SP-30L43

S P a professional paper

SYSTEM
THE SDC LISP 1.5 SYSTEM FOR IBM 360 COMPUTERS
DEVELOPMENT
by
CORPORATION

J. A. Barnett and R. E. Long
2500 COLORADO AVE.
11 January 1968

SANTA MONICA

CALIFORNIA
90406

(:) Copyright 1968 by System Development Corporation.

A-1162 REV. 4 65

it 5.




11 January 1968 1 ‘ SP-30L43
(page 2 blank)

ABSTRACT

This paper describes a LISP 1.5 system currently being
developed at SDC for IBM 360 computers. This system
will provide all the features presently available in

the SDC LISP 1.5 system that runs on the Q-32 computer
under the SDC Time-Sharing System, and will be compatible
with that system. The design of this version of LISP 1.5
is based on SDC's experience in developing both LISP 1.5
and LISP 2 systems, as well as recent improvements in

LISP technology.







11 January 1968 3 “oes SP-3043

INTRODUCTION

Since about 1961, a number of list-processing languages and processors have

been produced at System Development Corporation. Original work involved such
early languages as IPL-V and SLIP, which were developed initially for use in
artificial intelligence research [1,2]. In 1963, work was begun on a LISP 1.5
system for the IBM AN/FSQ-32 computer, a large, high-speed machine which is
operated principally under the SDC Time-Sharing System. This LISP system [3]
has been used extensively since its release in 1964, Other efforts in this
area have included development of LISP 2 for the Q-32 computer, and design of
a LISP 2 system for the IBM 360 computer [h,S].*

During 1967, development of a LISP 1.5 system for IBM 360 computers was begun
at SDC. The.target date for completion of this work is April 1968. The system
is designed to operate under the ADEPT time-sharing executive, which operates
on Models 50 and 67 in the 360 series. Provision has also been made, however,

to allow the system to run under 0S/360.

The system is compiler-based, and is generally compatible with the LISP 1.5
system that runs on the Q-32 at SDC. No attempt has been made to make the
system compatible with interpretive LISP systems. An editing program, called
LISPED, has been provided to aid in debugging, program entry, and editing of
source-language programs and data [6]. Also, the storage conventions adopted

for the system allow a relatively simple addition of a program overlay feature.

The description of the LISP 1.5 system for the 360 presented here includes a
discussion of added language features, the operation of the compiler and
assembler, the input/output capabilities, and the storage conventions and

garbage collection techniques employed.

* ; ‘
Much of the work on these earlier LISP systems was sponsored by the Advanced

Research Projects Agency.

v




11 January 1968 L : SP-3043

LANGUAGE

In general, the language accepted by this version of LISP 1.5 is identical to
that accepted by the LISP 1.5 processor that runs on the Q-32 [T]. Several
additions and modifications have been made to the language, however, to provide
greater flexibility and ease of expression. These changes involve two major
types: (1) those concerned with naming conventions for variables and changes
to the kinds of data structures allowed, and (2) those concerned with added or
changed language forms (PROGN, LABEL, BLOCK, SELECTQ, and FOR).

NAMING CONVENTIONS FOR VARIABLES

In this version of LISP 1.5, all names of global entities, i.e., special
variables, functions, and macros, are ordered pairs. The first element is an
identifier, and the second element is an integer in the range 0 < N < 127.
The second element is a section name that acts like a qualifier. Global
entities may be written as dotted pairs. The sectioning mechanism described
here allows for several global entities to share the same identifier name

without conflicting.
Two parameters control the naming rules invoked by the compiler and assembler:

1. Guess, a section number, and

2. Guess-list, a list of section numbers.

Any global entity name used in a compiled or assembled form may be written as

a dotted pair,* for example,
(sETq (X . 3) ((cAR . @) (z . 2)))

In this example, the special variable named X in section 3 is assigned the value

CAR of the variable named Z in section 2. All the normal LISP form names (CAR,

¥
Names written as dotted pairs are referred to as "tailed.”




