion of any other element is done by 
patching around i~ i.e .. the previous tail is altered. Thus if F 00 is E Q to the current expression which is 
(A 6 C O);and FIE is CDR of FDO, after executing the command (1), FOO will be (6 C D) (which 
is EQUAL but not EQ to FIE). However, under the same initial conditions, after executing (2) FIE will 
be unchanged, Le., FIE will still be (B CD) even though the current expression and F 00 are now (A 
CD) .11 

Both replacement and insertion are accomplished by smashing both CAR and CDR of the corresponding 
tail. Thus, if FDD were EQ to the current expression. (A 6 CD), after (1 X Y Z), FOO would be (X 
Y 0 Z 6 CD) • Similarly, if F 00 were E Q to the current expression. (A BCD). then after (- 1 X Y 
Z ), F 00 would be (X Y Z ABC D) • 

The N command is accomplished by smashing the last CDR of the current expression a la NCONC. -Thus 
if FOD were EQ to any tail of the current expression. after executing an N command, the corresponding 
expressions would also appear at the end of FOO. 

In summary, the only situation in which an edit operation will not change an external pointer occurs when 
the external pointer is to a proper tail of the data structure~ i.e .• to CDR of some node in the strucrure. 
and the operation is deletion. If all external pointers are to elements of the strucrure, i.e.~ to CAR of some 

9Some editor commands take as arguments a list of edit commands. e.g., (LP F FOO (1 (CAR FOO»). 
In this case. the command (1 (CAR FOD» is not considered to have been "'typed in" even though the 
lP command itself may have been typed in. Similarly, commands originating from macros. or commands 
given to the editor as arguments to EDITF. EOITV, et ai, e.g .• EOITF(FOO F GONO (No --» are not 
considered typed in. 0 

lOThe user can circumvent °this by using the I command (page 17.45), which computes the structure to 
be used. In the above example. the fonn of the command would be (I 1 FOO). which would replace 
the first element with the value of FOO itself. 
11 A general solution of the problem just isn't possible. as it would require being able to make two listS 
EQ to each other that were originally different. Thus if F IE is CDR of the current expression. and FUM is 
COOR of the current expression. performing (2) would have to make FIE be EQ to FUM if all subsequent 
operations were to update both F IE and FUM correctly. 

17.13 



The A. B. and : Commands 

node. or if only insertions, replacements, or attachments are performed, the edit operation will always 
have the same effect on an external pointer as it does on the current expression .. 

17.6.2 The ~ B9 and : Commands 

In the (N). (N E1 ••• EM)' and (-N E1 ••• EM) commands. the sign of the integer is used to indicate 
the operation. As a result. there is no direct way to express insertion after a particular element, (hence 
the necessity for a separate N command). Similarly, the user cannot specify deletion or replacement of 
the Nth element from the end of a list without first converting N to the corresponding positive integer. 
Accordingly, we have: 

[Editor CommandJ 
Inserts 8% ••• EM before the current expression. Equivalent to UP followed by (~~ 
E1 ••• EM)' 

For example, to insert Foa before the last element in the current expression, perform -1 and then (8 
FOO). 

DELETE 
( : ) . 

[Editor Command] 
Inserts E1 ••• EM after the current expression. Equivalent to UP followed by (- 2 
E1 ••• EM) or (N E1 ••• EM)' whichever is appropriate. 

[Editor Command] 
Replaces the current expression by 8 1 ••• EM: Equivalent to UP followed by (1 
E1 .•• EM)' 

Deletes the current expression. 

[Editor Command1 
[Editor Command] 

DELETE first tries to delete the current expression by performing an UP and then a (1). This works 
in most cases. However, if after performing UP, the new current expression contains only one element. 
the command (1) will not work. Therefore, DELETE starts over and performs a BK. followed by UP. 
followed by (2) • For example. ~f the current expression is (CO N D {( ME MB X Y» (T Y», and the 
user perfoImS -1, and then DELETE9the BK-UP-(2) method is used, and the new current expression 
will be . •• ({ MEMB X Y»). 

However. if the next higher expression contains only one element. BK will not work. So in this case, 
DELETE perfoIms UP, followed by (: NIL), Le., it replaces the higher expression by NIL. For example, 
if the current expression is {COND « MEMB X Y» (T Y» and the user perfonns F MEMB and then 
DELETE. the new current expression will be ... NIL (T Y» and the original expression would now 
be (COND NIL (T V»~. Therauonale behind this is that deleting (MEMB X Y) from «MEMB X v»~ 
changes a list of one element to a list of no elements .. i.e .. () or NIL. . . . 
If the- current expression is a mit then B, A, :, and 0 E LET E all work exactly the same as though the 
current expression were the first element in that tail. Thus if the current expression were . .. (P R I NT 
Y) (PRINT Z». (B (PRINT X» would insert (PRINT X) before (PRINT V). leaving the current 
expression . .. (P R IN T X) (P R I U T Y) (P R I NT Z». 

17.24 

C-):. 
\ .... 



THE T.ELETYPE EDITOR 

.. The following forms of the A. B, and : commands incorporate a location specification: 

(INSERT El ..• EM BEFORE. @) [Editor Command] 
(@ is (CDR (MEMB E.R 'BE FORE COMMANri») Similar to (LC • @) followed by 
(B El ... EM)' 

Waming: -If @ causes an error. the location process does not continue as described 
on page 17.17. For example if @= (CONO 3) and the next COND does not have a 
3rd element. the search stops and the INSERT fails. Note that the user can always 
write (LC CONO 3) if he intends the search to continue . 

• p 

{PROG (& & X) ··COMMENT-- (SELECTQ ATM & NIL) (OR & &) (PRINt & T) 
(PRIN1 & T) (SETQ X & 

-(INSERT LABEL BEFORE PRINt) 
.p 
(PROG (& & X) ··COMMENT·· (SELECTQ ATM & NIL) (OR & &) LABEL 
(PRINl & T) ( user typed control-E 

• 
Current edit chain is not changed.. but ur~FIND is set to the edit chain after the B was performed. i.e .• \ 
will make the edit chain be that chain where· the insertion was perfonned. 

(INSERT El ..• EM AFTER. @) [Editor Command] 
Similar to INSERT BEFORE except uses A instead of B. 

(INSERT El ..• EM FOR. @) [Editor Command] 
Similar to INSERT BEFORE except uses: for B. 

-(REPLACE @ BY El ... EM) [Editor Command1 
(REPLACE @ WITH El ... EM) [Editor Command] 

Here @ is the segment of the command between REPLACE and WITH. Same as 
(JA (I~SERT El ... EM FOR • @). 

o. 

Example: (REPLACE COND -1 WITH (T (RETURN L») 

(CHANGE @ TO El .•. EM) [Editor Command] 

(DELETE. @) 

Same as REPLACE WITH. 

[Editor Command] 
Does a (LC • @) followed by DELETE.12 The current edit chain is not changed.. 
but UNFINO is set to the edit chain after the DELETE was perfonned. 

Note: the edit chain will be changed if the current expression is no longer a part 
of the expression being edited. e.g.. if the current expr-ession is . .. C) and the 
user perfonns (DELETE 1). the tail. (e), will have been cut off. Similarly. ifL~e 

12See warning about INSERT. page 17.25. 

17.25 



Form Oriented Editing and the Role of UP 

current expression is (CDR Y) and the user performs (REPLACE WITH (CAR 
X) ). 

Example: (DELETE -1), (DELETE COND 3) 

Note: if@ is NIL (Le.. empty). the corresponding operation is perfi:;nned on the current edit chain. 

For example. (REPLACE WITH (CAR X» is equivalent to (: (CAR X». For added readabilicy. 
HERE is also permitted, e.g., (INSERT (PRINT X) BEFORE HERE) will insert (PRINT X) before the 
current expression (but not change the edit chain). 

Note: @ does not have to specify a location within the current expression. Le.. it is perfectly legal to ascend 
10 INSERT. REPLACE. or DELETE 

For example. (INSERT (RETURN) AFTER 1" PROG -1) will go to the top. find the first PROG, and 
insert a (RETURN) at its end, and not change the current edit chain. 

The A. B, and : commands, commands, (and consequently INSERT, REPLACE, and CHANGE). all make 
special checks in EI thru EM for expressions of the form (## • COMS). In this case. the expression 
used for inserting or replacing is a copy of the current expression after executing COMS. a list of edit 
commands (the execution of COMS does not change the current edit chain). For example. {I NSE RT (## 
F COND -1 -1) AFTER 3) will make a copy of the last form in the last clause of the next CONDo and 
insert it after the third element of the current expression. Note that this is not the same as (INSERT F 
COND -1 (## -1) AFTE~ 3). which inserts four elements after the third elemen~ namely F. CONDo 
-I, and a copy of the last element in me current expression. 

17.6.3 Form Oriented Editing and the Role of UP 

The UP that is performed before A. B. and : commands13 makes these operations fonn-oriented. For 
example. if the user types F SETQ. and then DELEJ'E. or simply (DELETE SETQ). he will delete the 
entire SETQ expressio~ whereas (DELETE X) if X is a variable. deletes just the variable X. In both 
cases, the operation is performed on the corresponding jonn. and in both cases is probably what the 
user intended. Similarly. if the user types (INSERT (RETURN Y) BEFORE SETQ), he means before 
the SETQ expression. not before the atom SETQ.14 A consequent of this procedure is mat a pattern of 
the fonn (SETQ Y --) can be viewed as simply an elaboration and further refinement of the pattern 
SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and (INSERT (RETURN Y) BEFORE (SETQ 
Y --» perform the same operation15 and. in fact. this is one of the motivations behind making the 
current expression after F SETQ, and F (SETQ Y --) be the same. . 
Occasionally, however, a user may have a data structure in which no special significance qr meaning is· 
attached to the position of an atom in a list. as Interlisp attaches to atoms that appear as CAR of a list. 

l3and thererore in INSERT, CHANGE. REPLACE. and DELETE commands after the location ponion of 
the operation has been perfonned. 

t4There is some ambiguity in (INSERT EXPR AFTER Fu~CTIONNAME), as the user might mean make 
EXPR. be the function's first argument. Similarly. the user cannot write (REPLACE SETQ WITH SE TQQ) 
meaning change the name of the function. The user must in these cases write (INSERT EXPR AFTER 
FUNCTIONNAME 1). and (REPLACE SETQ 1 WITH SETQQ). 

LSassuming the next SETQ is of the form (SETQ Y --). 

17.26 



~ ( ,. 

0, 
'-- -'; 

(~I "'-J. 

o 

THE TELETYPE EDITOR 

versus .those appearing elsewhere in a list. In general~ the user may not even know whether a particular 
atom is at the head of a list or not. Thus, when he writes (INSERT EXPR BE FORE FOO). he means 
before the atom FOO,-whether or not it is CAR of a list. By setting the variable UPFINDFLG to NIL 
(initially T), the user can suppress the implicit UP that follows searches for atoms~ and thus achieve the 
desired effect. With UPFlfJDFLG=NIL, following F FOO. for example, the current expression will be 
the atom FOO. In this case. the A, B. and : operations will operate with respect to the atom FOO. If the 
user intends the operation to refer to the list which FOO heads, he simply uses instead the pattern (FOO -- ). 

17.6.4 Extract and Embed 

Extraction involves replacing the current expression with one of its subexpressions (from any depth). 

(XTR. @) . [Editor Command] 
Replaces the original current expression with the expression that is current after 
performing (L C L • @). 16 If the current expression after (L C L • @) is a tail of 
a higher expression. its first element is used. 

If the extracted expression. is a list. then after XTR has finished. the current 
expression will be that list: If. ~e extracted expression is not a list, the new current 
expression will be a tail whose first element is that non-list. 

For example, if the current expression is (COND « NULL X) (PRINT Y»). (XTR PR INT). or (XTR 
2 2) will replace the COND by the PRINT. The current expression after the XTR would be (PRINT V). 

If the current expression is (COND « NuLL X) Y) (T Z». then (XTR Y) will replace the COND with 
Y. even though the current expression after perfonning (LCL Y) is ••• Y). The current expression 
after the XTR would be ••• Y followed by whatever followed the CONDo 

If the current expression initially is a tail~ extraction works exactly the same as though the current 
expression were the first element in that tail. Thus if the current expression is ••• (COtJO « NULL 
X) (PRINT Y») (RETURN Z», then (XTR PRINT) will replace the COND by the PRINT, leaving 
( P R I NT Y) as the current expression. 

The extract command can also incorporate a location specification: 

(EXTRACT @1 FROM. @2) [Editor Command} 
(@1 ~ the segment between EXTRACT and FROM.) Performs (LC . @2)l1 and 
then (XT R • @ 1 ). The current edit chain is not changed. but UN FIN D is set co 
the edit chain after the X T R was performed. 

For example: If the current expression is (PRINT (COND « NULL X) Y) (T Z»)). then following 
(EXTRACT Y FROM COND). the current expression will' be (PRINT V). (EXTRACT 2 -1 FROM 
COND), (EXTRACT Y FROr~ 2). and (EXTRACT 2 -1 FROM 2) will all produce the sam~ :esult. 

16See warning about INSERT. page 17.25. 

liSee warning about INSERT. page 17.25. 

17.27 



.. -

, .. 

Extract and Embed 

. _. While extracting replaces the current expression·, by a subexpressio~ embedding replaces the current 
expression with one containing it as a subexpression. 

Examples: 

[Editor Command] 
MBO substitutes the current expression for all instances of the atom & in EI .•. EM' 
and replaces the current expression with the result of that 5ubstirution. As with 
SUBST. a fresh copy is used for each substitution. 

If & does not appear in El .•• EM' the MBO is interpreted as (MBD (El ... E.,,! 

&) ). 

MBO leaves the edit chain so that the larger expression is the new current expression. 

If the current expression is (PRINT Y), (MBO (COND « NULL X) &) « NULL (CAR Y» & (GO 
LP»» would replace (PRINT Y) with (COND «NULL X) (PRINT V»~ «NULL (CAR V»~ 
(PRINT Y) (GO LP»). 

If the current expression is (RETURN X), (MBD (PRINT Y) (AND FLG &» would replace it with 
the two expressions (PRINT Y) and (AND FLG (RETURN X» Le ... if the (RETURN X) ·appeared in 
the cond clause (T (RETURN X», after the MBO, the clause would be (T (PR INT Y) (AND FLG 
(RETURN X»). 

If the current expression is (PRINT V). then (MBO SETQ X) will replace it with (SETQ X (PRINT 
V»~. If the current expression is (PRINT V), (MBO RETURN) will replace it with (RETURN (PRINT 
Y) ). 

If the current expression initially is a tail embedding works exacdy the same as though the current 
expression were the first element in that tail. Thus if the current expression were ••. (P R I NT Y) 
(PRIl~T Z», (MBO SETQ X) would replace (PRINT Y) with (SETQ X (PRINT V»~. 

The embed command can also incorporate a location specification: 

() '--r 
'''. 

n:~' 
\,;.; . 

(EMBED @ IN. x) [Editor Command1 (;t 
(@ is the segment between EMBED and IN.) Does (LC • @) 18 and then (MBD. "-
x). Edit chain is not changed. but UN F I NO is set to the edit chain after the MB 0 
was perfonned. 

Examples: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN). (EMBED CONO 3 1 IN (OR 
& (NULL X»). 

WITH can be used for IN. and SURROU,ND c'an be used for EMBED. e.g .• (SURROUND NUMB ERP WI TH 
(AND & (MINUSP X»). : 

ED ITEMB EDTOKEN [Variable) 
The special atom used in the MBO' and EMB E 0 commands is the value of this 
variable. initially &. 

18See warning about INSERT, page 17.25. 

17.28 o 



(~." 
"--!;~ 

/"\' 
\-J; 

THE TELETYPE EDITOR 

17.6.5 The MOVE Command 

The MOVE command allows the user to specify (1) the expression to be moved, (2) the place it is to be 
moved" to, and (3) the operation to be perfonned there, e.g., insert it before, insert it after, replace, etc. 

(MOVE @1 TO COM. @2 ) [Editor Command1 
(@1 is the segment between MOVE and TO.) COM is BEFORE, AFTER, or the name 
of a list command. e.g.. :, N, etc. Perfonns (l C • @ 1 ),19 and obtains the current 
expression there (or its first element, if it is a tail), which we will call EXPR; MOVE 
then goes back to the original edit chain, performs (lC . @2) followed by (COM 
EXPR) (setting an internal flag so EXPR is not copied), then goes back to @ 1 and 
deletes EXPR. The edit chain is not changed. UNF INo is set to the edit chain after 
(COM EXPR) was performed. 

If @2 specifies a location inside of the expression to be moved, a message is printed 
and an error is generated. e.g., (MOVE 2 TO AFTER X), where X is contained 
inside of the second element. 

For example, if the current expression is (A BCD), (MOVE 2 TO AFTER 4) will make the new 
current expression be (A COB). Note that 4 was executed as of the original edit chain. and that the 
second element had not yet been removed. " 

As the following examples taken from actual editing will show, the MOVE command is an extremely 
versatile and powerful fearure of the editor. 

*1 
(PROG ({l l» (EDlOC (COoR C» (RETURN (CAR l») 
*(MOVE 3 TO : CAR) 
*1 
{PROG {(l l» (RETURN (EDlOC (CDoR C»» 
* 
.p 

(SElECTQ OBJPR & &) (RETURN &) lP2 (COND & &» 
*(MOVE 2 TO N 1) 
*p 

(SElECTQ OBJPR & & &) lP2 (COND & &» 

* 

*p 
{OR (EQ X lASTAIl) (NOT &) (AND & & &» 
*(MOV~ 4 TO AFTER (BELOW CONo» 
*P 
(OR (EQ X lASTAIL) (NOT &» 

*' P (& &) (AND & & &) (T & &» 
• 

19See warning about INSERT. page 17.25. 

17.29 



The MOVE Command 

.p 
({NULL X) ··COMMENT·· (COND & &» 
·(-3 (GO NXT] 
·{MOVE 4 TO N (~ PROG» 
.p 
«NULL X) ··COMMENT·· (GO NXT» 
., P 
(PROG (&) ··COMMENT·· (COND & & &) (COND & & &) (COND & &» 
·(INSERT NXT BEFORE -1) 
.p 
{PROG (&) ··COMMENT·· (COND & & &) (COND & & &) NXT (COND & &») 

Note that in the last example, the user could have added the PROG label NXT and moved the COND in one 
operation by performing {MOVE 4 TO N (~ PROG) (N NXT». Similarly. in the next example. in 
the course of specifying @2. the location where the expression was to be moved to, the user also performs 
a structure modification. via (N (T», thus creating the structure that will receive the expression being 
moved. 

.p 
«CDR &) ··COMMENT·· (SETQ CL &) (EDITSMASH CL & &» 
·MOVE 4 TO N 0 (N (T» -1] 
.p 
«CDR &) ··COMMENT·· (SETQ CL &» 
., P 
·(T (EDITSMASH CL & &» 
• 
If @ 2. is NIL. or (H ERE), the current position specifies where the operation is to take p lace. In this case, 
UN FIN D is set to where the expression that was moved was originally located. Le .• @ 1- For examp Ie: 

.p 
(TENEX) 
·(MOVE ~ F APPLY TO N HERE) 
.p 
(TENEX (APPLY & &» 
• 
• p 

(PROG (& & & ATM IND VAL) (OR & &) ··COMMENT-· 
(PRINt & T) ( 
PRIN1 & T) (SETQ INO user typed contro/-E 

-(MOVc·· TO BEFORE HERE) 
-P 

(OR & &) 

(PROG (& & & ATM IND VAL) (OR & &) (OR & &) (PRINt & 

-P 
(T (PRINt C-EXP T» 
-(MOVE ~ SF PRINt TO N HERE) 
.p 

(T (PRINt C-EXP T) (PRINt & T» 

17.30 

(\ 
J,. 

(~ .. 
\ . ~~: 



THE TELETYPE EDITOR 

• 
Finally, if @1 is NIL, the MOVE command allows the user to specify where the current expression is to 
be moved to. In this case, the edit chain is changed, and is the chain where the current expression was 
moved to; UNF IND is set to where it was . 

• p 

(SELECTQ OBJPR (&) (PROGN & &» 
·(MOVE TO BEFORE LOOP) 
.p 
•.. (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPlACD DFPRP 
&) (SELECTQ user typed conlro/-E 

• 

17.6.6 Commands That Move Parentheses 

The commands presented in this section permit modification of the list structure itself. as opposed to 
modifying components thereof. Their effect can be described as inserting or removing a single left or 
right parenthesis, or pair of left and right parentheses. Of course, there will always be the same number 
of left parentheses as right parentheses in any list structure, since the parentheses are just a notational 
guide to the structure provided by PRINT. Thus, no command can insen or remove just one parenthesis. 
but this is suggestive of what actually happens. 

In all six commands, N and M are used to specify an element of a list. usually of the current expression. 
In practice, N and M are usually positive or negative integers with the obvious interpretation. However. 
all six commands use the generalized NTH command (NTH COM) to find their element(s), so that Nth 
element means the first element of the tail found by performing (NTH N). . In other words. if the 
current expression is (LIST (CAR X) (SETQ Y (CONS W Z»), then (BI 2 CONS), (BI X -1), 
and (B I . X Z) all specify the exact same operation. 

All six commands generate an error if the element is not found, Le., the NTH fails. All are undoable. 

(BI N M) [Editor Command] 
"Both In". Inserts a left parentheses before the Nth element and after the .\1'th 
element in· the current expression. Generates an error if the Mth element is not 
contained in the Nth tail. i.e., the Mth element must be "to the right" of the 1\'th 
element. 

. Example: If the current expression is (A B (C 0 E) F G), then (8 I 2 4) will modify it to be (A 
(8 (C 0 E) F) G). 

(BI N) [Editor Command1 
Same as (81 N N). 

Example: If the current expression is (A 8 (C 0 E) F G), then (8 I - 2) will modify it to be (A B 
(C 0 E) (F) G). 

(80 N) [Editor Command] 
"Both Que. Removes both parentheses from the Nth element Generates an error 
if Nth element is not a list. . 

17.31 



TO and THRU 

Example: If the current expression is (A B (C 0 E) F G), then (BO D) will modifY it to be (A B 
C D E F G). 

(lI N) [Editor Command] 
uLeft In'·. InsertS a left parenthesis before the Nth element (and a matching right 
parenthesis at the end of the current expression), i.e. equivalent to (B I N -1). 

Example: if the current expression is (A B (C 0 E) F G), then (l I 2) will modify it to be (A (B 
(C 0 E) F G». 

(LO N) [Editor Command] 
"Left Out". Removes a left parenthesis from the Nth element. All elements 
following the Nth element are deleted. Generates an error if Nth element is not a 
list. 

Example: If the current expression is (A B (C 0 E) F G), then (L a 3) will modifY it to be (A B 
C 0 E). 

(RI N M) [Editor Command] 
"Right In". Inserts a right parenthesis after the Mth element of the Nth element. 
The rest of the Nth element is brought up to the level of the current expression. 

Example: If the current expression is (A (B C 0 E) F G), (R I 2 2) will modifY it to be (A (B 
C) 0 E F G). Another way of thinking about R I is to read it as "move the right parenthesis at the 
end of the Nth element in to after its Nth element." . 

(RO N) [Editor Command1 
uRight Out". Removes the right parenthesis from the Nth element. moving it to 
the end of the current expression. All elements following the Nth element are 
moved inside of the Nth. element. Generates an error if Nth element is not a list. 

Example: If the current expression is (A B (C DE) F G). (RO 3) will modify it to be (A B (C D 
E F G». Another way of thinking about RO is to read it as "move the right parenthesis at the end of 
the Nth. element out to the end of the current expression." 

17.6.7 TO and THRU 

EXTRACT. EMBED. DELETE. REPLACE. and MOVE can be made to operate on several contiguous elements. 
Le .• a segment of a list. by using in their respective location specifications the TO or THRU command. 

• . [Editor Command] 
Does a (LC • @1)' followed by an UP, and then a (B1 1 @2)' thereby grouping 
the segment into a single element. and finally does a 1. making the final current 
expression be that element. 

For example, if the current expression is (A (B (C D) (E) (F G H) I) J K). following (C THRU 
G ), the current expression will be « CD) (E) (F G H». 

[Editor Comm:mdl 
Same as THRU except the last element not included. Le .• after the B 1. an (R I 1 
- 2) is performed. 

17.32 



/-\J 
.~/ 

THE TELETYPE EDITOR 

If both @1 and @2 are numbers, and @2 is greater than @1. then @2 counts from the beginning of the 
current expressio~ the same as @ 1. In other words. if the current expression is (A BCD E F G). (3 
THRU 5) means (C THRU E) nQt (C THRU G). In this case, the corresponding B I command is (B I 
1 @2-@1+1). 

THRU and TO are not very useful commands by themselves: they are intended to be used in conjunction 
with EXTRACT. EMBED, DELETE. REPLACE. and MOVE. After THRU and TO have operated, they set an 
internal editor flag informing the above commands that the element they are operating on is actually a 

_ segment. and that the extra pair of parentheses should be removed when the operation is complete. Thus: 

.p 
{PROG (& & ATM IND VAL WORD) (PRIN1 & i) (PRIN1 & T) (SETQ IND &) 
(SETQ VAL &) ··COMME~IT·· {SETQQ user typed control-E 

·(MOVE (3 THRU 4) TO BEFORE 7) 
.p 
(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &) (PRIN1 & T) 
(PRrr~1 & T) ··COMMENT·· user typed control-E 

• 
• p 

(. FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR 
AND CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL 
HAVE BEEN TRANSLATED, AND IT CAUSED THE ERROR.) 
·(DELETE (USER THRU CURRS» 
=CURRENTFORM . 
• p 

{* FAIL RETURN FROM EDITOR. CURRENTFORM IS user typed control-E 

• 
• p 

LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &) (RETURN V»~ 
·{MOVE (1 TO OUT) TO N HERE] 
.p 

OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &» 
• 
·PP 
[PROG (RF" TEMP1 TEMP2) 

(COND 
«NOT (MEMB REMARG LISTING» 

{SETQ TEMPt (ASSOC REMARG 
(SETQ TEMP2 (CAOR TEMP1» 
(GO SKIP» 

(T ··COMMENT·· 
(SETQ TEMPt REMARG») 

(NCONCl LISTING REMARG) 
( cor~o 

«NOT (SETQ TEMP2 (SASSOC 

. 
NAMEDREMARKS» ··COMMENT·· 

1.7.33 



',-

TO and THRU 

*(EXTRACT (SETQ THRU CADR) FROM COND) 
*p 
(PROG (RF TEMP1 TEMP2) (SETQ TEMPt &) *·COMMENT·· (SETQ TEMP2 &) (NCONC1 LISTING 
REMARG) (COND & & user typed contro/-E 

* 

TO and THRU can also be used directly with XTR. because XTR involves a location specification while A, 
B, :, and MBD do not. Thus in the previous example, if the current expression had been the CONDo e.g., 
the user had first performed F COND, he could have used (XTR (SETQ THRU CADR» to perform the 
extraction. 

(@1 TO) 
I (@1 THRU) 

[Editor Command] 
[Editor Command] 

, Both are the same as (@1 THRU -1). i.e., from @1 through the end of the list. 

Examples: 

*p 
(VALUE (RPLACA OEPRP &) (RPLACD &) (RPLACA VARSWORD &) (RETURN» 
* (MOVE (2 TO) TO N (.. P ROG ) ) • 
*(N (GO VAR» 
*p 
(VALUE (GO VAR» 

*p 
(T ··COMMENT·· (COND &) ··COMMENT*· (EDITSMASH CL & &) (COND &» 
*(-3 (GO REPLACE» 
*(MOVE (COND TO) TO N ~ PROG (N REPLACE» 
*p 
(T **COMMENT** (GO REPLACE» 
*\ p 
(PROG (&) ~*COMMENT·· (COND & & &) (COND & & &) DELETE (COND & &) REPLACE 
(COND &) ·*COMMENT·· (EDITSMASH CL & &) (COND &» 
* 
.pp 
[LAMBDA (CLAUSALA X) 

(PROG (A D) 
(SETQ A CLAUSALA) 

LP (COND . 
«NULL A) 

(RETURN») 
. (SERCH X A) 

(RUMARK (CDR A» 
(NOTICECL (CAR A» 
(SETQ A (COR A» 
(GO LP] 

*(EXTRACT (SERCH THRU NOTS) FROM PROG) 
=NOT ICECL 
.p 

17.34 

()-;:-
- \...'.: 



.. :J-' 

,~. 

U 

(LAMBDA 
-(EMBED 
-PP 
[LAMBDA 

(MAP 

-

THE TELETYPE EDITOR 

(CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &» 
(SERCH TO) IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) -] 

(CLAUSALA X) 
ClAUSALA 
(FUNCTION (LAMBDA (A) 

(SERCH ·x A) 
(RUMARK (CDR A» 
(NOTICECL (CAR A] 

17.6.8 The R Command 

(R x Y) [Editor Command] 
Replaces all instances of x by Y in the current expression, e.g., (R CAAD R CADA R ). 
Generates an error if there is not at least one instance. 

The R command operates in conjunction with the search mechanism of the editor. The search proceeds 
as described on page 17.15, and x can employ·any of the patterns on page 17.13. Each time x matches 
an element of the structure, the element is replaced by (a copy of) r. each time x matches a tail of the 
structure, the tail is replaced by (a copy of) Y. 

For example, if the current expression is (A (B C) ( B • C ) ) •. 

(R CD) will change it to (A (B D) ( B • D» • 

{R (... • C ) D) will change it to (A (B C) ( B 0 ) ). 

(R C (0 E» will change it to (A (B (0 E» (B· 0 E», and 
-

{R (... • NIL) D) will change it to (A (B C • D) (B • C) . 0 ) . 

If x is an atom or string containing $s «esc>S). $s appearing in Y stand for the characters matched 
by the corresponding S in x. For example. (R fOOS F IES) means for all atoms or strings that 
begin with FOO, replace the characters "FOO" by uFIE".2o ApplieCl to the list (FOO F002 XF001). 
(R FOO$ FIE$) would produce (FIE FIE2 XF001), and (R SFOO$ SFIES) would produce (FIE 
FIE2 XFIE1). Similarly. (R $OS $A$) will change (LIST (CADR X) (CADDR Y» to (LIST 
(CAAR X) (CAAOR». Note that CADDR was not changed to CAAAR. Le .. (R $0$ $A$) does not 
mean replace every 0 with A, but replace the first 0 in every atom or string by A. [f the user wanted to· 
replace every 0 by A. he could perform (LP (R SDS SAS». 

The user will.be informed of all such S replacements by a message of the form x- )Y, e.g .• CAOR- )CAAR. . . . . . 
Note that the S feature can be used to delete or add characters. as well as replace them. For example. 
(R S 1 S) will delete the terminating l's from all literal atoms and strings. Similarly, if an S in x does 

2°If x matches a string, it will be replaced by a string. Nme that it does not matter whether x or 
Y themselves are strings. i.e. (R SOS SAS), (R "SOS" SAS), (R SOS "SAS"). and (R "SDS" 
"SAS") are equivalent. Note also that x will never match with a number. i.e.. (R $1 S 2) will not 
change 11 to 12. 

17.35 



The R Command 

not have a mate in Y. the characters matched by the $ are effectively deleted. For example. (R SIS S) 
will change AND lOR to AND.21 Y can also be a list containing SSt e.g .• (R S 1 (CAR $» will change 
FOOl to (CAR FOO), FIEl to (CAR FIE). 

If x does not contain Ss, $ appearing in Y refers to the entire expression matched by x. e.g.. (R 
LONGATOM 'S) changes LONGATOM to 'LONGATOM. (R (SETQ X &) (PRINT S» changes every 
(SETQ X &) m (PRINT (SETQ X &»~2 

Since (R Srl SYS) is a frequently used operation for Replacing Characters, the following command is 
provided: 

(RC x Y) [Editor Command] 
Equivalent to (R SXS $ 1'$ ) 

R and RC change all instances of x to Y. The commands R 1 and RC 1 are available for changing just one, 
(Le .• the first) instance of x to Y. 

(Rl x Y) [Editor Command} 
Find the first instance of x and replace it by Y. 

(Rel x Y) [Editor Command] 
(Rl SXS SYS). 

In addition, while R and RC only operate within the current expression. Rl and RCl will continue 
searching, a la the F command, until they find an instance of %, even if the search carries them beyond 
the current expression. 

("SW N M) [Editor Command] 
Switches the Nth and Mth elements of the current expression. 

For example, if the current expression is (LIST (CONS (CAR X) (CAR Y» (CONS (CDR X) (CDR 
V»~), (SW 2 3) will modify it to be (LIST (CONS (CDR X) (CDR V»~ {CONS -(CAR X) (CAR 
Y) ) ). The relative order of N and M is not important. Le .• (SW 3 2) and (SW 2 3) are equivalent. 

SW uses the generalized NTH command (NTH COM) to find the Nth and Mth elements, a la the B I-BO 
commands. 

Thus in the previous example, (SW CAR CDR) would produce the same result. 

[Editor Command] 
Like SW except switches the expressions specified by @1 and @2. not the 
corresponding elements of the current expression. i.e. @ 1 and @2 can be at different 
levels in current expression. or one or both be outside of current expression. 

21There is no similar operation for changing AND/OR to OR. since the first $ in y always corresponds to 
the first $ in ~ the second $ in y to the second in x. etc. 

:!2£f x is a pattern containing an $ pattern somewhere within it. the characters matched by the $5 are not 
available. and for the purposes of replacement the effect is the same as though x did not contain ~ny 
$5. For example. if the user types (R (CAR F$) (PRINT $». the second S will refer to the entire 
expression macched by (CAR F $ ). 

17.36 

(\ 
\ /~~ 

<. ; 



0 .. 

---- .. 
/\1 
!.~.! 

THE TELETI'PE EDITOR 

Thus. using the previous example, (SWAP CAR CD R) would result in (L I ST (CONS (CD R X) (CAR 
Y» (CONS (CAR X) (CDR Y»). 

17.7 COl\1MANDS THAT PRINT 

P P [Editor Command] 

P 

(P M) 

(P 0) 

(P M N) 

(P 0 N) 

? 

Prettyprints the current expression. 

[Editor Command] 
Prints the current expression as though PRINTLEVEL (page 6.18) were set to 2. 

[Editor Command] 
Prints the Mth element of the current expression as though PRINTLEVEL were set 
to 2. 

[Editor Command] 
Same as P. 

[Editor Command1 
Prints the Mth element of the current expression as though PRINTLEVEL were set 
to N. 

[Editor Comrnand] 
Prints the current expression as though PRINTLEVEL were set to N. 

[Editor Command] 
Same as (P 0 100) . 

Both (P M) and (P M N) use the generalized NTH command (NTH COM) to obtain the corresponding 
element. so that M does not have to be a number. e.g., (P COND 3) will work. PP causes all comments 
to be printed as ··COMMENT·· (see page 6.50). P and ? print as ··COMMENT·· only those comments 
that are (top level) elements of the current expression. Lower expressions are not really seen by the 
editor, the printing command simply sets PRINTLEVEL and calls PRINT. 

pp. 

PPV 

PPT 

?= 

[Editor Command] 
Prettyprints current expression, including comments. 

pp. is equivalent to PP except that it first resets ··COMMENT**FLG to NIL (see 
page 6.50). 

[Editor Comrnai1d] 
Prettyprints the current expression as a variable,' Le.. no special treatnient for 
LAMBDA. CONDo SETQ, etc .• or for CLISP. 

[Editor Command1 
Prettyprints the current expression. printing C;:LISP translations. if any. 

. [Editor Command] 
Prinrs the argument names and corresponding values for the current expression. 
Analagous to the ? = break command (page 9.5). For example. 

17.37 



'--

Commands for Leaving the Editor 

*p 
(STRPOS "AO???" X N (QUOTE ?) T) 
*?= 

,X = "AO???" 
Y = X 
START = N 
SKIP = (QUOTE ?) 
ANCHOR = T 
TAIL = 

The command MAKE (page 17.44) is an imperative form of ?=. It allows the user to specify a change to 
the element of the current expression that corresponds to a particular argument name. 

All printing functions print to the temlinal. regardless of the primary output file. All use the readtable T. 
No printing function ever changes the edit chain. All record the current edit chain for use by \ P (page 
17.21). All can be abotted with control-E. . 

17.8 COMMANDS FOR LEAVING THE EDITOR 

OK [Editor Command] 

STOP 

Exits from the editor. 

[Editor Command] 
Exits from the 'editor with an error. Mainly for use in conjunction with TTY: 
commands (page 17.40) that the user wants to abon. 

Since ~ of the commands in the editor are errorset protected, the user must exit from the editor via a 
command. STOP provides a way of distinguishing between a successful and unsuccessful (from the user's 
standpoint) editing session. For example. if the user is executing (MOVE 3 TO AFTER eOND TTY:). 
and he exits from the lower editor with an OK. the MOVE command will then complete its operation. If 
the user wants to abott the MOVE command, he must make the TTY: command generate an error. He 
does. this by exiting from the lower editor with a STOP command. In this case. the higher editor's edit 
chain will not be changed by the TTY: command. 

Actually. it is also possible to exit the editor by typing control-D. STOP is preferred even if the user is 
editing at the EVALQT level. as it will perform the necessary "wrapup" to insure that the changes made 
while editing will be undoable. 

SAVE 

For example: 

*P 
(NULL X) 
*F eOND P 

[Editor Command) 
Exits from the editor and saves the "state of the edit" on the property list of the 
function or variable being edited under the property EDIT-SAVE. If the editor is 
called again on the same structure, the editing is effectively ··continued:' i.e., the 
edit chain, mark list. value of UNF IND and UNDOLST are restored. 

l7.J8 

.. 



....... "' .. 

(COND (& &) (T &» 
-SAVE 
FOO 

+-EDITF(FOO) 
EDIT 
-P 
{COND (& &) (T &» 
-, p 
(NULL X) 

-

THE TELETYPE EDITOR 

~). 

L_.i ~~~~s ~~:~~~~tth~ee~~~fis ~~~ :a: ~~~~n~ne~;~~~;n:~;ts~~tf :~a~~ eE~t~~.V~~~e~ 

o 

the property name LASTVALUE. OK also remprops EDIT-SAVE from the property list of the function or 
variable being edited. . 

Whenever the editor is entere~ it checks to see if it is editing the same expression as the last one edited.. 
In this case, it restores the mark list and UNDOLST, and sets UN F I NO to be the edit chain as of the 
previous exit from the editor. For example: 

+-EDITF(FOO) 
EDIT 
-P 
(LAMBDA (X) (PROG & & LP & & & &» 

.p 
(COND & &) 
·OK 
FOO 
+-

+-EDITF(FOO) 
EDIT 
*JI 

any number of LIS P X inputs 
except for calls to the editor 

(LAMBDA (X) (PROG & & LP & & & &» 

*' P (COND & &) 

* 

Furthennore. as a result of the history feature. if the editor is called on the same expression within a 
certain number of LISPX inputs.23 the state of the edit of that expression is restored. regardless of how 
many other expressions may have been edited in the meantime. For example: 

23Namely. the size of the history list. which can be changed with CHANGESLICE. (page 8.18). 

17.39 



.-EDITF(FOO) 
EDIT 
• 

• p 

Nested CalIs to Editor 

{CONO (& &) (& &) (&) (T &» 
·OK 
Foa 

'-EDITF(FOO) 
'--,' EDIT 

., P 

a small number of LIS P X inputs, 
including editing 

(COND (& &) (& &) (&) (T &» 
• 
Thus the user can always continue editin~ including undoing changes from a previous editing session. 
if (1) No other expressions have been edited since that session (since saving takes place at exit time. 
intervening calls that were aborted via control-D or exited via STOP will not affect the editor's memory); 
or (2) That session was "sufficiently" recent; or (3) It was ended with a SAVE command. 

17.9 NESTED CALLS TO EDITOR 

TTY: [Editor Command) 
Calls the editor recursively. The user can then type in commands. and have them 
executed. The TTY: command is completed when the user exits from the lower 
editor. (see OK and STOP above). 

The TTY: command is extremely useful. It enables the user to set up a complex operation. and perform 
interactive attention-changing commands part way through it. For example the command (MOVE 3 TO 
AFTER CONO 3 P TTY:) allows the user to interact. in effect. within the MOVE command. Thus he can 
verify for himself that the correct location has been found. or complete the specification "by hand." In 
effect. TTY: says "I'll tell you what you should do when you get there." 

The TTY: command operates by printing TTY: and then calling the editor. The initial edit chain in the 
lower editor is the one that existed in the higher editor at the time the TTY: command was entered. Until 
the user exits from the low~r editor. any attention changing commands he executes only affect the lower 
editor'S ,edit chain. Of course. if the user performs any structure modification commands while under a 
TTY: command. these will modify the structure in' both editors. since it is the same structure. When the 
TTY: command finishes. the lower editor's edit chain becomes the edit chain of the higher editor. 

EF 
EV 
EP 

[Editor Command) 
[Editor Command] 
[Editor Command) 

Calls EDITF or EDITV or EDITP on CAR of current expression. 

17.40 

(~'1 
\ I 

.. / 

(.'. 



(--~-> 
~-

THE TELETYPE EDITOR 

17.10 MANIPULATING TIlE CHARACfERS OF AN ATOM OR STRING 

RAISE 

LOWER 

CAP 

[Editor Command] 
An edit macro defined as UP followed by {I 1 (U -CAS E (## 1»). Le.. it 
raises to upper-case the current expression. or if a tail. the first element of the 
current expression. 

[Editor Command] 
Similar to RAISE, except uses L-CASE. 

[Editor Command] 
First does a RA I SE, and then lowers all but the first character, i.e .• the first character 
is left capitalized. 

Note: RAISE, LOWER, and CAP are all no-ops if the corresponding atom or string is already in that state. 

(RAISE x) 

(LOWER x) 

[Editor Command1 
Equivalent to (I R (L -CAS E x) x), i.e., changes every lo"wer-case x to upper
case in the current expression. 

[Editor Command] 
Similar to RA I S E. except performs (I R x (L -CASE x». 

Note that ~ both (RAISE x) and (LOWER x), x should be typed in upper case. 

REPACK [Editor Command1 
Permits the "editing" of an atom or string. 

REPACK operates by calling the editor recursively on UNPACK of the current 
expression. or if it is a list. on UNPACK of its first element. If the lower editor is 
exited successfully. i.e., via OK as opposed to STOP, the list of atoms is made into 

·a single atom or string, which replaces the atom or string being "repacked." The 
new atom or string is always printed. 

(J~ Example: 

.p 

o 

••• "THIS IS A LOGN STRING") 
*REPACK 
*EDIT 
P 
(T HIS % I S % A % LOG N % S T R I N G) 
*(SW G N) 
*OK 
"THIS IS A LONG STRING" 
• 

Note that this could also have been accomplished by (R SGNS SNGS) or simply (RC GN NG). 

(REPACK @) [Editor Command1 
Does (LC • @) followed by REPACK. e.g. (REPACK THISS). 

17.41 



lVIanipulating Predicates and Conditional Expressions 

17.11--- MAN1PULATING PREDICATES AND CONDITIONAL EXPRESSIONS 

JOINC [Editor Command1 
Used to join two neighboring COUD's together. e.g. (COND CLA USE I CLAUSE2 ) 

followed by (COr.,D CLAUSE3 CLAUSE4 ) becomes (COND CLAUSE1 CLAUSE2 CLArJSE3 
CLAUSE4 ). JOINC does an (F COND T) first so that you don't have to be at the 

(SPLITC x) 

NEGATE 

SWAPC 

first COr~D. 

[Editor Command) 
Splits one COfjD into two. x specifies the last clause in the first CONDo e.g. (SPLITC 
3) splits (COND CLAUSEl CLAUSE2 CLAUSE3 CLAUSE4 ) into (COND CLAUSE! 

CLAUSE2) (COND CLAUSE3 CLAUSE4 ). Uses the generalized NTH command (NTH 
COM), so that x does not have to be a number. e.g .• the user can say (S P LIT C 
RETURN), meaning split after the clause containing RETURN. SPLITC also does 
an (F COND T) first. 

[Editor Command] 
Negates the current expression. Le. performs (MBO NOT). except that is smart 
about simplifying. For example, if the current expression is: (OR (NULL X) 
(LISTP X», NEGATE would change it to (AND X (NLIS.TP X». 

NEGATE is implemented via the function NEGATE (page 14.2). 

[Editor Command] 
Takes a conditional expression of the form (COND (A B) (T C» and rearranges 
it to an equivalent (COND «NOT A) C)(T B» •. or (COND (A B) (C D» 
to (COND « NOT A) {COND (C D») (T B». 

SWAPC is smart about negations (uses NEGATE) and simplifying CONDs. rt always produces an equivalent 
expression. It is useful for those cases where one wants to insen extra clauses or tests. 

17.12 HISTORY COLVIMA1'IDS IN THE EDITOR 

As described on page 8.35, all of the user's inputs to the editor are stored on EDITHISTORY, the editor's 
history list. and all of the programmer's assistant commands for manipulating the history list, e.g. REDO. 
USE, FIX, NAME, etc., are available for qse on events on EDITHISTORY. rn addition. the following four 
history commands are recognized specially by the editor. They always operate on the last. Le. most 
recent. event. 

DO COM . [Editor Command1 
Alfows the user to supply the command name when it was omitted .. 

USE is useful when a command name is incorrect. 

For example. suppose the user wants to perfonn (-2 (SETQ X (LIST y. Z») but instead types just 
(SETQ X (LIST Y Z». The editor will type SETQ ? whereupon the user can type 00 -2. The 
effect is the same as though the user had typed F r x. followed by (L I 1). (-1 - 2). and OK. i.c .. 
the command (-2 (SETQ X (LIST YZ») is executed. 00 also works if the command is l line 

17.42 
(-j 
\ /-



u 

o 

THE TELETYPE EDITOR 

command. 

! F [Editor Command] 
Same as DO F. 

In the case of ! F, the previous command is always treated as though it were a line command... e.g .• if the 
user types (SETQ X &) and then! F, the effect is the same as though he had typed f (SETQ X &), 
not (F (SETQ X &». 
!E [Editor Command] 

Same as DO E. 

!N [Editor Command] 
Same as DO N. 

17.13 l\IllSCELLANEOUS COl\tIl\1ANDS 

NIL 

CL 

ow 

GET-

(-. x) 

[Editor Command1 
Unless preceded by F or 6F, is always a no-ope Thus extra right parentheses or 
square brackets at the ends of commands are ignored. 

[Editor Command] 
Clispifies the current expression (see page 16.17). 

[Editor Command] 
Dwimifies the current expression (see page 16.14). 

[Editor Command] 
If the current expression is a comment pointer (see page 6.51), reads in the full 
text of the comment. and replaces the current expression by it. 

[Editor Command] 
x is the text of a comment. - ascends the edit chain looking for a "safe" place 
to insert the comment. e.g., in a COND clause, after a PROG statement. etc .• and 
inserts (. . x) after that point. if possible. otherwise before. For example. if the 
current expression is (FACT (SUB 1 N» in 

[COND 
«ZEROP N) 1) 
(T (ITIMES N (FACT (SUBl N] . . 

(- CALL fACT RECURSIVELY) would insert (*, CALL FACT RECURSIVELY) 
before the ITIMES expression.24 

24If insen:ed after the ITIMES. the comment would then be (incorrectly) returned as the value of the 
CONDo However. if the eOND was itself a PROG statement. and hence its value was not being used. the 
comment could be (and would be) inserted after the ITIMES expression. 

17.43 -



GETD 

l\'fiscellaneous COIDIImnds 

* does not change the edit chain. but UNF INO is set to where the comment was 
actually inserted. 

[Editor Command1 
Essentially "expands" the current expression in line: (1) if (CAR of) the current 
expression is the name of a macro, expands the macro in line; (2) if a CLISP word.. 
translates the current expression and replaces it with the translation; (3) if CAR is 
the name of a function for which the editor can obtain a symbolic definition. either 
in-core or from a file, substitutes the argument expressions for the corresponding 
argument names in the body of the definition and replaces the current expression 
with the result; (4) if CAR of the current expression is an open lamb~ substitutes 
the arguments for the corresponding argument names in the body of the lambda. 
and then removes the lambda and argument list. 

(MAKEFN (FN. ACTUALARGS) ARGLIST NI N2) [Editor Command] 
The inverse of GETD: makes the current expression into a function. FN is the 
function name, ARGLlST its arguments. The argument names are substituted for 
the corresponding argument values in ACTUALARGS, and the result becomes' the 
body of the function definition for FN. The current expression is then replaced 
with (FN • ACTUALARGS) • 

If NI and N2 are supplied. (Nz THRU N2 ) is used "rather than the current 
expression: if just Nz is supplied. (Nz THRU -1) is used. 

If ARGLIST is omitte~ MAKEFN will make up some arguments. using elements of 
ACTUALARGS, if they are literal atoms. otherwise arguments selected from '( X Y 
Z A 8 C ••• ), avoiding duplicate argument names. 

Example: If the current expression is (COf~D ({CAR X) (PRINT Y T» {T (HELP»). then 
{MAKEFN {FDa (CAR X) Y) (A 8» will define FOO as (LAMBDA (A B) (COND {A (PRINT B 
T» (T (HE LP) ) » and then replace the current expression with (FOa (CAR X) Y). 

(MAKE ARGNAME EXP) [Editor Command] 

Q 

o 

Makes the value of ARGNAME be EXP in the call which is the current expression. 
Le. a 1= command following a MAKE will always print ARGNAME=EXP. For 
example: 

*p 
(JSYS) 
*?= 
JSYS[N;AC1.Ae2.AC3.RESULTAC] 
*(MAKE N 10) 
*(MAKE RESULTAC 3) 
*p 
(JSYS 10 NIL NIL NIL 3) 

Quotes the current expression. i.e. MBO QUOTE. 
[Editor Command] 

[Editor Command} 
Deletes the current expression. then prints new current expression. i.e. (:) r P. 

17.++ 



(J, -, : 

Q: 

o 

THE TELETYPE EDITOR 

17.14 COl\11\1ANDS THA T EV ALU A TE 

E 

(E x) 

(E x T) 

[Editor Command1 
Causes the ewtor to call the Interlisp executive LISPX giving it the next input as 
argument. Example: 

*E BREAK(FIE FUM) 
(FIE FUM) 
*E (FOO) 

(FIE BROKEN) 

Note: E only works when when typed i~ e.g, (INSERT D BE FORE E) will treat 
E as a patte~ and search for E. 

[Editor Command] 
Evaluates x, Le., performs (EVAL x), and prints the result on the terminal. 

[Editor Command1 
Same as (E %) but does not print. 

The (E x) and (E x T) commands are mainly intended for use by macros and subroutine calls to the 
editor, the user would probably type in a form for evaluation using the more convenient format of the 
(atomic) E command. 

(I C Xl ••• X N ) [Editor Command] 

EVAL 

Executestheeditorcommand(c Y1 ••. YN ) whereYj = (EVAL Xi)' Ifeisnot 
an atom, C is evaluated also. 

Examples: 

(I 3 (GETD 'FOO» will replace the 3rd element of the current expression with 
the definition of FOO. 

(I N FOO (CAR FIE» will attach the value of FOO and CAR of the value of 
FIE to the end of the current expression. 

(I F= FOO T) will search for an expression EQ to the value of FOO. 

(I (CONO «NULL FLG) '-1) (T 1» FOO), if FLG is NIL, inserts the 
value of FOO before the first element of the current expression. otherwise replaces 
the first element by the value of F 00. 

The I command sets an internhl flag to 'indicate to the structure modification 
commands not to copy expression(s) when inserting, replacing, or attaching. 

[Editor Command1 
Does an EVAL of the current expression. 

Note that EVAL. line-feed. and the GO command together effectively allow the user to "single-step" a 
program through its symbolic definition. 

17.45 



/'--\ 
I . 

GETVAL 

Commands That Test 

[Editor Command) 
Replaces the current expression by the result of evaluating it. 

• •• COMN) [NLambda NoSpread Function) 
An nlambda. nospread function (not a command). Its value is what the current 
expression would be after executing the edit commands COM 1 ••• COM N starting 
from the present edit chain. Generates an error if any of COMl thru COMN cause 
errors. The current edit chain is never changed.2s 

Example: (I R 'X (## (CONS •• Z») replaces all X's in the current expression by the first CONS 
containing a Z. 

The I command is not very convenient for computing an entire edit command for execution~ since it 
computes the command name and its arguments separately. Also, the I command cannot be used to 
compute an atomic command. The following two commands provide more general ways of computing 
commands. 

[Editor Command1 
Each Xi is evaluated and its value is executed as a command. 

For example~ (COMS (COND {X (LIST 1 X»» will replace the first element of the current expression 
with the value of X if non-NIL~ otherwise do nothing.26 

(COMSQ COMl ••• COMN) [Editor Command1 
Executes COM 1 ••• COM N· 

COMSQ is mainly useful in conjunction with the COMS command. For example, suppose the user wishes 
to compute an entire list of commands for evaluatio~ as opposed to computing each command one at a 
time as does the COMS command. He would then write (COMS (CONS 'COMSQ x» where x computed 
the list of commands, e.g., (COMS (CONS 'COMSQ (GETP FOa 'COrY1MANOS»). . 

17.15 COl\1MA1'IDS THAT TEST 

(IF x) [Editor COlIL~and] 
Generates an error unless the value of (EVAL x) is crue. In other words. if (EVAL 
x) causes an error or (EVAL x) = N I L~ I F will cause an error. 

For some editor commands. the occurrence of an error has a well defined meaning. Le .• they use errors to 
branch on. as COND uses NIL and non-N I L. For example. an error condition in a location specification may 
simply mean "not this one. try the next." Thus the location specification (IPLUS (E (OR (NUMBERP 
(## 3» (E RROR! » T» specifies the first I PLUS whose second argument is a number. The IF 
command. by equating NIL to error. provides a more narural way of accomplishing the same result. Thus. 
an equivalent location specificaqon is (I PLUS (.1 F (NUMBER? (## 3»». 

25The A. B. :. INSERT, REPLACE. and CHANGE commands make special checks for ## forms in me 
expressions used for inserting or replacing, and use a copy of It:l form inste3d (see page 17.26). Thus. 
(INSERT (## 32) AFTER 1) is equivalent to (I INSERT (COpy (## 32» 'AFTER 1). 

26The editor command NIL is a no-opt see page 17.43. 

17,46 

f '. \,,) 

( --.. 
\ i 



o 

<J 

THE TELETYPE EDITOR 

The I F command can also be used to select between two alternate lists of commands for execution. 

(IF X COMSl COMS2 ) [Editor Command} 
If (EVAL x) is true, execute COMSl ; if (EVAL x) causes an error or is equal to 
NIL. execute COMS2" 

Thus I F is equivalent to 

(COMS (CONS 'COMSQ 
{COND 

{{CAR (NLSETQ (EVAL X») 
COMSl ) 

( T COMS 2) ) ).> 

For example, the command (I F (R EAD P T) NIL (P» will print the current expression provided the 
input buffer is empty. 

[Editor Command1 
If (EVAL x) is true. execute COMSl ; otherwise generate an error. 

(LP COMS 1 .•• COMSN) [Editor Command1 
Repeatedly executes COMS 1 ••• COMS N until an error OCCUI'S. 

For example. (LP F PRINT (N T» will attach a T at the end of every PRINT 
expression. (LP F PRINT {IF (## 3) NIL «N T»» will attach a T at 
the end of each print expression which does not already have a second argument. 21 

When an error occurs, LP prints N OCCURRENCES where N is the number of 
times the commands were successfully executed. The edit chain is left as of the 
last complete successful execution of COMS 1 ••• COMSN• 

(LPQ COMSl ••• COMSN) [Editor Command] 
Same as LP but does not print the message N OCCURRENCES. 

In order to prevent non-tenninating loops, both LP and LPQ tenninate when the number of iterations 
reaches MAX LOOP. initially set to 30. MAXLOOP can be set to NIL. which is equivalent to setting it to 
infinity. Since the edit chain is left as of the last successful completion of the loop. the user can simply 
continue the LP command with REDO (page 8.7). 

(SHOW x) [Editor Command1 
x is a list of patterns. SHOW does a LPQ printing all instances Of the indicated 
expression(s), e.g. (SHOW Faa (SETQ FIE &» will print all FOO's and all 
(SETQ FIE &)'s. Generates an error if . there aren't any ins~ces. of the 
expression(s). 

27The form (## 3) will cause an error if the edit command 3 causes an error. thereby selecting « N 
T» as the list of commands to be executed. The I F could also be written as ( IF (COD R (##)) NIL 
«N T»). 

17.47 



(EXAM x) 

(ORR COMS1 ••• 

Edit Macros 

[Editor Command] 
Like SHOW except calls the editor recursively (via the TTY: command. see page 
17.40) on each instance of the indicated espression(s) so that the user can examine 
and! or change them. 

COMSN ) (Editor Command] 
ORR begins by executing COMS1, a list of commands. If no error occurs. ORR is 
finished. Otherwise, 0 R R restores the edit chain to its original value. and continues 
by executing COMS2' etc. If none of the command lists execute without errors. i.e .• 
the ORR .6drops off the end". ORR generates an error. Otherwise. the edit chain is 
left as of the completion of the first command list which executes without an error.· 

NIL as a command list is perfectly legal, and will always execute successfully. 
Thus. making the last "argumentU to ORR be NIL will insure that the ORR never 
causes an error. Any other atom is treated as (ATOM). i.e .• the above example 
could be written as (ORR NX ! NX NIL). 

For example, (ORR (NX) (! NX) NIL) will perform a NX, if possible, otherwise a ! NX, if possible, 
otherwise do nothing. Similarly. DELETE could be written as (ORR (UP (1» (BK UP (2» (UP 
(: NIL»). 

17.16 EDIT MACROS 

Many of the more sophisticated branching commands in the editor, such as ORR. IF, etc., are most often 
used in conjunction with edit macros. The macro feature permits the user to define new commands and 
thereby expand the editors repertoire, or redefine existing commands.28 Macros are defined by using the 
M command: 

(M C COMS1 .•• COMSN ) [Editor Command] 
For C an atom. M defines C as an atomic command. If a macro is redefined. its 
new definition replaces its old. Executing C is then the same as executing the list 
of commands COMSl ••• COMSN• 

For example, (M B P B K UP P) will define B P as an atomic command which does three things. a B K. 
and UP. and a P. Macros can use commands defined by macros as well as built in commands in their 
definitions. For example. suppose Z is defined by (M Z -1 (I F (R EAO P T) NIL (P»). Le., Z does 
a -1. and then if nothing has been typed. a P. Now we can define ZZ by (M ZZ -1 Z). and ZZZ by 
(M ZZZ -1 :1 Z) or.{M ZZZ -1 ZZ). 

Macros can also define list cOf!1II1ands, i.e., commands that take arguments. 

{M (c) (ARG1 .•. ARGN ) COMS1 ••• COMSM ) . [Editor Command) 
C an atom. M defines C as a list command. Executing (c E1 .•• EN) is then 
perfonned by substituting 8 1 for ARG I • .•. EN for ARGN throughout COMSI 
COMSM' and then executing COMS I ... COMS~{. 

28To refer to the original definition of a built-in command when redefining it via a macro. use the 
ORIGINAL command (page 17.50). 

17.48 

() 
". (,0 

o 



0" 

/~" 

U 

THE TELEITPE EDITOR 

For example. we could define a more general B P by (M (B P) (N) (BK N) UP P). Thus. (B P 3) 
would perfonn (B K 3), followed by an UP, followed by a P. 

A list command can be defined via a macro so as to take a fixed or indefinite number of "arguments'". 
as with spread vs. nospread functions. The fonn given above specified a macro with a fixed number 
of arguments, as indicated by its argument list If the "argument list" is atomic, the command ta.~es an 
indefinite number of arguments. 

(M (c) ARG COMSl ..• COMSM ) [Editor Command] 
If c, ARG are both atoms, this defines C as a list command. Executing (c E z 
••• EN) is performed by substituting (El ••• EN)' i.e., CDR of the command.. for 
ARG throughout COMSl ••• COMSM , and then executing COMSl ••• COMS.\l. 

For example, the command 2ND (page 17.18), could be defined as a macro by (M (2ND) X {ORR « LC 
• X) (LC • X»». 

Note" that for all editor commands. "built in" commands as well as commands defined by macros as 
atomic commands and list definitions are completely independent. In other words. the existence of an 
atomic definition for C in no way affects the treatment of C when it appears as CAR of a list command. 
and the existence of a list definition for C in no way affects the treannent of C when it appears as an 
atom. In particular. C can be used as the name of either an atomic command, or a list command.. or 

. both. In the latter case, two entirely different definitions can be used. 

Note also that once C is defined as an atomic command via a macro definition. it will not be searched for 
when used in a location specificatio~ unless it is preceded by an F. Thus (INSERT -- BEFORE BP) 
would not search for BP, but instead perform a BK, and UP, and a P, and then do the insertion. The 
corresponding also holds true for list commands. 

Occasionally, the user will want to employ the S command in a macro to save some temporary result 
For example, the SW command could be defined as: 

(M (SW) (N M) 
(NTH N) 
(S Faa 1) 
MARK 
o 
(NTH M) 
(S FIE 1) 
(I 1 FOO) 

(I 1 FIE» 

Since this version of SW ·sets FOO and FIE. using SW may have undesirable side effects. especially when 
the editor was called :'from deep in a computation. we would have to be careful to make up unique names 
for dummy variables used in edit macros. which is bothersome. Furthermore. it would be impossible to 
define a command that called itself recursively while setting free variables. The B IUD command solves 
both problems. 

(BIND COMS z ••• COMSN ) [Editor Commancl 
Binds three dummy variables # 1. #2. #3, (initialized to ~n L). and then executes 
the edit co~ands COMS I ... COMSN. Note that these bindings are only in effect 
while the commands are being executed. and that B I NO can be used recursively: 

17.49 



Undo 

it will rebind # 1, #2, and #3 each time it is invoked. 

BIND is implemented by (PROG (#1 #2 #3) (EDITCOMS (COR COM») 

where COM corresponds to the entire BIND command. and EDITCOMS is an 
internal editor function which executes a list of commands. 

Thus we could now write 5W safely as: 

(M (SW) (14 M) 
{BIND (NTH N) 

(5 #1 1) 
MARK 
o 
(NTH M) 
(S #2 1) 
(I 1 #1) 

(I -1 #2») 

(ORIGINAL COMSl ••• COMSN ) [Editor Command1 
Executes COMSl COMSN without regard to macro definitions. Useful for 
redefining a built in command in terms of itself., Le. effectively allows user to 
"advise" edit commands. 

User macros are stored on a list USERMACROS. The file package command USERMACROS (page 11.24), is 
available for dumping all or selected user macros. 

17.17 UNDO ,. 

Each command that causes stnlcrure modification automatically adds an entry to the front of UNDOLST 
that contains the infonnation required to restore all pointers that were changed by that command. (-- \~ 

\ ..;;, 
UNDO 

!UNDO 

[Editor Command] 
Undoes the las~ Le., most recent, strucrure modification command that has not 
yet been undone, and prints the name of that command. e.g., MBD UNDONE. The 
edit chain is then exactly what it was before the "undone" command had been 
performed.,If there are no commands to undo, UNDO types NOTHING SAVED. 

[Editor ComInand] 
Undoes all modifications perfonned during this editing session. Le. this call to the 
editor. As each command is undone. its name is printed a la UNDO. If there is 
nothing to be undone. ! UNDO prints NOTH I NG - SAVED. 

Undoing an event containing an I. E. or S command will also undo the side effects of the evaluation(s). 
e.g .. undoing (I 3 (/NEONC FOO FIE)) will not only restore the 3rd element bue also restore FOO. 
Similarly. undoing an S command will undo the set. See the discussion of UNDO in PJge 8.11. (Note 
that if the I command was typed directly to the editor. I NCONC would automatically be substituted for 
NCONC as described in page 8.22.) 

17.50 
(----'Y' 
\ /" 



. . 

0) 

THE TELETYPE EDITOR 

Since UNDO and ! UNDO cause stnlcrure modification. they also add an-entry.to UNDOLST. However. UNDO 
and !UNDO entries are skipped by UNDO, e.g., if the user performs an INSERT, and then an MBD, the 
first UNDO will undo the MBD, and the second will undo the INSERT. Howevet, the user can also specify 
precisely which commands he wants undone by identifying the corresponding entry on the history list. In 
this case, he can undo an UNDO command, e.g., by typing UNDO UNDO. or undo a ! UNDO command., or 
undo a command other than that most recently performed. 

Whenever the user continues an editing session. the undo information of the previous session is protected 
by inserting a special blip, called an undo-block. on the front of UNDOLST. This undo-block will terminate 
the operation of a ! UNDO. thereby confining its effect to the current session. and will similarly prevent an 
UNDO command from operating on commands executed in the previous session. 

Thus, if the user enters the editor continuing a session, and immediately executes an UNDO or ! UNDO, the . 
editor will type BLOCKED instead of NOTHING SAVED. Similarly, if the user executes several commands 
and then undoes them all, another UNDO or ! UNDO will also cause BLOCKED to be typed. 

UNBLOCK 

TEST 

[Editor Command] 
Removes an undo-block. If executed at a non-blocked state, i.e., if UNDO or ! UNDO 
could operate, types NOT BLOCKED. 

[Editor Command1 
Adds an undo-block at the front of UNDOLST. 

Note that TEST together with ! UNDO provide a "tentative" mode for editing; Le., the user can perform 
a number of changes, and then undo all of them with a single ! UNDO command. 

} 

(UNDO Eve1lCSpec) [Editor Command] 
EventSpec is an event specification (see page 8.5). Undoes the indicated event on 
the history list. In this case, the event does not have to be in the current editing 
session, even if the previous session has not been unblocked as described above. 
However, the user does have to be editing the same expression as was being edited 
in the indicated event. . 

If the expressions differ, the editor types the warning message "d; f fer en t 
ex pre s s ; 0 n ", and does not undo the event. The editor enforces this to avoid 
the user accidentally undoing a random command by giving the wrong event 
specification. 

17.18 EDITDEFAULT 

Whenever a command is not recognized... Le., is not "built in" or defined as a macro. the editor calls an 
internal function. ED·ITDEFAULT. to determine what action to take.2-g If a location specification is being 

29Since ED ITO E F AUL T is part of the edit block. the user cannot advise or redefine it as a me~ns of 
augmenting or extending the editor. However. the user can accomplish this via EDITUSERFN. If the 
value of the variable EDITUSERFN is T. EOITDEFAULT calls the function EOITUSERFN giving it the 
command as an argument. If EOITUSERFN returns a non-NIL· value. its value is interpreted as a single 
command and executed. OtheIVIise. the error correction procedure described below is performed. 

17.51 



EDITDEFAUL T 

execute~ an internal flag informs EDITDEFAUL T to treat the command as though it had been preceded 
by an F. 

If the command is a list. an attempt is made to perfonn spelling correction on CAR of the command3o 

using ED ITCOMSL. a list of all list edit commands.31 If spelling correction is successfuL the correct 
command name is RPLACAed into the comman<L and the editor continues by executing the command. In 
other words. if the user types (LP F PRINT (MBSD AND (NULL FLG»). only one spelling correction 
will be necessary to change MBBD to MBD. If spelling correction is not successful an error is generated. 

If the command is atomic, the procedure followed is a little more elaborate. 

(1) If the command is one of the list commands. i.e., a member of EDITCOMSL, and there is 
additional input on the same terminal line, treat the entire line as a single list command. 32 

Thus. the user may omit parentheses for any list command typed in at the top level (provided 
the command is not also an atomic command, e.g. NX, BK. For example, 

.p 
( C 0 r~ 0 (& &) (T &» 
·XTR 3 2] 
·MOVE TO AFTER LP 
• 
If the command is on the list EDITCO:-.1SL but no additional input is on the terminal line. an 
error is generated. e.g . 

• p 
(COND (& &) (T &» 
·MOVE 

MOVE ? 
• 
If the command is on EDITCOMSL. and not typed in directly, e.g., it appears as one of the 
commands in a LP command. the procedure is similar. with the rest of the command stream 
at that level being treated as "the terminal line", e.g. (LP F (COND (T &» XTR 2 2) .33 

(2) If the command was typed in and the first character in the command is an 8. treat the 8 as a 
mistyped left parenthesis. and and the rest of the line as the arguments to the command. e.g., 

.p 
(COND (& &) (T &» 

30unless DWIMFLG=NIL. 

31When a macro is defined via the M command. the command name is added to EDITCOMSA 'or 
EDITCGrt1SL. depending on whether it is an atomic or list command. The USERMACROS file package 
command is aware of this. and provides for restoring EDITCOMSA and EDITCOMSL. . 

32The line is read using READ LIN E (page 8.30). Thus the line can be terminated by a square bracket. or 
by a carriage rerum not preceded by a space. 

33Note that if the command is being executed in location context. ED rTDE F AUL T does not get this 
far. e.g., (MOVE TO AFTER CONO XTR 3) will search for XTR. not execute it. However. (MOVE TO 
AFTER CONO (XTR 3») will work. 

17.52 

--~ ( ) 

-" . 

(~ ",: 
'\ : 

- / 



,~ u 

, , 0/ ) 

(J 

*8-2 (Y (RETURN Z)) 
=(-2 
*p . 

THE TELETI"PE EDITOR 

(COND (Y &) (& &) (T &» 

(3) If the command was typed ~ is the name of a functio~ and is followed by N! L or a list 
CAR of which is not an edit command. assume the user forgot to type E and means to apply 
the function to its arguments. type = E and the function name. and perform' the indicated 
computation. e.g. 

(4) 

*BREAK(FOO) 
=E BREAK 
(FOO) 

-
If the last character in the command is P, and the first N-l characters comprise a number. 
assume that the user intended two commands. e.g.~ 

*P 
(COND (& &) (T &» 
*OP 
=0 P 
(SETQ X (COND & &» 

(5) Attempt spelling .correction using ED ITCOMSA. and if successfu~ execute the corrected 
command. 

(6) If there is additional input on the same line, or command stre~ spelling correct using 
ED ITCOMSL as a spelling list, e.g.~ 

-MBBD SETQ X 
=MBD 

-
(6) Otherwise. generate an error. 

17.19 EDITOR FUNCTIONS 

(EDITF NA..\!E COMl COM2 ••• COMN ) • [NLambda NoSpread Function) 
Nlambda. nospread function for ED ITing a Function. NAME is the name of the 
function. COM1' COM~ .•• , COMn are (optional) edit commands. 

The v~ueof EDITF is NAME. 

The action of ED ITF is somewhat complicated: 

(1) In the most common case. if the definition of NAME is an EXPR (not as a result of its being 
broken or advised), and EDlTF simply performs (PUTD NA.1vfE (EOlTE (GETD t NAME) 

(LIST t COMl t COM2 '.' t COMN ) 'NAME t FNS». 

17.53 



~~. 
J 

"--

Editor Functions 

(2) If NAME is an EXPR by virtue of its being broken or advised. and the original definition is also 
an EXPR, then the broken/advised definition is given to EDITE to be edited (since any changes 
there will also affect the original definition because all changes are destructive). However, a 
warning message is printed to alert the user that he must first position himself correctly before 
he can begin typing commands such as (-3 - - ). (N - - ). etc. 

(3) If NAME is an EXPR by virrue of its being broken or advised, the original definition is not an 
EXPR, there is no EXPR property, and the file package "knows" which file NAME is contained 
in (see EDITLOADFNS?, page 17.58), then the EXPR definition of NAME is loaded onto its 
property list as described below, and the ED rTF proceeds to the next possibility. Otherwise, a 
warning message is printed, and the edit proceeds. e.g., the user may have called the editor to 
examine the advice on a SUBR. 

(4) If NAME is an EXPR by virrue of its being broken or advisetL the original definition is not an 
EXPR, and there is an EXPR property, then the function is unbroken/unadvised (latter only () 
with user's approval. since the user may really want to edit the advice) and EDITF proceeds to -\.;.:-' 
the next possibility. 

(5) If NAME is not an EXPR, but has an EXPR property, EDITF prints PROP, and per· 
forms {ED ITE (GETPROP • NAME 'EXPR) (LIST 'COM1 'COM2 ••• 'CO~'JN) r NAME 

'PROP). In this case, if the edit completes and no changes have been made, EDITE prints 
NOT CHANGED, SO NOT UNSAVED. If changes were made, but the value of DFNFLG (page 
5.9) is PROP, ED ITE prints CHANGED, BUT NOT UNSAVED. Otherwise if changes were made, 
EOITE prines UNSAVED and does an UNSAVEDEF. 

(6) If NAME is neither an EXPR nor l1as an EXPR property, and the file package "knows" which 
file NAME is contained in (see ED ITLOADFNS?, page 17.58), the EXPR definition of NA~\lE 
is automatically loaded (using LOADFNS) onto the EXPR property. and EDITE proceeds as 
described above.34 In addition, if NAME is a member of a block, the user will be asked whether 
he wishes the rest of the functions in the block to be loaded at the same time.35 

(7) If NAME is neIther an EXPR nor has an EXPR property, but it does have a definition. EO ITF 
generates an NAME NOT EDITABLE error. 

./ (8) If NAME is neither defined. nor has an EX?R property, but its top level value is a list, EO ITF 
assumes the user meant to call EDITV, prints =EDITV, calls EDITV and returns. Similarly, if 
NAME has a non-NIL property list, EDITF prines =EDITP, calls EDIT? and returns. 

34 Because of the existence of the file map (see page 11.38). this operation, is extremely fast. essentially 
requiring only the time to perfonn the READ to obtain the actual definition. 

35The editor's behaviour in this case is controlled by the value of EDITLOADFNSFLG. which is a dotted 
paIr of two flags. The CAR of EDITLOAOFNSFLG controls the loading of the function. and the CDR 
controls the loading of the block. A value of r~ I L for either flag means "load but ask first." a value of 
T means ··don't ask. just do it" and anything else means "don't ask. don't do it.'· The initi.:tl value or 
EDITLOADFNSFLG is (T . NIL). meaning to load the function without asking, and ask about loading 
the block. 

17.54 



o 

o 

THE TELETYPE EDITOR 

(9) If NAME is neither a function. nor has an EXPR property. nor a top level value that is a 
list. nor a non-N I L property list. ED IT F attempts spelling correction using the spelling list 
USERWORDS.36 and. if successful. goes back to the beginning. 

(10) Otherwise, EDITF generates an NAME NOT EDITABLE error. 

In all case~ if a function is edited, and changes were made, the function is time-stamped (by ED ITE), 
which consists of inserting a comment of the fonn (. USERS-INITIALS DATE) (see page 17.60). If the 
function was already time-stamped, then only the date is changed. 

(EDITFNS NAME COM! COM'2 .•• COMN ) [NLambda NoSpread Function] 
·An nlambda. nospread functio~ used to perform the same editing operations 
on several functions. NAME is evaluated to obtain a list of functions.31 COM!. 

COM2t "., COMN are (optional) edit commands. EDITFNS maps down the list of 
functions, prints the name of each functio~ and calls the editor (via EDITF) on 
that function. The value of EDITFNS is NIL. 

For example. (EDITFNS FOOFNS (R FIE FUM»willchangeeveryFIEtoFUM 
in each of the functions on FOOFNS. 

The call to the editor is ERRORSET protected. so that if the editing of one function 
causes an error, ED IT F N S will proceed to the next function. In particular, if an 
error occurred while editing a function via its EXPR property, the function would 
not be unsaved. Thus in the above example. if one of the functions did not contain 
a FIE, the R command would ca.use an error, it would not be unsaved. ~,d editing 
would continue with the. next function. 

(EDITV NAME COMl COM2 .•• COMN ) [NLambda NoSpread Function] 
Similar to EDITF. for editing values of variables. 

The value of EDITV is the name of the variable whose value was edited. 

If NAME is a list, it is evaluated and its value given to ED ITE, e.g., (ED lTV (CDR (ASSOC 'FOO 
DICTIONARY))}. In this case, the value of EDITV is T. 

However. for most applications. NAME is a variable name, i.e., atomic, as in EDITV( Faa). If the value 
of this variable is NOBIND, EDITV checks to see if it is the name of a function, and if so. assumes the 
user meant to call EDITF. prints =EDITF. calls EDITF and returns. Otherwise. EDITV attempts spelling 
correction using the list USERWORDS.38 Then EDITV will call ED ITE on the value of NAME (or the 
corrected spelling thereof), and TYFE=VARS. Thus. if the value of Faa is NIL, and the user performs 
(EDITV Faa), no spelling correction will occur. since Faa is the name of a variable in the user's system. 
i.e .. it has a value. However, ED ITE will generate an error, since Faa's value is not a list, and hence 

36Unless DWIMFLG=NIl. Spelling correction is performed using the function MISSPELLED? (page 
15.18). If NAME = NIL, MI SSP ELLED? rerurns the last "word" referenced. e.g .• by DE FIN EQ. ED IT F. 
PRETTYPRINT etc. Thus if the user defines Faa and then types (EDITF). the editor will assume he 
meant Faa. type =FOO, and then type EDIT. 

3ilf NAME is atomic. and its value is not a list. and it is the name of a file. (FILEFNSLST 'N~\1E) will 
be used as the list of functions to be edited. 
38Unless DWIMFLG=NIl. MISSPELLED? is also called if NAME is NIL. so that (EDITV) will edit 
LASTWORD. 

17.55 



Editor Functions 

not editable. If the user performs (EOITV FOOO). where the value of FOOO is NOB IND. and Faa is on 
the user's spelling list. the spelling corrector will correct F 000 to F 00. Then EO I T E will be called on the 
value of FOO. Note that this may still result in an error if the value of FOO is not a list. 

(EOITP NA.J.\!E COMl COM2 ••• COMN ) [NLambda NoSpread Function] 
Similar to EO IT F for editing property lists. If the property list of NA..\£E is 
NIL. EOITP attempts spelling correction using USERWORDS. Then EOITP calls 
ED ITE on the property list of NA.J.\!E., (or the corrected spelling thereof). with 
TYPE = PROPlST. When (if) EOITE returns., EOITP calls SETPROPLIST on NA..\!E 

with the value returned. 

The value of ED I T P is the atom whose propertY list was edited. 

(EOITE EXPR COMS ATM TYPE IFCHAN'GEDFN) [Function] 
Edits the expression. ExPR. by calling EO IT l on (L I ST EXPR) and returning the 
last element of the value returned by ED I T L. Generates an error if EXPR is not a 
list. 

ATM and TYPE are for use in conjunction with the file package. If supplied. An! 

is the name of the object that EXPR is associated with. and TYPE describes the 
association (Le .• TYPE corresponds to the TYPE argument of MARKASCHANGED. 
page 11.11.) For example, if EXPR is the definition of FOO. ATM= Faa and 
TYPE= FNS. When EOITE is called from EDITP, EXPR is the property list of ATl!. 

and TYPE= PROPLST. etc .. 

EOITE calls EOITl to do the editing (described below). Upon return., if both An! 

and TYPE are non-NIL. AOOSPELl is called to add ATM to the appropriate spelling 
list. Then. if EXPR was changed. 39 and the value of IFCHA.J.VGEDFN is not NIL. the 
value of IFCFIANGEDFN is applied to the arguments ATM. EXPR. TYPE, and a flag 
which is T for normal edits from editor. NIL for calls that were aborted via control-D 
or STOP. Otherwise, if EXPR was changed. and the value of IFCHANGEDFN is NIL. 
and TYPE is not NIL. MARKASCHANGED (page 11.11) is called on ATM and TYPE. 

-fOITE uses RESETSAVE to insure that IFCHANGEDFN and MARKASCHANGEO are 
called if any change was made even if editing is subsequently aborted via control-D. 
(In this case, the founh argument to IFCHANGEDFN wil be NIL.) 

(EOITl L COMS ATM MESS EDITCFIANGES) [Function] 
EO ITl is the editor. Its first argument is the edit chain. and its value is an edit 
chain.. namely the value of L at the time ED I Tl is exited.4o 

COMS is an optional list of commands. For interactive editing, corns is NIL. In this 
case. EDITL types EDIT (or MESS. if it not NIL) and then waits for input from 
terminal. All input is done with EO ITROTBL as the readtable. Exit occurs only 
via· an 0 K. S TOP, or SA V E con:tmand. -

:l9For TYFE=FNS or TYPE = PROP. i.e .. calls from EOITF, EDITE perfonns some additional operJtions 
as described earlier under ED I T F. 

-tor. is a SPECVAR, and so can be examined or set by edit comma~ds. For example. 1" is equivalent ~o (E 
(SETQ L (LAST L» T). However. the user should only manipulate or eXJlI1ine L directly as J. last 
resort. and then with caution. 

17.56 



o· 

o 

THE TELETYPE EDITOR 

If COMS is not NIL, no message is typed. and each member of COMS is treated 
as a command and executed. If an error occurs in the execution of one of the 
commands, no error message is printed. the rest of the cOInmands are ignored. and 
EDITl exits with- an error. i.e., the effect is the same as though a STOP command 
had been executed. If all commands execute successfully, ED ITl returns the 
current value of L. 

ATM is optional. On ~alls from ED IT F, it is the name of the function being edited; 
on calls from EDITV, the name of the variable, and calls from EDITP, the atom 
whose property list is being edited. The propeny list of ATM is used by the SAVE 
command for saving the state of the edit. Thus SAVE will not save anything if 
ATM=NIl, i.e., when editing arbitrary expressions via EOITE or EOITl directly. 

EDITCHANGES is used for communicating with ED ITE. 

(EDITlO L COMS MESS -) [Function] 
Like ED ITl, except it does not rebind or initialize the editor's various state 
variables. such as lASTAIl. UNFIND, UNDOlST, MARKlST, etc. Should only be 
called when already under a call to ED ITL. 

( ED IT 4E PAT x -) [Function] 
The editor's pattern match routine. Returns T. if PAT matches x. See page 17.13 
for definition of "match" . 

Note: Before each search operation in the editor begins, the entire pattern is scanned for atoms or strings 
containing Ss «esc>s). Atoms or strings containing $s are replaced by lists of the form ($ ... ) •. and 
atoms or strings ending in double Ss are replaced by lists of the form ($$ ... ). Thus from the standpoint 
of EDIT4E, single and double S patterns are detected by (CAR PAT) being the atom S «esc» or the 
atom $$ «escXesc»).Therefore. if the user wishes to call ED IT 4E directly, he must first convert any 
patterns which contain atoms or strings containing $s to the form recognized by EDIT 4E. This is done 
with the function EDITFPAT: 

(EDITFPAT PAT ~) [Function] 
Makes a copy of PAT with all atoms or strings containing $5 «esc)s) convened to 
the form expected by ED IT 4E. 

(EDITFn~DP x PAT FLG) [Function] 
Allows a program to use the edit find command as a pure predicate from outside 
the editor. x is an expression, PAT a pattern. The value of ED IT F I NO P is T if the 
command F PAT would succeed. NIL otherwise. ED IT FIN 0 P calls ED I T F PAT to 
conven PAT to the fonn expected by ED IT 4 E. unless FLG = T. Thus. if the program 
is applying ED ITF I NOP to several different expressions using the same pattern. it 
will be more efficient to call EDITFPAT once, and then call EDITFINOP with the 
converted pattern and FLG = T. 

(ESUBST NEW OLD EXPR ERRORFLG CF'..ARFLG) [Function] 
Equivalent to perfonning (R OLD NEW) with EXPR as the current expression. 
Le .. the order of arguments is the same as for SUBST. Note that OLD and/or NE\V 

can employ $5 «esc)s). The value of ESUBST is the modified EXPR. Gener:ltes an 
error if OLD not found in EXPR. If ERRORFLG = T. also prints an error message of 
the form OLD ? 

17.57 



Editor Functions 

If CHARFLG= T and no $5 «esc)s) are specified in NEW or OLD, it is equivalent 
to (RC OLD NEW). In other words. if CHARFLG=T, and no $s appear, ESUBST 
will supply them. 

ESUBST is always undoable. 

(ED ITLOAOFNS? FN STR ASKFLG FILES) _. [Function) 
FN is the name of a function. EOITLOADFNS? returns the name of file FN is 
contained ~ or NIL. 

EOITLOADFNS? performs (WHEREIS FN FNS FILES) to obtain the name of 
the file(s) containing FN, if any (see page 11.10). If there is more than one 
file, ED ITLOAD FNS? asks the user to indicate which file. It then checks the 
FILEOATES propeny for each file to see if the version that was originally loaded 
still exists:u If the file that was originally loaded no longer exists, but there is a r'\ 
different version of the file on that directory, EDITLOADFNS? prints "····can I t \ ) 
fin d FILENAME", and then uses the version that it could find. Similarly, if the 

. originafverslon is found. but a newer version is also found. EDITLOADFNS? prints 
ItO···Note: FILEN~\fE is not the newest version" and then uses the 
newest version. 

Having decided which file the function is on. if ASKFLG = NIL.. ED IT LOA 0 F N S ? 
prints the value of STR followed by the name of the file. and returns the name 
of the file. If ASKFLG= T. ED ITLOADFNS? calls ASKUSER giving (LIST FN 

STR FILENAME) as MESS, the message to be printed. If ASKUSER returns Y, 
EOITLOADFNS? rerums the filename. If STR=NIL. ~load;ng from" is used. 

EDITLOADFNS? is used by the editor, LOADFNS (when the file name is not supplied), by PRETTYPR INT. 
and by OWIM • 

• (CHANGENAME FN FROM TO) [Function1 
- Replaces all occurrences of FRO~'v{ by TO in the definition of FN. If FN is an EX P R. 
1:HANGENAME performs (NLSETQ (ESUBST TO FROM (GETD FN»). If FN 

is compiled CHANGENAME searches the literals of FN (and all of its compiler 
generated sub functions), replacing each occurrence of FROM with TO. This will ('~\ 
succeed even if FROM is· called from FN Jlia a linked call. In this case, the call will \): 
also be relinked to call TO instead. 

The value of CHANGENAME is FN if at least one instance of FROM was found. 
otherwise NIL. 

CHANGENAME is used by BREAK and ADVISE for chan?ing calls to FNl to calls to FN1- IN7FN2• 

The function EDITCALLERS provides a way of rapidly searching a file or entire set of files. even files 
not loaaed into Interlisp or "noticed" by the file package. for the appearance of one or more key words 
(atoms) anywhere in the file. 

H [n the case that FILES = T Jnd the \VHEREIS package has been loaded (page 23.40). files(s) may be 
found that have not been loaded or otherwise noticed. and thus will not have FILE OA T E S property. In 
this case. ED I TLOAO F NS? does not do any version checks. but simply uses the latest version. 

17.58 



0
_-, 

- -

0/' -;. 
--

o 

(EDITCALLERS 

THE TELETIPE EDITOR 

ATOMS FILES COMS) [Function] 
Uses F FILE POS to search the file(s) FILES for occurrences of the atom(s) ATOMS. 

It then calls ED I T E on each of those objects;t2 performing the edit- commands 
COMS. If COMS= NIL. then (EXAM • ATOMS) is used. Both ATOMS and FILES 

may be single atoms. If FILES is NIL, FILELST is used. Elements on ATOMS may 
contain $5 «esc>S). 

EDITCALLERS prints the name of each file as it searches it., and when it finds 
an occurrence of one of ATOMS, it prints out either the name of the containing 
function or, if the atom occurred outside a function definition, it prints out the 
byte position that the atom was found. 

EDITCALLERS will read in and use the filemap of the file. In the case that the 
editor is actually called, EDITCALLERS will LOADFROM the file if the file has not 
previously been noticed. 

(FINDCALLERS ATOMS FILES) [Function] 
Like ED ITCALLE RS. except does not call the editor. but instead simply returns 
the list of files that contain one of ATOMS. 

(EDITRACEFN COM) [Function] 
Is available to help the user debug complex edit macros. or subroutine calls to the 
editor. If EDITRACEFN is set to T, the function EDITRACEFN is called whenever 
a command that was not typed in by the user is about to be executed. giving it 
that command as its argument. However. the TRACE and BREAK options described 
below are probably sufficient for most applications. 

If EDITRACEFN is set to TRACE, the name of the command and the current 
expression are printed. If EDITRACEFN=BREAK, the same information is printed.. 
and the editor goes into a break.. The user can then examine the state of the editor. 

EDITRACEFN is initially NIL. 

(SETTERMCHARS NEXTCHAR BKCHAR LASTCHAR UNQUOTECHAR 2CHAR PPCHAR) [Function] 
Used to set up the immediate read macros used by the editor. as well as the 
control-Y read macro (page 6.39). NEXTCHAR, BKCHAR, LASTCHAR, 2CHAR and 
PPCHAR specify which control character should perform the edit commands N X P. 
BKP. -lP, 2P and pp., respectively; UNQUOTECHAR corresponds to control-Yo 
For each non-N I L argument, SETTERMCHARS makes the corresponding control 
character have the indicated function. The arguments to SETTERMCHARS can 
.be character codes, the control characters themselves. or the alphabetic letters 
corresponding to the control characters. 

If an argument to SETTERMCHARS is currently assigned as an intenupt character. it cannot be ·a read 
macro (since the reader will never see it): SETTERMCHARS prints a message to that effect and makes no 
change to the control character. However. if SETTERMCHARS is given a list as one of its arguments. it 
uses CAR of the list even if the character is an interrupt. In this case. if CAOR of the list is non-N I L. 
SETTERMCHARS reassigns the interrupt function to CADR. For example. if control-X is an interrupt. 

-l2EDITCALLERS uses GETDEF (page 11.17) to obtain me ··definition" for each object. \Vhen EDliE 
rerurns. if a change was made. PUTOE F is called to store me changed object. . 

17.59 



Time St!lIDPS 

(SETTERMCHARS '( X W» assigns control-W the interrupt control-X hacL and makes control-X be the 
NEXTCHAR. operator. 

As part of the greeting operatio~ SETTERMCHARS is applied to the value of EDITCHARACTERS, which 
is initially (J X Z Y N) in Incerlisp-D and in Incerlisp-10 under Tene~ (J A L Y K) under Tops-20 
(concrol-] is line-feed). SETTERMCHARS is called after the user's init file is loaded. so it works to reset 
EDITCHARACTERS in the init file; alternatively, SETTERMCHARS can be called explicitly. 

17.20 TIl\1E ST A!\1PS. 

Whenever a function is editecL and changes were made. the function is time-stamped (by ED ITE), which 
consists of inserting a comment of the form (. USERS-INITIALS DATE). USERS-INITIALS is the value 
of the variable INITIALS. After greeting. or following a SYSIN. the function SETINITIALS is called. 
SETINITIALS se~hes INITIALSLST, a·list of elements of the form (USERNAME • INITIALs) or 
(USERN~\iE-FmsTNA.ME INITIALs). If the user's name is found; INITIALS is set accordingly. If the 
user's name is not found on INITIALSlST, INITIALS is set to the value of DEFAUlTINITIALS. 
initially ad i ted:. Thus. the default is to always time stamp. To suppress time stamping. the user must 
either include an entry of the form (USERNAME) on INITIALSlST, or set DEFAUL TIN ITIAlS to NIL 
before greeting, Le. in his user profile: or else. after greeting, explicitly set I NIT IALS to NIL. 

If the user wishes his functions to be time stamped with his initials when edited. he should include a file 
package command command of the fOIm (AOOVARS (INITIALSlST (USERNAME • INITIALS») in 
the user's INIT. LISP file (see page 14.5). 

The following three functions may be of use for specialized applications with respect to time-stamping: 
(FIXEDITOATE EXPR) which. given a lambda expression. inserts or smashes a time-stamp comment: 
(EDITOATE? COMMENT) which returns T if COMMENT is a time stamp; and (EDITDATE OLDATE 

INITLs) which returns a new time-stamp comment If OLDATE is a time-stamp comment. it will be reused. 

17.60 C) 



0·-

o 

CHAPTER 18 

INTERLISP-D. SPECIFICS 

. . 
Interlisp-D is an implementation of the Interlisp language that runs on the Xerox 110J. 110~. a.:..,d 1132 
m:lchi~es. It is ccmpletcly upward compatable with t.~e older Interlisp-lO. except as si'~i5eci in t..~is 
manual. The most significant extension to Interlisp is L.'1e window display package. described on page 
19.1. However. Interlisp-D also offers many other extensions, which are described in detail below. 

18.1 INTERLISp·D ~lERRUPT CHARACTERS 

The table below gives the i:lterrupt characters currently enabled in Interlisp-D. Many of these are the 
same as those used in the Tenex version of Interlisp-10. but some have been removed.. and some have 
had their meanings changed. It is possible to change the assignments of control characters to interrupts 
using HITERRUPTCHAR (page 9.17). 

Note: In In:erlisp-D with multiple process~ it is not sufficient to say that "the computation" is broken.. 
abonecl etc; it is necessary to specify which process is being acted upon. Most of the interrupt characters 
below refer to the TrY process. which is the one currently. r~eiving keyboard input Control-H can be 
used to break arbitlclry processes. For more information.. see page 18.35. 

control-B 

control-C 

control-D 

control-E 

control-H 

control-P 

control-T 

Causes a brea'k within the TIY process. Use control-H to break a panicular process. 
Note that this break occurs at the next function call. so it is like control-H in Inte:lisp-
10; it is always safe to resume the computation. There is no interrupt cha:acter like 
control-B in Interlisp-l0 

On the Xerox 1100 and Xerox 1132. brings the user into the Raid low-level debugger. 
From Raid. typing ccntrol-N resumes the Lisp computation. ~,d control-D resets :he 
stack. On the Xerox 1108. after typing control-C. the system stops and wai~ for tL1e 
next character typed. Pressing the STOP key will do a HARORESET, rerurning cont:ol 
to the uSer. Pressing the UtJDO key will stan up the TeleRaid debugger: 

Aborts the TIY process, and unwinds its stack to the top leveL Calls RES E T (page 
9.14). 

Aborts the TrY process. and unwinds its stack to the last ERRORSET. Calls ERROR! 
(page 9.14). 

Pops up a menu listing all of the currently-running processes. Selecting one of tL~e 
processes will cause the break to take place in that process. 

Changes the PRINTLEVEL setting. as described on page 6.18. 

Prints status information for the TrY process. 

18.1 



(-

Garbage Collection 

Note: The control-o, and control~ interrupt characters from the Tenex version of Interlisp-lO are not 
enabled in Interlisp-D. 

18.2 GARBAGE COLLECITON 

In:erlisp-D has a reference-counting garbage collector (Interiisp-lO uses the more famiiiar IrAZrk-anci-sweep 
3.1:;oriti'".:.m). A reference-counting garbage collector uses time proportional to the garbage being coil·~ted 
and not to the size of the address space. This is a crucial adv.4~tage fer a large address space system such 
as Interlisp-D. It does have a disadvantage in that circular lists are never reclaimed. as L.1.eir reference 
count never goes to zero. In addition. atoms are currently not garbage collected; and non-atoa-Jc hash 
array keys are not collected (in Interlisp-lO. when a non-atomic hash key is no longer referenced except 
by the hash array itscif. the hashlink goes away and both the key and the value, if it is nowhere else 
referenced... are reclaimed). ():: 

Garbage collection in Interlisp-D is controlled by the following functions and variables: 

( RECLAIlt1) [FunctionJ 
Initiates a garbage collection. RECLAIM always returns O~ independent of the actual 
number of cells collected. 

(RECLAI~tMIN N) [Function1 

RECLAIMWAIT 

(GCGl\G MESSAGE) 

(GCTRP) 

The frequency of garbage collection is user settable via the function RECLAIMMIN 
(which plays a role similar to Interlisp-lO's MINFS. which is a no-op in Interlis?-D). 
Lisp) keeps track of the number of cells of any type that have been aliCClted: wilen 
it rezches the RECLAIMMI1J number~ a garbage collection occurs. (RECLAIMMIN 
N) rerurns the current setting of the parameter. and.. if N is non-N I L. sets it to N. 

As there is no motivation for the Interlisp-lO CTRL-S interrupt. it is not enabled.. 

[Variable] 
Interlisp-D will invoke a RECLAIM if U.;e system is idle and waiting for user input 
for RECLAIMWAIT seconds (currently set for 4 seconds). 

[Function] 
GCGAG setS the message that appears on the display screen while a garbage collection 
is taking pl2.ce. If MESSAGE is non-N I L. the cursor is complemented during; a 
RECLAIM: if MESSAGE=NIL. nothing happens. TIlls limited choice exists bcca;s~ 
it was found that pr..nting a message took a significant fraction of the time of smill 
RECLAIMs. The value of GCGAG is its previous setting. 

[Function] 
The function GCTRP rerurns the number of cells (of any type. not just LIST?) 
until the next garbage collection. according to the REC LA IMM I N number. although 
this number is not very meaningful. 

18.2 . () 



o· 

Q' 

~-u 

0-

INTERLISP-D SPECIFICS 

18.3 V ARIABLE B~1)INGS 

In!erlisp-D uses deep binding of variables. whereas Interlisp-l0 currently uses shallow binding (prior to 
1975. Interlisp-l0 used deep binding). Although this makes little difference for most programs. it :.ar. 
Ir'~2.ke .a difference in efficiency of execution. For example. it is better to pass parameters as a.~men:s 
than to let sub functions reference them freely. In addition. dccl~ring variables that are never bound (Le .. 
whose top level value only is used) to be GLOBALVA~S is imponant. Sloppy Interlisp-lO code that rebinds 
variables that have been declared as GL03ALVARS will not run correctly in lnterlisp-O. Be carefui to use 
RESETVARS to "rebind" varbblcs that are dcc!arcd GLOBALVARS, RESETVARS works in b()t..~ syst~ms: 

in a shallow system. RESETVARS just binds its arguments as PROG variables (and makes sure they arc 
de=lared SPECVARS). while in a deep system such as InterHsp-O. enL';es are made on RESETVARSLST. If 
L'1e ccmpiler sees an attempt to bind a global variable. it will print out an error message. 

For performance reasons, it is imponant to declare global variables as such in Inter!isp-D. This can be 
done with the GLOBAL VARS file package command (page lL25). which causes variables to be d~lared 
as global to the compiler. For more information on variable bindings and perfonnance. see page 18.19. 

18.4 STACK FOlLlVIAT 

Both L.'1e interpreter and compiler generate different intermediate frames than are found in Interlisp-10. 
so if the user has code that assumes a panicular number of frames will exist at some point (e.g .• 
using STKNTH). it will probably be wrong. STKPOS and STKSCAN are still available. however. and 
REALSTKNTH and REALFRAMEP are useful for ignoring those intermediate frames. . 

185 SAVING VIRTUAL l\1EMORY STATE 

Tne Interlisp-D virtual memory is kept in the file Lisp.virrualmem. As virtual memory pages are accessed.. 
they are loaded from L.i.is file into real memory. To exit from Interlisp-D to tJ."!e Alto ExecutiYe so that it 
is possible to return to the current Interlisp-D environmen~ it is necessary to save the state of the vi:-rual 
rneI:!OIj'. The s~-nplest way is to use the function LOGOUT (page 14.2). This will \1rTi!e out all altered 
pages from real memory to Lisp. virrualmem. . 

If you are the sale user of I!1terlisp-D on a disk panition.. then you will probably want to use LOGOUT. 
However. if other Interlisp-D users may be using that partition. and you wish to save your state. th~n it 
may be more appropriate to use SY SOUT (page 14.3). Note that SY SOUT in Interlisp-O saves the entire 
state of u'1e virtual memory, instead of just the saved pages, so lnterlisp-O sysout file are very large. 

(VMEMSIZE) [Function] 
Returns the number of pages in use in the virtual memory. This is the routl'Jy the 
same as the number of pages required to 'make a sysout file on the local disk. 

Interlisp-D contains a routine L~at writes out diny pages of the virrual memory dUI"'Jlg I/O wait assuming 
that swapping has caused at least one diI1y page to be written back into Lisp.vinualmem (making it 
non-continuable). Tne frequency with which this routine runs is determined (inversely) by: 

18.3 



Error Types 

BACKGROU~DP.~GEFREQ [Va.iableJ 
Djs global variable dctennines how often the routine that writes out dirty pages is 
run. Initially it is set to 4. so the dirty page routine is run once every 4 times arou:ld 
the idle loop. (The lower BACKGROUNDPAGEFREQ is set. the less responsl\'eness 
you get at typein. so it may not be desirable to set it all the way down to 1.) 

The following function is used to write all of the dirty pages out. to make sure t..'1at the current SL::!e is 
not lost" if there is a system crash. 

(SAVEV1r1 -) [Fun:uonl 
This function is similar to logging out and continuing. but faster. It takes about 

. as long as a logout. which can be as brief as 10 seconds or so if you have already 
written out most of your dirty pages by vinue of being idle a while. After ~"1e 
SAVEVM. and until the p2.gefault handler is next forced to write out a diny pzge. 
your virtual memory image wil~ be continuable (as of the SAVEVM) should there 
be a system crash or ot1:er disaster. 

If the system has been idle long enough. dirty pages have been written. and there are few enough dirty 
pages left to write Lilat a SAVEVft1 would be quick. SAVEVM will be automatically called. While SAVEVM 
is being executeci the cursor is changed to a special "SAV lING" cursor. You can control how ofte:l 
SAVEVM is automatically called by setting the following two global variables: 

SAVEV~MAIT 
SAVEVfrjitiAX 

[Variable] 
[Variable] 

The system will call SAVEVM after being idle for SAVEVMWAIT seconds (initially 
60) if there are fewer than SAVEvr~MAX pages dirty (initially 600). Tnese values are 
fairly conservative~ If you want to be extremely wary, you can set SAVEVMWAIT =0 
and SAVEVMMAX = 10000. in which case SAVEVM will be called the first chance 
available after the first diny page has been written. 

18.6 ERROR TYPES 

The following additional error types occur in Interlisp-D: 

5 

48 

49 

50 

51 

52 

FILE SYSTEM ERROR 

FLOATING UNDERFLOW 

FLOATING OVERFLOW 

OVERFLOW 

ARG ~lOT HARRAY 

TOO MANY ARGUMENTS 

Interlisp-D allows the user to trap arithmetic exceptions. The action taken when overflow occurs may be 
set with the function OVERFLO\~ (page 2.38). 

18.4 
() 



Q 

0-

~lERLISP-D SPEOFICS 

READ-MACRO CONTEXT errors are not generated in Interlisp-D. In the situation where Interlisp-lO would 
generate the error. the call to READ within L,~e macro will simply return NIL. 

18.7 COMPILER 

In~r.rlisp-D runs a different instruction set than Interlisp-lO. so source files from Intcr!isp-lO must be 
recompiled. The default extension (value of COMPILE. EXT) for Interlisp-D compiled files is "DC'JH" 
rather than "COM" as in Interlisp-lO. 

The Interlisp-l0 compiler translates Lisp source programs into 36-bit PDP-10 instructions. The lnterlisp-D 
compiler compiies Lisp source programs into an 8-bit Lisp instruction set executed by the Xerox 1100 
family machines. 

In Interlisp-D. block compiling is handled somewhat differently than in Interlisp-10: block compiling 
provides a mechanism for hiding function names internal to a block. but it does not provide a performance 
advantage. Block compiling in Interlisp-D works by automatically renaming the block functions with 
special names, and calling these functions with the normal function-calling mechanisms. Specifically. a 
function FN is renamed to \BLOCK·NAME/FN. For example. function FOO in block BAR is renamed to 
·'\BAR/FOO". Note that it is possible with this scheme to break functions internal to a block... -

Interlisp-D has an opttnizing compiler. Among other opti.m.izations. it performs constant folding. Variables 
can be declared by the user to be compiler constants using the file package command CONSTANTS (page 
11.27), which is syntactically L.~e same as VARS, but additionally informs the compiler that the "variables·' 
are constants. 

18.8 LIl\~ FUNCI10N CALLS 

Linked function calls are not implemented in lnterlisp-D. One noticeable result of this is that if you 
break a function that is used by the system, for example in the READ-EVAL-?RINT loop. yeu \\w get 

. unexp~ted breaks wiL,M system code. These extra breaks' can be safely ~ted with OK. To avoid L~is 
inconvenience, BREAK the function inside another functio~ e.g., (BREAK (PRIN1 IN FOO)). (Note: 
Functions that begin with a backslash (\) are system internal functions and should not" be broken or 
ac.\;sed.) 

18.9 HELPSY5 

There is currently no HELPSYS facility in Intcrlisp-D. There are plans to rcimplement a HELPSYS facility 
evenmally. 

18.5 



Operating System Dependent Functions 

_ 13.10 OPERATING SYSTE~I DEPENDEI't7 FUNCTIONS 

Many Intcrlisp-lO functions are missL.,g from Interlisp-D. An attempt has been cade to proy~ce an 
- appropriate implementation for the more useful of these .runctions~ but some simply do not make sense on 

the Xerpx 11CO family machines. For example. there is no such thing as a J SY S. Any function conr~ini~g 
. a call on JSYS or ASSE?rlSLE' will fall to compile. : . 

The folloY/ing Interiisp-10 functions are not implerr.ented in I:lterlisp-D: LISPXSTATS. SU8SYS~ GET8LK. 
RELBU<. ERSTR. GI'JFr~. Opr~JFN. RLJFN. OPEUF. JFNS. 

(). 

The fonowing Interiisp-lO functions are implemented as dummies in Interlisp-D: LISPX\IIATCH. ADDSTATS. HOSj~ 
USERNUHBER. HOSiNU~lBER. LOAOAV. There are cOInmunication network analogs of HOSiNAME and 
HOST~;UMBER callcd ETHERHOSTNAME and ETHERHOSTNUMBER (page 21.5). 

Additional Functions: 

(HOSTNAMEP NAME) [Function] 
Returns T if NAJ,fE is recognized as a valid device or remote file sen'er nace at 
the moment HOSTNAHEP is called. 

(D IRECTORYNAMEP DIRNAME HOSTNAME) [Function] 

(MACHINETYPE) 

(RINGaELLS) 

Returns T if DrRNA.\!E is recognized as a valid directory. DffiNA.\lE may include 
an explicit hostname. If HOSTNAME is supplied. it is used instead. The connectec 
directory and hostname are used as defaults. 

[Function] 
Returns the type of machine that "interlisp-D is running on: either DORADO (for 
the Xerox 1132), DOLPHIN (for t..'1e Xerox 1100), or DANDELION (for t..'e Xerox 
1108). 

[Function] 
On the Xerox 1100. this flashes (reverse-videos) the scr~n several times. On the 
Xerox 1108. this also beeps Ll:lrough the keyboard speaker. 

18.11 IDATE FO~l\t!AT 

Interlisp-D uses a different time standard than Tenex does. IDATE still has the essential property that 
(IDATE x) is less than (IDATE Y) if x is before Y. and (IDATE (GDATE N») equ~ N. If the 
particular L.lternal format of the integer date is being used to do arithmetic on dates. the user's prop..=..s 
must 'ce fixed. But in that case (.;.~e user is already in trouble with Interlisp-10. where the d.:.te st.1il~d 
is Subtly diff.e:ent between Tenex and Tops20. The most useful property that the three fo~ats have in 
common is thac an internal date can be incremented by an inlcgral number of days by COmp~tLT1g 2.S :he '"I 
day" cons~ar.t (which can be cv~uatcd at compile time) the difference between two convenie:1t IDA T E • s. 
e.g. (iDIFFER~NCE (IDATE " 2-JAN-80 12:00") (IOATE " 1-JAN-80 12:00")). 

Currently. the fonnat argument of DATE and GDATE is not supported (an error will occur if the user tries 
to give oi:c). IDA TE now parses most of the cbte forms allowed in Interlisp-lO: e.g .• the monu"! C3..!l be 
given numeric:llly. slashes can be used as separators. extra spaces are ignored. 

18.6 



o· 
INTERLISP-D SPEOFICS 

(SETTIME DATE&TlME) [Function] 

\TimeZoneCornp 

Sets the internal time-of-day clock. If DATE&TIME = NIL. SETiIME attemotS to 
get the time from the cOIrJnunications net: if it ;ails. t.'1e user is pro=:pted for ~~e 
ti.~e. If DATE&TI1.fE is a strin.g in a fonn that IDATE recognizes. it is used to set 
the time. 

[VariaoleJ 
Tnis variable should be initialized (in {DSK} INIT • LISP) to the time-zone 
compensation. Le .. the number of hours west of G~JT. For the C.S. west coast i~ 
is 8. For the east coast it is 5. . 

18.12 GIARAcrER SET 

lnterlisp-D uses z.n 8-bit character set whereas Interlisp-10 uses standard 7-bit ASCII. The· values retuned 
by CHCO:~l range from 0 to 255. and codes in this range are acceptable arguments to CHARACTER and 
FCHARACT:R. Chara~ters O-U7 have their st~id2.rd ASCII interpretations; characters 128-255 are called 
"meta" characten. Some of L'1e me~ characters have printed representations in some fonts (for accents. 
ligarures. etc.), but most of them will be invisible if printed directly to t..'1e screen. Accordingly. the 
echoi:lg conventions normally defined for control characters have been extended to apply also to meta 
characters. The echomocie of any character may be set by the new function ECHOCHAR (page 6.43). In 
the origbal terminal table. the I UD I CA T E charac:er mode is specified for all meta chara=ters. so all meta 
ch:rracters are echoed as a cross-hatch (#) followed by the printed representation corresponding to the 
7 rightmost bits of the character. For example. character 129 is echoed as #1" A. There is Cl.!ITently no 
type-in syntax for meta ch~-acters. 

The CHARCODE function (page 2.12), defined in both Interlisp-D and Interlisp-10. can be useful when 
dez.lh""lg wiL~ the Interlisp-D character set. 

13.13 READ TABLES 

In Interlisp-D, all control characters are defined as separator characters in FILE RDTS L so that the font 
infor:uation in files is ignored when files are loaded. Users who run in both Interli~-10 and lnterlisp-D 
with the same files will want to make the same ser-JDg in Interlisp-10's FILERDT3L4 in order tllat files 
created in O:le system can be read in the other. The appropriate expression to evaluate. which may be in 
your Interlisp-10 I NIT. LIS P file, is: 

(SETSEPR '(1 2 3 4 5 6 7 9 10 11 12 13 14 15 
16 17 1S 19 20 21 22 23 24 25 26) 

1 FILERDTBL) 

18.7 



Keyboard Intcrpret:ltion 

18.14 KEYBOARD INTERP~ETA TION 

In Interlisp-D, keyboard and mouse interpretation is now done entirely by Lisp code. and certain 
lower level keyboard f2.cilities are f.11.erefore avaiiable. For each key on the keyboard/mouse t..~ere is a 
cOITesDond~,g bit in memory L.'1at the hardware/microcoae turn on C4d off as L.'le key' moves up a:ld down. 
Svsteo-Ieve! routines decode the meaning of key transitions according to a table of "key actious·'. which 
~ay be to put parJc~iar Ascii codes in the sysbuffer. cause interrupts.. ch~ge the internal shifJcontrc-l 
status. or create events to be placed in the mouse buffer. 

(KEYOO~r~p K:;YNA .. \{E) {Functonl 
Used to read the instantaneous state of any key, independent of any buffering or 
pre-assigned key action. Returns T if the key named 1CE:YNA.!-.fE is down at the 
moment the function is executed. ~1ost keys are named by any of the ch~cte:-s on 
the kcy-top. The shift keys are named separatcly as RS HI F T and LS HI FT. space 

C)· .. · 

is SPP.CE, the unmarked keys are BLANK-TOP. BLA~:K-MIDDLE. and BLANK- f\ 
( BOTTOM. and the mouse buttons are LEFT, MIDDLE. and RIGHT. Paddles on ~,e \. )-' 

keyset (not generally available) are named PADl through PADS. Thus (KEYDOWNP 

( 

, a) rerurns T if the "a" key· is down. (K E YDOWN P • TAB) returns the state of 
the TAB key. etc. 

(KEYACTION KEYNAMZ ACTIONS) [Function] 
Changes the internal tables that define the action to be taken when a key transition is 
detected by the system keyboard handler. KEYNAME is specified as for KEYDOWNP. 
ACTIONS is a dotted pair of the form (DOWN-ACTION • UP.ACTION) ~ where the 
acceptable transition actions and their interpretations are: 

NIL Take no ·action on this transition (the default for up-transitions on all 
ordinary characters). 

a list (C"'dAR SHIFTEDCHAR LOCKFLAG) 
C'HAR and SHIFTEDCHAR. are either ascii codes or non-digit characters 
standing for their ascii codes. When the transition occurs. CF'-AR 

or SHlFTEnC"dAR is transmitted to the system buffer. depending cn 
whether eitJ.'1er of the 2 shift keys are down. LOCK7L.A.G is opdc::a!. and 
may be LOCKSHIFT or NOLOCKSHIFT. If LOCK7L.AG is LOCKSH!FT. 
then SIIIFTEDCH.AR will also be transmitted when the LOCK shift is 
down (the alphabetic keys initially specify LOCKSHIFT. but the digit 
keys specify NOLOCKSH 1FT). 

Examples: (a A LOCKSHI FT) and (61Q ! NOLOCKSHI FT) are 
the initial settings for the down. transitions of the "a·' and "1" keys 
respectively. 

lSHIFTUP, 2SHIFTUP. LOCKUP. CTRLUP, MfTAUP 
lSHIFTDOWN. 2SHIFTOOWN. LOCKDOWN. CTRLDOWN. METADOWN 

ChLmge the status of the internal "shift" flags for the left shift. right 
shift. shift lock. ctrl. and meta keys, respectively. These shifts affect \..1e 
interpretation of ordinary key actions. If either of the shir-..s is down. 
then SHIFTEDCHA.RS are tr3l1smitted. If the loc~ flag is down. then 
SHIFTEDCHARS are transmitted if the key action specified LOCKSHI FT. 
If the concrol flag is on, then the low-order five bitS are IDJ.Sked out 

18.8 

n , / 

() 



Q-

EVENT 

INTERLISP-D SPEOFICS 

of the code that would otherwise be transmitted to the system buffer. 
If the meta flag is down, the high order (St..1. bit) is turned on as 
characters are transmitted.. 

Example: the initial ACTIONS for the left shift key is (iSHI FTU? • 
iSH I fTDOWN). 

An encoding of the current state of the mouse and selected keys is 
placed in the mouse-eve:1~ buffer when this transition is detected. 

KE Y ACT ION returns the previous setting for KEYNAME. If ACTIONS is NIL. returns 
L.'e previous setting without changing the tables. 

(r.l0D I FY • KEYACT IONS KEYACTIONS SAVECURRENT~) [Function] 
KEYACTIONS is a list of key actions to be set. each of the fonn (KEn'~\{E • 

ACTIONS). The effect of MODIFY. KEYACTIONS is as if (KEYACTION KE"i'NAAfE 

ACTIONS) were performed for each item on KEYACTIONS. 

If SAVECURREN,T7 is non-NIL, then MODIFY. KEYACTIONS rettlI'r..s a list of all 
the results from KEYACTION. otherwise it returns NIL. This can be used with a 
MODIFY .KEYACTIONS that appears in a RESETFORM~ so that the list is built at 
"entry". but not upon "exit". 

(METASHIFT FLG) [NoSpread Function] 
If FLO is non-N I L. changes the keyboard handler (via KEY ACT ION) so as to 
interpret the bottom blank key ("swat") as a metashift: if a key is srrud.: while 
meta is down. it is read with the 200Q bit set. For CHAT users this is a way of 
getting an "Edit" key on your simulated Datamedia. Rerums previous set'"J.ng. 

13.13 LISPUSERS PACKAGES 

~..1ost of th~ LIS?USERS packages (see page 23.1) are available wit.l1 the Interlisp-D system as sep~te 
loadable packages. Tne major exception is the HASH package. which is highly machine de?endent. and 
the WHEREIS package which depends on it. EDITA. CJSYS. and many pans of the EXEC pa:kage are 
system-dependent by their very narure. and also are not included.. The various network packages are net 
provided because many of these facilides are integrated into Interlisp-D at a more fundamental leveL 

Several pack.ages not document~d in the Interlisp Reference Manual are available. The list currently 
includes the following: 

GRAPHER 

BROWSER 

EVALSERVER 

A collection of functions for laying out. displaying, and editing graphs on the 
Interlisp-D screen. 

Modifies the SHOW PATHS cornrnand of Mastcrscope so that the COInma:.ld·s outP~t 
is displayed as an undirected graph. Uses the G RAPHE R package. 

Provides a set of routines to facilitate communication. over an Ethernet. between 
two or more Xerox 11005 running lntcrlisp-D. 

18.9 



HISTl·1ENU 

SAMEDIR 

File System 

Provides·a simple way to access the Interlisp history list using a me:lu. 

Tnis pacbge advises MAKEF IlE to notify the user if it appears that a file is beil1g 
written onto a directory other than the one it came from. allowing the user to halt 
the precess. 

18.16 FILE SYSTEM 

Typically. the most mach:ne-dependent pan of any computer language implementation is the I/O syste:::l. 
Regardless of efforts to create consistant interf(!ces. the fact remains that diJferent physical machines offer 
different disks. printers. etc., and languages have to be extended to take advantage of tl1L~e. In the C.1$C 

(J 

of imp!~menting lnterlisp on the Xerox 1100 family machines. the biggest cha..'1gc was the addition of f~) 
facilities for using the high-resolution display, described elsewhere. Ot.'1er changes have had to be made \, .' 
to accomodate using files on a local disk or on a file server. and sendi:lg files to remote printers. Eyery 
effort has been made to keep these interfaces compatible with Interlisp-l0 conventions, to reduce L~e 
amount of work necessary when trC-i.isfening progra..'11s. However. in some situations the user may wish 
to take advantage of the special extensions offered by Interlisp-D. 

Dis section contains information ab.o~t a variety of extensions to Interlisp-D that accomodate the different 
110 environment 

18.16.1 File Names 

UFull" file nZl!1es inside of Interlisp-D look just like Tenex file names, except t.~at all full file names 
begin with a devicelhost name (in braces) to identify the machine (or pseudo-machine) 00 which the file 
resldes. Files on the local disk belong to devicelhost DSK, e.g. {OSK}FOO.BAR:3. PACKFILENAME and 
UNPACKFILE}U,14E are still the appropriate way fer programs to manipulate filenames. The device/host 
of a file ma.y be acces!':ied using the new field name HOST. 

00 Xerox 1100s and Xerox 1132s, Interlisp-D can access partitions other than the one which "'las booted.. _ .. 
If u~e other partition is password-protected.. Interlisp insists on the correct password before accessi::g any ( ) 
files. ParJtions are denoted by {DSK1} for Partition I, {DSK2} fot Panition 2. etc. DIR, DIR::CTORY. \_F 

etc .. all work for other partitions. Currently, SY SOUT does not work for partitions other than the c.efault. 

18.16.2 Renaming Files 

Interlisp-D implements (RENAMEFILE OLD NEW) merely by copying OLD to NEW and then delec.ng 
OLD. \Vhile this is quite general (and even allows one to rename files from the local disk or one file ser'ver 
to another), it is slower than the Intcriisp-lO RE NAME FILE operation. It also, in the C2Se of re:c~ing a 
loc~ disk file. requires that u"le local disk have enough room to hold the copy of the file. 

18.16.3 End Of Line Convention 

Intcrlisp-D uses a differcnt representation for end afline both internally and on files. Internally, end ofiine 

18.10 



Q'" 

o· 

Il\7ERLISP-D SPEOFICS 

is renresented by the carriage return character (15Q). whereas the internal representation in Interlisp-lO 
is th~ Eel character (37Q). The CHARCODE macro (page 2.12) is the appropriate way to code progra:r..s 
to be bdependent of the EOl convention: in all systems (CHARCODE EOl) is 2.lways the appropriate 
c!!d-of-li:1.e character. (CHARCODE CR) and (CHARCODE TE~lEXEOL) provide the system-dependent 
character codes. Interlisp-D also interprets a carriage "returnlline feed sequence in a file as aI! end-or-line 
and re2Cs it as a carriage return. "TERPRI generates two characters in Interlisp-lO. but only one in 
Interlisp-D. • . 

13.16.4 UshJg Fiies with Processes 

Curre~tly. Intcrlisp-D does not proyide interlocks to keep multiple processes from oying to access the 
same file. Th cre fore. thc user has to be careful not to have two proccsses manipulating the same file at 
the S?_TTle time. For examplc. it will not work to have one process TCOMPL a file while another process is 
running LISTFILES on it. 

18.16.5 Miscellineous File Manipulation 

(CO?YFILE FROMFILE TOFILE) [Function] 
Copies a file to a new file. The source and destination may be any Servers/devices. 
COPYFILE atlempts to preserve the TYPE and CREATIONDATE where possible. 

(D!SKFREEPAGES - -) [Function] 
Returns an estimate of the number of pages free on the local disk (current partition). 
Tnis number is only a "hint". but is usually quite a-"Curate. 

(DISKPARTITION) [Function] 
Returns the number of the current partition (lor 2 on Xerox 1100. 1-5 on Xerox 
1132). 

13.16.6 Connecting to Directories 

As in Inrerusp-l0. Interlisp-D has a notion of a 4'connected" directory. which is used as the default when 
yot: give a filenar:le lacting an explicit devicelhcst (and directory). The default is changeq. by using the 
programmer's assistant command coral. 

CONN {DEV1CEjHOS"T}<D.!RECTORY) [?rog. Asst. Command] 

(CNOIR HOST/DIP..) 

Eith~r pan of the ~--gument is optional; if the directory is omitted.. the default for 
devices that have directories is the value of (USERNAME); if the host is omitted. 
connection will be made to another directory on L.~e same host as before. If CON N 
is given with no arguments, connects to the value of LOGINHOST IOIR. 

Note that CONN docs not require or provide any directory access privileges. as 
does the command of the sa.rne name in Interlisp-lO. Access privileges are checked 
when a file is opened. ' 

[Function] 
Programmatic fonn of CONN. Connects to the directory HOST/VIR.. Returns the 

18.11 



---

Binary 1/0 

fullname of the now-connected directory. 

(/CNOIR EosT/Dm) [Function] 

LOGINHOST/OIR 

Undoable form of CNOIR. CONN is implemented via ICNOIR. 

[V a..-ia b Ie] 
CONN with no argument connects to the value of the variable lOGINHOST IDI?~ 
initially {OSK}, but usual~y reset in the user's greeting file. 

(OIRECTORYNAME FLG STRPTR) [Function] 

DIRECTORIES 

18.16.7 Binary I/O 

Similar to Interiisp-l0 USE RNA~fE. If FLG is T. returns t;."c currc:::lj· co::r.~:ed. 
host and directory name. If FLG is NIL. returns the value of LOGI~JHOST IOIR. If 
STRPTR is T, the value is returned as an atom. otherwise it is returned as a s~ri=g. 

[Yarbble] 
Global variable containing the list of directories searched (in order) by S?E LLF I LE 
and F INDF I LE (page 15.20) when not given an explicit DIRLST argument. In this 
list. the atom NIL stands for the login directory (lOGINHOST IOIR). and the atom 
T stands for the currently connected directory. 

Interlisp-D supports a datatype called a STREP,M, whose basic operations are &&inputU and "output". They 
provide an efficient handle to an open file. All I/O functions L1.at currently refer to files (e.g., P R I NT. 
PR IN 1. CC?YSYTES. FULLNAME) will also accept stfeams. and will operate slightly more efficiently on 
t.L~e=_ In addition. the following two functions provide binary input and output on streams: 

( B r ~ STF.EA.W) [Function] 
Returns the next byte from STREAM; thus9 this operation is similar to (CHCON 1 
(READC STREAM». BIN is a very efficient (microcoded) operation. . 

_ (BOUT STR&tM BYTE) [FunctiC:11 
Outputs a single 8-bit byte to STREAM9 Le .• similar to (PRIN3 (CHARACTER 
BITE) ). 

In addition.. the following function coerces files to streams: 

(GETSTRE.A.~' FILE ACCESS) - [Function] 
Takes a designator which can be used as a ufile'· argument (e.g ... a full/paz:ial file 

. n~-ne~ a display Stre~ window, etc.) and returns the corresponding strea.~. If 
given a stream will merely return it. ACCESS is interpreted the same as in O? EN? 
(page 6.2). 

BIN and BOUT will also accept a file designator, in which case u'1ey c-oerce it to a stream via GETSTREAH. 
However. BIN executes in microcode only when given a stream directly. 

18.16.8 Temporary Files and the CORE Device 

The local DSK device and most file servers do not support the temporary or scratch files that are available 

18.12 

0--

( ) 



c5 

0--

INTERLISp-n SPEOFlCS 

in Intcrlisp-lO. Fiies that are- created do not disappear when some later event such as logout occurs and 
instead must be deleted by specific action on the pan of the user. For tt'1is reason. the ; S and ; T suffixes 
b file na..rnes are simply ignored when output is directed to a particular host or device. 

Hov.-e\'er, Interlisp-D does suppon a notion of core-r~sident files, and in many cases these provide 
a reaso!labie substitute for Interlisp:l0 scratch fi1es., Core-resident files are on the device CORE (e.g. 
{CORE}<FOO)FIE. DCON: 5). The directory for this device and all files on it are represen~eci cOwpietely 
within the user"s virtual memory. These files are treated as ordinary files by all file operatio~: their o!lIy 
distin~'..lishing fe:lturc is ttlat all trace of them disappears when the virrual memory is aba.,doned. 

In Interlisp-D. the function PACKF ILE NAr~E is defined to default the device name to CORE if the file has 
the TEMPORARY attribute and no explicit host is provided. 

Interlisp-D is initialized with the single core-resident device CORE. but the function CORfDEVICE may 
be us,.:!d to create any number of logically distinct core devices. 

{COREDEVICE NAME} [Function] 
Creates a new device for core-resident files and 2SSigns NAME as its device 
name. Thus, after performing (COREDEVICE 'FOO). one can execute (OUTF ILE 
'{FOO}BAR) to open a file on that device. 

If the directory information associated with CORE devices is not neede~ the device '~OD I RCORE can be 
used to open core-resident files which "disappear" when they are c1ose~ Note that {NOD I RCORE} files 
do ~ot have names. so the only way to manipulate them is to pass around the value that OPEN FILE 
returned whe::t the file was opened. 

18.16.9 Floppy Disks on the Xerox 1108 

Interlisp-D on the Xerox 1108 can access the built-in floppy disk drive as device {FLOPPY}. The floppy 
fonr..a: is compatible with the Pilot floppy disk format. 

18.16.10 Page Mapping 

Interlisp-D implements the page-mapping primitives of Interlisp-l0 with some notable differences that 
might require ffiajor reworking of progra.!ilS that rely on L.'1ese facilities (see page 14.17). The major 
dinere:lce is that an Interlisp-D page contains 256 16-bit words, rather than the 512 36-bit words of 
Interiisp-l0. A given page ntL.'11ber or file address for MAP PAG E or MAPWORD v.w correspond to a very 
different number of bits from the beginning of Ll-te file, and \'10RDCONTENTS and SETWORDCONTEUTS 
move smaller amounts of information. A .second difference is that buffers are completely integrated i."ltO 

the In!eriisp~D storage management system so that a page is guaranteed to be locked down as long as the 
user he Ids a pointer to it. The functions LOCKr"AP and UNLOCKMAP are therefore unnecessa.-y. but for 
compatibility are defined with dummy definitions. 

13.17 FILE SERVERS 

A file server is a shared resource on a local communications network which provides large amounts of 

18.13 



File Server File Names 

file stora~e. Different file servers honor a variety of access protocols. In order to suppon full Lisp 110. 
a file sen,er must orovide a random access protocol. One such protocol is Leaf. It has been integrated 
into the II!:erHsp-D file system to allow files on a file server to be treated in much the sa .. ne way files are 
accessed on L~e local disk. Except where noted in this section. the standard file operations (0 PEN f I L E. 
INFILE? CLOSEF, etc.) :ill work for remote fijes. This section er.plains how to make use of re!:lote files 
and what differences exist between them and ether files·. 

IS.li.1 Fiie Server File Nam§!s 

Tee full I:3.!I1e of a file on a fil~ server host includes the name of the host in brac~ and a directory 
specifcation in angle brackets. e.g .. {PHYLUM}<LISP)FOO.DCOM;3. These names are not n~essari1y 
the syntax by which the actual device/server knows the files (e.g. some file servers use "!.. ins~ead of 
"; tt). but Lisp presents a uniform set of naming conventions. 

The user can "connect" to a directory on a ~e server using the COflN command (page lS.11). after which (-~,_. 
any filename supplied that does not include the host name and/or directory will use the "connected" host '_.J 

and/or directory. Specifically. if L~e host is omitted, then the connected host is used.. and if the directory 
is also omitted., the connected directory is used as well. If an explicit host is supplied.. no defaulting of 
the directory occurs. 

