Table of contents

O O 117 P 0-1
0.1.1 Design goals .. .oooiiii i e 0-1
0.1.2 OutCome ..ot e 0-2
0.1.3 Current state of the system i e 0-2
0.1.4 TLe-Lisp Version 15.26ottt e et et ees 0-2

0.2 Reader’s guide. e 0-3

Use and installation 1-1

1.1 Le-LiSp ON VATIOUS SYSTOIMNS + .t v vt ittt ettt ettt ettt e ettt te e e e ie e aneens 1-1

1.2 Starting with Le-Lisp ...t 1-2

1.3 Starting the Le-Lisp system under Unix oo ... 1-3

1.4 Installation of the Le-Lisp system under Unix o i, 1-4
1.4.1 Installing the system e 1-4
1.4.2 Modification of the system configurationo oo L. 1-7
1.4.3 Modification of data zone 8izes. 1-9
1.4.4 Linking the Le-Lisp system with C modules 1-11
1.4.5 Calling the shell e 1-11

1.5 Starting the Le-Lisp system under VMS i 1-11

1.6 Practical advice oo e 1-11

Evaluation 2-1

2.1 Basic 0D JeCtS oottt e e 2-1
2.1.1 Atomic objects ... e 2-1
2.1.2 Compound obJectsttt e 2-4

2.2 Basic evaluation actions 2-5
2.2.1 Evaluation of atomic objects. 2-5
2.2.2 Evaluation of composite objects. i i 2-6

2.3 Evaluation of functions. 2-6
2.3.1 Functions of the subr kind 2-7
2.3.2 Functions of the fsubr kind 2-8
2.3.3 Functions of the msubr kind i 2-8
2.3.4 Functions of the dmsubr kindo i i 2-9

2.3.5 Functions of the expr kind 2-9

0-2

2.3.6 Functions of the expr kind with a &nobind argument 2-11
2.3.7 Functions of the fexpr kind 2-11
2.3.8 Functions of the macro kind i 2-12
2.3.9 Functions of the dmacro kind i i 2-12
2.4 Defining functions e 2-13
2.8 PackaZes o e 2-13
2.6 Extended fypes ..ottt 2-13
2.7 Meta-circular definition of the evaluator......... o i i 2-15
Predefined functions 3-1
3.1 Evaluation functionst e 3-2
3.2 Application functionsttt 3-6
3.2.1 Simple application functions 3-7
3.2.2 Application functions of the map type i, 3-7
3.2.3 Other application functions. i 3-10
3.3 Environment manipulation functions i 3-13
3.4 Function-definition functions 3-17
3.4.1 Static function definitions 3-17
3.4.2 Advanced use of macro functions. 3-20
3.4.3 Definition of closureso e 3-22
3.4.4 Definition of dynamic functionsoo i 3-23
3.4.5 Generalized assignment it 3-23
3.5 Variable functions e 3-24
3.6 Basic control functionst 3-26
3.7 Lexical control functions 3-33
3.7.1 Primitive lexical control forms 3-33
3.7.2 Iteration functions of the prog kindl 3-34
3.7.3 Tteration functions of the do kind 3-35
3.8 Dynamic, non-local control functions....... i 3-37
3.9 Basic predicateso 3-42
3.10 Functions on LSES . ..o v 3-49
3.10.1 Search functions on lists e 3-49
3.10.2 List creation functions oo e 3-52

3.10.3 Functions on cells of labelled lists ...t e 3-58

3.10.4 Physical modification functions i 3-59
3.10.5 Functions on A-lists. e 3-65
3.10.6 Sorting functionsoiiiiii ittt e 3-68
3.11 Functions on symbols 3-69
3.11.1 Functions that access symbol values..... i ., 3-69
3.11.2 Functions that modify symbol values i, 3-70
3.11.3 Functions on P-lists e 3-75
3.11.4 Access to function definitions i 3-78
3.11.5 Access to symbol special fieldso i 3-81
3.11.6 Symbol creation functionst 3-83
3.11.7 Symbol management functions........ i 3-84
3.12 Functions on character StTingst 3-86
3.12.1 Basic manipulation functions i 3-87
3.12.2 Character stTing CONVETSION « ..« v vttt e e e ees 3-89
3.12.3 Comparison of character stTings.t 3-91
3.12.4 Character-string creation functions., 3-91
3.12.5 Character-string access functions.o 3-93
3.12.6 Functions that physically modify strings........ ... i it 3-94
3.12.7 Search functions on character strings, 3-95
3.13 Functions on characterst 3-97
3.14 Functions ON VECEOTS ...ttt e e e e et e 3-98
3.15 Functions ON ATTAYS .o vvn vttt ittt et e e et e et e et et ie e eanean 3-103
3.16 Hash tableso 3-104
3.16.1 Hash table creation functionso i 3-105
3.16.2 Hash table access functionsttt 3-105
3.17 Mathematical sets e 3-106
3.17.1 Operations On S8ttt e e e 3-107
3.17.2 CompariSOns ON SESttt ittt ettt et et e 3-109
3.17.3 Transitive closure e 3-109
Arithmetic functions 4-1
4.1 Generic arithmetico oo e 4-1
4.1.1 Generic arithmetic interrupt ... 4-2

O O oY Y 4-2

0-4

4.1.3 NUMETIC CONVETSIONS vttt et ettt ettt et et et et et et e e e iee e 4-3
4.1.4 Generic arithmetic functions i 4-4
4.1.5 Predicates of generic arithmetic........ i 4-7
4.1.6 Circular and mathematical functions i i i, 4-10
4.1.7 Extensions to generic arithmetic i i 4-12
4.2 Integer arithmetic o e 4-12
4.2.1 Integer arithmetic functions i i i i i i i i 4-13
4.2.2 Fixed-precision integer comparison functions......... il 4-14
4.2.3 Boolean functions 4-16
4.2.4 Functions on bit fields. i 4-17
4.2.5 Pseudo-random functions...........oiiiiiiiiii 4-19
4.3 Extended integer arithmetico it 4-19
4.4 Floating-point arithmetic. i e 4-22
4.4.1 Floating-point arithmetic functions i i, 4-22
4.4.2 Floating-point arithmetic comparisons.......... ... i i i, 4-23
4.5 Mixed arithmetic o e 4-25
Object-oriented programming 5-1
Bl S U UTES ¢ o ettt 5-1
5.1.1 Structure definition e 5-2
5.1.2 Instance creationoouuniiunn it e e e e 5-2
5.1.3 Access to fields ... 5-3
T R I o T 1 PP 5-3
5.1.5 Implementation of structures 5-4
B.2 Le-Lisp typology . oot 5-4
5.3 Object-oriented Programmingeeeenneenneeereeeeeeeeeeeeeeeeeeeeenn. 5-7
5.3.1 Searching for methods. e 5-7
5.3.2 Invoking methods e 5-9
5.3.3 Predefined methodso i e 5-12
5.4 Abbreviation functionsttt e 5-13
B MICTOC Y X .« ittt 5-15
B.5. 1 Specific eITOTS oottt e 5-15
5.5.2 Definition of structures i e 5-16

5.5.3 Tclass and record INStances . ..ottt e 5-17

5.5.4 Methods and message sendingt 5-18

6 Input and output 6-1
6.1 Introduction 6-1
6.1.1 Characters ... e 6-1
6.1.2 Character StTings «..ovvttt ittt e e et e e e 6-1
0.1.3 LIMeS . ottt e 6-2
6.1.4 Channels e 6-2
6.1.5 Programmable I/O interrupts........ ... i 6-2

6.2 Basic input functions e 6-3
6.2.1 Inside readottt e 6-7

6.3 Use of the terminal for Input oo e 6-8
6.4 Standard reader 6-9
6.4.1 Reading symbols.o i 6-9
6.4.2 Reading character strings........ ..ot 6-10
6.4.3 Reading integer and rational numbers 6-11
6.4.4 Reading floating-point numbers e 6-12
6.4.5 Reading listsooiiiii i e 6-12
6.4.6 Reading vectors.t 6-13
6.4.7 Reading commentsottt e 6-13
6.4.8 Types of characters e 6-14
6.4.9 Macro chaTaCtersttt e 6-18

6.5 Basic output functions 6-33
6.6 Controlling the output functions ...t 6-35
6.6.1 Limitations on printing. e 6-35
6.6.2 Standard printing environment 6-36
6.6.3 Ixtending the printero e 6-38

