The Programming Language LISP:
Its Operation and Applications

Information International, Inc.

Edmund C. Berkeley and Daniel G. Bobrow, editors

The M.L.T. Press

Massachusetts Institute of Technology IIIII |
Cambridge, Massachusetts, and London, England

Reproduction in whole or in part is
permitted for any purpose by the United States Government

This research was sponsored by the Advanced Research Projects Agency,
Department of Defense, Washington, D. C., under Contract SD 162. This
technical report was prepared under said Contract.

First printing, March 1964 by
Information International, Inc.

Second printing, April 1966
Third printing, March 1967
Fourth printing, March 1974

ISBN 0 262 59004 2

Printed in the United States of America

Reproduction in whole or in part is

permitted for any purpose of the United States Government

First printing, March, 1964

Printed in the United States of America

Authors

Authors

Paul W. Abrahams
Edmund C. Berkeley
Fischer Black
Daniel G. Bobrow
Thomas G. Evans
Mark Finkelstein
Edward Fredkin
Elaine Gord
William Henneman
Timothy P. Hart
Michael I. Levin
Lionello A. Lombardi
Malcolm Pivar
Bertram Raphael

Robert A. Saunders

Editors
Edmund C. Berkeley

Daniel G. Bobrow

Acknowledgements

Work reported here by authors Edmund C. Berkeley, L.
Peter Deutsch, Mark Finkelstein, Edward Fredkin, Elaine Gord,
William Henneman, Malcolm Pivar, and Robert A. Saunders was
supported entirely or largely by Information International Inc.
under contract SD-162 with the Advanced Research Projects Agen-
cy, Department of Defense.

Work reported here by authors Daniel G. Bobrow, Timothy P.
Hart, Michael I. Levin, L. A. Lombardi, and Bertram Raphael was
mainly or partially supported by Project MAC, an M.T.T. research
program sponsored by the Advanced Research Projects Agency,
under Office of Naval Research Contract Nonr-4102(01). Some of
the work of Bobrow and Hart was also supported by Information
International under its contract; and some of the work by Ber-
keley and Deutsch was also supported by Project MAC under its
contract.

The articles and papers (or portions thereof) by authors
Paul W. Abrahams, Fischer Black, and T. G. Evans were re-
ceived as welcome contributions to this report, and were not
supported by the foregoing contracts,

All the assistance which has been contributed to the sub-
stance and content of this report has been most helpful and is
gratefully acknowledged.

Grateful acknowledgement should also be made to the per-
sons who typed or drew the final photo offset master copy for
this report: Ann Baker, Diana Cormier, Michelle Ingersoll,
Gayle Johnson, and Lorraine Simkins.

Edmund C. Berkeley

Daniel G. Bobrow

Editors

- iV -~

Preface

One of the tasks under Contract SD-162 issued by the Advan-
ced Research Projects Agency to Information International, Inc.,
was to help make the programming language LISP more understood,
more available, and more useful for programmers and mathemati-
cians. The language LISP (short for a "LISt Processing” lang-
uage) is a remarkable and powerful language, because not only
does it govern the operation of a computer, but also it is a
mathematical language with great flexibility and power for ex-
Pressing processes in mathematics, logic, and symbol manipulation
in general.

As a part of the present task, this collection of contribu-
tions from various authors has been prepared and published.

The section of this report "Acknowledgments" states the con-
nections of the authors with various projects and activities, the
original sources of the contributions, and the support which en-
abled the contributions to be written. The authors include many
persons who have worked under contracts with the Advanced Research
Projects Agency other than the contract with Information Interna-
tional Inc.

Part I of this report contains articles and papers written
primarily for persons with no prior knowledge of LISP or only a
little, If anybody desires to learn LISP, however, Part I of this
report is not sufficient, and he should have at hand a copy of:
"LISP 1.5 Programmer's Manual", by John McCarthy and others; pub-
lished by The MIT Press, Cambridge 39, Mass.; date, August 17,
1962; cost, $3.00.

Part II of this report contains articles and papers written
primarily for persons with a substantial prior knowledge of LISP,

-v.

Copies of this report are available from the Defense Docu-
mentation Center (DDC) and the Office of Technical Services (0TS) .

We should like to express our thanks and appreciation to all
those persons who contributed to this report, and enabled it to
become, in our opinion, a step along the road towards more ver-
satile and more powerful operation and control of computers.

Also, we should like to express our great appreciation to the
Advanced Research Projects Agency for its support of this work,
for otherwise much of what is here would never have come into ex-
istence.

In spite of many efforts to avoid errors, no editors or
authors can be sure that all errors have been eliminated. Any

corrections, comments, or suggestions sent to the editors will
be very welcome.

Information International Inc.

Edmund C. Berkeley

Daniel G. Bobrow

vi -

10,

Distribution

Addressee

Advanced Research Projects Agency
Washington, D. C.
Att'n Dr. J. C, R. Licklider

Carnegie Institute of Technology
Computation Center, Pittsburgh, Pa,
Att'n Dr. Alan Perlis

Information International, Inc.
Cambridge, Mass.
Att'n Mr. Edward Fredkin

Mass. Inst. of Technology, Project MAC and
Computation Center, Cambridge, Mass.
Att'n Mr, Richard Mills

Stanford Research Institute
Palo Alto, Calif,
Att'n Mr, John H. Wensley

Stanford University, Computer Science Division
Stanford, Calif.
Att'n Prof, John McCarthy

System Development Corporation
Santa Monica, Calif,
Att'n Mr. Arthur M. Rosenberg

University of California at Berkeley
Berkeley, Calif.
Att'n Prof. Edward Feigenbaum

University of California at Los Angeles
Los Angeles, Calif,
Att'n Mr, C. A. Irvine

Defense Documentation Center (DDC)
Cameron Station, Va,

- vii -

Number
of Copies

50

150

100

20

60

50

20

20

500

Table of Contents

Acknowledgements
Preface

Distribution

PART 1 — Elementary

1. LISP — A Simple Introduction

[\~

LISP — On the Programming
System

3. LISP — 240 Exercises with
Solutions

4. Notes on the Debugging of
LISP Programs

5. Styles of Programming in LISP

Edmund C. Berkeley
Robert A. Saunders
Timothy P. Hart and

Michael I. Levin

Elaine Gord

Fischer Black

PART 11 — Advanced

1. Techniques Using LISP for Auto-
matically Discovering Inter-
esting Relations in Data

2. Automation, using LISP, of In-
ductive Inference on Se-
quences

3. Application of LISP to Machine

Checking of Mathematical
Proofs

- viii

Edward Fredkin

Malcolm Pivar and
Mark Finkelstein

Paul W. Abrahams

iv

vii

30

73

93

96

108

125

137

METEOR: A LISP Interpreter
for String Transformations

Notes on Implementing LISP for
the M-460 Computer

LISP as the Language for an In-
cremental Computer

The LISP System for the Q-32
Computer

An Auxiliary Language for More
Natural Expression — the
A-Language

Daniel G. Bobrow
Timothy P. Hart and
Thomas G. Evans

L. A. Lombardi and
Bertram Raphael

Robert A. Saunders

William Henneman

PART III — Appendices

The LISP Program for METEOR

The LISP Program for Inductive
Inference on Sequences

The LISP Listing for the Q-32
Compiler, and Some Samples

The LISP Program for the A-
Language

The LISP Implementation for the
PDP-1 Computer

Index for Part I of the LISP
1.5 Manual

A LISP Interpreter for the Q-32

- ix -

Daniel G. Bobrow

Malcolm Pivar and
Elaine Gord

Robert A. Saunders

William Henneman

L.. Peter Deutsch
and Edmund C.
Berkeley

Edmund C. Berkeley
and Daniel G.
Bobrow

Robert A. Saunders

161
191
204
220

239

249
260

290

318

326

376

383

(XN BTSSR JURY L I

OO NO W~

LISP — A Simple Introduction

Edmund C. Berkeley

Information International, Inc.

TABLE OF CONTENTS

I. INTRODUCTION

What is LISP?

7090 LISP and PDP-1 LISP

A Very Simple Example of LISP
Meaning of CAR

Meaning of QUOTE

Use of Parentheses

Use of Spaces

The Function CDR

The Function CONS

IT. CONDITIONS, PREDICATES, AND NUMERICAL FUNCTIONS

Conditional Expressions
Absolute Value
Predicates

The Predicate EQ

The Predicate NULL

The Predicate NUMBERP

o
— O OO~

13
15
15
16
16
17

— O O ONOCU B WK

[RRrpya—

=N~

[@RNRecll N Ne i) Il

[

The
The
The
The
The
The
The
The
The

I1I.

Expression CSET

Expression CSETQ

Expressions DEFINE and LAMBDA
Expression DEX

Function SQUARE

Function CUBE

Function TRIPLE

Function SMALLER

Predicate ZEROP

Availability of Expressions for Definitions
Alternative Definitions

The
Its
The
The

The

The
The
The
The
The
The
The
The
The
The

IV. ATOMIC EXPRESSIONS

V. RECURSIVE DEFINITIONS
Predicate EQUAL
Definition in LISP
Function REMAINDER
Function GREATEST COMMON DIVISOR
VI. THE PROGRAM FEATURE

Function QUOTIENT

VII. FUNCTIONS OF LISTS

Function APPEND

Function LENGTH, defined with the Program Feature

Function LENGTH, defined Recursively
Predicate MEMBER

Function LAST

Function UNION

Function DIFFLIST

function SUBST

Function ASSOC

Function MINIMUM

DEFINING AND USING NEW TERMS AND EXPRESSIONS

19
20
21
22
23
23
23
24
24
25
26

29
30
31
33

34

37
38
38
39
40
40
41
41
42
43

W N~

VIII. CONCLUDING REMARKS
The Generality and Power of LISP

Computation
Comments on this Introduction

APPENDIX

Test at Project MAC

46
47
47

48

I. INTRODUCTION

1. What is LISP?

Among the new languages for instructing computers is a re-
markable one called LISP. The name comes from the first three
letters of LIST and the first letter of PROCESSING. Not only
is LISP a language for instructing computers but it is also a
formal mathematical language, in the same way as elementary al-
gebra when rigorously defined and used is a formal mathematical
language.

The LISP language and its implementation on the IBM 7090 com-
puter were worked out by a group including John McCarthy, Stephen
B. Russell, Daniel J. Edwards, Paul W. Abrahams, Timothy P. Hart,
Michael I. Levin, Marvin L. Minsky, and others.

LISP is designed primarily for processing data consisting
of lists of symbols. It has been used for symbolic calculations
in differential and integral calculus, electrical circuit theory,
mathematical logic, game playing, and other fields of intelligent
handling of symbols.

Much authoritative information about LISP can be found in:
"LISP 1.5 Programmer's Manual™ by John McCarthy, Paul W. Abrahams,
Daniel J. Edwards, Timothy P. Hart, and Michael I. Levin, pub-
lished by The M.I.T. Press, Mass. Inst. of Technology, Cambridge
39, Mass., dated August 17, 1962, 105 pp. Most people approach-
ing LISP find, however, that this manual is rather difficult to
comprehend on a first reading, because in many cases the ideas
and terms are presented from an advanced point of view assuming
a good deal of already known information on the part of the rea-
der.

The purpose of the present article is to make a bridge be-
tween the ideas and terms of ordinary English and elementary
mathematics, and the ideas and terms known and used by LISP pro-
grammers.

This bridge begins in Section 3 below, but before we start
on the bridge, we need to make some remarks about the way the
LISP system operates inside a computer. These remarks are in
Section 2 — which may be skipped on a first reading by someone
who is willing to take "the LISP interpreter” (the program on the
computer which interprets LISP expressions) on faith for the time
being.

2. 7090 LISP, and PDP-1 LISP

a. Two Forms of LISP

We shall discuss two distinct forms of LISP. One is the ori-
ginal and full form of LISP for operation on the very powerful
(and expensive) IBM 7090 computer made by International Business
Machines Corporation. This form of LISP, because of the speed and
capacity of the computer, enables many interesting and important
investigations to be made.

The usual way in which LISP expressions are given to the 7090
computer to be evaluated is through punch cards prepared ahead of
time by the human programmer. Results produced by the computer
are usually put on magnetic tape, which is then printed off-line.
But sometimes with a time-sharing facility, as for example at Pro-
ject MAC at Mass. Inst. of Technology, the 7090 computer is di-
rectly accessible to the human being by means of an electrically
controlled typewriter or teletype station. In the case of direct
time-sharing access, the computer takes control of the electric
typewriter or teletype, and operates it.

The second form of LISP is a somewhat simplified and modified
form of LISP which was worked out by L. Peter Deutsch for opera-
tion on the PDP-1 computer made by Digital Equipment Corp.,
Maynard, Mass. This form of LISP uses for the basic functions
about 1500 registers, and for working storage from about 500 to
about 14000 registers (the latter in a four-core PDP-1) as may be
chosen. In comparison with 7090 LISP, PDP-1 LISP is significantly
limited. But it is useful because it is flexible, permits much
investigation, and the correction of preliminary expressions. 1In
PDP-1, beyond the basic functions, only those functions chosen
may be included in the system when placed for use on the computer;
this choice is not possible in 7090 LISP. Additional technical
information about PDP-1 LISP is given in a later appendix in this
book.

The usual way in which LISP expressions are given to the
PDP-1 computer to be evaluated is through typing on the keys of
the computer-associated typewriter, or through punched paper tape
read in by the photoelectric tape reader. Results produced by the
computer are usually given to the human being either by characters
typed automatically by the typewriter or punched automatically in
paper tape, which may be printed in an off-line Flexowriter.

b. Functions and Properties Available

The functions and properties available for use in 7090 LISP
are stated in the LISP 1.5 Manual. Additional functions such as

-5 -

LAST (in the sense '"the last of" a list) are also available from
program libraries in the computer centers where the LISP system
has been implemented on the 7090 computer.

The functions and properties available for use in PDP-1 LISP
are many fewer and are stated in the appendix on PDP-1 LISP.

Additional functions for both forms of LISP may be readily
defined and read in to the LISP system when desired.

¢. Differences between 7090 LISP and PDP-1 LISP

The differences between the two forms of LISP are like the
differences in idiom or dialect between one part of a country and
another part of the country. We will consider the form (or idiom)
of LISP for the 7090 and the form (or idiom) of LISP for the PDP-1.

d. The LISP Interpreter

First of all, when any calculation whatever is given to any
appropriately programmed computer, the machine:

— takes in signals or characters expressing the
calculation which is intended;

— performs internal calculating operations; and

— puts out the result of the calculation.

In the case of a computer programmed with a LISP system, we
say that the machine (the programmed computer):

— takes in an expression written in LISP;

— applies the LISP interpreter and evaluates the
expression; and

— puts out the value of the expression.

For example, in multiplying 3486 by 6598 on an ordinary
Friden desk calculator, the information put in consists of:

(1) pressing the keys 3, 4, 8, 6 (in columns 4, 3,
2, 1, respectively, but in any arbitrary se-
quence) on the main keyboard;

(2) pressing the keys 6, 5, 9, 8 (in that particular
sequence) on the multiplier keyboard; and,
finally,

(3) pressing the key "MULT", which causes the ma-
chine to start computing.

In other words, the desk calculator takes in an expression equi-
valent to 3486 x 6598, evaluates it, and gives out the value

-6 -

23000628 in the dials of the result register.

The LISP interpreter is an elaborate function inside the
computer which essentially operates on two arguments given to it.
The first argument is the name of a function. The second argu-
ment is a list of one or more arguments to which that function
is to be applied. Of course, the 7090 LISP interpreter can res-
pond properly to several hundred function names; it is not res-
tricted like the ordinary desk calculator to responding to just
one of the four arithmetical functions, addition, subtraction,
multiplication, and division.

e. The Internal 7090 Form, the External 7090 Form, and the PDP-1
Form

The 7090 LISP interpreter handles expressions in two styles
or idioms or forms. One of these is called the internal form.
The internal form is the way in which expressions are handled
inside the 7090 computer almost all the time. Also, it is the
usual standard form of LISP expressions inside a computer regard-
less of what kind of computer it may be. The other of these forms
is called the external form, or the form on the top level; this
is the form in which expressions go into the 7090 computer. It
saves some trouble and time for human beings, to have this second
style or form for use in going into the 7090 computer.

The PDP-1 LISP interpreter handles expressions only in one
form. This form is almost the same as the internal form of ex-
pressions for the 7090 LISP interpreter, but not quite.

In the following explanation of LISP, we shall nearly all
the time be dealing with expressions in the internal form for the
7090 LISP interpreter, and the only form for the PDP-1 LISP inter-
preter. From time to time we shall discuss the relation between
the internal form of expressions for the 7090 LISP interpreter
and the external form of such expressions.

3. A Very Simple Example of LISP

Let us now consider a very simple example of LISP.

Suppose that we take a list consisting for example of A, B,
C, D, E in that order. Suppose we choose the problem:

Select the first element in that list.
The following expression:

(CAR (QUOTE (A B CDE)))
-7 -

if evaluated by the LISP interpreter (the programmed computer
which interprets the LISP expression) would give the answer:

A

Since the first one of the list "A, B, C, D, E" is "A", the in-
terpreter has operated correctly.

The way in which this expression would usually be put into
the 7090 LISP interpreter would make use of the external form
(or idiom — see Section 2) and would be:

CAR ((A B CDE))

The way in which this expression would be put into the PDP-1
LISP interpreter would be the same as the first expression:

(CAR (QUOTE (A B CDE)))

together with one more pressing of the typewriter space bar fol-
lowing the last parenthesis.

4. Meaning of CAR

In order to understand what has happened, let us take a look
at the various parts of the example. What does CAR mean? The
word CAR is a LISP expression which is a function name. Its mean-
ing is "the first of"™. CAR applied to any list of elements pro-
duces the first element in the list. The word "CAR" is derived
from the initial letters of three words in the phrase "Contents
of Address part of Register", and this phrase has to do with the
organization of the computer registers to hold lists.

5. Meaning of QUOTE

What does QUOTE mean? The expression QUOTE tells the com-
puter that what follows is to be treated as itself, not as the
name for something else. This meaning is like the meaning in
ordinary English when we use quotation marks and say:

"Paris" has five letters.
and mean:
The word Paris has five letters.

We do not say:

Paris has five letters.

-8 -

because Paris is a city and it makes no sense to say that a city
has five letters; what a city has is people, streets, buildings,
etc.

In English one of the standard uses of quotation marks is
to produce a name for an expression, instead of designating what
the expression usually refers to. This is the use of QUOTE in
LISP.

6. Use of Parentheses

The expression:
(CAR (QUOTE (A B C D E)))

uses six parentheses. They are very important. They designate
scope or extent of expressions -—— i.e., where they begin and
where they finish. Parentheses have to be very precisely posi-
tioned. In order to understand them, we shall first number them
in associated pairs:

(CAR (QUOTE (A B C D E)))
1 2 3 321

The first left parenthesis No. 1 tells the LISP interpreter
that this is the start of a calculation. The final right paren-
thesis No. 1 tells the interpreter that this is the finish of an
expression. The interpreter evaluates the expression and pro-
duces the answer.

The first parenthesis No. 1 marks the beginning of the scope
of CAR, the extent of the expression to which CAR applies. The
second parenthesis No. 1 marks the end of the scope of CAR.

The first parenthesis No. 2 marks the beginning of the scope
of QUOTE, and the second parenthesis No. 2 marks the end of the
scope of QUOTE.

The first parenthesis No. 3 marks the beginning of a list,
and the second parenthesis No. 3 marks the end of the list.

Always, all parentheses in the expressions of LISP language
occur in pairs of left and right parentheses; generally, each
pair of parentheses marks scope, the extent to which an expres-
sion applies. The parentheses in LISP are never optional
as they are sometimes in mathematics: they are required parts of
expressions.

7. Separation of Expressions

The expression:
(CAR (QUOTE (A B CD E)))

contains within it seven separate expressions CAR, QUOTE, A, B,
C, D, and E. It is important that each expression be separated,
marked off, or delimited from another expression.

Four characters are used in LISP for separating expressions:
left parenthesis, right parenthesis, comma, and space. In LISP
the comma is completely interchangeable with the space; also one
or more spaces are treated exactly as a single space.

In 7090 LISP a left parenthesis or a right parenthesis de-
limits an expression, whether or not any spaces are between the
expression and the parenthesis. Thus:

(CAR((CAR(
(CAR ((CAR (

are all freely interchangeable, but the style (CAR (1is the
preferred form. In cases where parentheses do not occur, as for
example between elements in the list A B C D E, the spaces de-
limit the expressions.

In PDP-1 LISP, of the four expressions involving CAR just
above, three are acceptable, but only:

(CAR (

is properly delimited. In PDP-1 LISP, the spaces are important
and have to be precisely positioned. To talk about the spaces
here, we shall number them:

(CAR (QUOTE (A B CDE)))
1 2 3333 4

The first space (No. 1) tells the interpreter that it has
reached the end of the expression CAR. If the first three char-
acters of an expression were CAR and the fourth character were
any character except a space (or a parenthesis or a comma) say
X, then the computer would treat CARX as either part or all of
another expression different from CAR, and not to be confused
with CAR.

The second space, No. 2, terminates the expression QUOTE,

- 10 -

in the same way as the first space No. 1 terminates the expres-
sion CAR.

The next four spaces all numbered 3 and separating ABCDE
tell the machine that the expressions separated by them are all
part of the same list. 1In ordinary English, we might write "A,
B, C, D, E" writing commas — but the LISP interpreter regularly
takes in and puts out lists using spaces without commas.

The last space numbered 4 tells the interpreter in PDP-1
LISP to proceed to the calculation, and to put out the result.
This space is not necessary in 7090 LISP.

8. The Function CDR

We have illustrated CAR as a function in LISP. What are
some other functions?

One of them is CDR. pronounced "could-er", which means "the
rest of". CDR of the list ABCDE is the list BCD E. To
express this in a way which is acceptable to the LISP interpreter,
the following is used:

(CDR (QUOTE (A B C D E)))

and the LISP interpreter gives as result: (B C D E). The two
parentheses around (B C D E) cause the LISP interpreter to treat
this expression as a list of four elements. The first parenthe-
sis marks the beginning of the list, and the last parenthesis
marks the end of the list.

This raises the question: 1Is A the same as (A)? The answer
is "No". A is an element, and (A) is a list containing one ele-
ment A.

The abbreviation CDR comes from the phrase "Contents of De-
crement part of Register."

9. The Function CONS

Another function in LISP is CONS, pronounced with a soft
s, which refers to "the construct of" when applied to an element
and a list, or two lists. CONS of the element A and the list
BCDE is the list ABCDE.

If the LISP interpreter evaluated:

(CONS (QUOTE A) (QUOTE (B C D E)))

- 11 -

then the result would be:
(ABCDE)

The function CONS puts back together what CAR and CDR take
apart. For example, suppose we have the list A, B, C, D. CAR
gives the element A. CDR gives the list B,C,D. CONS applied to
these two portions gives the list A, B, C, D.

This is correctly written for the LISP interpreter as:
(CONS (CAR (QUOTE (A B C D))) (CDR (QUOTE (A B C D))))
and the result is:
(ABCD)
To put the first element of the list A B C D together with

the rest of the list E F G H, we use the same functional expres-
sion with one change in the last argument:

(CONS (CAR (QUOTE (A B C D))) (CDR (QUOTE (E F G H))))
and the result is:
(A F GH)

In some cases, CONS will be used to operate on two lists,
as in:

(CONS (QUOTE (A B)) (QUOTE ((C D) (E F))))
0 1 2 211 23 33 3210

The result in this case is:

((A B) (CD) (EF))

which is a list of three lists, each of which is a list of two
elements. Notice how pairs of parentheses with the same number
delimit the scope of expressions.

IT. CONDITIONS, PREDICATES, AND NUMERICAL FUNCTIONS

If CAR, CDR, and CONS were the only three functions in LISP,
then of course the language would be quite uninteresting, and
hardly anything of importance could be accomplished. The first
step towards a more interesting language and more important re-
sults is the treatment by LISP of what are called conditional

expressions.

_ 12 -

1. Conditional Expressions

In LISP language a conditional expression has the following
kind of pattern:

If statement P is true, take expression E, Otherwise,
if statement Q is true, take expression F. Otherwise,
if statement R is true, take expression G.

The truth values of the statements are examined in sequence by

the computer, until the first true statement is found. Then the
expression paired with this true statement is taken as the value
of the entire conditional expression. If none of the statements

are true, the value of the entire conditional expression is un-
defined.

The conditional expression above would be correctly written
for the LISP interpreter as follows, under the assumption that
each of P, Q, R, E, F, and G is an expression long enough to need
around it parentheses marking its scope:

(COND ((P) (E)) ((Q) (F)) ((R) (G)))

In the following, the parentheses are numbered to indicate
the scope of expressions. A left parenthesis is paired with the
first right parenthesis following it, bearing the same number.

(COND ((P) (E)) ((Q) (F)) ((R) (G)))
0 122221122221 1222210

The parentheses numbered 1 mark the start and finish of certain
pairs for COND to pay attention to; the parentheses numbered 2
mark off the constituents of each pair, the statement and its
corresponding expression.

The result of giving this LISP expression to the computer
depends on which of the statements P, Q, R is true. The result
is: E if P is true; F if P is false and Q is true; G if both P
and Q are false and R is true; and undefined, if all of P, Q, and
R are false.

But this expression will not operate in the computer unless
the computer has a way of determining whether the statements
marked P, Q, R are true or false. And at this point, we have not
told the computer anything about statements P, Q, or R, and the
computer has no way of computing the result of the expression.

- 13 -

In order to illustrate how the computer can compute the
result of an expression like this, we may put in known truth
values in place of the unknown truth values of the statements
P, Q, R. LISP recognizes two truth values, T for "true" and NIL
for "false". These are so basic to the operation of LISP that
LISP provides that QUOTE does not have to precede them. T is
treated the same as (QUOTE T) and NIL is treated the same as
(QUOTE NIL). {(Note: This is because T has the constant value
T and NIL the constant value NIL.)

To put in known truth values, in place of the conditions in
COND, is ordinarily not useful except for illustration, with one
important exception; in the case of the last condition occurring
in the whole conditional expression (the condition which refers
to all the remaining cases), T is regularly used. (Note: There
is an exception to this "regular rule"; the exception is explained
below under the topic "The Program Feature".)

For example, evaluating the expression:

(COND (NIL (QUOTIE D))

0 1 2 21
(T (QUOTE E)))
1 2 210

will give the result E. The conditional expression:

(COND (T (QUOTE D))

0 1 2 21
(NIL (QUOTE E)))
1 2 210

has the value D. The conditional expression:

(COND (T (QUOTE D))
(T (QUOIE E)))

also has the value D.
1f we give the computer:

(COND (NIL (QUOTE D))
(NIL (QUOTE E)))

then the computer will report an error and print out as a

"diagnostic" for the error, a symbol which stands for "illegal
COND". It is illegal because no condition is true.

_ 14 -

2. Absolute Value

A specific, familiar example of a conditional expression in
elementary mathematics is the ordinary definition of the absolute
value of a number. The absolute value of a number X is a number
which may be defined in precise English (resembling the LISP con-
ditional expression) as:

If X is negative, take minus X. Otherwise,
take X.

Let's write this in LISP. 1In LISP we have available a func-
tion GREATERP, which is used in the expression (GREATERP X Y),
standing for "X is greater than Y". It is true if X is greater
than Y, and false if X is not greater than Y. 1In LISP we also
have available the function (MINUS X) standing for "the negative
of X".

So the absolute value of X could be computed in LISP from:

(COND ((GREATERP 0 X) (MINUS X))

0 12 2 2 21
(T X))
1 10

This expression as it stands would however not be accepted
by the computer, because LISP would not "know" what number X
stood for, and so it could not compute the result. In order
for this expression to be accepted by the computer, X would have
to be replaced by a specific number, such as 36, or (MINUS 13),
or 999975, etc.

Another point: in the case of a number we do not have to
use QUOTE, because a number is accepted as itself. For example,
we do not have to write (MINUS (QUOTE 36)); this we can write
simply as (MINUS 36). The computer will however accept both
(MINUS 36) and (MINUS (QUOTE 36)).

3. Predicates
In order to make use of COND in LISP, there have to be ex-
pressions which can be true or false, and these are called "predi-

cates". We shall consider some examples:

EQ, NULL, NUMBERP, and GREATERP

These are available in PDP-1 LISP and in 7090 LISP. In fact, we
have already used the predicate GREATERP.

- 15 -~

.4. The Predicate EQ

EQ is a predicate which accepts two atomic symbols (we shall
define this term a little later) such as "B" or "CONS" or "367",
and compares them character by character. If the two atomic sym-
bols are precisely the same character by character, then EQ is
true, otherwise not. For example, it is true that "the atomic
symbol A equals the atomic symbol A". So:

(EQ (QUOTE A) (QUOTE A))
gives as the result T standing for the truth value true.

It is false that "the atomic symbol A equals the atomic sym-
bol B". So:

(EQ (QUOTE A) (QUOTE B))
gives as the result NIL, standing for the truth value false.

In 7090 LISP, EQ is not defined for numbers; another predi-
cate EQUAL is used instead. This is because in 7090 LISP numbers
are not stored as characters. In PDP-1 LISP, however, EQ is de-
fined for numbers; and, for example, the expression

EQ 77

is accepted and has the value T.

5. The Predicate NULL and the Empty List

The predicate NULL accepts a single argument X, which may be
any LISP expression. If this argument X when evaluated is equal
to NIL, then (NULL X) is true, and has the value T. If the argu-
ment X when evaluated is not equal to NIL, then (NULL X) is false,
and has the value NIL.

By convention, there is only one empty list in LISP; this is
a list (or the list) containing no elements. It is denoted by
() or by NIL; these representations are equivalent. Thus, if L

is a list, then (NULL L) is true if L is empty, and is false
otherwise.

For example,:
(CDR (QUOTE (A)))
is (), or NIL, the empty list. Therefore:

(NULL (COR (QUOTE (A))))

- 16 -

is true, and has the value T.

Since NIL is also used as the truth value for "false", if P
is a statement which can be true or false, then (NULL P) has the
value T if P is true, and the value NIL if P is false. So, in
this case (NULL P) is equivalent to NOT-P.

For example, it is true that "the atomic symbol A is not
equal to the atomic symbol B". So:

(NULL (EQ (QUOTE A) (QUOTE B))))
has the value T.
In 7090 LISP, there is a separate function NOT equivalent

to NULL, and F is used as well as NIL to denote the truth value
false.

6. The Predicate NUMBERP

This predicate stands for "is a number". "36 is a number"
becomes:

(NUMBERP 36)
Put into the computer, it will give as a result: T.

7. The Predicate GREATERP

As mentioned before, this predicate stands for "is greater
than". "36 is greater than 34" becomes "the truth value of 36
being greater than 34",

(GREATERP 36 34)

will give as the result T.

8. Numerical Functions

Predicates are functions that have for values either true
(T) or false (NIL). There exist in LISP many kinds of functions
besides predicates, including functions which may have numbers,
letters, lists, etc., for their values.

We shall consider first some of the functions of numbers.

- 17 -

Among the numerical functions defined in LISP are PLUS,

MINUS, TIMES, and QUOTIENT.

PLUS takes any number of arguments.

MINUS takes only one argument (producing the negative of a num-
ber), so that subtraction has to be performed using both PLUS and

MINUS. TIMES takes any number of arguments.

QUOTIENT takes two

arguments, the first one being the dividend and the second one

being the divisor.

For example:

Example of LISP Expression

Result in
Decimal (7090)

Result in
Octal (PDP-1)

(PLUS 2 3 5)
(MINUS 5)

(TIMES 2 3 6)
(QUOTIENT 6 3
(QUOTIENT 334 333)
(QUOTIENT 333 334)

- 18 -

10
-5
36
2
1
0

12
777772
44
2
1
0

III. DEFINING AND USING NEW TERMS AND EXPRESSIONS

One of the features of LISP is the power to define new terms
and expressions, as may be desired, and then to make use of them.
This is like the power in mathematics when solving a problem to
say "Let x equal" or "Let F(x) be a function such that...."

1. CSET

The expression CSET in LISP establishes (or "sets") a name
which will have a given constant value. (The letter C in CSET re-
fers to the first letter of "Constant".) The constant value may
be determined as a number, or a list, or the result of evaluating
another expression. Then, whenever you may make use of the name,
the computer will substitute the value. You make use of CSET
with the LISP idiom:

(CSET (QUOIE) (QUOIE)
where Blank 1 is filled with the name you have chosen, and Blank
2 is filled with the expression. If Blank 2 is filled with a
number, the parentheses and the QUOTE may be dropped.
For example, if the LISP interpreter evaluates:
(CSET (QUOTE DAN) 314)
the name DAN is given a permanent value 314, and you may use DAN

at any time, meaning the number 314. For example you can use DAN
in an expression like the following:

(PLUS DAN DAN DAN)
The interpreter will produce:

942 (in decimal, with the IBM 7090), or
1144 (in octal, with the PDP-1)

To give to the computer the instruction to set the name DAN
at 314, you would instruct the IBM 7090 LISP system at the top
level:

CSET (DAN 314)
but to instruct the PDP-1 LISP system you would use:

(CSET (QUOTE DAN) 314)

If you wish to look up the expression at which DAN has been
set, you may give the LISP interpreter:

- 19 -~

DAN
and the interpreter will give the value:

314

2. CSETQ

The expression CSETQ in LISP, like the expression CSET, es-
tablishes or "sets" a name which will have as its value a given
constant, or the result of evaluating another expression. You
make use of CSETQ with the LISP idiom:

(CSETQ (QUOTE))

where Blank 1 is filled with the name you have chosen, and Blank
2 is filled with the expression.

For example, you may designate the meaning of JILL by put-
ting in:

(CSETQ JILL (CAR (QUOTE (D E F G))))

If the LISP interpreter receives this expression, it sets the
value of JILL to the value of the second expression.

If in PDP~1 LISP you wished to verify what JILL stands for,
you would put in:

JILL
and the PDP-1 would respond by typing out:
D

which is correct, since D is the first one of the list D E F G.
On the 7090, you could have the interpreter find the value of
JILL by having it evaluate:

(PRINT JILL)

CSET and CSETQ are identical except that with CSET you must
write QUOTE in front of the first argument, and with CSETQ you
must not.

- 20 -

3. DEFINE and LAMBDA

DEFINE and LAMBDA are two of the expressions in 7090 LISP
which enable us to define new functions, give them names, and
make use of them.

For example, suppose you have PLUS and you would like to
define DOUBLE. The DOUBLE of m of course is m plus m; the DOUBLE
of y is y plus y; the double of 213 is 213 plus 213 or 426. What
we want to accomplish is to lay down a rule like this: For any
X, the double of x is x plus x.

We can establish this sort of definition in LISP and make
use of it. In 7090 LISP, we put in the expression:
DEFINE (((DOUBLE (LAMBDA (X) (PLUS X X)))))

The computer will respond:

(DOUBLE)
telling us that this function is now available to us.

To DOUBLE the number three, for example, if the LISP inter-
preter is given:

(DOUBLE 3)
it will give the value:
6
DEFINE is short for DEFINE THE EXPRESSION. LAMBDA is to
some extent equivalent to the English phrase "FOR ANY". Thus the
LISP statement:
DEFINE(((DOUBLE (LAMBDA (X) (PLUS X X)))))
is in effect something like the statement

DEFINE THE EXPRESSION: DOUBLE (FOR ANY X) (PLUS X X)

What is the meaning of all this? The general form of the
LISP idiom which we are using is:

DEFINE(((..... (LAMBDA (.....) G,)))))

_ 921 -

The word "lambda" (the Greek name for the letter L) is a
sign used by the symbolic logician Alonzo Church who in the 1940%s
pointed out the need for naming a function in mathematics (such
as y = x2 (a certain parabola) or z = u? (the same parabola)) in-
dependently of the algebraic letters being used to talk about it).

Blank 1 above is filled with any name that we wish to use
for a function being defined. Blank 3 is filled with a defining
expression, often a conditional expression. Blank 2 is filled
with a list of variables which we may call the "lambda list".

The order of the variables in the lambda list is the precise
order in whichvalues for those variables have to be mentioned when
the defined expression is used. Most of the time these variables
are specified or limited or bound in the defining expression that
occupies Blank 3. Some of the time however the variables are not
specified or limited or bound currently in the defining expression
that fills Blank 3, but instead at some other point in another
definition. Such variables are called free variables or parame-
ters. However, before the computer will compute a result, any
free variable must be bound to a value.

DEFINE in 7090 LISP has a further useful property. Suppose
you have more than one definition — say three — that you wish
to express; you can then put all of them inside the DEFINE, writ-
ing as follows:

DEFINE ((
Ist def.: (..... (LAMBDA (.....) Loou0))
2nd def.: (..... (LAMBDA (.....) Lol))
3rd def.: (..... (LAMBDA (.....) I))
))

The outer left parenthesis after DEFINE indicates that the
argument of DEFINE will follow. The inner left parenthesis after
DEFINE indicates that the arqument is a list. The two right paren-
theses at the end close the two expressions. When only one ex-
pression is being defined, the list is a list of one member, con-
sisting of the single expression being defined.

4. The Expression DEX

In LISP on the PDP-1, LAMBDA is used in just the same way
but DEFINE is not used. What is used instead of DEFINE is the ex-
pression DEX, and the idiom is:

(DEX (LAMBDA (.....) R))

Blanks 1, 2, and 3 are filled in just the same way.

In PDP-1 LISP, if you wish to define three expressions, you
need to write the DEX idiom completely three times.

5. The Function SQUARE

"The square of any number X is X times X." 1In 7090 LISP,
we put this definition into the computer as follows:

DEFINE (((SQUARE (LAMBDA (X) (TIMES X X)))))
012 3 4414 432 10

The computer responds:

(SQUARE)
indicating that the function SQUARE is available.

To test the operation of this definition, we put into the
7090 LISP interpreter (using the 7090 external form of the LISP
interpreter):

SQUARE (3)
and the computer responds: 9
The internal form for this instruction for calculation is:

(SQUARE 3)

In PDP-1 LISP only there must be in addition a space at the end,
which means "go" or "finished".

This is the form for commanding the PDP-1 LISP inter-
preter to calculate. Since the PDP-1 L1SP interpreter regularly
uses octal numbers, the computer responds with 11, which is nine
in octal. The 7090 gives the result 9, in decimal.

6. The Function CUBE

Similarly, "the cube of any number X is X times X times X".

DEFINE(((CUBE (LAMBDA (X) (TIMES X X X)))))
012 3 4 4 4 43210

7. The Function TRIPLE

DEFINE(((TRIPLE (LAMBDA (X) (PLUS X X X)))))

_ 23 _

From this point on we shall assume DEFINE((.....)) or
(DEX) and simply write the internal part of the defining
expression.

8. The Function SMALLER

"The smaller of two numbers X and Y is Y if X is greater
than Y, otherwise X." 1In precise English:

The smaller of two numbers X and Y is computed from:

If X is greater than Y, take Y. Otherwise,
take X,

In LISP we write for the defining expression:

(SMALLER (LAMBDA (X Y) (COND
((GREATERP X Y) Y)

(T X))))
Testing: SMALLER (11 15) (for the 7090 — external form
or: (SMALLER 11 15) (for the PDP-1 and the 7090

internal form
and the computer responds: 11

9. The Predicate ZEROP

Let us now express in LISP the condition "x is equal to
zero" where x is a number. Often in calculations, this is a use-
ful condition. We give the predicate "is equal to zero" the name
ZEROP. (Note: Often in LISP, the letter P attached to the end of
a word or name signifies that it designates a predicate.) We
translate evaluation of the condition "x is equal to O" into the
task of computing the truth value of the predicate "is equal to
zero". This is computed from:

I1f x is equal to 0, take true, Else
take false.

This is written in PDP-1 LISP as follows:

(ZEROP (LAMBDA (X) (COND
(EQX 0 T
(T NIL))))

We give this to the PDP-1 within a DEX statement. The computer
accepts it and types back:

ZEROP
- 924 -

In PDP-1 LISP, in the definition above, we can use the pre-
dicate EQ for relating X and O because numbers are treated as
atomic symbols. In 7090 LISP we would need to replace the predi-
cate EQ by the predicate EQUAL (see definition below) , since the
predicate EQ will not operate correctly for numbers. (Note: In
7090 LISP the defining of ZEROP is not necessary since it is al-
ready available in the LISP system with a subroutine expressed in
machine language.)

To test this defined predicate, we may try various numbers:

Expression Result
(ZEROP 0) T

(ZEROP) NIL
(ZEROP 1234) NIL
(ZEROP T777776) NIL

In PDP-]1 LISP, minus zero is not zero and is not equal to zero.
If in PDP-1 LISP we type in: (ZEROP 777777, the result is: NIL

10. Availability of Expressions for Definitions

For 7090 LISP, it is stated that all the expressions appear-
ing in the "LISP 1.5 Programmer's Manual" are available in the
LISP system, and can be used by anyone who wishes.

For the basic PDP-1 LISP system as of March, 1964, Table 1
is a complete list of expressions available. (Many of these ex-
pressions are not defined in this paper because they are outside
of the province of the present explanation; however, many of them
are defined in a later appendix in this volume.)

This list is named the OBLIST. When OBLIST is typed, and
the space bar pressed, the PDP-1 will immediately print out the
entire list of expressions; the printing is in rows, with a sin-
gle space between the end of one name and the beginning of the
next name, The word "oblist" comes from "object" and "list".

During the course of any computation using LISP the computer

adds to the OBLIST any other terms that may be defined or used in
the computation.

_ 95 _

Table 1

THE LIST OF EXPRESSIONS AVAILABLE IN BASIC PDP-1
LISP: — THE "OBLIST"

APVAL LAMBDA QUOTE
ATOM LIST QUOTIENT
CAR LOC READ
CDR LOGAND RETURN
COND LOGOR RPLACA
CONS MINUS RPLACD
EQ NIL SASSOC
EVAL NULL SETQ
EXPR NUMBERP STOP
FEXPR OBLIST SUBR
FSUBR PLIS T
GENS YM PRINT TERPRI
GO PRIN1 (the last char- TIMES
GREATERP acter is one) XEQ
PROG

If you wish to define a new expression, then in order to
avoid confusion, you should regularly use as a name one which dif-
fers from every one of the expressions in the existing OBLIST.
There are exceptions to this rule: (1) if you wish to use for the
same name, a definition different from the one in the OBLIST, you
can "write over" the definition, producing a new one to be used,
and your definition will govern; (2) if you remove an expression
from the OBLIST entirely (which is possible, though the method
for doing so is not explained here) , you may use the released name
in any way you wish.

11. Alternative Definitions

Many functions of course can be defined in alternative ways.
There are other ways of defining ZEROP, for example., In English:

x is equal to O if and only if x is not greater than
0 and x is not less than O.

This may be expressed in more precise English, in a LISP style
as follows:

x is equal to O:

If x is not greater than O, and
if x is not less than O, take true. Else take false.

- 26 -

Now the expression GREATERP is in the OBLIST; so it can be used.
The expression AND has a definition (see Appendix 4) by means of
which it can be put into the OBLIST, and used. But an expression
LESSP is not in the OBLIST (for the PDP-1) . The easiest thing to
do is to replace the English "x is not less than O" by the Eng-
lish "0 is not greater than x", and then translate into LISP:

(ZEROP (LAMBDA (X) (COND

0 1 222
((AND (NOT (GREATERP X 0))
34 S 6 65
(NOT (GREATERP 0 X))) T)
S 6 654 3
(T NID)))
3 3210

ZEROP can also be expressed in another way in LISP-style
English, avoiding AND:

If O is not greater than x, then

If x is not greater than O, then true. Else
False. Else

False,

Translating into LISP:

(ZEROP (LAMBDA (X) (COND

0 1 222
((NULL (GREATERP 0 X))
34 5 54
(COND ((NULL (GREATERP X 0)) T)
4 56 7 76 5
(T NID))
S 543
(T NID)))
3 3210

This definition will give results no different from any other
definition of ZEROP,

- 27 -

IV. ATOMIC EXPRESSIONS

For a long time we have avoided discussing what are called
atomic expressions or atomic symbols or atoms. But we have used
them, both individually and as elements of lists. Examples are:

— single letters such as: A, B, C, D, E, F,
— numbers such as: 5, 314, 777772,

— names of expressions in LISP such as CAR, CDR,
PLUS,

We now state a definition: 1In 7090 LISP an atomic symbol
(or atomic expression or atom) is (1) a string of numerals and
capital letters of not more than 30 characters, in which the
first character is a letter, or (2) a number, consisting of a
string of numerals, optionally starting with + or -, and with or
without a period (which indicates the "point" in the scale of nota-
tion). Since 7090 LISP reqularly uses decimal notation for numbers,
the digits 8 and 9 will be accepted as numerals. Neither spaces
nor parentheses may be used inside an atomic symbol. In PDP-1 LISP
an atomic symbol is (1) a string (of indefinite length) of lower
case letters, upper case letters, numerals, or other characters
(except: space, tab, comma, carriage return, period, left paren-
thesis, right parenthesis, over-bar, vertical bar) or (2) an integer
consisting of a string of numerals. Since PDP-1 LISP uses the octal
system, the digits 8 and 9 will not be accepted as numerals. The
two characters over-bar and vertical bar (which are completely
equivalent) allow construction of special atomic symbols using for-
bidden characters; when one of these is used, the next character is

put into the symbol name irrespective of whether it is forbidden or
not.

The marker which precedes an atomic symbol is either a paren-
thesis or a space. The marker which ends an atomic symbol is either
a space or a parenthesis. If by mistake we seek to make an atomic
symbol containing one or more spaces or parentheses, the LISP pro-

gram inside the computer will recognize the expression as two or
more atomic symbols.

These symbols are called atomic because they are treated in
LISP as wholes and within LISP are not split into individual char-
acters.

For example, A, C, R, CAR, CDR have no relation to each other
in LISP because no part of LISP can regularly either observe or
report that these five expressions have some characters in common.

The predicate EQ reports on the equality of two atomic sym-
bols; it is not defined for expressions that are not atomic.

- 28 -

The predicate ATOM is true if its argument is an atomic
symbol; it is false if its argument is not an atomic symbol.

V. RECURSIVE DEFINITIONS

A most important feature of LISP is the ability to make use
of recursive definitions of functions. These are definitions
which first define an idea in one or more special starting or
finishing cases, and then define the idea in the general case in
terms of a preceding or adjacent case.

For example, in arithmetic a geometric series can be defined
making use of a recursive definition:

(i) A geometric series is a series with a first term

equal to a, and with any term equal to the pre-
ceding term multiplied by a constant r.

Also, an arithmetic series can be defined recursively:

(ii) An arithmetic series is a series with a first
term equal to a, and with any term equal to the
preceding term plus a constant difference d.

1. The Predicate EQUAL

An example of a recursive definition is LISP is the defini-
tion of the predicate EQUAL. The definition makes use of EQ for
a special case and then makes use of EQUAL to define the general
case in terms of the preceding case.

Two expressions in LISP are EQUAL, if they are made up of
equal atomic symbols, in precisely the same structure. More pre-

cisely, the expression X in LISP is EQUAL to another expression
Y in LISP if and only if:

(i) X is an atomic symbol and Y is an atomic symbol,
and X EQ Y; else,
(ii) if CAR X is EQUAL to CAR Y, and CDR X is EQUAL to
CDR Y.

How does the definition operate? Let's take an example. Sup-
pose X is (A B C) and Y is (A B C). Here are the steps:

First Application of the Definition,to (A B C). X is (A B C)
and Y is (A B C). But condition (i) is not true, because (A B C)
is not an atomic symbol. Go to condition (ii). Calculate CAR X

- 29 -

and CAR Y, CDR X and CDR Y. CAR X is A; CAR Y is A. CDR X is the
list (B C) and CDR Y is the list (B C).

Second Application of the Definition, to A. The new X is the
old CAR X, which is A; the new Y is the old CAR Y, which is A.
These are atomic. Apply (i). The two atoms A satisfy EQ; and so
condition (i) is met.

Third Application of the Nefinition, to (B C). (B C) is CDR
of the original X and CDR of the original Y. These are not atom-
ic. So condition (i) is not met. Go to condition (ii). Calcu-
late CAR X, CAR Y, CDR X, and CDR Y, where X and Y are now equal
to the list (B C). These are B and (C).

Fourth Application of the Definition, to B. Condition (i)
is true for the two atoms B.

Fifth Application of the Definition, to (C). (C) is CDR of
(B C), and is not atomic. So condition (i) is not met. Go to
condition (ii). Calculate CAR X, CAR Y, CDR X, and CDR Y,
where X and Y are now equal to the list (C). The results are C
and NIL.

Sixth Application of .the Definition, to C. Condition (i) is
true for the two atoms C.

Seventh Application of the Definition, to NIL. The end of
every list is the expression NIL, which is called the terminator.
Condition (i) is true since CDR (C) is NIL, in both cases, and
(EQ NIL NIL) is true.

2. Its Definition in LISP

Now how do we express this definition in LISP?
There are several steps which we have to take, including:

(1) recognition of the occurrence of the name of the
function in its own definition;

(2) translation of the relations in the definition
into relations recognized in LISP.

(3) adjustment of the definition to the nature of
the conditional expression in LISP.

Supoose we try to translate straightforwardly into LISP:

(EQUAL (LAMBDA (X Y) (COND

0 1 2 22

((AND (ATOM X) (ATOM Y) (EQ X Y)) T)

34 5 595 595 54 3

((AND (EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X)

34) 6 6 6 65 5 6 6
(COR Y))) D)
6 654 3

(T NIL))))

3 3 210

Is there anything wrong with this defining expression? Let's
refer again to the meaning of the conditional expression in LISP.
Applying this meaning, we can see that as soon as the predicate

(AND (ATOM X} (ATOM Y) (EQ X Y))
fails, the conditional expression will be referred to

(AND (EQUAL (CAR X) (CAR Y))

So the case where only one of X and Y is atomic will not be cov-
ered, and the definition will not function properly.

A corrected statement of the defining expression is as
follows:

(EQUAL (LAMBDA (X Y) (COND

0 1 2 22
((ATOM X) (EQ X Y))
34 4 4 43
((ATOM Y) NIL)
34 4 3
((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
34 5 55 54 4 5 55 543
(T NIL))))
3 3210

3. The Function REMAINDER

In elementary school we all learned what the remainder is
when we divide one number by another. If we divide 26 by 7, for
example, the 7 goes in three times, and since 7 threes are 21, we
subtract 21 from 26, and the remainder is 5. Now how do we ex-
press remainder in English that can be translated into LISP?

- 31 -

Stated in precise English, and using a recursive definition
(without making use of division), the remainder when the dividend
Y is divided by the divisor X, is determined as follows:

(i) If Y equals X, the remainder is O; otherwise,
(ii) If Y is less than X, the remainder is Y; otherwise,
(iii) The remainder is the same as the remainder we would
get if the result of Y minus X were divided by the
divisor X.

For example, consider the following series of operations:

In Decimal (7090) Equivalent in Octal (PDP-1)

26 32
T 7
19 23
1 7
12 14
1 1

5 5

To say this in LISP we again make use of the defining expres-
sion:
G..... (LAMBDA (.....) N))

The expression "y equals x" is translated into (EQUAL Y X). The
expression "y is less than x" is translated into (GREATERP X Y).
Since there is no condition for the third case, we use T. The
expression "y minus x" is translated into (PLUS Y (MINUS X)).

The entire definition is therefore translated into:

(REM (LAMBDA (Y X) (COND

0 1 2 22
((EQUAL Y X) 0)
34 4 3
((GREATERP X Y) Y)
34 4 3
(T (REM (PLUS Y (MINUS X)) X)))))
3 4) 6 65 4 3210

If the interpreter evaluates this expression, it responds REM.

Testing with examples, we get the following:

Expression Expression
(decimal, 7090) Value (octal, PDP-1) Value
(REM 2 2) 0 (REM 2 2) 0
(REM 5 7) 5] (REM 5 7) 5
(REM 12 7) S (REM 14 7) 5
(REM 26 7 5 (REM 32 7) 5

4. The Function GREATEST COMMON DIVISOR

The greatest common divisor (G.C.D.) of two whole numbers
is the largest number which will exactly divide both of them.
There is an arithmetical process (or algorithm) given by Euclid
which quickly finishes and which quickly finds the greatest com-
mon divisor. The process is often learned in school and is il-
lustrated in the following arithmetic, which finds the greatest
common divisor of 28 and 91 (in decimal):

0o | a1 3
28 | 84
) 7

(In English, condensed) 28 divided into 91 goes 3 times with 7
over; 7 divided into 28 goes 4 times exactly.) This yields 7
as the G.C.D.

Since the PDP-1 computer sometimes does not have built-in
multiplication and division, suppose we change the arithmetical
process to successive subtraction, and find the last remainder
which is not zero:

28 91
7 28
21 63
1 28
14 35
1 28

7 7
7

0

Stated in precise English:
The greatest common divisor of X and Y is found from:

If X is greater than Y, take the G.C.D. of Y and

X. Else
If the remainder of Y divided by X is zero, take
X. Else

Take the G.C.D. of X and the remainder of Y
divided by X.

This is translated into LISP as follows:

(GCD (LAMBDA (X Y) (COND
0 1 2 22

- 33 -

((GREATERP X Y) (GCD Y X))
34 44 43
((ZEROP (REM Y X)) X)

34 5 o4 3

(T (GCD (REM Y X) X)))))

3 4) S5 43210

If this is put into the computer, it responds by putting out:
GCD

Testing examples of GCD, we have:

Expression in Decimal Value Expression in Octal Value
(GCD 7 7) 7 (GCD 7 7) 7
(GCD 19 7) 1 (GCD 23 7) 1
(GCD 28 7) 7 (GCD 34 7) 7
(GCD 28 35) 7 (GCD 34 43) 7
(GCD 30 40) 10 (GCD 36 50) 12

VI. THE PROGRAM FEATURE

There is another feature in LISP which allows a still wider
variety of useful instructions to the computer. This is the
feature named the "program feature", which is called by the LISP
expression PROG, pronounced "prog" rhyming with "rogue".

In using the program feature, we make use of auxiliary vari-
ables that keep track during successive cycles or loops of any
temporary results within a program.

1. The Function QUOTIENT

For a simple illustration, let us use a PROG for the process
of computing a quotient, supposing that we have a computer with-
out built-in division. To see the process clearly, let us take
as an example 22 (in decimal) divided by 7. The answer is 3, of
course, since 7 divides into 22 three times with remainder 1. We
could employ a process using successive subtraction, and in this
case it would be:

Ist cycle: 22 minus 7 gives 15 count 1

2nd cycle: 15 minus 7 gives 8 count 1 more; total
count is 2

3rd cycle: 8 minus 7 gives 1 total count 3

- 34 -

4th cycle attempted: 1 minus 7, result negative;
stop; take 3 as the quotient

We can organize this process with two auxiliary variables, which
we can call U and V: U starts with the dividend 22 and in this
case is successively 22, 15, 8. Y starts with O, and in this
case is successively 0, 1, 2, 3, finishing with the desired quo-
tient 3.

In English, the directions written out would be about as
follows:

Set U at the dividend (in this case, 22).

Set V at O.

Mark this point in the process with a label K.

If the divisor (in this case, 7) is greater than U,
stop and give as the result of the computation
(i.e., the quotient) the value of V.

Otherwise,

Set U at the old U minus 7.

Set V at the old V plus 1.

Go back to K and repeat.

In LISP, the successive directions become the following:

(SETQ U 22)

(SETQ V 0)

K

(COND ((GREATERP 7 U) (RETURN V)))
(SETQ U (PLUS U (MINUS 7)))

(SETQ V (PLUS 1 V))

(GO K)

Now let us generalize so that the process applies to any
number N as dividend and any divisor D; let us also put in the
rest of the idiom of LISP so that the command will actually be
accepted as a defining condition.

(QUOTIENT (LAMBDA (N D) (PROG (U V)

0 1 2 22 3 3
(SETQ U N)

3 3
(SETQ V D)
3 3

- 35 -

K (COND ((GREATERP D U) (RETURN V)))

3 45 595 543
(SETQ U (PLUS U (MINUS D)))

3 4 S o943

(SETQ U (PLUS 1 V))

3 4 43

(GO K))))

3 3210

Then we can test the operation of this definition, and have
the interpreter evaluate:

(QUOTIENT 22 7)

The value of this expression is 3.

Notice that when using the program feature it is not neces-
sary to make the COND complete with T for the last case, the fi~

nal ELSE or OTHERWISE.

The function QUOTIENT can also be defined recursively. Using
precise English we write:

To find the quotient of N divided by D:

If D is greater than N, take 0. Else,

If D is equal to N, take 1. Else,

If D is less than N, add 1 to the quotient
of N-D divided by N.

This translates into the following defining condition for
QUOTIENT:

(QUOTIENT (LAMBDA (X Y) (COND
0 1 2 22
((GREATERP X Y) 0)
34 4 3
((EQUAL X Y) 1)
34 4 3
((GREATERP Y X) (PLUS 1 (QUOTIENT (PLUS Y (MINUS X))
34 4 4) 6 7 70
X)))))
543210

xn general the program feature can be replaced by recursion,
and vice versa. But use of the program feature often saves a
good deal of computer time and storage space.

- 36 -

VII. FUNCTIONS OF LISTS

We have paid some attention to functions of numbers, and we
have illustrated recursion and the program feature using numbers.
But LISP is more useful for dealing with functions of lists than
for dealing with functions of numbers. So let us now look care-
fully at some more functions of lists.

The list functions which we have so far defined are CAR, CDR,
CONS, COND, and EQUAL.

COND is a list function because it operates on a list, each
element of which is a list of two elements. There is also the
additional requirement that the first element of each of the doub-
lets on which COND operates needs to be a predicate, which has a
truth value of either true or false.

In regard to EQUAL, it should be noted that one list is only
equal to another list provided the elements of the list are equal,
and the order of each list of elements is the same. This means
that a list is not a class, because one class is equal to another
class if the members are the same regardless of any order in which
the members may be presented.

1. The Function APPEND

A useful list function is APPEND, which appends two lists,
fastening them together into one list. APPEND of the list A B C
and the list D EF G is the list ABCDEFG.

If the LISP interpreter were given the expression:

(APPEND (QUOTE (A B C)) (QUOTE (D E F G)))

it would respond:

(ABCDEFG)

If just one element is to be attached to a list, and the
element is changed into a list by putting parentheses around it,
and then APPEND is applied:

(APPEND (QUOTE (A)) (QUOTE (B C D E)))
the result is the list: (A B C D E).

To produce the same effect with CONS, parentheses are not

- 37 -

put around the element. Thus the value of the expression:
(CONS (QUOTE A) (QUOTE (B C D E)))
is the same list: (A B C D E).
The LISP definition of APPEND makes use of recursion:

(APPEND (LAMBDA (X Y) (COND

0 1 2 22
((NULL X) Y)
34 4 3
(T (CONS (CAR X) (APPEND (CDR X) Y))))))
3 4 5 595 6 6 543210

2. The Function LENGTH defined with the Program Feature

The number of elements in a list is called its "length".
Here is a LISP expression for determining the length of a list
using the program feature:

(LENGTH (LAMBDA (L) (PROG (U V)
(SETQ V 0)
(SETQ U L)
K
(COND ((NULL U) (RETURN V)))
(SETQ U (CDR U))
(SETQ V (PLUS 1 V))
(GO K))))

For example, (LENGTH (QUOTE (2 3 4 6 7))) will be 5.

3. The Function LENGTH, defined Recursively

If we want to define LENGTH recursively, the expression is
even simpler and easier:

To find the LENGTH of a list M:

If the list is null, take 0. Else,
Add 1 to the length of CDR M.

The LISP defining expression is:

(LENGTH (LAMBDA (M) (COND

0 1 2 22
((NULL M) 0)
34 4 3

(T (PLUS 1 (LENGTH (CDR M)))))))
3 4 5 6 6543210

4. The Predicate MEMBER

An element is a member of a list if it can be found among
the elements of the list.

In precise English:

The truth of "element A is a MEMBER of the list X" is
found from:

If X is empty, take NIL. Else,
If A is equal to CAR X, take true. Else
Take the truth of "A is a MEMBER of CDR X."

In LISP, we express this as:

(MEMBER (LAMBDA (A X) (COND
0 1 2 22
((NULL X) NIL)
34 4 3
((EQ A (CAR X)) T)
34 5 54 3
(T (MEMBER A (CDR X))))))
3 4 S 543210

For examples, we can put the following operations on the
PDP-1 computer:

Expression Explanation Value
(CSETQ JILL (QUOTE (A B C D))) This names the list JILL
(A B CD) as JILL.

JILL Verifying meaning (ABCD)
of "JILL."
(MEMBER (QUOTE A) JILL) Computing the truth T
of "A is a member of
JILL."
(MEMBER (QUOTE K) JILL) Computing the truth NIL
of "K is a member of
JILL."

- 39 -

5. The Function LAST

Another list function is LAST. The LAST element of a list
is found from the operation:

If the list is empty, take NIL. Else
If CDR of the list is empty, take CAR of the list. Other-
wise, take LAST of CDR of the list.

In LISP:
(LAST (LAMBDA (L) (COND
0 1 222
((NULL L) NIL)
34 4 3

((NULL (CDR L)) (CAR L))
34) o4 4 43
(T (LAST (CDR L))))))
3 4 5 543210

6. The Function UNION

Another function of lists is UNION. The union of two lists
X and Y is a list which contains every element which is in one
list or the other or both. But the order in which the elements
is presented is first, all elements which are in the first list
X and not in the second list Y, and second, all elements in the
second list Y whether or not they are in list X.

In precise English:
The UNION of two lists X and Y is:
If X is null, take Y. Else,
If CAR X is a member of Y, take the UNION of

CDR X and Y. Else,
Take CONS of CAR X and the UNION of CDR X and Y.

In LISP:

(UNION (LAMBDA (X Y) (COND

0 1 2 22
((NULL X) V)
34 4 3
((MEMBER (CAR X) Y) (UNION (CDR X) Y))
34 5 3 44 5 5 43
(T (CONS (CAR X) (UNION (CDR X) Y))))))
3 4 5 55 6 6 543210

For an example, if the LISP interpreter receives the follow-
ing expressions, the values will be as shown:

- 40 -

Expression Value
(UNION (QUOTE (EB CD A F)) (QUOTE (ABCD))) (EF A B C D)

(CSETQ JAIN (QUOTE (A B C D))) JAIN (on PDP-1)
(CSETQ JASS (QUOTE (D A B C))) JASS (on PDP-1)
(UNION JASS JAIN) (ABCD)
(UNION JAIN JASS) (D ABC)

7. The Function DIFFLIST

The function DIFFLIST operates on an element A and a list X,
and removes from list X any element which is equal to A.

In precise English:
The result of DIFFLIST on element A and list X equals:

If X is empty, then NIL. Else,

If A is equal to CAR X, take the result of
DIFFLIST on A and CDR X. Else,

Take the CONS of CAR X and the result of
DIFFLIST on A and CDR X.

In LISP:
(DIFFLIST (LAMBDA (A X) (COND
0 1 2 22
((NULL X) NIL)
34 4 3
((EQUAL A (CAR X)) (DIFFLIST A (CDR X)))
34 5 54 4 5 543
(T (CONS (CAR X) (DIFFLIST A (CDR X)))))))
3 4 9 55 6 6543210
Example:
Expression Value
(DIFFLIST 7 (QUOTE (11 13 7 16))) (11 13 16)

8. The Function SUBST

This function substitutes a given element for another element
if the latter is found in a list. For example we may have the
list (2 4 6 10), and we wish to put 7 in place of 6.

We direct the PDP-1 to do this, by typing:

(SUBST 7 6 (QUOTE (2 4 6 10)))
0 1 2 210

- 41 -

and the result is: (2 47 10)

The definition of SUBST that must be placed previously in
the computer is:

(SUBST (LAMBDA (X Y Z) (COND

0 1 2 2 2

((EQUAL Y Z) X)

34 4 3

((ATOM Z) 2)

34 4 3

(T (CONS (SUBST X Y (CAR Z)) (SUBST X Y (CDR Z

3 4 5 6 65 5 6
)))))))
6543210

The meaning of this defining condition is:

If Y is equal to Z, take X. Else,

If Z is an atom, take Z. Else,

Take the result of applying CONS to the
SUBST of X, Y, and CAR of Z, and the
SUBST of X, Y, and CDR of Z.

9. The Function ASSOC

The list function ASSOC is given an element and a list con-
sisting of pairs of elements. The function looks through the
list, and finds the "associated" pair which has the given element
as its first member. For example, suppose J13 is the name of a
list: ((1 3) (2 6) (3 11) (4 14)) and suppose the given element
is 3. Then ASSOC will find and report (3 11) as the associated
pair of 3 in the list J13.

First, J13 is established as a name:

(CSETQ J13 (QUOTE ((1 3) (2 6) (3 11) (4 14))))
0 1 23 3210

The defining condition for ASSOC is:

(ASSOC (LAMBDA (X Y) (COND

0 1 2 22
((EQUAL (CAR (CAR Y)) X) (CAR Y))
34 5 6 65 44 43
(T (ASSOC X (CDR Y))))))
3 4) 543210

- 42 -

The associated pair of 3 in the list J13 is the value of the ex~

pression:
(ASSOC 3 J13)

The result from the computer is: (3 11)

10. The Function MINIMUM

Another 1list function we can define is the minimum of all
the elements of a list (if the elements are numbers). In order
to define this function we make use of the function of two num-
bers, SMALLER, defined earlier.

To define minimum, we use recursion and precise English:

The MINIMUM of the list X is computed from:

If X is empty, take NIL. Else,

If CDR X is empty, take CAR of X. Else,

Take the MINIMUM of the SMALLER of CAR of X
and the MINIMUM of CDR of X.

In LISP this becomes:

(MINIMUM (LAMBDA (X) (COND
0 1 222
((NULL X) NIL)
34 4 3
((NULL (CDR X)) (CAR X))
34 5 54 4 43
(T (SMALLER (CAR X) (MINIMUM (CDR X)))))))
3 4 5 55 6 6543210

As a test:
(MINIMUM (QUOTE (11 10 157 3 6))) gives 3.
In 7090 LISP the function minimum is available as MIN.

11. The Function SEQUENCE

Another function of lists that we can define is the operation
"to sequence” meaning "to put the (numerical) elements of a list
into sequence". What we have to do is to find successive minimums
and put them into a new list in the proper order.

To visualize the process and see what operations need to be

- 43 -

done in what order, let us take a sample illustration and notice
precisely the pattern of the operations performed.

Suppose we take the list (11 10 7 15 3) and see what needs
to be done to produce the list (3 7 10 11 15). The successive
operations are shown in the following table:

(1) (2) (3) (4)
List Being Minimum List
Cycle Worked On Found_ Being Assembled
0 — — NIL
1 (11 7 10 15 3) 3 (3)
2 (11 7 10 15) 7 37
3 (11 10 15) 10 (3 7 10)
4 (11 15) 11 (3 710 11)
5 (15) 15 (3 710 11 15)
6 NIL —_ _

Let us call Column (2) the variable U; it starts with the original
list, and each successive entry equals the preceding entry less
the element removed. Let us call Column (3) V; it is the minimum
of the entry in column (2), an element and not a list. Let us
call Column (4) W; it is the result of "appending" the entry in
Column (3) changed into a list of one element to the previous en-
try in Column (4).

Since we now understand the process, we can express it in
LISP language using the program feature:

(SEQUENCE (LAMBDA (L) (PROG (U V W)

0 1 222 3 3
(SETQ U L)
3 3
(SETQ V (MINIMUM L))
3 4 43
(SETQ W NIL)
3 3

K (COND ((NULL U) (RETURN W)))
3 45 55 543
(SETQ V (MINIMUM U))
3 4 43
(SETQ U (DIFFLIST V U))
3 4 43
(SETQ W (APPEND W (LIST V)))
3 4 5 543
(G0 K))))
3 3210

- 44 -

(Note: The LISP expression LIST in the next-to-the-last line
changes the element V into a list V which can be operated upon
by APPEND.)
To test this we can give the computer an example:
(SEQUENCE (QUOTE (11 10 7 15 3)))
and it will give back as a result:

(3 7 10 11 15)

12. The Function MAPLIST

Suppose we have one list of elements and we want to make a
second list of elements, each of which is the result of a given
operation on an element of the first list. An example might be
that we have the list 1 2 3 4, and we wish to produce the list
of triples, 3 6 9 12 (in decimal), which is 3 6 11 14 in octal.

The list function which we use in this case is MAPLIST.
In order to use MAPLIST to perform this task, first we de-
fine a function which triples the first element of a list; we

might call this function TRIPCAR:

(TRIPCAR (LAMBDA (X) (TRIPLE (CAR X))))
0 1 222 3 3210

We then define MAPLIST with the following recursive defini-
tion:

(MAPLIST (LAMBDA (X A) (COND

0 1 2 22
((NULL X) NIL)
34 4 3
(T (CONS (A X) (MAPLIST (CDR X) A))))))
3 4 S5 55 6 6 543210

Here is the meaning of it:

If the list X is empty, take NIL.

Otherwise, apply CONS to the result of applying
A to X and the result of applying MAPLIST to
CDR of X and A.

Notice that A is a free variable which has to have a function name
for its value when used in a computation.

- 45 -

Then we can give the LISP interpreter the expression:
(MAPLIST (QUOTE (1 2 3 4)) (QUOTE TRIPCAR))
and the interpreter will give back the value:
(3 611 14)

If we wished, we could supply MAPLIST with the function CDR.
Thus if the interpreter evaluates:

(MAPLIST (QUOTE (1 2 3 4)) (QUOTE CDR))
the computed result will be:

((2 3 4) (3 4) (4) NIL)

VIII. CONCLUDING REMARKS

1. Generality and Power

There are several comments which it seems to me should be
made about LISP from the point of view of a person approaching
it for the first time. The first comment is that LISP greatly
enlarges our conception of the nature of mathematical objects.
In prior centuries men became accustomed to noticing as interest-
ing mathematical objects: numbers; the points and lines of geo-
metry; the magnitudes and directions of forces; sequences of num-
bers, usually infinite and usually with fairly simple rules for
the construction of successive terms; and much more.

Now with the advent of LISP our horizons in mathematics are
considerably extended. With LISP we take into mathematics finite
sequences of a great variety of structures (lists), and also a
mathematical grasp on the processes of effectively computing with
them (recursion, the program feature, etc.). This new expansion
of mathematical nature, of man's view of mathematical objects, is
exciting.

Second, LISP is not only a mathematical language but also a
language for instructing computers. So instead of humanly veri-
fying a symbolic mathematical calculation, if it is expressed in
LISP, we can put it on a computer and have the computer verify it.

Third, there appears to be no barrier to putting into LISP
any kind of logical or mathematical manipulation that may be de-
sired. It seems to be a truly general language, with closely

- 46 -

linked computing power.

2. Computation

It may be worthwhile to point out that what we are invariably
doing with any LISP expression is giving the computer something
to do, some computation to make, some command to be executed.
Sometimes the computation is in terms of numbers and the answer
may be a number. Sometimes the computation is in terms of lists
and the answer will be a list or a number. Sometimes the compu~
tation is in terms of expressions, and the answer will be a number
or a list or an expression.

If all the information has been given to the computer, and
the instructions are complete and correct, the answer will be
an applicable one. If not all the data has been given to the
computer, the result may be a number if the missing data are not
important for the determination of the number. Otherwise, the
answer (or result of the computer's operation) is likely to be a
signal of any one of many kinds, that the answer cannot be com-
puted for a stated reason. Or perhaps the computer will go into
a loop and keep doing something over and over and over without
ever finishing. In such cases, the programs and expressions
given to the computer must be corrected.

J. Incompleteness of this Explanation

Finally, it must be emphasized that the present explanation
is very far from complete. There is much more to LISP than is
presented here; and the first place where more information about
LISP may be obtained is the "LISP 1.5 Programmer's Manual"” cited
in the first section to this article.

It is hoped however, that this explanation will be of help
to people who are setting out to understand LISP.

- 47 -

APPENDIX
TEST AT PROJECT MAC

In order to test the relation of operations with LISP on
the PDP-1 computer to operations with LISP on the 7090 computer,
a visit was made to Project MAC at Mass. Inst. of Technology on
Feb. 7, 1964. A LISP system working under the Compatible Time-
Sharing system was used to define SMALLER, MINIMUM, DIFFLIST, and

SEQUENCE, and to try two tests of sequencing numbers.

Following is a copy of the actual run on the computer at
one of the time sharing stations. The total computer time used
for editing and computing was 1 and % minutes.

Input

PRINTF LISP DATA
WAIT,

00010 DEFINE ((

00020 (SMALLER (LAMBDA (X Y) C@ND

00030 ((GREATERP Y X) X)

00040 (T Y))))

00050 (MINM (LAMBDA (L) (COND

00060 ((NULL L) NIL)

00070 ((NULL (CDR L)) (CAR L))

00080 (T (SMALLER (CAR L) (MINM (CDR L)))))))
00090 (DIFFLIST (LAMBDA (A X) (COND

00100 ((NULL X) NIL)

00110 ((EQUAL A (CAR X))

00120 (DIFFLIST A (CDR X)))

00130 (T (CONS (CAR X) (DIFFLIST A (CDR X)))))))
00140 (SEQUENCE (LAMBDA (L) (PR@G (U V W)

00150 (SETQ U L) (SETQ V (MINM L)) (SETQ W NIL)
00160 A (COND ((NULL U) (RETURN W)))

00170 (SETQ V (MINM U))

00180 (SETQ U (DIFFLIST V 1))

00190 (SETQ W (APPEND W (LIST V)))

00200 (GO A))))

00210 1))

00220 SEQUENCE

00230 ((11 10 7 15 3))

00240 (LAMBDA () (SEQUENCE (QU@TE (33 12 54 7 68 2))))
00250 O

00260 ST@P))

READY.

- 48 -

Qutput

RESUME LISPF
WAIT,
VALUE
(SMALLER MINM DIFFLIST SEQUENCE)
VALUE
(3710 11 15)
VALUE
(2 7 12 33 54 68)
READY.

Comments

The numbers in sequence identifying the successive lines
of the input are not taken in ("seen") by the LISP system.
LISP DATA is the name of the input file.

The expression "RESUME LISPF" starts the LISP system evalu-
ating. The three values in the output correspond with the three
expressions to be evaluated: first, the command DEFINE, on lines
10 to 210; second, the command SEQUENCE, on lines 220 and 230;
and third, the command on lines 240 and 250, which shows an al-
ternative method available in 7090 LISP for giving the calcula-
tion SEQUENCE to the computer. The expression READY indicates
that the current operations are finished and that the Compatible
Time-Sharing System is awaiting another command.

- 49 -

LISP — On the Programming System

Robert A. Saunders

[nformation International, Inc.

List Structure

LISP is a programming system which is very useful for mani-
pulating symbols and complex data structures. The programmer unfa-
miliar with systems of this type will find that LISP is considerably dif-
ferent from any system he has used before. This paper is intended to
be used in conjunction with the LISP 1.5 Manual (1) to get one started,
as easily as may be, in LISP.

LISP is an acronym for List Processor. A list is one type of
S-expression, which latter is the basic building block of LISP. We
quote from the LISP Manual: '"An S-expression is either an atomic
symbol or it is composed of these elements in the following order: a
left parenthesis, an S-expression, a dot, an S-expression, and a right
parenthesis. " An atomic symbol is a symbol composed of an indefinite
number of letters or digits (in the IBM 7090 LISP system, not more
than 30) and beginning with a letter. Atoms are usually considered in-
divisible, but we will mention here that atoms have a structure called
a ""property list'" which contains information such as its BCD (binary-
coded decimal) representation and other data. Property lists will be

- 50 -

discussed in detail later.

Given these definitions, Figure 1 illustrates some S-expressions,
along with a graphic-symbolic representation of them. The rectangles
in Figure 1 denote computer registers, or cells of storage, in which
the parts of expressions are stored. Each line and arrow denotes a
"pointer', that is to say, an address stored in one register that ""points"
to another register. The type of binary tree structure shown in Figure
1 can be as complex as required.

"List notation'" is a device for representing more complicated
data structures than can conveniently be represented by a binary tree.
List notation is an abbreviation for dot notation. A list can be defined
as any number (including zero) of S-expressions (where by S-expres-
sions we shall mean lists as well as the dot notation structures intro-
duced previously), separated by spaces (or commas — space and comma
being interchangeable), and the whole surrounded by parentheses.
Examples are shown in Figure 2. The list (B C D), for example, is an
abbreviation for (B . (C . (D . NIL))) where NIL is a special atom mark-
ing the end of a list. The structure () is always equivalent to NIL. The
reader should practice going from list to dot notation and back again to
become familiar with the idea.

List Structure Operators

"List structure' is a general term applied to anything that can
be written in LISP, using dot notation, list notation, or both. List
structure is manipulated by LISP functions, which are themselves
written as S-expressions. A function call is denoted by a list whose
first element is the function designator and whose succeeding elements
(if any) are the arguments of the function. Thus

(CONS A B)
is a call for the function CONS to be applied to two arguments, A and B.
(EQ (CAR J) (CDR Q))

is a call for the function EQ to be applied to the results of applying the
function CAR to J and the function CDR to Q.

Some atoms, although written as if they were ordinary functions,

- 5] -

S-Expression Graphic-Symbolic Representation

ATOMICSYMBOL L"ATOMICSYMBOL
(DOTTED . PAIR) L'{ ‘ | ‘] or L‘1DOTTED| PAIR]
DOTTED PAIR

((A . (MORE . COMPLEX))
. STRUCTURE) Lﬁ{"1STRUCTURE]

MORE [COMPLEX]

or

e e

STRUCTURE

!

MORE COMPLEX

Figure 1. Some Sample S-Expressions, and
their Graphic-Symbolic Representation

- 52 -

S-Expression

1. A list of atoms:

(ABCD)

2. A list of dotted pairsj

3. A list of various ele-
ments:

(LAMBDA, (J), (CAR,J))

(Note: Comma is in-
terchangeable with
space.)

Here (J) and (CAR J)
are lists within
a list.

4Le A list of no elements:

9

Graphic-Symbolic Representation

B

C

D NIL

A
or
A

Bl F+c] D[~

NIL

(Note : @may be abbreviated to A)

T

e

I S
iXMBDA
i1 [= I]
B EEE
J NIL CAR J NIL
L[LAMBDA] e]
J A Ccar[H I LA

L'NIL

Figure 2. Some Sample S-Expressions in List

Notation, and their Graphic-Symbolic Representation

- 53 -

have special significance to the system, and give special treatment to

their arguments. Representative of these are QUOTE, LAMBDA, and
LABEL. These are called special forms and will be discussed below

at appropriate places.

LISP is so arranged that recursive functions are admissible —
i. e. functions that use themselves in the evaluation process. This is
a very powerful feature, and recursive coding in LISP is a frequent oc-
currence. The LISP 1.5 Manual gives details and examples.

Some LISP Functions

A host of functions are defined in LISP operating systems for
manipulating list structure. We shall discuss the more basic of these
here, referring the reader to the manual for a treatment of the more
involved ones.

CAR is a function of one argument (which is an S-expression, of
course; there are no other kinds of arguments) and gives as its value the
left-hand S-expression of the dotted pair. To make the call of the
function CAR work with the argument to which it applies, it is neces-
sary to use the special form QUOTE. QUOTE is used to signify that
an expression stands for itself rather than for something to be interpre-
ted further; thus it serves to isolate a program from its data. This
also will be discussed further below. Here are some examples of CAR:

(CAR (QUOTE (A . B))) —A
(CAR (QUOTE ((A. B). (C. D)))) =(A. B)
(CAR (QUOTE (A B C))) —>
(CAR (QUOTE (A. (B. (C. NIL))))) = A
(CAR (QUOTE ((A) (B)))) —
(CAR (QUOTE ((A. NIL). ((B. NIL). NIL)))) —
(A. NIL) — (A)

It will be seen from the above that CAR of a dotted pair is the left mem-
ber, and CAR of a list is the first member. CAR is an acronym for
"contents of address of register, " which refers to the way list structure
is organized in storage in the 7090 LISP system.

CDR is a function of one argument which gives the right hand
half of a dotted pair. To see what it does to a list, let's work out some
examples:

- 54 -

(CDR (QUOTE (A. B))) =>B
(CDR (QUOTE (A B C))) —>
(CDR (QUOTE (A. (B. (C. NIL))))) =
(B. (C. NIL)) -=» (B C)
(CDR (QUOTE (J))) —>
(CDR (QUOTE (J . NIL))) - NIL

We see that CDR of a list is ALL OF THE LIST EXCEPT THE
FIRST ELEMENT. In brief, it is the rest of the list. CAR of a list of
one element is the element, and CDR of such a list is NIL. There will
be considerable occasion to use this fact.

CONS: So far we have taken list structure apart; now let's put
some together. CONS of two arguments constructs (hence the name) a
dotted pair of those arguments, in order. Thus:

(CONS (QUOTE A) (QUOTE B)) = (A . B)
(CONS (QUOTE A) (QUOTE (J K L))) —

(A. JKL)) >(AJKL)
(CONS (QUOTE A) (QUOTE NIL)) = (A . NIL) —» (A)

The examples illustrate a very important use of CONS, i.e.,
tacking an element onto the front of a list.

We need now some functions for testing list structure. A
predicate is a function whose only allowed values are the Boolean val-
ues T and F, for truth and falsity respectively. In all versions of
LISP, the actual Boolean value for falsity is NIL, and the atom F is
recognized as equivalent to (QUOTE NIL). The actual Boolean value for
truth is either T or *T*, depending on the version of LISP you use; but T
is recognized as being equivalent to (QUOTE T) or (QUOTE *T*), which-
ever is appropriate. Here are some predicates:

EQ is a predicate for testing whether two atoms are the same,
and is thus a function of two arguments. Its value is undefined (i.e.,
unpredictably T or NIL) when applied to S-expressions other than atoms,
although we can say for certain that EQ of two different S-expressions
is NIL.

(EQ (QUOTE A) (QUOTE B)) —> NIL
(EQ (QUOTE A) (CAR (QUOTE (A B C)))) —> T or *T*
(EQ (CDR (QUOTE (A))) (QUOTE NIL)) —> T or *T*

NULL is a predicate for testing for NIL. It is a function of one

- 55 -

argument, and returns truth if that argument is NIL.

(NULL (QUOTE NIL)) = T or *T*
(NULL F) —> T or *T*

(NULL (QUOTE A)) —> NIL

(NULL (CDR (QUOTE (A)))) => T or *T*

NULL can be regarded as a special case of EQ. The following are e-
quivalent:

(NULL (CDR (QUOTE (A)))) and
(EQ (CDR (QUOTE (A))) (QUOTE NIL))

NULL is particularly useful for testing for the end of a list.

ATOM is a predicate of one argument which determines whether
that argument is an atomic symbol.

