
P.O. BOX 791 I WOODLAND HILLS, CALIFORNIA 91364 I TELEPHONE (213) 345-6506

ICACI
CALL-A-COMPUTER

OF CALIFORNIA, INC.

March 13, 1969

Mr. Clark Weissman
Systems Development Corp.
2500 Colorado Avenue
Santa Monica, Calif.

Dear Mr. Weissman:

I am enclmsing a list of the Lisp errors which
will appear on our system. You were correct
as we do have a Lisp interpreter, not a com­
piler. I have attained a copy of your book
and will attempt some programs this weekend.

I hope this preliminary information will be
sufficient for further investigation on your
part.

Encs.

TABLE OF CONTENTS

I •. Difference Between LISP and Lisp 1.5

II. LISP Atoms

III. LISP Error Messages

IV. LISP Updates

V. Special Forms

VI. Examples

I: .''''

\.

r

1'"
\

I. Dif f erences Be tween LISP and Lisp 1.:5

The Call-:-A,~omputer Time-Sharing System now has a limited ve~sion

of the Lisp 1.5 System developed for the IBH 7090 at H.I.T. The C-A-C

version is. called LISP. Because LISP was developed as an academic exer-

cise, it is intended to be used only for educational purposes. It fo1-

lows the basic outlines defined in (Lisp 1.5 Primer), by Clark Weissman,

Dickenson Publishing Co. and Lisp 1.5 Programmer's }Ianual, by John

McCarthy, et a1., M.I.T. Press. However, the user should be aware of

the following changes to Lisp 1.S:

1) The C-A-C Lisp Interpreter differs from the interpreter described
in Appendix B of the M.I.T. Manual in that the universal function
EVALQUOTE of the interpreter has been replaced by EVAL. As a
result, the following restrictions apply:

a) The user's program must consist of forms for EVAL rather
double~~ for EVALQUOTE. For example,

CAR«A B C» becomes (CAR (QUOTE (A B C») and
CONS (A B) becomes (CONS'(QUOTE A) (QUOTE B»

b) There is no special check made for NIL in the LISP functionals
EVAL and APPLY. Therefore, expression such as (APPLY ()args
a-list) is a request that APPLY evaluate an undefined function.
In that case Error Message A2 is printed, describing the type
of error and the function--NIL--that was undefined.

~~

c) The user can change the ~nterpreter to EVALQUOTE by executing
(INTERPRETQ T).

d) The user can change the interpreter bac.k to EVAL by executing
INTERPRETQ«».

2) LISP does not contain a compiler or the internal assembly progra~
LAP, described in the Manual.

3) The monitor. for the Lisp 1.5 System is called OVERLORD. Because
several changes have been made to the Lisp monitor, the user Sllou1d
disregard the description of OVERLORD in Appendix E of the }ianual.

- Instead, the user must set up his program as a collection of forms.
Each of the forms is then evaluated and the results are printed.
When a program is finished, an End-of-File Error (Error R4) is
printed. In addition, because the READ routine ignores carriage
returns and line numbers, a form may run for several lines. A
special function in LISP called LISTEN causes EVAL to interpret
directly from the teletype instead of the current program.

- 1 -

4) List structure is stored differently in the GE 235 than in the
7090. Each word of list structure comprises a CAR half and a
CDR half. The CAR half is stored in an ~ location 'vord of core
memory and the CDR half is stored in the next higher odd location
word. All list pointers are internal machine addresses which
point to the even half of the word. Therefore, the atom head (i.e~,
the CAR of the atom) in the 235 is an odd pointer rather than the
-1 used in the 7090. Because there is no Tag portion in the 235,
numbers are represented as atoms with FIXNUM or FLONU}1 properties
rather" than the PNAME property of regular atoms. The property
following FIXNUM is a pointer specifying an integer and the property
following FLONUM points to a floating-point number. To accomodate
both PNAMES and numbers, double~word locations are reserved in
full-word space.

5) The following format restrictions apply to LISP:

a) In the Lisp 1.5 System, an atom cannot have a print name of
more than 30 characters. This restriction has been removed
for LISP. The user is now restricted only in the amount of
storage he is willing to reserve for the ,print name.

b) The symbols for true and false are T and NIL, respectively.
There are no *T* or F symbols in LISP. Both T and NIL are
constants that evaluate into themselves.

c) Some changes have been made to the format of numbers in input
and output operations. If, in an input operation, a string
of digits preceeded by a minus sign (or an optional plus sign)
contains no decimal poin·t s it is read as an integer in the
current input base. If a similar string of digits is followed
immediately by only a decimal point, it is read as an integer
in base ten. Floating-paint numbers have the same format as
described in the Lisp 1.5 Manual. If there is an E (decimal
scale factor) in a floating-point number, the decimal point
may be dropped. In that case, the decimal point is assumed to
preceed the E. To set the input and output base· of numbers,
two new functions were added--SETIBASE and SETOBASE. SETIBASE
affects only "the input transfer of numbers that do not conn~in
a decimal point or an E. SETOBASE does not affect the output
transfer of floating-point numbers.

6)- The following restrictions apply to the pseudo-functions READ, RETURN,
and GO:

a) When a programmer makes a call to READ, the function does not
read the first list after STOP. Instead, it reads the next
list that has not already been read by the interpreter.

b) The restriction that GO and RETURN may appear only at the top
level of ~ program feature (PROG) has been removed. Instead,
they may be used any time after a PROG has been entered. \~len
they are evaluated, GO has as its value the point to which the

tr'\.," .'
~

o

prfogram transfers and RETURN has as its value the return value ~~
o the PROG. GO and RETURN are not executed until the inter- ~
preter returns to the top level of the current PROG. At that
time PROG transfers to the point specified by GO or RETURN. GO
and RETURN may only refer to the last PROG entered by the interpreter.

- 2 -

(c) The LISP READ Routine does not recognize the $$ convention
of Lisp 1.5 for quoting characters in print names. Instead,
LISP uses the slash (/). The character following a slnsh
is placed in the PNAHE regardless of what it is. The char­
acters that must be slashed are: space, comma, dot, ~osht
right parentheses, left parentheses, and carriage return.
To prevent confusion between atoms and numbers, leading Blus
signs_, ~n~2. signs, and digits are also slashed.