6.7 Input/output for listsot e 6-39
6.8 Input/output on character stTiNgS.ouuutt it 6-40
6.9 Input/Output buffer management........ i 6-41
6.9.1 Input buffer ... 6-41
6.9.2 Output buffer ... e 6-44

6.10 Functions on I/0 StTeamsttt e 6-47

6.10.1 Default directories and extensionsttt e 6-48

0-6

6.10.2 Selecting I/0 SErEAIMS ... ou ittt e e 6-48
6.10.3 End-of-file programmable interrupt i 6-H2
6.10.4 Functions on files e 6-H3
6.10.5 load function and autoload modeo 6-H4
6.10.6 File access paths i e 6-H5
6.10.7 Access to librarieso e 6-H6
6.11 Event loop ..o 6-H7
6.11.1 BFUNCEIONS ..ttt e e e e 6-57
6.11.2 Technical noteso e 6-60
6.11.3 Precattionsoiuit e e e e e 6-61
6.12 Virtual file system e 6-63
6.12.1 Pathnames e 6-63
6.12.2 Relative access paths i e 6-66
6.12.3 Pathname manipulation functions...... i i 6-67
6.12.4 Portability e 6-74
0.13 Features ..ot 6-74
System functions 7-1
7.1 Programmable interrupts. e e 7-1
7.2 Machine InterTupts. . oo oottt e e e 7-3
T.2.1 User interTupl .« ..ttt e i e e e e 7-3
7.2.2 Real-time clock ... e 7-4
7.3 Multiple taskso o e 7-5
7.3.1 Basic SEQUENCETS ..ottt ettt et e e et e 7-5
7.4 Errors provoked by the Le-Lisp system ... i i 7-7
7.4.1 Standard error ProCesSingG vu et e e e e 7-8
7.4.2 Explicit call and error test 7-8
7.4.3 Examples of exception handling........ i 7-9
7.5 Access to the evaluator. e 7-10
7.6 Core-image files e e 7-11
7.7 Inmstallation functions e 7-13
7.8 Calling and leaving the systemc. ittt 7-16
T.9 Top level oo e 7-18
7.10 Garbage collector e 7-19

T.11 Date ProCessing. ..ottt e e 7-23
7.12 Other access to the system i e 7-23
8 S-expression pretty-printer 8-1
8.0.1 Pretty-print functions e 8-2
8.0.2 Control of pretty-printer functions i, 8-2
8.0.3 Standard pretty-printer format 8-3
8.0.4 Extending the pretty-printer.. i 8-4

9 Specialized output 9-1
9.1 Formatted outpub. 9-1
9.1.1 Print-formatting function..... e 9-1
9.1.2 Format directivesot e 9-3

9.2 Handling circular or shared objects i 9-12
9.3 Multi-language MESSAZESt e 9-14
9.3. 1 LangUaZes « o oottt e 9-15
0.3.2 M ESSaZES - oottt e 9-16
0.3.3 AdVice . e 9-17

10 Rational and complex arithmetic 10-1
10.1 Rationals (file Q) ... oot 10-2
10.1.1 Rational number I/O ... e 10-2
10.1.2 Tests for Bype. o oottt e 10-3
10.1.3 Generic rational arithmetico i i 10-3
10.1.4 Functions limited 10 Z. oo e 10-4
10.1.5 Functions limited to rational arguments (limited to Q) 10-4
10.1.6 Two examples . ..o e e 10-5

10.2 Complex numbers (the field C)o o i 10-6
10.2.1 Complex number I/O ... 10-6
10.2.2 Tests for Bype. oottt e 10-6
10.2.3 Complex generic arithmetic...... 10-7
10.2.4 Functions limited to the complex numbers (limited to C) 10-7
10.2.5 Polar coordinatesttt e 10-8
10.2.6 Hyperbolic functionso i 10-9

10.3 A complex mini-extension of generic arithmetic 10-10

0-8

10.3.1 Representationc.euniiun ottt 10-10
10.3.2 T/O for € oo e e 10-10
10.3.3 Complex arithmetico oo e 10-11
10.3.4 exp, log and sqrt functions ... i i 10-12
11 Debugging tools 11-1
3 N - ¥ - 11-1
11.1.1 Stepping functions e e 11-1
11.1.2 Trace Parameters oot ettt et e e e e e 11-2
11.1.3 Trace global variables 11-3
11.1.4 Example of 1TaCe USE ittt e e 11-5
11.2 Break and debug mode. ... 11-7
11.2.1 Inspection (or debug) loop........ ..o i 11-8
11.2.2 Debug mode functionseuuin ittt 11-11
11.3 Stepwise eXeCUBION « ottt e e e e e 11-12
12 Loader/assembler LLM3 12-1
12.1 Access to memory and the CPUo 12-1
12.2 LLM3 memory loadero e 12-4
12.3 LLM3 instruction formato e 12-5
12.4 Modules and labels o e 12-5
12.5 LLM3 instruction operandsottt e 12-6
12.6 Pseudo-instructionsttt e 12-8
12.7 Basic INSITUCHIONS . ¢ vttt e e e e e e 12-9
12.7.1 Moving pointers 12-9
12.7.2 Pointer COmpPariSONS. « ...ttt ettt ettt ettt 12-9
12.7.3 Control ... e 12-9
128 StaCk .o 12-10
12.8.1 Management of the stack pointero ittt 12-10
12.8.2 As a control stack. o i e 12-10
12.8.3 Asadatastack ... 12-11
12.9 List cell cons operationsttt e 12-11
12.9.1 Test for list cell type ...t 12-11
12.9.2 Access to list cell fields 12-12

12.9.3 Creation of list cellsttt e e e 12-12

2 0 T 12-12
B 20 T S 0 10T Yo)£ 12-12
12.11.1Test for symbol type ..ot e 12-12
12.11.2 Access to the fields of a symbol oo 12-13
12,113 Variables e 12-13
12 2N DETS o e 12-13
12.12.116-bit integer NUMDETS eeeeeen 12-14
12.12.2Floating-point nUmMbErs e e 12-16
12.13Vectors of Lisp POINtersttt e e e 12-17
12.13.1Test for vector of pointers ... i 12-17
12.13.2 Access to internal fields of a vector of pointerso ... 12-18
12.13.3 Access to elements of a vector of pointers.......... ..o, 12-18
12.13.4C1eation .« .vu et e 12-18
12.14CRATACTET STTIMES © vt vttt ettt et ettt et 12-18
12.14.1Test for character StTingt e eeen 12-18
12.14.2 Access to the internal fields of a character stringoooi it 12-18
12.14.3 Access to characters. ... o o i e 12-19
12,144 CTeationttt e 12-19
T2 00HEaD ZOME . . ottt ettt e e e e e e e e e 12-19
12.16Extending the Loader/Assembler i 12-19
12 0TFUNCHIONS .« .ottt e e e e e 12-20
12.17. 1 Types of functions oo i e 12-20
12.17.2Function calling rules e 12-20
1208 EXAMPLES . oo e 12-20
13 Compilation 13-1
13.0.1 Calling the compilers. e et 13-1
13.0.2 Compiler mMacrost e e 13-3
13.0.3 Closed MAaCTOS . . oottt et e e e e 13-3
13.0.4 OPeN TIACTOS .. vttt et ittt e et et e e e e ettt e e e 13-4
13.0.5 Modules e 13-6
13.0.6 Source fileso e 13-11
13.0.7 Object files ...t e 13-12

13.0.8 Controlling evaluation ittt 13-12

0-10

13.1 Use and manipulation of modules i 13-15
13.1.1 Functions on modules e 13-16
13.1.2 Loading and compiling modules........ ..ottt .. 13-16
13.2 Complice . .o oo e 13-18
13.2.1 Compatibility mesSsagesttt e 13-18
13.2.2 Errors and WaTnings euue ettt teeeteeeteeeeenn. 13-19
13.2.3 General remarks and examples. i 13-25
14 External interfaces 14-1
14.1 Interface functionst e e 14-1
14.2 Links with external procedures under Unix i i i, 14-5
14.2.1 Principles ... e 14-5
14.2.2 Calling functions written in C ... it 14-5
14.2.3 Calling Lisp from C e et 14-16
15 Virtual terminal 15-1
15.1 Virtual terminal functions e 15-2
15.1.1 Standard functions e 15-3
15.1.2 Required functions e 15-4
15.1.3 Optional functions i 15-7
15.2 Screen fUnCtiOnst e e e 15-9
15.3 Using the virtual terminal i i 15-10
15.4 Defining a virtual terminal ... oo i i 15-11
16 Full-page editor 16-1
16.1 Functions to call the full-page editor i i i i i i i 16-1
16.2 Full-page editor commandsc.ouoiiii i 16-2
16.2.1 Extensions to the full-page editorottt 16-3
17 Terminal-based line editor 17-1
17.1 Loading the terminal-based line editor i i i i i i i 17-1
17.2 Terminal-based line-editor commands, 17-2
18 Virtual bitmap display 18-1
18.1 Loading the description file. ... i 18-1