(ATOM (QUOTE ATOMICSYMBOL)) —> T or *T*
(ATOM (QUOTE (A B C))) —> NIL

(ATOM (QUOTE NIL)) —> T or *T*

(ATOM (CAR (QUOTE (A)))) —> T or *T*

The basic device for using predicates is a function called
COND (for 'conditional")., COND is a special form which takes
an indefinite number of arguments. Each argument is a list of two ele-
ments. COND proceeds from argument to argument, evaluating the
first element of each; and the value of the COND is the second element
of the first argument whose first element is true.

(COND ((QUOTE NIL) (QUOTE A)) ((QUOTE *T¥*)
(QUOTE B))) — B

(COND ((NULL (CDR (QUOTE (A)))) (QUOTE (DONE)))
(T (QUOTE FOO))) —> (DONE)

The first element of each argument is ordinarily a predicate,
although this is not necessarily so; any function may be used, and it
will be considered true if its value is anything except NIL. If the
COND runs out of arguments, its value is undefined: an error diagnos-
tic will occur.

- 56 -

Variables and Bindings

Ordinarily we want to write a program that will handle a variety
of inputs, and this is true of LISP. In the examples so far, we have
seen functions applied to specific arguments to get specific results.
Now we must provide for arbitrary arguments. This is done by means
of bound variables.

RULE: AN ATOM NEVER STANDS FOR ITSELF UNLESS IT IS
PART OF A QUOTED EXPRESSION.

Consider the atoms in the expression
(CONS J (QUOTE (A B C))) (1)

CONS stands for the function which does the CONS-ing; A, B, and C
are part of a quoted expression, so they stand for themselves. Now J
doesn't stand for itself. What does it stand for?

To answer this question, we need to dig deeper. In LISP,
functions are evaluated by an interpreter. The interpreter contains an
association list, or A-list, of bindings of variables. The A-listis a
sort of symbol table which contains variables and what they stand for.
It is a list of dotted pairs, and if at the time of evaluating (1) the A-list
were

(Q. JK) (J. (NIL)))

the value of (1) would be ((NIL) A B C). In this example, J is a bound
variable which is bound on the A-list. The interpreter looks at an
atom's property list before looking for the atom on the A-list, since
variables can be, and functions usually are, bound on property lists.

A variable or an atom that is a function may have several different
bindings at one time. The interpreter searches first the property list
of the atom and then the A-list, stopping when it first finds a binding.
An atom may be bound as a function or as a variable or both. Now pro-
perty lists distinguish between functional and variable bindings, but
the A-list has no such distinctions. If a binding of a variable, e.g. J,
is required, it will search first the property list of J for a variable
binding (called an APVAL); if it is unsuccessful, it will then search the
A-list for a binding of J. In the example above, J is bound to (NIL).

The principal way of putting variable bindings on the A-list is by

- 57 -

use of LAMBDA. LAMBDA is used as if it were a function of two argu-
ments, which are (1) a list of the variables to be bound and (2) the ex-
pression which is to be evaluated while that binding is in force. The
entire expression containing the LAMBDA is a functional expression,
and takes as arguments expressions following it in the usual way. Thus
the expression

((LAMBDA (J) (CONS J (QUOTE (A B C)))) (QUOTE (NIL))) (4)
functional expression argument

performs the following:

1. Evaluates (QUOTE (NIL)), yielding (NIL);

2. Pairs this with J, the variable to be bound, and puts
(J . (NIL)) at the head of the A-list;

3. Evaluates the arguments of CONS. J is bound on the
A-list to (NIL), so (NIL) is the first argument.
(QUOTE (A B C)) is a quoted expression, whose
value is (A B C);

4. Evaluates CONS, and finds on its property list that
it is a machine language function;

5. Passes the arguments to CONS, which returns

' ((NIL) A B C);

6. Strikes the binding of J from the A-list.

In this example, one variable was bound by the LAMBDA. Any
reasonable number of variables can be bound at one time; all that is
necessary is that the number of arguments supplied be the same as the
number of variables to be bound.

Since the A-list is searched from the top down, the same vari-
able may be bound several times, and in each case the most recent
binding will be used.

The use of QUOTE should now be quite clear: you quote some-
thing that you do not want evaluated, but want to stand for itself.

Free Variables

When the LISP interpreter evaluates a variable, it doesn't neces-
sarily confine itself to that part of the A-list attached by the present
binding; it searches the entire A-list until it either finds a binding, or

- 58 -

runs out of A-list, which results in an error call. A variable used but
not bound within the scope of the current function is said to be a free
variable.

LABEL

We have seen that variables are usually bound on the A-list, and
functions are usually bound on property lists. The A-list is useful for
short-term bindings, as these are erased when you are through with
them, while the property lists are altered only upon specific direction
to the system. A function name required only for a short time, say
within a recursion, can be bound on the A-list through use of LABEL.
LABEL is written as a function of two arguments, where the first is the
atom to be bound and the second is a functional expression. For example,
consider:

(LAMBDA (J) (COND ((P1 J) (F1 J)) (T ((LABEL FN
(LAMBDA (J) (COND ((NULL J) NIL) (T (CONS
(CONS (CAR J) NIL) (FN (CDR J))))))) (CAR J)))))

This binds FN so that the appearance of FN within the functional expres-
sion is treated as a reference to the entire functional expression.

LABEL is little used; it is usually more convenient to use a
separate function bound on a property list.

Defining Functions

We want to be able to put functional expressions on the property
lists of atoms so that they are available for long term use in the system.
A couple of points must be covered first.

So far we have discussed functions whose operation makes no
change (at least no "'visible' change) in the state of the LISP system ex-
cept to return a value when called. There are also functions, called
"pseudo-functions' in the LISP 1.5 Manual, which have various impor-
tant side-effects resulting from their operation. Indeed, the side-effect
may be the prime purpose in using a function; the resulting value may
be trivial, such as a supplied argument or NIL. These include, as ob-
vious examples, input-output functions such as PRINT. There are also
functions which make a permanent change in memory (permanent in the

_ 59 _

sense that you have to try explicitly to make such change go away),
such as RPLACA, RPLACD, and DEFINE.

The pseudo-function DEFINE takes one argument, which is a
list of "items'". Each "item' is a list of two elements, the first of
which is an atom, and the second is a functional expression to be as-
sociated with it. Thus we might write:

)

t

(DEFINE (QUOTE ((TEST (LAMBDA (J) (CONS J (QUOTE (A B C))))
)
I
i

; variable to be bound

l\ -~ -/

functional expression

)
|
|
|
[
|
!
}
|

\ "nhame of function

7

N

)
!
]
I
|
1
|
I
|
}
|

/

|

item to be defined

"

list of items to be defined

-

— 7

Functions defined with DEFINE have the S-expression on their
property list preceded by the indicator EXPR. Other S-expressions,
with other indicators such as FEXPR, can be put on property lists with
other defining functions.

The interpreter, when it sees an atom in the position of a func-
tion, will search the atom's property list to see if it carries a functional
expression. The functional expression is applied to the arguments of
the function.

CSET

Variable bindings which are to be used over a long period of
time are most conveniently bound on property lists. The function CSET
takes two arguments; the value of the first argument is an atom upon
whose property list is created a binding to the value of CSET's second
argument. Such a binding is called an APVAL An example:

(CSET (QUOTE JJ) (QUOTE (TTTT)))

Having done this, we could use JJ as in the following example:
Use Result
(CONS JJ (QUOTE (A B C))) ((TTTT) A B C)

- 60 -

Since the interpreter searches property lists before the A-list,
a LAMBDA binding of a variable with an APVAL won't ""take. ' Thus T,
F, and NIL, for example, can never be used as variables bound by a
LAMBDA. In 7090 LISP, we have as part of the system the result of
(CSET (QUOTE T) (QUOTE *T*)).

EVAL

The notation we have been using for functions is that used by
EVAL, which is the major part of the interpreter. In addition to being
called implicitly in the process of function evaluation, EVAL is avail-~
able explicitly to the programmer. The programmer may call upon it
explicitly as a function of two arguments: the expression to be evaluated
(called a form), and the A-list to be used. Thus:

(EVAL (QUOTE A) (QUOTE ((A. (Q RD))))) = (Q R D)

(EVAL (QUOTE (CAR P)) (QUOTE (P. (Q RS))))) =Q

(EVAL (QUOTE (CDR (QUOTE (J K L)))) (QUOTE NIL)) -=
(K L)

Notice that we have two levels of evaluation here. In the last example,
the interpreter evaluates the arguments of EVAL, so the arguments
passed to EVAL are (CDR (QUOTE (J K L))) and NIL. The value of
(CDR (QUOTE (J K L))) is then determined precisely as if it had been
seen by the interpreter.

Functions and Special Forms

There are two rather different types of atoms bound on property
lists which take the position of functions in expressions. We have seen
several examples of each. These can be categorized as follows:

1. Functions, such as CONS, which take a fixed number
of arguments, all of which are evaluated before
being passed to the function.

2. Special forms such as LAMBDA, QUOTE, and COND,
which either (a) take a variable number of argu-
ments (COND), or (b) require that their arguments
not be evaluated (LAMBDA, QUOTE, COND), or
(c) require access to the present A-list (LAMBDA).

- 61 -

Functions of the first class are called EXPR's or SUBR's, and
functions of the second class are called FEXPR's or FSUBR's.
FEXPR's and FSUBR's are always written as if they were functions of
precisely two arguments. When the interpreter encounters an FEXPR
or FSUBR, the list of unevaluated arguments (i.e., CDR of the expres-
sion headed by the FEXPR or FSUBR) is given to the FEXPR or FSUBR
as its first argument, and the current A-list is given as the second ar-
gument, Since COND is a special form,

(COND ((ATOM A) A) (T (FN (CAR A))))
is interpreted by giving as arguments to COND:

1. (((ATOM A) A) (T (FN (CAR A))))

2. The current A-list.

Now COND can't be supplied the value of its explicit arguments
(clearly ((ATOM A) A) is gibberish if evaluated — for we wind up apply-
ing *T* or NIL as a function to A). But we do need to do some evaluat-
ing. We must evaluate (ATOM A), and

1. If it is true, evaluate A and return it as answer;

2. If it is not true, we must evaluate T, which is found
to be true, and upon so finding it, we must evalu-
ate (FN (CAR A)) and return its value as answer.

These evaluations are performed by calling upon EVAL. The first ar-
gument of EVAL is the expression to be evaluated (called a form) and
the second is the A-list to be used. Thus, (although no LISP system
does it quite this way, for reasons which will become clear presently)
we can as an illustration write COND as an F EXPR which calls another
function, EVCON, written as an EXPR, to do the work:

COND: (LAMBDA (L A) (EVCON L A)); FEXPR

EVCON: (LAMBDA (L A) (COND ((NULL L) (ERROR
(QUOTE A3)))
((EVAL (CAR (CAR L)) A) (EVAL (CAR (CDR
(CAR L))) A))
(T (EVCON (CDR L) A)))); EXPR

Let's trace this through, supposing that A is bound to the atom Q.

- 62 -

Expression as seen by EVAL:

(COND ((ATOM A) A) (T (FN (CAR A))));
Arguments of COND, and hence arguments of EVCON:

(((ATOM A) A) (T (FN (CAR A)))); ((A. Q))
Since L isn't NIL, we call EVAL of:

(ATOM A); ((A. Q)

EVAL finds that Q is indeed atomic and returns T. So we call
EVAL:

A; ((A. Q)
EVAL promptly returns Q, and we are done.

Since EVCON contains a COND, we cannot in fact write the
function in exactly this way; in substance, however, EVCON and COND
are coded in machine language in the interpreter to act in this way.

(Thus they are actually SUBR and FSUBR rather than EXPR and FEXPR.)

EXPR's and SUBR's

The indicators EXPR and SUBR are used on the property lists of
atoms to indicate functional bindings of two different types. The indi-
cator EXPR denotes a functional binding written as an S-expression,
and it is this type that is created by DEFINE. Most of the functions in
the LISP system, however, are written in machine language rather than
as S-expressions. Following the SUBR on the property list is a special
cell containing information that the interpreter requires in order to
link to the machine language subroutine. An entirely analogous relation
exists between FEXPR's and FSUBR's: following FEXPR there is an
S-expression, and following FSUBR there is a subroutine linkage control
word.

Functional Arguments

Certain functions conveniently take other functions as arguments.
The most common example is MAPLIST, whose definition is:

- 63 -

(LAMBDA (L FN) (COND ((NULL L) NIL)
(T (CONS (FN L) (MAPLIST (CDR L) FN)))))

FN is in the position of a function (it is CAR of a list) and is a bound
variable. Let's use MAPLIST in an example to see how it works. Sup-
pose we have a list, say (A B C), and we want to CONS an X onto each
element to get (A . X) (B. X) (C. X)). We could write:

((LAMBDA (J) (MAPLIST J (QUOTE (LAMBDA (K)
(CONS (CAR K) (QUOTE X)))))) (QUOTE (A B C)))

Now let's trace through this. The arguments of MAPLIST are:
(A B C); (LAMBDA (K) (CONS (CAR K) (QUOTE X)))

which are bound to L and FN respectively. MAPLIST is evaluated in
the usual way; the interpreter finds the binding of all functions except
FN on their property lists, while FN is bound on the A-list.

The use of QUOTE with a functional argument leads to a problem
which is best illustrated with an example. Consider the function TESTR
defined as:

(LAMBDA (L FN) (COND ((NULL L) NIL) ((P1 L) (FN))
(T (TESTR (CAR L) (QUOTE (LAMBDA NIL
(TESTR (CDR L) FN)))))))

Assume P1 is some predicate, which we will choose to be true or false
as suits our convenience. Let's apply this to ((A) (B) (C)); (LAMBDA
(X) X) and see what happens.

L ((A) (B) (C)
FN: (LAMBDA (X) X)

L isn't NIL, and for the sake of argument we assume P1 of
((A) (B) (C)) to be false; so, we take the T leg of the conditional, enter
the first TESTR, and get;

L. (A)
FN: (TESTR (CDR L) FN)

and now we are in trouble.

What the programmer intended to have upon interpreting FN was

- 64 -

CDR of ((A) (B) (C)), i.e. ((B) (C)); and what he will get is CDR of (A),
which is NIL. The wrong binding of L will have been used. What is
needed here is a device to preserve the A-list as it was upon entering
TESTR for the first time, and to make this A-list available at the right
time. The interpreter contains a monument to this problem called the
FUNARG device. We can straighten things out by defining TESTR as:

(LAMBDA (L FN) (COND ((NULL L) NIL) ((P1 L) (FN L))
(T (TESTR (CAR L) (FUNCTION (LAMBDA NIL
(TESTR (CDR L) FN)))))))

The only change is the substitution of FUNCTION for QUOTE. Proceed-
ing as before, we enter the first TESTR and evaluate its arguments.

As before, (CAR L) is (A), but now we run into (FUNCTION (TESTR
(CDR L) FN)). The interpreter recognizes FUNCTION, replaces it by
the special atom FUNARG, and attaches the old A-list to give

FN: (FUNARG (TESTR (CDR L) FN) ((L . ((A) (B) (C)))
(FN . (LAMBDA (X) X))))

The interpreter, upon interpreting FN, now sees the FUNARG, and re-
trieves the function (TESTR (CDR L) FN), and the old A-list; and now
we have the correct L and will get what the programmer expected.

Admittedly, this is a complicated example, but the point is
simple enough: when quoting a function, use FUNCTION instead of
QUOTE and you will get what you want. The problem arises with free
variables in functional arguments; in TESTR, both L and FN are es-
sentially used free.

Property Lists

The property lists used in the IBM 7090 LISP System will be
discussed since they are representative of property lists in general and
are reasonably simple. Generally, properties are of two types. One
word (one element) properties, called flags, indicate information simply
by their presence or absence. TRACE (see below) is representative of
this type.

Most properties consist of two elements. The first element is

an indicator, such as EXPR; the second is a pointer to associated in-
formation, such as a functional expression in the case of EXPR.

- 65 -

Here is a list of the properties used in the 7090 LISP system

TRACE Flag; causes interpreter to print out function called, its
arguments, and its value.

EXPR Indicator; marks functional definition.
FEXPR Indicator; marks special form functional definition.
SUBR Indicator; used in case of EXPR's translated to machine

language subroutines. Marks pointer to a word
of non-list structure carrying address of sub-
routine and number of arguments it expects.

FSUBR Similar to SUBR, except doesn't evaluate arguments.
List of unevaluated arguments and current A-list
supplied as arguments.

APVAL Indicator; acronym for APPLY VALUE. Indicates a
binding of the atom in which it appears to the
S-expression pointed to.

PNAME Indicator; acronym for PRINT NAME. Pointer points to
a list of pointers to words containing the BCD re-
presentation of the character strings in the
atom's name.

SPECIAL Indicator; pointer is to a cell (the SPECIAL CELL) which
contains certain variable bindings used in com-
piled code. See Compilation for a more detailed
discussion.

SYM Indicator; short for symbol value. Pointer points to a
non-list word containing a number. SYM's are
used by LAP (LISP Assembly Program) for stor-
ing the values of machine instruction such as
CLA, STO, etc.

COMMON Flag; used by the compiler to denote variables whose
values are to be found by the interpreter.

Other indicators may be originated and used by the programmer.
Various functions are available for manipulating property lists; property

- 66 -

lists are fine places on which to hang miscellaneous information about
atoms.

Here is a typical property list.

CAR additional pro-
. erties would
T x SUBR | [F{emne T] A\ oo e
additional
print name

Avom flag IXL CAR, 1 would attach
here

Subroutine control word

BCD print name

Numbers in LISP

So far we have confined our attention to symbol manipulation.
LISP also has facilities for numerical work. An atom starting with a
digit is interpreted as a number. Numerical atoms always stand for
themselves, and so need not be QUOTE'd. There are a set of functions
for doing arithmetic of which PLUS is representative:

(PLUS 3 4) —= 7
((LAMBDA (J) (PLUS J 10)) 34) = 44

Other functions are available, but vary from version to version, so the
reader is referred to the manual for his particular version of LISP for
a discussion of specific numerical functions.

Arithmetic in LISP is not very fast, as the system has to resort
to various tricks to turn a number into an entity that is referenceable
by a list structure pointer.

PROG

No discussion of LISP is complete without a mention of PROG.
PROG is a special form which permits writing LISP manipulations in a
style similar to ALGOL and FORTRAN. Let's illustrate with an ex-
ample; LAST will be defined as a function to find the last element of a

list:

- 67 -

(DEFINE (QUOTE (
(LAST (LAMBDA (J) (PROG (K)
(SETQ K J)
A (COND ((NULL K) (RETURN NIL)) ((NULL (CDR K)
(RETURN (CAR K))))
(SETQ K (CDR K))
(GO A)))))

PROG is written as if it were a function of an indefinite number
of arguments. The first "argument' is a list of program variables,
which are bound on the A-list to NIL when the PROG is entered. Suc-
ceeding arguments, if atomic, are statement labels, and otherwise are
statements. SETQ is a special form which re-binds its first argument
(which it effectively quotes) to the value of its second argument. COND
is essentially the same as when used outside PROG; if it runs out of
arguments without finding a true predicate, however, control passes to
the next statement instead of giving an error diagnostic. GO is a
special form for transferring control. If its argument is atomic, con-
trol passes to the statement bearing that label; otherwise the argument
is evaluated and control passes to the label which is the same as the
resulting value. RETURN causes the PROG to be quitted, returning as
result the value of the argument of RETURN. If a PROG runs out of
statements, i.e. "drops out the bottom, ' it returns NIL.

PROG works by first binding the program variables, then scan-
ning its arguments for statement labels which are put on a list of
labels called a GOLIST. Statement labels can be the same as bound
variables; since they are kept on different lists, however, no confusion
will arise. The PROG is executed by EVAL-ing each statement as it
is encountered and throwing away the value.

SETQ isn't restricted to rebinding program variables; it can
bind any variable on the A-list. In this example, K isn't really neces-
sary; J, originally bound by the LAMBDA, could be used as well. It
is sometimes useful to have a PROG re-bind a variable in a higher
function; all that is required is that the variable to be bound be some -
where on the A-list.

There is nothing that can be done using PROG that can't be done
without it, and vice versa; whether one uses PROG or not is a matter
of taste and convenience. Some purists will contend that using PROG
is somehow tinged with immorality, and not '"pure' LISP; this is silly,
of course, but they do have a point: one should learn to write LISP

- 68 -

both with and without PROG, or one may fall into the habit of using
PROG for everything. The last example could be written without PROG,
but recursively, as follows:

(DEFINE (QUOTE (

(LAST (LAMBDA (J) (COND ((NULL J) NIL) (NULL
(CDR J)) (CAR J))
(T (LAST (CDR J)))))

Input-Output and EVALQUOTE

Input and output in LISP are handled by built-in pseudo-functions
READ and PRINT, which read and print one S-expression, respectively.
All the examples we have discussed so far are in the format used by
EVAL. In PDP-1 LISP, EVAL reads one S-expression, evaluates it
(starting with a null A-list), and prints out the result. The usual LISP
job consists of defining some functions, and then trying them on some
special cases. It turns out that you have to QUOTE practically every-
thing: the argument of DEFINE must be quoted, and the test case ar-
guments must be quoted also. This is enough of a nuisance so that in
most LISP systems, input is done through a function called EVALQUOTE
which does the quoting for you. EVALQUOTE reads "pairs', consist-
ing of a function name (or functional expression), followed by a list of
arguments. Thus, each pair consists of exactly two S-expressions.
Some examples:

EVAL EVALQUOTE

(CSET (QUOTE JJ) (QUOTE (A B C))) CSET (JJ (A B C))

(CONS (QUOTE F) (QUOTE (G))) CONS (F (G))

((LAMBDA (J) (CAR J)) (QUOTE (LAMBDA (J) (CAR J))
(A . B)) ((A. B))

(DEFINE (QUOTE ((FN (LAMBDA DEFINE (((FN (LAMBDA
NIL NIL))))) NIL NIL))))

(FN) FN NIL

EVALQUOTE breaks down the argument list into arguments, quotes
each, and passes function and arguments off to the interpreter to be
evaluated.

- 69 -

The LISP READ program consists of two basic parts. There is
a machine language routine to convert character strings into atoms. Its
output is the atoms read, with special atoms for parentheses and period.
A recursive subroutine CONS's these into list structure. When a char-
acter string is read, it must be compared with the character represen-
tations of all atoms seen so far, to determine whether this string is a
new atom or a reference to one seen before. Therefore there must be
a means of rapid access to all the atoms in the system. There exists,
therefore, a list called the object list, or OBLIST, of all atoms. To
speed things up, this is usually organized as a list of a hundred or so
sub-lists, where the atoms are distributed among the sublists by a com-
putation upon their BCD representations. This computation is chosen so
as to give as uniform and random a distribution of atoms among the
various sub-lists as possible. Some versions of LISP have the atom
OBLIST APVAL'ed to point to the object list, so it can be accessed by
EVAL.

Compilation

Interpreters are generally slow; LISP's is no exception. The
slowness is primarily a result of searching the A-list for variable
bindings, and searching property lists for functional bindings. The
situation can be alleviated to a considerable degree by compiling
machine code to evaluate functions. As a bonus, one obtains more
storage space, for the compiled code generally takes less storage than
the S-expression, which can be thrown away after it is compiled. Noth-
ing is free, however, and the price of compilation is several difficulties:

1. Free variables require special treatment. In interpreted
code, as we have seen, all variable bindings are accessible because the
interpreter can search the entire A-list if necessary. In compiled
code, the bindings of the present function are stored in its private
area of the pushdown list, and no other part of the pushdown list is
accessible; so one can't get at variables bound outside the current
function.

There are various artifices to alleviate this situation. One is
to establish a special cell for each variable used free and to post the
present binding in it each time it is re-bound. The old binding is saved
on the pushdown list and is restored when necessary. This method is
reasonably fast, but the special cells aren't generally available to the
interpreter. Another way is to post variable bindings on the A-list and

- 70 -

use EVAL to look them up. This, although ultimately general, throws
away most of the speed advantage of compiled code. In the 7090, vari-
ables declared COMMON are treated in this way. COMMON variables
are required to get at APVAL's.

2. There are problems with functional arguments. Again, we
don't have access to the A-list, so we can't use the FUNARG device to
keep bindings straight. In 7090 LISP, functional arguments must be
COMMON, so the burden is thrown onto the interpreter, which can use
the FUNARG device. In Q-32 and M-460 LISP, which are the only other
systems containing compilers as of this writing, the problem is more
or less ignored; one still writes FUNCTION, and functional arguments
must be declared SPECIAL. Except in pathological cases like TESTR,
a little care is all that is needed to avoid looking at incorrect bindings.
The proposed LISP for the CDC 6600 has a device in which SPECIAL
variables are stored on the pushdown list and referenced indirectly
through the special cells; and all bindings of each special variable are
chained on the pushdown list. Some code is used to exclude that part
of the pushdown list which would follow the equivalent of a FUNARG by
tracing down the chained bindings.

3. Compiled calls to FEXPR's or FSUBR's can lead to trouble,
since most of the usefulness of compilation is evaluating arguments of
functions, and FEXPR's and FSUBR's get theirs evaluated whether you
want it or not. As long as the compiler is dealing with FEXPR's and
FSUBR's defined in the system, however, there is no serious problem,
for the compiler is designed to recognize these and give them appropri-
ate treatment. Hart has proposed a method of abolishing user-defined
FEXPR's and FSUBR's by use of a system of macros, and this system
is incorporated in those versions of LISP which are compiler-based.

(2, 3, 4)

Because of the advantages of compiled code, we can expect to
see more and better compiler-based LISP systems in the future. These
will probably take input in languages similar to ALGOL.

Conclusion

This paper seeks to ease the average programmer's entrance
into LISP programming. The reader is advised to refer to the LISP
1.5 Manual and Hart's LISP Exercises (in this volume) to broaden his
understanding of the language. The best teacher is often experience;

_ 71 -

and access to a computer should be impetus enough for the reader to
try his hand at writing LISP.

References

1. McCarthy, John, et al., LISP 1.5 Programmers' Manual. The
M.I1.T. Press, Cambridge, Mass., 1962.

2. Hart, T. P. and T. G. Evans, "The M-460 LISP 1.5 System".

Air Force Cambridge Research Laboratory memorandum.
(Reprinted in this volume.)

3. Hart, T. P., "MACRO Definitions for LISP". Artificial Intelligence
Project, Research Laboratory of Electronics and M. I. T.
Computation Center Memo 57, Oct., 1963.

4. Saunders, R., '""The LISP System for the Q-32 Computer." Infor-
mation International, Inc. memorandum, Cambridge, Mass.,
Apr., 1964. (Reprinted in this volume.)

- 72 -

LISP—240 Exercises with Solutions

Timothy P. Hart and Michael I. Levin

Project MAC
Massachusetts Institute of Technology

The following exercises are carefully graded to mesh with
the sections in Chapter I, "The LISP Language," in the LISP 1.5
Programmer®s Manual. Each exercise should be worked immediately
after reading the manual section indicated. Instructions, such
as "Read Section 1.1", refer to this manual.

The exercises are more finely subdivided than the manual
sections. If you don't understand an entire manual section, try
the exercises — they may teach you enough to allow you to pro-
ceed on through the manual section.

A. S-expressions. Read Section 1.1.

Which of the following are S-expressions?

I. X.Y)

2. ((2)

3. CHI

4. (BOSTON . NEW . YORK)

5. ((SPINACH . BUTTER) . STEAK)

b. Elementary Functions. Read Section 1.2.

Write the S-expression which is the value of each of the
following expressions. (Some of them are undefined®)

- 73 -

car[(A . B)]

cdr[(A . B)]

car[((FOO . CROCK) . GLITCH))
cdr[((FOO . CROCK) . GLITCH)]
car[X]

11. cons[POOT;TOOP]

12. cons[X;(Y . Z)]

13. eq[X;X]

14. eq[Y;Z]

15. eq(€Q . R);(Q . R)]

16. atom[X]

17. atom[(TOOT . TOOT)]

18. atom| ISTHISATRIVIALEXERCISE]

[
SO~

C. Function Composition.

The notation of function composition is extremely useful:
car[cdr[¢A . (B . C))]] means that S-expression which is the car
part of the cdr part of (A . (B . C)), namely B. The general
rule for evaluating composed functions is to evaluate the inner-
most ones first, then the next outer layer, and so on, until the
entire expression has been evaluated.

Example:

cons[cdr[((A . B) . C)];car[€(A . B) . €)]] = cons[C;(A . B)] =
(Cc. (A .B)

Evaluate the following:

19. car[cons[A:B]]

20. cons[car[(A . B)];cdr[(A . B)]]
21. car[cdr((A . (B . C))]]

22. eqlcar[(A . B)];cdr[(C . B)]]

23. eqledr[(A . B)];cdr[(C . B)]]

24. eq[A;car[cons[car[(A . B)Y];C]]]
25. atom|cons[A;B]]

26. atom[cdr[car[((A . C) . B)]]]

27. carlcdr{car[((A . (B . C)) . D)]]]

D. Variables.

The notion of a variable is very important: a small letter
appearing in an expression in places where we expect to find an
S-expression is to stand for the same (unspecified) S-expression
in every place where it occurs in that S-expression. Using this
notation we can give the following definitions:

- 74 -

car[{x . y)] =
cdr[(x . y)] =
cons[x;y] = (x . y)

(Notice that these definitions don't allow us to find an S-expres-
sion equivalent to car[ATOM]; this is why we say that such an ex-
pression is undefined.)

Which of the following identities are always true?

28. car[cons[x;y]] = x

29. cons[car[cons[x;y]];y] = .y
30. atom[cons[usv]] =T
31. cons[A; cons[x Y]] = . (x . Y))

32. car[car[cdr[(A) ((B . .DN11] =
33. atom[cdr[cons[x;Y]]] =
34. eq(X;car[cons[X;cons{u;v]}]]] =T

E. List Notation. Read Section 1.3.

We will use list notation almost exclusively from now on;
so do not try to avoid learning it. The second set of examples
in the manual on page 4 are key prototypes for remembering what
the basic functions do to S-expressions in list notation. Remem-
ber that:

car gets the first element of a list.

cdr eliminates the first element of a list by moving the leading
left parenthesis past the initial S-expression.

cons inserts its first argument at the head of the list which is
its second argument.

cdr of a list with only one element is the atomic symbol NIL.
Translate the following S-expressions into dot notation:

35. A

36. ((PLOOP) FLOP TOP)

37. ((X GLITCH) (Y CROCK)))
38. (({(X)))

39. (SNAP (CRACKLE (POP)})

Which one of the following S-expressions cannot be expressed
in list notation? Translate the rest into list notation.

40. ((A . NIL) . ((B . NIL) . NIL))

41. (A . (B . (C . NIL)))

42. (NIL . NIL)

43. ((A . (B . NIL)) . ({(C . NIL) . NIL))
44. ((X . NIL) . ((NIL . Y) . NIL))

- 75 -

For the following, write the S-expression which is the value
of each expression. Use list notation for your answer whenever
possible. Some of them may be undefined.

45. car[(A B Q)]

46. cdr[(A B C)]

47. car| (AB CD)]

48. car[(A)]

49. cdr[(A)]

50. car[A]

51. cdr[NIL]

52. cons[A;(B)]

53. cons[A;(B C)]

54. cons[A;B]

55. cons[A;NIL]

56. cons[NIL;A]

57. cons[(A);(B C)]

58. cons[(A B);(C D)]

59. cons[(A B):C]

60. cons[(A . B);((C . D)(E . F))]
61. cons[(A B);NIL]

62. car[(((A)))]

63. cons[eq[A;A];(F T F)]
64. atom[NIL]

F. Multiple car-cdr Functions.

Write multiple car-cdr LISP functions which will find the
"A" in each of the following (denote the S-expressions by "x"):

65. (A)
66. (CAT
67. (B . A)

68. (STAY)

69. (1 23A4)

70. ((A . B) (C.D))
71. (B . A) (C.D))
72, (((C)) ((A)))

73. (X .Y) (A.B))
4. ((((A))))

G. The Functions list and null.

We will use the predicate null to test for the atomic sym-
bol NIL. null[NIL] = T, null[x] = F, if x is any other S-expres-
sion than NIL. The expression "()" is identical to NIL, that
is, eqQ();NIL], so null [()] = T and atom[()] = T, since null
[NIL] = T and atom[NIL] = T. Notice this consistency: cdr[(A)] =
() = NIL.

- 76 -

The function list is used to create lists. It is a short-
hand notation as the following identities illustrate:

list{] = () = NIL
list[x] = (x) = cons[x;NIL]
1ist[x1;x2] = (%) x9) = cons[xl; cons{xo; NIL]]

iist[x Xei...ix] = (x, x. ... x_) = cons[x,;cons[xq;...
lv '] 1 2
cons[xn;NIL].?.]] 12 n

Examples

list{A] = (A)
1ist[A:;B] = (A B)
list[X;(Y 2)] = (X (Y Z))

Exercises

75. null[A)]

76. null[NIL]

77. null{()]

78. null{car[(A)]]

79. null[cdr[(A)]]

80. nulllcdr[C(A B €))])]
81. 1list[A:B;:C]

82. 1list[(A);(B);(C)]
83. nulllcdr[1ist[A]]]
84. nulllcdr|cons[A:B]]]

Write expressions involving only cons, 1list, and atoms which
will generate the following expressions: (Example: (A B) =
list[A;B])

85. (A . B)

86. (X Y)

87. ((A B) (C D))

88. ((A . B) (C.D))

89. (((A)))
9. ((B . C))
91. (C) ()

92. (A . (B CD))

Evaluate:

93. eqlcar[(A)];car[(B)]]
94. eq[cdr[(A)]:cdr[(B)]]

- 77 -

95.

96.

97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.

119.
120.
121.
122.
123.
124.

are
and

125.
126 .
127.
128,
129,
130.
131.

atom[cdr[(X Y)]]
atom[cdrcdr[(X Y)]]]
car[(A B C)]

cadr[(A B C)]

caddr[(A B C)]

cddr[(A B €)]

cadr[(A (B C) D)]
caadr[(A (B C) D)]
cadadr[(A (B C) D)]
cddadr[(A (B C) D)]
cddr[(A)]
eqlcar[(A)];cadr[(B A)]]
cadr[1list[A;B;C]]
caddr[1ist[A;B;C]]
atom[cadr[(A (B) C)]]
atom| cadr[(A B €)]]
cdr[cons[A;(B . C)]]
atom[car{ cons[A; (B €)]]]
atom[cdr[cons[A;NIL]]]
null[list[A]]

eq[(A . B);cons[A;B]]
car[cons[car[(A)];NIL]]
eq[A;car[(A)]]

eq[(A B);list[A;B]]

The LISP Meta-Lanquage. Read Section 1.4. (Skip Section 1.5.)

{ILa-A;T—h-B]

F-» A;T-»B]

[F-» A;F-=B]

[eq[A;A]-»car[(A)];T-» cdr[(B)]]
(null{X]-=Y;nul1[()]-= NIL;:T-» atom[A]]
[atom| x]-s= atom| x];T-» eq[X:X]]

In exercises 125-133 the variables f, m, n, t, x, y, and z
bound by the following table. All other variables are unbound

therefore undefined.
f=zF t=T z = AB
m = AB x = ((AB))
n=(AB . C) y = ({AB . C))

[eq[m; z]-= n;T-»= x]
:flh-A;Tlh-B;Ta—-c]

[eq[AB;m]-= A;T-= B]

[atom[m]-= A; T-==B]
Latom[n]-meA;T-=B]
[eq[m;caar[x]]-y; T—w]

[[T F;F-aT]-s= F; - [Fem T; T-e T]]

- 78 -

132. [[eq[edr[n];cdar[y]]-==F;T-oT]-o-y; T—o=w]
133. [[eq[m z]-——-eq[f t] Tobnull[cdr[x]]]—-B T-»C]

I. Lambda Notation and Lambda Conversion.

The lambda notation (also written "A-notation") is necessary
for specifying the order in which a function is to receive its
arguments. Understand the difference between a function and a
form. '

Examgles
form: conS[X;Y]
function: a[[x;y];cons[x;y]]
form: allx;yl;cons[x;y]][A;B]

The process of pairing the elements of a list of variables
following aa with their respective arguments to form a table of
bindings such as in the recent exercise, and then evaluating the
form inside thea expression, is called A-conversion.

Example: a -conversion

form:] table:
allx;yl;consly;x]1[A;B] = x = A

cons[y;x] = y=B

cons[B;A] =

(B . A)

Evaluate:

134. A[%x];x][A]

135. allyliy]l]

136. a[[y];AllB]

137. allx]:;car[x]][(A)]

138. af[[x]:car[(A)]][(B)]

139. allu: v],u][A B]

140. A[[u v];u][B;A]

141. allu;v];v]A; B]

142. A[[x;y];cons[car[y];cdr[x]]][(A . B):(C . D]
143, a[[x]ially);car[y]][x]1][(A)]

144. al[x:v]; fatom[x]—»y T-=A]][R:S]
145. cons|A; [null[Q]-—-B T——c]

146. cons[A; [[x]; car[x]][(B)]

147, cons[A:[A[[x:y]);y)[T;F] —=B;T= C]]

J. Function Definition.

To evaluate the forms below, use the following table:

- 79 -

(A B)
X
(T

u
v
W
pred
test

NN

Example

form:

U Vv)
[[x;y);ealx;car[y]]]
i[[x]?[atgm[x]«— %;atom[car[x]]—- F;T-= F]]

table:

pred[A;(B)] =

A [x;yl;ealx;car[y]]][A; (A B)] =
eq[x;car[y]] =

eq[A;car[(A B)]] =

<
non

(A B)

eq[A;A] -

T

148. test[A]

149. test{(u B C)]

150. test[(v . uw)]

151. pred[X;(A B)]

152. pred[F;(F T F)]
153. pred[test[v];w]

K. Recursive Functions.

ing
the

154.
155.
156.
157.
158.

159.
160.
161.

forms.
evaluations.

Use the definition of jj given below to evaluate the follow-
Write the argument for jj at each recursive step in

jj = allx);latom[x]-m x; T jjlcdr[x]]]]

A

(A . B)

(X .Y . X.2)
(AB O

(A (C . E))

Use this definition to evaluate the following forms:

match = A[[kk;m];[null[kkJ-= NO;null[m]-=NO;eq[car[kk]:
car(m]] car[kk]; T-= match[cdr[kk]:cdr[m]]]

match[(X): (X)]

match[(A B E);(J 0 E)]
match[(K A Y);(S V E)]

- 80 -

Use the following definition to evaluate these forms:

twist = A[[s];[atom[s]-= s;T—= cons[twist[cdr[sj];
twist[car[s]]]]]

162. twist[A]

163. twist[(A . B)]

164. twist[((A . B) . C)]
165. twist[(A B C)]

166. twist[((A . B))]

L. 1list vs. S-expression Recursions.

Recursive LISP functions are generally terminated in either
of two ways. In operations which deal with data which are lists
(that is can be expressed in list-notation), the termination is
by null when a datum is exhausted. In functions dealing with
dot notation data (that is with data in which atoms other than
NIL may occur in the cdr part), the corresponding terminating
condition is atom.

Examples:

null-termination is used in a recursion down a list in the
function among which decides whether or not an atom is among
those on a list:

among = A[[a;kk];[null[kk]-= F;eq[a;car[kk]]-= T;T-=among
La;edr{kk]]]]
atom-termination is used in the recursion in inside which
decides whether or not an atom appears anywhere in an S-expres-
sion:

inside = a[[a;s];[atom[s}= eq[a;s];
inside[a;car[s]]-= T;
T-= inside[a;cdr[s]]]]

Exercises (167-175 are list type; 176-178 are S-expression type.)
Write LISP functions for the following purposes:

167. to determine whether an atom is a member of a list.
e.g. member[B;(A B C)]

member[X; (A B C)]

member[A; (B (A B) C)

[« T L]
LT3

= F
168. to produce a table (list of dotted pairs) given two lists,

- 81 -

one of the references, the other of values.

e.g. pair[(ONE TWO THREE);(1 2 3)] = ((ONE . 1)(TWO . 2)
(THREE . 3))
pair[(PLANE SUB);(B47 THRESHER)] = ((PLANE . B47)
(SUB . THRESHER))

169. to append one list onto another.
e.q. append[(ABC);(DEF)]=(ABCDEF)

append[((A B) C (D (E)));((A))] = ((A B) C (D (E))
(4))

170. to delete an element from a list.

e.g. delete[Y;(X Y 2)] = (X 2)
delete[X; ((UV) X V)] = ((UV)Y)

171. to reverse a list. (Hint: wuse append.)

e.g. reverse[(A B C)] = (CB A)
reverse[(A (B C) D)] = (D (B C) A)

172. to produce a list of all the atoms which are in either of
two lists.

e.g. union[(UVW,WXYV]=(UVWXY)
union[(A B C);(BCD)] = (AB C D)
union[(A B C);(ABC)] = (ABC)

173. to produce a list of all the atoms in common to two lists.

e.g. intersection[(AB C);(BCD)] = (B C)
intersection[(A B C);(ABC)] = (A B C)
intersection[(A B C);(D E F)] = NIL

174. to find the last element on a list.

e.g. last[(ABC)] =¢
last[((A B)(C))] = (C)

175. to reverse all levels of a list.

e.g. superreverse[(A B (CD))] = ((DC) B A)
superreverse[((U V)((X Z) Y))] = €(Y (Z X))(V 1))

176. to determine whether a given atomic symbol is some part of
an S-expression.

- 82 -

e.g. part[A;A]l =T
part[A;(X . (Y . A)] =T
part[A; (UV (W .X) Z)]=F

177. to substitute one atomic symbol for another in an S-expres-
sion.

e.g. subst[X;Y;(UVWXYZ)]=(UVWXXZ)
subst[X;Y; ((U Y) X ((Y) 2))] = ((U X) X ((X) Z))

178. to produce a list of all the atoms in an S-expression.

e.g. listofatoms[(A (B C) D)] = (A B C D)
listofatoms[((B (C D)) E)] = (B C D E)
listofatoms[{A . (B . €))] = (A B C)

M. A Differentiation Program.

A simple differentiation program can easily be written in
LISP which will serve two purposes for us: it will be an example
of an application of LISP; and will illustrate the usefulness of
prefix notation in representing algebraic expressions.

The differentiation rules which we will be implementing are:

dx

X = (rule 1)
dy -
&= 0,y # 0 (rule 2)
du + v) = du + dv
= il (rule 3)
dlu . v) - (du + dv (rule 4)
dx dx dx

The LISP function diff{e;x] is to differentiate the alge-
braic expression e with respect to the variable x. Clearly some
way of representing algebraic expressions as S-expressions must
be invented, since the arguments of diff must be S-expressions.

There are many possible ways to represent an algebraic ex-
pression as an S-expression, e.g., y + zw might become (Y PLUS Z
TIMES W} or (Y SUM (Z PRDCT W)) or (PLUS Y (TIMES Z W)).

We shall choose this last representation (called Polish pre-
fix notation) for reasons of convenience, and will specify it as
follows:

- 83 -

1. Algebraic constants and variables shall become atoms,

y—== Y, o-= RHO, 37-= THIRTYSEVEN

(The programmed versions of LISP all handle numbers more conveni-
ently than this?)

2. The operators + and . shall be limited to two operands
by associative grouping, e.g.

x+y+z-—>=x+ (y+ 2)
u.v.w-=u.{v.w

3. We will use the notation convention that an expression
followed by * means the translation of that expression. All ex-
pressions will be in prefix notation, i.e.

x + y = (PLUS x* y*)
X . y = (TIMES x* y*)

The following examples should clarify these rules.

Algebraic Expression S-expression Representation

a+b (PLUS A B)

a.b (TIMES A B)

a. (b+c) (TIMES A (PLUS B C))

a+ B+ ¥x (PLUS ALPHA (PLUS BETA (TIMES
GAMMA X)))

2nr (TIMES TWO (TIMES PI R))

The program for diff using this representation for algebraic
expressions is straightforward:

diff = A[[e;x];

[atom[e] —= [eq[e;x] —= ONE; (Rule 1)
T -= ZEROJ; (Rule 2)
eqlcar[e];PLUS] —= 1ist[PLUS;diff[cadr[e]:x]; (Rule 3)
diff[caddr[e];x]]
eqlcar[e];TIMES] —= list[PLUS; (Rule 4)

list[TIMES;caddr[e];:diff[cadr[e];x]]
1ist[TIMES; cadr[e];diff[caddr[e];x]]]]]

Exercises. Evaluate these forms:

179. diff[(PLUS A X):X]
180. diff[(TIMES A X);X]
181. diff[(TIMES THREE X);Y]
182. diff[(PLUS Y Y);Y]

-84 -

183. diff[(TIMES TWO (TIMES Z Z));Z]

Adding the following translation rules for converting alge-
braic expressions to S-expressions allows us to add new rules to
increase the power of diff.

Algebra S-expression

-x (MINUS x*)
)l(/x (RECIP x*)
sin[x] (SIN x*)
cos[x] (COS x*)

Additional clauses can be added to the main conditional ex-
pression of diff which implement these additional rules.

Example:
dé_U) = 'C%ﬁ) is implemented by adding this clause to diff:

eqlcar[e];MINUS] —= 1ist[MINUS;diff[cadr[e];x])
Exercise.

Implement the following differentiation rules by writing a
clause for diff to handle each:

1 du
184. d() 4

dx u . u

185. d{sin u) du
I = (cos u) . ()

dx
186. dlcos w) _ _ (sin w) . Yy
dx dx

N. S-expression Representation of LISP Expressions. Read Section
1.6.

Exercises. Translate these M-expressions into S-expressions.

187. a

188. x

189, A

190, T

191. NIL

192. ((A B))
193. QUOTE
194. (QUOTE A)
195. car

-85 -

196. car[x]

197. carlA]
198. atom|x]
199. ff[x]

200. fflcar(x]]

201. [atom[x]-= x;T-= ff[car[x]]]

202. a[lx];x]

203. all[x];car{x]]

204. a[[x];[atomx]-= x;T-= ff[car[x]]]

205. label| ff:a[[x]:[atom[x]-= x;T-= ff{car[x]]]

206. A[[xI;ally]; car[y]][x]]

0. Table Building and Searching.

Evaluate the following forms. Use the definitions of
pairlis and assoc given in Section 1.6, changing the occurrence
of equal in assoc to eg.

207. pairlis[NIL;NIL;({Y . B))]

208. pairlis[(X);(A);NIL]

209. pairlis[(X Y);(A B);((Z . C))]

210. assoc[Y;((X . A) (Y . B) (Z . C))]
211. assoc[X;pairlis[(X);(A);((Z . c))]]

P. A LISP Interpreter

Using the Section 1.6 definitions of apply, eval, pairlis,
evcon and evlis and witha = ((X . M) (Y . T) (Z . (MN)) (T . T))
evaluate the following.

212. assoc[Z;a]

213. assoc[Y;a]

214. eval[(QUOTE A);a]

215. eval[T;a]

216. eval[X;a]

217. evlis[(X);a]

218. evlis[(X Y 2);a]

219. evcon[((T X)):a]

220. eval[(COND (T X));a]

221. apply[CAR;((A));a]

222. apply[CONS;(A B);a]

223. apply[CONS; ((A) (B));()]

224. apply[CAR;(A);()]

225. evalf(ATOM X);a]

226. evcon[(((ATOM X) X) (T (FF (CAR X)))):a]
227. eval[(COND ((ATOM X) X) (T (FF (CAR X)))):a]
228. apply[(LAMBDA (X) (CAR X));((A));()]

229. apply[(LABEL GARP (LAMBDA (X) (CAR X)));((A));()]

- 86 -

230. apply[FIRST; ((A)); ((FIRST . CAR))]

231. apply[(LAM?DA (X) (COND ((ATOM X) X) (T (FF (CAR X)))));
(A); ()

232. apply[(LABEL FF (LAMBDA (X) (COND ((ATOM X) X) (T (FF
(CAR X))))));(A);()]

233. apply[(LABEL FF (LAMBDA (X) (COND ((ATOM X) X) (T (FF
(CAR X))))));((€Q . R) (S . T)));()]

Q. Fifteen Minute Problems

Write the LISP functions described below. You need not re-
define any functions you use which appeared in an earlier exer-
cise. Assume that integers are atomic symbols.

234. infix[polish;table] is to convert an expression from Polish
to infix notation, using a table which gives the correspondence
between prefix and infix operators.

e.g. infix[(TIMES 3 A B);((PLUS . +) (TIMES . X))] =
(3 X AXB)
infix[(DIVIDE (TIMESza@g) (PLUS 3 (TIMES« 2) A B));
((PLUS . +) (TIMES . X) (DIVIDE . /))] =
((zXaXB)/(3+ (@X2) +A+B))
235. polish[infix;table] is to do the corresponding reverse
transformation.
236. permut[string] is to produce a list of all the permutations
of a given string, assuming that all the elements of the original
string are unique.

e.g. permut[(AB C)] = ((ABC) (ACB) (BAC) (BCA)
(C AB) (CBA))
237. permutations[string] is to produce a list of all the per-
mutations of a given string, whether or not the elements are
unique. Note: It is difficult to do this in an efficient way.

e.g. permutations[(A AB)] = ((A AB) (ABA) (BAA))
238. 1Invent the necessary S-expression representation and write
clauses for diff to implement Leibnitz*® rule:

b () b
d df db
do f(x,00)dx = G dx + f(b,x) Qo ~ f(a,o) %_Z—(
aol) a

239. Given the predicate reater[x;y] which orders atomic sym-
bols, i.e., if greater[x;y? = T, then greater[y;x] = F where x
and y are any two different atoms, write the predicate larger
[x;y] which orders S-expressions, i.e., if larger[x;y] = T, then
larger[y;x] = F.

- 87 -

240. One S-expression is a factor of another S-expression if the
second includes the first as a sub-expression. An S-expression
equivalent to a greatest common divisor is a common sub-expression
which is not a factor of any other common sub-expression. (It is
not necessarily unique.) Write functions to find a greatest com-
mon divisor of two S-expressions.

e.g. gcd[(A . ((B .C) .D);(E . B .CN]=(B.C
Write functions to find all the g.c.d.®s of two S-expressions.

e.g. allgeds[(X . (Y . (A .B)));(B . (X . ¢ .B)]-=
((A . B) X)

- 88 -

W WWWWWNRNMNDNMDMNMN DN RN — — e o o ot s
SN WPNFFOORXNTUTR WD~ OO D R —

w
-~

38.
39.

490.
41.
42.

[a—
QOO NTU R W~

ANSWERS

yes
no

yes

no

yes

A

B

(FOO . CROCK)
GLITCH
undefined
(POOT . TOOP)
(X . (Y . 2))
T

F .
undefined

=
(=]
N

WHSH T~ T

true
true
false
true
false
false
true
A
((PLOOP . NIL)
(TOP . NIL)))
((X . (GLITCH . NIL))
(Y . (CROCK . NIL))
NIL))
(C(x .

. (FLOP .

NIL) . NIL)

(SNAP . ((CRACKLE .
NIL) . NIL))

((A) (B))

(ABC)

(NIL)

. NIL)

. NIL))

((POP .

43.
44.
45.
46.
47.
48.
49.
50.
ol.
52.
93.
4.
95.
06.
S57.
98.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
T1.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
86.

- 89 -

((A B) (C))
not list

A

(B €)

AB

A

NIL
undefined
undefined
(A B)

¢A B C)

(A . B)

(A)

(NIL . A)
((A) B C)
((AB) CD)
(A B) .0
((A . B) (C
((A B))
((a))
(TFTF)
T

car[x]
cadr[x]
cdr| x]
caddr[x]
cadddr[x]
caar[x]
cdar[x]
caaadr[x]
caadr[x]
caaaar[x]

. D) (E .

F
T
T
F
T
T

(A B C)

((A) (B) (C))
T

F

cons[A;B]
list{X;Y]

list[1ist[A;B];1ist[C;
list[cons[A;B];cons[C;

Al

1 4

F))

D]]
D]]

89.
90.
91.
92.
93.
94 .
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
I11.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.

list[1ist[1ist[A]]]
list[cons[B;C]]
tist[1ist] J;list{ 1]
list{A;B;C;D]

=TT

)

(B C)

B

C

NIL
undefined

<= 'TJP-BF-]EEH‘TJOUJP—J
(@]
A4

ndefined

ndefined

ndefined

=
-

g
ws)
(]
N

. C))

—~
=
we]

ndefined

J>;J>O: HAm P ~~=S2Z2Z s @P>s 3P
N

137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.

157.

158.

159.
160.
161.
162.
163.
164 .
165.
166.
167.

168.

169.

170.

- 90 -

A
A
A
B
B
(C . B)
A
S
(A.C)
(A . B)
(A .0
T
F
F
F
T
T
jLA] =

JJ[(A . B)] = jj[B] = B
jilex oY) L . 2]

: JJ[(X 2] = jjlz]

JJ[(A BC]=jjlC)]
= jjly] = jjINIL] =
NIL

jjl¢a (¢ . EM]
jjlcc . EN]
jjINIL] = NIL

X

E

NO

A

(B . A)

(C. (B .A)

(((NIL . C) . B) . A)

(NIL . (B . A))

member = A[[x;m];null[m]--
F:eq[x;car[m]] T;T =
member[x;cdr[m]]]]

pair = a [m:n];[nutl{m]-=
NIL; T——-cons[cons[car[m];
car|]] airlcdr[m];
cdr[n]] ﬁ

append = A[[m n):[null[m]
——n; T cons[car[m];
append[cdr[m];n]]]]

delete = A[[x;m];[null[m]
——-NIL;eq[x;car[m]]*»

171.
172.

173.

174.
173.

176.
177.
178.

179.
180.
181.
182.
183.

184.
183.
186.

187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
168.
199.
200.
201.
202.
203.
204.

cdr(m];T-= cons[car[m];delete[x;cdr[m]]]]]

reverse = A[{m];{null[m]-= NIL;T-= append[reverse[cdr[m]];
list[car[m]]]]]

union = al[m:n];[nu11[m)—= n;member[car[m];n]-= union[cdr(m];
n);T-= cons[car[m];union[cdr{m];n]

intersection = A[[m;n];[null[m]-= NIL:member[car[m];n]—=
033§[car[m];intersection[cdr[m];n]];T——-intersection[cdr[mL
n

last = A[[m];[null[cdr[m]a——-car[m];T-——last[cdr[m]]]]

superreverse = Al[m]:atom m |- m;null[m]-— NIL; T-»=
append superreverse[cdr[m]ﬂ;1ist[superreversegcar[m]]]]]]

part = al[x;s];[atom[s]-= eqlx;s];part[x;car[s]]-= T;T-=
part[x;cdr[s]]]]

subst = a[[x;y;s]i[atom[s]-= [eqly;s]-= x;T-= s];T-=
cons[subst[x;y;car[s]];subst[x;y;cdr[s]]]]

listofatoms = a[[s];[atom[s]= list[s];T-=
union[listofatoms[car{s]];listofatoms{cdr[s]]]]]

(PLUS ZERO ONE)

(PLUS (TIMES X ZERO) (TIMES A ONE))

(PLUS (TIMES X ZERO) (TIMES THREE ZERO))

(PLUS ONE ONE)

(PLUS (TIMES (TIMES Z Z) ZERO) (TIMES TWO (PLUS (TIMES Z ONE)
(TIMES Z ONE))))

eqlcar(e];RECIP]-= 1ist[TIMES;1ist[RECIP;1ist[TIMES; cadr[e];
cadr(e]]];diff[cadr{e];x]]

eqlcar[e];SIN]-= 1ist[TIMES;1ist[COS;cadr[e]];diff[cadr[e]:

X
eqlcar[e];C0S]-=1ist[MINUS;1ist[TIMES;1ist{SIN;cadr[e]]:
diff[cadr[e];x]]]
A
X
(QUOTE A)
(QUOTE T)
(QUOTE NIL)
(QUOTE ((A B)))
(QUOTE QUOTE)
(QUOTE (QUOTE A))
CAR
(CAR X)
(CAR (QUOTE A))
(ATOM X)
(FF X)
(FF (CAR X))
(COND ((ATOM X) X) (T (FF (CAR X))))
(LAMBDA (X) X)
(LAMBDA (X) (CAR X))
(LAMBDA (X) (COND ((ATOM X) X) (T (FF (CAR X)))))

- 9] -

205. (LABEL FF (LAMBDA (X) (COND ((ATOM X) X) (T (FF (CAR X))))))
206. (LAMBDA (X) ((LAMBDA (Y) (CAR Y)) X))

207. ((Y . B))

208. ((X . A))

209. (X . A) (Y . B) (Z.C))

210. (Y . B)
211. (X . A)
212. (Z . (M N))
213. (Y . D)
214. A

215. T

216. M

217. (M)

218. (M T (M N))
219. M

220. M

221. A

222 (A . B)

223. ((A) . (B)) = ((A) B)
224. undefined

225.
226.
227.
228,
229.
230.
231.
232.
233.

O rr> =2 =243

- 92 .

Notes on the Debugging

of LISP Programs

Elaine Gord

Information International, Inc.

The purpose of these brief remarks is to provide some guid-
ance to those persons whose programs expressed in LISP do not
run on the computer. Most of the suggestions here stated were
learned the hard way, from experience.

Parentheses

The most frequently occurring errors in LISP are parenthe-
tical errors. It is thus almost imperative to employ some sort
of counting or pairing device to check parentheses every time
that a function is changed.l The spelling of words and the pos-
sible confusion of the numbers 1 (one) and O (zero) and the let-
ters I (i) and O (o) respectively can be checked at the same time.
When the program is to be run, any number of the functions being
defined can be put between the two punch cards DEFINE((and)).
An unpaired parenthesis can be found most quickly, however, by
putting the functions concerned within separate "DEFINE" state-
ments. No read-in error will occur until the parentheses do not
pair. It is however necessary but not sufficient that there be
the same number of left and right parentheses, because pairs of
unnecessary parentheses may be present or pairs of necessary ones
absent.

- 93 _

Parentheses must be correctly located. A left parenthesis
must appear immediately to the left of a function name, when the
function is applied to arguments. For example (CAR CDR X) is
incorrect because there should be a left parentheses immediately
to the left of CDR (and a matching right parentheses after X),
that is, it should be (CAR (CDR X)). The expression (CAR X))
is incorrect because the left parentheses next to X indicates
incorrectly to the LISP interpreter that X is a function name.
The correct expression is (CAR X). When a function name such as
CDR is meant to be an argument, it should be expressed in the
form (FUNCTION CDR).

Functions and Arguments

For each appearance of a function, the number and order of
its arguments should be checked. In contrast with forms, which
have an indefinite number of arguments, each function has a fixed
number of arguments. The order of arguments may not be important
for a few functions (such as EQUAL or INTERSECTION), but it is
extremely important for most. MEMBER is a good example. Not on-
ly would the answer be incorrect if the order of arguments were
reversed; but if the proper first argument were an atom, the func-
tion could not be evaluated.

It is clear that each argument must be of the right kind.
This is most obvious when the distinction is between lists and
atomic symbols. If a list is expected, the argument should not
be atomic. If an atomic symbol or a number is expected, the argu-
ment should not be a list. Also, there are different kinds of
lists, and some functions demand certain types of lists as argu-
ments. For example, a function that calls CAAR or CDAR presup-
poses a list containing lists as elements. If a function is
meant to operate on a list of the form ((A . B) (C . D) (E . F)),
it should not be given a list of the form (AB CDE).

List Making Functions

Among the list-making functions are CONS and APPEND. The
type of output desired will determine the function chosen since
each handles parentheses and the value NIL in a different way.
APPEND will not list NIL as a first element, but CONS will. 1In
contrast to LIST, neither will list NIL as a last element. All
of these functions are used in recursive functions in which the
value of the terminating condition is NIL. Any terminating value
other than NIL will introduce dot notation, except in the case of
the function LIST.

- 94 -

Terminating Conditions

Terminating conditions are almost always the most important
aspects of recursive functions. They must be of the right kind,
they must terminate in the right place, and they must cover all
possibilities. Often several terminating conditions are needed.
Output containing expressions such as PNAME or many NILs often
indicates that the function did not terminate correctly.

No Duplicate Names

In addition to checking parentheses, arguments, and condi-
tions for each function, it is a good idea to make sure that the
name of the function has not already been used for a function or
form the system tape, expecially if the two functions do not have
the same purpose. In effect, changing the definition might make
it impossible for other functions to work. For example, since
DEFI is called by DEFINE, if a different DEFI is introduced the
DEFINE will no longer work correctly.

After a program has been run, errors can often be localized
by noting the offending value and those functions in the back-
trace following the error diagnostic which have been entered but
not completed.

lInformation International Inc. has a program for the PDP-1
which counts parentheses as follows: The count, which appears in
red on the listing beside each parenthesis, begins with a zero at
the first left parenthesis and is indexed for subsequent left pa-
rentheses until a right parenthsis occurs. For the first right
parenthesis the count retains the value of the preceding left pa-
renthesis and is decreased by one for succeeding right parentheses
until a left parenthesis occurs, for which the count remains the
same, and so on. The count at the final parenthesis of an expres-
sion should, then, be zero. If an error is indicated, it can be
found by matching numbered pairs.

_ 95 -

Styles of Programming in LISP

Fischer Black

Bolt Beranek and Newman, Inc.
Cambridge, Mass.

When programmer A writes a program that compiles into 10
instructions and takes 1 minute to run, and programmer B writes
a program to do the same job that compiles into 100 instructions
and takes 10 minutes to run, we say that programmer A is better
than programmer B. But when programmers A and B write programs
that compile into about the same number of instructions, and have
about the same running time, but look very different, we say that
programmer A has a different style from that of programmer B.

Programming style is not a matter of efficiency in a program.
It is a matter of how easy it is to write or read a program, how
easy it is to explain the program to someone else, how easy it is
to figure out what the program does a year after you've written
it; and above all, style is a matter of taste, of aesthetics, of
what you think looks nice, of what you think is elegant.

Although style is mainly a matter of taste, a programmer

with a "good" style will find his programs easy to write, easy

to read, and easy to explain to others. If you prefer a compli-
cated style, you may be penalizing yourself in the long run. What
Charles Horton Cooley said about fiction applies to programming
too: "An elaborate style has perils like those of an elaborate
house. It commits the author, by habit and the expectation of
others, to a special and costly way of living, which will become
a burden when he loses the wish or the power to keep it up."

- 96 -

In particular, you may have acquired special programming
tricks that you are very fond of, and that aren't used by other
programmers, but that don't make your programs much more effi-
cient. I urge you to stop using those tricks. As Samuel Johnson
once said, "Read over your compositions, and when you meet with
a passage which you think is particularly fine, strike it out."

In other words, make your style simple, not complicated,
even though the complicated style may seem to have some abstract
virtues.

Your style is developed by a series of choices. Which do
you write, "()" or "NIL"? They compile into identical data struc-
tures; so choosing one over the other is a matter of style. Do
you put commas in your lists, or do you separate the items with
spaces? The lists will look the same inside the machine whether
you put the commas in or leave them out; so it's not a matter of
efficiency, it's a matter of style. If you had to write the
value of "cons[€A B);(C D)]", which way would you write it:

((AB) - (CD)
((AB) CD)

And which of these expressions would you write:

eq[x; NIL]
null| x]

All of these choices contribute to your style.

Choice of the Program Feature or Functionals

To help in the developing of a good style, I am going to
discuss two of the more complex choices you can make in LISP.
{1) Should you use the program feature? (2) Should you use
functionals?

I'm not saying you should always use the program feature,
and I'm not saying you should never use it. But it is desirable
to make the choice consciously in each case, without feeling that
it must be written one way or the other. I happen to favor using
the program feature and not using functionals, but the choices
are up to you.

The program feature is not given much attention in the manu-
al; the first mention of it is on page 29. But any function that
can be written without the program feature is a function that can
be written with the program feature. A trivial way is to take a

- 97 -

function defined as "A[[x]; ---]" and rewrite it as "\[[x];
prog[[]; return[---]]]". The resulting function will be equiva-
lent to the original. The reverse is also true — any function
written with the program feature can be written without.

I will give below some examples of functions written with
and without the program feature, and then some examples of func-
tions written with and without functionals. The final examples
illustrate changes in both aspects of style at the same time. In
the appendix, I have included S-expression translations of the
first 5 examples.

You may use the program feature or you may not use it; you
may use functionals or you may not use them. The examples below
are to help you choose your style.

MEMBER

For illustration, let us take the function "member". It is
built into the LISP system, and is described on pages 11 and 62

of the manual. A couple of examples may make it clearer:

member(C; (A B C)]= *T*
member[D; (A B C)]= NIL

Below I have written "member" using the program feature, and for
comparison have put in the definition given in the manual.

Example 1

member[x;y]z rOg[[J:

A [nullfy]—» return[F];
equal[x; car[y]]— return[T]];
y:= cdrly];
go[A]]

Example 2
member[x;y]=
[nullly]— F;

equal[x; car[y]]l— T;
T— member[x; cdr[y]]]

FACTORIAL

The function "factorial™ is not built into the LISP system
in the manual. As a numerical function it has values like

- 068 -

factorial[l]= 1
factorial[2]= 2
factorial[3]= 6
factorial[4]= 24

> s a .

Writing "factorial” using the program feature is certainly longer
than writing it without, but this is a clear example of the dif-
ference in spirit between using the program feature and not using
it.

Example 1
factoriall[x]= prog[[ly];

A Eonep[x]-» return[y]];
y:= times [x; yli;
X:= subl[x];

go[A]]

Example 2

factoriall[x]=
[onep[x]— 1;
T— times[x; factorial[subl[x]]]]

REVERSE

An example of the use of the function "reverse" is given
on page 62 of the manual. Here are two more:

reverse[(A B C)]= (C B A)
reverse[(A (B €))]= ((B C) A)

To write "reverse" without using the program feature, you must
put in an extra function definition.

Example 1

reverse[x]=prog[[YJ;

A [null[x]> return[y]];
y:= cons[car[x]; yﬁ
x:= cdr[x];
go[A]]

Example 2

reverse[x]= reverse2[x; NIL]

- 99 _

reverse2{x; y]z
[nulllx]— y;
T— reverse2[cdr[x]; cons[car[X]; YJ]J

YDOT

An artificial but simple example of the use of functionals
is the function "ydot" described on page 78 of the manual. The
example of the application of the function given there is

ydot[(ABCD); X]= ((A.X) (B.X)(C.X)(.X))

The function "ydot" is not a functional and is not supplied in
the system, but the function "maplist", which can be used in de-
fining "ydot", is a functional and is supplied in the system., 1
show below how "ydot" can be defined either using or not using
the function "maplist". 1It's just a matter of style.

Examgle 1

ydot[x; yJ=
maplist[x; A[[j]; cons[car[j]; y]]]

Example 2

ydot[x; yJ=
fnull[x]-» NIL;
T— cons [cons [car [x]; y]; cons[cons[car[x]; y];
ydot [edr [x]; y]l]

SUBLIS

The function "sublis" is built into the LISP system, and can
be illustrated by

sublis[({(U . (PLUS X Y)) (V . (PLUS Z W))):
(TIMES U V)]= (TIMES (PLUS X Y) (PLUS Z W))

Another illustration is given on page 12 of the manual. Two de-
finitions of "sublis" are given in the manual, one on page 61
which uses the functional "search™, and one on page 12 which
doesn't use any functionals. I reproduce them both below.

Example 1
sublis[x; y]=

[null[x]—+ y;
null[y]—+ y;

- 100 -

T-> search[x;
X [[j]; equally; caar[j]]];
X [[j]; cdar[jl];
NG [atomfy]—+ vi
T— cons[sublis[x; car[y

11
sublis[x; cdr[y]]]]1]]]

Example 2

sublis[aﬁ y]=[] o]
atom —» sub2|a; ;
T—+Ocozs[sublis[a; Zar[y]]; sublis[a; cdrly]]]]
sub2[a; z]=
ot eela): 1o cagarlal
s swpdlcarlal: 21]

PRINTPROP

The function "printprop” is supplied in the LISP system and
is described on page 68 of the manual. To illustrate its use,
suppose you have executed

deflist[((REQUEST (PASS MUFFINS))) ; VALUE]

which puts "(PASS MUFFINS)" on the property list of "REQUEST"
under the indicator "VALUE". Then the instruction

printprop[REQUEST]
will cause the following to be printed.

(PROPERTIES OF REQUEST)
VALUE
(PASS MUFFINS)

If you're puzzled by the extra "cdr[k]" in the examples below,
don't forget that "car" of an atom is always -1 (that's how you
know it's an atom), so "cdr" of an atom is its property list.

The first example uses a functional but not the program
feature; the second uses the program feature but no functionals.

Example 1
printproplk]=
prog2[print[1ist[PROPERTIES; OF; k]]:
printpl[cdr[k]]]

- 101 -

printpl[k]:
[null[k]- NIL;
T— prog2[print[car{k]];
search| (SUBR FSUBR PNAME SYM);
AN[[j]; equall[car[j]; car[k]]];
M [j]; printpl{cddr{k]]];
Z[[jl; printpl [cdr[k]]]]]]

Example 2

printprop(k]= prog[[m];
print[1ist[PROPERTIES; OF; k]J;

k:= cdr(k];
A [null[k]+ return[NIL]];

m:= car[k];

k:= cdr[k];

rint[m];

Emember[m; (SUBR FSUBR PNAME SYM)] -+
:= cdrlk]];

go[A]]
Differentiating

The next function diff is used to differentiate algebraic
functions formed from variables by addition and multiplication.
A sample expression is

(TIMES (PLUS X Y Z) (PLUS U Y))

The derivative that the function gives is not in the form a per-
son would write — for example, the derivative of "(PLUS X Y)"
with respect to "X" is given by

diff[(PLUS X Y): XJ= (PLUS 1.0 0.0)

The first version of "diff" is written using the functional
"maplist"™ but not the program feature. The second version uses
the program feature but not "maplist". If you can't figure out
one version, try the other.

Example 1

diff[s; v]=
(atom[s]— [eq[s; v]—+ 1.0; T 0.0];
eqlcar[s]; PLUS]— cons[PLUS;
maplist[cdr[s]; N [si]; difflcar[si]; v]]]];
eqlcar[s]; TIMES]— cons[PLUS:;
maplist[cdr[s]; N[[si];

- 102 -

CEE5[§IM%S; maflist[cﬁr[s]; Coarlsil: v]
Misjil; ual|si; sj]—> difflcar|sjj; v
P el

Example 2

diff(s; v]=
[[atom[s]— [eqls; v]—+ 1.0; T— 0.0];
eq(car[s]; PLUS]— cons[PLUS; diffp[cdr[s]; v]];
eqlcarls]; TIMES]— cons[PLUS; difft[cdr{s]; v]]]
diffpls; vl= Erog[[m];

A [null[s]— return[reverse[m]]];
m:= cons[diff[car[s]; v]; m];
s:= cdr[s];
go [A]]

difft[s; v]= Frog[[m; k; r];

A [null[s]— return[reverse[k]]]; .
m:= conc[reverse[r]; list|diff|car[s]; v]]; cdrls]];
k:= cons[cons[TIMES; m]; k]:
r:= cons[car[s]; r];
S$:= cdr[s];
go[A]]

PAIRMAP

The functional "pairmap" is used in the LISP compiler. It
applies its functional argument to pairs of items from two lists
of the same length, and then attaches its last argument to the
end of a list of the resulting values. By way of illustration,

pairmap[(A B); (X Y); cons; ((C . 2))]=
(A .X) B.Y) (C.2Z))

I'm giving examples of two ways of writing "pairmap” partly to
show a subtle difference in style, and partly because "pairmap"
can be used in defining the main function of my last example,
"progiter". Both examples of "pairmap" use the program feature,
and neither uses functionals, though a functional is being de-
fined.

Example 1

irma [k; m; farg; z|= pro a; ;
b P [null[k]—g regurg[z%[g "]
b:= cons[farg{car[k]; car[m]]; z];
cdr[k];
cdr[m];
nulllk]—~ return[a]];

a
k
m
[

- 103 -

b:= cdr[rplacd[b; cons{farg{car[k]; carim]]; z]]};

golA]]
Example 2
pairmaplk; m; farg; z]= prog{[bl;)
A [null[k]— return{conc[reverse(b]; z]]];
b:= cons[farg{car[k]; car[m]]; bl;
k:= cdr[k];
m:= cdr[m];
go[A]]
PROGITER

The function "progiter" is used in the LISP compiler to
convert a function definition that doesn't use the program feat-
ure into a definition that does use the program feature and will
run faster when compiled than the original definition. You won't
be able to tell exactly how "progiter" works from the examples,
because I haven't included definitions of the functions "pil"
and "pi3". But you can follow the transformation from the origi-
nal version of "progiter", through an intermediate version that
uses the program feature, to a final version that uses the pro-
gram feature but does not use the functionals "pairmap" or "map-
list". To avoid using the functionals I have defined two sub-
functions, "pairmapl" and "gensyml". "Pairmapl" is like "pairmap"
with a specific function "pi2" put for its functional argument.
"Gensyml" generates a list of new atomic symbols.

Example 1

progiter[name; exp)=
[eq[caaddr[exp]; COND] A pil[cdaddr{exp]]—
Algl; ¢2; vs; gsl;
1ist[LAMBDA; vs;
cons| PROG; cons[gs; cons[gl;
pi3[cdaddr[exp]; NIL; cons[g2;
pairmap[vs; gs; pi2; list[1ist[GO; ¢1]]1]111]1]]]
[gensym[]; gensym[]; cadr[expl;
maplist{ cadr[exp]; gensym]];
T— exp]
pi2(j; kJ= 1ist[SETQ; j; k]

Example 2
progiter[ngme; exp = prOﬁ[[gl; ?2; VS gS; XJ:

[-leqlcaaddrlexpl]; COND]Apillcdaddrlexp]]]—
return|exp]];

- 104 -

gensym[J;

gl:=

g2:= gensym[];

VS:= cadr%

gs:= maplist cadr[ex]; gensym];

x:= list[1ist[GO; glﬁ]

x:= pairmap[vs; gs; pi2; xJ;

X:= p13[cdaddr[exp] NIL; cons[g2; x]]:
x:= cons[PROG: cons[gs cons[gl; x11];

return[llst[LAMBDA vs; xJ]]

pi2lj; kl= 1ist[SETQ; j; k]

Example 3
progiter[name; exp]= Erog[[u, gl; g2; vs; gs; xJ;

us= eqicaaddr
[- u—> return[exp

gl:= gensym[],
g2:= gensym[].
vs:= cadr[exp]

gs:= gensymlFlength[vs]];

x:= list[1ist[60; g1]];

x:= pairmapl{vs;gs;x];

x: p13[cdaddr[exp] NIL; cons[g2; x]J;
x:= cons[PROG; cons[gs cons(gl; x]11;
return[1ist[LAMBDA; vs; x]]]

II mn o

gensyml[x] prog[[y].

A

[zerOp[x]-+ return[y]];
y:= cons{gensym[]; y];
X:= subl[x H

go[A]]

pairmapl[1; m; a]= prog[[b];

A

[nul1l[1]-> return[conc[reverse[b]; z]]%;
b:= cons[1ist[SETQ; car[1]; car[m]]; b];

1:= cdr[1];
m;= cdr[m];
go[A]]

- 105 -

expl; COND] Apll[cdaddr[exp]]

Appendix

S-EXPRESSION TRANSLATIONS OF FIVE EXAMPLES

Member

(MEMBER (LAMBDA (X Y) (PROG ()

A (COND ((NULL Y) (RETURN F))
((EQUAL X (CAR Y)) (RETURN T)))
(SETQ Y (CDR Y))
(GO A))))

(MEMBER (LAMBDA (X Y) (COND
((NULL Y) F)
((EQUAL X (CAR Y)) T)
(T (MEMBER X (CDR Y))))))

Factorial

(FACTORIAL (LAMBDA (X) (PROG (Y)
(SETQ Y 1)
A (COND ((ONEP X) (RETURN Y)))
(SETQ Y (TIMES X Y))
(SETQ X (SUB1 X))
(GO A))))
(FACTORIAL (LAMBDA (X) (COND
((ONEP X) 1)
(T (TIMES X (FACTORIAL (SUBI X)))))))

Reverse

(REVERSE (LAMBDA (X) (PROG (Y)
A (COND ((NULL X) (RETURN Y)))
(SETQ Y (CONS (CAR X) Y))
(SETQ X (CDR X))
(GO A))))
(REVERSE (LAMBDA (X) (REVERSEl X NIL)))
(REVERSE1 (LAMBDA (X Y) (COND
((NULL X) Y)
(T (REVERSE1 (CDR X) {(CONS (CAR X) {(CONS (CAR X) Y))))))

YDot

(YDOT (LAMBDA (X Y)
(MAPLIST X (FUNCTION (LAMBDA (J)

- 106 -

(CONS (CAR J) Y))))))
(YDOT (LAMBDA (X Y) (COND
((NULL X) NIL)
(T (CONS (CONS (CAR X) Y) (YDOT {(CDR X) Y))))))

Sublis

(SUBLIS (LAMBDA (X Y) (COND

((NULL X) Y)

((NULL V) V)

(T (SEARCH X

(FUNCTION (LAMBDA (J) (EQUAL Y (CAAR J))))

(FUNCTION (LAMBDA (J) (CDAR J)))

(FUNCTION (LAMBDA (J) (COND

((ATOM Y) Y)

(T (CONS (SUBLIS X (CAR Y))

(SUBLIS X (CDR Y))))))))))))

(SUBLIS (LAMBDA (A Y) (COND

((ATOM Y) (SUB2 A Y))

(T (CONS (SUBLIS A (CAR Y)) (SUBLIS A (CDR Y)}))))))
(SUB2 (LAMBDA (A Z) (COND

((NULL A) Z)

((EQ (CAAR A) Z) (CDAR A))

(T (SUB2 (CDR A) Z)))))

- 107 -

Techniques Using LISP
for Automatically Discovering

Interesting Relations in Data

Edward Fredkin

Information International, Inc.

(Note: This paper, which was written June 1963, should be
considered in the nature of a prelude to the paper by Malcolm
Pivar, written in December 1963, which reports on further devel-
opment of the ideas discussed here.)

The utility of a computer program that could automatically
"discover"” interesting features of a large mass of data, would
unquestionably be great. Basically, that which one wants to know
is interesting — that which one does not want to know is unin-
teresting. The separation — and elucidation —of the relations
involved is a problem of great complexity. Undoubtedly the com-
plete solution to the problem — even in the restricted context
of data reduction and analysis — will await the creation of a
vast and very well programmed computing facility.

In the meantime, a somewhat less omni-analytic machine would
be a most useful aid not only to the experimenter but, more gen-
erally, to anyone who had to quickly see and comprehend the im-
portant relations to be found in a continual stream of incoming
data. A classical example is the Field of Battle, where a com-
mander must exercise control on the basis of incoming raw data.

- 108 -

A Model Situation

A feasible intermediate goal, however, would be the creation
of a computer program that would operate on numerical data, char-
acterize the data in some appropriate fashion, automatically dis-
cover interesting relationships in the data, and inform the user
of these relationships.

Initially, such a program would be limited to simple situa-
tions and simple forms of data. However, with time, experience
and effort, the capabilities of such a program could be developed
to the point where it would represent a significant advance in
the current state of computer technology.

What is "Interesting"?

The first step in this development process is the definition
of "interesting" in a way sufficiently objective, precise, and
simple to allow the formulation of an algorithmic definition. Such
a definition, in turn, serves as the basis of a computer program
capable of distinguishing between "interesting” and "uninterest-
ing" data.

In expressing such a definition, however, it is desirable to
keep in mind the context or background in relation to which an
individual datum is to be considered "interesting" or "uninterest-
ing". For example:

(i) A penguin in Antarctica is not interesting
(ii) A penguin in a zoo is not interesting
(iii) A zoo in Boston is not interesting
(iv) A penguin in Boston and not in a zoo is,
however, somewhat interesting.

Thus a penguin may be interesting or not according to con-
text.

Assume that the context that we are considering is a continu-
al stream of numbers. The fact that these are numbers will, in
itself, be uninteresting. The only possible point of interest is
the characteristics of the numbers themselves. For example, in
the following sample of a sequence:

ey T Te T To Ty To Ty Te Ty T Ty T Ty To wenen

the only interesting statement is "the sequence consists of a
series of sevens". It is not, for example, interesting to say

- 109 -

"...the 6359th integer is a seven, the 6360th integer is a seven,
the 6361st integer is a seven, the 6362nd integer is a seven.,."

In general, then, we may assume that the interesting rela-
tions that one finds in data are implicit in the shortest descrip-
tion of the data. Both statements above describe the original
data; however, one is more concise than the other.

The general objective in differentiating interesting infor-
mation from uninteresting information is to be able to retain the
interesting information in memory and dispense with the uninterest
ing information. Anyone who has used computers knows of the great
ease with which a computer remembers arbitrarily long list of ran-
dom numbers (on magnetic tape, for example). However, the human
mind, which performs so many feats of memory and recall that are
beyond the capability of any present computer system, can remem-
ber only a very short list of random numbers, say, seven; and
then only for a short while. To remember a longer list for a
longer period of time, the numbers must be made interesting, by
building an associative memory chain involving the numbers in some
other information.

At present, then, the human mind remembers information selec-
tively. Since its information storage capacity is, probably, lim-
ited, it does not remember all data. It tends to remember, basic-
ally, only information which is "interesting”, either because it
promoted survival*k because it avoids discomfort (e.g., remember-
ing that bees can sting), promotes pleasure, or for other similar
reasons. Thus, in the above sense, we may be said to analyze in-
formation which we perceive into "interesting" and "uninteresting"
categories for purposes of selective information storage.

What we perceive may be represented in many different forms.
In the series:

e To Ty Ty Te Ty Ty Ty T Te Ty Ty To Te 7o Ty vunn.

we could remember the actual visual pattern created by the dots,
the angular lines (the sevens), the curved lines (the commas),
etc. The visual pattern would require, perhaps, 50,000 bits of
information. But if we abstract the various lines and dots into
characters, with an eight-bit code for each character, then a to-
tal of 512 bits would be sufficient. However, this type of en-
coding would require the knowledge of what characters, periods,
commas, and sevens are. The encoding of information required to
recognize such characters would undoubtedly add more than 50,000
bits to the 512 required for encoding of the characters. It is
not necessary, of course, to write off all of the investment in

- 110 -

the knowledge and recognition of characters on this one case. For
example, a reasonable allocation of the total requirement to this
specific case might be only 75 bits (in addition to the 512 bits

required for encoding of the characters themselves).

The essence, then, of the above pattern is that it is an
arbitrarily long sequence of sevens. (The purpose of the periods
to the right and to the left of the sequence is to indicate that
the sequence continues indefinitely.) If we code the original
sequence as follows:

sequence of "7"

This would require approximately 128 bits. 1In addition, the fair
share of applicable overhead, as discussed above, might be approx-
imately 100 bits.

Cost

In general, since there is a cost associated with remember-
ing things, we should only remember what is worth the cost. For
example, it is necessary to be very sophisticated about the amount
of investment that is made on schemes to re-encode more efficient-
ly, since it requires storage space to remember the re-encoding
scheme itself.