7) The only change that has been made to the special forms of Lisp
1.5 is the redefinition of COND. COND now accepts different forms
of arguments from those described i.n the Hanual. COND still accepts
expressions coded in the old manner. However, COND now returns
NIL instead of printing an error message if none of the proposi­
tions is true. For a more detailed description of the changes to
COND, see page 17.

- 3 -

II. LISP Atoms

The following is an alphabetic list of the atoms that are ini-

tially defined in the C-A-C version of LISP. A dollar sign ($) indi-

cates a ch~nge from the "Lisp 1.5 Programmer's Manual."

Atom Revised ---
ADD I
ADVANCE $

ADVANCE* $

ADVANCETTY $

AND
APPEND
APPLY

ATTRIB
BELL

CAAAR
CAADR
CAAR
CADAR
CADDR
CADR
CAR
CDAAR
CDADR
CDAR
CDDAR
CnDDR
CDDR
CDR

$

$

Property

(SUBR) -
(SUBR)

(SUBR)

(SUBR)

(FSUBR)
(SUBR)
(SUBR)

(SUBR)
(APVAL)

(SUBR)
(SUBR)
(SUBR)
(SUBR)
(SUBR)
(SUBR)
.(SUB'1)
(SUBR)
(SUBR)
(SUBR)
(SUBR)
(SUBR)
(SUBR)
(SUBR)

Description

- ADVANCE reads the next character
from the disk. It ignores line num~
bers. ADVANCE should be used care­
fully because the characters it reads
are not read by the READ function.

- ADVANCE* is identical to ADVANCE ex­
cept that it does not ignore line
numbers.

- ADVANCETTY reads the next character
from the user's teletype. If the last
character read was a carriage return,
then a call of ADVANCETTY causes a
corresponding call for an input trans­
fer. In addition, the first character
typed is returned. The first character
read by ADVANCETTY is a carriage return.

- APPLY no longer makes a special check
for NIL as a function name. Instead,

-the statement (APPLY NIL args a-list)
will' cause an error message (ERROR A2)
to be printed stating that NIL is an
undefined function.

- BELL is for those who like audio-output
from their program.' BELL is a constant
that evaluates into an atom with the
print name (BELL).

- 4 -

o

(

Atom Revised Property

) CLEARBUFF
CLOCK $

(SUBR)
(SUBR)

CONC
COND

CONS
COpy
CSET
CSETQ
DEFPROP

DIFFERENCE
DIVIDE
EQ
EQUAL
ERROR
ERSETQ

EVAL
EVLIS
FIX
FIXNUM

FIXP
FLOATP
FLONUM

FUNCTION
FWCONS

GENSYM
GET
GO

GO*

GREATERP
INTERN

$

$

$

$

$

$

$

$

(SUBR)
(FSUBR)

(SUBR)
(SUBR)
(SUBR)
(FSUBR)
(FSUBR)

(SUBR)
(SUBR)
(SUBR)
(SUBR)
(SUBR)
(FSUBR)

(SUBR)
(SUBR)
(SUBR)

(SUBR)
(SUBR)

(FSUBR)
(SUBR)

(SUBR)
(SUBR)
(FSUBR)

(SBUR)

(SUBR)
(SUBR)

Description

- 5

- CLOCK is a function of no arguments.
Its value is the numerical time of
day in sixths of a second.

- COND has been modified to accept an
expanded form of propositions~ For
a more detailed explanation of the
changes to COND, see page 17.

- DEFPROP is identical to PUTPROP except
that DEFPROP quotes its three arguments.
This allows the user to assign proper­
ties to atoms without typing "QUOTE".

- ERSETQ is a function of one argument.
lis value is the evaluation of its
argument CONSed with NIL (if no error
occurs). If an error occurs, then ERSETQ
returns NIL. ERSETQ allows the user to
try one approach to a solution and, if it
fails, to try another path.

- FIXNUM is the property of a fixed-point
number.

- FLONUM is the property of a floating­
point number.

FWCONS is a function of one argument. Its
argument points to a full word. FWCON's
value points to a new full word which is
a copy of the argument.

- GO may be used any time after a PROG
has been entered. If it does not appear
at the top level of a PROG, it is not
executed until control returns to the PROG.

- GO* is identical to GO except that it
evaluates its argument. It may be used for
a switch-type transfer.

/

Atom

INTERPRETQ

LEFT SHIFT or
RIGHTSHIFT

LENGTH
LESSP'
LIST
LISTEN

Revised

$

$

$.

(SUBR)

(SUBR)

(SUBR)
(SUBR)
(FSUBR)
(SUBR)

Description

- INTERPRETQ is a function designed to
give EVAL greater compatibility with
EVALQUOTE systems. INTERPRETQ takes
one argument. If this argument is ~IL,
the interpretive function is EVAL. 1I0\v­
ever, if the argument is not NIL, the
interpretive function'becomes EVALQUOTE.
Thus, (INTERPRETQ T) calls EVALQUOTE and
INTERPRETQ(NIL) brings back EVAL. I~TER­
PRETQ affects both the normal interpreting
from the program and the interpreting
done on statements typed in from a teletype
by means of a LISTEN op~ration. The value
of INTERPRETQ is its previous argument.
This is initially NIL so that inter­
preting starts with EVAL.

- The second argument of LEFTSHIFT or RIGHT­
SHIFT (i.e., the shift count) must be
a fixed-point number. These functions shift
the number defined as the first argument
the specified number of bit positions. The
floating-point argument is handled the same
way as in LOGOR. The effect on fixed-point
numbers is to mUltiply or divide by the
appropriate power of two. The forms (LEFT­
SHIFT A B) and (RIGHTSHIFT A(HINUS B» are
identical except when B is zero. In this
cases because of the nature of the GE 235,
a LEFTSHIFT 0 causes a shift of the sign
bit of the lower half into the upper half
while a RIGHTSHIFT 0 causes a shift of the
sign bit from the upper half into the
lower half. In fixed-point arithmetic, the
sign of the lower half is ignored and is
forced to agree with the· sign of the
upper half. In floating-point arithmetic,
the sign~f the lower half is the sign
of the number, and the sign of the upper
half is the sign of the exponent.