18.2 Screen preparationttt e 18-2

18.2.1 Managing a single SCTeeNttt 18-2
18.2.2 Managing several SCTEEMNSttt 18-3
18.3 Functions O SCTEEMS .. ot vut vttt ettt ettt et et et et e e et e et e e 18-5
18.4 Functions on WindOwWsttt e e 18-9
18.4.1 Global coordinates i e 18-9
18.4.2 Local coordinates o i e 18-9
18D WdOWS oo e 18-10
18.5.1 Creating WindoWst e 18-11
18.5.2 Drawing in WindOWS 18-14
18.5.3 Attaching properties t0 Windowst 18-15
18.5.4 Functions on wWindowst e 18-16
18.5.5 Primitive functions on windows i i 18-20
18.5.6 Minimal graphics primitives o i 18-21
18.5.7 Character StTINESt 18-22
19 Virtual mouse 19-1
19,1 BWentS ottt e e 19-1
19.2 Structure and types of events 19-2
19.3 MOuSe TOAES . . oot e 19-5
19.4 FEVENTS QUETE oottt et et et et e e e e 19-6
19.5 Programmable interrupts.ot 19-8
19.6 Synchronous mouse tracking i 19-9
19.7 Virtual menus e 19-9
19.8 Cut and Paste ... e 19-11
20 Graphics primitives 20-1
20.1 Graphics environmentsottt e e 20-1
20.1.1 Current font e 20-1
20.1.2 Foreground and background colors 20-2
20.1.3 CUTSOT .« ettt ettt e e et e e e e e e e e 20-5
20.1.4 Line style ..o e 20-6
20.1.5 Fill patterns (or teXtures)oooiui it 20-7
20.1.6 Drawing (combination) modeo i 20-7
20.1.7 ClPPINEG ZOME . ¢ ottt ettt e et e e e e e e e e e 20-8

20.2 Graphics primitives 20-9

0-12

20.3 Extended graphics functions e 20-10
20.3.1 Line-drawing functionso u it 20-10
20.3.2 Fill functions e 20-12
20.3.3 Displaying textot 20-13
20,34 BilIaPs . v ettt e 20-13

20.3.5 Compatibility between types of bitmaps i i, 20-18

FOREWORD

LE-Lisp [Chailloux et al.] is a Lisp system developed at INRIA (Institut National de Recherche en
Informatique et en Automatique) in France. This dialect of the Lisp language [McCarthy 62] is the
‘spiritual child” of Vlisp [Greussay 77], [Chailloux 80], from which LE-LISP gets its conciseness and
interpreter speed, and the ‘natural child” of MacLisp or, more precisely, of the Post-MacLisp Lisps
such as MIT Lisp Machine Lisp [Weinreb and Moon 81], NIL [White 79] [Burke and Carette 82]
and Franz Lisp [Foderaro and Sklower 81], to which LE-LIsP owes its strength as a language for the
development of sound and powerful compiled applications.

0.1 History

In 1981, researchers at INRIA began to develop an ambitious VLSI design system, using a unique
structure to represent all aspects of the project: graphics, simulation, etc. For the implementation
language, LisP was an obvious choice. The INRIA designers were thinking, more precisely, of
one of the powerful Post-MacLisp languages. Fortunately (or unfortunately, as the case may
be), hardware was quickly evolving, and the visI project called upon many heterogeneous and
incompatible machines. Various existing LISP systems—otherwise perfectly satisfactory—were
simply not available on the required range of machines. For instance, at that time, Franz Lisp
only existed on Vaxen. The implementation of the LisP system on a new computer had to be faster,
of course, than the translation of the vLsI design system from one LIispP dialect to the other. Out of
this context grew the LE-LISP system, to fulfil well-identified goals. And, to this day, portability of
the Lisp system and its applications has remained a hallmark of LE-LIsp.

0.1.1 Design goals
Efficiency and flexibility

LE-Lisp is designed for maximum efficiency both in terms of execution resources (main memory
and execution time) and development resources (application development time and workstation
configurations).

Extensions and integration

The LE-LIsp system allows you to make full use of existing system facilities by means of the concept
of wvirtual devices. In this way, access to file-management procedures, graphic libraries, routines
written in other languages and operating-system calls is provided with no sacrifice of portability.
The user can create new instances of such facilities while retaining a standardized interface.

0-2

Portability of applications

Since all system facilities are accessed via their virtual counterpart, user applications are never
required to contain implementation-specific details—even though they might call upon the full
richness of the system.

Compatibility among implementations

Since the implementation of LE-LIsP is based upon a virtual machine (called LLM3), only this virtual
machine is ported from one real machine to another. The rest of the system is guaranteed to be
compatible, because all implementations share the same code. A corollary is the rapid availability
of top-quality implementations on new machines that appear on the market.

0.1.2 Outcome

All the above-mentioned goals were attained in the resulting system. The first LE-LISP system
began to run—during the autumn of 1981—on an Exormacs (Motorola’s machine based upon the
68000). That first implementation formed the basis of a vLsI design workstation that incorporated
a colored bit-mapped display and a mouse [Chailloux et al.]. The system was then implemented on
the vax, under UNIX, during the autumn of 1982. After its successful beginnings, LE-LISP simply
“went forth and multiplied”.

0.1.3 Current state of the system

Today, LE-LisP is a rich Lisp system that is implemented on more than thirty kinds of machines,
based upon more than twelve CPUs running under a variety of operating systems. The industrial
availability of all these versions is a reflection of the countless enhancements made to LE-LISP over
the years. Indeed, since its inception, LE-LISP has been enlarged to include user-extensible generic
arithmetic, an object-oriented type system, virtual graphic libraries, a modular compiler, full access
to foreign routines and many other marvels.

More importantly, environments constructed using LE-LISP provide a huge array of functionalities.
The application environments include numerous expert-system generators, simulation tools,
database access tools, graphic development tools, music and acoustic research tools, symbolic
mathematics systems, CASE environments and, of course (since it was the initial motivation behind
the creation of the language), visI design environments.

0.1.4 Le-Lisp Version 15.26

LE-L1sp Version 15.26 (December 1, 1993) is totally compatible (as well as backward compatible)
with Lisp code - both interpreted and compiled.

The LLMS3 virtual machine has been ported onto the HP/PA and DEC ALPHA processors.

Some new functions have been introduced: copyfile, create-directory, delete-directory,
map-expand-pathname, at-end and printf.

READER’S GUIDE 0-3

The information issued from the function gcinfo has been fine tuned.
A new programmable interruption at-end is now available.
The defextern function systematically creates a test of type dynamic.

The new functions C C_LL_FIX, LL_C_FIX, C_LL_FLOAT and LL_C_FLOAT are available in the
external interface.

0.2 Reader’s guide

The present document is a reference manual. As such, it provides precise and complete
information—rather than tutorial material—on the subject of LE-Lisp. For newcomers to the
language, excellent introductory books on LE-LISP exist already in French, English and other
European languages.

0-4

Bibliography

[Abelson and Sussman] Harold Abelson and Gerald Jay Sussman. The Structure and Interpretation
of Computer Programs. The MIT Press, McGraw Hill Book Company, Cambridge, 1985.

[Allen 78] John Allen. The Anatomy of Lisp. McGraw-Hill, 1978.

[Audoire 85] Louis Audoire. “Un Processeur Spécialisé mLLM3 sur SPS7”, Actes des journées
SM90. Versailles, Décembre 1985.

[Boston 85] First Common Lisp Standardization Meeting. Boston, December 1985.