11 January 1968 5 SP-3043

SETQ, QUOTE, etc.) are defined in section §. When untailed names are used

freely, the following rules are used by the compiler and assembler:

1. If a declaration exists for the name in any section in
Guess-list, then use that name as if it had been explicitly
tailed. A

2. Else, create a declaration in section Guess and use that

name as if it had been explicitly tailed.

A variable bound as a PROG, LAMBDA, or BLOCK variable is always bound as a
special variable if it is tailed. If an untailed variable to be bound is
declared special in section Guess, then the variable is specially bound as if
it had been explicitly tailed in section Guess. Note that if section Guess is
@ and Guess-list is (@), the compiler and assembler behave similarly to the

Q-32 LISP 1.5 system.

DATA STRUCTURES

In addition to the standard data structures provided by the Q-32 LISP system,
this version of LISP 1.5 provides strings and one-dimensional arrays as legal
data structures. Arrays and strings do not have names; rather they are
autonomous data structures as are list nodes, numbers, etc. Strings and

arrays are processed by subscripting.

In order to perform subscripting, two subscript functions are used. The first
retrieves the value of an element of an array, or a character from a string.
The second assigns a value to an element of an array or places a character in
a string. An array element may be assigned the value of any S-expression,

including an array.

A syntax has been devised for reading and writing strings, arrays, functionals,
and numerics with radices of 8, 10 and 16.

L]




11 January 1968 6 S SP-30L3

The system does not provide for character objects (as does the Q-32 LISP 1.5
system). Also, no use is made of property lists by the system. The property
list belongs entirely to the user and may be any S-expression. (The system

keeps a separate property list for itself.)
LANGUAGE FORMS

PROGN Form

A form called PROGN has been added to the language. Used as an expression,
PROGN has as its body an indefinite number of expressions, each evaluated in
a left-to-right order. The value of the last expression is the value of the

PROGN form. If the body is empty, (PROGN), the value NIL is produced.

Used as a statement, PROGN has as its body an indefinite number of statements.
The statements are operated in a left-to-right order. After the operation of
the last statement, control falls through the PROGN form. Any of the embedded
statements may either be conditional transfers, unconditional transfers, or
return statements. The transfer statements may reference labels outside of

the PROGN form.

Several forms in the language, COND, SELECT, SELECTQ, LAMBDA, RETURN, and SETQ,

use an implicit PROGN. This is best explained with an example:
(coNp (P1) (P2 X) (P3 (SETQ X Y) 2Z))
In this example, if Pl is true, the value of the COND is NIL; if P2 is true,

the value of the COND is X; if P3 is true, X is assigned the value of Y and

the value of the COND is Z. This is equivalent to the following expression:

(coND (P1 (PROGN))(P2 (PROGN X))
(P3 (PROGN (SETQ X Y) Z)))

PR I LT




11 January 1968 T SP-3043

Similarly, the expression
(seTQ X (G Y) (CDR X))
is equivalent to
(sETQ X (PROGN (G Y) (CDR X)))

LABEL Form

A change has been made to the meaning of the LABEL form. Rather than being
used to provide a local name for embedded LAMBDA forms, it is used to provide
a means of attaching a statement label at points at which it would otherwise
be impossiblé. The LABEL form contains two items, the label and a statement,

for example:
11 (COND(PL (G X)) (P2 (LABEL L2 (H Y)))(T (I 2)))

In this example, the label L2 is placed in front of the statement (H Y). Thus,
any statement that could legally transfer to label L1 can transfer to label L2,

The LABEL form may also embed any statement in a PROGN statement; the label
placed there will be visible anywhere a label would be visible if it were
embedding the PROGN itself. When the LABEL form attaches a label to a part of
either a COND, SELECTQ or SELECT statement, and control is transferred to that
label, operation will proceed with the item so labeled as if control had been

placed there on a predicate match.