- LISTEN is a function useful for time­
sharing LISP. On entering LISTEN, the
interpreter stops evaluating from the
disk. Instead, it evaluates statements
from the teletype. LISTEN is terminated by
typing the atom "STOP". The user must take
care to insure that STOP is followed by
~ space to prevent the time-sharing system
from accepting the input as a command to stop
LISP. When LISTEN is terminated, it returns
NIL. The typical LISP program consists
of a set of function definitions followed
by LISTEN.

o

pi,.,i~',
\;J

~,;',,;
~

~

e"

Atom

LOGAND or
LOGOR or
LOGXOR

HAKNUM

MAP or
MAP CAR
MAP CON
MAX
MEMBER
MIN
MlNUSP
NCONC
NIL
NOT
NUMBERP
NUMOB
OBLIST

ONEP
OPEN

or

' Revised

$

$

$

$

$

!,!opertL

(FSUBR)

. (SUBR)

(SUBR)

(SUBR)
(SUBR)
(SUBR)
(SUBR)
(SUBR)
(APVAL)
(SUBR)
(SUBR)
(SUBR)
(APVAL).

(SUBR)
(SUBR)

Description

- These functions operate normally except
that they accept floating-point arguments
without error. If given a floating-point
argument, they do not FIX it but rather
use its pattern of bits directly to form
their result. The value of these functions
is always a fixed-point number.

- ~1 is a function of two arguments. It
creates an atom with a property list of
}~NUM's second argument followed by }~K­
NUM's first argument. MAKNUH is often
used as an easy way to create numbers from
full words.

- For MAP, MAP CAR , and MAPCON, the order of
arguments from their original definitions
has been reversed.

As on the IBM 7090, the OBLIST evaluates
into all atomic objects that have been
transferred into the system. The OBLIST
on the GE 235 is similar to the 7090
except that it has only 32 buckets instead
of the usual 64.

- OPEN is a function of one or two arguments.
Its purpose is to determine the file from
which the READ, ADVANCE, .and ADVANCE>'(
operations pull their data. Initially, the
f1le open for reading is the user's current
program. Hmvever, to read elsewhere on the
disk, the user specifies the user numb~r
and the file name to OPEN. The first argu­
ment of OPEN is the user number; the second
is the file name. For example, to read in
TRACE from 'the library, enter (OPEN(QUOTE
LIBEVA) (QUOTE TRACE-». It should be noted
that both the user number and the file num­
ber are atoms, never numbers. In order to make
a user number with all numeric characters
look like an atom, the first digit must be
quoted with a slash. Also any file nome with
less than six characters must be followed
by blanks. For example, to open file "ABCD"
under user number A12345, enter (OPEN(QUOTE

I Al2345) (QUOTE ABCDI I ». Once a
file is opened, reading begins at the start
of the file by using a file-reading command

- 7 -

Atom

OR
PACK
PACKO

PAIR
PLUS
PRINT
PRINl

PROG
PROG2
PROP
PUTPROP

QUOTE
QUOTIENT
READ

READTTY

RECIP
RECLAIM
REMAI1\1) ER
REMPROP

Revised

$

$

$

$

$

?roperty

(FSUBR)
(SUBR)
(SUBR)

(SUBR)
(FSUBR) -
(SUBR)
(SUBR)

(FSUBR)
(FSUBR)
(SUBR)
(SUBR)

(FSUBR)
(SUBR)
(SUBR)

(SUBR)

(SUBR)
(SUBR)
(SUBR)
(SUBR)

Description

(i.e., READ, ADVANCE, or ADVfu~CE*). The
first character read by ADVANCE or ADVANCE*
will be a carriage return. If, instead
of giving OPEN a user number and a file
name, the user gives only the single argu­
ment NIL, then reading begins at the user's
current program. Thus, (OPEN(» acts as a
restore operation.

- PACKO is a function of one argument which
points to a character. It adds this charact­
er to the teletype output buffer. PACKO re­
turns NIL.

- PRINI may now be used to print lists as
well as atoms. If given a list, PRINI
prints it normally but does not terminate
the print line.

- PUTPROP represents LISP's method of de­
fining things. It is a function of three
arguments. The first of these must be the
atom that is being defined. The second and
thirrlarguments are the definition and the
definition type (usually EXPR or FEXPR),
respectively. Any other occurence of the'
property type on the defined atom is removed.

- READ now reads the next unread list from
the disk. It is initially set to read frqm
the user's current program area.

- READTTY is a function with no arguments.

- 8

Its value is a list that is entered via the
user's teletype. It calls for an input trans­
fer and continues the operation until a
complete list is typed. If parentheses do not
balance on one line, the computer continues
to request an input transfer until they
are balanced. As with the READ function t

READTTY ignores carr:I.age returns. Therefore,
a space must follow a single atom. On any call
for an input transfer, more than one list
may be specified; if so, the extra lists
(or part of a list) will,be used on the next
operation of READTTY.

Revised

RETURN $

REVERSE $

RIGHTSHIFT $

REPLACA or
REPLACD . $

SASSOC

SET

SETQ

SETIBASE $

SETOBASE $

STOP $

SUBST

SUBl

T $

Property

(SUBR)

(SUBR)

(SUBR)

(SUBR)

(SUBR)

(FSUBR)

(FSUBR)

(SUBR)

(SUBR)

(SUBR)

(SUBR)

(SUBR)

(APVAL)

Description

~ RETURN may now be given any time after
a PROG has been entered, If it is not
given on the top level of a PROG, it is
not executed until control returns to the
PROG.

- See the description for LEFTS~IFT.

- A check is made to determine if the user
is modifying a location that is not in free
storage or full-word space. If he is, the
operation is not completed and an error mes­
sage tERROR MEM) is printed. Because initial
definitions are not located in these areas,
the user may not modify them.

~ SETIBASE is a function of one argument.
It changes the base of integers on an
input transfer. SETIBASE affects only
those integers that do not have a decimal
point as the last character. SETIBASE has
no effect on floating-point numbers. The
value of SETIBASE is the previous input base.
This allows routines both to change the base
and to restore it. The input base is initial­
Ly set to ten.

- SETOBASE is a function of one argument. It
changes the output base of registers. The
execution of SETOBASE returns the previous
output base. The output base is initially
set to ten.