[Brook and Gabriel 84] Rodney A. Brook and Richard P. Gabriel. “A Critique of Common Lisp”,
1984 ACM Symposium on Lisp and Functional Programming. Austin, Texas, July 1984.

[Burke and Carette 82] Burke and Carette. NIL Notes for Release 0. Massachusetts Institute of
Technology, Cambridge, December 1982.

[Cayrol 83] Michel Cayrol. Le langage LISP. Cepadues Editions, Toulouse, 1983.

[Chailloux 80] Jérome Chailloux. “Le modele Vlisp : description, évaluation et interprétation”,
These de 3eme cycle, Université de Paris VI. Paris, Avril 1980.

[Chailloux 83] Jérome Chailloux. Le-Lisp 80 version 12, le manuel de référence, Rapport technique
INRIA no 27. Rocquencourt, Juillet 1983.

[Chailloux et al.] Jérome Chailloux, Matthieu Devin et Jean-Marie Hullot. “Le-Lisp : a Portable an
Efficient Lisp System”, 1984 ACM Symposium on Lisp and Functional Programming.
Austin, July, 1984.

[Chailloux 85a] Jérome Chailloux. Le-Lisp version 15, le manuel de référence. Documentation
INRIA, Rocquencourt, Février 1985.

[Chailloux 85b] Jéréme Chailloux. “La machine virtuelle LLM3”, Rapport technique no 55, INRIA.
Rocquencourt, Juin 1985.

[Cointe 82] Pierre Cointe. “Fermetures dans les lambda-interpretes. Application aux langages LISP,
PLASMA et SMALLTALK”, These de 3eme cycle, Université de Paris VI. Paris, 1982.

[Dana 86] Michel Dana. “Le-Lisp v15.2 sous systeme VAX/VMS”, Rapport ENST, Janvier 1986.

[Devin 85a] Matthieu Devin. “Le portage du systéme Le-Lisp : mode d’emploi”, Rapport Technique
no 50. INRIA, Rocquencourt, Mai 1985.

[Devin 85b] Matthieu Devin, “La Microprogrammation du systeme Le-Lisp : une premiere
approche”, Rapport de Recherche no. 441. INRIA, Rocquencourt, Septembre 85.

5

0-6 BIBLIOGRAPHY

[Farreny 84] Henry Farreny. LISP. Masson, Paris, 1984.
[Foderaro and Sklower 81] Franz Lisp Manual. Univ. of California, Berkeley, September 1981.

[Gabriel 86] Richard Gabriel. The Performance and FEvaluation of Lisp Systems. MIT Press,
Cambridge, 1986.

[Girardot 85] Jean-Jacques Girardot. “Les langages et les systemes LISP”, édi tests, Paris, 1985.

[Greussay 77| Patrick Greussay. “Contribution & la définition interprétative et a I'implémentation
des lambda-langages”, These, Université de Paris VI Paris, Novembre 1977.

[Hullot 83] Jean-Marie Hullot. “Ceyx, a Multiformalism Programming Environment” IFIP83,
R.E.A. Masson (ed), North Holland, Paris 1983.

[Hullot 85a] Jean-Marie Hullot. “Programmer en Ceyx”, Rapports techniques no 44-45-46. INRIA,
Rocquencourt, Février 1985.

[Hullot 85b] Jean Marie Hullot. “Alcyone, La boite & outils Objets”, Rapport Technique no 60.
INRIA, Rocquencourt, Novembre 1985.

[Kiremitdjian and Roy 85] Georges Kiremitdjian et Jean-Paul Roy. Lire Lisp, le langage de
UIntelligence Artificielle. Cedic-Nathan, Paris, 1985.

[Lang and Dupont 87] Bernard Lang et Francis Dupont. “Incremental Incrementally Compacting
Garbage Collection”, ACM/SIGPLAN Symposium on Interpreters and Interpretive
Techniques. St. Paul, June 1987.

[LMDL 86] Jérome Chailloux, éditeur. “Les Comptes Rendus des Mardis du Lisp”, Rapports
internes du projet VLSI. INRIA, Rocquencourt, 1986.

[McCarthy 62] John McCarthy. LISP 1.5 Programmer’s Manual. M.I.T. Press, Cambridge, 1962.

[Padget et. al. 86] Julian Padget, Jérome Chailloux, Thomas Christaller, Matthieu Devin, John
Fitch, Tim Krumnack, Ramon Lopez, Eugen Neidl, Stephen Pope, Christian Queinnec,
Luc Steels, Herbert Stoyan. “Desiderata for a standardization of LISP”, 1986 ACM
Conference on Lisp and Functional Programming. Boston, August 1986.

[Queinnec 82] Christian Queinnec. Lisp : langage d’un autre type. Eyrolles, Paris, 1982.
[Queinnec 84] Christian Queinnec. Lisp : mode d’emploi. Eyrolles, Paris, 1984.

[Serpette et al 89] Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé “BigNum: A Portable
and Efficient Package for Arbitrary Precision Arithmetic”, DEC PRL, Paris, 1989.

[Spir 87] Eric Spir. “Implémentation d’un Glanneur de Cellules pour Le-Lisp Version 167,
Rapport de DEA d’Informatique fondamentale de 1’Université Paris VII. Paris,
Septembre 1987.

[Steele 84] Guy L. Steele, Jr. Common Lisp, The Language. Digital Press, Bedford, 1984.

[Stoyan and Gorz 84] Herbert Stoyan and Giinter Gorz. Lisp, Fine FEinfihrung in die
Programmierung. Springer-Verlag, Berlin, 1984.

[Stoyan et. al. 86] Herbert Stoyan, Julian Padget, Jérome Chailloux, Thomas Christaller, Matthieu
Devin, John Fitch, Tim Krumnack, Ramon Lopez, Fugen Neidl, Stephen Pope,
Christian Queinnec, Luc Steels. “Towards a LISP standard”, Proceedings of the 7th
ECAIL Brighton, July 1986.

BIBLIOGRAPHY 0-7

[Teitelman 83] Warren Teitelman. Interlisp Reference Manual. XEROX PARC. Palo Alto, October
1983.

[Vuillemin 87] Jean Vuillemin. “Exact real computer arithmetic with continued fractions”, Rapport
de recherche INRIA, no. 760. Rocquencourt, Novembre 1987.

[Weinreb and Moon 81] Daniel Wienreb and David Moon. Lisp Machine Manual, Fourth Edition.
Artificial Intelligence Laboratory, M.I.T., Cambridge, July 1981.

[Wertz 85] Harald Wertz. Lisp, une introduction a la programmation. Masson, Paris, 1985.

[Winston and Horn 84] Henry Winston et Berthold P.K. Horn. Lisp, 2nd Fdition. Addison Wesley,
New York, 1984.

[White 79] Jon L. White. “NIL - a perspective”, Proc. of the Macsyma User’s Conference.
Washington D.C., June 1979.

0-8

BIBLIOGRAPHY

Table of contents

O O 117 P 0-1
0.1.1 Design goals .. .oooiiii i e 0-1
0.1.2 OutCome ..ot e 0-2
0.1.3 Current state of the system i e 0-2
0.1.4 TLe-Lisp Version 15.26ottt e et et ees 0-2

0.2 Reader’s guide. e 0-3

0-10 Table of Contents

Function Index

11

Chapter 1

Use and installation

1.1 Le-Lisp on various systems

LE-Lisp has been ported to the following processors:

¢ Motorola 88x00

¢ DEC VAX 11

e Intel 80386/80486/Pentium
e Ridge 32/SPS9

e IBM/RS 6000

¢ SPARC

o MIPS R4x00

e HP-PA

¢ DEC ALPHA

In the following list of machines on which LE-LisP works at present, the name returned by the
system function is indicated between square brackets:
e APOLLO (MC680x0 base, under system Domain/OS, SysV et BSD [apollo]).
¢ DecStation 3100 and 5000 (MIPS base, under ULTRIX [decstation]).
e HP9000 300 et 400 series (MC680x0 base, under HP/UX [hp9300] [hp9400]).
o HP9700 (HP-PA base, under system HP/UX [hp9700]).
e Silicon Graphics IRIS (MIPS base, under system IRIX4 [iris4d]).
e Silicon Graphics IRIS (MIPS base, under system IRIX5 [irix5]).
e PC Compatibles (under DOS system [msdos]).
e PC Compatibles (under Windows [windows]).
e PC Compatibles (under Windows NT [nt386]).