BLOCK Form

A BLOCK form has been added that combines the sequence of statement features
of PROG's with the ability of LAMBDA's to preset bound variables to values
other than NIL. Except for the syntax of the bound variable list, the syntax
of ‘a BLOCK is identiéal to that of a PROG.




11 January 1968 8 , SP-3043

In a BLOCK, the variable list is a mixture of any number of variables and lists
whose CAR is a variable and whose CADR is any expression. In the variable case,
the preset is NIL; in the list case, the preset is the value of the expression.

For example,

(BLock (A (B (CAR C)) D)
L(cOND ((NULL B) (RETURN A))
((ATOM (SETQ D (CDR B))) (RETURN D)))
(SETQ B D)
(SETQ A (CONS D A))
(Go L))

is equivalent to

((raMBDA (A B D)
(PrROG ()
L(coND((NULL B)(RETURN A))
((ATOM(SETQ D (CDR B)))(RETURN D)))
(SETQ B D)
(SETQ A (CONS D A))
(go L))
NIL (CAR C) NIL)

In fact, the meaning of RETURN, the visibility rules for labels, and the order
of evaluation of presets are precisely described by the transformation of a

BLOCK into a combination of PROG and LAMBDA [8].

SELECTQ Form
A form very similar to SELECT has been added, called SELECTQ. In SELECTQ, the

select-expression is evaluated and matched to the unevaluated selectors. The
selectors are either identifiers (literal atoms) or lists of identifiers. If
the select-expression is EQ to either the identifier or any member of a list

of identifiers, the implied PROGN to the right is operated in the same manner

as in SELECT. For example,

[




11 January 1968 ! 9 © spP-3043

(SELECTQ (READ)
((A B) (CAR X))
(c (CDR X))
(QUOTE OTHER))

is equivalent to

(SELECT (READ)
((QUOTE A) (CAR X))
((QUOTE B) (CAR X))
((QuOoTE C) (CDR X))
(QUOTE OTHER))

The implied PROGN's are'either éxpressions or statements, depending on whether
the SELECTQ ‘is an expression or statement. A LABEL form embodying an implied
PROGN is visible from any point that a label in front of the SELECT or SELECTQ
would be visible.

FOR Form
A multi-generator parallel loop FOR macro has been added to the system as part
~ of the language., Generators are STEP, IN, and ON. STEP is a numerical

incrementor or decrementor; IN moves through the top-level elements of a list;
and ON moves through successive CDR's of a list. The control elements of the

FOR loop are UNTIL, WHILE, UNLESS and WHEN. UNTIL and WHILE can cause evalua-

.tion of the whole loop to cease, whereas UNLESS and WHEN only cause a particular

iteration to be skipped.

The FOR macro expands as a BLOCK, and therefore has a value. Embedded RETURN
statements will cause the value of the FOR loop to be the value of the RETURN's
expression body. On fall-through cases, the value may be given by the VALUE

form.

DR R e O,

TR e




11 January 1968 10 SP-3043

COMPILER

The compiler designed for this system is a one-pass program coded in LISP 1.5.
Its structure is based on the LISP 2 compiler designed at SDC for IBM 360
computers [5,9,10]. The input is S-expression LISP 1.5 and the output is LAP
360. A front-end syntax-checking pass is optional. The main compiler assumes
that no syntatic errors are present, and only diagnoses misuses of variable
names and contextual errors, e.g., a GO statement being used as an expression
would cause an error diagnostic. Both warning and error messages are issued
by the compiler. Error messages inhibit the LAP 360 output from being assem-

bled; warning messages do not.

Several kinds of optimizations are performed by the compiler to reduce the
amount of output code. For example, the contents of the accumulator are remem-
bered from one form to another., This tends to minimize the number of load

instructions output by the compiler.,

Other optimizations performed by the compiler are concerned with branching
instructions. The scheme used causes the compilation to be divided into five

modes:

l. Compilation of expressions for value,

2, Compilation of expressions with a label to transfer to with
the value in the accumulator.