- STOP as an atom is used to terminate LISTEN,
STOP as a function is used to give a terminal
exit for LI'SP.

~ T replaces *T* in the Lisp 1.5 Manual, T
~ is a constant that evaluates into itself.

Predicates in LISP return either T or NIL.

- 9' -

Atom

TERPRI

TIMES

XEROP

Revised Prope~
i

(SUBR)

(FSUBR)

(SUBR)

\ I

Description

- 10 -

.. O'· .. ·.··~·

III. LISP Error Messages

The following is a list of possible error messages for the C-A-C

version of LISP. Some messages have been added to and some have been

deleted from the list of messages in the "Lisp 1.S Programmer's Manual."

Interpreter Errors

ERROR

ERROR Al

ERROR A2

ERROR A4

ERROR AS

ERROR A6

ERROR AS

ERROR A9

ERROR AlO

DESCRIPTION

APPLIED FUNCTION CALLED ERROR.
This is an error forced by the program­
mer by the evaluation of the function
ERROR. ERROR is a function of one ar­
gument. On the line after the error
type, the evaluation of ERROR's argu­
ment is p'rinted. ERROR is particulQrly
useful as a debugging aid.

- FUNCTION OBJECT HAS NO DEFINITION - APPLY.
APPLY has been asked to evaluate an un­
defined function. After the error type,
the function that was undefined is printed.

- SETQ GIVEN ON A NONEXISTENT PROGRAM
VARIABLE - APPLY. The nonexistent
variable is printed after the error type.

- SET GIVEN ON A NONEXISTENT PROGRAM
VARIABLE - APPLY. The nonexistent
variable is printed after the error type,

- GO (or GO*) REFERS TO AN UNLABELLED POINT.
The unlabelle~d point is printed after the
e~ror type.

- EVAL ASKED TO EVALUATE AN UNBOUND VARIABLE.
The variable that is not defined (by
LAMBDA, PROG, or CSET) is printed. This
error often occurs when there is a
parentheses miscount.

- FUNCTION OBJECT HAS NO DEFINITION - EVAL.
The undefined function is printed. This
error often occurs when there is a
parentheses miscount.

- PUTPROP'S FIRST ARGUMENT IS NOT ATOMIC.
This occurs with DEFPROP,CSET, and CSETQ.

- 11 -

Compiler Errors

ERROR

ERROR CHl

ERROR CH2

ERROR CH4

Miscellaneous Errors

ERROR --
ERROR DSK

ERROR F2

ERROR F3

ERROR Gl

ERROR G2

Garbage Collector Errors

ERROR

ERROR GC2

DESCRIPTION

_ TOO MANY CllARACTERS - PACK. PACK has
been called to pack more than 81
characters into BUFFO without using
CLEARBUFF.

FLOATING-POINT NUMBER OUT RANGE - NIDI0B.
It is possible to get this error also
on decimal integers of more than 12
characters since, at this point, NUMOB
could not have determined whether or not
the number is a floating-point number.

- BAD CHARACTER - NUMOB

DESCRIPTION

- THERE P~S BEEN A DISK ERROR. If this
error occurs during an OPEN operation,
then READ, ADVANCE, and ADVANCE *
become undefined ..

PAIR'S FIRST ARGUMENT LIST IS TOO SHORT.
The extra elements are printed after the
error type. This 'mos t often happens when
too many arguments are given to a LA}illDA -
bound function.

l - PAIR'S SECOND ARGUMENT LIST IS TOO SHORT.
Elements are printed after. the error type.
This most often happens when too few
arguments aEe given to~a LAMBDA-bound
function.

. - ARITHMETIC OVERFLOW OR DIVIDE CHECK. On
the GE235 both fixed - and floating -
point operations can be "trapped".

- OUT OF PUSH-DOWN LIST. This happens
when recursion is too deep. It often
indicates infinite recursion.

DESCRIPTION

- NO WORDS COLLECTED - GARBAGE COLLECTER. This
means that the evaluation of present functions
requires more than the machine's capacity for
list structure. The GE235 has a very small

. capacity.
- 12 -

~.' ... ;;:.

~

o

Arithmetic Errors

ERROR

ERROR 13

ERROR 14

Memory Errors

ERROR

ERROR MEM

ERROR TRA

Input-Output Errors

ERROR

ERROR p2

ERROR P3

ERROR Rl

ERROR R2

ERROR R3

DESCRIPTION

.·ARGUMENT OF A NUMERIC FUNCTION IS NOT· A
NUMBER.

_ ARGUMENT OF A FUNCTION EXPECTING A FIXED­
POINT NUMBER IS A FLOATING- POINT Nill-illER.

DESCRIPTION

- There has been an attempt to modify a
cell that is not in free storage or full­
word space. This may happen if the user
tries to modify a predefined atom.

- This error· occurs when the interpreter
discovers a transfer into memory using
SUBR or FSUBR flags. TIlis prevents
the user from transferring to illegal
locations in memory.

DESCRIPTION

- ATOM HAS .NO PRINT NAME - PRINI. This
happens when the program attempts to
print an atom without a PNAHE, FIXNUM,
or FLONUM on its property list. This
most often o~curs when th~ user tries
to print CAR's or CDR's beyond the atomic
level.

- BAD BASE - SETOBASE OR SETIBASE. Only
number bases between two and ten can be
used for integer input-output operations.

- FIRST OBJECT ON THE INPUT LIST IS ILLEGAL -
READ. This most often happens when there
is a misplaced (dot) or (right
parenthesis>

- CONTENT ERROR WITH DOT NOTATION - READ.

- ILLEGAL CHARACTER - READ. The inpu t
transfer of a Itbad lt end of file causes
this error. This occurs when READ,
ADVANCE, or ADVANCE* attempt to read
beyond the end of file •

. - 13 -

Input-Output Errors - Cont'd

ERROR

ERROR R4

ERROR Rl

. DE SCRIPTION

- END OF FILE. This message indicates that
a program is. finished.

- FILE NOT FOUND - OPEN. An attempt was
made to open a nonexistent file. IF
OPEN is unsuccessful then READ, ADVANCE,
and ADVANCE* are undefined.

- 14

o

o

(' IV. LISP Updates

The following is a chronological list of all LISP updates. The

changes are listed in reverse order.