1

1-2

CHAPTER 1. USE AND INSTALLATION

e PC Compatibles (under UNIX SCO [sco386].

e PC Compatibles (under Solaris x86 [solaris386]).

e IBM/RS 6000 (RS6000 base or PowerPC under AIX [rs6é 000]).

e SM90/SPS7 (MC68000 base, under sytems SMX et SPIX [sm90] —[spix]—).
o Ridge 32/SPS9 (under ROS [sps9]).

e SUN 3 (MC680x0 base, under SUN OS [sun]).

e SUN 4 (SPARC base, under SUN OS [sun4]).

e SUN 4 (SPARC base, under Solaris [solaris]).

e VAX 11 (under systems Ultrix and VMS [vaxunix] [vaxvms]).

o ALPHA (under systems OSF et VMS [alphaosf] [alphavms]).

1.2

Starting with Le-Lisp

To start up LE-LISP on any of the systems that support it, just type the command lelisp on the
terminal. The system responds with

Le-Lisp (by INRIA) version 15.26 (dd/mm/yy) [systeml]
Standard modular system: << date of the core-image >>
<< list of the pre-loaded system features >>

where (dd/mm/yy) is the last system-modification date and [system] is the type of the LE-Lisp
system being used. At this point, LE-LISP enters the main interactive loop, which reads an expression
from the terminal, evaluates it, and prints its value, indefinitely. LE-LispP indicates that it is waiting
to read an expression by printing the question-mark character 7 on the terminal at the beginning
of each line. The value of an evaluation is printed preceded by an equal sign =.

Here is an example of a LE-LISP session run on a Sun 4/75:

we use the c-shell (csh)
lelisp

Le-Lisp (by INRIA) version 15.26 (17/Nov/91) [sun4]

Standard modular system: Sat 28 Dec 91 19:34:39

(31bitfloats edlin microceyx abbrev date debug setf pepe
virbitmap virtty compiler pretty loader pathname
defstruct callext module messages)

O ; the null list!

O

(length (oblist)) ; number of active symbols
3190

(version) ; number of the current version

STARTING THE LE-LISP SYSTEM UNDER UNIX

1-3

= 15.26
7 (system) ; the system type
= sun4

7 (+1234)
10

? (defun fib (n)

? (cond ((=n 1) 1)

7 ((=n2) 1)

? (t (+ (£fib (1- n)) (fib (- n 2))))))
= fib

7 (fib 20)

= 6765

? (time ’(fib 20))

= 0.42

?

? (gcinfo t) ; the initial working space

(gc 0000000 O cons (32) symbol 5120 string 5120
vector 4096 float O fix O heap (256) code (1500))

7 (gc t) ; remaining work space
= (gc 240000 00 2 cons 25646 symbol 2027 string 2093
vector 4041 float O fix O heap (168) code (908))

? (time ’(gc)) ; the time a gc takes
= .14

? "Lhanoi ; loading a library

= /usr/local/lelispvi5.26/11ib/hanoi.1ll

? (hanoi 4) ; try this.. it’s nice!
= hanoi

7 (end) ; to leave Le-Lisp.

Que Le-Lisp soit avec vous.

1.3 Starting the Le-Lisp system under Unix

The command used to start up LE-LISP under the UNIX operating system has the following form:

lelisp [n] [[-r] filel

The strings in square brackets are optional.

e The n argument is the size of the list zone in multiples of 8K list cells. By default, n has the
value 4. In other words, 32k list cells are allocated. The theoretical limit on this value is 128,
for a maximum of 1024k list cells. The practical limit is the physical memory size of the host

machine, or the maximum process size of the host operating system.

e The file argument provides a way to specify the name of a file containing LISP programs to

be loaded before the system enters its main read-eval-print loop.

1-4 CHAPTER 1. USE AND INSTALLATION

e The -r file argument string lets you specify a core-image file to be loaded before the system
enters its main interactive read-eval-print loop.

After loading the standard executable core-image file, LE-LISP automatically loads the file named
$HOME/ .lelisp.

1.4 Installation of the Le-Lisp system under Unix

This section covers LE-LISP systems running under UNIX: Vax-11 (Ultrix), DecStation (Ultrix), Sun
3 & 4 (Sun0S), HPY300 (HP/UX), etc.

1.4.1 Installing the system

The LE-LISP system, version 15.26, is distributed on magnetic medium (1600-bpi tar-format tape,
DMA or Streamer cartridge) that should be copied to disk in the system’s installation directory.
Usually this is the /usr/local/lelisp directory, or maybe the /usr/local/lelispv15.26
directory when you want to keep several different versions of LE-Lisp. When installed, the system
occupies about twelve megabytes of disk storage.

Since a typical LE-LISP implementation is locked when you receive it, make sure that you have
installed the access key that came along with the product.

The installation directory contains several sub-directories, one of which, called the system directory,
is named according to the host machine (VAXUNIX, sUN4, etc.).

This system directory must contain a sub-directory called 1lcore, containing core-image files
appropriate to the system involved.

$ 1s -F /usr/local/lelispv15.26

README ceyx/ 1llobj/ vaxunix/
LLUSERFILES common/ 1lltest/ virbitmap/
TARUSER* 11ib/ 1lub/ virtty/
benchmarks/ 1llmod/ manl/

It is also necessary for all users to have write permission in the virtty sub-directory. (Use chmod
a+w virtty.)

Installation requires the initialization of some absolute pathnames and the construction of LE-Lisp
core-image files.

Initializing some absolute pathnames

Change directories (cd) to the system directory and execute the newdir command without any
arguments. This command is to be done only once, after the system has been copied from the
magnetic medium onto disk. If the LE-LISP system is ever moved to a new location in the file
system, this procedure must be carried out again.

INSTALLATION OF THE LE-LISP SYSTEM UNDER UNIX 1-5

$ cd /usr/local/lelispv15.26/vaxunix
$ newdir
2000
DIR=/usr/local/lelispv15.26
SYSDIR=/usr/local/lelispv15.26/vaxunix
2000
2000
DIR=/usr/local/lelispv15.26
2000
20828
(defvar #:system:directory "/usr/local/lelispv15.26/"))
20826

Building Le-Lisp core-image files

Change directories to the system directory and execute the make command with the name of the
core-image file to construct as argument.

There are several entry points (targets) in the system makefile, allowing the construction of different
core-image files (lelisp-, lelisp, cmplc, lelispX11) with different memory configurations
(normal, +, +4). This makefile can be extended to accomodate the construction of new systems.

The makefile uses the config command, which builds a shell script that launches LE-LISP using
the constructed core-image file. This shell script should be copied into a command directory (the
directory /usr/local/bin, for instance) in the host file system.

Core-image files are stored in the system/11lcore directory. Since they occupy a lot of disk storage
space, it might be advantageous to mount the 1lcore directory onto a special disk partition.

$ cd /usr/ilog/lelispvi5.26/sun4
$ make lelisp
./config lelisp lelispbin Lelispconf.ll -stack 6 -code 1500 -heap 256\\
-number 0 -vector 4 -string 5 -symbol 5 -cons 4 -float O
; Le-Lisp (by INRIA) version 15.26 (17/nov/91) [sun4]
= (Version: 15.26)
(Subversion: 1)
unix system
(load-std sav min pepe env 1d 1llcp) to load standard environment,
(load-stm sav min pepe env 1d 1llcp) to load modular environment,
(load-cpl sav min meme env 1d cmpl) to load complice environment.
/usr/ilog/lelispv15.26/11lib/startup.1ll
(setq #:system:name (quote |lelispl))
lelisp
(progn

(load-stm #:system:name t t t t t)

(add-feature (if (eq 0.0 0.0)