3. Compilation of statements.

4, Compilation of statements with a label to transfer to if the
statement does not unconditionally transfer on its own.

5. Compilation of predicates: this is similar to expression
compilation with two labels--one to transfer to on NIL

values and the other to transfer to on non-NIL values.

This kind of optimization is achieved by having each form cause the compila-
tion of its arguments in modes which depend on the mode in which the form

itself is being compiled.

(1




11 January 1968 11 _ SP-30L43

The statement, expression, and predicate labels are maintained by the compiler,
along with their respective reference counts. When these labels are attached
to the LAP 360 listing, several checks are made. If the reference count is @,
it is not attached and therefore the contents of the accumulator are preserved.
Also, if the last instructions on the listing are branches and one of them is
to the label being attached, then at least one of those instructions is deleted

and the remaining ones rewritten to produce an equivalent operation.,

ASSEMBLER ' R
The assembler, LAP, is a one-pass processor that handles programs up to a
meximum size of 4,096 bytes in length. This allows the same base register to

be used for all branching instructions.

The assembly language for the system, LAP 360, is a symbolic assembler langusge
that will handle the full instruction set of the IBM 360 computer and provide
for a macro capability. Variables in LAP 360 are referenced and bound by their
symbolic names. The assembler automatically binds special variables specially
and follows the same defaulting conventions as does the compiler., A block
structure facility is provided to ease the burden of compilation of PROG, BLOCK,
and LAMBDA forms.

The instruction assembly is done by a pattern-matching routine, Each 360
opcode is related to a pattern; the occurrence of register, mask, count or
address fields as part of an instruction is specified by the pattern, When a
match is found, the numerical equivalent of that field is planted in the binary

program image.

The PUSH., POP., ARGS, CALL, FASTCALL, SLOWCALL, CALI, and BLOCK pseudo-opcodes
are provided as macros in the basic system. FASTCALL, SLOWCALL, and CALI are

used=--respectively~~for functional calls without error checks, functional calls




11 January 1968 12 , SP=30L43

with error checks, and calls to functions with an indefinite number of argu-

ments.

Temporary cells on the pushdown stack may be referenced by using the PUSH.,
POP., and TOP, address mnemonics. The PUSH. and POP, pseudo-opcodes may also
be used to control stack allocation. The four calling macros automatically
push and pop the stack when the call is made., The ARGS pseudo-opcode is used
to help align the stack after calling.

INPUT/OUTPUT
The input/output capabilities of the LISP 1.5 system for the 360 resemble
those offered by the LISP 1.5 system that runs on the Q=32 at SDC [11]. The

devices handled are tape, disc, and teletypewriter. Further extensions are

planned for core files and CRT displays.

Input/output under LISP 1,5 is file~-oriented. A named file may be opened or
shut. This means that the LISP system acquires files from the c¢perating sys-
tem, and returns files to the operating system. After a file has been opened
and before it is shut, it may be selected for either input or output. Only
one file may be selected for input and one file selected for output simul-
taneously., All reading and printing functions implicitly use the files that

are selected for input and output.

The available input functions are READ (reads an S-expression), RATOM (reads
either an atom or a delimiter), and READCH (reads a character). The available
output functions are PRINT (prints an S-expression), and PRINCH (prints a
character). The PRINT operation is controlled by the value of two Boolean-

" valued variables., The first determines whether symmetric printing or normal
printing is done; the second controls whether "pretty" formatted printing or
packed formatted printing is done., A POSITION function is available for re=-

winding tapes, skipping files, etc.

IE'

PRIFSNTRREI LI UR




11 January 1968 13 SP-3043

The READ function can input constant arrays, strings, and functionals in addi-
tion to unusually spelled identifiers with the $$ artifact. The upper limit

on length of strings and identifiers read is 255 characters.