In addition, it is necessary to note that what is remembered
is both a collection of the memories of individual objects and
abstractions and, in addition, the relationships between these ob-
jects and their properties. "Bees exist" is not usually an im-
portant fact; "Bees sting and stings hurt" is usually an important
fact. The relations are perhaps much more numerous than the items
so related, and the storage scheme used may take this into account.

A way to approach the difficult problem of discovering in-
teresting relations in data is to invent a model situation that
has most of the properties of the general situation yet which has
a clearer and simpler solution to the problem. In addition we
would like the model situation to have sufficient capacity to be-
come more complex and general so as to lead to the development of
useful applications and general principles.

The Sequence of Integers

Let us consider finite sequences of integers. Specifically,
let us first consider what may be coded as finite sequences of

- 111 -

integers. By numbering the letters and other marks used in writ-
ten communications, we can encode, for example, English text in-
to finite sequences of integers.

This is commonly done in computer systems. There is for ex~
ample the IBM Binary Coded Decimal, or BCD, standard encoding
scheme. On the Model 33 teletypewriter, a standard code is used
to represent the characters found on the keyboard, and the neces-
sary controls; this code consists of seven bits, plus one addi-
tional parity bit making 8 bits. Thus we can represent written
matter by a sequence of integers, each integer representing one
letter or other mark.

Consider the output of an analog-to-digital converter: It
consists of a sequence of integers. If we pass human speech into
such a device, the speech is encoded into a sequence of integers.
The same mav be done, for example, with the output of a television
show. The process may be inefficient, but it is highly general.
For example, one can imagine encoding the successive states of the
universe as a sequence of integers, each N-tuple, describing the
type, position, velocity, time, and any other desired parameters
for every fundamental particle in the universe. Storing the re-
sulting sequence could not be done in this universe, however, un-
less it was encoded (as it is) into the actual situation.

Simple Sequences: Segmentation

One of the most crucial problems encountered in sequence anal-
ysis is that of segmentation. Given a sequence, how can it be seg-
mented into a more meaningful (i.e., one better suited for coding)
sequence of sequences? We can, with no loss in generality, con-
sider the terms of a sequence to be elemental — i.e., not capable
of being broken down. Thus, we will always build up from simpler
sequences, never down.

Sequences will be allowed that consist of sequences of se-
quences, for example,

S35: Sl1, S2, S3, $4,

In Backus normal form, we may define a sequence in the following
manner

term; ;= <element> <,>

simple sequence::= <term> / <simple sequence> <term)

sequence::= <simple sequence> / <.> <sequence> /
Kequence> <>

- 112 -

Operations on Sequences

We shall now consider a set of basic operations that can be
performed on sequences.

(1) Local Operations. A local operation is defined as an
operation involving a limited range of terms. Most important is
the successor operation.

(2) The Successor Operation. If an operation on a term in-
volves only that term and its successor {the next term in the
sequence) we shall call it a successor operation. Probably the
most interesting successor operation on the integers is the suc-
cessive difference.

Let us adopt here a formal notation. The notation will be
that of the LISP system developed by John McCarthy of Stanford
University (see "LISP 1.5 Programmers Manual"™, August 17, 1962,
M.I.T.).

In particular, we shall use M-expressions, since this type
of expression is a most powerful method of describing the types
of functions that we have in mind. In addition, it is a simple
matter to transcribe LISP M-expressions into S-expressions, which
are in a form ready to operate on a computer.

We shall aim to express the original sequence in a function
which when evaluated for successive integers will result in the
original sequence. The function will itself be a LISP expression
and will be able to operate as a computer program to produce, as
output, the original sequence, plus additional terms. For example,
given the sequence

3, 5, 7, 9, 11, 13

the program would operate on the sequence to produce a function,
Fn[n], equivalent to:

Fn[n]=[2:n+1]

Thus, as n takes on the successive values of the integers, Fn(n]
would take on the successive values of the sequence.

The general plan of operation will be to use successive dif-
ferences as an analytical tool.

- 113 -

Facts about Differences

If a sequence can be represented by a polynomial of degree
n, then the‘gth successive difference sequence is made up of
Terms all of which have the same value. That value is, in fact,
a.n!, where a is the coefficient of the highest order term of
the polynomlal The sequence of all nth differences can be de-
fined bg a single element. For example, see the sequence of
cubes nY and their differences shown in Table 1. The arrows
"A—s" indicate the direction of "differences. Summations would
be in the other direction.

We can be sure that we understand the rule governing a se-
quence when our analysis has reduced it to a very simple form.
For example, if the 3rd difference yields all constant terms, the
sequence can be represented by a polynomial of degree 3.

In order to test a sequence to see if it is made up of terms
all of which are the same, we can define the following LISP func-
tion:

P1[x]=null[x] VP2 [car[x]; cdr[x]]
P2[a;y]) =null[y] v [equal[a;car[y]] AP2][a;cdr[y]]]

In the above expression, Pl1[x] represents a function of x,
where x is a sequence, or list, of integers. If all terms in the
sequence are equal, the function P1[x] will have the value T
(true); otherwise it will have the value F (false).

null[x] is an expression which itself may have the value T
(true) or F (false). It is "true" if the list, x, is empty, i.e.,
has no terms. It is "false" otherwise. For example, null [(1,2,
3)1=F; null[(7)] =F; null[()] =T.

The symbol V is a Boolean symbol meaning "or

The expression P2 [car[x]; cdr[x]] also may have the value T
(true) or F (false).

Thus it may be seen that the function P1 [x]will have the
value T (true) if either the expression null[x] is true or the
expression P2[car[x]; cdr[x]] is true for a given list x. If
neither of these expressions is true, the function P1[x] will
have the value F (false).

The expression P2[car[x]; cdr[x]] may be described as follows:

car [x] represents the first element in a given list;

- 114 -

Table 1

EE 15t pifference 214 pifference 374 pifference
n=0
n=] 1
7 *2
n=2 8 12
19 6
n=3 27 18
37 6
n=4 64 24
61 6
n=5 125 30
91
n=6 216
A— A— A—>

£

2It may be noted that the list of numbers 0,1,6,6 is sufflclent
to define the whole array, and thus the complete sequence nd; a
similar short list of numbers will define any polynomial of degree

3.

- 115 -

cdrix] represents all the rest of the elements
of the list. Thus,

car [(1,2,3)] =1

car [(17,29,31,103,74)) =17

car [(19)] =19

cdr [(1,2,3)]1=(2,3)

cdr [(17,19,31,103,74)) =(19,31,103,74)
cdr [(19)] =NIL

The function P2[car[x]; cdr[x]] may be represented in a more
general form as P2[a;y], where a represents the first element in
an original list x, and y represents all successive elements of
the list. The function P2[a;y] is defined in the second line of
the above statement:

P2[a:yl=nutl[yIVlequaila;cdr[v]]aP2[a;cdr[v]]]

The function P2[a;y] may have the value T (true) or F (false).
Similarly the expressions

(i) nullly],
(ii) [equal[a;car[y]], and
(iii) pP2la;cdr[y]]]

may each have the values T (true) or F (false). The Boolean
symbol vV, as noted above, represents "or"; the sumbol A represents
"and". The function P2[a;y] will be true, then, if null{y]is true
or (V) [equalfa;car([y]] and (A) P2{a;cdr[y]] are both true.

This may be illustrated by the following table:

null [yl F F F TT
Vv(0R)

equal [a;car[y]] T F T F F
A(AND)

P2la;cdr[y]]

P2{a;y] F F

Null [y] , then, will be true if the value of y(=cdr([x]) is
NIL; i.e., if the list y has no terms. equal[a;car[y]] will be
true only if a equals car[y]. For example,

equal [7;car [(7,12,13,14)] =T
since car [(7,12,13,14)] =7, and 7 equals 7.

- 116 -

equal [13;car [(3,13,13,13,13)]=F
since car[(3,13,13,13,13)] is 3, and 13#3

P2[a;cdr[y]] will be true if the function P2[a;y] is true
when y is replaced by cdrly].

Im summary, then, the program will operate in the following
manner:

1. Pilxl=null [x] vP2lcarlx}; cdrlx]]
a. If nullx] is true, P1{x] is true.
b. If null[x] is not true, P1[x] is true
only if P2[car(x]; cdr[x]] is true.
This may be determined from the follow-
ing statement, where PZ[car[x] cdr [x]]
is represented by P2[a;y]
2. P2la:yl=nullly] [equalla; carLyll P2[a:cdr[y]]l]
P2[a y] will be true only if nullly] is true
(the 1list is empty) or if both:
a. a is equal to car[y] and
b. P2 of a and cdrly] is true.

In general, if all elements of the original list, x, are
equal, all elements will be equal to the first element, car[x].
The program will compare every element of x, in sequence, with
the first element, car[x], to determine whether they are equal.
If they are (or if there are no elements in the list), Pl will
be true; otherwise it will be false. Examples of the evaluation
of actual lists are presented in Appendix B.

We shall now define a general function, s, of a list. This
function is unusual in that one of its arguments is a function.
For example, in arithmetic one could define a function operate
[op;a;b], where op is a functional argument that specified which
arlthmetlc operation is to be performed on a and b. Thus

operate[+;3;4]=7 and
operate[x;3;4]=12

The operator, s, which is a function of two variables, Fn and x,
is given below:

s[Fn;x]=if nulllcdr[x]] then NIL
else cons[Fn[cadr[x]; car[x]]; s[Fn:cdr[x]]]

Fn is a function of two variables, x is a list of at least two

- 117 -

members. s[Fn;x] is a list created by performing Fn on succes-
sive pairs of x. The first difference of x, d/ x| is then:

d[x]=[s[difference;x]]
The nth difference of sequence x, nd[n;x] is then:

nd[n;x]= if equal [n;0] then x; else nd[n-1;d[x]]

To encode a sequence x into a defining element, as discussed
earlier, we have encode[x]:

encode[x]= if null[cdr[x]IvP1[x]
then cons[car[x];NIL]

else cons[car[x]; encode[d[x]]]

In order to expand a series, given the defining element e, we
first define a function st[e] which is the next element in the
series of elements in the difference array:

st[e]= if null[cdr[e]]
then cons[car[e]; NIL

else cons| car[e]+cadr[e];[st{cdr[e]]]

Then, using the first term of each element, we expand the first
n terms of the original sequence, x, by means of expand[n;x]:

expand[n;x]= if n=0 then NIL;
else consfcar[x]; expand{n-1; st[x]]]

The nth term of the original sequence is:

nthterm(n;el]= if n=1 then car[e];
else nthterm[n—l; st[e

We can now perform an interesting set of calculations.

1. Given a sequence, x, that we wish to encode as a
polynomial function, we write:

encode([x]

2. To predict the next term in a sequence, assuming
a polynomial representation, we write:

predictnext[x]={nthterm[length[x }+1; encode[x]]]
thus

predictnext[(1,8,27,64,125,216,343)]=512
predictnext[(16,25,36,49,64)]=81
predictnext[(3,8,13,18,23,28,33)]=38

- 118 -

To illustrate the efficiency of encoding, we have:

(a) encode[(3,8,13,18,23,28,33,38,43) J=expand[9; (3,5)]
(b) encode| (16,25,36,49,64,81,100,121,144,169)]=
expand[lO;(lé,Q,é)]

Now let us see if we have generated any "interesting" re-
sults. In (a) above, we may translate the expression to the
right, [9;(3,5)], as follows:

There are 9 terms; the first term is 3; and each successive
term is 5 larger than the preceding term.

In the following sequence:

(¢) x=(1,2,3,4,5,6,7,38,9,10,11,12)
the first difference sequence

d[x]=(1,1,1,1,1,1,31,-29,1,1,1)

Since not all terms are equal (though most of them are 1) we must
continue the differencing process as follows.

1
1
2 0
1 0
3 0 0
1 0 0
4 0 0 0
1 0 0 30
) 0 0 30 -240
1 0 30 -210 1080
6 0 30 -180 840 ~-3600
1 30 ~150 630 -2520 9900
7 30 -120 -430 -1680 6300
31 -90 300 -1050 3780
38 -60 180 -600 2100
-29 ~-90 -300 1050
9 30 -120 450
1 -30 150
10 0 30
1 0
11 0
1
12

In fact, predictnext[1,2,3,4,5,6,7,38,9,10,11,12]=23,773.

- 119 -

This may not seem very likely; however, it merely illustrates
the inability of a polynomial approximation to deal with noise'

What we would like to say is that the sequence resembles the
integers except for the 8th term, which is 38 instead of 8.

The series of 12 integers starting with 1 is represented by
the expression:

expand[12;:(1,1)]

what we would like is the sequence in (c) above, which may be
represented by the expression:

if n=8 then 38,
if n<12 last [expand[n;(l,l)]] (undefined for n>12)

"last[x]" is a function which produces the last item of a list x:

last[x]= if null[x] then NIL; if atom [x] then x;
if null[cdr[x]] then car[x]; else last[cdr[x]]

Consider the following sequence:
() (1,2,3,4,5,6,8,10,12,14,16,18)

we would like to realize that this is really two sequences and to
encode it as follows:

if n<6 then last{expand[n;(1,1)]]; (undefined
if n<12 then last[expand[n;(8,12)]] for n>12)

Thus (c) above, when encoded, would automatically point out the
interesting facts: "The series is the sequence of integers ex-
cept that 8 is replaced by 38" or in {(d) above, "The series con-
sists of integers up to 6; from then on it consists of the even
numbers."

By encoding the sequences into many possible representations,
we can choose among them the best one by choosing the one whose
representation length is least. This follows from the concept ex-
pressed earlier, that the most efficient encoding scheme is the
most interesting statement about the data. The function derived
may be used to handle sequences of sequences, or sequences of
variables, functions, etc., with only slight modification.

- 120 -

APPENDIX

In evaluating the list (1,2,3) the program would proceed
as follows:

fa—

P1[(1,2,3) J=null[(1,2,3)] P2[car[(1,2,3)];cdr[(1,2,3)]]
null[(1,2,3)] is false (since the list is not empty)

In evaluating whether P2[car[(1,2,3)];cdr[(1,2,3)]] is

true or false, it would substitute these values in the

second statement as follows:
P2[car[(1,2,3)];cdr[(1,2,3)]=null{(2,3)]v
[equal[l;car[(2,3)] P2[1:cdr[(2,3)]]]

In the above expression,

car[(1,2,3)]=1
cdr[(1,2,3))=(2,3)
car{ (2,3)]=2

cdr[(2,3)]=(3)

Qo T o

Thus, P2[1:(2,3)]=nul1[(2,3)]v
[equall1:2] P2[1:3]]

In this expression,

a. null[(2,3)] is false (the list is not empty)

b. equal[l:;2] is false (1#2)*4

c. P2[1;(3)] may be evaluated, again, by the formula
P2[a;y]znull%y]v[equal[a;car[y]]APQ[a;cdr[y]]].

(1) Substituting these values in this formula, we
have P2[1;(3)]=nu11[(3) Jv[equal[l;car[(3)]a
P2[1;cdr[(3)]]].

(2) null[(3)] is false (the list is not empty)

(3) equal(l;car[(3)]] is false (since car[(3)]
is 3, and 1%#3.

(4) P2[1;cdr[(3)]] may be evaluated as follows:
(i) P2[1;cdr[(3)]=P2[1;NIL]=Nul1[NIL]v

lequal[1;NIL]AP2[1;NIL]

(ii) Since null[NIL] is true (the list is
empty) it is not necessary to evaluate
the expression further; and the value
of P2[1;cdr[(3)]] is also true.

- 121 -

(5) Thus, substituting c(2),c(3) and c(4)(ii) in
c(1), above, we have P2[1;3]=FVFAT
(6) Thus P2[1;3]=F.

7. Substituting 6a, 6b and 6¢ in 5, we have
P2[1;(2,3) J=FvFAF

8. Thus P2{1:;(2,3)]=F

9. Substituting 8 in 3, we have
P2[car(1,2,3);cdr(1,2,3) J=F

10. Substituting 2 and 9 in 1, we have P1[(1,2,3)]=FvF

11. Thus P1{(1,2,3)]=F, i.e., the list is not composed
of equal integers.

As a second example, in evaluating P1 for the list (2,2,2),
the program would proceed as follows:

1. P1[(2,2,2))=null[(2,2,2) JvP2[car[(2,2,2)];cdr[(2,2,2)]
2. null[(2,2,2)] is false (since the list is not empty).

3. 1In evaluating whether P2[car[(2,2,2)];cdr[(2,2,2)]] is
true or false, it would substitute these values in the
second statement as follows:

P2[car[(2,2,2));edr[(2,2,2)]1]=null[(2,2)]v
[equal[2;car{(2,2)]aP2[2;cdr[(2,2)]]]

4. 1In the above expression,

car(2,2,2)=2
cdr(2,2,2)=(2,2)
car[(2,2)]=2
cdr[(2,2)]=(2)

Q o T o

5. Thus, P2[2;(2,2)]=null[(2,2)]v
[equal[2;2]aP2[2;2]]

6, In this expression,
a. null[(2,2) is false (the list is not empty)
b. equal[(2:2)] is true (2=2)

c. P2[2:2] may be evaluated, again, by the formula
P2[a;y]=nu11[y]\/[equal[a;car[yj]/\P2[a;cdr[y]]].

- 122 -

(1) Substituting these values in this formula,
we have P2{2;(2)]=nul1{(2)Jvlequal[2;car[(2)]A
P2[2;cdr[(2)]]]

(2) null[(2)] is false (the list is not empty)

(3) equal[2:car[(2)]] is true since car[(2)]=2
and 2=2).

(4) P2[2;cdr[(2)]] may be evaluated as follows:
(i) P2[2;cdr[(2)]=P2[2;NIL)=nul1[NIL]v

[equal[2;NIL]JAP2[2:NIL]

(ii) Since null[NIL] is true (the list is
empty), it is not necessary to evaluate
the expression further; and the value
P2[2;cdr[(2)]]is also true.

(5) Thus, substituting c(2), c(3) and c(4) (ii)
in c(1), above, we have P2{2:(2)]=FVTAT
(6) Thus P2[2;(2)]=T

7. Substituting 6a, 6b and 6c in 3, we have
P2[2;(2,2)]=FVTAT

8. Thus P2[2:(2,2)]=T

9. Substituting 8 in 3, we have
P2[car[(2,2,2)];cdr[(2,2,2)]]=T

10. Substituting 2 and 9 in 1, we have P1[(2,2,2)]=FvT

11. Thus P1[(2,2,2)]=T, i.e., the list is composed of equal
integers.

*IWe are including so-called "racial memory" or "instinct" in
this category — e.g., an infant "remembering" the ability or
instinct to suck.

*21t may be noted that the list of numbers 0,1,6,6 is sufficient
to define the whole array, and thus the complete sequence n3; a

similar short list of numbers will define any polynomial of degree
3.

*3See Page 20, LISP 1.5 PROGRAMMER'S MANUAL. (This manual con-
tains a detailed description of LISP terms (car, cdr, etc.) used
in this report.)

*4Tn actual practice, the program could determine at this point
that the value of this expression is F (false), and therefore

- 123 -

would not continue its evaluation further. (That is, if
null{(2,3)] is false and equal[1;3] is false, the total expression
P2[l;(2,3)] will be false no matter whether the final term,
P2[1;3], is true or false. Or, in other words, FV FA?=F.)

However we will here continue the evaluation somewhat further
for the sake of illustration.

- 124 -

Automation, Using LISP,

of Inductive Inference on Sequences

Malcolm Pivar and Mark Finkelstein

Information International, Inc.

(Note: This paper should be considered in the nature of a
sequel to the preceding paper by Edward Fredkin.)

This report deals with the problem of programming a computer
to perform induction on certain general kinds of data in a manner
superior to the majority of human beings.

The kinds of data dealt with here consist of lists or se-
quences of symbols taken from the following groups:

1) integers;

2) letters;

3) words;

4) symbols made up of meaningless arrangements
of letters, that is, nonsense syllables.

Computer analysis of the data presented will give either one
of the following two results:

1) A representation of the data which utilizes the
patterns found in it by the computer. (Any

- 125 -

representation of the data will be known, in ac-
cordance with current usage, as an encoding of
the data. Thus, an encoding of "(1,1,1,1,1)"

might be "five 1's)". As a limiting case, we
may regard "(1,1,1,1,1)" as an encoding of it-
self.

2) Prediction of the next symbol of a given sequence.

In order to compare the computer's capacities with human ca-
pacities, some of the problems submitted for the type of inductive
inference considered here will be taken from human intelligence
tests. However, we do not mean to imply, by such a comparison,
that the computer programs developed here can handle all or even
a majority of the varied types of inductive thinking of which the
human mind is capable. But we shall show that they can handle
certain kinds of problems which are used in tests of general in-
telligence. Some examples are given in an appendix.

The programs we have been developing may be further classi-
fied according to the extent of their dependence on the conven-
tional meanings of the symbols dealt with. For example, in their
search for patterns, the less sophisticated programs utilize the
conventional order relationships among integers (i.e., "greater
than”, "less than") and the ordering of letters according to the
alphabet.

The more advanced programs, however, make no such assump-
tions, and are, therefore, able to handle far more general kinds
of data. They instead start with a collection of sequences which
one may think of as having been acquired from previous experience.
The program, in coming to grips with a new sequence, will then
make whatever use it can of this "previous experience", whether
for predicting the next member, or for producing an encoding of
the new sequence which is more economical (with regard to length
or storage space) than the sequence itself.

The Basic Programs

The programs written for this project were done in the pro-
gramming language LISP 1.5 and run on the IBM 7094 copputer.
Four basic programs are involved: OUTFCN (Outfunction), NEXT,
PERTEST, and TEST.

OUTFCN is a program which, given a sequence of integers,
produces a LISP 1.5 program capable of generating the same se-
quence. TEST, given a numerical sequence, will predict the next
element in the sequence. PERTEST does the same for alphabetic

- 126 -

sequences. TEST is a similar but somewhat more sophisticated
program which can work with either numerical or alphabetic se-
quences.

OUTFCN

OUTFCN, given a sequence of integers, produces a program in
LISP 1.5, which is capable of generating the given sequence.

For example, if the sequence were:
(1) 1, 2, 3, 4, 5, «een
then OUTFCN would produce a program which would say
(2) f(n)= n (LAMBDA (N) N)
Given a sequence such as
(3) 3, 5, 7, 9, 11, 13,
it would produce

(4) f(n) = 2n plus 1....(LAMBDA (N)
(PLUS 1 (TIMES 2N)))
And in general the output would be a polynomial evaluation pro-

"n.n

gram which given an integer "n" produces f(n).

It may happen that the majority of the numbers in a sequence
fit a simple polynomial equation while one or more other numbers
in the sequence are exceptions, as in the following sequence:

(5) 1, 4, 9, 16, 26, 36, 49

A strict polynomial interpretation of (5) would need to have as
many coefficients as there are numbers in (5) itself and so
would hardly constitute an economical encoding. We have there-
fore designed OUTFCN to take account of the possibility that, but
for a few numbers, a sequence may have a simple pattern. For a
series like (5) then, OUTFCN will not produce a program to evalu-
ate a Oth degree polynomial, but will produce instead, using an
Algol-like notation,

(6) If n= 5, then 26; else f(n) = n2....(LAMDA)
(COND ((EQUAL N5)26) (T (POWER N 2))))
The remaining possibility is that the sequence fits neither
a simple polynomial equation nor a simple polynomial with excep-

- 127

tions. (By simple polynomial we mean one in which the number of
coefficients is significantly smaller than the length of the given
sequence. The exact criterion of when this is so depends on a
parameter set by the programmer; it is not something we have an
ultimate criterion for as yet.)

For example:
(7) 1, 5, 6, 19, 327, 66

In this type of sequence OUTFCN would regard the sequence (7) as
an encoding of itself, and as such, superior to any that it could
produce, and would, therefore, refrain from producing any alter-
native encoding.

We anticipate programs which will construct many different
programs to compute a given sequence and will compare their
lengths to determine the most economical encoding. This proce-
dure is related to the suggestion of R. J. Solomonoffl that the
measure of the worth of an encoding could be taken as the number
of bits in a computer program which uses the encoding to generate
the sequence. That this type of measure is self-consistent has
been demonstrated mathematically by H. P. Kramer.

NEXT

It has been stated that the problem of predicting the next
member of a sequence is basic to many of the problems of scien-
tific research. Some confirmation of this claim may be derived
from the present study, in which, without directly attempting to
do so, we have been led to constructing a model of that part of
scientific inquiry which involves: making a hypothesis, seeing
where it goes wrong, making additional hypotheses to explain the
failures of the first hypothesis, continuing to amend one provi-
sional explanation after another, and refraining from attempting
explanation when the amount of data is too small.

However, somewhat more than the modeling of scientific activ-
ity is involved in the program, since it would not be difficult
to imagine sequences which the machine could encode, but for which
it would be practically impossible for a human being to discover
an optimal pattern, not because of the size of the sequence (though
it would have to be fairly long) but because of the complexity
of their pattern.

The action of NEXT may be illustrated by means of the follow-
ing example. Suppose NEXT is given the sequence:

- 128 -

(1) 01 1| Ov O' 20 09 O! On 3' 01 O' Oo O' 4f Oo
0, 0, 0,0, 5,0,0,0,0,0,0, 6, 0,0, 0,
0, 0, 0, O,.

It would proceed as follows in attempting to predict the next mem-
ber.

First it would apply a function called IDSEQ to the given se-
quence. IDSEQ (from "ideal sequence") takes differences until
half or so of the resulting list of numbers are constant, and then
produces an ideal sequence, that is, it produces the sequence
which would be obtained if all the numbers were constant.

For example, given the sequence:
(ib) 1, 2, 3, 17, 5, 6, 7, 8, 617

the function IDSEQ would take the first differences, namely 1, 1,
14, -12, 1, 1, 1, 609. It would see that more than half of this
list were ones; it would then produce the sequence that would re-
sult if all numbers in the difference list had been ones, namely
1, 2, 3, 4, 5, 6, 7, 8, 9, whickh is the "ideal sequence" with res-
pect to the given sequence.

Returning to the sequence (1) above, we see that IDSEQ will
produce a list of thirty-four zeroes (the list has 34 members).
A compact description of the pattern of the list produced by
IDSEQ could be printed out at this point. Such a description
would represent a common occurence in scientific explanation:
namely, the formulation of a provisional hypothesis which explains
much but not all of the data.

The next step, of course, is to try to understand the excep-
tions to the hypothesis. To accomplish this, NEXT will compare
the members of the original sequence (1) to the output sequence
of IDSEQ. 1In particular it will make a list of the positions at
which exceptions occur.

(2) 2, 5, 9, 14, 20, 27 (exception list)
and a corresponding list of the values of the exceptions
31, 2, 3, 4, 5, 6 (value list)
The program then performs the recursive operation of calling
itself to see if it can predict the next member of (2); this oper-
ation, if successful, would indicate the position where we would

expect the next exception to occur. 1In this case it would dis-

- 129 -

cover that second differences of (2) are constant; so that IDSEQ
of (2) would be identical to (2), that is, the exception list
itself has no exceptions. Therefore it would confidently predict
the next member of (2) to be 35, basing its prediction on the as-
sumption that the second differences of (2) ought to remain con-
stant when new terms are added.

Having discovered where the next exception could be expected
to occur (namely, at position 35), IDSEQ then looks to see if
this position is the same as the position at which we are required
to predict. In other words, is it the same as the length of the
original sequence plus one? Finding this to be the case, the pro-
gram calls itself with the list of values which occurred at the
exceptional positions, using (3) as its argument, and by means
of the techniques described above would obtain 7 as the next mem-
ber of (3). It would now declare 7 as the next member of (1).

It is necessary to explain what would have happened if cer-
tain of the questions asked by the program had been answered in
the negative. Suppose, for example, that the next member of (2)
had been different from 35. In this case it would not expect an
exception to occur at position 35 and would therefore apply it-
self to the ideal sequence of (1) and declare zero as output. It
would also produce a zero if it had been unable to find any pat-
tern whatsoever in (2). Another possibility would occur if NEXT
applied to (2) had yielded 35 but the values at exceptional posi-
tions, (3), had been anomalous or irregular. 1In this event the
program would conclude that an exception is expected at position
35 but that its value could not be determined and it would there-
fore refrain from making any prediction at all and would simply
say "no pattern found".

Concerning the recursive aspect of the above program, it
should be noted that when NEXT is called to predict the next mem-
ber of (2), it treats (2) exactly as it treats (1); that is, if
(2) had instead been

(2*) 1, 5, 9, 14, 20, 28

it would have formed an exception list (2a®) and a value list
(2b*)

(2a*) 1, 6 (exception list)
(2b*) 1, 28 (value list)

and if necessary would have done the same again for (2a') and for
(2b*) and similarly for (3) and in fact apply its whole range of

techniques to every sequence so derived (until the length of re-

sulting lists fell below specified criteria).

- 130 -

PERTEST

The program PERTEST is designed to accept letter sequences
and return a prediction of the next letter. The program was
written as a result of seeing a previous program developed by
Simon.3 Simon's program was developed for the purpose of simula-
ting the observed behavior of people when trying to solve problems
of predicting letter sequences from an intelligence test. The
program PERTEST, on the other hand, was oriented towards the auto-
mation of inductive thinking rather than the simulation of human
beings; therefore, we developed somewhat simpler though perhaps
more mathematical ways of dealing with the problem. We can des-
cribe fairly accurately the class of letter sequences which the
program will handle.

1) Cyclic sequences, such as: a, b, a, b, a, b,
or b, a, ¢, b, a, ¢, b, a, ¢

2) Sequences with a constant skip, such as: a,
b, ¢, d, or u, r, o, 1

3) Sequences which are made up of intertwinings4
of the above two types, such as: a, u, b, r,
C, O, dt lo or a, b, a, C, dv b, €, fo Cy Yo
h, d

The program illustrates the following method of attack on the
problem of prediction.

When a series is periodic, then we can always predict the
next member. Therefore, whenever we can reduce a series to one
that is periodic by means of transformations which may be re-
versed, then we can predict the next member of the cyclic series
that was obtained from the original, predict its next member, and
then apply the transformations that produced the periodic series
in reverse order and thus determine the next member of the origin-
al series.

In the case of OUTFCN (described above) this principle is
used by taking differences. Note that if the series is 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11 then the first difference is periodic;
i.e., 1, 1,1, 1,1, 1,1, 1, 1, 1, 1 is of period one. Note al-
so that this transformation is reversible; that is, given the
first member of the original series, "1" and the difference list,
one can produce the original series. Thus, the operation of tak-
ing differences is reversible. In the present program, PERTEST,
we used in this a generalization of the operation of taking dif-
ferences. This is called the shift difference. If we think of
first differences as arising from taking a list of numbers, set-
ting a duplicate of the list directly below itself, shifting the

- 131 -

lower list left once, removing the righthand number from the low-
er list, and the lefthand number from the upper list, and then
subtracting members in the lower list from the ones directly above
them in the top list, then, in this fashion, the list of differ-
ences produced will be identical to the first differences. Now if
instead of shifting the lower numbers left one space we shift them
two, three, or n spaces, and remove the n righthand numbers pro-
jecting out on the left portion of the upper list, and the n num-
bers projecting out on the right of the lower 1list, then by sub-
tracting members of the lower list from corresponding members of
the upper 1ist we obtain a shift difference with a shift n of the
original list. If we denote a list by L and the result of shift-
ing n places and taking differences by Sn, then the first differ-
ence becomes S1{L). The Sn's then become a class of transforma-
tions which may be used to transform a series into one that is
periodic.

Now we can explain how the letter sequence program works. It
first converts the given series of letters which we denote by L
into numbers, taking A as O, B as 1, and so forth, Z being 25.
After this operation it applies S1, S2, etc., to L. Each opera-
tion is applied to the list L, not to the results of previous
transformations of L, though such a compounding of operations is
necessary when dealing with more complex sequences. After each
application of an Sn, the program tests the resulting list to
see if it is cyclic. When it discovers a cyclic series in this
fashion it predicts its next member, adjoins it to the cyclic
series and then reverses the transformation to obtain the next
member of the original series L.

In this as in other pattern-finding programs the question
arises as to how well established the apparent patterns must be
for the program to feel justified in making a prediction. In our
program this is a parameter which the programmer sets at present;
in more sophisticated versions the parameter can be set by the
program itself, especially when the program uses some technique
for measuring the goodness of a pattern (such as ratio of length
of original form to encoded form.)

TEST

TEST is a somewhat more sophisticated program for sequence
analysis. In TEST we are dealing with essentially two different
methods for solving a given sequence. One of these is called el-
l@ptic differencing. The method is as follows: suppose we are
given a two-element frequency distribution created by a human
being or by a computer program. Presumably the pairs of elements

- 132 -

(1 2), (2 3), and in general (n n+l) will have much higher fre-
quencies than others. More precisely, the conditional probabili-
ty of n+l given n would be expected to be higher than any other
element's conditional probability.

Now suppose we are given a sequence (1, 3, 5, 7) and asked
to predict the next element without using any of the knowledge
we have about the properties of the numbers in the sequence, using
just the information in the frequency distribution. Then if we
ask for the most probable path, based on the frequency distribu-
tion, from 1 to 3 (as indicated by the first two elements in the
sequence) we find that it is (1, 2, 3). Thus, the sequence has
left out one element between the first two. Repeating the process
for the second and third elements of the sequence we find that
again one element has been left out, that is, that the ellipsis
between them is 1. By continuing to search for the ellipsis bet-
ween successive pairs of elements in the sequence and noting the
magnitude of the ellipsis, we can form the elliptic first differ-
ence for the sequence, which for the sequence (1, 3, 5, 7) would
be (I, 1, 1). Note that the method employed here would work
equally well on letters. In any event, the elliptic first dif-
ference will be numerical, and thus we may use numerical methods
for the remainder of the solution.

In the actual computer program the routines involved in the
above discussion are E and G. These may call upon one another
recursively to determine the best (most probable) path between
two elements. The routine E is called from the outside with the
following parameters: P, the pair (m n) which represents the
endpoints of the path for which we are searching; L, the frequen-
cy distribution list of pairs of elements (a discussion occurs
below describing the formal of L); as a fourth parameter, M, an-
other copy of the list L. The routines E and G produce as a re-
sult a list which represents the best possible path, say (1, 2,

3) perhaps for the input P of (1 3), or if no such path exists,
then the value is NIL. These two routines call on several other
routines. One such routine VALUE, gives as a result the probabi-~
lity of the path it is given as an argument, based on the frequen-
cy distribution. TRANS, another routine, gives as a result the
probability of the pair given it. (1 2) might, for instance, give
a result of 0.75. (Obviously, VALUE will call upon TRANS.)

The routines E and G operate basically as follows. First,
they ask: Does the next element which may be appended to the
end of the path created so far bring the VALUE of that path to
less than a specified threshold? If so, that element is skipped
and the next looked at. If not, it then asks, does that element
complete the path (i.e., is that element equal to the n of (m n)?

- 133 -

If so, the completed path 1s noted; the routine continues to scan
the remainder of the possibilities, but with a higher threshold,
namely the VALUE of the already completed path.

The second method used in TEST is the ORACLE method, which
is as follows: for each pair of elements in the system, ORACLE
(another routine) tells us of interesting relationships between
them. Thus ORACLE might point out, with the pair (3 27), that
the first can be transformed into the second by the functional:
+24, x9, or ()3; in other words, 3+24=27, 3x9-27, 33=27, Of
the pair (41 43) it might point out that the second is the suc-
cessor prime to the first, ORACLE is a two argument program,
the two arguments being the elements m and n of (m n). Current-
ly the program ORACLE confines them to be integers; however, a
trivial modification will allow more generalization. The result
of ORACLE is a list of possible transformations which will trans-~
form the first element into the second. If the arguments of
ORACLE were 4 and 16, the result would be, in LISP notation:

((TIMES X 4) (PLUS X 12) (POWER X 2))

PREDICT

We are now in a position to discuss the main routine of TEST,
which is PREDICT. TEST itself is used to construct the pair fre-
quency table with ORACLE values attached to each pair. PREDICT
will operate as follows: given the sequence S and the frequency
table L, it asks first if the sequence can be solved by a simple
cycle test, by calling CYCLES. CYCLES is a small routine which
examines whether a sequence is cyclic, and if so, gives as the
value the next element.) If it is not cyclic, then the value is
NIL. CYCLES is a general program and will work on any list which
is purported to be a sequence — that is, the elements of the se-
quence may be any general expression or lists themselves. If the
value of CYCLES is not NIL, then we are done, and PREDICT gives
its answer. More likely this is not the case, and then PREDICT
operates as follows.

PREDICT attempts to extrapolate from the sequence of lists
or ORACLE values a sequence of transformations from which the
original sequence was derived. An example at this point may
make this clear. Suppose the original sequence was (1, 2, 6, 24,
120), that is, the factorial sequence. Forming the list of lists
of ORACLE values for the successive pairs, (1 2), (2 6), (6 24),
etc., we would obtain, again in LISP notation, (((TIMES X 2)
(PLUS X 1)) ((TIMES X 3) (PLUS X 4)) ((TIMES X 4) (PLUS X 18))
((TIMES X 5) (PLUS X 96))). This is a list of 4 elements, each

- 134 -

of which is a list of transformations. Note that within each
list the transformation (TIMES X n) occurs, for different n. We
would wish to note that fact, and take as a sequence to be solved
the successive n's, namely (2, 3, 4, 5). Solving this sequence
and obtaining 6 as a result, we should like to say that the se-
quence of transformations yielded the value (TIMES X 6), which
would be applied to the last element in the original sequence,
120, to obtain the result 720. This of course would be the cor-
rect answer.

In order to accomplish the operations described in the para-
graph above, the program PREDICT calls upon a program SBAR, which
performs these operations. The main routine of SBAR is FORM,
which seeks similarities between two expressions and notes their
differences. FORM applied to (A, B, C), (C, D, E) would produce
((AC) (BD) (CE)), i.e., a list of substitutions which when
applied to the first argument will yield the second. SBAR uses
FORM to determine if any of the ORACLE values in the lists are
similar, and rejects all but those whose differences occur only
in numbers. (This is only a temporary restriction and will be
lifted when we go to more generalized expressions). Thus, if
each element in the sequence were a multiple of its predecessor,
then the functional (TIMES X n) would appear in each of the lists,
and the routine SBAR would note this. It would then set up as a
sequence to be solved the n's in the functionals; and in this way
it would solve the factorial sequence.

Structure of the Frequency Distribution List in TEST

In considering the structure of the frequency distribution
list, suppose the number of occurrences of the pair (i j) is ajj-
Then the list shall be structured as follows:

(Q1 (2 31’2)(3 ay 3)...(k ap)2 j ag; (1 323)(232;?"'()))

AN
That is, the frequency distribution is a list, each element of
which begins with a number i, followed by the total number of
pairs that begin with i, followed by a sequence of lists, each
one corresponding to an occurrence of a pair beginning with i but
ending with j, and within this list is the pair (j a;.). An op-
tional feature, whieh is used in the operating versiols of this
program, is to put the ORACLE value for i, j at the end of the
pair, so that the element on the i-list will be (j 3y (list of
ORACLE(1i, j))).

We close this report with a significant quotation from
Attneave?. It comes from a survey by the same author of a whole

- 135 -

cluster of related studies.

"The view that a basic function of psychoneural activity is
the economical encoding of experience may be elaborated in many
ways. It has extraordinary generality, applying to the most com-
plex scientific thinking as well as to the basic processes of
perception and memory."

lsolomonoff, R.J., A preliminary report on a general theory of
inductive inference, Zator Co., Report ZTB-138.

2Kramer, H.P., A note on the self-consistency of definitions of
generalization and inductive inference. Journal of the ACM,
April 1962, pp 280-281.

3Simon, Herbert A. and Kotovsky, Kenneth, "Human Acquisition of
Concepts for Sequential Patterns", unpublished.

4By intertwining we mean series in which every nth element is
from a series of type (1) or (2), every n + 1lth element of type
(1) or (2), and so forth.

SAttneave, F., University of Oregon, "Applications of Information
Theory and Psychology”, Holt Dryden, 1959, pp 87-88.

- 136 -

Application of LISP

to Checking Mathematical Proofs

Paul W. Abrahams

ITT Data and Information Systems Division

I. Introduction

One of the things to which LISP has been applied is the con-
struction of an experimental computer program kmowm as the Proof-
checker for checking mathematical proofs. The idea was original-
ly suggested by McCarthy [3] , and the investigations are des-
cribed by Abrahams [1] . This paper is intended to show how LISP
was used in the construction of the Proofchecker and what prop-
erties of LISP were particularly useful; little emphasis will be
placed on those aspects of the Proofchecker that relate primarily
to mathematical logic.

The Proofchecker was primarily directed towards the verifi-
cation of textbook proofs, i.e., proofs resembling those that
normally appear in mathematical textbooks and journals. Although
textbook proofs deal with widely varying subject matter, they are
quite similar in terms of the kinds of inference they employ.

The differences lie in terms of the objects being discussed, the
nature and number of the postulates used, and the level of detail
provided. The Proofchecker was designed to operate impartially
with respect to these differences, just as a human mathematician
does.

If a computer were to check a textbook proof verbatim, it

137 -

would require far more intelligence than is possible with the
present state of the programming art. Therefore, the user must
create a rigorous, i.e., completely formalized, proof that he be-
lieves represents the intent of the author of the textbook proof,
and use the computer to check this rigorous proof.

It is a trivial task to program a computer to check a rigor-
ous proof; however, it is not a trivial task to create such a
proof from a textbook proof. Therefore, a primary function of
the Proofchecker was to aid in translating from a textbook proof
to a rigorous proof. To this end, a language for input proofs
was specified; this language bears a close resemblance to programs
written using the LISP program feature FROG, and is based upon
the construction of "macro-steps." The input proof language
was intended to represent a halfway point between textbook proofs
and rigorous proofs, the translation from textbook proof to input
proof being performed by a mathematician and from input proof to
rigorous proof by the Proofchecker,

The formal system used for stating rigorous proofs was based
upon the natural deduction system of Suppes [7]. It also included
features for handling definitions and for introducing the results
of calculations into a rigorous proof. Though the set of rules
of inference was fixed, the rules were such that it was possible
to introduce additional rules via axioms; "A-conversion, for in-
stance, was handled in this way.

Both the checking of a rigorous proof within this formal
system and the generation of the rigorous proof from an input
proof were performed by the Proofchecker. The Proofchecker was
written in LISP, and consequently the well-formed formulas of the
formal system were LISP S-expressions. The Proofchecker accom-
plished the translation from an input proof to a rigorous proof
through the use of macro-steps, which bear the same relation to
rigorous proof steps that macro-instructions in a computer macro-
assembly language bear to machine instructions in that language.
A library of macro-steps was developed to demonstrate the poten-
tial capabilities of a computer in making the input proof as
close to the textbook as possible, and in expanding steps of the
input proof by heuristic techniques.

The Proofchecker was actually applied to Chapter II of
Principia Mathematica, by Russell and Whitehead [5]. The proofs
from this chapter are all in propositional calculus, and use only
the connectives V 4y~ , and > . Macro-steps were constructed
so that the textbook proofs could be transcribed practically ver-
batim, except for the translation from infix notation (e.g., "p

Vv q © gq Vv p") to LISP notation (e.g., "(IMPLIES (OR P Q)

- 138 -

(OR Q P))"). During this tramscription process, a number of
logical gaps were found in the proofs given in Principia.

The Proofchecker was able to check most of these proofs on
the IBM 7090 in a few seconds; but a notable and unpleasant ex-
ception concerned those proofs involving replacement, i.e., the
substitution of p> q for ~p v q and conversely. Because the
facilities of the Proofchecker were used for handling definitions,
it turned out to require 50 rigorous steps and about 30 seconds
for each replacement step in the input proof. Furthermore, in
textbook proofs involving more than one replacement operation,
the program exhausted the available storage and the rigorous
proof could not be completede An attempt was also made to apply
the Proofchecker to some elementary group theory proofs, but
this required a larger library of macro-steps, and consequently
the program ran out of storage on the initial test cases.

A notable feature of the Proofchecker as far as LISP is con-
cerned is the use of the syntax of LISP on a metamathematical
level, In metamathematics, one deals not with logical formulas
but rather with the names of these formulas. For instance, one
employs theorems stating that if the expression o has such-and-
such a syntactic property, then = denotes a true statement. One
frequently reasons from properties of symbolic expressions to
properties of the formulas that they denote. In practice, a
great deal of what is called mathematics is actually metamathe-
matics. Often one requires metamathematical statements that are
mechanically verifiable through the use of the LISP function eval,
and the ability to perform this verification is one of the most
significant features of the Proofchecker.

II. Rigorous Proofs in the Proofchecker

The Proofchecker can best be conceived of as divided into
two parts: a part that generates rigorous proofs and a part that
checks them, These two parts operate in tandem; the proof gener-
ator spews out a step from time to time, whereupon the proof
checker examines the step, elther accepts or rejects it, and then
returns control to the proof generator.

The Proofchecker makes use of a list of previously proven
theorems. This list initially contains all the axioms of the
Proofchecker, as well as the postulates of the theory under
examination. Each theorem is stored as a list of three elements:
the name of the theorem, the list of its substitutable variables,
and its form, i.e., its statement (as an S-expression). When we
wish to use a previously proven theorem or an axiom, we give its

- 139 -

name and a list of the quantities to be substituted for its sub-
stitutable variables., There are restrictions on the substitutions
since we must prevent the quantifiers of the theorem from captur-
ing free variables in the substituted quantities, and we must
also avold substitutions into the middle of a quotation.

To see how a theorem is represented, consider the tautology

PAQ>q

If we name this tautology CONJ, then it would be stored on the
theorem list as

(CONJ (P Q) (IMPLIES (AND P Q) Q))

A rigorous proof is specified by a sequence of steps. Each
step consists of the step type followed by a set of parameters.
There are a fixed number of step types, and for each step type
there are restrictions on the number and form of the parameters.
The Proofchecker examines the steps one by one, and if a step is
legitimate the Proofchecker generates a line of proof. Thus,
the step together with its parameters constitutes an instruction
to the Proofchecker; if the instruction is in proper form, it
results in a line of proof.

A line of proof represents a proposition that has been
demonstrated. Each line of proof is a list of three elements:
the line number (simply a serial number); the text of the line,
i.e., the proposition demonstrated on that line; and a list of
antecedents of the line (as line numbers). The antecedents
specify the assumptions on which the line depends. Unlike Suppes!
system, there is no provision for flagging of variables. The
proof is correct if the text of the last line corresponds to the
theorem and has no antecendents. In this case, the theorem is
added to the theorem list.

There are various times when the Proofchecker needs an atomic
symbol which has not been used before, as for an ambiguous name
generated by specializing an existential quantifier. Since it is
difficult (though not impossible) in LISP to distinguish among
different types of atomic symbols in the way that we distinguish
Latin and Greek letters, we must be sure that these new symbols
do not appear in a part of the proof which we have not yet exam-
ined. There is a LISP function gensym[] which can be used for
this purpose. Each time gensym is evaluated, it yields a freshly
created atomic symbol, constructed in such a way that no other
symbol can be equal to it, not even one with the same name! This
is accomplished by not putting the symbol on the object list.

- 140 -

Phen we refer to a generated symbol, we will hereafter mean that
the symbol has been obtained by evaluating gensym.

When the Proofchecker checks the rigorous proof, it first
constructs a substitution list, in which each substitutable
variable of the proof is paired with a generated symbol. This
provides for unintended constants among these variables. During
the checking of the proof, each expression taken from the step
list is relabeled by substituting generated symbols for the sub~
stitutable variables according to this list. This substitution
list (referred to as the relabeling 1ist) will be augmented
during the proof whenever an existentially quantified variable is
specified via the Suppes rule ES. We also keep a list of print
labels; this 1list corresponds initially to the relabeling Eist,
but is treated differently from the relabeling list when we per-
form an ES step. The print labels are needed in printing out
-the lines of proof, since otherwise the generated symbols would
make the proof harder to read.

We can illustrate how the relabeling works, leaving aside
for the moment the question of labels arising from ES. Suppose
that the substitutable variables of the theorem are (G H). Then
the relabeling list might initially be

((G . GoO157) (H . Gools8))

where GOO157 and GOO158 are typical generated symbols. If the
expression

(SUBGROUP H G)

were to appear in one of the steps, it would be relabeled and so
become

(SUBGROUP GOO158 GO0157) .
The relabeling process operates even inside a quotation.

We also have a list of ambiguous names, initially NIL. When-
ever we do an ES step, we add a name to the list. We need this
1list to prevent universal generalization on an ambiguous name.

The Proofchecker employs ten rules of inference., There is
one rule, USETHM, concerned with introducing axioms and previous
theorems into the proof. There are four rules, CONJOIN, MODUS,
ADDPREM, and MAKEIMP for handling the purely propositional aspects
of a proof. There are two rules, CALCEQUAL and VALEQ, concerned
with calculation. There are two rules for handling quantifiers,

- 141 -

GENERALIZE and SPECTALIZE. And finally, there is one rule,
USEDEFN, for using definitions. We shall now describe these
rules in detail.

(1) USETHM has two parameters: the name of a theorem and a
list of substitutions. The theorem must appear on the
theorem 1list and the substitutions must satisfy certain
logical criteria. Each of the substituted expressions is
relabeled before the substitution is made, but the theorem
itself is not relabeled. If the step is legitimate, a line
of proof is generated. The text of the line of proof is the
result of the substitution. The line has no antecedents,
i.0., its antecedent 1list is set to NIL.

Example: Suppose that the theorem list contains the entry

(TRANSEQ (X Y Z) (IMPLIES (AND (BEQUAL X Y) (EQUAL Y Z))
(EQUAL X Z))) ’

and step 18 is:
(USETHM TRANSEQ ((GMULT A B) (GMULT A C) (GMULT D C))) .

We will ignore the relabeling in this example. In this case,
the substitutions into TRANSEQ are:

¢ (GMULT A B)
Y: (GMULT A C)
Z: (GMULT D C)

The resulting line of proof is

(18 (IMPLIES (AND (EQUAL (GMULT A B) (GMULT A C)) (EQUAL
(GMULT A C) (GMULT D C))) (EQUAL (GMULT A B)
(GMULT D C))) NIL) .

(2) CONJOIN has as its single parameter a list of integers
which represent line numbers. The text of the resulting
line is the logical conjunction of the texts of the given
lines, in the same order. The antecedents of the resulting
line consist of the union of the antecedents of the given
lines,

(3) MODUS is a rule which takes two line numbers as param-
eters, If the text of the first line isor , the text of the
second line must be (IMPLIES« &), for some 4 . The re-
sulting line has text et , and its antecedents are the union
of the antecedents of the parameter lines.

(4) ADDPREM has one parameter, which is an expression.
- 142 -

The resulting line has this expression as text, and its
single antecedent is the line itself.

(5) MAKEIMP has two parameters. The first is either a single
line number or a list of line numbers, and the second is a
line number, Each line in the first parameter must be a
premiss, i.e., & line introduced by ADDPREM, If the first
parameter is a single line whose text is o, and the second
paremeter has text 4, then the resulting lire has text
(IMPLIES « 4). Otherwise, the first parameter will be a
1ist of lines X} 4X5 4 ese 4o ;5 in this case, the result-
ing line has text (IMPLIES (ANDxy o5 eee ;) 2)s In either
case, the antecedents of the resulting line are obtained by
removing the line numbers in the first parameter from the
antecedents of the line given by the second parameter.

Example: Suppose that we already have the lines

(2 (EQUAL (G X) (G Y)) (2))
(4 (EQUAL (G X) (F X)) (4))
(11(BQUAL (B X) (6 Y)) (129 4))

and step 12 is
(MaxkEIMP (4 2) 11) .
The resulting line will be

(12 (IMPLIES (AND (EQUAL (G X) (F X)) (EQUAL (G X)
(¢ Y))) (muaL (HX) (GY))) (09)) .

On the other hand, if we have the step
(MAKEIMP 4 11)
the resulting line will be

(12 (IMPLIES (BQUAL (G X) (F X)) (BQUAL (H X) (G Y)))
129)) .

(6) CALCEQUAL has one parameter, which is an expression to
be evaluated., If the parameter is X and eval|ot; NIL] =54,
then the text of the resulting line is (EQUAL < (QUOTE £)).
If eval[a; NIL] is undefined, then the step fails. The
resulting line has no antecedents. This step is called the
calculation rule.

(7) VALEQ has one parameter, which is an expression X .

- 143 -

The resulting line has text (EQUAL < (EVAL1 (QWOTE °<))),
and no antecedents.

(8) GENERALIZE has two parameters: a line number and e

list of atomic symbols. Let the atomic symbols of the list
be oy y X2, eee 3 Xy o If appropriate conditions are
satisfied, a line is generated with text (FORALL oy (FORALL
< 24es (FORALLap8)) +..), where P is the text of the given
line, and the new line has no antecedents.

Example: If we already have the line
(13 (mPLm§ (BQUAL X Y) (BQUAL (PLUS X 2) (PLUS Y Z)))
NIL

and step 15 is
(GENERALIZE 13 (X Y)) ,
the resulting line is

(15 (FORALL X (FORALL Y (IMPLIES (EQUAL X Y)
(EQUAL (PLUS X 2) (PLUS Y 2))))) NIL) .

(9) USEDEFN has one parameter, which must be a defined term.
The effect of this step is, essentially, to replace the term
by its defining expression.

(10) SPECIALIZE is a step used for existential specifica-
tion. Its operation is quite complicated and its explana-
tion would entasil detailed familiarity with the Suppes sys-
tem; as it is not necessary in the sequel, further descrip-
tion is omitted. The reader is referred to Abrahams [1] for
a complete description of SPECIALIZE.

These rules of inference by themselves are not as compre-
hensive as those of the Suppes system. However, when appropriate
axioms are introduced, a logical system can be obtained which is
more powerful than that of Suppes, and in particular mekes pro-
vision for handling quotations, A =-expressions, and non-proposi=
tional functions. Although rigorous proofs still are stated in
terms of the ten elementary rules, the translational machinery
of the Proofchecker is used to in effect simulate the more power-
ful system.

III. Calculations and A =-conversion

- 144 -

There are two distinct ways to derive statemente about the
objects involved in a proof: by deduction and by calculation.
In deduction, the traditiocnal rules of inference are used to ob-
tain new properties of objects from old ones; these rules include
the introcduction of previously proven theorems and the use of mo-
dus ponens. In calculation, the properties of objects are de-
termined by actual observation. The observing apparatus in the
Proofchecker is the LISP function evafl, and in order to make an
observation, this function is applied to an appropriate argument,
evafl is defined by

evafll[x] = eval|x; NIL) .

The rule of inference used for this purpose is CALCEQUAL; VALEQ
is needed in order to simplify the results of CALCEQUAL in a man-
ner to be described below,

In order to describe the applicaticn of the calculation rule,
we need to examine the significance and properties of evall.
Clarification of the terminology used in connection with eva{ is
in fact of interest for its own sake., If we assign the word
"value" its usual mathematical connotation, then the value of the
S-expression x is not evall[x|, but rather x itself. Since evaf
is short for "evaluate," the name might seem to be a misnomer.

In fact, the name of the function evaf stems from its application,
not to S-expressions, but to lM-expressions. For instence, we can

say that .
cons [car [(8)]; (B)] = (4 B) .

The left side of this equation is clearly an M-expression; the
right side must also be interpreted as an M-expression for the
statement to be correct. Now the transform of the left side into
an S-expression is

(Cons (CAR (QUOTE (a)) (B))) ’

and
evagl [(coNs (CaR (QUOTE (4)) (B)))] = (4 B).

This result illustrates the general rule: To evaluate an M-ex-
pression, i.e., to find its value, transform the M~expression
into an S-expressicn, apply evafl to this S-expression, and
interpret the result as an li-expression. The result is not to
be converted to an M-expression by applying the transform rules
in reverse; and in fact, it is not in general even possible to
apply the transform rules in reverse., For instance, there is no
inverse transform for (A . B); i.e., there is no M-expression
whose S-expression transform is (A . B).

- 145 -

Applying the function evafl to an S-expression o< yields the
denotation of o< 1if evafl <] exists. This statement partially
defines what we mean by the denotation of an S-expression, and
this partial definition has the necessary property that the
denotation of the name of any S-expression is the S-expression
itself, i.e.,

evafl [(QuoTE <)] = =<

for any S-expression oK , In the Proofchecker, the S-expressions
that appear within a proof may have implicit denotations as well
as explicit ones. An implicit denotation is one that is not ob~
tainatle through evafl.

We can define the standard value of an S-expression Xto be
that unique S-expression / such that A is of the form (JUOTEY)
andY = evafl [<]. Thus, the standard value of (QUOTE o<)
for any o 1is again (QUOTEc<); and the standard value of

(cons (CAR (QUOTE (4))(B))

is (QUOTE (4 B)). The calculation rule says that if an S-expres-
sion possesses a standard value, then we may obtain a line of
proof stating what its standard value is. In general, the stan=-
dard value of an expression is much simpler than the expression.

The value of an S-expression will be defined (non-uniquely)
to be either the standard value of the S-expression or an atomic
symbol with the same standard value as the S-expression. This
ambiguous usage is convenient in dealing with LISP constants
such as integers and truth-values. Thus, both 3 and (QUOTE 3)
are values of (PLUS 1 2).

The principal application of the calculation rule in the
Proofchecker is to the verification of syntactic statements.
These statements take the form of propositions concerning specific
S-expressions, and thus are quite suitable for verification through
calculation in LISP, As an example of the technique, we will
consider the problem of \ -conversion. The discussion will il-
lustrate both the solution to a particular logical requirement
on the Proofchecker, namely, the ability to perform A -conversions,
and the general technique used for syntactic calculations.

A =conversion is the rule by which we obtain the equality
NIETINEE M TR xnp] [a13 «ee 5 8y
=€4'a1; ooo;an’ .
The A=sxpression represents a function; the quantities

- 146 -

81 e 8y are arguments for that function. The conversion is
accomplished by substituting each aj for the corresponding xi in
the expression £ . For example, we should be able to obtain the
result

(1) (EQUAL ((rLAMBDA (X Y) (AND (P X) (Q X Y))) (H1 U) U)
(a0 (P (H1 U)) (Q (A1 U) U))) .
by A\ =-conversion.

In order to perform a A -conversion, we must satisfy sever-
al conditions. The list of dummy variables (the x;) cannot con-
tain any constants; there must be the same number of dummy vari-
ables and argumenta; and when we substitute the arguments for the
dunmy variables in £ , we must satisfy certain legitimacy cri-
teria. All of these conditions are syntactic; that is to say,
they are conditions on the form of the expressions involved, and
have nothing to do with the meaning of those expressions.

The A -conversion axiom is called LAMI. Its substitutable
variables are all intended to be names of S-expressions. The
axiom is:

faml [vblist; fm; arglist] = same length [vblist; arglist]A
frenlist [vblist] A oksublis [pair [vblist; arglist] ;
fm] > evalfl [list [BQUAL; cons [list [LAMBDA; vblist;
fm} ; arglist] ; sublis [pair [vblist; arglist]; fm]]]

For the example in (1), the substitutions are:

vblist: (QUOTE (X Y))
fm: (QUOTE (AND (P X) (Q X Y)))
arglist: (QUOTE ((H1 U) U)) .

If we write the axiom as an S-expression, we obtain

(2) (LAM1 (VELIST FM ARGLIST) (IMPLIES (AND
(SAMELENGTH VBLIST ARGLIST) (FRENLIST VBLIST)
(OKSUBLIS (PAIR VBLIST ARGLIST) FN))
(EVAL1 (LIST (QUOTE BEQUAL)
(coNs (LIST (QUOTE LAMBDA) VBLIST FM)
AR();I).S'g) (SUBLIS (PAIR VELIST ARGLIST)
FM .

- 147 -

In order to perform a A =-conversion, it is necessary to
start with this axiom and then proceed through a standardized
sequence of inferences to obtain the result. The axiom LAN1
takes the form of an implication, in which the antecedent repre-
sents the syntactic requirements for the A -conversion, and the
consequent represents the desired result. When the appropriate
substitutions are made, the antecedent becomes an expression
that can be evaluated, and the result of the evaluation will be
#T% (the value of T). From this we can deduce the consequent;
and after evaluating the appropriate sub-expression of the conse-
quent; we get the result we want.

Let us first examine what happens when we evaluate the ante-
cedent of (2) which, after the substitutions are made, becomes

(3) (AND (SAMELENGTH (QUOTE (X Y)) (QUOTE ((H1 U) U)))
(FRENLIST (QUOTE (X Y)))
(OKSUBLIS (PAIR (QUOTE (X ¥)) (QUoTE ((H1L U) U)))
(QUOTE (AND (P X) (Q X Y))))) .

If we denote this expression by a~, then the evaluation consists
of computing evalle<], which we will call 7 (and is *T*),

& consists of a conjunction of three terms; if each of
them evaluates to *T*, the entire expression will evaluate to
T, The first term states that the argument list and the
variable 1ist have the same length (though of course the function
samelength must have an appropriate LISP definition). Similarly,
the function frenlist tests whether its argument is a list of
atomic symbols, each of which has at most PNAME and SPECIAL on
its property list, and none of which are numbers, i.e., none of
the symbols are constants. Thus the second term guarantees that
the dummy variable list is grammatically correct. The function
oksublis[x; y] expects its first argument x to be a list of
pairs, each of which specifies a substitution and is of the form
(a . e), where e is to be substituted for the atomic symbol a.
oksublis tests whether all the substitutions given in x are
legitimate; its value is *T* if they are. In (3), the first seg-
ment of oksublis is

pair[(X Y); ((BL 0) 0)] = ((X. (H1 U)) (¥ . U))
and the second argument is
(am (P X) (X))

these two arguments do satisfy the criterion, so that the third
term evaluates to *T* also and hence o< evaluates to *T¥,

- 148 -

Had the substitutions been incorrect, the evaluation of o<
could have failed in either of two ways. Obviously, a- might
have evaluated out to NIL instead of to *T'* in such a case.
Another possibility is that the evaluation might have led to a
LISP error complaint. The latter is in fact the more likely pos-
sibility. Suppose, for instance, that we had failed to quote the
substituted expressions. The result would have been a complaint
from the LISP system that X was an undefined function.

Let us now examine the consequent of the implication in (2).
After the substitutions are made, we have:

(4) (EVALL (LIST (QUOTE EQUAL) (CONS (LIST (QUOTE LAMBDA)
(QUOTE (X Y)) (QUoTE (AND (P X) (Q X ¥)))) (QUOTE
((11 1) 1))
(SUBLIS (PAIR (QUOTE (X Y))} (QUOTE ((H1 U) ©)))
(QuoTE (AND (P X) (Q X 1)))))) .

Let us denote the expression following EVALL in (4) by« , and

the expression in (1) by § . Then § is the desired result,
and furthermore,

evaplly] = 0 .
Thus, from the calculation rule, we obtain
(5) (EquaL v (QWIES)) .
We now need an axiom for substitution. The axiom is:

substit [fn: argl; arg2] = equal [argl; argl] =
equal [fn [argl]; fn [arg2]]

We use this axiom with the arguments
fn: EVAL1
argl: Y
arg2: (QUOTES) .
Using MODUS on (5) and this axiom, we obtain
(6) (EQUAL (EVALlT) (EVAL1 (QUOTE &))) .
Using the rule of inference VALEQ, we obtain
(7) (EQUAL & (EVAL1 (QUOTE 5))) .

VALEQ must be a rule of inference because we cannot in general

- 149 -

esubstitute into a quotation within an axiom. In this case 4§ is
substituted within a quotation, We now use an axiom for the
transitivity of equality, together with CONJOIN and MODUS, to ob-
tain the result

(8) (EQUAL (EVAL1 Y) 6) .

Now since we have shown that the antecedent of (2) is true, i.e.,
we have obtained it as a line of proof, we can deduce the conse-
quent, i.e., (4). But (4) is just (EVALL 7y). Since this is
logically equivalent to & by (8), we can deduce & from (8),
and & 1is the desired result.

Now that we have presented the entire argument, let us re=-
view it briefly. If we wish to perform & A =conversion, we must
first substitute appropriate arguments into the axiom LAM1, and
these arguments are the names of various parts of the desired re-
sult. LAM]1 is in the form of an implication; by calculating the
antecedent, we determine that the conversion is legitimate, and
by calculating the consequent, we obtain the actual expression
of the result. Since the antecedent is true, the consequent must
be true, and so we have the result.

The use of the A =-conversion axiom is an example of a tech~
nique that is employed repeatedly by the Proofchecker. It is
possible only because of the existence of the calculation rule.
The Proofchecker has been set up in such a way that it is easy to
create macro~steps that follow this pattern; and in actual prac-
tice, we can do an entire A -conversion with one macro~step.

IV. Macro-steps and the macro~step interpreter

There is a very strong analogy between the problem of com-
posing a rigorous proof for a theorem and writing a machine-lan-
guage program. In each case, we have avallable certain operators
which alter our data. In the Proofchecker, the operators are the
ten rules of inference, and the data is the 1list of previously
derived results. In a machine-language computer program, the
operators are the machine instructions and the data is the set of
machine registers which have been set aside for storage. In each
case, we are faced with the difficulty that a single application
of an operator produces only a small change in the data, and that
a great many applications of the operators are needed in order to
obtain significant results.

4 feature comzon to both situations is that there are re-
curring patterns of application of the operators. In the case

- 150 -

of machine coding, there are two kinds of approaches which have
been used to take advantage of this situation. One of these is
the analytic approach; we develop an artificial programming
language (e.g., FORTRAN, or for that matter, LISP) which enables
us to describe the calculations we wish to perform, but bears
little or no relationship to machine language. More often than
not, this language will be machine-independent. Then we build a
translator which reads a program in the artificial language and
creates a corresponding machine-language program.

The other approach, which is the one we are interested in,
is the synthetic approach, and is represented by macro-assemblers
such as SCAT and MACRO-FAP [4] . These macro-assemblers grew
out of the older-style assembly programs, and in fact they almost
invariably contain a traditional assembly program as part of their
operation. They are designed so that frequently used sequences
of instructions may be abbreviated by a single instruction.

In the Proofchecker, the role of the macro-assembler is
played by the macro-step interpreter meth l. Macro-step defini=
tions, which closely resemble LISP PROG-type programs, play the
role of macro-instruction definitions. The macro-step defini-
tions may contain actual proof steps, calculations to be performed,
or calls to other macros. meth 1 uses the LISP function errorset
to supervise most calculations so that in the case of error,
meth 1 still retains control.

As a proof is generated, two records are kept of it: a list
of rigorous steps, known as STEPLIST, and a corresponding list of
lines of proof, known as LINESET. Each step is in fact an in-
struction on how to generate the corresponding line. Whenever
a rigorous proof step is encountered by meth 1 in its interpreta=-
tion of a macro, meth 1 calls upon a function called stepcheck.
stepcheck checks the step for legitimacy, using the appropriate
rulecheck fa (there is one for each rule of inference)., If the
step is legitimate, stepcheck creates the appropriate line of
proof, adds it to LINESET, and adds the step to STEPLIST. If
the step is illegal, stepcheck communicates an error indicator
to meth 1. Generated lines of proof are numbered consecutively,
and the variable LINECOUNT records the current count.

Since rigorous proofs are difficult to handle, meth 1 serves
as an interface between the mathematician and the rigorous proof.
For instance, the mathematician who uses a macro-step does not
ordinarily know how many rigorous lines of proof it will gener-
ate. Thus he cannot refer to previous results, since these are
indexed by line number. Hence provision is made in the Proof-
checker to accept input proof steps with attached labels; the

- 151 -

latels are then tied to the last line generated by the macro-step
via a symbol table known as LABEL EDLINES., At any stage, the re-
sult of the immediately previous macro-step is given the implicit
label NIL. This arrangement makes it possible to refer to the
immediately preceding result without labeling it; since in many
proofs a result is used only to support the immediately follow-
ing step, this arrangement eliminates a great many labels.

Another useful aid to the mathematician is a 1ist called
KEYLINES. Any line of the input proof may be indicated as a key
line; in addition, at any stage, the result of the last executed
macro-step, i.e., the one implicitly labeled NIL, will be auto-
matically included in KEYLINES. The information in KEYLINES may
be referred to implicitly as well as explicitly. This effect is
achieved by having macros that search through KEYLINES when an
additional result is needed to support a conclusion. In other
words, the user, at least in some cases, need not cite all the
steps upon which a given line depends; he can let the Proofcheck-
er find them by a search through KEYLINES, Of course, if too
many entries appear in KEYLINES the search becomes woefully inef-
ficlent.

The Proofchecker programs in general, and meth 1 in particu-
lar, make extensive use of the LISP function errorset. errorset
performs the same calculation as eval, with the following im-
portant difference: if the evaluation succeeds, list of the re-
sult is returned, and if it fails due to a LISP system error, NIL
is returned via a system error recovery routine. Thus, errorset
makes it possible for the program to attempt evaluations even
when they lead to system errors, without control being lost by
the function that called errorset. With this functiom, it is
possible for a program to try an evaluation and see whether it
is legitimate without losing control. Since such things as
evaluating unsatisfied conditional expressions or unbound vari-
ables will cause system errors, this type of error recovery is
frequently desirable. Although errorset was explicitly con-
structed for the sake of the Proofchecker, it is useful in other
applications also. It is explained in detail in the LISP l.5
Manual (2] .

Macro-steps are of two kinds: external macro-steps and in-
ternal macro-steps. Only external macros can be used in the in-
put proof. An external macro-step receives its parameters from
meth 1 in a particular format which differs from that used by
most other macro-steps. Normally, however, an external macro-
step will call one or more internal macro-steps, which are not
suitable for external use. An example of the specification of
an internal macro~step is the following:

- 152 -

((L1 12) (L3)

(SETQ L3 (FINDLINEl L2))

(CONJOIN (LIST L1 L2))

(USETHM) §()2UOTE EQL1) (LIST (CADR L3) (CADDR
L3

(mopus (LCM 2) (LCM 1)))

EQLL

This definition is attached to the property list of EQL1 followe
ing the indicator APVAL, The macro makes use of the axiom

(EQL1 (P Q) (IMPLIES (aND P (BGUAL P Q)) Q))

We use this macro-step when we have two lines of proof, the first
being an expression « and the second being (EQUAL K 1)o Using
this macro-step, we derive the 1ine B . The function findline
L®) takes a line number as argument, and its value is the text of
that line, If A does not correspond to a line number, a LISP
error occurs., The function lem[k] has the value LINECOUNT - k.

On the first line of the definition, we find the parameters
of the macro-step, i.e., its arguments, and its program vari-
ables. In this case the macro-step name is EQLl, its parameters
are L1 and L2, and its program variable is L3. Ll and L2 will
bave as values the line numbers of & and (EQUALKXA) respectively.
The first step of the macro is

(SETq L3 (FINDLINEL I2)) .

This step causes the program variable L3 to be set equal to the
value of (FINDLINEl L2), i.e., (EQUAL o< B). The next line is

CONJOIN (LIST L1 L2)) .

Since the symbol in the function position here is one of the
rules of inference, meth 1 does not merely evaluate it; instead,
it evaluates the parameter of CONJOIN, giving a list of two in-
tegers, and then uses stepcheck to attempt to CONJCIN step, with
the 1list of two integers as parameter. The next step is

(USETHM (QUOTE EQL1) (LIST (CADR L3) (CADDR L3))) .

(JUOTE EQL1) is used rather than ELLl because the parameters of
USETHM are evaluated before they are given to stepcheck. Evalu~
ating the second parameter or USETHM gives the list =< B).
Thus, USETHM will introduce the axiom EQL1l with o¢ as P and S
as Q. The final step is

(MoDUS (LCM 2) (1LcM 1)) .

- 133 -

This combines the results of the two previous lines so that the

new line is 5 . To illustrate: suppose that we already have
the lines

(9 (BuaL (P X) (Q ¥)) (3 4))
(12 (p x) (12))

and that the last line generated is 15, Then evaluating meth 1
(EQL1 12 9) will cause the following steps to be generated:

(16 (CoNJOIN (12 9)))
(17 (usermd BEQLY ((P X) (Q Y))))
(18 (MoDUS 16 17)) .

The corresponding lines are:

(16 (AND (P X) (Q Y)) (12 3 4))
(17 (IMPLIES (AND P X) (BQUAL (P X) (¢ Y))) (g Y)) NIL)
(18 (Q ¥) (12 3 4)) .

Although this macro is occasionally needed on the top level
of & proof, its greatest value i1s for use within other macros.
For the top level, its inputs are not in the necessary format, so
we still need an external macro to call it.

A macrc definition is written in the same form as a LISP
program., There is a preamble specifying the name and arguments
of the macro, followed by a sequence of S-expressions. Any a-
tomic symbols within this 1ist are taken to be labels of the
first following non-atomic S-expression. Each line of the macro-
step is examined in turn. If the first element of the line is
the name of a rule of inference, then stepcheck is invoked., If
the step fails, an error condition is established; otherwise a
line of proof is generated by stepcheck. If the first element
of the line is MACRO, then meth 1 is called recursively to inter-
pret the macro (with parameters5 specified by the remainder of
the line. Any error condition within the called macro will in
turn set up an error condition in the calling macro. Lines be-
ginning with GOTO or COND1 are treated like GO and COND in the
usual PROG function definition; for technical reasons, different
names must be used. RETUERN acts like RETURN in a PROG function
definition. With the exception of lines beginning with CONTINUE,
any other line is merely eveluated under the control of errorset;
if the evaluation causes a system error, an error condition is
set up within the macro,

One interesting aspect of meth 1 is its provision for error
recovery. It was pointed out that errcrs can occur when reth 1

- 154 -

operates on a line. However, before any action is taken, the
line following the erronecus one is examined. If it is of the
form (CONTINUE x), where x is an atomic symbol, then control is
transferred to the line of the macro-step labeled by x, just as
if the CONTINUE were a GOTO. If CONTINUE is encountered under
any other circumstances, it is ignored. Ordinarily, when a line
of a macro-step creates an error condition, interpretation of the
macro~step ceases and control passes to the next higher macro.
Since this macro in turn detects an error condition, control
passes all the way up to the topmost level of interpretation, i.e.,
interpretation of an input proof step. However, the appearance
of CONTINUE following a macro call at any level of the hierarchy
will cause the macro at that level to retasin control. Thus it

is possible to attempt proof steps, either elementary or on the
macro level, even if it is not certain they will work. It would
in fact appear that this principle -- namely, of being able to
try things that cause system errors and act on the basis of
whether these errors occur -- is a generally useful one in pro-
gramning systems designe.

When an error condition is passed all the way up to the top
level of interpretation, a backtrace is generated and printed out.
This backtrace shows all macros entered at the intermediate levels
between the error and the input proof step, and what the parameters
of each macro were. Since an error in an input proof step fre-
quently does not show up until some macro (or an elementary proof
step) several levels down is examined, this backtrace is invalu-
able in determining why a step is erronecus. It is also quite
helpful as a debugging aid for macro-step definitions. When a
step of the input proof fails to check, the result is assumed and
the proof continued. Consequently, it is possible to learn of
many errors in one pass.

One example of a macro-step is the macro LAMCON1l, which is
used to mechanize the A =-conversion procedure discussed in the
previous section, The single ameter of LAMCON]l is an expres-
sion of the form (g ajase.. a,), where g is a A =~expression for

. 192
a function and aj, a3, +¢. , a, are its arguments. Executing
the macro performs the A =~conversion and generates the line

(EQUAL (g a7 ap eee ap) &) .

where £ is the result of the A -conversion. The interpretaticn
of LAMCON]1 generates 17 rigorous steps; the last one of these is
the desired result.

Two other macros of interest are ONE-STEP-DED and MODUS-
PONENS, ONE-STEP-DED is an internal macro that makes certain
fobvious" deductions, which are celled one step deductions. It

- 155 -

has three parameters: a conclusicn, a premiss, and the line
mumber of the premiss, which must be a previous result. ONE=-
STEP-DED attempts to derive the conclusion from the premiss,
There is a related external macro ONESTEP which has a label as
parameter; ONESTEP uses the label to obtain botk the text and
the line number of the premiss, and then calls ONE-STEP-DED with
the desired result as the conclusicn and the premiss and the line
number corresponding to the given label,

ONE~-STEP-DED itself determines what sort of deduction is
appropriate to obtain the conclusion. It handles the following
cases:

(a) The premiss is a conjunction of several terms, and the
conclusion 1s one of them.

(b) The premics is an implication whose antecedent is
either among KEYLINES or 1s calculably true, and whose con-
sequent corresponds to the conclusion.

(¢} The premiss is preceded by one or more universal quantie
fiers, and the consequent may be obtained by a sequence of
specialization of these quantifiers.

(d) The premiss is a defined term, and either the conclu-
sion can be obtained from the definiens of the premiss by a
one step deduction, or the definiens of the premiss is a
conjunction of several terms, and the conclusion may be ob-
tained by a one step deduction from one of them.

These cases were selected on the basis of observation as to the
sort of thing which is frequently needed in & proof. Although
there are many other kinds of deductions which might be included
in this step, adding them would lengthen the execution time of
the step. This effect would be particularly pronounced because
of the recursive nature of the deduction in case (d). The re-
cursive nature of the step has the effect of permitting some de-
ducticns which are actually several steps in length.

The comparison of case (a) with the subcase of case (d)
where the definiens is a conjunction of several terms illustrates
the heuristic basis of the choice of permitted deductions., If the
premiss is a defined term, we will check each compcnent of the
definiens to see if the conclusion follows by a one step deduction;
but if the premiss is already a conjuncticn, we limit ourselves
to an identity check. This situation is based on the observation
that conjunctions of terms in a proof arise frequently from
definitions, and that in this case we are quite likely to be able

- 156 -

to achieve the desired result by another application of ONE-STEP-
DED.

The macro MODUS~-PCNENS is used to handle citations of
theorems. Its first parameter is the name of a theorem; its
second parsmeter is a list containing two types of elements; sug-
gested substitutions into the theorem, and previous results ap-
pearing in the hypotheses of the theorem. The desired result is
also provided. MODUS-PCNENS first compares the desired result
with the consequent of the cited theorem (which must be in the
form of an implicaticn or equivalence) to determine any substi-
tutions left unspecified. Substitutions not appearing in the
consequent must be specified, though in practice all substitutable
variables appear in the consequent more often than not. After
determining the entire set of substitutions, the macro can then
find precisely what hypotheses must be established. It then at-
tempts to establish these one at a time, by using ONE-STEP-DED on
pairings between the cited previous results and the necessary
hypotheses. Hypotheses that are either calculably true (i.e.,
that evaluate to T) or that are among KEYLINES need not be sub-
stantiated. The last line generated by MODUS~PONENS is the de-
sired result; the intermediate lines are those needed to estab-
lish the hypotheses, followed by the actual application of the
theorem via USETHM and MODUS,

The macro-step mechanism we have described makes it possible
to achieve a great deal of abbreviation in specifying a proof.
Unebbreviated proofs are extremely tedious to compose, and hence
their composition is highly vulnerable to error. Furthermore,
composing such proofs is a task which few people are willing to
undertake; the proof of this lies in the fact that the task has
been undertaken only for the most elementary logical theorems.,
Macro~-steps are no more than an abbreviative device, but never-
theless such a device seems essential,

Macro-steps avoid the necessity of proving many derived rules
of inference. Each derived rule is represented by a macro, and
this macro actually generates the steps corresponding to the der-
ived rule. The Proofchecker is set up in such a way than an error
in a macro-step simply causes the proof generator to fail (and
simultaneously to pour forth a wealth of diagnostic information).
Thus, if the conception of a derived rule has been in error, this
will reflect itself in an error in a macro-step definition which
in turn will show up when an attempt is made to check proofs
using this derived rule.,

Macro-steps can also be used to perform heuristic searches.

In the present implementation of the Procofchecker, this ability
was utilized in only a limited way, to cut down the amount of

- 157 -

detail that the user need state as in the MODUS-PONENS macro.
However, searching can also be used to fill in gaps in a proof
that the mathematician has nct thought of, or in conjunction with
proof procedures. These extensicns remain to be explored.

A further property of the macro-step arrangement is its
open-endedness., It is always possiltle to add new macros to the
existing library, and thus to augment the kinds of inference that
the Proofchecker is capable of performing. One disadvantage of
this must be noted, however: the macro library tends to consume
storage. Storage capacity turned out to be one of the chief
limitations on what the Proofchecker could do.

Ve Conclusions

The construction and application of the Proofchecker demon-
strate that the macro-language concept is a powerful and useful
one in areas other than macro-assemblers. The macro-steps of
the Proofchecker permitted a notable condensation in specifying
proofs. These macro-steps saved not only the labor of writing
things down, bul also the labor of figuring many things out.
Furthermore, the subroutine kind of organization inherent in a
macro languege permits the rapid construction of an extensive
hierarchy of available devices and methods; an internal macro
such as ONE-STEP-DED, for instance, can be used by many other
macros and yet needs to be defined only once.

A further conclusion is that the type of control provided
by errorset is a useful one in computer executive systems. The
LISP function meth 1 was effectively an executive program that
decided what needed to be done and then called upon the appro=
priate apparatus to do it. Within these programs, it was pos-
sitle to try a step and if it failed, to try something else
without losing control. The ability to do this in general is
something which is missing in most existing executive and monitor
systems; but the results of the Proofchecker suggest that such
features would be well worthwhile.

The self-descriptive properties of LISP do indeed have more
than theoretical interest. The calculation rule, which was based
on the LISP function eval, made possible the ccnstruction of a
scmevhat unususl but very powerful mathematical system, and in
particular permitted the development of the whole apparatus of
syntactic methods that was illustrated for the particular case
of A -conversion. In particular, it was possible for LISP to
create expressions to be evaluated via the calculation rule, and
then carry out the evaluation by considering these expressions

- 158 -

to be LISP programs.

While LISP is still the best programming language for this
type of application, it has serious drawbacks, both in terms of
convenience and in terms of programming efficiency. The task of
writing out S-expressions to define programs is a tedious one,
especially since the LISP notation seems to run counter to the
natural way that people think of mathematical expressions. For
instance, in a sequence of composed functions, we would like the
function to be performed first to appear first; but in the LISP
notaticn, it is just the opposite. Furthermore, the rate at
which LISP consumes free storage, combined with the limited
amount of storage available, greatly restricts the kinds of things
that can be done in LISP.

The problem of excessive storage requirements seems to be a
general one with list-processing languages. The requirements of
computations requiring list processors are a strong argument for
increasing the capacities of our computers. (The same problems
that plagued the Proofchecker were encountered by Slagle [6]).
Because of the random access needed to virtually all parts of
both program and data, magnetic tape and other auxiliary serially-
accessed storage media have been of little help in easing the
space shortage in LISP; although IPL has facilities for storing
information on a drum, for instance, these are of limited useful=-
ness.