?31BITFLOATS

n = n

-~

1-6 CHAPTER 1. USE AND INSTALLATION
?64BITFLOATS))
)
Loading loader.lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/1llpatch.1lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/messages.lm ... already loaded.
Loading /usr/ilog/lelispvi15.26/11lmod/path.1lm ... already loaded.
Loading /usr/ilog/lelispv15.26/11lmod/files.1m ... already loaded.
Loading /usr/ilog/lelispv15.26/11lmod/module.lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/defs.1m ... done.
Loading /usr/ilog/lelispv15.26/11lmod/genarith.lm ... done.
Loading /usr/ilog/lelispv15.26/11mod/toplevel.lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/cpmac.lm ... done.
Loading /usr/ilog/lelispv15.26/11mod/1lcp.1lm ... done.
Loading /usr/ilog/lelispv15.26/11mod/peephole.lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/virtty.1lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/virbitmap.1lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/pepe.lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/setf.1m ... done.
Loading /usr/ilog/lelispv15.26/11lmod/defstruct.lm ... already loaded.
Loading /usr/ilog/lelispvi15.26/11lmod/sort.1lm ... already loaded.
Loading /usr/ilog/lelispv15.26/11lmod/array.1lm ... done.
Loading /usr/ilog/lelispvi15.26/11lmod/callext.lm ... already loaded.
Loading /usr/ilog/lelispv15.26/11lmod/trace.lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/pretty.lm ... already loaded.
Loading /usr/ilog/lelispv15.26/11lmod/debug.1lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/ttywindow.1lm ... done.
Loading /usr/ilog/lelispv15.26/11mod/abbrev.1lm ... done.
Loading /usr/ilog/lelispv15.26/11lmod/microceyx.1lm ... done.
Wait, saving: Standard modular system
; Le-Lisp (by INRIA) version 15.26 (17/Nov/91) [sun4]

; Standard modular system :
= (31bitfloats microceyx abbrev date debug setf pepe virbitmap virtty
compiler pretty loader pathname defstruct callext module messages)

? (end)

May Le-Lisp be with you.
$ cp lelisp /usr/local/bin

$

Mon 17 Dec

91 14:36:02

The installation is finished!

$ lelisp

; Le-Lisp (by INRIA) version 15.26 (2/Jan/91) [sun4]
; Standard modular system: Sat 29 Dec 90 19:34:39
= (31bitfloats edlin display date microceyx debug setf pepe virbitmap

virtty compiler pretty abbrev loader callext defstruct pathname messages)

?

INSTALLATION OF THE LE-LISP SYSTEM UNDER UNIX 1-7

Generally, the installation just described suffices. For certain applications, it is sometimes necessary
to modify the configuration of the system, that is, the set of Lisp files loaded in as the core-image,
or to fine-tune the organization of the LISP memory space.

1.4.2 Modification of the system configuration

The standard distribution allows the system to be built in three different configurations, which are
not exclusive, and which correspond to different makefile entry points:

e lelisp
Complete environment with debugging tools, an editor and the standard compiler.

e cmplc++
Complete environment with debugging tools, an editor and the modular COMPLICE compiler
used by the complice command.

The exact composition of each of these system configurations is described in a file in the conf
sub-directory: lelispconf .1l and cmplcconf.ll. You can change a configuration by editing one
of these files. It is also possible to create a new entry point in the makefile describing a new system
configuration.

Erample:

Construction of a core-image file named mylisp containing the standard environment without an
editor, but with the edlin line editor and with the scheduler scheduler functions. This new system
can be started up by the command mylisp.

A configuration file (for example, conf/mylispconf.11l) must be created.

$ cat conf/mylispconf.ll

(load-std (O ; load the environment without backup
t ; the minimum environment,
O ; no editor,
t ; the complete environment,
t ; the loader,
t) ; and the compiler.
(1ibload edlin) ; load the edlin line editor
(1ibload schedule) ; and the scheduler.
(progn
(11cp-std #:system:name) ; compilation and construction of the image
(edlin) ; execution of edlin after initialization
"Welcome to my-lisp")) ; welcome message.

Then add the entry point (target) mylisp to the makefile in the system directory. The mylisp
system is built using the lelispbin standard system (no supplementary C modules), and the
standard SIZE memory zone sizes.

mylisp: mylispconf.1ll
./config mylisp lelispbin mylispconf.ll $(SIZE)

1-8

CHAPTER 1.

USE AND INSTALLATION

After this is done, the system can be built by executing the make mylisp command.

$ make mylisp USERLELISP=monlelisp USERLELISPBIN=mylispbin
USERO=monc.o cc -o monlelispbin \
o/1llnumb.o o/llmain.o o/llstdio.o o/llfloat.o \
o/lelisp.o o/getgloba.o lelisp3ibin.o \
monc.o \

-Z —X

./config monlelisp monlelispbin monlelispconf.ll

-heap 25

; Le-Lisp (by INRIA) version 15.26

= (Versi
= subver
= herald
= defvar

6 -number O -vector 4 -string 5

on: 15.26)

sion

= syste‘me unix

(load-std sav min pepe env 1d 1llcp)
(load-stm sav min pepe env 1d 1llcp)
(load-cpl sav min meme env 1d cmpl)
/usr/ilog/lelispv15.26/11lib/startup.1ll

(setq #:system:name (quote |monlelispl))

LAV ||

monlel
(load-

R N A L VIR)

Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

isp

stm) ;
t 5
O ;
t 5
t 5
O ;

loader.1lm

/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.
/usr/ilog/lelispvi5.

(17/nov/91)

26/11lmod/11lpatch.1lm
26/11mod/module.lm
26/11mod/defs.1m
26/11mod/genarith.lm
26/11mod/toplevel.lm
26/11lmod/virtty.1lm

26/11lmod/virbitmap.1lm

26/11mod/setf.1lm

26/11mod/defstruct.1lm

26/11lmod/sort.1lm
26/11lmod/array.lm
26/11lmod/callext.1lm
26/11lmod/trace.lm
26/11lmod/pretty.1lm
26/11mod/debug.1lm

26/11lmod/ttywindow.1lm

26/11mod/abbrev.1lm

-A systype,bsd4.3 -A runtype,bsd4.3

-stack 6 -code 600 \\

-symbol 5 -cons 4 -float O

[apollo]

to load standard environment,
to load modular environment,
to load complice environment.

load environment without backup,
minimum environment,
no editor,

complete environment,
loader,

no compiler

INSTALLATION OF THE LE-LISP SYSTEM UNDER UNIX 1-9

Loading /usr/ilog/lelispv15.26/11lmod/microceyx.1lm
O

(1ibload edlin)
/usr/local/lelispv15.26/11ib/edlin.11

(1ibload schedule)
/usr/local/lelispv15.26/11ib/schedule.ll

LRV | IRV ||

? (progn (save-std #:system:name)

? (edlin)

? "Welcome to my lisp")))

Wait, saving: Standard modular system

; Le-Lisp (by INRIA) version 15.26 (2/Jan/91) [vaxunix]

; Standard modular system: Sat 29 Dec 90 19:34:39

(31bitfloats edlin display date microceyx debug setf pepe virbitmap
virtty compiler pretty abbrev loader callext defstruct pathname messages)
? (end)

Que Le-Lisp soit avec vous.

$

$ cp mylisp /usr/local/bin

$ mylisp

; Le-Lisp (by INRIA) version 15.26 (2/Jan/91) [vaxunix]

; Standard modular system: Sat 29 Dec 90 19:34:39

= Welcome to my lisp

1.4.3 Modification of data zone sizes

The sizes of the different system data zones are fixed during the construction of each core-image
file, and they cannot be modified dynamically. It is quite possible to saturate one of these zones,
which causes one of the fatal errors described in section 7.10:

**¥*x fatal error : no room for XXXXs.
Notice the following points:

o The size of the list storage zone can be modified at each invocation of the system. So, it is
not necessary to construct a new core-image file in order to rectify a situation that causes
the list-memory-zone-full error.

e The saturation of a zone could well be due to an error in a user program.

e The Lisp function gcinfo gives information on how full memory zones are.

The makefile has entry points that permit the construction of each system configuration (lelisp,
cmplc) with different zone sizes. For instance the system lelisp++ is a LE-LISP system with very
big memory zones.

The makefile’s SIZEx variables contain the values indicating the size of the different zones.

For example, the size of the LE-LIsP system is described by the SIZE variable:

1-10 CHAPTER 1. USE AND INSTALLATION

SIZE= -stack 6 -code 256 -heap 100 -vector 3 -number O -float O
-string 4 -symbol 3 -cons 4

Each -zone option sets the size of zone. Here are the units that describe these sizes:

LE-LISP memory zones

Name | LispP object Unit Real size

stack | Stack K-word 1 = 4 K-byte

code Compiled code K-byte 1 =1 K-byte

heap Heap K-byte 1 =1 K-byte

vector | Vectors K-vector | 1 = 1 K-vector (8Kb)
float | Floating-point numbers | K-float 1 = 1 K-float (8Kb) (*)
string | Character strings K-string | 1 = 1 K-string (8Kb)
symbol | Symbols K-symbol | 1 = 1 K-symbol (64 Kb)
cons Pairs 8K-pair 1 = 1 K-pair (64 Kb)

(*) set to 0 for 31-bit float system.