Interlisp supports a preliminary version of NS filing to Xerox 8030 file servers (see page 21.13). Any 
device ~ith a colon in its name is presumed to be accessible with NS protocols rath'er than PUP. e.g .. 
{STARF ILE:}. The general format ofNS fileserver device names is {SEID-"ER : DOM.AIN: ORGA.~7Z.ATroN}: 
the device specification for an 800o-series product must contain the OearingHouse domain and organiza
tion.. but if not supplied directly. then they ar~ obtained from the defaults, which th.emselves are found by 
a search for L.~e nearest ClearingHouse. NS file servers are modeled after the Star world, and have "File ~ 
Drawers~' r2.L.1.er than directories; uFile Folders" are tile sub-directories. The functions DIRE C TO RY. 
FILEBROWSER, INFILE. COPYFILE, LOAD, and MAKEFILE are working now with NS file sen"ers. 

rIET\~ORKOSTYPES [Variable] 
Files servers on different machines have different login protocols. file name for::nats. 
etc. For proper service from fHe servers ether than Xerox file servers. the user 
should add entries to the association-list NETWORKOSTYPES associating the host 

r- name (all uppercase) with its operating system type. currently one of TENEX. (\' 
TOPS20, UNIX. or VMS. For e~ample (ADOTOVAR NET'NORKOSTVPES (MAXC2 \. / 

TENEX» will inform Interlisp that the file server MAXC2 is a TENEX file server. . 

18.17.2 Logging In 

Iv-fcst file servers require a user name and password for access. When a file server requests this information. 
InterLi.sp-D fL.-st gives the narr:e and password from the Alto Executive. If the file server doesn't recognize 
thnt name/pJSs·.vord.. Interlisp-D prompts the user for a name and password to use. It suggests a default 
n3!I1C (the one on the disk), which the uscr can accept by typing a space, or replace by typing a new 
name or b~cksp~cing ovcr iL Intcrlisp-D saves names and passwords for each host. so the user can login 
to different file servers using different names. 

(LOGIN EOSTN~\fE - - -) [Function] 
Forces Interlisp-D to ask for the login name and password to be used when 
accessing host HOSTNAME. Any previous login information for HOSTNAME is 

lS.14 



---]--~ -. 

u. 

INTERLISp-n SPEOFICS 

overriden. If HOSTNAME is NIL, it overrides login information for all hostS. 
Password information vanishes when LOGOUT, SYSOUT, or MAKESYS is executed.. 
Returns the login user name. 

18.17.3 Abnormal Conditions 

If Interlisp-D tries to access a file and does not get a response from the file server in a reasor~ble period 
of timc. i: prbt.~ a rnes~Jgc that thc file server is not responding. and keeps trying. If the file server h~ 
actually crashed. th.is may continue indefinitely. A CTRL -E or similar interrupt aborts out of this std~e. 

If t..1e file server crashes but is restarted before the user a.ttemprs to do anything. file operations will 
usually proceed normally. except for a brief pause while Intcrlisp-D tries to reestablish any connectil1ns 
it had open before the crash. It will inform the user of any problems that arise in so doing. The most 
likely problem occars when a file has been opened for output but has not yet been written to (or not 
enough has been y,Titten so L.'at Interiisp-D has wTitten to the file server). In this case the file server will 
think the file is not there when Interlisp-D tries to reestablish the connection. A similar situation arises if 
the system has been idle (or at least has not accessed the file server) for a sufficiently long period. In this 
case, L1.e file server will time out the connection. Normally. Interlisp-D will attempt to recover gr2.!:efully 
as cescribed above. 

LOGOUT closes any Leaf connections that are currently open. On rerum, it attempts to reestablish 
connections for any files that were open before logging out. If a file has disappeared or been modified., 
Inrerlisp-D reports this fact. 

If it is desired to break the Leaf connection without logging out, call (BREAKCONNECTION EOST). Any 
subsequent reference to files on trJ4t host will reestablish the connection. The main reason for doing u1.is 
occurs if Interlisp-D is interrupted while a file is being opened., leaving the file server thjnkjng the file is 
open and Lisp thinking it is closed., and then get".ing a file busy when Ioterlisp-D next tries to open it. 

On faL-e occasions,' the Ethernet may appear completely unresponsive, due to lnterlisp ha~ing gotten into 
a bad st2.te. Typing (RESTART. ETHER) will reinitializ!: Lisp's Ethernet driver(s), just as when the Lisp 
system is started up following a LCGOUT. SYSOUT, etc (see page 21.15) 

18.17.4 Cayeats 

Leaf does not currently support directory enumeration except for one minor case (in the version field). 
Hence, DIRECTORY or FILDIR cannot be used on a Leaf file server to get a list of files. 

INFILEP and GETFILEINFO currently have to open the file for input in order to obtain their inforrr...ation. 
and hence the file's read date will change. even though L.'le semantics of these functions do not imply it. 
This differs from the operation of DSK. and from Interlisp-lO file- operations. 

Intcrlisp support.s simult..lIleous access to the same server from different processes and permits overlapping 
of Lisp computation wiL.'l file server operations. allowing for improved performance. However. as a 
corollary of this. a file is not closed the instant that CLOSE F rerurns: Interlisp closes the file "in the 
ba:kgrcund". It is Ll-terefore very imponant that the user exits Interlisp via (LOGOUT), or (LOGOUT T). 
rather thall boot the machine or exit via Raid. 

18.15 

I 



( 

New Functionality 

18.Ii 5 New Fu.nctionality 

Certain file servers treat text and binary files differently. Files on file servers can have the atu:bute TYP E. 
wiL.~ value TEXT or a I NARY. for use wit.~ GET FILE INFO and SET FILE HI FO. The file type ciefa~lts to t.~e 
value of DEFAULTFIlETYPE. initialiy TEXT. OPENFILE accepts (TYPE TEXT) or (TYPE BINARY) 
as an .element of its argument MACI-:INE.DEPENDENT.PARAMETERS. 

Anot.1er illowed element of MACHINE.DEPENDENT.PARAMETERS is DON'T • CHAr~6E. DATE .. which mea:lS 
~o: to change the 5..!c's cre::.tion date when a file is opened (meaningr .. l1 only for· files being opened for 
output). 

I:lterlisp-D includes an implemectation of the PupFtp protocol. which supports transferri.:lg files 
sequentiallY only. In those cases where sequential access (as opposed to random access) to a rue is 
appropriate. the use of PupFtp generally results in considerable speed improvement oyer Leaf. pJrJct.!!.:l!'ly 

(.-~-\ .. 
\ ) -

for writing files 00 a Xerox IPS. 1be system tries to use PupFtp where possible for SY SOUT and for (\ 
the destination file of a COpy FILE. One can indicate that a file is going to be accessed only s~quentiJ.ily" ) 
by including the keyword SEQUENTIAL in the list of MACHINE.DEPENDENT.P.A..ruL'dETERS passed to . . 
OPENFILE: t..'1e PupFtp will be usetiif possible. If for some reason your file server suppor..s PupFtp but 
you co not wish CQPYFILE or SYSOUT to use it. you can set the internal variable \FTPAVAILABLE to 
NIL. 

18.18 HARDCOPY F AQLITIES 

Note: The following implementation' of hardcopy facilities is subject to cr.ange. 

Interlisp-D indudes facilities for generating hardcopy in both '6Press" and "Interpress" formats. "Press" 
is a file f0rn12.t used for corr..n1unicati.a.ig documents to laser Xerographic printers called "Dover'· (at !YIIT. 
Stanford.. and eMU) or "Penguin" (everywhere else). Ulnterpress" is a Xerox standard format used by 
the 8044 pri.r.ter and other Network System printers. The hardcopy functions below v.-iil generate Press 
or interpress output depending on the setting of the function PRINTERMOOE: 

(PRHdTERMODE x) . [Function] (-\ .. 
Sets the type of printing file format generated by LIST FILES. HAROCOPYW. and' J. 
printer devices (see PRINTERDEVICE, below). If x is PRESS .. the Press file format 
is used. If x is INTERPRESS. the Interpress file format is used. 

Currently. the hardcopy interface is not sman enough to infer the prin:er mode 
from a previously format.ted file or the name of a printing host. If the user wants 
to print a previously formaned Press or Interpress file. the printing mode must be 
set correctly. 

(PRINTINGHOST -) [Function] 
The fuoction PR I NT I NGHOST is used to find the name of the local printer. 

For (PRINTERMODE 'PRESS). this merely returns the value of the variable 
iJ~FAUL TPRINTI~GHOST. which is usually set by an entry in the site greeti:1g file 
(see page 14.5). 

18.16 
( ) 



o 

o· 
'--

o 

0-" 

INTERLISP-D SPECIFICS 

For CPRINTERfliODE 'INTERPRESS). tL~is rerurns the value of the va.."i2ble 
NS. DEFAUL T. PRINTER if non-NIL, otherwise it returns the first local printe: 
found in the closest clearinghouse (see page 21.11). 

The function LISTFILES1 is used by LISTFILES' to send a single file to a hardcopy ;Jr1;ltL,g device. 
lnterlisp-D.is initialized with LISTFILESl defined to call EMPRESS in Press mode or NSPRINT (page 
21.11) in Interpress mode. These functions conven a file to Press or Interpress fermat.: and send it to a 
printing server. The "default'· site greeting file delivered with the Xerox 1100 reciefines LIS T F I L E S 1 as 
a no-ope 

(EMPRESS FILE #COPrES HOST I!EADING #SIDES) [Function1 
The function EHPRESS causes #COPIES copies of t.~e file FILE to be sent to the 
printer HOST. If HOST is NIL, the value of (PRINTINGHOST) is used. ~smES 
spccifies one- or two-sided printing: may be 1 or 2 (if HOST is capable of duplex 
pri~ting) or T (meaning to use the printer's default): defaults to the value of 
EMPRESSCSIDES. initially T. 

If FILE is a Press or Interpress format file. it is transrrJtted directly. Otherwise. it 
is convened by calling the function MAKEPRESS (called with FO!>.-rS = NIL and 
the same HEADING). 

EMPRESS. SCRATCH [Variable1 
EMPRESS constructs scratch press files on the {CORE} device for srr'..a1l files. If 
the number of disk pages of the source file is larger than the limit set by the first 
element of the list EMPRESS. SCRATCH. an alternate scratch file. specified by the 
second element of EMPRESS. SCRATCH. is used. EMPRESS. SCRATCH is initi.aliz.ed 
to (30 {DSK}EMPRESS. SCRATCH). 

(MAKEPRESS rn..E OUTFILE FONTS IiEADING TABS) [Function] 
(~lAKE INTERPRESS FILE OUTFrLE FONTS HEADING TABS) [Ftm.:tion] 

These functions produce a Press or Interpress file named OUTFILE from the ASC I I 
file FILE. If OUTFJLE is NIL. it defaults to the s.::me file name as FILE. \o\ith 
extension Pre s s or In te rp re s s. 

These functions in:erpret character sequences beginning with control·F (cha:2.C:er 
code 6) as special formatting instructions. If the code of the next chcracter is a 
valid font number. then tL'1e formatting sequence indicates a change to t..'1at font. 
The correspondence between font numbers and fon:s is specUied by.entries on the 
list FONTS or, if FONTS is NIL. the current font profile list (see page 6.55). Each 
entry is of the form (FONT/CLASS FONT-NUMBER DISPLAY-F01'o"r PF~SS-FO.VT). 
For example, the encry (DEFAULTFONT 1 (GACHA 10) (GACHA 8» indicates 
that GACHA 8 will be used in press files for font 1 which v/ill be representee on 
the display as GACHA 10. HEADING is a string that is printed as a heading on each 
page. If HEADING is NIL, the file's name and creation date 'hill be uSed.. • 

These functions also allow absolute tab stops to be specified. If the conrrol-F 
is followed by a control-To the code of the character after mat is interpreted 
as an absolute rzb stop number. The corresponding entry on t..~e list T.-\.ES. or 
PRESSTABSTOPS if TABS is NIL. is taken as the nlL.TTlber of mills fro:n the left 
margin at which printing on the current line will continue. PRESST ABSTOPS is 
initially (8000). 

18.17 



· Performance Considera.tions 

FONT'NIDTHSFILES [Variable] 
Value is a file name or a list of file names to be searched for information about 
the widu1.s of characters in particular fonts. This variable should be initialized in 
the site greeting file. 

(HARDCO?YW WTNDOV'l/SITMAP/REGION FILE HOST SCALEFACTOR ROT.ATION) [F~nction] 
Creates bitmap hardcopy and optionally sends it to a printer. VflNDQV,l/B;::.,u...? /RZGICN 

can eiL.'er be a WINDOW (open or closed), a BITMAp·, or a REGION (interpreted as a 
region of the s.:ree~). If NIL. the user is prompted for a region using GETREGIOr~ 
(page 19.37) in a manner which "defaults" to the whole screen. 

The logic of defaulting is complex and follows: 

FILE. if supplied.. will be used as the name of the file for output. If HOST is NIL. 
then if FrLE was given. no printing is perfonned. else if FULLPRESSPRINTER is , 
non-~l I L. then output is sent to that printer. else output is sent to the value ( )
of (PRINTINGHOST). To save an image on a file without printing it. perfor.u ' 
(HARDCOPYW IMAGE Fl!.E). 

SCALEFACTOR is a reduction factor. Only SCALEFACTOR = 1 can be printed 
on Dover 3.!J.d Penquin printers.· SCALEFACTOR defaults according to u'1e 
size of the image, the size of a page. and the parameters HOST. FILE. and 
FULLPRESSPRINTER in a complex but appropriate mann"er. 

ROTATION. which can be one of O. 90. 180. 270 (default 0) specifies how the bitmap 
image should be rotated on the printed page. This may not be supported by some 
printers. 

Note u'1at "Hardcopy'· in the background menu merely performs (HARDCO?YW). 
which sends an image of region user selects to the default printer. Hardcopy in the 
paint menu performs (HARDCOPYW wmDOW). which sends an image of window 
to the default printer. 

(?RESSF !LEP FILE) [Function] 
Returns (FULLNAr~E FILE) if FILE is a Press file. NIL otherwise. (' 

Hardcopy output may also be ob~ned by writing a file on the printer device LPT. e.g. (COpy FILE \ ) 
'FOe '{LPT}). When a file on this device is closed. it is converted to Press or Interpress forn:at (if 
necessary) and sent to u~e default printer. Thus. {LPT} acts like the device LPT: in Interlisp-10. Printer 
devices can be defined for otter network printer hosts with the follo'Ning function: 

(PRINTERDEVICE NA..\!E) [Function} 
DeiL."les the network printer host NAME to be a printer device treated like L PT. 
For example, if (PRI NTEROEVICE 'YODA) is executed. then (COPYF I LE t FOO 
'{YODA}) will transmit FOO to the printer named YODA. 

18.19 PERFORlY"lAr'iCE CONSIDERA nONS 

Most Interlisp-D users will have experience using Interlisp-10. Although Interlisp-D is completely \!pw~d 

18.18 



C)'" 
'-

o. 

o 

INTERLISP-D SPEOFICS 

compatible wit..l-} Interlisp-lO. "'there are differences in the exact implementation which may influence the 
performance of applications prograhls. This chapter contains a collection of notes which may he I? the 
user improve the perfonnance of. Interlisp-O programs. 

18.19.1 Variable Bindings 

A major difference between Interlisp-10 and Interlisp-D is the method of a..."Cessing f7ee ... ariacles. 
Interlisp-10 uses what is called "shallow" binding. Interlisp-D uses what is called "deep" binding. 

The bir:ding of .... ariables occurs when a function or a PROG is entered. For example. if L.'e function FOa 
has the definition (LAMBDA (A B) BODY), the variab,1es A and B are bound so that any referen:e to 
A or B from BODY or any function called from BODY will refer to the argurr:ents to the function F 00 
and not to L'1c value of A or B from a highcr level function. "All variable n.:unes (atorns) haye a top'lc\'cl 
value cell which is used if the variable has not been bound in any function. In discussions of .variable 
access. it is useful to distinquiSL"1 between three types of variable access: local, special and globa:. Local 
variable access is the use of a variable tJ.~at is bound within the function from which it is used. Special 
v3..J.-lable access is the use of a variable that is bound by another function. Global 'lariabie access is t.'1e 
use of a variable that has not been bound in any function. We will often refer to a va...;able all of whose 
accesses are local as a "local variable." Similarly, a variable all of whose accesses are global we call a 
"global variable." 

In a "deep" bound syste~ a variable is bound by saving on the stack the variable's name together v:iL.'1 
a value cell wi"jch contains t..l1a: variable's new value. When a ... ariable is accesseci its value is found by 
searching the stack for the most recent binding (occurrence) and retrieving the ,"alue stored there. If the 
variable is not found on the stack. the variat11e's top level value cell is used. 

In a "shallow" bound system. a variable is bound by saving on the stack the variable name and t.'1e 
variable's old 'lalue and putting the new value in the variable's top level value cell \\t"hen a variable is 
acccssecL its value is always found in its top level value cell 

The deep binding sche~e has one disadvantage: the amount of cpu time required to fetch the value of a 
v&-:iable depends on the stack distance between its use and its binding. The compiler can detemtine local 
variable accesses and compiles them as fetches directly from the stack. Thus this cO!:np\:~tion ccst only 
ar.L5es in t.he use of variable not bound in tJ.'1e local frame ("free" variables). The process of finding t.i1e 
va1~e of a free variable is called free variable lookup. . 

In a s~ailow bound sys~e~ the amount of cpu time required to fetch the value of a variable is cons~t 
regardless of whether the variable is local. special or global. The disadvantages of L.'1is s.:heme are that 
the actual binding of a variable takes longer (thus slowing down function call). the cells that contain L"le 
current in use values are spread throughout the Sp2.c~ of all atom value cells (t.l-tus increasing the worki."1g 
set size of functio~) and context switching between processes requires un winding and rewinciing the staCk 
(L."lUS effe:tively prohibiting the use of context switching for many applications). 

A deep binding scheme was chooscn for lnterlisp-D because of the working set considerations and the 
speed of context switching, which we expected to use heavily when processes were added.. The free 
variable lookup routine was microcoded, thus greatly reducing the search time. In the benr.:hrnarks we 
perfo:med, the largest percentage of free variable lookup time was 20 percent of the total ellapsed time: 
the nonna! time WGS between 5 and 10 pcrcenL 

One consequence.oflnterlisp-O's deep binding scheme is that users may significantly improve performance 

18.19 



Garbage Collection 

by decla..ring global variables in ceI""..ain situations. If a variable is declared globaL the compiler will cO!:l~i1e 
an access to that variable as a retrieval of its top level vaiue. completely bypassing a stack search. This 
should be done only for variables that are never bound in functions such as global databases and flags. 

Global variable declarations should be done using .the ~LOBAL VARS file package cozr.mal'ld (page 11.25). 
Its form is (GL08.t\LVARS Y.<tRl ••• VARN )· 

Anather way of L.~proving performance is to declare variables as local wit:.,.in a function. NOIWa!ly. all 
variables bound witi"in a function have their names put on the stacr ... and these names are scanned du·ring 
free variable iookup. If a vari~ble is decbrcd to be lccai wit.~in a function. i~ n~'";le is ~ot put on L"le 
SLJek. so it is not scanned during free v-ariable lookup. which may increase the speed of iookups. Tne 
compiler can also make some other optimizations if a variable is known to be local to a function. 

A variable may be declared as local within a function by including the form (DECLARE (LOCALVARS 

(~ 

\ ) 

VAAl ... VJiRN » foliowing the argument list in L.~e definition of the function. Note: local YJ..."i.:ibla _~ 
/~ cedaraticns only effect the compilation of a function. Interpreted functions put all of their variab le nm1es ( ) 
l on the stac~ regardless of any declarations. " ---

18.19.2 Garbage Collection 

As an Interlisp-D applications program run~ it creates data structures (allocated out of free ~l.Orage space), 
mr.nipulates them. and then dLc:cm-ds them. If there were no way of reclaiming this space. over time the 
Inre:list'-D memory (both the physical memory in the machir.e and the viri:ual memorj stored on the 
disk) would get filled up. and the computation would come to a halt. Actually. long befc·re Lm wouid 
happen the system would probably b~ome intolerably slow. due to "data fragmentation", which occurs 
when the data currently in use are spread over many virtual memory pages, so that most of the computer 
time must be spent swapping disk pages into physical memory. This problem ("fragmentation") will 
occur i:l any situation where the virrual memory is significantly larger than the real. physical memory. To 
reduce swapping, it is desirable to keep the "working set" (the set of pages CO:ltaining actively referenced 
data) as small as possible. . 

It is possible to write programs that don't generate much "garbage" data. or which recycle data. but such 
programs tend to be overly complicated and fraught with pitfalls. Spending effort writing such prcg:arn.s __ 

! cefears t:.'e whol~ point of usir:g a system with automatic storage a.1!ccaticn. An imporl2.nr. ~z....~ of ~y Lisp ( ) 
implementation is the "garbage collector" which identifies discarded data and reclaims its ~~e. Tb.ere \ '. 
are several well-known approaches to garbage collection. Interlisp-lO uses the traditior:cl mark-c.!1c.-sweep 
garbage collection algcrithm. which identifies "garbage" data by "walking" through and u warkL"1g" all 

. accessible data su--ucrures. and then sweeping through the data spaces to find all unID2.rked objec:s (i.e .. 
net referenced by any other object). Although L~is method is guaranteed to reclaim all garbage. it t.:lkes 
time proporJonal to the number of allocated objects. which may be very large. (Some allocated objec!S 
will have been marked during the "mark" phase, and the remainder will be collected during the ··sweep'· 
phase; so all will ha'le to be touched in some way.) Also, the time that a mark·and-sweep garbage 
collection takes is indepe:ldent of the amount of g~bage collected; it is possible to sweep through the 
whole virtual memory, and only recover a small amount of garbage. 

For interactive applications, it is simply ·not acceptable to have long interruptions in a computation for 
L~e purpo~e of garbage collection. Interlisp-D solves this problem. by using a reference-counting gJrbage 
collector. With this scheme. there is a table containing counts of how m<lJ.'1Y times e:;ch object is referenced. 
This table is incrementally updated as pointers are created and discarded. incurring a small over~e3d 
disuibuted over the computation as a whole. (Note: References from me st.1ck a:e not counted. but are 

IS.20 



() 

0-' 

INTERLlsp-n SPECIFICS 

haLld1ed separately at "sweep" th~e: thus the vast majority of data manipulations do not cause updates to 
L'1is table.} At opportune moments. the garbage coHector scans this table. and reclaiIr..s all objects :.~at are 
no longer a:cessible (haye a reference count of zero). The time for scann.L.~g the refe:-en:e count tabies 
is ve:y nea=ly cons:ant (about 0.2 seconds on the Xerox 1100); the sweep tL.-ne t.'en is t.~is 5.-r:ail value . 

. . plus time proponional to u~e amount of garbage that has to be collected (typically less tha!l a secor.d). 
"Opponune" times occu!" when a ~ertain number of cells have been allocated or when the srs~em has been 
waitirlg for the user to type something for long enough. The frequency of garbage collec:;.o~ is co~trolled 
by t.l-te fJ~ctions and variables described on pag~ 18.:!. For the best system perfoImmce. it is c!esirabie 
to adjust t..i-)cse parameters for frequent. short garbage collections. which will not ir.terrupt in~cra::::i\'e 

applications for vcry long. and which will have thc added benefit of reducing data fragr:1cntation. keeping 
the working set small. 

One problem with the Intcrlisp-D garbage collector is that not all garbage is guaranteed to be collected. 
Circ'Jlar d'1ta structures. which point to themselves directly or indirectly. are never r~clauned.. since their 
reference counts are always at least one. \Vith time, this unreclaimable garb.1ge may increase L'1e working· 
set to unacceptabie levels. Some users have worked with the same Interlisp-D \'inual memory for a very 
long tL.T.e. but it is a good idea to occasionally save all of your functions in files. reinitialize lnterlisp-D. 
and rebuild your system. lY1any users end their working day by issuing a eommand to rebuild their 
system and then leaving the machL.~e to perform this task in their absence. If the system seems to be 
spending too much time swapping (an indication of fragmented working set), this procedure is definitely 
reco~~enced.. 

18.19.3 Datatypes 

If an applications program uses data structures that are large (more' than 8 fields) and that are used a 
lot. there are several advantages to representing them as user DATATY?Es ra~~er tr.L<lIl as RECORDs. The 
primary advantage is increased speed: accessing and setting the fields of a OAT A TY PEcan be sig.:r;ficz.ntly 
faster than walking throu&~ a RECORD list with repeated CARs and CORso Also, compiled code for 
referencing user DATA TY P Es is usually smaller. Finally. by reducing the number of objects created (one 
D," TATYPE object against many RECORD list cells), this can reduce the expense of ga.-bage collectio!l. 

For code t..i1at has been written using the record pa·:kage's fetch, rep 1 ace, and ere ate operatio:lS. 
changing from RECORDs to DATATYPEs only requires editing the record declarajoD (usbg EDITREC) to 
r~place declaration type RECORD by OATATYPE, and recompiling. 

18.19.4 Incomplete Filenames 

There is a significant problem in Interlisp-D (and in Interlisp-10) with respect to using incomplete 
filenames. \Vhencver an I/O function is given an incomplete filename (one " ... hich doesn't have the 
devicelhost. directory, name. extension. and version number ail supplied). tJ.'e system has to co~ ... ert it to 
a cO!!lt'lete fi:ename, by supplying defaults and searching through directories (which may be on remote file
servers). CUITcntiy. work is being done 0n speeding up the filename-compiction process. but in any C2.!;e it 
is much faster to convcn an incompletc filename once. and usc the complcte filename from th-:=n on. For 
exarnple. suppose a file is opened vt'ith (SETQ FULLNAME (OPE NFl LE 'MYNAME 'I NPUT) ). After 
doin!; r.'1is. (READe 'MYNAME) and (READe FULLNAME) would both work. but (READe • MYN.AME) 
wouid take longer (sometimes orders of magnitude longer). This could seriously effect the pcrform.m::e 
if a prcgram which is doing many I/O operations. . 

18.21 



Turning Off the Display 

18.195 Turning Off the Displa! 

Maintaining the video L-nage on the screen uses about 30% of the cpu cycles (on the Xerox 1100). so 
turni:lg off the display will impro~e the speed of compute-bound tasks. Vvnen the cE.splay is off. the 
screen will be white but any printing or displaying that the program does win be visible when L.~e display 
is t'~rned c(lck on. Note: Breaks and PAGEFULLFN wai~~g tum the display on. bu: uszrs shoulc:be a'w"are 
that it is possible to have the system waiting for a response to a question printed or a menu displayed on 
a non-visible part of L,e screen. Tne following functions are provided to tum th~ display off: 

{SETD IS?LAYHE IGHT NSC.i\.J'lLINES} [Fu:lcticn1 
Sets the display to only show the top NSCANLINES of the screen. If NSCA.~~IN'ZS 
is T, resetS the display to show the full screen. Returns the previous setting. 

(DISPLAYOOWN FOfL\[ NSCANLINES) [Function} 
Evaluates FO&Y. (with the disp·lay set to only show the top NSCA. .... r..r..::s of the (~) 
screen), and returns the value of FORM. It restores the screen to its previous setting. \ 
If NSC~'lLINES is Dot give~ it defaults to O. 

18.19.6 Gathering Statistics 

Interlisp·D has an extended set of statistics-gathering tools. An extended version of the TIME function is 
provided: 

(TIMEALL TIMEFORM #TIMES TZMEWHAT INTERPF!.G -) [NLambda Function] 
Largely subsumes the function TIME. Evaluates u'le form TIMEFOR.\! and prints 
statistics on time spent in various categories (elapsed. keyboard wait. swapping 
time, gc) anddatatype allocation. 

For more accurate measurement on small computations, #TIMES may be specified 
(its default is 1) to cause T~!ZFORM to be executed #T!1.!ES number of times. 
To improve the accuracy of timing open·coded operations in ~"lis case, TIMEALL 
compiles a form to execute T:afEFORM #TrMES number of times (unless r:-:TE..~.PF!'G 
is non-N I L). and then times the execution of the compiled fOIm. The cC!:lpiiation (.~.)."_ 
is with optimizations off to avoid constant folding. __ 

TL\!EVIF"...AT exists largely for compatibility with TIME; it restricts the statistics to 
specific categories. It can be an atom or list of datarypes to mo:litor." and/or the 
atom T Irt.E to monitor time spent. Note that ordinarily, T n~EALL monitors all 
time and c!atatype usage, so this argument is rarely needed. 

The value of T IMEAL L is the value of the last evaluation of TrMEFOR.Y.:. 

The Interlisp-D system has a facility for gathering very low-level statistics on function cill and return. 
It is conceptu~ly lL~e performing a BREAKDO'r'lN on every function in the world. Tne system desigtie~ 
regularly use this facility to determine where time is being spent in suspect computations. suggisting 
which parts of the system code deserve optimizing. 

(OOSTATS FORM TITLE - - -) [Function] 
Collects statistics of the evaluation of FORM and produces a listing of ~"lC results. 
TITLE. if supplied. will appear in the heading of the listing. 

18.22 



0--

0-· 

Ir-.iERLISP-D SPECIFICS 

Performing a statistics run consists of three phases: 

Gar.i.ering 
The microcode is instructed to emit a statistics event for every function call and return that is 
exe:t!te~ and FOR-\! is evaluated. These events' are collected on a file for the next phase (the n2.Ine 
of L,e file is {DSK}JCC(.STATS. where xxx = (CAR FORM)). Currently the file mus: reside on 
{OSK}, .so be sure you have a lot of space. Even seemingly short computations can ger.era~e large 
numb·zrs cf function call/rerum events. If your disk fills up, Lisp may not recover g:acefJl1y (it· 
usually falls into SWAT). 

Anaiysis 
The Statistics file is read in. For each evcn~ a counter associated "With the indicated function is 
incremented by the amount of time spent in the function. The analysis also records who called 
which functions. hew often. and with how many arguments. This is by far ui.e longest phase. 

Summa...-izing 
The results of the analysis are used to produce a listing that shows each of the functions called. 
sorted by t.~eir contribution to the total time, and a cross-reference of who called whom. The listing 
is put on a fiie xxx. PRINTOUT on the connected directory and also shipped to your local printer. 

Excerpts from a 5aL!lple statistics printout are shown below, with COIIl!nentary. The form is (RECLAIM). 
which was fairly brief in Lollis case. 

Notes· 

The times shown in the printout are for time spent in a single function; there is no cumulative time 
measurement. The percentages should thus add up to 100%. If Foa calls F IE. the time spent inside FIE 
is charged to FIE only, not to FOO as well. 

The times recorded are of the right order of magnirude, and can be compared to each other. but should 
not be taken literally, as they are ir.fiated by the overhead of recording each call and return event. The 
total elapsed time for the evaluation phase is much larger still being dominated by the time to dump L,1e 
statistics to disx. but this pan' of the time is filtered out in the analysis. 

Statistics from file: {OSK}RECLAIM.STATS;l 

measuring: evaluation of 
FORt') = (RECLAIM) 

Computation run on Dolphin serial #237 with 2304 pages of memory. 
Versions: Rarn=7401(17,l) Bcpl=17400(37,O) Lisp=106000(214,0) 

(Internal version numbers of microcode. Lisp.run. Lisp.sysout) 

Unrecognizad events: NIL (e· ... erything was okay) 

Values from MiscStats (times in msecs): 
SWAPWAITTIME 6137 
PAGEFAULTS 58 
GCTIME 27392 

~~ot W; ndow; n9 

18.23 



Gathering Statistics 

Filtering out \StackOverflow, \NWWlnterrupt, \PageFault, \StatsOverflow 
(time for these jUnctions measured separately) 

Ignoring time for GETKEYS, \GETKEY. WAITFORINPUT, DISMISS, GATHERSTATS, 
\GATHERSTATS, RAID 

(lime for these functions ignored completely) 

Function timings: #ofCa1ls Pe rCa 11 
total lIme spent in J:"nction (microseconds) 

percentage of total analyzed time spent in f.J.nction 
f..Jnction name. Number of arguments in brackets 

1 
I 
I 
I 

I 
I 
I 

I number of calls recorded to this In 
I I avg time per call (microseconds) 

1746426 
1104420 

794862 
461194 
457537 

77437 
52907 
47308 
45365 

9218 
7618 
7428 
6856 

21597 

4840173 

36.08% 
22.81% 

. 16.42% 
9.52% 
9 • 45~~ 
1.59% 
1.09% 
0.97% 
0.93% 
0.19% 
0.15% 
0.15% 
0.14% 
0.44% 

\GCM.A.PTA8LE [lJ 524 3332 
1 1104420 \GCMAPSCAN [0] 

\HTFINO [2] 
\FREELISTCELL [1] 
\GCRECLAIMCELL [1] 
\GCMAPUNSCAN [0] 
RELEASINGVMEMPAGE [1] 
\GCSCANSTACK [OJ 
FINOPTRSaUFFER [2] 
\P.ODBASE [2] 

1236 643 
2044 225 
1533 298 

CREATECELL [1] 
\If~SERTBLOCK [1J 
\REClAIMARRAYBlOCK [1] 
for 18 entries not shown 

1 77437 
30 1763 

1 47308 
30 1512 
31 297 
18 423 
31 239 
31 221 

(jUnctions contributing less than .1 % are omitted) 
Total for 31 entries 5511 

Function timings: Filtered out fns #ofCalls Pe rCa 11 

(limes for functions whose contribution was omitted from the analysis above) 

20225828 
6900042 
1635737 

28761607 

70.32% 
23.99% 

5.68% 

Subr.\StatsOverflow [0] 413 
Subr.\PageFault [1] 58 
Subr.\NWWlnterrupt [0] 762 
Total for 3 entries 1291 

. Function timings: Alphabetic #ofCalls 

48972 
118966 

2146 

PerCa 11 

(listing as above. but including all jUnctions. and sorted alphabetically) 

Call Information: 

(Alphabetic listing of jUnctions. with calls and callen infonnation) 

18.24 

(stats overhead) 
(pageflTJ.ll activity) 
(pen'odic service) 

f. ~-) . 
\ -

. -~ 

~Q. 
\ ) 

() 



u 

0" 

o 

o 

I~1ERLISP-D SPEOFlCS 

(number of calis in parentheses) 

CLOCK 
Calls: ·MAKENUMBER (8) • \SLOWIPLUS2 (6). CLOCK (2). 

CREATECElL (2) • CLOCKO (2), \SLOWIDIFFERENCE (2) 
Callers: \OORECLAIM (2) • CLOCK (2) 

CLOCKO 
Callers: CLOCK (2) . 

CREATECELL 
Calls: \HTFlfiD (1) 
Callers: MAKENlIMBER (16), CLOCK (2) 

18.20 THE lI'c-rERLISP-D PRCCESS l\1ECHANISM 

The Interlisp-D Process mechanism provides an environment in which multiple Lisp processes can run in 
paral1el. Each executes in its own stack space. but all share a global adress space. Tne' current process 
implementation is cooperative; i.e .• process switches happen voluntarily, either when the process in control 
has notlling to do or when it is in a convenient place to pause. There is no pre~mption or gua:anteed 
service. so you cannot run something demanding (e.g .. Chat) at the sa.'ne time 2.S someL~g that nl:lS for 
long periods without yielding control. Keyboard input and network operations block VY1th great frequency, 
so processes currently work best for highly inter2.Ctive tasks (editing. making remote files). 

In Interlisp-D, the process mechanism is already turned on. and is expected to stay on during normal 
ope:ations. as some system facilities (in particular, most network operations) require it. However. under 
exceotional conditions. the foilowing function can be used to tum the world off and on; . ~ 

(PROCESSWORLD FLG) [Function] 

(HARDRESET) 

Starts up the process worlcL or if FLG = 0 F F, kills all processes a::d turns it 
off. Norrnz11y does not return. The environment star'"..s out with two pro:esses: a 
top-level EVALQT (the initial "tty" precess) and the "background" proc~ whi:h 
x:uns the window mouse handler and other system background tasks .. 

Note: PROCESSWORLO is intended to be called at the top level of In:e:!isp, 
not from within a program. It does not toggle some son of switch: raL.'1er. it 
cons~cts SCr:le new processes in a new part of the stack. leaving any callers of 
PROCESS~JO;iLD in a now inaccessible part of the stack. Calling (PROCESSWORLD 
'OF F) is the only way the call to PROCESSWORLD ever returns. 

(Function] 
Resets the whole worlcL and rebuilds tile stack from scratch. 1b.is is "harder" L1an 
doing RES E T to every process, because it also resets system internal processes (such 
as the keyboard handler). 

HARDRESET automatically turns the process world on. (or resets it if it was on). 
unless the variable AUTOPROCESSFLG is NIL. 

18.25 



Creating and Destroying Processes 

18.10.1 Cre:1ting 2nd Destroying Processes 

(ADD. PROCESS FORM PROPI VALUE1 ••• PROPN VALUEN) [NoSpread FU:lctionj 
Creates a new process evaluating FO&\!. and returns its process handle. The 
process's Stal:X environrnent is the top leveL i.e .• the new process does not have 
access to the environment in which AOD. PROCESS was called: all such infon::atioc 
must ce passed as arguments in FORM. The process runs until FC?_''! ret'~-ns or 
u'le process is explicitly deleted. An untrapped error within t.1e process also cele~es 
the process (unless its RESTARTASLE property is T). in which case a message is 
printed to that effect. 

The remaining arguments are alternately property names and values. Any 
property/valt:e pairs acceptable to PROCESSPROP may be given. but t.'le follo\\.i:1g:· 
two arc directly relevant to ADD. PROCESS: 

(~) 

r~ 

NAME Value should be a Iitatom: if not giYen. the process name is taken from (, ). 
(CAR FOR..'J). AOD. PROCESS may pack the name with a nt:.mber to 

( PROC·ESSPROP 

make it unique. This name is solely for the CODyenience of manipulatiJ:g 
processes at Lisp typein: e.g .. the name can be given as the pR.oe argument 
to most process functions. and the name appears in menus of precesses. 
However. programs should normally only deal in process handles. both for 
efficiency and to avoid the confusion that can result if two processes have 
the same defining form. 

SUSPEND 
If t.'1e value is non-N I L, the new process is created but then immediately 
suspended; i.e., the process does not actually run until woken by a 
WAKE. PROCESS (below). 

PRoe PROP NE'WVALUE) [NoSpread Function] 
Used to get or set the values of certain properties of process FRoe, in a rrla"''''er 
analogous to \III fdDOWPROP. If NEWVALUE is supplied (including if it is ~4 I L). 
property PROP is given that value. In all czses. returns the old value of t..~e 
property. The follo\1ring properties have special meaning for processes; all others 
are unin.terpreted: 

NAME Value is a litatom used for identifying the process to the user. 

RESTARTA8LE 
Value is a flag indicating the disposition of the process following errors or 
hard resets: 

NIL or NO 
(the default) If an untrapped error (or control-E or control-D) 
causes its form to be exited.. the process is deleted. Tne process 
is also deleted if a HARDRESET (or control-D from RAID) oc.""1.!~ 
causing the entire Process world to be reinitialized. 

T or YES 
The process is automatically restaned on errors or HARORESET. 
This is the normal setting for persistent "background" processes.. 

18.26 

-. 

(~ 
\ ). 



.~. 

L) 

f~\' 
~ . 

o· 

o· 

INTERLISP-n SPEOFlCS 

such as the mouse process. that C3.J., safely restart the!!lselves on 
errors. 

HARORESET ~ 

The· process is deleted as usual if an error causes its fo~ to be 
exited.. but it is restarted on a HARDRESET. This setti!'!g is prerer:-ed 
for persistent precesses for which an error is an unus1.:al ccndijon.. 
one that migJlt repeat itself if the process w~re SL~?ly blindly 
rcstancd. 

FORM Value is the Lisp fonn used to start the process (readonly). 

AFTEREXIT 
Value indicates the disposition of the process following a resumption of 
Lisp after some exit (LOGOUT. SYSOUT. MAKESYS). Possible .. alues are: 

DELETE 
Delete the process. 

SUSPEND 
Suspend the process; i.e.. do not let it run until it is explicitly 
woken. 

<an event> 
Cause the process to be suspended waiting for the event (page 
18.30). 

INFOHOOK 
Value is a function or form used to provide information about the process. 
in conjunction with the process status window (page 18.36). 

WINDOW 
Value is a wmdow associated with the process. the process's "main" window. 
Used in conjunction with switching the tty process (page 18.33). 

TTYElJTRYFN 
Value is a function that is applied to the process when the process is made 
the tty process (page lS.33). 

TTYEXITFtJ 
Value is a function that is applied to the process when the process ceases 
to be the tty process (page 18.33). 

(THIS. PROCESS) [Function] 
Returns the handle of the currently running process, or NIL if the Process world 
is turned off. 

(DEL. PROCESS PRoe -) [Fu:1:tion] 
Deletes process PRoe. PRoe may be a process handle (returned by ADO. PROCESS). 
or its ncune. Note that if PRoe is u~e currently running process, DEL. PROCESS 
does not return! 

lS.27 



Process Control Constructs 

(PROCESS. RETURN VALVE) _ [Functon] 
Terminates the currently running process. causin.g it to "return" VALUZ. Tnere is a.."1 

implicit PROCESS. RETURN around the FORM argument given to ADO. PROCESS. 
so u'1at nonnally a process can finish by si.,·n~ly returning; PROCESS. RETURN is 
supplied for earlier termination.. '. 

( PROCESS·. RESULT PP..OC:::SS WAITFOP_q,ESu"LT) {Function] 
If PROCESS has terminated. returns the vaiue. if any. that it returnee... Tnis is eiw.'1er 
the value of a PROCESS. RETURN or the value returned from t.'1e fcrm given to 
ADD. ?ROCESS. If the piccess was aborted. the value is NIL. If ,"V..-!..lTFORRE'5L"LT 

is true. PROCESS. RESUL T blocks until PROCESS Enisl1es. if n~essary: ot:.~er""'ise. 
it returns NIL immedi~tely if PROCESS is still funning. Note t.'1at PROCESS must 
be the actual prccess handle returned from ADD. PROCESS. not a proces5 n~;:. 
as the association between handle and name disappc:lrs when the process finishes 

~ '. )". 

(an,d the process handle itself is then garbage collected if no one else hJ.S a pointer ('\ 
to It). \ ) -. 

(PROCESS. FINISHEDP PROCESS) [Function] 
True if PROCESS has tenninatecL The value returned is an indication of how it 
finished: t~ORf.1AL or ERROR. 

(PROCESSP PROC) [Function1 
True if PROC is the handle of an active proc~ Le .• one that has not yet finis.'ed. 

(RELPROCESSP PROCBANDLE) [Function1 
True if PROCHANDLE is the handle of a deleted process. This is analogous to 
RELSTKP. It differs from PROCESS. FINISHEDP in that it never causes an error. 
while PROCESS" FINISHED? can cause an error if its PROC argument is not a 
prccess at all. . 

(R'ESTART • PROCESS PROC) [F'.l!lction] 
Unwinds FROC to its top level and reevaluates its form. This is effectively a 
DEL. PROCE~ followed by the original ADD. PROCESS. 

(MAP. PROCESSES MAPFN) [Function] ('\ .r- Maps over all processes. calling .V.APFN wiu.~ three arguments: the process ha.."1C.1·~. ) 
its name. and its form. 

(FIND.PROCESS PROC ERR.OR..:r;'LG) . [Function] 
-- If PRoe is a process handle or the name of a process, returns the process h<L~Cle 
for it, else NIL. If ERROR...r"LG is T. generates an error if PRoe is not. md does 
not name, a live process. 

18.20.2 Process Control Constructs 

( S LOC K ~fS.ECSWA1T TL'WER) [Function) 
Yields control to the next WaItlng process, assuming any is ready to run. If 
MSECSWAIT is specified. it is a number of rriilliseconds to wait before returnL~g (ill 
which case BLOCK is very much like DISMISS). or T. meaning wait forever (until 
explicitly woken). Alternatively. TIMER can be given as a millisecond timer (as 

18.28 



(). 

. 

;.~--.....).,....... 
I 

\---- . 

(WAKE.PROCESS 

I1'I-rERLISp· D SPECIFICS 

returned by SETUPT IME R) of an absolute time at which to wake up. In ~'Y of 
those cases, the process enters the wailing state until the time Iinut is up. BLOCK 
with no arguments leaves the process in the runnabie state. i.e .. it r~turns as ~"'On 
as every otl:er runnable proce~s of the same priority has had a cha:lce. 

PROC STATUS) [Function] 
Explicitly wakes process PROC. Le .• ma.\(es it runnable. atld causes its call to S LOCK 
(or other waiting function) to rerum STATUS. This is one siLlple way to notify a 
process of some happening: however. note that if ~AKE. PROCESS is a;:-;:iiec ~o a 
process more than once before the process actually gets its turn to r"Ul. it sees only 
t..he latest STATUS. 

(SUSPEND. PROCESS PROC) [Functon] 
Blocks process FROC indefinitely. i.e .. PRoe will not run until· it is wokcn by a 
WAKE. PROCESS . 

The following three functions allow access to the stack context of some other process. They require a little 
bit of care. and are computationally non-trivial., but they do provide a more powerful way of manipulating 
anot.'1er process than WAKE. PROCESS allows. 

(PROCESS.EVALV PRoe VAR) [Function] 
Perfonns (EVALV VAR) in the stack context of PRoe. 

(PROCESS. EVAL PRoe FOR.\fWAITFORRESULT) [Function] 
Evaluates FORM in the stack context of PROC. If WAITFOR..~U":r..T is true, blocks 
until the evaluation returns a result. else allows the CUI7ent process to run in p:L-allel 
with the evaluation. Any errors that occur will 6e in the context of PRoe, so be 
careful. In particular, note that 

(PROCESS.EVAL FRoe 'tNLSETQ (FOC») 

and 

(NLSETQ {PROCESS.EVAL PRoe '(FOO») 

behave quite differently if FOC causes an error. And it is quite pe:m.issibie to 
intentionally czuse an error in. prcc by performing 

{PROCESS.EVAL PRoe '(ERROR!» 

If errors are possible and WAITFOR.RESULT is true. the caller should almost ceri':l;711y 
make sure that FORM traps the errors; othernse the caller could end up wait:..og 
forever if FOR},! unwinds back into the pre-existing stack context of FROC. 

(PROCESS .APP~ Y PRoe FN ARGS WAITFORRESULT) [Function] 

18.20.3 Events 

Performs (APPLY FN ARCS) in the stack context of PROC. Note same w~-n.ir.gs 
as with P ROC E SS • EVAL. 

An "event" is a synchronizing primitive u~ed to coordinate related processes. typically producers and 

18.29 



( 

Monitors 

cOI:.sumers. Consumer processes can uwait" on events, and producers "notify" events. 

(CREATE. EVE~T NAME) [FuncticnJ 

(A\l/AIT. EVE?JT 

(NOTIFY.EVE~T 

Returns an instance of the EVENT datatype, to be used as the event ar~ent 
to functions listed below. NAME is arbitrary, and is used for debm~ziI:z or St2.tus . - -
information. 

EVENT TIMEOUT TTh{ZRP) [Function] 
Suspends u.1.e current process until EVENT is notHied. or until a timeout OC::Ur5. If 
TI1wfEOUT is r~ I L. there is no timeout. Otherwise. timeout is either a nu..r::::'er of 
millis',;conds to wait. or. if TP.-!ERP is T. a rnillisecondtiJner set to- expire at :.'e 
desired time using SE TUPT I:-1E R (see page 14.11). 

EV~NT ONCE01VLY) [Function1 
If there are processes waiting for EVENT to occur. causes those processes to ce 
placed in the running state. with EVENT returned as the value from AWAIT. EVENT. (-'\ _ 
If ONCEONLY is true. only runs the first process waiting for the event (this should ) . 
only be done if the programmer knows c...'at there can only be one process c.1;mble ' , 
of responding to the event at once). 

The meaning of an event is up to the programmer. In general. however. the notification of an event 
is merely a hint that something of interest (0 the waiting process has happened: the process should still 
verify that th~ conceptual event actually occurred. That is. the process should be written so that it operates 
correctly even if woken up before the timeout and in the absence of the notified evenL In panicoJlar. L'1e 
cOn-!;Jietion of PROCESS. EVAL and re!ated operations in effect wakes up the process in which they were 
perfonned. since there is no secure way of knowing whether the event of interest occurred while the 
process wac; busy performing the PROCESS. EVAL. 

There is currently one class of system-defined events, used with the network code. Each Pup and NS 
socket has associzted with it an event that is notified when a packet arrives on the socket: the event can b~ 
obtained by :alling (PUPSOCKETEVENT PT.JPSOCXET) or (NSOCKETEVENT NSO~.:CET). resp~ti\'ely. 

18.20.4 ~lonitors 

~t is ofte~ the case that ccoperatingprocesses perform o~eratioc.s on shared strJctures., ~d some mechanism (~) 
1S needea to prevent more li'lan one process from altenng the structure at the S<!..~e ume. Some la::gtl:!ges ... -
have a construct called a monitor, a collection of functions that access a COIIL."Ilon sm.:cturewiu1 mutual 
exclusion proviced and enforced by the compiler via the use of monitor locks. Interlisp-D has ta.ken t..1.is 
implementation notion as L'1e basis for a mutual exclusion capability suitable for a dynamically-seoped 
en vironrnent. 

A monitorlock is an object created by the user and associated with (e.g., stored in) some shared stn.lcrure 
th:!t is to be protected from simultaneous access. To access the structure. a program waits for the lock 
to be free. L1C:l takes ownership of the lo:t accesses the structure. u'1en rele~l!s the lock. The functions 
Jnd m~cros below are used: 

(CREATE.MONITORLOCK NA..\!E -) [Function1 
Returns an instance of L'1e MON I TORlOCK datatype. to be used as the lock arg'.lme:lt 
to functions listed below. NAME is arbitrary, and is used for dcbu£6ins or S~~'JS 
infonnation. 

18.30 



() 

0, 

INTERLISP-D SPECIFICS 

(WITH. MONITOR LOCK • FOR.lv!S) [~fac:o] 
Evaluates (PROGN . FORMS) while owning LOCK. Value is the last of FOP_MS • 

. TIlls construct is implemented so that the lock is· released' even if the fon: is 
exited via error (currently implemented wit..i. RESETLST). Ownership of a lcck is 
dynamically seoped: if the current process already owns the lock (e.g .. if u'1e calier 
was itself inside a WITH.r..,ONITO'R for this lock). WITH.MONITOR is a noop .. 

(WITH:F AST • MON ITOR LOCK • FORMS) [~'1acro] 
Like 'iIITH. MON ITOR. but implemented without the RESET-LST. User L"1tem.:?!S 
(e.g .. control-E) are inhibited during the evaluation of FOR.Y.S. 

Programming restriction:. the evaluation of F'ORlwfS must not error (the lock would 
not be released). This construct is mainly useful when FOR.'"dS is a small. safe 
computation that never errors and need never be interrupted. 

~ tlONITOR .AWAIT • EVENT RELEASELOCK EVENT TIMEOUT T!MERP) [Function] 
. For use in blocking inside a monitor. Performs (AWAIT. EVENT EVE:-tT TIMEOUT 

TruERI'), but releases RELEASELOCK first. and reobtains the lock (possibly waiti~g) 
on wakeup. 

Typical use for MON ITOR. A\,/AIT . EVENT: A function wants to perform some operation on Foo, but o~ly 
if it is in a certain state. It has to obtain the lock on the structure to make sure that the state of the 
structure does not change between the time it tests the state and performs the operation. If the state tur::s 
out to be bad., it then waits for some other process to make tb.e state goo<i meanwhile reieasing L.i.e lock 
so that the other process can alter L'le structure. 

(WITH.MONITOR F~~ 
( un t ; 1 condition-oF-Foo 

do (MON ITOR. A\JAIT • EVENT FooLocJc Even.tFooCllAllged timeout» 

operate-o:J-Foo ) 

It is sometimes convenient for a process to have WITH. MONITOR at its top level and then do all its 
inter'esti!1g waiting using MON ITOR. AWAIT. EVENT. Not only is this often clear.er. but in t:.i.e present 
impleme:lt.ation in cases where the lock is frequently accesse<i it saves the RESETLSi overhead of 
WITH. MOr~ ITOR. 

Programming restriction: there must not be an ERRORSET between the enclosing WITH. MONITOR and 
the cill to MONITOR.A\'iAIT .EVENT such t.1tat the ERRORSET would catch an ERROR!·and conti:lue 
inside the monitor. for the lock would not have been reobtainecL (The reason for this restriction is 
that. although MO!~ ITOR. AWAIT. EVENT won't itself error, the user could have caused an error with an 
interrupt, or a PROCESS. EVAL in the context of the waiting process that produced an error.) 

On rare occasions it may be useful to manipulate monitor locks directly. The followL."1g two functions are 
used in the implementation of ~IITH. MaN ITOR: 

(08TAIN~MONITORLOCK LOCK DONTWAlT UNWINDSAVE) [Function} 
Takes possession of LOCK. waiting if necessary until it is free. unless DONTV,:AJT is 
true. in which case it returns NIL immediately. If ''IN'HIl'.,7)SAVE is true. perforL:".S a 
RESETSAVE to be unwound when th.e enclosing RESETLST exits. Rerurns LOC:': 

if LOCK was successfully obtained. T if the current process already owned LOCK. 

18.31 



Global Resources 

(RELEASE .MO~lITORLOCK L00) [Function] 
Releases LOCK if it is owned by the current process. and wakes up the next process. 
if any, waiting to obtain the leek. 

When a process is deleted.. any locks it owns are releas:d. 

18.20.5 Global Resources 

The biggest source of problerrJS in the multi-processing environment is the matter of giobal resour::es. 
T .. vo processes cannot both use the sarr..e global resource if t..'1ere can be a process switch in the midc!le 
of their use (currently this mea..."lS calls to BLOCK. but ultimately with a preemptive sched:ller means 
anytime). Thus. user code should be wary of its own use of global variables. if it ever makes sense for 
the code to be run in more than one pr.ocess at a tir.1e. "State" variables private to a process stould 
generally be bound in that process: struc:urcs that arc shared among processes (or resources used priYately 1-, 

but expensive to duplicate per process) should be protected with monitor locks or some other form of ( ) 
'- synchrcnization. ~ -.. " 

Aside from user code. however. there are many system global variables and resources. Most of these arise 
historically from the single-process Interlisp-lO environment. and will eventually be changed in Interlisp-D 
to behave appropriately in a multi-processing environment. Some have already been changed. and are 
described below. Two other resources not generally thought of as global variables-the keyboard and the 
m01l-.~are panicularly idosyncratic, and are discussed in t..~e next section. 

The following resources, which are global in Interlisp-lO, are allocated per process in Interlisp-D: pr.mary 
input and output (the streams affected by INPUT and OUTPUT). terminal input and output (the su.-ea!:lS 
designated by the name i). the primary read table and primary terminal table. and dribble files. Thus. 
each process can print to its own primary output. print to the terminal, read from a diffe:-ent prima!,,! 
input. all without interfering with another process's reading and printing. 

Each process begins life with its primary and terminal input! ou tput streams set to a durr~y stream. If 
the process attempts input or output using any of those dummy streams. e.g .• by calling (READ T), 
or (P R I r~T & T), a tty window is automatically created for the process, and that window becomes the 
pr.:nar'j input! output (L."d terminal input! output for the process. The default tty window is created at or 
near the region spe:ified in u~e variable DE F f\UL TTTYREG ION. ( ) 

A precess can.. of course. call TTYOISPLAYSTREAM explicitly to give itself a tty window of its cwn 
chccsin& in which case the automatic mechanism never comes into play. Calling TTYOISPLAYSTRE:~H 
when a process has no tty window not only sets the terminal streams. but also sets t.~e primarY input and 
output streams to be that window, assuming they were still set to tt.'e durn..my streams. 

(HASTTYWINDOWP PRoe) [Function] 
Returns T if the process PROC has a tty window; NIL otherwise. If PRoe is NIL. 
it defaults to the current process. 

Otb.er system resources thnt are typically changed by RESETFORM, RESETLST, RESETVARS are all global 
entities. In the multiprocessing enVirOIh'1lent. these constructs are suspect. as there is no provision for 
"undoing" them when a process switch occurs. For example. in the current release of Interlisp-D, it is 
not possible to set the print radix to 8 inside only one process. as "the print radix is a global entity. 

Note that RESETFORH and similar expressions are perfectly valid in the process world. and even quite 
useful. when they manipUlate things strictly within one process. The process world is arranged so that 

18.32 
(j 



0··· 

o 

I1\TIRLISP-D SPECIFICS 

deleting a process also unwinds any RESET xxx expressions that were performed in the process and are 
still waiting to be unwound. exactly as if a control-D had reset the process to the top. Additionally. 
th·e:e is an implicit RE5ETL5T at the top of each precess. so that RESETSAVE can be used as a way of 
providing "cleanup" fun:tions for when a process is deleted. For these. the value of RESET5TATE is NIL 
if the orocess fUlished nonnally. ERROR if it was aborted by an error. RESET ifu~e process was exuli::itly 
deleted. and HARDRE5ET if the process is being restaned (after a HARD RESET or a RESTART. PROCESS). 

18.20.6 Typein and the TTY Process 

There is one global resource. the keyboard. that is particularly problematic to share among processes. 
Consider. for example. having two processes both performing (READ T). Since the keybo3.rd input 
routines block while there is no input, both process~ would spend most of their time blocking. and it 
would simply be a maaer of chance which process received each character of typein. 

To resolve such di1crr..mas. the system designates a distinguished process. termed the tlJ' process.. that is; 
assumed to be the process that is involved in terminal interaction. Any typein from the keyboard goes to 
that process. If a process other than the tty process requestS keyboard input, it blocks until it becomes the 
t:y process. When the tty process is switched (in any of the ways described further below), any typeahead 
that occurred before the switch is saved and associated with the current tty process. ThUs. it is always the 
case the keystrokes are sent to the process that is the tty process at the time of the keystrokes.· regardless 
of when Ll1at process actually gets around to reading them. 

It is less im:nediately obvious how to handle keyboard interrupt characters. as their action is asynchronous 
and not always tied to rypein. Interrupt handling is described on page 18.35. 

13.20.6.1 S",itching the TrY Process 

Any process can make itself be the tty process by calling TTY. PROCESS. 

(TTY. PROCESS FROC) [Function] 
Returns the handle of the current tty process. In addition. if FRoe is non-N! L~ 
makes it be t..i-te tty process. The special case of PRoe = T is interpreted to mean 
u~e executive process; this is sometimes useful when a process wants to explicitly 
give up being the tty process. 

(TTY. PROCESS? PRoe) [Function] 
True if PRoe is the tty process: PRoe defaults to the running process. Tnus. 
(TTY. PROCESSP) is true if the caller is the tty process. 

(WAIT. FOR. TTY) ·[Function] 
Efficiently waits until (TTY. PROCE SSP) is true. WAIT. FOR. TTY is called 
internally by the system functions that read from the terminal: user code thus 
need only call it in spccial cases. 

In some C2Ses. such as in functions invoked as a result of mouse action or a user's typed-in cill. it is 
reasonable for the function to invoke TTY. P ROC E 55 itself so· that it c:m take subsequent user type in. 
In other cases, however, tJlis is too undisciplined: it is desirable to let the user designate which P4"o:ess 
typein should be directed to. This is most conveniently done by mouse action. 

18.33 



Switching theITY Process 

The system supports the model_ that "to type to a process. you click in its window. t9 To cooperate wit.~ 
this model. any process desiring keyboard input should put its process ha.,.,dle as the PROCESS property 
of its window(s). To handle the common case, the function TTYO I SPLAY STREAM does this auton:z..tically 
when u.1.e ttydisplaystrearn is switched to a new window. A process can own any number of Vrindows: 
clicking in any of tJ.'1cse windows gives the process the tty. 

This mechanism suffices for most casual process writers. For example, ifa.:process wants all its input/output 
inte:action to occur in a parJcular window lL1.at it has create~ it should just make that ..raldo·;, be its 
tty window by calling TT'fOISPLAYSTREAM. Thereafter, it can PRINT or READ to/from L.'e T strea.~: if 
the proc'ess is not the tty process at the thne that it calls READ, it will block until the user clicks in :he 
window. 

For those needing tig!lter control over the tty, the default behavior can be overridden or supplemented.. 
The remainder of tl'...is section describes the mechanisms involved.. 

There is a window property WINOOWENTRYFN that controls whether and how to switch the tty to the r 
process owning a window. The mouse h2.Ildler, before invoking any nonnal BUTTONEVENTFN. specilkally \~) . 
notices L.~e case of a button going down in a window that belongs to a process (Le .• has a PROCESS 
window property) tl:at is not the tty process. In this case, it invokes the window's WlrlDOWENTRYFN of 
one argument (WINDO"N). WINOOWENTRYFN defaults to GIVE. TTY. PROCESS: 

(G lVE. TTY. PROCESS WL'\uOw) [Function] 
If 'Wl'NDOW has a PROCESS property, performs (TTY. PROCESS (WlNDOWPROP 
WINDO\V 'PROCESS» and then invokes WINDOWS BUTTONEVENTFN function 
(or R IGHT6UTTOr~ F N if the right button is down). 

There are some cases where clicking in a window does not always imply that the user wants t9 olk 
to that window. For example. clicking in a text editor window with a shift key held down means to 
"shift-select" some piece of text into the input buffer of the CUTTent tty process. The editor supports this 
by supplyi.l'lg a WlNDO\:lENTRYFN that performs GIVE. TTY. PROCESS if no sPjft key is down. but goes 
into:its shift-select mode. without changbg t..~e tty process. if a shift key is down. Tne shift-select mocie 
performs a BKSYS3UF of the selected text when the shift key is let up, the 8KSYSaUF feeding input to 
the current tty process. 

SometiJnes a process wants to be notified when it becomes the tty process, or stops being the tty process. 
For exa.mpl~. Chat (page 20.18) tu~s off all keyboard interrupt characters while it is L1.e tty process. (j 
so that they can be passed transparently to the remote host. To support this. there are (Vt'o process .
prope:ties, TTYEXITFN and TTYENTRYFN. The actions taken by TTY. PROCESS when it switches the 
tty to a new process are as follows: the former tty process's TTY E X IT F N is called with t"W·O argu:ne:l ts 
(OLD7TYFRCCESS NE"rVTTY?ROCESS): the new process is made the cry process: finally. tJ.'1e new tty 
proce!!s's TTYENTRYFN is called with two arguments (NEvl'TTYPROCESS OLDTTYPROCESS). Normally 
the TTYENTRYFN and TTYEXlTFN need only their first argumen~ but the other process involved in 
the switch is supplied for completeness. In the present system, most processes want to interpret the 
keyboard i:l :he same way. so it is considered the responsibility of any process that changes tbe keyboard 
inte~r~ution to restore it to the IlonnJ.i state by its TTY E X I T Frt 

A windo",' is "owned" by the last process that anyone gave as the window's PROCESS property. OrdinarUy 
there is no conflict here, as processes tend to own disjoint sets of windows (though, of course. cooperating 
processes can c~rtJ.in1y try to confuse each orner). The only likely problem arises with that most global 
of windows. PRQr·1PTWINDOW. Programs should not be tempted to read from PROMPTWINDO'i/. 1P..is 
is not usuaily necessary anyway, as the first -attempt to read from T in a process that has not set i:s 
TTYOISPLAYSTREAr1 to its own window causes a tty window to be created for the process (see page 

18.34 
( '\ 
\. ) 



0-

INTERLISP-D SPECIFICS 

18.32). 

18.2Q.6.2 Ha:ldling of Interrupts . 

At the time that a keyboard interrupt character (page 9.17) is struck: any process could be runni.!g. and 
some decision must be made as to which process to actually interrupt. To the extent t..~t keyboard 
interrupts are related to typein. most interrupts are taken in the tty process: however. the following are 
handicd sp'xialiy: 

RESET, ERROR 

HELP 

BREAK 

RUB OUT 

(normally control-D and control-E) These -interrupts are taken in the mouse process. if t.~e 
mouse is not in its idle state: otherwise they are taken in the tty process. Thus. control-E 
can be used to abort some mouse-invoked window action. such as u.'c Sh~pc conunand. 
As a consequence. note that if the mouse invokes some lengthy computatlon th::!t L~e user 
thinr..s of as "background", control-E still abortS it. even though that may not have been 
what the user intended.. Such lengthy computations. for various reaso~ should ge::lerally 
be perfOImed b~ spawning a separate process to perform them. 

The RESET interrupt in a process other than L.~e executive is inteq:>reted exactly as if an 
error unwound the process to its top level: if the process was designated REST ART ABLE 
= T, it is restarted; otherwise it is killed.. 

(Initially control-H) A menu of processes is presented to the user. who' is asked to select 
which one the interrupt should occur in. The current tty process appears with a • next 
to its name at the top of the menu. The menu also includes an entry "[Spawn ~1ousef', 
for the common case of needing a mouse because the mouse process is currently tied up 
running someone's BUTTONEVENTFN: selecting u1.is entry spawns a new mouse precess, 
and no break occurs. 

(Initially control-B) Perfol"I!'..5 tJ.'1e HE LP interrupt always in the tty process. 

(Initially <deD) This interrupt clears typeahead in all processes. 

RAID, STACK OVERFLOW, STORAGE FULL 
These interrupts always occur in whatever process was running at the time the intemIpt 
stru:k. In L'1e cases of STACK OVERfLOvl and STORAGE FULL. t.~is weans that the 
interrupt is more lil~ely to strike in t.~e ofr"ending process (especially if it is a "runaway" 
process that is not blccking). Note. however, that this process is still not necessa..-ily ~"le 
guilty pa.riy; it could be an innocent bystander that just happened to use up the last of a 
resource prodigiously consumed by some other process. 

I8.20.i Keeping the Mou~ Alive 

Sir:ce the window mouse handler runs in its own process. it is not available While a winc.ow·s 
BUTTONEVENTFN function (or any of the ou.'1er window functions invoked by mouse action) is runni.:lg. 
This leads to two sons of problems: (1) a long computation underneath a 6UTTOt~EVENTFN dep:ives the 
user of the mouse for other purposes, and (2) code that rur.s as a BUTTON EVE NT F N cannot rely on oL~er 
BUTTOtiEVENTFfJs running. which means that there some pieces afcode th~u run differently from ncrm31 
when run under the mouse process. These problems are addressed by the following functions: 

18.35 



Debugging Processes 

(SPA\'iN. MOUSE -) [Ft:.!lction] 
Spawns another mouse process. allowing the mouse to run even if it is currently 
~'tied up'· under the currer..t mouse process. Djs function is intended mainly to be 
typed in at the Lisp executive when the user notices the mouse is busy. 

(ALLO\i. BUTTON. EVENTS) [Fu:lctionj 
Performs a (SPAWN. MOUSE) only when called underneau.~ the couse proc~. This 
should be called (once. on entry) by any function that relies on 8UTTONEVEUT FNs 
for completion. if there is any possibility that the function will itself be i..,voked by 
a mouse function. 

It never hurtS. at least logically, to call S?A"H~. MOUSE or ALLO~". BUTTON. EVENTS needlessly. as U.'e 
mouse process <!JTanges to quietly kill itself if'it returns from the user's BUTTONEVENTFN and ~,ds that 
another mouse process has sprung up in the meantime. (There is. of course, some computational expense.) 

18.20.8 Debugging Processes 

(PROCESS. STATUS. WI~lDOW WHERE) [Function] 
Puts up a window that provides several debugging comma.,ds for mani,;:mlating 
running processes. If the window is already up. PROCESS.STATUS.WINDOW 
refreshes it. If WHERE is a position, the window is placed in that position: 
otherwise. the user is prompted for a position. 

The window consists of two menus. The first is a menu of all the processes at the 
moment. Commands in the second menu operate on the' process selected in the 
first menu. The commands are: 

BT, BTV,8TV*, BTV! 
Performs a backtrace of th~ selected process. The first time. it prompts for 
a window in which to display the backtrace. 

WHO? Changes the selection to the tty process. i.e~ the one currently in control 
of ui.e keyboard. 

( . \ 
!.- .. 

/ 

/ \ 
\.J 

KBD<f- Associates the ,keyboard with the selected process; Le .• makes the selected ( ... _) 
process be the tty process. 

INFO If the selected process has an INFOHOOK, calls it. Tne hook: may be a 
function, which is then applied to two arguments. the process and L~e 
button (LEFT or MIDDLE) used to invoke INFO. or a fonn .. which is 
simply EVAL'ed. The APPLY or EVAL happens in the context of the 
selected process, using PROCESS. APPL Y or PROCESS. EVAL. The info 
hook can be set using PROCESSPROP. 

K ILL Deletes the selected process. 

RESTART 
Restarts the selected process. 

WAKE Wa.lccs the selected process. Prompts for a value to wake it with (see 
\'IAKE. PROCESS). 

18.36 (j 



-, 
r ) 
\.... 

INTERLISP-D SPEOFICS 

SUSPEND 
Suspends the selected process: Le .• causes it to block indefinitely (until 
explicitly woken). 

BREAK Enter a break under L.'1e selected process. Tnis has the side effect of waking 
the process with L~e value returned from L.i.e break. 

Currently. t..~e process status window runs ufider the mouse process. like o:her menus. so if the mouse is 
unav~2.ble (e.g .. a mouse function is performing an extensive computation). you may be unable ~o use 
the process sutuS window (you can try SPAWN. MOUSE. of course). 

18.20.9 Non-Process Compatibility 

Tnis section describes some considerations for authors of programs that ran in the old single-process 
Interlisp-D environment. and now want to make sure they run properly in the Multi-processing work\, 
The biggest problem to watch out for is code that runs underneath the mouse handler. Write~ of mouse 
handler functions should remember that in the process world the mouse handler runs in its own process. 
and hence (a) you cannot depend on finding infonnation on the staCk (stash it in the window ins:ead). and 
(b) wpJle your function is running. the mouse is not available (if you have any non-t...-1vial computation 
to do. spawn a process to do it, notify one of your existing processes to do it, or use PROCESS. EVAL to 
run it under some other process). 

The following functions are mea..Lingful even if the process world is not on: BLOCK (invokes t.~e system 
background routine. which includes handling the mouse); TTY. PROCESS. THIS. PROCESS (bot.~ rerum 
NIL): and TTY. PROCESSP (returns T. Le .• anyone is allowed to take tty input). In addition. the foliowing 
two functions exist in both worlds: 

(EVAL.AS.PROCESS FORM) [Function] 
Same as (ADD: PROCESS FOR..J..,{ 'RESTART ABLE 'NO), when processes are 
running, EVAL when not. This is higpJy recommended for mouse fllnctions that 
perform any non-trivial activity. 

(EVAL. IN. TTY. PROCESS FORM vVAITFO'&''U:SULT) [Function] 
Same as (PR.OCESS.EVAL (TTY.PROCESS) FOR...'.! WA1TFOP_~Sti·LT}, when 
processes are runnin~ EVAL when not. 

Most of the process functions that do not take a process argument can be called even if processes aren't 
running. ADD. PROCESS creates, but does not ru~ a new process (it runs when PROCESS~'ORLD is 
called). 

18.21 PRO!VrPTFORWORD 

PROHPTFORHORO is a function L.'at reads in a sequence of characters. generally from the keyboarcL 
without involving READ-like syntax. The intent is to mimic the prompted-read used by the Alto E~~ 
when asking for login na.~es. passwords etc. Thus a user can supply a prompting st...-L."1g. as well as 
a "candidate" s~,g. which is printed and used if the user types only a word terminator chara:ter (or 
doesn't type anything before a given time limit). As soon as any characters are typed the "canciicbte" 

18.37 

I 
I 
! 

I 
I 

i 
! 



PROMPTFOR\VQRD 

string is erased and the new inp~t takes its place. 

PRO}1PTFOR\'/ORD accepts user type-in until one of the "word terminator" characters is typed. Normally. 
the word terminator characters are EOl. ESCAPE. IF. SPACE. or TAB. This list can be changed usbg the 
TER.:,fn,,-C-iA..R.LST argument to PROMPTFORI;iORD. for example if it is desirable to allow tl:e user to bput 
lines inch.:ding spaces. 

.. 

P P. Gro1 P T F 0 R~JI 0 RD also recognizes the following special characters: 

Contro~A. BS.orDEl 
Any of these characters deletes the last character typed and appropriately er2.Ses it 
from the echo stream if it is a displaystream. 

Control-War Control-Q 

ContIol-R 

? 

Control-V 

Erases all the type-in so far. 

Reprints the accumulated string. 

Calls up a "help" facility. The action taken is defined by the GENER.ATE?LIST.FN 

argument to PRor~PT FOR~/ORO (see below). Normally. this prints a list of possible 
candidates. 

"Quotes" the next character: after typing Control-V. the next character typed 
is added to the accumulated string, regardless of any special meaning it has. 
Allows the user to include editing characters and word terminator characters in the 
accumulated string. 

(PROMPTFOR\'IORO PROMPT.STR CANDIDATE.STH GENERATE?LIST.FN ·ECHO.CH.A.NNEL 
DONTECHOTYPErI.FLG TrMEL!1.!1T.~ea TERMINCHARS.LST KEYED.CHANNEL OLDSTRING) 

[Function] 

PRCM?TFORWORO has a multiplicity of fearures. which are specified through a rather'large number of 
input arguments. but the default settings for them (Le'9 when they aren't giyen. or are given as . NIL) is 
such to minimize the nt:.mber needed in the average case. and an attempt has been made to creer t.~e 
mor~ frequently non-defaulted arguments at the f1.""St of the argument list. The default in?ut and echo 
aTe bou~ to the terminal; the tenrjnal table in effect during input allows most control characters to be ._-----.. . 
INDICAiE'd. !, ). ... 

PROMPTFORWORO returns NIL if a null string is typed; this would occur when no candidate is given a.~d 
on!y a tenr...inator is typed, or when the candidate is erased and a terminator is typed with no other input 
still un-erased. In all other cases, PROi~PTFORWORO returns a string. 

PRO~1PTFOR~/ORD uses a HON ITORLOCK (see page 18.30) so that a second call cannot be started before 
the first one finished: primarily this is to limit confusion between multiple processes that mig..~t try ~o 
access the keyboard at t..l-te same time. or print in the prompt window "at the same time" 

PROMPTFORWORO is controlled through the fol1owing arguments: 

PROMPT.STR 

If non-N I L. this is coerced to a string and used for prompting: an additional space is output 
after this string. 

CAJ'IDIDATE.STR 

18.38 
~) 



- '" ( ) -., 

INTERLISP-D SPECIFICS 

If non-N I L. this is coerced to a string and offered as initial contents of u~e input buffer. 

GENERATE?LIST IN 
If non-N I L. this is either a string to be printed out for help, or a function to be z;:,?lied to 
PROMPT.STR ,md CANDIDATE.STR (after both have ·been coerced to strings). and which ~~ould 
retu:n a list 0f potential candidates. The heip sL"ing or list of potential candidates will th.en be 
printed on a s~parate line. the prompt will be restaned., atld any type-in will b~ re-e:ho:ed. 

~otc: If GE1'c7?..ATE?LIST.FN is a function. its value list will be "c2Ched" so that it will be run 
at most once per call to PROMPT F OR\-iORD. 

ECHO. C?..A."lNEL 
Coerced to an output stream; NIL defaults to T. the "terminal output stream", normciiy 
(TTYDISPLAYSTREAM). To achieve echoing to the "current output file", use (GETSTREAM 
NIL 'OUT PUT). If echo is to a display stream. it will have a flashing caret showing where L~e 
next input is to be echoed. 

DONTECEOTYPEm.FLG 
If T. there is no echoing of the input characters. If the value of DONTECHOTYPEIN.FLG is 
a single-character atom or stri..,~ that character is echoed instead of the actual input. For 
exampie. LOG I N promptS for a password with DONTECHOTYPEIN.FLG being ...... 

TJJJEL1MT!' . .ec:s 
If non-N I L. this is the number of seconds (as an integer) that the caller is is willing to wait with 
no input from KEYED.CHANNEL (see below); if tL~eout is reachecL then CANDIDATE. ""'·ORD is 
returned. regardless of a...,y other type-in activity. 

TER..\!INCHAR.LST 
This is list of "word terminators"; it defaultS to (CHARCODE (EOL ESCAPE LF SPACE 
T AS) ). 

KEYBD.c?..A.VNEL 
If non-fJ I L. this is coerced to a str~ and the input bytes are taken from that stre.am. NIL 
defaults to the keyboard input stream. Note that this is not the same as T. wrjch is a bu/Jered 
keyboard input stream, not suitable for use with PRor~PTFORWORD. 

OLDSTRING 
If non-~J I L. this must be a string. which will be destructively used to return the .answer. 

( PROf.tPTFOR\oJORD 
"~hat is your FOO word?" 'Mumble 
(FUNCTION (LAMBDA () '(Grumble Bletch»)) 
PROMPTWINDOW NIL 30) 

This first prompts the user for input by printing the first argument as a prompt into PROMPT'..' I NDO'd: 
then the proffered default answer. "Mumb 1 e", is printed out and the caret starn flashing just after it to 
indicate that L~e upcomL'1g input will be echoed there. If the user "fails to complete a word wi:rilll 30 
seconds. L~en L'1e result will be the string" Mumb 1 e" . 

18.39 



) 

) 



o 

() 

CHAPTER 19 

INTERLISp .. n DISPLAY FACILITIZS 

ThJs chapter describes the functions that support u'le display and the interaction with progrcll'lS L.i.at use 
the d.:~lay. First. a bri'~f introductory vi~w of t.:s:ng the Intcrli$p-D displzy md how s:mt;! of :he other 
Inter:isn facilities have been extended to include display interf2.CC$. The two scre~n images at left show 
some o·f the disp:ay fe3t1!rCS as used by exploratory prcgram.....-ti~g tools of the Intcrlisp-D en\-rroc:r..c:lt. 
The screen is divided into several rectangular areas or windows, cJ.Ch of which provide:> a view onto some 
data or process and which can be rcsh3pcd and rcpositioned at will by the user. \Vhcn thc!)' o\'crbp, 
the occiud~d portion of the lower window is automatic=illy sav-eeL so u'lat it can -be restcrcd when u~e 
ovedapping window is removed. Since the display is bicmappeeL each window can contlin an arbitrJIY 
muture of text. lin~ curves, and half-tone and solid area images. 

The t}'?cscnpt window is in the upper left corner of the screen. It corresponds to the oUt';'ut channel 
T. In it. the us-~r has defined a progr::un F (factorial) and has then immediately run it. ghi.!lg an input 
of 4 and ge~..ing a resuit of 24. Next. he queries the state of his files usmg the file package function 
FILES?, finding that one file has been changed (previously) and one function (F) has b~n defined but 
not ilSSoci::.ted with any file yet. The user sets the value of DRAW3ETWEEN to 0 in cOInmand 74. 2.D.d the 
systeo notes that this is a change and adds DRAWBETWEEN to the set of "changed objects" that mlght 
need to be saved. 

Then. the user runs his program EOITTREE, giving it a parse tree for the sentence "~Iy uncle's story 
about the war will bore you to tears". This opens up the big window on the right in whic.h the sentence 
diagram is drawn. Usbg the mouse, the user starts to move the N? node on the left (wrJch is i:l....,.~rted. 
to show L.1at it is being moved). \Vhile the move is taking place. Lfle user interrupts the tree editpr usi::g 
Control .. H. which suspends t.'1e computation and causes three "break" windows to appear on top of the 
IO'Jler edge of the typescript. Tnese are part of the window break packnge. The s~allest window s~ows tte 
dyn~c state of u.'le compucation, which has been broken inside a subprogram C3..lled FOlLO\.j/CURSCR. 
The .. FOLLO\'4 /CU RSOR Frame" window to the right shows the value of the local vari2.cles bcund oy 

, FOLLO'"l/CURSOR. One of them has been selected (a.:.!d so appe3.J.-s inverted) and in respor:se. its v.:lue 
has been shown in more detail in the window at the lower left of the screen. The user h2..S mmed one of 
the component values as suspicious by drawing on it using L'le window comm~1.d P A IN T, In adCicon. he 
has asked to exaCtine the contents of the BITMAP com!=onent, which used the function ED I T5M to open 
a bitmap edit window to the right. This shows an enlarged copy of the actual N P image u1.at is being 
moved by the tree editor. 

Inside the largest break window. the user p.as asked some questions about FOLLOW/CURSOR. and queried 
the value of DRAWBETWEEN (now 66). Using the BROWSER lisp users package. dle i\bsterscope SHOW 

, PATHS command brought up the horizont3.l tree di:i'gram on the left. which shows whicl1 subprogrm:s 
call c3.:h other. st.1rting at FOLLOW/CURSOR. E~ch node in the cj,ll tree produced by the SHO't1 PATHS 
comm~md is :In active clement which will respood to the user's selecting it with the mouse_ In the se~ond 
im3g·~. the user has selected the SHOWNOdE subprogram. which has c3used its code to be re~e'led from 
the file «LISP)OE~'10)LATTICER) on the remote file server (PHYLUM) where it was stored .lnd disp!3.yed 
in L.':e "Browser printout window" which has been opened at middle right. User progr:L'11s ~d ex(~nc.ed 
Lisp forms (like for and do) are highlighted by system generated font ch;mges. By selecting nodes in the 
SHO\~ PATHS window, the user could also have edited or obtained a Sumnla.I)' description of :my of t.'e 

19,1 

'\..~. ".-' 

'- ~. 



() 

(j 

() 

n 



. \ 
-F'!'.:::S? ] 
~Tt:E~ .. co be du.o~d. 
plu~ t~e funCC10ns: ~ 

,t to ~ay wnere tne aoove ~o ~ NO 

:(~~TO op.A~eErpEEN e) 
~4W!ET.E~N re!e~l 

r=;;,=~~0,! . 
.... ""' _G ... __ ,., .... 

-(O~FINEQ (F tA) (I~ A ~T : 
) 
-(F 4] 

:;": I~" 
::.3~~~;; ~~~ ~I1;o;: U~~Z!'f?n 

. --:.--

O ~ .. . 
c-- '. N ;'J I 

s 

s 

I 
! 

w;g 

j 
--~ l 

( If 
\ ) . 

VP • 

~l 
V ~ PP I 
I I ,,"\, t 

I 
PROI: P Y I 

IN! 

I· I ! 
I . f 

I I i 
I i I 
I' 1 : 
. i f 

t:orc you to te:ll'<;, 



o· 
posmON 

su bprograms. 

Instead. the user told Mastcrscope (in the break typescript window) to edit wherever anyone calls 
the DRA's/3ETl'iEEN program (a line cL-awing function). This request causes the system to consclt 
its (dynamic.-illy maintained) database of info~ation about user progr-~. wherei::t it finds th~t the 
subprogram SHO'dLINK calls DRAWBETWEEN. It therefore loads the code for SHOl;lLINK into an edit 
wi:tdow which appears under the "Browser print out window". The system ~~en automatically finds and 
undcr~incs the first (and only) cJ..ll on DRA\JBETWC:EN. On the previous lir.e. DRA'..iBETlriEEN is u~ed <!S 

a v~i.1bl~ (the one the user set ~l.rld intcrrog.:ltcc! earlier). The system. however. kno'w's :"~a.t thIS is not a 
subprogrJIn call. so it h~ been skipped. If L.~C user makes any chan£c to SHO\il I roiK in the editor. r.ot 
only will the chmge take effect ir:unediately. but SHOWL I NK will be marked as needing to be l.!pd.1ted 
in its file and t.'e LTlformation about it in the program dat2base will be updated. TIlls. in turn. will cause 
the SHOW PATHS window to be repainted. as its display may no longer be valid. 

The Interlisp-D display facility has several layers. At the lowest level are routines which yiew the display 
as a collection of bits and provides printitives for movir:.g blocks of bits around (8 ITal T). The concepts 
imporl.2Jlt to this level are positions. regions and bitmaps. The next level is the display stream... an 
abstraCtion that implements clipping to rectangular areas of the screen.. line and curve d.."":lwir..g. and 
pftnting to the screen in d.i.fferent fonts. The concep:s impor-~t to this level are fonts a:!d display 
streams. On the input side. there is a low level interface for reading the display input devices. the cursor 
loc:ltion and the mouse buttons. The input and output come together at the next level the window system 
which allows areas of the screen used by different programs to overlap by keeping track of information 
covered and providing control primitives for mouse interaction. This chapter is organized according to 
these levels. 

19 .. 1 POSmON 

A position denotes a point in an ~ Y coordinate system. A POS I T ION is an instance of a record v,ith 
fields XCOORD and YCOORD and is ma!lipulated with the standard record pc.ckage facilities. For example. 
(create PO.sITIO~~ XCOORD ... 10 YCOORD +- 20) creates a position representing t..~e point (10.20). 

(POS!TIO~P x) [Function] 
Returns x if x is a POSITION; NIL otherwise. 

19.2 REGION 

A Region denotes a rectangular area in a coordinate system. Regions are characterized by the coordinatas 
of their bottom left comer and their width and height. A REG IOr~ is a record with fields LE FT. BOTTOH. 
WIDTH. and HEIGHT. It can be manipulated with the standard record package facilities. There are access 
functions for the REGION record that returns u~e TOP and RIGHT of the region. 

The following functions are provided for manipulating regions: 

(CREATEREGION LEFT BOTTOM WIDTH HEIGHT) [Fun:tionJ 
Returns an instance of the REG ION record which has LEFT. BOTTOM. 'NIDTH and 

19.2 



( 

INTERLISP-D DISPLAY FACILITIES 

HEIGHT as-respectively its LEFT, BOTTor", WIDTH, and HEIGHT. 

Example: (C R EA T ERE G ION 10 - 2 0 100 2 00) will create a region that d~otes 
a rcctz.ngle whose width is 100. whose height is 200, and whose lower left cor-er 
is (10,-20). . 

(INTERSECTREGIOtlS REGIONt REGION2 ••• REGION:!) [NoSprezd Func::onJ 
Returns a region which is the intersection of a number of regions. Re~~~ NIL 
if the intersection is err:pty. If there are no regions given. it rerur-~ a yery la:g~ 
re~~ . 

(UNIO~lREGIONS P.EGIONz REGION:: .•. REGIONn ) [NcSprezd Function] 
Returns a region which is the union of a number of regions. i.e. tl:e su:.aLest region 
that contains all of them. Returns NIL if there are no regions given.. 

C) 

(REG IONS INTERSECTP REGIONl REGION:2) [Function] 0 
Returns T if REGIONl intersects REGION::. Returns NIL if they do not inte~t. -- ' .. 

(SUB REG IONP LARGEREGION SMALLREGION) [Func:lon] 
Returns T if SMALLREGION is a subregion (is equal to or entirely cQntaiaed in) 
LARGEREGIO;.r, otherwise returns NIL. 

(EXTENOREG ION REGION INCLUDEREGION) [FunctionJ 
Changes (destructively modifies) the region REGION so that it includes the region 
INCLUDEREGION. It returns R.EGION. 

(INSIDEP REGION x Y) [Function] 

19.3 BITMAp 

If x and Y are numbers, it returns T if the point (x. y) is inside of REGION. If x is 
a POS IlIO", it returns T if x is inside of REGION. Otherwise. it returns NIL. 

Tne display primitives manipulate graphical images in the form of bitmaps. A bitmap is a rect:mgt!lar 0 _
array of "pixels. It each of which is an integer representing the color of one point in tb.e bitmap i=lage. 
A bitmap is cre3.ted with a specific number of bits allocated for ~ch pixel. ~fost bi~::l~s t;sed fer :.he 
display screen use one bit per pb:el. so that at most two colors can be representee... If a pixel is O. the 
corresponding location on the image is wi"'ite. If a pixel is 1. its loc:1tion is black. (TIlls in:e:pretauon can 
be changed with the function VIOEOCOLOR: see page 19.7.) Bitmaps with more t..l-tan one bit p~r pixel 
are used to represent color or grey scale images . 

. Bitmaps use a positi,ve integ~r coordinate system with the lower left corner pixel at coordinate (0.0). 
Bitr.13PS are represented as instances of the datatype BITMAP with fieldS B ITMAPW rOTH. 8 I TMAPHE IGHT. 
BITMAP8ITSPERPIXEL. BITMAPRASTERWIDTH. and BITr.t~P8ASE. Only the wld~. hl!ight. and bits 
per pixel fields are of interest to the user. and can be accessed with the following functions: 

(B ITMAP'HIDTH BITMAP) . [Functioni 
Returns the width of BIT~{AP in pixels. 

19.3 (j 



0--

o 

0-

BITBLT 

(BITMAPHEIGHT ~) [Function] 
Returns the height of BITMAP in pi..'"(els. 

(8ITSPERP!XEL Br.nv~) [F~ctiO!l] 
Returns the number of bits per pixel of BITMAP. 

The functions used to manipulate bitmaps are: 

(B ITMAPCREATE WIDTH HEIGHT BITSPER.P!XEL) [Function] 
Creates a:ld returns a ~ew bitmap which is WIDTH pixels wide by EZ;GHT pi;:els 
high, witll BITSPERPIXEL pits per pixel. If BITSPER.FIXEL is NIL. the defauit is 1. 

(B ITMAP8 IT BITY..AP x Y NE:~";u'UE) [Functicn] 
If NEWVALtlE is between 0 and the maximum value for a pixel in . BITMAP, the 
pixel (~Y) is changed to NE\VVALL"E and the old value is: rerurned.. If ."'C"r~,,\:UU:: 
is NIL. BITY...AP is not changed but the value of tbe pixel is re(1..lrned. If .VE'~"'~t"E 
is anything eise. an error is generated.. If (x,y) is o~tsid.e the lL-tics of Brr~V'. 0 
is returned and no pixels are changed.. BITMAP can also be a window. 

(B ITMAPCOPY BITMAP) [FlJI:ction] 
Returns a new bitmap which is a copy of BITMAP (same dimensions and conte!lts). 

(EXPANOBITMAP BITMAP WIDTHFACTOR HEIGllTFACTOR) [Function] 
Returns a new bitmap that is \-V1DTRFACTOR times as wide as BITMAP and 
HEIGHTFACTOR times as high. Each pL~el of BITMAP is copied into a WIDTEFAcrCR 

times HEIGHTFACTOR block of pixels. If NIL. WIDTHFACTOR defaults to 4, 
HEIGETFACTOR to 1. 

There ~--e two distinguished bitmaps that are read by the hardware to become visible as the screen and 
the cursor. The screen is a bitmap SCREEWIiIDTH (= 1024) wide by SCREENHE IGHT (= S08) hi~1.. Toe 
cursor is a binnap CURSQRHIOTH (= 16) wide by CURSORHE IGHT (= 16) high. They are ac:e"'~d -:,y: 

(SC?EEN8ITMAP) [Function] 
Returns the s-..-reen bitmap. 

(CURSORSITMAP) [Fu~ctionl 
Returns the cursor bitmap. 

Note: The cursor bionap can be changed with ;he function CURSOR (page 19.16). 

19.4 BITBLT 

B ITB L T is the priIr.:.itive function for moving bits from one bionap to another. It is sirrJlar to the function 
RASTEROP that is used in ot..'1er systems. 

(B I1Bl T SOURCZBITMAP SOURCELEFT SOURCEBOTTOM DESTrNATIONBITMAP DEST~ATIO.";LE.T:"T 
DESTA.'lATIONBOTTOM WIDTH HEIGHT SOURCETYPE OPERATION TEXTURE CLIP?fNGREGIO.'-:) 

[F unction1 

WIDTH and HEIGHT define a pair of rectangles, one in each of the SOURCEBITMAP and DESTDlATIO!'-73I7;"!AP 

19A 



( 

L'ITERLISP-D DISPLAY F ACILmES 

whose left. cottom comers are at. respectively. (SOURCELEFT. SOL~CEBOTTOM) and (DES'r"I:'I'ATIOr-.-:'EFT. 
DES7INAT:ON"EOTTOM). If these rectangles overlap the boundaries of either bitmap they a:e bou.1. recuced 
in size (Witi.1cut tr~slation) so that they fit within u'1eir respective bounda..ries. If c:.IPP!:'lG?.EC:ON is 
non-'4 I L it should be aRE G ION and is interpr~ted as a clipping region 'Within DES:-::-;ATIO~3I7!r!A?~ 
clipping to t.rus region may further reduce the de£L.J.i.ng rectangles. These (possibly red.1.:ce~) rec:..:.I:~es 
define the source and destination rectmg!es for B I TB LT. SOtlRCEBITMAP and DESTINATIONEIT. .. !.A? ~ 
aLq) be display stre~ or Vtindows. in which C3.Se their associa:ed bitmaps are used. 

The mode of transferring birs is defined by SOURCETYPE and OPERATION. sor.rRCETY?::: and OPERAT:ON 

spccif; t:L'Ol~m functions th~t (ll"e used to c.e:crm:ne. respectively. the method cf c041:nrJr.g SO~,:3.CZBIT~.!AP 
bits with the TEXTURE a.."1d the operation bet"Ncen tb.cse resultant bits and DESTr!tATIONBr'n!A? TEX71.:?..E 

is a gray pattern. as described on page 19.6. (N'oce: The aligrunent of the texture patten with 6 ITS L T is 
such that the origin of the destination bitmap is at an intCP.5cction of the "tilcs.") 

C) 

SOrmCETYPE specifies how to combine the bits from SOURCEBITMAP with the bits from TE:XTt.TRE (a n 
background pattern) to produce a "Source". This is designed to allow charac:ers and figures to be pixed _ / .' 
on a background. 

SOURCETYPE Source 

INPUT SOtiORCEBITMAP 

nlVERT (NOT SOURCEBITMAP) 

TEXTURE 

For the INPUT and INVERT case~ the TEXTURE argument to B IT8LT is ignored. For the TEXTURE 
case. the SOURCEBITMAP, SOURCELEFT, and SOURCEBOTTOM arguments are ignored. 

OPER.A.TION specm-es how this source is combined with the bits in DESTINATIOf'.l73rn£Ai' and stored back 
into DES7'INATIONBITMAP. 

OPEF.ATION 

REPLACE 

PAINT 

INVERT 

ERASE 

.. 
DESTINATIONBITMAP becomes 

Source 

( 0 R DESTINATIONBITMAP Source) 

(XOR DESTINATTONSITMAi' Source) 

(AND DESTTNATIO~ITMAP (NOT Source» 

SOURCELEFT, SOtJ'1?CEBOTTOM, DESTINATIONLEFT, and DESTINATIONBOTTOM default to O. WIDTH and 
HEIGHT default to the widt.."" and heigJlt of the SOl.rR.CEBIT~.!AP. TEXTi.JRE def~ults to white. SO~n.CE7Y?E 
defaults to INPUT. OPERATION defaults to REPLACE. If CLIPPfNGREGION is not provided. no additional 
clipping is done. BITS L T returns T if any bits wcre moved: NIL otherwise. 

Note: B IT8L T and B ITMAPB IT accept windows and display streams as their biunap arguments. In 
these cases, the remaining argumenrs are interpreted .:is values in the coorrun:lte system of the window l1r 

display stream and the operation of :he functions J.fe translated md dipped ;:!ccordingly. [f.1 windo''\-' Cf 

display stream is used as the destination to B I TB LT. its clipping region limits the operation inv0hed. 

19.5 

() 

(J 



o 

o 

r~TIJRE 

19.5 TEXTIJRE 

A Texture de~otes a pattern of gray which can be usec:t by B ITBlT to (conceptually) tessellate the pla:le 
to form an infulite shee~ of gray. It is currently a 4 by 4 pattern. Textures are crea~ed interactively usbg 
the function EDITSHADE or from bin:uaps us~g the following function. 

(CREATETEXTURE FROMS I TMAP BITMA.?) [Fu=.ction1 
Returns a t~~=ture object that will produce the texture of BITMAP. If EITY.A? is :00 

large, its lower left portion is used. If BITMAP is too small it is repeatzd to Ell out 
the texture. 

(TEXTURE? OBJECT) [Function1 
Returns OBJECT if it is a texture, Le. a legal texrure argument to B I TB LT. 

The common textures white and black are available as system constants WH ITESHAOE ar:d BLACKSHAOE. The 
globcl variable GRAYSHAOE is used by many system facilities as a background gray shade and can be set by 
the user. The original background shade of the window system is kept in WIrlOOWBACKGROUNDSHADE. "nle 
background shade can be changed by the following function: 

(CHANGE8ACKGRCUND SHADE) [Function] 
01anges the background shade of the window system. SHADE deter:nines the 
pattern of L.'1e background. If SHADE is a te~tUre, then the background is sizt:'ly 
painted wiu.~ it. If SaAlJe is a 8 I T MA P, the background is tesselated (tiled) with it 
to cover the screen. If SHADE is T, it changes to the original shade. the ..,.aiue of 
WINOO'J1BACKGROUf~OSHADE. It rerurns the previous value of the background. 

19.6 SA YmG BITl\1APS 

Bitmzos can be saved on files with the VAR5. file package command (page 11.22). The following t"NO 

functions translate bit.!;:1aps into and out of a representaticn which may be used to tr..nsfer bit:Oaps 
between Interlisp and other computer systems' representations. 

(READBIiMAP) [F~ction] 
Creates a bitmap by reading an expression (written by PRINTB IT MAP) from the 
ptunary input channel. 

(PRINTB ITMA? BITMAP) [Fu!:ction] 
Prints the bitmap BITMAP on the primary output channel in a format that C2.D. be 
read back in by READB ITMAP. : • 

19.7 SCREEN OPERATION 

The following functions control the display screen. 

19.6 



I!'.TIRLISP-D DISPLAY FACILITIES 

(VIOEOCOLOR BLACKFI.G) [NoSpre:ad Functicnj 
SetS the interpretation of the bits in the screen bitmap. If BLAC-..<FLC is NIL. 
a 0 bit will be displayed as white, otherwise a 0 bit will be displayed as black. 
VIDEOCOLOR returns u":e previous secring. IfELAc-o!.G is notglven., '1IDEOCOLOR 
will rerum the current setting WiL.10ut changing anything. 

Note: This function only works on the Xerox 1100 ~d Xerox 1108. 

(VIDEORATE TYPE) [F"JnctionJ 
Sets the rate at which the screen is refrcsh~d. T'YPE is one of No~r"AL or T ;",?E. If 
TYPe: is T l\P E. the screen will be refreshed at u~e S2.!l1e rate as TV (60 Cj'c!cs per 
secocd). T.c.is makes the picture look bc·tter when video tapL"lg the screen. ~ote: 
Changing u'le rate may change the dimensions of the display on the picture tube. 

Se"{era! functions are provided for turning off ui.e display (partially or completely). See page 18.12. 

19.8 CHARAcrERS Al'ID FONTS 

Fonts control the way characters look when printed on the screen or a graphics printer. Fonts are defined 
by a distinctive style or FAMILY (such as Gacha or TirnesRoman), a SIZE (such as 10 points). and FACE 
(such as bold or italic). Fooes also have a ROT AT ION that indicates the orientation of chara.e:ers on the 
screen or page. A normal horizontal font (also called a portrait font) has a rotation of 0: the rotation of 
a vertical (landscape) font is 90 degrees. While Ll-}e specification allows any combination. in practice t!le 
user will fnd that only certain combinations of families, sizes. faces, and rotations are available. 

In specifying a font to the functions described below, a F AM I L Y is represented by a literal atom. a S I Z E 
by a'positive integer. and a FACE by a three-element list of me form (WEIGHT SLOPE EXPANSIOS) • 

. WEIGHT. wt"ljch indicates the thickness of the characters. can be BOLD, MEDIUM, or LIGHT: SLOPE c:m. 
be ITALIC or REGULAR; and EXP.L\NSIOrJ can be REGULAR, COMPRESSED, or EXPANDED. indic~:i=g 
how spread out the characters are. For convenie~ce, faces may also be specifed by three-charac:er atC!:1S. 

n \. /--' 

where e3.Ch charao:ter is the first letter of the corresponding field. Tnus, ~1RR is a synonym for (HEDIUM 
REGULAR REGULAR). In additio~ certain common face combinations may be indica:ed by spec:ti l.i~e:-3.l (',) 
atoms: '- / 

STANDARD = (MEDIUM REGULAR REGULAR) = MRR 

ITALIC = (MEDIUM ITALIC REGULAR) = MIR 

BOLD = (BOLO REGULAR REGULAR) = BRR 

·BOLDITALIC = (BOLO ITALIC REGULAR) = BIR· 

A font also has the propeI"fJes ASGENT, DESCENT, and HEIGHT (= ASCENT + DESCENT). anti for 
e3.ch character, a width and bit p:lt:ern. The ASCENT is the maximum height of any character in t.'1e 
font from itS base line (the printing position). The DESCENT is the maximum extent of any char:::.c~er 
below the base line, such as the lower part of a "p:" Therefore the top line of a char::lcte.r will be J,t 
Base+ASCENT-l. while the bottom line will be at Base-DESCENT. The width of ~~ch ch.:.r::.c~er s~e:::nes 
how a sr.re~·s position w1ll change when the char~cter is printed. This may have both J.n X J.Ild ..1 Y 
component (e.g., for landscape fontS), and it varies from character to cnaracter in v3.riJ.ble pitch for::.s. 

19.7 



l) 

o 

o 

o 

Characters and Fonts 

The information about a particular font is represent~d in a font descriptor. The following functicns 
manipulate font c~criptOr5: 

(FONTCREATE 

(FONT? x) 

FA.\aI.Y SIZE FACE ROTATION DEVICE NOERRORFLG) [Function] 
Returns a font descriptor for th.e spcc~fied funt. SIZE is an integer Ul~ca~g 
the size of the font in points. FACE specifies the face chara=:eristics in O:le of 
the formats listed above: if FACE is NIL. STANDARD is used. RO':"AT:O."'·, whicll 
specifies the orienc2.tion of the font. is 0 (or fJ I L) for a por~t fent 2.!ld 90 t~Jr a 
landsc~pc font. DEVICZ indic3.tes L'1e output d~vicc fer u~c fo:.!.. for In:cri!sp·O. 
the possible values for DEVIce are DISPLAY for the display screen and PRESS for 
Press printers. DEVICE defaults to DIS P LA Y • 

For display fonts. FONTCREATE looks for a STRIKE file 'Nith the appropriate na..T.e 
(such as TIMESROMAN8BI.STRIKE for a TIHESROMAN 8 SOLOITALIC fact), 
searching through directories on the list FONTD I REC iOR I ES. If the file is found .. 
it is read into a font desr.riptor. If the file is not found.. FONTCREA iE looks fer 
fonts with less face information (in this example, T IMESROHAN8 I. STR I KE) and 

. fakes the remaining faces (such as by doubling the bit paaern of ez.:h charac~er 
or slanting it). If no appropria~ely sized font is found. the actioD of the function 
is dete~ed by NOERRCRFLG. If NOERROP_t:"LG is NIL. it generates a FILE 
NOT FOUND error with the name of the most specific file tried (in the example 
T IHESROHANS8 I. STR I KE); ot..~erwise. FOUT CREATE ret1.!r:lS N! L. 

For Press fon~ FONTCREA TE a...-::~os the ~idt!:s i=.ro:=2t:cn fo: ::=:e fo:.: .:.,J ..... a 
font-diction~-y file whose Dame is in the list FO~~TWIDTHSFILES (us-~illv i.ri~::~~,:,ed 
in the sit~greeting file to contain at least {OSK} FONTS. WIDTHS). That dic:iona.ry 
must contain i:l.fonr~ticn for the face as specified: t..'lere is no acce?t.able faking 
algcri!':-:'\l for hard-copy fonts. The width and height infom:atio~ for press fonts is 
expressed in micas (= iO microns = 1/2540 i...'1ch). not in screen-point units. 

The FAM1!.Y argument to FONTCREATE may also be a list. in wrudl case it is 
interpreted as a FAMILY-SIZE-FACE-ROTATION quadruple. Thus. (FONTCREATE 
'(GACHA 10 BOLD») is equiva!ent to (FONTCREATE 'GACHA 10 ·BOLD). 
FA.\lILY may also be a font descriptor, in wrJch case that descri~nor is si::l~ ly 
returned. 

. [Fu:lctionl 
Returns x if x is a font descriptor; NIL othenvise. 

The following functions take a font as one aIgt.1J!1ent. This argument must either be a p~--ticular font 
descriptor or coerceable to a font descriptor. A display stream is coerced to its current font. a window is 
coerced to the CUITent font of its display stream. and anything else is coerced by applying FO~'TCREAiE 
~ it. • . . 
(FONTPROP FONT PROP) (F'J~ctionl 

Returns the value of the PROP property of font FONT. PROP may be one 
of FAMILY, SIZE. FACE. WE IGHT, SLOPE. EXPANS ION. DEVICE, ASCE"NT. 
DESCENT, HEIGHT, or ROTATIort 

(FONTCOPY OI..DFONT PROP z VALl PROP;Z VAL 2 ... ) [NoSprcad Function] 
Returns a font descriptor that is a copy of the font OLDFONT. but wrJch dif."crs rrc::1 
OLDFONT in that OLDFONTS properties are replaced by the speciiied prope:-Jes 

19.8 



c--

( 

INTERLISP-n DISPLAY FAOL.ITrLS 

and values. Thus. (FCNTCOPV FONT 'WEIGHT 'BOLD 'DEVICE 'PRESS) 
will return a bold press font with all other properties the same as t.hose of 
FONT. FONiCOPY acceptS aU the properties that FONT?ROP mterroga:es exce;;t for 
ASCENT, DESCENT, and HEIGHT. If the first t'roperty is a list. it is ~e::l to be 
the PROP! VALL PROP2 VAL 2 ••• seque::lce. Tnus. (FONTCOPY FONT '(~c IGHT 
BOLO DEVICE PRESS») is equh'a1ent to th~ exampl.e above. 

(CHAR\'1IOTH CHARCODE FONT) [Function] 
CEARCODE is an L"lteger that rcpresenrs a valid character (z..s r''et'..lmed by CHCO~i 1). 
Returns the a..YTIot:nt by which a sU"e3Ill'S X-position will beincrc:n~nted whC:l :,;,~e 

character is printed. 

(CHARWIDTHY CHARconE FONT) [Function] 

(j 

Like CHARWIDTH. but returns the Y component of the character's wid.th. the 
amount by which a stream's Y-position will be incremented whe:1 the ch~.;.Cter is 
printed. TIlls will be zero for most characters in normal portrait fonts. but may be n-, 
non-zero for landscape fonts or for vector-drawing fonts. 

(STRl NGWIDTH 5TH FONT PR1N2FLG RDTBL) [Function] 
Returns the amount by which a stream's X -position \\ill be incremented if t.~e 
printname for the Interlisp-D object STR is printed in font FONT. If FOS7 is a 

.display stre~~ its font is used. If PRIN~FLG is non-NIL. the PRIN2-pna.I!:e of 
STR with respect to the readtable RDTBL is used. 

(STRINGREGION 5TR W11'lDOW PRIN2FLG ROTE!,) [Function] 
Returns the region occupied by STR if it were printed at the current loc:!:ion in 
WINDOW. This is useful for detennining where text is in a window to allow ~"le user 
to select it. Tne argumenrs PRIN2FLG and RDTBL are passed to STRINGWIDTH. 

It is . sometimes useful to simulate an unavailable font or to use a font with characteristics diEerent from 
tJ.'1e interpretations provided by the system. The following function allows the user to tell the sys!e:n what 
font d~c:iptor to use for given characteristics. 

t SETFONTDESCRIPTOR FAJ,\!IL¥ SIZE FACE ROTATION DEVICE FONT) [Function] 
Indicates to the system that FONT is the font wi6 t..;~e FA1£Iiy SIZE FACE F:07.A7:CS 

DEVrCE characteristics. If FO;-;T is NIL. the fent associated with these chara::e::st:s () 
is cleared and will be recreated the next time it is needed. As with FONTPROP a=.d 
FO~TCOPV. FONT is coerced to a font descriptor if it is not or:e alre.1c.y~ 

(DEFAULTFONT DEVICE FONT -) [Function] 
Returns the font that would be used as the default (if NIL were specmed as a 
font argument) for device DEVICE. If FONT is a font descriptor. it is set to be t.'-le 
default fo~t for DEYrCE. 

The following functions allow the user to access and change the bitmap's for individual characters in a 
display font. •. . 

(GETCHARBITMAP CHARCODE FONT) [Function) 
Returns a bionap containing a copy of the image of the char:lcter CHARCODE in 
the font FONT. 

19.9 



u 

o 

o 

Display Streams 

(PUTCHARBITMAP CF'..ARCODE FONT NEWCHARBITMAP) [Function] 
Cnanges the bit..~ap image of the character CH.AR.CODE in the font FOST to t.~e 
bit..~ap NEWCHARBITMAP. Currently, NEWCHARBI'TMA.P must be the same v.idt..1-
and height as the current image for CHARCODZ in the font FONT. 

Users can interactively edit characters using the ED I TCHAR function (page 20.10). 

19.9 DISPLAY STREAlV1S 

Stre;L~ are used as the basis for an I/O operations. Files arc implemented as stre~.s that em support 
character printing and reading operations.. and file pointer manipulation. Display strearr.s arc a type of 
stream that also provides an interface for trnnsl~tion. clipping. ~,d figure generation on bitmaps. All of 
the operations that can applied to streams can be applied to display streams. For example. a di.spby 
stream can be passed as the argument to PRINT, to print something on the bitmap of a dis?lay strezn.. In 
addition., special ftu:2ctions are provided to draw lines and curves and perform ot..~er graphical operaticns 
on dL9)iay streams. Calling these functions on a stream that is not a display stream will gene:ate an error. 

Windows are closely related to dis;Jlay streams and can be thought of as a type of display stre2...~. (In 
the near future. windows will be a type of display stream.) All of the functions t..'at operate on display 
streams also accept windows. 

Display streams can be created with the following function: 

(DSPCREATE DESTINATION) [Function] 
Returns a display stream. with initial settings as indicated below. If DES~ATrON 
is specified. it is used as the destination bitmap, otherv,-ise the screen bitmap is 
used. 

Each window has an associated display stream. To get the window of a particular display stream.. use: 

('dFROMDS DISPLAYSTREAM) [Ft!4CtiOC] 
Returns the window associated wit.1- DISPLAYSTREAM. creating a winc!ow if oce 
dces not exist. Returns NIL if the destination of DISPLAY5TRE.A.M is not a scree:l 
bitmap that supports a window system. 

19.9.1 Manipulating Display Streams 

The following functions manipulate the fields of a display stream (they may also be given a window. in 
which case t..'1e associated display stream is used). These functions rerum tt.'1e oid value (the one being 
repbccd). A value of ,. I L for me new value will return me current setting without chlL,ging iL Th~e 
functions do not change any of the bits in the display Strc=un's destination biunap: just the effect of future 
operations done through the display stream. -

-Warning: The window system maintains the Destination. XOffset. YOffset. and ClippingReg:on fielc.s 
of each window's display stream. adjusting them during window operations. Use:-s sho~!d be very 
careful about changing these fields in a window·s display strearTI (with OSPDESTINATION. DSPXOFFSET. 
OSPYOFFSET.orDSPCLIPPINGREGION~ . 

19.10 



INTERLISp·n DISPLAY FAOLITIES 

(OSPOESTlriATION DESTINATION DISPLAYSTR&L\l) [Function] 
Desti...i~tion; The bitmap Lflat the display stream modiiies. This can be eithe:- t.."le 
screen bio:nap~ or an auxilliary bitmap in order to constr:.:ct figures. possibly $aye 
them. and then display them in a single operation. Initially the scree:! bitmap. 

(OSP XOF F SET XOFF~ZT DISPLAYSTR.EA.W) [Fu.cctonJ 
(OS?YOF F SEi YOFFSET DISPLAYSTP~\!) [Fu~c:io:.) 

XOffset: The X origi..n of the display stream's coordinate system in the cesf"'-::icIl 
bitmap's coordinate system. Initially 0 (no X ""Coorc!.inate t:an.slation). 

YOrrset: The Y origin of the display str~am's coorc.:..na~e system in ~e des;;"'?:ion 
bitmap's coordinate system. Initially 0 (no Y ""Coordina::e ~T"s:a=on). 

Display streams have t.heir own coordinate syste:n. Having the coordinate sys:e::n . 

(\ .. 
\_~) 

local to the display stream allows objccts ·to be displayed at different pl.1ces by 
translating the display stream's coordinate system relative to its destination bitmap. O· 

(DS?CLIPPINGREGION REGION DISPLAYSTREAM) [Function] 
OippingRegion: A region that limits the extent of characters printed and lines 
drawn (in th.e display stream"s coordinate system). Initially set so that no clipping 
occurs. 

(DS?XPOSITION XPOSr.ITON D~PLAy'sT~\l) 
(DSPYPOSITICN YPOS~ON D~PLAy'sTREAM) 

XPosition: The current X position. Initially O. 

YFosition: The current Y position. Initially O. 

[Function} 
[Function1 

OSPXPOSITION and DSPYPOSITIOH specify the ··current position" of the display 
stream. the position (in the display stream's coordinate system) where the next 
printing operation will start from. The functions wl1':ch print charac:te:-s or draw 
on a display stream update these values appropriately. 

(DS?TEXTURE TE"AI'URE DISPLAYSTREAM) [F'.!ncrionJ 
Texture: A texture that is the background pattern used for tt':e display su-e3I!!. 
Initially Lf}e value of\'iHITESHADE. 

(OSPFONT FONT DISPLAYSTP...E.Al.f) [FuZlc:ionj 
Font: A Font Descriptor that specifies the font used when printing characte:s to 
the display stream. initially Gacha 10. 

Note: OS?FONT determines its new font descriptor from FONT by the same coercion 
rules that FONT PROP and FO~ITCOPY use, with one additional possibility: If Z:·C:-:T 

is a list of the form (PR.OP l VALl PROF2 VAL 2 .•• ) where PROP z is acc:e~::lcle 
as a font-property to FOr~TCOPY. then the new font· is obtained by (FONTCOPY 
(OSPFONT NIL OrSPLAYSTREAM) PROP! VALl PROP:1 VAL 2 ... ). 

(OSPLEFTMARGIN XPOSITION DISPLAYSTH.EAM) [Functiun} 
Left...'vlargin: An integer that is the X position after an end-of-line (in the display 
stream'? coordinate system) - initially O. 

(OSPRIGHTMARGn~ XPOSITION DISPLAYSTRE~\{) [FunctlcnJ 
Right.\1argm: An integer that is the maximum X positio~ that charac:ers Will 

19.11 (j 



o 

o 

. 
Drawing on Windo'ws and Display Streams 

-
be printed at (in the display stream's coordinate system) - initially the yalue of 
SCREENWIOiH. This determines when an end of line is automatically inserted by 
the printing functions. 

'. 
The line length of a windo·.;r or display stream (as returned by LINELEMGTH. page 6.8) is computed by 
diviCing tJ."1e distance between the left and right margins by the width of an upperca3e "A" in the C.lrrent 
font. The line length is changed whenever the Font. Lefr~\fargin. or RighL.\1a.~ are cha:lged. 

(OSPSOURCETYPE SOURCZTYPE DfSPLAYSTREAM) [Function} 
SourccType: The B I T8l T sourcetype used when printing characters to the ClsiJiay 
stream. Must be either INPUT or INVERT. Initially INPUT. 

(DSPOPERATIOH OPERATION DISPLAYSTREAM) [Function] 
Operation: The defa.ult BITBLT operation (REPLACE. PAINT. INVERT. or ERASE) 
used when princLTlg or drawing on the display stream. Initially REPLACE. 

(OSPLINEFEED DELTAY DISPLAYSTREAM) [Fu:lction1 
Line Feed: An integer that specifies the Y increment for each linefeec. normally 
negative. Initially minus the height of the initial font (Gacha 10). 

(DS?SCROLL SWITCESETTING DISPLAYS'TREAM) [Function] 
Scroll: A flag that determines the . scrolling behavior of the display scream: eiL~er 
ON or OFF. If Orl. the bits in the display streams~s destination are moved after Q.!ly 
line feed that moves tlle current position out of tJ.'le desti.I;.ation bitmap. Any bits 
moved cut of the current clipping region are lost. Does not adjust the XOEset. 
YOffset. or ClippingRegion fields. Initially OFF. (Note: if S'WITCHSETTDfG is NIL. 
the Scroll field is not change~ and the previous value is returned..) 

19.9.2 Drawing on Windows and Display Streams 

(OSP'FILL REGION TEXTURE OPERATION DI:S.!='LAYSTR.E.oL\{) [Function] 
Fills REGION of the destination bitmap (within the clipping region) with ":"~~ 
(a pattern of bits). If REGION is NIL. tt.i.e whole destination (·,t;itr..in t.."-:e 
clipping region) i'5 used. If TEXTURE or OPERATICN are Pi I L. t..'1e ",alues from 
DISPLAYSTP..E.AM are used. 

(FILLCIRCLE X Y p-ADrJS TEXTtrRE DISPLAYSTREAM) [Function] 

. 

Fills in a circular area of radius RADIUS about the point (x. Y) in the destination 
bitmap of DISPLAYSTREAM with TEXTURE. DISPLAYSTREAM'S position is left at 
(x.Y) . 

(DS?RESET DISPLAYSTP.EAM) [Function] 
Sets the X position of DisPLAYSTREAM to its left margin. sets its Y position to L~e 
top of the clipping region minus the font ascent. and fills its destination bitmap 
Wi111 its bad:ground Texture. 

'( MOVETO x Y DISPLAYSTREAM) [Function] 
Chang~s the current position of DISPLAYSTRE..'L\! to t..'e point (x. Y). 

(REU"OVETO DX DY DISPLAYS'TREAM) [Funcucn] 
Changes the current position to the point (DX. DY) coordinates away from C'..lrrent 

19.12 



lL'ITERLISP-D DISPLAY FAOLmES 

position of DISPT...AYSTREAM. 

(MOVETOUPPERLEFT DISPLAYSTREAM REGION) [Function] 

(DS?6ACKUP 

Changes the X position to the left edge of REGION and the Y position to tl:e tep 
of REGIO:-r less the font height of DlSP!..AYS7REA.'d'. T:"'.!s is u'le be21n.,ing pcsi::cn 
of the top line of text in tJlis region. If REGION is r~ I l. the cli'Pp~g region of 
DISPLAYSTRE.A.\{ is used. Note: this does not set the X position to the left :::r~-gin 
like the function DSPRESET does. 

\VIDT!i' DISPf...-\YSTRE.Al,.t) [Fuilc:':'onJ 
B~cks up DISP!.A.YSTREA1'{ over a character which is WIDTB' screen points ',,-',ce. 
DSPBACKUP fills the backed over area with the display stream's backgrou::d :e~:-~re 
and cecre.:lSCS the X position by WIDTH. If this would put t.~e X pcsi:icn less :'~a:l 
DISPL.~YSTRE.A}'c'S left margin. its opcr3.tion is stopped at t.'e left margin. It rc:urns 
T if any bits were written. NIL otherwisc. 

(CENTERPRINTINREG lOr .. EXP REGION DIS?LAYSTREAM') - [Function] 
Prints EXP so t.'at is it centered within REGION of the OLSl'!..AYSTR.EA.\{. If REGION 

is NIL. E..'U' will be centered in the clipping region of DLSP!.AYSTRE.A.~. 

19.9.3 Drawing Lines and Curves 

Interlisp-D provides several functions for drawing lines and curves onto the destination bitmap of a display 
stream 'or window. The curve drawing functions take their B lTBl T operation from the dis~lay stre:!!D.. 
while for straight lines the Operation may be specified as an argument to the ciraVting function.. with the 
display scream's operation only being used by default. 

The. fullowing functions produce strajght lines of the specified width (in screen points; the default is 
1) in the dispiay stream's destination bitmap. They do not allow "brush" paaems: however. they do 
support INVERT mode inwhich redrawing a line will erase it. These functions are intended for intencti ... e 
applications where e5kiency is important. DRAWCURVE can be used to draw lines with br.!S4'1es. 

(j 

o 

( DRA\~TO x Y WIDTH OPERATION D!SPLAYST~\{ COLOR) [Func:ic~'l 
Draws a line from the current position to the point (x. Y) cnto cte des::l.1:io:l C~) 
bitmap of DISPLAYSTREA.\{. The position of DlSPLAYSTRE.A.\{ is set to (x. y). 

If the desili:J.ation bitmap has multiple bits per pb:el. COLOR. is a color S"9ecinc.::.rion 
that determines the color used to draw the line (See page 19.44). If COLOR is r~ I l. 
this will be the DSPCOLOR of OISPLAYSTREAM. 

(RELORAWTO ox DY WIDTH OPE&-iTION DISPLAYSTREAM COLOR.) [FuncuonJ 
Draws a lLTle from the current position to the point (DX, DY) coordinates away 
onto the destination bitmap of DISPLAYSTREA..Y.. The position of DISPLAYS-:REA.\{ 

is sct to the end of the linc. 

(ORAWlINE Xl Yz x 2 Y2 WIDTH OPERATION OISPLAYSTREAM COLOR) [Fu:1ctionj 
Draws a line from the point (XI' Y 1) to the. point (X2' Yz) onto the desti:l3.uon 
biL.'113p of DISPLAYSTRE..L'-f. TI1C position of DISPLAYSTREA . .\{ is set to (x::. ":'=). 

(ORAW8ETWEEN posITroNz POSITION2 WIDTH OPERATION DISPLAYST~EA.\{ COLOR) [Fun~tic:11 
. Draws a line from the point POSITIONZ to the point POSITION'2 onto the dest.:n;.luon 

19.13 r---
\ ) 



o 

r-:.-

0·· 

o· 

Typescript Facilities: The 'T Fiie 

bitmap of DISPLAYSTREAM. Tae -position of DISPLAYSTRSA.\! is set to posmo]':;e 

A curve is drawn by placing a brush pattern centered at each point along the curve's trajectory. A brush 
pat:em is defined by its shape, size. and color. The currently recog:ti.zed shapes are ROUHO, SQUARE, 
HORIZONTAL. VERTICAL. and DIAGONAL. A brush size is an integer specif;r..ng the ""'idth of the brush 
in screen points. Tne color is a color specification (see page 19.44), which is only used if the c~rye is 
draVr"D. on a multiple bits per pixel bitmap. . 

A br..1s.h is specified to the various drawing functions as a shape-width-color list (s'..!ch as (SQUARE 2) 
or (VERTICAL' 4 REO». A bru$h can also be specified as a positive integer. which is interpreted as 
a ROUUD bru5..L'l of that width. Finally, if a brush is specified as NIL. a (ROUND 1) br ... :sh is used as 
default. 

If a o:ush is a litatom. i~ is assumed to be a function which is called at each point of the curve's trnjectory 
with three arguments: the X-coordinate or the point, the Y-coordinate. and the display stream. 

The appearance of a curve is also determined by its dashing characteristics. Dashing is specified by a 
list of positive integers. If a curve is dashecL the brush is placed along the trajectory for the number of 
points indicated by the first element of the dashing list. The brush is off. not placed in L~e bitmap. for 
a number of points indicated by the second element. The third element ir!dicates how long it Yrill be on 
a~ and so foM. The dashing sequence is repeated from the beginning when the list is eXJ.~austecL A 
curve or line is not dashed if the dashing argument to the drawing function is NIL. 

The C'..1rve functions use the display stream's clipping region and operation. Becau~ of the problem of 
overlapping brush points. the REPLACE and INVERT operations are not implemented. 

(ORAWCURVE KNOTS CLOSED BRUSH DASmNG DISPLAYSTREAM) [Function] 
Draws a spline curve. KNOTS is a list of positions to which the spline v.ill be fiued. 
CLOSED is a flag wi".Jch indicates whether or not the spline is to be closed. The 
other arguments are interpreted as described above. 

(OR,"WCIRCLE x Y RADros BRUSH DASHING DISPLAYSTREA.V) [Function1 

(ORAWELLIPSE x 
DISPLAYSTREAM) 

Draws a circle of radius RADrus about the point (x, Y) onto the destination bitmap 
of ~rs?LA ¥STREAM. DISPLAYSTP,.EAMS position is left at (x, y). (Dashing ~ay 
not be implemented for this function yet.) The other arguments are inte~reted as 
described above. 

Y SEMIMrNOR.R.ADTUS SEMIMAJORRADIUS ORIENTATION BRUSH DASErfG 

(Function] 
Draws an ellipse wiu.~ a minor radius of SEMIMINORRADrr;S and a major radh.!s 
of SEMIMAJORRADTUS about the point (x. Y) onto the destination bitmap of 
DISPLAYSTR~V.. ORIENTATION is the angle of the major axis in degrees. positive 
in L.~e counterclockwise direction. DJSPLAYSTR.E:A.MS position is left at (x, y). 

(Dming may not be implemented for this function yet.) The other arguments are 
interpreted as described above. 

19.10 TYPESCRIPT F AOLI11ES: THE "T' FILE 

Output to the file T and echoing of type-in is directed to a distinguished tenninal display stre3.!!l. This is 

19.14 



. . 

INTERLISP-D DISPLAY FAOLmES 

initialized to be a display stream at the top of the scree~ but that initial setting can be modiiied by me 
function TTYDISPlAYSTREAM. 

(TTYOISPLAYSTREAM DISPLAYSTRE'AM) [F1,lnctio::l] 

r"-\ 
\ J 

Sdects the display stream or window DISPLAYSTREAM to be the te!'!!'.i.n21 cu~uc 
channel and rerums the previous tenrinal O'.ltput display stre.:un. rTYD IS? LA 'f ST:\ EAM 
puts DISPLAYSTREA..:\{ into scroi1ing mode and calls PAGEHEIGHT \Yit:1 t..~e m':'l:::~r 

of lines that will fit into D:SFLAYSTREJi ..... \! given itS current Font and Cllppir:~.Reg:on. 
The linelength ofTTYDIS?lAYSTREAM is compu:ed (like 2!lY other c.sp:~y s~e~) 
from its Lett.\largin. Right..\1JIciin, a.'1d Font. If one of Lh~s,e fields is ch~gcc.. its 
lineicngth is recalculated. If one of the fields used to compute me n~ber of lL"1es 
(such as lL'1e ClippintRegion or Font) changes. PAGEHE IGHT is not autc4:~ccilly 
recomputed. (TTYOIS?LAYSTREAM (TTYOISPLAYSTREAl-1» will c~use it to 
be recomputed. 

If the window system is active. the line buffer is saved in the old TTY window, and (-~~ 
. lL'le line buffer is set to the one saved in the window of the new dispby stre3m. 

or to a newly created line buffer (if it does not have one). Caution: It is possible 
to move the TTYDISPLAYSTREA~. to a nonvisible display stream or to a 'Window 
whose current position is not in its clipping region. 

(CARET NEWCARET) [Function] 

(PAGEHEIGHT N) 

Sets the shape that blinks at tl:e location of the next output to the TTYOISPLAYSTREAH. 
m:WCARET is either (1) NIL - no changes. rerurns a CURSOR represe::ting the 
current caret; (2) 0 F F - turns the caret off. or (3) a CURSOR which gives ~e new 
caret shape. The hocspot of ~'fEWC.ARET indicates which point in me new caret 
bitmap should be located at the current output position. The previous caret is 
rerurned. 

[Function1 
If N is greater than 0, it is the number of lines of output mat will be pricted to 
TTYOISPLAYSTREAM before the page is held. A page is held before d:e x..;-l 
line is printed to 'TTYOISPlAYSTREAM without intervening input if the're is no 
terminal input waiting to be read. Tne outP~t is held with the screen viceo reversed 
until a character is typed. Output holding is disabled if ..v is O. PAGEHEiG:-:T 
rerurns the previous setting. 

19.1r CURSOR AJ.'ID iVIOUSE 

The screen relative position at which the cursor bitmap is being displayed can be read or set using the 
functions: 

(CURSORPOSITION NEWPOSITION DISPT..AYSTREAM OLDPOSITION) [FunctionJ 
This rerurns the location of the cursor in the coordinate system of DISPLAYSTREA. ... C 

(the current display stream. if DISPLAYSTREAlve is NIL). If OLDFosrr:os is .1 

POS I T ION, it will be reused.. and returned. If .VE"'.VPOSITION is non-N I L. it should 
be a position and the cursor will be positioned at .VEVfl'OSITION. 

19.15 . 



o 

o 

o 

Mouse Button Testing 

(ADJUSTCURSORPOSITICN DELTAX' DELTAY) [Function] 
Moves the cursor DELTAX' points in the X direction and DELTAY points in the Y 
direction. DELTAX and DELTAY default to O. 

The cursor can be changed like any other bitmap by BITBLTffig into it or pointtg a ~lay strea:n at 
it and printing or drawing curves. For most applications, it is also necessary to loca~e the hotspot - a 
pcint wi~hJ.n t.~e CURSORWIDTH by CURSORHE IGHT area which is used to determine a point position for 
the ct!rsor. Also for some applications it is necessary to save and restore the curs·:x. Tne Cursor record 
and the fa!1ow:ng f~nctions provide ulesc c2pabilities. A Cursor record has 5clcis CURSOR:: I TMAP and 
CURSORHOTSPOT. the latter a POSIT ION that gives the location of the hot spot inside the CU:SOf. 

(CURSORCREATE BITMAP x Y) [Function) 
Returns a cursor object which has BITMAP as its image and the location (x. y) as 
the hot spot. If x is a POS I T ION. it is used as the hot spot. If BITMAP h'lS 
dimensions different from CURSOR\iIDTH by CURSORHE IGHT. the lesser of the 
widths and the lesser of the heights are used to determine th~ bi:s that acrually 
get copied into L~e lower left corner of the cursor. If x is NIL. 0 is used. . If y is 
NIL. CURSORHE IGHT-1 is used. The default cursor is an uparrow with its tip in 
the upper left corner and its hot spot at (O.CURSORHEIGHT-l). 