STORAGE CONVENTIONS AND GARBAGE COLLECTION

One of the most important and innovative parts of the LISP 1.5 system for the

360 is that concerned with methods for storage management. The storage con-
ventions and garbage collection techniques employed were originally intended
for use in the LISP 2 system designed at SDC for the 360 {4]. The major stor-

age management features provided by the system are listed below:

1. 16-bit CAR/CDR; hence, at most 65,536 words of LISP-addressable
data structures
2. Small integers (at least 4,095 positive and 4,096 negative)
3. 32-bit two's complement integers and hexadecimal numbers
4, Double-precision (6L~bit floating-point) numbers
S Dynamic arrays and strings
6. Relocatable binary programs
7. k4,096-byte maximum binary program size
8. Push-down stack packed with no holes on it
9. Push-down stack constructed to allow for easy scanning for
previous values of special variables and for finding infor-
mation about active return addresses on the stack; in cases
of stack unwrapping or error set, the stack may be unwrapped
without consulting binary program images; allows for easier
implementation of a swapping mechanism
10. Functionals may be the values of special variables or parts
of list structure (not so on the Q-32)
11, Unique quoted structures
12, Identifiers reclaimed and folded
13. Identifiers with l-character print names fixed in the system
and never garbage collected or relocated (also not distinguish-

able from other identifiers)




11 January 1968 1k SP-3043

14, Property list reserved for the user

15. Separate system property list

A five-phase garbage collector is used by the system. Each phase has respon-
sibility for a different garbage-collector function., The phases and their

functions are described below:

1. Mark phase: All active data structures are marked. A 2,048~
word bit table is maintained by the system. Each bit of the
table corresponds to one 32-bit word in LISP-addressable
space, Only one word of a multi-word structure needs to be
marked to make the whole structure active.

2. Prune-phase: The oblist is pruned and various quote and variable
structures no longer needed are unlisted from system property
lists.

3. Fold and Plan phase: Structures in node, identifier, and
number spaces are folded, Relocation is planned for the resi-
dent structures of other spaces,

L, Update phase: Each pointer quantity in every active structure
is changed to the new address of the object pointed at (as
determined by the Fold and Plan phase).

5. Move phase: Arrays, binary programs, and any other structures
not folded (for which moving is necessary) are moved to the

locations determined during the Fold and Plan phase,

Each of the five phases of the garbage collector detailed above is table-
driven, that is, for each kind of data space their may exist up to five
functions corresponding to any or all of the five phases of garbage collection.
Thus during phase one, all phase one functions are called; during phase two,
all phase two functions are called; ete, The garbage collector, then, is

merely a set of five loops that call the functions for each space in sequence.

v

1

<




it

11 January 1968 15 S SP=30L43

Memory is divided into quanta of 256 words. Each data space is comprised of

an integral number of quanta. .A table, called the quantized core map (QCM),
contains one byte for each quantum of LISP-addressable memory. The byte corres-
ponding to a particular quantum contains information describing the kind of
space of which the particular quantum is a part. Predicates such as NUMBERP,
ATOM, etc.,use their pointer arguments to look up the description in the QCM,
rather than doing boundary checks. The Mark and Update phases of the garbage

collector also use the QCM,

A function called UMARK (the universal marker) is used by phase one functions
to mark active structures. UMARK is given one argument, a pointer to any
structure in LISP-addressable memory. UMARK marks this structure active, then
looks up the byte in the QCM corresponding to the quantum in which the struc-
ture pointed at resides. This byte contains a number between 0 and 32; it is
used as an index to a function table, called the universal mark function table,
UMFT, The elements of UMFT then continue the marking process in a manner which
depends upon the space with which they are associated, For example, the pare
ticular function in UMFT associated with list nodes, namely MARKNODE, could

well have the following definition:

(MARKNODE(P)
(PROG()
(UMARK (CAR P))
(UMARK (CDR P))))

where P is the pointer given to UMARK, and subsequently passed to MARKNODE,

The universal updater function, UPDATE, works with a table of functions to up=-
date addresses in a manner similar to the way UMARK works to mark active data
structures. For example, to update a node, N, the following statements would

suffice:

(RPLACA N (UPDATE (CAR N)))
(RPLACD N (UPDATE (CDR N)))

SIWREN S

80 A B s L L s




11 January 1968 16 , SP-3043

In each case, UPDATE would call the function appropriate for finding the new
address for CAR and CDR of N as determined by the Fold and Plan phase.