The fact that the macro-steps had to be interpreted con-
siderably degraded the performance of the Proofchecker. It
ought to be possible to build a special-purpose compiler, per-
haps using some components of the present LISP compiler, to con-
vert macro-steps into machine-language programs. This would do
two things at once: it would speed up the operation of the
macro~-steps, and it would cut down the amount of storage they
require (since the interpreter itself uses significant amounts of
free storage).

- 159 -

1.

2.

3.

be

5

7.

REFERENCES

Abrghams, P., Machine Verification of lMathematical Proof,
Doctoral Dissertation in Mathematics, Massachusetts
Institute of Technology, June 1963.

LISP 1.5 Programmer's Manual, Computation Center and Research
Laboratory for Electronics, Massachusetts Institute of
Technology, August 1962.

McCarthy, J., Computer Programs for Checking Mathematical
Proofs, Proceedings of the American Mathematical Society
on Recursive Function Theory, held in New York, April
1961.

McIlroy, M.D., Macro-Instruction Extensions of Compiler
Languages, Communications of the Association for Com-
puting Machinery, April 1960, pp. 184-195.

Russell, B., and Whitehead, A.N,, Principia Mathematica,
Vol. 1, New York, Chelsea, 1933 (2nd edition).

Slagle, J. R., A Heuristic Program that Solves Symbolic
Integration Problems in Freshman Galculus, Journal of
the Association for Computing Machinery, October 1963,
ppe. 507-520.

Suppes, P., Introductlon to Logiec, Princeton, Van Nostrand,
1957.

- 160 -

METEOR: A LISP Interpreter

for String Transformations

Daniel G. Bobrow

(The work reported here was supported by the Research Laboratory
of Electronics and the Computation Center of the Massachusetts
Institute of Technology.)

I. Introduction

Conditional expressions, composition, and recursion are the
basic operations used in LISP! to define functions on list struc-
tures. Any computable function of arbitrarily complex list struc-
tures may be described using these operations, but certain simple
transformations of linear lists (strings) are awkward to define
in this notation. Such transformations may be characterized (and
caricaturized) by the following instructions for a transformation:

Find in this string the substring consisting of

the three elements immediately following the first
occurrence of an A, and find the element just be-
fore an occurrence of a B which follows these three
elements; if such elements exist, exchange the po-
sition of the three elements and the one element,
delete the A, and replace the B by a C.

A notation for expressing such transformations is the basis
for the COMIT programming language of Yngve.2 It consists of a

- 161 -~

formal method for selecting substrings from a string, and then
indicating the structure of the transformed string. It is easy
to write COMIT rules which perform string transformations such
as rearrangement, deletion, insertion, and selection of elements
from context. However, COMIT does not easily allow the general
list processing that can be done in LISP.

A language in which statements in both LISP functional nota-
tion and COMIT prototype notation are interpretable would be de-
sirable. As a compromise, to allow easy string manipulation
within LISP, a LISP function, METEOR, has been written which will
interpret COMIT-type rules, and perform the indicated string
transformations. METEOR notation is similar to that used in CO-
MIT, with some additional features, such as use of mnemonic names
for certain expressions. This report describes in detail the
types of program statements that can be interpreted by METEOR,
and is hopefully independent of any knowledge of COMIT, although
some knowledge of LISP is assumed at times. Similarities to CO-
MIT will be obvious to the knowledgeable reader, and occasional
warnings about differences between METEOR and COMIT are inserted.

Section II of this report is an introduction to METEOR by
examples. Most of the features of the system are illustrated.
Section III is a complete, exact specification of a METEOR pro-
gram and its interpretation. Section IV is a collection of warn-
ings for the unwary about the foibles of the system — a combina-
tion of the worst of LISP and COMIT — and some paternal advice
about how one can best use the system.

ITI. Operations with METEOR Rules

In this section the structure and operation of some types of
METEOR rules will be illustrated by simple examples. Figure 1 is
a listing of a sample program as run in the LISP system under the
METEOR Interpreter. The output from this program is shown in Fig-
ure 2. The entire program will be discussed in some detail.

First, the LISP interpreter must be informed that it is to
use the METEOR program. The punch card expressed in line O of
Figure 1 performs this function. The two left parentheses open,
respectively, the list of arguments for METEOR (it has two) and
the list of rules (the first argument).

Lines 1-22 state rules, which will be applied successively
to transform the linear list (called the workspace) given in line
23, and the "workspace", in this example, is "(A ROSE IS A ROSE
IS A ROSE)."

- 162 -

- €91 -

VO~NCUbhwNne— O

FIGURE 1

METEOR ((

(* (ROSE) (FLOWER) * (SIMPLE REPLACEMENT))

(* ((*P THE WORKSPACE IS)) * (DEBUG PRINTOUT))
(* (IS A ROSE) (0 * (DELETION))

(* (A FLOWER IS) (31 2) * (REARRANGEMENT))
(* ((*p WS2)) *)

(* (FLOWER) (1 OF RED) * (INSERTION))

(* (A FLOWER) (THE 2) * (REPLACEMENT IN CONTEXT))

(* ((*P WS3)) *)

(* (FLOWER) * (NO OPERATION))

O (RED) (1 1) * (DUPLICATION))

(* ((*P WS4)) *)

(* (OF ($.1)) (1) *(SINGLE UNKNOWN CONSTITUENT))

(% (($.1)) (QUESTION 1) * (FIRST CONSTITUENT))
(* ((*P WS5)) *)

C* (($.2) FLOWER ($.3)) (32 1) * (N CONSECUTIVE CONSTITUENTS))

(* ((*P WS6)) *)

(* (FLOWER $ ROSE) (1 3) * (UNKNOWN NUM OF CONSTITUENTS))

(* ((*P WST)) *)

(* ($) (START C A B D) * (REPLACING ENTIRE WORKSPACE))

(* (START ($.1) $ D) (1 324) *
(* ((*P WS8))

* ($) END)

) (A ROSE IS A ROSE IS A ROSE))

FIGURE 2

(THE WORKSPACE 1IS)
(A FLOWER IS A ROSE IS A ROSE)

(Ws2)

(IS A FLOWER A ROSE)

(WS3)

(IS THE FLOWER OF RED A ROSE)

(WS4)

(IS THE FLOWER OF RED RED A ROSE)
(WS5)

(QUESTION IS THE FLOWER OF RED A ROSE)
(WS6)

(QUESTION OF RED A FLOWER IS THE ROSE)
(WS7)

(QUESTION OF RED A FLOWER ROSE)

(WS8)

(START A B C D)

Replacement

Items in the workspace may be replaced. The rule in line 1
finds the first occurrence in the workspace of "ROSE"™ and replaces
it by an occurrence of "FLOWER". The list of one element "(ROSE)"
is called the left half of this rule, and the list of one element
"(FLOWER)" is called the right half of this rule. The "left half"
selects elements from the workspace. The "right half" indicates
what the result is to be from transforming these selected elements.

Printout of the Workspace

The contents of the workspace may be printed out with an iden-
tifying message by a rule such as that in line 2. The list "(*P
message)” as the only element of the left half of a rule will
cause a printout of the "message" first, and then the contents
of the workspace. Line 2 prints out "(THE WORKSPACE IS)" and then
the contents of workspace. This printout is shown in Figure 2.
The workspace remains unchanged.

Deletion

Items may be deleted from the workspace. The rule in line
3 finds the first occurrence in the workspace of the three words
"IS A ROSE". These are specified by the left half of this rule.
The atom O (zero) as the right half of this rule specifies that
these words should be deleted from the workspace, and nothing in-
serted in their place.

Rearrangement
Items in the workspace may be rearranged. The rule in line
4 finds the first occurrence of "A FLOWER IS" and reorders it as

- 164 -

"IS A FLOWER". This is specified by the order of the elements in
the right half, the list "(3 1 2)". 1In this right half, 3 refers
to the element matched by the third element of the left half, 1

to the first, and 2 to the second. Deletion and rearrangement can
be done simultaneously by not mentioning in the right half an item
matched in the left half. For example, if the right half of this
last rule were (3 2), the string "IS FLOWER" would be substituted
for "A FLOWER IS" and this occurrence of "A" would no longer ap-
pear in the workspace.

The rule in line 5 causes a printout of the message WS2 fol-
lowed by the modified workspace. (See Figure 2.)

Insertion

New material may be inserted into the workspace by a METEOR
rule. The rule in line 6 finds the first occurrence of "FLOWER"
in the workspace, and inserts, just after it, the elements "OF
RED". The 1, of course, refers to the occurrence of "FLOWER" as
the first (in this case, the only) left half constituent (pattern
element). Insertions can be made before, after, or between ele-
ments of the workspace identified (matched) by the left half of
the rule.

Replacement in Context

Suppose we wish to replace the article "A" by the article
"THE" when it appears immediately before the word "FLOWER". The
left half "(A)" cannot be used to locate this occurrence of "A".
This left half will locate the first occurrence of "A" in the
workspace. However, the "A" found by "(A FLOWER)" is the appro-
priate one, i.e., the one immediately preceding "FLOWER", and the
stated transformation is performed by the rule in line 7. Line
8 prints out "WS3" and this transformed workspace.

If only a left half appears in a rule, as in line (9), an
occurrence of "FLOWER" is found in the workspace, but no trans-
formation is made, and the workspace remains unchanged.

Duplication
Items matched by the left half may be duplicated in the right

half by mentioning them more than once. For example, rule 10 in-
serts another copy of "RED" into the workspace immediately suc-
ceeding the first occurrence, and rule 11 prints out the result-
ing workspace following the message "WS4".

Unknown Constituents

Sometimes only the context of a desired item is known. To
locate such an item we need a notation for an unknown item. ME-
TEOR uses the symbol "($.1)" (that is, left paren, dollar, period,
1, right paren), which is similar to the COMIT notation. This

- 165 -

symbol represents any single unknown constituent. In rule 12,
the "($.1)" is used to find the item immediately after "OF" in
the workspace. Since 2 (which would refer to this item found by
the left half) does not appear in the right half, this item after
"OF" (i.e., the element "RED") is deleted by this rule.

Left half searches are made from left to right in the work-
space: therefore "($.1)" can be used to find the first consti-
tuent in the workspace. Rule 13 finds this first constituent and
inserts "QUESTION" immediately before it. Line 14 prints out the
contents of the workspace after this transformation.

The notation ($.n) is used to represent n consecutive unknown
constituents, where n may be any integer. Thus in rule 15, "($.2)"
refers to the 2 constituents immediately before "FLOWER" and ($.3)
to the 3 constituents just after. This rule rearranges these con-
stituents and the modified workspace is printed out by the rule
in line 16, following the message WSO).

For an unknown number of constituents the symbol "$" is used.
In 17 the "$" will match all items of the workspace between "FLOW-
ER" and "ROSE". The right half specifies that these items are to
be deleted. The result is shown by the output produced by 18, fol-
lowing the WS7. Since "$" will match any number of constituents,
including O (zero), it can be used alone in the left half to match
the entire workspace, and for example, as in 19, used to replace
the entire workspace by a new string.

Line 20 contains a slightly more complex rule which moves the
element after "START" to the position before "D". The result is
printed out by the rule in line 21.

Line 22 is a standard rule to terminate a METEOR program. A
METEOR program will come to a normal halt if it executes a rule
for which there is a left half match ($ always gives such a match)
and whose "go-to" is the atom "END". If no such rule ends the
program an error occurs, METEOR complains, and prints out an er-
ror statement.

Comments Inside a METEOR Program

The list to the right of the second "*" in some rules are
comments which are ignored by the interpreter. However, they
take valuable space within computer storage (they are read in)
and thus comments should be used sparingly if spaég—gs tight.

Flow of Control

In the program shown in Figure 1 the rules were executed se-
quentially, and no rule was executed more than once. However, re-
peated operations can be done by a single rule. 1In order to apply

- 166 -

the same rule to the workspace several times, we give this rule a

name, which we write instead of the left-hand "*". The name of
the first rule in the program in Figure 3 is CHANGE. This name
is also inserted instead of the right-hand "*". As long as the

left half finds a match in the workspace, the transformation in-
dicated by the right half will be made, and control goes to the
rule named by the atom replacing the right hand "*", in this case
CHANGE again. The workspace is searched from left to right each
time the rule is entered. CHANGE finds the first occurrence of
"A ROSE", changes it to "THE FLOWER" and repeats. When there are
no more occurrences of "A ROSE" in the workspace, the left half
"fails", no transformation is made and control goes to the next
rule in sequence. RULEl is this next rule. RULEl tests to see
if there is an occurrence of "FLOWER" in the workspace. If there
were not, RULE2 would be interpreted next. However, in this case,
since we have just inserted into the workspace several occurrences
of "FLOWER", the left half succeeds and control goes to RULE3.

RULE3 tests for the occurrence of "ROSE" in the workspace,
and if there were such an occurrence, control would go back to
CHANGE. There are none in this case and control passes to the
next sequential rule — in line 5 (an unnamed rule).

It is sometimes desirable to reverse the normal flow of con-
trol, that is, to go to the next rule when the left half finds a
match and the transformation is made, and conversely, to go to the
rule specified in the "go-to" on failure of the left half. For
example, this allows the program to exit from the middle of a
multi-rule loop on failure of a condition. This type of flow is
indicated in line 5 and line 6 by the "*" which is the second
element of the rule. Since line 5 is this reverse-flow type of
rule, and since there are no occurrences of "ROSE" in the work-
space, the left half fails and control goes to RULE2, which prints
out the workspace, and terminates the program.

To review, normal flow is to the specified rule on left half
success, and to the next sequential rule on left half failure. If
the second element of a rule (immediately following the name or
first "*") is a "*", this flow of control is reversed. "*" in
the go-to specifies the next sequential rule.

FIGURE 3
0. METEOR((
1. (CHANGE (A ROSE) (THE FLOWER) CHANGE (FLOW OF CONTROL))
2. (RULEI (FLOWER) RULE3)
3. (RULEZ * ((*P WSP)) END)
4. (RULE3 (ROSE) CHANGE)

- 167 -

(* * (ROSE) (FLOWER) RULEZ2)
(* * ((*P WSEND)) END)
) (A ROSE IS A ROSE IS A ROSE))

~N O D

a. Program

(WSP)
(THE FLOWER IS THE FLOWER IS THE FLOWER)

b. Printout

Temporary Storage (Shelves)

In the example in Figure 3, each time the rule CHANGE is
entered, the entire workspace is searched. Successive searches
can be made more efficient by removing material already searched,
and placing it on a temporary storage area called a shelf. The
program in Figure 4 stores material in one such area called
"SHELF1".

Temporary storage on these shelves is controlled by instruc-
tions in the "routing" section of the rule; the routing section
is a list starting with the atom "/". The routing instruction in
line 1 of Figure 4 queues onto the right end of SHELF1 (in a first-
in first-out list) the items associated with 1 by the left half
(i.e., the ones matched by the $), and the word "PRETTY". This is
repeated as many times as the left half match succeeds.

When control is finally transferred to the rule in line 2 of
Figure 4, All the material on this shelf is re-inserted into the
workspace. It is called in by the list "(*A SHELF1)" in the right
half of the rule. A "(*N SHELF1)" would retrieve the Next or
first item only of this shelf.

Any type of item which can be inserted into the workspace by
a right half rule can be put onto a shelf through a routing in-
struction. This is illustrated by the rule on lines 7 and 8.

Another type of routing instruction is illustrated in line 2.
This "*D" routing instruction makes RULE3 the "go-to value" of
PNTRET. Thus after transferring to PRNTWS, and interpreting this
rule, the interpreter treats the go-to "PNTRET" as if it were
"RULE3"™. This "go-to value"™ for PNTRET is reset again in line 8.
Setting the "go-to value" of a return allows easy access and re-
turn from standard routines such as print routines or read rou-
tines.

Figure 5 shows a method used for communicating with recursive
subroutines. The "$" in the go-to causes the first element of the

- 168 -

OO OdRWN -~ O

FIGURE 4

METEOR ((

(CHANGE ($ ROSE) (FLOWER) (/ (*Q SHELF1 1 PRETTY)) CHANGE)

(* ($) ((*A SHELF1) 1) (/(*D PNTRET RULE3)) *)

(PRNTWS * ((*P THE WORKSPACE IS)) PNTRET)

(RULE2 ($) END)

(RULE3 (($.1) ($.1))0 (/(*S ODD 1) (*Q EVEN 2 (*D PNTRET RULE3))
PRNTWS (THIS IS A CONTINUATION OF THE PREVIOUS CARD))

(* ($) ((*A ODD) (*N EVEN)) «(/ (*Q ODD (*N EVEN) ONLY)
(*P ODD EVEN) (*D PNTRET RULE2)) PRNTWS)

) (A ROSE IS A ROSE IS A ROSE))

a. Program

(THE WORKSPACE IS)

(A PRETTY FLOWER IS A PRETTY FLOWER IS A PRETTY FLOWER)
(THE WORKSPACE 1S)

(FLOWER IS A PRETTY FLOWER IS A PRETTY FLOWER)
(THE WORKSPACE 1S)

(A PRETTY FLOWER IS A PRETTY FLOWER)

(THE WORKSPACE 1S)

(FLOWER IS A PRETTY FLOWER)

(THE WORKSPACE IS)

(A PRETTY FLOWER)

(THE WORKSPACE 1IS)

(FLOWER)

(SHELF ODD CONTAINS (IS ONLY))

(SHELF EVEN CONTAINS (PRETTY IS PRETTY))

(THE WORKSPACE 1IS)

(A FLOWER A FLOWER A PRETTY)

b. Printout

- 169 -

FIGURE 5

METEOR ((

(* (($.1)) $
(BLAH ($) END)
(RULE ($) END)

) (RULE BLAH))

FIGURE 6
0. METEOR((
1. (DEAL ($1 $1) ((FN ADDI 1)) (/(*S * 1 2)) %)
2. (* = ($2) PRINT)
3. (* (5 ((QUOIE 1)) DEAL)
4. = ($) DEAL)
5. (PRINT ($) (/(*P /)) END)
6.

)(1 H1 H2 H3 H4 C1 C2 C3 C4 D1 D2 D3 D4 S1 S2 S3 S4))

a. Program

(4 (S4D4 C4 H4) 3 (S3 D3 C3 H3) 2 (S2 D2 C2 H2) 1 (S1 D1 C1 HD))

b. Printout

- 170 -

workspace (not its subscript as in COMIT) to be taken as the "go-
to" for this rule. If a stack of returns is stored on a shelf
(in a pushdown list) and inserted into the workspace, successive
returns can be made from recursive subroutines. This of course
leaves a residue (the return) in the workspace. In Figure 5,
control would pass from the first rule to the one labeled RULE.

Figure 6 is the listing and printout from a program which
"deals cards" onto shelves 1, 2, 3 and 4, starting with the "deck
of cards" in the workspace. Note that integer 1, which is the
first element of the workspace, is not a "card" but will be used
as an indicator in shelving (this is explained in more detail
below).

In the first rule "$1" has been used instead of the " ($.1)"
previously described. Strictly as a typing convenience, because
they are used so often, $1, $2, and $3 have been made special
symbols which are interpreted as ($.1), ($.2) and ($.3) respec-
tively. Thus the first rule matches the first two elements of
the workspace. The right half of this rule indicates that these
two elements are to be transformed into a single element which
is the result of applying the LISP function ADD]1 to the first
element matched by the left half, which is, the first time, the
number 1, and, the second time, the number 2. The LISP function
is tagged by a "FN" for the METEOR interpreter.

In the routing instruction, the *S stores a card, the second
element matched (labeled 2), onto a shelf. The shelf name is
specified indirectly. The "*" immediately following the *S in-
dicates this indirect addressing. The element of the workspace
indicated by the "1" following the "*" specifies the shelf name;
that is, the shelf name will be the number in the workspace which
is matched by the first $1 in the left half.

The rule on line 3 illustrates the use of a quoted number in
a right half. A left half match will be found for this rule if
5 is the first element of the workspace. If the match is found,
the 5 will be replaced by the numeral 1. If 1 were not quoted,
this "1" in the right half would be interpreted as the first ele-
ment matched in the left half, which is not the transformation
intended.

In the routing section of the rule labeled "PRINT", the
routing instruction "(*P /)" causes the contents of all shelves
to be printed, as shown in Figure 6b. The contents of shelves
4, 3, 2, and 1 immediately follow the label in the printout.

- 171 -

FIGURE 7
Full Printout Given by LISP for a Sample METEOR Program

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..
METEOR
(((* DICT (BOY ((BOY / NOUN HE)))
(GIRL ((GIRL / NOUN SHE))))
(LOOKUP ((WORD ($.1))) 0 (/ (*Q SENT (FN GETDCT WORD DICT))
(**P SENT)) LOOKUP)
(* ($) ((*A SENT)) END))
(THE BOY AND GIRL))

(SHELF SENT CONTAINS (THE))

(SHELF SENT CONTAINS (THE (BOY / NOUN HE)))

(SHELF SENT CONTAINS (THE (BOY / NOUN HE) AND))

(SHELF SENT CONTAINS (THE (BOY / NOUN HE) AND (GIRL / NOUN SHE)))

END OF EVALQUOTE, VALUE IS..
THE (BOY / NOUN HE) AND (GIRL / NOUN SHE)))

FIGURE 8

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..
METEOR

(((* ((BOY / NOUN SING)) ((*/ AND 1 (DOG / NOUN MALE))
(*/ OR 1 (BOY / SMALL MALE)) (*/ SUBST 1 (MAN / MALE)))
END)) (THE (BOY / NOUN SING SMALL) AT HOME))

END OF EVALQUOTE, VALUE IS..
(THE (BOY / NOUN) (BOY / NOUN SING SMALL MALE) (BOY / MALE) AT HOME)

FIGURE 9
METEOR
(C(* (($.1) IS ($.2) $ THERE) ((*K 1 2 3 4)) END))
(WHO IT IS AT MY DOOR IS THERE NOW))

END OF EVALQUOTE, VALUE 1IS..
(WHO (IT IS AT MY DOOR IS) NOW)

- 172 -

FIGURE 10

METEOR
(CC * (IS ($.1)) (1 (*E 2)) END))
(IS (ANYBODY AT HOME) NOW))

END OF EVALQUOTE, VALUE IS..
(IS ANYBODY AT HOME NOW)

Dictionary Rule and Retrieval

Figure 7 illustrates a type of rule which stores definitions
of words for very fast, hash-code retrieval. This type of rule is
indicated by a second element which is atomic (not a list) and
which is not "*". The remainder of the list is interpreted as a
list of associated pairs, and retrieval done by the LISP function
GETDCT obtains the second member, given the first. The retrieval
method is very fast and new definitions can be added at any time.
In this program the "(*P SENT)" causes the printout of the con-
tents of the shelf SENT,

Figure 8 illustrates the use of subscripted (labeled) atoms
and the three modes by which subscripts can be merged; i.e., in-
tersection, union, and substitution. The "*/" indicates that sub-
scripts of the constituents should be merged.

The program in Figure 9 shows how several elements of the
workspace can be "compressed" (by the *K in the right half) so as
to be treated as a single item, a list of these elements. The
program in Figure 10 performs the inverse of this compression
operation and expands (with the *E) a list which is a single item
in the workspace, and brings the elements of this list to the
"top level” of the workspace.

A list of characters can be compressed (with a *C operator
on the right) to form a single atom whose print name is this
string of characters. An atom can be expanded into a list of its
characters by a *E operation in the right half. These operations
are illustrated in the two programs in Figure 11.

This has been a very brief survey, by example, of some of the
types of operations that can be done within a METEOR program. The
remainder of the report gives exact specifications for the program.

ITI. Specifications for a METEOR Program

METEOR is a LISP function of two arguments, RULES, a list of
the transformation rules to be applied, and WORKSPACE, the list

- 173 -

or string to which these transformations are to be applied. The
flow of control from one rule to another will be described below.
Figure 1 is an example of a METEOR program, and its use under the
LISP system.

FIGURE 11

METEOR

(((*(($.1)) ((*E1)) END)) (GARBAGE PILE))
END OF EVALQUOTE, VALUE IS..

(GARBAGE PILE)

METEOR

(C* (.1 8.2) ((1 2)) END)) (F OO ON ME))
END OF EVALQUOTE, VALUE IS..

(FOO ON ME)

FIGURE 12
(RULE1 * (($.1) $) (2 1) (/ (*S SHOT 1)) NEXT (COMMENT))

Rule Go-to Left-half Right- Routing Go-to comment

attern Section
name reverse p half

A. A METEOR Rule

An individual METEOR rule is a 1ist of not less than two nor
more than seven elements. An example of a complete rule is found
in Figure 12. The first element of the rule is called the "rule
name", and it must be present. It must be a LISP atom, and is
either the atom "*" or a unique atom (i.e., no other rule may
have this name) .

The second element of the list is optional. It too may be
nEt g "E" g "*"_ or another LISP atom. If it is "*"_ normal
flow of control is reversed. Normal flow of control in a METEOR
program is as follows:

1. If a match is found between the pattern element of the

rule and the workspace, control is passed to the rule specified
by the atom in the "go-to" section of this rule.

- 174 -

2. Otherwise control passes to the next rule in the list
RULES.

If this second element is a *T, tracing is turned on; that
is, before any rule is executed, the contents of the workspace
and this rule are printed out. This continues for every rule
every time it is executed until a rule whose second element is
*U is encountered. This *U turns off the tracing. Encountering
*T in trace mode, or a *U in nontrace mode has no effect.

If the second element of a rule is a *M, then this rule will
be traced each time it is encountered but general tracing will
not be turned on. This means that when the rule is encountered,
the workspace is printed out followed by a printout of the rule
and then followed by a printout of the resulting workspace if
the workspace has been changed.

If the second element of the rule is an atom other than "*"
"®T", or "*U", for example "DICT", the remainder of the rule is
interpreted as a list of dictionary entries to be made. When the
entries are made, control will automatically pass to the follow-
ing rule. The list of dictionary entries is a list of pairs which
is used as an argument for the LISP function DEFLIST. The first
member of each pair must be an atom and the second a dictionary
entry for this atom. The dictionary entry is stored permanently
(for the entire LISP run) on the property list of the indicated
atom. The element which introduced the dictionary rule, in this
case "DICT", is used as a flag to mark this entry on the property
list of the atom. Thus several dictionary entries with different
flags can be made for a single atom, and each may be retrieved
later (by the function GETDCT, described below). Retrieval from
the dictionary is very fast because LISP uses a hash-coded "buck-
et sort" on readin to find the property lists of atoms, and there
is immediate access to these property lists when dictionary look-
up is performed.

The third element of the rule is a pattern statement, which
is used to select relevant items from the workspace. This third
element must be present, and must be a list. If the workspace
"matches™ this pattern (how a match is achieved is described be-
low), the rest of the rule is interpreted. If not, immediate
transfer is made to another rule.

The fourth element of the rule is the atom O (zero) or a
list, which describes the transformed workspace. This element is
optional. If it is not present, the workspace remains unchanged.

The fifth element is an optional list which is identified by
its initial element, the atom "/". This list is called the rout-

- 175 -

ing section of the rule, and it controls temporary storage of
data and multiple branching of flow of control.

The sixth element is the "go-to" section and specifies to
which rule in the list RULES control will pass. It must be an
atom which is the name of some rule in the program, one which has
been given a "go-to value" in the routing section of some previous-
ly executed rule, or the atom "END". If this sixth element is not
present, it is assumed to be "*",

The seventh element is an optional list ignored by the inter-
preter. It may be present only if the sixth element is present.
Since it is ignored it may be used to insert comments on the pro-
gram.

B. The Pattern Section of a METEOR Rule (the "left half")

This section, the third element of the rule list, is a list
of patterns which must be matched in the workspace. A match 1is
achieved if each of the individual patterns matches some element
or elements in the workspace. These matched elements must be in
the same order as the patterns appearing in the list of patterns
and form a single contiguous substring in the workspace. Search
is done from left to right, and the first match obtained is used.

The LISP function which obtains the match is called COMIT-
MATCH. It is a function of two arguments, RULE and WORKSPACE.
RULE is the list of patterns to be matched in the list WORKSPACE.
Each pattern is associated with a name and if a match is achieved,
the value of COMITMATCH is a list of pairs containing the name
and the substring of the workspace matched by the pattern corres-
ponding to this name. If no match is achieved, the value of CO-
MITMATCH is NIL.

Bl. Direct Match

If an element of the pattern list is an atom, it will match
the first identical atom in the workspace. It will also match an
item in the workspace which is a list, but whose first element is
this atom and whose second element is "/". This latter match is
useful if one wishes to label atoms in the workspace by attaching
"subscripts" to them. COMITMATCH will match subscripted and un-
subscripted items. The usual form for a labeled atom is a list
of the form

(atom / subscriptl, subscript2...subscriptk)
For example, the atom "BOY" as a pattern element will match the

list "(BOY / NOUN SINGULAR)" appearing in the workspace. However
"(BOY / NOUN SINGULAR)" as a pattern element will not match "BOY"

- 176 -

in the workspace. (See section B3.) This type of direct match
can be done for any list structure which can be considered a
single element. For example, "(A B C)" will match, as a single
element in the workspace, the list "(A B C)". If the workspace
were (M N (A B C) P), a match would also be found for the sublist
(ABC).

B2. "Dollars" Match

The pattern word "($.1)" will match any single element of
the workspace. 1In general, the form "($.n)", where n is any in-
teger greater than O, will match n consecutive constituents of
the workspace. The atom "$" alone will match an indefinite num-
ber of elements of the workspace, including zero. Thus if "$" is
the only member of the pattern list, there will always be a match,
even if the workspace is null (empty).

As mentioned, $1, $2, and $3 are accepted abbreviations for
($.1), ($.2) and ($.3); but $4, $5, ... will not be understood
by the METEOR interpreter.

The symbol $0 has a special function in the left half of a
rule. If it is the left-most element of a rule, a match will
only be found if the succeeding elements are at the left end of
the workspace. For example, the left half ($0 A) will only suc-
ceed in matching if the first element of the workspace is an A.
If the workspace were (B A C) this left half would fail.

Similarly, if $0 is the last symbol in a left half, the match
will succeed if the immediately preceding symbols are matched at
the right end of the workspace. For example, the A in the left
half (A $0) will match only the last A (underlined) in the work-
space (A B A CA). The search is still made from left to right.

There are four other special "dollars" matches. The left
half element ($. ATOM) will match any atomic (non-list) element.
A subscripted element is a list, for example. Conversely, the
left half element ($.LIST) matches any non-atomic (list) elements.
The pattern element ($.NUMBER) will match any element which is a
number. Finally, the left half element ($. item) where item is
anything except "ATOM" or "LIST", will match any workspace not
identical to item. For example, the left half (A ($.B)) will
match the first occurrence of an A not followed by a B; that is,
in the workspace (C A B A AD), the A in the left half will match
the second A in the workspace.

B3. Subscript Match
A pattern word of the form

(elementl / subscriptl subscript 2...)

- 177

will match a constituent in the workspace which has the same first
element, then "/" and then a list of subscripts which include
those mentioned in the pattern word. Additional subscripts may

be present in the workspace element. Order of the subscripts is
unimportant.

The first element "elementl" of this pattern word may be
either an atom which must be matched exactly by the workspace
item, or be $1, or "($.1)", which will match any element. One
can thus find a word which has specified labelling (subscripting)
without knowing the words itself. For example, " ($1 / NOUN)"
will match any element in the workspace labeled as a noun, such
as " (PLATO / MAN NOUN GREEK)".

B4. Names for Left-Half Elements

Each individual pattern in the left half is associated with
a name. When a match is found for this individual pattern, the
matched portion of the workspace is paired with the associated
name. The names associated with individual patterns in the pat-
tern list are successive integers, i.e., "1" with the first pat-
tern element, "2" with the second, etc. For example, in Figure
12 the name associated with the "($.1)" is "1" and with BE is "2".
If a match were found for this pattern, 1 would be associated with
the element in the workspace immediately preceding "BE", and "2"
would be associated with the occurrence of "BE" in the workspace.

B5. Matching with Left Half Names

Matching with the left half pattern is done from left to
right in the workspace. To determine if an element appears twice
in the workspace, a match can be found for a single element, and
the name associated with this matched element can be used later
in the left half to obtain a second match for this element. For
example, if the left half pattern were "($1 BE $ 1)", the "$1"
would match the word preceding "BE" in the workspace, and the
fourth element of this pattern would match a later occurrence of
this same word. The first occurrence of the word would be asso-
ciated with the name "1", and the second occurrence with the name
"4". If the workspace were "(THIS COULD BE THE WORD COULD)" then
the left half pattern above would match the workspace, and the
list of associated pairs would be: ((1 COULD) (2 BE) (3 (THE WORD))
(4 COULD)) .

B6. LISP Functions for Matching

In addition to these standard patterns for matching, LISP
functions can be used to determine a match. These may be func-
tions of any number of arguments, where the first argument is the
workspace, and the rest are items found previously by the match.

This function is used in the left half pattern in the following
format:

- 178 -

(FN function namel, name2,..., namek)

"FN" is the signal used by the interpreter to mark this type of
function match. For "function" one may insert the name of a
function previously defined in LISP. Namel,..., namek are names
associated with elements previously matched in this left half pat-
tern. If there are k such names, the defined function must have
k+1 arguments. When matching, the first argument will be the re-
mainder of the workspace (the part not yet used in the left half
match), and the other arguments are previously matched elements
of the workspace associated with namel,..., namek. The value

of this function should be NIL if no match is found. It should
be cons([list[m]; w] if there is a match, where m is the portion
of the workspace that is matched, and w is the remainder of the
workspace past the matching elements. Figure 13 illustrates the
definition and use of a match function. CARMATCH will find a
match if the first element of the remaining workspace is the same
as the first list element of the list whose name is given as the
second argument of CARMATCH. 1In use, the unmatched portion of
the workspace is the implicit first argument of CARMATCH.

FIGURE 13

Function Definition

DEFINE ((
(CARMATCH (LAMBDA (WKSPACE LT) (COND
((EQUAL (CAR LT) (CAR WKSPACE))
(CONS (LIST (CAR WKSPACE)) (CDR WKSPACE)))
(T NIL))))
))

Rule

(* ($1 (FN CARMATCH 1)) (2 1) *)

B7. Printing the Workspace

If "((*P message))" is used on the left side, no match will
be found, i.e., the left half will always fail, but the "message"
will be printed out, followed by a printout of the workspace.
This is useful in debugging, and for obtaining intermediate print-
outs. The workspace remains unchanged.

- 179 -

B8. Matching Special Characters

Seven characters will not be seen as characters by the LISP
read routine because they have syntactic meaning within LISP.
They are:

() , - + . [blank or spacel

Thus they cannot appear in METEOR rules. These characters will
be read in however by the METEOR reader, and can appear in the
workspace (see below). To write a rule which tries to match one
of these characters in the workspace — or to insert such charac-
ters in the workspace — use the following lists respectively
"(* LPAR)", "(* RPAR)", "(* COMMA)", "(* DASH)", "(* PLUS)",

"(* PERIOD)", and "(* BLANK).

The inner workings of METEOR are as follows for this case,
for those who are interested. The second item in a list started
with a "#" is evaluated by the LISP function EVAL. The workspace
is then matched against the correct unspeakable item, or said
item is inserted into the workspace — whichever is appropriate.
The "*" in this case is acting as an "unquote" operator. The ¥
operator can be used on the right to cause evaluation of argu-
ments of a function. Normally arguments of functions tagged with
FN are not evaluated.

C. Right Hand Side (Transformed Workspace)

If a match is obtained by the left half pattern, the inter-
preter then uses the right half (the fourth element of the rule)
to determine in what way the workspace is to be transformed. Only
those elements of the workspace utilized in the left half match
can be affected by the right half transformation. If the right
half is the atom "0" (zero) then all those items which were
matched will be deleted from the workspace.

If the right half is not the atom "O", then if the right
half appears at all, it must be a list. If the right half is
not present in a rule, the workspace remains unchanged.

The right half is a list of elements. Each element will be
replaced by the item or items it names, and the resulting string
put in the workspace in place of the substring matched by the
left half. The only way to affect the contents of the workspace
is through the right half rule. This differs from COMIT, which
allows additions to and deletions from the workspace under con-
trol from the routing section. This is not allowed in a METEOR
program. All additions from temporary storage "shelves" are done
directly from instructions in this right half.

- 180 -

Cl. Substitutions, Insertions, and Rearrangement

The names which appear in the right hand side list can be of
several types. The first is a name associated with a matched
element. Its value is its matching substring in the workspace.
The same name may appear any number of times on the right hand
side. Thus elements of the workspace may be duplicated. The
names may appear in any order, and thus elements can be rear-
ranged.

The second type of name is an atom or list which is not a
name of this first type, and not a list beginning with one of
the seven control characters "#K, *C, *E, */, *N, *A, *W", Such
an element is a name for itself, and will be inserted directly
into the workspace; an atom will be inserted and a list will be
concatenated in the workspace in the position in which it ap-
pears in the right half list. For example, see Figure 14 below:

FIGURE 14
Rule

(* (DID $1 60) (2,DOES,3) *)

Workspace
Before (DID HE GO HOME TODAY)
After (HE DOES GO HOME TODAY)

The element associated with the name "2" (i.e., "HE") becomes the
first element, the atom DOES is then inserted, and then the ele-
ment associated with "3" is placed in the workspace. Since the
name "1" is used on the left side but not on the right, the ele-
ment paired with 1 is deleted from the workspace. Since "HOME
TODAY" is not mentioned in the pattern, it is not affected and
remains at the end of the workspace.

To reiterate, the names associated with matched left half
patterns are the integers which specify their position in this
pattern. To insert a given integer, say 3, in the workspace,
quote it in the right half, i.e., use the element “(QUOTE 3)".

C2. Compression and Expansion

Sometimes it is desirable to compress several elements of
the workspace into a single unit, or list. This is accomplished
by using a right half element which is a list whose first element
is "®K". The succeeding elements of this list are of any type

- 181 -

which can be found in a right half rule including other lists
starting with "*K". These items are all placed in the workspace
in a single list. Figure 15 (below) gives an example of this
type of rule and its operation:

FIGURE 15

(* (WILL ($.1D)($.1)) (2 (*K 1 3)) *)

Workspace
Before (WHERE WILL HE STAY TONIGHT)
After (WHERE HE (WILL STAY) TONIGHT)

An item on the right may be of the form:
"(*C namel name2...namek)"

where namel, ..., namek identify elements which are single charac-
ters. This entire item on the right side will be replaced by an
atom whose print name is the list of characters specified. An
error will result if one of the elements specified is not a
single alphanumeric character.

The inverse of these compression operations can be performec
by a list of the form

"(*E namel)".

If namel specifies an atom, then "(*E namel)" will be replaced
by a list of the letters in the print name of this atom. If namel
specifies a list, the list will be concatenated into the work-
space. Figure 16 gives an example of this:

FIGURE 16

(* (IS $1) (1(*E 2)) *)

Workspace
Before (WHAT IS (A METEOR PROGRAM))
After (WHAT IS A METEOR PROGRAM)

C3. Reading and Writing Operations

Strings of atoms may be written out by an element in the
right half which is a list of the form:

- 182 -

(*W namel name2...namek).

The last part of this list is treated as if it were a right half
rule. When it is evaluated, it is a list. The "*W" then causes
the atoms in this list to be printed out without spaces. If these
atoms are individual characters, then any sequence of characters
can be printed. Remember that special characters such as " (" and
")" etc., must be referred to by "(* LPAR)" and "(* RPAR)" etc.
To end the printline the last atom in the string must be "EOR".
Any characters in the string past the "EOR" will not be printed
out. The value of this operator (*W namel...namek) is NIL. Thus
although it appears in the right half, it contributes nothing to
the transformed workspace. For any element of the list to be
printed which is not atomic (i.e., a list), the string "***" will
be printed.

Characters on cards may be read into the workspace (or onto
shelves) by a list containing the single element *R; the list
"(*R)" in a right half will be replaced by a list of the charac-
ters on the next card read. The card image will be read from
tape if tape input is used. The list will end after the last non-
blank character, and is a maximum of 72 columns. The first 72
columns are read from a card. If the card is blank this list will
be empty. If an "end of file" is encountered, the element EOF
will be inserted into the workspace.

For example, the rule:
(* ($) ((*R)) *)

will replace the contents of the workspace by a list of charac-
ters on the next card. If the card is blank, the workspace would
then be the null. The rule

(* ($) (1 (¥R)) *)

will concatenate this input list onto the right end of the work-
space. As mentioned (* BLANK) will match blanks read in by this
read operation, etc.

C4. Additions from Temporary Storage

Sometimes it is convenient to remove temporarily certain
elements from the workspace. For example, while doing certain
long searches, previously searched items may be placed on tem-
porary storage areas called shelves (from the COMIT terminology).
Material is placed on the shelves through instructions given in
the routing section of a rule. Items can be returned from these
shelves and deposited in the workspace by instructions in the
right half rule.

- 183 -

A list in the right half consisting of the elements "*A™ fol-
lowed by a shelf name will be replaced by the entire contents of
the shelf, and the shelf will be emptied. For example, "(*A SHI1)"
in a right half rule will bring to the workspace the entire con-
tents of shelf named "SHI1".

A list of the form "(*N SH1)" will bring into the workspace
the next (first) element of this shelf, i.e., the first element
of the list which this shelf contains. This first item is removed
from the shelf by the operation. If the shelf is empty a "(*N SHD"
or "(*A SH1)" is ignored. These operations are performed from
left to right, so that a right half ((*N SH) MK (*A SH)) would
place the first item from shelf SH before the MK and the remainder
after.

C5. Subscript Combination in the Right Half
An item of the workspace may have a subscript, or subscripts
for labeling purposes. The format for such subscripted items is:

(atom / subscriptl,...,subscriptk).

An item may have its subscripts modified by operations in the
right half. Modification is controlled by elements in the right
half which are lists starting with the atom "*/". The second item
of the modifier list specifies the method of combination for two
sets of subscripts. The specifying item may be one of the atoms,
"AND", "OR", or "SUBST". The third and fourth elements, sq and
s4, Of the modifier list are the names of the items whose sub-
scripts are to be merged. The third item may specify an atom in
the workspace or a subscripted element, but the fourth must name
an element which is a list whose second element is "/". An example
of a modifier list which could appear in a right half is "(*/ OR
BOY (MAN / MALE NOUN))". The resulting element in the workspace
would be "(BOY / MALE NOUN)". If the second element in the modi-
fier list is "AND", the subscripts of s3 and sq will be merged by
logical conjunction. If the intersection of the two subscript
sets is empty, the resulting item would have no subscripts, and
the item is made atomic, e.g., "BOY" instead of the list "(BOY /)"

If the second item is "OR", logical disjunction is used to
combine the subscripts of s3 and sq. If the second item is a
"SUBST" the subscripts of s, are substituted for those of sj.
Other methods of combination can easily be added to the program
by modifying the LISP function SBMERGE. Figure 8 gives an example
of the three types of subscript modification.

In COMIT subscripts of two elements are merged by a special
process. The intersection of the two sets of subscripts is found.

- 184 -

If this intersection is not empty, it is used as the subscript
of the resulting element. If the intersection is empty, the
subscripts of the second element are used with the "head" of the
first. This merging operation can be performed in METEOR by
using a second element "MERGE", instead of "AND" or "OR". This
merging operation is also performed if an element such as (2 /
BOY TALL) appears on the right. The subscripts of the element
named 2 are combined by a "MERGE" with an element whose only sub-
scripts are BOY and TALL. If 2 were (TOM / BOY PERSON), then
the element resulting from the merge would be (TOM / BOY). If

2 were (TOM / PERSON), the resulting element would be (TOM / BOY
TALL) .

D1. The Routing Section of a Rule
The routing section is a list whose first element is the

atom "/". Each subsequent element is a list, called a routing
instruction, which begins with one of the atoms "*S", "*Q", "*X",
"E¥p" - or "*DP", The next element after "*S", "*Q", OR "*X" in a

routing instruction names a shelf to be used. For example (*S
SHI 2) will store on the shelf SHl1, the items which are
named by 2. Except for the atom "*", shelf names may be any LISP
atom, including numbers or atoms already used for rule names.
Shelves and their contents are stored as pairs of the form (name,
contents) on a list associated with the free variable SHELF. Each
time a shelving operation is done, a search is made through the
list SHELF. Thus shelving operations will be done more rapidly
if fewer shelf names are used.

"#S" will cause items to be stored on the front (beginning)
of the shelf named. The item last stored by a "*S" instruction
will be the first obtained by a "*N" item in a right half ins-
truction. A shelf built up by "*S" instructions is a push down
list with the last item in first out.

A queue (a first-in first-out list) can be built up using
the "#Q" routing instruction. "*Q" queues items onto the "back
end" of the shelf named.

The name of the shelf to be used may be specified directly
as previously indicated or may be obtained from the workspace.
If the second element of the routing instruction is "*", then the
third item is the name of a workspace item (the name as found by
the match routine). This workspace item is the name of the shelf
to be used. (This differs from the COMIT method for indirect ad-
dressing. COMIT uses a subscript of the workspace item to speci-
fy the name of a shelf indirectly. METEOR may be easily changed
in this respect by changing the function named "INDIRECT".)

- 185 -

The items to be placed on the shelf named are specified by
the remainder of the routing instruction. An item to be shelved
may be described in any way used to describe an item to be put
into the workspace by a right half rule. 1In fact, the same LISP
function (COMITRIN) is used both to collect on a list the items
to be shelved, and to arrange the transformed portion of the work-
space. Copies of material in the workspace, new atoms, and mat-
erial from other shelves may be placed directly onto a shelf in
the same way that they are placed into the workspace. This is
again different from COMIT, where all items to be shelved must be
moved through the workspace.

A routing instruction starting with the atom "*X" will ex-
change the contents of the shelf named with the contents of the
workspace. Remember that names used in the routing instruction
in this rule still refer to names associated with items found by
the left half match with the original workspace.

A routing instruction starting with the atom "*P" will print
out the message (SHELF s CONTAINS c¢) for each shelf "s" named in
the list following the "*P", Only direct addressing of shelves
is allowed. "c¢" is the contents of the shelf named. This ins-
truction is useful in debugging programs.

As an example, "(*P SHI 17 3.2 *Q)" in the routing instruc-
tion of a rule will print out the contents of the shelves named
SH1, 17, 3.2, and *Q, in that order. (Note the variety of allow-
able names.) "“(*P /)" prints out the contents of all shelves.

D2. The Dispatcher Instruction in the Routing Section

The instruction "*D" in a routing instruction is the only
one which actually affects the routing of control in the program.
"#D" must be followed by two atoms. This pair of atoms is put as
a pair on the list DISPCH. This list is searched each time a
name is found in the "go-to" section of a rule, and the second
member of the pair substituted for the first. If the first atom
were, for example, BRANCH, and the second were RULEl, then each
time BRANCH occurs in the "go-to" section of a rule it is inter-
preted as a "go-to" to the rule named RULEl. Thus, "*D" provides
a method of setting a switch on an n-way branch. It may be re-
set at any time to any value. Any atom in the "go-to" section
for which no value has been set by a "*D" routing instruction is
assumed to be its own "go-to" value.

E. The Go-To Section of a Rule

The sixth {optional) element of a rule is an atom which tells
which rule is to be used next. If it is the atom "*" (or is ab-
sent) control passes to the next rule in the list RULES. 1If it is
an atom, which has not been given a "go-to" value by a "*D" ins-

- 186 -

truction in some routing instruction, then this atom is the name
of the next rule to be used. If it has been paired with another
atom by a "*D" instruction, this paired atom is the name of the
next rule interpreted. If this atom is "$", the first item in

the workspace is used as the name of the next rule executed. (This
latter differs from COMIT; COMIT uses a subscript on the first
element.) Normal flow of control is to the rule named by the "go-
to" of a rule, if a match is achieved by the left half. If no
match is achieved, the next rule, in the list RULES, is used. How-
ever, if the second item of a rule is "#*"_, this normal flow pat-
tern is reversed. No match implies transfer of control to the
rule specified in the "go-to", and a successful match transfers
control to the succeeding rule. If there is a match the trans-
formation given by the right half of this rule and its routing
instructions are always interpreted before control is transferred.

F. Comment Field

The seventh (optional) section is a list which may contain
any comments on this rule or the program, etc. It is ignored by
the METEOR interpreter. These comments will use up space within
the computer and therefore should be used sparingly.

IV. Warnings and Advice

METEOR is based on COMIT and written in LISP and has foibles
for both. The LISP system is built on the parenthesis and is very
stubborn about having the correct number of parentheses in the
proper place. Thus for the want of one parenthesis or a pair, an
entire METEOR program may fail. Following is a list of warnings
and advice:

1. The left half of a METEOR rule must be a list of pat-
terns. If the only element of this left half is a list, for ex-
ample ($.1) or (*P THE WORKSPACE IS), make sure these elements
are enclosed in parentheses, i.e., the left halves are respectively
"(($.1))" and "((*P THE WORKSPACE IS))".

2. A similar warning holds for the right half. If the only
element in the right half is, for example, " (FN ADD1 2)", then
the right half is " ((FN ADD1 2))" (note the number of
parentheses). To perform a deletion, however, using "0" (zero)
as the right half, this zero must not be enclosed in parentheses.
This is the only exception to the rule that the right half is a
list.

3. Check the number of parentheses at the end of the rout-
ing section. Remember this section is a list of lists.

- 187 -

4. Remember that "(*R)" not "*R" reads in a card, i.e.,
"(*#R)" is a list of one element. Thus a right side containing
just a "(*R)" must be "((*R))".

5. Comments may be used, but they take up space. If space
is a problem, delete or shorten your comments.

6. A linear search through a list of shelves is made each
time a shelf reference is made. The name of any shelf ever men-
tioned is put on this list. To speed searches, use fewer shelf
names.

7. Since METEOR is a LISP function, it may be used recur-
sively within itself. However, METEOR resets "SHELF" and "DISPCH"
to NIL. To keep the same shelf contents and dispatcher settings,
instead of using "(METEOR RULES WORKSPACE)", use
" (METRIX2 RULES WORKSPACE)".

8. If METEOR is used within a LISP program, and not executed
as a pair for EVALQUOTE, remember to quote the list of rules, be-
cause LISP evaluates arguments inside functions (this is because
of a LISP peculiarity).

9. Best use of METEOR can be obtained by using it with the
LISP system and expressing each operation in the language best
suited for it. Remember LISP functions can call METEOR and vice
versa.

10. Placing items on a shelf does not automatically remove
them from the workspace. To remove matched items from the work-
space, there must be a right half.

11. The LISP read program does not distinguish between com-
mas and blanks; therefore, a "," and a " " (blank) are interchange-
able in a METEOR program.

12. Another foible of the LISP read program is that "/" can
appear as a character in the middle of an atomic symbol. There-
fore, when using "/" to separate an element from subscripts, the
"/" must have a blank (or a comma) on each side of it.

13. COMIT and METEOR differ in the following ways not pre-
viously mentioned explicitly: (a) COMIT subscripts have values.
In METEOR an element can have subscripts, but values are not ex-
plicitly provided for. (b) A "*N" instruction is ignored (brings
in a null element) if the shelf is empty in METEOR. It does not
cause a rule failure in METEOR as it does in COMIT. (c) There is
no random element available in any form in METEOR — as opposed to
the random rule selection feature available in COMIT.

- 188 -

14. Recall that the atom "*P" is used in two different con-
texts. When used in the left half it is followed by a message
to be printed to label the following workspace printout.

In the routing instruction *P is followed by a shelf name
or series of shelf names, and the contents of these shelves will
be printed. Followed by a "/", *P will cause the list "SHELF" to
be printed. This is a list of pairs,.the first of each pair being
the shelf name, and the second the contents of the shelf,

15. METEOR is presently buried in the LISP parenthesis sys-
tem. However, using METEOR as a bootstrap, a read program can
be built which can read and convert from any fixed-format paren-
thesis-free (or more free) notation to METEOR. Since they are
kept symbolically within the LISP system, METEOR programs can be
generated or modified at run time by a METEOR program (or LISP
function) and then executed.

16. The function which assembles the right half of a rule,
i.e., "COMITRIN", effectively strips one pair of parentheses from
all non-atomic symbols named in the right half. Thus, since "FOO"
is a name for itself, "COMITRIN" will treat both "FOO" and "(F00)"
in exactly the same way. If the workspace were "(ON YOU)", then
both

"(* ($) (FOO 1) *)"
and
"(* ($) ((FOO) 1) *)"

would change the workspace to "(FOO ON YOU)", and both

"(* ($) (FOO FOO 1) *)"
and
"¢ ($) ((FOO FOO) 1) *)"

change the workspace to
"(FOO FOO ON YOU)"

In setting up dictionary entries, care must be taken to provide
the proper parenthesis level. For example, the pair "(TWICE (TWO
TIMES))" as a dictionary entry, when inserted by "GETDCT" in
"(ALMOST TWICE THE NUMBER)"™ will change it to "(ALMOST TWO TIMES
THE NUMBER)", which is presumably what was wanted. Similarly, if
"(BOY (BOY / MALE))" is entered into "(THE BOY WINS)" the result
is "(THE BOY / MALE WINS)" which however is not what was intended
at all. Always put one more pair of parentheses than you wish to
appear in the workspace, around the second element of a dictionary
pair.

- 189 -

17. The *E instruction expands an atom into a list of the
characters in the print name of the atom. It concatenates into
the workspace a list which 1s a single element of the workspace.
However, note the following eccentricity; if the workspace were
"(THE GOOD BOY)", the rule "(* (($.2)) (*E 1)) *)" would trans-
form the workspace to "(THE BOY)". The *E operator, operating
on a substring from the workspace (in this case the two elements
matched by ($.2)) specifies the first element of this substring,
and the others are deleted from the workspace.

18. 1 would appreciate hearing about any bugs or eccentri-
cities found in the METEOR program, and any applications found
for this language. My address is care of the publisher of this
book .

- 190 -

Notes on Implementing LISP

for the M-460 Computer

Timothy P. Hart and Thomas G. Evans

Air Force Cambridge Research Laboratories

This article describes the process used to implement LISP
1.5 on the Univac M 460 (an early military version of the Univac
490). This machine, which has been available to us on an open-
shop basis, has 32000 registers of 30-bit, 8 microsecond memory.
It has an instruction set which is quite convenient for LISP, e.qg.,
it is possible to load an index register (of which, incidentally,
there are seven) from either the left or right half of the word
addressed by the same index.

The external language is compatible with LISP 1.5 for the
IBM 7090. There are some unimplemented features (such as arrays
and "$$" quoting in the read program) and some additional fea-
tures.

Steps
The steps taken to produce this LISP were:

(1) Decide on internal conventions and write the
garbage collector (at least mentally).

(2) Write all required machine-language subroutines
(surprisingly few).

(3) Modify the S-expression version of the LISP
compiler to produce code for the new machine

- 191 -

(in a list-structure form analogous to LAP) and
use it to compile a LISP interpreter (this "boot-
strap" compilation can be done with an existing
LISP, in this case, the 7090 version).

Garbage Collection and Storage Conventions

The M 460 garbage collector (g.c.) packs active list struc-
ture into one end of the space allocated for list structure,
abandoning a contiguous block. This property of the g.c. is
taken advantage of in M 460 LISP to avoid allocating two separate
areas of memory, one for list structure, and the other for a push-
down block. Instead, one block is used for both these purposes,
list structure being created from one end of this area and push
down from the other.

There are no full words in this system. Numbers and print
names are placed in free storage using the device that sufficient-
ly small (i.e., less than 210) half-word quantities appear to
point into the bit table area and so don*t cause the garbage col-
lector any trouble. A number is stored as a list of words (a
flag-word and from 1 to 3 number words, as required), each number
word containing in its CAR part 10 significant bits and sign.
Thus an integer whose absolute value is less than 211 will occu-
py the same amount of storage (2 words) as in 7090 LISP 1.5.
Print names are stored as character~string lists (see below for
a description of the character-handling features of this LISP),
one character to a word.

At first it seemed that this scheme would be relatively cost-
ly of free-storage space. However an analysis of a typical ob-
ject 1ist gave about 530 words for print names stored in string
form, versus 470 words in 7090 style packed form. The saving
which could be made by packing the print names is offset by the
simplicity of this method and by the drastic reduction in the
size and complexity of the garbage collector which it allows.

The garbage collector has four phases:
(1) mark and count;
(2) list available cells;

(3) move and save new location;
(4) modify pointers.

- 192 -

Marking and Counting

The base pointers for marking are the address part of every
compiler-produced program word and the address part of the push-
down list. The addresses of program words may contain:

(1) references to other program locations such as
jump addresses;

(2) small positive and negative constants (magni-
tude less than 100);

(3) references to quoted S-expressions and to value
cells, just as in 7090 LISP 1.5. These are
the ones which are significant for the mark-
ing phase. No QUOTELIST is needed.

Free-storage half words may contain any quantity except an
address in the free storage area which is not really pointing to
list structure (these would get marked, which isn®t disastrous,
and would be possibly modified at relocation time, which is dis-
astrous).

Since a machine word holds exactly two machine addresses all
garbage-collection marking is done in a table of bits.

During the marking phase the number of active cells is coun-
ted.

Listing Available Cells

At this point during a garbage collection the list struc-
ture area whose length will be called 1 contains a active cells
and 1-a unmarked cells, where a is the number of active cells
counted during phase one. It is clear that if the active struc-
ture is packed toward one end of the list structure area, it will
occupy the a cells nearest that end we will call the no-reloca-
tion area. Only the active list cells in the other part of the
list structure area, called the relocation area, will need to be
relocated. As a matter of fact, there must be exactly the same
number of active cells in the relocation area as abandoned cells
in the no-relocation area. During phase two a list is made of
all the available cells in the no-relocation area.

Move and Save New Location

The relocation area is now methodically searched for active
words. When one is found, its contents are moved to an empty

- 193 -

100

MEMORY MAP

Bit Table

Non-LISP Program
(I0o, G.C., etc.)

LEGEND

List Structure

RO
X\\\\\\\\\

77700

777

- 194 -

Unused space
Base cells for
g.c. marking
<3 Regions in which
\\\ pointer modification

is effected

cell in the no-relocation area (obtained from the list made dur-
ing phase 2), and this new location is recorded in the old cell.

Modify Pointers

The references to words which have been relocated must now
be updated. The address part of all LISP program and push down
words, plus both left and right halves of all no-relocation area
words are inspected for pointers into the relocation area. When
one is found it is updated by replacing it with the new location,
which can be found in the word in the relocation area where it
points.

Subroutine Entry and Special Machine Language Subroutines

Arguments and the values of program variables and internal
lambda variables are stored on the pushdown list. Every atom
has a value word on its property list. Values of special vari-
ables are posted in the left half of the value cell just as in
LISP 1.5. There are no SUBR pointers on property lists — the
value cell is used for this purpose also, as suggested by Paul
W. Abrahams. This means one probably won't get away with declar-
ing, e.g, a special variable CAR. (Only one case of this trouble
exists in the 7090 compiler; LENGTH is the name of both a func-
tion and a special variable.) In spite of this defect, this ap-
proach seems elegant: LISP does allow explicit binding of func-
tionals in certain restricted syntactic positions — why not al-
low this generally?

The value of a function currently returns in the accumula-
tor. It would be more sensible to have the value return in an
index register except that this would constrain values to be of
index-register size (15 bits) thus disallowing full-word answers;
the ideal situation would be to have full-word length index re-
gisters as in the PDP-6.

Subroutines are called by a return jump indirect through the
right half of the value cell on the property list of the routine's
name (Note: return jump amounts to "deposit PC in Y and transfer
to Y + 1", just like the jms instruction on the PDP-4). To ex-
plain our subroutine linkage scheme, we give an example:

The property list of CAR looks like this:

- 195 -

atom

flag — —]

; 1)
value cell 3 -
car setuJ to print name

The left half of the value cell contains the address of car, the
machine language subroutine for CAR; the right half contains the
address of a machine language routine called setup, which does
approximately the job of *MOVE in 7090 LISP 1.5.

When some program calls CAR, control goes first to setup,
which by some fiddling can locate the address of CAR in the left
half of the value cell. CAR contains some parameters in its head-
ing which setup can use to do the following:

(1) Check whether car is an S-expression, and if it
is call apply; otherwise

(2) Push down (i.e., with our conventions, add to
index register 1) by the length of the block
specified for CAR, thus protecting its argu-
ment;

(3) Check for "out of pushdown list" and initiate
garbage collection, if necessary.

(4) Put the return location and number of words
in the pushdown block in the last word of
that block.

(5) Transfer to car.

It shortened considerably the coding for functions to permit
the last argument for a function being called to remain in the
accumulator and have setup store it on the pushdown list. So

setup also:

(6) Puts C(AO) (contents of the accumulator) in the last
argument position on pushdown list.

All these things can be done with one heading word for car,
containing (a) the number of words in the pushdown block for car
(namely 2) and (b) the number of arguments of car (namely 1) (a
variant of these was actually used for efficiency in the coding
of setup). 1In addition, more header words are provided contain-
ing currently only a pointer to the property list (and hence the
name) of the function for backtrace purposes. Eventually bits
may be provided to tell the garbage collector what cells in the
pushdown block contain full-word quantities.

Notice that tracing may be turned on by replacing the address
of setup in the value cell with the address of a tracing routine.

- 196 -

Subroutines exit by jumping to a routine called escape which:

(1) pushes up (i.e., decrements index register 1
appropriately);

(2) returns to the location specified in the last
word of the pushdown block;

(3) clears the abandoned push down block.

Functional arquments work if the atoms binding them are de-
clared SPECIAL (as opposed to the COMMON declaration in 7090
LISP 1.5). It appears that the necessity for even this declara-
tion may be removable with a little more work.

Character-Handling

Each character in the character set available on the M 460
(including tab, carriage return, and others) is represented in-
ternally by an 8-bit code (6 bits for the character (up to case),
1 bit for case, and 1 bit for color). To facilitate the manipu-
lation of character strings within our LISP system, we permit
such character literals to appear in list structure as if they
were atoms, i.e. pointers to property lists. These literals can,
where necessary, be distinguished from atoms since they are less
than 2% in magnitude and hence, viewed as pointers, don't point
into free storage (where, as in 7090 LISP, property lists are
stored). The predicate charp simply makes this magnitude test.
This scheme seems preferable to the character-handling in 7090
LISP in that we save the free storage space that would be re-
quired to give each 7090 LISP-style character-representing atom
a property list, while still permitting character-containing
lists to be manipulated by LISP functions as if the characters
were atoms. To read S-expressions containing these character
literals, we have made the convention of preceding each charac-
ter literal by a slash, e.g. (/a /b /c) reads in as the "charac-
ter-string" list structure:

00013 ——>00014 —— 5100015

Of course, the output programs also know about the slash conven-
tion and print S-expressions in the same form. Furthermore,
there exists a routine which, given a character list, simply
prints the corresponding string of characters.

Compiler Modification

The changes made in the 7090 LISP 1.5 compiler were exten-
sive. This compiler consists of two main pieces, passone and

- 197 -

phase 2. passone eliminates most special forms by regarding
them as macro instructions and expanding them (select is a good
example). Changes were required in this part to eliminate all
interpreter references (such as eval or $ALIST). This part can
probably stand essentially as is in any further compilers which
are produced for LISP 1.5. 1In 7090 form it is suitable for in-
terpreter-cognizant and in M 460 form for compiler-only systems.

phase 2 was first changed to permit go's to appear anywhere
inside a prog rather than only on the top level or inside a cond.
Otherwise, the changes relate to producing the appropriate code
for the M 460 instead of the 7090. Major changes were necessary
in call to produce the proper calling sequences and to provide
open coding for car-cdr chains.

The result of a compilation using the M 460 version of the
LISP compiler is an S-expression analogous to that given to lap
in the 7090 version. Our lap is similar to the 7090 one; how-
ever, all but a small piece of this minimal assembler is written
in LISP. This small machine language piece is lapl [1], where the
first element of 1 is a pair, consisting of a function name and
its relative address, and the rest of the elements are also pairs,
to be inserted one to a word in successive cells. The car part
of these pairs is always an octal number, and the cdr part speci-
fies the address of the word as follows:

(1) NIL no modification
(2) T relocation

(3) (QUOTE s) insert quoted S-expression
(4) (SPECIAL a) insert special cell address

Interpreter
The interpreter we use posts the value of variables in the
value cell of the atom corresponding to the variable's name. The

function set and value post and retrieve, respectively.

Following is the listing of the interpreter.

- 198 -

DEFINE ((
(APPLY (LAMBDA (FN ARGS) (COND
((ATOM FN) (COND

((EQ FN (QUOTE UNBOUNDVAR)) (ERROR2 (QUOTE A2 FN))
((SEXPRP (VALUE FN)) (COND

((MEMBER (QUOTE TRACE) FN) (PROG (H)
(TERPRI) (PRINT (CONS FN (QUOTE (ARGS))))

(PRINLIS ARGS) (SETQ H (APPLY (VALUE FN) ARGS))
(TERPRI) (PRINT (CONS FN (QUOTE (VALUE))))

(RETURN (PRINT H))))
(T (APPLY (VALUE FN) ARGS))))
(T (APP2 FN ARGS))))
((EQ (CAR FN) (QUOTE LAMBDA)) (PROG (A H) (SETQ A

(SAVELIS (CADR FN))) (SETLIS (CADR FN) ARGS) (SETQ H
(EVAL (CADDR FN)

))

(RESTORLIS A) (RETURN H)))
((EQ (CAR FN) (QUOTE LABEL)) (PROG (A H) (SETQ A (LIST
(CONS (CADR FN) (VALUE FN)))) (SET (CADR FN) (CADDR
FN))
(SETQ H (APPLY (CADDR FN) ARGS)) (RESTORLIS A) (RETURN
H)))

(T (APPLY (EVAL FN) ARGS))
)))

(EVAL (LAMBDA (FORM) (COND
((NULL FORM) NIL)
((NUMBERP FORM) FORM)
((CHARP FORM) FORM)

((ATOM FORM) (COND

((EQ (VALUE FORM) (QUOTE UNBOUNDVAR)) (ERROR2 (QUOTE A8)

- 199 -

FORM))
(T (VALUE FORM))))

((ATOM (CAR FORM)) (COND
((EQ (CAR FORM) (QUOTE QUOTE)) (CADR FORM)) ((EQ (CAR
FORM) (QUOTE LIST))
((EQ (CAR FORM) (QUOTE FUNCTION))
(CADR FORM))

((EQ (CAR FORM) (QUOTE COND)) (EVCON (CDR FORM)))
(EVLIS (CDR FORM)))

((EQ (CAR FORM) (QUOTE PROG)) (EVPROG (CDR FORM)))
((EQ (CAR FORM) (QUOTE SETQ)) (SET (CADR FORM) (EVAL
(CADDR FORM))))

((EQ (CAR FORM) (QUOTE G0)) (EVGO (CADR FORM)))
((EQ (CAR FORM) (QUOTE RETURN))(PROG NIL

(SETQ PROGRETURNSWITCH T) (RETGRN

(SETQ PROGVALUE V))))

((EQ (CAR FORM) (QUOTE AND)) (EVAND (CDR FORM)))
((EQ (CAR FORM) (QUOTE OR)) (EVOR (CDR FORM)))
(T (APPLY (CAR FORM) (EVLIS (CDR FORM))))))
(T (APPLY (CAR FORM) (EVLIS (CDR FORM)))))))
(SAVELIS (LAMBDA (L) (MAPLIST L (FUNCTION (LAMBDA (J)
(CONS
(CAR J) (VALUE (CAR 1))))))))
(RESTORLIS (LAMBDA (L) (MAP L (FUNCTION (LAMBDA (J)

(SET (CAAR J) (CDAR J)))))))

- 200 -

(SETLIS (LAMBDA (L V) (COND

((NULL L) (COND

((NULL V) NIL) (T (ERROR2 (QUOTE F2) L))))
((NULL V) (ERROR2 (QUOTE F1) L))

(T (PROG NIL (SET (CAR L) (CAR V)) (SETLIS (CDR L)
(CDR V)))))))

(EVLIS (LAMBDA (L)} (MAPLIST L (FUNCTION (LAMBDA (J)
(EVAL (CAR 1}))))))

(EVCON (LAMBDA (L) (COND

((NULL L) (ERROR2 (QUOTE A3 NIL))

((EVAL (CAAR L)) (EVAL (CADAR L)))
(T (EVCON (CDR L))))))

(EVAND (LAMBDA (L) (COND
((NULL L) T)
((EVAL (CAR L)) (EVAND (CDR L)))

(T F))))

(EVOR (LAMBDA (L) (COND
((NULL L) F)

((EVAL (CAR L)) T)

(T (EVOR (CDR L))))))

(EVPROG (LAMBDA (FORM) (PROG

(P PR A R C PROGGOSWITCH PROGRETURNSWITCH PROGVALUE)
(SETO P (CAR FORM))
(SETQ PR (CDR FORM))
(SETQ A (SAVELIS P))

(MAP P (FUNCTION (LAMBDA (J) (SET (CAR J) NIL))))
(SETQ R PR)

ML (SETQ PROGGOSWITCH NIL)
(COND
((NULL R) (GO RET))
((ATOM (CAR R)) (GO ADV))

((EQ (CAAR R) (QUOTE COND)) (GO CON)))
(EVAL (CAR R))

- 201 -

TEST (COND

(PROGGOSWITCH (GO GOS))
(PROGRETURNSWITCH (GO RET)))
ADV (SETQ R (CDR R))
(GO ML)

GOS (SETQ R PR)
GOL (COND

((NULL R) (ERRORZ2 (QUOTE A6) PROGGOSWITCH))
((EQ (CAR R) PROGGOSWITCH) (GO ML)))

(SETQ R (CDR R))

(GO GOL)

RET (RESTORLIS A)
(RETURN PROGVALUE)

CON (SETQ C (CDAR R))
CONL. (COND
((NULL €) (GO ADYV))
((EVAL (CAAR €)) (60 CONV)))

(SETQ C (CDR C))
(GO COND)

CONV (EVAL (CADAR C))
(GO TEST)
)))

(EVGO (LAMBDA (A) (SETQ PROGGOSWITCH A)))

(ERROR2 (LAMBDA (X Y) (PROG2 (PRINT X) (ERROR Y))))
(PRINLIS (LAMBDA (X) (MAP X (FUNCTION (LAMBDA (J)
(PRINT (CAR 1)))))
))

- 202 ~

SUMMARY OF PROGRAMMING

compiler
lap
interpreter
setup
escape
lister
bind
unbind
reclaim
€q

car

cdr

cons
rplaca
atom
gensym

¥ - big job
L - written in LISP

numberp
plus
times
greaterp
eqp

read
prinl
terpri
punl
terpun
evalquote
lapl
charp
app2

set
value

- 203 -

LISP as the Language

for an Incremental Computer

L.A. Lombardi and Bertram Raphael

1. General

The following two characteristics are commonly found in in-
formation systems for the command and control of complex, diver-
sified military systems, for the supply of information input for
quantitive analysis and managerial decision making, and for the
complementation of computer and scientist in creative thinking
("synnoesis®) [10]:

1) the input and output information flows from and
to a large, continuous, on-going, evolutionary
data base;

2) the algorithms of the process undergo permanent
evolution along lines which cannot be predicted
in advance.

Most present day information systems are designed along
ideas proposed by Turing and von Neumann. The intent of those
authors was to automate the execution of procedures, once the
procedures were completely determined. Their basic contributions
were the concepts of "executable instructions™, "program" and
"stored program computer". Information systems based on this
conventional philosophy of computation can handle effectively
only an information process which (1) is "self-contained", in the
sense that its data have a completely predetermined structure,

- 204 -

and (2) can be reduced to an algorithm in "final™ form, after
which no changes can be accomodated but those for which provision
was made in advance. Consequently, the current role of automatic
information systems in defense, business and research is mainly
confined to simple routine functions such as data reduction, ac-
counting and lengthy arithmetical computations. Such systems
cannot act as evolutionary extensions of human minds in complex,
changing environments.

List-processing computer languages [7] have introduced a
flexible and dynamically-changeable computer memory organization.
While this feature permits the manipulation of new classes of
data, it does not solve the basic communication problems of an
evolutionary system. Each program must still "know" the form of
its data; and before any processing takes place, a "complete" da-
ta set containing a predetermined amount of data must be supplied.

Multiple-access, time-shared, interactive computers [8] can-
not completely make up for the inadequacies of conventional and
list-processing systems. With time-sharing, changes in systems
being developed can be made only by interrupting working programs,
altering them, and then resuming computation; no evolutionary
characteristics are inherent in the underlying system of a mul-
tiple-access, time-shared computer. Thus, as preliminary usage
confirms, multiple-access time-sharing of conventional computers
is useful mainly in facilitating debugging of programs. While
such physical means for close man-computer interaction are neces-
sary for progress in information systems, they are not sufficient
alone to produce any substantial expansion in the type of continu-
ous, evolutionary, automatic computer service with which this pa-
per is concerned.

2. The Problem

A new basic philosophy is under development for designing
automatic information systems to deal with information processes
taking place in a changing, evolutionary environment {1,5,6].

This new approach requires departure from the ideas of Turing

and von Neumann. The problem is no longer "executing determined
procedures”, but rather "determining procedures”. Open-endedness,
which was virtually absent from the Turing-von Neumann machine
concept, must lie in the very foundations of the new philosophy.

The basis of the new approach is an "incremental computer"
which, instead of executing frozen commands, evaluates expressions
under the control of the available information context. Such
evaluation mainly consists of replacing blanks (or unknowns) with
data, and performing arithmetical or relational reductions. The

- 205 -

key requirements for the incremental computer are:

(1) The extent to which an expression is evaluated
is controlled by the currently-available infor-
mation context. The result of the evaluation
is a new expression, open to accommodate new
increments of pertinent information by simply
evaluating again within a new information con-
text.

(2) Algorithms, data, and the operation of the
computer itself are all represented by "ex-
pressions” of the same kind. Since the form
of implementation of an expression which des-
cribes an evaluation procedure is irrelevant,
decisions of hardware vs. software can be de-
cided case by case.

(3) The common language used in designing machines,
writing programs, and encoding data is direct-
ly understandable by untrained humans.

While the Turing-von Neumann computer is computation-oriented
the incremental computer is interface-oriented. Its main function
is to catalyze the open-ended growth of information structures
along unpredictable guidelines. Its main operation is an incre-
mental data assimilation from a variable environment composed of
information from humans and/or other processors. (Still, the
incremental computer is a universal Turing machine, and can per-
form arithmetical computations quite efficiently.)

Current research on the incremental computer is aimed at de-
signing it with enough ingenuity to make the new principles as
fruitful as the ones of Turing and von Neumann (see [1] and [5]).
Some of the main study areas are: the design of the language;
the class of external recursive functions and a mechanism called
a discharge stack [2 for their fast evaluation; the design of a
suitable memory and memory addressing scheme {(the latter problem
is being attacked by means of higher-order association lists);
saving on transfers of information in memory and the use of cyclic
lists; avoidance or repetition of identical strings within dif-
ferent expressions through the use of shorthands, and related
problems of maintenance of free storage.

The following will present a quite elementary, restricted
and perhaps inefficient version of the incremental computer based
on LISP. LISP is the currently available computer language which
most closely satisfies the requirements of an incremental compu-
ter system. The purpose of this presentation is to demonstrate
some of the concepts of incremental data assimilation to scien-
tists who are familiar with LISP. Features of a preliminary LISP

- 206 -

implementation can be used as a guide in the development of the
ultimate language for the incremental computer.

3. Aspects of the Proposed Solution

Various structures have been proposed for the language of
the incremental computer, mainly stressing closeness to natural
language (for preliminary studies see [3] and [4]). Here, how-
ever, we will consider the case in which this language is pat-
terned on LISP. 1In this case a simplified version of the incre-
mental computer will be represented by an extension of the nor-
mal LISP "EVALQUOTE" operator. This operator, itself programmed
in LISP, will evaluate LISP expressions in a manner consistent
with the principles of the incremental computer which are pre-
sented below. The LISP representations and programs for imple-
menting these principles will be discussed in section 4 of this
paper. The LISP meta-language will be used for all examples in
the following sections.

(i) Omitted arguments:

Suppose func is defined to be a function of m arguments.
Consider the problem of evaluating

(1) func[xl;x2; AU xn] (n< m)

Regular LISP would be unable to assign a value to (1). However,
for the incremental computer (1) has a value which is itself a
function of (m-n) arguments. This latter function is obtained
from (1) by replacing the appropriate n arguments in the defini-
tion of func by the specified values X1s X¢ -y Xy

For example, consider the function
1ist3 = N [x;y;z];cons[x;cons[y;cons[z;NIL]]]]

If A and (B,C) are somehow specified to correspond to the first

and third arguments in the 1ist3 definition, then the incremental
computer should find the value of list3[A; (B C)] to be

N{[ul;cons[A;cons{u; ((B,€))]]]
(ii) Indefinite arquments:
In regular LISP a function can be meaningfully evaluated
only if each supplied argument is of the same kind — such as

S~expression, functional argument, or number — as its correspond-
ing variable in the definition of the function. 1In contrast,

- 207 -

the incremental computer permits any argument of a function to
be itself a function of further, undetermined arguments. (If
these latter arqguments were known, then the inner function could
be evaluated before the main function, as LISP normally does.)
The value of a function with such indefinite arguments should be
a new function, all of whose unspecified arguments are at the
top level.

For example, consider again the function l1ist3 defined above.
In the incremental computer,

1ist3[D;n[[ul;cons[E;ul];A[[ul;car[ul]]
should evaluate to

A [r;s]{cons[D;cons[cons[E;r];cons[car[s];NIL]]]]]
(iii) Threshold conditions

Consider for example the function sum = X[[x;y];x+y]. We
say that the "threshold condition" for evaluating a sum is that
both arguments of sum be supplied and that they both be numeri-
cal atoms. In general, a threshold condition is a necessary and
sufficient condition for completing, in some sense, the evalua-
tion of a function. In regular LISP, it is considered a program-
ming error to request the evaluation of an expression involving
a function whose threshold condition cannot be satisfied. In the
incremental computer, on the other hand, expressions may be eval-
uated even though they involve indefinite or omitted arguments
(as in (i) and (ii) above). 1In these cases the evaluation is not
complete in the sense that the values are themselves functions
which will require additional evaluation whenever the appropriate
missing data are supplied.

Occasionally the threshold condition for a function does not
require the presence of all the arguments. For example, the
threshold condition associated with the logical function and is,
"either all arguments are present and are truth-valued atoms, or
at least one argument is present and it is the truth-valued atom
representing falsity." The incremental computer must "know" the
threshold conditions for carrying out its various levels of eval-
uation. One of the most challenging problems in the theoretical
design of the new incremental computer is that of determining
efficient threshold conditions for arbitrary functions designed
by a programmer.

The illustrative program described in the next section em-
ploys only the most obvious threshold conditions.

- 208 -

4. The Program

Let us consider some of the problems of representation and
organization which must be faced in the course of implementing
a LISP version of the incremental computer.

(i) Omitted arguments:

Since LISP functions are defined by means of the lambda
notation [9], the role of an argument of a function is determined
solely by its relative position in the list of arguments. If an
argument is omitted, the omission must not change the order num-
ber of any of the supplied arguments. This can be accomplished
only if each omitted argument is replaced by some kind of marker
to occupy its position. Therefore in the present LISP formalism
for the incremental computer, each function must always be sup-
plied the same number of arguments as appear in its definition;
however, some of these arguments may be the special atomic sym-
bol "NIL*" which indicates that the corresponding argument is not
available for the current evaluation.

The evaluation of a function, some of whose arguments are
NIL*'s, is approximately as follows: Each supplied argument
(i.e., each argument which is not NIL*) is evaluated, the value
substituted into the appropriate places in the definition of the
function, and the corresponding variable deleted from the list
of bound variables in the definition of the function. What re-
mains is just the definition of a function of the omitted vari-
ables.

(ii) Indefinite arguments:

An indefinite argument, as discussed in Section 3 above, is
an argument which is itself a function of new unknown arguments.
The present program assumes that any argument which is a list
whose first element is the atom "LAMBDA" is an indefinite argu-
ment. This convention does not cause any difficulty in the use
of functional arguments, since they would be prefixed, as S-ex-
pressions, by the symbol "FUNCTION." However, there is an ambi-
guity between indefinite arguments and functional arguments in
the meta-language. Also, it is illegal to have an actual supplied
argument be a list starting with a "LAMBDA." A more sophisticated
version of this program should have some unique way to identify
indefinite arguments (perhaps by consing a NIL* in front of them).

The treatment of indefinite arguments is straightforward if

one remembers that a main function and an indefinite argument are
both A\-expressions, each consisting of a list of variables and a

- 209 -

form containing those variables. The process of evaluating a
function fn of an indefinite argument arg involves, then, iden-
tifying the variable v in the variable-list of fn which corres-
ponds to arg; replacing v by the string of variables in the
variable-list of arqg; and substituting the entire form in arg
for each occurrence of v in the form in fn. (The treatment of

a conditional function containing an indefinite argument is sim-
ilar although somewhat more complicated.)

(iii) Conflicts of variables:

The same bound variables used in different A-expressions
which appear one within another "conflict" in the sense that
they make the meaning of the over-all expression ambiguous. The
use of indefinite arguments frequently leads to such conflicts.
This problem is avoided in the present system by replacing every
bound variable, as soon as it is encountered, by a brand new
atomic symbol generated by the LISP function gensym.

(iv) Threshold conditions:

Certain program simplifications can be made automatically
by the incremental computer, if corresponding threshold condi-
tions are satisfied. In particular, if every argument of a
function is the symbol NIL*, then the function of those arguments
is replaced by the function itself.

The incremental computer is represented by the LISP function
evalquotel. This function is similar to the normal evalquote
operator except that evalquotel first checks to see if any incre-
mental data processing, of the kinds discussed above, is called
for. If so, evalquotel performs the appropriate "partial™ eval-
uations. If the given input is a normal LISP function of speci-
fied arguments, on the other hand, the effects of evalquotel and
evalquote are identical.

Appendix I is a listing of the complete deck for a test run,
and includes the definitions of evalquotel and all its subsidiary
functions. The results of the run, showing examples of incremen-
tal data assimilation with the substl function (which is identi-
cal to the normal LISP subst function), are given in Appendix II.
The curious reader can understand the detailed operation of the
programs by studying these listings.

5. Conclusions

We can now make the following observations concerning the
use of LISP as the language for the incremental computer:

- 210 -

(i) Although perhaps too inefficient to be a final solu-
tion, LISP is still a very useful language with which to illus-
trate the features of a new concept of algorithm representation.
It is especially easy to use LISP to design an interpreter for
a language similar to, but different in significant ways from,
LISP itself.

(ii) The program described in this paper is quite limited
with regard to its implementation of both LISP and the incre-~
mental computer. If a more complete experimental system were
desired, the present system could easily be extended in any of
several directions. For example, in LISP, allowance could be
made for the use of functions defined by machine-language sub-
routines, and the use of special forms. In the incremental com-
puter, threshold conditions could be inserted to allow partial
evaluation and simplification of conditional expressions.