Strings and vectors take up space in the heap, as indicated in the following table:

Heap use

n-object vector | 8+4n bytes

Character string | 9+n bytes

To build a core-image file with new zone sizes, the definitions of the SIZEz variables must be
changed, or new entry points (targets) using other SIZE parameters must be added to the makefile,
and then the make command must be executed again.

Erample:
To add an entry point that constructs a system named lelispv with 10,240 (10K) vectors.

SIZEV= -stack 6 -code 256 -heap 100 -vector 10 -number 0 -float 1
-string 4 -symbol 3 -cons 4

lelispv: lelispconf.1ll
./config lelispv lelispbin lelispconf.ll $(SIZEV)

Next, the execution of the make command builds the core-image file for the lelispv system.

$ make lelispv
./config lelispv ...

$ cp lelispv /usr/local/bin
$ lelispv
; Le-Lisp by INRIA ...

STARTING THE LE-LISP SYSTEM UNDER VMS 1-11

1.4.4 Linking the Le-Lisp system with C modules

Chapter 14 of this manual describes how to link the 1elispbin system with C programs to make
a new executable file.

To perform this operation, the 1elispbin.o binary file in the system directory must be used. This
file is the result of a link (using 1d -r) of all of the LE-LISP system’s constituant modules, except
the C modules. These last modules are obtained by compiling the C files in the common directory.

The generic entries of the Makefile allow you to do that in a very homogeneous manner. See the
on-line UNTX information called 1lelisp-manl.

1.4.5 Calling the shell

The shell can be called by using the comline function (and the ! macro character). This will
execute /bin/sh which a local interpretation of the cd command.

% lelisp

; Le-Lisp (by INRIA) version 15.26 (2/Jan/91) [vaxunix]
Standard modular system: Sat 29 Dec 90 19:34:39

(compiler debug defstruct loader pepe pretty virbitmap virtty)

EES TS, B | IRV

'pwd
/usr/local/lelispv15.26/vaxunix
=t
? lcd ../
=t
7 !pwd

/usr/local/lelispv15.26

1.5 Starting the Le-Lisp system under VMS

Complete documentation covering the installation and execution of LE-LISP under vMs is available
in [Dana86]. The command used to start the LE-LISP system under the vMs operating system has
the following form:

$ lelisp

1.6 Practical advice

Finally, here is some practical information that will be developed in detail in the chapters to come.
In particular, we give hints about how to use the system comfortably right from the very start.

1-12 CHAPTER 1. USE AND INSTALLATION

e To erase a character, use the BACKSPACE key or the LEFT arrow. The character to the left of
the cursor will be erased from the screen.

e To Kkill a line of input, type CONTROL-X, obtained by holding down the coNTROL key and
pressing the X key. We write this key combination as ~“X. The line is erased from the screen.
You can obtain the same result by typing ~U.

e To return to the main interactive loop when you are in the midst of typing an expression,
provoke an error by typing two dots (periods), one right after the other. If nothing (visible)
happens, you are probably within a comment or a character string.

e To return to the main interactive loop when you have lost control of things, or LISP is no
longer responding, type BREAK, DELETE or ~C on UNIX hosts, or “C under vMsSs.

e To return to the host OS in really desperate circumstances, enter ~\ on UNIX systems, or Y
under vMs. In this case you loose your LISP environment.

e To send a command line to the host system (if the latter permits this kind of request), type
the exclamation point character ! followed by the command, as shown here:

? Mdir
e To load a previously-created file, simply type
? "Lfile
To obtain CONTROL-L, hold down the CONTROL key and type L simultaneously. Follow this
immediately by the name of the file, without its extension, which is .11 by default.
e To edit or create a file, call one of the full-screen editors by simply typing
? "Efile
To obtain CONTROL-E, hold down the CONTROL key and type E simultaneously. Follow this by
the name of the file, without its extension, which is .11 by default.

e To see a replay of the commands recently executed, use the following command from within
the editor:

ESC 7
e To edit a particular function that is in a file, call one of the screen editors by simply typing
? "Ffunction

To obtain cONTROL-F, hold down the CONTROL key and type F simultaneously. Follow this by
the name of the function. The system will try to locate the file that contains it, and will call
one of the available full-screen editors on this file, as with the "E command.

e To insert a comment into a LISP expression, type a semi-colon. The rest of the line, up to the
end-of-line character, will be ignored.

Finally, you have access to the source code of a large number of utilities that are written in Lisp. The
editor, the pretty-printer, debugging tools, visualization tools, etc. are included in the distribution.
Go ahead and read them, try to understand them, and do not be afraid to extend and improve
them.

Table of contents

1 Use and installation 1-1
1.1 Le-LiSp ON VATIOUS SYSTOIMNS + .t v vt ittt ettt ettt ettt e ettt te e e e ie e aneens 1-1
1.2 Starting with Le-Lisp ...t 1-2
1.3 Starting the Le-Lisp system under Unix oo ... 1-3
1.4 Installation of the Le-Lisp system under Unix o i, 1-4

1.4.1 Installing the system e 1-4
1.4.2 Modification of the system configurationo oo L. 1-7
1.4.3 Modification of data zone 8izes. 1-9
1.4.4 Linking the Le-Lisp system with C modules 1-11
1.4.5 Calling the shell e 1-11
1.5 Starting the Le-Lisp system under VMS i 1-11
1.6 Practical advice oo e 1-11

13

1-14 Table of Contents

Function Index

15

Chapter 2

Evaluation

2.1 Basic objects

The LE-L1sP language operates on objects called symbolic expressions, generally referred to as
S-expressions.

An S-expression can have any one of the following types:

¢ Atomic objects

— Symbol.

— Number: an integer, a floating-point number—often referred to simply as a float—or an
arbitrary-precision number.

— Character string.
¢ Composite objects

— List.

— Vector.

LE-L1sp also allows you to define new types, called extended types.

Inside the machine, every S-expression is represented by a pointer to its value. You can think of
this pointer as the address of the value. The value of an object is always accessed by means of an
indirection. Consequently, LE-LISP is optimized for pointer manipulation.

LE-Lisp runs principally on processors with 32-bit pointers. This allows you to manipulate addresses
up to 232: that is, in the four-gigabyte region. Hardware limitations sometimes restrict the address
space to only 24 or even 20 bits. However, in most cases, the address space of this kind of processor
is adequate.

2.1.1 Atomic objects

Symbols

Symbols play the réle of identifiers that are used to name variables, functions and labels. They are
created automatically when read from the input stream. They can also be created explicitly by the

1

2-2 CHAPTER 2. EVALUATION

symbol, implode, concat and gensym functions. So, they do not need to be declared.

The external name of a symbol—referred to as its print name, abbreviated to p-name—can be
any string of no more than 128 characters containing at least one non-numeric character. You
can include special characters or delimiters in a p-name by surrounding the entire p-name by the
character referred to as absolute value bar: represented by a vertical bar. (See the section on the
standard reader.)

A symbol is represented in the system by a pointer to a descriptor stored in a special memory zone.
This descriptor has the following nine intrinsic properties:

e c-val (an abbreviation for cell value) always contains the value associated with a symbol
that is considered as a variable. Access to this value is extremely rapid. When a symbol is
created, its c-val is undefined. Any attempt to reference a symbol that has not had a value
assigned to it raises the errudv error.

e p-list (an abbreviation for property list) always contains the property list of the symbol.
These properties are managed by the user by means of special functions that operate on
P-lists: addprop, putprop, getprop, remprop and defprop. By default, the list of properties
has the value ().

e f-val (an abbreviation for function value) always contains the value associated with a symbol
that is considered as a function. This value can be of two kinds:

— In the case of subr functions, it is a machine address.

— In the case of expr, fexpr, macro and dmacro functions, it is a list.