(CURSOR NEWCURSOR -) [Function] 
Returns a CURSOR record instance that contains (a copy of) the current cursor 
specification. If NEWCURSOR is a CURSOR record instance. the cursor will be set 
to t;he values in NE'WCURSOR. If NEWCURSOR is T, the cursor will be set to the 
default cuxwr DEFAULTCURSOR. an upward left pointing arrow. 

(SET CURSOR NEWCURSOR -) [FuDction] 

(FLIPCURSOR) 

If NEW~OR is a CU RSO R record instance. the cursor will be set to the values in 
NEWCTJRSOR. This does not return the old cursor, and therefore. proyides a way 
of changing the cursor without using stor2.ge. 

[Function] 
Inverts the cursor. 

There are several cursors defined in Interlisp-D that may be of interest to users. One of these is 
WAITINGCURSO~ an hour glass shape used by the system to indicate that a long computation is in 
progress. 

CURSORs can be saved on a file using the file pac~age command CURSORS, or the UGL YVARS file package 
command. 

19.11.1 Mouse Button Testing 

There are vat10us graphical input devices that can be read from Interlisp-D. The devices used in ttis 
manner are: a device called a mouse, which has three keys and steers the cursor. and seven uninternieted 
keys en the keyboard. (Some Xerox 1100 systems may also have a small. five-key kcyset.) The foiiowing 
macros are provided to test the state of these input devices. (The three keys on th~ mouse (often c2lkd 
buttons) are referred to by their location: left. middle. or right.) 

(MOUSEST ATE BUTTONFORM) [~'lacro] 
Reads the mouse state a..rld returns T if that state is described by BLT'TTOJ-"'FOR.\!. 

19.16 



{l\;TERLISp· D DISPLAY FAOLITIES 

BUTTONFORlw! can be one of the key indicators LEFT. MIDDLE. or RIGHT: tl:e 
atom UP (indicating all keys are up): the form (ONLY KEY): or a forw of AND. OR. 
or NOT applied to any valid but:on form. For example: (MOUSEST ~ T E LE:=T) 
will be true ifthc left mouse button is down. (HOUSESTATE (ONLY LEFT)) 
will be true if th.e left mouse but~on is Lli.e only one down. (HOUSESTATE (OR 
(NOT LEFT) MIDDLE) will be true if either the left mouse but:on is up or tile 
middle mouse button is down. 

(LASTMOUSESTAiE BUTTONFOR .. M) r..f.:lcro] 
Simibr to ~OUSESTATE. but tests the value of LAST;v10USEBUTTO~4S nt.1cr tbm 
getting the current staLe. This is useful for de~eITf1jning which keys' caused a 
MOUSEST ATE to be true. 

(UNTILMOUSESTATE BUTTONFORM INTERV'.AL) r.-tacro1 
BUTTONFOP_\{ is as described in- MOUSEST ATE. \Vaits until BUTTONFOP~'{ is t..-ue 
or until mTZRVAL milliseconds have elapsed. The value of UNTILMOUSESTATE is 
T if BUTTONFORM was satisfied before it timed out, otherwise ~4 I L. If C-:T~RVAL 
is NIL. it waits indefinitely. It compiles into an open loop that ~s tl:e TTY 
wait background function. This form should ~ot be used inside :he TTY wait 
background function. UNTILMOUSESTATE does not use any stor~ge dur.ng irs 
wait loop. . 

Tnemacros KEYSETSTATE and LASTKEYSETSTATE are identical to MOUSESTATE and LASTMCUSESTATE 
except that they also check the state of the five-finger. keyser as well as the state of the mouse buttons. 
That is th~y che:k the state of both the mouse a..""ld the keyser.. ThUs. if the left mouse burton was the 
only mouse button held down. (f\iOUSESTATE (ONLY LEFT)) would be T even though a keyset key 
was down: whereas (KEYSETSTATE (OULY LEFT» wQuld be NIL if a keyset button were down. 

The names of the keyset keys are: LEFTKEY. LEFTMIDDLEKEY, MIDDLEKEY, RIGHTMIDDLEKEY and 
RIGHTKEY. 

19.11.2 Low Level Access to L\tlouse 

o· 

This section describes the low level access to the graphical input devices and can be skipped by most (-"\ 
users. Graphical input infounation is represented in the following global variabies: \. ) 

LASiMOUSEX [VariaoleI 
The X position of the cursor in absolute screen coordinates. Also see tte function 
LAST~~OUSEX below. 

LASTMOUSEY [V~iablel 
The Y position of the cursor in absolute screen coordipates. Also see the function 
LASTMOUSEY below. 

LASTMOUSEBUTTONS [Variable) 
An 3-bit number that has bits on corresponding CO L~e mouse buttons L'1at JIC 
down: 4Q is L1.e left mouse button. 2Q is r.he right button. 1 Q is the middle button. 
(Bits 2 Q QQ, 10 QQ, 4QQ, 2 QQ. and 10Q give the state of the keyset keys. from left 
to right, if you have a keyser.) 

19.17 ( ~ 
\ ) 



o 

o 

LASTKEYBOARD 

LAST~OUSETIME 

\YiI:dows 

[Variabie] 
The state of certain keys on L.'le keyboard (200Q = lock. 100Q = left shift. 4CQ = 
ctrL 10Q = right shift. 4Q = blankBottom. 2Q = blanl:Middle. lQ = blclTop). 
If the key is dow~ the corresponding bit is on. 

[Var=~blel 
The time in milliseconds since the mouse was last read (sL"'lCe the last call to 
GETMOUSESTATE. LASTMOUSETIME is a 16-bit positive integer so it roUs over 
every 65 + seconds. 

The following functions provide low level cursor access in display stream coordinates. 

(LASTi"OUSEX DISPLAYSTREAM) [Function] 
Returns the value of the cursor's X position in the coordinates of DISPUYS~\.(. 

(LASTMOUSEY DISPLAYSTREAM) [Function] 
Returns the value of the cursor's.Y position in the coordinates of DISPLAYSTR.EA..\{. 

(DECODEBUTTONS BrJTTONsTATE) [Function1 
Re~rns a list of the buttons or keys that are doVtll in the state Bu~TONSTATE. If 
BUTTONSTATE is not a SMALLP, LASTMOUSEBUTTONS is used (see GETMOUSESTATE 
below). The button names that can be returned are: LEFT, MIDDLE. RIGHT (the 
three mouse keys), LEFTKEY, LEFTMIDDLEKEY, MIDDLEKEY, RIGHTMIOOlEKEY 
a:ld RIGHTKEY (the five key set keys). 

(GETMOUSESTATE) [Function] 
Reads the current state of the mouse and sets the variables LASTMOUSEX. 
LASTMOUSEY,LASTMOUSEBUTTONS, LASTMOUSETIME,andLASTKEYBOARD.ln 
polling mode, the program must remember the previoas state and look for changes. 
such as a key going up or down, or the cursor moving outside a region of interest.. 

6. 19.12 WINDOWS· 

o 

Windows provide a means by which different programs can share the display harmoniously .. Interlisp-D 
provides both interacti'ie and progI"an".matic consuucts for creating. moving, r~'1apin~ overlapping. ar..d 
destroying windows in such a way that a program can be embedde4 in a window in a relatively transparent 
fashion. This is implemented by having each window save the bits that it obscures. Tnis allows existing 
Interlisp programs to be used without change, while providing a base for experimentation wit..~ more 
complex window semantics in new applications . . . . 
Because the window system ~sumes that jIl programs follow ceruin conventions concerning control of 
the screen. ordinary u~er progr~Jln$ should not perform display opcratwns directly on the screen. In 
panicuiar. functions that can operate directly on biunaps (such as BITBlT or BI THAPB IT) should not 
be given (SeRE ENS ITr~AP) as the destination argument. All interactions with the screen should take 
piace through windows. . 

For specialized applications that require taking complete control of the display. the window sys:em can 
be turned otT (and back on again) with the following function: 

19.18 



,,-c \ 

INTERLISP-D DISPLAY FAOLITIES 

(WINOOWWORLD FLAG) - [N"oSpfP..3d Functio=J 
The window world is turned on if FLAG is T and off if FLAG is NIL. WI riDO' .. ttliC RLD 
returns the previous state of the window world (T or NIL). If \~INDO·.JWORlD is 
given no arguments~ it simply returns the current state without meeting ,,",~e wi!lcow 
world. .. 

19.12.1 What are Windows? 

A window specifies a region of the screen .. a display stream .. a location in an occlusion St2Ck. functions 
that~et called when the window.undergoes certain action~ and various other items of info::nation. Tee 
basic model is that a window is a passive collection of bits (on tte screen). On top of this basic leyeL tte 
system supportS many different types of windows that are linked to the data strucrures displayed in ther:1 
and provide selection and redisplaying routines. In addition .. it is possible for tlle user to cre;ltc new types 
of wiocows by providing selection and displaying functions for them. 

Windows are ordered in depth from user to background. Windows in front of others obscure the latter. 
Operating on a window generally brings it to the top. 

Windows are located at a certain position on the screen. Each window has a clipping region that confines 
all bits splashed at it to a region that allows a border around the window. and a title above it. 

Each window has a display stream associated with i4 and either a window or itS display stream can 
be passed interchangeably to all system functions. There are dependencies between t.'1e window and its 
display stre3.I!l that the user should not disturb. For instance. the destination bitmap of the display strexn 
of a window must always be (SCREENBITMA?). The XOffset. YOffset. and ClippingRegion aruibutes 
of the display stream should not be .changed. At some future date .. the notions of window and display 
stre3.m will be merged. 

Windows can be created by the user interactively, under program control or may be created automatically 
by the system. 

Windows are in one of two states: "open" or "closed". lnan '·open" state. a window is on the ocdusion 
stack and therefore visible on the screen (unless it is covered by other open windows) and ac=essible to 
mouse operations. In a ··closed" state, a window is net on the occlusion stack and therefore uct visible /-\, 
and not accessible to mouse operations. Any attempt to print or draw on a dosed window will ope:l it. t_) 

\Vhen Interlisp-D S~LS uP. there are three windows on the screen: a top level typescript window,..a 'Nindow 
contai!1ing the Interlisp-D logo. and a prompt window. The top level typescript window correspones .to 
the file T in the EX E C process where tb.e read-eval-print loop is operating. The logo window is bound to 
the varjable LOGOW until it is closed.. The prompt window is used for the printing of help or prompting 
messages. It is available to user programs through the following functions: 

PROMPTWINOOW [Variabie] 
Global variable containing the prompt window. 

(PROMPTPRINT ~~) [NoSpread Function} 
Prints EXP in the prompt window. 

(ClRPROMPT) [Function] 
Clears the prompt window. 

19.19 n 
. ./ 



/--:.: 
U 

0' 

0' 

Interactive 'Yindow Operations 

19.12.2 InteractiYe Window Operations 

The Interlisp·D window system allows the user to interactively manipulate the windows on LL~e scree~ 
moving them around, changing their shape, etc. . by selecting various operations from a menu. 
Prog::ram.matic versions of these operations are described on page 19.26. 

Fer mos: windows. depressing the RIGHT mouse key when the cu~r is inside a window during I/O wait 
will c~use the window to come to the top and a menu of \\-i.ndow oper~tions to appear. [f a cOir .. '11and 
is sch..~ted from this menu (by releasing the right mouse key while the cursor is ove: a cO:n.r.1and). the 
selected operation will be applied to the wi.ndow in which the menu was broug...'1t up. (It is possibie for an 
applications program to redefine the action of the RIGHT mouse key. In these cases. there is a cO:lvention 
that the default command menu rr:ay be brought up by depressing the RIGHT key when the cursor is in 
the header or border of a window. See page 19.30) The operations are: 

CLEAR 

CLOSE 

BURY 

MOVE 

SHAPE 

REDISPLAY 

PAINT 

[Window Menu Command] 
Oears the window and repositions it to the left margin of the first line of text 
(below the upper left corner of the window by the amount of the font ascent). 

[Window Menu Corn~~c..nd] 
Oases the window, i.e, removes it from the screen. (See CLOSEW, page 19.26.) 

[WindOW Menu Command) 
Puts the window on the bottom of the occlusion stack.. thereby exposing any 
windQws that it was rJding. 

[Window Menu Command] 
Moves the window to a location specified by depressing and then releasing the 
LE FT key. During this time a ghost frame will indicate where the window will 
reappear when the key is released. (See GETBOXPOSITION, page 19.36.) 

(\Vindow l'-.1enu CC:n::land] 
Allows the user to specify a new region for the existing window CO!ltents. If the 
LE FT key is used to specify the new region. the reshaped window can be placed 
anywhere. If the M I DO L E key is used. the cursor will stan out tugging at the ::ez.rest 
corner of the existing window, which is useful for making small adjusLuer:ts in a 
window that is already positioned correctly. 

[\Vindow Men.u Command1 
Redisplays the window. (See REDISPLAYW, page 19.27.) 

(\Vindow Menu Command] 
Switches to. a mode in which the cursor can be used like a paint brush to d:aw 
in a window. This is useful f9r making notes on a window. While the LE FT key 
is down. bies are added. \Yhile the MIDDLE key is down. they arc er:lSed. The 
RIGHT button pops up a 'command menu th~t allows changir.g of the brush shape. 
size and shade, changing the mode of combining the brush with the existing bits. 
or stopping paint mode. 

Paint mode also contains a hardcopy command that makes a Press file of the bits 
in a window and sends it to the printer. There are limitations on tl'1e complexity 
and size of the bitmaps that some printers will print. If the printer does not print 

19.20 



SNAP 

INTERLISP-D DISPLAY FACILITIES 

the entire -window correctly, try a smaller window or one with fewer black bits 
in it. To get a hardcopy of an arbiu~ part of the screen that crO$S~ Vrinc!ow 
boundaries, use the HARDCOPY command in tt.'1e background menu (below). 

f\Yindow r..fenu Co:r~c.] 
Prompts for a region on tb.e screen and makes a new window whose bits ar~ a 
snapshot of the bits currently in that region. Useful for sa .. ing soce pa.rticularly 
choice image before the window image changes. 

Occasion:illy. a user will have a number of brge windows on the screen, making it diffic:Jit to ac:ess those 
windows be~g used. To help wi:h the problem of screen space manage:ne::lt. the Interlisp-D window 
system allows the creation of Icons. An ico~ is a smail ret;tangle (containing text or a bic=1:lp) which is 
a "shrunken-down" form of a pa .... ticular window. Using t..'1e SHR INK and EXPAND com..~m~ the user 
can sr.l..d.nk windows not currently being used into icons. and quickly restore the ori£inai windows at any 
time. 

SHRINK [Window Menu Command] 
Removes the window from the screen and brings up its icon. (See S H R INK W .. 
page 19.27.) The window can be restored by selecting EXPAND from the ~indow 
command menu of the icon. 

If the RIGHT button is pressed while the cursor is in an icon., the window command menu will contain 
a slightly different set of commands. The RED ISPLA Y and CLEAR commands are removecL rid the 
SHRINK command is replaced with the EXPAND command: 

EXPAND [Window Menu Command] 
Restores the window associated with this icon and removes the icon. (See EXPANDW'. 
page 19.28.) 

If the RIGHT button is pressed while the cursor is not in any window. a "background menu'· appears 
with the following operations: 

SAVEVM [Window Menu Co::u:nanc1 
Calls the function SAVEVM (page 18.4). which writes o.ut all of the d.:.r:y pages 

() 

of the virtual memory. After a SAVEVM, and until the pagefuult handler is cext 
forced to wri::e out a dL""ty page~ your virrual memory image will be contirluabie (-) 
(as of the SAVEV~l) should you experience a system crash or other disas::er. 

SNAP 

HARDCOPY 

[Window ~lenu Corr.rr.andj 
The same as the SNAP command described above. 

[Window ~1enu COIru:land] 
Prompts for a region on the screen, makes a press file and sends it to the prir.ter. 

The printing is done with HARDCOPYW (page 18.18). so if FULLPRESSPRINTER 
is non-NIL. the image will be sent there. rather than to (PRINTINGHOST). 

Some built-in facilities and Lispusers packages add commands to the background menu. to provide an 
easy way of calling the different facilities. The user can determine what these new comn13.nds do by 
holding the RIGHT button down for a few seconds over the item in question: an explanatory U1es~ge 
will be printed in the prompt window. 

19.21 



o· 
Changing Entries on the \Vindow Command Menus 

-
The following functions provide a functional interface to the interactive window operations so that l:.ser 
programs can call u,em' directly. 

(DO'JIINDOV/COM \VI2\"DOV/). {Function] 
If "'mmow is MIL, it calls DOBACKGROUNDCOM. If W!1v"DOW is a sru-Jnken ~i.ndow. 
it brings up the "icon window" menu. If WINDOW is a unshrunken w~dow. it 
brings up the window menu. The initial iteos in t..~ese menus are described above. 
If the user selectS one of the items from the provided menu. that ite:n is AP P L Yed 
to V,Th"DCW. If WlNDOVI is not a 'N I NDOW or NIL. it returns. 

(DOBACKG ROUNOCQr'l{) [Function] 
Brings up the background menu. The initial items in this menu are described 
above. If the user selects one of the items from the menu. u.'at item is EVALed. 

o 19.12.3 Changing Entries on the \Vindow Command Menus 

r- .. 

0·-

0-

The window command menus for unshrunken window~ shrunken windo~ and the background are 
cached in the variables '»; ndowMenu, IconWi ndowMenu, and 8ackg roundMenu. To chaoge L.1.e· 
entries in these menus, ~~e user should change the change the menu "command lists" in the variables 
WindowMenuCommands. IconW;ndowMenuCommands,andBackgroundMenuCommands.ancsetme 
appropriate menu variable to a non-ME NU. so the menu will be recreated. This provides a way of adding 
cC:r'..I!"UUlds to tJ."i.e menu, of changing its font or of restoring the menu if it getS clcbbered. The "command 
lists" are in the f~rmat of the I TEMS field of a menu (see page 19.39), except as ~ecified below. 

Note: command menus are recreated using the current value of MENUFONT. 

Wi ndo\~Menu [Variable} 
Wi ndowMenuCommands [Variable] 

The menu that is brought up in response to a right button in an unslli.-unken \ltindow 
is stored on the variable WindowMenu. IfWindowMenu is set to a non-MENU. the 
menu will be recreated from the list of commands W; ndowMenuCoIrJ71ands. The 
CADR of ezch cOII1mand added to Wi ndowManuCommands should be a function 
name that will be APPL Yed to the window. 

I ccnWi n dow"'enu [Var:.able] 
I conW; n dov.rMenuComman ds _ [V?.riable] 

The menu that is brought up in response to a right button in a shrunken \l,i.ndow is 
stored on the variable IconWindowMenu. Ifit is NIL. it is recreated from the list 
of cocunands IconWindowr,1enuCommands. The CADR oreach command added 
a function name that will be A P P L Yed to the window. . 

Backg roundMenu [Variable] 
Backg roundMenuCommands [Variable} 

The menu that is brought up in response to a right button in the background is 
stored cn the variable BackgroundMenu. lfit is NIL. it is recreated from the list 
of commands Backg roundMenuCommands. The CADR of each cOmrrl:ll"1d added 
to 8ackgroundMenuCommands should be a fonn that will be EVALed. 

19.22 



.---.. 

~TIRLlSP·D DISPLAY FAOLITIES 

19.12.4 Coordm::te Syste~ 

One way of thinking of a window is as a "view'· onto.an object (e.g. a graph. a file .. a picture. etc.) 
Tne object has its own natural coordinate system in terms of which its subparts are laid out. vYlle:t the 
window is created. the XOffset and YOffset of the window.·s display stream are set to map th.e origtn 
of the object's coordinate system into the lower left point of tile window's interior region. At ±e same 
time. the C1ipp~gRegion of the display stream is set to correspond to the interior of the \\indow. From 
then en., the display stre~~'s coordin3.tc system is translated .md its clip;Jing region adjusted whenever 
tl:e window is moved.. scrolled or rcsh4!ped. 

There are several distinct regions associated with a window viewing an object. Firs~ c..'1ere is a region in 
the window·s coordinate system that contains the complete irnzge of the object. This regien (which on 
only be detennined by application programs with knowledge of the "semantics" of the object) is stored .1S 

the EXTENT property of the window (page 19.J2). Second. the clippLTlg region of the window (cbt.:lln.lble 
with the f~nction DSPCLIPPINGREGION) specifies the portion of the object that is actu;illy visible in the 
window. This is set so that it corresponds to the interior of the window (not including the border or title). 
Finally, there is ~'le region on the screen that specifies the total area that the window occupies. inc1ud.i::g 
the border and title. Tnis region (in screen coordinates) is stored as the REGION property of the 'Window 
(page 19.33). 

19.12.5 Scrolling 

The window system supports the idea of scrolling the contents of a window. Scrolling regions are on 
the left and the bottom edge of each window. The scrolling regions will only be active if the \\indow 
has a SCROLLFN window property (page 19.31). If a window has a SCROLLFN and the cursor moves 
from inside that window into its scrolling region and remains there for SCROLLWAITTIME milliseconds 
(initially 1000). a scroll bar appears. The value of the global variable SCROLL8ARWIDTH (i.citiaily 24) 
determines the size of the scrolling region. Toe LE FT key is used to indicate t!pward or leftward scroilli!g 
by the amount necessary to move the selected position to the top or the left edge. The RIGHT key is 
used to indicate downward or rightward scrolling by the amount necessary to move the top or left edge 
to the selected position. The MIDDLE key is used to indicate global placement of the object within the 
window (similar to uthumbingt9 a beok). 

In the scroll region. the pan of the object that is being viewed by the window is marked '-"lith a gray 
shade. If the whole scroll bar is thought of as the entire object, the 5£~ded portion is the pardon currently 
being viewed.. This will only occur when the window "knows" how big the object is (see window' property 
EXTENT. page 19.32). 

When the button is rel~ased in a scroll region. the function SCROLLW is called.. SCROLLW calls the 
scrolling function associated with the window to do the actual scrolling and provides a programmabl~ 
entry to the scrolling operation. : 

(SCROLLW WINDO\V DELTAX DELTAY CONTTNUOUSFLG) [Function} 
Calls the SCROLLFN window propeny of the window WINDOW with argu
ments WINDOW, DELTAX. DELTAYand CONTINUOUSFLG. See SCROLLFN window 
property, page 19.3 L 

The function that tracks the mouse while it is in the scroll region is SC ROLL. HAND LE R. 

19.23 

(J 

~ 

(~'-, / 

(j 



() 

O~, 

,.- . o 

(SCROLL.HANDLER 

Scrolling 

WINDOW) [Function} 
This is called when the cursor leaves a window in either the left or down ward 
direction. If WL"t~"V does not have a scroll region for this direction (e.g. the 
window has moved or reshaped.since it was last scrolled), a scroll region is created 
that is SCROLLEARWIDTH wide. It then waits for SCROLLWA ITT IHE millisecor:ds 
and if the cursor is still inside the scroll regio~ it opens a window u1e size of the 
scroll region and changes the cursor to bdicate the scrolling is taking place. 

\Vhen a bunon is pressecL the cursor shape is changed to inc!icate the type 
of scrolling (up. down. lef" ... right or thumb). After the button is he:d for 
WAIT8EFORESCROLLTIME milliseconds. until ~~e button is released SCROLLW 
is called each WAITBETWEENSCROLL TIME milliseconds. These calls are made 
with the CONTrNUOUSFLG argument set to T. If the bunon is relc.1sed before 
WAITBE FORESCROLL TIME milliseconds. SCROLLW is called with the CO~7I:-.'t·O(:SFLG 
argument set to NIL. . 

The arguments passed to SCROLLW depend 00 the mouse bunon. If the LE FT 
button is used in the vertical scroll regio~ DY is distance from cursor position at 
the time the button was released to the top of the window and DX is o. If rhe 
RIGHT button is used., the inverse of this quantity is used for DY and 0 for DX. 

If the LE FT button is used in the horizontal scroll region. DX is distance fro:n 
cursor position to left of the window and DY is O. If the RIGHT button is used.. 
the inverse of this ~uantity is used for DX and 0 for DY. 

If the MIDDLE button is pressed., the distance argument to SCROLL'd will be a 
F LOA T P between 0.0 and 1.0 that indicates the proportion of the distance the 
cursor was from the left or top edge to the right or bottom edge. 

SCROLLBYREPAINTFN is the standard scrolling function which should be used as the SCROLLFN property 
for most scrolling windows. . 

(SCROLLBYREPAlr~TFN WlNDOW DELTAX DELTAY CONTINUOUSFLG) [Function] 
·This functio~ when used as a SCROLLFN. BITBL Ts the bits ~~2.t will remain 
visible after the scroll to their new lccztion. fills the newly exposed area with 
textUre. adjusts the window's coordinates and then calls the window·s REPAH~TF{-I 
on the newly exposed region. Thus ~~is function will scroll any window t..'1at 
has a repaint function. If wnvDOW has an EXTE NT property (page 19.32), 
SCROLLBYREPAIHTFN will limit scrolling to keep the extent region visible or 
near visible. That is. it will not scroll the window so that L.'1e top of the exte~t 
is below the top of the window, the bottom of the extent is more than one P01!lt 
above the top of the window, the left of the exte~t is to me right of the window 

.and the right of the extent is to the left of the window. The EXTENT is scrolled 
: to just above the window to provide a way of "hi~g" tl)e contents of a window. 

If DELTAX' or DELTAY is a FLOATP, SCROLLBYREPAINTFN wtll posHion the 
window so that itS top or left edge will be positioned at that proporJon of its 
EXTENT. If the window does not have an EXTENT. SCROLLBYREPAINTFU will 
do nothing. 

If CONTINUOr.;SFLG is non-N I L. this indicates that the scrolling button is being 
held down. In this case. SCROLLBYREPAINTFN will scroll the distance of one 
linefeed height (as returned by DSPLINEFEED. page 19.12). 

19.24 



INTERLISp·D DISPLAY F ACILITIF.S 

19.12.6 Programmatic Window Oper:ltions 

(CREA TE~ REGION 

(WINDO\'1P x) 

TITLE BORDER' NOOFENnG) [Function] 
Crea:es a new window. REGION indicates where and how large the window sl:ould 
be by specifying t.he exterior region of the window (the usable height ~c. ,.1tidtb. 
of the resulting window will be smaller than the height and width of W.~e region by 
twice the border size and furJler less the hei8-L'1t of the title. if any). If R.EGICN is 
NIL. GETREGION is calIcd to prompt the user for a region. 

If TITLE is non-N I L, it is printed in the border at Lhe top of the wil:dow. The TI7LE 

is printed using the ZJobal display strexn WindowTitleOispl ayStream. Thus 
the height of the title will be (FO:4T?ROP WindowTitleOisplayStream 
, HEIGHT). 

If BORDER is a number. it is used as the border size. If BORDER is not a number, C--) 
the window will have a border WBo rd'3 r (initially 4) bits wide. 

If NOOPENFLG is non·H I L, the window will not be opened. Le. displayed on the 
screen. 

[Function1 
Returns x if x is a window, NIL otherwise. 

(OPEN\'JP WINDOW) [Function] 
Returns wrNFJOW. if WlNDOW is an open window (has not been closed): NIL 
otherwise. 

(OPENWINOOWS) [Ftmction] 

(WHICHW x Y) 

Returns a list of all active windows. 

[Function] 
Returns t..l-te window which contains the position in screen coordinates of x if x 
is a POSIT ION, the position (x.Y) if x and yare numbers. or the position of L.~e 
cursor if x is NIL. Returns NIL if the coordinates are not in any wbdow. If they 
are in more t..'an one window, it returns the uppermost.. (~) 

Example: (WH I CHW) rerums the window that the cursor is in. 

{OECOOE/WINOOW/OR/OISPLAYSTREAM DSOR'N W1NDOWVAR TITLE BORDER} [Function1 
If DSORW is a display stream. it is returned. If DSORW is a window, ics display 
stream is returned. If DSORW is NIL. it evaluates WT.VDOW'v"AR (which should. be 
an atoo). If its value is a window, it is reopened if it is closed. and rett;rned. If i:s 
value is not a window, WTNDOWVAR is set to a ne~ly created window (prompting 
user for, region) and rerurned. If DSORW is N-E'W, a new window is created ,and 
returned. If TITLE or DOHDER are given and J window is involved.. the TITLE or 
BORDER property of the window is reset. 'rn~ DSORW= NIL case is most useful 
for programs that want to display their output in a window, but want ~o reuse L1e 
same window e:!ch time they are called. The non-N I L cases are good for decoc.:ng 
a display stream argument passed co a function. 

(WIOTHIFWINDOW INTERIORWTDTH BORDER) [FunctonJ 
Returns the width of the window necessary to have INTER!ORWIDTH points in its 

19.25 



o 

--() 

o 

Programmatic Window Operations 

interior if the width of the border is BORDER. If BORDER is NIL. the default 
border size WBo rde r is used. 

(HEIGHTIFWINDOW INTERIORn-ZIGHT TITLEFLG BORDER) [Functio:!] 
Returns the height of the window necessary to have INTERIORHEIGHT points in its 
interior with a border of BOaoER and. if TITLEFLG is non-N I L, a title. If BORDER 

is NIL, the default border size WSo rde r is used. 

WIDTHIFWINOOW and HEIGHTIF\lJIUDO\,/ are useful for calculating the width a.,.,d heig.ht fer a call to 
GETBOXPOSIT ION for the purpose of positioning a window. 

Interlisp-D provides a set of operations which apply to any window. In addition to being available as 
functions. most of these arc also available via the standard mouse interface. See page 19.10 

(TOTOPW ~"DOW NOCALLTOPWFN) [Function] 
Brings WTNDOW to the top of the stack of overlapping 'Windows. guarant~~g that 
it is entirely visible. If WINDOW is closed, it is opened. '11'js is done automatically 
whenever a printing or drawing operation occurs to the window. 

If NOCALLTOPWFN is NIL. the TOTO?Fr~ of WINDOW is ca1!ed (page 19.30). If 
NOCALLTOPWFN is T, it is not called, which allows a TOTOPFN to call TOTOPW 
without causing an infinite loop. 

(SHAPEW WlNDOW NEWREGION) [Function1 
ReShapes WINDOW to the region NEWREGION. or promptS for a region (\lrith 
GETREGION. page 19.37) if none is supplied. Calls the window's RESHAPEFN, if 
any (page 19.31). 

(CLOSEW WI1-f~w) [Function] 
CLOSEW calls the function or functions on the window property CLOSE FN of 
~ow, if any (page 19.30). If one of the CLOSE Fr.s is the atom DON'T or 
returns u'1e atom DON f T as a value, CLOSEW rerurr.s \1riL.~o\!t doing anYL.'1ing 
further. Otherwise, CLOSEW removes WlNDOW from the windew stack and restores 
the bits it is obscuring. If WTI\'DO\V was closed. VI11\'DOW ~ reru~ed as tL"!e value. 
If it was not close~ (for example because its CLOSEFN returned the atom DON'T). 
NIL is returned as the value. 

WINDOW can be restored in the same place with the same contentS (reopened) by 
calling OPENW or by using it as the source of a display operation. 

(OPENW WINDOW) [Functio:1] 
If WlNDOW is a closed window, OPEN\I/ calls the function or functicns on ~1e 
window property OPENFN of WlNDO\V, if any (page 19.30). Ifone of the OPENFNs 
is the atom DON'T. the window will not be opened. Otherwise t.1e "'w'indow is 
placed on me occlusion stJ.ck of windows and its contents displayed on the screen. 
If WINDOW is an open window, it returns NIL. 

.( MOVEW WINDOW POSorX Y) [Function] 
Moves VVl'NDOW to the position specified by POSorX and Yaccording to the f.Jllowir.g 
rules: 

If POSorX is NIL. GETBOXPOSITION (page 19.36) is called to read a position from 

19.26 



INTERLISP-D DISPLAY FAOLrtIEs 

the user. -

If POSarX is a POSIT lOr •• POSorX is used. 

If POSorX and y are both NUMBE.RP, a position is created using POSorX as the 
XCOORD and y as the yeOORD. 

If POSorX is a REGIOr" a position is created using its LEFT as the XCOORD and 
BOTTOM as the yeOORD. 

If \-VTI"nJOW is not open and POScrX is ~on-N I L. the window will be moved 'Nithout 
being opened. Othenvise, it will be opened. 

If \\t1'NDOW has the atom DON' T as a MOVEFN property (page 19.32). the window 
will not be moved.. If WINDOW has any other non-N I L value .1S a MOV E F N p,up~rty. 

() -

it should be a function or list of functions that will be called before t.~e wmeow (- \ . 
is moved with the \V1NDO\V as an argument. If it returns the atom DON' T. t.~e )-
window will not be moved. If it returns a position.. the window will be moved to 
that position instead of the one specified by FOSorX and y. If there are more th.m 
one MOVE F r.s. the last one to rerum a value is the one that determines where the 
window is moved to. 

If WINDOW is moved and 'NTI'IDOW has a window property of AFTERMOVEFr~ (page 
19.32), it should be a function or a list of functions that will be called after the 
window is mov~d with WlNDOW as an argument. 

MOVEW returns the new position.. or NIL if the window could not be moyed. 

(REU>10VEW WINDOW POSITION) [Function] 
Like MOVEW for moving windows but POSITION is interpreted relative to the current 
position of VVINDOW. Example: The following code moves WINDOW to L.~e right 
one screen poi!lt. 

(RELHOVEW WINDOW (create POSITION XCOORD ~ 1 YCCORD ~ 0») 

(CLEARW WINDOW) [FunctionJ 
Fills WI'NDO\V with its background texture. changes its coordinate system so mat 
the origin is the lower left corner of the window. sets its X position :0 me left 
margin and sets its Y position to the base line of the uppermost &e of text. ie. 
the top of the window less the fent ascent. 

(BURYW WTNDOW) [Function} 
Puts WINDOW on the bottom of the stack by moving all the windows tha~ it covers 
in front of it. . 

(REDISPLAY.W WINDOW REGION AL\\-~YSFLG) . [Function} 
Redisplay the region REGION of the window W1NDOW~ If RECION is NIl. the 
entire window is redisplayed. If ALWAYSFLG is NIL. and· WTNDOW doesn't have a 
REP A IN T F N (page 19.32). WINDOW wiil not cf?ange md the message ··Tnat window 
doesn't have a REPA1NTFN'" will be printed in the prompt window. 

(SHR I NKW VI1NDOW TOWHAT ICONPOSITION EXPA.N'DFN) [F~nction] 
SHR INKW makes a small icon which represents WINDOW and removes WT.'\'"DOW 

19.27 



o 

o· 

{EX?ANDW ICON} 

Window Properties 

from U.~e screen. Icons have a different window command menu that COCt2;"'S 

66EXPAUD" instead of "SHRINK". The EXPAND command calls EXPAllDW which 
returns the shrunken window to its original size and place . 

.• 
The SHR I NKFN property (page 19.30) of the window Vt-Th"DOW afectS the operation 
of SHRINKW. If the SHRINKFN property of WINDOW is the atom DON t T. SHRINK~ 
prin.ts "Can't shrink that window·' in the PROf.<lPTlN! UOOW 2!la returns. O:'1er,vL~. 
the SHRINKFN property of the window is treated as a (list of) func:io::(s) to a.~p~y 
to WI!'."DOW, if ~'Y r~tums the atom DON'T. SHRINKW prints ··Ca:J.'t SJ.~ ..... ink L.~at 
window" in the PROHPTW Ir~OOW and returns. 

TO WHAT, if given. indicates the image the icon window will have. If TO","F..AT is 
a strL~g. atom or list. the icon's image will be that st .... ing (currcr.tly implc~cnt::d 
as a titie-only window with TOWIL1T as the title.) If TOWHAT is a 6 I TMAP. the 
icon's image will be a copy of the bitmap. If TOWXAT is a WINDOW. that window 
will be used as the icon. 

If TOWHAT is not given (as is the case when invoked from the SHRINK v.indow 
command), then the following apply in turn: (1) If the window has an I CON F N 
property (page 19.31), it gets called with arguments (WINDOW OLDICON), where 
WiNDOW is L.~e window being SJ.'uilnk and OLDICON is L.~e previously cre2.ted icon. 
if any. The I CON FN should return one of the TOWF'..AT entities des:ribed above 
or rerum the OLDICON if it does not want to change it. (2) If the winc!ow has an 
ICO~~ property (page 19.31), it is used as the value of TO\\.7iAT. (3) If the Vw":Uldow 
has neither an ICONFN or ICON property, L.'e icon will be Vt--mDow's title or. if 
WINDOW doesn't have a title._ the date and time of the icon creation. 

ICONPOSrTION gives the position that the new icon will be on L~e screen. If it is 
NIL, the icon will be in the corner of the window furthest from the center of the 
screen. 

In all cases the icon is cached on the prop'@rty ICONWI NDOW (page 19.31) of 
W1:'IDO"N so repeating SHRIr-JKW reuses the same icon (unless overridden by the 
ICOr-cFN described above). Tnus to change the icon it is neces..<:.ar;-' to re::loye the 
ICONWINOQ'd property or call SHRIHKW explicitly gh'ing a TOW:FIAT ar~Jment. 

[Function] 
Restores the window for which ICON is an icon. and removes the icen from t.~e 
screen. If t.'1e EXPANDFN (page 19.31) window property of L.'1e main WL'1C.OW is 
the atom DON'T. the window won't be expanded. Otherwise. the window will be 
restored to its original size and location and the EXPANDFN (or list of functior...s) 

• will be applied to it. . 

19.12.7 'Vindow Properties 

. The behavior of a window is controlled by a set of window propenies. Some of these are used by L~e 
system. However. any arbitrary propertY name may be used by a user program to associate rnformation 
with a window. For many applications the user will associate the structure being dis~layed wiu~ its 
window using a property, The following. functions provide for reading and setting window pro?erJes: 

19.23 



INTERLISp-n DISPLAY FACILITIES 

('I1INDOWPROP WINDOW PROP -N'EVI"'I'ALUE) [NoSpread Function] 
Returns the previous value of WlNDOw'S PROP aspect. If NEWVALGZ is given. 
(even if given as NIL), it is stored as the new PROP aspect. Some aspec:s ca.:mot 
be set by the user and will generate errors. Any PROP name that is not recognized 
is stored on a propeny list associa:ed with the window. 

(WI~JDO~JlAOOPROP WINDOW PROP ITEMTOADD) [Func:ionj 
WI?:OOWAOOPROP adds a new item to a window property. If ITE..\{TOAJ:)D is EQ 
to an element of the PROP propeny of the window wrNDO'N, nOL~g is adc!ed.. 
If L.1C current property is not a list. it is made a list before rrE~4TOADD acccci 
WINOOWAOOPROP rcrums tlle pre'fious property. The new item always 60es on the 
end of the list. (Note: If the order of items in the list is im~Ol..a:lt. the list C2!l be 
modified using WINDO~PROP.) WINOC'lIIAOOPROP is useful for adc!.ing OPENfN or 
CLOSE F N functions to a window without affecting its existing functions. 

C) 

(WH~DOWDELPRO? WINDOW PROP ITElt!TODELSTE) [Function} ()_ 
WINOOWOELPROP deletes ITE1JTODELETE from the window· property PROP of 
WINDOW and returns the previous list if ITEMTODELETE was an element. If 
ITEMTODELETE was not a member of window property PROP, NIL is returned. 

19.12.7.1 Mouse Function 'Vindow Properties 

These properties allow the user to control the response to mouse activity in a window. The value of these 
properties~ if non-N I l~ should be a function that will be called (with the window as argument) when th.e 
specified event occurs. 

Note: these functions should be "self-contained", communicating with the outside world solely via their 
window argument. e.g ... by setting window properties. In particular, these functions should not expect to 
access variables bound on the stack .. as -the stack context is fonnally undefined at the time these functions 
are called. Since the functions are invoked asynchronously, they perform any TTY input operations frem 
their own window. 

WINDOWENTRYFN 

CURSORINFN 

CURSO.ROUTFN 

CURSORMOVEDFN 

(\Vindow Pre~erty J 
Whenever a button goes down in the window and the process associated with 
the window (stored under the PROCESS property) is not the tty process, tl:e 
WINOOWE~JTRYFN is calied. The default is GIVE. TTY. PROCESS (page 18.34) 
which gives the process associated with the window the tty and -calls the 
BUTTONEVENTFN. 

[Window Property 1 
Whenever ~e mouse moves into the window, the CURSOR In F N is called. 

[Window Property 1 
The CURSOROUTFN is called when the cursor lea-ves the window. 

[Window Property J 
The CURSORMOVED F r~ is called whenever the cursor h3S moved and is inside u.1e 
window. This allows a window function to implement '"active" regions within itself 
by having its CURSORMOVEDFN determine if the cursor is in a region of inte:-est. 
and if so, perform some action. 

19.29 



o 

c5 

0·' 

BUTTOt~EVENTFN 

RIGHTBUTTONFH 

EYent Window Properties 

(~lindow Property] 
Tne BUTTONEVENTFN is called whenever there is a change in the state (up or 
down) of the mQGse buttons inside the window. Changes to the mouse state while 
the BUTTOUEVENTFN is running will not be interpreted as new bunon events. and 
the BUTTONEVENTFt~ will not be re-invoked.. 

pNindow Property j 
The R I GHTBUTTON FN is called in lieu of the standard window menu operation 
(DO':lINOQ\JCOM) when the RIGHT: key is depressed in a wi~dow. !'v1ore 
specifically. the RIGHTBUTTONFr~ is called instead of the BUTTO~'EVEt1TFN when 
(MOUSESTATE (Or~LY RIGHT)). If t.;e RIGHT key is to be tre3tcd like any 
other key in a window. supply RIGHTBUTTONFN and 8UTTOl~EVENTFN ~iL~ L~e 
same function. 

Note: When an application program defines its own R IGHTBUTTONFN. there is a 
convention that the default R I GHT8UTTON F N. DOW I NDOWCOM (page 19.22). may 
be executed by depressing the RIGHT key when the cursor is in the header or 
border of a window. User programs are encouraged to follow this coo',ention. 

19.12.7.2 EYent Window Properties 

CLOSEFN 

OPENFN 

TOTOPFN 

SHRINKFN 

[\Vindow Property] 
The CLOSE FN window property can be a single function or a list of functions that 
are ~ed just before a window is closed by CLOSEW (page 19.26). (Ncte: If the 
CAR of the list is a LA~~8DA wor~ it is treated as a single function.) The funcuon(s) 
will be called with the window as a single argument. If any of the CLOSE FNs are 
the atom CON' T. or if u.i.e value returned by any of the CLOSEFNs is the atoUl 
DON'T. the window will not be closed. 

Note: A CLOSEF?4 should not call CLOSEW on its argument. 

[Window Property] 
The OPENFN window property can be a single function or a list of f~:lctions. If o~e 
of the O?ENFNs is the atom DON'T. the window will not be ope:lec... Othe:wise. 
the OPENFNs are called after a window has been opened by O?ENW (page 19.16). 
with. the window as a single argument. 

[\Vindow Property1 
If non-NIL. whenever the window is brought to the top, the TOTOPFN is called 
(with the window as a single argument). This function may be used to bring a 
collection of windows to the top together. 

If the NOCALLTOPW}"N argument of TOTOPW (page 19.26) is non-N IL. c..'1c 
TOTO? F N of the window is not called. which provides a way of avoiding infu:ite 
loops when using TOTOPW from within a TOTOPFN. 

[Windo~' Property] 
ll1e SHRIt~KFN window property can be a single function or a list of functions 
that are called just before a window is shrunken by SHR I NKW (pJge 19.17). with 
the window as a single argument. If any of the SHRINKFNs are the atom DON I T. 

19.30 . 



ICONFN 

ICON 

ICONWINOOW 

EXPANOFN 

SCROLLFN 

NEWREGIONFN 

RESHAPEFN 

INTERLISP-D DISPLAY FACILITIES 

or if the value returned by any of the CLOSEFNs is the atom DOH' T, the window 
will not be shrunk. 

[VIindow Property1 
If SHRINK~ (page 19.27) is called without begin give:l a TO\VP'.AT argU!:lent (as 
is the case when invoked from t.1e SHRINK window command) and L.'1e v,inc!ow's 
ICO~lF~ property is non-NIL .. then it gets cal!~d with r;,o argume:lts. the window 
being shrunk and the previousiy cre~ted ico~ if any. The ICOUFN should re:urn 
one of the TO\V"'d'AT entities described on page 19.27 or rerurn the previously 
cre~(ed icon if it dOt;!s not want to cr:a..'1ge it. 

[Window Property1 
If SHRINKW (page 19.27) is called without being given a TOW::.AT af1,~menr.. t.'1~ 
window's ICONFN property is NIL, and the ICON property is non·NIL. then it is 
used as the value of TOWHAT. 

(\Vindow Property] 
Whenever an icon is created. it is cached on the property ICONWINDOW of the 
window, so calling SHRINKW again will reuse the same icon (unless overridden by 
the ICONFN. 

Thus. to change the icon it is necessary to remove the ICONWINDOW propeny or 
call SHR I NKW (page 19.27) explicitly giving a TOWHAT argument. 

(Window Property] 
The EXPANOFN window propeny can be a single function or a list of fWlctiOns.. 
If one of the EXPANDFNs is the atom DON' T, tb.e window will not be expanded. 
Otherwi~e, the EXPA~JOFNs are called after the window has been expanded by 
EXPANOW (page 19.28), with the window as a single argument. 

[Window Property1 
If the SCROLLFN property is NIL. the window will not scroll. Ou.~erwise. it shouid 
be a function of four arguments: (1) the window being scrolle<i (2) L.~e d.is~ce 
to scroll in the horizontal direction (positive to right. negati ..... e to left), (3) the 
distance to scroll in the vertical direction (positive up. r:eg:lti'te down), a,;.,d (4) a f\ 
flag which is T if the scrolling button is being held down. For more informatio~ \_ ) 
see SCROLL. HAr~DLER (page 19.24). For most scrolling window~ the SCROLLFN 
function should be SCROLLBYREPAINTFN (page 19.24). 

[\Vindow Proper=:.;] 
. The NEWREGIONFN is passed as the NEWREGIONFN argumen~ to GETREGION 

(page 19.3i) when the window is reshaped. 

• . [Window P:-o~e=ty] 
The RESHAPE FN window property can be a single function or a list of functions th.1t 
arc c.1ited when J window is reshaped by SHAPE1H (page 19.26). If the RESHAPEFN 
is DON'T or a- list conwning DON' Tt the window will' noe be reshaped. Oth~iNISC. 
the function(s) are c:llIed after the window has been resh2ped. its ~oor±::ate s: .. s~e::1 
readjusted to the new position. the title and botder d.ispI3ye~ me the inte:-:or ::lle:i 
with texture. The RES HA P E F r~ should display my .1dditional infon:13:l0n ne-ec.ed. 
to complete the window's image in the n~w position md sh3pe. Th\! RESHAPEFN 
is called with three arguments: (1) the window in its reshaped form,· (2) .1 biun.1p 

19.31 (j 



o 

o 

REPAINTFN 

MOVEFN 

AFTERHOVEFH 

Miscellaneous Properties 

with the contents of the old window, and (3) the region within the bitmap that 
contains the old image. This function is provided so that users can reform:lt 
window contents or whatever. RESHAPEBYREPAINTFN (page 19.33) is the default 
and should be useful for many.windows. 

[\ViI:dow Property] 
The REPAINTFN window property can be a single function or a list of functions 
tL'1at are called to reptint parts of the window by REDISPLAY\'; (;Ja~e 19.27). The 
REPAINTFNs are called Wiu1 two arguments: the window and the region Ln :he 
coordinates of the window's display stre2n1 of the area that should be r~ainted. 
Befcre the REPAIUTFN is called.. the clipping region of the wbdew is set to cii? 
all display operations to the area of interest so L~at the 'RE PA 1M T F U CJ.!l dis;,l.).), 
the entire window contents and the results will be appropri~tc1y clipped. (~o(c: 
CLEARW (page 19.27) should not be used in REPAINTFNs because it res\!ts the 
window's coordinate system. If a REPAINTFN wants to cl~ its region first. it 
should use DSPF ILL (page 19.12).) 

[\Vindow Pro?erty] 
If th.c MOVEFN is DON'T. the window will not be moved by MOVEW (page 19.26). 
Otherwise, if the MOVE FN is non-U I L. it should be a function or a list of functions 
that will be called before a window is moved with two arguments: the Vtindow 
bemg moved and the new position of the lower left comer in screen coorCi!:ates. 
If the MOVEFN rerums DO~~ 'T, the window will not be moyed. If the MO\lEF~~ 
returns a POSITIOr~, the window will be moved to that position. Otherwise, the 
\Yindow will be moved to the specified new position. 

[Vlindow Property] 
If non-N I L. it should be a function or a list of functions that will be called after 
the window is moved (by MOVEW, page 19.26) with the \lrindow as an argument. 

19.12.7.3 Miscellaneous Properties 

TITLE 

BORDER 

,EXTENT 

[\Vindow Proper::.·] 
Accesses the title of the window. If a title is added to a window whose title 
is NIL or the title is removed (set to NIL) from a windc\-y wiili a title. the 
window's exterior (its region on the screen) is enlarged or reduced to accomod..1te 
the change without changing the window's interior. For eXa:!lp!e. ('JI~JDOWPROP 
Vr7NDOW 'TITLE "Resul ts") changes the title of WI:'\'DO\~" to be "Results", 
(WI NDO~/PROP WlNDOW 'T ITLE NIL) removes the title of WD."DOW. 

[Window Propeny1 
Accesses the width of the border of the window. The border will ha ... e at most 2 
point of white (but never more than half) and the rest black. The default border 
is the value of the global \'ariablc WOo rde r (initially 4), 

[\Vindow Prope~'l 
Used to limit scrolling operations (see page 19.23), Accesses the extent region of 
the window. If non-NIL. the EXTENT is a region in the window·s display stre=r..~ 
that contains the complete image of the object being viewed by the window. Cser 
programs are responsible for updating the EXT ENT. The functions UN IONREG IONS. 

19.32 



PROCESS 

PAGEFULLFN 

~TIRLlSP-D DISPLAY FAOLITl.L5 

EXTENDREGIO~J, etc. (page 19.3) are usef..1l for com!,uting a new extent region. 

In $Owe situations. it is useful to define an EXTENT that only e:rists in one 
dime:lSion. This may be done by specifying an EXTENT region with a wic.t..'1 or 
height of -1. SCROlLFN handling recognizes this situation as me.ani:lg L~t the 
negatiy~ EXTEfJT dimension is unknown. 

[Window Property] 
If the PROCESS window property is non-NIL, it should be a PROCESS and will 
be made the ITY process by GIVE. TTY. PROCESS (page 18.3";), tJ:c def3.:l~t 
WI NDO~/E NT RY F N proper:y. This implements the me-;hanis.:n by which u'1e 
keyboard is associated with different processes. 

[Window ProperLY 1 

(j 

If the P AG E F U l L F N is non-N I l. it will be called with the window as a single 
argument when the window is full (Le .• when enough has been printed since the ()_ 
last TTY interaction so that the next character pri..L"1ted will cause information to 
be scrolled off" the top of the window.) If the PAGEFULLfN is NIL. the sys:em 
function P AG E F U L L F N (page 19.33) is called. 

Note: PAGEFUlLFN is only called on windows which are the TTYOISPLAYSTREAM 
of some process (see page 19.15). 

The following properties are read-only (Le. their property values cannot be changed using WINDOWPROP. 

OS? 

HEIGHT 
WIDTH 

REGION 

[Window Property J 
Value is the display stream of the window. All system functions will oper.lte on 
either the window or its display stream. 

[WindOW Property J 
(Window Property] 

Value is the height and width of the interior of the window (the usable space not 
counting the border and title). 1111 

r,Vindow P:cperty] 
Value is a region (in screen coordinates) indicating where the window (ccuntir:.g 
the border and title) is located on the screen. 

19.1!'s Au..'tiliar;r Functions 

(RESHAPEBYREPAINTFN WINDOW OLDIMAGE OI..DREGION) [FunctioE1 
It 6 ITBl Ts the old region contents into the lower left corner of the new regio!!_ If 
the new shape is larger in either or both dimensions. the new areas exposed J.re to 
the top ;md right of the old image. When this happens. RESHAPEBYRE?AINTFN 
calls WINDOW'S REPAHJTFN (page 19.32) to display the newly exposed region's 
contents. Note that this may result in two calls to the REPAINTFr~. 

(PAGEFULLFN WL'lDO\V) [Funcuonl 
lfthe window property PAGEFULLFN (page 19.33) is NIL. when the window is full 
the system function PAGEFULLFN is called. PAGEFULLFN slITlply returns if t.~cr~ 
are characters in the type-in buffer for VI1NDOW. otherwise It inverts the window 

19.33 (j 



~. 
, \ 

··U 

o· 

Example: A Scrollable '\Vindow 

and waits for the user to type a character. PAGEFULLFN is user advisable. 

19.12.9 E.umple: A Scrollable '\Vindow 

The following is a simple example showing how one might create a scrollable window. 

CREATE. pp~1r~JDOW creates a window that displays the pretty printed expression EXPR. The \\indow 
prcpcnies PPEXPR, PPORIGX. and PPORIGY are used for saving this expression. and the initial w:ndow 
position. Using this infonnation.. REPAINT. PPWINOOW simply reinitializcs the window posiuon.. and 
prenyprints t.~e expression again. Note that the whole expression is reformatted every ti=:e. eve:l if only 
a small part actually lies within the window. If this window was going to be used to display ,,-cry large 
structures, it would be desirable to impiement a more sophisticated REPAINTFN that only redisplJys L'1at 
part of the expression within the window. However. this scheme would be ~ti.sfactory if most of the 
items to be displayed are small. 

RESHAPE. PPWINDOW resets the window (and stores the initial window position). Calls REPAINT. PPWINDOW 
to display the window's expressio~ and then sets the EXTENT property of the window so. that 
SCP.OLLBYREPAINTFr~ will be able to handle scrolling and "thumbing" correctly. 

{OEFINEQ 

{CREATE.PPWINDOW 
[LAMBDA (EXPR) t~ rrb •• 4-0CT-82 J 2:06 'J 

(- creates a window that displays 
a pretty printed expression..) 

(PROG (WINDOW) (- ask the user for a piece of the 
screen and make it into a window.) 

{SETQ WINDOW (CREATEW NIL "PP window")) 
(- put the expression on the 
property list of the window so that 
the repaint and reshape f.lnctions 
can access ft.) 

(WINDOWPROP WINDOW (QUOTE PPEXPR) 
EXPR) (- set the repaint and reshape 

fonctions.) 
(WINDOWPROP WINDOW (QUOTE REPAINTFN) 

(FUNCTION REPAINT.PPWINDOW)) 
(WINOOWPROP WINDOW (QUOTE RESHAPEFN) 

(FUNCTION RESHAPE.PPWINDOW)) 
(- make the scroll jUnction 
SCROLLBYREPAINTFN. a system 
JUnction thaI uses the repaint 
function to do scrolling.) 

(WINDOWPROP WINDOW (QUOTE SCROLLFN) 
(FUNCTION SCROLLBYREPAINTFN)) 

(RESHAPE.PPWINDOW WINDOW) 

(- call the -reshape function to 
ini/iall.v print the expression and 
calculate ils extent.) 

19.34 



\ 

r 

INTERLISp·D DISPLAY FAOLITIES 

(RETURN WINDOltl]) 

(RE?AINT.PPWINOQW 
[LAMBCA (WINDO~ REGION) (* rrb 6114-0CT-82 11:52") 

(* the repainting jUnction for a window with a pretty printed expression.. 
This repainting jUnction ignores the region to be repainted and repaints 
the entire window.) 

(- set the window position to (he 
beginning of the pretly printing 
of the expression.) 

{MOVETO (WINOOWPROP WINDOW (QUOTE PPORIGX» 
(WINOOWPROP WINDOW (QUOTE PPORIGY» 
WINDOW) 

(PRINTDEF (WINDOWPROP WINDOW (QUOTE PPEXPR) 
o nIL NIL NIL WINDOW]) 

(RESHA?E.PP~INDOW 

(LAMBDA (WINDOW) 

(PROG (8TM) 

(- rrb 1·4-0CT-82 12:0/'/ 
(* the reshape jUnction for a 
window with a pretty prinLed 
expressz"oTL) 

(- set the position of the window so that the first character appears in 
the upper left comer and save the X and Y for the repaint function.) 

(DSPRESET WINDOW) 
(WINOOWPROP WINDOW (QUOTE PPORIGX) 

(DSPXPOSITION NIL WINDOW» 
(WINDOWPROP WINDOW (QUOTE PPORIGY) 

(DSPYPOSITION NIL WINDOW» 

(REPAINT.PPWINDOW WINDOW) 

('" call the repaint /unction (0 

pretty print the expression in 
the newly cleared window.) . 

(- save the region actually covered by the pretty printed expression so 
that the' scrolling routines will know where to stop. The pretty printing 
of the expression does a cam·age return after the last piece 0/ the 
expression printed so that the cun-ent position is the base line 0/ 
the next lint! of text. Hence the Idst visible piece of the expression 
(BT.\!) is the ending position plus the height of the IOllt above the 
base line e.g its ASCEJVT.} 

(WINDOWPROP WINDOW (QUOTE EXTENT) 
(create REGION 

LEFT .. a 

19.35 

n 
.. ~ 

(~ 
\ -) 

( ) 

( ) 
\/ 



U· 

o 

) 

Interactive Display Functions 

BOTTOM ~[SETQ BTM (IPLUS (OSPYPOSITION NIL WINDOW) 
(FONTPROP WInDOW (QUOTE ASCENT] 

WIDTH ~(WInDOW?RO~WIHDOW (QUOTE WIDTH» 
HEIGHT ~(IDIFFERENCE (WINDOWPROP WINDO~ (QUOTE HEIGHT» 

BTt~] ) 

19.13 INTERACTIVE DISPLAY FUNCTIONS 

The following functions allow the user to interactively specify positions or r::gions on the display screen. 

(GETPOSITION WINDOW CURSOR) [Function] 
Rerurns a POSITION that is specified by the user. GETPOSITION waits for OC 
user to press and rele2...~ the left button of the mouse and returns the cursor 
position at the time of release. If WINDOW is a WI NDO\~, the position will be in the 
coorQnate system of 'WINDOWS display stream. If 'r'.-Th'I)OW is NIL. the position 
will be in screen coordinates. If CURSOR is a CURSOR. the cursor will be cha:lged 
to it while GETPOSITION is running. If CURSOR is NIL. the value of the system 
variable CROSSHAIRS will be used as the cursor. 

(GETBOXPOSITION WIDTH HEIGHT ORGX ORGY WINDOW PROMPTMSG) [Function] 
Allows the user to position a "ghost" region of size WIDTH by HEIGHT on the 
screen, and returns the POS I T I or~ of the lower left corner of t.~e region. If 
PROMPTMSG is non-NIL. GETBOXPOSITION first prints it in the PROr,..PT',,/INOOW. 
GETBOX POS IT ION then changes the cursor to a box (using the global variable 
BOXCURSOR). If ORGX and ORGY are numbers. they are taken to be the ori~al 
position of the region. and the cursor is moved to the nearest corner of that region. 
Th-e user is t..1.en free to move tlle cursor around the screen. \V'hen a mcuse bu::on 
is depressed, a ghost region is locked to the cursor so' that if the C!.lI"Sor is ~o\'ed.. 
the ghost region moves with it If ORGX and ORGY are numbers. the co:-ne: of 
the original region that is nearest the cursor position at the time the bunon is 
pressed is locked., otherwise t..~e lower left corner is locked. The user can c!1ange 
to another corner by continuing to hold down the left button and holdi:lg down 
the right button also. With both buttons down. the cursor can be moved ac:-css 
the screen without effect on the ghost region frame. \Vhen the right button is 
release~ the mouse will snap to the nearest corner. which will then become locked 
to h'1e cursor. When all buttons are rele~ed. 'the lower left corner of the reglOn 
is returned. [f WINDOW is a WINDOW. the returned position will be in ~7"'DOW'S 
coordinate system; otherwise it will be jn screen coordinates. 

Example: 

(GETBOXPOSITION 100 200 NIL NIL NIL 
"Specify the position of the command area.") 

19.36 



INTERLlSP"O DISPLAY FAOLITIES 

pro~pts the user for a 100 wide by 200 high region and returns its lower left corner 
in screen ceo rdinates. 

(GETREGION MINWiDTH MINHE!GHT INITREGION NEWREGIONFN NEvmEGIONFNAJ~.G) [Function] 
Lets tb.e user specify a new region and rerurns that region in screen coordinates. 
G~TREGION prompts for a region by displaying a four-pronged box ne:rt to t!:le 
cursor arrow. If t.1.e user presses the left butto~ one COr:1er of a ug.."-lost'· :egion 
outline is locked to that point and the opposite coreer is locked to the CUl'!.or. As 
the cursor moves. the outline expands. To sp·ecify a re~ion. the user moves L'1e 
cursor to one corner of the intended region. press\!S the left button. moves the 
cursor to the opposite corner while holdi:lg down the lcft button. and the:l releases 
the button. 

If INITREGION is a REGION and the user presses the middle button. the corner of 
!NITREGION farthest from the cursor position is fixed and the corner nearest the 
cursor is locked to the ctU~or. 

One can switch from one corner to another while positioning the region.. To change 
to another corner. continue to hold down the left button and hold down the ri~t 
button also. WitJ.'1 both buttons down. the cursor can be moved across the sc:een 
wiL~out effect on the ghost region frame. When the right button is rele.ased.. the 
cursor will snap to the nearest comer. which 'Will become the moving corner. In 
this way, the region may be moved all over the screen. before its size and position 
is finalized. 

MINWTDTH and MINHE:ICHT. if give~ are the smallest WIDTH and HE IGHT that 
the returned region will have. If the user specified region is smaller. it will be 
increased in width or height to these dimensions. 

If NEWP..EGIONFN is non-N I L. it will be called to determi~e values for the positions 
of the coners. This provides a way of "filtering" prospective regions; for ins~ce. 
by resu.-icting the region to lie on an arbitraty grid. When the user is specifjbg a 
regicn.. the region is deter::1ined by two of its corners, one mat is fixed and one that 
is tra.Cki!:g ti:e cursor. Each time the cursor moves or a mouse button is pressed., 
.~rE"W'"RECIONFN is called with thre~ arguments: Fj;CEDPOINT. t:.'e position of the n 
fixed caner of the prospective :-egion;MOYrNGPOrNT. the position of the opposite '\ .. -. 
comer of the prospective region: and .'fEWREGIONF:-IA.P..G. NEvV?.EGIO:-~7~~'p'G 
allows the :.aller of GETREGION to pass informaticn to the N"E'N?-ZGIC:'.7:-'-. Tne 
first jme a outton is pres.sed.. ~.{ovr:-;GPoz:..-r is NIL arld FLXEDPOI:';T is u."le pcs~tion 
the user selected for me fixed corner of the new region. In tris C3Se, L.':e position 
returned by .\lEV';"REGIONFN will be used for the fixed corner instead of t.'e one 
proposed by the user. For all other calls. FrXEDPOINT is the pOSition of the fixed 
comer (as returned by the previous call) and MOVINGPOINT is the new positio:l t.~e 
user selected for the opposite comer. In these cases, the value of ~G\VREGIO."7:'l 
is used for the opposite corner instead of tl1e one proposed by the- user. In ail 
cases. the g.10st region is drawn with the values retunlcd by NEVvTlEGIO!'<'FN. 

(GET60XREGION 'NIDTH HEIGHT ORGX ORGY WTNDO\V PRO~~TMSG) [Function1 
Perfonns the same prompting as GETaOXPOSITION and rerurns the REGIO~~ 
specified by the user instead of the POS I T ION of its lower left corner. 

19.37 (\ 
) 



o 

o 

Menus 

19.14 MENUS 

A menu is basically a means of selecting from a list' of items. The system provides common layout 
and interactive user selection mechanisms, then calls a" user-supplied function when a selecti~n has been 
confirmed. Tne two major constiruents of a menu are a list of items and a O·when selec:ed fu~ctio::t.-' 
The label that appe~ for each ite:n is the item itself for non-lis~ or its CAR if th.e ite~ is a lis: T.,e 
menu includes a pcsition on the screen where it will be displayed and a means of specifyL~g the piace 
in the menu th~t is to be put at that position. In addition. there are a multitl!de of different fctmJ.tting 
paraI:1etcrs for specifying font. size, and layouL \Vhcn a menu is created. its unspecified fields ar~ f.~1cd 
with defaults and its screen image is computed and saved. 

Menus can be either pop up or fixed. If fixed menus are used. the menu must be included in a 'Window. 

(MENU MENU POSITION) [Function] 
This function provides menus that pop up when they are used. It di~plays MExt" 

at POSITION (in screen coordinates) and waits for..the user to select an item with 
a mouse key. While any key is down. the selected menu item is video reversed. 
When all keys are released. MENUS WHENSELECTEDFrl field is called 'With three 
argumenrs: (1) the item selected.. (2) the menu. and (3) the last mouse key reieased 
(LEFT, MIDDLE. or RIGHT). and MENU returns its value. If no item is selected. 
ME NU returns NIL If POSITION is NIL. the menu is brought up at the 'v'a!ue from 
MENU's MEUUPOSITIor~ field. if it is a POSITION. or at the current cursor position. 
The orientation of MENU with respect to the speciRed position is deterul.L~ed by irs 
ME~lUOFFSET field. 

(ADDMENU MENU WINDOW POSITION -) [Function} 
TIlis function provides menus that remain active in windows. ADOME NU displays 
MENU at POSITION in 'WINDOW (POSITION is defaulted as in MENU except 
that it is in window coordinates). MENU is added to the MENU property of 
WINDOW. Tne CURSORINfN and BUTTONEVENTFN of Yl!:NDOW are replaced wit!l 
MENU8UTTOi\!F~~, so that MENU will be active during TTY wait. RESHAPEFN of 
"N1NDOW is set to restore MENU's image when the window is reshaped. \\ ":1en an 
item is selected. the value of the WHENSELECTEOFN field of ME!'o"T.: is called with 
three arguments: (1) L~e item selected. (2) the menu. and (3) ±e tr.ouse key UBt 

the item was selected with (LE FT, MIDDLE. or R IGHT). ~10re than one menu can 
be put in a window. but a menu can only be added to one window at a time. If 
WTNDOW is not given, a window is created at posmON tin screen coordina:es) that 
is the size of MENU. 

AODMENU rerurns t..foJ.e window into which MENU is placed. 

(DELETEMENU MENU CLOSEFLG FROMVIINDOW) [Function] 
. This function removes MENU .from the window FROM'"NINDOW. If ~NU is the only 

menu in the window and CLOSEFLG is non-N I L. its window will be closed (by 
CLOSEW). 

If FROMWrNDOW is NIL. the list of currently active (open) windows is searched 
for one that contains MENU. If non is found. OELETEMENU does nothing. 

19.38 . 



INTERLISP-O DISPLAY FACILITIES 

19.14.1 Menu Fields 

A menu is a datatype with the following fields: 

ITEMS 

WHENSELECTEDFN 

WHENHELDFN 

WHENUNHELDFN 

MENUPOSITION 

MENUOFFSET 

MENUFONT 

r.,.fenu Field} 
The list of items to appear in the menu. If an it~ is a list. its CAR ~J1 a;::pe.ar 
in the menu_ If u~e item (or its CAR) is a bitI!12.? the bio2.p will be dis~!a.:;ed 
in the menu. The default selection functions interpret exh item as a list of :':-uee 
c!cml;ncs: a label. a tonn whose value is returned upon selection. and J. r.c!p sr::ng 
that is printed in the prompt window when the user presses a mouse key wlUl t!le 
cursor pointing to this ite:n. . 

~fenu Fie!dl 
A function to be called when an item is· selected. The function is called with 
three arguments: (1) the item selected. (2) the menu, and (3) the mouse key that 
the item was selected with (LEFT, MIDDLE.- or RIGHT). The default function 
OEFAUL T\IJHENSELECTEDFr~ evaluates and rerurns the value of the CADR of the 
item if there is one, or simply returns the item if it is not a list or if its CADR is 
NIL. 

[1-fenu FieldJ 
The function which is called when the user has held a mouse key on an item for 
ME1:UHELDWAIT milliseconds (initially 1200). The function is called with three 
arguments: (1) the item selected. (2) u'le m.enu. and (3) the mouse key u'1:lt the 
item was selected with (LEFT, MIDDLE. or RIGHT). WHENHELDFN is intended 
for prompting users. The default is DEFAULTMENUHELDFN which prints (in me 
prompt window) the third element of the item or, if there is not a th.ird element. 
the string ''This item will be selected when the button is released." 

[Menu Field] 
If WHENHELDFN was called. WHENUNHELDFN will be called: (1) when the cursor 
leaves the item, (2) when a mouse key is released. or (3) when another key is 
pressed. The function is called with the same three argument values used to call 
WHENHELDFN. The default WHENUNHELDFN is the function CLRPROMPT (page 
19.19), which just clears the prompt window. 

~e!lu Field] 
The position of the menu to be used if the call to MENU or ADOMENU does noe 
specify a position. For popup menus. this is in screen coordinates. For fixed 
menus. it is in the coordinates of the window the menu is in. The ?oint wld:in 
the menu image that is placed at this position is determined by MENUOF F SE T. If 
MENUPOSITION is NIL. the menu will be brought up at the cursor position. 

[Menu Fie!d} 
The position in the menu imJ.ge that is to be located at ME NUPOS I T ION. The 
default offset is (0.0). For example. to bring up a menu with the cursor over a 
particular menu item. set its ME~JUOFFSET to a position withL, that item and set 
its MENUPOSITION to NIL. 

[~1enu Field} 
The font in which the items will be appear in the menu. Default is the value of 

19.39 



o 

o 

TITLE 

CENTERFLG 

ME,.UROWS 
MEi~UCOLUMNS 

Menu Fields 

MENUFONT, initially Helvetica 10. 

f}rlenu Field] 
If specified. a title will appear !n a line above the menu. The title will be in the 
same font as window titles. 

[Me:lU Field] 
If non-N I L9 the menu items are centered; otherwise they are left-justified. 

[~1~~u Field] 
[~1enu Field.] 

These fields control the shape of the menu in terms of rows arid columns. If 
ME~IUROWS is given. the menu will have that number of rows. If HENUCOLUMNS 
is given. the menu will have that number of columns. If only one is given. th~ 
OL'1er onc will be calculated to generate the minimal rectan~ular menu. (~orrr.Jlly 
only one of ~lENUROWS or MEr~UCOLUMNS is given.) If neither is given. the items 
will be in one column. 

ITEMHEIGHT [1fenu Field] 
The height of each item box in the menu. If not specified. it will be the maximum 
of the height of the MENUFONT and the heights of any bianaps app~~g as labels. 

ITEMWIDTH [1fenu Field] 
The width of each item box in the menu. If not specified. it will be the width cf 
the largest item in the menu. 

MENUBORDERS IZE (1\-fenu Field] 
The size of the border around each item box. If not specified. 0 (no border) is 
used. 

MENUOUTLINESIZE [Menu Field} 
The size of the outline around the entire menu. If not specified.. a maximum of 1 
and the MENUBORDERSIZE is used. 

CHANGEOFFSETFLG [Menu Field} 
.(popup menus qn1y) If CHANGEOFFSETFLG is non-MIL. the position of the menu 
offset is set each time a selection is confirmed so that the menu will come up 
next time in the S&"1le position relative to the cursor. This ""ill cause .the menu to 
reappear in the same place on the screen if the cursOr has not moved since the 
last selection. This is implemented by changing the r~E NUO F F SET field on each 
.use. If CHANGEOFFSETFLG is the atom X or L.1e atom Y, only the X or t..'1e Y 
coordinate of the MENUOFFSET field will be changed. For ex~ple. by setting t..~e 
MENUOFFSET position to (-1.0) and setting CHANGEOFFSETFLG to Y. the menu 
will pop up so that the cursor is just to the left of the last item selected. Tnis is 
the seeting of the window cOIDnland menus. . 

The following fields are. read only. 

IMAGEHEIGHT 
Returns the height of the entire menu. 

19.40 

[Menu Field] 



INTERLISP-D DISPLAY FACILITIES 

IMAGEWIDTH [11enu Field] 
ReturnS the width of the entire menu. 

19.14.2 Miscel1ao~us Menu Functions 

(WFROfr1MENU MENU) [Fur.ction] 
Returns the window MENU is located in. if it is in one; NIL othenvise. 

(DOSELECTEDITEM MENU ITEM arlTTON) [Function] 
Calls ldEl'-4"TiS \'iHENSELECTEDFN on ITEM and BUTTON. It provides a progrc:mmatic 
way of malting a selection. It docs not change the display. 

(MENUITEMREGION ITEM MENU) 
Returns the region occupied by ITEM in MENU. 

[Function] 

(SHADEITEM ITEM MENU SHADE DSORW) [Function] 
Shad~ the region occupied by ITEM in MENU. If DSORW is a display stre3!Il or a 
window, it is assumed to be where ]o..{ENU is displayed. Otherwisey WFROr~MENU is 
called to locate the window MENU is in. 

19.14.3 Examples of Menu Use 

(create MENU I~EMS ~ '«YES T) (NO» ) 

Creates a menu with items YES and ~~O in a single vertical column. If YES is selected. T will be returned. 
Othervrise. NIL will be returned. 

(create MENU ITEMS ~ '(1 2 3 4 5 6 789 • 0 #) 
CENTERFLG ~ T 
MENUCOLUMNS ... 3 
MENUFONT ... (FONTCREATE 'HELVETICA 10 'BOLD) 
ITEMHEIGHT ... 15 
ITEHWIDTH ... 15 
CHANGEOFFSETFLG ... T) 

Creates' a touch-tone-phone number pad with the items in 15 by 15 boxes printed in Helvetica 10 bold 
font. If used in pop up mode, its first use will have the cursor in the middle. Subsequent use will have 
the cursor in the same relative location as the previous selection. 

(SELECTQ [MENU 
(COND «type? MENU FOOMENU) 

(- use previously computed menlL) 
FOOr·'ENU) 

(T (- creale and save the menu) 
(SETQ FOOMENU 

(create MENU 
ITEMS ~ '«A 'A-SELECTED "prompt string for A") 

(8 '8-SELECTED "prompt string for B"] 
(A-SELECTED (- if A is selected) (DOATHING)) 

19.41 



r -0
- --

6 

o 

Grid Functions 

(B-SELECTED (- if B is selected) (DOBTH I NG) ) 
(PROG~~ (- user selected outside the menu) NIL») 

This expression displays a pop up menu with two items. A and B. and waits for the user to select one. If 
A is selected. OOATHING is called. If B is selected. DOBTHING is called. If neither of these is selected.. 
tee form returns td I L. 

The purpose of &Js example is to show some good practices to follow when using menus. First. t.~e menu 
is only created oncc. and saved in the variable F001~ENU. Th3s is more efficient if L~C menu is used rnc:-e 
than once. Second. all of the information about the menu is kept in one place. 'Nhi::h ~akes it easy to 
understand and edit. TIrird, the forms evaluated as a result of selecting something from the menu a:e 
part of the code and hence will be known to masterscope (as opposed to the situation if the fo~s were 
stored as p3.l~ of the items). Founh. the items in the menu have help strings for the user. Finally, tl:e 
code is commented (always worth the trouble). 

19.15 GRID FUNCTIONS 

A Grid is a partitioning of an arbitrary coordinate system (hereafter referred to as the "source system") 
into rectangles. This subsection des...'4ibes functions that operate on Grids. It includes functions to 
draw the outline of a Grid. to transiate between positions in a source system and Grid coordinates (the 
coordinates of the rectangle 'Nhich contains a given position). and to shade Grid recta.:lgles. A Grid is 
defined by its "unit grid", a region (called a GridSpec) which is the origin rectangle of the Gric. in terms 
of the source system. Its LEFT is the X-coordinate of the left edge of the origin rec:.a:lgle. its BOTTOM is. 
the Y-coordinate of the bottom edge of the origin rectangle, its WIDTH is the width of the grid rec:.a.ngles. 
and its HE IGHT is the height of the grid rectangles. 

(GRID GRIDSPEC UNITSVIIDE UNITSHIGH GRIDBORDER DLSPLAYSTREAM GRIDSHADE) [Function] 
Outlines the grid defined by GRIDSP~C which is llNITSWIDE r~tzr.gles wide and 
UNITSHIG:I rectangles high on DISPLAYSTREAM. Each box in the grid has a border 
within it that is GRIDBORDER points on each side: so the resulting lines in the grid 
are 2*GF..I!)SORDER. thick. If GRIDEOR.DZR. is the atom PO I NT, inste~d of a. coreer 
the lower left point of each grid rectangle will be r..lmed on. If GRIDSH.";..DE is 
non-N I L. it should be a texture and the border lines· will be drawn i..O. that stad.e. 

(SHADEGRIOBOX x Y SHADE OPERATION GRIDSPEC GRIDBORDER DISPLAYSTREA",V.) - [Functio~] 
Shades the grid rectangle (x. Y) of GRIDSPEC with texrure SP.ADE usi:lg OPER..4.TION 
on DISPLAYSTREAM. GRIDBORDER. is interpreted the same as for GRID. 

The following two functions map from the X.Y coordinates of the source system into the Grid X.Y 
coordinates: 

(GRIDXCOORD XCOORD CRIDSPEC) [Function] 
Returns the Grid X -coordinate (in the Grid specified by GRlDSPEC) that contains 
the source system X -coordinate XCOORD . 

. (GRIDYCOORD YCOORD GRIDSPEC) [Function] 
Returns the Grid Y -coordinate (in the Grid specified by GRIDSPEC) t..'1at conuins 
the source system Y -coordinate YCOORD. 

19.42 



Il'ITERLISP-D DISPLAY FACILITIES 

The following two functions map -from the Grid ~ Y coordinates into the X. Y coordinates of the source 
system: 

(LEFTOFGRIOCOORD GRlDX GPJDSPEC) [Function} 
Returns the source system X-coordfuate of the left edge of a Grid rec:.ang!e at Grid 
X -coordinate GRIDX (in the Grid specified by GRIDSPEC). 

(BOTTOMOFGRIDCOORD GRIDY GRIDSPEC) [Functionj 
Re:ums me source system Y-ccorctinate of the bottom edge of a Grid rect:lngle at 
Grid Y·coordinate GRIDY (in the Grid specified by C;uoSPEC). 

19.16 COLOR GRAPHICS 

Note: Tizis section describes the lnterlisp-D facilities for using-a color display. To use these facilities you 
need to have a Xerox 1100 or Xerox 1132 with a color display attached. and you must load in the LispUsen 
files COLOR. DCOH and LLCOLOR. DCOM (automatically loaded by COLOR. DCOM). 

The color boards on the Xerox 1100 and the Xerox 1132 differ in design. The Xerox 1100 board ~..lppcrts 
4 bits per pixel color. The Xerox 1132 supportS 4 or 8 bits per pixeL All of the user's code should be 
written in higher level machine independent functions. 

Both color bcarc!s produce an image that is 640 pixels wide by 480 pixels high. The image can be thought 
of as a paint-by·oumber painting where the number of a pixel is its va1ue~ The number of bitS per pL~el 
(4 on tJ.'1e Xerox 1100. 4 or 8 on the Xerox 1132) determines the number of difference colers that can. 
be displayed at OI!e time. When there are 4 bpp, 16 colors can be displayed at once. \\lhen there are 
8 bpp. 256 colors can be displayed at once. A mapping table called a "color map" det:!rmines \'ihat 
color' actually appears for each pixel value. A color map gives the color in terms of hew much of ~1e 
three primary colors (red.. green and blue) displayed on the screen for each possible pixel vaiue. In the 
following sectio~ the notions of '4color map", and "color" are described. 

r, 19.16.1 Color Bitmaps 

A "color bitmap" is actually just a bitmap that allows more than one bit per pixeL To test whether a 
bitmap x is a ··color bitmap". use the following form: 

(~EQ (fetch (BITMAP BITMAPBITSPERPIXEL) of x) 1) 

C~~~r "::-:::;-5 ~-: .:~~.~.! by c:::FT'g B IT~APCREATE (page 19.4) with a BITSPERPrxzL a.~..une:lt of 
.:.nyb"~~g .0:::e: :'"u.n : or NIL. Cu.-:-e::tly. any \'ah:e of EI7SPER.P~ except L 4. 8 or NIL (c!efauits to 
1) will c~use an error. 

A 4 bit per pixel color screen bitmap uses approximately 76k of storage. There is only one such bitr:~ap. 
The following function provides access to it: 

(COLORSCREErJ8ITMAP) [Functicr.] 
Returns the color bitmap that is being or will be displayed on the color dis~iJy. Tr.is 
will be NIL if the color display has never been turned on (see COLORDISPlAY. 
page 19.47}. 

19.43 

n 



o 

o· 

o 

Color Spedfications 

WHOLECOLORD ISPLAY [Variable] 
A global variable set to aRE G ION that cove~ the entire color disp lay ~,.een. 
Currently this is (CREATEREGION 0 0 640 480). 

COLORSCREENWIDTH [Variable] 
The vtidtll of the color display. Currently 640. 

COLORSCREENHEIGHT [Variable] 
The heig.~t of the color display. Currently 480. 

19.16.2 Color Specifications 

A color map maps a color number (from 0 to 2BrTSPEP.PIXEL-l) into the intensities of the three coler 
guns (red. green and blue). Each entry in the color map -lias 8 bits for each of the primary colors 
allowing 256 levels per primary or 224 possible colors (not all of which are distinct to the human 
eye). Within Interlisp-D programs. colors can be manipulated as numbers. red-green-blue triples. names. 
or hue-lighmess-saruration triples. Any function that takes a color will accept any of the different 
specifications. 

If a number is givea it will be the color number used in the operation. It must be valid for the color 
bit::lap used in the operation. (Since all of the routines that use a color need to determine its number. 
it is fastest to use numbers for colors. COLORf-dU~1BERP described below provides a way to translate into 
numbers from the other representations.) 

A red-green-blue (RGB) triple is a list of three numbers between 0 and 255. The first element gives 
the intensity for RED. the second for GREEN and the third for BLUE. When an RGB triple is used.. 
the current color map is searched to find tL'1e color with the correct intensities. If none is found.. an 
error is generated. (That is, no attempt is made by the system to assign color numbers to inte~si:ies 
automatically.) Example of an ROB triple is (255 255 255) which gives the color white. The record RG3 
with fields RED. GREEN, and BLUE is provided to manipulate RGB triples. 

A color name is an atom that is on the association-list COLORNAMES. The CDR of the color name's ent.~' 
will be used as the color corresponding to the color name. This C2.Il be any of the other represe:najons. 
(Note: It can even be another color name. Loops in the na'11e space such as would be caused by putting 
, (REO • CR IHSON) and '( CR IMsor~ • REO) on COLORNAMES are not checked for by the system.) 
Several color names are available in the initial system and are intended to allow color progr.:.ms v,rinen 
b~ different users to coexist. These are: 

19.44 



INTERLISP-D DlSPLA Y FAClLITIES 

name RGB number in default color map 

BLACK (0 0 0) 0 

BLUE (0 0 255) 1 

GREEN (0 255 0) 2 

CYAN (0 255 255) ·3 

RED (255 0 0) 4 

MAGENTA (255 0 255) 5 

YELLOW (255 255 0) 6 

WHITE (255 255 255) 7 

A hue-lightness-saturation triple is a list of three numbers. The first number (hue) is between 0 and 355 
and indicates a position in degrees on a color wheel (blue at 0, red at 120 and.green at 240). The seco:1d 
(lightness) is a FLOAT? between 0 and 1 which indicates how much total inte!lsiry is in the color. The 
third (saturation) is a FLOATP between 0 and 1 which indicates how disparate the three priI:1ary levels 
are. The record HLS with fields HUE, LIGHTNESS, and SATURATION· is provided to manipulate HLS 
triples. Example: the color blue is represented in HLS notation by (0 .5 l.O). 

(COLORP'UMBERP COLOR BITSPERPlXEL NOERRFLG) [Function] 

(RG8P x) 

(HLSP x) 

19.16.3 Color Maps 

Returns the color number (offset into the screen color map) of COL.OR. COr-OR. 
should be either (1) a positive number less than the maximum number of colors. 
(2) a color name, (3) an RGB triple. or (4) an HLS triple. If COL.CR. is one of the 
above and is found in the screen colormap, its color number in tbe screen coior 
map i.s returned. If not. an error is generated unless NOERR .. :;oz.G is non-N I L. in 
which case NIL is returned. 

[Function} 
Returns x if x is an RG B triple; NIL otherwise. 

[Function1 
Returns x if x is an HLS triple: NIL otheI"'Hise. 

. 
The screen color map holds the information about what color is displayed on the color screen for ~ch 
pixel value in the color screen bitmap. The values in the current screen color map may be· changed and 
this ch=tnge will be reflected in the colors being displayed at the next verticJl retrace (approximately 1/30 
of a second). ChJ..Ilging the color map CJ..Il be used to get dramatic effects. 

(COLORHAPCREATE fNTENSITIES BITSPERPIXEL) [Func:ion] 
Cre~(es a color map for a screen that has· BITSPERPrxEL bitS per pixel. If 
BITSPERPlXEL is NIL. the number of bits per pixel is men from the cur.C:1t 
color display setting. INTE.'1SITIES specifies the initial colors that shouid be in 
the map. If INTENSITrES is not NIL. it should be a list of color sp~inca~ons 

19.45 

(l 

() 



o 

o 

c5 

Color Maps 

(other than color numbers). e.g. the list of ROB triples returned by the 
function INTENSITIESFP.O~lCOLORHAP (below). If ~7E:-;srrrES is NIL. the 
default is the value of \DEFAUL TCOLORINTENSITIES (if BITSPERP~ is 4) or 
\DEFAULT8BITCOLCRINTENSITIES (if BITSPERl'rxEL is 8). 

(COLORMAPP COLO&'\!AP~ BITSPERPIXZL) [Function] 
Returns COLORMAP~ if it is a color map that has BITSPERPIXEL bits per pixel: 
NIL otl:erwise. If BITSP.ERf'IXEL is NIL. it returns COLOR..\!AP~ if it is ei:.he: a 4 
bits per pixel or an 8 bits per pixel colormap. 

(INTENSITIESFROMCOLORMAP COLOR.MAP) [Function1 
Returns a list of the intensity levels of COLOR.~ (default is (SCRE ENCOLORMAP» 
in a form accepted by COLORMAPCREATE. This list can be written on file and L.'1us 
provides a way of saving color map specifications. 

(COLORMAPCOPY COLORMAP BITSPERPrxEL) [Function} 
If COLORMAP is a color map. it returns a color map that contains the same color 
intensities as COLORMAP: otherwise it returns a color map with d~fault color yalues. 

(SCREENCOLORMAP NEWCOLORMAP) [Function] 
Reads and sets the color map that is used by the color display. If NEWCOLOR.."dAP 

is non-N I L. it should be a color map and SCREENCOLORMAP sets the system color 
map to be that color map. Returns the previous value of the screen color map. If 
NEWCOLO&\!AP is NIL. the current screen color map is rerurned without change. 

(MAPOFACOLOR PRIMARIEs) [FtL"1ctiO:lj 
Returns a color map which is different shades of one or more of the primary 
colors. For example. (rr'lAPOFACOLOR '( RED GREEN BLUE» gives a color Clap 
of different shades of gray: (MAPO F ACOLOR 'RED) gives different sh.ades of red. 

The following functions are provided to access and change the intensity levels in a ~olor map. 

(SETCOLORINTENSITY COLO&''dAP COLORNUMBER COLOP.sPEC) [F'J:lction] 
Sets the primary intensities of color number COLORNUMBER in t.'le coior mai' 
COLQRMAP to the ones specified by COLORSPEC. COLOP.sPEC can be either an 
RGB triple. an HLS triple or a color name. Returns NIL. 

(COLORLEVEL COLORMAP COLOR~1:JMBER PRIMARYCOLOR NEW1..EVEL) . [Function] 
Sets and reads the intensity level of the pri...~ary color Pfu..'"\!AR.YCOLOP. (either 
RED, GREEN or BLUE) for L.'e color number COLORNTJMBEP. in L~e color rr:.~p 
COLORMAP. If NE'NLEVEL is a number between 0 and 255. it is seL The previous 
value of the intensity of PRIMARYCOLOR is rerurneci. 

(AOJUSiCOlORMAP PRIMARYCOLOR DELTA COLORMAP) • [Function1 

. (ROTATECOLORMAP 

Adds DELTA to the intensity of the pnmary color PRIMARYCOLOR (either RED .. 
. GrtE EN or BLUE) for every color number in COLORMAP. 

COLOR .• \!AP STARTCOLOR THRUCOLOR)· [Function] 
Rotates a sequence of colors in COLOR.\{AP. The rotation moves the intc:lsity vai'Jes 
of color number STARTCOLOR into color number ST.ARTCOLOR + 1. L.~e intensity 
values of color number STARTCOLOR + 1 into color number STARTCOLCR + Z. c:c. 
and THRUCOLOR'S values into STARTCOLOR. 

19.46 



INTERLISP-D DISPLAY FAOLITIES 

(EDITCOLORMAP VAll NOQFLG) [Function] 
Allows interactive editing of a color map. If VAR is an atom whose value is a color 
map. its value is edited.. Otherwise a new color map is created and ec!.ited. The 
color map being edited is made the screen color map while the editi.r.g is t?ring 
place so that its effects can be observed. The edited color map is re(1..l..rn.ed as the 
value. 

If NOQFLG is NIL and the color display is on. the user is asked if they W:l."'1t a test 
~attem of colors. A yes response will C:lUs.e the function SHO\~COLORTE STPA TTE RN 
to be called which will dispiay a test pattern with blocks of c~h of t..'1e possible 
colors. 

The user is prompted for the location of a color control window to be placed on 
the black ind white display. This window allows the value of any of the colors 
to be changed. The color nurnccr of the color being edited is in the upper left n 
pan of the window. Six bars are displayed. The right three bars gh'e the color \,_J''/ 

intensities for the three primary colors of the current color number. The left three 
bars give the value of tb.e color's Hue. IJghtness and Saruntion par:J.mcters. Tb.ese 
levels can be changed by positioning the cursor in one of ~e ba...--s and ~ress:ng ±e 
LE FT button. \Vhi1e the LE FT button is down. the value of t!!at par~e~er · .... ill 
tr'cU:k the Y position of the cursor. When tb.e LE FT burl.On is rele.a.sed. the color 
tracking stops. The color being edited is changed by pressing the MIDDLE button 
while the cursor is in the interior of the edit window. This 'Will bring up a menu 
of color numbers. Selecting one setS the current color to the selected color. 

The color being edited can also be changed by selecting the menu item UPickP!'9. 
11lis will switch the cursor onto the color screen and allow the user to select a 
point from the color screen. It will then edit the color of the selected point. 

To step the editing. move the cursor into the tide of the editing window and press 
the MIDDLE button. This will bring up a menu. Select STOP to quit. .. 

19.16.4 Turning the Color Display On and Off 

The ::cier &.splay can be tuned on and off. \Vhile the color dispiay is OIL the me:=ory used for the color 
dis;:lay screen bitmap is locked down and a significant amount of processing time (35?O on the Xerox 
1100) is used to drive the color display. . 

(COLORO I SPLAY P) [Function1 

(COLORDISPLAY 

Rerurns the current color map if the color display is on: otherwise NIL. 

COLOR,,\!AP BITSPERPrxEL CLEARSCREENFLG) [Function] 
If COLOR..\!.AP is NIL. it turns off the color display. If COLOR..\!AP is non-N I L. it 
turns on the color display allocating BITSPERPrxEL bits per pixel. If COLOR.\f.~ is 
a color map. it is used as the screen color map. If CLEARSCREENFLG is non-N I L. 
all of the bitS in the color screen are set co O. 

Turning on the color display requires a11oc~lting and locking down the memory 
necessary to hold the color dispiay screen bitmap and the system color map. 
Turning the color display otf frees this memory. 

19.47 

(~ ) 
\ , .r 

C] 



o· 

0'.. 

(5 

Printing and Drawing in Color 

19.16.5 PrintiIl~ and Dra'wing in Color 

The current color implementation allows display str~ to operate on color bitmapS. The following t\vo 
functions set the color in which a display stream prints or draws: 

(DSPCOlOR COLOR DISPLAYSTP.EAM) [Function] 
Sets the foreground color of a display stream. Returns the previous foregrour:d 
color. If COLOR is fj I l~ it returns the current foreground color without cr:a.'lgi"!g 
anything. The default foreground color is 7~ which is white in the cefa.uit color 
map. 

(OSPBACKCOLOR COLOR DISPLAYSTREAM) [Fu!!ctior:1 
Sets the background color of a display stream. Rerurns the pre\ious b.::kground 
color. If COLOR is NIL, it returns the current background color without c~.:..=t"'g 
anything. The default background color is 0 which is black in the default color 
map. 

BITBl T, the line and curve drawing routines and the printing routines know how to operate on a display 
stream that has a color bitmap as its destination. Following are some notes about them. 

B ITBl T (page 19.4) Wnen B ITB l Ting from a calor bitmap onto another color bitmap with the same 
bits per pixeL the operations PAINT, INVERT and ERASE are done on a bit level: 
not on a pixel level. Thus painting color 3 onto color 10 will result in color II. 

When B ITBl Ting from a black and white bitmap onto a color bitmap. the 1 
bits will appear in the DSPCOlOR and the 0 bits in DSPBACKCOLOR. Currently. 
REPLACE is the only' operation that is supponed B ITBl Ting from black and '.vhite 
to color. This operation is fairly expensive: if the same bit.~ap is going to be put 
up several times in the same color it is faster to create a color copy then bIt the 
color copy. 

If the SOURCETYPE is TEXTURE and the DESTINATIONBITMAP is a color bi:.map. 
the TEXTtrnz argument is taken to be a color. Thus. to fill an area 't'rlL.'1 the color 
BlUE~ do: 

(BITBlT NIL NIL NIL COLORBITMAP 50 75 100 200 'TEXTURE 'REPLACE 
'BLUE) 

Curve drawing (page 19.14) 
For the functions DRAWCIRClE. DRAWELLIPSE and DRAWCURVE. the notion of 
a brush has been extended to include a color. A brush can be a list of the form 
(SHAF? SIZE COLOR). A brush can also be a bitmap. which can be color bitinap. 

Line drawing (page 19.13) 

Printing 

The line drawing functions have been extended to take another argument which is 
the color the line is to appear in if the destination of the display stream is a color 
bitmap. If the COLOR argument is NIL. the DSPCOlOR of the display streml is 
used. 

Printing only works (currently) in REPLACE mode. The characters will have a 
foreground color of DSPCOLOR and a background of DSPBACKCOLOR. The first 
time a character is printed in a new color. the color images corresponding to L~e 

19.48 



INTERLISp·O DISPLAY FAOLITIES 

current font are calculated and czched. Thus the first character :nay take a while 
to appear but succeeding characters print quickly . 

. 19.16.6 UsiIlg the Cursor on the Color Screen 

The cu~""'SOr can be moved to the color screen. While on the color scre~~ the cursor is placed ~g XOR 
mode. thus with some color maps iT. may be hard to see. It is automatically taken down whe:lever an 
o;cr.luon is perfor:ned that changes any bits cn the color screen. Wpilc the cursor is ou :l:e cc!cr sc:~::. 
the black and white cursor is cleared. 

(CHAt~GECURSORSCREEN SC-n.EENBITUAP) [FWlction] 
SCREENBITMAP must be eitJ.'ler the value of (COLORSC RE E Na I TMA?) or the 
value of (SCRE ENS ITMAP). CHAflGECURSORSCRE E" mo\'es the cursor onto ~e 
specified screen. The value returned is the screen bianap that the CUI"S<Jr was on 
before CHANGECURSORSCREEN was called. 

19.16.7 Miscellaneous Color Functions 

The following functions provide some common operations on color bitmaps and display strea.m5.. 

(COLORF ILL REGION eOLORNUUBER eOLORBITMAP OPERATION) [Function] 
Fills the region REGION in eOLORBITMAP with the color eOLORNt"MBE? .. using 
the operation OPERATION. 

(COLORF I LLAREA LEFT BOTTO.\{ WIDTH HEIGHT COLORNUMBER eOLORBITI.!AP OPERATION) 

[Function1 
Fills an area in the color bitmap with a color. 

(COLORIZES ITMA? BITMAP oeOLOR leOLOR BITSPERPlXEL) [Function] 

() 

Creates and returns a color bitmap copying the black and white bitmap EIT!.!AF, ~ 
The returned color bitmap will have color number leOLOR. in those pixels of 
BITMAP that were 1 and OeOLOR. in these pixels of BIn!.AP L.1.at were O. This 
provides a way of producing a color bitmap from a black and white bit!:12.p. (\o~e: n. 
this is a fairly expensive operation in terms of bOL.1- time and space. 

19.16.8 Demonstr:ltion programs 

The following jUnctions provide some demonstrations of the color display. These are available in lhe Lispusers 
file COLORDEMO. DCOM. 

(COLORDEMO) 

(COLORDEM01) 

[Function} 
Brings up a menu of color demonstration programs. The system will cycle through 
the entries on the menu automatically. allowing each to run for a small 5xcd 
amount of time (typically 40 seconds). Selecting one of L~e entries in the menu 
will cause it to start that program. . 

[Function1 
Runs the [nteriisp-D logo demonstration until a button is pressed then JIiJ..s 

19.49 (\ 
. I 

'-./ 



o 

0" 

Demonstration programs 

COLORKIHETIC. The MIDDLE button will bring up a menu that allows cha:lg:i.:lg 
the speed of rotation or editting the color map. The LE FT button will rotate the 
color map in the kinetic area. 

(COLORDEM02 SIZE) [Function] 
Puts up a test pattern of size SIZE. then rotates the color map. The speed of retation 
of the color map is determined by the Y position of the cursor. Tne M I DO L E 
button will bring up a menu that allows editing of the color map or changing the 
color map to a map of different shades of one color. 

(COLORKINETIC REGION FrRSTCOLOR LASTCOLOR) [Function1 

(TUNNEL SPEED) 

Runs color kinetic in a region REGION of the color display using colors FIRSTCOLCR 

through LASTCOLOR. 

[Fun~tioR] 
Draws a series of concentric rectangles of increasing size in increasing color numbers... 
SPEED detennines the size of the rectangles. This can then be ··run·· by calling 
ROTATE IT described below. 

(MINESHAFT N OUTFLG) [Function] 

(WELL N) 

Draws a series of concentric rectangles of size N in increasing color nurnbe:s. 
OUTFLG deterntines whether the color numbers increase or decrease. This can then 
be "run" by calling ROTATEIT described below. 

[Function] 
Draws a series of concentric circles on the color screen in increasing color numbers.. 
The circles will be of size N. This can then be '''run'' by calling ROTATEIT described. 
below. 

(SHOWCOLORTESTPATTERN BARSIZE) [Function] 
Displays a pattern of colors on the color display. This is useful when editing a 
color map, The pattern has squares of the 16 possible colors layed out in two rows 
at the top of the screen. Colors 0 through 7 in the top row. Colors 8 throug.h 15 in 
the next row. The bottom part of the screen is then layered with bars of BARsr::z 
width with the consecutive color numbers. The pattern is desigrled so ~i1at every 
color has a border with every other color (unless BARSIZE is too large to allow 
room for every color - about 20). 

(ROTATEIT BEGINCOLOR ENDCOLOR WAIT) [Function] 
Goes into an infinite loop rotating the screen color map. The colors betvr'een 
BEGmCOLOR (default 0) and ENDCOLOR (default maximum color) are rocated. If 
WAIT is given. (DISMISS WAIT) is called each time the color map is changed.. 
This provides an easy way of "animating" screen images. 

Note: The following function is available in the Lispusers file COlORPOl YGONS. DCOtt 

(COLORPOlYDEMO COLORDS) 
Runs a version of the Polygons program on the color screen. 

19.50 

[Function1 



0-

CHAPTER 20 

INTERLISP-O DISPLAY-OFffivrED TOOLS. 

One of the greatest strengths of Interlisp-D is me window display system. Using this system. a ou=loer 
of the existing Interlisp tools have been extended. and some new ones developed. Th.is chap~er d.escribes 
some of tb.ese tools. 

20.1 DEDIT 

DEdit is a strucrure oriented.. mode less. display based editor for objects represented as list strucrures. 
such as functio~ property lists. data values. etc. DEdit is an integral part of the standard Interlisp-D 
environment. 

20.1.1 General Comments 

DEdit is designed to be the user's primary editor for programs and data. To that end.. it has incorporated 
the interfaces of the (older) teletype oriented Interlisp editor so the two can be used interchange3bly. 
In addition. me full power of the teletype editor, and indeed the full Interlisp system itself. is easily 
accessible from within DEdit. 

DEdit is structure. rather than character. oriented to facilitate selecting and operating on pieces of structure 
as objects In their own right. rather than as collections of characters. However. for the occasional siruation 
when character oriented editing is appropriate. DEdit provides access to the Interlisp-D text edidng 
facilities. DEdit is mode less. in that all commands operate on previously selected arguments. rather L.'an 
causing the behavior of the interface to change during argument specification. 

20.1.2 Operation 

DEdit is normally called through .. of the following functions: 

(OF FN) 

(OV VAR) 

(OP NA..\{E PROP) 

t \ • 

[NLambda NoSpread Function} 
Calls DEdit all the definition of the function FN. 

[NLambda NoSpreJ.d Function] 
Calls DEdit on me value of me variable VAR. 

[NLambda NoSpread Functio~] 
Calls DEdit on the propeny PROP of the atom NAME. If PROP is not given. t.he 
whole property list of NA..\{E is edited. 

20.1 



(DC FILE) 

Interacti've Operation 

[NLambda NoSpread Function] 
Calls DEdit on the file commands for the file FILE. 

DEdit is nor.nally installed as the default editor for ?ll editing operations. including those invd;:ed by 
other su bsyste~ such as dle Progra.T.mer's Assistant and Masterscope. DEdit provides rLlrlctions E F, E V 
and E P (analogous to the corresponding Ox functions) for conveniently accessing the teletype editor fro:n 
within a DEdit context. e.g. from under a call to DEdit or if DEdit is installed as the dera:.!lt editor. 

The default editor may be set with ED I n~OOE: 

(EDITMODE NEWMODE) [Functio::] 
• If NE\VMODE is non-N I L. sets the default editor to be DEdit (if NE~~ODE is 

DISPLAY). or the teletype editor (if NEWMODE is TELETYPE). Returns the 
previous setting. 

DEdit operates by providing an alternative. plug compatible definition of EDITl (OEDITL). The normal 
user entL-ies operate by redefining ED I T l and then calling the corresponding Edit function (i.e .. 0 F calls 
ED IT F etc). Thus. the nonnal Edit file package, spelling. correction. etc. behavior is obtained. 

If Edit commands are specified in a call to DE 0 IT L (e.g.,. in calls to the editor from ~1asterscope). 0 E 0 IT L 
will pass L."lose comInands to EDITl. after having placed a TTY: entry on EDITrr1ACRQS wt',ich will cause 
DEdit to be invoked if any interaction with the user is called for. In this way, automatic edits can be ~ade 
completely under program control. yet DEdit's interactive interface is available for direct user interaction. 

(RESETDEDIT) [Function} 
Completely reinitializes DEdit. Oases all DEdit windows. so that the user must 
specifY the window the next time DEdit is envokecL RESETDEDIT is also csed to 
make DEdit recognize the new values of variables such as DEDITTYPEINCO~~S. 
when the. user changes them: 

20.1.3 Interactive Operation 

() 

n 

~, \,Vhen DEdit is called for the first time, it prompts for an edit window, which is pres-erved and reus-ed n 
for later DEdits. and pretty prints the expression to be edited therei..TJ.. (Note: Tne pretty pri:lte: i~ores \ ) 
user PRETTYPRINTMACROS because they do not provide er.ough structural information during printL~g 
to enable selection.) A standard Interlisp-D scroll bar is set up on the left edge of the window and an 
edit command menu. which remains active throughout the edit on the right edge. DEdit then goes i~to a 
select. command.. execute loop. during which it yields control so that background activities. such as mouse 
commands in other windows. continue to be performed. 

20.1.3.1 Selection 

Selection in a DEdit window is as follows: the lE FT button selects the object being directly pointed at: 
the ~HDDLE button selects the containing list; and the RIGHT button extends the current selection to me 
lowest common ancestor of that selection and the current position. The only things that may be pointed 
at ar':! atomic objects (literal atoms. numbers. ere) and parentheses. which are considered to represent the 
list they delimit. White space is not selectJ.ble or editable. 

\Vhen a selection is made, it is pushed on a selection stack which will be the source of operands for 

20.2 



o 

o 

(5. 

INTERLlSp-n DISPLAY-DRIL,rn:D TOOLS 

DEdit commands. As each new selection pushes down the selections made before it. this stack can 
groVl arbitrarily de-ep. so only the top two selections on the stack are highlighted on the screen. 1:-15 
hig..1li~~ting is do::te by und~rscoring the topmost (most recent) selection with a solid black ~e a.z:d :!J.e 
second topmost selection with a dashed line. The patterns used were chosen so that u~eir over!a;:pi=.gs 
would be b:dl visible and distinct. since selecting a sub-part of anctb.er selection is quite COIrIlCu. 

Because one can invoke DEdit recursively, there may be several DEdit windows active on me .scree:! at 
once. Tris is often useful when tr..Ilsfening material from one object to another (as whc:l re.:ll1cc::i1:g 
functionality within 3. set of programs). Selections may be made in any 3.Ctive DEdit wincew. in a::y 
order. \Vhen there is more than one"DEdit window, the edit command menu (and L.~e type-in ourrer. see 
below) .... ill attach itself to the most recently opened (or current) DEdit window. 

20.1.3.2 Typ~in 

Characters may be typed at the keyboard at any time. This will create a type-in buffer window which 
will position itself under the current DEdit window and do a LISPXREAD (which must be te~ted 
by a right parenthesis or a rerum) from the keyboard. During the read.. any character editing subsystem 
(such as TTY I r4) that is loaded can be used to do character level editing on the rypein. \'VnC:l ±.e :e3.d 
is complete., the typein will become the current selection (top of stack) and be available as an ope~d 
for the next command.. Once the read is comple~e. objects displayed in the type-in buffer can be selected 
frorr'~ scrolled, or even edited, just like those in the main window. 

One can also give some editing coxr...mands directly into the typein buffer. Typing control-Z will interpret 
L.'1e rest of the line as a teletype editor command which will be interpreted when the line is closed. 
Likev.-ise. "control-S OLD NEW' will substitute NEW for OLD and "control-F x' will find the next 
occurrence of x. 

20.1.3.3 Shift-Selection 

Often4 significant pieces of what one wishes to type can be found in an active DEdit \\indow. To 
aid in transferring the keystrokes that these objects repr·esent into t..l!e typein burrer. DEdit sup~c~ 
shift-selection. Whenever a selection is made in the DEdit window with the left sJtift. key down. the 
selection made is not pushed on the selection stack. but is inste.ld unread into the keyboard input (and • 
hence shows up in the typein buffer). A characteristically diiferent highlighting is used to indicate whe:1 
shift (as opposed to nonnal) selection is taking place. -

Note that shift-selection remains active even when DEdit is not. Thus one can unread particularly choice 
pieces of text from DEdit windows into the typescript window. 

20.1.3.4 Commands 
. . 

A DEdit command is invoked by selecting an item from the edit command menu. This can be done eitl:er 
directly. using L'1e LE FT mouse button in the usual way. or by selecting a subcornmand.. Subcomznanc!s 
are less frequently used comnlands th::m those on the m.lin edit comm~nd menu aIld are grouped tcgcL":cr 
in submenus "under" the comlnand on the main menu to which they are most closely rel.1tcd. Ft.'f 
cXa..7.pie. the teletype editor defines six commands for adding and removmg parent..f"J.eses (defined in :e;.r.s 
of transformations on the underlying list suuccure). Of these six commands. only two tir.sertir.g J..'1d 

20.3 



Commands 

removing parentheses as a pair) are commonly used., so DEdit provides the other four as Sllbco~ands 
of the common tv/o. Tne Subco~lInands of a COIrlllla.,d are accessed by selecting the commar:.d from tL'1e 
cornoa.,ds menu with_ the MIDDLE button. This will bring up a menu of the subcorr-.manc. optio~ from 
which a chcice can be made. Subcom..~ands are flagged in the list below \Zrit..~ the n~e of the top leyel 
cOlnmand of which they are options. 

If one has a large DEdit window t or several DEdit windows active at once, the edit ccx:-..:nand ~indow 
may be far away from t..~e, area of the screen in which one is operating. To solve this prcble::l. the DECit 
command window is a "snuggle up" menu. \Vhencver the TAB key is depresscci L.'-1e cor.J:1and v;indow 
will move oyer to the c"..!rr~nt cursor position and stay there as long as either the T AS key re:n2i.:ls dawn 
or u~e cursor is in the conunand window. Thus. one c~ "pull" the cOIIlInand 'Window over. s!.ic.e ~e 
cursor into it and then release the TAB key (or not) while one makes a con-unand selection in the normal 
way. This eliminates a great deal of mouse movement. 

(j 

Whenever a change is made. the prettyprinter reprints until the printing stablizes: -As the standard pretty () 
print .!lgOrltrilll is used and as it leaves no infonnation behind on how it oakes its 6oi:es. L~ is a ' 
somewhat heuristic process. The Rep r ; n t command can be used to tidy the xo-ul: up if i: is ::lOt. in :2:;~ 
"pretty'·. 

All cocmanc.s take their operands from the selection stack. and may push a result back on. In generd 
the rule is to sele::t target, selections first and source selections second. Thus. a Re p 1 ace command is 
c.one by sele.:ti:lg U.~e thing to be replaced. selecting (or typing) the new material and then buttoni.,.!g the 
Rep 1 ace cO!C.!Ila!ld in the command menu. Using TOP to'denote the topmost (most recent) element of 
the s!ZCl: and NXT the second element. the DEdit conur~ds are: . 

After 

Before 

Delete 

[DEdit Command} 
Inserts a copy of TOP after NXT. 

[DEdit Command] 
Inserts a copy of TOP before NXT. 

[DEdit CO!rmand] 
Deletes TOP from the structure being edited. (A copy of) TOP re~::ins on t.~e 
stack and will appear, selected, in the edit buffer. 

Replace 
n 

[DEdit COiT.uI'...a:lc] , ,) 

Switch 

() . . 

( in 

in 

Replaces NXT with a copy of TOP obtained by substituting a CC?y of ;"'XT wherever 
the value of the atom EDITEMBEDTOl<EN (initially. the & character) appears in 
TOP. This provides an MBD facility, see Idioms below. 

[DEdit Corr...mand] 
Exchanges TOP and NXT in the structure being edited. 

[DEdit Corr~"":1ar.dl 
Puts parencheses around TOP and NXT (which C~ of course, be the ~"1le element). 

[DEdit Cmn. .. -nand] . 
Subcommand of ( ). Inserts ( before TOP (like the L I Edit comrn.:md) 

[DEdit COITUIlanc!} 
Subcommand of ( ). Inserts) after TOP (like the RI Edit command) 

20.4 () 



o 

o 

~. 

o 

() out 

( out 

) out 

Undo 

lUnda 

?Undo 
&Undo 

Find 

Swap 

INTERLISP-D DISPLAY-ORIENTED TOOLS 

[DEdit Co~~dl 
Removes parentheses from TOP. 

[DEdit COrr'~dl 
Subcommand of () out. Removes ( from before TOP (like the LO Edit co~~ar.c) 

[DEc.it Cc~=.:mdJ 
Subcommand of () out. Removes) from after TOP (like the RO Edit cornr::ar:c) 

[DECit CO~=a:ldl 
Undoes last command. 

[DEdit COIn .. -::~dl 
Subcommand of Undo. Undoes all changes since the start of this w.ll on DECit. 

[DEdit COmII:3l1d] 
[DEdit Comr=acc) 

Subcommands of Undo. Allows selective undoing of other than L.'1e last com=.anci. 
Both of these commands bring up a menu of all the commands issued during L.~is 
call on DEdit. When the user selects an item from this menu. the correspoc.ding 
command (and if &Undo. all comm;;mds since that point) will be undone. 

[DEdit Command] 
Selects. in place of TOP, the first place after TOP which matches :-rx::'. C ses the 
Edit subsystem's search routine. so S'uppol~ the full wildcarding conven.tions of 
Edit. 

[DEdit Corr.mand1. 
Exchanges TOP and NXT on the stack. i.e. the stack is changed., the StruC:ure being 
edited isn't 

The following set of commands are grouped together as SUbCOIIIInands of Swap because tJ.'1ey all aEect 
the stack and the selections~ raL1.er than the structure being edited. 

Center 

Clear 

Copy 

Pop 

Reprint 

Edit 

[DEdit CorrZ1i?:ld] 
Subcommand of Swap. Scrolls until TOP is visible in its window. 

[DEdit Co~~and] 
Subcommand of Swap. Discards all selections (Le . ., "clears" the stack). . 

[DEdit COl1"~;;.r:dl 
Subcommand of Swap. Puts a copy of TOP into the edit buffer and ma..ices it the 
new TOP. 

.. [DEdit Command] 
Subcommand of Swap. Pops TOP off the selection stack. 

[DEdit CO~2.Ild] 
Reprints TOP. 

[DEdit Corr:..~~dl . 
Runs DEdit on the definition of the atom TOP (or CAR ofUst TOP). Us~s TYPESOF 
to detennine what definitions exist for TOP and.. if there is more ttan o;:e. J:5ks 

20.5 



EditCom 

Break 

Eval 

Exit 

OK 
Stop 

Multiple Commands 

the user, via menu, which one to use. (Note: DEdit caches ez.ch subordinate edit 
window in the window from which it was entered.. for as long: as the hif:-"-!er ... .,·ffidow 
is active. Thus, multiple DEdit cOlr....mands do not incur u~e cost of repeatedly 
allocating a new window.) If TOP is defined and is a non-lis~ c.:8s Ir\S?ECT on 
L~at value. Ed i t also has a variety of subcolnmands which allow choice of edit.'Jr 
(DEdit. Edit TEdie. etc.) and whether to invoke that editor on tn; de~tion of 
TOP or the form itself. 

[DEdit COr:l..-nar.dJ 
Allows one to run arbitrarj Edit commands on the strucmre being DEI:':~ed (w~cr~ 
are far too many of these for them all to appear on L.~e rr..ain menu). TOP st:ould 
be an Edit command.. which will be applied to NXT as the C"~rrent Edit ex~ression .. 
On rerurn to DEdit. the (possibly changed) current Edit expression v,'ii1 be 5;~e=ted 
as the new TOP. Thus, selecting some expression. typing (R F 00 SAl). ilIld 
buttoning Ed i teom will cause FOa to be replaced with SAZ in the expression 
selected. 

In additio~ a variety of common Edit commands are available as subcommands 
of Ed; tCom. Currently, these include ?=, GETD, CL. OW, REPACK. CAP, RAISE, 
and LO\f/E R. 

[DEdit COG".rr:and] 
Does a BREAKIN ARourlO the current expression TOP. (See page 10.5.) 

[DEdit COIlunand] 
Evaluates TOP, whose value is pushed onto the staCk in place of TOP. and which 
will L.1.erefore appear, selected., in the edit buffer. 

[DEdit Command1 
Exits from DEdit ~ equivalent to Edit OK). 

, [DEdit COmn1az:.d] 
[DEdit Ccrr.rn:md] 

Subcommands of Ex; t. OK exits without an error, STOP exits with an error. 

n 

() 

Equivale:lt to the Edit commands with the same names. n 
20.1.3.5 Multiple Commands 

It is occasionally useful· to be able to give several commands at once - either because one thinks of L.'1em 
as a unit or because the intervening reprettyprinting is disrracting. Tne s1f.ck archite=t"ure of DEdit ll1akes 
sue., multiple commands easy to construct - one just pushes whatever argumentS are required for the 
complete suite or commands one has in mind. Multiple co:nmands are specified by holding c.own the 
CONTROL key during corn..~and selection. As long' as the CONTROL key is down. cOG'l.mands selec:ed will 
not be executcc:L but merely saved on a list. Finally, when a command is selected without the CONTROL 
key down. the corrunand sequence is terminated with that command being the last one in the sequence. 

One rarely constructs long sequences of cOI11ffiands in this fashion. because the feedback of being able 
to inspect the i:uermediate results is usually worthwhile. TypicJ.lly. just two or three step idioms are 
composed in this f.:lShion. Some common examples are given in the next section. 

20.6 (\ 
, I 
\ / 



o 

o 

o 

o 

INTERLIsp .. n DISPLAY-ORlEN Iz..D TOOLS 

20.1.3.6 !d~oms 

As with my interactive sys!e~ there are certain common idioms on wrJch experienced users depend 
he::.vily. Net only is discovering the idioms of a new syste::n tiresome. but U: places th~ desig:ler I!"~j" have 
a..-:,sumed fu..'Tili~-ity with one or mere of the~ so not knowing them can I:1lle life quite unbea:able. In 
the case of DEcEt. many of t.'ese idioII"..5 concern easy ways to achieve the effects of specific cor:::=:::.::Cs 
from L.~e Edit syste:n. wiLh which many users are aiready familiar. The DEdit idioms described celo""" a:e 
L.'1c result of the experience of the e3Ily users of the system and are by no me~..s exhaustive. In ~dc..::icn 
to those thJt each user will deydop to fit his or her own parrjcular styie. there are ffi.:!:ly more to ~e 
di~o'ljcred and you are e:lcour;!ged to share your discoveries. 

Because of the novel ar81Jmcnt specification technique (postfix: target first) many of the DEdit idioms 
arc very sunplc. but opaque until one has absorbed the "targct-source-command" 'Way of looking Jt L'1e 
world. Thus. one selects where typein is to go before touching the keyboard. After typing. the urget will 
b~ selected second and the typein selected on top. so that an A f te r. Bef 0 re or Rep 1 ace will have the 
desired effect. If the order is switched. the command will try to change the typein (which mayor oay 
not succeed). or will require tiresome Swapping or reselection. Although this discipline see!Il.S strange at 
first. it comes easily wit..~ practice. 

Segment selection and ma."lipulation are handled in DEdit by first making them into a sublist. so they 
can ce h~dIed in the usual way. ThUs. if one wants to remove dle three elements between A and E 
in the list (A BCD E). one selects B, then 0 (ei mer order). then makes them into a sub list with t.'1 e 
"( r' command (pronounced "both in"). This will leave the sublist (B CO) selected.. so a subsequent 
Del e t e will remove it. This can be issued as a single .. ( ); 0 e 1 e t e" command using multip Ie cOIT'..r:1md 
selection. as described above, in which case the inter:nediate state of (A (8 CD) E) will not show on 
the screen. 

Inserting a segment proceeds in a similar fashion. Once the location of the insertion is selected.. the 
segment to be inserted is typed as a list (if it is a list of atoms, they can be typed \!without parentheses 
and the READ will make them in~o a list. as one would expect). Then. the corr..mand sequence •. A f ta i 
(er Be fore or Re p 1 ac e); () ou t'· (given either as a multiple command or as two separate commands) 
will insert the typein and splic~ it in by removing its parenL.1eses. 

~loving an expression to another place in the structure being edited is easily ;;.ccorr:plis1:ed by a ce:ete 
feHowed by an insert. Select the location where the moved expression is to go to: seiect t.'1e expression 
to be moved: then give L.1.e command sequence "Oelete: After (or Before or Replace)"". T:-:e 
expression will first be deleted into the edit buffer where it will remain selected. The subseque:lt u:ser-ion 
will insert it back into the structure at the selected location . . 
Embedding and extracting are done with the Rep 1 ace command. Extraction is simply a special C3.Se of 
replacing something with a subpiece of itself: select the thing to be replaced: select the subpart L,at is to 
repl.:ce it: Rep 1 ace. Embed.ding also uses Repi ace. in conjunction'witti t..~e "embed token" (the value 
of EDITEMBEDTO:<E~. initially the single character atom &). Thus, to embed some expression in a PROG. 
select L.1.e expression; type .. ( PRCG VARSLST &) ": Rep 1 ace. 

Switch can 2.lso be used to generate a whole variety of complex moves and embeds. For exa.rn~~e. 
switching an expression with typein not only replaces that expression with the cypein. but provides J c~py 
of the expression in the buffer, from where it can be edited or moved to somcwht!rc else. 

Finally. one cm exploit the stack structure on selections to queue multiple JrguIr.cntS for a sccucr.c,: 
of commands. Thus, to replace several expressions by one common replacemen~ select e~ch ~f ~e 

10.7 



DEdit Par:uneters 

--
expressions to be replaced (any number). the!l t..~e replacing expression. Now hit the Rep 1 ace co~and 
as many times as W.~ere are replacements to be done. Each Rep 1 ace will pop one selection off the stack. 
l~aving ~~e wost r~ently replaced expression selected. As t..'1e latter is now a copy of the origir:2.l so~:c~. 
the next Replace will have the desired effect. and so on. 

20.1.4 D Edit Par:ml~ters 

There are several global variabies that can be used to affect various aspects of DEdit's operation. Alt.."lough 
most have been alluded to above. they are summarized here for reference. 

ED ITE{\1B EDTOKEN [\'~-;ableJ 
Initially &. Used in both DEdit and the teletype editor to indicate the special Jtom 

n. 

used as the "embed token". 

DEditLinger (\
" . b' ] r-) 
'ana Ie 

OEDITTYPElflCOMS 

Initially T. The default behavior of the topmbst DEdit window is to rema:=. active 
on the screen when exited. This is Occasionally inconvenient for progrclI1S tl:at call 
DEdit directly, so it can be made to close automatically when exited by setting this 
variable to NIL. 

[Variable] 
Defines the control characters recognized as commands dudng DEdit typein. 
Only accessed when DEdit is initialize~ so DEdit should be reinitialized with 
(RESETDED IT) if this is changed. 

20.2 Ir-iTIRACITVE BITl\1AP EDITING 

One import..'Ult concept of the Interlisp-D display system is the idea of a bitmap. a rec:a.ngular array of 
bits. WrJle working with the display system. it is extre::lely useful to be able to m~lpulate bi~aps. 
textures, and cha:a.cter bitmaps. The following functions provide an easy-to-use interactiv'e editing facility (\ 
for various types of bitmaps. . \ ) 

(EDITBM BIT~!AP) . [Function] 
If BITMAP is a bitmap. it is edited. If BITMAP is an atom whose value is a b:t:::~p. 
its value is editel;i. If BITMAP is NIL. ED r T8 M asks for dimensions and creates 
a bitmap. If BIT1>.!AP is a region. that ponion of (SCREENBITMAP) is usee. If 
BIT1>.!AP is a window, it is brought to the top and its contents edited. 

ED ITBM sets up the bitmap being edited in an editing window. The editing window has two major a:e:!S: 
a griddcd edit a.rea in the lower part of the window and a display area in the upper left part. In the edit 
are=L ·the left butto:1 will add points. the middle button will crase points. The right bunon provldes accc~s 
to the nonnal window commands to reposition and reshape dIe window. The actual size biuna? is sho·",·n 
in the display area. 

If the biunap is too large to fit in the edit area. only a portion will be editable. This par-jon c:u: be 
changed by ~rolling both up and down in the left margin and left and right in L'1c bL'tto:n rr.~r;:n. 
PreSSing the middle button while in the display area will bring up a menu that allows global place~e:1t of 

20.8 (--------
\ ) 



'\ u 
l!.'ITERLISP-O nrSPLAY-QRffivrED TOOLS 

the pox-ion of the bitm.a.p being eCiited. To allow more of the bitmap to be editing at once, t...~e winc!ow 
can be fe<".Jlzped to make it larger or the G ri dS i ze+- command described below em be t:sed to red:;.ce 
Lfle size of a bit in the edit area. 

Pressing the ~jdd1e button while not in either L.'1e edit 2J.-ea or the display area (Le. while i:l the grey area 
in the upper right or in the title) will bring up a ccmmand menu. There are cO!!lmanc.s to s:op edit:1~ 
to restor~ the bi~ap to its initial sta:e and to cle:?I ui.e bitm:lp. Hoiding the middle button d~\I;:l oyer a 
corr .. rnand will result in an e:q>lJ.natory message being printed in the prompt window. The cO~~E.:lds are 
des:ri:,ed below: 

OK Copies the cha11ged image into the original bitmap. stops ~1.e bitmap editor and. 
c1o~s u'1e edit windows. TIle changes the bitmap editor makes dur-LDg L.~e L'1te:-~ticn 
occur on a copy of the original bitmap. UrJess the bitmap editor is exited via OK. 
no chang(.-'S are made in the original. 

0" Stop 

Clear 

Stops the bitmap editor without making any changes to the original biana? 

Sets all or part of the binnap to O. Another menu will appear giving a choice ben-,-een 
deming the entire biuTIap or just the portio"n u~at is in tl:.e edit area. The second 
menu also acts as a confirmation. since not selecting one of the choices on this menu 
results in no action being taken. 

o 

Reset 

GridSize+-

ShowAsTile 

Paint 

CURSOR .... 

Sets all or part of the bitmap to the contents it had when ED ITBM was called. As 
wiL.1. the C loa r cornmand. ~"1other menu gives a choice between resetting the entire 
bitmap or just the po~jon that is in the edit area. 

Allows specification of the size of the editing grid. Another menu will appear ghing 
a choice of several sizes. If one is selected.. the editing portion of the bit:nap editor 
will be redrawn using the selected grid size. allowing more or less of the bitIn2? to 
be edited without scrolling. The original size is chosen hueristi:ally and is typicilly 
about 3. [t is particularly useful when editing large bitmaps to set the edit grid size 
smaller than Llte original. 

Tesselates the current bitmap in the upper part of the wincow. Tnis is usef~l fOf 

determining how a bitmap will look if it were made the ba:.kg::-o:.;.:u.d (t.:s~g ~:e 
function CHANG EBACKG ROUND). Note: The tiled display will not autc~2:ic21:y 
ch211ge as the bitmap changes; to update it. use the ShowAs T ; 1 e COIru!1a:1d .lg.?in. 

Puts the current biunap into a window and call the window PA r ~J T COnlln~"1d. Qu. 

it. The P A I NT command imp lements drawing with various brush sizes and s::apcs 
but only on an -actual sized biL~a? Tne P A IN T mode is left by pressing me RIG H T 
button and selecting the QU I T command from the menu. At L~is point. you wi:! 
be given a choice of whether or not the changes you made while in PA I rlT mode 
should be made to the current bitmap. 

~fakes the lower lctt part of the bionap become the cur:;or Jnd will prompt you for 
the "hot spoC. 

The biL~ap editing window can be reshaped to provide more or less room for editing. \Vhen this happens. 
the space al!ccarcd to the editing area will be changed to fit in the new region. 

Whenever the left or middle button is down and the cursor is not in u~e edit are3.. the section of w.~~ 

20.9 



n 
Display Break Package 

display of the bitm2.p that is currently in the edit area is complemented. Pressing the left but:on w!1ile 
not in the edit region will put the lower left 16 x 16 section of the bitmap into the C.lrsor for as long as 
the left button is held down. 

(EDITSHAOE 

(EDITCHAR 

S::iA.DE) [Function] 
Ope!lS a window that allows the user to edit small textures (4 by 4) patte:w. In t.~e 
edit area.. u~e left betton adds bits to the s..,.ade and t:.'e middle bu~tc:l e:-.:.S~ c::s 
from the shade. The top part of t...~e window is painted 'With t...1e C"..!rre:l: t~xr~re 
whenever ail mouse keys are released. Tnus it is possible to directly cc:!!;:ar~ t~.:.o 
textures that differ by more than one pLxel by holding a ::lOuse key c.own un~l aU 
changes are made. 

If SHADE is a texture object, EDITSHADE starts 'With i~ otherwise. it suns with 
white. 

CHARCODE FONT) [Funcuon(J 
Calls the bitmap editor (ED ITBM) on the bianap image of the character CEAJ~CODE 
in the font FONT. CP'.ARCO.'DE can be a char:!cter code (as retu:ned by CHCO~ 1) or 
an atom or string. in which case the first character of CHARCODE is used. 

20.3 DISPLAY BREAK PACKAGE 

The display breaK package allows easier access to t.'e information available during a break. by modifying 
the function BREAK1 to use the window system. It is turned on in the standard system but can be turned 
off with the following function: 

(WBREAK ONFLG) [Functio:l] 
If ONFLG is non-N I L. installs the display break package. If Ol'oTLG is NIL. it 
uninstalls the display break package, which makes BREAKl behave as in In:erlisp-
10. ~1B R EAK returns T if the display break package was previously installed; HI L 
otherwise. (-~) 

The display break package maintains a trace window and as many brea.~ windows as necessary. \Vte:t 
a break OCC'.l~. a break wL.j,dow is brought up near tt.~e tty window of tt.1.e process L":at croke an:! the 
terminal stream switched to it. Tne title of the break window is changed to give the name of t.~e broke:l 
function. t..'e reason for the break. and the depth of the break recursions. If a break oc::urs under a 
prevIous bre2.k, a new bre~ window is cre~[ed. 