CURRENT VERSION: LISP 47

1) NUMOB now rounds off numbers on floating-point conversion so that
(FIX 1.0) now returns 1 instead of O.

2) On outp~t operations using dot notation, the dot is surounded by
a pair of blanks.

3) Because the original intent of OPEN has been abused, it is now
undefined.

4) New functions: ATTRIB, CONC, PROP, REMPROP, MAPCON (please
note that, like MAPLIST and MAPCA~ the arguments of ~~P~ON
have been reversed.)

5) The name of the garbage collector function has been changed to
RECLAIM as stated in the "Lisp 1.5 Progrannners Manual."

6) The size of the output buffer has been decreased. This causes
more swaps with programs that have a substantial amount of out­
put information but gives more free storage.

LISP 46

1) A previous "bug" in NUMBERP has been fixed.
2) The form of numbers has been redefined so that numbers look like

atoms whose first property is FIXNUM or FLONUM. However, instead,
of having another property list after the number property, it
points directly to the number. In other words, (CDDR number)
specifies in full-word space a cell that contains the value of
the number.

3) Storage has been reallocated to allow for more free-storage but
less full-word space and less push-down list.

4) New protection features have been added so that it is more dif­
ficult (maybe even impossible)- for the user to damage time-sharing.

5) The representation of constants on property lists has been changed.·
No longer are constants depressed one level in the list structure
after the APVAL property flag. This means that CSET is defined as
(PROG2(PUTPROP argl arg2(QUOTE APVAL»arg2) instead of (PROG2
(PUTPROP argl(LIST arg2) (QUOTE APVAL»atg2) as previously.

6) The size of BUFFO has been changed from 81 characters to only 40
characters. The reason for this is that BUFFO can only be used
for numbers and numbers more than 12 characters are illegal.

LISP 45

1) . New functions: CLOCK, LOGOR, LOGAND, LOGXOR, LEFTSHIFT, RIGHTSHIFT,
ADDl, SUBl, ONEP, ZEROP, MAX, MIN, RECIP, LENGTIl.

2) The float phase of the arithmetic functions has been fixed so that
it floats a fixed-point zero correctly.

- 15 -

3) New error--ERROR 14. ERROR 14 is given by an arithmetic function
that detects a floating-point argument when it expected a fixed­
point argument. Leftshift and rightshift operations cause this
error message to be printed if a floating-point number is given
as the shift count.

LISP 44

1) A buck~t-sorted OBLIST has been added. The OBLIST consists of 32
sublist (not the usual 64) so that, on reading an atom, only a
small fraction of the OBLIST need be scanned. The result is that
READ and READTTY have been speeded up by almost a factor of five

2)

3)

4)

5)

~)

over previous versions.
COND has been redefined to take a greater variety of forms of
arguments. See COND on page 17 for details.
The functions MAPLIST, MAP CAR , and }~P have been added. Their
definitions have been changed slightly so that their first ar-
gument is a function and their second argument is a list to which
this function is applied. In normal orde~, the first argument
is the list and the second argument is the function. This seems
awkward, however, considering the mathematical'notation of F(x)
for functions.
EVAL and APPLY have been modified so that they no longer make a
special check for NIL. The result is that (APPLY NIL args alist)
gives an undefined function--NIL. However, (EVAL NIL alist) still
results in NIL, since NIL is a constant that evaluates into itself.
Other changes were made to improve the speed of LISP (like all
interpretive systems, LISP is intolerabley slow). None of these
changes can be noticed by the user.
LISP has been given a new error--ERROR TRA. This error is given
if the user attempts to transfer into memory using SUBR or FSUBR
flags. Only predefined functions are allowed to be SUBRS or
FSUBRS.

16

~ .. '.,

~

I
\.-.

V. Special Forms

COND is a special form which allows the user to analyze varying

situations. It accepts arguments - the number of arguments is un-

defined - and evaluates them according to their values. COND has

been modified in LISP to accept expressions in the form:

(COND(Pll,P12, ... ,PIK) (P2l,P22, ..• ,P2L) ••• (PNl,PN2, •.. ,PNM)

COND evaluates all PII until it finds the first that is not NIL.
COND then evaluates the remainder of PIJ for all J, returning
the last PIJ for its value. If all PII are NIL, then the value
of COND is NIL. Using this definition, it is possible to have a
conditional of one expression if there is only one PIJ. In this
case, if PII is not NIL, then the value of PII is the value of
CONDo A LISP definition of COND (here called COND*) is:

(DEFPROP COND*
(LAMBDA(L A) (COND

((NULL L) NIL)
(T(CONDl(EVAL(CAAR L)A)L A»

» FEXPR)

(DEFPROP CONDl
(LAMBDA(E L A) (COND

«NULL E) (COND
«NULL(CDR L»NIL) .
(T(CONDl(EVAL(CAADR L)A) (CDR L)A»

»
(T(COND2 E(CDAR L)A»

» EXPR)

(DEFPROP COND2
(LAMBDA(E L A) (COND

«NULL L)E)
(T(COND2(EVAL(CAR L)A) (CDR L)A»

» EXPR)

- 17 -

. - .. !

VI. Examples

The LISP programs in this manual may not include all the necessary

functions. Those files that contain sample definitions will not run on

the LISP System. Since these functions are pre-defined, a memory error

will oc~ur if they are redefined. These definitions are intended only

to give the user an idea of how the system works:

DEFINE - DEFINE is a defining function. Its argument is a list of pairs.
ioo (DEFPROP DEFLIST'
110 (LAMBDA(L A) (MAPLIST
120 (FUNCTION(LAMBDA(X) (PUTPROP(CAAR X) (CADAR X) (CADR L»»
130 (CAR L))) FEXPR)
140 (DEFLIST(
150 (DEFINE(LAMBDA(L A) (EVAL
160 (LIST(QUOTE DEFLIST) (CAR L) (QUOTE EXPR»
170 A»))FEXPR) .
180 (LISTEN)

BODLE - BODLE defines the special forms of the LISP Boolean functions
M~D, OR, and NOT.
100 (DEFPROP NOT NULL EXPR)
110 (DEFPROP AND
120 (LAMBDA(L A) (COND«NULL L)T)
130 «EVAL(CAR L)A)
140 (EV AL(CONS (QUOTE AND) (CDR L» A)) .
150 (T» »
160 FEXPR)
170 (DEFPROP OR
180 (LAMBDA(L A) (COND«NULL L)(»
190 «EVAL(CAR L) A) T)
200 (T(EVAL(CONS'(QUOTE OR) (CDR L»A» »
210 FEXPR)