(iii) Replacing all bound variables by new symbols is too
brutal a solution to the "conflict" problem; the resulting ex-
pressions become quite unreadable. Bound variables frequently
have mnemonic significance, and therefore should not be changed
unless absolutely necessary. A more sophisticated program would
identify those symbols which actually caused a conflict, and then
perhaps replace each offending symbol with one whose spelling is
different but similar.

(iv) When a function of an indefinite argument is evaluated,
the form in the argument is substituted for each occurrence of
a variable in the form in the function definition. Similarly,
when a function has omitted arguments, those arguments which
were not omitted are each evaluated and substituted for each
occurrence of variables in the form in the function definition.
In the interest of saving computer space, we must be sure that
what is substituted is a reference to an expression, not a copy
of the expression. In the interest of readability, perhaps the
print-outs should similarly contain references to repeated sub-
expressions, e.g., in the form of A-expressions, rather than
fully-expanded expressions.

- 211 -

(1]

[2]

(3]

(e —
[} [N
[[

[6]

[7]

(8]

[9]
[10]

[11]

Bibliography

L. A. Lombardi and B. Raphael: Man-computer information
systems, lecture notes of a two week course
UCLA Physical Sciences Extension, July 20-
30, 1964,
L. A. Lombardi: Zwei Beitrage zur Morphologie und Syntax
deklarativer Systemsprachen, Akten der
1962 Jahrestaqung der Gesellschaft fir
angewandte Mathematik Mechanik (GAMM), Bonn
(1962); Zeitschr. angew. Math. Mech. (42)
Sonderheft, T27-T29.
: On the Control of the Data Flow by Means

of Recursive Functions, Proc. Symp. "Sym-
bolic Lanquages in Data Processing", Inter-
national Computation Center, Roma, Gordon
and Breach, 1962, 173-186.

: On Table Operating Algorithms, Proc. 2nd

IFIP Congress, Munchen (1962), section 14.
: Prospettive per il calcolo automatico,

Scientia (in Italian and French) Series IV
(57) 2 and 3 (1963).
: Incremental data assimilation in man-compu-
ter systems, Proc. lst Congress of Associa-
zione Italiana Calcolo Automatico (AICA),
Bologna, May 20-22, 1963 (in press).
D. G. Bobrow and B. Raphael: A Comparison of List-processing
Computer Languages, Comm. ACM, expected
publication April or May, 1964.

MIT Computation Center: The Compatible Time-Sharing System:
A Programmer's Guide, MIT Press, Cambridge,
Mass., 1963.

A. Church: The Calculi of Lambda-Conversion, Princeton
University Press, Princeton, N.J., 1941.

L. Fein: The computer-related science (synnoetics) at a
University of the year 1975, American Scien-
tist (49) (1961), 149-168; Datamation (7)
9 (1961), 34-41.

Work reported herein was partly supported by Project MAC,
an MIT research program sponsored by the Advanced Research
Projects Agency, Department of Defense, under Office of
Naval Research Contract Number Nonr-4102(01). Reproduction
in whole or in part is permitted for any purpose of the
United States Government.

Assoc. Prof. of Industrial Management, MIT.

Research Assistant, Mathematics Dept., MIT.

- 212 -

- ¢l¢ -

Program Listing

Appendix I:
TEST B RAPHAEL M948
DEFINE ((
(EVALQUOTE1 (LAMBDA (FN X)
(APPLYl FN X NIL)))
(APPLY1 (LAMBDA (FN X A) (COND
((ATOM FN) (COND
((GET FN (QUOTE EXPR)) (APPLYl1 (GET FN (QUOTE EXPR)) X A))
((EQ FN (QUOTE CAR)) (COND
((NULL* (CAR X)) (QUOTE CAR))
((LAM1 (CAR X)) (APP2 X (QUOTE CAR)))
(T (CAAR X))))
((EQ FN (QUOTE CDR)) (COND
(QUOTE CDR))

((NULL* (CAR X))
((LAM1 (CAR X))
(T (CDAR X)))

(QUOTE CONS)) (COND((LAM2 X)(APP3 X A

((EQ FN
(T (CONS (CAR X) (CADR X))))
(COND ((NULL* (CAR X)) (QUOTE ATOM))

((EQ FN (QUOTE ATOM))
((LAM1 (CAR X)) (APP2 X (QUOTE ATOM))) (T (ATOM (CAR X)))))
((EQ FN (QUOTE EQ)) (COND ((LAM2 X)(APP3 X A (QUOTE EQ)))
(EQ (CAR X) (CADR X))))
FN X A)))

(T
(T (ERROR (LIST (QUOTE APPLY1)))
(QUOTE LAMBDA)) (APPLY2 (LAMS
X) 4))

((EQ (CAR FN)
(QUOTE LAMBDA) (UNFLICT (CDR FN)))
FN X A))))))

(APP2 X (QUOTE CDR)))
(QUOTE CONS)))

(CONS
(T (ERROR (LIST (QUOTE APPLY1)
(LAM1 (LAMBDA (X)
(AND (NOT (ATOM X)) (EQ (CAR X) (QUOTE LAMBDA)))))

(CADDAR X)) 1)))

(APP2 (LAMBDA (X A)
(LIST (CAAR X) (CADAR X) (LIST A

- big -

(NULL* (LAMBDA (X) (EQ X (QUOTE NIL*))))

(LAM2 (LAMBDA (X) (OR
(MEMBER (QUOTE NIL*) X) (LAM1 (CAR X)) (LAM1 (CADR X)))))

(APP3 (LAMBDA (X A F) ((LAMBDA (U V) (APPLY1
(LIST (QUOTE LAMBDA) (LIST U V)(LIST F U V)) X A))
(GENSYM) (GENSYM))))

(LAMS (LAMBDA (FN X) (PROG (VAR1 ARGl VARS ARGS ARG2 M L)
(SETQ M (CADDR FN))
(SETQ ARGS X)
(SETQ VARS (CADR FN))
LOOP (SETQ L (CAR ARGS))
(COND ((LAM1 L)
(G0 FLICT)))
(SETQ VARI (CONS (CAR VARS) VAR1))
(SETQ ARGl (CONS L ARGl))
LOOP1 (SETQ VARS (CDR VARS))
(COND ((NULL VARS) (RETURN (LIST (REVERSE VAR1) M
(REVERSE ARG1)))))
(SETQ ARGS (CDR ARGS))
(GO LOOP)
FLICT (SETQ L (UNFLICT (CDR L)))
(SETQ ARG2 (CAR L))

LOOP2 (SETQ VARI (CONS (CAR ARG2) VAR1))
(SETQ ARGlI (CONS (QUOTE NIL*) ARG1))
(SETQ ARG2 (CDR ARG2))
(COND (ARG2 (GO LOOP2)))
(SETQ M (SUBST (CADR L) (CAR VARS) M))
(GO LOOP1))))

(UNFLICT (LAMBDA (Y) (PROG (L)

- GI¢ -

(SETQ L (CAR Y))

LOOP (COND ((NULL L) (RETURN Y)))
(SETQ Y (SUBST (GENSYM) (CAR L) Y))
(SETQ L (CDR L))

(G0 LooP))))

(APPLY2 (LAMBDA (L A) (COND ((MEMBER (QUOTE NIL*) (CADDR L))
(APPLY3 L A)) (T (EVAL1 (CADR L) (PAIRLIS (CAR L)
(CADDR L) A))))))

(APPLY3 (LAMBDA (L A) (SEARCH (CADDR L)
(FUNCTION (LAMBDA (J) (NOT (EQ (CAR J) (QUOTE NIL*)))))
(FUNCTION (LAMBDA (J) (APPLY4 L A)))
(FUNCTION (LAMBDA (J) (LIST (QUOTE LAMBDA)(CAR L)(CADR L)))))))

(APPLY4 (LAMBDA (L A) (PROG (VARS FORM ARGS M ARGl)
(SETQ VARS (CAR L))
(SETQ FORM (CADR L))
(SETQ ARGS (CADDR L))
LOOP (SETQ ARGl (CAR ARGS))
(COND ((EQ ARGl (QUOTE NIL*)) (GO B)))
(SETQ FORM (SUBST (LIST (QUOTE QUOTE) ARGl) (CAR VARS) FORM))
LOOP1 (SETQ ARGS (CDR ARGS))
(COND ((NULL ARGS) (RETURN (LIST (QUOTE LAMBDA) M FORM))))
(SETQ VARS (CDR VARS))
(GO LOOP)
B (SETQ M (CONS (CAR VARS) M))
(GO LoOP1))))

(EVAL1 (LAMBDA (E A) (COND ((ATOM E) (COND
((GET E (QUOTE APVAL)) (EVAL E A))

- 91¢ -

((EQ E (QUOTE NIL*)) (QUOTE NIL*))(T (CDR (ASSOC E A)))))
((ATOM (CAR E)) (COND
((EQ (CAR E) (QUOTE QUOTE)) (CADR E))
((EQ (CAR E) (QUOTE COND)) (EVCON1 (CDR E) A))
((EQ (CAR E) (QUOTE LAMBDA)) E)
(T (APPLY1 (CAR E) (EVLIS1 (CDR E) A) A))))
(T (APPLYl1 (CAR E) (EVLISI (CDR E) A) A)))))

(EVCON1 (LAMBDA (C A) ((LAMBDA (X) (COND

((LAM1 X) (LIST (CAR X) (CADR X)
(CONS (QUOTE COND) (CONS (LIST (CADDR X)(CADAR C)) (CDR C}))))

((EVAL1 X A) (EVAL1 (CADAR C) A4))
(T (EVCON1 (CDR C) A)))) (CAAR C))))

(LAMBDA (X Y A) (COND ((NULL X) A)

(PAIRLIS
(CONS (CAR X)(CAR Y))(PAIRLIS (CDR X)(CDR Y) A))))))

(T (CONS

(ASSOC (LAMBDA (X A) (COND ((EQUAL (CAAR A) X) (CAR A))
(T (ASSOC X (CDR A))))))

(LAMBDA (M A) (COND ((NULL M) NIL)
(T (CONS (EVAL1 (CAR M) A) (EVLIS1 (CDR M) A))))))
(SUBSTI (LAMBDA (X Y Z) (COND ((ATOM Z) (COND

((EQ Z Y) X) (T 2)))
(T (CONS (SUBSTI X Y (CAR 2)) (SUBSTI X Y (CDR 2)))))))

))

(EVLIS]

EVALQUOTEL
(SUBST1 ((A B) C NIL*))

EVALQUOTE1

(SUBST1 ((LAMBDA (X) (CONS X (QUOTE (B)))) C (C Y (C D))))

- L1T -

EVALQUOTEL
(SUBST1 (NIL* NIL* NIL*))
EVALQUOTE1
(SUBST1 (ONION NIL* (LAMBDA (X Y)
EVALQUOTEI
SUBSTI ((A B) C (C Y (C D)))
STOP))))))))))
FIN

(CONS X Y))
)

))

- gl¢ -

Appendix II: Results of Computer Run

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..

EVALQUOTE1
(SUBST1 ((A B) C NIL*))

END OF EVALQUOTE, VALUE IS ..
(LAMBDA (GO0003) (COND ((ATOM GOO0003) (COND ((EQ GOO0O3 (QUOTE C)) (QUOTE (A B))) (T G0O0003)))
(T (CONS (SUBST1

(QUOTE (A B)) (QUOTE C) (CAR G00003)) (SUBST1 (QUOTE (A B)) (QUOTE €) (CDR G00003))))))

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..

EVALQUOTE1
(SUBST1 ((LAMBDA (X) (CONS X (QUOTE (B)))) C (C Y (C D))))

END OF EVALQUOTE, VALUE IS ..
(LAMBDA (GO0007) (COND ((ATOM (QUOTE (C Y (C D)))) (COND ((EQ (QUOTE (C Y (C D))) (QUOTE C))
(CONS GO00007 (

QUOTE (B)))) (T (QUOTE (C Y (C D)))))) (T (CONS (SUBST1 (CONS GO0007 (QUOTE (B))) (QUOTE C)
(CAR (QUOTE (C

Y (C D))))) (SUBSTLI (CONS GOOOO7 (QUOTE (B))) (QUOTE €) (CDR (QUOTE (C Y (C D)))))))))

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..

EVALQUOTE1
(SUBST1 (NIL* NIL* NIL*))

- 61¢ -

END OF EVALQUOTE, VALUE IS ..
(LAMBDA (G0O0008 GO0O009 GOO010) (COND ((ATOM GOOO10) (COND ((EQ GOOO10 GO0009) G00008) (T GO0010)))
(T (CONS

(SUBST1 GO0008 GOO009 (CAR GO0O010)) (SUBST1 GOOOO8 GOOOO9 (CDR G00010))))))

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..

EVALQUOTE1
(SUBST1 (ONION NIL* (LAMBDA (X Y) (CONS X Y))))

END OF EVALQUOTE, VALUE IS ..
(LAMBDA (GO0015 GO0OO14 GO0012) (COND ((ATOM (CONS G00014 GO0015)) (COND ((EQ (CONS G00014 G00015)

G00012) (

QUOTE ONION)) (T (CONS GO0014 GO0015)))) (T (CONS (SUBST1 (QUOTE ONION) GO0O12 (CAR (CONS G00014
G00015)))

(SUBST1 (QUOTE ONION) GOO012 (CDR (CONS GO0014 G00015)))))))

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..

EVALQUOTE1

(SUBST1 ((A B) € (C Y (C D))))

GARBAGE COLLECTOR ENTERED AT 04050 OCTAL. FULL WORDS 1438 FREE 5329 PUSH DOWN DEPTH 105

GARBAGE COLLECTOR ENTERED AT 04050 OCTAL. FULL WORDS 1426 FREE 4856 PUSH DOWN DEPTH 304

END OF EVALQUOTE, VALUE IS ..
((A B) Y ((A B) D))

The LISP System for the Q—-32 Computer

Robert A. Saunders

Information International, Inc

The LISP system for the time-shared AN/FSQ-32/V computer
at System Development Corp., Santa Monica, Calif., is based on
a compiler written in LISP and compiled by itself on an IBM 7090,
The system is, in this respect, similar to the system developed
by T.P. Hart for the M-460 computer at Air Force Cambridge Re-
search Labs (1). The Q-32 compiler is baced on the Hart compiler
for the M-460, and it is fitting here to acknowledge the consid-
erable assistance rendered to the Q-32 project by Mr. Hart. As-
sistance was also given by D. Edwards and M. Levin of the
Massachusetts Institute of Technology, and Prof., J. McCarthy and
S. Russell of Stanford University. Computer time on the Stanford
7090 and PDP-1 was used in conjunction with Stanford!s contract
with Advanced Research Projects Agency for research in time
sharing and artificial intelligence.

The Q-32 is a 1's complement binary computer with a 48-hit
word length and 65,536 words of storage. Core speed is about 2
microseconds, and some instructions overlap. It has an accumu-
lator, an accumulator extension called the B-register, eight in-
dex registers, and various other electronic registers. Peripheral
equipment includes 16 tape drives (729 IV), about 350,000 words
of drum storage, a card reader, card punch, and a line printer.
A PDP-1 is used as a peripheral processor to service time-shared
Teletypes. When run in time sharing, the lowest 16,38/ registers
are used by the executive system,

The external language is compatible with LISP 1l.5. Some
features (arrays, character objects, and "$$" quoting in READ)
are not implemented at present, Most programs which will run on
7090 LISP will run on Q=32 LISP without change.

From the user'!s point of view, the (-32 system is seen
through a version of EVALQUCTE which reads a pair and executes
it. As in 7090 LISP *(2), the pair is a function and a list of

#The reader is advised to familiarize himself with this reference
if he has not done so.

- 220 -

arguments., If the function is an atom carrying a functional
definition, that definition, in the form of compiled code, is ap-
plied to the arguments. If it is a functional expression, the
expression is compiled and then executed.

The function DEFINE takes a list of pairs, making the first
element of a pair the name of the function represented by the
second element. The function is compiled at the time it is de-
fined.

Q-32 LISP uses the macro system developed by Hart (3). The
function MACRO takes a list of pairs similar to DEFINE. The
functions, which are compiled by MACRO, are applied to a list of
their arguments whenever they appear in a DEFINE,

There are two classes of variables in Q-32 LISP, local and
special., Local variables, which may be referred to only within
the function binding them, are stored on the pushdown list.
Variables used free (i.e., used in a function in which they are
not explicitly bound) must be declared special. As in 7090 LISP,
this is done with a declaration of the forms:

SPECIAL ((A BC))

If an un-special variable is used free, it will be treated as
special, and an error comment will appear. A local variable
binding is visible only in the function that binds it, and the
binding is lost when the function is completed. A special
variable binding is also lost when the function binding it is left,
and the old special value, saved upon entering the function, is
restored. The special value of a variable bound by no function
can be considered a constant, and thus is the Q-32's equivalent
of the 7090 APVAL, Such & binding can be established by CSET.

It is also established by DEFINE, and the value of the binding

is a number (called the function descriptor). Functional argu-
ments work by binding the function atom to a function descriptor.
The call of a function looks for a function descriptor binding on
the SPECIAL cell, so functional arguments must be declared
SPECIAL.

DEFINE ((
(MaPLIST (LAMBDA (L FN) (COND ((NULL L) NIL)
(T (coNs (FN L) (MAPLIST (CDR L) FN))))))

))
The functional argument FN must be declared SPECIAL when MAPLIST

- 221 -

is defined. (This has been done, of course, in the system version
of MAPLIST.) Then when MAPLIST is entered, the functional argu-
ment is attached to FN, and when the function FN is called, the
right thing happens.

Atoms in Q~32 LISP are of two types: numeric and literal.
Numeric atoms begin with a digit, plus, or minus; any other legal
character as the first character denotes a literal atom (e.g.,
CAR)., Numbers are fixed point unless containing a decimal point,
which denotes floating point. Scaling of either fixed or floating

point decimal numbers can be done with an E scale factor., Ex-
amples:

1E17 1.0E-250 «34TE12
Negative scaling of a fixed point number is not meaningful,
Octal integers are denoted by a letter ¢ following the inte-
ger. A decimal integer following the Q denotes an octal scale

factor. Only positive scalings are meaningful. The following
are equivalent in value:

36411QR 36/1100Q 1000000 4AE6

They will print differently, however; the first two as 36411Q2
and the other two as ID00000.

The system contains an incomplete set of Hollerith objects.
The object names below are bound to speciel values which print
as indicated.

Object Value Object Value
LPAR (COLON :
PERIOD . LARR >
BLANK UPARR 3
RPAR) LSTHAN <
DOLLAR $ GRTHAN >
ST4R *

SLASH /

EQSIGN =

Because the Q-32 LISP system is compiler-oriented rather than
interpreter-oriented, the user should expect:

1. Programs to run faster on the Q-32 than (uncompiled)
on the 7090,

2. To have to pay more attention to variable declara-
tions than in an interpretive system, where free

- 222 -

variable bindings are available automatically.

3. To have less thorough error-checking by the system,
In particular, there is no check that functions
are supplied the right number of arguments. (To
put this feature in would require two words in-
stead of one for function calls.,)

Inside the System

The foregoing section will suffice to guide the casual user
familiar with 7090 LISP. Vhat follows is a fairly complete des-
cription of the inner workings of the system.

Storage Allocation

Storage in the computer is laid out roughly as follows:

OCTAL ITEM

40000 = 44000 Maching language code
44000 = 54400 Compiled code

54400 = 55400 Scratch function area
55400 = 70000 Binary program space
70000 - 74000 Pushdown list

74000 - 100000 Quote cells and atom heads
100000 = ? Full word space

? =~ 170000 Free storage

Full word space is assigned from the bottom up. Free stor-
age is assigned from the top down. Garbage collection is initi-
ated when the total storage is exhausted. The full word space is
compacted downward, and the free storage is compacted upward.

The floating boundary permits better utilization of storage.

Compiled references to list structure are made through the
quote cells, the pushdown list, and the atom heads. This allows
the garbage collector to avoid tracing through compiled code.

Atomic Structure

Atoms in Q=32 LISP are of two types; literal and numeric.
Numeric atoms occupy 3 words in the computer. See Figure 1.

The one in bit 1 of the free storage word is the atom indi-
cator., Bit O is used by the garbage collector. The decrement
and remainder of the prefix are not used. The tag indicates a

- 223 -

l
l
|
|

O D

7 D
5] opx]A 4J—-L~2] T[0] -

Numerical Value

FREE STORAGE FULL WORD SPACE

|
I
l
|
I
I
Figure 1. Structure of a LISP Number

number, of type defined by X, while the address points to the
structure in full word space. X is 1 if the number is a fixed
point integer, 2 if it is floating point, and 5 if the number is
to be treated as an octal integer,

The structure in full-word space is actually an array of cne
element. The one in bit 4 of the array head indicates non-list-
type elements in the array (presently the only allowed type).

Bit 5 is a1 if the array elements are BCD (binary coded decimal)
characters. Bit O is used by the garbage collector, and the re=-
maining bits of the prefix are unused. The decrement contains the
number of words in the array (excluding the head word). In num-
bers, the tag is not useds The address is a pointer to the
associated word in free storage.

A typical atom (e.g., CAR) looks like the diagram in Figure
2.

The atom head cell is assigned when the atom is first read
(or generated, in the case of GENSYM's) and is not presently re-
coverable by garbage collection. The prefix contains a 1 in bit
1 as the atom indicator. A 1 in bit 4 would indicate that the
function represented by the atom was being traced. The decrement
points to the property list. The first item on the property list
is always the print name, so the available property list begins at
CDDR of the atom. The system does not use the property list; it
is entirely availlable to the programmer.

The print name is a numerical array of as many words as are
required at 8 characters per word. The 3 in the tag of the array
head denotes 3 characters in the last word of the print name.

- 224 -

A
10]
I D A I
o[—10] |
I I
| F—
I |
D A D A
I 20]_—175] 2 1{0
I | 0 a1l X
| |
| —
| I
D A |
0l —"10] }—T"E-I——IEJ——I
| | 232151 777(T1T717
ATOM HEAD ! FREE STORAGE I FULL WORD SPACE

Figure 2. Structure of a Typical Atom (CAR)

The address and tag of the atom head give the location of the
special cell, if any. In the case of functional bindings, the
special cell is a pointer to a number., The number gives in its
address the location of the mschine language code for the func-
tion. The tag gives the number of arguments the function expects
to get, and the decrement gives the amount of space required on
the pushdown list. Obviously the number of arguments to a func-
tion cannot exceed 63. Since the pushdown list requires two
words per entry, and an extra entry for control information,

D> 2T+2.

An atom is considered to have been declared SPECIAL if bit
3 of the atom head is a 1. This bit is set by the function
SPECTAL and cleared by UNSPECIAL , This bit is examined by the
compiler when an atom is used as a free variable. Because this
bit is independent of the actual existence of a SPECIAL binding,
an atom which has a SPECIAL or functional value can be used as a
local variable even if the special value is present during com-
pilation of a function,

- 225 -

Binding a special variable consists of saving on the push-
down 1ist the old address part of the atom head, i.e. the
previous special binding (if any). The address part of the atom
is then caused to point to the location on the pushdown list
where the value of the new binding is stored. This is the reason
for two words per entry on the pushdown list -~ the first is used
for saving old special bindings, and the second has the value of
the associated variable.

Function Calls
The majority of compiled function calls are of the form
(BSX *CALL 4 (E FN)),

i.e., branch to *CALL and set index 4 to point to the head of the
atom FN, *CALL is a section of the assembled part of the system
that:

1, Examines the atom for a functional binding, i.s., a
pointer to a number in CAR of the atom. If such
a binding does not exist, an error is indicated.
If it does, the subroutine entry address, number
of arguments, number of cells on the pushdown
list, and whether it is being traced, are deter-
mined. Then,

2, Unless the function is of no arguments, the accumu-
lator is stored on the pushdown list as the last
argument.,

3. The pushdown pointer is incremented, and the old
pushdown pointer, the return address, and the
atom being called are saved on the pushdown list.

4e If the function is being traced, its name and
arguments are printed.

5, Control passes to the subroutine,

Returns from functions generally are transfers to *RETRN
which:

1. If the function is being traced, prints its name
and value.

2. Finds the return address.
3. Restores the pushdown pointer
4e Returns control to the calling routine,

Certain routines have special calls. SPECBIND and SPECRSTR,
the routines that bind and restore special variables, are called

- 226 -

by, for example:

(BUC SPECBIND O 4)
G14707 (0 (2 *N) 1 (E V1))
(cAS (4 *N) 1 (E v2))

The parameter list is a list of special variables to be bound, and

of where the old bindings are to be saved. *N is minus the total
number of cells of pushdown list used by the function. The prefix

is O except for the last entry, where it is 40 octal. The address

and tag denote the place on the pushdown list where the old binding

is saved, and the decrement gives the atom to be bound, After bind-
ing, (0 (2 *N) 1) has in its address a pointer to the previous binding,
and the decrement has the atom name so that the special values can

be restored by UNWND in case an error occurse.

. Restoraticn of specisl variables is handled by a call of the
orn

(BSX SPECRSTR 4 G14707)

SPECRSTR uses the parameter list used by SPECBIND to restore the
previous bindings.

LIST is a rather common function, and instead of having it
defined as a macro to generate lots of CONS's, a special sub-
routine (which calls CONS) is used., Calls are of the form:

(BSX *LIST 2 N)
(0 11)
(0.12)
(0'LN)

where N is the number of items to be listede The parameter list
contains the locations of the items to be listed.

Some machine-language-coded functions (e.g. NUMBERP) are
called both as LISP functions through *CALL and from inside the
system. These return to the location following that from which
they are called. *RFTEN immediately follows the end of *CALL
so that returns from LISP calls work.

Input-Cutput
Primary input-output is via time-shared Teletype. The read
routine rezds one S-expression at a time, extending over as many

lines of input as are required. For fast reading, a block of
125 registers is chained in the CDR-direction into a list called

- 227 -

the object 1list (OBLIST). The CAR of each of these points to a
list of atoms, all of which have the same remainder when the
numerical value of the first word of the print name is divided
by 125, These lists are set up by a subroutine called BUCSRT
when the system is first loaded. When an atom is read, a sub-
routine called INTEFN determines whetker it is one seen before
or not. If not, the newly created atom is hung onto the right
part of the object list. More precisely, INTERN 1s a function
of one argument, a just read atom, whose value is either that
atom or another with the same print name. This insures a unique
representation for literal atoms.

Printing is dcne by PRINT, which calls PRIND and TERPRI.
PRIND bresks list structure into atoms and passes them to PRIN],
which puts the print name into the output buffer. Punctuation
(dots and parentheses) are outputted by giving PRIN1 the correct
Hollerith object. TERPRI puts a carriage return into the buffer
and dumps it, The buffer is also dumped when full or when an
object ends within 16 characters of the end of the buffer.,

Garbege Collection
Garbege collection is done in a four phase process.

l. All list structure is marked, starting from the
quote cells, the object list, and the push-down
list. Full words are marked with a bit in the
array head, so a bit teble is not required.

2. Full word space is compacted downwarde Two pointers
start at the beginning of full word space. The
first pointer is advanced over all full words,
and those marked are copied into the location
indicated by the second pointer, which is ad-
vanced for each array copiede The pointer in
the array head is used to update the list point-
ers to relocated arrays.

3. Free storage is compacted upward by a scheme at-
tributed to D. Edwerds. Two pointers are set, one
to the top of free storage and one to the bottiom.
The top pointer scans words, advancing downward,
looking for one not marked. When one is found,
the bottom pointer scans words, advancing upward,
locking for a merked word. When one is found, it
is moved into the location identified by the
other pointer. A pointer is left at the location
the word wes moved from, pointing to where it
was moved to. The too pointer is then agein ad-
vaenced as before. The process terminates when

- 228 -

the two pointers meet,

4e List references to the vacated free storage are
fixed up by looking at CAK and CDR of every word
on the pushdown list, on the oblist, and in the
compacted free storage. Any pointers to the
vacated ares are replaced with pointers to the
relocated words, using the pointers left there in
S‘bep 30

The process is substantially slower than on the 7090 for
two reasons: a much larger free storage (approximately 30,000
words), and more computation.

Compilation
Compilation is done in a five-step process:

1. The macros present in the definition, if any, are
expanded.

2, Pass 1 of the compiler proper alters the defini-
tion to take care of special varisbles and
various odds snd ends.

3. Pass 2 of the compiler generates symbolic machine
code from the altered S-expressions,

Le Pass 1 of LAP constructe a symbol table.

5, Pass 2 of LAP uses the resulting symbol table to
translate the machine code into binary, which
is stored in memory.

The code that is compiled is not particularly efficient, but
it is serviceable, and not less than half as fast as hand-compiled
code would be. It consists almost entirely of subroutine calls,
only EQ, NOT, and NULL in predicates being compiled open.

COND's and PROG's are expanded in a straightforward way. The
definition of EQ which appesrs in the system, to wit:

(eq (LAMBDA (& B) (coND ((EQ A B) T) (T NIL))))
may appear redundant or infinitely recursive, but in fact it is
neither; the appearance of EQ inside is compiled open; as it is

in a predicate; and the function is used for calls of EQ outside
of predicates,

LAP

The Q=32 version of LAP (the LISP assembly progrem) is

- 229 -

similar to that on the 7090. It is vwritten in S-exprecsions and
is part of the system compiled on the 7090. The language is
identical to that used on the 7090 except for the origin statement.
The legal types include literal atoms and numbers, which are

identical in effect to the same types on the 7090; and lists of the
form

(NAME SUBR X Y)

except for Y, are the same as on the 7090, Y is the number of
cells (not pairs) required on the pushdown list. As stated be-
fore, Y> 2X+2,

Words consist of lists of one to four elements, in the order
operation, address, tag, decrement. The address and decrement
are taken modulo 2" -1. The fields present are OR'ed together,
with the tag and decrement fields shifted left 18 and 24 bits,
respectively. The orders in the permanent vocabulary include
those used by the compiler., These are:

BSX T73Qlk Branch and set index

BUC 14Q13 Branch unconditionally; set index re-
gister designated by decrement to
location counter

STZ 51Q13 Store zero

STA 5Q15 Store accumulator

BOZ 66Q15 Branch on accumulator zero

BNZ 601Q13 Branch on accumulator not zero

LDA 2Q15 Load accumulator

XOR 43003Q1l1 Exclusive OR to accumulator

CAS L4Q15 Compare accumulator with storage
(used as flag only)

IDB 22Q24 load B - register

STB 504Q13 Store B - register

As many others as are desired can be defined, e.g. CSET (BAX
T4Q4) .

Building the System

The system is written about half in SCAMP, the Q-32 assembly
language, and half in LISP and LAP. Each half comprises about
1900 cards. The LISP part is compiled on & 7090, taking about
40 minutes of computer time., Varicus parameters set in advance
control the layout of the system. About a dozen references to
the assembled code are handled by use of a transfer vector at the
beginning of the assembled codes Various locations in the re-

sulting compiled code are put into the SCAMP deck as assembly
parameters.,

- 230 -

The output from the LISP compilation consists of an assembly list-
ing of the compiled code, and a tape containing some 6000 card
images, each of which has an octal address in cols. 1-=8, and an
octal word (instruction or permenent list structure) in cols.
9=-24. The 48 bit Q=32 word is handled in the 7090 by treating

it as two words. The 90 code correctly assembles list structure,
instructicns, positive integers up to 36 bits, and negative in-
tegers up to 24 bits. At present writing, this is adequate for
everything in the system except one number (in EQUAL), which is
corrected with a patch.

The SCAMP deck contains the basic functicns used in the
system, a code to read the octal card-image tape, and a code to
write a time-sharing compatible tape. The assembled code is
loaded during non-time-sharing, and the program reads the octal
tape and plants the words where they belong. A routine then
plants patches as required, and the time-sharing "load tape" is
then written. It is essentially a core dump, taken 960 words at
a time,

References

l. Hart, T.P., and T.G. Evans, "The M-460 LISP 1,5 System", Air
Force Cambridge Reseerch Laboratory memoranaum. (Reprinted
in this volume.)

2. McCarthy, John, et al., LISP 1,5 Programmer's Manual The
M.I.Ts Press, Cembricge, Mass., 1962.

3. Hart, T.P., "MACRO Definitions for LISP", Artificial Intelli-
gence Project, Reseasrch Laboratcry of Electroniecs and MIT
Computatior. Center Memo 57, Cct. 1963.

- 231 -

APYENDIX 1

Atoms with Zero-Level Bindings in Q=32 LISP

This appendix is essentially a 1list cf the reserved atoms in

The following atoms represent the same functions as in 7090
LISP, Numbers refer to pages in the LISP 1.5 Manual.

ADD1 26, 64 MINUS 26, 63
APFEND 11, 61 MINUSP 26, 64
ATOM 3, 57 NCONC 62
CAR, CDR, 2, 3, 56 NUMBLRP 26, 64

CAAR-CDDDDR NULL 11, 57
CONS 2, 56 PAIR 60
CSET 17, 59 PRINL 65, 84
DEFLIST 41, 58 PRINT 65, 84
EQ 3, 23, 57 PROGR L2, 66
EQUAL 11, 26, 57 PROP 59
ERROR 32, 66 READ 65, 84
FIXP 26, 64 REVERSE 62
FLOATP 26, 64 RPLACA 41, 58
GENSYM 66 RPLACD L1, 58
GET L1, 59 SASSOC 60
GREATERP 26, 64 SPECIAL 64, 78
LAP 65, 73 SUB1 26, 6/
LENGTH 62 TERFRI 65, 84
LESSP 26, 64 TRACE 32, 66, 79
MAP 63 UNSPECTAL 64, 18
MAPCON 63 UNTRACE 32, 66
MAPLIST 20, 63 ZERCP 26, 64
MENBER 11, 62

The following atoms represent functicns different from these
in the 7090:

(LSHIFT A B) Same as (LEFTSHIFT A B) on 7090.

(DEFINE L) Compiles the lict of functicns L. Similar to
combined effects of 7090 DiFINE, COMPILE,

(DIFFER A B) Same as (DIFFIRENCE A B) on 7090.

- 232 -

The fcllowing atoms represent mathematical functions. They
differ from the related 7090 functions in that these require pre-
cisely two arguments:

(*PLUS A B) (*LOGOR A B) (*MIN A B)
(*TIMES A B) (*LOGXOR A B)
(*LCGAND A B) (*MAX A B)

The functions PLUS, TIMES, LOGAND, LCGOR, LOGXOR, MAX, MIN can be
defined as macros using the above functicns.

The following atoms represent functions either unique to the
Q=32 or not described in the LISP l.5 Manual:

(Macro L) Defines a list of functions L as macros.
(MAPCAR L FN) Same as MAPLIST except FN is applied to each ele-
ment of L: i.e., CAR of what it is applied to

in MAPLIST.
(mpP A B) Tests two numbers for equality within a tolerance
(3.0 E~6). Used by EQUAL.
(ABSVAL &) Absolute value of A. Used by BEQP.
(PRING L) The prinecipel part of PRINT; does all of PRINT

except a final TERPRI,
(PRINOCT A B) Prints in unsigned octal the B lowest significant
octal digits of A, including leading zeros,

if anye
(BLANKS N) Enters N blanks into the print buffer.
(READL) Part of READ.
(LasT L) Gives last element of list L.

The compiler and related code comprise the following
functions:

DEFL PA7 STORE
MDEF PAS CALL
CoM2 PA9 LAC
PASSi PA12 ATTACH
PROGITER DELETEL LOCATE
PATRMAP COMP LAPEVAL
Pri PASS2 JUST

PI3 COMVAL *CALL
PALAM COMPROG *RETRN
PAFORM COMCOND *L,IST
Pal COMBOOL SPECBIND
PAR COMPACT SPECRSTR
PA3 CEQ *SPECIND
PAL COMPLY TEREAD
PAS COMLIS

- 233 -

The following atoms have zero-level bindings used by the compiler:

BPORG SCRACH TBPS PRINLIS
BSX BUC STA STz
BNZ LDA BOZ XOR
CAS STB 1DB

The following atoms are bound to character objects:

LPAR SLASH COLON
BLANK EUSIGN LARR
PERIOD DOLLAR UPARR not installed at present
RPAR STAR LSTHAN
T GRTHAN

Various atoms represent miscellaneous service routines,
These atoms all begin with an asterisk and are not listed here.

Certain functions in the compiler have generated symbols for
names. These names, although appearing on the oblist, will not
conflict with symbols generated by Q~32 GENSYM, even if they have
the same print name, as GENSYM does not enter the generated atoms
on the oblist. However, a conflict could arise if the wrong
GENSYM's were read in and then bound on the zero level, Any
subsequent version of the Q-32 LISP will use different internal
GENSYM's to avoid this problem.

The following atoms, although not bcund as functions, are
treated as special functions by the compiler:

LAMBDA NIL COND GO NOT
PROG T QUOTE CSETQ SET
LABEL F FUNCTION SELECT CONC

LIST RETURN

- 234 -

2, Sample Output from the (=32 LISP Compilation

The following output is a sample portion of the output from
the 7090 produced when compiling LISP for the (-32. The first
part is the compilation of LENGTH, MAP, MAPCCN, MAPLIST, ADD1,
SUBl, and ZERCP, The second part is the atomic structure of ADDI,
MAP, MAPCON, and SUBl, as produced by PUNOBJ., The constants 0, 1,
and -1 also appear.

*N is always the number of cells used on the pushdown list
(in the code of LENGTH, 6).

The compiler listing should be consulted and the function
definitions compared with the compiled code given here.

g, Part 1
(LENGTH SUBR 1 6)

045314 0510000001777776 (sTZ (5 *N) 1)
045315 2000000000074146 (D& (QUOTE 0))
045316 5000000001777776 (sTa (5 *N) 1)

GO0730
045317 2000000001777774 (Lba (3 *N) 1)
045320 6010000000045323 (BNZ G00734)
045321 2000000001777776 (LDA (5 *N) 1)
045322 '7307410004040011 (BSX *RETEN 4 (E LENGTH))

GOO734

G00733
045323 2000000001777776 (LDA (5 *N) 1)
045324 7307414704040010 (BSX *CALL 4 (E ADD1))
045325 5000000001777776 (sTA (5 *N) 1)
045326 2000000001777T774 (Iba (3 *N) 1)
045327 7307400504040010 (BSX *CALL 4 (E CDR))
045330 5000000001777774 (sTA (3 *N) 1)
045331 0140000000045317 (BUC G00730)

(MAP SUBRR 2 10)

045332 014000040004402/ (BUC SPECBIND O 4)

G007.1
045333 4007/1400177777L (cas (4 *N) 1 (E FN))
045334 0510000001777776 (sTZ (9 *N) 1)
045335 2000000001777770 (Iba (3 *N) 1)
045336 5000000001777776 (sta (9 *N) 1)

G00746

- 235 -

045337 2000000001777776
045340 6010000C00045342
045341 0140000000045350

045342 2000000001777776
045343 7307 414004040010
04534/, 2000000001777776
045345 7307400504040010
045346 5000000001777776
045347 0140000000045337

045350 5000000001777774
045351 7304533304044041
045352 2000000001777774
045353 7307415004040011

045354 0140000400044024

045355 4007414001777767
045356 2000000001777766
045357 6010000000045361
045360 0140000000045376

045361 2000000001777766
045362 7307414004040010
045363 500000000177777,
045364 200000000177 7766
045365 7307400504040010
045366 5000000001777776
045367 2000000020074140
045370 2200000001777776
045371 5040000001000003
045372 7307415104040010
045373 2200000001777774
045374 5040000001000003
045375 7307414504040010

045376 5000000001777772
045377 7304535504044041
045400 2000000001777772
045401 '730741510404C011

045402 0LLO0004C0044024

(LDA (9 *N) 1)
(BNZ G00750)
(BUC GO0745)
G00750
GO0749
(Lba (9 *N) 1)
(BSX *CALL 4 (E FN))
(LDA (9 *N) 1)
(BSX *CALL 4 (E CDR))
(sTA (9 =N) 1)
(BUC G00746)
GO0745
(sTA (7 *N) 1)
(BSX SPECRSTR 4 GO0741)
(zpA (7 *N) 1)
(BSX *RETRN 4 (E MAP))

(MAPCON SUBR 2 12)

(BUC SPECBIND O 4)
GO0760

(cAS (4 *N) 1 (E FN))

(LDA (3 *N) 1)

(BNZ GO0763)

(BUC G0O762)
G00763

(1DA (3 *N) 1)

(BSX #CALL 4 (E FN))

(sTA (9 *N) 1)

(LDA (3 *N) 1)

(BSX *CALL 4 (E CDR))

(STA (11 *N) 1)

(LDA (STECIAL FN))

(IDB (11 *N) 1)

(sTB 3 1)

(BSX *CALL 4 (E MAPCON))

(LDB (9 *N) 1)

(STB 3 1)

(BSX *CALL 4 (E NCONC))
GO0765
GO0762

(sTA (7 *N) 1)

(BSX SPECRSTR / GO0760)

(Lba (7 *N) 1)

(BSX *RETEN 4 (E MAPCCN))

(KAPLIST SURR 2 12)

(BUC SPECRIND O 4)
GOO774

- 236 -

045403 400741/001777767
045404 2000000001777766
045405 6010000000045407
045406 0140000000045424

045407 2000000001777766
045410 7307414004040010
045411 5000000001777774
045412 2000000001777766
045413 "7307400504040010
045414 5000000001777776
045415 2000000020074140
045416 2200000001777776
045417 5040000001000003
045420 7307/10404040010
045421 2200000001777774
045422 5040000001000003
045423 '730740110404C010

045424, 500000C001777772
045425 7304540304044041
045426 2000000001777772
045427 "7307410404040011

045430 5000000001000003
045431 2000000000074152
045432 "730740320404C010
045433 7307414704040011

045434 5000000001000003
045435 2000000000074154
045436 7307403204040010
045437 '730741530404C011

045440 5000000001000003
045441 2000000000074146
045442 '730741310404C010
045443 7307415504040011

074147 2016734200167341
167342 0000000000100552
100553 R1RARLOLTTTTTTTT

(CAS (4 *N) 1 (E FN))
(Lpa (3 *N) 1)
(BNZ GOO777)
(BUC G00776)
GoOO777
(Lpa (3 *N) 1)
(BSX *CALL 4 (E FN))
(ST (9 *N) 1)
(LD& (3 *N) 1)
(BSX *CALL 4 (E CDR))
(sTa (11 *N) 1)
(IDA (SPECIAL FN))
(LDB (11 *N) 1)
(sSTB 3 1)
(BSX *CALL 4 (E MAPLIST))
(LDB (9 *N) 1)
(sTB 3 1)
(BSX *CALL 4 (E CCNS))
G00779
G00776
STA (7 *N) 1)
(BSX SPECRSTR 4 GOO774)
(pa (7 *N 1)
(BSX *RETRN 4 (E MAPLIST))

(ADD1 SUBR 1 4)
(sTa 3 1)
(zba (QUCTE 1))
(BSX *CALL 4 (B *PLUS))
(BSX *EETRN 4 (E ADD1))

(SUBL SUBR 1 4)
(sTA 3 1)
(DA (QUOTE -1))
(BSX *CALL 4 (B *PLUS))
(BSX *RETEN 4 (E SUB1))

(ZERCP SURR 1 4)
(sta 31)
(Lba (QUCTE 0))
(BSX *CALL 4 (E EQUAL))
(BSX *RETRN 4 (E ZEROP))
bo Part 2

ADD1

- 237 -

100552 0300000104167342
167340 2000000075100554
100555 0000000401045430
100554 0200000100167340

167341 0000000000167340

074150 2016733700167336
167337 0000000000100556
100557 LL2LLTITTTTITTTT
100556 0300000103167337
167335 2000000075100560
100561 0000001202045332
100560 0200000100167335

167336 0000000000167335

074151 2016733400167333
167334 0000000000100562
100563 44214723464577TT
100562 0300000106167334
167332 2000000075100564,
100565 0000001402045354
100564 0200000100167332

167333 0000000000167332

167331 2000000075100566
100567 000000C000000001
100566 02000001C0167331

074152 0000000000167331

074153 2016733000167327
167330 00000C0000100570
100571 6264220777777
100570 0300000104167330
167326 2000000075100572
100573 0000000401045434
100572 02000001C0167326

167327 0000000000167326
167325 2000000075100574
100575 T777T71T77T77776
100574 0200000100167325

07/154 0000000000167325

40104543Q1

MAP

1202045332Q

MAPCON

1402045354Q

SUB1

4LO1045434Q

- 238 -

An Auxiliary Language
for More Natural Expression
— the A—Language
William Henneman

Information International, Inc.

Although LISP is one of the most powerful tools available
to the research worker in many fields of programming, the format
of the input language (S-expression) is awkward to use == so
awkward that many errors in programming for LISP stem directly
from the fact that S-expressions are the only allowable form of
input. The inherent difficulty of producing correctly working
S-expressions is tacitly recognized by anyone who uses M-expres-
sions in place of them, when not communicating directly with the
computer,

The most striking example of this difficulty is the extreme
number of parentheses used in writing S-expressions. Thus, the
function of "firstatom™ is defined in M~expression notation as

firstatom [x] = [null [x]— NIL;

atom [car [x]]-oecar [x];
T—> firstatom [car [x]]].

The corresponding S~-expression is
DEFINE (((FIRSTATOM (LAMBDA (X) (COND
((aToM (CAR X)) (CAR X))
(T (FIRSTATOM (CAR X))))))))

This simple function has 26 parentheses, and a long compli-

- 239 -

cated program would have many more. This proliferation of
parentheses makes it very difficult to write such complicated
programs without an error in placement or pairing of parentheses.
Indeed, in some quarters, "LISP" is considered to be an acronym
for ®Lots of Irritating Single Parentheses".

The worst feature of this plethora of parentheses is the fact
that a localized error in parenthesization can cause global er-
rors in the LISP system. For example, an unpaired right paren-
thesis on any line can cause reading of the input to terminate
at that line. An unpaired left parenthesis can cause most of
the program to be unexecuted.

Another inconvenience associated with S-expression is the
fact that Polish notation is mandatory. Now it is harder to read
Polish notation than infix notation, if only because we were all
taught infix notation in school. In logic and in other program-
ming systems, it is worthwhile to pay the price of readability
for prefix notation since one is rewarded by having the need for
parentheses eliminated; in LISP, we are actually punished -~ the
contrast between the M-expression a V b /\ ¢ and the corres-
ponding S-expression (OR A (AND B C)) illustrates this point.

The names of the most basic functions have no mnemonic value
to the programmer at the level at which he wishes to think when
he is programming. This feature 1s worst for beginners, of
course, but all LISP programmers must at one time be beginners,
and why make life harder for them than it need be?

All this points toward the need for a more natural input
language; this language is called the A-Language, and 1s des-
cribed in succeeding paragraphs.

The A-Language is a language which allows expressions to be
written as a mixture of M-expressions, A-expressions, and S-
expressions. The reader is presumed to be familiar with S-ex-
pressions and M-expressions.

A-expressions are basically similar to Algol statements.,
As an example, the expression

(DEFINE FIRSTATOM (IN) (6) (FIRSTATOM IN X)
(IF X IS EVPTY THEN NIL ELSE IF FIRST OF X IS
ATOMIC THEN FIRST OF X ELSE FIRSTATOM IN FIRST OF X))

is the A-expression equivalent of the function defined above.
This example is explained in detail below.

The first element of this A-expression is the word DEFINE,

- 240 -

and indicates to the A-Language compiler that this is a defini-
tion statement.

The second element is the name of the function being de-
fined.

The third element of the expression is a 1list of auxiliary
words; their only function is to make the program more readable,
and they are edited out during compilation.

As an example, the function subst, familiar to readers of
the LISP 1.5 Manual, can be defined in A-Language as follows:

(DEFINE SUBSTITUTING (THE RESULT OF FOR IN) (7)
(THE RESULT OF SUBSTITUTING X FOR Y IN Z) (SUBST X Y 2Z))

It would be used as follows:

(IF THE RESULT OF SUBSTITUTING X FOR Y IN Z EQUALS Z
THEN PRINT Z ELSE X)

The fourth element is the precedence value; this value is
specified by the programmer, and determines the hierarchy of
applications of functions. Its main function is to eliminate
parentheses, Thus if the precedence of + was set higher than .,
the expression a+bsc would be translated as (a+b)ec, If there
were no precedence relationship between + and e, a+bec would be
ambiguous,

There are times when one wishes to vary the precedence of
operations to be applieds This is accomplished in the language
in two ways -- by writing the special words "begin" and "end"
before and after the unit which is to receive highest precedence,
or by using parentheses. Thus, for example, both the expres-
sions

(a+ 1) (c+d)
begin a+b end x begin c+d end

will be equivalent to
ac + bc + ad +bd
The fifth element is the example. This shows the form in
which the function being defined will appear in use. It speci-

fies the position in the expression occupied by the funection
name, the auxiliary words, and the variables.

- 241 -

The sixth and last element in the list is the definition
of the function. This corresponds to the expression on the

right hand side of the equal sign in the M-expression definition
of a function.

If the definition makes use of conditionals, they are ex-
pressed in the IF, THEN, ELSE terminology of Algol; if there is
no IF immediately following the final ELSE, a T is automatically
supplied in the antecedent of the final condition.

The function FIRSTATOM defined above illustrates how con-
ditionals in A-expressions are written. Note that A-system
expressions FIRST OF X, X IS ATOMIC, X IS EMPTY, etc., are used
rather than their S-expression counterparts (CAR X), (ATOM X),
(NULL X), etc. These A-expressions are easier to remember and
to comprehend than the corresponding S-expressions. A list of
certain basic S~expressions and their A-Language equivalents is
given in Table 1.

Table 1

S- ession A- e English

(CAR X) (DEFINE FIRST (OF) (11) (FIRST the first of
OF X) (CAR X)) list x

(CDR X) (DEFINE REST (OF) (11) (REST OF the rest of
X) (CDR X)) list x

(coNs X Y) (DEFINE CONNECT (TO) (10) the cons of
(CONNECT X TO Y) (CONS X Y)) x and y

(aTOM X) (DEFINE aAToMIC (IS) (10) (X x is atomic
IS ATOMIC) (ATOM X))

(FQUAL X Y) (DEFINE EQUALS (NIL) (4) (X x is equal
EQUALS Y) (EQUAL X Y)) toy

nth element (DEFINE ELEMENT (OF TH) (2) the nth ele-
(N TH ELEMENT OF X) (IF N ment of

PQUALS 1 THEN FIRST OF X FISE 1list x

N)h)ﬁS 1 TH ELEMENT OF REST OF
X

(MEMBER X A) (DEFINE MEMBER (IS A OF) (6) x is a mem-
(X IS A MEMBER OF Y) (IFY IS ber of y
EMPTY THEN NIL ELSE IF X BQUALS
FIRST OF Y THEN T EISE X IS A
MEMBER OF REST CF Y))

(UNION X Y) (DEFINE UNION (OF AND) (8) the union of
(UNION OF X AND ¥) (IF X IS x and y
EMPTY THEN Y ELSE IF FIRST OF
X IS A MEMBER OF Y THEN UNION
OF REST OF X AND Y ELSE

- 242 -

S-Expression A-Language English
CONNECT FIRST OF X TO BEGIN
UNION OF REST OF X AND Y
END))

(INTERSECTION X Y) (DEFINE INTERSECTION (OF AND) +the inter-
(8) (INTERSECTION OF X AND Y) section of
(IF X IS EMPTY THEN NIL EISE x and y
IF FIRST OF X IS A MEMBER OF
Y THEN CONNECT FIRST OF X TO
INTERSECTION OF REST OF X AND
Y ELSE INTERSECTION OF REST OF
X AND Y))

(PLUS X Y) (DEFINE PS (NIL) (5) (X PS Y) x plus y
(PLUS X Y))

(DIFFERENCE X Y) (DEFINE MS (NIL) (5) (X MS Y) x minus y
(PLUS X (MINUS Y)))

(TIMES X Y) (DEFINE * (NIL (6) (X * Y) x multiplied
(TIMES X Y)) by y

(QUOTIENT X Y) (DEFINE / (NIL (6) (X / Y) x divided by
(QUOTIENT X Y)) y

(CSETY Y X) (DEFINE PUT (INTO) (0) (PUT let y equal x

X INTO Y) (CSETQ Y X))

In the A-Language, one may choose to use infix notation,
Polish notation, or some other placement of the operator in re-
lation to the variable, and specify this position in the de=-
fining example. By jJudicious choice, one may make the notation
fit the problem at hand in the most natural manner.

An S-expression is allowed as any part of an A-expression.
Thus, the definition of firstatom could just as well have been
written (IF (NULL X) THEN NIL ELSE IF (CAR X) IS ATOMIC THEN
FIRST OF X ELSE (FIRSTATOM (CAR X))),

or

(IF (NULL X) THEN NIL ELSE IF (ATOMIC (FIRST X)) THEN
(FIRST X) ELSE (FIRSTATOM (FIRST X))).

(In the preceding expression, ATOMIC is in A-Language, and has
the same meaning and function as the predicate ATOM in S-expres-
sions.)

The Translator of A-Language

The translator (the system for translating A-Language into

- 243 -

LISP) was designed to eliminate the pcssibility of a programmer-
caused fatel error in ccompilation. This causes some loss of ef-
ficiency in compile time, but this will hopefully be more than
offset by having the number of debugging efforts reduced.

Aside from checking for obvicus stupidities (omitted paren-
theses, dropped suxiliary words, etc.), there is a fairly elab-
orate function which checks to see if the iranslation is
"making any sense" -~ i,e,, to see if functions have the proper
number of variables, if auxiliary words have all been edited out,
etc, The one great cause of most of the incorrect results ob-
tained in practice is an incorrect precedence being assigned to
a function. For example, when the functicns THIRD and REST have
precedences 10 and 9, respectively, the function

THIRD CF REST OF X
was incorrectly translated as
((THIRD REST) X).

The function that checks for incorrect arguments of functions
finds that REST is a function, and signals the translator.

A function is planned (and is partially running) which will
search for an interpretaticn of the offending statement that
produces meaningful output, and which will inform the programmer
of this "hunch" on the part of the compiler. If the compiler was
correct, the programmer may then forget the error -- if not,
compilation will not be halted, In most cases of incorrectly
assigned precedences, the translator will assign a consistent
meening to an expression, If, however, it cannot, a fatal error
occurs, and compilation is halted.

Several programs have been successfully compiled with the
current version of the translator. Surprisingly, the compile
times have been just a fraction more than the corresponding
compile times from the corresponding S-expression format. Since
the translator is written entirely in S-expressicns, and since
the number of auxiliary functions was held to a minimum, this
is a rather remarkable feat, and speaks well of the innate
power of LISP l.5.

In view of cur experience, it would appear that the goal

of providing a special-purpose language to workers in each area
of science is quite attainable with LISP and A-Language.

- 244 -

An Illustrative Example

In order to illustrate the various points discussed in the
preceding pages, let us define the various functions needed to
trace a path from the entrance to the exit of a maze, such as
the one in Figure 1.

For convenience, we shall replace the letters that label the
branch points in the maze by their numeric positions in the alpha-
bet -~ thus an "a" will become 1, a "b", 2, etc.; and we shall
represent the maze by a list whose nth entry is the list of
points that can be reached in one step from the point n of the
maze. The maze in the figure is then represented by the list

((22) () O (568) () (7) (6) () (10) (9 11) (10 12)
83413))15) (21920) () 61718) O O OO OO

We shall denote the n'l element of the 1ist by [[n], GAMMA of n.

It will be useful in the sequel if we have a convenient way
of talking about the set of points that can be reached from one
or the other of the points belonging to a set A in one step; we
shall denote this set by G [A] , and define it by the equation:

¢ [A]= U [x , which is the union of all the
xin A gamma's for each x in A.

There is one other function that will have great interest
for.us, and that is the transitive closure of a point n. This
is the set of all points that can be reached in any number of
moves ,starting from the point n of the maze. We use the nota-
tion ['[n] to stand for the transitive closure of n. The useful-
ness of this function is seen upon observing that a path between
the points a and b exists if and only if b is a member of the
transitive closure of a. Since, for any point x in a maze,

M) = Ml A

an effective computation procedure for the function [" is to
compute "], [[RmU[[n]] 5 «ee, until the result is equal to
the argument.

The algorithm for finding the path from a to b in a maze
is based upon the remark connecting the concepts of transitive

*This problem, but not the solution outlined above, is taken from
Brege, The Theory of Graphs and its Applications, New York, 1962,

- 245 -

0
9 lJ i 11
6 7
g
c3 l 65
22
v d4
195 h? 1
14,
l12
6
m13 Pl
20
t 15
17 Y
21, q
al
Figure 1

- 246 -

closure and path made above. The only complication comes from

the fact that the presence of loops in the path chosen may cause
infinite recursion if care is not taken to avoid it. However,

it is clear that if a path with loops links the points a and b

in a maze, then there is a path withcut loops linking them as well,

We are now in a position to write the main functicns for
our program. These are:

(DEFINE PATH (THE FROM TO SAVING) (1) (HE PATH FROM A
TC B SAVING C) (IF B IS A MEMBER OF GAMMA OF A
THEN CONNECT B TO C FLSE IF B IS A MEMBER OF THE
TRANSITIVE CLOSURE OF FIRST OF A THEN IF FIRST QOF
A IS A MEMBER OF C THEN THE PATH FROM REST OF A TO
B SAVING C EISE THE PATH FROM GAMMA CF FIRST OF C
TC B SAVING CONNECT FIRST CF A TO C ELSE THE PATH
FROM REST OF A TO B SAVING C));

(DEFINE CLOSURE (THE TRANSITIVE OF) (9)(THE TRANSITIVE
CLOSURE OF X) (IF GAMMA OF X EQUALS X THEN X ELSE
THE %‘l)?ANSITIVE CLOSURE OF THE UNICN CF X AND GAMMA
OF X));

(DEFINE camMa (OF) (7) (GAMMA OF X) (IF X IS EMPTY THEN
NIL ELSE THE UNICN OF THE FIRST OF A TH ELEMENT OF
M AND GAMMA OF REST OF X)).

The precedence values were assigned by observing that:

1. CLOSURE must have a precedence value somewhere between
that of member and union;

2. GAMMA must have a precedence value somewhere between
connect and union;

3. PATH must have a precedence value less than any other
function;

referring to the precedence values in table 1, we see that the
values assigned just turn the trick. The input and translated
program, with the final results of the rumn, are given below,

Input

(DEFINE PATH (THE FROM TC SAVING) (1) (THE PATH FROM A TO B
SALVING C) (IF B IS A MEMBER OF GAMMA OF A THEN CONNECT B
TO C ELSE IF B IS A MEMBER OF THE TRANSITIVE CLOSURE OF
FIRST OF A THEN IF FIRST OF A IS A MEMBER OF C THEN THE
PATH FROM REST OF A TO B SAVING C ELSE THE PATH FROM GAMMA
OF FIRST CF A TO B SAVING CONNECT A TO C ELSE THE PATH FROM
REST OF A TO B SAVING C))

- 247 -

(DEFINE CLOSURE (THE TRANSITIVE OF) (9) (THE TRANSITIVE CLOSURE
OF X) (IF GAMMA CF X EQUALS X THEN X ELSE THE TRANSITIVE
CLOSURE OF THE UNION OF X AND GAEMA COF X))

(DEFINE GaMNA (OF) (7) (GAMMA OF X) (IF X IS EMPTY THEN NIL
ELSE TKE UNION OF THE FIRST OF A TH ELEMENT OF M AND GANMMA
OF REST OF X))

(PUT (LIST ((22) () () (568) () (7) (6) () (10) (9 11) (10 12)
(1314 15) (21920 () 62718) O OO O OO
(349))) vro)

(PATH FROM (1) TO (2) SAVING NIL)

(STOP)

Translated Program

DEFINE (((PATH (LAMEDA (A B C) (COND
((MEMBER B (GAMMA A)) (CONNECT B C))
((M=MBER B (CLOSURE (FIRST A))) (cCoND
((MEMBER (FIRST A) C) (PATH (REST A) B C))
(T (PATH (GAMMA (FIRST A)) B (CONNECT A C)))))
(T (PATH (REST A) B C)))))))

DEFINE (((CLOSURE (LaAMBDA (X) (COND
((EQUAL (caMa X) X) X)
(T (CLOSURE (UNION X (GAMMA X)))))))))

DEFINE (((GAMMA (LAMBDA (X) (COND

((NULL X) NIL)
(T (UNION (ELEMENT (FIRST A) M) (caMmMa (REST X)))))))))

(cserq (L1sT ((22) () () (56 8) () (7) (6) () (10) (9 11) (10 12)
(1314 15) (21920) () 161718 () O O O 0O 0O
(349))w

(PATH (1) (2) NIL)

(sTOP)

B
2
8

|

(2131211109 221)

- 248 -

The

Appendix 1

LISP Program for METEOR

Daniel G. Bobrow

This listing is current as of February 20, 1964 and has all
known errors removed., At the top of the first page is a list of
free or "special" variables used in the compiled program. This
listing was made with the aid of a format printing program writ-
ten by Daniel Edwards of Massachusetts Institute of Technology,
and the lines giving a value and the label $/ FUNCTION DEFINI-
TIONS/ are artifacts of this program.

The principal functions in METEOR are:

1.

2.

METRIX2: which performs transfer of control from
rule to rule;

COMITRULE: which performs tracing and flow of con-
trol through each rule;

CMATCH (called from COMITMATCH) : which performs
the left half match;

COMITRIN (called from COMITR) : which creates the
transformed workspace and lists for the shelves;

SHEIVE: which performs the shelving operations,

- 249 -

((MPAIRS) (PRS) (WORKSPACE) (DISPCH) (SHELF) (TRACK))

$/FUNCTION DEFINITIONS/

(METEOR
(LAMBDA (RULES WORKSPACE) (METRIX RULES WORKSPACE NIL NIL
NIL)))

(METRI X
(LAMBDA (RULES WORKSPACE SHELF DISPCH TRACK) (METRIX2 RULES
WORKSPACE)))

(METRI X2
(LAMBDA (RULES WORKSPACE) (PROG (PC GT A)
(SETQ PC RULES)
START (COND
((NULL PC) (RETURN (PROG2 (PRINT (QUOTE (OVER
END OF PROGRAM))) WORKSPACE))))
(SETQ GT (DISPATCH (COMITRULE (CAR PC))))
(COND
((EQ GT (QUOTE *)) (GO NEXT))
((EQ GT (QUOTE END)) (RETURN WORKSPACE))
((EQUAL GT (CAAR PC)) (GO START)))
(SETQ A (TRANSFER GT RULES))
(COND
((EQ (CAR A) (QUOTE NONAME)) (RETURN (PROG2
(PRINT (LIST (CADR A) (QUOTE (UNDEFINED GO-TO IN)) (CAR PC)
)) WORKSPACE))))
(SETQ PC A)
(GO START)
NEXT (SETQ PC (CDR PC))
(GO START))))

(COMITRULE
(LAMBDA (RULE) (PROG (A B CD E G M LEFT)
(SETQ G RULE)
T0P (SETQ RULE (CDR RULE))
(SETQ A (CAR RULE))
(SETQ E (QUOTE *))
(COND
((NOT (ATOM A)) (GO START))
((EQ A (QUOTE +)) (GO STAR))
((EQ A (QUOTE =M)) (GO =M))
((EQ A (QUOTE *T)) (GO *T))
((EQ A (QUOTE =*U)) (GO =U)))
(DEFLIST (CDR RULE) A)
(RETURN (QUOTE =))
STAR (SETQ RULE (CDR RULE))
(SETQ E (FSTATH RULE))
START (COND
(CAND
(NULL TRACK)
(NULL 1)) (GO TRACK)))
(PRINT (QUOTE WORKSPACE))
(PRINT WORKSPACE)
(PRINT (QUOTE RULE))
(PRINT G)

- 250 -

TRACK (SETQ LEFT (COMITMATCH (CAR RULE) WORKSPACE))
(COND
((NULL LEFT) (RETURN E)))
LOOP (SETQ RULE (CDR RULE))
(SETQ A (CAR RULE))
(COND
((NULL RULE) (RETURN E))
((EQ A (QUOTE $)) (GO poLL))
((EQUAL A 0) (GO ON))
((ATOM A) (GO SW))
((EQ (CAR A) (QUOTE /)) (GO SHELVE)))
ON (SETQ WORKSPACE (COMITR LEFT A))
(COND
(M (PROG2 (PRINT (QUOTE WORKSPACE)) (PRINT WORKSPACE

IDDD)
(GO LOOP)
DOLL (SETQ A (CAR WORKSPACE))
SW (COND
((EQ E (QUOTE *)) (RETURN A)))
(RETURN (QUOTE =))
SHELVE (SHELVE LEFT A)
(GO LOOP)
*M (SETQ M A)
(GO TOP)
*T (SETQ TRACK A)
(GO TOP)
*U (SETQ TRACK NiL)
(GO TOP))))
(TRANSFER

(LAMBDA (GT RL) (PROG NiIL
START (COND
((NULL RL) (RETURN (LIST (QUOTE NONAME) GT))

((EQ GT (CAAR RL)) (RETURN RL)))
(SETQ RL (CDR RL))
(GO START))))

(DISPATCH
(LAMBDA (GT) (PROG (A)
(COND
((EQ GT (QUOTE =*)) (RETURN GT)))
(SETQ A (GTPAIR GT DISPCH))
(COND
((NULL A) (RETURN GT)))
(RETURN (CAR A)))))
(GTPAIR

(LAMBDA (NAME X) (PROG (A)
START (COND
((NULL X) (RETURN NIL))
((EQUAL (CAR X) NAME) (RETURN (CDR X))))
(SETQ X (CDDR X))
(GO START))))

(FSTATM
(LAMBDA (RULE) (PROG (A)
START (SETQ A (CAR RULE))
(COND
((NULL RULE) (RETURN (QUOTE =)))
((EQUAL A U) (GO ON))
((ATOM A) (RETURN A)))
ON (SETQ RULE (CDR RULE))
(GO START})))

(SHELVE
(LAMBDA (PAIRS INST) (PROG (A B C D)
START (SETQ INST (CDR INST))

(COND
((NULL INST) (RETURN SHELF)))

(SETQ A (CAR INST))

(SETQ B (CAR A))

(SETQ C (CADR A))

(SETQ D (CDDR A))

(COND
((EQ B (QUOTE =P)) (GO PR))
((EQ B (QUOTE =D)) (RETURN (SETDIS C (CAR D)

)
((NOT (EQ C (QUOTE =*))) (GO GETD)))
(SETQ C (INDIRECT (CAR D) PAIRS))
(SETQ 0 (CDR D))
GETD (SETQ D (COMITRIN PAIRS D))
(SETQ A (GTSHLF C))
(COND
((EQ B (QUOTE =*S)) (GO ST1))
((EQ B (QUOTE *Q)) (GO Qul))
((EQ B (QUOTE =*X)) (GO EX)))
(PRINT (LIST (QUOTE (SHELVING ERROR IN)) (CAR INST
)
(GO START)
PR (COND

((EQ C (QUOTE /)) (RETURN (PRINT SHELF))))
PR1 (PRINT (LIST (QUOTE SHELF) C (QUOTE CONTAINS) (
CAR (GTSHLF €))))
{COND
((NULL D) (GO START)))
(SETQ C (CAR D))
(SETQ D (CDR D))
(GO PR1)
EX (SETQ 8 (CAR A))
(RPLACA A WORKSPACE)
(SETQ WORKSPACE B)
(GO START)
QU1 (RPLACA A (NCONC (CAR A) D))
(GO START)
ST1 (RPLACA A (APPEND D (CAR A)))
(GO START))))

(SETDIS
(LAMBDA (X Y) (PROG (A)
(SETQ A (GTPAIR X DISPCH))
(COND
((NULL A) (SETQ DISPCH (CONS X (CONS Y DISPCH
1))
(T (RPLACA A Y)))
(RETURN DISPCH))))

- 252 -

(GETDCT
(LAMBDA (X ¥) (PROG (A)
(COND
((NOT (ATOM X)) (RETURN (LIST X))))
(SETQ A (GET X Y))
(COND
((NULL A) (RETURN X)))
(RETURN A))))

(INDIRECT i
(LAMBDA (X PAIRS) (GTNAME X PAIRS)))

VALUE

(METEOR METRIX METRIX2 COMITRULE TRANSFER DISPATCH GTPAIR FSTATM
SHELVE SETDIS GETDCT INDIRECT)

$/FUNCTION DEFINITIONS/

(COMITR
(LAMBDA (LEFT ORDER) (PROG (A B C)
(SETQ A (GTNAME 0 LEFT))
(COND
((EQUAL A 0) (SETQ A NiL))
((NULL A) (GO ON))
(CATOM A) (SETQ A (LIST A))))
ON (SETQ B (GTNAME (QUOTF WSEND) LEFT))
(COND *
((EQUAL ORDER 0) (SETQ C NIL))
(T (SETQ C (COM!TRIN LEFT ORDER))))
(RETURN (APPEND A (APPEND C B))})))

(COMITRIN
(LAMBDA (LEFT ORDER) (PROG (A B)
START (COND
((NULL ORDER) (RETURN A)))
(SETQ B8 (GTNAME (CAR ORDER) LEFT))
(COND
((NULL B) (GO ON))
((ATOM B) (SETQ B (LIST B))))
(SETQ A (NCONC A B))
ON (SETQ ORDER (CDR ORDER))
(GO START))))

(GTNAME
(LAMBDA (NAME PRS) (PROG (A B C)
(SETQ C (CAR NAME))
(COND
((ATOM NAME) (GO START))
((EQ C (QUOTE FN)) (RETURN (COPYTP (APPLY (CADR
NAME) (COMITRIN PRS (CDDR NAME)) NIL))))
((EQ C (QUOTE =*K)) (RETURN (LIST (COMITRIN PRS
(CODR NAME)))))
((EQ C (QUOTE =*C)) (RETURN (COMPRESS (COMITRIN
PRS (CDR NAME)}))))
((EQ C (QUOTE =*)) (RETURN (COPYTP (EVAL (CADR
NAME) NIL))))
((EQ C (QUOTE =#W)) (RETURN (WRITES (COMITRIN
PRS (CDR NAME)))))
((EQ C (QUOTE =E)) (RETURN (EXPAND (GTNAME (
CADR NAME) PRS))))
(C(EQ C (QUOTE =*/)) (RETURN (LIST (SBMERGE (CDR

- 253 -

NAME) })))

((EQ C (QUOTE =*N)) (RETURN (NEXT (CDR NAME))
))

((EQ C (QUOTE #*R}) (RETURN (MTREAD)))

((EQ (CADR NAME) (QUOTE /)) (RETURM (LIST (SBMERGE
(LIST (QUOTE MERGE) C (CONS (QUOTE G99999) (CDR NAME))))))
)

((EQ C (QUOTE *F)) (RETURM (CAAR (GTNAME (CADR
NAME) PRS))))

((EQ C (QUOTE *A)) (RETURH (ALL (CDR NAME)}))

((EQ C (QUOTE QUOTE)) (RETURN (CADR NAME))))
START (COND
((NULL PRS) (RETURN NAME)))
(SETQ A (CAR PRS))
(COND
((EQUAL NAME (CAR A)) (RETURN (COPYTP (CDR A
IRDRY]
(SETQ PRS (CDR PRS))
(GO STARTI)))

(COPYTP
(LAMBDA (X) (COND
((ATOM X) X)
(T (APPEND X NIL)))))

(EXPAND
(LAMBDA (X) (COND
((ATOM X) (MAPCON (GET (CDR X) (QUOTE PNAME)) (FUNCTION
(LAMBDA (Y) (UNPACK (CAR Y))))))
(T (CAR X)))))

(COMPRESS
(LAMBDA (X) (PROG NIL
(CLEARBUFF)
(MAP X (FUNCTION (LAMBDA (X) (PACK (CAR X)1})))
(RETURN (INTERN (MKNAM))))))
(MTREAD

(LAMBDA NIL (PROG (A B C)
(SETQ A (STARTREAD))

(GO A)
START (SETQ A (ADVANCE))
A (COND

((EQ A (QUOTE EOF)) (RETURN A))
((EQ A (QUOTE EOR)) (RETURN B))
((EQ A (QUOTE 1)) (SETQ C (NCONC C (LIST A))
)

(T (GO B)))

(GO START)

B (SETQ B (NCONC B (NCONC C (LIST A))))
(SETQ C NIL)
(GO START))))

(ALL
(LAMBDA (X) (PROG (A B)
(COND
((EQ (CAR X) (QUOTE =*)) (SETQ X (INDIRECT (CADR

- 254 -

X) PRS)))
(T (SETQ X (CAR X))))
(SETQ A (GTSHLF X))
(SETQ B (CAR A))
(RPLACA A NIL)
(RETURN B))))

(NEXT
(LAMBDA (X) (PROG (A B C)
(COND
(CEQ (CAR X) (QUOTE *)) (SETQ X (INDIRECT (CADR
X) PRS)))
(T (SETQ X (CAR X))))
(SETQ A (GTSHLF X))
(SETQ C (CAR A))
(COND
((NULL C) (RETURN NIiL)))
(SETQ B (CAR C))
(RPLACA A (CDR C))
(RETURN (LIST 8)))))

(GTSHLF
(LAMBDA (X) (PROG (A)
(SETQ A (GTPAIR X SHELF))

(COND
((NULL A) (GO A)))
(RETURN A)
A (SETQ A (CONS NIL SHELF))

(SETQ SHELF (CONS X A))
(RETURN A))))

(SBMERGE
(LAMBDA (X) (PROG (A B CD E G)
(SETQ A (CAR X))
(SETQ B (CADR X))
(COND
((EQ (CADR B) (QUOTE /)) (GO BX)))
(SETQ B (GTNAME B8 PRS))
(COND
((NOT (ATOM B)) (SETQ B (CAR B))))
BX (SETQ C (CADDR X))
(COND
((EQ (CADR €) (QUOTE /)) (GO CX)))
(SETQ C (GTNAME C PRS))
(COND
((NOT (ATOM X)) (SETQ C (CAR C))))
CX (COND
((OR
(ATOM C)
(NOT (EQ (CADR C) (QUOTE /)))) (SETQ C NIL
))
(T (SETQ C (CDDR C))))
(COND
((OR
(ATOM B)
(NOT (EQ (CADR B) (QUOTE /)))) (GO B)))
(SETQ D (LIST (CAR B) (QUOTE /)))
(SETQ B (CDDR B))
(GO D)
B (SETQ D (LIST 8 (QUOTE /)))
(SETQ B NIL)

- 255 -

EQ A (QUOTE AND)) (GO AND))
EQ A (QUOTE MERGE)) (GO AND))
EQ A (QUOTE OR)) (GO OR))
((EQ A (QUOTE SUBST)) (GO SUBST)))
ERROR (PRINT (QUOTE (SUBSCRIPT ERROR)))

ND
(
((
«(

(PRINT X)
(RETURN (GTNAME (CADR X) PRS))
AND (COND

((NULL B) (GO RETURN))
((MEMBER (CAR B) C) (SETQ G (CONS (CAR B) G)

)))
(SETQ B (CDR B))
(GO AND)
OR (SETQ G C)
OR1 (COND
((NULL B) (GO RETURN))
((NOT (MEMBER (CAR B) G)) (SETQ G (CONS (CAR
B) G))))
(SETQ B (CDR B))
(GO OR1)
SUBST (SETQ G C)
RETURN (COND
((AND
(EQ A (QUOTE MERGE))
(NULL G)) (SETQ G C)))
(COND
((NULL G) (RETURN (CAR D))))
(RETURN (NCONC D G)))))
VALUE -

(COMITR COMITRIN GTNAME COPYTP EXPAND COMPRESS MTREAD ALL NEXT
GTSHLF SBMERGE)
$/FUNCTION DEFINITIONS/

(COMI TMATCH
(LAMBDA (RULE WORKSPACE) (PROG (A B)
(SETQ A (CMATCH (NAMER RULE) WORKSPACE NiL))
(COND
((NULL A) (RETURN NIL))
(CEQ A (QUOTE $IMP)) (RETURN NIL)))
(SETQ B (CONS (QUOTE WSEND) (CDR A)))
(RETURN (ADDLAST (CAR A) B)))))

(CMATCH
(LAMBDA (RULE WORKSPACE MPAIRS) (PROG (RNAME A B C D E G
H)
(SETQ RNAME (CAR RULE))
(SETQ RULE (CDR RULE))
(SETQ 6 (CAR RULE))
(COND
({NULL RULE) (RETURN (CONS MPAIRS WORKSPACE)

))
((EQ B (QUOTE $0)) (GO $0))
((EQ B (QUOTE $)) (GO PDOLL)))
(SETQ H (CAR B))
(COND

((EQ H (QUOTE =#P)) (GO PRINT))
((EQ H (QUOTE FN)) (GO FN))
((NULL WORKSPACE) (RETURN (QUOTE $IKP))))

- 256 -

(SETQ G 0)
(COND
((EQ B (QUOTE $1)) (SETQ G 1))
((EQ B (QUOTE $2)) (SETQ G 2))
((EQ B (QUOTE $3)) (SETQ G 3)))
(COND
((NOT (EQUAL G 0)) (GO NDOLL2)))
(GO TEST)
$0 (COND
((AND
(NOT (NULL WORKSPACE))
(NULL (CDR RULE))) (SETQ B NIL))
(T (SETQ B (CONS NIL WORKSPACE))))
(GO WATB)
TEST (COND
((EQ H (QUOTE $)) (GO NDOLL))
((EQ H (QUOTE *)) (GO EVAL))
((EQ H (QUOTE QUOTE}) (GO ATB1))
(T (GO ATB)))
FN (SETQ 8 (CDR B))
(SETQ E (CONS WORKSPACE (COMITRIN MPAIRS (CDR B
)3))
(SETQ B (COPYTP (APPLY (CAR B) E NIL)))
WATB (COND
((NULL B) (RETURN NiL))
((EQ B (QUOTE $1MP)) (RETURN B))
(T (RETURN (CHMATCH (CONS (CDR RNAME) (CDR RULE
)) (CDR B) (ADDLAST MPAIRS (CONS (CAR RNAME) (CAR B8)))))))
PDOLL (SETQ D (CDR RNAME))
(SETQ RULE (CDR RULE))
(COND
(CNULL RULE) (RETURN (LIST (ADDLAST MPAIRS (
CONS (CAR RNAME) WORKSPACE))))))
DLOOP (SETQ B (CMATCH (CONS D RULE) WORKSPACE MPAIRS)
)

(COND
((NULL WORKSPACE) (RETURN NIL))
((EQ B (QUOTE $1MP)) (RETURN B))
(B (RETURN (CUNS (ADDLAST (CAR B) (CONS (CAR
RNAME) C)) (CDR B)))))
(SETG C (ADDLAST C (CAR WORKSPACE)))
(SETQ WORKSPACE (CDR WORKSPACE))
(GO DLOOP)
SUBMCH (SETQ B (SUBMCH B WORKSPACE))
(GO WATB)
PRINT (PRINT (CDR B))
(PRINT WORKSPACE)
$IMP (RETURN {QUOTE $1MP))
EVAL (SETQ B (EVAL (CADR B) HNIL))

(GO ATB2)

ATB1 (SETQ B (CADR B))
(GO ATB2)

ATB (COND

((ATOM B) (SETQ B (GTNAME B MPAIRS))))
ATB2 (SETQ H (CAR WORKSPACE))
(COND
((ATOM B) (GO B))
((EQ (CADR B) (QUOTE /)) (GO SUBMCH))
(CEQUAL B H) (SETQ B (CONS (LIST B) (CDR WORKSPACE

- 257 -

1))
(T (SETQ B NIL)))
(GO WATB)
B (COND
((EQUAL B H) (SETQ B WORKSPACE))
((AND
(EQUAL B (CAR H))
(EQ (CADR H) (QUOTE /))) (SETQ B (CONS (LIST
H) (CDR WORKSPACE))))
(T (SETQ B NIL)))
(GO WATB)
NDOLL (SETQ G (CDR B))
NDOLL2 (SETQ B (DOLNM G WORKSPACE))
(GO WATB))))

(NAMER
(LAMBDA (X) (PROG (A B C D E)
(SETQ A (CAR X))
(SETQ D 1)
(SETQ B X)
(COND
((OR
(EQ A (QUOTE $))
(EQ A (QUOTE $0))) (GO START)))
(SETQ B (CONS (QUOTE $) X))
(SETQ E (LIST 0))
START (COND
((NULL X) (RETURN (CONS E B))))
(SETQ E (ADDLAST E D))
(SETQ X (CDR X))
(SETQ D (ADD1 D))
(GO START))))

(SUBMCH
(LAMBDA (X Y) (PROG (A B C)

(SETQ A (CAR X))

(SETQ 8 (CAR Y))

(COND

((NOT (OR

(EQ A (QUOTE $1))
(EQUAL A (CAR B))
(EQUAL A (QUOTE ($. 1))))) (RETURN NIL))

(COND
((EQ (CADR B) (QUOTE /)) (GO ON))
(T (RETURN NIL)))
ON (SETQ A (CDR X))
(COND
((EQ (CAR A) (QUOTE /)) (GO A)))
(PRINT (LIST (QUOTE (SUBSCRIPT ERROR SUBMCH)) X
)
(RETURN NIL)
A (SETQ A (CDR A)})
(SETQ C (CDDR B))
START (COND
((NULL A) (RETURN (CONS (LIST B) (CDR Y))))
((MEMBER (CAR A) C) (SETQ A (CDR A)))
(T (RETURN NIL)))
(GO START))))

- 258 -

(DOLNM
(LAMBDA (NUM WSPACE) (PROG (A B)
(SETQ B (CAR WSPACE))
(COND
((NUMBERP NUM) (GO NUM))
((EQ NUM (QUOTE NUMBER)) (GO NUMBER))
((EQ NUM (QUOTE ATOM)) (GO ATOM))
((EQ NUM (QUOTE LIST)) (GO LIST)))
(COND
((OR
(EQUAL NUM B)
(EQUAL NUM (CAR B))) (GO RNIL)))
$1 (COND
((ATOM B) (GO B)))
LST (RETURN (CONS (LIST B) (CDR WSPACE)))
NUMBER (COND
{((NOT (NUMBERP B)) (GO RNIL)))
B (RETURN WSPACE)
ATOM (COND
((ATOM B) (GO B)))
RNIL (RETURN NIL)
LIST (COND
((ATOM B) (GO RNIL))
(T (GO LST)))
NUM (COND
((EQUAL NUM 1) (GO $1)))
START (COND
((EQUAL NUM 0) (RETURN (CONS A WSPACE)))
((NULL WSPACE) (RETURN (QUOTE $1MP))))
(SETQ A (ADDLAST A (CAR WSPACE)))
(SETQ WSPACE (CDR WSPACE))
(SETQ NUM (SUB1 NUM))
(GO START))))

(ADDLAST
(LAMBDA (X Y) (APPEND X (LIST Y))))

(WRITES
(LAMBDA (X) (PROG (A)
START (SETQ A (CAR X))
(COND
((NULL X) (RETURN NIL))
((EQ A (QUOTE EOR)) (GO ON))
((ATOM A) (PRIN1 A))
(T (PRIN1 (QUOTE »%*+))))
(SETQ X (CDR X))
(GO START)
ON (TERPR1)
(RETURN NIL))))

VALUE

(COMITMATCH CMATCH NAMER SUBMCH DOLNM ADDLAST WRITES)
READY,

- 259 -

Appendix 2

The LISP Programs for

Inductive Inference on Sequences

Malcolm Pivar and Elaine Gord

1. Functions Common to Several Prediction Programs

LAST finds the last member of a list.