\Vhile in a break window. the middle button brings up a menu of break commands (EVAL. EVAL!. EDIT, 
reve rt. 't, OK, ST. BT!, a~d ?=). The cOIrmands BT and BT! bring up a backtrace menu beside the 
break window showing the frames on the stack. 6T shows rrJ.Ines for which REALFR.~~1EP is i: BT! 
shows all frames. When one of the frames is selected from this menu. it is greyed and the function n~-::e 
and the vari:bles bound in L.~at fra1!1e (including local variables and PROG variables) are pri:Hed in ~e 
"backtrace frame" window. If the left button is used for the selection. only na.lled variables are pri:1te~ 
I f the middle button is usccL all variables are printed (variables \\!ithout names will 2.ppear as • v a r· ~;). 
The "backtrace fr2.."71e" window is an inspect window (see page 20.12'). In this window. the ie:: ~t.!~:0n 
can be used to select the name of the function. the names of the variables or the values of L'1e \·J.riJt-~~s. 

After selecting an item. the middle button brings up a command menu of commands L~at apply to the 

20.10 



o 
INTERLISp-n DISPLAY-ORIENTED TOOLS 

selected. item. If the function c.ame is selected.. a choice of editing the f\lnction or seeing the compiled 
cede wit..'l n~SPECTCOOE will be given. If a variable name is selected., the ccm..r::and SET will be offered. 
Selecting SET will READ a value and set the selected to the value read. (Note: The inspec!or will orJy 
allow the s~~ting of named variables. Even with this restriction it is still possible to crash t!le sys!e:n by 
setting variables inside system frames. It is recornmended that you e~ercise caution in setting v~-i:.cles in 
oth·er than your own code.) If the item selected is a value, the inspector will be called on tb.e se!e:ted 
value. 

Tae i.nternal bre::.k variable LASTPOS is set to the selected frame of the backtr~e menu so Lt).2.t l~e 
normal break commmds ED IT, rave rt. and 1= work on the currently selec:ed fraI:1~. Tne cOm!!:.1I:ds 
EVAL. revert, .,., OK. and 1= in the bre~ menu c:!use the corresponding com..-nanc.s to be '4~yped tn:' 
This mCa!lS that these break commands will not have the intended etIcct if characters have alre~dy been 
typed in. 

(\' The operation of the display break package is controlled by the following variables: 
V 

ft1axBkMenuWidth 
MaxBkMenuHeight 

[Variable] 
[Vadable] 

The variables MaxBkMenuWidth (default 125) and MaxBkMenuHeight (d~fuu1t 
300) control the maximum size of the backtrace menu. If this menu is too small 
to contain all of the frames in the bncktr.lCe~ it is made scrollable in both vertical 
and horizontal directions. 

AUTOBAC"KTRACE FLG [Variab!e1 

BAC1<TRACEFONT 

If the variable AUT08ACKTRACEFLG is non-NIL (default is NIL). then on error 
breaks the command B T is executed automatically. 

[Variable1 
The backtrace menu is printed ip. the font BACKTRACEFONT. which is initially 
Gacha 8. 

CLOSEBREAKWIllDO~IFLG [Variable] 
11le system nOI1I1ally closes break windows after the break is exited. [f 
CLOSEBREAKWINDOWFLG is NIL. break windows will not be closed on exit. ~ote: o . In this case. the user must close all break wtldows. 

BREAKREGIONSPEC 

TRACEWINDOW 

TRACEREGION 

I~ 

~) 

[Variable] 
Break windows are positioned near the tty window of -the broken ?rocess. as 
determined by the variable BREAKREGIONSPEC. The v21ue of this variable is a 
region whose LEFT and BOTTOM are an offset from the LEFT and 80TTOH or t..'1e 
tty window. The WIDTH and HEIGHT ofBREAKREGIONS?EC determine the size 
of the break window. 

[V~i3blel 
The trace window, TRACEWINDOW. is used for tracing functions. It is brought up 
when the first tracing occurs and stays up until the user closes it. TRACE'wINOOW 
can be set to a particular window to cause the tracing formation to print out u.~~re. 

[VJ.r1J.cle] 
The trace window is first created in the region TRACEREGION. 

20.11 

- .' 



n 
The Inspector 

20.4 THE INSPEcrOR -

"The InsPector provides a display-oriented facility· for looking at and changing arbitrary Interlb-p-D data 
structures. The inspector can be used to inspect all user datatypes and many system datatypes (althc-i..i.;h 
some objects such as numbers have no inspec!.able structure). The inspector displays the fi~!d wames a..:.d 
values of an arbitrary object in a window t..~at allows setting of the propenies and fur~e: inspe=:icn of ~~e 
v~lues. This la~ter feature makes it poss~ble to "walk" around all of the data suuctures in the system at 
the touch of a but:on. In addition. the inspector is integrated with the break package to .:tilcw inS?I!C:ioIl 
of any object on r.he st.1ck and with the display and teletype strucmrai editors to allow the editors to be 
used to "inspect" list structurcs and the inspector to "cdit" datatypcs. 

The underlying mechanisms of the data inspector have been factored to allow their use as specialized 
editors in user applications. This functionality is described at the end of this section. 

Note: Currently. the inspector does not have UNDOing. Also. variabl~ whose values are' changed will non 
be marked as such. 

20.4.1 Inspect Windows 

An inspect window displays two columns of values. The lefthand column lists the property names of the 
structure being inspected. The righthand coltL....-tn contaL."'ls the values of the properties named on the left 
For variable length data ~~ch as lists and arrays, the "property names" are numbers from 1 to the length 

. of the inspected item and the values are the corresponding elements. For arrays. the property names are 
the array element numbers and the values are t..i.e corresponding elements of the array. 

For large lists or arrays, or datatypes with many fields. th~ initial window may be too small to contain all 
of them. In these cases, the unseen elements can be scrolled into view (from the bottom) or tL'1e \\Uicow 

" can be reshaped to increase its size. 

In an inspect window, t.f}e LEFT button is used to select things, the ~nDDLE button to invoke cOUh~and.s 
that apply to the selected item. Any property or value can be selected by pointing the cUrsor directly at 
t.:e text representi...'"lg it. and clicking the l EFT bu~on. There is one selected item per windo,;,- 2Jld it is 
marked by having i~ surrounding box inverted. r) 
The cmnmands offered by the MIDDLE button depend on whether the selection is a property or a valtie. 
If the selected item is a value. tL,e commands provide different ways of inspecting the seiected structure. 
The exact cOITL."11ands that are given depend on the type of the value. If the value is a litatcm. me 
com..rnancis are the types for which the atom has definitions as detennined by HASLlEF. Some typical 
commands are: 

FNS 

VARS 

PROPS 

Edit the definition of the selected liratom .. 

Inspect the value. 

Inspect the property list. 

If the value is a list. there will be choice of how to inspect the list: 

20.12 n 



() 

o. 

o 

Inspect 

TtyEdit 

DisplayEdit 

AsPList 

AsAList 

AsRecord 

"a record type" 

INTERLISP-D DISPLAY-<JRlENTED TOOLS 

Opens an inspect window in which the properties are nUI:lbers 2.I!d the values 
are L.'1e elements of the list. 

Calls the teletype SL-uctural editor on the list. 

Calls the display editor on the list. 

(If the list is in P-list form) Inspects the list as a property list. 

(If the list is in ASSOC list form) InSpects the list as an association-list. 

Brings up a submenu wiL.'l all of the RECORDs in the system and inspect the list 
with the one chosen. 

(If the CAR is the name of a TYPERECORO) ~nspects the list as the record of the 
type named in its CAR. 

If the value is neitJ.i.er a litatom or a lis~ the only command is Inspect. which opens an ins~ectcr 
window onto the selected value. 

. . 
If the selected item is a property, the user will be asked for a new value and the selec:ed property will be 
set to tJ.'le result of evaluating the read form. Tne evaluation of the read "form and t.~e replacement of the 
se!~:ed item property will appear as their own history events and are individually undoable. Properties 
of system datatypes cannot be set. (There are often consistency requirements which can be inadvertently 
violated in ways that crash the system. This may be true of some user datatypes as well.) 

20.4.2 Calling the Inspector 

The inspector can be called directly. by using the fuI:.ction INSPECT: 

(INSPECT OBJECT ASTYPE WHERE) Q [Functioc1 · 
Creates an inspect window onto OBJECT. If ASTYPE is given. it will be t2-<e:t as 
the record type of OBJECT. This allows records to be insp~ted with their pro;:erty 
names. If ASTYPE is NIL. the data type of OBJECT will be used to detew.i.:le i:s 
propeny naoes in the inspect window. 

WHERE specifies the location of the inspect window. If Vr'H'ERE is NIL the user 
will be prompted for a location. If W"'dERE is a window. it will be used as u1e 
inspcct window. If WEEF'..E is a region. the inspect window will be created in that 
region of me screen. If WHERE is a position. the inspect window will have its 

"lower left corner at that position on the screen. 

INS P·E C T returns the inspect window onto OBJECT. or NIL if no inspectio n t~ k 
pbce. 

There are several ways to open an inspect window onto an object. In addition to calling INS PEe T 
directly. the inspector can also be called by buttoning an r n s pee t command inside an existi~g inspector 
window. Finally, if a non-list is edited with ED ITV, the" inspector is' called. This :1150 causes the inspec:cr 
to be called by the Oed i t command from the display editor or the EV command from the st.1r.~d 
editor if the selected piece of structure is J. non-list. 

20.13 



Choices Before Inspection 
(j 

) [F "' (INS?ECTCOOE FN unctlonj 
Opens a window and displays the compiled code of the function F:"- using 
PRINTCODE. The windcw is scrollable. 

20.4.3 Choices Beiore Inspection 

For some datatypes there is more t.~an one aspect that"is of interest or more than one meiliod ofinspecdng 
the object. In these case~ the inspector will bring up a menu of the possibilities and wait for the user to 
select one. 

For !i~toms. the choice includes inspecting its value. its defirjtio~ its property list. its ~lACRO or any other 
aspect returned. from TYPESOF. For BITMAPs. th~ choice is between inspecting t.'e bit.'TIap·s Cl1nt~~ts 
with the bitmap editor (EOITB~-1) or inspecting the biunap's fields. For LISTPs. the choice is how to 
inspect it and is between a one level inspcctor. the teletype editor (EO ITE) or the display edi:or (OED I T)n 

20.4.4 Red~splaying an Inspect Window 

An inspect window is not automatically updated when the structure it is inspecting is changed. The 
mspect window can be updated by selecting u'1e "re dis play" command from the menu broug.,.~t up 
by pressing the MIDDLE button in the title of the window. The "redisplay" command will cause the 
values of the properties to be re-fetched from the structure and redisplayed. 

20.4.5 Interaction With the Display Break Package 

The" display break package knows about the inspector in the sense that the backtrace frame 'Window is an 
. inspect window onto the frame selected from the back tra:e menu during a brea.(. Thus you can call the 

inspector on an object that is bound on the stack by selecting its frame in U.~e back trace me:lu. selecti!:.g 
its value with the LE FT button in the back trace frame window, and selecti,g the inspect cOIr.L!:land 
with u'1e MIDDLE button in the back trace frame window. The valces of variables in ~~es Ca!l be set 
by selecting the variable name wiL.'1 t..'1e LEFT button and then the "Set" command wit.'l the MIODL::"..---.) 
buttoa l 
Note: The inspe:tor will only allow the setting of named variables. Even with this restriction it is still 
possible to crash the system by setting variables inside system frames. Exercise caution L'1 setting va:iabies 
in ot.her than your own code. 

20.4.6 . Controlling the Amount Displayed During Inspection 
. . . " 

The amount of information displayed during inspection can be controlled using the following variables: 

MAXH~S?ECTCDRLEVEL [Variacie] 
The inspector prints only the first MAXINSPECTCDRLEVEL elements of a ~ong list. 
and will make me tail containing the unprinted elements the last item. The i.J.St 
item can be inspected to see further elements. Initially 50. 

20.14 



o 

o 

o 

o· 

INTERLISP-D DISPLAY-QR1&'ITED TOOLS 

r~AXHlSPECTARRAYLEVEL [\'·~;ablel 
Tne inspector prints only the first MAX INSPECTARRAYLEVEL elemen~ of an 
3.."Wy. The remaining elements can be inspected by calling the rJnction 
(INSPECT IARRAY AR.:-=tAY EEGINOFFSET) which inspects the B£Cz:.:OFFSZT 

th:ough u1e BEGINOFFSET + MAXINSPECTARRAYLEVEL elements of A.F ... :u.y. 
Ini dally 300. 

INSPECTALLFIELDSFLG [,lariibleJ 
If IMSPECTALLFIELOSFLG is T. the inspector will show cmnpl.!ted fieIds 
(ACCESSFNS) as well as regular fields for structures that have a re-:ord d!!:b.iticn. 
Initially T. 

20.4. j Inspc1:t Macros 

The Inspector can be extended to- inspect new structures and datatypes by adding entries to the list 
H~SPECTr·~ACROS. An entry should be of the form (oaJECTTYPE • INSPECTINFO). OBJECTTYPE is 
used to determine t..'1e types of objects that are inspected with this macro. If OBJECTTYFE is a litatom. 
the INSPECTINFO will be used to inspect ite:ns whose type name is OBJECTTYPE. If OBJEC7TY?E is a 
LIST of the form (FUNCTIOH DATL"M-PREDICATE). DATUM-PREDICATE will be APPLYed to the ite:n 
and if it returns non-~J I L~ the INSPECTINFO will be used to inspect the item. 

IUSPEC-:7NFO can be one of two forms. If INSPECTINFO is a litatom~ it should be a function that 
will be applied to three arguments (L.'1e item being inspectecL OBJECTTYPE. and the value of 'r'\'HE'RE 

passed to INSPECT) that should do the inspection. If INSPECTINFO is not a liutom. it should be a 
list of (PROPERTIES FETCEFN STOREFN PROPCOM}.{ANDFN VALUECOMMA .. VDFN 7TT:.ECO~{A..':T:FN 
TITLE SELECTIONFN W"rIERE PROPPRINTFN) where the elements of this list are the 3.rgtm!ents for 
INSPECT"'. CREATE. described below. From this list, the WHERE argument will be evaluated: t...~e others 
will not If 'N"'rlERE is NIL. the value of WHERE that was passed to INSPECT will be used. 

Excmples: 

The entry « FUNCTION MYATOiTtP) PROPNAMES GETPROP PUTPROP) on INSPECTMACROS would. 
cause all objects satisfying the predicate MYAiOMP to have their properties inspected with GETPROP and 
PUTP ROP. In. this example~ MY A TaMP should rna.Tce sure the object is a litatoIn. 

The entry (MYDATATYPE . MYINSPECTFN) on INSPECTMACROS would czuse all datatypes of type 
MYDATATYPE to be passed to the function MYINSPECTFN. -

20A.8 L'lSPECI"Vs 

The inspector is built on me abstraction of an INSPECTW. An IN·S?ECTW is a window wit..'1 certain 
window prop~rties that display an object and respond to selections of the object's parts. It is characterized 
by an objl.!ct .. md its list of properties. An INS PEe TW di$plays the object in two columns with the ;>roperty 
nJ.mcs on the left and the '1Jlu~s of those properties on the right. An INSPECT"" supports the ;>rocccol 
that the L EFT mouse button can be used to select .1ny property name or property value Jnd :he M I 00 L E 
button calls a user proviced function on the selected value or propeny. For the Inspector JpplicJ.tion. (.,:s 
function puts up a menu of the alternative ways of inspecting values or of the ways of setting p:-operties. 
INS?ECTWs are created with me following function: 

20.15 



INSPECTVvs n 

(INSPECTW.CREATE DATt7J PROPERTreS FETC:~N STOREFN PROPCOMMANDFN VAL~~CO~~'~FN 
TITLZCO!o!MANDFN TITLE SELECTTONFN lVE'E'RE PROPPP ... IlVTFN) [FUI:ctic!!] 

Creates an INSPECn'i L.l-tat views u.1.e object DATUM. If PROPERTES is a LISTP, it 
is taken as the list of properties of DATUM to display. If PROPEP.TES is a:l ATOrt 
it is A?PL Yed to DATU}.I and the result is used as tt'le list of properties to dis~lay. 

FETCZFN is a function of two arguments (OBJECT PROPERTY) that should rerurn tLi.e value of L.1e 
PROPERTY property of OEJECT. The result of u"lis function will be printed (with P R I N 2) in Li.e I HS? E C T~': 
as the value. 

STO?..:.~7N is a function of three arguments (OBJECT PROPERTf' NEWVALtJ"E) t:.i.at cha.iges L~e PROPERTY' 

prcperty of OBJECT to J~"E\VVALUZ. It is used by the default PR.OPCOf.f].!ANDF~ a..Tld 'f,l·P..Lt~co:·,nU.SDF~ 
to cha.."1gc the value of a property and also by t.'1e function H~SPECT\'I. REPLACE (desc~bed below). 
This can be NIL if rhe user provides command functions which do not call n~SPECTW. REPLACE. E2:~ 
replace action will be a separate event on the history list. Users are encouraged to provide U~DOJ.ble 
STOREFNS. ~ 

PROPCOMMANDFN is a function of three arguments (PROPERTY OBJECT INSFECTW) which gets called 
when tJ.'1e user presses the MIDDLE button and t.l-te selected item in the INSPECTW is a property name. 
PROPERTY will be the name of the selected property, OBJECT will be L.'1e datum bei!:g viewecL and 
INS?ECTW will be the window. If PROPCOMMANDFN is a string, it will get printed in the PROMPTWINDOh' 
whe!l t.'e MIDDLE button is pressed. This orovides a convenient W2.y to notify the user aboct disabied 
commands on the properties. DE F AUL T • INSPECTW. PROPCO~1MAND F N. the default PROPCO}..fM.4.NDFY~ 
will present a menu with the single cornmand Set on it. If selected. the Set command will read a value 
from the user and set the selected propeITJ to the result of EVALuating this read value. 

VALUECOMMANDFN is a function of four arguments (VALVE PROPERTY OBJECT INSPECTW) that gets 
called when the user presses the MIDDLE button and the selected item in the IUSPECTW is a property 
value. VALVE will be the selected value (as returned by FETCHFN)t PROPERTY will be the name of the 
property YALL"E is the value of, OBJECT win be the darum being viewed. and INSPECTW will be the 
INSPECTW window. DEFAULT. H~SPECTW. VALUECOMMAUDf~J, the defa~lt VALL'"ECO.\fM~.,.,.-r:;r:-;, will 
present a menu of possible way~of inspecting the value and create a new Inspect window if one of the 
menu items is seiected. 

TITLECO].a,{A~vr::FN is a function of two arguments (INSPECTW OBJECT) which getS called whe:l t.~~
user press·es th~ MIDDLE button and the cursor is in the title or border of L~e mspect 'rvir:dow !N~PEC7i':, ) 

11'1$ cO~CL."ld function is provided so that users can implement cOnlll1ands that apply to the e:nire object." 
The default TITLECOMMANDFN (DEFAULT. INSPECTW. TITLECOMMANDFN) presents a men'J wi~'1 the 
single corrunand Red i sp 1 ay aneL if it is selected. redisplays INSPECT\V (using INSP~CT'tI. RED IS?LA Y, 
described below), 

TITLE specifies,u.~e title of L.~e window. If TITLE is NIL. the title of the window will be the printed form 
of D.~TUM followed by the su.-ing .. Inspector". If TITLE is the litatom DON t T. the inspect windo·"'· will 
not have a title. If TITLE is any other litatom. it will be applyed to· the DATUM and the potential inspect 
window (if it is known). If this result is the litatom DON t T, the inspect \'lindow will not have a title: 
othenvise the result will be used as a title. If TITLE is not a litatom. it will be used as tL~e title. . 

SELECTIOr'iF"N is a function of three arguments (PROPERTY VALu"EFLG rNSFECTW) which gets called 
. when t..'1e user releases the left burton and the cursor is on one of the items. The SELECTiONFN 2.i1ows 3. 

progra.rn to take 2.cLion or: the user's sclectioa of an item in the inspect window. At the um~ L~is fur.·::.:c·n 
is called.. the selected itcm has becn ·'selected". The function INSPECTW. SELECT ITEN (dcscribcj bdo\\') 
can be used to rum off this selection. PROPERTY will be the name of the property of the selec~ed ite:n. 

20.16 



o 

/~ . 
( V 
"---./ 

L'ITERLISp·D DISPLAY·ORIE1'lTED TOOLS 

VALL'FFLG will be NIL if tb.e seiected item is the property name; T if the selected item is the property 
value. 

WE2E indicates where the inspect window should go. Its interpretation is described in INSPECT (page 
20.13). 

If non-N! L. PROPPR.1].,-rFN is a function of two arguments (PROPERTY DATU?!) which getS c:~.11-ed to 
detenrJ.ne what to print in the property place fur the property PRO?ERTY. If PROPPF.!l'·n'FN returns N r L. 
no property name will be printed and the value will be printed to the left of the otber valt:es. 

An inspect window uses the following window property na..TI1es to hold information: DATUM. FETCHF~. 
STOREFN, PRO?C01~MANOFN. VALUECOMMANOFrJ. SfLECTIONF~J. PROPPRINTFH~ IlJSPECTWTITLE. 
PROPERTIES. CURRENTITEM and SELECTA6LEITEMS. 

(rUS?ECT\~. REDISPLAY INSPECTW PROPERTY -) [Function] 
Updates the display of u.1.e objects being inspected in INSPECTW. If PROPERTY is 
a property name or a list of property names. only those properties are upd.:.ted. If 
PROPER.TY is r~ I L, all properties are redisplayed.. This function is provided because 
inspect windows do not automatically update their display when the object Lt),ey 
are showing changes. 

This function is called by the Red i sp 1 ay command in the title command menu 
of an IMSPECT\~. 

( IMSPECi\tJ. REPLACE INSPECTW PROPERTY NEWVALVE) [Fu~ction] 
Uses the STOREFN of the inspect window INSPECTW to ch3.£"1ge the property named 
PROPERTY to the value NEWVALUE and updates me display of PROPERTY'S value. 
in the display. 'frJs provides a functional interface for use!" PROPCO.\lMA."lDFN'S. 

(.INSPECTW. SELECT ITEM INSPECTW PROPERTY VALVEFLG) [Function] 

20.5 CHAT· 

Sers the selected item in an inspect window. The ite:n is inverted on the dispiay 
and put on the window property CURRENT ITEM of INSPECT\V. If ~-S?E:C7'·yV has 
a CURRENT ITEM. it is deselected. PROPERTY is the n~!le of the proper:y of L.~e 
selected item. VAL'UEFLG is NIL if the selected item is the property r::;L.~e: T if u~e 
selected item is the property value. If PROPERTY is NIL. no item wiil be selected. 
(Tnis provides a way of deselecting items.) 

C HA T is a "remote terminai" facility. that allows one to communicate with 'other macrJnes while insic.e 
tnrerlisp-D. The function CHAT sets up a "Chat connectioR" to a remote machine. so that everything you 
type is sent to the a remote machine. and everything the remote.machine prints is displayed in a "Chat 
window". The remote machine must support the Pup Telnet protocol. 

Multiple simultaneous Chat connections are possible. To switch between typing to d.iffere~t Chat 
connections. simply button within the Chat window you want to use. CHA T promptS for 3 new wmdo\ ... · 
for each new connection. except that it saves the first window to reuse once the connection in that wir..dow 
is closed (other windows just go away when their connections are closed). 

20.17 



CHAT 

CHAT behave5 as if its Chat window is a Datamedia:2500 terminal of the d.iInensions detenr...i.ned by the 
size of the window. Hence. you can talk to hosts that supply Datamedia service and e:qJect somct.-ung 
reascnable to hap~en. If the host does -not pay attention to the CHAT termi..ual specifcation pjotocoL or 
you go L."'1:ot:~' that hlJst to another ho~:. you may need to inform tb.e host of t.'1e d.i.rr.er'.sio~s of your 
"screen": these are given in the title bar of the chat window. The font should be GachalO or o~er 
fixed-wio.tL1 font for proper Datamedia emulation. 

(CHAT HOST LOGOPTION INITSTP..EAM \VlNDOW -) [Fu!:ction] 
Opens a Chat connection tOffOST. or to the value of DE FAUL TCHATHOST. If 
HOST requires login. as dctcnnincd by whether it responds to the "where is u=.er" 
protocol. CHAT supplies a login sequence. or if it deterrnines that you have a si~gle 
detached job. an att2.Ch sequence. If you have mere than oc~ de:.:lched job. it 
sL-nply performs a WHE RE IS ccmmand for you and allows you to seit..'Ct the job. 
You may alternatively specify one of the following values for LOCOPTIO~-: 

LOGIN 

ATTACH 

GUEST 

NONE 

Always perfonn a login. n 
Always perform an attach. This will fail if you do not have 
exactly one detached job. 

Login as user GUEST, password GUEST. 

Do not attempt to login or attach. 

If INITSTREAM is supplied. it is either a string or the name of a file whose contents 
will be read as typein. When the string/file is exhausted... input is taken from T. 

If WINDOW is supplied., it is a window to use for the connection; otherwise. the 
user is prompted for a window. 

While CHAT is in control all Lisp interrupts are rumed off. so that control characters can be transmitted 
to tb,e remo:e host. 

Corr.mands can be given to a..~ active Chat connection by bugging the MIDDLE button in the Chat window 
to get a. command menu. Current commands are: 

C, 0 s e Close this connection. Once the connection is closed. control is handed over to thL) 
main tty window. Closes the window unless this is the prim3..1-Y G'1z,t window. 

Suspend 

New 

Freeze 

Dribble 

Input 

Same as Close. but always leaves the window open. 

Closes the current connection and prompts for a new host to which to open a 
connection in the same window. 

Hold typeout from this Chat window. Bugging the ~indow in any way' releases :he 
hold. This is most useful if you want to switch to another. overlapping window 
and there is typeout in this window that would compete for screen space. 

Open a typescript file for this Chat con'nection (closing any previous dribble file 
for the window). Tne user is prompted for a file name: a name of NIL JUSt doses 
the old dribble file. 

Prompts for a file to take input from. When tl1e end of the file is reJ.ched... input 

20.18 (j 



o 

0' 

--~ 

o 

o 

Clear 

. . 
INTERLISP-D D[SPLAY-ORIL'ITED TOOLS 

reverts to T. 

ae~ the window and resets the simulated tenninal to its default state. This is 
useful if undesired termbcl commands have been received from the remote host 
that place the simulated ten:nbal into a funny state. 

In an inactive Chat wi1:.dow, the MIDDLE bur-LOn brings ~p a menu of one ite:n.. ReCo:lnect. whose 
selection reopens a cO!U1cction to the same host as was last in the window. This is t..~e pric:!ry r:loti',.-ation 
for the Suspend menu command. A new Chat connection can also be opened from the Backgro~I:d 
menu.; 

The mouse button LEFT. when inside CEAT. holds output as long as the button is d.own. Holci:lg down 
M I DO L E coincidentally does this. too. but not on purpose: since the menu handler does not yield canuel 
to other processes. it is possible to kill the connection by keeping the menu up too long. 

Chat windows are a little bit knowledgable about window operations. If you reshape a Chat window. 
Chat informs your p~Jler of the new dimensions. And if you close the window. the connection is also 
closed. 

The following variables control aspects of Chat's behavior: 

CHAT.DISPLAYTYPE [VariableJ 

CHAT.ALLHOSTS 

The type of display (a number) that Chat should tell the remote host the user is 
on. If Datamedia emulation is desired. this variable should be set to the numcer 
corresponding to the tenninal type Daumedia for the remote host. If the remote 
host does not respond to the tenninal type protocol in Pup Telnet. this variable is 
irrelevant. 

r/ariable1 
A list of host names. as uppercase litatom~ that the user desires to Chat to. 
Chatting to a host not on the list adds it to the list. These names are placed in u~e 
menu that t..'1e bacxground Chat command prompts with. 

CLOSECHATWINOOWFLG [Variable] 
If true. every Chat window is closed on exit. If NIL. the initial 5er-Jng. then L~e 
primary Chat wi~dow is not closed. 

DEFAUL TCHATHOST [\"ariab~ej 
The host to which CHAT connects when it is called with no HOST arg'.lment. 

CHAT. FONT [Var"iab!ej 
If non-N I L. the font that Chat windows are created with. If CHA T • F ON T is ~~ I L. 
Chat windows are created with (DEFAULTFONT 'DISPLAY). 

20.6 THE TEDIT TEXT EDITOR 

TEdit is a window-based.. mode less text editor. capable of handling fonts and some rudiment.lry formatung. 
Text is selected with the meuse. and all editor operations act on the current selection. 

20.19 



r' 
{ 

n· , ) 
The TEdit Text Editor 

Tne too-level entry to TEdit is: 

(TED IT TEXT WINDOW DONTSPAWN PROPS) [Fl..U1ctioc] 
TEXT may be a (litatom) file ~ame, an open STREAM, a string. or an arm':"::.!"y 
[HKST RING-able] Lisp object. The text is displayed in an editing window. and may 
be edited t.~ere. If TEXT is other than a fiie name. a STREA~, or a su~~g. TEO IT 
will call MKSTRI?lG on it, and let you edit the result. 

If v.'7l\'VO\V is r~ I L. you will be prompt~d to create a ~lndow. if v,TI'n)o"y\r is 
non-NIL. TEDIT will usc it as the window to edit in. If '\I¥71'~"DO~",· has a utlc. 
TEDIT will preserve it; otherwise. TEDIT will provide a descriptive title for T..1.e 
window. 

TED IT will normally spawn a new process to run the edit, so you can edit in 
parallel with other work; indeed.. it is possible to have seyeral editing v .. indcw~~ 
active on the screen. To prevent a new process from being created.. ccl.l TED Il\ ) 
with DONTSPAl-VN set to T. 

PROPS is a prop-list-like collection of properoes which control the editing session. 
The follOwing options are possible: 

FONT 

QUITFN 

LOOPFN 

CHARFN 

SELFN 

TERMSA 

REAOONLY 

SEL 

AFTERQUITFN 

The defzult font to be used in the edit window. 

A function to call when the user Q u ; ts. 

A function to be called each time thru the character-read 
loop. 

A function to be called for each character typed in. 

A function to be called each time a mouse selection is made 
in this edit window. 

If you want characters displayed other than TEdit"s default 
way, set this to a character table. n 
If this atom is present anywhere in the list of PROPS, then t:.'e· / 
edit window will be read-only. Le ... you can crJy s~ift-select 
in it. 

Tells what text should be selected initially. This~, be a 
SELECTION (see below) describing the selected text. or a 
character number. or a two-element list of fL.-st charac:er 
number and number of characters to select. 

D~scrihes the menu to be displayed when the MIODLE 
mouse button is pressed in the edit window·s title r~g:on. If 
it is a MENU. that menu will appear. If it is a list of menu 
items. a new menu. will be constructed. 

A function to be called after TEdit has quit. Tnis C3n be 
used for cleanup of side-effects by TEdit client·progrJ.,;.~s. 

20.20 (j 



o· 
INTERLISP-D DISPLAY-ORIL'ITED TOOLS 

REGION -

TITLEMErJUFH 

20.6.1 Se!ectbg Text 

A window-relative region: TEdit will use only L.'1at portion 
of :he window to dispiay text &C. Tnis is for people who 
want TEdit for filling in forms. etc. 

A function· to get called inst'~ad of br.nging up cte U~..lal 
TEdit co!nmand menu when the user LEFT- or MIDDLE
buttons in the edit wi.!!dow·s title region. 

TEdie works by operating on '6sclccted·· pieces of te:tt. Selected text is highlighted in some way. and 
may ha';c a caret fiJ,Shing at one end. Insertions go where the Clrct is; deletion and other operations .lfC 

applied to the currently selected text. 

o Text is selected using the mouse. There are two regions within an edit window: The area containi:lg text. 
and a &4line bar" just inside the left edge of the window. While the mouse is inside the te~t regio~ the 
cursor is t:.'le norrr..al up-and-left pointing arrow. \Vhen the cursor moves into the line bar. it changes to 
an up-and-right pointing arrow. \Vltich region u'le mouse is in deteI1I1ines what kind of selection r2ppens: 

o 

The LEFT mouse button always selects the smallest rr.Jngs. In the text region. it selects the cha:ac:er 
you're pointing at: in the line bar. it selects the single line you're pointing at. 

The MIDDLE mouse button selects'larger things. In the text region. it selects the word the cursor is oyer. 
and in the line bar it selects the paragraph the cursor is next to. 

The RIGHT button always extends a selection. The current selection is extended to induce the 
chc.rac:er/wordlline/paragraph you are now pointing at. For example. if the existing selection was 
a whole-word selectio~ the extended selection will also consist of whole words. 

There are special ways of selecting text which carry an implicit command with them: 

If you hold the CT RL key down while selecting text, the text will be shown white-on-black. \V1:en you 
release the CTRL key. the selected text will be deleted. You can abort a CTRL-selection: Hold down a 
mouse buttc~ and release the CTRL key. Then release the mouse bunon. 

Holding the SH I FT key down while making a selection causes it to be a '~copy-source" selection. A copy 
source is T:larked wit!1. a dashed underline. Whatever is selected as a copy source when the SH I FT key 
is released will be copied to where the caret is. Tnis even works to copy text from one edit window to 
anot.~er. You can abort a copy: Hold down a mouse button. and release the SH I FT key. Then rele~e 
the mouse button. 

Holding the C~RL' and SH I FT keys down while making a selection causes it to be a ""move" selection. 
which is marked by m~king it veverse video. \\'harcver is selected as J' "move'~ so_urce when the CT RL 
and SH r FT keys are released will b\! moved to where the caret is. This cven works to move t'~:tt from 
one I.!uit window to another. You can abort a move: Hold down a mouse button. and release the C r RL 
and SHIFT keys. Then release the mouse button. If the varIable TEDIT.8LUE.PENOING.DELETE:s 
non-N I L. extending a selection will display the selection as white-an-black. The next time sorr.et..~ing is 
typed. the selected text will be deleted first:. . 

20.21 



n 
Editing Operations 

20.6.2 Editing Operations -

Inserting text: Except for command cha..racters, whatever is typed on the keyboard gets inserted where the 
caret is. The as key and control-A both act as a backspace, deleting the character just before the caret. 
Concrol-\V is t..'1e backspace-word command. 

Deleting Text: Hitting the DEL key causes the currently~elected text to be deleted. Alternatively. you 
can usc the CTRL-selection method described above. 

Copying Text: Use SHIFT-selection. as described above. 

Moving Text: Use CTRL-SHIfT-selection. 

Undoing an edit o?~ration: The top blank key is the Undo key. It will undo the mest recent edit 
command.. Undo is itseif undo-able. so you can never back up more than a single cOIIlmand.. n 
Redoing an edit operation: The ESC key is the Redo key. It will redo the most recent edit command 
on the current selection. For example, if you insert some text. then select elsewhere. hit"Jng ESC will 
insert a copy of the text in the new place also. If the last command was a delete, Redo will delete t..~e. 
current1y~elected text: if it was a font change, the same change will be applied to the current selection. 

The command menu: You can get command menus by moving into the edit window's title region 
and hitting the RIGHT or MIDDLE mouse buttons. RIGHT gets the usual menu of window cOIIUJ:ands. 
MIDDLE gets a menu of editor comma.Tld.s: 

Put 

Get 

Include 

Quit 

Find 

Substitute 

Looks 

Hardcopy 

Causes an updated version of the file to be written. Tedit will ask you. for a file 
name, offering the existing name (if any) as the default. 

Lets you read in a new file to edit, without saving the one you were working on. 
You'll be asked for a file name in the prompt window. 

Lets you copy the contents of a file into the edit window, inserting it where the 
caret is. 

Causes the editor to stop wiL.'out updating the file you're editing. If you hayen'r:-) 
saved your changes. you'l1 be asked to confiIm this. \ --

Asks for a search string. then hunts from the caret toward the end of document 
for a match. Selects the first match found; if there is none. not..1.ing happens. 

Asks for a search string and a replacement string. Within the current selection. all 
instan.ces of the search string ware replaced by the replacement string. If you wish.. 
TEdit will ask you to confirm each replacement before actually doing it. 

Changes the character looks of the selected characters: Tne font character size. 
and face (bold. italic. etc.). Three menus will pop up in sequence: One to scle-.:t 
the font na..TJle. one to select the face. and une to select the size. You may select an 
option in each menu. If. for example. you want to leave the char~cter size alone, 
just click the mouse outside the size menu. [n general. any aspect of the charact~r 
looks that you don't change will remain the same. 

PrintS the document to your default press or InterPress printer, with 1 inch margi:ls 

20.22 o 



......---...\ 

U 

o 

o 

Press File 

~lERLISP-D DISPLAY-ORIL'ITED TOOLS 

all around: The function PRINTERMOOE controls which kind of printer TEdit will 
send to. 

Cre~tes a Press or InterPress file of the document. with 1 inch ~~ all around. 
Tne ffi.e format is also conrrolled by P R I N T E R~tOD E. 

20.6.3 TEd;t F\nctionru Interface 

The Text Stream 

TEdit keeps a STREAM which describes L.~e current state of the text you're editing. You can use most of 
the usual strca.."t! operations on that stream: BIN, SETF ILEPiR. GETF I LEPTR. G ETEOFPTR. BACKS IJI. 
and PEE K6 I N do the usual things. BOUT inserts a character in the stre.:un just in front of the next chJ.::lc:er 
you'd read if you BINned. You can get the stream by (WINOOWPROP Edj~WmDOW 'TEXTSTREAM). 

If you need to save the state of an edit. you can save this stream. Calling TED I T with the stream as the 
TEXT argument will let you continue from where you left off. 

The "Text Object" 

TEdit keeps a variety of o~~er information about each edit window. in a data. strucrure called a TEXTOSJ. 
Field F 3 of a text STREAM points to the associated TEXT08J, which contains these fields of interest: 

\WINDO'II 

SEL 

SCRATCHSEL 

TEXTLEN 

The edit window which contains the text. If this is fa I L, there is 00 edit window 
for this text. 

The most recent selection made in t.ltis text. 

A scratch SELECTION. used by the mouse handler for the edit window, but 
othenvise available for scratch use. 

The current length of the edited text. 

STREAfl,H r NT Points to the text STREAM which describes the text. 

E1)ITFINISHEDFLG 

Selections 

If t.l-}is is oon-N I L, TEdit will halt after the next time through the keyboard polling 
loop. No check will be made for unsaved changes. Unless it is" T. tJ.'1e- value of 
ED ITF INISHEDFLG will be renul1ed as the result ofTEdit. 

The selected text is described by an object of type SE LECT ION, whose fields are as follows: 

CH,~ 

CHLIM 

DCH 

The char3cter number of the first character in the selection. The first character in 
the text bci~g edited is numbered l. 

The character number of the last character in the selection. Must be 2: CH#. 

The number of characters in the selection. If DCH is zero. then no charac:ers .lIe 
selected. and the Selection can be used only to describe a place to insen t·::!xt. 

20.23 



(--. 

ONFLG 

\TEXT08J 

XO 

YO 

XLIM 

YLIM 

OX 

SELOBJ 

POINT 

SET 

SELKIND 

HOW 

HOWHEIGHT 

HASCARET 

(j 
TEdit Interface Functions 

Tells whether the Selection is indicated in the edit window. If T, it is: if NIL. it's 
not. 

The TEXT08J that describes the selected text. You can use this to ~et to the . -
Stream itself. 

Tne X position (edit-window-reiative) of the left edge of tb.e first selected c::ew.a.cter. 

The Y position of the bottom of the first selected character (not the ch~3.C~er·s 
base line. the bottom of its descent). 

The X position of the right edge of the last character selected.. If DCH is zero (a 
"point" selection), XL 1M= XO. 

The bottom of the last ch~acter in the selection. (j 
The width of the selection. If DCH is zero, this will be also. 

This is for a furore object-oriented editing interface. 

Tells which side of the selection the caret should appear on. It will be one of the 
atoms LEFT and RIGHT. 

T if this selection is currently valid. NIL if it is obsolete or h2.s never been set. 

What kind of selection this is. One of the atoms CHAR. WORD. LINE. or PARA. 

A TEXTURE. which will be used to t'jghlight tJ.'1e selecton. 

How high the highlighting is to extend. A selection's highlight starts at the bottom 
of the iowest dcscender. ~,d extends upward for HOWHE IGHT pixels. To always 
get highlighting a full line tall set this to 16384. 

T if this selection should have a caret flashing next to it. NIL othenvise. 

20.6.3.1 TEdit Interface Functions 

TEdit exportS the following functions for use h"l custom interfaces: 

(OPENTEXTSTREAM ~.AT WINDOW STAR.T El'oI"D PROPS) [Function] 
Creates a text STREAM describing TEXT, and returns it If WINDOW is s;:e~~eci 
the text will be displayed there. and any changes to the text will be .. efi~ted :.':e:e 

• as they happen. You will also be able to scroll Lt"e window and select thir:.gs L~e:e 
as usual. TEXT may be an existing TEXTOBJ or text STREAM. If START and ~.':-rJ 
are given. then only the section of TEXT delimited is edited. PROPS is the saIne .lS 

for TED!T. 

Given the STREAM. you can use a number of functions to change the text in an 
edit window. under program control. The edit window getS updated as the text is 
changed. 

20.24 



o 

o 

-
.0 

/\ 
U 

(TEDIT.SETSEL 

IN'TERLISp·n DISPLAY·OR!EJ.~TID TOOLS 

STREAM CB#orSEL LEN POINT) [Functio:l] 
Sets me selec:ion in STR.EA..\!. If CH#orSZL is a SELECTION. it is use~ ~·is. 
Omen""ise. CH#orSEL is the a.""St c!laracter in the selec:io~ and LEN is the :ltz:ber 
of characters to sel~t (zero is allcwecL and giyes just an insertion poir:.t). PCrlT 

tells which side of t...'1e selection the caret should cerne on. It must be one of :te 
atoms LEfT or RIGHT. 

(TEDIT • GETSEL STREJLY) [FuI!c:!on] 
Rct'Jrns tl:e SELECTIOU which describes the current selection in the edit witicow 
dc!:<:ribed by STRE.A.\(. 

(TEDIT. SHO'~SEL STREAM ONFLG SEL) [Func:':on1 
Lets you tum the highlighting of the selection SEL on and off. If Or--7LG is T. 
the selection SEr. in STREA.M will be highlit in the edit window: if NIL. .l..'Y 
highlighting will be turned off. If SEL is ri I L. it defaults to the current'" selection 
in STREAM. 

(TEOIT. INSERT STREAM TEXT CH#orSEL) [Function1 
Insert..s u'1e string TEXT into STRZAM. as though it had been typed in. CH#orSE:L 

tells where to insert the text: If it's PI I L~ the text goes in where the care! is. If 
it's a FIXP, the text is inserted in front of the corresponding character (The Snt 
ch2..1-acter in the stream is nwnbered 1). If it's a SELECT ION. the text is bserted 
accordingly. 

(TEDIT • DELETE STRE.A..\{ CH#orSEL LEN) [Function] 
Deletes text from STR.E.A.M. If CH#orSEL is a SELECTION, the text it describes will 
be deleted: if CH#orSEL is a F I X p. it is the character number of c...'1e first chara=ter 
to delete. In that case, LEN must also be present; it is the number of characters to 
be deleted. 

(TEDIT.FINO STREAM TEXT CH#) [Function] 
Searches for the next occurence of TEXT inside STREA.'J. If CH# is present. the 
search starts there: otherwise~ the se~h starts from the C2Iet. If it finds a lliatc~. 
TED IT . FINO rerums the character number of the first c!1arac:er in the ::lJ.::::ing 
text. If no match is found. it returns ill I L. 

(TEDIT. HARDCOPY STREA.'v! J"rLE DONTSEND BREAKPAGETITLE) [Function1 
Sends the text contained in ST~'v! to the printer. If a file name is given in FILE. 

the press file will be left there for you to use. If DONTSEND is non·rl I L. the rJe 
will not be sent to the printer: use this if you only want to create a press file :or 
later use. 

If BREAKPAGETITLE is non-N I L. it is used as the title on the "break page" printed. 
before the text. • 

(TED IT. LOOKS STREAM NEWLOOKS SELORCH#; LEN) [Function1 
Changes the character looks of selected characters. e.g .. the font.. character size. 
etc. SELOF.CH# c~n be a SELECT ION, an integer. or NIL. [f SELORCH= is 
a SELECTION. the text it describes will be changed: if it is a FIXP. it is the 
char3cter number of the first character to changed. In that case. LEN must also be 
present: it is the number of characters to be changed. 

20.25 



() 
TEdit Interface Functions 

NEWLOOKS is a property-list-like description of the changes to be mace. h"le 
property names tell what to change. and the property yaIues describe the ch~~ge. 
Any property which isn't changed explicitly retains its old value. Thus. it is ?ossi::ie 
to rr.:ake a piece of text all bold without changing t...'1.e fonts the text is in. T:"le 
possible list entries are as follov;s: 

FAt~IL Y 

FACE 

SIZE 

UNDERLINE 

OVERLINE 

STRIKEOUT 

SUPERSCRIPT 

SUBSCRIPT 

PROTECTED 

SELECTPOINT 

Tne name of the font family. Ail ~"le selected tex~ is cha!!ged 
to be in that font. 

The face for the new font This may be in either or u"1C 
two fOrr:1s acceptable to FONTCREATE: a list such as (BOLD 
ITALIC REGULAR). or an atom such as t1RR. 

The new point size. 

The value for this property. must be one of th~ atotr.5 ON or-) 
OFF. The text will be underscored or not. accorcibgly. 

The value for this property must be one of the a:.orr.5 ON or 
OFF. The text will be overscored or not., accordingly. 

Tne value for this propeny must be one of the atoms or~ or 
OFF. The text will be struck through with a single li::.e or 
not. accordingly. 

A distance. in points. The text will be raised above the 
normal baseline by that amount. This is mutually exclusive 
with SUBSCRIPT. 

A distance. in points. The text will be raised above L'1e 
nonna! baseline by that amount Tnis is mutually exclusive 
with SUPERSCRI PT. 

The value for this property must be one of the atcc:s O?j 
or OF F. If it is ON. the text will be protected from :neuse 
selection and from deletion. n 
The value for this property must be one of the ato1::S 0 N 
or 0 F F. If a character has this property. the user can !:1c.ke 
a point selection just after it. even if ~,e c~arac:er is 2250 

PROTECTED. 

(TEDIT.QUIT STR~~ VALu~) [Function) 
STREA.W must be the ~xt stream associated with. a running TECit. TED r T • QUI T 
causes u.'1~ editing session to end. If VALVE is given. it is returned as TEdi(s res:llt: 
otherwisc. TEdit will return the usual result. TIle user is not asked to cor.nm h:s 
desirc to stop editing. 

[Fun:::ionJ (TED IT . ADD. MENUITErt1 MENU ITEM) 

. Adc!s a menu ITEM to MENU. This will update the menu S LT.age 
newly-added item will appear the next time the menu pops up. This is o~ly 
guara.,teed to work right with pop-up menus which aren't visible. 

20.26 () 



L.'IT:C:RLISP-D D ISPLA Y -0 RIEJ.'ITED TOO LS 

(TEDlr.REMOVE.~'ENUITEM MENU ITEM) [Function] 
Removes a menu ITEM from }..{ENTJ. Tills will update the menu's image so L.'1at 
the newly-added item will appear the next time the menu pops up. This is only 
guaranteed to work right wit.~ pop-up menus which aren't visible. I'1:"EY- may be 
either the whole menu ite:n. or just the indicator which appears in t..~e menu's 
image. 

20.6.3.2 l!ser-f.mction UHooks" in TEdit 

TEdit provides a number of hooks where a user-supplied function can be called. To S'Jpply a func::io~ 
attach it to the edit window under the appropriate indicator. using WI~.OOWPROP. Every user-supplied 
fur..~jon is APPL Yed to the text STREAM 'y1,'hlch de".>Cribes the text. Some of L.'1ese functions c:L.~ also be 

. supplied using the PR.OPS argument to TEOIT or O?ENTEXTSTREAr~; the descriptions below cont.tin the 
details. 

TED!T • QUliFri [\Vindow Property] 
A function to be called whenever the user ends an editing session. This may do 
anyu1.ing; if it returns the atom DON'T. TEdit will not terminate. Any otb.er result 
permits TEdit to do its normal cleanup an.d termination. This can aiso be supplied 
using t..he PROPS argument to TEDIT or OPENTEXTSTREAM. 

~ 

TEOIT .AFTERQUITFN [Window Property] 
A function to be called after the user ends an editing session. "I'Pjs may perform 
any cleanup of side effects that you desire. This can also be supplied ustlg t..'1e 
PROPS argument to TEDIT or OPENTEXTSTREAM. 

TEDIT • eMD. LOOPFN [\Vindow P':cperty] 
A function that gets callec.l for effect only, each time through TEdit's rr:ain 
command loop. This can also be supplied using the PROPS argu:nent to TED IT 
or OPENTEXTSTREAM. 

TEDIT • CMD. CHARFN (\Vindow Property] 
A function that gets ca11e~ for effect only, once for e3.Ch character typed tn~o 
TEetit. The character code is passed to the function as its second arg~cnt. Ti~is 
can also be supplied using the PROPS argument to TED IT or OPENTE XT STREAM. 

TEOIT • CMD. SELFN (\Vindow· Proper::.-1 
A function that gets called... for effect only. each time the user seiects some~ir!g 
with the mouse. The new SELECTION is passed as the function"s second .lr~ur:1ent. 
and an atom describing the kind of selection (one of NORMAL. COpy. MOVE. or 
DELETE) as the third. This can also be supplied using the PROPS arglune~t to 
TEDIT or OPENTEXTSTREAM. • 

TEDIT.PRESCROLLFN [\Vindow Propl!rtY 1 
C.1llcd just before TEdit scrolls the edit window. 

TEDIT.POSTSCRCLLFN (\Vindow Property] 
Called just after TEdit scrolls the edit window. 

TEDIT .OVERFLOWFrJ [Window Ploperryj 
Called when TEdit is about to move some text off-screen. This function m~y 

(\ 20.27 
U 



Coanging the TEdit Command Menu 

handle the text overflow itself (say by reshaping the window). or it may let TEdit 
t2.ke its normal course. If the function handles the proble:n. it must ret":.ln a 
I:'.on-N! L result. If TEdit is to handle the overflow, the value ret"-.lrned m:.lst be 
7j r L. . 

TEOIT • TITLEMEr~UFN f\Vindow P7oper:y] 
Called whenever the user presses the LEFT or MIDDLE mouse bu:tun in the edit 
window's title region. Can also be supplied using the PROPS c.r~.l!nent to TED IT 
or OPEtJTEXTSTREAM. Nonnally, this is the function TED IT • DE F AUL i . HE NUF N. 
which brings up u'1c usual TEdit ccmmand menu. 

TEdit also saves pointers to its data structures on each edit window. They are available for any user 
function's use. 

The TEXTOBJ which describes the current editing session. 
[Viindow Propertyr 

.• ) 
TEXT09J 

TEXTSTREAM p.vindow Property] 
Tne text ST REAM which describes t..~e text of the document. 

20.6.3.3 Cnanging the TEdit Command Menu 

You may replace the MIDDLE-button command menu with one of your own. \Vhen you press the MIDDLE 
button inside an edit window's title region., TEDIT calls the value of the TEO IT • TITLMENUFN window 
propeny with the window as its argument. Normally, what gets called is TEDIT .DEFAULT .MEUUFN. but 
you may change" it to anything you like. 

TEDIi .DEFAULT .MEr~UFN brings up a menu of commands. If the edit window has a prope~ 
TED IT . MENU, that menu is used. Ifno~ TEdit looks for the window property TED IT • ::1ENU. CONf'tA~DS (a 
list of menu items) and constructs a menu from that. Failing tha~ it uses TED1T .DEFAULT .MENU. 

This means that you can control the command menu by setting the appropriate window proper..ies. 
Alternatively, you may add your own menu buttons to the default menu. T ED IT • DE FAUL i . ME~dU. 

(T~DIT .ADO.r,lENUITEM TEDIT .DEFAULT .MENU ITEM) 

will add ITEM to the TEdit menu. Menu items should be in the fOIm (NAME FUNCTION), ?,here NA..\fE 

is what appears in the menu. and FUNCTION will be applied to the text stre~ and can perforw any 
operation you desire. 

Finally. you may remove menu items from the default menu. by doing 

(TEDIT.REMOVE.MENUITEM TEDIT.DEFA~LT.MEN~ IT&~) 

IT.EM can be either a complete menu item: or just the text that appears in the menu: either will do the 
job. 

20.6.3.4 Variables Which Control TEd it 

There are a number of global variables which control TEdit.. or which contain state infcImz.tion for editi:1g 

20.23 () 



o L.~-rERLISP-D DISPLAY ·0 RlEl'ITED TOOLS 

sessions in progrec-...s: 

TEDIT • SLUE. PENDING. DELETE [Vari.!blej 
If L'lls is non-N I L. extending a selection makes it into a pending-delete s.~lection. 
See the selection section. ~ 

TED!T • DEFAULT. FO:'iT flariablej 
A FOr~TDESCRIPTCR. This is the font for displaying TEdit dccJIIlents which con"t 
specify u'1cir own font information. 

TEDIT .DEFAULT. FMTSPEC [Variable1 
A paragraph-looks description. This contains the default leoks for a pa.rag:raph... 

TEDlT • SELECTlor·J [VJriJolej 
A SELECT IO~l. This is the most recent regular selection rn~de in ar.}' TEd.i~ wincow. o TEDIT .SHIFTEDSELECTION [Vari~ble] 

o 

A SELECTIO~t TIlls is the most recent SHIFT-se!ection made in anyTEdit window. 

TEDIT .MOVESELECTION [Variable] 
A SELECT ro~J. This is the most recent CTRL-SHI FT-selection made in any TEcU~ 
window. 

TEDIT . REAOTA8LE ['l~-iablel 
A read table. this is used to translate typed-in characters into TEdit ccrrw:ands. 
See the section on TEdit readtables. 

TEDIT • WOROBOUNO. READTABLE [Variable] 
The read table which controls TEdit's concept of word boundaries. The synux 
cl2.Sses in this table asIo determine which characters TEdit thinks are white space 
(which gets deleted by control-\V along with the preceding word). 

20.6.4 TEdit's Terminal Table and Readtables 

TECit now pays attention to the system terminal table. Characters with terminal sytax-classes CHAROELEiE. 
~JORiJOELETE. or LINEDELETE act as follows: 

CHARDELETE actS as a character-backspace. 

WORDOELETE acts like control-W (in fact. this is how control-W is implemented.) 

LINEDELETE acts like DEL. 

Since the system tenninal table is used to implement these functions~ you can assign them to oeller keys 
at will. 

TEditalso has a Readtable. which it uses to dispatch to commands. The tabre is named TEorT. REAOiABLE.l.t.,d 
it is global. You can use the fuc.ctions TED IT . SETSYNTAX and- TEO IT. GETSYNTAX to read it and 
m2.ke changes: 

(TED Ii. SETSYNTAX CHARCODE CLASS TABLE) [FunctonJ 
Sets the readtable syntax of t..'1e character whose charcode is CHAR-CODE ~o be 

20.29 



TEdit's Terminal Table and Readtables 

CLASS in the read-table TABLE. The possible syntax classes are listed below. 

(TED IT • GET SY~.T AX CHAP-CODE TABLE) [Fu!lc~on] 
Returns the TEdit syntax class of the character whose charcode is C11A...~CODE. 
according to the read-table TABLE. The possible syntax classes are listed below. An 
illegal syntax will be returned as NIL. 

The allowable syn~~ classes are: 

CH.L\RDELETE 

WORDDELETE 

O::LETE 

urlDO 

REDO 

FN 

NONE 

Typing this character acts lik.e backspace 

Typing :his character acts like controIW 

Typing this character acts like 0 E L 

Typing this character causes Undo 

Typing this character acts like ESC 

Typing this character calls a specified function (see below) 

Typing this char2cter simply inserts it m the document. NIL also has uiis effect. 

You can alSo cause a keystroke to invoke a function for you. To do so, use the function 

(TEOIT.SETFUNCTION CHARCODE FN TABLE) [FU:lctiO:::l] 
Sets up the TEdit readtable TABLE so that typing the ch3.J.""2.Cter with charcode 
C-iARCODE will APPLY FN to the text STREAM and the TEXTOBJ for the docU!l1ent 
being edited. The function may have arbitrarY side-effects. 

The abbreviation feature described below is implemented using this function-call facility. 

Finally, TEdit uses the read table TEDIT. WORD80UND. RE,o.OTABLE to decide where word boundaries 
are. \Vhenever two adjacer.t characters have different syntax c!2.Sses, there is a word boundary between 
them. The state of L.ltis table can be controlled by the functions 

(TEDIT • WORDGET CHA..~ T.,4...BLE) [Fun:::.ion~) 
Returns the synta.."{ class (a small integer) for a given charac~er. CP'..AR may l:le eit.'-ler 
a character or a cha.rcode; TABLE defaults to TEDIT • WORDBOUNO. RE.A.DTASLE. 

(TED IT • V/OROSET CHAR CLASS TABLE) [Function] 
Sets the synrox class for a character. Again. C""dAR is either a ch2.f3.:~e:- or a 
charcode; TABLE defaults to TEOIT. WORDBOUND. READTABLE; C!..ASS may be 
either a small integer as returned -by TEDIT. WORDGET, or one of L"le atoms 
WHITESPACE. TEXT. or PUNCTUATIOrl. Those represent the syn·tax :iasses in r..~e 
default TEDIT • \·/ORDSOUND. REAOTABLE." 

The initial TED IT • WORDBOUNO. READT ABLE assigns every character to one of the above classes. aloIig 
pretty obvious lines. For purposes of control-\V. whitespace between the caret and the word being dcieted 
is also removed. 

20.30 () 



o 

U' 

0-

o 

~TERLISP-D DISPLAY-ORlu'ITED TOOLS 

20.6.5 TIle TEdit Abbreyiaoon -Facility 

The list TEorT .A38REVS is a list of "abbreviatioI!S known to TEdit." Ezch element of the list is a 
dot:ed pair of two strings. The first is the abbreviation {c2Se does matter). and tJ.'1e second is ·,.t,·h2.t :..~e 
abbreviation expands to. To expand an abbreviation.. select it and type control-X. It will be re?la.ced by 
its expansiou. 

You c~ also expand single-character abbreviations while typing. Hitting concrol-X when no char....c:ers 
arc u~dcrlined (i.e .. atter you have typed something) will expand the single-character abbrcvi.:l.tion ~o Lle 
left of the caret. 

Here is a list of t.i.e default abbreviations and their expansions: 

b 

m 

n 

" 

The bullet (.) 

The M-dash (-) 

The figure dash (-) 

Open double-quotes (") which can be matched by two normal quotes (") 

20.7 THE TriIN DISPLAY TYPEIN EDITOR 

TTYIN is an Interlisp function for reading input from the terminal. It fearures altmooe completion. 
spelling correction. help facility. and fa.~cy editing, and can also serve as a glorified free text input 
function. This document is divided into two major sections: how to use TrYIN from L.~e user's PCl1lt of 
view. and from the programmer's. 

TrYIN exists in implerr..e!ltations for Interlisp-lO and Interlisp-D. The two are substantially cornp:!ub!e. 
but t.."le capabilities of the twO systems differ (Interlisp-D has a more powerful display and .lllows g:-e~~er 
acc:ss to the system primitives needed to controi it effectively: it also has a mouse. gre2.uy rec.:.:c:::g :...:':e 
need fer keyboard-crientcd editing co:nmanc.s). Descriptions of both are mcluc.ed in tr.is dcc:.u::,;~: for 
compieteness. but Interlisp-D users may find large sections irrelevant 

20.i.l Entering Input \Vith TrYIN 

There are two major ways of using TrYIN: (1) set LISPXREAOFN tq TTYIN. so the LISPX e:c~uti\'e 
uses it to obtai~ input and (2) call TTY I U from within a program to garber text input. Mostl..1· L.~e sa:ne 
rules apply to both; places where it makes a difference are mentioned below. 

The following char~cters may be used to ~dit your input. independent of what kind of tenninal you arc 
on. The more lTYIN knows about your terminal. of coursc. the nicer some of thesc will b-ehave. Scrr.e 
functions are perfonned by one of several characters: any character that you happen to h3.ve assigned 
as an intemlpt character will. of couse. not be re3d by TfYIN. There is J (some\\lnat inl!ieg2.nt} w;:y of 
changing which characters perfonn which functions. described under TTYINREAO~ACROS l.1ter on. 

control-A. BS. DE L 

20.31 



(j 
Entering Input \Vith TrYL'f 

Deletes a character.- At the st.m of the second or subsequent lines of your input. deletes the 
las: character of t..f.te previous line. 

control-W 
Deletes a "word". Generally this means back to the last space or parenthesis. 

cont:"ol-Q (contro!-U for Tops20 \!se~) 

control-R 

ESC 

Dele:es the current line, or if U.~e current line is blank, deletes the previous line. 

Refreshes the current line. Two in a row refreshes the whole buffer (when doing multi-Ene 
input). 

Tries to ccmplete the curre:tt word from the spelling list provided to TiY I N. if any. In ±e case 
of ambiguity. completes as far as is uniquely detennineci or rings the bell. For LIS?X in~ut./\ 
the spelling list may be USERWORDS (see discussion of TTYINCOMPlETEFLG. page 20.44). \) 

Interlisp-lO only: If no spelling list was provided. but the word begins wlL.'1 a "(n, tries directory 
name completion (or filename completion if there is already a matching u>" in L.1e cUJ."Tent 
word). 

? If typed in the middl~ of a word \\-ill supply alternative completions from the SPLST arg'Jffient 
to TTYIN (if any). ?ACTIVATEFLG (page 20.43) must be true to enable this feature. 

control-F Sumex. Tops20 only: Invokes GT J FN for filename completion on the current "word". 

control-Y 
Escapes to a Lisp userexec, from which you may return by the command OK. However. when 
in READ mode and the buffer is non-empty, control-Y is treated as Lisp's unquote macro 
instea~ so you have to use edit-control-Y (below) to invoke the use:exec. 

(midd1e-bl~k) in Interlisp-D. LF in Interlisp-lO 
Rerri~ves characters from L~e previous non-elnpty buffer when it is able'to: e.g., when typed at 
the beginning of the line this comm2.J.'"ld restores th~ previous line you typed at 1TYI~: whe~ 

____ , typed in the middle of a line fills i1l the remaining text from the old line: when typed follo''''''ingr'' 
1"Q or 1" W restor~s what those commands erased. \ ) 

control-X 

If typed as the first character of the line means the line is a comment; it is ignored.. and 1TY~ 
1001'S back for more input 

Goes to me end of your input (or end of expression if there is an' excess right parent.~esis) and 
returr:-s if parentheses are balanced. beeps if not. Currently implemented in Interlisp-D o:1ly . . 

During rr.ost kinds of input. TrYIN is in "autofiU" mode: if a space is typed near the. right mJrg:n. a 
ca..--ri:l~e return is sirnubtcd to S(~I1 J new line. In fact. on cursor-addrcssjblc displJys. lines Jrc Jh"JYs 
brl~kcn. if possible. so that no word straddles the end of the linc. l11c "pseudo-carnagc n!tum ,. cnding 
the line is still read as a space. however: i.e .. the program keeps track of whether a line ends in a C.1.r.1~!se 
rerun or is merely broken at some convenient point. You won't get carriage rerums in your strir:gs unless 
you explicitly type tliem. . 

20.32 



o 

--. 

(J 

o 

INTERLISP-O DISPLAY·ORIE;.~lED TOOLS 

20.7.2 l\1ouse CODlIDUIlds [Ir:teilisll-D Only 1 

The mouse buttons are interpreted as follows during TrYIN input: 

LEFT Moves the caret to where the cursor is pointing. As you hold down LEFT, the :.a..~t I:lOves 
around with t..'1e C1.!I'::Or. atte: you let up, any t}'pein will be inserted at the ~ew pcsi:ion. 

MIDDLE Like LEFT, but moves only to word bounq.ancs. 

RIGHT Deletes text from the carct to the cursor, either forward or backward. wrile you hajj down 
RIGHT, the text to be deleted is complemented: when you let up, the text acmally goes away. 
If you let up o~tside the scope of r..'e tex4 nothing is killed (this is hbw to "c3!:.cer' the 
cOmffiand). This is roughly the same as CTRL-RIGHT witr.'1 no initial selection (below). 

If you hold down CTRL and/or SH I FT while pressing the mouse buttons. you- inste3.d get seco~dary 
selection. move selection or deiete selection. You rna.lee a selection by bugging LE FT (to select a char~~:!r) 
or MIDOL~ (to select a word), and optionally extend the selection either left or right us~£ RIGHT. \l;"hile 
you are doing this, the caret does not move, but your selected text is highlig.~~ed in a manner ind..:c=:.ti::.g 
what is about to happen. \Vhen you have made your sele€tion (all mouse buttons up now), lift up on 
CTRL and/or SHI FT and the actie!]. you have selected will occur, which is: 

SH I FT The selected text as typein at the caret. The text is highlighted wit..'1 a broken underline duf.=g 
se!~tion. 

CTRL Delete the selected text.. The text is complemented during selection. 

CTRL·SHIFT 
Combines the above: delete the selected text and insert it at L.'le caret. Tnis is how you mO'/e 
text abcut. 

You can cancel a selection in progress by pressing LEFT or MIDDLE as if to select. and moving outside 
the range of the text. 

The most recent text deleted by mouse command can be insened at the caret by typLTlg <middle-bl3.4-tic> 
(the same key that ret:ieves the previous buffer when issued at the end of a line). 

20.7.3 DiS?~ay Editing Commands 

On edit-key terminals (Datamedia): fn Interlisp-10. TTYIN reads from the teminal in binary rr.OCe. 
allowing many more editing cor:nmancis via the edit key. in the style of TVEDIT cOrIl..'"TIands. ~G:e ~.hat 
due to Tenex's unforrunat,e way of handling typeane3.d... it is not possible to type ahe3.d edit COIT'.ma.:lCs 
before TIIIN has started (Le .• before itS prompt appears), because·the edit bit wiil be thrown a .. \·ay .. -\iso. 
since ESCAPE has num"erous other meanings in Lisp and even in 1TYI~ (for completion), ESCAPE is 
not used ~ a $Uostinlte for the t!dic key. 

Cn [nterlisp-D: Users will probably have little use for most of these commands. as cursor posiaonir.g can 
often be done more conveniently. and ccrtainly more obviously, with the meuse. ~even .. ':el~ss. so:n~ 
commands. such as the case changing commands. cJ.n be useful. The <bo((om-bbnk) key C:lrl tJe us~".:i 
as an cdi~ (meta) key in Chorus and subsequent relt!J.ses if you perform (TTY INMETA T). This c.:!l!s 
(iolETt .. SHIFT T) to enable the meta key, redefines the middle .lnd top bbnk keys. JJ1d informs TTYl~ 

20 . .33 



'--" 

(j 
Display Editing Comm:mds 

that you want to use them., Alternatively. you' can use the EDITPREFIXCHAR (by default on <top-blank» 
as described b the next paragraph. ' 

On edit-keyless display terminals (Heath): If you want, to type <L.~y of these commands. you need to prefix' 
them with the "edit preii:c" character. Set the variable EDITPREFI;(CHAR to the character code of the 
desired pre:ix char. Type the edit prefix twice to give an "edit-ESCAPE" COIrul1and. Some use=-s of ::..~e 
TE~EX TVEDIT program like to make ESCAPE (33Q) be the edit pre~ but this makes it somew~at 
awkward to eyer use esc~pe completion. 

On eClt-k~ylcss harq.copy term.inals: You probably want to ignore this section. since you won't be able 
to see what's going on when you issure edit commands; there is no attempt made to echo anyt.'1.L."1g 
reasonable. 

In the dcscripch.ms bcl~,w. "current word" mc:~n5 the word tJ'lC cursl1r is und~r. or if U:1':;:r J S;'.!\.~. :.~e 
previuus word. Currently p.1.fcntht.'Scs are tn:.1(cd as Sp.1.CC~ which is U$U~ny wh.1t you ~~:. t'ut '':-.1t'\ 

occa:;ionally cause contusion in the word deletion commands. The not.Jtion [CH..-\R] mca..,s cdit-CH.-\'R~- _) 
if you have an edit key. or <editprefixchar) CHAR if you don't: $ = escape. r...10st cOlnm4l!lds can be 
preceded by numbers or escape (means infinity), only the first of which requires U.'e edit key (or the edit 
prefix). Some cotn ... '11ands also accept negative argu:nentS. but some oniy look at the magnir.lde 'of the 
argo Most of these commands are taken from the display editors TVEDIT and/or E. and are confned to 
work within one line of text unless otherwise noted. 

Cursor Movement COlnmands: 

[delete], [bsJ, [<] 

[space], [>] 

[1'] 

[If] 

[(] 

D] 

B4Ck. up one (or n) characters. 

Move forward one (or n) characters. 

Moves up one (or n) lines. 

Moves down on~ (or n) lines. 

Move back one (or n) words. 

Move ahead one (or n) words. 

[tab] Moves to end of line; with an argument moves to nth end of line: [Stab] goes to end of buffer. 

[control-L] 
Moves to start of line (or nth previous. or stan of buffer). 

[{] and [}] 
Go to SUL""t and end of buffer, respectively (like [$control-L] and [$tabD. '. , 

[ [ 1 (edit-left-bracket) . 
Moves to beginning of the current list. where cursor is currently under an element of that list 
or itS closing paren. (See also L.~e auto-parenthesis-matching feature below under ·-Flags".) 

[ ] ] (edit-right-bracket) 
Moves to end of current list. 

20.34 



o 

o 

6 

[Sx] 

[Ex] 

INTERLISP-n DISPLAY-ORl~TID TOOLS 

Skips mead to next (or nth) occurrence of character x, or rings the bell 

Backward sea.-ch. i.e~ short for [-S] or [-as]. 

Buffer Modification Commands: 

. [Z:t] 

fA] or [R] 

Zaps chaz-.::.Cters from cursor to next (or nt?) occurrence of x. There is no unzap co:wnand yet. 

Rep~t t":e last S. B or Z comman~ regardless of any intervening input (r..ote this di..7crs from 
Tvedit's A cOmIDa.:ld). 

[K] Kills the character under the cursor. or n chars starting at the cursor. 

[1] Begin inscrtir.g. Exit insert with any edit command. Characters you type will be inserted. rather 
than overwriting the existing text. If EMACSF LG (page 20.43) is uue (default in [nterlisp-D). 
you are aiways in insert mode, and this command is a noop. 

Inserting <cr> behaves slightly different from in tvedit. The sequence [I<cr>] behaves as in 
TVEDIT: it inserts a blank line ahead of the cursor. <cr> typed any odler time while in insert 
mode actually insertS a <cr>, behaving somewhat like TVEDITs [B). [$I] is the same as [I<cr». 

[cr] \Vhen the buffer is empty is the sa.~e as <1£). i.e. restores buffer'S previous contents. OL~eI'Vrise 
is just like a <cr> (except that it also terminates an insert). Thu~ [<crXcr>] wHl repe:l~ t.~e 
previous input (as will <1fXcr> without the edit key). 

[0] 

[T] 

[G] 

[L1 

[U] . 

[C] 

Does "Open line", inserting a crlf after the curser, Le., it breaks the line but leayes the cursor 
where it is. 

Transposes the characters before and after the cursor. When typed at the end of a line, 
transposes the previous two characters. Refuses to handl~ funny cases. such as tabs. 

Grabs the contents of the previous line from the cursor position onward. [nG] grabs ~'1e nth 
previous line. 

Lowercases current word. or n words on line. [SL] lowercases the rest of the !be. or if given 
at tb.e end of line lowercases the entire line. 

Uppercases analogously. 

Capitalize. If you give it an argument. only the first word is capitalized: the rest are jus: 
lowercased. 

[control-Q] 
Deletes the cl.!rrent line. [Sconcrol-Q] deletes from the current cursor position to the end of the 
buffer. No other arguments are handled. 

[concrol· \V] . 
Deletes the current word. or the previous word if sitting on a space. 

(D(del)] and [D<cr)] 
Are the samc as [control· W] and [concrol·O], for approximate compatibility with TVED {T. 

P] "j ustif/' this line. This will break it if it is too long. or move words up from thc next line 

20.35 



n 
Display Editing Commands 

if too short. Will not join to an empty line. or one 'Starting with a tab (bOlL1 of which are 
mteQreted as paragraph breaks). Any new line breaks it introcuces are considered spa:e~ not 
carriage returns. [nJ] justifies n lines. 

T:"'le lLTle!engt-l-t is defined as TTYJUSTLENGT"H, ignoring any prompt characters at th.e margin. If 
TTY JUSTLEr~GTH is negative, it is inte;-preted as relative to the right margin. TTY JUSTLENG iH 
is initialiy - 8 in Interiisp-D. 72 in Interlisp-lO. 

[SF] "FL.,ishcs" the input. rcgJ.rdless of where lL1e cursor is. Specifically, it goes to ~e ~:ld of t.~e 
input and enters a (cr). controL-Z or 'T', depending on whether nOr.:1aL REPEAT or READ 
input is happening. Note that a ur won't necessarily end a READ, but it see:ns likely to in 
most cases where you ~ould be inclined to use this comrn~'d. and ma.kes for more predi.::.J.ble 
behavior. 

Miscellaneous Commands: n 
[P] Interlisp-D: Prettyprint buffer. Oears the buffer and reprints it using prettyprint. If there a:e 

not enou~1 right parentheses. it will supply more; if there are too many. any e~cess remair.s 
unprettyprinted at the end of the buffer. May refuse to do anything if there is an unclosed 
sL-ing or other error trying to read the buffer. 

[N] Refr~h line. Sa.T..e as control-R, [$N] refreshes the whole buffer: [nN] refreshes n lines. Cursor 
movement in TIYIN depends on TfYIN being the only source of output to the screen; if you 
do a control-T. or a system message appears. or line noise occurs, you may need to refresh 
the line for best results. In Interlisp-10, if for some rea."On your terminal falls out of bin~-y 
mode (e.g. can happen when returning to a Lisp running in a lower fork). Edit-<anyt..1.ing) is 
unreadable. so you'd have to type control-R inStead. 

[control-Y1 
Gets userexec. Thus. this is like regular control-Y, except when doing a READ (when control-Y 
is a read macro and hence does not invoke this function). 

[$contro!-Y] 
Gets a userexec. but first unreads the contents of the buffer from the cursor onward. Thus if yeu 
typed at 1TYIN something destined for the Lisp exect.4tive, you C3..., do [couu-ol-LS-:on::oi-\}~ 
and give it to Lisp. \ ) 

[ ... ] Adds the current word to the spelling list USERWOROS. With zero argo removes. word. See 
TiYINCQi\lPLETEFLG (page 20.44). 

Note to Datamedia. Heath users: In addition to simple cursor movement commands a.,d inseI""Jdeiete. 
TTYIN uses the display's cursor-addressing capability to optjmize cursor movements longer than a few 
characters. e,g.· [tab} to go to the end of the line. In order to be able to add.:ess me cursor. TTl-I~ 
has to know where it is to begin wiL~. Lisp keeps track of the current pri:lt position within d1e line, 
but does not keep track of the line on the screen (in fact. it knows precious little about ·jisp!ays. ~u..:h 
like Tenex). Thus. TrYIN establishes where it is by forcing the cursor to appear on the last lir.c of the 
screen. Ordinarily this is the case any\vay (except possibly on stanup), but if the cursor happens to be 
only halfu"ay down the screen at the time, there is a possibly unsettiing leap of the cursor when 1TI'I;\ 
startS. 

20.36 



0-

u 

INTERLISp-n DISPLAY-ORIE~TID TOOLS 

20.7.4 Using lTYIN for Lisp Input 

Wnen Trt1N is loadeci or a sysout containing TrYIN is s~ed up. the function SETREADFN is cleo.. 
If th~ te:"";Ti:lai is a &play, it sets LISPXREADFN to be TTYINREAD: if the tecrJncl is con-Ci5play. 
SETREADFi-l will ~et the vari::ble back to RE.~u. (SETRE;,~OFN • READ) ",ill also s·et it ba::k to READ. 

Th:ere are two principal differences between TTYINREAO and READ: (1) paren:hesis bal~cing. The i.:lput 
does not activate on an exactly baIa~cing ri~ht paren/br:1ckct uniess the input s:.:med with a p~c:lfbr:u:kc~ 
e.g.. ··USE (Faa) FOR (F IE r' will 3.11 be on one line. terminated by (cr); and (:2) read rr:.'lCros. 

In Intcrlisp-lO. TITIN does not use a read table (1TY1N behaves as though L:sing the def.:.uit :niti2.1 
Lisp tenninal input rcadtablc). so read macros and redefinition of synta.'( char:lctc~ ai"e not StlppO~ec.; 
however ... • .• (QUOTE) and ··control-Y" (EVAL).are built in. and a simple imp!\!mentation of 7 ;u:d 7= 
is supplied. Also. L"!e TTY INREAOMACROS f.1Cility described below can supply some of the function2Jity 
of immediate read macros in the editor. 

In Interlisp-D. read macros are (mostly) supported. Immediate read macros take effect only if typed at 
the end of the input (it's not clear what their semantics should be elsewhere). 

20.75 Useful l'rlacros 

There are two useful em,t macros that allow you to use TrYIN as a character editor: (1) EO loads the 
current expression into t..'1e ttyin buffer to be edited (this is good for editing comments and smngs). Input 
is terminated in the usual way (by typing a balancing right parenthesis at the end of the input. :ypir:g 
<cr> at the end of an already balanced expression, or control-X anywhere inside the balanced. expression). 
Typing control-E or cieazir.g the buffer abortS ED. (2) EE is like ED but prettyprints t..'1e expression into 
the buffer. and uses its own window. The variable TTYIUEDITPROMPT controls what prc:npt. if any. 
E E uses: see prompt argument des:ription in next section (L.1e initial setting is ~o prompt). E E is not yet 
implemented in Interlisp-10. 

The macro aUF loads the current expression into the buffer. preceded by E. to be used as input however 
d~sir~d: as a rriviai eX~T!ple. to evaluate the current expression. BUF folio wed 'jy a <c:> to activate t..~e 
buffer will perfoI1Il roughly what the edit macro EVAL does. Of course. you can edit L.'1e E to sc=:e:.hing 
else to rna.<e it an edit comoand. 

aUF is also defined at the exe:utive level as a programmer's assistant command that loads the buffer wiL.'1 
the VALUEOF the indicated event. to be edited as desired. 

TV is a progranuner's assistant command like EV [EDITV] that performs an ED on the value of L~e 
•• 1 vanao.e . 

. ~nd finally. if the event is considered "short" enough. the programmer's assistant command F I X will lo~d 
the butfer with the ~vcnt'$ input. rath~r th~m calling the editor. If you rc~ny wlntcd the Inter!isp ~ditor 
for your fix. you could dthcr say F I X EVENT - TT Y :. or type control-U (or whJtc\'cr on topcs20) once 
you got -TTYIN·s version to force you into the editor. 

20.37 

I 



Programming With TrYIN 

20. j.6 Programming V\'ith TTYL"'l 

( TTY I N PROMPT SPLST I-!XLI' OPTIONS ECHOTOFILE TABS U1'tZ'..EAXBtT RDTBL) [Function] 
TIYIN prbts PROMPT, then waits for input. Tne yalue ret'..!rned in the ~or:ual 
case is a list of all atoms on th.e line, with comma and parens rerJ.rned as ind.:vid~al 
atoms; OPTIONS may be used to get a d.i.fferent kind of value back. 

PR.OUPT is an atom or string (anyu'1ing else is converted to a suing). If NIL. the value of 
DEF.t\Ul TPROM?T. iGitblly " ... ", will be used. If PROMFT is T. no prompt will be given. ?F.O.\iPT 

may also be a dotted pair (PROMPT 1 • PROMPT 2)' giving the prompt for the first 2l1d subseque:lt 
(or overflow) lines, each prompt being a string/atom or NIL to denote absence of proI:!pt. ~ote that 
rebinding OEFAULTPRO~'PT gives a convenient way to affect all the "ordinary" prompts in some prcgr:l.m· 
module. 

SPI .. ST is a speliing list. i.e .• a list of atoms or doaed pairs (SYNO!'>i-n.,{·. ROOT). If supplied. it is usedn 
to check and correct user responses. and to provide completion if the user types ESCAPE. If SPLS7' is one 
of the Lis;:: system spelling lis:s (e.g .• USERloJORDS or SPELLINGS3). words ~~at are escape-co~ple~ed get 
moved to the front.. just as if a FIXSPELL had found them. Autocompletion is also performed when user 
types a break character (cr, space. parea etc). unless one of the unofixspell" options below is seiected: 
i.e .• if the word just typed would uniquely complete by ESCAPE. TrYIN behaves as though ESCAPE 
had been typeeL 

HELP, if non-r~ I L. deten::ll.."1es what happens when the user types? or HELP. If HELP = T, program 
prints back SFLST in suitable form. If HELP is any other ato~ or a string containing no spaces.. it 
performs (DISPLAYHELP BELP). Anyt..JUng else is printed as is. If HELP is NIL.? and HELP are 
treated as any other atoms t..~e user types .. [OISPLAYHELP is a user-supplied function. initially a noo?: 
syste:ns with a suitable HASH package. for example. have defined it to display a piece of text from a 
hashfile associated with the key HELP.] 

OPTIONS is an (ttom or list of atoms chosen from among the following: 

NOFIXSPELL 

MUSTAPPROVE 

CRCO~'PLETE 

DIRECiORY 

USER 

FILE 

FIX 

Uses SPLST for HELP and Escape completion., but does not attempt a..'lY 
FIXSPELLing. Mainly useful if SPLST is incomplete ~~d the caller wants to 
handle corrections L." a more fiexib!e way than a straight FIXSFELL. 

Does spelling correction. but requires confinnation. 
n 

Requires confirmation on spelliGg correction. but also does autocoi:lpletion on <cr> 
(Le. if what user has typed so far uniquely identifies a member of SPI..ST. cOilipletes 
it). This allows you to have the benefits of autocompletion and still allow new 
words to be typed. 

(only if SPLST= NIL) Interprets Escape to mean directory name. compieticn 
[Interlisp-10 only]. 

Like 0 I RECTORY. but docs uscrnamc cOInpletion. This is identical to 0 I RECTORY 
under Tenex [Interlisp-10 only]. 

(only if SPLST= NIL) Interprets Escape to mean filenJ.rne completion. i.e. dces a 
GT J FN [Sumex and Tops20 only]. 

If response is not on. or does not correct to. SPLST. interacts wi:h user un~l an 

20.38 n 



o 

o 

0--

STRI~~G 

NORAISE 

NOVALUE 

REPEAT 

TEXT 

COMMAPZO 

READ 

LISPXREAO 

NO?ROMPT 

. INTERLISP-D DISPLAY-ORIEl'ITED TOOLS 

acceptable response is entered. A blank line (returning U IL) is always accepted.. 
Note that if you are willbg to accept responses that are not on SPLST. YO:.1 prcbably 
should specify one of the options r~OXFISPELL. MUSTAPPROVE or CRCCMPLETE, 
lest the user's new response get F ~XSPELLed away without their approvc.l. 

Line is read as a string. rather tlu.n list of atoms. Good for free text.. 

Does not convert lower case letters to upper C3Se. 

For usc principally with h'e ECI!OTOFrLE arg (betow). Does not compute a value, 
but returns T if user typed anything. NIL if just a blank li~e. 

For multi-line input. Repeatedly prompts until user types control-Z (as in Tenex 
sndrnsg). Returns one long lis~ with S T RING option returns a single string of 
everything typed.. with carriage returns (EOL) induc.ed in the sL-ing. 

Implies REPEAT, NORAISE, and NOVALUE. Additionally, input may be ter:ninated 
with control-V, in which case the global flag CTRLVFLG will be set true (it is set 
to NIL on any other' termination). This flag may be utilized in any way the caller 
desires. 

Only the first word on the line is treated as belonging to SFLST, the reIr'..aincer of 
the line being arbitrary text; i.e., "command format". If other options are supplied. 
COMNAND still applies to the first word typed. BQically. it always re~uws (CM!) 

• REST.OF.CN?UT), where REST·OF-INPUT is whatever the other options dictate 
for the remainder. ·E.g. COMMAND NOVALUE returns (CMD) or (om . T), 
depending on whether there was funher input: COMMAND STRING ret"..:rns (c.!:) 
• "REST-Or-INPUT"). When used with REPEAT. COMMAND is only in errect for 
the first line typed: r..lrJler:nore. if the first line consists solely of a corr_Inand. the 
RE? EA T is ignored.. i.e., the entire input is taken to ce just the command. 

Parens. brackets. and quotes are treated a la READ. raL~er than being returned as 
individual atoms. Control char:lct~rs may be input via t.~e control-Vx nct.:.ton. 
Input is terminated roughly along the lines of R EAD conve~ticr.s: a bala.."1cir.g 
or over-balancing right paren/bracket will activa~e the in;:mt. or <cr) wten 
no parenti:esis remains unbalanced. READ overrides all other options (exce;n 
NORAISE). 

Like READ. but implies that TTYIN should behave even more like READ. i.e .• do 
NORAISE. not be errorset-protectecL etc. 

Interlisp-O only: The prompt argument is treated as usual. except that TrYI~ 
assumes that the prompt for the first line has alre:ldy been printed by the caller: 
the prOmpt for the first line is thus used only when redispl3.ying the line. 

£CHOTOF~E if ~pecifi\!d. uSl.!r's input is copit:d to this file. i.e .. ITYIN CJn be used JS a 'limp\c text·co-file 
routine if NOVALUE is us~d. If ECHOTOFILE is a liSL copies to all tiles 'in the list. PROMPT is not induced 
on the file. 

TABS is a special addition for t.1bubr input. It is a list of t:lbscops (numbers). \Vhen user types a tao. 
Tf'{l0i automatically spaces over to the next tabscop (thus the first t.1bstop is actually the seco:1d ··column·· 
of input). Also treats specially the characters * .lnd ": they echo normJ.lly. Jnd t.l-}en automau:J.lly wb 

20.39 



EE Interface 

over. 

(fl\.'READBUF allows the caller to "preload" the TrYIN buffer wiL.~ a line of input u-:-""'R.E.AD3ttF is a 

list, L.~e elements of ''''''hich are unread into the buffer (Le .• "the outer parentheses are stri?~ed cff") :0 
be edited fur ... ~er as desired: a simple <cr> (or control-Z for REPEAT input) will thus cause :he buEe:'s 
conte:lts to be returned unchanged. If doing READ inpu~ the "PRIN2 names" of the in;)Ut list a:e usee.., 
Le .• quotes and %'5 will appear as needed: otherwise the buifer will100k as t.'ough r.:l'.7..z.AE)Bi..7'F hac be~:l 
PR I N l'ed. UNRE.ADBu"F is treated somewhat like READS U F t so that if it contai.~s a p5eucio-carr:age re:-u.ril 
(the value of HISTSTRO), the input line tcnninates there. 

Input can also be unr~ad from a file, using the HISTSTRl format: UNREADBVF = «v:a.iue of 

HISTSTR1> (FILE START • END», where START and END are file byte pointers. This m3..~es TrYr~ 
a miniature text file editor. 

RDTI3L [Intcrlisp-D only} is the read table to use for READing the input when one of the READ options i:--~\ 
given. A lot of character interpretations are hardwired into lTYIN, so currently the only effe:: this ha1 ) 
is in the actual READ. ~,d in deciding whe.ther a character typed at the end of the i:lput is an immediate 
read macro, for purposes of termination. 

If the global variable TYPEAHEAOFLG is Tt or option lISPXREAD is given. TrYIN permits type-ahead: 
otherwise it clears L1.e buffer before prompting the user. 

20.7.7 EE Interface 

The following may be useful as a way of outsiders to call TTYIN' as an editor. These functions are 
currently only in Interlisp-D .. 

(.TTYINEOIT EXI'RS WLVDOW PRINTFN) [Function] 
This is the body of E E. Switches L.'1e- tty to 'NZNDOW, clears i~ prettyprin:s ~?.S, 
a list of expressions. into i~ and leaves you in TTYIN to edit it as Li..'P input. 
Returns a new list of expressions. 

If FRINTFN is non-N I L. it is a function of two arguments, EXl'RS and FILE. wh:cn...-" 
is called instead of PRETTYPRINT to print tLi.e expressions to the w~do\l; ~ac:'J~{ ) 
a scratch file). Note that EXPRS is a lis~ so normally the outer pa:entheses snc'..:ld " 
not be printed. PRINTFN=T is shonhand for "unpretty"; use PRIN2 instead of 
PRETTY?RINT. . 

TTYINAUTOCLOSEFLG [Variab~e] 

If TTYINAUTOCLOSEFLG is true, TTYINEDIT closes the window on exit. 

TTYINEDITWINDOW [Vaf.able] 
If rhe W1NDO\Varg to TTY I NED IT is NIL, it uses the value of TTY I N ED I TYJ I UOOW. 
creating it if it docs not yet exist. 

TTYINPRINTFU [Valiabie] 
The default value for PRINTFN in EE's call to TTYINEDIT. 

(SET. TTYIrJEDIT .WINDOW WINDOV/) [Func~!C':11 

Called uncer a RESETLST. Switches the tty to WINDOW (defaulted lS tn 
TTY I N ED I T) and clears iL The window's position is left 50 that Tn'I).' will b~ 

20.40 (\ 
\. ) 



(J 

o· 

~

( "') u 

o 

L.'ITERLISp·O DISPLA Y ·ORIE~TID TOO LS 

haP9Y with- it if you now call TfYIN yourself. Specifically. chis me.ms pcsitonicg 
an integral number of lines from the bottom of the window. the way the wp-levei 
tty window normally is. 

( TTY I rJ • SeRA TCH F I L E ) [Fc~ctio:ll 

20. j.8 ?= Handler 

Returt:S. possibly crcatin~ t:.'1e scratchfile that TrYIN uses for pre:typri.:.~g :~ 
input. The file pointer is set to zero. Since TrYIN does use this Ble. beware of 
muitipie simuitL.~ecus use of the file. 

In Intcrlisp. the ?:: re:ld m~ro dispiays the arguments to the function currently "in pro~rC$S" in the 
typein. Since TTYIN wants you to be able to continue editing tht; buffer after il 7=. it processes this 
macro specially on its own. printing the arguments below your typein and then putting ~':e cursor bJck 
where it was when? = was typed. For users who want special tre:ltment of? =. the follcwi1:g hOJk exists: 

TTYU~?=FN [Variable] 
The value of this variable. if non-" I L. is a user function of one argun:ent ~~3.t is 
called when ? = is typed. The argument is the function that? = th.inks it is u:side 
of. The user function should return one of the following: 

NIL Normal ? = processing is performed. 

T Nothing is done. Presumably the user function has done somer.nmg 
privately, perhaps diddled some other window. or called TTYIN • PR INT ARGS 
(below). 

a list (ARGS • STUFF) 

Treats STUFF as the argument list of the function in question. and perfcn:!1s 
~1.e £lonna! ? = precessing using it. . 

anything else 
The value is printed in lieu of what? = normally prints. 

At the th'"Ile that? = is typed. nothing has been "re~d'· yet. so you don't have the nonnal context YO'.1 ::light 
expect inside a conventional re~dmacro. [f the user function wants to exa."1line G.~e typed-in .:.r~..!z:1e~ts 
being passed to the fn. however. it can perfonn (TTY IN. READ?=ARGS). which bundles up e..,.eI1·~~ing 
between the function and the typing of?= into a lisL which it returns (thus it parallels an a.rglis~: N r L 
if? = was typed immediately after the function name). 

(TTYHL PRINTARGS FN ARGS ACTUALS ARGTYFe) [Function} 

20.i .. 9 Read i\tlacros 

Does the function/argument printing for? =. ARGS is an argument list. AC-::~:.:ALS 
is a list of actual parameters (from the typein) t6 match up with args. ARG7Y?E: is 
a value of the funcriun AHGTYPE: It defaults to (ARGTYPE FN). 

\Vhen doing READ input in Interlisp-lO. no Lisp-~tyle read macros arc available (but L~e . ..l:lC ccnuol
Y macros are built in). Principally because of the usefulness of the editor rC::ld macros (set by 

20"+1 



n 
Read lVlacros 

SETTE RMCHARS), and the desire for a way of changing the meanings of the display editing COIr=..an~ 
Ll-te following existS as a hack: 

TTYINREADr,lACROS . [Variable] 
Value is a set of shorthand inputs useable during READ input. It is an alist of 
entries (CF'..ARCODE • SYNONYM). If the user types tb.e ind!c2.ted chara=ter (edit 
bit is denoted by the 200Q bit in charcode). TfYIN behaves 2.S though ti:e synony:n 
character had been typed. 

Special cases: 0 • the character is ignored; 200Q . pure Edit bit; means to read 
another char an.d tum on its edit bit: 4DOQ - macro quote: read anoL1er er.ar a.:ld 
use its original meaning. For example, if you have macros «33Q . 2000), (30Q 
.. 33Q»), then Escape (330) will behave as an edit prefix. and cont:ol-X (30Q) 
will behave like Escape. Note: currently. synonyms for edit comma.::ds Jre not 
well-supponed, working only when the command is typed with no arguI:1ent n 
Slightly more powerful macros also can be supplied: they are recognized when 
a character is typed on an empty line. i.e .• as L~e first thing after t..~e prompt. 
In t..ltis case. the TTYINREADMACROS entry is of the form (CF..A.RCODE T • 
RESPONSE) or (CHAP-CODE CONDITION • RESPONSE), where CO:-.7HTION is a 
list that evaluates true. If RESPONSE is a list. it is EVALed: ot..~e:"\lrise i~ is left 
unevaluated. The result of this evaluation (or RESPONSE itself) is treated as follows: 

NIL The macro is ignored and the character reads normally. Le .. as thou£..;' 
TTYINREADMACROS had never existed. 

An integer 
A character code, treated as above. Special case: -1 is treated like O. but 
says that the display may have been altered in the evaluation of t..~e mac:o, 
so TIYIN should reset itself a?propriately. 

Anything else 
This lTYIN input is tenninated (wit."l a crlD and returns the value of 
"response" (turned into a list if necessarj). This is tb.e pri~cipal use of 
this facility. The macro character thus stands for !.'e (possibly cc~puted}'/) 
rcponse, te:minated if necessary with a crlf. The original character is !:lot\.· 
echoed. 

Inte:rupt charac:ers. of course. cannot be read macros, as TfYIN never sees them. but any o:her 
characters. even non-control chars. are allowed. The ability to return NIL allows you to ha\"e conc.i:icnal 
macros that only apply in specified situations (e.g .• the macro might check the prompt (L I S P X 10) or 
other contextual variables). To use this speCifically to do UThllediate editor read macros. do the foUowlr:g 
for each edit. command and character you want to invoke it with: .. • 

(ADDTOVAR TTY INREADMACROS (CIIAHCODE 'CH,<\Rf.1J\CRO? EDITCOM))) 

For eXJ.ffiple. (ADDTOVAR TTY INREADMACROS (12Q CHARMACRO? ! NX) ) will make linefc~d do tJ'lC 
, ! rl X command. Note that this will only activate linefced at me b~ginning of a line. not anywhere in t..~e 
line. There will probably be a user function to do this in the next release. 

Note mat putting (12Q T . ! NX) on TTYINREAOP.ACROS would also have the effec: of rcmrni::g 
.. ! NX" from the READ call so that the editor would do an ! NX. However. 1TYIN would also return ~NX 

20.42 
('\ 
\ ) 



() 

o 

Il'rrERLIsp·D DrSPLAy-oRIL~TID TOOLS 

outside the editor (probably resulting in a u.h.a. error. or convincing O·WIM to enter the editor). and 
alS9 ~'1e clemng of the output buffer (performed by CHARMACRO?) would not happen. 

20.7.10 Assorted Flags 

Th~e flags control aspects of 1TYIN'Ys behavior. Some have already been mentioned. Their initial values 
~re .ill N r L. in In~crlisp-D, tflc fbgs arc all initially T. 

TYPEAHEADFLG 

?ACTIVATEFLG 

EMACSFLG 

SHO';lPARENFLG 

<Q 

TTYINBSFLG 

TTYINRESPONSES 

TTY I r~ERRORSETFLG 

TTYINMAILFLG 

[V arizlb Ie I 
If true. TrYIN always permits rypeahe3d: otherwise it clears the burrer fer any 
but LIS?XREAD input. 

[V.:.riab!e] 
If true, enables the feature whereby? listS -alternative completions from the current 
spelling list. 

[V~'i~ble] 
Affects disp lay editing. When t.T"Ue. TIYIN tries to behave 0 a little more like 
E1v[ACS (in very sL.'T.ple ways) than TV ED IT. Specifically. it h~ t..'1e foUowbg 
effects currently: (1) all non-edit characters self-insert (Le. behave as if you're 
always in Insert mode); (2) [0] is the E\(ACS delete to e"nd of word co~and... 

[Var.~ble] 

If true, then whenever you are typing Lisp input and type a right parenthesis/br:l:ke~ 
TrYIN will briefly move the cursor to the matching pareniliesis/br:lcket. 2.SSumi:lg 
it is still on the screen. Tne cursor stays there for about 1 second.. or until you 
type another character (Le .• if you type fast you'n never notice it). This fe~ture 
was inspired by a sLTIlilar EMACS feature. and turned out to be pretty e3.SY to 
implement. 

r/ ariJ.ble] 
Causes TTYIN to always physically backspace. even if you're running on. a r:.cn
display (not a D:Vf or Heath). rather than prict \d.ele::edtex:\ (t..l-tis 2.5Si.~ .. :::es your 
hardcopy terminal or glass tty is capable of b~cksp2.cing). £f TT'{I~BSrLG is LF. 
then in addition to backspacing, TrYIN X'$ out the deleted charx!e:-s as it b3.cks 
up. and when you stop deleting, it outputS a liner~ed to drop to a :'lew. de~n line 
before resuming. To save paper, this line feed operation is not done whe:1 or.ly a 
single character is deleted.. on L.1e grounds that you can probably tg'Jre cut """hat 
you typed anyway. 

• [Variabie!. 
An alist of special responses that will be handled by routines deSigna:ed by me 
progr~11ITler. See "Special Responses", below. 

[V an.10 Ie 1 
[Interlisp·O only1 If true. non-LISPXREAD inputs are errorset-protccted (cor.trol·E 
traps back to the prompt). othenvise c:!ITors propagate upwards. Initi:llly ~-l I L. 

[Y.1nJblc:!l 
[Tenex onlyj When true, performs mail checking, c:!tc. before most inpl!tS (~xc.::;: 
EV ALQT inputs. where it is assumed this hJ..S already been done. or i:1put.S i::d~n:ed 



Special Responses 

by more -than a few spaces). The MA I LWATCH package must be loaded for this. 

TTYI UCOMPLETEFLG [Variao!eJ 
If true. enables Escape completion from USERWORDS during READ inpu~. Der~j1s 
below. .. 

USEFr,JORDS (page 15.15) contains words you mentioned recently: functions you have defi~ed. or ecEteci 
variables you have set or evaluated at the executive level. etc. This happens to be aver;,' ::on .... e:lient list 
for co~:ext-free escape completion: if you have recently edited a functio:l. chances are good you may 
W3.l,t t(' edit it 3gJi:1 (typing "EF xxS") or type a c3.H to it. If there is no cCr.1plctio:l fo:- 0.~ c~r:-~::: 
word from USER\~ORDS. t..'e escape echoes as "S", i.e. nothing special happens: if there is more ~1a., 
one possible completion. yo~ get beeped. If typed when not inside a word. E.~?e c:~~lctes to t.~e 
value of LAST~iORD. i.e .• the last thing you typed that the p.a. "noticed" (setting TTY INCO~\?lETEFLG 
to 0 disables t..'1is latter fearure), except that Escape at the beginning of the line is left Jlone (it is a p.a. 

n 

cow~~and). n 
\ 

If you really wanted to enter an escape. you can. of course, just quote it with a control-V, like you can 
other control chars. 

You may explicitly add words to USER\I/ORDS yourself that wouldn't get there ot.'lerv.ise. To make this 
convenient online the edit cornma...11d [ .. ] mea..1'lS "add the current atom to USERWORDS" (you I:light mink 
of the command as "pointing out this atom"). For exa..T1ple, you mig...'lt be entering a function definition 
and want to "point to" one or more of its arguments or prog variables. Giving an argume!l~ of ze:o to 
this command will instead remove the indicated atom from USE RWORDS. 

Note that this feature loses some of its value if the spellir..g list is too long. for then the completion takes 
too long computationally and., more impOrt2.nt. there are too many alternative completions for you to get 
by with typing a few characters followed by escape. Lisp's maintena..~ce of the spelling list USERWORDS 
keeps the "teI!ipor~ryn section (which is where everything goes initially unless you say oL.1.er-.\'ise) !i!nited 
to o#USERWORDS atoms. initially 100. ,,"Vords fall off L.'le end if they haven't been used (~"-:ey are "used" 
if FIXSPELL corrects to one, or you use <e~cape) to complete one). 

20.7.11 Special Responses 

There is a facility for ha.l1dling "special responses" during any non-READ TTYIN input. This' action is 
independent of the p2l"ticular call to TIYIN, and exists to allow you to effectively "ad\ise" TrYfN to 
intercept cer-..ain corn .. rnands. After the command is processed. control retT~""ilS to the original1TI~IN C2.l1. 
The facility is imple:nented via the list TTYINRESPONSES. 

TTYINRESPONSES 
TTY INRESPONSES is a list of elements. each of Ll!e form: 

. (COMMA~'1)S RESPONSE-FOR]..! OPTION) 

[Variable} 

COMMANDS is a single atom or list of commands to be recognized: RESPONSE· 

FOR~\f is EVALed (if a list), or AP?l Yed (if an atom) to the command and L.1e rest 
of the line. '"NiL'1in this form one can reference the free van:lbies CO~MAND (L~e 
command the user typed) and LIN E (the rest of L,e iine). If CPTiO.V :5 t1:e .1~0m 
LIN E. this means to pass the rest of line as a list: if it is S T RING. L~lS mC:lr:s lL1 

pass it as a string: otherwise. the command is only valid if L.~ere 15 nOL'1mg ~!se 

on the line. [f RESPONSE-FOR.\{ returns the atom IGNORE, it is not rrc.Jlcd as .1 

20.44 () 



o 

o 

o 

o 

LNTERLISP-O DISPLAY-ORIEl'ITED TOOLS 

special response (Le. the input is returned normally as the result of TfYTN). 

In MYClN', the COHMEr'T command is handled :his way; 3..11.Y time the user types C01'iNENT as the first 
word of :n?u~ TfYIN I='asses L.':e rest of the line to a. mycin-c;fiaed func~on whic.=' proc-;ts for t..~e 
text of the COTment (recursively using 1TYIl~ with the iEXT option). \Vhen control ret'..l:=..s.. 1TYIS 
goes back and prompts for the original input agai.1.. The TiYINRESPONSES entry fur this is (CCMMEriT 
(GRIPE lI:-l£) lIST); GriIPE is a MYCh'l function of one argument (the one-iL."1e corrm:e:l~ or ~lIL 
for extended COTments). 

Si.!~estcd usc: global cOITL.~ands or opticns can be added to ~~e topicvel val'lC ofTTYH'RES?ONSC:S. Fer 
more spcdalized commands. rebind iTY INRESPONSES to (APPEND NE"'NEUTRIZS TTY I~RESPO~lSC:S) 
inside :my module where you want to do this sort of special precessing. 

Special responses are not checked for during READ-style in?ut. 

20.7.12 Display Types 

[This is not relevant in Interlisp-O] 

TrYIN determines tte type of display by calling DISPlAYTERMP, which is initially defined to test the 
value of the GTTYP jsys. It returns either rill (for printing terminals) or a small number giving TfY'C'I's 
internal code for the terminal type. Tae types TfYIN currently knows about: 

o = glass tty (capable of deleting chars by backspacing, but little else); 

1 = Datamedia; 

2 = .Heath. 

Only the DataIIledia has full editing power. OISPLAYTERMP has built into it the correct terminal types 
for Sumex and Stanford c~-npus 20's: Da~!ledia = 11 on tmex. 5 on tops20: Hea!.~ = 18 0:1 Tenex. 
25 on tcps20. You can override those values by setting the variable DISPLAYTYPES to be an ~is~ 
associating L1e GTTYP value with one of these internal codes. For example. Sumex Cisplays :orrespc:ld ~o 
DIS?LAYTYPES = «11.1) (18. 2» [althoug.hthisisacruallyco!!lpiledin~oOISPL.~'!'TER~P 
for speed1. A:lY display temina! oLl-ter than Datamedia and Heath c~J. probably safely be ~sig:led to 0'0·' 
for glass tty. 

To add new terminal types. you have to choose a number fur i~ add new code to TTYI); for it ~-:d 
recompile. The TfYIN code specifies what the capabilities of the terminal are. and how to do the prt~~iti 'We 
operador.:.S: up. down. left right. address cursor. erase screen. erase to end of line. insert ch3I:lc:e:. e~. 

For te:minals lacking an Edit key (currently only Datamedias have it). set the variable ED rTPRE r I XCHAR 
to the :lSCii code of an Edit "prefh" (Le. :lnything typed preceded by the prefix is. considered to h~ .... e ~.he 
\!dit olllln). Ifvnur EDITPREFIXCHAR is JJQ (Fscap~). you c;m type a real Escape by typln~ 3 uf ~b':!:1 
(2 w('n·( dtl, Sine:.! that tnl,,'ans "Ellit· Escapc'·. c.l kgnim:t(c argument to .HluLher command). Y ()u cr.lU!<.! 
.11~o dcnne ..In cs-:ape synenym with TTY INREAOMACROS if you wanted (but currc:1uy it dvt::m't work !~ 
filename completion). Setting EQITPREFIXCHAR for a (erminal th~t is not equipped to h3.4-:dle tte fuil 
range af ~diting functions (only the HeJL~ Jnd DatJ.ITIedia .1re CUi7C:lUV so eauiDD~d) is not ~u.::.r~.n~eed. 
to ',\!ork. l.e. L'i.e display will not ;llways be up to date: but if you can °keep rrac'!<o of whJt yo~Oie do!r.g. 
together with an occasional control- R to help out. go right ahc:ld. 

20AS 



n 
Display Types 

n 

I~ 
I , 

\ ) 

20.46 () 



o 

o 

o 

o 

CHAPTER 21 

ETHERl."~T 

Interli$? W~ Erst developed on l<Lrge timesharing machines which provided each user wit.."l ac:~s ~o 
large arnou=.ts of disk storz.ge. printers. mail systems. etc. Interiisp-D. however. was design-e~ to ru~ 0:1 

smalkr. si:l,g!e-user machines wiu10ut these facilities. In order to provide I~terlis?-D users with access :0 
all of these s~rvices. Intcrlisp-D supportS the Ethernct communications network. '~'hich allows rnt:lupie 
Interlisp-D machincs to share common printers. file SCr.'crs. etc. 

Intcrlisp- D supportS the Experimental Ethernet (3 Megabits per second) and the EL~emet t 10 Mcg:lbitS 
per second) local communications networks. These networks may be used for acCeSSiJlg file servers.. remcte 
printers. mail servers. or other machines. This chapter is divided into three sections: First. an over",.iew of 
the various Ethernet and Experimental Ethernet protocols is presented. Then follow sections docume~ting 
the functions used for implementing PUP and NS protocols at various levels. 

21.1 ETdER'fET PROTOCOLS 

The members of the Xerox 1100 family (1100, 1108. 1132), Xerox file servers and laser xerographic 
printers. along with machines made by other manufac:urers (most notably DEC) have the capability of 
communicating over 3 Megabit per second Experimental Ethemets, 10 Megabit per second E:herne:s ~d 
te!;:phone lines. -

Xerox pioceered its work with Ethernet using a set of protocols known as PARe Universal Packet (PCP) 
computer cO!r.J.-fiunication protocols. The architecture has evolved into the newer Network Syste:::s C";S) 
protocols developed for use in Xerox office products. All of the members of the Xerox llCO f.:urJiy can 
use bOL~ !'IS and PUP protocols. 

21.1.1 Protocol Layerbg 

Tne communication protocols used by the members of the Xerox 1100 family are implemented in a 
"layered" fashion. whic~ mems that different leveis of com.'!lunication are L'I:prerne:lted as Q.i:;e;-e~t 
protocol layers. Protocol Layering allows implementations of specific' layers to be' ch2.nged witi:out 
requiring changes to any other layers. The layering a!.so allows use of the sa.~e higher level soft',l,'are wiu~ 

• different lower levels of protocols. Protocol designers can implement new. types of protocols at the corree: 
protocol level for their specific application in a layered system. 

At U1C bottom level. level lcro. therc is a need to physically transmit data from une point to :mo~h~r. 
This level is highly dependent on tl1e particular transmission medium involved. There are r:1:m:t' dif.ercrl~ 
level zero protocols. and some of r.hem may contain several internal levels. At level one. the~e is a :1eej 
to decide where the 0atJ. should go. Tnis level is concerned with how to address a source and des:!~:!ti0n. 
and how to choose the correct transmission medium to use in order to route the packet towarc.s l~ 
destinJtloo. A level one packet is transmltted by encapsulating it in the level zero packet Jppropnate for 

21.1 



Level Zero Protocols 

t.11.e transmission medium seiected.- For each independent communication protocol system. a single level 
one prctocol is defined. The rule for delivery of a level one packet is that t.11.e communication sys:e:n 
must o::lly make a best effort to deliver the packet. There is no guarantee that tJ.'1e packet is c.elivered... 
tJ.1a~ the packet is not duplicated and delivered twice. or ~.hat the pa!:kets will be delivered in t.':e ~~ 
order as they were sent. . 

The addr~S5es used. in level zero and level one pzckets are not necessarily the S(L.~e. Level zero p2.Cke~ are 
specific to a particular transmission medium. For example. the destination adcress of a level zero packet 
tr:J.nsr::it:ed on one of the two idilds of Ethcrnet is the Ememct .1ddrcss (host number) of a m2.cr:i::e on 
the p~""ticui.lr network. Ll!vel onc p.:;.ckcts specifY ac!d.rcs!;CS mc~~ingfu! to the particular d~s of ;;ro:c<:cls 
being implemented. For t..;'e PliP and NS protocols. the destination address comprises a network ~u!:l::er. 
host number (not necessarily the same as the level zero host nurr.ber). and a socket nu~ber. T:-:~ socket 
number is a higher-level protocol concept. used to multiplex packetS arriving at a single m~chine dc:sti::t!d 
for separate logical processes on the machine. 

Protocols in level two add order and reliability to the level one facilities. They suppress duplic3te p:!cke~ n 
and are responsible for retransmission of packers for which acknowledgement has not been r~ei ... ecL The 
protocol layers above level two add conventions for data structuring, and implement application spec:nc 
protocols. 

21.1.2 Leyel Zero Protocols 

Level zero protocols are used to physically connect computers. The addresses used in le"'el zero prc~ocols 
are protocol specific. The Ethernet and Experimental Ethernet level zero protocols use hest numbers. 
but level zero phone line protocols contain less addressing information since there are only two hosts 
connected to the telephone line. one at each end.. As noted above, a level zero protocol does not include 
network numbers. 

The 3!vfB Experimental Ethernet [1] was developed at PARCo Each Experimental Ethernet packet includes 
a sourc~ and destination host address of eight bies. The Experimental Ethernet stand.aI:d is used by :L"lY 
machine a:tached to an Experimental Ethernet. . 

The lO~lB Ether:1et [2] was jointly developed and standardized by Digital. Intel. and Xerox. E1ch E~~e::let 
level zero packet includes a source and destination host address that is 48 bits long. 1::le Ethe:-net S~C2.rd. r) 
is used by any machine attached to an Ethernet. 

Both of the level one protocols described later (PUP a..'1d NS) can be transported on any of the level zero 
protocols described above. 

The Ether:let and ExpeQrnencal Ethernet protocols are broadcast mediums. Data packets can be sent 
on ~~ese networks to every host attached to the net. A packet directed at every host on a network is ~ 
broadcast packet. .-

Other l.t!vd 0 protocols in usc in industry include X.25. broadb~.tnd networks. :Ind Ch.10snt!L In 
JdditlOO. by using the nuuon of "mutual t!nc~pSUli.lllun··. it is posslble to treat .1 higher·lcvcl protocol (c.g. 
ARPANET) as if it were a Level Zero Protocol. 

21.2 n 



.----

ETHERNET 

21.1.3 Level One Protocols -

Two Level One Protocols are used in the Xerox 1100 Family. the PUP and t.'le NS protocols. With 
t.,.~e proper software. computers 2.ttached to Ethernets or Experil:lental Eti1er.lets can send PC?s a..."1d 
~S packets to ot..~er computers on the same network. and to computers attached to other E~~er=e:.s or 
E::peri.mental Ethernets. 

The PUP prot0Cois [3] were designed by Xerox computer scientists at the Palo Alto Researc:t Ce:1ter. The 
dC--:l:1:1tiOll and source ~dd:-essc$ in J PUP packet Jre specified using an 8-bit net',Iw'ork number, an 8-bit 
host nuober, and a 32-bit socket number. The 8-bit network nUr:1bcr allows an absu~u~c rr.ax~T.~m of 
256 PUP networks in an internet. The 8-bit host number is network relative. That is. there may be In2.J.-:Y 
host number "1"5. but only one per network. 8 bits for the hest number lh.1'1its the n~mber of hosts per 
network to 256. The socket number is uscd for furt..'er levels of addressing within a spe--.:iflc :nachine. 

h'1e Network Systems (NS) protocols [4. 51 were developed by the Xerox Office Products Division. E.Jch 
NS packet address includes a 32-bit network number. a 48-bit host number. and a 16-bit St."Cket number. 
The NS host 2nd network numbers are unique through all space and time. A specific NS host number is 
generally assig:led to a machine when it is m~ufactured.. and is never changed. In ti1e s..:.me fashion. all 
networks (including those sold by Xerox and those used within Xerox) use the same network numbering 
space-u'1ere is only one network "74ft. 

21.1.4 Higher Level Protocols 

The higher levei PUP protocols include the File Transfer Protocol (FfP) and the Leaf Protocol used 
to send and retrieve files from Interim File Servers (IFSs) and DEC File Servers. the Telnet protocol 
implemented by "Chat" windows and servers, and the EFTP protocol used to communicate w~th the laser 
xerographic pri.!lters developed by PARC ("Dovers" and "Penguins"). 

The hig...~er level NS protocols include the Filing Protocol which allows workstations to access the product 
File Sen'ices soJ.d by Xerox. the Oearinghouse Protocol used to access product Clearinghouse Senices.. 
and the TelePrcss Protocol used to communicate with the Xerox model 8044 Print Server . 

o 21.1.5 Connecting Networks: Routers and Gate'ffuys 

\Vhen a level one packet is sent from one machine to anomer. and the two machines are not -0:1 the same 
network. the packet must be passed between networks. Computers that are connected to two or more 
level zero mediums are used for this function. In the PUP world.. these machines. ha .... e been historically 
ca!1ed "Gateways." In the NS world these machines are called Internetwork Routers (Routers). and the 
function is packag~d and sold by Xerox as the Internetwork Routing Service (IRS). 

Every host that uses the PUP protocols requires a PUP address: NS Hosts require NS addresses. An 
address consists of two pans: the host number and the network number. A computer le3rns its network 
number by cOITuTlunicating with J Router or Gateway th~t is attached to L"e same network. host number 
detennination is dependent on the hardware and the type of host number. PUP or NS. 

21.3 



Addressing Conflicts with Leyel Zero Mediums 

21.1.6 Addressing Conflicts with Leye! Zero Mediums 

For convenience in the respective protocols. a level one PUP (8-bit) host number is the same as a level zero 
E;q:>er • .IIl~n~ Ethernet host nt!IDber; i.e~ when a PlJP le'iel one packet is transported by an ~pe~~e::~ 
Ethernet to another host on the same nety,'ork. the level zero packet specifies t..'e sawe host nu.=: :e: as 
41e level one packet. SiInilarly, a level one NS (48-bit) host number is the same as a level zero Ed:er:le~ 
host nUI:loer. 

\Vhen a PUP icvel one packet is tr=tnsponcd by an Ethcrnc~ or an NS level one p~ket is s~nt on 
Experin1ent.:!.l Ethernet. the level one host number cannot be used as the level zero address. bur: rather 
some me::.ns must be provided to determine the correct level zero ~ddress. Xerox soh·ed t.,is prcblem 
by specifying anou~er level-one protocol cJ.lled translation to allow hosts on m E:cpero..ment:ll E:..'1~met :0 
announce their NS host numbers. or hosts on an Ethernet to announce their PUP host nUGloers. Thus. 
both. the Ethernet and- Experinlentai Ethernet Level Zero Protocols totally support both f:mtilies of hi£her 
level protocois. 

21.1.7 References 

[1] Robert M. Metcalfe and David R. Bog~ Ethernet: Distributed Packet Switching for Local Computer 
Networks. Communications of the ACJf. vol. 19 no. 7. July 1976. 

[2] Digital Equipment Corporation. Intel Corpor~tion. Xerox Corporation. The Ethernet. A LocU Area 
Network: Data Link Layer and Physical Layer Specifications. September 30. 1980. Version 1.0 

[3J D. R. Boggs. J. F. shoen. E. A. Tall. and R. ~L Metcalfe. PUP: An Internetwork Architecture. IEEE 
Trcnsactions on Communications.. com-28:4. April 1980. 

[4] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox System Integration Staneard. 
St2.:nford.. Connecticut. Decen:ber. 1981. XSIS 038112. 

[51 Xerox Corporation. Internet Transport Protocols. Xerox System Integration Standard. St:;.mford.. 
Connecticut. December. 1981. XSIS 028112. 

21.2 HIGHER-LEVEL PUP PROTOCOL FUNCfIONS 

This section describes some of the functions provided in Interlisp-D to perform protocols abo .... e Level 
One. Level One functions are described in a later section. for the benefit of those users who wish to 
program new protocols, . . 
The following functions provide assorted network. services. 

(E THE RHOSTNUMB ER N..L\fZ) [Fu:1c:.ion1 
Returns the number of the named host. The number is 16-bit cuantitv. L~e h:g~ 
8 bits design~ting the net and the low 8 bits the host. [f SA-WE is' N r'L. ~et'..lms ~~e 
number of the local host. 

21.4 

0···· 

(~ 
\ J 



, . U
·----

(ETHERPORT NAME 

ETHERl'fET 

ERROP..FLG MULTFLG) [Function] 
Returns a pon corresponding to NAME. A "port" is a network address that fe?resents 
(potenti211y) one end of a network connection. and includes a socket n~bef in 
addition to the network and host numbers. Most network fu:lctions t.1ac ta..~e a 
pan as argument allow the socket to be zero. in which c~e a well-known SO'.:ke~ is 
supplied. A port is c1!rrently represented as a dotted pair (l'tE7'EOST • SOc:-a:7). 

NA.Y.Z may be a lit3tom, in which case its address is looked tip. or a po~ which is 
just rerurncd directly. If ERRORFLG is true. gcnera:es an error uho<;t not fot:.nd·' if 
the addrcss lookup fails. else it returns NIl. If MT.l!"TFLG is tn.le. retu~s a list of 
alternative pan specificztions for NA.\fE, rather than a singie port (:his is provided 
because it is possible for a single name in the name database to have rr.ultip~e 
addresses). If MUL TFLG is NIL and NAME has more than one add=ess., the currently 
nearest one is r.erurncd. ETHERPORT caches its results. o The SOCKET of a port is usually zero, unless the name e:cplicitly contains a 
socket designation. a number or symbolic name follo~ing a + in SA}.fE, e.g .• 
PHYLUr~+LEAF. A pan can also be specified in the form "net#host#socket", 
where each of net. host and socket is a sequence of octal digi~: the socket. but not 
the terminating .#, can be omitted. in which case the socket is zero. 

. -.~~ 

o 

(ETHERHOSTNAME PORT USE.OCTAL.DEFA[;"LT) [Function] 
Looks up the name of the host at address PORT. PORT may be a numeric address. a 
(NETHOST • SOCKET) pair returned from ETHERPORT, or a numeric designation 
in string form. unet#host#sockeC, as described above. In the ti.."'St case, L1e net 
defaults to the local net. !f PORT is NIL, returns the name iQf the local hest If U.~ere 
is rio name for the given port. but USE.OCTAL.DEFAULT is crue. the function rerures 
a su-;ng specifying the port in octal digits, in the form" NET#HOST#SOCi-(ET", '''''ith 
SOCKET omitted if it is zero. Most fhnctions that take a port argument ~i1l also 
accept ports in this octal format. 

(PRINTERSTATUS PRINTE&'lMfE) [Function] 

(EFTP HOST FILE 

Returns status of PP..INTERN.AJ.'-!E. the name of a Press Printer, in the form (CODE 
. "readable string"). Returns NIL if the printer does not respond in a 
reasonable tihle, which can occur if the printer is very busy, or does not impieoent 
the printer status service. CODE is interpreted as follows: 

1 Printer is not spooling (down for servicing) 

2 Printer is idle 

3 Printer is busy (printing or accepting a file) 

PRINTERFLG #SIDES) [Function1 
Transmits FiLE to HOST using the EFT? protocol. The F'rLE need not be cpe:l on 
entry, but in any case is closed on exiL The principal use of the E F.T P protc)(:oi 
is for transmitting Press files to a printcr. If PRINTERFLG is non-N t L. assumes 
that HOST is a printer and FrLE is a press file. and takes additicnal action: it 
perfonns a PRINTERSTATUS for HOST and prints !J.~is information to the prompt 
window: and it fills in the ··printed-by" field on the last page of the press file wiL'1 
USERNAME. and the ··copies" field with (OR (FIX? PRISTERFLG) 1). For 
printcrs capable of duplex printing. #SIDES may be l or 2, meamng pnnt one- or 

21.5 



Higher-level NS Protocol Functions 

two-sideci respectively; NIL means use the printer's default. EFT P rerurns only 
on success; if HOST does net respond.. it keeps trying. 

21.3 HIGHER-LEVEL NS PROTOCOL Fl.JNcrIONS 

The following is a description of the Intcrlisp-D facilities for using Xerox SPP 3..fld Courier protocols and 
the services based on them. 

21.3.1 SPP Stream Interface 

This section describes the stream interface to L.'1e Sequenced Packet ProtocoL 

(SPP. OPEN HOST SOCKET PROBEP NAME) [Function] 
This function is used to open an SPP stream. If HOST is specified.. an SPP connection 
is initiated to a:OST with remote socket SOCKET. If both HOST and PP..OEEF zre 
specifieci then the connection is probed for a response before ret'.lming L'1e stre:ml: 

.N I L is rerurned if HOST doesn't respond. If HOST is NIL. a passive connection is 
created which listens for an incoming connection to lccal sc<:ket SOC'lGT. SA-WE is 
a mnemonic name for the connection process. mainly useful for debugging. Tne 
function returns an Spp stre~ for which the standard stream oper:;.tior~ SIN. 
BOUT, CLOSEF. and EOFP are defined. In particular. COPYBYTES may be used 
on SPP streams. 

The SPP stream that is returned is open for both input and ou~put. since SPP 
connections are bidirectional. However. the underlying stream I/O functions use 
oniy a single buffer~ Some care, must therefore be ~xercised to insure that my 
buffered OUtput data is forced out before any new data is reJ,<i and that all 
data up to a message bound2!y has been read before any new cilu is writ:en. 
Functions described below are used for this purpose. \Vhile t.b.ese restJ.-lctions m2.y 

n· 

seem severe. in practice most use of SPP streams is done by the Cou::er rer:1ote l\/) 
procedure call facility, rather than directly by the prog:!"~"TIrrler. Courier conforms 
to the model of alternating exchanges of messages quite well. 

SPP . USER. TIMEOUT [\'ariabie] 
Specifies the time. in milliseconds.. to wait before deciding that a hos~ isn't 
responding. 

(SPP.FLUSH STREAM) (Functionl 
This function forces any buffereq output data to be transmitted. 

(SPP. SENOEOM sTIle.\.\{) [Function} 
'Ibis function forces out any buffered data and causes an End of Yicssage indic.1uo~ 
to be sent. 

(SPP . CLOSE STREAM ABORT') [Function] 
nlis function closes an SPP stre3lI1 using the reliable termination protocol. If 
ABORT? is not NIL. the stre.:un is closed even if there is an outst.lnding bulk cat:l 

21.6 l)····· 



o 

o 

o 

ETHE~"lET 

-
transfer in progress. 

(S?P .DSTYPE STREAM DSTYPE) [Function] 
Tnis f~nction gets or sets the current eataStream type. If DSTYPE is specifed. all 
subsequen.t packets L'1at are sent' win be of t..i.is datastrea..T!l type. until tt~ next call 
to S p P . 0 S TY P~. Since this affects the current parJ.ally-iiiled packet. t,1.e s~e2..7l 
should probably be 5ushed (via SPP. FLUSH) before this function is called. If 
DST"fPE is not specified.. this function returns the dat.1SU"ea.~ type of :he C:.lrren! 
packet being read. 

(SPP. READ? STREAM) [Fu:lctlonJ 
This function rcrurns T or NIL depending on whether or not t.~ere is data to be 
read without waiting. 

(SPP. EOFP -STREAM) [Function1 
This function returns T or NIL depending on whether or not the connection has 
been closed. 

(SPP. EOMP STREAM) [FunctionJ 
This fucction returns T or tl I L depending on whether or not an End of ~·{essage 
indication has been reached. TIlls will only be true after the last byte of data. in 
the message has been read. 

21.3.2 Courier Remote Procedure Call Protocol 

(COURIER. OPEN HOSTNAME SERVERTYPE NOERRORFLG NAME) [Function] 
This function opens a Courier connection to the specified EOST and rerur....s an S?P 
stream. If HOST is a LIT ATOM. st.~g, or list representation of a a~~ghouse 
name. SERVERTYPE should specify what type of server EOST is, so ~,at t.~e na..-ne 
may be looked up in the Clearinghouse database. Currently. SE~"Z~TY?E mus: 
be one of PRU-lTSERVER or FILESERVER. Normally. this function will retry u"1t: 
connection \MAXETHERTRIES times before generating an error. If SOER..~:.O?.Fz.G 
is specUieci NIL will be returned if the connection fails. The Courier conr.ectlon 
will be given NA}.{E, if specified. 

(COUR.IERPROGRAM NAME ••. ) [NLambda NoSpread Function] 
Tnis function is used to define Courier programs. The syntax is . 

{COURIERPROGRAM name (programNumber versionNumber) 
TYPES 
{(typeName typeDefinition) 
... ) 

PROCEDURES 
«procedureName ARG~ (argType ... ) 

... ) 
ERRORS 

RESULTS (resultType ... ) 
ERRORS (erro~Name ... ) 
procedureNumber) 

«errorName ARGS (argType .. ~) errorNumber) 

21.7 



Courier Template Language 

... ) ) 
) 

Type definitions are written in the Courier template language~ described below. 
Courier types may either be type' names that are defined in ~'1e curre~t Cour:er 
progra.tr~qualifiedna=csofthe form (otherCourierProgram • typeNa~e). 
or explicit definitions in the template language. 

21.3.2.1 Courier Template Language 

Tnis section describes how Courier types are described in rnterlisp~ and how corresponding values are 
represented. (See also the Courier protocol definition.) 

P:edefined types: 

BOOLEAN is represented by T and NIL; STRING is represented by strings; CARDINAL INTEGER. 
LONGCARO INAL. LOr.JG INTEGER, and UNSPECI F lED are represented by integers. 

ConsLructed types: 

(ENUMERATION (NAME VALUE) ••• (NAME VALUE» 
(ARRAY LENGTH TYPE) 
(SEQUEUCE TYPE) 
(RECORD (NAME TYPE) ••• (NAME TYPE» 
(CHOICE (NAME VALUE TYPE, ••• (NAME VALUE TYPE» 

Representation of constructed types in Lisp: 

Objects of Courier type ( ENUME RAT I or~ (UNKNO\~N 0) (RED 1) (BLUE 2}) are represented by tJ.'le 
litatoms UNKNC~/N. RED. 3.1"1d BLUE. 

Objecrs of Courier type (ARRAY 3 INTEGE R) are represented by listS of three integers. such as (10 1 
59 ). 

() 

o· 

(~\ 

Objects of Courier type (SEQUEr~CE BOOLEAN) are represented by arbitrary-length lists of T alld NIL. \ ) 
such as (N I L T T NIL T) . 