SETQ - SE+Q contains sample definitions of the pseudo-functions SET and SETQ.
1 (LAMBDA(L A) (CDR(RPLACD(SASSOC(EVAL(CAR L)A)

• 120 A
130 (FUNCTION(LAMBDA()
140 (ERROR(QUOTE SET» »)
150 (EVAL(CADR L) A))))
160 FEXPR)
170 (DEFPROP SETQ
180 (LAMBDA(L A) (CDR(RPLACD(SASSOC(CAR L)
190 A
200 (FUNCTION(LAMBDA()
210 (ERROR(QUOTE SETQ» »)
220 (EVAL(CADR L) A))))
230 FEXPR)

- 1S -

~
~

r ,

r
\

l ,--,.

Wang Algorithm - The following example defines the Wang Algoritllm for proposi­
tional calculus as described in the Lisp 1.5 Programmer's Hanual. The entry
(ARROt~(Al A2 A3 .••)(Bl B2 B3 •.. » defines the elements of a list of premises .
(AI, A2, A3, •.• , An) and the elements of a list of conclusions (Bl, B2, B3, ••• ,Bn).
The Wang Algorithm then states whether or not the statement is valid.

1TH1(LAMBDA(Al A2 A C) (COND«NULL A)(TH2 Al A2 NIL NIL C»
120 (T(OR(MEHBER(CAR A) C) (COND((ATON(CAR A» (THl(COND((NEHBER(CAR A)
130 Al)Al) (T(CONS(CAR A)Al»)A2(CDR A)C»(T(THI Al(CO~~«~lli~lliER(CAR A)
140 A2)A2) (T(CONS(CAR A)A2») (CDR A)C»»»)EXPR)
150 (DEFPROP TH2(LAMBDA(Al A2 Cl C2 C) (COND«NULL C)(1~ Al A2 Cl C2»
-160 «ATON(CAR C»(TH2 Al A2(COND«1-1EHBER(CAR C)Cl)Cl) (T(CONS(CAR C)
170 Cl»)C2(CDR C») (T(TH2 Al A2 Cl(COND«HENBER(CAR C)C2)C2) (T(CONS
180 (CAR C)C2») (CDR C»»)EXPR)
190 (DEFPROP TH(LAMBDA(AI A2 Cl C2)(COND«NULL A2)(AND(NOT(NULL C2»
200 (THR(CAR C2)Al A2 Cl(CDR C2»»(T(THL(CAR A2)Al(CDR A2)Cl C2»»EXPR)
210 (DEFPROP THL(LAMBDA(U Al A2 Cl C2)(COND«EQ(CAR U)(QUOTE NOT»
220 (THlR(CADR U)Al A2 Cl C2»«EQ(CAR U)(QUOTE AND»(TII2L(CDR U)
230 Al A2 Cl C2»«EQ(CAR U)(QUOTE OR»(AND(TIllL(CADR U)Al A2 Cl C2)
240 (THlL(CADDR U)Al A2 Cl C2») «EQ(CAR U)(QUOTE IHPLIES»(AND(TIIlL
250 (CADDR U)Al A2 Cl C2)(THlR(CADR U)Al A2 Cl C2») «EQ(CAR U)
260 (QUOTE EQUIV»(AND(TH2L(CDR U)Al A2 Cl C2)(TH2R(CDR U)Al A2 Cl C2»)
270 (T(ERROR(LIST(QUOTE THL)U Al A2 Cl C2»»)EXPR)
280 (DEFPROP THR(LAMBDA(U Al A2 CI C2)(COND«EQ(CAR U)(QUOTE NOT»
290 (THlL(CADR U)Al A2 Cl C2» «EQ(CAR U) (QUOTE AND» (AND(THlR(CADR U)
300 Al A2 CI C2)(lHIR(CADDR U)Al A2 CI C2») «EQ(CAR U)(QUOTE OR»
310 (TH2R(CDR U)AI A2 CI C2» «EQ(CAR U) (QUOTE IHPLIES» (TI-lll(CADR U)
320 (CADDR U) A I A2 C I C2» ((EQ (CAR U) (QU01E EQUIV» (AND (TIll 1 (CADR U)
330 (CADDR U)Al A2 Cl C2)(THIl(CADDR U)(CADR U)A1 A2 Cl C2») (T(ERROR
340 (LIST(QUOTE THR)U Al A2 CI C2»»)EXPR)
350 (DEFPROP THIL(LAMBDA(V Al A2 CI C2)(COND«ATOM V)(OR(ME~lliER V CI)
360 (TH(CONS V AI)A2 Cl C2») (T(OR(MEMBER V C2)(TH AI(CONS V A2)CI C2»)
370)) EXPR)
380 (DEFPROP THIR(LAMBDA(V Al A2 CI C2)(COND«ATOM V) (OR(ME1-lliER V AI)
390 (TH Al A2(CONS V Cl)C2») (T(OR(MEMBER V A2)(TH Al A2 CI(CONS V C2»»
400)) EXPR)
410 (DEFPROP TH2L(LAMBDA(V Al A2 Cl C2)fCOND«ATOM(CAR V»(OR(}1EMBER
420 (CAR V)CI) (THlL(CADR V) (CONS (CAR V)Al)A2 ·Cl C2») (T(OR(MEMBER
430 (CAR V)C2) (THlL(CADR V)Al(CONS(CAR V)A2)Cl C2»»)EXPR)
440 (DEFPROP TH2R(LAMBDA(V Al A2 CI C2)(COND«ATOM(CAR V»(OR(MEMBER
-450 (CAR V)Al) (THlR(CADR V)Al A2(CONS(CAR V)Cl)C2») (T(OR(ME1-lliER(CAR V)
460 A2)(THlR(CADR V)Al A2 Cl(CONS(CAR V)C2»»»EXPR)
470 (DEFPROP THll(LAMBDA(Vl V2 Al A2 CI C2)(COND«ATOM VI) (OR(ME1-lliER
480 VI CI)(THIR V2(CONS VI AI)A2 CI C2») (T(OR(MEMBER VI C2)(THlR
490 V2 AI(CONS VI A2)Cl C2»»)EXPR)
500 (PROG (A)A(SETQ A(ERSETQ(READTTY») (COND«NULL A) (GO A»)
510 (SETQ A(ERSETQ(THEOREM(CAR A»»(COND«NULL A) (GO A»)
520 (COND«CAR A) (PRINT(QUOTE VALID») (T(PRINT(QUOTE INVALID»»
530 (GO A»
1111111111111111111111111111111111