COMPOSE applies a function to a list n times.

NTHMEM finds the nth member of a list, beginning the count with O.

P1 is true if and only if all members of a list are identical.

S applies a function to successive members of a list, producing a list.

D finds the first difference list of a list of numbers.

ND finds the nth first difference list.

R finds the first ratio list of a list of numbers.

NR finds the nth first ratio list.

RATIO finds the (real) ratios between corresponding members of 2 lists.

NTHLIS produces a list containing every nth member of a given list.

NUMEQUAL finds the number of times a given member of a list appears.

DIFFLIST deletes a given member from a list whenever it appears.

DISTAB produces a distribution table of members of a list.

MODFREQ, given a list of pairs such as DISTAB produces, finds that
pair with the largest second member.

SUMTEST produces a description in LISP of the additive relationship
between 2 numbers.

SUBSTRINGTEST compares first difference and first ratio lists to a
given list to see if they match. If they do, the next member of
the given list is returned. Auxiliary functions used are DTEST,
RTEST, and SUBSTRING.

- 260 -

RITEFORM is a list-making function.

BESTONE lists the best one of a list of pairs by finding the MODFREQ,

RETTIMES, RETTIMES1, RETPLUS, and RETPLUS1 are used to pre-
dict the next member of a list, given the next member of the nth
first difference or first ratio list.

RETMEM returns that member of a list having a given position.

2. LISP Listing

FUNCTIONS COMMON TO SEVERAL PREDICTION PROGRAMS
(LAST (LAMBDA (S) (COND
((NULL (CDR S)) (CAR 8))(T (LAST (CDR 8)))
(COMPOSE (LAMBDA (EQ X N) (COND ((ZEROP N) X) ((NULL X) NIL)
(T (COMPOSE EC (FC X) (SUBL B))))))
(NTHEM (LAMBDA (A X)(COND ((NULL X) NIL) ((EQUAL A O)(CAR X))
(T (NTHEM (SUBL A) (CDR X))))))
(P1(LAMBDA (X)(COND((NULL(CDDR X)) (EQUAL (CAR X)(CADR X)))
((EQUAL (CAR X) (CADR X)) (P1 (CDR X))) (T F))))
(S (LAMBDA(FN X) (COND ((NULL(CDR X)) NIL) (T (CONS (FN (CADR X)
(CAR X)) (S FN (CDR X)))))))
(D (LAMBDA (X) (S (FUNCTION DIFFERENCE) X)))
(ND (LAMBDA (N X) (COND ((NULL X) NIL) ((ZEROP N) X)
(T (ND (SUB1 N) (D X))))
(R (LAMBDA (X) (COND ((NULL X) NIL) (MEMBER O X) NIL)
(T (S (FUNCTION QUOTIENT) X)))))
(NR (LAMBDA (N X) (COND ((NULL X) NIL) ((ZEROP N) X)
(T (NR (SUBL N) (R X)))))
(RATIO (LAMBDA (X Y) (COND ((NULL X) NIL) (T (CONS
(QUOTIENT (TIMES 1.0 (CAR X)) (CAR Y))(RATIO (CDR X)
(CDR Y)))))))
(NTHLIS (LAMBDA (X N) (PROG (A)
(COND ((NULL X) NIL))
(SETQ A (COMPOSE (FUNCTION CDR) X (SUB1 N)))
(RETURN
(COND ((NULL A) NIL) (T (CONS (CAR A) (NTHLIS (CDR A)
N)))
(NUMEQUAL (LAMBDA(A X) (COND ((NULL X) O) ((EQUAL A
(CAR X)) (PLUS 1
(NUMEQUAL A (CDR X)))) (T (NUMEQUAL A (CDR X))))))
(DIFFLIST (LAMBDA (A X) (COND ((NULL X) NIL) ((EQUAL A
(CAR X))

- 261 -

(DIFFLIST A (CDR X))) (T (CONS (CAR X) (DIFFLIST A
(CDR X))
(DISTAB (LAMBDA (X) (COND ((NULL X) NIL) (T (CONS (CONS
(CAR X)
(NUMEQUAL (CAR X) X)) (DISTAB (DIFFLIST (CAR X) X)))))))
(MODFREQ (LAMBDA (X) (COND ((NULL (CDR X)) (CAR X))
(NULL X) NIL)
((GREATERP (CDAR X)(CDR (MODFREQ (CDR X)))) (CAR X)
(T (MODFREQ (CDR X))))))
(SUMTEST (LAMBDA (X Y) (SUBST (DIFFERENCE Y X)(QUOTE Y)
(QUOTE (PLUS X Y)
D))
(SUBSTRINGTEST (LAMBDA (X) (PROG (D)
(SETQ D (DTEST X))
(COND ((NULL D) (GO A)))
(RETURN D)
(RETURN (RTEST X)))))
(DTEST (LAMBDA (X) ((LAMBDA (Y) (COND ((NULL Y) NIL)
(T (PLUS (LAST X) Y)))) (SUBSTRING (D X) X))))
(RTEST (LAMBDA (X) (COND ((MEMBER O X) NIL)
(T ((LAMBDA (Y) (COND ((NULL Y) NIL) (T (TIMES (LAST X) Y))))
(SUBSTRING (R X) X))))))
(SUBSTRING (LAMBDA (X Y) (PROG (U V OU OV M N PARMS5)
(SETQ U (REVERSE X))
(SETQ OU U)
(SETQ PARMS5 (MAX 3 (TIMES 0. 67 (LENGTH U))))
(SETQ V (REVERSE Y))
(SETQ OV V)
(SETQ M O)
(SETQ N 1)
A (COND ((NULL V)(RETURN NIL))
((GREATERP N PARM5)(RETURN (NTHMEM (SUB1 M) OV)))
((EQUAL (CAR U)(CAR V))(GO B)))
(SETQ N 1)
(SETQ M (ADD1 M))
(SETQ V (COMPOSE (FUNC TION CDR) OV M))
(SETQ U OU)
(GO A)
B (SETQ N (ADD1 N))
(SETQ U (CDR U))
(SETQ V (CDR V))
(GO A))
(RITEFORM (LAMBDA (X Y) (COND ((NULL X) Y) (T (CONS X Y)))))

- 262 -

(BESTONE (LAMBDA (X) (COND ((NULL X) NIL) (T (LIST
(MODFREQ X))))))
(RETTIMES (LAMBDA (M V X) (COND ((NULL X) O) ((EQUAL M O) V)
(T (RETTIMESL (SUB1 M) V X)))))
(RETTIMES1 (LAMBDA (M V X) (COND ((NULL X) 1) ((ZEROP
(ADD1 M))))
(T (TIMES V (LAST (NR M X)) (RETTIMESL1 (SUB1 M) 1 X))))))
(RETPLUS (LAMBDA (N V X) (COND ((NULL X) O) ((EQUAL N 0) V)
(T (RETPLUSL (SUB1 N) V X)))))
(RETPLUS1 (LAMBDA (N V X) (COND ((NULL X) O) ((ZEROP
(ADD1 N)) O)
(T (PLUS V (LAST (ND N X)) (RETPLUS1 (SUB1 N) O X))))))
(RETMEM (LAMBDA (N X)(COND ((ZEROP N) NIL)((NULL X) NIL)
(T (CONS (CAR X)(RETMEM (SUB1 N)(CDR X)))))))

3. The Prediction Program NEXTOF

NEXTOF produces an ideal sequence corresponding to a given list, and,
by comparing the two lists, predicts the next member. The ideal
sequence is produced by expanding an encoding of a list.

ENCODE is a list of first members of a list and its successive first
difference lists. CODER is the corresponding list for first ratio
lists.

EXPAND and its auxiliary ST and RAX and its auxiliary RAST expand
lists produced by ENCODE and CODER respectively.

DEGREE determines the number of times first differences must be
taken in order to produce a list a set number of whose members
are identical. RADEG is the corresponding function for first ratio
lists.

LEFTLIST and LEFTLISTAUX (and RALEFT and RALEF TAUX) shift
an encoded list to the left. Once a "perfect" encoding is found,
this is done to insure that the proper ideal sequence is found.
This avoids an improper prediction due to the first member of a
list being an exception.

RITENDUM (RATIONUM) indicates the number of shifts to the right that
is necessary in order to avoid confusion due to exceptions.

RITFIRSTVEC (RATIOVEC) produces the leftmost ""perfect" encoding.

IDSEQ expands the encoding to the length of the original list.

ODPRFIN finds the exceptions to the ideal sequence. If there is no ideal
sequence VALPOSPAIR returns a list of pairs of members of the
original list and their positions. Otherwise ODPR returns a list
of pairs of corresponding unlike elements.

- 263 -

PREDICTNEXT predicts the next member of a list specified by NEXTOF,
VALIS produces a list of exceptions in a given list to its ideal se-
quence. POSLIS1 produces a list of positions of these exceptions.
PATTERN determines whether a list has a pattern.

NEXTOF determines whether the next member of a list should be an ex-
ception to the ideal sequence. If not, the next member of the ideal
sequence is returned by PREDICTNEXT. If it is an exception,
NEXTOF determines whether there is a pattern to exception values
and if so, returns the next member,

4. LISP Listing

THE PREDICTION PROGRAM NEXTOF
(ENCODE (LAMBDA (X) (COND ((OR (NULL (CDR X))(P1 X)) (LIST
(CAR X)))
(T (CONS (CAR X) (ENCODE (D X)))))))
(CODER (LAMBDA (X) (COND
((OR (NULL (CDR X)) (P1 X)) (LIST (CAR X)))
(T (CONS (CAR X) (CODER (RATIO (CDR X) X)))))))
(ST (LAMBDA (E) (COND((NULL (CDR E))E) (T (CONS (PLUS (CAR E)
(CADR E))
(ST (CDR E)))))))
(RAST (LAMBDA (X) (COND ((NULL (CDR X)) X)
(T (CONS (TIMES 1.0 (CAR X)(CADR X)) (RAST (CDR X)))))))
(EXPAND (LAMBDA (N LS) (COND ((ZEROP N) NIL) (T (CONS (CAR LS)
(EXPAND
(SUB1 N) (ST L8))H)))
(RAX (LAMBDA (N LS) (COND ((ZEROP N) NIL)
(T (CONS (CAR LS) (RAX (SUBL N) (RAST LS)))))))
(DEGREE (LAMBDA (X) (PROG (PARM1 PARM2 W LENW LENW1)
(SETQ PARML1 3)
(SETQ PARM2 0. 4)
(SETQ LENW (LENGTH W))
(SETQ LENW1 LENW)
A (COND ((LESSP LENW PARMI) (RETURN -1))
((GREATERP (CDR (MODFREQ (DISTAB W)))
(TIMES PARM2 LENW))
(RETURN (DIFFERENCE LENW1 LENW))))
(SETQ W (D W))
(SETQ LENW (LENGTH W))
(GO A))))

- 264 -

(RADEG (LAMBDA (X) (PROG (PARM1 PARM2 W LENW LENW1)

(SETQ PARM1 3)

(SETQ PARM2 0. 4)

(SETQ W X)

(SETQ LENW (LENGTH . W))
(SETQ LENW1 LENW)

A (COND ((LESSP LENW PARM1) (RETURN -1))
((GREATERP (CDR (MODFREQ (DISTAB W)))(TIMES PARM2
LENW))

(RETURN (DIFFERENCE LENW1 LENW))))
(SETQ W (RATIO (CDR W) W))

(SETQ LENW (LENGTH W))

(GO A))))

(LEFTLIST (LAMBDA(L) (COND((NULL (CDR L)) L) (T
(LEFTLISTAUX L
(LEFTLIST (CDR L)))))))

(LEFTLISTAUX (LAMBDA (L X) (CONS (DIFFERENCE (CAR L)
(CAR X)) X)))

(RALEFT (LAMBDA (X) (COND ((NULL (CDR X)) X)

(T (RALEFTAUX X (RALEFT (CDR X)))))))

(RALEFTAUX (LAMBDA (L X) (CONS (QUOTIENT (CAR L)
(CAR X)) X)))

(RITENDNUM (LAMBDA (X Y) (PROG (U CONSTERM DEG1 P N)
(SETQ U X)

(SETQ DEG1 Y)
(SETQ CONSTERM (CAR (MODFREQ (DISTAB (ND DEG1 U)))))
(SETQ P 0)
A (SETQ N (NTHMEM DEG1 (ENCODE U)))
(COND ((EQUAL N CONSTERM)(RETURN P)))
(SETQ U (CDR U))
(SETQ P (ADD1 P))
(GO A))))
(RATIONUM (LAMBDA (X Y) (PROG (U CONSTERM DEG1 P N)
(SETQ U X)
(SETQ DEG1 Y)
(SETQ P (MODFREQ (DISTAB (NR DEG1 U))))
(COND ((NULL P)(RETURN (PROG2 (PRINT (APPEND
(QUOTE (THERE IS NO
CONSTERM FOR)) (LIST X))) 0))))
(SETQ CONSTERM (CAR P))
(SETQ P 0O)
A (SETQ N (NTHMEM DEG1 (CODER U)))
(COND ((EQUAL N CONSTERM)(RETURN P)))

- 265 -

(SETQ U (CDR U))

(SETQ P (ADD1 P))

(GO A))))
(RITFIRSTVEC (LAMBDA (X)(PROG (V RIT Gl DEG VEC)

(SETQ V X)

(SETQ DEG (ADD1 (DEGREE V)))

(SETQ RIT (RITENDNUM V (SUB1 DEG)))

(SETQ G1 (ENCODE (COMPOSE(FUNCTION CDR) V RIT)))

(SETQ VEC (RETMEM DEG G1))

(RETURN (COMPOSE (FUNCTION LEFTLIST) VEC RIT)))))
(RATIOVEC (LAMBDA (X) (PROG (V R G RAD VEC)

(SETQ V X)

(SETQ RAD (ADD1 (RADEG V)))

(SETQ R (RATIONUM V (SUB1 RAD)))

(SETQ G (CODER (COMPOSE (FUNCTION CDR) V R)))

(SETQ VEC (RETMEM RAD G))

(RETURN (COMPOSE (FUNCTION RALEFT) VEC R)))))
(IDSEQ (LAMBDA (X) (COND

((EQUAL (DEGREE X) -1) (COND

((MEMBER O X) NIL)

((EQUAL (RADEG X) -1) NIL)

(T (RAX (LENGTH X) (RATIOVEC X)))))

(T (EXPAND (LENGTH X) (RITFIRSTVEC X))))))
(VALPOSPAIR (LAMBDA (X N)(COND ((NULL X) NIL)

(T (CONS (CONS (CAR X) N)(VALPOSPAIR (CDR X)(ADD1 N)))))))
(ODPR (LAMBDA (X Y) (COND ((NULL X) NIL) ((EQUAL (CAR X)

(CAR Y))

(ODPR (CDR X) (CDR Y))) (T (CONS (CONS (CAR X) (CAR Y))

(ODPR (CDR X) (CDR Y)))))))

(ODPRFIN (LAMBDA (X) (COND ((AND (EQUAL (DEGREE X) -1)
(EQUAL (RADEG X) -1)) (VALPOSPAIR X 1))

(T (ODPR X (IDSEQ X))))))

(PREDICTNEXT (LAMBDA (X L)(COND ((NULL X) NIL)
((EQUAL L 1) (CAR X))((EQUAL L 2)(DIFFERENCE
(TIMES 2(CADR X))(CAR X)))

(T (NTHMEM L (EXPAND (ADDI L)(ENCODE X)))))))

(VALIS (LAMBDA (X) (COND ((NULL X) NIL)

(T (CONS (CAAR X)(VALIS (CDR X)))))))

(POSLIS1 (LAMBDA (X Y) (COND ((NULL X) NIL)

((EQ (CAR X) (CAAR Y)) (CONS (CDAR Y) (POSLIS1 (CDR X)
(CDR Y))))
(T (POSLIS1 X (CDR Y))))))

- 266 -

(PATTERN (LAMBDA (X) (COND ((NULL X) F)
((EQUAL (LENGTH (ODPRFIN X)) (LENGTH X)) F) (T T))))
(NEXTOF (LAMBDA (X) (PROG (B C D E LENA)
(SETQ LENA (LENGTH X))
(COND ((LESSP LENA 4)(RETURN (PREDICINEXT X LENA))))
(SETQ B (IDSEQ X))
(SETQ E (COND ((NULL B)(VALPOSPAIR X 1))(T (ODPR X B))))
(SETQ D (VALIS E))
(SETQ C (POSLIS! (VALIS E)(VALPOSPAIR X 1)))
(COND ((NOT (PATTERN C))(GO Z)))
((PATTERN D)(GO Y))
((EQUAL (ADD1 LENA)(NEXTOF C))(RETURN NIL)))
(GO 2)
Y (COND ((EQUAL (ADD1 LENA)(NEXTOF C))
(RETURN(NEXTOF D))))
Z (RETURN (PREDICTNEXT B LENA)))))

- 267 -

5. The Program Producing Program OUTFCN

OUTFCN produces a LISP program describing the pattern of a
given list and exceptions to this pattern. Given a number, this pro-
gram will return the corresponding value. Exceptions to the pattern
are determined by comparison with an ideal sequence (see the program

NEXTOF).

The pattern is determined by a numerical analysis of the

encoding of the original list.

6. LISP Listing

(IDSEQ (LAMBDA (X) (COND ((EQUAL (DEGREE X) -1) NIL)
(T (EXPAND (LENGTH X)(RITFIRSTVEC X))))))
(CONST (LAMBDA (X) (PROG (Z V LEN DEG RIT G1 VEC RITFIRST

N L)

(SETQ Z X)

(SETQ LEN (LENGTH Z))

(SETQ DEG (DEGREE Z))

(SETQ RIT (RITENDNUM Z DEG))

(SETQ G1 (ENCODE (COMPOSE (FUNCTION CDR) Z RIT)))
(SETQ VEC (RETMEM (ADD1 DEG) G1))

(SETQ RITFIRST (COMPOSE (FUNCTION LEF TLIST)
VEC RIT))

(SETQ V (EXPAND LEN RITFIRST))

(SETQ N 1)

(COND ((AND (NULL L)(NULL Z))(RETURN (PP
(COMP1 VEC) 0)))

((NULL Z)(RETURN (CONS (QUOTE COND)(APPEND L
(SUBST (PP (COMP1

VEC) 0) (QUOTE V) (QUOTE (T V))))))

((EQUAL (CAR Z)(CAR V))(GO A)))

(SETQ L (APPEND L (SUBLIS (LIST (CONS (QUOTE M) N)
(CONS(QUOTE P)(CAR Z)))(LIST(QUOTE((EQUAL X M)
P))))

(SETQ Z (CDR Z))

(SETQ V (CDR V))

(GO B))))

- 268 -

(STTB (LAMBDA (N L) (COND ((NULL L) NIL) (T(CONS(TIMES
N(CAR L))
(STTB N (CDR L)))))))
(VADD (LAMBDA (L M) (COND ((NULL L) M)(NULL M) L)
(T (CONS (PLUS (CAR L)(CAR M))(VADD (CDR L)(CDR M)))))))
(COMP1(LAMBDA (V) (CC V 1 1 (LIST 1))))
(CC (LAMBDA (V FACT COUNT XVEC) (COND ((NULL V) NIL)
(T (VADD (STTB (QUOTIENT (CAR V) FACT) XVEC)(CC
(CDR V) (TIMES FACT
(COUNT()PLUS COUNT 1)(VADD(CONS O XVEC)(STTB
(MINUS COUNT) XVEC))))))))
(PP (LAMBDA (L N) (COND ((NULL L) NIL)
((ZEROP (CAR L))(PP (CDR L) (ADD1 N)))
((EQ N O) (CONS (QUOTE PLUS)(CONS (CAR L) (PP (CDR L)
(ADD1 N)))))
((EQUAL (CAR L) 1) (COND
((NULL (CDR L)) (LIST (QUOTE EXPT) (QUOTE X) N))
(T(CONS (LIST (QUOTE EXPT)(QUOTE X)N)(LIST(PP (CDR L)
(ADD1 N))))))
((NULL (CDR L))(LIST (QUOTE TIMES)(CAR L)(LIST
(QUOTE EXPT)
(QUOTE X) N)))
(T (CONS (LIST (QUOTE TIMES) (CAR L) (LIST (QUOTE EXPT)
(QUOTE X) N)) (LIST (PP (CDR L) (ADD1 N))))))))
(OUTFCN (LAMBDA (X) (COND ((EQUAL (DEGREE X) -1)(PRINT
(QUOTE (NO
PATTERN))))(T(SUBST (CONST X)(QUOTE Z)(QUOTE (LAMBDA

(X) Z) N

- 269 -

7. The Prediction Program SEQUENTIAL PATTERNS

POSN assigns to a letter a number correponding to its position in the
alphabet, beginning with A = O.

POSNLIS applies POSN to each member of a list of letters

D subtracts the members of one list from the corresponding members
of another.

COMPOSE applies a function to a variable, then applies the function to
the result, and so forth, a total of n times.

SN subtracts the first member of a list from the nth member, the

second from the n + lst, and in general the kth member from the

n + k - lst.

SNMOD puts a list of numbers into an equivalent list mod 26.

DIFFLIST strikes from a list all numbers equal to a given number.

NEXTMEM predicts the next member of a periodic series.

NTHEM locates the nth member of a list.

PATCONST produces two numbers indicating the nature of a periodic
function. The first number, when used with the list in SN, pro-
duces a periodic series. The second number is the period of
that series.

PERTESTI predicts the next member of a list of numbers.

PERTEST?2 is an auxiliary function for saving time.

PERTEST predicts the next letter of the original sequence using
NUMMOD and RETLET,

NUMMOD transforms a number into an equivalent number mod 26.

RETLET finds the letter occupying the place in the alphabet indicated
by a given number.

NEXTLET gives a list of letters to PERTEST. If no prediction is re-
turned, it gives POSNLIS of that list to STUDY which, in turn
calls the program NEXTOF.

8. LISP Listing

CSET (ALPHABET (ABCDEFGHIJKLMNOPQRST

UVWXY 7))
CSET (PARM2 0.5)
CSET (PARMS 0. 67)
DEFINE((

(POSN (LAMBDA (X A)(COND((EQUAL X(CAR A))O)(T(PLUS 1
(POSN X(CDR A)))))))

(POSNLIS (LAMBDA (X) (COND ((NULL X) NIL)(T (CONS (POSN
(CAR X)

- 270 -

ALPHABET)(POSNLIS (CDR X)))))))
(D2 (LAMBDA (X Y) (COND ((NULL X) NIL) (T
(CONS (DIFFERENCE (CAR X)(CAR Y))(D2(CDR X)(CDR Y)))))))
(COMPOSE (LAMBDA (FC X N) (COND ((ZEROP N) X) ((NULL X) NIL)
(T (COMPOSE FC (FC X) (SUBL N))))))
(SN (LAMBDA (N X)(D2(COMPOSE (FUNCTION CDR) X N) X)))
(SNMOD (LAMBDA (X) (COND ((NULL X) NIL) (T (CONS (COND
((GREATERP (CAR X) 25) (DIFFERENCE (CAR X) 26))
((LESSP (CAR X) O)(PLUS (CAR X) 26))(T (CAR X)))(SNMOD
(CDR X))
(DIFFLIST (LAMBDA (A X) (COND ((NULL X) NIL) ((EQUAL A (CAR X))
(DIFFLIST A (CDR X))) (T (CONS (CAR X) (DIFFLIST A
(CDR X))
(NEXTMEM (LAMBDA (N X)(NTHMEM1(ADD1 (REMAINDER(LENGTH X)
N)) X)))
(NTHMEM1(LAMBDA (N X)(COND ((NULL X NIL)((EQUAL N 1)(CAR X))
(T (NTHMEM1(SUB1 N)(CDR X))))))
(PATCONST (LAMBDA (Y)
(PROG (P L HLENY N M LENL)
(SETQ P 1)
(SETQ HLENY (TIMES PARM2 (LENGTH Y)))
C (SETQ L (SNMOD (SN P Y)))
(SETQ LENL (TIMES PARM3 (LENGTH L)))
(SETQ N 1)
B (SETQ M (SNMOD (SN N L)))
(COND ((NULL (DIFFLIST O M((*RETURN (CONS P N))))
(COND ((GREATERP N LENL)(GO A)))
(SETQ N (ADD1 N))
(GO B)
A (COND ((GREATERP P HLENY)(RETURN NIL)))
(SETQ P (ADD1 P))
(GO C))
(PERTEST1 (LAMBDA (U Y) (COND ((NULL U NIL)
(T (RETLET (NUMMOD (PLUS (NEXTMEM (CDR U)(SN (CAR U Y))
(NTHMEMI(DIFFERENCE (LENGTH Y)(SUB1 (CAR U))) Y)))))))
(PERTEST2 (LAMBDA (X)(PERTEST1 (PATCONST X) X)))
(PERTEST (LAMBDA (X) (PERTEST2 (POSNLIS X))))
(NUMMOD (LAMBDA (X) (COND ((GREATERP X 25)(DIFFERENCE X 26))
((LESSP X O)(PLUS X 26))(T X))))
(RETLET (LAMBDA (N) (CAR (COMPOSE (FUNCTION CDR)
ALPHABET N))))
(NEXTLET1 (LAMBDA (X Y) (COND ((NULL Y)(NEXTLET2 (STUDY
(POSNLIS X))))

- 271 -

(T Y))))
(NEXTLET2 (LAMBDA (X) (COND ((NULL X)(QUOTE (NO PATTERN)))

(T (RETLET (NUMMOD X))))))
(NEXTLET (LAMBDA (X) (NEXTLET! X (PERTEST X))))

9. The Prediction Program Test

ENTER, UPDATE, and STEP are the 3 functions that form the
frequency distribution list for a given list. Before TEST can be called,
FIXLIST must call these functions, apply the functions DOIT, DO1 and
DO2 (which calls ORACLE), and CSETQ the final result as FREQDIST.
FREQDIST is an argument of PREDICT, the function called by TEST,
(ENTER is also called by the program NEXT — not the same as
NEXTOF referred to in the article. NEXT is independent of the pro-
gram TEST but uses some of the same functions; i.e., if CYCLES does
not provide a prediction, ELIPSIS is called.)

ORACLE produces a list of LISP expressions of interesting rela-
tions between two expressions, if these expressions are numbers. The
function ORVAL applies the tests PRIMTEST, EXPTEST, MULTEST
and SUMTEST, each of which produces a LISP expression if applicable.
If the two numbers are primes, determined by the functions PRIME and
PRIM1, PRIMTEST produces a LISP expression that will predict the
next prime if a value is substituted for its variable. The number of
primes '"up" or ""down' to be sought is determined by the difference of
the PRIMSEQs (determined by PS and NEXTPRIMEUP) of the two num-
bers. The LISP expression is in terms of PRIMEGEN, which calls
NEXTPRIMEUP or NEXTPRIMEDN, until the desired prime is found.
EXPTEST (with EX1) describes the exponential, SUMTEST the additive,
and MULTEST the multiplicative relation between the two numbers.
(ORACLE is called by the frequency distribution functions and at other
times by the program TEST. It is also called by the program TEX,
unconnected with TEST, and its connected functions TEX2, LOOKUP,
and L2.)

PREDICT, called by TEST, has as its two arguments a list and
FREQDIST. The first test that PREDICT applies to the list is CYCLES.
CYCLES, C1, and LIKE determine if a list is perfectly cyclic. If so,
it predicts the next member. If not, the second test is applied.

The second test of PREDICT is SBAR of LOOP of the list. LOOP
appl.es the subroutine ORACLE to successive members of the list. Thus

- 272 -

the argument of SBAR is a list of S-expressions, each of which is
either NIL or a list of S-expressions describing the numerical relations
holding between a pair of numbers from the original list. SBAR's
auxiliary function S1 applies SCAN to each of the descriptions of the
first pair of numbers of the original list and to the descriptions of the
remaining pairs. This is continued until all descriptions of the first
pair have been tested by S1 and SCAN or until a solution based on these
comparisons has been found. SCAN always returns a list whose first
member is either T or NIL. This first member is used by S1 as the
antecedent of a conditional whose consequent is CDR of the list returned
by SCAN. SCAN searches the descriptions of the relations between two
successive members of the original list until the predicate SEQ returns
T. The value of SEQ is determined by that of FORQ which, with the
functions QFORM, QF, FORM, and TLU, analyzes each part of the
description. When SEQ returns T, SCAN continues with descriptions
of the next pair. If no solution has been found by the second test, the
third test of PREDICT is applied. If a value Y other than NIL has been
found by SBAR, PREDICT of (CDR Y) and FREQDIST is sought. This
value is substituted within the value Y, which is in turn applied to the
last member of the original list given PREDICT,

The third test of PREDICT is the application of the function
FOLLOW to the three arguments: 1) the last member of the original
list; 2) the recursive application of PREDICT to ELIPSIS of the original
list and frequency distribution list and a new frequency distribution list
which adds to the original one an analysis of the list in question; and
3) the original frequency distribution list. ELIPSIS applies EP to suc-
cessive members of the original list. The functions E and G search the
frequency distribution list for a description whose first member is the
same as that of the first of the two members being considered by EP.
Probability levels for solutions are set by the functions VALUE, TRANS,
and the frequency distribution list; solutions having a probability beneath
a certain level are disregarded. FOLLOW searches the frequency dis-
tribution list for a description whose first member is the same as the
last member of the original list. If the frequency distribution list is
exhausted before such a description is found, PREDICT returns
(IGIVEUP). Otherwise FOLLOW and FOL call one another, using the
last member of the original list, the value returned as the second argu-
ment of FOLLOW and the description in the frequency distribution list
to predict the next member of the original list.

- 273 -

10. LISP Listing

(UPDATE (LAMBDA (P L K) (COND
((NULL L) (LIST (LIST (CAR P) K (LIST (CDR P) K))))
((NOT (EQUAL (CAR P) (CAAR L))
(CONS (CAR L) (UPDATE P (CDR L) K)))
(T (CONS (CONS (CAR P) (CONS (PLUS K (CADAR L))
(STEP P (CDDAR L) K))) (CDR L))))))
(STEP (LAMBDA (N L K) (COND
((NULL L) (LIST (LIST (CAR N)K(ORACLE (CAR N)
(CDR N)))))
((NOT (EQUAL (CAAR L) (CAR N))) (CONS (CAR L)
(STEP N (CDR L) K)))
(T (CONS (CONS (CAR N) (CONS (PLUS (CADAR L) K)
(CDDAR L)))(CDR L))))))
(ENTER (LAMBDA (S L) (COND
((NULL (CDR §)) L)
((EQ (CAR S) (CADR §)) (ENTER (CDR $§) L))
(T (ENTER (CDR S) (UPDATE (CONS (CAR S) (CADR §))
L 1))
(NEXT (LAMBDA (S L) (LAMBDA (X) (COND
((CAR X) (CDR X))
(T ((LAMBDA (Y) (NEXT Y (ENTER Y L)))(ELIPSIS S L)))))
(CYCLES $§))))
(CYCLES (LAMBDA (S) (C1 S (CDR S) 1 (LENGTH 8§))))
(C1 (LAMBDA (L M N P) (COND
((GREATERP (TIMES 2 N) P) (LIST NIL))
(T ((LAMBDA (X) (COND
((CAR X) X)
(T (C1 L (CDR M) (PLUS N 1) P)))) (LIKE L M))))))
(LIKE (LAMBDA (L M) (COND
((NULL M) (CONS T (CAR L))
((NOT (EQUAL (CAR L) (CAR M))) (LIST NIL))
(T (LIKE (CDR L) (CDR M))))))
(G (LAMBDA (N L. TH M Q) (COND
(NULL L) NIL)
((LESSP (QUOTIENT (CADAR L) (PLUS Q 0.0)) TH)
(GN (CDR L) TH M Q))
(EQUAL N (CAAR L)) ((LAMBDA (X) (COND
((NULL X) (LIST N)) (T X))
(G N (CDR L) (QUOTIENT (CADAR L) (PLUS Q O.0))

M Q)))
(T (LAMBDA (X) (COND

- 274 -

(NULL X) (G N (CDR L) TH M Q))
(T ((LAMBDA (Y) (COND
((NULL Y) X) (T Y)))
(G N (CDR L) (TIMES (QUOTIENT (CADAR L) (PLUS Q O.0))
(VALUE X M)) M Q)))))
(E (CONS (CAAR L) N) M (QUOTIENT (TIMES TH Q)
(PLUS (CADAR L) 0.0)) M))))))
(E (LAMBDA (P L TH M) (COND
(NULL L) NIL)
((LESSP TH 0.01) (E P L 0,05 M))
((NOT (EQUAL (CAR P) (CAAR L))) (E P (CDR L) TH M))
(T ((LAMBDA (X) (COND
((NULL X NIL) (T (CONS (CAR P) X))))
(G (CDR P) (CDDAR L) TH M (CADAR L)))))))
(VALUE (LAMBDA (S L) (V1 S 1 L)))
(V1 (LAMBDA (S A L) (COND
((NULL (CDR 8)) A)
(T (V1 (CDR S) (TIMES A (TRANS (CONS (CAR S)(CADR §))
L))L))))
(ORACLE (LAMBDA (X Y) (ORVAL X Y (QUOTE (PRIMTEST EXPTEST
MULTEST SUMTEST)))))
(ORVAL (LAMBDA (X Y L) (COND
((NOT (AND (NUMBERP X) (NUMBERP Y))) NIL)
(NULL L) NIL)
(T ((LAMBDA (Z) (COND
(NULL Z) (ORVAL X Y (CDR L})))
(T (CONS Z (ORVAL X Y (CDR L)))))) (APPLY (CAR L)
(LIST X Y) NIL))))))
(EXPTEST (LAMBDA (X Y) (EX1 X Y 1 X)))
(EX1 (LAMBDA (X Y M P) (COND
((LESSP X 2) NIL)
((EQUAL P Y) (SUBST M (QUOTE Y) (QUOTE (POWER X Y))))
((GREATERP P Y) NIL)
(T (EX1 X Y (PLUS M 1) (TIMES P X))))))
(MULTEST (LAMBDA (X Y) (COND
((ZEROP (REMAINDER Y X)) SUBST (QUOTIENT Y X) (QUOTE Y)
(QUOTE (TIMES X Y)))) (T NIL))))
(SUMTEST (LAMBDA (X Y) (SUBST (DIFFERENCE Y X)(QUOTE Y)
(QUOTE (PLUS X Y)))))

(PRIMTEST LAMBDA (X Y) (COND
((AND (PRIME X (PRIME Y)) (SUBST (DIFFERENCE (PRIMSEQ Y)

- 275 -

(PRIMSEQ X)) (QUOTE Y) (QUOTE (PRIMEGEN X Y)))) (T NIL))))
(PRIME (LAMBDA (X) (COND
((LESSP X 2) NIL)
((EQUAL X 2) T)
((ZEROP (REMAINDER X 2)) NIL)
(T (PRIM1 X 3)))))
(PRIM1 (LAMBDA (X Y) (COND
((GREATERP (TIMES Y Y) X) T)
((ZEROP (REMAINDER X Y)) NIL)
(T (PRIM1 X (PLUS Y 2))))))
(PRIMSEQ (LAMBDA (Y) (PSY 2 1)))
(PS (LAMBDA (Y P C) (COND
((GREATERP P Y) (ERROR (QUOTE PRIMSEQ)))
((EQUAL Y P) C)
(T (PS Y (NEXTPRIMEUP (PLUS P 1))(PLUS C 1))))))
(NEXTPRIMEUP (LAMBDA (X) (COND
((PRIME X) X)
(T (NEXTPRIMEUP (PLUS X 1))))))
(PRIMEGEN (LAMBDA (X C) (COND
((LESSP C 0) (PRIMEGEN (NEXTPRIMEDN (SUB1 X)) (PLUS C 1)))
((GREATERP C 0) (PRIMEGEN (NEXTPRIMEUP (PLUS X 1))
(SUBL C)))
(T X))
(NEXTPRIMEDN (LAMBDA (X) (COND
((PRIME X) X)
((EQUAL X 3) 2)
(T (NEXTPRIMEDN (SUB1 X))))))
(TRANS (LAMBDA (P L) (COND
((NULL L) O)
((EQUAL (CAR P) (CAAR L)) (T1 (CDR P) (CDDAR L) (CADAR L))
(T (TRANS P (CDR L))))))
(T1 (LAMBDA (N L K) (COND
((NULL L) O)
((EQUAL (CAAR L) N) (QUOTIENT (CADAR L) (PLUS K 0. 0)))
(T (T1 N (CDR L) K)))))
(LOOKUP (LAMBDA (P L) (COND
((NULL L) (ORACLE (CAR P) (CDR P)))
((NOT (EQUAL (CAR P) (CAAR L))) (LOOKUP P (CDR L)))
(T (L2 P (CDDAR L))))))
(L2 (LAMBDA (N L) (COND
((NULL L) (ORACLE (CAR N) (CDR N)))
((NULL L) (ORACLE (CAR N) (CDR N)))
((NOT (EQUAL (CAR N) (CAAR L))) (L2 N (CDR L))

- 276 -

(T (COND
((NULL (CDDR L)) (ORACLE (CAR N) (CDR N)))
(T (CADDAR L))

(TEX (LAMBDA (S L) (TEX2 (CDR §) L (LOOKUP (CONS (CAR §)
(CADR §)) Ly)))

(TEX2 (LAMBDA (S L J) (COND
((NULL J) J) (NULL (CDR §)) J)
(T (TEX2 (CDR S) L (INTERSECTION J (LOOKUP (CONS (CAR §)
(CADR §)) L))))))

(ELIPSIS (LAMBDA (S L) (COND
((NULL (CDR §)) NIL)
(T (CONS (EP (CAR 8) (CADR S) L) (ELIPSIS (CDR S) L))))))
(EP (LAMBDA (M N L) ((LAMBDA (X) (COND
((NULL X) 1) (T (SUB1 (LENGTH X)))
)) (E (CONS M N) L (TRANS (CONS M N) L)L))))
(PREDICT (LAMBDA (S L) (COND
((NULL S) NIL)
(T ((LAMBDA (X) (COND
((CAR X) (CDR X))
(T ((LAMBDA (Y) (COND
((NULL Y) (FOLLOW (LAST S)(PREDICT (ELIPSIS S L)
(ENTER S L)) L))
(T (LAMBDA (W) (COND
((NULL W) (ERROR (QUOTE BOTCHUP)))
(T (APPLY (SUBST (SUBST W (CAAR Y)(CDAR Y))(QUOTE Z)
(QUOTE
(LAMBDA (X) Z))) (LIST (LAST S)) NIL)))) (PREDICT (CDR Y)
L))
(SBAR (LOOP S)))))
(CYCLES 9))))
(INTERSECTION (LAMBDA (M N) (COND
((NULL M) NIL)
((MEMBER (CAR M) N) (CONS (CAR M (INTERSECTION (CDR M)
N)))
(T (INTERSECTION (CDR M) N)))))
(LAST (LAMBDA (S) (COND
((NULL (CDR 8)) (CAR 8))(T (LAST (CDR 9)))))
(FOLLOW (LAMBDA (E N L) (COND
((EQUAL N O) E)
((NULL L) (QUOTE (I GIVE UP)))
((EQUAL (CAAR L) E) (FOL (CDDAR L) (QUOTE (O 0)) N L))
(T (FOLLOW E N (CDR L))))))

- 277 -

(FOL (LAMBDA (SB N L) (COND
((NULL S) (FOLLOW (CAR B) (SUB1 N) L))
((GREATERP (CADAR S) (CADR B)) (FOL (CDR S) (CAR S) N L))
(T (FOL (CDR S) B N L)))))
(DOIT (LAMBDA (L) (COND
((NULL L) NIL)
(T (CONS (DO1 (CAR L)) (DOIT (CDR L)))))))
(DO1 (LAMBDA (L) (CONS (CAR L) (CONS (CADR L) (DO2(CAR L)
(CDDR L))))))
(DO2 (LAMBDA (N L) (COND
((NULL L) NIL)
(T (CONS (LIST (CAAR L) (CADAR L) (ORACLE N (CAAR L)))
(DO2 N (CDR L)))))))
(FIXLIST (LAMBDA (X Y) (COND
((NULL X) (CSAR (DOIT Y)))
(T (FIXLIST (CDR X) (ENTER (CAR X) Y))))))
(CSAR (LAMBDA (X) (CSETQ FREQDIST X)))
(TEST (LAMBDA (S) (PREDICT S FREQDIST)))
(FORT (LAMBDA (M L) (CDAR (FORQ M L))))
(SCAN (LAMBDA (M L N A) (COND
((NULL L) (CONS NIL A))
((SEQ M (CAR L) A) ((LAMBDA (X) (COND
((CAR X) X)
(T (SCAN M (CDR L) N A))))
(COND ((NULL N) (CONS T (CONS (FORT M (CAR L)) A)))
(T (SCAN (CAR L) (CAR N) (CDR N) (CONS (FORT M (CAR L))
(COND ((NULL A) (CONS (FORT (CAR L) M) (LIST (CONS (CAAR
(FORQ M (CAR L))) M))))
(T (SCAN M (CDR L) N A))))
(SEQ (LAMBDA (M L A) ((LAMBDA (X) (COND
((NULL X) NIL)
((AND (NULL (CDR X)) (NUMBERP (CDAR X))) T)
(T NIL))) (FORQ M L))))
(FORQ (LAMBDA (M L) (QFORM (FORM M L NIL))))
(QFORM (LAMBDA (X) (COND
((CAR X) (QF (CDR X)))
(T NIL))))
(QF (LAMBDA (X) (COND
((NULL X) (QUOTE NIL))
((EQ (CAAR X) (CDAR X)) (QF (CDR X)))
(T (CONS (CAR X) (QF (CDR X)))))))
(FORM (LAMBDA (X Y A) (COND
((NULL X) (CONS T A))

- 278 -

((ATOM X) ((LAMBDA (Z) (COND
((NULL Z) (CONS T (CONS (CONS X Y) A)))
((EQ Y (CDR Z)) (CONS T A))
(T (LIST NIL)))) (TLU X A)))
(T ((LAMBDA (Z) (COND
((CAR Z) (FORM (CDR X) (CDR Y) (CDR Z)))
(T Z)))(FORM (CAR X) (CAR Y) A))))))
(LOOP (LAMBDA (S) (COND
((NULL (CDR S)) NIL)
(T (CONS (ORACLE (CAR S) (CADR S)) (LOOP (CDR S)))))))
(TLU (LAMBDA (X L) (COND
((NULL L) NIL)
((EQ X (CAAR L)) (CAR L))
(T (TLU X (CDR L))))))
(LAST (LAMBDA (L) (COND ((NULL (CDR L))(CAR L))
(T (LAST (CDR L))))))
(SBAR (LAMBDA (L) (S1 (CAR L) (CDR L))
(S1 (LAMBDA (M L) (COND
((NULL M) NIL)
(T ((LAMBDA (X) (COND
((CAR X) (REVERSE (CDR X)))
(T (S1 (CDR M) L)))) (SCAN (CAR M) (CAR L) (CDR L) NIL))))))
(REVERSE (LAMBDA (L) (R1 NIL 1)))
(R1 (LAMBDA (M L) (COND
((NULL L) M)
(T (R1 (CONS (CAR L) M) (CDR L))))))
FIXLISTY(
(
(1234567881011 1213 14 15 16)
(1234567891011 1213 14 15 16)
(ABCDEFGHIJKLMNOPQRSTUVWXY Z)

)
NIL

)

The result of FIXLIST is:

(((1 2 (2 1 ((TIMES X 2) (PLUS X1))) (1 1 ((TIMES X 1) (PLUS X 0))))
(2 2 (3 1 ((PRIMEGEN X 1) (PLUS X 1)))

(2 1 (PRIMEGEN X 0) (POWER X 1) (TIMES X 1) (PLUS X 0))))
(3241 ((PLUS X 1))) (3 1 (PRIMEGEN X 0) (POWER

X 1) (TIMES X 1) (PLUS X 0)))) (4 2 (5 1 (PLUS X 1))) (4 1 (POWER X 1)
(TIMES X 1) (PLUS X 0)))) (5 2 (6

- 279 -

1 (PLUS X 1))) (51 ((PRIMEGEN X O) (POWER X 1) (TIMES X 1)
((PLUS X 0)))) (6 2 (71 (PLUS X 1y)) (6 1 ((POWER

X 1) (TIMES X 1) (PLUS X 0)))) (7 2 (8 1 ((PLUS X 1)))
(7 1 (PRIMEGEN X O) (POWER X 1) (TIMES X 1) (PLUS X

0)))) (8 2 (91 ((PLUS X 1))) (8 1 ((POWER X 1) (TIMES X 1) (PLUS X 0))))
(9 2 (101 (PLUS X 1))) (9 1 ((POWER

X 1) (TIMES X 1) (PLUS X 0)))) (10 2 (11 1 ((PLUS X 1)))
(10 1 ((POWER X 1) (TIMES X 1) (PLUS X 0)))) (11 2

(12 1 ((PLUS X 1))) (11 1 ((PRIMEGEN X 0) (POWER X 1) (TIMES X 1)
(PLUS X 0)))) (12 2 (13 1 ((PLUS X 1))) (

12 1 (POWER X 1) (TIMES X 1) (PLUS X 0)))) (13 2 (14 1 ((PLUS X 1)))
(13 1 ((PRIMEGEN X 0) (POWER X 1) (TIMES

X 1) (PLUS X 0)))) (14 2 (15 1 ((PLUS X 1))) (14 1 ((POWER X 1)
(TIMES X 1) (PLUS X 0)))) (15 2 (16 1 ((PLUS

X1))) (15 1 ((POWER X 1) (TIMES X 1) (PLUS X 0)))) (A 1 (B 1 NIL))
(B1 (C1NIL)) (C1(D1NIL)) (D1 (E

1 NIL)) (E 1 (F 1 NIL)) (F 1 (G 1 NIL)) (G 1 (H 1 NIL)) (H 1 (I 1 NIL))
(11 (J1NIL)) (J 1 (K1 NIL)) (K

1 (L1NIL)) (L 1 (M1 NIL)) (M1 (N 1 NIL)) (N 1 (O 1 NIL))
(O 1 (P1NIL)) (P1(Q 1 NIL)) (Q 1 (R 1 NIL))

(R1(S1NIL))(S1(T1NIL)) (T 1(U1NIL) (U1 (V1 NIL))
(V1(W1NIL)) (W1 (X1NIL)) (X1 (Y 1 NIL))

(Y 1 (Z 1 NIL))))

11. The Prediction Program Getnext

The ALLRELS subroutine finds numerical relations between suc-
cessive members of a list. LENGHTEST is a parameter signifying that
there are no exceptions to the pattern in question. The first two tests
are P1 and SUBSTRINGTEST, which admit of no exceptions.

TIMESTEST and SUMTEST find multiplicative and additive rela-
tions between two numbers. FINDREL applies these functions to suc-
cessive members of a list. The most frequently appearing relation is
found and the last member of the list substituted for the variable by AL-
LRELS2. Called by ALLRELS1, this is evaluated by WORKOUT if the
relation occurs at least 1/3 of the time.

If the pattern found by the ALLRELS subroutine admits of no ex-
ceptions, the parameter LENGTHTEST is substituted for the number of
times the pattern actually applies by PARTLIST and PARTLIST1. TEST-
IT signals that a given prediction is from a pattern that admits of no ex-
ceptions.

- 280 -

TRYPART and TRYPARTI take NTHLISs of a list and, applying
the ALLRELS subroutine, produce either a prediction whose pattern ad-
mits of no exceptions or a list of predicitions and the number of mem-
bers of the list to which they apply.

TRYDR2, having predicted the next member of first and second
first difference and first ratio lists of a given list, predicts the next
member of the given list. It produces either a '"perfect'" prediction or
a list of predictions.

The above functions are used for number sequences. The functions
GETLET, POSN, POSNLIS, NUMMOD, and RETLET are used to change
a letter sequence to a number sequence and a number prediction to a
letter prediction. POSN finds the position of a letter in an alphabet.
POSNLIS translates a list of letters into a list of number positions. NU-
MMOD reduces a number modulo alphabetlength. RETLET finds the let-
ter corresponding to a given number position in an alphabet. GETLET
gets the letter corresponding to a given prediction.

The functions PATTEST, PARTIAL, PARFCN and PARFCN1 pre-
dict the next member of a cyclic or partially cyclic sequence of symbols
other than letters or numbers. PARTIAL tests whether various NTHLISs,
starting with different members, have members satisfying P1. Using
the results of PARTIAL, PARFCN and PARFCN1 produce a LISP pro-
gram which is applied by PATTEST to the number 1 greater than the
length of the original list, i.e., to the position of the next member.

WORTH is an auxiliary function used in returning the prediction.

SETPARMS sets the parameters LENGTHTEST and PARTLENGTH.

GETNEXT1 applies the function ALLRELS to a list of numbers. If
no perfect pattern is found, it calls the function TRYPART. If no per-
fect pattern is found, it then calls the function TRYDR2. The best pre-

diction (that whose pattern covers the most cases), if any, is returned.

GETNEXT sends number, letter, and other sequences to the ap-
propriate subroutines.

- 281 -

12. LISP Listing

CSET (ALPHABET(ABCDEFGHIJKLMNOPQRSTU
VWXY Z)
CSETQ (LENGTHALPH (LENGTH ALPHABET))
DEFINE ((
(ALLRELS (LAMBDA (X) (COND ((NULL X) NIL)
((PI X) (CONS (CAR X) LENGTHTEST))
(T ((LAMBDA (Y) (COND
((NOT (NULL Y)) (CONS Y LENGTHTEST))
(T (ALLRELS1 X))))
(SUBSTRINGTEST X))))))
(ALLRELS1 (LAMBDA (X) (WORKOUT (ALLRELS2 X))))
(WORKOUT (LAMBDA (X) (COND ((NULL X) NIL)
((GREATERP PARTLENGTH (CDR X)) NIL)
(T (CONS (EVAL (CAR X) NIL) (CDR X))))))
(ALLRELS2 (LAMBDA (X) (SUBST (LAST X) (QUOTE X) (MODFREQ
(APPEND
(DISTAB (FINDREL X (FUNCTION SUMTEST)))
(DISTAB (FINDREL X (FUNCTION TIMESTEST))))))))
(FINDREL (LAMBDA (X FN) (COND ((NULL (CDR X)) NIL)
(T (RITEFORM (FN (CAR X) (CADR X)) (FINDREL (CDR X)
FN)))))
(TIMESTEST (LAMBDA (X Y) (COND ((ZEROP X) NIL)
((ZEROP (REMAINDER Y X)) (SUBST (QUOTIENT Y X) (QUOTE Y)
(QUOTE (TIMES X Y)))) (T NIL))))
(PARTLIST (LAMBDA (X) (COND ((NULL X) NIL)
(T (PARTLIST1 (LENGTH X) (ALLRELS X))))))
(TESTIT (LAMBDA (X) (COND ((EQUAL LENGTHTEST (CDR X)) T)
(T NIL))))
(PARTLIST 1 (LAMBDA (X Y) (COND ((NULL Y) NIL)
((LESSP X 3) NIL)
((EQUAL (SUB1 X) (CDR Y)) (CONS (CAR Y) LENGTHTEST))
(TY)))
(TRYPART (LAMBDA (X N) (COND ((NULL X) NIL)
((GREATERP N PARTLENGTH) NIL)
(T (TRYPART 1 (PARTLIST (REVERSE (NTHLIS (REVERSE X)
N))) N)))))
(TRYPART1 (LAMBDA (X N) (COND ((NULL X) (TRYPART X
(ADD1 N)))
((TESTIT X) (LIST X))
(T (RITEFORM X (TRYPART X (ADD1 N)))))))
(TRYDR2 (LAMBDA (X N) (COND ((NULL X) NIL)

- 282 -

((EQUAL N 3) NIL)
(T ((LAMBDA (Y) (COND
((TESTIT Y) (LIST (CONS (RETPLUS N (CAR Y) X) (CDR Y))))
(T ((LAMBDA (Z) (COND
((NULL Z) (COND ((NULL Y) (TRYDR2 X (ADD1 N)))
(T (CONS (CONS (RETPLUS N (CAR Y) X) (CDR Y))
(TRYDR2 X (ADD1 N))))))
((TESTIT Z) (LIST (CONS (RETTIMES N (CAR Z) X) (CDR Z))))
((NULL Y) (RITEFORM (CONS (RETTIMES N (CAR Z) X) (CDR Z))
(TRYDR2 X (ADDL N))))
(T (RITEFORM (CONS (RETPLUS N (CAR Y) X) (CDR Y))
(RITEFORM (CONS (RETTIMES N (CAR Z) X) (CDR Z))
(TRYDR2 X (ADD1 N)))))))
(MODFREQ (TRYPART (NR N X) 1))))))
(MODFREQ (TRYPART (ND N X) 1)))))))
(GETLET (LAMBDA (X) (COND ((NULL X) NIL)
(T (RETLET (NUMMOD X))))))
(POSN (LAMBDA (X A) (COND((EQUAL X (CAR A))O) (T (PLUS 1
(POSN X(CDR AN
(POSNLIS (LAMBDA (X) (COND ((NULL X) NIL) (T (CONS (POSN
(CAR X) ALPHABET) POSNLIS (CDR X)))))))

(NUMMOD (LAMBDA (X) (COND
((GREATERP X (SUB1 LENGTHALPH))
(DIFFERENCE X LENGTHALPH))
((LESSP X 0) (NUMMOD (PLUS X LENGTHALPH))) (T X))))
(RETLET (LAMBDA (N) (CAR (COMPOSE (FUNCTION CDR)
ALPHABET N))))
(PATTEST (LAMBDA (X) (COND ((P1 X) (CAR X))
(T (APPLY (PARFCN X) (LIST(ADD1 (LENGTH X))) NIL)))))
(PARTIAL (LAMBDA (X) (PROG (U V M N L)
(SETQ V NIL)
(SETQ U X)
(SETQ L (ADD1 (QUOTIENT (LENGTH U) 2)))
(SETQ M 1)
(SETQ N 1)
A (COND ((NULL U) (RETURN V))
((GREATERP N L) (GO B))
((P 1 (NTHLIS U N)) (GO C)))
(SETQ N (ADD1 N))
(GO A)
B (SETQ U (CDR U))
(SETQ M (ADD1 M))

- 283 -

(SETQ N 1)
(GO A)
C (COND ((GREATERP M N) (GO D)))
(SETQ V (CONS (LIST (SUB 1 M) N (NTHMEM (SUB1 N)
uy V)
D (SETQ N (ADDI N))
(GO A))
(PARFCN (LAMBDA (X) (PARFCN1 (PARTIAL X))))
(PARFCN1 (LAMBDA (X) (PROG (U V W)
(SETQ U X)
A (COND ((NULL U) (GO B)))
(SETQ V (CAR U))
(SETQ W (COND ((EQUAL (CAR V) (CONS (LIST (LIST
(QUOTE ZEROP)
(LIST (QUOTE REMAINDER) (QUOTE X) (CADR V)))
(LIST (QUOTE QUOTE) (CADDR V))) W))
(T (CONS (LIST (LIST (QUOTE ZEROP)(LIST (QUOTE PLUS)
(LIST (QUOTE
REMAINDER) (QUOTE X) (CADR V)) (CAR V)))
(LIST (QUOTE QUOTE) (CADDR V))) W))))
(SETQ U (CDR U))
(GO A)
B (COND ((NULL W) (RETURN NIL)))
(RETURN (LIST (QUOTE LAMBDA) (QUOTE (X)) (CONS (QUOTE COND)
(APPEND W (QUOTE ((T NIL))))))))))
(WORTH (LAMBDA (X) (COND ((NULL X) NIL) (T (CAAR X)))))
(SETPARMS (LAMBDA (X) (PROG2 (CSETQ LENGTHTEST (SUBI X))
(CSETQ PARTLENGTH (MAX 3 (QUOTIENT X 3))))))
(GETNEXT1 (LAMBDA (X) ((LAMBDA (Y) (COND
((EQUAL LENGTHTEST (CDR Y)) (CAR Y))
(T ((LAMBDA (Z) (COND
((NULL Z) (WORTH (BESTONE (TRYDR2 X 1))))
((EQUAL (CDAR Z) LENGTHTEST) (CAAR Z))
(T (WORTH (BESTONE (APPEND (TRYDR2 X 1) Z))))))
(BESTONE (RITEFORM Y (TRYPART X 2)))))))
(ALLRELS X))))
(GETNEXT (LAMBDA (X) (COND ((NULL X) NIL)
((PROG2 (SETPARMS (LENGTH X)) (NUMBERP (CAR X)))
(GETNEST! X))
((NOT (LITER (CAR X))) (PATTEST X))
(T (GETLET (GETNEXT1 (POSNLIS X)))))))

)

- 284 -

13. Examples of Prediction

ORACLE
(4 16)

((POWER X 2) (TIMES X 4) (PLUS X 12))

ORACLE
(3 27)

((POWER X 3) (TIMES X 9) (PLUS X 24))
ORACLE

(11 13)

((PRIMEGEN X 1) (PLUS X 2))

ORACLE
(117)

(PRIMEGEN X -1) (PLUS X -4))

ORACLE
(41 43)

(PRIMEGEN X 1) (PLUS X 2))

PRIMEGEN
(3 95)

17

PRIMEGEN
(41 -3)

29

PRIMEGEN
(21

3

- 285 -

TEST
((12345)
6

TEST
((1357))
9

TEST
((1 21 4 8 16 32))
64

TEST
((1 2 6 24 120))
720

TEST
((54321))
-0

TEST
(1231231 23))
1

TEST
((23571113))
17

TEST
((2 5 11 17))
23

STUDY IS A MORE GENERAL
PROGRAM THAT CALLS
NEXTOF

STUDY

((37 91 8 17 12 17 16 123 20 1 24
19 4 5))

32

STUDY
((20 21 23 26 30 35 41 48))
56

STUDY

((4 8 16 24 32 40 48))
56

STUDY

((6'7 91216 21 28 35))
42

STUDY
((3134155176197))
21

STUDY
((20 29 37 44 50 55 59))
62

STUDY
((40 39 43 38 46 37 49 36))
52

STUDY
((10 50 13 54 16 58 19 62))
22

STUDY
((2 90 4 80 6 70 8 60))
10

STUDY

((2 546 8 8 14 11 22 15))
32

STUDY

(245611102016 32 24))
47

STUDY

(123444765108 6))
13

- 286 -

SEQUENTIAL PATTERNS

PERTEST
(BADCFEHGJIL))
K

PERTEST
(ABDCEFHGIJLKMN))
P

PERTEST
(YZWXUVSTQROP M)
N

PERTEST
(ABCDEFEGHIJLK M)
N

PERTEST
(ZYXUVWTSR))
o)

PERTEST

(ABCBCDCDEEDDE
F E))

F

PERTEST
((ZXVWTRSPNO))

(NO PATTERN)

PERTEST
(XCXDXEX))
F

PERTEST
(ABDCEFH))
G

PERTEST
(BACADAEATAGA))
H

PERTEST

(JITHGF E DQ())
B

PERTEST
(ZYXWVUTSR))
Q

PERTEST
(XXWXVXUXTXSXR))
X

PERTEST
(ACEGIKMO Q)
S

PERTEST
(ZXVTRPNL))
J

PERTEST
(ADGJMPS))
\

PERTEST
((ZW T Q NK H))
E

PERTEST
(ADFIKNPS))
U

PERTEST
(ABCFEDGHILKJ M)
N

PERTEST
(ZYXUVWTSR))
o

- 287 -

PERTEST

(ZYXUVWTSROPQ
N M L))

I

PERTEST
(KLNMOPRQST))
\

PERTEST
(ABCDFEGHIJLK M)
N

PERTEST
(ACEDGIHK M L))
U

PERTEST
(ABDCBDDBEEBDF
B D G B))

NIL

PERTEST
(ZYWXVUSTRQOPNM)
K

PERTEST

(YZXWUVTSQRPO
M N))

L

PERTEST
(BADCFEHGJIL))
K

PERTEST

(ABDCEFHGIJLKMN))
P

PERTEST

(YZWXUVSTQROP M)
N

PERTEST
(ABCBCDCDEDEF E))
F

GETNEXT
((5 15 23 29 39 47 53 63))
71

GETNEXT
((AA AB AA AB AA AB AA))
AB

GETNEXT
((1911263243579)
6

GETNEXT
(786 7586))
4

GETNEXT
((40 39 43 38 46 37 49 36))
52

GETNEXT
(KLNMOPRQST)
\%

GETNEXT
(ABCFEDGHILKJ M)
N

GETNEXT
((1 235813 21 34))
55

GETNEXT
((20 29 37 44 50 55 59))
62

- 288 -

GETNEXT
((0.5E0 0. 25E0 0. 125E-1 0. 625E-2 0. 3125E-2))

0.15625E-3
GETNEXT

((1 4 9 16 25 36))
49

- 289 -

Appendix 3

The LISP Listing for the Q—32 Compiler,

and Some Samples

Robert A. Saunders

Information International, Inc.

1. THE Q-32 COMPILER

This is the complete deck which is run on an IBM 7090 to produce
the compiled part of Q-32 LISP. The listing contains the compiler, which
is interpreted to compile itself on the 7090, and as compiled code runs on
the Q-32; two versions of LAP, one which runs on the 7090 to produce
Q-32 code, and one which runs as compiled code on the Q-32; and mis-
cellaneous functions. In addition to the function compilations, the run
generates all of the permanent list structure for the Q-32.

The compiled code uses the following routines which are written
in SCAMP, the Q-32 assembly language:

CONS and the garbage collector
ERROR

PRIN1, TERPRI, and PRINOCT
*RATOM and TEREAD
GENSYM

*MKNO

*CALL and *RETRN

A copy of the listing of these is available on request from
Information International, Inc.

- 290 -

The compiler listing contains some known errors, including the
following (alterations are underlined):

In ATTACH, the second line should read:
((AND (EQ (CAAR A) (QUOTE LDA)) LISTING (EQ (CAAR
LISTING) (QUOTE STA))

In PASS2, the second line in part should read:
(SETQ LEN 2)

In the second listing of LAP, the section starting at EP
should read:
EP (COND ((NOT P2) (GO E1)) (EI (GO R)) (NULL (CAR L))
(GO E2)) ((ATOM (CAR L)) (GOR)))

(CSET (CAAR L) TRW)

E2 (SETQ BPORG LOC)

R (RETURN ST)

- 291 -

#%#% THIS DECK IS INPUT TO THE SHARE DISTRIBUTED VERSION OF LISP 1la5.
1T CONTAINS LAP OCTALS TO QUIET THE GARBAGF COLLECTOR AND TO GET AT
THE PUNCHING FACILITIES. THE QUTPUT IS A) AN ASSEMBLY LISTING OF THE
COMPILED CODEs AND B} OCTAL CARD IMAGES ON THE PUNCH OUTPUT TAPE (B7).
THE PUNCH TAPE IS LOADED INTO THE G-32 BY A PART OF THE SCAMP-CODED
BASTIC FUNCTIONS. x#*¥

TAPE SYSPPT,B7
SETSET
OPDEFINE ({ (PRIN2 5135Q) (TERPUN 5445Q) {MKNO 126700} (PUNACT 5505Q) })

LAP
LAP
LAP
LAP
LAP
LAP

14170 (STZ 1 604Q) (STZ 2 604Q) (TRA 3 4)) NIL)

33010 (9)) NIL)

55020 (436247Q6)) NIL)

12773Q (CLA 13011Q)) NIL)

13033Q (TSX NIL 4)) NIL)

NIL (SLW T) (CLA T) (TRA MKNO) T (0))} ({SLW « 602Q8)))

LAP ({ (MKVAL SUBR 1)
(SXA X &)
(XCA)
(CLA AF)
(TSX CONS 4)
(PDX O &)
(CLA T5)
(ORS 0 &)
(PXD 0 &)
X {(AXT 0 &)
(TRA 1 &)
AF (77777Q6)
T5 (5Q0%)
) ((ORS o 4602Q8)))

LAP (((STARTPUN SUBR 0)
(STL PUNACT)
(CLA PRINZ)
(SSM)
{STO PRIN2)
(TRA 1 &)
) ({(SSM o 476000000003Q) (STL « 4625Q8)))

LAP ({ (TERPUN SUBR ()
{STL PUNACT)
(TRA TERPUN)
) ({STL o 4625Q8)))

LAP (((OCT SUBR 1)
(SXA X &)
(STO CT)

A (PXD)
(LXA CT 4)
(LGL 3)
(ALS 3)
(LGL 3)
(STQ T)
(CAS M)

- 292 -

(TXI (* 3) 4 1)
(TRA (* 21})
(TXT (% 1) 4 1)
{SXA CT &)
(ALS 24)
(ORA S7)
{TSX PRIN2 &)
(LDQ T)
(TIX A 2 1)
(CLA CT)

X (AXT 0 4)
(TRA 1 4}

M (707Q)

T (0

CT (0}

ST (77777777Q)
) ((ALS « 767Q8) (LGL « 4763Q8) (ORA + 4501Q8) (CAS . 340Q8)))

LAP (((PUNOCT SUBR 2}
(STQ MQ)
(SXA X4 &)
{(SXA X2 2)
(PDX 0 2)
(LDQ 0 2)
(RQL 12)
(AXT 3 2)
(PXD)
(TSX OCT &)
(AXT 1 2)
{TSX OCT 4)
(LXD MQ &)
(LDQ 0 &)
(RQL 129
(AXT 3 2)
{TSX OCT 4)
(AXT 1 2)
{TSX OCT 4)
(LDQ (QUOTE OCTAL))
(TSX MKNO 4)
X4 (AXT 0 4)
X2 (AXT 0 2)
(TRA 1 &)
MQ (0)
) ((RQL + 4773Q8)))

LAP (((PUNLOC SUBR 1)
(SXA X4 4)
(PDX 0 4)
(LDQ 0 4
(RQL 18)
(AXT 3 2)
(PXD)
(TSX OCT 4)
X4 (AXT 0 4)
(TRA 1 4y)
((RQL « 4773Q8)))

DEFINE (!t

- 293 -

(LAPEVAL (LAMBDA (X) (PROG (S J K)
{COND ((NULL X) (RETURN BPORG})} ((ATOM X) (GO L1))
((EQ (CAR X) (QUOTE E)) [(RETURN (MKOB (CONS (QUOTE SPECIAL)
{CADR X)))))
((EQUAL X (QUOTE (QUOTE NIL)Y)) (RETURN 777600Q))
((EQ (CAR X) (QUOTE QUOTE)) (GO B81))
((EQ (CAR X) (QUOTE SPECIAL})) (G0 A)))
{SETO S 0)
{SETQ J X)
L (COND ({(NULL J) (RETURN 5)))
(SETQ S (PLUS S (LAPEVAL (CAR J))))
{(SETQ J (CDR Uy
(GO L)

L1 (COND ((NUMBERP X) (RETURN X)) ({EQ X DOLLAR) (RETURN LOC)))
(SETQ K ST)

L2 (COND ((NULL K} (GO L3)) ((EQ (CAAR K) X} (RETURN (CDAR K})) }
(SETQ K (CDR K}
(GO L2)

L3 (SETQ K INISYM)

L5 (COND ((NULL K) (GO L6)3} ((EQ (CAAR K) X) (RETURN (CDAR K))))
(SETQ K (CDR K1)
(GO L5)

L6 (COND ((GET X (QUOTE TWORD})
(RETURN (LOGAND (GET X {QUOTE TWORD)) 777777Q))))

L4 (PRINT (LIST X (QUOTE $$3UNDEFINED -- LAPS) 1)
(RETURN O)

A {SETO IV2 (LOGOR 1IV2 20Q6))
B (RETURN (MKOB (CONS (CAR X) (CADR X1}113)
IR

{JUST (LAMBDA (A) (COND ((MINUSP A} (PLUS A 777777Q)) (T A} 1))

(BLANKS (LAMBDA (N} (COND ((ZEROP N} NIL}
(T (PROG2 (PRIN1 BLANK) (BLANKS (SUB1 N))))

(MKOB (LAMBDA (S) (PROG (N L)
(SETQ N OBORG)
{SETO L OBLIS)

A (COND ((NULL L) (GO I))
((EQUAL (CAR L)Y S) (RETURN NI}
{ (NULL (CDR L)) (GO MK)))
(SETQ L (CDR L))
{SETQ N (ADD1 N))
(GO A)

I (CSETQ OBLIS (LIST S))
(RETURN 0OBORG)

MK (RPLACD L (LIST S}
(RETURN (ADD1 N}) 1))

(PUNOBJ (LAMBDA NIL (PROG (0OBC FSC FWC OBL FOO FO02)

(SETQ FWC FWORG)
(SETQ 0BC OBORG)

- 294 -

{SETQ FSC FSORG)
(SETQ OBL OBLIS)H

A (COND ((NULL OBL) (RETURN (LIST OBC FSC FWC)))
((EQ (CAAR OBL} (QUOTE SPECIAL)) (GO S}
((EQ (CAAR OBL) (QUOTE QUOTE)) (GO Q))
(T (ERROR (LIST (QUOTE PUNOBJ) (CAR OBL) 1}})))

S (SETQ FOO2 (GET (CDAR OBL) (QUOTE TWORD)}))

(PUNWORD (LOGOR 20Q6 FSC) (COND ((NULL FOO02) 0) (T (5UB1 FSC))) OBC)

(BLANKS 3) (PRINT (CDAR OBL})

(PUNWORD 0Q FwC FSQC)

(TERPRI)

(SETQ FOO ((LAMBDA (J) (PUNWORD (LEFTSHIFT (MKVAL (CAR J)) =12)
(LOGOR (LEFTSHIFT (MKVAL (CAR J)) 12) (COND

((NULL (CDR J)) 7777Q) (T (LEFTSHIFT (MKVAL (CADR J}} =24)) 1))

(ADD1 FWC))) (GET (CDAR OBL) (QUOTE PNAME)) 1))

(TERPRI)

(PUNWORD 3000001Q (LOGOR (LEFTSHIFT (LOGAND FOO 7) 18) FSC) Fw()

(SETQ FWC (PLUS 2 Fw())

(SETQ FSC (SUBR1 FSC))

(COND ((NULL FO02) (GO H)))

(TERPRI)

(SETQ FOO FSQ)

{SETQ FSC (SUB1 F00))

(PUNWORD 0Q (PUNLIST FO02) FOO)

(GO H)

Q (PUNWORD 0Q (PUNLIST (CDAR 08L)) 0BC)

H (TERPRI)
(TERPRI)
{SETQ OBC (ADD1 OBC))
(SETQ OBL (CDR 0OBL))
(GO AY 1))

(PUNLIST (LAMBDA (J) {(PROG (N L)
(COND ((NULL J) (RETURN 0))
((NUMBERP J) (GO A})
((ATOM J) (RETURN (MKOB (CONS (QUOTE SPECTAL) J)))))
(PUNWORD {PUNLIST (CDR J)} (PUNLIST (CAR J)) FSC)
B (TERPRI)
(RETURN (ADD1 (SETQ FSC (SUB1 FSC))))

A (PUNWORD 20Q6 (LOGOR FWC 75Qé6) FSC)
(BLANKS 3) (PRINT J)
(COND ((MINUSP J) (PUNWORD 77777777Q (PLUS J T77777777Q) (ADD1 FWC) })
(T (PUNWORD (LEFTSHIFT J =24) (LOGAND J 77777777Q) (ADD1 FWC) 1)))
(TERPRI)
(PUNWORD 2C00001Q FSC FWC)
{TERPRI)
(SETQ FWC (PLUS 2 FWC}))
(GO B)
Y1)

(PUNWORD (LAMBDA (IV1 IV2 LOC) (PROG NIL
(COND ((NOT PNCHY (GO AY)Y)
(STARTPUN)

{(PRINT 0) (PRINT O)

- 295 -

{PUNLOC (CDR LOC))
(PUNOCT (CDR 1V1) (CDR 1V2))
(TERPUN)
A {PRIN1 BLANX)
(PUNLOC {CDR LOC))
(PRIN1 BLANK)
{RETURN (PUNOCT (CDR TV1) (CDR 1TvZi)) 1))

)}

DEFLIST ((
(CONS 602040002Q)
(ERROR 401040003Q})
(PRIN1 401040004Q)
(TERPRI 200040005Q}
(*RATOM 200040006Q)
(GENSYM 200040007Q)
(#CALL 400100Q)
(*RETRN 40011Q)
(*MKNO 40012Q)
(TEREAD 200040013Q)
(PRINOCT 602040014Q)
(*SETFLAG 602040020Q)
{(#CLRFLAG 602040021Q)
(PRINLIS (NIL))
(SCRACH 54400Q)
(BPORG 55400Q)
(TBPS 67777Q)
(BSX 7654321Q)
(BUC 7654321Q)
(STA 7654321Q)
(STZ 7654321Q)
{BOZ 7654321Q)
(BNZ 7654321Q)
{LDA 7654321Q)
{XOR 7654321Q)
{CAS 7654321Q)
(LDB 7654321Q)
(STB 7654321Q)
(T T
) TWORD)

(LAMBDA (J) (MAP J (FUNCTION (LAMBDA (K} (DEFLIST (LIST (LIST
(CAR K} (EVAL (CAR K) NIL)} }) (QUOTE TWORD) 1) 1)) 1)
{ {DOLLAR LPAR RPAR SLASH COMMA PERIOD PLUSS DASH STAR BLANK EQSIGN)}

CSET (INISYM ((LDA o 200Q5) (STA o 500Q5) (LDB & 220Q5) (STB » 504Q5)
(S5TZ + 05105) (BOZ + 600Q5) (BNZ « 601Q5) (BSX » 730Q5)
(BAX o 740Q5) (RSG o+ 610Q5) (STP o 514Q5) (%A « 7776210}
($2 o+ 777600Q)
(LDX » 420Q5) (ATX
(LDS o 434Q5) (CON
(SFT « 020Q5) (ECH
(CAS « 400Q5) (s5uB

424Q5%) (STX
430Q5) (ADD
524Q35) (FAD
110Q5) (BUC

520Q5) (BPX
100Q5) (MUL
300Q5) (FMP
014Q5) (XOR

750Q5) (BXE « 72005)
120Q5) (LDC « 21005)
330Q5) (FLT « 320Q5)
43003Q3) 1))

*® o o @
e o o o
e s o

CSET (FWORG 100000Q)
CSET (BPORG 44000Q)
CSET (OBORG 74000Q)

- 296 -

CSET (FSORG 167777Q)
CSET (OBLIS NIL)
CSET (PNCH »T¥)

SPECIAL ((FSC FWC))
COMMON ((

LOC ST 1v2 INISYM FWORG BPORG OBORG FSORG OBLIS PNCH DOLLAR BLANK
1)

COMPILE {((LAPEVAL JUST BLANKS MKOB PUNOBJ PUNLIST PUNWORD))

UNSPECTAL ((FSC FWC))
UNCOMMON ((

LOC ST Iv2 INISYM FWORG BPORG OBORG FSORG OBLIS PNCH DOLLAR BLANK
1)

EXCISE (%7%)
STOP 1))y 1)) 31)) yy) 1y))
TEST
DEFINE (!¢
(*SPECIND (LAMBDA (J) (GET J (QUOTE SPECIAL)))

{COMPILE (LAMBDA (L) (MAPLIST L (FUNCTION (LAMBDA (J)
(COM1 (CAR J) (GET (CAR J) (QUOTE EXPR))) 1)))

(COM1 (LAMBDA (N A} {(PROGZ2 (COND
(A (COM2 (QUOTE SUBR) (LENGTH (CADR A)) A N)}
(T (PRINT (LIST N (QUOTE UNDEFINED)IY))Y) NI

(COM2 (LAMBDA (TYPE NARGS EXP NAME) (PROG (LISTING LEN)
(SETQ LISTING (PASS2 (PASS1 NAME EXP) NAME))
(LAP ({CONS {LIST NAME TYPE NARGS LEN)
(CAR LISTING)) (CADR LISTING))
(RETURN NAME)Y 1))

(PASS1 (LAMBDA (NAME FN) (PALAM (PROGITER NAME FN) NIL))

(PROGITER (LAMBDA (NAME EXP) (COND
({AND (EQ (CAADDR EXP) (QUOTE COND)) (PI1 (CDADDR EXP)}))
((LAMBDA (Gl G2 VS GS) (LIST (QUOTE LAMBDA) VS (CONS
(QUOTE PROG) (CONS GS (CONS Gl (PI3 (CDADDR EXP} NIL
{CONS G2 (PAIRMAP VS GS (LIST (LIST (QUOTE GO Gl)) 13} 1))
(GENSYM) (GENSYM) (CADR EXP)
(MAPLIST (CADR EXP1} (FUNCTION GENSYM})))
(T EXPY)))

(PI1 (LAMBDA (L) (PROG NIL

A (COND ((NULL L) {RETURN NIL)}
({EQ (CAADAR L) NAME) (RETURN T)))
(SETQ L (CDR L))
(GO A) 1))

(PAIRMAP (LAMBDA (L M Z) (PROG (A B)

- 297 -

(COND ({NULL L) (RETURN Z)})

(SETQ A (SETQ B (CONS (LIST (QUOTE SETQ) (CAR L) (CAP M} } 7)1}
A (SETQ L (CDR L))

(SETO M (CDR M)

(COND ((NULL L) (RETURN A})

(SETG B (CDR (RPLACD B (CONS (LIST

(QUOTE SETQ)Y (CAR L) (CAR M)) Z))))
(GO A})))

(P12 (LAMBDA (L € S) (PROG NIL
A (COND ((NULL L) (RETURN (CONS (CONS (QUOTE COND) C) S)))
((EQ (CAADAR L) NAME) (RETURN ((LAMBDA (G3) (PI3 (CDR L)
(NCONC C (LIST (LIST (CAAR L) (LIST (QUOTE GO) G3) }1})1i
(CONS G3 (PAIRMAP GS (CDADAR L)
(CONS (LIST (QUOTE GO) G2) S))))) (GENSYM) 1)))
{(SETQ C (NCONC C (LIST (LIST (CAAR L) (LIST {(QUOTE RETURN) (CADAR L}
(RN B
(SETQ L (CDR L)) (GO A) 1))}

(PALAM (LAMBDA (FN B} (COND
({ATOM FN) FN) ((EQ (CAR FN) (QUOTE LAMBDA}) (PA4
{PAS (CADR FNY) (GENSYM) (GFNSYM)))
({EQ (CAR FN) (QUOTE LABEL))} (COMP (CADR FN} (CADDR FNI)
(T (ERROR (CONS FN (QUOTE (NOT FUNCTION)IY)))))

(PA4 (LAMBDA (SPECS G Gl) (COND
((NULL SPECS) (LIST (QUOTE LAMBDA)
(CADR FN) (PAFORM (CADDR FN) (APPEND (CADR FN} B))1))

(T (LIST (QUOTE LAMBDA) (CADR FN) (CONC

(LIST (QUOTE PROG) (LIST G}Y)

(PA9 SPECS (QUOTE SPECBIND) G1)

(LIST (LIST (QUOTE SETQ} G (PAFORM

(CADDR FN) [(APPEND (CADR FN) BY)))
(PA9 SPECS (QUOTE SPECRSTR) Gl) (PA12 G) 1)) 1))

(PA5 (LAMBDA (VARS) (PROG (M)
A (COND ((NULL VARS) (RETURN M))
({*#SPECIND (CAR VARS)) (SETGQ M (APPEND M (LIST (CAR VARS)I)))))
(SETQ VARS (CDR VARS))
(GO A) 1))

(ZOMP (LAMBDA (N E) (COND
((ATOM EY E)
(T (COM2 (QUOTE SUBR) (LENGTH (CADR E)) E NIY)))

{PAFORM (LAMBDA (FORM B) (COND
((ATOM FORM) (COND
((OR (NUMBERP FORM) (MEMBER FORM (QUOTE (NIL T))))
(LIST (QUOTE QUOTE) FORM))
((EQ FORM (QUOTE F)) (QUOTE (QUOTE NIL)Y))
({(#SPECIND FORM) (LIST (QUOTE SPECTAL) FORM))
((MEMBER FORM B) FCRM)
(T (PROG NIL (PRINT (CONS FORM (QUOTE (UNDECLARED))))
(RETURN (LIST (QUOTE SPECIAL) FORM)) 1) 1))
{((ATOM (CAR FORM)) (SELECT (CAR FORM)
((QUOTE COND) (CONS (AUOTE COND) (MAPLIST (CDR FORM)
(FUNCTION (LAMBDA (J) (LIST (PAFCRM (CAAR J) B)
{PAFORM (ZATAR J) B)Y 1)) 1))

- 298 -

{({QUOTE QUOTE) FORM)
({QUOTE PROG) (PA8 (GENSYM) (PA5 (CADR FORM)) (GENSYM) 1))
((QUOTE FUNCTION) (LIST (QUOTE SPECIAL) (COMP (GENSYM)
(CADR FORM) 1))
((QUOTE GO) FORM)
({QUOTE CSETQ) (LIST (QUOTE CSET) (LIST (QUOTE QUOTE)
(CADR FORM)) (PAFORM (CADDR FORM) B})))
((QUOTE SELECT) ((LAMBDA (GS) (LIST (LIST (QUOTE LAMBDA)
(LIST GS) (CONS (QUOTE COND) (PA3 (CDDR FORM)) 1))
(PAFORM (CADR FORM) B))) (GENSYM))}
{({QUOTE NOT) (LIST (QUOTE NULL) (PAFORM (CADR FORM) B)))
({QUOTE SET) (PROG NIL (PRINT (QUOTE (SET ILLEGAL)))
(RETURN (QUOTE (QUOTE NIL})) V)
{ (QUOTE CONC) (PA2 (CDR FORM)))
(CONS (CAR FORM) (PAl (CDR FORM})))
((OR (EQ (CAAR FORM) (QUOTE LAMBDA)) (EQ (CAAR FORM)
(QUOTE LABEL))Y) (CONS (PALAM (CAR FORM) B) (PAl (CDR FORM})))
(T (PROG (G)
(SETQ G (GENSYM))
(*SETFLAG G 2)
(RETURN (LIST (LIST (QUOTE LAMBDA) (LIST (LIST (QUOTE SPECIAL)
G)) (CONS G (PA1 (CDR FORM)))) (PAFORM (CAR FORM} B))))))))

(PA1 (LAMBDA (L) (MAPCAR L (FUNCTION (LAMBDA (J)
(PAFORM J B))))))

(PA2 (LAMBDA (L) (COND
((NULL L)} (QUOTE (QUOTE NIL)))
(T (LIST (QUOTE APPEND) (PAFORM (CAR L) B)Y (PA2 (CDR L)))) '))