Objects of Courier type 

(RECORD (NETWORK' LqNGCARDINAL) 
(HOST (ARRAY 3 CARDINAL» 
(SOCKET CARDINAL» 

Jre represented by liste; like « NETWORK 174) (HO·ST (100 24 363» (SOCKET 20». 

Objects of Courier type 

(CHOICE (STATUS a (ENUMERATION (BUSY 0) (COMPLETE· 1») 
(MESSAGE 1 STRING» . 

arerepresentedbylisrslike(STATUS COMPLETE) or (MESSAGE "Your request has completed.-). 

21.3 () 



o 

o 

o 

(J 

ETHERl'lET 

(COURIER.CALL STREAM: PROGRAM PROCEDURE ARC! ••• ARGN NOERRORFLG) 

[NoSpre.'ld F~.mctionl 
Tnis function calls the remote procedure PROCED!lP.E of the Courier progr~w:1 
PROGR.AM. STF~AM is the SP? stream returned by COURI ER. OPEN. The argume!ltS 
shou!d be Lisp values appro;>riate for the Courier types of the correspcndL"1g fotmai 
para..w:1eters of Ll-}e procedure (de5ned under the ARGS property for ti.1e proced:.!re). 
Returns results of the Courier types defined under the RESUL TS prope~y. If there 
is only a singie lesult. it is rerurne~ ot.1.envise a list of results is re:urned.. The· 
NOERRORFLG argument cont:ols the treatment of remote eir01S. If NOZP..P.ORFLG 

is NIL. a Lisp error will be genera~ed.. [f ;-:OERROPILG is T. U I L will be re!:umed 
as the result of the call. If NOER.ROrlFr..G is RETURNERRORS. the result of the call 
wili be a list consisting of the atom ERROR followed by the Courier name of the 
error and any arguments. 

Examples: . 

{COURIERPROGRAM EXAMPLEPROGRAM (17 1) 
TYPES 

) 

«PERSON.NAME (RECORD (FIRST. NAME STRINGl 
(MIDDLE (CHOICE 

(NAME a STRING) 
(INITIAL 1 STRING») 

(LAST.NAME STRING») 
{BIRTHDAY (RECORD (YEAR CARDINAL) 

(MONTH STRING) 
(DAY CARDINAL»» 

PROCEDURES 
«GETBIRTHOAY ARGS (PERSON.NAME) 

RESULTS (BIRTHDAY) 
3» 

Defines EXAMPLEPROGRAM to be Courier program number 17. version number 1. The example defines 
two typ~5. PERSON. NAME and BIRTHDAY. and one procedure. GETS IRTHOAY. whose procedure nurr..ber 
is 3. Tne following code could be used to call the remote GETBIRTHOAY procedure on the host 'tvith 
ac!dress HOST ADDRESS. 

(SETQ STREAM (COURIER.OPEN HOSTADDRESS» 
(COURIER.CALL STREAM 

(QUOTE EXAMPLEPROGRAM) 
(QUOTE GETBIRTHOAY) 
{ QUO T E « FIR ST. N A r~ E .. E ric". ) 

(MIDDLE (INITIAL "C"» 
(LAST.NAME "Cooper"»» 

COUR I ER. CALL in this example win rerum a value such as 

«YEAR 1959) (MONTH "January") (DAY 10» 

21.9 



M~ipul~ting Courier Representaticns 

21.3.2.2 l'rlznipuiating Courier Representations 

Several Courier prograt:lS use values of type (SEQUEUCE UNSPECIF lEO) to handle user-defbed or 
oth.c~Jiise extensible object types. Often it is necessary ·to convert bet,.aleen a list of 16 bit wores (the 
sequence of UNS?ECIF lEDs) and a Courier value. The following function ~~ould be used for :his 
purpose. 

(COURIER. READ. RE? LIST. OF. WORDS PR.OGRAM TYPE) [Fun:::ion1 
This fur.ctio:l returns Lite Lisp representation of the Ccurier object of t:ipe r.rp:; 
defined in the Courier program PROGRAM whose underlying Courier represe:uation 
is LIST. OF. ·'NORDS. 

21.3.2.3 U~ing Bulk Data Transfer with Courier 

Two Courier types are treated specially when they appear in the argument list of a procedure. They are 
BULK.DATA.SINK and BULK.DATA.SOURCE. A Courier procedure ma.y have at most one such sini or 
source parameter. The result of a COUR I E R • CPILL on such a procedure is an SPP stre3!IL open fur ir.put 
or output according to whether the bulk data paramter is a sink or a source. ~1.e client uses t..'1is srre3.4l 
to re';eive or send the appropriate bulk data object If the object consists of bytes. this may be done 
wit..~ the usual streWl I/O functions such as COPYBYTES. If the data is a stre3II1 of Courier obj~ts. the 
following function should be used.. 

(COUR lER. READ. BULKDATA STREAM PROGRAM TYPE) [Function] 
.STREAM is "the bulk data stream returned from COUR I ER. CALL. TYPE is the type 
of each Courier object in the stream. PROG~\{ is the Courier progr::un in which 
TYPE' is defined. A list of objects of Courier type TYPE will be rerurned. 

The observant reader may wonder what happens if the Courier procedure returns one or more results. in 
addition to taking a bulk data pa..""alIleter. If a bulk data stream is returned to the caller. what happens 
to t..~e r~sults? The answer is that the results are collected when the bulk data stream is closed.. after the 
client has transfer7~d the bulk data. The disposition of u1.ese results depends on what act'.lal pa..-.:.meter 

() 

is supplied for t..~e formal bulk data paraoeter at the tL."'I1e of the C2.iL If it is fd I L. L.1e res:.!its. if my, (\ 
will be ignored. Otherwise. the value is assumed to be a function which to be applied to the :esul:.5. A ) 
FUNARG may be used for full generality. 

For example. the Courier procedure to print an Interpress master uses a bulk data. source tb tra..Tlsfer 
tt.'1e master. and also ret'..lrns ;]. request identifier. Tne Lisp function which performs the C au R IE R . CA L L 
passes a functional to. be called on this request identifier after the stream is closed and printillg begins: 
this functional in turn spawns a process which monitors the progress of me job. 

(COURIERT~ACE FLG REGION) [Function] 

21.3.3 NS Printing 

This function controls the tracing of Courier remote procedure calls. ft is similar 
to PUPTRACE and XIPTRACE. but operJtes at the call/return level rather tha:! tile 
packet leveL" . 

This section dcscri~es the facilities that are available for printing IntcqJress masters on NS pnnr.scrvcrs. 

21.10 n 



o 

o 

o 

NS • DEFAULT. PRINTER [Variabie] 
The va1~e of this variable is used whenever no printserver is specified for t.1e 
functions described below. If its value is a LIT ATOM, string, or Oearinghot:se 
name, t1:e Clearinghouse is queried to find the address of the printserver with ±at 
name. If its value is MIL, it will be set automatically to some p~tse~:er ~ the 
local Clearinghouse domain. In environments where there is no Oe~-ing..1ot.!se. L.~e 
value of NS. DEPAUL T • PRINTER must be an appropriate NSADCRESS record. 

(OPEN. NS. PRINTING. STREAM PRINTER DOCLr.!ENT.NAME DOCUMENT.CREATION.DATE: SE:-."DEP.. . .'IAME 

R.SCIFrE~VT.NA:f\!E #COPfES MEDIUM PRIORITY STAPLE? T\VO. SIDED ? NO;,v:4.TCIIDOC') [Function} 
This function returns a strcmn for printing an Interpress master on PR~·7"ER cr 
on NS. DE FAUL T • PR I NT ERas mentioned above. The caller should write t."1e 
Interpress data to the stream and then close it using C LOS E F. Printing begins after 
t.'1e stream is close~. 

DOCUMENT.NAME is the document name to appear on the header page (a string). 

DOCID.!ENT.CREATION.DATE is the creation date to appear on the header page (a 
Lisp integer date). The default value is the time of the calL 

SENDER. NAME is the name of the sender to appear on the header page (a string). 
The default value is the name of the user. 

RECZPIENT.N.A.\!E is the name of the recipient to appear on the header page (a 
string). The default value is the name of the user. 

#COP!ES is the number of copies to be printed. Tne default value is l. 

MEDIUM is the medium on which the master is to be printed. This must be a 
Courier value of type MEDIUM, which is a list of the form (PAPER (KNOWtL SIZE 
NAME». where ~JA~1E is one of the LITATQMs US. LETiER. US. LEGAL. AO 
through AlD. ISO. 60 through ISO. 610, and J IS. BO through J IS. 810. The 
default value is determined by the printer. 

PRIORITY is the priority of this print request (LOW. NORMi~L. or HIGH). Tne default 
value is NORMAL. 

STAPLE? is T or NIL depending on whether the document should be stapled. The 
default value is NIL. 

TWO.SIDED? is T or NIL depending on whether the document should be prir:ted 
on two sides. The default value is NIl. 

NOWA.TCHDOG? is non-N I L if the client does not want a watchdog process to 
monitor the status of the printing job. 

(NSPRINT PRINTER FILE.NAME DOCUMENT.NAME DOCUMENT.CREATION.DATE SENDER. NAME 

.~ECZPIENT.NAME #COPrES MEDIUM PRIORITY STAPLE? TWO.SIDED:') [Function] 
This fi..mction prints an Interpress master on PR.INTER or on NS. DE FAUL T . P R I ~;TE R 
as mentioned above. FILE.NAME should be the name of an Int-:rpress file to 
be printed. The remaining argumcnts are all optional. and are .1S ccscnt'lcd 
for OPEN. NS. PRINTING. STREAM above. DOCtJMEf\,·T .• ro..·A.ME defaults to the full 
name of the file. and DOCUMENT.CREATION.DATE defaults to the creation date of 

21.11 



n 
the file. 

(r~SPRINTER. STATUS PRINTER) [Funct:cn] 
• _ This funcj,on returns the Courier value resulting from the GET • PRIl~TER. S7;" TUS 

calL-

(1JS?RINTER. PROPERTIES PP..INTER) [Fur::~onl 
This function retuI':lS the Courier value resulting from L.'1e GET. P R I NT E R • ? RO? E R i I r: s 
cill. 

21.3.4 Clearinghouse 

TI-J,s section describes functions that may be used to access Clea..'inghouse servers. Note that L"lese 
fucctions are used by the NS printing functions if the printserver is specified by name rat.'1er than 2ddress. 

(START. CLEARINGHOUSE RESTARTFLG) [Function] 

CH.NET.HINT 

This function enables C1earinghouse access. It perfonns an expanding rL."g 
broadcast in order to find the first Clearinghouse server. If RESTARTFLG is non
NIL. u.'1e c~che of Clearinghouse information is invalidated and a new brcaCc:lSt is 
done. Tnis may be necessary if the local Cle2Iinghouse server goes do\'tu. 

[Variable] 
Hint as to which network the local Clearinghouse server is on. for use by 
START. CLEARINGHOUSE above. If CH. NET. HINT is bound to a network 
number. that network will be tried first. followed by the others in the routing 
table. If the local Clearinghouse server is- not on the directly connected network. 
setting C H . NET . HI NT to t..~e proper network number in the local I NIT file will 
speed up START. CLEAR I NGHOUSE considerably. 

(SHOW. CLEARINGHOUSE) [Function} 
This function displays the structure of the cached Oearinghouse informatioc in a 
window. Once created.. it will be redisplayed whenever the cache is updated. T.-:e 
structure is sbown using GRAPHER". 

(SHO\I. ENTIRE. CLEARINGHOUSE) [Fur:cticn1 
This function attempts to cache infonnation about ail the Clearinghouse dcr:::lins. 
so that Li1e Clemnghouse structure window will show the entire dztabase. 

CH.DEFAULT .DOMAIN [Var:abieJ 
This is a string specifying the default Clearinghouse domain. If it is NIL. it ',I,"iil 
be set automatically by START. CLEARINGHOUSE. O~'1erwise. it should be set in 
an I NIT file. 

CH.DEFAULT .ORGANIZATION [Va:iJoiel 
"I11is is a $tring specifying thc dct3ult Clcaringhouse orgJnizJtion. If it is NIL. it 
will be set automaucJ..lly by START .CLEARINGHOUSE. Other.s.'ise. it should be set 
in an I NIT file. 

(CH. ORGANrZATIOr~S ORGANIZATI0N?ATTERN) [F~ncuc~J 
This function rerurns the list of ofgJ.nizJtion names in the Cle:uinghouse d.J:.lb~se 
matching ORGANIZATIONPATTERN. Tne default pattern is t •• ". which ITU~t~s 

21.1~ n 



u 

ETIiERl'fET 

(CH. DOMAINS DO.Y..A!NPATTERN) [FunctionJ 
ThJs function retures the list of domain names in the Clearinzhouse Cz:z:-ase 
matching DOMAJNPATTERN. The default pattern is ".", which rn~tches anytl-bg. 

(CH. ENU~iERATE OBECTPAT7ERN PROPERTY) [F:..:.:!cticn] 
This function returns the l~st of object names matching CB.!ECTPAT7~R:'" a:.-:d 
having the property PROPERTY. Currently. PROPSRTY must be one of USE R. 
PRI~JTSERVcR. FILESERVER. and ALL. For ~xau:pie. 

(CH.ENUMERATE "·:PARC:Xerox" (QUOTE USER) 

will return a list of the names of users at Xerox PARCo 

(CH. LOOKUP. USER NAME) [Function] 
11tis function returns the user information for the first user whose name matches 
NAME. 

(LOOKUP. NS. SERVER NAME TYPE) [Function] 

21.3.5 NS Filing 

This function returns the NSADDRESS for the first server whose name matches 
NAME and has the property Tl'PE, which must be PRINTSERVER or F.I.LESERVER. 

Tnis section describes functions that may be used to access NS file servers. 

21.3.5.1 Pathn2mes and NS Fileservers 

The NS Filing protocol does not support conventional file system pau1.names directly. However. the 
- In!erlisp-D soft-ware that supportS access to NS fileservers uses IFS-styie pathnames ~d does L!e 

appropriate m~pping in software. One L~portant difference. however. is th~t fileserver. d.i:-ecwry. a.-:d. Be 
names may have spaces in them, each of which must be preceded by a percent sign. Tne na.TTIe 0:· 3...." 

NS fileserver is required to have a colon in it. Thus. even if the fileserver is in the local Oearingnouse 
demain, z. trailil1g colon should be appended to the na=nc. Case is not significant. For ex~~ple. 

{LISPFILE:}<LISPORAWER)XYZ;3 

is a valid n~~e for a ~le on the NS fileserver "L; spF; 1 e: Pare Pl ace: Xe rox". 

(NSDIRECTORY PATTERN). [Fu~ctionJ 
This function returns a list of file names in PATTERN, which must be the ~S 
path name for a directory. (Any wildcards in the name field of the paL~nJl11e .?ore 
ignored.) 

. (NSCREATEDIRECTORY HOST/DIR) [Func:.icnJ 
TI:is fur.ction creates a new directory with pathnarne HOST/DIF?. Top leyei di:-ector:es 
(,"file dr:lwers") cannot be created in this way. 

21.13 



Level One Ether Packet Format 

(CLOSE.NSFILING.CONNECTIONS) 
This function closes any open connections to NS fileservers. 

[FunctiOI!] 

21.4 LEVEL ONE ETHER PACKET FORl'VlAT 

The datatype ETHERPACKET is th.e vehicle for all kinds of packets tr...nsmitted on an Ethc~et or 
Experimen:ai Eu'1emet. An ETHERPACKEi cont.:lbs several fields fer use by the Ethernet ~-ive:"'5 ~!d a 
large. contiguous data area making up the data of the level zero packet. The first se~erai worc!s of the 
area are reserved for the level one to zero encapsulation. and the remainder (swrili"'lg ae field E P3CDY) 
m41kc up the level one p .. lckct. Typically. e~ch level one protocol defi!le5 a BLOCKRECORO th~t o'"erL:lYs 

n 

the ETHERPACKET starting at the EPBOOY field. describing the format of a packet fur t.:.~~t p~Jcular 
protocol. For example. the records PUP and X I P define the format of level one packetS in the PCP and n 
N'S protocols. 

The extra fields in the beginning of an ETHERPACKET have mostly a fixed interpretation over all t'rot~ols. 
Among the interesting ones are: 

EPLINK A pointer used to link packets. used by the SYSQUEUE mechanism (page 21.25). 
Since t,.'tis field is used by the syste:n for maintaining the free packet que:le and 
ether transmission queues. do not use this field unless you understand it. 

EPFLAGS A byte field that can be used for any purpose by the user. 

EPUSERF IELD A pointer field that can be used for any purpose by the user. It is set to NIL when 
a packet is released. 

EPTRANSMITTING A flag that is true while the packet is "being transLI"ined", i.e~ from the time ttat 
. the user ins~cts the system to t:ra..~smit the packet until the packet is gat.~ered U? 
from the transmitter's finished queue. While this flag is true. the user must net 
modify the packet. 

EPREQUEUE A pointer field that specifies the desired disposition of the packet 2.fter tr2.r..sW:ssicn. r\ 
The possible yalues are: r~ I L means no special creatffient: F RE E ceans :h,~ ~2.Clce: '\ ) 
is to be released after transmission: an instance of a SYSQUEUE me3..:lS u:e packe~ 
is to be enqueued on the specified queue (page 21.25). 

The normal life of an outgoing Ether packet is that a program obtains a blank packe~ fiIls it in .1C::ordi:1g 
to protocol. then sends the packet over the Etb.emet. If the packet needs to be retained for possible 

. retr~smission. the EPREQUEUE field is used to specify a queue to place the packet 00 after its transm:ssion. 
or me caller qangs on to the packet explicitly. 

There Jrc rcddinitions. or "overlavs" of the E THE ~PACK E T record specifically for use with the PL'P ..mc 
NS protocols. "l1H! followmg sections de~cribe thost! records and the handling of the PCP and ~S It!vd 
one protocoLs. how to add new level one protocols. and the queueing mech410ism .1ssoclat~d w1G"! u"!c 
EPREQUEUE field. 

21.14 cl 



·-o ETHERNET 

21.5 PUP LEVEL ONE FUNCTIONS 

Tne fun~Jons in this section are used to implement level two and higher PUP protocels. That is.. they 
deal Wi~1 ser.ding and receiving PUP packets. It is assumed the reader is fauJliar with L,e fCI1Uat and 
use of pups. e.g .. from reading refere:1ce [3} in section 21.1.7. 

(RESTART.ETHER) [Fu=ctio~ 
This function is intended to be invoked from the executive on those ra.:-e cc:2.S:cns 
when the Ethernet appears compl,~te!y unresponsive. due to Lisp h.:l':i!'!~ ~G~tcn 

into a bad state. RESTART. ETHE R reinitiaiizes Lis?'s Emernet c..ivcr.s>. just as 
when the Lisp system is started up following a LOGOUT, SYSOUT. etc. Th:s abo:-ts 
any Ethcr:let activity and clears several internal c2.Cnes. including the rOlJtir.g uole. 

o 21.5.1 Creating and IVI:maging Pups 

o 

There is a record PUP that overlays the data portion ofan ETHERPACKET and describes the format ofa pup. 
Tnis record defi.'1es t..~e following numeric fields: PUPLENGTH (16 bits), TCONT ROL (tranSIrJt controL 8 bitS. 
cleared when a PUP is transmitted), PUPTYPE (8 bits), PUPID (32 bits), PUPIDHI and PUPIDLO (16 bits 
each overiaying PUPID). PU?OEST (16 bits overlayed by 8-bit fields PU?DESTNET and PUPOESTHOST). 
PUPOESTSOCKET (32 bits. overlayed by 16-bit fields PU?OESTSOCKETHI and PUP-DESTSOCKETLO), 
and PUPSOURCE, PUPSOURCENET. PUPSOURCEHOST. PUPSOURCESOCKET, PUPSOURCESOCKETHI. 
and PU?SOURCESOCKETLO. analagously. The field PUPCONTENTS is a pointer to the start of t,1e ciau 
portion of the pup. 

(ALLOCATE. PUP) [Fu:lction] 
Returns a (possibly used) pup. Keeps a free pool, creating new pups ocly when 
necessary. The pup header fields of the pup returned are guaranteed to be zero, 
but there may be garbage in the data. portion if the pup had been recycled. so t..~e 
caller should clear tt.'le data if desired. 

(CLEAR?U? Pup) [Function] 
Clears all information from PUP, including the pointer fields of the ETHERPACKET 
and ts.'1e pup data portion. 

(RELEASE.PUP Pup) [Function} 
Releases PUP to the free pool. 

21.5.2 Sockets 

Pups are sent ind received o~ a socket. Generally, fer each "conversation" between one machine and 
another'. t..'e:e is a distinct sC:ckct. When a pup arrives at a machine. the low-level pup soft'.\'are eXl.l1ines 
the pup's destination socket number, If there is a socket on the machine with th3.t number, the ii1:ommg 
pup is handed over to the socket: otherwise the incoming pup is discarded. V·lhen a user process !rllt!a:cs 

. a conversation. it gene:-al1y selects a large, random socket number different from any ether in use cn 
the machine. A server process. on the other hand. provides a specific sen'ice at a "well-known" socke~ 
usually a fairly small number. In the PUP world. advertised sockets are in the range 0 to lOOQ, 

21.15 



Sending and Receh'ing Pups 

(OPEUPUPSOCJ<ET SKT# IF~..ASH) [Fu:lc::ionj 
Opens a new pup socket. If SKT# is ~J I l (the normal case). a socket numbe: is 
chosen automatically, guar~'teed to be unique~ and probably different from 2..!ly 
socket opened this way in the last .18 hours (the low half of tL'le time of Cay clock 
is sampled). 

If a specific local socket is desired. as is typically the czse when imp ie:ne:lti.r:g a 
server. SICT# is given. and must be a (up to 32·bit) ncmoer. r:CLASE i:;.di~:es 
wh~t to GO in the c~e that the design~tcd socket is alre~dy in USc: if:~! L. 
an error is generated: if ACe E PT. me secket is q~Jie:.!y re:ureed: if FA I L. :"'-:'~:l 
OPENPUPSOCKET rerun:s rill WiLf:lOut c3:.J.sing an erro!". No:e t...':at ··weil·~nown" 
secket numbcrs should be avoided unless the c~ler is actually izlple!:l~:l[.ing oce 
of the services adycrtised as provided at the socket. 

n 

(CLOSEPUPSOCKET PT.JPSOC NOERRORFLG) [Functiun1 n 
Closes and releases socket pupsoc. If pupsoc is T. closes all pup sockets t L.'1is " 
must be used with cautio~ . since it will also close system sockets!). If FL"PSCC is 
already close~ an error is generated unless NOERRORFLG is true. 

(PUPSOCKETNUMBER PU?soc) [Function] 
Returns the socket number (a 32·bit integer) of pupsoc. 

(PU?SOCKETEVENT pupsoc) [Function] 
Returns the EVENT of pupsoc (page 18.30). This event is notified whenever a pup 
arrives on PUPSOC. so pup cliedts can perfonn an AWAIT. EVENT on this eve=t if 
they have nothing else to do at the moment. 

21.5.3 Sending anti Receiving Pups 

(SENOPUP PUPsoc pup) [Function] 
Sends PUP on socket pupsoc. If any of the PUPSOURCESHOST. PUPSOURCENET, 
or"PUPSOURCESOCKET fields is zero~ SENOPUP fills t...~em in using the pup address 
of this machine a..'1d/or the socket number of pupsoc. as neeced. 

(GETPUP PUPSOC WAIT) [Function} 
Returns the next pup that has arrived addressed to socket PUPsoc. If u':ere are no 
pups waiting on ptrpsoc, then GETPUP rcrurns NIL. or waits for a pup to a.-rive if 
WAlT is T. If WAlT is an integer. GET PU P interprets it as a number of millisecones 
to wait. finally rerurning NIL if a pup does not arrive within that time. 

(OISCARO?UPS soc) • . [Function} 
Discards without· examination any pups that have arrived on soc and not yet be~n 
read by a GET PUP. '. . 

(EXCHANGEPUPS soc OUTPUP DUMMY IDFILTER TIMEOUT) (Functlonl 
Sends OUTPuT on soc. then waits for a responding pup. which it ren..tms. if 
IDPlLTER. is true. ignorcs pups whose PU PI 0 is different from thac of O\}T?':..7'. 

TTMEOUT is the length of time (msccs) to wait for J response before gIving up .lnd 
rcturning N r L. TP..1EOUT tkt':.lults to \ETHERT IMEOUT. EXCHANGEPUPS ~:s~.lrjs 
withuut ~xaminauon ..lny pups that Jrc currently waiting on SOC before OL'7?r..:? ~~~ 

21.16 

(j 

(j 



() 

o 

o 

o 

ETHERNET 

sent. (Dt"MMY is ignored; it exists for compatibility with an earlier impleme:lta:ion). 

21.5.4 Pup Routing Information 

Ordi~ari1y, a progra,.~ calls SENOPUP and does not worry at all about the route take~ to get the ~up to 
its destination. There is an internet routing pi:'ocess in Lisp whose job it is to main:.aiI~ in:ormatio:l about 
the b~5t routes to networks of interest However. there are some algorit.h.: .. ns for which ro~ting ir:fo~a:lo~ 
anj/or the tO~0lcgy of the net are explic:tly desired. To u'1is end. tL'1e following functions are sU;j:iied.: 

(PUPNEi • DISTANCE NET#:) [Ft!~ctioni 
Returns the "hop count" to network ."lET#. i.e .• the numbcr of gateways r.hrct.!gh 
which a pup must pass to rC3ch r,rET#, according to the best routing int\.'rm~tiun 
known at this point. The local (dircctly-connected) network is considered to be 
z.ero hops away. Current convention is that an inaccessible network is 16 h\.lpS 
away. PUPNET.OISTANCE may need to wait to obtain routing information fro:n 
an Internetwork Router if NET# is not currently in its routing cache. 

(SORT. PUPHOSTS. BY .0 ISTANCE HOSTLIST) [Function] 
Sor~ HOSTLIST by increasing distance. in the sense of PUPNET. 0 ISTANC£. 
HOSTLIST is a list of lists. u,e CAR of each list being a 16-bit Net/Host adc.ress. 
such as returned by ETHERHOSTNUM8ER. In parJcular. a list of ports ((nethost . 
socket) pairs) is in this format. 

(PRINTROUTINGTABlE TABLE SORT FlLE) [Functicn] 
Prints to FiLE the current routing cache. The table is sorted by network nu:nber 
if SORT is true. TABLE = PUP (t.~e default) prints the PUP routing table; TABLE 

= NS prints the NS routing table .. 

21.5.5 Misc~llaneollS PUP Utilities 

(SETUPPUP PUP DESTHOST DESTSOC"~ET TYPE ID SOC REQt"EUE) [Fun:tion] 
Fills in various fields in pup's header: its length (the header overhead le::g:.~: 
assumes data length of zero). TYPE, TD (if In is fl Il. ge:terates a new o~e itself 
from an internal 16-bit counter), destination host. and socket (IJESTECST may 
be anything u~at ETHER?ORT accepts: an explicit nonzero socket iIi DSSTEOST 

overrides DESTSOCKET). [f soc is not supplied. a new socket is ope:1ed.. RE'Qt-:::::.-::: 
fills the packets EPREQUEUE field (see above). Value of SETUPPUP is L1e socket. 

(SWAPPUPPORTS PUP) [FunctionI 
Swaps the source and destination addresses in "pUP. This is useful in sLT.~ie ?a:ket 
.exchange protocols, where you. want to respond to an input packet by didCling u~e 
data pOffion and then sending the pup bac.:k whence it came. 

(GETPUPWORD PUP WORD#) [Function] 
Returns as a 16-bit integer the contents of the WORD#: th word of Pt7'S ciat."l 
portion. counting the first word as word zero. 

(PUTPU?\'JORO pr.JI' WORD# VALUE) (Function] 
Stores 16-bit integer ~\LUE in the wORD#th word of pup's dat.:i portion. 

21.17 



PUP Debugging Aids 

(GETPUP3YTE PUP BYTE'#:) [Function] 
Returns as an integer the contents of the BYTE#th 8-bit byte of P!7P'S data portion.. 
counting L.i.e first byte as byte zero. 

(PUTPUPBYTE PU? 3YT'Z# VALUE) [FU:lction] 
Stores ~\Lti'E in the BYTE#th 8-bit byte of pup's data portion. 

(GETPU?STRlliG PTJP OFFSET) (FcIlcticn] 
Returns a string consisting of the characters in PL7'S data portion s~~~ at byte 
OFFSET (default zero) through the end of PUP. 

(PUTPUPSTRING PUP STR) [Function] 
Appends STR to the data portion of PUP, incrcmentingpup's length appropriately. 

21.5.6 PUP D~bugging Aids 

'Tracing facilities are provided to allow the user to see the pup traffic that passes through SE NOPUP and 
GETPUP. The tracing can be verbose, displaying much information about each packe~ or te~~, which 
shows a concise <6picrure" of the traffic. 

PUPTRACEFLG 

PUPIGNORETY?ES 

PUPONLYTYPES 

PUPTRACEFILE 

[Variable] 
Controls tracing information provided by SENOPUP and GETPUP. Legal values: 

NIL No tracing. 

T Every SENOPUP and every successful GETPUP call PRINT?UP of the pup 
at hand (see below). 

PEEK Allows a concise. "picture" of the traffic. For normal. ncn-broac!clst 
packets. SE NOPUP prints"! to, GETPUP prints 06+". For broadcast packetS.. 
SENOPUP prints '61"", GET PUP prints ".". In addition.; for packe:s L.1.1t 
arrive not addressed to any seeket on this machine (e.g., broadcast packets 
for a service not implemented on this machine), a U&" is prin:ed. 

[V ari~blej 
A list of pup types (small integers). If the type of a pup is on this list. L1e~ 
GETPUP and SENOPUP will not print the pup verbosely, but treat it as though 
PUPTRACE FLG were PEEK. This allows the user to filter out "uninteresting" p'..l;JS. 

e.g .• routine routing infonnation pups (type 201Q). 

[Varbble] 
A list of pup types. If this variable is non-NIL. then GETPUP and SENOPUP 
print verbosely cnly pups whosc types appear oil the list. trc:lting others as iliough 
PUPTRACEFLG were PEEK. This Icl$ the tracing be confined to only a cCr"'....1ln c!~s 
of pup trattic. 

[V.Jri2blej 
The file to which pup tr3cing tlutput is sent by default. Thc file must be opt:n. 
PU PTRACE F I LEis initially T. 

21.18 

n 

() 



o 

o 

o 

o 

PUPTRACETIME 

(PUPTRACE FLG 

ETHERN'ET 

[Variab:e] 
If this variable is true, then each printout of a pup is accompanied by a relative 
timestamp (in seconds. wiu~ 2 decimal places) of the current time (i.e_ whe~ t.'1e 
SENDPUP or GETPUP was called; for incoming puPS. this is not the same as when 
the pup actually arrived). . 

REGION) [Function] 
Creates a window for pup tracing. and sets PUPTRACEF ILE to it. "IfPUPTRAC EF! LE 
is currently a window and FLG is NIL. closes the window. Sets pupr;t~CEFLG 
to b~ FLC. If REGION is supplied.. the wincow is created with that re~iai1. Tr.e 
windo\'/s BUTTONEVENTFN is set to cycle ?U?TRACEFLG t.hrough t.'1e values ~1IL. 
T. and PEEK when the mouse is clicked in the window. 

(PRINTPUP P;\CKET CALLER FILE P?..E.NOTE DOFILTER) [Function] 
Prints the information in the header and possibly data portions of pup PAC"'~'::T 
to FILE. If CALLER is supplied.. it identifies the direction of the pup (GE i or 
PUT). and is printed in front of the header. FILE defaults to PUPTRACEF ILE. If 
PRE.NOTE is non-NIL, it is PRIN1'ed first. If DOFILTER is true. then if Pu:'s type 
fails the filtering criteria of PUP IGNORETYPES or PUPONL YTY~ES. u'1en PUP is 
printed "tersely", Le., as a !. +, 1', or ., as described above. 

GETPUP and SENDPUP, when PUPTRACEFLG is non-N IL,. call (PRINTPUP PCP 

{ • GET or 'P UT} NIL NIL T). 

The form ofprtnting provided by PRINTPUP can be influenced by adding elements to PU??RINTHACROS. 

PUPPRINTMACROS [Variable] 
An association list of elements (PUPTYPE. MACRO) for printing pups. The MACRO 

(CDR of each element) tells how to print the information in a pup of type P'Ct?7Y?E: 

(CAR of the element). If MACRO is a litatom, then it is a function of two argu~ents 
(PUP FILE) t.:.'1at is applied to the pup to do the printing. Otherv.'is;. )'~A::'F.O is a 
list describing how to print the data portion of the pup (the hezder is ptinted in a 
sta ... "ldard way). 

Tne list form of MACRO consists of "commands" that spccifj a ud.J:zr:.-pe" to 
interpret th.e data. and an indication of how far that datatype extends in ~~e packet. 
Each element of Y.ACRO is one of the following: (a) a byte offset (positive integer). 
indicating the byte at which the next element. if any, takes effect: (b) a neg.:.~ve 
integer. the absolute value of which is the nun:ber of bytes until t...J.:e next e!eme~t. 

• if any, takes effect; or (c) an atom giving the format in which to. print the d.:na 
one of the following: 

BYTES • 

CHARS 

WORDS 

Print the data as S-bit bytes. enclosed in brackets. This is 
the default format to start wiL.~. 

Print the data as (8-bit) characters. Non-printing characters 
are printed as if the fonnat were BYTES. except that the 
sequence 15Q, 12Q is printed specially as [crIf]. 

Print the d3ta as 16-bit integers. separ3ted by commas (or 
the current SEPR). 

21.19 

. I 



INiEGERS-

SEPR 

IFSSTRING 

FINALLY 

T 

REPEAT 

PUP Debugging AidS 

Print the data as 32-bit intege~ separ.lted by ccrnrr:as 
(or the current SEPR). Note: the singular BYTE. CHAR. 
WORD, INTEGER are acc~pted as syr:onYII1S for th~ four 
COII"LIIlan cis. 

Set the separator fer WORDS and INTEGERS to be t.'1e :lext 
element of the macro. Tne separator is in.iLiaJy t.~e rNa 
characte~ COInma. space. 

Intc!1'rets the data JS a 16-bit !cng:.~ rcHowed 'Y tl:~t 4':1:J:.y 

8-bit bytes or char:lcters. If the current dar.arype is 8'( T E S. 
leaves it alone; cthenvise. sets it to be CHARS. 

If there is still data left in the packet by the time processing 
reaches this command.. prints ....... and stops. 

The next element of the macro is printed when t.'1e end of 
the packet is reached (or printing stops because cf a ... ). 
This command does not alter the datatype, and can appe~ 
anywhere in the macro as long as it is encountered before 
the actual end of the packet. 

Perfonn a TE RPR I. 

The remainder of the macro is itself treated as a macro 
to be applied over and- over. until the pac~et is exha~sted. 
Note that the offsets specified in the m:!cro must ~e i.::J. the 
relative form. i.e .. negative integers. For exampie. t.~e m~cro 
(INTEGERS 4 REPEAT BYTES -2 WORDS -4) ~~ m 
print the first 4 bytes of the data as one 32-bit integer. U.~en 
print the rest of the data as sets of 2 8-bit bytes and 2 16-bit 
words. 

Only as much of the macro is process~d as is needed to print the data b the given 
packet The default macro for printi~g a pup is (SYTES 12 •.. ). n:e:::.::iilg to 
print the first up to 12 bytes as bytes. and th~n print ..... " if there is anythi:.g lef'L.. 

The following functions are used by PRINTPUP and si..~ilar functions, and may be of interest in s~ecial 
cases. 

(PORTSTRING NETEOST SOCKET) [Functi.onJ 
Converts the pup address NETHOST. SOCKET into the following OCt.:ll string ror.712.t: 
net#host#socket • NETHOST may be a port (dotted pair of nethost clnd socket>. 
in which C::lSe SOCKET is ignored. and the socket portion of NETHOST is cmit:ed 
from the string if it is zero. . 

(PRHlTPUPROUTE PACKET CALLER FILE) [Functionl 
Prints the source and destination addresses of pup P.4..CKET to FILE in t.he 
PORTSTRING fonnat. preceded by CALLER (interpreted JS wit.' PRINTPUP). 

(PRlfJTPACKETDATA BASE OFFSET MACRO LE:-lCTH FILE) [Functionl 
Prints data according to MACRO. which is a list intef1'reted as describo;!d \.!nd~:-

21.20 

(j 

(j 



o 

--o 

o 

o 

ETHERNET 

PU?PRINTMACROS. to FTLE. The data starts at BASE and extends for LENG7'S bytes. 
The actual prL,ting starts at the OFFSETth byte. which defaults to zero. For eX2.7.ple. 
PRINTPUP ordinarily calls (PRINTPACKETDATA (fetch PUPCONTENiS of 
Pup) a MACRO (IDIFFERENCE (fetch PUPLE~lGTH of pUP) 20) rrLE). 

(PRINTCONSTANT VAR CONSTANTLIST FILE FREFIX) [Function] 
CONSTANTLIS7 is a list of paL.-s (VARNA..\!E VALUE). of the form given to ~~e 
COllSTANTS File Package COOlllland. PRINTCONSTANT prints \';oL~ to ::cz. 
followed in parc~theses by the VARNAME out of cor·:S7ANTLIS-:: whO$'~ \:~t'E is 
EQ to VAP.. or? if it finds no such el~ment If PP--ZFZX is non-i1 I L a.."'!d is cL-: i::i:iai 
substring of the selected VARNA.\!E. then VARN.AME is pri:ued without L1e p!"ef~. 

For example. if FOOCO~~STANTS is «FOO.REQUEST 1) (FOO.Ar~S\.'ER 2) 
(FDO.ERROR 3». ilien (PRINTCONSTANT 2 FDOCDNSTANTS T "FOO.") 
produces '"2 (ANSWER)". 

(OCTALSTRltlG N) [Function] 
Returns a string of octal digits representing N in radix 8. 

21.6 NS LEVEL ONE FUNCTIONS 

The functions in this section are used to imple:nent level two and higher NS protocols. The packets used 
in the NS protocol are termed Xerox Internet Packers (XIPs). The functions for man.ip~lating XIPs are 
similar to those for managing PUPs. so will be described in less detail here. Tne major di1fere:lce is 
w..at NS host addresses are 48-bit numbers. Since Interlisp-D cannot currently represent 48-bit nu.."11bers 
directly as integers, there is an interim form called NSHOSTNUr1SER. which is defined as a TYPE:RECORD 
of" three fields. each of them being a 16-bit portion of the 48-bit number. 

21.6.1 Crezting and Managing XlPs 

There is a record XIP that overlays the data portion of an ETHERPAC:<ET ar:d describes the 
format ofaXIP. This record defllles the following fields: XIPLENGTH (16 bits). XIP'iCO~TROL 
(rra.'"'lsmit control. 8 bits. cleared when a XIP is transmitted). XIPTYPE (8 bits), XIPOESTr~ET 
(32 bits). XIPDESTHOST (an NSHOSTNUMBER), XIPOESTSOCKET (16 bits). and XIPSOURCENET. 
XIPSOURCEHOST. and XIPSOURCESOCKET, analagously. The field XIPCONTENTS is a ~ointer to tL~e 
start of the c!ata portion of the XlP .. 

(ALLOCATE. X I P) (Function] 

(RELEASE.XIP XlP) 

Rerurns a (possibly used) XIP. As with ALLOCATE. PUP. the header fields are 
guaranteed to be zero. but there may be garbage in the data. portion if the P~? 
had been recycled. 

[Funcucnl 
Releases :x:rP to the free pool. 

21.21 



./ 

NS Sockets 

21.6.2 NS Sockets 

As with pups. XIPs are sent and received on a socket. The same comments apply as with pup sockets 
(pzge 21.16), except that NS soc.ket numbers are only 16 bits. 

(OPENNSOCKET SKT# IFCLASH) [Fur:c::on] 
o,ens a Ilew NS socket. If SKT# is NIL (Li.e normal case) .. a socke: !l~r::ber is 
chosen automatically, guaranteed to be urique. and probably d.iffere~t frOr:1 .1::1' 
sccket cpen~d this way in the last IS hours. If a specific 1cca1 socket is :~i;-ec.. 
as is typicclly the C2.3e when L.~pie~enth,g a server. SKT# is give~ and C1L:St :e a 
(up to 16-bit) number. IFCLASH governs what to do if SKTT/: is alre~d.y in use. as 
with OPE~~PUPSOCj(ET. 

(~ 
\ /' 

( CLOSENSOCKET NSOC NOERROF.FLG) , [Fu:lction1 
Ooses and releases seeket NSOC. If NSOC is T, closes all NS sockets (this rr:ust r) 
be used with caution. since it will also close system sockets!). If ..... rsoc is alre.1dy 
closed. an error is generated unless NOERR.ORFLG is true. 

(NSOCKETNUMBER NSOC) [Function] 
Returns the socket number (a 16-bit integer) of NSOC. 

(NSOCKETEVENT NSOC) [Func::onJ 
Returns the EVENT of NSOC. This event is notified whenever a XIP arrives on 
NSOC. 

21.6.3 Sending and Receiving XIPs 

(SENOXIP NSOC XZ?) [FU:lctiO:l] 
Sends XII' on socket NSOC. If any of the XIPSOURCESHOST, XIPSOURCEHEi. or 
XI?SOURCESOCKET fields is zero. SENOXIP fills them in using t..~e NS add.:ess of 
this machine and! or the socket number of NSOC. as needed.. 

(GETXIP NSOC WAIT) tt"t!nc:ionJ (j 
Returns U.'e next XIP that has arrived addressed to socket NSOC. If there re no . 
XIPs waiting on NSOC, then GE T X I P returns rl I L. or waits for a XIP to .lJ."Tiye :r 
WAIT is T. If WAlT is an integer. GETX I P interprets it as a number of milliseconds 
to wait. finally rerurning NIL ifaXIP does not arrive within that time. 

(0 ISCARDX I PS NSOC) [Fu::cdonl 
Discards without examination any XIPs that have arrived on NSOC and :lot ye~ 

• . been read by a GETXIP. 

(EXCHAtJGEXIPS soc OUT:aP IDFILTER Tn..tEOUT) [Function] 
Useful for simple NS packet exchange prowcls. Sends OUTXIP on soc, then '~'alt5 
for a responding XIP. which it remrns. If IDFrLTER is true. ignores XIPs whose 
packet exchange [D (the first 32 bits of the data portion) is diffe:-ent from L~J~ of 
OUTXTP. Tr..(EOUT is the length of time (msccs) to wait for a response before ;~\'tr:~ 
up ~nd returning NIL. TP..1EQUT dcbullS to \ETHERTIMEOUT. EXCHANGEXrpS 
disClfds WIU10ut ~xaminatlOn any XIPs U1~[ arc currently waIting un ::oc b~r"or\! 
OUTXIP gelS sent. 

21.22 n 



o 

o 

ETHERNET 

21.6.4 NS DeiJugging Aids 

XIPs can be pr=~ted automatically by SElIDXIP and GETXIP analogously to u"le way pt.:ps are. The 
follo\Xfing .... ariables behave with respect to XiPs the same way that the correspcndir.g PUP-na.-ned ya.,r:.ables 
beha ..... ~ witl.' resoe:t to PUPs: XIPTRACEFLG. XIPTRACEFILE. XIPIG~tORETYPES. XIPONLYiYPES. 
XI?PRINTMACROS. In addition. the functions PRINTXIP. PRINTXIPROUTE and XIPiRACE are directly 
anaiogm.ls to PRIHTPUP. PRINTPUPROUTE. and PUPTRACE. 

21.7 SUPPORT FOR OTHER LEVEL 0i'1'"£ PROTOCOLS 

Raw packets other t"an of type PUP or NS wn also b'c sent and received. This scetio:) describes r~cilities 
to support such protocols. Many of these functions have a \ in their names to designate that they are 
system internaL not to be dealt with as casually as uscr-level functions. 

(\ALLOCATE.ETHERPACKET) [Function] 
Returns an ETHERPACKET darum. Enough of the packet is cleared so u1at if the 
pack,~t represents a PUP or NS packet. that its header is all zeros; no gt:araI!tee is 
made about the remainder of the packet. 

(\RELEASE.ETHERPACKET EPKT) [Function1 
Returns EPKT to the pool of free packetS. This operation is dangerous if the 
caller actually is still holding on to EPKT.e.g .• in some queue. since this pa~ket 
could be returned to someone else (via \ALLOCATE. ETHERPACKET) and suE'er 
the resulting contention. 

From a logical standpoint. programs need never call \RELEASE. EiHERPACKET, 
since t.~e p2Ckets are eventually garbage-collected after all pointers to them drop. 
However, since the packets are so large, nOiillal garbage c~llections tend net to 
cccur freq~ently enough. Thus. for best performance. a well-discipiir..~d progrc.ill1 
should explicitly release packets when it knows it is finisbed with L.~e:n. . 

A locally-connected network for the transmission and receipt of Ether packets is speci5ed by a network. 
descnptor block.. an. object of type H06. There is one t,lDS for each directly-connected necv.'ork: orcEnarily 
there is only one. The NDB contains information specific to the network. e.g .• its PUP and NS netwo~k 
numbers. and infoImation about how to scnd and receive packets on it. 

\LOCALNOBS [Yariable] 
Tne first NOB connected to this machin'e. or NIL if there is no netvt'ork. Any oL.~er 
NOSs are linked to this first one via the NOSNEXT field 'of c.'e NDB. 

In order to transmit an Ether packet a program must specify the pacKet's type and its iIn.rr.cdi2.~e 
desti:r.ation. The type is a 16:-bit int~ger identifying the pacKet's protocol. There are prc2.Ssigncd tYpl!S 
for PU P (h"ld N S. The destination is a host address on u,e local network. in whatever fonn the loed 
network uses for addressing; it is not necessarily related to the logical ultimate destination 0: :he p2.,:~et. 
Determi;J.ing L,e L-runediate destination of a pack~t is the t2sk of routing. The functions SEND?UP ar.d 
SEND X I P take care of L'Iis tor the PUP and N S protocols. routing a pacKet directly to its dCSll:latiI..1r. if 
th~t ~O:)[ is on the local r.ct·.vor}~. or routin£ it to a gatcW3Y if the host.is on S0mc other netwo:k ac~css~bi~ 
via L,e gateway. Of coursc. a gateway must know about the type (protocol) of a p3cker in ord~r to be 

21.23 



Support for Other Leyel One Protocols 

abie to forward it. 

(ENCAPSULATE. ETHERPACKET NDE PACKET PDH NBYTES ET"lFg) [FuI:~Jcnl 
Encapsulates PAc-aT for transmission on network NnE. PDH js u~e ;hysical 
destination host (e.g.9 an 8-bit pup host nuober or a 48-bit NS host nurrlter): 
NBYTES is the length of the packet in bytes; ETYPE is the packet's enc.:lps~lation 
type (an integer). 

(TRANSHIT. ETHERPACKET :we PACKET) [F:.mction1 
Tra:lsmits PAC-rCET, which must already have been c:lcapsula:eci on network .':ca. 
Disposition of the packet after transmission is complete is determined by the value 
of PAC-~ET's EPREQUEUE field. 

In order to receive Ether packets of type other than PUP or NS. the programmer must specify wh~t to do 
with mcorn.ir!g packets. Lisp maintains a set of packet filters. functions whose job it is to .:!pprcpriately 
dispcse of incoming packcts of the kind they want. Vlhen a packet arrives, L.'le Et.,.ernet driver c3.11s e~ch 
filter function in rum until it finds one that accepts the packet. The filter function is c.illed wiL~ two 
arguments: (PACKET TYPE), where PACKET is the acruai packet. and TYPE is its Et.'1emet enc.:lpsulation 
type (a number). If a filter function accepts the packet. it should do what it wants to wiL.~ it. and rerun 
T; else it should rerum NIL, allowing other packet filters to see the packet. 

Since Li.e filter function is run at interrupt level, it should keep its compu~tion to a minimum. For 
e~;:mple9 if there is a lot to be done with the packet. the filter function can place it on a queue and c.ctifY 
another process of its arrival. 

The system already supplies packet filters for packets of type PUP and US: these filters enqueue the 
incomi:lg packet on the input queue of the socket to which the packet is addressecL after checking that 
the packet is well-fonned and indeed addressed to an existing socket on this machine. 

Incoming packets have their EPNETWORK field filled in with the NOB of the network on which the packet 
anived. . 

(\ADD. PACKET. F IL TER Frr..TER) [Function] 
Adds function FILTER to the list of packet filters if it is not already L'lere. 

(\DEL.PACKET.FILTER F~TER) . [Fu-"''';Of''ll' J. .... \w&..i. ' •• 

Removes FlLTER from the list of packet liIters. 

(\CHECKSUM BASE NWORDS INrTS!TM) [Fcnc::onJ 
Computes the one's complement add and cycle checksum for the NWCRDS ''''·ords 
s~ng at address BASE. If rNITSUM is supplieci it is treated as the accllrr.ub~ed 
ehecksum for some set of words preceding BASE: normally INr:rSVM is omitted 
(2.Ild thus treated as zero). 

(PRINTPACKET PAC;'::ET CALLER F'lLE PRE.NOTE DOFrI.TER) {F'.lncrionj 

\PACKET.PRINTERS 

Prints PACKET by invoking a function Jppropriutc to PACKET'S type. SI.!C 
PR I NTPUP for thc intended meanmg uf the orncr arguments. [n order for 
PRINTPACKET to work: on a non-standard packet there must be infoffi1aticn 
on the list \PACKET. PRHlTERS. 

An association list mapping packet type into the name of a function for pnnting 

21.24 

~) 

(~ 
\ ) 

---~ ( \ 
, ) 



() 

o 

ETIiERl'c~T 

-
that type of packet. 

21.8 THE SYSQUEUE MECHA!'lISM 

Tne SYSQUEUE facility provides a low-level queueing facility. The functions described herein are all 
sys~e:n internal: u'1ey em cause much confusion if misused. 

A SYSQUEUE is a datum containing a pointer to the first element of the queue and a pointer to t.'1e last: 
each item in the queue pointS to the next via a pointer field located at offset 0 i:l the item (its QL I NK 
field in the QABLEITEM record). A SYSQUEUE can be created by calling (NCREATE 'SYSQUEUE). 

(\ENQUEUE Q ITEM) [FuncDon1 

(\DEQUEUE Q) 

Enqueues ITEM on Q. Le .• links it to the tail of the queue, updating cts uil pointer 
appropriately. 

[Function] 
Removes the first item from Q and returns it. or returns NIL if Q is empty. 

(\UNQUEUE Q ITEM NOERRORFLG) [Function] 

(\QUEUELENGTH Q) 

Removes the ITEM from Q. wherever it is located in the queue, and returns it. If 
ITEM is not in Q. causes an error. unless NOERRORFLG is true, in which case it 
returns r~ I L. 

[Function] 
Returns the number of elements in Q. 

(YOUQUEUE ITEl'! Q) [Function] 
True if ITEM is an element of Q. 

21.25 



\ 

'-

The SYSQUEUE mechanism 

21.26 

n 

{;-, 
'. ! 

(j 



o 

o 

o 

CHAPTER 22 

INTERLISP-IO SPEOFICS 

This chapter describes a number of features of Interlisp-lO that are machine or impiementation-dcpe:ldent. 
and are not expected to be implemented in newer impiementations of lntcrlisp. 

22.1 INTERLISp·I0 INfERRUPT CHARACfERS 

The table below gives the interrupt characters currently enabled in Interlisp-lO. 

Note: It is possible to change the assignments of control characters to intenupts with INTERRU?TCHAR 
(page 9.17). 

control-B 

controi-C 

control-D 

control-E 

control-H 

Generates an immediate error, and causes a break. regardless of the depth or time of the 
comput2.tiori. Thus if the function Faa is looping internally, typing control-B will cause 
the comput2.tion to be stopped, the st2.Ck unwound to the point at which F 00 was calle<i 
and then cause a break. 

ThiS is a stronger interruption than control-H. Note that the internal variables of FOO 
above are not available in this break. and similarly, Faa may have already produced some 
changes in the environment before ~'1e control-B was typed. It may not be possible to 
simply continue the computation, depending on the nat'Llre of the function inteI7Upted 
and when it was interrupted. Therefore whenever possible. it is better to t:se co~trol-H 
instead of control-B. 

ComputatiO:l is stopped. and control returns to the operating system (Ten ex. etc.) The 
prcgr2.m can be continued with the CeNT INUE command. 

AbortS the computation., and unwinds the stack to the top level. Calls RESET (page 9.14). 

Aborts the computation. and unwinds the stack to the last ERRORSET. Calls ERROR! 
(page 9.14). 

At the next point a function is about to be entered. the function INTERRUPT is 
called instead. lNTERRUPT types INTERRUPTED BEFORE FN. constructs a.'1 appropriate 
brea..~ expression. ~'1d then calls B R E Ai< 1. The user, can then _ex~T.:ne the SLate 0 f th e 
computation. and continue by typing OK. GO or E.VAL. and/or RET FROM back to SOr:4e 
previous point. exactly as wil:h a user break. Control-H- breaks are thus al~'ays "safe". 

Control-H breaks only occur when a function is called. since it is only at this time :.hat 
the system is in a "clean" enough state to allow the user to interact. Thus. if a compiled 
program is looping without calling any tunctions (or if [nterlisp-lO is in a [/0 w,~it). 

control-H will not affect it Canuol-B. however. will. 

22.1 



control-Q 

control-P 

control-S 

control-T 

Type Number Functions 

--
As soon as control-H is typeel Interlisp clears and saves t.l1e input bufer. and tl:e:l rings 
the bell indicating that it is now safe to type ahead to the upcoming break. If the break 
returns a value. i.e .• is not aborted via 1" or control-D. the contents of the input buffer 
before u1e conrrol-H was typed will be restored. 

Note: Control-H will not intenupt at linked function calls (see page 12.18). 

Oears the teletype output buffer. 

Changes the PRINTLEVEL setting (see page 6.18). 

Changes t,.'1e l~ I N F S setting (see page 22.10). 

Prints total execution time for the program. as well as other- status information. 

22.2 TYPE NUMBER FUNCTIONS 

Each data type in Interlisp has an associated 6&type name". In Interlisp-lO. each data type also has a U type 
number", which can be accessed and manipulated with the functions below. In generaL it is preferable 
to use the type name functions (see page 2.1). 

( NTY P DATtn.!) 

(TYPEP DATW4 N) 

[Function] 
Returns the type nwnber for the da~ type of DATUM'. e.g., (NTY? '( A • B» is 
8, the type number for lists. 

[Functlcn] 
Value is T. if the type number of DATUM is equal to N. 

(TYPENAMEFROMNUMBER N) [Functic~ 
Value is type name for type number N. or ~~IL if N is not a valid type number. 
e.g. (TYPENAMEFR01~NUMBER 30) =STRIf~G. CHARS. 

(TY?EllUM8ERFROMNAME NA.~) [Function] 
Value is correspondi..Tlg type number for NAME. or NIL if NAME is not a type name. 
e.g. (TYPENUMBERFROMNAME 'STRI~jG. CHARS) =30. 

TYPENUit'lBERFROMNAME will accept READTABLEP. TERMTASLEP. CCODEP. and 
ARRAY p. and rerum the same value for e.:lch. which for Interlisp-10 is L ~ote 
however that (TYPENAMEFROMNUf.1BER 1) =ARRAYP. 

(GETTYPEDESCRIPTION TYPE) [Function] 
Returns the type description string for TYPE. a type name or type number. 

(SETTYPEDESCRIPTION TYPE STRING) [FuncuonJ 
Sets the type description string for TYPE to be STRING. The type description is 
used in garbage collection messages and by STORAGE. 

22.2 

C).' 



o 
ll'iERLISP-I0 SPEOFICS 

22.3 VALIDITY OF DEFINITIONS IN INTERLISP-IO 

Although the function definition cell is intended for (unction definitions, PUTD ~d GETD do not r::~e 
thorouZl checks on the validity of definitions that "look like" exprs. compiled code. or SUSRs. Thus 
if PUTD is given an ~!ay pointer. it treats it as compiled code. and simply stores t.~e array pointer in 
the definition cell. GETO will then rerum the array pointer. Similarly. a call to that function .~.:n si=.p!y 
t.J"ZI.nsfer to what would normally be the entry point for the f\lnctio~ and produce random results if c..'e 
arr~:.: ..... cre not compiled function. 

Similarly. if PUTD is given a dotted pair of the fonn (number. address) where numoer ~"1d 
address fall in th.e subr range. PUTU assumes it is a·subr and stores it away as describec e3.!lier. GE7D 
would tL'1en return a dotted pair EQUAL (but not EQ) to the expression originally given PUTD. Si=lil.:u-iy. 
a call to this function would transfer to the corresponding add:ess. 

o Finally. if PUTD is given any other list, it simply stores it away. A call to this function would then go 
through the interpreter. 

o 

Note that P.UTD does not actually check to see if the s-expression is valid definition. Le .• begiris with 
LAMBDA or NLA:-18DA. Similarly. EXPRP is true if a definition is a list and not of the form (number • 
address). number = O. L 2. or 3 and address a subr address; SUERP is trUe if it is of this fonn. 
ARGLIST and NARGS work correspondingly. 

Ocly FNTYP and ARGTYPE check function definitions further than.that described above: bo:h ARGTYPE 
and FNTYP return NIL when EXPRP is true but CAR of the definition is not LAMBOA or NLAM80A. 1 

In other words. if the user uses PUTD to put (A B C) in a function definition cell GETD Vtill rerum 
this value, the editor and prettyprint will both treat it as a de·finitio~ EXPRP will return T. CCODEP and 
SUBRP NIL, ARGLIST 6, and NARGS 1. 

22.4 REUSING BOXED NUMBERS LN INTERLISP-I0· SETN 

RPLACA and RPLACD provide a way of cannibalizing list structure for reuse in order to avoid mar~g new 
structure and causing garbage collections.2 This section describes an analogous function in Inte:lisp-10 for 
reusing large integers and floating point numbers. SETN. SETN is used like SETQ. i.e .• its fi.rs~ argtl.rrle:1t 
is considered as quoted.. its second is evaluated. If the current value of the variable being set is a la:ge 
integer or floating point number. the new value is deposited into that word in number sturage. i.e.. no 
new storage is used.. 3 If the current value is not a large integer or floating point nlli-nber. e.g., it c~ be 

lThese functions have different values on LAMBDAs and NLA~180As and hence must check. The com~iler 
and interpreter also take different actions for LAMBDAs and NLAMBDAs, and therefo.re generate errc·:s if" 
u~c definition is neither. 

~The nobox package provides a more aesthetic way of reusing cons cells as well as nu:nber box~. 
However. it is still the case that techniques involving reusing static storage should be used wit.1 extre:ne 
caution. and be reserved for those cases where the normcl method of stor~ge allocJtion 3...'1d £2.I't'2.~e 
collection is not workable or prJctical. The decl package (page 23.18) takes a - cifferent J~proJch to :.~c 
same problem by avoiding creating number boxes in the first place via type deciarations in the body of 
the function definition. 

JThe second argument to SETN must always be a number or a NON-NUMERIC ARG error is generated. 

22.3 



Caye~ts concerning use of SETN 

PI IL. SETf. ooerat~ exactly likeSETQ, Le~ t.'1e large integer or Boating point number is boxecL and the 
variable is set. This e!.imL~ates initi.allz.ation of t.'e variable. 

SETN \\;'11 work intcrpretiYely. Le~ reuse a word in number storage. but will not yield any savings of 
storage because the boxing of the second argument will still take pbce. when it is evaluated.. The 
elircination of a box is achieved only when the call to SETN is compilecL since SETN compiles open. ~d 
does not perform the box if the old value of the variable can be reused. 

22.4.1 C;lYe:lts concerning t;se of SETN 

There are three situations to watch out for when using SETN. The first occurs when tte same variable is 
being used for floating point numbe~ and large integers. If the current value of the yariable is a fioJ.ti."'1g 
point number, and it is reset to.a large- integer. via SE TN, the large integer is simply deposited into a ( .. \.0 .... 
word in floatin.g point number storage. and hence will be interpreted as a floating point munber. Thus.. ) 

i-(ScTQ FOa 2.3) 
2.3 
i-(SETN FOa 10000) 
2.189529£-43 

Similarly. if the current value is a large integer. and the new value is a Boating point number. equally 
strange results occur. 

The second situation occurs when a SETN variable is reset from a large integer to a small integer. In 
this case, the small integer is simply deposited into large integer storage. It will then print correctly. and 
function arithmetically correctly, but it is nol a small integer. and hence will :lot be EQ to anoL'1er integer 
of the same value, e.g., 

~(SETQ FOO.10000) 
10000 
+-(SETN FOa 1) 
1 
~(IPLUS FOa 5) 
6 
~(EQ FOa 1) 
f~ IL 
~(S~ALLP FOO) 
t~ I L 

In particular. note that ZERO P will rerum NIL even if the variable is equal to O. Thus a program wh:ch 
begins with FOa set to a large L.,teger and counts it down by (SETN Foa (SUB 1 FCa» must termiIla~e 
with (EQP FOa 0). not (ZEROP FOC). 

Finally. the third situation to watch out for occurs when you want to save the curre~t value of a SC:TN 
variable for later use. For example, if Foa is being used by SETN. and the user wants to save irs curre:1t 
value on FIE. (SETQ FOO FIE) is not sufficcnt. since the next SETN on FOO will .1lso cha..T1~e F! E. 
because its changes the word in. number storage pointed CO by FOC. and hence' pointed (0 by FIE. The 
number must be copied.. e.g .• (SETQ FIE (IPLUS FOC». which sets FIE to a. new word in number 

22.4 

(\ 
\ ;. 

r) 
\ / 



.. 

o 

o· 

o 

o 

storage. 

(SETN VA.? x) 

~TIRLISP-I0 SPEOFICS 

~rr..ambda Func~onJ 
A nlambda function like SETQ.-VAR is quotecL x is evaluated.. and its value wust 
be a number. VAP! will be set to··this number .. If the curre:lt value of YAR is a large 
integer or floating point number. that word in number stOrage is car.ribciize::!... T::e 
value of SETN is Li-te (new) value of VAR. 

22.5 BOX Al'ID UNBOX E'l' IlITERLISP-I0 

Some applications may require that a user program explicitly perform the boxing and unboxing o?crations 
that are usually implicit (and invisible) to most progr(hlls. The functions that perform these ope:-ations are 
LOC and VAG respectively. For exan1ple. if a user program cxecutes a TENEX JSYS using the ASSEHSLE 
d.ir~tive. the value of the ASSEMBLE expression will have to be bor.ed to be used arithmeti:ally, e.g .. 
(IPLUS X (LaC (ASSEMBLE --»). It must be emphasized that 

Arbitrar.l unboxed numbers should NOT be passed around as ordinary values beca-~se they can cause trouble 
for the garbage collector. 

F or example, suppose the value of X were 150000, and you created (VAG X), and this just happened to 
be an address on the free storage list. The next garbage collection could be disastrous. For this reason, 
the function VAG must be used wi~' extreme caution when itS argument's range is not knoVrll. 

Lec is the inverse of VAG. It takes an address. i.e .• a 36 bit quantity, and treats it as a number and boxes 
it. For example. LOC of an atom, e.g., {LOC (QUOT E Faa», .treats the atom as a 36 bit quantity. and 
m?J:es a number out of it. If the address of the atom FOO were 125000. (LaC (QUOTE FOO» would 
be 125000, Le., the location of FOO. It is for this reason that the box operation is called LaC, which is 
short for location. 

Note that FOO does not print as #364110 (125000 in octal) because the print routine recognizes that it is 
an atOIT' .... and therefore prints it in a special way. Le., by printing the indiYidual characters u1at co~prise 
it. Thus (VAG 125000) would print as FOO, and would in fact be FOO. 

(LOC x) 

(VAG x) . 

[Functioc] 
Makes a number out of X. Le., returns the location of x. 

[Fl!nctionI 
The inverse of LaC. x must be a number; the value of VAG is ~'le unbox of'x. 

The compiler eliminates extra VAG'~ana LOC's for example (IPLUS X (LOC (ASSEMBLE --») will 
not box the value of the ASS EMS LE. and then unbox it for the addition. 

·22.6 rvrrSCELLANEQUS OPERATING SYSTEM FUNCTIONS 

(LOADAV) [Function] 
Returns the current load average as a floating point number (this number is L.~e 

22.5 



IV!isce!lruIet1us Operating System Functions 

first of t.'le three printed by the SY ST A T command). 

(ERSTR ERN -) [FunctiO:l] 
ERN is an error number from a JSYS fail return. ER.."I= N IL means the most re.:znt 
error. ERST R returns the operating system error diagnostic as a srring. 

(JSYS N ACl AC2 AC3 RESULTAC) [Fu:lcticnj 
Loads the (unboxed) values of AC1, ACl, and AC3 into appropriate ac~~1:!a~e~. 
and executes lSYS number N. If AC1, AC2, or AC3 = NIL, 0 is used. J S Y S :er..1~S 
t..'le (boxed) contents of the accuI:1ubtor specified by :::tE3V'I.T.AC. Le .• 1 ::::e:.r.s ).CI. 

2 means AC2. and 3 means AC3. with r~ I L equivalent to 1. Compiles open if .'l is 
itself a smail in~eger, and RESULTAC is a soali integer, or U I L. 

If tJ.'le lSYS causes a trap. the message TRAP AT LOCAT ION NNNNN is printed 

l') 

by the operating system. followed by J S Y S E R RO R: and the OP~r.lLing sys~eln 
diagnostic. The user is then talking to the operatL"'lg system ex.:i.cuy as though (~'. 
control-C had been typed. If the user then continues using the CONT~NUE 
cmnman<L an Interlisp error is generated. JSYS ERROR. and control then proceecis 
the same as for any other flavor of error9 Le. unwinds to last ERRORSET or goes 
into a break as described on page 9.10. 

The CJSYS package (page 23.53) enables calling JSYSes by their correspondiI:g 
n2!ne9 rather than their ntL"Ilber. 

(USERNUMBER A FLO) [Function] 
If A = NIL, returns the login user number: if A = T. returns the connec~ed user 
nUmber: if A is a literal acorn or string, USERNUM8ER rerums the nu:nber of the 
corresponding user. or NIL if no such user exists. 

On TOPS· 20, there is a difference between the user number. which is associated 
with the job. and t.'le directory number. which is associated with the file sys:e:n. 
Therefore9 on TOPS-20, if FLG=T, USERNUMSER returns the ciire':tory·nu.:r:ber 
rather than t..'1e user number. 

(HOSTrJAHE HOSTN FLG) [Ft!nct:c~J 

(HOSTNUMBER) 

Returns the hosmame as a string for host number HOST,N. e.g. "PARC-MAXC2". 
"BBN-TENEXD". etc. If HOSTN=~JIL. the local host is used. If the local host is 
not an ~l'anet host, value is NIL. Also returns NIL if HOST:-l is not a yalid. host 
number. 

FLG is interpreted the same as in USE RNAME. 

[Function] 
Returns the host nwner of the local host. or NIL. if the local host is not an arJanet 
hOSL . 

(TENEX STR FlLEFLC) [Function] 
Starts up a lower exec (without a message) using SUBSYS. and th.en if FrLEFLG = .l~ I L 
unreads STR. followed by "QUIT"4 (using BKSYSBUF. page 6.47). TENEX retUr:lS 

4" POP" for Inrerlisp on TOPS-20. 

22.6 



o 

o 

o 

22.i 

INTERLISP-I0 SPEOFICS 

T if all of STR is actually processed/read by the lower exec. NIL if the t:ser 
control-C's and manually QUITs back to Interlisp. 

If FZ!.EFLG= T. TENEX p:!Sses the string as the second argument to SUaSys. bs:e3C 
of unreading it Tnis has the advantage that STR. can be of any ·leng:h.. a:J.C alSo:' 
that typeahead will not interfere with the call to the lower exec. T.i·e Cis3d .... ant2.ge 
is that TEN E X cannot tell whether the ~OIr.mc.nd.s to ~~e lower exec te~J::a~ed 
successfully. or were aboned. Thus. if FlLEFLG=T, the value of TENEX is always 
T. 

For example. LISTFILES (page 11.9) is implemented using TENEX. with FII.EFLG=NIL. 

so LISTFILES can tell if listings actually were completed. 

STORAGE ALLOCATION AND GARBAGE COLLECfION 

In the following discussio~ we will speak of a quantity of memory be~g assigned to a particular data-type. 
meaning that the space is reserved for storage of elementS of that type. Allocation will refer to the process 
used to obtain from the already assigned storage a panicular location for storing one data eleme~L 

A small amount of storage is assigned to each data-type when Interlisp-lO is staned: additional storage is 
assigned only during a garbage collection. 

The page is L"'e smallest unit of memory that may be assigned for use by a particular data-type. Fer each 
page of memory there is a one word entry in a type tabie. The entry contains the data-type resid.i4:g on 
the page as well as other information about the page. The type of a pointer is deter:nined by exarr.1r;~g 
th.e appropriate entry in the type table. 

Storage is allocated as is needed by the functions which create new data elements.. such as CONS. PACK. 
~tKSTRING. For example. when a iarge integer is created by IPLUS. the integer is stored in t..':e next 
available location in the space assigned to integers. If there is no available locatio~ a garbage coUecticn 
is initiated, which may result in more storage beL""lg assigned. 

The storage allocation and garbage collection methods differ for L.'1e various data-types. T~:1e major 
distinction is be~ween t:.'1e types with elements of fixed length and the types WiL1. elements of arbitr.!:.-y 
length. List cells. atoms. large integers. floating point numbers, and string pointers are fixed. le::g:...~: ell 
occupy 1 word except atoms which use 3 words. Arrays, print names. and strings (suing characters) 2.re 
variable length. 

Eiernenrs of fixed length types are stored so that they do not overlap page boundaries. Thus the pages 
assign~d: .to a fixed length type need nct be adjacent. If more space is needed. any empty page wiil be 
used. The method of allocating storzge for these types employs a free-list of availabie locations: th~t lS. 
e3ch available location contains a pointer to the next avaibblc location. A new element is stored at t.~e 
first location on ~e free-list. and the free-list pointer is updated.s 

5The allocation routine for list cells is more complicated. Each page containing list cells has a scp3.r::lte 
free list. First a page is chosen. then the free list for that page is used. ListS are the only dau-type wh~:~ 
operate this way. 

22.7 



Storage Allocation and Garbage Collection 

Ele~ents of variable length data-types are allowed to overlap page boundaries. Consequently all pages 
assig:led to a pa..-ticular variable iength type must be contiguous. Space for a new e!eme~t is allcoted 
following the last space used in the assigned block of contiguous storage. 

When rn~erlisp-lO is first called.. a fey, pages of memory are assigned to each 6:.:.l-type. \Yhen t.i1e 
allocation rcutine for a type determines that no more space is available in t.'1e 2.Ssigr.ed s!orage for mat 
type. a garbage collection is initiated. The garbage collector deteI1Ili:les what dau is cur.ently in ese ane. 
reclaims t..'12,t which is no longer in use. A garbnge collection may also be iotiated by the user ~i:':' L~e 
function REeL''' rM. 

Data in use (also called active data) is any data that can be "reached" from the currently rJn.::ling ;:rog:~ 
(Le ... variable bindings and functions in execution) or from atoms. To find the active d2:.a tCe ga:bage 
colIector "chases" all pointers. beginning with the contents of the push-down lists J..!"1d L.'1e corn~onen:s 
(Le .• C.~R. CDR, and function definition cell) of all atoms with ~t least one non-cri\iai component. 

() 

When a previously unmarked datum is encounrered.. it is marked. and all pointers cont.1i~cd in it are n _. 
chased. Most data-cypes are marked using bit tables; that is tables containing one bit for e.:u:h Or.l1:l. 
Arrays, however. are marked using a half-word in the array header. 

When the mark and chase process is completed. unmarked (and therefore unused) space is rec:lai:ned.. 
Elements of fixed length types that are no longer active are reclaimed by adding their locations to t..1.e 
free-list for that type. This free list allocation method permits reclaiming space without movir:g any car:!. 
thereby avoiding the time consuming process of updating all pointers to moved data.. To reclaim u:lused 
space in a block of storage assigned to a variable length type. the active e\ements are compac:ed to\1lard 
the beginning of the storage block. and then a scan of all active data that can contain pointers to the 
moved data is performed to update tJ.'1e pointers.6 

Whenever a garbage collection of any type is initiated.1 unused space for all fixed length types is redairned 
since the additicnal cost is slight. However. space for a variable length type is reclaimed only when L'1at 
type -initiated the garbage collection. 

If the amount of s~orage reclaimed for the type that initiated the garbage collection is less than the 
minimum free storage requirement for that type. the garbage collector will assign enough add.::ic!:a1 
storafe to satisfj t.l1e mi...~imum free storage requirement. The minL"'I1Um free storzge rcquire~e:lt fc:- e~c;;" 
ci.?ta may be set with the function MIN F S. The garbage coHector assig~s additional storage to 5."\ed lengt..~ (' 
types by finding empty pages. and adding the appropriate size eiements from each page to the free list. \ ). 
Assigning additional storage to a variable length type involves finding empty pages and I:1o\ling cau so 
that the empty pages are at the end of the block of storage assigned to that type. 

In addition to increasing tlle storage assigned to the type initiating a garbage collection. the garbage 
collector will attempt to minimize garbage collections by assigning more storage to other fixed lengt.~ 
types according to the following algoritiL."11. If the amount of active data of J. type has incre::.sec. si::ce 
the last garbage collection by more than 114 of the MIN F S value for that type. storage is incre:;.sed (if 
necessary). to attain. the MIN F S value. If active data has increased by le~s than 114 of the MIN F S value. 

6If Inccriisp-lO types the message ARRAYS FOULED during a garbage collection. it mems ~'1at an arr;:!y 
header has been dobbered and no longer ma.l(es sense. This can be due to hardware malfJ:1ct!on. or an 
as yet undiscovered bug in In[erlisp. The best thing to do under these circumsLlnces is to give up J.. .. ld 
StJrt over wILI1 a fresh system or sysout 

7Th~ "type of J. garbage collection" or the "type that initiated a g3rbage coilcction" mc:l..'1S ei~'1er the type 
that ran out of space and called the garbage collector. or the argument to RECLAIM. 

22.8 



o 

o 

o 

o 

L'ITERLISP-I0 SPEOFICS 

availabie storage is incre3Sed to- 1/2 MIN F S. [f there has been no increase. no more storage is adced. For 
examo Ie, if the ;., IN F S setr.:.ng is 2000 words. the number of active words has increased by 700. and a~er 
all unused words have been collected there are lOCO words ayailable. 1024 additional wores (:· .. ·0 pages) 
will be assigned to bring the total to 2024 words avai.1~ble. If the nunlber of active wares had m::eased. 
by o~y 300. and :here '-tv-ere 500 words available, 512 additio~al words would be assigned.. 

(RECLAIM TYPE) [Fu::ctiO:l] 
Initiates a garbage collection of type TYPE, where TYPE is either a tYI='e :'la!!1e or 
type number. Value of RECLAIM is number of words a""ailable (for that type) ~:e:
the collection.. 

Garbage collections, whether invoked directly by the user or indirectly by need for siorage. do not con..fine 
their activity solely to the data type for which they were called. but automaticaily collect some or all of the 
other lypes. 

(GCGAG MESSAGE) [Function] 
Affects messages pnnted by the garbage collector. If MESSAGE = T. whe:lever a 
garbage collection is begu~ "co 11 ect i ng" is printed.. followed by the t)·pe 
description of the type that initiated the collection.s \\taen L.'1e garbage collection 
is complete. two numbeI$ are printed: the number of words collected for that 
type. a...~d the total number of words available for that type. i.e., ailoc.:ued but not 
necessarily currently in use. Note that other types may also have been coEected.. 
and had mor~ storage assigned. . 

Example: 

4-RECLAIM(lB) 

collecting large numbers 
511, 3071 free cells 
3071 
4-RECLAIM(LITATO~) 

collecting atoms 
1020. 1020 free cells 
1020 

If MESSAGE = NIL, no garbage collection message is printed.. either on entering or 
leaving the garbage collector. 

If MESSAGE is aJist. CAR of MESSAGE is printed (using PRIN1) when the garo2ge 
collection is begun. and CD R is printed (using P R I N 1) when the collection is 
finished. If MESSAGE is a literal atom or string. MESSAGE is prinfed when r..~e 
g::.rbage collection is begun. and Gothing is printed 'r\.'hen tbe collection nrishes. 

If MESSAGE is a number. the message is the 5a.'1le as for (GCGAG T), except if 
the total number of free pages left after the collection is less than .\!ESSA.GE. ~~~ 
number of free pages is printed. e.g., . 

SNote that this type description can be set via the function SETTYPEDESCRIPTION (page 22.:2). 

22.9 



StOr:lg~ Ailcc::ltion and Garbage Col!ectioa 

~CGAG(100) 

T 
~RECLAI?~( ) 

collecting lists 
10369, 1Q369 frae cells, 87 pages left. 

The initial setting for GCGAG is 40. 

The value of GCGAG is its previous setting. 

(GC:-.1ESS MESSAGE# STR.1NG) (FunctiocJ 
GCGAG is implemented in terms of the primitive GCMESS which can be used to 

n 

. furu'ler refine gJIbagc collection messages for specialized applications. The gJIbage 
collection message is actually composed of seven separate messages: (-)" 

collecting large numbers 12 
511.3 3071 free cal1s4 , 875 pages6 1eft7 

message # 1 is the <Acollecting" string. If NIL, t.'1en neitb.er it. nor the type 
dependent field (whlch is settable via SETTYPEDESCRI?TION described below) is 
printed. 

message #2 is the carriage-rerum after the type-dependent field. Tnus to simply 
print a string at the beginning of a garbage collection. perform (GCMESS 1) and 
(GCMESS 2 STRING). 

message #3 is the ,. ," which comes after the number of cells actually collected. 
If ~I ! L. W.~en neither it nor that number are printed. 

message #4 is the "free cell s" which comes a..~er the number of cells that are 
now allocated. If:! I L. neither it nor that number are print~d. 

m~ssage # 5 is the number of pages left below which the system prints message 6. () 

message #6 is the ··pages 1 eft" message. If N IL, nei~'1er it nor the number of 
pages left are printed. 

message #7 is the terminating carriage rerum. 

(MINFS N TYPE) [Function] 
Sets the minimum amount of free storage which WIll be maintai.~ed by the garbage 
cQllector for data types of type number or type name TYPE: If. after any garbage 
colk't.:tion for that type, fewer than N free words are prc$ent. sufficient stora£c wiil 
be added (in 512 word chunks) to raise the level La N. 

If TYFg=NIL. LIST? is used.. i.e .• L.'e MINFS refers to list words. 

If N= NIL. MIN F S rerurns the current MIN F S sctting for L.~e corrcspcnding type. 

22.10 (j 



-. o 

o 

INTERLISP-IO SPEOFICS 

A IrtINFS setting can also be changed dynamically, even during a garbage collectic~ by typing conrrcl·S9 

followed by a number, followed by a period. When the conuol-S is tYJ:'ecL Interlisp hT.r::ecliately clears 
and saves t.~e input burrer, rings the bell. a:ld waits for input. which is terrr-~na:ed by any r:on-:lt:.=~er. 
The input buffer is then restored. and the program cot;ltinues. If the input was terrrinated by o:':,er ~'1a.n 
a period. it is ignored. If the control·S was typed during a garbage colle:con.. t.~e nu:n~er is L~e new 
MIN F S setti:lg for t..~e type being collected.. otherwise for type 8. i.e .• list words. 

(MINHASH x) 

(GCTRP N) 

(CLOSER A x) 

(OPENR A) 

[Fur:ctionJ 
The atom hash table automatically expands by a specified number of pages e2.:n 
time it fills up. The number of pages is set via t..'1e function M I r~HASH. Tne ~iticl 
setting is (MINHASH 2) (room for 1024 new atoms). 

[Function} 
"Garbage Collection Trap". Causes a (simulated) control-H inter.upt when the 
number of free list words remaining equals N, Le .• when a garbage collection would 
occur in N more conses. The message GCTRP is prJlted. L.'1e fu::1cticn INTERRUPT 
is called. and a break occurs. Note that by advising rr.TERRUPT L.~e user can 
program the handling of a ~CTRP instead of going into a break. lo 

GCTRP returns its last setting. 

(GCTR? -1) will "disable" a previous GCTRP since there (L'"e never -1 free list 
words. GCTRP is initialized this way. . 

(GCTRP) returns the number of list cells left. Le • ., number of CONSes until ne~t 
type LIS T P garbage collection. 

[Function] 
Stores x into memory location A. Both x and A must be numbers. 

[FunctiO:l] 
Returns the number in memory location A., Le., boxed. 

22.8 THE ASSElvIDLER A..I'ID LAP 

The Interiisp-lO compiler has two principal passes. The first compiles its input into a macro 2.Sseocly 
language called LAP.11 The second pass expands the LAP code, producing (numerical) machine language 
instructions. The output of t..~e second pass is wrinen on a file and/or stored in binary program space. 

9control-X for Interlisp-lO on TOPS·~O. 

lOFor GCTRP interrupts. INTERRUPT is called with INTYPE (its third argument) equal to 3. If the user 
does not wa..TJt to go into a break. the advice should still allow INTE RRUPT to be enterec.. but first 
set INTYPE to -1. This will cause I NTE RRUPT to "quietly" go away by c=liling the func~on molt was 
interrupted. Tne advice should not exit INTERRUPT via RETURN. as in this c~e the function th:lt WJ.S. 
about to be called when the interrupt occurred would not be called. 

lIThe exact fonn of the macro assembly language is exu-emely implementation dependent. as well .13 oeing 
infiuenced by the architecture and instll.lction set for the machine thac will run the cOr:!piled pro~r'::""71. 

22.11 



Assemble 

Inout to the cornoller is usually a standard Interlisp EXPR definition. However. in Interlisp-lO. mz:::-Jne 
laD.O"'~age codi:u! -can be included within a function by the use of one cr more ASSEM8LE fo1-'.3 as .:l _ -

described below. In other words. ASSE~BLE allows the user to write portions of a fu:r:ction in LA? ~cte 
tt'1at ;,SS EMS LE is ouly a compiler directive; it has ::10 independ~::lt definition. Therefore. ft:.::::tio~ whic~ 
use ASSEMaLE must normally be compiled in order to run.12 

22.8.1 Assemble 

Note: ASSEMBLE is provided for situations where its use is unavoidable. Howeier, its use is de/nile!? not 
encouraged. The disadvantages are 'severaL ASSEMBLE code is unavoidably dependent on the PDP-IO. 
Tenex. and implementatioll details of Interlisp-lO. Thus. ASSEHSLE code is not transportabie Lo Ir.teriis; 
on ar.other machine or operating system. and implementation changes to Interiisp-lO can (and [re:; .. ctIli)' 
do) require changes.to existing ASSEMBLE code. 

The format of ASSEMBLE is similar to that of PROG: 

(ASSEMBLE V 51 52 ••• SN) 

V is a list of variables to be bound during the first pass of the compilation. not during the running of the 
object code. The assemble statements 51 ••• SN are compiled sequentially, each resulting in one or 
more instructions of object code. \Vhen run. me value of the ASSEMBLE '6form" is the conte::lts of ACI 
at the end of the execution of the assemble instructions. Note that ASSEMBLE may appear anywhere in 
an In:~rIisp-lO fu~ction. For example. one may write: 

(IGREATER? (IQUOTIENT (LOC {ASSEMBLE NIL 

1000) 
4) 

to test if job nmtim~ exceeds 4 seconds. L3 

22.8.1.1 Assemhle Statements 

(MOVEI 1 . -5) 
(JSYS 13») 

If an assemble statement is an atom. it is treated as a label identifying the location of the next.sta~e::!e::t 
that will be assembled.14 Such labels defined in an ASSEMBLE form are like PROG labels in t.~at L.~ev 
may be referenced from the current and lower level nested PROGs or ASSEMBLEs. . 

12The MACROTRAN package (p:!ge 5.19) does pennit the user to run progr::uns interpretively which conr"jn 
ASSEMBLE dircctivc$. ~ch ASSEMBLE directive is compiled as a ':icparatc function. Thcrc is ')Orne i()~ 
in c!iicic:1cy ever compiling the entire function as a uniL .md not all ASSEMBLE expressIons cJie tr~c:J.ble 
to this ;Jrccedure. 

13This example is to illustrate use of ASSEMBLE. and is not a recommendation to use the above cede. 
The function J SY S (page 12.6) is the appropriatc mcthod. 

'l~A label can be the last thing in an ASSEMBLE form. in which case it labels the location of the iirst 
insU1lcuon ajter the ASSEMBLE form. 

22.12 

(~ 
\ ). 

(j .. 



(~ 

o 

o 

o· 

INrERLISP-I0 SPEOFICS 

If an assemble s:.atement is not an atoII4 CAR of the statement must be an atom and one of: (1) a nu:n:--er. 
(2) a LAP op-d~f (Le .• has a property value OPO); (3) an assembler macro (i.e .. has a prope~' valce 
Al~AC); or (A.) one of u.'1~ special assemble instructions given below, e.g .• C, CQ, etc. Anyt.w='g else will 
cause the error message O?CODE? - ASSEMBLE. 

The types of assemble statements are described here in the order of priority used in the ASSE~SLE 
processor. th~t is, if an atom has both properties OPO and Ai>1AC, the OPO will be used. Sirr..ilarly a special 
ASSEMBLE ins~-uction may be redefined via a..i AMAC. The following descrip~ons are of the firs~ pass 
pro~essing of ASSEMBLE statements. The second pass processing is described in the section on LAP, ~a~e 
22.15. 

(1) nuobers 

If CAR of an assemble statement is a number, the statement is not processed in the first p~ (see page 
22.15). 

(2) LAP op-defs 

The property OPO is used for ~o different types of op-defs: PDP-IO machine instructions. and LAP 
macros. If t..~e OPO defirjtion (Le., u'le property value) is a number. the op-def is a machine instrt:cticn. 
When a machine instruction. e.g •• HRRZ, appears as CAR of an assemble statement. the stateI:1ent is not 
processed d:lring the first pass but is passed to LAP. The forms and processing of machine instr.lctiot:S 
by LAP are described on page 22.16. 

If the OPO definition is not a number. !hen the op-def is a LAP macro. When a LAP. macro is encountered 
in an assemble statement, its arguments are evaluated and processing of the statement wi(1 evah':2:ed 
arguments is left for Llle second pass and LAP. For example. LOV is a LAP macro, and (LDV (QtJOT E 
X) SP) in assemble code results in (LOV X N) in the LAP code. where N is the value of SP. The form 
and processing of LAP macros are described on page 22.17. 

(3) assemble macros 

If CAR of an assemble statement has a property AMAC. the statement is an assembie macro call. Tne:e 
are two types of assemble macros: lambda and substitution. If CAR of the macro definition is t.."e a:O!!l 
LA~SDA. the definition wiil be applied to the arguments of the call and the resulting list of st2.~eI'!1e!:ts will 
be assembled. For example. REPEAT could be defined as a LAMBDA macro with. two arp.lI7le~!S. Nand 
M. which expands into N occurrences of ~,. e.g .. (RE PEAT 3 (CAR 1» expands to « CAR 1) (CAR 1 ) 
(CAR 1) ). Tne defL'1ition (Le .• value of property AMAC) for REPEAT could be: 

(LAMBDA 
(PROG 

A 

(U M) 
(YY) 
(COND 

«ILESSP N 1) 
(RETURN (CAR YY») 

(T (SETQ YY (TeONC YY M» 
(SETQ N (SUBl N» 
(GO A»») 

. If CAR of the macro definition is not the atom LAMBDA. it must be a list of dummy symbols. The 
arguments of the macro call will be substituted for corresponding appearances of the dumrny symboLs i:l 

22.13 



,..--

COREVAu 

CDR of tte definition. and the resulting list of statements will be assernbled. ls For eXaI:1ple .. ASS could 
b~ a substitution ~2.Cro which takes one argument.. a number. and expa:lds into instructions to place me 
absolute value of the number in ACl: 

«X) 
(CQ (VAG X» 
(CAIGE 1 . 0» 
( f10'JN 1 f 1» 

(4) special assemble statements 

CQ (compile quote) takes any number of argum~nts which are 3SS'l.lIIled to be 
regular Interlisp e~prcssions and are compiled in the normal way. Eg. 

(CQ (CQUO 
«NULL Y) 

(SETQ Y 1») 
(SETQ X (IPLUS Y Z») 

Note: to avoid confusion and minimize dependence on the current implementation. 
it is best to have as much of a function as possible compiled in the nor:nal way, 
e.g .• to load the value of X toAC1. (CQ X) is preferred to (LDV (QUOTE X) 
SP). 

C (Compile) ta.f(es any number of arguments which are first evaluated.. the:} compiled 
in the usual way. Boch C and CQ pennit the inclusion of regular compilation within 
an assemble form. J 

E (Evaluate) takes any number of arguments which are evaluated in sequence. For 
example. (PSTEP) calls a function which increments the compiler variable S? 

Compiles code to set the variable VAR to the contents of AC 1. (SETQ VAR) 

(VAR (op AC .. VARN ... LWE) ) 
Permits writing a m2.chine instruction wiL~ the value of a' vaf.ab Ie as t..~e cper2Ilci. 
Generates the appropriate add:ess and index fields to refere:lce the value 0: 

(. ... ) 

22.8.1.2 COREVALs 

VA..qNA..'J.E. VARNA}..{E may be a locally bound variable. free variable, G lOSAl V Aft 
etc. Note L.'1at V AR may generate more t.i1an one instruction. 

Used to indicate a comment; the statement is ignored. 

There are several locations in the basic machine code of Inceriisp-10 which may be referenced from 
compiled code. The currcnt value of each location is stored on the propcrty list under the propcr:y 

lSNote that assemble macros produce a list of statementS co be assembled. where3.S compiler m;:.cfcs 
produce a single expression. An assemble macro wh:ch compules a list of st.:ltements begins with LA~l;e DA 
and may be eilher spread or no-spread. 'The analogous compiler macro begins wit.." .ll1 Jtom. (l.I! .• is 
alv'lays no-spread) and the LAMBDA is understood. 

22.14 

f~~' 

( ) 
\. /,' 

("'1' 
"' /" 

() 



o 

o 

r-.-' o 

o 

INrERLISP-10 SPEOFICS 

COREVAL.16 Since t.'1ese locations may change in different reasse:nblies of Interlisp-lO, they are WTitten 
symbolicaily on compiled code files, Le., the n~e of the corresponding COREVAL is wricte!l.. not its value. 
Some of the COREVALs used frequently in ASSEMBLE are: 

contains (pointer to) atom T KT 

KllIL Contains (a pointer to) the atom NIL. 

MKN Routine to box an integer. 

~1KFN Routine to box floating I!umber. 

Routine to unbox an integer. IUNBOX 

FUNBOX ~outine to unbox floating number. 

The index registers used for the push-down stack pointers are also included as COREVALS. These are" 
not expected to change, and are not stored symbolically on compiled code files; however. they should be 
referenced symbolically in assemble code. They are: 

P P Parameter stack. 

C P Control stack. 

VP Basic frame pointer. 

22.8.2 LAP 

LAP (for LISP Assembly Processor) expands the output of the first pass of compilation to produce 
numerical machine instructions. 

22.B~1 LAP Statements 

If a LAP statement is an atom. it is treated as a label identifying the locajon of the next ~wltewent to be 
processed. If a LAP statement is not an atom. CAR of the statement must be an atom and ei~~er: (1) a 
number; (2) a machine instruction; or (3) a LAP ma:ro. 

(1) numbers 

If CAR of a LAP statement is a number, a location containing the number is produced in t.l-te object 
code.17 E.g .• 

(ADD 1 • A (1» 

16The value ofCOREVALS is a Est of all atoms with COREVAL properties. 

17Note that if a function is intended to be swappable, it may not conrain any relocatable, indexed 
instructions. 

22.15 



-

A (1) 
(4) 
(9) 

LAP Statements 

Staten:e!lts of this type are processed like machine instructions. with the initial number serving as a 36-oit 
op-cocie. 

(2) ~Iachine Instructions 

If CAR of a L~ .. P statement has a numeric value for the . property OPO, 18 the statement is a machine 
instruction. The gex:.eral form of a machine instruction is: 

(OPCODZ AC • @ ADDRESS (index» 

OPCODE is ~.,y PDP-IO instruction mnemonic or Interlisp UUO.1. 9 

AC, the accUmulator field, is optional. However, if present. it must be followed by a comma. AC is either 
a ntJ.Inber or an atom with a COREVAL property. The low order 4 bits of the number or COREVAL ~--e 
OR'd to the AC field of the instruction. 

@ may ce used anywhere in L'1e instruction to specify indirect addressing (bit 13 set in the instr"llction) 
e.g .• (HRRZ 1 , @ 1 (VP)). 

ADDRSSS is the address fieid which may be any of the following: 

= CONSTANT Reference to an unboxed constant. A location coniaining the unboxed COIlSt:lllt will 
be created in a region at the end of the function. and the address of L~e loc:ltion 
containing the constant is placed in the address field of the current instruction. ~1e 
constant may be a number e.g .• (CAME 1 • = 3596): an atom with a property 
COREVAL (in which case the constant is u'1e value of the prope~y. at LOAD t.i.me): 
any oG'1er atom which is treated as a label (the constant is L.~e:1 the 2.cc.:ess of 
the labeled location) e.g., (HOVE 1 • = T Aa LE) is equivalent to (HOVE I 1 , 
T AS LE ): or an expression whose value is a number. 

n 

n 

, ?OI:'i7ZF.. Th-e address is a referer..ce to a Interlisp pointer. e.g .• a list. nu..T!lber. stri~g, etc. n 
A location containing t",'1e pointe: is assemb led at the end of the fur:c:ion. and t.~e , 
current instruction will have the address of this location, e.g .• 

• 

a literal atom 

(HRRZ 1 

(HRRZ 1 

f "IS NOT DEFINED") 

, (NOT FOUND)} 

Specifies the current location in the compiled function; e.g .• (J RST • 2) has the 
S3..'11e effect as (SK I PA ). 

If the :ltom has a property COREVAL, it is a reference to a system loc.Jt!on. 
c.g., (SKIPA 1 • KNIL). and the address used is the value of the CQREVAl. 

toTnc value is an 18 bit quantity (rather than 9). since some UUO's also use the AC fi~!d of U1~ 
instruction. 

L9Tne TE~EX JSYS's are not defined. thac is. on~ must write (JSYS 107) instc:ld of (KFORK). 

22.16 



o 

o 

0 

INfERLISP-l0 SPEOFICS 

Othenvise the atom is a label referencing a location in the LAP code, e.g_ (J RS T 
A). 

a number The number is the address; e.g .• 

(MOVSI 1 • 400000Q) 
(HLRZ 2 , 1 (1» 

a list The form is evaluated. and its value is the address. 

Anj-~.hing eise in the address field causes an-error message. e.g .• (SKIP.n. 1 • KNILL) - LAPERROR. 
A n:'lInber may follow th~ address field and will be added to it. e.g .• (J RST A 2). 

INO£X is denoted by a list following the address field. i.e .• t...'1e address field must be prcs~nt if ~'1 inc.ex 
field is to be used. Tne index (CAR of the list) must be either a number. or an atom with a propc:ry 
COREVAL. e.g .• (HRRZ 1 • a (1». 

(3) LAP cacros 

If CAR of a LAP statement is·the name of a LAP macro. i.e .• has the property OPO, the sta.:ement is a 
macro call. The arguments of the call follow the macro name: e.g . ., (LQ 2 FIE 3) . 

LAP macro calls comprise most of the output of the first pass of the compiler, and may also be used in 
ASSE~lBLE. Tne definitions of these macros are stored on the property list under the property OPO. and 
IDee ass~mbler macros, may be either lambda or substitution macros. In the first C3.Se. L.'1e macro ddL"1.iticn 
is applied to the arguments of ui.e cal1;20 in the second case, the arguments of t.~e call are su~sti~'uted 
for occurrences of tile dummy symbols in the definition. In both cases.. the resulting list of statements is 
again processed., with macro expansion continuing till the level of machine instructions is reached. 

Some examples of LAP macros are shown below. 

(DEFLIST 
'[(LQ «X) (* LOAD QUOTE 10 AC1) 

(HRRZ 1 • t X») 
(LQ2 «X AC) (- LOAD QUOTE TO AC) 

(HRRZ AC t t X») 
(LDV «A SP) (* LOAD LOCAL VARIABLE TO AC1) 

(HRRZ 1 t (VREF A SP»» 
(STV «A SP) (- SEi LOCAL VARIABLE FROM AC1) 

(HRRM 1 . ('JREF A SP»» 
{LDV2 «A SP AC) (* LOAD LOCAL VARIABLE TO AC) 

(HRRZ AC • (VREF ASP»» 
(LDF «A SP) (* LOAD FREE VARIABLE TO ACt) 

(HRRZ 1 (FREF-A SP»» . -
(STF «A SP) (~·SET FREE VARIABLE FROM AC1) 

{HRRM 1 , (FREF ASP»» 
(LOF2 ( (A SP) ( * LOAD FREE VARIABLE TO AC) 

(HRRZ 2 , (FREF AS?»)") 
(CARl (~l I L ( IS CAR OF· ACt TO AC1) 

2°The arguments were already evaluated in the first pass. see page 22.13. 

22.17 



(HRRZ 1 • 0 (1»» 
(CORl (NIL 

(HlRZ 1 , 0 (1»» 
(CAR2 «Ae) 

(HRRZ AC t a (AC»» 
(Cll «:lAM N) 

(CCALL N 'NAM») 

Using ·Assemblc 

(* COR OF AC1 TO AC1) 

(* CAR OF AC TO AC) 

(* CALL FN WITH N ARGS GIVEN) 

(LC!..L ({ NAi4 N) (0 LINKED CALL \/ITH N ARGS) 
(LNC.!\LL N , (~'KlCl Nft.M»» 

(RET (rill 
(PC!'J CP ,» 

(?USHP (NIL (PUSH PP • 1») 
(?USHQ «X) 

(PUSH PP , ' X»)] 
'OPO) 

22.8.3 Using Assemble 

(. RETURN FROM FN) 

(* PUSH QUOTE) 

In order to use ASSEMBLE. it is helpful to know the following things about how compiled code is run. 
All va.:iable bindings and temporary pointers are stored on the parameter pushdown stack (addressed by 
index regis~er P P). Control information is stored on the control pushdown stack (addressed by index 
regi.ster CP). A function call proceeds as follows: 

1. rne calling function pushes the argument values on the parameter sta:k. 

2. Tne calling function invokes a routine u'lat adjusts the number of arguments if too few or too many 
were supplie~ and binds the arguments. Binding usually implies the creation of a basic frame. l1 

3. Tnen the called function is rl.ln. 

The arguments in the basic frame are referenced relative to index register VP. e.g.~ I( V?) addresses u'1e 
first arg'.LL1ent. However, i: is better to reference va...riables in less implementation depenc.ent ways. ~..:ch 25 
(CQ ... ) or ('JAR ( ••. ». The compiler will then generate the correct code wheL.~er Lt;,e ... arilbie 

,~ 
( I 
\ ) 

(--" is bound locally, is a free reference. is a GLOBALVAR. etc. , ) 

Tne parameter staCk may be used for temporary stor~ge of pointers. Both halves of a word on L'le 
parameter stack may be pointers. On the control stack the right half of a word must be a pointer. u'1e 
left a non-pointer. Anything else can cause the g:lI'bage coHector to fail. 

For temporary storage of unboxed numbers. the following ASS EMB LE macros are provided: 

(PUSHN ADDR) 

(POPN ADDR) 

"Pushes" the number referenced ~y ADDR. ADDR may be any leg:ti ASSEMBLE 
code address field. for example: (PUSHN 1), (;PUSHN = 0). (PUSHN @ 2-) 

··Pops·· the most reccnt number to ADDR. 

21 \Vhcther a basic frame is crcated for a P ROG or open lambda depends on whether any of the variJ.bies 
are specvars. 

22.18 f\ 
\ ) 



o 

o 

o 

o 

(H RE ~ (OF AC • 

ll'ITERLISp·10 SPEGFICS 

N) ) 
References a previously pushed number. OF is the opcode, AC is the ac::u.mulator. 
N is the relath'e position of the desired number on the pseudo number stack. That 
is, N = 0 refers to the most recent number. N = -I to the next r=ost r~e=:.. etc. 
For example: (NREF (MOVN 1, -1» 

(PUSHN~1 Nl ••• N],{) 
"Pushes" a sequence of numbers specified by N j where Nj is a list of a.~y legal 
address field. For example: (PUSHNrl (1) (2) (= 0» pushes the con~e:lts of 
AC 1. the contC!1ts of AC2, and the constant O. 

(POPNN N) "Pops" the N most recent numbers, discarding the values. 

Use of L'1ese m2CrOs is subject to the following restrictions.: 

1. PUSHN's and POPN's must be seen by the compiler in the same order and number in which they 
are executed. The compiler docs not analyze the code; it assumes when it encounters a PUSHN in t.'e 
sequential processing of the code that the PUSHN will in fact be executed. 

2. Every number that is pushed must be popped. 

3. In nested ASSEMBLE statements. if a PROG or open lambda occurs between the inner and outer level 
ASSEMSlE, numbers pushed in the outer ASSEMBLE may not be referenced from the inner ASSE~BLE. 

The value of a function is always returned in AC 1. Therefore. the pseudo-func:io~ AC. is ayailabie for 
obtaining the current contents of AC1. For example (CQ (FOO (AC») compiles a call to Faa with 
the current contents of AC1 as argument, and is equivalent to: 

(PUSH?) 
(E (PSTEP» 
(elL (QUOTE FOO) 1) 
(E (PSiEPN -1» 

In using AC. be sure that it appears as the first argument to be evaluated in t.."te expression. For example: 
(CQ (IPLUS (LOC (AC» 2» 

There are several ways to reference the values of variables in assemble code. For example: 

(eQ X) Puts the value of X in ACl. 

(LOV2 (QUOTE X) SP 3) 
Puts the value of X in AC3. 

(SETQ X) Sets X to the contents of ACI. '. 
(VAR (HRRM 2 • X» . 

Sets X to the contents of AC2. 

(eQ (LaC (AC») 
Boxes the contents of ACL 

( F AS TeA L L r~ K F N ) 
Floating boxes the contents of AC1. 

22.19 



Interfork Communic:ltion in Interlisp-lO 

{CQ (VAG X» Puts t.i-te unboxed value of X in ACl. 

(FASTCALL FUNBOX) 
Gets the floating unbox of ACl. ... 

To call a fuJlction directly, the arguments must be pushed on the parameter St2.Ck. and SP must be 
u?dated.. and ti:en the fJonction called: e.g ... 

(CQ (CAR X» 
. (PUSi;P) 

(E (PSTE?» 
(PUSHQ 3.14) 
{E (PSTEP» 

(~ stack first argum9nt) 

c· stack second argument) 
ceLL (QUOTE FUM) 2) 
(E ~PSTE?N -2» 

(. call FUM with 2 arguments) 
(. adjust stack count) 

and is equivalent to:' 

(CQ (FUM (CAR X) 3.14» 

22.9 L.'ffERFORK COI\1l\1UNICATION IN INTERLlSP-IO 

The functions described below permit two forks (one or both of them Interlisp-lO) to have a cotr.LInon 
area of address space for communication by providing a means of assigning a block of storage guaranteed 
not to move dun"ng garbage collections. 

(GE"TBLK _1.f) [Functior:J 
Creates a block N pages in siZe (512 words per page). Value is the address of 
the- fllSt word in the block. which is a multipie of 5U since tL'!e block ,oItill always 
begin at a page bouncbry. If not enough pages are available, gene:-ates L'1e error 
ILLEGAL OR IMPOSSIBLE BLOCK. 

Note: the block can be used for storing unboxed numbers ONLY. 

To store a number in the block. the following function could be defined: 

(SETBLOCK (LAMBDA (START N X) (CLOSER (IPLUS (LOC START) N) X] 

Some boxing and unboxing can be avoided by making th.is function compile open via a substitution 
macro. 

SOle: G{TBLK should be used sparingly since several unmovable region~ of memory can make it dijffc:J.lt or:. 
impossible for (he garbage collector to find a contiguous region large enough for expanding array space. 

(RELB LK ADDRESS N) [Fu~c:ionl 

releases a block of storage beginning at ADDRESS and extending for .'{ pages. 
Causes an error ILLEGAL OR IMPOSSIBLE BLOCK if any of the range is not.l 
block. Value is ADDRESS. 

22.20 

/\ . 
I J 
\ / 

(\ 
\ ) 



"0 

o 

o 

o 

L.'ITERLISP-I0 SPEOFICS 

22.10 SUBSYS 

Tnis section describes a function.. SUBSYS. which permits the user to run a TenexITOPS-20 S".lbsyste:!L 
such as S~DMSG. SRCCOM. TEeO. or even another Interlisp. from inside of an rn:e~iis? ~iu.~O'..lt 
destroying the latter. In parJcular. (SUBSYS 'EXEC) will start up a lower e~ec. whic~ will pr.:lt ~'-le 
operating system herald.. followed by @. The user can t.~en do anything at this exec "level ~~a~ :'e c:;u: at 
the :op level ""thout a.l'fecting his superior Interiisp. For example. he can start another In:ercsp. ;::70:1:: 
a SYS!U. run for a while. type a control-C returning him to the lower exec. RESET. do a S~D~,iSG. 
etc. The us~r exits from ~'1e lower exec via the conunand QUIT.22 which wi!1 re~urn cor-trol to SL'SS'fS 
in the higher Interlisp. Thus with SUBSYS. the user need not perfonn a SYSOUT to save L~e S~:'~ of 
his Interlispin order to use a Tenex1TOPS-20 capability which would otherv,ise clobber t..i-}e core ixage. 
Similarly. SUBSYS provides a way of checking out a SYSOUT file in a fresh Inter;'isp without haying to 
co~andeer another terminal or detach a job. 

\Vhile SUSSYS can be used to run any subsystem directly, without going through a....~ inter\'e~g exec, 
this procedure is not recorr.mended. The problem is that control-C always returns concrol to the next 
highest EXEC. Thus if the user is running an Interlisp in which he performs (SUBSYS f LISP). and 
then types control-C to the lower lnterlisp, con:rol will be returned to the exec above the fl.rst Interlis? If 
the user elects to call a subsystem directly, he must therefore know how it is norwally exited and always 
exit from it that way.23 

Starting a lower exec does not have this disa.dvantzge, since it can only be exited via QUIT or POP. Le_ 
the lower exec is effec~vely ··errorset protected" against control-C. 

(SUBSYS FILEjFORK INCOMFILE OUTCOMFILE ENTRYFOfNTFLG), [Functioc] 
If FlLE/FoRK=EXEC. statLS up a lower exec. ot.~erwise runs <SUBSYS>system. 
e.g. (SUBSYS • SNDMSG), (SUBSYS 'TECO) etc. (SUBSYS) is the sarr:e as 
(SUBSYS • EXEC). Control-C always returns control to next higher EXEC. ~cte 
thaL mere u~an one Interlisp can be stacked.. but u~ere is no backtra=e to help you 
figure out where you are. 

INCOMFILE and OUTCOMFILE provide a way of specifying files for input c.nd 
output. INCOMFILE can also be a string, in which case a temporary file is c:ea:ed.. 
and the string printed on it. 

ENTRYPOr.-TTFLG may be START, REENTER, or CONTINUE. NIL is equi\'alen~ to 
START, except when FrLEjF'ORK" is a handle (see below) in which case NIL is 
equivalent to CONTINUE. 

The value of SUBSYS is a large integer. which is a handle to the lower fork. The lower fork is not 
reset unless the user specifically does so using KFORK. described below.24 If SUBSYS is given as its first 

~~POP on TOPS-20. 

23mtcrlisp is exited via the function LOGOUT. TEeO via the command: H. SND~tSG via control-z.. and 
EXEC via QUIT. 

:Z~~e for~ is also reset when the handle is no longer accessible. i.e .. when nothing in the lrneriisp system 
pomts to It. Note that the fork is accessible while the handle remains on the history list. 

22.21 



JFN Functions in Interlisp·lO 

argument the value of a pr~vicus call to SU8SYS.2S it continues the subsystem run by that c.:ill. For 
ex~nle. the user can do (SETQ SOURCES (SUBSYS 'TECO». lead up the TEeO with a rig sour:e 
file. ~3SSage the file, leave TEeO with. : H, run Interlisp for awhile (possibly bclucili:g ou.~e: C2I:s to 
SUSSYS) and :hen perform (SUBSYS 'SOURCES) to return to TECO, 'i-ihere he will fuld his file leaded 
and even the TEeO pointer position preserved. 

Note that if the user starts a lower E'XEC, in which he runs an I:lteriisp. controi-Cs from the Interlisp. 
then QUIT from the S,(EC, if he subsequently contir.ucs this S",{EC with SUaSYs. he C~ re~:l~er or 
continue the Interiisp. 

Note also that calls to SUBSYS can be stacked. For example, using SUBSYS, the user can rlln a lower 
Interlisp. and within that Interlisp. yet another. etc., and ascend the chain of Interlisps using LOGOUT. 
and th.en desce~d back down again using SUSSYS. 

For convenience, (SUBSYS T) continues the last subsystem run. 

S?~C~'SG. LISP, TECO. and EXEC are all LISPXMACROS (page 8.19) which perform the corresponding 
calls to SUaSys. COr~TIU is a LISPX1~ACRO which performs (SUBSYS T), thereby continubg the iast 
SUBSYS.26 

(KFORK FORK) [Function] 
Accepts a value from SUBSYS and kills it (RESET in Tenex te:mi:loiogy). If 
(SUBSYS FORK) is subsequently performed.. an error is generated. (KFORK T) 
kills all outstanding forks (from this Interlisp). 

22.11 JFN FUNCTIONS IN INTERLISP-IO 

1FN stands for Job File Number. It is an integral part of the Tenex file system and is described in 
[1'lurl], and in somewhat more detail in the Tenex 1SYS manual In Interlisp-lO. the followL.~g functions 
are available for direct I:1anipulation of JFNs: 

n 

(O?NJ FN FILE ACCESS) [Ft:I:c:ionJ (-) 
Returns the JFN for FILE. If FILE not open. generates a F I LEN 0 TOP :: ~r 
error. ACCEss=NIL. INPUT. OUTPUT. or BOTH as described in discussion of 
OPErlP. For example. {JSY S 51Q (OPNJ FN FILE) BYTE) will write"a eyre en 
a file. while (JSYS 50Q (OPNJFN FILE) NIL NIL 2) will read one byte. 

(GTJFN FILE EXT V FLAGS) [Function} 
Sets up a "long" call to GTJFN (see JSYS manual). FILE is a file n:m1e pcssloly 
containing control-F and/or <esc/. 'EXT is the default extension. v the default 
version (overriden if FrLE specifies extension/version. e.g .• FOO. COM: 2). FLAGS is 

2S~fust be the exact same large number. i.e .. EQ. No[e L.~at if the user neglects to set a variable to :he 
value of a c:Ill [0 SUBSYS. (and has perfonned an intervening: c~ll so that (SUBSYS T) wii! noc work). 
he c~n still continue this subsystem by obt~ining the value of the call co SUBSY S for the history list USir:g 
Ll;c function VALUEOF. dC!3Cribed in page 8.16. 

26·The EXEC LISPXf>1ACRO is defined co save its value on LA5TEXEC so that subsequent EXEC cor...m~ncs 
will restart the same exec. 

22.22 n 



o 

0-

c-o-

o 

(RLJ Frl JFN) 

( J FNS JFN AC3 

as described on page 17. section 2 of 1SYS manual. FILE and EXT may be strings 
or atorns; v and FLAGS must be numbers. Value is JFN. or NIL on errors. 

[FUDctiO:l] 
Releases uN. (RLJ FN -1) releases all JFN·s which do not specify ope~ ffies. 
Value of RLJ FN is T. 

STRPTR) [Function] 
Converr..s JFN (a small number) to a file name. AC3 is either rl I L. mea::ir:g format 
the fiic n~T.e as v,Quld OPEn? or ot.'1cr I:Lltc~lisp-lO file functio:1s. or else is a 
number, meaning format according to JSYS manual. The value of J F NS is atorr:.ic 
except where enough options are specified by AC3 to exceed atom size. In this 
case, me value is returned as a strir..g. 

STRPTR is an optional string pointer to be reused. In this case. the string charactcrs 
arc stored in an internal scratch string. MACSCRA TCHST RING. so th~t a subscque~t 
call to J F NS will overwrite the characters returned by this one. Tne value of J F NS 
when STRPTR is supplied is always a string. 

Tne following function is available in Interlisp-lO for specialized file applications: 

(OPENF FILE x) [Function] 
Opens FILE. x is a number whose bits specify the access and mode for FILZ. 
i.e .• x corresponds to the second argument to the Tenex JSYS OPE~F (see 1SYS 
Manual). Value is full name of FILE. 

The first a:gument to OPEr~F can also be a number. which is then interpreted as 
a 1FN. OPENF does not affect the primary input or output file settings. and does 
not check whet.'1er the file is already open - Le .• t.'e same file can be opened more 
than once, possibly for different purposes. 

Note that for almost all applications the function OPEUFILE (page 6.1) provides a more convenient (and 
implementation independent) way of opening files. 

22.12 DISPLAY TERl\1INALS 

The value of the variable OISPLAYTERMFLG indicates whether the user is running on a display tennL~al 
or not. OISPLAYTERMFLG is used in- various places in the system. e.g .• PRETTYPRINT. HELPSYS. etc .. 
pri.T!1arily to decide how much infonnation to present to L.1e user (more on a display terminal than on 
a hard copy terminal). OISPLAYTERMFLG is initialized to the value of (OISPLAYTERMP). whenever 
Interiisp is (re)-entered. and ·after returning from a. sysour.. . 

(OISPLAYTERMP) . [Functionl 
Value is T if user is on a display tenninaL NIL otherwise. [n Interiisp- iO. 
D I SPLAYTE RMP is defined to invoke the appropriate jsys to che:k the user"s 
terminal type. 

22.23 



The Interlisp-10 Strapper 

22.13 THE INrERLISP-10 S\VAPPER 

InterIL~-10 provides a very l2.rge auxilary address space exclusively for swappable arrays (prirnzrily 
co~oil~d. funcdo::l definitions). In addition to U.~e 256K of resident address space, this wshadow spa:e'· can 
curr~ntly accomociate ;m additonal 256K wcr~ can easily be expanded to 3.5 million words. and with 
SO!:lC further modifications, could be expanded to 128 IrJ.illion words. Thus. the overlay sys~e:n provides 
ess;ntiiliy unli..Tired space for compiled code.:' 

Shadow sp:::ce and the swapper are intended to be more or le'"~ trar.sparent to the user. However. :..'1is 
section is inch.lded in the manual to give progr~ers a re3.S0nabie feeling for what overlays are like. 
without getting unnecessarily technical. as well as to document some new functions and system cOntroLS 
whicb. may be of int.erest for autb.ors of exceptionally large systems. 

22.13.1 OYer lays 

The shadow space is a very. large auxiliary address space used exclusiYely for an Interlisp Cau-type 
called a sW2.ppable array. The regular address space is called the ureside:lt" space to distin~~ it from 
shadow space. Any kind of resident array • compiied code, pointer data. binary data. or a ha5J.~ array 
- can be copied. into shadow space ("made swappable"), from which it is referred to by a one-word 
resident entity called a handle. The resident space occupied by the original array can then be garbage 
collected normally (assuming there are no remaining pointers to i~ and it has not been made shared by 
a MAKESYS). Similariy. a swapp able array can be made resident ag:ilil at any time, but of course L.'1is 
requires (re)allocating the ne,-:essarj resident space. 

The main purpose and intent of the swapping system is to permit utilization of sNappable arrays directly 
and intercha:zgeably with resident arrays. thereby saving resident space which is then available for other 
data-lypes. such as lists. atoms. strings. etc. 

This is accomplished as follows: A section of the resident address space is permanently reserved for a 
swapping bu.ffer.2S When a particular swappable array is requested. it is broug..rlt (swapped) in by mapping 
or overlaying the p2ges of shadow space in which it lies onto a section of the swapping buffer. This 
process is L~e swapping or overlaying from which me system takes its na.~e. The array is ::ow (directly) 
acc~ssible. Ho·",'ever. fuf1"J1er requests for swapping could cause the array to be overlaid wlth somethi:lg (j 
else. so hi effect it is liable to go away at any time. Tnus all system code that relates to arr::.ys rz:ust 
recognize handles as a special kind of array. fetch them into the buffer (if not already there). '.'ine:]. 
necessary check that they have not disappeared. fetch them back in if they have. and even be" prepared 
for the second fetch co bring the swappable array in at a different place than did the first. 

The major emphasis in 'the design of the overlay system has been placed on running compiled code. 
because this accounts for L.1e overwheLming majority of arrays in typical systems. and for as much as 
60% of the overall data and ,code. The system supports the running of compiled code directly from L.'1e 

2':'Since compiled code arrays point to atoms for function names. and strings for error messages. not to 
me:1tion the f2Ct that programs usually have data base. which are typically lists rather than arrays. d:e:-e lS 
still :1 very real and finite lirnit to the total size of programs that £nterlisp-lO can accomodate. Howeve:-, 

- sir.ce much of the system and user compiled code can be made swappable. there is th~t much ~ore 
resident space avaIlable for these other mea-types. 

28Initially 64,512 word pages. but can be changed via the function SETSBS IZE described below. 

22.24 



o 

o 

o 

o 

INTERLISP-I0 SPECIFICS 

swappi:lg buffer, and the function calling mechanism knows when a swappable definition is ceing ~!ed. 
finds it in the buffer if it is already there, and brings it in otherwise. ThUs. from the user's point of 
view, there is no need to distinguish between swappable and resident compiled definitions. and in fac~ 
CCODEP will be t..""Ue for either. 

22.13.2 Efficiency 

On;e of the mcst i.a~portant design goals for the overlay system was that swappable code 5.L~ould r.ot 
execute any extra instructions compared to resident code, once it had been swapped in. Thus. the 
instructicns of a swappable piece of code are identical (except for two instructions at the er.t::; point) to 
those of the resident code from which it was copied.. 29 and similarly when a swappablc fun:tion c:lils 
another r..lr.ction (of any kind) it uses the exact SilillC calling sequence as any other code, Tncs. all C05ts 
associated with running of swappable code are paid at the point of entry (both calling and retumi:1£).3c 

Tne cost of Lt-te swa?ping itself. Le. the fetch of a new piece of swapped code into the buffer. is even 
harder to measure meaningfully. since two successive fetches of the same function are not the same, due 
to the fact that the instance' created by the first fetch is almost certain to be resident when t.:.'1e second 
is done, if no swapping is done in between. Similarly. rNO successive P~fAP's (the Tenex ope=:-ation to 
fetch one page) are not the same from one moment to another. even if the vL-rual state of both forks is 
exactly the same - a ciifficult constraint to meet in itself.31 Thus. all that can be reported is that e:npiric~ 
measureme~ts and observations have shown no consistent slowdown in performance of systems containing 
swappable functions viz a viz resident functions. 

22.13.3 Specifications 

" Associated with the overlay system is a datatype called a SWPARRAY, (type name SWPARRAYP). which 
occupies one word of resident space, plus however much of shadow space needed for the body of t.~e 
~-ray. ARGLIST, FNTY? NARGS, GETD.Q PUTD. ARGTYPE. ARRAYSIZE. CHAl'GENAME, CALLS, SREAK. 
ADVISE. and EDITA all work equally well with swappable as resident programs. CCODEP is tl·'Ue for all 
compiled functions/definitions. 

(Sl;JPARRAYP x) [t:'unc~~~'" i " uUUJ 

Analogous to ARRAYP. Returns x if x is a swappable array and. NIL other-,lr'ise. 

29The relocatable instructions are indexed by a base register, to make them· run equally well at any 
location in the buffer, The net slowdown due to this extra level of indirection is too small to measure 
accurately in the overall running of a program. On analytical grounds, one would expect it to be arot.:nd 
2%. 
JOIf the function in question does nothing. C.g. a compiled (LAMBDA NIL NIL). it COSL<; approx"im;}(c!y 
twice :1S much to enter its definition if it is sv.,:appable as compared to resident. However. vcry siT::lii 
functions are normally not made swappable (see MKS',.JAPP. page 22.26), because they don't save much 
SpJCC, .:!r.d·are (typically) entered frequently. Larger programs don't exhibit a me3Surablc slow d0wn s~:::c 
they amortlLc the entry cost over longer runs. 

31Thc cust of fetching is probably not in the mapping operaliun itself but in the first rCfcrence to th~ 
page. which has a high probability of faulting. This raises the problem of measunng page ia1.!lt dCti\"~ty, 
another m-:>rass of uncertainty. 

22.25 



(SCODEP x) 

(~:<SWAP x) 

(MKUNSWAP x) 

Specifications 

[Function] 
Analogous to CCOOEP. Returns T if x is or has a swapped compiled definition. 

.. [Fu~:conJ 
If x is a residc:lt array. returns a S"wappable array which is a copy of x. if x is 
a literal atom and (CCOOEP x) is true~ its definition is copied into a swappable 
array. and it is (undoably) redefined with the latter. HKS\~AP rerurns x. 

[F'Jnctor.] 
The inverse of ~!KS·."/~P. x is either a swappabie array, or an atom with swapped 
definition on its CODE propertY. . 

(MKSWAPP FNAME CDEF) [Function] 

(SETSBSIZE N) 

All compiled definitions begin life as resident arrays, whether they are created by 
LOAD. or by compiling to core. Before they are stored away into t..'1eir atm:fs (\ 
function cell MKSWAPP is applied to the atom and the array. If the vc:lue of \ ) 
MKSWAP P is T, the definition is made swappable; otherwise. it is left resic!ent. By 
redefining MKSWAPP or advising i~ the user can completely contrel the swappabi!i~ 
of all future definitions as they are created. The initial definition of MKSWAPP will 
make a function swappablce if (1) NOSWAPFLG is NIL. and (2) the n~e of tile 
function is not on NOSWAP F NS. and (3) the size of its definition is greater than 
MKSWAPSIZE words, initially 128. 

(Function1 
Sets the size of the swapping buffer to N, a number of pages. Returns the previous 
value. (SE T sa S I Z E) returns the current size withou~ cf}angi .. 1g it. 

Note: Currently. the system lacks error recovery routines for siruations such as a 
call to a swappable function which is too big for the swapping burrer, or when tb.e 
size is zero. Tnerefore, SETSBSIZE should be used with care. 

22.26 (~ 
\ ) 



o 

o 

CHAPTER 23 

.LISPUSERS PACKAGES 

This chanter describes packages which are of sufficient utility that they would otherwise be included as 
part of ts.;e In~erlisp system. except for virrual address space limic.atio:ls. These packages nOr.:1ally reside 
on the directory <LISPUSERS). 

'23.1 PA TTEIU"l MATCH COl'rIPILER 

Note: The pattern match compiler is a LispUsers package which can be loaded from the jfle MATCH. DCOM. 
The entries have a F ILEDEF property (see page /5.8), so simply using a pattern match construct will cause 
the file to be loaded automatically. 

The patte:n match compiler provides a fairly general pattern match facility within eLlSP. This facility 
allows the user to specify certain tests that would otherwise be clumsy to write. by giYing a pattern \Ir'hich 
the datum is supposed to match. Essentially. the user writes "Does the (expression) X look like (the 
pattern) P'?" For example. X: (& t A -- t B) asks whether the second element of X is an A. and the 
last element a 8. The implementation of the matching is performed by computing (once) the equivalent 
Interlisp expression which will perform the indicated operation. and substituting this for the pa:tern. and 
not by invoking each time a general purpose capability such as that found in FLIP or PLAN0iER. For 
example. the tra..."1s1ation of X : (& t A -- 'B) is: 

(AND (EQ (CADR X) 'A) 
(EQ (CAR (LAST X» t B ) ) 

Thus the CLISP pattern match facility is really a Pattern Compiler. and the emphasis in its design and 
impiementation has been more on the efficiency of object code than on generality and soprjstication of 
its matching capabilities. Tne goal was to provide a facility that could and would be used even where 
efficiency was par~ount. e.g.9 in inner loops. As a result. the CLlSP pattern match f.1ciiity does ~o~ 
contain (yet) some of the more esoteric features of other pattern match languages. su:h' as repeated 
pa~erns. disjunctive and conjunctive patterns. recursion, etc. However. the user can be confide~t U:2t 
what facilities it does proyide will result in lnterlisp expressions comparable to those he would gene:ate 
by hancL1 

. 
The syn~ for 'pattern match expressions is FORM: PATTERN. where PATTERN is a list as described below . 

. As with iterative statements. the translation of patterns. i.e.. the corresponding Incerlisp expressions. 
are stored in the hash array CLISPARRAY (see p3gC 16.19), The original expression. FORM:PATTER. ..... ·. 

is replaced by an expression of the form (MA T CH FORM WITH PATTERN). CllSP also recogmzes 
expressions input in this form. 

~ Wherever possible. already existing [nterlisp functions are used in the translation. e.g .. the transiJ.tion (If 
(S 'A $) uses MEMB. (S (' AS) S) uses ASSOC. etc. 

23.1 



Pattern Elements 

If FOR-\{ appears more than once in the translation. and it is not either a variable, or an expression tJ.i.at 
is easy to (re)compute. such as (CAR Y). (CODR Z). etc .• a dwr..my variable will be generated a:ld 
bound to the value of FOR..'J so that FOR..\{ is not evaluated a multiple number of times. For eX:!!L;:lle. 
the trmslation of (FOa X): (S 'A $) is simply (~1EM8. 'A (FOO X». while the translation of ( FOO 
X ) : ( 'A 'B - -) is: 

[PROG (SS2) 
( RETUR?l 

(AND (EQ (CAR (SETQ $$2 (FOa X») 
'A) 

(EQ (CAOR $$2) 'B] 

In ~'1e interests of efficiency, the pattern match compiler assumes that all lists end in NIL. i.e .• there are 
no LISTP checks inserted in the translation to check tails. For example, the translation of X: ( • A & 
--) is {AND (EQ (CAR X) (QUOTE A» (CDR X». which will match with (A 8) as weil as (A 
• B). Simi1:.rly. the pattern match compiler does not insert LIST P checks on elemen:s.. e.g.. X: ( ( , A 
--) --)tr3..?J.slatessimplyas(EQ (CAAR X) 'A).andX:«S1 S1 --) --)as(CDAR X).2Note 
that the user can explicitly insert L ISTP checks himself by using @. as described below. e.g .• X: ( (S 1 S 1 
--)@LISTP --) translates as (COR (LISTP (CAR X»). 

23.1.1 Pattern Elements 

A pattern consists of a list of pattern elements. Each pattern element is said to match either an elerr:ent 
of a data structure or a segment. (cf. the editor's pattern matcher, '6 __ " matches any arbitrary segment 
of a list. while & or a subpattem match o~jy one element of a list.) Those patterns which may match a 
segment of a list are called segment patterns; those that match a single element are called element patterns. 

23.1.2 Element Patterns 

There are several types of element patterns, best given by their syntax: 

,- $1 or & 

, EXPRESSION 

= FOP ..... \{ 

= = FOR..\( 

Matches an arbitrary element of a list. 

Matches only an element which is equal to the given expression e.g .• • A~ • (A B). 

EQ, MEMB. and ASSOC are automatically used in the translation when the quoted 
expression is atomic. oth~ise EQUAL. MEMBER. and SASSOC. 

Matches only an element which is EQUAL to the value of FOR...\{. e.g.. = X. 
=(REVERSE Y). 

Same as =., but uses an EQ check instead of EQUAL: 

:The insertion of LIST? checks for elements is controlled bv the variable ?~TLISTPCHECK.. \Vhc:1 
PATLISTPCHECK is T. LISTP checks are inserted. e.g .. X:« 'A --) --) tr~lnslates as: (EQ (CAR 
(LIST? (CAR (LISTP X)))) 'A). PATLISTPCHECK is initially NIL. its vJlue CJ.l1 be chanced 
within a particular function by using a local elISP declaration (see page 16.10). -

23.2 

n· 

n· 

/-0 
( \ 

'- / 



·0 

o 

ATOM 

LISPUSERS PACKAGES 

The treatment depends on setting of PATVARDEFAUlT. If PATVARDEFAUlT is • 
or QUOTE. same as 'ATOM. If PATVAROEFAUl T is = or EQUAL. 5a.rne as =ATOM. 

If PATVAROEFAUl T is == or EQ. same as ==ATOM. If PATVARDEFAUl Tis .. or 
SETQ, same as ATOM+-&. PATV~RDEFAUl T is initially'. 

PATVARDEFAUlT can be changed within a particular function by using a local 
CLISP declaration (see page 16.10). 

Note: numbers and strings are always interpreted as though PAT'IARDEFAUl T 
were =. regardless of its setting. EQ. MENB. and ASSOC are used fOi comparisons 
involving s~all integers. 