- 19 -

BREAK
0

(DEFPROP BREAK(LAMBDA(FN WHEN WHAT) (PROG(TYPE DEF) 100
110 (COND«SETQ DEF(GET FN(QUOTE EXPR»)) (SETQ TYPE(QUOTE EXPR»)
120 «SETQ DEF(GET FN(QUOTE FEXPR») (SETQ TYPE(QUOTE FEXPR»)
130 «PUTPROP FN(LIST(QUOTE LAMBDA) (QUOTE(L A»(LIST(QUOTE BREAKl)
140 NIL T(SETQ DEF(LIST FN(QUOTE UNDEFINED»)WHAT»(QUOTE FEXPR»
150 (RETURN DEF»)
160 (COND«EQ(CAR(CADDR DEF»(QUOTE BREAK1)(RETURN(CONS FN(QUOTE
170 (ALREADY BROKEN»»»
180 (PUTPROP FN(LIST(QUOTE LAMBDA) (CADR DEF) (LIST(QUOTE BREAKl)

·190 (CADDR DEF)HHEN(LIST FN)WHAT»'lYPE)
200 (RE TURN FN) » EXPR)
210 (DEFPROP BREAK1(LAMBDA(L A) (PROGCkX)
220 (COND«NULL(SETQ *X(EVAL(CADR L)A») (RE TURN (EVAL (CAR L)A»)
2.30 «NULL(EQUAL icX(QUOTE (NIL»» (GO BO»)
2/-1-0 (PRINT(APPEND(QUOTE(CRACK IN»(CADDR L»)
250 (COND«NULL(CAR(CDDDR L»)NIL)
260 (T(PRINT(EVAL(CAR(CDDDR L»A»»
270 (GO B3)
280 BO(PRINT(APPEND(QUOTE (BREAK IN» (CADDR L»)
290 (COND«NULL(CAR(CDDDR L»)NIL)
300 (T(PRINT(EVAL(CAR(CADDDR L»A»»
310 B1(COND«NULL(SETQ i~X(ERSETQ(READTTY»» (GO BO»
320 «EQ(SETQ icX(CAR i(X» (QUOTE QUIT» (ERROR(CADDR L»)
330 «EQ °kX(QUOTE STOP» (GO B3»

\.
340 «EQ *X(QUOTE RETURN»(GO B2»

"
>. "

350 «EQ icX(QUOTE EVAL») ' ..

360 «AND(SETQ *X(ERSETQ(EVAL *X A»)
370 (ERSETQ(PRINT(CAR *X»))(GO B1»
380 (T(GO BO»)
390 (COND«NULL(SETQ *X(ERSETQ(EVAL(CAR L)A»»(GO BO»)
400 (PRINT(CONS(CAR(CADDR L»(QUOTE(EVALUATED»»
410 (SETQ A(CONS(CONS(CAR(CADDR L»(CAR *X»A»
420 (GO BI)
430 B2(COND«OR(NULL(SETQ *X(ERSETQ(READTTY»»
440 (NULL (SE,TQ *X(ERSETQ (EVAL(CAR *X) A)))))~(GO BO»)
450 (GO B4)
460 B3(COND«EQ(CAAR A) (CAR(CADDR L») (SETQ *X(LIST(CDAR A»»
470 «NULL(SETQ *X(ERSETQ(EVAL(CAR L)A»»(GO BO»)
480 ~4(PRINT(APPEND(QUOTE(VALUE OF»(CADDR L»)
490 (COND«NULL(ERSETQ(PRINT(CAR *X»»(PRINT(QUOTE OK»»'
500 (RETURN(CAR *X» »FEXPR)
510 (DEFPROP UNBREAK(~illDA(FN)(PROG(TYPE DEF)
520 (COND«SETQ DEF(GET FN(QUOTE EXPR») (SETQ TYPE(QUOTE EXPR»)
530 «SETQ DEF(GET FN(QUOTE FEXPR») (SETQ TYPE(QUOTE FEXPR»)
540 (T(RETURN(CONS FN(QUOTE(NOT BROKEN»»))
550 (COND«EQ(CAR(CADDR DEF»(QUOTE BREAKl»(RETURN
560 (PUTPROP FN(LIST(QUOTE LAMBDA) (CADR DEF) (CADR(CADDR DEF»)TYPE»»
570 (RETURN(CONS FN(QUOTE(NOT BORKEN»» »EXPR)
580 (DEFPROP BREAKLIST(LABMDA(L A)(}~PCAR
590 (QUOTE (LAMBDA (X) (BREAK X T NIL»)L»FEXPR)

.... ,-... - <:) , .'

- 20. -

..

BREAK - (CONTINUED)

600 (DEFPROP UNBREAKLIST(LAMBDA(L A) (MAPCAR(QUOTE UNBREAK)L»FEXPR)
999 (LISTEN)

UNION, INTERSECTION

100 (DEFPROP UNION
110 (LAMBDA(X Y)(COND«NULL X)Y)
120 . «MEMBER(CAR X(Y) (UNION(CDR X(Y»
130 (T(CONS(CAR X) (UNION(CDR X)Y») »
140 EXPR)
150 (DEFPROP INTERSECTION
160 LAMBDA(X Y)(COND«NULL X)(»
170 «MEMBER(CAR X)Y) .
180 (CONS(CAR X) (INTERSECTION(CDR X)Y»)
190 (T(INTERSECTION(CDR X)Y» »
2,00 EXPR)
210 (LISTEN)

REMOB - REMOB is a pseudo-function that removes its argument from the object list.