(PA3 (LAMBDA (L) (COND ((NULL (CDR L))
(LIST (LIST (QUOTE (QUOTE T)) (PAFORM (CAR L) B) 1))
(T (CONS (LIST (LIST (QUOTE EQ) GS (PAFORM (CAAR L) B))
(PAFORM (CADAR L) B)) (PA3 (CDR L)))) 1)}

(PA7 (LAMBDA (L B} (COND
((NULL L) (QUOTE ((RETURN (QUOTE NIL)))))
(CAND (NULL (CDR L)) (EQ (TAAR L) (QUOTE GO))) L)
((AND (NULL (CDR L)) (EQ (CAAR L) (QUOTE RETURN)))
(LIST (PAFORM (CAR L) B)))
((ATOM (CAR L)) (CONS (CAR L) (PAT (CDR L) B)))
(T (CONS (PAFORM (CAR L) B) (PA7 (CDR L) B))))))

(PA8 (LAMBDA (Gl SPECS G)

(COND ((NULL SPECS) (CONS (QUOTE PROG)

{CONS (CADR FORM) (PA7 (CDDR FORM) (APPEND (CADR FORM) B)) 1))
(T (CONC (LIST (QUOTE PROG) (CONS G SPECS}))

(PA9 SPECS {QUOTE SPECBIND) G1)

(LIST (LIST (QUOTE SETQ) G (CONS (QUOTLC PROG)

(CONS (DELETEL SPECS (CADR FORM))
(PA7 (CDDR FORM) (APPEND (CADR FORM) B)y)) 1))
(PA9 SPECS (QUOTE SPECRSTR) G1}) (PA12 G))})))

(PAS (LAMBDA (V K G) (COND
(V (LIST (LIST K (LIST (QUOTE QUOTE) V) G))) (T NIL))I))

(PA12 (LAMBDA (G) (LIST (LIST (QUOTE RETURN) G)11))

(DELETEL (LAMBDA (B M) (MAPCON M (FUNCTION (LAMBDA (J)

- 299 -

(COND ((MEMBER (CAR J) B) NIL) (T (LIST (CAR J1))}))Y ¥))

{PASS2 (LAMBDA (EXP RENAME) (PROG (AC LISTING STOMAP LOCS)
(SETQ LEN 0) (SETQ STOMAP (QUOTE ((NIL (1 =*N) 1))))
(MAP (CADR EXP) (FUNCTION (LAMBDA (J) (STORE (CAR J) F))))
(SETQ AC (LAST (CADR EXP)))
(COMVAL (CADDR EXP) STOMAP NIL)
(COND {((NOT (MEMBER (CAADDR EXP) (QUOTE (PROG COND))))
(ATTACH (LIST (LIST (QUOTE BSX) (QUOTE *RETRN) & (LIST
(QUOTE E) RENAME))1) 1))
(SETQ EXP NIL)
{COND ((NULL LISTING) (GO B)) ((ATOM (CAR LISTING}) (GO D)))
(SETQ EXP (CONS (CAR LISTING) EXP))
(SETQ LISTING (CDR LISTING))
(GO A)
D (SETQ AC LISTING)
£ (COND ({NULL (CDR AC)) (GO K)) ((ATOM (CADR AC)}) (GO L))
{ LEQUAL (CADR AC) (LIST (QUOTE BUC) (CAR LISTING)))
(RPLACD AC (CDDR AC))Y))

NI >

K (COND ((MEMBER (CAR LISTING) LOCS) (GO C)))
(SETQ LOCS (CONS (CAR LISTING) LOCS))
(GO H)

L (SETQ AC (CDR ACQ))
(GO E)

B8 (RETURN (LIST EXP (LIST
(CONS (QUOTE *N) (MINUS LEN}}) ¥} 1))

{COMVAL (LAMBDA (EXP STOMAP NAME)} (PROG NIL
(COND ((OR (ATOM EXP) (MEMBER (CAR EXP) (QUOTE (QUOTE SPECIAL))))
(LAC EXP))Y
((EQ (CAR EXP) (QUOTE SETQ)) (PROG NIL
{COMVAL (CADDR EXP) STOMAP NAME)
(ATTACH (LIST (CONS (QUOTE STA) (LOCATE (CADR EXP)Y)}) 1))
({EQ (CAR EXP) (QUOTE COND})) (COMCOND (CDR EXP) T))
({EQ (CAR EXP) (QUOTE PROG)) (COMPROG (CDDR EXP) (CADR EXP) NAME))
((EQ (CAR EXP) (QUOTE OR)) (COMBOOL F F (CDR EXP) NIL))
((EQ (CAR EXP) (QUOTE AND)) (COMBOOL T F {CDR EXP) NIL)})
{ (MEMBER (CAR EXP) (QUOTE (SPECBIND SPECRSTR))) (GO A))
((ATOM (CAR EXP)) (CALL (CAR EXP) (COMLIS (CDR EXP))))
(T (PROG NIL (COMPLY (CAR EXP)} (CDR EXP))
(COMVAL (CADDAR EXP) STOMAP NAME}))))
(SETQ AC NAME)
B (RETURN NAME}
A (CALL (CAR EXP) (CDR EXP)}
(GO BY 1))

{COMPROG (LAMBDA (EXP PROGLIS RETN) (PROG (GOLIST HOLD NAME SETS S)

(SETQ HOLD EXP)
A (COND ((NULL HOLD) (GO B)} ((ATOM (CAR HOLD})

{SETQ GOLIST (CONS (CONS (CAR HOLD) (GENSYM)) GOLIST)Y)
{ (NOT SETS) {COND ((EQ (CAAR HOLD) (QUOTE SPECBIND))
(SETQ S (CADADR HOLD))) (T (SETQ SETS 7)))})

(SETQ HOLD (CDR HOLD))

(GO A)
B (SETQ HOLD PROGLIS)
C (COND ((NULL HOLD) (GO G)))

- 300 -

(STORE (CAR HOLD) NIL)}
(COND ((NOT (EQ (CAR HOLD) S))
(ATTACH (LIST (CONS (QUOTE STZ) (LOCATE (CAR HOLD}}Y 1)))
(SETQ HOLD (CDR HOLD))
(GO C)
G (SETQ HOLD EXP)
D (SETQ NAME (GENSYM))
(COND ((NULL HOLD) (GO E))
((ATOM (CAR HOLD)) (PROG2 (SETQ AC NIL)
(ATTACH (LIST (CDR (SASSOC (CAR HOLD) GOLIST NIL)})) 1))
((EQ (CAAR HOLD) (QUOTE GO)}
(ATTACH (LIST (LIST (QUOTE BUC) (CDR (SASSOC (CADAR HOLD)
GOLIST (FUNCTION (LAMBDA NIL (ERROR (CONS (CADAR HOLD)
(QUOTE (NOT A LABEL (COMPROG))) 1)) 1) 1)y
((EQ (CAAR HOLD) (QUOTE COND)) (COMCOND (CDAR HOLD) F))
(T (COMVAL (CAR HOLD) STOMAP NAME))})
(SETQ@ HOLD (CDR HOLD))
(GO D)
E (COND (RETN (RETURN (ATTACH (LIST RETN))))))1))

(COMCOND (LAMBDA (EXP MODE) (PROG (FLAG SWITCH GEN)
(SETQ FLAG T)
A (COND ((NULL EXP} (GO B)))
(SETQ GEN (GENSYM))
(SETQ SWITCH NIL)
(COND ((EQ (CAADAR EXP) (QUOTE GO)) (GO C)))
(COMPACT (CAAR EXP) GEN)
(SETQ AC (COND (SWITCH (QUOTE (QUOTE NIL)I}) (T NIL)))
(COMVAL (CADAR EXP) STOMAP NAME)
(COND ((OR (AND NAME (NULL (CDR EXP))}
(MEMBER {(CAADAR EXP) (QUOTE (RETURN GO))))
(GO L))
(ATTACH (LIST (COND (NAME (LIST (QUOTE BUC) NAME))
(T (LIST (QUOTE BSX) (QUOTE *RETRN)
4 (LIST (QUOTE E) RENAME))))
L (ATTACH (LIST GEN))
D (SETQ EXP (CDR EXP))}
(SETQ AC (COND (SWITCH (QUOTE NIL)) (T (QUOTE (QUOTE NIL)))))
(GO A)
B (COND ((AND FLAG MODE) (ATTACH (QUOTE ((BUC CONDER}))I}))
(COND (NAME (ATTACH (LIST NAME))))
(RETURN NIL)
C (COMPACT (LIST (QUOTE NULL) (CAAR EXP))
(CDR (SASSOC (CADR (CADAR EXP})) GOLIST (FUNCTION
(LAMBDA NIL (ERROR (CONS (CADR (CADAR EXP))
(QUOTE (NOT A LABEL (COMCOND))) 1)) 1) D)))
(GO DY 1))

(COMBOOL (LAMBDA (FN MODE EXP A) (PROG (GEN SWITCH)
(SETQ GEN (GENSYM))

A (SETQ SWITCH NIL)
(COND ((NULL EXP) (GO C))

((AND MODE (NULL (CDR EXP)} (EQ A FN)) (GO B)))
(COMPACT (COND (FN (CAR EXP)) (T (LIST (QUOTE NULL) (CAR EXP))))
(COND {((AND MODE (NOT A)) (COND (FN NAME) (T GEN)))

(T (COND ((NOT MODE) GEN) (FN GEN) (T NAME))) })

(SETQ AC (COND ((EQ (CAAR LISTING) (QUOTE BNZ)) (QUOTE (QUOTE NIL))
) (T (QUOTE (QUOTE T 1))))
(SETQ EXP (CDR EXP))

- 301 -

(GO A)
B (COMPACT (COND (FN (LIST (QUOTE NULL) (CAR EXP)))
(T (CAR EXP))) NAME)

C (COND ((NOT MQODE) (ATTACH (LIST (QUOTE (BUC (% 2) 3}y (LIST (QUOTE

LDAY (LIST (QUOTE QUOTE) FNI)Y 1))

(ATTACH (LIST GEN}Y)

{COND ((NOT MODE) (ATTACH (LIST (LIST (QUOTE LDA)
(LIST (QUOTE QUOTE) (NOT FN) } 113) 1)) 1))

(COMPACT (LAMBDA (EXP NAME) (COND
({EQ (CAR EXP) (QUOTE NULL)) (PROG2 (SETQ SWITCH (NOT SWITCH))
(COMPACT (CADR EXP) NAME)))
((EQUAL EXP (QUOTE (QUOTE T))) (COND (SWITCH (ATTACH (LIST
(LIST (QUOTE BUC) NAME))}) (T (SETQ FLAG F))))
{{FQ (CAR EXP) (QUOTE OR)) (COMBOOL F T (CDR EXP) SWITCH))
({EQ (CAR EXP) (QUOTE AND}) (COMBOOL T T (CDR EXP) SWITCH))
(T (PROG2
(COND ((EQ (CAR EXP) (QUOTE EQ))
(CEQ EXP STOMAP))
(T (COMVAL EXP STOMAP (GENSYM))))
(ATTACH (LIST (LIST (COND (SWITCH (QUOTE BNZ))
(T (QUOTE BOZ))) NAMEYY) 1) 1))

(CEQ (LAMBDA (EXP STOMAP) (PROG (A)
(SETQ A (COMLIS (CDR EXP)))
(COND ((EQUAL (CAR A) AC) (ATTACH (LIST (CONS (QUOTE XOR)}
(LOCATE (CADR A)) 1))
(T (PROG2 (LAC (CADR A})
(ATTACH (LIST (CONS (QUOTE XOR) (LOCATE (CAR AY}3Y))N}
(SETQ SWITCH (NOT SWITCH)) 1))

(COMPLY (LAMBDA (FN ARGS) (MAP (PAIR (CADR FN) ARGS)
(FUNCTION (LAMBDA (J) (PROG NIL (COMVAL (CDAR J) STOMAP
(GENSYM)) (STORE (CAAR J) T)))1)) 1))

(COMLIS (LAMBDA (EXP) (PROG (B}
(RETURN (MAPCAR EXP (FUNCTION (LAMBDA (J) (COND
((OR (EQ (CAR J) (QUOTE QUOTE)) (ATOM J)) J)
(B (PROG2 (STORE AC T) (COMVAL J STOMAP (GENSYM))})
{T (PROG2 (SETQ B T) (COMVAL J STOMAP (GENSYM)))))))))
1Y)

(STORE (LAMBDA (X Y) (PROG NIL
(COND ({OR (NULL X) (EQ (CAR X) (QUOTE QUOTE)}} (RETURN NIL)))
(SETQ STOMAP (CONS (CONS X (LIST (LIST
(ADD1 (ADD1 (CAADAR STOMAP))) (QUOTE #N3}) 1)) STOMAP))
(COND (Y (ATTACH (LIST (CONS (QUOTE STA) (LOCATE X))) 1)))
(SETQ LEN (#MAX LEN (ADD1 (CAADAR STOMAP)) 1)) 1))}

(CALL (LAMBDA (FN ARGS) (PROG (HOLD ITEM NUM S X}

(COND ((MEMBER FN (QUOTE (SPECBIND SPECRSTR LIST RETURN GO)})
(GO E))

{ (NULL ARGS) (GO D)))
(SETQ NUM 1)
(SETQ HOLD ARGS)

F (COND ((NULL HOLD) (GO G))
((NULL (CDR HOLD})) (GO G)))
(SETQ NUM (ADD1 (ADD1 NUM))
(SETQ HOLD (CDR HOLD))}

- 302 -

{GO F)
G (SETQ HOLD (REVERSE ARGS)}
(COND ((NULL HOLD) (GO D)) 1}
(SETQ X (CAR HOLD))
(SETQ@ HOLD (CDR HOLD)})
A (COND ((NULL HOLD) (GO H)Y)
(SETQ ITEM (CAR HOLD))
(COND ((EQUAL ITEM (QUOTE (QUOTE NIL))) (ATTACH (LIST (LIST
{QUOTE STZ)Y NUM 11))))
((EQUAL ITEM AC) (ATTACH (LIST (LIST (QUOTE STA) NUM 1)1}))
(T (ATTACH (LIST (LIST (QUOTE STB) NUM 1)
(CONS (QUOTE LDB) (LOCATE ITEM) 1))}y)
(SETQ HOLD (CDR HOLD)Y)
(SETQ NUM (SUB1 (SUB1 NUM)))
(GO A)
H (LAC X}
D (ATTACH (LIST (LIST (QUOTE BSX) (QUOTE *CALL) & (LIST (QUOTE E) FN)
)
(RETURN NIL)
E (COND ((EQ FN (QUOTE GO)Y} (ERROR FN))
((EQ FN (QUOTE RETURN})) (PROG NIL (LAC (CAR ARGS))
(ATTACH (LIST (COND (RETN (LIST (QUOTE BUC) RETN))
(T (LIST (QUOTE BSX) (QUOTE *RETRN) 4 (LIST (QUOTE E) RENAME}
Yy ¥yy)
((EQ FN (QUOTE LIST})) (PROG NIL
(SETQ AC (LOCATE AC))
(ATTACH (LIST (LIST (QUOTE BSX) (QUOTE *LISTY 2 (LENGTH ARGS))))
(MAP ARGS (FUNCTION (LAMBDA (J) (ATTACH (LIST (CONS 0
(LOCATE (CAR J)))))))y))
((EQ FN (QUOTE SPECBIND)) (PROG NIL
(ATTACH {LIST (LIST (QUOTE BUC) FN 0 4)))
(ATTACH (CDR ARGS))
(MAP (CADAR ARGS) (FUNCTION (LAMBDA (J)
(ATTACH (LIST (LIST (COND ((CDR J) 0) IT (QUOTE CAS)))
(LIST (sSuBl (CAAR (LOCATE (CAR J)})) (QUOTE *N)) 1
(LIST (QUOTE E) (CAR J)) 1)) 1)))
(T (ATTACH (LIST (LIST (QUOTE BSX) (QUOTE SPECRSTR) &4 (CADR ARGS}))
YY)y M

(LAC (LAMBDA (X) (COND ((EQUAL AC X) NIL)
(T (ATTACH (LIST (CONS (QUOTE LDA) (LOCATE X) 3))) 1))

(ATTACH (LAMBDA (A) (COND
((AND (EQ (CAAR A) (QUOTE LDA)) (EQ (CAAR LISTING) (QUOTE STAY})
{EQUAL (CDAR A} (CDAR LISTING))) NIL)
(T (SETQ LISTING (APPEND A LISTING}I))13

(LOCATE (LAMBDA (B) (SELECT (CAR B)
({QUOTE QUOTE) (LIST B)) ((QUOTE SPECIAL) (LIST B))
(CDR (SASSOC B STOMAP (FUNCTION (LAMBDA NIL (COND
((EQ B AC) (PROG NIL (STORE AC T)
(RETURN (SASSOC B STOMAP (FUNCTION (LAMBDA NIL NIL))))))
(T (CONS NIL (LOCATE (LIST (QUOTE SPECIALY B)Y)y) ¥y ivyy
{LAST (LAMBDA (X) (PROG NIL
A (COND ((NULL X) (RETURN NIL}Y)
({NULL (CDR X)) (RETURN (CAR X))))
(SETQ X (CDR X))
(GO AY 1))

- 303 -

(REVERSE (LAMBDA (X)) (PROG (Y)

A

(COND ((NULL X) (RETURN Y)
{SETQ Y (CONS (CAR X7y Y}))
(SETQ X (CDR X))

(GO A)Y '))

(MAPCAR (LAMBDA (L FN) (COND ((NULL L)

(T (CONS (FN (CAR L)) (MAPCAR

{#MAX (LAMBDA (X Y) (MAX X Y) }))

1)

DEFINE (¢

(LAP (LAMBDA (L ST) (PROG (LIS I ORG LOC IV1 IV2 P2}
(MKOB (CONS (QUOTE SPECIAL) (CAAR L)

NP

NW
KW

12

IW

ES

PS

EP

(SETQ ORG BPORG)
{BLANKS 30}
(PRINT (CAR L))

(SETQ LOC RPORG)

(SETQ LIS (CDR L))

(COND ((NULL LIS) (GO EP))Y)
(SETQ T (CAR LIS))

NIL)

(CDR L) FNYIDYY D)

))

(COND (P2 (GO 12)) ((ATOM I} (GO ES)))

(SETQ LOC (ADD1 LOCH)
(SETQ LIS (CDR LIS))
(GO B)

(COND ((ATOM I} (GO PS)))
(SETQ IV2 0)

(SETQ IVl (LAPEVAL {(CAR D))
(COND ((NULL (CDR TI)) (GO IW))

(SETQ IV2 (LOGOR {(JUST (LAPEVAL

(COND ((NULL (CDDR 1)} (GO IW)

(SETQ IV2 (LOGOR IV2 (LEFTSHIFT

)

)

(COND ((NULL (CDDDR I)) (GO IW)))
(SETQ IV1 (LOGOR IV1 {(JUST (LAPEVAL

(PUNWORD IVl IVv2 LOC}
(BLANKS 10}

(PRINT I

(GO NW)

{SETQ ST (CONS (CONS I LOC) ST))

(GO KW}
(BLANKS 26)
(PRINT 1}
(GO KW)

{COND ((NOT P2) (GO E1)))
(TERPRI) (TERPRI)

(RPLACD (CAAR L)} (CONS (QUOTE TWORD)

(LOGOR ORG (LEFTSHIFT (CADDAR L)

(LEFTSHIFT (CADR (CDDAR L))
(CSETQ BPORG LOC)
(RETURN ST)

24)

- 304 -

(LAPEVAL

)

(CADR T1)) Iv2))

(CADODR 1))

{CONS
18)

(CDAAR L))}

(CADDR 1))

1)

)

18)))

El (SETQ P2 T)
(GO NP)
IR R]

(SPECIAL (LAMBDA (X) (MAPLIST X (FUNCTION (LAMBDA (J)
(DEFLIST (LIST (LIST (CAR J) (LIST NIL))) (QUOTE SPECIAL))I)}))

(UNSPECTAL (LAMBDA (L) (MAP L (FUNCTION (LAMBDA ()
(REMPROP (CAR J) (QUOTE SPECIAL)))Yy)}

(#*SETFLAG (LAMBDA (A B) (SPECIAL (LIST A))))
})

(LAMBDA NIL (PROG (J)
A (SETQ J (READ))
(COND ((EQ J (QUOTE SPECIAL)) (SPECIAL (CAR (READ))))
(LEQ J (QUOTE UNSPECIAL)) (UNSPECIAL (CAR (READ))))
{(tEQ J (QUOTE LAP)) (PROG2 (SETQ J (READ)) (LAP (CAR J)} (CADR J)))
((NULL J) (RETURN NIL)Y
(T (COM2 (QUOTE SUBR) (LENGTH (CADADR J)) (CADR J) (CAR J))))
(GO A)
Yy NIL

COMPILE ((
PASS1 PAIRMAP PAS COMP PAT7 PA9 PAl12 LAST REVERSE
)y}

SPECIAL ((
NAME GS G2 FN B FORM LEN AC STOMAP LISTING SWITCH FLAG RETN GOLIST
RENAME HOLD EXP

V)

COMPILE (¢
COM2 PROGITER PI1 PI3 PALAM PA4 PAFORM PAl1 PA2 PA3 PA8 DELETEL
PASS2 COMVAL COMPROG COMCOND COMBOOL COMPACT CEQ COMPLY COMLIS
STORE CALL LAC ATTACH LOCATE

]

COMPILE ((MAPCAR))

UNSPECTIAL ((
NAME GS G2 FN B FORM LEN AC STOMAP LISTING SWITCH FLAG RETN GOLIST
RENAME HOLD EXP

V)

PUNOBJ NIL
STOP))I Y)Y

LAP (((ATOM SUBR 1 4)

(B0z A)

(LDX $A 0 5)

{(LDS 0 5 24Q)

(BNZ A)

(LDA (QUOTE NIL))

(BSX *RETRN 4 (E ATOM))
A (LDA (QUOTE T))

- 305 -

(BSX #RETRN &4 (E ATOM))
y NIL)

LAP (((RPLACA SUBR 2 6)
(LDA (3 =N} 1)
(LDB (5 =*N) 1)
(S5TB 0 170 370Q)
(BSX *RETRN &4 (E RPLACAY)
) ((*N o =6)))

LAP ({ (RPLACD SUBR 2 6)
(LDA (3 #N)} 1)
(LDB (5 =N) 1)
(STB 0 17Q 40217Q)
(BSX *RETRN &4 (E RPLACD))
) ({*N o =6)))

LAP (((CAR SUBR 1 &)
(LDA O 17Q 370Q)
(BSX *RETRN 4 (F CAR))
) NIL)

LAP ({ (CDR SUBR 1 4)
(LDA C 17Q 40370Q)
(BSX *RETRN 4 (E CDR))
)} NIL)

LAP (((SPECBIND SUBR 0 2)
(STA AC)
L (LDA 4 40360Q)
(LDB 17Q)
(S7T8 24Q 3600)
(STA 240 40217Q)
({LDX 1 100005Q})
(ATX 4 5)
(STX 170 %)
(BSG ($ 2) 0 40367Q)
(BAX 1)
(LDA
(BUC
AC (0)
) NIL)

=P ~0O00FP O0OD0O0

4
)
&)

LAP (((SPECRSTR SUBR 0 2)
(STA AC)
(STP X 0 370Q)
L (LDA 0O 4 40360Q)
(LbB 0 240)
(STB 0 17Q 360Q)
(STZ 0 247)
(BSG (% 2) 0 40367Q)
(RAX L & 1)
(LDA AC)
X (BUC)
AC (0)
Y NIL)

LAP (((*LIST SUBR 0 2)
(STP G 0 370Q)

- 306 -

(STP X 0 370Q)
(STX GX 0 40002Q)
(LDA {(QUOTE NIL}))
(BXE GX 2 0}

(BUC LP)

G (LDB 0 22Q)
(STB 3 1)
(BSX *CALL 4 (E CONSH)
LP (BPX G 2 1)
GX (BSX X 2 0)
X (BuC 0 2)
)} NILY

LAP (((*EVQ SUBR 2 6)
(BUC SPECBIND 0 4)

L (CAS (2 *N) 1 (E *FUNC))
(LDX ($Z 1) 0 5)

Gl (BOZ GO)
(LDX $A 0 &)
{LDA 0 4 370Q)
(STA 3 5)
(LDA O 4 40370Q)
(BAX G1 5 2)

GO (LDA 1 5)
(BSX *CALL &4 (E *FUNCQC))
(BSX SPECRSTR 4 L)}
(BSX *RETRN 4 (£ *EVQ))
) ((*N o =6)))

LAP (((*SPECIND SUBR 1 4)
(LDX 3A 0 5)
(LDS 0 5 51Q)
(BOZ (3% 2))
(LDA (QUOTE T))
(BSX *RETRN 4 (£ *SPECIND))
) NIL)

LAP {{ (NUMBERP SUBR 1 &)
(STP NX 0 370Q)
(BOZ NN)
{LDX %A 0 5)
(LDS 0 5 24
(BOZ NN)
(LDS 0 5 40013Q)
{(BXE N 170)
NN (LDA (QUOTE NIL}))

NX (BUC)

N (LDS 0 5 400400)
(LDX %A 0 2)
{LDA 0 5 370Q)
(BUC NX)

y NID)

LAP (((*#NUMVAL SUBR 0 2)
(STP X 0 3700)

- 307 -

(STA A)
(BUC NUMBERP)

(BOZ E)
(LDA 1 17Q)
X (BUC)
E (LDB A)
(sT8 3 1)

(LDA (QUOTE (NOT A NUMBER}))
(BSX #CALL & (E CONS))
(BSX *#CALL 4 (E ERROR))
A (0)
) NIL)

LAP (((*FIXVAL SUBR 0 2)
(STP X 0 370Q)
(BUC *NUMVAL)
(BXE C 2 2)

X (BUC)

C (FAD MN 0 1Q5)
(SFT =11 0 12Q4)
(SFT =36 0 10Q4)
(BUC X}

MN (LDC 0 0 1Q5)

) NIL)

LAP (((MINUS SUBR 1 4)
(BUC *NUMVAL)
(LDC $A)
(BUC *MKNO)
(BSX *RETRN &4 (E MINUS))
} NIL)

LAP (((MINUSP SUBR 1 4)
{BUC #*NUMVAL)
(BSG M 0 40177Q)
P (LDA {QUOTE NIL))
(BSX *RETRN 4 (E MINUSP)Y)
M (LDA (QUOTE T1))
(BSX *RETRN 4 (E MINUSP))
) NIL)

LAP (((FIXP SUBR 1 4)
(BUC *NUMVAL)
(BXE N 2 2)
(LDA (QUOTE T))
(BSX *RETRN &4 (E FIXP))
N (LDA (QUOTE NILY))
(BSX *RETRN &4 (E FIXP))
) NIL)

LAP (((FLOATP SUBR 1 4)
{BUC *NUMVAL)
(BXE N 2 2)
(LDA (QUOTE NIL))
(BSX #RETRN & (E FLOATP))
N (LDA (QUOTE T))
(BSX *RETRN 4 (E FLOATP))
) NIL)

- 308 -

LAP

F2

Fl

LAP

LAP

LAP

LAP

({ (*COMPAT SUBR 0 2)
(STP X 0 370Q)
(BUC *NUMVAL)
(STA CTY
(LDA (3 *N) 1)
(BXE F1 2 2)
(BUC *NUMVAL)
(BXE F2 2 2)
(LDB CT)
(BUC)Y

(ECH CT)
(FLT K)

{ECH CT)
(BUC F3)

(BUC *NUMVAL)
(BXE F3 2 2)
(FLT K)

(BUC F3)

o)
(1071}
) ((%*N o =6)))

(((*LOGOR SUBR 2 8)
(BUC *FIXVAL)
(STA (7 =N} 1)
(LDA (3 *NJ 1)
(BUC *FIXVAL)
(CON (7 =N) 1 34Q2)
(BSX *MKNO 2 5)
{(BSX *RETRN 4 (E *LOGOR))
) ((*N o =8)))

(({(*LOGAND SUBR 2 8)
(BUC *FIXVAL)
(STA (7 %Ny 1)
(LDA (3 *N) 1)
(BUC *FIXVAL)
(CON (7 *N) 1 4Q2)
(BSX *MKNO 2 5)
(BSX *RETRN 4 (E *LOGAND))
) ((#N o -8)))

(((*LOGXOR SUBR 2 8)
(BUC #FIXVAL)
(STA (7 %N) 1)
(LDA (3 %N} 1)
(BUC *FIXVAL)
{CON (7 '#*N) 1 130Q2)
(BSX #MKNO 2 5)
(BSX *RETRN 4 (F #LOGXOR))
) (%N o =8)))

({ (*PLUS SUBR 2 6)
(BUC *COMPAT)

(BXE F 2 2)
(ADD (3A 1))

- 309 -

(BSX *MKNO 2 1)

(BSX #RETRN & (E #PLUS)H)
F (FAD (%A 1))

(BSX #*MKNO 2 2)

(BSX #RETRN &4 (E *PLUS))

Y} NIL)

LAP (((%*TIMES SUBR 2 6)
(BUC #COMPAT)
(BXE F 2 2)
(MUL (3A 1))
(LDA (%A 1))
(BSX #MKNO 2 1)
(BSX #*RETRN & (E *TIMES))
F (FMP (%A 1))
(BSX *MKNO 2 2)
(BSX *RETRN 4 (E *TIMES))
y NIL)

LAP (((LSHIFT SUBR 2 6)

(BUC *FIXVAL)

(LDC $A)

(STA &)

(LDA (3 =*N) 1)

(BUC *FIXVAL}

(SFT Q@ 0 1Q4)

(BSX *MKNO 2 5)

(BSX *RETRN &4 (E LSHIFT))
Q (0)

) (%N o =6)))

LAP (((*PLANT SUBR 2 6)
(BUC *FIXVAL)
(LDX 3A O 3)
(LDA (3 %N} 1)
{BUC *NUMVAL)
(STA 0 3)
(LDA (3 *N) 1)
(BSX #RETRN 4 (E *PLANT))
}OL(*N o =6)))

LAP (((*GETNO SUBR 1 4)
(BUC #FIXVAL)
(LDA 0 17Q)
(BSX *MKNO 2 5)
(BSX *RETRN 4 (E *GETNO))
) NIL)

LAP (({ (*LOCN SUBR 1 4)
(BSX *MKNO 2 5)
(BSX *RETRN 4 (E *LOCN))
) NIL)

(CAAR (LAMBDA (X) (CAR (CAR X)))
(CADR (LAMBDA (X) (CAR (CDR X)))
(CDAR (LAMBDA (X) (CDR (CAR X)))
(CDDR (LAMBDA (X) (CDR (CDR X)))
(CAAAR (LAMBDA (X) (CAR (CAR (CAR X))
(CAADR (LAMBDA (X) (CAR (CAR (CDR X))

)
)
)
)

- 310 -

M
1)

(CADAR (LAMBDA (X) (CAR (CDR (CAR X)))

(CADDR (LAMBDA (X) (CAR (CDR (CDR X)))

(CDAAR (LAMBDA (Xx) (CDR {(CAR (CAR X))}

{CDADR (LAMBDA (X} (CDR (CAR (CDR X))}

(CDDAR (LAMBDA (x) (CDR (CDR (CAR X))}

{CDDDR (LAMBDA (X) (CDR {CDR (CDR X))}

(CAAAAR (LAMBDA (X) (CAR (CAR (CAR (CAR
(CAAADR (LAMBDA (X) (CAR (CAR (CAR (CDR
{CAADAR (LAMBDA (X) (CAR (CAR (CDR (CAR
(CAADDR (LAMBDA (X) (CAR (CAR (CDR (CDR
(CADAAR (LAMBDA (X) (CAR (CDR (CAR (CAR
(CADADR (LAMBDA (X) (CAR (CDR (CAR (CDR
(CADDAR (LAMBDA (X) {(CAR (CDR (CDR (CAR
(CADDDR (LAMBDA (X) (CAR (CDR (CDR (CDR
(CDAAAR (LAMBDA (X) (CDR (CAR (CAR (CAR
(CDAADR (LAMBDA (Xx) (CDR (CAR (CAR (CDR
(CDADAR (LAMBDA (Xx) {(CDR (CAR (CDR (CAR
(CDADDR (LAMBDA (X) (CDR (CAR (CDR (CDR
(CODAAR (LAMBDA (X) (CDR {(CDR (CAR (CAR
(CODADR (LAMBDA (X) (CDR (CDR (CAR (CDR
(CDDDAR (LAMBDA (Xx) (CDR (CDR (CDR (CAR
(CODDDR (LAMBDA (X) (CDR (CDR (CDR (CDR

DD DD DD D XK DD XK DX XK D v e e e
SNONONONORONORGRGRORORORONOROEO:
e e - — - = — - ——
- - - - — - —— - —— —
- - — - — = = - —— —
@ - - e - - — - -
— - - e -

SPECIAL ((FN))

(CSET (LAMBDA (X Y) (COND
((NOT (ATOM X)) (ERROR (CONS X (QUOTE (NOT AN ATOM (CSET))))))
(T (RPLACA X (LIST Y))) 1))

(DEFINE (LAMBDA (L) (MAPLIST L (FUNCTION (LAMBDA (J} ((LAMBDA (K}
(COM2 (QUOTE SUBR) (LENGTH (CADADR K)) ‘(CADR K) (CAR K))
(MDEF (CAR J))))))

(MDEF (LAMBDA (L) (COND ({(ATOM L) L)
((EQ (CARP L) (QUOTE QUOTE)) L)
({MEMBER (CAR L) (QUOTE (LAMBDA LABEL PROG)))
(CONS (CAR L) (CONS (CADR L) (MDEF (CDDR L})))
((GET (CAR L) (QUOTE MACRO)) (MDEF ((GET (CAR L) (QUOTE MACRO}) LYY)
(T (MAPLIST L (FUNCTION (LAMBDA (J) (MDEF (CAR J)))))y o))

(MACRO (LAMBDA (L) {(MAPCAR L (FUNCTION (LAMBDA (J) (PROG2
(COM2 (QUOTE SUBR) (LENGTH (CADAR J)) (CADR J) (CAR J))
(DEFLIST (LIST (CAR J) (CAAAR J)} (QUOTE MACRO)) })))

SPECIAL ((OB PRO))

(DEFLIST (LAMBDA (L PRO) (MAPLIST L (FUNCTION (LAMBDA ()
(DEF1 (CAAR J) (CADAR J))) 1))

(DEF1 (LAMBDA (OB L) (PROG NIL
(RPLACA (PROP 0B PRO (FUNCTION (LAMBDA NIL
(CDDR (RPLACD OB (CONS PRO (CONS NIL (CDR 03)1)}))1))) L)
(RETURN 0B} 1))
UNSPECIAL ((0B PRO))
(NULL (LAMBDA (A)Y (COND ({NULL A} T) (T NIL) 1))

(EQ (LAMBDA (A B) (COND ((EQ A B) T) (T NIL) 1))

- 311 -

(EQUAL (LAMBDA (A B} (COND
(tNUMBERP A} (COND ((NUMBERP B) (EQP A B)) (T F)))
({ATOM A) (EQ A B))
{({ATOM BY F)
{{ EQUAL (CAR A) (CAR B)) (EQUAL (CDR A} (CDR B)))
(T F)Y)

(EQP (LAMBDA (A B) (LESSP (ABSVAL (DIFFER A B}) 340E-6)))

(ABSVAL (LAMBDA (X) (COND ((MINUSP X} (MINUS X)) (T X) }))

(MEMBER (LAMBDA (U V) (PROG NIL
A (COND ((NULL V) (RETURN NIL})) ((EQUAL (CAR V) U) (RETURN T)))}
(SETQ V (CDR V) (GO AY 1))}

(SASSOC (LAMBDA (X Y FN) (PROG NIL
A (COND ((NULL Y) (RETURN (FN)}) ((EQ (CAAR Y) X} (RETURN {CAR Y))))
(SETQ Y (CDR Y)Y (GO A)Y)))

(PAIR (LAMBDA (X Y) (PROG (M A B)
(SETQ A X)
(SETQ B Y)
L (COND ((NULL A)Y (COND ({NULL B) (RETURN M))
(T (ERROR (LIST (QUOTE (PAIR ERROR F2)) X Y))) 1))
((NULL B) (ERROR (LIST (QUOTE (PAIR ERROR F3}) X Y))))
(SETQ M (CONS (CONS (CAR A) (CAR B)) M))
(SETQ A (CDR A}
(SETQ B (CDR B))
(GO LY ')

(APPEND (LAMBDA (X Y) (COND ((NULL X) Y)
(T (CONS (CAR X) (APPEND (CDR X) Y})1) 1))

{(NCONC (LAMBDA (X Y} (PROG (M)
(COND ((NULL X) (RETURN Y)))
(SETQ M X)

A (COND ((NULL (CDR M)) (GO B)))
(SETQ M (CDR M))

(GO A)

B (RPLACD M Y)

(RETURN X))))

(LENGTH(LAMBDA (M) (PROG (N) (SETQ N 0)
A (COND ((NULL M) (RETURN N))) (SETQ N (ADD1 N)) (SETQ M (CDR M))
(GO A)Y)

(MAP (LAMBDA (X FN) (PROG (M)
(SETQ M X)

LP (COND ((NULL M)} (RETURN NIL)))
(FN M)
(SETQ M (CDR M))
(GO LP) 1Y)

(MAPCON (LAMBDA (x FN) (COND ((NULL X) NIL)
(T (NCONC (FN X) (MAPCON (CDR X) FN))) 1))

(MAPLIST (LAMBDA (X FN) (COND ((NULL X) NIL)

- 312 -

(T (CONS (FN Xx) (MAPLIST (CDR X) FN})))}))
(ADD1 (LAMBDA (X) (*PLUS X 1) 1)
(SUB1 (LAMBDA (X) (*PLUS X =1))
(ZEROP (LAMBDA (X) (EQUAL Xx 0} 1))
(DIFFER (LAMBDA (X Y) (#PLUS X (MINUS Y))))
(LESSP (LAMBDA (X Y) (COND ((MINUSP ({DIFFER X Y1} T) (T NILY 1))
(GREATERP (LAMBDA (X Y) (COND ((MINUSP (DIFFER Y X)) T) (T NIL) }))
(#MAX (LAMBDA (X Y) (COND ((LESSP X Y) Y} (T X})))
(*MIN (LAMBDA (X Y) (COND ((LESSP Y X) X) (T Y))))

(GET (LAMBDA (X Y) (PROG NIL

A (COND ((NULL X} (RETURN NIL))
((EQ (CAR X} Y) (RETURN (CADR X))))
(SETQ X (CDR X))
(GO A))

(PROP (LAMBDA (X Y FN) (PROG NIL

A (COND ((NULL X) (RETURN (FN))}
({EQ (CAR X) Y) {(RETURN (CDR X))))
(SETQ X (CDR X))
(GO A})

UNSPECTIAL ((FN))
(PROG2 (LAMBDA (X Y} Y1)

(SPECIAL (LAMBDA (L) (MAPCAR L
(FUNCTION (LAMBDA (J) (*SETFLAG J 2} 1) 1))

(UNSPECIAL (LAMBDA (L) (MAPCAR L
(FUNCTION (LAMBDA (J) (*#CLRFLAG J 2) }) 1)

(TRACE (LAMBDA (L) (MAPCAR L
(FUNCTION (LAMBDA (J) (®SETFLAG J 1) 1)) }))

(UNTRACE (LAMBDA (L) (MAPCAR L
(FUNCTION (LAMBDA (J) (*CLRFLAG J 1) 1)) 1))

(PRINT (LAMBDA (X) (PROG ()
(PRINO X)
{TERPRI)
(RETURN X) 1))

(PRINO (LAMBDA (X) (PROG (J)
(COND ((ATOM X) (GO A9)))
(SETQ J X}
(PRIN1 LPAR})
A3 (PRINO (CAR J))
{COND ((NULL (COR J}) (GO A6)))
(PRIN1 BLANK)
(COND ((ATOM (CDR J)) (GO P1)))

- 313 -

P1

A6

A9

(READ

(READ1

RD

(SETQ J
(GO A3)

{CDR J))

(PRIN1 PERIOD)
(PRIN1 BLANK)
(PRIN1 (CDR J))
{PRIN1 RPAR)
(RETURN X)

(PRIN1 X)
(RETURN X))1))
(LAMBDA ()
(SETQ J (*RATOM)
(COND
((OR (EQ J RPAR
(ERROR (QUOTE
(T (RETURN J))

(LAMBDA
(SETQ J
(COND
{(EQ J RPAR)
({EQ J PERIOD)
(T (RETURN
(SETQ K (*RATOM)
(COND
{ (OR (EQ K RPAR

(APPEND
(SETQ J (*RATOM)
(COND
(T (ERROR

0
(*RATOM)

(PROG

((EQ J LPAR)

(PROG

((EQ J LPAR)}
(RETURN NIL))

(CONS J
({EQ K LPAR)
(QUOTE

({EQ J RPAR)
(APPEND

(J)

)

(RETURN (READI1
} (EQ J PERIOD))

(EXTRA RPAR OR PERIOD)

| R R]

(J K1
)

(RETURN (CONS
(GO RD}))
(READ1I))

)

(SETQ K (READ1
} (EQ K PERIOD})

)
(RETURN K1))
(QUOTE

)

BB

{READ1)

IR
(ERROR

(RPAR RQD AFTER})

(BAD RPAR OR DOT AFTER DOT AFTER})

(LIST JY3)))

(READ1)Y)

(LIST K

IR

(EVALQUOT (LAMBDA NIL (PROG (S1 J SW LWT LOC ROP K}

AA

A
B

A2

EV

(TERPRI)
(TEREAD)
(SETQ ROP NIL)
(SETQ SW NIL)
(SETQ J (READ))
(COND ((NOT
(SELECT J (SLASH
(LARR (GO L1))
(LSTHAN (GO LI
(STAR (GO STOR)

(SETQ LWT J)
(COND (Sw (GO E)
(SETQ S1 J)
(SETQ SWw T)

(GO 8)

(COND ((ATOM S1)
(SETQ K BPORG)
(CoM2
(SETQ BPORG K)

(SETQ LWT (*EVQ
(PRINT LWT)
(30 AA)

(ATOM J))

(QUOTE SUBR)

(G0 A2)))
(G0 S1)) (EQSIGN
(UPARR (GO U1))

) (GRTHEAN (GO RI)
) NIL)

))

(GO EV)))

(LENGTH

(CAAR (COND

({ATOM S1)

(GO E1))}

) (DOLLAR

(SETQ BPORG SCRACH)
(CADR 51))

S1

s1)

- 314 -

(COLON

(GO C1))

(GO D11)

(7

(QUOTE *FUNC))

(QUOTE *FUNC))

)

1)

1)

J1)

Cl

D1

El

LI

RI

L1

ul

u2

Sl

STOR (COND ({ (AND ROP Sw)

(SETQ LWT (PRINT
(GO A)

(SETQ LWT (PRINT
(GO AA)

(SETQ LWT (PRINOCT

(GO A)

(SETQ LWT (PRINT
(GO AA)Y

(SETQ LWT (PRINT
(GO AA)

(COND {((AND ROP
(TERPRI)

(PRINOCT (SETQ LOC

(GO U2}

(COND ((AND ROP SW)

(TERPRI)

{PRINOCT (SETQ LOC

(PRIN1 SLASH)
(BLANKS 3)
(SETQ SW T)

{SETQ ROP (SETQ LOC
(SETQ LWT (PRINOCT

{(BLANKS 3)
(GO A)

(TERPRI)
(GO AA)
|B)

(*EVALA (LAMBDA (A)

(*EVALA LWT)))

(CONS (CAR LWT)

(CAR LWT)))

(CDR LWT)))

SW) (#PLANT LWT ROP))

(COND ((NUMBERP A) A)

(¥EVALA LWT) 16))

(ADD1 LOC})) 16)

(*PLANT LWT ROP))

{SUB1 LOC)) 16)

{*EVALA LWT)))
(*GETNO LOC) 16))

(*PLANT 51 ROP}))

(COR LWT))))

)

)

)

(CADDAR L)) 18)

(CATOM A) (CAAR A)) (T (*LOCN A)))
SPECIAL ((ST 1V E£1 LOC))
(LAP (LAMBDA (L ST)Y (PROG (LIS I ORG LOC 1v P2 MODE TRW EI)
A (COND ((NULL (CAR L)) (GO A1)) ((ATOM (CAR L}) (GO A2})))
(SETQ TRW (*LOGOR BPORG (LSHIFT (LAPEVAL
(LSHIFT (LAPEVAL (CADR (CDDAR LI1}Y) 24) 1))
Al (SETQ ORG BPORG)
{SETQ MODE T)
(GO NP)
A2 (SETQ ORG (JUST (LAPEVAL (CAR L))))
NP (COND (ET (RETURN ST)))
(SETQ LOC ORG)
(SETQ LIS (CDR L))
B {COND ((NULL LIS) (GO EP)))
(SETQ I (CAR LIS))
(COND ((ATOM I) (GO ES)) ((EQ (CAR I) (QUOTE EQU))

(P2 (GO 1233

- 315 -

(GO D))

NW (SETQ LOC (ADD1 LOCY))
KW (SETQ LIS (CDR LISH)

(GO B)

12 (SETQ 1V (LAPEVAL (CAR 1))}

(COND ((NULL (CDR 1)) (GO 1IwW)))

(SETQ IV (*LOGOR (JUST (LAPEVAL (CADR I))) IV))

{COND ((NULL (CDDR I)) (GO Iw)yM)

(SETQ 1V (*LOGOR (LSHIFT (LAPEVAL {(CADDR I)) 18) Iv))

(COND ((NULL (CDDDR I)) (GO IwW)))

(SETQ IV (*LOGOR (LSHIFT (JUST (LAPEVAL (CADDDR I))}))

IW (#PLANT 1V LOC)

(COND ((NOT PRINLIS) (GO NW)}Y)

(PRINOCT LOC 6) (PRIN1 BLANK)

(PRINOCT 1V 16)

(BLANKS 10)

(PRINT 1)

(GO Nw)

D (COND (P2 (GO D2131)

(SETQ IV (LAPEVAL (CADDR 1)))

(SETQ ST (CONS (CONS (CADR I) 1Iv) ST))

(RO KW

D2 (COND ((NOT PRINLIS) (GO KWw})))

(BLANKS 7}

(PRINOCT 1V 16)

(PRIN1 BLANK)

(PRINT 1)

(GO KW)

ES (COND (P2 (GO PS)))

{SETQ ST (CONS (CONS T LOCY ST))

(GO KW)

PS (COND ((NOT PRINLIS) (GO KW)))

(BLANKS 26)

(PRINT 1)

(GO KW)

EP (COND ((NOT P2) (GO E1)) (EI (RETURN ST)) ((NULL TRW)

(CSET (CAAR L) TRW)

(RETURN ST)

E1 (COND ({AND MODE (GREATERP LOC TBPS)}) (GO SE)))

{(SETQ P2 T)

(GO NP)

SE (PRINT (LIST (QUOTE (OUT OF BPS AT)) LOC))

{TERPRI)

(RETURN ST1) 1))

(LAPEVAL (LAMBDA (X) (PROG (S J K)

(COND ((NULL X) (RETURN BPORG)) ((ATOM X) (GO L1})
((EQUAL X (QUOTE (QUOTE NIL))) (RETURN 777600Q))
((FQ (CAR X) (QUOTE E)) (RETURN (#LOCN (CADR X})))
((EQ (CAR X) (QUOTE QUOTE)) (RETURN (*LOCN

(PROG (G) (SETQ G (GENSYM)) (RPLACA G (CADR X))
(RPLACD G NIL) (RETURN GY 1)))

- 316 -

24)

Iv))

(RETURN ST1))

)

((EQ (CAR X) (QUOTE SPECIAL)) (RETURN (PROG2
(SETQ IV (*LOGOR 1V 20Q6)) {*LOCN {(CADR X))))))

(SETQ S 0)
{SETQ J X)
A (COND {((NULL J) {(RETURN S)))
(SETQ S (*¥PLUS S (LAPEVAL (CAR J)¥))
(SETQ U (CDR UM)
(GO A)

L1 (COND ((NUMBERP X) (RETURN X)) ((EQ X DOLLAR) (RETURN LOC)))
(SETQ K ST}

L2 (COND ((NULL K) (GO L3)) ((EQ (CAAR K} X} (RETURN (CDAR K))))
(SETQ K (CDR K)}
{GO L2)

L3 (COND ((NUMBERP {(CAAR X)) (RETURN (CAAR X))))
U (PRINT (LIST X (QUOTE NOT} (QUOTE DEFINED) 1)
(SETQ EI T)
(RETURN 0))))
(JUST (LAMBDA (A) (*LOGAND A 777777Q))
(BLANKS (LAMBDA (A) (PROG NIL
L (COND ((ZEROP A) (RETURN NIL})))
(PRIN1 BLANK)
(SETQ A (SUBL1 AY)Y (GO L))))

UNSPECTAL ((ST IV EI LOC))

NIL I 1Y Y Ry)Y Ay oy)

FIN END SAUNDERS COMPILER

TOTAL

- 317 -

1514

1514%

Appendix 4

The LISP Program

for the A-Language

William Henneman

1. The A-Language System Listing

DEFINE ((
(NOT (AMBDA (X) (COND ((FQ X T) NIL) (TD))))
(LAST (LAMBDA (X) (COND ((NULL X) NIL) ((NULL (CDR X)) (CAR X))
(T @AST (CDR X))))))
(FIFTH (LAMBDA (X) (CAR (CDDDDR X))))
(VAR (LAMBDA (X Y) (COND ((NULL Y) NIL)
((OR (EQUAL (CAR Y) (CADR X)) (MEMBER (CAR Y) (CADDR X)))
(VAR X (CDR Y)))
(T (CONS (CAR Y) (VAR X (CDR Y)))))))
(UNWIND (LAMBDA (X) (VAR X (FIFTH X))))
(THENS (LAMBDA (X) (COND ((EQUAL (CAR X) (QUOTE THEN)) (THEN
(CDR X)))
(T (THENS (CDR X))))))
(DEF (LAMBDA (X) @IST (QUOTE DEFINE) (LIST (LIST (.IST
(CADR X) (LIST (QUOTE LAMBDA) (UNWIND X) (DEFN (LAST X)))))))))
(DEFL (LAMBDA (X) (DEFL1 (CONDIT O 0 X))))
(DEFL1 (@LAMBDA (X) (DEFL2 (VERB (IF (CDR X))) (VERB (THENS X)))))
(DEFL2 (@AMBDA (X Y) (LIST)
(COND ((EQUAL (LENGTH X) 1) (CAR X)) (T X))
(COND ((EQUAL (LENGTH Y) 1) (CAR Y)) (T Y)))))
(FF (LAMBDA (X) (COND ((NULL X) NIL)
((ATOM X) X)
(T (FF (CAR X))))))

- 318 -

(DEFM1 (LAMBDA (X Y) (COND
((NULL X) NIL)
(T (CONS (DEFL X) (COND
((NULL Y) NIL)
((EQUAL (CAR Y) (FF Y)) (LIST Y))
Ty 1NN
(DEFJ (LAMBDA (X N) (COND ((NULL X) NIL)
((EQUAL (CAR X) (QUOTE IF)) (DEFJ (CDR X) (ADD1 N)))
((EQUAL (CAR X) (QUOTE ELSE)) (COND
((EQUAL N 1) (COND
((NULL (CDR X)) (PRINT (QUOTE (INC COND))))
((EQUAL (CADR X) (QUOTE IF)) (DEFM (CDR X)))
(T (DEFL (CONS (QUOTE IF) (CONS (QUOTE T)
(CONS (QUOTE THEN) (CDR X))))))))
(T (DEFJ (CDR X) (SUB1 N)))))
(I (DEFJ (CDR X) N)))))
DEFINE ((
(DEFN (LAMBDA (X) (COND ((NULL X) NIL)
((EQUAL (CAR X) (QUOTE IF)) (CONS (QUOTE COND) (DEFM X)))
(T (VERB (CONS (CAR X) (DEFN (CDR X))))))))
(VERBIOSE (LAMBDA (X Y) (VERBIOSEl1l (VERBS X Y Y 0) Y)))
(VERBIOSE1 (LAMBDA (X Y (COND ((EQUAL X Y) T) (T X))))
DEFINE ((
(VERB1 (LAMBDA (X Y) (COND ((EQUAL Y T) X) (T (VERB Y)))))
(SEX (LAMBDA W X Y Z N) (COND
((NULL X) NIL)
((EQUAL (DIFFERENCE N (VERBPOS X Y)) 0)
(CONS Y (SEXY WX (CONS Y Z) (LENGTH X))))
(T (UNTOUCH (CDR X) Y Z (SUBL N))))))
(BEGINCOUNT (LAMBDA (M N X) (COND (ONULL X) NIL)
((EQUAL (CAR X) (QUOTE BEGIN)) (BEGCOUNT M N X))
(T (BEGINCOUNT M N (CDR X))))))
(BEGCOUNT (LAMBDA (M N X) (COND ((NULL X) NIL)
((EQUAL (CAR X) (QUOTE BEGIN)) (CONS (CAR X) (BEGCOUNT
(aDD1 M) N (CDR X))))
((EQUAL (CAR X) (QUOTE END)) (COND
((EQUAL (SUB1 M) N) NIL)
(T (CONS (CAR X) (BEGCOUNT M (ADD1 N) (CDR X))))))
(T (CONS (CAR X) (BEGCOUNT M N (CDR X)))))))
(VERBDEF1 (LAMBDA (X Y Z) (COND
(ONULL X) (COND ((NULL X) Y)(T (CONS Y Z))))
((NULL 2) (COND ((NULL Y) X) (I (APPEND X (LIST Y)))))
(ONULL Y) (APPEND X Z))
(T (APPEND X (CONS Y Z))))))
(PROPFORM (LAMBDA (X) (COND ((EQUAL (LENGTH X) L) X)
(T (CONS (CARX) (LIST (CDR X)))))))
(CONDIT (LAMBDA (M N X) (COND
((NULL X) NIL)

- 319 -

((EQUAL (CAR X) (QUOTE IF)) (CONS (CAR X)
(CONDIT (ADD1 M) N (CDR X))))
((EQUAL (CAR X) (QUOTE ELSE)) (COND
((ENUAL (SUB1 M) NL NIL)
(T (CONS (CAR X) (CONDIT M (ADD1 N) (CDR X))))))
(T (CONS (CAR X) (CONDIT M N (CDR X))))))
(4 (LAMBDA (X Y) (COND ((NULL Y) (MINUS 1))
((ONULL X) (H LISTC (CDR Y)))
((AND (EQUAL (CAAR X) (QUOTE DEFINE)) (EQUAL (CADAR X)
(CAR Y)))
(COND ((GREATERP (CAAR (CDDDAR X)) (H LISTC (CDR Y)))
(CAAR (CDDDAR X))) (R (H LISTC (CDR Y)))))
(T ® (DR X) Y)) N)
(VERB (LAMBDA (X) (VERB1 X (VERBIOSE LISTC X))))
(VERBS (LAMBDA (X Y Z N) (COND ((NULL X) (VERBS LISTC (CDR Y) Z
(ADD1 N))) (QONULL Y) T)
(MEMBER (QUOTE BEGIN) Y) (APPEND (PREBEG Y) (CONS
(BEGINFN (CDR (BEGINCOUNT O O Y))) (ENDCOUNT O Y))))
((AND (EQUAL (CAAR X) (QUOTE DEFINE)) (EQUAL (CADAR X)
(CAR Y)))
(COND ((GREATERP (CAAR (CDDDAR X)) (H LISTC (CDR Y)))
(VERBDEF (CAR X) Z N))) (T (VERBS LISTC (CDR Y) Z
(ADD1 N)))))
(T (VERBS (CDR X) Y Z N)))))
(TRANSLATE (LAMBDA (X) (COND ((NULL X) NIL)
((ATOM (CAR X)) NIL)
((EQ (CAAR X) (QUOTE DEFINE)) (APPEND (DEF (CAR X))
(TRANSLATE (CDR X))))
(I (APPEND (PROPFORM (VERB (CAR X))) (TRANSLATE
(CDR X)))))))
))
STOP))))))))))))STOP
FIN
(" (SEX (CDR W) X Y Z (SUBL N))))))
(VERBPOS (LAMBDA (X Y) (COND
((EQUAL (CAR X) Y) 0)
(T (ADD1 (VERBPOS (CDR X) Y))))))
))
DEFINE ((
(VERBDEF (LAMBDA (X Z N) (VERBDEF1
(UNTOUCH (FIFTH X) (CADR X) Z N)
(SEX Z (FIFTH X) (CADR X) (CADDR X) N)
(NONTOUCH (FIFTii X) Z N))))
))
DIEFINE ((
(NONTOUCH (LAMBDA (X Y N) (COND
((NULL Y) NIL)
((EQUAL (PLUS N (LENGTH X)) 1) (CDR Y))

- 320 -

(T (NONTOUCH X (CDR Y) (SUB1 N))))))
))
DEFINE ((
(IF (LAMBDA (X) (COND ((NULL X) NIL)
(MEMBER (QUOTE BEGIN)X) (IF
(APPEND (PREBEG X) (CONS (BEGIF (BEGINCOUNT 0 0 X))
(ENDCOUNT 0 X)))))
((EQUAL (CAR X) (QUOTE IF)) (LIST (DEFN X)))
((EQUAL (CAR X) (QUOTE THAN)) NIL)
(T (CONS (CAR X) (IF (CDR X)))))))
(THEN (LAMBDA (X) (COND ((NULL X) NIL)
((MEMBER (QUOTE BEGIN)X) (THEN
(APPEND (PREBEG X) (CONS (BEGIF (BEGINCOUNT O O X))
(ENDCOUNT 0 X)))))
((EQUAL (CAR X) (QUOTE IF)) (LIST (DEFN X)))
((EQUAL (CAR X) (QUOTE ELSE)) NIL)
((EQUAL (CAR X) (QUOTE THEN)) NIL)
(T (CONS (CAR X) (THEN(COR X)))))))
(PREBEG (LAMBDA (X) (COND ((NULL X) NIL)
((EQUAL (CAR X) (QUOTE BEGIN)) NIL)
(T (CONS (CAR X) (PREBEG (CDR X)))))))
(BEGINFN (LAMBDA (X) (COND ((NULL X) NIL) (T (VERB X)))))
(ENDCOUNT (LAMBDA (N X) (COND ((NULL X) NIL)
((EQUAL (CAR X) (QUOTE BEGIN)) (ENDCOUNT (ADD1 N) (CDR X)))
((EQUAL (CAR X) (QUOTE END)) (COND
((EQUAL N 1) (CDR X))
(T (ENDCOUNT (SUB1 N) (CDR X)))))
(T (ENDCOUNT N (CDR X))))))
(BEGIF (L?MBDA) (COND ((MEMBER (QUOTE IF) X) (DEFN X))
(T X))))
(SEXY (LAMBDA (X Y Z N) (COND ((EQUAL N 0) NIL)
((NOLL X) NIL)
((MEMBER (CAR X) Z) (SEXY (CDR X) Y Z (SUBL N)))
(T (CONS (CARX) (SEXY (CDR X) Y Z (SUBL N)))))))
(UNTOUCH (LAMBDA (X Y Z N) (COND
(NULL X) NIL)
((NULL Z) NIL)
((EQUAL (CAR X) Y) (COND ((EQUAL N 0) NIL)
(T (CONS (CAR Z) (UNTOUCH X Y (CDR Z) SYB1 N))))))

2. Application of A-Language:

(a) Letter-Sequence
Prediction Listing Written in A-Language-Input

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..
CSET

- 321 -

(LISTB (PUT WISTABCDEFGHIJKLMNOPQRSTUV

W X Y Z) INTO ALPHABET)

(PUT 0.5EQ INTO PARM2)

(PUT 0.66999999E0 INTO PARM3)

PUT LENGTH OF ALPHABEI INTO PARM4

(PUT PARM4 MS 1 INTO PARMS

(DSFINE POSITION (OF IN) (0.105E2) (POSITION OF X IN A)

(IF X EQUALS FIRST OF A THEN O ELSE 1 PS POSITION OF
X IN REST OF A))

(POSITION OF C IN ALPHABET)

(OEFINE POSITIONLIST (OF) (0.105E2) (POSITIONLIST OF X)
(IF X IS EMPTY THEN NIL ELSE CONNECT POSITIONLIST
OF REST OF X TO POSITION OF FIRST OF X IN ALPHABET))

(OEFINE FIRSTDIFFERENCE (OF AND) (0.105E2) (FIRSTDIFFERENCE
OF X AND Y) (IF X IS EMPTY THEN NIL ELSE CONNECT FIRST-
DIFFERENCE OF REST OF X AND REST OF Y TO FIRST OF X MS
FIRST OF Y))

(DEFINE COMPOSE (THIS OF TIMES) ($) (COMPOSE THIS FC OF X
N TIMES) (IF N EQUALS O THEN X ELSE IF X IS EMPTY
THEN NIL ELSE COMPOSE THIS FC OF (FC X) N MS 1 TIMES))

(DEFINE DISCARD (LEADING ELEMENTS OF) (6) (DISCARD N LEADING
ELEMENTS OF X) (FIRSTDIFFERENCE OF BEGIN COMPOSE THIS
(FUNCTION CDR) OF X N TIMES END AND X))

(DEFINE MODLIST (OF) (0.105E2) MODLIST OF X) (IF X IS
EMPTY THEN NIL ELSE CONNECT MODLIST OF REST OF X TO
BESIN REDUCE FIRST OF X MODULO ALPHABETHLENGTH END))

(DEFINE DIFFLIST (OF AND) (0.105E2) (DIFFLIST OF A AND X
(IF X IS EMPTY THEN NIL ELSE IF A EQJALS FIRST OF X
THEN DIFFLIST OF A AND REST OF X ELSE CONNECT DIFFLIST
OF A AND REST OF X TO FIRST OF X))

(DEFINE NEXTMEMBER (TH OF) (0.55E1) (N TH NEXTMEMBER OF X)
(1 PS BEGIN RMDR WHEN LENGTH OF X IS DIVIDED BY N END
TH NTHMEM1 OF X)) (DEFINE NTHMEMI (TH OF) (4) (N TH
NTHMEM1 OF X) (IF X IS EMPIY THEN NIL ELSE IF N E)QUALS
1 THEN FIRST OF X ELSE N MS 1 TH NTHMEM1 OF REST OF X))

(DEFINE PATTERNCONSTANTS (OF) (7) (PATTERNCONSTANTS OF X)
(PROG (P L HLENY N M LENL)

(SETQ P 1)

(SETQ HLENY (TIMES PARM2 (LENGTH Y)))

C (SETQ L. MODLIST (DISCARD P Y)))

(SET) LENL (TIMES PARM3 (LENGTH L)))

(SETQ N 1)

B (SETQ) M (MODLIST (DISCARD N L)))

(COND ((NULL (DIFFLIST O M)) (RETURN (CONS P N))))
(COND ((GREATERP N LENL) (GO A)))

(SETQ0 N (ADD1 N)) (GO B)

A (COND ((GREATERP P HLENY) (RETURN NIL)))
(SETQ P (ADD1 P))

GP ©)))

- 322 -

(DEFINE PERIODTEST; (OF AND) (6) (PERIODTESTL OF U AND Y) (IF U
IS EMPTY THEN NIL ELSE RETURNLETTER CORRESPONDING TO
REDUCE BEGIN BEGIN REST OF U TH NEXTMEMBER OF DISCARD
FIRST OF U LEADING ELEMENTS OF Y END PS BEGIN 1 PS
LENGTH OF Y MS FIRST OF U TH NTHMEM1 OF Y END END
MODULO ALPHABETLENGTH))

(DEFINE PERIODTEST2 (OF) (9) (PERIODTEST2 OF X) (PERIODTEST1 OF
PATTERNCONS TANTS OF X AND X))

(DEFINE PERIODTEST (OF) (8) (PERIODTEST OF X) (PERIODTEST2 OF
POSITIONLIST OF X))

(DEFINE MODULO REDUCE ALPHABETLENGTH) (4) (REDUCE X MODULO
ALPHABETLENGTH) (IF X IS GREATER THAN PARMS THEN
REDUCE X PS PARM4 MODULO ALPHABETLENGTH ELSE X))

(DEFINE RETIRNLETTER (CORRESPONDING TO) (3) (RETURNLETTER
CORRESPONDING TO N) (FIRST OF BEGIN COMPOSE THIS
(FUNCTION CDR) OF ALPHABET N TIMES END))

(FIRSTDIFFERENCE OF (2 3 4 5) AND (1 2 3 4 5))

(COMPOSE THIS (FUNCTION CDR) OF (1 2 3 4 5) 2 TIMES

(PERIODTEST OF J I HGF E D C))

REDUCE 30 MODULO ALPHABETLENGTH)

(STOP)))

(b) Letter-Sequence
Prediction Listing Produced from A-Language Input

END OF EVALQUOTE, VALUE IS..

(DEFINE (((INTO (LAMBDA (X Y) (CSETQ Y X)))))

DEFINE (((GREATER (LAMBDA (X Y) (GREATERP X Y)))))

DEFINE (((PS (LAMBDA (X Y) (PLLS X Y)))))

DEFINE (((MS (LAMBDA (X Y) (PLUS X (MINUS Y))))))

DEFINE (((* (LAMBDA (X Y) (TIMES X Y)))))

DEFINE (((/ (LAMBDA (X Y) (QUOTIENT X Y)))))

DEFINE (((FIRST (LAMBDA (X) (CAR X)))))

DEFINE (((REST (LAMBDA (X) (CDR X)))))

DEFINE (((EQUALS (LAMBDA (X Y) (EQUAL X Y)))))

DEFINE (((EMPTY (LAMBDA (X) (NULL X))))))

DEFINE (((CONNECT (LAMBDA (X Y) (CONS Y X)))))

DEFINE (((RMDR (LAMBDA (X Y) (REMAINDER X Y)))))

DEFINE (((LENGTH (LAMBDA (X) (COND ((EMPTY X) 0) (T (PFS 1
(LENGTH @REST X)))))))))

INTO ((LISTABCDEFGHIJKLMNOPQRSTUVWXYZ2)
ALPHABET)

INTO (0.5EQ PARM2)

INTO (0,66999999E0 PARM3)

INTO ((LENGTH ALPHABET PARM4)

INTO ((MS PARM4 1) PARM5)

DEFINE (((POSITION (LAMBDA (X A) (COND ((EQUALS X (FIRST A)) 0)
(T (PS 1 (POSITION X (REST A)))))))))

- 323 -

POSITION (C ALPHABET)

DEFINE (((POSITIONLIST (LAMBDA (X) (COND ((EMPTY X) NIL (T
(CONNECT (POSITIONLIST REST X)) (POSITION (FIRST X)
ALPHABET)))))))))

DEFINE (((FIRSTDIFFERENCE (LAMBDA (X Y) (COND ((EMPTY X) NIL)
(T (CONNECT (FIRSTDIFFERENCE REST X) (REST Y)) (MS
(FIRST X) (FIRST Y)))))))))

DEFINE (((COMPOSE (LAMBDA (FC X N) (COND ((EQUALS N 0) X)
((EMPTY X) NIL) (T (COMPOSE FC (FC X) (MS N 1D))))))

DEFINE (((DISCARD (LAMBDA (N X) (FIRSTDIFFERENCE (COMPOSE
(FUNCTION CDR) X N) X)))))

DEFINE (((MODLIST (LAMBDA (X) (COND ((EMPTY X) NIL (T (CONNECT
(MODLIST REST X)) ((MODULO (FIRST X))))))))))

DEFINE (((DIFFLIST (LAMBDA (A X) (COND ((EMPTY X) NIL ((EQUALS
A (FIRST X)) (DIFFLIST A REST X))) (T (CONNECT
(DIFFLIST A REST X)) (FIRST X))))))))

DEFINE (((NEXTMEMBER (LAMBDA (N X) (NTHMEM1 (PS 1 (RMDR (LENGTH
X) N)) X))

DEFINE (((NTHMEM1 (LAMBDA (N X) (COND ((EMPTY X) NIL ((EQUALS
N D IRST X)) (T (NTHMEML (MS N 1) (REST X))))))))

DEFINE (((PATTERNCONSTANTS (LAMBDA (X) (PROG (P L HLENY N M LEMD)

(SETQ P 1)

(SETQ HLENY (TIMES PARM2 (LENGTH Y)))

C (SETQ L (MODLIST (DISCARD P Y)))

(SETQ LENL (TIMES PARM3 (LENGTH D)))

(SETQ N 1) .

B (SETQ M (MODLIST (DISCARD N D))

(COND ((NULL (DIFFLIST O M)) RETURN (CONS P N))))
(COND ((GREATERP N LEND (GO A)))

(SETQ N (ADD1 N))

(GO B)

A (COND ((GREATERP P HLENY) (RETURN NID))
(SETQ P (ADD1 P))

G0 C))))))

DEFINE (((PERIODTEST1 (LAMBDA (U Y) (COND ((EMPTY) NID (T
RETURNLETTER (MODULO ((PS (NEXTMEMBER (REST U)
(DISCARD (FIRST U) Y)) (NTHMEM1 (PS 1 (MS (IENGTH Y)
(FIRST U)) YNNI

DEFINE (((PERIODTEST2 (LAMBDA (X) (PERIODTEST1 (PATTERNCONSTANTS
X X))

DEFINE (((PERIODTEST (LAMBDA (X) (PERIODTEST2 (POSITIONLIST X))

DEFINE (((MODULO (LAMBDA (X) (COND ({GREATER X PARM5) (MODULO
(MS X PARMS) (MODULO (MS X PARM4))) ((GREATER 0 X)
(MODULD (PS X PARM4))) (T X))))))

DEFINE (((RETURNLETTER (LAMBDA (N) (FIRST (COMPOSE (FUNCTION CDR)
ALPHABET N))))))

FIRSTDIFFERENCE ((2 345 (1234 5)

COMPOSE ((FUNCTION CDR) (1 2 3 4 5 2

- 324 -

PERIODTEST (J I HGF ED Q)
MODULO (30)
STOP)

- 325 -

IS U R

NoNaol Neyld)]

SO N -

Appendix 5

The LISP Implementation

for the PDP-1 Computer

L. Peter Deutsch and Edmund C. Berkeley

TABLE OF CONTENTS

Part I

Introduction

Functions and Properties Included in Basic PDP-1 LISP

Use of these Functions and Suggested Test Sequences

Auxiliary Functions which May Be Defined with LISP
Expressions

Some Additional Functions for Basic PDP-1 LISP

Input and Output

Operation of the System

Error Diagnostics

Some Remarks

Part 11
Macro Symbolic Program for Basic PDP-1 LISP
Alphabetic Listing of Defined Macro Symbols

Numeric Listing of the Defined Macro Symbols
Mnemonic Key or Derivation of Symbols

- 326 -

Part I

l, Introduction

In October 1963 a system for implementing LISP on the FDP-1
computer was finished by L. Peter Deutsch. This system was
further improved in March 1964 by adding:

-- variable length of push~down list;
-~ variasble quantity of combined storage;
~-- optional machine language subroutines;

and is here called Basic PDP-1 LISP., It uses a minimum of some
2000 (decimal) registers out of 4096 registers in a one-core
PDP-1 computer; it may use 16,361 registers in a four-core PDP-1
computer.

Basic PDP-1 LISP is presented in considerable detail in this
appendix for the following reasons:

-~ the structure of a system for programming LISP on
any computer is thereby revealed;

~~ if changes are to be implemented, they can be easily
linked with the existing system.

In a one-core PDP-1 computer with 4096 registers, as many as
4070 registers may be assigned to regular LISP, and only 23 re-
served for the read-in routine (namely, from 7751 to 7777, octal).

With the system described here, additional LISP functions
can be defined and included in the system and later used when
desired. Or if desired, additional functions can be pro-
grammed in machine language and these can be inserted compatibly
with the system.

Punched tapes for placing this LISP system on the FDP-1
computer are available through DECUS, the Digital Equipment
Corporation Users Organization, Maynard, Mass,

In the following, it is assumed that the reader has a fairly
good working knowledge of: (1) LISP (which may be obtained from
the "LISP 1.5 Programmer's Manual," 1962); (2) the machine
language codes for the FDP-1 computer (which may be obtained from
the computer manual supplied by Digital Equipment Corporation);
and (3) the program assembly language MACRO, in which the sym-

- 327 -

bolic tapes are written (a description may be obtained in two
manuals published by Digital Equipment Corporation).

2. Functions and Properties included in Basic PDP-1 LISP

The functions and properties included in Basic FDP-1 LISP
are shown in Table 1, These functions and properties together
constitute a basic subset of the functions and properties of the
LISP interpreter for the IBMM 7090, as stated in the LISP 1.5
Programmer's Manual,

In order to obtain other LISP functions and properties as
may be desired for any particular purpose, see Sectioms 4 and 5
below.

Table 1
FUNCTIONS AND PROPERTIES OF BASIC PDP-1 LISP

A. Functions Identical with the Corresponding IEBM 7090 LISP

Functions
ATOM LIST PROG
CAR LOGAND QUOTE
CDR LOGOR READ
COND MINUS RETURN
CONS NULL RPLACA
EVAL NUMBERP RPLACD
GENSYM PLUS SASSOC
GO PRINT SETQ
TERPRI
Bs Functions Somewhat Different from the Corresponding 7090
Functions
EQ This works both on atoms and on numbers

GREATERP This tests for X greater than Y, not for X
greater than or equal to Y.

STOP This is equivalent to PAUSE in 7090 LISP., It
takes a numerical argument which appears in
the accumulator when the computer halts.

PRINL X This prints the atom X without the extra space
at the end. Its value is NIL.

- 328 -

C. Functions Which Have No Analog in 7090 Functions

XEQ This provides for putting into storage a named
machine language subroutine, which can be re-
ferred to and used by the PDP-1 LISP interpreter.
It also provides for executing single specified
machine language instructions.

The SUBR (XEQ C A I) executes the machine language instruc-
tion C, with A in the accumulator and I in the in-out register;
and returns a value in the form of (g i P) where a is the new
value of the accumulator after executiocn, i is the new value of
the in-out register after executiocn, and P is T if the instruc-
tion skipped, and NIL if the instruction did not skip.

IoC X This gives the machine register in which the atom
or list X begins; its value is the location.

Of the foregoing functions, COND, LIST, PROG, SETQ, PLUS, TIMES,
LOGAND, LOGOR, and QUOTE are FSUBRs and the remainder are SUERs,

D. The following special form is available and is identical with
the corresponding form in 7090 LISP:

LAMBDA

E. The following permanent objects exist in the Basic PDP-1
LISP system:

OBLIST the current list of atomic symbols
NIL F has been replaced by NIL

T

EXPR

SUBR

FEXPR

FSUBR

APVAL

F. Miscellaneous

The print names of atomic symbols are not part of property
lists. A quick examination of listings of the system will show
exactly where the print names are.

Doing a CDR of an atom is permissible and will get the atom's
property list. Doing a CAR of an atom may very easily wreck the
system,

QUOTE should be used in place of 7090 FUNCTION. This may re=-
- 329 -

quire a bit of extra care in defining functicns with functional
arguments,

It is advisable to use PROG to avold recursion wherever pos-
sible, even thoughk it may take more space.

3. Use of these Functions and Suggested Test Sequences

How to use these functions is briefly explained here.

As soon as the basic PDP-1 LISP system is read into the
computer, control stops at register 4., Turn up sense switch 5 for
typewriter input; press CONTINUE; and the system enters a waiting
loop which causes lamps to light in the program counter, looking
like 1335. At this point, the LISP system is ready for manual
typewriter input. As soon as the operator types, for example:

(CAR (QUOTE (A B C D)))
together with a final space at the end of the last right paren-
thesis, the computer takes control of the typewriter, impulses a
carriage return, and then types out:

A
which of course is the correct answer, Similarly, for the other
sugrested test sequences in Table 2 below.

Table 2

SUGGESTED TEST SEQUENCES

InEEt Resggnse
(car (QUWTE (o B C D))) A
(cbr (QUCTE (A B ¢ D))) (B ¢ D)
OBLIST The interpreter will

type out a complete
list of the atomic
symbols stored with-
in it.

(LIST (QUOTE (A B C D))) ((a BC D))

- 330 -

NIL
(CDR NIL)
(CAR (QUOTE (T.NIL)))

(coNs (aToM (CDk T)) (LIST
(GENSYM) (GENSYM)))

(coND (EQ T NIL) (sToP 1))
(T (EQ (PLUS 1 1) 2)))

(PrOG (U) (PRINT NIL) (TERPRI)
(PRINT T) (SETQ U T)
(RETURN U))

(RPLACD (QUOTE CAAR) (QUOTE
(EXPR (LaMBDA (X) (CAR
(CAR X))))))

(casr (QUoTE ((4))))

(sTop 2)

(PRINL (QUOTE CAR))

(PRINT X)

(TERPRI)

(LoC NIL)

(LoC (QUOTE COND))

(LOGAND 6 7 3)

(LOGOR 12 3 15)
- 331 -

NIL

(APVAL NIL)
T

(NIL GO0001 GOOD2)

NIL
T
T

CAAR

A

Computer stops and
puts 2 in the
accumulator,

CAR, with no punctua=-
tion before or after;
the value of PRIML
is NIL.

Prints out the value
of X; the value of
(PRINT X) is X,

Prints a carriage re-
turn; the value of
(TERPRI) is NIL.

2651; this is the regis-
ter where the NIL
atom startse.

2725; this is the regis-

ter where the COMND
atom starts.

17

(rRPLACA (QUCTE (NIL X Y)) ((4 B) XY)
(QUoTE (4 B)))

Suppose the computer contains DDT — DDT is short for
"Digitel Equipment Corp. Debugging Tape"; its starting register
is 6000, and in one of its customary forms it uses registers
5540 to 7750. Then, if the highest storage register of LISP is
below 5540, the instruction:

(XEQ 606000 0 0)

transfers control to DDT, and puts zero in the accumulator and in
the in-out register.

If there is the following subroutine stored in the computer:

5500 dzm 5507

5501 idx 5507

5502 lac 5507

5503 dpy'

5504 sma

5505 jmp 5501

5506 jmp 2241

5507 (being used for storage)

and LISP is below 5500, then:

(XEQ 605500 0 0) Will cause a horizontal line
to be drawn on the scope
from the origin to the x-
axis positive limit, and
then control will be re-
turned to LISP.
NIL will be typed out.
22/1 is the register called
forx®" in the macro symbol-
iec.

4o Auxiliary Functions Which May Be Defined with
LISP Expressions

Any of the functions listed below in Table 3 can be put into
the system at will, as follows: Prepare a punched tape listing
of it. Insert tape into the reader. Turn on the reader. Turn
down Sense Switch 5. Thereupon the computer will read in the

- 332 -

tape. The typewriter, when the reading in is accomplished, will
type back the name of the inserted function.