(PATTERN1 ••• PATTERNN) N~ 1 
Matches a list which matches the given patterns. e.g .• (& &). (- - t A ). 

ELEMENT·PATTERN@FN 

• 

-ELEMENT·PATTERN 

Matches an element if ELEMENT· PATTERN matches it. and FN (name of a function 
or a lAMBDA expression) applied to that element returns non-N I l. For exa..-nple. 
&@NUMBERP matches a number and ( • A --) @FOO matches a list whose first 
element is A. and for which FOO applied to that list is non-N I l. 

For "simple" tests. the function-object is applied before a match is ar:empted 
with the pattern. e.g., «-~ 'A --)@lISTP --) translates as (AND (lISTP 
(CAR X» (MEM8 'A (CAR X»). not the other way around. FN may also be 
a FORM in terms of the variable @. e.g .• &@ (EQ @ 3) is equivalent to =3. 

Matches any arbitrary element. If the entire match succeeds. the element which 
matched the • 'will be returned as the value of the match. 

Note: Normally. the pattern match compiler constructs an expression whose value 
is guaranteed to be non-N I l if the match succeeds and NIL if it fails. However. if 
a - appears in the pattern. the e~pression generated eQuId also return NIL if the 
match succeeds and - was matched to NIL. For exam? Ie. X: ( • A • - -) tr2.!"lslaces 
as (AND (EQ (CAR X) 'A) (CADR X». so if X is equal to (A NIL 6) then 
X : ( 'A • - -) returns NIL even though the match succeeded. 

Matches an element if the element is not matched by ELEMENT-PATTERS. e.g .• 
-'A. -=X. -(-- 'A --). 

(-ANY· ELEMENT· PATTERN ELEMENT-PATTERN··.) 

Matches if any of the contained patterns match. 

23.1.3 Segment Patterns 

S or -- Matches any segment of a list (including one of zero length). 

The difference between Sand -- is in the type of search they generate. For exampie. X: (S • A • B S) 
translates as (EQ (CAD R (MEMB • A X» • B ). whereas X : ( - - • A 'B S) ·translates as: 

[SOME X 

23.3 



Segment Patterns 

(FUNCTION (LAM8DA(SS2 SSl) 
{AND (EQ SS2 'A) 

(EQ (CAOR SSl) '8] 

Thus.. a pa:a?hr~e of (S • A'S S) would be 4&Is the "e!ement following me first A a ST·, whereas a 
paraphrc.Se of ( - - 'A '8 S) would be "Is there any A irr..mediately followed by a S?" ~ote that U.~e 
pattern employing S will result in a more efficient search than that employing --. However. (S 'A'S 
S) will not match \\<it.h. (X Y Z A M a ABC), but ( - - 'A 'a s) will. 

Essentially, once a pattern following a S matches. the S never resumes searching~ where2S - - prcduces 
a translation that will always continue sea."'Ching until there is no possibility of success. However. if 
the paaem match compiler can deduce from the pattern that continuing a search after a parJcular 
failure c:mnot possibly succeed, then the translations for both -- and S will be the same. For eXJ.mple. 
both X:(S 'A 53 5) and (-- 'A $3 --) translate as (CoDoR (MEMB (QUOTE A) X».bt .. '·c:!'.:s~ 
if L.'1ere are not three elements following the first A, there certainly WIll not be three elements following ~ 
subsequent A's, so there is no re~on to continue searchin~ even for -- .. Similarly, (S 'A S '8 S) ( J~. 
and (-- 'A -- 'B --) are equivalent. 

S2, S3, etc. 

! ELE1r!ENT-PATTERN 

Matches a segment of the given length. Note that 51 is not a segment pattern. 

Matches any segment which ELEMENT· PATTERN would match· as a list. For 
example, if the value of Foa is (A Be), ! =Foa will match the segment··· A B 
C .... etc. Note that !. is pennissible and means "I'ALtJ"E-OF-MATCH4-S, e.g .. X: (S 
'A !.) translates to (C n R (M E M B 'A X» . 

Note·: since! appearing in front of the last pattern specifies a match with some tail of the given 
expression. it also makes sense in this case for a! to appear in front of a pattern that can only match 
wit.~ an atOIa e.g .• (52 !' A) means match if COOR of the expression is the atom A. Similariy.X: (S 
'A) translates to (EQ (CDR (LAST X» 'A). 

!A7'OM treatment depends on setting of PATVARDEFAULT. If PATVARDEFAUL T is ' or 
QUOTE. same as ! 'ATOM (see above discussion). [f PATVARDEFAULT is ="Ocr 
EQUAL. same as !=ATOM. IfPATVARoEFAULT is == or EQ. swileas !==A70.\{. [f 
PATVARoEFAULT is ... or SETQ, same as ATOM4-S. 

The atom '4. '0 is treated exactly like .• ! ". In addition. if a pattern ends in an atom.. 
the .4." is first changed to "! ". e.g., ($1 . A) and (S 1 ! A) are equivale:1t.. 
even though the atom .•..• does not explicitly appear in the pattern. 

One exception where ... :' is not treated. like "! ": .... 0 preceding an assignment 
does not have the special interpretation that "!" has preceding a., JSsig:unent (see 
below). For example. X: ( • A • FOO ... · B) translates as: 

{AND (EO (CAR X) 'A) 
(EO (CDR X) '6) 
(SETO FOO (CDR X») 

but X : ( • A ! FOO4-' B) translates as: 

(AND (EQ (CAR X) 'A) 
(NULL (CDoR X» 

23.4 

n· . ) 



o 

o· 

o 

LISPUSERS PACKAGES 

(EQ (CADR X) 'B) 
(SETQ fOO (CDR X») 

SEGM:ENT·PATTER.~"@Fv7{CTION·03JECT 

23.1.4 Asiignments 

Matches a segment if the segment-pattern matches it. and the fun~jon object 
applied to the corresponding segment (as a list) reV.lrns non-PO{ I L. For eX2.!!1;;le. 
(S@CDDR '0 $) matches (A BCD E) but not (A B 0 E). since CODR of 
'( A B) is NIL. 

Note: an @ pattern applied to a segr.1ent will require computing the corresponCing 
structure (with LDlfF) each time the predicate is applied (except when the segment 
in question is a tail of the list being matched). 

Any pattern element II'.ay be preceded by "VARIABLE~'" meaning that if the match succeeds (i.e.~ 
everything Il'latches). VA..RIABLE is to be set to the thing that matches that pattern element. For example. 
if X is (,' BCD E), X: ($2 Y~S3) will set Y to (C 0 E). Note that assignments are not performed 
until the entire match has succeeded.. so assignments cannot be used to specify a se~~h for an ele:nent 
found earlier in the match. e.g., X: ( y .... S 1 = Y - - ) 3 will not match with (A ABC ••• ). unless. 
of course. the value of Y was A before· the match started. This type of match is achieved by using 
place-markers. described below. 

If the variable is preceded by a I, the assignment is to the tail of the list as of that point in the pattern. 
Le .. that ponion of the list matched by the remainder of the pattern. For example. if X is (A BCD 
E), X: (5 !y ... 'C '0 $) sets Y to (C 0 E), Le .• COOR of X. In other wor~ when! precedes an 
assigr'ment. it actS as a modLfier to the ~, and has no effect whatsoever on the pattern itself. e.g_ X: ( , A 

. '8) and X: ( 'A ! FOO"" 8) match identically, and in the latter case. Foe will be set to CDR of X. 

Note: ·~PATTERN·ELEMENT and ! O~PATTERN·ELEMENT are acceptable, e.g .• X: (S 'A .... (' 8 --) 
.:-) translates as: 

[PROG (S52) 
{RETURN 

(AND {EQ (CAAOR (SETQ $SZ (MEMB • A X») 'B) 
{CADR $$2] 

23.1.5 Place-!'rlarkers 

Variables of the form #N. N a number. are called place-markers. and are interpreted specially by the 
pattern match compiler. Place-markers are used in a pattern to mark or refer to a particular. pat:em 
eleme:1t. Function:llly. they are used like ordinary variables. i.e .. they can be assigned values. or used 

. freely in fOnTIS appearing in the p~'ttem. c.g .. X: ( II 1"'$ 1 = ( AOO 1 111» will malch the list (2 3), 
However. they are not really variables in the sense that they are not bound. nor can a function called 

3The translation of this pattern is: (COND « AND (CDR X) (EQUAL (CADR X) Y» (SETQ Y 
(CAR X) T». The AND is used because if Y is NIL. the pattern should match WIth (A NIL). but 
not with just (A). The T is because (CAR X) might be ~J I L. 

23.5 



Replacements 

from within the pattern expect to be able to obtain their values. For convenience. regarCless of the 
settng of PATVAROEFAULT. the first appearance of a defaulted place-marker is interpreted as :.~oug.~ 
P.l\TVARDEFAULT were .... Thus the above pattern could have been written as X: ( 1 =(A001 1». 
Subseauent apoearar:ces of a place-marker are interpreted as thoug.~ PATVARDEFAULi ·w·ere =. For 
er.a.."T.pi~. X:(#1 #1 --) is equivalent to X:(#1"'$1·=~f1 --). and translates as (AND (CDR X) 
(EQUAL (CAR X) (CADR X». (Note that (EQUAL (CAR it) (CADR X» wO'Jld bcorrectly ma~h 
with PI I L ) .) 

23.1.6 Replacements 

The construct ?ATTERN-ELEMENT"'l-"OFL.\I specifies that if the match succeeds. the pm of the data th3t 
ma~h·:d is to be replaced with the value of FORM. For ex:unple. if X :: (A BCD E). X: ($ 'c S 1+-Y 
S 1) will replace the third clement of X with the value of Y. As with assignments. replacements arc not 
performed until after it is determined that the entire match will be successfuL n .. 
Replacements involving segments splice the corresponding structure into the list being matched. e.g .• if X 
is (A BCD E F) a!ld Faa is (1 2 3). after the pattern ( 'A S"'Foa '0 $) is matched with X. X 
will be (A 1 2 3 0 E F). and FcO will be EQ to COR ofX. i.e .• (1 230 E F) . 

. Note that (S F OO+-F I E S) is ambiguous. since it is not clear whether Faa or FIE is the pattern eleme:lt.. . 

. Le.; whether ... specifies assignment or replacement. For example~ if PATVARDE FAUL T is =. this pat:ern 
can be interpreted as (S FOO"'= FIE $). meaning search for the value of F IE. and if found set FCO to it.. 
or (S = FOO"'F I E S) meaning search for the value of FOa. and if found. store the valee of FIE into the 
corresponding pOSition. In such cases. the user should disambiguate by not using the PA TVA;\O E F AU L T 
option. i.e .• by specifying , or =. 

Note: Replacements are normally done with RPLACA or RPLACD. The user can specify that IRPLACA 
and IRPLACD should be used. or FRPLACA and FRPLACO. by means of eLISP declat.--ations (see page 
16.9). 

23.1. j Reconstruction 

The user can specify a value for a pattern match operation other than what is returned by the match by 
writingFOR.wl:PATTERN=)FO&w2:~Forexample.X:(FOO"'S 'A --) =) (REVERSE FOO) cransia:es 
as: 

[PROG (5S2) 
(RETURN 

(COND «SETQ SS2 (MEMB 'A X» 
(SETQ FOO (LDIFF X $2» 
(REVERSE FOO] 

Place-markers in the pattern can be referred to .from within FORM. e.g .• the above could also have been 
written as X:( !#1 'A --)=>(REVERSE #1). If -> is used in place of =). the expression being 

~The onginal CLlSP is repl.:lced by an expression of the form (MATCH FOR.\{z WITH P."'T-:~R..'\· => 
FORMz)· CLlS? also recognizes expressions input in this form. 

23.6 



0 

o 

LISPUSERS PACKAGES 

matched is also physically changed to the value of FORM:. For example. X: ( # 1 • A ! #2) -) ( CONS 
#1 #2) would remove the second element from X. if it were equal to A. . 

In general FORM1 :PATTER.N->FOR...'..!2 is translated SQ as to compute FOP.M2 if the match is su~essfuL 
and U.~en smc..sh its value into the first node of FORM 1. However. whenever possible, the translation <ices 
not ac:t!ally require FOR.\f2 to be cct:1puted in its entirety. but i:lstead the patte~ match compiler t.!SCS 
FOP-\{2 as an indication of what should be done to FORM!. For example. X: (#1 t A ! #2) -) (CONS 
111 #2) trCL~l~tes as (A~~O (EQ (CAOR X) 'A) (RPLACD X (COOR X»). 

23.1.8 Examples 

X: (-- 'A --) 

X:(-- 'A) 

-- matches any arbitrary segment. 'A matches only an A. and the second - - again 
matches an arbitrary seg..TI1ent; thus this translates to (MEMB 'A X). 

Again. -- matches an arbitrary segment: however. since there is no -- after t.'1e 
'A. A must be the last element of X. Thus this translates to: (EQ {CAR (LAST 
X» 'A). 

X:('A '8 -- 'C S3 --) 
CAR of X must be A. and CAOR must be S. and there must be at least three 
elements after the first C. so the translation is: 

(AND (EQ (CAR X) 'A) 
(EQ (CADR X) 'B) 
{CODOR (HEMS ., C (CODR X»» 

X: ( ( 'A 'a) 'C Y+-S 1 $) 
Since ( 'A'S) does not end in S or --, (CODAR X) must be NIL. 

{ CO?~O 
( {AND {EQ (CAAR X) 'A) 

(EQ (CADAR X) 'S) 
(NULL (CDDAR X» 
(EQ (CAOR X) 'C) 
(COOR X» 

(SETQ Y (CAOOR X» 
T) ) 

X:(#l 'A S '8 'C #1 $) 
#1 is implicitly assigned tb the first element in the list. The S searches for the fi..4'"St 
B following A. This B must be followed by a C. and the C by an expression equal 
to the first element. 

[PROG ($52) 
(RETURN 

(AND (EQ (CAOR X) 'A) 

X:(#l 'A -- 'S 'c #1 $) 

(EQ [CAOR (SETQ $$2 '(MEMS 'S (COOR X] 'C) 
(CDDR $$2) 
(EQUAL (CADOR $$2) (CAR X] 

23.7 



Printing Reentrant and Circular List Structures 

Similar to -the pattern above~ except that - - specifies a search for any B fcllowed 
by a C followed by the first element. so the tr~~slation is: 

[AND (EQ (CADR X) 'A) 
(sor"E (CDOR X) 

(FUNCTION (LAMBDA (SS2 $S1) 
( Ar~ 0 (E Q S S 2 'B) 

(EQ (CAOR SS1) 'C) 
(CODR $$1) 
(EQUAL (CAGDR SS1) (CAR X] 

23.2 PR.INTL'lG REENTRAL'IT AND ORCULAR LIST STRUCfURES 

23.2.1 ORCLPRINT 

Note: CIRCLPRIJ.VT is a LispUsers package contained on the file CIRClPRINT .. DeOM. 

HPRINT (page 6.24) is designed primarily for dumping circular or reentrant list SL.-uctures (as well as 
other data strUctures for which READ is not an inverse of P R I N T) so that they can be read back in by 
Interlisp. The CIRCLPRINT package is designed for printing circular or reentrant structures so that the 
user can look at them and understand them. , 

A reentrant list structure is one that contains more than one occurrence of the same (EQ) su-ucture. For 
example. TCCNC (page 2.17) makes uses of reentrant list structure so that it does not have to search for 
the end of the list each time it is called. Thus .. if X is a list of 3 elementS. (A B C). being consL.'1.lcted 
by TCOrJC. the reentrant list strucrure used by TCONC for this purpose is: 

1·1 ·1-----------------1 
----- 1 

I I 
V V 

IAI ·\---->IBI·I---->IC\/I 

This suucrure would be'printed by PRINT as «A B C) C). Note that PRINT would produce the same 
output for the non-reentrant structure: 

I.I·I---->ICI/I 

I 
V 

IAI·I---->IBI·I---->IC\/I 

23.8 

('). 
'- / 

n-·· 

() 



o 

o 

LISPUSt:RS PACKAGES 

In other words, PR I NT does not indicate the fact that portions of the structure in the first fig'..:re arc 
identical. Similarly. if PRI ~j T is applied to a circular list structure (a special type of reentra!lt sC"~ct'..lre) 
it will never teI"C"Jnate. 

For example. if PRINT is called on the structure: 

1---> I . 1/1 
I 
1 1 
1-----1 
it win print an endless sequence of left parentheses. and if applied to: 

I--->IAI·I----I 
I 1 
I 1 
1-------------1 
will print a left parenthesis followed by an endless sequence of A's. 

The function CIRCLPRINT described below produces output that will exactly describe the structure of any 
circular or reentrant list structure. This output may be in either single or double·line formats. Below are 
a few examples of the expressions that CI RCLPRINT would produce to describe the structures dL~t:ssed 
above. 

First Figure. single line: 

((A B 81 8 C) {1}) 

First Figure. double--line: 

((A 8 C) {l}) 
1 

o Tnird Figure. single·line: 

o 

Third Figure. doubl~line: 

( {1} ) 
1 

ForLil Figure. single-line: 

.. Forth Figure. double-line: 

(A . {1}) 
1 

. . 

23.9 



ORCLPRlNT 

The more complex strUcture: 

1-------->1.1.1--------------------------1 
1 ----- I 
I I I 
I V V 
I 
1 
I 
I 

1--->I·I.I---->I.I.I---->IAI.I---->IBI.1 
I . 
I 11" 

I 1-----1 11-------------------1 
I 1 
1--------------------1 
is printed as follows: . 

S ingle· line: 

{02° (*1* {l} *3· {2} A *4· B . {3}) . {4}) 

Double-line: 

«{1} 
21 

{2} A 
3 4 

B . {3}) . {4}) 

In both formats. the reentrant nodes in the list structure are labeled by numbers. (A reent:r'-Ilt node is 
one that has two or mor·e pointers coming into it.) In the single-line format. the label is printed betwee!l 
asterisks at the beginning of the node (list or tail) that it identifies. In the double-line format. u1.e label is 
printed below the beginning of u.1.e node it identifies. An occurrence of a reentrant node that has alre.:ldy 
been identified is indicated by printing its label in brackets. 

(C IRClPRINT LIST PRINTFLG RLKNT) [Function} 
Prints an expression de~ribing LIST. [f ?RINTFLG = NIL. double-lliie for::::lt ~s 
used. oLi-tenvise single-Hne fOr:TI2.t. CIRCLPRINT firs~ calls CIRCL~.o.?K. ~d :.~e:l 
calls either R L P R I~: 1 (if PRI:-1TFLG = T) or R L P R IN 2 (if P RINTFLG = NIL). Finally, 
RLRESTORE is called to restore LIST to its unmarked state. Re:urns LIST. 

(C I RCL!,1ARK LIST RLKNT) [Function] 

(RLPR IN 1 LIST) 

(RLPRIN2 LIST) 

~farks each reentrant node in LIST with a unique number. starting at RLX:-:T ~ 1 
(or i. if RLKNT is NIL). Value is (new) RLKNT. 

. Marking LIST physically alters it. However. the marking is perfonned undoably. 
In addition. LIST can always be restored by specifically calling RLRESTORE. 

. [Func::onl 
Prinrs -an expression describing LIST in the single-line format Doe$ not restore 
LIST to its unC r RCLMARKed state. LIST must previously have been C! RCL~1P..RKed 
or an error IS generated. 

[I-\ln~~~L)n I 
Same as RLPR IN 1. except that the expreSSIOn describing LIST is printed in the 
double-line form~lt. 

23.10 

n·· 

(j. 

(j 

(j 



o 

r\)"" ~" 

o 

o 

LISPUSERS PACKAGES 

(RLRESTORE LIST) 
Physically restores list to its original. unmarked state. 

[FuncticnJ 

Note that ~1e user can mark a:ld print several structurc:s which together share common sub.str".:ct".lres. e.g .. 
se'ieral property lists. by making several calls to CIRCLMARK. followed by calls to RLPRINl or RLPRIN2. 
and finally to RLRESTORE. 

(CIRCLMAKER LIST) [Function] 
LIS':' may contain labels and references following the convention used by C I RCL? R I NT 
for printing reentrant structures in singie line format.. e.g.. (. 1· . {1}) . 
CIRCLMAKER performs tl'1e necessary RPLACA's and RPLACD's to I:1ake LIST 

correspond to the indicated structure. Value is (altered) LIST. 

(CIRClMAKERl LIST) [Function] 

23..2.2 PRI1\lL 

Does the work for CIRCL~~AKER. Uses free ~·ariables LASE LST and RE FLST. LASE LST 
is a list of dotted pai~ of labels and corresponding nodes. REFLST is a list of 
nodes containing references to labels not yet seen. C I RCLMAKE R operates by 
inidalizing LABELST and REFLST to NIL. and then calling CIRCLHAKERl. It 
generates an error if REFLST is not NIL when CIRCLMAKERl returns. Tne 
userc~ cail CIRCLMAKERl directly to "connect up" several struc:ures t..~at s.hare 
common substructures. e.g., several property lists .. 

lVOle: PRINTL is a LispUse!S package contained on the file PRI NTL .. COM. 

The PRINTL package uses a diiferent scheme r.han C IRCLPRH~T to present circular structures in an e~ily 
readable formaL PRINTL uses indentation a la PRETTYPRINT to make it easier for the user to see L~e 
nesting of list structure. and prints index numbers' for the begL"'lI1ing and ends of expressions so that the 
us~r can find wnat is referred back to easily. Note that P R IN T L does not provide an output for=3.t wrJch 
can be read back in to reconstruct the original list structure: it is intended p~arily as a debt.:g:;i.zlg aid.. 

Tne following example illustrates the use of PR I NT L: 

32~(PRINTL (NCONC (SETQQ X (A B C til) X» 
1: (A 6 co. (l}) :1 

NIL 
33~(PRINTL (LIST X (CDR X) (COOR X) (CODOR X] 

1: «A BCD. (2}) {3} {4} {5}) :1 
NIL 
34~(PRINTL (LIST X (CONS 'P (CDR X» (CONS 'Q (COOR X» 
(CONS 'R (COOOR X] 

1: « A ~ to. { 2} ) : ·2 
6: (P . {3}). :6' 
7: (Q • {4}) :7 
8: (R . {5}) :1 

N!L 
35~USE LIST FOR CONS 

1: «A BCD. {2}} :2 
6: (P {3}} :5 

23.11 



8: (Q {4}) 
10 (R {5}») 

NIL 

Indexing and Cross Referencing Files 

:8 
: 1 

PRINTL uses the following algorithm: Each list node that is printed (CAR or COR) is assigned a number. 
The second and s:l~seq!lent appearences of this list ilode are represented stnply by print..cg t.'1e nuwber 
correspccding to the node in {} brackets. Every line on which the represe:!tation of a list be~w..s shows 
the corresponding number of the first such list. Le. this number corresponds to the first open pare:l~':e'5is 
on the Ene. Siinib.r1y. to the right of ~very line on which a list ends is pri:ltcd the :lumber ~'1~~ CO:7C~·;o!"!Cs 
to the las: c!osc par~nt:.~esis on me line. The numbers for t..~ose list nodes w:uch do not ccr.cs;:'.)r.d to 
tI.'1e ti:st open pare~t.~eses or the last close parentheses on a line can be obtained by simply coun:.Li.g from 
the last numbered pafenL.'1esis. For example. in lL'1e line 

1: «A BCD. (2}) {3}{4} (5}) : 1 

2 is (A BCD). 3 is (B CO). 4 is (C 0). and 5 is (D). 

(PRINTL ITEM DEPTH LMARG ·RMARG FILE) [Function] 

PRINTDEPTH 

(PRNTL ARGS) 

Prints an item which is known to be, or suspected of being a circular list stnlcture. 
in the form described above. DEPTH controls the depth of recursion in the 
CAR direction and defaults to the value of the varible PRINTDEPTH (initially -+). 
Elements of the structure at this depth are printed as U { - - } ... 

L.\!ARG is the left margin. If NIL. L.'JARG defaults to (POS IT ION FILE). P_\!AJ~G 
is the position at which the righthand column of numbers will be printed.. If NIL. 
iUr!ARG defaultS to (l~~~£lENGTH )-5. 

Printing is to FILE. which is opened if necessary. 

[Variable] 
The default DEPTH argument for P R I N T L. Initially 4. 

[Frog. Asst. CornJ.~and] 
Programmers Assistant command that perfonns (PRINTL • ARGS) proviceG. 
(CAR ARCS) is not a number. If it is, or if ARGS= NIL. tt.":e item to be pr:n:~c. is n 
taken to be tt.'1e last event on the history list with a non-null value. Thus ?RNTL , 
6 will print the last non-null value with DEPTH = 6. 

23.3 INDEXL~G AND CROSS REFERENONG FILES 

23.3.1 SINGLEFILEINDEX 

,Voce: SlL'v'GLEFILEINDEX is a Lisp(/sers package thaI is contained on the file SINGLE FILE I NOE X . DeOM. 

SI)iGlEFILEINDEX is a package for giving the user an alphabetical function index on the front of c::!cn 
lisp file listcd by Inccrlisp. This paclcage is similar to me \-t LL TIFIlEI);0 E..,,( paclcage descr.bt!d ~t!iow, 
~xce;)t that SI0:GLEFILEI0rOEX provIdes a wble of contents for functions only. Jnd oper;ues on line 
file at a ci.-ne. However. S[NGLEFILEI~DEX is much Simpler and taster mJ.n \-lLJl TIFILEI~OEX .1nj 

23.12 r) 



o 

o 

o 

LISPUSERS PACKAGES 

-

is useful e"lery time a file is made. 

The first page gives the 51e!1ame, time of creation, and the time of the listing. Following that (on possibly 
more than or:e page) are N columns of function na.,.~es and index numbers, where tte ~cex m.lr:-~oer 
indicates the function's linear occurrence within the fJe. Tne number of columns is deter.r:ined by the 
lenY:!h of t.'1e lonze5t funcdon name. as well as by the number of functions in the fiie as des.:rioed below. 

\;: -
The file is tL'1en printed with the filename a,'1d page number at the top of every page, ~,d e.a::h :unction 
is preceded by its index number right-j1!stified on the page. 

VY'~1en the SIl'iGLEFILEINDEX package is first.!oade~ it redefines LISTFILESl (f:age 11.9) so t.=tat ali 
files list~d by LISTFILES will be listed by calling (SI~JGLEFILEHIDEX FI1..E NIL NIL). ~ote c..o.:.at 
tt'1e file being indexed does not have to be loa.dcti or even noticed in LJote file pack.1ge sense. 

(SINGLEF ILE n~DEX FrLE OUTPUTFrLE NEWPAGEFLG) [Fu:1ctionj 
FILE is the lisp source file. OUTPUTFrLE is the destination file. If OU7?trTFrL£ = ~~ I L. 
then the value of PRINTER (initially LPT:) is used. f'.I~VlPAGEFLG= T me:ms ea;:h 
function will be printed on a new page. The value of FILELINELENGTH deter
mines the position of the index numbers. as well as the placement of L~e columns. 
The value of LINESPERPAGE (initially 58) determines the number of lines per 
page. 

23.3.2 l\1UL TIF1LE~1) EX 

Note: It.fULTIFILEINDEX is a Lisp Users package that is contained on the/fie MUL TI FILE INDEX. DeOM.. 

Many syste:r..s built in Interlisp consist of a number of symbolic source files. Finding one's way aro~d 
in the listings can often be very tedious. even for the imp!ernentor of the system. if you don't k.."lOW 

the system and ti'le structure of the files intiniately. The MULTIFILEINDE."X pa:kage is an atte:::pt 
to help users deal with this problem by creating a listing of an entire system or set of files. inclucii:1g 
an al~habetized table of contents containing entries for each function on anv of the files. InfcIillation 
(but ~ot unique index nurr:bers) is included for other er.tities in the files s~ch as records. blocks. a:ld 
properjes. The function ~iULTIFILEINOEX implements this mechanism. 

(MUL TIFILEIr-lDEX SOtJRCEFrLES DESTINATIONFILE NEvYrAGEFLG) [Fun·:uonj 
SOURCEFILES is a list of file names Of atomic, (L 1ST SOttRCZFrLES) is used}. If 
it is NIL. MUL T I FILE H!DEX returns irnmediately. If it is T. t.~e ·.a1ue of F I L E L ST 
is used (page 1l.13). DESTlvtATIONFrLE is the output file. [f DESTrxATIO.''-F=z.Z is 
NIL. the value of PRINTER is used (below). If ~VEvYrAGEFLG=T, each fuZlction 
in the listing will be placed on a page by itseif. 

In the default case. MULTIFILEINOEX does the followin~: 

(1) Outputs an alphabetized table of contents (index) indicating the name of an object (!Unction, record.. 
block. variable, and so on). the file that it belongs to. and its type (property. variable (set or saved). 
record.. block, and so forth). If the object is the name of a function. then the information inciudes a 
unique index in the listing for the function. its type (EXPR. FEXPR-. etc.). and its argument lis:. ~cte 
that it handles functions/files that usc DECL (page 23.18). Other.vise. the index represents L'1e inde"( of 
the func~ion b .... mediately preceeding the definition of the entlty. 

(2) Outputs a listing of the files with each function being prcceeded by its index number right-justlfied 

23.13 



l\'IlJL TIFILE'll~1) EX 

on the line. Header information is placed at the top of each page. and the pages are numbered. 

(3) Undcably removes the names of the files indexed from NOTLISTEDFILES (page 11.9). 

MUL T I FILE I NOEX is effected by the following variables: 

MULTIFILEINDEXMAPFLG [Vadable] 
If T t indicates that you want the file index output. Initially T. 

MUL iIFILEIMOEXFILESFLG [Vari~=lel 

PRINTER 

If T, ind.ic~tes that you want the fHe listings output to DES TINATIO NFrLE. In:::a.I:y 
T. 

[Vari:lbie] 
If the MAPFrLE argument to MULTIFILEINDEX is NIL. it defaults to the 'ialue of 
PRH'TER. Initially {LPT} in Interlisp-D. LPT: in Interlisp-10. (y. 

LINESPERPAGE [Variable] 
The value of LINESPERPAGE detennines the number of lines per page. Initially 
65 in Interlisp-D. 58 in Int~rlisp-lO. 

FONTCHANGEFLG [Variable] 
If N r L.. page headings and the index numbers that preceed the definition of 
each function are pri:1ted bold: that is. overprinted: otherwise. they are printed 
using the BOLDFONT (PRETTYCOMFOfjT if BOLD FONT doesn't exist) in the cur.ent. 
FONTPROF I LE (see page 6.55). 

FILELIllELENGTH [Variable] 
The value of FILELINELENGTH determines the width of the page. 

Tae following four parameters affect how the columns are placed: 

MULTIFILEINOEXCOLS (Variable] 
MUL T I FILE I NOEXt~AMECOL (Y'~-:able] 
MUL T I FILE INDEX F I LECOL [Variablej 
~lULTI;=ILEINDEXiYPECOL [Var:aoieJ f\ 

The value of MULTIFILEINDEXCOLS indicates how the other three are to oe \. ) 
interpreted. If MULTI FILE INDEXCOLS is the atom FLOATCOlS (its initial 
value). then an attempt is made to fit the columns onto the page -in a way 
that ma."(imizes the amount of space for the type information (tte .L."!1cunt 0f 
space allocated for the type field must be at least 45% of FILELINELE~~GTH in 
this case). If ~'ULTIFILEINOEXCOLS is either T or FIXCGLS. then :..~e value 
of the other variables are treated as absolu~e column positior.s on me page. If 
MULTIFILEINOEXCOLS is either r~IL or FIXFLOATCOLS. the coiumns will be 
floated.. but will not be any smaller than [he column positions defined oy the I)L~er 
van:.lblcs .. 

The initial values of these four variables are FLOATCOLS, 0.26 and -H. respectl .... e~y. 

MUL T I F I LEI NDE X has an intcrfJce to Masrerscope. If the value o'f either of me next twO varbb!es :5 

T. then MU L T I F I LEI NOE X assumes thac the sourcenks have already been Jnalyzcd by \ttastcfSCL'pe ... mj 
calis UPOATECHANGEO. 

23.L~ n· 



o 

o 

LISPUSERS PACKAGES 

HULTIFiLEINOEXFNSMSFLG - [Variabie] 
If T, indicates that you want the Masterscope information about each fb:lc:.ion 
output. This L.~c1udes who calls each function. who this function calls. and ·; .. hat 
variables .are set or referred to ~iw.~er locally or freely. IrJti21ly NIL. 

MUL TIFILEIi~OEXVARSMSFLG [Variable] 
If T, indicates t.'1at all variables used in the files should have some info!'Ula.ticn 
output about them at the end of the listing. The list of Yari~bies to, 10Ck at 
is obtai:1~d by effectively asking Masterscope the question: "v/HO I S US ED 3 Y 
ANY AND WHO IS SE T BY ANY". Tne listir.g will include inforr::~::c:l (lccut 
who binds. uses freely or locally, or smashes freely or localiy each va.-:a~le. Tne 
variable map is case-independently sorted by the name of the variable. Initially 
NIL. 

In order to make the inde~. or map. of the files. the filecoms for all the files being listed need be 
loaded (sec page 11.21); MULTIFILEINDEX does a GETOEF on each file (file names are obtained usi:lg 
F I NO F I L E) to obtain its filecoms. As other indirections are noted. u'1ey also are obtained using GET D E F. 
For example. if you have a file TEST. and its filecoms is (( F NS • TEST F NS ) ). just doing aGE TD E F 
on TESTCOHS will not suffice; as the expression (FNS • TESTFNS) is parsed. a GETDEF is also done 
to ob:ain the value of TESTFNS. 

MUL T I FILE I r~DEX LOADVARS F LG [Variable] 
If T. then a LOADVARS of all the VARS on a panicular file is perfo:med before 
the filecoms is loaded with GETDEF. Initially NIL. 

MUL TI EoI lE INDEXGETDE F FLG [Variable] 
If T. MULTIFILEINOEX will inform'the user when it does GETOEFs. Initially 
NIL. 

23.4 . DATABASEFNS 

U .IV ote: Database/itt is a LispU seTS package that is cOn/ained on the file OAT ABAS EF N S • 0 C or~. 

/~\ 

U 

Databasefus is a very small pacxage whose purpose is to make the construction and main:ena.~ce of 
MASTERSCOPE databases an essentialiy automatic process. It modifies MAKEF ILE. LOAD. and LOADFROM 
to behave in the following way: 

A database will be maintained automatically for any file (containing functions) whose file :1~'1le has ~~e 
property DATABASE with value YES. Whenever such a file is dumped via MAKEFILE. MASTERSCCPE 
will analyse 3.J.!Y new or changed functions on tJ.1e fiJe. and a database for all of the functions on L~e Ele 
wm be written on a separate file whose name is of the form F'TLE< OA T ABASE. \Vhenever 3 file whic:t 
has 3 DATABASE property with value YES is loaded via LOAD ~)r LOADFROf-1. then the correspondi:1g 
. OAT A8AS E t~!e. if any, is also loaded. The d.Jl~basc will not be dumped or loaded if the value of the 
OA T ABASE property for the tile is NO. The OAT ABASE property is considered to be NO if the fiie is loaded 
with LDFLG = SY SLOAD. 

If the DA T ABASE property is not YES or NO, then for r·1AKE FILE, LOAD. and LOAD FROM w111 ;l5k the user 
whe:..~er he wants .1utomauc database maintenance. TIle user's answer will be 'stored on the OAT ABAS E 
property so that he will not be asked again. Thus when a file is dumped for the fi~t tL"Tle. the user wiil 

23.15 



Lambdatran 

be asked "Do you want a Masterscope Database for this file?". Similarly. if the user loads a file which 
has an associated dar..:.base. tJ.i.e cser will be asked "load d.atabase for FILE?n. 

The above intemctions may be controlled via the global v2J,;ables SAVED8FLG and LOADD8FLG. ".,Vhen 
a file wrJch has neither a YES or NO database property is being duzpeq.. f'lAKEF ILf will ass~e (and 
s::ore) a YES value if!h~ value of SAVEDBLFG is YES. and a rIO value if SAVEDSFLG is IQO. T.:e user 
will be cueried only if SAVEDBFLG is ASK (its initial valile). Similarly. if LOADD8FLG is YES. LOAD 2.:ld 
LOADFRC~~ \Vill a~torn2.ticzJly load aa existing .DATASASE file-for a file which does not have a YES or 
NO v:llue for its DATABASE property. The database will aot be loaded if LOADCB F LG is NO. and ~~e use: 
will be in:errcg:!tcd as describt!d .::.~ovc if lOADC9fLG is ASK (its miLiai '1~ue). 

The user can dump and restore databases explicitly via dle following functions: 

(DUMPDB FILE) 

n 

[Function} 
Dumps a database for FILE then sets Lt-}C DATABASE property to YES. so L.1at 
database maintenance for FTLE will subsequently be automatic. () ~ 

(LOADDB FILE) [Fur.c:ion] 
Loads the file FrLE. DATABASE if one existS. After the database is loaded. the 
DATABASE property for FrLE is set to YES 9 so that maintenance will thereafter be 
automatic. I 

Database files include the date and full filename of the file to which they corr~sponci 
lOAOOB will print out a warning message if it loads a database that does not 
correspond to the in-core version of the file. 

Note Lhat LOADOB is the only approved way of loading a database: Attempting co 
load a database file will cause an error. . 

23.5 LAJ.'\1BDATRAN 

Note: Lambdatrar: is a LispUsers package that is contained on the file LAMBDA TRAN. DeOM. 

The purpose of Lflls package is to facilitate defining new lAMBDA words in such a way t.~at a variety of 
other system packages will respond to them appropriately. A LAMBDA word is a word that can appe:!r as 
CAR of a function defirjtion. like lArr1SDA a:ld NlANBDA. New lAMBDA words are usef~i bec3.use L"'lev 
enable t.l-te user to define his own conventions about such things as the interpretJtion of ar~..l::1e:H.s. md 
to build in certain defaults abuut how values are re~urned. For example. the DECL package (p2ge 2.3.1S) 
defines DLAM80A as a new lAMBDA word with unconventional arguments such as the following: 

(DlAMBDA «(A FLOATP) (8 FIXP) (RETURNS SMALL?» (FOa A B» . . 
In order for such J..n t!xpression to be t!xecurable Jnd compilable. a mechanism must be provid:!d for 
tr~sl;;ting this expression to an ordinary U\M80A or NLAr<1S0A. with the spccial behavior il!iSC'Cl.::ncd wi:h 
the :lrgumcr.ts built into the function body. The lambdatran package accomplishes this via an JPpropn:ue 
enery on OW IMUS E R FORMS (see page 15.10) that computes the translation. 

Besides executing and compIling. [nterlisp applies J number of other operatIons to functIon jcnnnil'ns 
(c.g. breaking. advising), many of which depend on the SYSLem being able to detennme certJ..ln prcper':.~es 

:!3.16 

(j 

(j 



o 

o 

o 

LISPUSERS PACKAGES 

of the function. such as the names of its arguments. their number. and the type of the function (E X P R. 
FEXPR. etc.). The lambdatfan package also provides new definitions for the functions FNTYP. ARGLST, 
NARGS. and ARGTYPE which can be told how to compute properties for the user's LAr~6DA-words. 

A new LANE CA-word is defined in the following way: • 

1. Add the LJUrlBDA-word itself (e.g. the atom DLAMBDA) to the list LAMBDASPLST. This suppresses 
attempts to correct the spelling of the LAMSDA-word. 

2. r\·:1d an e~cry fer t..~e LAH8DA-word to the 2.Sscciation-list LA~BDA TRAN F N S. which 15 a list of clemen:.s 
of t..l1e forw: (LAMBDA.\.\,·ORD TRANFN FNT¥P ARGLIST). where 

L~\G3DA-WORD is the name of the LAMBDA-word (e.g. DLAMBDA), 

TRANFN is a function of one argument that will be called whenever a real definition is needed for 
the LAMBDA-word definition. Its argument is the LAMBDA-word definition. and its value sho'..lld ·be a 
conventional LAMBDA or NLAMBDA expression which will become the translation of the L.AJ·iSOA,worc 
form. The free variable FAULTFN is bound to the name of the function in which the LAMBDA-word fonn 
appeared (or TYPE - IN if the form was typed in). 

FNTYP determines the fun:tion-type of a definition beginring with L~\!BDA-WORD, It is consulted if the 
definition does not already have a translation from which the function type may be deduced. If Fl'.7YP :s 
one of the atoms EXPR. FEXPR. EXPR", FEXPR-, then ail definitions beginning wit.~ LAMBO,~-word are 
assumed to have that type. Otherwise, FNTYP is a function of one argument that will be applied to the 
LAMBDA-~ord c.·efinition. Its value should be one of L1.e above four function types. 

A..~GLIST determines the argument list of the definition if it has not already been translated (if it h2.S.. 
the A.,.:tGLIST is simply the ARGLIST of L.'1e translation). It is also a function of one argthT.ent. the 
LAMBDA-word definition. and its value should be the list of arguments for the function (e.g. (A 8) in 
the DLA~tBDA example above). If the LAMBDA-word definition is ill-formed and the argument list Ca:J..:lot 
be computed.. the function should return T. If an ARGLIST entry is not provided in the LAMSDATRANFNS 
elemen~ then the argument list defaults to the second element of the definition. 

As an exampie. the LAMBOATRANFNS e:ltry for DLAN8DJ\ is (OLAMSOt\ DECL EXPR DLAi'1ARGLIST). 
wr..ere DECl and OLAMARGLIST are functions of one argument.. 

Note: if the LAMBDA-word definition has an argument list with argument names appearing ei:...'1er as lite!'ai 
atoms or as the first element of a list. the user should also put the property IN F 0 with value B Hi OS on 
the property list of the LAMBDA-word in order to inform DWIM I FY (page 16.14) to take notice of t.1e 
n~~es of the arguments when OWIMI FYing. 

23.6 PERMSTA TUS 

SOle: PcrmslcLUS is a LispL'sers package that is conlained on the file PERMSTATUS. COM. 

·The function PERr~STArus defined in this package can be used in conjunction with WHENCLOSE (page 
6.11) to make a file "permanently" open in the sense that as much of its sw.tus as possible '.lfill :-e 
reswicd when a Sy sour is· resumed. This includes its access mode, file-pointer position. byteslze. J.~c. 
any pages mapped in by the page mapping facility (page 14.17). Tne desired effect is achieved by saYl::g 

23.17 



Th~ Ded Pack!lge 

( ''iH ENe LOS E FrLENAME 'ST A TU S 'P E RMS TAT US) after the file has been opened. 

Note that U.~e permanency of files is not guaranteed in that files may be deleted or renamed. or t..~eir 
ccnt~ntS chang~d. despit.e their perma.:lent attribute in some SYSOUT. When restarting a SY SOUTo a 
war:1ing rr:essage will be prin=ed if the file cannot be found or restored. However. PERHSTATUS ·,I;iil uot 
be able to de~=ct that the contents of a file have been moc!.L.-1ed since the SY SOUT was c:e::l:ed. ~ote 
also that "pecnanent" files will still be closed by CLOSEF. and will not be immune to CLOSEALL or :0 
closi:ig on -end-of-file e::ors unless the appropri:lte \~HENCLOSE attributes for CLOSEALL and EOF are 
also ~$t.1b !.is11cd. 

23_7 THE DECL PAOC\.GE 

Note: Dec! is a LispUsers package that is contained on the file DECL. DCOM. The Ded package requires 
the LAM80ATRAr~ package (section 23.5). so LAMBOATRAN. DCOM will automatically l:e loaded with DecI 
if it is not already present 

The Oed package extends Interlisp to allow the user to declare the types of variables and expressions 
appearing in functions. It provides a convenient way of constraining the behavior of programs whe:l the 
generality and flexibility of ordinary Interlisp is eiLl1er unnecessary, confusing. or inefficienL 

The Dec! package provides a simple language for declarations. and augments the inter?re~er and the 
compiler to guarantee that these declarations are always satisfied. The declarations make progr2.!:ls wore 
readable by indicating U.~e type, and therefore something about the intended usage. of variables and. 
expressions in the code. They facilitate debugging by localizing errors ~at ma.~rest therr..selves as type 
incompatibilities. Finally, the declaration infore1ation is available for other purposes: compiler rr.~c=cs 
can consult U.~e declarations to produce more efficient code: coercions for arguments at user inLe::-"".1ces ca~ 
be automatically generated: GUld u1.e declarations will be noticed by the ~Iasterscope function an.alyzer. 

Tne declarations interpreted by the Ded package are in terms of a set of declaration types c~lled decil.·.;pes. 
each of which specifies a set of accepcable values and also (o.Ptionally) other type spec~'1c behavior. T.~e 
Ded package provides a set of facilities for defining decltypes and their relations to each other. ir:cludi...~g 
type valued expressions and a comprehensive treatment of union types. 

The followin.g description of the Oed package is divided into three parts. First. the syntactic exte:1SiOI:S 
which per::lit the concis~ attachment of declarations to program elements are discussed. Second. ~~e 
rnecnanisrr..s by which new dec1types can be defined and manipulated are cove:ed. Finally, some 3.ddltonai 
capabilities based on the availability of declarations dre outlined. 

D.i.l Using Declarations in Programs 

Declarations may be "attached to the values of arbitrary expressions and to LAMBDA and PROG v;L-la:,les 
throughout (or for part of) their lexical scope. The declarations are J.tt:lched using constructS that rese:r.b le 
me ordinary Inter!isp Lft.MBOA, PROG. and PROGr~, but which also permit the expression of deciarations. 
The following examples illustrate the use of declar~ltions in progrJ.Il1s". 

ConSIder L~C toilowing dcfinitio~ for the factorial function (F ACT .v): 

23.18 

n 

(j 

() 



o 

C) 

o 

o· 

LISPUSERS PACKAGES 

[LAMBDA (N) 
( coriO 

«EQ N 0) 1) 
(T (ITIMES N (FACT (SUB1 N] 

Obviously, this function presupposes that N is a number. and the run-time checks in IT IMES and SUB 1 
will C~U5-e an error if this is not so. Fer iI:stance. (F ACT T) will cause an error and print ~~e =esszge 
PtON-NUi!,ERIC ARG T. By defining FACT as a DLAr-~8DA, the Oed package analog of LAMBDA. this 
;,res .. !;,;:,C'~i::o!! c~ be sut~d d:recuy i:: the code: 

[DLA~5GA «(N NUMBERP» 
(COND 

«EQ N 0) 1) 
(T (ITIMES N (FACT (SUB1 N] 

With this c!efinition. (FACT T) will not result in a NON-NUMERIC ARG Terror whc:l the body of the 
code is executed. Instead. the NUtf!BERP declaration will be checked when ~~e function is first entered. 
and a declaration fault will occur. Thus. the message that the user will see will not dwell on the offend~g 
value T, but instead give a synlbolic indication of what variable and dt.'Claration were violated.. as follows: 

DECLARATION NOT SATISFIED 
«N NUMBERP) BROKEN) 

The user is left in a break from which the values of variables. e.g. N. can be examined to determine what 
the problem is. 

Tne f~:ncticn FACT also makes other presuppositions concerning its argument. N. For example. FACT will 
go into an infirjte recursive loop if N is a number less than zero. Although the user could prograI:l an 
explicit check fqr this unexpected siruation. such coding is tedious and tends to ob~ure the underlying 
algoritl'1m. [ns!ead. the requirement that N not be negative can be succinctly stated by declaring it to 
be a SUbtype of t:UMB E R P which is restricted to non-negative numbers. This can be done by adding a 
SA TIS FIE S ciause to N's type specification: 

[DLAMBDA ([n NUMBER? (SATISFIES (NOT (MINUSP N]) 
(COND 

«EQ N 0) 1) 
(T (ITIMES ~ (FACT (SUBl N] 

The predicate in the SAT I SF IE S clause will be evaluated after N is bound and found to satisfy N UMS E R P. 
but before the function body is executed. [n tJ.'1e event of a declaration fault. the SA TIS FIE S ccnci:ion 
will be included in the error me~sage. For example. (F ACT -1) would result in: 

DECLARATION NOT SATISFIED • 
«N r"UMBERP (-SATISFIES (~JOT (MINUSP N») BROKEN) 

Tne DLA~tBDA construct also pennirs the type of the value that is returned .by the function to be declared 
. by me~.r:s of the pseudo-variable RETURNS. For example, the following definition specifies that FACT is 
to return a positive integer: 

[DLAMBDA ([N NUM3ER? (SATISFIES (NOT (MINUSP NJ 

23.19 



DLAi\1BDAs 

[RETURNS FIX? (SATISFIES (IGREATERP VALUE 0]) 
{COND 

«EQ N 0) !) 
(T (ITIMES N (FACT (SUB! N] 

After the p..lnction body is evalua.ted.. its value is bound to t..~e variable VALUE and the RETURUS 
dedar2.ocn is checked. A declaration fault viill occur if the value is not satisfac:orJ. T:-tis preve!lts a bad 
vah.:e fro:n propagating to the caller of FACT t perhaps CZluSing an error far away from the svu.-ce of ±~ 
difficulty. 

Declaring a vari2.ble causes itS value to be checked not only when it is first bound. but a:so ·",·r.e::ever 
that v~""i;ble is reset by SETQ within the DlAMBDA. In other words. the type checking machine:-! will 
cot allow a dcciarcd variable to C2ke on an improper value. An iterative version of the factorial ti..:.nction 
illustrates this feature in the context of a DPROG. the Oecl package analog of PROG: 

(DLAM3DA ([N ~UMBERP (SATISFIES (NOT (MINUSP N] 
[RETURNS FIX? (SATISFIES (IGREATER? VALUE 0]) 

[DPROG ([TEMP! FIX? (SATISFIES (IGREATER? TEMP 0] 
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0]) 

lP (COND «EQ N 0) (RETURN TEMP») 
(SETQ TEMP (ITIMES N TEMP» 
(SETQ N (SUB! N» 
(GO LP] 

DPROG declarations are much like DlAMBDA declarations. except that they also allow an initial value fur 
the variable to be specified. In the·above example. TEMP is declared to be a positive integer L.';roug.~Q1..:t 
the computation a.~d N is declared to be non-negative. Thus. a bug which caused an incorre=t value to 
be assigned by one of the SETQ expressions would cause a declaration failure. Note that L.'1e RETURNS 
decl~ation for a DPROG is also useful in detecting the common bug of omitting an explicit RETURN. 

.,~ ... ., 
-.J.I.M DLAL'y[BDAs 

The Ded package version of a LAM80.~ expression is an expression beginning Wltn the .::.tcc (\000 \ 

OLAMBOA. Such an expression is a function object that may be used in any context where a LA~80A ) 
expression :nay be used. It resembles a LAt.1BOA expression except that it perrr.its declaration express:o~s 
in its argument list. as illustrated in the examples given earlier. Each element of the arg'.1r:le:1t list of a 
DLAMSDA may be a literal atom (as in a conventional LAMBDA) or a list of the form (SA .. \£E· r:?E . 
EXTR.AS).5 

SA..'v!E fulfills the sta.,dard function of a parameter. i.e. providing a ~ame to which the value of the 
corresponding argument will be· bound. 

TYPE is either a Oed package' type name or type expression. \Vhcn the DLAMBDA is entered.. its argu!7:e:l~ 
will be evaluated J.nd bound to the corresponding argument names. and then. after all the argumer1t nJ.rr:cs 

:'Str:crly, this would require a dccbra[ion w1(h a SATISFIES cl.1use to t~ke the fonn ~N P1UMBERP 
( SA TIS F ! E S - - ) - - ) (page 23.27). However. due to the frequency with which this ~ons:nx::on 
is used. it may be written without the inner set of parentheses. e.g. (N NUMB E R P (SA TIS FIE S - - ) 
-- ). 

23.20 



(J 

o 

o 

o· 

LISPUSERS PACKAGES 

have been boun\L the declarations will be checked. The type checking is delayed so that SA TIS FIE S 
precticates can include references to other v~;ables bound by the same 0 LAMB OA. For e:cample. one mig.ht 
wish to define a function whose two arguments are not only both required to be of some ghen type. but 
are also required to satisfy some relationship (e.g .• that one is less than the other). 

E'A"7Et-\.S allows SO::1e additional properties to be attac!1ed to a variable. One such propeny is the 
accessibility of NA..\fE outside the current lexical scope. Accessibility specifications include the atoms 
LOCAL cr SPEC IAL. which indicate that this variable is to be co:npiled so that it is either a LOCAL VA R 
or a·SP;:C'JAR. respecth"cly. This is illt.:strated by the following example: 

[DLAM5DA «(A LISTP SPECIAL) 
(8 FIXP LOCAL» 

... ] 

A more informative equivalent to the SPECIAL key word is the USEDIN form. the tail of which can be 
a list of the oU.~er functions which are expected to have access to the variable:6 

[DLAMBDA «A LISTP (USEDIN FOe FIE» 
(8 FIXP lOCAL» 

... ] 

EXTP.AS may also include a cominent in standard format. so that descriptive information may be given 
where a variab Ie is bound: 

[DlAMBDA «A lISTP (USEDIN FOO FIE) 
(8 FIXP lOCAL») 

... J 

(* This is an important variable) 

As mentioned earlier. the value returned by a OlAMBDA can also be declared. by means of the pseudo· 
'variable RETUR~lS. The RETURNS declaration is just like other OlAr"BDA declarations. except (1) in any 
Sl\TISFIES predicate. tJ.'1e value of the function is referred to by the distinguished name VALUE: and (2) 
it makes no sense to declare the rerurn value~o be LOCAL or SPECIAL. 

23.i.3 DPROG 

Just as DlAMBOA resembles lAMSDA. OPROG is analogous to PROG. As for an ordinary PROG. a va.'iable 
binciing may be specified as an atom or a list including a...."1 initial value fonn. However. a D?ROG bincii.ng 
also allows TYPE and EXTRAS information to appear following the initial value fOIm. The format for :hese 
aUg!!lented variable bindings is (NAME' INITIALVALL"'E: TYPE' • EXTRAS). The oniy difference be~ween 
a OP ROG oir:ding and a OL~MSDA binding is that the second position is interpreted as tL~e mitial value 
for the variable. Note that if the user wishes to supply a eype declaratlon for a variable . .1!l miLia! value 
must be specified. The same rules apply for the interpretation or the type info;mation for O? ROGs ~ for 
OLA.'mOAs. a.nd the same set of optional EXTRAS C3I1 be used. OPROGs may also declare the 'type of the 
value they return. by specifying the pseudo-variable RETURNS. 

6USEiJ IN is mainly for documentation purposes. since there is no way for such a resL;ction to be 
enforced. 

23.21 



Declarations in ItcratiYe St:ltements 

Jt:.st as for a DLAM8DA, type testS in a DPRCG are not assened until after all the variables have been 
bound.. thus permitting predicates to refer to otb.er variables being bound by this OP ROG. If NIL appears 
asth~ bitia! "/aIue for a binding (Le. the atom NIL actually appears in the code. not simply an expression 
which e',a1ua:es to NIL) the iridal type test will be supp~essecL but subsequent type tes~- e.g. follo'wing 
a SETQ, \vil1 still be performed. 

A COIr.r=cn construct ia Lisp is to bind and initialize a P ROG variable to the value of a complicated 
eX?ressioI! in order to avoid reco:nputing i~ and then to use this value in i:litialiting other P ROG yariables. 
e.g. 

[? ReG « A E..U'REssrON» 
(RETURr-4 (PROG «8 ( ••• A···» 

. {C ( ••• A ••• »)) 
... ] 

The ugliness of such cons~~ctions in conventional Lisp often tempts the program..tner to loosen Ltc seoping 
relationsr-Jps of the variables by binding them all at a single level and using S E TQ's in the body of the 
PROG to establish the initial values for variables that depend on the initial values of other va..Tiabl~ e.g. 

[P ROG « A EXPRESSION) B C) 
( S E TQ 6 (... A .•. » 
(SETQ C ( ... A ... » 
... ] 

In the Oed package environment. this procedure undermines the protection offered by the type mechanism 
by encouragL.,g L.'1e use of uninitialized variables. Therefore. the OPROG offers a syntactic faun to 
encourage more virtuous initialization of its variables. A OPROG variable list may be segmented by 
occurrences of u":e special atom THE N. which causes the binding of its variables in stages. so th:lt t.1.e 
bindi11g5 made in earlier stages can be used in later ones. e.g. 

[OPROG «A (LENGTH FOO) FIXP LOCAL) 
THEN (8 (SQRT A) FLOATP) 
THEn (C (CONS A B) LISTP» 

... ] 

Each stage is carried out as a conventional set of DPROG bindings (Le .• simultaneously, followed by the 
appropriate type testing). Tnis layering of the bindings peffilits one to gradually descer:d in:o a inner 
scope. binding the local names in a very structured and clean fashion. with initial values type-c!1ecked .:lS 

soon as possible. 

D.iA Dechuations in Iterative Statements 

. The ellSP iterative statement (page 16.1) provides a very useful facility for specifying a variety of P ReGs 
U1Jt (olilHV CL'rt~un wiJdy used fonn~(s. 'nlC Dt~d package JlIo'N'i dedaraUlltlS to bt! m~dc for tl1t! ';cope 
of In itcr~tl\'l! st.Jlcmcnt via ,the DECLAR'E CLISP i.s.upr. DECLARE can appear as an operator ,lnywhcre 
in an iterative statement. followed by a list of declarations. for example: 

(for J from 1 to 10 declare (J FIXP) do '" 

~ote that DECLARE declar;l[lOnS do not create bindings. but merely provide declar:ltions for existing 
bindings. For this rcason. an initial value cannot be specified and the form of the· declarauon is the sa.-ne 

23.22 

() 
\ / 

(],. 

n 

(; 



o 

o 

0-

LIS?USERS PACKAGES 

as that of DLAf1160As. namely (NAME TYPE • EXTRAS). 

No:e tb.at variables bound outside of t.~e scope of the iterative statement. i.e. a yariable used freely in t.1e 
i.~ can also be dec!cIed using this const.TUction. Such a declaratio:l will only be in efect for the scop~ of 
the iterative statement. ". 

23.7.5 Declaring a Variable for a Restricted Lexical Scope· 

The Ded package also permits declaring the type of a variable over some restricted porton of its existence. 
For exacpie. suppose the vmable X is either a fixed or floating number. and a p~ogr~"1l bra.~c!:es to treat 
the two cases separately. On one path X is known to be fixed. whereas on the other it is known to be 
floJting. The [)..!c! package OPROGN construct CJn be used in such c~es to st.1te the type of ~hc varbh!e 
along each paL". DPROGN is exactly like PROGN. except that the second clement of t.'1e tonn is Intt!rprct~d 
as a list of DLAMBOA format declarations. These declarations are added to any existing declarations in the 
cont2ining scope. and the composite declaration (created using the ALLOF type expression. page 23.16) is 
considered to hold u'lroughout the lexical scope created by the DPROGN. Thus. our example becomes: 

(if (FIX? X) 
the n (D P R OG N « X F I X P » ... ) 
else (DPROGN «X ,FLOAT?» ... » 

Like DPROG and DLAfrtBDA. the value of a DPROGr~ may also be declared, using the pseudo-variable 
RETURNS. 

DPROGN may be used not only to restrict the declarations of local variables. but also to declare ya,-iables 
wtich are being used freely. For example. if the variable A is used freely inside a function bue is known 
to be F! X P. this fact could be noted by enclosing L.'1e body of the function in (0 P ROG N « A F I X ~ 
FREE» BODY). Instead of FREE. the more specific construction (SOUNDIN FtlNCTION1 F'ClNCTION2 
" ... ) can be used.. This not only states that the variable is used freely but also gives the names of u'1e 
fun~tions w}1Jch mig..1.t have provided this binding.; 

Since L.~,~ 0 P ROG N form introdt:ces another level of parenthesization. which results in the enclosed forms 
being prettypr...n:ed ~de!lted.. the Ded pa::kage also permitS such dedarations to be attE.ched to ~.heir 
enclosing DLAf.13DA or DPROG scopes by placL~g a DECL expression. e.g. (DECL (A FIX? (BOUf-iOIN 
FUM) }. before the first executable fonn in that scope. Like DPROGN's. DECL declarations use DLANSOA 
format. 

23.7.6 D~daring the Values of Expressions 

The Oed package allows the value of an arbitrary form to be declared with t.'1e Oed construct TH E. 
A THE expression is of the form (THE TYPE • FORMS). e.g. (THE FIX? (FOa X»). FOP ... \{S are 
e\'alll~ted in order. and the value of the last one is checked to see if it satisfies TYPE. a type name or 
type expression. [f so. its value is returned. otherwise a declaration fault occurs. 

7Like USEDIN declarations. FREE and BOUrJDIN declarations cannot be checked.. and are provided for 
documentation purposes only. 

23.23 



Assertions 

23.7.7 Assertions 

The C-ed package also allows for checking that an arbitrary preqic2te holds at a particular point in a 
progr:m:'s execution.. e.g. a co edition u':at must hold at function entl1' but not throug.hout its execution. 
Such p!'eciica:es can be c!J.ecked usmg an expression of the form (ASSERT FO?.!.!l FOF_\!2 ••• ). in which 
each FOF...Wj is e!ther a list (which will be evalt:.ated) or a variable (whose dzclaration will be checked). 
Unless a!1 ekme:lts of the ASSERT form are satisfied. a declaration fault will take place. 

ASSERTbg :1 va..-i::ble provides a convenient way of verifying that the value of the yJJiabie has not bee:l 
i.Inpro,(~!"iy ch~"1fCd by a lower function. Although a sirnilar etfect could be achieved for preCicate5 by 
explicit checks of the fonn (OR PREDrCATE (SHOULDNT)). ASSERT also pro'iidcs the ability both to 
check that a variable's declaration is currently satisfied and to rc:nove irs ch~ks at compile ti.-ne wlt.1.out 
source codc modification (see pagc 23.25)~ 

23.7.8 Using Type Expressions as Predicates 

The Ded package extends t..'1e Record package TYPE? construct so that it ~cepts decltj"pe~ as well as 
record naces, e.g. (TYPE? (FIX? (SATISFIES (ILESSP VALUE 0))) EXPR). Tnus.. a TYPE? 
expression is exactly the same as a THE expression except that. rather than causing a declaration fault. 
TY? E? is a predicate which determines wheu.1.er or not t..le value satisfies the given type. 

23.7.9 Enforcement 

The ~1 package is a .45Oft'· typing system - that is. the data objects themselves are not inherently typed. 
Consequently. deciarations can only be enforced within the lexical scope in which the dec!ar3ucn tlkes 
place. and then only in certain contexts. In general. changes to a variable's v2.lue such as :hcse resulting 
from sid~ effects to embedded structure (e.g .• RPLACA. S E Tr~. etc.) or free variable references from 

'l'loutside the scope of the declaration cannot be. and therefore are not. enforced. 

Declarations are enforced i.e. checked. in three different situations: when a declared variable is bound 

(j 

(j 

to some value" or rebound with SETQ or SETQQ, when a declared expression is evaluated. and ',I,"ten f\ 
an ASSERT exprcssion is evaluated. In a binding context. the type check ta.1(es place afrer L."le binding. \ )" 
including any user·defined behavior specified by L.1.e type's binding fur:ction. Any failure of ~,he dec!ar~t:or:s 
causes a break to occur and an infonnative message to be printed. [n that break. the name to whic~ L.le 
ded:.ration is attach~d (or y'-\LUE if no name is available) will be bound to the oifendL'1g val t..:. e. Thus. in 
the (FACT T) example above. ~ would be bound to r. The problem C3...'1 be repaired either by reruming 
an acceptable value from the break via the RE TURN command.. or by' assigning an acceptable ... alee to the 
offending nar:l~ and remrning from the bre3k via an OK or GO comm'and. The unsatlsr:ed dec!ar::Hion '''''iiI 
be reasSerted when the computation is continued. so an unacceptable value will be detec~ed.: 

Th\,' ~llltl'm:.lcic enforcement of type dt!cbr~lCions is a v~ry I1c:tihle and powerful aid to progr~un dt!vclopm(.!nt. 
It \,h)~s. however. c:tact ;1 considerable mn-time cost bccall~c of all the checkmg involved. F.lcturs !)f u .. o 
to t~n in running speed are not uncommon. especially where luw level. frequently used funcuons employ 
type dedarations. As a result. it is usually desirable to remove the declaration enforcement eoce when 

>5\Vith this excc~tion. assignments to variables from within the break J.fC not considered to be in the :;cooe 
of L.1e declarations that were in effect when the break took place. and so are not checked. ' 

23.24 



o 

o 

LISPUSERS PACKAGES 

the system is believed to be bug-free a.lld performance becomes more central. Tnis can be done with t..'1e 
variable COi~PILEIGNOREDECL: 

COM?:: LE !GNOREDECL [Variablej 
Setting the value of the variable COMPILEIGNOREDECL to T (initiilly NIL) 
instructs the compiler not to insert declaration enforcement tests in the compi:ed 
code. ~fore selective removal can be a:hieved by setting COMPILE!G~OREDECL 
to a list of function na..~es. Any function whose name is found on this list is 
compiled without declaration enforcen:ent. 

(IGNOREDECL • -"AL) [FUe Package Corr~~a.nc!] 

23.7.10 Dec1types 

Declaration enforcement may be suppressed selectively by file using the I G PI 0 REO Eel 
file package command. If this appears in a file's file co~ands. it rccefines the 
value of COMPILE IGf~ORf.DECL to v~ for the compilation of this f.Ic only. 

A Dec! package type, or decltype, specifies a subset of data values to which values of t..'1is type are 
restricted.. For example, a "positive number" type might be defined to include only those values that are 
numbers a.:Id greater t..1.an zero. A type may also specify how certain operations. such as assignment or 
binding (see page 23.23), are to be performed on variables declared to be of this type. 

The inclusion relations among the sets of values which satisfy the different types define a natural partial 
ordering on types. bound by the universal type ANY (which all values satisfy) and the empty type 
NONE (which no value satisfies) ... E2.ch type has one or more super(vpes (each type has at least ANY as 
a supertype) and one or more subtypes (each type has at least NONE as a subtype). This stnlcr..1re is 
important to the user of Ded as it provides the fra.TI1ework in which new types are defined. Typically, 
much of the definition of a new type is defauited. rather than specified explicitly. The defi.nition will be 

. completed by inheriting atttributes which are shared by all its immediate supertypes. 

An initial set of decltypes which defines the [nterlisp built-in datatypes ar.d a few other commonly 
used types is provided. Thereafter. new decltypes are created in terms of existing ones using the type 
exp:-essions des<:ribed below. For conciseness, such new types can be associated with literal atoms using o the function DECL TYPE (page 23.28). 

23.7.11 Predefined Types 

Some commonly used types. such as the Interlisp built-in data types. are already defined when t.~e Decl 
package is loaded. Tnese types. indented to show subtype-supertype relations. are: 

ANY 
ATOM 

LITATOM 
NIL 

NUMBERP 
FIX? 

LARGEP 
SMALLP 

. FLOATP 

LST9. 
ALIST to 
LIST? 

: 

ARRAYP STRING? 
HARRAYP 
READTABLE? 

23.25 

FUNCTION STACKP 



Type Expressions 

NONE 

Note that the definition ofLST causes NIL to have multiple supertypes. Le. LITATOM and LST. refiec±:g 
the c.uality of NIL as an atom and a (degenerate) list. 

In addition.. declarations made usbg &.e Record package (page 3.1) also define typ·es which are attz:hed 
as S7.lDtypes to an .:lppropliate existL.,g type (e.g .• a TYPERECORO d~c1aration defines a subtype orLISTP, 
a DA TA T'( P E dec!ar~tioil a subtype of ANY. etc.) and may be used directly in ceclaratio:l ccntex!S. 

23.7.12 Type Expressions 

n· . / 

Type expreS3ions provide convenient ways for defining new types in terms of modifications to. or n .. 
compositi~ns of one or more, existing types. 

(MEMQ VAL VEl ••• VALUEN ) [Decl Type Expression] 
Specifies a type whose values can be anyone of the fi"(ed set of elements {VALr:..~% 
••• VALUEN}' For example. the status of a device [f'Jght be rC?resented by a 
datum restricted to the values BUSY and FREE. Such a "device statuS" type couid 
be defined via (MEMQ BUSY FREE). The new type will be a subtype of ta.'1e 
n2.ITowest type which all of the alternatives satisfy (e.g .• the "device s:.atus·· type 
would be a subtype of LITATO~). The membership test uses EQ if Lltis supertype 
is LITATOM; EQUAL otherwise. Thus. lists. floating point numbers. etc .• can be 
included in the set of alternatives. 

(ONEOF TYPE 1 ... TYPE",,) [Decl Type Expression1 
Sp~cifies a type which is the union of two or more other types. For e:'C:hTopte. the 
notion of a possibly degenerate list is something that is either 1:. r S T P or NIL. SL.:ch 
a type can be (and the built-in ti:pe LST in fact is) defined simply as (Or.EOF 
NIL LISTP). A union data type becomes a supertype of all of the alte:native 
types specified in the 0 N EO F expression. and a subtype of L.'1eir lowest COfr..mon 
sup ertyp e. The type proper-des of a union type are taken from itS alte~ative types 
if they all agree, otherwise from L'1e supercype. 

(ALLOF TYPE: 1 ... TYPE",,) [Oed Type Expression] 
Specifies a type which is the intersection of two or more oL.~er types. For eX.:l.:.ll~I-e. 
a variable may be required to satisfy both F IXP and also some ty~e which is 
defined as (NUMBERP (SATISFIES PREDICATE). The latter type will J.cz:at 
numbers that are not F I X P. i.e. noating point numbers: L.1.e former does not 
include PREDICATE. Both restrictions can be obtained. by using the type (ALLO F 
(NUMBERP tSAT.ISFIES PR~DICATE')) FIX.p).L~ 

9LST is.defined as either LISTP or NIL. i.e. a list or NIL. The name LST is used. because the name 
LIST is tre~ted specially by clisp. 

LOALIsr is defined as either NIL. or a list of elements each of which is of type LISTP. 

L L \Vhen a value is tested. the component type tests are applied from left to right. 

23.26 

(j 

(j 



o 

o 

o 

Q 

(AGGREGATE 0 F 

LISPUSERS PACKAGES 

ELEMENT) [Decl Ty~e Ex?ression] 
Specifies a type which is an aggregate of values of some ct.i.er type (e.g .. list of 
numbers. array. of strings. etc.). AGGREGATE must be a type ·.vhich provides an 
EVERYFN prop~~! (page 23.28). Tne EVERYFN is used to ap;iy an a:bitr~!· 
fJuc:io~ to each of the eler::ents of a darum of the aggrega!e type. ar:c. check 
whether the result is :lon-N I L for each elerr..ent. ELEMENT may be any type 
expression. For example. the type "list of either strings or atoms" can be defined· 
as (LISTP OF (ONEOF STRING? ATOM»). The type test for the new type will 
consist of applying the type (,;::st for ELEMENT to each e!ement of wlC J.ggr~g.lte 
type using the EVERYFN property. The new type will be a sUbtype of 1(S aggrcga:c 
type. 1 2 

(TYPE (SAT IS FIE S FORM 1 ••• FORM N) ) [Oed Type Expression] 

(SHARED TYPE) 

Specifies a type whose values are a subset of the values of an existing ty;e. The 
type test for the new type will first check that the base type is sati$fie~ i.e. that 
the object is a member of TYPE, and t.'1en evaluate FOP..M1 ••• FOR...\!:-;. If each 
form returns a non-N I L value. the type is satisfied. 

The value that is being tested may be referred to in FOR.1J1 ••• FOR.'AJN by either . 
(a) the variable na.rne if the type expression appears in a binding context such .15 

DLA1ttBDA or DPROG (b) the c!istinguished atom ELT for a SATISFIES clause on 
the elements of an aggregate type, or (c) the distinguished atom VALUE. when 
the type expression is used in a context where no name is availab ie (e.g.. a 
RETURNS declaration). For example, one might declare the program variable A 
to be a negative integer via {FIXP (SATISFIES (MINUS? A»). or dedJ.re 
the value ofa OLAM80A to be of type (ONEOF FIXP FLOATP) (SATISFIES 
(GREATERP VALUE 25»). Note that more than one SATISFIES clauses may 
appear ill a single type expression attached to different aiternatives in a ONEOF 
type expression. or attached to both the elements and the overall structure of an 
aggregate. For example. 

[LISTP OF [FIXP (SATISFIES (ILEQ ELT {CAR VALUE] 
(SATISFIES (ILESS? (LENGTH VALUE) 7] 

specifies a list of less than 7 integers each of which is no greater than the first 
element of the list. 

[Decl Type Ex';)ression] 
Specifies a sUbtype of TYPE with default binding behavior. i.e. ~he bindi.!g fu~cticn 
(see page 23.23). if any. will be suppressed.13 For exampie. if the type F LOA T? 
were redefined so that DLAMBDA and DPROG bindings of variabies that were 
declared to be FLOAT? copied t.'1eir initial values (e.g .. to allow SET N5 to be free 
of side e~ec~). then variables declared (SHARED FLOATP) would be initialized 
in the normal fashion. without copying their . initial valufS. 

12The built-in aggregate types are ARRAYP. LIST? LST. and STRING? (and their subtypes). 

13 As no predefined type has a binding function. this is of no concern until the user ccfi:1cS or redctr:es 
a type to have a binding function. 

23.27 



Named Ty-pes 

23.7.13 Nac.~ Typ~ 

Alt.i.OU~1. type expressions can be used in any declaration context. it is often desirable to save the defnition 
of a ne'.:; typ~ if it is to be used freQ.uently. or if a more complex specifcation of itS behavior is to be 
given than is convenient in an expression. The ability to define a named type is proviced by the ft:lc:':on 
OECL TYPE. 

(DECL TYPE TYPENAJ.,fE TY?E PROP z VALl ••• PROPN VALN') [NLambda ~oSpre3d FU:lction1 
NLunbda.. nospread function. TYPZ .. VAME is a literal atom. TY?E is eiLter the ::a.7.e 
of 2...'1 existing type or a type expression. and PROP z' VALl' •••• PROPs_ VA!.!'i' is a 
spe-:ification (in property list format) of other attr.butes of the type. 0 Eel TV P E 
derives a type from TYPE. associates it with TYPESAME, and then defines any 
propcrr.ics sp(.'Cified with the values given. 

The following pr~perties are interpreted by the Oed package.1" Each of these properties can ha'y'e as its 
value eiL'ler a function name or a lA~i6DA expression. 

TESTFN 

EVERYFN 

BINOFN 

will be used by the Oed package to test whether a given value satisEes this type. 
The type is considered satisfied if FN applied to the item is non-N I L. For exa.:nple. 
one migb.t define the type INTEGER with TESTFN FIXP.1S 

specifies a mapping function which can apply a functional argume:lt to each 
"element'· of an instance of this type. and which .."Iill rerum NIL unless the result 
of every such application was non-N I L. FN must be a function of two arguments: 
Ll':le aggregate and tl'1e function to be applied. For example. the EVERY F N for the 
built·in type LISTP is EVERY. As described on page 23.27. the Oed pack~ge uses 
the EVE RY F~& property of the aggregate type to construct a type test fur aggreg~te 
type expressions. In fact. it is the presence of an EVE RY F N properry which allows 
a type to be used as an aggregate type. L 611 

is used to compute from the initial value supplied for a OlAM8DA or OPROG 
variable of this type. the value to which the variable will act'.lally be initiilized. F~ 
must be a BJnction of one argument which will be applied to me initial valt:e.~8 

n · 
, . 

.f) 
\ / . 

aI!d which should produce another value which is to be used to muke ~~e bindi.-:g. /\ 
For example. a B I NO F N could be used to bind variables of some type so that new J 

14AcrJaHy, a..iY property can be attached to a type. and will be available for use by user functions via the 
function GETOECl TYPEPRO? described below. 

L5Typicaily, the TE ST F N for a type is derived from its type expression. rather man specified explicitly. The 
. abilit'/ to specirf the TEST F N is provided for those cases where a predicate is availabie ~~at is much :1:ore 

efficient than chat which would !Je q.erived from the .type expression .. For exampie. L~e type SHALL? is 
defined to have the function SMAl,lP as its TESTFN. rather than (LAMBDA (DATUM) (AND (NUl-16E RP 
OA TUM) (F I X P OA TUM) (SMA LL P OA rU~·1) )) as would be derived from tht.! subtype structure. 

lo~ote that a type's EVE RY F N is not used in type tests for that type. but only in type tests for :ypes 
defined by OF expressions which used this type JS the Jggregate type. For example. EVE RY is not used 
in determining whether some value sausfies the type LIS T P. . , 

1 iThe Oed pack.1ge never applies the EVE RY F N of a type (0 a value without first venr\ing that the .... alue 
satlsfies that type. 

18For a OPROG binding. FN will be applied to no arguments if the initial value is lexlc:lily NIL. 

23.23 .1'\ 
\ ) 



o 

o 

0/ ; . 

o 

SETFN 

LISPUSERS PACKAGES 

bindings-are copies of the initial value. Thus. if FLOATP were given the BI~DFN 
FPLUS. any variable declared FLOATP would be initialized with a new ficati=g 

. box, rather th3..t.~ sharing with that of the original initial value. 19 

is used for performing a SETQ or SETQQ of variables of u~s type. FN is a fuTIc:ion 
of two arguments. the name of the variable. and its new value. A SET F N is 
typi:a11y used to avoid the allocation of storage for intermediate res!.llts. ~ote t;,~at 
the SETF~~ is not the mechanism for the enforce:nent of type compatibility. which 
is checked after the assignment has taken place. Also note that not all fu:lctions 
which can ch&.h,ge values are 2ifcctcd: in particular. S E i and SET N are Got 

23.7.13.1 Manipulatbg Named Types 

OECL TYPE is a file package type (page 11.1). Thus all of the operations relating to file package types, 
e.g. GETDEF, PUTDEF, EOITOEF, OELOEF.~o SHOWDEF. etc .• can be perfcnned on declrypes. 

The file package command. OECL TYPES. is provided to dump n~ed decltypes symbolically. They will 
be written as a series of DECL TYPE forms which will specify only ta.'1ose fields which differ from t.."1e 
corresponding field of u'1eir supertype(s). If the type depends on any unnamed types. t..'1ose types will 
be dumped (as a compound type expression). continuing up the supeI1ype chain until a named type is 
found. Care should be exercised to ensure that enough of the named type context is dUI:lped to allow 
the typ~ definition to remain meaningful. 

The functio~ GETDECL TYPEPROP and SETDECL TYPEPROP. defined analogously to the property list 
fur::tions for atoII1S. allow the manipulation of the properties of named types. Setting a property to NIL 
with SETDECL TYF:EPROP removes it . from the type. 

23~i.14 Relations Between Types 

Tne notion of equivalence of two types is not well defined.. However. type equivalence is rarely of i!:terest. 
V'vhat is of interest is type inclusion. Le. whether one type is a supertype or subtype of a.Ilot.~er. The 
predicate COVERS can be used to determine whether L.'1e values of one type include t.~ose of a:."1o:..~er. 

(COVERS HI LO) [Function1 
is T if HI can be found on some (possibly empty) supertype chain of LO: else 
NIL. Thus. (COVERS 'F IXP (DECLOF 4» = T. even though the DE CL TYPE of 
4 is SMALLP. not FIX? The extremal cases are the obvious identities: (COVERS 
'ANY AJVYTYPE) = (COVERS ANYTYFE 'NONE) = (COVERS X x) for any 
type x = -!. 

COVERS allows declaration based tTansformations of a form \vhich depend on elements of L.'e form being 
of a certain type to express their applicability conditions in terms of the weakest type to which they 

19The B I NO F N. if any, associated with a type may be suppressed. in a declaration context by creating a 
subtype with the type expression operator SHARED. as descnbcd on page 23.27. 

~OOeleting a named type could possibly invalidate other type definitions that have the named type as .1 

SUbtype or supenype. Consequently. the deleted type is simp Iv unnamed and left in the type sp.1ce .1S 
long as it is needed. . 

23.29 



The Declar:ltion Database 

apply, ·;;i~~out explicit concern for other types which may be subtypes of it. For example. if a p.:u-::c:llar 
transformation is to be applied whenever an e!ement is of type NUMBER?, the progr'....m which applies teat 
tra.TlSfcrmation does not have to check whether the ele:nent is of type SMALL? LARGEP, F IX?, FLOAT? 
etc .• but can simply ask wheL.i.er NUMBER? COVERS the type of that element. 

The eleoentary relations a.1'!long the types.. out of which arbicra..ry traversals of the type space can be 
consL."1.!·:tecl are made avail~ble via; 

(SUSiYPES TYPE) ~ [Function] 
Returns the list of types which are immediate subtypes of TYPE. 

(SUPERTYPES TYPE) [Function] 
Returns the list of types which are in:mediate supertypes of TYPE. 

23.7.15 The Dec!ar.1tion Database 

One of the primary uses of type declarations is to provide .information that other systems can use to 
interpret or optimize cede. For example. one might choose to write all arithmetic operations in ter:ns of 
general functions lLl(e PLUS and T Il~E S and then use variable declarations to substitute more efficient. 
special pUQose code at compile time based on the types of the operands.' To this enci a data ba.~ of 
declarations is made available by the Oed package to support these operations. 

(DECLOF FOR..~) 

DECLOF 

[Function] 
Returns the type of FORM in the current declaration context.::1 If FOR!.! is 
an' atom. DECLOF will look up that' atom directly in its database of cur:-e:1( 
declarations. Otherwise. DECLOF will look on the property list of (CAR FOFL\!) :or 
a OECLOF property, as described below. If there is no DECLOF property, DECLOF 
will check if (CAR FORM) is one of a large set of fur..ctions of known result 
type (e.g .• the aritlunetic fu:1ctions). Failing that. if (CAR FOR.\f) has a MAC RO 
property, DECLOF will apply itself to the result ofexpand.L.~g (wit..~ EX?ANDMACRO. 
page 5.19) the macro definition. Finally. if FOR.'v! is a Lisp progr3.!-rl ele~e:lc t..~at 
DECLOF ··understands·· (e.g .• a CO~~D. PROG, SELECTQ, etc.). DECLOF .1ppiies i:.self 
recursively to the partes) of the cont2.ined fonn which will be rerurned 3S value. 

[pre;:e~ ~azeJ 
Allows the specification of the type of the values returned by a paruc'Jlar f~::C:iC4. 
The value of the DECLOF property can be either a type. i.e. a type n~~e or a ty~e 
expression. or a list of the fOIm (FU~JCTION Fr.,). where FN is a function ocje~:. 
FN will be applied (by DECLOF) to the fOIm'whose CAR has this DECLOF prc~e::y 
on its property list. The value of this function application will the:1 be conside:ed 
to be the type of the fOIm. 

:!lThe "current declaration context" is defined by the enyirOnnlcnt at the time that OECLOF is c~l1ed. Code 
reading systems. such as the compiler Jnd the' interpreter. keep track of the lexic31 scope within ·,I.·hich 
they arc currently operating. in particular. which dccl2.rations are currently in erfect. Note molt (cur.emly) 
DEC LO F docs not have access to Jny global data base of dccbrations. For \.!x;.unplc. DE C LO F ":L'~S r:cc 
have tnfonnation available about the types of the Jrguments of. or the value rcturnl!d by . .1 ;;J.r::~~:.:.r 
function. unless it is currently ··inside" of that function. However. the DECLOF property (descnol!d :e!ow) 
can be used La intorm OECLOF of the type of the value re:urned by a particular function. 

23.30 

r) 

() 



u 

(J 

o 

() 

LlSPUSERS PACKAGES 

As an example of how declarations can be used to automatically generate more efficient code. consider 
an arithJnetic package. Declarations of numeric variables could be used to guide code generation to 
avoid me inefficiencies of Interlisp's handlir:g of arithmetic values. Not only could the generi: ~-;L.~-:1etic 
functions be automatically specialize~ as suggested above, but by redefiring u'1e B I NO F N and the SE T F N 
properties for u.'~ types FLOA f? and LARGE? to re-use storage in U.~e ap?ropriate cont~~ts (i.e .• ·,:,·ten t.~e 
new value can be determined to be of the appropriate t)tpe), trcmendous econooies could be realized by 
not allocating storage to intcrmediate res'.llr.s which must later be reclaimed by tJ.'1e garbage collector. Tr.e 
Ded pac\:age has been used as the basis for several such code optimizing systems. 

23.7.16 Declarations and ~lasterscope 

The Ded package notifies M;\STERSCOPE about type declarations and defines a new HASTERSCOPE 
relation. TYPE. which depends on declarations. Thus. the user can ask questions such as "WHO USES 
HUMBLE AS A TYPE ?," "DOES FOO USE F I XP AS A TYPE?," and so on. 

23.3 TRA.~SO R 

Note: TRANSOR is a LispUsers package contained on the file TRANSOR. DeOM. 

TRANSOR is a LISP-to-LISP translator intended to help the user who has a program coe.ed in on.e 
dialect of LISP and wishes to carry it over to another. The user loads TRANSOR along with a file 
of ~,sformations. These transformations describe the differences between the two LISPs.. expr~...sed in 
terms of Interlisp editor COII1mands needed to convert the oid to new, i.e. to edit forms writ!C:l in the 
source dialect to make them suitable for the target dialect. TRANSOR then sweeps throug...1- the user's 
program and applies the edit transfonnations. producing an object file for the target syste:n. In addition.. 
TRANSOR produces a file of translation notes. which catalogs t.~e major changes made in th.e coce as 
well as the forms that require further attention by the user. Operationally, t.~erefore. TRA~SOR is a 
facility for conducting massive edits. and may be used for any purpose ~hich th2.t may suggest. 

Since the edit transformations are fundamental to c.rjs process. let us begin wit.'1 a definiti0u and scme 
examples. A transformation is a list of edit cOrrL'!1ands associated with a literal atom. usually a fu:lction 
name. TRA:\SOR conducts a sweep through the user's code. until it finds a form whcse CAR is a 
literal aton: which has a transformation. The sweep then pauses to let the editor e~ecute the list of 
corru::~ds before going on. For eX~!1ple. suppose the order of argumenrs for the fu~ction TCONC must 
be reversed for the target system. Tne transformation for TCONC would then be: ( SW 2 3». \\"ne:1 
the swe~p encounters the fonn (TCONC X (Faa). this transformation would be retrieved J.:1d exe~u:e1. 
converJng t.~e expression to (TCO~~C (Faa) X). Then thc sweep would locate the nex~ fon:"~ iz:l this 
case (F 00), and any transforoations for F 00" would be executed. etc. 

Most instances of TCONC would be. successfully translated by thiS tfansformauon. However. if ihere we:-e 
no second J.rg.um~nt to T COUC. e.g. the form to be tr~Hl$btcd was ( r CONC X). the command (SW 2 
3) would cause an error. which TR.\!'-iSOR would catch. 1ne sweep would go on as before. out a not~ 
would appear in thc translation listing stating that the transfonna~ion for L'1is paI1ic~lar form f.3.i:ed :0 
work. The user would L'1en have to comp<1re the form and the commands. to figure out whJ.t ::J.l!5ed the 
prooiem. One might. however. anticipate this difficulty with a more scphi$tic~l(ed tran5fcH171..1GOn: « I r= 

(## 3) «SW 2 3» «-2 NIL»». which tests for a third element and does (SW 23) ur (-2 
NIL) as appropriate. It should be obvious that the translation process is no more sophistic.:ncd : .. ha.n the 

23.31 



Using TR.\J.'\jSO R 

transformations used. 

T.1is documentation is divided into two main p<:u'"tS. The first describes how to use TRA~SOR ass'U ... -:-..ing 
that u':e user :!:e:!dy has a complete set of transformations. The second documents TRANSORSET, an 
interc.cthoe routine for building up such sets. TRAUSORSET contains commands for writing a.."1d eCiti.Llg 
transfon::1ado~s. saving ene's work on a fi.le~ testing Lrrulsfonr.ations by r:an.slating saI:1p!e ror.::-..5. e:.c. 

Two !"'""aIlsformations files presently exist for translating programs into Interlisp. <LIS?)SOS940. XFORMS 
is for old BB~ LISP (SDS 940) programs. and <LISP)LISP 16. XFORMS is for S~ford AI LISP 1.6 
programs. A set for LISP 1.5 is planned. 

23.8.1 Using TRAl.'lSOR 

. ° The first and most exasperating problem in carrying a program from one implementation to another is 1\ 
" simply to get it to read in. For example. SRI LISP uses / exactly as Intcrlisp uses %. i.e. as 3.Il e5C:!pe \ ). 

character. Tne fu;].ction ?RESCAN exists to help with these problems: the user uses PRESCAN to ;=erf'or=1 
an initial scan to dispose of these difficulties. rather than attempting to TRANSOR the foreign sou~e:11es 
directly. 

PRESCAN copies a file. performing character-for-character substitutions. It is hand-coded and is much 
faster than either READe's or text-editors. 

(PRESCAN FrLE CHARLST) [Fur:ction] 
Makes a new veniicn of FILE. performing substitutions according to· CEA .. R!.S'T. 
Each element of CHARLST must be a dotted pair of two character cedes. (OL::>
CHAR·CODE • NEW-CHAR.· CODE ). 

For ~xample. SRI files are PRESCArJed with CHARLST = « 37 • 47) (47 • 37». which excha.r:ges 
slash (47) arId percent-sign (37). 

The user should also ma.\ce sure that the treatment of double quotes by the source and target sys~ems is 
siIr..ilar. In Interlisp. an unmatched double-quete (unless protected by the escape character) will cause the 
rest of L'1e . file to read in as a st..;ng. 

Fin":":l). ~'1e l.!ck of:l STOP at ~e e:ld of a file is harmless. since TRA:SSOR will suppress E~D OF FILE 
e:-:oI"S .1...,d eXIt norm3lly. 

23.8.2 Transbting 

T R.AN SOR is :..":e ~cp-level function ef the translator itself. and calces one argument. J. fle to be U'a.:lSlated. 
The file is assumed to contain a sequence of forms. ~hich are re:ld in. tr~slated.. ~d out~ut to a 
file c3.11ed {FILE}. TRAN. The translation notes are meanwhile output to {FILE}.LSTRAN. T:1uS l1e 

. usu~ 5~y'ucnce for bring':l foreign file to fnterlisp is as follows: PRE SCAN the file: eXJm!ne ccce 3.r.d 
tr::msforrnations. making changes to the trJ.nstormatipns if needed: TRANSOR the file: J.nd c!eJ:1 up 
remainmg problems. guided by the notes. 'me user can now make a pretty file and pioceed to exer:~se 
and check out his piogra.ll1. To export a file. it is usually best to TRA:\SOR it. then PRESC~N II .1:ld 
perform clean-up on the foreign system where the file c;m be loaded. 

23.32 



;~ u 

(TRAUSOR FILE) 

LISPUSERS PACKAGES 

[Function1 
Translates FILE. Prettyprints translation on {F ILE} . TRAr.; translation listing c·n 
{FILE}. LSTRAN. 

( T RA~JSORFORr,t FORM) [Function1 
FOPJ.! is a LISP form. Returns the . (destructively) translated form. Thoe rranslation 
listing is dumped to the prir:Jary output file. 

(TRANSORFNS FNLST) [Function1 
FNLST is a list of function n~~es whose interpreted definitions are dcs~~ctively 
transiated. Listing to prLrnary output file. . 

TRAr'SORFOR~ and TRANSORFNS can be used to translate expressions that are already in core. where3S 
T RANSOR it.t:.elf only works on files. 

o . 23.3.3 The Translation Notes 

o 

The translation notes are a catalog of changes made in the user's code .. and of problems which require. 
or iT.ay require. fJrl..i.1.er attention from the user. This catalog consists of m'o cross-indexed s~tior:.s: an 
index of forn"'.5 and an index of notes. The first tabulates all the notes applicable to any form.. whereas 
the second tabulates all the forms to which anyone note applies. Forms appear in the index of for.r~ in 
t.1e order in which they were encountered., i.e. the order in which they appear on the source and output 
files. The index of notes shows the name of each note. the entry numbers where it was used. and its text, 
and is 21phabetical by name. The following 5aL"'Ilpie was made by translating a smail tes: tile wnnen in 
SRI LISP. 

LISTI~G FROM TRANSORIHG OF FILE TESTFILE.:7 
DONE ON 1-NOV-71 20:10:47 

1. APPLY/EVAL at 
[DEFINEQ 

(FSET (LAMBDA & 
(PROG ••• 3 ••• 

(SETQ Z (COriO 
«ATOM (SETQ --» 

(COND 

INDEX OF FORf~S 

«ATOM (SETQ Y (NLSETQ "(EVAL W)"~» 
--) 

] 
2. APPLY/EVAL at 

[DEFINEQ 

--» 
--) ) 

(FSET (LAMBDA & 
(PROG ••• 3 ••• 

(SETQ Z (COND 
«ATOM (SETQ 

(COND 
«ATOM (SETQ 

--» 
--) ) 

23.33 



/'-:" 
! 
i 

Errors and l\t!essages 

-"(EVAL (NCONS W»") 

] 
3. MACHINE-CODE at 

[DE:FINEQ 

--) 
--) ) 

(LESS! (LAi'iBD.~ & 
(PROG ... 3 .•• 

(COND 
••• 2 ••• 
«NOT (EQUAL (SETQ X2 "(OPENR (MAKNUM & -»" 

) 

] 
4. MACHI~E-COOE at 

[D.EF INEQ 

--» 

(LESS! (LAMBDA & 
(PROG .•• 3 ••• 

(COND 
... 2 ••. 

--» 

«NOT (EQUAL & (SETQ Y2 

APPLY/EVAL at 1. 2 . 

--» 
] 

"(OPENR (MAKNUM & --»"») 

INDEX OF NOTES 

. TRANSOR will translate the arguments of the APPLY or EVAL expression. but 
the user must make sure that the run-time evaluation of the arguments returns 
a B8N-compatible eipress;on. 
MACHINE-CODE at 3, 4. 

Expres5ion dependent on machine-code. User must recode. 

n 

n 

(~\. ) The rrar:slation notes are generated by the transformations used... and therefore reflect the judgment of their . 
author as to what should be included. Straightforward conversions are usually made without COnL~ent: 
for ex~pie. the DEFPROPs in this file were quietly changed to DEFINEQs. TRANSOR found four 
noteworthy forms on tJ.'1e file. and printed an entry for each in the index of forms. consisting of an entry 
number. the na..'11e of the note. and a printout showing the precise location of the torm. The fum: c1?peafS 
in double-quotes and is the !c1St thing printed. except for dosing parentheses and dashes. An JIr.pe~ar.d 
represents one non-arornic element not shown. and two or more eiements not shown JIe represe:::ed d.S 

•.. • '1 • • " where N is the number of e!ernents. Note that the printouts describe expressions an the Ol!CPl!t 

fiie. ramer than the source file: in the example. the OEFPROPs of SRI LISP have been repb.ced .... it..~ 
DE F HlEQs. 

23.804 Errors and ~Iessages 

TRr\!'SOR records its progress through the source file by terminal printouts which identify e3.ch expression 
as it is read in. Progress within large expressions. such c.lS a long OEF INEQ, is reported every tJ.~~ee ml:1uteS 

23.34 



.. o 

o 

o 

o 

LISPUSERS PACKAGES 

by a pr...ntout showing the location of the sweep. 

If a transformation fails. TRANSOR prints a diagnostic to the teletype which identifies the faulty 
tr2.!lSforrnztion.. and resumes dle sweep with the·next form. The translation notes will identify the form 
wt'.ich caused this failure. and the extent to which the form and its argucentS were compromised by ~1e 
error. 

If the transformation for a common function fails repeatedly. the user can type control·H. \Vhen the 
system goes into a break. he can use TRANSORSET to repair ~~e transformation. a.,d even test it o~t (see 
TEST co~and.. page 23.36). He may then continue the main translation with OK. 

23.8.5 TRANSORSET 

To use TRA~lSORSET. type (TRANSORSET) to Interlisp. TRANSORSET will r~?ond with a + sign. its 
prompt character. ,and await input. The user is now in an executive loop which is like EVALQT wit..1 
some extra context and capabilities intended to facilitate the writing of tI'al,sformations. TRANSORSET 
will thus progress APPLY and EVAL input, and execute history commands just as EVALQT would. Edit 
commands. however. are interpreted as additions to the transfonnation on which the user is currently 
working. TRANSORSET abliays saves on a variable named CURRENTFN the name of the last function 
whose transformation was altered or examined by the user. CUR R EN T F N thus represents the fun~tion 
whose transformation is currently being worked on. Whenever edit commands are typed to the + 
sign. TRAtlSORSET will add them to the transfonnation for CURRENTFft This is the basic mechanism for 
writing a transformation. In additioI4 TRANSORSET contains commands for printing out a transforr::ation. 
editing a traI!S:ormation. etc .• which all assume that the command applies to CURRE NT F N if no function 
is spe:i.fied. The following example illustrates this process. 

+-TRANSORSET() 
+~N TCONC [lj 
TCONC 
+ (S\I 2 3) [2J 
+TEST (TCONC A B) ·[3} 
P 
(TeONe S A) 
+TEST (TCONC X) [4} 
TRANSLATION ERROR: FAULTY TRANSFORMATION 
TRANSFORMATION: « SW 2 3» [5} 
OBJECT FORM: (TCONC X) 

1. TRANSFORMATION ERROR AT [6J 
"(TCONC X)" 

(TCONe X) 
~(IF (## 3) «SW 2 3» «-2 NIL] {~ 
+SHOW 
TCONC 

[(SW 2 3) 
( IF (## 3), [8J 

«SW 2 3» 
«-2 NIL] 

TCONC 

23.35 



+ERASE 
TCONe 
+REDO IF 
+SHOlJl 
Tear-Ie 

[(IF (## 3) 

TCONC 
+TOST 
=iEST 

( (51! 2 3» 
«(-2 NIL] 

(TCONe NIL X) 
+ 

TRANSORSET Commwds 

[9} 

[10J 

[II} 

n 

In L'1is example. the user begins by using the FN command to set CURRENTFN to TeONe [IJ. He then () 
adds to the (empty) transformation for TCC~JC a conu-nand to switch the order of the argume:lts [2J and \. . 
tests the transformation [3J. His second TEST [4} fails. c~using an error diagnostic [5J and a tZ~T1slation 
note [6J. He writes a better command [7} but forgets that the original SW command is still in the way 
[8]. He tb.erefore deletes u~e entire transfonnation [9J and redoes the IF [/ OJ. This time. the T EST works 
[I1J. 

23.8.6 TRAL'lSORSET Commands 

Tb.e following commands for manipulating transformations are all Prog. Asst. commands which treat me 
rest of their input line as arguments. All are undoable. 

FN 

SHOW 

EDIT 

ERASE 

TEST 

rrransc~et Corr"::-::lJ."ld1 
Resets CURRENTFN to its argument. and returns the new value. In effect FU 5.ayS 
you are done with the old fu:lction (as least for the moment) and wish to work 
on another. If the new function already has a tr~nsfcrmation. the mess.:::ge (OLD 
TRANSFORMATIONS) is printed. and any editcommanes typed in will be .lc\ied 
to the end of t...~e existi.i."lg commands. F N followed by a carriage rerum will re~..lrn 
the value of CURRENTFN without changing i~ () 

[f r:mso rset C orruna.nd J 
Command to prettyprint a transformation. SHOW followed by a car.iage re:urn 
will show the transformation for CURRErJTFN. and return CURRENTFN as its value. 
SHOW followed by one or more function n3.1"'!lCS will show e~ch one i~ :urn. :-eset 
CURRENTFN to the last one. Jnd return the new value of CURRENTFN. 

[fransorset Corr~-n.:u~dl 
Command to edit a transformation. Similar· to SHOW except that insreJd of 
prcnyprinting the transfom1J(Ion. EO IT gIves it to ED ITE. The user cJ.n the~ ""'ork 
on the transtormation until hl! leaves the l!ditor with OK. . 

[Transorset Com .. :nmcl 
Command to delete J. transrormation. Other-vise simil.3..I' to SHOW. 

[Tr~nsorset COrr:.rT:.1nd} 
Command for checking out transformations. T EST L.1kes one Jrgu;r.~nt. J for.r. 

13.36 



o 

o· 

o 

DUHP 

EXIT 

'LISPUSERS PACKAGES 

for translation. Tne translation notes. if any, are printed to :...~e teletype. but 
in an abbreviated format wi"ljch omits the index of notes. The value returned 
is the trar:slated form. TEST saves a copy of its .argument on the free variable 
T EST FORM. and if no argument is given. it uses T EST FORM, i.e. tries the previous 
test again. " 

[rransorset CO:I4~d] 
Command to save your work on a file. DUMP takes one argument. a filename. Tae 
argume~t is saved on the variable DUr~PF! LE. so that if no argt!rne~t is provided.. 
a new version of t..~e previous file will be created. 

TI:e DUf\1P command. creates files by HAKEFILE. Normally FrLEFNS vdll be 
unbotlnd. but the user may set it himself: functions called from a lr:l:lsformation 
by the E command may be saved in this way. DUMP makes sure tha: me nC'Ce:;~"!· 
command is included on the FILEVARS to say'e the user's transformations. The user 
may add anything etse to l"Js FILEVARS that he wishes. \Vhen a transformation file 
is loaded. all previous transformations are erased unless the variable ME RGE is set 
to T. 

[rransorset Command} 
Exits TRANSORSET, returning NIL. 

23.8.7 The REMARK Feature 

The translation notes are generated by those transformations that are actually executed via an edit macro 
called REMARK. REMJ\RK taXes one argument. the name of a note. When the macro is executed.. it saves 
the appropriate information for the translation· notes. and adds one entry to the index of forms. The 
locztion that is printed in the index of forms is the editor's location when the RE~'ARK macro is executed. 

To write a Lc.nsformation wi"lich makes a new note. one must therefore do two thir..£S: de5ne tte note. 
i.e. choose a new name and associate it with the desired text: and call the new note wit.' t..1.e REMARK 
macro. i.e. insert the edit command (REf"ARK NAME) in some transformation. The NOiE com..T.anci. 
describ':!d below. is used to define a new note. The call to t.'i.e note may be added to a tr~sfor:n.ltion like 
any other edi~ command. Once a note is defined. it may be called from as many different transformaClons 
as des:red. ' 

The user can also specify a remark with a new text. without bothering to think of a na.~e and perforr:1 
a separate defining operation. by calling REf·1ARK with more than one argument. e.g. (REM,c,RK TEA:'. 

OF·REMA..~K). This is interpreted to mean t..1.zt the arguments are the text. TRANSORSET :lctices all 
such expressions as they are typed in. and handles naffiing automatically: a new n~-ne is generated2 :! aLd 
defined widl the text provided. and the expression itself is edited to be (REMARK GENERATED.NA..'-/.Z). 

The foflowing example illustrates ~he use of RE~1ARK. • . • 

"'TR.A.rJSORSET( ) 
··+NOTE GREATERP/LESSP (BBN'S GREATERP AND LESSP ONLY TAKE TWO ARGU~ENTS. WHEREAS 

SRI'S FUNCTIONS TAKE AN INDEFINITE NUMBER. AT THE PLACES NOTED HERE. THE SRI 
CODE USED r~ORE THAN TWO ARGU~lENTS, AND THE USER .MUST RECODE.] [lJ 

22The name generated is the value of CURRENT FN suffixed with a colon. or with a number and .l colon. 

23.37 



Th~ RElvIARK Feature 

GREAiERP/LESSP 
+FN GP.::ATERP 
GREATER? 
+( If (IGRE.~,TERP (LEf:GTH (##) )3) l4IL «REMARK GREATERP/LESSP] [2] 
+FN LESS? 
LESS? 
+REOO IF [3} 
+S~·:Q\J 

LESS? 
[(IF (IGREATERP (LENGTH (##» 

3) 
NIL 
«REMARK GREATERP/LESSP] 

LESS? 
+FN ASCII (~ 
(OLD TRANSFOR~ATIONS) 
ASCII 
+(REMARK ALTHOUGH THE SRI FUNCTION ASCII IS IDENTICAL TO THE BBN FUNCTION CHARACTEF 
THE USER MUST MAKE SURE THAT THE CHARACTER BEIHG CREATED SERVES THE SAME PURPOSE 
ON 60TH SYSTE~~S. SINCE THE COr~TROL CHARACTERS ARE ALL ASSIGNED DIFFRENTLY.] [4) 

+SHOW [5} 
ASCII 

«1 CHARACTER) 
(REMARK .. ASCI I: » 

ASCII 
+NOTE ASCII: [6J 
EDIT 
-NTH -2 
.p 

ASSIGNED OIFFRENTLY.) 
*(2 DIFFERENTLY.) 
OK 
ASCII: 
+ 

[n this example. the user defines a note na.t71ed GREATERP ILESS? by using the NOTE command [1]. and 
writes transfonnations which call this note whenever the sweep encounters a GREATER? or LESS? wit.'1 
more ~~an two arguments [2/ and [3}. Next. the implicit naming feature is used [4} :0 add a RE~ARK 
cOLI1II1and to the transformation for ASC [1. which has already been par:ly written. The user reaiizes he 
mistyped pa.""t of the text. so he uses t..'1e SHO\~ command to find the name chosen for the note [5j. Then 
he uses the NOTE command on this name. ASCII:. to edit the note [6j. 

NOTE {Trans()r~c( Cdmm:mlll 
Fii.lt Jrgumcnt IS note Il.uTlC .JnJ mus, be a Iitl,.!ral Jtom. If aircady ddim:u. ~JO r E 
edits the old text: otherwise it defines the name. reading the text eit..'cr from the 
rest of the input line or from the next line. The text may be given as .l line or as 
a list Value is name of note. 

23.38 



o 

o 

o· 

LISPUSERS PACKAGES 

The text is aCt'~ally stored.23 as a comment. i.e. a • and %% are added in front when the :lote is fIrst 
de5.ned. Tne text will therefore be lower-cased the first time the user DUHPs (see page 6.52). 

DEUIOTE rrrCL.~sorset Cor:-..rr:and] 
Deletes a note completely (although any calls to it remain in tte rransfc:I:laticc..s). 

23.S.S Controlling the Sweep 

TRANSOR's sweep searches in print-order until it finds a form for which a transformation exists. Tne 
location is marked.. and r.i.e tr2.l1SfoIUlation is executed.. The sweep then takes over again.. beginning 
from the mark~d location. no matter where the last cCmr.:land of the transforn:ation ieft L~e eai:o!'. 
User transfonnations can therefore move around freely to examine the context. without worrying. .J~Ol.!t 
confusiLlg the translator. However. there are rr.any cases where the u:.;er wants his tr:msfarmatwn to gt.:!CC 

the sweep. usually in order to direct the processing of special fOnTIS and FE X P Rs. For example. t.~e 
transformation for QUOTE has only one objective: to tell the sweep to skip over the ar£ument w QUO r E. 
which is (presumably) not a LISP form. NLAH is an edit macro that permits mis. 

NLAM rr ranso rset C OIIl!l'lan d] 
An atomic edit macro which sets a flag which causes the sweep to skip me argu:nen i:S 

of the current fOIm when the sweep resumes. 

Special fOIms such as CONDo PROG. SE LECTQ. etc .• present a more difficult problem. For example. (COUD 
(A B» is processed just like (FOO (A B»: Le. after the transformation for COilD finishes. the sweep 
will locate the ""next form." (A B), reta.;eve me (r-l--nsformation for the function A. if any. a:1d execute 
it. Therefore. special fonr..s must haye transformations that preempt me sweep and direct the translation 
themselves. Tae following two atomic edit macros pemtit such transformations to process L.~eir fCrr:1s. 
translating or skipping over arbitra..ry subexpressions as desired. 

OOTHIS 

OOTHESE 

[rransorset Corruna...,d] 
Translates the editor's current expressio~ treating it as a single form. 

[rransorset Coxr.Ina.:ldJ 
Translates the editor's current expression. treating it as a list of forr.~. 

For e:=:ample, a transformation for SETQ might be (3 DOTHIS).24 This translates the second arg'..lment 
to a SETQ without transiating the first. For corm, one might write (1 (LPQ t\x DOTHESE)). which 
locates each clause of the CONO in cum, and trar.slates it as a list of fOIms. instead of as a single form. 

Tne user who is starJng a completely new set of transformations must begin by writing tfansfcrma:io::s 
for all the special forms. To assist him in this and prevent oversights. the file < LIS? > SP E C ~AL. X FORt-tS 
contains a set of transformations for LISP special fa nTIS. as well as some other transformations which 

• snqu!d also be includ~d. The user will probably have to revise these tra..~sformations 5ubstanualiy. si::ce 
they merely perform sweep control for Interlisp. Le. they make no cilan£:es in t.~e object code.. They 
Jre provided chiefly as a checklist and tutorial device. since these transfonTIJtions are both the firs: to be 
wnlt~n ~nd th~ most difficult. especially for users new to the lnterlisp editor. 

~30n the global list USE RNOT ES. 

24 Recall that a transformation is a list of edit commands. In this case. there are twO cOITUllands. 3 and 
OOTHIS. 

23.39 



~" 

\VHEREIS Package 

\Vhen the sweep mecha..~ encounters a form which is not a list. or a form CAR of which is not an 
atom.. it re~-ieves one of the following special transformations. 

NLISTPCOMS .. [Var~blel 
Global value is used as a transformation. for any form which is not a list. 

For examcle, if the user wished to make sure that all strings were quoted. he might set NLIST?CO:,tS to 
(IF (STRING? (##» «ORR «(~ QUOTE»({HBO QUOTE»» NIL». 

LA~;aOACC~1S [Varia:'ieJ 
Global value is used as a transformation for any form. CAR of which is :lot an 
atom. 

These variables are initialized by <LISP)SPECIAL.XFORMS and are saved by the DUMP cc!:"..!113.n.d. 
r~LIST?COMS is initially NIL. making it a NO-oP. LAr"SOACOr.1S is initialized to check first for ope:l' 
LA~mDA expressions, processing them without tr~slaticn notes unless the expression is badly for=eci 
Any other forms with a non-atomic CAR are simply treated as lists of forms and are always me:lticned 
in t.*1e t.-anslation notes. -The user can chCL~ge or add to this algorithm simply by editing or resetttlg 
LAMSDACOMS. . 

23.9 \VHEREIS PACKAGE 

Note: The WHEREIS is a LispUsers package that is contained on the file WHEREIS .. COM. WHEREIS 
requires the hash file package (page 23.41). Loading WHERE IS. COM will also load HASH. COM. if it has 
not already been loaded. 

This package extends the fur:.ction WHERE IS (page 11.10) such that. when asked about a given name as a 
function. WHEREIS will consult not only the cCIn.:."1lands of files that have been noticed by the file package 
(page 11.1) but also a hashEle database (page 23.41) that associates function names wiL.'1 fllena::les. 

(\oJHEREIS NA...I.JE TYPE FILES FN) [F'J!:ctionj 
Behaves exactly like the definition on page 11.10 unless TYPE = F N S (or NIL) .l..~d. () 
FILES = T. [n this case. WH ERE! 5 will consult. in addition to the files on FILE LST. 
t.l}e hashfile that is the value of WHERE IS. HASH (initially <LISPUSER>WHERE IS. HASH). 

Note: :\tlost system functions call WHE RE I S with FILES = T. so loading this package automadc3.lly :nakes 
the information contained in the WH E RE I S database available throughout the system. 

Information may be added to a WHEREIS hashfile by explicitly calling the foiIowing function: 

(WHEREISNOTICE FrLEGROUP NE\VFtG) [Functicnj 
Inserts the informatIon Jhout all of the functions on tht.! files in .::"TLEGROt"? mto 

the WHE RE IS data base cont.:lincd on (the value of) WHE RE IS. HASH. FTLEGROt"? 

is given as a filegroup argument to DIRECTORY (page 1.1.6), so &. S. ~~. may be 
used. If NEWFLG= T. a new version of'tlJHERE IS. HASH will be created cor:umir.~ 
the dawbase for the functions sp~cified in F'TLEGROr.:P. -

23AO n 



o 

-0 

,~ 
" I 

o 

LISPUSERS PACKAGES 

23.10 HASH FILES 

Note: The hash file facility is a LispUsers package that is contained on the file HASH. COM. It C'..lrrently 
only works in- Interlisp-lO. 

T!!e hasl1 file facility permits information associated with string or atom "keys'· to be stored on and 
reu:eved from files. The information (or "values") associated with the keys in a fJe may be nUr:1cers.. 
srzings. or arbitari IoterliEp expressions. The associations are mcintained by a hashicg sche:ne L~~t 
m~~imizes t.fte m.:rnocr of page-m:lps it takes to access a value from its key. 

A hZ3hfle may contain information other than key-value associations. The ~ser may print on the file usi:1g 
ordina.-y printing fu!Jctions (e.g. PRHJ1. PRItjTDEF). and he may also store non-c!1aracter h~fcr::1~tion 
(e.g. bin~ <1at.1) fonnatted to suit his particular applications. This information is stored in rc~!ons of 
the file distinct from the hash index. The hash index can be used to locate non-hash inrbrmauoa. If t.~e 
necessary file addresses are storcd as hash values_ 

A hashfile is created by the function CREATEHASHF ILE: 

(CREATEHASHFILE FILE VALVETYPE ITE~fLENGTjl #ENTRIES) [F!.lnction] 
A new version of FILE is opened and initialized as a hashfile. VALUETY?E is an 
amm interpreted as follows: 

NUMBER 

STRING 

EXPR 

The values are 24-bit unsigned integers. 

The values are strings with less than 128 characters. 

The values are arbitrary Interlisp expressions. The yalues are s~~d 
by printing them in the file with readtable HASHFILEROTSL. initially 
ORIG. 

SMALLEXPR 
The values are arbitrary Interlisp expressions such L.1.at (N.fH .. ~RS 
VALUE T HASHF I LEROTSL) is less than 128. Storing and reL-ieving 
is more efficient than if VALUETYPE= EXPR • 

SYMBOLTABLE 
Tne values are 24-bit unsigned integers. as when VALVETYPE= NUMB E R. 
except that the numbers are treated as the addresses of "symoois" lo
cated on non-hash pages in the file. See the discussion of symbol-tables 
below. 

The other arguments to CREATE HASHF I LE are optional. ITE}'!LENGTH is the user's 
estimate of the average number of characters in the entries he expects to Store in 
the hashfile (= the average key. length plus- the averJge number of char~cters ::1 
£lIC values for VALUETYPE·STHING or SMALLEXPR). #ESTRfES is an eStlr.1:!:e 
of the the total number of key-value associations he is likely to store. These 
~wo arguments determine how many PJges in L~e file win be initi.:.i1y allocated as 
hash-pages: accurate estimates can reduce the number of times that the f.Ie must be 
rehashed as information is stored in it. [f these Jrguments are not given. reJ.S0n.:.bie 
def.:iUltS are supplied. 

After being initialized. FILE is left open and CREATEHASHFILE returns as its \"alue 

23.41 



( OPENH.~SHFILE 

Hash Files 

-
a "hashfile darum.'· a handle on the hashfile that may be used as an argument fur 
mest of the functions described below. 

FILS ACCZSS). [Fur.c:io~1 
Re-opens the previously existing hzshfile FILE. ACCZSS may be IN? U T (or ~~ I L). 
in wr.ich case FILE is opened for reading only. or BOT H. in which cas.e Trr.Z is 
cpen for bOlL1. input and output. Causes an error ~lOT A HASHFILE. if FILE is 
not recognized as a hashfile. 

If .ACCESS is BOTH ~'1d FILE is a h.lSh.5.1e ope:l fer re~d.ing only. CPE!LHASHFILE 
attempcs to clese it 2.L"1d re-open it for writing" Othenvise. if FrLE dcsig:1atcs an 
already open hashfile. OPErlHASHFILE is a no-op. 

O?ENHASHF ILE returns a hJ.S.L1fiIe darum. 

(HASHFILEP x) [Function1 0 
Returns x if x is a hashfile datum (Le .• a value returned by CREATEHASHFILE 
or OPENHASHFILE). If x is NIL. returns SYSHASHF ILE if it is a hashiile datum. 
If x is t:.'1e name of an open hashfile. returns the corresponding hastiile dlr:.L'"Il.. 
Otherwise. returns f~ I L. 

The fol!owing functions require an open hashfile as an argument. i.e. an object for which HAS H FILE P is 
nO:l-N I L. 

(PUTHASHFILE KEY VALUE HASHFILE) [Function1 

(GETHASHFILE 

Puts VALUE in HASHFILE. indexed under KEY. [f VALU:C: is NIL .. any previous e::~-y 
for KZY is deleted.. 

KEY HASEFILE) [Function] 
·Return.s the value corresponding to KEY in HASHF'ILE. For files where VALr..::7Y?S 

is STRING. NU~mER. or SYMBOL TABLE. the value returned by GETHASHF ILE is 
teffiporary in that any sllbsequent calls to a hashfile or page mapping function :nay 
smash it. CQNCAT or MKATor~ must be applied if the value is a sni~g. or IPlUS 
if it is a number. in order to make t...'1e value permanent. 

(HASHFILEPROP HASEFILE PROP) [Function1 
Returns the value of the PROP property of HASHFILE. The recognized PROFS a=d 
the values returned are: 

VALUETYPE 
One of NUMBER. STRING. EXPR. SMALLEXPR. or SYMBOLTABLE. 

NAME The full name of the file. 
: 

ACCESS BOTH if file is open for writing, I NPUT if it is re:ld-only. 

(HASHFILENAME HASHFILE) [F!..:1cticnI 
Same as (HASHFILEPROP HASHFrLE 'NAME). 

(CLOSEHASHFILE HASHFrLE) [Funct!onj 
Same as (CLOSEF (HASHFILEPROP HASHFrLE 'NAME». 

The function HASHSTATUS can be used as a STATUS function for WHENClOSE (page 6.11) to restore 

23.42 

("---. ) 

n 



o 

o· 

o 

LISPUSERS PACKAGES 

the state of a ha5!~le when a SYSOUT is resumed. If HASHSTATUS is used. the PERMSTATUS package 
(page 23.17) must also be loaded.. 

(f\t~PHASH FILE !iASI-:FILE MAPFN) [Fu~:tionl 
For each entry in HASRFILE; performs {MAPFN KEY (GETHASHF ILE KEY 
~\'sHFrLE) ). If MAPFN is a function of only one argume:lt~ p~rforr:-.s (!tL-tF?N 
KEY) thereby avoiding the call to GETHASHF I LE needed to ob:..;:m the · .. aiue. 
r..LY is temporary, as for GETHASHFILE. VALVE is also temporary. for STRING. 
NUMBER, and SYMBOL TABLE files. 

( REHASHF ILE HASEF!LE) [Fu!lctio:1} 
After many insertions and deletions much of the space in a ha5J.~file may be 
unusablc .. RE HASHf I LE reclaims that space by rehashing all the keys. The 
information on non-hash pages in the file is not altcred or rnovec.. except that the 
print name pointers in a SYr.1S0L TABLE file are updated (see below). 

(~OPYHASHFILE HASHFILE ~-eWNAME FN VTYPE) [Function1 
Calls CREATEHASHFILE to open NEWNAME as a hash:file. with VALz:,:::TYPS. 

ITEMLENGTH a..."1d #ENTRrES determined by examining the open h~:.ui1e HASEFILE. 

Then maps through all the keys in HAShTILE. doing the equivalent of: 

{PUTHASHFILE 
KEY 
(GETHASHFILE KEY HASHF~E) 
NEWHASHFrLE) 

for each key KEY. In essence. COPYHASHFILE copies the hash portion ofHASHFrl-E 

to ~'"EWUAME. 

If FN is given. then it is applied to the successive values of HASHFILE. the old 
HASHFILE, and the new h~1fi1e. a.'1d the value returned is used as the value in L.~e 
new file. In effec~ 

{PUTHASHFILE 
KEY 
(FN (GETHASHF ILE KEY HASHFILE) 

HASIIFTLE 
NE1VHASHFILE) 

NEvY:-!ASH7ILE) 

is evaluated for each key. Thus. the user c~ intervene as each key is processed in 
order to copy information associated "'1th the key that resides on non-hash pages. 

For example. an EXPR file could be implemented by printing tlle full expressio!:S 
in a NUMB E R filc·s printing region (see below) and stoting their byte-~ositio:1s as 
hash values. Instcad of re~ding an expression into internal data structures before 
writing it out to the new filc. a FN could be given that transferred the exp:-ession 
to the new file more efficiently, via COPYBYTES. The function would reruru tl:~ 
byte-position on the new file where the expression ended up. (Actually, this is :.he 
way EX?R files are copied if F'N is not specificd,) 

, [f F'N is given. then VTYFE'. if specified.. is a temporary valuerype (NUMB E R. 

23.43 



Hash Files 

STRING. etc.) to be used during copying. This permits the use:- to force the 
valuetype of both files to one more suited for FN. e.g. S~ALLEXPR to STRI?iG 
or EXPR to ~:UMBER. as in the example. VTYPE does not a!reet u."le pe:::na.:le::t 
valucrype of eit.'1er file. 

(HASHF I LESPLST HASHFILE) [Fu:lctonl 
Returns a "generator" for the keys in IIASEFrLE that is a.ccept:lble as an argu=le::t to 
FIXS?ELL (page 15.18). Thus. {FIXSPELL BAO\'/ORD iO (HASHFILES?LST 
HASHF!LS») will spelling correct a word using the keys in HASHFILE. 

(LOOKUPHASHFILE KEY VALtJr: HASHFILE CALLTYPE) [Fu:lctio!ll 

Examples: 

A generalized entry for inserJ.ng and retrieving values: provides cer-•. ain cptions 
not available wiL.'1 GETHASHFILEor PUTHASHF ILE. LOOKUPHASHF ILE leeks u? 
KEY in HAS5FrLE. CALLTYPE is an atom or a list of atoms. These keywords ~e 
interpreted as follows: 

RETRIEVE 
If KEY is found. then if CALLT'YPE is or contains RETR I EVE. the old 
value is returned from LOOKUP HASH FILE: otherwise returns T. 

DELETE If CALLTYPE is or contains DELETE. the value associated with KZY is 
deleted from the file. 

REPLACE If CALLTYFE is or contains REPLACE. the old value is repiaced with 
VALtlE. 

n:SERT If CALLTYPE is or contains rr~SERT. LOOKUPHASHFILE inserts value 
as the value associated with KEY. 

If KEY is not found.. LOOKUPtiASHFILE returns NIL. 

(j 

(j. 

To eiL~er return an old 'ialue or insert a new value in the file if one does not already exis~ perform 
(LOOKUPHASHFILE KEY NE'WV.ALUE HASHFILE '( INSERT RETRIEVE». The value returned wiil ("'~ 
be NIL if NE1V-vALUE was inserted., or the old value if KEY was found. , ) 

To merely check whether KEY existS in the file without actually retrieving its value (which may be 
expensiye for the more general va!uetypes). perfonn (LOOKU PHASH FILE KEY f' I L HASH7:LE NIL). 

The function PUTHASHFILE is defined as: 

(LAMBDA (KEY VALUE HASHFILE) 
(if VALClE=NIL , . 

:~~~ {L~C(~?~A5~F:LE KEY ~rL HASHFIlE 'DELETE) 
~~S~ \~~:'.~~~5~f:l£ ~~, \AL~E ~A5rlf~LE 'll~SE~T RE?LACE)) 

VALUE») 

And. GETHASHFILE is. defined as: 

(LAM3C~ {KEY HASHFILE) 
t1-00KU?HASHFILE KEY NIL HASHFILE 'RETRIEVE» 

23.44 \) 



-~.'\. 

u· 

o· 

LISPUSERS PACKAGES 

23.10.1 L'nstrJ.ctuIed Pages aDd Symbol Tables 

The non-hash information in a hash-file may be formatted as printed character strings or binary data. 
Printed information resides in a fHe's "printing region", while binary data is stored on "unstructured 
pages", 

C~:'l.1ctl!red pages in a file are allocated 2.!'"ld deallocated by the hash package so Lhat they do not encroach 
on i1.lS.11 or printing pages. Other than that. tr.'1e user has complete freedom to rr.ap them in for arbitrary 
rc~'\ding and wntiiJg. The primitive operations are: 

(GETPAGE HASHFILE N) [Fu~cticnl 
Returns the page number of a free page in HASHFILE. If N is giYen, L"len the user 
is guaranteed that the page returned is the first of N contiguous p.!gcs .:ill of which 
are free. 

(OELPAGE PAGE# HASHFILE) [Function1 
Removes page PAGE# from HASHFILE. PAGE# should be the number of an 
unstructured page, either a value of GETPAGE or within the block of free pages 
guaranteed by GEiPAGE. The contents of the page in the file are lost. ar:d t.'e 
page itself becomes available for re-allocation either by GETPAGE or inre:-nally as 
a hash page. If PAGE# happens to be the number of a hash page, the hasl'Jng 
infornl2.tion will be destroyed. 

Unstrucmred pages are available on hashfiles so that the user can link hash keys to data in special formats. 
For example. the user might associate lists of properties with a key by writing L~e properJes on an 
unstn.lctured paget and t..'len storing the file address of the properties as the value of th(! key in a NU~1B E R 
file . 

. A SYMBOL T AS LE hashfile provides an additional feature that makes it possible to implement arbitra..ry 
Sle-:-esident symbol processing systeI:'"~. The user may store the data to be associated with a key on 
uns~cru:ed pag·'!S, and he can then link the fiie address to the ~ey via PUTHASHFIlE. as des:ribed 
above. Tae difference between a NUMBE R and SYf\1aOL T AS LE file is that for a SYMBOL T AS LE. t..~e hash 
package also stores the reverse link from the file address to the key. This m2..(·es it possible ~o cota.:n a 
"princ-nace" for an address on an unstrucrured page, via the function GETPNAME: 

(GETPNAME FILEADR HASffFILE) [Fun:tion} 
Returns a temporary string containing the characters of the key whose hash value is 
the 24-bit unsigned FILEADR. Causes 2.Il error if HASHFrLE is not a SYMBOL T A8 L E 
file. 

The hash package automatically updates the print-name infonnation for the file address if the key is 
relocated by rehashing. CL'1d it destroys the back-link if the value for the key is deleted. A SY~1BOL T ASL E 
file imposes one restriction on the way unstructured pages are treated: [f a file address is s~ored as a 
hasi1-value for sorr:e key, then the right-mcst 24 bits of the word at that location in the file are reserved 
for the usc of L.'1e hash mechanism,:.!5 The user must not write into it. 

\Vith these primitives. a list-processing system wich a 24-bit non-resident address space is easy to build. 
The ~scr is responsible for allocating "atoms". on unstructured pag·es. and updating the "atom hash t:lble" 

2SThe left· most 12 bits are available and can be used for a ntImber of applications. e.g. to store type-bits. 

23.45 



The Printing Region 

with PUTHASHFILE. Tne second (and subsequent) words after an atom address may be used to store 
the atc~'s "property list", containtlg other atom addresses. or other addresses interpreted as pci:lters to 
"ccns" cells. These can also be allocated 0n unsL'1.lctured pages. It is a simpte matter to imple:r:ent t!"le 
equiyalent of CA?~ CDR, RPLACA, and RPLACD. 

23.10.2 The Printing ~egion 

H:::shfiles J.fe organized so that it is always permissib!e to print at the e~d of the fJe with ordL-:a..-y f!lterlisp 
output functio:!S. That is. the file is arranged so that the hash and unstrucrured pages are always 1000tcd 
before t..'1e end-cf·file for sequential reading and writing. This is accomplished by creaLi."1g the 5.1e with 
the cnd-of-file some number of free pages past the last h~'l or unSmlctured page. \Vhe:l all free PJges 
below the cnd-of-file have been used. the cnd-of-file is moved so that there are again a rC$\!rvoir of frct! 
pages before it. 

Thus, the printing region may shift as a result of calls to GETPAGE or PUTHASHF ILE. and the user 
cannot rely on dle output from two different printing operations being located at adjacent positions in 
the file. The expressions pdnted cannot be retrieved by successive calls to standard readmg functions. 
Instea<i t.l1.e user shculd r'Xord the byte position of each printed expression as a hash valee or on an 
unstructured page so that he may use SETFILEPTR to position the file properly. If he does change the 
file's byte-pointer. he must be sure to reset it to the end-of-file (e.g. (S E T F I L E P T R FILE - 1 » before 
more printing is done. 

23.11 ED ITA 

.Vote: ED IT A is a LispUsers package contained on the file ED IT A • COHo That portion 0/ ED ITA refat,"ng 
to compiled code may not be available in implementations o/lnterlisp other (han lnteriisp-IO. EDITA also 
has a FILEOEF property so that the user can simply call EOITA and theftle wiil be autometfcail.v loeded. 

EDITA is an eclitc~ for arrays. However. its most frequent application is in editing ccmpileci ft:::ctiocs 
(which are also 3..r.--rays in Interlisp-10). and a great deal of effcrt in implementing EDITA. and rncs: cf itS 
special features. are in this area. For example. ED[TA knows the format and conventions of !ntertisp-10 
compiled code, and so, in addition to decoding insL"Uctions a laDDT (cne of the oldest deb:.lgging 
systems still around). EDITA can fill in L.'1e appro?riate COREVALS. symbolic names for inceX" iegis~ers. 
ret"erentes to literals. linked function calls. ex. The following output shows a sequence of insr...-..lc:ions in 
a compiled function first as tlley would be printed by DDT. and second by EDIT A. 