You can fully access the £-val of a symbol by means of the valfn, setfn, remfn and getdef
functions. If the symbol has no function definition this property has the value 0.

e f-type (an abbreviation for function type) contains the type of the function stored in
the f-val field. Together, the f-val/f-type combination enables the evaluator to execute
function calls very rapidly. You can access directly the £-type of symbols by means of the
typefn and setfn functions. When a symbol does not have a function definition, this property
has the value ().

e p-type (an abbreviation for print type) contains necessary information for the edition of the
external representation of the symbol. There are two possibilities:

— The symbol is a variable. The p-name string can be enclosed within a pair of absolute
value characters.

— The symbol designates a function. In this case, the pretty-printer uses the appropriate
print format.

The p-type cell of a symbol is accessed by means of the special ptype function.

e o-val (an abbreviation for object value) can contain any S-expression, and can be used to
hold special values. This field is particularly useful in the implementation of object-oriented
extensions.

BASIC OBJECTS 2-3

e a-link (an abbreviation for atom link) contains the address of the next symbol in the symbol
table. Among other things, this link facilitates the hashing of the symbol table. This attribute
cannot be accessed directly by the user.

e pckgcell (an abbreviation for package cell) contains the name of the package to which the
symbol belongs. The package is accessed by means of the symbol and packagecell functions.

e p-name (an abbreviation for print name) contains the address of the character string that

represents the name of the symbol.

These intrinsic properties are stored in memory with the following layout:

| c-val | <==--- symbol pointer

Certain symbols are defined at system-initialization time:

e Symbolic constants that contain their own names as values: ||, t, lambda, flambda, mlambda,
subr0, subrl, subr2, subr3, nsubr, fsubr, expr, fexpr, macro, dmacro and quote.

e Predefined functions.

e System variables.

Numbers

LE-LISP uses 16-bit integers, allowing calculations in the range of —2!5 to +(2!%) — 1: that is, from
—32768 to +32767. Floating-point numbers are composed of either 31, 32, 48 or 64 bits, depending
on the implementation. LE-LISP also incorporates libraries for arbitrary-precision arithmetic.

The p-name of a number is the representation of its value in the output conversion base. (See the
obase function.) The value of a number is, of course, the number itself.

2-4 CHAPTER 2. EVALUATION

Character strings

LE-Lisp has character strings, which have the sequence of characters enclosed in quote characters as
external representations. The quote character can be represented in strings by inserting a sequence
of two quote characters in a row. A character string cannot be longer than 32767 characters in
the current implementation. Character strings are stored in a special memory segment which is
dynamically compacted in by a linear-time garbage-collection algorithm. The value of a character
string is the string itself, thus there is no need to quote it.

Each character string can also have its own particular type. By default, the type of a string is
string.

"foo bar" corresponds to the string foo bar

Hingpeh corresponds to the string "abc!
i corresponds to the string "

All these three examples are of type string.
#:foo:'"abc'" corresponds to the string abc

In this fourth example, on the contrary, the type is foo.

2.1.2 Compound objects

Objects are said to be compound when they are made up of other LE-LIsP objects.

Lists

LE-Lisp represents lists in a standard fashion. The following diagram shows, for example, how the
list (a (b ¢ . d) e) is stored in memory:

BASIC EVALUATION ACTIONS 2-5

A list element is stored in a list cell made up of a pair of pointers. It is often referred to as a cons
cell. The first member, or car, of this cell contains a pointer to the list element. Its second member,
or cdr, contains a pointer to the next list element, or to a special end-of-list marker. LE-LISP uses
the symbol ||, whose name has a length of zero, as an end-of-list marker.

LE-Lisp allows a list cell to be labelled. A label is a special mark that can be tagged on to any
list cell. The label can be removed from the cell to which it is attached. Also, you can search for
a particular labelled cell. These operations are carried out by specialized functions such as tcons,
tconsp, tconsmk and tconscl. The mark is invisible to all other list-manipulation functions, and
neither slows nor otherwise modifies normal access to list cell members. Among other things, these
labels allow you to define new user types. (See the section on extended types.)

Vectors of S-expressions

LE-LisP has a vector of S-expressions type, which allows for indexed access to Lisp objects. The
external representation of a vector is

#[s,8,...8,]

The vector elements are shown here as s, s, ... s,. Our use of subscripts aims solely at improving
the readability of this manual, and should not be taken literally, since there are no real subscripts
in LE-L1sp. Access to a vector element is very rapid. In the current implementation, a vector can
contain no more than 32767 elements. Since vectors are authentic LisP objects, vectors of vectors
are allowed. Vectors are stored in a special memory space that is dynamically compacted by a
linear-time garbage-collection algorithm. Since the value of a vector is the vector itself, there is no
need to quote them. FEach vector can also have its own particular type. By default, the type of a
vector is vector.

For example, #[a b #[x y z] d e] is a vector with five elements, of which the third is a vector
of three elements. And #:foo:#[1 2] is a vector of two elements, of type foo.

2.2 Basic evaluation actions

2.2.1 Evaluation of atomic objects

The value of a symbol considered as a variable is its c-val. The evaluation of a symbol whose
c-val is undefined—that is, a symbol that does not yet have a value—raises the errudv error at
evaluation time. Its screen display is

**% <fn> : undefined variable : <symb>

Here, the name of the symbol at fault is symb, and fn is the name of the function that caused the
error. Usually, it is one of the two evaluation functions: eval or symeval.

2-6 CHAPTER 2. EVALUATION

Variables are used in LISP in three circumstances:

e As global variables, which are constantly accessible by all functions. It is recommended to
initialize them with the defvar function. (See the following chapter.)

o As local variables, which only retain their values during the execution of a function. Indeed,
they are the parameters of the function.

e Finally, they can be used in the style of the own variables of ALGOL. In this case, they are local
to a function, but they do not loose their value between successive evaluations of this function.
These variables must be enclosed within a function by means of the closure function.

The value of a number or a character string is the number or character string itself. So, there is no
need to quote them.

2.2.2 Evaluation of composite objects

The evaluator always considers that a list is a function call. The list is referred to as a form. The
car of the form is the function, and its cdr is the argument list of the function.

The value of a form is the value returned when the function is applied to its arguments.

The value of a vector of S-expressions is the vector itself. As in the case of numbers and character
strings, it is not necessary to quote vectors, which are always treated like constants.

2.3 Evaluation of functions

A function—the car of a form——can be a symbol or a special list. The cdr of the form is the
argument list of the function. If this list of arguments is not terminated by (), the errbal error is
raised. Its screen display is

*x <fn> : bad arguments list : <a>
Here, fn is the name of the function that caused the error, and a is the final cdr of the list of
arguments.

(cons 1 . 2) == ** cons : bad argument list : 2
(if O 23 .4) = ** if : bad argument list : 4

If the function is a symbol, LE-L1SP uses the function associated with the £-val of this symbol.

e This association can be established at system initialization. This is the case for predefined
functions, which are also called standard functions.

e The user can make this association by means of static or dynamic definition functions.

If, even after searching through the extended types (see that section), no function has been
associated with this symbol, the errudf error is raised. Its screen display is

EVALUATION OF FUNCTIONS 2-7

**% <fn> : undefined function : <symb>

Here, symb is the name of the undefined symbol, and fn is the function that caused the error. It is
usually one of the functions eval, apply or funcall.

(cons ’a ’b) == (a . b)
(setq kons ’cons) =—— cons

(kons ’x ’y) = ** eval : undefined function : kons

When the function is a number, a vector or a character string, the evaluator also raises the errudf
error, whose screen display is the same as in the preceding case.

(3°(123) = ** eval : undefined function : 3

When the function is a list, an anonymous function is explicitly declared.

The first element of the list must be one of the special symbols lambda, flambda or mlambda.
((lambda (x) (+ x x 2)) 5) = 12

((flambda (x) x) (+ x x)) —_— (+ x x)
((lambda (x) x) (lambda (x) x)) — (lambda (x) x)

A calculated function call is made by using the funcall function. LISP is one of the rare languages
in which it is possible to write convenient calls of the form

(funcall (if (< n 0) ’* ’+) val 2)

LE-LisP has two main classes of functions: those written in the LLM3 machine language, and those
written in Lisp. All functions written in LISP can be translated into LLM3 machine language by the
compiler. Each of these two classes of functions has four types of functions:

e Functions that evaluate their arguments: called subr in LLM3 and expr in LISP.
e Functions that do not evaluate their arguments: called £subr in LLM3 and fexpr in LISP.
e Simple macro functions: called msubr in LLM3 and macro in LISP.

e Substitution macro functions: ca