Many other functions besides those listed in Table 3 may be
inserted.
Table 3
AUXILIARY LISP FUNCTIONS
ABSOLUTE VALUE

(RPLACD (QUOTE ABSVAL) (QUOTE (EXPR (LAMBDA (X) (COND ((GREATERP
0 X) (MINUS X)) (T X))))))

AND
(RPLACD (QUOTE AND) (QUOTE (FEXPR (LAMBDA (X A) (PROG NIL N (COND
((vULL X) (RETURN T)) ((NULL (EVAL (CAR X) A)) (RETURN NIL)))
(sETQ x (CDR X)) (GO N))))))

ASSOC
(RPLACD (QUOTE ASSOC) (QUOTE (EXPR (LAMEDA (X Y) (COND ((EQUAL
(CAAR Y) X) (CAR Y)) (T (assoc X (CDR Y))))))))
CAAR
(RPLACD (QUOTE CAAR) (QUOTE (EXPR (LAMEDA (X) (CAR (CAR X))))))

CADR
(RPLACD (QUOTE CADR) (QUOTE (EXPR (LAMEDA (X) (CAR (CDR X))))))

CDAR
(RPLACD (QUOTE CDAR) (QUOTE (EXPR (LAMBDA (X) (CDR (CAR X))))))

CDDR
(RPLACD (QUOTE CDDR) (QUOTE (EXPR (LAMEDA (X) (CDR (CDR X))))))

CSET
(RPLACD (QUOTE CSET) (QUOTE (EXPR (LAMBDA (X Y) (RPLACD X (LIST
(QUOTE APVAL) Y))))))

- 333 -

CSETQ
(RPLACD (QUOTE CSETQ) (QUOTE (FEXPR (LAMEDA (X A) (CSET (CAR X)
(EVAL (CADR X) 4))))))

DEX
(RPLACD (QUOTE DEX) (QUOTE (FEXPR (LAMBDA (X A) (RPLACD (CAR X)
(CoNs (QUOTE EXPR) (CDR X)))))))

DFX
(RPLACD (QUOTE DFX) (QUOTE (FEXPR (LAMEDA (X A) (RPLACD (CAR X)
(coms (QUOTE FEXFR) (CIR X)))))))

DIFFLIST

(RPLACD (QUOTE DIFFLIST) (QUOTE (EXPR (LAMBDA (A X) (COND ((NULL
X) NIL) ((EQUAL A (CAR X)) (DIFFLIST 4 (CDR X))) (T (CONS
(CAR X) (DIFFLIST 4 (CDR X)))))))))

DOUBLE
(RPLACD (QUOTE DOUBLE) (QUOTE (EXPR (LAMBDA (X) (PLUS X X)))))

EQUAL
(RPLACD (QUOTE EQUAL) (QUOTE (EXPR (LAMBDA (X Y) (COND ((ATOM X)
(EQ X ¥)) ((aToM Y) WIL) ((EQUAL (CAR X) (CAR Y)) (EQUAL
(cor X) (CIR Y))) (T NIL))))))

GREATEST COMMON DIVISOR
(RPLACD (QUOTE GCD) (QUOTE (EXPR (LaMBDA (X Y) (COND ((GREATERP

XY) (aeD Y X)) ((ZEROP (REM Y X)) X) (T (GCD (REM Y X)
x))))))

(RPLACD (Q% LAST) (QUOTE (EXPR (LaMBDA (L) (COND ((NULL L)
NIL) ((NULL (CDR L)) (CAR L)) (T (LAST (CDRL))))))))

LENGTH using Program Feature
(RPLACD (QUOTE LENGTH) (QUOTE (EXPR (LAMBDA (L) (PRoG (U V) (SETQ
vo) (SETQ UL) & (CoND ((NULL U) (RETURN V))) (SETQ U
(CcDR U)) (SETQ V (PLUS 1 V)) (GO A4))))))

LENGTH using Recursion
(RPLACD (QUOTE LENGTHR) (QUOTE (EXPR (LAMEDA (L) (COND ((NULL L)
0) (T (PLUS 1 (LENGTHR (CDR L)))))))))

MAPLIST using Recurgion
(RPLACD (QUOTE MAPLIST) (QUOTE (EXPR (LAMEDA (X A) (COND ((NULL X)
NIL) (T (coNSs (a4 X) (MAPLIST (CDR X) 4))))))))

MAPLIST usig§ Program Feature
(RPLACD (QUOTE MAPLIST) (QUOTE (FEXPR (LAMEDA (X 4) (PROG (V M R)

~ 334 -

(SETQ R (SETQ M (LIST (EVAL (CADR X) a4)))) (SETQ V (EVAL
(CAR X) A)) P (CoND ((NULL V) (RETURN (CDR R)))) (SETQ M
(CDR (RPLACD M (LIST (EVAL (LIST (CAR R) (LIST (QUOTE QUOTE)
V)) 4))))) (SETQ Vv (CDR V)) (GO P))))))

MEMBER
(RPLACD (QUOTE MEMEER) (QUOTE (EXPR (LAMEDA (A X) (COND ((NULL X)
NIL) ((EQ & (CAR X)) T) (T (MEMEER A (CDR X))))))))

MINIMUM
(RPLACD (QUOTE MIN) (QUOTE (EXPR (LAMBDA (L) (COND ((NULL L) NIL)
§ Srgu).g,))(()JDR L)) (CAR L)) (T (SMALLER (CAR L) (MIN (CDR L

NOT
(RPLACD (QUOTE NOT) (QUOTE (EXPR NULL)))

(RPLACD (Q%B;I‘E OR) (QUOTE (FEXPR (LAMBDA (X A) (PROG NIL N (CORD
((NULL X) (RETURN NIL)) ((EVAL (CAR X) A) (RETURN T)))
(SETQ X (CDR X)) (GO X))))))

PAIR
(RPLACD (QUOTE PAIR) (QUOTE (EXPR (LAMBDA (X Y) (PROG (U V M)
(SETQ U X) (SETQ V Y) (SETQ M NIL) K (COND ((NULL U) (COND
((NULL V) (RETURN M))))) (SETQ M (CONS (CONS (CAR U) (CAR V))
M)) (SEIQ U (CDR U)) (SETQ V (CDR V)) (GO K))))))

PAIRLIS
(RPLACD (QUOTE PAIRLIS) (QUOTE (EXPR (LAMBDA (X Y A) (CcOoND ((NULL
X) 4) (T (cons (coNs (CAR X) (CAR Y)) (PAIRLIS (CDR X)

(CDR Y) 4))))))))

PDEF (Print and Punch Definition)
(RPLACD (QUOTE PDEF) (QUOTE (FEXPR (LAMBDA (X A) (LIST (QUOTE
RELACD) (LIST (QUOTE QUOTE (CAR X)) (LIST (QUOTE QUOTE) (CDR

(car X)))))N))

QUOTIENT using Program Feature
(RPLACD (QUOTE QUOTIENT) (QUOTE (EXPR (LAMEDA (Q D) (PROG (U V)
(SETQ V 0) (SETQ U Q) A (COND ((GREATERP D U) (RETURN V)))
(SETQ U (PLUS U (MINUS D))) (SETQ V (PLUS 1 V)) (Go 4))))))

QUOTTIENT using Recursion
(RPLACD (QUOTE QUOTIENTR) (QUOTE (EXPR (LAMBDA (Y X) (coND ((
GREATERP X Y) 0) ((EQ X ¥) 1) ((GREATERP Y X) (PLUS 1
(QUOTTENTR (PLUS Y (MINUS X)) X))))))))

- 335 -

REMA INDER
(RPLACD (QUOTE REM) (QUOTE (EXPR (LAMEDA (Y X) (COND ((BQUAL Y
X) 0) ((GREATERP X Y) Y) (T (REM (PLUS Y (MINUS X)) X)))))))

REVERSE (Defined Recursively with Auxiliar F\mctiong

(RPLACD (QUOTE R1) (QUOTE (EXPR (LAMBDA (M L) (COND ({NULL L) M
(T (R1 (CONS (CAR L) M) (CDR L))))))))

(RPLACD (QUOTE REVERSE) (QUOTE (EXPR (LAMBDA (L) (Rl NIL L)))))

REVERSE using Program Feature
(RPLACD (QUOTE REVERSE§ (QWTE (EXPR (LAMEDA (M) (PrROG (U V)
(SETy U M) K (coND ((NULL U) (RETURN V))) (SETQ V (CONS
(car U) V)) (SETW U (CDR U)) (GC K))))))

SEQUENCE

(RPLACD (QUOTE SEQUENCE) (QUOTE (EXPR (LAMEDA (L) (PROG (U V W)
(SETQ U L) (SETQ V (MIN L)) (SETQ W NIL) & (COND ((NULL U)
(RETURN W))) (SETQ V (MIN U)) (SETQ U (DIFFLIST V U))
(SETQ W (APPEND W (LIST V))) (GO 4))))))

SMALLER
(RPLACD (QUOTE SMALLER) (QUOTE (EXPR (LAMEDA (X Y) (COND
((GREATERP X Y) Y) (T X))))))

UR2
(RPLACD (Q?IOTE SUB2) (QUOTE (EXPR (LAMEDA (A Z) (COND ((NULL A)
z) ((EQ (CAAR A) z) (CDaR 4)) (T (SUBRR (CDR &) 2)))))))

SUBLIS
(RPLACD (QUOTE SUBLIS) (QUOTE (EXPR (LAMEDA (A Y) (COND ((ATOM Y)
(suR2 A Y)) (T (CONS (SUBLIS A4 (CAR Y)) (SUBLIS A (CDR Y)))))

M)

SUBST
(RPLACD (QUOTE SUBST) (QUOTE (EXPR (LAMBEDA (X Y Z) (COND ((EQUAL
Y z) X) ((aToM 2) z) (T (CONS (SUBST X Y (CAR 2)) (SUBST X ¥

(cor 2)))))))))

TIMES us Recursion
(RPLACD (QUOTE TIMES) (QUOTE (EXPR (LAMEDA (N M) (coND ((EQUAL
N 1) M) (T (PLUS M (TIMES M (PLUS N (MINUS 1))))))))))

- 336 -

TIMES us Program Feature
(RPLACD (QUOTE TIMES) (QUOTE (EXPR (LAMBDA (X N) (ProOG (U V)
(SETQ V0) (SEIQ U 0) A (CoND ((BQ V N) (RETURN U))) (SETQ U
(PLUS X U)) (SETQ V (PLUS V 1)) (GO 4))))))

UNION

(RPLACD (QUOTE UNION) (QUOTE (EXPR (LAMBDA (X Y) (COND ((NULL X)

Y) ((MEMBER (CAR X) Y) (UNICN (CDR X) Y)) (T (CONS (CAR X)
(uvzON (CDR X) Y))))))))

ZEROP
(RPLACD (QUOTE ZEROP) (QUOTE (EXPR (LAMEDA (X) (COND ((BQUAL X

0) T) (T N1IL))))))

5¢ Some Additional Functions for Basic PDP-1 LISP

In order to remove symbols from the OBLIST, and reuse the
storage capacity that they previously occupied, we use:

(RPLACD (QUOTE XSY) (QUOTE (EXPR (LAMBDA (X) (PROG (Y) (SETQ Y
OBLIST) A (COND ((NULL (CDR Y)) (RETURN NIL)) ((BQ X (CAR
(CDR Y))) (RETURN (RPLACD Y (CDR (CDR Y)))))) (SETQ Y (CDR Y))

(co 4))))))

(RPLACD (QUOTE REMOVE) (QUOTE (FEXPR (LAMBDA (X Y) (PROG NIL A
(coNp ((NULL X) (RETURN OBLIST))) (XSY (CAR X)) (SETQ X

(cor X)) (GO 4))))))
XSY stands for Mexpunge symbol".

REMOVE is used as follows: Suppose we have a case where the
OBLIST starts for example with G F OBLITT Y X ATOM CAR CDR COND
CONS eeeee and we wish to delete F OBLITT Y, We put in: (REMOVE

OBLTIT F Y), and the computer response is:
G X ATOM CAR CDR CONS ceess

In this way, both accidentally mistyped expressions and sym=
bols no longer needed in the LISP system can be removed from stor-
age, and from any recollection within the LISP system. (Note:
REMOVE will not operate on the first expression in the OBLIST,
but only on the second and later expressions.)

In order to put in machine-language subroutines, outside of
the storage used by LISP, name them, use them, and return from
them to LISP, we use:

- 337 -

(RPLACD (QUOTE DEPOSIT) (QUOTE (EXPR (LAMBDA (X Y) (PROG NIL A
(com ((NULL X) (RETURN Y))) (XEQ (PLUS 240000 Y) (CAR X) 0)
(SETQ X (CDR X)) (SETQ Y (PLUS 1 Y)) (GO 4))))))

(RPLACD (QUOTE PUTSUBR) (QUOTE (EXPR (LAMEDA (N X Y) (PROG NIL
(RPLACD N (LIST (QUOTE SUBR) (PLUS 160000 Y))) (RETURN

GEPOSIT X 1)))))))

(RPLACD (QUOTE DEFSUBR) (QUOTE (EXPR (LAMBDA (N X)
(RPLACD N (LIST (QUOTE SUBR) (PLUS 160000 X)))))))

The EXPR (DEPOSIT X A) deposits the list of numbers X
starting at location A; its value is the first register beyond
the list.

The EXPR (PUTSUBR N X A) performs (DEPOSIT X A), and then
sets up N (name) as a SUBR starting at A.

An example (if LISP storage stops at 5477) is:

(PUTSUER (QUOTE SHOWLINE) (LIST 345507 445507 205507 730007
640400 605501 602241) 5500)

This inserts the line-display program mentioned above into the
computer starting at register 5500 and makes it accessible to LISP
with the name SHOWLINE.

The EXPR (DEFSUBR N X) accepts an existing, inserted,
machine-~language subroutine starting at register X, gives it the
name N, and makes 1t accessible to LISP with the name N, For ex-
ample, the line-display program mentioned above, if already in
the computer, could be named and called with:

(DEFSUBR (QUOTE SHOWLINE) 5500)
The last command in the subroutine, instead of 602241, should be
either 600004, if LISP is to return to the starting address 4, or
600005, if LISP is to continue to the waiting loop.
If the A-LIST is wanted, establish GETALIST with:
(RPLACD (QUOTE GETALIST) (QUOTE (FEXPR (LAMBDA (X Y) Y))))

and then use:

(PRINT (GETALIST))

- 338 -

6. Input and Output

Input comes from the typewriter if sense switch 5 is up and
from the tape reader otherwise. Output is normally on the type-
writer; however, SS 3 up causes punching (with correct parity)
and SS 6 up independently suppresses typeout.

Each S-expression typed in will be evaluated and its value
printed out. Unlike 7090 LISP, arguments of functions are also
evaluated on the top level; for example, to evaluate

cons [A; BJ

it ié necessary to write
(CoNs (QUOTE 4) (QUOTE B))

In preparing input:

Tab, space, and comma are equivalent;

Carriage return is ignored:

Backspace causes deletion of everything typed since the
last control character (parenthesis, space/tab/comma,
or period);

An extra space must be typed to terminate the entire
expression;

Upper and lower case shifts will be noted but not neces~
sarily inserted into the symbol at that point (for ex-
ample, the sequence wu.c., l.c., u.c., A, space, pro-
duces a symbol with print name u.c., 4, l.c.):

Alphabetic characters should regularly and genefally be
in lower case; and basic functions, (such as CAR,

CDR, +ees) contrary to their representation through-
out this report, are in PDP-1 LISP actually stored in
lower-case symbols (such as car, cdr); and then
taken in to the system and put out by the system as
lower-case symbols;

It is very advisable to stick to "printout® format for
all input since the READ routine is not guaranteed to
work on any other form, although it may;

Hyphen, "-% is a letter and does not negate a following
number;

Al]l numbers are octal integers; to input the number -1
it is necessary to type 777776;

There is no limit on the length of a print name;

The character overbar """ or vertical bar "\" will cause
the next character to be inserted in the print name
and considered a letter, regardless of what it
actually is (the "=® or "|" itself does not appear

- 339 -

in the print name): thus atoms may be generated for
output formatting purposes with names suck as "tab"
or "gpace".

In producing the output:

A carriage return is automatically generated after any
100(octal) characters not containing a carriage re-
turn;

Unlike the 7090 LISP output, no spaces are provided be-
fore and after the "." of concatenation (since there
are no floating-point numbers to be concerned with),

7. Operation of the System
First, zero core, to avold unnecessary difficulties.

Seccnd, put the binary tape in the reader, and press READIN.
Do nothing until the tape stops. Almost all of the tape will read
in; and the machine will come to a halt. If you wish 7701 to be
the highest register of free storage, and 300 to be the length
of the push-down list, press READIN once more. The machine will
stop at address 4. Turn up Sense Switch 5 (to control from the
typewriter). Press CONTINUE.

If you wish to select the highest register of free storage,
when the machine stops for the first time, with memory address
at 0004, put the number of the highest register of free
storege (recommended, 5000 to 7750; possible but not recommended,
4000 to 4777) in the Test Word switches and press CONTINUE. Then
put the length of the push down list (suggested 200 to 400) in
the Test Word switches, and press CONTINUE. The machine will go
to address 4. Turn up Sense Switch 5, and press CONTINUE. The
LISP system should be ready for use.

If the tape stops at an improper place, pull the tape back
a block, check for missing holes, and CONTINUE. When the tape
stops at 4, CONTINUEing begins the READ-EVAL~PRINT cycle., STAKT-
ing at 4 at any time and CONTINUEing is safe; indeed, it is the
only way to annull most typing errors.

If the system "drops dead", the normal recocurse is to start
over.

Following is the assignment of the sense swilches and the
progran flags:

- 340 -

SS 1 Idiot trace
2 -
3 Punch out
4 -
5 Type in
6 No typeout
PF 1 Used for type-in
2 Zero suppress in octal print
3 -
A -
5 Letter in symbol
6 Off in error printout

8+ Error Diagnostics

Error halts cause identification of the error and typing
of the error code in red on the typewriter, regardless of the
settings of Sense Switches 3 and 6; an error usually sends the
system to address 4. The list of error indications follows:

icd
uss
tma

1lts
ats
sce

pce
nna

ovf

Illegal COND; returns value NIL and continues.

Unbound symbol in SETQ; returns NIL and continues.

Too many arguments for a SUBR (more than 3); ignores
extra arguments and proceeds.

Unbound gtomic gymbol (followed by the form current-
ly being evaluated).

Illegal parity; halts with character in accumulator. CON-
TINUE ignores character, but SS 5 may be turned
up, and typing used to provide a replacement if
desired.

LAMBDA variable list too ghort.

Argument 1ist (paired with LAMBDA 1ist) too ghort.

Storage capacity exceeded. CONTINUEing is not
advisable, as it will probably call the same er-
ror asgain in short order , unless one promptly de-
letes several atoms having lengthy definitions
from the OBLIST.

Pushdown capacity exceeded.

Non-numeric argument for arithmetic, followed by the
argument in question; returns value zero and pro-
ceeds.

Argument not gtom (for PRIN1); returns NIL as usual
and proceeds.

Division overflow; returns zero and proceeds,

- 341 -

9. Some Remarks

In general, each character in each LISP expressicn is recog-
nized by the ccmputer as 2 octal digits called concise code. The
pairs of octal digits are packed 3 pairs at a time into the 6-
octal-digit registers of the PDP-l. If a LISP atcm has a number
of characters which is nct a multiple of three, there will be
spaces left over, which are filled arbitrarily with a filler
character, 76 (octal). For example, a LISP word with 7 charac-
ters such as SMALLER will be packed into three computer regis-
ters, SMA inone, L L E in a second, and R along with two
filler characters in the third.

These three registers are linked by list structure. An ex-
ample of a hypothetical list structure which might store SMALLER
if introduced as a defined function into the LISP system would be
as shown in Table 4:

Table 4
FDP-1
negister Contents Meaning Comments
5763 405765 pointer to 5765 5765 is the start of
the print name of
the atom SMALLER
5764, 005773 pointer to prop- 5773 is the start of
erty list the property list
5765 244,61 SMaA Concise code
5766 005767 pointer 5767 holds continuation
of the 1list
5767 434365 L LE Concise code
5770 005771 pointer 5771 holds continuation
of the list
577 767651 - =R Concise code and 2
filler characters
5772 003011 nil Terminator of list

- 342 -

If SMAILFR were defined by the expression:
(RPLACD (|QUOTE SMALLER) (lQUOTE (’.EXPR (LAMBDA (X Y)
° (3] <

‘(‘corm (s(bGREATERP Y XZ x; (TY))))))

& SF49z2/0

then the property list of SMALLER would be (hypothetically) as
shown in Table 5:

Table 5
Register Contents Meaning
5713 003271 WEXPRM
5774 005775 pointer
5TT5 005777 pointer
5776 002651 nNIL"
5771 003255 "LAMBDAM
6000 006001 pointer to forking
6001 006003 pointer to (X Y)
6002 006007 pointer to (COND
6003 007701 nxt
6004 006005 pointer
6005 007711 ryu
6006 002651 UNILM
6007 002725 "CoND"

etc.

An accepted LISP expressicn L is identified within the mach-
ine by the address of the list structure in storage which repre-
sents L.

The couputer evaluates expressicns using either machine sub=-
routines (SUBRs and FSUBRs) or LISP subroutines (EXPRs or FEXPRs).

The computer converts the resulting value into concise codes,
and presents the wvalue for output to the computer-associated
typevriter or the punch.

Basic PDP-1 LISP is very flexible:
1. The number of registers on the push-down list can be
reasonably varied between 200 and 400 octal. The number chosen

can vary according to the amount of recursion it is desired to
provide for.

- 343 -

2. The number of registers of storage (there is only one
kind of storage) can be varied from under 1000 octal to over 4000
octal in a one-core machine. In the smallest extreme case,
LISP system can occupy only the registers up to about 4000 octal;
in the other extreme case LISP can occupy all the registers up
to 7750 octal, leaving 7751 to 7771 for the read-in subroutine,

3. Machine subroutines may be located in core, and referred
to and used, These machine subroutines should be located above
the highest register in free storage.

L. DDT (the Digital Debugging Tape) may be loaded in
registers 5500 up and LISP may be loaded below, so that the
facilities of DDT are available for modifying LISP,

5. A core dump routine may be loaded into 400 (octal) regis-
ters above free storage and used upon LISP.

- 344 -

1. Macro Symbolic Program for Basic
lisp 3-23-64 : 1 field define
define extend

termin .
define
define 1load A,B
law B
dac A
termin
define
define init A,B
law B
dap A
termin
define index A,B,C define
idx A
sas B
Jmp C
termin
define step A,B,C define
index 4,(B,C
termin
define setup A,B
law 1 B
dac A
termin
define exit
Jmp R
termin
define move A,B
lac A start
dac B
termin

Part II

- 345 -

PDP-1 LISP

load A,B
move (B,A
termin

count A,B
isp A
Jmp B
termin

test K,P
sad (K
Jmp P
termin

undex A
law 1 1
add A
dac A
termin

swap
rcl 9s
rcl 9s
termin

smi=spi 1

szm=sza sma-szf

spg=szm 1

xy=0

xx=hlt

clo=spa sma 820 1-szf-szf
mul=540000

d1v=560000

Lisp interpreter 3-20-64, part 1 buf,

77/ 0
L/ 0
dap rx
g0, hlt+cla+cli+7-opr-opr sub (1
stf 6 dap .+1
extend lac xy
dzm 77 dap ave+i
e Jaa pul
dap avx ave, fac ROO
beg, law pdo-1 exit
dl
Cllgg n /create number
dac ar2
cal rin crn, lio (Jmp
cal evo rcl SS
cal pnt rar 2s
oo Bes sac 100
tO
tl: 8 /oprint or punch character
0
51l o pe, and (77
3
hi, 0 §ad (76
csi 2 mp X
cso: gg ior (ral
1 0 dac pce
gaij 0 §ad (ra1377
0 1s1 1s1-1 mp pee=
ggt, repeat 5,20 3;2 gzz 1
a 0 -
a1, 0 law 277
a2, 0 cal out
law 1 4100
/append word to pdl gac g;g
aw
pwl, 0
dap pwx pce, XX
idx pdl and (200
sad bfw éor 288
Jmp qg2 ac
lac pwl §tf 2
dac 1 pdl Jmp out
pWX, exit pch, -100
/retrieve word from pdl /get numeric value
uw, 0 vag, 1io 1 100
uwl, dap uwx cla
l1io 1 pdl rcl 2s
undex pdl sas (33
Jmp gl
UwX, exit idx 100

- 346 -

lac 1 100 ern, 0

rcl 8s 1
rcl 8s 347776
Jmp x n,fro, nil
/get two values define error F
jsp err
vad, dio al F
cal vag termin
dac a0
iZi 3ig /garbage collector, non-compacting
dac al
ge, dap gecx
Jmp x dio gal
/pack character onto end of buffer gig ggﬁ
sar 2s
oc, rar 6s sza
110 1 isi Jsp gfr+l
rcl 6s lac ffi
sad (76 sza 1
Jmp ocl Jmp gco
lac 100 lac 100
ior (767600 Jda gfr
cal cf gco, lac 1 10b
lio tO jda gfr
idx tO lac is1
1dx isi sas (isi-1
dac al Jmp geci
dio isi law pdl+1
lac 1 a1 dac g1
dac 1 tO
dio 1 a1l gcp, lac 1 g1
Jmp x jda gfr
idx g1
oci, dio 1 isi sub %1
Jmp x sad pdl
Jmp g2e
/output routine Jmp gep
out, lio 100 /mark one 1list
szs 36
ppa gfr, 0
szs 1 66 dap gfx
tyo lac gfr
jmp x ral 1s
/error printout spq
Jmp gfx
err, clf 6 lac pdl
dap erx Jda pwl
lac 1 X
dag er:r gfn, lio 1 gfr
law erm idx gfr
cal pra lac 1 gfr
stf 6 spa
idx erx Jmp %fu
ior (add
erx, exit dac 1 gfr
spil
erm, 357776 Jmp gfd
el Jda pwl

- 347 -

dio gfr /SASSOC

Jmp gfn
gfd, rii is aso, cal asc
igp gfa Jmp ase
Jmp x
ase, lac a2
gfu, jsp uwl cal cns-1
dio gfr Jmp evo
sas gfr
Jmp gfn asr, lio are
gfx, exit asc, dio al
lac al
gfa, rir 1s
dio g0 asl, sad n
dac gfr Jmp x
gfl, 1dx g0 lac 1 al
lac 1 g0 dac tO
spa lac 1 tO
Jmp gfn sad 100
ior (add Jmp as?2
dac 1 g0 idx al
dac g0 lac 1 al
xor %add dac al
sas n jmp asi
Jmp gf1
Jmp gfn as2, 1dx 1 pdl
lac tO
/garbage collector, linear sweep phase Jmp x
g2e, 1ac fro /program feature
dac g0
/PROG
gen, idx g0
l1io 1 g0 pgm, lac pa3l3
smi Jda pwl
Jmp g2f lac palt
ril 1s jda pwl
sir 1s dzm pal
dio ar2
gla, dio 1 g0 lio 1 100
1dx g0 idx 100
sas hi lac 1 100
Jjmp g2n dac pa3
dio ari
g£2X, lio gal
gCX, exlit
/append program variables
gef, lio fre
sub (1 lac aril
dac fre
Jmp g2a pes, sad n
Jmp pgb
gel, sad n lac 1 arl
Jmp gep-2 cal cns-1
dac gfr lio ar?
dac g0 cal cns
lac pdl dac ar?
Jda pwl 1dx arl
law gep-2 lac i arl
dap gfx dac ari
mo gf1 Jmp pg5

- 348 -

/expand go-1l1st (on a-1list)

peb, lac

pe7, dac
sad
Jmp
lac
cal
sma
Jmp
lac
1lio
cal
dac

pgg, idx
lac

Jmp

pa3

arl

n

pgo

i arl
car

pgd
arl
ar2
cns
ar2

arl
i ari
pe7

/process program

pgo, lac

pel, sad
Jmp
lac
cal
spa
Jmp
lac
Jda
lac
cal
Jsp
dio
cla
sas
Jmp

g3, idx
lac
dac

Jmp

pa3

n
pg2
i pa3
car

prg3
ar?
pwl
100
evo
uwl
are

pali
pgh

pa3
i pa3
pa3
pgl

/terminate program

pgl, lac

pg2, jda
dio
Jsp
dio
lac
Jmp

/RETURN

rEt: dac
Jmp

/GO

pal
uw
pal
uwl
pa3
uw
X

pal
X

- 349 -

goe,

/SETQ
sta,

/CDR
cdr,
/CAR
car,

Xy

rx,
/ATOM

atm,

tru,

/NULL

nul,
/EQ
€qq,

1lio 100
lac n

cal cns
dac pa3
Jmp prx

dac arl
dio t1
lac 1 arl
cal asc
Jmp qali
Jda pwl
lac art
cal cdr
cal car
lio t1
cal evl
Jda uw
dio tO
idx tO
lac uw
dac 1 tO
Jmp x

idx 100

lac 1 100

jda uw
dio rx
lac uw
exit

lac 1 100
sma
jmp fal

lac tr
Jmp x

lio n

dio a1l
sad al
jmp tru
lac i a1
and 1 100
and gjmp
sas { Jmp
Jmp fal

lac 100 lio (-0

cal vad dio a0
?ad %O 1io (and aC
mp tru .
Jmp fal Jjmp pli
/RPLACD 1go, cal elc
1lio (ior a0
rdc, idx 100 Jmp plz
sub (1
tim, cal elc
/RPLACA 110 (1
dio aC
rda, dio 1 100 110 (Jjmp tic
Jmp Jmp pll
/create atom
tic, mul ad
mka, 1or (add scr 1s
dac 100 dio 100
lio n add 100
jmp plo+l
/CONS
ges, Jsp gc
cns, idx ffi lac fre
sas n
ene, lac fre jmp cna
sad n jmp qgl
Jmp gcs
/TERPRI
cna, dac tO
lac 100 tpr, law 77
dac 1 fre cal pc
idx fre Jmp prx
lac 1 fre
dio i fre /PRIN1
dac fre
lac tO pri, lac 1 100
Jmp x sma.
Jmp gpl
/PLUS sub (lac
spa
pls, cal elc Jmp prn
lio (add a0 and (_jmp
plz, dzm a0
pll, dio plo pra, sad n
p12, sad n Jmp X
Jmp ple dac a0
dac al lac 1 a0
lac 1 al ral 65
cal vag cal pc
plo, 0 lac 1 a0
dac a0 rar 63
lac al cal pc
cal cdr lac 1 a0
Jmp ple cal pc
ple, lac a0 1dx a0
Jmp crn lac 1 a0
/LOGAND, LOGOR, TIMES Jmp pra
lga, cal elc

- 350 -

prn,

prv,

/NUMBERP

nmp,

lac
cal
dac
clf

100
vag
o8
2

setup t0,6

lio
sad
stf
cla
rcl
dio
sza
law
sad
szf
cal
isp
Jmp
Jmp

lac
and
sad
Jmp
Jmp

t1
(-1
2

3s
t1
i
20
(20
2
pc
t0
prv
prx

1 100
Jmp
Jmp

tru

fal

/do a CONS into full word space

cf,

cpf,
/MINUS

min,

/XEQ

xeq,

xei,

xer,

lio

dzm
Jmp

cal
cma
Jjmp

cal
lac
dac
lac
cal
1lio
dio
lac
lio

Jmp
dio
cal
dac
lac
cal
dac

n

ffi
cne

vag

crn

vad
tr
ti
a2
vag

xel
al
uw

xen
az

crn
aril
az

crn
ar?

- 351 -

xen,

/GENSYM

gsm,

gsi,

gSP»

gsn,

/QUOTIENT

qot,

/COND

cnd,

lac
cal
lio
cal
lio
dac
Jmp
dio
lio
dio

Jmp

law
dac

idx
sad
Jmp
sad
law
dac

lac

ral 6

ior

ral 6

ior
cal
law
lor
ral
ior
1lio
cal
cal

Jmp

law
dac
idx
sas
Jmp
Jmp

cal
lio
cla
spi
cle
rcl
div
Jmp
Jmp

dio

t1
cns~-1
are
efc
arl
100
efc
az

tl
xer

gst
t0

1 to
(12
sn
21

i t0
gst+2
gst+l
gst
cf
6700
gst+l
gst+3
t0

cepf
mka

20

1 t0
£0
(gst+5
gsi
gsp

vad
a0

1s
al
qll
crn

ar?

cdil, dac aril ave, XX

sad n sma
Jmp ga3 Jmp qc3
Jjda pwl
lac ar2 avt, law 77
jda pwl and avce
lac 1 arl sas (72
cal car sad (74
cal evo dac csi
Jda uw sad csi
dio ar? Jmp ava
Jsp uwl Jmp x
dio ari
lac uw avr, index avx,ave,avx
sas n inlt avx,buf
Jmp cdy dap avs
idx ari
lac 1 arl avn, rpa
Jmp cdi rcr 9s
rpa
cdy, lac 1 arl rcl Gs
cal cdr
cal car avs, dio xy
Jjmp evo step avs,dio 100,avn
jmp ava
/STOP
1 szff 1 1
stp, cal vag avi,
hlt+cli-opr i ave
Jmp prx clf 1
dio ave
/GREATERP Jmp avt
grp, cal vad /terminate print name
clo
sub a0 mkn, law 72
S20 sai cso
lac at cal oc
sma idx 1si
Jmp fal dac tO
Jmp tru lio n
dio 1si
ter lac 1 tO
/get a characte 310 1 t0
ava, szs 50 Jmp x
vi
gTﬁ 2 /pack character into print name
1 pak, dap pkl
avx, S;g 17 lac esi
sad cso
mp avr >
gc? 9s Jmp pkl
dio 1 avx dac cso
ral 2s cal oc
spa pki, law
Jmp ava dac 100
ral 7s Jmp oc
ior (rar
dac avce start
law 525

- 352 -

Lisp interpreter 3-20-64, part 2 /.

/PRINT rid, spi
pnt, dac a0 Jmp ri2

dac a1l
riq, idx ari
cal tpr lac 1 arl
dio 1 arl
pni, iég 1 a0 dac rig
Jsp rhe
Jmp pn2
law 57 Jmp rix
ri3, dac ri9
pns, cal pc _
lac a0 Jmp r13-2
cal cdr ri2, lac (Jmp ri3
o) a
410 80 law ric
Jmp pnl
pna, lac a0
cal pri /read symbol and terminator
pn6, Jjsp uwl rhe, dap rhx
cla clf 5
dio a0 dzm ti1
spi law isi-1
Jmp pn7 dac isti
lio 1 a0 dzm isi-1
spi i law 72
Jmp pn5 dac cso
lac a0
sad n rhn, cal ava
Jmp pn3 dac 100
law 73 1io csi
cal pc rir 3s
lac a0 spi
cal pril Jmp rhb
sad (33
pn3, law 55 cla
cal pc sas $57
jmp pn6 sad 55
Jmp rye
pn7, cal pc sad (73
lac al Jmp rye
Jmp a0 rhb, sad (56
Jmp ryo
/READ sad (77
Jmp rhn
ri8, 0 sad (36
rig, 6] cla
rin, lac rx sza 1
dac aril Jmp rye
dzm rig sad (75
Jmp rhe+i
ris, Jsp rhe law 1 7
sza 1 and 100
Jmp ric sza 1
sad (57 Jmp ryn
Jmp ria lac 100
sad (55 sad (20
Jmp ribd Jmp ryn

- 353 -

TYyp,

ryJ,

ryo,

stf
cal

Jmp

lac
cal
Jmp

cal
Jmp

5
pak
rhn

t1
crn
rhr

ava
ryp

/symbol lookup

rye,

rys,

TywW,

ryd,

ryt,

ryc,

rhh,

dac
cal
dac
sad
Jmp
szf
Jmp
lac

dac
sad
Jmp
lac
dac
lac
dac
lac

dac
sas
Jmp
sad
Jmp

1dx
lac

Jmp

lac
sad
Jmp
lac
sas
Jmp
1dx
lac
dac
1dx
lac
Jmp

lac
cal
1io
cal
dac
lac

Jmp

ri8
mkn
a0

n

ryy
15
ryJ

1 1o0d

- 354 -

ryn,

Yy,

rhr,

rhx,

lio
lac
rir
rcl
dac
lac

Jmp

cle
lio
dio

dac
lac
lio
dio
lio

(1si-1
isi

t0
rig
ri8
rig
t0

exit

/, space tab

ric,

rio,

rie,

ril,

ria,

riy,

riz,

/)

lac
spi
Jmp
spa
Jmp

dio
cal
lio

arl
ris
ril
tO

cdr
t0

swap

cal
idx
lac
dac
dac

Jmp

lac
Jmp

dio
lac
Jda
lac
spa
Jmp
cal
dac
1llo
cal
Jmp
dzm
Jmp

cns
arl

i arl
arl
ris

to
arl

to
arl
pwl
t0

riz
cns=-1
arl
arl
rdc
ris
ari
ris

rib,

rix,

/EVAL
evl,

evo,

1dx
lac
1lio
dio

jda
dio
ril
lac
spl
Jmp
lio
lac
sza
Jmp
lac
Jmp

dio

dac

ari
i arl

n
i arl

uw
arl
1s
uw

aril
uw

arl
rio

uw
riy

arz2

arl

/evaluate current expression

eve,

/car{x]

lac
sSzs
cal
lac
spa
Jmp
dac
lac
spa
Jmp

aril
10
pnt
i arl

el
t0
i toO

ez

not atomic

sad
Jmp
lac
jda
lac
jda
lac
cal
Jsp
dio
Jsp
dio
Jmp

1la
e3
ar?2
pwl
arl
pwl
1 arl
evo
uwl
ari
uwl
ar?
evce

/evaluate function name and try again

ev3,

idx
1lio
lac
dzm
cal

Jmp

evce,

/x is atomic :

aril
i arl
uw
arl
cns
evo

search a-list,

then p-~list

el, ral
spa
Jmp
lac
cal
Jmp
cal

Jmp

evs, lac
cal
sad
Jmp
dac
lac
sad
Jmp
idx
lac

Jmp

evl,

1dx
lac
cal

Jmp

evb,

enl, lac

/exit from
szs

mp
Jmp

ex,

Jcar{x] 1is

is

enl
arl
asr
evh
cdr
ex

arl

cdr
n
qa8
t0

1 tO
lap
evb
t0

1 t0
evi

t0
i+t0
car
ex

arl
EVAL
10

pnt
X

atomic ¢ search

its p-1ist

e2, lac
cal
sad
Jmp
lac
sad

ev8,

lac 1 arl
cal asr
Jmp qa8
cal cdr

- 355 -

Jmp
sad
Jmp
sad

t0
cdr

evl
i uw
1fs
efs
1sb
esb
1xp

/function 1is FSUBR

efs,

Jmp
sad
Jmp
1dx
lac

Jmp

idx
lac
cal
cal
dac
idx
lac

exp
1fx
efx
t1
1t
ev8

uw
1 uw
car
vag
exx
ari
i arl

/function is SUBR

esb, 1dx uw
lac 1 uw
cal car
Jda pwl
lac arl
cal cdr
lio ar2
cal elc
Jmp els

/evaluate argument list

elc, sad n
Jmp x

also LIST

lio ar2

exy, dac 100
dzm aril
exx, 0
Jmp ex

/function is FEXPR

efx, idx uw
lac 1 uw
cal car
Jjda pwl
lac arl
cal cdr
cal efqg
jda pwl
lac are
cal efq
cal cns-1
Jsp uwl
cal efc
Jsp uwl
cal efe
dac arl
Jmp ev2

efq, cal cns-1
lio tO
lac 1qu
dac 100
Jmp cns

efc, dio 100
lio tO
Jmp cns

/function is EXPR

exp, idx uw
lac 1 uw
dac al
idx ari
lio 1 arl
dzm aril
lac 1 a1
cal cns
Jmp evo

dac
dio
lac
Jda
lac
dzm

ele, lio
dac
Jjda
lac
Jda
lac
cal
cal
Jsp
dio
lio
lac
sza
dio
idx
sub
sas
lio
lac
dac
dac
idx
dio
Jsp

aril
ar?
ar?2
pwl
arl
arl

1 pdl
to
pwl
ari
pwl

i to
evl
cns=-1
uwl
ari
t0
aril

i

arl
aril
(1

t0

i arl
t0

i1 arl
arl
t0

i to
uwl

swap

cal
sas
Jmp
Jsp
dio
idx
lac
lio
dlo
dac
sSZS
cal
lac

Jmp

~ 356 -

cdr

n

ele
uwl
are
aril

i arl

n

i arl
arl
10
pnt
arl

X

els,

/store

eda,

esa,

exs,

dac aril

Jsp uwl

swap

cal vag

dac exx

init esa,al~1

arguments for subroutine

lac aril

sad n

Jmp exs

idx esa

sad (dac a2+1
Jmp qa7

lac 1 arl

dac xy
idx ari
lac 1 ari
dac aril
Jmp eda

lac a0
lio ail

Jmp exy

/caar[x] = LAMBDA

e3,

lac arl
jda pwl
lac ar?2
Jda pwl
lac 1 ar1
cal cdr
cal car
jda pwl
lac ari

- 357 -

epi,

ep2,

cal
lio
cal
dac
Jsp
dio
Jsp
dio

lac
sad
Jmp
lac
sad
Jmp
lac
1lio
cal
lio
cal
dac
idx
lac
dac
ldx
lac
dac

Jmp

sas
Jmp
Jsp
dio
lac
cal
cal
cal
Jmp

cdr
are
elc
arl
uwl

uwl
ar?2

a0

ep2
arl

qf3
1 a0
1 ari
cns
are
cns
are

1 a0
a0
arl
iarl
arl
epl

arl
qfr2
uwl

i arl
cdr
cdr
car
evo

/error halt entries

ga3l3, lac n
sas pa3l
Jmp x
error flex icd /illegal CCND
lac n
Jmp x

qal, error flex uss J/undefined atom in SETG
Jmp prx

qa’7, error flex tma /too many args
Jmp exs

qa8, error flex uas /unbound atomic symbol
clf 6
lac aril
cal pnt
cal tpr
Jmp go

ge3, error flex ilp /illegal parity
law 377

and ave
hlt+cli-opr+l
jmp ava

qf2, error flex lts /LAMBDA list too short
Jmp go

qf3, error flex ats /arglist too short
Jmp go

qge, error flex pce /pushdown cap. exc.
Jmp go

qgl, error flex sce /storage cap. exc.
Jmp go

ql3, lac 100
dac a2
error flex nna /non-numeric arg for arith.
clf 6
lac a2
cal pnt
cal tpr
Jmp qix

qil, error flex ovf /overflow

qix, cla 16

Jmp crn
aqpril, error flex ana /arg non-atom for PRIN1
prx,fal, lac n

Jmp x

start

lisp storage 3-23-6.4 rer 1s

ril is
constants dio hi
law end
/special symbols dac tO
S8y, /relocate storage
1qu, quo rrs, law 1 1
1la, lam add to
lap, apv dac tO
1ob, obl law 1 4
1sb, sbr add 1 toO
ifs, fsb sma
1xp, Xpr Jsp rrl
ifx, £xp Jsp mvs
fre, nil law 1 1
bfw, frs-4 add toO
tr, t dac tO
sub frl
pdl, pdo-1 spa
Jsp rrl
arl, nil Jsp mvs
ar?2, nil lac tO
pa3, nil sas ofs
pali, 0 Jmp rrs
law ssy
pdo, dac tO
/1oad storage parameters /relocate special registers
lio mz rss, Jsp rrl
clc+hlt-opr idx tO
lat+cli-opr sas esy
and ad Jmp rss
dac hi1 lac 1 1o0b
hlt Jda gfr
lat law go
and ad dap gecx
dac 1p1 Jmp g2e
law 1 end /relocate 1 word, move 1 word
add hi1
spa rrl, dap rrx
Jmp pdo lac i tO
law 1 frs-pdo and ad
add 1lpi sub ofr
spa spa
Jmp pdo Jmp rrx
law 1 pdo+end-frs lac 1 tO
add hiil add fro
sub 1lp1l sub ofs
spa dac 1 tO
Jmp pdo rrx, Jmp .
mvs, dap mvx
/set up registers lac tO
add fro
stu, law pdo sub ofs
add 1p1 dac t1
dac fro lac 1 tO
llo hii1 dac 1 t1

- 359 -

mvx,

Jjmp .

/constants etc.

ad,

ipi1,
hii,
mz,

ofs,
frl,
esy,
ofr,

define

define

define

define

define

frs,
nil,
t,
kz,
kt,
obJ,
obl,

77777
0

0
-0
frs
fws
pdo
pdo

2
add X
termin

termin

2

add F+2
sbr

F
termin

2

add F+2
fsb

F
termin

apv
A
termin

add 38
add f37
apval nil
apval t
add fboO

apv
ols

/object 1list

ols,

subr f2
subr 3
subr 4

item X
43
nil

next A
o+l

subr F
.7
41
A1
nll

fsubr F
41

Al
nil

apval A
.+l
nil

kz
kt

.1
.+l
nil

quo=.
lam=.
apvs=.,
sbr=.
Xpr=.
fsb=.
fxp=.

fws,

define

define

define

define

fsubr £6
subr 7
subr 8
subr fi2
subr f13
fsubr fi14
subr ri18
subr 21
subr 24
subr 26
subr 27
subr 32
subr £33
subr 34
fsubr 50
subr 51
subr 52
fsubr 53
subr f54
fsubr 60
fsubr 61
fsubr 62
fsubr 63
subr fO0O
subr 01
subr fa3

[AVRAVEAVELVEI IS V)

next t
next ob}j
subr fbe
subr fb3
subr bl
nil

opr A
termin

termin

naml Y
termin

X
nam? Y,Z
termin

fsubr fb5

item
item
item
item
1tem
item

nil

loca

naml
nil

name
41

nam3
.+

f40
42
i3
iy
rhs
46

X,Y

X,Y,Z

/SUBRs and FSUBRs

2,

£3,

rh,

6,

7,

£8,

f12,
£13,
ik,
£18,
f21,
rak,
£26,
r27,
32,
£33,
£00,
fo1,
£34,
£50,
51,
£52,
£53,
£54,
b2,
o3,
fbl,
b5,
fa3,
£60,

loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca

loca

atm
car
cdr
cnd
cns
eqq
gsm
grp
elc
min
nmp
stp
pril
qot
rda
rdc
xeq
crn
tpr
pgm
ret
goe
stqg
aso
rin
evl
pnt
car
nul

pls

nam2
nami
naml
nam2
nam2
naml
nam2
nam3
nam2
name
nam3
nam?
nam2
nam3
nam2
nam2
naml

naml

nam2
namz
nam2
naml
nam2
name
name
name
name
name
nam2

name

flex ato,767644

flex car

flex cdr

flex con,767664

flex con,767622

766550

flex gen,flex sym

flex gre,flex ate,765147
flex lis,767623

flex min,762422

flex num,flex ber,T67647
flex sto,767647

flex pri, 764501

flex quo,flex tile,764523
flex rpl,flex aca

flex rpl,flex acd

flex xeq

flex loc

flex ter,flex pri
flex pro,767667
flex ret,flex urn
766746

flex set,767650
flex sas,flex soc
flex rea,767664
flex eva,767643
flex pri,764523
flex quo,762365
flex nul,767643
flex plu,767622

- 361 -

61, loca tim nam? flex tim,766522
£62, loca lga nam?2 flex log,flex and
63, loca 1lgo nam? flex log,764651
/miscellany

£38, naml flex nil

f40, nam?2 flex lam,flex bda

42, nam?2 flex apv,766143

£43, nam2 flex sub,767651

ik, nam? flex exp,767651

fis, nam?2 flex fsu,766251

fu6, nam2 flex fex,764751

b0, nam?2 flex obl,flex ist

£37, naml 767623

end,

start pdo

- 362 -

2. Alphabetic Listing of Defined Macro Symbols

Following is an alphabetic listing of the defined symbols
used in the macro symbolic program for Basic PDP-1 LISP. The
listing shows either the numeric meaning of the instruction or
the numeric register (octal) in which the subroutine commences.
For the mnemonic derivation or significance of the symbols,
see Section 4 below.

lap 2333 clo 651600
ifrs 2336 cna 620
irx 2340 cne 615
11a 2332 cnd 1070
1lob 2334 cns 644
lqu 2331 cpf 762
1sb 2335 crn 112
ixp 2337 csi 26

al 42 cso 27

a2 43 dba 720061
ad 2470 dcc 720062
apv 3110 dia 728888
ard 23U div 5

ar? 2%42 dra 720063
a0 41 el 1626
as?2 420 e3 2077
asc 403 eda 2061
ase 377 efc 1743
aso Th efq 1736
asr 02 efs 1701
atm 562 efx 1715
ava 1133 elc 1770
ave 1152 ele 2000
ave 110 els 2050
avi 1204 enl 1655
avn 1473 end 3530
avr 1165 epl 2120
avs 1177 ep2 2143
avt , 1155 eqq 570
avx 1136 erm 227
beg 11 ern 231
bfw 2342 err 216
buf 63 erx 226
car 555 esa 2067
cdl 1074 esb 1757
cdr 554 esy 2476
cdy 1114 eve 1565
cf 764 ev3 164k

- 363 -

evl
evhH
evH
ev8
eve
evl
evo
ex

exp
exs
exx
exy
gt 2
it A

i B

18
fe

red
rol
£26
o7

£32
r3
£3
£37
£38
f
£U2

o

£lii6
£40
51
52
5

f5

£50

61
£62
£63
£60
{

£8

fa3
fal
b2

1637
1636
1651
1662
1620
156

156

1656
1746
2074
1713
1714
3226
3234
3244
3252
3170
3260
3270
3276
3304

3314

3322
3340
3526
3470
3202
3476
3502
3506
3542
3516
3472
3354
3362
3366
3374
3346
3206
3446
3454
3462
3440
3244
3222
3432
2244
3402

- 364 -

b

b

b5
b0
i
fre
frl
fro
frs
rod
£00
sb
f'ws
xp

g2a
gee
g2f
gen
g2x
gal
ge

gel
gco
gep
ges
gex
gfa
gf'd
gfl
gfn
gfr
gfu
gfx
go

goe
grp

gsi
gsm
gsn
gsSp
gst
hi

hil
ioh
isi

kz

3440
344.6
3424

3522

2344
2475

2500
3334
3330

3170
3130
24
351
344
357
343
355

235
363
251
260
673
356
323

326
277
267
316
322

526
1123

1025
1023
1051
1033

25
ol72
730000

2510
2504

lai
lam
1lga
1lgo
lia
1pl
min
mka

mul

mvs
mvx
mz

nil
nmp
nul
obj
obl
oc

ocl
ofr
of's
ols
out
pa3
pal
pak
pc

pce
pch
pdl
pdo
pgl
pg2

pg
pg5
pgb
pg’
pg9
pgm
pgl

pll
ple
ple
plo
rls

760040
3104
651
656
760020
2474
764
614
1212
540000
2460
2467
2473

2500
754
567
2514
2520
165
206
277
2474
2522
210
2347
2350
1224
117
135
143
2344
2351
472
546
511
515
437
L4oo
453
466
423
471
1232
63
635

642
631

- 365 -

plz

pn2
pn3
pn5
pnb
pn7
pnt
pri
pra
prn
prv
prx
pwl
pwWX
qa3
qal
qa’f
qa8
qc3
qfe
al3
qgl
qge
qi

qi

gix
got
apl
quo
rda
rdc
ret
rhb
rhe
rhh
rhn
rhr
rhx
ri2
ri3
ril
ri8
ri9
ria
rib
ric
rid
rie

633
1240
1253
1274
1244
1255
1277
1235
703
712
730
736
2241
Ly
53
2154
2163
21.66
471
2200
2206
2211
2247
2214
2222
2233
2235
1057
2237
074
07
605
524
1360
1333
1462
1343
1476
1503
1330
1326
1524
1302
1303
1526
1543
1504
1316
1544

rin
rio
riq
ris
rix
riy
riz
rrl
rrs
rTrX
rss
rX

ryc

rye
ryJ
ryn
ryo
ryp
rys
ryt

sbr
st
smi
sni

1304
1511
1320
1307
1547
1534
1544
4Ly
244.0
ausT
2434
561
1455
1436
1444
1404
1464
140
1404
1424
1441
1431
1473
3114
660000
652000
644000

spq
sSsy
stp
stq
stu
SWD
sSZm

td
tic
tim
tpr
tr
tru
t0
uw
uwl
uwx
vad
vag

xel
xen
xeq
xer
Xpr
Xy

- 366 -

650500
2331
1120
533
2377
{ouUou
640500
2502
22
666
664
700
2343
565

54
62
156
144

5
1000
1017
767
1003
3120

3. Numeric Listing of the Defined Macro Symbols

Following is a listing in numerical order by register
number or other meaning of the defined symbols in the macro
symbolic program for Basic PDP-1 LISP.

Xy .0 glr 267
go L gfn 277
beg 11 gfd 313
£0 21 gfu 316
t1 20 grx 322
g0 23 glfa 323
e B oL grl 326
hi 25 gle 344
csi 26 g2n 343
cso 27 g2a 351
i 30 gax 355
gal 31 gex 356
isi 33 gar 357
gst 34 gei 36

a0 44 a80 37

al 4o 1se 77
az i asr 02
pwl 4 asc 403
pWX 53 asl 405
uw 5 ase 420
uwl 55 pEm he3
uwx 62 pe5 L37
buf 63 pgb h52
ave 110 g’ 453
crn 112 pg9 466
pec 147 pg0 471
pce 135 peld hr2
pch 143 pg3 511
vag 144 pgh 515
vad 156 pg2 516
oc 165 ret 524
ocl 206 goe 526
out 210 stq 533
err 216 cdr 554
erx 226 car 555
erm 227 X 556
ern 231 rx 561
fro 234 atm 562
n 234 tru 565
ge 235 nul 567
£eco 251 eqq 570
gcp 260 rdc 605

- 367 -

rda
mka
cns
cne
cna
pls
plz
pll
ple2
plo
ple
lga
1lgo
tim
tic
ges
tpr
prl
pra
prn
prv
nmp
cf

cpf
min
xeq
xel
xer
xen
gsm
gsi
gsp
gsn
qgot
cnd
cdd
cdy
stp
grp
ava
avx
ave
avt
avr
avn
avs
avi
mkn
pak

607
611
644
645
620
o2
3
o3
635
62
64T
651
656
6641
666
673
700
703
Ti2
730
736
75U
761
762
764
767
4000
1003
1047
1023
1025
1033
1051
1057
1070
1071
1144
1120
1123
1133
1136
1152
1155
1165
1173
1477
1204
1212
12024

- 368 -

pnt
pn5
pn2
pnb
pn3
pn{
ri8
ri9
rin
ris
rid
rig
ri3
ri2
rhe
rhn
rhb

ryJ
ryo
rye
rys

ryt
ryc
rhh

rhr
rhx
ric
rio
rie
rili
ria
riy
riz
rib
rix
evl
evo
eve
evyl
eve
el

evh

1232
1235
1240
1244
1253
1255
1274
1277
1302
1303
1304
1307
1316
1320
1326
1330
1333
1343
1360
1404
1404
1407
1411
1421
1431
1436
1441
1455
1462
1464
1473
1476
1503
1504
1511
1514
1524
1526
1534
1544
1543
1547
1563
196

1614
1620
1626
1636

evh
evb
enl
ex

e2

ev8
ef's
exy
exx
efx
efq
efc
exp
esb
elc
ele
els
eda
esa
exs
e3

epl
ep2
qa

Gl
qa’
qa8
qe3
qf'2
af3
qg2
qgl
qi

otk
qix

fal
prx
1qu
sSsy
11a
lap
1ob
1sb
irs
1xp
1rx
re
bfw

1637
1651
1655
1656
1661
1662
1701
1711
1743
1715
1736
1743
1746
1757
1770
2000
2050
20641
2067
2074
2077
21.20
244

215

2166
2471
2200
2206
2214
o1l
o7
2222
2233
2235
2237
ool
2241
2331
2331
2332
233

e33

2335
2336
2337
23140
2344
2342

- 369 -

tr

pdl
arl
are
pa3
pali
pdo
stu
rrs
rss
rrl
rrX
mvs
mvx
ad

1pl
hil
mz

of's
frl
esy
ofr
frs
nil

kz
kt
obj
obl
ols
quo
lam
apv
sbr
Xpr
£sb
fxp
fe
fws
Py
f
£6
7
r8
42
ri
i
18
rea

2342
234

2345
2346
2347
2350
2351
2377
241.0
2434
2l
U557
2460
2467
2470
2474
ol72
2473
bl
2475
2476
2hTT
2500
2500
2502
2504
2510
2514
2520
2522
3074
3104
3110
31414
3120
3124
3130
31.70
3170
3176
3202
3206
3244
3222
3226

320

3252
3260

U
£26
£o7
£32
£33
£00
01
£34
£50
5l
52
£53
5l
b2
L

b

3270
3276
3304
3314
332§
333

3334
3354
3362
3366
3374
3402
344.0
3416

- 370 -

1l 015}
fa3
£60
réed
£62
£63
£38
40
rl2

o

45
U6
b0
£37
end

3ﬁ24
3432
eni;
3446
345k
3462
3470
3472
3476
3502
3506
3542
3516
3522
3526
3530

4, Mnemonic Key or Derivation of Symbols

The purpose of this listing is to state the mnemonic key or

derivation, and here and there some comments, for many of the
symbols used in the MACRO symbolic listing of Basic FDP-1 LISP.
In this way the MACRO symbolic may be more easily read with

understanding.

down list" is helpful,

For example, to know that "pdl" stands for "push

Some of the symbols there included however have been omitted

from this listing, particularly those symbols which differ only
in subscripts from the symbols in this listing.

a0

as?
ase
aso
atm
ava

ave

ave
avi

avn

argument, sub zero
argument, sub one
argument one
ASSCC, sub two
ASSOC, entry
ASSCC, origin
atom
get a character,
advance
advance, compute
parity
advance, end
advance, in from
typewriter
advance, next

avr
avs
avt

avx
beg
bfw

buf
car

- 371 -

advance, reader

advance, store

advance, truncate (to 6
bits from reader);
also, detecting upper
case or lower case in
the sign bit

advance, index

beginning

beginning of full words
end of push down
list)

buffer

CAR (contents of ad-
dress register)

cHA
cdr

cdy

cfa

cna
end
cns
crn
cpf

el

e3
e4

eda

efc
efq
efs

erm
ern
err
erx

COND, sub one esa
CDR (gontents of decre- esb
ment register)
COND, sub y evl
cons, full; do a CONS
into full word space ev3
CONS into full word
space, sub a

CONS, sub a ev
COND eve
CONS evl
create number evo
CONS pair in full word ex
space exp

evaluate, sub one
evaluate, sub 2; CAR X exs
is atomic, search its exx

P-list fal
evaluate, sub 3 CAAR X fre
equals LAMBDA
evaluate, sub 4; CARR X
equals LABEL frs

entry, deposit argument fwf
(store arguments for
subroutine) fws

evaluate, function sub c g0

evaluate, function sub q

evaluate, function is an
FSUBR gl

end of full words

evaluate, function is a

FEXPR gla
evaluate, argument is a
list; also LIST gle

evaluate, list, entry

evaluate, list, sub~- gf
routine

evaluate, number, sub g2n
one

evaluate, pair, sub ger
one

evaluate, pair, sub g2x
two

entry point of EQ geld
(lengthened)

error message ge

error name

error printout gef

error exit

- 372 -

evaluate, store argument

evaluate, functicn is a
SUBR

evaluate current expres-
sion, sub 2

evaluate, sub 3; (evalu-
ate function name and
try again)

evaluate, sub 4

evaluate, construct

EVAL

EVAL, old

exit from EVAL

evaluate, function is
an EXFR

eval, exit, subroutine

evaluate, exit, execute

false (value is NIL)

pointer to the beginning
of the free storsge
list (at top)

origin of free storage

field number where full
word storage is kept

full word space

garbage collector,
temporary storage,
sub zero

garbage collector,
temporary storage,
sub one

garbage collector, part
2, advance

garbage collector, part
2, entry

garbage collector, part
2, free

garbage collector, part
2, next

garbage collector, part
2, return

garbage collector, part
2, exit

gerbage collector, argu-
ment one

garbege collector, non-
compacting

garbage collector, full
word

gcp

ges
gex

gfr

gfu
gfx
go

goe
grp

gsi
gsm
gsn
gsp
gst

hih

hih-i

i-nfw

isi

kt
kz
1ga
1go
1pl

min
mka,
mkn

nfw
nmp
nul
obj
ocl

garbage collector, push- oc3

down
garbage collector, step
garbage collector, exit
garbage, free, next
garbage, free; (not re-
turned to free storage)

mark one list
garbage, free, unsave

garbage, free, exit

go

GO (lengthened)

GREATERP (is greater
than)

gensym, index

gensym, entry

gensym, next

gensym, produce

table for symbol
generator

high: first address
beyond full word
space

high minus i
(10,000 cctal)

i (10,000 octal) minus
number of full words,
equals left-over
space

input string initial
(points to a string of
cheracters just read
in)

property list for T

property list for NIL

LOGAND

LOGOR

length of push-down
list

MINUS

meke atom

terminate print name,
and meke name

NIL (register contain-
ing)

number of full words

NUKBERP ("is a number")

NULL

locaticn of atom OBLIST

output character, sub
one

ocC

ocf

ocj
ocy
ofw
ols
oup
out
pa3
pes
pak

pC

pcce

pch

- 373 -

output character, sub
three
output character (pack
character on to end of
buffer)
output character into
full word space
output character, jump
output character, exit
origin of full words
location of OBLIST
output routine, print
output routine
PROG argument, sub 3
PROG argument, sub 4
pack character into
print name
print or punch charac-
ter
punch character, compute
correct parity for
punching
punch character count,
producing carriage
return (generated
after every 6/ (deci-
mal) characters)
push down list, sub a
push down list, sub b
push down list, sub c
push down 1list, sub d
push down list, sub e
push down 1list, sub f
push down list, sub g
push down list, sub i
push down list, sub j
push down list, sub k
push down list
push down list, origin
program feature,sub zero
program feature, sub one
program feature, sub two
program feature
pack character intc print
name, sub one
pack character intc print
name, sub two
plus, sub one
plus, =sub two
plus, exit
plus, operaticn

pvl

pwXx
qa

qa3
qa
qa7
qa8
qe3
qf?
qf3
qed

qg?
qi3

qis

gix
qov

rda
rdc
ret
rhe

PLUS

plus, zero sum
storage register

print, sub one

print, sub two

PRINT

PRIML

print, exit after
finishing print-
ing

push word on list
(append word to
push-down list)

push word exit

error halt

error halt, illegal
COND; ied

error halt, undefined
atom in SETQ; uss

errcr halt; too many
arguments; tma

error halt, unbound
atomic symbol; uas

error halt, illegal
parity; ilp

error halt, LAMBDA
list too short; 1lts

error halt, argument
list too short; ats

error halt, storage
capacity exceeded;
sce

error halt, pushdown
capacity exceeded;
pce

error halt, nonnumeric
argument for arith-
metic; nna

error halt, overflow;
ovf

error halt, exit

quotient

error halt, argument
non-atom for PRIML

RPLACA

RPLACD

RETURN

read in, entry; read
symbol and termina-

rhn
rhx
rhr

ri3
ril
ria

rib

ric
rid
rie
rio
rin
riq
ris
rix
riy
Tiz
rX

ryc

ryd
rye

ry]
ryn
ryo
ryp
ryt
rys

ryw

- 374 -

tor; (a "terminator"
is a left parenthesis,
right parenthesis,
period, space, comma,
or tabS (mnemonic: h
precedes i)

read symbol and termina-
tor, next

read symbol and termina-
tor, exit

read symbol and termina-
tor, sub r

read in, sub 3

read in, sub 4

read in, left paren-
thesis

read in, right paren-
thesis

read in, comma

read in, dot

read in, sub e

read in, sub o

READ in

read in, sub g

read in symbol

read in, exit

read in, sub y

read in, zeroing

return to calling se-
quence of a subroutine

symbol lookup, create
(creating what is
necessary to put
something on the OB~
LIST)

symbol lookup, index

symbol lookup; search
for symbol in object
list and if not found,
put at beginning

symbol lookup, sub j

symbol lookup, number

symbol lookup, sub o

symbol lookup, pack

symbol lookup, test

symbol lookup, search
for symbol

symbol lookup, search
for word

ryy
stp
stq

t0
1§
tic

tim
tpr

tra

symbol lookup, exit

STOP

SETQ

temporary storage,
sub zero

temporary storage,
sub one

times, complete

TIMES

make a carriage return,
TERPRI (terminate
printing)

true

undex decrease (some

number) by one

uw

uwl
uwx
vad
vag

- 375 -

unsave word; retrieve
word from push down
list

unsave word from list

unsave word, exit

get two values

get numeric value

exit from machine
language LISP
functions

Appendix 6

Index for Parts 1 to VII of the

LISP 1.5 Programmer’s Manual

Edmund C. Berkeley and Daniel G. Bobrow

The "LISP 1.5 Programmer's Manual", published August 17,
1962, is an important source of information on LISP, It con-
sists mainly of eight parts entitled:

I. The LISP Language
11. The LISP Interpreter System
III. Extension of the LISP Language
IV, Arithmetic in LISP
V. The Program Feature
Vi. Running the LISP System
VII. List Structures
VIII. A Complete LISP Program - The Wang Algorithm
for the Propositional Calculus (This part dis-
cusses an example.)

In addition there are eight appendices, an index to func-
tion descriptions, and a glossary. There is no general index.

To make it easier to find the relevant discussion of top-

ics in Parts I to VII of the manual, the following general in-
dex for Parts I to VII has been prepared.

- 376 -

"a" in multiple car's and
cdrls, 4

M, 82, 13, A4, A5, 32

A6, A7, A8, 3R

A9, C1, CHi, 33

absclute value, 6, 24

active 1list, 43

actual interpreter, 17

add, 26

addi, 26

address, 36, 4l

advantages of list structures,
7

Algol-like program, 29

a-list, 17, 18, 19, 30

allocation of storage, 1

alphabetical characters, 16

and, 21, 22

ambiguity, 24

append, 11

apply, 13, 14, 17, 18; defn.,13

apply arguments, 14

APVAL, 17, 22, 39

args (arguments), 10,12

argument, defn., 21

arguments, 2, 5, 10, 16, 19

arguments of a function, 7,

arithmetic, 24

arithmetic errors, 33

arithmetic functions, 25

arithmetic predicates, 25

array, 27

array feature, 27

arrow, 9

assembly type language, 18

ASsoC, 12, 13

association list, 12, 13, 14

atom, 3; defn. as predicate,
3, 13

atomic arguments, 14

atomic symbol, 1, 2, 8, 16, 24,
30, 36, 39; defn., 2

atomic symbols, list of, 43

atoms (see atomic symbol)

auxiliary function, 12

axes, 28

backtrace, 32

Backus, J.W., 8

Backus notation, 8

base registers, 43

basic functions, 16

BCD (binary coded decimal)
characters, 36

BCD print names, 43

binary program space, 28

binding variables, 17

bit table, 43

blank, 4, 16

blanks, 16

blanks in lists, 4

blocks of storage, 27, 38

Boolean connectives, 21

bound, 8, 18

bound function name, 8

bound variables, 7, 8, 9, 13,
14, 17, 30

brackets, 9

branches, 5

branching, 1

built-in functions, 14

CADADR, 4

CADDR, 4

CADR, 4, 14

CAR, 2, 10, 13, 14, 36; defn.,2

car, value in system, 14

card boundaries, 16

card deck preparation, 31

card format, 16

CDR, 3, 13, 14, 36; defn., 3

CH2, CH3, 33

change, 21

character errors CH, 33

character handling functions, 33

character strings, 3

characters in atomic symbols, 8

Church, 17

Church, Alonzo, 7

eircular lists, 37

closed machine language sub~-
routines, 18

combining S-expressions, 2

comma, 4, 16

commas in lists, 4

commends to effect an action, 20

common subexpressions, 37

compiler, 18, 33

compiler errors, 33

compiler speed, 18

- 377 -

complement of address, 36

complete card deck, 31

composite, 3

composition, 2, 5

composition of car's and cdr's,
3, 4

composition of functions, 2, 5,
9

computable functions, 41

COND, 10, 13, 14, 18, 29, 30

conditional expressions, 5, 9,
10, 11, 30; defn., 5; in
programs, 30

CONS, 2, 13, 18, 39, 41;
defn., 2

CONS counter, 34

constant, 9, 17, 18, 24

constants, 9, 10, 14, 17, 18

constant predicates, 22

constant translation, 10

CONS trap, 35

construction of list structure,
38

coordinates, 28

core dumps, 31

count, 34

critical subfunctions, 32

CSET, 17, 18, 20

distinction between a function
and a predicate, 23

divide, 26
divide check, 26
dot, 2

dot notation, 2, 4, 9, 16, 24
dotted pairs, 16

doublets, 15, 17, 31, 32
dummy variables, 7

E in numbers, 24

elementary functions of dotted

pairs, 2

elementary functions of lists, 4
elementary LISP, 41
elementary rules for writing

LISP 1.5 programs, 15
elements, 15, 16

elements of array, 28
elements of lists, 16
elements of the syntax, 8
B, 3, 11, 13, 23; value in

system, 14, 23

EQ for non-atomic symbols, 23
equal, 11, 26

equality sign, 8

error, 32

error diagnostics, 32

error in a SET, 31

nd" in multiple car's and cdr's,errcrs, 14

4
data in LISP, 1
data language, 8
debugging, 32
decimal points, 24
decrement, 36, 41
define, 9, 15, 18, 20, 40, 41
DEFINE, 15, 18; use of, 15
defining functions, 9
defizing functicns recursively,
defining new functicns, 15
definition of functions, 18
DEFLIST, 41
diagnostics, 31
diagrammed S-expressicns, 36
diagrams of lists, 36
difference, 26
dimensions, 27

ERRURSET, 34, 35

Euclidean algorithm, 7

EVAL, 13, 14-, 17’ 18, 19; defno,
13

EVALQUOTE, 10, 11, 12, 13, 14, 16,

17, 20, 21, 31; defn., 13

evaluating variables, 17
evaluation of arguments, 19
evaluation of a recursive

function, 6

EVCON, 13, 14, 19; use of, 14
EVLIS, 13

exclusive or, 27

exhausting storage, 43
exponent indication, 24
exponents, 24

EXPR, 18, 39, 40

expression, 5

EXPT, 26

- 378 -

extensions of LISP, 20
F, 3, 14, 16, 18, 22
-F5, 33
factorial, 6, 27
false, 3
falsity, 5, 22
fatal errors, 32
FEXPR, 19
f£f, 8, 10
FF, 6, 10, 40
FIN, 31
first atomic symbol, 6
fixed point arguments, 25
fixed point numbers, 24
FIXP, 26
flag, 41
flags, 41
floating point arguments, 25
floating point numbers, 14,

24
FLOATP, 26
fn, 10, 12
formel mathematical
language, 1
format, 9
format on cards, 16
forms, 7, 9, 10, 13
FREE, 42
free-storage list, 38, 42, 43
free-storage space, 43
free variables, 7, 21
FSUBR, 19
full words, 43
full-word space, 43
function, 7, 9, 10, 16, 18
FUNCTION, 21

function bound to variable, 21

function definition, 18
function evaluation, 13

function names, 2, 5, 9, 10, 24

function names in mets
language, 5

functional argument, 10, 20, 21

functional arguments, 20

functional syntax of LISP, 20

functions, 7, 9, 13, 18

functions, arithmetic, 25

functions, built in, 14

functions with functions as
arguments, 20

G1-G2, 33

garbage collector, 33, 36, 42, 43

garbage collector errors, 33

GC1-GC2, 33

G.C.D. (greatest common divisor),
7

get, 41

GO, 29, 30

GREATERP, 26

greatest common divisor, 7

grp, 39, 42

higher level bindings, 17

how things really work, 14

I1, 33

ID card, 31

identical S-expressions, 11

identity function, 20

1llegal BCD character, 40

inaccessible registers, 43

indefinite number of arguments,
19

indentation, 16

indicator, 18, 39, 41; defn., 39

indicators, 39

indices of arrays, 27

infinitely recursive, 6

infinite recursion, 10

infix notation, 22

input at top level, 19

input-ocutput errors, 34

internal representation, 37

interpreter, 10, 15, 17, 19, 20,
32

interpreter errors, 32

interpreting S~expressions, 1

intersection, 15; defn., 15

LABEL, 8, 9, 10, 13, 14, 18

label notation, &

LAMBDA, 10, 13, 14

lambda notation, 7, 8, 9, 17

language is universal, 41

1P, 18

LAP errors, 34

left parenthesis, 2

LEFTSHIFT, 27

length, 29

LESSP, 26

LISP compiler, 18

LISP functions, 10

- 379 -

LISP interpreter, 15

LISP interpreter system, 15

LISP language, 1

LISP loader, 31

LISP programs, 15

LISP programming system, 14

LISP gystem, 31

list elements, 16

list function, 39

1ist notation, 4, 9

list of arguments, 10, 16,
19

list of atomic symbols, 43

1list of pairs, 12

list structures, 1, 36

list structure advantages, 37

list structure operators, 41

lists, 4, 16, 27, 36, 39

location marker, 30

LOGAND, 27

logarithms, 26

logical and, 27

logical connectives, 21

logical or, 26

logical shifts, 27

logical words, 24, 25

LOGOR, 26, 27

logxor, 27

loop, 6

lower case letters, 2, 9

machine language functions,
18, 40

MAPLIST, 20, 21

marginal indexing, 28

max, 26

McCarthy, John, 7

member, 11, 15; defn., 15

memory organization, 1

meta-language, 1, 5, 8, 9;
defn., 9

M-exprescions, 1, 5, 10, 20,
2, 29

M-expressions as S-expressions,

10
MIN, 26
minus, 26, 39
MINUSP, 26
minus sign, 24
miscellanecus errors, 33

MLTGRP, 39, 42

modifying list structure, 41

names bound to function defini-
tions, 18

nameg of functions, 18

negative octal numbers, 25

negative signs in garbage
collection, 43

new LISP system tape, 31

NIL, 4, 9, 11, 16, 18, 22, 39, 40

NIL as falsity, 22

NIL in disgrams, 36

NIL, internal representation, 40

non active registers, 43

non-atomic, 3

not, 21, 23

null, 11, 23

null list, 4

number formats, 24

number of expressions, 37

NUMBERP, 26

number representation, 36

numbers, 24, 41, 43

numbers, as variables, 24

numbers, fixed point, 14

numbers, floating point, 14

numbers, internal representation,
41

numeric computations, 6

octal numbers, 25

ONEP, 26

operate, 20

or, 21, 22

order of arguments, 22

OoP, 20

overlord, 31, 32

overlord errors, 34

packets, 31

PATIRLIS, 11, 12, 13

parameter, 7

parentheses, 2, 19, 31

partial function, 7

PGRP, 42

p-list, 17, 18

plus, 25

plus sign, 24

PMLTGRP, 42

PNAME, 39

pointers, 18, 36, 37, 43

- 380 -

powers, 26

predicate, 3, 14, 21, 23

predicates, 3, 11, 22, 25

predicates, arithmetic, 25

prefix notation, 22

print, 20

print name, 39, 40

print nemes, 43

print program, 19

printing numbers, 24

PROG, 29

PROGZ2, 42

program feature, 29

program form, 30

program format, 16

program S-expressions, 29

program variables, 29, 30

programs for execution, 15

properties of atoms, 41

property list, 17, 18, 36,
39; defn., 39

propositional connectives, 20

propositional position in
conditionals, 9

pseudo-atomic symbols, 14

pseuod-function, 17, 35

pseudo-functions, 15, 18, 20,
27, 32, 41, 42

punctuation marks, 1

pure LISP, 20

Q@ in octal numbers, 25

QUOTE, 10, 13, 14, 18, 21

quoted, 24

QUOTE F, 14, 16, 22

QUOTE NIL, 16, 22

QUOTE T, 10, 14, 16, 22, 23

QUOTE X, 10

quotient, 26

read error, 3l

reading numbers, 24

reading octal numbers, 25

reclaimer, 33

RECIP, 26

reciprocal, 26

recursive, 6, 15, 18, 27, 30

recursive functions, 1, 6, 8,
18, 32

registers that contain partial
results of the LISP compu~-
tation in progress, 43

REM, 7

remainder, 7, 26

REMFLAG, 41

removing properties, 41

REMPROP, 41

replacing addresses, 4l

replacing decrements, 41

representing expressions, 36

RETURN, 29, 30

REV, 30

right parenthesis, 2, 31

RPLACA, 41, 42

RPLACD, 41, 42

rules for LISP programs, 15, 16

rules for translating functions,
10

running the LISP system, 31

scale factor, 25

scope of bindings, 17

semicolon, 2

semicolons, 5, 9

separators of list elements, 4

SET, 30, 31

SETQ, 29, 30

sets, 15

SETSET, 31

setting constants, 17

S-expression disgrams, 36

S-expressions, 1, 2, 5, 9, 10,
16, 20, 22; defn., 2

S-expressions for functional
arguments, 21

significant digits, 24

source language, 1

Speak, 34

special forms, 18, 21

special rule to translate
functional arguments into
S-expressions, 21

square brackets, 2, 5, 9

STOP, 31

STR trap, 33

SUB, 26

SUB1, 26

SUB2, 12

subexpression, 3, 37, 38

subexpressions, 2, 3

SUBLIS, 12

sublists, 4

- 381 -

SUBR, 18, 39, 40

SUBST, 11, 41, defn., 11

substitute, 12

substituting, 11, 12

substituting S-expressions,
11

substitution, 11

sum, 25
syntactic summary, 8
syntax, 8, 20

symbolic data processing, 1
symbolic expressions, 1, 41
symbols, 18

system memory, 31

T, 3525’ 9, 10, 14, 16, 18,

*T, 22

table-searching function, 12

tags for numbers, 41

temporary tape, 31

terminator for lists, 4

TEST, 31

test cases, 15, 30

theory of recursive functions,
AN

third arguments, 5

times, 26

TRACE, 32, 41

tracer, 32

tracing, 32

translate, 10

translated, 10

translation from M to S-
expressions, 10

trap, 34

trapping on errors, 35

tree-type structures, 1

trees, 36

true, 3

truth, 5, 23

truth as not NIL, 23

truth in LISP, 22

TXL instruction, 40

unbound variable, 32

uncount, 34

undefined conditionals, 5

union, 15; defn., 15

universal function, 10, 17, 20

universal LISP functions, 10

unpaired parentheses, 31

UNTRACE, 32

upper case letters, 2, 8

valid X-expression, 9

value of atomic symbol, 39

value of conditional expres-
sions, defn., 5

value of constant, 17

value of numbers, 24

values of arithmetic functions,
25

VARi, 10

variable, 7, 9, 16, 17

variable names, 5

variables, 3, 7, 9, 10, 12, 16,
24; use of, 3

variebles not allowed, 18

variables paired with argu-
ments, 17

variables, program, 29, 30

well-defined recursive defini-
tions, 6

ZEROP, 26

TTTTTgy 39

(, 2
¢, 9
\, 8
>, 8
<y 8
8

iix=y

>9 5
i=, 29
), 2

- 382 -

Appendix 7

A

A LISP Interpreter for the Q-32

Robert A. Saunders

A recent experimental use of Q-32 LISP required an exact
FUNARG device. To achieve a quick implementation of this, the
following interpreter was written., It interfaces with the
machine language parts of the system so as to use them wherever
possible. Interpretive functional arguments consist of
S-expressions, as distinguished from the function descriptors
used by compiled code. Thus, functions like MAPLIST would
have to be available in an interpretive version, as well as
the built-in compiled version.

The interpreter is of the classical A-list type described
elsewhere in this book. Thus, it differs somewhat from
Tim Hart's M-460 interpreter (P. 199). The principal function
is EVAL, of two arguments:; no APPLY is used. Thus, it is
similar in operation to the PDP-1 interpreter (P. 326). Note
that the entire interpreter is compiled, and it does not
interpret itself. '

383

(INTERP SPECIAL ((ALIST))
DEFINE {(({(EVAL (LAMBDA (E ALIST)
{PROG (X FN)
(COND {(ATOM E) (GO V))
({ATOM (CAR E)) (GO FN))
({EQ (CAAR E) (QUOTE LAMBDAY}))
{RETURN (EVAL (CADDAR E)
(NCONC (PAIR (CADAR E) {(CDR E)) ALIST))))
tCEQC (CAAR E) (QUUTE FUNARG)) . '
(RETURN (EVAL (CONS (CADAR E) (CDR E)) (CADDAR E))))
({EQ (CAAR E) (QUUTE LABEL))
{RETURN (EVAL (CONS (CADDAR E) (CDR £))
{CONS (CCNS (CADAR E) (CADDAR E)) ALIST))))
(T (RETURN (EVAL (CONS (EVAL (CAR E) ALIST)
{CDR E)) ALIST)I))
V {CCND ((NULL E) (RETURN NIL))
((EQ £ (QUOTE T)) (RETURN E))
({tEQ E (QUOTE F)) (RETURN NIL))
(INUMBERP E) (RETURN E))
((SETQ X (FIND E ALIST)) (RETURN (CDR X)))
{INOT (ATUM (CAR E))) (RETURN {CAAR E)))
{T (ERROR (CONs € (QUOTE (NOT BOUND))) D))
FN (SETQ FN (CAR E))
(COND ((AND (CAR FN) (ATOM (CAR FNI)
(RETURN (#EVQ (CAAR FN) (EVLIS (CDR £©)))))
{(SETQ X (GET FN (QUOTE EXPR)))
{RETURN (EVAL (COUNS X (EVLIS (CDR E))) ALIST)))
{(SETQ X (GET FN (QUOTE FEXPRI]))
(RETURN {(EVAL (LIST X {(CDR E) ALIST) ALIST)))
{(SETQ X (GET FN (QUOTE FSUBR)))
(RETURN ((CAR X) (CDR E) ALIST)))
{{SETQ X (FIND FN ALIST))
{RETURN (EVAL (CONS (CDR X) {EVLIS (CDR E))) ALIST)))
(T (ERROR (CONS E {QUOTE (NOT FUNCTION)N))} D))
{EVLIS (LAMBDA (L)
{MAPCAR L (FUNCTION (LAMBDA {(J) (EVAL J ALIST))))))
(EVCON (LAMBDA (E A M)
(PROG NIL L (COND {((NULL E)
(COND (M {ERROR (QUOTE COND))) (T {RETURN NIL))))
{(EVAL (CAAR E)} A) (RETURN (EVAL (CADAR E) A))))
(SETQ E (CDR E)) (GO L))))
(FIND (LAMBDA (X Y)
(PROG NIL A (COND (({NULL Y) (RETURN NIL))
((EQ (CAAR Y) X) (RETURN (CAR Y))))
(SETQ Y (CDR Y)) (GO A))))
(FSUBR (LAMBDA (L) '
{MAPCAR L (FUNCTION (LAMBDA (J)
(PROG (K L)
(SETQ K (GENSYM))
(SETQ L (MDEF (CADR J)))
(REMPROP (CAR J) (QUOTE FSUBR))
(COM2 (QUOTE SUBR) (LENGTH (CADR L)) L X)

364

{DEFLIST (LIST (LIST {(CAR J) (CAR K))} (QUOTE FSUBR))
(RPLACA K NIL) (RETURN (CAR 4)}))))))))
SPECIAL ((LBLS PRGV PCTR})
FSUBR (((PROG (LAMBDA (E A)
(PROG (LBLS PCTR PRLV)
{SETQ A (NLONC (MAPCAR ({CAR E)
{FUNCTION (LAMBOUA (J) (CONS J NILI})) A))
(SETC PCTR (CDR &))
A (COND ((NULL PCTR} (GO B8))
({ATOM (CAR PCTR)Y) (SETQ LBLS (CONS PCTR LBLS))))
(SETQ PCTR (CDR PLCTR))
(Go A)
B (SETQ PCTR (CDR E))
C (CONi) (PRGV (RETURN (CAR PROGV)))
{INULL PCTR) (RETURN NIL))
{{ATOM (CAR PCTR))} (GO N))
{(EC (CAAR PCTR) (QUOTE CONDIJI) (EVCON (CDAR PCIR) A NilL))
(T (EVAL (CAR PCTR) A)}) N (SETQ PLTR (CDR PCTR)) {Gu €))))
(GO (LAMBUA (E A}
{PROG (P)
{COND ((INULL (SETQ P (FIND {CTAR E) LBLS)))
(ERROR (CONS (CAR E) (QUUTE (NUT A LABEL))))))
(SETC PCTR P))))
{RETURN (LAMBDA (E A} (SETQ PRGV (LIST (EvAL (CAR E) A)I)}
(SETQ (LAMBLA (E A)
(PROG (v P)
{SETQ VvV (EVAL (CADR E) A))
(COND ((NULL (SCTQ P (FIND (CAR E) A})) (GO NAY))
(RPLACD P V)
(RETURN V) -
NA (COND ((NULL (CAAR E})
(ERRCR (CONS E (QUOTE (ILLEGALI))I))
(CSET {CAR E) V) (RETURN V))))
{COND (LAMBDA (E A) {(EVCON E A T)))
(FUNCTICN (LAMBDA (E A) (LIST (QUOTE FUNARG) (CAR E) AN}
(QUOTE (LAMBDA (E A) (CAR E)))
{AND (LAMEDA (E A}
(PRUG NIL A (COND ({NULL E) (RETURN T))
((NULL {EVAL (CAR E) A)) (RETURN NIL)))
(SETC £ (CDR E)) (GO A))))
{OR (LAMBDA (E A)
(PROG NIL A (COND (INULL E) (RETURN)} :
({EVAL (CAR E) A) (RETURN T))) (SETQ £ (CDR E)) (5L A)IDI))
#=#u#END OQF FILE DETECTED :

385

	Acknowledgements
	Preface
	Table of Contents
	LISP - A Simple Introduction
	LISP - On the Programming System
	LISP - 240 Exercises with Solutions
	Notes on the Debugging of LISP Programs
	Styles of Programming in LISP
	Techniques Using LISP for Automatically Discovering Relations in Data
	Automation, Using LISP, of Inductive Inference on Sequences
	Application of LISP to Checking Mathematical Proofs
	METEOR: A LISP Interpreter for String Transformations
	Notes on Implementing LISP for the M-460 Computer
	LISP as the Language for an Incremental Computer
	The LISP System for the Q-32 Computer
	An Auxiliary Language for More Natural Expression - the A-Language
	Appendix 1: The LISP Program for METEOR
	Appendix 2: The LISP Programs for Inductive Inference on Sequence
	Appendix 3: The LISP Listing for the Q-32 Compiler, and Some Samples
	Appendix 4: The LISP Program for the A-Language
	Appendix 5: The LISP Implementation for the PDP-1 Computer
	Appendix 6: Index for Parts I to VII of the LISP 1.5 Programmer's Manual
	Appendix 7: A LISP Interpreter for the Q-32