23..+6 

n .. 

n 



o 
LISPUSERS PACKAGES 

4667161 PUSH 16,LISP&KMIL 3/ PUSH PP,KNIL 
4667171 PUSH 16.LIS?&KNIL 4/ PUSH ?P,KNIL 
466720/ HRRZ 1,-12(16) 51 HRRZ 1,-10(?P) 
4667211 CA~i~E 1.LISP&KNIL 6/ CA~tE 1,KNIL 
466722/ JRST 466724 7/ JRST 925 

4657231 HRRZ 1.@~67575 8/ HRRZ 1.@'SRKFILE 
466724/ PUSH 16.1 9/ PUSH P?,1 
466725/ LISP&IOFIL.,457576 '10/ PBINO 'SRKZ 
455725/ -3. ,-3 11/ -524291 
455727/ HRRZ 1,-14(16) 121 HRRZ l,-12(PP) 
4557301 CAM:. 1,487601 13/ CAMN 1, 'OK 
4667311 JRST 466734 141 JRST 17 
465732/ CAr~E 1,467602 15/ CAPllE 1, 'STOP 
486733/ JRST 466740 161 JRST 21 

0 466734/ PUSH 16,467603 17/ PUSH PP,'SREAKl 
456735/ PUSH 16,467604 18/ PUSH PP,'(ERROR!) 
466736/ LISP&FILEN,,467605 19/ CCALL 2. 'RETEVAL 
460737/ JRST 467561 20/ JRST 422 
466740/ CAME 1.467606 21/ CAME 1, 'GO 
455741/ JRST 466754 221 JRST 33 
466742/ HRRZ 1,@-12(16) 23/ HRRZ 1,@-10(PP) 
466743/ PUSH 16,1 24/ PUSH PP.l 

Tnerefore. rather than presenting EDIT A as an array editor with some extensions for editing compiled 
code. we prefer to consider it as a facility for editing compiled code, and point out that it can also be 
used for editing arbitrary arrays. 

23.11.1 O;erv~ew 

EDIT A is envoked by calling the function ED IT A: 

( ED IT A FN COMS) [Functio!'l] 
:~ S~yokes EDIT A to edit the function FN. To the user. EDIT A looks very m'.!:h 'V· like DDT with Icterlisp-lO extensions. If COMS is given. it should be a list cf 

cornma..~ds for EDIT A. These are then executed exactly as t."ough they had been 
typed. ED ITA can be exited with the command 0 K. 

Individual registers or cens in the function may be examined by typing their address followed by a slash. 
e.g. 

'l5~ote that EDITA printS the addresses of cells contained in the function relative to the origin of the 
func:ion. 

23.47 



\ 
",,-

Input Protocol 

6/ HRRZ 1,-10(PP) 

The slash is really a command to EDITA to open the indicated register.21 Only one register at a tiI::e 
c::.n be open. and only open regis~ers can be ch2.!lged. To ~hange the contents of a regis~er~ the user first 
ope:lS it. types the new contcn~ and then closes the register wiL.1. a carriage-rerum 23 e.g. 

7 / CArrtE 1.' ~ CA~m 1,' 1" c:r 

If u1e user closes a register wiiliout specifying the new contents. the contents are left unchanged. SL.-nilady. 
if an error occurs or the user types control-E. the op~n register. if any. is closed without bei.:!g changed.. 

23.11.2 Input Protocol 

EDITA processes all inputs not recognized as commands in the same way. If the input is the name of an 
instruction (i.e.~ an atom with a numeric OPO property), the corresponding number is added to the input 
value being assembled.. 29 and a flag is set which specifies that the input context is that of an instrUction. 

The genera! form of a machL~e instruction is (OPCODE AC • @ ADDRESS (INDEX» as described on 
page 22.15. Therefore. in instruction context. EDITA evaluates all atoms (if t..~e atom has a COREVAL 
prCllerty, the value of the COREVAL is used), a.~d then if the atom ccrresponds to an AC.JO shifts it left 
23 bitS' and adds it to the input value. otherwise adds it directly to the input value. but penorms the 
aritf".J:letic in the low 18 bits.J1 ListS are interpreted as specifying index registers. and the value of CAR 
of the list (again COREVALs are permitted) is shifted left 18 bits. Examples: 

PUSH PP, K~4IL 

HRRZ 1.-lO(PP} 
CANE 1. I GO 
JRST 33 ORG 

EDIT A cannot in general know whether an address field in an insL"'Uction that is typed in is relative or 
absolute. Tnerefore. the user must add ORG. the origin of the function. to the address field hiIr..self. ~ote 
mat EDITA would print this instrUction. JRST 53 ORG. as J~ST 53. 

~ 

( ). 

n 

The user can also specify the addr~ss of a literal via the I COC'L.~and. see page 23.50. For eX2!:1ple. if the (j 
literal" UNBROKEN" is in cell 85672. HRRZ 1,'" UNBROKEN" is equivalent to HRRZ 1. 85672. 

'Z':'EDITA also cortverrs absolute addresses of cells within the function CO relative address on input. Thus. 
if the definition of FOO begins at 85650. typing.51 is exactly the same as typing 85666/. 

~sSince c:lrriagc-return has a special meaning. EDlTA indicates the baLmcing of parentheses by typing a 
space . 

.!'}The input value is initially O. 

1:) i.e .. if a ..... has not been seen. and the value of the atom is less than 16. and the tow 1S bits -of L.'1e 
input value Jre all lero. 

:1 l{r the absolute value of the atom is greJter than 1000 a OOQ. full word arithmetic is used. For example. 
the indirect bit is handled by simply binding @ to 20000000Q. 

23.48 



LISPUSERS PACKAGES 

Vlhen the input context is not that of an instructioIL Le .. no OPO has been seen. all inputs are evaluated 
(the value of an atom with a COREV,~L property is the COREVAL.) Then numeric values are simply acded 
to the previous input value: non-numeric .values become the input value.32 

The only exception to the entire procedure occurs when a register is open that is in L.1e pointer region 
of t...'1e function.. Le .• literal table. In this casc. atomic inputs are not evalua':eci. For ex~ple. the ~ser 
can char.ge the literal FOO to F IE by simply opening that register and then typbg FIE followed by 
c2.ITi~g~-reQh~ e.g. 

'FOOl FOO FIE cr 

Note that this is equivalent to 

'FCOI FOO ( QUO T E FIE) Cf' 

o 23.11.3 EDrTA Cornnmnds and Variables 

0-

0--

Cf' (carriage-rerum) If a register is open and an input was typed, store the input in the register and 
close it.33 

ORG 

I 

tab (control-O 

If a register is open and nothing was typed, close the register without changing it. 

If a register is not open and input was typed, type its value. 

Has the value or the address of the firs~ instruction in the function. i.e .. LOC of 
GETO of the function. 

Opens the register specified by the low 18 bits of the quantity to the left of the I. 
and types its contents. If nothing has been typed. it uses the last thing typed by 
ED ITA, e.g., 

351 JRST 53 I I RETURN 

If a register was open. / closes it wit.'1out cnani.ng its contents. 

After a / corr..:nand, EDIT A rerums to that state of no input having been typed. 

Same as carriage-rerum. followed by the address of the quantity to the left of L\;.e 
tab. e.g .. 

351 JRST 53 <tab> 
53/ CAME I, 'RETURN 

Note that if a register was open and input was typed, tab will change the open 
register before closing it e.g.. . 

:t:Presumably there is only one input in this casco 

33 If the registcr is in the un boxed region of the function. the unboxed value is stored in the register. 

23.49 



-....... _-_. 

. (period) 

line. ... f~d 

SQ «esc>Q) 

LITS 

BOXED 

S (dollar) 

= 

O;{ 

? 

EDIT A Commands and Variables 

351 JRST 53 JRST 54 TAB 
541 JRST 70 c,. 

351 JrtST 54 
"-

Has the 'falue of the address of t.:.'1e curre:lt (last) register examinee.. 

Same as carriage-return followed by (ADOl .) / Le. doses any open reg=~ter azd 
oper..s t.:.~e next register. 

Same as carri~ge-return followed by (SUB 1 .) 1 

Has as its value the last quantity typed by EDIT A e.g. 

35/ JRST 53 
.1 JRST 54 

SQ I C ,. 

Has as value the (relative) address of tJ.'le first literal. 

Same as LITS 

Has as value the relative address of the last literal in the function. 

Sets R,~D I X (page 6.19) to -8 and types the quantity to the left of the = sign.. Le .. 
if anything has been typed.. types the input value. otherwise. types SQ. e.g. 

35/ JRST 54 =254000241541Q 
JRST 54=254000000066Q 

Following =. RAO I X is restored and ED ITA returns to the no input state. 

E.:ti:s ED ITA. 

:t;:-.:~ ~ ··~O i::;::'...:::-' s~:e. ? is a -weaiC cor::roi-E. Le .• it ~~a~es 3.:1y i:l;::u:. 
typed.. but does not close any registers. 

ADDRESS1 • ADDRESS21 

'x 

: ATOM 

Prints the contents of registers ADDRESS 1 through ADDP..ESS2• 

after the completion. 
is set to A.DDF..ESS2 

Output goes to FILE. initially set to T. The user can also set FILE (while b 
EDITA) to the name of a elisc file to redirect the output. (Tne user is responsible for 

. opening and closing FILE.) Note that FILE only ~'fects output for the ADDRESS! t 

ADDRESS2/ command. 

Corresponds to the • in LAP. Tne next expression is read.. and if it is a s~311 
number. the appropriate offset is added to it. Other.vise. tb.e literal t.lbie is se~..'"ch~d 
for x. lnd the value of • x is the (absolute) address of that cell. An error 1S 

generated if the literal is not foun<i i.e .. · cannot be used to create lite:-J.ls. 

Defines ATO."( to an address: (1) the value of SQ if a register is open. (2) the input 
if Jny input was typed. otherwise (3) the value of .•. " (Only the low IS blts ire 
used and converted to a relative ~ddress whenever possible). For eX.:ur!pk: 

351 JRST 54 : FOO;:~ 

23.50 

n 

n 



u 

o 

LISPUSERS PACKAGES 

-
: FIE cr 
FIE/ JR~T FOa .=35 

EDITA keeps its symbol tables on two free variables. USERSyftlS and SYr~LST. USERSYMS is a list of 
eie!Ilc::n:s of the form (NAME • VALLiE) a!ld is used for encoding input. i.e .• all variables on USERSYMS 
are boued to their corresponding values during evaluation of any expressio:l L"'lside EDIT A. SY~LST is a 
list of elements or the fom: (VALUE • NAME) and is used for decoding add:esses. USERSY~S is ini:ially 
NIL. while SY~lLST is set to a list of an tJ.':!e COREVALS. Slnc'e the: cornrnand adds t.."'!.e ap~ro?na:e 
infonuation to bot..~ these two lists. n.ew definitions will remain in effect even if t.'e user exits rror::1 EDITA 
and then reenters it later. 

Note that t..~e user can effectively define sy:nbols without using the : command by appropriately bindiL; 
USERSYr~S and/or SYMlST before calling EDn'A. Also. he can thus use different symbol tables for 
different applications. 

SW «esc)'lv) Search command.. 

Searching consists of comparing the object of the search with the contents of each register. and printing 
those that match~ e.g .• 

HRRZ @ $wcr 
8/ HRRZ l,@'SRKFILE 
231 HRRZ 1.@-lO(PP) 
28/ HRRZ 1.@-12(PP) 

The SW command can be used to search either the unboxed porticn of a function. Le_ in.structions. or 
the pointer region. i.e .• literals. depending on whether or not the object of the search is a nUI:1Cer. If 
any input W2$ typed before the SW. it will be the object of the search. otherwise the next expression ~ 
rezd and used as the object. 34 The user can specify a starting point for the search by typing an ac!ciress 
followed by aU, .. before calling SW. e.g.~ 1, J RST SW. If no staning point is speci£ieci t.~e search '~'ill 
begin at 0 if the object is a number. otherwise at LIT S. the address of the first litcrai.JS After the search 
is completer1 ... " is set to the address of the last register that matched. 

If the search is operating in the unbo;ced portion of me function. only those fields (Le .• lNSTRUCTIO~. AC, 

[!'.."D!REcn". IND~.A. and ADr;REss) of tge object that conL2.in one bits are compared.:>6 For exa:::pie. HRRl 
@ $\1/ will find all instances of H RR Z indirect. regardless, of AC. INDEX. and ADDRESS fields. Si.r:lilarly. 
, P RI NT S'.oJ will find all instructions that reference tJ.1.e literal PR I NT .31 

34Note tJ.~at inputS typed before the SW will have been processed according to the input protocoL i.e .• 
evaluated: i.nputs typed after the SW will not. Therefure. the latter form is usually used to specify sear:hi..cg 
the literals. e.g .• $W FOO is equivalent to (QUOTE FOO) $\1/. 

35ThU$ the only way the user- can search the pointer region for a number is to specify the starting point 
via .. , " . 

. :'6Altemately, the user can specify his own mask by setting the variable MASK (while in EDITA). to the 
appropriate bit pattern . 

. 17Thc use:- may need to establish insuuction context for input without giving a specific instruction. For 
exa.!1ple. suppose L~e user wan!.S to find all instructions with AC= 1 and INDEX = P P. In this C.lSe. the user 
can give & as a pseudo-instruction. e.g .. type & 1, (P P ) . 

23.51 



Editing Arrays 

. If t~e search is operating in the pointer region. a'''match'~ is as defined in the editor. For e;cample~ SW 
( ~) vfill ~d all registers that contain a list consisting of a single expression. 

SC «esc>C) Like S\v except only printS the first matc~ then prints the number of matches 
when the se2.!Ch finishes. 

23.11.4 Editing A~)'s 

ED I T A is c.Jlkd to edit a function by givL'lg it the name of the function. ED I T A can also be called to 
edit an array by giving it the array as its' fL-st argumen~ 38 in which case the following d.ifferences are to 
ce noted: 

n 

1. decoding· The contentS of registers in the un boxed region are boxed and printed as numbers.. i.e... 0 
(--> tb.ey are never' mterpreted as instructions~ as when editing a function. '- j 

" --

2. addressing convention • \Vhereas 0 corresponds to me first instruction of a function. the first element 
of an array by convention is element number l. 

3. input protocols· If a register is open~ lists are evaluatetL atoms are not evaluated (except for SQ which 
is always evaluated). If no register is open~ all inputs are evaluatetL and if the value is a number~ it is 
added to the "input value". 

4. left half· If the left half of an element in the pointer region of an array is not all O's or NIL. it is 
printed followed by a ";", e.g. 

10/ (A 8) : T 

Similarly. if a register is closed. either its left halt: rig.l1.t halt: or both halves can be changetL depending 
on the presence or absence. and position of the ":" e.g. 

101 (A 8) ; T B: Cf" [changes lelt] 
. I 8 T NIL Cf" [changes right] 
. I B : NIL A : C cr [changes both] 
.1 A ; C 

If " :" is used in the unboxed portion of an array, an error will be generated. 

38the array itself. not a variable whose value is an array. e.g .. (E 0 I T A F 00). not (E 0 I T A · F 00). 

23.52 

/-\ 
\. J-



o 

o· 

LIS?USERS PACKAGES 

The SW command will look at both halves of elements in the pointer region. and match if either half 
matches. Note that $~'1 A : B is not allowed. 

23.12 CJSYS 

Note: Cjsys is a L isp Users package that is contained on the file CJSYS. C01~. II only works with Interlis;rlO. 

This pacuge provides assistance to Intcriisp-lO users who wish to make direct calls on the ope:ating system 
(via JSYSes). It also makes the coding of certain common ASSEMBLE constructions more convecient. 
The package defines the following functions: 

(JS JSYSNAME ACl AC'2 AC3 RESULT) [1'Lambda Function] 
All arguments are evaluated except for J5YSNAME. Like JSYS (see page :!2.6). 
loads the unboxed values of AC1. AC2. and AC3 into th.e appropriate regIsters. and 
executes the JSYS JSYSNAME. JS differs from JSYS in that the JSYS may be 
indicated by its symbolic name. not jest by its number. J S also generateS sli~~tly 
cle~er code than JSYS. JS also differs from JSYS in that: 

(a) if any argument is supplied as NIL .. then it is not loaded at all Le. the 
corresponding AC will contain garbage. (JSYS loads the AC with. 0.) 

(b) if RESULT is NIL. then no value is loaded (interpreted. J S returns the string 
"garbage result fr,?m JS"). 

(c) RESULT can be T. meaning return T if t..'1e JSYS skips.. NIL if not. 

Because of these differences. caution must be exercised in turning JSYS calls into 
JS calls . 

. The symbolic JSYS name is looked up on the list JSYSES. an association-list wit.'1 
elements of the form (JSYSNAME JSYSNtJMBER # SKIPS ). If no enczy is foend.. 
then ts.'1e file STENEX. MAC (or SYS: MONSYMS. MAC for Tops-20) is sc:mned. 

EXarr!ples: (JS BIN (OP~lJFN FILE) NIL NIL 2) returns the value of AC2 after doing a SIN from 
the JFN of FILE. (JS BOUT (OPNFJN FILE) 3) sends a control-C to FILE. The yalue of.this JS cail 
is gz.rbage. 

[Fun:ticn] 
Rerurns (LOGOR (LLSH Nl 18) (LOGANO N2 777777Q», i.e. Lf-}e word with 
N 1 in the left half and N 2 in the right. 

( B IT BIT#- WORD) [NoSpread Function} 
If WORD is not specified. BIT simply returns a number with bit BIT# set to 1 .1nd. 
all other bits O. If WORD is given. then BIT is a predicate that returns T if BIT#

is set in WORD. Birs are numbered from left to right. 

Examples: (B IT 32) is 8 (= lOQ). (BIT 32 8) is T. 

23.53 



\ ' .. _ ...... 

() 
Nobox 

(JSYSERROR ER..:~ORN) [NLarnbda Func:iC'nl 
Returns the TENEXJTOps·20 error number for ERRORN. For exarr:.ple. (JSYSERROR 
GJFX23) is 600103Q. JSYSERROR compiles open as a COn5t2.!lt. 

This pac!(age also defu:.es the following ASSEMBLE ::nacros: 

(JS iSYSNA..:wE) 

(CV EXPR) 

(CVZ E;:X?R) 

23.13 NOBOX 

Can be used in ASSEMBLE statements instead of (JSYS JSYSNU:~ER.). 

Expands to (CQ (VAG (F IX E:U'R»). which unboxes EXFR to AC 1. 

Expands to {CQ2 {VAG (FIX E..""{PR.»). which unbo~es EXFR to AC2. saving 
AC1. 

J.Vote: Nobox is a LispUsers package that is contained on the file NOBOX. COM_ It only works ~1th 
I nleriisp--IO. 

This package contains fz.cilities for subverting the normal manner of dynamically allocating and collecting 
cor~s cells. large integer boxes. and floating boxes in Interlisp·lO by using static. compile·rime allocation. 
Storage allocation is controlled by allocating the memory for temporary results (e.g. a list that win be 
thrown away or a floating n~ber that will not exist outside a local computational context) at corr.pile-ttne 
or load-time. This "static" storage will be reused whenever the given line of code is re·e:cecuted. Bec~use 
functions which use these facilities may exhibit bizarre behaviour if they are called recursively or if values 
escape outside of them. these facilities must be used with extreme caution. and should be reserved for 
those cases where the normal method of storage allocation and garbage collection is not workable or 
practical. Note: compiled functions need no run-time support for these facilities. i.e. NOBOX does not 
have to be loaded to execute compiled cede. 

23.13.1 CONS Cells 

The function CBOX may be used to avoid allocation of CONS celIs. When run interpreted.. CSOX is exactly 
eC1uivalent to the function CONS. Compiled. CBOX operates like CONS. except that the cor~s cell reru:ned 
is CO:1structed (OGce) at compile or load time. New values for CAR and CDR are smashed into the cell at 
each execution. 

The function LBO X performs an anclagous role for LIST. When run interpreted.. LBOX is exactly equivalent 
to LIST. Compiled. the corresponding CONS cells are allocated at compile or load tL~e. For eX~.Jnp!e. 

.• (L80X ABC) will cause a 3-eiement static list to be 'included with a compiled function·s litera·is. ~ch 
tim~ the corresponding compiled code is execute·d. those three cells will be'rcrurned containi::g t.1C cur.cnt 
va!u~:i of the variJ.blcs A. B. and C: -

LBOX allccates as many cells as there are arguments in the corresponding form. i.e. the number of scr::w:~ 
ccBs is determined at campi!.:! time. The itcr.:mve stJtcment opcr.J.ror·SCRATCHCOLLECT ~n.J.bks .1vcid:r:g 
CONSes when the length of a list is not known at complle-ume. SCRATCHCOLLECT is used in itcr.1uve 
staCcrne:HS exactiy as COLLECT. E.1ch time it lS executed. it reuses the cells th~t it returned on orc\'lCUS 
executions. which it remembers as an internal scr~tch list. The length of this scr.J.tch list is al~·ays the 

23,54 

~. C ) .... 

() 



o 

Q' 

o 

LISPUSERS PA'CKAGES 

lengt.'1 or the longest value that was ever returned; new cells are allocated whenever the scratch list runs 
ou~ and they are permanently remembered. 

The SCRATCHCOLLECT i.s.opr and the. function SCRATCHLIST (page 14.2) have stnilar applications. 
\ViL~ SC~ATCHLIST, t.'1e user makes explicit the origin of the list getting smashed... while with the 
SC RATC~jCOLLECT Ls.opr. the scratch list is hidden (and there is a different scratc~-list for each oc:u:e:lce 
of the Ls.opr). 

23.13.2 Number Boxes 

Tne functions IBOX, FBOX. and NBOX. and the r~ord dedar~tions IBOX· and F80X are provided to 
improve the efficiency of arithmctic computations. They permit infonnation to be given to the Intcrlis;-lO 
compiler that will inhibit the allocation (and subsequent collection) of number boxes needed for holding 
temporary results of numeric computations.39 In addition. access time to vanab!e-values that are known 
to be large !!ltegers or floating point numbers is improved. 

The records IBOX and FBOX essentially describe the structure of large integer and floating point boxes 
respectiveiy. ISOX consis~ of a single fietd. called ~. which corresponds to the actual COIlte:ltS of :he la.--ge 
integer box. FBDX consisrs of a single field.. caned F. which cOI7esponds to me contents of the floating 
point box. For example. the user can create a large integer box containing a given value and assign it to 
X by sayL."lg (SETQ X (creat9 IBOX I +. FORM». Even if tJ.'1e value of FOR..1v! is a smail integer. 
the result will be stored in a new, large number box. TrJs seeming inefficie:lcy is irnpol~t be:ause if 
some values of FORM might be large, making all values large means that the compiler can be told how . 
to treat all referc:lces to X without gencrati..Tlg run-time tests to discover how to do the ur!boxing. ThUs. 
wherevcrthe value of X is to be referenced. eJJ.e user simply writes (fetch I of X). In compi!.ing.this 
expression. the compiler generates a single MOVE insL~ction without any type-testing whatsoever. Tne 
user can reuse that llu.~ber box by saying (rep 1 ace I of X wi th (FOD», which is equivalent to . 

. but much ~ore efficent than.. (SETtl X (FOa». [n other words. once it is known that X is bound to a 
large integer, (rep 1 ace I of ... ) can be used in all :1umber-contextS to infonn the compile: of tl1~t 
fact. 

The facilities described so far do nothing to suppress the creation of unnecessary boxes: indeed. t.1e 
( erg ate IBOX --) ·;"'ill produces box~s for snlall numbers that would not be allo:ated OL'cl'\"isc. Tr:e 
functions (not records) 130X, FBOX. and UBOX are used to suppress unneces~-y boxing of te:n?oraries. 
Effecti'/ely, they cause "constant" or "static" boxes of the appropriate type to be aliocated ~:.d stored in a 
function"s literals when a function is compiled or loaded. Those boxes can be used (and reused) to held 
temporary results. . 

IBOX and FBOX can be caned with 0 or 1 arguments. If no arguments are specified (as opposed to a 
single argument whose value is NIL), then the value of the function is a large-integer or floating number 
box which is allocated statically. For example. Lttese might be used to construct an initial bi:J.d.ing fc: a 
variable into which temporary values will be stored using the I or F assignments. For examp~e: 

(PROG «X (IBOX») (replace I of X with (FOO» ... ) 

391n me latter respect these duplicate some of what SETN (page 22.5) does. except that they are more 
convcr.icnt to use and are executed with less run-time checking (i.e. SET N will never sm.::.sh r:lndo::1 
memory locations). 

23.55 



",---,' 

Cautions 

If an argument is specified for IBOX or FBOX. then a static bo~ of the appropriate type will be allcr..zt~d 
at comoil·e- or load-time, and u.'1e value of the argument will be stored in that box whenever :'1e IaOX 
sta:ement is executed. For example, S"-.lppcse the u:)er wanted to set a file pointer to 1 past a given byte 
t'ositio~ Tne expression 

(SETFILEPTR FILE (ADD! POS» 

wculd gc~erate a new numb~r box on exh execution for which POS h;1ppened to be a large number. 
That box would be p2SSed ieto SET FILE P T R and then returned as its value. Since the value is not saved. 
t.~e box would be thrown away, to be collec:ed later. The e~pression 

{SETFILEPTR FILE (ISOX ,(ADOt POS») 

would store the desired position in a constant box. and no allocations would take place. 

As anomer example, consider a complicated integer expression whose value must be saved in a variable 
to be used a little further dO\\'n in a program: 

(SETQ X (IPLUS 2000 (ITIMES FOa (IQUOTIENT FUM 5»» 

(SETQ Z (IPLUS X (GETFILEPTR FILE)}) 

The Interlisp-l0 compiler is smart enough to suppress the boxing inside the (IPLUS 2000 &) expression. 
but it will generate a box when it comes to do u1.e SETQ. This box can be suppressed by writing 

(SETQ X (IBOX (IPLUS 2000 (ITIMES FOO (IQUOTIENT FUM 5»») 

FurJ1ermore, since it is known that X is bound to a large integer. the Z assignment can be speeded up 
by writing . 

(SETQ Z (IPlUS X:I (GETFILEPTR FILE») 

The function FSOX behaves the SCL."11e as IBOX. except that it uses conSLant floating boxes. ~c(e that if 
the argument of IBOX is FLOAT?, then it will be FIXed: if the argument of F80X is FIX?, it will be 
FLOATed. 

The function NBOX is a generic function for copying unknown values into constant number boxes. It 
allocates cwo constant boxes. one integer and one floating, and ~tores the value of its ar~.l:nent in ~he one 
ccmpJuble wic..'1 the value's type. NBOX is useful if the argumenc value is a constant number box: ~ but 
one of unknown type) that needs to be copied (see caution (2) below). 

2.3,13.J Cautions 

There are some dangers in using these facilities. The user of this package should be par-Jcularly aware of 
the following: 

(1) orne F and I fields aim at efficiency more than validity. This me=ms that they do not check the l. ... pe of 

23.56 

n. 



o 

(J 

LISPUSERS PAO{AGES 

the pointer that they smash into. For example, if X is bound to NIL. the expression (repl ace I of x: 
w; th Z will clobber CAR and CDR of N r L! The user must be very careful t.~at the argU!!lents glyen for 
replacing do indeed poillt to cells that unboxed numbers can be smashed into. ~ote: the DECL pac~3.;e 
(pzge 23.18) can be used to generate tt}e rep 1 aces, I~OXes. FBOXes automatically in a safe and e(Ecie::t 
way. 

(2) caox. LSOX, SCRATCHCOLLECT, IBOX
o

' and FBOX all allocate constant boxes.. and t.~ose boxes will 
be r·e~sed (Le. smashed with new values) every time tJ.'1e code ccnta.i:1ing t".~at functiaD call is ex~u~ed.. 
If that bo:: is saved in a variable or data-structure (c.;. by a SE TQ) as a way of prese:"Ying G~e va!ue it 
com:.tins. and then the code is re-executed. the valuc that was savee. will be sm~!1cd. T~us. the user r.1t.!st 
beware of usr:lg constant boxes to save information in loops or recursions t..'1at can fC: bad: to G~C sarr.e 
statement. In these situations. the values must be copied into ou.'1er cells. perh~ps a cons:.ant a.sso:ia~ed 
with so;;xe other line of code. or into cells alloc:lted in the ordin3ry way. The user must also be c2.reful 
abo~t retuming a constxlt box as the value of a function. since the call~r might unknowmgly s .. we the 
value and re-invoke the box-returner. 

(3) Because the constant boxes are allocated only in compiled code, these functions will work quite 
differently compiled and interpreted. Side effects which occur because of inadvertent smashir.g of shared 
structures will only occur when running compiled definitions and will not be detectable whe:l run..cing 
interpreted. 

23.14 DA TEFOIUvl>\ T 

Note: Dale/annal is a LispUsers package that is contained on the file DATE FORMAT. COM. It only works 
iiI lnterlisp- 10. 

Dateformat is a small file (one function) which provides ~sistance for constructing format bits for the 
OOTIr:t JSYS (output dare/time) as required by DATE and GDATE (page 14.9). 

(DATEFORMAT KEY1 ••• KEYl't) [NLambda NoSpread Function1 
KEY'l··· KE'YNare a set of keywords (unevaluated). DATEfO:::MAT re:"...l:::sa nun:cer 
suitable as a parameter to DATE and GOATE. The variable DATE FORMAT. 0 E f AuL T is 
the number used as the initial va:iue to work with. Therefore. to s\l,itch any of 
the defaults. set the variable DA TE FORMAT. DE F ,~UL T to be the .. oalue of J. cail to 
DA T E FORMA T with the appropriate keys. 

The keywords are given below (usually in pairs) and can be thought of as switches (Le. turn on or off a 
par~cular format feature). If no keyword is given for a particular pair. the default is used. 

The variable DATEFORMAT . KEYS is a l;st of the keywords used for spelling correction. 

DATE (default) 
NO.DATE Do/don't include the date inforrnauon. 

NAME. OF . MONTH (default) 
NUHBER.OF.HONTH 

Show theomonth as a name (NAr~E . OF . MONTH) or a number (NUMBE R. OF . MONTH). 

MONTH.LONG 

23.57 



Dateformat 

MONTH. SHORT (default) 

YEA.R. Lor~G 

If the name of t..'1e month was requeste~ spell it out (MONTH. LONG) or abbreviate 
it (MONTH. SHORT). 

YEAR. SHORT (default) 
Print four digit year. e.g. 1978 (YEAR. LO~~G) or two digit year. e.g. 78 
(YEAR. SHORT). 

DAY. OF. \lIEEK 
r~o . DAY. 0 F • WEE K (default) 

Do/Don:t include the day of the week in the date information. 

DAY.LONG 
OA Y • SHORT (default) 

If the day of the week was inc1ude~ spell it out (DAY. LO'~G) or abbrcviate it (j .. 
. (DAY. SHORT). 

DASHES (default) 
SLASHES 
SPACES 

USA. FOR~1AT 

Separate the <day), <month). and <year) fields with dashes/slashes/spaces. 

EUROPE. FORMAT (default) 
Print the date in the order <month> <day> <year) (USA. FORMAT) or i:J. the order 
(day> (month) (year) (EUROP E • FORMAT). 

LEAD ING. SPACES (default) 
UQ.LEADING.SPACES 

TIME (d.efault) 
r~o. TIME 

TIME. ZONE 

If LEAD I NG. SPACES is specified. the <day> field will always be tv .. o char-a.Ctcrs 
long. If NO. LE.!\D ING. SPACES. the <day) field can be one charac:er for dates 
earlier than the 10th .. 

Do/Don't include the time information. 

NO. TIME. ZONE (default) 
Do/Don't include the time zone in the time specification. 

SECONDS (default) 
NO. SECONDS Do/Don't include the seconds. 

CIVILIAN.7IME 
MILITARY. TIME (default) 

. . 
Use 12 hour time wim AM or PM (C IVI L IAN. TIME) or 24 hour time 

23.58 (~ 

\ ) 



o 

(' ')/ 
\J 

LISPUSERS PACKAGES 

O~ILITARY • TIME). 

23.15 EXEC 

"[ote: The Exec package is a LispUsers package that is contained on the file EXEC. COM. The Exec package 
uses the pa.sS1~.:ords package (see page 23.62). Loading EXEC. COM will load PASS'dOROS. COrt if it has 
not already been loaded ."'lote: some of the facilities described below will work correct(v only on TEiVEX 
syszerr.s. others only on TOPS-20. The system wiil injorm Ihe user when he attempts to use a faciiity not 
supported by his particular operating system. 

This package defines a set of programmer's assistant commands which resemble features of the Tect!x 
EXEC. It also defines functions that provide certain EXEC capabilities for Interlisp programs. e.g. chacging 
the connected directory, detaching the job, etc. 

23.15.1 Exec Commands 

OA 

LO 
Sy 
WHE 

. LD USERNA..'4E 

LD ALL 

DET 

QU 

LINK USER 

TALK USER . . 

BR 

CONN DrR PVID 

Prints out the current time and date. 
[E.-tee Command] 

[Exec Comm.'mdj 
[Exec Cozr~andi 
[Exec Cornma.:nd] 

Prints SYSTAT information. just li1ce the LO subsystem. Jobs are sorted in in·terse 
order of CPU utilization. 

[Exec Command] 
Prints infonnation for the specified user only. 

[Exec Command] 
Like LO, but includes system jobs. 

[Exec Coomandl 
Detaches the current job. 

[Exec Command] 
Does a (LOGOUT). Does not go on history list. 

[Exec Command] 
[Exec Cornmanc.j 

~fimics the exec link command. [f USER has multiple jobs logged in. asks which 
tty to link to. 

[Exec Com.!nand] 
Breaks links. 

[Exec Cornm~dl 
Connects to the directory DrR. If the password PWD is not given and is rcq\.!i:ec... 
CONN will prompt. DIR can be abbreviated; if omitted. it defaults to the user's lc§;in 

23.59 



NDIR FILEGROtJP 

NDIR FI!.EGROUP 

UNO FILEGR.OUP 

EXEC Functions 

directory. If FWD is given in command line~ it is removed from the history lis: so 
that?1 will not print it out. Password prompting is handled by GET?ASSK'ORD 
from the passwords package (p2.ge 23.62). 

[Exec CO!!'lI::~dl 
Prints the files in FILEGROUP in a multi-column format. 

(E.'tec Cor...:nand] 
Deletes specified files. Uses D r'RECTORY (page 14.6). Note that if <esc> is speci5eci. 
all files u.~2t match wiil be deleted. This cormnand is undoab Ie. 

• [Exec Corn.m::.ndl 
Undeletes the specified files (undoably). 

,~ 
, J 

\ / 

Oll VER FILEGROUP [E'tec COrrL11311d} f\ 
Deletes all but 1 version of the filegroup specified. Uses DIRECTORY (~~ge \ /' 

EX? DIB. 

14.6), so FILEGROUP m~y utilize any of the options allowed for directory ruegroup 
specifications. 

[Exec Corr..ma..~d} 
~"Punges directory Dffi. If the user does not have access to D:?_ a r::essage is 
printed. 

TY FrLE OUTFTLE BYTESIZE [Exec Command1 
5 E E FILE OUTFILE BYT::SIZE [E'tec CCnL~~-:dJ 

OS K cm. DAYS 

FI 

FI JFN 

Copies FILE to OUTFILE~ or to T ifOUTFILE is not given. Assumes that Lte bytes 
of FILE are BYTESIZE bits wide (BYTESIZE= NIL defaults to 7). Suppresses blank 
lines and control character sequences used to indicate font changes. 

[Exec Command) 
Prints out disk allocation and usage for the directory DIR. using DSKST AT. Also 
prints total size of files untouched in days DAYS (90 if DAYS not: specifi~d). 

[Exec Comrnanc.} 
Like t.'1e E..'XEC F I LEST A T command. printS out starns of all currently .1.Ssign~d :,'/\. ,,' 
JFN'S for the current job. \ ,) 

[Exec Corr.mandl 
Prints information for JFN only. 

23.15.2 EXEC Functions 

(J08#) [Function} 
Returns the job number for the logged in job. 

(TTY#) [Fu:lctionj 
Returns the teletype-number of the current job. 

(DETACH) [Function} 
Detaches the current job. 

23.60 



·0 

o 

LISPUSERS PACKAGES 

(DETACHEDP) [Function] 
Returns T if the current program is running detached... 

(LINKTOTTY TTY#:) [Functicn] 
Gener~!es a two-way link between the controUing te:minai of the user's job -l:1d 
TTY#-. Returns T if the link was successful. otherwise prints a.:l error message and 
returns NIL. 

(L I N KTOUSER USER) [Fl!nctio:lj 

" (3REAKLINKS) 

Links the controlling terminal to a terminal associated with USER.. Gene:atcs ~, 
error if the user is not logged in or not attached. If USER. has more !.~a.t, one 
attached job. then a systat of his jobs is printed. and the user is asked to proyide 
the proper tty numb~r for the job. Returns T if successful. 

[Function] 
Breaks all links to the user's controlling terminal. 

(CNOIR DrR PASSWORD) . [Function] 

(/OELFILE FILE) 

(/UNOELFILE FiLE) 

(EXPU~;GE Dm) 

Implements the COrH~ command. 

[Function] 
Undoable version of DELFILE. 

[Functio~] 
Undeletes a single file (undoably). 

[Function} 
Expunges directory DIR. On TENEX. OIR is ignored. and the conne:ted directory 
is expunged. On TOPS20. if the user does not have access to DIR. a message is 
printed... 

(COPYALLBYTES FROMFILE TOFILE BYTESIZZ) 

ImplementS the SEE command.. 
[Function] 

(DSKSTA T DrR. PRINTIFOVER PRINTSYS PRINTDEL PRINT OLD ) [Function] O· Prints disk usz.ge statisti:s for directory DrR. (eiL.~er a name or number). 

If PR.1NTrFOVER is NIL. this means always print. If PP..INTIFOVER is T. this mean.s 
only print if OIR is over allocation. [f PR!NTrFOVER is a number. this" means only 
print if DrR. has more than that many pages in usc. 

If PRINTSYS is T. this means print system disk statistics too. 

If PRINTDEL is T. this means print total size of deleted files for DrR. (L~is is slow). 

If PRINTOLD is T or a number. L,is means print total size of files untouched in 90 
(or PRINTOLO) days . 

. (MEMSTAT PGl PGN FORK) [Functic111 
Prints t.'1e Status of the memory pages PG1· (0 if PGl = NIL) to PGN (t.~e !~st p3fe 
of memory if NIL) in fork FORK. FORK is either NIL. meaning the curre~t :-(':-k. 

23.61 



Passwords 

or a fork handle. 

23.16 PASS\VORDS 

~Vo[e: Passwords is a LispUsers package lr.1lt is contained on the file PASSWORDS. COM. It only 1h'Orks with 
I r.terlisp- f O. 

(GET?ASSh'ORQ DIRECTORYNA .. ME) (Function] 

23.17 TELl'fET 

Prompts the user for the password for the given directory. The user's response 
is not echoed. GETPASSWORD remembers the password so that it n~d not 3Sk 
again: however. saved information is cleared before SYSOUT. so that the SYSOUT 
contains no passwords. 

Note: T~/net is a LispUsers package that is contained on the file TELNET • COM. It only works with 
Tnterlisp--lO. Since the telnet package uses the net package. loading TELNET • COM wiiI also load NET. COM 
unless it has already been loaded. 

This package makes it possible to interact with conn~tions created via the net package (page 23.64) 
wiu;out le~ving Interlisp. In addition. all typeout is included in the OR IBBLE file. It pen:tits connections 
to ARPANET hosts (a 1a TELNET). 

(TELNET CONNECTION TYPE SKT -) [Function1 

23.18 ITP 

CONNECTION may be an instance of a CONNECTION record (as c:e3.ted by 
MAKENEWCO'nNECT ION. page 23.64). Alternatively, if CONl'l"ECTION is a litatcm. 
TELNET uses (MAKEr~EWCONNECTIOr~ CONNECTION TYPE SXT) for ~he con
nection. In any case. T E LN E T returns the connection 3S an insr.a.'1ce of ~~e 
CO~NECTION record. so that it is possible to TELNEi back. 

Note: Ftp is a LfspUsers package {hat is contained all the file FTP. COM. It only works with Interlisp-IO. 
Since the Ftp package uses the net.and passwords packages. loading FTP • COM will also lo.ad NE T • COM ana' 
PASS\aiOROS . COM If {hey are' not already loaded.. 

The rtp package makes it possible to deal wiL.~ files at other hosts on the Arpa network almost as if mey 
were files on the user·s local machine. i.e. the files can be opened via INFILE. OUTFILE. OPENFILE. 
read from and printed to by the ordinary reading and printing functions . .md dosed in the scand.:..rd way. 

Files on remote hosts are design.Jeed by induding the host name between curly brackets. {} . .1t tJ1C 

front of the ordinary file name. Since curly brackets Jrc illegal characr.ers in regulJ.f file n~es. J. BAD 

23.62 

(j 

(\ 
< )-

~ 
I ) 

\. / 

, ----., 
" \ I , 
", J 



o 
LISPUSERS PACKAGES 

FItE r'~.ME error is generated. This error is intercepted by an entry on ERRORTYPELST (see pzge 
9.16) which then estz~lishes the appropriate network connections .. ~o Fer eX~'npie. (I~FILE '{SBN
O}<LE\iIS)!NIT. LIS?) will open the file <LEWIS)IN.IT .LISP on the host SBN-D and :!lue it ce 
th~ p~ary inp~t ffil!. The t:.ser could then say (READ) to obtain the first eX;Jression on that :nee The 
ftp package extends the functions PACKFILENAME. UNPACKFILENAHE. and F ILENAMEFIELD so u.~at 
u'1ey will associ:ltc the curly bracket syntax with the new file field HOST. Tnus. (PACKFILENAME 'HOST 
'SaND 'NAME' InrT) will return {B3~JD}INIT. 

Remote files have certain properties that limit how they may be used: 

(1) RJ~NDACCESSP is NIL for such files. and SETFILEPTR may not be applied to them. This means. for 
eX~i1ple. that functio:lS a.,d variables may not be loaded from such files via LOADFNS. 

(2) The open bytesize of a remote file may not be changed (e.g. by SETFILEINFO.). This means that 
r\ Interlisp-10 compiled files may not be loadcd from remote hosts. 

(--) {3} The remote host may close the connection spontaneously (e.g. because of a timeout if the file is not 
refere~ccd for seme !cngth of time. or because of a crash). If tJ.'lls happens. the next attempt at reading 
or writing on the file willgenerate FILE DATA ERROR. Note: it is unwise to keep a remote file open 
for long periods of dme.41 

0-

Vlhen the connection for the remote file is first establishecl a password for the remote machine/directory 
may be required. The user will be asked to supply one via the passwords package (page 23.62). 
Altcrnatively, if the host name has on its property list the property LOG I N with value of the form (NAMZ 

PASS,"VORD ACCOUNT), then ~~e indicated NAME. PASSWORD. and ACCOUNT -will be used to log the user 
into the remote hest. 42 

(FTP HOST FILE ACCZSS USER PASSWOR.D ACCOUNT BYTESlZE) [Function] 
Opens a network connection to the ftp server at HOST. If ACCESS= INPUT 
or OUTPUT, FTP works like OPENFILE: value is a literal atoCl of ~'1e fonn 
{HOST}FlLc which can t.~en be used as a file name by all Interlisp input and output 
functions, e.g. READ. PRINT, COPYBYTES, etc.43 For example, (FTP 'SU-AI 
'YU~YUM%(P ,DOC%] • INPUT) will allow the Stanford Resu-aurant Guide to be 
read. Note that FlLE must satisfy the file name conventions of t..~e remoLe host. 

"ONate: it is fairly expensive to open a network connection as compared with the time to open a local 
file, e.g. an order of magnitude slower. 

. . 
41 For inp~t files. these lLrnitations may be skirted conveniently in the following way: if a colon appears be
tween ~:'e iastchara-:terofthe host name and the nghtcurly bracket (e.g. {BaND: }<LE\~IS) IN IT . LIS?). 
then me remote fiie will be copied to a temporary local file when it is opencd. and all subscquent references 
will be to that local file. 
":If the \'abe is of the form (IVAME NIL ACCOUNT), then (GETP.~SSWORO N~\{E) will be used for 
the password. If the ACCOUNT field is ~I I L. no account will be supilicd to the remote host. If no LOG IN 
property is supplied.· ANONYHOUS will be used as the user name. 

-lJIn reality. this ·'file·· is a network connection to the host'S ftp server. This "filc·· has .1 WHENClOSE 
attribute (page 6.11) associated with it so that when Intcrlisp closes the file, the correct terminating 
sequence will be performcd. 

23.63 



23.19 ~""ET 

Net 

If ACCESS=OIRECTORY, then FTP will print on the terminal U.~e nar::es of 
all files which match FILE, e.g. {FT? 'PARC-MAXC2 '(NETLISP)*.SAV 
'DIRECTORY). 

USZR. PASSWORD, and ACCOUl-l"T are used for logging in to the remote host. If not 
supplied, the values are obtatl~d from the LOG I a prcperty (if any) z.s c!escri:ed 
above. BYTESIZE is the byte·size in which to open u~e connection. Byte sizes of i,· 
8. 16. 32 J.nd 36 are supported. BYTESIZE= NIL defaults to 7. 

Note: Net is a LispUsers package that is contained on the file NET. COM. It only works with Interlis;;-IO. 

Tnis package con"'llns functions for es~blishing ARPANEf connections from an Ioterlisp-10 job. A 
cOn:lecticn is d.escrib~d by and is an instance of the record CONNECT ION. The only fields of interest to 
L~e user in r..rus record are IN and OUT. which are guaranteed to be CAR and CADR, respectively. IN is a 
file na.:ne which can be read from. OUT a file name which can be printed to. 

(MAKENEWCONNECTIOU HOST TYPE SKT SCRATCHCONN WAITFLG) [Function] 
Makes a connection to HOST. For TYPE = ARPA. HOST is the name of the host 
to which the connection is to be made. For SKT= N IL (the normal c3.Se). the 
connection will be to the telner server of HOST: connections to other servers c:m 
be made by supplying the appropriate value for SKT. 

The value of MAKENE~/CONNECTION is a CONNECTION. If WAITFLG is non-NIL," 
MAKEN EWCONN E CT ION waitS until itS request for connection is ack::.owiec.ged... 
Otherwise, CHECKCONNECTIOf-l must be called on the result before it is used 
(this allows additional processing to be cone while waiting for the rer:lote host to 
re~o~~ -

If SCRATCHCONN is non-N I L. it is a scratch connection which is reused. 
()-

For example, (MAKENEWCONNECT IO~~ , BBND) makes an ARPA connection to BBl'.TI. (MAKENEWCONNECi ....... i·' 
• SU-AI 'ARPA 'F HlGE~) makes a connection to the Stanford WHERE IS service. 

(ClOSECONNECTION CONNECTION) [Function] 
Ooses the given CONNECTIO~ and replaces the IN and OUT fields with N: L. 

(CHECKCONNECT ION CONNECTION) [Function1 
Checks to make sure that the given connection is still open (e.g. it h2.5u·t bee:} 
closed remotely). If the connection is valid." CONNI!CTION is returned. If the -
connection is in an in-between state. i.e. in the process of being opened or 
closed. CHECXCONNECT ION waits to sec what ha.ppens bdore returnIng. Ot.!:~:-'J.tse 

the connection is cleaned up (as if a ClO'SECONNECT ION were performed) Jed 
CHECKCONNECTION rerurns NIL. 

(NETSERVER ARPA#: WAITFLG) [FU!":C:'lOnj 
lmtbtcs :.l ··server"' connection. -I11is is a connection which wlll ulk to :.l ··:..:s~~" 

connection. [f WAITFLG is non-N I L. waitS for a user to cunnect: if WAITFLG = ~I r L. 

23.64 



USPUSERS PACKAGES 

-reU!ffiS immedia:.ely (and CHECKCONNECT IDS m~st be called on the cOn:lection 
before tJ.'1e connection is actually used). ARPA#: defaults to O. 

( N E TUS E R HOST USER ARPA# WAITFLG) [F I!r:.ctic::] 
Initiates the other half of an Arpa connection. ARPA# defaults to 0 atld oust be 
li1C same as t.'1e 2Igument given t...i.e correspendh~g call to NET S E RV E R. L"SE'R must 
be the USERNU1~6ER (directory number) under which me server jeb is legged In. 

For eX2J.~~le. to establish an ARPANET connection between twO Interlis? jobs (whi:!1 c:m t.'1en be 
writ:en to a.."1d read from like files). do (SETQ CONf4 (NET SE RVE R» in one job a..Tld (SE TQ CO!Hi 
(NETUSER HOST USER» in the other job, where HOST is the machine on which tIle first job is 
runr:ing and USER. is the directory number under which the first job is logged in (cbtainab!e L~ot;gh L'1e 
function USERNUHBER). Then. perform (CHECKCONNECT ION COi~N) in each job~ when :bese rcrum. 

/' _ the connection is ready to be used.. 

'- C) (FORCEOUT CONNECTION/FrLE) [Fun~tion] 
Normally. characters sent to the "OUT" of a connection are buEered locally. Tne 
r.Ir~ction FORCEOUT can be used to force partially filled packets of bytes to be sent 
across the connection. The argument to FORCEOUT can either be the CONNECT ION 

record or the OUT filename. 

23.65 



( 
\ 

\ 
) 



o 

r---' 
I \. 
"Y 

·--0 

·0 

(A EI ••• EM) (Editor Command) 17.~24 

a-li$ts (in EVALA) 5.12 

A 0 a 0 n (gensym) 2.11 

ABBREVLST (Variable) 6.53 

(ABS x) 2.45 

AC (in an ASSE}'fBLE statement) 22.19 

ACI 22.19: 22.12.14 

access chain 7.2 

ACCESSFNS (Record Type) 3.8 

active frame 7.2 

(ADD DATVM ITEMl ITEM:J ••• ) 
(Change Word) 3.13 

(ADD. PROCESS FORM PROPl VALUEl 
PROPN VALUEN ) 18.26 

(ADDl x) 2.39 

(ADDMAPBUFFER TEMP ERRORFLG) 
14.18 

(ADDMENU MENU ~w POS~ON 
-) 19.33 

(ADDPRO? ATM PROP NEW FLG) 2.7 

(ADDSPELL x SPLST N) IS.17; 15.18-19 

ADDS?ELLFLG (Variable) 15.12: 11.4: 
15.14,18 

(ADDSTATS STATI ••• STATN) 8.21; 18.6 

(ADDTOCOMS CO~ NAME TYPE -
-) 11.33 

(ADOTOFILE NAME TYPE ~E 
-) 11.33 

(ADOTOF! LES? -) 11.8 

(ADDTOSCRATCHLIST VALUE) 14.2 

(ADDTOVAR YAR .XI X:z .:. xN ) 11.38 

{ADOVARS (VARI • LST1 ) .•• (YARN 

• LSTN » (File Package Command) 
11.13 

(ADIEU VAL##) 7.16 

(ADJUSTCOlORMAP PPJMARYCOLOR DELTA 

COLORMAl' ) 19.46 

INDEX 

(ADJUSTCURSORPOSITION DELTAX 
DELTAY) 19.16 

A9V - P ROG (Function) 10.8-9 

ADV-RETURN (Function) 10.8-9 

ADV-SETQ (Function) 10.8-9 

advice 10.8 

(ADVICE FNI .•• FNN ) 

(File Package Command) 11.24; 
10.11 

ADVICE (File Package Type) 11.15 

ADVICE (Property Name) 10.10-11; lL12 

ADVINFOLST (Variable) 10.10 

(ADVISE FNI ••• FNN ) 

(File Package Command) 11.24: 
10.11 

(ADVISE FN ~N ~ .~T) 
10.9: 10.8 

ADVI SED (Property Name) 10.9: 5.9 

ADVISEDFNS (Variable) 10.9-10 

(ADVISEDUMP x FLG) 10.11 

advising 10.1 

AFTER (as argument 10 ADVISE) 10.9; 
10.8 

AFTER (as argument to BREAKIN) 10.5: 
9.2 

After (DEdit Command) 20.4 

AFTE R LITATOM (Prog. Ass!. Command) 
8.13; 8.20,27 -

AFTER (in INSERT command) 
(in Editor) 1 i.2S 

AFTER (in MOVE command) (in Editor) 
17.29 

AFTE REX IT (Process Property) 18.27 

AFTERMOVEFN rWindow Property) 19.32 

AFTERSYSOUTFORMS (Variabie) 6.8:· 14.01 

ALAMS (Variable) 12. 7 

AL lAS (Property Name) 10.4; 10.6 

ALINK 7.2.6 

Index.l 



(ALISTS (VARl KEYl KEY2 ••• ) 
••• (VARN' KEY3 KEY" ••• ) ) 
(File Package C ommana) 11.23 

ALISTS (File Package Type) 11.15 

ALL (in event specification) 8.6 

ALL (in file package command PROP) 
1123 

ALL (Li;atam) 11.35 

(ALLOCATE. PUP) 21.15 

(ALLOCATE.XIP) 21.21 

ii -- (ALLOCSTR!l1G N INITcaAR. OLD) 2...28 

(ALLOF TYPEl • • • TYPEN ) 
(Decl Type Expression) 23.26 

(ALLOW.BUTTON.EVENTS) 18.36 

ALL?ROP (Litatom) 5.9; 8.24; 11.4.38 

ALON E (type 0/ read-macro) 6.37 

(ALPHOROER A B) 1~9 

ALREADY UNDONE (Printed by System) 
8.11; 8.34 

AL WA Y S FOP..M (I.S. Operator) 4.6 

ALWAYS (type of read-macro) 6.37 

AMAC (Property Name) 22.13 

AMBIGUOUS (Printed by DVI7M) 15.13 

r AMBIGL!OUS DATA PATH (Error ~[essage) 
'--- 3.2 

AM8IGUOUS RECORD FIELD 
(Error Message) 3.2 

AMONG (/v!asterscope Path Option) 13.14 

ANAL YZE SET (/a,lasterscope Command) 
13.5 

(AND Xl X 2 ••• x N ) 4.2 

AND (in event specification) 8.7 

AND (in USE command) 8.8 

ANSWE R (Variable) 6.62 

(ANT I LOG x) 2.46 

ANY (in Ded package) 23.25 

INDEX 

(APPEND Xl X2 ••• xN) 2.16 

( A P PLY FN ARGLIST -) 5.12: 12.14 

(AP~LY· TN ARGl A.RG2 ••• ARGN) 

5.12: 12.14 

approval (of D WIM corrections) 15.3; 
lS.2~18 

APPROVEFLG (Variable) 15.12: 15.18.20 

(APROPOS STRING ALLFLG) 14.1 

(ARCCOS x RADIANSFLG) 2.46 

ARCCOS: ARG NOT IN RANGE 
(Error fltfessage) 2.46 

ARCH lVE EnmtSpec (Prog. ASSL Command) 
8.13 

ARCHIVEFLG (Variable) 8.19 

ARCHIVEFN (Variable) 8.19; 8.13 

ARCHIVELST (Variable) 8.25; 8.32 

(ARCSIN x RADIANSFLG) 2.46 

ARCSIN: ARG NOT IN RANGE 
(Error Jr[ essage) 2.46 

(ARCTAN X RADIANSFLG) 2.46 

(ARCT AN2 Y X RADIANsnG) 2.46 

SET ARE SET (~faslerscope Command) 
13.5 

(ARG VAR M) 5.4 

ARG ~OT ARRAY (Error .W~sag~ 
2.33 

9 ,?.A· . ..-. 

ARG NOT HARRA Y (Error Message) 9.2-6 

ARG NOT LIST (Error lvlessage) 9.22: 
2.15.17.25-26 

ARG NOT LITATOM (Error Message) 9.23: 
2.5-6.8; 4.3; 5.2 .. 8: 6.4; 11.38 

(ARGLIST FN) 5.7: 9.6; 22.3 

ARGNAMES (Propeny Name) 5.7 

ARGS (Break Command) 9.6 

ARGS NOT AVAILABLE (Error IW~sag~ 
5.7 

(ARGTYPE FN) 5.6; 22.3 

Index.2 

() 

n 

(). 



o 

() 

argument list 5.2 

arithmetic functions 2.38 

AROUND (as argument to ADVISE) 10.9: 
10.10 

AROUND (as argument to BREAKIN) 
10.5; 9.2 

(ARRAY N P v) lJ4 
(ARRAY SIZE TYPE IN'lT ORIG) 2.32 

array header (in Interlisp-10 arrays) 2.33 

CL-ray pointers (in loterlisp-lO arrays) 
2.33; 2.34 

(ARRAYBEG A) 234 

ARRAYBLOCK (Record Type) 3.8 

(ARRAYORIG A) 23~34 

(ARRAYP x) 2.2.34: 22.25 

ARRAYRECORD (Record Type) 3.6 

arrays 2.32: 2.2 

ARRAYS FOULED (Error Message) 22.8 

ARRAYS FULL (Error Message) 9.24: 2.34 

(ARRAYSIZE A) 233 

(ARRAYTYP A) 2.3:;'34 

AS VAR (I.S. Operalor) 4.9 

(AS:<USE R WAIT DUAULT MESS 
KEYLST TYPE.AHEAD LISPXPRNTFLG 
OPTIONSLST FlI..E) 6.57.64 

ASKUSERTTBL (Variable) 6.59 

ASSEMBLE macros 22.13 

ASSEMBLE statementS 22.12 

ASSERT (in Decl package) 23.24 

assignmentS (in Patlem Match Compiler) 
. 23.5 

assignments (in CLISP)" 16.7 

(ASSOC KEY ALST) 2.25 

assodauon list 7.1 

ASSOCRECORO (Record Type) 3.6 

ll'IDEX 

(ATOM x) 2.2 

atom hash table ' 22.11 

ATOM HASH TABLE FULL (Error Message) 
9.23 

ATOM TOO LONG (Error Message) 9.23; 
2.4 

ATOMRECORD (Record Type) 3.6 

(ATTACH X L) 2.1i 

ATTEMPT TO BIND NIL OR T 
(Error Message) 9.25: 4.3: 5.2 

ATTEMPT TO RPLAC NIL (Error A-fessage) 
9.23; 2.8.15 

ATTEMPT TO SET NIL (Error Message) 
9.23: 2.5 

ATTEMPT TO SET T (Error Message) 2.5 

ATTEMPT TO USE ITEM OF INCORRECT 
TYPE (Error Message) 9.24 

(AU-REVOIR VAL##) 7.16 

AUTOBACKTRACEFLG (Variable) 20.11 

AUTOCOMPLETE F LG (ASKUSER oplion) 
6.63 

AUTOPROCESSFLG (Variable) 18.25 

AVOIDING SET (Maslerscope Path Option) 
13.14 

(AWAIT.EVENT EVENT T~OUT ~) 
18.30 

(B El ••• EM) (Editor Command) 17.8.24 

back-quote 6.39 

background shade 19.6 

Backg roundMenu (Variable) 19.22 

Backg roundMenuCommands (Van'able) 
19.12 

BACKGROUNDPAGEFREQ (Variable) 18.4 

backspace 6.13.41 

backtr3Cf!'. 9.6: 7.8.12 

Index.3 

• J 



(8ACKTRACE IPOS EPlOS FLAGS FILE 

FP .. INTFN) 7.8 

backtraee t-c.me window 20.10 

BACKTRACEFONT (Variable) 20.11 

SAD ARGUMEUT - FASSCC 
(Error It! essage) 2.25 

SA,D A?'GU~ENj - FGETD (Error Message) 
5.S 

BAD ARGUMENT - FLAST (Error Message) 
2.20 

~-, BAD ARGUMENT - FLE~JGTH 
(Error }"fessage) 2.21 

BAD ARGUMENT - FMEMB (Error Message) 
2.23 

BAD ARGUMENT - FNTH (Error Message) 
2.20 

BAD FILE NAME (Error Message) 9.25 

SAD FILE PACKAGE COMMAND 
(Error .\fessage) 11.22 

BAD FROG BINDING (Error !v[essage) 
U.21 

BAD 'SETQ (Error Message) 12.21 

BAD SYSOUT FILE (En-or Message) 9.24 

(BAKTRACE !POS EPOS SKIFFNS FLAGS 

FILE) 7.8 

BAKTRACELST (Van'able) 7.9 

basic frame 7.2; 7.1.5 

(BCOM?L FILES CFILE - -) 12.17: 
12.14.16 

BE FOR E (as argument to AD VlS E) 10.9: 
. 10.8 • 

BEFORE (as argument 10 BREAKIN) 
10.5: 9.2 

Befo re (DEdit Command) 20.4 

BEFORE I..ITATOM (Prog. Asst. Command) 
8.13: 8.20.27 

BEFORE (in INSERT command) 
(in Editor) 17.25 

INDEX 

BEFORE (in MOVE co~and) ~n Eduo~ 
17.29 

BEFORESYSOUTFORMS (Variabk) 14~ 

bell '(in history event) 8.16; 8.1U6.32 

bell (Printed by System) 6.19: 22.2.11 

bells (printed by DWIM before an interaction) 
15.3 

(BELOW COM) (Editor Command) 17.19 

(BELO"" COM x) (Editor Command) 17.19 

BETWEEN (record field type) 3.7 

BF (Edi.lor Command) 17.7 

8F PATTERN (Editor Command) 17.17 

(BF PATTE;U/) (Editor Command) 17.17 

8 F PATTERN T (Editor Command) 17.17 

SF PATTERN NIL (Editor Command) 
17.17 

( BIN) (Editor Command) 17.31 
• 

(8I N M) (Editor Command) 17.31 

(B IN sTRi::AM) 18.12 

(BIND COMS1 ••• COMSN ) 

(Editor Command) '17.49 

B I NO VAR (I.S. Operator) 4.7 

SINO VARS (I.S. Operator) 4.7 

B I NO (in Alaslerscope templale) 13.17 

B I NO (AI asterscope Relation) 13.9 

bindings in a basic frame 7.5 

BINDS (Litalom) 16.14 

(B IT B!T# WORD) 23.53· 

bit tables 2.32 

(B ITBLT SOURCEBITMAP SOURCELEFT 

SOLTR.CEBOTTOM DESTINATIONBITMAP 

DESTINAT!ONLEFT DESTINATIONBOTTOM 

WIDTH HEIGHT SOtTRCETY?E 
OPERATION TEXTURE 

CLIPPINGREGION) 19.J 

(BITCLEAR N ~K) ~~1 

Index.4 

(J 

() 

n 



0--

o 

(BITMAPSIT B~ X y ~ALu~) 
19.4 

(S ITf1A?COPY BI'TY...AP) 19.4 

(BITHAPCREATE WIDTH HEIGHT 
Er:'S?ERPDCEL ) 19.4 

(BITMAPHEIGHT BITMAP) 19.4 

biEa;ls 19.3 

(BITMAPWIDTH~) 19~ 

B ITS (as a field specification) 3.15 

BITS (record field type) 3.7 

(BITSET N ~K) ~41 

(B ITSPERPIXEL BITMAP) 19.4 

(BITTEST N ~K) ~41 

"BK (Editor CommJnd) 17.7 

(BK N) (Editor Command) 17.11 

(8KLINBUF STR) 6.47 

(BKSYSSUF X FLG RDTBL) 6.47; 22.6 

BLACKSHADE (VwuZble) 19.6 

BLINK 7.2 

b lip functions 7.12 

blips 7.12 
-c 

(SLI?SCAN BLl?TYP IPOS) 7.12 

( B L I PVAL BLIi''!''YP !POS FLG) 7.12 

SLKAPPL Y (Function) U.14 

BLK.A.P?L Y" (Function) 12.14 

INDEX 

block compiling functions 12.16 

block decla.""ations 1~14; 11.25 

b Jock library U.14 

(BLOCKCOMPILE B~-AME BLKFNS 
ENTRIES FLG) 12.16; 12.15 

BLOCKED (Printed by Editor) 17.51 

(BLOCKS BLOCK1 ••• BLOCKN) 
(File Package Command) 11.25; 
12.14 

(80 N) (Editor Command) 17.31 

BORDER (Window Property) 19.32 

(BOTH TEMPLATE 1 TEJ..CPLATE2 ) 
(in Alasterscope template) 13.18 

BOTTOM (Argument to ADVISE) 10.9 

(BOTTOMOFGRIDCOORO GRZOY GRZOSPEC) 
19.43 " 

BOUNDIN (in Decl package) 23.23. 

(BOUNDP VAR) 2.5 

(BOUT STREAM BYTE) 18.12 

(BOX COUNT TYPE N) 14.14 

BOXCURSOR (Variable) 19.36 

BOXED (Variable) 23.50 

boxed numbers 2.37 

boxing 2.36; 22.3-5 

Boyer-Moore fast string sear-~g algorithm 
6.10 

BLKAPPLYFNS (in Masterscope Set Specification) 
13.11 

BR (Exec Command) " 23.59 

brackets (use with fip package) 23.62 

Break within a break on FN 
BLKAPPL YFNS (Variable) 12.14; 12.15-16 

B"LKFNS (in Masterscope Set Specification) 
13.11 

BLKLIBRARY (Variable) 11.14; U.1S '. 

SLKLISRARYOEF (Propert)' Name) 1~14; 
8.21 

BLKNAr-1E (Van"able) 12.15 

( B L 0 C K USECSWAlT TIMER) 18.28 

block compiling 12.13 

(Printed by System) 9.12 

Break (DEdit Command) ·20.6 

BREAK (Error Message) 9.23 

( BREAK x) 10.4: 9.2: 10.1.5-6 

BREAK (Litalom) 9.17 

BREAK (Syntax Class) 6.35 

break characters 6.33: 6.14.46 

Index.S 



break commands 9.3 .. 12 

break e~pressio!l 9 .2~8 

5REAK IUSERTED AFTER 
(Printed by BREAKIJV) 10.6 

(BREAKO FN VrEEN COMS - -) 

10.3: 10.4-6 

(BREAKl BRKZX? BRKV~N BP~N 
BRKCO.\{S BRKTYPE EaRORN) 9.11: 
9.14; 10.1-5; 15.20; 22.1 

BREAKCHAR (Syntax Class) 6.33 

- (BREAKCHECK ERRORPOS ERXN) 9.10; 
9.14.16.22 

BREAl<CHK (Variable) 9.16 

BREAKCOMSLSi (Variable) 9.12 

BREAKCOiiNECTION (Function) 18.15 

BREAKOELIMITER (Variable) 9.6 

(BREAKDOWN FNl •.. FNN ) 14.15 

(BF-EAKIN FN wnERE WHEN COMS) 
10.5; 9.2; 10.1-2.4.6 " 

breaki.'lg CLISP expressions 10.3 

(5REAKLINKS) 23.61 

3REAKr'lACROS (Variable) 9.12 

(BREAKREAD TYPE) 9.12 

8REAKREG IO~~SPEC (Variable) 20.11 

BREAKRESETFORMS (Variable) 9.13; 6.39 

(BRECOMPILE F~ES ~E FNS -) 
12.17: 11.8; U.14.16 

BRKCOMS (Vanabie) 9.12: 9.4·5.11: 10.3 

BRKDWNCOMPFLG (Variable) 14.17 

(BRKDWNRESULTS RETUR~YALUESFLG) 

14.16 

BRKDWNTYPE (Van"able) 14.16: 14.17 

BRKDWNTYPES (Van"able) 14.16 

B RKE X P (Variable) 9.2: 9.5.7-8.10-12: 10.3 

BRKF ILE (Varrable) 9.12 

B RKF N (Variable) 9.11: 9.3: 10.3 

INDEX 

BRKINFO (Property LVC!"e) 10.3.5-6 

BRKINFOLST (Variable) 10.6-7 

BRKTYPE (Variable) 9.12 

BRKWHEN (Variable) 9.11: 10.3 

SROADSCOPE (Property "Vame) 16.22 

BROKEN (Property LVame) 10.3; 5.9 

BROKEN- IN (Property "Vame) 10.5; 
5.9; 10.6 

BROKENFNS (Variable) 10.3-6; 15.20 

brush 19.14 

B T ( Break Command) 9.6 

B T (display break command) 20.10 

B T! (display break command) 20.10 

STY (Break Command) 9.6 

STY 1 (Break Command) 9.6 

STY· (Break Command) 9.6 

STV+ (Break Command) 9.6 

BUF (Editor Command) 20.37 

BUILOMAPFLG (Variable) 11.39; 11.4; 
12.12 

BURY (Window Menu Command) 19.20 

(BURYW wrNDOW) 19.27 

BUTTONEVENTFN (Window Property) 19.30 

BY FOR...\{ (with IN/Or~) (I.S. Operator) 
4.9 

BY FORM (without INION) (I.S. Operator) 
4.9: 4.8.12 

BY (; n REPLACE command) (in Editor) 
17.25 

(BYTE SIZE POSITION) (Jfacro) 2.42 

(BYTEPOSITION BYTESPEC) (Macro) 
tA2 . 

(BYTESIZE BYTESPEC) (lv/acro) 2.42 

C (in an ASSEJf BLE statement) 22.14 

C (M A KEFIL £ option) 11.7 

Index.6 

Cj 

n 



o 

o 

o 

o 

C ... R functions 2.14 

CALL (in Afa.sterscope template) 13.17 

CALL (Masterscope Relation) 13.8 

CALL SOr4EHOW (Masterscope Relation) 
13.8 . 

CALL DIRECTLY (14asterscope Relation) 
13.9 

CALL FOR EFFECT (~fasterscope Relation) 
13.9 

CALL FOR VALUE (Masterscope Relation) 
13.9 

CALL INDIRECTLY (lvfaslerscope Relation) 
13.9 

(CALLS FN t.'SEDATABASE -) 13.19 

(CALLSCCODE FN -) 13.19 

CA~J • T - AT TOP (Printed by Editor) 
17.10; Ii.3 

CAN'T BE BOTH AN ENTRY AND 
THE ·SLOCK NAME (Error Message) 
12.20; 12.16 

CAN'j FI~D EITHER THE PREVIOUS 
VE RS ION ••• (Printed by System) 
11.11 

CAP (Editor Command) 17.41 

(CAR x) 2.14 

( CA RET N'EWCARET) 19.15 

c~-riage-rerurn 6.13.16; 8.30 

carriaE:e-retum (ED IT A command) 
23.48 

(CASEARRAY OLDARRAY) 6.10 

CAUTIOUS (D~VIM mode) 15.3; 
16.3-4 

CBOX (Function) 23.54 

(CCODE? FN) 5.6; 22.3.25 

(CDR x) 2.14 

Cente r (DEdit Command) 20.5 

CENTERFLG (Afenu Field) 19.40 

23.49; 

15.2.20; 

INDEX. 

(CENTERPRINTINREGION EX? REGION 
DISPLAYSTREAM') 19.13 

C~XPR (Litatom) 5.6 

CEXPR- (Litatom) 5.6; 5.7 

CFEXPR (Litatom) 5.6; 5.7 

CFEXPR* (Lilatom) 5.6; 5.7 

CH.DEFAULT .DOMAIN (Variable) 21.12 

CH.DEFAULT.ORGANIZATION (Vanabl~ 
21.12 

( CH. DOMAI NS DOMAINPATTERN) 21.13 

(CH. ENUMERATE OBJECTPATTERN 
PROPERTY) 21.13 

(CH. LOOKUP. USER NAME) 21.13 

CH. NET. HINT (Variable) 21.12 

(CH.ORGANIZATIONS ORG~TrONPATTERN) 
21.12 

(CHANGE DATUM FORM) (Change Word) 
3.13 

(CHANGE @ TO El ••• EM) 
(Editor Command) 17.25 

(CHANGEBACKGROUND SHADE) 19.6 

(CHANGECALLERS OLD NEW TYPES ~ES 
METHOD) 11.18 

CHANGE CHAR (Variable) 6.55; 17.21 

(CHANGECURSORSCREEN sCP~~~~~~) 
19.49 

CHAr~GED (NiARKASCHANGED recson) 
11.11 

CHANGED. BUT NOT UNSAVED 
(Printed by Editor) 1 i.54 

CHANGE FONT (font class) 6.55 

• (CHANGEFONT FONTCLASS·) 6.57 

(CHANGEtlAME FN FROM TO)' 10.7; 17.58 

CHA~JGEOFFSETFLG (A1enu Field) 19.40 

(CHANGE PROP x PROPl PROP2) "1..7 

CHA~lGESARRAY (Varzable) 17.:'.2 

(CHANGESLICE N HISTORY -) 8.18~ 
8.26 

[ndex.7 



~~ge~ 3.11 

CHAr~GEWORD (Property Name) 3.14 

changing record declarations 3.11 . 
(CHARACTER N) ~12 

character cedes 2.12 

(CHARCODE c) ~12 

CHARDELETE (syntax class) 6.41.43 

(CHARWICTH CHA.R.CODE FONT) 19.9 

(CHAR~IOTHY C""dARCODE FONT) 19.9 

-" CHAT 20.17 

(CHAT HOST LOGOPTION INITSTP..EAM 
WINDO"N -) 20.18 

CHAT. ALLHOSTS (Variable) 20.19 

CHAT" OISPLAYTYPE (Variable) 20.19 

CHAT. FONT (Variable) 20.19 

(CHCON x FLG RDTBL) 2.12 

(CHCONl x) 2.12 

CHECK SET (Afaslerscope Command) 

(CHECKCOr.NECTION CONNECTION) 

(CHECKIMPORTS F~ES NOASKFLG) 
11.29 

CHOaZ (Function) 15.16 

(" (CIRCU-1AKER LIST) 23.11 

\....-- {CIRCU"AKERl LIST} 23.11 

(CIRCLMARK LIST RLk"NT) 23.10 

13.7 

23.64 

(CIRCLPRINT LmT PRINTFLG RLKNT) 
23.10: 23.9 

cjsys package 23.53 

CL (Editor Command) 16.20: 17.43 

CL : F LG (Variable) 16.18 

(CLDISABLE oP) 16.19; 4.6 

(CLEANPOSLST PLST) ~17 

(CLEAUUP FTLEI FrLE2 ... FILEN) 11.8 

CLEANUPOPT IONS (Variable) 11.8 

C 1 ear ( DEdit Command) 20.5 

()-
INDEX 

CLEAR (Window Menu Commar.d) 19.20 

(ClEARBUF FILE FLG) 6.46; 6.47 

clearing input buffer 6.19 

clearing output buffer 6.19 

(CLEARMA? FILE PAGES RELEASE) 14.19 

(CLEARPUP Pup) 21.15 

(ClEARSTK FLG) 7.7 

CLEARSTKlST (Variable) 7.7 

(CLEARW WINDOW) 19.27 

CLINK 7.2.6 n--. 
CLISP 16.1; 15.7,9 

CLISP (in Masterscope template) 13.17 

CLlS? (MARKASCHANGED reason) 
11.12 

CLISP and compiler 12.7,11 

CLISP declarations 16.13 

CLISP interaction with user 16.4. 

CUSP internal conventions 16.21 

CLISP operation 16.11 

CLlSP words 15.8 

ClISP: (Editor Command) 16~O: 16.14 

CLIS?ARRAY (Variable) 16.19': 16.13.20; 
23.1 

ClISPCHARRAY (Variable) 16.19 

ClISPCHARS (Variable) 16.19 

(CLISPOEC DECLST) 16.9~19 

CLISPFLG (Variable) 16.19 

CLISPFONT (font class) 6.55 

CLISPFORWOROSPLST (Van-able) 4.5 

CLISPHELPFLG (Variable) 16.16: 16.5 

ClISPI.S.GAG (Variable) 4.13 

ClISPIFTRANFLG (Variable) 16.10 

Cl ISP I FWORDSPLST (VarIable) ~A 

(ClISPIFY X L) 16.17: 11.7: 16.11 

Index.S 0-
\ / 



o 

o 

~ 

{ \ 
.~ 

ClISPIFY (MAKEFILE option) 11.1; 
16.20 

(ClISPIFYFNS FNI ••• FNN) 16.17 

ClISP I FYPACKF lG (Variable) 16.18 

ClISPIFYPRETTYFlG (Variable) 6.54; 
16.20: 11.7 

CllS?! FYUSERFN (Variable) 16.18 

ClISPlNFlX (Property Name) 16.22 

CllSP IN F IX:SPLST (Variable) 16.19: 16.6 

ClISPRECORDTYPES (Variable) 3.10 

CLISPRETRANFLG (Variable) 16.16: 16.14 

(CLISPTRAr-. x mAN) 16.19 

CLISPTYPE (Property Name) 16.21 

CLISPyJORD (Property Name) 16.22; 3.13 

(CLOCK N -) 14.10 

CLOSE (Window Menu Command) 19.20 

*" (CLOSE.NSFILING.CONUECTIONS) 21.14 

(CLOSEAlL ALLFLG) 6.3; 6.11 

ClOSEBREAKWItlDOWFLG (Variable) 20.11 

CLOSECHATWIr~DOWFLG (Variable) 20.19 

(CLOSECOr~NECTION CONNECTION) 23.64 

(CLOSEF~) 62 

(CL~SEF? F~E) 63 

CLOSEFU (Window Property) 19.30 

(CLOSEHASHFILE HASHFlLE) 23.42 

(CLOSENSOCKET NSOC NOE.RRO&~G) 
21.22 

(CLOSEPUPSOCKET PUPSOC 

NOERRORFLG) 21.16 

(CLOSER A x) 22.11 

(CLOSEW WINDOW) 19.26 

closing ~!d reopening files 6.11 

CLREMPARSFLG (Variable) 16.18 

(CLRHASH HARRAY) ~35 

(CLRPROMPT) 19.19 

INDEX 

( CND I R IIOST/DIR.) 18.11 

(CtJO IR DIR PASSWORD) 23.61 

CNTRlV (syntax dass) 6.42 

CODE (Property Name) 5.9: 5.10; 22.26 

COLLECT FORM (I.S. Operator) 4.6 

co 11 ect i ng (Printed by Syslem) 22.9 

color bitmaps 19.43 

(COlOROEMO) 19.49 

(COLOROEM01) 19.49 

(COLORDEM02 saz) 19~ 

(COLORDISPLAY COLORMAP _ 
BITSPERPIXEL CLEARSCREEHFLG) 
19.47 

(COLORO ISPlAYP) 19.47 

(COLORF I LL REGION COLO&'t'U'M13ER 
• COLORBITMAP OPERATION) 19.49 

(COLORFILLAREA LEFT BOTTOM 

WIDTH BEIGHT COLORNUMEER 
COLORBITMAP OPERATION) 19.49 

(COLORIZEBITMAP BIT~ OCOLOR 

ICOLOR BITSPERPD:EL) 19.49 

(COLORKINETIC REGION F'IP-STCOLOR 

LASTCOLOR) 1950 

(COLORLEVEL COLOF~~ COLO&~i.? 
PRlMARYCOLOR !'I~?Er.) 19.46 

(COLORMAPCOPY COLOP~ 
BITSPERPIXEL ) 19.46 

(COLORMAPCREATE INTENSITIES 
BITSPERPrxE:L) 19.45 . 

(COLORMAPP COLORMAP? BITSPERPIXEL) . 

19.46 

COLORNAMES (Variable) 19.44 

(COLORNUMBERP COLOR' BITSPERPIXEL 

NOERRFLG) 19.45 

(COLORPOL YOEMO COLORDS) 19..50 

(COLORSCRE ENS ITMAP) 19.43 

COLORSCREENHEIGHT (Variable) 19-44 

COLORSCREENWIOTH (Variable) 19.44 

Index.9 



CO~~ (as S'.,lff.x to file name) 12.10 

COff'\MAr:o (Variable) 20.44 

COt:nI!:a:lCs u.~at move parentheses (in 
Editor) 17.31 

com.:::cnt p~iDters 6.51: 17.43· 

COHMEl-JT USED FOR VALUE 
(Error Afessage) 12.2fl 

(CO~1HENT 1 L -) 6.50 

COMNENTFLG (Variable) 6.50: 6.52 

COf4rt1ENTFOr4T (fonl class) 6.55 

COMMENTLINELENGTH (Variabk) 6~ 

comments (in listings) 6.49 

(COMPARE Nk\!El NAME~ TYPE SOUR-CEl 
SOtlRCE2) 11.19 

(COMPAREDEFS NAME TYPE SOURCES) 

11.19 

(COMPARELISTS X y) 14.9 

comparillg lists 14.9 . 

(COMP ILE X FLG) 12.10: 12.11 

CO;YjP I LE • EXT (Variable) 12.10; 18.5 

(CO~tPILEl FN DEF -) 12.11 

compiled file 12.10 

compiled functiol"..s 5.5 

~ COMPILED on 
'- . (Printed Wizen File is Loaded) 12.10 

(COMP I LE FILES FILEl FILE:z .•• FILEN) 
11.10 

COMPILEHEAOER (Van·able) 12.10 

COMP I LE IGNOREDECL (Variable) :n.25 

com~iler 12.1 

compiler error messages 12.20 

complkr fl.1m:tions 12.10: 12.16 

compiler printout 12.2 

com;;iler questions 12.1 

com;Jiier stI"'..!.crure 22.11 

COMP ILERMACROPROPS (Variable) 5.17 

INDEX 

COMPILETYPELST (Variable) 12.9; 
5.11: 12.7-8 

C07~PILEUSERFN (Vanable) 1~7; 12.8 

compiling by datatype 12.8 

~om'piling CLISP 12.9: 12.7.11 

compiling files 12.11: 12.17 

co:npiling FUNCTION 12.8 

compiling function calls 12.6 

COMPLETEON (ASKUSER option) 6.63 

COMPSET (Function) 12.1 

(COMS Xl ••• XM) (Editor Command) 
17.46 

(COMS COMl ••• COMN ) 

(File- Package Command) 11..24 

(COMSQ COl.!l •• • COMN) 
(Editor Command) 17.46 

(CONCAT Xl X 2 ••• XN ) 2.30 

(CONCATLIST X) 230 

(CONO CLAUSEl CL.AUSE2 CLAUSEK) 
4.1 

COND clause 4.1 

cor~FIRMFLG (ASKUSER option) 6.62 

Conjunctions (in Masterscope) 13.13 

CONN DIR PWD (Exec Command) 23":9 

CONN {DEVICE/HOST} (DIRECTORY) 
(Prog. Asst. Command) IS.11 

(CONS x Y) 2.14 

(CONSCOUflT N) 1~.14 

CONSTANT (Function) 12.5 

(CONST ~NTS VAR z ..• VARN) 

(File Package Command) 11.27 

(CONSr,'\NTS VAR 1 VAR z '" VARN) 12.6 

constants in compiled code 12.5 

construcung lists (in C LISP) 16.8 

CONTAI~~ (.A.fasterscope Reiation) 13.9 

context switchmg 7.3 

Index.l0 

(j. 

/~ 
\ -) 

(:) 

.. 

.Cj 



o 

o 

COtliIN (Prog. AssL Command) 8.15 

CONTINUE SAVING? (Printed by System) 
8.33 

COUTINUE WITH T CLAUSE 
(Printed by DWIM) 15.6 

continuing an edit session 17.39 

(CONTROL MODE TTBL) 6.45: 6.13.15 

cOlltrol chain 7.2 

control character ~....hoing 6.42 

control-A 6.13.41.43 

control-A (TOPS-20) (Editor Command) 
17.13 

controi-B 9.22-23: 18.1 

control-B (Interlisp-lO) 22.1 

controi-C 18.1 

control-C (Interlisp-l0) 22.l.21 

COlltrol-D 6.8,46; 9.2912.14: ll.4; 
17.38; 18.1 

control-D (Interlisp-l0) 22.1 

control-E 6.46: 9.2914; 10.6; 15.4,6; 
17.2; 18.1 

CONTROL-E (Error Message) 9.26 

control-E (typed to EDIT A) 23.48 

cont:ol-E (Interlisp-l0) 22.1 

control-F (in file name) 6.3 

control-G (in history list) 8.16; 8.11 

control-H 6.46; 18.1 

control-H (lnteriisp-10) 22.1.11 

control-L 6.27 

control-L (TOPS-20) (Editor Command) 
17.13 

controi-N rrOPS-20) 8.16 

control-Q 18.2 

control-O (Interlisp-10) 22.2 

control-P 6.19: 6.46: 9.6: 18.1 

control-P (lnterlisp-lO) 22.2 

INDEX 

control-Q 6.13.41.43 

control-R 6.41 

control-S 6.46; 18.2 . 
control-S (Interlisp-l0) 22.2.11 

control-T 18.1 

COtiTROL-T (Litatom) 9.17 

control-T (Interlisp-l0) 22.2 

control-U 8.16; 6.13.41: 8.31 

control-V 6.13.42 

control-W 6.14; 6.13.40-41 

control-X (Editor Command) 11.13 

control-X (TOPS-20) 22.11 

control-Y 6.39: 17.59 

control-Z (Editor Command) 17.13 

control-Z (TOPS-20) 6.15.46 

copy 2.19: 2.16.24-259 27 

COpy (DECLARE: Option) 11.26 

Copy (DEdit Command) 20.5 

(COpy x) 2.19 

(COpy ALL x) 2.19 

(COPYALLBYTES FRO~E TO~ 
BYTESIZE) 23.61 

(COPYARRAY A) 233 

( COP YB Y T E S SRCFIL DSTFIL START 

END) 6.9 

(COPYDE F OLD NEW TYPE SOt,."RC'E' 

OPTIONS) 11.18 

(COPYFILE FROMFILE TOFILE) 18.11 

(COPYHASHFILE HASEF~ NEWNAML FN 

VTYPE) 23.43 

COPYING (Record Package) 3.3 

(COPYREADTABLE RDTBL) 633 

COpy RIGHT F LG (Variable) 11.37 

COPYRIGHTOWNERS (Vanabie) 11.37 

(COPYSTK POSl POS2) i.7 

Index.II 



/" 

(COPYTERMiABLE TT3L) 6.41 

COPYv/HEN (DECLARE: Option) 11.26 

CORE (core de-vice) 18.13 

(COREDEVICE NAME) 18.13 

COREVAL (Property Name) 22.15; 2216; 
23.48-49 

COREVALs 22.14-15 

COREVALS (Variable) 22.15 

(COROUTI NE CALLPTR## 
COROTJT?TR:## COROUTFORM## 
ENDFORM## ) 7.15 

coroutines 7.14; 7.13 

( C as x RADIANSFLG) 2.46 

(COUNT x) 2.21 

COUNT FORM (LS. Operator) 4.6 

(COUNTDOWN ~ N) 2.21 

(COURIER.CALL S~ FROGRAM 

PROCZIjURE ARG l .•• ARGN 

NOEP_~ORFLG ) 21.9 

(COURIER.OPEN HOSTNAME SERVERTYFE 
;,jo:sP_:tORFLG N~\!E) 21.7 

(COURIER.READ.BU~KDATA STREAM 
PP"OG~\{ TYPE) 21.10 

{COURIER. READ. REP LIST. OF. WORDS 
PROGr_A},! TYPE) 21.10 

~_ (COUR I ERPROGRAM NAME ... ) 21.7 

(COURI£RTRACE FLG REGION) 21.10 

COUT FILE (Variable) 12.3 

(COVE RS HI LO) 23.29 

CQ (in an ASSElvf BLE statement) 22.14 

CREATE (in Alasterscope template) I3.1i 

CREATE (Afas:erscope Relation) 13.9 

CREAT E (Record Operator) 3.3 

CREATE (Record Package) 3.9 

CREATE NOT DEFINED FOR THIS 
RECORD (Error l\tfessage) 3.8 

(CREATE. EVENT NAME) 18.30 

INDEX 

(CREATE.MONITORLCCK NAME -) 18~ 

(CREATEHASHFILE ~. VALUZTYPE 
ITEMLENG'TH #E:-'-nuzs) 13.41 

( C ROE A T ERE G ION LEFT BOTTOM w:r::n'H 

HEIGHT) 19.2 

(CREATETEXTUREFROMSITMAP ~) 
19.6 

( C REA T EW P-EGI0N TITLE BORDER 

° NOOPENFLG) 19.25 

CROSSHAIRS (Variable) 19.36 

CTRL V (syntax class) 6.42 

CTRLVFLG (Variable) 20...39 

curly brackets (use with flp package) 
23.62 

current declaration context 23.30 

current expression (in Edilor) 17.2: 
17 .3.5~7-9.15 -

CURRENTFN (Variable) 23.35 

CURRENT ITEM (Property l't/ame) 20.17 

(CURSOR NEWCUP..sOR -) 19.16 

( CURSORB ITMAP) 19.4 

(CURSORCREATE BITY.AP x Y) 19.16 

CURSORINFN (Window Property) 19.29 

CURSORMOVEDFN (JVindow Property) 19.29 

CURSOROUTFN (JVindow Property) 19 . .29 

(CURSORPOSITIOr~ NEWPOSITION 
DISPLAYSTREA..'.! OLDPOSlTION) -

19.15 

CURSORS (File Package Command) 19.16 

CV (ASSE}dBLE macro) 23.54 

CV2 (ASSEJrfBLE macro) 23.54 

o (Editor Command) 17.44 

DA ( Exec Command) 23.59 

dashing 19.14 

DATA TYPES FULL (Error Afessage) 9.25 

[ndex.12 

n 

l) 

(j 

n 



o 

DATABASE (Property Name) 23.15 

DATABASECOMS (Variable) 13.21 

dztabasefns package 23.15 

OAT ATY?E (Record Type) 3.7 

(OATATYPES -) 2.1 

(DATE -) 14.9 

(DATE FORMAT KEYl KEYN ) 1:3.57 

datefcrmat package 23.57 

DATEFORMAT .DEFAULT (Variable) 23.57 

DATEFORMAT • KEYS (Variable) 23.57 

DATUM (in Changetran) 3.13 

DATUM (Property Name} 20.17 

DATUM (Variable) 3.8-9 

DATUM OF INCORRECT TYPE 
(Error Message) 3.15 

(DC FILE) 20.2 

(OCHCON X SCRATCHLIST FLG RD'l'BL) 
2.12 

DCOM ·(as s.J.ffU to file name) 12.10-11; 
12.17 

DDT 23.46 

debugging 10.1 

':=J DECL (in Dec! package) 23.23 

o 

Dec! package 23.18 

declaration fault (in Dec/ package) 23.19 

DECLARATION NOT SATISFIED 
(Error Alessage) 23.19 

declarations in eLlSP 16.9: 16.7 . . 
DECLARE (Function) 12.5: 16-.15 

DECLARE DeCL (I.S. Operator) 4.11: 
23.22 

DECLARE AS SPECVAR 
(,\{ asterscope Relation) 13.9 

DECLARE AS LOCALVAR 
~ (lv[ asterscope Relation) 13.9 

INDEX 

(DECLARE: • F~EPKGCOMS~GS) 
(File Package Command) 11.26: 
12.1L14 

DECLARE: (Function) 11.26 

DECLARE: DEC!. (1.5. Operator) 4.11 

DECLARE; expression 11.25-26 

(DECLAREDATATYPE TYPENAME 

FIELDSPECS) 3.14 

DECLARETAGSLST (Variable) 11.27 

(OECLOF FOP~) 2330 

DECLOF (Property Name) 13.30 

(DECLTYPE TYPENAME TYPE PROP1 VALl 

. .. PROP N VAL N ) 23.28 

DECL TYPES (File Package Commar..d) 
23.29 

decltypes (in Dec! package) 23 .18 

(OECODE/WINDOW/OR/OISPLAYSTREAM 
DSORW VVlNDOWVAR TITLE BORDER) 
19.25 

(DECCDEBUTTONS BUTTONSTATE) 19.18 

Dedit 20.1 

DEDITL (Function) 20.2 

OEditLinger (Variab/e) 20.8 

DEDITTYPE INCOMS (Variab/e) 20.8 

deep binding 7.1: 2.6 

DEFAULT.INSPECiW.PROPCOMMANDFN 
(Function) 20.16 

DEFAULT.INSPECTW.TITLECOMMANDFN 
(Function) 20.16 

DEFAULT.INSPECTW.VALUECOMMANDFN 
(Function) 20.16 

DE F AUL TCHATHOST (Variab/e) 20.19: 
20.18 . 

DEFAUL TCOPYRIGHTOW~IER (Variab/e) 
11.37 

DE FAUL TCURSOR (Vanable) 19.16 

DEFAUL TFILETYPE (Variable) 13.16 

DEFAUL TFONT (font class) 6.55 

Index.13 



(OEFAULTFONT DEVICE FONT -) 19.9 

DEFAUL rI~~ITIALS (Variable) 17.60 

DEFAULTMAKEl!E\'lCOM (Function) 1L20 

OEFAULT::IAPFILE (Variable) 14.18 

OEFAULTMENUHELDF1. (Function) 19.39 

DEFAULTPRI11TINGHOST {Variable} 18.16 

DEFAULTPROMPT (Vanable) 20.38 

DE FAUL TRcJ1AMEMETHOO (Variab/e) 11.19 

DE FAULTTTYREG ION (Variable) 18.32 

- DEFAUL TWHE'iSELECTEOFN (Function) 
19.39 

DE FC (Function) 8.22 

, DE FE RREDCONST ANT (Function) 12.6 

(DEFEVAL TYPE FN) 5.11 

( 0 E FIN E X -) 5.9 

DEFI~~ED (AfARKASCHANGED reason) 
11.11 

DEFINED. THEREFORE DISABLED IN 
CLISP (Error Message) 4.6; 16.4 

(OEF,INEQ Xl X 2 ••• x N ) 5.9 

defining file package commands 11.30 

defining file package types 11.19 

defining nzw iterative statement operators 
4.13 

(OEFLISi L PEOP) 2.7 

(DEF?RINT TYPE FN) 6.23 

del 6.15.41,46 

(DEL. PROCESS PROC -) 1S.27 

( DE LD E F NAJ,!E TYPE) 11.18 

De' ete {DEdi!' Command} 20.4 

DELETE (Edilor Command) 17.9 

(DELETE . @) (Edilor Command) 
li.24-25: 17.22 

DE LETECHAR (syntax class) 6.41 

(DELETECONTROL TYPE MESSAGE TTBL) 
6.43 

INDEX 

DELETED (MARKASCHANGED reason) 
l1.U 

DELETELINE (syniax class) 6.41 
.. 

(OELETEMENU ."4ENU CLOSEFLG 

FROMW!N'Z)Ow) 19.38 

(DELFILE~) 6~ 

(OELFROMCOMS COMS N~~Z TYPE) 

11.33 

(DELFROMFILES NAME TYPE ~) 
11.33 

OELNOTE (Transorset Command) 23.39 

(DELPAGE PAGE# HASHFrLE) 23.45 

DELVER FILEGROUP (Exec Command) 
23.60 

(DEPOSITSYTE N P0s.n70N ~ BYTE) 
2.42 

DESCRIBE SET (Maslerscope Command) 
13.6 

DESCRIBELST (Variable) 13.;' 

DESTINATION IS INSIDE EXPRESSION 
BE ING MOVED (Pn'nted by Editor) 
17.29 

destructive functions 2.3.24.27 

DET (Exec Command) 23.59 

(DETACH) 23.60 

(DETACHEDP) 23.61 

Determiners (in Masterscope) 13.12 

(OF FN) 20.1 

OF N F LG (Variable) 5.9: 5.10: 8.24: 
11.4; 17.54 

( 0 IFF ERE NeE x y) 2.44 

different expression (Printed by Editor) 
17.51 

DIR FILES • COMMANDS 

(Prog. ASSI. Command) 14.8 

DIRCOMMANOS (Vanable) 14.7 

DIRECTORIES (Variable) 18.12: 15.20 

Index.14 

n 

n , / 

n 



() 

( 0 IRE CT 0 RY FII..ES COMMANDS 
DZFAULTEX'r DEFAL"LTVERS) 14.6 

(DIRECiORYNAME F"LG STRPTR) 18.12 

(DIRECTORYNAMEP D~AME HOSTNAME) 
18.6 

disabling eLlSP operators 15.20 

(DISCARO?I.!PS soc) 21.16 

(DISCARDXIPS NSOC) 21~2 

(OISKFREEPAGES - -) 18.11 

(OISKPARTITION) IS.11 
~\ . '0 (DISMISS MSECSWAlT TIMER) 14.1 

() 

o 

o I SM I SS I NIT (Variable) 6.16 

o ISMI SSMAX (Variable) 6.16 

Display Break Package 20.10 

(DISPLAYDOWN FORM NSCANLmES) 

18.22 

01 SPLAYHELP (Function) 20.38 

OISPLAYTERMFLG (Van"able) 22.23 

(DISPLAYTERMP) 2~23 

DI,SPLA'fTYPES (Variable) 20.45 

OLAMBDA (in Dec1 package) 23.20; 23.19 
'0 

D~ACRO (Property Name) 5.17 

(m'lPHASH EAR-~Yl .fIARR.AY2 ••• 

F-ARF..A.Y N ) 2.36 

DO COM -(Editor Command) 17.42; 8.35 

DO FOPJd (J.S. Operator) 4.6 

(DOBACKG ROUNDCOM) 19.22 

(006 E) 6.18 

(OOCOLLECT ITEM LST) 2.18' 

DOCOPY (DECLARE: Option) 11.26 

DOEVAL@COMP ILE (DECLARE: Option) 
11.2i 

DOEVAL@lOAO (DECLARE: Option) 11.26 

DONTCOMPIlEFNS (Variable) 12.11: 
12.12.15 

DONiCO?Y (DECLARE: Option) 11.26 

INDEX 

DONTEVAL@COMPILE (DECLARE: Option) 
11.27 

DONTEVAL@LOAO (DECLARE: Option) 
11.26 

(OOSELECTEOITEM MENU ITEM BL~ON) 
1'9.41 

(OOSTATS FORM TITLE - - -) 18.22 

DOTHESE (Transorset Command) 23.39 

OOTHIS (Transorset Command) 23.39 

(OOWINDOWCOM wmDOW) 19.22 

( 0 P NAJI.!E PROP) 20.1 . 

( 0 PB N BYTESPEC VAL) (~{ aero) 2.42 

DPROG (Function) 23.20-21 

DPROGN (Function) 23.23 

(DRAWBETWEEN POSn70Nz POSITION2 
WIDTH OPERATION DISPr.AYSTREAM 

COLOR) 19.13 

(ORAWCIRCLE x Y RAD~ BRL~ 
DASHING DISPLAYSTREAM) 19.14 

(DRAWCURVE KNOTS CLOSED BRL~H 
DASHING DISPLAYSTP..E.AM') 19.14 

(DRAWELLIPSE x Y SE~ORRADTh~ 
SE ... \!IMAJORR.A.DItrs ORIE!-t7ATION 

BRUSH DASHING DISPLAYSTREA..\l) 

19.14 

(ORAWLINE Xl Y1 X2 Y2 WIDTH 
OPE.tUTION DISFLAYSTRE:.AM COLOR) 

19.13 

(DRAWTO x Y 'N!DTH OPERATION 

DISPLAYSTP-EAM . COLOR ) 19.13 

(DREMOVE x L) ~2i 

(DREVERSE L) ~27 

( 0 RIB B L E FILENAME APPENDFLG 
THAWEDFLG) 6.12 

(DRIBBLEF I LE) 6.12 

DSK Dm DAYS (Exec Command) 23.60 

(OSKSTAT DIP.. PR!NTIFOv~R PRINTSYS 

PRINTDEL PRINTOLD) 23.61 

DSP (Window Property) 19.33 

Index. 15 



(DSPBACKCOLOR COLOR DmpLAYS~) 
19.43 

(DSP6ACKU? ~1DTH D~PLAYST.P~) 
19.13 

(CSPCLIP?INGREGION REGION 
DlS?LAYST~) 19.11 

(CS?COLOR COLOR DISPLAYSTREAM) 
19'.43 

(DSPCREATE DESTINATION) 19.10 

(DSPDESTINATION DESTINATION 
DISPLAYSTRE:AM) 19.11 

-~-- (DSPF ILL REGION TEXTURE OPERATION 

DISPLAYST?.EAM) 19.12 

(DSPFONT FONT DlSPLAYSTREAM) 19.11 

(DSPLEFTMARGIN X?OSITION 

DISPL.AYSTREAM) 19.11 

(DS?LINEFEED DELTAY DlSPLAYS~) 
19.12 

(DSPOPERATION OPERATION 

DISPLAYSTREAM) 19.12 

(DSPRESET DIS?LAYSTREAM) 19.12 

(DSP,R IGHTMARGIN XPOSITION 

.DISPLAYSTREA..V.) 19.11 

(DS?SCROLL SlVITCESETTING 

DIS?I..AYSTRElil.l) 19.12 

/' (DSPSOURCETYPE SOURCETTI'E 
',-_ I;I3?LAYSTREA..v.:) 19.12 

(DS?TEX7URE T.EXT~~E DIS?LAYST~) 
19.11 

(DSPXOFFSET XOFFSET DISPLAYSTREAM) 

19.11 

(DS?XPOSITION XPOsrrION 

DISPLAYSTruJLW) , 19.11 

(DS?YOFFSET YOFFSET D~PLAYSTREAM) 
19.11 

(DSPYPOSIT!ON ¥POSITION 

DISPLAYSTREAM) 19.11 

(DSU8LIS ALST E;"'~R FLG) 2.24 

(DSU8ST NEW OLD EXPR) 2.24 

INDEX 

(OUMMYFRAMEP pos) 7.4 

DUMP (Transorset Command) 23.37 

(DUMPDATASASE FNLST) 13.21 

(DUMP~8 FILE) 23.16 

DUMPFILE (Van'able) 23.37 

dumping circular lisrs 6.23 

dumping unusual data s-L,rucrures 6.23 

(OUNPACK x SC?AT~T FLG ROTEL) 
2.10 

du r i n9 INTERVAL (l.~. Operator) 1-4.12 

(OV VAR) 20.1 

OW (Editor Command) 16.21; 17.43 

DWIM 15.1 

(DWIM x) 15.3 

DWIM interaction with user 15.3 

DWIM variables 15.10 

DWIMCHECKNARGSFLG (Variable) 16.16 

DWIMCHECKPROGLABELSFLG (Variable) 
16.16; 16.15 

DWIMESSGAG (Variable) 16.16; U.9 

DWIMFLG (Variable) 15.12: 15.19; 17.52.55 

(DWIMI FY x QUIETFLG L.) 16.14-15: 
16.11 

dw;m; fy (Prinled by D~VIl'vf) 12.9 

DWIMI FYCOMPFLG (Vanable) 16.16: 
12.9.11.1i 

DWIMIFYFLG (Variable) 15.11 

(DWIMI FYFNS FNl •.. FNN) 16.16: 
16.15 

OWIMLOADFNS? (Function) 15.11 

DWIMLOADFNSFLG (Van'able) ,15.12: 15.11 

ow IMUSE RFORMS (Variable) 15.10: 
15,8-9: 23.16 

OWIMWAIT (Variable) 15.11: 15.4·5 

E (Editor Command) 17.-45 
~ 

Index.16 

o 

() , 

\ / 

(j 

0-



o 

(E x) (Editor Command) 17.45 

(E x T) (Editor Command) 17.45; 
8.36; 17.6 

( E FOP_?o£l ••• FORMN) 
(File Package Command) 11.24 

E (ir. a floalin.g point number) 2.42; 6.13 

E (ir. an ASS EAf ELE stalement) 22.14 

E (use in comments) 6.50 

EACHT IME FORM (I.S. Operator) 4.11: 
4.U 

,---\ (ECHOCHAR CBARCODZ MODE TTBL) 
'''----.) 6.43 

o 

o 

(ECHOCONTROL qHAR MODE TTBL) 6.42 

echoing 6.42 

(ECHOMODE FLG TTBL) 6.43 

ED (Editor Command) 20.3i 

RELATIONE 0 IN SET 
(l."fasterscope Set Specification) 13.11 

RELATIONE 0 BY SET 
(Ir! aslerscope Set Specification) 13.11 

EDIT (Break Command) 9.8: 9.9 

Ed; t (DEdit C ommar..d) 20.5 

EDIT (display break command) 20.10 

EDIT (Litatom) li.39 

ED IT SET [- EDrTCOMSJ 
(A! asterscope Command) 13.6 

ED IT WHE RE SET RELATION SET (
EDr:'COMSj (}vfasterscope Command) 
13.6 

EDIT (Printed by Editor) 17.56 

ED IT rr ransorset Command) 23.36 

edit chain 17.2: 17.4.7-9.15 

edit commands that search 17.13 

edit cOrI"'.:nands that test li.46 

edit macros 17.48 

ED IT -SAVE (Property Name) 17.38-39 

(EDIT4E PAT x -) 17.57 

INDEX 

EDITA 23.46 

(EOlTA FN COMS) 23.47 

(EDITBM BITMAP) 20.8 

(EDITCALLERS ATOMS ~s co~) 
17.59 

( ED ITCHAR C'HARCODE FOf..T) 20.10 

EOlTCHARACTERS (Vanabie) 17.60 

(EDITCOLORMAP VAR NOQFLG) 19.47 

Ed; tCom (DEdit Command) 20.6 

EDITCOMS (Function). - 17.50 

EOITCOMSA (Variable) 17.53; 15.7.9; 17.52 

EDITCOMSL (Variable) 17.52; 15.9; 17.53 

ED ITDATE (Function) 17.60 

ED ITDATE? (Function) 17.60 

(EDITDEF NAME TYPE SOu~CE 
EDITCOMS) 11.18 

ED ITDE FAUL T (Function) 17.51: 8.36 

(EOITE Da'R COMS An.! TYPE' 
IFCHANGEDFN) 17.56; 17.1.55 

EDlTEMBEDTOKEN (Variable) 17.28: 20.8 

(EDlTF NAME COM! COM2 ••. COMN) 

17.53; 17.1.55 

(EDITFI~DP x PAT FLG) 17~ 

(EOITFNS NAME COM! COM2 

COM 'fy- ) 17.55 

(EDITFPAT PAT -) li5j 

ED ITHI STORY (Variable) 8.35: 
8.25-26.29.36 

editing arrays . 23.46 

editing compiled code • 10.7: 17.58: 23.46 

(EDITL L COMS ATM MESS 

EDITCHANGES) 17.56 

(EDITLO L' COMS MESS -) li.5i 

. (EDITLOADFNS? FN STR ASKFLG FILES) 

17.58 

EDITLOADFNSFLG (Variable) 17.54 

Index.17 



(EDITMODE ~~~ODE) 20~ 

(EDITP N~\!E COM1 COM2 ••• COMN ) 

17.56; 17.1 

EDITPREFIXCHAR (Variable) 20.34 

EDITQUIETFLG (Variable) 17.14 

(EOITRACEFtl COl.!) 17.59 

EDITRDTBL (Van'able) 6.32; 17.56 

(EDITREC NAME COM1 ••• COMN ) 3.11 

(EDITSHAOE SHADE) 20.10 

,,'-', EDITI.!SERFN (Variable) 17.51 

(EDITV NAME COM1 COM2 ••• COMN) 

17.55; 17.1 

E E (Editor Command) 20.37 

EF (Editor Command) 17.40 

E F (Function) 20.2 

EFFECT (in J\1aslerscope template) 13.17 

(EFT? HOST FrLE PRINTERFLG #SIJ:J'ES) 

21.5 

element patterns 
(in Pal1em Afatch Compiler) 23.2 

(EL TAN) 2..33-34 

( E L TO A N) 2.34 

EMACSFLG (Variable) 20.43 

( E~m ED @ IN. x) (Editor Command) 
17.28 

(EMPRESS FILE #COPrES HOST HEADING 

#SIDES) 18.17 

EMPRE SS#S IDES (Variable) 18.1i 

EMPRESS. SCRATCH (Variable) 18.17 

emp~ list 2.15 

(ENCAPSULATE. ETHERPACKET NnB 

PACKET PDH NBYTES ETYPE) 21.24 

END OF FILE (En-or lvlessage) 6.8.13 

end-of-linc 6.3.13.16 

(ENDCOLLECT LST TAIL) 2.18 

( END FILE FILE) 6.25 

INDEX 

ENTRIES (in Masterscope Set Specification) 
13.11 

entries (to a block) 

ENTRIES (Variable) 

(ENTRYfi HIST x) 

12.13; 12.16 

12.15 

8.33 

(ENVAPPLY FN ARGS APOS cpos AFLG 
CFLG) i.6 

(EHVEVAL FO~ APOS cpos AFLG 

eFLG) 7.6 

(EOFP FILE) 6.9 

EOl (syntax class}- 6.42 

E? (Editor Command) 17_40 

E P (Function~ 20.2 

(EQ x Y) 2.2 

(EQLEUGTH X N) 2.21 

(EQMEMB X Y) 213 

(EQP X y) 2.3.37 

(EQUAL X Y) 2.3; 2.37 

(EQUALALL X Y) 2.3 

(EQUALN X Y DEPTH) 2.22 

ERAS E SET (M asterscope Command) 13.5 

ERASE (Transorset Command) 23.36 

ERROR (Error Afessage) 9.23; 9.14 

( ERROR MESS! MESS2 NOBRE.AK) 9.14; 
. 9.23,26 

ERROR (Litatom) 9.17 

error correction 15.1 

error number 9.22 

( ERROR I ) 9.14: 9.3 

( E RRORMESS u) 9.15: 9.22 

ERRORMESS (Variable) 9.16 

(ERRORMESSl MESS1 MESS2 MESS3) 9.15 

( E RRORN ) 9.1·t 9.22 

ERRORPOS (Varl£lble) 9.16 

errors in compiler 12.20 

Index.18 

() 

() 



(J 

errors in Editor 17.2 

errors in iterative statements 

( E RRORSET FORM FLAG -) 
9.11.14 

4.13 

9.15; 

(ERRORSTRING N) 9~5 

ERRORTYPELST (Variable) 9.16: 6.5 

(ERRORX EF..xM) 9.13 

ERRORX (Lilatom) 9.12 

( E RSETQ FOP ... ~) 9.15: 4.4 

(ERSTR ERN -) 22.6: 18.6 

ESC (type of read-macro) 6.37 

(ESCAPE FLG RDTBL) 6~6 

ESCAP E (Syntax Class) 6.33 

escape character 6.13; 2.4 

ESCQUOTE (type of read-macro) 6.37 

(ESUSST NEW OLD EXPR ERROPfLG 
CE'ARFLG) 17.51: 8.8 

( ETHE RHOSTflAr·1E PORT 

UE..c.;.OCTAL.DEFAUI.T) 21.5 

(ETHERHOSTNUMBER NAME) 21.4 

ethernet 21.1 

(:TP.ERPORT NAME ~~ORFLG ~T.FLG) 
21.5 o EV (Editor Command) 17.40 

EV (Function) 20.2 

o 

EVAL (Break Command) 9.3; 10.5 

Eva 1 (DEdit Command) 20.6 

EVAL (display break command) 20.10 

EVAL (Editor Command) 17.45 

(EVAL X -) 5.11 

EVAL (i~ Af asterscope template) 13.17 

-EVAL! (display break command) 20.10 

( EVAL. AS. PROCESS FOR.M) 18.37 

• (EVAL.IN.TTY.PROCESS FORM 

WAITFORRESULT) 18.37 

I!'.'DEX 

EVAL@COMPILE (DECLARE: Option) 
11.27 

EVAL@COMPILEWHEN (DECLARE: Option) 
" 11.27 

EVAL@LOAD (DECLARE: Option) 11.26 

EVAL@lOADWHEN (DECLARE: Option) 
11.25 

(EVAlA X A) 5.12 

(EVAlV VAR pos) 7.7 

(EVENP X Y) 2.41 

EVENT (Variable) 8.18 

event address 8.5-

event number 8.26: 8.5.11.18.33 

event specification 8.5; 8.17 

( EVE RY EVERYX' EVERYFNl EV"ERYFm) 
_ 5.14 

(EXAM x) (Editor Command) 17.48 

(EXCHANGEPUPS SOC-OUTPUP D~ 
. IDFILTER TlMEOrrr) 21.16 

(EXCHAr~GEXIPS soc OU'TXIP IDFILTER 
TIMEOUT) 21.22 

EXEC (Prog. Assl. Command) 8.15 

exec package 23.59 

Ex; t (DEdit Command) 20.6 

EXIT (Transorset Command) 23.37 

EX? DIR (Exec Command) 23.60 

EXPAND (~Vindow Menu Command) 19.21 

(EXPANDBITMAP BITMAP ~TETACTOR 

HEIGHTFACTOR.) 19.4 

EXPANDFN (Window Property) 19.31 

(EXPANDMACRO FORM QUIETFLG -) 

5.19 

{EXPANDW ICON} 19.28 

EXPLAINDELIMITER (ASKUSER option) 
6.63 

EXPlAINSTRING (ASKUSER option) 6.62 

Index.19 



(EXPORT COM1 ••• COMN ) 

(File Package Command) 11.27 

EX P R (LitaIom) 5.6 

EXPR (Property J'1!ame) 5.9: 5.10; 11.4.12: 
12.10,14; 15.8-9; 17.54-55 

EX P R {Variable} IS.11: 13.18 

£XPRfJ (Lil.::.tom) .5.6: 5.7 

EXPRESS IONS (File Package Type) 11.15; 
8.13 

(EXPRP FN) 5.6; 22.3 

'-- EXPRS (Litatom) 11.35 

(EXPT M N) 2.45 

(EXPUNGE DUl) 23.61 

I (EXTENDREG IO~' REGION 

INCLUDEREGION) 19.3 

EXTENT {Window Property} 19.32; 
19.23-24.34 

(EXTRACT @1 FROM • @2) 
(Editor Command) 17.27 

F PATTERN (Editor Command) 17.15 

(F PATTERN) (Editor Command) 17.16 

F PATTERN T (Editor Command) 17.16 

F PATTERN N (Editor Command) 17.16 

'-- F PATTERN ~~ I L (Edilor Command) 17.16 

(F PATTERN N) (Editor Command) 
li.16~ 17.4 

F (in event address) 8.5 

F (Response to Compiler Question) 12.2 

F I L (as a D ~VIAf construct) • 15.8 

(F= EXPRESS;ON x) (Editor Command) 
17.17 

(FASSOC KEY ALST) 2.25: 16.10 

FAST (,\/ AKEFILE -option) 11.7 

fast functions 2.3 

fast symboiic dump 6.54 

INDEX 

FASTY?EFLG (Variable) 15.17 

FAULT IN EVAL (Error Message) 9.24 

FAUL TAPPL Y (Function) 15.6; 12.19; 
. 15.10 

FAUL TAPPLYFLG (Var.able) 15.10 

F AUL TARGS (Variable) 15.10 

FAUL TEVAL (Function) 15.6; 9.24; 15.10 -

FAUL TFN (Variable) 15.11 

FAUl TX (Variable) 15.10 

FBOX (Function) 23.55 

FBOX {record declaration} 23.55 

(FCHARACTER N) 212 

(FOIFFERENCE X y) 2.43 

(FEQP X y) 2.44 

FETCH (in Masterscope template) 13.17 

FETCH (in record package) 16.7 

FETCH (Jvfasterscope Relation) 13.9 

FETCH (Record Operator) 3.1 

(FETCHFIELD DESCRIPTOR. DATUM) 3.15 

FETCHFN (Property Name) 20.17 

FEXPR (Litatom) 5.6; 5.7 

FEXPR* (Litatom) 5.6; 5.7 

FFETCH (Record Package) 3.2 

(FFILEPOS PATTERN F~ STAR~ END 
SKJP TAIL CASEA;U~AY) 6.10 

(FGETD FN) 5.8 

(FGREATERP x y) 2.44 

FI (Exec Command) 23.60 

F I JFN (Exec Command) 23.60 

(FIELOLOOK FIELDNAl'.m) 3.11 

FIE LOS (File Package Type) 11.16 

FIELDS OF SET 
(Afasterscope Set Specrjication) 13.11 

( F I LD I R FrLEGROUP -) 14.8 

FILE (Property Name) 11.13 

Index.20 

n 

('\ 
\ )-



o 

·0 

o 

FILE (Variable) 23.50 

file attributes 6.6 

FILE DATA ERROR (Error Message) 23.63 . 
file maps 11.38 

file names 6.3; 6.4-5 

FILE NOT FOUND (Error Message) 9.24: 
6.LS 

FILE NOT OPEN (Error Message) 9.23; 
6.2.5,9: 22.22 

file package cO!Th~ands 11.21 

file package functions 11.32 

file pointer 6.8-9 

FILE SYSTEM RESOURCES EXCEEDED 
(Error Message) 9.24; 6.1.4 

FILE wo~' T OPEN (Error Message) 
9.23: 6.1 . 

FILE: (Complier Question) U.1 

(FILECHAllGES F~ mE) 11.36 

FILECHA'JGES (Property Name) 1L13: 
11.11 

filecozr.5 11.21; 11.3-4 

(FILECOMS ~E TYPE) 1134 

(FILECOMSLST ~E TYPE -) 11~3 

(FILECREATED x) 1135 

FILECREATED expression U.10 

(FILEDATE FILE -) 11.36 

FILECATES (Property Name) 11.13; 
11.11,36 

F ILEDEF (Property Name) 15.8: )5.9 

(FILEFNSLST F~E) 11~ 

F ILEGROUP (Property Name) 11.8 

FILELINELENGTH (Variable) 23.14: 6.54 

FILE LST (Variable) 11.13: 11.4.8: 15.20 

FILEMAP (Property Name) 11.13,38 

FILEMA? DOES NOT AGREE WITH 
COUTENTS OF (Error Message) 
11.39 

INDEX 

(FILENA'~EFIELD FILENAME FIELDNAME) 
6.5 

FILE?KG.SCRATCH (file) 11.19 

("FILEPKGCHAP~GES TYPE LST) 11.12 

(FILEPKGCOM CO~v.oN~~ PROP1 
VALl ••• PROFN V.o\LN) 11.32 

(FILEPKGCOMS LI'TATOM1 .•. LITATOMN ) 

(File Package Command) 11.24 

FILEPKGCOMS (File Packo.ge Type) 11.15 

FILE PKGCOMSPLST (Variabie) 11.12 

FILEPKGFLG (Variable) 11.3; 11.4 

(FILEPKGTYPE TYPE PROP1 VALl ••• 

PROPN VALN) 11~O 

FILEPKGTYPES (Variable) 11.14 

(FILEPOS PATTERN FILE START END 
SKIP TAlL CASE.A.RP..AY) 6.9 

F I LERDTBL (Variable) 6.32; 6.16.24 .. 25: 
11.4.34: 18.i 

files 6.1 

( F I L E S • FILES/LISTS) 
(File Package Command) 11.28 

FILE S (File Package Type) 11.16 

( FILES?) 11.8 

FIl.:ETYPE (Property Name) 12.9,11; 16.20 

filevars 11.30: 11.4y34 

F I LEVARS (File Package Type) 11.16 

(FILLCIRCLE x y RAD~~ TEXTU~ 
DISFLAYSTREAM') 19.12 

F I NALL Y FORM (1.S. Operator) 4.10: 4.12 

F ; n d (D Edit Command) 20.5 

F I NO fl.S. Operalor) 4.15 

(F INC. PROCESS PROC ERRORFLG) 

18.28 

(FINDCALL.ERS ATOMS FILES) li.59 

(F INDF I LE FILE NSFLG D!R!..ST) 15.20 

FIRS T (Argument 10 AD VIS E) 10.9 

FIRST (DECLARE: Option) t1.2i 

Index.21 



FIRST FOF_V (I.S. Operator) 4.10: 4.12 

FIRST (type of read-macro) 6.37 

r I RSTCOL (Variable) 6.53: 6.54 

(FIX x) 2.43 

FIX EV'e.DtSpc!C (P7'Og. ASSL Command) 
S.10; 827 

FLX for:nat (in PRINTNlJM) 6.21 

fixed number of arguments S.2 

FIXEDITDATE (Function) 17.60 

FIX? (as a field specification) 3.14 
{~---.. (FIX? x) 2.1.37 

F I X P (record. field type) 3.7 

( F IXSPELL XWORD REI. SPLST FLG 
T~ FN TmF.LG DONTMOVETOPFLG 
- -) 15.18; 15.19-20 

FIXSPELLDEFAUL T (Variable) 15.12; 
15.4; 16.14 

FIXSPELLREL (Variable) 15.18 

FLAG (record field lype) 3.7 

(FLAST x) 2.20; 16.10 

( FLE NGiH x) 2.21 

(FLESS? x y) 1.44 

( FL! PCURSOR) 19.16 

.' ( FLOA T x) 2.44 
~-

r'- FLOAT funnat (in PRINTNUM) 6.22 

FLOAT DJG (record field type) 3.7 

FLOA iI'IG OVERFLOW (£77"Or Message) 
9.16 

floating pomt arithmetic 2.43 

floating point numbers 2.42: 2.1.36-37.40: 
6.13: 22.3 

FLOATING UNDERFLOW (Error Message) 
9.16 

FLOATP (as a field specification) 3.15 

(FLOATP x) 2.L37 

FLOATP (record field type) 3.7 

INDEX 

FLOPPY (File Device) 18.13 

(FLTFMT FORMAT) 6~O 

(FLUSHRIGHT POS x ~ P~G 
• CEN'TERFLAG FILE) 6.31 

(FMAX Xl X 2 ••• XN ) 2.44 

(FMEMB X Y) 2.23: 16.10 

(FMIN Xl X2 ••• xN ) 2.44 

(FMINUS x) 2.43 

FN (Transorset Command) 23..36 

FN (Variable) 13.7 

(FNCHECK FN NOERRORFLG SPELLFLG 
PROPFl-G TAlL) 15.19; 5.7 

(FNS FN'l ••• FN'N) 
(File Package Command) 11.22 

FNS (File Package Type) 11.15 

(FNTH X 1'1) 2.20 

(FNTYP FN) 5.6:° 5.10: 22.3 

font package 6.55 

FONTCHANGEFLG (Variable) 6.56; 23.14 

(FONTCOPY OLDFONT PROPl VALl PROP2 
VAL2 ••. ) 19.8 

(FONTCREATE F~~Y ~E FACE 
ROTATION DEVICE NOERRORFLG) 
19.8 

FONTDE F 5 (Variable) 6..5i 

FONTDE F SVARS (Variable) 6.56 

FONTD I RECTOR I ES (Variable) 19.8 

FONTESCAPECHAR (Variable) 6.56 

FONTFNS (Variable) 6.55 

(FONTNAME NAME) 636 

(FONTP x) 19.8 

FONTPROF r'LE (Vanable) 6.56 

(FONTPROP FONT PROP) 19~ 

(FONTSET NAME) 6.56 

FONTWIDTHSFILES (Variable) 18.18; 19.8 

FOR VAR (I.S. Operator) 4.7 

[ndex.22 

o 

o. 



o 

0-

o 

o 

FOR V.ARS (1.S. Operator) 4.7 

FOR OLD VAR (I.S. Operator) 4.7 

FOR (in USE command) 8.8 

F OR VARIABLE SET I.~. T.-UL 

(Master.;cope Command) 13.7 

FOR (in INSERT command) (in Editor) 
17.25 

(FORCEOUT CONlv"ECTION/FILE) 23.65 

fo rDu rat; on INTERVAL (1.S. Operator) 
14.12 

FORGET EWlntSpec (Prog. Ass!. Command) 
8.13: 8.18 

fork handle 22.21 

forks 22.20 

FORM (Process Property) 18.27 

. format and use of history list 8.25 

(FPLUS X z X:2 ••• XN) 2.43 

(FQUOTIENT x y) 2.43 

frame 7.2 

frame extension 7.2 

fra!:ne :lame 7.2 

n-dme5 ·72 

(FRAMESCA~ ATOM pos) is 
FREE (in Dec! package) 23.23 

FREEL Y (use in Masterscope) 13.8 

(FREEVARS FN tiSEDATABASE) 13.19 

(FREMAI~DER x y) ~43 

FREPLACE (Record Package) 3.2 

F ROM FORM (I.S. Op~razor) 4.8: 4.9 

FRO~ (in event speci.fication) 8.6 

FROM SET (ldasterscope Path Option) 
13.14 

FROM (in EXTRACT command) 
(in Editor) 17.27 

(FRPlACA X y) 2.15; 16.10 

(FR?LACD X y) 2.15; 16.10 

INDEX 

(FRPLNODE x A .0) 

(FR?LNODE2 X Y) 

2.15 

2.15 

(FRPTQ N FORMI FORM, ••• FOR.VN) 

5.13 

(FS PATTERN,! ••• PATTERNN) 

(Editor Cotrunand) li.16 

FSUSR (LilGlOm) 5.n: 5.7 

F SUB R* (Litatom) 5.6; 5.7 

,( FTIMES Xl X2 ••• xN ) 2.43 

(FTP HOST FrLE ACCESS tiSZR PASSWORD 

ACCOUNT BYTESlZE) 23.63 

ftp package 23.62 

full -file name 6.4 

(FULLtlAME X RECOG) 6.4: 6.5 

FULLPRESSPRINTER (Variable) 18.18 

FUr~ARG (Lilatom) 5.15; 5.6 

(FUNCTION FN ENV) 5.15 

FUNCTION (in Maslerscope lemplate) 13.16 

function definition cell 5.8; 12.18; 22.3 

function definition cells 2.6 

function types 5.2 

FUNCTIONAL (in Mascerscope template) 
13.17 

functional arguments 12.8 

FUNNYATOMLST (Variable) 16.18 

(GAl NSPACE ) 14.13 

GAINSPACEFORMS (Variable) 14.13 

garbage collection 18.2: 22J . 

(GATHEREXPORTS FROMF~ES TO~ 
FLG) 11.29 

(GeO x y)- 2.40 

(GCGAG MESSAGE) 18.2: 22.9 

(GCMESS MESSAGE#; STRING) 22.10 

(GCTRP) 18.2 

Index.23 

------ -- -- -- I 



,-
( 
'---

(GCTRP 1'1) 22.11 

GCTRP (Printed by System) 22.11 

(GDATE DATE FOP .. "4AT3ITS STRPTR) 

14.10 

GE (CLISP Operator) 16.6 

(GE1'JER.~ TE HANDLE VAL) 7.13 

(GEr~ERATOR F'ORM##' CO~vAR#=#) 
.. 1'" 
I.~.J 

generator handle 7.13 / 

generators 7.13 

generators for spelling correction 15.15; 
23.44 

GE~H~UM (Variable) 

(GEl~SYM CHAR) 

(GEQ x Y) 2.45 

2.11 

2.11: 10.3.8-9 

GET (old name for LISTGETl) 2.26 

GET- (Editor Command) 17.43; 6.51 

(GETATOMVAL VAR) ~6 

(GETBLK N) 22.20: 9.24; 18.6 

(GETSOXPOSITICN ~T.H ~GRT ORGX 

ORGY \V11'Y"DOW PROMPT'MSG) 19.36 

(GEiBOXREGION WIDTH EEIGIIT ORGX 

ORGY vl-Th"DO .... v PROMFTI.!SG)· 19.37 

(GET8rtK RD7BL) 635 

(GE7CHAR8 ITMAP CHAR co DE FONT) 

19.9 

(GETCOtr1MENT X DESTFL -) 6.51 

(GETCONTROL TTEL) 6.45 

GEiD (Eqitor Command) li.44 

(GETO F:-l) 5.8: S.lO: 22.3 

GETDECl TYPEPROP (Function) 23.29 

-(GETDEF :.lAME TYPE SOURCE OPTIONS) 

11.17 

(GETDELETECONTROl TYPE TTBL) 6.44 

(GETOESCRIPTORS TYPENAME) 3.15 . 