100 (DEFPROP REMOB(LAMBDA(L A) (PROG(B C)A(COND«NULL L)(RETURN(»»
110 (SETQ B(CAR L»(SETQ C OBLIST)B(COND«NULL C)(»«~lliMBER B(CAR C»
120 (PROG() (COND«EQ(CAAR C) B) (RETURN(RPLACA C(CDAR C»»)(SETQ C(CAR C»
130 A(COND«EQ(CADR C) B) (RPLACD C(CDDR C»)«SETQ C(CDR C»(GO A»»)
140 «SETQ C(CDR C»(GO B»)(SETQ L(CDR L»(GO A»)FEXPR)
150 -(DEFPROP RENAME(LAMBDA(L A) (PROG(B) (EVAL(LIST(QUOTEREMOB) (CAR L» NIL
160 (SETQ B OBLIST) A(COND«NULL B)(RETURN(»)«~lliMBER(CADR L)(CAR B»
170 (GO B») (SETQ B(CDR B»(GO A)B(SETQ a(REDUCE(CADR L)(CAR B»)
180 (RPLACA B(CAR L»(RPLACA(CDR(REDUCE(QUOTE PNAME) (CDAR L») (GET .
190 (CADR L)(QUOTE PNAME») (RETURN(CADR L»»FEXPR)
200 (DEFPROP REDUCE(LAMBDA(A L) (PROG()B(COND«NULL) (RETURN(»)
2·10 «EQUAL(CAR L)A) (RETURN L») (SEIQ L(CDR L» (GO B») EXPR)
220 (LISTEN)

- 21 -

J.'RACE - TRACE is a pseudo-function that accepts an unlimited number of arguments
that are automatically QUOTEd. For example, to trace alpha, beta, and gamma,
;~nter (TRACE ALPHA BETA GAHHA). TRACE will not work on pre-·defined function;.:;.
TRACE contains a simulator for the TRACE feature in the IBH 7090 version of Lisp.

~oo (DEPROP UNTRACE(LAMBDA(L A) (PROG(X Y)B(COND«NULL L)(RETURN Y»)
110 (SETQ X(CAR L»C(COND«NULL(CDR X»(GO D»«EQ(QUOTE TRACE) (CADR X)
120 (RPLACD X(CDDR(CDDDR X»))«SETQ X(CDDR X)(GO C») (SETQ Y(CONS
130 (CAR L)Y»)D(SETQ L(CDR L»(GO B»))FEXPR)
140 (DEFPROP TRACE(LAMBDA(L A) (PROG(W X Y Z)B(COND«NULL L)(RETURN Y))
150 (SETQ X(SETQ Z(CAR L») (SETQ L(CDR L»C(COND«NtJLL(CDR Z))(GO B)
160 «EQ(CADR Z)(QUOTE TRACE»(GO B»«MEMBER(CADR Z)(QUOTE(EXPR
170 FEXPR»)) (SETQ Z(CDR Z))) «SETQ Z(CDDR Z» (GO C») (SETQ Y(NCONC '1
180 (LIST X») (RPLACD(CDDR(SETQ H(GENSYM))Z) (RPLACD X(CONS(QUOTE
190 TRACE) (CONS W(CONS(QUOTE FEXPR) (CONS(LIST(QUOTE LAMBDA)(QUOl~(
200 /-L /-A»(NCONC(LIST(SUBST W X(QUOTE PROG»(QUOTE(/-B /-C»(LIST
210 (SUBST W X(QUOTE PRINT»(LIST(SUBST W X(QUOTE QUOTE»(LIST(QUOTE
220 ENTERING)X»» (APPEND'(SUBST W X(COND«EQ(CAR Z) (QUOTE FEXPR»
230 (QUOTE«PRINT(SETQ /-C /-L»») (T(QUOTE«PRINT(SETQ /-B(EVAL
240 (CONS(QUOTE LIST)/-L)/-A»)/-D(COND«NULL /-B) (GO /-E»)
250 (SETQ /-C(NCONC /-C(LIST(CONS(QUOTE QUOTE) (LIST(CAR /-B»)))
260 (SETQ /-B(CDR /-B»(GO /-D»»») (LIST(QUOTE /-E) (SUBST W X(LIST
270 (QUOTE SETQ) (QUOTE /-B) (LIST(QUOTE EVAL) (LIST(QUOTE CONS) (LIST
280 (QUOTE QUOTE)W) (QUOTE /-C»(QUOTE /-A»»(LIST(SUBST W X(QUOTE
290 PRINT»(LIST(SUBST W X(QUOTE QUOTE»(LIST(QUOTE VALUE) (QUOTE OF)
300 X») (SUBST W X(QUOTE(RETURN(PRINT I-B»»))(CDR X»»»
310 (GO B»)FEXPR)
320 (LISTEN)

TRCSET _. TRCSET traces SETQ in functions.

lXPR»)A) (T(CAR(GET(CAR L)(QUOTE APVAL)
140 »») FEXPR)
150 (DEFPROP SWITCH(LAMBDA(L A) (PROG(B C) (SETQ B(EVAL(CADDR L)A»
160 B(COND«NULL B) (RETURN(»»(SETQ C(CAR B»(RPLACD(EVAL(LIST
170 (QUOTE GETX) C) A) (SUBST(CAR L)(CADR L)(CDR(EVAL(LIST(QUOTE GETX)
180 C)A»»(SETQ B(CDR B»(GO B»)FEXPR)
190 (DEFPROP TSET(LAMBDA(/..;.I-L I-I-A) (PROG() (TEltPRI) (PRINTrLIST(CAR
200 /-/-L) (QUOTE =»)) (PRINT(SETQ /-/-A(EVAL(CAD~ /-I-L)/-I-A»)
210 (RETURN(SET(CAR /-I-L)/-I-A»))FEXPR)
999 (LISTEN)

LSPFNE

100(DEFPROP SQR(LAMBDA(h, (PROG(K X FLAG) (SETQ N(QUOTIENT(ADD1
110(SETQ X(PLUS N(SETQ FLAG O.0»»2»LOOP(COND«GREATERP FLAG 12)
120(RETURN N)) (SETQ N(QUOTIENT(PLUS N(QUOTIENT X N) 2» (SETQ FLAG(ADDl
130 FLAG)) (GO LOOP»))EXPR)
140 (LISTEN)

..;. 22 -

o

C~~i'
~