A point of interest about the storage convention is that the pushdown stack,

binary programs, and the bit table need not be in LISP-addressable space. If
they are, these struetures may reside in space that is pointed to as "small-

integer" memory. This flexibility allows the actual amount of memory com=-

prising the system to range between 20- and 90-thousand 32-bit words.

The quantized core map used in conjunction with table-driven garbage collection
also allows for two important extensions to the system: First, a "growing-
pain" program may be added. This program reallocates the number of blank
quanta (256-word blocks) that are available for the different spaces after a
garbage collection has been performed, The second extension is a capability
to experiment with new data structures. This is achieved by adding new func-
tions to the garbage collector tables and operating the growing-pain program
to provide blank quanta for the new space. This may be accomplished without

changing those parts of the garbage collector that deal with old spaces.

CONCLUSION

The LISP 1.5 system described in this paper is currently under development at
SDC, and is expected to be complete in April 1968. The major design goals of
the system are to improve on the features provided by the SDC Q=32 LISP 1.5
system, while maintaining compatibility with it, and to produce a system that
is modular and open-ended so that new features can be tested and added at a

later date.

‘The major language innovations to the system involve changes in the naming
conventions for variables, changes in the kinds of data structures allowed,
and added or changed language forms., The major features provided by the pro-
cessor portion of the system involve several compiler optimizations that re-
duce the amount of output code and allow more economical branching operations,
the use of pattern-matching techniques in the assembler, and the use of table-

driven storage management techniques.

"




»

11 January 1968 17 SP=30L43

(1ast page)

REFERENCES

1.

2,

3.

10.

11,

Shaffer, S. S., "Current Status of IPL-V for the Philco 2000 Computer",
Communications of the ACM, September 1962, Vol. 5, No. 9, p, 479.

Londe, D. L., "An Introduction to SLIP (Symmetric List Processor)". SDC
document TM-2399, May 13, 1965, 29 pp.

Saunders, R, A., "The LISP System for the Q-32 Computer". In Berkeley,

E.C. and Bobrow, D. G. (Eds.), The Programming Language LISP: Its
Operation and Applications, Cambridge, Massachusetts: The MIT Press, 1966,

Abrahams, P. W., Barnett, J. A., et al., "The LISP 2 Programming Language
and System", AFIPS Conference Proceedings, Fall Joint Computer Conference,
1966, Vol. 29, pp. 661-67T6.

Barnett, J. A., Long, R. E., et al., "LISP 2 for the IBM S/360". SDC
document series TM-3417, April 26, 1967, 15 volumes.

Kameny, S. L. and Hawkinson, L., "LISP Edit Program LISPED". SDC document
TM~-2337/100/01, April 13, 1966, 19 pp.

Weissman, C., LISP 1,5 Primer, Belmont, California: Dickenson Publish=

ing Company, Inc., 1967.

Berkeley, E. C. (Ed), "Thesaurus and Dictionary of Functions in LISP"

(in press).

Saunders, R. A., Barnett, J. A., and Firth, D. C., "The LISP 2 Compiler".
SDC document TM-2710/320/01, February 1, 1966, 55 pp.

Barnett, J. A., "Algorithmic Compilation of Predicates". SDC document
SP-2856 (in press), 12 pp.

Kameny, S. L. and Weissman, C., "The Q-32 LISP 1.5 Mod. 2.6 Systemf
Operating System, Input/Output, File, and Library Functions". SDC
document TM-2337/103/00, April 11, 1966, 27 pp.

:
3
5