(GETECHOMOOE TT13L) 6.43 

INDEX 

(GETEOFPiR FILE) 6.9 

(GETFIELOSPECS TYPENAME) 3.15 

(GE.TFILEINFO FILE ATTRL3) 6.6 

(GETFILEPTR FILE) 6.9 

{GETHASH KEY ZAiUUY} 2.-:::: 16.14 

(GETHASHF I LE KEY Hr"'sIiFILE) 23.42 

(GETLIS x PROPS) lZ 

(GETMOUSESTATE) 19.18 

GETP (old name of GETPROP) 2.7 

(GETPA6E HASHFILE N) 23.45 

(~ETPASSWORD DIRECTORYNAME) 23.62 

• (GETPNA~~E FILEADR !i.ASBFILE) 23.45 

(GETPOSITIOPl WINDOW CURSOR) 19.36 

(GETPROP ATM PROP) 2.7 

(GETPROPLIST AToM) ~8 

(GETPUP pr.;rpsoc WAIT) 21.16 

(GETPUPBYTE PUP BYTE#) 21.18 

(GETPUPSTRING PUP OFFSET) 21.18 

(GETPUPWORO PUP WORD#:) 21.17 

(GETRAISE TTBL) 6.45 

(GETREADTABLE RDTBL) 632 

(GETREGION M~rVIDTI1 MINEZIGHT 

INITREGIOU .VZVI?.EGIO~T:{ 

NE'Vl?.EGlor""'FN~_~G) 19..37 

(GETRELATION ITE]'! RELATION 

INVERTED) 13.20 

(GETSEPR RDTBL) 635 

(GETSTREAM FILE ACCESS) 18.12 

(~ETSYNTAX CH TABLE) 6.34 

(GETTEMPLATE FN) 13.18 

(GETTERMT ABLE TTBL) 6.41 

(GETTOPVAL YAR) 2.5 

(GETTYPEDESCRIPTION TYPE) 222 

GETVAL (EdiLOr Command) liA6 

(GET X I P NSOC WAIT) 21.22 

Index.24 

Q' 

n 

n 

(] 



o 

(J 

o· 

(GIVE. TTY. PROCESS WINDOW) 18.34 

(GLC x) 2.29 

global variables ll.4: 16.15 

GLCBALVAR (Property Name) 12.3; 16.15 

( G LOS.A.L VARS VAR1 ••• VARN) 
(File Packcge Command) 11.25 

'-

INDEX 

(HARRAY LEN) 235 

(HARRAYP x) 2.2 

(~ARRAYSIZE P.AP_~Y) 235 

(HASDEF NAME TYPE SOVRCE SPELLFLG) 

11.17 

GLOBAL VA~S (in Afasterscope Set Specification) 

HASH ARRAY FULL (Enur ~f~g~ 2~6 

hash arrays 2.35; 2.2 

l3.11 

GLOBALVARS (Van'able) 12.3; 12.15; 16.15 

(GNC x) 2.29 

GO (Break Command) 93 

(GO LABEL) (Editor Command) 17.17 

(GO x) 4.4 

GO (in iterative statement) 4.11 

GRAYSHAOE (Variable) 19.6 

(GREATER? x Y) ~45 

(GREET NAME -) 14.5 

GREETOATES (Variable) 14.6 

(GREETFILENAME USER) 14.6 

greeting and user profiles 14.5 

( G RID GRIDSPEC UNTTSVIIDE UNITSHIGH 

GR.IDEOP.DER DIS?LAYSTREAM 
G?IDSH.AI)E) 19.42 

(GRIDXCOORD XCOORD GRlDS?EC) 19.42 

(GRIDYCOORD YCOORD GRIDSPEC) 19.42 

Gi (CLISP Operator) 16.6 

(GT J FN FILE EXT V FLAGS) 22.22: 18.6 

handle 22.24 

HA.RO DISK ERROR '(Error Message) 9.22 

HARDCOPY nVindow Menu Command) 
19.11 

(HARDCOPYW "-"7NDOW/BITMAP/REGION 
FILE HOST SCALEFACTOR 

ROTATION) 18.18 

(HARDRESET) 18.25 

hash file facility 23.41 

has...~ keys 2.35 

hash overflow 2.36 

HASH TABLE FULL (Error Message) 
9.24; 2.36 

hash value 2.35 

hash values 2.35 

(HASHF ILENAME HASSFILE) 23.42 

( HASHF I LE P x) 23.42 

(HASHFILEPROP HASHFILE PROP) 23.42 

HASHFILEROTBL (Variable) 23.41 

(HASHFILESPLST HASHFILE) 23.44 

HASHLINK (Record Type) 3.6 

HASHOV~RFLO\~ (Function) 2.36 

HASHST ATUS (Function) 23.42 

( HASTTY\iI NDOWP PROC) 18.32 

( HCO?Y ALL x) ~19: 6.24 

HE IGHT (Window Property) 19.33 

(HEIGHTIFWINDOW INTERIOREEIGH'I' 
TITLEFLG BORDER) 19.26 

(HELP MESS1 MESS2 BRKTYPE) 9.14 

HELP (Lilalom) 9.17 

HELP (lYfasterscope Command) 13.7 

HELP! (Error Message) 9.14 

HELPCLOCK (Variable) 9.11: 8.8.29 

HE LPDE PTH' (Variable) 9.10 

HELPFLAG (Vanabie) 9.11: 9.22 

HELPSYS (Function) 5.7: 18.5 

lndex.25 



HELPT I1~E (Variable) 9.11 

HERALDSTRIUG (Vanable) 14.4 

HE RE (in edit co;r.mand) 17.25 

HISTORY (Property NaJrle) 8.U 

HISTOR't ('?'ariable) 8.18 

his!orj list g.2; 8.25; 17.51 

HISTORYCCHS (Variable) 8.36 

(HISTORYFIMD LST INDEX MOD 
EVENTADDRESS -) 8.32 

-, (HISTORYMATCH ·INPUT PAT EVENT) 
8.33 

(HISTOR'fSAVE HISTORY ID INPUTl 
INPUT2 INPtJT3 PROPS) 8.32: 
8.25~27 -28.35 

HISTORYSAVEFORMS (Variable) 8.18 

HISTSTRO (Var.able) 8.26 

HIS1'STRl (Variable) 20.40 

(HLSP x) 19.45 

(HORRIBLEVARS VAR1 ••• VARN ) 

(File Package Command) 11.25; 6.24 

HOST (as a file name field) 23.63 

( HOST UAME HOSTN FLG) 22.6; 18.6 

( HOSTfJAr~E P NAME) 18.6 

(HOST~lUM8ER) 22.6; 18.6 

',-- ( H P R I rlT E:X?R. FILE UNCIRCULAR 

DA7ATYPESEEN) 6.24 

(HREAD FIT..E) 6.24 

(I C Xl .•. xN) (Editor Command) 
17.45 

( I. S. OPR NAME F'ORlvr OTHERS 

E\~UFLC) 4.13 

I. S. OPR (Property Name) 11.12 

i.s.oprs 4.5 

(I. S. OPRS OPR z ••• OPRN ) 

(Fiie Package Command) 11.25; 4.15 

I . S. OPRS ~File Package Type} 11.16 

INDEX 

Ls.type 4.6; 4.13 

IBOX (Function) 23.55 

IBOX (record declaration) 23.55 

icon 19.21 

ICOH (Window Property) 19.31 

ICONFN (Window Propeny) 19.31 

ICO:~WINOO"" (Window Property) 19.31 

IconWi ndowMenu (Variable) 19.22 

IconWindowMenuCommands (Variabk) 
19.22 

ID (Variable) 8.18 

(IDATE STH) 14.10: 18.6 

(IDIFFEREHCE x y) 2J8 

(IEQP N M) 2.39 

{ I F x} (Editor Command) 17.46 

(IF x COMS1 ) (Editor Command) 1i.47 

(IF X COMS1 COMS2 ) (Editor Command) 
17.47 

(IF ~RESSION TEMPLATEl TEMPLATE2 ) 
(in !¥I asterscope template) 13.18 

IF-mEN-ELSE statements 4.4 

( IF PRO P PROPNAME r.ITATOM 1 .•• 

LITATOMN) (File Package Command) 
11.13; 11.30 

(IGEQ X y) 2.39 

IGNORE (Litatom) 20.44 

(IGr~OREDECL • VAL) 

(File Package Command) 23.25 

IGNOREMACRO (Litatom) 5.19 

(IGREATERP x y) 2.39 

(ILEQ X Y) 2.39 

(ILESSP X Y) 2.39 

ILLEGAL ARG (Error Alessage) 9.24: 2.9: 
5.8: 6.4.43: 7.5 

ILLEGAL DATA TYPE (Error frfessage) 
3.15 

Index.26 



o 

ILLEGAL DATA TYPE NUMBER 
(Error Jdessage) 9.25 

ILLEGAL EXPONENTIATION 
(Error Afessage) 245 

ILLEGAL GO (Error Message) 12.21 

ILLEGAL INSTRUCTION (Error ~fe~g~ 
9.22 

ILLEGAL OR IMPOSSIBLE BLOCK 
(Error Message) 9.24: 22.20 

ILLEGAL REAOTABLE (Error Message) 
9.25; 6.32-33.42 

ILLEGAL RETURN (Error Message) 9.22: 
12.21: 4.4 

ILLEGAL ·STACK ARG (Error Message) 
9.23: 7.3 

ILLEGAL TERMI1~AL TABLE 
(Error lJ,J essage) 9.25; 6.41-42 

I~~AGEHE IGHT (lv{enu Field) 19.40 

Ifr1AGE\r/IDTH (Nlenu Field) 19.41 

(IMAX Xl X2 .•• xN) 2.39 

( n"n N Xl X 2 ••• x N ) 2.39 

( IMI NUS x) 2.33 

If~?1ED (type 0/ read-macro) 6.38 

I:-rlMED lATE (type of read-macro) 6.38 

(0 (IltlOD x Y) 2.39 

o 

(IMPORTFILE F~E RETUR~7LG) 1129 

(FNI IN FN2) (arg to BREAKO) 10.4 

IN FOR.V. (I.S. Operator) 4.7 

IN OLD VAR (I.S. Operator) 4.8 

ON OLD (VAR"'FOR.Y') (I.S. Operator) 4.8' 

I N OLD (VAR+-FORM) (I.S. Operator) 
4.8: 4.9.12 

IN (ir. USE command) 8.8 

IN EX?P..ESSION 

(\lcslerscope Set Specification) 13.10 

H~ (i n Er~BED command) (in Editor) 
li.28 

INDEX 

IN? (Break Command) 9.9 

INCORRECT DEFINING FORM 
(Error AI essage) 5.9 

" incorrect number of argu:nen~ 5.3 

(INFILE F~E) 62. 

(INFILECOMS? N~~ TYPE COMS 
-) 11.32 

(INFILEP FILE) 6.4; 6.5 

INFIX (type 0/ read-macro) 6.36 

infix operators in eLlSP 16.5 

INFO (Propeny Name) 5.4~ 8.34; 
16.14.17: ,23.17 

IN FOHOOK (Process Property) 18.36; 18.27 

RELATIONI N G SET 
(Masterscope Set Specification) 13.11 

I N IT (in record declarations) 3.9 

I NIT IALS (Variable) 17.60 

INITIALSLST (Variable) 17.60 

(INITRECORDS REel ... RECN) 
(File Package Command) 11.25: 3.8 

(INITVARS VAR1 .•• VARN) 

(File Package Command) 11.22 

(INPUT FILE) 62 

input buffer 6.15.19.46; 9.12: 22.2.11 

input functions 6.12 

(INREADMACROP) 638 

(INSERT El ... EM FOR • @) 
(Editor Command) 17.25 

(INSERT £I ••• EM AFTER • @) 
(Editor Command) 17.25 

.( INSERT El ... EM BEFORE • @) 
(Editor Command) 17.25 

INSIDE FORM (1.5. Operator) 4.8 . 

( INS IDEP REGION X Y) 19.3 

(INSPECT OBJECT ASTYPE VVE:E:P..E) 

20.13 

INSPECT IARRAY (Function) 20.15 

Index.27 



IMS?ECTALLFIELDSFLG (Variable) 20.15 

(INSPECTCODE FN) 20.14 

IUS?ECiMACROS (Variable) 20.15 

In...c:p~tor 20.12 

(INS?ECT~.CREATE DATUM 
PROPER~ FETCHFN 
STOF..ZFN PROPCO."£M.ANDFN 

vjU.t''ECOMMAl'IT)FN TITLEC04\!MA.NDFN 

T:TLZ SELZCTI04VFN WF'£ ... ~ 

PROPPR.I:iTFN) 20.16 

(INSPECTW.REDIS?LAY tNSPE~ 
,-, PROPERTY -) 20. Ii 

" . 
(INSPECTW.REPLACE ~SPE~ 

PROPERTY NEWVALUE) 20.17 

(INSPECTW. SELECT ITEM INSPECTW 

PROFERTY VALVZFLG) 20.17 

INSPECTWTITLE (Property Name) 20.17 

INSTRUCTIONS (Litatom) 5.19 

INTEGER (record field type) 3.7 

integer arithmetic 2.38 

(INTEGERLENGTH N) ~41 

integ~rs 2.38; 2.~ 

(r~TENSITIESFROMCOLORMAP COLO~) 
19.46 'Ill 

interfork communication 22.20 

( interpreter 5.11 
'- . 

INTERRUPT (Function) 2::'1; 22.11 

INTE RRUPT (Litatom) 9.12 

int·~r.upt characters 9.17: 18.1: 22.1 

( INTE RRUPi ABLE FLAG) 9.18 

(~NTERRUPTABLEP) 9.18 

( r NT E RRUPTCHAR CH.AR TYP/FORM 
HAHDF'LG) 9:17 

INTERRUPTED BEFORE 
(PrinLed b~v System) 22.1 

(INTERSECTION x y) ~22 

( I :-.ITE RSE CT REG IONS REGIONl P..EGION2 
... REGIONN ) 19.3 

INDEX 

( IOF ILE F'1!.E) 6.2 

(IPLUS Xl X 2 ••• X N ) 2.38 

(IQ~OTIENT x y) ·239 -

(IREMAINDER X Y) 2.39 

SET IS SET (lvicslerscope Command) 13.5 

ISTHERE (I.S. Operator) 4.15. 

IT (Variable) 8.16 

ITE1~HEIGHT (Afe.'1u Field) 19.40 

ITEMS (j\fenu Field) 19.39 

ITEMWIDTH (Afenu Field) 19.40 

iterative statements 4.5 

(ITIMES Xl X 2 ••• X N ) . 2.39 

JFN 22.22-23 

(J FNS JFN AC3 STRPTR) 22.23; 18.6 

JMACRO (Property Name) 5.17 

(JOB#) 23.60 

JOIN FORM (1.S. Operator) 4.6 

JO INC (Editor Command) 17.42 

JS (ASSE~'f ELE macro) 23.54 

( J S JSYSNAME ACl AC2 AC3 RESULT) 
23.53 

JSYS 22.22 -23 

( J SY S N ACl AC2 AC3 RESti"I..TAC) 22.6 

JSYS ERROR (Error Message) 9.22; 22.6 

(JSYSERROR ERRORN) 23~ 

JSYSES (Variable) 23.53 

.-
(KEY ACT ION KEYNAME ACTION,S) 18.8 

keyboard layouts 15.5.12 

(KEYDO'-'/NP KEYNAME) 18.8 

KEYLST (ASKUSER argument) 6.59 

KEYLST (ASKUSER option) 6.62 

KEYSETSTATE (Alaero) 19.17 

Index.28 

n 

() . 



o 

u-

() 

() 

KEYSTRING (AS1(USER option) 6.63 

( 1< FOR:< FORK) 22.22; 22.21 

KNOWN (.'.,fasterscope Set Specification) 
13.11 

(K\O:OTE x) 5.11 

(L-CASE X FLG) 2.11; 17.41 

LAB E LS (Litatom) 16.17 

LAB E LST (Variable) 23.11 

LA~lBDA (Lilalom) 5.2; 5.10; 22.3 

lambda functions 5.2 

lambdA-nospread functions 5.4 

lambda-spread functions 5.2 

LAH5DACOMS (Variable) 23.40 

LAMBDAFONT (font class) 6.55 

LAf,~SDAS?LST (Van'able) 15.12: 5.7: 
15.8-9; 23.17 

lambdatran package 23.16 

LAMBDA TRAUFNS (Variable) 23.17 

LAMS (Variable) 12.7; 12.11 

LAP Z1..15~ U.1: 22.11 

LAP macros 22.17; 22.13 

LAP op-defs 22.13 

LAP statements 22.15 

LAPFLG (Variable) U.1 

large integers 2.1.36-37~ 22.3 

LARGEST FOF-M (l.S. Operator) 4.7 

LAST (Arg'..lment 10 ADVISE) 10.9 

(LAST x) 2.20 

LAST AIL (Vcriable) 17.10: 17.15.57 

(LASTC FILE) 6.15 

LASTEXEC (Variable) 22.22 

LAST KEYBOARD (Variable) 19.18 

LASrKEYSETSTATE ("'[aero) 19.17 

INDEX 

LASTMOUSEBUTTONS (Variable) 19.1i 

(LAST~~OUSESTATE Btn"TONFOP..M) 

(l'Jacro) 19.17 

LASTMOUSET IME (VariabJe) 19.18 

(LASTMOUSEX DISPLAYS':"P..EAM) 19.18 

LASTMOUSEX (Variable) 19.17 

(LASTMOUSEY DlSPLAYSTRE.A.Y.) 19.18 . 

LASTMOUSEY (Variable) 19.17 

(LASTN L N) 2.20 

LASTPOS (Variable) 9.3: 9.4-6.8: 20.11 

LASTVALUE (Property Name) 17.39 

LASTWORD (Variable) 15.15; 15.17-19; 
16.8; 17.55 

LBOX (Function) 23.54 

(LC • @) (Editor Command) 17.18 

LCASELST (Vanabk) 6~3 

LCFIL (Variable) U.1-2 

( L C L • @) (Editor Command) 17.18 

(LCONC PTR x) ~18 

LD (Exec Command) 23.59 

LD ALL (Exec Command) 23.59 

LD USEP.NA..\!E (Exec Command) 23.59 

(LOB BYTESPEC Y--tL) (Jrf aero) 2.42 

(LDIFF x y z) ~22 

LDIFF: NOT A TAIL (Error Message) 
2.22 

(LDIFFERENCE x Y) 212 

LE (CLISP Operator) 16.6 

LEF,T (key indicator) 19.17 

LEFTBRACKET (Syntax Class) 6.33 

LE FTKEY (key indicator) 19.17 

LEFTMIDDLEKEY (key indicator) 19.17 

(LEFTOFGRIOCOORO GRLDX GRlDSPEC) 
19.43 

LE FTPAREN (Syntax Class) 6.33 f'>, 

Index.:!9 

. I 



" I 

\ 
'-. .. 

(LENGTH X) 2.21 

(LEQ X Y) 2.45 

(LESS? X Y) 2.45 

( LIN) (Editor C01T'.mand) 17.32 

LIKE ATOM (A{asterscope Set .Specification) 
13.10 

(LIN3UF FLG) 6.47; 6.46 

LI NE (Variable) 20.44 

line buffer 6.45: 6.46-47 

line-buffering GAS; 6.13-15 

line-feed 6.13.16 

line-feed (ED IT A command) 23.50 

line-feed (Editor COTn."17.and) 17.13 

LINEDELETE (syntax class) 6.41,43 

(LI?~ELEriGTH N FILE) 6.8 

LINELENGTH N (Masterscope Path Option) 
13.iS 

LINESPERPAGE (Variable) 23.14 

LIN K USER. (Exec Command) 23.59 

linked function calls 12.18 

LINKEDFNS (Variable) 12.19 

L I Nt< F NS (Variable) 12.18; 12.15-16.19 

(LIrlKTOTTY TTY#) 23.61 

(LINKTOUSER VSER) 23.61 

Li sp . v; rtua 1 mem (File) 18.3 

LISPF~ (Property Name) 16.22 

LISPX Printing Functions 8.20 

( LIS P X LISP:CC LISFXID LISFXXMACROS 

LIS?:caJSERFN LISPXFLC) 8.28; 
8.10.16.26-27.29.36; . 15.3.14,20: 
17.39.45 

(LISP XI x 'FN V.ARS) 8.34: 8.22 

LISP XCOMS (Variable) 8.29; 11.25 

( LIS P X E VAL LISPXFORM LISPXID) 8.29 

( LIS P X FIN 0 HISTOR.Y LINE TYPE BACKUP 

-) 8.32: 8.36 

INDEX 

LISPXFINDSPLST (Variable) 8.7 

LISPXHIST (Variable) 8.27; 8.24.28.34 

LIS?XHISTORY (Variable) 8.25; 8.29,36 

LISPXHISTORYMACROS (Var.able) 8.19 

LIS?XLINE (Var.able) 8.19 . 

(LISPXJ.1ACROS LITATOM1 ••• UTATOMN ) 

(File Package Command) 11.24 

LISPXMACROS (File Package Type) 11.15 

LISPXMACROS (Van'able) 8.19: 8.19: 22.22 

(LISPXPRINl X Y Z NODOFLG) 8.10 

(LISPXPRIN2 x Y Z NODOFLG) . 8.:0 

(LISPXPRINT X Y Z NODOFLG) 
8.20; 8.27 

(LISPXPRINTDEF EXPR F~E LEFT DEF 

T~ NODOFLG) 8.20 

LISPXPRINTFLG (Variable) 8.21 

(LISPXREAO FILE RDTBL) 8.31; 
8.4,16.26.28,35 

LISPXREAOFN (Variable) 8.29: 8.30 

(LISPXREADP FLG) 8.31; 8.35 

(LISPXSPACES x Y Z NODOFLG) 8.20 

(LISPXSTATS RETt1?.N"VALUESFLG) 8.21: 
18.6 

(LISPXSTOREVALUE EVENT VALu~) 8~2 

(LISPXTA8 x Y Z NODOFLG) 8.20 

(LISPXTERPRI X Y Z NODOFLG) 8.20 

(L ISPXUNREAO LST -) 8.31 

LISPXUSERFN (Variable) 8.20: 8.29 

LISPXVALUE (Variable) 8.20 

(lISPXWATCH STAT N) 8.21: 18.6 

(LIST Xl X 2 ••• xN ) 2.16 

LIST (lv[AKEFILE option) 11.7 

LIST (Property Name) 5.10 

list cells 2.14: 2.2 

list functions 2.16 

Index.3D 

(j 

(j 

(~ 
\ ' / 



o 
(LISTFILES FILE 1 FILE2 ••• FILEN) 

11.9: 11.7 

LISTFILESl (Function) 11.9 

LISiFILESTR (Variable) 6.57; 11.10 

(LISiGET LST PROP) llS 

(LISTGETl LET PROP) 21E 

LIST!NG? (Compiler Question) 12.1 

LISTP checks (in Pallern Match Compiler) 
23.2 

(LISTP x) 2.2 

C) (LIST PUT LST PROP VAL) 2.26 

(LIST?UTl LST PROP VAL) 226 

lists 2.14-15 

o 

( LIT ATOM x) 2.1 

litatocs (litercJ atoms) _ 2.4; 2.1: 6.13 

L!TS (Variable) 23.50 

(LLSH x N) 2.40 

(LO N) (Editor Command). 17.32 

(LOAD FILE LDFLG PRINTFLG) 11.4; 
8.33: U.IO 

(LOAD? FILE LDFLG P~~LG) 11.4 

( LOADAV) 22.5~ 18.6 

(LOALlSLOCK FN FILE LDFLG) 11.6 

(LOAD3YTE N POSITION SIZE) 2.41 

(LOADCOMP FILE LDFLG) 11.6 

(LOADCOM?? FILE LDFLG) 11.6 

(lOADDB FILE) 23.16 

lOADDBFlG (Variable) 23.16 

( LOADDE F NAME TYPE SOURCE) 11.18 

LOADEDF I LELST (Variable) 11.13 

( LOAD FNS FNS FILE LDFLG VARS) 11.5 

(LOADFRort1 FILE FNS LDFLG) 11.6: 
12.13 

LOAOOPTIONS (Variable) 11.4 

(lOADVARS VARS ~E LDFLG) 11.5 

INDEX 

(LOC x) 22.5 

LOCAL (in- Dec! package) 23.21 

local record declarations in CLISP 16.10 

local variables 4.3 

LOCALL Y (use in Masterscope) 13.8 

(LOCALVARS VAR z ••• VARN) 

(File Package Command) 11.25 

LOCALVARS (in Masterscope Set Specification) 
13.11 

LOCALVARS (Variable) 12.4 

location specification 17.17 

location specification (in Editor) 
li.17: 17.18.46 

LOCATION UNCERTAIN (Printed by Editor) 
17.10 

(LOCKtr1AP PTR) 14.19 

(LOG x) 2.45 

(LOGAND Xl X:z ••• XN) 2.40 

(LOGIN HOSTNAME - - -) 18.14 

LOGIN (Property Name) 23.63 

LOGINHOST IOIR (Variable) 18.12 

(LOGNOT N) 2.41 

logo window 19.19 

(LOGOR XI X2 ••• XN ) 2.40 

(LOGOUT FAST) 142: 2222 

LOGOW (Variable) 19.19 

(LOGXOR Xl X 2 ••• xN ) 2.40 

(LOOKUP.NS.SERVER.NAME TYPE) 
21.13 

(LOOKUPHASHFILE KEY VALUE HAS~ 
CALLTYFE) 23.44 

LOWER (Editor Command) 17.41 

(LOWER x) (Editor Command) li.41 

lower case 2.11 

lower case comments 6.52 

lower case in eLlSP 16.21 

Index.J 1 



*--.......~ . 

/ 

lower case input 6.44 

(LOWERCASE FLG) 1621 

(LP CO~{Sl ••• COMSN ) (Editor Command) 
17.47 

LPARKEY (Variable) 15.12: 15.5 

(LPQ CC1.!Sl ••• COMSN ) 
(Ed;tor COir.mar:d) li.4i 

LPT (prii7.ter det'ice) 18.18 

(LRSH x H) 2.41 

(LSH x N) 2.40 

LSTFIL (Van"able) 12.1 

LSTVARS (Variable) 4.14 

(LSUBST ~N OLD EXPR) 2lA 

L T (CLISP Operator) 16.6 

(M C COMSl ... COMSH ) 

(Editor Command) 17.48 

(M (c) AltO COMSl ... COMSM) 
(Editor Command) li.49 

(M \ c) (ARG1 .•• ARGN ) COMSl 
COMS~) (Editor Command) 17.48 

machine L."1StrUctions 22.15: 22.16: 23.48 

(MACHINETY?E) 1&6 

(MACRO • MACRO) 
(in M asteT:jcope template) 13.18 

MACRO (Property Name) 11.12: 12.8 

MACRO (type of read-macro) 6.36 

~{acro Expansion (in Masterscope) 

MACROCHARS (ASK USER option) 

MACROPROPS (Variable) 5.17 

macros 5.l7 

13.15 

6.63 

(MACROS LITATOM1 .• " LITATOM ) 

(File Package Command) 1i.25 
MACROS (File Package Type) 11.15 

macros (in Editor) liA8 

rY1AC'ROTRAN (Function) 5.19: 15.11 

INDEX 

MACSCRATCHSTRING (Variable) . 14.10: 
22.23 

( MAK E ARGNAME EXP) (Editor Command) 
. 17.44 

(MAKEBITTABLE L NEG A) lJ2 
(MAKEFILE FILE OPTIONS REPRINTFNS 

SOURCEFILE) 11.6: 11.10: 12.13: 
15.20 

MAKE FILE and eLlS? 16.20 

MAKEFILEFORMS (Variable) 11.8 

MAKEFILEOPTIONS (Variable) 11.7 

MAKEFILEREMAKEFLG (Variable) 11.10: 
11.7 

(MAKEFILES OPTIONS FII.ES) 11.8 

(MAKEFN (FN . ACTUALARGS) ARG~ 
Hz H2 ) (Editor Command) 17.44 

(MAKEINTERPRESS ~ OUT~ FONTS 

HEADING TABS) 18.17 

(MAKEKEYLST LST DEFAULTKEY 

L.CASEFLG -) 6.65 

(MAKENEWCOM NA..v.E TYPE - -) 11.33 

(MAKENEWCONNECTION HOST TYPE SKT 
SCR..r'l.TCHCONN WAlTFLG) Z3.64 

(MAKEPRESS FILE O~~Frr..E FONTS 
HEADING TABS) 18.17 

(MAKESYS FILE NAME) 14.4 

MAKE SY SDA T E (Variable) 14.4 

manipulating file names 6.5 

(MAP MAPX MAPFNI MAPFN2) 5.13 

(MAP. PROCESSES MAPFN) 18.28 

(MAP2C MAPX MAPY MAPFNl MAPF;2) 

5.14 " 

(MAP2CAR MAPX MAPY MAPFNI M.APFN2) 

5.14 

(MAPATOMS FN) ~11 

(MAPBUFFERCOUNT ONLYUNLOCKED) 
14.18 

(MAPC MAPX MAPFNI MAPFN2) 5.13 

Index.32 

o 

n 
/ 

().-. 
. / 

o 



(), 

(MAPCAR MAPX MAPFNl M.APFN:J) 

(MAPCOr~ MAPX MAPFNl MAPFN2) 

(HAPCONC ~X ~FNl MAPFN2) 

(MAPOl MAPDLFN MAPDLPOS) 7.8 

5.13 

5.13 

5.13 

(H~.PHASH F.A.:t?~Y MAPffFN) 2.35 

(MAPHAS~FILE EASHF~E MAPFN) 

(MAPLISi ~x MAPFNl Y~FN2) 

23.43 

5.13 

(MAPOFACOLOR PRIMARIEs) 19.46 

(MAPPAGE PAGE# FILE -) 14.18 

( MA PRE LA T ION RELATION MAPFN) 13.20 

( MAP R I H T LST F~E LEFT RIGHT SEP 
PFN LISPX?RINTFLG) 5.14 

(MAP\lJORD FILEADR FILE) 14.19 

margins (for PRETTYPRINT) 6.49 

MARK (Editor Command) 17.21 

(~lARK LITATOM) (Editor Command). 
17.21 
. . 

('~ARKASCHA~)GED NAME TYPE REASON) 

11.11 

M~RKLST (Variable) 17.21; 17.57 

MASK (Variable) 23.51 

(MASK.O·S POSUITON S~E) ~41 

(MASK.l'S POSI7ION S~) ~41 

(MASTERSCOPE COW.!AND -) 13.19 

Master~ope COITh-nands 13.4 

MATCH (use in pattern match in CLISP) 
23.1 

(MAX Xl X2 ... XN) 2.45 

MAX. F IXP '(Variable) 2.38: 2.39 

MAX. FLOAT (Variable) 2:43; 2.44 

MAX. INTEGER (Variable) 2.38 

MAX. SMALLP (Variable) 2.38 

MaxBkt"enuHeight (Variable). 20.11 

Max8kMenuWi dth (Variable) 20.11 

MAX I f\S? ECT ARRAYLEVEL (Varzable) 
20.15 

INDEX 

MAX I NSPECTCDRLEVEL (Variabie) 20.14 

MAXLEVEL (Variable) 17.15; 17.17 

M~XLOOP (Variable) 17.47 

MAXLOOP EXCEEDED (Printed by Edilor) 
17.47 

(MBO E z ... EM) (Editor Command) 
17.28 

(MEr"S X Y) 2.23 

(MEMBER x Y) 213 
(MEMQ VALUEl ••• VALUEr.;> 

(DecI Type Expression) 23.26 

(MEMST AT PGl PGN FORK) 23.61 

(MENU MENU POSITION) 19.38 

MENUBORDERSIZE (Menu Field) 19.40 

MENUBUTTONFN (Funclion) . 19.38 

MENUCOLUMNS (J\{enu Field) 19.40 

MENUFOHT (J.{enu Field) 19.39 

MENUFOflT (Variable) 19.22.40 

MENUHELDWAIT (Variable) 19.39 

(MENUITEMREGION ITEM ME~~) 19.41 

MENUOFFSET (Menu Field) 19.39 

MENUOUTLINESIZE (Menu Field) 19.40 

ME NUPOS IT I ON (Menu Field) 19.39 

MENUROWS (~\1enu Field) 19.40 

(MERGE A B COMPAREFN) 14.9 

ME RG E (Variable) 23.37 

(MERGEI~SERT NEW LST ONEFLG) 

(METASHIFT FLG). 18.9 

• MIDOLE_ (key indicator) 19.17 

MIDDLEK.EY (key indicator) 

MILLISECONDS (Timer Unit) 

(MIN Xl X2 .•• XN) 2.45 

MIN. F I X P (Variable) 2.38: 

19.17 

14.11 

2.39 

MIN. FLOAT (Variable) 2.43: 2.44 

MIN. INTEGER (Variable) 2.38 

Index.33 

14.9 

·1 

I 
1 

! 
I 



MIN. SMALL? (Variable) 2.38 

(MINESHAFT N OUTFLG) 19~O 

(M!NFS N TY1'E) 22.10; 18.2; 22.8-9,11 

(MIMHASH x) 22.11 

(MINUS x) 2.44 

( M DJUS? x) 2.40.44 

MISSING OPER.~m) (DWnW error message) 
16.11 

MISSING OPERATOR 
(CLISP error message) 16.0 

, (MISSP=:LLED1 ';CWORD REI. SPLST FLG 
TAlI. FN) 15.18; 15.19-20 

mixed a.'ithmetic 2.44 

(MKATOit1 x) 2.9 

(r~KL I ST x) 2.16 

(MKSTRING x FLG RDTBL) 218 

(HKSWA? x) 22.26 

(MKSWA?P FNA.\!E CDEF) 22.26 

MKSWAPSIZE (Variable) 22.26 

(MKUNS~AP x) 22~6 

MO 0 I FIE R (Litatom) 4.15 

(:'r10DIFY. KEYACTIONS KEYACTIONS 
SAVECURRSNT?) 18.9 

(MOr~ ITOR. AWAIT. EVENT REI.EASELOCX 
Ev7.VT T~Y[EOUT TDaRP) 18.3 1 

mouse 19.16 

(MOUSEST ATE BlJTTONFORM) (Macro) 
19.16 

(MOVD FROM TO COPYFLG) 5.8 

( MOVD? FROM TO COP1?'LG) 5.9 

(MOVE @1 TO COM. @2) 
( Editor Command) 1 i .29 

MOVE rf-Vindow /y[enu Command) 19.20 

MOVE F N OVindow Property) 19.32 

(MOVETO X Y DISPLAYSTREAM) 19.12 

INDEX 

(MOVETOFILE TOF~E NAME TY.?B 
FROMFILE) 11.33 

(MOVETOU?PERLEFT D~LAy's~ 
F-EGION) 19.13 

(MOVEW \Y1NDQW POSorX Y) 19.26 

MSMACROPROPS (Variable) 13.15 

(MSMARKCHANGED FN TYPE REASON) 
13.21 

(MSNEEDUNSAVE FNS MSG 
M.AR.KCHANGEFI.G) 13.20 

MSNEEDUNSAVE (Variable) 13.21 

MS?RINTFLG (Variable) 13.2 

(MULTIFILEINOEX SOv~CEFrLES 

DESTTNATIONFILE NEW1'AGEFLG) 
23.13 

MUL TIF ILEINDEXCOLS (Variable) 23.14 

MULTIFILEINDEXFILECOL (Var~k) 
23.14 

MULTIFILEINDEXFILESFLG (Vanabk) 
23.14 

MULTIF ILEINDEXFNSMSFLG (Variable) 
23.15 

MULTIFILEINDEXGETDEFFLG (Va~k) 
23.15 

MULTIFILEINDEXLOAOVARSFLG (Variabk) 
23.15 . 

MULTI F ILEINDEXMAPFLG (Variable) 
23.14 

MULTIFILEINDEXNAMECOL (Variable). 
23.14 

MULTIFILEINDEXTYPECOL (Variabk) 
23.14 

MULTIFILEINDEXVARSMSFLG (Variabl~ 
23.15 

MULTIPLY DEFINED TAG (En-or :\lessage) 
12.21 

MULTIPLY DEFINED TAG. ASSEMBLE 
(Error /\f essage) 12.21 

MULTIPLY DEFINED TAG. LAP 
(Error Al essage) 12.21 

Index.34 

o 

n 

(j 

(j 



o 

o 

-N (N a number) (PRINTOUT command) 
6.26-27 

N (N~ 1) (Editor Command) 17.10 

-N (N> 1) (Editor Command) 17.10 

(I'l) (N2:1) (Editor Command) 17.3 

(N El .•. EM) (Editor Command) 17.22 

(N El .•. EM) (N) 1) (Editor Command) 
1i.3 

(-1'1 El ... EM) (N~ 1 ) 
(Editor Command) 17.3 

NAME (Process Property) 18.26 

NAME LrTATOM EYerJtSpec' 

(Prog. Ass!. Command) 8.12 

NAME LITATOM ARGz ••• ARGN 
: EventSpee (Prog. Ass!. Command) 
8.12 

NAME LITATOM (ARGt ••• ARGN) 
: Eve!ltSpee (Prog. Asst. Command) 
8.12: 8.13.27 

NAMES RESTORED (Printed by System) 
10.7 

NAMESCHA~JGED (Property Name) 10.4 

(NARGS FN) 5.7; 22.3 

NBOX (Function) 23.55-56 

(NCHARS x FLG RDTBL) 2.10: 6.8 

(NCCNC Xl X2 ..• XN) 2.17; 2.18 

(NCONCl LST x) 2.17; 2.18 

(NCREATE TYPENAME FROM) 3.15 

NO I R FrLEGROtJP (Exec Command) 23.60 

NEGATE .(Editor Command) 17.42 

(NEGATE x) 14.2: li.42 

(tIEQ x y) 2.2 

net package 23.64 

(NETSERVER ARPA # WAlTFLG) 23.64 

(NETUSER HOST USER ARPA#; WAITFLG) 

13.65 

NETWORKOSTYPES (Variable) 18.14 

INDEX 

NEVER FORM: (I.S. Operator) 4.6 

NEW (MAKEFILE option) 11.7 

(1~EW IFN FN) 8.34 

NEWREGIONFN (Window Property) 19.31 

NEWVALUE (Var.able) 3.8 

NEX (Editor Command) li.19 

(HEX COM) (Editor Command) 17.19 

NIL (Editor Command) 17.43: 17.46 

NIL (in Block DecIaratior.s) 12.16 

NIL (in M aslerscope template) 13.16 

NIL (Lilatom) 2.1.5 

NILCOMS (Variable) 11.9 

(NILL) 5.10 

NILNUMPRINTFLG (Variable) 6.22 

N LAM (Transorset Command) "23.39 

NLAMA (Variable) 12.7 

NLAMBDA (Litatom) 5.2: 22.3 

nlambda functions 5.2 

nlambda-nospread functions 5.5 

nlambda-spread functions 5.3 

NLAPr'L (Variable) ll.7 

(NLEFT L N T~) 220 

(NLISTP x) 2.2 

. NLISTPCOMS (Variable) 23.40 

(NLSETQ FOF.M) 9.15: 4.4: 8.24 

NLSETQGAG (Variable) 9.15 

NO BINARY CODE GENERATED OR 
LOADED· (Error M essa¥el 12.22 

(FN - NO BREAK INFORMATION SAVED) 
(value of REBREAK) 10.7 

NO 00. COLLECT. OR JOIN 
(Error .Hessage) 4.13 

NO FILE PACKAGE COMMAND FOR 
(Error A:fessage) 11.24 

Index.35 



NO LeNGER INTERPRETED 
AS FUNCTIONAL ARGUMENT 
(E~r ~fe~g~ 1221 

NO PROPERTY FOR (Error Message) 
1.1.23·24 

NO USERETlACRO FOR (Error Message) 
11.24 

NO VALUE SAVED: (En-or Message) 8.24 

NOB I l~D (LitC:lam) 2.5; 7.7: 8.23-24; 
11.4; 17.55 

Nobox package 23.54 

/ --~-- NOBREAKS (Variable) 10.6 

NOCASEFLG (ASKUSER option) 6.62 

NOCLEARSTKLST (Variable) 7.7 

NOCLISP (.WAKEFILE option) 11.7; 
16.20 

NODI "CORE (core device) 18.13 

NOECHOFLG (ASKUSER option) 6.62 

"OESC (type of read-macro) 6.37 

NOESCQUOTE (type of read-macro) 6.37 

r~OFILESPEL.LFLG (Variable) 1520 

NOFIXFNSLST (Variable) 16.16; 11.6: 
12.9; 16.15 

~JOFIXVJ),RSLST (Variable) 16.16; 11.6; 
12.9: 16.12.15 

NOLI NKDE F (Function) 12.19 

NOLI N KF US (Variable) 12.18; 12.15-16.19 

NON-ATOMIC CAR OF FORM 
(Error Jf essage) 12.21 

NON-NUMERIC ARG (En-or ,Message) 9.23: 
2.38.43-44 

NONE (in Dec{-package) 23.25 

NONE (syntax class) 6.42 

NONlf'riMED (type of read-macro) 6.38 

NONIMMEDIATE (type of read-macro) 6.38 

NOPACKCALLSFLG (Vanable) 13.19 

NOPRINT (Litalom) 8.24 

Il'IDEX 

NORA!SE (TENEX Corr.mand) 6.44-

NORMALCOMMENTSFLG (Vanabk) 6~ 

NOSAVE (Function) 8.33 

'~OSAVE (Litatom) 8.24.33 

NOSPELLFLG (Variable) 15.12; 16.16 

nospread functions 5.2 

NOSTACKUliOO (LilalOm) 8.24 

NOSWAPFLG (Variable) 22.26 

NOSWAPFrlS (Variable) 22.26 

(NOT x) 2.3 

NOT A BINOABLE VARIABLE 
(Error Message) 12.21 

NOT A FUNCTION (Error Message) 5.7.10:· 
10.9 

NOT A HASHF ILE (Error Message) 23.42 

NOT BLOCKED (Printed by Edltorj 17.51 

(NOT BROKEN) (value o[ UJVBREAKO) 
10.6 

NOT CHANGED, SO NOT UNSAVED 
(Printed by Editor) 17.54 

NOT COMP ILEABLE (Error Message) 
12.20: 12.10.15 

(FILE NOT DUMPED) 
(returned by AfAKEFILE) 11.8 

NOT EDITABLE (Error .Message) 1i.54-56 

NOT FOUND (Error ~f~sag~ 1220 

(NOT FOUND) (pn'nted by BREAKIN) 
10.5 

(F'N NOT FOUND) (printed by break) 9.4 

F'ILEN~\!E NOT FOUND 
(printed by LISTFILES) 11.9 

(PROP NOT FOUND) 
(value oj UNSAVEDEF) 5.10 

(FNl NOT FOUND IN F"N2) 

(value of BREA-KG) 10.4 

NOT FOUND, SO IT WILL BE WRITTEN 
ANEW (Error 1~/essage) 11.35 

~ndex.36 (j. 



o 

/~'" 0' 

o 

o 

NOT IN FILE - USInG DEFINITION IN 
CORE (Error Alessage) 12.20 

NOT ON 8LKFNS (Error Message) 12.20: 
12.14.16 

NOT ON FILE. COMPILING IN CORE 
DE F IN ITION (Error J.rfessage) 12.15 

(FN NOT PRINTABLE) 
(returned by PRE7TYPRINT) 6.48 

NOT - FOU~lD: (Lilctom) 11.5 

(NOTANY SOMEr SO~Nl SOMEFN2) 

5.14 

NOTCOMPILEDFILES (Variable) 11.10: 
11.6 

(NOTE VAL LSTFLG) 7.16 

NOTE (Transor Command) 23.37 

NOTE (Transorset Command) 23.38 

NOTE: BRKEXP NOT CHANGED. 
(Printed by Break) 9.8 

( NOT EVE RY EVERYX' EVERYFNl 
EVERYFN2) 5.14 

NOTF I RST (DECLARE: Option) 11.27 

(NOTHING FOUNO) 
(value of UNSA VEDEF) 5.10 

NOTHING SAVED (Printed by Editor) 
17.50 

NOTHING SAVED (Printed by System) 
8.22; 8.11 

notici!:g files 11.12 

(NOT I FY • EVEUT EVENT ONCEONLY) 
1S.30 

NOTLISTEDFILES (Van'able) 11.9; 
11.6; 23.14 

NOTRACE SET (l\lasterscope Path Option) 
13.15 

NS.OEFAULT .PRINTER (Variable) 21.11: 
I8.li 

(NSCREATEDIRECTORY HOST/DIR.) 21.13 

(NSDIRECTORY PATTERN) 21.13 

(NSOCKETEVENT NSOC) 21.22 

INDEX 

(NSOCKETNUMBER NSOC) 21.22 

(NSPRINT P~TER 

FILE.NAME DOC'UMENT.NA-l;!E 
DOCUMENT.CREATION.DATE SE:-tDER.NAME 

R:SCIP!El'·rr.NA.-..cE #COPIES MEDIL"M 

PRIORITY ST.APLE? TWO.smED~) 

21.11 

(NSPRINTER.PROPERTIES PRP.lTER) 

21.12 

{NSPRINTER.STATUS PRINTER} 21.12 

(NTH 1'1) (Editor Command) 17.12 

(NTH COM) (Editor Command) 17.20 

(NTH X N) 2.19 

(NTHCHAR X 1'1 FLG RDTBL) 2.10 

(NTHCHARCODE X N FLG RDTBL) 2.12 

(NTYP DATUM) 212 

(NULL x) 2.3 

null string 2.28-30 

null-check 2.20-23.25 

(NUMBERP x) l2J7 
numbers 2.36; 2.2; 6.14 

(NUMFORMATCODE FO&~T S~CODE) 
6.23 

NX (Editor Command) 17.11 

(NX 1'1) (Editor CommarJi) 17.11; 17.6 

(OBTAIN.MONITORLOCK LOCK DO~AIT 
UNWTNDSAVE) 18.31 

OCCURRENCES (Printed by Editor) 17.47 

octal 6.13; 2.38; 6.17 

(OCTALSTRING N) 21.21 

(ODOP X Y) 2.41 

(AGGREGATE OF ELEMENT) 
(Ded Type Expression) 23.27 

BLOCKTYPE 0 F FUl\·CTIONS 
(Afasterscope Set Specification) 13.11 

OK (Break Command) 9.3; 9.8 

Index.37 



OK (DEdit Command) 20.5 

OK (display break command) 20.10 

O~ (EDlTA command) 23.50 

OK (Editor Command) 17.38: 17.41.56 

OK (}rfasterscope Command) 13.2 

OK (Prog. ASSL Command) 8.29 

OK TO REEVALUATE (Printed by DVlIAf) 
15.0 

OKREEVALST (Variable) 15.12; 15.6 

OLD (I.S. Operator) 4.8 

. OLDVALUE (Van'able) 9.21 

ON FOR.V (I.S. Operator) 4.8 

ON OLD VAR (1.S. Operalor) 4J!: 4.9 

or. PATH PATHOPTIONS 
(ll,{asterscope Set Specification) 13.11 

BLO~ATYPB ON rrLES 
(!v[asterscope Set Specification) 13.11 

(ONEOF TYPEZ ••• TYPEN) 
(Decl Tlpe Expression) 23.26 

OPCOOE? - ASSEMBLE (Error Message) 
12.ll: 22.13 

OPO (Property Name) 22.13: 22.16-17: 
23A~-49 G 

open functions U.8 

(OPEN.NS.PRINTING.STREAM 
PR.INTER DOCtTMENT.NAME 

DOC{J~!ZNT.CREATION.DATE 

SZ:-·;Z)ER.N AlI!E RECXPrEN':'.NAME 

# COPIES .\!EDrr.rM PRIORITY STAPLE? 
TWO.SIDED.' NOV.lATCHDOG?) 21.11 

(OPE N F FILE x) 22.23: 18.6 

(OPENFILE FILE ACCESS 
RECOG BYTESIZE 

MACHINE.DEPENDENT.PA.R.AMETERS) 6.1 

OPENFN (JVindow Propeny) 19.30 

(OPENHASHi!ILE FILE ACCESS) 23.42 

opening files 6.1 

(OPENNSOCKET SKT# IFCLASH) 21.22 

INDEX 

( 0 PEN P FILE ACCESS) 6.2; 6.5 

(OPENPUPSOCKET SKT# IFC!..A..SH) 21.16 

(OPENR A) 22.11 

(OPENTEXTSTREAM TEXT ~OW START 
END PROPS) 20.24 

(OPENW WINDOW) 19.26 

(OPEr~\,IIrlOO\lIS) 19.25 

(OPENWP WINDOW) 19.25 

OPERATION (BrrBLT arg'..lment) 19.5 

(OPNJFN FILE ACCESS) 22.22: 18.6 

(OR Xl X3 .~. xN ) 4.2 

order of precedence of CLISP operacorn 
16.9 

(ORF P.4.TTERN1 ••• PA~...RNN) 
(Edilor Command) 17.17 

ORG (Variable) 23.49 

ORIG (Lilatom) 6.32 

ORIGINAL (Break . Command) 9.7 

(ORIGINAL COMS! ••• COMSN) 
(Editor Command) 17.50 

(ORIGINAL COMl ••• COMN) 

(File Package Command) 11.27 

ORIGINAL l.S.OPR OPERA.ND 

(LS. Operalor) 4.11: 4.15 

(ORR CO.\!Sl ... COMSN) 

(Edilor Command) 17.48 

OTHER (Synlax Class) 6.33 

(OUTF I LE FILE) 6.2 

(OUTFILEP FILE) 6.4: 6.5 

OUTOF FORM (LS. Operator) 4.10; 7.14 

(OUTPUT FILE) 6.2 

OUTPUT (It-faslerscope Command) 13.7 

output buffer 6.19 

OUTPUT FILE? (Compiler Question) 12.2 

output functions 6.16 

OUTPUTBUFFER (Lilalom) 9.17 

Index.38 

Cj 

(j. 

~ ~ ( ... ~. 
\ ) 



-0 

eVE R F LOW (Error Message) 9.26; 2.38 

(OVERFLOW FLG) l33 

overlays 22.24 

P (Editor C orrmand) 17.3i 

(? u) (Editor Command) 1737 

(P M N) (Editor Command) 17.37 

(P 0) (Editor Command) 17.37 

(P 0 N) (Editor Command) 17.37; 17.2 

(P EXPI ••• EXI'N) 
(File Package Command) 

(PACK x) 2.9 

(PACK* Xl X2 ••• XN) 2.~ 

(PACKC x) 2.12 

(PACKFILENAME F~NAMEl 

11.24 

FIELD CONTENTS 1 ••• FIELDNAMEN 
FIELDCONTENTSN ) 6.6 

j 

page 227 

page holding 19.15 

page n:apped files 14.17 

(PAGEFAULTS) 14.14 

(PAGEFULLFr~ WINDOW) 19.33 

PAGEFULLFN (JVindow Property) 19.33 

(PAGEHEIGHT N) l~lS 

P A I NT (Vlindow M enu Command) 19.20 

PARENT (Variable) 15.11 

pare!ltheses counting by READ 6.13: 6.45 

PARENTHESIS ERROR (E~r Me~ag~ 
5.11 

(PARSERELATION ~LATION) 13.20 

passwords package 23.62 

Path Options (in Masterscope) 13.14 

Paths (in Masterscope) 13.13 

PATLISTPCHECK (Variable) 23.2 

pattern match (in Eriilor) 17.13: 17.57 

INDEX 

pattern match compiler 23.1 

PATVARDEFAUL T (in Pattern Match Compiler) 
23.6 -

PATVARDEFAULT (Variable) 23.3-4 

PB (Break Command) 9S 

PB LlTATOM (Prog. ASSL Command) 8.14 

(?EEKC FILE RDTBL) 6.15; 6.46 

period (ill a list) 2.15 

PERMSTATUS (Function) 23.17 

(PF FN FROMF~ES TO~) 

(PF* FN FROMFILES TOFILE) 

PFDEFAUL T (Variable) 6.49 

6.48 

6.50 

PL LIT ATOM (Prog. Ass£. Command) 8.14 

place-markers (in Pallem Match Compiler) 
23.5 

(P\-US ~l X:z ••• XN) 2.44 

PLVLFILEFLG (Variable) 6.19 
*" 

POINTER (as a field specification) 3.14 

POINTER (record field type) 3.7 

(POP DATUM) (Change Word) 3.13 

Pop' (DEdit Command) 20S 

(PORTSTRING NETHOST SO~AET) 21~ 

(POSITION FILE N) 6.7 

(POSITIO~P x) 192 

(POSSIB ILITIES FORM#:#) 7.16-

possibilities listS i .16 

POSSIBLE NON-TERMINATING 
ITERATIVE STATEMENT 

: (Error Message) 4.13 

POSSIBLE PARENTHESIS ERROR 
(Error A-fessage) 16.15 

POSTGREETFORMS (Variable) 14.6 

(POWEROFTWOP N) ~41 

PP (Editor Command) 17.37: li.2 

(PP FNl ... FNN) 6.48 

Index.39 



pp. (Editor Command) 17.37 

(Pp· x) 6.50 

P P E (in Jyi c.slerscope template) 13.16 

p pe (uad in fa,[csterscope) 13.16 

PPT (Editor Command) 17.37: 16.14.20 

(PPT x) 16.20: 16.14 

P PV (Editor Commar.d) 17.37; 6.49 

pre:edence rules for CLISP operators 16.6 

prefix operators in CLlSP 16.5 

- - PREGREETFORMS (Variable) 14.6 

( PRE S CAN FILE CHAP.LST) 23.32 

(PRESSFILEP FILE) 18.18 

PRESSTABSTOPS (Variable) 18.17 

PRETTYCOMFONT (font class) 6.55 

(PRETTYCOMPRINT x) 11.36 

(PRETTYDEF PRTTYFNS PR~E 
PRTTYCOMS P..EPRINTFNS 

SOURCEFILE CHANGES) 11.34: 10.11 

PRETTYEQUIVLST (Variable) 6.54 

PRETTYFLG (Variable) 6.54; 11.7 

P RETTYHEAD E R (Variable) 11.36; 11.35 

PRETTYLCOM (Variable) 6.53; 6.54 

(?RETTY?RINT FNS PRETTYDEFLG --) 
6.47 

prenyprinting by system functions 6.18 

. PRETTY?RINTMACROS (Variable) 6.54 

PR::TTYPRINTYPEMACROS (Variable) 6.54 

?RETTYTASFLG (Variable) 6.53 

'PRETTYTRANFLG (Variable) 16.20; 
11.7; 16.14 

primJ.ry input file 6.2: 6.12 

pr.mary output file 6.2: 6.16 

primary readtable 6.32: 6.12.16.42 

pnm~ry tCnTImal table 6.40.42 

·(PRINl X FILE) 6.17; 6.18 

INDEX 

(PRINZ X FILE RDTBL) 6.17; 6.18 

PRlr4Z-names 2.8.10,12 

(PRlN3 X FILE) 6.17 

(PRIN4 ;C FILE RDTBL) 6.17 

( PRI NT X FILE RDTBL) 6.17; 6.18 

print names 2.8 

(PRINTBELLS) 6.18: 15.3 

PRINTBINOINGS (Function) 8.14; 9.6 

(PRINTBITMAP BITMAP) 19.6 

PRIr .. TCOOE (Function) 20.14"" 

(PRINTCOMMENT x) 6~1 

(PRINTCONSTANT VAR CONST~ 
FILE PREFIX) 21.21 

(PRINTDATE FILE CHANGES) 11.35 

(PRINTDEF EXPR LEFT DEF T~G 
FNSLST FILE) 6.49: 6.54 

PRIldTDEPTH (Variable) 23.12 

PRINTER (Variable) 23.14; 23.13 

(PRINTEROEVICE NAME) 18.18 

(PRINTERMODE x) 18~6 

(PRINTERSTATUS P~ERNAME) 213 

(PRINTFNS x -) 11.35 

(PRINTHISTORY ~TORY ~~ ~~FN 
NOVALUES FILE) 8.35; 8.11 

printing circular lists 23.8 

printing numbers 6.19 

( PRI NT INGHOST -) 18.16 

(PRINTL ITEM DEPTH L.MARG RMARG 

FILE) .23.12 . 
(PRINTLEVEL CARVAL C'DRVAL) 6.18 

PRINTLEVEL (Lilalom) 9.17 

PRINTMSG (Variable) 9.16 

(PRINTNUM FORMAT NUMBER FILE) 6.21 

PRINTOUT (CLISP word) 6.25 

PRINTOUTMACROS (Van·able) 6.30 

IndexAO 

(j--

(~~ 
\ / 

. " 

f\ 

" ) 



o 
(PRINTPACKET PACKET CALLER ~E 

PP..E.~·OTE DOFrLTER) 21.24 

(PRINTPACKETDATA BASE OFFSET 
MACRO LENGTH FILE) 21.20 

(PRINTPARA ~Y~G &MARG ~T PZFLAG 

FARENFT.AG FILE) 6.31 

PRHlTPROPS (Function) 8.14 

(PRINTPUP PA~T CALLER FILE 
PRE.NOTE DOFILTER) 21.19 

(PRINTPUPROUTE PACKET CALLER FILE) 

21.20 

(PRIUTROUTINGTABLE TABLE SORT 

FIr.E) 21.17 

PRINTXIP (Function) 21.23 

PR!NiXIPROUTE (Function) 21.23 

private pages 14.4 

(PRNTL ARGS) (Prog,. AssL Command) 
23.12 

PROCESS (Window Property) 19.33; 18.34 

Process Me"'..hanism 18.25 

(PROCESS.APPLY PRoe FN ARGS 
W~FOR..:U;SULT) 18.29 

(PROCESS.EVAL FROe FORM 

WAITFORRESULT) 18.29 

(PROCESS.EVALV FRoe vAR) 1&29 

(PROCESS. FINISHED? PROCESS) 18~ 

(PROCESS.RESULT PROCESS 

WAl7FORRESULT) 18.28 

(PROCESS. RETURN VALUE) 18~ 

(PROCESS.STATUS.WINDOW ~RE) 
13.36 

(PROCESS? PRoe) i8.28 

(PROCESSPROP.PROC PROP NEWVALUE) 

13.26 

(PROCESSWORLD FLG) 18~ 

(PRODUCE VAL) 7.13 

(PROG VARLST El E2 ... EN) 4.3 

P RaG label 4.4 

I!'IDEX 

(PROGl Xl X, ••• xN ) 4.3 

(PROG2 Xl X2 ••• XN ) ~.3 

(PROGN Xl X, ••• xN ) 4.3 

programm~r's assistant and the editor 8.35 

programmer's assist21lt commands applied 
to p.a. commands 8.17 

programmer's assistant commands L'1at 
fail 8.17 

prompt character 8.4.18.31: 9.1; 17.1 

prompt window 19.19 

PROMPT#FLG (Variable) 8.18: 8.31 

(PROMPT CHAR ID FLG BISTORY) 8.31: 
8.18.35 -

PROMPTCHARFORMS (Variable) 8.18; 8.31 

PROMPTCONFIRMFLG (ASKUSER option) 
6.62 

(PROMPTFORWORD PROMPT.STH 
eANDIDATE.STR GENER..ATErLIST.FN 

ECHO.CHA.NNEL DO~7ECHOTYPEIN.FLG 
TIMELIMIT.lJea TERMINC'HARS.LST 

KEYBD.CIi.ANl\'EL OLDSTRING) 

18.3i-38 

PROMPTON (ASKUSER option) 6.63 

(PROMPTPRINT exP) 19.19 

PROMPTSTR (Variable) 8.18 

PROrttPTWINDOW (Variable) 19.19~ 18.34 

(PROP PROPNAME LITATOM1 ••• 

LITATOMN) (File Package Command) 
11.23; 11.30 

PROP (in Masterscope template) 13.16 

PROP (Litalom) 5.9 

PROP (Printed by Editor) 17.54 

PROPCOMMA'~DFN (Property Name) 20.17 

proper tail 2.19 

PROPERTIES, (Property Name) 20.17 

property lists 2.6 

property name 2.6: 2.7 

property value 2.6: 2.7 

IndexAl 



(PROPNAMES ATI~) ~7 

PRO?PRINTFN (Property J.Vame) 20.17 

PROPRECORD (Record Type) 3.6 

{PROPS (LITA.TCM1 PROPNAME1) 

(L17ATO].!N PROPNAMEN) ) 
(File Package Co:nmand) 11.24 

PROP S (File Package Type) 11.15 

?ROPTYPE (Property Name) 11.15; lL12 

PROTECTIOfJ VIOLATION (Error Message) 
~.25 

-. -PRXFLG (Variable) 6.20 

pseucio-carriage rettL.""Il 8.26 

P·STE P (Function) 22.14 

PSTEPN (Function) 22.19 

PUP IGNORETYPES (Variable) 21.18 

(PUPNET • DISTANCE NET#:) 21.17 

PU?O~:L YTYPES (Variable) 21.18 

FUPPRINTMACROS (Variable) "21.19 

(PUPSOCKETEVENT PtTPsoc) 21.16 

(PUPSOCKETNUMSER pupsoc) 21.16 

(PUPTRACE FLG REGION) 21.19 

PUPTRACEF ILE (Variable) 21.18 

PU?TRACEFLG (Variable) 21.18 

\_.._ PUPTRACETIME (Variable) 21.19 

(PUSH DATII'M ITEM! ITEM:z ... ) 

(Change Word) 3.13 

pushdown list 1.10~ 5.4: 7.1 

(PUSHLISi DATLTM ITEMl lTEM2 ••• ) 

(Change ~Vord) 3.13 

(?USHfJEW DATUM ITEM). (Change. Word) 
3.13 

(PUTASSOC KEY VAL ALST) 2.25 

(PUTCHARBITMAP CHARCOOE FONT 
NE\V~r.AREITM.AP) 19.10 

(PUTO TN DEF -) 5.8: 22.3 

(PUTOEF NAME TYPE DEFINITION) 11.17 

INDEX 

(PUTOQ FN DEF) 5.8 

(PUTOQ? FN DEF) 5.8 

(PU~HASH KEY VAL HARP.AY) 2.35 

(PUTHASHFILE KZY VALL~ ~~) 
23.42 

{PUTPROP ATM PROP VAL} 2.1 

(PUTPROPS ATM PR.OP1 VALl .•• PROPN 

VALN ) 11.33 

(PUTPUPBYTE PUP BYTE#: VALC,Z:) 21.18 

(PUTPUPSTRING PUP STR) 21.18 

(PUTPUPWORD pr;p woRD#: VALuz) 
21.17 

Q (Editor Command) 17.44 

Q (jollowing a number) 6.13; 2.38; 6.17,19 

QU (Exec Command) 23.59 

QU IT (TENEX Cor:zmand) 22.21: 22.22 

(QUOTE x) 5.11 

(QUOTIENT x y) ~4S 

(R x Y) (Editor Command) 17.35: 11.5 

(Rl x Y) (Editor Command) 17.36 

(RAD IX N) 6.19: 6.13.17 

RAID (Litatom) 9.17 

RAISE (Editor Command) 17.41 

(RAISE x) (Editor Command) 17.41 -

(RAISE FLG TT.EL) 6.~ 

RAISE (TEIVEX Command) 6.44 

(RAND LO'WE'R v"PPER) ~46 

{RANOACCESSP FILE} 6.9 

random numbers 2.46 

randomly accessible files 6.8 

(RANOSET x) 2..t6 

RASTEROP (Function) 19.4 

(RATEST FLG) 6.14 

lndex.42 

0' 



·0 

(RATOM FILE RDTBL) 6.14; 6.34,46 

(RATOMS ~ FILE RDTBL) 6.14 

(RC x y-) (Editor Command) 17.36 

RC (A! AKEFILE option) 11.7 

(RCl X y) (Editor Command) 17.36 

(READ FILE RDTBL FLG) 6.13; 6.46 

read-macro characters 6.34 

READ-MACRO CONTEXT ERROR 
(Error A1essage) 9.25: 6.38 

0-' . read-macro options 

- read-macros 6.36 

6.37 

o 

(READS ITr~AP) 19.6 

READSUF (Variable) 8.29; 8.31 

(READC FILE RDTBL) 6.15: 6.46 

(READCOMMENT FL RDTBL LST) 651 

(READFIlE ~E) 6~ 

reading from strings 6.U 

(READlINE RDTBL - -) 8.30; 
8.17.20~26.28.3U5; 17.52 

(REAOMACROS FLO RDTBL) 6.39 

( READ P F~E FLG) 6.15 

(READTABLEP RDTBL) 6.32 

readtables 6.32; 6.12 .. 10 

READVICE (Propeny Name) 10.10-11. 

(READVISE x) 10.10: 10.11; 11.24 

(REALFRAMEP P~S ~FLG) 75 

(REALSiKNTH N pos ~ERPFLG 
OLDPOS) i.5 

REANAL YZE SET (Masterscope Command) 
13.5 

( REB REAK x) 10.6; 10.3 

{RE:~.!.!M) 18.2 

!Z.9: 

(RECLAIr1MI N N) 18.2 

RECLAIM~/AIT (Van'able) 18.2 

INDEX 

(REClOO" RECORDNAME - - -
-) 3.11 

(RECOMPILE PFILE CFILE FNS) 12.11; 
- 11.8; 12.16 

RECOMPIlEDEFAUL T (Variable) 12.12.18 

reconstruction (in Pattern Afatch Compiler) 
23.6 

RECORD (in Masterscope template) 13.17 

RECORD (Record Type) 35 

record declarations 35 

record declarations in CLISP· 16.11 

record package 3.1 

record-type (Record Package) 3.5 

(RECORDACCESS F~D DATu.M DEC TYPE 
NZWVALtm') 3.11 

(RECORDFIELDNAMES RECOP~NAMB) 
3.11 

(RECORDS RECI • _. &ECN) 

(File Package Command) 11.25; 
3.1.7 

RECORDS (File Package Type) 11.16 

RED E FIN E ? (Compiler Question) 12.1 

(FN REDEFINED) (printed by system) 
5.9 

REDISPLAY (Window Menu Command) 
19.20 

( R ED IS P LA YW WlNDOW P..EGION 
ALWAYSFLG) 19.27 

REDO EvezltSpec (Prog. Ass!. Command) 
8.7 

REDO EVelltSpec N TIMES 
· (Prog. Assl. Command) 8.7 

REDO EventSpee 'UNTIL FOR.M 
( Prog. Assl. Command) 8.7 

RE'DO EventSpec WHILE FORM 
(Prog. ASSL Commar.d) 8.7: 8.27 

REDOCNT (Var.able) 8.7 

REFERENCE (l'tfasIer!cope Reialion) 13.8 

RE FLST (Variable) 23.11 

Index.43 



REGION (Wir.dow Property) 19.33: 19.23 

(REGIONSINTERSECTP E.EGI0N~ 
REGION2) 19.3 

(REHASH OL.:niA.R.R.,AY NE1VF'..ARR..AY) 2.35 

(REHASHF ILE HAS.!U'ILE) 23.43 

SET rtELATION SET 
f-\{ asterscope Command) 13.5 

Rela:ions (in Mastersccpe) 13.7 

(REL8LK ADDRESS N) 22.20: 9.24: 18.6 

( R E LORA WT 0 DX DY WIDTH OPERATION 
DISPI...AYSTP..E.AM COLOR) 19.13 

(RELEASE.MONITORLOCK LOCX) 1&32 

(RELEASE. PUP Pup) 21.15 

(RELEASE. XIP XlP) 21.21 

reieasmg stack pointers i .10 

(RELINK FN) 1~19 

reliIlking 1219-20 

(REL1r10VETO DX DY DISPLAYSTREAM) 

19.12 

(RELMOVEW wmDOW POSITION) 19.27 

relocation information (in Interlisp-10 
arrays) 2.33 

(RELPROCESS? PROCHANDLE) 18.28 

(RELSTK pos) 7.7; i.lO 

(RELSTK? x) 7.7 

(REMAINDER x Y) 2AS 

REMAKE (JfAKEFlLE option) 11.7 

re:naking a file 11.10 

REMARK (Transor Command) 23.37 

REM£MBER EvelltSpec (Prog. ASSL Command). 
8.13 

(REMOVE x L) 227 

(REMPROP ATM PROP) 2.7 

(REMPROPLIST AT~ PROPS) ~7 

(RENAME OLD NEW TYPES FILES 

I\!ETHOD) 11.19 

INDEX 

(RENAMEFILE OLD~ ~E) 6~ 

REPACK (Editor COlT'.mand) li.41 

(RE.PACK @) (Editor Command) 17.41 

REPAINTFN (Window Property) 19.32 

REPEAT E'V'fJ:1tSpec (Prog, AssL Commar..d) 
S.7 

REPEAT EventSpec UNTIL FOR.\( 

(Prog. Ass!. Command) 8.7 

REPEAT E~tS~ WHILE FORM 
. (Prog. Ass!. Command) 8.7 

RE PEA TUNT I L FORM (I.S. Operator) 4.10 

REPEATUNTIL N (N a number) 
(l.S. Operator) 4.10 

REPEATWHILE FOP.M (I.S. Operator) 4.10 

Rep 1 ace (DEdit Command) 20.4 

(REPLACE @ BY E1 ••• EM) 
(Editor Command) 17.25 

(REPLACE @ WITH El ... EM) 
(Editor Command) 17.25 

REPLACE (in Maszerscope template) 13.17 

REPLACE (in record package) 16.7 

REPLACE (Masterscope Relation) 13.9 

REPLACE (Record Operator) 3.1 

REPLACE UNDEFINED FOR FIELD 
(Error Afessage) 3.8 

(REPLACEFIELD DES~TOR D,A~~ 
NE'WVALUE) 3.15 

replacements (in Pattern lvlarch ComplIer) 
• 23.6 

Repr; nt (DEdit Command) 20.5 

REREADFLG (Variable) 8.31-32 

(VARIABLE RESET) (Printed by System) 
8.23 

(RESET) 9.14: 9.20 

RESET (Litatom) 9.17 

(RESET.INTERRUPTS FERMITTEDr.NTERRUPTS 
SAVECURRENT?) 9.18 

lndex.44 

(~ 
\ J 

( -----.. 
\ 

\ ) 

n 



o 
(RESETBUFS FORM1 FORM~ ••• FORMN ) 

6.47 

(RESETDEDIT) 20~ 

( RES E T FORM RESETFOR.\! FOR.\! 1 FORM 2 
••. FOF-MN) 9~O 

RESETFORMS (Variable) 8.19; 6.8 

(RESETLST FORM 1 ••• FORMN) 9.19 

(RESETREADTABLE RDTBL FROM) 633 

(RESETSAVE x Y) 9.19 

RESETST ATE (Vanable) 9.20; 18.33 

0-· (RESETTERMTABLE TTBL FROM) 6.41 

(RESETUNDO x STOPFLG) 8.25; 9.21 

(RESETVAR VAH NEWVALUE FORM) 

9.20; 12.4 

·0 

o 

(RESETVARS VARSLST El E2 " .. 

EN) 9.20 

RESETVARSLST (Variable) 18.3 

"( RESHAPE5YRE?AI~JTFN WINDOW 
OLDn.!AGE OLDREGION) 19.33 

RESHAPE FN (Window Property) 19.31 

resou rcer~ame RESOURCE (I.S. Operator) 
14.12 

RESPONSE (Variable) 14.13 

(REST ART. ETHER) 21.15 

(RES1ART.PROCESS PRoe) 18~ 

RESTARTABLE (Process Property) 18.26 

(RESU~E FROMPTR TOf'TR v~) 7.15 

(RETAPPL Y P~S FN ARGS FLG -) 7.6 

(RETEVAL P~S FORM FLG -) 7.6: 15.6 
. . 

RETF~lS (in lwasterscope Set Specification) 
13.11 

RETFNS (Variable) 12.i3; U.15-16 

(RETFROM P~S VAL FLG) 7.6 

RETRIEVE LITATOM 
(Prog. Asst. Command) 8.12: 8.20.27 

RETRY Even:Spec (Prog. Asst. Command) 
8.8: 8.27 

INDEX 

(RETTO POS VAL FLG) 7.7 

RETURN (ASKUSER option) 6.62 

RETURN FORM (Break Command) 93 

(RETURN x) 4.4 

RETURN (in iterative statement) 4.11 

RETURJ~ (in ,\1aslerscope template) 13.17 

re~m link 7.2 

RETURNS (in Dec! package) 23.21: 
23.19.23 

RETYPE (syntax class) .6.41 

REUSING (Record Package) 3.3 

reusing stack pointers 7.10 

(REVERSE L) 2-"'7 

REVERT (Break Command) 9.6 

reve rt (display break command) 20.10 

( RGB P x) 19.45 

(RI N M) (Editor Command) 17.32 

RIGHT (key indicator) 19.17 

RIGHTBRACKET (Syntax Class) 6.33 

RIGHTBUTTONFN (W"indol'.' Property) 19.30 

RIGHTKEY (key indicator) 19.17 

RIGHTMIDDLEKEY (key indicator) 19.1i 

RIGHTPAREN (Synlax Class) 6.33 

(RING8ELLS) 18.6 

(RLJ FN JFN) 22.23; 18.6 

(RLPRI N 1 LIST) 

(RLPRIN2 LIST) 

(RLRESTORE LIST) 

23.10 

23.10 

23.11 

(RO N) (Editor Command) 17.32 

root name of a file 11.3 

ROOTFILENAME (Function) 11.3.13 

(ROT x N FIELDSIZE) 2.42 

(ROTATECOLORMAP COLORMAF 
STARTCOLOR THRUCOLOR.) 19.46 

fndex.45 



(ROTATEIT BEGTIVCOLOR ENDCOLOR 
WAIT) l;' .50 

(RPAQ VA.~ VALL"E) 

(RPAQ? VAR VALUE) 

(RPAQQ VAR VALt~) 

11.37; 8.23; 11.4 

11.38; 11.4 

11.37; 8.23: 11.4.35 

RPARKEY (Variabie) 15.12; 15.5 

(RPlACA x Y) ~15 

(RPlACD x Y) ~14 

(RPlCHARCODE x N CHARCODE) 230 

- (RPLNODE x A D) ~15 

(RPLUODE2 X Y) ~15 

(RPLSTRIf~G X N Y) 2.30 

(RPT N FORM) 5.12 

(R?TQ N FOR.\{:z FORM2 
5.12 

(RSH x N) 2AO 

(RSTR iNG nLE P..D'I'BL) 6.14 

RUBOUT (Lizatom) 9.17 

run-on spelling corrections 15.3.18-19 

run..:ti.!:g other su bsystems from within 
Interlisp ~2.21 

RUUCNFLG (Variable) 15.12: 15.18 

',,-- - S LITATOM @ (Editor Command) 17.22 

S (Response to Compiler Question) 12.2 

(SASSOC KEY AL'ST) 2.25 

(TYPE (SATISFIES FORM1 .•• FORMN » 
(Deci Type Expression) 23.27 

: SA TIS FIE S (in Deci package) 23.19 _ 

SA \' liNG cursor 18.4 

SAVE (Editor Command) 17.38: 
Ii AO.56-5i 

SAVE EXPRS? (Compiler Queszion) 12.1 

SAVED8FLG (Variable) 23.16 

(SAVEDE F FN) 5.9 

INDEX 

(SAVEDEF NAME TYPE DEFINITION) 

11.18; 5.10 

(SAVE PUT ATM PROP VAL) 11.38 

(SAVESET N~~ VALL~ TOPFLG FLG) 
8.24; 8.23 

SAVESETQ (Function) 8.23 

SAVESETQQ (Function) 8.23 

(SAVEVM -) 18.4 

SAVEVM (JVindow Af enu Command) 19.21 

SAVEVMMAX (Variable) 18.4 

SAVEVMWAIT (Variab{e) 18.4 

(SCODEP x) 22.26· 

SCRATCHCOLLECT (I.S. Operator) 23.54 

(SCRATCHLIST LST Xl X:J ••• XN) 14.2 

( SCRE ENB ITMAP) 19.4: 19.18-19 

(SCREENCOLORMA? N.SWCOLO~) 
19.46 

SCRE~NWIDTH (Variable) 19.12 

(SCROLL. HANDLER WINDOW) 19.24 

SCROLLBARWIDTH (Variable) 19.23-24 

(SCROLLBYREPAINTFN ~LNDOW D~TAX 
DELTAY CONTINUOUSFLG) 19.24 

SCROLLFN (Window Property) 19.31: 
19.23-24 

(SCROLLW WINDOW DELT,.4.x DELTAY 

CONTIN"JOtrSFLG) 19.23 

SCROLLWAITTIME (Variable) 19.23-24 -

search algorithm (in Editor) 17.15 

searching files 6.9 . 

searching strings 2.31 

SEARCHING ••• • (Printed. by BREAKIN) 
10.5 

(SEARCHPDL SRCHFN SRCHPOS) 7.8 

second pass (of the compiler) 22.11 

SECONDS (Timer Unit) 14.11 

5 E E FILE 0 UTFILE BYTESIZE 

( Exec Command) 23.60 

Index.46 

f\. 
\ ) 

n 

():-



o 

segment patterns 
(in PaItem Match Compiler) 23.3 

(SELCHARQ E CLAUSE1 ••• CLAUSEN 
DEFAu"!,T) 2.13 

SELECTASLEITEMS (Property Name) 
20.17 

(SEL£CTC x CLA USE 1 ~..AUSE2 
~.wAUSEK DEFAULT) 4.3 

SELECTIOllFrl (Property Name) 20.17 

(SELECTQ x CLAUSEl CLAUSE2 
CLAu~EK DEFAVLT) 4.2 

0" (SEllDPUP PUPSOC Pup) 21.16 

(SENDXIP N'SOC XlP) 21.22 

SEPARATE SET (Maslerscope Path Option) 
13.15 

separator characters 6.34; 6.14,46 

(SEPRCASE C"'JLG) 6.10 

SEPRCHAR (Syntax Class) 6.33 

(SET "jUt VALUE) 2.5 

SET (in Masterscope template) 13.16 

S~T (A{ asterscope Relation) 13.8 

Set Speciii=ations (in Masterscope) 13.10 

(SET. TTYINEOIT • Wlr~DOW WINDOW) 

20.40 
~ (J (SETA A N V) 2.33-34 

o 

. (SET ARG V.,A..R M x) 5.4 

(SETATONVAL ATM VALUE) 2.6 

(SETSLI?VAL BLIPTYP IPOS N VAL) 
7.12 

(SETBRK LST FLG RDTBL) 6.35 

(SETCASEARRAY CASEARRAY FROMCODE 

TOCOC'E) 6.10 

(SETCOLORINTENSITY COLO&~AP 
COLO?.N'T.JMBER COLORSPEC) 19.46 

(SETCURSOR NEWCVRSOR -) 19.16 

(SETD A N V) 2.34 

SETDECL TYPE PROP (Function) 23.29 

, INDEX 

(SETO IS?LAYHE IGHT NSCANLINES) 

18.22 

(SETERRORN NVM MESS) 9.14 
10 

(SETFILEINFO FILE ATTP.m· VALm:) 6.7 

(SETFILEPTR FILE ADR) 6.9 

SETFN (Property Name) 16.22 

(SETFONTOESCRIPTOR FAM~Y SIZE FACE 
ROTATION DEVICE FONT) 19.9 

SETINITIALS (Variable) 17.60 

(SETLINELENGTH N). 6~ 

(SETN VAR x) 22.5; 22.3 

(SETPROPLIST ATM LST) 2! 

(SETQ VAR VALUE) 2.5 

SETQ (in an ASSElJ BLE statement) 
22.14 

(SETQQ VAR VALUE) 2.5 

SETREADFN (Function) 20.37 

(SETREADMACROFLG FLG) 6~ 

(SETREADTABLE RDTBL FLG) 632 

Sets (in Masterscope) 13.10 

(SET SBS IZE N) 22.25: 9.25 

(SETSEPR LST FLG RDTBL) .635 

(SETSTKARG N P~S y~~~) ... -
,'~ 

(SfTSTKARGNAME N P~S NAME) 75 

(SETSTKtlAME pos N.AM:E) 7.4 

(SETSYtlOr~YM PfmASE MEANrl't"G -) 

13.20 

(SETSYNTAX CHAR CLASS TABLE) 634 

(SETTEMPLATE FN TEMPLATE) 13.19 

(SETTE RMCHARS .,\'EXTCHAR DKCliAR 

LASTCHAR UNQUOTECHAR 2CHAR 

PPCHAR) 17.59: 14.4: 17.13 

(SETTE RMT ABLE TTBL) 6.41 

(SETTIME DATE&TIME) 18.7 

(SETTOPVAL VAR VALUE) ~5 

Index.47 



(SETTYPEDESCRIPTION TYPE ST~G) 
22.2 

(SETUPPUP PUP DES7.F.OST DESTSOCKET 

TYPE ID SOC REQt.StJ"E) 21.17 

(SETU?TIMER INTERVAL OLDTIMER? 
T'IMERrn'tTTS INTERVAL'ClN1TS) 14.11 

(SETUPTI~1ER.DATE DTS Ol:.DTIMER?) 
14.11 

(SETWORDCOr~TENTS PTR N) 14.19 

(SHADEGR IDBOX X Y SHADE 

OPERATION GRIDSPEC GRIDBORDER 
DISPLAYSTP..EAM') 19.42 

(SHAOEITEM ITEM MENU SHADE DSORW) 
19.41 

SHALL I LOAD (printed by D W11\{) 15.8 

shallow binding 7.1: 2.6; 12.4 

SHAP E (Window Menu Command) 19.20 

( S HA PEW VVINDOW NE'WREGION) 19.26 

(SH.~RED TY.?E) (Dec! Type Expression) 
23.27 

shared pages 14.4 

SHH FOR.!w! (Prog. Asst. Command) 8.14 

SHOULD BE A SPECVAR {E~r ,Wessag~ 
12.10 

SHOULDCOM? ILEPrlACROATOMS (Variable) 
5.19 

Shou 1 dn 't happen! (Error ~fessage) 
9.14 

(SHOULDNT MESS) 9.14 

(SHOW x) (Editor Command) 17.47 

SHOW PATHS PATFIOPTIONS 

(Afa.sterscope Command) 13.5 

SHO'.tl WHE RE SET RELATION SET 

(.\lllSlt'T"Scvpe Commt1lld) 13.6 

SHOW (Transorset Command) 23.36 

SHOW PATHS (lvlasterscope Command) 
13.13 

(SHOW. CLEARINGHOUSE) 21.12 

INDEX 

(SHOW.ENTIRE.CLEARINGHOUSE) 21.12 

(SHOWCOLORTEST?ATTERN ~~E) 
19.50 

( SHOWDE F NAME T:"PE FZI:E) 11.18 

SHOWPARENFLG (Variable) 20.43 

(SHOWPRIN2 x FILE R.DTBL) 6.17; 
8.11.35 

(SHO\:JPR INT x FILE lWTBL) 6.17: 
7.8: 9.5-6 

SHRINK (J.Vindow /.~{enu Command) 19.21 

SHRlfdKFN (Window Property) 19.30 

(SHRINKW WINDOW TOWHAT 

ICONPOSrnON EXPAJ'';DFN) 19.27 

SIDE (History List Propeny) 8.27; 8.33-35 

SID E (Property Name) 8.28 

( SIN X RADlANSFLG) 2.46 

single-stepping a progr-~ 17.45 

(SINGLEFILEINDEX ~ OL~~ 
NE'WPAGEFLG) 23.13 

SKOR (Function) 15.16 

(SKREAD FILE R..E'READSTRIN'G) 6.16 

small integers ~.L36 

SMf'\LLEST FOR-\! (I.S. Operator) 4.7 

(SMALL? x) 2.1,37 

(SMARTARGLIST FN EX?~LG ~) 
5.7 

SMASH (in Masterscope template) 13.16 

SMASH a.,,fasterscope Relation) 13.8 

(SMASHFILECOMS F~E) 11~ 

SMASHING (Record Package) 3.3 

SMASHPROPS (VarIable) 14.14 

SMASHPROPSLST (Vanable) 14.14 

SMASHPROPSMENU (Variable) 14.13 

SNAP OVindow .\fenu Command) 19.21 

(SOME SOMEX SOMEFNI SOMEFN2) 5.14 

IndexA8 

(J 

() 

(j 

~ 
\) 



o 

() 

o 

SORRY. I CAN'T PARSE THAT 
(En-or 1.J essage) 13.15 

SORRY, NO FUNCTIONS HAVE BEEN 
ANALYZED (En-or Message) 13.15 

SORRY, THAT ISN'T IMPLEMENTED 
(En-or Ai essage) 13.15 

(SORT DATA COMPAREFN) 14.8 

(SORi.PUPHOSTS.BY.DISTANCE HOSTLST) 
21.17 

SOURCETYPE (BITBLT argument) 19.5 

S? (in an ASSEM ELE statement) 22.14 

(SPACES N F1!.E) 6.17 

spaghetti stacks 7.2 

(SPAWN.MOUSE --) 18~ 

SPECIAL (in DecI package) 23.21 

(SPECVARS VAR1 ••• VARN) 

(File Package Command) 11.25 

SPECVARS (in Masrerscope Set Specification) 
13.11 J 

SP::CVARS (Variable) 12.4; 9.20; 12.15-16 

(SPELLFILE F~E NOPRXNTFLG NSFLG 
. Dmr.ST) 15.20; 6.5; 9.17.24 

speili::lg completion 15.13 

spellicg correction 15.13; 8.7.29; 9.12: 
11.21.27; 16.6.19: 17.52-53,55 

spel.1.L-,g correction on file names 15.20 

spelling correction on hash files 23.44 

spelling co~ction protocol 15.3 

spelling corrector 15.13; 15.1.16 

spelling lists 15.14: 4.5; 8.7,29: 
9.12: 11.4,22.27: 14.7; 15.8-9: 
16.6.19; 17.52-53.55 

SPELLINGSl (Variable) 15.14; 15.10.15.17 

SPE LL! NGS2 (Variable) 15.14: 
15.9-10.15.17 

SPELLINGS3 (Variable) 15.14: 8.24: 
15.8.17 

SPLICE (t. .... pe of read-macro) 6.36 

INDEX 

(SPLITC x) (Edilor Command) 17.42 

( SPP • CLOSE STP~ ABORT?) 21.6 

(;SPP.DSTYPE STREAM DSTYPE) 21.7 

(SPP • EOFP STREAM) 21.7 

(SPP. EOMP STP.EAM) 21.7 

(SPP. FLUSH STREAM) 21.6 

( S P P • 0 PEN HOST SOCKET PROBEP 

. NAME) 21.6 

(SPP. READp· STREAM) ~1.7 

(SPP. SENDEOM ST;REAM') 21.6 

SPP. USER. TIMEOUT (Variable) 21.6 

spread functions 5.2 

spreading arguments 5.2 

(SQRT II;) 2.45 

SQRT OF NEGATIVE VALUE 
(Error Message) 2.45 

square bracketS inserted by PRETTYPRINT 
6.53 

ST (Response 10 Compiler Question) 12.2 

stack descriptor 7.3 

stack functions 7.3 

STACK OVERFLOW (Error Me~g~ 9~: 
7.10; 18.35 

STACK OVERFLOW IN GC -
COMPUTATION LOST (E~r ~fessag~ 
9.22 

stack pointer i .3 

STACK POINTER HAS BEEN RELEASED 
. (Error Message) 7.4 

STACK PTR HAS BEEN RELEASED 
(Error Message) 9.24 

( ST ACKP x) 7.7 

(START.CLEARINGHOUSE RESTARTFLG) 
21.12 

statistics 8.21 

STF (Response 10 Compiler Queslion) 12.2 

(STKAPPLY pos FN ARCS FLG -) 7.6 

[ndex.49 



(STKARG N P~S -) 7.5: 9.5 

(STKARGNAME N pos) 7.5 

(STKARGS P~S -) 7.6 

(STl<EVAL POS FORM FLG -) 7.6; 9.5 

(STKr~p,ME pos) 7.4 

(STKNARGS rOS -) 7.5 

(STKMTH N pes OLDPOS) 7.4 

(STKNTHNAME Ii pos) 7.4 

(STKPOS NAME N P~S OLDPOS) 7.4 

(STKSCAN VAR !POS opos) 7.5 

STOP (at the er.d a/ a file) 6.25; 11.4 

Stop (DEdit Command) 20.6 

STOP (Editor COfT'.mand) 17.38; 10.5; , 
1i.41.56-S7 

(STORAGE FLG GCFLG) 14.1 

STORAGE (Litatom) 9.17 

storage allocation 22. 7 

STORAGE FULL (Error Message) 9.24: 
18.35 

STOREFN (Property Name) 20.17 

STREAM (datatype) 18.12 

(STREQUAL X y) 2.28 

STRF (Van'able) 12.1: 12.11 

string functions 2.28 

S~lllg pointer 2.28 

string pointers 2.29 

STRINGDELIM (Syntax Class) 6.33 

(STRINGP x) 2.2 

(STRINGREGION 5TH W!NDOW PRIN2FLG 

.r~,D'fBL ) 19.9 

strings 2.27: 2.2: 6.13 

(STRINGWIDTH STH FONT PRIN2FLG 

RDTBL) 19.9 

(STRPOS PAT STR.ING START SKIP 

ANC;-:OR. TAlL) 2.31: 6.9 

INDEX 

(STRPOSL A STR START NEG) 2.31 

structure modification (in Changetran) 3.12 

structUre modification commands (in 
. Editor) 17.22 

(SUB! x) 2.39 

(SUBATOM x N M) ~9 

subdeclarations (Record Package) 3.10 

(SUBLIS ALST EX?R FLG) 2.24 

(SUB?AIR OLD NEW EXPR FLG) 2.24 

SUBR (Litatom). 5.6 

SUBR (Property Name) 5.10 

SUBR- (Litatom) 5.6; 5.7 

(SUBREGIONP L.ARGEREGION 

SMALLREGION) 19.3 

( SUB R? FN) 5.6: 22.3 

SUBRs 5.5 

(SUBSET MAPX MAPFNI MA.PF~7) 5.14 

(SUBST NEW OLD EXPR) 2.2.3 

(SUBSTRING x N M OLDPTR) 229 

(SU8SYS FILE/FORK INCO~E 
OUTCOMFILE EN'I'R'YPOINTFLG) 

22.21: 18.6 

(SUBTYPES TYPE) 23.30 

subtypes (in Ded package) 23.25 

SUCHTHA T (LS. Operator) . 4.15 

SUCHTHAT (in event address) 8.6 

SUM FORM (I.S. Operator) 4.6 

(SUPERTYPES TYPE) 23_~ 

• supertypes (in Ded package) 23.25 

SURROUND (Editor Command) 17.28 

SUSPEND (Process Property) 18.26 

(SUSPEND. PROCESS PROC) 18.19 

SUSPICIOUS PROG LABEL 
(Error ,\/ essageJ 16.15 

SVFLG (Variable) 12.1-2 

Index.50 

(). 
. / 

(~ .. 
\ J. \ 

.~ .. ; 

n·· 



o 

(SW N M) (Editor Command) 17.36 

(S'JlAP DAnr-r1 DATUM2 ) (Change Word) 
3.13 

Sflla~ (DEdit Command) 20.5 

(SWAP @1 @Z) (Editor Command) 17.36 

SWAP8LOCK TOO BIG FOR SUFFER 
(Erro~ JfcssageJ, 9.25 

SWAPC (Editor Command) 17.42 

swappable array 22.24 

swapping buffer 22.24 

(SWAPPUPPORTS Pup) 21.17 

Switch (DEdit Command) 20.4 

S'IIPAR~AYP (datatype) 22.25 

. (SWPARRAYP x) !l25 

SY (E~ec Command) 23.59 

symbols 2.4 

SYMLST (Jlaru;zbl.e) 23.51 

synonyms 15.13 

syntaX classes 6.33 

. (SYNTAXP co;:,e ~...ASS TABLE) 6.34 

(SYSBUF FLG) 6.46; 6.47 

S'fSFILES (Variable) 11.4 o SYSHASHARRAY (Variable) 2.35-36 

o 

SYSHASHF ILE (Variable) 23.42 

(SYSIN FILE) 14.4 

SYSL I1JKEDFUS (Variable) 12.19 

SY SLOAD (LOAD option) 11.4: 15.8 

• (SYSOUT FILE) 14.3 

sysout fiie 14.2 

SYSOUT • EXT (Variable) 14.3 

SYSOUTDATE (Variable) 14.3 

SYSOUTF I LE (Variabie) 14.3 

SYSOUTGAG (Variable) 14.4 

(SYSOUT? FILE) 14.4 

~TIEX 

SYSPRETTYFLG (Variable) 6.17: 7.8; 
8.11.35; 9.5-6 

SYSPROPS (Variable) 2.6; 11.23 

system buffer 6.45; 6.46 

SYSTEM ERROR (Error Message) 9.22 

SYSTEMFONT (font class) 6.55 

(SYSTEMTYPE) 14.1 

T (Litalom) 2.5 

T (PRINTOUT command) 6.27 

T FIXED (Printed by DWIM) 15.6 

tab (ED IT A command) 23.49 

{T A8 pos MINSPACES FILE}" 6.17 

T A I L (Variable) 15.11 

tail of a list 2.19 

(TAILP x Y) 2.19 

TALK USER (Exec Command)" 23.59 

(TAN x RADlANSFLG) 2.46 

(TCOMPL FILES) 12.11; 12.12.16-17 

(TCOr~C PTR x) 2.17: 2.18 

(TEDIT TEXT WINDOW DONTSPAWN 

PROPS) 20.20 

TEDIT • ABBREVS (Variable) 20.31 

(TED IT • ADD. M'ENU ITEM MENU ITEM) 
20.26 

TEDIT • AFTERQUITFN (Window PropertyJ. 
20.27 

TEDIT. BLUE. PEND Ir~G. DELETE (Variable) 
20.29 . 

• TEDIT • CMD. CHARFN (Window Propeny) 
20.27 

TEDIT. CMO. LOOPFN (~Vindow Property) 
20.27 . 

TEDIT • CMO. SELFN (Window Property) 
20.17 

TEO IT • DEFAULT. FMTSPEC (Variable) 
20.29 

Index.51 

. . 



TEOIT.DEFAULT.FONT (Variabk) 20~9 

TEDIT .DEFAULT .MENU (Variable) 20.28 

TEDIT .DEFAULT .MENUFN (Function) 
20.28 

(TEDIT. DELETE ST?.EA.M CH,#orSEL LEN) 

20.25 

(TEDIT. FI~~O STRE.A}.( TEXT CB#) 

20.15 

(TEDIT.GETSEL ST.?~V) 2O~ 

(TEDIT.GETSYNTAX CHARCODE TABLE) 

20.30 

(TEDIT.HARDCOPY ST~ F~E 
DONTSE1'4'7:) BREAKPAGETITLE) 20.25 

(TEnIT. INSERT STREAM TEXT 

CH#orSEL) 20.25 

(TEDIT.LOOKS STREAM NEWLOOKS 
SELO?C!1# LEN) 20.25 

TEDIT .MENU (Window Property) 20.28 

TEO!T • MEr~u. COMMAr~DS (Window Property) 
20.28 

TED IT • MOVESELECTION (Variable) 20.29 

TED IT .OVERFLOWFN (Window Property) 
20.27 

TED!T • PCSTSCROLLFN (Window Property) 
20.27 

TEDIT • PRESCROLLFr~ (Window Property) 
20.27 

(TEDIT .QUIT STREAM VALUE) 20.26 

TEDIT. QUITFN (Window Property) 20.27 

TED IT . READT ABLE (Variable) 20.29 

(TEOIT.REMOVE.MENUITEM ~NU ITEM) 

20.27 

TED IT . SE LEer ION (Variable) 20.29 

(TEDIT.SETFUNCTION CHARCODE FN 

TABLE) 20.30 

(TED IT. SETSEL STREAM CH#orSEL LEN 
POINT) 20.25 

(TEDIT.SETSYNTAX CHARC9DE CLASS 

TABLE) 20.29 ~ 

INDE..'X 

TEDIT.SHIFTEDSELECTION (Variabkj 
20~9 

(TEDIT • SHO\wSEL STP..EAM ONFLG SEL) 
.. 20.25 

TEDIT.TITLEMENUFN r~indow Propeny} 
20.28 

TEDIT.WORDBOU~O.READTABLE (Vanabk) 
20.29; 20.30 

(TEDIT.WORDGET CHAR ~LE) 2O~ 

(TEDIT.WORDSET CHAR CLASS TABLE) 
20.30 

(TELNET CONNECTION TYPB SKT -) 
23.62 

telnet package 23.62 

(TEMPLATES LITATOM1 ••• UTATOMN ) 

(File Package Command) 11.25 

TEMPLATES (File Package Type) 11.16 

Templates (in ~fast~rscope) 13.16 

( T E N .. E X srn. FILEFLG) 22.6 

terminal 6~1350; 8.30; 17.38 

terminal syntaX classes 6.41 

terminal tables 6.40 

(TERMTABLEP TTBL) 6.41 

( T E R P R I FILE) 6.17 

TEST (Editor Command) 17.51 

TEST (in ft..faslerscope template) 13.16 

TEST (l'y[asterscope Relation) 13.8 

TEST (Transorset Command) 23.36 

TESTFORM (Variable) 23.37 

(TESTRELATION ITEM RELATION ITEM2 
rNVERTED }. 13..20 

TESTRE rURN (in Afllslerscope lempiale) 
13.17 

TEXTOBJ (V";indow Property) 20.28 

TEXT STREAM OVindow Property) 20.:8 

(TEXTUREP OBJECT) 19.6 

Texrures 19.6 

Ind~x.52 

C)--

() 



o 

CJ 

o 

T HE (in Dec! package) 23.23 

k ,1 23.22 .THEN (in Ded pac age/ 

TH~REIS FOP,,),,! (I.S. Operator) 4.6 

(THIS.PROCESS) 18~7 

THOSE (1,[ astersccpe Set Specification) 
13.11 

(@1 THRU) (Editor Command) 17.34 

(@1 THRU @z) (Editor Command) 17.32 

THRU (/.S. Operator) 4.15 

T H RU (in event specification) 8.6 

TICKS (Timer Unit) 14.11 

(T IME TIMEX TIMEN TlM'ET'fPE) 14.14: 
14.J:5 

time S'~ps 17.60: 5.9 

time-slice of history list 8.25: 8.18 

( T I HEAL l TIMEFOP.M # TJl.,!ES TIMEWRAT 
IN7EP..PFLG -) 18.22 

( TIM ERE X P r RED? ' TIMER 14.11 
CI..OC-AVALVE.OR. TIMER UNITS ) 

timers 14.11 

t ; me rUn; ts IDv"1TS (1.S. Operator) 14.12 

(Tnt1ES Xl X 2 ••• xN ) 2.45 

TIMES (lJse with REDO) . 8.7 

TITLE (Menu Field) 19.40 

,) 19 ':2 TITLE (H'"indow Property/ 0eJ_ 

(@1 TO) (EdiLOr Command) 17.34 

(@1 TO @z) (Editor Command) 17.32 

TO FO&\! (I.S. Operator) 4.8: 4.9 

TO (in event specification) 8.6 

TO SET (~fasterscope faih Option)' 13.14 

too few arguments 5.3 

too man," argu:nents 5.3 

TOO MANY ARGUMENTS (Error Message) 
9.26 

TOO MANY FILES OPEN (E"or Me~ag~ 
9.23 

INDEX 

TOO MANY USER INTERRUPT 
CHARACTERS (Error Message) 9.25 

TOP (Argument to AD VISE) 10.9 .. 
top level binding 11.37 

TOT 0 P F N (Window Property) 19..3{) 

(TOTOPW VnNDOW NOCALLTO?'WFN) 

19.26 

(TRACE x) 10.4; 9.2.12; 10.1.5-6 

TRACEREGION (Variable) 20.11 

TRACEWINDOW (Vanab/e) 20.11 

translation notes (in TRANSOR) 23.32-33-

translations in eLlSP 16.13 

(TRAt:SMIT • ETHERPACKET NDB PACKET) 

21.24 

(TRANSOR FILE) 23.33; 23.3t 

TRANSOR sweep 23.39 I 

(TRANSORF~S FNLST) 23.33 

) 23 -::3 (TRANSORFORM FORM 0eJ 

TRANSORSET (Function) 23.35; 23.32 

TRAP AT lOCATION (Error Message) 
9.22; 22.6 

TREAT AS CllSP ? (Printed by. DWI1rf) 
16.12 

TREATASCLISPFlG (Variable) 16.12 

TREATED AS CllS? (Pn"nted by DWIlvl) 
16.12 

(TRUE) 5.11 

TRUSTING (DWIlv/ mode) 15.3: 15.2: 
16.3-4.U 

(TRYNEXT PLST## ENDFORM## 

VAL##) 7.16 

(TTY#) 23.60 

(TTY.PROCESS PRoe) 18.33 

(TTY.PROCESSP FRoe) 1833 

TTY: (Editor Command) 17.40: 10.5: 
17.38.48 

TTY: (Printed by Editor) liAO 

Index.53 



(rTYDISPLAYSTREAM D~PLAy'sT.?~) 
.19.15 

TTYENTRYFN (Process Property) 18.34; 
18.27 

TTYEXIiFN (Process Property) 13.34; 
18.27 

( TTY I N PROMPT SPLST HELP OPTIONS 
ECSOTOFILZ TABS UNREADBUF 

RDTBI.. ) 20..38: 20.31 

(TTYIN.PRIHTARGS FN ARCS ACTUALS 
ARGT'YPE') 20041 

TTYIN. REAO?=ARGS (Function) 20.41 

(TTYI!LSCRATCHFILE) 20.41 

TTY IN? = F N (Variable) 20.41 

TTYINAUTOCLOSEFLG (Van'ab/e) 20.40 

TTYINBSFLG (Variable) 20.43 

TTYINCOMPLETEFLG (Variable) 20.44 

(TTYINEDIT EXPRS ~w P~N) 
20.40 

TTYINEDITWINOOW (Variable) 20.40 

TTYINERRORSETFLG (Variable) 20.43 

TTYINMAILFLG (Variable) 20.43 

iTYIUMETA (Function) 20.33 

TTYINPRINTFN (Variable) 20.40 

TTY! N READ (Function) 20.37 

',- ~ - TTYINREADMACROS (Variable) 20.42 

TTYINRESPONSES (Van·able) 20.43-44 

TTY ~USTLENGTH (Variable) 20.36 

TTYL!NELEr:GTH (Van·able) 6.8 

(TUNNEL SPEED) 19~O 

TV (Prog. Asst. Command) 20.37 

TY FILE OVTFlLE BYTEsr=s 

(Exec C ummand) 23.60 

TYPE (A[asterscope relation) 23.31 

type declarations 23.18 

type description 22.2 

type names 2.1 

INDEX 

type numbers 22.2 

TYPE-AHEAD (Prog. ASSL Command) 8.15 

TYP~-IN? (Variable) 15.11 

TY P E ? (in record declaratior.s) 3.9 

. TYPE? (Record Operator) 3.4 

TYPE? (Record Package) 3.5; 23.24 

TYPE? NOT IMPLEMENTED FOR THIS 
RECORD (Error .Message) 3.4 

TYPEAHEAOFLG (Variabie) 20.43: 20.40 

(TYPENAME DATUM) ~1 

(TYPENAMEFROMNUMBER N) !l2 

(TYPENAMEP DATUM nPENAME) 2.1 

(TYPENUMBERFROMNAME NAME) III 
(TYPEP DATUM N) !l2 

TYPERECORD (Record Type) 3.5 

types (in Masrerscope) 13.12 

(TYPESOF NAME POSSIBLE TYPES 

IMPOSSIBLETYPES SOURCE) II.1i 

U (value of ARGLIST) 5.7 

(U-CASE x) ~11; 17.41 

(U-CASEP x) 2.11 

U • 0 • F. T (Printed by D J¥ll..-f) 15.5 

US (Break Command) 9.3 

UCASELST (Variable) 6.53 

(UGLYVARS VAR z ••• VARN') 

(File Package Command) 11.25: 6.24 

UNABLE TO ALLOCATE PMAP BUFFER 
(Error AI essage) 14.18 

UNABLE TO DWIMIFY (Error /t,fessage) 
12.9 

( UNADV I SE x) 10.10: 10.9.11 

UNADVISED (Printed by System) 10.i 

UNARYOP (Property .Vame) 16.11 

UNBLOCK (Editor Command) 17.51 

Index.54 

Cl 

(\ 
\ ) 



o 

o 

() 

o 

unbound atom 2.5; 15.6 

U~IBOUND ATOM (Error Jrf essage) 9.25; 2.5 

unboxed numbers 22.5 

u~boxed numbers (in Interlisp-10 arrays) ..... '" J-:J.J 

unboxing 2.37; 22.5 

(UNS REAK x) 10.6: 10.4: 14.15 

(UNBREAKO FN -) 10.6 

(FN UNBREAKABLE) (value of BREAKlN) 
10.5 

(UNSREAKIN FN) 10.6 

UNBROKEN (Printed by AD VISE) 10.9 

Uf.t8 ROKE N (Printed by Compiler) 12.10 

UNBROKEN (Printed by System) 10.7 

Ul~D FILEGROUP (Exec Command) 23.60 

UNDEFINED CAR OF FORM 
(Error Message) 9.25 

undefined function 15.6 

. undef; ned functi on (En-or Message) 
9.25: 15.1' 

UNDEFINED OR ILLEGAL GO 
(Error Message) 9.23; 4.4 

UNDEFIN::O TAG (Error Afessage) 12.21: 
5.20 

UNDEFINED TAG. ASSEMBLE 
(Error Message) 12.21 

UNDEFINED TAG. LAP (En-a; Message) 
12.21 

UNDE F I~lED USER Ir~TERRUPT 
(En-or Message) 9.17 

Un do (DEdit Command) 20.5 

UNDO (Editor Command) 17.7 

(UNDO EventSpec) (Editor Command) 
17.50-51: 8.35 

UUDO EventSpcc (Prog. Asst. Command) 
8.11 

INDEX 

UNDO E?'elltSpee : Xl ••• 

X N (Prog. ASSL Comrru:zr.d) 8.11: 
8.6.23.2i.34-35: 15.3 

undoing 8.22: 8.36 

undoing (in Editor) 17.50: 8.36: 17.7.12 

undoing DWIM corrections 8.11: 16.15 

undoing out of order 8.23: 8.11 

(UNDOLISPX Lr.NE) 8~ 

(UNDOLISPXl EVENT FLG -) 8~ 

UNDOLST (Variable) 17.50: 8.36; 
17.38-39.51.S7 

UNDONE (Printed by Editor) 17.50 

UNDONE (Printed by System) 8.11.34 

( UNOCULSE TQ UNDOFORM.-) 8.24 

(UNDOSAVE UNDOFORM HlSTENTRY) 
8.33; 8.28 

UN F I r~o (Variable) 17.21: 
17.1S,252i-31.38-39.44.S7 

(UNION x Y) 2-"'3 

(UNIONREGIONS REGIONl REGfON2 

REGIONn ) 19.3 

UNLESS FORM (1.S. Operator) 4.10 

(UNLOCKMAP PTR) 14.20 

(Urn<1ARKASCKANGED NAME TYPE) 11.12 

(UNPACK x FLC R~TBL) ~10 

(UNPACKFILEfJAME FILENAME -) 6.5 

unreading 8.4.31 

UNSAFEr,.ACROATOMS (Variable) 5.19 . 
UNSAVE.D (Printed by DWIlv!) 15.8-9 

(UNSAVEDEF fN PROP) S.lO 

(UNSAVEDEF NAME TYPE -) 11.18: 
15.8-9 

(UNSAVE FNS -) 13.21 

{UNSET NAME} 8.24: 8.23 

UNT I L FORM (I.S. Operator) 4.10 

UNT I L N (N a numbe r) (1.5. Operator) 
4.10 

Index.55 



I 

I • 

UNT I L (use with REDO) 8.7 

unt i 1 Date D'r'S (LS. Operator) 14.12 

(UUT I L~tCUSEST ATE BVTTONFORM 
l:'C ..:.ER'fAL) (Jfacro) 19.17 

Ur,USUAL CDR ARG LIST (Error Message) 
9.24 

UP (Editor Command) 17.8-9; 17.10.15.26 

(UPOATECHANGED) 1321 

(UPDATEF!LES -~) 11.14 

( U?O ATE F N FN EVENrFYALID -) 13.21 

updating fileS' 11.14 

UPFINDFLG (Variable) 17.27; 17.15.17 

USE (Maslerscope Relation) 13.8 

USE AS A FIE LD (Jll aslerscope Relation) 
13.9 

USE AS A RECORQ (lwasterscope Relation) 
13.9 

USE AS· A elISP WORD 
(A! aslerscope Relation) 13.9 

USE AS A PROPERTY NAME 
(.\-fasterscope Relation) 13.9 

USE EXP?.S IN EventSpec 

(Pro~ ASSL Command) 8.S 

USE EXPRS FOR ARGS IN EYefltSpec 

(Prog. ASSL Command) 8.8 

USE EXPRS1 FOR ARGS1 AND 
.• , AND EXPRSN FOR ARGSN 
IN EventSpec (Prog. ASSL Command) 
8.8·9: 8.26-27 

'.USE-ARGS (History List Property) 8.27 

USED AS ARG TO NUMBER FN? 
(ElTOr IUessage) ' 12.21 

USED BLKAPPLY WHEN NOT APPLICABtE 
(En-or ,\fessage) 12.20 

USEDFREE (CLISP declaration) 12.10: 
16.15 

USED I U (in Decl package) 23.21.23 

USEMAPFLG (Variable) 11.39 

Il'IDEX 

USER BREAK (Error Message) 9.25 

user defined printing 6.23 

user. interrupt characters 9.17 

(USERDATATYPES) 3~5 

(USEREXEC L~PXID ~PXXMACROS 
LISPXXUSERFN) 8.29 

USERFONT (font class) 6.55 

USER INTERRUPTS (Variable) 9.17 

(USERLISPXPRINT X Fnz Z NODOFLG) 
8.21 

(USERMACROS LlTATOM1 .•• LITATOMN ) 

(File Package Command) 11-U; 
17.50.52 

USERMACROS (File Pack~ge Type) 11.IS 

USERMACROS (Variable) 17.50: 11.24 

(USERNAME A FLG) 14.1 

USERNOTES (Variable) 23.39 

(USERNUMBER A ,rLG) 22.6: 18.6 

USERRECQRDTYPE (Propeny Name) 3.10 

USERSYMS (Variable) 23.51 

USERWOROS '(Variable) 15.15; 15.l7.1~20; 
17.55·56 

US ING (Record Package) 3.3 

us; n 9 Time r TIMER (I.S. Operator) 14.12 

(VAG x) 22.5 

VALUE (Properly Name) 8.23-24 

VALUE (Variable) 23.20 

value cell 7.1: 2.6 

value of a break 9:2 

VALUE OUT OF RANGE EX?T 
(£rror AI essage) 2.45 

VALUECOMMANDFN (Property Name) 20.17 

(VALUEOF LINe) 8.16: 8.:S: 2:.21 

vanable bmdings 7.1: 5.15 

variable number of arguments .5.2 

Index.56 

o· 

()-

() 



o 
(VARIABLES pos) 7.5; 9.6 

(VARS VAR1 ••• VARN') 
(File Package Command) 11.22 

'lARS (File Package Type) 

V,~RTYPE (Property Name) 

11.15 

11.15; 11.12 

VAX;'tiACRO (Property Name) 5.17 

version numbers 6.3 

(VIDEOCOLOR BLACKFLO) 19.7 

(VIDEORATE TYPE) 19.7 

(VI RG Ir~F'. FN FLG) 10.7 

(VME~SIZE) 18.3 . 

(WAIT.FOR.TTY) 18~3 

\;/AITBEFORESCROLL TIME (Variable) 
19.24 

\/AITBETWEENSCROLL TIME (Variable) 
19.24 

(WAITFORH~PUT FILE) 6.15 

WA IT I r!GCURSOR (Variable) 19.16 

(\'!AKE. PROCESS PRoe STATUS) 18.29 

WBorder (Variable) 19.25-26.32 

it~. ~ ., ONFLG. _. { 1 '-R~AJ! )''''010 

(WEll N) 19.50 

(\o'F ROMOS D:SPLAYSTREAM) 19.10 

(WFROMlttENU MENU) 19.41 

WHE (Exec Command) 23.59 

WHEN FORM (1.S. Operator) 4.10 

• (WHE NCLOSE FILE PROPl VALl ••• PROPN 
: VALN) 6.11; 23.17,42 

o 

'tJHENHELDFN (~\fenu Field) 19.39 

'~HEr~SELECTEDFN (J...fenu Field) 19.39 

¥IHEHUNHELDFN (A1enu FieJd{ 19.39 

WHERE (1.5. Operator) 4.15 

( W:; ERE I S NAME TYPE FILES FN) 
11.10: 23.40 

INDEX 

WHEREIS package 23.40 

WHERE IS. HASH (Variable) '23.40 

(.WHEREISNOTICE FILEGROUP ~G) 
23.40 

(WHICHW x Y) 19J5 

WHILE FO?.M (I.S. Operator) 4.10 

WHILE (use with REDO) 8.7 

WHITESHAOE (Variable) 19.6 

WHOLECOLORDISPLAY (Van"able) 19.44 

(WIOEPAPER FLO) 6~ 

WIDTH (Window Property) 19.33 

(WIOTHI FWINDOW INTERIORWIDTH 
BORDER) 19.25 

WI NOOW (Process Property) 18.27 

_ window package 19.1 

window properties 19.28 

(\'/INOOWADOPROP ~7>OW PROP 

ITEMTOADD) 19.29 

WINDOWBACKGROUNDSHADE (Vanabl~ 
19.6 

(WIr~DOWDELPROP WINDOW PROP 
ITEMTODELETE) 19.29 

WINDO\!.'ENTRYFN (Window Property) 
19.29: 18.34 

Wi ndowMenu (Variable) 19.22 

Wi ndowMenuCommands (Variable) 19.22 

(WINDOWP x) 19.25 

(WINDOWPROP ~7>OW PROP NZWVALL~) 
. 19.19 

Wi ndowT ; t 1 eO; sp 1 ayStream (Variable) 
19.25 

(WI NDOWWORLO FLAG) 19.19 

WITH (Record Operator) 3.4 

WITH (in REPLACE command) 
(in Editor) 17.~5 

WITH (in SURROUND command) 
(in Editor) 17.28 

Index.57 



\ 

(WITH.FAST.MONITOR LOCK. FORMS) 
(J,f acro) 18.31 

(WITH.MonITOR LOCK . FO~) 
(.~"faciO) 18.31 

(WORDCONiENTS PTR) 14.19 

WOrt:iDELETE (syn!ax class) 6.41 

(1.~ORLJ OF F SE T P':"R N) 14.19 

WORLD (Lila!Om) 12.19 

(WRITEFILE x ~E) 6~ 

XI?IGNORETYPES (Variable) 21.23 

XIPO~~LYTY?ES (Variable) 21.23 

XIP?RINTMACROS (Variabie) 21.23 

XIPTRACE (Function) 21.23 

XIPTRACEFILE (Vanabk) 21.23 

XIPTRACEFLG (Variable) 21.23 

(XTR • @) (Editor Command) 17.27 

(X\"ID HI N 2 ) 23.53 

(ZERO) 5.11 

(ZEROP x) 2.39 

a (Editor Commard) 17.10: 17.3 

lOMACRO (Property Name) 5.17 

(2ND • @) (Editor Command) 17.18 

(3~D • @) (Editor Command) 17.18 

7 (instead of ') 15.7 

8 (instead of left parenthesis) 15.5: 
15.1.7.9: 17.52 

. . 

INDEX 

9 (instead of right parentizesis) 15.5: 
15.1.7,9 

[,] insened by PREITYPRINT 6.53 

\ (Editor Command) 17.7 

(\ LITATOM) (Editor C 01T'.mand) 17.21; 
17.25 

\ (in event address) 8.6 

\ (Printed by System) 6.13.43 

(\ADO.PACKET.FILTER F~T.ER) 21~ 

(\ALLOCATE.ETHERPACKET) 21~ 

(\CHECKSUM BASE ~NORDS ~~~) 
21.24 

\DEFAULT8BITCOLORINTEHSITIES (Variabk) 
19.46 

\OEFAULTCOLORINTENSITIES (Variabk) 
19.46 

(\DEL.PACKET.FILTER nLTER) 21~ 

(\DEQUEUE Q) 21~ 

(\ENQUEUE Q ITEM) 212S 

\ETHERTIMEOUT (Variable) 2L16.22 

\FTPAVAILABLE (Variable) 18.16 

\LOCALNOBS (Variable) 21.23 

\MAXETHERTRIES (Variable) 21.7 

(\ONQUEUE ITEM Q) 21.25 

\P (Editor Command) Ii.i.ll: 17.38 

\PACKET. PRINTERS (Variable) 21.24 

(\QUEUELENGTH Q)' 21.25 

(\RELEASE. ETHERPACKET EPKT) 21.23 

, T ;meZoneComp (Van'able) lS.i 

(\UNQUEUE Q ITEM NOERR.ORF~G) 
21.25 

\ \ (Printed by System) 6.14 

[ndex.58 

(j 

(j 

n··· 

,--"\ ... -
\ ) 



o 

o 

o 

] (use in input) 8.30 

.,. (Break Command) 9.3; 9.12 

1" (C LISP Operator) 16.5 

.,. (display break command) 20.10 

'T' (ED IT A command) 23.50 

.,. (Editor Command) 17.11: 17.3 

l' (use in ccmments) 6.52 

.. (C LISP Operator) 16.7 

.. (Editor Command) 17.21 

(#- PATTERN) (Editor Command) J7.18 

.. (in event address) 8.5 

.. (in Pattern Match Compiler) 23.5 

.. (in record declarations) 3.9 

.. (Prinled by System) 9.1 

..... (Editor Command) 17.21 

'(back.-quote) 6.39 

(change character) 6.55; 17.22 

(vertical bar) 6.40 

- (C LISP Operator) 16.9 

- (in Pattern Irfatch Compiler) 23.3 

(in l'vl asterscope template) 13.17 

(in P rf commands) 8.8 

(in Pattern Af arch Compiler) 23.4-5 

(use with <.> in CLISP) 16.8 

!! (use with (> in CLISP) 16.8 

~ a (EdiLOr Command) 1 i.ll 

! E (Editor Command) 17.43: 8.35 

INDEX 

! EVAL (Break Command) 9.3 

1 F (Editor Command) 17.43; 8.35 

! GO (Break Command) 9.3 

! N (Editor Command) 17.43; 8.35 

! NX (Editor Command) 17.12 

! OK (Break Command) 9.3 

! Undo (DEdit Command) 20.5 

1 UNDO (Editor Command) 17.so 

1 VALUE (Variable) 9.3; 9.12; 10.8 

" 2.27; 6.13-15 

"" (use in ASKUSER) 6.64 

" < c . r. )" (in history commands) 8.26 

#1'1 (N a number) 
(in Pattern Match Compiler) 23.5 

# (followed by a number) 2.32-33 

# (PRINTOuT command) 6.30 

(## COM! COM2 •.• COMN ) 17.46; 17.18 

## (in INSERT. REPLACE. and CHAJVGE cCTilJnc.nds; 
17.26 

## (Printed by System) 6.13.43-44.46 

#CAREFULCOLUMNS. (Variabl~ 633 

#RPARS (Variable) 6.53 

#SPELLINGSl (Variable) 15.15 

#SPELLINGS2 (Variable) 15.15 

#SPELLINGS3 (Van·able) 15.15 

#Ur~DOSAVES (Variable) 8.33; 8.25 

#USE R\I/ORDS (Variable) 15.15 

$ «esC» 6.3 

$ «esc). use in ASKUSERj 6.64 

$ y X IN EventSpec (Prog. Ass!. Command) . 
8.9 

Index.59 



, 

s y = x IN ET'e:ltSpec 

(Prog. Ass!. Command) 8.9 

S y - > X IN EveZltS?eC 

(Prog. Asst. Command) 8.9 

S y TO X IN EveZl:5pec 

(Prog. Ass:' Command) 8.9 

S X FOR yIN En:ZltSpec 

(Prog. Ass!. C ommar.d) 8.9 

S «esc» (in CLISP) 16.7.9 

S «esc» (in Edit Pattern) 17.8; 17.13 

_~, $ «esc» (in spelling correction) 15.13; 
/ 15.18 

S «esc» (Prog. Asst. Command) 8.9 

$ «esc» (in R command) (in Editor) 
li.35 

S (do 11 a r) (in Pattern Match Compiler) 
23.3 

$ (do 11 a r) (Variable) 23.50 

SS (two (esc)s) (in Edit Pattern) 
17.13 

SSEXTREME (Variable) 4.7 

SSVAL (Variable) 4.7.13 

S 1 (in Pattern .?t,{alcn Compiler) 23.2 

SC «esc>C) (EDITA command) 23.52 

SG 0 (esc>GO) (TY P E-AHEAD Command) 
8.15 

$n (ir. Pattern A-fatch Compiler) 23.4 

SQ «esc)Q) (TYPE· A HEAD Command) 
8.15 

SQ «esc>Q) (EDITA command) 23.50 

$W «esc)W) (EDITA command) 23.51; 
~3.53 

% (escape character) 6.13: 2.4.27: 
6.14-15.17.36,46 

i. (use in comments) 6.52 

%% (use in comments) 6:52 

Il'IDEX 

& (in Edit Pattern) 17.7; 17.13 

& (in MED command) 17.28 

& (in Pattern Match Compi/er) 23.2 

& (Printed by Editor) 17.2 

& (Printed by System) 6.18 

& (use in ASKUSER) 6.64 

&Undo (DEdit Command) 20.5 

15.7 

• (CLISP Operator) 16.8 

, . (EDIT A command) 23.50; 23.48 

• (in a LAP statement) 22.16 

• (in Pattern Match Compiler) 23.2 

'LIST (Masterscope Set Specification) 13.10 

'ATOM (Masterscope Set Specification) 
13.10 

{ ; n (DEdit Command) 20.4 

( out (DEdit Command) 20.5 

() (D Edit Command) 20.4 

() out (DEdit Command) 20.5 

) i n (D Edit Command) 20.4 

) out (DEdil Command) 20.5 

• (as a preuyprint macro) 6.51 

• (as a read-macro) 6.51 

• (C LISP Operator) 16.5 

(. . x) (Editor Command) 17.43 

(. • TEXT) (File Package Command) , 
11.24 

• (in a LAP statement) 22.16 

• (in an ASSEJI BLE statement) :2:.14 

• (in file package command) 11.30 

[odex.60 

n 

n 



o 

-

o 

o 

o (in Pattern "Match Compiler) 23.3 

• (Printed by Editor) 17.1 

• (use in commentsj 6.49; 6.50 

...... (in Compiler Error Messages) 
12.20 

.a··can't find 
(;;rinted by EDITLOADFNS?) 17.58 

····Hote: FN is not 
the newest ve rs ; on 
(printed by EDiTLOADFNS?) 17.58 

··BREAK-· (in backtrace) 9.6 

.IICOMI~ENT·· (Printed by Editor) 17.37 

·-CO~MENT·· (Printed by System) 6.50 

.·COMMENT··FLG (Variable) 6.50; 17.37 

08EDliOR·· (in backtrace) 9.6 

··TOp·· (in backtrace) 9.6 

-AUY· (in Edit Pattern) "17.13 

·ARCHIVE· (History List Property) 8.27. 

-ARCHIVE" (Property Name) 8.13 

·ARGl (as a blip on the stack) 7.12 

.ARGVAL c (as a blip on the stack) 7.12 

·CONTEXT· (Hislory List Property) 8.27 

·ERROR- (History List Property) 8.27 

°FN° (as a blip on the Slack) 7.U 

-FORM· (as a blip on the stack) 7.12 

IIGROUp· (History List Property) 8.27 

-GROUp· (Property Name) 8.28 

-HISTORY- (History List Property) 8.27. 

·LISPXPRINT· (History List Property) 
8.27 

*LISPXPRINT· (Propert.v Name) 8.20 

- P R IN T - (History List Property) 8.27 

*T AI L· (as a blip on the· Slack) 7.12 

+ (C LISP Operator) 16.5 

INDEX 

(ED IT A command) 23.48 

t (PRINTOUT commar.d) 6.17 

- (eLISP Operator) 16.5 

(in Edit Pallern) 17.7: 1i.14 

(in Pattern Match Compiler) 23.3 

(Printed by Editor) 17.2 

(Printed by System) 6.18 

-> EXPR (Break Command) 9.7 

-> (in Pattern Match Compiler) 23.6 

-> (Printed by DWIJ\l) 15.4: 15.2.5 

-> (Printed by Editor) 17.35 

• (in a floating point number) 2.43 

(in a list) 2.15 

• (in M astersc~pe) 13.2 

• (in Pattern Match Compiler) 23.4 

• (printed by Masterscope) 13.2 

(Variable) 23.50 

PATTERN •• @ (Editor Command) 17.20 

(in Edit Pattern) 17.14 

•• TEMPLATE (in Maslerscope template) 
13.18 

(in Edit Pattern) 17.14-15 

(Printed by D WIM) 15.2.4 

(Pn'nled by Editor) 17.8-9 

(printed following a cam"age-retum) 
8.30 

VARS (Prog. Assl. Command) 8.9; 
8.27 

• •• ARGS (History List Property) S.27 

• BASE (PRINTOUT command) 6.28 

• CENTER (PRINTOUT command) 6.29 

• CENTER2 (PRINTOUT command) 6.:29 

• F (PRINTOUT command) 6.30 

[ndex.61 



• FONT (PRIJ.fTOuT command) 627 

• FR (PRINTOUT command) 629 

• FRZ (PRIlvTOUT command) 6.29 

· I (PRIJ.VTOUT command) 629 

• N (PRI~VTOUT command) 6.30 

• PZ (PRIJVTOUT command) 6.28 

• PAGE (PR1.YTOuT command) 627 

• PARA (PRIiVTOUT command) 628 

• PARAZ (PRINTOUT command) 629 

• P P F (P RIJVTOUT command) 6.28 

• FPFTL (PRINTOUT command) 6.28 

• P?V (PRINTOlJ7 commtlnd) 6.28 

• PPvTL (PRINTOUT command) 6.28 

• RESET (PRIiVTOUT command) 6.27 

• SKIP (PRINTOuT command) 6.27 

· S? (PJ([lVTOUT command) 6.27 

• SUB (PRINTOUT command) 6.28 

.SUP (PRliVTOUT command) 6.27 

• T AS (PRINTOUT command) 6.27 

• TASO (PRINTOUT command) 6.27 

I (CLISP Operator) 16.5 

I (ED IT A command) 23.49; 23.48 

I (use with @ break command) 9.4 

I functions 8.22: 8.34 

• (leNOIR HOST/DIR) 18.12 

(/OELFILE F1Z.E) 23.61 

IFNS (Variable) 8.22 

IMAPCON (Function) 16.10 

IMAPCONC (Function) 16.10 

INCONC (Function) 16.10 

I?E~L.':':E (Reccrd Package) 3.2 

IRPLACA (Functlon) 16.10 

INDEX 

IRPLACO (Function) 16.10 

IRPLNODE (Function) 8.33 

IRPLr.ODEZ (Fu.nction) 8.33 

(/UNDELFILE FILE) 23.61 

: (CLISP Operator) 16.7 

: (EDITA command) 23.50 

( :) (Editor Command) 17.24 

(: El •.• EM) (Editor Command) 17.9 

: (Printed by System) 9.1 

:: (CLISP Operator) 16.7 

(ED IT A command) 23.52 

FORM (Prog. ASSL Command) 8.14 

< (CLISP Operator) 16.8 

< .) (use in CLIS?) 16.8 

= FORM (Break Command) 9.7 

= (CLISP ,Operator) 16.6 

= (ED IT A command) 23.50 

= (in a LAP statement) 22.16 

= (in ~;ent address) 8.6 

= (in Pattern A-Iatch Compiler) 23.2 

= (Printed by DV/llvl) 15.4-5 

= (Pn'nted by Editor) 17.8 

= (use· with @ break command) 9.4 

-- (in Edit Paltem) 17.14 

== (in Pattern At arch Compiler) 23.2 

=) (in Paltern f.;l arch Compiler) 2306 

=E (Prinllt!d by Editor) 17.53 

=EDITF (Pnnted by Editor) 17.55 

=EOoITP (Pn'nted by Editor) 17.54 

Index.62 
(\ 
\. ) .-



(J 

=EDITV (Printed by Editor) 17.54 

> (CLISP Operator) 16.8 

? (ED IT A command) 23.50 

1 (Editor Command) Ii.37: 17.2 

? (Litatom) 
.., ..,.., .. .-... 

? (Printed by DWIM) 15.4 

? (pnnled by Masterscope) 13.16 

(~) ? (Read Macro) 6.40: 9.5 

1 = (Break Command) 9.5 

1 = (display break command) 20.10. 

? = (Editor Command) 17.3i 

1= (Prog. ASSL Command) 9.5 

?? Even:Spec (PiOg. AssL Command) 8.11; 
8.27 

?ACTIVATEFLG (Variable) 20.43 

?Undo (DEdit Command) 20.5 

@ (Break Command) 9.3: 9.8 

@ (EDITA command) 23.48 

@ (in a LAP statement) 22.16 

.8 @ (in ,event spec~;U;ation) 8.32 

(@ EXP?.FOR .. \! TEMPLATEFORM) 
(in Iv! asterscope template) 13.18 

@ (in PCt!em A! atch Compiler) 23.3.5 

@ PREDICATE 
(Afasterscope Set Specification) 13.10 

@ (use with @ break command) 9.4 

@ (location specification) 
(in Editor) 17.18 

@@ (in event specification) 8.7; 8.13.32 

o 

INDEX 

Index.63 



(J 

(j 

n 


	Background and Acknowledgements
	References
	Table of Contents
	1 Introduction
	2 Data Types
	3 The Record Package
	4 Conditionals and Iterative Statements
	5 Function Definition, Manipulation, and Evaluation
	6 Input/Output
	7 Variable Bindings and the Interlisp Stack
	8 The Programmer's Assistant
	9 Errors and Break Handling
	10 Breaking, Tracing, and Advising
	11 File Package
	12 The Compiler
	13 Masterscope
	14 Miscellaneous
	15 DWIM
	16 CLISP
	17 The Teletype Editor
	18 Interlisp-D Specifics
	19 Interlisp-D Display Facilities
	20 Interlisp-D Display-Oriented Tools
	21 Ethernet
	22 Interlisp-10 Specifics 
	23 LISPUSERS Packages
	Index 



